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ABSTRACT

Sensor Scheduling Under Energy Constraints

by

Yi Wang

Co-Chairs: Mingyan Liu and Demosthenis Teneketzis

Recent advancement of wireless technologies and electronics has enabled the devel-

opment of low-cost wireless sensor networks (WSN). The development of wireless sensor

networks has also been motivated by military applications such as battlefield surveil-

lance and target tracking. They are now used in various application areas, including

habitat monitoring, industrial process monitoring and control, environment monitoring,

health care applications, home automation, and traffic control.

In this dissertation we investigate sensor scheduling problems under energy con-

straints through three scenarios: stationary parameter estimation, dynamic parameter

tracking and discrete search. We first formulate a stochastic resource allocation problem

for the stationary parameter estimation scenario with a sensor-dependent, parameter-

dependent observation model. With the Gaussian assumption and linear observation

model, the original problem is equivalent to a deterministic resource allocation prob-

lem. We propose a greedy algorithm and identify conditions sufficient to guarantee its

optimality. Thereafter we formulate the parameter estimation problem with a sensor-

dependent parameter-independent observation model as a static allocation problem. We
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derive lower bound on the optimal performance and propose a preprocessing algorithm

to improve the lower bound. We use the improved lower bound to evaluate the per-

formance of the proposed greedy strategy. Subsequently, we investigate the dynamic

parameter tracking problem and discover the structure of an optimal strategy. For

the discrete search problem with multiple sensors, we develop an easily implementable

greedy strategy and identify conditions sufficient to guarantee its optimality. We discuss

the relationship between each problem and the multi-armed bandit problem.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Recent advancement of wireless technologies and electronics has enabled the de-

velopment of low-cost low-power wireless sensor networks (WSN). A WSN consists of

spatially distributed autonomous sensors that can cooperatively monitor various envi-

ronmental conditions, such as temperature, sound, light, vibration, pressure, motion

or pollutants. The development of wireless sensor networks has also been motivated

by military applications such as battlefield surveillance and target tracking. WSN are

now used in various application areas, including habitat monitoring, industrial pro-

cess monitoring and control, environment monitoring, health care applications, home

automation, and traffic control (see [1]).

Irrespective of the application, a common features underlying all of the above in-

clude, (i) a WSN is typically composed of a potentially large number of unattended

sensor nodes which may be densely deployed; (ii) each node in a sensor network is

typically equipped with sensing hardware, a radio transceiver, a micro-controller unit,

memory and an energy source, usually batteries; and (iii) each node needs to commu-

nicate with either other sensor nodes or some central controller directly.

Powered by battery, a sensor node has finite energy reserves. At the same time,

it may be difficult or infeasible to recharge or replace these batteries due to the large
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scale of the network or harsh environment. Therefore, energy efficiency is one of the

most important factors that need to be considered in the design and operation of sensor

networks.

Below are a list of sub-systems of a sensor node that consume energy. (see [2])

• A computing sub-system consists of a micro-controller, which is responsible for

the control of the sensors and execution of communication protocols. Usually the

micro-controller operates under various operation modes for energy management

purposes. But switching between these operating modes also consumes power.

• A communicating sub-system usually consists of a short range radio which is

used to communicate with neighbor nodes or a central controller. Radios can

operate under the Transmit, Receive, Idle and Sleep modes. The energy con-

sumption in idle mode is quite significant, often observed to be on the same order

as the receiving mode.

• A sensing sub-system consists of a group of sensors and actuators that link the

node to the outside world. Energy consumption can be reduced by using low

power components and trading off less important performance.

• A power supply system usually consists of a battery which supplies power to

the sensor node.

In a sensor network, energy awareness not only needs to be incorporated in the indi-

vidual nodes, but also into groups of communicating nodes and the entire network. In

order to prolong the lifetime of the sensor network, there is a variety of things one can

do, such as (1) deploying redundant sensors so as to maintain connectivity and coverage

even as sensor nodes’ energy starts to deplete; (2) using hierarchical organization to

decrease sensor node’s communication distance; (3) spreading the processing and com-

munication loads evenly among or in proportion to their available resources, such as

rotating the role of cluster heads or enabling sensor nodes to take turns turning off their

2



transceivers; (4) enabling nodes with more battery, processing or memory resources to

participate more in network coordination, data aggregation and data dissemination;

and (5) managing the data flow, which is explained next.

Since communication consumes significant amount of energy, data flow in the sensor

network is one of the most important factors to be considered. Data acquisition and

dissemination in sensor networks may be categorized into time-driven, event-driven

and demand-driven. In time-driven networks, sensor nodes collect and report data

from the physical environment periodically, such as in a temperature monitoring sensor

network, where each sensor periodically takes a temperature measurement and sends

it back to the central controller. Here the frequency of the data collection is crucial

since it needs to be frequent enough to provide enough information to the controller

and in the meantime, it needs to be sparse enough to conserve energy. In intrusion

detection or event notification system, event-driven sensing is used in general. For

example, in a fire alarm system, if the particulate density is larger than a threshold, a

signal will be transmitted back to the central controller. Here the threshold is crucial

since we want to keep the detection probability high while the false alarm probability

is small. In a demand-driven sensor network, a central controller queries sensors for

desired information; only the sensors that satisfy the query condition from the central

controller report their sensed data. Here the central controller decides when sensing

will be done and which sensors will be activated and report the data back. Some sensor

networks combine more than one of the above data acquisition approaches.

Based on the nature of data processing and aggregation, sensor networks can be also

categorized into distributed sensor networks and centralized sensor networks. In net-

works with a distributed processing architecture, individual sensors may make their own

sensing, routing or data fusion decisions in order to reduce communication overhead.

In networks with a centralized processing architecture, data aggregation and processing

occur at the central controller. Some networks have a hybrid processing architecture,

which provides a compromise by forming clusters and allowing cluster heads to process
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data and only cluster heads communicate with the central controller directly.

This dissertation focuses on a demand-driven network with a centralized processing

architecture. Specifically, it investigates the following scenario. There is one central

controller and a set of sensors, which can communicate directly with the controller.

Each sensor can perform some measurement or detection task and can be activated

only a limited number of times due to the energy constraint. The time horizon under

consideration is finite. At each time instant, the central controller activates a set of

sensors and the activated sensors then perform the sensing tasks and report the data

back to the central controller. The central controller processes the data and determines

the next set of sensors to be activated. This process is repeated until either the time

horizon of interest has expired or a certain performance objective is achieved. In this

scenario, we focus on a sequential scheduling problem and seek to answer questions

including: when to wakeup a sensor to do sensing, when the sensor should report the

data back to the central controller, which task each sensor should accomplish, when the

sensing process should be terminated, etc.

In the following section, we highlight the contributions of this dissertation.

1.2 Main Contributions of this Dissertation

The general centralized sensor scheduling problem with energy constraints does not

have a closed form solution, and it is difficult to discover qualitative properties of

optimal sensor scheduling strategies. In this dissertation we investigate three specific

problems, which are abstract versions of real applications, capture key features of the

scheduling problems. In the demand-driven sensor networks, there are three categories

of applications: estimation, tracking and detection. Corresponding to each application,

we investigate the following problems:

1. Multiple stationary parameters estimation,
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2. Single dynamic parameter tracking,

3. Discrete search.

All these problems are centralized stochastic optimization problems and can, in

principle, be solved by stochastic dynamic programming (SDP). A SDP approach leads

to computationally challenging problems, and does not always provide insight into the

nature of the above-mentioned problems. For this reason, in this dissertation, we use the

SDP approach to discover qualitative properties of optimal strategies only for the single

dynamic parameter tracking problem. For the other two problems we use the following

methodology to investigate allocation strategies: For each problem, we propose an

easy-to-implement greedy algorithm and analyze the properties of the optimal strategy.

Based on the different properties of the optimal strategies, we either derive sufficient

conditions to guarantee the optimality of a greedy strategy, or obtain structural results

of the nature of the optimal strategy.

Below we introduce the three sensor scheduling problems under energy constraints

that we investigate, and discuss the specific contributions of the dissertation to each

problems.

1.2.1 Multiple Stationary Parameters Estimation

The problem is described as follows. Multiple sensors are sequentially activated

by a central controller to take measurements of one of many stationary parameters.

The measurement model is a linear Gaussian observation model, which is sensor- and

parameter-dependent. The controller combines successive measurement data to form an

estimate for each parameter. A single parameter may be measured multiple times. Each

activation incurs a cost (e.g., sensing and communication cost), which is both sensor-

and parameter-dependent. Assuming that sensors may be of different qualities (i.e.,

they may have different signal-to-noise-ratios) and the activation of different sensors

may incur different costs, our objective is to determine the sequence in which sensors
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should be activated and the corresponding sequence of parameters to be measured so as

to minimize the sum of the terminal parameter estimation errors and the total sensor

activation costs.

The main contributions are summarized as follows.

• A novel formulation of a sensor scheduling problem for multiple stationary pa-

rameters estimation under an energy constraint.

• The decomposition of the sensor-parameter scheduling problem into two subprob-

lems: the first one is to determine the order of the sensors to be used; the second

one is to determine the order of the parameters to be measured.

• The derivation of conditions sufficient to guarantee the optimality of a greedy

strategy.

Furthermore, we consider a special case of the above-mentioned problem, where

the measurement model is only sensor-dependent but parameter-independent and each

activation incurs a constant cost. The additional contributions are summarized as

follows.

• The development of a method to obtain a lower bound on the performance of an

optimal scheduling strategy.

• The discovery of a preprocessing procedure that can be used to reduce the solution

space in which the optimal strategy lies for any given set of parameters and any

set of sensors; such a procedure can thereby potentially improve the lower bound

on the performance of an optimal scheduling strategy.

• The use of the lower bound to effectively evaluate the performance of the greedy

strategy.
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1.2.2 Single Dynamic Parameter Tracking

The problem is described as follows. Multiple sensors are sequentially activated

by a central controller to track a dynamic parameter. Each sensor can be activated

only once. The dynamic evolution of the parameter and the measurement model are

linear Gaussian. The controller decides whether a sensor should be activated to take

a measurement at present, estimates the parameter along its evolution trajectory and

computes the accuracy of the estimation along a finite time horizon. Each activation of

a sensor incurs a cost (e.g., sensing and communication cost), which is a constant. The

objective is to determine at which time instants to activate a sensor so as to minimize

the sum of the error covariances of the estimates along the finite time horizon and the

total activation costs.

The main contributions are summarized as follows.

• The derivation of the conditions under which an optimal sensor activation strategy

either hold a threshold property or a “stopping property”.

1.2.3 Discrete Search Using Multiple Sensors

The problem is described as follows. Multiple sensors are sequentially activated by

a central controller to search an object hidden in an area, which is divided into several

cells. The prior probability that the object in certain cell is given. Each sensor can be

activated a limited number of times. Each cell can be searched by at most one sensor at

each instant of time. If the object is in a certain cell, say cell i, and a sensor searches cell

i, it finds the object with probability αi which is given, and is independent of precious

searches of that cell. The false alarm is always 0. The objective is to determine at

each time instant, which sensor set should be activated in order to maximize the total

time-discounted detection probability.

The main contributions are summarized as follows.

• A novel formulation of the discrete search problem with multiple sensors.
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• The investigation of properties of an optimal strategy.

• The development of an easy-to-implement greedy algorithm and the derivation of

conditions sufficient to guarantee its optimality.

In the next section, we discuss the difficulties in solving the above-stated problems.

1.3 Difficulties in Solving Sensor Scheduling Prob-

lem with Energy Constraints

There is no canonical way to represent the sensor scheduling problem with energy

constraints. One way to model the energy constraints is to assume that each sensor

node can be activated at most once. This is done without loss of generality because

multiple uses of the same sensor can be effectively replaced by multiple identical sensors,

each with a single usage. In the mean time since different sensors have different energy

profiles while accomplishing different tasks, a cost (which includes the sensing cost and

communication cost) is introduced while a sensor does the sensing and communication.

Optimality is measured by a combined performance measure that accounts for errors

in parameter estimation and for sensor activation costs.

The centralized sensor scheduling problem with energy constraints can be formulated

as a stochastic sequential allocation problem, which has been extensively studied in the

literature (see [3]). It is in general difficult to explicitly determine optimal strategies or

even qualitative properties of optimal strategies for these problems. One exception is the

multi-armed bandit problem and its variants (see [4–16]). This is a class of sequential

allocation problems where qualitative properties of optimal allocation strategies or even

optimal solutions have been explicitly determined.

Unfortunately, the centralized sensor scheduling problem with energy constraints

does not belong to the class of multi-armed bandit problems and its variants, and it

appears difficult to explicitly/analytically determine the nature of an optimal solution

8



of the general problem under consideration. Wherever appropriate, we discuss the

relationship between the problem we investigated and the multi-armed bandit problem.

1.4 Dissertation Organization

The dissertation is organized as follows: In Chapters 2 and 3, we formulate and

analyze a sensor scheduling problem under an energy constraint for static parameter

estimation. In Chapter 4, we investigate a sensor scheduling problem under an energy

constraint for dynamic target tracking. In Chapter 5 we investigate a discrete search

problem under an energy constraint. We conclude in Chapter 6. In Appendices A–D

we present proofs of results appearing in Chapters 2–5.
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CHAPTER 2

MULTIPLE STATIONARY PARAMETERS

ESTIMATION: PART I

Advances in integrated sensing and wireless technologies have enabled a wide range

of emerging applications, from environmental monitoring to intrusion detection, to

robotic exploration. In particular, unattended ground sensors have been increasingly

used to enhance situational awareness for surveillance and monitoring purposes.

In this chapter we study the use of sensors for the purpose of parameter estima-

tion. Specifically, we consider the following scheduling problem. Multiple sensors are

sequentially activated by a central controller to take measurements of one of many pa-

rameters. The controller combines successive measurement data to form an estimate for

each parameter. A single parameter may be measured multiple times. Each activation

incurs a cost (e.g., sensing and communication cost), which may be both sensor- and

parameter-dependent. This process continues until a certain criterion is satisfied, e.g.,

when the total estimation error is sufficiently small, or when the time period of interest

has elapsed, etc. Assuming that sensors may be of different quality (i.e., they may

have different signal-to-noise-ratios) and the activation of different sensors may incur

different costs, our objective is to determine the sequence in which sensors should be

activated and the corresponding sequence of parameters to be measured so as to min-

imize the sum of the terminal parameter estimation errors and the sensor activation

cost.

10



This chapter is organized as follows: In Section 2.1 We present a literature survey

and state the contribution of this chapter. In Section 2.2 we formulate the sequential

sensor allocation problem. In Section 2.3 we introduce preliminary results used in

subsequent analysis. We then present a greedy strategy in Section 2.4 and derive

conditions sufficient to guarantee its optimality. In Section 2.5, we present two special

cases of the sequential allocation problem and discuss its relation to the multi-armed

bandit problem. We present numerical results illustrating the performance of the greedy

strategy in Section 2.6.

2.1 Introduction

In this chapter, we restrict our attention to the case of N stationary scalar pa-

rameters, modeled by independent Gaussian random variables with known means and

variances, measured by M sensors. Each observation is described by a linear Gaussian

observation model. We assume that each sensor can only be used once. This is done

without loss of generality because multiple uses of the same sensor can be effectively

replaced by multiple identical sensors, each with a single use. We formulate the above

sensor scheduling problem as a stochastic sequential allocation problem.

Our problem does not belong to the class of multi-armed bandit problems and its

variants (see discussion in Section 2.5), and it appears difficult to determine the nature

of an optimal solution. To obtain some insight into the nature of this problem, we

consider a greedy algorithm and discover conditions sufficient to guarantee its optimal-

ity. We then present two special cases of the general problem; in each special case, the

greedy algorithm results in an optimal strategy under conditions weaker than the suf-

ficient conditions mentioned above. Furthermore, we discuss the relationship between

our problem and the multi-armed bandit problem and its variants. Finally we illustrate

the nature of our results through a number of numerical examples.

Sensor scheduling problems associated with stationary parameter estimation have
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been investigated in [17] and [18]. In [17], the sensor selection problem is formulated

as a constrained optimization problem, i.e., to maximize a utility function given a cost

budget and the observation model is a general convex polygon of the plane. In [18],

an entropy-based sensor selection heuristic for localization is proposed. Our results are

different from those of [17] and [18] since our observation model and performance criteria

are different. Sensor allocation problems associated with dynamic system estimation

were investigated in [19], [20], [21], [22], [23]. The dynamic system in [19], [20], [21] is

linear. The model of [23] is nonlinear. The objective in [19], [20], [21], [22], [23] is the

tracking of a single dynamic system. The objective in our problem is the estimation

of multiple random variables, or in other words, multiple static systems. Thus, our

problem is different from those formulated in [19]- [23].

The main contributions of this chapter are: (1) the formulation of a sensor scheduling

problem under an energy constraint, (2) the decomposition of the sensor-parameter

scheduling problem into two subproblems: the first one is to determine the order of

the sensors to be used; the second one is to determine the order of the parameters to

be measured, (3)the derivation of conditions sufficient to guarantee the optimality of a

greedy policy.

In the following section, we formulate the problem formally.

2.2 Problem Formulation

Consider a set Ω of stationary scalar parameters, indexed by {1, 2, · · · , N}, that need

to be estimated. Parameter p ∈ Ω is modeled as a Gaussian random variable, denoted

by Xp, with mean µp(0) and variance σp(0). The random variables X1, X2, · · · , XN are

mutually independent. There is a set Φ of sensors, indexed by {1, 2, · · · ,M}, that are

used to measure the parameters. The measurement of parameter p taken by sensor s
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is described by

Zp,s = Hp,sXp + Vp,s , (2.1)

where Hp,s is a known gain, and Vp,s is a Gaussian random variable with zero mean and

a known variance vp,s. The random variables Vp,s, p = 1, 2, · · · , N , s = 1, 2, · · · ,M are

mutually independent; they are also independent of X1, X2, · · · , XN . A non-negative

observation cost cp,s is incurred by activating and using sensor s to measure parameter

p.

As mentioned earlier, without loss of generality we assume that each sensor may be

activated only once. The available sensors are activated one at a time by a controller

to measure a chosen parameter. The observation is then used to update the estimate of

that parameter and the total accumulated observation cost is updated. The controller

then decides whether to activate another sensor from the set of remaining available

sensors, and if so which parameter to measure, or to terminate the process. This sensor

and parameter selection process continues until either all M sensors are used, or until

a time period of interest T has elapsed, or until the controller decides to terminate the

process. For simplicity and without loss of generality, we assume M ≤ T , implying that

at most M sensors/parameters can be scheduled.

Under any sensor and parameter selection strategy γ, the decision/control action

at each time instant t is a random vector Ut := (pt, st), taking values in Ω × Φγ,t ∪

{∅, ∅}, where Φγ,t is the set of sensors available at t under the strategy γ. That is,

the action at time t is given by a parameter-sensor pair. Ut = (∅, ∅) means that no

measurement is taken at t; naturally c∅,∅ = 0. A measurement strategy γ is defined

as γ := (γ1, γ2, · · · , γT ), where γt is such that under this control law the action Uγ
t =

(pγ
t , s

γ
t ) is a function of the initial error variances, all past observations up to time t,

and all past control actions up to time t. Denote by Zγ
t the measurement taken at time

t under strategy γ.

Let Γ be the set of all admissible measurement policies. Our optimization problem
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is formally stated as follows.

Problem 1 (P1):

min
γ∈Γ

Jγ =
N
∑

p=1

E

{

[

Xp − X̂γ
p (T )

]2
}

+ E

{

T
∑

t=1

cp
γ
t s

γ
t

}

s.t.











X̂γ
p (T ) = E[Xp|Z

γ
t · 1({pγ

t = p}), t = 1, · · · , T ],

sγ(t) 6= sγ(t
′

), if t 6= t′, t, t′ = 1, · · · , T ,

where Jγ is the cost of strategy γ ∈ Γ, X̂γ
p (T ) is the terminal estimate of parameter

p under strategy γ, and 1(A) is the indicator function: 1(A) = 1 if A is true and 0

otherwise.

Denote by Zγ,t
p the observation data set collected for parameter p up to time t under

strategy γ. Then the variance of p at time t under strategy γ is given by

σγ
p (t) := E

{

[Xp − X̂γ
p (T )]2

}

= E
{

[

Xp − E(Xp|Z
γ,t
p )
]2
}

, p = 1, · · · , N.

Since Xp is a Gaussian random variable and the observation model is linear, σγ
p (t)

is data independent (see e.g., [24]). Furthermore, at each time instant, the variance of

parameter p evolves as follows.

If at t + 1, parameter p and sensor s are selected by γ, then

σγ
p (t + 1) =











σγ
p (t) −

(σ
γ
p (t))

2
H2

p,s

σ
γ
p (t)H2

p,s+vp,s
, if pγ

t+1 = p, sγ
t+1 = s

σγ
p (t) , if pγ

t+1 6= p

. (2.2)

With the above, problem (P1) can be reformulated as a deterministic optimization

problem as follows. Rewrite the scheduling strategy γ as γ := (P γ, Sγ), where

P γ = {pγ
1 , · · · , pγ

T} and Sγ = {sγ
1 , · · · , sγ

T}.

Note that this is an equivalent representation of the strategy as the one given earlier.

We have simply grouped the sequence of sensors (and parameters, respectively) into a

single vector. Under strategy γ, parameter pγ
t ∈ Ω is measured by sensor sγ

t ∈ Φγ,t∪{∅}

at time t. If sγ
t = ∅, then no measurement takes place at time t and cp

γ
t ,s

γ
t

= 0.

14



Since the parameters are assumed to be stationary, not taking a measurement at

some time instant will incur zero cost and will leave the parameters and their esti-

mates unchanged. Thus, without loss of optimality, we can restrict our attention to

measurement strategies with the following property.

Property 2.1. For ∀t, t = 1, · · · , T − 1, if sγ
t = ∅, then sγ

t′ = ∅, ∀t′ > t.

For convenience of notation, we will redefine Γ as the set of all admissible measure-

ment policies that satisfy Property 2.1. Then the optimization Problem (P1) can be

equivalently written as

Problem 2 (P2):

min
γ∈Γ

Jγ =
N
∑

p=1

σγ
p (τ γ) +

τγ
∑

t=1

cp
γ
t ,s

γ
t

s.t.























pγ
t ∈ Ω and sγ

t ∈ Φγ,t,

(2.2) holds

sγ
t 6= sγ

t′ , if t 6= t′, t, t′ ≤ τ γ,

where τ γ denotes the stopping time, i.e., the number of measurements taken under

strategy γ.

For the remainder of this paper we will focus on problem (P2). In the next section,

we present preliminary results and concepts that are used in the analysis of this problem.

Unless otherwise noted, all proofs may be found in Appendix.

2.3 Preliminaries

The following definition characterizes a sensor in terms of its measurement quality.

Definition 2.1. An index I is defined for a parameter-sensor pair (p, s): Ip,s =
H2

p,s

vp,s
,

where as stated earlier Hp,s is the gain and vp,s the variance of the Gaussian noise when

using sensor s to measure parameter p.
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This index Ip,s can be viewed as the signal-to-noise-ratio (SNR) of sensor s when

measuring parameter p. This quantity reflects the accuracy of the measurement: the

higher the index/SNR, the more statistically reliable is the measurement. This quality

measurement is reflected in the next lemma.

Lemma 2.1. Assume that according to some sensor allocation strategy, sensor set A

is used to measure parameter p starting with a variance σp(t) at time t. Denoting by

σp(t, A) parameter p’s post-measurement variance, we have

σp(t, A) =
σp(t)

σp(t)Îp,A + 1
, (2.3)

where Îp,A =
∑

s∈A Ip,s. Furthermore, σp,A is an increasing function of σp(t) and a

decreasing function of Îp,A. This immediately implies that if A1 ⊂ A2, then σp,A1 >

σp,A2.

Proof. See Appendix A.

Note that Lemma 2.1 immediately implies that if A1 ⊂ A2, then σp,A1 > σp,A2 .

From Lemma 2.1, we know that the final variance of each parameter only depends on

the sensor set to measure the parameter, does not depend on the order of the sensors

measuring or the time of the sensors measuring.

We denote by Rp(σp(t), A) the variance reduction for parameter p through using

sensor set A starting at time t, given its variance at time t is σp(t). That is,

Rp(σp(t), A) := σp(t) − σp(t, A) =
σp(t)

2Îp,A

σp(t)Îp,A + 1
. (2.4)

Lemma 2.2. Variance reduction Rp(σp(t), A) is an increasing function of σp(t) and

Îp,A.

Proof. See Appendix A.

We next decompose the objective function of problem (P2) (which is the sum of

terminal variances and measurement costs) into variance reductions and measurement
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costs incurred at each time step.

Jγ =
τγ
∑

t=1

{

cp
γ
t ,s

γ
t
−
[

σγ

p
γ
t
(t − 1) − σγ

p
γ
t
(t)
]}

+
N
∑

p=1

σp(0)

=
τγ
∑

t=1

Qp
γ
t ,s

γ
t
(σγ

p
γ
t
(t − 1)) +

N
∑

p=1

σp(0) , (2.5)

where Qp,s(σ) is given by:

Qp,s(σ) = cp,s − Rp(σ, s) = cp,s −
σ2Ip,s

σIp,s + 1
. (2.6)

The quantity Qp,s(σ) is referred to as the step cost of using sensor s to measure param-

eter p, when its variance is σ. With the above representation, we see that the total cost

can be viewed as the sum over all initial variances and all step costs.

Definition 2.2. A threshold TH is defined for a parameter-sensor pair (p, s):

THp,s = 1
2
· (cp,s +

√

c2
p,s + 4 · cp,s/Ip,s).

With this definition, we have that

when σ = THp,s, Qp,s(σ) = cp,s −
σ2Ip,s

σIp,s + 1
= 0 ; (2.7)

when σ > THp,s, Qp,s(σ) = cp,s −
σ2Ip,s

σIp,s + 1
< 0 . (2.8)

In other words, when a parameter’s current variance lies above (below) this threshold,

we incur negative (positive) step cost, i.e., more (less) variance reduction than obser-

vation cost; when the current variance is equal to the threshold, we break even. Thus,

THp,s provides a criterion for assessing whether it pays to measure a parameter p at its

current variance level with a particular sensor s.

Furthermore, consider two sensors s1, s2 and a parameter p. Assuming Ip,s1 = Ip,s2 ,

then THp,s1 < THp,s2 implies cp,s1 < cp,s2 . On the other hand, if cp,s1 = cp,s2 , then

THp,s1 < THp,s2 implies Ip,s1 > Ip,s2 . Therefore, the threshold is a combined measure

of sensor quality and its cost with respect to a parameter, and reflects the overall

“goodness” of a sensor: the lower the threshold, the better its quality. The following
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lemma reveals the exact relationship between the step cost, a sensor’s index, and a

sensor’s threshold.

Lemma 2.3. The step cost Qp,s(σ) is a decreasing function of Ip,s and σ, and an

increasing function of THp,s.

Proof. See Appendix A.

2.4 Sufficient Conditions for the Optimality of a

Greedy Policy

We now decompose the sensor-selection parameter-estimation decision problem into

two subproblems. The first is to determine the order in which sensors should be used

regardless of which parameter is measured. The second problem is to determine which

parameter should be measured at each time instant given the order in which sensors

are used. Such a decomposition is not always optimal. In what follows we present con-

ditions that guarantee the optimality of this decomposition. Specifically, we determine

two conditions under which it is optimal to use the sensors in non-increasing order of

their indices (regardless of which parameter is measured). We then propose a greedy

algorithm for the selection of parameters. We determine a condition sufficient, but not

necessary, to guarantee the optimality of the greedy algorithm. Thus, overall we specify

a sensor-selection parameter-estimation strategy for problem (P2) and determine a set

of conditions, under which this strategy is optimal.

2.4.1 The Optimal Sensor Sequence

We present the following two conditions.

Condition 2.1. The sensors can be ordered into a sequence sg
1, s

g
2, · · · , sg

M such that

Ip,s
g
1
≥ Ip,s

g
2
≥ · · · ≥ Ip,s

g
M

, ∀p = 1, 2, · · ·N . (2.9)
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This condition says that if we order the sensors in non-increasing order of their

quality for one particular parameter, the same order holds for all other parameters. For

the rest of our discussion we will denote sg
j as the j-th sensor in this ordered set.

Condition 2.2. For each parameter p, we have THp,s
g
1
≤ THp,s

g
2
≤ · · · ≤ THp,s

g
M

,

where sg
i , i = 1, · · · , N , are defined in Condition 2.1.

If Conditions 2.1 and 2.2 both hold, then they imply that the ordering of sensors with

respect to their measurement quality is the same as their ordering when observation

cost is also taken into account. Furthermore, both orderings are parameter invariant.

The next result establishes a property of an optimal sensor selection strategy.

Theorem 2.1. Under Conditions 2.1 and 2.2, assume that an optimal strategy is γ∗ =

(P γ∗

, Sγ∗

), where P γ∗

= {p∗1, p
∗
2, · · · , p∗

τγ∗}, Sγ∗

= {s∗1, s
∗
2, · · · , s∗

τγ∗}, and τ γ∗

is the

number of measurements taken by γ∗. Then ∀p ∈ P γ∗

, ∀s ∈ Sγ∗

, and ∀s′ ∈ Φ − Sγ∗

,

we have Ip,s ≥ Ip,s′.

Proof. See Appendix A.

The intuition behind this theorem is the following. Although different sensors may

incur different costs, so long as the costs are such that they do not change the relative

quality of the sensors (represented by their indices), it is optimal to use the best quality

sensors.

