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CHAPTER 1

Introduction

1 Motivation

Let R be a commutative ring of prime characteristic p ¡ 0. The eth-iterated

Frobenius map R
F eÑ R (defined by r ÞÑ rp

e

) is a ring homomorphism whose image

is the subring Rpe � R consisting of all ppeqth powers of elements of R. We call R

F -finite whenever the Frobenius map is a finite map of rings, and in this thesis we

will deal almost exclusively with F -finite rings.

The Frobenius map has been an important tool in commutative algebra since

Kunz characterized regular rings as those for which R is flat over Rp [Kun69]. In

general, singular rings exhibit pathological behavior with respect to the Frobenius

endomorphism, and by imposing conditions on the structure of R as an Rp-module,

new classes of singularities can be defined. For example, we say that R is F -pure

(or F -split) if the inclusion Rp � R splits as a map of Rp-modules [HR76]. This

condition is equivalent to the condition that R contain a free Rp-module summand

of rank one. Note that a regular ring is F -pure, though the converse need not be

true: the ring Fprx, ys{px2 � y2q is F -pure for p � 2, yet always has an isolated

singularity at the origin. The notion of F -purity is a critical ingredient in the proof

of the well-known Hochster-Roberts Theorem on the Cohen-Macaulay property of
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rings of invariants [HR74].

Recently, more subtle applications of Frobenius to define singularities has led to

new classes of F -singularities, many of which are motivated by the theory of tight

closure. The tight closure of an ideal I � R is an ideal I� � R which contains I

and is “tight” in the sense that it is contained in (and is often much smaller than)

many of the more common closures of I (e.g., the radical and integral closure of

I). The ring R is called F -regular if I� � I for all ideals I � R, and is called

F -rational if I� � I for every ideal I generated by a system of parameters. Regular

rings are F -regular, and in general, F -regular rings satisfy many nice properties.

For example, F -regular rings must be F -pure, Cohen-Macaulay, normal and must

also have rational singularities [Smi97a]. For more on tight closure, the reader is

referred to the original source [HH90]. For an account of the many applications of

tight closure theory, see [Hoc04].

Amazingly, the F -singularities discussed above are closely related to singularity

types that appear in the theory of birational geometry for varieties defined over

C, and in particular, to those appearing in the so-called Minimal Model Program

[Fed83, Smi97a, Har98, Smi00, KM98].

It is standard practice in birational geometry to study the singularities of pairspX, λ 
 Y q, where X is a variety over C, and Y � X is a hypersurface in X . Via

integrability conditions (or alternately, via resolution of singularities), one defines

the notion of KLT and log canonical singularities for such pairs [Kol97]. By varying

the parameter λ, we may define an important invariant of Y � X . The log canonical

threshold of Y � X , denoted lctpX, Y q, is defined to be the supremum over all

parameters λ such that the pair pX, λ 
 Y q is log canonical. We may replace “log

canonical” in the definition of lctpX, Y q with “KLT” without affecting the value of
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this invariant. It is a fact that lctpX, Y q P p0, 1s, with smaller values corresponding

to worse singularities. This is readily seen in the case that X � Cm, and Y � V pfq
is the hypersurface in X defined a polynomial f P Crx1, � � � , xms, where we have the

following concrete description of the log canonical threshold:

lctpCm,V pfqq � sup

#
λ P R¥0 :

1|f |2λ is locally integrable in Cm

+
.

By again using resolution of singularities (or integrability considerations), one

may assign to each pair pX, λ 
 Y q an ideal J pX, λ 
 Y q called the multiplier ideal

of the pair pX, λ 
 gq. The ideal J pX, λ 
 Y q must be trivial for small values of λ,

and get smaller as λ increases. By varying the parameter λ, we may recover the log

canonical threshold of pX, Y q: lctpX, Y q � sup tλ ¥ 0 : J pX, λ 
 Y q is trivial u.
For more on the basic properties of multiplier ideals and their jumping numbers,

as well as their role in higher dimensional birational geometry, see (for example)

[BL04, Laz09, Laz04].

Motivated by geometric considerations, Hara and Watanabe recently extended

the notion of F -purity to pairs of the form pR, λ 
 fq, where f is a non-zero, non-unit

element of R, and λ is a non-negative real parameter [HW02, Tak04]. For example,

we say that the pair pR, λ 
 fq is F -pure if the inclusion Rpe � f tppe�1qλu � R splits

as a map of Rpe-modules for all e " 0. Here, Rpe � fN denotes the Rpe-submodule

of R generated by fN . This generalizes the definition of F -purity for rings as R is

F -pure if and only if the pair pR, 0 
 fq is F -pure. This notion, though technical,

adds great flexibility to the theory, and allows one to define F -pure thresholds. The

F -pure threshold of an element f P R, denoted fptpR, fq, is the supremum over all

λ ¥ 0 such that the pair pR, λ 
 fq is F -pure.

In the case that f is an element of an F -finite regular local ring pR,mq, the F -pure
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threshold has the following concrete description:

fptpR, fq � sup
 
λ P R¥0 : f

rpeλs R m
rpes for some e ¥ 1

(
,

where m
rpes is the ideal of R generated by the image of m under R

F eÝÑ R. Note

that if m � pg1, � � � , gaq, then m
rpes � pgpe1 , � � � , gpea q. The definition of the F -pure

threshold is analogous to that of the log canonical threshold in complex algebraic

geometry.

By again using the Frobenius morphism, one defines a family of ideals τ pR, λ 
 fq
of R indexed by a non-negative real parameter λ. The ideal τ pR, λ 
 fq is called the

test ideal of the pair pR, λ 
 fq. Test ideals (defined in the context of tight closure)

were originally introduced in [HH90], and generalized to pairs in [HY03]. Test ideals

vary with respect to λ in the same way that multiplier ideals do: they must be trivial

for small values of λ, and also get smaller as λ increases. They also may be used to

recover the F -pure threshold: fptpR, fq � sup tλ P R¥0 : τ pR, λ 
 fq � R u. There

is a very close relationship between F -purity and log canonical singularities, which

we will sketch below in the special case of a hypersurface sitting in Qm � Cm.

Fix g P Qrx1, � � � , xms � Qrxs, a non-negative real parameter λ ¡ 0, and consider

the ideal J pQrxs, λ 
 gq � Qrxs. For p " 0, we may reduce the coefficients of g, as

well as those of some fixed set of generators of J pQrxs, λ 
 gq modulo p to obtain a

polynomial gp and ideal J pQrxs, λ 
 gqp in Fprx1, � � � , xms � Fprxs. The following

theorem allows us to compare the ideals J pQrxs, λ 
 gqp and τ pFprxs, λ 
 gpq.
Theorem 1.1. [Smi00, HY03] For p " 0, τ pFprxs, λ 
 gpq � J pQrxs, λ 
 gqp
uniformly in λ. Furthermore, for every λ, there exists a positive integer Nλ such that

τ pFprxs, λ 
 gpq � J pQrxs, λ 
 gqp for all p ¥ Nλ.

We stress that the assignment λ ÞÑ Nλ is typically an increasing function of λ. We
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also have the following relationship between log canonical singularities and F -purity.

Theorem 1.2. [HW02, Tak04] The pair pQrxs, λ 
 fq is log canonical if the pairspFprxs, λ 
 fpq are F -pure for infinitely many p " 0.

The preceding results imply the following relationship between thresholds:

(1.2.1) fptpfpq ¤ lctpfq and lim
pÑ8 fptpfpq � lctpfq.

This behavior is illustrated in the following example.

Example 1.3. If f � x2 � y3 P Qrx, ys, then lctpfq � 5
6
, and

fptpfpq �
$'''''''''''&'''''''''''%
1{2 p � 2

2{3 p � 3

5{6 p � 1 mod 6

5
6
� 1

6p
p � 5 mod 6

.

In this example, it follows from Dirichlet’s Theorem on primes in arithmetic progres-

sions that there exist infinitely many primes p such that fptpfpq � lctpfq.
Theorem 1.2 and Example 1.3 motivate the following two conjectures.

Conjecture 1.4. If the pair pQm, λ 
 Vpfqq is log canonical, then pFprxs, λ 
 fpq is
F -pure for infinitely many p.

Conjecture 1.5. There exist infinitely many primes such that fptpfpq � lctpfq.
It turns out that these conjectures are equivalent (see Theorem 5.19), and their

verification represents a long-standing open problem [Fed83, Smi97b, EM06]. They

also serve as motivation for much of the work in this thesis.
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2 Outline

In Chapter 2, we consider two different notions of singularity. We first consider

log canonical singularities, which is defined for polynomials over C via the use of

resolution of singularities and L2-methods. This discussion of log canonical singu-

larities is kept light, as it will only serve as motivation for our main results. We

next consider F -purity. Since our main results deal with this singularity type, we

include a detailed discussion of F -purity of hypersurfaces, and place emphasis on

the special case that R is a regular ring. Chapter 2 concludes with a discussion of

the deep connection between log canonical singularities and F -purity. To precisely

describe this connection, we provide a careful exposition on the process of reduction

to positive characteristic.

In Chapter 4, we examine base p expansions of non-negative real numbers. Though

the ideas in this chapter are elementary, they prove to be useful in the study of sin-

gularities in positive characteristic.

In Chapter 5, we study F -purity of hypersurfaces in the most general settings. In

particular, we begin our study of the F -pure threshold. We examine the relationship

between different variants of F -purity, and characterize their behavior in terms of

the F -pure threshold. For example, in Theorem 5.19, we show that pR, fptpfq 
 fq
is F -pure, and is sharply F -pure if and only if fptpfq is a rational number with

denominator not divisible by the characteristic. In Proposition 5.12, we deduce

important restrictions on the set of all F -pure thresholds. Many of the results in

Chapter 5 generalize results previously shown to hold in F -finite regular local rings.

In Chapter 6, we associate to polynomial a rational, convex polytope P . This

polytope is “small” in the sense that it is contained in r0, 1sn for some n ¥ 1. This
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polytope will be key to our study of F -purity of polynomials, and in this chapter we

develop some of the important properties of P .

In Chapter 7, we show that log canonical singularities is “equivalent” to F -purity

for most polynomials. Precisely stated, Theorem 7.17 verifies Conjectures 1.4 and

1.5 for polynomials whose associated polytopes satisfy a natural non-degeneracy

condition. Theorem 7.18 builds on this to show that a natural generalization of

these conjectures holds for a very general complex polynomial.

In Chapter 8, we build on the methods of Chapter 7 to study invariants of sin-

gularities associated to diagonal hypersurfaces over fields of prime characteristic. A

diagonal hypersurface is given by a polynomial of the form xd1
1 � � � � � xdn

n , and we

call a diagonal hypersurface Fermat whenever d1 � d2 � � � � dn � n � d for some

d ¥ 1. In Theorem 8.1, we present a formula for the F -pure threshold of an ar-

bitrary diagonal hypersurface. Furthermore, we calculate the first non-trivial test

ideal associated to a diagonal hypersurface. (See Theorem 8.4.) In Theorem 8.6, we

examine the existence of, and give formulas for, higher jumping numbers of diagonal

hypersurfaces.

In Chapter 9, we examine the F -pure threshold of a binomial hypersurface. By

definition, a binomial is the sum of two distinct monomials. Our main result of this

chapter is Algorithm 9.16, an algorithm for computing the F -pure threshold of an

arbitrary binomial hypersurface. This algorithm depends on the characteristic of the

ambient space and the geometry of the polytope P .



CHAPTER 2

Singularities of hypersurfaces

1 Singularities of hypersurfaces defined via L2 conditions

Let f P Crx1, � � � , xms be a polynomial with complex coefficients, and consider

its zero set Z � t z P Cm : fpzq � 0 u. We also consider its singular set Zsing �!
z P Cm : BfBx1

pzq � � � � � BfBxm
pzq � fpzq � 0

)
. For every non-negative real param-

eter λ, consider the function R2m � Cm ΓλÑ R defined by Γλ px1, � � � , xmq � 1|fpxq|λ .
Note that Γλ has a pole at every point z P Z, and understanding how “bad” these

poles are provides a measure of the singularities of f . Recall that the function Γλ is

called locally L2 at a point z P Cm if |Γλpxq|2 � 1|fpxq|2λ is integrable in a neighborhood

of z. Note that Γλ is locally integrable at z for every λ whenever z R Z.

Definition 2.1. We say that the pair pCm, λ 
 fq is KLT at z if the function Γλ is

locally L2 at z. A pair is said to be KLT if it is KLT at every point of Z.

Definition 2.2. We say that pCm, λ 
 fq is log canonical at z if pCm, ε 
 fq is KLT

at z for all 0 ¤ ε   λ. A pair is log canonical if it is log canonical at every point of Z.

Definition 2.3. We define the log canonical threshold of f at z, denoted lctzpCm, fq,
as follows: lctzpCm, fq � sup tλ P R¥0 : pCm, λ 
 fq is log canonical at z u. We de-

fine the (global) log canonical threshold of f , denoted lctpCm, fq, as follows:
8
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lctpCm, fq � sup tλ ¥ 0 : pCm, λ 
 fq is log canonical u. We will often write lctpfq
and lctzpfq instead of lctpCm, fq and lctzpCm, fq.

As pCm, λ 
 fq being log canonical is a local condition, we have that lctpCm, fq �
inf t lctzpCm, fq : z P Z u. Furthermore, it follows by definition that lctzpCm, fq �
sup tλ P R¥0 : pCm, λ 
 fq is KLT at z u, and thus the log canonical threshold may

also be called the KLT threshold.

If f � xa1
1 � � �xam

m is a monomial, then pCm, λ 
 fq is KLT if the integral»
dx1 � � � dxm|xa1
1 � � �xam

m |2λ
exists in a neighborhood of the origin. By Fubini’s Theorem, it suffices to show that

(2.3.1)

»
dxi|xi|2aiλ

exists in a neighborhood of the origin for every 1 ¤ i ¤ m, and by referring to polar

coordinates, we see that the integral in (2.3.1) exists in neighborhood of the origin

if and only if 0 ¤ λ   1
ai
. It follows that lctpCm, fq � min

!
1
a1
, � � � , 1

am

)
. If f is not

a monomial, is not at all clear how one might compute lctpCm, fq. Fortunately, we
can always monomialize f via a log resolution.

Remark 2.4. Let π : X̃ Ñ Cm be a holomorphic map of complex varieties. IfpU, x̃1, � � � , x̃mq are coordinates on X̃, we may consider JCpπq, the complex Jacobian

of π on U : if π px̃1, � � � , x̃nq � pg1px̃q, � � � , gmpx̃qq on U , then JCpπq is defined on U as� BgiBx̃j

	 px̃q. It is clear that this definition defends on the choice of coordinate system.

On the other hand, if pU 1, x̃11, � � � , x̃1mq is another set of local coordinates with U 1 � U ,

then the determinant of the Jacobian with respect to the coordinates U and U 1 differ
by a non-zero constant. Thus, the closed set Eπ :� !

z̃ P X̃ : det JCpπqpz̃q � 0
)
is

well defined, and it is a consequence of the Implicit Function Theorem that Eπ �!
z̃ P X̃ : π is not an isomorphism locally at z̃

)
.
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Theorem 2.5. [Hir64] There exists a smooth complex variety X̃ and a smooth

proper map π : X̃ Ñ Cm of varieties satisfying the following conditions:

1. πpEπq � Zsing.

2. X̃ can be covered by local coordinates pU, x̃1, � � � , x̃mq such that both f �π and

det JCpπq are monomials on U . Precisely stated, f � π � α � x̃a1
1 � � � x̃am

m and

det JC pπq � β � x̃b1
1 � � � x̃bm

m for some functions α and β that do not vanish on U .

Remark 2.6. The set of integers appearing as exponents in some local monomial-

ization of f �π is finite. Similarly, the set integers appearing as an exponent in some

local monomialization of det JCpπq is finite. Indeed, they are the coefficients of the

divisors div det JC pπq and div f � π on X̃.

Remark 2.7. There exist local coordinates pU, x̃1, � � � , x̃mq on X̃ such that f � π is

a non-vanishing multiple of x̃a1
1 � � � x̃am

m on U , det JCpπq is a non-vanishing multiple of

x̃b1
1 � � � x̃bm

m on U , and such that bi � 0 and ai � 0 for some i. If not, then det JCpπq
would vanish whenever f � π vanishes, so that π�1 pZq � Eπ. However, this is

impossible as π is an isomorphism at every point in Z not in πpEπq.
Fix a log resolution π : X̃ Ñ Cm of f as in Theorem 2.5. By the change of

variables formula for integration, we see that the function 1|f |2λ is locally integrable

in Cm if and only if the functions

(2.7.1)
det JR pπq|f � π|2λ � �����det JCpπqpf � πqλ �����2 � ���� x̃1

b1 � � � x̃m
bm

x̃1
a1λ � � � x̃m

amλ

����2
are integrable in the local coordinate patches pU, x̃1, � � � , x̃mq given by Theorem 2.5.

In (2.7.1), JR pπq is the real Jacobian of π: it follows from the Cauchy-Riemann

equations that det JR pπq � |det JC pπq|2. By Fubini’s Theorem, these functions are
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integrable on U if and only if each function |x̃i|2pbi�λaiq is integrable on U , and we

may readily verify that this occurs if and only if

(2.7.2) bi � aiλ ¡ �1 for 1 ¤ i ¤ m.

Though Theorem 2.5 guarantees the existence of log resolutions of f , computing

such resolutions is often difficult, and it remains highly non-trivial to compute the log

canonical threshold of an arbitrary polynomial. However, the use of log resolutions

allows one to deduce the following facts regarding log canonical thresholds.

Lemma 2.8. Let f P Crx1, � � � , xms be a non-constant polynomial.

1. lctpfq P p0, 1s XQ.

2. The pair pCm, lctpfq 
 fq is log canonical.

Proof. From (2.7.2), it follows that

(2.8.1) lctpCm, fq � min

"
bi � 1

ai
: 1 ¤ i ¤ m

*
,

where we range over all coordinates pU, x̃1, � � � , x̃mq satisfying the condition in The-

orem 2.5. This is a minimum, and not an infimum, by Remark 2.6. Furthermore, by

Remark 2.7, there exist coordinates pU, x̃1, � � � , x̃mq with bi � 0 and ai � 0 for some

i, which shows that lctpfq ¤ 1. To see that the pair pCm, lctpfq 
 fq is log canonical,

note that the equations in (2.7.2) are satisfied (by definition) if 0   λ   lctpfq.
We now consider another important invariant of singularities of pairs.

Definition 2.9. We define the multiplier ideal of the pair pCm, λ 
 fq as follows:

J pCm, λ 
 fq � "
g P Crx1, � � � , xms : ��� g

fλ

���2 is locally integrable on Cm

*
.



12

Remark 2.10. Note that pCm, λ 
 fq is KLT if and only if 1 P J pCm, λ 
 fq, and it

follows that lctpfq � sup tλ P R¥0 : J pCm, λ 
 fq � Crx1, � � � , xms u. Furthermore,

if z P Cm and m � Crx1, � � � , xms is the corresponding maximal ideal, we also

have that lctzpfq � sup tλ P R¥0 : J pCm, λ 
 fq
m
� Crx1, � � � , xmsm u. Indeed, this

follows from the fact that the ideal J pCm, λ 
 fq
m
is equal to#

g P Crx1, � � � , xmsm :

���� gfλ

����2 is locally integrable at z

+
.

Note that J pCm, λ1 
 fq � J pCm, λ0 
 fq whenever λ0 ¤ λ1. By definition,

J pCm, 0 
 fq � Crx1, � � � , xms, and we have just observed that J pCm, ε 
 fq is also
trivial for every 0   ε   lctpfq. Thus, the multiplier ideal is locally constant to the

right of λ � 0, and this behavior is typical: for every λ0 ¥ 0, there exists λ1 ¡ λ0

such that

(2.10.1) J pCm, ε 
 fq � J pCm, λ0 
 fq whenever λ0 ¤ ε   λ1.

The statement in (2.10.1) motivates the following definition.

Definition 2.11. We say that λ ¥ 0 is an jumping number of f if λ � 0, or if λ ¡ 0

and J pCm, λ 
 fq is strictly contained in J pCm, pλ � εq 
 fq for all 0   ε   λ.

The following proposition shows that to study the jumping numbers of f , it

suffices to study the jumping numbers that are contained in the unit interval.

Proposition 2.12. [Laz04] Every natural number is a jumping number of f , and

a positive real number λ R N is a jumping number of f if and only if the fractional

part of λ, which is contained in p0, 1q, is a jumping number of f .

By definition, lctpfq is the first non-zero jumping number of f , and in this way we

may consider the jumping numbers of f to be generalizations of the lctpfq. Though



13

they will not be explicitly considered in this thesis, they will be compared compared

to their positive characteristic analogs in Chapter 8.

Remark 2.13. Fix a log resolution π : X̃ Ñ Cm. Then, as in (2.7.1), the condition

that
��� g

fλ

���2 be locally integrable can be translated to an integrability condition on X̃

via π. As before, the advantage in doing so is that f becomes a monomial in the local

coordinates of X̃, which allows one to explicitly compute J pCm, λ 
 fq in terms of

the exponents ai and bi appearing in Theorem 2.5. This way of thinking about

multiplier ideals is very powerful, and the statement in (2.10.1) is obvious from this

perspective. This characterization also allows one to give a definition of multiplier

ideals and log canonical singularities in every setting in which log resolutions exist.

This generalization will not be discussed further in this thesis, and the reader is

referred to [BL04, EM06] for an introduction, and to [Laz04] for a more rigorous

development.

2 Some standard constructions in positive characteristic

Let R be a reduced ring of prime characteristic p ¡ 0. For e ¥ 1, let R
F eÑ R

denote the eth iterated Frobenius morphism defined by r ÞÑ rp
e

. We will use F e�R
to denote R when considered as an R-algebra via F e. If Rpe �  

rp
e

: r P R
(
is the

subring consisting of ppeqth powers of R, then the R-algebra structure of F e�R and

the Rpe-algebra structure of R are isomorphic.

For e ¥ 1, let R1{pe be the set consisting of the formal symbols
 
f 1{pe : f P R

(
.

We define a ring structure on R1{pe by setting f 1{pe � g1{pe :� pf � gq1{pe and

f 1{pe � g1{pe :� pfgq1{pe. If R is a domain, then R1{pe admits a more concrete

description: Let L be a fixed algebraic closure of the fraction field of R, and let f 1{pe
denote the unique root of the equation T pe � f P LrT s in L. We may then describe
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R1{pe as the subring of L consisting of all ppeqth-roots of elements of R. For example,

if R � Fprx1, � � � , xms, then R1{pe � Fprx1{pe
1 , � � � , x1{pe

m s.
As R is reduced, we have an inclusion R � R1{pe given by r ÞÑ prpeq1{pe . This

is an inclusion because
�
rp

e�1{pe � 0 ðñ rp
e � 0 ðñ r � 0, and it is a ring

map since r � s ÞÑ �pr � sqpe	1{pe � �
rp

e � sp
e�1{pe � �

rp
e�1{pe � �

sp
e�1{pe

. We also

note that F e�R � R1{pe as R-modules via the isomorphism r ÞÑ r1{pe. This map and

its inverse are often referred to as taking “ppeqth roots / raising to ppeqth powers.”

We have an inclusion (of rings) R1{pd � R1{pe�d

given by r1{pd � prpeq1{pe�d

, and

in this way, we identify pR1{pdq1{pe and R1{pe�d

as R1{pd-modules. Also note that

for any multiplicative set of W of R, we may canonically identify W�1
�
R1{pe� andpW�1Rq1{pe as modules over the localization W�1R.

