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Chapter 1

Criminal Registries, Community Notification, and
Optimal Avoidance

Introduction

Criminal registry notification laws provide information about offenders to

at-risk neighbors with the intent of protecting the community. This paper

investigates the effect of notification laws on the behavior of criminals and

their law abiding neighbors and derives optimal notification policies. In my

model, informed neighbors 1) can practice costly avoidance to protect them-

selves, and 2) better recognize and report criminal activity to the authorities,

thereby increasing the probability of catching repeat offenders. Notification

therefore generates opposing externalities: protecting oneself often comes at

the cost of exposing one’s neighbor, while increasing the probability of de-

tection helps to deter criminal activity. Put simply, informed neighbors face

a choice: remain outside in harm’s way and help to deter crime, or retreat

to the relative safety of their house at a cost.

Modeling the neighborhood as a game in which each informed family

independently chooses its avoidance level (i.e. fraction of the day to stay in-

doors), I first study how notification policies affect neighborhood behavior. I
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show that avoidance obeys strategic complementarities: the more the neigh-

bors stay inside, the higher the incentives for each family to remain indoors. I

prove that equilibria exist and are necessarily symmetric. Equilibrium avoid-

ance may increase or decrease in the notification rate depending on whether

informing the marginal citizen mainly serves to deter crime or decrease the

average amount of time spent outside.

With a better understanding of the neighborhood’s response, I turn to

the issue of designing optimal notification policies. The government controls

both the penalty on convicted felons and the notification rate, and the main

results of the paper highlight the importance of getting these two policy levers

working together.1 I show that there always exists a penalty large enough to

ensure that equilibrium avoidance decreases in the fraction of the population

informed. Whenever this is the case, social welfare is necessarily increasing

in the notification rate, and therefore maximized by a “scarlet letter” policy

which informs the entire neighborhood. The higher notification rate leads to

lower per-family expenditures on avoidance and higher deterrence, since the

probability of detection is larger when more informed people are outside.

But this sword cuts both ways because notification with too small of a

penalty is worse than useless: it is harmful. The informed alter their behavior

at non-negligible costs and impose negative externalities on their neighbors.

In this case, notification entails a cost but no benefit: the criminal is insuf-

ficiently deterred while residents suffer from staying indoors. If the penalty

is too small, the government is better off keeping the criminals’ identities se-

cret. By not releasing any information the government ensures society does

not waste energy on costly avoidance.

1The penalty could take many forms but all that matters in the analysis is the criminal’s

loss in utility from punishment. For instance, a fine of $1,000 may reduce a criminal’s

utility by the same amount as a year in prison. These penalties would be equivalent in

the model. The model is not dynamic so incarceration is not an issue.
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Background

The most well-publicized criminal registry notification policy is “Megan’s

law,” which requires states to notify the public of registered sex offenders

in their neighborhood.2 But there are registries and notification policies

for many other types of criminals. Some examples of approved or proposed

registries and notification policies are for criminals convicted of elderly abuse,

animal abuse, hate crimes, gang crimes and drug dealing [Welch [2008]]. Part

of the rationale for community notification is that these types of offenders

are especially prone to recidivism and often commit their crimes close to

home.3 Notification is thought to help at-risk neighbors protect themselves

by monitoring and avoiding the potential threats in their community. If the

community is made aware of criminals’ presence, they can take actions to

protect themselves.

In practice, governments do not directly choose what fraction of the neigh-

borhood to inform. But they do choose the method and intensity of noti-

fication, which together determine to a large extent the fraction informed.

Popular methods of notification include online databases searchable by any-

one with an internet connection, individual letters sent in the post, holding

a registry at the police station which can be accessed by those deemed “at

risk”, and door-to-door notification.4 Each of these methods entails different

costs. I ignore the physical costs of notification in this paper and instead

focus on the costs generated by the strategic interaction of the informed

neighbors. My goal is to clarify our understanding of the costly behavioral

2All 50 states currently have versions of Megan’s law in place.
3Hanson et al. [2003] report that recidivism rates amongst sex offenders are at least 14%

after 5 years, 20% after 10 years, and 30-40% after 20 years (these are understatements

because some crimes go undetected). While criminal behavior for sex offenders declines in

age of the offender, it does so more slowly than for other crimes (Hanson [2002]).
4Surveys described in Philips [1998], Kernsmith et al. [2009], and Lieb and Nunlist

[2008] provide information about notification methods and rates.
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response to notification.

The reasoning supporting notification is that informed neighbors can bet-

ter avoid potential threats, or at least limit their exposure. But as this paper

shows, information can be a burden to the community. Informed families al-

ter their behavior in order to reduce their chances of being victimized. Once

a family learns there is a potential danger, it can no longer be as carefree:

doors must remain locked, children must be supervised, and outdoor activ-

ity in general is curtailed. Such avoidance behaviors are costly. Along with

the administrative costs and potential harm to the criminal, the cost of the

neighborhood response should be a consideration in any cost-benefit analysis

for notification laws.

I model avoidance as displacing crime. When i stays inside more often, the

probability j is attacked increases because criminals are less likely to select i

from the crowd. The actual mechanism might be more subtle, but the results

are the same. With the informed inside more often, there are simply less

potential witnesses on the street, making crimes easier to commit. Further,

when the informed are inside they cannot warn their neighbors and protect

them as dangerous situations arise. If, in contrast, the informed stay outside

more often, deterrence increases because they know who the criminals are

and can watch over their neighbors. Criminals will be caught more often and

will therefore be deterred from attacking unless the opportunity is especially

good.

Literature Review

Since Becker [1968], the study of how criminals respond to incentives has

flourished. Recent studies have investigated the deterrence effects of police

and incarceration [Levitt [1997], Di Tella and Schargrodsky [2004]], condi-

tions in prisons [Katz et al. [2003]], and gun ownership [Lott [1998], Mialon
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and Wiseman [2006]]. Other papers study the relationship between reputa-

tion concerns and violent crimes [Silverman [2004]], incarceration’s effect on

the supply of crime [Freeman [1996]], the interplay of crime and vigilance in a

general equilibrium framework [Smith [2010]], and optimal law enforcement

[Eeckhout et al. [2010], Polinsky and Shavell [2000]]. My research adds to

this literature by studying an additional crime fighting tool available to the

government: community notification policies.

Previous research on criminal registries and notification policies has fo-

cused on sex offenders. These studies were primarily concerned with the

effect notification had on recidivism rates and offender well-being [Prescott

and Rockoff [2011], Adkins et al. [2000], Walker et al. [2005], Agan [2008]].

Much of this literature has difficulty finding any effect of registration and

notification on recidivism rates. Prescott and Rockoff [2011] show that reg-

istration programs reduce crime by providing police with better information

on offenders’ whereabouts, but the effect of notification programs is ambigu-

ous. Notification programs reduce first time offenses by effectively increasing

the penalty, but may increase recidivism rates by lowering the return to

non-criminal activities and thereby the incentives for good behavior.

In my model the crime rate increases in the notification rate only when

equilibrium avoidance increases sufficiently quickly. In such a situation,

higher notification rates lead to a higher fraction of uninformed people on

the street, making crime easier and more attractive.

The extent of the literature’s focus on neighborhood well-being is to quan-

tify the effect a nearby offender has on property values [Linden and Rockoff

[2008], Pope [2008]]. The results generally show a negative relationship be-

tween the existence of a sex offender and housing values, with the drop in

housing prices ranging from 2.3% to 18%. I take this as evidence that the

law-abiding public cares about the registry. Avoidance is unobservable and

difficult to verify but the correlation between house price and notification
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implies that individuals’ response to being informed is non-negligible.

This paper also contributes to a large literature on the value of publicly

disclosing information, of which Jin and Leslie [2003] and Dranove et al.

[2003] are particularly relevant. Jin and Leslie [2003] studies the restaurant

hygiene report card program instituted in Los Angeles and Dranove et al.

[2003] studies the health care provider report card program instituted in New

York. While more information to the consumer increases social welfare in Jin

and Leslie [2003], Dranove et al. [2003] find the opposite due to providers’

ability to “game the system”.

My result that notification can be welfare increasing or decreasing com-

bines elements of Jin and Leslie [2003] and Dranove et al. [2003] since in-

formed neighbors’ incentives may not be aligned with society’s. Once in-

formed, a family faces private incentives to protect itself by staying off the

street. From society’s point of view, this is exactly the wrong thing to do. In-

formed families should be outside as much as possible, thereby increasing the

deterrence effect and helping the entire neighborhood. Whether notification

or secrecy is optimal depends precisely on how much deterrence informing

provides relative to how much families keep off the streets. The government

imposed penalty is needed to generate sufficient deterrence so that incentives

are aligned and notification improves welfare.

Model

Motivation

Before going into detail, in this section I provide an intuitive story to motivate

the model. Consider a neighborhood consisting of a past offender (i.e. a

potential threat) and neighbors A and B. Suppose, due to low effort and

insufficient resources devoted to notification, only A becomes informed of
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the criminal’s existence. Neighbor A responds by undertaking avoidance

measures while B does not alter his behavior. This avoidance is costly, but it

reduces A’s probability of being attacked. If the offender wants to commit a

crime, the probability that B is the one attacked therefore increases. In this

way notification generates negative externalities.

The positive externality, deterrence, is generated by the following mech-

anism. When informed, A learns the offender’s characteristics and prepares

himself in the event of an attack. If A is attacked, he is more likely to iden-

tify the offender as the person he saw in the registry, whereas B might have

trouble remembering the characteristics of his attacker. The criminal is more

likely to be caught if he attacks an informed neighbor. The criminal knows

the government’s notification policy and computes the expected probability

of detection. Since he cannot identify who is informed, the deterrence helps

everyone in the neighborhood.

Model

The neighborhood has a mass of criminals, normalized to 1, and a mass

P > 1 of families. A fraction β of the families are informed of the criminals’

existence, while fraction 1 − β are uninformed and have no idea criminals

might be nearby.5 That mass βP of the families are informed is common

knowledge between the informed families and the criminals, but the criminals

cannot identify who is informed.

Informed families choose avoidance level a ∈ [0, 1], where a represents the

fraction of the day they “lay low” inside, away from harm. Avoidance level

a costs c(a), where c : [0, 1] 7→ [0,∞) is increasing and convex and satisfies

c(0) = c′(0) = 0. Uninformed families make no choice. I normalize the

5Later I will discuss the implications of relaxing this assumption and letting the unin-

formed do inference after observing a noisy signal of their neighbors’ actions.
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harm of being attacked to one; if a mass m of criminals attack i, his utility

decreases by m.

Criminals attack when the expected benefits outweigh the expected costs.

I assume the value criminal j derives from attacking a family is θj ∼ U [0, 1].

The realization of θj is known to the criminal before he decides whether to

attack. Attacking criminals randomly choose one (and only one) family to

attack. If he attacks and does not get caught his payoff is θj. If he attacks

and gets caught, his payoff is θj − τ , where τ is the penalty imposed by the

government. If the criminal does not commit the crime, he gets nothing; he

cannot target another family.

When the criminal attacks an uninformed family, he is caught with prob-

ability d, while attacking an informed family results in a detection rate of

D ≥ d. These values are known to the criminal and the informed families.

Family i’s expected cost of attacks when all other informed families use

avoidance level a and a mass of m criminals attack is

m
1− ai

P (β(1− a) + (1− β))
= m

1− ai
P (1− βa)

(1)

Equation (1) shows that each family’s expected harm from attacks is equal

to the amount of time it spends outside relative to the total amount of time

all neighborhood families spend outside, scaled by the mass of attacking

criminals (and the cost of being attacked, which is one).6

There is a potential problem when everyone is informed and staying inside

all day because if family i considers spending any part of the day outside, it

will be attacked infinitely often. The following assumption guarantees there

will always be some families outside.

A1 The maximum amount of avoidance is ā < 1.

6Since I will prove that equilibria are necessarily symmetric, fixing the avoidance level

of all other families at a is without loss of generality.
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In order to guarantee interior equilibria, I also make the following assumption

on the cost curve.

A2 Staying inside all day is dominated by staying outside all day; that is:

c(ā) > ā
P (1−ā)

.

The qualitative results which follow do not depend on these two assumptions.

Without them, the analysis would be a bit tedious, mainly due to worrying

about corner solutions.

Comments

Since the neighborhood is composed of a continuum of agents, each individ-

ual’s actions has negligible effect on the community. The analysis will focus

on symmetric equilibria in which all informed agents take the same action.

So even though each individual family’s avoidance has negligible effect on

the community, there is an externality generated by the avoidance of the

informed as a group.

Avoidance generates strictly negative externalities in this paper. When

A stays inside more often, not only does the conditional probability that

B is attacked increase, but the level of deterrence decreases. This happens

because A is informed and entails the higher detection rate D. When he stays

inside more often, he is less likely to be randomly selected by the criminal,

and so the criminal faces a lower expected probability of being caught. It

is possible to imagine situations in which the action taken by the informed

generates positive externalities. As an extreme example, suppose all informed

families carry weapons at all times. This action would generate a positive

externality for the uninformed because the criminal would worry that his

potential victim is armed.

The literature on property values and notification laws reports significant

results only for very small distances (i.e. less than 0.1 miles). Therefore,
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I think of the mass of the law-abiding neighbors relative to the mass of

criminals as “small”. It is difficult to explicitly define “small” in this context,

but P should be small enough to generate incentives for avoidance, and to

make the externality effects relevant.

Non-Deterrable Criminals

I start by analyzing non-deterrable criminals to isolate one aspect of the

model. Without deterrence, notification generates purely negative external-

ities. Informed neighbors practice avoidance to protect themselves, which

shifts the expected cost of attacks onto their neighbors. This effect exists

in the more general model with rational criminals, but is especially easy

to see when criminals cannot be deterred by increases in the probability of

detection.

The economics of crime literature has largely proceeded under the as-

sumption that criminals respond to incentives. There is however evidence

that some criminals cannot be deterred from committing crimes.7 What is

important for this section is that non-deterrable criminals always commit

crimes; any opportunity is sufficient for them. The analysis here will be brief

7Lee and McCrary [2009] exploit the discontinuous increase in penalties as criminals

turn 18 years old. They find an extremely small response: criminals a few days younger

than 18 years old do not commit many more crimes than those a few days over 18 despite

facing much shorter jail sentences. This, as they point out, could be evidence that the

criminals are not responding to incentives, or simply myopia. Wright and Decker [1994]

and Cromwell and Olson [2003] both study samples of burglars who have committed

hundreds (and in some cases thousands) of thefts in their lifetimes. These criminals seem

unable to resist committing a crime if the opportunity presents itself. That said, even

these non-deterrable criminals regularly make “occupancy probes” in order to lower their

probability of detection. An occupancy probe might take the form of consulting funeral

announcements and/or contacting relevant houses by phone to make sure no one is home.
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with the intent of simplifying one aspect of the more complicated general

model.8

Informed family i takes as given the other informed families’ avoidance

levels and chooses ai to minimize the expected costs of being attacked plus

the costs of vigilance. That is, they solve:

max
ai

{
− 1− ai
P (1− βa)

− c(ai)
}

Optimal avoidance is always interior because marginal benefits exceed marginal

costs at ai = 0, and assumption A2 ensures ai = ā is dominated by ai = 0.