To proceed further, we note from Lemma 2.1 that the performance of an allocation

strategy is completely determined by the set of sensors allocated to each parameter;

the order in which the sensors are used for a parameter is irrelevant. Thus, strategies

that result in the same association between sensors and parameters may be viewed as

equivalent strategies. From Theorem 2.1, we conclude that for any optimal strategy,

there exists one equivalent strategy, under which sensors are used in non-increasing

order of their indices. Therefore, without loss of optimality, we only consider strategies

that use sensors in non-increasing order of their indices.
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Parameter Selection Algorithm L:

1: t := 0

2: while t < T do

3: k := arg minp=1,··· ,N Qp,st+1(σp(t))

4: if Qk,st+1(σk(t)) < 0 then

5: pt+1 := k

6: σk(t + 1) := σk(t)
σk(t)Ik,st+1

+1

7: for p := 1 to M do

8: if p 6= k then

9: σp(t + 1) := σp(t)

10: t := t + 1

11: end if

12: end for

13: else

14: BREAK

15: end if

16: end while

17: return τ := t and P := {p1, · · · , pτ}

Figure 2.1: A greedy algorithm to determine the parameter sequence.

Consequently, problem (P2) is reduced to determining the stopping time τ γ and the

parameter sequence corresponding to the sensor sequence Sg = {sg
1, s

g
2, · · · , sg

τγ}.

2.4.2 A Greedy Algorithm

We consider the parameter selection algorithm L given in Figure 2.1.

Given the ordered sensor sequence Sg = {sg
1, s

g
2, · · · , sg

M}, this algorithm computes

a sequence of parameters, P , by sequentially selecting a parameter that provides the

minimum step cost, defined in Equation (2.6), among all parameters. The algorithm
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terminates when the minimum step cost becomes non-negative, or the time horizon T

is reached. The termination time is the stopping time τ g. The parameter selection

strategy resulting from this algorithm, combined with the given sensor sequence, is

denoted by γg := (P g, Sg), where P g = {pg
1, · · · , pg

τg} and Sg = {sg
1, · · · , sg

τg}.

This algorithm is greedy in nature in that it always selects the parameter whose

measurement provides the maximum gain for the given sensor sequence. In the next

subsection, we investigate conditions under which this algorithm is optimal for problem

(P2).

2.4.3 Optimality of Algorithm L

Our objective is to determine conditions sufficient to guarantee the optimality of

the greedy algorithm L described in Figure 2.1, given the ordered sensor sequence

{sg
1, s

g
2, · · · , sg

M}.

To proceed with our analysis, we first note that σp(t), the variance of parameter p

at time t, depends on the initial variance σp(0) and the set of sensors used to measure

parameter p up until time t. Recall that σp(t, A) is parameter p’s variance following

measurement by the sensor set A starting from time t, Rp(σp(t), A) is its variance

reduction.

Then for any sensor set E ⊆ {sg
t+1, · · · , sg

M}, we define the advantage of using the

set {sg
t} ∪ E over using the set E to measure parameter pt at time t as follows.

Bt(pi, E) := Rpi
(σpi

(t − 1), {sg
t} ∪ E) − Rpi

(σpi
(t − 1), E) − cpi,s

g
t
. (2.10)

Using the definition of variance reduction (2.4), Bt(pi, E) can be rewritten as

Bt(pi, E) = Rpi
(σpi

(t − 1), {sg
t}) − cpi,s

g
t
+ ∆pi

(E) , (2.11)

where

∆pi
(E) := Rpi

(σpi
(t − 1, {sg

t}), E) − Rpi
(σpi

(t − 1), E) (2.12)
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denotes the difference between two variance reductions. The first one is the variance

reduction incurred by using sensor subset E when the initial variance is σp((t−1), {sg
t}).

The second one is the variance reduction incurred by using sensor subset E when the

initial variance is σpt
(t − 1). We have the following property on ∆pt

(E).

Lemma 2.4. Consider the sensor sets A = {sg
t+1, · · · , sg

M}, E1 = {sg
t+1, s

g
t+2, · · · , sg

k−1, s
g
k},

and E2 = {sg
t+1, s

g
t+2, · · · , sg

j−1, s
g
j}, where j < k ≤ M . Consider an arbitrary parameter

choice pi at time t + 1. Then ∆pi
(A) ≤ ∆pi

(E1) < ∆pi
(E2) ≤ 0 .

Proof. See Appendix A.

Based on Lemma 2.4 and Equation (2.11), we can define an upper bound Bu,t(pi)

and a lower bound Bl,t(pi) on the aforementioned advantage as follows:

Bt(pi, E) ≤ Bt(pi, ∅) = Rpi
(σpi

(t − 1), {sg
t}) − cpi,s

g
t

:= Bu,t(pi) , (2.13)

Bt(pi, E) ≥ Bt(pi, A) = Rpi
(σpi

(t − 1), {sg
t}) − cpi,s

g
t
+ ∆pi

(A)

:= Bl,t(pi) . (2.14)

Bu,t(pi) represents the total variance reduction in parameter pi’s estimate when pi

is measured by sensor sg
t at time t and no further measurements of pi are taken after t.

Thus, Bu,t(pi) measures the marginal contribution of sensor sg
t on the variance reduction

of pi when only sg
t is used to measure pi after t − 1. Bl,t(pi) measures the marginal

contribution of sensor sg
t on the variance reduction of pi when pi is measured at all time

instants after t.

Intuitively, one expects that the larger the number of sensors used to measure a pa-

rameter pi after a certain time, the smaller is the marginal contribution of any particular

sensor in the overall variance reduction of the estimate of pi. Note that −Bu,t(pi) is the

same as the step cost Qpi,s
g
t
(σpi

(t − 1)) and Bl,t(pi) and Bu,t(pi) are easily computable.

The use of the above upper and lower bounds allows us to obtain the following

result.
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Lemma 2.5. Consider two strategies γ1 = (P1, S1) and γ2 = (P2, S2), with

S1 = S2 = {sg
1, s

g
2, · · · , sg

t} ,

P1 = {p1, · · · , pi−1, pi, pi+1, · · · , pt} ,

P2 = {p1, · · · , pi−1, p
′
i, pi+1, · · · , pt}, where p′i 6= pi .

If Bl,i(pi) > Bu,i(p
′
i), then Jγ1 < Jγ2.

Proof. See Appendix A.

The idea behind this result is that regardless of which allocation strategy is used from

time t on, under the conditions of Lemma 2.5, using sensor sg
t to measure parameter pt

at time t will result in better performance than using sensor sg
t to measure parameter

p′t.

The result of Lemma 2.5 allows us to obtain the following condition, which, together

with Conditions 2.1 and 2.2, are sufficient to guarantee the optimality of the greedy

algorithm L described in Figure 2.1.

Condition 2.3. Consider strategy γ, where γ = (S, P ). At some time instant t, there

exists a parameter p̂t, such that for any other parameter p′t 6= p̂t, we have Bl,t(p̂t) ≥

Bu,t(p
′
t), where Bl,t(p̂t) and Bu,t(p

′
t) are defined in a manner similar to (2.14) and (2.13),

respectively.

Condition 3 at time t says that there is a parameter p̂ such that irrespectively of the

scheduling strategy followed after t sensors sg
t ’s marginal contribution to the variance

reduction of p̂ is greater than its marginal contribution to the variance reduction of any

other parameter.

Furthermore, since

Bu,t(p̂t) ≥ Bl,t(p̂t) ≥ Bu,t(p
′
t) ,∀p′t 6= p̂t ,

and −Bu,t(p̂t) is equal to the step cost, p̂t is the parameter that will result in the smallest

step cost when measured by sensor sg
t .
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Theorem 2.2. Apply Algorithm L to the sequence of sensors in non-increasing order

of their indices. If Conditions 2.1 and 2.2 hold and Condition 2.3 is satisfied at each

time instant 1 ≤ t ≤ τ , then Algorithm L results in an optimal strategy for problem

(P2).

Proof. See Appendix A.

2.5 Special Cases and Discussion

In this section, we present two special cases of the general formulation given in

Section 2.2. In the first case, there is only one parameter to be estimated. This means

the second subproblem in the decomposition of problem (P2) does not exist. In this

case, we show that it is optimal to use sensors in non-increasing order of their indices

under Conditions 2.1 and 2.2.

In the second case, M sensors are identical, implying that the first subproblem in

the decomposition of problem (P2) does not exist. In this case, we show that the

problem is a finite horizon multi-armed bandit problem and the greedy algorithm is

always optimal.

We end the section with a discussion of the relationship between our problem and

the multi-armed bandit problem and its variants.

2.5.1 A Single Parameter and M Different Sensors

Consider problem (P2) with only one static parameter to be estimated. Then the

cost of using sensor s is cs, and the observation model of sensor s reduces to

Zs = HsX + Vs . (2.15)

In this case we only need to determine which sensors should be used to measure the

parameter. Thus, the second subproblem of the decomposition in Section 2.4 does not

exist. Furthermore, Condition 2.1 is satisfied automatically. If Condition 2.2 is also
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satisfied, then Theorem 2.1 implies that it is optimal to use the sensors according to

non-increasing order of their indices. Note that if the observation cost for every sensor

is equal, i.e. cs = c, ∀s = 1, · · · ,M , then Condition 2.2 is equivalent to Condition 2.1.

Thus in this case, it is optimal to use the sensors according to non-increasing order of

their indices.

2.5.2 N Parameters and M Identical Sensors

Consider problem (P2) in the case where the M sensors are identical. Then the cost

of measuring parameter p by any sensor is cp, and the observation model for parameter

p is sensor-independent:

Zp = HXp + V . (2.16)

Since the sensors are identical, Conditions 2.1 and 2.2 are satisfied automatically.

Therefore, in this case we are only concerned with the second subproblem of the decom-

position described in Section 2.4. We can view the M identical sensors as one processor

which can be used at most M times, and the N different parameters as N independent

machines. The state of every machine/parameter is its variance. At every time instant

t, we must select one machine/parameter pt to process/estimate. The variance of ma-

chine/parameter pt is updated and all the other machines’/parameters’ states/variances

are frozen. The reward at each time instant t is the variance reduction of parameter

pt minus the observation cost cpt
. Viewed this way, problem (P2) is a finite horizon

multi-armed bandit problem with discount factor of 1.

For finite horizon multi-armed bandit problems, the Gittins index rule (see [3]) is not

generally optimal. However, in the problem under consideration, the reward sequence

for each machine/parameter is deterministic and non-increasing with time. Thus, for

each machine/parameter, the Gittins index is always achieved at τ = 1. Therefore, in

this case the Gittins index rule coincides with the one-step look-ahead strategy resulting

from Algorithm L described in Section 2.4. Consequently, since Conditions 2.1 and 2.2
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are automatically satisfied, the Gittins index rule is optimal for this special case.

2.5.3 Discussion

We now compare problem (P2) with the multi-armed bandit problem and its vari-

ants.

In general, our problem does not belong to the class of multi-armed bandit problems,

for the reasons we explain below. The main features of the multi-armed bandit problem

are: (1) there are N machines and one processor; (2) each time the processor is allocated

to only one machine; (3) the state of the machine to which the processor is allocated

evolves according to a known probabilistic rule; all other machines are frozen; (4)

machines evolve independently of one another (i.e., the N random processes describing

the evolution of the N machines are mutually independent); (5) at any time instant the

machine operated by the processor results in a reward that depends on the machine’s

state; all other machines do not contribute any reward; and (6) the objective is to

determine a processor allocation strategy so as to maximize an infinite horizon expected

discounted reward.

There are several similarities between the multi-armed bandit problem and ours.

Specifically: (1) each machine in the multi-armed bandit problem can be associated

with a parameter in our problem; (2) the processor in the multi-armed bandit problem

corresponds to all sensors (taken together and considered as one sensor that can be

used M times) in our problem; (3) the reward obtained by allocating the processor to a

particular machine(parameter) corresponds to the variance reduction of the parameter

minus the cost incurred by using a particular sensor to measure the parameter; (4)

machines not operated by the processor at a particular time instant remain frozen; the

variance of parameters not measured by a sensor at a particular time instant remains

unchanged; and (5) the N parameters are mutually independent random variables.

The fundamental differences between our problem and the multi-armed bandit prob-
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Figure 2.2: Performance of the Greedy Algorithm.

lem are: (1) we consider a finite horizon problem, and (2) the sensors we consider may

not be of the same quality, thus, our objective is not only to determine which parameter

to measure at each time instant but also which sensor to use. Because of these differ-

ences, problem (P2) is not a standard multi-armed bandit problem. Thus, Gittins index

policies (see [3], [25]) are not, in general, optimal sensor allocation and measurement

strategies.

Furthermore, our problem is not a superprocess problem (see [6]). Even if we can

view all sensors as a processor with different modes, a sensor used to measure a param-

eter is not available after the measurement. Thus, the processor’s control action set

changes (is reduced) with time. If all sensors could be operated an unlimited number

of times, then our problem would reduce to a superprocess problem.

2.6 Numerical Examples

We illustrate the performance of Algorithm L with a number of numerical examples

when Condition 1 and Condition 2 are satisfied.
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The setup of the numerical experiment is as follows. We consider 7 sensors and 3

parameters, and an observation cost c that is parameter- and sensor-independent. We

vary the observation cost c from 0 to 0.5 with increments of size 0.01; thus we consider

51 different values of the observation cost. For each of the 51 possible values of c we

run an experiment 1000 times. In each run we randomly select the index Is of sensor

s, s = 1, 2, · · · , 7, according to a uniform distribution over the region (1, 5). Also in

each run we randomly select the variance σp(0) of parameter p, p = 1, 2, 3, according

to a uniform distribution over the region (1, 10). Finally, in each run we determine

the performance Jγg

of the greedy algorithm, and, by exhaustive search, the optimal

performance Jγ∗

.

We consider the following performance criteria:

1. Matching rate := # of times γg=γ∗

1000
;

2. Average deviation := 1
1000

∑1000
i=1

Jγg
(i)−Jγ∗

(i)

Jγ∗
(i)

, where Jγg

(i) (respectively, Jγ∗

(i))

denotes the performance of the greedy strategy (respectively, the optimal strategy)

in the ith run;

3. Maximum deviation := max
i=1,2,··· ,1000

Jγg
(i)−Jγ∗

(i)

Jγ∗
(i)

.

As a result of our experimental setting, Condition 1 is always satisfied (because

each sensor’s index is parameter-independent). Furthermore, Condition 2 is also sat-

isfied (because both the index and the observation cost are parameter-independent).

Conditions 1 and 2 imply that the sensors can be ordered in terms of their quality

measured by their indices.

Under the setting described above, the results of our experiment are shown in Figure

2.2. From Figure 2.2 we observe that when the observation cost is sufficiently large

strategy γg is always optimal. This observation can be intuitively explained as follows.

When the observation cost is large, we expect that each parameter will be measured at

most once. This happens because the variance reduction σp(t−1)−σp(t) of parameter p,
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p = 1, 2, 3 after the tth measurement is taken is a decreasing function of t. Thus, when

c is large, one expects that after the first measurement the future variance reduction

of any parameter will fall below the observation cost. Then using the sensor with the

largest index to measure the parameter with the largest variance results in an optimal

strategy. This fact together with the observation that each parameter can be measured

at most once leads to a heuristic explanation of the optimality of the greedy strategy.

From the same results we also observe that even when strategy γg is not optimal, the

average deviation and the maximum deviation are always below 2.5%.

We then repeat the same numerical experiment described above but now use differ-

ent distributions to select the indices and the initial variances. Specifically, we maintain

the same 51 different values of the observation cost c. For each value of c we run an

experiment 1000 times. For each run we consider two cases. In the first case we ran-

domly select Is, s = 1, 2, · · · , 7, from the uniform distribution over (1, 5), and σp(0),

p = 1, 2, 3, from the uniform distribution over (0, 1). In the second case we randomly

select both Is, s = 1, 2, · · · , 7, and σp(0), p = 1, 2, 3, from the uniform distribution over

(0, 1). The results for these two cases are shown in Figure 2.3 and 2.4, respectively. We

observe qualitatively that these results are similar to these of Figure 2.2.

These results suggest that the greedy algorithm appears to produce satisfactory per-

formance especially when the observation cost is large compared to the initial variance

σp(0).
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Figure 2.3: Performance of the Greedy Algorithm.
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Figure 2.4: Performance of the Greedy Algorithm.

30



CHAPTER 3

MULTIPLE STATIONARY PARAMETERS

ESTIMATION: PART II

In this chapter we restrict attention to the case of P stationary scalar parameters,

modeled by independent Gaussian random variables with known mean and variance,

measured by S sensors. Each observation is described by a linear Gaussian observation

model that is sensor-dependent but parameter-independent, which is a special case of

the observation model in Chapter 2.

The chapter is organized as follows: Section 3.1 lists all the notation used in this

chapter. In Section 3.2 we demonstrate the motivation of this problem and state the

contribution of this chapter. In Section 3.3 we formulate the sensor allocation prob-

lem. In Section 3.4 we derive a lower bound on the performance of an optimal sensor

allocation strategy. In Section 3.5 we evaluate the performance of the greedy strategy

by comparing its performance to the lower bound of Section 3.4. We consider the two-

parameter problem in Section 3.6 and show that it is equivalent to a classical Knapsack

problem.

3.1 Notation

• S = {1, · · · , S}: initial sensor set.
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• P = {1, · · · , P}: initial parameter set.

• Xp: a Gaussian random variable.

• Zp,s = HsXp + Vs: the measurement of parameter p taken by sensor s, where Hs

is a known gain, Vs is a Gaussian random variable with zero mean and known

variance vs.

• σp(t): the variance of parameter p at time t, t = 0, 1, 2, · · · .

• σp(A): the post-measurement variance of parameter p measured by sensor set A.

• Is: the index of sensor s, which is the signal-to-noise ratio of sensor s, Is = H2
s

Vs
.

• THs: the threshold of sensor s.

• IA: the index of the sensor set A, IA =
∑

s∈A Is.

• Jλ(S,P): the system performance under allocation policy λ (λ does not necessarily

use all sensors in S).

• Ĵλ(S,P): the system performance under partition policy λ (λ use all sensors in

S).

• λ∗ = {A∗
1, · · · , A∗

P}: an optimal policy.

• A(λ∗) = ∪P
i=1A

∗
i : the set of sensors used by λ∗.

• τ ∗ = |A(λ∗)|: the number of sensors used by λ∗.

• λg = {Ag
1, · · · , Ag

P}: a greedy policy.

• A(λg) = ∪P
i=1A

g
i : the set of sensors used by λg.

• σ̃(S,P): the harmonic mean function of the sensor set S and parameter set P.

• tp: the number of the parameters which can be identified as not being measured.

32



• ts: the number of the sensors which can be identified as being used alone.

• Ωs = {s1, · · · , sN}: an arbitrary sensor set where Is1 ≥ · · · ≥ IsN
.

• Ωp = {p1, · · · , pM}: an arbitrary parameter set where σp1(0) ≥ · · · ≥ σpM
(0).

• Ψs: the sensor set in Algorithm PL.

• Ψp: the parameter set in Algorithm PL.

3.2 Introduction

As we discuss in Chapter 2, this sensor scheduling problem can be in general for-

mulated as a stochastic sequential allocation problem. In Chapter 2 we study a more

general version of this problem that has an observation model that is both sensor-

and parameter-dependent, and a sensor activation cost that is also both sensor- and

parameter-dependent. We considered a simple greedy scheduling strategy, and derived

conditions under which it is optimal.

In this chapter our model is more restrictive than that studied in Chapter 2, as

all parameter dependencies are removed. This restriction allows us to analyze the

performance of an optimal strategy and derive a lower bound on its performance. Fur-

thermore, this lower bound can be used to evaluate the performance of the same greedy

scheduling strategy studied in Chapter 2. Thus, while the present model is more restric-

tive than that of Chapter 2, we are able to obtain results stronger than those obtained

in Chapter 2. Attempting to do the same for the more general case quickly becomes

intractable.

In Chapter 2 the stochastic sequential allocation problem described above was re-

duced to a deterministic sequential allocation problem due to the Gaussian assumption

and the linearity of the observations. In this chapter the same problem (with parameter-

independent observation model and constant activation cost) is further reduced to a
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static sensor allocation and partition problem; the special case of 2-parameter estima-

tion is shown to be equivalent to a 0-1 knapsack problem.

The main contributions of this paper are: (1) the development of a method to

obtain a lower bound on the performance of an optimal strategy, (2) the discovery

of a preprocessing procedure that can be used to reduce the solution space in which

the optimal strategy lies for any given set of parameters and any set of sensors; such

a procedure can thereby potentially improve the lower bound, and (3) the use of the

lower bound to effectively evaluate the performance of the greedy strategy.

The rest of the paper is organized as follows. In Section

3.3 Problem Formulation

Consider a set P of stationary scalar parameters indexed by {1, 2, · · · , P}, that need

to be estimated. Parameter p is modeled as a Gaussian random variable, denoted by

Xp, with mean µp(0) and variance σp(0). The random variables X1, X2, · · · , XP are

mutually independent. There is a set S of sensors, indexed by {1, 2, · · · , S}, which are

used to measure the parameters. The measurement of any parameter p taken by sensor

s is described by

Zp,s = HsXp + Vs , (3.1)

where Hs is a known gain, and Vs is a Gaussian random variable with zero mean

and known variance vp,s. The random variables Vs, s = 1, 2, · · · , S, are mutually

independent; they are also independent of X1, X2, · · · , XP . A non-negative constant

measurement cost c is incurred by activating and using any sensor.

As mentioned earlier, we assume that each sensor may be activated only once.

Sensors are activated sequentially to take a measurement of a chosen parameter. This

process continues till either all S sensors are used, or until a time period of interest T has

elapsed. For simplicity, we assume S ≤ T , implying that at most S sensors/parameters
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can be scheduled. The objective is to determine how to allocate sensors to parameters

so as to minimize the sum of the final error variances of all parameters and the total

measurement cost.

3.3.1 Reduction to a static allocation problem

As detailed in Chapter 2, the above problem is in general a stochastic sequential

resource allocation problem. However, due to the Gaussian assumption as well as

the linearity of the observation model, it is equivalent to a deterministic sequential

resource allocation problem; the evolution of the error variance of parameter p at time

t+1, σp(t+1), is observation-independent and governed by the following deterministic

relationship [24]:

σp(t + 1) =











σp(t) −
σ2

p(t)H2
s

σp(t)H2
s +vs

, if parameter p is measured by sensor s at t + 1;

σp(t), if parameter p is not measured at t + 1.

(3.2)

Furthermore, the order in which a set of sensors measure a parameter does not

affect the final error variance or the observation cost. This is formally expressed in the

following lemma.

Lemma 3.1. Suppose we use a set of sensors A ⊂ S to measure parameter p with

an initial variance σp(0). Then parameter p’s post-measurement variance, denoted by

σp(A), regardless of the order in which the sensors in A are used, is given by:

σp(A) =
σp(0)

σp(0)IA + 1
, (3.3)

where IA =
∑

s∈A
H2

s

vs
. Furthermore, σp(A) is an increasing function of σp(0) and a

decreasing function of IA. This immediately implies that if A1 ⊂ A2, then σp(A1) >

σp(A2).

Proof. See Appendix B.
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The quantity Is = H2
s

vs
will be referred to as the index of sensor s, and the quantity

IA =
∑

s∈A
H2

s

vs
=
∑

s∈A Is as the index of the set A. An index Is can be viewed as the

signal-to-noise ratio (SNR) of sensor s when measuring a parameter: the higher the

index/SNR, the more statistically reliable the measurement.

The above lemma immediately suggests that the final error variance of a given

parameter is completely determined by the set of sensors assigned to measure it. Since

each sensor can only be used once, this allows us to further reduce the deterministic

sequential allocation problem to a static allocation problem, whereby a strategy λ is

a specification of P subsets, each assigned to a parameter; that is λ = (A1, · · · , AP ),

where Ai ∩ Aj = ∅,∀i 6= j, ∪P
i=1Ai ⊆ S.

Let Λ be the set of all admissible measurement polices. The optimization problem

is formally stated as follows.

Problem (Q1) – Allocation:

min
λ∈Λ

Jλ =
P
∑

p=1

(σp(Ap) + c|Ap|)

=
P
∑

p=1

(

σp(0)

σp(0)IAp
+ 1

+ c|Ap|

)

(3.4)

For reasons that will become clear in the sequel, we next introduce a problem (Q2),

the same minimization as in (Q1) except over a more restrictive (smaller) admissi-

ble strategy space. Specifically, consider the set of admissible policies Λ′ := {λ =

(A1, · · · , AP )|Ai ∩ Aj = ∅,∀i 6= j,∪P
i=1Ai = S}. That is, any allocation strategy in Λ′

has to use all the sensors, effectively partitioning the set S into P subsets. For this

reason, problem (Q2) will be referred to as the partition problem as opposed to the

allocation problem (Q1).

Problem (Q2) – Partition:

min
λ∈Λ′

Ĵλ =
P
∑

p=1

(σp(Ap) + c|Ap|) . (3.5)

It is obvious that Λ′ ⊆ Λ, and that (Q2) is an instance of (Q1). Denoting by J∗(S,P)
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and Ĵ∗(S,P) the optimal performance of problems (Q1) and (Q2), respectively, we then

have J∗(S,P) ≤ Ĵ∗(S,P).

We will also subsequently denote by Jλ(S,P) the performance attained in (Q1) by

an arbitrary allocation strategy λ(S,P) ∈ Λ.

3.3.2 Preliminaries

We next introduce a lemma that effectively reduces the set of feasible policies we

need to consider. Let λ∗ := {A∗
1, A

∗
2, · · · , A∗

P} denote an optimal strategy for Problem

(Q1), and A(λ∗) := ∪P
i=1A

∗
i denote the set of sensors used by the strategy λ∗.

Lemma 3.2. If s ∈ A(λ∗) and Is′ > Is, then s′ ∈ A(λ∗). [If s /∈ A(λ∗) and Is′ < Is,

then s′ /∈ A(λ∗).]

Proof. See Appendix B.

This lemma says that sensors with high SNR should be used before those with

low SNR, which is a highly intuitive result. Consequently, we may limit our attention

to policies that follow this order. Accordingly, we will relabel the sensors in the set

so that they are in decreasing order of their indices: S = {1, 2, · · · , S}, such that

I1 ≥ I2 ≥ · · · ≥ IS.

For convenience and for reasons soon to be clear, we will also relabel the set of

parameters so that they appear in decreasing order of their initial variances: P =

{1, 2, · · · , P}, such that σ1(0) ≥ σ2(0) ≥ · · · ≥ σP (0).

For the remainder of this chapter, Ii and σj(0) will refer to sensor i and parameter

j in the above relabeled, ordered sets, respectively.

By Lemma 3.2, an optimal strategy uses the first τ sensors in the set S. This number

τ may not be unique, i.e., two policies may be both optimal with one using more sensors

than the other (this implies that the additional variance reduction equals the additional

cost incurred). However, without loss of optimality, for the remainder of this paper we

will only consider the optimal strategy that uses the smallest number of sensors, among
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all optimal policies. This effectively makes the optimal strategy under consideration

unique.

3.3.3 Complexity of problems (Q1) and (Q2)

We end this section with a brief discussion on the computational complexity of the

two problems defined above. Even with the assumptions that the observation model is

parameter-independent and that the observation cost is constant for each measurement,

problem (Q1) is still a complicated problem. Consider the special case with only 2

parameters to estimate, and further assume that we know exactly the set of sensors

to use between the 2 parameters ( this would be (Q2)). This special case is then

equivalent to a 0 − 1 knapsack problem (see proof in Section 3.6). Furthermore, if the

initial variances of these two parameters are equal, the problem is equivalent to the

optimization version of a partition problem, as well as a special case of the subset

sum problem. As the knapsack problem and partition problem are both NP-complete,

it follows that problem (Q1) is NP-hard.

For knapsack problems, several kinds of relaxations have been investigated and

corresponding upper bounds have been derived, see e.g., [26], [27], [28]. But all of

them highly depend on the linearity of the objective function,thus they don’t hold for

Problem (Q2) where the objective is a nonlinear function of the allocation.

In principle we can solve problem (Q1) using dynamic programming. Such an ap-

proach would produce an optimal strategy in numerical form. A dynamic programming

solution becomes computationally prohibitive if the sensor set and parameter set are

large. A reasonable thing to do in such cases is to consider an easy-to-implement sub-

optimal strategy. In Chapter 2 we proposed a greedy strategy and derived conditions

under which it is optimal. In this chapter, we focus on obtaining a lower bound on

the performance of an optimal strategy and use it to evaluate the performance of the

greedy strategy.
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3.4 A Lower Bound on Problem (Q1)

In this section we derive a lower bound on the optimal performance attained in

problem (Q1). We first present our bounding method in Section 3.4.1. This is followed

by a set of key properties of an optimal strategy for (Q1) in Section 3.4.2. These

properties are then used to develop an algorithm PL in Section 3.4.3, which improves

the lower bound for (Q1) in Section 3.4.4.

3.4.1 A Bounding Method Through Harmonic Mean

Definition 3.1. The harmonic mean function of the sensor set S and parameter set P

is given by

σ̃(S,P) :=
P

∑S

i=1 Ii +
∑P

j=1
1

σj(0)

. (3.6)

The following property is an immediate consequence of the above definition.

Property 3.1. σ̃(S,P) is strictly decreasing w.r.t. S, i.e., if S1 ⊂ S2, then σ̃(S1,P) >

σ̃(S2,P).

Proof. See Appendix B.

Using the arithmetic-harmonic mean inequality (see e.g., [29]), which states that for

a set of positive real numbers, their harmonic mean is no more than their arithmetic

mean), we obtain the following result.