We say that R is F -finite if R1{p (equivalently, F�R) is a finitely generated R-

module. One can show that R is F -finite if and only if R1{pe (equivalently, F e�R) is

a finite R-module for every e ¥ 1, or even for one single e ¥ 1.

Example 2.14. By definition, a field K of characteristic p ¡ 0 is F -finite if and

only if rK : Kps   8, and a finitely generated algebra over K is F -finite if and only

if K is F -finite. [BMS08, Example 2.1]

3 Singularities of hypersurfaces defined via the Frobenius

map

The Frobenius map has been an important tool in commutative algebra since

Kunz characterized regular rings as those for which R1{pe is flat over R [Kun69].

Recall that that R is said to be F -pure (or F -split) if the inclusion R � R1{pe splits

as a map of R-modules for some e ¥ 1. An F -pure ring is necessarily reduced, and

R is F -pure if and only if the inclusion R � R1{pe splits as a map of R-modules for
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every e ¥ 1, or even for one single e ¥ 1 [HR76].

We would like to generalize of the notion of F -purity to pairs. By definition,

a pair consists of the ambient ring R, an element f P R, and a non-negative real

parameter λ, and is denoted by pR, λ 
 fq.
We say that the inclusion R � fN{pe � R1{pe splits over R (or splits as a map of

R-modules) if there exists an map θ P HomRpR1{pe, Rq with θ
�
fN{pe� � 1. Note that

if f is a unit, then R � fN{pe � R1{pe splits over R if and only if R is F -pure. For the

remainder of this section, R will denote an F -pure ring of characteristic p ¡ 0, and

f will denote a non-zero, non-unit element of R.

We would like to say that the pair pR, λ 
 fq is F -pure if R � fλ � R1{pe splits for
some (or all) e ¥ 1. Of course, the problem in doing so is that fλ need not represent

an element of R1{pe for any e ¥ 1. On way of getting arounds this is to approximate

λ by a sequence of rational numbers λe with λe P 1
pe
� N and lim

eÑ8λe � λ, and then

require that some (or all) of the inclusions R � fλe � R1{pe split over R. Of course,

there are numerous ways to approximate λ (for example, rpeλs
pe

,
tppe�1qλu

pe
, and rppe�1qλs

pe

would all work) and each choice may lead to a distinct notion of F -purity for pairs.

Definition 2.15. [Tak04, TW04, Sch08] The pair pR, λ 
 fq is said to be

1. F -pure if R � f tppe�1qλu{pe � R1{pe splits over R for all e ¥ 1,

2. strongly F -pure if R � f rpeλs{pe � R1{pe splits overR for some e ¥ 1, and

3. sharply F -pure if R � f rppe�1qλs{pe � R1{pe splits over R for some e ¥ 1.

If ℘ � R is a prime ideal, we say that pR, λ 
 fq is (strongly/sharply) F -pure at ℘ if

the pair pR℘, λ 
 fq is (strongly/sharply) F -pure.

The following lemma shows that F -purity may be detected locally.
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Lemma 2.16. pR, λ 
 fq is (strongly/sharply) F -pure if and only if pR℘, λ 
 fq is
(strongly/sharply) F -pure at every prime ideal ℘ � R.

Proof. We will only prove the statement regarding F -purity. By definition, pR, λ 
 fq
is F -pure if the map Θ : HomRpR1{pe, Rq Ñ R given by evaluation at f tppe�1qλu{pe is

surjective for all e ¥ 1. However, Θ is surjective if and only if Θ℘ : HomRpR1{pe, Rq℘ �
HomR℘

�
R

1{pe
℘ , R℘

	Ñ R℘ is surjective for every ℘ P SpecR, and under this identifi-

cation is is easy to verify that Θ℘ is also given by evaluation at f tppe�1qλu{pe.
Of course, Lemma 2.16 also holds with “prime ideal” replaced by “maximal ideal.”

We now examine how F -purity for a pair is affected by varying the parameter λ.

Lemma 2.17. If the inclusion R � fN{pe � R1{pe splits as a map of R-modules, so

must the inclusion R � fa{pe � R1{pe for all 0 ¤ a ¤ N .

Proof. By hypothesis, there exists a map θ P HomRpR1{pe, Rq with θ
�
fN{pe� � 1. If

we let φ P HomRpR1{pe , Rq denote the composition R1{pe �f N�a
peÝÝÝÝÑ R1{pe θÝÑ R, then

φ
�
fa{pe� � 1.

Lemma 2.18. Let λ be a positive real number.

1. If pR, λ 
 fq is F -pure, then so is pR, ε 
 fq for every 0 ¤ ε ¤ λ.

2. pR, λ 
 fq is not F -pure if λ ¡ 1.

Proof. As tppe � 1q 0u � 0, the pair pR, 0 
 fq is F -pure. As tppe � 1q εu ¤ tppe � 1qλu,
Lemma 2.17 shows that pR, ε 
 fq is F -pure whenever pR, λ 
 fq is. For the second

point, suppose that pR, p1� εq 
 fq is F -pure for some ε ¡ 0, so that

(2.18.1) R � f tppe�1qp1�εqu{pe � R1{pe splits over R for every e ¥ 1.
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Note that ppe � 1qp1 � εq � pe � 1 � ppe � 1q � ε ¡ pe for e " 0. By (2.18.1) and

Lemma 2.17, we have that R � f � R1{pe splits over R for e " 0. We conclude that

there exists a map θ P HomRpR1{pe , Rq with 1 � θpfq � f � θp1q, which is impossible

as f is not a unit.

Definition 2.19. [TW04]We define the F -pure threshold of f P R, denoted fptpR, fq,
as follows: fptpR, fq � sup tλ P R¥0 : pR, λ 
 fq is F -pure u. Note that fptpR, uq �8 whenever u is a unit in R. We define the F -pure threshold of f at ℘ P SpecR, de-

noted fpt℘pR, fq, as follows: fpt℘pR, fq � sup tλ P R¥0 : pR, λ 
 fq is F -pure at ℘ u.
When there is possibility for confusion, we write fptpfq and fpt℘pfq rather than

fptpR, fq and fpt℘pR, fq. Note that, by definition, fpt℘pR, fq � fptpR℘, fq.
Remark 2.20. By Lemma 2.18, we see that fptpR, fq P r0, 1s.
Remark 2.21. Though not at all obvious from the definition, fptpfq P Q whenever

R is F -finite and regular [BMS08, Theorem 3.1]. For rationality results in a more

general setting, see [KLZ09, BSTZ09].

Proposition 2.22. The F -pure and strongly (respectively, sharply) F -pure thresh-

old agree: fptpR, fq � supλ t pR, λ 
 fq is strongly (respectively, sharply) F -pure u.
Proof. The equality of these thresholds is shown in [TW04, Proposition 2.2] and

[Sch08, Proposition 5.3].

Remark 2.23. Let W � R be any multiplicative set. If pR, λ 
 fq is F -pure, it

follows that pW�1R, λ 
 fq is also F -pure, and thus fptpR, fq ¤ fptpW�1R, fq.
Proposition 2.24. The F -pure threshold may be computed locally. Precisely stated,

we have that fptpfq � inf t fpt℘pfq : ℘ P SpecR u.
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Proof. Note that fptpfq ¤ inf t fpt℘pfq : ℘ P SpecR u by Remark 2.23. We may

now assume that λ :� inf t fpt℘pfq : ℘ P SpecR u ¡ 0. For 0   ε   λ, we have

that pR, pλ� εq 
 fq is F -pure at every ℘, so that pR, pλ� εq 
 fq is also F -pure by

Lemma 2.16. Thus, fptpfq ¥ λ� ε, and the claim follows by letting εÑ 0.

4 F -singularities of hypersurfaces in F -finite regular rings

We will next focus on the case of a smooth ambient ring, and will closely follow

[BMS08]. Throughout this section, R will be assumed to be an F -finite regular ring

of characteristic p ¡ 0, and f will denote a non-zero, non-unit in R. In this setting,

we know that R1{pe (equivalently, F e�R) is a finitely generated flat R-module [Kun69].

1
�

1
pe

�th
Frobenius powers

In this subsection, we define (see Definition 2.26) and study the properties of�
1
pe

�th
Frobenius powers of principal ideals. These ideals will be used in the next

subsection to define the test ideal associated to a pair.

For every ideal I � R, let I rpes denote the ideal generated by the set
 
gp

e

: g P I
(
.

It is clear that I rpes � IF e�R, and we call I rpes the eth Frobenius power of I. Note

that
�
I rpes�rpds � I rpe�ds by definition. Furthermore, as F e�R is a flat R-module, we

have that gp
e P I rpes if and only if g P I.

Lemma 2.25. Let t In un be a family of ideals of R. Then
�

n In
rpes � p�n Inqrpes.

Proof. Let S :� F e�R. As I rpes � IS, it suffices to show that
�

n pISq � p�n IqS.
Furthermore, it suffices to check this equality after localizing at every prime ideal

of S. However, S is a finitely generated flat R-algebra (and hence locally free), in

which case it is easy to verify that
�

n pIS℘q � p�n IqS℘ for all ℘ P SpecS.
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Definition 2.26. [BMS08] We define the
�

1
pe

�th
Frobenius power of f to be the

minimal ideal J , with respect to inclusion, such that f P J rpes. We denote the
�

1
pe

�th
Frobenius power of f by pf qr 1

pe s. This is well defined by Lemma 2.25.

Lemma 2.27. Let f P R.

1. If J � R is an ideal, then pf qr 1

pe s � J if and only if f P J rpes.
2. pf qr 1

pe s � pf q� 1

pe�d

�rpds
.

3. If N ¥ n are integers, then
�
fN

�r 1

pe s � pfnqr 1

pe s.
4.

�
f pd

	� 1

pe�d

� � pf qr 1

pe s.
Proof. By definition, we have that f P J rpes ùñ pf qr 1

pe s � J . On the other hand, ifpf qr 1

pe s � J , then f P �pf qr 1

pe s	rpes � J rpes. For the second point, let J :� pf q� 1

pe�d

�
.

Then f P J rpdsrpes, which implies that pf qr 1

pe s � J rpds. The third point follows from

the fact that if fn P I rpes, then fN P I rpes, while the last follows from the fact that

f pd P I rpe�ds ðñ f P I rpes.
Lemma 2.28. [BMS08, Lemma 2.7] The formation of

�
1
pe

�th
powers commutes with

localization: If W � R is a multiplicative set, then W�1 pf qr 1

pe s � pfW qr 1

pe s, where
fW denotes the image of f in W�1R.

Proposition 2.29. [BMS08, Proposition 2.5] Suppose that R is a finitely-generated

free module over the subring Rpe � R. If β1, � � � , βN is a basis for R over Rpe , and

f � a
pe

1 β1�� � ��ap
e

n βN is the unique representation of f as an Rpe-linear combination

of this basis, then pf qr 1

pe s � pa1, � � � , anq � R.

Proof. It is obvious that f P pa1, � � � , anqrpes. Next, suppose that f P J rpes for some

ideal J . Express f � °r

i�1 gih
pe

i with hi P J , and express gi � °N

j�1 s
pe

ij βj as an
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Rpe-linear combination of the basis elements β1, � � � , βN . Equating the coefficients of

the βi in the expression f � °r
i�1 gih

pe

i will show that ap
e

i � °N
j�1 s

pe

ij h
pe

i , and so we

may conclude that ai � °N
j�1 sijhi P J .

Corollary 2.30. The ideal pf qr 1

pe s is the image of the map HomRpR1{pe , Rq Ñ R

given by evaluation at f 1{pe.
Proof. The image of the evaluation map obviously commutes with localization, and

Lemma 2.28 shows that the same is true for pf qr 1

pe s, which allows us to assume that

R is local. In this case, R is a finitely-generated, flat (and hence free) module over the

subring Rpe , and the claim is then an immediate corollary of Proposition 2.29.

Corollary 2.30 allows us to relate
�

1
pe

�th
Frobenius powers with F -purity.

Corollary 2.31. Let pS, nq be an F -finite regular local ring, and let f be a non-unit

of S. Then the inclusion S � f 1{pe � S1{pe splits over S if and only if f R n
rpes.

Proof. By Corollary 2.30, S � f 1{pe � S1{pe splits if and only if pf qr 1

pe s � n, which by

Lemma 2.27 occurs if and only if f R n
rpes.

Corollary 2.32. pR, λ 
 fq is F -pure at a maximal ideal m if and only if f tppe�1qλu R
m
rpes for all e ¥ 1. Similarly, pR, λ 
 fq is strongly F -pure at m if and only if

f rpeλs R m
rpes for some e ¥ 1, and is sharply F -pure at m if and only if f rppe�1qλs R m

rpes
for some e ¥ 1.

Proof. pR, λ 
 fq is F -pure at m if and only if the inclusion Rm � f tppe�1qλu{pe � R
1{pe
m

splits for every e ¥ 1. However, Corollary 2.31 shows that this map splits if and

only if f tppe�1qλu R m
rpes � Rm. As

?
m
rpes � m, mrpes is a primary ideal, and hence

m
rpesRm X R � m

rpes. From this, we can conclude that f tppe�1qλu R m
rpes � Rm if and

only if f tppe�1qλu R m
rpes.
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The next statement follows from Corollary 2.32 and Proposition 2.22.

Corollary 2.33. fptmpfq � sup
 
λ P R¥0 : f

rpeλs R m
rpes for some e ¥ 1

(
.

2 Test Ideals and F -jumping numbers

In this subsection, we define and present some of the basic properties of the test

ideal corresponding to a pair pR, λ 
 fq. In order to define the test ideal, we will need

the following lemma.

Lemma 2.34. For every λ ¥ 0, we have that
�
f rpeλs�r 1

pe s � �
f rpe�1λs	� 1

pe�1

�
.

Proof. Let J :� �
f rpe�1λs	� 1

pe�1

�
. By Definition 2.26, it suffices to show that f rpeλs is

contained in J rpes. Note that pe�1λ � p � peλ ¤ p rpeλs, so that rpe�1λs ¤ p rpeλs as
well. By definition, we have that f rpe�1λs P J rpe�1s, and so

�
f rpeλs�p P J rpe�1s as well.

As R is regular, we may conclude that f rpeλs P J rpes.
Definition 2.35. [BMS08, Definition 2.9] We define the test ideal of pR, λ 
 fq as
follows: τ pR, λ 
 fq :� �

e¥1

�
f rpeλs�r 1

pe s. This is an ideal of R by Lemma 2.34.

Remark 2.36. As R is Noetherian, τ pR, λ 
 fq � �
f rpeλs�r 1

pe s for e " 0.

Remark 2.37. It follows immediately from Remark 2.36 and Lemma 2.28 that

W�1 pτ pR, λ 
 fqq � τ pW�1R, λ 
 fq for every multiplicative set W � R.

The theory of test ideals is a key component in the theory of tight closure [HR76,

HH90, HY03]. The following result, which is an immediate corollary of the last point

of Lemma 2.27, allows us to determine when this ascending chain stabilizes in an

important special case.

Lemma 2.38. [BMS09, Lemma 2.1] If λ P 1
pe
� N, then τ pR, λ 
 fq � �

f peλ
�r 1

pe s.
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Proposition 2.39. [BMS08, Proposition 2.11, Corollary 2.16]

1. τ pR, λ1 
 fq � τ pR, λ0 
 fq if λ1 ¥ λ0.

2. τ pR, λ 
 fq � R for 0   λ ! 1.

3. For every λ ¥ 0, there exists ε ¡ 0 so that τ pR, λ 
 fq � τ pR, pλ� εq 
 fq.
Proof. Fix e " 0 so that τ pR, λ1 
 fq � �

f rpeλ1s�r 1

pe s and τ pR, λ0 
 fq � �
f rpeλ0s�r 1

pe s.
The assertion that τ pR, λ1 
 fq � τ pR, λ0 
 fq then follows from Lemma 2.27.

To prove the second point, it suffices to show that τ pR, λ 
 fq is trivial for some

λ ¡ 0. By Lemma 2.27, the ideals pf qr 1

pe s form an increasing chain, so we may

fix a d such that pf qr 1

pe s � pf q� 1

pd

�
for all e ¥ d. If pf q� 1

pd

� � R, there exists a

maximal ideal m with pf qr 1

pe s � pf q� 1

pd

� � m for all e ¥ d. Lemma 2.27 then shows

that f P m
rpes for all e ¥ d, contradicting the fact that f � 0. We conclude that

τ
�
R, 1

pd

 f	 � pf q� 1

pd

� � R.

For the last point, it suffices to show that τ pR, pλ� εq 
 fq � τ pR, λ 
 fq for

some ε ¡ 0. Fix d such that τ pR, λ 
 fq � �
f rpdλs	� 1

pd

�
. If pdλ R N, there exists

0   ε ! 1 such that
P
pdλ

T � P
pd pλ� εqT. Then

τ pR, pλ� εq 
 fq � �
f rpdpλ�εqs	� 1

pd

� � �
f rpdλs	� 1

pd

� � τ pR, λ 
 fq .
We now assume that pdλ P N. After possibly increasing d, we may also assume

that τ
�
R, 1

pd

 f	 � pf q� 1

pd

� � R. We now show that τ pR, λ 
 fq � �
f pdλ

	� 1

pd

�
is

contained in τ
�
R,

�
λ� 1

p2d

	 
 f	 � �
f p2dλ�1

	� 1

p2d

�
. Let J :� �

f p2dλ�1
	� 1

p2d

�
. By

definition, we have that f p2dλ�1 P J rp2ds, so that

(2.39.1) f P �J rp2ds : f p2dλ
	 � �

J rpds : f pdλ
	rpds

.

However, (2.39.1) and the fact that pf q� 1

pd

� � R imply that
�
J rpds : f pdλ

	 � R as

well. From this, we conclude that f pdλ P J rpds, so that
�
f pdλ

	� 1

pd

� � J .
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Definition 2.40. We say that λ ¥ 0 is an F -jumping number of f if λ � 0, or if

λ ¡ 0 and τ pR, λ 
 fq is strictly contained in τ pR, pλ� εq 
 fq for all 0   ε   λ.

The following result, whose proof we omit, shows that the jumping numbers of f

are completely determined by those contained in the unit interval.

Proposition 2.41. [BMS08, Proposition 2.25] Every natural number is an F -

jumping number of f , and a positive real number λ R N is an F -jumping number

if and only if the fractional part of λ, which is contained in p0, 1q, is an F -jumping

number.

We have seen in Proposition 2.39 that τ pR, λ 
 fq � R for small values of λ,

and so the first F -jumping corresponds to the first value at which τ pR, λ 
 fq is

non-trivial. We see below that this first jumping number coincides with fptpR, fq.
Proposition 2.42. fptpR, fq � sup tλ P R¥0 : τ pR, λ 
 fq � R u
Proof. τ pR, λ 
 fq � R if and only if

�
f rpeλs�r 1

pe s � R for some e ¥ 1, which by

Corollary 2.30 happens if and only if there exists a map θ P HomRpR1{pe, Rq such
that θ

�
f rpeλs{pe� � 1. This is precisely the condition that pR, λ 
 fq be strongly

F -pure, and the assertion follows from Proposition 2.22.

Remark 2.43. As fptmpR, fq � fptpRm, fq, it follows from Proposition 2.42 and

Remark 2.37 that fptmpfq � sup tλ ¥ 0 : τ pR, λ 
 fq
m
� τ pRm, λ 
 fq � Rm u.



CHAPTER 3

Some connections

Suppose that f P Qrx1, � � � , xms. By reducing each of the coefficients of f modulo

p " 0, we obtain a family of models fp P Fprx1, � � � , xms. In general, given a polyno-

mial f P Crx1, � � � , xms, we may produce a family of positive characteristic models

of f via the method of reduction to positive characteristic.

We begin with an example. Consider the polynomial f � 5x � πwy2 � e
?
3z11

in Crx, y, z, ws. If we let A :� Zrπ, e,?3sπ�e�?3 � C, then A is a finitely-generated

Z-subalgebra of C, and f P Arx, y, z, ws. Note that from Arx, y, z, ws, we can recover

Crx, y, z, ws via base change: CbAArx, y, z, ws � Crx, y, z, ws. If µ � A is a maximal

ideal, then A{µ is a finite field by Corollary 3.2, which also shows that all but

finitely many p appear in the set t charA{µ : µ � A is maximal u. By construction,

each coefficient of f is a unit in A, and hence will have non-zero image under the

map A ÞÑ A{µ. Thus, if fµ denotes the image of f under the map Arx, y, z, ws Ñ
A{µ bA Arx, y, z, ws � pA{µq rx, y, z, ws, fµ is a polynomial over a finite field of

positive characteristic whose supporting monomials are the same as the supporting

monomials of f . Furthermore, by varying µ we obtain models fµ over fields of all

but finitely many characteristics.

We will discuss generalizations of this process in what follows. Rather than focus

24
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on polynomial rings, we will discuss the process of creating positive characteristic

models for for any element (and ideal) in a finitely generated C-algebra.

1 Preliminaries

In this section, we gather a collection of results related to the method of reduction

to positive characteristic. These results are consequences of the following variant of

Noether Normalization.

Lemma 3.1 (Noether Normalization for Domains). Let A be a finitely-generated al-

gebra over a domain D with D � A. There exists 0 � N P D such that the extension

DN � AN can be factored as DN � DN rz1, � � � , zds � AN , where z1, � � � , zd P AN are

algebraically independent over DN , and DN rz1, � � � , zds � AN is module-finite.

If L � FracD, and R is the localization of A at the non-zero elements of D, then

by Noether Normalization for fields, the inclusion L � R can be factored as a purely

transcendental extension followed by a module-finite extension. As only finitely many

“denominators” are involved at this process, one can localize at a single element of

D and preserve this factorization. For a proof of Lemma 3.1 that is independent of

Noether Normalization for fields, we refer the reader to [Hoc].

Corollary 3.2. If Z � A is a finitely‘generated Z-algebra, then

1. every maximal ideal of A contains a prime p, and

2. all but finitely many primes p are contained in a maximal ideal of A.

3. Furthermore, A{µ is a finite field for every maximal ideal µ � A.

Proof. Let µ � A be a maximal ideal, and suppose that µ X Z � 0. It follows

that A{µ is also a finitely generated Z-algebra, so by Lemma 3.1, there exists an
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integer N � 0 such that A{µ � pA{µqN is module finite over a polynomial ring with

coefficients in ZN . This implies that 0 � dimA{µ ¥ dimZN � 1, a contradiction.

For the second point, let 0 � N P Z and z1, � � � , zd P AN be as in Lemma 3.1,

so that the extension ZN � AN factors as ZN � ZN rz1, � � � , zds � AN . Every p

not dividing N generates a prime ideal in both ZN and ZN rz1, � � � , zds, and so by

the Lying Over Theorem, there exists a prime (and hence maximal) ideal of A not

containing N , and lying over p.

For the last point, we have that A{µ is finitely generated algebra over Fp for some

p, and thus is module finite over a polynomial ring Fprz1, � � � , xds by Lemma 3.1. As

A{µ is a field, dimension considerations force that d � 0, and thus A{µ is a finite

extension of Fp.

Lemma 3.3. Let A � B be an inclusion of finitely-generated Z-algebras. If µB � B

is maximal, then so is µA :� µX A � A.

Proof. By Corollary 3.2, we know that B{µB is a finite field, and the inclusion

A{µA � B{µB then shows that A{µA must also be a finite field.

Corollary 3.4. Let A be a domain, A � B be an inclusion of finitely-generated

A-algebras, and let π : SpecB Ñ SpecA be the induced map of schemes. Then the

(inverse) image of a dense set under π is also dense. Furthermore, the image under

π of a non-empty open set contains a non-empty open subset of A.

