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ABSTRACT

Compiler and Runtime Techniques for Automatic Parallélaraof Sequential Applications

by

Mojtaba Mehrara

Chair: Scott Mahlke

Multicore designs have emerged as the mainstream desigdigar for the microprocessor
industry. Unfortunately, providing multiple cores doeg dwoectly translate into performance
for most applications. An attractive approach for exptgtmultiple cores is to rely on tools,
both compilers and runtime optimizers, to automaticallyat threads from sequential applica-
tions. This dissertation tackles many challenges facedtionaatic parallelization of sequential
applications, including general-purpose applicationgter in C/C++ and client-side web ap-
plications written in JavaScript, with the goal of achiayispeedup on commodity multicore
systems. First, a complete parallelizing compiler systenC/C++ is introduced. This system
successfully identifies parallelization opportunitiespiograms and transforms the code to a
parallel version. A matching runtime system, STMlite, isgosed to monitor the parallelized

program behavior and fix any misspeculations that might eap@/e show that this system can

Xi



generate and execute parallel programs that are upto Xt than their sequential counter-
parts, when executed on an 8-core commodity system.

The second piece of work focuses on a similar problem in a agefgrent application do-
main, JavaScript programs running on the client’'s web besw3his dissertation is the first
research work that proposes dynamic and automatic pazatiein of JavaScript applications.
The nature of the JavaScript language and its target execativironments impose a com-
pletely different set of challenges that we intend to sole. first propose the ParaScript par-
allelizing engine, which identifies and speculatively flai&zes potentially parallel code seg-
ments while the code is running in the browser. A low-cost laigthly customized speculation
approach verifies the execution of the parallelized cl@dé code and rolls back in case of any
misspeculation. Dynamic parallelization using Para$griglds an average of 2.18x speedup
over sequential JavaScript code on an 8-core commoditgmsysin addition, we introduce
ParaGuard, a technique which executes the runtime chegised by trace-based JavaScript
compilers in parallel with the main execution. ParaGuarduike to improve performance by

15% by using an additional core in multi-core systems.

Xii



CHAPTER 1

Introduction

For more than four decades, the semiconductor industry éesndied on Moore’s law to
deliver consistent application performance gains thrabghmultiplicative effects of increased
transistor counts and higher clock frequencies. Howewaxep dissipation and thermal con-
straints have emerged as dominant design issues and far@teats away from relying on
increasing clock frequency to improve performance. Exp@akgrowth in transistor counts
still remains intact and a powerful tool to improve perfomoe, though the paradigm through
which performance is perceived has shifted. Performaneevisbased on throughput, utilizing
multiple cores performing computation in parallel to coatpla larger volume of work in a
shorter period of time. These multicore systems have bet¢benedustry standard from high-
end servers, down through desktops, gaming, and even npaiferms. However, one of the
most difficult challenges going forward is software: if thember of devices per chip continues
to grow with Moore’s law, can the available hardware resesitoe converted into meaningful
application performance gains? Multiple cores readilphvethere threads are plentiful, such as
web servers. However, they provide little or no gains foruseqjial applications. In fact, the

performance of sequential applications may suffer duedautie of simpler cores.
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Figure 1.1: Performance of SPEC CPU benchmarks over the past two decé@ldes/-axis is in loga-
rithmic scale.

This effect is clearly illustrated in Figurg.1l, which shows the performance of sequen-
tial SPEC CPU benchmarks over the past two decades. Up &, Zequential applications
were enjoying exponential performance improvements asudtref various architectural tech-
niques, larger caches, and scaling in the processor’s tipgfeequency. However, with the
industry-wide shift to multicore systems, this expondrgiawth slowed down mainly due to
the adoption of simpler architectures, smaller cachesqrey, @nd lower frequencies.

One way to alleviate this performance deficiency is to dgvekplicitly parallel programs
to make use of the additional resources in multicore prasss#/lany new languages have been
proposed to ease the burden of writing these programs,dimguAtomos R7], Cilk [39], and
Streamlt B5]. Despite these and many other languages, the effort iedailv creating correct
and efficient parallel programs is still far more substdmiian writing the equivalent sequential
version. Developers must be trained to program and debuggihy@ications with the additional
concerns of deadlock, livelock, and race conditions. Cdimgan existing sequential applica-
tion is often more challenging, as it may not have been deegldo be easily parallelized in

the first place. The lack of necessary compiler technologyaseasingly apparent as the push



to run general-purpose software on multicore platformsdgired p9].