Lemma 3.3. Consider problem (Q2). Given the pair (S,P), the performance attained

by an optimal partition strategy λ̂∗ = {A∗
1, A

∗
2, · · · , A∗

P} is lower bounded by

Ĵ∗(S,P) =
P
∑

i=1

1

IA∗

i
+ 1

σi(0)

+ S · c

≥ P · σ̃(S,P) + S · c , (3.7)
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where the equality holds if and only if IA∗

i
+ 1

σi(0)
= IA∗

j
+ 1

σj(0)
, ∀i, j ∈ P. Equivalently,

since σi(A
∗
i ) = 1

IA∗

i
+ 1

σi(0)

, the equality in (3.7) holds if and only if σi(A
∗
i ) = σ̃(S,P) for

all i ∈ P.

Proof. See Appendix B.

Theorem 3.1. Consider problem (Q1) with the pair (S,P), and an optimal allocation

strategy λ∗ = {A∗
1, A

∗
2, · · · , A∗

P}. Denote by τ ∗ the size of the set A(λ∗) := ∪P
i=1A

∗
i .

Then, the optimal performance attained by λ∗ is lower bounded by

J∗(S,P) = J∗(A(λ∗),P) (3.8)

= Ĵ∗(A(λ∗),P) (3.9)

≥
P 2

∑τ∗

j=1 Ij +
∑P

i=1
1

σi(0)

+ τ ∗ · c (3.10)

≥
P 2

∑t∗

j=1 Ij +
∑P

i=1
1

σi(0)

+ t∗ · c , (3.11)

where t∗ is a minimizer of the lower bound function

L(t) :=
P 2

∑t

i=1 Ii +
∑P

i=1
1

σi(0)

+ t · c , t = 0, 1, · · · , S. (3.12)

Proof. See Appendix B.

Theorem 3.1 is an immediate consequence of Lemma 3.3, and provides a lower bound

L(t∗) on the optimal performance attained in (Q1). Note that τ ∗ and t∗ may or may

not be the same. When τ ∗ = t∗ and each parameter has the same final variance, the

bound given by (3.11) is attained. It is not difficult to construct examples where this

lower bound is indeed reached.

In the next two sections we derive a sequence of properties of an optimal strategy and

use them to improve the above lower bound. The main idea behind this improvement is

the discovery of conditions that identify parameters that will never be measured under

an optimal strategy and sensors that will be singleton sets in an optimal partition.
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3.4.2 Properties of an Optimal Policy

The first lemma below says that under an optimal strategy for problem (Q1), the

allocation of sensors between any two parameters is also pairwise optimal.

Lemma 3.4. Consider the optimal strategy λ∗ = {A∗
1, A

∗
2, · · · , A∗

P} for problem (Q1),

and the set of sensors A(λ∗) = ∪P
i=1A

∗
i it uses. For any two parameters i, j ∈ P, i 6= j,

denote by A∗
i,j := A∗

i ∪ A∗
j . Then for any possible partition Ai ∪ Aj = A∗

i,j, we have

(IAi
+

1

σi(0)
)−1 + (IAj

+
1

σj(0)
)−1 ≥ (IA∗

i
+

1

σi(0)
)−1 + (IA∗

j
+

1

σj(0)
)−1 , (3.13)

and equivalently,
∣

∣

∣

∣

(IAi
+

1

σi(0)
) − (IAj

+
1

σj(0)
)

∣

∣

∣

∣

≥

∣

∣

∣

∣

(IA∗

i
+

1

σi(0)
) − (IA∗

j
+

1

σj(0)
)

∣

∣

∣

∣

. (3.14)

Proof. See Appendix B.

Lemma 3.5. If σ1(0) ≥ · · · ≥ σP (0), then IA∗

1
≥ · · · ≥ IA∗

P
.

Proof. See Appendix B.

This lemma confirms the intuition that along an optimal allocation strategy the

overall sensing quality of a parameter with high initial variance is better than that of

a parameter with low initial variance.

We next introduce the notion of threshold, a break-even point in the variance where

its further reduction (by taking a measurement) is exactly the same as the measurement

cost.

Definition 3.2. The threshold of a sensor s, denoted by THs, is given by THs = σ,

such that σ − 1
Is+

1
σ

= c.

Following the above definition, we know that if I1 ≥ · · · ≥ IS, then TH1 ≤ · · ·THS.

Furthermore, if a parameter’s variance falls below a sensor’s threshold, then taking a

measurement incurs a net cost. In other words, it’s only beneficial to take a measure-

ment when the parameter’s variance is above the sensor’s threshold. This leads to the

following lemmas.
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Lemma 3.6. If there exists an integer i, such that σ1(0) ≤ THi, then under an optimal

strategy of problem (Q1), sensors j, i ≤ j ≤ S, will not be used to measure any

parameter. In particular, if σ1(0) ≤ TH1, then no parameter will be measured by any

sensor.

Proof. See Appendix B.

3.4.3 An Algorithm PL to Improve the Lower Bound

Based on the properties of an optimal strategy, we introduce an algorithm PL in

Figure 3.1.

The main idea behind Algorithm PL is to sequentially test whether a parameter

may be eliminated (not measured), and whether a sensor may be a singleton in an

optimal partition. The details are following. In Algorithm PL, numbers ts and tp are

initialized to 0. The sensor set to be considered, denoted as Ψs, and the parameter

set to be considered, denoted as Ψp, are initially set to be S and P, respectively. The

algorithm proceeds in cycles. Each cycle has two main steps as shown in Figure 3.1.

In the first step, Test 1 is performed. If it is passed, tp and Ψp are updated. Test 1 is

repeatedly performed while tp and Ψp are repeatedly updated until Test 1 is not passed

anymore. The first step ends here. In the second step Test 2.0 and 2.1 are checked. If

they are passed, ts, Ψs and Ψp are updated and PL goes to the next cycle. Otherwise,

PL stops and the output of PL is tp, which counts the total number of times that Test

1 is passed and ts, which counts the total number of times that Test 2.0 and 2.1 are

passed. Also ts is the number of cycles that PL has completed.

Based on Algorithm PL, we have the following result.

Lemma 3.7. If σ1(0) ≥ THS, then under an optimal strategy λ∗ the first ts sensors with

the largest indices, i.e., {1, · · · , ts}, will each be used alone in measuring a parameter

and the last tp parameters with the smallest initial variances, i.e., {P − tp + 1, · · · , P},
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Ψp P Ψs S
ts tp

ts ≤ S tp ≤ P

ts tp

Ψp Ψp \ {P − tp}
tp tp

Ψs Ψs \ { ts}
Ψp Ψp \ { ts}

ts ts

1st Step

2nd Step

Test 1 : σN−tp(0) ≤ σ̃(Ψs, Ψp) ,

Test 2.0: σ1+ts(0) > TH1+ts ,

Test 2.1: I1+ts ≥
1

σ̃(Ψs, Ψp)
−

1

σ1+ts(0)
.

Figure 3.1: The flowchart of Algorithm PL
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will not be measured. That is,

J∗(S,P) =J∗(S \ {1, · · · , ts},P \ {k1, · · · , kts , P − tp + 1, · · · , P}))

+
ts
∑

i=1

1

Ii + 1
σki

(0)

+
P
∑

i=P−tp+1

σi(0) + ts · c , (3.15)

where ki denotes the parameter measured by sensor i under strategy λ∗. Furthermore,

the numbers ts and tp are determined by an algorithm PL, shown in Figure 3.1. The

input of Algorithm PL is the sets S and P; the output of this algorithm are the numbers

ts and tp.

Proof. See Appendix B.

3.4.4 A Lower Bound on Problem (Q1)

Using Lemma 3.4-3.7 along with Theorem 3.1 we obtained the main result of this

section.

Theorem 3.2. Consider problem (Q1). The optimal performance attained in (Q1) is

lower bounded by

J∗(S,P) ≥ max{L1(t1), L2(t2)} . (3.16)

where

L1(t) : =
(P − tp)

2

∑t

i=1 Ii +
∑P−tp

i=1
1

σi(0)

+
P
∑

i=P−tp+1

σi(0) + t · c , (3.17)

L2(t) : =
(P − tp − ts)

2

∑t

i=ts+1 Ii +
∑P−tp

i=ts+1
1

σi(0)

+
ts
∑

i=1

1

Ii + 1
σP−tp−(ts−i)(0)

+
P
∑

i=P−tp+1

σi(0) + t · c

(3.18)

are convex functions, and t1 and t2 ∈ {1, 2, · · · , S} are the minimizers of L1(t) and

L2(t), respectively.

Proof. See Appendix B.
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Since L1(t1) ≥ L(t1) ≥ L(t∗), the bound of Theorem 3.2 (referred to as LB in

the sequel) is uniformly better (for all pairs S and P) than the bound in Theorem

3.1 (referred to as LB1 in the sequel). As a special case, when ts = 0 and tp = 0,

LB = LB1.

3.5 Evaluation of the Greedy Policy

We next use the lower bound derived in the previous section to evaluate the perfor-

mance of a simple greedy strategy. This greedy strategy was first introduced in Chapter

2 for the more general case of parameter-dependent measurement model, and sufficient

conditions for its optimality were derived. In this section we first describe how this

greedy strategy works for the present problem, and then analyze its key properties;

these properties are shown to be shared by the optimal strategy. We then compare its

performance against the lower bound.

The greedy strategy works as follows. It takes as input the sets S and P, and works

in discrete steps. In each step it allocates/assigns a sensor to a parameter and removes

that sensor from the available set of sensors. At time step t, we test the condition

σk∗(t) > THt, where k∗ = arg maxk=1,··· ,P σk(t). If this is true, then we assign sensor t

to measure parameter k∗, the maximizer of the LHS of this inequality, and update all

variances to σk(t + 1) according to Equation (2.2). If this condition does not hold, the

algorithm terminates. The output of the greedy algorithm is an allocation of sensors

to each parameter, given by λg = {Ag
1, · · · , Ag

P}

Having described how the greedy algorithm works, below we evaluate its perfor-

mance.

3.5.1 Properties of the Greedy Policy

The greedy strategy has a number of properties similar to those of an optimal

strategy. These are summarized in the next two lemmas.
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Lemma 3.8. If there exists an integer i, such that σ1(0) < THi, then under the greedy

strategy described above, all sensors j, i ≤ j ≤ S, will not be used to measure any

parameter. In particular, if σ1(0) < TH1, then no parameter will be measured by any

sensor.

Proof. See Appendix B.

Corollary 3.1. If there exists m such that THm < σ1(0) ≤ THm+1 and m < 3, then

the greedy strategy is optimal.

Proof. See Appendix B.

Lemma 3.9. If σ1(0) ≥ THS, then under the greedy strategy λg, sensor i, 1 ≤ i ≤ ts,

is used alone in measuring parameter i, and the last tp parameters with the smallest

initial variances will not be measured. That is,

Jg =Jg(S \ {1, · · · , ts},P \ {1, · · · , ts, P − tp + 1, · · · , P}))

+
ts
∑

i=1

1

Ii + 1
σi(0)

+
P
∑

i=P−tp+1

σi(0) + ts · c . (3.19)

Here the numbers ts and tp are determined by the same algorithm PL used in the

previous section and given in Figure 3.1.

Proof. See Appendix B.

Lemmas 3.8 and 3.6, and Lemmas 3.9 and 3.7, respectively, present certain prop-

erties shared by the greedy strategy and the optimal strategy. This suggests that we

may expect the greedy strategy to perform quite well. We next present a more detailed

performance evaluation through a number of numerical examples.

3.5.2 Numerical Examples

In this section, we first investigate LB1 (the lower bound resulting from Theorem

3.1), LB (the lower bound resulting from Theorem 3.2) and the performance of the
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greedy strategy, J(λg), through a single example. Then we compare J(λg) with LB

through a sequence of numerical experiments.

• LB1, LB and J(λg) in a single run

We consider a set of 30 sensors with Is, s = 1, · · · , 30, randomly chosen from

a uniform distribution over (1, 5) and 15 parameters with σp(0), p = 1, · · · , 10,

randomly chosen from a uniform distribution over (0, 1). The measurement cost

c varies from 0 to 1 with an increment of size 0.02. We define c∗ as the threshold

of c, such that when c ≥ c∗, no measurement is taken under the greedy strategy.

Accordingly, we set the corresponding ratios Greedy/LB and Greedy/LB1 to 1.

In Figure 3.2(a), we show the performance of the greedy strategy and the lower

bounds (LB1 and LB). The ratios Greedy/LB and Greedy/LB1 are plotted in

Figure 3.2(b). We show the number of sensors used under the greedy strategy

and the number of sensors used to compute LB and LB1 in Figure 3.2(c). tp and

ts (determined by Algorithm PL) are shown in Figure 3.2(d). In the example

c∗ = 0.64.

From Figure 3.2, we make the following observations.

(O1) LB is tighter than LB1 when ts 6= 0 or tp 6= 0 (see Fig. 3.2(b)).

(O2) Whenever ts or tp increases, LB increases significantly (see Fig. 3.2(a)).

(O3) When c = 0, the ratios Greedy/LB and Greedy/LB1 are very close to 1

(see Fig. 3.2(b)).

(O4) The number of sensors used by the greedy strategy or the number of sensors

used to compute LB1 is a non-increasing step function of c (see Fig. 3.2(c)).

(O5) When neither ts nor tp changes, the number of sensors used to compute LB

is a non-increasing step function of c (see Fig. 3.2(c)).

Observations (O1) and (O2) are consistent with the analysis in Section 3.4.4. Ob-

servation (O3) is due to the fact that when c = 0, all the sensors are used under
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Figure 3.2: A specific experiment when σ ∈ (0, 1), I ∈ (1, 5), P = 10, S = 30

the greedy strategy and all the sensors are used to compute LB and LB1. Mean-

while, in this particular example, under the greedy strategy the final variances are

well-balanced among different parameters. Observations (O4) and (O5) are true

for the following reasons. First, the number of sensors are integers. So they are

step functions of c. Secondly, under the greedy strategy, fewer sensors are used

as c increases. Therefore the number of sensors used under the greedy strategy

is a non-increasing function of c. Thirdly, the lower bound function L(t) (defined

in Eq. (3.12), such that L(t) := P 2
∑t

i=1 Ii+
∑P

i=1
1

σi(0)

+ t · c) is composed of two parts;

the first part being a decreasing function of t and the second part is an increasing
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function of t. The minimizer of L(t), denoted as t∗, balances the two parts. When

c increases, the second part gets more weight. Then t∗ will not increase in order

to re-balance the two parts when c increases. Therefore the number of sensor

used to computer LB1, which is t∗ here, is a non-increasing function of c. LB is

similar to LB1 while tp and ts do not change.

Based on observation (O4) and Figure 3.2(a), we argue that J(λg) is approxi-

mately piecewise linear and non-decreasing in c. Based on observation (O5) and

Figure 3.2(a), we argue that when tp and ts do not change, LB is approximately

piecewise linear and non-decreasing in c.

Using the above observations and arguments we can intuitively explain the be-

havior of Greedy/LB as follows. When tp and ts do not change and the number

of sensors used by the greedy strategy is the same as the number of sensors used

by LB (such as when c ∈ [0.06, 0.08] and c ∈ [0.56, 0.6]), J (λg) and LB increase

at the same rate with c. Since J(λg) is larger than LB in general, the ratio of

Greedy/LB is decreasing in such cases. When tp or ts increases (such as when

c = 0.4 or c = 0.62) LB increases significantly and Greedy/LB decreases.

We next compare the performance of greedy strategy J(λg) and LB through a

sequence of numerical experiments to get the average ratio of Greedy/LB.

• Comparison between J(λg) and LB

We consider a set of 7 sensors and 10 parameters, with a measurement cost c that

is both parameter-independent and sensor-independent. For a given cost c we run

an experiment 1000 times; each time the index Is of sensor s, s = 1, 2, · · · , 7, is

randomly chosen from a uniform distribution over (0, 1), while the variance σp(0)

of parameter p, p = 1, 2, · · · , 10, is randomly chosen from a uniform distribution

over (0, 1). For the ith run the performance Ji(λ
g) of the greedy algorithm, as

well as the lower bound LBi, are calculated.
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Our goal is to compare the performance of the greedy algorithm against LB. Thus,

we form the ratio Ji(λ
g)

LBi
. We then calculate the average of this ratio over the 1000

random runs. To assess more accurately the greedy strategy’s performance, we

exclude from this calculation the instances where the greedy strategy is known to

be optimal. Specifically, from Corollary 3.1, we know that when only m = 0, 1, 2

sensors are used, the greedy strategy is optimal. We therefore ignore such cases

whenever they occur during these random experiments. An average ratio is thus

generated over the 1000 random runs less these exclusions, for a given value of c.

We repeat the above experiment by varying c, from 0 to 1 with an increment of

size 0.01. This results in 101 values of average performance ratio as a function

of c. In order for this ratio to be well defined, in the event that all 1000 runs

are excluded (i.e., this can occur when the measurement cost is larger than 0.5,

making it optimal to never take a measurement), we set this average performance

ratio to 1. This threshold value is dependent on the distribution of the parameter

initial variances and the sensor indices.

We then repeat the entire procedure described above by varying the number of

sensors to be activated; we take S = 13, 25, 100, and obtain three corresponding

curves with average performance ratio as a function of c, which are shown in Fig-

ure 3.3(a). Figures 3.3(b), 3.3(c) and 3.3(d) are obtained similarly, with different

distributions for the the sensor indices and parameter initial variances, as indi-

cated in the caption of each figure. For instance in Figure 3.3(c) and 3.3(d), the

measurement cost is varied from 0 to 5 with an increment of size 0.05.

Corresponding to the above setup, the number of instances out of 1000 in which

tp 6= 0 or ts 6= 0 is shown in Figures 3.4 and 3.5, respectively. Figure 3.6 further

shows the average values of tp and ts, given tp 6= 0 and ts 6= 0, when σ ∈ (0, 1)

and I ∈ (1, 5).

Based on Figure 3.3, we make the following observations. Firstly, the greedy strat-
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Figure 3.3: Average of Greedy/LB.

egy has a good performance in general. The average performance ratio between

the greedy strategy and LB is always below 2 no matter which distributions are

used to draw the sensor indices and initial parameter variances. As a function of c,

this ratio behaves similarly to the ratio Greedy/LB in the single run experiment,

but more smoothly.

Secondly, when c = 0, the average ratio is very close to 1 irrespectively of the

number of sensors or the distribution of the sensor indices. Furthermore, when c =

0, the average ratio decreases when the number of available sensors S increases.
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(b) ts 6= 0 when σ ∈ (0, 1), I ∈ (0, 1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

Measurement Cost

N
um

be
r 

of
 c

as
es

 t p ≠
 0

σ ∈  (0,1), I ∈  (1,5)

 

 
S=7
S=13
S=25
S=100

(c) tp 6= 0 when σ ∈ (0, 1), I ∈ (1, 5)
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(d) ts 6= 0 when σ ∈ (0, 1), I ∈ (1, 5)

Figure 3.4: the number of instances that tp 6= 0 and ts 6= 0.

This is consistent with the intuition that in general more sensors can balance the

final variances among different parameters better.

From Figures 3.4 and 3.5, we can see the number of runs (out of 1000) in which

LB is tighter than LB1. Furthermore, Figure 3.6 shows the average values of tp

and ts when σ ∈ (0, 1) and I ∈ (1, 5). The figures related with tp and ts show the

improvement in the lower bound resulting from algorithm PL.

From the comparison between LB1 and LB and the analysis of the average ratio

of the greedy strategy performance over LB, we conclude that the greedy strategy
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(a) tp 6= 0 when σ ∈ (1, 5), I ∈ (1, 5)
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(b) ts 6= 0 when σ ∈ (1, 5), I ∈ (1, 5)
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(c) tp 6= 0 when σ ∈ (1, 5), I ∈ (0, 1)
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Figure 3.5: the number of instances that tp 6= 0 and ts 6= 0 (continued).

performs well; LB, which is obtained through Algorithm PL and Theorem 3.2, is a

tighter lower bound than LB1.

3.6 A Special Case When P = 2

In this section, we show that when there are only two identical parameters to be

estimated, Problem (Q2) is equivalent to a 0-1 knapsack problem.

Consider the classical 0-1 knapsack problem stated as follows. There is one knapsack

and L items available. Each item has a value vi > 0 and weight wi > 0. The objective
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(a) the average value of tp when tp 6= 0
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Figure 3.6: the average value of tp and ts when σ ∈ (0, 1), I ∈ (1, 5).

is to find a selection of items (δi = 1 if i is selected, 0 if not) that fit, i.e.,
∑N

i=1 δiwi ≤ b

for some b > 0, while the total value,
∑N

i=1 δivi, is maximized.

Consider now problem (Q2) with P = 2 identical parameters (i.e., same initial error

variance), and we wish to determine A1, A2 such that A1 ∩A2 = ∅ and A1 ∪A2 = S, so

as to minimize

Ĵ =
1

IA1 + 1
σ1(0)

+
1

IA2 + 1
σ2(0)

+ c · S . (3.20)

Since the two parameters are identical, without loss of generality we will assume that

IA1 ≤ IA2 . By Lemma 3.4 and the assumption that the two parameters are identical,

we know that the optimal partition of S minimizes IA2 − IA1 , which is equivalent to

minimizing 1
2
IS− IA1 . Therefore Problem (Q2) can be reformulated in a knapsack style

as follows. By viewing each sensor as an item and its index as its weight, we can rewrite

Problem (Q2) as

max
A1⊂S

KA1 =
M
∑

i=1

δi · Ii (3.21)

s.t.
M
∑

i=1

δi · Ii ≤
1

2
IS . (3.22)

We have thus shown that a special case of problem (Q2) is a knapsack problem. This
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implies that if problem (Q2) can be solved in polynomial time, then a knapsack problem

can be solved in polynomial time. Therefore, (Q2) is at least as hard as a knapsack

problem which is NP-complete. We thus conclude that (Q2) is an NP-hard problem.

We now return to problem (Q1). Note that in the special case where all measurement

costs are zero, every sensor will be used in problem (Q1), effectively reducing it to (Q2).

Problem (Q2) is thus a special case of (Q1), and hence problem (Q1) is also NP-hard.
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CHAPTER 4

SINGLE DYNAMIC PARAMETER TRACKING

In this chapter, we investigate the problem of estimating a dynamic parameter with

multiple sensors. Specifically, multiple identical sensors are sequentially activated by a

central controller to track a dynamic parameter. Each sensor can be activated only once.

The model describing the dynamic evolution of the parameter and the measurement

model are linear Gaussian. Each activation of a sensor incurs a cost (e.g., sensing and

communication cost) which is a constant. At each time instant, a central controller

should determine whether a sensor should be activated to take a measurement. The

objective is to determine a sensor activation strategy so as to minimize, over a fixed

finite time horizon, the sum of the error covariances associated with estimation of the

parameter and the total activation cost.

We proceed as follows. In Section 4.1 we formulate the sensor activation problem.

We define the error covariance evolution and related functions in Section 4.2. In Section

4.3.1, we present several properties of the functions defined in Section 4.2. In Section

4.3.2, we prove the threshold property and “stopping property” of an optimal sensor

activation strategy. We conclude in section 4.3.3.
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4.1 Problem Formulation

4.1.1 The Measurement Model and Problem Formulation

The evolution of the parameter we want to track is describe by a linear Gaussian

system

Xt+1 = AXt + Wt . (4.1)

We assume that X0 is Gaussian with mean µ0 and variance σ0. The random variables

W0,W1, · · · ,WT are Gaussian with zero mean and variance Q; they are independent of

each other and also independent of X0. There is a sensor set Ω = {1, 2, · · · ,m} which

can be used to take measurements of the parameter. Every sensor is identical with

sensing cost C.

At every time instant t, t = 1, 2, · · · , T , the sensing model is described by

Zt = HXt + Vt, (4.2)

where the sensor’s measurement noise, {Vt}
T
t=1 are i.i.d. random variables with Gaus-

sian distribution N(0, R). We assume that the random variables V0, V1, · · · , VT are

independent of X0,W0,W1, · · · ,WT . We define the index for every sensor as K = R
H2 .

We assume that each sensor can be used only once.

We assume that a central controller, gathers the measurement information, decides

whether a sensor should be used to take measurement at present, estimates the param-

eter and computes the accuracy of the estimation along a time horizon T . Each sensor’s

usage incurs a cost C. The objective is to determine a sensor activation strategy g ∈ G

to minimize the performance criterion Jg
T ,
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Jg
T :=

T
∑

t=1

{

Eg[(Xt − X̂t)
2] + C · 1{ut=1}

}

(4.3)

s.t.

t=T
∑

t=1

ut ≤ m

where

g := (g1, g2, · · · , gT ),

ut = gt(Z1 · u1, Z2 · u2, · · · , Zt−1 · ut−1) , (4.4)

ut =















1, if a measurement is taken at time t,

0, otherwise,

X̂t = E(Xt|Z1 · u1, Z2 · u2, · · · , Zt · ut) , (4.5)

and 1A denotes the indicator function of event A.

4.2 Preliminaries

In this section, we first present some facts about the error covariance evolution and

define certain functions related with it.

The estimate X̂t of the parameter at time t, t = 1, · · · , T and its error covariance

are

X̂g
t = Eg[Xt|Z1 · u1, Z2 · u2, · · · , Zt · ut] , (4.6)

σg
t = E[(Xt − X̂g

t )2|Z1 · u1, Z2 · u2, · · · , Zt · ut] = E[(Xt − X̂g
t )2] . (4.7)

The last equality in (4.7) follows from the fact that we have a linear Gaussian system

and linear Gaussian observations.

From estimation theory [30], we know that:

1. If no measurement is taken at time t, i.e. ut = 0,

σt = σt|t−1 = A2σt−1 + Q := L2(σt−1) (4.8)
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2. If a measurement is taken at time t, i.e. ut = 1,

σt =
σt|t−1 · K

σt|t−1 + K
:= L1(σt|t−1) , (4.9)

where

σt|t−1 = A2σt−1 + Q = L2(σt−1) . (4.10)

That is

σt =















σt|t−1 := L2(σt−1) , if ut = 0 ,

σt|t := L1L2(σt−1) , if ut = 1 .

(4.11)

4.3 Analysis of the Dynamic Parameter Tracking

Problem

The problem formulated in Section 4.1.1 is a stochastic control problem with im-

perfect information. Because the error covariance is independent of the data, as the

statistics involved are Gaussian, this stochastic control problem is equivalent to a deter-

ministic control problem where the objective is to determine a sensor activation strategy

so as to control the error covariances σt, t = 1, 2, · · · , T and minimize the objective cost

described by (4.3).

For the problem under consideration, we define the information state as πt =

(σt−1, nt−1), where σt−1 is the error covariance associated with the estimation after

the decision and corresponding action at time t − 1 are taken and nt−1 is the number

of available sensors at time t − 1 are taken. Then the corresponding dynamic program

for the problem formulated in Section 4.1.1 is

VT (σ, n) = min{C + L1L2(σ), L2(σ)} , (4.12)

Vt(σ, n) = min{C + L1L2(σ) + Vt+1(L1L2(σ), n − 1), L2(σ) + Vt+1(L2(σ), n)} ,

(4.13)

and ming∈G Jg
T = V1(σ0,m).
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Before we present qualitative properties of an optimal strategy, we discuss properties

of L1(·), L2(·), L1L2(·) and L2L1(·). These properties will be extensively used to prove

the main result of this chapter.

4.3.1 Properties of L1(·), L2(·), L1L2(·) and L2L1(·)

Property 4.1. L1(·), L1L2(·), L2L1(·), defined on R+, are increasing concave functions

and L2(·), defined on R+, is an increasing function.

Proof. See Appendix C.

Property 4.2. x − L1(x) is a positive and increasing function of x, x > 0, i.e. x >

L1(x) when x > 0; for any positive x1, x2, x1 − L1(x1) < x2 − L1(x2) when x1 < x2.

Proof. See Appendix C.

The positivity of x − L1(x) means that taking a measurement can always reduce

the error covariance. The fact that x − L1(x) is increasing in x means that the error

covariance reduction due to a measurement increases as the error covariance increases.

Property 4.3. For any x > 0, when |A|2 ≥ 1, L2(x) > x; when |A|2 < 1 and x ≥ σ∗,

L2(x) ≤ x, otherwise L2(x) > x; σ∗ is defined as σ∗ = L2(σ
∗).

Proof. See Appendix C.

The result that |A|2 < 1 and x ≥ σ∗ implies L2(x) ≤ x means that even when we

do not take a measurement, the error covariance will still decrease. This result can be

used to establish the following properties of L1L2(·) and L2L1(·).

Property 4.4. For any positive x1, x2, such that L2(x1) < x1, L2(x2) < x2, and

x1 < x2, we have L1L2(x2) − L1L2(x1) > L2L1(x2) − L2L1(x1).

Proof. See Appendix C.
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Property 4.5. For any positive x, if K ≤ σ∗, L1L2(x) < L2L1(x). If K > σ∗ and

x ≤ σ̂, where σ̂ is uniquely defined by L1L2(σ̂) = L2L1(σ̂), then L1L2(x) ≤ L2L1(x).

Furthermore, if K > σ∗ and x ≥ σ̂, then L1L2(x) ≥ L2L1(x).

Proof. See Appendix C.

4.3.2 The Main Results

We now present the two main results of this chapter and prove them using properties

4.1-4.5. The first result is the threshold property of an optimal strategy; the second

result is the “stopping property” of an optimal strategy. Each result holds under dif-

ferent conditions. First, we need the following definition and the lemma that follows

it.

Definition 4.1. Define S0(m,T ) = {σ ∈ R+ : for all t = 1, · · · , T and for all sensor

activation strategies g ∈ G, if σ0 = σ, then σg
t ≥ σ∗, i.e. L2(σ

g
t ) ≤ σg

t and L1L2(σ
g
t ) ≤

L2L1(σ
g
t ), where σg

t is the error covariance at time t under the strategy g and σ∗ is

defined in Property 4.3}.

