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CHAPTER I

Introduction

Mechanism design uses game theory to analyze how to construct mechanisms

that give agents incentives to produce an outcome as optimal as possible for the

mechanism designer. My dissertation is on robust mechanism design, where the

mechanism designer has a great deal of uncertainty about what agents believe about

other agents’ preferences and beliefs. Much research on robust mechanism design

has focused on finding “dominant strategy mechanisms,” mechanisms where agents’

equilibrium actions depend only on their preferences and not their beliefs about the

other agents. Focusing on such mechanisms avoids the problem of uncertainty about

agents’ beliefs because it makes any assumptions about agents’ beliefs irrelevant.

Chapters 2 through 5 of my dissertation explore how effective dominant strategy

mechanisms are at achieving mechanism designers’ goals. Mechanisms are compared

by considering performance of the mechanisms for a wide range of possible agent pref-

erences and beliefs, and then defining one mechanism as an improvement on another

mechanism if it performs as well (and sometimes better) for every possible realiza-

tion of agents preferences and beliefs. The first two chapters explore this question

in the context of a public good problem. Chapter 2 demonstrates that there are

mechanisms that improve on the dominant strategy mechanisms in the sense just

described; Chapter 3 examines the usefulness of this particular efficiency concept by
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providing an example of a mechanism that is both very simple and unimprovable.

The fourth and fifth chapters are coauthored with Tilman Börgers and look at the

same question for the voting problem, where dominant strategy mechanisms are (ran-

dom) dictatorships. Chapter 4 shows that random dictatorship can be improved on

if the mechanism designer wants to maximize agents expectation of their welfare, but

not ex post welfare. Chapter 5 shows the same results when the designer wants to

maximize the sum of two agents welfare.

The last chapter, Chapter 6, is coauthored with Mary Rigdon and reports on an

experiment designed to investigate whether seemingly altruistic behavior is actually

a response to strategic incentives, by using pre-commitment of some agents to test

whether agents act differently when their actions cant influence others future actions.

Our data support the hypothesis that agents are motivated by social concerns.
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CHAPTER II

A Prior Free Efficiency Comparison for the Public

Good Problem

2.1 Introduction

The public good problem with private information has long been considered an

important problem in economics. The simplest version of this problem is as follows.

A group of agents must decide whether to produce a single unit of an indivisible, non-

excludable public good and how to pay for it. The cost of production is commonly

known, but the value that each agent would gain from the production of the public

good, although privately known to that agent, is not necessarily known by the other

agents. Production of the good is efficient if the sum of the agents’ valuations is larger

than the production cost of the public good. But if the total value gained is less than

the cost, then the public good should not be created. In this paper I focus on the

case in which participation is voluntary: no agent can be forced to contribute to the

production of the public good.

If the agents adopt a decision procedure in which first agents report their values

for the public good, and the decision whether to produce the public good and the

division of the cost among the agents depend on the reported values, then it is possible

that some agents will try to free-ride by reporting lower valuations than they actually
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have. They may expect that others’ reported values may be sufficiently high that the

public good is produced even with their lower report, but that their own contribution

to the cost is lower than it would have been had they reported their values truthfully.

Such strategic misrepresentation of private values may undermine the efficiency of

the given procedure. Indeed, for some settings it can be shown that there is no way

to avoid strategic misrepresentation as long as the decision procedure adopted by

the agents ensures that the sum of agents’ payments equals the production cost of

the public good, and participation is voluntary.1 It is therefore, in these settings,

impossible to find a decision procedure that always arrives at efficient decisions.

This impossibility result inspires the study of a “second best problem:” This prob-

lem is typically conceptualized as that of a welfare-maximizing mechanism designer

who must design a game (a mechanism) which determines a set of available actions

for each agent to choose from. The mechanism then determines, based on the agent’s

choices, whether or not the public good is created, and which agents will pay what

share of the cost. The mechanism designer predicts the agents’ choices in any possible

mechanism using a game-theoretic equilibrium concept, such as Bayesian equilibrium.

If it is assumed that agents’ beliefs are derived from a common prior on some type

space, then the mechanism designer can be assumed to share the same common

prior, and the mechanism designer can seek to maximize expected welfare where the

expected welfare calculation is based on the common prior.

This problem has been studied in the literature where the literature has focused

on relatively special type spaces. In particular, Güth and Hellwig (1986), Mailath

and Postlewaite (1990), and Ledyard and Palfrey (2007) have solved this problem

for the case that agents’ types are independently distributed. The mechanisms that

arise in these settings as second best do not have simple and intuitive interpretations.

1The Vickrey-Clarke-Groves mechanism (Vickrey (1961), Clarke (1971) and Groves (1973)) pro-
duces the efficient outcome, but is not budget balanced. d’Aspremont and Gerard-Varet (1979) show
that efficient mechanisms that are budget balanced exist, but these violate voluntary participation
as some agents may expect to be made worse off by participating.
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However, they typically imply underproduction of the public good in comparison to

the first best.

Starting with Wilson (1987), some economists have criticized the classic Bayesian

approach to mechanism design on the grounds that it makes too strong assumptions

regarding agents’ beliefs about other agents’ valuations, and about other agents’ be-

liefs. These assumptions reflect the mechanism designer’s perception of the environ-

ment for which he designs a mechanism. Critics of the classic approach argue that

we should instead study second-best mechanisms for a mechanism designer who has a

wider range of uncertainty about the agents’ beliefs. The common prior assumption

of classic Bayesian mechanism design may also be criticized as too strong. First,

common priors rule out certain hierarchies of beliefs, such as the “agreeing to dis-

agree” hierarchy. Second, even if agents’ hierarchies of beliefs are such that they can

be derived from a common prior, it is not clear why the mechanism designer should

share this common prior, as classic Bayesian mechanism design implicitly assumes.

There are two responses to this concern with the Bayesian approach. One solution

could be to study second best mechanisms with more complex type spaces, and allow

the subjective belief of the mechanism designer to not necessarily be identical to the

common prior that underlies agents’ beliefs (if such a common prior exists). But with

more complex priors the problem can become intractable. The more frequently cho-

sen approach is to impose stronger solution concepts that make assumptions about

agents’ beliefs irrelevant. This approach means focusing on mechanisms where equi-

librium strategies are (weakly) dominant or ex-post incentive compatible. When

only such mechanisms are considered, assumptions about agents’ beliefs are rendered

innocuous. The question then becomes whether imposing these stronger solution

concepts excludes too many mechanisms from consideration. If so, the approach will

constrain the mechanism designer to a lower level of efficiency than might be achieved

by directly analyzing the problem for a larger class of type spaces. Recent papers
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(Bergemann and Morris, 2005; Chung and Ely, 2007) have explored this question for

different mechanism design settings.

This paper proposes an alternative approach to the study of second best mecha-

nisms for the public good problem. I assume there is some, possibly large, set of type

spaces that the mechanism designer recognizes as possible descriptions of the agents’

type space. Then one mechanism is said to improve on another mechanism if the

former is at least as efficient as the latter for every realization of types on every type

space, and strictly more efficient for at least one type space that the mechanism de-

signer considers. When a mechanism designer considers a sufficiently rich set of type

spaces, this is equivalent to making no assumption about the mechanism designer’s

perception of the agents’ beliefs and private values. Furthermore, the induced partial

ranking of mechanisms is independent of any beliefs the mechanism designer might

have about the relative likelihood of different type spaces and realizations of types

within each type space. In that sense the ranking is robust. Furthermore, I prove a

result regarding the soundness of the improvability ranking by showing that, if the

typespaces the mechanism designer considers are finite, any feasible mechanism is

either unimprovable or there is an unimprovable mechanism that improves upon it.

I use the improvability ranking to examine the effect of restricting attention to

mechanisms where agents’ equilibrium actions depend only on their private values

and not on their beliefs. In private value settings those mechanisms are dominant

strategy mechanisms. I first characterize the set of dominant strategy mechanisms in

this setting (I restrict attention to deterministic mechanisms). I then show that in

this setting every dominant strategy mechanism is improved on by some mechanism,

i.e., there is some mechanism that is at least as efficient as the dominant strategy

mechanism on any type space, and strictly more efficient on some type space. While

this mechanism improves on the dominant strategy mechanism from an efficiency

perspective, it is just as “detail free.” Furthermore, any sufficiently rich set of possible
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type spaces would lead a welfare maximizer to prefer these non-dominant strategy

mechanisms to the class of dominant strategy mechanisms. This analysis implies that

in the public good setting, restricting attention to dominant strategy mechanisms is

not a satisfactory solution to finding optimal mechanisms on richer type spaces.

A further goal of this research is to characterize the unimprovable mechanisms

in the public good problem. I explore this question in a companion paper, “An

Unimprovability Result for the Public Good Problem.” In that paper, I show a simple

mechanism that is unimprovable among finite-action mechanisms on the universal

type space.

There is a natural connection between the literature on public good mechanisms

without hidden information and the mechanisms I find that improve on the dominant

strategy mechanisms. The improving mechanisms allow for agents to reduce the cost

of the public good to other agents (and pay the difference in cost themselves). In

this way they are similar in spirit to the public good “compensation mechanisms”

studied by Varian (1994a and 1994b), where agents contributing to a public good (in

a complete information setting) can subsidize other agents’ purchases of the public

good, and in so doing make those agents internalize the social benefit of their purchase

of the public good. In a similar fashion, the mechanism that improves on a dominant

strategy mechanism allows an agent to express a stronger preference for a public good

by reducing what another agent has to pay for the good to be produced.

This paper contributes to the literature examining when a mechanism designer

might choose to use a mechanism with belief-invariant strategies. One important

difference between this paper and the previous literature is the improvability com-

parison. Bergemann and Morris (2005) look at a general mechanism design setting

and a mechanism designer who wants to implement a social choice rule. They prove

results describing environments in which a mechanism designer can restrict attention

to mechanisms with belief-invariant equilibria and not reduce the set of social choice
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rules that can be implemented. In their analysis, social choice rules only depend on

payoff-relevant information. In contrast, the improvability concept of this paper takes

a description of the mechanism designer’s preference over outcomes that depends only

on agents’ valuations and then creates a ranking of mechanisms that reflects the goal

of finding, given that objective, a second best mechanism. This ranking can make a

distinction between mechanisms when for a given profile of pay-off relevant types, one

mechanism implements the optimal outcome for more possible beliefs of the agents

than another mechanism.

Chung and Ely (2007) examine an auction setting where the mechanism designer

is trying to maximize revenue, has a prior over the distribution of agents’ valuations,

and evaluates mechanisms on the basis of their worst-case revenue outcome over all

possible beliefs of the agents (a maxmin approach). They show that it in this setting

the mechanism designer can rationally choose a dominant strategy mechanism. A

difference between Chung and Ely’s setting and the setting in this paper is that

they assume that the mechanism designer only cares about the worst-case outcome,

whereas in this paper the mechanism designer compares outcomes across all possible

agent realizations. Given two mechanisms that have the same worse-case outcome,

one mechanism can still improve on the other mechanism if the former does strictly

better than the latter on other type spaces. However, maxmin preferences would not

make a distinction between the performance of the two mechanisms.

Chung and Ely also show that for a dominant strategy mechanism that is optimal

among dominant strategy mechanisms for a given distribution over agents’ valua-

tions, they can find a type space that describes agents’ beliefs such that a dominant

strategy mechanism is a rationalizable choice on that type space. In contrast, this

paper’s results suggest in the public goods setting, if the mechanism designer takes

into consideration a sufficiently broad range of types spaces, any dominant strat-

egy mechanism will be strictly inferior from an expected welfare standpoint to some
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mechanism where equilibrium actions depend on beliefs as well as payoff types.

An interesting recent paper by Yamashita (2011), written independently from

and at the same time as this paper, looks at a related question in the bilateral trade

setting. The approach of the paper differs from this paper in that in that it constructs

a robust mechanism design approach by analyzing outcomes that can arise from a

given mechanism when agents play non-weakly dominated strategies, and evaluates

mechanisms based on the minimal welfare the mechanism can guarantee when agents

can potentially play any non-weakly dominated strategy. He shows that for some

assumptions on the distribution of agents’ valuations, dominant strategy mechanisms

(specifically, fixed price mechanisms) can be optimal. He also shows that under

certain assumptions on the agent’s type spaces, a two-price mechanism that is not a

dominant strategy mechanism not only performs better than any dominant strategy

mechanism, but is in fact optimal among the class of finite mechanisms in terms of

its minimal welfare guarantee.

The paper is structured as follows: in the next section, I introduce the public good

problem and define the set of type spaces that a mechanism designer may consider. In

section 2.3, I describe the set of feasible mechanisms and equilibria. Section 2.4 defines

the concept of improvability as a (partial) ranking of mechanisms. Section 2.5 defines

dominant strategy mechanisms, while section 2.6 shows that in thinking about the

efficiency of dominant strategy mechanisms we can focus on a particular set of maxi-

mally efficient dominant strategy mechanisms, the fixed contribution mechanisms. In

section 2.7 I describe another mechanism, the “additional contribution mechanism.”

Section 2.8 compares the efficiency of dominant strategy mechanisms and interim im-

plementable mechanisms by showing that every fixed contribution mechanism, and

hence any dominant strategy mechanism, is improved on by some additional contri-

bution mechanism for any mechanism designer who considers a sufficiently rich set of

type spaces. Section 2.9 concludes.
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2.2 The Public Good Problem

A set of N individuals, indexed by i ∈ {1, 2, ...N}, have to decide whether an

indivisible and non-excludable public good will be created, and how it will be paid

for. Each individual derives a private benefit from the creation of the public good, and

each individual knows their own benefit (valuation) but not necessarily the valuations

of the other individuals. Preferences are assumed to have a quasi-linear structure, and

monetary transfers between agents are possible. In this paper I focus on the problem

of a welfare maximizing social planner, who faces a budget balance constraint as well

as individual rationality constraints, who wants the public good to be created if and

only if the sum of the private benefits is at least as large as the cost of producing the

public good. The rest of this section develops the formal model and notation.

Let the set of outcomes be Y = {0, 1} ×RN where the first component is inter-

preted as the probability that the public good is created, and the other components

are the transfers from (or if negative, to) each individual. Let y ≡ (q, τ) ∈ Y where

τ = (τ1, τ2, ..., τN). The cost of creating the public good is c.

Individual i’s valuation of the good is vi ∈ [v, v], with the valuation profile v =

(v1, v2, ..., vN). I assume that Nv > c > Nv, so if all agents have the highest valuation

then the value created by the public is greater than its costs, and if all agents have

the lowest valuation then the value created by the public good is less than its cost.

I assume that each agent’s utility only depends on the outcome and their valuation

of the good. Furthermore, utilities are linear in the probability of the public good

being created and the monetary transfer:

ui(y, vi) = vi · q − τi (2.1)

Define a type space T ≡ (Ti, v̂i, π̂i)i∈{1,...,N} as a collection of types, Ti, for each

10



player (ti ∈ Ti), a function for each agent i from types to valuations of the good,

v̂i : Ti → [v, v], and a function for each agent i that maps from agent i’s types

to beliefs over other agents’ types, π̂i : Ti → ∆(T−i), where ∆(T−i) is the set of

probability distributions over T−i. I will write π̂ti [E] for the probability that agent i

of type ti puts on the other agents being of a type profile in the set E. Furthermore,

define T = ×Ti, and for any i, T−i = ×j 6=iTj.

A given typespace T can be any set of types (and valuation and beliefs functions)

as long as a suitable measure can be defined for beliefs on T−i for all i. I do not

require T to be a subset of the universal type space (see Mertens and Zamir (1985)

for a description of the universal type space). In particular, I allow T to contain

“redundant” types, that is types with the same beliefs and valuations. I will focus

on two main cases of type spaces. I’ll call T finite if |Ti| is finite for all i. I will also

consider the universal type space.

I model the mechanism designer as having in mind a set Ω of type spaces which

the mechanism designer believes contains the actual type space. The mechanism

designer then considers mechanisms and their equilibria on all the type spaces in Ω.

2.3 Feasible Mechanisms

A mechanism M = (A, ŷ) consists of a set of actions Ai for each agent, with

A = ×Ai, and a mapping from combinations of actions into outcomes, ŷ : A→ Y . In

particular, I define ŷ(a) ≡ (q(a), τ(a)). Sequential games are included in the analysis

through their strategic form representations. A (Bayesian Nash) equilibrium of a

mechanism is defined in the following way:

Definition II.1. An equilibrium a∗ of a mechanism M consists of a mapping for each

type space T ∈ Ω, and for each agent, a∗T,i : Ti → Ai, such that for all i and all ti ∈ Ti,

11



a∗T,i(ti) is a best response to the other agent’s equilibrium actions a∗T,−i = ×j 6=i a∗T,j,

i.e.

Eπ̂(ti)

[
v̂i(ti) · q

(
a∗T,i(ti), a

∗
T,−i(t−i)

)
− τi

(
a∗T,i(ti), a

∗
T,−i(t−i)

)]
≥ Eπ̂(ti)

[
v̂i(ti) · q

(
âi, a

∗
T,−i(t−i)

)
− τi

(
âi, a

∗
T,−i(t−i)

)]
(2.2)

for all âi ∈ Ai.

Note that an equilibrium defines actions for all agents and for all type spaces T ∈ Ω.

Given an equilibrium a∗, I can define for any T the expected utility of a type

ti ∈ Ti:

Ui(ti) ≡ Eπ̂(ti)

[
v̂i(ti) · q(a∗T,i(ti), a∗T,−i(t−i))− τi(a∗T,i(ti), a∗T,−i(t−i))

]
and the expected utility of ti playing action ai in equilibrium,

Ui(ti, ai) ≡ Eπ̂(ti)

[
v̂i(ti) · q(ai, a∗T,−i(t−i))− τi(ai, a∗T,−i(t−i))

]
.

Similarly, define the expected likelihood of the public good being produced for ti in

equilibrium,

Qi(ti) ≡ Eπ̂(ti)q(a
∗
T,i(ti), a

∗
T,−i(t−i))

and the expected likelihood of the public good being produced for ti in equilibrium

if ti plays ai,

Qi(ti, ai) ≡ Eπ̂(ti)q(ai, a
∗
T,−i(t−i)).

Definition II.2. M = (A, ŷ) and an equilibrium a∗ of that mechanism are feasible

if the following two conditions are satisfied:

• Ex-post Budget Balance (BB). For all a ∈ A,

12



N∑
i=1

τi(a) = q(a) · c (2.3)

Note that budget balance is a condition on the mechanism, not on the equilib-

rium.

• Interim individual rationality (IIR). For all T ∈ Ω and all ti ∈ Ti,

Ui(ti) ≥ 0 (2.4)

The definition of equilibrium implies a third property:

• Bayesian Incentive Compatibility (BIC). For all T ∈ Ω and all ti ∈ Ti,

Ui(ti) ≥ Eπ̂(ti)

[
v̂i(ti) · q(âi, a∗T,−i(t−i))− τi(âi, a∗T,−i(t−i))

]
(2.5)

∀âi ∈ Ai

I now turn to comparisons of feasible mechanisms.

2.4 Improvability

The mechanism designer is assumed to want to maximize the sum of agents’

utilities. I further assume the mechanism designer must choose a feasible mechanism.

Therefore budget balance implies that the mechanism designer’s value function at

any realization of types t and for any outcome y = (q, τ) is equal to,

V (y, t) = q ·

(
N∑
i=1

v̂i(ti)− c

)
(2.6)

for any T ∈ Ω and t ∈ T .

13



I make no assumptions about the mechanism designer’s beliefs. This allows the

analysis to apply to a mechanism designer with any Bayesian beliefs who maximizes

expected welfare, but can accomodate a mechanism designer with different or less well

defined beliefs, or different preferences. Instead I develop a prior-free comparison of

the efficiency of two mechanisms. I say a feasible mechanism M and equilibrium

a∗ improve on another mechanism M̃ and equilibrium ã∗ if a∗ produces at least as

efficient a result for any realization of types as ã∗, and for some possible realization

of types produces a strictly more efficient result. Efficiency is judged in terms of

equation (2.6).

Definition II.3. A feasible mechanism M and equilibrium a∗ improve on a feasible

mechanism M̃ and equilibrium ã∗ if for all type spaces T ∈ Ω and all t ∈ T ,

qM(a∗T(t)) ≥ qM̃(ã∗T(t)) when
N∑
i=1

v̂i(ti) > c

and

qM(a∗T(t)) ≤ qM̃(ã∗T(t)) when
N∑
i=1

v̂i(ti) < c

(2.7)

and there is some T ∈ Ω and t ∈ T such that the applicable inequality in (2.7) is

strict.

This comparison corresponds to a weak dominance approach to comparing mecha-

nisms (and associated equilibria). It defines a partial ranking of mechanisms that

will partially describe a mechanism designer’s preferences under a broad range of as-

sumptions about the mechanism designer. Specifically, the analysis will apply for any

mechanism designer who prefers a mechanism over another if the former is always at

least as efficient and sometimes strictly more efficient than the latter. There are mod-
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els of mechanism designers that would not fit this description (for example, Chung

and Ely (2007)’s maxmin preferences disregard performance in all but the worst-case

situation). Even in these cases, however, the intuitive appeal of the improvability

criterion make it an appealing potential tie-breaker between mechanisms that are

ranked equally according to the specified preferences.

This definition of improvability focuses on ex-post outcomes rather than an interim

measure of efficiency. That choice reflects the description of the mechanism designer’s

preference for maximizing realized aggregate welfare. One reason for using realized

outcomes is that the mechanism designer may have different beliefs about the dis-

tribution of types than any particular agent, and so may disagree with an agent’s

interim evaluation of a mechanism. (The mechanism designer’s beliefs are not for-

mally modeled in this paper.) Furthermore, if agents have inconsistent beliefs, it may

be interim improving to allow agents to make bets between themselves. Focusing on

ex-post outcomes avoids entangling the analysis of the public goods problem with the

welfare analysis of bets reflecting inconsistent beliefs. Although any given mechanism

may allow agents to make such bets, the evaluation of the mechanism depends only

on agents’ realized utilities.

The following straightforward lemma establishes that improvability relates in a nat-

ural way to ex-post welfare maximization.

Lemma II.4. A feasible mechanism M = (AM , ŷM) and equilibrium a∗ improve on

a feasible mechanism M̃ = (AM̂ , ŷM̂) and equilibrium ã∗ if for all type spaces T ∈ Ω

and all t ∈ T ,

N∑
i=1

ui
(
ŷM(a∗T(t)), v̂i(ti)

)
≥

N∑
i=1

ui

(
ŷM̃(ã∗T(t)), v̂i(ti)

)
(2.8)

15



and for some T ∈ Ω and t ∈ T the inequality is strict.

Proof. Observe that
N∑
i=1

ui
(
ŷM(a∗T(t)), v̂i(ti)

)

= qM (a∗T(t))

(
N∑
i=1

v̂i(ti)− c

)
−

(
N∑
i=1

τMi (a∗T(t))− c · qM (a∗T(t))

)
,

which, by budget balance,

= qM (a∗T(t))

(
N∑
i=1

v̂i(ti)− c

)
. (2.9)

Therefore the sum of realized utilities will be

increasing in qM (a∗T(t)) when
N∑
i=1

v̂i(ti) > c

and decreasing in qM (a∗T(t)) when
N∑
i=1

v̂i(ti) < c.

So M and a∗ improve on another mechanism M̃ and ã∗ if M and a∗ lead to a

(weakly) greater sum of realized utilities for every t, and a strictly greater sum of

realized utilities for some t.

The relationship between improvability and the sum of realized utilities holds be-

cause of strict budget balance. With a non-negative budget balance the relationship

between the two becomes more complicated, although the comparison of dominant

strategy mechanisms and Bayesian implementable mechanisms still holds. See ap-

pendix B for details.

To confirm the soundness of improvability as a method of (partially) ranking

mechanisms, it would be useful to know that for every improvable mechanism, there
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exists an unimprovable mechanism that improves on it. The following result shows

that this in fact the case in the finite type spaces setting. (I conjecture that a similar

result holds for infinite type spaces.)

Proposition II.5. Suppose Ω is a set of finite type spaces. For any mechanism

M and equilibrium a∗, either M an a∗ are unimprovable on Ω or there exists an

unimprovable mechanism M̂ and equilibrium â∗ that improve on M and a∗ on Ω.

Proof. Suppose M and a∗ are improvable. For any T, we can define the following

restricted improvability concept:

Definition II.6. A feasible mechanism M and equilibrium a∗ improve on a feasible

mechanism M̃ and equilibrium ã∗ on T if for all t ∈ T ,

qM(a∗T(t)) ≥ qM̃(ã∗T(t)) when
N∑
i=1

v̂i(ti) > c

and

qM(a∗T(t)) ≤ qM̃(ã∗T(t)) when
N∑
i=1

v̂i(ti) < c

(2.10)

and for some t ∈ T such the applicable inequality in (2.10) is strict.

This is just the improvability definition with Ω = {T}.The following result will be

important in proving the proposition.

Lemma II.7. For any feasible mechanism M and equilibrium a∗ on finite T, either

M and a∗ are unimprovable on T or there exists an unimprovable mechanism M̂ and

equilibrium â∗ that improve on M and a∗ on T.

Proof. If M and a∗ are improvable then there must be some mechanism M1 and

equilibrium a∗1 that improve on them. M1 and equilibrium a∗1 must be efficient on
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strictly more type profiles than M and a∗. If M1 and equilibrium a∗1 are improvable,

then there exists some M2 and equilibrium a∗2 that must be efficient on strictly more

type profiles than M1 and equilibrium a∗1. Repeating this process, we can create a

sequence of mechanisms such that Mk+1 and equilibrium a∗k+1 must be efficient on

strictly more type profiles than Mk and equilibrium a∗k for all k ≥ 1. There are

ΠN
i=1|Ti| type profiles in T, so the number of type profiles is finite. Therefore there

exists some k′ ≤ ΠN
i=1|Ti| such that Mk′ and equilibrium a∗k

′
are unimprovable.

Let Ω be a set of finite type spaces (possibly the set of all finite type spaces). For

each T ∈ Ω select a MT and equilibrium a∗T such that MT and a∗T are unimprovable

on T and improve on M and a∗ on T, or are equivalent to M and a∗ if M and a∗ are

unimprovable on T. Define the mechanism MΩ and equilibrium a∗Ω by the following:

For each T ∈ Ω, AT
i = {T} × AMT

i for all i.

Then AMΩ
i = ∪T∈Ω AT

i for all i.

Define ai ∈ AMΩ
i = (Ti, a

T
i ), and aT =

(
aT

1 , ..., a
T
N

)
. Then let

ŷMΩ(a) =


ŷMT(aT) if Ti = Tj ∀i, j

(0,~0) otherwise.

For any T′ and any ti ∈ T ′i , let a∗ΩT′,i(ti) =
(
T′, a∗T

′

T′,i(ti)
)
.

An agent’s action is an indication of a type space T and an action from those actions

available in MT. By inspection a∗Ω is an equilibrium of MΩ. (An agent has no incen-
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tive to indicate a different type space from the other agents, and given agreement on

the type space the agent has no incentive deviate from the equilibrium a∗T). Further-

more, for any T, MΩ and a∗Ω are unimprovable on T because MT and equilibrium

a∗T are unimprovable on T and for all t ∈ T we have ŷMΩ(a∗ΩT (t)) = ŷMT(a∗TT (t)).

That MΩ and a∗Ω are unimprovable on T for all T ∈ Ω implies they are unimprovable,

by the following logic: if any mechanism M̂ and equilibrium â∗ improved on MΩ and

a∗Ω, that would imply there exists a T′ such that M̂ and â∗ improved on MΩ and

a∗Ω on T′, which would be a contradiction.

Furthermore, M and a∗ improvable implies that M and a∗ are improvable on some

T′, and by construction MΩ and a∗Ω improve on M and a∗ on T′.

2.5 Dominant Strategy Mechanisms

In this section I describe mechanisms that have equilibria that are belief-invariant,

that is agents’ equilibrium actions depend only on their valuations and not on their

beliefs. In the following section I describe the fixed contribution mechanism, and

establish that every belief-invariant equilibrium of an interim individually rational and

budget balanced mechanism is either equivalent to a fixed contribution mechanism

or improved on by a fixed contribution mechanism.

For ease of exposition I assume in this section that Ω includes all finite type

spaces, or the universal type space, or both. This allows me to assume that agents

with any valuation profile (and with certain beliefs) exist in some T in Ω. This is

consistent with the usual motivation for using dominant strategy mechanisms, that

they are robust to the specification of the type space.

Definition II.8. An equilibrium a∗ of a mechanism M = (AM , ŷM) is belief-
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invariant if for each i there exists a function âi : [v, v] → AMi such that for all

T ∈ Ω and all ti ∈ T , a∗T,i(ti) = âi(v̂i(ti)).

If we restrict attention to equilibria where actions only depend on valuations, then

the following definitions are natural:

Definition II.9. A mechanism M = (AM , ŷM) is a direct mechanism if AMi = [v, v]

for all i.

Definition II.10. A belief-invariant equilibrium a∗ (and the associated âi) of a direct

mechanism is a truth-telling equilibrium if for all i and all vi ∈ [v, v], âi(vi) = vi.

Given these definitions, I can apply the revelation principle:

Lemma II.11. Given a belief-invariant equilibrium a∗ (and the associated â) of a

mechanism M̂ = (AM̂ , ŷM̂), the direct mechanism M = (AM , ŷM) defined by ŷM(v) =

ŷM̂(â(v)) for all v ∈ [v, v]N has a truth-telling equilibrium a∗, defined by

a∗T,i(ti) = v̂i(ti) (2.11)

for all T ∈ Ω and all ti, where

ŷM(a∗T(t)) = ŷM̂(a∗T(t)) (2.12)

for all T ∈ Ω and all t.

Proof. By construction, ŷM(a∗T(t)) = ŷM(â(v̂(t)) = ŷM̂(a∗T(t)). I show a∗ is an equi-

librium of M by contradiction. If a∗ is not an equilibrium, then there exists a T ∈ Ω

and ti such that an agent with type ti and who takes action v̂i(ti) would want to

deviate to another action v′ in AMi = [v, v]. Because ti deviating to v′ has the same

effect on outcomes as ti deviating from âi(v̂i(ti)) to âi(v
′) when agents are in the a∗
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equilibrium of M̂ , it must be that ti has an incentive to deviate under a∗ as well,

which contradicts the assumption a∗ is an equilibrium.

Let ã∗ : [v, v] → [v, v] be the identity function. Then for all T and all ti ∈ Ti,

a∗i (ti) = ã∗(v̂i(ti)) which shows a∗ is a truth-telling equilibrium.

Definition II.12. A direct mechanism satisfies dominant strategy incentive

compatibility (DIC) if, for all v,

vi · q(v)− τi(v) ≥ vi · q(v̂, v−i)− τi(v̂, v−i) ∀v̂ ∈ [v, v] (2.13)

A direct mechanism is called a dominant strategy mechanism if it satisfies

dominant strategy incentive compatibility.

Lemma II.13. A direct mechanism M has a truth-telling equilibrium a∗ if and only

if it is a dominant strategy mechanism.

Proof. If M has a truth-telling equilibrium a∗, and Ω contains all finite type spaces

or the universal type space, then for any vi ∈ [v, v] and v−i ∈ [v, v]N−1, we can find

a T where there exists a type ti with π̂ti {t−i|v̂−i(t−i) = v−i} = 1. Then a∗ being a

truth-telling equilibrium implies that for all v′i,

Eπ̂tiui(ti, v̂i(ti)) = vi · qM(v)− τMi (v)

≥ Eπ̂tiui(ti, v
′
i) = vi · qM(v′i, v−i)− τMi (v′i, v−i).