An attractive approach for exploiting multiple cores is ¢dyron tools, both compilers and
runtime systems, to automatically extract threads fronusetial applications. However, de-
spite decades of research on automatic parallelizatiost tachniques are only effective in the
scientific and data parallel domains where array dominatel#s can be precisely analyzed
by the compiler. Thread-level speculation offers the opputy to expand parallelization to
general-purpose programs, but at the cost of expensivevasedsupport. In addition, these
techniques provide means for the automatic parallelinatfostatically typed general-purpose
languages such as C, C++ and Java, without providing sokifar the emerging and increas-
ingly important web applications.

As the web becomes the platform of choice for the executiomofe complex applica-
tions, a growing portion of computation is handed off by depers to the client side to reduce
network traffic and improve application responsivenes®rétore, the client-side component,
often written in JavaScript, is becoming larger and more pat@-intensive, increasing the de-
mand for high performance JavaScript execution.

Historically, achieving high performance has been a diffichallenge for dynamically
typed languages such as JavaScript. The types of variatbteex@ressions may vary at run-
time, thus the compiler must emit generic code that can leeadtipotential type combinations.
The most straight forward technique for executing such @gecode is through interpretation,
which is extremely slow in comparison to executing binageserated for statically typed lan-
guages such as C or C++. There have been many recent andrapegfoirts to tackle this per-

formance bottleneck by web browser developers, with a doeats on improving the sequential



performance of JavaScript progran® 40]. They mostly try to accelerate these programs by
compiling them down to the binary code, while adding someiliiéty to fix the execution
flow in case types change dynamically. However, with the stiguwide move to multicore
platforms, these techniques provide no solutions to st@gérformance. On the other hand,
due to the lack of concurrency support in the language aniihnersystems, JavaScript appli-
cations have been written as sequential programs by defehdirefore, there is no immediate
way of exploiting available hardware resources in mulésaio improve performance. Straight
forward application of static parallelization techniquesneffective for a number of reasons,
including the inability to perform whole program analysiad expensive profiling and memory
dependence analysis.

In this dissertation, the above challenges in exploitingalbaism are addressed by intro-
ducing novel techniques for automatically extracting preliam from sequential, bumplicitly
parallel, applications. Such applications are written and debugged) a sequential language,
such as C, C++ or JavaScript. However, they contain imgdierallelism that can be identified
and exploited using advanced compilation and runtime nréshes. We focus on automatic
parallelization on commodity multicore systems in two véifferent domains, general-purpose
applications written in C/C++ and client-side web appl@as written in JavaScript. In the fol-
lowing sections, we first look into the static versus dynapaallelization paradigm, and then

we detail our contributions in this work.
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Figure 1.2: Static parallelization framework. Analysis and code gatien is done at compile time,
while the runtime provides speculation support.

1.1 Static and Dynamic Parallelization: Challenges and Opgrtunities

1.1.1 Static Speculative Parallelization

There is a long history of static techniques for automatit sipeculative parallelization of
scientific and general purpose applications. As shown inr€id).2, these techniques usually
make use of a combination of memory dependence analysist@oalias analysis), memory
access profiling, execution graph profiling, and data flowyasigto identify potential loops for
parallelization and generate parallel binary code usiffgrdint speculative frameworks such as
speculative DOALL §7, 93] and DSWP 87]. This binary is later executed along with a runtime
speculation engine to monitor execution and roll-back seaaf any misspeculations.

There have been various proposals for providing speculaigport to programs both at



the hardware and software level. In hardware, many reseeocks introduce techniques for
speculation at the cost of complicated and expensive haedswpport 29, 46, 64]. However,
with the exception of Sun’s Rock processai], which had very limited hardware speculation
support, none of these works have made their way into redyats yet, mainly due to the high
implementation costs and complex verification challenges.