This definition means if the initial error covariance belongs to S0(m,T ), then no

matter what kind of sensor activation strategy we use, we can guarantee at any time t

that σg
t satisfies the inequalities, L2(σ

g
t ) ≤ σg

t and L1L2(σ
g
t ) ≤ L2L1(σ

g
t ).

Lemma 4.1. If K ≤ σ∗ and |A|2 < 1, for any m and T , the set S0(m,T ) is nonempty.

Proof. See Appendix C.

The following result establishes the threshold property of an optimal sensor activa-

tion strategy.

Theorem 4.1. If K ≤ σ∗, |A|2 < 1 and σ0 ∈ S0(m,T ), an optimal strategy g∗ =

{ug∗

1 , ug∗

2 , · · · , ug∗

T } is described by thresholds lt(nt−1), t = 1, 2, · · · , T , n = 1, 2, · · · ,m,
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as follows. At any time instant t,

ug∗

t =















1 if σt−1 > lt(nt−1),

0 otherwise.

(4.14)

To proceed further, we need the following definition and the lemma that follows it.

Definition 4.2. S1(m,T ) = {σ ∈ R+ : for all t = 1, · · · , T and for all measurement

selection strategies g ∈ G, if σ0 = σ, then L1L2(σ
g
t ) ≥ L2L1(σ

g
t ), where σg

t is the error

covariance at time t under the strategy g }.

This definition means if the initial error covariance belongs to S1(m,T ), then no

matter what kind of sensor activation strategy we will use, we can guarantee at any

time t that σg
t satisfies the inequality, L1L2(σ

g
t ) ≥ L2L1(σ

g
t ).

Lemma 4.2. If K > σ∗, for any m and T , the set S1(m,T ) is non-empty.

Proof. See Appendix C.

The following result establishes the “stopping property” of an optimal sensor acti-

vation strategy.

Theorem 4.2. If K > σ∗ and σ0 ∈ S1(m,T ), then an optimal sensor activation strategy

g∗ = {g∗
1, g

∗
2, · · · , g∗

T} has the following “stopping property”: if ug∗

t = 0, then ug∗

t′ = 0

for all t′ > t.

Proof. See Appendix C.

4.3.3 Discussion

We formulated a sensor activation problem associated with the tracking of a dy-

namic parameter and identified conditions on the parameter, initial covariance and

the sensors’ sensing quality (i.e. the signal-noise-ratio) under which an optimal sensor

activation strategy is characterized by a set of thresholds or possesses the “stopping
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property” (defined in Theorem 4.2). The explicit characterization of the sets S0(m,T )

and S1(m,T ), as well as the determination of the thresholds {lt(nt−1)}
T
t=1 of Theorem

4.1 and the stopping time τ of Theorem 4.2 are open challenging problems.
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CHAPTER 5

DISCRETE SEARCH USING MULTIPLE

SENSORS

In this chapter we investigate a discrete search problem using multiple sensors.

Specifically, there are S sensors to monitor an area, which is divided into L cells, L > S

and one object is hidden in on of the L cells with probability pi, i = 1, · · · , L. Each

cell can be searched by at most one sensor at each instant of time and at each time

instant, no more than S sensors can be activated. The probability to find the object in

cell i, given the object is in cell i, is αi, which is independent of previous search. The

false alarm is always 0 and the sensor switches among different cells without delay. Due

to energy constraints, each sensor can be used only T times. We want to determine a

search strategy to maximize the total time-discounted detection probability given S ·T

usage of sensors available.

This chapter is organized as follows: In Section 5.1, we introduce the search prob-

lem and present the contribution of this chapter. Section 5.2 presents the notation and

formulation of the problem. The properties of an optimal strategy are presented in

Section 5.3. Algorithm G is proposed in Section 5.4 and an example is presented to il-

lustrate the process of Algorithm G. Section 5.5 presents the sufficient conditions under

which Algorithm G results in an optimal search strategy. In Section 5.6 the relationship

between this search problem and the multi-armed bandit problem is discussed.
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5.1 Introduction

The problem we consider is the following. Suppose we have S sensors that monitor

an area, divided into L cells, L > S. An object is hidden in any one of these L cells

with probability pi, i = 1, 2, · · · , L. We would like to find out where this object is

located with those sensors. Each of the S sensors can be used to scan any cell within a

time slot and each cell can be scanned by at most one sensor in a given time slot. At

any time slot, no more than S sensors can be activated and the result of each sensor’s

scanning is either positive or negative. The probability that a sensor finds the object in

cell i, given the object is in cell i, is αi, i = 1, · · · , L. We assume that this probability is

independent of how many times this cell has been searched before and the false alarm

probability for any sensor on any cell is zero. We further assume that due to certain

energy constraint each sensor can only be used T times. We would like to derive a

sequential search policy (i.e., how many sensors to use at each time slot and which cells

will be scanned) so as to maximize the total time-discounted detection probability of

the object given the number of sensors we have and the number of times we can use

these sensors. This objective can be viewed as one that tries to maximize the likelihood

of finding the object, at the same time finding the object as soon as possible.

Discrete search problems with the assumption that only one sensor available for

conducting search has been investigated in [31–51]. To the best of our knowledge, [52] is

the first one to investigate a discrete search problem with multiple sensors and determine

optimal search strategies for this problem. It also discussed an implementation of an

optimal search strategy and specified conditions under which an optimal search strategy

can be obtained by forward induction. The discrete search problem investigated by [52]

is different from the problem we investigated in the following aspects: (1) It assumes

that at each time instant, all the sensors have to search some cell; (2) The time-discount

factor equals to one. The search problem investigated in [52] is simpler than our problem

since the first aspect makes the following scenario impossible, such that at some time
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instant, one sensor does not search any cell, and the second aspect makes when to

search a cell or in which order to search the cells not important any more.

The main contributions of this chapter are: (1) the formulation of a time-discounted

discrete search problem with multiple sensors; (2) the proposal of an easily imple-

mentable algorithm to find the search strategy; (3) the development of sufficient con-

ditions to guarantee the optimality of the search strategy results from the proposed

algorithm.

5.2 Problem Formulation and Notation

First we list the notation which will be used in this chapter.

• L := {1, · · · , L}, the set of cells that constitute the entire search area, where L is

the total number of cells.

• S := {1, · · · , S}, the set of sensors that we have for use, where S is the total

number of sensors.

• T : the total number of times a sensor can be used.

• pi : the probability that the object is in cell i, i = 1, · · · , L.

• αi : the probability that a sensor finds an object in cell i given that the object is

in cell i, i = 1, · · · , L.

• β : the discount factor, such that 0 < β < 1.

• nt : the number of sensors used at time t, 0 ≤ nt ≤ S .

• gi(t) : the number of times that cell i has been searched up to and including time

t (gi(0) := 0, i = 1, · · · , L).

• ri,m = piαi(1 − αi)
m−1 : the probability that a sensor finds the object in cell i at

the mth search.
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• π =























a1,1 a1,2 · · · a1,S·T

a2,1 a2,2 · · · a2,S·T

...
...

...
...

aL,1 aL,2 · · · aL,S·T























: a search strategy, where ai,t ∈ {0, 1} and ai,t = 1

indicates cell i is searched at time t.

Our objective is to find sequences of sensor allocations at time t, t = 1, 2, · · · until

all sensors have been used T times, in order to maximize the total time-discounted

detection probabilities (TDDPs).

Let Π be the set of all admissible search strategies. Our optimization problem is

formally stated as follows.

Problem (P4)

max
π∈Π

J(π) =
S·T
∑

t=1

βt−1

L
∑

i=1

ri,gi(t) · ai,t (5.1)

s.t.



























∑L

i=1 ai,t = nt ≤ S, t = 1, · · · , S · T ,

∑S·T
t=1 nt = S · T,

∑t

j=1 ai,j = gi(t), i = 1, · · · , L, j = 1, · · · , S · T .

(5.2)

5.3 Properties of an Optimal Strategy

In this section, we show two properties of an optimal strategy. Assume π∗ is an

optimal strategy. Under π∗, at each time instant t, denote by L∗
t the cell set searched

by π∗ and let |L∗
t | = n∗

t . Let τ ∗ denote the time at which the process ends under policy

π∗. Then we have the following property.

Property 5.1. S ≥ n∗
1 ≥ n∗

2 ≥ · · · ≥ n∗
τ∗.

Property 5.1 implies that under an optimal search strategy, if there are sensors not

activated at time instant t, t = 1, · · · , S ·T , then it is impossible to activate them again

at time s, s > t.

Property 5.2. If n∗
1 = · · · = n∗

t−1 = S and n∗
t < S, then L∗

t ⊇ L∗
t+1 ⊇ · · · ⊇ L∗

τ∗.
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According to Property 5.2, any optimal search strategy π∗ has the following feature.

If π∗ does not activate all S sensors at some time instant t, the locations which are not

searched at t will never be searched again.

5.4 Greedy Algorithm G

In this section, we propose a search algorithm, called Algorithm G, and present an

example to illustrate how Algorithm G works.

Table 5.1: The TDDP Table of Cell i

ri,1 βri,1 · · · βST−2ri,1 βST−1ri,1

βri,2 β2ri,2 · · · βST−1ri,2

...
... . .

.

βST−2ri,ST−1 βST−1ri,ST−1

βST−1ri,ST

First we define the TDDP table for each cell i, 1 ≤ i ≤ L, in Table 5.1. Each table

lists the time-discounted probability of finding the object in all possible situations. The

(m,n) entry of this table is the probability to find the object at the mth search at time

m + n − 1. The first column shows the rewards if cell i is searched continuously until

time ST . Similarly the nth column shows the rewards if the search in cell i begins

at time n, and the cell is searched continuously until time n + ST . Since the largest

possible time instant is ST , we do not have a well-defined TDDP entry at (m,n), s.t.,

m + n − 1 > ST . Therefore each table is a ST × ST upper triangular matrix, which

shows all the possible TDDPs. The mth row shows the set of all possible rewards when

cell i is searched for the mth time.

Consider Table 5.1: Imagine drawing a diagonal line from the lower left entry to

the upper right entry, and then draw all lines parallel to this diagonal line. Define the
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uppermost left line to be the 1st parallel line and enumerate sequentially the remaining

parallel lines (the diagonal line is the (ST )th line). Do the same enumeration for the

tables associated with the remaining cells. Then determining a search strategy is equiv-

alent to choosing ST TDDPs out of the L TDDP tables with the following constraints:

(i) in each table, at most one TDDP can be chosen from each row (which means that if

some cell is searched for the mth time, it cannot be searched for the mth time again in

the future); (ii) in each table, at most one TDDP is chosen from one parallel line (which

means that at each time instant, each cell can be searched by at most one sensor); (iii)

the total number of TDDPs with the same time discount from different tables (i.e., the

total number of TDDPs from the jth parallel line of different tables, 1 ≤ j ≤ S · T ),

cannot be more than S (which means that for each time instant, no more than S cells

can be searched).

Under the above constraints, Algorithm G proceeds as follows. Initially, the TDDPs

at the top left corner from each table are compared and the cell with the largest TDDP

at that corner is searched at time 1. The first row of the table of the above-mentioned

cell is discarded and the new top left corner of this table will be the left most entry in

the second row. Then the TDDPs at the top left corners from each table are compared

again. The above process is repeated until the number of TDDPs, chosen from the 1st

parallel lines of different tables, reaches S. At this point the first columns of all the

tables, in which no TDDP have been chosen from the 1st parallel line, are discarded;

furthermore, all cells that are searched at time 1 have been determined. Afterwards,

the above process is repeated until the number of TDDPs, chosen from the 2nd parallel

lines of different tables, reaches S. Then, the first columns of all the tables, in which

no TDDP have been chosen from the 2st parallel line, are discarded. The above process

is repeated and terminated when the total number of TDDPs, chosen from different

tables, reaches ST .

The following example illustrates how Algorithm G works.
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0.2500 0.2250 0.2025 0.1823 0.1640 0.1476  1 

0.1125 0.1013 0.0911 0.0820 0.0738 0  3 

0.0506 0.0456 0.0410 0.0369 0 0  4 

0.0228 0.0205 0.0185 0 0 0  

0.0103 0.0092 0 0 0 0  

0.0046 0 0 0 0 0  

(a) Cell 1

0.1200 0.1080 0.0972 0.0875 0.0787 0.0709 ü2 

0.0432 0.0389 0.0350 0.0315 0.0283 0 ü6 

0.0156 0.0140 0.0126 0.0113 0 0  

0.0056 0.0050 0.0045 0 0 0  

0.0020 0.0018 0 0 0 0  

0.0007 0 0 0 0 0  

(b) Cell 2

0.0500 0.0450 0.0405 0.0365 0.0328 0.0295 ü5 

0.0113 0.0101 0.0091 0.0082 0.0074 0  

0.0025 0.0023 0.0021 0.0018 0 0  

0.0006 0.0005 0.0005 0 0 0  

0.0001 0.0001 0 0 0 0  

ε 0 0 0 0 0  

(c) Cell 3

 t=1 t=2 t=3 t=4 t=5 t=6 

Cell 1 ü1 ü3 ü4    

Cell 2 ü2  ü6    

Cell 3  ü5     

(d) Search Strategy

Figure 5.1: TDDP Tables for Example 1

Example 5.1. Consider L = 3, S = 2, T = 3, β = 0.9. Suppose for each cell,

p1 = 0.5, α1 = 0.5 , (5.3)

p2 = 0.3, α2 = 0.4 , (5.4)

p3 = 0.2, α3 = 0.25 . (5.5)

The TDDP tables are given in Figures 5.1(a)-5.1(c), where ǫ means that the TDDP is

extremely small and ǫ < 0.00005. Figure 5.1(d) records the order in which the cells are

assigned to different time slots by Algorithm G; in this figure, Xl, 1 ≤ l ≤ 6 represents

that the assignment is the lth one determined under Algorithm G.

At first, the TDDPs {0.25, 0.12, 0.05} at the top left corner of each table are com-

pared. Since cell 1 has the largest TDDP (0.25) at the top left corner, cell 1 is assigned

at time 1 and the first row of the table in Figure 5.1(a) (corresponding to cell 1) is

discarded. Then the TDDP at the top left corner of cell 1 is 0.1125 and the TDDPs

at the top left corner of other cells are the same. At this stage {0.1125, 0.12, 0.05} are

compared. Since cell 2 has the largest TDDP (0.12), cell 2 is assigned at time 1 and
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the first row of the table in Figure 5.1(b) (corresponding to cell 2) is discarded. Since

the number of TDDPs chosen from the 1st parallel line reaches 2, cells 1 and 2 are

searched at time 1 and the first column of the table in Figure 5.1(c) (corresponding

to cell 3) is discarded. Then the new TDDPs at the top left corner of each table are

{0.1125, 0.0432, 0.045}. Since cell 1 has the largest TDDP (0.1125), cell 1 is assigned

at time 2 and the second row of the table in Figure 5.1(a) (corresponding to cell 1) is

discarded. Subsequently, the TDDPs {0.05060.0432, 0.045} are compared. Since cell 1

has the largest TDDP (0.0506) at the top left corner again, cell 1 is assigned at time

3 and the third row of the table in Figure 5.1(a) (corresponding to cell 1) is discarded.

At the next step, the TDDPs at the top left corner are {0.0228, 0.0432, 0.045}. Since

cell 3 has the largest TDDP (0.045)at the top left corner, cell 3 is assigned at time 2

and the first row of the table in Figure 5.1(c) (corresponding to cell 3) is discarded.

Since the number of TDDPs chosen from the 2nd parallel line reaches 2, cells 1 and 3

are searched at time 2 and the first column of the table in Figure 5.1(b) (corresponding

to cell 2) is discarded. The new TDDPs are {0.0228, 0.0389, 0.0101}. Cell 2 has the

largest TDDP (0.0389) and the second row of the table in Figure 5.1(b) (corresponding

to cell 2)is discarded. At this stage, since the total number of searches reaches 6, the

process terminates.

The above example demonstrates that Algorithm G is easily implementable. It also

shows that the total number of rows discarded from the L tables throughout the whole

process is ST . In Example 5.1, 6 rows are discarded. We would like to point out

that Algorithm G completely determines the set of cells that are searched at each time

instant only when it terminates. In the above example, Algorithm G first determines

that cells 1 and 2 are searched at time 1; then it determines that cell 1 is searched at

time 2 and 3; afterwards it determines that cell 3 is searched at time 2 and cell 2 is

searched at time 3.

In the following section, we show two different conditions which are sufficient to

guarantee the optimality of the greedy policy.
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5.5 the Optimality of the Greedy Algorithm G

In this section we determine two different conditions sufficient to guarantee the

optimality of the greedy strategy πg, resulting from the greedy algorithm G. We denote

the number of sensors used at time t under the greedy policy πg by ng
t .

Theorem 5.1. If ng
1 < S, then the greedy strategy πg resulting from Algorithm G is

optimal.

When ng
1 < S, all S · T TDDPs are only chosen from the first column of each table.

The original problem is thus equivalent to a un-discounted finite horizon classical multi-

armed bandit problem. The TDDPs in the first column can be seen as the rewards

incurred for the successive plays on different arms. For finite horizon multi-armed

bandit problems, the Gittins index rule (see [3]) is not generally optimal. However,

in this search problem, the reward sequence for each cell is deterministic and strictly

decreasing with time. Thus, for each cell, the Gittins index is always achieved at

stopping time 1. Therefore, in this case the Gittins index rule is optimal, which searches

the cell with the largest TDDP at each step.

Consider the greedy strategy πg. Denote by L
g
t the set of cells searched at time

t under πg. Let ht :=
∑S

i=1 hi
t, where hi

t denotes the number of times sensor i still

available for use at time t, that is, hi
t = T − gi(t − 1), where gi(t − 1) is the number of

times cell i has been searched up to and including time t−1. Let vi,t denote the TDDP

of cell i at time t (vi,t = βt−1piαi(1 − αi)
gi(t)).

The following lemma provides an intermediate result that leads to another condition

sufficient to guarantee the optimality of the greedy strategy πg.

Lemma 5.1. Consider the greedy strategy πg. If ng
t = S at some time instant t, and

∀i ∈ L
g
t and ∀j /∈ L

g
t , we have

vi,t ·
1 − β + αi · β

ht · (1 − αi)
ht−1

1 − β · (1 − αi)
> vj,t, (5.6)
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then (given that πg was used up to time t− 1) it is optimal to search all the cells in L
g
t

at time t.

Note that when ht = 1, (5.6) is equivalent to vi,t > vj,t, which is consistent with

the intuition that if there is only one sensor use left, it is better to search the cell with

larger TDDP. When ht is larger, (5.6) is stricter than vi,t > vj,t since the full effect of

future rewards has to be taken into account.

From Theorem 5.1 and Lemma 5.1, we can conclude

Theorem 5.2. Assume ng
1 = ng

2 = · · · = ng
s = S > ng

s+1 ≥ · · · > ng
τg . If at any time

instant t ≤ s, for ∀i ∈ L
g
t and ∀j /∈ L

g
t ,

vi,t ·
1 − β + αi · β

ht · (1 − αi)
ht−1

1 − β · (1 − αi)
> vj,t , (5.7)

then πg is optimal.

5.6 Discussion

We now compare Problem (P4) with the multi-armed bandit problem.

This search problem is similar to a time-discounted deterministic multi-armed ban-

dit problem with multiple plays (see [15]) in the following way:(1) there are S proces-

sors and L projects; (2) at each time t, no more than one processor can work on the

same project; (3) the deterministic reward process associated with each project/cell i

is ri,gi(t); (4) the objective is to determine the search strategy that maximize the to-

tal β-discounted rewards. The key difference between Problem (P4) and the problem

investigated in [15] is the following: in the time-discounted deterministic multi-armed

bandit problem with multiple plays (in [15]), the time horizon is infinite and at each

time instant, each processor must work on exactly one project; in problem (P4), each

processor/sensor can be used at most T times and at some time instant, it is possible

that some processor/sensor does not work on any project/cell. Consequently, Prob-

lem (P4) is distinctly different from that of [15]. Furthermore, an optimal strategy for
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Problem (P4) can only be determined in general by backward induction. Nevertheless,

under the condition of Theorem 5.2 (that are distinctly different from those of [15]) the

greedy strategy described in Section 5.4 is optimal for Problem (P4).

When ng
t = S, at each time instant, every sensor has to search one cell. Since

the reward sequence for each cell is deterministic and strictly decreasing with time, for

each cell, the Gittins index is always achieved at τ = 1, which is ri,gi(t). Similar to the

condition in [15], we develop a sufficient condition (5.6) to guarantee that the Gittins

index rule is optimal. Here the full effect of future rewards are taken into account

in determining an optimal search strategy and (5.6) guarantees the Gittins indices of

different cells are sufficiently separated.
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CHAPTER 6

CONCLUSION

6.1 Summary and Philosophy of Approaches

In this dissertation we investigated sensor scheduling problems under energy con-

straints. We concentrated on three classes of problems: stationary parameter estima-

tion, dynamic parameter estimation and discrete search. In Chapter 2 we first for-

mulated a stochastic resource allocation problem for stationary parameter estimation

with a sensor-dependent parameter-dependent observation model. With the Gaussian

assumption and linear observation model, the problem is equivalent to a determin-

istic resource allocation problem. We proposed a greedy algorithm for the solution

of the problem and identified conditions sufficient to guarantee the optimality of the

greedy strategy. In Chapter 3, we formulated the same parameter estimation problem

with a sensor-dependent parameter-independent observation model as a static alloca-

tion problem. We derived a lower bound on the optimal performance and developed

a preprocessing algorithm to obtain an improvement of the lower bound. We used the

improved lower bound to evaluate the performance of the greedy strategy proposed in

Chapter 2. In Chapter 4, we investigated a dynamic parameter estimation problem

under an energy constraint, and discovered the structure of an optimal sensor measure-

ment strategy. In Chapter 5 we proposed an easily implementable greedy strategy for

the search problem with multiple sensors under an energy constraint, and identified
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conditions sufficient to guarantee the optimality of this greedy strategy. We discussed

the relationship between each problem and the multi-armed bandit problem.

In general stochastic sequential decision problems can be solved numerically through

dynamic programing. In this dissertation, in order to obtain insight into the nature of

the problems and to investigate and discover the structure of optimal strategies, we em-

ployed both stochastic dynamic programing and a methodology that uses approximate

algorithm development, along with the analysis of optimal strategies and the identifi-

cation of conditions sufficient to guarantee the optimality of the proposed algorithms.

In doing so, we were able to analytically explain why in general the greedy strategy

performs well.

6.2 Future Directions

In this section, we illustrate some future directions for research.

• Investigate situations where the sufficient conditions for optimality

discovered for the parameter estimation and discrete search problem

are satisfied. In this dissertation, for the parameter estimation and discrete

search problem, we derived sufficient conditions to guarantee the optimality of the

proposed greedy algorithms. We must further investigate when these conditions

are satisfied or how often they are satisfied.

• Investigate tracking problem where the parameter changes in space

and the cost depends on the parameter’s position. In this dissertation, for

the tracking problem, we assumed that the measurement accuracy only changes

in time, but not in space. In many tracking problems, it is more likely that the

measurement accuracy and the measurement cost are dependent of the position

of the parameter as the sensing and transmission distance changes. The nature

of the optimal solution of such problems is currently unknown.
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• Investigate search problems where multiple sensors can measure the

same cell at the same time or there are multiple hidden targets to be

searched. In this dissertation, for the discrete search problem, we assumed that

there is only one hidden target to be searched, and at any time instant at most

one sensor can be used to search one cell. The nature/solution of search problems

where there are several hidden targets to be found/detected and multiple sensors

can be used together to search one cell at any time instant is currently unknown.
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APPENDIX A

PROOFS FOR CHAPTER 2

Proof of Lemma 2.1.

We prove this lemma by induction.

First we prove that when sensor set A consists of two sensors s1 and s2, the lemma is

true. Denote by σp(t, {s1}), the variance after the parameter p is measured by sensor s1

given the initial variance as σp(t) and by σp(t, {s1, s2}), the variance after the parameter

p is measured by sensor s1 and sensor s2 given the initial variance as σp(t). Then from

equation (2.2) we have

σp(t, {s1}) =
σp(t)

σp(t) · Ip,s1 + 1
(A.1)

σp(t, {s1, s2}) =
σp(t, {s1})

σp(t, s1) · Ip,s2 + 1
(A.2)

=

σp(t)

σp(t)·Ip,s1+1

σp(t)

σp(t)·Ip,s1+1
· Ip,s2 + 1

(A.3)

=
σp(t)

σp(t)(Ip,s1 + Ip,s2) + 1
(A.4)

Equations (A.1) and (A.4) establish the basis of induction.

Assume for any sensor set An, s.t. |An| = n, |A| denotes the cardinality of An and

An = {s1, s2, · · · , sn}, it is true that

σp(t, An) =
σp(t)

σp(t)Îp,An
+ 1

, (A.5)

79



where Îp,A =
∑n

k=1 Ip,sk
.

Then for sensor set An+1 = {s1, s2, · · · , sn+1}, the post-measurement variance is

σp(t, An+1) =
σp(t, An, )

σp(t, An) · Ip,sn+1 + 1
(A.6)

=

σp(0)

σp(t)Îp,An+1

σp(t)

σp(t)Îp,An+1
· Ip,sn+1 + 1

(A.7)

=
σp(t)

σp(t)(Îp,An
+ Ip,sn+1) + 1

(A.8)

=
σp(t)

σp(t)Îp,An+1 + 1
. (A.9)

Equation (A.7) follows from the induction hypothesis (A.5). Equations (A.6)-(A.9)

establish the induction step. From Equation (A.9), it is easily verified that σp(t, A) is

an increasing function of σp(t) and a decreasing function of of Îp,A.

Proof of Lemma 2.2.

From Equation (2.4), it is easily verified that Rp(σp(t), A) is an increasing function of

σp(t) and Îi,A.

Proof of Lemma 2.3.

We note that

Qp,s(σ) = cp,s − Rp(σ, {s}) (A.10)

= cp,s −
σ2Ip,s

σIp,s + 1
(A.11)

From Lemma 2.2, we know Rp(σ, s) is an increasing function of σ and Ip,s. Thus Qp,s(σ)

is a decreasing function of σ and Ip,s.

From the definition of THp,s, Qp,s(σ) can be rewritten as

Qp,s(σ) =

(

cp,s −
σ2Ip,s

σIp,s + 1

)

−

(

cp,s −
TH2

p,sIp,s

THp,sIp,s + 1

)

(A.12)

=
TH2

p,sIp,s

THp,sIp,s + 1
−

σ2Ip,s

σIp,s + 1
(A.13)
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Since
TH2

p,sIp,s

THp,sIp,s+1
is an increasing function of THp,s, it follows that

Qp,s(σ) =
TH2

p,sIp,s

THp,sIp,s + 1
−

σ2Ip,s

σIp,s + 1
(A.14)

is an increasing function of THp,s.

Proof of Theorem 2.1.

We prove this theorem by contradiction.

Assume

∃s ∈ Sγ , ∃s′ ∈ Ωs \ Sγ (A.15)

such that

Ip∗
k
,s < Ip∗

k
,s′ for some parameter p∗k . (A.16)

Since Conditions 2.1 and 2.2 are satisfied, we have

THp∗
k
,s < THp∗

k
,s′ . (A.17)

Define γ̂ := (P γ̂, S γ̂), where

P γ̂ = P γ∗

, (A.18)

S γ̂ = {s∗1, · · · , s∗k−1, s
′, s∗k+1, · · · , s∗

τγ∗} . (A.19)

Then, there exists a strategy γ̂′ := (P γ̂′

, S γ̂′

), which is equivalent to γ̂, with

P γ̂′

= {p∗1, · · · , p∗k−1, p
∗
k+1, · · · , p∗

τγ∗ , p∗k} , (A.20)

S γ̂′

= {s∗1, · · · , s∗k−1, s
∗
k+1, · · · , s∗

τγ∗ , s′} . (A.21)

There is also a strategy γ′ := (P γ′

, Sγ′

), which is equivalent to strategy γ∗, with

P γ′

= {p∗1, · · · , p∗k−1, p
∗
k+1, · · · , p∗

τγ∗ , p∗k} , (A.22)

Sγ′

= {s∗1, · · · , s∗k−1, s
∗
k+1, · · · , s∗

τγ∗ , s∗k} . (A.23)
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Define strategy γ̃ := (P γ̃, S γ̃), where

P γ̃ = {p∗1, · · · , p∗k−1, p
∗
k+1, · · · , p∗

τγ∗} , (A.24)

S γ̃ = {s∗1, · · · , s∗k−1, s
∗
k+1, · · · , s∗

τγ∗} . (A.25)

Assume the variance of parameter p∗k after strategy γ̃ has been executed is σγ̃
p∗

k
. Then

J(γ∗) = J(γ′) = J(γ̃) + Qp∗
k
,s(σ

γ̃
p∗

k
) , (A.26)

J(γ̂) = J(γ̂′) = J(γ̃) + Qp∗
k
,s′(σ

γ̃
p∗

k
) . (A.27)

where Qp∗
k
,s(σ

γ̃
p∗

k
) and Qp∗

k
,s′(σ

γ̃
p∗

k
) are defined in Equation (2.6). Since Ip∗

k
,s < Ip∗

k
,s′ , it

follows from Lemma 2.3 that

Qp∗
k
,s(σ

γ̃
p∗

k
) > Qp∗

k
,s′(σ

γ̃
p∗

k
) . (A.28)

Hence

J(γ∗) > J(γ̂), (A.29)

which contradicts the optimality of γ∗. Thus we must have

Ip,s ≥ Ip,s′ , ∀p ∈ P γ∗

,∀s ∈ Sγ∗

,∀s′ ∈ Φ − Sγ∗

. (A.30)

Proof of Lemma 2.4.