Therefore M satisfies dominant strategy incentive compatibility.

If a direct mechanism is a dominant strategy mechanism, then it is immediate

that âi(vi) = vi is truth-telling equilibrium.
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Lemma II.14. A dominant strategy mechanism and its truth telling equilibrium are

feasible if and only if they satisfy the following two properties:

• Ex-post Budget Balance (BB). For every v ∈ [v, v]N , it must be that
N∑
i=1

τi(v) =

q(v) · c.

• Ex-post individual rationality (EIR). For all i, all v,

vi · q(v)− τi(v) ≥ 0 (2.14)

Proof. This characterization of ex-post budget balance is immediate from the ex-post

budget balance property of feasible mechanisms. Therefore it is immediate that if a

dominant strategy mechanism and its truth telling equilibrium are feasible they satisfy

ex-post budget balance, and if they don’t satisfy it then they cannot be feasible.

For ex-post individual rationality, just as in the proof of Lemma II.13, for any

vi ∈ [v, v] and v−i ∈ [v, v]N−1, it is possible to construct a T such that there exists

a type ti with π̂ti {t−i|v̂−i(t−i) = v−i} = 1 (assuming that Ω includes all finite type

spaces or the universal type space). Then

Eπ̂tiui(ŷ(v), v̂i(ti)) = vi · q(v)− τi(v)

and interim individual rationality therefore implies vi · q(v)− τi(v) ≥ 0.

If a dominant strategy mechanism and its truth telling equilibrium satisfy EIR, then

for all i and all v, q(v) · vi − τi(v) ≥ 0, so

Ui(ti) = Eπ̂(ti) [q(v) · vi − τi(v)] ≥ 0 (2.15)
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2.6 Fixed Contribution Mechanisms

Now I turn to a description of a particular class of mechanisms that are dominant

strategy mechanisms, the fixed contribution mechanisms. First I define the indi-

rect mechanism, then describe an equilibrium, which allows me to define the direct

mechanism version of the fixed contribution mechanism.

The fixed contribution mechanism is defined as follows: the mechanism designer

chooses a set of cost shares s = (s1, ..., sN) such that
N∑
i=1

si = c.

Each agent i learns his/her type, and is asked whether he/she wishes to have the

public good created if they have to pay si, and reply “Yes” or “No.” If all agents

indicate “Yes,” the public good is created, with each agent paying si. Otherwise the

public good is not created, and no transfers are made.

Formally, AFi = {“Y es”, “No”}, and ŷF (a) is defined as follows:

qF (a) =

 1 if ai = “Yes” ∀i

0 otherwise
(2.16)

τF (a) =

 s if ai = “Yes” ∀i

0 otherwise
(2.17)

To consider strategies of the agents, fix a type space T. A pure strategy for an

agent is a mapping ai : Ti → {“Yes”, “No”} that indicates for each type of the agent

whether they agree to the public good being created or not.

Define the following strategy for each agent i:
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a∗i (ti) =

 “Yes” if v̂i(ti) ≥ si

“No” if v̂i(ti) < si

(2.18)

The following lemma shows the straightforward result that these strategies form

an equilibrium (and are in fact weakly dominant for all i whenever v̂i(ti) 6= si).

Lemma II.15. The strategies a∗i for all i form a belief-invariant Bayesian Nash

equilibrium on any type space T. Furthermore, agents play weakly dominant strategies

when (for any i) their valuation is such that v̂i(ti) 6= si.

Proof. We show that each agent’s strategy is a weakly dominant strategy.

If the agent’s valuation v̂i(ti) > si,

ui (y(“Yes”, a−i(t−i)), v̂i(ti)) ∈ {0, v̂i(ti)− si}, ∀t−i ∈ T−i

Therefore, regardless of which value it takes on,

ui (y(“Yes”, a−i(t−i)), v̂i(ti)) ≥ 0 = ui (y(“No”, a−i(t−i)), v̂i(ti)) .

and if aj(tj) =“Yes” for all j 6= i, then the inequality is strict. Therefore “Yes” is a

weakly dominant.

If the agent’s valuation v̂i(ti) < si,

ui (y(“Yes”, a−i(t−i)), v̂i(ti)) ∈ {0, v̂i(ti)− si}, ∀t−i ∈ T−i

Therefore, regardless of which value it takes on,

ui (y(“Yes”, a−i(t−i)), v̂i(ti)) ≤ 0 = ui (y(“No”, a−i(t−i)), v̂i(ti)) .

and if aj(tj) = “Yes” for all j 6= i, then the inequality is strict. Therefore “No” is a
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weakly dominant strategy.

Since each agent is playing a weakly dominant strategy, or is indifferent between

either action, the strategies a∗i for all i form a Bayesian Nash equilibrium.

I call this equilibrium the “standard equilibrium” for the fixed contribution mech-

anism. There are other equilibria of this game, including the equilibrium where every

type says “No.” However, it is immediate that any equilibrium in weakly dominant

strategies will be equivalent to the equilibrium described above for all T and all t ∈ T

where ∀i, v̂i(ti) 6= si. That is, the equilibrium in weakly dominant strategies is unique

up to the behavior of agents whose valuations exactly equal their share costs.

Given the equilibrium above, the direct mechanism version of the fixed contribu-

tion mechanism with shares s is of the form F = (qF (v), τF (v)), where

qF (v) = Iv≥s (2.19)

where IX is the indicator function that equals 1 if X is true and 0 otherwise, and

τFi (v) = si · Iv≥s (2.20)

Lemma II.15 shows that this corresponds to a belief-invariant equilibrium of the

mechanism. Therefore fixed contribution mechanisms are dominant strategy mecha-

nisms.

Our interest in fixed contribution mechanisms derives from the following proposi-

tion. I restrict attention to deterministic dominant strategy mechanisms, i.e. where

qM(t) ∈ {0, 1} although I conjecture that a similar result holds for stochastic domi-

nant strategy mechanisms.

Proposition II.16. For any belief-invariant equilibrium of a feasible mechanism,
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with the corresponding direct mechanism M = (qM(v), τM(v)) with truth-telling equi-

librium a∗, there exists a fixed-contribution direct mechanism F = (qF (v), τF (v)) with

truth-telling equilibrium â∗ such that either:

F and â∗ improve on M and a∗

or

∀v, qM(v) = qF (v) whenever
N∑
i=1

vi 6= c.

Proof. See appendix A.

2.7 Additional Contribution Mechanism

This section describes a mechanism, called the “additional contribution mecha-

nism,” and discusses an equilibrium of this mechanism. Intuitively, this mechanism

starts with fixed cost shares like the fixed contribution mechanism, but one agent can

offer to pay a part of the fixed contribution of another agent (or agents) towards the

production cost of the public good. Offering to pay part of another agent’s payment

will potentially make the other agent willing to support the public good’s creation.

The additional contribution mechanism has the following structure. The mecha-

nism designer sets initial shares s0 = (s0
1, ..., s

0
N) with

∑N
i=1 s

0
i = c. Without loss of

generality, assume s0
1 < v.

The mechanism has two stages:

1. Each agent i ≤ N learns her type. Agent 1 selects a vector b ∈ RN
+ where for

all i, 0 ≤ bi ≤ s0
i − v, and b1 ≡ 0. This choice corresponds to how much agent 1

offers to pay on behalf of each other agent (hence the component corresponding

to agent 1 herself is zero.)
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2. Each agent i is given a final cost share ŝi. For agent 1, that share is her initial

share plus the sum of the components of b. For each agent 1 < i ≤ N , agent

i’s new share is her old share minus bi, the corresponding component of b.

Formally, the final cost shares ŝi are determined by the following formula:

ŝ1 = s0
1 +

N∑
i=2

bi

and for i > 1,

ŝi = s0
i − bi

The agents play the fixed contribution mechanism with contribution shares ŝ.

It may seem counterintuitive that agent 1 would raise her own share by making an

additional contribution to one or more other agents. However, if agent 1 believes that

lowering another agent’s required contribution increases the likelihood the public good

is created by enough to make up for the increased private cost if the public good is

created, then raising her own required contribution can be incentive compatible. I

show an example where this occurs in section 2.8. Here I show certain properties

that will hold for any equilibrium of the mechanism that is in non-weakly dominated

strategies.

For the following analysis, fix a type space T. A strategy for agent 1 is then a

pair (βT,mT,1) where βT : T1 → ∆(RN) maps every type t1 ∈ T1 into a distribution

over b vectors, and where mT,1 : T1 ×R → {“Yes”, “No”} maps every type t1 ∈ T1

and observed final share ŝ1 into an acceptance or rejection decision by agent 1. A

strategy for an agent 1 < i ≤ N is mT,i : Ti×R→ {“Yes”, “No”} which maps every

type ti ∈ Ti and observed final share ŝi into an acceptance or rejection decision by the

agent. Technically, each agent’s strategy in the final stage could depend on the ŝ’s or
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β’s, but because the fixed contribution mechanism is a dominant strategy mechanism,

I can ignore the potential role of this information and focus on the dominant strategy

equilibrium in the final stage.

Proposition II.17. There exists an equilibrium a∗ of the additional contribution

mechanism such that

v̂(t) ≥ s0 ⇒ qM(a∗T(t)) = 1 (2.21)

and

v̂(t) ≥ ŝ⇒ qM(a∗T(t)) = 1 (2.22)

for all t ∈ T and all T ∈ Ω.

Proof. I construct the equilibrium as follows: for all i, mT,i is specified by every agent

plays the equilibrium of the fixed contribution mechanism described in section 6 in the

second stage. This is enough to prove equation (2.22). To complete the description

of the equilibrium we have to specify agent 1’s choice βT of a b vector.

If v̂1(t1) ≤ s0
1: In this case βT(t1) = ~0. Agent 1 has no incentive to deviate because

agent 1 will always get a utility of zero in the second stage regardless of the b agent

1 chooses, as ŝ1 ≥ s0
1 ≥ v̂1(t1). In the second stage, agent 1 will either be indifferent

between “Yes” and “No” or will strictly prefer “No”.

If v̂1(t1) > s0
1: In this case, βT,−1(t1) maximizes the following expression:

βT,−1(t1) ∈ argmax
0≤b−1≤~v−s0−1

π̂t1
[
s0
−1 − b−1 ≤ v−1(t−1)

]
·

(
v̂1(t1)− (s0

1 +
N∑
i=2

bi)

)
. (2.23)
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Consider the function

F (b−1) = π̂t1
[
s0
−1 − b−1 ≤ v−1(t−1)

]
·

(
v̂1(t1)− (s0

1 +
N∑
i=2

bi)

)
(2.24)

which is the expression within the argmax of equation (2.23) and is the payoff agent

1 expects for each possible b−1. It is the product of F1(b−1) and F2(b−1), where

F1(b−1) = π̂t1
[
s0
−1 − b−1 ≤ v−1(t−1)

]
= 1− π̂t1

[
v−1(t−1) < s0

−1 − b−1

]
(2.25)

which by inspection is everywhere non-negative, monotonically non-decreasing and

right continuous in each dimension of b−1, and F2(b−1) is the continuous function,

F2(b−1) = v̂1(t1)− (s0
1 +

N∑
i=2

bi), (2.26)

equal to the difference between agent 1’s valuation and ŝ1 as a function of b−1, that

is positive over some range.

I show F (b−1) has a maximum by contradiction. Assume F (b−1) has no maximum.

Then there exists a sequence of {bm−1} such that F (bm−1) > 0 is strictly increasing with

m and there is no b̂−1 such that F (b̂−1) ≥ F (bm−1) for all m. The domain of possible

b−1 is compact, so the sequence bm−1 has a convergent subsequence. Let the limit of

this subsequence be b∗−1. By F1 monotonically non-decreasing and right-continuous in

each dimension, F1(b∗−1) ≥ limF1(bm−1). And by F2 continuous, F2(b∗−1) = limF2(bm−1).

F (bm−1) > 0 implies F2(bm−1) > 0 for all m. Therefore, using that F1 is everywhere

non-negative and F2 is positive for all bm−1,

F (b∗−1) = F1(b∗−1) · F2(b∗−1) ≥ limF1(bm−1) · limF2(bm−1) = limF (bm−1) (2.27)
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and by assumption F (bm−1) is strictly increasing in m, so for all m

F (b∗−1) ≥ F (bm−1). (2.28)

However, that contradicts the assumption that F (b−1) has no maximum. Therefore

F (b−1) must have a maximum and so the argmax in equation (2.23) is well defined.

If there is more than one argmax, then an argmax is chosen arbitrarily, constrained

to

s0
1 +

N∑
i=2

βi < v̂1(t1) (2.29)

Choosing a β(t1) that satisfies equation (2.29) ensures that the first part of the

Proposition holds. There must be a b that is an argmax of equation (2.23) and

satisfies equation (2.29) for the following reason: either t1’s expected utility at the

argmax b is greater than zero, implying that agent 1 expects the public good will be

produced with some probability and that equation (2.29) holds (that is, t1 pays less

than v̂1(t1)), or the expected utility at the argmax is 0, in which case b = ~0 is an

argmax. In the latter case let β1(t1) = ~0. By assumption v̂1(t1) > s0
1 so equation

(2.29) is satisfied.

Then equation (2.21) follows from equation (2.29) and the fact that for all i > 1

ŝi ≤ s0
i by construction, as well as the equilibrium actions in the second stage of the

game.

I will refer to an equilibrium of the additional contribution mechanism that fits the

description of Proposition II.17 as a “standard equilibrium” of the additional contri-

bution mechanism.
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2.8 Comparison of Efficiency

In this section I compare the ex-post welfare of the standard equilibrium of the

fixed contribution mechanism, as described in section 2.6, and a standard equilibrium

of the additional contribution mechanism as described in section 2.7. The central

result (Proposition II.22) is that the additional contribution mechanism performs at

least as well as the fixed contribution mechanism on any type space, and performs

better on some type spaces. In the terminology introduced in section 2.4, this means

that any standard equilibrium of the additional contribution mechanism will improve

on the standard equilibrium of the fixed contribution mechanism.

Our comparison will be between the fixed contribution mechanism with initial

shares s0 and the additional contribution mechanism with the same initial shares s0,

with the corresponding standard equilibria. The criterion will be the improvability

relationship, as defined in section 2.4.

Proposition II.18. For any type space T and type profile t, and given the standard

equilibria, the additional contribution mechanism implements the social welfare max-

imizing outcome if the fixed contribution mechanism implements the social welfare

maximizing outcome.

Proof. There are two cases to consider: when welfare maximization requires that the

public good not be created at t, and when welfare maximization requires the public

good to be created.

When welfare maximization requires the public good not be created, the sum

of valuations is less than c, so there is no possible ŝ such that for all i, ŝi ≤ v̂i(ti).

Therefore in a standard equilibrium of the additional contribution mechanism, at least

one agent must choose “No” and the public good will not be created. Likewise it must

be that s0
i > vi for some i, guaranteeing that the public good is not created under
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the standard equilibrium of the fixed contribution mechanism. So neither mechanism

will produce the good.

When welfare maximization requires the public good be created, we need to show

that if the fixed contribution mechanism leads to the public good being created,

then so does the additional contribution mechanism. Recall that I defined a standard

equilibrium of the additional contribution mechanism as having the following property

(equation (2.21)):

v̂(t) ≥ s0 ⇒ qM(a∗T(t)) = 1

for all t ∈ T and all T ∈ Ω, which ensures that whenever the standard equilibrium

of the fixed contribution mechanism produces the public good, so does the standard

equilibrium of the additional contribution mechanism.

Therefore both when producing the public good is efficient and when it is not effi-

cient, the standard equilibrium of the additional contribution mechanism maximizes

welfare if the standard equilibrium of the fixed contribution mechanism maximizes

welfare.

Proposition II.19. There exist T containing type profiles t where, for the standard

equilibria of the additional contribution mechanism, the additional contribution mech-

anism implements welfare maximization but the fixed contribution mechanism, with

its standard equilibrium, does not.

Proof. To demonstrate the existence of type spaces that satisfy this condition, I use

the following result that only depends on the primitives of T. The logic here is that

if agent 1 has a valuation above her initial share, knows the true valuations of the

other agents with probability one, and those agents all have valuations at or below

their initial shares (with at least one strictly below), then agent 1 can ensure the
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public good is created by choosing appropriate additional contributions to direct to

the other agents.

Lemma II.20. For any type profile t such that

•
N∑
i=1

v̂i(ti) > c,

• π̂t1
(
{t̂−1 | v̂−1(t̂−1) = v̂−1(t−1)}

)
= 1,

• for i > 1, v̂i(ti) ≤ s0
i , and

• for some j 6= 1, v̂j(tj) < s0
j

any standard equilibrium of the additional contribution mechanism implements the

welfare maximizing outcome (creating the public good) at t.

Proof. Given agent 1’s beliefs, agent 1 will only expect the public good to be created

if and only if for all i 6= 1, bi ≥ s0
i − v̂i(ti). The minimum amount of additional

contribution that will lead to the public good being created is then

N∑
i 6=1

s0
i − v̂i(ti)

If agent 1 makes that additional contribution, she receives a payoff of

v̂1(t1)− ŝi = v̂1(t1)− s0
1 −

N∑
i 6=1

s0
i +

N∑
i 6=1

v̂i(ti)

= v̂1(t1)− s0
1 −

(
c− s0

1

)
+

N∑
i=1

v̂i(ti)− v̂1(t1)

=
N∑
i=1

v̂i(ti)− c > 0
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Agent 1 gets a payoff of 0 if the public good is not created, so she is willing to

pay the minimal additional contributions that ensure the public good gets created.

Therefore, for all i > 1

bi = s0
i − v̂i(ti)

and for all i, ŝi ≤ v̂i(ti) which implies the public good is created.

Let T be any type space. Then the above lemma leads immediately to the follow-

ing sufficient condition:

Lemma II.21. If there exists a t′ ∈ T that satisfies the conditions of Lemma II.20,

then at t′ ∈ T the additional contribution mechanism and its standard equilibria

implement the welfare maximizing outcome (the public good is created), while the

fixed contribution mechanism and its standard equilibrium do not.

Proof. Lemma II.20 implies that the additional contribution mechanism implements

the welfare maximizing outcome. The fixed contribution mechanism, however, will not

lead to the public good being created, because there is some j such that v̂j(tj) < s0
j ,

so the fixed contribution mechanism does not implement the welfare maximizing

outcome.

Notably, the universal type space satisfies the conditions of lemma II.20, as do

some finite type spaces. So if Ω includes the set of all finite type spaces or the

universal type space then lemma II.21 will hold for some T ∈ Ω.

Propositions II.18 and II.19 together give us our result:

Proposition II.22. If Ω includes at least one T that satisifies the conditions of

lemma II.20, then: for any shares s0, the additional contribution mechanism with
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initial shares s0 and its standard equilibrium improves on the fixed contribution mech-

anism with fixed shares s = s0 and its standard equilibrium.

Proof. Proposition II.18 establishes that for every T and every t ∈ T , the additional

contribution mechanism is at least as efficient. Proposition II.19 establishes that for

some T and t ∈ T , the additional contribution mechanism is strictly more efficient.

These two claims together establish that the additional contribution mechanism im-

proves on the fixed contribution mechanism.

Combined with Proposition II.16, which shows that any feasible dominant strat-

egy mechanism is either improved on or equivalent (from an efficiency standpoint) to

a fixed contribution mechanism, Proposition II.22 implies that every feasible domi-

nant strategy mechanism is improved on by some additional contribution mechanism

on any Ω with a T that satisfies the conditions of lemma II.20. In particular, if Ω

includes the set of all finite type spaces or the universal type space, then every fea-

sible dominant strategy mechanism is improved on by some additional contribution

mechanism.

2.9 Conclusion

This paper has introduced, for the public goods problem, an approach to efficiency

comparisons between mechanisms. One mechanism improves on another mechanism

if it is at least as efficient for any realization of agents’ type on any type space the

mechanism designer considers possible, and strictly more efficient for some realization

of agents’ types on at least one of those type spaces. I demonstrated the soundness

of the unimprovability concept on finite type spaces, and then used the improvability

ranking to show that for any dominant strategy mechanism there exists an mechanism

where agents’ strategies depend upon their beliefs that improves on the dominant

strategy mechanism, if the mechanism designer considers a sufficiently rich set of
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type spaces. The result suggests than any welfare-maximizing mechanism designer

who considers a sufficiently rich set of type spaces would prefer a mechanism other

than a dominant strategy mechanism.

The improvability comparison raises the question of what mechanisms are unim-

provable in the public good setting. Chapter 3 of this dissertation provides a first

step in examining that question: a fairly simple mechanism, the all or nothing mech-

anism, is unimprovable on the universal type space among mechanisms with finite

actions. I hope to characterize the (possibly large) set of undominated mechanisms

on rich type spaces in the public good setting in future research. Another area for

further work is extending the improvability concept and the associated analysis of

mechanisms to other settings and to mechanism designers with objectives other than

welfare maximization. Chapter 4 of this dissertation performs a similar analysis in

the voting mechanism setting.
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2.10 Appendix 2.A

Dominant Strategy Mechanisms Are (Weakly) Improved on by Fixed

Contribution Mechanisms

The following lemma is a standard result. I present its proof for completeness.

Lemma II.23. A mechanism that satisfies ex-post budget balance (or has a non-

negative budget balance everywhere) is dominant strategy incentive compatible and

ex-post individual rational if and only if, for all i there exists a function τi(v−i) such

that, for all v−i,

q(v̂i, v−i) =

 1 v̂i > τi(v−i)

0 v̂i < τi(v−i)
(2.30)

and

τi(v̂i, v−i) =

 τi(v−i) v̂i > τi(v−i)

0 v̂i < τi(v−i)
(2.31)

Proof. Consider any v−i.

If ∀v̂i, q(v̂i, v−i) = 0, then let τi(v−i) = v.

For any v̂i and v̂′i such that q(v̂i, v−i) = q(v̂′i, v−i) = 1, then dominant strategy incen-

tive compatible implies that τi(v̂i, v−i) = τi(v̂
′
i, v−i). Therefore let τi(v−i) ≡ τi(v̂i, v−i)

for any v̂i such that q(v̂i, v−i) = 1.

If there exist v̂i such that q(v̂i, v−i) = 0, then by ex-post individual rationality and

that the budget cannot be negative, τi(v̂i, v−i) = 0.
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Then by dominant strategy incentive compatibility,

q(v̂i, v−i) = 1 ⇒ v̂i ≥ τi(v−i) and τi(v̂i, v−i) = τi(v−i) (2.32)

and

q(v̂i, v−i) = 0 ⇒ v̂i ≤ τi(v−i) and τi(v̂i, v−i) = 0 (2.33)

which imply equation (2.30) and equation (2.31).

Proposition II.16. For any belief-invariant equilibrium of a feasible mechanism,

with the corresponding direct mechanism M = (qM(v), τM(v)) with truth-telling equi-

librium a∗, there exists a fixed-contribution direct mechanism F = (qF (v), τF (v)) with

truth-telling equilibrium â∗ such that either:

F and â∗ improve on M and a∗

or

∀v, qM(v) = qF (v) whenever
N∑
i=1

vi 6= c.

Proof. In constructing F , there are two possibilities to consider regarding qM(v):

If qM(v) = 0 then the result is trivial. Set si = c
N

for all i, and then it is immediate

that F and â∗ improve on M and a∗.

Therefore the rest of the proof will deal with the case qM(v) = 1.

Construct F = (qF (v), τF (v)) by, for all i, setting si = τMi (v).

Then qF (v) = Iv≥s and τFi (v) = qF (v) · si.

F is feasible because the fact that M is budget balanced implies
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N∑
i=1

si =
N∑
i=1

τi(v) = 1.

For any v, we can compare the relative efficiency.

Case 1:
N∑
i=1

vi < c. In this case creation of the public good is inefficient. Furthermore,

N∑
i=1

vi < c =
N∑
i=1

si so there exists an i such that vi < si which implies qF (v) = 0 ≤

qM(v).

Case 2:
N∑
i=1

vi > c. There are two possible values for qM(v):

If qM(v) = 1, note that lemma II.23 implies that q(vi, v−i) is non-decreasing in v−i.

That implies that q(vj, v−j) = 1 for all j. Lemma II.23 then implies that vj ≥

τMj (v) = sj for all j. Therefore qF (v) = 1 = qM(v).

If qM(v) = 0, then qF (v) ≥ 0 = qM(v). Therefore qF (v) ≥ qM(v).

Together these results show that in Case 2, qF (v) ≥ qM(v).

Combining Case 1 and Case 2, we get the statement:

qF (v) ≥ qM(v) when
N∑
i=1

vi > c

and

qF (v) ≤ qM(v) when
N∑
i=1

vi < c

(2.34)

If there exists a v such that the applicable inequality in (2.34) is strict, then F and

â∗ improve on M and a∗; otherwise, (2.34) implies that for all v,
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N∑
i=1

vi 6= c⇒ qF (v) = qM(v)

which completes the result to be proved.
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2.11 Appendix 2.B

Non-Negative Budget Balance

In the main body of this paper I have assumed that feasible mechanisms have a

strict budget balance of zero. A weaker assumption would be to allow mechanisms

to have a non-negative budget balance. Here I discuss the implications of a non-

negative budget balance for the definition of improvability, and for the improvability

of dominant strategy mechanisms by fixed contribution mechanisms. I show that

allowing non-negative budget balance does not alter the result of the paper regarding

the improvability of dominant strategy mechanisms, as fixed contribution mechanisms

still (weakly) improve on all other non-negative budget balance dominant strategy

mechanisms.

Improvability. Allowing non-negative budget balance means that the definition of

improvability has to be modified. Now it must account for the fact that the sum of

transfers affects the sum of the individual agents’ utilities as well as whether the public

good is produced. How to define improvability will now depend on what happens to

the non-balanced portion of transfers.

If we assume the budget is balanced by an agent outside of theN agents we’ve modeled

as participating in the mechanism, and the mechanism designer cares equally about

this external agent’s welfare as the welfare of the participants, then the definition of

improvability used above still applies; any transfer paid by an agent is received by

another agent, except for transfers used to pay for the public good, so a mechanism

maximizes welfare by creating the public good if its aggregate value exceeds its cost

and not creating the public good if its aggregate value is less than the cost.
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Alternatively we might imagine that a mechanism constrained to have a non-negative

budget might generate a surplus that is either physically destroyed or transferred to

agents whose welfare does not enter into the mechanism designer’s consideration. I

call such a mechanism a non-negative budget mechanism.

Definition II.24. A mechanismM = (A, ŷ) is a non-negative budget mechanism

if for all a ∈ A,

N∑
i=1

τi(a) ≥ c · q(a) (2.35)

Then the definition of improvability can be generalized to become the following defi-

nition of improvability-including-transfers:

Definition II.25. A non-negative budget mechanism M = (qM , τM) and equilibrium

a∗ improve-including-transfers on another non-negative budget mechanism M̂ =

(qM̂ , τ M̂) and equilibrium â∗ if for all type spaces T ∈ Ω and all t ∈ T ,

qM(a∗T(t))
N∑
i=1

v̂i(ti)−
N∑
i=1

τMi (a∗T(t)) ≥ qM̂(â∗T(t))
N∑
i=1

v̂i(ti)−
N∑
i=1

τ M̂i (â∗T(t)) (2.36)

and there is some T ∈ Ω and t ∈ T such that the inequality is strict.

By inspection this definition corresponds to (weakly) increasing the sum of the realized

utilities of the agents at each possible type profile. If both mechanisms are ex-post

budget balanced in the strict sense of equation (3), then improvability-with-transfers

is equivalent to improvabilty.
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Dominant strategy mechanisms. In this part of the appendix I analyze domi-

nant strategy mechanisms that satisfy non-negative budget balance and individual

rationality but not necessarily ex-post budget balance.

I show that proposition 1 generalizes to non-negative budget, individually rational

dominant strategy mechanisms with non-negative budget balance (Proposition II.26).

I further show that proposition 1 generalizes to non-negative budget, individually ra-

tional dominant strategy mechanisms when the criteria is changed from improvability

to improvability-with-transfers (Proposition II.28).

Proposition II.26. For any belief-invariant equilibrium of a non-negative budget, in-

dividually rational mechanism, with the corresponding direct mechanism M = (qM(v), τM(v))

with truth-telling equilibrium a∗, there exists a fixed-contribution direct mechanism

F = (qF (v), τF (v)) with truth-telling equilibrium â∗ such that either:

F and â∗ improve on M and a∗

or

∀v, qM(v) = qF (v) whenever
N∑
i=1

vi 6= c.

Proof. This section draws upon the proof for Proposition 1, in Appendix A. Note

that for the proof of Proposition 1 the only detail of a particular dominant strategy

mechanism M that matters is τ(v). Lemma II.23 only requires that the budget cannot

be negative.

Fix a non-negative budget, individually rational dominant strategy mechanism M =

(qM(v), τM(v)). If
N∑
i=1

τi(v) = c, then the proof of Proposition 1 applies without any

modification.
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If
N∑
i=1

τMi (v) > c, then proposition 1 only needs to be modified in a very small way:

in the construction of F , let

s1 = τMi (v)−

(
N∑
i=1

τMi (v)− c

)
That is, in the fixed contribution mechanism that is constructed, I lower agent 1’s

fixed share by just enough to balance the budget (at v). Then the proof of proposition

1 applies.

Note that in the case that
N∑
i=1

τMi (v) > c the fixed contribution mechanism must

improve on (not just be equivalent to) the original mechanism, because the fixed

contribution mechanism creates the public good for any v of the form (v1, v−1), where

v1 ∈

[
τMi (v)−

(
N∑
i=1

τMi (v)− c

)
, τMi (v)

)

but the original mechanism does not.

Therefore the result of Proposition 1 extends to the entire class of non-negative bud-

get, individually rational dominant strategy mechanisms (of which feasible dominant

strategy mechanisms are a subset).

As the following lemma demonstrates, it is straighforward to show that a strictly

budget balanced mechanism that improves on a non-negative budget mechanism also

improves-including-transfers on the non-negative budget mechanism.

Lemma II.27. If an ex-post budget balanced mechanism M = (qM , τM) and equilib-

rium a∗ improve on a non-negative budget mechanism M̂ = (qM̂ , τ M̂) and equilibrium
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â∗, then

M and a∗ improve-including-transfers on M̂ and â∗.

Proof. For any type space T ∈ Ω and t ∈ T ,

M ex-post budget balanced and M̂ non-negative budget implies:

N∑
i=1

τMi (a∗T(t)) = c · qM(a∗T(t)) and
N∑
i=1

τ M̂i (â∗T(t)) ≥ c · qM̂(â∗T(t)) (2.37)

Improvability implies:

qM(a∗T(t))

(
N∑
i=1

v̂i(ti)− c

)
≥ qM̂(â∗T(t))

(
N∑
i=1

v̂i(ti)− c

)

Substituting from (2.37) yields

qM(a∗T(t))
N∑
i=1

v̂i(ti)−
N∑
i=1

τMi (a∗T(t)) ≥ qM̂(â∗T(t))
N∑
i=1

v̂i(ti)−
N∑
i=1

τ M̂i (â∗T(t))

which is identical to equation (2.36). Therefore M and a∗ improve-including-transfers

on M̂ and â∗.

Proposition II.26 and lemma II.27 imply a generalization of Proposition II.16.