Optimal avoidance necessarily satisfies the first order condition

1

P (1− βa)
= c′(ai) (2)

I write family i’s best response when all other informed families use avoidance

level a as ai(a). Family i’s best response function is increasing because c′ is

increasing. The equation characterizing a symmetric equilibrium is

1

P (1− βa)
= c′(a) (3)

I will focus attention on equilibria that are locally dynamically stable.

Such equilibria might be observed as the outcome of a dynamic process in

which a small fraction of the informed neighbors adjust their avoidance each

period by best responding to the average avoidance level observed in the

neighborhood. The resting point of this dynamic process will be an equilib-

rium which is stable in that the best response to an avoidance level close to

the equilibrium pulls the average avoidance level closer to the equilibrium.

Equilibria which are locally dynamically unstable would never be observed

as the outcome of this process. I will give a practical definition of local dy-

namic stability here in the text, and discuss the issue in more detail in the

appendix.

8Important details like the existence of an equilibrium will be ignored for now but

proved for the more general model later in the paper.
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Figure 1.1 The Best Response Function

-

6

ā

ai(a)

x y z

Definition A symmetric equilibrium is locally dynamically stable if the best

response curve intersects the 45◦ line from above.

Figure 1.1 helps to illustrate this concept. In this figure, there are three

symmetric equilibria, labeled x, y, and z. Avoidance levels x and z are

locally dynamically stable because the best response curve intersects the 45◦

line from above, while avoidance level y is unstable.

We can now deduce equilibrium behavior as the fraction of neighbors

informed of the criminals’ existence increases. When there is no possibility of

deterrence, as the notification rate increases and more neighbors take refuge

in their house, the amount of time each stays inside increases.

Lemma 1. For non-deterrable criminals, equilibrium avoidance increases in

the notification rate.

Proof. As β increases, the left hand side of family i’s first order condition in

(2) increases. This means the best response curve shifts up. Since the best

response curve intersects the 45◦ line from above in any dynamically stable

equilibrium, the equilibrium avoidance level must increase as the notification

rate increases.
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Since criminals cannot be deterred from crime by the higher probability

of detection, the only externality at play here is the negative externality

of avoidance. A higher notification rate leads to more people who practice

avoidance. With more people practicing avoidance, the marginal benefit

increases, which in turn causes everyone to practice yet more avoidance.

Informed citizens face stronger incentives to stay inside, thereby increasing

the expected harm to anyone who remains outside on the streets.

In this case, the government’s optimal notification policy is to keep the

criminals’ identities secret. Define neighborhood welfare as the integral of the

neighbor’s utilities. Since notification entails costly avoidance but cannot de-

ter crime, the government maximizes neighborhood welfare by not informing

anyone of the criminals’ existence.

Lemma 2. For non-deterrable criminals, neighborhood welfare is decreasing

in the notification rate. The optimal notification policy is to notify no one.

Proof. Write equilibrium avoidance as a function of the notification rate as

a(β). Since the mass of attacks is always one, neighborhood welfare as a

function of the notification rate is

w(β) = −1− Pβc(a(β))

As β increases, both the fraction of the population bearing the cost of avoid-

ance and the amount of avoidance they use increases. Welfare decreases in

the notification rate and is therefore maximized at β = 0.

Notification policies, in the absence of deterrence, are harmful at the

societal level because they cause families to change their behavior (at a cost)

but do not affect the mass of criminals who attack. Notification merely

displaces crime from one group of citizens to another. The total amount of

crime stays constant while expenditures on avoidance increase. The welfare
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maximizing policy is to notify no-one, and thus ensure society does not waste

its effort on costly avoidance.

In order for notification to be good for the community, it therefore must

be the case that criminals respond to incentives. The only way for the com-

munity to be made better off by notification is for the crime rate to decrease

as more people learn of the criminals’ existence. When more people know

who is potentially dangerous, the criminals are more likely to get caught

committing a crime. They therefore become more selective in determining

when to attack, which decreases the danger to their neighbors.

Rational Criminals

I now turn to the more general model of rational criminals. The negative

externality isolated in the analysis of non-deterrable criminals is still present,

but it can be counteracted by the positive externality of deterrence. Crimi-

nals are more likely to be caught when attacking an informed neighbor, but

they cannot identify who is informed and who is not. Holding everything

else constant (including avoidance), higher notification rates therefore lead to

more deterrence. Counteracting this is the fact that once informed, neighbors

face a private incentive to practice avoidance which robs the neighborhood

of the desirable deterrence effect.

Rational criminals commit crimes when the expected benefits outweigh

the expected costs. Let δ represent the criminals’ expected probability of

detection, which will be determined by equilibrium behavior. The criminals

attack when (1 − δ)θ + δ(θ − τ) ≥ 0, or θ ≥ τδ. Since criminal values are

distributed uniformly on the unit interval, the mass of attacking criminals is

1− τδ.9

9Of course, this is only true if τδ ∈ [0, 1]. I restrict attention to this case because when

τδ > 1, no crimes are committed.
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A symmetric equilibrium is defined by a cutoff criminal value θ at which

criminals are indifferent between attacking and not, and an avoidance level

a which is optimal for each informed family given that all other informed

families use avoidance a. I will later show that any equilibrium is necessarily

symmetric, so the analysis proceeds under this assumption.

Recall that the probability of being caught when attacking an uninformed

family is d and the probability when attacking an informed family is D > d.

Criminals’ expected probability of detection in an equilibrium where the

notification rate is β and all informed families use avoidance level a is

δ(β, a) =
(1− β)d+ β(1− a)D

1− βa
The cutoff criminal value is therefore

θ = τ
(1− β)d+ β(1− a)D

1− βa
Family i’s problem is to minimize the expected costs of attacks plus the

cost of avoidance, taking other informed families’ avoidance level a and the

cutoff criminal value described above as given:

max
ai

{
−
(

1− τ (1− β)d+ β(1− a)D

1− βa

)
1− ai

P (1− βa)
− c(ai)

}
Optimal avoidance is interior because marginal benefits exceed marginal costs

at ai = 0, and assumption A2 implies ai = ā is dominated by ai = 0. Family

i’s optimal avoidance necessarily satisfies the first order condition(
1− τ (1− β)d+ β(1− a)D

1− βa

)
1

P (1− βa)
= c′(ai) (4)

I write family i’s best response when all other informed families are using

avoidance level a as ai(a). A symmetric equilibrium is characterized by the

equation (
1− τ (1− β)d+ β(1− a)D

1− βa

)
1

P (1− βa)
= c′(a) (5)
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Note that avoidance obeys strategic complementarities. The expected harm

of attacks for a family who remains outside increases as the neighbors spend

more time indoors for the simple reason that there are less people on the

streets for the criminals to attack. Family i’s incentives for avoidance are

therefore increasing in the amount of avoidance their neighbors practice.

This can be seen in family i’s first order condition in (4) because both terms

on the left hand side are increasing in a, implying ai increases in a.

I start by studying the equilibrium behavior of criminals and neighbors

with the goal of getting a better understanding of how equilibrium behavior

depends on the notification rate. The following lemma shows that symmetric

equilibria exist, and further, that all equilibria are necessarily symmetric. It

does however allow for the possibility that multiple symmetric equilibria

exist.

Lemma 3. Locally dynamically stable equilibria exist and are necessarily

symmetric.

Proof. When a = 0, the left hand side of (5) is strictly positive while the

right hand side is zero. When a = ā, assumption A2 guarantees the right

hand side is larger than the left hand side. The intermediate value theorem

guarantees there is some a ∈ (0, ā) where (5) holds with equality. Moreover,

since ai(0) > 0 and ai(ā) < ā, the best response curve must cross the 45◦

line from above at least once.

Equilibria are necessarily symmetric because the marginal benefit of avoid-

ance is independent of one’s own avoidance while marginal costs are strictly

increasing in own avoidance. It is impossible for marginal benefits to equal

marginal costs at two or more distinct avoidance levels.

Multiple symmetric equilibria may exist in this model. As in Section

, I will focus attention on locally dynamically stable equilibria. These are

the outcomes that we would expect to observe if the neighborhood arrived
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at an equilibrium through a dynamic process where each period a fraction

of the informed families best respond to their neighbors’ average avoidance

level.10 Practically, locally dynamically stable equilibria occur where the best

response curve intersects the 45◦ line from above.

The comparative static I am most interested in is how equilibrium avoid-

ance depends on the notification rate. The unambiguous result that equilib-

rium avoidance increases in the notification rate for non-deterrable criminals

in Lemma 1 derives from the fact that the term 1/(P (1−βa)), the marginal

benefit of avoidance when criminals are non-deterrable, increases in β for

all a. Rational criminals, however, can be deterred by notification; for fixed

avoidance, the probability of detection increases in the notification rate. This

means that the mass of attacking criminals, 1− τδ(β, a), decreases in the no-

tification rate. Whether equilibrium avoidance increases or decreases in the

notification rate depends on how much extra deterrence the marginal in-

formed citizen provides relative to how much less time the informed spend

outside.

Before answering this question analytically, it is useful to think about

how changes in the notification rate affect the best response function. If

an increase in β causes a sufficiently large increase in 1 − τδ relative to the

decrease in 1/(P (1 − βa)), the left hand side of the first order condition in

equation (4) increases. This causes agent i’s best response function to shift

upwards. Looking at Figure 1.1, we see that in any locally dynamically stable

equilibrium an upward shift in the best response function corresponds to a

larger equilibrium avoidance level. The opposite is true if the best response

curve shifts downwards.

Lemma 4. Equilibrium avoidance decreases in the notification rate if and

only if, as the notification rate increases and avoidance is held constant, the

10Please see the appendix for a more detailed explanation of this dynamic process.
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effect on deterrence is sufficiently large relative to the effect on the average

time spent outside per family.

Proof. Let π(β, a) ≡ 1
P (1−βa)

. Differentiating the left hand side of (4) with

respect to β gives

−τδβπ + (1− τδ)πβ

The best response function shifts downwards whenever this expression is

negative. Since the best response function intersects the 45◦ line from above

in any locally dynamically stable equilibrium, a downwards shift in the best

response function leads to a lower equilibrium avoidance level. Avoidance

decreases in the notification rate if

πβ
π
<

τδβ
1− τδ

The left hand side of this inequality can be simplified to a
1−βa , so I re-write

the above as
a

1− βa
<

τδβ
1− τδ

Since 1− βa = β(1− a) + (1− β), the left hand side of this inequality is the

percentage decrease in the average amount of time each family spends out-

side. The right hand side is the percentage decrease in the mass of attacking

criminals.

This result helps to clarify equilibrium behavior as the notification rate

increases. As more of the neighborhood learns of the criminals’ existence,

two things happen. First, there are more people who know to look out for the

criminals and can better recognize them if an attack happens. This raises the

probability an attacking criminal is caught and helps to deter crime. Second,

there are more people who can now practice avoidance. If the deterrence

effect of notifying additional neighbors is large enough, equilibrium avoidance

decreases; everyone can spend a bit more time outside because the mass of
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criminals who have an incentive to attack decreases. If, on the other hand,

notifying additional neighbors mainly serves to take them off the streets and

increase the other families’ probability of being targeted by criminals, then

the equilibrium avoidance level will increase.

Building on the previous lemma, I derive a result on the shape of the

equilibrium avoidance function. Let a(β) be the equilibrium avoidance level

as a function of the notification rate. The following lemma is primarily useful

in proving the main results. Here I show that the equilibrium avoidance

function is either always increasing, always decreasing, or first increasing

and then decreasing in the notification rate.

Lemma 5. The equilibrium avoidance function is single peaked in the noti-

fication rate.

Proof. I show that whenever the slope of equilibrium avoidance equals 0, the

second derivative is negative. The slope of equilibrium avoidance, given by

the implicit function theorem, is

da

dβ
=

τδβπ − (1− τδ)πβ
(1− τδ)πa − τδaπ − c′′(a)

(6)

The second derivative when da/dβ = 0 is

d2a

dβ2
=

(τδββπ + 2τδβπβ − (1− τδ)πββ)((1− τδ)πa − τδaπ − c′′(a))

((1− τδ)πa − τδaπ − c′′(a))2
,

because τδβπ − (1 − τδ)πβ = 0 by assumption. The denominator is always

positive and (1− τδ)πa − τδaπ − c′′(a) < 0 because the marginal cost curve

intersects the marginal benefit curve from below in any equilibrium. Simple

algebra gives

τδββπ + 2τδβπβ − (1− τδ)πββ = τδβ
δββ
δβ
π − (1− τδ)πβ

πββ
πβ

+ 2τδβπβ (7)

Since
δββ
δβ

=
πββ
πβ

=
2a

1− βa
> 0 ,
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the expression in (7) becomes

2a

1− βa
(τδβπ − (1− τδ)πβ) + 2τδβπβ

Since a′(β) = 0 when τδβπ − (1 − τδ)πβ = 0, second derivative a′′(β) <

0 whenever a′(β) = 0. This means a′(β) equals 0 at most once, and the

equilibrium avoidance function is quasi-concave.

Lemma 5 implies that if equilibrium avoidance is decreasing at β0, it is also

decreasing for any β1 > β0. Similarly, if equilibrium avoidance is increasing at

β1, it is increasing for any β0 < β1. This result is useful because the behavior

of equilibrium avoidance near the extreme values of β, which is often easiest

to determine, can give information about the interior range. For instance, if

limβ→0 a
′(β) < 0, then we know that equilibrium avoidance is decreasing in

the notification rate at all possible notification rates. This fact will be used

to prove the main results.

Welfare

The analysis up to this point has been mostly positive in focus. Lemma’s 3, 4,

and 5 help us to understand how the neighborhood responds to being notified

an offender lives in their midst. In order to determine when notification is

optimal a measure of community welfare is needed. I define welfare as the

integral of the utilities of all of the neighbors living in the community, ignoring

the criminals.11 Then equilibrium welfare is

w(β) = −(1− τδ(β, a(β)))− Pβc(a(β))

The next Lemma relates neighborhood welfare to equilibrium behavior when

equilibrium avoidance is decreasing.

