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CHAPTER 1

Introduction

In binary classification, we are given a training sample, consisting of exemplary objects

from two classes, along with their class labels. We are then presented with new objects

without class labels, called the test sample, and have to assign class labels to those objects

such that some measure of performance is optimized. For example, in a spam email filter-

ing, the training sample may consist of legitimate emails and spam emails that have been

received so far in an email server. The goal in this application is to design a classifier that

accurately predicts whether a newly received email is spam or not.

Design of a classifier consists of two main stages. The first stage is extracting features.

Feature extraction is a process that transforms input data into a list of numerical features,

or feature vectors. There exist several reasons for extracting features. One is that the

input data at hand may not be in a mathematically suitable form. For example, in the

spam mail filtering mentioned above, email messages are hard to use directly, and thus

we may build feature vectors, each of whose elements counts the frequencies of a certain

word that can be found in spam emails, e.g., “free”, “viagra”, “insurance”, and “buy”,

etc. Another reason for feature extraction is dimensionality reduction. In applications like

image processing, the input data are usually represented as vectors with dimension ≈ 106.

These high dimensional data may lead to high computational and storage complexity, and
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sometimes degraded performance. Feature extraction method such as principal component

analysis generates vectors with fewer dimension � 106 while the reduced dimensional

feature vectors still describe the data.

The next stage is learning a classifier. Suppose that the training sample as a result of

feature extraction can be expressed as (X1,Y1), . . . ,(Xn,Yn) where Xi ∈ Rd is a feature

vector and Yi ∈ {−1,+1} is a class label. A classifier is a function taking x ∈ Rd as input

and outputting a label,

g : Rd →{±1}.

In general, we first select a family of functions that can approximate the relation between

the features and the labels, and then choose a classifier from the family of functions ac-

cording to a certain criteria. For example, in Fisher’s linear discriminant rule [24], the

classifier is chosen from a family of linear functions

{x 7→ sgn( f (x)) | f (x) = wT x}.

such that w maximizes the between-class scatter while minimizing the within-class scatter.

In this thesis, we focus on kernel methods for classification [56]. Kernel classifiers are

an important family of classifiers that have drawn much attention recently for their ability

to represent nonlinear decision boundaries and to scale well with increasing dimension d.

A kernel classifier has the form

g(x) = sign

{
n

∑
i=1

αiYik(x,Xi)

}
,

where αi are parameters and k is a kernel function. For example, support vector machines

(without offset) have this form, as does the standard kernel density estimate (KDE) plug-in

classifier. These concepts are explained in detail below.

This thesis consists of three main chapters. Each chapter provides kernel methods for

classification but with different focuses.
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In Chapter 2, we focus on feature extraction for a particular medical application. In

the application, we have to predict whether a post-operative patient needs to be admitted

to an intensive care unit (ICU). The training data consists of irregularly sampled vital sign

measurements from post-operative patients in telemetry. Due to irregular sampling it is

undesirable to represent the measurements as vectors, which lead us to extract features

from the measurements. The experimental results show that the proposed features, when

paired with kernel methods, have more discriminating power than the features used by

clinicians.

Chapter 3 focuses on a one-class classification problem with contaminated data. In

one-class classification, we are given only one class of objects as training sample and the

goal is to determine whether new objects belong to the same class of training sample or

not. We further consider the case where the training sample is contaminated such that a

small fraction of data do not belong to the class, which makes the problem harder. We deal

with this problem by robustly estimating the density, or the level sets, of objects belonging

to the given class, from the contaminated data. To achieve this, we combine a traditional

kernel density estimator (KDE) with ideas from classical M-estimation. The robustness of

our proposed density estimator is demonstrated with a representer theorem, the influence

function, and experimental results.

Chapter 4 focuses on learning a classifier. We propose a kernel classifier that optimizes

the L2 or integrated squared error (ISE) of a “difference of densities”. The classifier is

obtained as a solution of quadratic programming with an efficient algorithm, and has a

sparse representation meaning that the classifier can be expressed in terms of small fraction

of training samples. We provide statistical performance guarantees for the proposed L2

kernel classifier in the form of a finite sample oracle inequality, and strong consistency in

the sense of both ISE and probability of error.
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Chapter 5 provides overall conclusion and suggestions on future research.



CHAPTER 2

Predicting ICU Admission in Postoperative Patients with
Possible Sepsis

Sepsis represents a major factor in morbidity and mortality in postoperative patients.

Therefore, patients with possible sepsis need to be admitted to an intensive care unit (ICU)

for monitoring and treatment. The systemic inflammatory response syndrome (SIRS) cri-

teria are binary statistics used to identify patients with sepsis, and are based on four physi-

ological variables: body temperature, heart rate, breathing rate, and white blood cell count.

However, the SIRS criteria have been criticized for having reduced specificity (high false

positive rate), which diminishes their utility in clinical settings. This chapter presents a

feature extraction method from the same four variables, and a methodology for predicting

ICU admission in postoperative patients under moderate care.

Data are obtained from 1087 post-operative patients on telemetry who had thoracic

surgery, 83 of which were admitted to an ICU. We propose to extract features that capture

trends and variability in the SIRS variables, and apply existing kernel methods (two-class

and one-class support vector machines) on those features to predict ICU admission. Since

the physiological variables of patients in moderate care are sampled irregularly, the pro-

posed features often have missing values. We adopt the zero-imputation method to account

for these missing values.

5
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We compare the predictive power of the proposed features to those of the SIRS criteria.

Performance is evaluated not just when the patients are discharged or sent to the intensive

care unit (ICU), but also some number of hours in advance. The experimental results show

that using the proposed features leads to improvements over the SIRS criteria.

2.1 Introduction

Sepsis refers to a systemic response arising from infection [3]. In the United States,

0.8 to 2 million patients become septic every year, 30% of which are surgical patients, and

hospital mortality for sepsis patients ranges from 18% to 60% [50, 67]. The number of

sepsis-related deaths has tripled over the past 20 years due to the increase in the number

of sepsis cases, even though the mortality rate has decreased [67]. Because of its high

mortality, post-operative surgical patients with possible sepsis are frequently admitted to

an intensive care unit (ICU) from moderate care/telemetry unit for monitoring and treat-

ment. Delay in treatment is associated with mortality. Hence, timely prediction of ICU

admission is critical.

The clinical definition of sepsis is the presence of systemic inflammatory response

syndrome (SIRS), together with a known or suspected infection. The phrase systemic

inflammatory response syndrome was proposed to describe an inflammatory state affecting

the whole body, independent of its cause. SIRS is defined as the presence of two or more

of the following “SIRS criteria”:

• a body temperature greater than 38◦ C or less than 36◦ C

• a heart rate greater than 90 beats per minute

• tachypnea, manifested by a respiratory rate greater than 20 breaths per minute, or

hyperventilation, as indicated by a PaCO2 of less than 32 mm Hg
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• an alteration in the white blood cell count, such as a count greater than 12,000/cu

mm, a count less than 4,000/cu mm, or the presence of more than 10 percent imma-

ture neutrophils

within a certain time window, e.g., during the past 24 hours [3].

SIRS criteria are widely used by physicians as a way to identify patients with possible

sepsis [7,22] and their ICU admission. However, it has been criticized for having reduced

specificity (high false positive rate) at acceptable sensitivities, thus limiting its use in clin-

ical settings [7, 22, 62]. One possible reason would be that the SIRS criteria depend only

on the highest and/or lowest values of the four SIRS variables within the window.

One of the challenges in this prediction problem is that measurements obtained from

patients in moderate care are sampled irregularly, meaning the time between consecutive

samples is not constant. Unlike patients in an intensive care unit (ICU), whose vital signs

are monitored constantly, patients in moderate care are monitored based on the severity of

their condition and the availability of nursing staff. Due to irregular sampling, the number

of measurements differs from patient to patient, and thus it is undesirable to represent the

measurements as vectors. This motivates us to extract features from the SIRS variables

with more discriminating power than the SIRS criteria. Irregular sampling also leads to

situations where there are too few samples available in a given time window to compute

some of the proposed features. In our data, about 20% of the features are missing due to

irregular sampling.

After the feature extraction, we can apply the general framework of kernel meth-

ods, which have proven to be successful in a number of applications [56]. In particu-

lar, we employ particular kernel methods known as support vector machines. Based on

the maximum-margin principle, SVMs employ kernels to generating nonlinear decision

boundaries, and have empirically been shown to generalize well even in the presence of
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many irrelevant features.

The application of machine learning methods such as logistic regression, artificial neu-

ral networks, and support vector machines to sepsis-related problems have been explored

in different patient monitoring environments [34, 69]. The authors were interested in pre-

diction of death [34] or severe sepsis [69] from sepsis patients rather than predicting sepsis

itself from surgical patients. In their settings, since the patients were monitored in an ICU,

the patients’ vital signs were observed regularly and frequently, and therefore more con-

ventional methods could be applied. We note that the general methodology developed here

is applicable to the case of regularly sampled data.

2.2 Problem Statement

For concreteness, we first describe our motivating application and data before present-

ing the general methodology.

2.2.1 Concrete problem statement

Institutional review board approved this study at The University of Michigan Hospi-

tal, a large, tertiary care facility. The data used for this study are from patients who were

admitted for thoracic surgery and post-operative care between 7/1/2007 and 1/30/2010. A

perioperative electronic medical record (Centricity, General Electric Healthcare, Wauke-

sha, WI) was used to identify patients who were subsequently admitted to a telemetry unit

for post-operative care.

Following the SIRS criteria, the variables we used were heart rate, body temperature,

respiratory rate, and white blood cell count. For convenience, we refer to the variables as

vital signs, even though white blood cell count is technically not considered a vital sign.

Hemodynamic and respiratory data were acquired either automatically by a validated elec-
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tronic interface from the physiological monitors (General Electric Healthcare) or manually

by nursing staff. All physiologic data were acquired for each telemetry unit following the

admission order protocol and were validated by clinical nursing staff prior to the entry

into the medical record. In step-down/telemetry units, patients are monitored only when

necessary. Hence, the vital signs obtained are recorded at irregular time intervals. The

vital signs were recorded up to the point where the patient was admitted to the intensive

care unit (ICU) or discharged. There are 1087 post operative patients, 83 of which were

admitted to the ICU.

We preprocessed the data in order to remove any obvious errors. For example, some

body temperature readings had no indication of the temperature scale. If the recorded body

temperature was greater than 60, we assumed that it was recorded in ◦ F and converted the

value to ◦ C. We excluded patients whose recordings had none of the above mentioned

vital signs, and any samples in the vital signs that did not make sense were dropped, e.g.,

heart rate samples equal to zero.
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Fig. 2.1: Examples of vital signs recorded. Vertical lines corresponds to time (days). Hor-
izontal lines correspond to the thresholds defining the SIRS criteria.
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Figure 2.1 (a) and (b) show representative examples of vital signs of a patient dis-

charged and a patient admitted to the ICU, respectively. In this figure, each patient’s vital

signs are time-shifted such that t = 0 corresponds to the time when he or she is discharged

or admitted to the ICU. Note that the vital signs are sampled at irregular intervals and also

differ in the number of samples. Our goal is to make accurate, early predictions of ICU

admission.

2.2.2 Abstract problem statement

We denote the vital signs of a patient in a structured form x = (d1, . . . ,dNd) and the

set of all x as X . In the cases of predicting ICU admission, the number of vital signs is

Nd = 4. Each di corresponds to a vital sign of the patient and is an irregularly sampled

time-series, i.e.,

di = (ti1,vi1, ti2,vi2, . . . , tipi,vipi)

for some pi ∈ {0,1,2, . . .}, where ti j and vi j represent the time and the value of the jth

observed sample in di. Notice that within one pattern x, each di is obtained from irregular

sampling, i.e., (ti2− ti1),(ti3− ti2), . . . ,(tipi− ti(pi−1)) are typically distinct, and the number

of observed samples for each di are different, i.e., p1, p2, . . . , pNd are typically distinct.

Furthermore, for any two patterns x and x′ ∈X , we typically have pi 6= p′i for i= 1, . . . ,Nd ,

meaning different variables are recorded different numbers of times. The class label y ∈

{−1,1} of x is −1 if the patient corresponding to x is septic and 1 otherwise. The training

data consists of labeled patients (x1,y1), . . . ,(xn,yn), where in our application n = 1004+

83 = 1087.

For each training patient, t = 0 corresponds to the time when he or she is admitted

to the ICU or discharged. To assess the performance of early diagnosis, a test patient

will be diagnosed not only when he or she is admitted to the ICU or discharged, but also
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# of vital signs Nd
the set of patterns X = {x : x = (d1, . . . ,dNd)}

vital signs
di ∈ R2pi, for some pi, ∀i = 1, . . . ,Nd

di = (ti1,vi1, ti2,vi2, . . . , tipi,vipi)
class labels y ∈ {−1,1}

Table 2.1: Notations

some number of hours in advance. To do this, we will truncate the vital signs of a test

patient beyond the time of prediction, and for this patient t = 0 corresponds to the time of

prediction.

2.3 Proposed Feature Extraction Method

Our approach to this problem can be summarized as follows. First, we extract features

from vital signs. Because of irregular sampling, some features could be missing. For ex-

ample, features extracted from temperature are missing in about 3% of the patients and

those from white blood cell count are missing in about 70% of the patients. In order to

handle the missing data, we adopt the zero-imputation method where missing values are

replaced with zero [43]. Once we obtain the imputed features, we are in a position where

we can apply existing kernel-based machine learning algorithms, e.g., support vector ma-

chine.

We define our proposed features as follows. Let Φ∆ : X → Rl denote such a feature

map, which outputs a vector of length l whose elements consist of sample statistics from

vital sign measurements, based on a time window of length ∆. The time window is defined

as [−∆,0], and Φ∆ only considers samples that are observed within the window. Samples

observed outside the window are ignored. For each vital sign, the proposed features are

composed of the mean, standard deviation, range, maximum positive change, maximum

negative change, and slope of a line fit using least squares regression. Therefore, l =
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Fig. 2.2: The illustration of the proposed feature extraction process

4× 6 = 24. Figure 2.2 illustrates the procedure of the proposed feature extraction. After

the extraction, we scale each feature to the range [−1,1] and impute zero for missing

values.

2.4 Experiments

2.4.1 Experimental setting

Recall that there are 1087 post operative patients who had thoracic surgery, 83 of which

were admitted to ICU. The data actually were obtained as two separate data: the first data

set includes patients who were admitted to telemetry before 2008/10/27 and the second

one includes patients after 2008/10/27. We refer to the first data set as Phase I data and

the second data set as Phase II data. We also refer to patients admitted to the ICU as ICU
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# of non-ICU patients # of ICU patients
Phase I data 486 37
Phase II data 518 46

Table 2.2: The number of ICU and non-ICU patients in the Phase I and Phase II data

patients and patient discharged as non-ICU patients. The number of ICU and non-ICU

patients in the Phase I and II data is summarized in Table 2.2.

To show how the idea of introducing feature extraction works compared to SIRS crite-

ria, we compare 3 feature sets, (a) the proposed features, (b) SIRS indicators, and (c) SIRS

score. By following a clinical convention, all the features are based on vital sign observa-

tions during the last ∆ = 24 hour window. SIRS indicators are 4 binary variables, each of

which indicates whether the corresponding condition in SIRS criteria is met. When there

is no observation for a certain vital sign, the corresponding indicator is assumed to be 0.

SIRS score is defined as the sum of the SIRS indicators, taking values 0− 4. Note that a

diagnosis of SIRS is equivalent to SIRS score ≥ 2.

Among machine learning algorithms, we first apply the SVM with the linear kernel

k(x,x′) = 〈Φ∆(x),Φ∆(x′)〉

to the proposed features and SIRS indicators. Since SIRS score is just one variable, it is

directly thresholded without any learning procedure. We also include experimental results

when the OC-SVM (one class support vector machine) with Gaussian kernel

k(x,x′) = exp
(
−‖Φ∆(x)−Φ∆(x′)‖2/σ

2).
with σ = 1 is applied to the proposed features. The OC-SVM uses only the non-ICU

admitted patients as training data, and is motivated by our findings in 2.4.2 below.
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Fig. 2.3: Histogram of similarity k(x,x′)

2.4.2 Exploratory results

A kernel can be considered as a measure of similarity between patterns expressed as an

inner product in some feature space [56]. In Figure 2.3, we plot the histograms of kernel

values between patients in the Phase I data (with the linear kernel) to show whether our

proposed features capture the actual similarity between patients. As shown in the figure,

similarities between non-ICU patients are overall lager than those between ICU patients

and non-ICU patients. One interesting thing to note is the similarities between non-ICU

patients. We expected that similarities between non-ICU patients would have larger values,

but actually they don’t. This observation can be explained as healthy patients are alike but

unhealthy patients are unhealthy in their own ways. This motivated us to try the OC-SVM,

since the ICU patients did not seem to form a homogeneous class.
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2.4.3 Experimental results

We present experimental results where we train a classifier on the Phase I data and test

on the Phase II data. We assess performance with the AUC (area under curve) of the ROC

(receiver operating characteristic). We generate ROCs using different thresholds for the

outputs of the decision function. We also assess the performances of the methods for early

prediction. To do this, we truncate a certain amount of time (3, 6, and 12 hours) from vital

signs of test patients.

The AUC plots are shown in Figure 2.4 (parameters are set as C = 1.0 for SVM and

ν = 0.5 for OC-SVM). We can easily see that OC-SVM with the proposed features is

the best, and SVM with the proposed features is the second best. The investigation on

similarity in the previous section explains why OC-SVM can provide better performance

than SVM. The performances of SVM with SIRS indicator and SIRS score are similar and

worse than the two other method by a significant amount. This suggests that the proposed

features have more predictive power than SIRS indicators or SIRS score.

The results including other choices of C and ν are shown in Table 2.3. The results

indicates that the performance does not depend much on the choices of these parameters.

For all methods, AUCs decreases as we predict earlier. However, if we look at the relative

performance, the AUC gain of OC-SVM with the proposed features over the methods

using SIRS indicator or score is around 0.08 to 0.10 even for the early prediction.

2.5 Conclusion

In this chapter, we propose a method for predicting ICU admission for postoperative

patients with possible sepsis. Our methodology is based on the feature extraction from the

same physiological variables that define SIRS. Unlike the SIRS criteria, which only reflect

the extreme values of vital signs in a given window, these proposed features also capture
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Fig. 2.4: ROC curves of the 4 methods. Parameters are set as C = 1.0 for SVM and ν = 0.5
for OC-SVM.

the trends and variability of vital signs.

The experimental results show that the combination of the proposed features in ker-

nel methods leads to significant improvements in predictive power compared to the more

conventional SIRS score. We evaluated these methods based on their ability to predict the

ICU admission several hours in advance of when the patients were actually transitioned to

an ICU or discharged. For example, when making predictions for six hours in advance,
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method parameter
hours in advance

0 3 6 12

SVM with the proposed features
C = 0.1 0.93 0.81 0.81 0.74
C = 1.0 0.93 0.83 0.83 0.76

C = 10.0 0.90 0.82 0.81 0.74

OC-SVM with the proposed features
ν = 0.1 0.93 0.86 0.84 0.79
ν = 0.3 0.93 0.85 0.84 0.79
ν = 0.5 0.93 0.84 0.83 0.79

SVM with SIRS indicators
C = 0.1 0.84 0.78 0.74 0.71
C = 1.0 0.84 0.77 0.75 0.71

C = 10.0 0.84 0.84 0.74 0.71
SIRS score N/A 0.84 0.78 0.74 0.71

Table 2.3: AUC results on the different choices of C and ν

and assuming a specificity (false positive rate) of 20 percent, our methods achieve a true

positive rate of 65 or 70 percent, while the basic SIRS criteria lead to a true positive rate

of around 50 percent.

