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CHAPTER 1

Introduction

1 DMotivation

Let R be a commutative ring of prime characteristic p > 0. The e'-iterated
Frobenius map R ER (defined by r ~— rP°) is a ring homomorphism whose image
is the subring RP" < R consisting of all (p?)™ powers of elements of R. We call R
F-finite whenever the Frobenius map is a finite map of rings, and in this thesis we
will deal almost exclusively with F-finite rings.

The Frobenius map has been an important tool in commutative algebra since
Kunz characterized regular rings as those for which R is flat over RP | . In
general, singular rings exhibit pathological behavior with respect to the Frobenius
endomorphism, and by imposing conditions on the structure of R as an RP-module,
new classes of singularities can be defined. For example, we say that R is F'-pure
(or F-split) if the inclusion R? < R splits as a map of RP-modules | ]. This
condition is equivalent to the condition that R contain a free RP-module summand
of rank one. Note that a regular ring is F-pure, though the converse need not be
true: the ring F,[z,y]/(z* + y?) is F-pure for p # 2, yet always has an isolated
singularity at the origin. The notion of F-purity is a critical ingredient in the proof

of the well-known Hochster-Roberts Theorem on the Cohen-Macaulay property of



rings of invariants | ]

Recently, more subtle applications of Frobenius to define singularities has led to
new classes of I'-singularities, many of which are motivated by the theory of tight
closure. The tight closure of an ideal I < R is an ideal I* < R which contains [
and is “tight” in the sense that it is contained in (and is often much smaller than)
many of the more common closures of I (e.g., the radical and integral closure of
I). The ring R is called F-reqular if I* = I for all ideals I < R, and is called
F-rational if I* = I for every ideal I generated by a system of parameters. Regular
rings are F-regular, and in general, F-regular rings satisfy many nice properties.
For example, F-regular rings must be F-pure, Cohen-Macaulay, normal and must
also have rational singularities [ |. For more on tight closure, the reader is
referred to the original source | |. For an account of the many applications of
tight closure theory, see [ ].

Amazingly, the F-singularities discussed above are closely related to singularity
types that appear in the theory of birational geometry for varieties defined over
C, and in particular, to those appearing in the so-called Minimal Model Program
[ : : : : ]

It is standard practice in birational geometry to study the singularities of pairs
(X, A oY), where X is a variety over C, and Y < X is a hypersurface in X. Via
integrability conditions (or alternately, via resolution of singularities), one defines
the notion of KLT and log canonical singularities for such pairs | |. By varying
the parameter \, we may define an important invariant of Y < X. The log canonical
threshold of Y < X, denoted lct(X,Y), is defined to be the supremum over all
parameters A such that the pair (X, A oY) is log canonical. We may replace “log

canonical” in the definition of lct(X,Y') with “KLT” without affecting the value of



this invariant. It is a fact that lct(X,Y") € (0, 1], with smaller values corresponding
to worse singularities. This is readily seen in the case that X = C™, and Y =V (f)
is the hypersurface in X defined a polynomial f € C[xy,--- ,x,,], where we have the

following concrete description of the log canonical threshold:
1
let(C™,V (f)) = sup { AeRyy: W is locally integrable in C™ } .

By again using resolution of singularities (or integrability considerations), one
may assign to each pair (X, A oY) an ideal ¢ (X, X oY) called the multiplier ideal
of the pair (X, X eg). The ideal # (X, X eY) must be trivial for small values of A,
and get smaller as A increases. By varying the parameter \, we may recover the log
canonical threshold of (X,Y): let(X,Y) = sup{A=>0: ¢ (X, oY) is trivial }.
For more on the basic properties of multiplier ideals and their jumping numbers,
as well as their role in higher dimensional birational geometry, see (for example)
[BLO4, : ]

Motivated by geometric considerations, Hara and Watanabe recently extended
the notion of F-purity to pairs of the form (R, A e f), where f is a non-zero, non-unit
element of R, and A is a non-negative real parameter [ , |. For example,
we say that the pair (R, \ e f) is F-pure if the inclusion RP - flP°=DN < R splits
as a map of RP*-modules for all e » 0. Here, R” - f¥ denotes the RP‘-submodule
of R generated by f~. This generalizes the definition of F-purity for rings as R is
F-pure if and only if the pair (R,0e f) is F-pure. This notion, though technical,
adds great flexibility to the theory, and allows one to define F'-pure thresholds. The
F-pure threshold of an element f € R, denoted fpt(R, f), is the supremum over all
A = 0 such that the pair (R, \ e f) is F-pure.

In the case that f is an element of an F-finite regular local ring (R, m), the F-pure



threshold has the following concrete description:
fpt(R, f) = sup { e Rog: fP M ¢ mlP] for some e > 1 },

where mP! is the ideal of R generated by the image of m under R %, R. Note
that if m = (g1, , ga), then mlPl = (gfe, -++,gP"). The definition of the F-pure
threshold is analogous to that of the log canonical threshold in complex algebraic
geometry.

By again using the Frobenius morphism, one defines a family of ideals 7 (R, A o f)
of R indexed by a non-negative real parameter A\. The ideal 7 (R, A o f) is called the
test ideal of the pair (R, A e f). Test ideals (defined in the context of tight closure)
were originally introduced in [ |, and generalized to pairs in [ ]. Test ideals
vary with respect to A in the same way that multiplier ideals do: they must be trivial
for small values of A\, and also get smaller as X increases. They also may be used to
recover the F-pure threshold: fpt(R, f) = sup{AeRoo: 7 (R, e f) = R}. There
is a very close relationship between F-purity and log canonical singularities, which
we will sketch below in the special case of a hypersurface sitting in Q™ < C™.

Fix g € Q[z1,- - , 2] = Q[z], a non-negative real parameter A > 0, and consider
the ideal _# (Q[z], A e g) < Q[z]. For p » 0, we may reduce the coefficients of g, as
well as those of some fixed set of generators of _# (Q[x], A e g) modulo p to obtain a
polynomial g, and ideal # (Q[z], A e g), in Fylz1,---, 2] = Fylz]. The following

theorem allows us to compare the ideals # (Q[z], A e g), and 7 (F,[z], A ® g,).

Theorem 1.1. | , | For p» 0, 7 (Fylz], A e g,) = 7 (Qlz], Ao g),

uniformly in A\. Furthermore, for every A, there exists a positive integer N, such that

T (Fplz], Ao yg,) = 7 (Qz], A o g)p for all p = Nj.

We stress that the assignment A — N, is typically an increasing function of A. We



also have the following relationship between log canonical singularities and F-purity.

Theorem 1.2. | : | The pair (Q[x], A e f) is log canonical if the pairs

(F,[x], A ® f,) are F-pure for infinitely many p >» 0.

The preceding results imply the following relationship between thresholds:

(1.2.1) fpt(f,) <lct(f) and lim fpt(f,) = lct(f).
p—>0
This behavior is illustrated in the following example.

Example 1.3. If f = 2? + 4 € Q|x,y], then lct(f) = 3, and

fpt(fp) = 3

In this example, it follows from Dirichlet’s Theorem on primes in arithmetic progres-

sions that there exist infinitely many primes p such that fpt(f,) = let(f).
Theorem 1.2 and Example 1.3 motivate the following two conjectures.

Conjecture 1.4. If the pair (Q™, A e V(f)) is log canonical, then (F,[x], e f,) is

F-pure for infinitely many p.
Conjecture 1.5. There exist infinitely many primes such that fpt(f,) = lct(f).

It turns out that these conjectures are equivalent (see Theorem 5.19), and their
verification represents a long-standing open problem | , , |. They

also serve as motivation for much of the work in this thesis.



2  Outline

In Chapter 2, we consider two different notions of singularity. We first consider
log canonical singularities, which is defined for polynomials over C via the use of
resolution of singularities and L?-methods. This discussion of log canonical singu-
larities is kept light, as it will only serve as motivation for our main results. We
next consider F-purity. Since our main results deal with this singularity type, we
include a detailed discussion of F-purity of hypersurfaces, and place emphasis on
the special case that R is a regular ring. Chapter 2 concludes with a discussion of
the deep connection between log canonical singularities and F-purity. To precisely
describe this connection, we provide a careful exposition on the process of reduction
to positive characteristic.

In Chapter 4, we examine base p expansions of non-negative real numbers. Though
the ideas in this chapter are elementary, they prove to be useful in the study of sin-
gularities in positive characteristic.

In Chapter 5, we study F-purity of hypersurfaces in the most general settings. In
particular, we begin our study of the F'-pure threshold. We examine the relationship
between different variants of F-purity, and characterize their behavior in terms of
the F-pure threshold. For example, in Theorem 5.19, we show that (R, fpt(f) e f)
is F-pure, and is sharply F-pure if and only if fpt(f) is a rational number with
denominator not divisible by the characteristic. In Proposition 5.12, we deduce
important restrictions on the set of all F-pure thresholds. Many of the results in
Chapter 5 generalize results previously shown to hold in F-finite regular local rings.

In Chapter 6, we associate to polynomial a rational, convex polytope P. This

polytope is “small” in the sense that it is contained in [0, 1] for some n > 1. This



polytope will be key to our study of F-purity of polynomials, and in this chapter we
develop some of the important properties of P.

In Chapter 7, we show that log canonical singularities is “equivalent” to F-purity
for most polynomials. Precisely stated, Theorem 7.17 verifies Conjectures 1.4 and
1.5 for polynomials whose associated polytopes satisfy a natural non-degeneracy
condition. Theorem 7.18 builds on this to show that a natural generalization of
these conjectures holds for a very general complex polynomial.

In Chapter 8, we build on the methods of Chapter 7 to study invariants of sin-
gularities associated to diagonal hypersurfaces over fields of prime characteristic. A
diagonal hypersurface is given by a polynomial of the form :E‘lil + -+ 2% and we
call a diagonal hypersurface Fermat whenever dy = dy--- = d,, = n = d for some
d > 1. In Theorem 8.1, we present a formula for the F-pure threshold of an ar-
bitrary diagonal hypersurface. Furthermore, we calculate the first non-trivial test
ideal associated to a diagonal hypersurface. (See Theorem 8.4.) In Theorem 8.6, we
examine the existence of, and give formulas for, higher jumping numbers of diagonal
hypersurfaces.

In Chapter 9, we examine the F-pure threshold of a binomial hypersurface. By
definition, a binomial is the sum of two distinct monomials. Our main result of this
chapter is Algorithm 9.16, an algorithm for computing the F-pure threshold of an
arbitrary binomial hypersurface. This algorithm depends on the characteristic of the

ambient space and the geometry of the polytope P.



CHAPTER 2

Singularities of hypersurfaces

1 Singularities of hypersurfaces defined via L? conditions

Let f € Clzy,---, x| be a polynomial with complex coefficients, and consider

its zero set Z = {ze C™: f(2) =0}. We also consider its singular set Zg,, =

{z eC™: ;—g{l(z) == %(z) =f(z)=0 } For every non-negative real param-
eter ), consider the function R*™ = C™ 3 R defined by Iy (z1,-+ , ) = |f(;)|’\'

Note that I'y has a pole at every point z € Z, and understanding how “bad” these
poles are provides a measure of the singularities of f. Recall that the function Iy is
called locally L? at a point z € C™ if [Ty (z)|* = W is integrable in a neighborhood

of z. Note that I') is locally integrable at z for every A\ whenever z ¢ Z.

Definition 2.1. We say that the pair (C™, A e f) is KLT at z if the function I'y is

locally L? at z. A pair is said to be KLT if it is KLT at every point of Z.

Definition 2.2. We say that (C™, A e f) is log canonical at z if (C™,c e f) is KLT

at z for all 0 < e < A\. A pair is log canonical if it is log canonical at every point of Z.

Definition 2.3. We define the log canonical threshold of f at z, denoted let,(C™, f),
as follows: lct,(C™, f) = sup{ A e R : (C™ Ao f) is log canonical at z }. We de-

fine the (global) log canonical threshold of f, denoted lct(C™, f), as follows:



let(C™, f) =sup{A = 0:(C™ Xe f) is log canonical }. We will often write lct(f)

and lct,(f) instead of lct(C™, f) and lct,(C™, f).

As (C™, X o f) being log canonical is a local condition, we have that lct(C™, f) =
inf {lct,(C™, f) : z € Z}. Furthermore, it follows by definition that lct,(C™, f) =
sup{AeR5o: (C™ Ao f) is KLT at z}, and thus the log canonical threshold may
also be called the KLT threshold.

If f=af"-- 2% is a monomial, then (C™ X\ e f) is KLT if the integral

m

dry - -dx,,
gt [
exists in a neighborhood of the origin. By Fubini’s Theorem, it suffices to show that

dl‘i
(2.3.1) J o

|

exists in a neighborhood of the origin for every 1 < i < m, and by referring to polar
coordinates, we see that the integral in (2.3.1) exists in neighborhood of the origin
if and only if 0 < A < a% It follows that lct(C™, f) = min { é, e ,i } If fis not
a monomial, is not at all clear how one might compute lct(C™, f). Fortunately, we

can always monomialize f via a log resolution.

Remark 2.4. Let 7 : X — C™ be a holomorphic map of complex varieties. If

(U, %4, -+, &) are coordinates on X, we may consider Je(m), the complex Jacobian

of monU: if (2, -+ ,%,) = (¢1(&), -+, gm(&)) on U, then Je(r) is defined on U as

(ggf_) (). It is clear that this definition defends on the choice of coordinate system.
J

On the other hand, if (U’, 2}, --- , 2! ) is another set of local coordinates with U’ < U,
then the determinant of the Jacobian with respect to the coordinates U and U’ differ
by a non-zero constant. Thus, the closed set E, := {2 € X : det Jo(m)(2) = O} is

well defined, and it is a consequence of the Implicit Function Theorem that E, =

{ 2 e X : 7 is not an isomorphism locally at }
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Theorem 2.5. | ] There exists a smooth complex variety X and a smooth

proper map 7 : X — C™ of varieties satisfying the following conditions:
1. 7T(E7T) c Zsing~

2. X can be covered by local coordinates (U, Z1, - - - , &,) such that both for and

~a1

det Je(m) are monomials on U. Precisely stated, f o 7 = « - Z{'--- 2% and

det Jo (1) = B-&4" - - - #bm for some functions o and 3 that do not vanish on U.

Remark 2.6. The set of integers appearing as exponents in some local monomial-
ization of f or is finite. Similarly, the set integers appearing as an exponent in some
local monomialization of det J¢(7) is finite. Indeed, they are the coefficients of the

divisors divdet J¢ (7) and div f o7 on X.

Remark 2.7. There exist local coordinates (U, 1, - , Z,,) on X such that foris
a non-vanishing multiple of Z{* - - - 2% on U, det J¢(7) is a non-vanishing multiple of
#4" . 3% on U, and such that b; = 0 and a; # 0 for some i. If not, then det Jo(7)

would vanish whenever f o 7 vanishes, so that 71 (Z) < E,. However, this is

impossible as 7 is an isomorphism at every point in Z not in 7(E,).

Fix a log resolution 7 : X — C™ of f as in Theorem 2.5. By the change of

variables formula for integration, we see that the function % is locally integrable

If1?
in C™ if and only if the functions
2
det Jg () |det Je(m) T,
(2.7.1) 22 x| T |z ax ~ am\
For™ " [ (For) |~ m™ s,
are integrable in the local coordinate patches (U, Zy,--- , Z,,) given by Theorem 2.5.

In (2.7.1), Jr (m) is the real Jacobian of m: it follows from the Cauchy-Riemann

equations that det Jg (1) = |det J¢ ()|*. By Fubini’s Theorem, these functions are
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|2(bi —Xa;)

integrable on U if and only if each function |z; is integrable on U, and we

may readily verify that this occurs if and only if
(2.7.2) b —a;A > —1for 1 <i<m.

Though Theorem 2.5 guarantees the existence of log resolutions of f, computing
such resolutions is often difficult, and it remains highly non-trivial to compute the log
canonical threshold of an arbitrary polynomial. However, the use of log resolutions

allows one to deduce the following facts regarding log canonical thresholds.
Lemma 2.8. Let f € C[zy,---,z,,] be a non-constant polynomial.

1. let(f) € (0,1] n Q.

2. The pair (C™,lct(f) o f) is log canonical.

Proof. From (2.7.2), it follows that

b, +1
a;

(2.8.1) let(C™, f) = min{

:1<i<m},

where we range over all coordinates (U, Z1,- - , Z,,) satisfying the condition in The-
orem 2.5. This is a minimum, and not an infimum, by Remark 2.6. Furthermore, by
Remark 2.7, there exist coordinates (U, Z1, -+, Ty,) with b; = 0 and a; # 0 for some
i, which shows that lct(f) < 1. To see that the pair (C™, lct(f) e f) is log canonical,

note that the equations in (2.7.2) are satisfied (by definition) if 0 < A < let(f). O
We now consider another important invariant of singularities of pairs.

Definition 2.9. We define the multiplier ideal of the pair (C™,\ e f) as follows:

/(Cm,)\of):{ge@[xl,---,xm]:

2
9
fA

is locally integrable on C™ }
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Remark 2.10. Note that (C™, A e f)is KLT if and only if 1 € ¢ (C™, X e f), and it
follows that lct(f) = sup{AeRso: Z (C™, Ao f) = Clzy, -, 2] }. Furthermore,

if z e C™ and m € Clzy,---,x,] is the corresponding maximal ideal, we also

have that lct,(f) = sup{AeRyo: 7 (C™ Ao f) =Clzy, -, 2p]|n}. Indeed, this

follows from the fact that the ideal ¢ (C™, A e f)_ is equal to

2

{ geClxy, -, Tm]m : is locally integrable at z } .

g
P

Note that _#Z (C™, Ay e f) = #Z (C™ Ay e f) whenever \y < A;. By definition,
FJ(C™ 00 f)=Clzy,- - ,2y], and we have just observed that _# (C™, < o f) is also
trivial for every 0 < & < lct(f). Thus, the multiplier ideal is locally constant to the

right of A = 0, and this behavior is typical: for every Ay = 0, there exists \; > Ay

such that
(2.10.1) I (C"eef)= 7 (C" Ao f) whenever \yg < e < Ay.
The statement in (2.10.1) motivates the following definition.

Definition 2.11. We say that A > 0 is an jumping number of f if A =0, or if A > 0

and 7 (C™, X e f)is strictly contained in ¢ (C™, (A —¢)eo f) forall 0 <e <A

The following proposition shows that to study the jumping numbers of f, it

suffices to study the jumping numbers that are contained in the unit interval.

Proposition 2.12. | | Every natural number is a jumping number of f, and
a positive real number A ¢ N is a jumping number of f if and only if the fractional

part of A, which is contained in (0, 1), is a jumping number of f.

By definition, let(f) is the first non-zero jumping number of f, and in this way we

may consider the jumping numbers of f to be generalizations of the lct(f). Though
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they will not be explicitly considered in this thesis, they will be compared compared

to their positive characteristic analogs in Chapter 8.

Remark 2.13. Fix a log resolution 7 : X — C™. Then, as in (2.7.1), the condition

2 .
that be locally integrable can be translated to an integrability condition on X

f%
via . As before, the advantage in doing so is that f becomes a monomial in the local
coordinates of X, which allows one to explicitly compute F (C™ Ao f)in terms of
the exponents a; and b; appearing in Theorem 2.5. This way of thinking about
multiplier ideals is very powerful, and the statement in (2.10.1) is obvious from this
perspective. This characterization also allows one to give a definition of multiplier
ideals and log canonical singularities in every setting in which log resolutions exist.
This generalization will not be discussed further in this thesis, and the reader is
referred to | ; | for an introduction, and to | | for a more rigorous

development.

2 Some standard constructions in positive characteristic

Let R be a reduced ring of prime characteristic p > 0. For e > 1, let R 2R
denote the e iterated Frobenius morphism defined by r — 7. We will use F¢R
to denote R when considered as an R-algebra via Fe. If RP" = {1?" :r € R} is the
subring consisting of (pe)th powers of R, then the R-algebra structure of F¢R and
the RP"-algebra structure of R are isomorphic.

For e > 1, let R'?" be the set consisting of the formal symbols { f*7° : f € R}.
We define a ring structure on RYP® by setting f/7° + ¢'7° = (f + ¢)"/*° and
s gt = (fg)¥P°. If R is a domain, then R'Y?" admits a more concrete
description: Let L be a fixed algebraic closure of the fraction field of R, and let f/?°

denote the unique root of the equation 77 — f € L[T] in L. We may then describe
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RY?* as the subring of L consisting of all (pe)th-roots of elements of R. For example,
if R=TF,[z1,-,am], then RY?" = F,[z}/" .- 27"].