11Criminals only receive utility from successfully completing attacks. Including their

utility in the welfare calculation would partially offset the lost utility of the neighbors.
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Lemma 6. Social welfare is increasing in the notification rate whenever equi-

librium avoidance is decreasing in the notification rate.

Proof. Differentiating equilibrium social welfare with respect to the notifica-

tion rate gives

w′(β) = τ(δβ + δaa
′(β))− Pc(a(β))− Pβc′(a(β))a′(β)

The terms δβ, δaa
′, and −Pβc′a′ are positive, so it suffices to show τδβ −

Pc(a(β))− Pβc′a′ > 0. I note three facts used to show this sufficient condi-

tion holds.

1. Since a(β) is equilibrium avoidance, it gives higher utility than using

a = 0:

−(1− τδ) 1− a(β)

P (1− βa(β))
− c(a(β)) > −(1− τδ) 1

P (1− βa(β))

⇒ (1− τδ) a(β)

1− βa(β)
> Pc(a(β))

2. From Lemma 4, we know that a′(β) < 0⇒ τδβ > (1− τδ)πβ
π

.

3. From differentiating π = 1/(P (1− βa)),
πβ
π

= a(β)+βa′(β)
1−βa(β)

.

The sufficient condition τδβ − Pc(a(β))− Pβc′a′ > 0 holds because

τδβ − Pc(a)− Pβc′a′ > τδβ − (1− τδ) a

1− βa
− Pβc′a′

> (1− τδ)
(
πβ
π
− a

1− βa

)
− Pβc′a′

= (1− τδ)
(
a+ βa′

1− βa
− a

1− βa

)
− Pβc′a′

= (1− τδ) βa′

1− βa
− Pβc′a′

= a′βP

[
(1− τδ) 1

P (1− βa)
− c′

]
= 0
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where the first inequality follows from Fact 1, the second from Fact 2, and

the first equality from Fact 3. The final equality holds because the first

order condition is satisfied at the optimal avoidance level. I conclude that

a′(β) < 0⇒ w′(β) > 0.

This result shows that when equilibrium avoidance decreases in the no-

tification rate, informing more neighbors makes the community better off.

Notifying more neighbors lowers the per-family expenditure on avoidance.

This increases deterrence because more people know and those who know

are outside more often. The proof shows that, despite increasing the mass of

families who use avoidance (and therefore adjust their behavior at a cost), a

marginal increase in the notification rate is welfare improving.

With these results in place, I now state and prove the main results of

the paper. These results demonstrate the importance of the government

imposed penalty in determining optimal notification policies. Specifically,

penalties and notification complement one another. I first show that for

severe enough penalties, equilibrium avoidance decreases over the entire range

of notification rates and, as Lemma 6 says, neighborhood welfare therefore

increases. This means that notification can be worthwhile for communities

if the government imposes sufficiently severe penalties on repeat offenders.

Proposition 1. There always exists a severe enough penalty so that full

notification is the optimal policy.

Proof. As the notification rate approaches zero, the slope of equilibrium

avoidance from (6) is

lim
β→0

a′(β) =
a(1− τd)− τ(1− a)(D − d)

Pc′′(a)
,

which is negative whenever

a

1− a
<
τ(D − d)

1− τd
(8)
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The right hand side of (8) increases in the penalty τ and gets arbitrary large

as τ → 1/d.

I now show that the left hand side of (8) approaches 0 for large enough

penalties. Define κ as inverse to marginal costs, so that κ(c′(a)) = a. As

β → 0, equilibrium avoidance satisfies limβ→0 a(β) = κ((1− τd)/P ). By the

properties of the cost function, κ is increasing and κ(0) = 0. As τ → 1/d,

both avoidance and the function a/(1− a) fall to 0.

Then as τ → 1/d, the left hand side of (8) approaches 0 while the right

hand side gets arbitrarily large. This means for large enough τ , limβ→0 a
′(β) <

0. By Lemma 5, equilibrium avoidance decreases over the entire range of no-

tification rates and by Lemma 6 the neighborhood’s welfare is maximized by

notifying everyone.

Proposition 1 helps to understand both when and why community noti-

fication improves welfare. Severe penalties help the efficacy of notification.

Large penalties on their own can deter crime, but the effect is magnified

when coupled with community notification. The penalty and notification are

complements. Informed neighbors entail a higher probability of detection,

so the probability an attacking criminal has to pay the higher penalty in-

creases with notification. This lowers the chance that a criminal will attack

and also, importantly, the incentives for avoidance. The informed therefore

spend more time outside, further generating deterrence.

The community is effectively empowered by public notification in con-

junction with severe penalties. As more of the neighbors are informed, the

probability of detection continues to rise and so the informed can spend more

time outside instead of barricading themselves inside their house.

The next result provides a partial converse to Proposition 1 and is closely

related to the analysis of non-deterrable criminals. If the penalty chosen by

the government is too small, criminals will not be sufficiently deterred. In this

case, informing generates a burden on society because the community spends
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a lot on avoiding criminals but cannot completely insulate itself. Someone is

always left outside, providing an easy target for the attacking criminals.

Proposition 2. For small enough penalties, notifying no-one is optimal.

Proof. I will show that when the penalty is lenient enough, neighborhood

welfare is decreasing for all β, implying the optimal notification rate is β = 0.

Equilibrium welfare is w(β) = −(1 − τδ(β, a(β))) − Pβc(a(β)), and so the

slope is

w′(β) = τ(δβ + δaa
′(β))− Pc(a(β))− Pβc′(a(β))a′(β)

I first show that for small enough τ , a′(1) > 0. When β = 1, the slope of

equilibrium avoidance equals

da

dβ

∣∣∣∣
β=1

=
Pτ(D − d)− (1− τD)a(1)

P 2(1− τD)β − P 2(1− a(1))2 − c′′(a(1))

Fix Me! The denominator is negative in any equilibrium, and for small

enough τ the numerator is also negative, implying a′(1) > 0. Lemma 5

ensures that a′(β) > 0 for all β whenever τ is small enough to make a′(1) > 0.

Then for τ small enough that a′(1) > 0, we know

w′(β) < τδβ − Pc(a(β))

because both δaa
′(β) and −Pβc′(a(β))a′(β) are negative. The term δβ is

bounded above by (D − d)/(1− ā), so as τ → 0, we know τδβ → 0.

This means we can choose τ small enough so that both τδβ < Pc(a(0))

and a′(1) > 0 hold, guaranteeing that w′(β) < 0 for all β.

Very small penalties fail to deter crime, even if the probability of detection

is high. In the extreme case where τ = 0, even certain detection cannot deter

crime. Notification cannot generate sufficient deterrence with small penalties,
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despite the higher probability criminals are caught when attacking informed

neighbors.

But notification imposes costs on the informed because they face high

incentives to practice costly avoidance. From a welfare perspective, this

avoidance is wasted because neighbors cannot isolate themselves from the

criminals all of the time and crimes are committed. Notification has the

effect of making the informed work harder without providing any benefit to

the community.

As an extreme example, consider the limiting case of τ = 0. The model

is then identical to the model with non-deterrable criminals where avoidance

increases in the notification rate and welfare decreases in the notification

rate. Informing no-one therefore maximizes welfare.

Criminal registry and community notification programs are sometimes

thought of as a ways to keep offenders in “prison” even after they are released.

Registered criminals are watched over more closely by local law enforcement

and the community than if they were anonymous members of society. But

this additional “prison sentence” is not enough; it cannot act as a substitute

for a penalty. The community needs a sufficiently large penalty to use as a

threat against the criminal in combination with a notification policy.

These results highlight the importance of getting the government’s two

policy levers working together. Before deciding whether to notify, the gov-

ernment needs to determine if the penalty is such that notifying will help or

harm the community.

The results in Propositions 1 and 2 result in zero or full-on notification as

optimal policies. There are situations where the optimal notification policy

is some interior fraction of the population. That is, informing some but not

all of the neighborhood can maximize utilitarian social welfare. This occurs

when then penalty is in some sort of “middle ground”, neither severe nor le-

nient enough to generate unequivocal recommendations. Hence, Proposition
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2 is only a partial converse to Proposition 1.

Discussion

Communication Amongst Neighbors

One might be concerned that the government does not have complete control

over the notification rate. In particular, once the news that a potential threat

exists is released, neighbors might communicate amongst themselves. In this

way, even if the government notifies just a small fraction of the population,

everyone may end up learning of the threat indirectly through their neighbors.

In this subsection I discuss the incentives neighbors face to communicate

their information. I check when an informed agent’s utility is increasing in the

notification rate. If this is the case, the individual faces private incentives

to communicate his information to his uninformed neighbors. If utility is

decreasing in the notification rate, the informed do not want anyone else to

learn of the potential threat.

The magnitude of the penalty is again important in determining the in-

centives informed neighbors face to share their information. Large penalties

facilitate the sharing of information amongst the neighbors while small penal-

ties encourage the informed to keep their information private.

Proposition 3. The utility of the informed increases (decreases) in the no-

tification rate when penalties are sufficiently large (small).

Proof. I first show that the utility of an informed neighbor is decreasing

when τ = 0. I study utility at two notification rates, β1 < β2. Let ak be

optimal for βk and let Uk be the utility of the informed in equilibrium when

the notification rate is βk. Lemma 1 shows that avoidance is increasing when
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τ = 0, so a1 < a2. Then

U1 ≡ −
1− a1

P (1− β1a1)
−c(a1) ≥ − 1− a2

P (1− β1a1)
−c(a2) > − 1− a2

P (1− β2a2)
−c(a2) ≡ U2

The first (weak) inequality holds because a1 is optimal when the notification

rate is β1. The second (strict) inequality holds because β1 < β2, avoidance

is increasing in the notification rate, and so β1a1 < β2a2. This shows that

the utility of the informed is decreasing in the notification rate when τ = 0.

Since utility and avoidance are continuous in τ , the utility of the informed is

decreasing in the notification rate for sufficiently small penalties.

I next show that an informed neighbor’s utility is increasing if avoidance

is decreasing, which Proposition 1 says occurs when the penalty is sufficiently

large. Write the utility of an informed agent as u(β) = −(1− τδ(·)) 1−a
P (1−βa)

−
c(a). Then the derivative of utility in the notification rate is

u′(β) = τ(δβ + δaa
′) 1−a
P (1−βa)

− (1− τδ)a−a
2+a′(β−1)

P (1−βa)2
− c′(a)a′

= τ(δβ + δaa
′) 1−a
P (1−βa)

− (1− τδ) a−a2
P (1−βa)2

+ a′
[

1−τδ
P (1−βa)

1−β
1−βa − c

′(a)
]

= 1−a
P (1−βa)

[
τδβ − (1− τδ) a

1−βa

]
+ τδaa

′ 1−a
P (1−βa)

+ a′
[

1−τδ
P (1−βa)

1−β
1−βa − c

′(a)
]

Whenever a′ < 0, Lemma 4 says that τδβ > (1− τδ) a
1−βa , so the first term is

positive. The second term is positive because both δa < 0 and a′ < 0. The

term
1− τδ

P (1− βa)

1− β
1− βa

− c′(a)

is negative because the first order condition says 1−τδ
P (1−βa)

− c′(a) = 0 and
1−β
1−βa < 1. Then the last term is positive because both the term in square

brackets and a′ are negative. This means that when penalties are sufficiently

large, avoidance decreases in the notification rate and the utility of the in-

formed increases in the notification rate.

This helps to show that the result that penalties and notification are com-

plementary is not due to the fact that neighbors do not communicate. If the
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informed are allowed to communicate their information to their neighbors,

the government can facilitate this by using sufficiently large penalties. In this

case, by telling their neighbors, the informed can decrease their probability

of being attacked and their expenditure on costly avoidance.

Small penalties, on the other hand, cause the informed to keep their in-

formation private. Informing other people in the neighborhood causes more

families to practice avoidance, raising costs for all. In the future, I will

study situations where the informed face incentives to keep their informa-

tion private but society would benefit from its transmission. Such a case

would provide a clear justification for the role of governments in community

notification policies.

Public Good vs. Public Bad

The goal of this paper is to enhance our understanding of the effects of com-

munity notification on neighborhood behavior and welfare, and to determine

when notification is optimal. How agents respond to being notified that an

offender lives nearby is largely an empirical question. The action I study,

avoidance, generates negative externalities. Here I discuss the possibility

and implications of neighbors undertaking actions which generate positive

externalities.

Data on how people alter their behavior in response to the threat of crime

is scarce. I have not found studies which specifically deal with how neighbors

change their behavior upon being notified a criminal lives nearby through

community notification policies. In a national survey of 1,101 individuals,

Ferraro [1995] asks a more general question: what activities have respondents

undertaken to reduce their risk of crime? Their responses are summarized in

Table 1.1.

Table 1.1 shows that people take actions which have both positive and
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Table 1.1 Actions Undertaken in Response to Fear of Crime

Externality Action % Yes

Negative

Avoid Unsafe Areas - Day 51.7

Avoid Unsafe Areas - Night 75.3

Additional Locks on House 57.3

Buy Watchdog 24.5

Positive & Negative Additional Outside Lighting 57.5

Positive

Learn Self Defense 38.3

Keep Weapon in Home 40.7

Carry Defensive Object 18.6

Source: Ferraro [1995]. Responses from a nationally representative survey of 1,101 indi-

viduals.

negative externalities in order to protect themselves from the threat of crime.

For instance, avoiding unsafe areas only serves to make those areas more

unsafe for the people who must go there. Avoidance is thus a public bad.

On the other hand, criminals are less likely to attack if they are aware that

some potential victims know self defense or might be carrying a weapon. This

type of vigilance therefore creates a public good. Which effect dominates is

an empirical question I do not attempt to answer.

It is worth pointing out that sometimes local governments pass laws limit-

ing actions which generate positive externalities in this context. For instance,

Washington D.C. had a ban on residents owning handguns from 1976-2008.

I will refer to any action which generates positive externalities for the

neighborhood as “vigilance”. The probability of a successful attack is lower

against someone who is vigilant. Criminals are therefore less likely to attack

people if they know that some are vigilant. As more people use vigilance,

the deterrence effect increases.

If the actions people take entail positive as well as negative externalities,
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I expect notification to be optimal more often. That is, the results in this

paper are possibly pessimistic towards notification policies. While the policy

recommendation in this paper may be to not notify, a study which takes

account of the positive externality of vigilance behaviors may recommend

some positive amount of notification. Said differently, any time my results

advise notification, a model which also takes account of vigilance efforts

would also advise notification, but not necessarily the other way around.