Proof. We will first show that if W � SpecB is dense in SpecB, then π pW q is dense
in SpecA. By means of contradiction, suppose that πpW q is not dense in SpecA, so

that πpW q X U � H for some non-empty open set U � SpecA. It follows that

(3.4.1) W X π�1pUq � π�1 pπpW qq X π�1pUq � H.
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However, π, being induced by the inclusion A � B, is dominant, and so π�1 pUq � H.

As W is dense in SpecB, we must have that π�1pUqXW � H, contradicting (3.4.1).

We will now show that if Λ � SpecA is dense, then π�1pΛq is dense in SpecB.

It suffices to show that SpecBf Xπ�1pΛq � H for every non-zero element f P B. By

assumption, B is a finitely-generated A-algebra, and thus so is Bf � BrT s{p1�Tfq.
By Lemma 3.1, there exists N P A non-zero such that AN � BfN factors as

(3.4.2) AN � AN rz1, � � � , zds � BfN ,

where z1, � � � , zd are elements of BfN that are algebraically independent over AN ,

and the second inclusion in (3.4.2) is module finite. By the Lying Over Theorem,

it follows that the map SpecBfN Ñ SpecAN induced by (3.4.2) is surjective. As Λ

is dense in SpecA, we have that Λ X SpecAN � H. The previous surjection shows

that SpecBfN X π�1pΛq � H, and thus that SpecBf X π�1pΛq � H.

Let U � SpecB be an open set, and suppose that U contains the basic open setH � SpecBf . We have seen in the preceding paragraph that there exists N � 0 in

A such that SpecAN � π pSpecBfNq � πpSpecBfq � πpUq.
The following result shows an explicit way to reduce a polynomial over C to

positive characteristic, and will be important in Chapter 7.

Corollary 3.5. Let f P Crx1, � � � , xss with fp0q � 0. Then there exists a finitely-

generated Z-subalgebra A � C with f P Arx1, � � � , xss satisfying the following prop-

erty: for p " 0, π�1ppq � H and Supportpfµpq � Supportpfq for every maximal ideal

µp P π�1ppq. Here π : SpecAÑ SpecZ denotes the map induced by Z � A.

Proof. Let f � u1x
a1 � � � � � unx

an for some coefficients ui P C�, and let B �
Zru�1

1 , � � � , u�1
m s; note that B is a finitely-generated Z-algebra. Choose an integer N

so the inclusion ZN � BN factors as in Lemma 3.1. We may take A :� BN .
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2 On reduction to positive characteristic

If Z � A � C is a finitely-generated Z-algebra and g P Crx1, � � � , xss, we say

that g is defined over A if g P Arx1, � � � , xss � Crx1, � � � , xss. Similarly, we say

that an ideal J � Crx1, � � � , xss is defined over A if some fixed set of generators

of J are defined over A. This condition is equivalent to the existence of an ideal

JA � Arx1, � � � , xss with the property that JA � Crx1, � � � , xss � J . For example,

J � pπx2, y �?
2zq and f � ln 5 � x� y P S are both defined over Zrπ,?2, ln 5s. In

fact, if J and f are defined over A, then they are defined over any finitely-generated

Z-algebra B � C with A � B. If Σ is any finite set of ideals (or elements) of S,

there exists a finitely generated Z-algebra A � C such that every member of Σ is

defined over A.

Let S � Crx1, � � � , xss{I be a finitely-generated C-algebra. Suppose that I is

defined over A, and fix an ideal IA � Arx1, � � � , xss that expands to I. We say that

S is defined over A, and set SA :� Arx1, � � � , xss{IA. We now point out some of the

subtleties of these definitions and constructions.

Remark 3.6. First, note that if I is defined over A, then I does not canonically de-

termine an ideal of Arx1, � � � , xss. Indeed, if IA and I 1A are both ideals of Arx1, � � � , xss
that expand to I, then IA and I 1A need not be equal as ideals of Arx1, � � � , xss. For ex-
ample, choose complex numbers α and β that are pairwise algebraically independent

over Q (i.e., π and e is very likely an example of such a pair). Let A � Zrα, βs, and
consider the ideals IA � px, α � yq and I 1A � px, β � yq in Arx, ys. Note that IA � I 1A as

ideals of Arx, ys, though IA � Crx, ys � I 1A � Crx, ys � px, yq. In this specific case, we

see that though IA � I 1A, we still have that Arx, ys{IA � Arx, ys{I 1A. This suggests

that distinct choices for IA might yield isomorphic quotients.
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However, SA � Arx1, � � � , xms{IA may depend on the choice of IA. For example,

let A � Zrπs, and consider the ideals IA � pxq and I 1A � pπxq of Arxs. Then

IA � Crxs � I 1A � Crxs � pxq, yet Arxs{IA � Arxs{I 1A as rings, for

Arxs{IA � A � Zrts � Zrt, xs{ptxq � Arxs{I 1A,
where t is an indeterminate over Z. That SA depends on the choice of A is clear.

Many of the ambiguities described above can be resolved by expanding our “co-

efficient” base A. Indeed, if IA � Arx1, � � � , xss and IB � Brx1, � � � , xss are ideals

whose expansions to Crx1, � � � , xss are equal, then there exists a finitely generated

Z-algebra C containing both A and B such that the expansions of IA and IB are

equal in Crx1, � � � , xss. Indeed, one need only attach the finitely many coefficients

involved in expressing generators of IA in terms of those for IB over C, and vice

versa.

Another unifying point is that, regardless of the choice of A or IA, we can always

recover A from SA, as CbA SA � S. This justifies the point of view that SA, though

not canonically determined, is a good approximation of S.

Consider the map SpecSA Ñ SpecA induced by the map AÑ SA. The fiber over

the generic point p0q P SpecA is the variety corresponding to FracA bA SA, while

the fiber over a closed point (i.e., maximal ideal) µ � A is the variety corresponding

to A{µ bA SA. By Corollary 3.2, this is a variety over the finite field A{µ.
By extending the scalars of the closed fiber from FracA to C, we obtain the

variety corresponding to S. This follows from the fact that C bA pFracAbA SAq �
C bA SA � S. As the extension FracA � C is nice (i.e., faithfully flat), we see that

much of the information carried by S is carried by the fiber of SpecSA Ñ SpecA

over the generic point of SpecA, regardless of whatever choices were made. On the
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other hand, it is a general principle that properties of the generic fiber are closely

related to those of the closed fibers. However, each closed fiber is a variety over a

finite field, and can be studied via the Frobenius map on the ambient ring.

Suppose that we want to study a finitely-generated C-algebra S. If S is defined

over A, we may then hope to use properties satisfied by the fibers of SpecSA Ñ
SpecA over “most” closed points of SpecA to say something about S. In doing so,

we would like to know that this is independent of the choices being made.

3 On F -purity for pairs reduced from C

The aim of this section is to examine the F -purity property for pairs that are

reduced from positive characteristic. Let f denote a polynomial with non-zero image

in S :� Crx1, � � � , xss{I. Suppose that A � C is a finitely-generated Z-algebra

such that f and I are both defined over A. Fix an ideal IA � Arx1, � � � , xms with
IA � Crx1, � � � , xms � I, and let SA � Arx1, � � � , xms{IA be as defined above, so

that C bA SA � S. For every maximal ideal µA � A, fµA
will denote the image

of f under the map Arx1, � � � , xss Ñ SA Ñ SApµAq :� A{µ bA SA. Let B � C

be another finitely-generated Z-algebra with f and I both defined over B, and let

IB � Brx1, � � � , xms, SB � Brx1, � � � , xms{IB, and fµB
P SBpµBq be as above.

Though the construction of SA depends on the choice of A and IA, we will show

that the issue of whether or not the positive characteristic pairs pSApµAq, λ 
 fµA
q

are F -pure for “most” maximal ideals µA � A is independent of these choices. Here,

“most” maximal ideals will mean all maximal ideals in some dense (or dense open)

subset of SpecA. In doing so, we will rely on the following result.

Lemma 3.7. Let K � L be perfect fields of characteristic p ¡ 0. Let R be a

K-algebra, and consider the inclusion R � T :� L bK R. Then there exists a
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map θR P HomR

�
R1{pe, R� with θRpg1{peq � 1 if and only if there exists a map

θT P HomT

�
T 1{pe, T � with θT

�
g1{pe� � 1.

Proof. As T is a free R-module (and hence faithfully flat), the map of R-modules

HomR

�
R1{pe , R�Ñ R

given by evaluation at g1{pe is surjective if and only if the map of T -modules

(3.7.1) HomT

�
T bR R1{pe, T �Ñ T

given by evaluation at 1 b g1{pe is surjective. We identify T 1{pe and T bR R1{pe as

T -algebras via the canonical isomorphisms

T bR R1{pe � pLbK Rq bR R1{pe � LbK R1{pe � L1{pe bK1{pe R1{pe� pLbK Rq1{pe � T 1{pe.
Here, we have crucially used that L and K are perfect. It is easy to check that

the isomorphism T bR R1{pe � T 1{pe induces an isomorphism between the map

HomT

�
T 1{pe, T � Ñ T given by evaluation at g1{pe P R1{pe � T 1{pe with the map

appearing in (3.7.1).

Lemma 3.8. Suppose that A � B, and that IB � Brx1, � � � , xms is equal to the

expansion of IA � Arx1, � � � , xms to Brx1, � � � , xms. Let µB be a maximal ideal of

SpecB, and let mA :� µB X A denote the corresponding maximal ideal of A. ThenpSApµAq, λ 
 fµA
q is F -pure if and only if pSBpµBq, λ 
 fµB

q is F -pure. In particular,

fptpfµA
q � fptpfµB

q.
Proof. Let p :� charA{µA � charB{µB. Note that A{µA � B{µB is an extension of

finite (hence, perfect) fields. That IA�Brx1, � � � , xms � IB implies that SB � BbASA,
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and furthermore we have

SBpµBq � SB bB B{µB � pSA bA Bq bB B{µB �SA bA B{µB

(3.8.1) �SA bA

�
A{µA bA{µA

B{µB

��SApµAq bA{µA
B{µB

Under this identification, it is easy to see that fµA
ÞÑ fµB

under the inclusion

SApµAq � SApµAq bA{µA
B{µB � SBpµBq. Finally, it follows from Lemma 3.7 that

there exists a map in HomSApµAq �SApµAq1{pe, SApµAq� sending f
N{pe
A to 1 if and only

if there exists a map in HomSBpµBq �SBpµBq1{pe, SBpµBq� sending f
N{pe
B to 1, and the

claim follows.

Corollary 3.9. The pair pSApµAq, λ 
 fµA
q is F -pure for all maximal ideals µA

in some dense (respectively, dense open) subset of SpecSA if and only if the pairpSBpµBq, λ 
 fµB
q is F -pure for all maximal ideals µB in some dense (respectively,

dense open) subset of SpecSB.

Proof. We will first assume that A � B and that IB � IA � Brx1, � � � , xms, so that

Lemma 3.8 applies. Suppose there exists a dense (respectively, dense open) set

WA � SpecA such that pSApµAq, λ 
 fµA
q is F -pure for every maximal ideal µA P WA,

and set WB :� π�1pWAq. By Corollary 3.4, WB is a dense (respectively, dense open)

subset of SpecB. Let µB denote a maximal ideal in WB, and let µA � µBXA be the

image of µB under π. It follows from Lemma 3.8 that pSBpµBq, λ 
 fµB
q is F -pure.

Instead, suppose there exists a dense (respectively, dense open) set WB � SpecB

such that pSBpµBq, λ 
 fµB
q is F -pure for every maximal ideal µB P WB. Let WA

denote any dense (or dense open) subset of πpWBq (such a set exists by Corollary 3.4),

and let µA denote a maximal ideal in WA. By definition, we may choose a maximal
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ideal µB in B such that µA � πpµBq � µB X A. Once again, Lemma 3.8 shows thatpSApµAq, λ 
 fµA
q must also be F -pure.

We now address the general case. As IA �Crx1, � � � , xss � IB �Crx1, � � � , xss, there
is a finitely-generated Z-algebra D � C such that A,B � D, and IA �Drx1, � � � , xss �
IB �Drx1, � � � , xss :� ID. By construction, our initial argument applies to the inclu-

sions A � D and B � D, and thus the claim comparing A and B follows.

4 A connection between singularities

In this subsection, f P S � Crx1, � � � , xms will denote a polynomial with fp0q � 0.

If A � C is a finitely-generated Z-algebra, then SA will denote the polynomial ring

Arx1, � � � , xms � S. If µ � A is a maximal ideal, we will use SApµq to denote

the polynomial ring A{µ bA SA � pA{µqrx1, � � � , xms. By Corollary 3.2, SApµq is a

polynomial ring over a finite field. By abuse of notation, we will use m to denote the

ideal generated by the variables in the polynomial rings S, SA, and SApµq.
Definition 3.10. We say that pCm, λ 
 fq has dense F -pure type at 0 if for every

finitely generated Z-algebra A � C with f P SA, the positive characteristic pairspSApµq, λ 
 fµq are F -pure at m for all maximal ideals µ in some dense (though not

neccesarily open) subset of SpecA.

This definition of dense F -pure type can easily be extended to study the singu-

larities of f at any point z with fpzq � 0. One way to do so is as follows: Fix an

automorphism S
φÑ S such that z ÞÑ 0 under the induced isomorphism Cm Ñ Cm,

and let g � φpfq. Note that gp0q � 0. Then pCm, λ 
 fq has dense F -pure type at z

if pCm, λ 
 gq has dense F -pure type at 0.

Remark 3.11. If follows from Corollary 3.9 that it suffices to check the condition

in Definition 3.10 for one single A with f P SA.
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The following theorem allows us to compare log canonical singularities with F -

pure singularities.

Theorem 3.12. [HW02, Tak04] If the pair pCm, λ 
 fq has dense F -pure type at 0,

then it is also log canonical at 0.

The following result further illustrates the close relationship between singularities

in characteristic zero and those in characteristic p ¡ 0.

Theorem 3.13. [Smi00, HY03] There exists a finitely generated Z-algebra A � C

with f P SA, and ideals H λ � pSAqm for every λ ¥ 0 with H λ �Sm � J pCm, λ 
 fq
m

satisfying the following conditions:

1. There exists a dense open set U � SpecA such for every maximal ideal µ P U

and for every λ ¥ 0, we have τ pSApµq, λ 
 fµq
m
� H λ � SApµqm.

2. For every λ ¥ 0, there exists a dense open set Uλ � SpecA such that for every

maximal ideal µ P Uλ, we have τ pSApµq, λ 
 fµq
m
� H λ � SApµqm.

We emphasize that the set U � SpecA does not depend on λ, while the sets

Uλ do, and typically get smaller as λ increases. As a corollary of Theorem 3.13, we

obtain the following relationship between thresholds.

Theorem 3.14. For every A � C with f P SA, the following hold:

1. There exists a dense open set W � SpecA such that fptmpfµq ¤ lct0pfq for
every maximal ideal µ P U .

2. For every 0   λ   lct0pfq, there exists a dense open set Wλ � SpecA such

that λ ¤ fptmpfµq ¤ lct0pfq for every maximal ideal µ P Wλ.

We again emphasize that the set Uλ varies with λ, and typically shrinks as λ increases.
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Proof. Corollary 3.9 can be used to show that the conclusions of the theorem hold if

and only if they hold for a specific A with f P SA. Let A be as in Theorem 3.13. For

the first point, let W � U be as in the first statement in Theorem 3.13. For µ P U ,

the inclusion τ pSApµq, fµ 
 λq
m
� H λ � SApµq and Remark 2.43 imply that

(3.14.1)

fptmpfµq � suptλ : τ pSApµq, fµ 
 λq
m
� SApµqmu ¤ suptλ : H λ � SApµqm � SApµqmu.

However, as pSAqm Ñ Sm and pSAqm Ñ SApµqm are local maps of local rings, we have

that H λ � SApµqm is trivial ðñ H λ is trivial ðñ H λ � Sm � J pCm, λ 
 fq
m

is trivial. This observation, combined with (3.14.1) and Remark 2.10 show that

fptmpfµq ¤ lct0pfq.
For the second point, let 0   λ   lct0pfq, let Wλ � Uλ X U , where U and Uλ

are as in Theorem 3.13, and fix a maximal ideal µ P Wλ. That fptmpfµq ¤ lct0pfq
follows from the preceding paragraph. By our choice of λ, Remark 2.10 shows that

J pCm, λ 
 fq
m
is trivial. This shows that H λ � Sm � J pCm, λ 
 fq

m
is also trivial,

which we have already seen holds if and only if H λ � SApµqm � τ pSApµq, λ 
 fµq
m
is

trivial as well. It then follows from Remark 2.43 that λ ¤ fptmpfµq.
Conjecture 3.15. For every A � C with f P SA, there exists a dense set U in

SpecA such that fptpfµq � lctpfq for all maximal ideals µ P U .

Whenever f has rational coefficients, this conjecture is equivalent to the statement

that fptmpfpq � lct0pfq for infinitely many p " 0. For f P Qrx1, � � � , xms, the set

of all primes such that fptmpfpq � lct0pfq also appears to encode subtle arithmetic

information of f , as illustrated by the following example.

Example 3.16. Let f P Qrx, y, zs be a homogeneous polynomial of degree 3 with

isolated singuarity at 0, so that f defines an elliptic curve E � P2. Then, lct0pfq � 1,
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and fptmpfpq � 1 if and only if Ep � V pfpq is not supersingular. It is known

that there are infinitely many primes such that Ep is not supersingular, though the

collection of such primes may be small (i.e., have density zero in the set of all primes)

[Ser72]. It is also not possible that fptmpfpq � lct0pfq for all p " 0, as it is known

that there are infinitely many primes for which Ep is supersingular [Elk87]. See

[MTW05, Example 4.6] for more details on this example.



CHAPTER 4

On base p expansions

Much of this thesis is dedicated to studying the properties of F -pure thresholds,

and by Remark 2.20, we know that these invariants are always contained in the unit

interval. In this section, we introduce some notation regarding base p (or p-adic)

expansions of numbers contained in the unit interval, and derive some easy results.

Though elementary, the idea of studying a number via its base p expansion will be

useful when applied to F -pure thresholds.

Definition 4.1. Let α P p0, 1s. A non-terminating base p expansion of α is an

expression α � °
i¥1

ai
pi
, with 0 ¤ ai ¤ p�1, such that � N ¡ 0, D e ¥ N with ae � 0.

The number ae is called the eth digit of the non-terminating base p expansion of α.

Remark 4.2. Though base p expansions are not unique in general, we note that

every α P p0, 1s possesses a unique non-terminating base p expansion.

Example 4.3. The non-terminating base p expansion of 1
p
is 1

p
� 0

p
�°

e¥2
p�1

pe
.

Example 4.4. Let α � a
b
be a rational number in p0, 1s, and fix a prime p � 1 mod b,

so that p � bω � 1 for some ω ¥ 1. Dividing both sides by p shows that 1 � bω
p
� 1

p
,

and multiplying both sides by α � a
b
shows that

(4.4.1) α � aω

p
� 1

p
� α.

37
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As a ¤ b, we also have that aω ¤ bω � p � 1. This, along with (4.4.1), shows that

the non-terminating base p expansion of α is constant, and is given by α � °
e¥1

aω
pe
.

We refer the reader to [HW08, Chapter 9] for the standard algorithm on comput-

ing base p expansions.

Definition 4.5. Let α P p0, 1s, and let p be a prime number, and fix e ¥ 1.

1. 0 ¤ cepαq ¤ p � 1 will denote the eth digit in the non-terminating base p

expansion of α. By convention, cα p0q � 0.

2. For e ¥ 1, we define the eth truncation of the non-terminating base p expansion

of α by xαye :� c1pαq
p

� � � � � cepαq
pe

. By convention, x0ye � 0.

3. For e ¥ 0, we define the eth tail of the non-terminating base p expansion of α

by vαwe :� °
d¥e�1

cdpαq
pd

. By convention, v0we � 0.

4. For α � pα1, � � � , αnq P r0, 1sn, we set xαye :� pxα1ye , � � � , xαnyeq.
Lemma 4.6. Let α P p0, 1s. Then the following hold:

1. xαye P 1
pe
� N.

2. 0   vαwe ¤ 1
pe
, with equality if and only if α P 1

pe
� N.

3. α � xαye � vαwe.
4. xαye   α and vαwe ¡ 0 for all e.

5. If α R 1
pe
� N, then xαye � tpeαu

pe
.

6. rpeαs � pe xαye � 1.

7. pe xαye � 1 ¤ tppe � 1qαu ¤ pe xαye.
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8. pe xαye ¤ rppe � 1qαs ¤ pe xαye � 1.

9. If β P p0, 1s X 1
pe
� N and α ¡ β, then xαye ¥ β.

Proof. Points 1 - 4 follow by definition. For 5, note that tpeαu � tpe xαye � pe vαweu �
pe xαye � tpe vαweu. As α R 1

pe
� N, we have that 0   vαwe   1

pe
, and so tpe vαweu � 0.

For 6, we have that peα � pe xαye � pe vαwe, with 0   pe vαwe ¤ 1 by 2. Thus, we see

that rpeαs � pe xαye � 1. As |pe vαwe � α|   1, points 7 and 8 follow from rounding

the equation ppe � 1qα � peα � α � pe xαye � pe vαwe � α. We now prove the last

point. By 2, we have that xαye � 1
pe
¥ α ¡ β, and multiplying by pe shows that

pe xαye� 1 ¡ peβ. As both sides of this inequality are integers, we can conclude that

pe xαye ¥ peβ.

Lemma 4.7. If ppd � 1q � α P N, then xαyed�d � xαyed � 1
ped

� xαyd for all e ¥ 1.

Proof. Left to the reader.

Definition 4.8. If α P r0, 1s, let xαy
e
� °

n¥0

xαye
pen

� xαye �°n¥0
1

pen
� xαye � pe

pe�1
.

We observe that xαy
e
is the rational number whose base p expansion is obtained by

“repeating” the first e digits of the non-terminating base p expansion of α.

Lemma 4.9. If α P r0, 1s, then the following hold:

1.
Axαy

e

E
e
� xαye.

2. pe xαye � ppe � 1qxαy
e
.

Proof. Left to the reader.

Lemma 4.10. Let α P r0, 1s. For e ¥ 1, the following conditions are equivalent:

1. tppe � 1qαu � pe xαye.
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2. α ¤ pe vαwe.
3. α ¥ xαy

e
.

Proof. We may assume that α ¡ 0. By Lemma 4.6, α � xαye � vαwe, and so

(4.10.1) ppe � 1qα � pe xαye � pe vαwe � α.

From this, we gather that tppe � 1qαu � pe xαye� tpe vαwe � αu, which shows that p1q
holds if and only if p2q holds. By Lemma 4.9, pe xαye � ppe � 1qxαy

e
. Substituting

this into p4.10.1q and gathering the ppe � 1q terms yields the equation

(4.10.2) ppe � 1q�α � xαy
e

	 � pe vαwe � α.

Thus, (4.10.2) shows that p2q holds if and only if p3q holds.
Definition 4.11. Let pα1, � � � , αnq P r0, 1sn, and let p be a prime number.

1. We say that the non-terminating base p expansions of α1, � � � , αn add without

carrying if cepα1q � � � � � cepαnq ¤ p� 1 for every e ¥ 1.

2. For k � pk1, � � � , knq P Nn, we say that the base p expansions of k1, � � � , kn add

without carrying if the obvious analogous condition holds.