For any E = {sg
i+1, · · · , sg

l−1, s
g
l }, such that l ≤ M , according to Equation (2.12) , we

have

∆pi
(E) = [σpi

(i − 1, {sg
i }) − σpi

(i − 1, {sg
i } ∪ E)]

− [σpi
(i − 1) − σpi

(i − 1, E)] . (A.31)

Furthermore,

σpi
(i − 1, {sg

i }) − σpi
(i − 1, {sg

i } ∪ E)

=
σ2

pi
(i − 1, {sg

i })Îpi,E

σpi
(i − 1, {sg

i })Îpi,E + 1
, (A.32)
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σpi
(i − 1) − σpi

(i − 1, E) =
σ2

pi
(i − 1)Îpi,E

σpi
(i − 1)Îpi,E + 1

. (A.33)

Since σpi
(i − 1, {sg

i }) < σpi
(i − 1), Lemma 2.2 implies that

σpi
(i, {sg

i }) − σpi
(i, {sg

i } ∪ E) < σpi
(i − 1) − σpi

(i, E). (A.34)

Therefore we have the following inequality,

∆pi
(E) ≤ 0, ∀E ⊆ {sg

i+1, · · · , sg
M} . (A.35)

According to Equation (A.31), for any E1, E2 and j < k ≤ M , such that

E1 = {sg
i+1, s

g
i+2, · · · , sg

k−1, s
g
k} , (A.36)

E2 = {sg
i+1, s

g
i+2, · · · , sg

j−1, s
g
j} , (A.37)

we have

∆pi
(E1) − ∆pi

(E2) =

[σpi
(i − 1, E1) − σpi

(i − 1, {sg
i } ∪ E1)]

− [σpi
(i − 1, E2) − σpi

(i − 1, {sg
i } ∪ E2)] . (A.38)

Furthermore,

σpi
(i − 1, E1) − σpi

(i − 1, {sg
i } ∪ E1)

=
σ2

pi
(i − 1, E1)Ipi,s

g
i

σpi
(i − 1, E1)Ipi,s

g
i
+ 1

, (A.39)

σpi
(i − 1, E2) − σpi

(i − 1, {sg
i } ∪ E2)

=
σ2

pi
(i − 1, E2)Ipi,s

g
i

σpi
(i − 1, E2)Ipi,s

g
i
+ 1

. (A.40)

Since j < k, E2 ⊂ E1, therefore

σpi
(i − 1, E1) < σpi

(i − 1, E2) . (A.41)
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Then Lemma 2.2 implies that

σpi
(i − 1, E1) − σpi

(i − 1, {sg
i } ∪ E1)

< σpi
(i − 1, E2) − σpi

(i − 1, {sg
i } ∪ E2) . (A.42)

Consequently, from (A.35), (A.38) and (A.42), we obtain

∆pi
({sg

i+1, · · · , sg
M}) ≤ ∆pi

(E1) < ∆pi
(E2) ≤ 0 . (A.43)

Proof of Lemma 2.5.

For strategy γ1, defined in the statement of the lemma, there exists an equivalent

strategy γ′
1 := (P γ′

1 , Sγ′

1), where

P γ′

1 = {p1, · · · , pi−1, pi+1, · · · , pt, pi} , (A.44)

Sγ′

1 = {sg
1, · · · , sg

i−1, s
g
i+1, · · · , sg

t , s
g
i } . (A.45)

For strategy γ2, defined in the statement of the lemma, there exists an equivalent

strategy γ′
2 := (P γ′

2 , Sγ′

2), where

P γ′

2 = {p1, · · · , pi−1, pi+1, · · · , pt, p
′
i} , (A.46)

Sγ′

2 = Sγ′

1 = {sg
1, · · · , sg

i−1, s
g
i+1, · · · , sg

t , s
g
i } . (A.47)

Define strategy γ := (P γ, Sγ), where

P γ = {p1, · · · , pi−1, pi+1, · · · , pt} , (A.48)

Sγ = {sg
1, · · · , sg

i−1, s
g
i+1, · · · , sg

t} . (A.49)

Assume the variances of parameter pi and p′i, after the strategy γ has been executed,

are σγ
pi

and σγ

p′i
, respectively. Then

J(γ1) = J(γ′
1) = J(γ) + Qpi,s

g
i
(σγ

pi
) , (A.50)

J(γ2) = J(γ′
2) = J(γ) + Qp′i,s

g
i
(σγ

p′i
) , (A.51)
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where Qpi,s
g
i
(σγ

pi
) and Qp′i,s

g
i
(σγ

p′i
) are defined in equation (2.6).

From Lemma 2.4 and Equation (2.11) and (2.14), we have

Bl,i(pi) = Rpi
(i − 1, {sg

i , s
g
i+1, s

g
i+2, · · · , sg

M})

− Rpi
(i − 1, {sg

i+1, s
g
i+2, · · · , sg

M}) − cpi,s
g
i

= σpi
(i − 1, {sg

i+1, s
g
i+2, · · · , sg

M})

− σpi
(i − 1, {sg

i , s
g
i+1, s

g
i+2, · · · , sg

M}) − cpi,s
g
i

≤ σγ
pi
− σγ

pi
(t − 1, {sg

i }) − cpi,s
g
i

= −Qpi,s
g
i
(σγ

pi
) . (A.52)

Equality in (A.52) holds if and only if every sensor in the set {sg
i+1, s

g
i+2, · · · , sg

t} is used

to measure parameter pi after time instant i.

Similarly, from Lemma 2.4 and Equation (2.13), we have

Bu,i(p
′
i) = Rp′i

(i − 1, {sg
i }) − cp′i,s

g
i

= σp′i
(i − 1) − σp′i

(i − 1, {sg
i }) − cp′i,s

g
i

≥ σγ

p′i
− σγ

p′i
(t − 1, {sg

i }) − cp′i,s
g
i

= −Qp′i,s
g
i
(σγ

p′i
) . (A.53)

Equality in (A.53) holds if and only if no sensor in the set {sg
i+1, s

g
i+2, · · · , sg

t} is

used to measure parameter p′i after time instant i.

From (A.52), (A.53) and the assumption Bl,i(pi) ≥ Bu,i(p
′
i), we have

−Qp′i,s
g
i
(σγ

p′i
) ≤ Bu,i(p

′
i) ≤ Bl,i(pi) ≤ −Qpi,s

g
i
(σγ

pi
) . (A.54)

Therefore,

J(γ1) = J(γ) + Qpi,s
g
i
(σγ

pi
) (A.55)

≤ J(γ) + Qp′i,s
g
i
(σγ

p′i
) (A.56)

= J(γ2) . (A.57)
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Proof of Theorem 2.2.

We will prove that Conditions 2.1, 2.2 and 2.3 are sufficient to establish the optimality

of the greedy algorithm by contradiction.

Consider the strategy γg = (P g, Sg), with

P g = {pg
1, · · · , pg

τ} , (A.58)

Sg = {sg
1, · · · , sg

τ} , (A.59)

where P g is generated by Algorithm L. Assume Conditions 2.1, 2.2 hold and Condition

2.3 holds for t = 1, · · · , τ . Suppose that strategy γg = (P g, Sg) is not optimal; instead,

there exists a strategy γ = (P, S) with

P = {p′1, · · · , p′t} , (A.60)

S = {sg
1, · · · , sg

t} , (A.61)

which is optimal and P g 6= P . Thus,

J(γg) > J(γ). (A.62)

We examine two different cases.

Case 1: t ≤ τ

If P = {p′1, · · · , p′t} = {pg
1, · · · , pg

t}, then t < τ since P 6= P g. From Algorithm L

and t < τ , we know there exists at least one parameter pg
t+1, such that

σp
g
t+1

(t) > THp
g
t+1,s

g
t+1

. (A.63)

Define a strategy γ′ := (P ′, S ′), with

P ′ = {pg
1, · · · , pg

t , p
g
t+1} , (A.64)

S ′ = {sg
1, · · · , sg

t , s
g
t+1} , (A.65)

The cost of strategy γ′ is

J(γ′) = J(γ) + {cp
g
t+1,s

g
t+1

−
σ2

p
g
t+1

(t)Ip
g
t+1,s

g
t+1

σp
g
t+1

(t)Ip
g
t+1,s

g
t+1

+ 1
} . (A.66)
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Because of (A.63), (2.3), (2.5) and (2.8), (A.66) gives

J(γ′) < J(γ) . (A.67)

which contradicts the optimality of γ.

If P = {p′1, · · · , p′t} 6= {pg
1, · · · , pg

t}, denote p′i to be the first parameter in P , which

is different from pg
i , i.e. p′j = pj, for j = 1, · · · , i − 1, p′i 6= pi. Then,

P = {pg
1, · · · , pg

i−1, p
′
i, p

′
i+1, · · · , p′t} . (A.68)

Define a strategy γ′ := (P ′, S ′), with

P ′ = {p′1, · · · , p′i−1, p
g
i , p

′
i+1, · · · , p′t} (A.69)

= {pg
1, · · · , pg

i−1, p
g
i , p

′
i+1, · · · , p′t} ,

S ′ = S . (A.70)

Since Condition 3 for parameter pg
i holds at time instant i, by Lemma 2.5, we have

J(γ) ≥ J(γ′) , (A.71)

which contradicts the optimality of γ.

Case 2: t > τ

If P = {pg
1, · · · , pg

τ , p
′
τ+1, · · · , p′t}, from algorithm L we know for any parameter p′τ+1,

σp′τ+1
(τ) ≤ THp′τ+1,s

g
τ+1

. (A.72)

Furthermore, there exists a strategy γ̂ := (P̂ , Ŝ) that is equivalent to γ, with

P̂ = {pg
1, · · · , pg

τ , p
′
τ+2, · · · , p′t, p

′
τ+1} , (A.73)

Ŝ = {sg
1, · · · , sg

τ , s
g
τ+2, · · · , sg

t , s
g
τ+1} . (A.74)

From Algorithm L, we know for any parameter p′τ+1,

σp′τ+1
(t − 1) ≤ σp′τ+1

(τ) ≤ THp′τ+1,s
g
τ+1

. (A.75)
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Define a strategy γ′ := (P ′, S ′), with

P ′ = {pg
1, · · · , pg

τ , p
′
τ+2, · · · , p′t} , (A.76)

S ′ = {sg
1, · · · , sg

τ , s
g
τ+2, · · · , sg

t} . (A.77)

Then

J(γ′) = J(γ̂) − [cp
g
τ+1,s

g
τ+1

−
σ2

p
g
τ+1

(t − 1)Ip
g
τ+1,s

g
τ+1

σp
g
τ+1

(t − 1)Ip
g
τ+1,s

g
τ+1

+ 1
]

< J(γ̂)

= J(γ), (A.78)

which contradicts the optimality of γ.

If P 6= {pg
1, · · · , pg

τ , p
′
τ+1, · · · , p′t}, denote p′i to be the first parameter in P , which is

different from pg
i , i.e. p′j = pg

j , for j = 1, · · · , i − 1 and p′i 6= pg
i , where i ≤ τ , and

P = {pg
1, · · · , pg

i−1, p
′
i, · · · , p′τ , · · · , p′t} . (A.79)

Define a strategy γ′ := (P ′, S ′), with

P ′ = {p′1, · · · , p′i−1, p
g
i , p

′
i+1, · · · , p′t} (A.80)

= {pg
1, · · · , pg

i−1, p
g
i , p

′
i+1, · · · , p′t} , (A.81)

S ′ = S . (A.82)

Since by assumption Condition 3 holds for parameter pg
i at time instant i, by Lemma

2.5, we have

J(γ) ≥ J(γ′) , (A.83)

which contradicts the optimality of γ.

By combing the above two cases, we conclude that if Condition 2.1, 2.2 are satisfied

and Condition 2.3 holds at every time instant t the greedy algorithm L generates an

optimal strategy for Problem P2.
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APPENDIX B

PROOFS FOR CHAPTER 3

Proof of Lemma 3.1.

We prove (3.3) by induction.

First we prove that when the sensor set A = {1, 2}, the lemma is true. Denote by

σp({1}), the variance after parameter p is measured by sensor 1, and by σp({1, 2}), the

variance after parameter p is measured by sensors 1 and 2. Then from Equation (3.2),

we have

σp({1}) =
σp(0)

σp(0) ·
H2

1

v1
+ 1

(B.1)

σp({1, 2}) =
σp({1})

σp({1}) ·
H2

2

v2
+ 1

(B.2)

=

σp(0)

σp(0)·
H2

1
v1

+1

σp(0)

σp(0)·
H2

1
v1

+1
·

H2
2

v2
+ 1

(B.3)

=
σp(0)

σp(0)(
H2

1

v1
+

H2
2

v2
) + 1

. (B.4)

Equations (B.1) and (B.4) establish the induction basis.

Assume for any sensor set An = {1, 2, · · · , n}, we have

σp(An) =
σp(0)

σp(0)IAn
+ 1

, (B.5)

where IA =
∑n

k=1 Ik.
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Then for sensor set An+1 = {1, 2, · · · , n + 1}, the post-measurement variance is

σp(An+1) =
σp(An)

σp(An) ·
H2

n+1

vn+1
+ 1

(B.6)

=

σp(0)

σp(0)IAn+1

σp(0)

σp(0)IAn+1
·

H2
n+1

vn+1
+ 1

(B.7)

=
σp(0)

σp(0)(IAn
+

H2
n+1

vn+1
) + 1

(B.8)

=
σp(0)

σp(0)IAn+1 + 1
. (B.9)

Equation (B.7) follows from the induction hypothesis (B.5). Equations (B.6)-(B.9)

establish the induction step.

From Equation (B.9), it is easily verified that σp(A) is an increasing function of

σp(0) and a decreasing function of of IA.

Proof of Lemma 3.2.

We prove this lemma by contradiction.

Suppose λ∗ = {A∗
1, A

∗
2, · · · , A∗

P} is an optimal sensor allocation policy, and A(λ∗) =

∪N
i=1A

∗
i . Assume there exists sensor i and parameter k, s.t., i ∈ A∗

k ⊆ A(λ∗) and sensor

j ∈ S \ A(λ∗), such that

Ii < Ij . (B.10)

Define a strategy λ := {A∗
1, A

∗
2, · · · , A∗

k−1, Ak, A
∗
k+1, · · · , A∗

N}, where

Ak = A∗
k \ {i} ∪ {j} . (B.11)

By (B.10) and (B.11), we have

IA∗

k
< IAk

(B.12)

The last inequality (B.12) and Lemma 3.1 imply that

σk(A
∗
k) > σk(Ak) . (B.13)
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Since all the sensor subsets used to measure parameters other than parameter k are

the same under strategies λ∗ and λ, we have

J∗ > Jλ , (B.14)

which contradicts the optimality of λ∗.

Proof of Property 3.1.

From Definition 3.1, we observe that if S1 ⊂ S2, then
∑S1

i=1 Ii <
∑S2

i=1 Ii whereas
∑P

j=1
1

σj(0)
remains unchanged. Hence σ̃(S1,P) > σ̃(S2,P).

Proof of Lemma 3.3.

The performance achieved by λ̂∗ is

Ĵ∗(S,P) =
P
∑

i=1

1

IA∗

i
+ 1

σi(0)

+ S · c . (B.15)

By the arithmetic-harmonic-mean inequality, which is a special case of Theorem 16

in [29] Chapter II,

P
∑

i=1

1

IA∗

i
+ 1

σi(0)

+ S · c ≥ P ·





∑P

i=1

(

IA∗

i
+ 1

σi(0)

)

P





−1

+ S · c (B.16)

=
P 2

∑S

i=1 Ii +
∑P

j=1
1

σj(0)

+ S · c (B.17)

= P · σ̃(S,P) + S · c , (B.18)

where equality in (B.16) holds if and only if

IA∗

i
+

1

σi(0)
= IA∗

j
+

1

σj(0)
for all i, j ∈ P , (B.19)

which is equivalent to

σi(A
∗
i ) =

1

IA∗

i
+ 1

σi(0)

= σ̃(S,P) , for all i ∈ P . (B.20)

Equality in (B.18) follows from the definition of harmonic mean function in equation

(3.6).
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Proof of Theorem 3.1.

Since λ∗ is optimal for (P1), (3.8) and (3.9) immediately follow from the definitions of

Problem (P1) and Problem (P2) and A(λ∗) := ∪P
i=1A

∗
i = {s1, s2, · · · , sτ∗}.

By Lemma 3.3, replacing S with A(λ∗), we have

Ĵ∗(A(λ∗),P) =
P
∑

i=1

1

IA∗

i
+ 1

σi(0)

+ τ ∗ · c (B.21)

≥ P · σ̃(A(λ∗),P) + τ ∗ · c (B.22)

=
P 2

∑τ∗

i=1 Isi
+
∑N

i=1
1

σi(0)

+ τ ∗ · c , (B.23)

where the equality in (B.23) follows from Equation (3.6). Define L(t) := P 2
∑t

i=1 Ii+
∑P

i=1
1

σi(0)

+

t · c. Below we prove that L(t) is a strictly convex function of t, t = 1, 2, · · · , S, i.e.

L(t) − L(t + 1) > L(t + 1) − L(t + 2) for all t = 1, 2, · · · , S − 2.

L(t) − L(t + 1) =
P 2

∑t

i=1 Ii + α
−

P 2

∑t+1
i=1 Ii + α

− c

=
P 2 · It+1

(
∑t

i=1 Ii + α) · (
∑t+1

i=1 Ii + α)
− c , (B.24)

L(t + 1) − L(t + 2) =
P 2

∑t+1
i=1 Ii + α

−
P 2

∑t+2
i=1 Ii + α

− c

=
P 2 · It+2

(
∑t+1

i=1 Ii + α) · (
∑t+2

i=1 Ii + α)
− c . (B.25)

Since

It ≥ It+1 , (B.26)

and

(
t+1
∑

i=1

Ii + α) · (
t+2
∑

i=1

Ii + α) > (
t
∑

i=1

Ii + α) · (
t+1
∑

i=1

Ii + α) , (B.27)

it follows that

L(t) − L(t + 1) > L(t + 1) − L(t + 2) , (B.28)
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which means L(t) − L(t + 1) is a strictly decreasing function of t and L(t) is strictly

convex in t.

Hence there exists t∗, which is a minimizer of L(t).

Proof of Lemma 3.4.

We prove (3.13) by contradiction.

Suppose λ∗ = {A∗
1, A

∗
2, · · · , A∗

P} is an optimal partition but (3.13) is not true. Let

i < j and consider the partition strategy

λ = {A∗
1, · · · , A∗

i−1, Ai, A
∗
i+1, · · · , A∗

j−1, Aj, A
∗
j+1, · · · , A∗

P} . (B.29)

Then

J∗ − Jλ =

[

(IA∗

i
+

1

σi(0)
)−1 + (IA∗

j
+

1

σj(0)
)−1

]

−

[

(IAi
+

1

σi(0)
)−1 + (IAj

+
1

σj(0)
)−1

]

≥ 0 , (B.30)

which contradicts the optimality of λ∗.

To prove (3.14) we note that

arg min
Ai⊆A∗

i,j

(

1

IAi
+ 1

σi(0)

+
1

IAj
+ 1

σj(0)

)

(B.31)

= arg max
Ai⊆A∗

i,j

(

IAi
+

1

σi(0)

)

×

(

IAj
+

1

σj(0)

)

(B.32)

= arg max
Ai⊆A∗

i,j

(

IAi
+

1

σi(0)

)

×

(

IA∗

i,j
− IAi

+
1

σj(0)

)

(B.33)

= arg max
Ai⊆A∗

i,j

[

−(IAi
)2 + (IA∗

i,j
+

1

σj(0)
−

1

σi(0)
)IAi

+ (IA∗

i,j
+

1

σj(0)
)

1

σi(0)

]

(B.34)

= arg max
Ai⊆A∗

i,j

{

−

[

IAi
−

1

2
(IA∗

i,j
+

1

σj(0)
−

1

σi(0)
)

]2

+

[

1

4
(IA∗

i,j
+

1

σj(0)
−

1

σi(0)
)2 + (IA∗

i,j
+

1

σj(0)
)

1

σi(0)

]

}

(B.35)

= arg min
Ai⊆A∗

i,j

∣

∣

∣

∣

IAi
−

1

2
(IA∗

i,j
+

1

σj(0)
−

1

σi(0)
)

∣

∣

∣

∣

(B.36)

= arg min
Ai⊆A∗

i,j

∣

∣

∣

∣

(IAi
+

1

σi(0)
) − (IAj

+
1

σj(0)
)

∣

∣

∣

∣

. (B.37)
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By the first part of this lemma, A∗
i minimizes (B.31). Therefore (B.37) gives

A∗
i = arg min

Ai⊆A∗

i,j

∣

∣

∣

∣

(IAi
+

1

σi(0)
) − (IAj

+
1

σj(0)
)

∣

∣

∣

∣

. (B.38)

Consequently,

∣

∣

∣

∣

(IAi
+

1

σi(0)
) − (IAj

+
1

σj(0)
)

∣

∣

∣

∣

≥

∣

∣

∣

∣

(IA∗

i
+

1

σi(0)
) − (IA∗

j
+

1

σj(0)
)

∣

∣

∣

∣

. (B.39)

Proof of Lemma 3.5.

We prove the lemma by contradiction.

Suppose λ∗ = {A∗
1, A

∗
2, · · · , A∗

P} is an optimal policy. Assume that under λ∗, there

exists parameters i, j ∈ P, such that

σi(0) ≥ σj(0), (B.40)

and

IA∗

i
< IA∗

j
. (B.41)

Define a strategy λ := {A1, · · · , AP}, such that

Ai = A∗
j , Aj = A∗

i , (B.42)

Ak = A∗
k ,∀k 6= i, j . (B.43)

By (B.40) and (B.41), we have

IA∗

i
− IA∗

j
< 0 , and

1

σi(0)
−

1

σj(0)
< 0 , (B.44)

∣

∣

∣

∣

(
1

σi(0)
−

1

σj(0)
) + (IA∗

i
− IA∗

j
)

∣

∣

∣

∣

>

∣

∣

∣

∣

(
1

σi(0)
−

1

σj(0)
) − (IA∗

i
− IA∗

j
)

∣

∣

∣

∣

, (B.45)

or, equivalently,

∣

∣

∣

∣

(IA∗

i
+

1

σi(0)
) − (IA∗

j
+

1

σj(0)
)

∣

∣

∣

∣

>

∣

∣

∣

∣

(IA∗

j
+

1

σi(0)
) − (IA∗

i
+

1

σj(0)
)

∣

∣

∣

∣

. (B.46)
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Equation (B.42) along with (B.46) imply that

∣

∣

∣

∣

(IA∗

i
+

1

σi(0)
) − (IA∗

j
+

1

σj(0)
)

∣

∣

∣

∣

>

∣

∣

∣

∣

(IAi
+

1

σi(0)
) − (IAj

+
1

σj(0)
)

∣

∣

∣

∣

, (B.47)

which, because of Lemma 3.4, contradicts the optimality of λ∗.

Proof of Lemma 3.6.

The assumption σ1(0) < THi along with the definition of the threshold of a sensor

implies that it is not optimal to measure parameter 1 with sensor i. Since σ1(0) ≥

σj(0), ∀j > 1, no parameter should be measured by sensor i. Furthermore, since

THi < THj, when j > i, which means Ii > Ij, Lemma 3.2 implies that no parameter

should be measured by any sensor j, j ≥ i.

Proof of Lemma 3.7.

Preliminaries:

For convenience, we repeat Algorithm PL in Figure B.1 and describe its mth cycle.

We assume that in the ith cycle, i = 1, · · · ,m − 1, Test 1 is passed li times, where

li ≥ 0.

the mth cycle:

Step 1 of the mth cycle begins with

ts = m − 1 , tp =
m−1
∑

i=1

li , (B.48)

Ψs = S \ {1, · · · ,m − 1} , (B.49)

Ψp = P \ {1, · · · ,m − 1, P −
m−1
∑

i=1

li + 1, · · · , P} . (B.50)

It is implicitly assumed here that P −
∑m−1

i=1 li + 1 > m − 1.

PL performs Test 1, which is

σP−
∑m−1

i=1 li
(0) < σ̃(S \ {1, · · · ,m − 1},P \ {1, · · · ,m − 1, P −

m−1
∑

i=1

li + 1, · · · , P}) .

(B.51)
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Ψp P Ψs S
ts tp

ts ≤ S tp ≤ P

ts tp

Ψp Ψp \ {P − tp}
tp tp

Ψs Ψs \ { ts}
Ψp Ψp \ { ts}

ts ts

1st Step

2nd Step

Test 1 : σN−tp(0) ≤ σ̃(Ψs, Ψp) ,

Test 2.0: σ1+ts(0) > TH1+ts ,

Test 2.1: I1+ts ≥
1

σ̃(Ψs, Ψp)
−

1

σ1+ts(0)
.

Figure B.1: The flowchart of Algorithm PL
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If Test 1 is passed, tp and Ψp are updated as follows.

tp :=
m−1
∑

i=1

li + 1 , (B.52)

Ψp := P \ {1, · · · ,m − 1, P −
m−1
∑

i=1

li, · · · , P} . (B.53)

Then Test 1 is repeatedly performed until it is not passed anymore. With the assump-

tion that Test 1 is passed lm times, the mth cycle, Step 1 ends with

tp :=
m
∑

i=1

li , (B.54)

Ψp := P \ {1, · · · ,m − 1, P −
m
∑

i=1

li + 1, · · · , P} . (B.55)

In Step 2 of the mth cycle, Test 2.0 and 2.1 are performed. Test 2.0 is

σm(0) > THm , (B.56)

and Test 2.1 is

Im >
1

σ̃(S \ {1, · · · ,m − 1},P \ {1, · · · ,m − 1, P −
∑m

i=1 li + 1, · · · , P})
−

1

σm(0)
.

(B.57)

If Test 2.0 and 2.1 are passed, ts, Ψs and Ψp are updated as follows.

ts = m , (B.58)

Ψs = S \ {1, · · · ,m} , (B.59)

Ψp = P \ {1, · · · ,m, P −
m
∑

i=1

li + 1, · · · , P} . (B.60)

The mth cycle, Step 2 ends here.

Proof: We prove (3.15) based on Algorithm PL and Lemmas B.1-B.3, stated below.

We denote an arbitrary parameter set by Ωp = {p1, p2, · · · , pN}, and an arbitrary

sensor set by Ωs = {s1, s2, · · · , sM}, such that σp1(0) ≥ σp2(0) ≥ · · · ≥ σpN
(0) and

Is1 ≥ Is2 ≥ · · · ≥ IsM
. For Problem (P1) with the pair (Ωp, Ωs), assume that an

optimal policy is λ∗ := {A∗
p1

, · · · , A∗
pN
}.
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Lemma B.1. (i) If

σpN
(0) < σ̃(Ωs, Ωp) , (B.61)

(where σ̃(Ωs, Ωp) is defined by (B.23)), then parameter pN is not measured by any

sensor under λ∗, i.e. A∗
pN

= ∅, and

J∗(Ωs, Ωp) = J∗(Ωs, Ωp \ {pN}) + σpN
(0). (B.62)

(ii) Furthermore,

σ̃(Ωs, Ωp \ {pN}) > σ̃(Ωs, Ωp) . (B.63)

Lemma B.2. (i) If

σp1(0) > THs1 , (B.64)

and Is1 ≥
1

σ̃(Ωs, Ωp)
−

1

σp1(0)
, (B.65)

then ∃pk ∈ Ωp, k < N , such that parameter pk is measured only by sensor s1

under λ∗, i.e., A∗
pk

= {s1}, and

J∗(Ωs, Ωp) = J∗(Ωs \ {s1}, Ωp \ {pk}) +
1

Is1 + 1
σpk

(0)

+ c . (B.66)

(ii) Furthermore,

σ̃(Ωs \ {s1}, Ωp \ {pk}) ≥ σ̃(Ωs \ {s1}, Ωp \ {p1}) > σ̃(Ωs, Ωp) . (B.67)

Lemma B.3. If sensors s1, · · · , sj are each used alone, and A∗
pki

= {si}, then

(i) 1 ≤ k1 < k2 < · · · < kj ≤ N, i.e., 1 ≤ i ≤ ki ≤ N − j + i, i = 1, · · · , j ; (B.68)

(ii) σ̃(Ωs \ {s1, · · · , sj}, Ωp \ {pk1 , · · · , pkj
}) ≥ σ̃(Ωs \ {s1, · · · , sj}, Ωp \ {p1, · · · , pj})

(B.69)
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We prove these lemmas at the end of the proof of Lemma 3.7. The proof of (B.66)

proceeds by induction.

Basis of Induction: We want to prove that (3.15) with ts = 1 and tp = l1 holds true,

which means in the first cycle, if Test 1 is passed l1 times, parameters P − l1 +1, · · · , P

are not measured and if Tests 2.0 and 2.1 are passed, sensor 1 should be used alone.

The first step of the first cycle starts with ts = 0, tp = 0 and Ψp = P, Ψs = S. PL

performs Test 1, that is, it checks whether or not

σP < σ̃(S,P) . (B.70)

(B.70) is exactly the same as condition (B.61) in Lemma B.1 with Ωp = P and Ωs = S. If

Test 1 is passed, by Lemma B.1, parameter P is identified as the one not to be measured.