Inference by the Uninformed

In this paper the uninformed are constrained to take no action. They are

unaware that something bad could happen to them. An interesting exten-

sion to this model would allow the uninformed to conduct inference after

observing a noisy signal which is correlated with the neighborhood’s behav-

ior. Uninformed people might look around while outside and notice there is

no one else out. The lack of people outside might be because everyone else is

indoors avoiding the potential threat, or simply for other irrelevant reasons

(away on vacation, out to lunch, etc.).

The uninformed would draw inference from the signal and, based on their

beliefs, determine their optimal amount of avoidance. An equilibrium of

this extended model would be the avoidance level of the informed, and the

avoidance level of the uninformed as a function of their signal such that each

is optimal given their beliefs and their neighbors behavior.

The level of avoidance in the neighborhood increases when the uninformed

are allowed to conduct inference and change their behavior. Obviously, their

avoidance level will be higher because previously it was zero. But the avoid-

ance level of the informed also increases because avoidance obeys strategic

complementarities; the marginal benefit of avoidance increases the more one’s

neighbors practice avoidance.
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Conclusion

This paper studies the effect of criminal registry notification policies on neigh-

borhood behavior. Informed neighbors practice costly avoidance measures in

order to protect themselves, which generates negative externalities for the

community. The negative externality of avoidance can be counterbalanced

by the positive externality of notification: notified neighbors are more diffi-

cult for the criminal to successfully victimize, generating deterrence effects

for the entire community. Whether notification is optimal or not depends,

in part, on the magnitude of these two effects.

The main results of this paper highlight the complementary nature of

penalties and notification. In particular, Proposition 1 shows that there

always exists a severe enough penalty to make notification optimal. The more

people know of the criminals’ existence, the more criminals are deterred and

the safer it is for neighbors to remain outdoors. Conversely, Proposition 2

shows that when penalties are lenient the government maximizes welfare by

not informing the community of the criminals’ existence. Notification leads

to costly expenditures on avoidance but insufficient deterrence; community

notification cannot act as a substitute for lenient penalties.

In addition to the physical cost of informing the neighborhood, noti-

fication policies entail costs for communities because the informed change

their behavior. Policy makers need to consider these behavioral costs of no-

tification when conducting cost-benefit analyses of community notification

programs.

Appendix for Chapter 1

This appendix describes how equilibrium in the model could be reached by

a dynamic process. The model is static, but since it aims to describe the
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actions of a large group (continuum) of agents, it is helpful to think how

outcomes can result dynamically. The analysis in the main body of the

paper focuses on locally dynamically stable equilibria. As I will show, these

are the equilibria we would expect to observe as the outcome of a dynamic

process.

I will describe the dynamics first for discrete time, and then transform

the difference equation to a differential equation for continuous time. Let at

be the average avoidance of the informed at time t. Suppose that each period

a small fraction s of the informed best respond to the average avoidance they

observe in the neighborhood. Then the average avoidance level in period t+1

is

at+1 = (1− s)at + sai(at)

Re-arranging terms to get a difference equation gives

at+1 − at = s [ai(at)− at]

I now let the interval of time between periods shrink to ε. To keep the

system consistent as the length of time between periods shrinks I also scale

the fraction of the informed who best respond by ε.

at+ε − at = εs [ai(at)− at]

Dividing both sides by ε gives an expression of the time derivative of avoid-

ance
dat
dt

= s [ai(at)− at]

This equation says that the average avoidance level increases as time pro-

gresses if the best response to avoidance level a is above a. This makes

intuitive sense. If the agents who change their avoidance level are best re-

sponding by choosing a level greater than the neighborhood average, they are

bringing up the average. The opposite is true if the best response is below

the neighborhood average.
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We can now see why locally dynamically stable equilibria are character-

ized by best best response curves which intersect the 45◦ line from above.

This type of equilibrium is represented by avoidance levels x and z in Figure

1.1. Suppose the average avoidance level is slightly less than x. Then the

agents who best respond choose an avoidance level between the average and

x, pushing the average closer to the equilibrium. If the average is instead

slightly above x, then the best response is below the average but above the

equilibrium, resulting in a new average avoidance level even closer to the

equilibrium.

On the other hand, locally dynamically unstable equilibria have best re-

sponse curves which intersect the 45◦ line from below. This can be see by

looking at avoidance level y in Figure 1.1. If the average avoidance level is

slightly below y, then the share of agents who best respond to this avoidance

level choose an avoidance level even less than y. This drags the average level

down, away from the equilibrium y. If the average avoidance level is slightly

above y, then the best response is greater still, again pulling the average

away from the equilibrium.

Then starting from any distribution of initial avoidance levels, the resting

point of the dynamic system will be a dynamically stable equilibrium. We

would never expect the system to rest at an unstable equilibrium because

whenever the average avoidance level gets close to the unstable equilibrium,

the best response dynamics push the average away from the equilibrium. For

this reason, I focus only on locally dynamically stable equilibria in the paper.

These are precisely the equilibria where the best response curve intersects the

45◦ line from above.
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Chapter 2

The Economics of Performance Ratings

Introduction

In many economic environments, individuals’ excellence is publicly rated:

top chef, grandmaster in chess, employee of the month, etc. At the same

time, the rating serves as the de facto currency that individuals strive to

earn. Ratings therefore serve a dual purpose: they provide information and

incentives. This paper studies how well ratings can accomplish these two

tasks.

We develop a continuous time model of an agent whose performance is

publicly rated. Ratings update continuously with new performance score

realizations, while the individual’s talent also evolves. The innovation is to

allow for the agent to exert costly effort in order to improve his performance.

Thus the problem becomes one of moral hazard; talent is unknown and only

the agent knows how much effort was used. Since the performance score is

stochastic, a good showing could be the result of high effort, high talent, or

sheer luck.

Inspired by the characteristics of real-world rating systems, ratings in

our model update in a linear fashion. That is, tomorrow’s rating is a linear

combination of today’s rating and the most recent performance score. The
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rating update rule is similar to a Kalman-Bucy filter. In a filtering problem,

the “gain” (i.e. the weight placed on new information) adjusts over time in

order to minimize the mean squared error of filtering. In our problem, the

gain is chosen (and fixed forever) by the rating system designer in order to

achieve some goal of providing incentives and information.

We study a model in which utility over ratings is linear and the cost of

effort is quadratic. We show that by increasing the gain, that is, placing

more emphasis on new information in the rating update process, the rating

system designer can always elicit more effort. In contrast, there exists a

finite accuracy-optimal gain; any deviation from this gain erodes the quality

of the signal contained in the rating. If the gain is too low, ratings do

not incorporate new information quickly enough; too high, and information

contained in the old rating is wasted.

We then study the rating system designer’s problem. We show that his

optimal gain is always larger than the accuracy-optimal gain. If the gain is set

below the accuracy-optimal level, the rating system designer can elicit greater

effort and provide better information by increasing the gain. Further, we

prove that the more the rating system designer cares about effort, the larger

is his optimal gain. That is, ratings are more sensitive to new information

when the rating system designer cares more about effort.

Background

Rating systems abound in practice. The Elo rating system deserves particu-

lar mention because it provided much of the original motivation for this pa-

per. Arpad Elo invented his eponymous rating system for the United States

Chess Federation in 1960, and today Elo ratings are used by multiple chess

federations, professional tennis, golf, baseball and soccer, as well as various

computer games. Elo ratings are very similar to both the Kalman filter and
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our model in that ratings update in a linear fashion. The change in a player’s

rating is equal to a constant (called the “K-factor” in Elo ratings and the

“gain” in the Kalman filter) multiplied by the difference between realized and

expected performance. Our framework allows us to study the optimality of

the Elo ratings as used by various chess organizations. We present evidence

these ratings are sub-optimal; the K-factor is set too low. This means that

Elo chess ratings fare poorly on both the incentive and information fronts.

Performance ratings are also prevalent outside of the realm of sports and

games. One particularly well-known example is the Michelin Guide rating

system for restaurants. The number of stars each restaurant receives acts as

a signal of quality to the consumer. But it also acts as an incentive for chefs

to expend effort because higher effort produces better food, which improves

the rating, which leads to greater demand in the future.

Another practical example of performance ratings comes from online com-

merce websites such as eBay, where trading partners rate each other on the

quality of their transaction. These ratings serve as signals for future potential

trading partners: a higher rating for a seller signals a higher probability of a

successful transaction to the buyer. At the same time, a higher rated seller

might be able to command a higher price because buyers are less concerned

about theft. This generates incentives for sellers to make each transaction as

trouble-free as possible.

Ratings differ from rankings in that ratings are a cardinal concept, while

rankings are ordinal. Rankings can be derived from any rating system: the

highest rating is ranked number one, the second-highest rating is ranked

number two, etc. College football, for instance, maintains ratings throughout

the season, but the national championship game is played between the two

teams with the highest rating at the end of the regular season.
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Related Literature

This paper is an extension of Holmstrom [1999].12 Both papers study how

today’s effort affects current and future beliefs about ability, and how these

beliefs in turn generate incentives for effort. In Holmstrom [1999], wages

depend on beliefs about the agent’s ability, which are derived in a Bayesian

fashion from observing past output. Greater effort today can favorably alter

beliefs about the agents ability, but the magnitude of this effect is governed

by the rules of Bayesian updating.

In our paper, the agent derives utility from his rating. In contrast to

Holmstrom [1999], ratings may update in a non-Bayesian manner. For ex-

ample, today’s rating may depend solely on today’s performance; informa-

tion embodied in the old rating can be completely discarded. Alternatively,

ratings may be very insensitive to recent performance and slow to adjust.

We study how both the incentives for effort and the information content of

ratings depend on the way in which ratings update.

In our model, ratings act as a store of the agent’s reputation; the rating

encompasses all known information about the agent’s ability. There is a rich

literature on reputation in repeated games that is primarily concerned with

when and how agents can develop and maintain reputations (Kreps et al.

[1982], Kreps and Wilson [1982], Milgrom and Roberts [1982], Mailath and

Samuelson [2001]).

In the context of the chain store paradox model, Fudenberg and Levine

[1992] show that when there is uncertainty over the long-run player’s type and

imperfect monitoring of his actions, he can achieve an expected average payoff

arbitrarily close to what he could get if public commitment was credible. In

contrast, Cripps et al. [2004] show that this result is ephemeral. They show

that the long-lived player can maintain a permanent reputation for playing a

12In fact, our model subsumes the steady state of Holmstrom (1999). While Holmstrom

[1999] deals with dynamics along the path to the steady state, we do not.
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strategy in a game with imperfect monitoring only if that strategy eventually

plays an equilibrium of the corresponding complete-information game. If the

commitment types’ strategies are not equilibria for the normal (i.e. utility

maximizing) type long-lived player in the complete-information game, then

in any Nash equilibrium of the incomplete-information game the short-lived

players almost surely learn when the long-lived player is normal. For this

result it is crucial that the short-lived players observe all past signals. In

contrast, rating systems are often “forgetful”; that is, ratings discard old

information.

Ekmekci [2010] studies the ability of rating systems to act as reputation

devices. He shows that when the long-lived player’s type is unknown, there

exists a finite (i.e. forgetful) rating system and equilibrium of the resulting

game such that the long-lived player’s payoff is almost his Stackelberg payoff

after every history. The focus of Ekmekci [2010], therefore, is to show that a

rating system exists which satisfies certain properties. The focus of our paper

is to study how the structure of the rating system affects the information and

incentive content of its ratings.

While the settings and payoff functions are different, our result that opti-

mal ratings adjust more quickly than Bayesian estimates of ability is similar

to the main result in Dubey and Geanakoplos [2010]. They show that opti-

mal grading schemes in games of status (e.g. a classroom in which students

care only about their relative grade) trade-off informativeness for incentives.

By grouping different performances into one grade (i.e. an “A” grade for all

scores of 90, 91, . . . , 100, a “B” for all scores of 80, 81, . . . , 89, etc.), infor-

mation is lost but greater incentives for effort are created. We similarly show

that by over-weighting recent performance relative to the accuracy-optimal

rating system, the rating system designer discards useful information con-

tained in the old rating but creates greater incentives for effort.
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Model

For simplicity, there is only one agent whose performance is rated. Time is

continuous. The agent receives utility from ratings Utility is increasing and

linear over ratings, and is written u(r) = A+Br with B > 0.

The agent can use costly effort in order to improve his performance score.

The cost of effort is quadratic: using effort level ε costs ε2/2. The agent’s

discount rate is δ, and we write β = δ/(1− δ) as the interest rate.

The agent’s ability, which is unobserved, evolves in a mean-reverting man-

ner. Formally, ability obeys an Ornstein-Uhlenbeck process:

dAt = θ(µ− At)dt+
√
L dW (t) , (9)

where W (t) ∼ N(0, t) is a Weiner process.

At each moment in time the agent produces output. Let the stock of

output at time t be St. The performance score is the change in this stock

of output; that is, Qt = dSt. The performance score is equal to ability plus

effort plus noise:

dSt = (At + ε) dt+
√
M dZ(t) (10)

where ε is the agent’s choice of effort and Z(t) ∼ N(0, t) is a Weiner process

independent from W (t).

The agent is assigned a rating at each moment in time. Provisional ratings

are such that R0 ∼ N(A0, σ
2
0). If this were a filtering problem, ratings

generated by the Kalman-Bucy filter would be Bayes optimal.13 The Kalman-

Bucy rating update rule would be of the form:

dRt = θ(µ−Rt)dt+
ξt
M

(dSt −Rtdt) (11)

13The Kalman-Bucy filter (the continuous time version of the Kalman filter) is an algo-

rithm for updating Bayesian priors after observing signals of the underlying quantity.
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where the mean squared error of filtering ξt = E[(Rt − At)2] solves

ξ̇t = −2θξt + L− ξ2
t

M
(12)

The fraction ξt/M is referred to in the filtering literature as the “gain”.

We, however, are not solving a filtering problem. Our rating system

designer picks a value γ and ratings update according to the Kalman-Bucy

inspired equation:

dRt = θ(µ−Rt)dt+ γ (dSt − E [dSt|Rt] dt) (13)

In keeping with the filtering literature, we refer to the rating system designer’s

choice variable, γ, as the gain.

We make the simplifying assumption that the current rating is the only

source of information available about the agent’s talent. In particular, the

agent is completely forgetful. He does not remember his past ratings, per-

formance scores, or effort choices. In order to decide how much effort to use

today, he infers his ability based solely on his most recent rating, and then

maximizes lifetime expected utility.