Proposition II.28. For any belief-invariant equilibrium of a non-negative budget, in-

dividually rational mechanism, with the corresponding direct mechanism M = (qM(v), τM(v))

with truth-telling equilibrium a∗, there exists a fixed-contribution direct mechanism

F = (qF (v), τF (v)) with truth-telling equilibrium â∗ such that either:
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F and â∗ improve-with-transfers on M and a∗

or

∀v, qM(v) = qF (v) whenever
N∑
i=1

vi 6= c.
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CHAPTER III

An Unimprovability Result for the Public Good

Problem

3.1 Introduction

Chapter 2 analyzed the problem of designing a mechanism for the public good

problem when the mechanism designer does not make assumptions about agents’

types, but instead considers a wide range of type spaces as plausible descriptions

of agents’ preferences and beliefs. I looked specifically at the approach of finding a

weakly undominated (or “unimprovable”) mechanism when considering performance

across a range of type spaces. I showed that mechanisms exist that are unimprovable

on finite type spaces. However, these mechanisms may be too complicated in practice

to be of much use to a mechanism designer. Consequently it may be useful to restrict

attention to a smaller set of mechanisms that a mechanism designer could realistically

implement.

In this paper I attempt such an analysis by focusing on mechanisms with finite

actions. I also take the relevant concept of improvability to be that a mechanism

is improvable if there exists a mechanism M̂ with finite actions that improves on

M . To model the uncertainty of the mechanism designer regarding the preferences

and beliefs of agents, I assume the mechanism designer considers outcomes on the
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universal type space.

In this paper I demonstrate a finite action mechanism, the All or Nothing mech-

anism, that is unimprovable among the set of mechanisms with finite actions. I first

describe the mechanism and then provide the result regarding unimprovability. A

weakness of the result is that the method of proof is not particularly generalizable

to other mechanisms. However, the result does show both that a relatively simple

mechanism can be unimprovable, and that such a result can be proven using relatively

unsophisticated (if involved) methods.

The paper is organized as follows. Section 3.2 briefly summarizes the public good

environment (described in more detail in the companion paper) and highlights the

differences between the setting in this paper and the companion paper. Section 3.3

presents the All or Nothing mechanism. Section 3.4 establishes some useful lemmas

for proving the main result. Section 3.5 contains the proof that the All or Nothing

mechanism is unimprovable. Section 3.6 concludes.

3.2 The Mechanism Design Problem

In general I follow the assumptions and notations of chapter 2; I refer the reader

to that document for definitions and assumptions. However, I make some changes

to the environment for this paper. I assume that v > c, that is the highest possible

valuation is greater than the cost of the public good. For technical reasons, I also

assume that mechanisms have a finite number of actions. Furthermore I focus on the

case that there are exactly two agents, i.e. N = 2.

I assume that the mechanism designer’s uncertainty about agents’ preferences

and beliefs can be captured by the mechanism designer considering outcomes over

the universal type space. In the notation of chapter 2, I assume that Ω = {S}. This

simplifies description of equilibria by not requiring the equilibrium to be defined over
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more than one type space.

I restrict attention to pure-strategy equilibria in non-weakly dominated strategies.

I make one further non-standard restriction on the equilibria under consideration: in

equilibrium, every action is somewhere strictly preferred. By this I mean for each

agent, and each action of that agent played in equilibrium, there exists a type of that

agent in the universal type space for whom that action is a strict best response.

Definition III.1. An equilibrium a∗ satisfies every action played in equilibrium is

somewhere strictly preferred on {S} if for all i and all ti ∈ Ti, where Ti is the typespace

for agent i in the universal typespace, there exists t̂i such that

Ui(t̂i, a
∗
i (t̂i)) > Ui(t̂i, a

′
i) (3.1)

for all a′i 6= a∗i (ti).

3.3 The All or Nothing Mechanism

I assume in the following discussion that there are two agents, 1 and 2. I normalize

the cost of the public good to 1, and assume the lowest possible valuation v = 0. I

furthermore assume v > 1. The All or Nothing Mechanism is a simplified “take it

or leave it” offer by agent 1, where agent 1 must either offer to pay the whole cost

or force agent 2 to pay the entire cost if the public good is built. Alternatively,

this mechanism is equivalent to a simplified additional contribution mechanism with

initial shares s0
1 = 0 and s0

2 = 1, where the first agent can raise her own cost share,

but only has the option of raising that share to the entire cost. (See chapter 2 for

discussion of the additional contribution mechanism.)

Formally, The All or Nothing Mechanism is M̃ =
{

(Ã1, Ã2), y
}

where

• Ã1 = {“PAY”, “DON’T PAY”}

50



• Ã2 = {“pay”, “don’t pay”}

• ỹ(a1, a2) = (q̃(a1, a2), τ̃(a1, a2)) is defined by the values in table 1.

q̃(a1, a2) =

Actions pay don’t pay

PAY 1 1
DON’T PAY 1 0

τ̃(a1, a2) =

Actions pay don’t pay

PAY (1,0) (1,0)
DON’T PAY (0,1) (0,0)

Table 3.1: Outcomes under the All or Nothing Mechanism

The following strategies are an equilibrium of the All or Nothing Mechanism.

ã∗1(t1)) =



“PAY” if v̂1(t1) > 1,

π̂t1 [v̂2(t2) < 1] ≥ 1
v̂1(t1)

“DON’T PAY” otherwise

ã∗2(t2)) =


“pay” if v̂2(t2) ≥ 1

“don’t pay” if v̂2(t2) < 1

Lemma III.2. The strategies ã∗1(t1) and ã∗2(t2) are an equilibrium of the All or Noth-

ing mechanism on the universal type space.

Proof. For agent 2, inspection shows that “pay” is a weakly dominant strategy when

v̂2(t2) > 1 and “don’t pay” is a weakly dominant strategy when v̂2(t2) < 1. When

v̂2(t2) = 1 then agent 2 is indifferent between the two actions regardless of his beliefs.
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Therefore agent 2 has no incentive to deviate from ã∗2(t2)) regardless of agent 1’s

strategy.

Given agent 2’s strategy is ã∗2(t2), agent 1’s payoff for each action correspond to:

U(t1, “PAY”) = v̂1(t1)− 1

and

U(t1, “DON’T PAY”) = π̂t1 [v̂2(t2) ≥ 1] · v̂1(t1)

Therefore, the action “DON’T PAY” has a higher payoff for agent 1 when

U(t1, “DON’T PAY”) ≥ U(t1, “PAY”)

which is equivalent to

π̂t1 [v̂2(t2) ≥ 1] · v̂1(t1) ≥ v̂1(t1)− 1

which is equivalent to

π̂t1 [v̂2(t2) < 1] ≥ 1

v̂1(t1)
.

Therefore ã∗1(t1) specifies that agent 1 play the action “DON’T PAY” exactly when

is it incentive compatible to do so.

3.4 The Focus Lemma

This section introduces a result that will be used repeatedly in the proof of Propo-

sition 1. It will be useful therefore to state and prove the result before proceeding to
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the main proof. Let i ∈ {1, 2} and j 6= i.

Definition III.3. Given a set of distributions {π̃ni }i=1,...,N such that π̃ni ∈ ∆(Tj) for

all n, the set Bi({π̃ni }, vi) ∈ Ai is defined by

• Bi({π̃1
i }, vi) ⊂ Ai is the set of equilibrium best responses to π̃1

i .

• For m ∈ {2, 3, ..., N}, Bi({π̃ni }n=1,...,m, vi) ⊂ Bi({π̃ni }n=1,...,m−1, vi) is the set of

actions that are best responses to π̃mi conditional on being inBi({π̃ni }n=1,...,m−1, vi).

Finiteness of Ai ensures that Bi({π̃ni }, vi) ∈ Ai is non-empty. I now prove the

following useful result, which I refer to as the “focus lemma.”

Lemma III.4 (focus lemma). If for some {π̃ni }n=1,...,N and ~ε = (ε1, ..., εN),

π̂i(ti)[E] =
N∑
n=1

εnπ̃
n
i [E] (3.2)

and

ε ≡ max
1≤n<N

εn+1

εn
< 1 (3.3)

Then ε sufficiently small implies a∗i (ti) ∈ Bi({π̃ni }n=1,...,N , v̂i(ti)).

Proof. By induction on n.

• n = 1. Because Ai is finite, there is some κ1 > 0 such that for any action

âi 6∈ Bi({π̃1
i }, v̂i(ti)), conditional on the distribution π̃1

i the difference between

the expected payoff of any action ai ∈ Bi({π̃1
i }, v̂i(ti)) and the expected payoff

of âi is at least κ1. Because A is finite, the set of possible realized utilities for

agent i (condition on v̂i(ti, )) is also finite; let λ designate the difference between

the maximal and the minimal possible realized utilities. Then the difference in

expected utility for playing âi versus ai is bounded by

Ui(ti, âi)− Ui(ti, ai) ≤ ε1(−κ1) + (1− ε1) · λ (3.4)
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Note that neither κ1 nor λ depend on the choice of ~ε. Equation (3.3) implies

that

1− ε1 =
N∑
n=2

εn ≤ (N − 1)ε · ε1. (3.5)

subsituting into equation (3.4) yields

Ui(ti, âi)− Ui(ti, ai) ≤ ε1(−κ1) + ((N − 1)ε · ε1) · λ (3.6)

which implies

−κ1 + (N − 1)ε · λ < 0 ⇒ Ui(ti, âi)− Ui(ti, ai) < 0 (3.7)

and consequently, if

ε <
κ1

(N − 1)λ
(3.8)

then Ui(ti, âi) < Ui(ti, ai) for all âi 6∈ Bi({π̃1
i }, v̂i(ti)) and therefore a∗i (ti) ∈

Bi({π̃1
i }, v̂i(ti)).

• n > 1. By the inductive hypothesis, a∗i (ti) ∈ Bi({π̃mi }m=1,...,n−1, v̂i(ti)). I

now look at the payoff of playing any action âi ∈ Bi({π̃mi }m=1,...,n−1, v̂i(ti)) \

Bi({π̃mi }m=1,...,n, v̂i(ti)) and an action ai ∈ Bi({π̃mi }m=1,...,n, v̂i(ti)). As in the

n = 1 case, let κn > 0 be the minimal difference between the expected payoff

of any such ai and the expected payoff of any such action âi, conditional on

the distribution π̃ni . (If no such âi exist then the inductive step is immediately

satisfied). Note that κn only depends on {π̃mi }m=1,...,n. The difference in payoffs

must be bounded by

Ui(ti, âi)− Ui(ti, ai) ≤ εn(−κn) +

(
N∑

m=n+1

εm

)
· λ (3.9)
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Note that equation (3.3) implies that
N∑

m=n+1

εm < (N − n)ε · εn. Then a simple

calculation similar to the n = 1 case shows that the right side of equation (3.9)

is negative if

ε <
κn

(N − n)λ
(3.10)

Therefore if equation (3.10) is satisfied for all n ≤ N , then the result holds. This

completes the proof.

3.5 The All or Nothing Mechanism is Unimprovable

Now I can state the proposition.

Proposition III.5. Given Ω = {S}, the universal type space, the All or Nothing

mechanism, with the equilibrium described above, is not improvable by any mechanism

with finite actions and a pure-strategy equilibrium in non-weakly dominated strategies

where every action played in equilibrium is somewhere strictly preferred.

Proof. First I show that another proposition, proposition III.7, is equivalent to propo-

sition III.5. I then prove proposition III.7 to complete the proof.

The proof takes into account the following observations regarding what it would

mean for a mechanism and its equilibrium to improve on the All or Nothing mech-

anism. Another way to state the claim is that if there is a mechanism M = (A, ŷ)

with equilibrium a∗ that is as efficient for any realization of agents’ types t as the

All or Nothing mechanism M̃ with equilibrium ã∗, then for all realizations of agents’

types t, M and M̃ must be equally efficient. The proof focuses on this phrasing of

the claim.

M as efficient as M̃ : The All or Nothing mechanism is efficient whenever v̂2(t2) ≥ 1

or ã∗1(t1) =“PAY”. In the first case, the public good is produced because ã∗2(t2) =“pay”,
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and because v̂2(t2) ≥ 1 the sum of the agents’ valuations is at least one. In the second

case, the public good is produced and ã∗1(t1) =“PAY” implies that v̂1(t1) ≥ 1 so the

sum of the agents’ valuations are at least one. For the first case, M and a∗ as efficient

as M̃ and ã∗ implies that for all

a2 ∈ {a2 ∈ A2|∃t2 ∈ T2, v̂2(t2) ≥ 1, a∗2(t2) = a2},

q(a1, a2) = 1 ∀a1 ∈ A1 (3.11)

that is, for any action that is played in equilibrium by some t2 with a valuation at least

1, it must be that the public good is produced when that action is played, regardless

of the action of agent 1. That implies that ∀a1 ∈ A1,∀t1 ∈ T1,

Q1(t1, a1) ≥ π̂1(t1)[v̂2(t2) ≥ 1]. (3.12)

Similarly for the second case, for any

a1 ∈ {a1 ∈ A1|∃t1 ∈ T1, ã
∗
1(t1) = “PAY”, a∗1(t1) = a1} ,

q(a1, a2) = 1 ∀a2 ∈ A2

that is, for any action played in equilibrium by a type of agent 1 who would play

“PAY” under the equilibrium of the All or Nothing mechanism, it must be that when

that action is played the public good is produced regardless of the action of agent 2.

The All or Nothing mechanism is also efficient when v̂1(t1) + v̂2(t2) < 1, that is when

producing the public good is inefficient. In this situation ã∗ dictates that agent 1

plays “DON’T PAY” and agent 2 plays “don’t pay”, as both agents’ valuations are

less than one.
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How M could be more efficient than M̃ : The All or Nothing mechanism is not

efficient in the remaining situations, where v̂2(t2) < 1 and ã∗1(t1) =“DON’T PAY”,

but v̂1(t1) + v̂2(t2) > 1. If M and a∗ improve on M̃ and ã∗, it must be for some t that

fits this description. Therefore to prove the proposition, I need to show the following:

Proposition III.6. If M = (A, ŷ) and a∗ are as efficient as M̃ and ã∗ for all t, then

for all t such that

• v̂2(t2) < 1, and

• ã∗1(t1) =“DON’T PAY”,

it must be that in equilibrium a∗ of M ,

q(a∗1(t1), a∗2(t2)) = 0. (3.13)

Given the observations above about when the All or Nothing mechanism is efficient,

this proposition says that in those situations where the All or Nothing mechanism is

not efficient, neither is M .

Expectations and ex-post improvement. Proposition III.6 looks at ex-post

outcomes, but it will be useful to rephrase the required result in terms of agents’

expectations. Define

Q1(t1) ≡ Eπ̂1(t1) [q(a∗1(t1), a∗2(t2))]

and

Q̃1(t1) ≡ Eπ̂1(t1) [q̃(ã∗1(t1), ã∗2(t2))] .
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Clearly if proposition III.6 holds then Q1(t1) = Q̃1(t1) for all t1. What we will

take advantage of is the opposite fact, that if Q1(t1) = Q̃1(t1) for all t1, proposition

III.6 holds. It is more complicated to show that Q1(t1) = Q̃1(t1) for all t1 implies

proposition III.6. To do so, we observe that by the assumption that every action

played in equilibrium is somewhere strictly preferred, for all a1 ∈ A1 there exists a type

t1 such that a∗(t1) = a1 and t1 strictly prefers a1 to any other action, in equilibrium.

Then there exists some π̂′1 ∈ ∆(T2) arbitrarily close to π̂(t1) with π̂′1[a∗2(t2) = a′2] > 0

for all a′2, and such that if t̃1 has π̂1(t̃1) = π̂′1 and v̂1(t̃1) = v̂1(t1) then a∗1(t̃1) = a∗1(t1).

As observed above, M at least as efficient as M̃ implies that q(a∗(t)) ≥ q̃(ã∗(t)) for all

t ∈ T . Therefore if Q1(t̃1) = Q̃1(t̃1) then it must be that q(a∗1(t̃1), a2) = q̃(ã∗1(t̃1), a2)

for all a2 ∈ A2, and we can make a similar statement for every a1 ∈ A1. Therefore, the

following proposition is equivalent to proposition III.6, and consequently proposition

III.5.

Proposition III.7. If M = (A, ŷ) and a∗ are as efficient as M̃ and ã∗ for all t, then

for all t1 it must be that in equilibrium a∗ of M ,

Q1(t1) = Q̃1(t1). (3.14)

In what follows I prove Proposition III.6, and thus Proposition III.5.

Proof. M as efficient as M̃ ensures that Q1(t1) = Q̃1(t1) = 1 when ã∗1(t1) =“PAY”,

so I focus on the case that ã∗1(t1) =“DON’T PAY.”

I split the proof into two cases (see figure 3.1).

• Case 1 applies when t1, the type of agent one, puts probability 1 on agent two’s

valuation being less than one (the thick line segment indicated in figure 1). If
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Figure 3.1: Cases 1 and 2 for the proof of Proposition III.6

a∗1(t1) =“DON’T PAY” then it must be that v̂1(t1) ≤ 1. In this case I show

that Q1(t1) = 0 = Q̃1(t1).

• Case 2 applies when t1 puts probability less than 1 on agent two’s valuation

being below one (or equivalently, puts some probability on agent two’s valuation

being at least one), and ã∗1(t1) =“DON’T PAY” (the area under the curve in

figure 1). The proof of Case 2 uses Case 1, by showing that if there was an

improvement in efficiency for t1, then there would be a type of agent 1 fitting

Case 1 that would also have an improvement in efficiency. Because Case 1 rules

this out, it must be that there is no increase in efficiency for t1.

The formal statement of Case 1 is as follows:

Case 1. If M and a∗ is at least as efficient as M̃ and ã∗, then for all t1 such that
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π̂1(t1)[v̂2(t2) < 1] = 1 and v̂1(t1) < 1,

Q1(t1) = 0 = Q̃1(t1) (3.15)

in equilibrium.

proof Fix some t′1 that fits case 1. The exact valuation of t′1 is unimportant, as we

will show the result for all types of agent 1 with the same beliefs as t′1 and valuations

less than 1. To do that, we look at the maximum expected probability of the public

good being produced among those types:

Define t′1,ṽ by v̂1(t′1,ṽ) = ṽ and π̂1(t′1,ṽ) = π̂1(t′1) (so for example t′1 = t′1,v̂1(t′1)). Then

define

Q = max
ṽ<1

Q1(t′1,ṽ, a
∗
1(t′1,ṽ)). (3.16)

I shall prove the proposition by showing that Q = 0. A pure strategy equilibrium

and finite action space imply the maximum that defines Q exists.

The proof of Case 1 consists of two parts. I start by positing the existence of

actions and types with certain properties that will be useful for the proof. Lemma

III.8 describes these posited types and actions, and then shows that the requirement

that M be as efficient as M̃ everywhere, combined with incentive compatibility for

these and other types, implies that Q = 0. Lemma III.9 then proves that actions and

types matching those posited in Lemma III.8 exist.

Lemma III.8. If there are actions {a1, a1} ∈ A1 and {â2, a2, a2} ∈ A2 and a sequence

of subsets of T indicated by T n = T n1 × T n2 =
{
t
n
1 , t

n
1

}
×
{
t̂n2 , t

n
2 , t

n
2

}
such that

1. for all n, the following are true of a1 and t
n
1 :

• a∗1(t
n
1 ) = a1

• v̂1(t
n
1 ) > 1; furthermore ã∗1(t

n
1 ) = “PAY”
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• Given a valuation of v1 = 1, a1 is a best response to π̂1(t′1); within that

set of best responses a1 is a best response to â2; within that set a1 is a best

response to a2.

2. for all n, the following are true of a1 and tn1 :

• a∗1(tn1 ) = a1

• v̂1(tn1 ) < 1

• Given a valuation of v1 = 1, a1 is a best response to π̂1(t′1); within that

set of best responses a1 is a best response to â2; within that set a1 is a best

response to a2.

3. for all n, the following are true of â2 and t̂n2 :

• a∗2(t̂n2 ) = â2

• v̂2(t̂n2 ) < 1 and lim
n→∞

v̂2(t̂n2 ) = 1

• Given v̂2(t̂n2 ), â2 is a best response to a1; within that set of best responses

â2 is a best response to a1.

4. for all n, the following are true of a2 and t
n
2 :

• a∗2(t
n
2 ) = a2

• v̂2(t
n
2 ) > 1 and lim

n→∞
v̂2(t

n
2 ) = 1

• Given v̂2(t
n
2 ), a2 is a best response to a1; within that set of best responses

a2 is a best response to a1.

5. for all n, the following are true of a2 and tn2 :

• a∗2(tn2 ) = a2

• 0 < v̂2(tn2 ) < 1− v̂1(tn1 )
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• Given v̂2(tn2 ), a2 is a best response to a1; within that set of best responses

a2 is a best response to a1.

then Q = 0.

Proof. Define Q̂ ≡ π̂1(t′1)[q(a1, a
∗
2(t2)) = 1], the expected probability that the public

good will be produced when the action a1 is played and given the beliefs of agent t′1 .

By monotonicity of Q1(t1) when beliefs are fixed and valuations are varied (implied by

incentive compatibility) and the fact that a1 is a best response to π̂1(t′1) for valuation

1,

Q̂ ≥ Q. (3.17)

Thus a1 will fulfill the role of the action played by agents with valuation less than 1

and beliefs that are (roughly) the same as t′1. For simplicitly, assume Q̂ = Q. This

is without loss of generality because I will show that Q̂ = 0, which through equation

(3.17) implies Q = 0. Therefore to avoid extra notation I assume that Q̂ and Q are

equal.

The proof of lemma III.8 uses incentive compatibility constraints, and the re-

quirement that M be as efficient as M̃ everywhere, to pin down the outcomes when

the posited actions are played. The proof has the following structure. Sublemma 1

uses the assumed best response properties of a1 and a1 to establish facts about the

relative transfers and production of the public good when agent one plays a1 and

a1. Sublemma 2 uses those facts and the descriptions of the posited actions and

types to further describe the outcomes of these actions under M . Sublemma 3 then

uses the results of sublemmas 1 and 2 to show that if M is incentive compatible and

everywhere as efficient as M̃ , then Q = 0.

The following sublemma uses the best response properties assumed of a1 and

a1 to show that the differences in outcomes between a1 and a1 must satisfy certain

conditions.
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Sublemma 1. The outcomes for actions a1 and a1 obey the following conditions:

1. Given beliefs π̂1(t′1) the following holds:

Eπ̂1(t′1)[τ1(a1, a
∗
2(t2))−τ1(a1, a

∗
2(t2))] = Eπ̂1(t′1)[q(a1, a

∗
2(t2))−q(a1, a

∗
2(t2))] (3.18)

2. When a2 = â2, the following holds:

τ1(a1, â2)− τ1(a1, â2) = q(a1, â2)− q(a1, â2) (3.19)

3. When a2 = a2, the following holds:

τ1(a1, a2)− τ1(a1, a2) = q(a1, a2)− q(a1, a2) (3.20)

Proof. The sublemma follows from the assumptions that if v1 = 1 then a1 and a1 are

best responses to π̂1(t′1), which implies equation (3.18); and that within that set of

best responses both actions are best responses to â2, which implies equation (3.19);

and that within that set both actions are best responses to a2, which implies equation

(3.20).

Now I show the outcomes when a ∈ {a1, a1} × {â2, a2, a2}. Define the following

value, which corresponds to the lowest transfer agent 2 can pay when agent 1 plays

a1:

τ 2(a1) ≡ min
a′2∈A2

τ2(a1, a
′
2). (3.21)

Sublemma 2 shows that the properties stated in lemma III.8, combined with

sublemma 1, determine the following features of the outcomes under M when a ∈

{a1, a1} × {â2, a2, a2}:
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q(a1, a2)

Actions a2 â2 a2

a1 1 1 1
a1 0 0 1

τ2(a1, a2)

Actions a2 â2 a2

a1 τ 2(a1) τ 2(a1) τ 2(a1)
a1 τ 2(a1) τ 2(a1) τ 2(a1) + 1

Table 3.2: Outcomes under M implied by sublemmas 1 and 2

(Because we have strict budget balance, τ1(a) is also determined.) These values

will be useful in showing that the type t∗1 (which will be constructed in sublemma 3)

prefers a1 to a1. Sublemma 2 establishes the above tables through a series of claims.

Sublemma 2. Given the conditions specified in lemma III.8, the following claims

are true of ŷ(a) when a ∈ {a1, a1} × {â2, a2, a2}.

1. For all a2 ∈ {â2, a2, a2},

q(a1, a2) = 1 (3.22)

and

τ2(a1, a2) = τ 2(a1). (3.23)

2. For a2 ∈ {â2, a2},

q(a1, a2) = 0 (3.24)

and

τ2(a1, a2) = τ 2(a1) (3.25)

3. For a2, the following are true:

q(a1, a2) = 1 (3.26)

and

τ2(a1, a2) = τ 2(a1) + 1 (3.27)
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Proof. I show each claim in turn. Some claims require the earlier claims for their

proof.

Claim 1: To prove equation (3.22), recall that by assumption ã∗1(t
n
1 ) =“PAY ALL”

and v̂1(t
n
1 ) > 1 for all n. Therefore given that M is at least as efficient as M̃ , for all

a2 ∈ A2,

q(a1, a2) = 1 (3.28)

which is equation (3.22).

Equation (3.23) is an immediate implication of equations (3.21) and (3.22) and the

focus lemma.

Claim 2:

Equation (3.25) is a straightforward implication of claim 1 and sublemma 1 con-

ditions 2 and 3. Substituting equations (3.22) and (3.23) into equation (3.20) yields:

(1− τ 2(t1))− τ1(a1, â2) = 1− q(a1, â2)

which implies

q(a1, â2)− τ1(a1, â2) = τ 2(t1).

By budget balance, τ2(a1, â2) = q(a1, â2)− τ1(a1, â2). Substituting, we get

τ2(a1, â2) = τ 2(t1). (3.29)

A parallel argument using equations (3.19), (3.22) and (3.23) shows that

τ2(a1, a2) = τ 2(t1). (3.30)
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Then equations (3.29) and (3.30) together imply equation (3.25).

Now I prove equation (3.24). By assumption on tn2 , for any n we have v̂1(tn1 ) +

v̂2(tn2 ) < 1. Then M as efficient as M̃ implies that

q(a1, a2) = 0. (3.31)

Claim 1 and equations (3.25) and (3.31) imply the following transfers and outcomes

regarding the public good being produced depending on the actions (the “?” indicates

the value we want to determine):

q(a1, a2) =

Actions a2 â2

a1 1 1
a1 0 ?

τ2(a1, a2) =

Actions a2 â2

a1 τ 2(a1) τ 2(a1)
a1 τ 2(a1) τ 2(a1)

Table 3.3: Outcomes under M implied by claim 1 and equations (3.25) and (3.31)

Given the construction of tn2 it is immediate that if q(a1, â2) = 1 then tn2 would

want to deviate to â2 for all n. Therefore

q(a1, â2) = 0. (3.32)

Together (3.31) and (3.32) imply equation (3.24).

Claim 3:

Given that v̂2(t
n
2 ) > 1, equation (3.11) and M as efficient as M̃ implies that

q(a1, a2) = 1 ∀a1 ∈ A1
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which implies in particular that q(a1, a2) = 1, which proves equation (3.26).

To determine τ2(a1, a2), I observe that claims 1 and 2 with equation (3.26) establish

the following values for transfers and whether the public good is produced (the “?”

indicates the value we want to determine):

q(a1, a2) =

Actions a2 â2 a2

a1 1 1 1
a1 0 0 1

τ2(a1, a2) =

Actions a2 â2 a2

a1 τ 2(a1) τ 2(a1) τ 2(a1)
a1 τ 2(a1) τ 2(a1) ?

Table 3.4: Outcomes under M implied by claims 1 and 2 with equation (3.26)

Equation (3.27) is then implied by incentive compatibility. If

τ2(a1, a2) < τ 2(a1) + 1

then v̂2(t̂n2 ) →− 1 implies that for some n, t̂n2 would want to deviate from â2 to a2.

However, if

τ2(a1, a2) > τ 2(a1) + 1

then v̂2(t
n
2 )→+ 1 implies that for some n, t

n
2 would want to deviate to â2. Therefore

equation (3.27) must hold.

The following sublemma uses the results from sublemmas 1 and 2 to prove lemma

III.8. I construct a new type, t∗1 for agent 1 that under the equilibrium of the all

or nothing mechanism always achieves an efficient outcome. Among actions under

M that always produce the public good (and therefore achieve an efficient outcome),

t∗1’s optimal action is a1. However, if Q > 0 then t∗1 prefers a1 to a1, which implies

that a∗1(t∗1) must not always produce the public good and therefore does not always
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achieve an outcome as efficient as under M̃ . Therefore if M is as efficient as M̃ then

it must be that Q = 0.

Sublemma 3. If the conditions of sublemma 1 hold and if Q > 0 then there exists

a t∗1 such that

ã∗1(t∗1) = “PAY ” (3.33)

and

Q1(t∗1, a
∗
1(t∗1)) < 1. (3.34)

Proof. Recall that I have assumed without loss of generality that

Q̂ ≡ π̂1(t′1)[q(a1, a
∗
2(t2)) = 1] = Q. (3.35)

I now define a type t
∗
1 that will help me construct t∗1. Let the type t

∗
1 be defined

by, for some n, v̂1(t
∗
1) = v̂1(t

n
1 ) and for some ε∗,

π̂1(t
∗
1)[E] ≡ π̂1(t′1)[E] · (1− ε∗) + (ε∗ − ε2∗) · It̂n2∈E

+(ε2∗ − ε3∗) · Itn2∈E + ε3∗ · Itn2∈E (3.36)

where ε∗ is small enough that the focus lemma implies that a∗1(t
∗
1) is a best response,

conditional on v̂1(t
∗
1), to π̂1(t′1); within that set of best responses a∗1(t

∗
1) is a best

response to â2; within that set a∗1(t
∗
1) is a best response to a2. Furthermore I require

that π̂1(t
∗
1)[v̂2(t2) < 1] = 1− ε3∗ > 1

v̂1(t
n
1 )

to ensure that ã∗1(t
n
1 ) =“PAY”.

This best response condition result implies that U1(t
∗
1, a
∗
1(t
∗
1)) = U1(t

∗
1, a1) by con-

struction of a1, as a1 satisfies the same best response condition for all v1 ≥ 1, and

therefore in particular v̂1(t
n
1 ). Furthermore, by M as efficient as M̃ both actions pro-
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duce the public good whatever action the other agent takes. Therefore without loss

of generality we can assume that a1 = a∗1(t
∗
1).