The proposed features were chosen a priori, and are intended to be simple yet general.

Hand tuning of these features for particular variables may lead to further improvements.



CHAPTER 3

Robust Kernel Density Estimation

We propose a method for nonparametric density estimation that exhibits robustness to

contamination of the training sample. This method achieves robustness by combining a

traditional kernel density estimator (KDE) with ideas from classical M-estimation. We

interpret the KDE based on a radial, positive semi-definite kernel as a sample mean in the

associated reproducing kernel Hilbert space. Since the sample mean is sensitive to out-

liers, we estimate it robustly via M-estimation, yielding a robust kernel density estimator

(RKDE).

An RKDE can be computed efficiently via a kernelized iteratively re-weighted least

squares (IRWLS) algorithm. Necessary and sufficient conditions are given for kernelized

IRWLS to converge to the global minimizer of the M-estimator objective function. The ro-

bustness of the RKDE is demonstrated with a representer theorem, the influence function,

and experimental results for density estimation and anomaly detection.

3.1 Introduction

The kernel density estimator (KDE) is a well-known nonparametric estimator of uni-

variate or multivariate densities, and numerous articles have been written on its properties,

applications, and extensions [57, 60]. However, relatively little work has been done to

18
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understand or improve the KDE in situations where the training sample is contaminated.

This chapter addresses a method of nonparametric density estimation that generalizes the

KDE, and exhibits robustness to contamination of the training sample.

Consider training data following a contamination model

X1, . . . ,Xn
iid∼ (1− p) f0 + p f1, (3.1)

where f0 is the “nominal” density to be estimated, f1 is the density of the contaminating

distribution, and p < 1
2 is the proportion of contamination. Labels are not available, so that

the problem is unsupervised. The objective is to estimate f0 while making no parametric

assumptions about the nominal or contaminating distributions.

Clearly f0 cannot be recovered if there are no assumptions on f0, f1 and p. Instead, we

will focus on a set of nonparametric conditions that are reasonable in many practical appli-

cations. In particular, we will assume that, relative to the nominal data, the contaminated

data are

(a) outlying: the densities f0 and f1 have relatively little overlap

(b) diffuse: f1 is not too spatially concentrated relative to f0

(c) not abundant: a minority of the data come from f1

Although we will not be stating these conditions more precisely, they capture the intuition

behind the quantitative results presented below.

As a motivating application, consider anomaly detection in a computer network. Imag-

ine that several multi-dimensional measurements X1, . . . ,Xn are collected. For example,

each Xi may record the volume of traffic along certain links in the network, at a certain

instant in time [13]. If each measurement is collected when the network is in a nominal

state, these data could be used to construct an anomaly detector by first estimating the
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density f0 of nominal measurements, and then thresholding that estimate at some level to

obtain decision regions. Unfortunately, it is often difficult to know that the data are free

of anomalies, because assigning labels (nominal vs. anomalous) can be a tedious, labor

intensive task. Hence, it is necessary to estimate the nominal density (or a level set thereof)

from contaminated data. Furthermore, the distributions of both nominal and anomalous

measurements are potentially complex, and it is therefore desirable to avoid parametric

models.

The proposed method achieves robustness by combining a traditional kernel density es-

timator with ideas from M-estimation [28, 32]. The KDE based on a radial, positive semi-

definite (PSD) kernel is interpreted as a sample mean in the reproducing kernel Hilbert

space (RKHS) associated with the kernel. Since the sample mean is sensitive to out-

liers, we estimate it robustly via M-estimation, yielding a robust kernel density estimator

(RKDE). We describe a kernelized iteratively re-weighted least squares (KIRWLS) algo-

rithm to efficiently compute the RKDE, and provide necessary and sufficient conditions

for the convergence of KIRWLS to the RKDE.

We also offer three arguments to support the claim that the RKDE robustly estimates

the nominal density and its level sets. First, we characterize the RKDE by a representer

theorem. This theorem shows that the RKDE is a weighted KDE, and the weights are

smaller for more outlying data points. Second, we study the influence function of the

RKDE, and show through an exact formula and numerical results that the RKDE is less

sensitive to contamination by outliers than the KDE. Third, we conduct experiments on

several benchmark datasets that demonstrate the improved performance of the RKDE,

relative to competing methods, at both density estimation and anomaly detection.

One motivation for this work is that the traditional kernel density estimator is well-

known to be sensitive to outliers. Even without contamination, the standard KDE tends
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to overestimate the density in regions where the true density is low. This has motivated

several authors to consider variable kernel density estimators (VKDEs), which employ a

data-dependent bandwidth at each data point [1, 9, 64]. This bandwidth is adapted to be

larger where the data are less dense, with the aim of decreasing the aforementioned bias.

Such methods have been applied in outlier detection and computer vision applications

[15, 42], and are one possible approach to robust nonparametric density estimation. We

compare against these methods in our experimental study.

Density estimation with positive semi-definite kernels has been studied by several au-

thors. Vapnik & Mukherjee [66] optimize a criterion based on the empirical cumulative

distribution function over the class of weighted KDEs based on a PSD kernel. Shawe-

Taylor & Dolia [59] provide a refined theoretical treatment of this approach. Song et

al. [61] adopt a different criterion based on Hilbert space embeddings of probability dis-

tributions. Our approach is somewhat similar in that we attempt to match the mean of the

empirical distribution in the RKHS, but our criterion is different. These methods were also

not designed with contaminated data in mind.

We show that the standard kernel density estimator can be viewed as the solution to

a certain least squares problem in the RKHS. The use of quadratic criteria in density es-

timation has also been previously developed. The aforementioned work of Song et al.

optimizes the norm-squared in Hilbert space, whereas Kim [37]; Girolami & He [25];

Kim & Scott [38]; Mahapatruni & Gray [45] adopt the integrated squared error. Once

again, these methods are not designed for contaminated data.

Previous work combining robust estimation and kernel methods has focused primar-

ily on supervised learning problems. M-estimation applied to kernel regression has been

studied by various authors [8, 14, 19, 20, 70, 75]. Robust surrogate losses for kernel-based

classifiers have also been studied [74]. In unsupervised learning, a robust way of doing
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kernel principal component analysis, called spherical KPCA, has been proposed, which

applies PCA to feature vectors projected onto a unit sphere around the spatial median in a

kernel feature space [21]. The kernelized spatial depth was also proposed to estimate depth

contours nonparametrically [12]. To our knowledge, the RKDE is the first application of

M-estimation ideas in kernel density estimation.

In Section 3.2 we propose robust kernel density estimation. In Section 3.3 we present

a representer theorem for the RKDE. In Section 3.4 we describe the KIRWLS algorithm

and its convergence. The influence function is developed in Section 3.5, and experimental

results are reported in Section 3.6. Conclusions are offered in Section 3.7. Section 3.8

contains proofs of theorems.

3.2 Robust Kernel Density Estimation

Let X1, . . . ,Xn ∈ Rd be a random sample from a distribution F with a density f . The

kernel density estimate of f , also called the Parzen window estimate, is a nonparametric

estimate given by

f̂KDE (x) =
1
n

n

∑
i=1

kσ (x,Xi)

where kσ is a kernel function with bandwidth σ . To ensure that f̂KDE(x) is a density,

we assume the kernel function satisfies kσ ( · , ·) ≥ 0 and
∫

kσ (x, ·) dx = 1. We will also

assume that kσ (x,x′) is radial, in that kσ (x,x′) = g(‖x−x′‖2) for some g.

In addition, we require that kσ be positive semi-definite, which means that the matrix

(kσ (xi,x j))1≤i, j≤m is positive semi-definite for all positive integers m and all x1, . . . ,xm ∈

Rd . For radial kernels, this is equivalent to the condition that g is completely monotone,
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i.e.,

(−1)k dk

dtk g(t)≥ 0, for all k ≥ 1, t > 0,

lim
t→0

g(t) = g(0),

and to the assumption that there exists a finite Borel measure µ on R+ , [0,∞) such that

kσ (x,x′) =
∫

exp
(
−t2‖x−x′‖2)dµ(t).

See [58]. Well-known examples of kernels satisfying all of the above properties are the

Gaussian kernel

kσ (x,x′) =
(

1√
2πσ

)d

exp
(
−‖x−x′‖2

2σ2

)
, (3.2)

the multivariate Student kernel

kσ (x,x′) =
(

1√
πσ

)d

·
Γ
(
(ν +d)/2

)
Γ(ν/2)

·
(

1+
1
ν
· ‖x−x′‖2

σ2

)− ν+d
2

,

and the Laplacian kernel

kσ (x,x′) =
cd

σd exp
(
−‖x−x′‖

σ

)
where cd is a constant depending on the dimension d that ensures

∫
kσ (x, ·) dx = 1. The

PSD assumption does, however, exclude several common kernels for density estimation,

including those with finite support.

It is possible to associate every PSD kernel with a feature map and a Hilbert space.

Although there are many ways to do this, we will consider the following canonical con-

struction. Define Φ(x) , kσ (·,x), which is called the canonical feature map associated

with kσ . Then define the Hilbert space of functions H to be the completion of the span

of {Φ(x) : x ∈Rd}. This space is known as the reproducing kernel Hilbert space (RKHS)

associated with kσ . See [63] for a thorough treatment of PSD kernels and RKHSs. For our
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purposes, the critical property of H is the so-called reproducing property. It states that

for all g ∈H and all x ∈ Rd , g(x) = 〈Φ(x),g〉H . As a special case, taking g = kσ (·,x′),

we obtain

k(x,x′) = 〈Φ(x),Φ(x′)〉

for all x,x′ ∈ Rd . Therefore, the kernel evaluates the inner product of its arguments after

they have been transformed by Φ.

For radial kernels, ‖Φ(x)‖H is constant since

‖Φ(x)‖2
H = 〈Φ(x),Φ(x)〉H = kσ (x,x) = kσ (0,0).

We will denote τ = ‖Φ(x)‖H .

From this point of view, the KDE can be expressed as

f̂KDE(·) =
1
n

n

∑
i=1

kσ (·,Xi)

=
1
n

n

∑
i=1

Φ(Xi),

the sample mean of the Φ(Xi)’s. Equivalently, f̂KDE ∈H is the solution of

min
g∈H

n

∑
i=1
‖Φ(Xi)−g‖2

H .

Being the solution of a least squares problem, the KDE is sensitive to the presence

of outliers among the Φ(Xi)’s. To reduce the effect of outliers, we propose to use M-

estimation [32] to find a robust sample mean of the Φ(Xi)’s. For a robust loss function

ρ(x) on x≥ 0, the robust kernel density estimate is defined as

f̂RKDE = argmin
g∈H

n

∑
i=1

ρ
(
‖Φ(Xi)−g‖H

)
. (3.3)

Well-known examples of robust loss functions are Huber’s or Hampel’s ρ . Unlike the

quadratic loss, these loss functions have the property that ψ , ρ ′ is bounded. For Huber’s
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ρ , ψ is given by

ψ (x) =


x, 0≤ x≤ a

a, a < x.

(3.4)

and for Hampel’s ρ ,

ψ(x) =



x, 0≤ x < a

a, a≤ x < b

a · (c− x)/(c−b), b≤ x < c

0, c≤ x.

(3.5)

The functions ρ(x),ψ(x), and ψ(x)/x are plotted in Figure 3.1, for the quadratic, Huber,

and Hampel losses. Note that while ψ(x)/x is constant for the quadratic loss, for Huber’s

or Hampel’s loss, this function is decreasing in x. This is a desirable property for a robust

loss function, which will be explained later in detail. While our examples and experiments

employ Huber’s and Hampel’s losses, many other losses can be employed.

We will argue below that f̂RKDE is a valid density, having the form ∑
n
i=1 wikσ (·,Xi)

with weights wi that are nonnegative and sum to one. To illustrate the estimator, Figure

3.2 (a) shows a contour plot of a Gaussian mixture distribution on R2. Figure 3.2 (b)

depicts a contour plot of a KDE based on a training sample of size 200 from the Gaussian

mixture. As we can see in Figure 3.2 (c) and (d), when 20 contaminating data points are

added, the KDE is significantly altered in low density regions, while the RKDE is much

less affected.

Throughout this chapter, we define ϕ(x), ψ(x)/x and consider the following assump-

tions on ρ , ψ , and ϕ:

(A1) ρ is non-decreasing, ρ(0) = 0, and ρ(x)/x→ 0 as x→ 0
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Fig. 3.1: The comparison between three different ρ(x), ψ(x), and ψ(x)/x: quadratic, Hu-
ber’s, and Hampel’s.

(A2) ϕ(0), limx→0
ψ(x)

x exists and is finite

(A3) ψ and ϕ are continuous

(A4) ψ and ϕ are bounded

(A5) ϕ is Lipschitz continuous

which hold for Huber’s and Hampel’s losses, as well as several others.
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(a) True density (b) KDE without outliers

(c) KDE with outliers (d) RKDE with outliers

Fig. 3.2: Contours of a nominal density and kernel density estimates along with data sam-
ples from the nominal density (o) and contaminating density (x). 200 points are
from the nominal distribution and 20 contaminating points are from a uniform
distribution.

3.3 Representer Theorem

In this section, we will describe how f̂RKDE(x) can be expressed as a weighted combi-

nation of the kσ (x,Xi)’s. A formula for the weights explains how a robust sample mean in

H translates to a robust nonparametric density estimate. We also present necessary and

sufficient conditions for a function to be an RKDE. From (3.3), f̂RKDE = argming∈H J(g),
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where

J(g) =
1
n

n

∑
i=1

ρ(‖Φ(Xi)−g‖H ). (3.6)

First, let us find necessary conditions for g to be a minimizer of J. Since the space over

which we are optimizing J is a Hilbert space, the necessary conditions are characterized

through Gateaux differentials of J. Given a vector space X and a function T : X → R,

the Gateaux differential of T at x ∈X with incremental h ∈X is defined as

δT (x;h) = lim
α→0

T (x+αh)−T (x)
α

.

If δT (x0;h) is defined for all h ∈X , a necessary condition for T to have a minimum at

x0 is that δT (x0;h) = 0 for all h ∈X [44]. From this optimality principle, we have the

following lemma.

Lemma 3.1. Suppose assumptions (A1) and (A2) are satisfied. Then the Gateaux differ-

ential of J at g ∈H with incremental h ∈H is

δJ(g;h) =−
〈
V (g),h

〉
H

where V : H →H is given by

V (g) =
1
n

n

∑
i=1

ϕ(‖Φ(Xi)−g‖H ) ·
(
Φ(Xi)−g

)
.

A necessary condition for g = f̂RKDE is V (g) = 0.

Lemma 3.1 is used to establish the following representer theorem, so named because

f̂RKDE can be represented as a weighted combination of kernels centered at the data points.

Similar results are known for supervised kernel methods [55].

Theorem 3.2. Suppose assumptions (A1) and (A2) are satisfied. Then,

f̂RKDE(x) =
n

∑
i=1

wikσ (x,Xi) (3.7)
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where wi ≥ 0, ∑
n
i=1 wi = 1. Furthermore,

wi ∝ ϕ(‖Φ(Xi)− f̂RKDE‖H ). (3.8)

It follows that f̂RKDE is a density. The representer theorem also gives the following

interpretation of the RKDE. If ϕ is decreasing, as is the case for a robust loss, then wi will

be small when ‖Φ(Xi)− f̂RKDE‖H is large. Now for any g ∈H ,

‖Φ(Xi)−g‖2
H = 〈Φ(Xi)−g,Φ(Xi)−g〉H

= ‖Φ(Xi)‖2
H −2〈Φ(Xi),g〉H +‖g‖2

H

= τ
2−2g(Xi)+‖g‖2

H .

Taking g = f̂RKDE , we see that wi is small when f̂RKDE(Xi) is small. Therefore, the RKDE

is robust in the sense that it down-weights outlying points.

Theorem 3.2 provides a necessary condition for f̂RKDE to be the minimizer of (3.6).

With an additional assumption on J, this condition is also sufficient.

Theorem 3.3. Suppose that assumptions (A1) and (A2) are satisfied, and J is strictly

convex. Then (3.7), (3.8), and ∑
n
i=1 wi = 1 are sufficient for f̂RKDE to be the minimizer of

(3.6).

Since the previous result assumes J is strictly convex, we give some simple conditions

that imply this property.

Lemma 3.4. J is strictly convex provided either of the following conditions is satisfied:

(i) ρ is strictly convex and non-decreasing.

(ii) ρ is convex, strictly increasing, n≥ 3, and K = (kσ (Xi,X j))
n
i, j=1 is positive definite.

The second condition implies that J can be strictly convex even for the Huber loss,

which is convex but not strictly convex.
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3.4 KIRWLS Algorithm and Its Convergence

In general, (3.3) does not have a closed form solution and f̂RKDE has to be found

by an iterative algorithm. Fortunately, the iteratively re-weighted least squares (IRWLS)

algorithm used in classical M-estimation [32] can be extended to a RKHS using the kernel

trick. The kernelized iteratively re-weighted least squares (KIRWLS) algorithm starts with

initial w(0)
i ∈R , i= 1, . . . ,n such that w(0)

i ≥ 0 and ∑
n
i=1 w(0)

i = 1, and generates a sequence

{ f (k)} by iterating on the following procedure:

f (k) =
n

∑
i=1

w(k−1)
i Φ(Xi),

w(k)
i =

ϕ(‖Φ(Xi)− f (k)‖H )

∑
n
j=1 ϕ(‖Φ(X j)− f (k)‖H )

.

Intuitively, this procedure is seeking a fixed point of equations (3.7) and (3.8). The com-

putation of ‖Φ(X j)− f (k)‖H can be done by observing

‖Φ(X j)− f (k)‖2
H =

〈
Φ(X j)− f (k),Φ(X j)− f (k)

〉
H

=
〈
Φ(X j),Φ(X j)

〉
H
−2
〈
Φ(X j), f (k)

〉
H

+
〈

f (k), f (k)
〉
H
.

Since f (k) = ∑
n
i=1 w(k−1)

i Φ(Xi), we have〈
Φ(X j),Φ(X j)

〉
H

= kσ (X j,X j)〈
Φ(X j), f (k)

〉
H

=
n

∑
i=1

w(k−1)
i kσ (X j,Xi)

〈
f (k), f (k)

〉
H

=
n

∑
i=1

n

∑
l=1

w(k−1)
i w(k−1)

l kσ (Xi,Xl).

Recalling that Φ(x) = kσ (·,x), after the kth iteration

f (k)(x) =
n

∑
i=1

w(k−1)
i kσ (x,Xi) .

Therefore, KIRWLS produces a sequence of weighted KDEs. The computational com-

plexity is O(n2) per iteration. In our experience, the number of iterations needed is typi-

cally well below 100. Initialization is discussed in the experimental study below.
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KIRWLS can also be viewed as a kind of optimization transfer/majorize-minimize

algorithm [33,41] with a quadratic surrogate for ρ . This perspective is used in our analysis

in Section 3.8.4, where f (k) is seen to be the solution of a weighted least squares problem.

The next theorem characterizes the convergence of KIRWLS in terms of {J( f (k))}∞
k=1

and { f (k)}∞
k=1.

Theorem 3.5. Suppose assumptions (A1) - (A3) are satisfied, and ϕ(x) is nonincreasing.

Let

S =
{

g ∈H
∣∣V (g) = 0

}
and { f (k)}∞

k=1 be the sequence produced by the KIRWLS algorithm. Then, J( f (k)) mono-

tonically decreases at every iteration and converges. Also, S 6= /0 and

‖ f (k)−S ‖H , inf
g∈S
‖ f (k)−g‖H → 0

as k→ ∞.