Statistical Analysis

In this section we study the statistical properties of the model. We first

show that ratings are unbiased signals of ability. This result simplifies the

calculation of E[dSt|Rt] in equation (13).

Then, since ratings are unbiased for ability, we determine which gain

minimizes the variance of the distribution of At|Rt. We call the gain which

minimizes the variance of the distribution of At|Rt the accuracy-optimal gain.

The conditional distribution of ability given a rating is centered at the rating

for all gains, but when ratings update using the accuracy-optimal gain, the

variance of the distribution is minimized.
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In order to show that ratings are unbiased estimates of ability, we first

assume that E[At|Rt] = Rt and then show that the distribution of At − Rt

has mean zero. Given our assumption that the agent is forgetful, his choice

of effort depends on his current rating alone. Write the equilibrium effort

function as e(R). Assuming that ratings are unbiased for ability and that

the agent uses the equilibrium effort level allows us to write

E[dSt|Rt] = E[(At + εt)dt+
√
MdZ(t)|Rt] = (Rt + e(Rt))dt

Substituting this and equation (10) into equation (13) gives

dRt = θ(µ−Rt)dt+ γ((At + e(Rt))dt+
√
MdZ(t)− (Rt − e(Rt))dt)

This equation can be simplified to

dRt = θ(µ−Rt)dt+ γ(At −Rt)dt+ γ
√
MdZ(t) (14)

Subtracting (14) from (9) gives

dAt − dRt = −θ(At −Rt)dt− γ(At −Rt)dt+
√
LdW (t)− γ

√
MdZ(t) (15)

We can write
√
L dW (t)− γ

√
M dZ(t) as

√
L+ γ2M dY (t) where Y (t) is a

standard Weiner process independent from W (t) and Z(t).14 Then defining

δt = At −Rt, equation (15) can be written

dδt = −(θ + γ)δtdt+
√
L+ γ2M dYt (16)

14To see that this is true, note that

E[
√
L dW (t) + γ

√
L dZ(t)] = E[

√
L+ γ2M dY (t)] = 0 ,

and

E

[(√
L dW (t)− γ

√
M dZ(t)

)2]
= E

[(√
L+ γ2M dYt

)2]
= (L+ γ2M)dt .

Since
√
L dW (t) + γ

√
M dZ(t) and

√
L+ γ2M dY (t) are both Gaussian, they are iden-

tically distributed because their first two moments are the same.
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This last equation describes the evolution of an Ornstein-Uhlenbeck process.

To see this more clearly, write (16) as

dδt = (θ + γ)(0− δt)dt+
√
L+ γ2M dYt (17)

The first two moments for δt are

E[δt] = 0 and E[(δt)
2] =

L+ γ2M

2(θ + γ)

But since δt = At −Rt, we have

At|Rt ∼ N

(
Rt,

L+ γ2M

2(θ + γ)

)
These calculations show that if we start with unbiased ratings, we end up with

unbiased ratings. Since the provisional ratings are assumed to be unbiased

(R0 ∼ N(A0, σ
2
0)), ratings at any time t are also unbiased.

Since ratings are unbiased signals of ability, the accuracy-optimal rating

system minimizes the variance of the conditional distribution. The following

result relates the most accurate rating system to the Kalman-Bucy filter.

Proposition 4. The accuracy-optimal rating system is identical to the esti-

mator of the steady state Kalman-Bucy filter.

Proof. The variance for the conditional distribution of At|Rt is u-shaped in

γ. To find the variance minimizing gain, differentiate w.r.t. γ to get

∂

∂γ

[
L+ γ2M

2(θ + γ)

]
=
Mγ2 + 2θMγ − L

2(θ + γ)2

This term equals zero only when the numerator equals zero. Solving using

the quadratic formula gives the accuracy-optimal gain, γa:

γa =

√
θ2 +

L

M
− θ
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Equation (12) gives the law of motion for the mean squared error of the

Kalman-Bucy filter. Using the quadratic formula to solve for the steady state

mean squared error gives

ξ = M

√
θ2 +

L

M
− θM

Then since the gain in the filter is ξt/M , we see that the steady-state Kalman-

Bucy gain is the same as the accuracy-optimal gain, γKB = γa.

This proof shows that the accuracy-optimal gain exists and is finite. Any

deviation from this gain results in less informative ratings. If the gain is

set too low, ratings do not incorporate the new information contained in the

performance score realizations quickly enough. If the gain is set too high,

information contained in the old rating is wasted.

The accuracy-optimal rating system and Bayesian updating coincide in

the steady state. On the path to the steady state, the Bayesian gain adjusts,

but this is not how rating systems work. The rating system’s gain is fixed

from the begining and, after sufficient time, the system approaches the steady

state where the conditional distribution of ability given a rating is unchanged

over time. This is when the accuracy-optimal rating system and Bayesian

updating are identical.

The last important step in the statistical analysis before turning to eco-

nomic questions is to write the law of motion for ratings in terms of ratings

alone. That is, we must get rid of terms involving ability and performance.

This equation will be used to determine the agent’s optimal effort.

Using the result on the distribution of δt, we can re-write equation (14).

The steady state distribution of δt is Normal with mean zero and variance

equal to (L + γ2M)/2(θ + γ). We can write δtdt =
√

L+γ2M
2(θ+γ)

dẐ(t), where

Ẑ(t) is an independent Weiner process. Then equation (14) becomes

dRt = θ(µ−Rt) + σ(γ)Ŵ (t) (18)
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where Ŵ (t) is an independent Weiner process and

σ(γ) = γ

√
L+ γ2M

2(θ + γ)
+M (19)

Equation (18) gives us a stochastic differential equation governing the evolu-

tion of ratings in a steady state equilibrium. We will now use this equation

to study the agent’s problem.

Economic Analysis

We now turn to studying the agent’s optimal choice of effort and the rating

system designer’s optimal rating system. With linear utility and quadratic

cost of effort, the model can be solved analytically.

We first fix the rating system and solve for the agent’s optimal effort.

Once we understand the determinants of effort, we study the rating system

designer’s problem. The rating system designer has preferences over the

accuracy of the ratings and the effort level they induce. We characterize

optimal rating systems for different preferences of the rating system designer.

The restriction to quadratic cost of effort allows us to describe precisely how

optimal rating systems depend on the designer’s preferences over providing

information and incentives.

Optimal Effort

With the law of motion for ratings given, we can now turn to studying the

agent’s optimal effort function. Given his current rating, the agent chooses

his effort in order to maximize his expected discounted lifetime utility from

ratings less the cost of effort. The Hamilton-Jacobi-Bellman equation for the

agent with rating r is

βv(r) = max
ε

{
A+Br − ε2

2
+ [θ(µ− r) + γ(ε− e(r))] v′(r) +

σ2(γ)

2
v′′(r)

}
(20)
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This equation gives the expected return to the agent having rating r. Think

of A+Br− c(ε), the instantaneous utility from ratings less the cost of effort,

as the dividend, and the rest of the right hand side as the expected capital

gain. We now show that with linear utility over ratings, the value function

is linear and increasing in the agent’s rating, and the agent’s optimal effort

level is constant for all ratings.

Lemma 7. With linear utility over ratings, the value function is linear and

optimal effort is constant.

Proof. Let v(r) = C + Dr. Then v′(r) = D and v′′(r) = 0. Equation (20)

can be re-written as

β(C +Dr) = max
ε

{
A+Br − ε2

2
+ [θ(µ− r) + γ(ε− e(r))]D

}
The first order condition for optimal effort is ε = γD. The second order

condition is met because the cost of effort function is convex. We find values

of C and D satisfying the above value function to show that optimal effort

is independent of rating. Let e∗ denote optimal effort.

Then the equilibrium value function (i.e. when the rating system correctly

predicts and accounts for optimal effort, so that ε− e∗ = 0) solves

β(C +Dr) = A+Br − (e∗)2

2
+ [θ(µ− r)]D (21)

Taking the derivative in r and solving for the slope of the value function gives

D = B/(β + θ). This means that optimal effort is e∗ = γB/(β + θ).

Making this substitution and then solving equation (21) for the constant

C gives

C =
1

β

(
A− 1

2

(
γB

β + θ

)2

+
θµB

β + θ

)
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The analysis with linear utility over ratings is very similar to the model in

Holmstrom [1999]. In fact, when ratings are updated in a Bayesian manner

(i.e. when γ = γKB), the models are identical in the steady state. While

posterior beliefs over ability are formed in a Bayesian manner in Holmstrom

(1999), our formulation allows for non-Bayesian updating of ratings. The

rating encompasses all known information about the agent. Proposition 4

shows how the information content of ratings depends on the gain. The

following result describes how the incentive content of ratings depends on

the gain.

Proposition 5. With linear utility over ratings, effort increases and value

decreases in the gain. Further, effort increases in the slope of the utility

function and decreases in the strength of mean reversion.

Proof. From Lemma 7, optimal effort is e∗ = γB/(β+θ), and so is increasing

in the gain. If the strength of mean reversion (θ) increases, optimal effort

falls.

Value decreases in the gain because the constant C decreases as the gain

increases because a larger gain leads to larger expenditures on effort for all

ratings.

Value decreases when the gain increases because the agent optimally in-

creases his effort level but he is in no way compensated for his effort. The

rating system expects he will work harder and simply adjusts its inference

on performance accordingly. The equilibrium law of motion of ratings is in-

dependent of the gain, even though the agent tries harder when the gain is

larger. This is what Holmstrom [1999] very appropriately terms a “rat race”.

In Proposition 4 we showed that the accuracy-optimal gain is a function of

the strength of the mean reversion of ability and the underlying noise terms.

Any gain above or below γa results in less accurate ratings, in the sense that

the variance of the distribution of A|R is larger the more γ deviates from
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γa. In contrast, Proposition 5 shows that larger gains always induce greater

effort.

The more quickly utility rises in rating the larger is the agent’s optimal

effort. This is because each unit of effort has greater return in utility. As

the rate of mean reversion increases, optimal effort falls because the return

to effort becomes more ephemeral.

Optimal Rating Systems

The rating system designer has preferences over the (steady state) accuracy

of ratings and the effort his rating system induces. His only task is to set the

gain and then let the system flow uninterrupted.

Our main result in this subsection establishes the tradeoff faced by the

rating system designer. If the designer’s preferences are such that more

accuracy and effort are always better than less, the optimal gain is larger

than the accuracy-optimal gain. The ratings are therefore less informative

than those formed with a Bayesian rating system, but the equilibrium effort

level is greater.

Since the optimal gain is set above the accuracy-optimal gain, ratings

have more noise than Bayesian estimates of ability. This is because the

ratings are relatively more sensitive to recent performance. This sensitivity

is what gives the agent greater incentives for effort; as the gain increases, so

does his ability to influence his rating via effort.

The rating system designer’s preferences are assumed to place η weight

on effort and 1−η weight on accuracy. We write the rating system designer’s

utility as

u
(
e∗, E[(A−R)2]

)
= η e∗ − (1− η)E[(A−R)2]

= η
γB

β + θ
− (1− η)

(
L+ γ2M

2(θ + γ)

)
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The rating system designer’s utility is increasing in the equilibrium level of

effort; he wants his agents to try hard. But he pays a penalty proportional

to the variance of the distribution of ability given a rating; all else equal, he

wants accurate ratings.

The following proposition characterizes optimal rating systems. If the

rating system designer cares about both the accuracy of the ratings and the

incentives for effort they provide, he trades off accuracy for effort.

Proposition 6. With linear utility over ratings, optimal rating systems place

at least as much emphasis on recent performance as the Bayesian rating

system. Further, the emphasis placed on recent performance increases in the

rating system designer’s preference for effort.

Proof. When η = 0, the rating system designer cares only for the accuracy

of the ratings. In order to maximize his utility, he uses γ = γKB because this

is the gain that minimizes the variance of the distribution of ability given a

rating.

For η ∈ (0, 1), the first order condition for the rating system designer’s

choice of γ is

η
B

β + θ
= (1− η)

Mγ2 + 2Mθγ − L
2(θ + γ)2

(22)

Since the variance of the distribution of A|R is u-shaped in γ, the fraction

on the right hand side of (22) is negative if γ < γKB, so the optimal gain

must be greater than γKB when η > 0.

To show that the emphasis placed on recent performance increases when

the rating system designer cares relatively more about effort, it suffices to

show that the γ which satisfies the first order condition in (22) increases in

η. Let γ′ be optimal for η′. Then, for η′′ > η′, the two sides of equation (22)

evaluated at η′′ and γ′ cannot be equal; the left hand side must be larger.

Since γ′ is optimal for η′ and we know the rating system designer would never

48



optimally set γ < γKB, the fraction on the right hand side is increasing in γ.

In order to restore equality, the gain must increase to some γ′′ > γ′.

An important implication of this result is that optimal ratings always

adjust more quickly than Bayesian ratings. If ratings are adjusted more

slowly than Bayesian ratings, the rating system designer could increase the

gain and generate more accurate ratings which also induce greater effort. At

the Bayesian optimal gain, the cost of increasing the gain a small amount in

terms of lost accuracy is second order, while the benefit in terms of increased

effort is first order. Therefore, so long as the rating system designer cares for

both effort and accuracy, he sets the gain strictly larger than the Bayesian

optimal level. This generates less accurate ratings, but implements greater

effort.

The more the rating system designer cares about effort, the larger is the

optimal gain. If the rating system designer does not care about accuracy

at all (i.e. η = 1), there is no optimal rating system. He would want to

keep setting the gain larger and larger, and there is no upper bound. The

problem is that effort increases in the gain, and the rating system designer

could theoretically set the gain arbitrarily large. This generates both large

rewards for exceeding expectations, and large penalties for failing to meet

them.

Conclusion

This paper presents a model in which the incentive and information aspects

of performance ratings can be studied. We show that ratings cannot be both

statistically accurate and provide maximal incentives for effort. Accuracy-

optimal rating systems update in a manner similar to the Kalman-Bucy filter,

efficiently blending information contained in the old rating with new infor-

mation contained in the recent performance score realization. We show that
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the rating system designer can always elicit greater effort by placing more

emphasis on the agent’s recent performance score. When the rating sys-

tem designer prefers more effort and information to less, he faces a tradeoff:

ratings can elicit greater effort only at the cost of being less informative.

The world of competitive chess, as mentioned in the introduction, pro-

vides one practical application for our results. Interestingly, Sonas [2002]

finds that the K-factor used by the World Chess Federation is less than the

accuracy-optimal level.15 Currently, the K-factor for players with ratings

above 2400 is 10. Sonas claims that a K-factor of 24 maximizes the accuracy

of the ratings in the sense that ratings with this K-factor provide the most

predictive power. Supposing this claim is in fact true, our main result sug-

gests that the World Chess Federation could increase both the information

and the incentives generated by its ratings by increasing the K-factor. If

greater effort leads to more exciting and creative play, these results indicate

that the World Chess Federation is not using optimal ratings.