As R is reduced, we have an inclusion R < RY? given by r > (rP)Y/P°. This
is an inclusion because (rpe)l/ o) e P =0 = = 0, and it is a ring
map since r + s > ((r + s)pe>1/pe = (1" + spe)l/pe = (rpe)l/pe + (spe)l/pe. We also
note that FCR =~ R'Y?" as R-modules via the isomorphism 7 ~— r!/7°. This map and
its inverse are often referred to as taking “(p)™" roots / raising to (p¢)™ powers.”
We have an inclusion (of rings) RY?" < RYP**" given by r'/¢" = (r#*)12"™ and
in this way, we identify (RY?*)Y/?* and RYP"™* as RY?"-modules. Also note that
for any multiplicative set of W of R, we may canonically identify W1 (Rl/pe) and
(W=LR)"" as modules over the localization W~'R.

We say that R is F-finite if R'/P (equivalently, F,R) is a finitely generated R-
module. One can show that R is F-finite if and only if RY?° (equivalently, FSR) is

a finite R-module for every e > 1, or even for one single e > 1.

Example 2.14. By definition, a field K of characteristic p > 0 is F-finite if and
only if [K : KP] < o0, and a finitely generated algebra over K is F-finite if and only

if K is F-finite. | , Example 2.1]

3 Singularities of hypersurfaces defined via the Frobenius
map

The Frobenius map has been an important tool in commutative algebra since
Kunz characterized regular rings as those for which RYP" is flat over R | -
Recall that that R is said to be F-pure (or F-split) if the inclusion R < RY?" splits
as a map of R-modules for some e > 1. An F-pure ring is necessarily reduced, and

R is F-pure if and only if the inclusion R < RY?* splits as a map of R-modules for
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every e = 1, or even for one single e > 1 | -

We would like to generalize of the notion of F-purity to pairs. By definition,
a pair consists of the ambient ring R, an element f € R, and a non-negative real
parameter A, and is denoted by (R, A e f).

We say that the inclusion R - fN/P° < RY"" splits over R (or splits as a map of
R-modules) if there exists an map 6 € Homp(RY?", R) with 6 (f~/*") = 1. Note that
if fis a unit, then R- fN/P° < RY?" splits over R if and only if R is F-pure. For the
remainder of this section, R will denote an F-pure ring of characteristic p > 0, and
f will denote a non-zero, non-unit element of R.

We would like to say that the pair (R, A e f) is F-pure if R - f» < RY?" splits for
some (or all) e > 1. Of course, the problem in doing so is that f* need not represent
an element of RY?* for any e > 1. On way of getting arounds this is to approximate

A by a sequence of rational numbers A\, with A\, € I% -N and lim A\, = A, and then

e—00

require that some (or all) of the inclusions R - f* < RY?* split over R. Of course,

there are numerous ways to approximate A (for example, [p;e)‘ 1 1@ 6;61)’“, and [ 61;1))‘]

would all work) and each choice may lead to a distinct notion of F-purity for pairs.
Definition 2.15. | , , | The pair (R, A e f) is said to be

1. F-pure if R - flo°=DA/P° < RVP® gplits over R for all e > 1,

2. strongly F-pure if R - fIP°A/P° < RYP® gplits overR for some e > 1, and

3. sharply F-pure if R - fI(e°=DA/P® < R/P® splits over R for some e > 1.

If p € R is a prime ideal, we say that (R, \ e f) is (strongly/sharply) F-pure at p if

the pair (R, A e f) is (strongly/sharply) F-pure.

The following lemma shows that F-purity may be detected locally.
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Lemma 2.16. (R, X e f) is (strongly/sharply) F-pure if and only if (R, A e f) is

(strongly /sharply) F-pure at every prime ideal p < R.

Proof. We will only prove the statement regarding F-purity. By definition, (R, A e f)
is F-pure if the map © : Homg(RY?") R) — R given by evaluation at flP*=DA/P® ig
surjective for all e > 1. However, © is surjective if and only if ©, : Homg(RY*", R),, =
Hompg,, (R;/ P E, RP) — R, is surjective for every g € Spec R, and under this identifi-

cation is is easy to verify that ©,, is also given by evaluation at fL(P*=DA/P", 0

Of course, Lemma 2.16 also holds with “prime ideal” replaced by “maximal ideal.”

We now examine how F-purity for a pair is affected by varying the parameter \.

Lemma 2.17. If the inclusion R - fN/?° < RYP" splits as a map of R-modules, so

must the inclusion R - f¢P° < RY? for all 0 < a < N.

Proof. By hypothesis, there exists a map 6 € Homp(RY?", R) with ¢ (fN/7°) = 1. If

N-—a
e

e € .f e
we let ¢ € Hompg(RY?", R) denote the composition RY?* —— R/P %, R, then

o (fr) =1. O

Lemma 2.18. Let A\ be a positive real number.
1. If (R, X e f)is F-pure, then so is (R,c e f) for every 0 < e < A
2. (R, e f)isnot F-pure if A > 1.

Proof. As|(p®—1)0| =0, the pair (R,0 e f)is F-pure. As [(p® — 1)e| < [(p® — 1),
Lemma 2.17 shows that (R,c e f) is F-pure whenever (R, A e f) is. For the second

point, suppose that (R, (1 +¢) e f) is F-pure for some € > 0, so that

(2.18.1) R - flr DAl o RUP® gplits over R for every e > 1.
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Note that (p° —1)(1 +¢) =p* =1+ (p°—1) - > p° for e » 0. By (2.18.1) and
Lemma 2.17, we have that R - f € R'Y?" splits over R for e » 0. We conclude that
there exists a map 6 € Homp(RY?", R) with 1 = 6(f) = f - 6(1), which is impossible

as f is not a unit. 0

Definition 2.19. | | We define the F-pure threshold of f € R, denoted fpt(R, f),
as follows: fpt(R, f) =sup{AeRso: (R, A e f) is F-pure}. Note that fpt(R,u) =
o0 whenever u is a unit in k. We define the F-pure threshold of f at p € Spec R, de-
noted fpt, (R, f), as follows: fpt,(R, f) =sup{AeRsp: (R, Ao f)is F-pure at p }.
When there is possibility for confusion, we write fpt(f) and fpt,(f) rather than

fpt(R, f) and fpt, (R, f). Note that, by definition, fpt (R, f) = fpt(R,, f).
Remark 2.20. By Lemma 2.18, we see that fpt(R, f) € [0, 1].

Remark 2.21. Though not at all obvious from the definition, fpt(f) € Q whenever
R is F-finite and regular | , Theorem 3.1]. For rationality results in a more

general setting, see | , ].

Proposition 2.22. The F-pure and strongly (respectively, sharply) F-pure thresh-

old agree: fpt(R, f) = sup, {(R,\e f) isstrongly (respectively, sharply) F-pure }.

Proof. The equality of these thresholds is shown in | , Proposition 2.2] and

[ , Proposition 5.3]. O

Remark 2.23. Let W < R be any multiplicative set. If (R, A e f) is F-pure, it

follows that (W 'R, X e f) is also F-pure, and thus fpt(R, f) < fpt(W 'R, f).

Proposition 2.24. The F-pure threshold may be computed locally. Precisely stated,

we have that fpt(f) = inf { fpt,(f) : p € Spec R }.
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Proof. Note that fpt(f) < inf{fpt,(f): p € Spec R} by Remark 2.23. We may
now assume that A := inf {fpt,(f) : p € SpecR} > 0. For 0 < ¢ < A, we have
that (R, (A —¢) e f) is F-pure at every g, so that (R, (A —¢) e f) is also F-pure by

Lemma 2.16. Thus, fpt(f) > A — ¢, and the claim follows by letting ¢ — 0. O

4 F-singularities of hypersurfaces in F-finite regular rings

We will next focus on the case of a smooth ambient ring, and will closely follow
[ |. Throughout this section, R will be assumed to be an F-finite regular ring
of characteristic p > 0, and f will denote a non-zero, non-unit in R. In this setting,

we know that RYP" (equivalently, FR) is a finitely generated flat R-module | -

th
1 [i] Frobenius powers

>

In this subsection, we define (see Definition 2.26) and study the properties of

[#]th Frobenius powers of principal ideals. These ideals will be used in the next
subsection to define the test ideal associated to a pair.

For every ideal I < R, let I!""] denote the ideal generated by the set { g* : g€ I }.

It is clear that I”"l = TF¢R, and we call IP’] the e Frobenius power of I. Note

that ([ [pe])[pd] = ] by definition. Furthermore, as F¢R is a flat R-module, we

have that ¢?" € Il if and only if g € I.
Lemma 2.25. Let {I,,} be a family of ideals of R. Then () L,"1 = (N, L)

Proof. Let S := F¢R. As 1Pl = IS, it suffices to show that (), (IS) = (N, I) S.
Furthermore, it suffices to check this equality after localizing at every prime ideal
of S. However, S is a finitely generated flat R-algebra (and hence locally free), in

which case it is easy to verify that (), (I.S,) = ([, I) S, for all p € Spec S. O
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th
Definition 2.26. | | We define the [pi] Frobenius power of f to be the
th

minimal ideal J, with respect to inclusion, such that f e JIP1. We denote the [pi]

Frobenius power of f by (f )[P%] This is well defined by Lemma 2.25.
Lemma 2.27. Let f € R.

1. If J € R is an ideal, then (f)l7] < J if and only if f € J¥1.

3. If N > n are integers, then (f") L] c (f")[pie]

1

4. (fpd)[f’m} — (bl

Proof. By definition, we have that f e JPl — (f)[PL] < J. On the other hand, if
(f)[PLe] < J, then f € ((f)[r%e]>[pe] < JIPl. For the second point, let J := (f)[ﬁ]
Then f € JWP] [pe], which implies that (f )[PL] < JP']. The third point follows from
the fact that if f* € IP1 then fN e IP], while the last follows from the fact that
fpd e [P s fe I, O
Lemma 2.28. | , Lemma 2.7] The formation of [#]th powers commutes with

localization: If W < R is a multiplicative set, then W™! (f)[l’%] = (fW)[?e], where

fw denotes the image of f in W~1R.

Proposition 2.29. | , Proposition 2.5] Suppose that R is a finitely-generated
free module over the subring R?" < R. If 3, -+, B is a basis for R over R?", and
f= ot’l’e Bi+-+++aP By is the unique representation of f as an RP*-linear combination

of this basis, then (f)[PLe] = (a1, -+ ,a,) € R.

Proof. 1t is obvious that f € (aq,--- ,an)[pe]. Next, suppose that f e JP! for some

ideal J. Express f = > _, g:h?" with h; € J, and express g; = Zjvzl sfjﬁj as an
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RP-linear combination of the basis elements /3, - - - , Sy. Equating the coefficients of
the f; in the expression f = 37 | g;h?" will show that a?” = Z] ) fj R and so we

may conclude that a; = Z i1 Ssighi € J. O

Corollary 2.30. The ideal (f)[z%e] is the image of the map Homg(RY?" R) — R

given by evaluation at f?°.

Proof. The image of the evaluation map obviously commutes with localization, and
Lemma 2.28 shows that the same is true for (f )[Pie], which allows us to assume that
Rislocal. In this case, R is a finitely-generated, flat (and hence free) module over the

subring RP, and the claim is then an immediate corollary of Proposition 2.29. [
th
Corollary 2.30 allows us to relate [#] Frobenius powers with F-purity.

Corollary 2.31. Let (S, n) be an F-finite regular local ring, and let f be a non-unit

of S. Then the inclusion S - f/7° < SY7° gplits over S if and only if f ¢ nlP],

Proof. By Corollary 2.30, S - f/# < SY7 splits if and only if (f)L7] & n, which by

Lemma 2.27 occurs if and only if f ¢ nlP]. O

Corollary 2.32. (R, \ e f) is F-pure at a maximal ideal m if and only if flP*~DA ¢
I for all e > 1. Similarly, (R, \e f) is strongly F-pure at m if and only if
fIP°Al ¢ mlP*] for some e > 1, and is sharply F-pure at m if and only if fI?°=DAl ¢ mlp

for some e > 1.

Proof. (R, \ e f) is F-pure at m if and only if the inclusion Ry, - fl"=DAI/P" < Ry
splits for every e > 1. However, Corollary 2.31 shows that this map splits if and
only if fl=DAl ¢ mlP1. R As vmll = m, mPP] is a primary ideal, and hence
mlPIR™ A R = mlPl. From this, we can conclude that fLP°~-DMN ¢ mlP*l. R if and

Only if fl_(pe—l))\J ¢ m[pe]. ]
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The next statement follows from Corollary 2.32 and Proposition 2.22.

Corollary 2.33. fpt,(f) =sup { A € Roo : fIP" ¢ mlP] for some e > 1 }.
2 Test Ideals and F-jumping numbers

In this subsection, we define and present some of the basic properties of the test
ideal corresponding to a pair (R, A e f). In order to define the test ideal, we will need

the following lemma.

1
petl

Lemma 2.34. For every A > 0, we have that (f[pe,\])[p%] c (f[p‘ﬁ“/\])[

1
pe+I]

Proof. Let J := (f[peﬂ)‘])[ . By Definition 2.26, it suffices to show that £ is
contained in JIP1. Note that p**'\ = p - p°A < p[pA], so that [p+'A] < p[p°A] as
well. By definition, we have that f[peHA] e J""'1 and so ()" e JP T as well.

As R is regular, we may conclude that flPl e 1. O

Definition 2.35. | , Definition 2.9] We define the test ideal of (R, A e f) as

follows: 7 (R, A e f) := -, (f[pe’\])[”%]. This is an ideal of R by Lemma 2.34.
Remark 2.36. As R is Noetherian, 7 (R, \ e f) = (f[pe’\])[p%] for e » 0.

Remark 2.37. It follows immediately from Remark 2.36 and Lemma 2.28 that

W= (r(R,Ae f)) =7 (W™R,\e f) for every multiplicative set W < R.

The theory of test ideals is a key component in the theory of tight closure | ,
, |. The following result, which is an immediate corollary of the last point
of Lemma 2.27, allows us to determine when this ascending chain stabilizes in an

important special case.

Lemma 2.38. | , Lemma 2.1] If A € # -N, then 7 (R, Ao f) = (fpe’\)[”%].
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Proposition 2.39. | , Proposition 2.11, Corollary 2.16]
LRy e f)yS T (R, e f)if Ay = Ao
2. T(RoAef)=Rfor0 <A« 1.

3. For every A = 0, there exists € > 0 so that 7 (R, e f) =7 (R,(A+¢) e f).

1 1
Proof. Fixe » 0sothat 7 (R, A\ e f) = (f[pe’\l])[F] and T (R, \g e f) = (f[peAO])[F].
The assertion that 7 (R, \; @ f) € 7 (R, \g ® f) then follows from Lemma 2.27.
To prove the second point, it suffices to show that 7 (R, A e f) is trivial for some

A > 0. By Lemma 2.27, the ideals (f)[PL] form an increasing chain, so we may

fix a d such that (f)[t%e] = (f)[z%d] for all e > d. If (f)[z%‘i] # R, there exists a

1
€

maximal ideal m with (f)[P I = (f)[z%d] c m for all e > d. Lemma 2.27 then shows

that f € mPl for all e > d, contradicting the fact that f # 0. We conclude that
1
r(Rbef) =l -r
For the last point, it suffices to show that 7 (R,(A+¢)e f) 2 7 (R, e f) for
[57]

some € > 0. Fix d such that 7 (R, \e f) = (f[pd)‘]> . If pX\ ¢ N, there exists

0 < e « 1 such that [p?A] = [p* (A +¢)|. Then
T(R,(A\+¢e)e f) 2 (f[pd(A+e)]> [pLd] _ (f[pd)\]> [pid] — (R \ef).

We now assume that p?\ € N. After possibly increasing d, we may also assume
that 7 (R7 e f) = (f)[”id] = R. We now show that 7 (R,\e f) = (deA> 3] is
contained in T (R, (>\ + ﬁ) o f) - (fpzfiMl)[;ﬂdl Let J — (fp2d)\+1>|:p2d:|. By
definition, we have that f2***1 e Jl*] o that

(2.39.1) fe (J[p2d] : fpz‘“) - (J[P"l : fp‘“) ”

However, (2.39.1) and the fact that (f)[z%d] = R imply that

/N

Jw fpdA> = R as

1
well. From this, we conclude that fl”(le € J[Pd], so that (fpdk> [pd] c J. O
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Definition 2.40. We say that A > 0 is an F-jumping number of f if A = 0, or if

A>0and 7 (R, \e f)is strictly contained in 7 (R, (A —¢) e f) forall 0 <e < .

The following result, whose proof we omit, shows that the jumping numbers of f

are completely determined by those contained in the unit interval.

Proposition 2.41. | , Proposition 2.25] Every natural number is an F-
jumping number of f, and a positive real number A ¢ N is an F-jumping number
if and only if the fractional part of A, which is contained in (0, 1), is an F-jumping

number.

We have seen in Proposition 2.39 that 7 (R, \e f) = R for small values of A,
and so the first F-jumping corresponds to the first value at which 7 (R, A e f) is

non-trivial. We see below that this first jumping number coincides with fpt(R, f).
Proposition 2.42. fpt(R, f) =sup{ e Rop: 7 (R, e f) =R}

1
Proof. 7 (R,Ae f) = R if and only if (f7*)7] = R for some ¢ > 1, which by
Corollary 2.30 happens if and only if there exists a map # € Homg(R"Y?", R) such
that 6 (fP"2/?") = 1. This is precisely the condition that (R, e f) be strongly

F-pure, and the assertion follows from Proposition 2.22. O

Remark 2.43. As fpt,(R, f) = fpt(Rn, f), it follows from Proposition 2.42 and

Remark 2.37 that fpt,(f) =sup{A=0:7 (R, e f) =T (Rn, Ao f) =Ry}



CHAPTER 3

Some connections

Suppose that f € Q[z1,- -, z,,]. By reducing each of the coefficients of f modulo
p >» 0, we obtain a family of models f, € Fy|x1,--- ,xm]. In general, given a polyno-
mial f € C[zy, -+, 2,,], we may produce a family of positive characteristic models
of f via the method of reduction to positive characteristic.

We begin with an example. Consider the polynomial f = 5z + mwy? + ey/3z'!
in Clz,y, z,w]. If we let A := Z[m,e, \/g]w,e,\/g c C, then A is a finitely-generated
Z-subalgebra of C, and f € Az, y, z,w]|. Note that from Alx,y, z, w], we can recover
Clz,y, z, w] via base change: C®4 Alx,y, z,w]| = C|z,y, z,w]. If 4 S A is a maximal
ideal, then A/u is a finite field by Corollary 3.2, which also shows that all but
finitely many p appear in the set {char A/p : u € A is maximal }. By construction,
each coefficient of f is a unit in A, and hence will have non-zero image under the
map A — A/p. Thus, if f, denotes the image of f under the map Alz,y, z, w] —
Alp ®a Alz,y, z,w| = (A/p)|z,y, 2, w], f, is a polynomial over a finite field of
positive characteristic whose supporting monomials are the same as the supporting
monomials of f. Furthermore, by varying p we obtain models f,, over fields of all
but finitely many characteristics.

We will discuss generalizations of this process in what follows. Rather than focus

24
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on polynomial rings, we will discuss the process of creating positive characteristic

models for for any element (and ideal) in a finitely generated C-algebra.

1 Preliminaries

In this section, we gather a collection of results related to the method of reduction
to positive characteristic. These results are consequences of the following variant of

Noether Normalization.

Lemma 3.1 (Noether Normalization for Domains). Let A be a finitely-generated al-
gebra over a domain D with D € A. There exists 0 # N € D such that the extension
Dy € Ay can be factored as Dy € Dy|z1,-- -, zq4] © AN, where 2zq,---,z4 € Ay are

algebraically independent over Dy, and Dy|z1, -+, zq] € Ay is module-finite.

If L = Frac D, and R is the localization of A at the non-zero elements of D, then
by Noether Normalization for fields, the inclusion L € R can be factored as a purely
transcendental extension followed by a module-finite extension. As only finitely many
“denominators” are involved at this process, one can localize at a single element of
D and preserve this factorization. For a proof of Lemma 3.1 that is independent of

Noether Normalization for fields, we refer the reader to [Hoc].

Corollary 3.2. If Z < A is a finitely‘generated Z-algebra, then
1. every maximal ideal of A contains a prime p, and
2. all but finitely many primes p are contained in a maximal ideal of A.
3. Furthermore, A/p is a finite field for every maximal ideal p < A.