Providing speculation support in software in the form ofteafe transactional memory
systems, has also been a very popular research topic. Hovadxeating the need for extra
hardware support comes at a considerable performanceMasy. previous works18, 35, 49
tackle various performance and correctness issues in a@&tiwansactional memory models.
Despite being effective in some applications, the kind ofgezess logging and expensive soft-
ware checks makes them unusable in many scend8psgspecially sequential program par-
allelization where the performance improvements mightcgetpletely offset by the software
speculation overhead. Therefore, we look into loweringcthe of software speculation by cus-
tomizing it to the loop level parallelization target. As wesdribe in Chapte2, by removing a
number of requirements associated with conventional swéwansactional memories, and uti-
lizing software bloom-filter based signatures to track menazcesses, we are able to achieve

speedup by static parallelization of C/C++ applicationg€ommodity multi-core hardware.

1.1.2 Dynamic Speculative Parallelization

While static parallelization techniques prove effectiee fanguages such as C/C++ and
Java, they fail to operate efficiently for highly dynamic gamments like that of JavaScript,

where the source code is shipped to the client right befagewdion and all the efforts of inter-
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Figure 1.3: Dynamic parallelization framework. Analysis, code getieraand speculation is done at
runtime.
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Runtime

pretation, just-in-time compilation, and execution isfpened on the client's web browser. In
such a setting, as shown in Figure3, all steps of the parallelization process including analys
parallel region selection, and parallel code generati@ds#o be done at runtime, in addition to
the runtime speculation. Therefore, many of the technigses for static parallelization would
be too expensive to be applied at runtime. For instancepasiih [42] recently proposed a static
JavaScript pointer analysis for security purposes, wtakhs about 3 seconds to complete on a
set of JavaScript programs with an average size of 200 lihesde. Performing this analysis
at runtime is quite prohibitive, even for programs of thaesiThis overhead would be higher
for larger applications that consist of hundreds of linesade [/3]. In addition to compiler
analysis, the overhead of performing memory access pmfdtrruntime is also unacceptable.
The work in (6] reported 100x to 500x increase in the execution time aswdtresperforming
static memory profiling on C/C++ applications.

Therefore, with the exception of simple data flow analysid ande generation (both of
which are already done at runtime in JavaScript enginesgynardic parallelization framework
cannot afford to utilize any of the static compile time st@p&igure1.2 The lack of static

information makes the use of C/C++ customized softwareldpgon engines, as proposed in



Chapter2 and also in $7, 69, 86|, very expensive. As we show in Secti@rb, this overhead
could make the parallelized version of the code up to 4x siahen the original sequential
application.

Having these constraints in mind, we introduce low-costlagtly customized analysis and
speculation techniques in Chapt&and4 to alleviate most of the overheads associated with
static parallelization, and achieve speedup for JavaSapiplications on off-the-shelf multicore

hardware.

1.2 Contributions

In this dissertation, with our goal of parallelization omomodity hardware, we look into
reducing compilation and runtime overhead for both C/C+d davaScript platform using two
main insights. First, instead of fine-grain runtime chegkior conflict detection, we perform
coarse-grain checks using software bloom filter signatur€shapter2, range-based and ref-
erence counting-based checks in Chafteand decoupled parallel checks in ChapteiThis
gives us the opportunity to significantly reduce the chegkiverhead, which has been done on
a fine-grain per-access fashion in prior art, and enablézeg@in of automatic parallelization
techniques on off-the-shelf multicore hardware. Secogdaking less risk and perform more
pessimistic speculation, we are able to reduce a largegoooti checking overhead in Chap-
ters2 and 3 and snapshot taking overhead in Chagtdn particular, the contributions offered

in this dissertation are as follows:

e First, a complete parallelizing compiler system for C/Cs+presented. This system

identifies parallelization opportunities in sequentiagrams and generates their parallel



counterpart. In order to ensure the correctness of thelpkzat code, a runtime specu-
lation system, called STMlite, is proposed. STMIi&]is a low-cost software transac-
tional memory system which monitors and validates para#dlexecution at runtime and
rolls back execution in case of any misspeculations. SEMiliminates a considerable
amount of checking and locking overhead in conventionahsok transactional mem-
ory models by decoupling the commit phase from the main &etien execution, and
using software-based bloom filter signatures to detect ictsfletween transactions. By
utilizing these signatures, the overhead of individual mgnaccesses within each spec-
ulative region is minimized. The centralized commit pracesables both effective cross

checking of signatures and in-order speculative regionnsiiswith minimal overhead.