15Recall that the K-factor in chess ratings is analogous to the gain in our model.
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Chapter 3

When Should Governments Reveal Criminal Histories?

Introduction

Governments often possess information about their citizens’ criminal histo-

ries. When this information is released to the general public can affect the

criminals’ incentives for good behavior. This paper investigates the effects

of the timing of the government’s notification policy and determines optimal

policies when the government is concerned with both the crime rate and the

lost productivity of the criminal population.

Practical examples abound: should someone who was caught stealing

once be required to reveal this fact on future job applications? When should

a sex offender’s identity be revealed to his neighbors? Publicly-known crim-

inals may have difficulty getting jobs and might be ostracized from their

communities. The penalty incurred by notification helps to deter first-time

offenders but is costly because of the loss of productive members of society.

Further, public notification after the first conviction diminishes the govern-

ment’s ability to deter repeat offenders. Since publicly known criminals are

already underemployed and or ostracized, the government cannot threaten

them with any additional penalties in the labor market.
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I construct a discrete time, infinite horizon model where criminals ob-

serve opportunities each period and decide whether or not to commit the

crime. The government chooses between a “strict” policy which publicly

discloses criminal histories immediately upon first conviction, or a “lenient”

policy which temporarily conceals this information and only reveals it after

the criminal’s second conviction. When the government is strict, there are

only two types of criminals: the publicly known and the unknown. When

the government is lenient, there are again the publicly-known and the un-

known criminals, but there is also a third, intermediate type, with one prior

conviction who is known to the authorities but not the public as a criminal.

I study the behavior of criminals in these different situations, compute the

steady state distribution of criminals under each notification policy, and then

compare the overall crime rates.

I show that the lenient policy minimizes the crime rate when the following

three conditions jointly hold: public notification has a large negative effect

on wages, a small positive effect on detection probabilities, and criminals

have a long expected lifetime. In order to prove this result, I show in a

sequence of lemmas that criminals without any convictions always commit

more crimes when the government is lenient, and that the behavior of publicly

known criminals is independent of notification system. The behavior of the

criminals with one conviction under the lenient system is therefore pivotal to

the ordering of the crime rates. When public notification has a large negative

effect on wages and a small positive effect on detection probabilities, criminals

with one conviction under the lenient system commit few crimes because the

expected benefit is small. When criminals also have a long expected lifetime,

the steady state population consists of a sufficiently large fraction of well-

behaved criminals with one conviction under the lenient system, leading to

a low overall crime rate.

In addition to the crime rate, society may care about the productivity of

52



its citizens. Public notification of criminal histories can be harmful because

those who are known as criminals have a hard time finding gainful employ-

ment and being a productive member of society. This provides an additional

justification for leniency on the part of the government. Sometimes otherwise

law abiding citizens are presented with an opportunity to commit a crime

that they find difficult to ignore. If they are caught and the government’s

notification policy is strict, the public is immediately informed of their deed

and the criminals cannot find gainful employment.

I show that there are always less publicly known criminals under the le-

nient notification system than under the strict system. This means that a

larger fraction of the criminal population is employed under the lenient sys-

tem, so productivity is higher. The more society cares about the productivity

of its citizens, the more appealing the lenient notification system becomes.

Related Literature

Economists have been interested in how criminals respond to incentives since

Becker [1968]. More recently, economists have investigated the deterrence

effects of police and incarceration [Levitt [1997], Di Tella and Schargrodsky

[2004]], conditions in prison [Katz et al. [2003]], and gun ownership [Lott

[1998], Mialon and Wiseman [2006]]. These papers validate Becker’s seminal

work by showing that criminals respond to incentives in a rational manner.

My research adds to this literature by studying an additional crime fighting

tool available to the government: public notification policies.

The most well-known public notification policy is Megan’s Law, a federal

law in the U.S. which requires states to make information about sex offenders

available to the public. But public notification policies also exist (or are

currently being developed) for criminals convicted of homicide, gang crimes,

animal abuse, elderly abuse, drug dealing and manufacturing, and drunk
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driving [Goode [2011]]. As they are politically popular and becoming more

prevalent in practice, it is important to understand when and how public

notification policies can be helpful.

Neto [2006] studies how the public availability of criminal records affects

behavior. He constructs a model in which agents can commit crimes in each

of two periods. Agents are heterogeneous in their ability and their taste

for criminal acts, and those who commit crimes in the first period learn

about their proficiency. If the government makes criminal records publicly

available, a criminal’s payoff for good behavior decreases because a fraction

of employers perform background checks and will not hire anyone with a

record.

My work builds on Neto [2006] by exploring more fully how agents’ dy-

namic incentives are affected by the government’s notification policy. The

government can control not just if, but also when, criminal records become

publicly available. The model in Neto [2006] captures the intuition that,

by making criminal records publicly available, criminals without any prior

convictions face greater deterrence, but those with a record commit more

crimes because their payoff to honest work decreases. In addition to this

type of intuition, my model shows how the timing of the government’s dis-

closure affects criminal behavior. If the government gives the criminals an

extra chance before disclosing their criminal past, criminals without any prior

convictions are less likely to be deterred while those with one conviction are

more likely to be deterred. I also show how concern for the lost productivity

of publicly known criminals can affect the government’s choice of when to

disclose criminal histories.

Economists interested in crime have also studied the optimal penalty

size as a function of the number of convictions. While the punishment for

many crimes is higher for recidivists than first time offenders in practice, the

literature does not always find increasing penalty functions to be optimal.
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Polinsky and Rubinfeld [1991], Rubinstein [1979], and Rubinstein [1980] all

show that, under different model specifications, increasing penalties may be,

but are not always, optimal. In contrast, Chu et al. [2000] show that if society

has a distaste for wrongful convictions of the innocent, the penalty for repeat

offenders is always greater than the penalty for first time offenders.

While public notification of criminal histories is a de facto penalty on

convicted criminals, it is of a different sort from the penalties studied by the

optimal penalty function literature. In the studies surveyed here, penalties

are “one-dimensional” and are construed as any and all actions or policies

which lower the utility of a convicted criminal. In contrast, public notification

policies are seen as a way to keep criminals “behind bars” even after they

are released from prison. That is, an informed community can help monitor

convicted criminals and make it more difficult for them to get away with

crimes. Public notification penalizes criminals not just by hurting their job

market prospects, but also by making it less likely to commit crimes without

detection.

This paper contributes to the literature on penalty functions by studying

how the implicit penalty associated with public notification, combined with

statutory penalties, determines the overall shape of the penalty function.

Holding statutory penalties constant, the strict policy generates a decreasing

penalty function because the immediate notification leads to a large penalty

for first time offenders but does not affect the penalty for repeat offenders.

The lenient policy generates a first increasing and then decreasing penalty

function because criminals are penalized by public notification only after

the second conviction. Depending on its objectives, the government will

sometimes use relatively small penalties on first time offenders in order to

hold a larger penalty in reserve to deter repeat offenders.

Economists also empirically study the effects of criminal registration and

public notification policies. Prescott and Rockoff [2011] presents evidence
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that notification policies can deter crime by first time offenders and increase

the crime rate for known criminals. They also find evidence that the detec-

tion rate for intermediate types (i.e. criminals known to the police but not the

public) is larger than the detection rate for those without any prior convic-

tions. If this detection rate is high enough, their findings and the theoretical

results in this paper imply that society might be better off temporarily con-

cealing information. Governments could adopt a two-step program where

first time offenders are registered with the police, but their identities are

made public only if they commit another crime. In such a case, separating

the registration and notification policies generates a lower crime rate.

My results indicate that empirical research might productively focus in

two areas. First, how do detection probabilities depend on the transmission

of information from governments to citizens? How much does the detection

probability increase as the criminal transitions from unknown, to known only

to the police, to a publicly known criminal? The answer to this question can

help us predict how useful notification policies will be for different crimes.

Secondly, how much do publicly known criminals suffer in terms of lost

wages? Several studies report mixed results on the effect of arrests on em-

ployment and earnings [Grogger [1995], Holzer et al. [2004], Waldfogel [1994]],

but none of these studies deals specifically with public notification policies.

If the effect of public notification on employment is large and negative, my

results indicate that governments should consider temporarily delaying pub-

lic notification and allowing criminals a second chance before outing them to

their neighbors.

Model

The initial mass of criminals is one, and they face a constant probability of

death equal to 1 − β. Each period a mass 1 − β of new criminals without
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any criminal history enter the population to replace the dead, so their mass

stays constant at one.16

Time is discrete and the horizon is infinite. Each period criminals en-

counter a criminal opportunity θ ∼ U [0, 1], iid, and must decide whether to

behave or to commit the crime. If the agent commits the crime he receives

utility of θ. If the criminal is caught committing the crime, he pays a penalty

of τ . Thus, a criminal committing a crime who is not caught receives θ, while

a criminal who is caught receives θ − τ .

There are many possible ways in which criminal histories, known by the

authorities, can be conveyed to the public. The two information systems

studied here are denoted S for “strict” and L for “lenient”. Let h ∈ {0, 1, . . .}
be the criminal history where h = k stands for k convictions; the public does

not observe h. The information given to the public is a “criminal rating” of

r = g or r = b for “good” and “bad”, respectively. Each information system

has a message function m which maps history to ratings.

Under the strict system, agents get good ratings only if they have a perfect

history. That is:

mS(h) =

{
g if h = 0;

b if h ≥ 1.

This system perfectly reveals the government’s information by identifying

everyone convicted of a crime.

Under the lenient system, criminal status is temporarily concealed from

the public. I study the case where:

mL(h) =

{
g if h ≤ 1;

b if h ≥ 2.

16This normalization of the mass of criminals is purely for convenience. Since the notifi-

cation policy does not affect the size of the criminal population and the relevant comparison

is across notification policies, the size of the criminal population will not affect the ranking

notification systems.
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The authorities know the agent is a criminal if h = 1, but the lenient system

hides this fact from the public. Only if they are convicted of another crime

will their public rating change to r = b.

Independent of criminal activity, agents collect any income they earn in

the labor market at the start of the period.17 Labor income is a function of

public rating where

`(r) =

{
0 if r = b;

` if r = g.
(23)

The probabilities of detection are given by δS(h) and δL(h). Agents with-

out any history of crimes face the lowest probability of detection because

neither the public nor the authorities know they are criminals. Agents with

a public bad rating face the highest probability of detection because every-

one knows they are criminals and can keep a close eye on them. Agents with

h = 1 and r = g under the lenient system face an intermediate probabil-

ity of detection because the authorities, but not the public, know they are

criminals. For 0 < δ < δ1 < δ < 1, the detection probability functions are

δS(h) =

{
δ if h = 0;

δ if h ≥ 1.

δL(h) =


δ if h = 0;

δ1 if h = 1;

δ if h ≥ 2.

Criminal Behavior

The ultimate goal of this paper is to answer the question: “When should

the government reveal criminal status?” In order to answer this question,

17As noted, the interpretation could instead be utility from maintaining good social

relationships.
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I start by studying how criminals’ behavior depends on the timing of the

government’s disclosure policy.

As previously stated, I restrict attention to two policies for the govern-

ment: the strict policy which reveals criminal status upon first conviction,

and the lenient policy which temporarily conceals the criminal’s past and

reveals it only upon the second conviction. I begin the analysis by studying

the strict system because there are only two types of criminals, and the me-

chanics for studying the lenient system are very similar. Once we know the

behavior of individuals in different situations under each notification system

we can derive the steady state crime rate for society.

The Strict System

At the start of a period, agents collect any labor income `(mS(h)) and observe

θ and then decide whether to behave or commit the crime. If the agent

behaves, tomorrow’s history equals today’s and the continuation value is

known with certainty. Committing the crime has an expected immediate

return of θ − δS(h)τ and the continuation value depends on whether or not

the agent is caught. If he is not caught, tomorrow’s history equals today’s

while getting caught entails a longer criminal record and a possibly worse

public rating.

Using primes to represent the value of a variable next period, I write the

value function for an agent with history h and opportunity θ under the strict

system as

v(h, θ) = max { `(mS(h)) + βEθ[v(h, θ′)],

`(mS(h)) + θ − δS(h)τ + βEh,θ[v(h′, θ′)]}

The criminal decides between committing the crime or not. By not com-

mitting the crime (the first argument inside the max operator), the criminal
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forgoes θ, but guarantees that his public rating does not change. By commit-

ting the crime (the second argument inside the max operator), the criminal

guarantees himself θ, but runs the risk of getting caught and worsening his

public rating.

As makes intuitive sense, the following lemma shows that criminals’ ex-

pected lifetime utility decreases in their criminal history and increases in the

attractiveness of the opportunity at hand.

Lemma 8. The value function for criminals under the strict notification

system is decreasing in the length of criminal history and increasing in the

attractiveness of the criminal opportunity at hand.

All proofs will be collected in the appendix.

Publicly Known Criminals I begin by studying the behavior and value of

publicly known criminals. This is done for two reasons. First, we must under-

stand the publicly known criminals’ cutoff opportunity in order to determine

the overall crime rate. Second, the publicly known criminals’ value is needed

in order to study the problem of an unknown criminal whose misdeeds could

result in a bad public rating.

Under the strict system, agents with h ≥ 1 have r = b for the rest of

their lives. Since they will be publicly known as criminals for as long as they

live, their continuation value is independent of their action and the outcome

of any crime committed. Their optimal action therefore depends only on the

immediate return; they behave as if totally myopic.

If a publicly known criminal chooses to behave he gets an immediate

payoff of zero. If he chooses to commit the crime, he gets an immediate

expected payoff of θ − δτ because with probability δ he is caught and must

pay the penalty of τ . Publicly known criminals commit crimes if and only if

the expected immediate return is positive.
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Lemma 9. Publicly known criminal’s optimal behavior is defined by a cutoff

opportunity θb such that the criminal commits crimes if and only if θ ≥ θb.

The cutoff opportunity θb is increasing in the detection rate and the penalty

if caught. The publicly known criminal’s value is decreasing in the detection

rate and the penalty if caught.

That the publicly known criminals behave myopically makes the algebraic

derivation of their cutoff opportunity and value function very simple. The

cutoff opportunity does not depend on any endogenous objects (such as value)

and so finding the cutoff opportunity simply requires solving a 1 equation – 1

unknown “system”. I now turn to analyzing an unknown criminal’s problem

where, unfortunately, such a simplification is not possible.