Proof. Let © € A be a maximal ideal, and suppose that u nZ = 0. It follows

that A/p is also a finitely generated Z-algebra, so by Lemma 3.1, there exists an
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integer N # 0 such that A/ = (A/p)y is module finite over a polynomial ring with
coefficients in Zy. This implies that 0 = dim A/u > dimZy = 1, a contradiction.

For the second point, let 0 # N € Z and z1,--- ,25 € Ay be as in Lemma 3.1,
so that the extension Zy < Ay factors as Zy S Zy|z1,- -+ ,24] S An. Every p
not dividing N generates a prime ideal in both Zy and Zy|z1,--- , 2z4], and so by
the Lying Over Theorem, there exists a prime (and hence maximal) ideal of A not
containing N, and lying over p.

For the last point, we have that A/u is finitely generated algebra over IF,, for some
p, and thus is module finite over a polynomial ring F,[zy, - ,z4] by Lemma 3.1. As
A/p is a field, dimension considerations force that d = 0, and thus A/u is a finite

extension of IF,,. O

Lemma 3.3. Let A € B be an inclusion of finitely-generated Z-algebras. If up < B

is maximal, then so is puq :=pun A < A.

Proof. By Corollary 3.2, we know that B/up is a finite field, and the inclusion

A/pa € B/up then shows that A/ps must also be a finite field. O

Corollary 3.4. Let A be a domain, A < B be an inclusion of finitely-generated
A-algebras, and let 7 : Spec B — Spec A be the induced map of schemes. Then the
(inverse) image of a dense set under 7 is also dense. Furthermore, the image under

7 of a non-empty open set contains a non-empty open subset of A.

Proof. We will first show that if W' < Spec B is dense in Spec B, then 7 (W) is dense
in Spec A. By means of contradiction, suppose that m(W) is not dense in Spec A, so

that 7(W) n U = & for some non-empty open set U < Spec A. It follows that

(3.4.1) War Y U)cr(x(W))nr H(U) = &.
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However, 7, being induced by the inclusion A € B, is dominant, and so 7! (U) # &.
As W is dense in Spec B, we must have that 7=1(U) nW # (¥, contradicting (3.4.1).

We will now show that if A = Spec A is dense, then 7 1(A) is dense in Spec B.
It suffices to show that Spec By n 7w 1(A) # & for every non-zero element f € B. By
assumption, B is a finitely-generated A-algebra, and thus so is By = B[T'|/(1 —=T'f).

By Lemma 3.1, there exists NV € A non-zero such that Ay < Byy factors as
(342) Ay C AN[Zl, s ,Zd] - BfN,

where 21, -+, zq are elements of By that are algebraically independent over Ay,
and the second inclusion in (3.4.2) is module finite. By the Lying Over Theorem,
it follows that the map Spec Byy — Spec Ay induced by (3.4.2) is surjective. As A
is dense in Spec A, we have that A n Spec Ay # . The previous surjection shows
that Spec Byy nm *(A) # &, and thus that Spec By n 7 1(A) # .

Let U < Spec B be an open set, and suppose that U contains the basic open set
& # Spec By. We have seen in the preceding paragraph that there exists N # 0 in

A such that Spec Ay = 7 (Spec Byn) < w(Spec By) < n(U). O

The following result shows an explicit way to reduce a polynomial over C to

positive characteristic, and will be important in Chapter 7.

Corollary 3.5. Let f € C|xy,---,zs] with f(0) = 0. Then there exists a finitely-
generated Z-subalgebra A < C with f € A[xy,--- , x| satisfying the following prop-
erty: for p» 0, 7 (p) # & and Support(f,, ) = Support(f) for every maximal ideal

wp € 7 (p). Here 7 : Spec A — SpecZ denotes the map induced by Z < A.

Proof. Let f = wjx® + --- + u,x® for some coefficients u; € C*, and let B =
Z|uF', -+ uEl']; note that B is a finitely-generated Z-algebra. Choose an integer N

so the inclusion Zy < By factors as in Lemma 3.1. We may take A := By . O
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2  On reduction to positive characteristic

If Z < A < Cis a finitely-generated Z-algebra and g € C[zy,--- ,x,], we say
that ¢ is defined over A if g € Alxy,---,x5] € Clxy, -+ ,x5]. Similarly, we say
that an ideal J < Clzy,---, x| is defined over A if some fixed set of generators
of J are defined over A. This condition is equivalent to the existence of an ideal
Ja € Alxy, -+, xs| with the property that Js - Clzy, -+ ,2z5] = J. For example,
J = (rm2?,y +v2z) and f = In5-2 +y e S are both defined over Z[r,+/2,In5]. In
fact, if J and f are defined over A, then they are defined over any finitely-generated
Z-algebra B < C with A € B. If ¥ is any finite set of ideals (or elements) of S,
there exists a finitely generated Z-algebra A < C such that every member of ¥ is
defined over A.

Let S = Clxy,---,x5]/I be a finitely-generated C-algebra. Suppose that [ is
defined over A, and fix an ideal 14 € A[zy, -, z4] that expands to I. We say that
S is defined over A, and set Sy := Alxy,--- ,x5]/14. We now point out some of the

subtleties of these definitions and constructions.

Remark 3.6. First, note that if I is defined over A, then I does not canonically de-
termine an ideal of A[zy, - -+, x,]. Indeed, if I4 and I, are both ideals of A[xy, - -, x4]
that expand to I, then I4 and I’y need not be equal as ideals of A[xy, -, z4]. For ex-
ample, choose complex numbers o and 3 that are pairwise algebraically independent
over Q (i.e., m and e is very likely an example of such a pair). Let A = Z|«, 5], and
consider the ideals Iy = (z,«-y) and Iy = (2,8 -y) in Alx,y|. Note that I4 # I, as
ideals of Az, y], though I, - C|z,y] = I, - C|z,y| = (x,y). In this specific case, we
see that though 14 # Iy, we still have that A|z,y]/Ia = Alz,y]/Iy. This suggests

that distinct choices for I, might yield isomorphic quotients.
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However, Sy = Al|z1, -+, Tm]/I4 may depend on the choice of 4. For example,
let A = Z|r], and consider the ideals Iy = (x) and Iy = (mx) of A[z]. Then

I-Clz] =1y - Clx] = (), yet A[z]/Ia # Alzx]/I; as rings, for

Alz]/Ia = A =Z[t] # Z[t, x]/(tz) = A[z]/I},

where t is an indeterminate over Z. That S, depends on the choice of A is clear.

Many of the ambiguities described above can be resolved by expanding our “co-
efficient” base A. Indeed, if Iy € Alzy,---,zs] and Ip S Blxy,- -+, x| are ideals
whose expansions to C[xzy, -, x| are equal, then there exists a finitely generated
Z-algebra C' containing both A and B such that the expansions of I4 and Ip are
equal in Clxy,---,xs|. Indeed, one need only attach the finitely many coefficients
involved in expressing generators of I, in terms of those for Iz over C, and vice
versa.

Another unifying point is that, regardless of the choice of A or I4, we can always
recover A from S4, as C®4 S4 = S. This justifies the point of view that S4, though
not canonically determined, is a good approximation of S.

Consider the map Spec S4 — Spec A induced by the map A — Sy4. The fiber over
the generic point (0) € Spec A is the variety corresponding to Frac A ®4 S4, while
the fiber over a closed point (i.e., maximal ideal) u € A is the variety corresponding
to A/u®a Sa. By Corollary 3.2, this is a variety over the finite field A/pu.

By extending the scalars of the closed fiber from Frac A to C, we obtain the
variety corresponding to S. This follows from the fact that C ®4 (Frac A®ga Sa) =
C®4 54 =S. As the extension Frac A € C is nice (i.e., faithfully flat), we see that
much of the information carried by S is carried by the fiber of SpecS4 — Spec A

over the generic point of Spec A, regardless of whatever choices were made. On the
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other hand, it is a general principle that properties of the generic fiber are closely
related to those of the closed fibers. However, each closed fiber is a variety over a
finite field, and can be studied via the Frobenius map on the ambient ring.

Suppose that we want to study a finitely-generated C-algebra S. If S is defined
over A, we may then hope to use properties satisfied by the fibers of Spec S4 —
Spec A over “most” closed points of Spec A to say something about S. In doing so,

we would like to know that this is independent of the choices being made.

3 On F-purity for pairs reduced from C

The aim of this section is to examine the F-purity property for pairs that are
reduced from positive characteristic. Let f denote a polynomial with non-zero image
in S := Clzy,---,zs]/I. Suppose that A < C is a finitely-generated Z-algebra
such that f and I are both defined over A. Fix an ideal I, < Alzy, -, z,,] with
Iy -Clzy, -,z = I, and let Sy = Alzy, -+ ,z,]/I4 be as defined above, so
that C ®4 Sa = S. For every maximal ideal gy < A, f,, will denote the image
of f under the map Alxy, -+, x5] — Sa — Sa(pa) = A/u®a Sa. Let B < C
be another finitely-generated Z-algebra with f and I both defined over B, and let
Ig € Blzy, -+, 2], Sp = Blo1, -+ , 2] /Ip, and f,, € Sp(up) be as above.

Though the construction of S4 depends on the choice of A and 14, we will show
that the issue of whether or not the positive characteristic pairs (Sa(ua), Ao f,.,)
are F-pure for “most” maximal ideals 4 € A is independent of these choices. Here,
“most” maximal ideals will mean all maximal ideals in some dense (or dense open)

subset of Spec A. In doing so, we will rely on the following result.

Lemma 3.7. Let K < L be perfect fields of characteristic p > 0. Let R be a

K-algebra, and consider the inclusion R € T := L ®x R. Then there exists a
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map 0r € Homp (RYP", R) with 0p(¢g"/?") = 1 if and only if there exists a map

Or € Homp (Tl/pe, T) with Or (91/;06) = 1.

Proof. As T is a free R-module (and hence faithfully flat), the map of R-modules
Homp (R'"",R) — R

given by evaluation at ¢'/7° is surjective if and only if the map of T-modules

(3.7.1) Homr (T ®@r R, T) - T

given by evaluation at 1 ® ¢'/7° is surjective. We identify T and T ®p RY?" as

T-algebras via the canonical isomorphisms

T ®g R = (L ®x R) ®r RV = L@k R'7" = LY"" @jere RVP

= (L®x R)""" =1,

Here, we have crucially used that L and K are perfect. It is easy to check that
the isomorphism T ®pz RY?* = TY?° induces an isomorphism between the map
Homy (TY*",T) — T given by evaluation at ¢'/7° € R'?" < T'P" with the map

appearing in (3.7.1). O

Lemma 3.8. Suppose that A € B, and that Iy < Bz, -+ ,x,] is equal to the
expansion of Iy € Alxy, -+, 2] to Blzy, -+ ,2,]. Let up be a maximal ideal of
Spec B, and let m4 := ug N A denote the corresponding maximal ideal of A. Then
(Sa(pa), Ao f,,) is F-pure if and only if (Sp(ug), A e f.,) is F-pure. In particular,

fpt(fHA) = fpt(f“B).

Proof. Let p := char A/uy = char B/up. Note that A/us € B/ug is an extension of

finite (hence, perfect) fields. That I4-B|z1, -+ , x| = I implies that Sp = B®4S4,
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and furthermore we have
(3.8.1)
Sp(up) = Sp®p B/pp = (Sa®a B) ®p B/1up =S4 ®a B/up
=S4 ®a (A/pa ®aju, B/1ip)

=S5a(1a) ®aju, B/1is

Under this identification, it is easy to see that f,, ~ f,, under the inclusion
Sapra) € Sa(pa) ®ajus B/up = Sp(pp). Finally, it follows from Lemma 3.7 that
there exists a map in Homg,,(.,) (Sa(a)/?", Sa(pa)) sending fév/pe to 1 if and only
if there exists a map in Homg,, (., (S5(ws)"?", Sp(up)) sending SN 0 1, and the

claim follows. O

Corollary 3.9. The pair (Sa(pa), e f,,) is F-pure for all maximal ideals 14
in some dense (respectively, dense open) subset of Spec S4 if and only if the pair
(Sp(up), A e f.,) is F-pure for all maximal ideals pup in some dense (respectively,

dense open) subset of Spec Sp.

Proof. We will first assume that A € B and that Ig = I4 - B|zy,--- , 2], so that
Lemma 3.8 applies. Suppose there exists a dense (respectively, dense open) set
W4 < Spec A such that (Sa(pa), A e fu,)is F-pure for every maximal ideal pq € Wy,
and set Wp := 7~1(W,). By Corollary 3.4, W3 is a dense (respectively, dense open)
subset of Spec B. Let up denote a maximal ideal in Wg, and let pa = pp N A be the
image of pp under 7. It follows from Lemma 3.8 that (Sp(ugp), A e f.,) is F-pure.
Instead, suppose there exists a dense (respectively, dense open) set Wy < Spec B
such that (Sp(up),Ae fu,) is F-pure for every maximal ideal pp € Wp. Let Wy
denote any dense (or dense open) subset of 7(IWp) (such a set exists by Corollary 3.4),

and let 4 denote a maximal ideal in W 4. By definition, we may choose a maximal
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ideal up in B such that puy = m(up) = pp N A. Once again, Lemma 3.8 shows that
(Sa(pa), A e f,,) must also be F-pure.

We now address the general case. As I4-Clxy, -+, 25| = Ig-Clxq,- -, x,], there
is a finitely-generated Z-algebra D < C such that A, B € D, and I4-D|xy, -+ ,zs| =
Ig - D|xy,--- ,x5| := Ip. By construction, our initial argument applies to the inclu-

sions A € D and B < D, and thus the claim comparing A and B follows. O

4 A connection between singularities

In this subsection, f € S = C[zy, -+ , x,,] will denote a polynomial with f(0) = 0.
If A < C is a finitely-generated Z-algebra, then S4 will denote the polynomial ring
Alzy, -z, € S, If p € A is a maximal ideal, we will use Sa(u) to denote
the polynomial ring A/pu®4 Sa = (A/u)[z1, -+ ,xm]. By Corollary 3.2, Sa(u) is a
polynomial ring over a finite field. By abuse of notation, we will use m to denote the

ideal generated by the variables in the polynomial rings S, Sa, and Sa(u).

Definition 3.10. We say that (C™, X e f) has dense F-pure type at 0 if for every
finitely generated Z-algebra A < C with f € Sy, the positive characteristic pairs
(Sa(p), A e f,) are F-pure at m for all maximal ideals p in some dense (though not

neccesarily open) subset of Spec A.

This definition of dense F-pure type can easily be extended to study the singu-
larities of f at any point z with f(z) = 0. One way to do so is as follows: Fix an
automorphism S 2, S such that z ~— 0 under the induced isomorphism C"™ — C™,
and let g = ¢(f). Note that g(0) = 0. Then (C™, A o f) has dense F-pure type at z

if (C™, X @ g) has dense F-pure type at 0.

Remark 3.11. If follows from Corollary 3.9 that it suffices to check the condition

in Definition 3.10 for one single A with f € Sy.
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The following theorem allows us to compare log canonical singularities with F-

pure singularities.

Theorem 3.12. | , | If the pair (C™, A e f) has dense F-pure type at 0,

then it is also log canonical at 0.

The following result further illustrates the close relationship between singularities

in characteristic zero and those in characteristic p > 0.

Theorem 3.13. | , | There exists a finitely generated Z-algebra A < C
with f € S4, and ideals s> < (S,),, for every A = 0 with #*-Syy, = _Z (C™, e f)

satisfying the following conditions:

1. There exists a dense open set U < Spec A such for every maximal ideal p € U

and for every A > 0, we have 7 (Sa(p), X ® f,),, S A - Sa(p)m.

2. For every A > 0, there exists a dense open set U, € Spec A such that for every

maximal ideal p € Uy, we have 7 (Sa(p), A ® f.),, = - Sa(p)m.

We emphasize that the set U < Spec A does not depend on A, while the sets
Uy do, and typically get smaller as \ increases. As a corollary of Theorem 3.13, we

obtain the following relationship between thresholds.
Theorem 3.14. For every A € C with f € Sy, the following hold:

1. There exists a dense open set W < Spec A such that fpt,(f,) < lcto(f) for

every maximal ideal p e U.

2. For every 0 < X\ < lcto(f), there exists a dense open set W) < Spec A such

that A < fptw(f,) <lcto(f) for every maximal ideal p € W),

We again emphasize that the set U, varies with A\, and typically shrinks as A increases.
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Proof. Corollary 3.9 can be used to show that the conclusions of the theorem hold if
and only if they hold for a specific A with f € S4. Let A be as in Theorem 3.13. For
the first point, let W = U be as in the first statement in Theorem 3.13. For p € U,
the inclusion 7 (Sa(p), fu @ A),, © > - Sa(p) and Remark 2.43 imply that

(3.14.1)

fptm(fu) = sup{A : 7 (Sa(p), fue )‘)m = Sa(pt)m} < sup{X: A Sa(t)m = Sa(pt)m}-

However, as (Sa),, = Sm and (Sa),, = Sa(@t)m are local maps of local rings, we have
that S - Sy(1)w is trivial < 7 is trivial = H#*- S, = 7 (C™ Ne f)
is trivial. This observation, combined with (3.14.1) and Remark 2.10 show that
fptan(f.) < lcto(f).

For the second point, let 0 < A < lcto(f), let W\ = Uy n U, where U and U,
are as in Theorem 3.13, and fix a maximal ideal ;1 € W). That fpt,(f,) < lcto(f)
follows from the preceding paragraph. By our choice of A\, Remark 2.10 shows that
Z (€™, Xe f)_is trivial. This shows that - S, = # (C™, X e f)_ is also trivial,
which we have already seen holds if and only if S - Sy(p)m = T (Sa(p), A e f.),, is

trivial as well. It then follows from Remark 2.43 that A\ < fptn(f,). O

Conjecture 3.15. For every A < C with f € Sy, there exists a dense set U in

Spec A such that fpt(f,) = lct(f) for all maximal ideals p € U.

Whenever f has rational coefficients, this conjecture is equivalent to the statement
that fptw(f,) = lcto(f) for infinitely many p » 0. For f € Q[xy,- -, 2], the set
of all primes such that fpt,(f,) = lcto(f) also appears to encode subtle arithmetic

information of f, as illustrated by the following example.

Example 3.16. Let f € Q[z,y, z] be a homogeneous polynomial of degree 3 with

isolated singuarity at 0, so that f defines an elliptic curve E < P2. Then, lcto(f) = 1,
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and fpt,(f,) = 1 if and only if E, = V(f,) is not supersingular. It is known
that there are infinitely many primes such that E), is not supersingular, though the
collection of such primes may be small (i.e., have density zero in the set of all primes)
[ ]. It is also not possible that fpty(f,) = lcto(f) for all p » 0, as it is known
that there are infinitely many primes for which E, is supersingular | . See

[ , Example 4.6] for more details on this example.



CHAPTER 4

On base p expansions

Much of this thesis is dedicated to studying the properties of IF'-pure thresholds,
and by Remark 2.20, we know that these invariants are always contained in the unit
interval. In this section, we introduce some notation regarding base p (or p-adic)
expansions of numbers contained in the unit interval, and derive some easy results.
Though elementary, the idea of studying a number via its base p expansion will be

useful when applied to F-pure thresholds.

Definition 4.1. Let a € (0,1]. A non-terminating base p exrpansion of « is an
expression a = > ., %, with 0 < a; < p—1, such that VN > 0,de > N with a, # 0.
The number a, is called the e digit of the non-terminating base p expansion of a.

Remark 4.2. Though base p expansions are not unique in general, we note that

every « € (0, 1] possesses a unique non-terminating base p expansion.

p—1
pe

. . . 1 . 1 0
Example 4.3. The non-terminating base p expansion of Sis o=+ D2

Example 4.4. Let a = § be a rational number in (0, 1], and fix a prime p = 1 mod b,
so that p = bw + 1 for some w > 1. Dividing both sides by p shows that 1 = % + 1—1?,

and multiplying both sides by a = 7 shows that

(4.4.1) a=—+—-a.
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As a < b, we also have that aw < bw = p — 1. This, along with (4.4.1), shows that

the non-terminating base p expansion of « is constant, and is given by o = > _, ‘;—f.

We refer the reader to | , Chapter 9] for the standard algorithm on comput-

ing base p expansions.

Definition 4.5. Let a € (0, 1], and let p be a prime number, and fix e > 1.

1. 0 € c.(a) < p—1 will denote the e digit in the non-terminating base p

expansion of «. By convention, ¢, (0) = 0.

2. For e > 1, we define the e truncation of the non-terminating base p expansion

of a by {a), := Cll()a) + -+ Cep(a) By convention, {0), = 0.