In words, as the number of iterations grows, f (k) becomes arbitrarily close to the set of

stationary points of J, points g ∈H satisfying δJ(g;h) = 0 ∀h ∈H .

Corollary 3.6. Suppose that the assumptions in Theorem 3.5 hold and J is strictly convex.

Then, { f (k)}∞
k=1 converges to f̂RKDE in the H -norm.

This follows because under strict convexity of J, |S |= 1.

3.5 Influence Function for Robust KDE

To quantify the robustness of the RKDE, we study the influence function. First, we

recall the traditional influence function from robust statistics. Let T (F) be an estimator

of a scalar parameter based on a distribution F . As a measure of robustness of T , the
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influence function was proposed by Hampel [28]. The influence function (IF) for T at F

is defined as

IF(x′;T,F) = lim
s→0

T ((1− s)F + sδx′)−T (F)

s
,

where δx′ represents a discrete distribution that assigns probability 1 to the point x′. Basi-

cally, IF(x′;T,F) represents how T (F) changes when the distribution F is contaminated

with infinitesimal probability mass at x′. One robustness measure of T is whether the

corresponding IF is bounded or not.

For example, the maximum likelihood estimator for the unknown mean θ of Gaussian

distribution is the sample mean T (F),

T (F) = EF [X ] =
∫

xdF(x). (3.9)

The influence function for T (F) in (3.9) is

IF(x′;T,F) = lim
s→0

T ((1− s)F + sδx′)−T (F)

s

= x′−EF [X ].

Since |IF(x′;T,F)| increases without bound as x′ goes to ±∞, the estimator is considered

to be not robust.

Now, consider a similar concept for a function estimate. Since the estimate is a func-

tion, not a scalar, we should be able to express the change of the function value at every

x.

Definition 3.7 (IF for function estimate). Let T (x;F) be a function estimate based on F ,

evaluated at x. We define the influence function for T (x;F) as

IF(x,x′;T,F) = lim
s→0

T (x;Fs)−T (x;F)

s

where Fs = (1− s)F + sδx′ .
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IF(x,x′;T,F) represents the change of the estimated function T at x when we add

infinitesimal probability mass at x′ to F . For example, the standard KDE is

T (x;F) = f̂KDE(x;F) =
∫

kσ (x,y)dF(y)

= EF [kσ (x,X)]

where X∼ F . In this case, the influence function is

IF(x,x′; f̂KDE ,F) = lim
s→0

f̂KDE(x;Fs)− f̂KDE(x;F)

s

= lim
s→0

EFs[kσ (x,X)]−EF [kσ (x,X)]

s

= lim
s→0

−sEF [kσ (x,X)]+ sEδx′
[kσ (x,X)]

s

=−EF [kσ (x,X)]+Eδx′
[kσ (x,X)]

=−EF [kσ (x,X)]+ kσ (x,x′) (3.10)

With the empirical distribution Fn =
1
n ∑

n
i=1 δXi ,

IF(x,x′; f̂KDE ,Fn) =−
1
n

n

∑
i=1

kσ (x,Xi)+ kσ (x,x′). (3.11)

To investigate the influence function of the RKDE, we generalize its definition to a

general distribution µ , writing f̂RKDE( · ; µ) = fµ where

fµ = argmin
g∈H

∫
ρ(‖Φ(x)−g‖H )dµ(x).

For the robust KDE, T (x,F) = f̂RKDE(x;F) = 〈Φ(x), fF〉H , we have the following char-

acterization of the influence function. Let q(x) = xψ ′(x)−ψ(x).

Theorem 3.8. Suppose assumptions (A1)-(A5) are satisfied. In addition, assume that

fFs → fF as s→ 0. If ḟF , lims→0
fFs− fF

s exists, then

IF(x,x′; f̂RKDE ,F) = 〈Φ(x), ḟF〉H
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where ḟF ∈H satisfies(∫
ϕ(‖Φ(x)− fF‖H )dF

)
· ḟF

+
∫ (〈 ḟF ,Φ(x)− fF

〉
H

‖Φ(x)− fF‖3
H

·q(‖Φ(x)− fF‖H ) ·
(
Φ(x)− fF

))
dF(x)

= (Φ(x′)− fF) ·ϕ(‖Φ(x′)− fF‖H ). (3.12)

Unfortunately, for Huber or Hampel’s ρ , there is no closed form solution for ḟF of

(3.12). However, if we work with Fn instead of F , we can find ḟFn explicitly. Let

1 = [1, . . . ,1]T ,

k′ = [kσ (x′,X1), . . . ,kσ (x′,Xn)]
T ,

In be the n×n identity matrix, K , (kσ (Xi,X j))
n
i=1, j=1 be the kernel matrix, Q be a diag-

onal matrix with Qii = q(‖Φ(Xi)− fFn‖H )/‖Φ(Xi)− fFn‖3
H ,

γ =
n

∑
i=1

ϕ(‖Φ(Xi)− fFn‖H ),

and

w = [w1, . . . ,wn]
T ,

where w gives the RKDE weights as in (3.7).

Theorem 3.9. Suppose assumptions (A1)-(A5) are satisfied. In addition, assume that

• fFn,s → fFn as s→ 0 (satisfied when J is strictly convex)

• the extended kernel matrix K′ based on {Xi}n
i=1
⋃
{x′} is positive definite.

Then,

IF(x,x′; f̂RKDE ,Fn) =
n

∑
i=1

αikσ (x,Xi)+α
′kσ (x,x′)

where

α
′ = n ·ϕ(‖Φ(x′)− fFn‖H )/γ
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and α = [α1, . . . ,αn]
T is the solution of the following system of linear equations:{

γIn +(In−1 ·wT )T Q(In−1 ·wT )K
}

α

= −nϕ(‖Φ(x′)− fFn‖H )w−α
′(In−1 ·wT )T Q · (In−1 ·wT ) ·k′.

Note that α ′ captures the amount by which the density estimator changes near x′ in

response to contamination at x′. Now α ′ is given by

α
′ =

ϕ(‖Φ(x′)− fFn‖H )
1
n ∑

n
i=1 ϕ(‖Φ(Xi)− fFn‖H )

.

For a standard KDE, we have ϕ ≡ 1 and α ′ = 1, in agreement with (3.11). For robust

ρ , ϕ(‖Φ(x′)− fFn‖H ) can be viewed as a measure of “inlyingness”, with more inlying

points having larger values. This follows from the discussion just after Theorem 3.2. If the

contaminating point x′ is less inlying than the average Xi, then α ′ < 1. Thus, the RKDE

is less sensitive to outlying points than the KDE.

As mentioned above, in classical robust statistics, the robustness of an estimator can

be inferred from the boundedness of the corresponding influence function. However, the

influence functions for density estimators are bounded even if ‖x′‖→∞. Therefore, when

we compare the robustness of density estimates, we compare how close the influence func-

tions are to the zero function.

Simulation results are shown in Figure 3.3 for a synthetic univariate distribution. Fig-

ure 3.3 (a) shows the density of the distribution, and three estimates. Figure 3.3 (b) shows

the corresponding influence functions. As we can see in (b), for a point x′ in the tails of

F , the influence functions for the robust KDEs are overall smaller, in absolute value, than

those of the standard KDE (especially with Hampel’s loss). Additional numerical results

are given in Section 3.6.2.

Finally, it is interesting to note that for any density estimator f̂ ,∫
IF(x,x′; f̂ ,F)dx = lim

s→0

∫
f̂ (x;Fs)dx−

∫
f̂ (x;F)dx

s
= 0.
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Fig. 3.3: (a) true density and density estimates. (b) IF as a function of x when x′ =−5

Thus α ′ = −∑
n
i=1 αi for a robust KDE. This suggests that since f̂RKDE has a smaller in-

crease at x′ (compared to the KDE), it will also have a smaller decrease (in absolute value)

near the training data. Therefore, the norm of IF(x,x′; f̂RKDE ,Fn) should be smaller overall

when x′ is an outlier. We confirm this in our experiments below.

3.6 Experiments

The experimental setup is described in 3.6.1, and results are presented in 3.6.2.

3.6.1 Experimental Setup

Data, methods, and evaluation are now discussed.

3.6.1.1 Data

We conduct experiments on 15 benchmark data sets (Banana, B. Cancer, Diabetes,

F. Solar, German, Heart, Image, Ringnorm, Splice, Thyroid, Twonorm, Waveform, Pima

Indian, Iris, MNIST), which were originally used in the task of classification. The data

sets are available online: see http://www.fml.tuebingen.mpg.de/Members/ for the first 12

data sets and the UCI machine learning repository for the last 3 data sets. There are 100
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randomly permuted partitions of each data set into “training” and “test” sets (20 for Image,

Splice, and MNIST).

Given X1, . . . ,Xn ∼ f = (1− p) · f0 + p · f1, our goal is to estimate f0, or the level sets

of f0. For each data set with two classes, we take one class as the nominal data from f0

and the other class as contamination from f1. For Iris, there are 3 classes and we take one

class as nominal data and the other two as contamination. For MNIST, we choose to use

digit 0 as nominal and digit 1 as contamination. For MNIST, the original dimension 784

is reduced to 8 via kernel PCA using a Gaussian kernel with bandwidth 30. For each data

set, the training sample consists of n0 nominal data and n1 contaminating points, where

n1 = ε ·n0 for ε = 0, 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30. Note that each ε corresponds

to an anomaly proportion p such that p = ε

1+ε
. n0 is always taken to be the full amount of

training data for the nominal class.

3.6.1.2 Methods

In our experiments, we compare three density estimators: the standard kernel density

estimator (KDE), variable kernel density estimator (VKDE), and robust kernel density

estimator (RKDE) with Hampel’s loss. For all methods, the Gaussian kernel in (3.2) is

used as the kernel function kσ and the kernel bandwidth σ is set as the median distance of

a training point Xi to its nearest neighbor.

The VKDE has a variable bandwidth for each data point,

f̂V KDE(x) =
1
n

n

∑
i=1

kσi(x,Xi),

and the bandwidth σi is set as

σi = σ ·
(

η

f̂KDE(Xi)

)1/2

where η is the mean of { f̂KDE(Xi)}n
i=1 [1, 15]. There is another implementation of the
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VKDE where σi is based on the distance to its k-th nearest neighbor [9]. However, this

version did not perform as well and is therefore omitted.

For the RKDE, the parameters a, b, and c in (3.5) are set as follows. First, we compute

f̂med , the RKDE based on ρ = | · |, and set di = ‖Φ(Xi)− f̂med‖H . Then, a is set to be

the median of {di}, b the 75th percentile of {di}, and c the 85th percentile of {di}. After

finding these parameters, we initialize w(0)
i such that f (1) = f̂med and terminate KIRWLS

when

|J( f (k+1))− J( f (k))|
J( f (k))

< 10−8.

3.6.1.3 Evaluation

We evaluate the performance of the three density estimators in three different settings.

First, we use the influence function to study sensitivity to outliers. Second and third, we

compare the methods at the tasks of density estimation and anomaly detection, respec-

tively. In each case, an appropriate performance measure is adopted. These are explained

in detail in Section 3.6.2. To compare a pair of methods across multiple data sets, we

adopt the Wilcoxon signed-rank test [71]. Given a performance measure, and given a pair

of methods and ε , we compute the difference hi between the performance of two density

estimators on the ith data set. The data sets are ranked 1 through 15 according to their

absolute values |hi|, with the largest |hi| corresponding to the rank of 15. Let R1 be the

sum of ranks over these data sets where method 1 beats method 2, and let R2 be the sum

of the ranks for the other data sets. The signed-rank test statistic T , min(R1,R2) and the

corresponding p-value are used to test whether the performances of the two methods are

significantly different. For example, the critical value of T for the signed rank test is 25 at

a significance level of 0.05. Thus, if T ≤ 25, the two methods are significantly different at

the given significance level, and the larger of R1 and R2 determines the method with better
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performance.

3.6.2 Experimental Results

We begin by studying influence functions.

3.6.2.1 Sensitivity using influence function

As the first measure of robustness, we compare the influence functions for KDEs and

RKDEs, given in (3.11) and Theorem 3.9, respectively. To our knowledge, there is no

formula for the influence function of VKDEs, and therefore VKDEs are excluded in the

comparison. We examine α(x′) = IF(x′,x′;T,Fn) and

β (x′) =
(∫ (

IF(x,x′;T,Fn)
)2dx

)1/2

.

In words, α(x′) reflects the change of the density estimate value at an added point x′ and

β (x′) is an overall impact of x′ on the density estimate over Rd .

In this experiment, ε is equal to 0, i.e, the density estimators are learned from a pure

nominal sample. Then, we take contaminating points from the test sample, each of which

serves as an x′. This gives us multiple α(x′)’s and β (x′)’s. The performance measures

are the medians of {α(x′)} and {β (x′)} (smaller means better performance). The results

using signed rank statistics are shown in Table 3.1. The results clearly states that for all

data sets, RKDEs are less affected by outliers than KDEs.

3.6.2.2 Kullback-Leibler (KL) divergence

Second, we present the Kullback-Leibler (KL) divergence between density estimates

f̂ and f0,

DKL( f̂ || f0) =
∫

f̂ (x) log
f̂ (x)
f0(x)

dx.

This KL divergence is large whenever f̂ estimates f0 to have mass where it does not.



40

method 1 method 2 α(x′) β (x′)

RKDE KDE

R1 120 120
R2 0 0
T 0 0

p-value 0.00 0.00

Table 3.1: The signed-rank statistics and p-values of the Wilcoxon signed-rank test using
the medians of {α(x′)} and {β (x′)} as a performance measure. If R1 is larger
than R2, method 1 is better than method 2.

The computation of DKL is done as follows. Since we do not know the nominal f0, it

is estimated as f̃0, a KDE based on a separate nominal sample, obtained from the test data

for each benchmark data set. Then, the integral is approximated by the sample mean, i.e.,

DKL( f̂ || f0)≈
n′

∑
i=1

log
f̂ (x′i)
f̃0(x′i)

where {x′i}n′
i=1 is an i.i.d sample from the estimated density f̂ with n′ = 2n = 2(n0 + n1).

Note that the estimated KL divergence can have an infinite value when f̃0(y) = 0 (to

machine precision) and f̂ (y)> 0 for some y ∈ Rd . The averaged KL divergence over the

permutations are used as the performance measure (smaller means better performance).

Table 3.2 summarizes the results.

When comparing RKDEs and KDEs, the results show that KDEs have smaller KL

divergence than RKDEs with ε = 0. As ε increases, however, RKDEs estimate f0 more

accurately than KDEs. The results also demonstrate that VKDEs are the worst in the sense

of KL divergence. Note that VKDEs place a total mass of 1/n at all Xi, whereas the RKDE

will place a mass wi < 1/n at outlying points.

3.6.2.3 Anomaly detection

In this experiment, we apply the density estimators in anomaly detection problems.

If we had a pure sample from f0, we would estimate f0 and use {x : f̂0(x) > λ} as a

detector. For each λ , we could get a false negative and false positive probability using test
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method 1 method 2
ε

0.00 0.05 0.10 0.15 0.20 0.25 0.30

RKDE KDE

R1 26 67 78 83 94 101 103
R2 94 53 42 37 26 19 17
T 26 53 42 37 26 19 17

p-value 0.06 0.72 0.33 0.21 0.06 0.02 0.01

RKDE VKDE

R1 104 117 117 117 117 119 119
R2 16 3 3 3 3 1 1
T 16 3 3 3 3 1 1

p-value 0.01 0.00 0.00 0.00 0.00 0.00 0.00

VKDE KDE

R1 0 0 0 0 0 0 0
R2 120 120 120 120 120 120 120
T 0 0 0 0 0 0 0

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3.2: The signed-rank statistics and p-values of the Wilcoxon signed-rank test using
KL divergence as a performance measure. If R1 is larger than R2, method 1 is
better than method 2.

data. By varying λ , we would then obtain a receiver operating characteristic (ROC) and

area under the curve (AUC). However, since we have a contaminated sample, we have to

estimate f0 robustly. Robustness can be checked by comparing the AUC of the anomaly

detectors, where the density estimates are based on the contaminated training data (higher

AUC means better performance).

Examples of the ROCs are shown in Figure 3.4. The RKDE provides better detection

probabilities, especially at low false alarm rates. This results in higher AUC. For each pair

of methods and each ε , R1, R2, T and p-values are shown in Table 3.3. The results indicate

that RKDEs are significantly better than KDEs when ε ≥ 0.20 with significance level 0.05.

RKDEs are also better than VKDEs when ε ≥ 0.15 but the difference is not significant.

We also note that we have also evaluated the kernelized spatial depth (KSD) [12] in this

setting. While this method does not yield a density estimate, it does aim to estimate density

contours robustly. We found that the KSD performs worse in terms of AUC that either the

RKDE or KDE, so those results are omitted [39].
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(b) Iris, ε = 0.1

Fig. 3.4: Examples of ROCs.

3.7 Conclusions

When kernel density estimators employ a smoothing kernel that is also a PSD ker-

nel, they may be viewed as M-estimators in the RKHS associated with the kernel. While

the traditional KDE corresponds to the quadratic loss, the RKDE employs a robust loss

to achieve robustness to contamination of the training sample. The RKDE is a weighted

kernel density estimate, where smaller weights are given to more outlying data points.

These weights can be computed efficiently using a kernelized iteratively re-weighted least

squares algorithm. The decreased sensitivity of RKDEs to contamination is further at-

tested by the influence function, as well as experiments on anomaly detection and density

estimation problems.

Robust kernel density estimators are nonparametric, making no parametric assump-

tions on the data generating distributions. However, their success is still contingent on

certain conditions being satisfied. Obviously, the percentage of contaminating data must

be less than 50%; our experiments examine contamination up to around 25%. In addition,

the contaminating distribution must be outlying with respect to the nominal distribution.
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method 1 method 2
ε

0.00 0.05 0.10 0.15 0.20 0.25 0.30

RKDE KDE

R1 26 46 67 90 95 96 99
R2 94 74 53 30 25 24 21
T 26 46 53 30 25 24 21

p-value 0.06 0.45 0.72 0.09 0.05 0.04 0.03

RKDE VKDE

R1 33 49 58 75 80 90 86
R2 87 71 62 45 40 30 34
T 33 49 58 45 40 30 34

p-value 0.14 0.56 0.93 0.42 0.28 0.09 0.15

VKDE KDE

R1 38 70 79 91 95 96 99
R2 82 50 41 29 25 24 21
T 38 50 41 29 25 24 21

p-value 0.23 0.60 0.30 0.08 0.05 0.04 0.03

Table 3.3: The signed-rank statistics of the Wilcoxon signed-rank test using AUC as a
performance measure. If R1 is larger than R2, method 1 is better than method
2.

Furthermore, the anomalous component should not be too concentrated, otherwise it may

look like a mode of the nominal component. Such assumptions seem necessary given the

unsupervised nature of the problem, and are implicit in our interpretation of the representer

theorem and influence functions.

Although our focus has been on density estimation, in many applications the ultimate

goal is not to estimate a density, but rather to estimate decision regions. Our methodology

is immediately applicable to such situations, as evidenced by our experiments on anomaly

detection. It is only necessary that the kernel be PSD here; the assumption that the kernel

be nonnegative and integrate to one can clearly be dropped. This allows for the use of more

general kernels, such as polynomial kernels, or kernels on non-Euclidean domains such as

strings and trees. The learning problem here could be described as one-class classification

with contaminated data.

In future work it would be interesting to investigate asymptotics, the bias-variance

trade-off, and the efficiency-robustness trade-off of robust kernel density estimators, as
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well as the impact of different losses and kernels.

3.8 Proofs

We begin with three lemmas and proofs. The first lemma will be used in the proofs of

Lemma 3.11 and Theorem 3.9, the second one in the proof of Lemma 3.4, and the third

one in the proof of Theorem 3.5.