Unknown criminals Now I derive the optimal behavior of agents with h =

0 under the strict system. The analysis here is complicated by the fact

that unknown criminals behave in a forward looking manner. Their optimal

behavior is defined by a cutoff opportunity which depends on endogenous

objects. In order to solve for the cutoff value and the value function, a

system of equations is needed.

Unknown criminals receive wage ` at the start of the period (regardless

of any criminal activity) because firms believe they might be good citizens.

If he behaves, the criminal gets an immediate return of ` and the expected

continuation value of an unknown criminal because his criminal record will

remain unchanged. If he chooses to commit the crime, he gets an immediate

return of ` plus the expected value of the committing the crime, equal to

θ − δτ . The continuation value in this case depends on whether or not the

agent is caught. With probability δ he will be caught and his continuation

value will be that of a publicly known criminal. With probability 1−δ he will

not be caught, his public rating will remain the same, and his continuation

value will be that of an unknown criminal.
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Lemma 10. Unknown criminals’ optimal behavior is defined by a cutoff

opportunity θg which is increasing in labor income, the detection rate, and

the penalty if caught. The ordering of θg and θb depends on the parameters

of the model. The unknown criminal’s value is decreasing in the detection

rate and the penalty if caught.

When ` = 0, the unknown criminal’s cutoff opportunity is less than that

of the publicly known criminal; there are no future wages to lose and the

probability of detection is lower so they commit more crimes. As ` increases,

the unknown criminal’s cutoff opportunity could be less than or greater than

the known criminal’s, depending on the value of δ − δ. When δ is close to δ,

the cutoff opportunity for the unknown criminal is higher; he is more careful

deciding which crimes to commit because he doesn’t want to get caught and

lose future earnings. When δ is small enough, his cutoff is lower because he

can get away with more.

Ultimately, criminals’ behavior is important only insofar as it determines

the overall, steady state crime rate. In the Crime Rates section I will compute

the crime rate induced by the strict system, but next I study how adding

leniency to the notification policy changes the incentives for the criminals.

The Lenient System

In this section I will discuss the optimal behavior of criminals under the

lenient system. The discussion is less detailed because the analysis is me-

chanically very similar to the previous section. The main difference is due

to the intermediate type who does have a criminal history but is allowed to

withhold this information from the public.

I first show that the publicly known criminal’s problem under the lenient

system is the same as under the strict system. Then, the problem for crimi-

nals known only to the authorities is similar to that of the unknown criminal
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under strict system except the probability of detection is greater (δ1 instead

of δ). Lastly, I show that agents with h = 0 commit more crimes under the

lenient system. To declare that leniency is better for society requires that

the intermediate type with a good public rating and one prior conviction

have a low crime rate and that criminal types without any convictions do

not commit too many more crimes when the government is lenient.

Similar to the previous section, write the value function for an agent with

history h and opportunity θ under the concealing system as

w(h, θ) = max { `(mL(h)) + βEθ[w(h, θ′)],

`(mL(h)) + θ − δL(h)τ + βEh,θ[w(h′, θ′)]}

As under the strict system, criminals’ expected lifetime utility is decreas-

ing in the number of times they have been caught committing crimes and

increasing in the attractiveness of the opportunity at hand.

Lemma 11. The value function under the lenient system is decreasing in the

length of criminal history and increasing in the attractiveness of the criminal

opportunity at hand.

The proof is the same as in Lemma 8. The next lemma shows that the

behavior and value of publicly known criminals is independent of notification

system.

Lemma 12. Publicly known criminals have the same value and optimal cut-

off opportunities under the lenient system as they do under the strict system.

The government’s notification policy has no bearing on the publicly known

criminals’ decision; their identity has already been disclosed to the public.

I use θ2 to represent the cutoff opportunity for a publicly known criminal

under the lenient system. Lemma 12 says that θ2 = θb.

I now study the problem of criminals who have been convicted of one

crime under the lenient system. These criminals are known to the authorities,
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but not the public. Their problem is very similar to that of the unknown

criminals under the strict system. Each is able to receive a wage because they

are not known to the public as criminals, and each will transition to being a

publicly known criminal with one more conviction. Lemma 12 implies that

the consequences of a conviction are the same for each type of criminal, but

those on their last strike under the lenient system are more likely to be caught

because the authorities are aware of their identity and hence the probability

of detection is higher.

Lemma 13. Agents convicted of one crime under the lenient system have

cutoff opportunity θ1 which is increasing in labor income, the detection rate

and the penalty if caught. Importantly, these agents have a higher cutoff

opportunity, and hence a lower crime rate, than the unknown criminals under

the strict system.

The proof is in the appendix but, intuitively, agents convicted of one

crime under the lenient system and agents without any convictions under

the strict system have almost identical problems. The only difference is in

the detection rate. Since the cutoff is increasing in the detection rate, agents

convicted of one crime under the lenient system have a higher detection rate.

The last lemma on criminal behavior shows that leniency deters less crime

by unknown criminals than a strict public notification policy.

Lemma 14. Agents without a criminal history have higher values and com-

mit more crimes under the lenient system than under the strict system.

This lemma makes intuitive sense; the difference between the two situ-

ations is in the consequences if caught. If the unknown criminal under the

lenient system mimicked the optimal behavior of an unknown criminal under

the strict system, he would be caught just as often but the consequences

would be less dire. His value must be higher using this mimicking strategy.
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He can do even better, though, by using a lower cutoff opportunity and com-

mitting more crimes. Since his continuation value decreases less when he

is convicted, the consequences are lower and it becomes worth his while to

commit crimes which the agent under the strict system would not.

In summary, known criminals behave the same way under either informa-

tion system. Agents with h = 1 and h = 0 have behavior defined by optimal

cutoff values θ1 and θ0, resp., which are increasing in the probability of de-

tection, the penalty if caught, and the size of the drop in expected value if

caught. Importantly, the order of these cutoff values is θ0 < θg < θ1, meaning

that unknown criminals under the lenient system commit more crimes than

unknown criminals under the strict system, who in turn commit more crimes

than criminals with one conviction under the lenient system. If temporarily

concealing criminal status is to induce a lower crime rate, it will be because

the higher crime rate of the criminal types without any convictions will be

more than offset by the lower crime rate of criminals with one conviction.

Crime rates

So far we have studied the behavior (i.e. crime rate) of each type of criminal.

In order to determine the overall crime rate, however, we need to know how

many criminals of each type exist. That is, we must find the steady state

composition of the criminal population.

I will first derive the composition under the strict system, and then state

the analogous results for the lenient system. I use graphs of value functions

in order to illustrate when and why each information system minimizes the

crime rate.

Population Composition Under the Strict System

The probability a criminal of type k ∈ {0, 1, 2, g, b} gets an opportunity
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worth exercising is 1 − θk. Each period the total mass of criminals is one

because the mass is initially one and the mass of criminals dying each period

is exactly offset the mass entering the model.

Let ξkg be the mass of unknown criminals (i.e. r = g) under the strict

system at the start of period k. Then fraction 1 − θg get an attractive

enough opportunity and fraction 1− δ of these agents do not get caught and

maintain a good rating. The mass of unknown criminals after the “commit-

or-not” decision is then ξkg
(
θg + (1− θg)(1− δ)

)
. Of these, fraction 1 − β

die, and then a mass 1−β new criminals enter without any criminal history,

and are therefore unknown criminals. So at the start of period k+1 the mass

of unknown criminals is ξk+1
g = 1− β + βξkg (1− δ(1− θg)). The steady state

is where ξkg = ξk+1
g . The value which solves this equation is

ξg =
1− β

1− β + βδ − βδθg
Since under the strict system there are only two relevant histories for

criminal types, the steady state mass of known criminals is ξb = 1− ξg. The

steady state crime rate under the strict system is then ρS = ξg(1 − θg) +

ξb(1− θb).

Population Composition Under the Lenient System

The calculations are very similar, so I will simply state the results. The

only additional complication is that some agents transition into, and some

transition out of, the h = 1 history under the lenient system. The steady

state mass of unknown criminals and criminals who are known only to the

authorities are:

ξ0 =
1− β

1− β + βδ − βδ θ0

; ξ1 =
β(1− β)(1− θ0)δ

(1− β + βδ − βδ θ0)(1− β + βδ1 − βδ1θ1)

Since there are only three types of criminals under the temporarily concealing

system, ξ2 = 1−ξ0−ξ1. The steady state crime rate under the lenient system

is ρL = ξ0(1− θ0) + ξ1(1− θ1) + ξ2(1− θ2).

66



Which System Minimizes the Crime Rate?

The first main result of this paper is that sometimes leniency in the gov-

ernment’s public notification policy can result in a lower crime rate. While

those publicly known to be criminals behave the same under both information

systems, criminals who are unknown to the public face different incentives.

Agents with one conviction under the lenient system can be induced to behave

if their probability of detection is close to that of a publicly known criminal

(i.e. δ − δ1 is small) and the labor income they stand to lose if caught one

more time is large. Agents without a criminal history commit more crimes

under the lenient system, but when criminals have long expected lifetimes,

the proportion of criminal types without any criminal record is small, and so

they do not contribute much to the overall crime rate.

Proposition 7. The lenient policy minimizes the crime rate when public

notification has a large negative effect on wages, a small positive effect on

detection probabilities, and criminals’ expected lifetime is long.

The results from the Criminal Behavior section imply that criminals with

one conviction under the lenient system behave better than those without

any criminal history. Additionally, criminals without any history under the

strict system behave worse than those with one conviction, but better than

those with no convictions, under the lenient system. Expressed in terms

of cutoff opportunities, θ1 > θg > θ0. Intuitively then, the lenient system

results in a lower crime rate if criminals with h = 1 make up a sufficiently

large portion of the population and their crime rate is sufficiently low relative

to criminals with h = 0.

In the remainder of this section, I graphically illustrate how `, δ1, and β

affect behavior and the composition of the criminal population. Each figure

shows the effects of changing one of the parameters of the model on criminal

behavior. In each case, the strict notification system is optimal before the

change, while the lenient system is optimal after.
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Figure 3.1 illustrates the effect of a wage increase on the behavior of the

different criminals. Each panel shows four value functions. The legend un-

derneath the graphs associates line-styles to criminal types, but the value

functions are always ordered, from lowest to highest, as: publicly known

criminals, criminals with h = 1 under L, criminals with h = 0 under S, and

criminals with h = 0 under L. The kink point in the value function repre-

sents the criminal’s cutoff opportunity: it is the opportunity at which value

transitions from being independent of opportunity to increasing in opportu-

nity.

The graphs show that as ` increases, the cutoff opportunity for agents with

h = 1 under the lenient system increases to nearly one; i.e. the crime rate for

these agents drops to nearly zero. Since very few crimes are committed by

criminals with one conviction under the lenient system, very few transition

on to be publicly known criminals. As these criminals have a relatively high

crime rate, this further helps lower the crime rate of the lenient system.

The increase in the wage also affects the behavior of criminals without any

convictions, but the change is less dramatic.

Figure 3.2 shows the effect of increasing δ1. Initially, δ1 is close to δ, which

is why the value functions for criminals with one conviction under the lenient

system and criminals with no convictions under the strict system are so close.

Since the consequences when caught are the same and the probabilities of

being detected are so close, these agents face similar problems.

After the increase, δ1 is close to δ, and the crime rate for criminals with

one conviction under the lenient system falls. It takes a very appealing

opportunity for these criminals to risk getting caught and transitioning to a

publicly known criminal, and thereby losing any future earnings.

The criminals without any convictions under the lenient system also com-

mit fewer crimes because they correctly forecast the lower value associated
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Figure 3.1 The Effect of an Increase in `
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with having one conviction after δ1 increases. The two types of criminals

under the strict system do not change their behavior because δ1 does not

affect either of their problems.

Since δ1 < δ, public notification is assumed to affect detection probabili-

ties in ways that police work alone cannot. How large this effect is in practice

is an empirical question. If having the public know a criminal’s identity has

little benefit beyond having the police know, then δ − δ1 is small. All else

equal, the lenient policy looks better when public notification has little ef-

fect on detection probabilities. If, after the first conviction, the detection

probability increases almost to the maximum level, there is little to gain by

notifying immediately. Instead, the government can withhold punishing the

criminal with public notification for the time being, and use this punishment

as a deterrent against future crimes, which are now detected at a high rate.

More than the other parameters, the probability a criminal lives from one

period to the next affects the overall crime rate through two channels: the
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Figure 3.2 The Effect of an Increase in δ1
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criminals’ behavior and the steady state composition of criminal types. To

see how the probability of living can affect the steady state composition of

criminals directly (i.e. not necessarily through changes in criminal behavior),

consider extreme values of β. When β is close to zero, even if the crime rates

are high, there are few publicly known criminals in the steady state simply

because criminals do not live long enough to be caught committing enough

crimes to become publicly known. Alternatively, when β is close to one, the

steady state criminal population consists of many publicly known criminals,

even if the crime rates are low, simply because criminals live so long that

they are eventually caught committing a crime.

Of course, the probability of living also directly affects the behavior of

non-publicly known criminals, as the lemmas in the Criminal Behavior sec-

tion describe. As β increases, criminal types who are not publicly known as

criminals expect to live longer and thus require better opportunities in order

to commit a crime.
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Table 3.1 details the composition of the criminal population when β in-

creases from 0.8 to 0.97 for the environment where ` = 2, δ = 0.1, δ1 = 0.19,

δ = 0.3, and τ = .8. The fraction of the criminal population without a con-

viction is roughly equal across the two information systems at the low value

of β. When the probability of living increases, the fraction of criminals with

at least one conviction increases more under the lenient system.

Table 3.1 Criminal Population Composition

Low β High β

h = 0 under IR: 0.76 0.42

h ≥ 1 under IR: 0.24 0.58

h = 0 under TC: 0.75 0.37

h = 1 under TC: 0.17 0.25

h ≥ 2 under TC 0.08 0.38

In this example, the strict system is optimal for the low β while the lenient

system is optimal for the high β. The reason this is the case can be seen in

Figure 3.3. After β increases, the probability a criminal with one conviction

under the lenient system commits a crime decreases so that a large enough

fraction of the criminal population gets “stuck” with one conviction and dies

before transitioning to being a publicly known criminal who commits a lot

of crimes.

That criminal activity depends on age is one of the most accepted theories

in criminology [Hirschi and Gottfredson [1983]]. The vast majority of crimes

ar committed by the young. But the length of criminals’ lifetimes varies

across the type of crime. There is evidence that criminal behavior by sex

offenders declines much more slowly in age than for other types of crimes

[Hanson [2002]].