Now I look at types with the same beliefs as t
∗
1 but with different valuations. One

such type will be our t∗1. For any v, define t∗1(v) by v̂1(t∗1(v)) = v and π̂1(t∗1(v)) =

π̂1(t
∗
1)). I first calculate the difference in expected utility for such types when taking

the action a1 compared to the action a1. Equation (3.36) translated into relative

utilities is as follows:

U1(t∗1(v), a1)−U1(t∗1(v), a1) = (1−ε∗) ·Eπ̂1(t′1)[u1(v, ŷ(a1, a
∗
2(t2)))−u1(v, ŷ((a1, a

∗
2(t2)))]

+(ε∗ − ε2∗) · (u1(v, ŷ(a1, â2))− u1(v, ŷ(a1, â2)))

+(ε2∗ − ε3∗) · (u1(v, ŷ(a1, a2))− u1(v, ŷ(a1, a2)))

+ε3∗ · (u1(v, ŷ(a1, a2))− u1(v, ŷ(a1, a2))) (3.37)

Sublemma 1, condition 1 implies that for any v, we can make the following sub-

stitution for the first term on the right side of equation (3.37):

Eπ̂1(t′1)[u1(v, ŷ(a1, a
∗
2(t2)))− u1(v, ŷ(a1, a

∗
2(t2))] = (1−Q) · (v − 1). (3.38)

To find expressions for the other terms in equation (3.37), note that for any v1

and a2 ∈ A2,

u1(v, ŷ(a1, a2))− u1(v, ŷ(a1, a2)) = [q(a1, a2)− q(a1, a2)] · v − (τ1(a1, a2)− τ1(a1, a2))

(3.39)

that is, the difference in utility is the difference in whether the public good is produced
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times the valuation, minus the difference in transfers. We can determine values for

equation (3.39) when a2 ∈ {â2, a2, a2} using the results for sublemma 2. We can write

the following tables for transfers and production of the public good based on certain

specific actions (note that for this table I list transfers by agent 1, not agent 2 as in

previous tables):

q(a1, a2) =

Actions a2 â2 a2

a1 1 1 1
a1 0 0 1

τ1(a1, a2) =

Actions a2 â2 a2

a1 1− τ 2(a1) 1− τ 2(a1) 1− τ 2(a1)
a1 −τ 2(a1) −τ 2(a1) −τ 2(a1)

Table 3.5: Outcomes under M

These tables gives us the information needed to use equation (3.39) to assign

values to the last three terms in equation (3.37). I make these substitutions, and

substituting equation (3.38), into equation (3.37) to get

U1(t∗1(v), a1)− U1(t∗1(v), a1) = (1− ε∗) ·
[
(1−Q) · (v − 1)

]
+(ε∗ − ε2∗) · [v − 1] + (ε2∗ − ε3∗) · [v − 1] + ε3∗ · [−1]

=
[
(1− ε∗) · (1−Q) + (ε∗ − ε3∗)

]
· (v − 1)− ε3∗ (3.40)

By comparison, the similar result for the actions “PAY” and “DON’T PAY” under

M̃ is

U M̃
1 (t∗1(v), “PAY ”)− U M̃

1 (t∗1(v), “DON ′TPAY ”) = (1− ε3∗) · (v − 1)− ε3∗ (3.41)

This is easily verified by inspection of the equilibrium ã∗ of the All or Nothing Mech-

anism M̃ .
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Note that by inspection equation (3.41) is greater than (3.40) for v > 1 given that

Q > 0. I now generate a type where equation (3.41) is equal to 0, which implies that

the agent plays “PAY” under M̃ . At the same time that implies that equation (3.40)

is negative, although I calculate this explicitly. I show these two facts and then use

them to prove Q1(t∗1) < 1.

Define t∗1 = t∗1( 1
1−ε3∗

). By construction of π̂1(t
∗
1) it is the case that π̂1(t∗1)[v̂2(t2) <

1] = 1− ε3∗ = 1
v̂1(t∗1)

. That implies that ã∗1(t∗1) = “PAY”, satisfying equation (3.33).

To prove equation (3.34), I observe that by construction equation (3.40) is equal

to 0 when v = v̂1(t∗1). Then by inspection equation (3.41) is strictly negative given

that Q > 0 by assumption. So U1(t∗1, a1) > U1(t∗1, a1).

Because a1 is a best response for t1, it must be that among actions that produce

the public good with certainty a1 is transfer-minimizing given π̂1(t
∗
1) and therefore

optimal for t∗1 within that set. Therefore if U1(t∗1, a1) > U1(t∗1, a1) then it must be that

a∗1(t∗1) does not always produce the public good, and in fact that Q1(t∗1, a
∗
1(t∗1)) < 1.

That proves equation (3.34) and completes the proof of the sublemma.

Sublemma 3 implies thatM as efficient as M̃ requires thatQ = 0, and by definition

of Q it must be that Q1(t′1) ≤ Q = 0, which proves equation (3.15). This completes

the proof of lemma III.8.

Lemma III.9. There exists actions {a1, a1} ∈ A1 and {â2, a2, a2} ∈ A2 and a se-

quence of subsets of T indicated by T n = T n1 ×T n2 =
{
t
n
1 , t

n
1

}
×
{
t̂n2 , t

n
2 , t

n
2

}
that satisfy

the conditions in lemma III.8.

Proof. I start by constructing the type spaces {T n}, and then show the existence of

actions fitting the conditions on {a1, a1} and {â2, a2, a2}.

Each T n will belong to a class of subsets of the universal type space of the form

T n,m,ε, defined in the following way: For n and m positive integers and ε > 0, let
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T n,m,ε = T n,m,ε1 × T n,m,ε2 where T n,m,ε1 = {t1, t1, t01} and T n,m,ε2 = {t̂2, t2, t2}. The

valuations and beliefs of the types are defined below. First I comment briefly on the

role of n, m and ε respectively.

• n. Taking the limit as n goes to infinity will ensure that the best response

conditions for a1 and a1 hold, by use of the focus lemma. It will also ensure

that the conditions on the valuations of t̂2 and t2 hold. Taking a sequence of n

(and appropriately chosen m and ε) will give us a sequence of T n,m,ε from which

the sequence T n will be drawn.

• m. For each n, taking the limit as m goes to infinity will ensure that the best

response condition for a1 and a1 hold specifically at the valuation v1 = 1. m

positive ensures that the condition on the valuations of t
n
1 , tn1 and tn2 hold. m

will be chosen as a function of n.

• ε. Choosing a sufficiently small ε for each n and m combination will ensure that

the best response conditions for â2, a2 and a2 hold.

Valuations: For simplicity I present the valuations in table form.

v̂1(t1)

t1 1 + 1
m

t1 1− 1
m

t01 1

v̂2(t2)

t2
1

2·m

t̂2 1− 1
n

t2 1 + 1
n

Table 3.6: Valuations of the constructed types in T n,m,ε

Note that if m > 0 (as we require), and we let n→∞ then the valuations of these

types match the requirements on the corresponding types t
n
1 , t

n
1 , t

n
2 , t̂

n
2 and t

n
2 . (t01 has

no corresponding type in T n.)
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Beliefs: the beliefs of the types of agent 1 are a function of n, while the beliefs

of the types of agent 2 are a function of ε. For all t1 ∈ T n,m,ε1 beliefs are defined by

the following p2 ∈ ∆T2. For all E ⊂ T2,

p2[E] = π̂1(t1)[E] = π̂1(t1)[E] = π̂1(t01)[E]

= (1− 1

n
)π̂1(t′1)[E] +

1

n
(1− 1

n
) · It̂2∈E +

1

n

2

· It2∈E (3.42)

that is, types of agent 1 expect agent 2’s type to be distributed according to π̂1(t′1)

with probability 1− 1
n
, and the other 1

n
probability is assigned to t̂2 and t2 at a ratio

of 1− 1
n

to 1
n

respectively.

Similarly, for all t2 ∈ T n,m,ε2 beliefs are defined by the following p1 ∈ ∆T1. For all

E ⊂ T1,

p1[E] = π̂2(t̂2)[E] = π̂2(t2)[E] = π̂2(t2)[E]

= (1− ε) · It1∈E + ε · It1∈E (3.43)

that is, types of agent 2 expect agent 1’s type to be t1 with probability 1 − ε, and

expect that agent 1’s type will be t1 otherwise.

I now construct a series of T n,m,ε by first holding n,m constant and finding an

appropriate ε for each (n,m) combination. Then I hold n constant and find an

appropriate m for each n. Finally I take the sequence created by varying n and find

a subsequence of that sequence that I use to construct {T n}.

Holding n and m fixed. For each possible n,m the focus lemma implies that

we can find an ε(n,m) small enough that t̂2, t2 and t2 best respond (given their

valuations) to t1, and conditional on that best respond to t1. Fix such an ε(n,m) for

all n and m.
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Holding n fixed. Consider the set {T n,m,ε(n,m)}m∈{1,2,...}. Define

an,m =
{
a∗1(t1), a∗1(t1), a∗1(t01), a∗2(t2), a∗2(t̂2), a∗2(t2)

}
≡ {an,m1 , an,m1 , a0,n,m

1 , an,m2 , ân,m2 , an,m2 }.

(3.44)

where {t1, t1, t01, t2, t̂2, t2} correspond to the elements in T
n,m,ε(n,m)
1 and T

n,m,ε(n,m)
2 .

Because M has finite actions, and we assume a pure strategy equilibrium, the

sequence {an,m}m∈{1,2,...} has a constant subsequence, with constant term I will call

an. Let m(n) correspond to some m such that an,m(n) = an. Let ε(n) ≡ ε(n,m(n)),

and let T̃ n = T n,m(n),ε(n,m).

Sublemma 4. For the type t01 ∈ T̃ n1 , the actions a∗1(t01), a∗1(t1) and a∗1(t1) are all best

responses in equilibrium.

Proof. By construction, there exists arbitrarily large m′ such that

{
a∗1(t1), a∗1(t1), a∗1(t01), a∗2(t2), a∗2(t̂2), a∗2(t2)

}
= an

for t1, t1 ∈ T
n,m′,ε(n,m′)
1 . That implies that for the beliefs p2 (defined relative to

T n,m
′,ε(n,m′)) and valuations 1 + 1

m′
arbitrarily close to 1, a∗1(t1) is a best response.

Similarly, given beliefs p2 and valuations 1− 1
m′

arbitrarily close to 1, a∗1(t1) is a best

response. These facts imply that both actions are best responses for a type with

beliefs p2 and valuation 1, which describes t01.

Varying n. Now we can find a constant subsequence of the series {an}. Let

an = {a1, a1, a
0
1, a2, â2, a2} be the constant term in the subsequence. Take the corre-

sponding subsequence {T̃ n} and let {T n} be defined by T n1 = T̃ n1 \ {t01} and T n2 = T̃ n2 .

Unsurprisingly, these will be our candidates for the objects assumed in lemma III.8.

Sublemma 5. The actions {a1, a1} ∈ A1 and {â2, a2, a2} ∈ A2 and the sequence
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T n = T n1 ×T n2 =
{
t
n
1 , t

n
1

}
×
{
t̂n2 , t

n
2 , t

n
2

}
satisfy the conditions assumed in lemma III.8.

Proof. There are three types of properties posited in lemma III.8: equilibrium actions,

valuations, and best response properties. I show each in turn.

Equilibrium actions: Because the types in T n correspond to the types in T̃ n,

where an = an,

{
a∗1(t

n
1 ), a∗1(tn1 ), a∗2(tn2 ), a∗2(t̂n2 ), a∗2(t

n
2 )
}

= {a1, a1, a2, â2, a2}

which establishes the equilibrium action conditions.

Valuations: By construction, (v̂1(t
n
1 ), v̂1(tn1 ), v̂1(tn2 ), v̂2(t̂n2 ), v̂2(t

n
2 )) = (1+ 1

m(n)
, 1−

1
m(n)

, 1
2m(n)

, 1 − 1
n
, 1 + 1

n
). By inspection these values satisfy the conditions assumed

in lemma III.8 as n→+ ∞.

Best response properties: This is the most complicated set of properties to

show. By the choice of ε(n,m) we have that tn2 , t̂
n
2 and t

n
2 all best respond to a1

given their valuations, and conditional on that best respond to a1. We also have,

by construction, that their equilibrium actions are a2, â2, and a2 respectively, so the

property is proved for these actions.

The argument for a1 and a1 is more complicated, and uses sublemma 4. Let

t0,n1 correspond to t01 ∈ T̃ n. Then for all n, sublemma 4 implies that for t0,n1 , the

actions a1 and a1 are best responses. Note that for all n, v̂1(t0,n1 ) = 1 by construction.

Furthermore, t0,n1 ’s beliefs in equilibrium correspond to equation (3.42) for n tending

to ∞. Therefore we can find a sufficiently large n′ such that t0,n1 ’s beliefs and the

focus lemma imply that any best response, given the valuation 1, must be a best

response to π̂1(t′1), and conditional on that a best response to t̂2, and conditional on

that a best response to t2. As both a1 and a1 are best response for the t0,n1 , the best

response property for those actions is proved.
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Sublemma 5 completes the proof of lemma III.9 by showing that there exist {T n}

and {a1, a1, â2, a2, a2} that satisfy the conditions posited in lemma III.8.

Together, lemmas III.8 and III.9 prove Case 1.

Case 2. If M is at least as efficient at M̃ then for all t1 such that a∗1(t1) =“DON’T

PAY”, π̂1(t1)[v̂2(t2) < 1] < 1,

Q1(t1) = Q̃1(t1). (3.45)

Proof. Let t′1 be a type of agent 1 that fits the conditions of case 2. Note that M as

efficient as M̃ implies

Q1(t′1) ≥ Q̃1(t′1) = π̂1(t′1)[v̂2(t2) ≥ 1]

because the public good must be produced whenever v̂2(t2) ≥ 1. Therefore to prove

equation (3.45) only requires showing that Q1(t′1) is not strictly greater than Q̃1(t′1).

I prove case 2 (as with case 1) with two lemmas. Lemma III.10 assumes the

existence of certain types related to the posited type where there is an improvement,

and proves the result given the existence of those types. Lemma III.11 proves the

existence of the described types.

Lemma III.10. If there are types t̂1, t1 and t1 such that

• For t̂1 the following conditions hold:

(A1) v̂1(t̂1) > max{v̂1(t′1), 1}.

(A2) π̂1(t̂1)[v̂2(t2) < 1] = 1
v̂1(t̂1)
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(A3) ∀a2 ∈ A2

π̂1(t̂1)[a∗2(t2) = a2, v̂2(t2) < 1] ≥ π̂1(t′1)[a∗2(t2) = a2, v̂2(t2) < 1]

(A4) ∀a1 ∈ A1,

Eπ̂1(t̂1) τ1(a1, a
∗
2(t2)) = Eπ̂1(t′1) τ1(a1, a

∗
2(t2))

• For t1 the following conditions hold:

(B1) v̂1(t1) = v̂1(t̂1)

(B2) π̂1(t1)[v̂2(t2) < 1] = 1

(B3) ∀a2 ∈ A2

π̂1(t1)[a∗2(t2) = a2, v̂2(t2) < 1] ≥ π̂1(t′1)[a∗2(t2) = a2, v̂2(t2) < 1]

(B4) ∀a1 ∈ A1,

Eπ̂1(t1) τ1(a1, a
∗
2(t2)) = Eπ̂1(t′1) τ1(a1, a

∗
2(t2))

• For t1 the following conditions hold:

(C1) v̂1(t1) = 0

(C2) π̂1(t1) = π̂1(t1)

then Q1(t′1) = Q̃1(t′1).

Proof. The proof shows that if Q1(t′1) > Q̃1(t′1) then type t̂1 would want to deviate to

the equilibrium action of t′1. To show this, I prove that t̂1 is indifferent between its own

equilibrium action and the equilibrium action of t1, but unless Q1(t′1) = Q̃1(t′1) holds,

t̂1 prefers the equilibrium action of t′1 to the equilibrium action of t1 and therefore

also to its own equilibrium action.
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To show that t̂1 is indifferent between its own equilibrium action and the equilib-

rium action of t1, I will need the result that t̂1 is indifferent between its equilibrium

action and that of t1. I prove this first in sublemma 6.

Sublemma 6. t̂1 is indifferent between a∗1(t̂1) and a∗1(t1), i.e.

U1(t̂1, a
∗
1(t̂1)) = U1(t̂1, a

∗
1(t1)) (3.46)

Proof. Combining property (A4) of t̂1 and (B4) of t1 shows that for all a1 ∈ A1,

Eπ̂1(t̂1) τ1(a1, a
∗
2(t2)) = Eπ̂1(t1) τ1(a1, a

∗
2(t2)) (3.47)

that is, t̂1 and t1 have the same expected transfer for any action.

Together (A1) and (A2) imply that a∗1(t̂1) =“PAY”, while (B1) and (B2) together

imply that a∗1(t1) =“PAY”. Therefore, because M is as efficient as M̃ , and all actions

are played in equilibrium,

q(a∗1(t̂1), a2) = 1 = q(a∗1(t1), a2) ∀a2 ∈ A2 (3.48)

Given that a∗(t̂1) and a∗(t1) both produce the public good with certainty, and given

t̂1 and t1 have the same expected transfer for any action, it must be that

Eπ̂1(t̂1) τ1(a∗1(t̂1), a∗2(t2)) = Eπ̂1(t̂1) τ1(a∗1(t1), a∗2(t2)) (3.49)

or else either t̂1 would want to deviate to a∗1(t1) or t1 would want to deviate to a∗1(t̂1).

Equations (3.48) and (3.49) imply equation (3.46) and complete the proof of the

sublemma.

Now I can show that t̂1 is indifferent between its own equilibrium action and that
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of t1, by showing that t̂1 is indifferent between a∗1(t1) and a∗1(t1). This result will be

used in the proof of sublemma 8, which shows that t̂1’s indifference condition only

holds if Q1(t′1) = Q̃1(t′1).

Sublemma 7. t̂1 is indifferent between a∗1(t1) and a∗1(t1), i.e.

U1(t̂1, a
∗
1(t1)) = U1(t̂1, a

∗
1(t1)) (3.50)

Proof. The result to be shown can be written as

v̂1(t̂1) ·Q1(t̂1, a
∗
1(t1))− Eπ̂1(t̂1) τ1(a∗1(t1), a∗2(t2))

= v̂1(t̂1) ·Q1(t̂1, a
∗
1(t1))− Eπ̂1(t̂1) τ1(a∗1(t1), a∗2(t2)) (3.51)

Because ã∗1(t1) =“PAY”, and M as efficient as M̃ ,

Q1(t̂1, a
∗
1(t1)) = 1 (3.52)

while v̂1(t1) = 0 and M as efficient as M̃ implies that

Q1(t̂1, a
∗
1(t1)) = π̂1(t̂1)[v̂2(t2) ≥ 1]. (3.53)

Recall (A2) requires that π̂1(t̂1)[v̂2(t2) < 1] = 1
v̂1(t̂1)

. Therefore (A2) together with

equations (3.52) and (3.53) implies that equation (3.51) can be written as

v̂1(t̂1)− Eπ̂1(t̂1) τ1(a∗1(t1), a∗2(t2)) = v̂1(t̂1)

(
1− 1

v̂1(t̂1)

)
− Eπ̂1(t̂1) τ1(a∗1(t1), a∗2(t2))

which a little rearrangment shows is equivalent to:

Eπ̂1(t̂1) τ1(a∗1(t1), a∗2(t2))− Eπ̂1(t̂1) τ1(a∗1(t1), a∗2(t2)) = 1. (3.54)
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For any agent 1 action, condition (A4) says that t̂1’s expected transfer is the same

as t′1’s expected transfer, while condition (B4) says that t1’s expected transfer is also

the same as t′1’s expected transfer. Therefore for any action t̂1 and t1 have the same

expected transfer. Then the expectations in equation (3.54) can be are taken with

respect to π̂1(t1) instead of π̂1(t̂1):

Eπ̂1(t1) τ1(a∗1(t1), a∗2(t2))− Eπ̂1(t1) τ1(a∗1(t1), a∗2(t2)) = 1. (3.55)

To show that (3.55) holds I use Case 1 (to show that the left side is at least as great

as 1) and M as efficient as M̃ (to show the left side is no greater than 1).

I can use Case 1 because condition (B2) implies that for any v1 ∈ (0, 1) and

any t1 ∈ T1 such that v̂1(t1) = v1 and π̂1(t1) = π̂1(t1) = π̂1(t1), Case 1 applies

to t1. Then Q1(t1) = 0 = Q1(t1). Because t1 and t1 evaluate expected transfers

the same, it must be that t1 is indifferent between its equilibrium action and a∗1(t1).

The difference in utility for t1 of playing a∗1(t1) and a∗1(t1) is v1 minus the difference

in expected transfers (because playing a∗1(t1) ensures the public good is produced,

while t1 expects the public good to never be produced under its equilibrium action).

Therefore for t1 to not want to deviate for any v1 < 1 it must be that

Eπ̂1(t1) τ1(a∗1(t1), a∗2(t2))− Eπ̂1(t1) τ1(a∗1(t1), a∗2(t2)) ≥ 1. (3.56)

Now we use the fact that M is as efficient as M̃ to prove an analogous argument

for v1 > 1. Let t1 be defined as in the last paragraph, except now take v1 ∈ (1, v).

Clearly with π̂1(t1)[v̂2(t2) < 1] = π̂1(t1)[v̂2(t2) < 1] = 1, ã∗1(t1) =“PAY”, and therefore

M as efficient as M̃ implies that Q1(t1) = 1. Given that t1 and t1 have the same

beliefs, they evaluate transfers the same, and since both agents’ equilibrium actions

produce the public good with certainty t1 must be indifferent between a∗1(t1) and

a∗1(t1). The difference in utility for t1 of playing a∗1(t1) and a∗1(t1) is v1 minus the
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difference in expected transfers (because playing a∗1(t1) ensures the public good is

produced, while t1 expects the public good to never be produced under its equilibrium

action). Therefore for t1 to not want to deviate for any v1 > 1 it must be that

Eπ̂1(t1) τ1(a∗1(t1), a∗2(t2))− Eπ̂1(t1) τ1(a∗1(t1), a∗2(t2)) ≤ 1. (3.57)

Clearly equations (3.56) and (3.57) imply equation (3.55). As noted above, equation

(3.55) (and therefore equation (3.54) is equivalent to proving the sublemma.

Sublemma 8. If

Q1(t′1) > Q̃1(t′1) (3.58)

then

U1(t̂1, a
∗
1(t′1)) > U1(t̂1, a

∗
1(t1)) (3.59)

Proof. It is notable that equation (3.58) mentions Q̃1(t′1) while equation (3.59) men-

tions a∗1(t1). The connection is the following. By construction of ã∗,

Q̃1(t′1) = π̂1(t′1)[v̂2(t2) ≥ 1]

while M as efficient as M̃ and v̂1(t1) = 0 implies that

Q̃1(t′1, a
∗
1(t1)) = π̂1(t′1)[v̂2(t2) ≥ 1]

So equation (3.58) is equivalent to

Q1(t′1, a
∗
1(t′1)) > Q1(t′1, a

∗
1(t1)) (3.60)

The rest of the proof has the following structure: I start by looking at the incen-

tive compatibility constraint for t′1 to not want to deviate to a∗1(t1) and show that
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combining it with equation (3.60) implies a relationship between the relative proba-

bility of receiving the public good and the relative transfers between a∗1(t′1) and a∗1(t1).

Then using the properties of t̂1 I show that relationship implies equation (3.59). By

incentive compatibility of M for t′1, we have

U1(t′1, a
∗
1(t′1)) ≥ U1(t′1, a

∗
1(t1)) (3.61)

which is equivalent to

(Q1(t′1, a
∗
1(t′1))−Q1(t′1, a

∗
1(t1)))·v̂1(t′1) ≥ Eπ̂1(t′1) [τ1(a∗1(t′1), a∗2(t2))− τ1(a∗1(t1), a∗2(t2))] .

(3.62)

Note that by equation (3.60), the left side of this equation is strictly positive. By M as

efficient as M̃ , both a∗1(t′1) and a∗1(t1) must produce the public good when v̂2(t2) ≥ 1.

So I can rewrite equation (3.62) as

(
Eπ̂1(t′1)

[
q(a∗1(t′1), a∗2(t2)) · Iv̂2(t2)<1

]
+ π̂1(t′1)[v̂2(t2) ≥ 1]− π̂1(t′1)[v̂2(t2) ≥ 1]

)
· v̂1(t′1)

≥ Eπ̂1(t′1) [τ1(a∗1(t′1), a∗2(t2))− τ1(a∗1(t1), a∗2(t2))]

which simplifies to

Eπ̂1(t′1)

[
q(a∗1(t′1), a∗2(t2)) · Iv̂2(t2)<1

]
·v̂1(t′1) ≥ Eπ̂1(t′1) [τ1(a∗1(t′1), a∗2(t2))− τ1(a∗1(t1), a∗2(t2))]

(3.63)

As with equation (3.62) the left side of equation (3.63) is strictly greater than 0. I

now show that equation (3.63) combined with the conditions on t̂1 imply equation

(3.59). Condition (A3) implies that

Eπ̂1(t̂1)

[
q(a∗1(t′1), a∗2(t2)) · Iv̂2(t2)<1

]
≥ Eπ̂1(t′1)

[
q(a∗1(t′1), a∗2(t2)) · Iv̂2(t2)<1

]
> 0 (3.64)
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(Again the right side greater than zero is implied by (3.60) .) Condition (A1) implies

v̂1(t̂1) > v̂1(t′1) (3.65)

while (A4) implies that

Eπ̂1(t̂1) [τ1(a∗1(t′1), a∗2(t2))− τ1(a∗1(t1), a∗2(t2))] = Eπ̂1(t′1) [τ1(a∗1(t′1), a∗2(t2))− τ1(a∗1(t1), a∗2(t2))] .

(3.66)

Substituting equations (3.64), (3.65), and (3.66), into (3.63) yields

Eπ̂1(t̂1)

[
q(a∗1(t′1), a∗2(t2)) · Iv̂2(t2)<1

]
·v̂1(t̂1) > Eπ̂1(t̂1) [τ1(a∗1(t′1), a∗2(t2))− τ1(a∗1(t1), a∗2(t2))]

(3.67)

By the same logic that shows equations (3.62) and (3.63) are equivalent, equation

(3.67) is equivalent to

(
Q1(t̂1, a

∗
1(t′1))−Q1(t̂1, a

∗
1(t1))

)
·v̂1(t̂1) > Eπ̂1(t̂1) [τ1(a∗1(t′1), a∗2(t2))− τ1(a∗1(t1), a∗2(t2))] .

(3.68)

Equation (3.68) is in turn equivalent to

U1(t̂1, a
∗
1(t′1)) > U1(t̂1, a

∗
1(t1)) (3.69)

which, combined with sublemmas 6 and 7 implies equation (3.59).

This completes the proof of lemma III.10, as sublemma 8 implies that Q1(t′1) =

Q̃1(t1).

Lemma III.11 completes the proof of Case 2 by showing that types exist that

satisfy the conditions posited in lemma III.10.

Lemma III.11. There exists types t̂1, t1 and t1 that satisfy the conditions assumed
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in lemma III.10.

Proof. Valuations can be assigned arbitrarily, so the complicated part of the proof

is showing that there exist beliefs that satisfy conditions (A2), (A3) and (A4) to

construct t̂1, and (B2), (B3) and (B4) to construct t1 and t1. The construction of

beliefs in both cases uses sublemma 10. Sublemma 9 establishes an important result

for the proof of sublemma 10, so I prove it first. Before getting to the sublemmas, I

introduce some useful terminology for distinguishing between actions played by types

of agent 2 with valuations below and (weakly) above 1.

Actions played by types of agent 2 with valuations above and below 1.

First I look at the restrictions put on outcomes by the fact that outcomes must be as

efficient under M and M̃ for any agent 2.

Let A∗2 = {a2 ∈ A2 | ∃t2 ∈ T2, v̂2(t2) ≥ 1, a∗2(t2) = a2}

Let A2 = A2 \ A∗2.

If t̃2’s valuation is at least one, t̃2 must have ã∗2(t̃2) =“pay” and must produce the

public good under M̃ for any action by agent 1. If t̃2’s valuation is less than one, t̃2

must have ã∗2(t̃2) =“don’t pay” and agent 2 does not produce the public good under

M̃ if agent 1 plays “DON’T PAY”. If M as efficient as M̃ , then it must be that agent

2’s action does not produce the public good for some action(s) by agent 1 under M

(because it would be inefficient when agent 1’s valuation is 0), whereas it still must

be true that when agent 2’s valuation is at least 1 then agent 2 produces the public

good for any action by agent 1. Therefore for all t̃2 ∈ T2,

 v̂2(t̃2) ≥ 1 ⇔ a∗2(t̃2) ∈ A∗2

v̂2(t̃2) < 1 ⇔ a∗2(t̃2) ∈ A2

(3.70)
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Now I show the following relationship between actions in A∗2 and A2. For every

action in A∗2, I can find an action in A2 such that I can change an agent 1 type’s beliefs

by shifting weight from one action onto the other action without changing expected

transfers for any action agent 1 might take. This will be crucial in the construction

used in sublemma 10.

Sublemma 9. For any action â2 ∈ A∗2 there exists an action a2(â2) ∈ A2 such that

∀a1 ∈ A1,

τ1(a1, â2) = τ1(a1, a2(â2)) (3.71)

Proof. We can use budget balance to rewrite equation (3.71) in terms of transfers for

agent 2. Then it becomes, ∀a1 ∈ A1,

q(a1, â2)− τ2(a1, â2) = q(a1, a2(â2))− τ2(a1, a2(â2)) (3.72)

which is what I will prove.

I show the result in the following steps (the result to be proved is in bold):

1. â2 is a strict best response for some type t̂2 with valuation greater

than 1. By the assumption that all actions are somewhere strictly preferred in

equilibrium, there exists a type t̂2 such that t̂2 strictly prefers â2 in equilibrium.

â2 ∈ A∗2 implies that v̂2(t̂2) ≥ 1. In fact it must be that v̂2(t̂2) > 1, because oth-

erwise types with the same beliefs as t̂2 and valuations less than but arbitrarily

close to 1 would strictly prefer to play â2 ∈ A∗2, which would violate equation

(3.70).

2. â2 is a strict best response for an open set of types tε2 with valuation
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greater than 1. By the focus lemma, and that t̂2 strictly prefers â2, there

exists some ε > 0 such that for any tε2 where v̂2(tε2) = v̂2(t̂2) and for all E ⊂ T1,

|π̂2(tε2)[E] − π̂2(t̂2)[E]| < ε, tε2 also strictly prefers â2 in equilibrium. Let T ε2 be

the set of such tε2.

3. â2 is a (weak) best response for an open set of types t̃ε2 with valuation

1. Consider any such tε2 ∈ T ε2 . â2 ∈ A∗2 implies that â2 must produce the public

good under M̃ for any action by agent 1. Therefore Q2(tε2, â2) = 1. For any

valuation ṽ ≥ 1, let tε2,ṽ be the type with beliefs π̂2(tε2,ṽ) = π̂2(tε2) and valuation

v̂2(tε2,ṽ) = ṽ. Let t̃ε2 be the type where π̂2(t̃ε2) = π̂2(tε2) and v̂2(t̃ε2) = 1. Then

a∗2(t̃ε2) ∈ A∗2 which implies Q2(t̃ε2, a
∗
2(t̂ε2)) = 1.

Because tε2 and t̃ε2 have the same beliefs, and Q2(tε2) = Q2(t̃ε2) = 1, it must

be that their equilibrium actions are optimal in equilibrium for each other.

Therefore â2 is a best reply for t̃ε2.

Let T̃ ε2 be the set of t̃ε2 constructed as above. Let t̃2 ∈ T̃ ε2 be the type such that

π̂2(t̃2) = π̂2(t̂2) and v̂2(t̃2) = 1.

4. There exists a ã2 ∈ A2 that is also a best response for t̃ε2. Take a sequence

of valuations {vn} with vn < 1 for all n and such that the limit of the sequence

is 1. Let t̃2,vn be the type of agent 2 where π̂2(t̃2,vn) = π̂2(t̃2) and v̂2(t̃2,vn) = vn.