Lemma 3.10. Let z1, . . . ,zm be distinct points in Rd . If K = (k(zi,z j))
n
i, j=1 is positive

definite, then Φ(zi) = k( · ,zi)’s are linearly independent.

Proof. ∑
m
i=1 αiΦ(zi) = 0 implies

0 =

∥∥∥∥ m

∑
i=1

αiΦ(zi)

∥∥∥∥2

H

=

〈 m

∑
i=1

αiΦ(zi),
m

∑
j=1

α jΦ(z j)

〉
H

=
m

∑
i=1

m

∑
j=1

αiα jk(zi,z j)

and from positive definiteness of K, α1 = · · ·= αm = 0.

Lemma 3.11. Let H be a RKHS associated with a kernel k, and x1, x2, and x3 be distinct

points in Rd . Assume that K = (k(xi,x j))
3
i, j=1 is positive definite. For any g,h ∈H with

g 6= h, Φ(xi)−g and Φ(xi)−h are linearly independent for some i ∈ {1,2,3}.

Proof. We will prove the lemma by contradiction. Suppose Φ(xi)− g and Φ(xi)− h are

linearly dependent for all i = 1,2,3. Then, there exists (αi,βi) 6= (0,0) for i = 1,2,3 such

that

α1(Φ(x1)−g)+β1(Φ(x1)−h) = 0 (3.13)

α2(Φ(x2)−g)+β2(Φ(x2)−h) = 0 (3.14)

α3(Φ(x3)−g)+β3(Φ(x3)−h) = 0. (3.15)
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Note that αi +βi 6= 0 since g 6= h.

First consider the case α2 = 0. This gives h = Φ(x2), and α1 6= 0 and α3 6= 0. Then,

(3.13) and (3.14) simplify to

g =
α1 +β1

α1
Φ(x1)−

β1

α1
Φ(x2),

g =
α3 +β3

α3
Φ(x3)−

β3

α3
Φ(x2),

respectively. This is contradiction because Φ(x1), Φ(x2), and Φ(x3) are linearly indepen-

dent by Lemma 3.10 and

α1 +β1

α1
Φ(x1)+

(
β3

α3
− β1

α1

)
Φ(x2)−

α3 +β3

α3
Φ(x3) = 0

where (α1 +β1)/α1 6= 0.

Now consider the case where α2 6= 0. Subtracting (3.14) multiplied by α1 from (3.13)

multiplied by α2 gives

(α1β2−α2β1)h =−α2(α1 +β1)Φ(x1)+α1(α2 +β2)Φ(x2).

In the above equation α1β2−α2β1 6= 0 because this implies α2(α1+β1) = 0 and α1(α2+

β2) = 0, which, in turn, implies α2 = 0. Therefore, h can be expressed as h = λ1Φ(x1)+

λ2Φ(x2) where

λ1 =−
α2(α1 +β1)

α1β2−α2β1
, λ2 =

α1(α2 +β2)

α1β2−α2β1
.

Similarly, from (3.14) and (3.15), h = λ3Φ(x2)+λ4Φ(x3) where

λ3 =−
α3(α2 +β2)

α2β3−α3β2
, λ4 =

α2(α3 +β3)

α2β3−α3β2
.

Therefore, we have h = λ1Φ(x1)+λ2Φ(x2) = λ3Φ(x2)+λ4Φ(x3). Again, from the linear

independence of Φ(x1), Φ(x2), and Φ(x3), we have λ1 = 0, λ2 = λ3, λ4 = 0. However,

λ1 = 0 leads to α2 = 0.

Therefore, Φ(xi)−g and Φ(xi)−h are linearly independent for some i ∈ {1,2,3}.
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Lemma 3.12. Given X1, . . . ,Xn, let Dn ⊂H be defined as

Dn =

{
g
∣∣∣∣g =

n

∑
i=1

wi ·Φ(Xi), wi ≥ 0,
n

∑
i=1

wi = 1
}

Then, Dn is compact.

Proof. Define

A =

{
(w1, . . . ,wn) ∈ Rn

∣∣∣∣wi ≥ 0,
n

∑
i=1

wi = 1
}
,

and a mapping W

W : (w1, . . . ,wn) ∈ A→
n

∑
i=1

wi ·Φ(Xi) ∈H .

Note that A is compact, W is continuous, and Dn is the image of A under W . Since the

continuous image of a compact space is also compact [49], Dn is compact.

3.8.1 Proof of Lemma 3.1

We begin by calculating the Gateaux differential of J. We consider the two cases:

Φ(x)− (g+αh) = 0 and Φ(x)− (g+αh) 6= 0.

For Φ(x)− (g+αh) 6= 0,

∂

∂α
ρ
(
‖Φ(x)− (g+αh)‖H

)
= ψ

(
‖Φ(x)− (g+αh)‖H

)
· ∂

∂α
‖Φ(x)− (g+αh)‖H

= ψ
(
‖Φ(x)− (g+αh)‖H

)
· ∂

∂α

√
‖Φ(x)− (g+αh)‖2

H

= ψ
(
‖Φ(x)− (g+αh)‖H

)
·

∂

∂α
‖Φ(x)− (g+αh)‖2

H

2
√
‖Φ(x)− (g+αh)‖2

H

=
ψ
(
‖Φ(x)− (g+αh)‖H

)
2‖Φ(x)− (g+αh)‖H

· ∂

∂α

(
‖Φ(x)−g‖2

H −2
〈
Φ(x)−g,αh

〉
H

+α
2‖h‖2

H

)
=

ψ
(
‖Φ(x)− (g+αh)‖H

)
‖Φ(x)− (g+αh)‖H

·
(
−
〈
Φ(x)−g,h

〉
H

+α‖h‖2
H

)
= ϕ

(
‖Φ(x)− (g+αh)‖H

)
·
(
−
〈
Φ(x)− (g+αh),h

〉
H

)
. (3.16)
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For Φ(x)− (g+αh) = 0,

∂

∂α
ρ
(
‖Φ(x)− (g+αh)‖H

)
= lim

δ→0

ρ
(
‖Φ(x)− (g+(α +δ )h)‖H

)
−ρ
(
‖Φ(x)− (g+αh)‖H

)
δ

= lim
δ→0

ρ
(
‖δh‖H

)
−ρ
(
0
)

δ

= lim
δ→0

ρ
(
δ‖h‖H

)
δ

=


limδ→0

ρ(0)
δ

, h = 0

limδ→0
ρ(δ‖h‖H )

δ‖h‖H
· ‖h‖H , h 6= 0

= 0

= ϕ
(
‖Φ(x)− (g+αh)‖H

)
·
(
−
〈
Φ(x)− (g+αh),h

〉
H

)
(3.17)

where the second to the last equality comes from (A1) and the last equality comes from

the facts that Φ(x)− (g+αh) = 0 and ϕ(0) is well-defined by (A2).

From (3.16) and (3.17), we can conclude that for any g, h ∈H , and x ∈ Rd ,

∂

∂α
ρ
(
‖Φ(x)− (g+αh)‖H

)
= ϕ

(
‖Φ(x)− (g+αh)‖H

)
·
(
−
〈
Φ(x)− (g+αh),h

〉
H

)
(3.18)
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Therefore,

δJ(g;h) =
∂

∂α
J(g+αh)

∣∣
α=0

=
∂

∂α

(
1
n

n

∑
i=1

ρ
(
‖Φ(Xi)− (g+αh)‖H

))∣∣∣∣
α=0

=
1
n

n

∑
i=1

∂

∂α
ρ
(
‖Φ(Xi)− (g+αh)‖H

)∣∣∣∣
α=0

=
1
n

n

∑
i=1

ϕ
(
‖Φ(Xi)− (g+αh)‖H

)
·
(
−
〈
Φ(Xi)− (g+αh),h

〉
H

)∣∣∣∣
α=0

= −1
n

n

∑
i=1

ϕ
(
‖Φ(Xi)−g‖H

)
·
〈
Φ(Xi)−g,h

〉
H

= −
〈

1
n

n

∑
i=1

ϕ
(
‖Φ(Xi)−g‖H

)
·
(
Φ(Xi)−g

)
,h
〉

H

= −
〈
V (g),h

〉
H
.

The necessary condition for g to be a minimizer of J, i.e., g = f̂RKDE , is that δJ(g;h) =

0, ∀h ∈H , which leads to V (g) = 0.

3.8.2 Proof of Theorem 3.2

From Lemma 3.1, V ( f̂RKDE) = 0, that is,

1
n

n

∑
i=1

ϕ(‖Φ(Xi)− f̂RKDE‖H ) · (Φ(Xi)− f̂RKDE) = 0.

Solving for f̂RKDE , we have f̂RKDE = ∑
n
i=1 wiΦ(Xi) where

wi =

( n

∑
j=1

ϕ(‖Φ(X j)− f̂RKDE‖H )

)−1

·ϕ(‖Φ(Xi)− f̂RKDE‖H ).

Since ρ is non-decreasing, wi ≥ 0. Clearly ∑
n
i=1 wi = 1

3.8.3 Proof of Lemma 3.4

J is strictly convex on H if for any 0 < λ < 1, and g,h ∈H with g 6= h

J(λg+(1−λ )h)< λJ(g)+(1−λ )J(h).
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Note that

J(λg+(1−λ )h) =
1
n

n

∑
i=1

ρ
(
‖Φ(Xi)−λg− (1−λ )h‖H

)
=

1
n

n

∑
i=1

ρ
(
‖λ (Φ(Xi)−g)+(1−λ )(Φ(Xi)−h)‖H

)
≤ 1

n

n

∑
i=1

ρ
(
λ‖Φ(Xi)−g‖H +(1−λ )‖Φ(Xi)−h‖H

)
≤ 1

n

n

∑
i=1

λρ
(
‖Φ(Xi)−g‖H

)
+(1−λ )ρ

(
‖Φ(Xi)−h‖H

)
= λJ(g)+(1−λ )J(h).

The first inequality comes from the fact that ρ is non-decreasing and

‖λ (Φ(Xi)−g)+(1−λ )(Φ(Xi)−h)‖H ≤ λ‖Φ(Xi)−g‖H +(1−λ )‖Φ(Xi)−h‖H ,

and the second inequality comes from the convexity of ρ .

Under condition (i), ρ is strictly convex and thus the second inequality is strict, imply-

ing J is strictly convex. Under condition (ii), we will show that the first inequality is strict

using proof by contradiction. Suppose the first inequality holds with equality. Since ρ is

strictly increasing, this can happen only if

‖λ (Φ(Xi)−g)+(1−λ )(Φ(Xi)−h)‖H = λ‖Φ(Xi)−g‖H +(1−λ )‖Φ(Xi)−h‖H ,

for i = 1, . . . ,n. Equivalently, it can happen only if (Φ(Xi)− g) and (Φ(X j)− h) are

linearly dependent for all i = 1, . . . ,n. However, from n ≥ 3 and positive definite-

ness of K, there exist three distinct Xi’s, say Z1, Z2, and Z3 with positive definite

K′ = (kσ (Zi,Z j))
3
i, j=1. By Lemma 3.11, it must be the case that for some i ∈ {1,2,3},

(Φ(Zi)− g) and (Φ(Zi)− h) are linearly independent. Therefore, the inequality is strict,

and thus J is strictly convex.
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3.8.4 Proof of Theorem 3.5

First, we will prove the monotone decreasing property of J( f (k)). Given r ∈ R, define

u(x;r) = ρ(r)− 1
2

rψ(r)+
1
2

ϕ(r)x2.

If ϕ is nonincreasing, then u is a surrogate function of ρ , having the following property

[31]:

u(r;r) = ρ(r) (3.19)

u(x;r)≥ ρ(x), ∀x. (3.20)

Define

Q(g; f (k)) =
1
n

n

∑
i=1

u
(
‖Φ(Xi)−g‖H ,‖Φ(Xi)− f (k)‖H

)
.

Note that since ψ and ϕ are continuous, Q( · ; ·) is continuous in both arguments.

From (3.19) and (3.20), we have

Q( f (k); f (k)) =
1
n

n

∑
i=1

u
(
‖Φ(Xi)− f (k)‖H ,‖Φ(Xi)− f (k)‖H

)
=

1
n

n

∑
i=1

ρ(‖Φ(Xi)− f (k)‖H )

= J( f (k)) (3.21)

and

Q(g; f (k)) =
1
n

n

∑
i=1

u
(
‖Φ(Xi)−g‖H ,‖Φ(Xi)− f (k)‖H

)
≥ 1

n

n

∑
i=1

ρ
(
‖Φ(Xi)−g‖H )

= J(g), ∀g ∈H (3.22)
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The next iterate f (k+1) is the minimizer of Q(g; f (k)) since

f (k+1) =
n

∑
i=1

w(k)
i Φ(Xi)

=
n

∑
i=1

ϕ(‖Φ(Xi)− f (k)‖H )

∑
n
j=1 ϕ(‖Φ(X j)− f (k)‖H )

Φ(Xi)

= argmin
g∈H

n

∑
i=1

ϕ(‖Φ(Xi)− f (k)‖H ) · ‖Φ(Xi)−g‖2
H

= argmin
g∈H

Q(g; f (k)) (3.23)

From (3.21), (3.22), and (3.23),

J( f (k)) = Q( f (k); f (k))≥ Q( f (k+1); f (k))≥ J( f (k+1))

and thus J( f (k)) monotonically decreases at every iteration. Since {J( f (k))}∞
k=1 is bounded

below by 0, it converges.

Next, we will prove that every limit point f ∗ of { f (k)}∞
k=1 belongs to S . Since the

sequence { f (k)}∞
k=1 lies in the compact set Dn (see Theorem 3.2 and Lemma 3.12), it has a

convergent subsequence { f (kl)}∞
l=1. Let f ∗ be the limit of { f (kl)}∞

l=1. Again, from (3.21),

(3.22), and (3.23),

Q( f (kl+1); f (kl+1)) = J( f (kl+1))

≤ J( f (kl+1))

≤ Q( f (kl+1); f (kl))

≤ Q(g; f (kl)) ,∀g ∈H ,

where the first inequality comes from the monotone decreasing property of J( f (k)). By

taking the limit on the both side of the above inequality, we have

Q( f ∗; f ∗)≤ Q(g; f ∗) ,∀g ∈H .
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Therefore,

f ∗ = argmin
g∈H

Q(g; f ∗)

=
n

∑
i=1

ϕ(‖Φ(Xi)− f ∗‖H )

∑
n
j=1 ϕ(‖Φ(X j)− f ∗‖H )

Φ(Xi)

and thus

n

∑
i=1

ϕ(‖Φ(Xi)− f ∗‖H ) · (Φ(Xi)− f ∗) = 0.

This implies f ∗ ∈S .

Now we will prove ‖ f (k) −S ‖H → 0 by contradiction. Suppose infg∈S ‖ f (k) −

g‖H 9 0. Then, there exists ε > 0 such that ∀K ∈N, ∃k>K with infg∈S ‖ f (k)−g‖H ≥ ε .

Thus, we can construct an increasing sequence of indices {kl}∞
l=1 such that infg∈S ‖ f (kl)−

g‖H ≥ ε for all l = 1,2, . . . . Since { f (kl)}∞
l=1 lies in the compact set Dn, it has a subse-

quence converging to some f †, and we can choose j such that ‖ f (k j)− f †‖H < ε/2. Since

f † is also a limit point of { f (k)}∞
k=1, f † ∈S . This is a contradiction because

ε ≤ inf
g∈S
‖ f (k j)−g‖H ≤ ‖ f (k j)− f †‖H ≤ ε/2.

3.8.5 Proof of Theorem 3.8

Since the RKDE is given as f̂RKDE(x;F) = 〈Φ(x), fF〉H , the influence function for the

RKDE is

IF(x,x′; f̂RKDE ,F) = lim
s→0

f̂RKDE(x;Fs)− f̂RKDE(x;F)

s

= lim
s→0

〈Φ(x), fFs〉H −〈Φ(x), fF〉H
s

=

〈
Φ(x), lim

s→0

fFs− fF

s

〉
H

and thus we need to find ḟF , lims→0
fFs− fF

s .
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As we generalize the definition of RKDE from f̂RKDE to fF , the necessary condition

V ( f̂RKDE) also generalizes. However, a few things must be taken care of since we are

dealing with integral instead of summation. Suppose ψ and ϕ are bounded by B′ and B′′,

respectively. Given a probability measure µ , define

Jµ(g) =
∫

ρ(‖Φ(x)−g‖H )dµ(x). (3.24)

From (3.18),

δJµ(g;h) =
∂

∂α
Jµ(g+αh)

∣∣
α=0

=
∂

∂α

∫
ρ
(
‖Φ(x)− (g+αh)‖H

)
dµ(x)

∣∣∣∣
α=0

=
∫

∂

∂α
ρ
(
‖Φ(x)− (g+αh)‖H

)
dµ(x)

∣∣∣∣
α=0

=
∫

ϕ
(
‖Φ(x)− (g+αh)‖H

)
·
(
−
〈
Φ(x)− (g+αh),h

〉
H

)
dµ(x)

∣∣∣∣
α=0

= −
∫

ϕ
(
‖Φ(x)−g‖H

)
·
〈
Φ(x)−g,h

〉
H

dµ(x)

= −
∫ 〈

ϕ
(
‖Φ(x)−g‖H

)
·
(
Φ(x)−g

)
,h
〉

H

dµ(x).

The exchange of differential and integral is valid [40] since for any fixed g,h ∈H , and

α ∈ (−1,1) ∣∣∣∣ ∂

∂α
ρ
(
‖Φ(x)− (g+αh)‖H

)∣∣∣∣
= ϕ

(
‖Φ(x)− (g+αh)‖

)
·
∣∣−〈Φ(x)− (g+αh),h

〉
H

∣∣
≤ B′′ · ‖Φ(x)− (g+αh)‖ · ‖h‖H

≤ B′′ ·
(
‖Φ(x)‖H +‖g‖H +‖h‖H

)
· ‖h‖H

≤ B′′ ·
(
τ +‖g‖H +‖h‖H

)
· ‖h‖H < ∞.

Since ϕ(‖Φ(x)−g‖H ) ·
(
Φ(x)−g

)
is strongly integrable, i.e.,

∫ ∥∥ϕ
(
‖Φ(x)−g‖H

)
·
(
Φ(x)−g

)∥∥
H

dµ(x)≤ B′ < ∞,
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its Bochner-integral [5]

Vµ(g),
∫

ϕ(‖Φ(x)−g‖H ) · (Φ(x)−g)dµ(x)

is well-defined. Therefore, we have

δJµ(g;h) =−
〈∫

ϕ
(
‖Φ(x)−g‖H

)
·
(
Φ(x)−g

)
dµ(x),h

〉
H

=−
〈
Vµ(g),h

〉
H
.

and Vµ( fµ) = 0.

From the above condition for fFs , we have

0 =VFs( fFs)

= (1− s) ·VF( fFs)+ sVδx′
( fFs), ∀s ∈ [0,1)

Therefore,

0 = lim
s→0

(1− s) ·VF( fFs)+ lim
s→0

s ·Vδx′
( fFs)

= lim
s→0

VF( fFs).

Then,

0 = lim
s→0

1
s

(
VFs( fFs)−VF( fF)

)
= lim

s→0

1
s

(
(1− s)VF( fFs)+ sVδx′

( fFs)−VF( fF)

)
= lim

s→0

1
s

(
VF( fFs)−VF( fF)

)
− lim

s→0
VF( fFs)+ lim

s→0
Vδx′

( fFs)

= lim
s→0

1
s

(
VF( fFs)−VF( fF)

)
+ lim

s→0
Vδx′

( fFs)

= lim
s→0

1
s

(
VF( fFs)−VF( fF)

)
+ lim

s→0
ϕ(‖Φ(x′)− fFs‖) · (Φ(x′)− fFs)

= lim
s→0

1
s

(
VF( fFs)−VF( fF)

)
+ϕ(‖Φ(x′)− fF‖) · (Φ(x′)− fF). (3.25)
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where the last equality comes from the facts that fFs → fF and continuity of ϕ .