In the context of this paper, this evidence suggests that the β for sex
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Figure 3.3 The Effect of an Increase in β
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offenders might be larger than the β for other types of criminals. If this

is the case, governments might consider leniency in their public notification

system. By holding the notification punishment in reserve, once-convicted

sex offenders might face strong enough incentives so that they do not commit

any more crimes.

These examples help to illustrate that the crime rate depends on both

criminals’ behavior and the number of each type of criminal in the population.

A lenient policy which temporarily conceals criminal status from the general

public can minimize the overall crime rate if it provides strong incentives for

criminals on their last strike, and these criminals make up a sufficiently large

percentage of the population.
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Productivity

The threat of public notification acts as a deterrent against criminal acts, but

its use is also costly for society. When the government makes a criminal’s

identity public, the criminal has difficulty finding work in the future. Public

notification of criminal histories therefore costs society a productive member.

While the crime rate can be minimized by either the strict or lenient pub-

lic notification policy depending on the environment, productivity is always

higher under the lenient notification policy.

Proposition 8. The productivity of the criminal population is always larger

when the government is lenient.

The productivity is higher under the lenient system because there are

more criminals with good public ratings. That is, they have not yet been

publicly outed as a criminal, either because they have not yet been caught

or because they have been caught only once. Since the public perceives them

as good, they are able to find gainful employment and remain productive

members of society.

The fact that it takes two convictions to become publicly known under

the lenient system as opposed to just one under the strict system is not

enough by itself to prove Proposition 8. The reason is that if the crime rates

of criminals with good public ratings induced by the lenient system were

very large compared to the crime rate of unknown criminals under the strict

system, there would be more publicly known criminals when the government

is lenient. The fact that criminals with one conviction under the lenient

policy have a higher cutoff opportunity, and hence a lower crime rate, than

unknown criminals under the strict policy keeps this from happening.

Proposition 8 shows how public notification can be costly for society. The

threat of public notification does act as a deterrent, but the lost productivity

of publicly known criminals hurts society. This provides some justification
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for leniency on the government’s behalf. Rather than hit first time offenders

with the full penalty (statutory plus public notification) immediately, the

government can hold some of its punishment in reserve and give the criminal

a second chance. This type of leniency always leads to a more productive

criminal population.

Optimal Public Notification Policies

Propositions 7 and 8 measure the efficacy of public notification policies on two

different metrics: minimizing the crime rate and maximizing productivity. In

practice governments likely care about both.

If the government doesn’t care about the productivity of its criminals at

all, then Proposition 7 specifies how to derive the optimal public notification

system. The more the government cares about lost productivity, the better

the lenient public notification policy looks. In the limit, when the government

only cares about productivity, the lenient policy is always optimal.

My results add to the literature on the shape of optimal penalty functions.

The government’s policy concerning the timing of public notification affects

the shape of the penalty function. In my model, with constant statutory

penalties, the strict notification system generates a decreasing penalty func-

tion and the lenient system generates a first increasing and then decreasing

penalty function. The lemmas in the Criminal Behavior section show how the

penalty generated by public notification depends on detection probabilities,

length of expected lifetime, and wages.

The public notification of criminal histories creates a penalty which can

only be used once. Depending on its objectives, the government can some-

times do better by penalizing first time offenders lightly and waiting to use

the notification penalty on repeat offenders. This type of policy can minimize

the crime rate, but it always leads to greater productivity.
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Conclusion

The way in which governments reveal criminal status can affect criminals’

incentives for good behavior. This paper studies a strict and lenient notifica-

tion policy. The strict policy reveals criminal status after the first conviction,

while the lenient policy conceals criminal status until the criminal is caught

committing a second crime, at which time the criminal’s identity is made

public. When the government’s public notification policy is strict, the un-

known (i.e. not yet convicted) criminals face relatively greater incentives to

behave. In contrast, under the lenient policy, the unknown criminals face

low incentives while the once-convicted criminals who are known only to

the authorities face high incentives to behave. The lenient policy minimizes

the crime rate when public notification has a large negative effect on wages,

a small positive effect on detection probabilities, and a criminal’s expected

lifetime is long.

In contrast to that qualified result, the lenient policy always maximizes

the productivity of the criminal population. When the government is lenient,

fewer criminals are publicly identified as such, and more criminals are there-

fore able to remain productive members of society. Public notification is

effective as a deterrent against crime, but it is also costly to society in terms

of productivity. An optimal public notification policy balances these costs

and benefits according to the government’s preference for a low crime rate

and its distaste for the lost productivity of the publicly known criminals.
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Appendix for Chapter 3 – Proofs

Proof of Lemma 8. Let V be the space of functions f : N× [0, θmax] 7→ R.

Define an operator

Tf(h, θ) = max { `(mS(h)) + βEθ[f(h, θ′)],

`(mS(h)) + θ − δS(h)τ + βEh,θ[f(h′, θ′)]}
Operator T : V 7→ V is a contraction because it satisfies Blackwell’s sufficient

conditions (i.e. it is monotone and it discounts).

Let f0(h, θ) be decreasing in h and increasing in θ. Then Tf0(h, θ) is

increasing in θ because the only time θ appears within the max is with a

positive coefficient. Also, Tf0(h, θ) is decreasing in h because each component

within the max operator is decreasing in h, and so the maximum is as well.

Since these weak properties are preserved by the operator, they must obtain

in the unique fixed point, v.

Proof of Lemma 9. Define Vb ≡ Eθ[v(h, θ)|h ≥ 1] as the expected value

of having rating r = b under S before the draw of θ is realized and behav-

ing optimally once it is. Then the immediately revealing value function for

publicly known criminals can be written

v(h, θ) = max
{
βVb, θ − δτ + βVb

}
(24)

The publicly known criminal optimally commits the crime if θ ≥ θb ≡ δτ ,

which is increasing in the probability of detection and the penalty if caught.

The publicly known criminal’s value function can be written as a piecewise

function:

v(h, θ) =

{
βVb if θ < θb;

θ − δτ + βVb if θ ≥ θb.

Since θ ∼ U [0, 1],

E
[
θ − δτ + βVb|θ ≥ θb

]
=
θb + 1

2
− δτ + βVb
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The equation defining Vb is then:

Vb = θbβVb + (1− θb)
(
θb + 1

2
− δτ + βVb

)
Solving for Vb gives

Vb =
1− θb
1− β

(
θb + 1

2
− δτ

)
which is decreasing in δ and τ . It is then easy to see that all components of

equation 24 are decreasing in δ and τ .

Proof of Lemma 10. Define Vg ≡ Eθ[v(0, θ)] as the expected value of hav-

ing rating r = g under S before the opportunity is realized and behaving

optimally once it is. Then the value function for unknown criminals can be

written

v(0, θ) = max
{
`+ βVg, `+ θ − δτ + β

(
(1− δ)Vg + δVb

)}
(25)

The unknown criminal optimally commits the crime if

θ ≥ θg ≡ βδ (Vg − Vb) + δτ (26)

An implication of Lemma 8 is that Vg−Vb > 0, so θg > 0. Equation 26 gives

one equation in two unknowns: Vg and θg. Since they are determined jointly,

a two equation system is needed to solve for the expected continuation value

and the cutoff opportunity. In order to come up with another equation, I

write Vg as the expectation of a piecewise linear function, as in the proof of

Lemma 9.

Vg = θg(`+ βVg) + (1− θg)
(
`+

θg + 1

2
− δτ + β ((1− δ)Vg + δVb)

)
(27)

Equations (26) and (27) form a system of two equations and two unknowns

and can be solved for θg and Vg. The solution is suppressed due to space

constraints.
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Comparative statics on θ cannot be computed directly because the cutoff

opportunity depends on the endogenous value:

∂θg
∂δ

= β(Vg − Vb) + τ + βδ
∂Vg
∂δ

;
∂θg
∂τ

= δ + βδ
∂Vg
∂τ

In order to compute ∂Vg/∂δ and ∂Vg/∂τ , I use the fact that θ is the oppor-

tunity which maximizes the right hand side of (27). Differentiating equation

27 with respect to δ and applying the Envelope Theorem gives

∂Vg
∂δ

=
−(1− θg)(β(Vg − Vb) + τ)

1− β + βδ − βδθg

Differentiating equation 27 with respect to τ and again applying the Envelope

Theorem gives
∂Vg
∂τ

=
−(1− θg)δ

1− β + βδ − βδθg
I note that these partial derivatives of Vg are negative. Substituting these

expressions back into ∂θg/∂δ and ∂θg/∂τ gives

∂θg
∂δ

= (β(Vg − Vb) + τ)

(
1−

βδ − βδθg
1− β + βδ − βδθg

)
∂θg
∂τ

= δ

(
1−

βδ − βδθg
1− β + βδ − βδθg

)
Each of these expressions is positive because the fraction is less than one,

implying that the optimal cutoff opportunity increases in both the detection

rate and the penalty if caught.

Lastly, since Vg is decreasing in δ and τ , it is easy to see that the value

function from (25) is also decreasing in δ and τ .

Proof of Lemma 12. A publicly known criminal’s problem under the TC

system is

w(h, θ) = max
{
βW2, θ − δτ + βW2

}
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This equation is identical to the the value function of the publicly known

criminal under the S system from equation 24. The maximum and the max-

imizer are therefore the same.

Proof of Lemma 13. The derivation of θ1 is identical to that of θg except

using δ1 as the detection probability. From Lemma 10, we know that the

cutoff is increasing in the detection rate. Since δ1 > δ, we get θ1 > θg.

Proof of Lemma 14. Agents with h = 0 receive the same wage and face

the same probability of detection under each information system. To show

w(0, θ) > v(0, θ), let the agent under L mimic the agent under S. Then he

gets caught just as often, but the circumstances are less dire. If caught, he

becomes a h = 1 agent under L which has a higher value than being a known

criminal under S because w is decreasing in h and w(2, θ) = v(1, θ).

To show that θ0 < θg is more complicated, but also uses arguments based

on mimicking behavior. Let Wx be an unknown criminal’s expected lifetime

utility before observing the opportunity θ under L while using the cutoff x

when h = 0 and behaving optimally once convicted. Then Wx solves

Wx = `+ xβWx + (1− x)

(
1 + x

2
− τδ + β((1− δ)Wx + δW1)

)
(28)

Denote by Wg ≡ Wx|x=θg
; that is, Wg is the expected utility of an unknown

criminal under the lenient system who mimicks the unknown criminal under

the strict system until convicted, and then behaves optimally afterwards.

As an intermediary step, I first show that Wg −W1 < Vg − V1. This fact

will be useful later in the proof. Subtracting W1 from both sides of equation

28 evaluated at x = θg gives

Wg−W1 = `+βθg(Wg−W1)+(1−θg)
(

1 + θg
2
− δτ + β(1− δ)(Wg −W1)

)
−(1−β)W1
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Solving for Wg −W1 gives

Wg −W1 =
`+ (1− θg)

(
1+θg

2
− δτ

)
− (1− β)W1

1− θgβ − (1− θg)β(1− δ)

Analogous operations on Vg give

Vg − Vb =
`+ (1− θg)

(
1+θg

2
− δτ

)
− (1− β)Vb

1− θgβ − (1− θg)β(1− δ)

Since W1 > Vb and the other terms in the fractions are identical, we see that

Wg −W1 < Vg − Vb.
Differentiating equation 28 in x gives the rate of change of value as the

cutoff changes. The formula is

∂Wx

∂x
=
−x+ δτ + βδ(Wx −W1)

1− β + βδ − βδx

Evaluating this derivative at x = θg gives

∂Wx

∂x

∣∣∣∣
x=θg

=
−θg + δτ + βδ(Wg −W1)

1− β + βδ − βδθg
<
−θg + δτ + βδ(Vg − Vb)

1− β + βδ − βδθg
= 0

The inequality holds because Wg − W1 < Vg − Vb, and the equality holds

because θg is optimal for unknown criminals under S and the first order

condition gives θg = δτ + βδ(Vg − Vb).
This means the unknown criminal under the lenient system who is mim-

icking the unknown criminal under the strict system could increase his ex-

pected utility by decreasing his cutoff opportunity; that is, he could use some

x < θg and increase his utility. But this is still a local argument; it is pos-

sible some x > θg maximizes utility. To make the argument global, assume

towards a contradiction that θ0 > θg. Then since lifetime expected utility is

continuous and differentiable in the cutoff opportunity, it must be the case

that there is some θ′ > θg at which lifetime expected utility attains a local
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minimum. If this is true, the slope of lifetime expected utility in the cutoff

is necessarily zero. But the second order condition holds whenever the first

order condition holds, so there cannot be a local minimum at θ′. That is,

whenever the slope of the objective function is zero, the second derivative is

negative and we are at a local maximum, not a local minimum. This proves

that θ0 < θg, and therefore unknown criminals commit more crimes under L

than they do under S.

Proof of Proposition 8. I find the value of θg which solves the equation

ξ0 + ξ1 = ξg. The cutoff value for unknown criminals under S which equates

the mass of unknown criminals under the two notification systems is

θg =
1− β + βδ(1− θ0) + θ0βδ1(1− θ1)

1− β + βδ(1− θ0) + βδ1(1− θ1)
≡ h(θ1)

I will show that h(θ1 ≥ θ1, and since Lemma 13 shows that θg < θ1 ≤ h(θ1),

it cannot be the case that θg = h(θ1. The mass of unknown criminals across

rating systems cannot be equal. Since the mass of unknown criminals under

S is decreasing in θg, this proves that the mass of criminals with a good

public rating is always larger when the government is lenient.

First note that

h(1) =
1− β + βδ(1− θ0)

1− β + βδ(1− θ0)
= 1

But since θg < θ1 by Lemma 13, it cannot be the case that the mass of

unknown criminals is equal across notification policies if θ1 = 1.

I next show that the slope of the function h is less than one. This, along

with the fact that h(1) = 1 proves that h(θ1) ≥ θ1. Differentiating the

function h gives

h′(θ1) =
βδ1(1− θ0)(1− β + βδ − βδθ0)

(1− β + βδ − βδθ0) + βδ1(1− θ1)
< 1

Then at any value θ1 ∈ [0, 1), h(θ1) > θ1.
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But Lemma 13 says that θg < θ1. This means that θg < θ1 < h(θ1), and

so the mass of unknown criminals cannot be equal across the two notification

systems.

All that remains is to show that the mass of unknown criminals is larger

under the lenient system, and hence productivity is higher. The mass of

unknown criminals under S decreases in θg because the higher is the cutoff,

the less crimes get committed, and less criminals are caught and then become

publicly known criminals. Then since θg < h(θ1), the mass of unknown

criminals is larger under the strict system.
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