Remark 4.12. The non-terminating base p expansions of α1, � � � , αn add without

carrying if and only if the base p expansions of the integers pe xα1ye , � � � , pe xαnye
add without carrying for all e ¥ 1.

Remark 4.13. If the non-terminating base p expansions of α1, � � � , αn add without

carrying and α :� α1 � � � � � αn, then ce pαq � ce pα1q � � � � � ce pαnq for all e ¥ 1.

The following classical results will play a key role in this thesis.
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Lemma 4.14 ([Dic02, Luc78]). Let k � pk1, � � � knq P Nn, and set N :� |k| � °
ki.

Then
�
N

k

�
:� N !

k1!���km!
� 0 mod p if and only if the base p expansions of the entries

of k add without carrying.

Theorem 4.15 (Dirichlet). For any collection α1, � � � , αn of rational numbers, there

exist infinitely many primes p such that pp� 1q � αi P N for 1 ¤ i ¤ n.

Lemma 4.16. Let pα1, � � � , αnq P Qn X r0, 1sn.
1. If α1 � � � � � αn ¤ 1, then there exist infinitely many primes p such that the

non-terminating base p expansions of α1, � � � , αn add without carrying.

2. If α1 � � � � � αn ¡ 1, then there exist infinitely many primes p such that

c1 pα1q � � � � � c1 pαnq ¥ p.

Proof. By Theorem 4.15, there exist infinitely many primes p congruent to 1 modulo

the denominator of each αi. As in Example 4.4, we have that the non-terminating

base p expansion of each αi is constant. In the case that α1� � � ��αn ¤ 1, one must

have that
°

i cepαiq ¤ p� 1, and so p1q follows. Similarly, if α1 � � � � � αn ¡ 1, then

one must have that
°

i ce pαiq ¥ p, and so p2q follows.
The following lemma will be very useful in Chapter 9 when computing the F -pure

threshold of binomial hypersurfaces.

Lemma 4.17. Let pα, βq P r0, 1s2. If ce�1 pαq � ce�1 pβq ¥ p, thenxαye � xβye � 1

pe
� xα � βye .

Proof. If both α and β are in 1
pe
� N, then so is α � β. By Lemma 4.6, we have

that xαye � 1
pe
� xβye � 1

pe
� α � β � xα � βye � 1

pe
, and the result follows. We

may now assume that α R 1
pe
� N, so that vαwe   1

pe
. By our choice of e, we also
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have that vαwe � vβwe ¡ cepαq
pe�1 � ce�1pβq

pe�1 ¥ 1
pe
. Thus, 1

pe
  vαwe � vβwe   2

pe
and

α � β � xαye � xβye � 1
pe
� �vαwe � vβwe � 1

pe

	
, which shows that

(4.17.1) α � β � xαye � xβye � 1

pe
� δ for some 0   δ   1

pe
.

From (4.17.1), we see that α � β R 1
pe
� N and tpe pα � βqu � pe xαye � pe xβye � 1.

The result then follows from point 5 from Lemma 4.6.



CHAPTER 5

F -pure thresholds of hypersurfaces

The main results of this chapter clarify the relationship between the various

types of F -purity appearing in the literature, namely F -purity and (sharp/strong)

F -purity. Theorem 5.19 tells us that (strong) F -purity is always a stronger condition

than sharp F -purity, which is (possibly) stronger than the condition of F -purity. We

also see that F -purity and sharp F -purity are the same if and only if fptpR, fq is a
rational number whose denominator is not divisible by p, and that pR, fptpfq 
 fq is
always F -pure. In Proposition 5.12, we derive some interesting restrictions on the

set of all F -pure thresholds in a fixed characteristic. We emphasize that these results

are valid assuming only that R is F -pure, and thus generalize facts which are known

to hold whenever R is an F -finite, (complete) regular local ring.

1 Truncations of the F -pure threshold

Throughout this chapter, R will denote an F -pure ring of characteristic p ¡ 0,

and f will denote a non-unit in R. In this section, we will prove Key Lemma

5.2 (which shows that the truncations of the F -pure threshold encode important

“splitting data”), and deduce some important consequences. In doing so, we will

use the fact that an R-linear map θ : R1{pe Ñ R gives rise, in a natural way, to an

43
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R1{pℓ-linear map θ1{pℓ : R1{pe�ℓ Ñ R1{pℓ defined by θ1{pℓpr1{pe�ℓq � θpr1{peq1{pℓ . We

call θ1{pℓ the ppℓqth-root of the map θ.

Lemma 5.1. Let α P r0, 1s X 1
pd
� N. If the inclusion R � f rpeαs{pe � R1{pe splits as a

map of R-modules for some e ¥ 1, so must the inclusion R � fα � R1{pd.
Proof. Suppose R � f rpeαs{pe � R1{pe splits, so that θpf rpeαs{peq � 1 for some map

θ P HomRpR1{pe, Rq. If e ¥ d, then α P 1
pd
�N � 1

pe
�N, and so fα P R1{pd � R1{pe. It is

then clear that f rpeαs{pe � fα maps to 1 under the composition R1{pd � R1{pe θeÝÑ R.

Instead, suppose that d ¡ e, so that R1{pe � R1{pd. Note that peα ¤ rpeαs,
so α ¤ rpeαs {pe. By Lemma 2.17, it suffices to show that there exists a map

R1{pd Ñ R sending f rpeαs{pe to 1. As R is F -pure, there exists an R1{pe-linear map

φ : R1{pd Ñ R1{pe with φp1q � 1. If σ denotes the composition R1{pd φÑ R1{pe θeÝÑ R,

then σ
�
f rpeαs{pe� � 1.

Key Lemma 5.2. Let R be an F -pure ring of characteristic p ¡ 0, and fix d ¥ 1.

Then pd xfptpfqyd � max
!
a P N : R � fa{pd � R1{pd splits as a map of R-modules

)
.

Proof. Set λ :� fptpfq and νf ppdq :� max
!
a : R � fa{pd � R1{pd splits

)
. Note that

0 ¤ νfppdq ¤ pd � 1. If λ � 0, then νf ppdq � 0, and we will now assume that

λ P p0, 1s. By Lemma 4.6, xλyd   λ, it follows from Proposition 2.22 that pR, xλyd 
 fq
is strongly F -pure, and hence there exists e ¥ 1 such that R�f rpexλyds{pe � R1{pe splits.
By Lemma 5.1, we may assume that e � d, and it follows that pd xλyd ¤ νf ppdq.

To prove equality, we must show that the inclusion R � f xλyd� 1

pd � R1{pd never

splits. By Lemma 4.6, pd xλyd�1 � P
pdλ

T
, so it suffices to show that θ

�
f rpdλs{pd	 � 1

for every θ P HomRpR1{pd, Rq. If λ R 1
pd
� N, it follows that

P
pdλ

T � P
pdpλ� εqT for

0   ε ! 1. By Definition 2.19, it follows that θ
�
f rpdλs{pd	 � θ

�
f rpdpλ�εqs{pd	 � 1

for every θ P HomRpR1{pd, Rq.
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Now, suppose that λ P 1
pd
� N, so that

P
pdλ

T {pd � λ. By way of contradiction,

suppose that θ
�
fλ
� � 1 for some θ P HomRpR1{pd, Rq. As 0 � λ, it follows that

λ ¥ 1
pd
. By Lemma 2.17, there exists an R-linear map R1{pd Ñ R sending f 1{pd to 1.

Taking ppdqth roots of this map produces an R1{pd-linear map φ : R1{p2d Ñ R1{pd with
the property that φpf 1{p2dq � 1. Under the composition R1{p2d φÝÑ R1{pd θÝÑ R, it

follows from the R1{pd-linearity of φ that

f
λ� 1

p2d � fλ � f 1{p2d ÞÑ fλ � φpf 1{p2dq � fλ � 1 ÞÑ θpfλq � 1.

We see that R �fλ� 1

p2d � R1{p2d splits, contradicting the definition of λ � fptpfq.
Remark 5.3. It follows from Key Lemma 5.2 and Lemma 2.17 that R �fN{pe � R1{pe
splits as a map of R-modules if and only if N

pe
¤ xfptpfqye.

Proposition 5.4. Let α P r0, 1s with ppd � 1q � α P N . If R � f xαyd � R1{pd splits as

a map of R-modules, then so does R � f xαyed � R1{ped for every e ¥ 1.

Proof. We induce on e, the base case being our hypothesis. Suppose R �f xαyd � R1{pd
and R � f xαyed � R1{ped split as maps of R-modules, so that there exists

1. an R-linear map R1{pd Ñ R with f xαyd ÞÑ 1, and

2. an R-linear map θ : R1{ped Ñ R with θpf xαyedq � 1.

We now show that R �f xαyed�d � R1{ped�d

splits as a map of R-modules. By takingppedqth-roots of the map in 1, we obtain

(3) an R1{ped-linear map φ : R1{ped�d Ñ R1{ped with φ

�
f

xαyd
ped


 � 1.

By Lemma 4.7, we have that xαyed�d � xαyed � xαyd
ped

for all e ¥ 1, and it follows that

(5.4.1) f xαyed�d � f
xαyd
ped � f xαyed .
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Under the composition R1{ped�d φÝÑ R1{ped θÝÑ R, it follows from (5.4.1), and the

R1{ped-linearity of φ, that f xαyed�d � f
xαyd
ped � f xαyed ÞÑ f xαyed � φ�f xαyd

ped


 � f xαyed � 1 ÞÑ
θpf xαyedq � 1.

Corollary 5.5. Let α P r0, 1s with ppd � 1q � α P N. If R � f xαyd � R1{pd splits, then

α ¤ fptpfq.
Proof. By Proposition 5.4, R � f xαyed � R1{ped splits for all e ¥ 1. By Key Lemma

4.6, we have that xαyed ¤ xfptpfqyed for every e ¥ 1, and taking the limit as eÑ 8
gives the desired inequality.

We arrive at the following generalization of [MTW05, Proposition 2.16].

Corollary 5.6. fptpfq � 1 if and only if R � f pp�1q{p � R1{p splits over R.

Proof. If fptpfq � 1, then xfptpfqy1 � p�1

p
, and it follows from Key Lemma 5.2

that R � f pp�1q{p � R1{p splits. On the other hand, if R � f pp�1q{p � R1{p splits, then

Corollary 5.5 shows that fptpfq ¥ 1. The claim then follows, as fptpfq ¤ 1 by

Remark 2.20.

Corollary 5.7. If pR,mq is an F -finite regular local ring, then R{pfq is F -pure if

and only if f p�1 R m
rps if and only if fptpfq � 1.

Proof. The first assertion is just Feder’s Criteria [Fed83, Proposition 2.1]. One the

other hand, Corollary 2.31 shows that f p�1 R m
rps if and only if R � f pp�1q{p � R1{p

splits, which by Corollary 5.6 holds if and only if fptpfq � 1.

2 The set of all F -pure thresholds

Definition 5.8. FPTp will denote the set of all characteristic p F -pure thresholds:

FPTp :� t fptpR, fq : 0 � f, a non-unit in an F -pure ring R of characteristic p u.
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Remark 5.9. We stress that the ring R is allowed to vary in Definition 5.8. By

Remark 2.20, we have that FPTp � r0, 1s.
Recall from Definition 4.8 that if λ P r0, 1s, then xλy

e
� pe�1

pe
� xλye P r0, 1s is the

rational number whose base p expansion is obtained by repeating the first e digits of

the non-terminating base p expansion of λ.

Proposition 5.10. For any λ P FPTp, and for any e ¥ 1, we have that xλy
e
¤ λ.

Proof. There exists an F -pure ring R and an element f P R such that λ � fptpR, fq.
Set α :� xλy

e
. By Lemma 4.9, it follows that

1. xαye � Axλy
e

E
e
� xλye, and

2. ppe � 1q � α � pe xλye P N.

By Key Lemma 5.2 and 1, the inclusion R � f xαye � R � f xλye � R1{pe splits as a map

of R-modules. Then, Corollary 5.5 and 2 imply that λ ¥ α.

Corollary 5.11. For any e ¥ 1 and λ P FPTp, the following hold:

1. tppe � 1qλu � pe xλye.
2. λ ¤ pe vλwe.
3. λ ¥ xλy

e
.

Proof. The three assertions are equivalent by Lemma 4.10, and the third point follows

from Proposition 5.10.

Corollary 5.11 places severe restrictions on the set FPTp.

Proposition 5.12. Fix e ¥ 1. For any β P r0, 1s X 1
pe
� N we have that

FPTp X �
β,

pe

pe � 1
� β 
 � H.
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Proof. Let λ P FPTp. If λ ¡ β, then xλye ¥ β by Lemma 4.6. Combining this with

Corollary 5.11 and Definition 4.8 shows that λ ¥ xλy
e
� pe

pe�1
� xλye ¥ pe

pe�1
� β.

Remark 5.13. Proposition 5.12 is a generalization of [BMS09, Proposition 4.3], in

which it is assumed that R is an F -finite regular ring.

Example 5.14. Proposition 5.12 states that for every e ¥ 1, there exist pe � 1

disjoint open subintervals of r0, 1s that do not intersect FPTp. Figure 5.14.1 shows

the intervals corresponding to e � 1, 2 and 3 that cannot intersect FPT2.

e � 1
e � 2
e � 3

0 1
8

1
4

3
8

1
2

5
8

3
4

7
8 1

Figure 5.14.1: Three intervals that do not intersect FPT2.

Remark 5.15. As illustrated by Example 5.14, many of the intervals from Proposi-

tion 5.12 overlap. However, as
°

βPr0,1sX 1

pe
�N length �β, pe

pe�1
� β	 � 1

2
, Proposition 5.14

shows that for every e ¥ 1, there is a set of Lebesgue measure 1
2
that does not

intersect FPTp. This was first observed in [BMS09].

Remark 5.16. Proposition 5.12 may be used to show that FPTp is a set of Lebesgue

measure zero. This is not surprising, as very often FPTp is contained in r0, 1s XQ

[BMS08, BMS09, KLZ09, BSTZ09]. We stress, however, that in the generality dealt

with in this chapter, the issue of whether FPTp � Q is open.

3 Purity at the F -pure threshold

In this section, we prove Theorem 5.19. We now recall the various singularity

types and invariants associated to pairs pR, λ 
 fq via the Frobenius morphism.



49

Definition 5.17. The pair pR, λ 
 fq is said to be

1. F -pure if R � f tppe�1qλu{pe � R1{pe splits over R for all e ¥ 1,

2. strongly F -pure if R � f rpeλs{pe � R1{pe splits over R for some e ¥ 1,

3. sharply F -pure if R � f rppe�1qλs{pe � R1{pe splits over R for some e ¥ 1.

The F -pure threshold f is defined as fptpfq � supλ t pR, λ 
 fq is F -pure u, and
we may define the (strongly/sharply) F -pure thresholds similarly. By Proposition

2.22, all of these thresholds agree, and consequently, F -purity, strong F -purity, and

sharp F -purity are equivalent conditions on pairs pR, λ 
 fq with 0 ¤ λ   fptpfq.
The following example shows that these conditions need not be equivalent at the

parameter fptpfq.
Example 5.18. Consider the pair

�
Fprrxss, 1

p

 xp

	
, and let m � pxq � Fprrxss. It

is easy to see that fptpxpq � 1
p
. Note that

Yppe � 1q1
p

℄ � Y
pe�1 � 1

p

℄ � pe�1 � 1,

and so pxpqtppe�1q 1
pu � xpe�p R m

rpes. Similarly,
Qppe � 1q1

p

U � pe�1, and consequentlypxpqrppe�1q� 1
ps � xpe P m

rpes for every e ¥ 1. Corollary 2.32 allows us to conclude that�
Fprrxss, 1

p

 xp

	
is F -pure, but not sharply F -pure.

In the main result of this chapter, we see that the structure of the base p expansion

of fptpfq completely determines whether these are equivalent conditions in general.

Theorem 5.19. The pair pR, fptpfq 
 fq is F -pure, not strongly F -pure, and sharply

F -pure ðñ ppe � 1q � fptpfq P N for some e ¥ 1.

Remark 5.20. The first assertion above generalizes [Har06, Proposition 2.6], in

which it is assumed that R is a complete, F -finite regular local ring. The third is a

generalization of [Sch08, Corollary 5.4 and Remark 5.5], in which it is assumed that

R is an F -finite regular local ring.
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Remark 5.21. The condition that ppe� 1q � fptpfq P N for some e ¥ 1 is equivalent

to the condition that fptpfq P Q, and that the denominator of fptpfq is not divisible
by p. We will notice in Chapters 8 and 9 that the denominator of fptpfq is often

a power of p, and more often is divisible by p. Thus, there are many instances in

which F -purity is not equal to sharp F -purity.

Proof of Theorem 5.19. By Corollary 5.11, tppe � 1qfptpfqu � pe xfptpfqye, and so

Key Lemma 5.2 implies that the inclusion R � f tppe�1qfptpfqu{pe � R1{pe splits as a map

of R-modules. We see that pR, fptpfq 
 fq is F -pure.

By Lemma 4.6, rpefptpfqs � pe xfptpfqye� 1, and so Key Lemma 5.2 shows that

the inclusion R � f rpefptpfqs{pe � R1{pe never splits over R. We see that pR, fptpfq 
 fq
is not strongly F -pure.

By Definition 5.17, pR, fptpfq 
 fq is sharply F -pure if and only ifR�f rppe�1qfptpfqs{pe
splits off from R1{pe over R for some e ¥ 1, and Remark 5.3 show that this inclusion

splits if and only if

(5.21.1) rppe � 1qfptpfqs ¤ pe xfptpfqye .
However, Lemma 4.6 shows that (5.21.1) holds if and only if

(5.21.2) rppe � 1qfptpfqs � pe xfptpfqye � tppe � 1qfptpfqu ,
where the last equality follows from Corollary 5.11. Finally, we observe that (5.21.2)

holds if and only if ppe � 1q � fptpfq P N.



CHAPTER 6

Splitting polytopes

In this chapter, we associate to any collection of n distinct monomials a rational

polytope P � r0, 1sn , and derive some basic properties of P . The polytopes P

have appeared previously in [MTW05, ST09, LM10, BMS06], and the geometry of

P will be used crucially in Chapter 7, 8, and 9 in giving bounds for and explicitly

computing F -pure threshold of certain special classes of polynomials.

Throughout this chapter, let R :� Krx1, � � � , xms denote a polynomial ring over a

field K of arbitrary characteristic, and C :� txa1, � � � ,xan u will denote a collection

of distinct monomials in R. Furthermore, if s � ps1, � � � , snq P Rn, we will use |s|
to denote the coordinate sum s1 � � � � � sn. We stress that | � | is not the usual

Euclidean norm on Rn.

Definition 6.1. We call the matrixM �MC � pa1 � � �anq P Mm�npNq the splitting
matrix associated to C.

Remark 6.2. Definition 6.1 is motivated by the following fact: For every n-tuple of

integers k � pk1, � � � , knq P Nn, we have that pxa1qk1 � � � pxanqkn � x
rMks1
1 � � �xrMksm

m �
xMk, where rMksi denotes the ith entry of Mk P Nm. It follows from this thatpu1x

a1 � � � � � unx
anqN � °|k|�N

�
N

k

�
uk � xMk, where the ui are elements of K, and�

N

k

� � N !{pk1! � � �kn!q.
51
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Definition 6.3. We define the splitting polytope associated to C as follows:

P � PC �  
s P Rn¥0 : rMssi ¤ 1 � i � 1, � � � , m (

,

where rMssi denotes the ith entry of the element Ms P Rm. By Definition 6.3, we

have that P � r0, 1sn.
Definition 6.4. A point η P P is called maximal if |η| � max t |s| : s P P u, and
Pmax will denote the face consisting of all maximal points of P .

Definition 6.5. We say that P contains a unique maximal point if #Pmax � 1.

Lemma 6.6. If P has a unique maximal point η P P , then η must be a vertex of P .

Furthermore, if the set of vertices of P contains a unique element η with maximal

coordinate sum, then η must also be the unique maximal point of P .

Proof. If Pmax � t |η| u, it follows from the fact that Pmax is a face of P that η must

be a vertex of P [Bar02]. On the other hand, suppose that η is the unique vertex of

P with maximal coordinate sum, so that η P Pmax. If η is not the unique maximal

point of P , then the convex polytope Pmax contains infinitely many points, and so

must contain a vertex ν � η. As vertices of Pmax are vertices of P , this contradicts

the uniqueness of η.

Example 6.7. Let C � txa, yb, xcycu. Then, M � ���a 0 c

0 b c

�Æ
, and consequently

P � $'&'% s P R3¥0 :
as1 � cs3 ¤ 1

bs2 � cs3 ¤ 1

,/./-. Note that P is the convex hull of the points

0, v1 � �
1
a
, 0, 0

�
, v2 � �

0, 1
b
, 0
�
, v3 � �

1
a
, 1
b
, 0
�
, and v4 � �

0, 0, 1
c

�
. See Figure 6.7 for a

picture of P . By Lemma 6.6, #P � 1 if and only if |v3| � 1
a
� 1

b
� 1

c
� |v4|, in which

case Pmax � t v3 u or t v4 u. In the case that 1
a
� 1

b
� 1

c
, Pmax is equal to the edge

determined by the vertices v3 and v4.
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s1

s2

s3

b

b

b

b

b

v1

v2

v3

v4

Figure 6.7.1: The rational polytope P � r0, 1s3 associated to txa, yb, xcycu .
Example 6.8. If C �  

xa1
1 � � �xam

m , xb1
1 � � �xbm

m

(
, P � r0, 1s2 contains a unique max-

imal point if ai � bi for all 1 ¤ i ¤ m. (see Corollary 9.5.)

Example 6.9. If C �  
xd1
1 , � � � , xdn

n

(
, then P � !

s P Rn¥0 : si ¤ 1
di

for 1 ¤ i ¤ n
)
,

and Pmax � !�
1
d1
, � � � , 1

dn

	)
.

s1

s2

s3

b

b

b

b

b

b

b

b

Pmax

Figure 6.9.1: The rational polytope P � r0, 1s3 associated to
 
xd1
1 , xd2

2 , xd3
3

(
.

Remark 6.10. It follows from the proof of Lemma 6.6 that if P contains a unique

maximal point η, then η must be a vertex of P . As P is defined by hyperplanes

with coefficients in N, it follows that η must have rational coordinates. In fact, if

H � t s P Rn : Lpsq ¤ 1 u is a halfspace defined by a linear equation L with rational

coefficients, then every vertex of the polytope P XH also has rational coordinates.

Lemma 6.11. Fix e ¥ 1. If s is in the boundary of P , then xsye � pxs1ye , � � � , xsnyeq
is in the interior of P .
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Proof. As the defining inequalities of P have coefficients in N, the assertion follows

from the fact that xsiye   si.

Recall from Remark 6.2 that pu1x
a1 � � � � � unx

anqN � °|k|�N

�
N

k

�
ukxMk. We

will soon be interested in knowing, after gathering of terms, what the coefficient of a

given monomial in this expression is. Specifically, we are interested in knowing when

there exist indices k � k1 in Nn such that |k| � |k1| � N and Mk � Mk1. The

following lemma allows us to address this issue whenever the geometry of P is nice.

Lemma 6.12. Suppose that P has a unique maximal point η P P .

1. If |s| � | xηye | and Ms �M xηye for some s P 1
pe
� Nn, then s � xηye.

2. If |s| � |ν|, Ms � Mν, and xηye � ν P 1
pe
� Nn for some ν, s P 1

pe
� Nn, then

s � ν.

Proof. For the first statement, let η1 :� s � η � xηye. By definition, η1 P Rn¥0.