Let U denote the mapping µ 7→ fµ . Then,

ḟF , lim
s→0

fFs− fF

s

= lim
s→0

U(Fs)−U(F)

s

= lim
s→0

U
(
(1− s)F + sδx′

)
−U(F)

s

= lim
s→0

U
(
F + s(δx′−F)

)
−U(F)

s

= δU(F ;δx′−F) (3.26)

where δU(P;Q) is the Gateaux differential of U at P with increment Q. The first term in

(3.25) is

lim
s→0

1
s

(
VF
(

fFs

)
−VF

(
fF
))

= lim
s→0

1
s

(
VF
(
U(Fs)

)
−VF

(
U(F)

))
= lim

s→0

1
s

(
(VF ◦U)

(
Fs)− (VF ◦U)(F)

)
= lim

s→0

1
s

(
(VF ◦U)

(
F + s(δx′−F)

)
− (VF ◦U)(F)

)
= δ (VF ◦U)(F ;δx′−F)

= δVF
(
U(F);δU(F ;δx′−F)

)
= δVF

(
fF ; ḟF

)
(3.27)

where we apply the chain rule of Gateaux differential, δ (G◦H)(u;x)= δG(H(u);δH(u;x)),

in the second to the last equality. Although ḟF is technically not a Gateaux differential

since the space of probability distributions is not a vector space, the chain rule still applies.
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Thus, we only need to find the Gateaux differential of VF . For g,h ∈H

δVF(g;h) = lim
s→0

1
s

(
VF(g+ s ·h)−VF(g)

)
= lim

s→0

1
s

(∫
ϕ(‖Φ(x)−g− s ·h‖H ) · (Φ(x)−g− s ·h)dF(x)

−
∫

ϕ(‖Φ(x)−g‖H ) · (Φ(x)−g)dF(x)
)

= lim
s→0

1
s

∫ (
ϕ(‖Φ(x)−g− s ·h‖H )−ϕ(‖Φ(x)−g‖H )

)
· (Φ(x)−g)dF(x)

− lim
s→0

1
s

∫ (
ϕ(‖Φ(x)−g− s ·h‖H ) · s ·h

)
dF(x)

=
∫

lim
s→0

1
s

(
ϕ(‖Φ(x)−g− s ·h‖H )−ϕ(‖Φ(x)−g‖H )

)
· (Φ(x)−g)dF(x)

−h ·
∫

lim
s→0

ϕ(‖Φ(x)−g− s ·h‖H )dF(x)

= −
∫ (

ψ ′(‖Φ(x)−g‖H ) · ‖Φ(x)−g‖H −ψ(‖Φ(x)−g‖H )

‖Φ(x)−g‖2
H

· 〈h,Φ(x)−g〉H
‖Φ(x)−g‖H

)
·
(
Φ(x)−g

)
dF(x)

−h ·
∫

ϕ(‖Φ(x)−g‖H )dF(x) (3.28)

where in the last equality, we use the fact

∂

∂ s
ϕ(‖Φ(x)−g− s ·h‖H ) = ϕ

′(‖Φ(x)−g− s ·h‖H ) · 〈Φ(x)−g− s ·h,h〉H
‖Φ(x)−g− s ·h‖H

and

ϕ
′(x) =

d
dx

ψ(x)
x

=
ψ ′(x)x−ψ(x)

x2 .

The exchange of limit and integral is valid due to the dominated convergence theorem

since under the assumption that ϕ is bounded and Lipschitz continuous with Lipschitz

constant L,

∣∣ϕ(‖Φ(x)−g− s ·h‖)
∣∣< ∞, ∀x
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and ∥∥∥∥1
s

(
ϕ(‖Φ(x)−g− s ·h‖H )−ϕ(‖Φ(x)−g‖H )

)
·
(
Φ(x)−g

)∥∥∥∥
H

=
1
s

∣∣ϕ(‖Φ(x)−g− s ·h‖H )−ϕ(‖Φ(x)−g‖H )
∣∣ · ‖Φ(x)−g‖H

≤ 1
s

L · ‖s ·h‖H ·
(
‖Φ(x)‖H +‖g‖H

)
≤ L · ‖h‖H ·

(
‖Φ(x)‖H +‖g‖H

)
< ∞, ∀x.

By combining (3.25), (3.26), (3.27), and (3.28), we have(∫
ϕ(‖Φ(x)− fF‖)dF

)
· ḟF

+
∫ (〈 ḟF ,Φ(x)− fF

〉
H

‖Φ(x)− fF‖3 ·q(‖Φ(x)− fF‖) ·
(
Φ(x)− fF

))
dF(x)

= (Φ(x′)− fF) ·ϕ(‖Φ(x′)− fF‖)

where q(x) = xψ ′(x)−ψ(x).

3.8.6 Proof of Theorem 3.9

With Fn instead of F , (3.12) becomes(
1
n

n

∑
i=1

ϕ(‖Φ(Xi)− fFn‖)
)
· ḟFn

+
1
n

n

∑
i=1

(〈
ḟFn,Φ(Xi)− fFn

〉
H

‖Φ(Xi)− fFn‖3 ·q(‖Φ(Xi)− fFn‖) ·
(
Φ(Xi)− fFn

))
= (Φ(x′)− fFn) ·ϕ(‖Φ(x′)− fFn‖). (3.29)

Let ri = ‖Φ(Xi)− fFn‖, r′ = ‖Φ(x′)− fFn‖, γ = ∑
n
i=1 ϕ(ri) and

di =
〈

ḟFn,Φ(Xi)− fFn

〉
H
· q(ri)

r3
i

.

Then, (3.29) simplifies to

γ · ḟFn +
n

∑
i=1

di ·
(
Φ(Xi)− fFn

)
= n · (Φ(x′)− fFn) ·ϕ(r′)
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Since fFn = ∑
n
i=1 wiΦ(Xi), we can see that ḟFn has a form of ∑

n
i=1 αiΦ(Xi)+α ′Φ(x′). By

substituting this, we have

γ

n

∑
j=1

α jΦ(X j)+ γ ·α ′Φ(x′)+
n

∑
i=1

di

(
Φ(Xi)−

n

∑
k=1

wkΦ(Xk)

)
= n ·

(
Φ(x′)−

n

∑
k=1

wkΦ(Xk)

)
·ϕ(r′).

Since K′ is positive definite, Φ(Xi)’s and Φ(x′) are linearly independent (see Lemma 3.10).

Therefore, by comparing the coefficients of the Φ(X j)’s and Φ(x′) in both sides, we have

γ ·α j +d j−w j ·
( n

∑
i=1

di

)
=−w j

ψ(r′)
r′
·n (3.30)

γα
′ = n ·ϕ(r′). (3.31)

From (3.31), α ′ = nϕ(r′)/γ . Let qi = q(ri)/r3
i and Φ(Xi)− fFn = ∑

n
k=1 wk,iΦ(Xk)

where

wk,i =


−wk , k 6= i

1−wk , k = i.

Then,

di =
q(ri)

r3
i

〈
ḟFn,Φ(Xi)− fFn

〉
H

= qi

〈 n

∑
j=1

α jΦ(X j)+α
′
Φ(x′),

n

∑
k=1

wk,iΦ(Xk)

〉
H

= qi

( n

∑
j=1

n

∑
k=1

α jwk,ikσ (X j,Xk)+α
′

n

∑
k=1

wk,ikσ (x′,Xk)

)
= qi(ei−w)T Kα +qiα

′ · (ei−w)T k′

= qi(ei−w)T(Kα +α
′k′
)

where K := (kσ (Xi,X j))
n
i, j=1 is a kernel matrix, ei denotes the ith standard basis vector,

and k′ = [kσ (x′,X1, . . . ,kσ (x′,Xn)]
T . By letting Q = diag([q1, . . . ,qn]),

d = Q · (In−1wT )(Kα +α
′ ·k′).
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Thus, (3.30) can be expressed in matrix-vector form,

γα +Q · (In−1 ·wT )(Kα +α
′ ·k′)−w ·

(
1T Q · (In−1 ·wT )(Kα +α

′ ·k′)
)

=−n ·wϕ(r′).

Thus, α can be found solving the following linear system of equations,

{
γIn +(In−1 ·wT )T Q · (In−1 ·wT ) ·K

}
α

= −n ·ϕ(r′)w−α
′(In−1 ·wT )T Q · (In−1 ·wT )k′.

Therefore,

IF(x,x′; f̂RKDE ,Fn) =

〈
Φ(x), ḟFn

〉
H

=

〈
Φ(x),

n

∑
i=1

αiΦ(Xi)+α
′
Φ(x′)

〉
H

=
n

∑
i=1

αikσ (x,Xi)+α
′kσ (x,x′).

The condition lims→0 fFn,s = fFn is implied by the strict convexity of J. Given

X1, . . . ,Xn and x′, define Dn+1 as in Lemma 3.12. From Theorem 3.2, fFn,s and fFn

are in Dn+1. With the definition in (3.24),

JFn,s(g) =
∫

ρ(‖Φ(x)−g‖H )dFn,s(x)

=
(1− s)

n

n

∑
i=1

ρ(‖Φ(Xi)−g‖H )+ s ·ρ(‖Φ(x′)−g‖H ).

Note that JFn,s uniformly converges to J on Dn+1, i.e, supg∈Dn+1
|JFn,s(g)− J(g)| → 0 as
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s→ 0, since for any g ∈Dn+1∣∣JFn,s(g)− J(g)
∣∣

=

∣∣∣∣(1− s)
n

n

∑
i=1

ρ(‖Φ(Xi)−g‖H )+ s ·ρ(‖Φ(x′)−g‖H )− 1
n

n

∑
i=1

ρ(‖Φ(Xi)−g‖H )

∣∣∣∣
=

s
n

n

∑
i=1

ρ(‖Φ(Xi)−g‖H )+ s ·ρ(‖Φ(x′)−g‖H )

≤ s
n

n

∑
i=1

ρ(2τ)+ s ·ρ(2τ)

= 2s ·ρ(2τ)

where in the inequality we use the fact that ρ is nondecreasing and

‖Φ(x)−g‖H ≤ ‖Φ(x)‖+‖g‖H

≤ 2τ.

since g ∈Dn+1, and by the triangle inequality.

Now, let ε > 0 and Bε( fFn)⊂H be the open ball centered at fFn with radius ε . Since

Dε
n+1 , Dn+1 \ Bε( fFn) is also compact, infg∈Dε

n+1
J(g) is attained by some g∗ ∈ Dε

n+1

by the extreme value theorem [2]. Since fFn is unique, Mε = J(g∗)− J( fFn) > 0. For

sufficiently small s, supg∈Dn+1
|JFn,s(g)− J(g)|< Mε/2 and thus

J(g)−Mε

2
< JFn,s(g)< J(g)+

Mε

2
, ∀g ∈Dn+1.

Therefore,

inf
g∈Dε

n+1

JFn,s(g)> inf
g∈Dε

n+1

J(g)−Mε

2

= J(g∗)−Mε

2

= J( fFn)+Mε −
Mε

2

= J( fFn)+
Mε

2

> JFn,s( fFn)
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Since the minimum of JFn,s is not attained on Dε
n+1, fFn,s ∈ Bε( fFn). Since ε is arbitrary,

lims→0 fFn,s = fFn .



CHAPTER 4

L2 Kernel Classification

Nonparametric kernel methods are widely used and proven to be successful in many

statistical learning problems. Well-known examples include the kernel density estimate

(KDE) for density estimation and the support vector machine (SVM) for classification.

We propose a kernel classifier that optimizes the L2 or integrated squared error (ISE) of a

“difference of densities”. We focus on the Gaussian kernel, although the method applies

to other kernels suitable for density estimation. Like a support vector machine (SVM), the

classifier is sparse and results from solving a quadratic program. We provide statistical

performance guarantees for the proposed L2 kernel classifier in the form of a finite sample

oracle inequality, and strong consistency in the sense of both ISE and probability of error.

A special case of our analysis applies to a previously introduced ISE-based method for

kernel density estimation. For dimensionality greater than 15, the basic L2 kernel classifier

performs poorly in practice. Thus, we extend the method through the introduction of a

natural regularization parameter, which allows it to remain competitive with the SVM in

high dimensions. Simulation results for both synthetic and real-world data are presented.

62
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4.1 Introduction

In the binary classification problem we are given realizations (X1,Y1), . . . ,(Xn,Yn) of

a jointly distributed pair (X,Y ), where X ∈ Rd is a pattern and Y ∈ {−1,+1} is a class

label. The goal of classification is to build a classifier, i.e., a function taking X as input

and outputting a label, such that some measure of performance is optimized. Kernel clas-

sifiers [56] are an important family of classifiers that have drawn much recent attention for

their ability to represent nonlinear decision boundaries and to scale well with increasing

dimension d. A kernel classifier (without offset) has the form

g(x) = sgn

{
n

∑
i=1

αiYik(x,Xi)

}
,

where αi are parameters and k is a kernel function. For example, support vector machines

(SVMs) without offset have this form [16], as does the standard kernel density estimate

(KDE) plug-in rule.

In this chapter we employ an L2 or integrated squared error (ISE) criterion to design the

coefficients αi of a kernel classifier. Like the SVM, L2 kernel classifiers are the solutions

of convex quadratic programs that can be solved efficiently using standard decomposition

algorithms. In addition, the classifiers are sparse, meaning most of the coefficients αi = 0,

which has advantages for representation and evaluation efficiency. The L2 objective func-

tion also has appealing geometric interpretations in that it estimates a hyperplane in kernel

feature space. Unlike the SVM, the most basic version of our method has no free param-

eters to be set by the user except perhaps the kernel bandwidth parameter. However, this

basic L2 kernel classifier is not competitive with the SVM for problems of dimensional-

ity exceeding 15 to 20. Thus, we also extend the method to incorporate a regularization

parameter, which allows it to remain competitive with the SVM in high dimensions.

We provide statistical performance guarantees for the proposed L2 kernel classifier.
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The linchpin of our analysis is a new concentration inequality bounding the deviation of a

cross-validation based ISE estimate from the true ISE. This bound is then applied to prove

an oracle inequality and consistency in both ISE and probability of error. In addition, as a

special case of our analysis, we are able to deduce performance guarantees for the method

of L2 kernel density estimation described in [37] and [25], which has not previously been

analyzed.

4.1.1 Related work

The ISE criterion has a long history in the literature on bandwidth selection for kernel

density estimation [65] and more recently in parametric estimation [73]. The use of ISE

for optimizing the weights of a KDE via quadratic programming was first described in

[37] and later rediscovered in [25]. In [10], an `1 penalized ISE criterion was used to

aggregate a finite number of pre-determined densities. Linear and convex aggregation of

densities, based on an L2 criterion, are studied in [53], where the densities are based on

a finite dictionary or an independent sample. In contrast, our proposed method allows

data-adaptive kernels, and does not require an independent (holdout) sample.

In classification, some connections relating SVMs and ISE are made in [36], although

no new algorithms are proposed. The application of ISE based kernel method to classifi-

cation problem is first studied in [29], where each class conditional density is estimated

separately and plugged into the final classifier. However, our ISE criterion is a more natu-

ral choice for classification in that we directly estimate the difference of densities. It also

leads to interesting geometric interpretations and relationships between our method and

SVMs.

The “difference of densities” perspective has been applied to classification in other set-

tings by several authors. In [27] and [46], a difference of densities is used to find smoothing
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parameters or kernel bandwidths. In [47], conditional densities are chosen among a pa-

rameterized set of densities to maximize the average (bounded) density differences. The

relationship between consistency of ISE to the consistency of the probability of error is

studied in [72]. Finally, Pelckmans et al. [52] considers a kernel classifier that maximizes

the average (as opposed to worst-case) empirical margin. The resulting classifier amounts

to an estimate of the difference of densities having uniform αi’s.

4.1.2 Organization

Section 4.2 introduces our L2 criterion for classification and formulates the criterion

as a quadratic program. Statistical performance guarantees are presented in Section 4.3.

Geometric interpretations for the proposed method are provided in Section 4.4. Extension

and variations of the basic method are presented in Section 4.5, including one extension

that makes the method competitive in higher dimensions at the expense of an extra regu-

larization parameter. We demonstrate experimental results in Section 4.6. Conclusions are

offered in Section 4.7. Section 4.8 contains proofs of theorems.

4.2 L2 Kernel Classification

Let f+(x) and f−(x) denote the class-conditional densities of the pattern given the

label. From decision theory, the optimal classifier has the form

g∗(x) = sgn{ f+(x)− γ f−(x).} , (4.1)

Denote the “difference of densities” (DOD) by dγ(x) := f+(x)− γ f−(x).

Here we view γ as a fixed parameter to be set by the user to reflect prior class probabil-

ities and class-conditional error costs. For example, if we are interested in minimizing the

probability of error, γ should be set to γ∗ = 1−p
p where 0 < p < 1 is the prior probabilities

of the positive class. If p is unknown, we may set γ to be the natural empirical estimate
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for γ∗. We analyze this exact strategy in Section 4.3, and also employ in our experiments

in Section 4.6.

Recall that we are given realizations (X1,Y1), . . . ,(Xn,Yn) where Xi ∈ Rd is a pattern

and Yi ∈ {−1,+1} is a class label. For convenience, we relabel Y so that it belongs to

{1,−γ} and denote I+ = {i | Yi =+1} and I− = {i | Yi =−γ}. The class-conditional den-

sities are modelled as KDEs with variable weights α = (α1, . . . ,αn),

f̂+ (x;α) = ∑
i∈I+

αikσ (x,Xi) ,

f̂− (x;α) = ∑
i∈I−

αikσ (x,Xi)

with constraints α ∈ A where

A =

{
α

∣∣∣ ∑
i∈I+

αi = ∑
i∈I−

αi = 1, αi ≥ 0 ∀i
}
.

and

kσ (x,Xi) =
(
2πσ

2)−d/2
exp
{
−‖x−Xi‖2

2σ2

}
is the Gaussian kernel with bandwidth σ > 0. In general, σ is a tuning parameter that

will need to set using standard model selection strategies, such as cross-validation. As

explained in Section 4.5, other kernels besides the Gaussian also fit naturally into our

framework.

We take as our goal to estimate dγ(x) directly with d̂γ(x;α) := f̂+(x;α)− γ f̂−(x;α),

rather than to estimate f+(x) and f−(x) separately and “plug in” to (4.1) as in [29]. In

particular, we propose to estimate α by minimizing the L2 distance or ISE between the

model d̂γ(x;α) and the truth dγ(x). The ISE associated with α is

ISE (α) =‖d̂γ (x;α)−dγ (x)‖2
L2

=
∫ (

d̂γ (x;α)−dγ (x)
)2

dx

=
∫

d̂2
γ (x;α)dx−2

∫
d̂γ (x;α)dγ (x)dx+

∫
d2

γ (x)dx.
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Since we do not know the true dγ (x), we need to estimate the second term in the above

equation

H (α),
∫

d̂γ (x;α)dγ (x)dx (4.2)

by Hn (α) which will be explained in detail in Section 4.2.1. Then, the empirical ISE

becomes

ÎSE (α) =
∫

d̂2
γ (x;α)dx−2Hn (α)+

∫
d2

γ (x)dx. (4.3)

Now, α̂ is defined as

α̂ = argmin
α∈A

ÎSE (α) (4.4)

and the final classifier will be

g(x) =


+1, d̂γ (x; α̂)≥ 0

−γ, d̂γ (x; α̂)< 0.