Because A2 is finite, it must be the case that the sequence a∗2(t̃2,vn) has a constant

subsequence. Call the action in the constant subsequence ã2. Then there exist

types with the same beliefs as t̃2 and valuations less than but arbitrarily close

to 1 that play ã2 in equilibrium. It is then immediate that ã2 must be a (weak)

best reply for t̃2.

5. Then t̃2 indifferent between â2 and ã2, and â2 a best response for all
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t̃ε2 ∈ T̃ ε2 implies equation (3.72). t̃2 indifferent between â2 and ã2 implies

Eπ̂2(t̂2) [q(a1, â2)− τ2(a1, â2)] = Eπ̂2(t̂2) [q(a1, ã2)− τ2(a1, ã2)] (3.73)

Take any a1 ∈ A1, and a t̃1 such that a∗1(t̃1) = a1. For a small enough ε we can

construct t̃ε2 ∈ T̃ ε2 such that

π̂2(t̃ε
′

2 )[E] = (1− ε′) · π̂2(t̃ε2)[E] + ε′ · It̃1∈E. (3.74)

Then t̃ε
′

2 ∈ T̃ ε2 and â2 a best reply for all types in T̃ ε2 implies

U2(t̃ε2, â2) ≥ U2(t̃ε2, ã2) (3.75)

which is equivalent to

(1− ε) · U2(t̃ε2, â2) + ε · (q(a1, â2)− τ2(a1, â2))

≥ (1− ε) · U2(t̃ε2, ã2) + ε′ · (q(a1, ã2)− τ2(a1, ã2)) (3.76)

which is equivalent to

q(a1, â2)− τ2(a1, â2) ≥ q(a1, ã2)− τ2(a1, ã2). (3.77)

Because equation (3.77) must hold for all a1 ∈ A1, then equations (3.77) and

(3.73) together imply that for all a1 ∈ A1,

q(a1, â2)− τ2(a1, â2) = q(a1, ã2)− τ2(a1, ã2). (3.78)

which is the same as equation (3.72), and therefore, as explained above, is equivalent

to proving the lemma.
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The next sublemma uses the previous result to show that beliefs can be constructed

that have the properties we need to find suitable beliefs for t̂1, t1, and t1.

Sublemma 10. For any π′1 ∈ ∆(T2), if π′1[v̂2(t̃2) < 1] ≡ α < 1 then for any δ ∈ (α, 1]

there exists a πδ1 such that

πδ1[v̂2(t2) < 1] = δ (3.79)

for all a1 ∈ A1,

Eπδ1τ1(a1, a
∗
2(t2)) = Eπ′1τ1(a1, a

∗
2(t2)) (3.80)

and ∀a2 ∈ A2

πδ1[a∗2(t̃2) = a2, v̂2(t̃2) < 1] ≥ π′1[a∗2(t̃2) = a2, v̂2(t̃2) < 1]. (3.81)

Proof. First I prove equation (3.80). I start by constructing some beliefs π1
1 that I

will use to define πδ1. Relabel A2 = {a1
2, ..., a

|A2|
2 }. For 1 ≤ n ≤ |A2| find tn2 such that

a2(tn2 ) = an2 .

For an2 ∈ A∗2, define a2(an2 ) as in the lemma 9. For an2 ∈ A2, define a2(an2 ) ≡ an2 .

This construction ensures that for all a2 ∈ A2,

a2(an2 ) ∈ A2. (3.82)

Define the following beliefs for agent 1:

π1
1(tn2 ) =

|A2|∑
m=1

Ia2(am2 )=an2
· π′1[a∗2(t̃2) = am2 ]. (3.83)
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Note that equation (3.83) implies

π1
1[v̂2(t̃2) < 1] = 1. (3.84)

Now I want to show that for any a1 ∈ A1, the expected transfer given beliefs π̂1
1 and

π′1 are equal. The following calculation shows that this is true:

Eπ1
1
τ1(a1, a

∗
2(t2)) =

|A2|∑
m=1

τ1(a1, a
n
2 ) · π1

1(tn2 ) (3.85)

=

|A2|∑
m=1

τ1(a1, a
n
2 )

 |A2|∑
m=1

Ia2(am2 )=an2
· π′1[a∗2(t̃2) = am2 ]

 (3.86)

=

|A2|∑
n=1

|A2|∑
m=1

τ1(a1, a
n
2 )Ia2(am2 )=an2

· π′1[a∗2(t̃2) = am2 ] (3.87)

=

|A2|∑
m=1

π′1[a∗2(t̃2) = am2 ]

|A2|∑
n=1

τ1(a1, a
n
2 )Ia2(am2 )=an2

(3.88)

which by sublemma 9 is equivalent to

=

|A2|∑
m=1

π′1[a∗2(t̃2) = am2 ] · τ1(a1, a
m
2 ) (3.89)

= Eπ′1τ1(a1, a
∗
2(t2)). (3.90)

Now I will construct πδ1. Let πδ1 be defined by, for all E ⊂ T2,

πδ1(E) =
1− δ
1− α

π′1(E) +
δ − α
1− α

π1
1(E) (3.91)
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Recall that α ≡ π′1[v̂2(t2) < 1], and equation (3.84) shows π1
1[v̂2(t2) < 1] = 1. There-

fore,

πδ1[v̂2(t2) < 1] =
1− δ
1− α

α +
δ − α
1− α

· 1 = δ (3.92)

which proves equation (3.79), and

Eπδ1τ1(a1, a
∗
2(t2)) (3.93)

=
1− δ
1− α

· Eπ′1τ1(a1, a2(t2)) +
δ − α
1− α

Eπ1
1
τ1(a1, a

∗
2(t2)) (3.94)

= Eπ′1τ1(a1, a
∗
2(t2)) (3.95)

which proves equation (3.80).

To prove equation (3.81), observe that for all an2 ∈ A2, a2(an2 ) = an2 , which implies:

π1
1[a∗2(t̃2) = an2 ] =

|A2|∑
m=1

(
Ia2(am2 )=an2

· π′1[a∗2(t̃2) = am2 ]
)
≥ π′2[a∗2(t̃2) = an2 ]. (3.96)

Furthermore, by equation (3.70) it must be the case that a∗2(t̃2) = an ∈ A2 implies

v̂2(t̃2) < 1. Therefore,

π1
1[a∗2(t̃2) = an2 , v̂2(t̃2) < 1] = π1

1[a∗2(t̃2) = an2 ] (3.97)

and

π′1[a∗2(t̃2) = an2 , v̂2(t̃2) < 1] = π′1[a∗2(t̃2) = an2 ] (3.98)
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and equations (3.96), (3.97) and (3.98) imply that for all an2 ∈ A2,

π1
1[a∗2(t̃2) = an2 , v̂2(t̃2) < 1] ≥ π′1[a∗2(t̃2) = an2 , v̂2(t̃2) < 1]. (3.99)

Furthermore, equation (3.70) implies that for all an2 ∈ A∗2,

π1
1[a∗2(t̃2) = an2 , v̂2(t̃2) < 1] = π′1[a∗2(t̃2) = an2 , v̂2(t̃2) < 1] = 0. (3.100)

Together equations (3.99) and (3.100) imply that for all a2 ∈ A2,

π1
1[a∗2(t̃2) = a2, v̂2(t̃2) < 1] ≥ π′1[a∗2(t̃2) = a2, v̂2(t̃2) < 1]. (3.101)

and because πδ1 is a convex combination of π̂1
1 and π̂′1 it must be that

πδ1[a∗2(t̃2) = a2, v̂2(t̃2) < 1] ≥ π′1[a∗2(t̃2) = a2, v̂2(t̃2) < 1] (3.102)

which proves equation (3.81).

Sublemma 11. Let π′1 = π̂1(t′1). Then using the construction in sublemma 10, the

following types

• t̂1 with a valuation v̂1(t̂1) > max{v̂1(t∗1), 1} and π̂1(t̂1) = πδ1 where δ = 1
v̂1(t̂1)

• t1 with valuation v̂1(t1) = v̂1(t̂1) and π̂1(t1) = π1
1

• t1 with valuation v̂1(t1) = 0 and π̂1(t1) = π̂1(t1)

satisfy conditions (A1)-(A4), (B1)-B(4), and (C1)-(C2) respectively.

Proof. By construction t̂1 satisfies (A1) and (A2), and sublemma 10 implies t̂1 satisfies

(A3) and (A4). Therefore a t̂1 that satisfies (A1)-(A4) exists.

Similarly, by construction t1 satisfies (B1) and (B2), and sublemma 10 implies

that t1 satisfies (B3) and (B4).
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t1 satisfies (C1) and (C2) by construction.

Sublemma 11 completes the proof of lemma III.11 by providing explicit types that

satisfy the conditions posited in lemma III.10.

Together lemmas III.10 and III.11 complete the proof of case 2 by showing that

Q1(t′1) = Q̃1(t′1).

Together, the proofs of Case 1 and Case 2 complete the proof of proposition

III.7, which is equivalent to proposition III.5. Therefore no M and a∗ satisfying the

conditions in proposition III.5 improves on M̃ and ã∗.

3.6 Conclusion

In chapter 2 I introduced the concept of improvability as a criterion for assessing

whether a public good mechanism can be considered efficient. While I showed the

existence of unimprovable mechanisms in that paper, I presented no examples. This

paper presents an example of an unimprovable mechanism, but also highlights some

of the difficulties in applying the unimprovability concept; although the mechanism

is simple the proof is quite involved, and some extra restrictions on the class of mech-

anism are required. Methods to characterize the class of unimprovable mechanisms,

and to determine whether a given mechanism is improvable or unimprovable, are

areas for further research.
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CHAPTER IV

Robust Mechanism Design and Dominant Strategy

Voting Rules

4.1 Introduction

Economic outcomes depend not only on market processes but also on political

processes. Economists have therefore a long-standing interest in political decision

making. Political decisions are often made through voting procedures. Consequently

it is interesting to investigate which voting procedures perform well in the sense of

helping to achieve some measure of economic welfare. One methodology that can be

used to address this question is the theory of mechanism design. In this paper we

consider the design of voting rules from the perspective of the theory of mechanism

design.

Our starting point is a classic result on voting rules, due to Alan Gibbard (1973)

and Mark Satterthwaite (1975). According to this result the only dominant strategy

voting rules for three or more alternatives are dictatorial voting rules. Gibbard and

Satterthwaite assumed the number of alternatives to be finite. Preferences were mod-

eled as complete and transitive orders of the set of alternatives. For every voter the

range of relevant preferences was taken to be the set of all possible preferences over

the alternatives (the full domain assumption). Gibbard and Satterthwaite then asked
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whether it is possible to construct a game form1 that determines which alternative

is chosen as a function of the strategies chosen by the voters, such that each voter

has a dominant strategy whatever this voter’s preferences are. A dominant strategy

was defined to be a strategy that is always a best reply to each of the other voters’

strategy combinations. Gibbard and Satterthwaite showed that the only game forms

that offer each voter for all preferences a dominant strategy are game forms that leave

the choice of the outcome to just one individual, the dictator.2

The motivation for considering dominant strategy game forms is not always ar-

ticulated in the literature. However, one explanation for the appeal that dominant

strategy mechanisms have for researchers is that dominant strategies predict rational

voters’ behavior without relying on any assumption about the voters’ beliefs about

each others’ preferences or behavior. If a voter does not have a dominant strategy,

then that voter’s optimal choice depends on his beliefs about other voters’ behavior

which in turn may be derived from beliefs about other voters’ preferences. It seems

attractive to bypass such beliefs, and to construct a game form in which a prediction

can be made that is independent of beliefs.

On closer inspection, this argument can be seen to consist of two parts:

(A) The design of a good game form for voting should not be based on

specific assumptions about voters’ beliefs about each other.

(B) A good game form for voting should allow us to predict rational voters’

choices uniquely from their preferences, without making specific assump-

tions about these voters’ beliefs about each other.3

These two parts are logically independent. Part (A) seems more convincing: often

1We use the terms game form and mechanism synonymously.
2The literature that builds on Gibbard and Satterthwaite’s seminal work is voluminous. For a

recent survey see Barberà (2010).
3Blin and Satterthwaite (1977) emphasize the interpretation of the Gibbard Satterthwaite theo-

rem as a result about voting procedures in which each voter’s choice depends only on their prefer-
ences, and not on their beliefs about others’ preferences.
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voting schemes are constructed long before the precise context in which they will be

used is known. It seems wise not to make any special assumptions about agents’

knowledge about each other. Part (B) can perhaps be motivated by the idea that

game forms in which voters’ behavior can be uniquely predicted independent of their

beliefs are simpler than game forms in which each voter’s optimal choice depends

on the voter’s beliefs about other voters, but this point seems less compelling. The

implicit idea of simplicity is just one of several conceivable notions of simplicity.

In this paper we present an investigation of the theory of voting rules that is based

on the first part of the two part argument described above, but not on the second

part. In other words, we examine game forms for voting without making assumptions

about voters’ beliefs about each other, but we do not restrict attention to game forms

for which voters’ equilibrium strategies are independent of voters’ beliefs. Using the

terminology of game theory, the fact that we do not make any assumptions about

voters’ beliefs about each other is reflected by the fact that we analyze any proposed

game form for all possible type spaces. For each type space we look for a Bayesian

equilibrium of the given game form for that type space.4 However, we do not require

each voter’s choice, for a given preference of that voter, to be the same for all type

spaces.

One of the two main findings of this paper is that a mechanism designer who eval-

uates voting rules using the Pareto criterion can improve on dictatorial mechanisms

even when not making any assumption about voters’ beliefs about each other. A

Pareto improvement on dictatorship is possible in our framework when we consider

random dictatorship where all agents have a positive probability of being dictator.

To explain our results more fully, we need to briefly describe the set-up of our paper.

In order to be able to use the notion of Bayesian equilibrium we use a framework

4For the definitions of type space and Bayesian equilibrium see Fudenberg and Tirole (1991, pp.
213-215).
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that is slightly different from the framework that Gibbard and Satterthwaite used. We

model voters’ attitudes towards risk, adopting the assumption that voters evaluate

risky prospects according to von Neumann Morgenstern utility theory. It then seems

natural to allow voting rules to map profiles of von Neumann Morgenstern utility

functions into probability distributions over outcomes. The first question that arises

is whether a version of Gibbard and Satterthwaite’s theorem holds for the setting

just described. This question has been answered affirmatively by Aanund Hylland

in 1980 in the unpublished (Hylland, 1980). When voters have von Neumann Mor-

genstern utilities, and lotteries are allowed as outcomes, then the only game forms

that offer each agent always a dominant strategy, and that pick an alternative if it

is unanimously preferred by all agents, are random dictatorships.5 In random dicta-

torships each voter gets to be dictator with a probability pi that is independent of

all preferences. If voter i is dictator, then the outcome that voter i ranks highest is

chosen.

We can now state the two main results of this paper. Both results address whether

there are game forms such that for all finite type spaces, there is at least one Bayesian

equilibrium of the game form that yields all voters’ types the same expected utility,

and in some type spaces, for some voters’ types, strictly higher expected utility than

random dictatorship. Obviously, the answer to this question can be positive only

when each voter’s probability of being dictator is strictly less than one. In our first

main result we show that in this case the answer to our question is indeed positive,6

provided that we consider interim expected utility, that is, each voter’s expected

5This result is Theorem 1* in Hylland (1980). It is also Theorem 1 in Dutta et. al. (2007) (see
also Dutta et. al., 2008) where an alternative proof is provided. Another proof is in Nandeibam
(2004).

6The game form that we use to prove our first main result is almost identical to the Full Consensus
or Random Ballot Fall-Back game form that Heitzig and Simmons (2010) have introduced. While
their motivation, like ours, is to consider voting systems that are more flexible than dictatorial
voting systems, and that allow for compromises, the focus of their formal analysis is on complete
information, correlated equilibria that are in some sense coalition proof. In this paper the focus is
on analyzing Bayesian equilibria in arbitrary, finite type spaces.
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utility is calculated when that voter’s type is known, but the other voters’ types

are not yet known.7 If an ex post perspective is adopted instead, that is, if voters’

expected utility is considered conditional on the vector of all voters’ types, then no

voting game form Pareto improves on random dictatorship. This is our second main

result. Our first main result thus indicates that a robust analysis of voting schemes

can lead to more positive results if the requirement that voters’ optimal strategies are

independent of their beliefs is abandoned. Our second main result shows that such

positive results depend on the details of how each voter’s expected utility is evaluated.

Our approach is related to Bergemann and Morris’ (2005) work on robust mech-

anism design. They consider, as we do, Bayesian equilibria of mechanisms on all

type spaces. Bergemann and Morris seek conditions under which the Bayesian im-

plementability of a social choice correspondence on all type spaces implies dominant

strategy implementability (or, more generally, implementability in ex post equilibria).

The conditions that they find apply to separable environments the prime example of

which are environments in which each agent’s utility depends on some physical allo-

cation and this agent’s monetary transfer. Bergemann and Morris point out (2005,

Section 6.3) that in non-separable environments, such as environments without trans-

ferrable payoffs considered by Gibbard and Satterthwaite, dominant strategy imple-

mentability may be a stronger requirement than Bayesian implementability on all

type spaces.8 Bergemann and Morris do not consider the problem of comparing dif-

ferent mechanisms from an efficiency or welfare point of view. Such comparisons are

a focus in our work.

The approach of this paper are also closely related to chapter 2 of this dissertation,

which analyzes the problem of designing a mechanism for public goods. Like we do

in this chapter, chapter 2 considers the performance of different mechanisms on all

7The notions of interim and ex post efficiency are due to Holmström and Myerson (1983).
8The discussion paper version ((Bergemann and Morris, 2003) of Bergemann and Morris (2005)

includes a general characterization of Bayesian implementability on all type spaces, however we do
not make use of this characterization.
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type spaces. That chapter focuses on an ex post perspective, and demonstrates that

a mechanism designer can improve efficiency using a more flexible mechanism than

a dominant strategy mechanism. In this chapter, by contrast, when considering the

ex post perspective, we find that no mechanism can improve on dominant strategy

mechanisms.

The spirit of our work in this paper is also related to Börgers (1991) who showed,

in the Gibbard-Satterthwaite framework, the existence of mechanisms for which the

outcomes that result if all players chose a strategy from their sets of undominated

strategies are Pareto efficient, and (in a sense defined in that paper) less biased than

the outcomes of dictatorship. The set of undominated strategies is equal to the set of

expected utility maximizing strategies that a rational agent might choose if one con-

siders all possible beliefs. Thus, implicitly, Börgers (1991) considered implementation

on all type spaces with belief-dependent strategies, and contrasted this with Gibbard

and Satterthwaite’s dominant strategy requirement. However, Börgers used a frame-

work in which agents’ preferences were modeled using ordinal preferences rather than

von Neumann Morgenstern utilities. Moreover, his approach can be considered an

implementation approach, as he considered all undominated strategies, whereas our

approach here is a mechanism design approach in the sense that we study for every

type space some equilibrium, but not all Bayesian equilibria. We leave the further

exploration of the implementation approach in our framework to future research.

Section 4.2 explains the model and the definitions used in this paper. In Section

4.3 we adapt Hylland’s theorem on random dictatorship to our setting. In Section 4.4

we explain how we relax the requirement that voters’ choices, for given preferences,

are the same in all type spaces. Sections 4.5 and 4.6 contain our two main results.

Section 4.7 concludes.
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4.2 The Voting Problem

There are n agents: i ∈ I = {1, 2, . . . , n}. The agents have to choose one alterna-

tive from a finite set A of alternatives. We assume that A has at least three elements.

The set of all probability distributions over A is ∆(A), where for δ ∈ ∆(A) we denote

by δ(a) ∈ [0, 1] the probability that δ assigns to alternative a. The agents are com-

monly known to be expected utility maximizers. We denote agent i’s von Neumann

Morgenstern utility function by ui : A→ R. We assume that a 6= b⇒ ui(a) 6= ui(b),

i.e., there are no indifferences. We define the expected utility for probability distri-

butions δ ∈ ∆(A) by ui(δ) =
∑

a∈A ui(a)δ(a).

A mechanism designer has a, possibly incomplete, ranking of the alternatives in

A that may depend on the agents’ utility functions. We shall be more specific about

the designer’s objectives later. The mechanism designer does not know the agents’

utility functions, nor does she know what the agents believe about each other. To

implement an outcome that potentially depends on the agents’ utility functions the

mechanism designer asks the agents to play a game form.

Definition IV.1. A game form G = (S, x) consists of:

(i) a set S ≡
∏

i∈I Si where for every i ∈ I the set Si is non-empty and finite;

(ii) a function x : S → ∆(A).

The set Si is the set of (pure) strategies available to agent i in the game form

G. We focus on finite sets of pure strategies, while allowing mixed strategies, to ease

exposition. Our results also hold when the sets Si of pure strategies are allowed to

be infinite. The function x assigns to every combination of pure strategies s the,

potentially stochastic, outcome x(s) that is implemented when agents choose that

combination of pure strategies. We write x(s, a) for the probability that x(s) assigns

to alternative a.
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Once the mechanism designer has announced a game form, the agents choose si-

multaneously and independently their strategies. Because the agents don’t necessarily

know each others’ utility functions or beliefs, this game may be a game of incomplete

information. A hypothesis about the agents’ utility functions and their beliefs about

each other can be described by specifying a type space.

Definition IV.2. A type space T = (T, π, u) consists of:

(i) a set T ≡
∏

i∈I Ti, where for every i ∈ I the set Ti is non-empty and finite;

(ii) an array π = (π1, π2, . . . , πn) of functions πi : Ti → ∆(T−i) where ∆(T−i) is the

set of all probability distributions over T−i ≡
∏

j 6=i Tj;

(iii) an array u = (u1, u2, . . . , un) of functions ui : Ti × A → R such that a 6= b ⇒

ui(ti, a) 6= ui(ti, b) for all ti ∈ Ti.

The set Ti is the set of types of agent i. Agent i privately observes his type. The

function πi describes for every type ti ∈ Ti the beliefs that agent i has about the

other agents’ types when agent i himself is of type ti. We write πi(ti, t−i) for the

probability that type ti assigns to the other players types being t−i. The function

ui(ti) describes player i’s utility when i is of type ti. We write ui(ti, a) for the utility

that ui(ti) assigns to alternative a. The utility functions ui(ti) satisfy the assumption

that we introduced earlier that there are no indifferences.9

In Definition V.2 beliefs are subjective. There may or may not be a common prior

for a particular type space. Different agents’ beliefs may be incompatible with each

other in the sense that one agent may attach probability one to an event to which

another agent attaches probability zero. Observe also that we assume type spaces to

be finite. We thus avoid technical difficulties associated with infinite type spaces.

9Observe that we suppress in the notation the dependence of πi and ui on the type space T . We
are not aware of any confusion that might arise from this simplification of our notation.
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We assume that the mechanism designer has no knowledge of the agents’ utility

functions or their beliefs. Therefore, the mechanism designer regards all type spaces

as possible descriptions of the environment in which the agents find themselves. We

denote the set of all type spaces by Υ.

The mechanism designer proposes to agents how they might play the game. She

may propose to the agents to randomize. For i ∈ I we denote by ∆(Si) the set of all

probability distributions on Si. For the agents to accept the mechanism designer’s

proposal, she must propose a Bayesian equilibrium. Because the mechanism designer

does not know the true type space, she has to propose a Bayesian equilibrium for

every type space.

Definition IV.3. A Bayesian equilibrium of game form G for every type space is an

array σ∗ = (σ∗1, σ
∗
2, . . . , σ

∗
n) such that for every i ∈ I:

(i) σ∗i is a family of functions (σ∗i (T ))T ∈Υ where for every T ∈ Υ the function

σ∗i (T ) maps the type space Ti corresponding to T into ∆(Si);

and, writing σ∗i (T , ti) for the mixed strategy assigned to ti, and writing σ∗i (T , ti, si)

for the probability that this mixed strategy assigns to si ∈ Si, we have for every

T ∈ Υ, i ∈ I, and ti ∈ Ti (where Ti corresponds to T ):

(ii) σ∗i (T , ti) maximizes the expected utility of type ti among all mixed strategies

in ∆(Si), where expected utility for any mixed strategy σi ∈ ∆(Si) is:

∑
t−i∈T−i

πi(ti, t−i)
∑
s∈S

ui(ti, x(s)) · σi(si) ·
∏
j 6=i

σ∗j (T , tj, sj). (4.1)

We postulate in this paper a mechanism designer who seeks to further the utility

of the agents rather than her own utility. We shall formalize this by assuming that

the mechanism designer evaluates different mechanisms and their equilibria using the

Pareto criterion. When evaluating the agents’ utility for a realized type combination
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t the mechanism designer can either only consider the outcomes that result from

the mixed strategies prescribed for these types, or she may consider the expected

utilities of these types, based on the types’ own subjective beliefs. In other words, the

mechanism designer may adopt an ex post or an interim perspective when evaluating

agents’ utilities. The interim perspective respects agents’ own perception of their

environment. The ex post perspective has a paternalistic flavor. On the other hand,

for example when agents’ beliefs are incompatible with each other, the mechanism

designer may be justified in discarding agents’ beliefs, on the basis that at least some

of them have to be wrong, as agents themselves will discover at some point. Thus

neither the interim nor the ex post perspective are clearly preferable. We pursue both

perspectives in this paper.

Definition IV.4. The game form G and the Bayesian equilibrium for all type spaces

σ∗ interim Pareto dominate the game form G̃ and the Bayesian equilibrium for all

type spaces σ̃∗ if for all T ∈ Υ, i ∈ I, and ti ∈ Ti:

∑
t−i∈T−i

πi(ti, t−i)
∑
s∈S

ui(ti, x(s)) ·
∏
j∈I

σ∗j (T , tj, sj) ≥∑
t−i∈T−i

πi(ti, t−i)
∑
s∈S

ui(ti, x̃(s)) ·
∏
j∈I

σ̃∗j (T , tj, sj) (4.2)

with strict inequality for at least one T ∈ Υ, i ∈ I, and ti ∈ Ti.

Definition IV.5. The game form G and the Bayesian equilibrium for all type spaces

σ∗ ex post Pareto dominate the game form G̃ and theBayesian equilibrium for all type

spaces σ̃∗ if for all T ∈ Υ, i ∈ I, and t ∈ T :

∑
s∈S

ui(ti, x(s)) ·
∏
j∈I

σ∗j (T , tj, sj) ≥∑
s∈S

ui(ti, x̃(s)) ·
∏
j∈I

σ̃∗j (T , tj, sj) (4.3)
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with strict inequality for at least one T ∈ Υ, i ∈ I, and t ∈ T .

Our main interest in this paper is in exploring how the extent to which the mech-

anism designer can achieve her objectives depends on the requirements that the

Bayesian equilibrium that the mechanism designer proposes has to satisfy. In the

next section, we consider a very restrictive requirement. In subsequent sections, we

relax this requirement.

4.3 Belief Independent Equilibria: Hylland’s Theorem

We begin by exploring the consequences of a restrictive requirement for the Bayesian

equilibria that the mechanism designer proposes. This requirement is implicit in the

work on dominant strategy mechanism design. It is that equilibria be belief inde-

pendent. Using the notion of belief independent equilibria, we can restate Hylland’s

version of the Gibbard Satterwhaite theorem in our setting.

Definition IV.6. A game form G and a Bayesian equilibrium of G for every type

space, σ∗, are belief independent if for all i ∈ I, T , T̃ ∈ Υ, ti ∈ Ti and t̃i ∈ T̃i such

that ui(ti) = ũi(t̃i) we have:

σ∗i (T , ti) = σ∗i (T̃ , t̃i), (4.4)

where Ti, ui correspond to T and T̃i, ũi correspond to T̃ .

The reformulation of Hylland’s theorem presented below says that all game forms

and belief independent equilibria of these game forms that satisfy two unanimity

requirements are random dictatorships. To define the two unanimity requirements

and random dictatorship we need some notation. If u is a utility function, we denote

by b(u) the element of A that maximizes u, and by w(u) the element of A that
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minimizes u.10

Definition IV.7. A game form G and a Bayesian equilibrium of G for every type

space, σ∗, satisfy

(i) positive unanimity if for every T ∈ Υ, t ∈ T , and a ∈ A such that b(ui(ti)) = a

for all i ∈ I, we have:

∑
s∈S

∏
i∈I

σ∗i (T , ti, si) · x(s, a) = 1; (4.5)

(ii) negative unanimity if for every T ∈ Υ, t ∈ T , and a ∈ A such that w(ui(ti)) = a

for all i ∈ I, we have:

∑
s∈S

∏
i∈I

σ∗i (T , ti, si) · x(s, a) = 0. (4.6)

Positive and negative unanimity are implied by, but weaker than ex post Pareto

efficiency. Next, we provide the formal definition of random dictatorship that we need

for our reformulation of Hylland’s theorem.

Definition IV.8. A game form G and a Bayesian equilibrium of G for every type

space, σ∗, are a random dictatorship if there is some p ∈ [0, 1]n such that for every

T ∈ Υ, t ∈ T , and a ∈ A:

∑
s∈S

∏
i∈I

σ∗i (T , ti, si) · x(s, a) =
∑

{i∈I:b(ui(ti))=a}

pi (4.7)

The following is implied by Hylland’s theorem.11

10Recall that we have assumed that there are no indifferences. Therefore, there is a unique element
of A that maximizes u, and a unique element of A that minimizes u.

11Theorem 1* in Hylland (1980). We use here the version of Hylland’s theorem that is Theorem
1 in Dutta et. al. (2007) with the correction in Dutta et. al. (2008).
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Proposition IV.9. A game form G and a Bayesian equilibrium of G for every type

space, σ∗, are belief-independent and satisfy positive and negative unanimity if and

only if they are a random dictatorship.

Proof. The “if-part” is obvious. To prove the “only if-part” we derive from G and

σ∗ a “cardinal decision scheme” in the sense of Definition 1 in Dutta et. al. (2007),

and show that this cardinal decision scheme has the properties listed in Theorem 1 in

Dutta et. al. (2007) and the correction in Dutta et. al. (2008). It then follows from

Theorem 1 in Dutta et. al. (2007) that the cardinal decision scheme is a random

dictatorship. This then implies the “only if-part” of our Proposition IV.9.

Denote by U the set of all utility functions that have the property of no indif-

ferences (see Definition V.2). A cardinal decision scheme is a mapping φ : Un →

∆(A). We can derive from G and σ∗ a cardinal decision scheme by setting for any

(u1, u2, . . . , un) ∈ Un and a ∈ A the probability φ(u1, u2, . . . , un, a) that φ(u1, u2, . . . , un)

assigns to a as:

φ(u1, u2, . . . , un, a) =
∑
s∈S

∏
i∈I

σ∗i (T , ti, si) · x(s, a), (4.8)

where we can pick any T ∈ Υ and any t ∈ T such that ui(ti) = ui for all i ∈ I. By

belief-independence it does not matter which such T and t ∈ T we choose. Then φ

is a cardinal decision scheme as defined in Definition 1 of Dutta et. al. (2007).

We can complete the proof by showing that φ has the two properties listed in

Theorem 1 of Dutta et. al. (2007) and the additional property listed in the correction

Dutta et. al. (2008). The first property is unanimity: If b(ui) = a for all i ∈ I, then

φ(u1, u2, . . . , un, a) = 1. This is implied by the assumption that G and σ∗ satisfy

positive unanimity.