Ψp is updated as P \ {P} and tp = 1. Test 1 with Ψp = P \ {P − tp + 1, · · · , P} is

repeatedly performed as tp increases. For each tp, Test 1 is exactly condition (B.61) in

Lemma B.1 with Ωp = P \ {P − tp + 1, · · · , P}. The parameters not to be measured

are repeatedly identified by Lemma B.1 until Test 1 is not passed anymore. Assuming

that in the first cycle Test 1 is passed l1 times, parameters P − l1 + 1, · · · , P are not

measured. Ψp is updated as P \ {P − l1 + 1, · · · , P} and tp = l1, ts = 0. The first step

of the first cycle ends here.

In the second step of the first cycle, PL performs Tests 2.0 and 2.1, that is, it checks

if

σ1(0) > TH1 , (B.71)

I1 >
1

σ̃(S,P)
−

1

σ1(0)
; (B.72)

(B.71) and (B.72) are exactly the same as conditions (B.64) and (B.65) in Lemma B.2

with Ωp = Ψp = P \ {P − l1 + 1, · · · , P} and Ωs = Ψs = S. If Tests 2.0 and 2.1 are

passed, by Lemma B.2 sensor 1 must be used alone. The parameter measured by sensor

1 under λ∗ is, in general not known. Let k1 be this parameter (k1 6= P − l1 by Lemma

B.2). Then (3.15) holds true with ts = 1 and tp = l1.
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The proof of the induction basis is now complete.

Induction step: Assume that in the ith cycle, 1 ≤ i ≤ m, Test 1 is passed li times,

Test 2.0 and Test 2.1 are passed and Equation (3.15), with ts − i, tp −
∑i

j=1 lj, holds

true. We want to prove that if in the (m + 1)th cycle Test 1 is paused Equation (3.15),

with ts − (m − 1), tp −
∑m+1

j=1 lj will hold true.

The proof follows the two steps of the (m + 1)th cycle. In the first step, first

we show that parameter P −
∑m

i=1 li is not measured by any sensor among 1, · · · ,m.

Furthermore we show that if Test 1 is passed for parameter P −
∑m

i=1 li, it will not

be measured by any sensor. Secondly we show that parameter P −
∑m

i=1 li − 1 is not

measured by any sensor among 1, · · · ,m. Furthermore we show that if Test 1 is passed

for parameter P −
∑m

i=1 li−1, this parameter will not be measured by any sensor. This

process continues until Test 1 is not passed anymore. In the second step, we show that

if Tests 2.0 and 2.1 are passed, sensor m + 1 should be used alone.

The first step of the (m + 1)th cycle begins with

ts = m, tp =
m
∑

i=1

li , (B.73)

Ψs = S \ {1, · · · ,m} , (B.74)

Ψp = P \ {1, · · · ,m, P −
m
∑

i=1

li + 1, · · · , P} . (B.75)

First we want to show that parameter P −
∑m

i=1 li is not measured by any sensor

among 1, · · · ,m.

Since sensor m passes Test 2.0 and 2.1 (which means that (B.56) and (B.57) hold), by

assumption sensor m should be used alone and will not measure parameter P −
∑m

i=1 li

according to λ∗. By Lemma B.3 and (B.69), any sensor 1, · · · ,m − 1 will not measure

parameter P −
∑m

i=1 li. Therefore parameter P −
∑m

i=1 li is not measured by any sensor

among 1, · · · ,m.
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Now Test 1, namely

σP−
∑m

i=1 li(0) < σ̃(S \ {1, · · · ,m},P \ {1, · · · ,m, P −
m
∑

i=1

li + 1, · · · , P}) . (B.76)

is performed for parameter P −
∑m

i=1 li. If it is passed, (B.76) holds true and we want

to show that parameter P −
∑m

i=1 li is not measured.

By Lemma B.3 and (B.69), we have

σ̃(S \ {1, · · · ,m},P \ {1, · · · ,m, P −
m
∑

i=1

li + 1, · · · , P})

≤ σ̃(S \ {1, · · · ,m},P \ {k1, · · · , km, P −
m
∑

i=1

li + 1, · · · , P}) . (B.77)

Combining (B.76) and (B.77), we have

σP−
∑m

i=1 li(0) < σ̃(S \ {1, · · · ,m},P \ {k1, · · · , km, P −
m
∑

i=1

li + 1, · · · , P}) , (B.78)

which is exactly condition (B.61) in Lemma B.1, with Ωs = S \ {1, · · · ,m} and Ωp =

P\{k1, · · · , km, P −
∑m

i=1 li + 1, · · · , P}. By Lemma B.1, parameter P −
∑m

i=1 li should

not be measured according to λ∗, (3.15) holds true with ts = m and tp =
∑m

i=1 li + 1,

and

σ̃(S \ {1, · · · ,m},P \ {1, · · · ,m, P −
m
∑

i=1

li + 1, · · · , P})

< σ̃(S \ {1, · · · ,m},P \ {1, · · · ,m, P −
m
∑

i=1

li, P −
m
∑

i=1

li + 1, · · · , P}) . (B.79)

Secondly we want to show that parameter P −
∑m

i=1 li − 1 is not measured by any

sensor among 1, · · · ,m.

Since when running PL, Test 2.1 is passed in the second step of the mth cycle, we

have

Im ≥
1

σ̃(S \ {1, · · · ,m − 1},P \ {1, · · · ,m − 1, P −
∑m

i=1 li + 1, · · · , P})
−

1

σm(0)
,

(B.80)
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and by Lemma B.2

σ̃(S \ {1, · · · ,m − 1},P \ {1, · · · ,m − 1, P −
m
∑

i=1

li + 1, · · · , P})

≤ σ̃(S \ {1, · · · ,m},P \ {1, · · · ,m, P −
m
∑

i=1

li + 1, · · · , P}) . (B.81)

Then, by (B.80), (B.81) and (B.79), we obtain

Im >
1

σ̃(S \ {1, · · · ,m},P \ {1, · · · ,m, P −
∑m

i=1 li, · · · , P})
−

1

σm(0)
, (B.82)

which is equivalent to

Im >

∑S

i=m+1 Ii +
∑P−

∑m
i=1 li−1

j=m+1
1

σj(0)

P −
∑m

i=1 li − 1 − m
−

1

σm(0)
. (B.83)

From (B.83), we have

(P −
m
∑

i=1

li − 1 − m) · (Im +
1

σm(0)
) >

S
∑

i=m+1

Ii +

P−
∑m

i=1 li−1
∑

j=m+1

1

σj(0)
, (B.84)

(P −
m
∑

i=1

li − m) · (Im +
1

σm(0)
) >

S
∑

i=m+1

Ii +

P−
∑m

i=1 li−1
∑

j=m+1

1

σj(0)
+ (Im +

1

σm(0)
) ,

(B.85)

=
S
∑

i=m

Ii +

P−
∑m

i=1 li−1
∑

j=m

1

σj(0)
. (B.86)

From (B.86), we have

Im >

∑S

i=m Ii +
∑P−

∑m
i=1 li−1

j=m σj(0)

P −
∑m

i=1 li − 1 − m
−

1

σm(0)
, (B.87)

=
1

σ̃(S \ {1, · · · ,m − 1},P \ {1, · · · ,m − 1, P −
∑m

i=1 li, · · · , P})
−

1

σm(0)
.

(B.88)

By Lemma B.3, we have

σ̃(S \ {1, · · · ,m − 1},P \ {1, · · · ,m − 1, P −
m
∑

i=1

li + 1, · · · , P})

≤ σ̃(S \ {1, · · · ,m − 1},P \ {k1, · · · , km−1, P −
m
∑

i=1

li + 1, · · · , P}) . (B.89)
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Combining (B.87) and (B.89), we have

Im >
1

σ̃(S \ {1, · · · ,m − 1},P \ {k1, · · · , km−1, P −
∑m

i=1 li, · · · , P})
−

1

σm(0)
,

(B.90)

which is exactly condition (B.65) in Lemma B.2 with Ωs = S \ {1, · · · ,m − 1} and

Ωp = P\{k1, · · · , km−1, P −
∑m

i=1 li, · · · , P}. By Lemma B.2, sensor m will not measure

parameter P −
∑m

i=1 −1 according to λ∗. By Lemma B.3 and (B.68), any sensor among

1, · · · ,m−1 will not measure parameter P−
∑m

i=1 −1. Therefore parameter P−
∑m

i=1 −1

is not measured by any sensor among 1, · · · ,m.

Now Test 1,

σP−
∑m

i=1 li−1(0) < σ̃(S \ {1, · · · ,m},P \ {1, · · · ,m, P −
m
∑

i=1

li, · · · , P}) , (B.91)

is performed for parameter P −
∑m

i=1 li − 1. If it is passed, (B.91) holds true and we

want to show that parameter P −
∑m

i=1 li − 1 is not measured.

By Lemma B.3 and (B.69), we have

σ̃(S \ {1, · · · ,m},P \ {1, · · · ,m, P −
m
∑

i=1

li, · · · , P})

≤ σ̃(S \ {1, · · · ,m},P \ {k1, · · · , km, P −
m
∑

i=1

li, · · · , P}) . (B.92)

Combining (B.91) and (B.92), we have

σP−
∑m

i=1 li−1(0) < σ̃(S \ {1, · · · ,m},P \ {k1, · · · , km, P −
m
∑

i=1

li, · · · , P}) , (B.93)

which is exactly condition (B.61) in Lemma B.1, with Ωs = S \ {1, · · · ,m} and Ωp =

P\{k1, · · · , km, P −
∑m

i=1 li, · · · , P}. By Lemma B.1, parameter P −
∑m

i=1 li − 1 should

not be measured according to λ∗, and (3.15) holds true with ts = m and tp =
∑m

i=1 li+2.

Assume the above process (proving that the parameter with the smallest variance

is not measured by any sensor which should be used alone, and showing that if Test 1

is passed, the parameter with the smallest variance is not measured), repeats for lm+1

times. Then (3.15) holds true with ts = m and tp =
∑m+1

i=1 li.
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Step 1 of the (m + 1)th cycle terminates when Test 1 fails.

The second step of (m + 1)th cycle begins with

ts = m , tp =
m+1
∑

i=1

li , (B.94)

Ψs = S \ {1, · · · ,m} , (B.95)

Ψp = P \ {1, · · · ,m, P −
m+1
∑

i=1

li + 1, · · · , P} . (B.96)

If Tests 2.0 and 2.1 are passed, then,

σm+1(0) > THm+1 , (B.97)

and Im+1 >
1

σ̃(S \ {1, · · · ,m},P \ {1, · · · ,m, P −
∑m+1

i=1 li + 1, · · · , P})
−

1

σm+1(0)
.

(B.98)

By Lemma B.3 and (B.67), we have

σ̃(S \ {1, · · · ,m},P \ {1, · · · ,m, P −
m+1
∑

i=1

li + 1, · · · , P})

≤ σ̃(S \ {1, · · · ,m},P \ {k1, · · · , km, P −
m+1
∑

i=1

li + 1, · · · , P}) . (B.99)

Combining (B.98) and (B.99) we obtain

Im+1 >
1

σ̃(S \ {1, · · · ,m},P \ {k1, · · · , km, P −
∑m+1

i=1 li + 1, · · · , P})
−

1

σm+1(0)
,

(B.100)

which is exactly condition (B.65) in Lemma B.2, with Ωs = S \ {1, · · · ,m} and Ωp =

P \ {k1, · · · , km+1, P −
∑m+1

i=1 li + 1, · · · , P}. By Lemma B.2, sensor m + 1 should be

used alone and can not measure P −
∑m+1

i=1 li. The second step of m + 1th cycle ends.

Equation (3.15) holds true with ts = m + 1 and tp =
∑m+1

i=1 li.

The proof of the induction step is now complete.
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Discussion: The intuition behind (B.68) in Lemma B.3 is that sensors that are used

alone are allocated according to the following logic: under λ∗, sensors of higher quality

are allocated to parameters with high variance.

The following features of the algorithm are noteworthy.

1. The updating process of ts, (which identifies the sensor that should be used alone

but does not identify the parameter the sensor should measure), will not interrupt

the updating process of tp, (which potentially excludes from the allocation process

the parameter with the smallest initial variance).

2. In the first step of the (m + 1)th cycle, m ≥ 1, if parameter P −
∑m

i=1 li passes

Test 1, P −
∑m

i=1 li − 1 will not be measured by any sensor among 1, · · · ,m.

Proof of Lemma B.1.

We prove (i) of Lemma B.1 by contradiction.

Assume under an optimal policy λ∗, σpN
(0) < σ̃(Ωs, Ωp) and ∃sk ∈ Ωs, s.t.,, sk ∈

A∗
pN

. Since σ̃(Ωs, Ωp) is a strictly decreasing function with respect to Ωs and A(λ∗) ⊆ Ωs,

we have

σ̃(A(λ∗), Ωp) ≥ σ̃(Ωs, Ωp) . (B.101)

From Lemma 3.3, we know that ∃pi ∈ Ωp, such that

1

σpi
(A∗

pi
)
IA∗

pi
+

1

σpi
(0)

≤
1

σ̃(A(λ∗), Ωp)
. (B.102)

Define the allocation strategy λ by

Aλ
pi

:= A∗
pi
∪ {sk} , (B.103)

Aλ
pN

:= A∗
pN

\ {sk} , (B.104)

Aλ
pj

:= A∗
pj

,∀j 6= i or N . (B.105)

From the condition 1
σ̃(Ωs,Ωp)

< 1
σpN

(0)
and IA∗

pN
≥ Isk

, since sk ∈ A∗
pN

, we have

IA∗

pN
− Isk

+
1

σpN
(0)

≥
1

σpN
(0)

>
1

σ̃(Ωs, Ωp)
. (B.106)
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Combining Equations (B.106) (B.101) and (B.102), we obtain

IA∗

pN
− Isk

+
1

σpN
(0)

>
1

σ̃(Ωs, Ωp)
≥

1

σ̃(A(λ∗), Ωp)
≥ IA∗

pi
+

1

σpi
(0)

, (B.107)

which means

(IA∗

pN
+

1

σpN
(0)

) − (IA∗

pi
+

1

σpi
(0)

) > Isk
> 0 , (B.108)

i.e., −

[

(IA∗

pN
+

1

σpN
(0)

) − (IA∗

pi
+

1

σpi
(0)

) − 2 × Isk

]

< Isk
. (B.109)

Combining (B.108) and (B.109) we obtain

(IA∗

pN
+

1

σpN
(0)

) − (IA∗

pi
+

1

σpi
(0)

) > Isk
(B.110)

> (IA∗

pi
+ Isk

+
1

σpi
(0)

) − (IA∗

pN
− Isk

+
1

σpN
(0)

) ,

(B.111)

= (IAλ
pi

+
1

σpi
(0)

) − (IAλ
pN

+
1

σpN
(0)

) , (B.112)

> (IA∗

pi
+

1

σpi
(0)

) − (IA∗

pN
+

1

σpN
(0)

) . (B.113)

From (B.110), (B.112) and (B.113) we have

∣

∣

∣

∣

(IA∗

pN
+

1

σpN
(0)

) − (IA∗

pi
+

1

σpi
(0)

)

∣

∣

∣

∣

>

∣

∣

∣

∣

(IAλ
pi

+
1

σpi
(0)

) − (IAλ
pN

+
1

σpN
(0)

)

∣

∣

∣

∣

, (B.114)

which contradicts the optimality of λ∗ according to Lemma 3.4. Therefore, parameter

pN should not be measured and (B.62) holds.

(ii) By Definition 3.1 and the assumption 1
σ̃(Ωs,Ωp)

< 1
σpN

(0)
,

1

σ̃(Ωs, Ωp)
=

∑M

i=1 Isi
+
∑N

j=1
1

σpj
(0)

N
>

∑M

i=1 Isi
+
∑N−1

j=1
1

σpj
(0)

+ 1
σ̃(Ωs,Ωp)

N
, (B.115)

Hence,

1

σ̃(Ωs, Ωp)
>

∑M

i=1 Isi
+
∑N−1

j=1
1

σpj
(0)

N − 1
=

1

σ̃(Ωs, Ωp \ {pN})
. (B.116)

Therefore, σ̃(Ωs, Ωp \ {pN}) > σ̃(Ωs, Ωp) .
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Proof of Lemma B.2.

(i) By Definition 3.2, σp1(0) > THs1 means measuring parameter p1 by sensor s1 results

negative cost. By Lemma 3.2, if sensor s1 is not used under λ∗, all the other sensors

are not used. Therefore sensor s1 is certainly used to measure some parameter under

λ∗. Assume s1 measures parameter pk. Then s1 ∈ A∗
pk

.

Second we show that A∗
pk

⊆ {s1} by contradiction. Assume {s1} ⊂ A∗
pk

; then ∃si,

s.t., A∗
pk

⊇ {s1, si}.

From Lemma 3.3, ∃pj ∈ Ωp, such that

IA∗

pj
+

1

σpj
(0)

≤
1

σ̃(A(λ∗), Ωp)
(B.117)

Define the allocation strategy λ by

Aλ
pk

:= A∗
pk

\ {si} ⊇ {s1} , (B.118)

Aλ
pj

:= A∗
pj
∪ {si} , (B.119)

Aλ
pl

:= A∗
pl
,∀l 6= i or j . (B.120)

Then we get the following series of inequalities.

IA∗

pk
− Isi

+
1

σpk
(0)

≥ IA∗

pk
− Isi

+
1

σp1(0)
(B.121)

> Is1 +
1

σp1(0)
(B.122)

≥
1

σ̃(Ωs, Ωp)
(B.123)

≥
1

σ̃(A(λ∗), Ωp)
(B.124)

≥ IA∗

pj
+

1

σpj
(0)

. (B.125)

The first inequality follows from the fact that σp1(0) ≥ σpk
(0); the second inequality

follows from {s1} ⊆ A∗
pk

\ {si}. The third inequality follows from (B.65); the fourth

inequality follows from the fact that σ̃(Ωs, Ωp) is strictly increasing with respect to Ωs

and A(λ∗) ⊆ Ωs; the last inequality is a result of (B.117).
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From (B.125) we obtain

(IA∗

pk
+

1

σpk
(0)

) − (IA∗

pj
+

1

σpj
(0)

) > Isi
> 0 , (B.126)

−

[

(IA∗

pk
+

1

σpk
(0)

) − (IA∗

pj
+

1

σpj
(0)

) − 2 × Isi

]

< Isi
. (B.127)

Combining (B.126) and (B.127) we obtain

(IA∗

pk
+

1

σpk
(0)

) − (IA∗

pj
+

1

σpj
(0)

) > Isi
(B.128)

> (IA∗

pj
+ Isi

+
1

σpj
(0)

) − (IA∗

pk
− Isi

+
1

σpk
(0)

) ,

(B.129)

= (IAλ
pj

+
1

σpj
(0)

) − (IAλ
pk

+
1

σpk
(0)

) , (B.130)

> (IA∗

pj
+

1

σpj
(0)

) − (IA∗

pk
+

1

σpk
(0)

) . (B.131)

The last inequality follows from (B.118) and (B.119).

From (B.128), (B.130) and (B.131), we have

∣

∣

∣

∣

(IA∗

pk
+

1

σpk
(0)

) − (IA∗

pj
+

1

σpj
(0)

)

∣

∣

∣

∣

>

∣

∣

∣

∣

(IAλ
pj

+
1

σpj
(0)

) − (IAλ
pk

+
1

σpk
(0)

)

∣

∣

∣

∣

, (B.132)

which contradicts the optimality of λ∗ according to Lemma 3.4. Hence A∗
pk

⊆ {s1}.

Combining s1 ∈ A∗
pk

and A∗
pk

⊆ {s1}, we obtain A∗
pk

= {s1}.

Therefore, sensor s1 should be used alone, i.e., ∃A∗
pk

= {s1}, and

J∗(Ωs, Ωp) = J∗(Ωs \ {s1}, Ωp \ {pk}) +
1

Is1 + 1
σpk

(0)

+ c ,

We prove that pk 6= pN by contradiction.

Assume Is1 > 1
σ̃(Ωs,Ωp)

− 1
σp1 (0)

and k = N , i.e., A∗
pN

= {s1}.

By Lemma 3.5 and the assumption Is1 ≥
1

σ̃(Ωs,Ωp)
− 1

σp1 (0)
, we have

IA∗

p1
≥ · · · ≥ IA∗

pN
= Is1 >

1

σ̃(Ωs, Ωp)
−

1

σp1(0)
. (B.133)
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Then for each parameter pi, the final variance satisfies

σpi
(A∗

pi
) = (IA∗

pi
+

1

σpi
(0)

)−1 (B.134)

≤ (IA∗

pi
+

1

σp1(0)
)−1 (B.135)

≤ (IA∗

pN
+

1

σp1(0)
)−1 = (Is1 +

1

σp1(0)
)−1 (B.136)

≤ σ̃(Ωs, Ωp) , (B.137)

which contradicts Lemma 3.3.

(ii) By Definition 3.1 and assumption Is1 > 1
σ̃(Ωs,Ωp)

− 1
σp1 (0)

,

1

σ̃(Ωs, Ωp)
=

∑M

i=1 Isi
+
∑N

j=1
1

σpj
(0)

N
(B.138)

=

∑M

i=2 Isi
+
∑N

j=2
1

σpj
(0)

+ Is1 + 1
σp1 (0)

N
(B.139)

>

∑M

i=2 Isi
+
∑N

j=2
1

σpj
(0)

+ 1
σ̃(Ωs,Ωp)

N
(B.140)

Recalling that ∀k, σp1(0) ≥ σpk(0), we have

1

σ̃(Ωs, Ωp)
>

∑M

i=2 Isi
+
∑N

j=2
1

σpj
(0)

N − 1
≥

∑M

i=2 Isi
+
∑N

j=1,j 6=k
1

σpj
(0)

N − 1
. (B.141)

By Definition 3.1 and (B.141), we have

1

σ̃(Ωs, Ωp)
>

1

σ̃(Ωs \ {s1}, Ωp \ {p1})
≥

1

σ̃(Ωs \ {s1}, Ωp \ {pk})
. (B.142)

Therefore, σ̃(Ωs \ {s1}, Ωp \ {pk}) ≥ σ̃(Ωs \ {s1}, Ωp \ {p1}) > σ̃(Ωs, Ωp) .

Proof of Lemma B.3.

(i) If sensors s1, · · · , sj are each used alone to measure parameter pk1 , · · · , pkj
respec-

tively, then we have IA∗

pki

= Isi
, i = 1, · · · , j. Since Is1 ≥ · · · ≥ Isj

, it follows that

IA∗

pk1

≥ · · · ≥ IA∗

pkj

. (B.143)
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By Lemma 3.5 and (B.143), it follows that

1 ≤ k1 < · · · < kj ≤ N . (B.144)

(ii) We have

∑M

i=j+1 Isi
+
∑N

i=j+1
1

σpi
(0)

N − j
≥

∑M

i=j+1 Isi
+
∑N

i=1,i6=k1,··· ,kj

1
σpi

(0)

N − j
, (B.145)

where the inequality comes from the fact that parameter p1, · · · , pj have the largest j

variances. By Definition 3.1 and (B.145), it follows that

1

σ̃(Ωs \ {s1, · · · , sj}, Ωp \ {p1, · · · , pj})
≥

1

σ̃(Ωs \ {s1, · · · , sj}, Ωp \ {pk1 , · · · , pkj
})

.

(B.146)

Therefore

σ̃(Ωs \ {s1, · · · , sj}, Ωp \ {pk1 , · · · , pkj
}) ≤ σ̃(Ωs \ {s1, · · · , sj}, Ωp \ {p1, · · · , pj}) .

(B.147)

Proof of Theorem 3.2.

Suppose λ∗ = {A∗
1, A

∗
2, · · · , A∗

P} is an optimal allocation policy for Problem (P1) and

A(λ∗) = ∪P
i=1A

∗
i = {1, 2, · · · , τ ∗}. From Lemma 3.7, we know that the sensors with the

largest ts indices, i.e., {1, · · · , ts}, should be used alone and the parameters with the

smallest tp initial variances, i.e., {P − tp + 1, · · · , P}, should not be measured.

When tp = 0 and ts = 0, it can be easily verified that the result of this theorem is

the same as that of Theorem 3.1. Now we derive a lower bound for Problem (P1) when

tp > 0 or ts > 0. There are two methods to derive a lower bound: (i) using only tp; and

(ii) using both tp and ts.
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• Using only tp: By Lemma 3.7, we know that

J∗(S,P) = J∗(A(λ∗),P) (B.148)

= J∗(A(λ∗),P \ {P − tp + 1, · · · , P}) +
P
∑

i=P−tp+1

σi(0) + τ ∗ · c .

(B.149)

By Theorem 3.1 and Equation (B.148), we have

J∗(S,P) ≥
(P − tp)

2

∑τ∗

i=1 Ii +
∑P−tp

i=1
1

σi(0)

+
P
∑

i=P−tp+1

σi(0) + τ ∗ · c = L1(τ
∗) . (B.150)

Since t1 ∈ {1, 2, · · · , S} is a minimizer of the convex function L1(t), which is

defined by the right hand side of (B.150),

J∗(S,P) ≥ L1(τ
∗) ≥ L1(t1) . (B.151)

• Using both tp and ts:

Denote pk1 , pk2 , · · · , pkts
as the parameters measured by sensors s1, s2, · · · , sts ,

respectively. From Lemma B.3, we know that

1 ≤ k1 < · · · < kts < P − tp + 1 , (B.152)

that is

i < ki < P − tp + 1 − (ts − i) , i = 1, · · · , ts . (B.153)

From (B.153) we get

1

σi(0)
≤

1

σki
(0)

≤
1

σP−tp+1−(ts−i)(0)
, i = 1, · · · , ts . (B.154)

The inequalities in (B.154) imply that

ts
∑

i=1

1

Ii + 1
σki

(0)

≥
ts
∑

i=1

1

Ii + 1
σP−tp+1−(ts−i)(0)

, (B.155)

and
ts
∑

i=1

1

σi(0)
≤

ts
∑

i=1

1

σki
(0)

. (B.156)
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By the definition of the harmonic mean function and (B.156), we obtain

σ̃(A(λ∗) \ {1, · · · , ts},P \ {1, · · · , ts, P − tp + 1, · · · , P})

≤ σ̃(A(λ∗) \ {1, · · · , ts},P \ {k1, · · · , kts , P − tp + 1, · · · , P}) . (B.157)

From Lemma 3.7, we also have

J∗(S,P) =J∗(A(λ∗),P) (B.158)

=J∗(A(λ∗) \ {1, · · · , ts},P \ {k1, · · · , kts , P − tp + 1, · · · , P})

+
ts
∑

i=1

1

Ii + 1
σki

(0)

+
P
∑

i=P−tp+1

σi(0) + τ ∗ · c . (B.159)

Using Theorem 3.1 along with (B.159), we obtain

J∗(S,P) ≥ (P − tp − ts) · σ̃(A(λ∗) \ {1, · · · , ts},P \ {k1, · · · , kts , P − tp + 1, · · · , P})

+
ts
∑

i=1

1

Ii + 1
σki

(0)

+
P
∑

i=P−tp+1

σi(0) + τ ∗ · c (B.160)

≥ (P − tp − ts) · σ̃(A(λ∗) \ {1, · · · , ts},P \ {1, · · · , ts, P − tp + 1, · · · , P})

+
ts
∑

i=1

1

Ii + 1
σP−tp+1−(ts−i)(0)

+
P
∑

i=P−tp+1

σi(0) + τ ∗ · c (B.161)

=
(P − tp − ts)

2

∑τ∗

i=ts+1 Ii +
∑P−tp

i=ts+1
1

σi(0)

+
ts
∑

i=1

1

Ii + 1
σP−tp+1−(ts−i)(0)

+
P
∑

i=P−tp+1

σi(0) + τ ∗ · c (B.162)

= L2(τ
∗) , (B.163)

where (B.161) follows from (B.155) and (B.157).

Since t2 ∈ {1, 2, · · · , S} is a minimizer of the convex function L2(t), which is

defined by (B.163), we have

J∗(S,P) ≥ L2(τ
∗) ≥ L2(t2) . (B.164)
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Combining the two bounds, given by (B.151) and (B.164), we obtain

J∗ ≥ max{L1(t1), L2(t2)} . (B.165)

Proof of Lemma 3.8.

According to the greedy algorithm, at any step t, the variance σk(t) of any parameter

pk satisfies

σk(t) ≤ σk(0) (B.166)

Combining (B.166) with the assumptions

σ1(0) < THi, for some sensor i, (B.167)

and

THi < THj, ∀j > i , (B.168)

we obtain

σk(t) ≤ σk(0) ≤ σ1(0) < THi < THj,∀k = 1, · · · , P and i < j < S. (B.169)

Therefore no parameter should be measured by sensor j, j ≥ i, under the greedy

allocation policy. Consequently, if σ1(0) < TH1 , the greedy algorithm will stop at

t = 0.

Proof of Corollary 3.1.

The assumption THm < σ1(0) ≤ THm+1 and Lemma 3.6 imply that under an optimal

policy at most m sensors could be activated. Let λg = {Ag
1, · · · , Ag

P} denote the greedy

policy and λ∗ = {A∗
1, · · · , A∗

P} denote an optimal policy. We prove that λg = λ∗ when

m = 0, 1, 2.

• Case 1: m = 0, i.e., σ1 ≤ TH1.

In this case, the result follows from Lemmas 3.6 and 3.8.
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• Case 2: m = 1, i.e., TH1 ≤ σ1 < TH2.

In this case σ1 ≤ TH2 and Lemma 3.6 and 3.8 imply that under an optimal policy

and the greedy policy, no parameter will be measured by any sensor j, j ≥ 2.