(4.5)

4.2.1 Estimation of H (α)

In this section, we propose a method of estimating H (α) in (4.2). The basic idea is to

view H (α) as an expectation and estimate it using a sample average. We use a leave-one-

out cross-validation (LOOCV) estimator, which is unbiased and facilitates our theoretical

analysis. Note that the DOD can be expressed as

d̂γ (x;α) = f̂+ (x)− γ f̂− (x) =
n

∑
i=1

αiYikσ (x,Xi) .
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Then,

H (α) =
∫

d̂γ (x;α)dγ (x)dx

=
∫

d̂γ (x;α) f+ (x)dx− γ

∫
d̂γ (x;α) f− (x)dx

=
∫ n

∑
i=1

αiYikσ (x,Xi) f+ (x)dx− γ

∫ n

∑
i=1

αiYikσ (x,Xi) f− (x)dx

=
n

∑
i=1

αiYih(Xi)

where

h(Xi),
∫

kσ (x,Xi) f+ (x)dx− γ

∫
kσ (x,Xi) f− (x)dx. (4.6)

We estimate each h(Xi) in (4.6) for i = 1, . . . ,n using leave-one-out cross-validation

ĥi ,


1

N+−1 ∑
j∈I+, j 6=i

kσ

(
X j,Xi

)
− γ

N−
∑
j∈I−

kσ

(
X j,Xi

)
, i ∈ I+

1
N+

∑
j∈I+

kσ

(
X j,Xi

)
− γ

N−−1 ∑
j∈I−, j 6=i

kσ

(
X j,Xi

)
, i ∈ I−

where N+ = |I+| ,N− = |I−|. Then, the estimate of H (α) is Hn (α) = ∑
n
i=1 αiYiĥi. We

emphasize that here cross-validation is employed as a method of estimation, and is distinct

from any procedure that may be used for tuning the bandwidth σ .

4.2.2 Optimization

The optimization problem (4.4) can be formulated as a quadratic program. The first

term in (4.3) is

∫
d̂2

γ (x;α)dx =
∫ ( n

∑
i=1

αiYikσ (x,Xi)

)2

dx

=
n

∑
i=1

n

∑
j=1

αiα jYiYj

∫
kσ (x,Xi)kσ

(
x,X j

)
dx

=
n

∑
i=1

n

∑
j=1

αiα jYiYjk√2σ

(
Xi,X j

)
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by the convolution theorem for Gaussian kernels [68]. As we have seen in Section 4.2.1,

the second term Hn (α) in (4.3) is linear in α and can be expressed as ∑
n
i=1 αici where

ci = Yiĥi. Finally, since the third term does not depend on α , the optimization problem

(4.4) becomes the following quadratic program (QP)

α̂ = argmin
α∈A

1
2

n

∑
i=1

n

∑
j=1

αiα jYiYjk√2σ

(
Xi,X j

)
−

n

∑
i=1

ciαi.

We refer to the resulting classifier as L2QP (L2 classification via Quadratic Program-

ming). Since the Gaussian kernel is positive definite [56], the objective function in (4.2.3)

is strictly convex if the Xi’s are distinct, and thus has a unique solution. As discussed

in [25], quadratic programs derived from ISE-based criteria induce sparse solutions, and

the nonzero αi’s tend to be concentrated in regions of space with greater probability mass.

Another explanation of this is presented in Section 4.4. The QP (4.2.3) is similar in some

respects to the dual QP of the 2-norm SVM with hinge loss [16]. However, unlike the

SVM, (4.2.3) does not include a regularization parameter, and therefore the computational

cost required for training the L2QP classifier will typically be less than that of the SVM.

The QP can be solved by a variant of the Sequential Minimal Optimization (SMO) algo-

rithm [17].

4.2.3 SMO algorithm

Sequential Minimal Optimization (SMO) is a simple algorithm that can quickly solve

the SVM QP problem without any extra matrix storage and without using time-consuming

numerical QP optimization steps [17]. SMO decomposes the overall QP problem into the

smallest possible optimization problem. This sub-problem can be solved analytically. An

appropriate variant of SMO to solve (4.2.3) is detailed below following [25].

Given α , the algorithm optimizes two variables of α with other variables fixed. Two

variables to be optimized should be chosen from {αi | i ∈ I−} or {αi | i ∈ I+}. Otherwise,



70

the variables which we are trying to optimize cannot change since the other variables are

fixed and due to the constraints ∑i∈I− αi = 1 and ∑i∈I+ αi = 1. Suppose that we choose two

variables from {αi | i ∈ I+}. For notational convenience, assume the two variables are α1

and α2 and 1,2 ∈ I+. Then, (4.2.3) reduces to

min
α1,α2

1
2

2

∑
i=1

2

∑
j=1

αiα jQi j +
2

∑
i=1

diαi +D

s.t α1,α2 ≥ 0,
2

∑
i=1

αi = ∆

where D = 1
2 ∑

n
i=3 ∑

n
j=3 αiα jQi j−∑

n
i=3 ciαi and

di =
n

∑
j=3

α jQi j− ci, ∆ = 1− ∑
i∈I+\{1,2}

αi.

We discard D, which is independent of α1 and α2, and eliminate α1 to obtain

min
α2

1
2
(∆−α2)

2 Q11 +α2 (∆−α2)Q12 +
1
2

α
2
2 Q22 +(∆−α2)d1 +α2d2 (4.7)

s.t 0≤ α2 ≤ ∆.

Since the objective function is quadratic and convex in one variable α2, we can take the

derivative of (4.7) and set it equal to zero. Then,

α2 =
∆(Q11−Q12)+d1−d2

Q11−2Q12 +Q22
. (4.8)

Let α∗ denote the value before the optimization step. If we define Oi := Qi1α∗1 +Qi2α∗2 +

di = ∑
n
j=1 α∗i Qi j− ci, then (4.8) can be expressed as the update equation

α2 = α
∗
2 +

O1−O2

Q11−2Q12 +Q22
. (4.9)

If α2 is outside [0,∆], we truncate it so that it is within [0,∆]. After finding α2, α1 can be

recovered from α1 = ∆−α2.

The optimality condition and the choice of αi’s can be found in the following way.

There are three cases when choosing α1 and α2 : (a) Both are zero, (b) One is positive and

the other is zero, (c) Both are positive.
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Case (a): α1 and α2 are not updated because of nonnegativity constraints.

Case (b): Assume that α2 is zero. From (4.9), α2 is updated only when O1−O2 > 0

and so is α1

Case (c): α1 and α2 are updated only when O1 6= O2.

The objective value will strictly decrease if and only if α1 and α2 are updated after opti-

mization step. Therefore, the optimal solution should satisfy

Oi ≥ O j for αi = 0, α j > 0 (4.10)

Oi = O j for αi,α j > 0. (4.11)

The convergence to the global minimum is thus guaranteed by choosing two αi’s which

do not satisfy (4.10) or (4.11) for each optimization step. The optimization procedure for

two variables from {αi ∈ I−} is similar.

4.3 Statistical Performance Analysis

We give theoretical performance guarantees for our proposed method. We assume that

{Xi}i∈I+ and {Xi}i∈I− are i.i.d samples from f+ (x) and f− (x), respectively, and treat N+

and N− as deterministic variables n+ and n− such that n+ → ∞ and n− → ∞ as n→ ∞.

Proofs are found in Section 4.8.

4.3.1 Concentration inequality for Hn (α)

Lemma 4.1. Conditioned on Xi, ĥi is an unbiased estimator of h(Xi), i.e,

E
[
ĥi
∣∣Xi
]
= h(Xi) .

Furthermore, for any ε > 0

P
{

sup
α∈A

∣∣Hn (α)−H (α)
∣∣> ε

}
≤ 2n

(
e−c(n+−1)ε2

+ e−c(n−−1)ε2
)
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where c = 2
(√

2πσ
)2d

/(1+ γ)4.

Lemma 4.1 implies that Hn (α)→ H (α) almost surely for all α ∈ A simultaneously,

provided that σ ,n+ and n− evolve as functions of n such that n+σ2d/ lnn → ∞ and

n−σ2d/ lnn→ ∞.

4.3.2 Oracle inequality

Next, we establish on oracle inequality, which relates the performance of our estimator

to that of the best possible kernel classifier.

Theorem 4.2. Let ε > 0 and set δ = δ (ε) = 2n
(

e−c(n+−1)ε2
+ e−c(n−−1)ε2

)
where c =

2
(√

2πσ
)2d

/(1+ γ)4. Then, with probability at least 1−δ

ISE (α̂)≤ inf
α∈A

ISE (α)+4ε.

Proof. From Lemma 4.1, with probability at least 1−δ∣∣∣ISE (α)− ÎSE (α)
∣∣∣≤ 2ε, ∀α ∈ A

by using the fact ISE (α)− ÎSE (α) = 2(Hn (α)−H (α)). Then, with probability at least

1−δ , for all α ∈ A, we have

ISE (α̂)≤ ÎSE (α̂)+2ε ≤ ÎSE (α)+2ε ≤ ISE (α)+4ε

where the second inequality holds from the definition of α̂ . This proves the theorem.

4.3.3 ISE consistency

Next, we have a theorem stating that ISE (α̂) converges to zero in probability.

Theorem 4.3. Suppose that for f = f+ and f−, the Hessian H f (x) exists and each entry

of H f (x) is piecewise continuous and square integrable. If σ ,n+ and n− evolve as func-

tions of n such that σ → 0, n+σ2d/ lnn→ ∞ and n+σ2d/ lnn→ ∞, then ISE (α̂)→ 0 in

probability as n→ ∞
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This result intuitively follows from the oracle inequality since the standard Parzen

window density estimate is consistent and uniform weights are among the simplex A. The

rigorous proof is presented in Section 4.8.2.

4.3.4 Bayes error consistency

In classification, we are ultimately interested in minimizing the probability of error.

The consistency with respect to the probability of error could be easily shown if we set γ

to γ∗ = 1−p
p and apply Theorem 3 in [72], where 0 < p < 1 is the prior probability of the

positive class. However, since p is unknown, we must estimate γ∗. Let us now assume

{Xi}n
i=1 is an i.i.d sample from f (x) = p f+ (x) + (1− p) f− (x). Then N+ and N− are

binomial random variables, and we may estimate γ∗ as γ = N−
N+

. The next theorem says the

L2 kernel classifier is consistent with respect to the probability of error.

Theorem 4.4. Suppose that the assumptions in Theorem 4.3 are satisfied. In addition,

suppose that f− ∈ L2 (R), i.e. ‖ f−‖2 < ∞. Let γ = N−/N+ be an estimate of γ∗= 1−p
p . If σ

evolves as a function of n such that σ→ 0 and nσ2d/ lnn→∞ as n→∞, then the L2 kernel

classifier is consistent. In other words, given training data Dn = ((X1,Y1) , . . . ,(Xn,Yn)),

the classification error

Ln = P
{

sgn
{

d̂γ (X; α̂)
}
6= Y | Dn

}
converges to the Bayes error L∗ in probability as n→ ∞.

The proof is given in Section 4.8.3.

4.3.5 Application to density estimation

By setting γ = 0, our goal becomes estimating f+ and we recover the L2 kernel den-

sity estimate of [37] and [25] using leave-one-out cross-validation. Given an i.i.d sample
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X1, . . . ,Xn from f (x), the L2 kernel density estimate of f (x) is defined as

f̂ (x; α̂) =
n

∑
i=1

α̂ikσ (x,Xi)

with α̂i’s optimized such that

α̂ = argmin
∑αi=1
αi≥0

1
2

n

∑
i=1

n

∑
j=1

αiα jk√2σ

(
Xi,X j

)
−

n

∑
i=1

αi

(
1

n−1 ∑
j 6=i

kσ

(
Xi,X j

))
.

Our concentration inequality, oracle inequality, and L2 consistency result immediately ex-

tend to provide the same performance guarantees for this method. In particular, we state

the following corollaries.

Corollary 4.5. Let ε > 0 and set δ = δ (ε) = 2ne−c(n−1)ε2
where c = 2

(√
2πσ

)2d
. Then,

with probability at least 1−δ

∫ (
f̂ (x; α̂)− f (x)

)2
dx≤ inf

∑αi=1
αi≥0

∫ (
f̂ (x;α)− f (x)

)2
dx+4ε.

Corollary 4.6. Suppose that the Hessian H f (x) of a density function f (x) exists and each

entry of H f (x) is piecewise continuous and square integrable. If σ → 0 and nσ2d/ lnn→

∞ as n→ ∞, then ∫ (
f̂ (x; α̂)− f (x)

)2
dx→ 0

in probability.

4.4 Geometric Interpretations

In this section, we present two geometric interpretations of the L2QP classifier.
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4.4.1 Separating hyperplane in kernel feature space

The first interpretation views the QP (4.2.3) as the dual of a primal problem defined in

a kernel feature space. The corresponding primal problem is

min
w,ξ+,ξ−

1
2
‖w‖2 +ξ++ξ− (4.12)

s.t Yi · 〈w,Φ√2σ
(Xi)〉 ≥ ci−ξ+, for i ∈ I+

Yi · 〈w,Φ√2σ
(Xi)〉 ≥ ci−ξ−, for i ∈ I−

where Φσ (x) is the implicit kernel mapping into the feature space associated with the

Gaussian kernel Hilbert space [56].

This primal formulation differs from that of the standard 2-norm SVM with hinge loss

(and without offset) in the following aspects. First, in the right hand sides of the con-

straints, ci’s appear instead of 1. This means if ci is larger (i.e. Xi is accurately classified

by the Parzen window plug-in formula), this modified SVM places more emphasis on cor-

rectly classifying Xi. Second, there exist only two slack variables ξ+ and ξ−, one per

class, and these are not required to be nonnegative. Finally, after finding the optimal solu-

tion ŵ=∑
n
i=1 α̂iYiΦ√2σ

(Xi), the final classifier takes the sign of the inner product between

w̃ = ∑
n
i=1 α̂iYiΦσ (Xi) and Φσ (x), not between ŵ and Φ√2σ

(x), i.e.,

g(x) = sgn
{〈

w̃,Φσ (x)
〉}

= sgn
{ n

∑
i=1

α̂iYikσ (x,Xi)

}
.

The primal offers another explanation of why the points with nonzero αi’s are con-

centrated in regions of space with greater probability mass. First note that since we are

minimizing ξ+ and ξ−, they satisfy

ξ+ = max
i∈I+

{
ci−Yi · 〈w,Φ√2σ

(Xi)〉
}
,

ξ− = max
i∈I+

{
ci−Yi · 〈w,Φ√2σ

(Xi)〉
}
.
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As αi is the Lagrangian multiplier associated with each constraint, the optimal αi should

satisfy the Karush-Kuhn-Tucker(KKT) conditions, in particular the complimentary slack-

ness condition. Thus, for nonzero αi > 0 the associated constraint should be met with

equality, i.e.,

ci−Yi · 〈w,Φ√2σ
(Xi)〉= ξ+

= max
j∈I+

{
c j−Yj · 〈w,Φ√2σ

(X j)〉
}

for αi > 0, i ∈ I+

ci−Yi · 〈w,Φ√2σ
(Xi)〉= ξ−

= max
j∈I+

{
c j−Yj · 〈w,Φ√2σ

(X j)〉
}

for αi > 0, i ∈ I−.

Therefore, we can see that if ci is larger, ci−Yi · 〈w,Φ√2σ
(Xi)〉 is more likely to be a

maximum value and thus the corresponding αi is nonzero. Since ci = Yiĥ(Xi), where ĥ is

the Parzen window plug-in estimate of dγ , it tends to be largest in regions of space with

high probability mass.

In Section 4.5, we introduce an extension of the L2 kernel classification that amounts

to augmenting the primal with an additional parameter multiplying the slack variables.

4.4.2 Weighted centroids in kernel feature space

Another interpretation can be obtained by expressing the L2 criterion itself in the kernel

feature space, not considering it as a dual problem. Define

m+
σ =

1
N+

∑
i∈I+

Φσ (Xi), m−σ =
1

N−
∑

i∈I−

Φσ (Xi)

m+
σ (α) = ∑

i∈I+

αiΦσ (Xi), m−σ (α) = ∑
i∈I−

αiΦσ (Xi).
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With this notation, by adding the constant term
(

1
N+−1 +

γ2

N−−1

)
kσ (0,0), the L2 objective

function may be expressed as

1
2
‖m+√

2σ
(α)− γm−√

2σ
(α)‖2−〈m+

σ (α),
N+

N+−1
m+

σ − γm−σ 〉

− γ〈m−σ (α),m+
σ − γ

N−
N−−1

m−σ 〉.

Since N+−1
N+

and N−−1
N−

approach to 1 as n+ and n− go to ∞, for large n, (4.2.3) is equivalent

to

α̂ = argmin
α∈A

1
2
‖m+√

2σ
(α)− γm−√

2σ
(α)‖2−〈m+

σ (α)− γm−σ (α),m+
σ − γm−σ 〉.

This has an appealing geometric interpretation. The first term, by itself, gives rise to the

max-margin hyperplane in feature space in the case of separable data [4, 18]. In partic-

ular, because of the constraints ∑i∈I+ αi = ∑i∈I− αi = 1 and αi ≥ 0, ∀i, the first term is

minimized when m+√
2σ
(α) and m−√

2σ
(α) are on the boundaries of their respective con-

vex hulls, giving rise to the maximum margin separating hyperplane. The second term

tries to align m+
σ (α)− γm−σ (α) with m+

σ − γm−σ , which is the normal vector defining the

nearest centroid classifier. Interestingly, with γ = 1, the nearest centroid classifier in fea-

ture space is identical to the Parzen window plug-in classifier [56] up to an offset term.

Thus we may say that the second term regularizes the SVM (an alternative to the SVM’s

soft-margin-based regularization), or the first term sparsifies the Parzen window. Note,

however, that the first and second terms involve different kernel bandwidths, so that the

two terms correspond to different Hilbert spaces.

4.5 Variations and Extensions

4.5.1 Weighted L2 distance in Fourier domain

One variation of the L2QP classifier is obtained by minimizing the weighted L2 dis-

tance in the Fourier domain. For density estimation, weighted ISE applied to character-
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istic functions was previously considered in a parametric setting in [30, 51]. We denote

the Fourier transforms of d̂γ(x;α) and dγ(x) by D̂γ (ω;α) and Dγ (ω) respectively, each

of which is a difference of characteristic functions. Define the weighted L2 distance asso-

ciated with α

ISEλ (α) :=
∫ ∣∣∣D̂γ (ω;α)−Dγ (ω)

∣∣∣2 e−λ 2ω2
dω,

where λ ≥ 0 is a fixed parameter. The effect of the weighting term e−λ 2ω2
and the choice

of λ will be discussed below. We may write

ISEλ (α) =
∫ ∣∣∣D̂γ (ω;α)e−λ 2ω2/2−Dγ (ω)e−λ 2ω2/2

∣∣∣2 dω

=2π

∫ (
d̂γ (x;α)∗ kλ (x,0)−dγ (x)∗ kλ (x,0)

)2
dx

=2π

∫ ( n

∑
i=1

αiYik√σ2+λ 2 (x,Xi)−
∫

dγ(x′)kλ (x,x′)dx′
)2

dx (4.13)

where the second equality holds by Parseval’s theorem and ∗ denotes convolution.