3. For e = 0, we define the e tail of the non-terminating base p expansion of «

by [al, == 2gmeir pd . By convention, [0], = 0.
4. For oo = (v, -+, o) € [0,1]7, we set (a), := (1), , - ,{m),)-

Lemma 4.6. Let a € (0,1]. Then the following hold:

}_l

Ay, e N
2. 0 <[a], <., with equality if and only if a € - - N.
3. a={ay, +[a],.

4. (o), < o and [af, > 0 for all e.

5. lfad 1% -N, then (o), = lp;eo‘J.
6. [pea] =p° (o), + 1.

7. pla), =1 < [(p° — Da] < p*(o),.
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8. play, <|[(p° — Dol < p*lay, + 1.
9. If B e (O,l]m#-Nandoz>ﬁ, then (o), > f.

Proof. Points 1 - 4 follow by definition. For 5, note that |p°a| = |p (@), + p° [c],] =
pelay, + |p° la],.] As a¢ z% - N, we have that 0 < [a], < z%’ and so [p°[a],.| = 0.
For 6, we have that p°a = p®{(a), + p° [a],, with 0 < p°®[a], <1 by 2. Thus, we see
that [p°a| = p°{a), + 1. As |p°[a], — a] < 1, points 7 and 8 follow from rounding
the equation (p® — 1)a = p°a — o = p°{a), + p° ], — . We now prove the last
point. By 2, we have that (o), + z% > « > (3, and multiplying by p¢ shows that

p¢{ay, +1 > p°B. As both sides of this inequality are integers, we can conclude that

pe <a>e 2 peﬁ‘ D
Lemma 4.7. If (p? — 1) - a € N, then {a),;, ;, = (@), + ﬁ -{ay, for all e > 1.
Proof. Left to the reader. O

Definition 4.8. If a € [0,1], let (o), = 3}, 2 = (a), - 3,20 & = (), - 2.

TLZO pen

We observe that @e is the rational number whose base p expansion is obtained by

“repeating” the first e digits of the non-terminating base p expansion of «.

Lemma 4.9. If a € [0, 1], then the following hold:
]" <@e>e = <a>e

2. p*lay, = (0 = 1)a),.
Proof. Left to the reader. O

Lemma 4.10. Let a € [0, 1]. For e > 1, the following conditions are equivalent:

L [(p° = Da| = p*{a),.
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Proof. We may assume that a > 0. By Lemma 4.6, a = (), + [¢],, and so
(4.10.1) (p¢ — 1o =pLay, +p° o], — c.

From this, we gather that |(p® — 1)a| = p®{a), + |[p° [a], — a], which shows that (1)
holds if and only if (2) holds. By Lemma 4.9, p¢{a), = (p¢ — 1){ay,. Substituting

this into (4.10.1) and gathering the (p® — 1) terms yields the equation

(410.2) v 1) (a =@, ) = v [al, — a.
Thus, (4.10.2) shows that (2) holds if and only if (3) holds. O
Definition 4.11. Let (aq, -+ ,a,) € [0,1]", and let p be a prime number.

1. We say that the non-terminating base p expansions of ay, -, a,, add without

carrying if c.(ay) + -+ + ce(ay,) < p — 1 for every e > 1.

2. For k = (k1,--- , k,) € N", we say that the base p expansions of ky,--- , k,, add

without carrying if the obvious analogous condition holds.

Remark 4.12. The non-terminating base p expansions of aq,--- ,a, add without
carrying if and only if the base p expansions of the integers p®{ai),, - ,p°{an),

add without carrying for all e > 1.

Remark 4.13. If the non-terminating base p expansions of aq, - - - , o, add without

carrying and a := ag + -+ - + ay, then ¢, (@) = ¢ (1) + -+ + ¢ (o) for all e > 1.

The following classical results will play a key role in this thesis.
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Lemma 4.14 ([ : ). Let k = (k1,---k,) € N*, and set N := |k| = D k;.
Then (]Z ) = M £ (0 mod p if and only if the base p expansions of the entries

kil-km!

of k add without carrying.

Theorem 4.15 (Dirichlet). For any collection ay, - - - , ay, of rational numbers, there

exist infinitely many primes p such that (p — 1) -a; € N for 1 <i < n.
Lemma 4.16. Let (aq,--+ ,a,) € Q" n [0, 1]™

1. If oy + -+ + a,, < 1, then there exist infinitely many primes p such that the

non-terminating base p expansions of aq,--- , a,, add without carrying.

2. If a; + -+ + a,, > 1, then there exist infinitely many primes p such that

ci(aq) + - +ci(ay) = p.

Proof. By Theorem 4.15, there exist infinitely many primes p congruent to 1 modulo
the denominator of each ;. As in Example 4.4, we have that the non-terminating
base p expansion of each «; is constant. In the case that a; + -+ «a,, < 1, one must
have that ). c.(o) < p—1, and so (1) follows. Similarly, if oq + --- + @, > 1, then

one must have that >, c. (o) = p, and so (2) follows. O

The following lemma will be very useful in Chapter 9 when computing the F-pure

threshold of binomial hypersurfaces.

Lemma 4.17. Let (o, 8) € [0, 1]%. If cerq (@) + ceq1 (B8) = p, then

(@) + B+ o = (a+ B)..

Proof. 1f both « and 8 are in # - N, then so is a + . By Lemma 4.6, we have

that (@), + = +(B), + 5z = a+ f = {a+ ), + -, and the result follows. We

may now assume that « ¢ :z% - N, so that [a, < 1%‘ By our choice of e, we also
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have that [af, + [B], > ;fe(fl) + Cel;ﬂ(lﬁ) > z%‘ Thus, z% < [a], + 18], < z% and
1

a+ 8 ={a), +{B), + z% + ([[a]]e + [8]. — F)’ which shows that

1
(4.17.1) a+ﬁ=<a>e+<ﬁ>e+2¥+5for someO<5<Z%.

From (4.17.1), we see that o + (3 ¢ z% ‘N and |p (o + B)| = p*{e), +p°(B), + 1.

The result then follows from point 5 from Lemma 4.6. O



CHAPTER 5

F-pure thresholds of hypersurfaces

The main results of this chapter clarify the relationship between the various
types of F-purity appearing in the literature, namely F-purity and (sharp/strong)
F-purity. Theorem 5.19 tells us that (strong) F-purity is always a stronger condition
than sharp F-purity, which is (possibly) stronger than the condition of F-purity. We
also see that F-purity and sharp F-purity are the same if and only if fpt(R, f) is a
rational number whose denominator is not divisible by p, and that (R, fpt(f) e f) is
always F-pure. In Proposition 5.12, we derive some interesting restrictions on the
set of all F-pure thresholds in a fixed characteristic. We emphasize that these results
are valid assuming only that R is F-pure, and thus generalize facts which are known

to hold whenever R is an F-finite, (complete) regular local ring.

1 Truncations of the F-pure threshold

Throughout this chapter, R will denote an F-pure ring of characteristic p > 0,
and f will denote a non-unit in R. In this section, we will prove Key Lemma
5.2 (which shows that the truncations of the F-pure threshold encode important

“splitting data”), and deduce some important consequences. In doing so, we will

use the fact that an R-linear map 6 : RY?* — R gives rise, in a natural way, to an
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e+l

R linear map V7" : RVP**" — R defined by V¥ (PP = (/7% 1/P" . We

call 07" the (p*)*-root of the map 6.

Lemma 5.1. Let a € [0,1] n :z% -N. If the inclusion R - fP°el/P® < RUP® splits as a

map of R-modules for some e > 1, so must the inclusion R - f* < RY/7".

Proof. Suppose R - flP®el/r® < RVP® splits, so that O(fP?VP") = 1 for some map
0 € Homp(RY?" R). If e > d, then o € z% ‘N c z% ‘N, and so f* e RY"" < RV Tt is
then clear that fP°@l/?" = fo maps to 1 under the composition RV?* < RY/»* U R,

Instead, suppose that d > e, so that RY?" < RYP". Note that pa < [pal,
so a < [p°al/p®. By Lemma 2.17, it suffices to show that there exists a map
RYP" — R sending fP*1/7° t0 1. As R is F-pure, there exists an RYP"-linear map
¢ : RVP" — RYP* with ¢(1) = 1. If o denotes the composition R/?" LA VN )

then o (fIP°1P") = 1. O

Key Lemma 5.2. Let R be an F-pure ring of characteristic p > 0, and fix d > 1.

Then p? {fpt(f)), = max { aeN:R- fi/?" < RVP" splits as a map of R-modules }

Proof. Set \ := fpt(f) and v;(p?) := max {a R - foP" < RV/P gplits } Note that
0 < v(p?) <p?—1. If X = 0, then v4(p?) = 0, and we will now assume that
A € (0,1]. By Lemma 4.6, (\), < A, it follows from Proposition 2.22 that (R, {(\), e f)
is strongly F-pure, and hence there exists e > 1 such that R- f [P Xal/pt < RY?* splits.
By Lemma 5.1, we may assume that e = d, and it follows that p?(\), < vs(p?).
To prove equality, we must show that the inclusion R - f</\>d+r%d < R never
splits. By Lemma 4.6, p* (\),;+1 = [p?A], so it suffices to show that ¢ (f[pd’\]/pd> #1
for every 6 € HomR(Rl/pd,R). If \¢ z% - N, it follows that [pd)\] = [pd()\ + 5)] for
0 < € « 1. By Definition 2.19, it follows that 6 (f[pd’\]/pd> =0 (f[pd(’”a)]/pd) #1

for every 6 € Homp(R'" R).
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Now, suppose that \ € z% - N, so that [pd)\] /p® = \. By way of contradiction,
suppose that 6 (f)‘) = 1 for some 6 € HomR(Rl/pd,R). As 0 # ), it follows that
p= ;z%‘ By Lemma 2.17, there exists an R-linear map R'?" — R sending fY/*" to 1.
Taking (p®)™ roots of this map produces an R/?"linear map ¢ : RY/7*" — RY?* with
the property that ¢(f/?*") = 1. Under the composition R/#* 2, R 9L Rt

follows from the RY?*-linearity of ¢ that
PR = P () = P B = 1
We see that R - f“ﬁ < RYP* gplits, contradicting the definition of A = fpt(f). O

Remark 5.3. It follows from Key Lemma 5.2 and Lemma 2.17 that R- fN/?° < RV

splits as a map of R-modules if and only if # < pt(f)),.

Proposition 5.4. Let o€ [0,1] with (p? — 1) -a e N . If R f{¢ = RYP" gplits as

a map of R-modules, then so does R - f$®e = RYP™ for every e > 1.

Proof. We induce on e, the base case being our hypothesis. Suppose R- f{*« RV

and R - f{®e < RVp split as maps of R-modules, so that there exists
1. an R-linear map RY?" — R with f{®a > 1, and
2. an R-linear map 6 : RY/?"* — R with 0(f(®a) = 1.

We now show that R- f{®ea+a = RYP"" gplits as a map of R-modules. By taking

(pe)th-roots of the map in 1, we obtain

(@
(3) an RY?"linear map ¢ : RV*""" — R'»™ with ¢ (fﬁ) =1.

By Lemma 4.7, we have that {(a), ;. , = (@), + <;>dd for all e > 1, and it follows that

(5.4.1) F@eara — f% o
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ed+d

Under the composition RY/7* —2 RUP* %5 R it follows from (5.4.1), and the
{0g {0g
Rl/ped_llnearlty Of ¢’ that f<a>ed+d = f peéi . f<a>ed — f<a>ed . ¢ (f pedd> — f<a>ed . 1 —

O(f<ea) = 1. O
Corollary 5.5. Let a e [0,1] with (p? —1) -a e N. If R- fa = R'?* gplits, then
a < fpt(f).

Proof. By Proposition 5.4, R - f{®ea < RYP* gplits for all e > 1. By Key Lemma
4.6, we have that (a),, < (fpt(f)),, for every e > 1, and taking the limit as e — o

gives the desired inequality. O
We arrive at the following generalization of | , Proposition 2.16].
Corollary 5.6. fpt(f) = 1 if and only if R - f®=1/» < R/P gplits over R.

Proof. If fpt(f) = 1, then (fpt(f)), = ijl, and it follows from Key Lemma 5.2
that R - f®=1/P < RVP gplits. On the other hand, if R - f®~V/» < RYP gplits, then
Corollary 5.5 shows that fpt(f) = 1. The claim then follows, as fpt(f) < 1 by

Remark 2.20. O

Corollary 5.7. If (R,m) is an F-finite regular local ring, then R/(f) is F-pure if

and only if f7~! ¢ mlPl if and only if fpt(f) = 1.

Proof. The first assertion is just Feder’s Criteria | , Proposition 2.1]. One the
other hand, Corollary 2.31 shows that f?~! ¢ m[P! if and only if R - f®~1/P < RYP

splits, which by Corollary 5.6 holds if and only if fpt(f) = 1. O

2 The set of all I'-pure thresholds

Definition 5.8. FPT, will denote the set of all characteristic p F-pure thresholds:

FPT, := {{fpt(R, f) : 0 # f, a non-unit in an F-pure ring R of characteristic p }.
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Remark 5.9. We stress that the ring R is allowed to vary in Definition 5.8. By

Remark 2.20, we have that FPT, < [0, 1].

Recall from Definition 4.8 that if A € [0, 1], then (X)_ = £=L.(\) € [0,1] is the

p

rational number whose base p expansion is obtained by repeating the first e digits of

the non-terminating base p expansion of \.
Proposition 5.10. For any A € FPT,,, and for any e > 1, we have that @e <A

Proof. There exists an F-pure ring R and an element f € R such that A = fpt(R, f).

Set o := @6. By Lemma 4.9, it follows that
1‘ <a>e = <®e>e = <)\>e7 and
2. (p°=1)-a=p°\), eN.

By Key Lemma 5.2 and 1, the inclusion R - f(® = R. f™e < RY/P splits as a map

of R-modules. Then, Corollary 5.5 and 2 imply that A > a. O
Corollary 5.11. For any e > 1 and A € FPT), the following hold:

Lo(° = DAl = p* V.-

2. A< p[A],.

3. A=),

Proof. The three assertions are equivalent by Lemma 4.10, and the third point follows

from Proposition 5.10. O

Corollary 5.11 places severe restrictions on the set FPT,,.

Proposition 5.12. Fix e > 1. For any 5 € [0,1] n z% - N we have that

FPTM(&}%-B) - 2.
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Proof. Let A€ FPT,. If A > 3, then (\), > 8 by Lemma 4.6. Combining this with

Corollary 5.11 and Definition 4.8 shows that A > (\) P\, =80 O

e pe— pe—1

Remark 5.13. Proposition 5.12 is a generalization of | , Proposition 4.3], in

which it is assumed that R is an F-finite regular ring.

Example 5.14. Proposition 5.12 states that for every e > 1, there exist p® — 1
disjoint open subintervals of [0, 1] that do not intersect FPT,. Figure 5.14.1 shows

the intervals corresponding to e = 1,2 and 3 that cannot intersect FPT5.

e_ll. ............................................................. o o
e=2|. ................... o O +rrvrrnreenerrnnnnnneeenennns o O vrvrneennnnn o o
e=3|. ..................... o S o TITTT TP o S o WU o 7o NTTTTPIIN o 7o NTTTTTN o O+ O O O 7o)
I Il Il Il Il Il Il Il Il
I T T T T T T T 1

1 1 3 1 3 3 7
0 8 4 8 2 8 4 8 1

Figure 5.14.1: Three intervals that do not intersect FPT5.

Remark 5.15. As illustrated by Example 5.14, many of the intervals from Proposi-
tion 5.12 overlap. However, as > length (ﬁ, pe”—il -ﬁ) = %, Proposition 5.14
Be(0,1]n e -N

shows that for every e > 1, there is a set of Lebesgue measure % that does not

intersect FPT,. This was first observed in | ]

Remark 5.16. Proposition 5.12 may be used to show that FPT,, is a set of Lebesgue
measure zero. This is not surprising, as very often FPT), is contained in [0,1] n Q
[ , , , |. We stress, however, that in the generality dealt

with in this chapter, the issue of whether FPT, < Q is open.

3 Purity at the F'-pure threshold

In this section, we prove Theorem 5.19. We now recall the various singularity

types and invariants associated to pairs (R, A e f) via the Frobenius morphism.
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Definition 5.17. The pair (R, X e f) is said to be

1. F-pure if R - flo°=DA/P° < RVP® gplits over R for all e > 1,
2. strongly F-pure if R - fIP°N/P° < RYP® gplits over R for some e > 1,

3. sharply F-pure if R - fI(e°=DA/P® < R/P® gplits over R for some e > 1.

The F-pure threshold f is defined as fpt(f) = sup, { (R, A e f) is F-pure}, and
we may define the (strongly/sharply) F-pure thresholds similarly. By Proposition
2.22, all of these thresholds agree, and consequently, F-purity, strong F-purity, and
sharp F-purity are equivalent conditions on pairs (R, A e f) with 0 < A < fpt(f).
The following example shows that these conditions need not be equivalent at the

parameter fpt(f).

Example 5.18. Consider the pair (Fp[[x]],% xp), and let m = (z) < F,[[z]]. It
is easy to see that fpt(zP) = %. Note that [p —1) J {pefl — I—I?J = pt -1,
and so (zp)[(peq)ﬂ = 27"~ ¢ mlP’l. Similarly, [(p6 — 1)5] = p~!, and consequently

(xp)[(p 5] = o7 e ml for every e = 1. Corollary 2.32 allows us to conclude that

(Fp[[x]], % . x”) is F-pure, but not sharply F-pure.

In the main result of this chapter, we see that the structure of the base p expansion

of fpt(f) completely determines whether these are equivalent conditions in general.

Theorem 5.19. The pair (R, fpt(f)  f) is F-pure, not strongly F-pure, and sharply

F-pure < (p®—1) - -fpt(f) € N for some e > 1.

Remark 5.20. The first assertion above generalizes | , Proposition 2.6], in
which it is assumed that R is a complete, F-finite regular local ring. The third is a
generalization of | , Corollary 5.4 and Remark 5.5], in which it is assumed that

R is an F-finite regular local ring.
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Remark 5.21. The condition that (p®—1) - fpt(f) € N for some e > 1 is equivalent
to the condition that fpt(f) € Q, and that the denominator of fpt(f) is not divisible
by p. We will notice in Chapters 8 and 9 that the denominator of fpt(f) is often
a power of p, and more often is divisible by p. Thus, there are many instances in

which F-purity is not equal to sharp F-purity.

Proof of Theorem 5.19. By Corollary 5.11, |(p® — D)fpt(f)| = p®{Ept(f)),, and so

Key Lemma 5.2 implies that the inclusion R - fle°=D®tANIP® < RI/P® gplits as a map
of R-modules. We see that (R, fpt(f) e f) is F-pure.

By Lemma 4.6, [p“fpt(f)]| = p° fpt(f)). + 1, and so Key Lemma 5.2 shows that
the inclusion R - fIPTPUDIP < RUP® never splits over R. We see that (R, fpt(f) e f)

is not strongly F-pure.

€

By Definition 5.17, (R, fpt(f) e f) is sharply F-pure if and only if R- fI(P"=Dpt(H)l/p
splits off from RY?* over R for some e > 1, and Remark 5.3 show that this inclusion

splits if and only if

(5.21.1) [(p° = Dipt(f)] < p*Ept(f)). -
However, Lemma 4.6 shows that (5.21.1) holds if and only if
(5.21.2) [(p° = DEpt(f)] = p° Ept(f)), = [(»° — Dipt(f)],

where the last equality follows from Corollary 5.11. Finally, we observe that (5.21.2)

holds if and only if (p® — 1) - fpt(f) e N. O



CHAPTER 6

Splitting polytopes

In this chapter, we associate to any collection of n distinct monomials a rational
polytope P < [0,1]" , and derive some basic properties of P. The polytopes P
have appeared previously in | , , , |, and the geometry of
P will be used crucially in Chapter 7, 8, and 9 in giving bounds for and explicitly
computing F-pure threshold of certain special classes of polynomials.

Throughout this chapter, let R := K|z, -+ , x| denote a polynomial ring over a

field K of arbitrary characteristic, and C' := {&®',--- &% } will denote a collection
of distinct monomials in R. Furthermore, if s = (s1,---,s,) € R", we will use |s]
to denote the coordinate sum s; + --- + s,. We stress that | - | is not the usual

Euclidean norm on R™.

Definition 6.1. We call the matrix M = M ¢ = (a1 - - a,) € M, (N) the splitting

matrixz associated to C..