By assumption, we also have Mη1 � Ms � Mη � M xηye � Mη, and |η1| �|s| � |η| � | xηye | � |η|, which shows that η1 is a maximal point of P . Thus η1 � η,

and s � xηye. For the second statement, let s1 :� s � xηye � ν P 1
pe
� Nn. By

hypothesis, s1 P 1
pe
� Nn, |s1| � | xηye |, and Ms1 � M xηye. The first statement,

applied to s1, shows that s1 � xηye, and thus s � ν.

Corollary 6.13. Suppose that P has a unique maximal point η P P .

1. The coefficient of xpeMxηye in pu1x
a1 � � � � � unx

anqpe|xηye| is �pe|xηye|
pexηye �upeMxηye.

2. Let ν P 1
pe
� Nn be an index such that xηye � ν P 1

pe
� Nn. Then the coefficient

of xpeMν in pu1x
a1 � � � � � unx

anqpe|ν| is �pe|ν|
peν

�
upeMν .



CHAPTER 7

F -purity and log canonical singularities

The main result of this chapter, Theorem 7.6, gives bounds for, and in an impor-

tant special case, allows us to explicitly compute the F -pure threshold of a polynomial

f whenever the polytope P associated to the supporting monomials of f contains

a unique maximal point. These bounds will be crucial when computing the F -pure

threshold of diagonal and binomial hypersurfaces in Chapters 8 and 9.

Let f denote a polynomial over the complex numbers. In Theorem 7.17, we

invoke Theorem 7.6 to show that Conjecture 3.15, which states that log canonical

singularities is equivalent to dense F -pure type, holds for f whenever the associated

polytope P has a unique maximal point. Finally, in Theorem 7.18, we apply these

methods to show that Conjecture 3.15 holds for very general complex polynomials.

1 Some background on F -purity of monomial ideals

Let R � Krx1, � � � , xms denote a polynomial ring over a field of characteristic

p ¡ 0 with rK : Kps   8 K. By Example 2.14, R is an F -finite regular ring. We

will let m � R denote the ideal generated by the variables, and f will denote a

non-zero polynomial in m.

In Chapter 2, we introduced the notion of F -purity for pairs of the form pR, λ 
 fq,
55
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and to this point we have dealt exclusively with pairs of this form. However, the no-

tion of (strong/sharp) F -purity can be extended to pairs of the form pR, a 
 fq, where
a is any ideal of R [Tak04]. For example, we say that the pair pR, λ 
 fq is F -pure at m

if atppe�1qλu � m
rpes for all e " 0, and is strongly F -pure at m if arpeλs � m

rpes for some

e ¥ 1 (c.f, Corollary 2.32). We also define the F -pure threshold of a at m as in the

principal case: fptmpaq :� sup tλ P R¥0 : pR, λ 
 aq is F -pure at m u. As in Proposi-

tion 2.22, we have that fptmpaq � sup tλ P R¥0 : pR, λ 
 aq is F -strongly pure at m u.
Below, we gather these facts to give our working definition for fptmpaq for this thesis.
Definition 7.1. Let a � m be an ideal of R. Then

1. fptmpfq � sup
 
λ P R : f rpeλs R m

rpes for some e ¥ 1
(
, and

2. fptmpaq � sup
 
λ P R : arpeλs � m

rpes for some e ¥ 1
(
.

The first point in Definition 7.1 above is a restatement of Corollary 2.33. Our

goal in this Chapter is to compare the value of fptmpfq with that of fptmpaq, where
here a is the monomial ideal generated by the supporting monomials of f .

Definition 7.2. If f � °
a uax

a P R, Supportpfq :� txa : ua � 0u. We call

Supportpfq the set of supporting monomials of f .

Notation 7.3. For the rest of this section, we will assume that Supportpfq �txa1, � � � ,xan u. We will let a � pSupportpfqq � R denote the monomial ideal

generated by Supportpfq. Following the notation of Chapter 6, M � pa1 � � �anq will
denote the splitting matrix associated to Supportpfq, and P will denote the polytope

associated to Supportpfq. Recall that P � r0, 1sn.
We now gather some facts regarding F -pure thresholds, and relate fptmpaq to the

geometry of P .
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Proposition 7.4.

1. fptmpfq P QX p0, 1s.
2. pR, λ 
 fq is F -pure at 0 if and only if 0 ¤ λ ¤ fptmpfq.
3. fptmpfq ¤ min t 1, fptmpaq u.
4. fptmpaq � max t |s| : s P P u.

Proof. The first point follows from Remarks 2.20 and 2.21, while the second is a

restatement of Theorem 5.19. The third point follows from the fact that f P a.

It remains to prove the last point. If a
rcpes � m

rpes, then at least one of the

generators of arcpes is not in m
rpes, and so there exists k � pk1, � � � , knq P Nn such

that k1 � � � � � kn � rcpes and pxa1qk1 � � � pxanqkn � xMk R m
rpes, i.e., every entry of

Mk is less than pe. Thus, 1
pe
� k P P , and consequently,

(7.4.1) c ¤ rcpes
pe

� |k|
pe

� ���� 1pe � k���� ¤ max t |s| : s P P u .
It follows from Definition 7.1 and (7.4.1) that fptmpaq ¤ max t |s| : s P P u.

Next, choose η P Pmax, and fix e ¥ 1. By Lemma 6.11, every entry of M xηye
is less than 1. Thus, pxa1qpexη1ye � � � pxanqpexηnye � xpeMxηye is contained a

pe|xηye|, but
not in m

rpes. By Definition 7.1, we have that fptmpaq ¥ | xηye |. As limeÑ8 xηye � η,

this shows that fptmpaq ¥ |η| � maxt|s| : s P P u.
Remark 7.5. The inequality in the third point of Proposition 7.4 above may be

strict. Indeed, it is easily verified from Definition 7.1 that fptmpxp � ypq � 1
p
, while

fptmpxp, ypq � 2
p
.
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2 F -pure thresholds for polynomials with good support

Recall that if η P r0, 1s, then ce pηq denotes the eth digit in the non-terminating

base p expansion of η. (See Chapter 4.)

Theorem 7.6. Suppose that P � r0, 1sn contains a unique maximal point η �pη1, � � � , ηnq, and let L � sup tN : ce pη1q � � � � � ce pηnq ¤ p� 1 for all 0 ¤ e ¤ N u.
1. If L � 8, then fptmpfq � fptmpaq � η1 � � � � � ηn.

2. If L   8, then xη1yL � � � � � xηnyL � 1
pL
¤ fptmpfq.

The following lemmas will be used often in the proof of Theorem 7.6.

Lemma 7.7. For every e ¥ 1, we have that pe xfptmpfqye � max
 
a P N : fa R m

rpes (.
Proof. This is a restatement of [MTW05, Proposition 1.9], and a special case of

Lemma 5.2

Lemma 7.8. Let α P r0, 1s be a rational number such that ppe � 1q � α P N for some

e ¥ 1. If f ppe�1qα R m
rpes, then α ¤ fptmpfq.

Proof. This is an immediate consequence of Corollary 5.5 and Corollary 2.31.

Proof of Theorem 7.6. We may write f � u1x
a1 � � � � � unx

an , where each ui is

non-zero. We first assume that the non-terminating base p expansions of η1, � � � , ηn
add without carrying. By Proposition 7.4, it suffices to show that fptmpfq ¥ |η|. Ifxηye � pxη1ye , � � � , xηnyeq, then Corollary 6.13 shows that�

pe| xηye |
pe xηye 
upexηyexpeMxηye

appears as a summand of f pe|xηye|.
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1. By definition, each ui P K�, so upexηye � 0.

2. By Remark 4.12, the integers pe xη1ye , � � � , pe xηnye add without carrying for all

e ¥ 1. This, combined with Lemma 4.14, shows that�
pe| xηye |
pe xηye 
 � 0 mod p.

3. By Lemma 6.11, every entry of M xηye is less than 1, and consequentially every

entry of pe �M xηye is less than pe.

The first two points above show that xpeMxηye P Supportpf pe|xηye|q, while the third

point shows that xpeMxηye R m
rpes. Thus, f pe|xηye| R m

rpes, and Lemma 7.7 allows us to

conclude that xfptmpfqye ¥ | xηye | � xη1ye � � � � � xηnye. Taking the limit as eÑ8
shows that fptmpfq ¥ η1�� � �� ηn � fptmpaq, while the opposite inequality holds by

Proposition 7.4.

We now assume that the non-terminating base p expansions of η1, � � � , ηn add

with carrying. Let ceptiq and L be as in the statement of the Theorem. Note that

4. 0 ¤ L   8 (as c0ptiq � 0 by convention), and that

5. cL�1pη1q � � � � � cL�1pηnq ¥ p.

By replacing each cL�1ptiq with an integer less than or equal to cL�1ptiq, we see that

there exist integers δ1, � � � , δn such that δ1 � � � � � δn � p � 1 and 0 ¤ δi ¤ cL�1ptiq,
with the second inequality being strict for at least one index. We will assume without

loss of generality that δ1   cL�1pη1q. For e ¥ L� 2, set

(7.8.1) νpeq � xηyL � �
δ1

pL�1
� p� 1

pL�2
� � � � � p� 1

pe
,

δ2

pL�1
, � � � , δn

pL�1



.

The following summarizes the important properties of νpeq � pν1peq, � � � ,νnpeqq.
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6. νpeq P 1
pe
� Nn.

7. As δi ¤ cL�1ptiq for 2 ¤ i ¤ n, it follows that νipeq ¤ xtiyL�1, while the

fact that δ1   cL�1pη1q shows that ν1peq   xη1yL�1 . Thus, we have that

0 � xηye � νpeq P 1
pe
� Nn for e ¥ L� 2.

8. As δ1 � � � � � δn � p � 1, it follows from the definition of L that the base p

expansions of the integers peν1peq, � � � , peνnpeq add without carrying.

9. Finally, we have that|νpeq| � | xηyL | � 1

pL�1
�� ņ

i�1

δi

�� p� 1

pL�2
� � � � � p� 1

pe� | xηyL | � p� 1

pL�1
� p� 1

pL�2
� � � � � p � 1

pe
.

Points 6 and 7 above, along with Remark 6.2 and Corollary 6.13, show that, after

gathering terms, the monomial�
pe|νpeq|
peνpeq 
upeνpeqxpeMνpeq

appears as a summand of f pe|νpeq|. Point 8 above, along with Lemma 4.14, gives that�
pe|νpeq|
peνpeq � � 0 mod p. We can conclude from this that xpeMνpeq P Supportpf pe|νpeq|q

and xpeνpeq R m
rpes. Thus, f pe|νpeq| R m

rpes, and by Lemma 7.7, we have that

(7.8.2) xfptmpfqye ¥ |νpeq| � | xηyL | � p� 1

pL�1
� � � � � p� 1

pe
,

where the last inequality follows from point 9 above. Finally, letting eÑ 8 in (7.8.2)

gives that fptmpfq ¥ | xηyL | � 1
pL
.

3 Log canonical singularities and dense F -pure type

In this section, we prove Conjecture 3.15, which states that log canonical singu-

larities is equivalent to dense F -pure type, for a large class of polynomials over the
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complex numbers. Let S denote a polynomial ring over C, and let f P S be a polyno-

mial with fp0q � 0. Recall that the pair pS, λ 
 fq is said to be KLT at 0 if the func-

tion 1|f |2λ is locally integrable at 0, and is said to be log canonical at 0 if it is KLT for

every 0 ¤ ε   λ. As with singularities defined via Frobenius, these singularity types

can be extended to pairs of the form pS, λ 
 aq, where now a is allowed to be any ideal

of S [Kol97]. For example, if a � pf1, � � � , faq is a set of generators for f , we say thatpS, λ 
 aq is KLT at 0 if the function
�

1°a
i�1

|fi|2	λ

is integrable in some neighborhood of

the origin. By again referring to a log resolution, this can be shown to be independent

of the set of generators. We say that pS, λ 
 aq is log canonical at 0 if it is KLT at 0 for

every 0 ¤ ε   λ. We may also define the log canonical threshold of a at 0, which we

denote lct0paq, to be the common value of sup tλ P R¥0 : pS, a 
 λq is KLT at 0 u �
sup tλ P R¥0 : pS, a 
 λq is log canonical at 0 u [BL04, EM06, Laz09].

Below, we gather some important facts regarding log canonical thresholds.

Proposition 7.9. If a is the monomial ideal of S generated by Supportpfq, then
1. lct0pfq P QX p0, 1s,
2. pS, λ 
 fq is log canonical at 0 if and only if 0 ¤ λ ¤ lct0pfq, and
3. lct0pfq ¤ min t 1, lct0paq u.

Proof. The first two points above are a restatement of Lemma 2.8, while the third

point follows from the fact that f P a.

Remark 7.10. By Proposition 7.4, each of the points in Proposition 7.9 holds when-

ever “log canonical at 0” is replaced by “F -pure at m” and “lct0” is replaced by

“fpt
m
.”
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The following well-known lemma shows that the log canonical threshold and the

F -pure threshold of a monomial ideal agree in all characteristics.

Lemma 7.11. Let K be a finite field of characteristic p ¡ 0 with rK : Kps   8,

and let C be a collection of monomials in the variables x1, � � � , xm. By abuse of

notation, let a denote the monomial ideal generated by C in both Crx1, � � � , xms and
Krx1, � � � , xms. Then, lct0paCq � fptmpaKq.
Proof. Let N � Rm¥0 denote the Newton polytope associated to a, and let P denote

the polytope associated to the set C. Then

(7.11.1) lct0paq � max tλ P R¡0 : 1 P λ �N u � max t |s| : s P P u � fptmpaq,
where 1 � p1, � � � , 1q P Rm. The first equality in (7.11.1) follows from [How01,

Example 5], the second by setting w � 1 in [BMS06, Lemma 4.3], and the last by

Proposition 7.4.

Notation 7.12. For the rest of this chapter, f will denote a non-zero element of

S :� Crx1, � � � , xms � Crxs with fp0q � 0. Furthermore, we set Supportpfq �txa1, � � � ,xan u, and a � pSupportpfqq � S. If A is a finitely generated Z-subalgebra

of C, SA will denote the subring Arx1, � � � , xms � Arxs � S. Note that CbASA � S.

For a maximal ideal µ � A, SApµq will denote the polynomial ring SA bA A{µ �
SA{µSA � pA{µq rxs. By Corollary 3.2, charA{µ ¡ 0. For g P SA, gµ will denote

the image of g in SApµq. Similarly, aµ will denote the ideal in SApµq generated by

Supportpfµq. Finally, the symbol m will always be used to denote the ideal generated

by the variables x1, � � � , xm in the polynomial rings S, SA, and SApµq.
We recall the definition of dense F -pure type, and its relationship with log canon-

ical singularities.
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Definition 7.13. The pair pS, λ 
 fq is of dense F -pure type at m if there exists a

finitely generated Z-algebra A � C with f P SA, and a dense subset W � SpecA

such that pSApµq, λ 
 fµq is F -pure at m for all maximal ideals µ � W .

Theorem 7.14. [HW02, Tak04] If pS, λ 
 fq is of dense F -pure type at m, thenpS, λ 
 fq is log canonical at 0.

The converse to Theorem 7.14 is Conjecture 3.15, and verifying this conjecture

remains a long-standing open problem [Fed83, Smi97b, EM06].

Definition 7.15. If Conjecture 3.15 holds, we say that log canonical singularities at

0 implies dense F -pure type at m for f .

Below, we give a slightly different characterization of dense F -pure type.

Lemma 7.16. Log canonical singularities at 0 implies dense F -pure type at m for f

if there exists a finitely generated Z-algebra A � C with Z � A and f P SA, and an

infinite set of primes Λ satisfying the following property: For every p P Λ, there exists

a non-empty set Wp � π�1ppq, dense in the fiber π�1ppq, such that for every maximal

ideal µp P Wp, Supportpfµpq � Supportpfq, and fptmpfµpq � min
 
1, fptmpaµpq (.

Here, π : SpecAÑ SpecZ denotes the map induced Z � A.

Proof. As Wp is dense in π�1ppq, it follows that Wp � π�1ppq, and thus

(7.16.1)
¤
pPΛWp � ¤

pPΛWp � ¤
pPΛπ�1ppq � π�1pΛq.

By Lemma 3.4, π�1pΛq is dense in SpecA, and so (7.16.1) shows that
�

pPΛ Wp is

also dense in SpecA. For p P Λ and µp P π�1ppq, it follows from Theorem 3.14 that

(7.16.2) fptmpfµpq ¤ lct0pfq for p " 0.
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As #Λ � 8, we may replace Λ with a slightly smaller set (7.16.1) remains

true after this replacement), and thus assume that (8.10.1) holds for all p P Λ and

µp P π�1ppq. Note that

(7.16.3) lct0pfq ¤ min t 1, lct0paq u � min
 
1, fptmpaµpq ( � fptmpfµpq ¤ lct0pfq.

Indeed, the first inequality in (7.16.3) above holds by Proposition 7.9, the second by

Lemma 7.11, the third by assumption, and the last by (8.10.1).

We know from Proposition 7.9 that pS, λ 
 fq is log canonical at 0 if and only if

0 ¤ λ ¤ lct0pfq. If µ � A is a maximal ideal, we know that the pair pSApµq, λ 
 fµq
is F -pure at m if and only if 0 ¤ λ ¤ fptmpfµq by Proposition 7.4. Examining

Definitions 7.15 and 7.13, we see that to demonstrate that log canonical singularities

at 0 implies dense F -pure type at m for f , it suffices to show that fptmpfµpq � lct0pfq
for every p P Λ and maximal ideal µp P Wp. However, this is precisely the content of

(7.16.3).

Theorem 7.17. If P contains a unique maximal point, then log canonical singular-

ities at 0 implies dense F -pure type at m for f .

Proof. Let A be a finitely-generated Z-algebra satisfying the conclusion of Corollary

3.5, and let π : SpecA Ñ SpecZ denote the map induced by the inclusion Z � A.

Let µp denote an arbitrary element of π�1ppq. As Supportpfq � Supportpfµpq for
p " 0, fptmpfµpq can be computed via P , as in Theorem 7.6. Let η be the unique

maximal point of P .

If fptmpaµpq � |η| ¤ 1, let Λ consist of all primes p " 0 such that the non-

terminating base p expansions of η1, � � � , ηn add without carrying. By Lemma 4.16,

#Λ � 8, and it follows from Theorem 7.6 that fptmpfµpq � fptmpaµpq for all p P Λ.
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If fptmpaµpq � |η| ¡ 1, instead let Λ denote the set of all primes p " 0 such that

(7.17.1) c1pη1q � � � � � c1pηnq ¥ p.

By Lemma 4.16, #Λ � 8. Theorem 7.6 and (7.17.1) above show that fptmpfµpq ¥ 1,

and Proposition 7.9 shows that equality must hold. If we set Wp :� π�1ppq, we see

that A,Λ, and Wp satisfy the hypotheses of Lemma 7.16, and so we are done.

Theorem 7.18. Suppose that the coefficients of the supporting monomials of f are

algebraically independent over Q. Then log canonical singularities at 0 implies dense

F -pure type at m for f .

Remark 7.19. Let Z denote a countable union of Zariski-closed subsets of pC�qn,
and let g be a polynomial over C such that gp0q � 0 and # Supportpgq � n. If

u1, � � � , un denote the coefficients of the supporting monomials of g, we say that g is

very general (with respect to Z) if pu1, � � � , unq R Z. Note that the coefficients of

the supporting monomials of g are algebraically independent over Q if and only if g

is very general with respect to ZQ, where

(7.19.1) ZQ :� �� ¤
hPQrη1,��� ,ηnsV phq�� £ pC�qn .

In (7.19.1) the ti denote the coordinates of pC�qn. In this language, Theorem 7.18

shows that log canonical singularities at 0 implies dense F -pure type at m for a very

general complex polynomial.

Proof of Theorem 7.18. Let Supportpfq � txa1 , � � � ,xan u, and let P � r0, 1sn de-

note the polytope associated to Supportpfq. Set α � min t 1,max t |s| : s P P u u,
and fix a point η P P with |η| � α. By Remark 6.10 , we may assume that η P Qn.

If Λ denotes the set of primes p such that pp � 1q � η P Nn, then #Λ � 8 by Theo-

rem 4.15. We may write f � u1x
a1 � � � � � unx

an , where the ui are elements of C�.
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If A :� Zru1, � � � , uns±ui
� C, then f P SA, and Supportpfµq � Supportpfq for all

maximal ideals µ � A. Consequently, the F -pure threshold of the ideal generated

by Supportpfµq in SApµq is equal to max t |s| : s P P u. Fix a prime p P Λ.

Remark 6.2 shows that the monomial xpp�1qMη appears in f pp�1qα with coefficient

(7.19.2) 0 � Θη,ppuq � ¸|k|�pp�1qα
Mk�pp�1q�Mη

�pp� 1q � α
k



uk P Zru1, � � � , uns � A.

As α ¤ 1, we have that
�pp�1q�α

k

� � 0 mod p for each k in (8.13.3). By hypothesis,

Zrus is a polynomial ring, and it follows that Θη,ppuq induces a non-zero element of

the polynomial ring Z{pZrus � A{pA. Let π : SpecAÑ SpecZ be the map induced

by the inclusion Z � A. If we define Wp :� DpΘη,ppuqqXπ�1ppq, we have just shown
that Wp � H, and so Wp is a dense (open) subset of the fiber π�1ppq.

Let µp denote an arbitrary maximal ideal in Wp. By construction, Θη,ppuq has
non-zero image in A{µp, and so (8.13.3) shows that xpp�1qMη P Supportp�fµp

�pp�1qαq.
As η P P , every entry of pp� 1qMη is less than p, and so xpp�1qMη R m

rps. Thus,
(7.19.3)

�
fµp

�pp�1qα R m
rps � pA{µpq rxs � SApµpq.

By (7.19.3), Lemma 7.8, applied to fµp P SApµpq, shows that
(7.19.4) fptmpfµpq ¥ α � min t 1,max t |s| : s P P u u ,
and Proposition 7.4 shows that equality must hold in (7.19.4). We have just shown

that A,Λ, and Wp � π�1ppq satisfy the hypotheses of Lemma 7.16. We conclude

that log canonical singularities at 0 implies dense F -pure type at m for f .

Remark 7.20. An important difference between Theorem 7.17 and Theorem 7.18 is

that Wp � π�1ppq in the former, while we only know that Wp � π�1ppq in the latter.

It would be interesting to investigate under what conditions F -pure thresholds remain

constant over the fibers of certain distinguished primes in SpecZ.



CHAPTER 8

F -singularities of diagonal hypersurfaces

In this chapter we compute various F -invariants of diagonal hypersurfaces. A

diagonal hypersurface is a polynomial of the form u1x
d1
1 �� � ��unx

dn
n , and a diagonal

hypersurface u1x
d
1 � � � � � unx

d
d is called a Fermat.

1 A detailed discussion of the main results

Throughout, R � Krx1, � � � , xns will denote a polynomial ring over an F -finite

field K of characteristic p ¡ 0, and m � px1, � � � , xnq will denote the ideal generated

by the variables of R.

1 The F -pure threshold of a diagonal hypersurface

Our main result, Theorem 8.1 below, gives a formula for the F -pure threshold

of any diagonal hypersurface as a function of the characteristic p. Recall that ce pαq
denotes the eth digit in the non-terminating base p expansion of α. (See Chapter 4.)

Theorem 8.1. Let pd1, � � � , dnq P Nn, and let f � u1x
d1
1 � � � � � unx

dn
n .