The second property is strategy proofness: If (u1, u2, . . . , un) ∈ Un and u′i ∈ U ,

then ui(φ(ui, u−i)) ≥ ui(φ(u′i, u−i)), where u−i is the array (u1, u2, . . . , un) leaving
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out ui. To prove this we pick T ∈ Υ, ti, t
′
i ∈ Ti and t−i ∈

∏
j 6=i such that ui(ti) =

ui, ui(t
′
i) = u′i, and uj(tj) = uj for all j 6= i. Moreover, πi(ti) and πi(t

′
i) place

probability 1 on t−i. Then the fact that σ∗ is a Bayesian equilibrium of G for the

type space T implies:

∑
s∈S

ui(ti, x(s)) · σ∗i (T , ti, si) ·
∏
j 6=i

σ∗j (T , tj, sj) ≥∑
s∈S

ui(ti, x(s)) · σ∗i (T , t′i, si) ·
∏
j 6=i

σ∗j (T , tj, sj) (4.9)

By the definition of φ, this is equivalent to: ui(φ(ui, u−i) ≥ ui(φ(u′i, u−i)), that is,

strategy proofness.

The third property, introduced in the correctionDutta et. al. (2008), is a property

labelled (*) in Dutta et. al. (2007): If w(ui) = a for all i ∈ I, then φ(u1, u2, . . . , un, a) =

0. This is implied by the assumption that G and σ∗ satisfy negative unanimity.

From now on, when we refer to random dictatorship, we shall mean a specific

game form G, and a specific equilibrium σ∗ of G for every type space.

Definition IV.10. For any vector p ∈ [0, 1]n such that
∑

i∈I pi = 1 the following

game form G and equilibrium σ∗ of G for every type space will be referred to as

p-random dictatorship:

(i) Si = A for all i ∈ I;

(ii) x(s, a) =
∑
{i∈I:b(ui(ti))=a} pi for all s ∈ S and a ∈ A;

(iii) σ∗i (T , ti, b(ui(ti))) = 1 for all i ∈ I, T ∈ Υ, and ti ∈ Ti.

It is immediate that σ∗ is a Bayesian equilibrium of G for every type space, and

that G and this equilibrium are a random dictatorship. There are other game forms

and equilibria that are random dictatorships, but it is without loss of generality to

only consider the one described in Definition V.10.
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4.4 Consistent Equilibria

Our main interest in this paper is in considering the implications of relaxing the

requirement of belief independence for the Bayesian equilibria that the mechanism

designer chooses. We do not, however, completely dispense with any link between

players’ strategies in different type spaces. The Bayesian equilibria that we shall

investigate need to satisfy a consistency requirement. This requirement is implied by,

but does not imply belief independence.

Definition IV.11. A Bayesian equilibrium of game form G for every type space, σ∗,

are consistent if for all type spaces T , T̃ ∈ Υ such that:

(i) for every i ∈ I: T̃i ⊆ Ti (where T̃i corresponds to T̃ and Ti corresponds to T );

(ii) for every i ∈ I and every ti ∈ Ti: ũi(ti) = ui(ti) and π̃i(ti) = πi(ti) (where ũi, π̃i

correspond to T̃ , and ui, πi correspond to T ),

we have for every i ∈ I and every ti ∈ Ti:

(iii) σ∗(T̃ , ti) = σ∗(T , ti).

Observe that the type ti referred to in item (iii) of Definition V.4 has the same util-

ity function and hierarchy of beliefs in type space T and in type space T̃ . Therefore,

the consistency requirement is implied by the assumption that an agent’s equilibrium

choices only depend on that agent’s utility function and that agent’s hierarchy of

beliefs. This assumption seems reasonable because the type space, as opposed to the

utility function and the hierarchy of beliefs, is really only a construction by the mod-

eler, and not necessarily a construction that the agent is aware of. We don’t explicitly

formulate the stronger assumption that equilibrium choices should only depend on

agents’ utility functions and hierarchies of beliefs, but instead work with the weaker

consistency requirement, because the consistency requirement is easier to formulate,

107



and is sufficient for our purposes. Our results would also go through if we made the

more demanding assumption for equilibria.

4.5 A Game Form that Interim Pareto Dominates

Random Dictatorship

The first main result of this paper examines interim Pareto dominance, while the

second main result concerns ex post Pareto dominance. The first result says that for

every p ∈ [0, 1]n such that
∑

i∈I pi = 1 and p < 1 for all i ∈ I there are a game

form, and a Bayesian equilibrium of this game form for every type space, that interim

Pareto dominate p random dictatorship. We refer to the dominating game form as

p-random dictatorship with compromise.

Definition IV.12. For every p ∈ [0, 1]n such that
∑

i∈I pi = 1 the following game

form is called a p-random dictatorship with compromise.

(i) for every i ∈ I:

Si = 2A × A,

where 2A is the set of all non-empty subsets of A;

(ii) If ai = a for some a ∈ A and all i ∈ I, then:

x(s, a) = 1

(iii) If ai 6= aj for some i, j ∈ I, but
⋂
i∈I Ai 6= ∅, then there is some a ∈

⋂
i∈I Ai

such that

x(s, a) = 1.
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(iv) If ai 6= aj for some i, j ∈ I, and
⋂
i∈I Ai = ∅, then for all a ∈ A:

x(s, a) =
∑

{i∈I:ai=a}

pi.

In words, this game form offers each agent i the opportunity to nominate one

“preferred” alternative, ai, and also a set Ai of “acceptable” alternatives. If all voters

nominate the same preferred alternative, then that alternative is chosen with prob-

ability 1. If voters’ preferred alternatives differ, but there is at least one alternative

that all voters include in their set of acceptable alternatives, then one of the com-

monly acceptable alternatives is chosen with probability 1. Otherwise, the mechanism

reverts to random dictatorship. We refer to this game form as p random dictator-

ship with compromise because it offers agents the opportunity to compromise on a

mutually acceptable alternative in place of p random dictatorship.12

One Bayesian equilibrium of this game form is that all agents always choose ai

to be their most preferred alternative, and set Ai = {ai}. In this equilibrium, the

possibility of a compromise is not used by either agent. This is an equilibrium because

neither agent can unilaterally force a compromise. Any deviation that unilaterally

alters the set of acceptable alternatives has no effect. However, the next proposition

shows that p-random dictatorship with compromise also has a Bayesian equilibrium

for all type spaces that interim Pareto dominates random dictatorship. We also show

that this equilibrium respects positive and negative unanimity, to clarify that our

result does indeed result from weakening the belief independence requirement, and

not weakening any other property listed in Proposition IV.9.

12This game form was inspired by the idea of Approval Voting (see Brams and Fishburn, 2007),
which, like our game form, allows voters to indicate “acceptable” alternatives. However, in approval
voting the alternative that the largest number of agents regards as acceptable is selected, whereas
our game form requires unanimity. Moreover, our game form uses random dictatorship as a fallback,
whereas approval voting does not have any such fallback. When p is the uniform distribution, the
game form that we consider is almost identical to the Full Consensus or Random Ballot Fall-Back
game form that Heitzig and Simmons (2010) introduced. Heitzig and Simmons require the set Ai

to be a singleton.
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Proposition IV.13. For every p ∈ [0, 1]n such that
∑

i∈I pi = 1 and pi < 1 for all

i ∈ I, p-random dictatorship with compromise has a consistent equilibrium for all

type spaces σ∗ that interim Pareto dominates p-random dictatorship and that satisfies

positive and negative unanimity.

The main difficulty in the proof below is not so much showing interim Pareto

dominance, but proving the existence of a consistent equilibrium. The argument in

the proof below can be used to show the existence of consistent Bayesian equilibria

for all type spaces of arbitrary finite games.

Proof. We construct the equilibrium σ∗. To begin with we restrict attention to strate-

gies such that ai = b(ui(ti)) and w(ui(ti)) /∈ Ai. This restriction of the strategy space

is innocuous, because any strategy that does not satisfy this restriction is weakly

dominated by a strategy that does satisfy it. This restriction implies that positive

and negative unanimity will automatically be satisfied.

We now proceed inductively. We begin by considering type spaces T where for

every i ∈ I the set Ti has exactly one element. In such type spaces it is common

belief among the agents that agent i has utility function ui(ti). We distinguish two

cases. The first is that there is some alternative a ∈ A such that for all i ∈ I we have:

ui(ti, a) >
∑
j∈I

pjui(ti, b(uj(tj))). (4.10)

Observe that the assumption p < 1 for all i ∈ I implies that some such type spaces

exist. For such type spaces the strategies are:

σi(T , ti) = ({b(ui(ti)), a}, b(ui(ti))) (4.11)

for i ∈ I. Note that these strategies constitute a Nash equilibrium of the complete

information game in which agents’ preferences are common knowledge, and that the
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outcome a strictly Pareto-dominates the outcome under random dictatorship. For all

other type spaces with just a single element for each player the strategies are:

σi(T , ti) = ({b(ui(ti))}, b(ui(ti))) (4.12)

Note that these strategies constitute a Nash equilibrium of the complete information

game in which agents’ preferences are common knowledge, and that the outcome is

exactly the same as under random dictatorship.

Now suppose we had constructed the equilibrium for all type spaces T in which

all the sets Ti have at most k elements. We first extend the construction to all type

spaces T in which T1 has at most k+ 1 elements and for j > 1 the set Tj has at most

k elements. Then we extend the construction to all type spaces T in which T1 and

T2 have at most k+ 1 elements and for j > 2 the set Tj has at most k elements. The

construction can then inductively continued until it is extended to all type spaces T

in which all the sets Ti have at most k + 1 elements.

Suppose first that we are considering a type space T in which Ti has at most k+1

elements and for j > 1 the set Tj has at most k elements. Consider all type spaces T̃

that are contained in T , i.e. for which conditions (i) and (ii) of Definition V.4 hold,

and such that at least for one agent the type set has fewer elements than in T . For

such type spaces we define for every i ∈ I and every ti ∈ T̃i:

σi (T , ti) = σi

(
T̃ , ti

)
. (4.13)

By the inductive hypothesis the right hand side of this equation has already been

defined. Observe that this is well-defined. If a type ti of player i is contained in

player i’s type set in two different type spaces T̃ and T̂ that are contained in T in

the sense of Definition V.4, then the intersection of these type spaces is also a type

space, and by consistency the same strategy is assigned to type ti in T̃ and in T̂ .
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If the previous step defines the equilibrium strategy for all types in T , then the

inductive step is completed. Otherwise, it remains to define strategies for types ti that

are not contained in any type set of a type space that is a subspace of T . We consider

the strategic game in which each such type is a separate player, and expected utilities

are calculated keeping the strategies of types that have already been dealt with in

the previous paragraph fixed, and using each type’s subjective beliefs to calculate

that type’s expected payoff. This strategic game has a Nash equilibrium in mixed

strategies. We define for each type ti that still has to be dealt with the strategy

σi(T , ti) to be type ti’s equilibrium strategy.

By construction these strategies satisfy the consistency requirement. Also, they

are by construction interim Bayesian equilibria: For types in typesets that corre-

spond to a smaller type space the Bayesian equilibrium property carries over from

the smaller type space. For all other types, their choices maximize expected utility

by construction.

We extend the construction to all type spaces T in which T1 and T2 have at most

k+ 1 and for i > 2 the set Ti has at most k elements in the same way as we extended

it to all type spaces T in which T1 has at most k + 1 elements and for i > 1 the set

Ti has at most k elements.

To conclude the proof we note that this equilibrium interim Pareto dominates

random dictatorship. First, we note that no type can have lower expected utility

than under random dictatorship. This is because each type can guarantee themselves

an outcome that is at least as good as the random dictatorship outcome by choosing

Ai = {b(ui(ti))}. Second, each type’s expected utility is increased on type spaces in

which each player’s type set has just a single element, and for which inequality (4.10)

holds.
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4.6 No Game Form Ex Post Pareto Dominates

Random Dictatorship

Proposition IV.14. For every p ∈ [0, 1]n such that
∑

i∈I pi = 1 there is no game

form G that has a consistent equilibrium for all type spaces σ∗ that ex post Pareto

dominates p-random dictatorship.

Proof. Indirect. Suppose for some p ∈ [0, 1]n such that
∑

i∈I pi = 1 there were a game

form G and an equilibrium of G for all type spaces σ∗ that ex post Pareto dominate

p-random dictatorship. For the outcome resulting from G and σ∗ to be different from

p-random dictatorship, there must be some T̂ ∈ Υ, t̂ ∈ T̂ , and â ∈ A such that:

∑
s∈S

x(s, â) ·
∏
i∈I

σ∗i (T̂ , t̂i, si) <
∑

{i∈I:b(ui(t̂i))=â}
pi. (4.14)

That is, alternative â is chosen with a probability that is strictly smaller than the

probability with which it is chosen under random dictatorship. Let Î be the set{
i ∈ I : b(ui(t̂i)) = â

}
, and notice that this set must be non-empty for (4.14) to hold.

To complete the proof we construct a new type space T̃ , and infer from (4.14) that in

this type space there is a type vector such that the outcome of p-random dictatorship

conditional on this type vector is strictly preferred by the type of one of the players

in Î to the outcome in G resulting from the equilibrium σ∗. Therefore, G and σ∗ do

not ex post Pareto-dominate p-random dictatorship.

The type sets in T̃ are given by: T̃i = T̂i for all i ∈ Î, and T̃i = T̂i ∪ {t̃i} for all

i /∈ Î. For all i ∈ I The types in T̂i have the same utility functions and beliefs in T̃

as in T̂ . For all i /∈ Î type t̃i’s beliefs are given by:

πi(t̃i)

[((
t̂j
)
j∈Î ,

(
t̃j
)
j /∈Î
j<i

,
(
t̂j
)
j /∈Î
j>i

)]
= 1, (4.15)
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and type t̃i’s utility function is:

ũi(t̃i, a) =


1 if a = ã;

1− εa if a /∈ {â, ã};

0 if a = â;

(4.16)

where ã denotes the second most preferred alternative of some player k’s type t̂k,

where k ∈ Î. We assume that 0 < εa < ε̄ for all a /∈ {â, ã} for some ε̄ ∈ (0, 1), and

that a, a′ /∈ {â, ã} and a 6= a′ implies εa 6= εa′ . This assumption ensures that the

utility functions satisfy the condition of no indifferences. Moreover, by letting ε̄ tend

to zero, we can ensure that all εa tend to zero, which is the case that we shall focus

on.

We now show that for ε̄ sufficiently small at type vector ((t̂i)i∈Î , (t̃i)i/∈Î) the al-

ternatives other than â are in equilibrium σ∗ chosen with a total probability that is

larger than 1 −
∑

i∈Î pi. Note that the proof of Proposition V.13 is concluded once

this assertion is established. This is because random dictatorship gives player k’s type

t̂k his top alternative â with probability
∑

i∈Î pi, and type t̂k’s second most preferred

alternative ã with probability 1−
∑

i∈Î pi. By contrast, G and σ∗ yield â with prob-

ability less than
∑

i∈Î pi, and some other alternative, not necessarily type t̂k’s second

most preferred alternative, with a probability larger than 1−
∑

i∈Î pi. Therefore, type

t̂k strictly prefers random dictatorship.

Consider the player i /∈ Î for whom i is smallest. We denote this player by i1.

This player, when type t̃i1, expects with probability 1 that the other players’ type

vector is t̂−i1. Because σ∗ is consistent, type t̃i1 expects the types t̂−i1 to choose

the same in T̃ as in T̂ . By the assumption of the indirect proof, type t̂i1 has a

strategy available that yields alternatives other than â with probability of more than

1−
∑

i∈Î pi. Type t̃i1 will not necessarily choose the same strategy as type t̂i1. But,
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for small enough ε̄, only a strategy that yields an alternative other than â with some

probability p̃ > 1−
∑

i∈Î pi can be optimal. Choosing such a strategy yields for type

t̃i1 expected payoff greater than p̃(1 − ε̄) >
(
1−

∑
i∈Î pi

)
(1 − ε̄) whereas any other

pure strategy yields a a payoff that is no more than 1−
∑

i∈Î pi < p̃. For small enough

ε̄ the former expected payoff is larger than the latter.

Now consider the player i /∈ Î for whom i is second smallest. We denote this

player by i2. This player, when type t̃i2, expects with probability 1 the other players’

types to be t̂−i2 except for player i1 whom i2 expects with probability 1 to be type

t̃i1. By the step of the previous paragraph, if t̃i2 chose the same strategy as t̂i2 does in

equilibrium, t̃i2 would expect an outcome other than â with probability larger than

1−
∑

i∈Î pi. He might choose in equilibrium some other strategy, but, for small enough

ε̄, he will never make a choice that yields an outcome other than â with a probability

that is not larger than 1−
∑

i∈Î pi.

The step of the previous paragraph can be iterated until we arrive at the player

i /∈ Î for whom i is largest. We denote this player by i(n−1). This player expects the

other players to be of type t̃−(i(n−1)) except for types i ∈ Î, whom this player expects to

be of type t̂i. By the same argument used in the previous two paragraphs, type t̃i(n−1)

chooses in equilibrium a strategy that he expects to yield an outcome other than â

with probability larger than 1−
∑

i∈Î pi. But at type vector ((t̂i)i∈Î , (t̃i)i/∈Î) this type

has correct expectations, and therefore at this type vector the equilibrium strategies

do indeed yield an outcome other than â with probability larger than 1−
∑

i∈Î pi. As

explained above, this concludes the proof.

4.7 Conclusion

Gibbard and Satterthwaite’s theorem, and Hylland’s version of this theorem in

a cardinal utility setting, are central results of voting theory. We have argued that
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the insistence of the theorem on belief independent strategy choices may be overly

restrictive if a mechanism designer is considered who is concerned with Pareto im-

provements. Such a mechanism designer can find voting schemes that are superior to

random dictatorship if agents’ choices are allowed to depend on their beliefs. What-

ever those beliefs are, the outcomes will be at least as good as under random dic-

tatorship, and sometimes better. Such an improvement is only possible if agents’

subjective beliefs are accepted, and an interim perspective is adopted. From an ex

post perspective, such unambiguous improvements are not possible.

An important problem left open by our paper is the characterization of voting

rules than are not dominated in one of the senses considered in this paper. In chapter

4 the analogous question is investigated for public goods mechanisms. Chapter 4

proves for one particular mechanism that it is not dominated. That chapter shows

the subtleties of this problem. Other related work is by Azrieli and Kim (2011)

who consider interim efficient voting rules for 2 alternatives, restricting attention to

independent types, and Börgers and Postl (2009) who describe ex ante efficient voting

schemes over three alternatives, but who only consider a very restricted type space

with, in particular, independent types.

Another important step is the investigation of robust implementation as opposed

to robust mechanism design. Implementation, unlike mechanism design, considers all

equilibria of a given game form. One might ask whether there are mechanisms such

that all equilibria on all type spaces dominate random dictatorship. We leave this

question for future research.
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CHAPTER V

Robust Mechanism Design and Dominant Strategy

Voting Rules: The Relative Utilitarianism Case

5.1 Introduction

This paper extends the analysis of voting mechanisms in chapter 4, to the case in

which a mechanism designer considers the relative efficiency of mechanisms’ outcomes

from the perspective of relative utilitarianism. Both papers analyze efficiency without

making any assumption regarding voters’ knowledge about each other. Chapter 4

analyzed voting rules in terms of Pareto efficiency. It found that on full domains, the

only dominant strategy voting rules are random dictatorships, and that the designer of

a voting rule can achieve Pareto improvements over random dictatorship by choosing

rules in which voters’ behavior can depend on their beliefs, although the result only

holds for voters’ interim expected utilities, not for their ex post expected utilities.

This paper focuses on the two agent environment and extends the results to the

case where a mechanism designer considers an outcome efficient if it maximizes the

sum of agents’ utilities, after agents’ utilities have been normalized. This “rela-

tive utilitarian” welfare function was axiomatized by Dhillon (1998) and Dhillon and

Mertens (1999) for social choice problems.

The paper is organized as follows. Section 5.2 describes the voting problem, which
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is largely identical to chapter 4 except for the assumption that there are two agents,

and that utilities are normalized in a way that permits a utilitarian approach. Section

5.3 introduces our notions of efficiency and shows that the result, in chapter 4, that

random dictatorship is interim Pareto dominated immediately implies that random

dictatorship is also interim dominated from the relative utilitarianism perspective.

Section 5.4 extends the second main result from that paper by showing that no game

form ex post dominates random dictatorship when efficiency is defined in terms of

relative utilitarianism. Section 5.5 concludes.

5.2 The Voting Problem

There are two agents: i ∈ {1, 2}. The agents have to choose one alternative from

a finite set A of alternatives. We assume that A has at least three elements. The

set of all probability distributions over A is ∆(A), where for δ ∈ ∆(A) we denote

by δ(a) ∈ [0, 1] the probability that δ assigns to alternative a. The two agents

are commonly known to be expected utility maximizers. We denote agent i’s von

Neumann Morgenstern utility function by ui : A→ R. We assume that each agent’s

von Neumann Morgenstern utility function is normalized such that mina∈A ui(a) = 0

and maxa∈A ui(a) = 1. We also assume that a 6= b⇒ ui(a) 6= ui(b), i.e., there are no

indifferences. We define the expected utility for probability distributions δ ∈ ∆(A)

by ui(δ) =
∑

a∈A ui(a) · δ(a).

A mechanism designer has a ranking of the alternatives in A that may depend on

the agents’ utility functions. We shall be more specific about the designer’s objectives

later. The mechanism designer does not know the agents’ utility functions, nor does

she know what the agents believe about each other. To implement an outcome that

potentially depends on the agents’ utility functions the mechanism designer asks the

agents to play a game form.
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Definition V.1. A game form G = (S1, S2, x) consists of:

(i) a non-empty finite strategy set Si for each agent i ∈ {1, 2};

We define: S ≡ S1 × S2.

(ii) an outcome function x : S → ∆(A).

The set Si is the set of (pure) strategies available to agent i in the game form

G. We focus on finite sets of pure strategies, while allowing mixed strategies, to ease

exposition. Our results also hold when the sets Si of pure strategies are allowed to

be infinite. The function x assigns to every combination of pure strategies s the,

potentially stochastic, outcome x(s) that is implemented when agents choose that

combination of pure strategies. We write x(s, a) for the probability that x(s) assigns

to alternative a.

Once the mechanism designer has announced a game form, the two agents choose

simultaneously and independently their strategies. Because the agents don’t neces-

sarily know each others’ utility functions or beliefs, this game may be a game of

incomplete information. A hypothesis about the agents’ utility functions and their

beliefs about each other can be described by specifying a type space.

Definition V.2. A type space T = (T1, T2, π1, π2, u1, u2) consists for each i ∈ {1, 2}

of:

(i) a nonempty, finite set Ti of types;

We write ∆(Ti) for the set of all probability distributions over Ti.

(ii) a belief function πi : Ti → ∆(Tj) (where j 6= i);

(iii) a utility function ui : Ti × A→ [0, 1].
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We write πi(ti, tj) for the probability that type i assigns to player j being type tj

(where j 6= i). We write ui(ti, a) for the utility that ui(ti) assigns to a.1 The utility

function satisfies for both i ∈ {1, 2} and all ti ∈ Ti the assumptions introduced earlier:

(a) min
a∈A

ui(ti, a) = 0 and max
a∈A

ui(ti, a) = 1;

(b) ui(ti, a) 6= ui(ti, b) whenever a 6= b.

The set Ti is the set of types of agent i. Agent i privately observes his type. The

function πi describes for every type ti ∈ Ti the beliefs that agent i has about the

other agents’ types when agent i himself is of type ti. We write πi(ti, t−i) for the

probability that type ti assigns to the other players types being t−i. The function

ui(ti) describes player i’s utility when i is of type ti. We write ui(ti, a) for the utility

that ui(ti) assigns to alternative a. The utility functions ui(ti) satisfy the assumption

that we introduced earlier that there are no indifferences.

In Definition V.2 beliefs are subjective. There may or may not be a common prior

for a particular type space. Different agents’ beliefs may be incompatible with each

other in the sense that one agent may attach probability one to an event to which

another agent attaches probability zero. Observe also that we assume type spaces to

be finite. We thus avoid technical difficulties associated with infinite type spaces.

We assume that the mechanism designer has no knowledge of the agents’ utility

functions or their beliefs. Therefore, the mechanism designer regards all type spaces

as possible descriptions of the environment in which agents find themselves. We

denote the set of all type spaces by Υ.

The mechanism designer proposes to agents how they might play the game. He

might propose to agents to randomize. For i = 1, 2 we denote by ∆(Si) the set of all

probability distributions on Si. For the agents to accept the mechanism designer’s

1Observe that we suppress in the notation the dependence of πi and ui on the type space T . We
are not aware of any confusion that might arise from this simplification of our notation.

122



proposal, he must propose a Bayesian equilibrium. Because the mechanism designer

does not know the true type space, he has to propose a Bayesian equilibrium for every

type space.

Definition V.3. A Bayesian equilibrium of game form G for every type space is a

pair (σ∗1, σ
∗
2) such that for every i ∈ {1, 2}:

(i) σ∗i is a family of functions (σ∗i (T ))T ∈Υ where for every T ∈ Υ the function

σ∗i (T ) maps the type space Ti corresponding to T into ∆(Si).

We write σ∗i (T , ti) for the mixed strategy assigned to ti ∈ Ti, and σ∗i (T , ti, si) for the

probability that this mixed strategy assigns to si ∈ Si.

(ii) σ∗i (T , ti) maximizes the expected utility of type ti among all mixed strategies

in ∆(Si), where expected utility for any mixed strategy σ∗i ∈ ∆(Si) is:

∑
tj∈Tj

∑
s1∈S1,s2∈S2

(
ui(ti, x(s1, s2)) · σ∗i (T , ti, si) · σ∗j (T , tj, sj) · π(ti, tj)

)
, (5.1)

where j 6= i.

The Bayesian equilibria that the mechanism designer proposes need to satisfy a

consistency requirement.

Definition V.4. A Bayesian equilibrium of game form G for every type space,

(σ∗1, σ
∗
2), is consistent if for all type spaces T , T̃ ∈ Υ such that:

(i) for every i ∈ {1, 2}: T̃i ⊆ Ti (where T̃i corresponds to T̃ and Ti corresponds to

T );

(ii) for every i ∈ {1, 2} and every ti ∈ Ti: ũi(ti) = ui(ti) and π̃(ti) = π(ti) (where

ũi, π̃i correspond to T̃ , and ui, πi correspond to T ),

we have for every i ∈ {1, 2} and every ti ∈ Ti:
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(iii) σ∗(T̃ , ti) = σ∗(T , ti).

Observe that the type ti referred to in item (iii) of Definition V.4 has the same util-

ity function and hierarchy of beliefs in type space T and in type space T̃ . Therefore,

the consistency requirement is implied by the assumption that an agent’s equilibrium

choices should only depend on that agent’s utility function and that agent’s hierarchy

of beliefs. This assumption seems reasonable because the type space, as opposed to

the utility function and the hierarchy of beliefs, is really only a construction by the

modeler, and not necessarily a construction that the agent is aware of. We don’t

explicitly formulate the stronger assumption that equilibrium choices should only de-

pend on agents’ utility functions and hierarchies of beliefs, but instead work with

the weaker consistency requirement, because the consistency requirement is easier to

formulate, and is sufficient for our purposes. Our results would also go through if we

made the more demanding assumption for equilibria.

We postulate a mechanism designer who seeks to further the utility of the agents

rather than his own utility. In the companion paper, Börgers and Smith ?, we assume

that the mechanism designer seeks to achieve a Pareto efficient decision. In this

paper, we assume that the mechanism designer seeks to maximize the welfare function:

u1(a) + u2(a). Because we have normalized utilities, this corresponds to the “relative

utilitarian” welfare function axiomatized by Dhillon (1998) and Dhillon and Mertens

(1999).

When evaluating the utility of the two agents for a realized type combination

(t1, t2) the mechanism designer can either only consider the outcomes that result from

the mixed strategies prescribed for these two types, or she may consider the expected

utilities of these two types, based on the types’ own subjective beliefs. In other

words, the mechanism designer may adopt an ex post or an interim perspective when

evaluating agents’ utilities. The interim perspective respects agents’ own perception of

their environment. From this perspective, the ex post perspective has a paternalistic
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flavor. On the other hand, for example when agents’ beliefs are incompatible with

each other, the mechanism designer may be justified in discarding agents’ beliefs, on

the basis that at least some of them have to be wrong, as agents themselves will

discover at some point. Thus neither the interim nor the ex post perspective are

clearly preferable. We pursue both perspectives in this paper.

The considerations of the preceding two paragraphs lead to four possible formaliza-

tions of the mechanism designer’s objectives. We present these in the four definitions

that follow below. None of these definitions attributes a prior over type spaces in Υ

or over types in each type space to the mechanism designer. Instead, we work with

a dominance notion, that is prior free. Whatever the mechanism designer’s prior is,

if he has one, he will never choose a dominated game form in the sense described in

the four definitions below.

Definition V.5. The game form G with the consistent Bayesian equilibrium for all

type spaces (σ∗1, σ
∗
2) ex post Pareto dominates the game form G̃ with the consistent

Bayesian equilibrium for all type spaces (σ̃∗1, σ̃
∗
2) if for all i ∈ {1, 2}, T ∈ Υ, and

(t1, t2) ∈ T1 × T2:

∑
s1∈S1,s2∈S2

ui(ti, x(s1, s2)) · σ∗1(T , t1, s1) · σ∗2(T , t2, s2) ≥

∑
s1∈S̃1,s2∈S̃2

ui(ti, x̃(s1, s2)) · σ̃∗1(T , t1, s1) · σ̃∗2(T , t2, s2), (5.2)

with strict inequality for at least one i ∈ {1, 2}, T ∈ Υ, and (t1, t2) ∈ T1 × T2. A

direct mechanism that is not ex post Pareto dominated will be called ex post Pareto

undominated.

Definition V.6. The game form G with the consistent Bayesian equilibrium for

all type spaces (σ∗1, σ
∗
2) ex post utilitarian2 dominates the game form G̃ with the

consistent Bayesian equilibrium for all type spaces (σ̃∗1, σ̃
∗
2) if for all T ∈ Υ, and

2For simplicity, we use “utilitarian” rather than the more clumsy “relative utilitarian.”
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(t1, t2) ∈ T1 × T2:

∑
i∈{1,2}

∑
s1∈S1,s2∈S2

ui(ti, x(s1, s2)) · σ∗1(T , t1, s1) · σ∗2(T , t2, s2) ≥

∑
i∈{1,2}

∑
s1∈S̃1,s2∈S̃2

ui(ti, x̃(s1, s2)) · σ̃∗1(T , t1, s1) · σ̃∗2(T , t2, s2), (5.3)

with strict inequality for at least one T ∈ Υ, and (t1, t2) ∈ T1 × T2. A direct

mechanism that is not ex post utilitarian dominated will be called ex post utilitarian

undominated.

Note that if game form G with the consistent Bayesian equilibrium for all type

spaces (σ∗1, σ
∗
2) ex post utilitarian dominates game form G̃ with the consistent Bayesian

equilibrium for all type spaces (σ̃∗1, σ̃
∗
2) if the former ex post Pareto dominates the

latter.