Remark 6.2. Definition 6.1 is motivated by the following fact: For every n-tuple of

k1 . an)kn _

xEMk]l MKl

integers k = (k1,--- , k,) € N”, we have that (x*)™ --- (x o =
xMF where [Mk]; denotes the i entry of Mk € N™. It follows from this that
(w1 + - -+ + )N = k=N (V) u® - £MF, where the u; are elements of K, and

(W) = NV(kt! -+ ko).

51
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Definition 6.3. We define the splitting polytope associated to C' as follows:
P=Pc={seRl:[Ms|;<1Vi=1,--,m},

where [Ms]; denotes the i entry of the element Ms € R™. By Definition 6.3, we

have that P < [0, 1]".

Definition 6.4. A point n € P is called mazimal if |n| = max{|s|: se P}, and

P ... will denote the face consisting of all maximal points of P.
Definition 6.5. We say that P contains a unique maximal point if # P, = 1.

Lemma 6.6. If P has a unique maximal point n € P, then 1) must be a vertex of P.
Furthermore, if the set of vertices of P contains a unique element 1 with maximal

coordinate sum, then 1 must also be the unique maximal point of P.

Proof. If P« = {|n|}, it follows from the fact that P,y is a face of P that n must
be a vertex of P | |. On the other hand, suppose that 1 is the unique vertex of
P with maximal coordinate sum, so that n € Py,,.. If n is not the unique maximal
point of P, then the convex polytope P,., contains infinitely many points, and so
must contain a vertex v # m. As vertices of P, are vertices of P, this contradicts

the uniqueness of 7. O

a 0 c
Example 6.7. Let C = {2% y° 2°y°}. Then, M = , and consequently

0 b ¢

asy +cs3 <1
P={seR: . Note that P is the convex hull of the points

bsy +cs3 <1
0,v; = (%,0,0) , Vg = (O,%,O) , Vg = (%,%,O), and vy = (0,0,%). See Figure 6.7 for a

picture of P. By Lemma 6.6, # P = 1 if and only if |v3] = 2 + 1 # 1 = |vy|, in which

case Pax = {vs} or {vy}. In the case that i + % = %, P, is equal to the edge

determined by the vertices vs and vy.
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Figure 6.7.1: The rational polytope P < [0, 1]* associated to {z%,y°, z°y°} .

Example 6.8. If C = {af' - a0, bt oo ghm }, P = [0,1]? contains a unique max-

imal point if a; # b; for all 1 <i < m. (see Corollary 9.5.)

S

Example 6.9. IfC’={:)§‘f1,---,xﬁn},thenP={36R20:8i<d—for1<i<n},

andeax:{(iv"'adln> }

S1

Figure 6.9.1: The rational polytope P < [0, 1]? associated to {:Bih,xgz, s

Remark 6.10. It follows from the proof of Lemma 6.6 that if P contains a unique
maximal point 7, then 1 must be a vertex of P. As P is defined by hyperplanes
with coefficients in N, it follows that 7 must have rational coordinates. In fact, if
H={seR": L(s) <1} is a halfspace defined by a linear equation L with rational

coefficients, then every vertex of the polytope P n H also has rational coordinates.

Lemma 6.11. Fix e > 1. If s is in the boundary of P, then (s), = ({(s1),, " ,{sn),)

is in the interior of P.
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Proof. As the defining inequalities of P have coefficients in N, the assertion follows

from the fact that (s;), < s;. O

Recall from Remark 6.2 that (u@® + - + u,z®)V = 3\ () uFzME. We
will soon be interested in knowing, after gathering of terms, what the coefficient of a

given monomial in this expression is. Specifically, we are interested in knowing when
there exist indices k # k' in N” such that |k| = |kK'| = N and Mk = MEK'. The

following lemma allows us to address this issue whenever the geometry of P is nice.
Lemma 6.12. Suppose that P has a unique maximal point n € P.
1. If [s| = |{n),| and M's = M (n), for some s € z% -N”, then s = (n),.

2. If |s| = |v|, Ms = Mv, and (n), — Vv € z% - N" for some v, s € ;% -N", then

S =V.

Proof. For the first statement, let ' := s + n — (n),. By definition, ' € RZ,.
By assumption, we also have M7 = Ms + Mn — M{n), = Mn, and |n| =
|s| + |n| — [ <{m),| = |n|, which shows that ' is a maximal point of P. Thus n’ = n,
and s = (n),. For the second statement, let s’ := s +{(n), —v € # -N". By

hypothesis, s’ € z% N s’ = |{(m), |, and Ms" = M {n),. The first statement,

applied to s’, shows that s’ = (n),, and thus s = v. O
Corollary 6.13. Suppose that P has a unique maximal point € P.
1. The coefficient of P MMe in (uyz% + - - - + u,x% )P KMe! is (p;J§Z§e‘)upeM<">e.

2. Letve z% -N™ be an index such that (n), —v € z% -N™. Then the coefficient

. . e
of zP"M¥ in (uyx™ + -+ + u,x® )P is (ppJZ‘)upeM”.



CHAPTER 7

F-purity and log canonical singularities

The main result of this chapter, Theorem 7.6, gives bounds for, and in an impor-
tant special case, allows us to explicitly compute the F'-pure threshold of a polynomial
f whenever the polytope P associated to the supporting monomials of f contains
a unique maximal point. These bounds will be crucial when computing the F-pure
threshold of diagonal and binomial hypersurfaces in Chapters 8 and 9.

Let f denote a polynomial over the complex numbers. In Theorem 7.17, we
invoke Theorem 7.6 to show that Conjecture 3.15, which states that log canonical
singularities is equivalent to dense F-pure type, holds for f whenever the associated
polytope P has a unique maximal point. Finally, in Theorem 7.18, we apply these

methods to show that Conjecture 3.15 holds for very general complex polynomials.

1 Some background on F-purity of monomial ideals

Let R = K|z, -+, 2] denote a polynomial ring over a field of characteristic
p > 0 with [K : KP] < oo K. By Example 2.14, R is an F-finite regular ring. We
will let m € R denote the ideal generated by the variables, and f will denote a
non-zero polynomial in m.

In Chapter 2, we introduced the notion of F-purity for pairs of the form (R, A e f),

55
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and to this point we have dealt exclusively with pairs of this form. However, the no-
tion of (strong/sharp) F-purity can be extended to pairs of the form (R, a e f), where
a is any ideal of R | |. For example, we say that the pair (R, A e f)is F'-pure atm
if al®—DA ¢ mlP] for all e » 0, and is strongly F-pure at m if alP*1 & ml*] for some
e = 1 (c.f, Corollary 2.32). We also define the F-pure threshold of a at m as in the
principal case: fpty(a) :=sup{AeR.o: (R, \ea) is F-pure at m}. As in Proposi-
tion 2.22, we have that fpt,(a) = sup{ A € Ro : (R, A e a) is F-strongly pure at m }.

Below, we gather these facts to give our working definition for fpt,,(a) for this thesis.
Definition 7.1. Let a € m be an ideal of R. Then

1. fpt(f) =sup{AeR: fI" ¢ ml’] for some e > 1}, and

2. fptw(a) = sup { A € R: aP*1 ¢ ml’] for some e > 1}.

The first point in Definition 7.1 above is a restatement of Corollary 2.33. Our
goal in this Chapter is to compare the value of fpt,(f) with that of fpt,(a), where

here a is the monomial ideal generated by the supporting monomials of f.

Definition 7.2. If f = ) wu,xz* € R, Support(f) := {x* : ue # 0}. We call

Support(f) the set of supporting monomials of f.

Notation 7.3. For the rest of this section, we will assume that Support(f) =
{x -z }. We will let a = (Support(f)) € R denote the monomial ideal
generated by Support(f). Following the notation of Chapter 6, M = (a; - - a,) will
denote the splitting matrix associated to Support(f), and P will denote the polytope

associated to Support(f). Recall that P < [0, 1]™.

We now gather some facts regarding F-pure thresholds, and relate fpt(a) to the

geometry of P.
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Proposition 7.4.

1. fpta(f) € Q n (0,1].

2. (R, e f)is F-pure at 0 if and only if 0 < A < fptn(f).

3. fptn(f) < min{1, fpta(a)}.
4. fpty(a) = max{|s|:se P}.

Proof. The first point follows from Remarks 2.20 and 2.21, while the second is a
restatement of Theorem 5.19. The third point follows from the fact that f € a.

It remains to prove the last point. If al®l & mlP’l, then at least one of the
generators of al”l is not in mlPl, and so there exists k = (ki,---,k,) € N* such
that ky + - -« + kn = [ep°] and (29)" ... (o) = Mk ¢ ml] je. every entry of

ME is less than p®. Thus, # -k € P, and consequently,

—-k‘gmax{|s|:seP}.

It follows from Definition 7.1 and (7.4.1) that fpty,(a) < max{|s|:se P}.

Next, choose ) € Py, and fix e > 1. By Lemma 6.11, every entry of M (n),
is less than 1. Thus, (2@ )P Me ... (gan)P" e — gr"Mm. is contained a?“K™el| but
not in mP’l. By Definition 7.1, we have that fpty(a) = [(n), |. As lim. . {(n), =n,

this shows that fpty(a) > |n| = max{|s| : s € P}. O

Remark 7.5. The inequality in the third point of Proposition 7.4 above may be

strict. Indeed, it is easily verified from Definition 7.1 that fpty,(a? + yP) = 1—1?, while

fptn(a?, y?) = 2.
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2 F-pure thresholds for polynomials with good support

Recall that if n € [0,1], then ¢, () denotes the e digit in the non-terminating

base p expansion of 1. (See Chapter 4.)

Theorem 7.6. Suppose that P < [0,1]" contains a unique maximal point n =

(M, -+ ,mn), and let L=sup{N :c.(m)+---+cc(m) <p—1lforall0<e< N}
1. If L = oo, then fpty,(f) = fptm(a) =01 + -+ + 0y
2. If L < oo, then (miy + -+ oy + o < fptm(f).
The following lemmas will be used often in the proof of Theorem 7.6.

Lemma 7.7. For every e > 1, we have that p° (fptw(f)), = max{a e N: f* ¢ ml*l }.

Proof. This is a restatement of | , Proposition 1.9], and a special case of

Lemma 5.2 O

Lemma 7.8. Let a € [0, 1] be a rational number such that (p® —1) -« € N for some

e=1. If fO°=Na ¢ mll then a < fpty(f).
Proof. This is an immediate consequence of Corollary 5.5 and Corollary 2.31. O

Proof of Theorem 7.6. We may write f = ujx® + - - + u,x®, where each u; is
non-zero. We first assume that the non-terminating base p expansions of 7y, --- .1,
add without carrying. By Proposition 7.4, it suffices to show that fpt,(f) > |n|. If

my, = )., ,{nm),), then Corollary 6.13 shows that

(pel M. |> P e g M),
e ).

appears as a summand of fPKmel,
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1. By definition, each u; € K*, so u?* M. # 0.

2. By Remark 4.12, the integers p®{m), , -+, p° (M), add without carrying for all

e = 1. This, combined with Lemma 4.14, shows that

() e

3. By Lemma 6.11, every entry of M (n), is less than 1, and consequentially every

entry of p¢ - M (n), is less than p°.

The first two points above show that P e Support(fPm.l), while the third
point shows that &P MM™e ¢ mPl. Thus, 7KWl ¢ mlP] and Lemma 7.7 allows us to
conclude that (fptw(f)), = |, | = m), + -+ - + (), Taking the limit as e — oo
shows that fptn(f) = m + - -+ 1, = fptw(a), while the opposite inequality holds by
Proposition 7.4.

We now assume that the non-terminating base p expansions of ny,--- 1, add

with carrying. Let c.(t;) and L be as in the statement of the Theorem. Note that
4. 0 < L < o (as ¢y(t;) = 0 by convention), and that
5. cpe1(m) + -+ cre1 (i) = p-

By replacing each ¢, 1(t;) with an integer less than or equal to cp41(t;), we see that
there exist integers 0y, - ,d, such that 6; +--- 4+, =p—1and 0 < §; < cp41(t;),
with the second inequality being strict for at least one index. We will assume without

loss of generality that d; < cp,1(n;). Fore = L + 2, set

51 p—1 p—1 09 On,
(781) V(e) = <7’>L + (p—L+1 + pL+2 + -4 pe 7pL+17'.- 7pL+1> .

The following summarizes the important properties of v(e) = (vi(e), -+ ,v,(€)).
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7. As &; < cpqa(ty) for 2 < i < n, it follows that vi(e) < (t;),,,, while the
fact that §; < cpy1(m) shows that vi(e) < (m1),,, . Thus, we have that

0¢<n>e—v(e)€#-N”fore>L+2.

8. As o +---+6, = p—1, it follows from the definition of L that the base p

expansions of the integers p°vy(e), -+, p°vy(e) add without carrying.

9. Finally, we have that

1 = p—1 p—1
()] = [y |+~ (Z@-) wm

i1=1

p—1 p-—1 p—1
=|<77>L|+F+W+"'+ -

Points 6 and 7 above, along with Remark 6.2 and Corollary 6.13, show that, after

gathering terms, the monomial
(pe|V(€) |) ") g My (e)
pv(e)
appears as a summand of fP1*()l. Point 8 above, along with Lemma 4.14, gives that

(p;‘,'jgz;') # 0mod p. We can conclude from this that x?*M¥(¢) ¢ Support(fP ¥

and P ¢ mlPl. Thus, P ¢ mlPl and by Lemma 7.7, we have that

p—1
pe

(7.82) ot > ) = | Gy | + g o+

Y

where the last inequality follows from point 9 above. Finally, letting e — 00 in (7.8.2)

gives that fptn(f) = [{m), | + ;¢ O

3 Log canonical singularities and dense F-pure type

In this section, we prove Conjecture 3.15, which states that log canonical singu-

larities is equivalent to dense F-pure type, for a large class of polynomials over the
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complex numbers. Let S denote a polynomial ring over C, and let f € S be a polyno-
mial with f(0) = 0. Recall that the pair (S, A e f) is said to be KLT at 0 if the func-
tion ﬁ is locally integrable at 0, and is said to be log canonical at 0 if it is KLT for
every 0 < e < \. As with singularities defined via Frobenius, these singularity types
can be extended to pairs of the form (S, A e a), where now a is allowed to be any ideal
of S| |. For example, if a = (f1,---, f,) is a set of generators for f, we say that
(S, A ea)is KLT at 0 if the function (ﬁ) ’ is integrable in some neighborhood of
the origin. By again referring to a log resolution, this can be shown to be independent
of the set of generators. We say that (S, \ e a) is log canonical at 0 if it is KLT at O for
every 0 < € < A. We may also define the log canonical threshold of a at 0, which we
denote lctg(a), to be the common value of sup { A € Ry : (S,ae ) is KLT at 0} =
sup{ A € Rog: (S,a e \) is log canonical at 0} | ) : ].

Below, we gather some important facts regarding log canonical thresholds.
Proposition 7.9. If a is the monomial ideal of S generated by Support(f), then

1. leto(f) e Q n (0,1],

2. (S, A e f) is log canonical at 0 if and only if 0 < A\ < lcto(f), and

3. lcto(f) < min {1,lcto(a) }.

Proof. The first two points above are a restatement of Lemma 2.8, while the third

point follows from the fact that f € a. O

Remark 7.10. By Proposition 7.4, each of the points in Proposition 7.9 holds when-
ever “log canonical at 0”7 is replaced by “F-pure at m” and “lcty” is replaced by

((fptm‘”
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The following well-known lemma shows that the log canonical threshold and the

F-pure threshold of a monomial ideal agree in all characteristics.

Lemma 7.11. Let K be a finite field of characteristic p > 0 with [K : K?] < o,
and let C be a collection of monomials in the variables xq,--- ,x,,. By abuse of

notation, let a denote the monomial ideal generated by C in both C[zy,--- , x,,] and

K|zy, -+ ,zp]. Then, Icto(ac) = fpta(ak).

Proof. Let N = RZ; denote the Newton polytope associated to a, and let P denote

the polytope associated to the set C. Then
(7.11.1)  lcto(a) =max{AeR.p:1e - N} =max{|s|:se P} = fpty,(a),

where 1 = (1,---,1) € R™. The first equality in (7.11.1) follows from | :
Example 5], the second by setting w = 1 in | , Lemma 4.3], and the last by

Proposition 7.4. O

Notation 7.12. For the rest of this chapter, f will denote a non-zero element of
S = Clxy, -+ ,zm] = Clz] with f(0) = 0. Furthermore, we set Support(f) =
{x® .- &%} and a = (Support(f)) < S. If Ais a finitely generated Z-subalgebra
of C, S will denote the subring A[zq,---,x,,] = Alz] € S. Note that C®4 54 = S.
For a maximal ideal p < A, S4(p) will denote the polynomial ring Sy ®4 A/p =
Sa/uSa = (A/p)|z]. By Corollary 3.2, char A/ > 0. For g € S4, g, will denote
the image of g in S4(p). Similarly, a, will denote the ideal in S4(p) generated by
Support(f,,). Finally, the symbol m will always be used to denote the ideal generated

by the variables xy, - - -, x,, in the polynomial rings S, S4, and S4(u).

We recall the definition of dense F-pure type, and its relationship with log canon-

ical singularities.
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Definition 7.13. The pair (S, A e f) is of dense F-pure type at m if there exists a
finitely generated Z-algebra A < C with f € Sy, and a dense subset W < Spec A

such that (Sa(p), A e f,) is F-pure at m for all maximal ideals p < W.

Theorem 7.14. | , | If (S, X e f)is of dense F-pure type at m, then

(S, A e f) is log canonical at 0.

The converse to Theorem 7.14 is Conjecture 3.15, and verifying this conjecture

remains a long-standing open problem | , , ].

Definition 7.15. If Conjecture 3.15 holds, we say that log canonical singularities at

0 implies dense F-pure type at m for f.
Below, we give a slightly different characterization of dense F-pure type.

Lemma 7.16. Log canonical singularities at 0 implies dense F-pure type at m for f
if there exists a finitely generated Z-algebra A € C with Z < A and f € S4, and an
infinite set of primes A satisfying the following property: For every p € A, there exists
a non-empty set W, € 7!(p), dense in the fiber 77! (p), such that for every maximal
ideal p, € W,, Support(f,,) = Support(f), and fpt.(f.,) = min{ 1, fptan(a,,) }

Here, 7 : Spec A — Spec Z denotes the map induced Z < A.

Proof. As W, is dense in 7 1(p), it follows that W, = 7~ 1(p), and thus

(7.16.1) Um2W =) == (A).

peEA peEA peEA

By Lemma 3.4, 7 !(A) is dense in Spec A, and so (7.16.1) shows that | J ., W), is

pEA

also dense in Spec A. For p € A and p, € 77*(p), it follows from Theorem 3.14 that

(7.16.2) fptm(fy,) < lcto(f) for p » 0.
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As #A = oo, we may replace A with a slightly smaller set (7.16.1) remains
true after this replacement), and thus assume that (8.10.1) holds for all p € A and

wp € T 1(p). Note that

(7.16.3) lcto(f) < min{1,lcto(a)} = min{ 1, fptn(a,,) } = ptu(f,,) < lcto(f).

Indeed, the first inequality in (7.16.3) above holds by Proposition 7.9, the second by
Lemma 7.11, the third by assumption, and the last by (8.10.1).

We know from Proposition 7.9 that (S, \ e f) is log canonical at 0 if and only if
0 < A <lcto(f). If p € A is a maximal ideal, we know that the pair (Sa(p), A e f,)
is F-pure at m if and only if 0 < A < fptn(f,) by Proposition 7.4. Examining
Definitions 7.15 and 7.13, we see that to demonstrate that log canonical singularities
at 0 implies dense F-pure type at m for f, it suffices to show that fpt.(f,,) = lcto(f)
for every p € A and maximal ideal pu, € W,. However, this is precisely the content of

(7.16.3). O

Theorem 7.17. If P contains a unique maximal point, then log canonical singular-

ities at 0 implies dense F-pure type at m for f.

Proof. Let A be a finitely-generated Z-algebra satisfying the conclusion of Corollary
3.5, and let 7 : Spec A — SpecZ denote the map induced by the inclusion Z < A.
Let 1, denote an arbitrary element of 7='(p). As Support(f) = Support(f,,) for
p » 0, fptn(fy,) can be computed via P, as in Theorem 7.6. Let 1 be the unique
maximal point of P.