Furthermore, TH1 < σ1(0) and Lemma 3.5 imply that, under an optimal policy,

parameter 1 will be measured by sensor 1. Under the greedy policy, parameter 1

is always measured by sensor 1. Therefore, λg = λ∗.

• Case 3: m = 2, i.e., TH2 < σ1 ≤ TH3.

In this case, σ1 ≤ TH3 along with Lemma 3.6 and 3.8 imply that no parameter

will be measured by any of the sensors j, j > 2 under both an optimal policy and

the greedy policy. There are three feasible greedy policies,

λ1 = {{1}, ∅, · · · , ∅} , (B.170)

λ2 = {{1, 2}, ∅, · · · , ∅} , (B.171)

λ3 = {{1}, {2}, ∅, · · · , ∅} . (B.172)

By Lemma 3.2 and Lemma 3.5, the above policies are also the candidate optimal

policies, We prove that λg = λ∗.

1. λg = λ1

In this case, according to the greedy algorithm, we know that

max{σ1({1}), σ2(0)} < TH2 . (B.173)

(B.173) along with the definition of a sensor’s threshold implies that under

an optimal policy, sensor 2 should not be activated. Therefore λg = λ∗.

2. λg = λ2

In this case, according to the greedy algorithm, we know that

σ1({1}) > TH2 , (B.174)

σ1({1}) > σ2(0) . (B.175)
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Inequality (B.174) along with the definition of a threshold imply that Jλ1 >

Jλ2 , which means λ∗ 6= λ1. Inequality (B.175) implies that Jλ3 > Jλ2 , which

means λ∗ 6= λ3. Therefore λ∗ = λ2 = λg.

3. λg = λ3

In this case, according to the greedy algorithm, we know that

σ2(0) > TH2 , (B.176)

σ2(0) > σ1({1}) . (B.177)

The inequality (B.176) along with the definition of a sensor’s threshold im-

plies that Jλ1 > Jλ2 , which means λ∗ 6= λ1. The inequality (B.177) implies

that Jλ3 > Jλ2 , which means λ∗ 6= λ3. Therefore λ∗ = λ2 = λg.

This completes the proof of Corollary 3.1.

Proof of Lemma 3.9.

The proof of Lemma 3.9 is the same as that of Lemma 3.7. In Step 2 of any cycle k is

used alone and measures parameter k.
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APPENDIX C

PROOFS FOR CHAPTER 4

Proof of Property 4.1.

From Equations (4.9),(4.10), we have

L1(x) =
x · K

x + K
, (C.1)

L2(x) = A2x + Q . (C.2)

It is straightforward to show that L2(x) is an increasing function.

The first order derivative of L1(x) with respect to x is

dL1(x)

dx
=

K2

(x + K)2
> 0 , (C.3)

which means that L1(x) is an increasing function.

The second order derivatives of L1(x) with respect to x is

d2L1(x)

dx2
= −

2K2

(x + K)3
< 0 , when x > 0 , (C.4)

which means that L1(x) is a concave function when x > 0.

We write L1L2(x) and L2L1(x) as follows.

L1L2(x) =
(A2x + Q) · K

A2x + Q + K
, (C.5)

L2L1(x) = A2 x · K

x + K
+ Q . (C.6)
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The first order derivatives of L1L2(x) and L2L1(x) with respect to x are:

dL1L2(x)

dx
=

dL1L2(x)

dL2(x)
·
dL2(x)

dx
=

K2

(L2(x) + K)2
· A2 > 0 , when x > 0 , (C.7)

dL2L1(x)

dx
=

dL2L1(x)

dL1(x)
·
dL1(x)

dx
= A2 ·

K2

(x + K)2
> 0 , when x > 0 , (C.8)

which means that L1L2(x) and L2L1(x) are increasing functions when x > 0.

The second order derivatives of L1L2(x) and L2L1(x) with respect to x are

d2L1L2(x)

dx2
= −

2A4K2

(L2(x) + K)3
< 0 , when x > 0 , (C.9)

d2L2L1(x)

dx2
= −

2A2 · K2

(x + K)3
< 0 , when x > 0 . (C.10)

Thus L1L2(x) and L2L1(x) are concave functions when x > 0.

Proof of Property 4.2.

From (4.9), we have

x − L1(x) = x −
x · K

x + K
=

x2

x + K
> 0 , when x > 0 . (C.11)

From (C.3) the first order derivative of x − L1(x) with respect x is

d(x − L1(x))

dx
= 1 −

K2

(x + K)2
=

x2 + 2xK

(x + K)2
> 0 , when x > 0 . (C.12)

Thus, x − L1(x) is an increasing function of x when x > 0.

Proof of Property 4.3.

From (4.10), L2(x) is an affine function of x while L2(x) crosses with the y-axis above

x-axis. When |A|2 > 1, for any x > 0, L2(x) > x. When |A|2 = 1, x and L2(x) are

parallel. Then for all x, L2(x) > x. When |A|2 < 1, define σ∗ by σ∗ = L2(σ
∗). Then, if

x ≥ σ∗, L2(x) ≤ x, otherwise L2(x) > x.

Proof of Property 4.4.

From (C.7) and (C.8), we have

dL1L2(x)

dx
=

K2

(L2(x) + K)2
· A2 , (C.13)

dL2L1(x)

dx
= A2 ·

K2

(x + K)2
. (C.14)
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Because L2(x) < x, we have

dL1L2(x)

dx
>

dL2L1(x)

dx
, (C.15)

which implies that L1L2(x2) − L1L2(x1) > L2L1(x2) − L2L1(x1) when x1 < x2.

Proof of Property 4.5.

Define f(x) := L1L2(x) − L2L1(x). Then from (C.5) and (C.6)

f(x) =
(A2x + Q) · K

A2x + Q + K
− (A2 x · K

x + K
+ Q) , (C.16)

=
(A2K − A4K − A2Q)x2 − (2A2KQ + Q2)x − Q2K

(A2x + Q + K)(x + K)
. (C.17)

When x > 0, the denominator of (C.17) is always positive. Therefore we only need

to analyze the numerator.

When A2K −A4K −A2Q ≤ 0, K ≤ A2K +Q, which is equivalent to K ≤ σ∗; then,

(A2K − A4K − A2Q)x2 < 0. Since −(2A2KQ + Q2)x < 0 and −Q2K < 0 if x > 0, if

K ≤ σ∗, f(x) < 0 when x > 0.

When A2K − A4K − A2Q > 0, K > σ∗. Since f(0) = −Q2K < 0, there exists

only one positive solution for f(x) = 0. Let σ̂ be such that f(σ̂) = 0, i.e., L1L2(σ̂) =

L2L1(σ̂). Then when x < σ̂, f(x) < 0, i.e. L1L2(x) < L2L1(x); when x > σ̂, f(x) > 0,

i.e. L1L2(x) > L2L1(x).

Proof of Lemma 4.1.

By Property 4.5, we know that when K ≤ σ∗, for any positive x, L1L2(x) ≤ L2L1(x).

By Properties 4.2 and 4.3, we know that when σt > σ∗, σt+1 < σt no matter what

strategy we use at time t + 1. Then for σ0 large enough, we have σg
t > σ∗ for all t, t =

1, · · · , T and for any sensor activation strategy g. Therefore S0(m,T ) is nonempty.

Proof of Theorem 4.1.

Before we present the proof, we introduce the following definition and lemmas.

Definition C.1. We define

Dt−1(σ, n) := L2(σ) + Vt(L2(σ), n) − [C + L1L2(σ) + Vt(L1L2(σ), n − 1)] . (C.18)
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Dt−1(σ, n) is the objective cost’s difference between the following two sensor activa-

tion strategies: The decisions up to time t− 2 are the same for these two strategies and

there are n sensors available at time instant t−1; the first strategy takes a measurement

at time t − 1 and the decisions from time t to T are optimal given the decisions made

up to time t − 1; the second one does not take a measurement at time t − 1 and the

decisions from time t to T are optimal given the decisions made up to time t − 1.

Lemma C.1. If Vt(L2(σ), n)−Vt(L1L2(σ), n− 1) is a non-decreasing function of σ for

all n = 1, · · · ,m and t = 1, · · · , T , Dt(σ, n) is a non-decreasing function of σ for all

n = 1, · · · ,m and t = 1, · · · , T .

Lemma C.2. If K ≤ σ∗, |A|2 < 1 and σ0 ∈ S0(m,T ), the following three results are

true.

R1: Vt(x, n) is a non-decreasing function of x, for all n = 1, 2, · · · ,m and t =

1, 2, · · · , T , i.e., if 0 < x1 < x2,

Vt(x1, n) ≤ Vt(x2, n) . (C.19)

R2: For all n = 1, 2, · · · ,m and t = 1, 2, · · · , T , if 0 < x1 ≤ x2 and 0 < ǫ,

Vt(x1 + ǫ, n) − Vt(x1, n) ≥ Vt(x2 + ǫ, n) − Vt(x2, n) , (C.20)

R3: Vt(L2(x), n) − Vt(L1L2(x), n − 1) is a non-decreasing function of x for all n =

1, 2, · · · ,m and t = 1, 2, · · · , T , i.e., if 0 < x and 0 < ǫ,

Vt(L2(x + ǫ), n) − Vt(L2(x), n) ≥ Vt(L1L2(x + ǫ), n − 1) − Vt(L1L2(x), n − 1) .

(C.21)

We prove these lemmas right after the proof of Theorem 4.1. The proof of Theorem

4.1 proceeds as follows.

If K ≤ σ∗, |A|2 < 1 and σ0 ∈ S0(m,T ), Lemma C.2 guarantees that the hypothesis

of Lemma C.1 is satisfied. Then Lemma C.1 shows that Dt(σ, n) is a non-decreasing
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function of σ for all n = 1, 2, · · · ,m and t = 1, 2, · · · , T . This property of Dt(σ, n) is

sufficient to guarantee the threshold property of an optimal sensor activation strategy

(see [53]).

Proof of Lemma C.1.

First, we rewrite Dt−1 as follows.

Dt−1(σ, n) = L2(σ) + Vt(L2(σ), n) − [C + L1L2(σ) + Vt(L1L2(σ), n − 1)] (C.22)

= {L2(σ) − [C + L1L2(σ)]} + {Vt(L2(σ), n) − Vt(L1L2(σ), n − 1)} . (C.23)

By Property 4.2, x − L1(x) is a non-decreasing function of x. By Property 4.1, L2(x)

is a non-decreasing function of x. Therefore, L2(σ)− [C + L1L2(σ)] is a non-decreasing

function of σ. If Vt(L2(σ), n) − Vt(L1L2(σ), n − 1) is a non-decreasing function of

σ, Dt−1(σ, n) should be a non-decreasing function of σ for all n = 1, 2, · · · ,m and

t = 1, 2, · · · , T .

Proof of Lemma C.2.

We use induction to prove the coupled results R1-R3.

In order to prove R1, we need to compare Vt(x1, n), Vt(x2, n). For that matter we

consider all combinations of decision choices (taking and not taking a measurement at

time instant t) under the two information states (x1, n) and (x2, n)).

In order to prove R2, we need to compare Vt(x1 + ǫ, n)−Vt(x1, n) and Vt(x2 + ǫ, n)−

Vt(x2, n). For that matter we consider all 16 combinations of decision choices (taking

and not taking a measurement at time instant t) under the four information states

(x1, n), (x1 + ǫ, n), (x2, n)) and (x2 + ǫ, n).

In order to prove R3, we need to compare Vt(L2(x + ǫ), n) − Vt(L2(x), n) and

Vt(L1L2(x + ǫ), n− 1)− Vt(L1L2(x), n− 1). To do this we consider all combinations of

decision choices (taking and not taking a measurement at time instant t) under the four

information states (L2(x), n), (L2(x+ ǫ), n), (L1L2(x), n− 1) and (L1L2(x+ ǫ), n− 1).

Basis of Induction: We need to prove
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R1: For all n = 1, 2, · · · ,m, if 0 < x1 < x2,

VT (x1, n) ≤ VT (x2, n) . (C.24)

R2: For all n = 1, 2, · · · ,m, if 0 < x1 ≤ x2 and 0 < ǫ,

VT (x1 + ǫ, n) − VT (x1, n) ≥ VT (x2 + ǫ, n) − VT (x2, n). (C.25)

R3: For all n = 1, 2, · · · ,m, if 0 < x and 0 < ǫ,

VT (L2(x + ǫ), n) − VT (L2(x), n) ≥ VT (L2L1(x + ǫ), n − 1) − VT (L2L1(x), n − 1) .

(C.26)

Proof of R1: Note x1 ≤ x2.

Case 1: Assume it is optimal to take a measurement under both of the information

states (x1, n) and (x2, n) at time instant T . Then

VT (x1, n) = L2(x1) , (C.27)

VT (x2, n) = L2(x2) . (C.28)

Since x1 < x2, by Property 4.1,

L2(x1) < L2(x2) . (C.29)

Therefore VT (x1, n) ≤ VT (x2, n).

Case 2: Assume it is optimal to take a measurement under (x2, n) and not to take a

measurement under (x1, n) at time instant T . Then

VT (x1, n) = L2(x1) , (C.30)

VT (x2, n) = C + L1L2(x2) , (C.31)

and by the definition of VT (x, n),

L2(x1) ≤ C + L1L2(x1) . (C.32)
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When x1 < x2, by Property 4.1 we have

L1L2(x1) < L1L2(x2) . (C.33)

Combining (C.32) and (C.33), we get

L2(x1) ≤ C + L1L2(x2) , (C.34)

that is VT (x1, n) ≤ VT (x2, n).

Case 3: Assume it is optimal to take a measurement under (x1, n) and not to take a

measurement under (x2, n) at time instant T . Then

VT (x1, n) = C + L1L2(x1) , (C.35)

VT (x2, n) = L2(x2) . (C.36)

We will show that such a combination of decisions is not part of an optimal

strategy.

By the definition of VT (x, n) and (C.35), (C.36),

C + L1L2(x1) ≤ L2(x1) , (C.37)

L2(x2) ≤ C + L1L2(x2) . (C.38)

Since x1 < x2, by Property 4.1

L2(x1) < L2(x2) . (C.39)

Combining (C.37)–(C.39), we get

C + L1L2(x1) ≤ L2(x1) < L2(x2) ≤ C + L1L2(x2) , (C.40)

which implies that

L1L2(x2) − L1L2(x1) ≥ L2(x2) − L2(x1) . (C.41)

The last inequality contradicts Property 4.2. Thus, the combination of decisions

in Case 3 is not part of an optimal strategy.
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Case 4: Assume it is optimal to take a measurement under both information states

(x1, n) and (x2, n) at time instant T . Then

VT (x1, n) = C + L1L2(x1) , (C.42)

VT (x2, n) = C + L1L2(x2) . (C.43)

Since x1 < x2, by Property 4.1, we have

L1L2(x1) < L1L2(x2) . (C.44)

Therefore VT (x1, n) ≤ VT (x2, n).

Combining the four cases above, we conclude that for all n = 1, · · · ,m, if 0 < x1 < x2,

VT (x1, n) ≤ VT (x2, n) . (C.45)

Proof of R2: There are 16 possible combinations of decisions made under the four

information states (x1, n), (x1 + ǫ, n), (x2, n) and (x2 + ǫ, n) at time T . We present

the analysis of one combination of decisions that could be part of an optimal strategy

and one combination of decisions that are not part of an optimal strategy. All other

combinations can be analyzed in a manner similar to the two cases presented below.

Case 1: Assume it is optimal to take a measurement under (x2 + ǫ, n) at time instant

T , and to not take a measurement under (x1, n), (x1 + ǫ, n) and (x2, n) at time

instant T . Then we have

VT (x1, n) = L2(x1) , (C.46)

VT (x1 + ǫ, n) = L2(x1 + ǫ) , (C.47)

VT (x2, n) = L2(x2) , (C.48)

VT (x2 + ǫ, n) = C + L1L2(x2 + ǫ) , (C.49)
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And

VT (x1 + ǫ, n) − VT (x1, n) = A2ǫ , (C.50)

VT (x2 + ǫ, n) − VT (x2, n) = C + L1L2(x2 + ǫ) − L2(x2) . (C.51)

By the definition VT (x2 + ǫ, n) and (C.49), we obtain

C + L1L2(x2 + ǫ) ≤ L2(x2 + ǫ) . (C.52)

Combining (C.51) and (C.52), we get

C + L1L2(x2 + ǫ) − L2(x2) < L2(x2 + ǫ) − L2(x2) = A2ǫ . (C.53)

From (C.50), (C.51) and (C.53), we conclude that

VT (x1 + ǫ, n) − VT (x1, n) ≥ VT (x2 + ǫ, n) − VT (x2, n) . (C.54)

Case 2: Assume it is optimal to take a measurement under (x2, n) at time instant T

and not to take a measurement under (x1, n), (x1 + ǫ, n) and (x2 + ǫ, n) at time

instant T . Then

VT (x1, n) = L2(x1) , (C.55)

VT (x1 + ǫ, n) = L2(x1 + ǫ) , (C.56)

VT (x2, n) = C + L1L2(x2) , (C.57)

VT (x2 + ǫ, n) = L2(x2 + ǫ) . (C.58)

We will show that this combination of decisions can not be part of an optimal

sensor activation strategy.

Since VT (x2, n) is a non-decreasing function of x2 by R1, we have

VT (x2, n) ≤ VT (x2 + ǫ, n) , (C.59)

which is equivalent to

C + L1L2(x2) ≤ L2(x2 + ǫ) . (C.60)
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By the definition of VT (x, n) and (C.57), (C.58), it follows that

C + L1L2(x2) ≤ L2(x2) , (C.61)

L2(x2 + ǫ) ≤ C + L1L2(x2 + ǫ) . (C.62)

According to Property 4.3 and inequalities (C.61), (C.62), we have

C + L1L2(x2) ≤ L2(x2) < L2(x2 + ǫ) ≤ C + L1L2(x2 + ǫ) . (C.63)

Inequality (C.63) implies that

L1L2(x2 + ǫ) − L1L2(x2) ≥ L2(x2 + ǫ) − L2(x2) , (C.64)

which contradicts Property 4.2. Consequently, the combination of decision con-

sidered in this case can not be part of an optimal strategy.

Proof of R3: For the situation where n ≥ 2, similarly to the proof of R2, we will

investigate 2 cases among 16 possible cases.

Case 1 : Assume it is optimal to take a measurement under information state (L1L2(x+

ǫ), n − 1) at time instant T and not to take a measurement under information

states (L2(x), n), (L2(x + ǫ), n) and (L1L2(x), n − 1) at time instant T . Then

VT (L2(x), n) = L2L2(x) , (C.65)

VT (L2(x + ǫ), n) = L2L2(x + ǫ) , (C.66)

VT (L1L2(x), n − 1) = L2L1L2(x) , (C.67)

VT (L1L2(x + ǫ), n − 1) = C + L1L2L1L2(x + ǫ) , (C.68)

and

VT (L2(x + ǫ), n) − VT (L2(x), n) = L2L2(x + ǫ) − L2L2(x) ,

= A2(L2(x + ǫ) − L2(x)) ,

(C.69)

VT (L1L2(x + ǫ), n − 1) − VT (L1L2(x), n − 1) = C+L1L2L1L2(x + ǫ) − L2L1L2(x) .

(C.70)
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By the definition of VT (L1L2(x + ǫ), n − 1) and (C.68), it follows that

C + L1L2L1L2(x + ǫ) < L2L1L2(x + ǫ) . (C.71)

Combining (C.70) with (C.71), we obtain

VT (L1L2(x + ǫ), n − 1) − VT (L1L2(x), n − 1) ≤ L2L1L2(x + ǫ) − L2L1L2(x)

= A2[L1L2(x + ǫ) − L1L2(x)] .

(C.72)

By Property 4.2, we have

A2[L1L2(x + ǫ) − L1L2(x)] < A2(L2(x + ǫ) − L2(x)) . (C.73)

Because of (C.69), (C.72) and (C.73), we obtain

VT (L2(x + ǫ), n) − VT (L2(x), n) ≥ VT (L1L2(x + ǫ), n − 1) − VT (L1L2(x), n − 1) .

(C.74)

Case 2 : Assume it is optimal to take a measurement under (L1L2(x), n−1), (L1L2(x+

ǫ), n − 1) at time instant T and not to take a measurement under (L2(x), n),

(L2(x + ǫ), n) and (L1L2(x + ǫ), n − 1) at time instant T . Then

VT (L2(x), n) = L2L2(x) , (C.75)

VT (L2(x + ǫ), n) = L2L2(x + ǫ) , (C.76)

VT (L1L2(x), n − 1) = C + L1L2L1L2(x) , (C.77)

VT (L1L2(x + ǫ), n − 1) = L2L1L2(x + ǫ) . (C.78)

Since VT (L1L2(x), n− 1) is a non-decreasing function of x by R1, combining with

Property 4.1, we have

C + L1L2L1L2(x) ≤ L2L1L2(x + ǫ) . (C.79)
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By the definition of VT (L1L2(x), n) and (C.78), it follows that

C + L1L2L1L2(x) ≤ L2L1L2(x) , (C.80)

L2L1L2(x + ǫ) ≤ C + L1L2L1L2(x + ǫ) . (C.81)

Consequently,

C + L1L2L1L2(x) ≤ L2L1L2(x) < L2L1L2(x + ǫ) ≤ C + L1L2L1L2(x + ǫ) ,

(C.82)

where the second inequality follows from Property 4.1. The above inequality

implies that

L1L2L1L2(x + ǫ) − L1L2L1L2(x) ≥ L2L1L2(x + ǫ) − L2L1L2(x) , (C.83)

which conflicts Property 4.2. Therefore, the combination of decisions considered

in this case can not be part of an optimal sensor activation strategy.

For the situation where n = 1, we can not take a measurement under states

(L1L2(x), 0) and (L1L2(x+ ǫ), 0) at time instant T . Therefore we only need to consider

4 possible decision combinations under states (L2(x), 1) and (L2(x+ ǫ), 1). We examine

all these cases below.

Case 1 : Assume it is optimal not to take a measurement under (L2(x), 1) and (L2(x+

ǫ), 1) at time instant T . Then

VT (L2(x), 1) = L2L2(x) , (C.84)

VT (L2(x + ǫ), 1) = L2L2(x + ǫ) , (C.85)

VT (L1L2(x), 0) = L2L1L2(x) , (C.86)

VT (L1L2(x + ǫ), 0) = L2L1L2(x + ǫ) , (C.87)

and

VT (L2(x + ǫ), n) − VT (L2(x), n) = L2L2(x + ǫ) − L2L2(x) , (C.88)

VT (L1L2(x + ǫ), n − 1) − VT (L1L2(x), n − 1) = L2L1L2(x + ǫ) − L2L1L2(x) .

(C.89)
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By (C.88), (C.89) and Property 4.2, it follows that

VT (L2(x + ǫ), n) − VT (L2(x), n) ≥ VT (L1L2(x + ǫ), n − 1) − VT (L1L2(x), n − 1) .

(C.90)

Case 2 : Assume it is optimal to take a measurement under (L2(x + ǫ), 1) and not to

take a measurement under (L2(x), 1) at time instant T . Then

VT (L2(x), 1) = L2L2(x) , (C.91)

VT (L2(x + ǫ), 1) = C + L1L2L2(x + ǫ) , (C.92)

VT (L1L2(x), 0) = L2L1L2(x) , (C.93)

VT (L1L2(x + ǫ), 0) = L2L1L2(x + ǫ) , (C.94)

and

VT (L2(x + ǫ), n) − VT (L2(x), n) = C + L1L2L2(x + ǫ) − L2L2(x) , (C.95)

VT (L1L2(x + ǫ), n − 1) − VT (L1L2(x), n − 1) = L2L1L2(x + ǫ) − L2L1L2(x) .

(C.96)

By the definition of VT (L2(x), n) and (C.91), we obtain

L2L2(x) ≤ C + L1L2L2(x) . (C.97)

Combining (C.95) and (C.97), we get

VT (L2(x + ǫ), n) − VT (L2(x), n) > C + L1L2L2(x + ǫ) − [C + L1L2L2(x)] .

(C.98)

From (C.97), (C.98) and Property 4.4, we conclude that

VT (L2(x + ǫ), n) − VT (L2(x), n) ≥ VT (L1L2(x + ǫ), n − 1) − VT (L1L2(x), n − 1) .

(C.99)
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Case 3 : Assume it is optimal to take a measurement under (L2(x), 1) and not to take

a measurement under (L2(x + ǫ), 1) at time instant T . Then

VT (L2(x), 1) = C + L1L2L2(x) , (C.100)

VT (L2(x + ǫ), 1) = L2L2(x + ǫ) , (C.101)

VT (L1L2(x), 0) = L2L1L2(x) , (C.102)

VT (L1L2(x + ǫ), 0) = L2L1L2(x + ǫ) . (C.103)

We will show that this decision combination is not part of an optimal sensor

activation strategy.

Since VT (L2(x), 1) is a non-decreasing function of x by R1, combining with Prop-

erty 4.3, we have

C + L1L2L2(x) ≤ L2L2(x + ǫ) . (C.104)

By the definition of VT (L2(x), 1) and (C.100), (C.101), we obtain

C + L1L2L2(x) ≤ L2L2(x) , (C.105)

L2L2(x + ǫ) ≤ C + L1L2L2(x + ǫ) . (C.106)

Combining (C.105), (C.106) and Property 4.1, we obtain

C + L1L2L2(x) ≤ L2L2(x) < L2L2(x + ǫ) ≤ C + L1L2L2(x + ǫ) . (C.107)

The above inequality implies that

L1L2L2(x + ǫ) − L1L2L2(x) ≥ L2L2(x + ǫ) − L2L2(x) , (C.108)

which contradicts Property 4.2. Therefore this decision combination is not part

of an optimal sensor activation strategy.

Case 4 : Assume it is optimal to take a measurement under (L2(x), 1) and (L2(x+ǫ), 1)
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at time instant T . Then

VT (L2(x), 1) = C + L1L2L2(x) , (C.109)

VT (L2(x + ǫ), 1) = C + L1L2L2(x + ǫ) , (C.110)

VT (L1L2(x), 0) = L2L1L2(x) , (C.111)

VT (L1L2(x + ǫ), 0) = L2L1L2(x + ǫ) , (C.112)

and

VT (L2(x + ǫ), n) − VT (L2(x), n) = L1L2L2(x + ǫ) − L1L2L2(x) , (C.113)

VT (L1L2(x + ǫ), n − 1) − VT (L1L2(x), n − 1) = L2L1L2(x + ǫ) − L2L1L2(x) .

(C.114)

By (C.113), (C.114) and Property 4.4, we conclude that

VT (L2(x + ǫ), n) − VT (L2(x), n) ≥ VT (L1L2(x + ǫ), n − 1) − VT (L1L2(x), n − 1) .

(C.115)

We have now established that for n = 1, · · · ,m,

VT (L2(x + ǫ), n) − VT (L2(x), n) ≥ VT (L2L1(x + ǫ), n − 1) − VT (L2L1(x), n − 1) .

Induction Hypothesis:

Hypothesis 1 (H1): For all n = 1, · · · ,m, if 0 < x1 < x2,

Vt+1(x1, n) ≤ Vt+1(x2, n) . (C.116)

Hypothesis 2 (H2): For all n = 1, · · · ,m, if 0 < x1 < x2,

Vt+1(x1 + ǫ, n) − Vt+1(x1, n) ≥ Vt+1(x2 + ǫ, n) − Vt+1(x2, n) . (C.117)

Hypothesis 3 (H3): For all n = 1, · · · ,m, if 0 < x,

Vt+1(L2(x + ǫ), n) − Vt+1(L2(x), n) ≥ Vt+1(L1L2(x + ǫ), n − 1) − Vt+1(L1L2(x), n − 1) .

(C.118)
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Induction Step: Assume the induction hypotheses H1-H3 are true. We need to prove

R1: For all n = 1, · · · ,m, if 0 < x1 < x2,

Vt(x1, n) ≤ Vt(x2, n) , (C.119)

R2: For all n = 1, · · · ,m, if 0 < x1 < x2,

Vt(x1 + ǫ, n) − Vt(x1, n) ≥ Vt(x2 + ǫ, n) − Vt(x2, n) . (C.120)

R3: For all n = 1, · · · ,m, if 0 < x,

Vt(L2(x + ǫ), n) − Vt(L2(x), n) ≥ Vt(L1L2(x + ǫ), n − 1) − Vt(L1L2(x), n − 1) .

(C.121)

Proof of R1: We consider four cases that are the analogues of cases 1-4 in the basis

of induction.

Case 1 : Assume it is optimal to take a measurement under both of the information

states (x1, n) and (x2, n) at time instant t. Then

Vt(x1, n) = L2(x1) + Vt+1(L2(x1), n) , (C.122)

Vt(x2, n) = L2(x2) + Vt+1(L2(x2), n) . (C.123)

When x1 < x2, L2(x1) < L2(x2) by Property 4.1. Thus

Vt+1(L2(x1), n) < Vt+1(L2(x2), n) , (C.124)

by the induction hypothesis H1. Therefore Vt(x1, n) ≤ Vt(x2, n).

Case 2 : Assume it is optimal to take a measurement under (x2, n) and not to take a

measurement under (x1, n) at time instant t. Then

Vt(x1, n) = L2(x1) + Vt+1(L2(x1), n), (C.125)

Vt(x2, n) = C + L1L2(x2) + Vt+1(L1L2(x2), n − 1) . (C.126)
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By the definition of Vt(x, n) and (C.126), we obtain

L2(x1) + Vt+1(L2(x1), n) ≤ C + L1L2(x1) + Vt+1(L1L2(x1), n − 1) . (C.127)

When x1 < x2, L1L2(x1) < L1L2(x2) by Property 4.1. Thus

Vt+1(L1L2(x1), n − 1) ≤ Vt+1(L1L2(x2), n − 1) , (C.128)

by the induction hypothesis H1, and

L2(x1) + Vt+1(L2(x1), n) ≤ C + L1L2(x2) + Vt+1(L1L2(x2), n − 1) . (C.129)

Therefore Vt(x1, n) ≤ Vt(x2, n) by (C.129), (C.125) and (C.126).