If L :� sup
!
N : ce

�
1
d1

	 � � � � � ce

�
1
dn

	 ¤ p � 1 for all 0 ¤ e ¤ N
)
, then

fptmpfq � $''''&''''% 1
d1
� � � � � 1

dn
if L � 8A

1
d1

E
L
� � � � � A

1
dn

E
L
� 1

pL
if L   8

67
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Formulas for the F -pure threshold of the hypersurfaces x2�y3 and x2�y7 are given
in [MTW05, Example 4.3/4.4]. At first glance, these formulas appear to be quite

different from those appearing in Theorem 8.1 above. Below, we give an example of

how Theorem 8.1 may be used to recover the formulas already in the literature.

Example 8.2. We adopt decimal notation for base p expansions. For example, if a

and b are integers with 0 ¤ a, b ¤ p� 1, then the expression .a b pbase pq will denote
the unique number α with the property that ce pαq � a for e odd and ce pαq � b for

e even. Let f � u1x
2 � u2y

3. We now use Theorem 8.1 to compute fptmpfq as a

function of the congruency class of p modulo 6. If p � 3, then

(8.2.1)
1

2
� .1 pbase 3q and 1

3
� .1 � .0 2 pbase 3q.

Carrying is required to add the expansions in (8.2.1), and the first carry occurs at

the second spot. We conclude that fptmpfq � �
1
2

D
1
� �

1
3

D
1
� 1

3
� 0 � 1

3
� 1

3
� 2

3
.

Similarly, one can show that fptmpfq � 1
2
if p � 2. If p � 6ω�1 for some ω ¥ 1 , then

(8.2.2)
1

2
� .3ω pbase pq and 1

3
� .2ω pbase pq.

We notice that the expansions in (8.2.2) add without carrying, and consequently

fptmpfq � 1
2
� 1

3
� 5

6
. Finally, if p � 6ω � 5 for some ω ¥ 0, then

(8.2.3)
1

2
� .3ω � 2 pbase pq and 1

3
� .2ω � 1 4ω � 3 pbase pq.

In adding the expansions in (8.2.3), the first carry occurs at the second spot, and so

(8.2.4) fptmpfq � B
1

2

F
1

�B
1

3

F
1

� 1

p
� 3ω � 2

p
� 2ω � 1

p
� 1

p
� 5ω � 4

p
.

The reader may verify that 5ω�4
p

� 1
6p
� 5

6
, and so (8.2.4) becomes fptmpfq � 5

6
� 1

6p
.
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As a special case, we recover the following formula from [MTW05, Example 4.3]:

fptmpx2 � y3q �
$'''''''''''&'''''''''''%
1{2 p � 2

2{3 p � 3

5{6 p � 1 mod 6

5
6
� 1

6p
p � 5 mod 6

.

By using methods similar to those in the Example 8.2, we are able to give a

formula for the F -pure threshold of the degree d Fermat hypersurface in terms of the

lease positive residue of p modulo d.

Corollary 8.3. Let f � u1x
d
1 � � � � � udx

d
d P Krx1, � � � , xds. Then

fptmpfq � $'''&'''% 1
pℓ

pℓ ¤ d   pℓ�1 for some ℓ ¥ 1

1� a�1
p

0   d   p and p � a mod d with 1 ¤ a   d

2 Test ideals and higher jumping numbers

By Proposition 2.42, τ pR, λ 
 fq � R for 0 ¤ λ   fptpfq, while necessarily we

have that τ pR, fptpfq 
 fq � R. We now focus on understanding τ pR, fptmpfq 
 fq
for diagonal hypersurfaces f . By Lemma 8.10, the ideals τ pR, fptmpfq 
 fq and

τ pR, fptpfq 
 fq are equal whenever p does not divide any of the exponents in f ,

and so Theorem 8.4 below often allows to to compute the first non-trivial test ideal.

Theorem 8.4. Let f � u1x
d1
1 � � � � � unx

dn
n . Then

τ pR, fptmpfq 
 fq � $'''''''&'''''''%
pfq fptmpfq � 1

m fptmpfq � 1
d1
� � � � � 1

dn

m fptmpfq   min
!
1,
°

1
di

)
and p ¡ max t d1, � � � , dn u
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Remark 8.5. Note that τ pR, fptmpfq 
 fq need not equal m if fptmpfq is less than
min

!
1, 1

d1
� � � � � 1

dn

)
and p is less than or equal to some exponent of f . For exam-

ples of this pathological behavior, see [MY09, Proposition 4.2].

Our final result computes higher jumping numbers for the degree d Fermat hy-

persurface. By Proposition 2.41, it suffices to only consider those jumping numbers

contained in p0, 1s. As we have seen in Corollary 8.3, the F -pure threshold of such a

hypersurface depends strongly on the congruence class of p modulo d. In Theorem

8.6 below, we will see that the existence (and value) of a second jumping number

strictly between fptpfq and 1 also depends strongly on information encoded by the

congruence class of p modulo d.

Theorem 8.6. Let f � u1x
d
1�� � ��udx

d
d. Suppose that p ¡ d and write p � d �ω�a

for some ω ¥ 1 and 1 ¤ a   d. Let σp :� ω � r2a{ds.
1. If a � 1, then fptpfq � 1 is the only F -jumping number of f in p0, 1s.

We now assume that a ¥ 2.

2. If p   apd�1q, then fptpfq   p�a�σp

p
¤ 1 are F -jumping numbers of f in p0, 1s.

3. If p ¡ apd� 1q, then fptpfq   1 are the only F -jumping numbers of f in p0, 1s.
Remark 8.7. As a is strictly less than d, the condition that p ¡ apd � 1q in the

last point above is automatically satisfied whenever p is larger than pd� 1q2. Thus,
Theorem 8.6 says that if p ¡ pd � 1q2, then fptpfq and 1 are the only jumping

numbers of f in p0, 1s.
Example 8.8. Suppose that d � 4, and p � 7. Then ω � 1, a � 3, and p   apd�1q.
Note that σp � ω � r2a{ds � 1 � r6{4s � 3 � a, and thus p�a�σp

p
� 1. In this case,

Theorem 8.6 provides no new information.
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Example 8.9. Let d � 6 and p � 11, so that ω � 1, a � 5, and p   apd � 1q. We

have that σp � ω � P
2a
d

T � 1� P
10
6

T � 3, and Theorem 8.6 shows that

fptpfq � p� a� 1

p
� 7

11
,
p� a� σp

p
� 9

11
, and 1

are F -jumping numbers of f contained in p0, 1s. In this case, the reader may verify

that these are all of the F -jumping numbers of f in p0, 1s
2 F -pure thresholds of diagonal hypersurfaces

Throughout this chapter, R � Krx1, � � � , xns will denote a polynomial ring over

an F -finite field K of characteristic p ¡ 0, and m � px1, � � � , xnq will denote the ideal
generated by the variables of R. Rpe �  

rp
e

: r P R
( � Kperxpe

1 , � � � , xpe

n s will denote
the subring of R consisting of ppeqth powers of elements of R. As rK : Kps   8, we

have that rK : Kpes   8 for all e ¥ 1. If Σe is a finite basis for K over Kpe, the

reader may verify that

(8.9.1)
 
σ � µ : µ monomial , µ R m

rpes, σ P Σe
(

is a free basis for R as an Rpe-module. If K is perfect, so that Kpe � K, the basis in

(8.9.1) is the unique free basis for R as an Rpe-module consisting of monomials.

The following lemma says that to compute the F -pure threshold of a diagonal

polynomial f , it often suffices to compute the F -pure threshold of f at m.

Lemma 8.10. Let f � u1x
d1
1 � � � � � unx

dn
n be a diagonal polynomial in R. If p � di

for every 1 ¤ i ¤ n, then fptpfq � fptmpfq.
Proof. It follows from the Jacobian criterion for regularity that R℘{f is regular (and

hence F -pure) for every ℘ � m. It follows that fpt℘pfq � 1 by Corollary 5.7, and

the claim then follows from Proposition 2.24.
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We will now prove Theorem 8.1, and in doing so, we will rely heavily on (the

methods of) Theorem 7.6.

Theorem 8.1. Let pd1, � � � , dnq P Nn, and let f � u1x
d1
1 � � � � � unx

dn
n .

If L :� sup
!
N : ce

�
1
d1

	 � � � � � ce

�
1
dn

	 ¤ p � 1 for all 0 ¤ e ¤ N
)
, then

fptmpfq � $''''&''''% 1
d1
� � � � � 1

dn
if L � 8A

1
d1

E
L
� � � � � A

1
dn

E
L
� 1

pL
if L   8

Proof. Let P denote the rational polytope
!
s : 0 ¤ si ¤ 1

di

) � r0, 1sn. Then P is

also the polytope associated to Supportpfq, and �
1
d1
, � � � , 1

dn

	
is the unique maximal

point of P . (See Chapter 6.) It follows from Theorem 7.6 that fptmpfq � 1
d1
�� � �� 1

dn

whenever the non-terminating base p expansions of 1
d1
, � � � , 1

dn
add without carrying.

Suppose now that L   8. It follows from Theorem 7.6 that

(8.10.1) fptmpfq ¥ B
1

d1

F
L

� � � � �B
1

dn

F
L

� 1

pL
.

By way of contradiction, suppose the inequality in (8.10.1) is strict. By Lemma 4.6,

we have that xfptmpfqyL ¥ A
1
d1

E
L
� � � � � A

1
dn

E
L
� 1

pL
, and Lemma 7.7 implies that

(8.10.2) f
pL
A

1

d1

E
L
�����pLx 1

dn
y
L
�1 �

ķ

�|k|
k



ukxd1k1

1 � � �xdnkn
n R m

rpLs.
It follows from (8.10.2) that there exists an index k � pk1, � � � , knq P Nn with

(8.10.3) |k| � pL
B

1

d1

F
L

� � � � � pL
B

1

dn

F
L

� 1

such that diki   pL for all i. Restated, 1
di
¡ 1

pL
� ki, and applying Lemma 4.6 to

these inequalities yields the inequalities
A

1
di

E
L
¥ 1

pL
� ki. These inequalities imply

the bounds ki ¤ pL
A

1
di

E
L
for all i, and summing these yields|k| � k1 � � � � � kn ¤ pL

B
1

d1

F
L

� � � � � pL
B

1

dn

F
L

,

which contradicts (8.10.3). Thus, equality holds in (8.10.1), and we are done.
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Corollary 8.3. Let f � u1x
d
1 � � � � � udx

d
d P Krx1, � � � , xds. Then

fptmpfq � $'''&'''% 1
pℓ

if pℓ ¤ d   pℓ�1 for some ℓ ¥ 1

1� a�1
p

if 0   d   p and p � a mod d with 1 ¤ a   d

Proof. If pℓ ¤ d   pℓ�1 for some ℓ ¥ 1, then 1
pℓ�1   1

d
¤ 1

pℓ
. Consequently, the

non-terminating base p expansion of 1
d
is of the form 1

d
� °

e¥ℓ�1
ωe

pe
, with ωℓ�1 � 0.

Thus, ce
�
1
d

� � 0 for 1 ¤ e ¤ ℓ, cℓ�1

�
1
d

� � ωℓ�1 � 0, and adding d copies of cℓ�1

�
1
d

�
yields cℓ�1

�
1
d

� � � � � � cℓ�1

�
1
d

� � dωℓ�1 ¥ d ¥ pℓ ¥ p. In the notation of Theorem

8.1, we have that L � ℓ, and as
A

1
d

E
ℓ
� 0, we have fptmpfq � d � A 1

d

E
ℓ
� 1

pℓ
� 1

pℓ
.

For the remainder, we will assume that p ¡ d. Fix an integer ω ¥ 1 such that

p � d � ω � a with 1 ¤ a   d. From this equation, we see that 1
d
� ω

p
� a

d
� 1
p
, from

which we may conclude that c1
�
1
d

� � ω and ce�1

�
1
d

� � ce
�
a
d

�
for e ¥ 1. If a � 1,

it follows that ce
�
1
d

� � ω for all e ¥ 1. As d � ce �1
d

� � d � ω � p � 1 for all e ¥ 1,

it follows that the non-terminating base p expansions of d copies of 1
d
add without

carrying, so that fptmpfq � 1 by Theorem 8.1.

Next, suppose that a ¥ 2. Adding d copies of c1
�
1
d

�
gives c1

�
1
d

�� � � � � c1
�
1
d

� �
d � ω � p � a ¤ p � 1, while d � c2 �1

d

� ¡ p by Lemma 8.19. This shows that, in

adding the expansions of d copies of 1
d
, the first carry occurs at the second digit, and

Theorem 8.1 implies that fptmpfq � d � A 1
d

E
1
� 1

p
� d�ω

p
� 1

p
� p�a�1

p
.

3 Test ideals of diagonal hypersurfaces

1 Proof of Theorem 8.4

Having computed fptmpfq for diagonal hypersurfaces, we now change our focus

to computing the corresponding test ideals at these parameters. We will follow the

previous notation. In particular, f � u1x
d1
1 �� � ��unx

dn
n and η � �

1
d1
, � � � , 1

dn

	 P Qn.
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We begin with Proposition 8.11 , a technical result that will be key to the proof of

Theorem 8.4. We will prove Proposition 8.11 in the next subsection.

Proposition 8.11. Suppose that di ¤ pe, and that di � pr for any 1 ¤ r ¤ e � 1.

Furthermore, assume that ce

�
1
d1

	 � � � � � ce

�
1
dn

	 ¤ p � 2 and
�|pexηye|
pexηye � � 0 mod p.

Then xi P �f pe
A

1

d1

E
e
�����pex 1

dn
y
e
�1


r 1

pe s
.

Theorem 8.4. Let f � u1x
d1
1 � � � � � unx

dn
n P R :� Krx1, � � � , xns be a diagonal

hypersurface over a perfect field of characteristic p ¡ 0. Then

τ pR, fptmpfq 
 fq � $'''''''&'''''''%
pfq fptmpfq � 1

m fptmpfq � 1
d1
� � � � � 1

dn

m fptmpfq   min
!
1,
°

1
di

)
and p ¡ max t d1, � � � , dn u .

Proof. It follows immediately from Definition 2.26 and Lemma 2.38 thatpfq � pf pqr 1p s � τ pR, 1 
 fq. We will now assume that fptmpfq � 1
d1
� � � � � 1

dn
  1.

Let η :� �
1
d1
, � � � , 1

dn

	 P Qn. In this case, it follows from Theorem 8.1 that the

non-terminating base p expansions of the entries of η add without carrying, so that

1. di � pr for all r ¥ 1 and 1 ¤ i ¤ n (for, otherwise, carrying would be neces-

sary),

2. and
�|pexηye|
pexηye � � 0 mod p for all e ¥ 1 (by Lemma 4.14).

As fptmpfq   1, ce pfptmpfqq ¤ p� 1 for some e ¥ 1. Choose e " 0 such that

3. di   pe for 1 ¤ i ¤ n,

4. ce pfptmpfqq � ce

�
1
d1

	 � � � � � ce

�
1
dn

	 ¤ p� 2 (see Remark 4.13), and

5. τ pR, fptmpfq 
 fq � �
f rpefptmpfqs�r 1

pe s � �
f
pe
A

1

d1

E
e
�����pex 1

dn
y
e
�1


r 1

pe s
.
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In point 5, we have used that pe
A

1
d1

E
e
�� � ��pe

A
1
dn

E
e
� pe xfptmpfqye (as the entries

of η add without carrying) and that rpefptmpfqs � pe xfptmpfqye � 1. (See Lemma

4.6.) Points 1� 5 above allow us to apply Proposition 8.11, which says thatpx1, � � � , xnq � �
f
pe
A

1

d1

E
e
�����pex 1

dn
y
e
�1


r 1

pe s � τ pR, fptmpfq 
 fq .
For the remaining case, we assume that fptmpfq � A

1
d1

E
L
�� � ��A

1
dn

E
L
� 1

pL
  1,

where L � maxte : c1 � 1
de

	 � � � � � cn

�
1
de

	 ¤ p� 1u. By Remark 4.13, we have that

cepfptmpfqq � c1

�
1
de

	�� � ��cn

�
1
de

	
for 1 ¤ e ¤ L, and that ce pfptmpfqq � p � 1

for e ¥ L � 1. As fptmpfq   1, we must have that ce pfptmpfqq ¤ p � 2 for some

1 ¤ e ¤ L.

6. Choose 1 ¤ ℓ ¤ L so that cℓpfptmpfqq � c1

�
1
dℓ

	 � � � � � cn

�
1
dℓ

	 ¤ p � 2 and

ce pfptmpfqq � p� 1 for e ¥ ℓ� 1.

7. By our choice of ℓ, we have that fptmpfq � A
1
d1

E
ℓ
� � � � � A

1
dn

E
ℓ
� 1

pℓ
.

8. We also see that
�|pℓxηyℓ|
pℓxηyℓ � � 0 mod p by Lemma 4.14.

9. As p ¡ max t d1, � � � , dn u, each di is strictly less than any power of p.

As before, points 6� 9 and Proposition 8.11 allow us to conclude thatpx1, � � � , xnq � �
f
pℓ
A

1

d1

E
ℓ
�����pℓx 1

dn
y
ℓ
�1


�
1

pℓ

� � τ pR, fptmpfq 
 fq .
2 Some supporting lemmas

In this section, we prove Proposition 8.11, and we do so via a series of lemmas.

Lemma 8.12. Let d and e be positive integers. Then d
�
1� pe

A
1
d

E
e

	 � pe P N.

Furthermore, if d ¤ pe, then d
�
1� pe

A
1
d

E
e

	 � pe ¤ pe � 1.
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Proof. It is clear that d
�
1� pe

A
1
d

E
e

	 � pe P Z. By definition, 1
d
� A

1
d

E
e
� 1

1
d

9
e
,

and consequently d
�
1� pe

A
1
d

E
e

	�pe � d
�
1� pe

�A
1
d

E
e
� 1

d

		 � d
�
1� pe

1
1
d

9
e

	
.

Finally, by Lemma 4.6, we have that 0   1
1
d

9
e
¤ 1

pe
, so 0 ¤ d

�
1� pe

1
1
d

9
e

	   d.

Lemma 8.13. Fix e ¥ 1, let i be an integer with 1 ¤ i ¤ n, and let vi denote the

element of Nn with 1 in the ith spot and zeroes elsewhere. Suppose that di ¤ pe,

di � pr for any 1 ¤ r ¤ e� 1, and
�|pexηye|�1

pexηye�vi

� � 0 mod p. Let

µi :� x
di

�
1�pe

A
1

di

E
e

	�pe

i x
d1p

e
A

1

d1

E
e

1 � � �xdip
e
A

1

di

E
e

iloooomoooon
omitted

� � �xdnp
ex 1

dn
y
e

n .

By Lemma 8.12,

βi :� �|pe xηye | � 1

pe xηye � vi



upexηye�vi � µi

is part of a free basis forR over Rpe as described in (8.9.1). When f
pe
A

1

d1

E
e
�����pex 1

dn
y
e
�1

is written as anRpe-linear combination of this basis, the coefficient of βi is equal to x
pe

i .

Proof. After relabeling the variables, we may assume that i � 1. We have that

(8.13.1) f
pe
A

1

d1

E
e
�����pex 1

dn
y
e
�1 �

ķ

�|k|
k



ukxd1k1

1 � � �xdnkn
n ,

where the sum ranges over all k P Nn such that |k| � pe
A

1
d1

E
e
� � � � � pe

A
1
dn

E
e
� 1.

Note that the monomial given by the index k � pe xηye � v1 is

(8.13.2) x
d1

�
pe
A

1

d1

E
e
�1

	
1 x

d2p
e
A

1

d2

E
e

2 � � �xdnp
ex 1

dn
y
e

n � x
pe

1 � µ1.

Monomials in (8.13.1) that correspond to distinct indices are themselves distinct.

Thus, it suffices to show that the monomial given by pe � xηye� v1 is the only mono-

mial in (8.13.1) that is an Rpe-multiple of µ1. However, a monomial in (8.13.1)

corresponding to the index k � pκ1, � � � , κnq is an Rpe-multiple of µ1 whenever

(8.13.3) xd1κ1

1 � � �xdnκn
n � x

a1p
e

1 � � �xanp
e

n � µ1
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for some pa1, � � � , anq P Nn. Equating the exponents in (8.13.3) shows that

d1κ1 � pe pa1 � 1q � d1

�
1� pe

B
1

d

F
e



and diκi � pe

�
ai � di

B
1

di

F
e



for i ¥ 2.

Dividing each equation by the appropriate di and adding the resulting equalities

shows that |k| � pe ��a1�1
d1

�°
i¥2

ai
di

	�pe
A

1
d1

E
e
�� � ��pe

A
1
dn

E
e
�1, and comparing

this with the equality |k| � pe
A

1
d1

E
e
�� � ��A

1
dn

E
e
�1 shows that a1�1

d1
�°

i¥2
ai
di
� 0.

As pa1, � � � , anq P Nn, we conclude that a1 � 1 and ai � 0 for i ¥ 2. Substituting

these values into (8.13.3) shows that

(8.13.4) xd1k1
1 � � �xdnkn

n � x
pe

1 � µ1,

and comparing (8.13.4) with (8.13.2) show that k � pe xηye � v1.

Lemma 8.14. If ce

�
1
d1

	 � � � � � ce

�
1
dn

	 ¤ p� 2 and
�|pexηye|
pexηye � � 0 mod p, then�|pe xηye | � 1

pe xηye � vi


 � 0 mod p for 1 ¤ i ¤ n.

Proof. The assumption that ce

�
1
di

	 ¤ ce

�
1
d1

	 � � � � � ce

�
1
dn

	 ¤ p � 2 implies that

pe
A

1
di

E
e
� 1 � ce

�
1
di

	 � 1 � 0 mod p for 1 ¤ i ¤ n. Similarly, we also have that|pe xηye | � 1 � ce

�
1
d1

	� � � � � ce

�
1
dn

	� 1 � 0 mod p.

The result then follows by reducing the equality�|pe xηye | � 1

pe xηye � vi


 � �|pe xηye |
pe xηye 
 � |pe xηye | � 1

pe
A

1
di

E
e
� 1

(over Q) modulo the prime p.

Proof of Proposition 8.11. This is an immediate consequence of Proposition 2.29 and

Lemmas 8.13 and 8.14.
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4 On higher jumping numbers of Fermat hypersurfaces

Throughout this section, f :� u1x
d
1 � � � � � udx

d
d will now denote the degree d

Fermat hypersurface in R. Our goal is to prove Theorem 8.6, which is concerned

with the higher jumping numbers of f . Note that, by Proposition 2.41, it suffices to

only consider those jumping numbers contained in p0, 1s. Theorem 8.6 shows that

whenever p is greater than d, yet still “small”, there exist exotic jumping numbers.

Theorem 8.6 also shows that for p " 0, the only jumping numbers in p0, 1s are the

expected ones (namely, fptpfq and 1).

Notation 8.15. In what follows, we will always assume that p ¡ d. Accordingly,

we fix integers ω ¥ 1 and 1 ¤ a   d such that p � d � ω � a.

Theorem 8.6. Let σp :� ω � r2a{ds P N.

1. If a � 1, then fptpfq � 1 is the only F -jumping number of f in p0, 1s.
We now assume that a ¥ 2.

2. If p   apd�1q, then fptpfq   p�a�σp

p
¤ 1 are F -jumping numbers of f in p0, 1s.

3. If p ¡ apd� 1q, then fptpfq   1 are the only F -jumping numbers of f in p0, 1s.
The proof of Theorem 8.6 will depend heavily on the following two lemmas, whose

proofs we postpone until the next subsection.