If fptw(a,,) = [0 < 1, let A consist of all primes p » 0 such that the non-
terminating base p expansions of 7y, --- , 1, add without carrying. By Lemma 4.16,

#A = o0, and it follows from Theorem 7.6 that fpty(f,, ) = fptwm(a,,) for all p e A.
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If fpt(a,,) = |m| > 1, instead let A denote the set of all primes p » 0 such that

(7.17.1) a(m)+-+a() =p

By Lemma 4.16, # A = c0. Theorem 7.6 and (7.17.1) above show that fpt.(f,,) =1,
and Proposition 7.9 shows that equality must hold. If we set W, := 77*(p), we see

that A, A, and W, satisfy the hypotheses of Lemma 7.16, and so we are done. O

Theorem 7.18. Suppose that the coefficients of the supporting monomials of f are
algebraically independent over Q. Then log canonical singularities at 0 implies dense

F-pure type at m for f.

Remark 7.19. Let Z denote a countable union of Zariski-closed subsets of (C*)",
and let g be a polynomial over C such that g(0) = 0 and # Support(g) = n. If
uy, - , U, denote the coefficients of the supporting monomials of g, we say that g is
very general (with respect to Z) if (uy,---,u,) ¢ Z. Note that the coefficients of
the supporting monomials of g are algebraically independent over Q if and only if ¢
is very general with respect to Zg, where

(7.19.1) Zg = U v ) @),

heQ[n1,+ ,1n]

In (7.19.1) the t; denote the coordinates of (C*)". In this language, Theorem 7.18
shows that log canonical singularities at 0 implies dense F-pure type at m for a very

general complex polynomial.

Proof of Theorem 7.18. Let Support(f) = {x®,--- ,x% }, and let P < [0, 1] de-
note the polytope associated to Support(f). Set @ = min{1, max{|s|:se P}},
and fix a point m € P with |n| = . By Remark 6.10 , we may assume that n € Q".
If A denotes the set of primes p such that (p — 1) -7 € N, then #A = o0 by Theo-

rem 4.15. We may write f = u;x® + - - - + u,x®", where the u; are elements of C*.
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If A:=Z[uy, - ,up][ju, € C, then f € S4, and Support(f,) = Support(f) for all
maximal ideals 4 © A. Consequently, the F-pure threshold of the ideal generated
by Support(f,) in Sa(u) is equal to max {|s|: s € P}. Fix a prime p € A.

Remark 6.2 shows that the monomial £®~DM" gppears in f®~1)* with coefficient

(7.19.2) 0#Opp(u) = > <(p _;) ' O‘) ub € Zfuy, - up] S A

k|=(p— 1)
Mk=(p—1)-Mn

As a < 1, we have that ((pfkl)'o‘) # 0 mod p for each k in (8.13.3). By hypothesis,
Z|u] is a polynomial ring, and it follows that ©,, ,(u) induces a non-zero element of
the polynomial ring Z/pZ|u] < A/pA. Let 7 : Spec A — SpecZ be the map induced
by the inclusion Z < A. If we define W), := D(0,,,,(u)) n7*(p), we have just shown
that W, # &, and so W, is a dense (open) subset of the fiber 77(p).

Let p, denote an arbitrary maximal ideal in W,. By construction, ©, ,(u) has
non-zero image in A/, and so (8.13.3) shows that z®~)Mn ¢ Support((f“p)(pfl)a).

As m e P, every entry of (p — 1)Mn is less than p, and so £®~VM" ¢ m[Pl. Thus,
(7.19.3) ()" V" ¢ m < (A1) [2] = Salny).

By (7.19.3), Lemma 7.8, applied to f,, € Sa(yy), shows that

(7.19.4) fptm(fy,) = a=min{l max{|s|:se P}},

and Proposition 7.4 shows that equality must hold in (7.19.4). We have just shown
that A, A, and W, < 7 !(p) satisfy the hypotheses of Lemma 7.16. We conclude

that log canonical singularities at 0 implies dense F-pure type at m for f. O

Remark 7.20. An important difference between Theorem 7.17 and Theorem 7.18 is
that W, = 7!(p) in the former, while we only know that W, € 7!(p) in the latter.
It would be interesting to investigate under what conditions F'-pure thresholds remain

constant over the fibers of certain distinguished primes in Spec Z.



CHAPTER 8

F'-singularities of diagonal hypersurfaces

In this chapter we compute various F-invariants of diagonal hypersurfaces. A
diagonal hypersurface is a polynomial of the form ulz)ffl + -+ u,zd" and a diagonal

hypersurface ulxcf + -4 unmg is called a Fermat.

1 A detailed discussion of the main results

Throughout, R = K|z, ,z,] will denote a polynomial ring over an F-finite
field K of characteristic p > 0, and m = (xy,-- -, z,) will denote the ideal generated

by the variables of R.
1 The F-pure threshold of a diagonal hypersurface
Our main result, Theorem 8.1 below, gives a formula for the F-pure threshold

of any diagonal hypersurface as a function of the characteristic p. Recall that c. («)

denotes the e'® digit in the non-terminating base p expansion of a. (See Chapter 4.)

Theorem 8.1. Let (dy,---,d,) € N*, and let f = u ™ + -+ Upxdn,

IfL:zsup{N:ce(%>—i—---—i—ce(din) <p—1f0rallO<e<N},then

1 1 . _
d—1+"'+d— lfL—OO

n

1 1 1 :
<d_1>L+”'+<d_n>L+F if L <o

67

fptn(f) =
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Formulas for the F-pure threshold of the hypersurfaces x2+y? and 2% +y7 are given
in | , Example 4.3/4.4]. At first glance, these formulas appear to be quite
different from those appearing in Theorem 8.1 above. Below, we give an example of

how Theorem 8.1 may be used to recover the formulas already in the literature.

Example 8.2. We adopt decimal notation for base p expansions. For example, if a
and b are integers with 0 < a,b < p — 1, then the expression .a b (base p) will denote
the unique number « with the property that ¢, (o) = a for e odd and ¢, (o) = b for
e even. Let f = ujx? + uyy3. We now use Theorem 8.1 to compute fpt,(f) as a

function of the congruency class of p modulo 6. If p = 3, then
) 1 _
(8.2.1) 3= .1 (base 3) and 3= 1 =.02 (base3).

Carrying is required to add the expansions in (8.2.1), and the first carry occurs at
the second spot. We conclude that fpt,(f) = <%>1 + <%>1 +3=0+3+3=2

Similarly, one can show that fpt,(f) = 5 1fp = 2. If p=6w+1 for somew =1, then
1 — j
(8.2.2) 5= 3w (basep) and 3= 2w (basep).

We notice that the expansions in (8.2.2) add without carrying, and consequently

fptn(f) = % + % = %. Finally, if p = 6w + 5 for some w > 0, then

1 1
(8.2.3) 5= 3w + 2 (basep) and 3= 2w+1 4w+ 3 (basep).

In adding the expansions in (8.2.3), the first carry occurs at the second spot, and so

(8.2.4) fpt( <> < > 1_3w+2+2w+1+1=5w+4‘
p p p p

The reader may verify that 5“““4 + —p = 2, and so (8.2.4) becomes fptn(f) = 3 —

Sl
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As a special case, we recover the following formula from | , Example 4.3]:
12 p=2
2/3 p=3

fptm(x2 + yg) =

By using methods similar to those in the Example 8.2, we are able to give a
formula for the F-pure threshold of the degree d Fermat hypersurface in terms of the

lease positive residue of p modulo d.
Corollary 8.3. Let f = ulxcf +- udxg € K|z, -+ ,x4]. Then

1
v

> pt < d < p*! for some £ > 1

fpta(f) =
1—“?%1 0<d<pand p=amoddwithl <a<d

2 Test ideals and higher jumping numbers

By Proposition 2.42, 7 (R, e f) = R for 0 < A < fpt(f), while necessarily we
have that 7 (R, fpt(f) e f) # R. We now focus on understanding 7 (R, fpt,(f) o f)
for diagonal hypersurfaces f. By Lemma 8.10, the ideals 7 (R, fpt,(f) e f) and
T (R, fpt(f) e f) are equal whenever p does not divide any of the exponents in f,
and so Theorem 8.4 below often allows to to compute the first non-trivial test ideal.

Theorem 8.4. Let f = ulz)ffl +- 4 unxi”. Then

-

(f) fpta(f) =1

7 (R, fptn(f) ® f)

Il
A

M fpta(f) = &+ L

n

m fptm(f)<min{1,2d%} and p > max{dy,---,d,}

\
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Remark 8.5. Note that 7 (R, fptn(f)  f) need not equal m if fpt,(f) is less than
min { 1, i +--- 4 din } and p is less than or equal to some exponent of f. For exam-

ples of this pathological behavior, see | , Proposition 4.2].

Our final result computes higher jumping numbers for the degree d Fermat hy-
persurface. By Proposition 2.41, it suffices to only consider those jumping numbers
contained in (0,1]. As we have seen in Corollary 8.3, the F-pure threshold of such a
hypersurface depends strongly on the congruence class of p modulo d. In Theorem
8.6 below, we will see that the existence (and value) of a second jumping number
strictly between fpt(f) and 1 also depends strongly on information encoded by the

congruence class of p modulo d.

Theorem 8.6. Let f = ujz{+- - +ugzl. Suppose that p > d and write p = d-w+a

for some w > 1 and 1 < a < d. Let 0, := w + |2a/d|.
1. If @ = 1, then fpt(f) = 1 is the only F-jumping number of f in (0,1].

We now assume that a > 2.
2. If p < a(d—1), then fpt(f) < Z%f”” < 1 are F-jumping numbers of f in (0, 1].
3. If p > a(d—1), then fpt(f) < 1 are the only F-jumping numbers of f in (0, 1].

Remark 8.7. As a is strictly less than d, the condition that p > a(d — 1) in the
last point above is automatically satisfied whenever p is larger than (d — 1)2. Thus,
Theorem 8.6 says that if p > (d — 1)2, then fpt(f) and 1 are the only jumping

numbers of f in (0,1].

Example 8.8. Suppose that d =4, andp =7. Thenw =1, a = 3, and p < a(d—1).
Note that 0, = w + [2a/d] = 1 + [6/4] = 3 = a, and thus % = 1. In this case,

Theorem 8.6 provides no new information.
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Example 8.9. Let d =6 and p = 11, so that w = 1,a = 5, and p < a(d — 1). We

have that o, = w + [%“1 =1+ [%01 = 3, and Theorem 8.6 shows that

p—a-+1 7T p—a+o 9
fpt(f) = 7}9 zﬁ’ip P — 5k and 1

are F-jumping numbers of f contained in (0, 1]. In this case, the reader may verify

that these are all of the F-jumping numbers of f in (0, 1]

2 F-pure thresholds of diagonal hypersurfaces

Throughout this chapter, R = K{x1,--- ,x,] will denote a polynomial ring over
an F-finite field K of characteristic p > 0, and m = (z1,-- - , z,,) will denote the ideal
generated by the variables of R. R = {r?" :re R} = K* [2°, - 22" will denote
the subring of R consisting of (p®)™ powers of elements of R. As [K : K?] < oo, we
have that [K : KP'] < oo for all e > 1. If ¥¢ is a finite basis for K over K", the

reader may verify that
(8.9.1) { o p: p monomial ug¢mll o e ¥}

is a free basis for R as an RP°-module. If K is perfect, so that K?° = K, the basis in
(8.9.1) is the unique free basis for R as an RP"-module consisting of monomials.
The following lemma says that to compute the F-pure threshold of a diagonal

polynomial f it often suffices to compute the F-pure threshold of f at m.

Lemma 8.10. Let f = ulxih + -+ +u,rd" be a diagonal polynomial in R. If p } d;

for every 1 <i < n, then fpt(f) = fptn(f).

Proof. 1t follows from the Jacobian criterion for regularity that R,,/f is regular (and
hence F-pure) for every o # m. It follows that fpt,(f) = 1 by Corollary 5.7, and

the claim then follows from Proposition 2.24. O
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We will now prove Theorem 8.1, and in doing so, we will rely heavily on (the

methods of) Theorem 7.6.

Theorem 8.1. Let (dy,---,d,) € N*, and let f = uiz? + - 4 upad.

IfL:=sup{N:ce(d—1l>+---+ce(i) <p—1forallO<e<N},then

L4+ if L =0

<%>L+---+<i>L+ﬁ if L <0
Proof. Let P denote the rational polytope {s 0<s; < d%_ } < [0,1]*. Then P is
also the polytope associated to Support(f), and ( St d%) is the unique maximal
point of P. (See Chapter 6.) It follows from Theorem 7.6 that fpt,(f) = i 4+t é

whenever the non-terminating base p expansions of %, cee di add without carrying.

Suppose now that L < oo. It follows from Theorem 7.6 that

1 1 1
(8.10.1) fpta(f) > <d_1>L+"'+<d_n>L+ﬁ‘

By way of contradiction, suppose the inequality in (8.10.1) is strict. By Lemma 4.6,

we have that (fptan(f)), = <d_11>L et <$>L + #, and Lemma 7.7 implies that

(8.10.2) ) e (E 3 ('Z')ukxf“ﬂ g ¢ It
k

It follows from (8.10.2) that there exists an index k = (kq,--- , k,) € N* with

(8.10.3) |k|=pL<dil>L “+p < > +1

such that d;k; < p* for all i. Restated, i > iL - k;, and applying Lemma 4.6 to

these inequalities yields the inequalities < > > % k;. These inequalities imply

the bounds k; < p <I> for all 7, and summing these yields
i/ L

1 1
k| =Fki+ 4k, <p"(— ) +-+p"(—) .
di/ dn/

which contradicts (8.10.3). Thus, equality holds in (8.10.1), and we are done. O
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Corollary 8.3. Let f = ulxcf +- udzzg € K|xy,-- ,x4]. Then

z% if p* <d < p'*! for some ¢ > 1

fptn(f) =
1—“771 if0<d<pand p=amoddwithl<a<d

Proof. If p* < d < p**! for some ¢ > 1, then # < é < i. Consequently, the

. . . 1 . 1 w, .
non-terminating base p expansion of 3 is of the form 5 = > _, = with wpq # 0.

Thus, ¢, (5) =0for 1 <e </l cpi1(5) = wey1 # 0, and adding d copies of ¢,y (5
7 7 i

yields cgq1 (3) + -+ + cos1 (5) = dwpyr = d = p* = p. In the notation of Theorem
8.1, we have that L = ¢, and as <é> =0, we have fpt,(f) =d- <$> +1 =21
¢ ¢ p p
For the remainder, we will assume that p > d. Fix an integer w > 1 such that

+%-l,from

p=d-w+a with 1 < a < d. From this equation, we see that é = -

P
which we may conclude that ¢; (é) = w and ce41 (é) = ¢ (%) fore>1. Ifa =1,
it follows that ce(é) =w foralle > 1. As d-ce(é) =d-w=p—1foralle > 1,
it follows that the non-terminating base p expansions of d copies of é add without
carrying, so that fpt,(f) = 1 by Theorem 8.1.

Next, suppose that a > 2. Adding d copies of ¢; (5) gives ¢y (l) +-- 40 (5) =

d

d-w=p—a<p—1, while d- ¢ (5) > p by Lemma 8.19. This shows that, in
adding the expansions of d copies of é, the first carry occurs at the second digit, and

Theorem 8.1 implies that fpt,(f) =d - <§> + % = d?‘" + % = ”1%“. O
1

3 Test ideals of diagonal hypersurfaces

1 Proof of Theorem 8.4

Having computed fpt,,(f) for diagonal hypersurfaces, we now change our focus
to computing the corresponding test ideals at these parameters. We will follow the

. . . d
previous notation. In particular, f = uyz{" +---+u,2% and n = (%, cee d%) e Q.
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We begin with Proposition 8.11 , a technical result that will be key to the proof of

Theorem 8.4. We will prove Proposition 8.11 in the next subsection.

Proposition 8.11. Suppose that d; < p°®, and that d; # p" forany 1 <r <e — 1.

Furthermore, assume that c, (d—ll) + o4 ce (ﬁ) < p—2and ('i:éZ;J) # 0 mod p.

Then z; € (fpe<d11>e+m+pe<dl”>e+l> [Fe]

Theorem 8.4. Let f = ujz{ + - + up2® € R := K[21,---,2,] be a diagonal

hypersurface over a perfect field of characteristic p > 0. Then

-

(f) fptw(f) =1

7 (R, fptn(f) o f)

|
e

m o fpta(f) = L4t L

1 n

m fptm(f)<min{1,2%} and p > max {dy,---,d,}.
\ 1

Proof. 1t follows immediately from Definition 2.26 and Lemma 2.38 that

(f) = (fp)[%] =7 (R,1e f). We will now assume that fpt,(f) = d—ll ok <1

n

Let p := (+,---,-L) € Q". In this case, it follows from Theorem 8.1 that the
d dy,

non-terminating base p expansions of the entries of n add without carrying, so that

1. d; # p"forallr =1 and 1 < i < n (for, otherwise, carrying would be neces-

sary),
2. and (‘iiég;e‘) # 0 mod p for all e > 1 (by Lemma 4.14).
As fpto(f) < 1, c. (fptm(f)) < p —1 for some e > 1. Choose e » 0 such that

3. d; <p®forl<i<n,

4. c. (fptn(f)) = ce (%) +-+e (%) < p—2 (see Remark 4.13), and

5. 7 (Retptn(f) o f) = (=) b = (fpe<da>e+~..+pe<;n>eﬂ)m.
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In point 5, we have used that p° <i> +- 4 p° <d%> = p° (fptwn(f)), (as the entries
of m add without carrying) and that [p*fpt.(f)] = p® Eptw(f)), + 1. (See Lemma

4.6.) Points 1 — 5 above allow us to apply Proposition 8.11, which says that
el AN qogped L 7]
p < > +otpe(E D +1
(zla"'axn)g(f “/e /e ) =T(Rafptm(f).f)
For the remaining case, we assume that fpt,(f) = <di> +-- -+<di> +1 <1,
1 L n L p

where L = max{e : ¢; (d—le> + -4y (i) < p—1}. By Remark 4.13, we have that

co(fpta(f)) = &1 (di) bt (di) for 1 < e < L, and that ¢, (fptm(f)) = p — 1
fore > L+ 1. As fpt,(f) < 1, we must have that ¢, (fptwm(f)) < p — 2 for some

1<e< L.

6. Choose 1 < ¢ < L so that ¢,(fptn(f)) = & (d—l) + 4y (di) <p-—2and

ce (fptn(f)) =p—1fore= 10+ 1.
7. By our choice of ¢, we have that fpt,(f) = <di> +--+ <di> + 1.
1/ n/y p
8. We also see that (Ipi(n)l\) # 0 mod p by Lemma 4.14.
ptmy,

9. As p > max{dy, - ,d,}, each d; is strictly less than any power of p.

As before, points 6 — 9 and Proposition 8.11 allow us to conclude that

(21, ,20) € <fpl<d11>e+...+p2<d1n>l+l> [17] — (R, fptu(f) o f).

2 Some supporting lemmas
In this section, we prove Proposition 8.11, and we do so via a series of lemmas.

Lemma 8.12. Let d and e be positive integers. Then d (1 + p° <§> ) —p° e N.

Furthermore, if d < p®, then d (1 + p° <§> ) —p® < p°—1
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Proof. 1t is clear that d (1 + p¢ <l> ) — p® € Z. By definition, - <é>

and consequentlyd(1+p6<§>e) = (1+p (< > ——)) —d( ﬂ

Finally, by Lemma 4.6, we have that 0 < Hﬂ] < z%’ so0<d (1 —p° Hlﬂ ) <

I,

£
i)

&

d

Lemma 8.13. Fix e > 1, let ¢ be an integer with 1 < ¢ < n, and let v; denote the

element of N with 1 in the i*" spot and zeroes elsewhere. Suppose that d; < p°,

d; #p" forany 1 <r <e-—1, and (|p€<">e|+l) # 0 mod p. Let

P Vi
(1+p< 1)) edw< D ), (),
qu . i N i X
—_——
omitted

By Lemma 8.12,

© +1\ .
/BZ :: <|p <’r,>6 | )up <Tl>e+v7« . /’LZ

P, + i
. . e . . p6<L> +...+p6<L> +1
is part of a free basis for R over R?" as described in (8.9.1). When f~ \@1/e dn/e

is written as an RP"-linear combination of this basis, the coefficient of 3; is equal to ¥ ’

Proof. After relabeling the variables, we may assume that ¢« = 1. We have that

e{ N pogpe LY 41 |k| e
(8.13.1) pridr G 2. (k )u’“:ccflkl gk,
where the sum ranges over all k € N” such that |k| = p° <d%>e ot pt <i>e 1.

Note that the monomial given by the index k = p®(n), + v; is

(8.13.2) D) (), D,

In == .’171 '/Jl.