After expanding the square in (4.13), the first term becomes∫ ( n

∑
i=1

αiYik√σ2+λ 2 (x,Xi)
)2

dx =
n

∑
i=1

n

∑
j=1

αiα jYiYjkρ

(
Xi,X j

)
(4.14)

where ρ =
√

2σ2 +2λ 2 by the convolution theorem for Gaussian kernels [68]. The second

term can be written∫ ( n

∑
i=1

αiYik√σ2+λ 2 (x,Xi)
)
·
(∫

dγ

(
x′
)

kλ

(
x,x′

)
dx′
)

dx

=
n

∑
i=1

αiYi ·
∫

dγ

(
x′
)(∫

k√
σ2+λ 2 (x,Xi)kλ

(
x,x′

)
dx
)

dx′

=
n

∑
i=1

αiYi

∫
dγ

(
x′
)

k√
σ2+2λ 2

(
x′,Xi

)
dx′ ≈

n

∑
i=1

αic̃i

where we used leave-one-out cross-validation estimate in the last step and

c̃i ,


Yi

( 1
N+−1 ∑

j∈I+, j 6=i
k√

σ2+2λ 2

(
X j,Xi

)
− γ

N−
∑
j∈I−

k√
σ2+2λ 2

(
X j,Xi

))
, i ∈ I+

Yi

( 1
N+

∑
j∈I+

k√
σ2+2λ 2

(
X j,Xi

)
− γ

N−−1 ∑
j∈I−, j 6=i

k√
σ2+2λ 2

(
X j,Xi

))
, i ∈ I−.
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Therefore, an empirical minimizer of the weighted L2 distance ISEλ (α) is obtained by

solving

α̂ = argmin
α∈A

1
2

n

∑
i=1

n

∑
j=1

αiα jYiYjkρ

(
Xi,X j

)
−

n

∑
i=1

c̃iαi.

From the Fourier domain definition of ISEλ (α), we may interpret the Gaussian weight

function e−λ 2ω2
as a low-pass filter that de-emphasizes high-frequency content in the

unknown densities. Thus larger values of λ place more emphasis on the slowly varying

features of dγ(x). A similar interpretation results if we consider the effect of λ in the x

domain. In (4.13), we see that α is chosen to optimize the L2 distance between an α-

weighted DOD with kernel bandwidth
√

σ2 +λ 2, and a uniformly weighted DOD with

kernel bandwidth λ . That is, the “target” DOD is increasingly smooth as λ increases.

We refer to this method as L2QP-k where k determines λ through λ = k ·σ . Since

L2QP-0 corresponds to the previous L2QP, L2QP-k is a generalization of L2QP method.

Our experiments have primarily focused on λ = 0 and λ = σ , the latter being motivated

by the belief that the “target” DOD and final classifier should be accurately represented by

the same kernel bandwidth. Our evidence thus far suggest that both of these choices of λ ,

as well as others much larger, lead to comparable classifiers. We have observed, however,

that smaller values of λ tend to yield sparser classifiers.

4.5.2 L2 criterion with inequality constraints

Our theoretical analysis carries through if we replace the constraint set A = {α : αi ≥

0, ∑i∈I+ αi = ∑i∈I− αi = 1} with the set

A′ =
{

α : αi ≥ 0,
(
1− ∑

i∈I+

αi
)
= γ
(
1− ∑

i∈I−

αi
)
≥ 0
}
.

By requiring
(
1−∑i∈I+ αi

)
= γ
(
1−∑i∈I− αi

)
, we still enforce that dγ integrate to the

true value of 1− γ . However, by allowing that the coefficients in each class sum to less
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than one, we allow for the possibility that some positive and negative coefficients might

“cancel out” in regions of space where f+ and f− overlap. This could potentially lead to

even sparser solutions.

4.5.3 L2 criterion without constraints

Since our goal is classification and not density estimation, it is not necessary that

f̂+ (x;α) and f̂− (x;α) be proper density estimates, and hence the constraints α ∈A may be

dropped. In this case, the unconstrained quadratic objective function, in the matrix/vector

form,
1
2

α
T Qα− c̃T

α

is minimized by the solution of

Qα = c̃ (4.15)

where c̃ = [c̃1, c̃2, · · · , c̃n]
T , Q :=

(
YiYjKi j

)n
i, j=1, K :=

(
kρ

(
Xi,X j

))n
i, j=1. If K is positive

definite and γ 6= 0, then Q is also positive definite, and thus the objective is strictly convex.

The optimization problem now becomes the problem of solving a linear system of

equations (4.15). It is similar in that respect to the 2-norm SVM with squared error loss, or

least-squares SVM (LS-SVM) [35], but again does not include a regularization parameter.

The resulting L2LE-k (L2 classification via Linear system of Equations) classifier is not

sparse, again like the LS-SVM. Since Q is positive definite, (4.15) can be solved efficiently

by the conjugate gradient descent (CGD) algorithm [54].

4.5.4 Other kernels

Our methodology allows for any kernel k(x,x′) such that k(x,x′)≥ 0 and, for any fixed

x′,
∫

k(x,x′)dx = 1, e.g., the multivariate Cauchy kernel,

kσ (x,Xi) =
Γ(1+d

2 )

π(d+1)/2 ·σd

(
1+
‖x−Xi‖2

σ2

)− 1+d
2

,
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or the multivariate Laplacian (product) kernel,

kσ (x,Xi) =
1

(2σ)d exp
{
−‖x−Xi‖1

σ

}
.

The L2 kernel classifier is still the solution of

α̂ = argmin
α∈A

1
2

n

∑
i=1

n

∑
j=1

αiα jYiYjKi j−
n

∑
i=1

ciαi,

where

Ki j =
∫

k(x,Xi)k(x,X j)dx

and ci is as before.

We make two important observations regarding this QP. First, from the identity

n

∑
i=1

n

∑
j=1

αiα jYiYjKi j =
∫ ( n

∑
i=1

αiYik(x,Xi)

)2

dx,

we see that the matrix (YiYjKi j)
n
i, j=1 is always positive definite, and therefore the QP is

strictly convex, provided the Xi are distinct. Second, it is desirable that Ki j be easily

computable. For some kernels, like the Gaussian, the integral has a closed form expression.

For example, the multivariate Cauchy kernel satisfies

k2σ (Xi,X j) =
∫

kσ (x,Xi) · kσ (x,X j)dx,

[6] and the multivariate Laplacian (product) kernel satisfies∫
kσ (x,Xi) · kσ (x,X j)dx

=
1

(4σ)d

d

∏
l=1

(
1+
|Xi,l−X j,l|

σ

)
exp
{
−
‖Xi−X j‖1

σ

}
.

For kernels without such a formula, values of the integral may still be pre-computed

and stored. For radially symmetric kernels, such as an alternative multivariate Laplacian

kernel [26], kσ (x,Xi) = C · exp
(
−‖x−Xi‖/σ

)
, where C is a normalizing constant, this

entails a simple one-dimensional table, as Ki j will depend only on ‖Xi−X j‖. We exper-

imented briefly with multivariate Cauchy kernels, but did not see significant differences

compared to the Gaussian.
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4.5.5 Regularization for high dimensional data

Our experimental results show that our L2QP thus far discussed perform poorly on

most high dimensional data. Similarly, in [29], where the class conditional densities are

estimated separately based on the L2 criterion, the authors only consider low dimensional

data (the 20 dimensional German dataset was reduced to 7 dimensional). In this section,

we offer an explanation for this phenomenon. We also present a variation that signifi-

cantly improves the performance in high dimensions at the expense of introducing a new

regularization parameter that must be tuned.

To understand the impact of dimension on L2QP, it is important to realize that the

method involves Gaussian kernels of bandwidth
√

2σ (quadratic term) and σ (linear term).

The normalizing constants for these kernels are
(
4πσ2)−d/2 and

(
2πσ2)−d/2, respec-

tively. The ratio of the second normalizing constant to the first one is
√

2
d
. In other words,

the ratio exponentially increases as a function of dimension and thus in high dimensional

data the linear term in (4.2.3) dominates the quadratic term. In this case, minimizing

(4.2.3) causes a few data points associated with larger ci’s to monopolize the weights and

yields a too sparse solution.

To address this problem, we introduce a new parameter η > 0 that balances the linear

term and the quadratic term

min
α∈A

1
2

n

∑
i=1

n

∑
j=1

αiα jYiYjk√2σ

(
Xi,X j

)
− 1

η

n

∑
i=1

ciαi.

The corresponding primal is

min
w,ξ+,ξ−

1
2
‖w‖2 +η(ξ++ξ−) (4.16)

s.t Yi · 〈w,Φ√2σ
(Xi)〉 ≥ ci−ξ+, for i ∈ I+

Yi · 〈w,Φ√2σ
(Xi)〉 ≥ ci−ξ−, for i ∈ I−.
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Therefore, (4.12) can be thought as a special case of (4.16) where the regularization pa-

rameter η is set to 1. In the primal point of view, η controls the trade off between the

complexity of the classifier, ‖w‖2 and how much the classifier fits to Parzen window plug-

in classifier ci−Yi · 〈w,Φ√2σ
(Xi)〉. This new algorithm may also be viewed as minimizing

an estimated of a modified ISE, given by

ISEη (α) = ‖d̂γ (x;α)− 1
η

dγ (x)‖2
L2

=
∫ (

d̂γ (x;α)− 1
η

dγ (x)
)2

dx.

This new method may also be combined with the Fourier domain extension discussed

previously, and we refer to resulting classifier as L2QPη -k.

4.6 Experiments

We implement our methods(L2QP-0, L2QP-1, L2QPη -0, L2QPη -1) based on LIB-

SVM [11] by modifying an SMO subroutine (see Section 4.2.3). For comparison, we

also experiment with the 2-norm SVM with hinge loss (S-SVM, S for “soft margin”), the

2-norm SVM with hinge loss and C→ ∞ (H-SVM, H for “hard margin”), and a plug-in

classifier based on Parzen window density estimates (Parzen).

To illustrate some of the basic properties of L2 kernel classifiers, we first experiment

with 1 dimensional data. Both classes are equally likely and

f+ (x) = 0.2φ(x;4,
√

2)+0.8φ (x;8,1)

f− (x) = 0.7φ (x;0,1)+0.3φ(x;10,
√

2)

where φ (x; µ,σ) is a univariate Gaussian pdf with mean µ and variance σ2. We build a

L2QP-0 classifier from 200 training samples. To find a classifier with the smallest proba-

bility error, we set γ = N−/N+ and use 5-fold-cross validation to estimate the bandwidth

σ from a logarithmically spaced grid of 50 points from 10−2 to 101.
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The results are shown in Figure 4.1. The estimate d̂γ (x; α̂) is fairly close to the true

dγ (x). For α̂i > 0, α̂iYi are shown at the corresponding Xi in Figure 4.1 (d) and the number

of nonzero weights is 9.
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Fig. 4.1: (a) f+ (x) and histogram of its samples (b) f− (x) and histogram of its samples (c)
dγ (x) (solid line) and d̂γ (x; α̂) (dashed line) (d) Sparsity of the proposed method

Next, we demonstrate our algorithms on 18 artificial and real-world benchmark

datasets, available online1 [11, 48]. There are 100 randomly permuted partitions of each

dataset into training and test sets (20 for Image, Splice, Adult, Mushrooms and Web).

The dimension and sample sizes2 of each dataset are summarized in Table 4.1. We set

1http://www.fml.tuebingen.mpg.de/Members/ for the first 13 datasets and
http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/ for the last 5 datasets.

2The Adult and Web datasets were subsampled owing to their large size.
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Dataset
# of # of input

training data test data dimension
Banana 400 4900 2

B. Cancer 200 77 9
Diabetes 468 300 8
F. Solar 666 400 9
German 700 300 20
Heart 170 100 13
Image 1300 1010 18

Ringnorm 400 7000 20
Splice 1000 2175 60

Thyroid 140 75 5
Titanic 150 2051 3

Twonorm 400 7000 20
Waveform 400 4600 21

Adult 3000 3000 123
Ionosphere 251 100 34
mushrooms 4124 4000 112

Sonar 108 100 60
Web 3000 3000 300

Table 4.1: General information about benchmark datasets

γ = N−/N+ to minimize the probability of error. The parameters to be tuned are σ (all

methods), C (S-SVM), and η (L2QPη -k, k = 0,1). The following grids were used. For

L2QP-0, L2QP-1, and Parzen, we search a logarithmically spaced grid of 50 points from

10−2 to 101 for σ . For the SVMs, we search the grid 2−2,2−1, ...,27 for σ and for S-SVM

we searched 2−5,2−3, ...,215 for C. For L2QPη -0 and L2QPη -1, we searched a logarith-

mically spaced grid of 11 points from 10−2 to 101 for σ , and a logarithmically spaced grid

of 10 points from 1 to
√

2
d

for η . The grids were chosen to ensure that the two-parameter

methods searched grids of the same size. The parameters were taken to be the same for

all partitions. Each parameter was determined by taking the median estimate based on the

first five training sets. On each of these training sets, we use 5-fold-cross validation to

determine the best parameters.

For the ‘banana’ data set, we plot the decision boundary of the L2QP-0, L2QP-1, and
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S-SVM in Figure 4.2 along with training samples. The number of training samples is

400 and the first partition of the dataset is used. The number of non-zero weights of each

method are 77, 66, and 142, respectively. The decision boundaries of L2QP-0 and L2QP-1

slightly differ in that L2QP-1 shows smoother boundary than L2QP-0.

(a) L2QP-0 (b) L2QP-1 (b) S-SVM

Fig. 4.2: Decision boundary along with positive samples (+) and negative samples (∗) for
banana dataset. Points whose corresponding αi are nonzero are enclosed by©
(a) L2QP-0 (b) L2QP-1 (c) S-SVM

The results for all the datasets are presented in Table 4.2, 4.3, and 4.4. They show

the average probability of error, the average percentage of nonzero coefficients (reflecting

the sparsity), and training time over all permutations, respectively. Time indicates the total

time required to build a classifier, including the cross-validation search for free parameters.

From these results, we can see that the L2QP-0 and L2QP-1 methods shows compara-

ble performance to SVMs except on some high dimensional datasets, e.g., German, Image,

Splice, Waveform, Adult and Ionosphere. For low dimensional datasets, the default value

η = 1 works well, but for dimensionality exceeding 15, this default method tends to be

too sparse, as explained in Section 4.5.5. Significantly improved performance on high-

dimensional data results from optimizing η . The L2QPη -0 and L2QPη -1 are comparable

to SVMs for almost all datasets; their prediction accuracy is 2− 3% worse on average.

The primary exception is the Splice data. A likely explanation for this is that the dataset
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H-SVM S-SVM L2QP-0 L2QP-1 L2QPη -0 L2QPη -1 Parzen

Banana 10.9±0.5 10.8±0.5 11.1±0.6 10.7±0.4 10.7±0.5 10.6±0.4 11.3±0.6

B.Cancer 27.4±4.8 26.9±4.6 26.5±4.6 26.4±4.4 27.6±4.7 25.2±4.2 24.7±4.2

Diabetes 23.8±1.9 23.2±1.8 26.5±2.4 26.8±2.4 26.2±2.3 26.6±1.9 26.0±2.1

F.Solar 37.8±4.6 32.3±1.8 35.7±3.4 35.5±1.8 37.3±1.8 34.0±2.0 36.2±1.9

German 24.2±2.2 24.2±2.1 29.4±2.1 28.4±2.7 26.1±2.8 25.5±2.6 25.3±2.5

Heart 19.4±4.0 15.6±3.4 17.5±4.2 16.8±3.6 17.4±4.0 16.7±3.8 18.0±3.5

Image 3.3±0.7 3.0±0.7 28.7±7.8 9.3±4.5 3.5±0.6 3.7±0.5 3.4±0.5

Ringnorm 1.6±0.1 2.0±0.2 2.4±0.2 2.4±0.2 2.4±0.2 2.4±0.2 2.4±0.2

Splice 10.8±0.7 11.3±0.6 38.9±4.3 36.0±5.2 19.2±1.5 29.1±10.1 26.0±1.9

Thyroid 5.3±2.3 5.0±2.2 5.2±2.2 4.9±2.3 4.6±2.4 4.3±2.5 4.2±2.1

Titanic 22.4±1.0 22.8±0.7 23.0±0.4 22.9±0.6 23.2±1.5 23.2±1.7 22.2±1.1

Twonorm 3.6±0.6 2.9±0.2 6.9±3.6 3.9±0.4 3.3±0.7 5.4±4.0 2.5±0.2

Waveform 13.2±1.2 10.0±0.4 14.2±0.8 13.5±1.2 11.6±0.7 11.2±1.1 10.7±0.8

Adult 15.9±0.8 15.7±0.8 19.5±1.5 21.6±1.2 18.3±0.8 20.0±0.8 18.4±0.6

Ionosphere 5.7±2.4 5.5±2.1 29.4±4.1 29.6±4.2 12.9±3.8 9.5±2.8 13.2±3.3

Mushrooms 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Sonar 15.5±3.7 15.6±3.6 16.9±3.7 16.8±3.6 16.3±3.8 16.2±3.6 15.6±3.6

Web 2.3±0.3 1.9±0.3 2.9±0.3 2.9±0.3 3.6±1.3 2.9±0.3 2.1±0.3

Table 4.2: Probability of Error. Best method in bold face, second best emphasized

consists of only categorical features and thus density based methods may not be suitable.

Training time shows L2QP-0 and L2QP-1 are significantly faster than the SVM, a

reflection of not having to search for an additional regularization parameter. Regarding

sparsity, the L2 methods are often much sparser than the SVMs. One noticeable exception

is the Ringnorm data. We have discovered that allowing the two classes to have separate

bandwidths (which easily fits within our framework) leads to greatly improved perfor-

mance here, as well as sparse L2 classifiers. To maintain a uniform presentation, however,

we do not present detailed results for this extension.

Finally, we remark that the hard margin SVM was considered as alternative method

having only one tuning parameter, like L2QP-0 and L2QP-1. In reality, however, we were

only able to implement H-SVM by taking C very large in the S-SVM. Since the problem
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H-SVM S-SVM L2QP-0 L2QP-1 L2QPη -0 L2QPη -1 Parzen

Banana 26.2±2.5 38.5±2.2 19.9±1.5 16.5±1.1 13.5±1.0 12.7±1.0 100±0.0

B.Cancer 46.9±2.5 55.2±2.9 3.1±0.9 6.7±1.0 17.2±1.9 23.3±2.3 100±0.0

Diabetes 43.1±1.6 52.3±1.7 3.2±0.6 16.3±1.2 6.5±1.1 9.1±1.0 100±0.0

F.Solar 60.6±3.9 76.5±1.8 30.0±2.5 46.7±2.9 46.7±2.4 53.9±3.2 100±0.0

German 52.7±1.6 57.7±1.5 0.5±0.1 6.9±0.5 63.7±2.7 40.7±1.8 100±0.0

Heart 27.8±3.1 50.7±3.0 1.8±0.5 10.4±1.7 20.0±3.5 22.9±3.5 100±0.0

Image 30.2±0.9 7.9±0.8 7.8±2.0 75.8±23.2 79.8±1.0 73.0±1.0 100±0.0

Ringnorm 53.9±3.3 21.5±1.4 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0

Splice 70.8±1.4 17.8±1.9 0.4±0.1 0.3±0.1 40.0±4.7 17.4±1.1 100±0.0

Thyroid 26.7±2.2 32.7±2.4 31.0±2.7 30.8±2.5 60.5±3.1 57.9±3.0 100±0.0

Titanic 45.3±6.5 48.0±6.8 36.5±11.5 44.0±8.2 70.2±4.9 70.4±4.1 100±0.0

Twonorm 19.7±2.1 13.9±1.1 0.7±0.2 5.2±1.2 3.9±0.9 4.5±0.7 100±0.0

Waveform 23.9±2.8 33.9±2.4 96.0±7.0 39.5±4.4 88.6±3.8 42.9±2.6 100±0.0

Adult 32.0±1.4 37.2±1.4 0.13±0.03 0.11±0.02 0.81±0.14 4.1±0.3 100±0.0

Ionosphere 56.7±2.1 34.3±1.7 1.2±0.4 3.1±3.7 32.6±7.2 53.9±2.0 100±0.0

Mushrooms 4.5±0.2 97.4±0.2 100±0.0 100±0.0 51.0±0.7 18.4±0.7 100±0.0

Sonar 89.2±2.5 89.6±2.3 100±0.0 100±0.0 100±0.0 99.2±0.7 100±0.0

Web 7.4±0.5 7.4±0.6 8.2±0.5 8.2±0.5 90.9±1.1 8.2±0.5 100±0.0

Table 4.3: Percentage of non zero weights

is not feasible for C too large, depending on σ , it was actually necessary to search for C

after all (not reflected in reported run times). In addition, the running time for large C was

far greater than that of any other approach.