The second part of this dissertation focuses on extractargllelism from JavaScript
web applications. In order to exploit hardware concurrembife retaining the traditional
sequential programming model, we propose ParaS&Hg}t an automatic runtime par-
allelization system for JavaScript applications. First, imroduce a runtime scheme for
identifying parallelizable regions, generating the petatode on-the-fly, and specula-
tively executing it. Second, we propose an ultra-lighti¢gpftware speculation mecha-
nism to manage parallel execution. This speculation ergpnsists of a selective check-
pointing scheme and a novel runtime dependence detectichanism based on refer-
ence counting and range-based array conflict detection. s¢giem is able to achieve
speedup over the Firefox web browser using multiple threedsommodity multi-core
systems, while performing all required analyses and carditection dynamically at

runtime.



e The final part of this dissertation, ParaGuard, exploitstttea processing power in mul-
ticore systems to further improve the performance of tita@sed JavaScript executions.
Trace-based just-in-time compilation has been proposeatitiiess the sequential per-
formance bottleneck in JavaScript applications. In tlaased engines, a considerable
portion of execution time is spent on runniggardswhich are operations inserted in the
native code to check if the properties assumed by the cothpilde actually hold during
execution. We introduce ParaGuaff] to off-load these guards along with their back-
ward slices to another thread, while speculatively exegutiie main trace, and thereby,
take the checking overhead off the execution’s criticahp&t a manner similar to what
happens in current trace-based JITs, if a check fails, RexalGaborts the native trace ex-
ecution and reverts back to interpreting the JavaScrigdngde. We also propose several
optimizations including guard branch aggregation and lgréiiased snapshot elimination

to further improve the performance of our technique.

The rest of this dissertation is organized as follows. Cégbintroduces the C/C++ paral-
lelizing system and th8 TMlitesoftware transactional memory system. HagaScriptsystem
for automatically and speculatively parallelizing Javyd@execution is described in Chapter
Parallelizing runtime checks with the main executioParaGuardis presented in Chaptédr

Finally, Chaptes provides a summary and concludes the dissertation.
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CHAPTER 2

Parallelizing Sequential C/C++ Applications on
Commodity Hardware using a Low-cost Software

Transactional Memory

2.1 Introduction

As the scaling of clock frequency and complexity of unipssm's has reached physical
limitations, the industry has turned to multicore desigdewever, having multiple cores does
not directly translate into performance for most applimasi. The industry has already fallen
short of the decades-old performance trend of doublingoperdnce every 18 months. While
explicit parallel programming is one potential solutiorilie problem, itis not a panacea. These
systems may burden the programmer with implementationlgleiad can severely restrict pro-
ductivity and creativity. In particular, getting performze for a parallel application on a het-
erogeneous hardware platform, such as the Cell archiggatéten requires substantial tuning,
a deep knowledge of the underlying hardware, and the usesofapibraries. Further, there is

a large body of legacy sequential code that cannot be plzatieat the source level.
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Techniques for parallelizing Fortran progran0,[25, 34, 44] usually target counted loops
that manipulate array accesses with affine indices, whereanedependence analysis can be
precisely performed. Unfortunately, these techniquesatmfien translate well to C and C++
applications. These applications, including those in ttiergific and media processing do-
mains, are much more difficult for compilers to analyze dutéhtextensive use of pointers,
recursive data structures, and dynamic memory allocakitmre sophisticated memory depen-
dence analysis, such as points-to analy@8, [can help, but parallelization often fails due to
unresolvable memory accesses.

Thread-level speculation (TLS) offers an opportunity fargilelizing C and C++ applica-
tions. With TLS, the architecture allows optimistic exeontof code regions before all values
are known B3, 45, 51, 65, 80, 84, 94]. Hardware and/or software structures track memory ac-
cesses to determine if any dependence violations occuuchn@ases, register and memory state
are rolled back to a previous correct state and sequert&édereution is initiated. With TLS, the
programmer or compiler can delineate regions of code badi€lut not provably) to be inde-
pendent and amenable to parallelizatidg, [37, 53, 55]. Profile data is often utilized during this
process. The POSH compiler is an excellent example whereyldl&ed approximately 1.3x
speedup for a 4-way CMP on SPECint2000 benchm&®s More recent work has shown that
additional loop-level parallelism is covered up by a smathiber of register and control depen-
dences, but can be unlocked with several dependence bgdekinsformationsd3]. Outer-loop
pipeline parallelism has also been identified as a key mdizdtion opportunity. Bridgest al.
report a geometric mean of 5.5x gain on SPECint2000 (witiakée number of threads up to