Monomials in (8.13.1) that correspond to distinct indices are themselves distinct.
Thus, it suffices to show that the monomial given by p®-{(n)_ + v is the only mono-
mial in (8.13.1) that is an RP*-multiple of ;. However, a monomial in (8.13.1)

corresponding to the index k = (k1,--- , k,) is an RP -multiple of x; whenever

d e e
(8.13.3) g P gt — P ganp® Ly
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for some (ay,--- ,a,) € N". Equating the exponents in (8.13.3) shows that

diky =p°(ap — 1)+ dy (1 +pe<%> ) and d;x; = p° (ai +d; <dl> ) for ¢ > 2.

Dividing each equation by the appropriate d; and adding the resulting equalities

shows that |k| = p®- (‘“d—;l + Diso Z—l) +p°© <i>e+ et <é>e+ 1, and comparing

. . . e 1 1 a1—1 ai __
this with the equality |k| = p <E>e+- : -+<£>e+1 shows that “—+3,,_, & = 0.

As (ay,- -+ ,a,) € N*, we conclude that a; = 1 and a; = 0 for ¢ > 2. Substituting

these values into (8.13.3) shows that

(8.13.4) gk gk — gy

and comparing (8.13.4) with (8.13.2) show that k = p®{(n)_ + vi. O

Lemma 8.14. If ¢, (d—ll) + -+ (i) <p—2and (‘562252‘) # 0 mod p, then

(Ipe .| +1

#0mod p for 1 <i < n.
Pe<77>e+Vi)

Proof. The assumption that c. (%) < ¢ (%) + -+ (ﬁ) < p — 2 implies that

pe<d%.> +1=c (d%) + 1 # 0mod p for 1 < ¢ < n. Similarly, we also have that
e — 1 1

p <n>e|+1=ce(a) +---+ce(@> +1 0 mod p.

The result then follows by reducing the equality

(|pe .|+ 1) _ <|pe (), |> A +1
P, + Vi e ) pe <di> +1

(over Q) modulo the prime p. O

Proof of Proposition 8.11. This is an immediate consequence of Proposition 2.29 and

Lemmas 8.13 and &.14. O
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4 On higher jumping numbers of Fermat hypersurfaces

Throughout this section, f := waf + -+ + ugzd will now denote the degree d
Fermat hypersurface in R. Our goal is to prove Theorem 8.6, which is concerned
with the higher jumping numbers of f. Note that, by Proposition 2.41, it suffices to
only consider those jumping numbers contained in (0,1]. Theorem 8.6 shows that
whenever p is greater than d, yet still “small”, there exist exotic jumping numbers.
Theorem 8.6 also shows that for p » 0, the only jumping numbers in (0, 1] are the

expected ones (namely, fpt(f) and 1).

Notation 8.15. In what follows, we will always assume that p > d. Accordingly,

we fix integers w > 1 and 1 < a < d such that p =d-w + a.

Theorem 8.6. Let 0, := w + [2a/d] € N.
1. If @ = 1, then fpt(f) = 1 is the only F-jumping number of f in (0, 1].

We now assume that a > 2.
2. If p < a(d—1), then fpt(f) < I%fap < 1 are F-jumping numbers of f in (0, 1].
3. If p > a(d—1), then fpt(f) < 1 are the only F-jumping numbers of f in (0, 1].

The proof of Theorem 8.6 will depend heavily on the following two lemmas, whose

proofs we postpone until the next subsection.

Lemma 8.16. Suppose that a > 2, and p < a(d — 1). Then

1. T(R,(%f”il-l—pp—_gl-l—----i—ppzl)yf)=mforalle>1.

2 T (R, (%) .f) £ m.
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Lemma 8.17. If a > 2 and p > a(d — 1), then T(R, (pfl —I—---—i—’%) of) =m

R
for all e > 1.
Proof of Theorem 8.6. By Corollary 8.3, fpt,(f) = 1 whenever a = 1. As the F-
pure threshold is the smallest jumping number, the first assertion of Theorem 8.6
follows. We now assume that a > 2.

As p > d, it follows from Theorem 8.4 that 7 (R, fpt,(f) ¢ f) = m. Lemma 8.16
shows that if p < a(d — 1), then 7 (R, A e f) continues being equal to m for all A
with fpta(f) = 2% < A < 2% and that 7 (3,% . f) £ m. It follows
from Definition 2.40 that % is an F-jumping number of f. The assertion that
P2%% < 1 follows from Lemma 8.20.

Similarly Lemma 8.17 shows that 7 (R, A e f) = m for every A € (fpt,(f),1). As

we have already seen that 7 (R,1e f) = (f) # m, this shows that fpt,(f) < 1 are

the only F-jumping numbers of f contained in (0, 1]. O
1 More supporting lemmas

We now prove the two technical lemmas cited in the proof of Theorem 8.6.

Remark 8.18. From the equation p = d - w + a, we have that é =*+ 9 from

SR

w
p

which we may conclude that c¢; (é) = w while c., (é) =c, (%) for e > 1.

Lemma 8.19. If a > 2, then (d—1) - (3) =p+ 1.

Proof. Let wy := ¢; (%) By Remark 8.18, it suffices to show that (d — 1) - w; > p.

We may write § = < + [[%]]1, from which it follows that

(d—1)-a (d—l)-w1+

(8.19.1) T (d_l)_ﬂgﬂlg p. e

First, suppose that a > 3, so that @ =a— 5 >a—12> 2. Substituting this into



80

(8.19.1) shows that

d—1)- d—1 d—1)- —1 d—1)- —1
2<( )W1+ <( )w1+p _ ) w1 11
p p p p p

=Dzl oo that (d=1)-wy >p+ 1.

From this, we may conclude that 1 <

We now deal with the case that a = 2. By way of contradiction, suppose that
(d—1)-w; < p. As p is prime, the equality (d — 1) -w; = p implies that d — 1 = p
or w; = p. The later is impossible as w; is a digit in a base p expansion, while the
former is impossible as p > d. Thus, we may assume that (d — 1) -w; < p—1, and

substituting this into (8.19.1) shows that

20—2 p—1 d-1 d—2
< =1+ .
d P p P

Consequently, % < %, SO é < %, which implies that p < d, a contradiction. O

Lemma 8.20. Let 0, := w + [%1
1. p<dw+o,—1) < 2p.
2. If p<a(d—1), then 0, < a.
3. Ifp>a(d—1), then p<d(w+a—1) < 2p.

Proof. For 1, substituting the identity dw = p — a into d(w + 0, — 1) yields

2
(8.20.1) dw+o,—1) =2 —2a+d HL] —d.

Substituting the inequalities %‘1 < [%“] < %‘1 + 1 into (8.20.1) shows that
2p—d<dw+o,—1) < 2p.

For 2, we have that dw 4+ a = p < a(d — 1) by assumption. It follows that

2 2
dw+a<a(ld—1) = w+§<a = apz[w—l—ga}ga.

The third point follows along the same lines, and is left to the reader. O
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Lemma 8.21. Let p, j11, p12 be monomials with gy, utp € Support(f~) and p ¢ mPl.
Suppose that d > 2 is not a power of p. If uy = :L'fe - i for some ¢ and ps is another

RP*-multiple of u, then pu; = pus.
Proof. By assumption, we have that
(8.21.1) py = 2P - g and gy = 2P - i for some a € N™.

The assumption that all d; = --- = d,, = d implies that fV is homogeneous, so that
deg p; = degpus. Applying this to (8.21.1) shows that |a| = 1, so that pus = I?e -

for some j. If i # j, then deg,. p1 = p°® + deg,. 1, while deg, uy = deg,. p, and so
(8.21.2) deg,. 1 — deg,. po = p°.

We have already observed that the left-hand side of (8.21.2) is divisible by d, con-

tradicting the fact that d is not a power of p. Thus, ¢ = j, and so p; = po. O

Lemma 8.16. Suppose that a > 2 and p < a(d —1). Then

p—atop—1 | p—1 , 4 p=l
Lr@&( > +E5 4+ B

)of)szoralleZLand
9. T(R, (%).f) £m.

Proof. By Lemma 8.19, we know what (d —1) - ¢y (é) > p+ 1. Thus, there exist non-
negative integers dy, - - - , 941 such that >, = p—1and §; < ¢ (é) forl <i<d-—1,
with the preceeding inequality being strict for at least one index i (which we are free
to choose). In what follows, we will assume that d;_1 < co (l) Fix e > 1, and let

d

(8.21.3)

w 0 W 042 W  Oq_ -1 -1 w+o,—1
a=<—+%,~;— ot Y. REE i APPRE i L )
p P p p p p p p p
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Note that s € :z% -N. Furthermore, we claim that the first d — 1 entries of s are less

o1
than or equal to <$>2 = % + QIE;I). Indeed, this follows from the fact that §; < ¢y (é)
for 1 <1¢ < d— 1, with the inequality being strict for : = d — 1. Let k := p°-s e N.

We summarize some important properties of k below.

1. By the preceding remarks, the first d — 1 entries of k are less than or equal to
p° <§>e, and it follows that the first d — 1 entries of d - k are less than or equal

to p© — 1.

2. By Lemma 8.20, the last entry of d - k is strictly between p® and 2p°.

. [dw+o,—1 0; p—1 p—1
R e R )

p p°
—a+o,—1 —1 -1 —1
p p p p
4. By construction, the integers ky, - - - , kg add without carrying. By Lemma 4.14,

we conclude that (lz‘) # 0 mod p.

As there is no gathering of monomials when expanding f/*! using the multinomial
theorem, the last point above shows that x®* € Support(f/*!), while the first two

points show that
(8.21.4) R AT

where p is some monomial with x4 ¢ mPl. By point (4) above, the element 3 :=
("Z‘)u’“ - p is part of a free basis for R over RF* as described in (8.9.1), and Lemma
8.21 (combined with (8.21.4)) show that, when writing f!*l in terms of this basis, the

coefficient (3 is given by xfle. We see that

xde(fw)[ple]:T(Ra (p_a+ap_1+p_1+"'+p_1>.f)v

P p? e
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where the last equality holds by Lemma 2.38. As this argument is symmetric in the
variables, the first claim follows.

It remains to show that 7 (R, % . f) # m. By way of contradiction, suppose
that 21 € T (R, I%f“” . f) = (fp_‘””?)[%]. It follows that there exists k € N with
|k| = p— a + 0, such that x%* € Support(fP=**7), p < dk; < 2p, and dk; < p — 1

for 2 < i < d. Note that

a —

(8.21.5) dk;<p—l=dv+a—-1 = k; <w+ yi

— ki<w,

where here we have used that k; € N and that 1 < a < d. Thus, from the conclusion
of (8.21.5) we obtain the stronger bound dk; < dm; = p—a for 2 <i < d. It follows
that

d-(p—a+o0,)=d-|k| <dk +(d—1)(p—a),

from which we can conclude that
(8.21.6) p—a+do, < dk; <2p.

However, substituting the definition of ¢, into (8.21.6) shows that

2 2
p—a+d0p=p—a+d-(w+[§}> zp—a+dw+d[§}

2a
zp—a—l—p—a—l—d[g]

=2p — 2a + 2a = 2p.

This contradicts (8.21.6), and it follows that z; is not contained in 7 (R, 7%;“’" . f)
Hence, T (R, @ . f) # m. O
Lemma 8.17. If a > 2 and p > a(d — 1), then T(R, (’%1+---+%) of) =m

for all e > 1.
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Proof. As in the proof of Lemma 8.16, Lemma 8.19 guarantees that there exists non-

d

negative integers dq, - - - , 041 such that ) ; _11 0;=p—1land §; Sw  forl <i<d—1,

with at least one inequality being strict. Again, we will assume that d4_; < ws. Fix
e > 1, and let

(8.21.7)
w ) w 0, w 0 p—1 p—1 w+a—1

R _|_+ ,
p P P p? p? P° P

Note that s € 1% -N. As in the proof of Lemma 8.16, we have that the first d — 1

entries of s are less than or equal to <%> . Let k:=p°-seN.
1. The first d — 1 entries of d - k are less than or equal to p® — 1.

2. By Lemma 8.20, the last entry of d - k is strictly between p® and 2p°

dmi+a—1 ‘8 p-—1 p—1
kl=p | ————— 4+ ) 2 + +oet
3|| ( P ‘Zp2 p? p°

1=1

-1 p—-1 p-—1 —1
zﬁ_C) e +p3_“+pe)
p p p p

4. The integers k1, - - - , kg add without carrying, so (“,:‘) # 0 mod p by Lemma 4.14.

As in the proof of Lemma 8.16, these points imply that

:L'dE(f|k)[ple]=T<R,<p_a+ap_1+p_1+...+p_1).f>‘

p p? p°

By the symmetry of the argument, we conclude that m < 7 (R, (pfl + 4 pﬂ) . f).

p



CHAPTER 9

F-pure thresholds of binomial hypersurfaces

This chapter is dedicated to the computation of F-pure threshold for binomial
hypersurfaces. Recall that a binomial, by definition, a K-linear combination of two
distinct monomials. For most binomials f, Theorem 9.14 provides a formula for
fpt.(f) in terms of the the characteristic and certain quantities determined by the
geometry of P. This formula is also the key step in Algorithm 9.16, an algorithm

for computing the F-pure threshold of an arbitrary binomial hypersurface.

1 The polytope P associated to a binomial

Given any binomial f, we may use the methods of Chapter 6 to construct the poly-
tope P associated to Support(f). As f is a binomial, we have that # Support(f) = 2,
and thus P < [0, 1]%. In this case, the polytope P is more easily studied. For the con-
venience of the reader, we restate Definition 6.3 in this simplified setting. We will use

“” to denote the standard inner product (or dot product) on R?: sxo = s,01+ $,09.

Definition 9.1. Let ¥ # x“ denote distinct monomials in K|z, --- ,z,] such
that every variable appears in either ¥ or . We define the polytope associated to

{x¥, x* } as follows: P ={seR%;: (y,w;)*s<lforalli=1,---,m}.
Remark 9.2. As v,w € N™ we have that P < [0, 1]%.

85
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Example 9.3. In Figure 9.3, we consider the polytope P for v = (1,4,7) and
w = (9,8,4). Observe that adding the condition 2s; + 3s2 < 1 would not change P,

which motivates the Definition 9.4 below.
52

S1 +982 < 1
P = (81,82) €R2>0 © 481 +8sp < 1
7s1 +4sy <1

S1

Figure 9.3.1: The rational polytope P < [0,1]* associated to { zy*z7, 2%y%2* }.

Definition 9.4. We say that (v, w) is active on Pif Pn{s: (v;,w;) *s =1} # .
It follows that P = {s e R, : (v;,w;) * s <1 for all active (1;,w;) }. We say that

{x¥, x*} minimally define P if (v;,w;) is active on P for all 7.
Recall that a point i € P is called a mazimal point of P if |n| = max {|s| : s € P}.
Corollary 9.5. P has a unique maximal point <= v; # w; for all active (v;,w;).

Proof. By Lemma 6.6, it suffices to show that the set of vertices of P contains a
unique with maximal coordinate sum if and only if v; # w; for all active (v;,w;).
However, it is fairly straightforward to verify that there exist two distinct vertices
with maximal coordinate sum if and only if some bounding line segment of P has
slope equal to —1. As the equations for the bounding line segments of P are given

by the active (v;,w;), the claim follows. O

Corollary 9.5 shows that P will have a unique maximal point for most choices

of v and w. Furthermore, if P does not have a unique maximal point, we may
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eliminate some variables from the monomials ¥ and x* to obtain monomials whose
associated polytope does have a unique maximal point, as shown in the following

remark.

Remark 9.6. Let g be a binomial over K with Support(g) = {x2, %} for some
a,be N". Let p=]],_, i". Then g = p-h for some binomial h satisfying the
condition that no variable appears with the same exponent in both of its supporting
monomials. By Corollary 9.5, the polytope associated to Support(g) must contain a

unique maximal point.

Definition 9.7. Suppose that P has a unique maximal point n = (1y,1) € P. We

define the subpolytopes * P, R, and P, of P as follows:
. *P:=Pn{seR’:s,=n}.
2. R:={seR?:5 <n and sy <1 }.
3. Py:=Pn{seR?: s >n}

Note that this gives a decomposition P = *P U R U P,.

59

Figure 9.7.1: The decomposition of P from Example 9.3.
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Figure 9.7.1 illustrates some important properties of the polytope decomposition
P=*P U R u P, which we now summarize. As P is defined by equations with
non-negative integer coefficients, the bounding line segments of P that are not on
the axes must have negative slope. Furthermore, the convexity of P shows that the
slope of these bounding line segments must strictly decrease as s; increases.

If P has a unique maximal point 17 € P, then the first time a line of the form
s1 + s = «a intersects P occurs when a = |n|, and this intersection consists precisely
of the point 1. It follows that none of the bounding line segments have slope equal
to negative one (for such a line segment would consist entirely of maximal points).
Thus, the bounding line segments of P not on the axes have negative slope, and none
of these slopes are equal to negative one. Furthermore, it is easy to verify that the
line segments with slopes greater than negative one give the non-trivial bounding
line segments for *P. Similarly, the segments with slopes less than negative one
give the non-trivial bounding line segments for P4. We record these observations in

Lemma 9.8 below.
Lemma 9.8. Suppose that P has a unique maximal point n € P. Then:
1. *P = {s € ]Rio S9 =1 and (v, w;) = s < 1 for active (v, w;) with v; < w; }
2. Py := {s € ]RQZO 251 = m and (v, w;) = s < 1 for active (v, w;) with v; > w; }
2 Some lemmas on the computation of fpt,(f)

In this subsection, we derive some lemmas which will simplify our computation

of the F-pure threshold of a binomial ideal.

Lemma 9.9. Let f = uyx” +usx® be a binomial over K. Then there is no gathering

of monomial terms in the expansion of f% given by the binomial theorem: if k and
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k € N? with |k| = |k| = N, then kv + kyw = kv + kow if and only if k = k.
In particular, if k € N? with |k| = N, then x*¥**2¢ ¢ Support(fV) if and only if

(%) # 0 mod p.

Vv w
Proof. By hypothesis, we have that k—k is in the kernel of the matrix M =

1 1

However, ker M # 0 <= v = w, which is impossible as f is a binomial over K. [

Lemma 9.10. Let f € K[xy,---,x,,] be a binomial with Support(f) = {&¥,z* },
and let P denote the polytope associated to Support(f). Reorder the variables and
fix £ > 1 so that (v, w;) is active on P precisely when 1 < i < ¢. Let g € K|y1, -+, y]
denote the image of f under the map K[z, -+, 2] — Kly1, -+, y¢] given by x; — y;
for 1 <4 < ¢ and z; — 1 otherwise. Then fV € (x,--- ,:L'm)[pe] if and only if

gN € (yla e ayf)[pe:"

Proof. Write f = ujx” + ugx® for some uy and uy € K*. Let v/ = (14, , 1) and
W' = (wy, - ,wy), so that g = w,y” + uyy®’. We may write
N N !
N _ k., kiv-+kow N _ k., ki +kow
(9.10.1) = Z (k>um1 2 and ¢ = Z <k>uy1 2
|k|=N |k|=N

By Lemma 9.9, (9.10.1) gives the unique expression for f~ and ¢V as a K-linear
combination of distinct monomials in their respective polynomial rings. Thus, fV €

(1, , x)PVif and only if there exists k € N2 with () # 0 mod p and

1_1'k*

pe

(vi,w;) < 1for all 1 <4 < m. Similarly, ¢V € (yy,- - ,yg)[pe] if and only if there

exists k € N? with (}) # 0 mod p and -5 k= (v;,w;) < 1 for all 1 <i < ¢. However,

-1

if s:= L= -k, then s+ (1;,w;) < 1for all 1 <i < m if and only if s € P, which (by
p

our choice of ¢) holds if and only if s * (1;,w;) < 1forall 1 <i <. O

Corollary 9.11. Let f € K[z, - ,2,,] and g € K[y, -, y¢] be as in Lemma 9.10,

and let m = (z,---,2,) and n = (y1,---,y¢). Then, the polytopes associated



90

to Support(f) and Support(g) are equal and is minimally defined by Support(g).

Furthermore, fpt,(f) = fpta(g).

As P < [0,1]? it follows that the maximal points of P should have small coor-
dinate sum. Whenever P contains a unique maximal point n € P and is minimally
defined by Support(f), the following lemma will allow us to focus on the typical case

in which |n| < 1 when computing the F-pure threshold of f.

Lemma 9.12. Suppose P is minimally defined by Support(f) = { ¥, x“ } and has
a unique maximal point n € P. If |p| > 1, then after renaming variables, we have

that f =y + 2" for some n > 1.