4.7 Conclusion

In this chapter, the L2 kernel classification method is proposed which minimizes the L2

distance between the true unknown difference of densities dγ (x) and an estimator d̂γ (x;α).

Like the SVM, it is the solution of a convex quadratic program and has a sparse represen-

tation.

Through the development of a novel concentration inequality, we have established

statistical performance guarantees on the L2 kernel classifier. The results also specialize to
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H-SVM S-SVM L2QP-0 L2QP-1 L2QPη -0 L2QPη -1 Parzen

Banana 4140.14 82.01 37.29 51.22 89.17 124.84 -

B.Cancer 2181.51 24.48 10.52 10.80 29.22 47.07 -

Diabetes 30222.68 165.03 52.10 50.42 139.38 135.02 -

F.Solar 15058.31 335.95 79.93 88.83 363.91 849.55 -

German 7310.32 237.69 137.66 142.33 431.41 423.13 -

Heart 173.17 6.60 8.54 8.27 22.72 23.25 -

Image 2047.28 1056.40 397.61 418.93 1353.30 1367.40 -

Ringnorm 105.68 127.04 46.36 48.44 144.95 145.96 -

Splice 2583.97 1323.10 387.71 371.54 1329.09 1386.79 -

Thyroid 8.65 12.12 5.22 4.93 12.78 12.54 -

Titanic 173.12 239.78 4.53 4.55 14.63 15.58 -

Twonorm 12.46 95.32 46.38 44.97 141.88 139.34 -

Waveform 425.29 127.46 47.15 45.21 143.47 140.28 -

Adult 11705.50 10924.42 1016.06 989.54 9929.85 16359.32 -

Ionosphere 15.87 64.89 9.41 9.48 67.01 68.53 -

Mushrooms 861.73 13337.38 3027.31 2944.65 28368.16 29076.56 -

Sonar 4.42 24.16 2.95 3.16 19.25 18.70 -

Web 499.02 5086.96 871.05 858.64 8703.72 11241.11 -

Table 4.4: Time (s): run time, including cross-validation search for a regularization pa-
rameter where appropriate and training time for all permutations.

give performance guarantees for an existing method of L2 kernel density estimation. The

oracle inequality here has been applied to deduce consistency of the procedure (in both ISE

and probability of error), but we suspect it may also yield adaptive rates of convergence.

Although formulated in terms of the L2 distance on the difference of densities, the

L2 kernel classifier has geometric interpretations that more clearly reveal similarities and

differences to the SVM. One of these interpretations motivates the incorporation of a reg-

ularization parameter into the approach, which allows the method to remain competitive

with the SVM for dimensionality d > 15.
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4.8 Proofs

4.8.1 Proof of Lemma 4.1

Note that for any given i,
(
kσ

(
X j,Xi

))
j 6=i are independent and bounded by M =

1/
(√

2πσ
)d

. For random vectors Z ∼ f+ (x) and W ∼ f− (x), h(Xi) in (6) can be ex-

pressed as

h(Xi) = E [kσ (Z,Xi) | Xi]− γE [kσ (W,Xi) | Xi] .

Since Xi ∼ f+ (x) for i ∈ I+ and Xi ∼ f− (x) for i ∈ I−, it can be easily shown that

E
[
ĥi | Xi

]
= h(Xi) .

For i ∈ I+,

P
{∣∣ĥi−h(Xi)

∣∣> ε

∣∣∣∣Xi = x,E
}

≤ P
{∣∣∣∣ 1

n+−1 ∑
j∈I+, j 6=i

kσ

(
X j,Xi

)
−E [kσ (Z,Xi) | Xi]

∣∣∣∣> ε

1+ γ

∣∣∣∣Xi = x
}

+P
{∣∣∣∣ γ

n−
∑
j∈I−

kσ

(
X j,Xi

)
− γE [kσ (W,Xi) | Xi]

∣∣∣∣> γε

1+ γ

∣∣∣∣Xi = x
}

(4.17)

Since we are conditioning on E, the first term in (4.17) is

P
{∣∣∣∣ ∑

j∈I+, j 6=i
kσ

(
X j,Xi

)
− (n+−1)E [kσ (Z,Xi) | Xi]

∣∣∣∣> (n+−1)ε

1+ γ

∣∣∣∣Xi = x
}

= P
{∣∣∣∣ ∑

j∈I+, j 6=i
kσ

(
X j,Xi

)
−E
[

∑
j∈I+, j 6=i

kσ

(
X j,Xi

)
| Xi

]∣∣∣∣> (n+−1)ε

(1+ γ)

∣∣∣∣Xi = x
}

= P
{∣∣∣∣ ∑

j∈I+, j 6=i
kσ

(
X j,Xi

)
−E
[

∑
j∈I+, j 6=i

kσ

(
X j,Xi

)
| Xi

]∣∣∣∣> (n+−1)ε

(1+ γ)

∣∣∣∣Xi = x
}

≤ 2e−2(n+−1)ε2/(1+γ)2M2
.

where the last inequality holds by Hoeffding’s inequality [23]. The second term in (4.17)
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is

P
{∣∣∣∣∑

j∈I−

kσ

(
X j,Xi

)
−n−E [kσ (W,Xi) | Xi]

∣∣∣∣> n−ε

1+ γ

∣∣∣∣Xi = x
}

≤ P
{∣∣∣∣∑

j∈I−

kσ

(
X j,Xi

)
−E
[

∑
j∈I−

kσ

(
X j,Xi

)
| Xi

]∣∣∣∣> n−ε

1+ γ

∣∣∣∣Xi = x
}

≤ 2e−2n−ε2/(1+γ)2M2
≤ 2e−2(n−−1)ε2/(1+γ)2M2

.

Therefore,

P
{∣∣∣ĥi−h(Xi)

∣∣∣> ε

}
= ∑

x
P
{

Xi = x
}
·P
{∣∣∣ĥi−h(Xi)

∣∣∣> ε

∣∣∣∣Xi = x
}

≤ ∑
x

P
{

Xi = x
}(

2e−2(n+−1)ε2/(1+γ)2M2
+2e−2(n−−1)ε2/(1+γ)2M2

)
= 2e−2(n+−1)ε2/(1+γ)2M2

+2e−2(n−−1)ε2/(1+γ)2M2
.

In a similar way, it can be shown that for i ∈ I−,

P
{∣∣∣ĥi−h(Xi)

∣∣∣> ε

}
≤ 2e−2(n+−1)ε2/(1+γ)2M2

+2e−2(n−−1)ε2/(1+γ)2M2
.
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Then,

P
{

sup
α∈A
|Hn (α)−H (α)|> ε

}
= P

{
sup
α∈A

∣∣∣∣ n

∑
i=1

αiYi

(
ĥi−h(Xi)

)∣∣∣∣> ε

}

≤ P

{
sup
α∈A

n

∑
i=1

αi |Yi|
∣∣∣ĥi−h(Xi)

∣∣∣> ε

}

= P
{

sup
α∈A

n

∑
i∈I+

αi

∣∣∣ĥi−h(Xi)
∣∣∣+ n

∑
i∈I−

αiγ

∣∣∣ĥi−h(Xi)
∣∣∣> ε

}
≤ P

{
sup
α∈A

n

∑
i∈I+

αi

∣∣∣ĥi−h(Xi)
∣∣∣> ε

1+ γ

}
+P
{

sup
α∈A

n

∑
i∈I−

αiγ

∣∣∣ĥi−h(Xi)
∣∣∣> γε

1+ γ

}
= P

{
max
i∈I+

∣∣∣ĥi−h(Xi)
∣∣∣> ε

1+ γ

}
+P

{
max
i∈I−

∣∣∣ĥi−h(Xi)
∣∣∣> ε

1+ γ

}
= P

{⋃
i∈I+

{∣∣∣ĥi−h(Xi)
∣∣∣> ε

1+ γ

}}
+P
{⋃

i∈I−

{∣∣∣ĥi−h(Xi)
∣∣∣> ε

1+ γ

}}
≤ ∑

i∈I+

P
{∣∣∣ĥi−h(Xi)

∣∣∣> ε

1+ γ

}
+ ∑

i∈I−

P
{∣∣∣ĥi−h(Xi)

∣∣∣> ε

1+ γ

}
≤ n+

(
2e−2(n+−1)ε2/(1+γ)4M2

+2e−2(n−−1)ε2/(1+γ)4M2
)

+n−
(

2e−2(n+−1)ε2/(1+γ)4M2
+2e−2(n−−1)ε2/(1+γ)4M2

)
= n

(
2e−2(n+−1)ε2/(1+γ)4M2

+2e−2(n−−1)ε2/(1+γ)4M2
)
.

4.8.2 Proof of Theorem 4.3

Define u = (u1, . . . ,un) such that ui = 1/n+ for i ∈ I+ and ui = 1/n− for i ∈ I−. By the

similar argument for the convergence of MISE of kernel density estimate [57], it can be

shown, using a multivariate Taylor series, that

MISE (u;n+,n−) = E [ISE (u)]

=
∫

Var
(

d̂γ (x;u)
)
+bias2

(
d̂γ (x;u)

)
dx

=

{
1

n+σd +
γ2

n−σd

}
R(k)+

1
4

σ
4R
(

tr
{

Hdγ

})
+o
(

n−1
+ σ

−d +n−1
− σ

−d +σ
4
)

where R( f ) =
∫

f 2 (x)dx and H f represent the Hessian matrix of f . Therefore, ISE (u)

converges to 0 in probability since σ → 0, n+σd → ∞ and n+σd → ∞ as n→ ∞. Further-
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more,

P{ISE (α̂)> ε} = P
{

ISE (α̂)> ε, ISE (u)>
ε

2

}
+P

{
ISE (α̂)> ε, ISE (u)≤ ε

2

}
≤ P

{
ISE (u)>

ε

2

}
+P

{
ISE (α̂)> ISE (u)+

ε

2

}
.

From the consistency of ISE (u) and the oracle inequality stated in Theorem 4.2, ISE (α̂)

converges to 0 in probability.

4.8.3 Proof of Theorem 4.4

First note that in the previous analyses we treat N+,N− and γ as deterministic variables

but now we turn to the case where these variables are random. Thus, some of the previous

results should be restated considering this.

Lemma 4.7. γ converges to γ∗ with probability 1.

Proof. Note that N+ and N− are binomial random variables with (n, p) and (n,q) where

q = 1− p. From the Hoeffding’s inequality, we know that for ∀ε > 0

P
{

N+

n
− p > ε

}
≤ e−2nε2

, P
{

N+

n
− p <−ε

}
≤ e−2nε2

P
{

N−
n
−q > ε

}
≤ e−2nε2

, P
{

N−
n
−q <−ε

}
≤ e−2nε2

.



94

Then, for any ε > 0

Pn (ε), P
{∣∣∣∣N−N+

− q
p

∣∣∣∣> ε

}
= P{|pN−−qN+|> ε pN+}

= P
{
|pN−−qN+|> ε pN+,N+ ≥

np
2

}
+P

{
|pN−−qN+|> ε pN+,N+ <

np
2

}
≤ P

{
|pN−−qN+|> ε p · np

2

}
+P

{
N+ <

np
2

}
≤ P

{
|pN−− pqn+ pqn−qN+|>

nε p2

2

}
+P

{
N+− pn <−np

2

}
≤ P

{
|pN−− pqn|> nε p3

2

}
+P

{
|qN+− pqn|> nε p2q

2

}
+P

{
N+− pn <−np

2

}
= P

{∣∣∣∣N−n −q
∣∣∣∣> ε p2

2

}
+P

{∣∣∣∣N+

n
− p
∣∣∣∣> ε p2

2

}
+P

{
N+

n
− p <− p

2

}
≤ 4exp

(
−nε2 p4

2

)
+ exp

(
−np2

2

)
.

Since ∑
∞
n=1 Pn (ε)< ∞ for all ε > 0, γ converges to γ∗ with probability 1.

Lemma 4.8. Suppose the assumptions in Theorem 4.4 are satisfied. For any ε ′ > 0,

P{ISE (α̂)> infα∈A ISE (α)+ ε ′} converges to 0.

Proof. We need to restate Theorem 4.2 as follows. For any δ > 0,

P
{

ISE (α̂)> inf
α∈A

ISE (α)+4

√
ln(2n/δ )

c[min(N+,N−)−1]

∣∣∣∣N+ = n+,N− = n−

}
≤ δ

since √
ln(2n/δ )

c[min(n+,n−)−1]
≤ ε ≤

√
ln(2n/δ )

c[max(n+,n−)−1]
.

Let us define c′= 2
(√

2πσ
)2d

/(1+2γ∗)4 and an event D=
{

N+ ≥ np
2 ,N− ≥ n(1−p)

2 ,γ ≤ 2γ∗
}

.

Then,

P

{
ISE (α̂)> inf

α∈A
ISE (α)+4

√
2ln(2n/δ )

c′[min(np,n(1− p))−1]

}

≤ P
{

Dc}+P
{

D
}
·P
{

ISE (α̂)> inf
α∈A

ISE (α)+4

√
2ln(2n/δ )

c′[min(np,n(1− p))−1]

∣∣∣∣D}.



95

The first term converges to 0 from the strong law of large numbers and Lemma 4.7. The

second term becomes

P
{

ISE (α̂)> inf
α∈A

ISE (α)+4

√
2ln(2n/δ )

c′[min(np,n(1− p))−1]

∣∣∣∣D}

≤ P
{

ISE (α̂)> inf
α∈A

ISE (α)+4

√
ln(2n/δ )

c[min(N+,N−)−1]

∣∣∣∣D}

= ∑P

{
ISE (α̂)> inf

α∈A
ISE (α)+4

√
ln(2n/δ )

c[min(N+,N−)−1]

∣∣∣∣D,N+ = n+,N− = n−

}
·P{N+ = n+,N− = n−}

≤ ∑δP{N+ = n+,N− = n−}= δ .

For any δ > 0, we can make 4
√

2ln(2n/δ )
c′[min(np,n(1−p))−1] smaller than ε ′ as n→ ∞, provided

that lnn/nσd → 0 as n→ 0. Therefore, P{ISE (α̂)> infα∈A ISE (α)+ ε ′} converges to

0.

Lemma 4.9. Suppose the assumptions in Theorem 4.4 are satisfied. Then, ISE (u) con-

verges to 0 in probability.

Proof. Define an event D =
{

N+ ≥ np
2 ,N− ≥ n(1−p)

2 ,γ ≤ 2γ∗
}

. For any ε > 0,

P{ISE (u)> ε} ≤ P
{

Dc}+P
{

ISE (u)> ε, D
}
.

The first term converges to 0 from the strong law of large numbers and Lemma 4.7. Let



96

define a set S =
{
(n+,n−)

∣∣n+ ≥ np
2 ,n− ≥ n(1−p)

2 , n−
n+
≤ 2γ∗

}
. Then,

P
{

ISE (u)> ε, D
}

= ∑P
{

ISE (u)> ε, D
∣∣∣∣N+ = n+,N− = n−

}
·P{N+ = n+,N− = n−}

= ∑
(n+,n−)∈S

P
{

ISE (u)> ε

∣∣∣∣N+ = n+,N− = n−

}
·P{N+ = n+,N− = n−}

≤ ∑
(n+,n−)∈S

E
[
ISE (u)

∣∣N+ = n+,N− = n−
]

ε
·P{N+ = n+,N− = n−}

≤ 1
ε

∑
(n+,n−)∈S

[
1

nσd

(
2
p
+

8γ∗2

1− p

)
R(k)+

1
4

σ
4R
(

tr
{

Hdγ

})
+o
(

n−1
σ
−d +σ

4
)]

·P{N+ = n+,N− = n−}

≤ 1
ε

(
1

nσd

{
2
p
+

2γ∗2

1− p

}
R(k)+

1
4

σ
4R
(

tr
{

Hdγ

})
+o
(

n−1
σ
−d +σ

4
))

where the second to the last step, we used MISE (u;n+,n−) formula in explained in Sec-

tion 4.8.2 and the fact that for (n+,n−) ∈ S,

1
n+σd +

1
n−σd ≤

2
npσd +

2
n(1− p)σd =

1
nσd

(
2
p
+

2
1− p

)
Therefore, ISE (u) converges to 0 since σ → 0 and nσd → ∞ as n→ ∞.

Now let’s prove Theorem 4.4. From Theorem 3 in [72], it suffices to show that∫ (
d̂γ (x; α̂)−dγ∗ (x)

)2
dx→ 0

in probability. Note that

‖d̂γ (x; α̂)−dγ∗ (x)‖L2 = ‖d̂γ (x; α̂)−dγ (x)+(γ− γ
∗) f− (x)‖L2

≤ ‖d̂γ (x; α̂)−dγ (x)‖L2 +‖(γ− γ
∗) f− (x)‖L2

=
√

ISE (α̂)+ |γ− γ
∗| · ‖ f− (x)‖L2. (4.18)

For the first term in (4.18), P
{

ISE (α̂)> ε
}

converges to 0 in probability since

P{SE (α̂)> ε} ≤ P
{

ISE (α̂)> ISE (u)+
ε

2

}
+P

{
ISE (u)>

ε

2

}
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and from Lemma 4.8 and 4.9. The second term in (4.18) also converges to 0 in probability

from Lemma 4.7. This proves the theorem.



CHAPTER 5

Conclusion

In this thesis, we present classification algorithms for both an application-driven prob-

lem (Chapter 2) and more theoretically driven problems (Chapter 3 and Chapter 4). When

we dealing with these problems, we focus on kernel methods that have been quite success-

ful and effective in various applications.

In Chapter 2, we apply a kernel method to a specific medical application, where we

have to predict ICU admission for post-operative patients with possible sepsis. We have

shown that feature extraction based on heuristics, paired with kernel methods, can lead to

significant performance gain over those used by clinicians. As a future work, more exper-

iments could be done if well-cleaned data is available. It would be also interesting to find

more theoretically-driven features and see how they work compared to the proposed fea-

tures. Another future research direction would be to design a suitable kernel for irregularly

sampled vital signs that captures the similarity between patients.

In Chapter 3, we develop the novel, nonparametric density estimation for contaminated

data. The RKDE is obtained as a robust sample mean in the RKHS associated to the kernel

through M-estimation. The RKDE is expressed as a weighted kernel density estimate

with a robust property that smaller weights are given to more outlying data points. The

investigation of the influence function further confirms that RKDEs are less sensitive to

98



99

contamination than traditional KDEs. In future work it would be interesting to investigate

asymptotics, the bias-variance trade-off, and the efficiency-robustness trade-off of robust

kernel density estimators.

In Chapter 4, the L2 kernel classification method is proposed that minimizes the L2

distance between “difference of densities”. Like the SVM, it is the solution of a convex

quadratic program, and has a sparse representation as well as the geometric interpretation

in the associated RKHS. Statistical performance guarantees on the L2 kernel classifier are

established, which also specialize to give performance guarantees for an existing method

of L2 kernel density estimation.
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