Definition V.7. The game form G with the consistent Bayesian equilibrium for all

type spaces (σ∗1, σ
∗
2) interim Pareto dominates the game form G̃ with the consistent

Bayesian equilibrium for all type spaces (σ̃∗1, σ̃
∗
2) if for all i, j ∈ {1, 2} with i 6= j,

T ∈ Υ, and ti ∈ Ti:

∑
tj∈Tj

πi(ti, tj)
∑

s1∈S1,s2∈S2

ui(ti, x(s1, s2)) · σ∗1(T , t1, s1) · σ∗2(T , t2[s2) ≥

∑
tj∈Tj

πi(ti, tj)
∑

s1∈S̃1,s2∈S̃2

ui(ti, x̃(s1, s2)) · σ̃∗1(T , t1, s1) · σ̃∗2(T , t2, s2), (5.4)

with strict inequality for at least one i, j ∈ {1, 2} with i 6= j, T ∈ Υ, and ti ∈ Ti. A

direct mechanism that is not interim Pareto dominated will be called interim Pareto

undominated.

Definition V.8. The game form G with the consistent Bayesian equilibrium for all

type spaces (σ∗1, σ
∗
2) interim utilitarian dominates the game form G̃ with the consistent
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Bayesian equilibrium for all type spaces (σ̃∗1, σ̃
∗
2) if for all T ∈ Υ and (t1, t2) ∈ T1×T2:

∑
i∈{1,2}

∑
tj∈Tj

πi(ti, tj)
∑

s1∈S1,s2∈S2

ui(ti, x(s1, s2)) · σ∗1(T , t1, s1) · σ∗2(T , t2, s2) ≥

∑
i∈{1,2}

∑
tj∈Tj

πi(ti, tj)
∑

s1∈S̃1,s2∈S̃2

ui(ti, x̃(s1, s2)) · σ̃∗1(T , t1, s1) · σ̃∗2(T , t2, s2), (5.5)

with strict inequality for at least one T ∈ Υ and (t1, t2) ∈ T1 × T2. A direct

mechanism that is not interim utilitarian dominated will be called interim utilitarian

undominated.

Note that if game form G with the consistent Bayesian equilibrium for all type

spaces (σ∗1, σ
∗
2) interim utilitarian dominates game form G̃ with the consistent Bayesian

equilibrium for all type spaces (σ̃∗1, σ̃
∗
2) if the former interim Pareto dominates the lat-

ter.

5.3 Random Dictatorship is Interim Utilitarian Dominated

This paper compares the efficiency of game forms with belief independent equilibria

with those of game forms with belief dependent equilibria. (See chapter 4 for a

discussion of the motivation for this question.) Consequently we will need to define

belief independent equilibria.

Definition V.9. A game form G and a Bayesian equilibrium of G for every type

space, (σ∗1, σ
∗
2), is belief independent if for all i ∈ {1, 2}, T , T̃ ∈ Υ, ti ∈ Ti and t̃i ∈ T̃i

such that ui(ti) = ũi(t̃i) we have:

σ∗i (T , ti) = σ∗i (T̃ , t̃i), (5.6)

where Ti, ui correspond to T and T̃i, ũi correspond to T̃ .

Chapter 4’s Proposition IV.9 shows that all game forms and belief independent
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equilibria of these game forms that satisfy a pair of unanimity requirements are ran-

dom dictatorships. To define random dictatorships we need some notation. If u is a

utility function, we denote by b(u) the element of A that maximizes u.3

We refer to random dictatorship, we shall mean the following specific game form

G and specific equilibrium (σ∗1, σ
∗
2) of G for every type space.

Definition V.10. The following game form G and equilibrium (σ∗1, σ
∗
2) of G for every

type space will be referred to as p-random dictatorship:

(i) S1 = S2 = A;

(ii)

x(s1, s2, a) =



1 if s1 = s2 = a;

p if s1 = a and s2 6= a;

1− p if s1 6= a and s2 = a;

0 if s1 6= a and s2 6= a;

(iii) σ∗i (T , ti, b(ui(ti))) = 1 for all i ∈ {1, 2}, T ∈ Υ, and ti ∈ Ti.

It is immediate that (σ∗1, σ
∗
2) is a Bayesian equilibrium of G for every type space,

and that G and this equilibrium are a random dictatorship. There are other game

forms and equilibria that are random dictatorships, but it is without loss of generality

to only consider the one described in Definition V.10.

Our first result says that for every p ∈ (0, 1) such that p 6= 0 and p 6= 1 there are a

game form, and a Bayesian equilibrium of this game form for every type space, that

interim Pareto dominate random dictatorship when the probability of agent 1 being

dictator is p. We refer to the game form as p-random dictatorship with compromise.

3Recall that we have assumed that there are no indifferences. Therefore, there is a unique element
of A that maximizes u.
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Definition V.11. The following game form is called a p-random dictatorship with

compromise.

(i) for every i ∈ {1, 2}:

Si = 2A × A,

where 2A is the set of all non-empty subsets of A;

(ii) If s1 = (A1, a1), s2 = (A2, a2), and A1 ∩ A2 = ∅ or a1 = a2, then:

x(s1, s2, a) =



1 if a1 = a2 = a;

p if a1 = a and a2 6= a;

1− p if a1 6= a and a2 = a;

0 if a1 6= a and a2 6= a;

(iii) If s1 = (A1, a1), s2 = (A2, a2), and A1 ∩ A2 6= ∅, and a1 6= a2, then there is

some a ∈ A1 ∩ A2 such that

x(s1, s2, a) = 1.

In words, this game form offers each agent i the opportunity to nominate one

preferred alternative, ai, and also a set Ai of “acceptable” alternatives. If both

agents nominate the same preferred alternative, then it is chosen with probability

one. Otherwise, if there is at least one alternative that both voters include in their

set of acceptable alternatives, then some alternative that both agents have indicated

as acceptable is chosen. If neither of those conditions is met, the mechanism reverts

to random dictatorship. We refer to this game form as random dictatorship with

compromise because it offers agents the opportunity to compromise on a mutually

acceptable alternative in place of random dictatorship.
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Proposition IV.13 of chapter 4 shows that p-random dictatorship with compro-

mise has a consistent equilibrium for all type spaces (σ∗1, σ
∗
2) that interim Pareto

dominates p-random dictatorship and that respects unanimity. This leads to the

following proposition.

Proposition V.12. For all p ∈ (0, 1), p-random dictatorship with compromise has

a consistent equilibrium for all type spaces σ∗ that interim utilitarian dominates p-

random dictatorship and that satisfies positive and negative unanimity.

Proof. This is an immediate consequence of proposition IIV.13 in chapter 4 and the

observation that interim ex post dominance implies interim utilitarian dominance.

5.4 No Game Form Ex Post Utilitarian Dominates

Random Dictatorship

We now show that random dictatorship is ex post utilitarian undominated.

Proposition V.13. For all p ∈ [0, 1], there is no game form G that has a consistent

equilibrium for all type spaces (σ∗1, σ
∗
2) that ex post utilitarian dominates p-random

dictatorship.

Proof. Step 1: We show for every game form G and every equilibrium of G for all type

spaces, (σ∗1, σ
∗
2), if G and (σ∗1, σ

∗
2) ex post utilitarian dominate p-random dictatorship,

then: ∑
s1∈S1,s2∈S2

x(s1, s2, a) · σ∗1(T , t1, s1) · σ∗2(T , t2, s2) ≤ 1− p (5.7)

for all T ∈ Υ, every (t1, t2) ∈ T1 × T2, and every a ∈ A such that a 6= b(u1(t1)), and

∑
s1∈S1,s2∈S2

x(s1, s2, a) · σ∗1(T , t1, s1) · σ∗2(T , t2, s2) ≤ p (5.8)

for all T ∈ Υ, every (t1, t2) ∈ T1 × T2, and every a ∈ A such that a 6= b(u2(t2)).
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That is, any alternative that is not agent 1’s preferred alternative can be chosen with

a probability of at most 1 − p, and any alternative that is not agent 2’s preferred

alternative can be chosen with a probability of at most p. We prove this statement

only for agent 1. The proof for agent 2 is analogous.

The proof is indirect. Suppose there were some type space T ∗, some (t∗1, t
∗
2) ∈

T ∗1 × T ∗2 , and some alternative a∗ ∈ A such that a∗ 6= b(u1(t∗1)), and yet:

∑
s1∈S1,s2∈S2

x(s1, s2, a
∗) · σ∗1(T ∗, t∗1, s1) · σ∗2(T ∗, t∗2, s2) > 1− p. (5.9)

We now construct a new type space, T̂ , and show that in this type space there is a

vector of types such that the outcome prescribed by the equilibrium (σ∗1, σ
∗
2) yields

lower ex post utilitarian welfare than p-random dictatorship. This contradicts the

assumption that G and (σ∗1, σ
∗
2) ex post utilitarian dominate p-random dictatorship.

The type sets in T̂ are given by: T̂1 = T ∗1 , and T̂2 = T ∗2 ∪{t2(1), . . . , t2(K)} where

K ∈ N is large enough. We define later how large K needs to be. The types that are

contained in T ∗1 or T ∗2 have the same utility function and beliefs in T̂ as in T . For

types t2 ∈ {t2(1), t2(2), . . . t2(K)} the beliefs are given by:

π2(t2(k), t∗1) = 1. (5.10)

The utility function of types t2 ∈ {t2(1), t2(2), . . . t2(K)} is:

u2(t2(k), a) =


1 if a = a∗;

k
K

if a = b(u1(t∗1));

0 otherwise.

(5.11)

This concludes the construction of T̂ .4 By the consistency of the Bayesian equilibrium

4The construction violates our earlier assumption that there are no indifferences. The construc-
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(σ∗1, σ
∗
2), for all types in T1 and T2, σ∗1 and σ∗2 have to prescribe the same strategies

for T̂ as for T ∗. For types t2 ∈ {t2(1), t2(2), . . . t2(K)} the strategy σ∗2(T̂ , t2) must be

a best response to σ∗1(T̂ , t∗1).

We denote for every k ∈ {0, 1, 2, . . . , K} by v2(k) the expected utility of type

t2(k) in the game form G if equilibrium (σ∗1, σ
∗
2) is played. By standard incentive

compatibility arguments v2(k) is increasing in k. Observe that, for k ∈ {1, 2, . . . , K},

the difference v2(k)− v2(k− 1) cannot be more than 1/K because, by adopting type

t2(k)’s strategy, type t2(k − 1) can always get within 1/K of type t2(k)’s expected

utility. We also denote for k ∈ {0, 1, 2, . . . , K} by r2(k) the equilibrium expected util-

ity of type t2(k) under random dictatorship. It is immediate that r2(k) is increasing

in k, and that r2(k)− r2(k − 1) = 1/(pK) for k = 1, 2, . . . , K.

Now consider the difference: v2(k) − r2(k). The observations of the previous

paragraph imply that as k increases the change in the absolute value of this difference,

|(v2(k) − r2(k)) − (v2(k − 1) − r2(k − 1))|, is at most 1/K. Note that by choosing

K large enough, we can make the step size of changes of this difference arbitrarily

small. Observe that v2(0) > r2(0) because, by the assumption of the indirect proof, in

the game form G, type t2(k) has a strategy that implies that alternative a∗ is chosen

with a probability larger than 1 − p, so that in equilibrium type t2(0) must obtain

alternative a∗ with at least that probability. By contrast, under random dictatorship,

alternative a∗ is chosen with probability 1 − p only. On the other hand, v2(K) ≤

r2(K), because random dictatorship yields for agent t2(K) at least one of his top

alternatives with probability 1. What we have said so far implies that we can find

some k ∈ {0, 1, 2, ..., K} such that v2(k) − r2(k) is strictly positive but arbitrarily

close to zero, provided we choose K large enough.

tion and the argument that follows below can easily be modified to comply with this assumption by
assigning the bottom ranked alternatives almost the same, but not exactly the same utility.
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Next we note that v2(k) > r2(k) implies that

∑
s1∈S1

x(s1, s2, a
∗) · σ∗1(T̂ , t∗1, s1) > 1− p (5.12)

for every pure strategy s2 ∈ S2 in the support of σ∗2(T̂ , t2(k)). This is because

v2(k) > r2(k) implies that every strategy in the support of σ∗2(T̂ , t2(k)) must yield

strictly higher expected utility for type t2(k) than p-random dictatorship would give

to this type. Moreover, the only way in which type t2(k) can be better off under

G and (σ∗1, σ
∗
2) than under p-random dictatorship, where b(u1(t∗1)) and a∗ are chosen

with probabilities p and 1 − p respectively, is by raising the probability of a∗ above

1− p.

Next, we denote for every k ∈ {0, 1, 2, . . . , K} by v1(k) the expected utility of

type t∗1 when he encounters type t2(k), and we denote by r1(k) the expected utility

under p-random dictatorship of type t∗1 when he encounters type t2(k). We first

observe that whenever v2(k) > r2(k) we must have: v1(k) < r1(k). This is because

p-random dictatorship would give b(u1(t∗1)) and a∗ with probability p and 1− p. By

contrast, the game form G gives in equilibrium a∗ with a probability that is larger than

1 − p. Therefore, the outcome will be worse than random dictatorship for player 1.

Now consider all pure strategies of player 2 that, matched with type t∗1’s equilibrium

strategy, yield a probability of a∗ of more than 1−p. As observed before, v2(k) > r2(k)

implies that type t2(k) can only play such strategies with positive support. Against

each of these strategies player 1 obtains a maximum utility strictly lower than r1(k).

Therefore, there is ` > 0 such that v2(k) > r2(k) implies: v1(k) < r1(k)− `.

Now choose K large enough so that we can find a type t2(k) for whom v2(k) >

r2(k), but v2(k) < r2(k) + `. We then have: v1(k) < r1(k)− `, and therefore, adding

the last two inequalities: v1(k)+v2(k) < r1(k)+vr(k). This contradicts the hypothesis

that G and (σ∗1, σ
∗
2) ex post utilitarian dominate p-random dictatorship.
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S tep 2: We now complete the proof by showing that no game form G and equi-

librium (σ∗1, σ
∗
2) of G for all type spaces that has have the properties described in

Step 1 can ex post utilitarian dominate p-random dictatorship. The proof is indirect.

Suppose there were some game form G and some equilibrium (σ∗1, σ
∗
2) of G for all

type spaces that have the properties described in Step 1 and that ex post utilitarian

dominate p-random dictatorship. Then there must be some type space T ∗∗ and some

(t∗∗1 , t
∗∗
2 ) ∈ T ∗∗1 × T ∗∗2 such that:

∑
i∈{1,2}

∑
s1∈S1,s2∈S2

ui(t
∗∗
i , x(s1, s2)) · σ∗1(T ∗∗, t∗∗1 , s1) · σ∗2(T ∗∗, t∗∗2 , s2) >

pu1(b(u1(t∗∗1 ))) + (1− p)u2(b(u2(t∗∗2 ))) (5.13)

We now construct a new type space, T̃ , and show that in this type space there is

a vector of types such the outcome prescribed by the equilibrium (σ∗1, σ
∗
2) yields lower

utilitarian welfare than p-random dictatorship. This contradicts the assumption that

G and (σ∗1, σ
∗
2) ex post utilitarian dominate p-random dictatorship. The construction

and the argument below are very similar to, but not identical to, the argument in

Step 1.

Before we begin the construction we note that it must be that in equilibrium, at

t∗∗, either b(u1(t∗∗)) is chosen with probability strictly less than p, or b(u2(t∗∗)) is

chosen with probability strictly less than 1 − p, or both. Otherwise, the game form

G with the equilibrium (σ∗1, σ
∗
2) could not yield strictly higher utilitarian welfare at

t∗∗ than p-random dictatorship. Without loss of generality, we focus on the case that

b(u1(t∗∗)) is chosen with probability strictly less than p. The other case can be dealt

with by a symmetric argument. Let a∗∗ be the second most preferred alternative of

agent 1 at t∗∗1 .

We now construct T̃ . The type sets are given by: T̃1 = T ∗∗1 , and T̃2 = T ∗∗2 ∪

{t2(1), . . . , t2(K)} where K ∈ N is large enough. We define later how large K needs
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to be. The types that are contained in T ∗∗1 or T ∗∗2 have the same utility functions and

beliefs in T̃ as in T ∗∗. For types t2 ∈ {t2(1), t2(2), . . . t2(K)} the beliefs are given by:

π2(t2(k), t∗∗1 ) = 1. (5.14)

The utility function of types t2 ∈ {t2(1), t2(2), . . . t2(K)} is:

u∗2(t2(k), a) =


1 if a = a∗∗;

k
K

if a 6= b(u1(t∗∗1 )) and a 6= a∗∗;

0 if a = b(u1(t∗∗1 )).

(5.15)

This concludes the construction of T̃ .5 By the consistency of the Bayesian equilibrium

(σ∗1, σ
∗
2), for all types in T ∗∗1 and T ∗∗2 , σ∗1 and σ∗2 have to prescribe the same strategies

for T̃ as for T ∗∗. For types t2 ∈ {t2(1), t2(2), . . . t2(K)} the strategy σ∗2(T̃ , t2) must

be a best response to σ∗1(T̃ , t∗∗1 ).

We denote for every k ∈ {0, 1, 2, . . . , K} by v2(k) the equilibrium expected utility

of type t2(k) in the game form G with equilibrium (σ∗1, σ
∗
2). By standard incentive

compatibility arguments v2(k) is increasing in k. Observe that, for k ∈ {1, 2, . . . , K},

the difference v2(k)− v2(k− 1) cannot be more than 1/K because, by adopting type

t2(k)’s strategy, type t2(k − 1) can always get within 1/K of type t2(k)’s expected

utility. We also denote for k ∈ {0, 1, 2, . . . , K} by r2(k) the equilibrium expected

utility of type t2(k) under random dictatorship. It is immediate that r2(k) = 1 − p

for all k = 1, 2, . . . , K.

Now consider the difference: v2(k) − r2(k). The observations of the previous

paragraph imply that as k increases the difference increases, and that moreover it can

change by at most 1/K. Note that by choosing K large enough, we can make the step

5The construction violates our earlier assumption that there are no indifferences. The construc-
tion and the argument that follows below can easily be modified to comply with this assumption by
assigning to the middle ranked alternatives almost the same, but not exactly the same utility.
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size of changes of this difference arbitrarily small. Observe next that v2(0) ≤ r2(0).

This is because under G and (σ∗1, σ
∗
2) alternative a∗∗ can be chosen with a probability

of at most 1 − p, by Step 1 of this proof applied to player 1. Therefore, v2(0) ≤

1 − p = r2(0). Finally, we show that v2(K) > r2(K). Observe that v2(K) > 1 − p,

because, by assumption, the probability of b(u1(t∗∗1 )) under G and (σ∗1, σ
∗
2) at (t∗∗1 , t

∗∗
2 )

is strictly less than p. Thus the probability of all other alternatives together must

be strictly more than 1 − p. Type t2(K) can choose the same strategy as type t∗∗2 ,

and therefore, if type t2(K) chooses optimally, v2(K) > 1− p = r2(1). What we have

said so far implies that we can find some k ∈ {0, 1, 2, ..., K} such that v2(k) − r2(k)

is strictly positive but arbitrarily close to zero, provided we choose K large enough.

Next we note that v2(k) > r2(k) implies that

∑
s1∈S1

x(s1, s2, b(u1(t∗∗))) · σ∗1(T̃ , t∗∗1 , s1) < p (5.16)

for every pure strategy s2 ∈ S2 in the support of σ∗2(T̃ , t2(k)). This is because

every strategy in the support of player 2’s strategy σ∗2(T̃ , t2(k)) must yield the same

expected utility, and hence strictly higher expected utility than r2(k). But if such

a strategy implements b(u1(t∗∗)) with probability of p or more, then the remaining

probability that is distributed among a∗∗ and all other alternatives, is at most 1− p.

Therefore, player 2’s expected utility from such a strategy is no more than 1 − p =

r2(k), which contradicts our assumption that player 2’s expected utility is more than

r2(k).

Next, we denote for every k ∈ {0, 1, 2, . . . , K} by v1(k) the expected utility of type

t∗∗1 when he encounters type t2(k), and we denote by r1(k) the expected utility under

random dictatorship of type t∗∗1 when he encounters type t2(k). We first observe that

whenever v2(k) > r2(k) we must have: v1(k) < r1(k). This is because random dicta-

torship would give b(u1(t∗1)) and a∗∗ with probability p and 1 − p. By contrast, the
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game form G gives in equilibrium b(u1(t∗∗1 )) with a probability that is less p. There-

fore, the outcome will be worse than random dictatorship for player 1. Now consider

all pure strategies of player 2 that, matched with type t∗1’s equilibrium strategy, yield

a probability of b(u1(t∗∗1 )) of strictly less than p. As observed before, v2(k) > r2(k)

implies that type t2(k) can only play such strategies with positive support. Against

each of these strategies player 1 obtains a maximum utility strictly lower than r1(k).

Therefore, there is ` > 0 such that v2(k) > r2(k) implies: v1(k) < r1(k) + `.

Now choose K large enough so that we can find a type t2(k) for whom v2(k) >

r2(k), but v2(k) < r2(k) + `. We then have: v1(k) < r1(k)− `, and therefore, adding

the last two inequalities: v1(k)+v2(k) < r1(k)+vr(k). This contradicts the hypothesis

that G and (σ∗1, σ
∗
2) ex post utilitarian dominate p-random dictatorship.

5.5 Conclusion

This paper extends the results of chapter 4 to the case of a mechanism designer

whose preferences obey relative utilitarianism and who faces two agents. For a mech-

anism designer who is concerned with relative utilitarianism and considers interim

expected utilities, the same mechanism that is used in that paper, random dictator-

ship with compromise, is more efficient than random dictatorship. This result is an

immediate implication of the interim Pareto result in that paper and the definition of

interim relative utilitarianism, and consequently extends to the more than two agent

case. The other main result is that no mechanism dominates random dictatorship

from an ex post relative utilitarian perspective. It is not immediately clear how to

extend the argument to more than two agents. Consequently, whether any mecha-

nism dominates random dictatorship from an ex post relative utilitarian perspective

when there are more than two agents remains an open question.
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CHAPTER VI

The Role of Solidarity and Reputation Building in

Coordinating Collective Resistance

6.1 Introduction

What motivates agents to resist when a leader attempts to gain or maintain in-

fluence via a divide-and-conquer strategy? Examples of leaders breaking up larger

groups into smaller ones that have less power are prevalent — from the times of

Machievelli (Zeitlin and Weyher, 2001), to Western countries using the strategy in

Africa (Croucher, 2004), to Wal-mart’s recent pledge to “go green” (Tasini, 2008),

to management/labor disputes (LeDuff, 2000). Often the strategy is successful, but

it also is often met by coordinated joint resistance — subordinates show solidarity,

banding together at a personal cost to thwart the divide-and-conquer strategy. Ex-

amples include strikes and unionization (Horowitz, 1997; Zeitlin and Weyher, 2001;

Gordon and Lenhardt, 2007; Oyogoa, 2009). Our research uses experimental meth-

ods to examine the extent to which this type of subordinate solidarity is driven by a

fairness norm or driven by the desire to build expectations among both leaders and

other subordinates that leader transgressions will be successfully resisted.

Weingast (1997) introduced a political model representing how exploitative leaders

can effectively maintain power in a society where there are different interest groups. It
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also has natural applications to other situations where one individual has authority

over multiple subordinates; for example, a manager and worker relationship. The

situation can be modeled by the “coordinated resistance” (CR) game.1 In the CR

game, there are three players: one leader and two subordinates, A and B. The leader

moves first and has four available actions: (i) transgress against both subordinates, (ii)

transgress against neither, (iii) transgress against A, and (iv) transgress against B.

These last two actions provide the leader an opportunity to “divide-and-conquer”.

The subordinates observe the leader’s action and then have two available actions:

challenge or acquiesce. As long as both subordinates do not challenge, a “divide-

and-conquer” strategy gains rewards for the leader at the expense of the targeted

subordinate. The beneficiary of the transgression (i.e. the subordinate not targeted)

earns a higher payoff by acquiescing than by challenging, regardless of what action the

targeted subordinate takes. For a small cost, though, the beneficiary can challenge

the leader’s transgression, and if the targeted subordinate also challenges they achieve

coordinated joint resistance. At this outcome both subordinates earn what they would

get if the leader did not transgress minus the small cost of challenging, and the leader

earns zero, which is significantly less than if he had chosen transgress against neither.

Social surplus is maximized when the leader chooses transgress against neither and

both subordinates acquiesce. However, this outcome is not part of any equilibrium.

Cason and Mui (2007) examine the CR game in a laboratory experiment, focus-

ing on when communication does or does not allow subordinates to successfully work

together to resist exploitation by a leader. They use random anonymous rematching

between repeated plays, and find that when the leader chooses to transgress against

one subordinate, a significant fraction of the subordinates coordinate on joint resis-

tance. This is despite the beneficiary paying a price in their own period payoff to

help the targeted subordinate with no direct material benefit. Over time, some leaders

1Weingast called it the“ Sovereign-Constituency Transgression Game”.
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adapt their strategy, choosing to transgress against neither. Cason and Mui interpret

beneficiaries challenging, and hence coordinated joint resistance, as evidence of fair-

ness: some subordinates are “altruistic punishers” (Fehr and Gächter, 2002; Boyd et

al, 2003; DeQuervain et al, 2004; Fehr and Fischbacher, 2004; Gintis et al, 2005). Sub-

ordinates choose to punish the leader — even at a personal cost — for having violated

social norms of fairness.2

An alternative argument — not invoking an appeal to social preferences — is that

subordinates have an individual incentive to create an expectation among leaders

that “divide-and-conquer” style transgression will be met with coordinated joint re-

sistance. After all, when individuals are randomly and anonymously rematched each

subordinate has an equal chance of being the victim of transgression in the future. If

there is a greater than 1
4

probability of joint resistance, risk-neutral leaders will not

want to transgress. With a low cost of resisting, subordinates may regard investing in

a group reputation for joint resistance as a worthwhile strategy. If the subordinates

can get the leader to choose the transgress against neither option, they can secure a

higher payoff than when they face a 50/50 chance of being the victim of the leader’s

transgression. This suggests a very different motive for joint resistance: a subordinate

has a strategic motive to build a reputation as one who challenges in order to alter

the leader’s or the other subordinate’s behavior in the future.

We use a novel experimental design to test the extent to which repeated inter-

actions drive some subordinates to resist when they are the current beneficiaries of

the leader’s divide-and-conquer strategy. We do this by systematically reducing the

strategic incentive to resist. The first treatment has leaders pre-commit to their be-

havior in all periods. The actions the leaders commit to cannot be conditioned on

any play by the subordinates. Such leader commitment removes the ability for sub-

2Evidence that individuals possess a taste for punishment has been provided across a variety
of experimental games, including public goods (Fehr and Gächter, 2000; Fehr and Gächter, 2002),
investment games (DeQuervain et al, 2004, Rigdon 2009), and ultimatum games (Güth et al, 1985;
Forsythe et al, 1994, Xiao and Houser, 2005).
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Figure 1: The Basic Collective Resistance Game (payoffs are for (Leader, 

Subordinate A, Subordinate B)) 

 

 

 

 

 

 

 

Figure 2: The Divide-and-Conquer Collective Resistance Game (payoffs are for (Leader, 

Subordinate A, Subordinate B)) 

 

Transgress  

against both 

Transgress  

against neither 

  Subordinate B 

  Acquiesce Challenge 

Acquiesce 8, 9, 2 8, 9, 1 
Subordinate A 

Challenge 8, 8, 2 0, 7, 7 

  Subordinate B 

  Acquiesce Challenge 

Acquiesce 8, 2, 9 8, 2, 8 
Subordinate A 

Challenge 8, 1, 9 0, 7, 7 

Transgress  

against A 

Transgress  

against B 

Transgress 

Not 

Transgress  

  Subordinate B 

  Acquiesce Challenge 

Acquiesce 6, 8, 8 6, 8, 7 
Subordinate A 

Challenge 6 ,7, 8 0, 7, 7 

Leader 

  Subordinate B 

  Acquiesce Challenge 

Acquiesce 12, 2, 2 12, 2, 1 
Subordinate A 

Challenge 12, 1, 2 0, 7, 7 

Leader 

  Subordinate B 

  Acquiesce Challenge 

Acquiesce 12, 2, 2 12, 2, 1 
Subordinate A 

Challenge 12, 1, 2 0, 7, 7 

  Subordinate B 

  Acquiesce Challenge 

Acquiesce 6, 8, 8 6, 8, 7 
Subordinate A 

Challenge 6 ,7, 8 0, 7, 7 

Figure 6.1: CR Game (payoffs are Leader, Subordinate A, and Subordinate B)

ordinates to influence the leaders’ future behavior by their action today. The second

treatment goes one step further: leaders pre-commit to their behavior in all periods,

as in the first treatment, and one subordinate also pre-commits to their behavior in

all periods. The pre-commited subordinate’s commited actions cannot be conditional

on other agent’s actions in other rounds. Such subordinate commitment removes the

ability of subordinates to alter behavior of the leader or the behavior of the subordi-

nate with whom they interact. Each of these treatments leave fairness considerations

intact. We can then compare the rates of beneficiary challenge and coordinated joint

resistance across the treatments. By comparing these treatments with a baseline

treatment where both motivations may be at work, we aim to disentangle the ef-

fects of other-regarding motives from those of reputation-building and coordination

incentives.

The next section describes the features of the CR game and experimental find-

ings to date. Section 6.5 details the experimental design and outlines the empirical

hypotheses. Section 6.6 describes the procedures in the experiment and Section 6.7

discusses the results. The final section concludes.
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6.2 The Coordinated Resistance Game

Our experimental design uses the version of the leader-subordinate scenario drawn

from prior experimental literature (Cason and Mui, 2007,Cason and Mui, 2009); see

Figure 6.1. Of the leader’s four actions, two treat the subordinates symmetrically

(Transgress Against Both, Transgress Against Neither) and two treat the subordi-

nates asymmetrically (Transgress Against A, Transgress Against B). If the leader

chooses Transgress Against Both — rather than Transgress Against Neither — and

the subordinates do not both challenge, the leader’s payoff is increased by 6 and both

subordinates’ payoffs are lowered by 6 units. In the case of Transgress Against A,

the leader gains 2 units and the subordinate transgressed against (A) has her payoff

reduced by 6 units, exactly as in the Transgress Against Both case; A is referred to

as the targeted subordinate. The subordinate not transgressed against (B) has her

payoff raised by 1 unit relative to the Transgress Against Neither case; this represents

a bribe by the leader and so B is referred to as the beneficiary. The case of Transgress

Against B works identically, except B is targeted and A is the beneficiary. A bene-

ficiary’s dominant strategy is to choose Acquiesce. However, if the transgression by

the leader is to be resisted, both subordinates must choose challenge — coordinated

resistance corresponds to the lower-right square in each matrix (payoffs: 0, 7, 7).

There are three pure strategy subgame perfect Nash equilibria in the CR game:

(i) the leader plays Transgress Against Both, and both subordinates play Acquiesce;

(ii) the leader plays Transgress Against A and both subordinates play Acquiesce; and

(iii) the leader plays Transgress Against B and both subordinates play Acquiesce.