Proof. As P < [0,1]?, it follows that both 7; and n, are non-zero. Thus, there exist
bounding line segments of * P and P, that contain 7, so we may fix 7 such that

v; < w; and j # ¢ with v; > w; such that
(9121) (Vi,wi) * 1) = (I/j,u)j) ®#7) = 1.

As v; < wy, it follows that v; < v; - |In| = (v, v;) *m < (v;,w;) *m =1, and as v; € N,
it follows that v, = 0. Similarly, the equation (v;,w;) * 7 = 1 implies that w; = 0,
and substituting the values v; = w; = 0 into (9.12.1) shows that n = (%, w%) We
also see that the bounding line segments of * P and P, that intersect 1) are given by
(v;,0) (which corresponds to a horizontal line) and (0,w;) (which corresponds to a
vertical line). This shows that P = {s € Rio 181 < % and sy < w% }, and as we are

assuming that Support(f) minimally defines P, we have that f = x;j + ;. Finally,

the equality - + L = || > 1 shows that either v; or w; must equal 1. O
'j i

Lemma 9.13. Let K be an F-finite field, and let m and n denote the homogeneous

maximal ideals of the polynomial rings K|x| and K|y], respectively. If f € m and
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g € n, then fpty,..(fg) = min{fpt.(f), fpta(g)}, where m + n is the homogeneous

maximal ideal of the polynomial ring K|z, y].

Proof. Suppose Ay := fpty(f) < A2 := fpta(g). We now show that fpt, .(fg) = A1
By Lemma 4.6, (A1), < (\g), for all e, and so Lemma 7.7 implies that fP“*ve ¢ mlr“]
and g?* 2 ¢ nlP’l. Fix monomials z; € Support(f?“*2¢) and u, € Support(gP ®22)
such that y; ¢ mlPl and po ¢ nlPl. As py and py are in different sets of vari-
ables, i € Support((f¢)*" ) but not in mP7 + nlPT = (m+n)P? and so
(fg)P"Pve ¢ (m-i—n)[pe]. By Lemma 7.7, fP**ett ¢ mll and it follows that
(fg)P"Oett e mll < (m + n)PT. Thus, p° (A, = max{a : (fg)* ¢ (m + )P} =

P ptmin(fg)), (see Lemma 7.7) for all e > 1. O

3 The F-pure threshold of a binomial hypersurface

Theorem 9.14. Suppose P is minimally defined by Support(f) with unique maxi-

mal point 7 satisfying |n| < 1. Let L = sup{N : ¢, (m)+ce () < p—1V0<e < N}
1. If L = oo, then fpt,(f) = |n|.

For the remainder, we will assume that L < oo and both 7; and 7, are non-zero. Let

¢ :=max{e < L:c.(m)+ce(n) <p—2} (We will see that 1 < ¢ < L.)

2. If neither {(n), + (i, 0) nor {(n)y, + (0, I%) is contained in the interior of P,

then fptw(f) = (|nl).-
3. Otherwise, let ¢ = max { Ty, + (ﬁ, r) or {(n), + (r, I%) is in P } Then
(a) 0 <e < [|nl|],, with e = [|n|], <= either n; or n, is in ﬁ -N, and

(b) fptwm(f) = {|n|); + € < |n|, with fptn(f) = |n| < either 1y or 7, is in
1. N.

p
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1 An example

We present an example which we hope clarifies the statement of Theorem 9.14.
Example 9.15. Let f = u1x7y? + upz®y® € K|z, y] with uy,us € K*, so that

_ 2 281+682<1
P = (81782)€R>0.

781+ bss <1

Note that P is minimally defined by Support(f) and contains a unique maximal

point n = (3%, 3%) (see Figures 9.15.1 and 9.15.2), so that fpt,(f) is computable via

Theorem 9.14.

Theorem 9.14 states that for primes p with the property that the non-terminating

1 5 3

base p expansions of 25 and 2 add without carrying, then fpt,(f) = 3t 3 =1

32 32
As in Example 4.4, if p = 1 mod 32, (for example, if p = 97,193,257, 353 or 449)
then the expansions of 1/32 and 5/32 are constant, and thus add without carrying.
However, there exist primes p such that fpt,(f) = % with p # 1mod 32. For
example, if p = 47, then 45 = . 122 (base47) and & = .7 16 (base47).

We will now compute fpt,,(f) when p = 43. As

(9.15.1)

1
33 114 33 25 22 36 12 4 (base43) and 3% =.6303841289 17 20 (base 43),

we see that carrying occurs at the second spot, and that £ = L = 1. By (9.15.1), we

see that (), = (55, 5 ), and Figure 9.15.1 shows that

{<n>l+ (2—30> ), + (04—13) } "P-g

By Theorem 9.14, we conclude that

Epta(f) = nl>; = <1—36> _ 4% when p — 43.
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We now compute fpt,(f) when p = 37. As

(9.15.2)

1
3= 15283319 24 10 15 (base 37) and 3% =.528331924 10 15 1 (base37),

we see that the first carry occurs at the third spot, and that ¢ = L = 2. We also see

from (9.15.2) that (n), = (3 + 322, & + =5 ), and Figure 9.15.2 shows that

{<n>2 + <$0> )y + (o, %) }  Interior P.

From Figure 9.15.2, we also sce that ¢ = max {r: (n), + (5=,7) € P }. More-

over, Figure 9.15.2 shows that the point (1), + (5,¢) lies on the hyperplane

3. =.00227 14 29 (base 37).

7514589 = 1, and an easy calculation shows that € = =

Thus, Theorem 9.14 shows that

3 -
fpta(f) ={(nl), +€ = <E> +¢e=.634227 14 29 (base37) when p = 37.
2

S1

Figure 9.15.1: p =43, { = L = 1, fptw(f) = (&), = .8 (base43).

2 An algorithm

We now show how Theorem 9.14 may be used to construct an algorithm for

computing the F-pure threshold at m of any binomial over K.
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Figure 9.15.2: p = 37, { = L = 2, fptw(f) = (&), + € = .6 34 227 14 29 (base 37).

Algorithm 9.16. Let g € K|xy,- -, 2] be a binomial.

Step 1: Factor g as g = u-h for some monomial p and binomial A so that no variable
appearing in p appears in h, and so that no variable appears with the same exponent
in both supporting monomials of h. As in Remark 9.6, the polytope P associated

to Support(h) will contain a unique maximal point n € P.

Step 2: Reorder the variables so that p = z7* - - 23" . By Lemma 9.13,

fptim(g) = fptwm(p - k) = min { fpt(, . 2y (1), TPy, 1o 2y (R) }

and it is an easy exercise to verify that fpt(,, ... z,) (1) = min { i, cee é }
Step 3: We must now compute the F-pure threshold of h. As in Corollary 9.11,

eliminate inactive variables from h to obtain a polynomial f with the property that

Support(f) minimally defines P.

Step 4: If |n| > 1, it follows from Lemma 9.12 that f =y + 2" for some n > 1. In

this case, it is an easy consequence of Theorem 8.1 that fpt(,.\(f) = 1.

Step 5: If |p| < 1, we may compute the F-pure threshold of f using Theorem 9.14.
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3 Proof of Theorem 9.14

This subsection is dedicated to the proof of Theorem 9.14. We will rely heavily on
the following two technical lemmas whose proofs will be postponed until the following

subsection.

Lemma 9.17. Let ¢/ < L < oo be as in Theorem 9.14. Then
1. 1<{¢<Land
2. (e + ey + r = o + 2y + 5 = (I + 1)
3. Furthermore,

primtmyy g gl e P et )t g ]

— {<"7>g + (]%,0> A, + (0, ]%) } N Interior P # .

Lemma 9.18. If ¢ := sup {r : {<77>e + (r, I%) Ay, + (ﬁ,r)} NP # @} > 0, then
1. 0 <e<[|nl],, with e = [|n|], <= either n; or 7, is in ]% -N,
9. fr(mmdi+@e) ¢ ] for all e > L, and
3. fpe(<m+"2>L+<E>e+P%) e mlPl for all e > L.

Proof of Theorem 9.14. If L = oo, it follows from Theorem 7.6 that fpt,(f) = |n|.
For the remainder of this proof, we will assume that L < oo and that both 7; and
7y are non-zero (since if one were zero, they would add without carrying). The
assertion that 1 < ¢ < L is the content of the first point of Lemma 9.17. It follows

from Theorem 7.6 that

(9.18.1) Bptu(f) = (), + oy + pi (4,
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where the last equation in (9.18.1) follows from Lemma 9.17.

We will first assume that neither (n), + (ﬁ, O) nor {n), + (0, z%) is in Interior P.
By means of contradiction, suppose that the inequality in (9.18.1) is strict. It then
follows from Lemma 4.6 that {(fpt.(f)), = (m + m2),, and Lemma 7.7 then shows

that

pr<m+nz>L ¢ mlr"l

However, this contradicts Lemma 9.17, and thus we have equality in (9.18.1).
It remains to prove the third point. The assertions regarding ¢ > 0 is the content
of the first point of Lemma 9.18, which also shows that

(9.18.2)

P ({m + myp +{e),) = max { N : N ¢ ml] } = pptu(f)), foralle =L,

where the last equality holds by Lemma 4.6. Finally, dividing (9.18.2) by p® and

taking the limit as e — oo shows that fpt,(f) = (n +m2); + €. O

4 Proof of the main technical lemmas

In this section we prove the two lemmas used in the proof of Theorem 9.14.
Lemma 9.17. Let ¢/ < L < oo be as in Theorem 9.14. Then

1.1</{<Land

2. (g + ey + r = o + 2y + 55 = (e + 1)

3. Furthermore,

primtmyy g gl P e )t g ]

— {<"7>g + (;,0) A, + (0, ;) } N Interior P # .
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Proof. We will first show that L > 1. If L = 0, then by definition we have that
¢1 (m) + ¢1 (2) = p. This implies that ny + 9y > (), + (ppp, = 2tele) >
contradicting the assumption 7, + 7o < 1. We have that ¢ < L by definition, so
it remains to show that that ¢ # 0. If ¢/ = 0, then by definition we have that

Ce (M) + ce(n2) = p—1for 1 <e < L, from which it follows that (), + (n2); =

ZeLzl ’%1 = pzzl. By definition of L, we have that cr,1 (1) + cr+1 (12) = p, and so

cr(m)+epa(mp) _ph—1 1
m+n2 > <771>L+1 +<772>L+1 = <771>L+<772>L+ = pLH u = +— =1,

which again contradicts the assumption that n; + 7, < 1.

To prove the second point, we may assume that ¢ < L. By definition of £ and L,

iy +neyp =y + 2y + ZEL:£+1 pp_el. From this, we may conclude that

L
1 p—1 1 1
g + ey + — =y + {2y + Z — + — =)y + )y + -
p eety1 P p p

The assertion that (1), 4+ {n2), = {(m + 12, follows from Lemma 4.17.

We now prove the last point. As (m1), + (n2), + z% = {m + 12y, we have that

fpe<m>e+p‘<?72>g+1 _ fp£(<’7>z+<">e+ﬁ) _ fp‘<m+?72>L.

From this, we see that

fp‘3<m>e+p‘<nz>e+1 _ fp‘f<m+nz>L ¢m[pe] — (fp‘<n1+n2>L>p — pr<?71+772>L ¢m[pL]_
We now prove the remaining equivalence. We will begin by supposing that

{<n>z + (}%o) (), + (0, ;) } A Interior P % .

Without loss of generality, we assume that o := (n), + (ﬁ, O) = (<771>£ + #, <772>z)

is in the interior of P. We gather some important properties of o below:

1. We have that o € z% N2, and that |o| = (m), + (2, + #,
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2. By definition of ¢ < L, we have that c. (1) + ¢ (2) < p — 1 for e < ¢, with
this inequality strict for e = £. This shows that the coordinates of p‘c € N2

add without carrying, and by Lemma 4.14, we have that

4
(p l‘ﬂ) %0 mod p.
p o

3. Finally, as o € Interior P, it follows that p‘oiv; + plosw; = p(vi,w;) * o < p*

for all 1 < i < m, so that a1 ro2w ¢ mbl,

The first two points above, combined with Lemma 9.9, show that gPlowvtpiow jg
contained in Support ( fpl<"1>f+pl<”2>l+l> , while the last point shows that P‘o1v+pfo2w ¢
mlP’]. From this we may conclude that fP/¢etp @1 ¢ el

To conclude the proof, suppose that fP*@met et ¢ mPl Our aim now is to
show that either (n),+ (ﬁ, 0) or {m),+ (O, ﬁ) is in the interior of P. By assumption,
there exists an element k € N? with |k| = p* (m), + p’ (n2), + 1 such that z*¥ T« ig
contained in Support(f) but not in mPl. Let o = (ay, o) := z% - k. We summarize

some important properties of a:
4. € i ‘Nand |a| = (), + (2, + i_

5. As ghwvtkew ¢ m[pl], every entry of kv + kow is strictly less than pf, which

shows that a € Interior P.

By (4) above, it is not possible that both a; < (1), and ay < (n2),. Without
loss of generality, we will assume that oy > (1), + z%’ and substituting this into (4)

forces the inequality oy < (1:1),. By (4) again, we see there exists NV € N such that

6. o+ (g—g) — (), + (o,i).
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We now show that (1), + (O, %) € Interior P. By Lemma 4.6, (), + - > 19, so that

P P
1 1\,
By (9.18.3), to show that {(n), + (O, ﬁ) € Interior P, it suffices to show that

(9.18.4)

1
iy, + (0, F) ¢ Interior P n *P
={s E]RZZO 159 = mo and (v, w;) *s < 1V (1, w;) with 1; < wi}.

In (9.18.4), we have used the assumption that Support(f) minimally defines P, along

with the description of * P given in Lemma 9.8. By (6) above,

(9.18.5) (v, wi) » (<"7>z + (01%» = (W) » (O‘ " (%‘%))

N N
= (v, wi) * a0 + (v, w;) = <ﬁ7 —17)
= (y,w;) * o+ — (V; —w;) .
(vi, wi) pg( )

Finally, as a € Interior P, it follows from (9.18.5) that

(v, w;) = (<n>£ + (O, ;)) < (v, w;) *a <1 forall v; < w;,
which shows that the desired containment from (9.18.4) holds. O
Lemma 9.18. If ¢ := sup {r : {<77>e + (r, ﬁ) Ay, + (i,r)} NP # @} > 0, then
1. 0 <e<[nl];, with e = [|n|], <= either n; or 1, is in z% N,

9 f‘pe(<771+772>L+<€>e) ¢ mlP] for all e > L, and

3. fpe(<771+772>[,+<€>6+p%) = m[Pe] for all e > L.
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Proof. We prove the first assertion. Suppose that (1), + (r, I%) is in P. It follows

from the fact that i is a maximal point of P and Lemma 9.17 that

ﬂmn+r=@0w4m»+§+w=}m»+(n%)kum=ﬂmn+MML,

which shows that r, and consequentially ¢, is less than or equal to [|n|];.

Suppose that ¢ = [|n|], and that {(n), + ([[|77|]]L : I%) € P. Note that

\m»+(meja\=@oﬁwm»+§+@h+mh=@h+mn+Wn+mh,

which shows that (n),+ ([[|77|]] I i) is a maximal point of P. As n is the unique such
point of P, we have that n = (n), + ([[|77|]]L , Z%) This shows that 7, = (12), + z%’

which by Lemma 4.6 shows that 7, € z% - N.

1
Y

Conversely, without loss of generality, suppose that 7, € i -N, so that [ ], = 2

by Lemma 4.6. We have already seen that ¢ < [ + 12],, and to prove equality it

suffices to show that (1), + (#, Im + n2]L) e P. Observe that

<771 + 772>L + [[771 + 772]]L =T+
= (Mg + [ml, + 2 + [m2],

=@m+§+@m+mm
= {m +m2); + [n2],-

From this, we conclude that

(9.18.6) I+ 2], = [ne], -

Finally, from (9.18.6), we have that

et (o momly ) = et (5 Dnll) = (@ + 5o+ I, ) = m e P
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We will now show that fpe+L(<"1+”2>L+<€>e+L) ¢ mlP] for all e > 1. We know that

either (n),+ (i, 6) or {n),+ (5, ﬁ) is contained in P, and without loss of generality

we will assume that (1), + (i, z—:) € P. Fix e > L, and consider the element

(9.18.7) o= (<n1>f + Z%’ (N2, + <€>e> € 1% -N.

We summarize some important properties of o below:
L |o] = (e + (e + 57 +4e)e = i + m2)p, + (),

2. By definition of ¢ < L, the integers p* (<n1>z + z%) and p‘{ns), add without
carrying. As e = L > /, the integers p° ((7}1}5 + z%) and p°®{(ny), also add
without carrying. Furthermore, the integers p° (<771>£ + ﬁ) and p° (1), are
both greater than or equal to p°~¢, and hence also greater than or equal to
p L. By Lemma 9.17 we know that (¢), < ¢ < [m +m], < ﬁ, so that

p®(e), < p* L. It follows that the entries of p°c add without carrying, so that

(p;JZ‘) # 0 mod p by Lemma 4.14.
3. Finally, as (¢), < ¢, it follows that o € Interior P.

By Lemma 9.9, the first two points above show that the monomial g? o1 ¥1+p 2w
is contained in the support of fpe(<m+’72>L+<€>e), while the third point shows that
this same monomial is not contained in m[Pl. From this, we may conclude that
fp‘i(<m 2y e, ) ¢ mlP! for all e > L.

We will now show that fpe(<m+”2>L+<€>€+pi€) emlPl for all e > L. As

e—

L
(@) ( pr<m+nz>L>” et

it suffices to show that

(9.18.8)

e—L

12 iy € mlPl for all py € Support (pr<"1+”2>L) and 5 € Support (fpe<€>e+1) .
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We may assume that p, ¢ mlP"1 and o ¢ mlPl for otherwise the containment in

a1V +agw biv+bow

(9.18.8) holds trivially. Thus, we may write pu; = and g = @ for
some a = (a1, az) and b = (by,by) in N? with |a| = p¥ (g + m2), and |b| = p¢ (&), +1
such that every entry of a1 + asw is less than p* and every entry of v + byw is
less than p¢. We set o := ﬁ -a and 3 = z% - b, and summarize some important

properties of a and 3 below:

4. ac€ o - N? n Interior P, and || = (1 + n2)p, = (g + i)y + o7

5 Be I% - N2 n Interior P, and |B| = &), + 1%'

Under this new notation, the condition appearing in (9.18.8) may be restated as

(P rartb vt (p Pzt )w _ pf(atB) ¢ mlP,

From this, we see that to conclude the proof, it suffices to show that

(9.18.9) o + (3 ¢ Interior P.

By (4) above, it is not possible that both a; < (1), and oy < (n2),. Without
loss of generality, we will assume that ay > (1), + z%’ and (4) above again shows

that ag < {n1),. Thus, there exists N € N such that

() = (o)

For indices ¢ with v; < w;, we have that

(9.18.10) (i, w;) » (<r,>g T (0,}%) +5) — (i) + (a + (% _EZ) +5)

p

N
= (v, wi) = (a+ B) + o (Vi — w;)

< (I/Z‘,wi) # (a + ,6) .
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By (9.18.10), to demonstrate (9.18.9), it suffices to show that

(9.18.11) (v, w;) = (<77>e + ( ’pg) + ﬁ) > 1 for some ¢ with v; < w;.

There exists an ¢ with v; < w; by our assumption that 7; and 7y are non-zero.
We will now conclude this proof by showing that the desired statement in (9.18.11)
holds. As 3 € 1% ‘N2, it follows that 3 must be contained the line segment determined

v (0,]3|) and (|8|,0), and thus must be of the form
(9.18.12) B =(|8],0)+t(—|B|,|8|) for some t € [0, 1].

If v; < w;, then (9.18.12) shows that

(9.18.13)

i)« (e (05 ) +8) = Gra) « (+ (181, ) + (Il |ﬂ|))

N
~ )« (@ + (181 ) ) + Bl

> (v, wi) * <<77>£ * (|ﬁ|’17)>

Comparing (9.18.11) with (9.18.13), we see that it suffices to show that

1
(v, w;) = <<77>£ + <|ﬂ|, 7)) > 1 for some ¢ with v; < w;.
p

However, as |B| = (), + Z > ¢, it suffices to show that

1
(v, w;) = ((n}z + (5, 17>) > 1 for some i with v; < w;.

By definition, we have that {(n), + (0, I%) € *P, and it follows from the definition
of ¢ that (n), + (5, i) is not contained in Interior * P. By Lemma 9.8, this shows

that
1 o
(viywi) = [ (M), + | &, i > 1 for some i with v; < w;,

which allows us to conclude the proof of the Lemma. O
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