Lemma 8.16. Suppose that a ¥ 2, and p   apd� 1q. Then
1. τ

�
R,

�
p�a�σp�1

p
� p�1

p2
� � � � � p�1

pe

	 
 f	 � m for all e ¥ 1.

2. τ
�
R,

�
p�a�σp

p

	 
 f	 � m.
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Lemma 8.17. If a ¥ 2 and p ¡ apd � 1q, then τ
�
R,

�
p�1

p
� � � � � p�1

pe

	 
 f	 � m

for all e ¥ 1.

Proof of Theorem 8.6. By Corollary 8.3, fptmpfq � 1 whenever a � 1. As the F -

pure threshold is the smallest jumping number, the first assertion of Theorem 8.6

follows. We now assume that a ¥ 2.

As p ¡ d, it follows from Theorem 8.4 that τ pR, fptmpfq 
 fq � m. Lemma 8.16

shows that if p   apd � 1q, then τ pR, λ 
 fq continues being equal to m for all λ

with fptmpfq � p�a�1

p
¤ λ   p�a�σp

p
, and that τ

�
R,

p�a�σp

p

 f	 � m. It follows

from Definition 2.40 that p�a�σp

p
is an F -jumping number of f . The assertion that

p�a�σp

p
¤ 1 follows from Lemma 8.20.

Similarly Lemma 8.17 shows that τ pR, λ 
 fq � m for every λ P pfptmpfq, 1q. As
we have already seen that τ pR, 1 
 fq � pfq � m, this shows that fptmpfq   1 are

the only F -jumping numbers of f contained in p0, 1s.
1 More supporting lemmas

We now prove the two technical lemmas cited in the proof of Theorem 8.6.

Remark 8.18. From the equation p � d � ω � a, we have that 1
d
� ω

p
� a

d
� 1
p
, from

which we may conclude that c1
�
1
d

� � ω while ce�1

�
1
d

� � ce
�
a
d

�
for e ¥ 1.

Lemma 8.19. If a ¥ 2, then pd� 1q � c2 �1
d

� ¥ p� 1.

Proof. Let ω1 :� c1
�
a
d

�
. By Remark 8.18, it suffices to show that pd � 1q � ω1 ¡ p.

We may write a
d
� ω1

p
� 0

a
d

8
1
, from which it follows that

(8.19.1)
pd� 1q � a

d
� pd� 1q � ω1

p
� pd� 1q � 1a

d

9
1
¤ pd� 1q � ω1

p
� d� 1

p
.

First, suppose that a ¥ 3, so that pd�1q�a
d

� a� a
d
¡ a� 1 ¥ 2. Substituting this into
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(8.19.1) shows that

2   pd� 1q � ω1

p
� d� 1

p
  pd� 1q � ω1

p
� p� 1

p
� pd� 1q � ω1 � 1

p
� 1.

From this, we may conclude that 1   pd�1q�ω1�1

p
, so that pd� 1q � ω1 ¡ p� 1.

We now deal with the case that a � 2. By way of contradiction, suppose thatpd � 1q � ω1 ¤ p. As p is prime, the equality pd � 1q � ω1 � p implies that d � 1 � p

or ω1 � p. The later is impossible as ω1 is a digit in a base p expansion, while the

former is impossible as p ¡ d. Thus, we may assume that pd � 1q � ω1 ¤ p � 1, and

substituting this into (8.19.1) shows that

2d� 2

d
¤ p� 1

p
� d� 1

p
� 1� d� 2

p
.

Consequently, d�2
d
¤ d�2

p
, so 1

d
¤ 1

p
, which implies that p ¤ d, a contradiction.

Lemma 8.20. Let σp :� ω � P
2a
d

T
.

1. p   dpω � σp � 1q   2p.

2. If p   apd� 1q, then σp ¤ a.

3. If p ¡ apd� 1q, then p   dpω � a� 1q   2p.

Proof. For 1, substituting the identity dω � p� a into dpω � σp � 1q yields
(8.20.1) dpω � σp � 1q � 2p� 2a� d

R
2a

d

V� d.

Substituting the inequalities 2a
d
¤ P

2a
d

T   2a
d
� 1 into (8.20.1) shows that

2p� d ¤ dpω � σp � 1q   2p.

For 2, we have that dω � a � p   apd� 1q by assumption. It follows that

dω � a   apd� 1q ùñ ω � 2a

d
  a ùñ σp � R

ω � 2a

d

V ¤ a.

The third point follows along the same lines, and is left to the reader.
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Lemma 8.21. Let µ, µ1, µ2 be monomials with µ1, µ2 P SupportpfNq and µ R m
rpes.

Suppose that d ¥ 2 is not a power of p. If µ1 � x
pe

i � µ for some i and µ2 is another

Rpe-multiple of µ, then µ1 � µ2.

Proof. By assumption, we have that

(8.21.1) µ1 � x
pe

i � µ and µ2 � xpea � µ for some a P Nn.

The assumption that all d1 � � � � � dn � d implies that fN is homogeneous, so that

deg µ1 � deg µ2. Applying this to (8.21.1) shows that |a| � 1, so that µ2 � x
pe

j � µ
for some j. If i � j, then degxi

µ1 � pe � degxi
µ, while degxi

µ2 � degxi
µ, and so

(8.21.2) degxi
µ1 � degxi

µ2 � pe.

We have already observed that the left-hand side of (8.21.2) is divisible by d, con-

tradicting the fact that d is not a power of p. Thus, i � j, and so µ1 � µ2.

Lemma 8.16. Suppose that a ¥ 2 and p   apd� 1q. Then
1. τ

�
R,

�
p�a�σp�1

p
� p�1

p2
� � � � � p�1

pe

	 
 f	 � m for all e ¥ 1, and

2. τ
�
R,

�
p�a�σp

p

	 
 f	 � m.

Proof. By Lemma 8.19, we know what pd�1q � c2 �1
d

� ¥ p�1. Thus, there exist non-

negative integers δ1, � � � , δd�1 such that
°

δi � p�1 and δi ¤ c2
�
1
d

�
for 1 ¤ i ¤ d�1,

with the preceeding inequality being strict for at least one index i (which we are free

to choose). In what follows, we will assume that δd�1   c2
�
1
d

�
. Fix e ¥ 1, and let

(8.21.3)

s :� �
ω

p
� δ1

p2
, � � � , ω

p
� δd�2

p2
,
ω

p
� δd�1

p2
� p � 1

p3
� � � � � p� 1

pe
,
ω � σp � 1

p



.
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Note that s P 1
pe
� N. Furthermore, we claim that the first d � 1 entries of s are less

than or equal to
�
1
d

D
2
� ω

p
� c2p 1

dq
p2

. Indeed, this follows from the fact that δi ¤ c2
�
1
d

�
for 1 ¤ i ¤ d� 1, with the inequality being strict for i � d� 1. Let k :� pe � s P N.

We summarize some important properties of k below.

1. By the preceding remarks, the first d� 1 entries of k are less than or equal to

pe
�
1
d

D
e
, and it follows that the first d� 1 entries of d � k are less than or equal

to pe � 1.

2. By Lemma 8.20, the last entry of d � k is strictly between pe and 2pe.

3.
|k| � pe � �dω � σp � 1

p
�¸ δi

p2
� p� 1

p3
� � � � � p� 1

pe


� pe � �p� a� σp � 1

p
� p� 1

p2
� p� 1

p3
� � � � p� 1

pe



.

4. By construction, the integers k1, � � � , kd add without carrying. By Lemma 4.14,

we conclude that
�|k|
k

� � 0 mod p.

As there is no gathering of monomials when expanding f |k| using the multinomial

theorem, the last point above shows that xd�k P Supportpf |k|q, while the first two

points show that

(8.21.4) xd�k � x
pe

d � µ,
where µ is some monomial with µ R m

rpes. By point p4q above, the element β :��|k|
k

�
uk � µ is part of a free basis for R over Rpe as described in (8.9.1), and Lemma

8.21 (combined with (8.21.4)) show that, when writing f |k| in terms of this basis, the

coefficient β is given by x
pe

d . We see that

xd P �f |k|�r 1

pe s � τ

�
R,

�
p� a� σp � 1

p
� p � 1

p2
� � � � � p� 1

pe


 
 f
 ,
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where the last equality holds by Lemma 2.38. As this argument is symmetric in the

variables, the first claim follows.

It remains to show that τ
�
R,

p�a�σp

p

 f	 � m. By way of contradiction, suppose

that x1 P τ
�
R,

p�a�σp

p

 f	 � pf p�a�σpqr 1p s. It follows that there exists k P Nd with|k| � p � a � σp such that xd�k P Supportpf p�a�σpq, p ¤ dk1   2p, and dki ¤ p � 1

for 2 ¤ i ¤ d. Note that

(8.21.5) dki ¤ p� 1 � dω � a� 1 ùñ ki ¤ ω � a� 1

d
ùñ ki ¤ ω,

where here we have used that ki P N and that 1 ¤ a   d. Thus, from the conclusion

of (8.21.5) we obtain the stronger bound dki ¤ dm1 � p� a for 2 ¤ i ¤ d. It follows

that

d � pp� a� σpq � d � |k| ¤ dk1 � pd� 1qpp� aq,
from which we can conclude that

(8.21.6) p� a� dσp ¤ dk1   2p.

However, substituting the definition of σp into (8.21.6) shows that

p� a� dσp � p� a� d � �ω � R
2a

d

V
 �p� a� dω � d

R
2a

d

V�p� a� p� a� d

R
2a

d

V¥2p� 2a� 2a � 2p.

This contradicts (8.21.6), and it follows that x1 is not contained in τ
�
R,

p�a�σp

p

 f	.

Hence, τ
�
R,

p�a�σp

p

 f	 � m.

Lemma 8.17. If a ¥ 2 and p ¡ apd � 1q, then τ
�
R,

�
p�1

p
� � � � � p�1

pe

	 
 f	 � m

for all e ¥ 1.
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Proof. As in the proof of Lemma 8.16, Lemma 8.19 guarantees that there exists non-

negative integers δ1, � � � , δd�1 such that
°d�1

i�1 δi � p�1 and δi ¤ ω2 for 1 ¤ i ¤ d�1,

with at least one inequality being strict. Again, we will assume that δd�1   ω2. Fix

e ¥ 1, and let

(8.21.7)

s :� �
ω1

p
� δ1

p2
, � � � , ω1

p
� δd�2

p2
,
ω1

p
� δd�1

p2
� p� 1

p3
� � � � � p� 1

pe
,
ω1 � a� 1

p



.

Note that s P 1
pe
�N. As in the proof of Lemma 8.16, we have that the first d� 1

entries of s are less than or equal to
A

1
p

E
e
. Let k :� pe � s P N.

1. The first d� 1 entries of d � k are less than or equal to pe � 1.

2. By Lemma 8.20, the last entry of d � k is strictly between pe and 2pe

3.
|k| � pe ��dm1 � a� 1

p
� d�1̧

i�1

δi

p2
� p� 1

p3
� � � � � p� 1

pe

�� pe � �p� 1

p
� p� 1

p2
� p� 1

p3
� � � � p� 1

pe



4. The integers k1, � � � , kd add without carrying, so

�|k|
k

� � 0 mod p by Lemma 4.14.

As in the proof of Lemma 8.16, these points imply that

xd P �f |k|�r 1

pe s � τ

�
R,

�
p� a� σp � 1

p
� p � 1

p2
� � � � � p� 1

pe


 
 f
 .

By the symmetry of the argument, we conclude thatm � τ
�
R,

�
p�1

p
� � � � � p�1

pe

	 
 f	.



CHAPTER 9

F -pure thresholds of binomial hypersurfaces

This chapter is dedicated to the computation of F -pure threshold for binomial

hypersurfaces. Recall that a binomial, by definition, a K-linear combination of two

distinct monomials. For most binomials f , Theorem 9.14 provides a formula for

fptmpfq in terms of the the characteristic and certain quantities determined by the

geometry of P . This formula is also the key step in Algorithm 9.16, an algorithm

for computing the F -pure threshold of an arbitrary binomial hypersurface.

1 The polytope P associated to a binomial

Given any binomial f , we may use the methods of Chapter 6 to construct the poly-

tope P associated to Supportpfq. As f is a binomial, we have that # Supportpfq � 2,

and thus P � r0, 1s2. In this case, the polytope P is more easily studied. For the con-

venience of the reader, we restate Definition 6.3 in this simplified setting. We will use

“�” to denote the standard inner product (or dot product) on R2: s�σ � s1σ1�s1σ2.

Definition 9.1. Let xν � xω denote distinct monomials in Krx1, � � � , xms such

that every variable appears in either xν or xω. We define the polytope associated totxν ,xω u as follows: P �  
s P R2¥0 : pνi, ωiq � s ¤ 1 for all i � 1, � � � , m (

.

Remark 9.2. As ν,ω P Nm, we have that P � r0, 1s2.
85



86

Example 9.3. In Figure 9.3, we consider the polytope P for ν � p1, 4, 7q and

ω � p9, 8, 4q. Observe that adding the condition 2s1 � 3s2 ¤ 1 would not change P ,

which motivates the Definition 9.4 below.

s1

s2

b

b b

b

bb

�
0, 1

9

� �
1
28
, 3
28

� �
1
10
, 3
40

��
1
7
, 0
� P � $&% ps1, s2q P R2¥0 :

s1 � 9s2 ¤ 1
4s1 � 8s2 ¤ 1
7s1 � 4s2 ¤ 1

,.-
Figure 9.3.1: The rational polytope P � r0, 1s2 associated to t xy4z7, x9y8z4 u.

Definition 9.4. We say that pνℓ, ωℓq is active on P if PXt s : pνi, ωiq � s � 1 u � H.

It follows that P �  
s P R2¥0 : pνi, ωiq � s ¤ 1 for all active pνi, ωiq (. We say thattxν ,xωu minimally define P if pνi, ωiq is active on P for all i.

Recall that a point η P P is called amaximal point of P if |η| � max t|s| : s P P u.
Corollary 9.5. P has a unique maximal point ðñ νi � ωi for all active pνi, ωiq.
Proof. By Lemma 6.6, it suffices to show that the set of vertices of P contains a

unique with maximal coordinate sum if and only if νi � ωi for all active pνi, ωiq.
However, it is fairly straightforward to verify that there exist two distinct vertices

with maximal coordinate sum if and only if some bounding line segment of P has

slope equal to �1. As the equations for the bounding line segments of P are given

by the active pνi, ωiq, the claim follows.

Corollary 9.5 shows that P will have a unique maximal point for most choices

of ν and ω. Furthermore, if P does not have a unique maximal point, we may
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eliminate some variables from the monomials xν and xω to obtain monomials whose

associated polytope does have a unique maximal point, as shown in the following

remark.

Remark 9.6. Let g be a binomial over K with Supportpgq � txa,xbu for some

a, b P Nm. Let µ � ±
ai�bi

xai
i . Then g � µ � h for some binomial h satisfying the

condition that no variable appears with the same exponent in both of its supporting

monomials. By Corollary 9.5, the polytope associated to Supportpgq must contain a

unique maximal point.

Definition 9.7. Suppose that P has a unique maximal point η � pη1, η2q P P . We

define the subpolytopes ÆP ,R, and PÆ of P as follows:

1. ÆP :� P X t s P R2 : s2 ¥ η2 u.
2. R :� t s P R2 : s1 ¤ η1 and s2 ¤ η2 u.
3. PÆ :� P X t s P R2 : s1 ¥ η1 u.

Note that this gives a decomposition P � ÆP YRY PÆ.

s1

s2

b

b b

b

bb

ÆP
R

PÆη � �
1
10
, 3
40

�
s1 � s2 � |η| � 7

40

Figure 9.7.1: The decomposition of P from Example 9.3.
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Figure 9.7.1 illustrates some important properties of the polytope decomposition

P � ÆP Y R Y PÆ which we now summarize. As P is defined by equations with

non-negative integer coefficients, the bounding line segments of P that are not on

the axes must have negative slope. Furthermore, the convexity of P shows that the

slope of these bounding line segments must strictly decrease as s1 increases.

If P has a unique maximal point η P P , then the first time a line of the form

s1� s2 � α intersects P occurs when α � |η|, and this intersection consists precisely

of the point η. It follows that none of the bounding line segments have slope equal

to negative one (for such a line segment would consist entirely of maximal points).

Thus, the bounding line segments of P not on the axes have negative slope, and none

of these slopes are equal to negative one. Furthermore, it is easy to verify that the

line segments with slopes greater than negative one give the non-trivial bounding

line segments for ÆP . Similarly, the segments with slopes less than negative one

give the non-trivial bounding line segments for PÆ. We record these observations in

Lemma 9.8 below.

Lemma 9.8. Suppose that P has a unique maximal point η P P . Then:

1. ÆP :�  
s P R2¥0 : s2 ¥ η2 and pνi, ωiq � s ¤ 1 for active pνi, ωiq with νi   ωi

(
.

2. PÆ :�  
s P R2¥0 : s1 ¥ η1 and pνi, ωiq � s ¤ 1 for active pνi, ωiq with νi ¡ ωi

(
.

2 Some lemmas on the computation of fptmpfq
In this subsection, we derive some lemmas which will simplify our computation

of the F -pure threshold of a binomial ideal.

Lemma 9.9. Let f � u1x
ν�u2x

ω be a binomial over K. Then there is no gathering

of monomial terms in the expansion of fN given by the binomial theorem: if k and
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κ P N2 with |k| � |κ| � N , then k1ν � k2ω � κ1ν � κ2ω if and only if k � κ.

In particular, if k P N2 with |k| � N , then xk1ν�k2ω P SupportpfNq if and only if�
N

k

� � 0 mod p.

Proof. By hypothesis, we have that k�κ is in the kernel of the matrixM � ���ν ω

1 1

�Æ
.
However, kerM � 0 ðñ ν � ω, which is impossible as f is a binomial over K.

Lemma 9.10. Let f P Krx1, � � � , xms be a binomial with Supportpfq � txν ,xω u,
and let P denote the polytope associated to Supportpfq. Reorder the variables and

fix ℓ ¥ 1 so that pνi, ωiq is active on P precisely when 1 ¤ i ¤ ℓ. Let g P Kry1, � � � , yℓs
denote the image of f under the mapKrx1, � � � , xms Ñ Kry1, � � � , yℓs given by xi ÞÑ yi

for 1 ¤ i ¤ ℓ and xi ÞÑ 1 otherwise. Then fN P px1, � � � , xmqrpes if and only if

gN P py1, � � � , yℓqrpes.
Proof. Write f � u1x

ν � u2x
ω for some u1 and u2 P K�. Let ν 1 � pν1, � � � , νℓq and

ω1 � pω1, � � � , ωℓq, so that g � u1y
ν 1 � u2y

ω1
. We may write

(9.10.1) fN � ¸|k|�N

�
N

k



ukxk1ν�k2ω and gN � ¸|k|�N

�
N

k



ukyk1ν

1�k2ω
1
.

By Lemma 9.9, (9.10.1) gives the unique expression for fN and gN as a K-linear

combination of distinct monomials in their respective polynomial rings. Thus, fN Ppx1, � � � , xmqrpes if and only if there exists k P N2 with
�
N

k

� � 0 mod p and 1
pe�1

� k �pνi, ωiq ¤ 1 for all 1 ¤ i ¤ m. Similarly, gN P py1, � � � , yℓqrpes if and only if there

exists k P N2 with
�
N

k

� � 0 mod p and 1
pe�1

�k�pνi, ωiq ¤ 1 for all 1 ¤ i ¤ ℓ. However,

if s :� 1
pe�1

� k, then s � pνi, ωiq ¤ 1 for all 1 ¤ i ¤ m if and only if s P P , which (by

our choice of ℓ) holds if and only if s � pνi, ωiq ¤ 1 for all 1 ¤ i ¤ ℓ.

Corollary 9.11. Let f P Krx1, � � � , xms and g P Kry1, � � � , yℓs be as in Lemma 9.10,

and let m � px1, � � � , xmq and n � py1, � � � , yℓq. Then, the polytopes associated
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to Supportpfq and Supportpgq are equal and is minimally defined by Supportpgq.
Furthermore, fptmpfq � fptnpgq.

As P � r0, 1s2, it follows that the maximal points of P should have small coor-

dinate sum. Whenever P contains a unique maximal point η P P and is minimally

defined by Supportpfq, the following lemma will allow us to focus on the typical case

in which |η| ¤ 1 when computing the F -pure threshold of f .

Lemma 9.12. Suppose P is minimally defined by Supportpfq � txν ,xω u and has

a unique maximal point η P P . If |η| ¡ 1, then after renaming variables, we have

that f � y � zn for some n ¥ 1.

Proof. As P � r0, 1s2, it follows that both η1 and η2 are non-zero. Thus, there exist

bounding line segments of ÆP and PÆ that contain η, so we may fix i such that

νi   ωi and j � i with νj ¡ ωj such that

(9.12.1) pνi, ωiq � η � pνj, ωjq � η � 1.

As νi   ωi, it follows that νi   νi � |η| � pνi, νiq � η   pνi, ωiq � η � 1, and as νi P N,

it follows that νi � 0. Similarly, the equation pνj , ωjq � η � 1 implies that ωj � 0,

and substituting the values νi � ωj � 0 into (9.12.1) shows that η � �
1
νj
, 1
ωi

	
. We

also see that the bounding line segments of ÆP and PÆ that intersect η are given bypνj , 0q (which corresponds to a horizontal line) and p0, ωiq (which corresponds to a

vertical line). This shows that P � !
s P R2¥0 : s1 ¤ 1

νj
and s2 ¤ 1

ωi

)
, and as we are

assuming that Supportpfq minimally defines P , we have that f � x
νj
j �xωi

i . Finally,

the equality 1
νj
� 1

ωi
� |η| ¡ 1 shows that either νj or ωi must equal 1.

Lemma 9.13. Let K be an F -finite field, and let m and n denote the homogeneous

maximal ideals of the polynomial rings Krxs and Krys, respectively. If f P m and
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g P n, then fptm�npfgq � mintfptmpfq, fptnpgqu, where m � n is the homogeneous

maximal ideal of the polynomial ring Krx,ys.
Proof. Suppose λ1 :� fptmpfq ¤ λ2 :� fptnpgq. We now show that fptm�npfgq � λ1.

By Lemma 4.6, xλ1ye ¤ xλ2ye for all e, and so Lemma 7.7 implies that f pexλ1ye R m
rpes

and gp
exλ2ye R n

rpes. Fix monomials µ1 P Supportpf pexλ1yeq and µ2 P Supportpgpexλ2yeq
such that µ1 R m

rpes and µ2 R n
rpes. As µ1 and µ2 are in different sets of vari-

ables, µ1µ2 P Supportppfgqpexλ1yeq but not in m
rpes � n

rpes � pm� nqrpes, and sopfgqpexλ1ye R pm� nqrpes. By Lemma 7.7, f pexλ1ye�1 P m
rpes, and it follows thatpfgqpexλ1ye�1 P m

rpes � pm� nqrpes. Thus, pe xλ1ye � maxta : pfgqa R pm� nqrpesu �
pe xfptm�npfgqye (see Lemma 7.7) for all e ¥ 1.

3 The F -pure threshold of a binomial hypersurface

Theorem 9.14. Suppose P is minimally defined by Supportpfq with unique maxi-

mal point η satisfying |η| ¤ 1. Let L � suptN : ce pη1q�ce pη2q ¤ p�1 � 0 ¤ e ¤ Nu.
1. If L � 8, then fptmpfq � |η|.

For the remainder, we will assume that L   8 and both η1 and η2 are non-zero. Let

ℓ :� maxte ¤ L : ce pη1q � ce pη2q ¤ p � 2u. (We will see that 1 ¤ ℓ ¤ L.)