32) using decoupled software pipelinirizf].
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Proponents of TLS advocate hardware support for specualgénerally in the form of trans-
actional memory or similar technique$q, 84]. Bulk tracking of memory dependences using
signatures along with dedicated structures for managiegigptive state provide an efficient
environment for TLS29]. However, the cost and complexity of implementing hardwar hy-
brid Rock processo3[l], hardware support for TLS has not made it into mainstrearticoue
systems yet.

Alternatively, software TMs, or STMs, offer the opportynior TLS support without any
dedicated hardware. The first STM by Shaatital. maintained read and write access locations
in order to roll back in case of a transaction ab@i|[ Many other works 35, 47, 50, 54, 74]
proposed different forms of STM to tackle various perfore@and correctness issues involved
in these systems. However, these STM implementations atedaxpensive in terms of run-
time overhead. For parallel applications, STMs typicadlgult in visible slowdowns of 2x or
more. The problem is even worse for compiler parallelizegusatial applications where all
the gains and more are typically wiped out by the STM.

STMs generally focus on flexibility to support a wide variefitransactions and scalability
to enable many concurrent threads. STM control is fullyrtbsted to the running threads. In
this chapter, we take the opposite approach by introduSiflgllite a lean and efficient STM
specifically customized for automatic parallelization.thur focus on compiler paralleliza-
tion, the goal is managing a modest number of speculatieats (2-8) that a compiler can re-
alistically expect to find in C and C++ applications. Furtlvee focus on tightly integrating the
STM with the compiler parallelization framework to ensusevloverhead. Some requirements

of more generic STMs such as strong atomicit@][and special handling of local variables
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are not needed in this setting. Locks are removed by ceritrglthe TM bookkeeping on a
single, perhaps idle, core. In this manner, bookkeepirigtascur in parallel with transaction
execution and the overhead on each work thread is minimikfxkst importantly, centralized
control obviates the need for locks and their associatedheael. The obvious downside of
centralized control is the lack of scalability, but for a nestinumber of threads, large increases
in efficiency are possible for both parallelized and mutgdded applications.

This chapter is organized as follows. In Sectibg we discuss challenges in STM systems
and customization opportunities based on our main goal o loop-level parallelism.
Section2.3describes STMlite, our proposed STM model. We discuss aaitlpization frame-
work and the interaction between the compiler-generatelé emd STMlite in Sectio.4. In
Section2.5, we present our experimental results. Finally, SecBdhdiscusses related work

and SectiorR.7 provides a summary of the work presented in this chapter.

2.2 Motivation

2.2.1 Challenges in Software Transactional Memory Systems

STMs have the advantage of requiring no additional hardw&tewever, since it is im-
plemented entirely in software, it entails a large runtimerbead in maintaining transactional
state. The high overheads of an STM are due to several reaBoa$argest bottleneck in STMs
is the maintenance and validation of read sets in read-watesactions. These sets keep track
of every address read by a transaction, and are used to maiateerence between transactions.
For each load, the STM has to execute at least one transalcki@a and revalidate its times-

tamp when the transaction commits. As transactions regddamounts of data, this overhead
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Figure 2.1: Single-threaded runtime breakdown of the Transactionaking || STM system 35] on
two STAMP transactional benchmarks.

becomes substantial.

Secondly, global locks are necessary for transactionsite tack their final “correct” data.
During a transactional store, the address and value aredstoto a write set, deferring any
change in memory until commit. This allows transactionseimain coherent with each other,
but adds a considerable overhead during commit time foiimibtathe locks on these addresses
and writing them back to their final location. The use of lockthe data write back is expensive
as it involves atomic instructions.

In order to get a better understanding of what the major ssuof overhead are in an
advanced STM system, we performed an experiment on two STB&tehmarksg2] using a
state-of-the-art STM system - Sun’s Transactional LocRiii§L2) [36]. We measured the time
spent in each TM component of a single threaded transat&seaution of these benchmarks

using the TL2 library. A similar analysis has also been dor{é38]. Figure2.1shows the result
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of this experiment. The vertical is the execution time ndipea to the sequential runtime.
Vertical bars show the fractions of runtime spent in the nagiplication, transactional commits
(TxCommit), transactional stores (TxStore), and traneaat loads (TxLoad).