Importantly, there is no equilibrium of the game that involves the leader playing

Transgress Against Neither, and there is no equilibrium that has the subordinates

coordinating on the action Challenge when the leader attempts to divide and conquer

the subordinates.
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6.3 Prior Experimental Results

Cason and Mui (2007) have subjects play the CR game with the same payoffs we

use, and examine the effects of communication on the level of coordinated resistance

achieved by subordinates. In the baseline, subordinates do not communicate with

the leader or each other prior to making their decisions. There is a low frequency

of both coordinated resistance and leaders choosing Transgress Against Neither. In

the ex-post communication treatment, subordinates observe the leader’s action and

then send signals to the other subordinate indicating what action they intend to

take given the leader’s action. The likelihood of coordinated resistance was higher

than with no communication, with beneficiaries challenging roughly half of the time

when both subordinates signaled an intention to challenge. Additionally, leaders

played Transgress Against Neither significantly more often in the last thirty periods,

roughly 25%. In the private ex-ante communication treatment, prior to observing

the leader’s choice, subordinates send signals to each other indicating what choice

they intend to make for each of the four leader’s actions; subordinates then learn of

the leader’s action, and the subordinates simultaneously decide on an action which

could be the same or different from their intended choice. Beneficiaries challenged

about 33.2% of the time when both indicated an intent to challenge, and leaders

played Transgress Against Neither at a significantly higher rate compared to any

other treatment, roughly 37%.

Cason and Mui (2009) extend the experimental design, examining how repeated

matching with various ending rules interacts with the form of communication allowed

between subordinates to impact rates of coordinated resistance and leader transgres-

sion. Overall, they find that communication is better than repetition in coordinating

resistance. They suggest this is because “it makes it easier for subordinates to iden-

tify others who have social preferences and are willing to incur the cost to punish a

violation of social norms (p. 1)”. Next, we describe such a hypothesis more clearly
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and put forward an alternative hypothesis that explains the current data equally well.

6.4 Why Do Beneficiaries Challenge Transgression?

One hypothesis for the high rate of beneficiaries challenging is that some subor-

dinates have a preference for fairness. They care about the outcomes of the other

players, and hence are willing to challenge when they are a beneficiary because they

prefer the outcome in that case (lower payoff for leader, higher payoff for victim,

slightly lower payoff for themselves) to the outcome when they acquiesce (higher pay-

off for leader, lower payoff for victim, slightly higher payoff for themselves). Hence,

they are willing to pay an economic cost to challenge the leader’s transgression against

the victim. Such subordinates have a social preference reflecting solidarity with other

subordinates, and are willing to punish a leader viewed as violating a social norm

when he attempts to divide-and-conquer. This form of punishment can aid in the

maintenance of norms (Ostrom, 1990; Fehr and Gächter, 2002; Fehr and Fischbacher,

2003; Egas and Riedl, 2008).

This paper introduces another hypothesis: the high rate of beneficiaries chal-

lenging — and high rate of coordinated joint resistance — is due to strategic decision-

making by the subordinates. There are at least two strategic reasons for a beneficiary

to challenge transgression. The first reason is vertical in nature, and the hypothe-

sis is that the beneficiary choosing challenge aims to change the expectations of a

leader and hence alter his decision to one more beneficial in the future. The second

reason is horizontal in nature, and the hypothesis is that the beneficiary choosing

challenge aims to change the expectations of the other subordinate and hence alter

her behavior in the future. In both cases, there is strategic incentive to create an

expectation that transgression will be met with resistance. This relies on the argu-

ment that the observations of anonymous individuals’ play can affect beliefs about

the distribution of types in the population, and hence change future behavior through
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updating. The first reason — vertical in nature — is that if the leader’s divide-and-

conquer strategy gets met with resistance, then the leader may change his strategy in

the future to one where he chooses the Transgress Against Neither option. Under this

option, subordinates can secure a higher payoff than when they face a 50/50 chance

of being the victim of the leader’s transgression. Subordinates receive a certain pay-

off of 8 units under Transgress Against Neither compared to an expected payoff of

1
2
(9) + 1

2
(2) = 5.50 units from Transgress Against A or Transgress Against B. The

second reason — horizontal in nature — is that by challenging, a subordinate can sig-

nal to the other subordinate that resistance can be successful in an effort to alter

the other subordinates behavior in the future.3 Observing a beneficiary challenging

is a very strong signal, and can influence another subordinate’s strategy from one of

acquiescing to one of challenging. If so, then the pair can reach coordinated joint

resistance more often in the future and thereby earn higher payoffs. Both kinds of

strategic decision-making could be at work in the standard CR game. As a result,

it is unclear the extent to which coordinated resistance is motivated by expectation

building and the extent to which it is motivated by social preferences of subordinates.

Our experiment systematically removes each of the strategic reasons for a beneficiary

to challenge transgression while leaving in tact the motives for solidarity. Each treat-

ment involves some portion of the subjects pre-committing their actions. We explain

this in more detail in the next section.

6.5 Experimental Design and Hypotheses

The baseline (b) treatment is a replication of the private ex-ante communication

treatment implemented by Cason and Mui (2007). One treatment — Leader Com-

3The expected future benefit to subordinates will be smaller under random rematching than
under repeated interactions since it may be many periods before interacting with the same leader
or same subordinate again, and with complete anonymity the subordinate will not know when they
do.
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mitment (lc) — has leaders pre-commit to their decisions in all periods. Such leader

commitment removes the ability for subordinates to influence the leaders’ future be-

havior by their action today. The second treatment — Subordinate Commitment

(sc) — goes one step further: leaders pre-commit to their decisions in all periods as

in lc and one subordinate also pre-commits to their intended actions and decisions

in all periods. Subordinate commitment removes the ability of the freely choosing

subordinate to alter behavior of the leader and the ability to alter the behavior of

the subordinate with whom they interact. Each of these treatments leave fairness

considerations intact.

The interaction between the leader and the two subordinates is as follows. The

leader chooses an action. Prior to learning the leader’s decision, subordinates are able

to communicate a message indicating their intended choice of challenge or acquiesce

for each of the four possible actions by the leader. Each subordinate then observes the

four intended choices signaled by the other subordinate. Then, the subordinates learn

the leader’s decision, and simultaneously choose an action to challenge or acquiesce;

the subordinate’s chosen action can be the same or different from the intended choice

specified under that action. The leader and subordinates learn all of the decisions

and the respective payoffs. This concludes the interaction. Each experimental session

consists of two phases, Phase 1 and Phase 2.4 Phase 1 is identical across all of the

treatments — subjects interact as described above for 10 periods and are randomly

re-matched at the end of each period. Phase 2 consists of the treatment portion of

the experiment.

In b, Phase 2 is identical to Phase 1 except subjects participate in 40 periods

in the phase, being randomly re-matched at the end of each period. The choice of

4The two phase structure of all of our treatments is slightly different from Cason and Mui, where
they have subjects participate in one phase consisting of 50 periods total. We implemented Phase
1 so that subjects would have experience interacting in the CR game before having to commit to
strategies in the future. It is a variation that we do not expect to make a difference. The instructions
and protocol are otherwise identical in the baseline.

147



this treatment as our baseline is based on two considerations. First, it is Cason

and Mui’s treatment with the highest level of coordinated resistance by subordinates

(making it easier to distinguish whether resistance rates are lower in other treatments

compared to the baseline treatment), and also the highest fraction of leaders who

choose the Transgress Against Neither action in later periods. Since we are interested

in comparing the rates of coordinated resistance across treatments, it makes sense to

select a baseline with the highest rate. Second, there is a similarity in the decision-

making environments for private ex-ante signals and our treatment sc where one

subordinate will pre-commit to signals and conditional actions in future periods before

any others’ actions are observed. In both cases signals are chosen ex-ante, before the

leader’s action can be observed.

In lc, the baseline treatment is modified to remove the vertical nature of the

strategic incentives from repeated play. This is accomplished by having the leaders

pre-commit to a strategy for the duration of the experiment. Subjects begin with

Phase 1. In Phase 2, leaders choose all their actions for the 40 periods of the phase

before any further periods are played. In each period, both subordinates observe the

leader’s pre-committed strategy for that period (only) and respond. Since the lead-

ers are pre-committed to a course of action regardless of subordinates’ choices, this

removes the incentive subordinates may have to produce a expectation for resistance

among the leaders. Consequently, under the hypothesis that subordinates are chal-

lenging to influence the leader’s behavior in the future, we predict that beneficiary

resistance — and hence coordinated resistance — will be lower in lc than in b. Sub-

ordinates will perceive no reputation-building motivation if the leaders are already

committed to their future course of action, even though they will play further rounds

of the game. Therefore, fewer beneficiaries will choose challenge, and this is our first

hypothesis.

Hypothesis 1 (Leader Commitment). Beneficiary resistance will be lower in lc than
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in b.

The lc treatment leaves open the possibility that subordinates’ actions will still

reflect their repeated interaction with other subordinates ; that is, it leaves open the

horizontal nature of strategic decision-making. There is still an incentive to coordinate

on resistance during any one period where only one subordinate is targeted because

the beneficiary of the transgression may find herself targeted by the leader in a future

period. In this sense, there is room for subordinates to influence the expectation of

other subordinates. To disentangle this expectation building incentive from other-

regarding preferences, we conduct an additional treatment. The sc treatment is

identical to lc with the additional constraint that half of the subordinates are also

pre-committed to a strategy in Phase 2. One subordinate chooses all of her intended

actions and actual actions for the remaining periods before observing any actions by

the others. The matching is such that each group contains one pre-committed leader,

one pre-committed subordinate, and one subordinate who is free to choose her action

period-by-period. The subordinate commits to an action in response to each possible

leader action in the period. In addition, the committed response to a specific leader

action can be contingent on the other subordinate’s intended action in response to that

action by the leader in that period (but not other periods; the committed action in the

period can only be contingent on that period’s leader action and other subordinate’s

intended action given the leader’s action). To simplify the set of choices available

to pre-committing subordinates, they are restricted to acquiesce if the leader plays

Transgress Against Both. The “free” subordinate knows that they will never interact

with a leader or a subordinate whose behavior is not pre-committed. This removes

all strategic incentives for the “free” subordinate, but still leaves open the possibility

of beneficiary challenging due to other-regarding preferences. Given that the “free”

subordinate interacts with players who have already committed to their future course

of action, she will perceive no incentive to change the leader’s or the subordinate’s
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expectations as this cannot change either’s behavior in the future, even though they

will play further rounds of the game. Therefore, we expect that beneficiary resistance

will be even lower in this treatment than the others, and this is our second hypothesis.

Hypothesis 2 (Subordinate Commitment). Beneficiary resistance by the “free” sub-

ordinates will be lower in sc than by the “free” subordinates in lc.

These are our two primary hypotheses. Define R(T ) as the rate of beneficiary

resistance under treatment T . Then H1 and H2 imply the following predicted ranking:

R (b) > R (lc) ≥ R (sc)

These rankings arise from the general hypothesis that by systematically removing

strategic incentives in repeated play, a subordinate’s willingness to engage in benefi-

ciary resistance will be reduced. Since beneficiary resistance is necessary for subor-

dinates to obtain joint resistance, we also hypothesize that rates of joint coordinated

resistance will follow the same pattern across treatments.

6.6 Procedures

The experimental sessions were conducted at the Robert Zajonc’s Laboratory in

the Institute for Social Research at the University of Michigan.5 We completed a

total of 24 independent sessions with 8 sessions for each of the three experimen-

tal conditions. The experiment was computerized using z-tree (Fischbacher, 2007).

Participants were undergraduates and were recruited using standard experimental

procedures. They participated in only one session. Each session required 1.5 to 2.5

hours to complete.

An experimental session ran as follows. Subjects received a $10 show-up payment

and were seated in the laboratory. Two sessions were conducted simultaneously with

5We ran the first session in late November 2007 and completed the last session in late April
2009. There were some coding issues that extended the length of time necessary to complete the
treatments.
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each session having 3 leaders and 6 subordinates.6 Once all subjects had completed

a consent form, the instructions were read aloud. The instructions used were the

same as those used by Cason and Mui (2007). The instructions used neutral terms

for the roles of leader and subordinates as well as their available actions: “Person

1” (the leader) chooses from “earnings squares” A, B, C or D and “Persons 2 and

3” (the subordinates) simultaneously choose X or Y . Subjects in each treatment

received the same instructions for Phase 1 of the session, being told that Phase 1

would last 10 periods (see Appendix ?? for the instructions). Subjects were informed

that there would be a second phase to the experiment as follows: “Phase 2 will be a

similar decision-making task, and you will have the same role in it that you have in

Phase 1. Further instructions will be provided before Phase 2 begins.”7 Subjects were

required to complete a quiz which included payoff calculations for all roles and ques-

tions to check their understanding about the interaction; the experimenter checked

the quizzes for accuracy. The quiz used was the same as that used by Cason and

Mui (2007).8 Subjects were then randomly assigned a role as either a leader or a

subordinate, and they kept this role throughout the session. Subjects were randomly

re-matched each period. Subjects first participated in Phase 1, consisting of 10 pe-

riods of the baseline version of the CR game. Then, prior to beginning Phase 2,

further instructions were given: in b subjects were informed they would participate

in 40 more periods, identical to those in Phase 1 (see Appendix ??); in lc the instruc-

tions provided additional information that the leader would pre-commit to a strategy

for all 40 periods before any more periods were played (see Appendix ??); and in

6Subjects were not aware that the re-groupings only happened among the 9 subjects in their
particular session. This is in keeping with Cason and Mui’s protocol.

7This deviates from Cason and Mui’s procedures, which had only one phase of 50 total periods.
Our aim is to give subjects experience in the CR game — with decisions counting for monetary
payment — prior to selecting pre-committed actions.

8Subjects were asked true/false questions about the interaction; for example, “You remain
grouped with the same two other participants in all decision-making periods” and “If you are Person
2 or Person 3, you must make the same choice on your decision screen as you indicated in the relevant
intention screen” and “If you are Person 2 or Person 3, your intentions are shown to all three people
in your group (Person 1, Person 2 and Person 3) before anyone makes actual decisions.”
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sc the instructions provided additional information that in each three-person group,

both the leader and one of the subordinates would be pre-committed while the other

subordinate would make decisions as in Phase 1 (see Appendix ??). Subjects then

participated in Phase 2, completing an additional 40 periods of one treatment, being

randomly re-matched each period. Participants earned points that were exchanged

for dollars at the exchange rate of $0.09/point. Once the session finished, subjects

were paid their accumulated earnings in private. Average earnings (excluding the

show-up payment) in b were $29.76 for the leaders and $27.51 for subordinates; in lc

earnings were $30.26 for the leaders and $27.01 for subordinates; and in sc earnings

were $25.05 for the leaders and $30.36 for subordinates.

6.7 Results

In this section, we begin by analyzing the extent to which the baseline data is

similar to the private ex-ante treatment conducted by Cason and Mui (2007). As we

demonstrate, the results are statistically indistinguishable. We then turn to analyzing

the rates of beneficiary and coordinated resistance.

Our focus is on Phase 2 behavior. Recall that Phase 1 is identical across treat-

ments — subjects participate in the baseline version of the CR for 10 periods. We are

interested in differences across treatments so the discussion will center on the results

in Phase 2. Periods of Phase 2 are labeled 11–50. We further restrict analysis to

periods 21–50 to allow time for subjects to learn — in both treatment conditions, the

decision environment has changed significantly from the baseline version of Phase 1.

To avoid issues of within-session dependence between participants’ actions, all the

tests we report use each session as an independent observation, so there are eight

observations per treatment.
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6.7.1 Replication

The baseline treatment uses instructions and procedures nearly identical to those

in Cason and Mui’s private ex-ante treatment. We compare the results along a

number of important behavioral dimensions, and find that the two are statistically

indistinguishable with respect to the following: the rate at which beneficiaries resist

when both indicate an intention to challenge, (27.1%, p = 0.6818, two-sided Mann-

Whitney test); the rate of joint resistance when both indicate an intention to challenge

(24.6%, p = 0.7718, two-sided Mann-Whitney test); the rate at which beneficiaries

resist given any signal (12.7%, p = 0.9045, two-sided Mann-Whitney test); the rate of

joint resistance given any signal (10.1%, p = 0.9522, two-sided Mann-Whitney test);

and the rate of leader non-transgression (24.0%, p = 0.5619, two-sided Mann-Whitney

test). As a result, we conclude that behavior in the baseline is indistinguishable from

that reported by Cason and Mui (2007). We now turn to discussing differences across

treatments and testing our hypotheses.

6.7.2 Beneficiary Resistance Rates Across Treatments

This section looks at the frequency of beneficiary resistance and coordinated resis-

tance when the leader attempts to divide-and-conquer, irrespective of the signals sent

by the beneficiary and victim. Table 6.2 reports the frequencies for each treatment.

We first briefly look at the correlation between signals and challenging. The data

is summarized in Table 6.1. In the baseline treatment, the beneficiary indicated

challenge 48.5% of the time. This message was not particularly truthful: when a ben-

eficiary indicated they would challenge, and conditional on the victim also indicating

challenge, the beneficiary actually challenged only 27.1% of the time. However, the

frequency of beneficiary challenging when both indicated an intention to challenge

is significantly higher than under any signal — 27.1% versus 12.7% (p = 0.00830,

one-sided pairwise t-test). In lc, beneficiaries were somewhat more truthful in their
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Baseline Leader Commit

Victim Beneficiary Joint Victim Beneficiary Joint
Message: Challenge Challenges Challenges Resistance Challenges Challenges Resistance

Only Victim
52/185

28.1
5/185

2.7
2/185

1.1
60/238

25.2
2/238

0.8
1/238

0.4

Only Beneficiary
24/57
42.1

6/57
10.5

2/57
3.5

22/52
42.3

12/52
23.1

7/52
13.5

Both
145/203

71.4
55/203

27.1
50/203

24.6
115/161

71.4
71/161

44.1
58/161

36.0

Neither
16/91
17.6

2/91
2.2

0/91
0.0

13/115
11.3

1/115
0.9

0/115
0.0

Subordinate Commit Subordinate Commit
(Free Sub Targeted) (Commited Sub Targeted)

Victim Beneficiary Joint Victim Beneficiary Joint
Message: Challenge Challenges Challenges Resistance Challenges Challenges Resistance

Only Victim
35/69
50.7

15/69
21.7

12/69
17.4

6/28
21.4

1/28
3.6

0/28
0.0

Only Beneficiary
1/3
33.3

0/3
0.0

0/3
0.0

13/39
33.33

11/39
28.2

4/39
10.3

Both
40/41
97.6

26/41
63.4

26/41
63.4

47/49
95.9

9/49
18.4

9/49
18.4

Neither
1/38
2.6

0/38
0.0

0/38
0.0

0/36
0.0

0/36
0.0

0/36
0.0

Table 6.1: Action by Subordinates Conditional on Message of Challenge (Periods 21–50)

signals: they indicated they would challenge 37.6% of the time, and when they indi-

cated challenge they actually challenged (conditional on the victim indicating chal-

lenge) 44.1% of the time. This is significantly higher than the rate across any signals,

15.2% (p = 0.01039, one-sided pairwise t-test).

In the subordinate commit treatment, when the committed subordinate was tar-

geted the free subordinate indicated they would challenge over half (57.9%) the time

but followed through, when the committed subordinate had indicated they would chal-

lenge, only 18.4% of the time. This frequency was only marginally significantly higher

than for any signals (13.8%, p = 0.09013, one-sided pairwise t-test). When the free

subordinate was targeted, the committed subordinate only indicated they would chal-

lenge 29.1% of the time, but conditional on both indicating challenge they challenged

63.4%, significantly higher than the overall rate of challenge (27.2%, p = 0.06160,

one-sided pairwise t-test).

As can be seen from Table 6.1, in all treatments victims indicated challenge more
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than half the time, and conditional on both subordinates indicating challenge they

challenged more than 70% of the time.

Now we move on to our main results. Using the measures of resistance conditional

on any signal to test our hypotheses, we find that beneficiary resistance rates in lc

are not significantly different from b— 15.2% versus 12.7% (p = 0.3974, one-sided

Mann-Whitney test).

Result 1. The rate of beneficiary resistance in lc is not significantly different from

the rate in b.

The rates are also not different in sc for actions taken by the free subordi-

nate — 13.8% versus 12.7% (p = 0.2005, one-sided Mann-Whitney test).

Result 2. The rate of beneficiary resistance in sc when the beneficiary is the free

subordinate is not significantly different from the rate in b.

Results 1 and 2 do not support our hypotheses 1 and 2. We also look at the

behavior of committed subordinates in sc when they are beneficiaries. The rate of

beneficiary challenge for actions taken by the committed subordinate when the free

subordinate is the one targeted in sc is over twice the rate of beneficiary challenge in

b— 27.2% versus 12.7% — but this difference is due to a couple of extreme sessions,

and the difference is not significant when tested by a rank-order test (p = 0.2483,

one-sided Mann-Whitney test).

Levels of joint resistance (when the leader chooses target transgression) follow the

same pattern as beneficiary resistance - the rate of joint resistance in b, 10.7%, is

not significantly different from the rate in lc, 11.7% (p = 0.4364, one-sided Mann-

Whitney test), and in sc when the beneficiary is the free subordinate - 8.6% (p =

0.2148, one-sided Mann-Whitney test). The level is higher in magnitude, 25.2%, in

sc when the beneficiary is the committed subordinate, but the difference is due to a
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Baseline Leader Commit Sub Commit Sub Commit

Free Targeted Committed Targeted

Ben Chall Joint Ben Chall Joint Ben Chall Joint Ben Chall Joint

11–20 38
172

27
172

37
185

24
185

13
49

12
49

12
50

11
50

% 22.1 15.7 20 13.0 26.5 24.5 24 22.0

21–30 18
179

13
179

31
189

23
185

10
44

8
44

8
53

5
53

% 10.1 7.3 16.8 12.4 22.7 18.2 15.1 9.4

31–40 26
179

23
179

31
189

24
189

15
52

15
52

8
53

5
53

% 14.5 12.8 16.4 12.7 28.8 28.8 15.1 9.4

41–50 24
178

18
178

24
192

19
192

16
55

15
55

5
46

3
46

% 13.5 10.1 12.5 9.9 29.1 27.3 10.9 6.5

21–50 68
536

54
536

86
566

66
566

41
151

38
151

21
152

13
152

% 12.7 10.1 15.2 11.7 27.2 25.2 13.8 6.5

Table 6.2: Resistance Rates Given Any Signal

couple high rate sessions, and a rank order test on sessions shows the difference to be

not significant (p = 0.2148, one-sided Mann-Whitney test) .

Result 3. The rate of joint resistance in b are not significantly different from the

rates in lc or in sc (when the beneficiary is the free subordinate).

Overall, then, the results are not supportive of the expectation-building hypothe-

sis. We introduced the hypothesis that the high rate of beneficiaries challenging — and

high rate of coordinated joint resistance — observed in the CR game could be due to

strategic decision-making by the subordinates. Thus our results provide support for

the hypothesis that beneficiaries who challenge a leader’s transgression are exhibiting

solidarity with the victim.

6.8 Conclusions

The coordinated resistance game provides a fruitful framework in which to ex-

plore a range of motivations for the observed solidarity among subordinates. In our

experiment, subjects repeatedly play the CR game under random and anonymous
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Baseline Leader CommitSub Commit (free targeted)Sub Commit (commit targeted)CM Priv. Ex-AnteCM Priv. Ex-Ante
1 - 10 16.0 13.9 23.6 23.6 22.7
11 - 20 15.7 13.0 24.5 22.0 10.8
21 - 30 7.3 12.4 18.2 9.4 4.3
31 - 40 12.8 12.7 28.8 9.4 7.9
41 - 50 10.1 9.9 27.3 6.5 9.9
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Figure 6.2: Joint Resistance Rates Across Treatments
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re-matching and with different types of pre-commitment. We investigate the extent

to which the observed coordinated joint resistance — which is not predicted by game

theoretic analysis of the game — can be explained by several potential motivations.

One potential explanation appeals to norms for fairness: when facing a leader at-

tempting to divide-and-conquer, the subordinate who would benefit by choosing to

acquiesce, instead chooses to challenge due to fairness considerations. Another ex-

planation appeals to reputation-building behavior: there is an individual incentive

for building a group reputation in an effort to achieve more efficient outcomes in the

future. Overall our results provide additional support for the hypothesis that benefi-

ciaries who challenge are exhibiting solidarity with the victim, rather than attempting

to strategically expectation build.
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6.9 Appendix 6.A

Instructions for Phase 1

There are two types of decision-making experiments: psychology and economics. In

psychology experiments, sometimes the researchers deceive participants involved in

the study. When this happens, they are required, before the end of the experiment,

to debrief everyone about the nature of the deception. Deception is not permitted in

an economics experiment. This is an economics experiment.

Please read the following instructions carefully. If you have a question at any time

please raise your hand and an experimenter will come by to answer your question.

Instructions for Phase 1

This is an experiment in the economics of multi-person strategic decision-making. If

you follow the instructions and make appropriate decisions, you can earn an appre-

ciable amount of money. The currency used in the experiment is points. Your points

will be converted to U.S. Dollars at a rate of $0.09 dollars to one point. At the end

of todays session, you will be paid in private and in cash. It is important that you

remain silent and do not look at other peoples work. If you have any questions, or

need assistance of any kind, please raise your hand and an experimenter will come

to you. If you talk, laugh, exclaim out loud, etc., you will be asked to leave and

you will not be paid. We expect and appreciate your cooperation. There will be

two phases to the experiment: Phase 1 and Phase 2. Phase 1 will consist of 10

periods. The 18 participants in todays experiment will be randomly split each period

between three equal-sized groups, designated as Person 1, Person 2 and Person

3 groups. If you are designated as a Person 1, then you remain in this same role

throughout both phases of the experiment. Participants who are not designated as

a Person 1 switch randomly between the Person 2 and Person 3 roles in different
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decision-making periods throughout both phases of the experiment. Phase 2 will be

a similar decision-making task, and you will have the same role in it that you have

in Phase 1. Further instructions will be provided before Phase 2 begins. At the

beginning of each decision-making period you will be randomly re-grouped with two

other participants to form a three-person group, with one person of each type in each

group. The groupings change every period, since you will be randomly re-grouped in

each and every period.

Your Choice During each period, you and all other participants will make one

choice. Earnings tables are provided on separate papers, which tell you the earnings

you receive given the choices that you and others in your group make. If you are

Person 1 then you choose the earnings square, either A, B, C or D. You make this

choice before the other two people in your group make their choices, on a decision

screen as shown on page 4. While Person 1 chooses the earnings square, however,
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Persons 2 and 3 have an opportunity to communicate to each other an intended

choice for every one of the four possible earnings squares. Persons 2 and 3 indicate

their intended choices simultaneously; for example, if you are Person 3 then you do

not learn the intended choices of Person 2 until after you indicate all your intended

choices. As noted on the example Intention Screen for Person 2 below, Persons 2 and

3 are not required to make the same actual choice as corresponding to their intended

choice, and they are always free to select either choice X or Y when they make their

actual decision.

While Persons 2 and 3 are indicating their intended choices, Person 1 chooses the

earnings square using the Person 1 Decision Screen as shown below.

After both Persons 2 and 3 have finished indicating their intended choices, the

computer program displays all the intended choices to both Person 2 and Person 3

as shown on the next page (page 5). The intentions and Person 1s earning square
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choice are also shown on the Decision Screen for Persons 2 and 3, as shown on page

6. Persons 2 and 3 then make their actual choice simultaneously; for example, if you

are Person 2 then you do not learn the actual choice of Person 3 until after you make

your choice. Both Persons 2 and 3 may choose either X or Y.

Your earnings from the choices each period are found in the box determined by

you and the other two people that you are grouped with for the current decision

making period. If both Persons 2 and 3 choose X, then earnings are paid as shown

in the box in the upper left on the screen. If both Persons 2 and 3 choose Y, then

earnings are paid as shown in the box in the lower right on the screen. The other two

boxes indicate earnings when one chooses X and the other chooses Y. To illustrate

with a random example: if Person 1 chooses earnings square A, Person 2 chooses

X and Person 3 chooses Y, then Person 1 earns 12, Person 2 earns 2, and Person 3

earns 1. You can find these amounts by looking at the appropriate square and box in
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your page of earnings tables. In summary, Persons 2 and 3 indicate simultaneously

their intended choice for each of the four earning squares that Person 1 can choose,

while Person 1 chooses the earnings square. When both Persons 2 and 3 have finished

indicating their intentions, the computer program displays all the intended choices

to both Person 2 and Person 3. The computer program also displays the earnings

square chosen by Person 1. Persons 2 and 3 then simultaneously make their choices

of X and Y. Remember, Persons 2 and 3 are not required to make the same actual

choice corresponding to their intended choice, and they are always free to select either

choice X or Y when they make their actual decision.

The End of the Period After everyone has made choices for the current period you

will be automatically switched to the outcome screen, as shown below. This screen

displays your choice as well as the choices of the people you are grouped with for the

current decision making period. It also shows your earnings for this period and your
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earnings for the experiment so far.

Once the outcome screen is displayed you should record your choice and the choice

of the others in your group on your Personal Record Sheet. Also record your current

and cumulative earnings. Then click on the OK button on the lower right of your

screen. Remember, at the start of the next period all participants are randomly re-

grouped, and you are randomly re-grouped each and every period of the experiment.

We will now pass out a questionnaire to make sure that all participants understand

how to read the earnings tables and understand other important features of these

instructions. Please fill it out now. Raise your hand when you are finished and we

will collect it. If there are any mistakes on any questionnaire, I will summarize the

relevant part of the instructions again. Do not put your name on the questionnaire.
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6.10 Appendix 6.B

Instructions for Phase 2: Baseline

We are entering the second and final phase of the experiment.

This phase will last for 40 periods.

Each of these 40 periods is identical to those in Phase 1.

Please continue to record all decisions on the Personal Record Sheet for your role;

they are attached to Phase 2 instructions.
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6.11 Appendix 6.C

Instructions for Phase 2: Leader Commitment

We are entering the second and final phase of the experiment.

This phase will last for 40 periods.

The only difference between periods in this phase and periods in the previous phase

is that each Person 1 will choose all of their actions for the next 40 periods now,

before any more periods are played.

That means in the next 40 periods, each Person 1 will be pre-committed to actions

that they will specify for each period after they finish reading this screen.

Those in the roles of Person 2 and Person 3 will make choices identically to how they

did in Phase 1.

Persons 2 and 3 will now have a few minute wait while those in the role of Person 1

make their next 40 choices.

Please continue to record all decisions on the Personal Record Sheet for your role;

they are attached to Phase 2 instructions.
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6.12 Appendix 6.D

Instructions for Phase 2: Both Commitment

We are entering the second and final phase of the experiment.

This phase will last for 40 periods.

There are two important differences between periods in this phase and periods in

the previous phase:

1. All Persons 1 will choose all of their actions for the next 40 periods now,

before any more periods are played.

That means in the next 40 periods, each Person 1 will be pre-committed to

actions that they will specify for each period after they finish reading this.

2. Half of those in the roles of Person 2 and Person 3 will indicate their intended

choices and choose all of their actions for all periods without observing

any choices made by either Person 1 or Person 2 and 3.

That means in the next 40 periods, half of the Persons 2 and 3 will be pre-

committed to intended choices and actions that they will choose before any

more periods occur.

The other half of the Persons 2 and Person 3 will make their choices in each period

as in Phase 1.

Note: for earnings square D, all Persons 2 and 3 will be restricted to intended choice

“X” and action “X”.

The division of the Persons 2 and 3 into these two categories will remain constant

across all 40 periods of this phase.

All participants will continue to be randomly re-grouped in each and every period.

Additionally, in each and every period, each Person 1 will be grouped with one

Person 2 or 3 who is pre-committed, i.e. has already indicated an intended choice
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and chosen an action for the period without observing any choices by others, and one

Person 2 or 3 who is not pre-committed, i.e. indicates his/her intended choice and

action for each period as in Phase 1.
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