2. If neither xηyℓ � �
1
pℓ
, 0
	
nor xηyℓ � �

0, 1
pℓ

	
is contained in the interior of P ,

then fptmpfq � x|η|yL.
3. Otherwise, let ε � max

!
r : xηyℓ � �

1
pℓ
, r
	
or xηyℓ � �

r, 1
pℓ

	
is in P

)
. Then

(a) 0   ε ¤ v|η|wL, with ε � v|η|wL ðñ either η1 or η2 is in 1
pℓ
� N, and

(b) fptmpfq � x|η|yL � ε ¤ |η|, with fptmpfq � |η| ðñ either η1 or η2 is in

1
pℓ
� N.
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1 An example

We present an example which we hope clarifies the statement of Theorem 9.14.

Example 9.15. Let f � u1x
7y2 � u2x

5y6 P Krx, ys with u1, u2 P K�, so that

P � $'&'% ps1, s2q P R2¥0 :
2s1 � 6s2 ¤ 1

7s1 � 5s2 ¤ 1

,/./- .

Note that P is minimally defined by Supportpfq and contains a unique maximal

point η � �
1
32
, 5
32

�
(see Figures 9.15.1 and 9.15.2), so that fptmpfq is computable via

Theorem 9.14.

Theorem 9.14 states that for primes p with the property that the non-terminating

base p expansions of 1
32

and 5
32

add without carrying, then fptmpfq � 1
32
� 5

32
� 3

16
.

As in Example 4.4, if p � 1 mod 32, (for example, if p � 97, 193, 257, 353 or 449)

then the expansions of 1{32 and 5{32 are constant, and thus add without carrying.

However, there exist primes p such that fptmpfq � 3
16

with p � 1 mod 32. For

example, if p � 47, then 1
32
� . 1 22 pbase 47q and 5

32
� . 7 16 pbase 47q.

We will now compute fptmpfq when p � 43. As

(9.15.1)

1

32
� . 1 14 33 25 22 36 12 4 pbase 43q and 5

32
� . 6 30 38 41 28 9 17 20 pbase 43q,

we see that carrying occurs at the second spot, and that ℓ � L � 1. By (9.15.1), we

see that xηy1 � �
1
43
, 6
43

�
, and Figure 9.15.1 shows that" xηy1 � �

1

43
, 0



, xηy1 � �

0,
1

43


*X P � H.

By Theorem 9.14, we conclude that

fptmpfq � x|η|y1 � B
3

16

F
1

� 8

43
when p � 43.
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We now compute fptmpfq when p � 37. As

(9.15.2)

1

32
� . 1 5 28 33 19 24 10 15 pbase 37q and 5

32
� . 5 28 33 19 24 10 15 1 pbase 37q,

we see that the first carry occurs at the third spot, and that ℓ � L � 2. We also see

from (9.15.2) that xηy2 � �
1
37
� 5

372
, 5
37
� 28

372

�
, and Figure 9.15.2 shows that" xηy2 � �

1

372
, 0



, xηy2 � �

0,
1

372


* � InteriorP .

From Figure 9.15.2, we also see that ε � max
 
r : xηy2 � �

1
372

, r
� P P

(
. More-

over, Figure 9.15.2 shows that the point xηy2 � �
1

372
, ε
�
lies on the hyperplane

7s1�5s2 � 1, and an easy calculation shows that ε � 3
6845

� .0 0 22 7 14 29 pbase 37q.
Thus, Theorem 9.14 shows that

fptmpfq � x|η|y2 � ε � B
3

16

F
2

� ε � .6 34 22 7 14 29 pbase 37q when p � 37.

s1

s2

ηb
b

b

bxηy1 b

b
η � �

1
32
, 5
32

�
bxηy1
b

b
1
43

1
43

Figure 9.15.1: p � 43, ℓ � L � 1, fptmpfq � �
3
16

D
1
� .8 pbase 43q.

2 An algorithm

We now show how Theorem 9.14 may be used to construct an algorithm for

computing the F -pure threshold at m of any binomial over K.
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s1

s2
η

xηy2 b
b

b

b

xηy2b
η � �

1
32
, 5
32

�
b

1
372

1
372

b

b

ε

Figure 9.15.2: p � 37, ℓ � L � 2, fptmpfq � �
3
16

D
2
� ε � .6 34 22 7 14 29 pbase 37q.

Algorithm 9.16. Let g P Krx1, � � � , xms be a binomial.

Step 1: Factor g as g � µ�h for some monomial µ and binomial h so that no variable

appearing in µ appears in h, and so that no variable appears with the same exponent

in both supporting monomials of h. As in Remark 9.6, the polytope P associated

to Supportphq will contain a unique maximal point η P P .

Step 2: Reorder the variables so that µ � xa1
1 � � �xad

d . By Lemma 9.13,

fptmpgq � fptmpµ � hq � min
 
fptpx1,��� ,xdqpµq, fptpxd�1,��� ,xmqphq ( ,

and it is an easy exercise to verify that fptpx1,��� ,xdqpµq � min
!

1
a1
, � � � , 1

ad

)
.

Step 3: We must now compute the F -pure threshold of h. As in Corollary 9.11,

eliminate inactive variables from h to obtain a polynomial f with the property that

Supportpfq minimally defines P .

Step 4: If |η| ¡ 1, it follows from Lemma 9.12 that f � y � zn for some n ¥ 1. In

this case, it is an easy consequence of Theorem 8.1 that fptpy,zqpfq � 1.

Step 5: If |η| ¤ 1, we may compute the F -pure threshold of f using Theorem 9.14.
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3 Proof of Theorem 9.14

This subsection is dedicated to the proof of Theorem 9.14. We will rely heavily on

the following two technical lemmas whose proofs will be postponed until the following

subsection.

Lemma 9.17. Let ℓ ¤ L   8 be as in Theorem 9.14. Then

1. 1 ¤ ℓ ¤ L and

2. xη1yℓ � xη2yℓ � 1
pℓ
� xη1yL � xη2yL � 1

pL
� xη1 � η2yL.

3. Furthermore,

f pLxη1�η2yL R m
rpLs ðñ f pℓxη1yℓ�pℓxη2yℓ�1 R m

rpℓsðñ " xηyℓ � �
1

pℓ
, 0



, xηyℓ � �

0,
1

pℓ


*X InteriorP � H.

Lemma 9.18. If ε :� sup
!
r :

!xηyℓ � �
r, 1

pℓ

	
, xηyℓ � �

1
pℓ
, r
	)X P � H) ¡ 0, then

1. 0   ε ¤ v|η|wL, with ε � v|η|wL ðñ either η1 or η2 is in 1
pℓ
� N,

2. f pepxη1�η2yL�xεyeq R m
rpes for all e ¥ L, and

3. f
pepxη1�η2yL�xεye� 1

pe q P m
rpes for all e ¥ L.

Proof of Theorem 9.14. If L � 8, it follows from Theorem 7.6 that fptmpfq � |η|.
For the remainder of this proof, we will assume that L   8 and that both η1 and

η2 are non-zero (since if one were zero, they would add without carrying). The

assertion that 1 ¤ ℓ ¤ L is the content of the first point of Lemma 9.17. It follows

from Theorem 7.6 that

(9.18.1) fptmpfq ¥ xη1yL � xη2yL � 1

pL
� xη1 � η2yL ,
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where the last equation in (9.18.1) follows from Lemma 9.17.

We will first assume that neither xηyℓ��
1
pℓ
, 0
	
nor xηyℓ��

0, 1
pℓ

	
is in InteriorP .

By means of contradiction, suppose that the inequality in (9.18.1) is strict. It then

follows from Lemma 4.6 that xfptmpfqyL ¥ xη1 � η2yL, and Lemma 7.7 then shows

that

f pLxη1�η2yL R m
rpLs.

However, this contradicts Lemma 9.17, and thus we have equality in (9.18.1).

It remains to prove the third point. The assertions regarding ε ¡ 0 is the content

of the first point of Lemma 9.18, which also shows that

(9.18.2)

pe pxη1 � η2yL � xεyeq � max
 
N : fN R m

rpes ( � pe xfptmpfqye for all e ¥ L,

where the last equality holds by Lemma 4.6. Finally, dividing (9.18.2) by pe and

taking the limit as eÑ 8 shows that fptmpfq � xη1 � η2yL � ε.

4 Proof of the main technical lemmas

In this section we prove the two lemmas used in the proof of Theorem 9.14.

Lemma 9.17. Let ℓ ¤ L   8 be as in Theorem 9.14. Then

1. 1 ¤ ℓ ¤ L and

2. xη1yℓ � xη2yℓ � 1
pℓ
� xη1yL � xη2yL � 1

pL
� xη1 � η2yL.

3. Furthermore,

f pLxη1�η2yL R m
rpLs ðñ f pℓxη1yℓ�pℓxη2yℓ�1 R m

rpℓsðñ " xηyℓ � �
1

pℓ
, 0



, xηyℓ � �

0,
1

pℓ


*X InteriorP � H.
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Proof. We will first show that L ¥ 1. If L � 0, then by definition we have that

c1 pη1q � c1 pη2q ¥ p. This implies that η1 � η2 ¡ xη1y1 � xη2y1 � c1pη1q�c1pη2q
p

¥ 1,

contradicting the assumption η1 � η2 ¤ 1. We have that ℓ ¤ L by definition, so

it remains to show that that ℓ � 0. If ℓ � 0, then by definition we have that

ce pη1q � ce pη2q � p � 1 for 1 ¤ e ¤ L, from which it follows that xη1yL � xη2yL �°L
e�1

p�1

p
� pL�1

pL
. By definition of L, we have that cL�1 pη1q � cL�1 pη2q ¥ p, and so

η1�η2 ¡ xη1yL�1�xη2yL�1 � xη1yL�xη2yL� cL�1 pη1q � cL�1 pη2q
pL�1

¥ pL � 1

pL
� 1

pL
� 1,

which again contradicts the assumption that η1 � η2 ¤ 1.

To prove the second point, we may assume that ℓ   L. By definition of ℓ and L,xη1yL � xη2yL � xη1yℓ � xη2yℓ �°L
e�ℓ�1

p�1

pe
. From this, we may conclude thatxη1yL � xη2yL � 1

pL
� xη1yℓ � xη2yℓ � Ļ

e�ℓ�1

p� 1

pe
� 1

pL
� xη1yℓ � xη2yℓ � 1

pℓ
.

The assertion that xη1yL � xη2yL � xη1 � η2yL follows from Lemma 4.17.

We now prove the last point. As xη1yℓ � xη2yℓ � 1
pℓ
� xη1 � η2yL, we have that

f pℓxη1yℓ�pℓxη2yℓ�1 � f
pℓ
�xηyℓ�xηyℓ� 1

pℓ

	 � f pℓxη1�η2yL.
From this, we see that

f pℓxη1yℓ�pℓxη2yℓ�1 � f pℓxη1�η2yL R m
rpℓs ðñ �

f pℓxη1�η2yL	pL�ℓ � f pLxη1�η2yL R m
rpLs.

We now prove the remaining equivalence. We will begin by supposing that" xηyℓ � �
1

pℓ
, 0



, xηyℓ � �

0,
1

pℓ


*X InteriorP � H.

Without loss of generality, we assume that σ :� xηyℓ � �
1
pℓ
, 0
	 � �xη1yℓ � 1

pℓ
, xη2yℓ	

is in the interior of P . We gather some important properties of σ below:

1. We have that σ P 1
pℓ
� N2, and that |σ| � xη1yℓ � xη2yℓ � 1

pℓ
.



98

2. By definition of ℓ ¤ L, we have that ce pη1q � ce pη2q ¤ p � 1 for e ¤ ℓ, with

this inequality strict for e � ℓ. This shows that the coordinates of pℓσ P N2

add without carrying, and by Lemma 4.14, we have that�
pℓ|σ|
pℓσ


 � 0 mod p.

3. Finally, as σ P InteriorP , it follows that pℓσ1νi � pℓσ2ωi � pℓpνi, ωiq � σ   pℓ

for all 1 ¤ i ¤ m, so that xpℓσ1ν�pℓσ2ω R m
rpes.

The first two points above, combined with Lemma 9.9, show that xpℓσ1ν�pℓσ2ω is

contained in Support
�
f pℓxν1yℓ�pℓxν2yℓ�1

	
, while the last point shows that xpℓσ1ν�pℓσ2ω R

m
rpℓs. From this we may conclude that f pℓxν1yℓ�pℓxν2yℓ�1 R m

rpℓs.
To conclude the proof, suppose that f pℓxη1yℓ�pℓxη2yℓ�1 R m

rpℓs. Our aim now is to

show that either xηyℓ�� 1
pℓ
, 0
	
or xηyℓ��0, 1

pℓ

	
is in the interior of P . By assumption,

there exists an element k P N2 with |k| � pℓ xη1yℓ� pℓ xη2yℓ� 1 such that xk1ν�k2ω is

contained in Supportpfq but not in m
rpℓs. Let α � pα1, α2q :� 1

pℓ
� k. We summarize

some important properties of α:

4. α P 1
pℓ
� N and |α| � xη1yℓ � xη2yℓ � 1

pℓ
.

5. As xk1ν�k2ω R m
rpℓs, every entry of k1ν � k2ω is strictly less than pℓ, which

shows that α P InteriorP .

By p4q above, it is not possible that both α1 ¤ xη1yℓ and α2 ¤ xη2yℓ. Without

loss of generality, we will assume that α2 ¥ xη2yℓ � 1
pℓ
, and substituting this into p4q

forces the inequality α1 ¤ xη1yℓ. By p4q again, we see there exists N P N such that

6. α� �
N
pℓ
,�N

pℓ

	 � xηyℓ � �
0, 1

pℓ

	
.
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We now show that xηyℓ��
0, 1

pℓ

	 P InteriorP . By Lemma 4.6, xη2yℓ� 1
pℓ
¥ η2, so that

(9.18.3) xηyℓ � �
0,

1

pℓ


 P P ðñ xηyℓ � �
0,

1

pℓ


 P ÆP .

By (9.18.3), to show that xηyℓ � �
0, 1

pℓ

	 P InteriorP , it suffices to show that

xηyℓ � �
0,

1

pℓ


 P InteriorP X ÆP(9.18.4) �  
s P R2¥0 : s2 ¥ η2 and pνi, ωiq � s   1 � pνi, ωiq with νi   ωi

(
.

In (9.18.4), we have used the assumption that Supportpfq minimally defines P , along

with the description of ÆP given in Lemma 9.8. By p6q above,pνi, ωiq � �xηyℓ � �
0,

1

pℓ



 � pνi, ωiq � �α� �
N

pℓ
,�N

pℓ




(9.18.5) � pνi, ωiq �α� pνi, ωiq � �N

pℓ
,�N

pℓ


� pνi, ωiq �α� N

pℓ
pνi � ωiq .

Finally, as α P InteriorP , it follows from (9.18.5) thatpνi, ωiq � �xηyℓ � �
0,

1

pℓ



   pνi, ωiq �α   1 for all νi   ωi,

which shows that the desired containment from (9.18.4) holds.

Lemma 9.18. If ε :� sup
!
r :

!xηyℓ � �
r, 1

pℓ

	
, xηyℓ � �

1
pℓ
, r
	)X P � H) ¡ 0, then

1. 0   ε ¤ v|η|wL, with ε � v|η|wL ðñ either η1 or η2 is in 1
pℓ
� N,

2. f pepxη1�η2yL�xεyeq R m
rpes for all e ¥ L, and

3. f pepxη1�η2yL�xεye� 1

pe q P m
rpes for all e ¥ L.
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Proof. We prove the first assertion. Suppose that xηyℓ � �
r, 1

pℓ

	
is in P . It follows

from the fact that η is a maximal point of P and Lemma 9.17 thatx|η|yL � r � xη1yℓ � xη2yℓ � 1

pℓ
� r � ����xηyℓ � �

r,
1

pℓ


���� ¤ |η| � x|η|yL � v|η|wL ,
which shows that r, and consequentially ε, is less than or equal to v|η|wL.

Suppose that ε � v|η|wL and that xηyℓ � �v|η|wL , 1
pℓ

	 P P . Note that����xηyℓ � �v|η|wL , 1pℓ
���� � xη1yℓ � xη2yℓ � 1

pℓ
� vη1 � η2wL � xη1 � η2yL � vη1 � η2wL ,

which shows that xηyℓ��v|η|wL , 1
pℓ

	
is a maximal point of P . As η is the unique such

point of P , we have that η � xηyℓ � �v|η|wL , 1
pℓ

	
. This shows that η2 � xη2yℓ � 1

pℓ
,

which by Lemma 4.6 shows that η2 P 1
pℓ
� N.

Conversely, without loss of generality, suppose that η1 P 1
pℓ
�N, so that vη1wℓ � 1

pℓ

by Lemma 4.6. We have already seen that ε ¤ vη1 � η2wL, and to prove equality it

suffices to show that xηyℓ � �
1
pℓ
, vη1 � η2wL	 P P . Observe thatxη1 � η2yL � vη1 � η2wL � η1 � η2� xη1yℓ � vη1wℓ � xη2yℓ � vη2wℓ� xη1yℓ � 1

pℓ
� xη2yℓ � vη2wℓ� xη1 � η2yL � vη2wℓ .

From this, we conclude that

(9.18.6) vη1 � η2wL � vη2wℓ .
Finally, from (9.18.6), we have thatxηyℓ�� 1

pℓ
, vη1 � η2wL
 � xηyℓ�� 1

pℓ
, vη2wℓ
 � �xη1yℓ � 1

pℓ
, xη2yℓ � vη2wL
 � η P P .
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We will now show that f pe�Lpxη1�η2yL�xεye�Lq R m
rpes for all e ¥ 1. We know that

either xηyℓ��
1
pℓ
, ε
	
or xηyℓ��

ε, 1
pℓ

	
is contained in P , and without loss of generality

we will assume that xηyℓ � �
1
pℓ
, ε
	 P P . Fix e ¥ L, and consider the element

(9.18.7) σ :� �xη1yℓ � 1

pℓ
, xη2yℓ � xεye
 P 1

pe
� N.

We summarize some important properties of σ below:

1. |σ| � xη1yℓ � xη2yℓ � 1
pℓ
� xεye � xη1 � η2yL � xεye.

2. By definition of ℓ ¤ L, the integers pℓ
�xη1yℓ � 1

pℓ

	
and pℓ xη2yℓ add without

carrying. As e ¥ L ¥ ℓ, the integers pe
�xη1yℓ � 1

pℓ

	
and pe xη2yℓ also add

without carrying. Furthermore, the integers pe
�xη1yℓ � 1

pℓ

	
and pe xη2yℓ are

both greater than or equal to pe�ℓ, and hence also greater than or equal to

pe�L. By Lemma 9.17 we know that xεye   ε ¤ vη1 � η2wL ¤ 1
pL
, so that

pe xεye   pe�L. It follows that the entries of peσ add without carrying, so that�
pe|σ|
peσ

� � 0 mod p by Lemma 4.14.

3. Finally, as xεye   ε, it follows that σ P InteriorP .

By Lemma 9.9, the first two points above show that the monomial xpeσ1�ν1�peσ2�ω
is contained in the support of f pepxη1�η2yL�xεyeq, while the third point shows that

this same monomial is not contained in m
rpes. From this, we may conclude that

f pepxη1�η2yL�xεyeq R m
rpes for all e ¥ L.

We will now show that f pepxη1�η2yL�xεye� 1

pe q P m
rpes for all e ¥ L. As

f
pepxη1�η2yL�xεye� 1

pe q � �
f pLxη1�η2yL	pe�L � f pexεye�1,

it suffices to show that

(9.18.8)

µ
pe�L

1 � µ2 P m
rpes for all µ1 P Support

�
f pLxη1�η2yL	 and µ2 P Support

�
f pexεye�1

�
.
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We may assume that µ1 R m
rpLs and µ2 R m

rpes, for otherwise the containment in

(9.18.8) holds trivially. Thus, we may write µ1 � xa1ν�a2ω and µ2 � xb1ν�b2ω for

some a � pa1, a2q and b � pb1, b1q in N2 with |a| � pL xη1 � η2yL and |b| � pe xεye�1

such that every entry of a1ν � a2ω is less than pL and every entry of b1ν � b2ω is

less than pe. We set α :� 1
pL
� a and β :� 1

pe
� b, and summarize some important

properties of α and β below:

4. α P 1
pL
� N2 X InteriorP , and |α| � xη1 � η2yL � xη1yℓ � xη2yℓ � 1

pℓ
.

5. β P 1
pe
� N2 X InteriorP , and |β| � xεye � 1

pe
.

Under this new notation, the condition appearing in (9.18.8) may be restated as

xppe�La1�b1qν�ppe�La2�b2qω � xpepα�βq P m
rpes.

From this, we see that to conclude the proof, it suffices to show that

(9.18.9) α� β R InteriorP .

By p4q above, it is not possible that both α1 ¤ xη1yℓ and α2 ¤ xη2yℓ. Without

loss of generality, we will assume that α2 ¥ xη2yℓ � 1
pℓ
, and p4q above again shows

that α1 ¤ xη1yℓ. Thus, there exists N P N such that

α� �
N

pℓ
,�N

pℓ


 � xηyℓ � �
0,

1

pℓ



.

For indices i with νi   ωi, we have thatpνi, ωiq � �xηyℓ � �
0,

1

pℓ


 � β


 � pνi, ωiq � �α� �
N

pℓ
,�N

pℓ


� β



(9.18.10) � pνi, ωiq � pα� βq � N

pℓ
pνi � ωiq  pνi, ωiq � pα� βq .
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By (9.18.10), to demonstrate (9.18.9), it suffices to show that

(9.18.11) pνi, ωiq � �xηyℓ � �
0,

1

pℓ


� β


 ¥ 1 for some i with νi   ωi.

There exists an i with νi   ωi by our assumption that η1 and η2 are non-zero.

We will now conclude this proof by showing that the desired statement in (9.18.11)

holds. As β P 1
pe
�N2, it follows that β must be contained the line segment determined

by p0, |β|q and p|β|, 0q, and thus must be of the form

(9.18.12) β � p|β|, 0q � t p�|β|, |β|q for some t P r0, 1s.
If νi   ωi, then (9.18.12) shows thatpνi, ωiq � �xηyℓ � �

0,
1

pℓ


� β


 � pνi, ωiq � �xηyℓ � �|β|, 1
pℓ


� t p�|β|, |β|q
(9.18.13) � pνi, ωiq � �xηyℓ � �|β|, 1
pℓ



� t|β|pωi � νiq¡ pνi, ωiq � �xηyℓ � �|β|, 1
pℓ




Comparing (9.18.11) with (9.18.13), we see that it suffices to show thatpνi, ωiq � �xηyℓ � �|β|, 1

pℓ



 ¥ 1 for some i with νi   ωi.

However, as |β| � xεye � 1
pℓ
¥ ε, it suffices to show thatpνi, ωiq � �xηyℓ � �

ε,
1

pℓ



 ¥ 1 for some i with νi   ωi.

By definition, we have that xηyℓ � �
0, 1

pℓ

	 P ÆP , and it follows from the definition

of ε that xηyℓ � �
ε, 1

pℓ

	
is not contained in Interior ÆP . By Lemma 9.8, this shows

that pνi, ωiq � �xηyℓ � �
ε,

1

pℓ



 ¥ 1 for some i with νi   ωi,

which allows us to conclude the proof of the Lemma.
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[EM06] Lawrence Ein and Mircea Mustaţă. Invariants of singularities of pairs. In
International Congress of Mathematicians. Vol. II, pages 583–602. Eur.
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