Case 3 : Assume it is optimal to take a measurement under (x1, n) and not to take a

measurement under (x2, n) at time instant t. We show that such a combination

of decisions is not part of an optimal sensor activation strategy. Based on the

assumption we have

Vt(x1, n) = C + l1L2(x1) + Vt+1(L1L2(x1), n − 1) , (C.130)

Vt(x2, n) = L2(x2) + Vt+1(L2(x2), n) . (C.131)

By the definition of Vt(x, n) and (C.130), (C.131) we obtain

C + L1L2(x1) + Vt+1(L1L2(x1), n − 1) ≤ L2(x1) + Vt+1(L2(x1), n) , (C.132)

L2(x2) + Vt+1(L2(x2), n) ≤ C + L1L2(x2) + Vt+1(L1L2(x2), n − 1) . (C.133)

When x1 < x2, L2(x1) < L2(x2) by Property 4.1. Combining (C.132), (C.133)

and Property 4.1, we get

C + L1L2(x1) + Vt+1(L1L2(x1), n − 1) ≤ L2(x1) + Vt+1(L2(x1), n)

< L2(x2) + Vt+1(L2(x2), n)

≤ C + L1L2(x2) + Vt+1(L1L2(x2), n − 1) ,

(C.134)
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which implies that

L1L2(x2) − L1L2(x1) + Vt+1(L1L2(x2), n − 1) − Vt+1(L1L2(x1), n − 1)

≥ L2(x2) − L2(x1) + Vt+1(L2(x2), n) − Vt+1(L2(x1), n) . (C.135)

We know that L1L2(x2)−L1L2(x1) < L2(x2)−L2(x1) by Property 4.2. Then we

must have

Vt+1(L1L2(x2), n − 1) − Vt+1(L1L2(x1), n − 1) > Vt+1(L2(x2), n) − Vt+1(L2(x1), n) ,

(C.136)

which contradicts the induction hypothesis H3. Consequently, the combination

of the decisions considered in this case can not be part of an optimal strategy.

Case 4 : Assume it is optimal to take a measurement under both information states

(x1, n) and (x2, n) at time instant t. Then

Vt(x1, n) = C + L1L2(x1) + Vt+1(L1L2(x1), n − 1) , (C.137)

Vt(x2, n) = C + L1L2(x2) + Vt+1(L1L2(x2), n − 1) . (C.138)

When x1 < x2, by Property 4.1,

L1L2(x1) < L1L2(x2) . (C.139)

Thus

Vt+1(L1L2(x1), n − 1) < Vt+1(L1L2(x2), n − 1) , (C.140)

by the induction hypothesis H1 and Property 4.1. Therefore Vt(x1, n) ≤ Vt(x2, n),

by (C.137)–(C.140).

Combining the four cases above, we conclude that Vt(x1, n) ≤ Vt(x2, n), n =

1, 2, · · · ,m.

Proof of R2: Again there are 16 possible combinations of decisions under the four
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information states (x1, n), (x1 + ǫ, n), (x2, n)) and (x2 + ǫ, n) at time t. We present

the analysis of one combination of decisions that could be part of an optimal strategy

and one combination of decisions that are not part of an optimal strategy. All other

combinations can be analyzed in a manner similar to the two cases presented below.

Case 1 : Assume it is optimal to take a measurement under (x2, n)) at time instant t

and not to take a measurement under (x1, n), (x1 + ǫ, n) and (x2 + ǫ, n) at time

instant t. Then

Vt(x1, n) = L2(x1) + Vt+1(L2(x1), n) , (C.141)

Vt(x1 + ǫ, n) = L2(x1 + ǫ) + Vt+1(L2(x1 + ǫ), n) , (C.142)

Vt(x2, n) = C + L1L2(x2) + Vt+1(L1L2(x2), n − 1) , (C.143)

Vt(x2 + ǫ, n) = L2(x2 + ǫ) + Vt+1(L2(x2 + ǫ), n) . (C.144)

We will show that this combination of decisions can not be part of an optimal

sensor activation strategy.

Since Vt(x2, n) is a non-decreasing function of x2 by R1, we have

C + L1L2(x2) + Vt+1(L1L2(x2), n − 1) ≤ L2(x2 + ǫ) + Vt+1(L2(x2 + ǫ), n) .

(C.145)

By the definition of Vt(x, n) and (C.143), (C.144), we obtain

C + L1L2(x2) + Vt+1(L1L2(x2), n − 1) ≤ L2(x2) + Vt+1(L2(x2), n) , (C.146)

L2(x2 + ǫ) + Vt+1(L2(x2 + ǫ), n) ≤ C + L1L2(x2 + ǫ) + Vt+1(L1L2(x2 + ǫ), n − 1) .

(C.147)

Combining (C.146), (C.147) and Property 4.1, we get

C + L1L2(x2)+Vt+1(L1L2(x2), n − 1)

≤ L2(x2) + Vt+1(L2(x2), n) (C.148)

< L2(x2 + ǫ) + Vt+1(L2(x2 + ǫ), n) (C.149)

≤ C + L1L2(x2 + ǫ) + Vt+1(L1L2(x2 + ǫ), n − 1) , (C.150)
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which implies that

L1L2(x2 + ǫ) − L1L2(x2) + Vt+1(L1L2(x2 + ǫ), n − 1) − Vt+1(L1L2(x2), n − 1)

(C.151)

≥ L2(x2 + ǫ) − L2(x2) + Vt+1(L2(x2 + ǫ), n) − Vt+1(L2(x2), n) .

(C.152)

By Property 4.2, we know that

L1L2(x2 + ǫ) − L1L2(x2) ≤ L2(x2 + ǫ) − L2(x2) . (C.153)

From the induction hypothesis H3, we have

Vt+1(L1L2(x2 + ǫ), n − 1) − Vt+1(L1L2(x2), n − 1)

≤ Vt+1(L2(x2 + ǫ), n) − Vt+1(L2(x2), n) . (C.154)

Adding (C.153) and (C.154), we obtain an inequality that contradicts (C.152).

Consequently, the combination of the decisions considered in this case can not be

part of an optimal strategy.

Case 2 : Assume it is optimal to take a measurement under (x2, n) and (x2 + ǫ, n) at

time instant t and not to take a measurement under (x1, n) and (x1 +ǫ, n) at time

instant t. Then

Vt(x1, n) = L2(x1) + Vt+1(L2(x1), n) , (C.155)

Vt(x1 + ǫ, n) = L2(x1 + ǫ) + Vt+1(L2(x1 + ǫ), n) , (C.156)

Vt(x2, n) = C + L1L2(x2) + Vt+1(L1L2(x2), n − 1), (C.157)

Vt(x2 + ǫ, n) = C + L1L2(x2 + ǫ) + Vt+1(L1L2(x2 + ǫ), n − 1) . (C.158)

By the induction hypothesis H2, (C.155) and (C.156) we get

Vt(x1 + ǫ, n) − Vt(x1, n)

= L2(x1 + ǫ) − L2(x1) + Vt+1(L2(x1 + ǫ), n) − Vt+1(L2(x1), n)

> L2(x2 + ǫ) − L2(x2) + Vt+1(L2(x2 + ǫ), n) − Vt+1(L2(x2), n) . (C.159)
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From (C.157) and (C.158), it follows that

Vt(x2 + ǫ, n) − Vt(x2, n) =L1L2(x2 + ǫ) − L1L2(x2)

+ Vt+1(L1L2(x2 + ǫ), n − 1) − Vt+1(L1L2(x2), n − 1) .

(C.160)

Combining (C.159), (C.160), Property 4.2 and the hypothesis induction H3, we

get

Vt(x1 + ǫ, n) − Vt(x1, n) ≥ Vt(x2 + ǫ, n) − Vt(x2, n) . (C.161)

Proof of R3: For the situation where n ≥ 2, similarly to the proof of R2, we

analyze 2 cases. The remaining 14 cases can be analyzed in a manner similar to that

of the cases below.

Case 1 : Assume it is optimal not to take a measurement under information states

(L1L2(x+ ǫ), n−1), (L2(x), n), (L2(x+ ǫ), n) and (L1L2(x), n−1) at time instant

t. Then

Vt(L2(x), n) = L2L2(x) + Vt+1(L2L2(x), n) , (C.162)

Vt(L2(x + ǫ), n) = L2L2(x + ǫ) + Vt+1(L2L2(x + ǫ), n) , (C.163)

Vt(L1L2(x), n − 1) = L2L1L2(x) + Vt+1(L2L1L2(x), n − 1) , (C.164)

Vt(L1L2(x + ǫ), n − 1) = L2L1L2(x + ǫ) + Vt+1(L2L1L2(x + ǫ), n − 1) , (C.165)

and

Vt(L2(x + ǫ), n) − Vt(L2(x), n)

= L2L2(x + ǫ) − L2L2(x) + Vt+1(L2L2(x + ǫ), n) − Vt+1(L2L2(x), n) , (C.166)

≥ L2L2(x + ǫ) − L2L2(x) + Vt+1(L1L2L2(x + ǫ), n − 1) − Vt+1(L1L2L2(x), n − 1) ,

(C.167)

≥ L2L2(x + ǫ) − L2L2(x) + Vt+1(L2L1L2(x + ǫ), n − 1) − Vt+1(L2L1L2(x), n − 1) ,

(C.168)
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where (C.167) results in from the induction hypothesis H3 and (C.168) follows

from the induction hypothesis H2. From (C.164) and (C.165), it follows that We

also know

Vt(L1L2(x + ǫ), n − 1) − Vt(L1L2(x), n − 1)

=L2L1L2(x + ǫ) − L2L1L2(x) + Vt+1(L2L1L2(x + ǫ), n − 1)

− Vt+1(L2L1L2(x), n − 1) . (C.169)

Therefore by Properties 4.1, 4.2 and equations (C.168), (C.169), we obtain

Vt(L2(x + ǫ), n) − Vt(L2(x), n) ≥ Vt(L1L2(x + ǫ), n − 1) − Vt(L1L2(x), n − 1) .

(C.170)

Case 2 : Assume it is optimal to take a measurement under information state (L1L2(x), n−

1) at time instant t and not to take a measurement under information states

(L2(x), n), (L2(x + ǫ), n) and (L1L2(x + ǫ), n − 1) at time instant t. Then

Vt(L2(x), n) = L2L2(x) + Vt+1(L2L2(x), n) , (C.171)

Vt(L2(x + ǫ), n) = L2L2(x + ǫ) + Vt+1(L2L2(x + ǫ), n) , (C.172)

Vt(L1L2(x), n − 1) = C + L1L2L1L2(x) + Vt+1(L1L2L1L2(x), n − 2) , (C.173)

Vt(L1L2(x + ǫ), n − 1) = L2L1L2(x + ǫ) + Vt+1(L2L1L2(x + ǫ), n − 1) . (C.174)

Since Vt(L1L2(x), n − 1) is a non-decreasing function of x by R1 , we have

C + L1L2L1L2(x) + Vt+1(L1L2L1L2(x), n − 2)

≤ L2L1L2(x + ǫ) + Vt+1(L2L1L2(x + ǫ), n − 1) . (C.175)
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By the definition of Vt(L1L2(x), n − 1) and (C.173), (C.174),

C + L1L2L1L2(x) + Vt+1(L1L2L1L2(x), n − 2)

≤ L2L1L2(x) + Vt+1(L2L1L2(x), n − 1) , (C.176)

L2L1L2(x + ǫ) + Vt+1(L2L1L2(x + ǫ), n − 1)

≤ C + L1L2L1L2(x + ǫ) + Vt+1(L1L2L1L2(x + ǫ), n − 2) .

(C.177)

Combining (C.176), (C.177) and Property 4.1, we get

C + L1L2L1L2(x) + Vt+1(L1L2L1L2(x), n − 2)

≤ L2L1L2(x) + Vt+1(L2L1L2(x), n − 1) (C.178)

< L2L1L2(x + ǫ) + Vt+1(L2L1L2(x + ǫ), n − 1) (C.179)

≤ C + L1L2L1L2(x + ǫ) + Vt+1(L1L2L1L2(x + ǫ), n − 2) ,

(C.180)

which implies that

L1L2L1L2(x + ǫ) − L1L2L1L2(x)

+ Vt+1(L1L2L1L2(x + ǫ), n − 2) − Vt+1(L1L2L1L2(x), n − 2)

≥ L2L1L2(x + ǫ) − L2L1L2(x)

+ Vt+1(L2L1L2(x + ǫ), n − 1) − +Vt+1(L2L1L2(x + ǫ), n − 1) .

(C.181)

Combination of Property 4.2 and the induction hypothesis H3 results in an in-

equality that contradicts (C.181). Consequently, the combination of decisions

considered in this case can not be part of an optimal strategy.

For the situation when n = 1, we analyze four cases.

Case 1 : Assume it is optimal not to take a measurement under (L2(x), 1) and (L2(x+
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ǫ), 1) at time instant t. Then

Vt(L2(x), 1) = L2L2(x) + Vt+1(L2L2(x), 1) , (C.182)

Vt(L2(x + ǫ), 1) = L2L2(x + ǫ) + Vt+1(L2L2(x + ǫ), 1) , (C.183)

Vt(L1L2(x), 0) = L2L1L2(x) + Vt+1(L2L1L2(x), 0) , (C.184)

Vt(L1L2(x + ǫ), 0) = L2L1L2(x + ǫ) + Vt+1(L2L1L2(x + ǫ), 0) . (C.185)

and

Vt(L2(x + ǫ), 1) − Vt(L2(x), 1)

= L2L2(x + ǫ) − L2L2(x) + Vt+1(L2L2(x + ǫ), 1) − Vt+1(L2L2(x), 1) (C.186)

≥ L2L2(x + ǫ) − L2L2(x) + Vt+1(L1L2L2(x + ǫ), 0) − Vt+1(L1L2L2(x), 0) ,

(C.187)

≥ L2L2(x + ǫ) − L2L2(x) + Vt+1(L2L1L2(x + ǫ), 0) − Vt+1(L2L1L2(x), 0) ,

(C.188)

where (C.187) follows from the induction hypothesis H3 and (C.188) follows from

the induction hypothesis H2. From (C.184) and (C.185), we obtain

Vt(L1L2(x + ǫ), 0) − Vt(L1L2(x), 0)

=L2L1L2(x + ǫ) − L2L1L2(x) + Vt+1(L2L1L2(x + ǫ), 0)

− Vt+1(L2L1L2(x), 0) . (C.189)

Combining (C.188), (C.189) and Property 4.2, we conclude

Vt(L2(x + ǫ), 1) − Vt(L2(x), 1) ≥ Vt(L1L2(x + ǫ), 0) − Vt(L1L2(x), 0) . (C.190)

Case 2 : Assume it is optimal to take a measurement under (L2(x + ǫ), 1) and not to
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take a measurement under (L2(x), 1) at time instant t. Then we have

Vt(L2(x), 1) = L2L2(x) + Vt+1(L2L2(x), 1) , (C.191)

Vt(L2(x + ǫ), 1) = C + L1L2L2(x + ǫ) + Vt+1(L1L2L2(x + ǫ), 0) , (C.192)

Vt(L1L2(x), 0) = L2L1L2(x) + Vt+1(L2L1L2(x), 0) , (C.193)

Vt(L1L2(x + ǫ), 0) = L2L1L2(x + ǫ) + Vt+1(L2L1L2(x + ǫ), 0) . (C.194)

and

Vt(L2(x + ǫ), 1) − Vt(L2(x), 1)

=C + L1L2L2(x + ǫ) − L2L2(x) + Vt+1(L1L2L2(x + ǫ), 0) − Vt+1(L2L2(x), 1)

(C.195)

≥C + L1L2L2(x + ǫ) − [C + L1L2L2(x)] + Vt+1(L1L2L2(x + ǫ), 0)

− Vt+1(L1L2L2(x), 0) , (C.196)

where (C.196) follows from the definition of Vt(L2(x), 1) and (C.191).

Furthermore, from (C.193) and (C.194), we get

Vt(L1L2(x + ǫ), 0) − Vt(L1L2(x), 0)

=L2L1L2(x + ǫ) − L2L1L2(x) + Vt+1(L2L1L2(x + ǫ), 0)

− Vt+1(L2L1L2(x), 0) . (C.197)

Combining (C.196), (C.197) and repeated use of Property 4.1 and 4.4, we obtain

Vt(L2(x + ǫ), 1) − Vt(L2(x), 1) ≥ Vt(L1L2(x + ǫ), 0) − Vt(L1L2(x), 0) . (C.198)

Case 3 : Assume it is optimal to take a measurement under (L2(x), 1) and not to take

a measurement under (L2(x + ǫ), 1) at time instant t. Then

Vt(L2(x), 1) = C + L1L2L2(x) + Vt+1(L1L2L2(x), 0) , (C.199)

Vt(L2(x + ǫ), 1) = L2L2(x + ǫ) + Vt+1(L2L2(x + ǫ), 1) , (C.200)

Vt(L1L2(x), 0) = L2L1L2(x) + Vt+1(L2L1L2(x), 0) , (C.201)

Vt(L1L2(x + ǫ), 0) = L2L1L2(x + ǫ) + Vt+1(L2L1L2(x + ǫ), 0) . (C.202)
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Since Vt(L2(x), 1) is a non-decreasing function of x by R1, we have

C + L1L2L2(x) + Vt+1(L1L2L2(x), 0) ≤ L2L2(x + ǫ) + Vt+1(L2L2(x + ǫ), 1) .

(C.203)

By the definition of Vt(L2(x), n), (C.199) and (C.200), we obtain

C + L1L2L2(x) + Vt+1(L1L2L2(x), 0) ≤ L2L2(x) + Vt+1(L2L2(x), 1) , (C.204)

L2L2(x + ǫ) + Vt+1(L2L2(x + ǫ), 1) ≤ C + L1L2L2(x + ǫ) + Vt+1(L1L2L2(x + ǫ), 0) .

(C.205)

Combining (C.204), (C.205), Property 4.1 and R1, we get

C + L1L2L2(x) + Vt+1(L1L2L2(x), 0)

≤ L2L2(x) + Vt+1(L2L2(x), 1) , (C.206)

< L2L2(x + ǫ) + Vt+1(L2L2(x + ǫ), 1) , (C.207)

≤ C + L1L2L2(x + ǫ) + Vt+1(L1L2L2(x + ǫ), 0) , (C.208)

which implies that

L1L2L2(x + ǫ) − L1L2L2(x) + Vt+1(L1L2L2(x + ǫ), 0) − Vt+1(L1L2L2(x), 0)

≥ L2L2(x + ǫ) − L2L2(x) + Vt+1(L2L2(x + ǫ), 1) − Vt+1(L2L2(x), 1) .

(C.209)

Furthermore, combination of Property 4.2 and the induction hypothesis H3 re-

sults in an inequality that contradicts (C.205). Consequently, the combination of

decisions considered in this case can not be part of an optimal strategy.

Case 4 : Assume it is optimal to take a measurement under (L2(x), 1) and (L2(x+ǫ), 1)

at time instant t. Then

Vt(L2(x), n) = C + L1L2L2(x) + Vt+1(L1L2L2(x), 0) , (C.210)

Vt(L2(x + ǫ), n) = C + L1L2L2(x + ǫ) + Vt+1(L1L2L2(x + ǫ), 0) , (C.211)

Vt(L1L2(x), 0) = L2L1L2(x) + Vt+1(L2L1L2(x), 0) , (C.212)

Vt(L1L2(x + ǫ), 0) = L2L1L2(x + ǫ) + Vt+1(L2L1L2(x + ǫ), 0) , (C.213)
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and

Vt(L2(x + ǫ), 1) − Vt(L2(x), 1)

=C + L1L2L2(x + ǫ) − [C + L1L2L2(x)] + Vt+1(L1L2L2(x + ǫ), 0)

− Vt+1(L1L2L2(x), 0) , (C.214)

Vt(L1L2(x + ǫ), 0) − Vt(L1L2(x), 0)

=L2L1L2(x + ǫ) − L2L1L2(x) + Vt+1(L2L1L2(x + ǫ), 0)

− Vt+1(L2L1L2(x), 0). (C.215)

From (C.214), (C.215) and repeated use of Property 4.2 and 4.4, we conclude that

Vt(L2(x + ǫ), 1) − Vt(L2(x), 1) ≥ Vt(L1L2(x + ǫ), 0) − Vt(L1L2(x), 0) . (C.216)

From the above four cases, it follows that for all n = 1, 2, · · · ,m,

Vt(L2(x + ǫ), n) − Vt(L2(x), n) ≥ Vt(L1L2(x + ǫ), n − 1) − Vt(L1L2(x), n − 1) .

(C.217)

The proof of the induction step is complete. Thus, the assertion of Lemma C.2 is

true.

Proof of Lemma 4.2.

Consider any sensor activation strategy g. Under g, σg
t may be either greater than or

equal to or smaller than σg
t+1. If σ0 is large enough, irrespectively of the choice of g, we

will have

σg
t ≥ σ̂ , (C.218)

for all t = 1, · · · , T , where σ̂ is defined by L1L2(σ̂) = L2L1(σ̂).

Since K > σ∗ and σg
t ≥ σ̂, for all t = 1, · · · , T , it will follow that L1L2(σ

g
t ) =

L2L1(σ
g
t ) by Property 4.5. Consequently, the set S1(m,T ) is non-empty.
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Proof of Theorem 4.2.

This theorem essentially states that for any σ0 ∈ S1(m,T ) an optimal strategy action

must have the following form: {1, 1, · · · , 1, 0, 0, · · · , 0}. Here the exact number of 1s

and 0s is unspecified.

Assume σ0 ∈ S1(m,T ) and consider an arbitrary sensor activation strategy g :=

(g1, · · · , gT ), and let (ug
1, · · · , ug

T ) be the sequence of actions at time s = 1, · · · , T ,

resulting from g and (σ0,m). Suppose

ug
t = 0 and ug

t+1 = 1 . (C.219)

Define another sensor activation strategy g′ := (g′
1, · · · , g′

T ), s.t.,

ug′

s = ug
s , for s = 1, · · · , t − 1 , (C.220)

ug′

t = 1 , and ug′

t+1 = 0 , (C.221)

ug′

s = ug
s , for s = t + 2, · · · , T . (C.222)

Then we have

σg
t = L2(σ

g
t−1) , (C.223)

σg
t+1 = L1L2L2(σ

g
t−1) , (C.224)

σg′

t = L1L2(σ
g
t−1) , (C.225)

σg′

t+1 = L2L1L2(σ
g
t−1) . (C.226)

Since σ0 ∈ S1(m,T ), it follows that

L1L2(σ
g
t−1) ≥ L2L1(σ

g
t−1) , (C.227)

L1L2(L2(σ
g
t−1)) ≥ L2L1(L2(σ

g
t−1)) , (C.228)

which implies that

σg
t+1 ≥ σg′

t+1 . (C.229)
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Furthermore, by the specification of g and g′, it follows that

σg′

s = σg
s , s = 0, 1, · · · , t − 1 , (C.230)

and

σg
t = L2(σ

g
t−1) ≥ σg′

t = L1L2(σ
g′

t−1) . (C.231)

Using (C.222), (C.229) and Property 4.1, we conclude that

σg
s ≥ σg′

s , for all s = t + 2, · · · , T . (C.232)

Moreover, by construction, g and g′ incur the same activation cost along the evolution

path that originates at (σ0,m). Combining this fact along with (C.229)–(C.232), we

conclude that

Jg ≥ Jg′ . (C.233)

Repeated application of the above argument establishes the “stopping property” of an

optimal sensor activation strategy whenever σ0 ∈ S1(m,T ).
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APPENDIX D

PROOFS FOR CHAPTER 5

Proof of Property 5.1.

Denote by v∗
i,t and v′

i,t the TDDP of cell i, i ∈ L, if cell i is scanned at time t under π∗

and π′, respectively. Denote by g∗
i,t and g′

i,t the number of searches happened on cell i

until time t, i ∈ L, under π∗ and π′, respectively. With this notation, we proceed to

prove Property 5.1 by contradiction.

Assume that under the optimal strategy π∗, there exists a time t < S · T such that

n∗
t < n∗

t+1. Then, there exists at least one cell, denoted by l, which is scanned at time

t + 1, but is not scanned at time t, i.e., a∗
l,t = 0 and a∗

l,t+1 = 1.

Then g∗
l,t−1 = g∗

l,t and

v∗
l,t+1 = βt · rl,g∗

l,t
= βt · rl,g∗

l,t−1
. (D.1)

Define the search strategy π′, which is identical to π∗ except that it searches location

l at time t instead of t + 1, i.e.,

a′
l,t = 1 , (D.2)

a′
l,t+1 = 0 , (D.3)

a′
i,j = a∗

i,j , otherwise. (D.4)
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Then g′
l,t−1 = g∗

l,t−1 and

v′
l,t = βt−1 · rl,g′

l,t−1
= βt−1 · rl,g∗

l,t−1
=

v∗
l,t+1

β
, (D.5)

(D.6)

All the TDDPs of any cell other than l or the ones incurred at any other time instant

other than t and t + 1 are exactly the same under π∗ and π′. Therefore

J(π∗) − J(π′) = v∗
l,t+1 − v′

l,t = (1 −
1

β
)v∗

l,t+1 < 0 , (D.7)

which contradicts with the optimality of π∗.

Proof of Property 5.2.

We prove this property by contradiction.

Assume ∃t′, t ≤ t′ ≤ S · T , such that L∗
t′ + L∗

t′+1. Then there exists location

l ∈ L∗
t′+1, such that l /∈ L∗

t′ , i.e., a∗
l,t′ = 0 and a∗

l,t′+1 = 1.

According to Property 1 and the assumption made in the statement of Property

5.2, S > n∗
t ≥ n∗

t′ . Define strategy π′, which is identical to π∗ except that it searches

location l at time t′ instead of t′ + 1, so that

a′
l,t′ = 1 , (D.8)

a′
l,t′+1 = 0 , (D.9)

a′
i,s = a∗

i,s , otherwise. (D.10)

Then by an argument similar to the one appearing in the proof of Property 5.1, we

have

J(π∗) − J(π′) = v∗
i,t+1 − v′

i,t = (1 −
1

β
)v∗

i,t+1 < 0 , (D.11)

which contradicts with the optimality of π∗.

Proof of Theorem 5.1.

According to the process of Algorithm G, ng
1 < S means that no column is discarded
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from the L TDDP tables. Therefore, all S · T TDDPs are only chosen from the first

column of each table, and the S ·T TDDPs that are chosen are the largest among those

in the first column of each table. For any feasible search strategy, at most one TDDP

can be chosen from each row and in each row the TDDP in the first column is the

largest. Therefore, the TDDPs chosen by Algorithm G are the largest S · T TDDPs

among the L tables. Since Algorithm G guarantees the strategy is implementable, it is

optimal.

Proof of Lemma 5.1.

Consider a strategy π does not always give the priority to the cells with the largest

TDDPs when every sensor is used at some time instant t, such that cell j is scanned

and cell i is not scanned where vi,t > vj,t.

Let j1, · · · , jkj
be the times that cell j are scanned under π after time t, where j1 > t

and 0 ≤ kj ≤ ht − 1. kj = 0 means that cell j is not scanned any more under π. Let

i1, i2, · · · , iki
be the times that cell i are scanned under π after time t, where i1 > t

and 0 ≤ ki ≤ ht − 1. ki = 0 means that cell i is not scanned any more under π. We

construct π1 as follows: π1 is identical to π except cell i is scanned at time t instead of

cell j.

Then in the objective functions J(π) and J(π1), only the TDDPs for cell i and j

after time t − 1 are different. Therefore

J(π1) − J(π) =(vi,t − vj,t) +

[

ki
∑

s=1

vi,t · (1 − αi)
s · βis−t −

ki
∑

s=1

vi,t · (1 − αi)
s−1 · βis−t

]

+





kj
∑

s=1

vj,t · (1 − αj)
s−1 · βjs−t −

kj
∑

s=1

vj,t · (1 − αj)
s · βjs−t



 (D.12)

=

[

vi,t − αi · vi,t ·
ki
∑

s=1

(1 − αi)
s−1 · βis−t

]

−



vj,t − αj · vj,t ·

kj
∑

s=1

(1 − αj)
s−1 · βjs−t



 .

(D.13)
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Because of (D.13) and 1 ≤ ki ≤ ht − 1, kj ≥ 0, we have

J(π1) − J(π) >

[

vi,t − αi · vi,t ·
ht−1
∑

s=1

(1 − αi)
s−1 · βs

]

− vj,t (D.14)

=vi,t − vi,t · αi ·
β − (1 − αi)

ht−1βht

1 − (1 − αi) · β
− vj,t (D.15)

=vi,t ·
1 − β + αi · (1 − αi)

ht−1 · βht

1 − β · (1 − αi)
− vj,t . (D.16)

Note that the right side of (D.14) happens when cell j is not scanned any more and all

the available sensors will be used to scan cell i after time t. Because of (5.6),

J(π1) > J(π) . (D.17)

Therefore, policy π1 yields higher reward than π because of (D.17). By repeated appli-

cation of the above modification argument, we conclude that when ng
t = S, it is optimal

to search all the cells in L
g
t at time t given that πg was used up to time t − 1.

Proof of Theorem 5.2.

This theorem can be easily proved by combining Theorem 5.1 and Lemma 5.1.
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