The chart clearly shows the large overhead of read set nm@nte in thé&/acation bench-
mark, which has large transactions with many transactiogeds. Keeping track of the read
set causes considerable overhead, as depicted by the Tyboi@ah of each bar. Additionally,
the checks required during commit to maintain read set esloer are extremely costl3]],
representing over half the runtime Vacation with high contention. For th&means bench-
mark, the overheads are not as severe because its reacesstsadler, but it still exhibits similar

behavior.

2.2.2 Speculation Requirements for Loop Parallelization

There are several aspects of STM models that are cruciabfoeatness in general. How-
ever, we can loosen some of these limitations and requirenethe loop parallelization do-

main to make the software-based speculation more efficient.

1. One of the shortcomings in STM models is the lack of strdng&city guarantees, which
raises correctness issues in parallel programs. Previots\iL7, 78, 75 have addressed
the issue of strong atomicity in STMs. While being effectitheese approaches impose a
non-trivial amount of complexity or performance overheadlwe system. However, us-
ing STM for speculation in loop parallelization obviates tieed for strong atomicity, be-
cause the execution consists of at most a single in-fliglallghfoop at each point. Since

all the code in the loop is running inside transactions,dlwm be no non-transactional
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code running at the same time as transactional code.

. Special handling of local variables in a STM is not requiif@ loop parallelization, be-

cause the loop iterations are not supposed to share anywhr@ables on stack. Otherwise,
they cause unresolvable cross iteration dependencesh wtaeent loop parallelization
to begin with. Therefore, there is no need to have specalinsactional loads and

stores for local variables.

. Zombie transactions are transactions that have readeavatae or pointer from memory
and have taken an incorrect code path which might lead tofaitenloop. One of the
main sources of zombie transactions are loops with contplicknked-list operations.
These loops are generally not parallelizable and therefeeedo not need to provide
efficient and complicated ways for handling zombies in a SBMIdop parallelization.
However, to ensure correctness in other cases, we providecaanism for handling

zombies in later sections that does not affect normal ex@tof transactions.

With these challenges in mind, we aim to tackle the two maurses of STM overhead: read-

set maintenance and lock-based writeback mechanism. Iticagdbased on the specific spec-

ulation requirements in loop-level parallelism, we makagifications to STMlite that makes

it even more efficient.

2.3 STMilite

In this section, we describe our proposed STM model, STMIkes was mentioned in

Section2.2, in traditional STM models, a considerable part of the ekeautime is spent in
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maintaining auxiliary data structures needed for proygdinrrectness guarantees. In particu-
lar, one of the major bottlenecks is construction, maimeeraand frequent checking of read
logs. The read log structure keeps track of the addressebj@cts in object-based implemen-
tations) read by each transaction. At transaction commadheddress in these logs is checked
for consistency. In addition, although the programmer doashave to deal with the sub-
tleties of lock-based programming, thanks to the usageoohiatblocks and TM primitives, the
performance of the underlying runtime system still suffieosn the downsides of using locks
in many implementations. In order to address these prohlantsas a step towards stylized
customization for speculation used in loop-level paredé&lon, we developed a new software-
based model that eliminates the need for read log mainterduring transaction execution and
explicit locking during memory writebacks.

We assign a dedicated software thread for managing the gxeaf the transactions in-
volved in the main computation. This thread, which runs onnalividual core, is referred to
as the Transaction Commit Manager (TCM). Having a centrairad manager provides an
environment in which the manager is responsible for enguthat, at any given time, at most
one transaction is writing to a particular memory locatidnhth higher numbers of transactions,
there can be several coordinating TCMs with each TCM mamggagigroup of execution trans-
actions (TCM virtualization). In this way, we can avoid hayia single point of serialization in
highly parallel applications.

The STMlite model essentially consists of several exeoutiores for running individual
transactions and a TCM core for maintaining transactionakistency in the system. In the

following subsections, we explain in more detail how eaelp storks.
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Figure 2.2: STMlite execution model. Solid lines denote execution fl@ashed lines denote passing
messages by signals or memory polling. The dash-dot linesslam indirect write/read relation (each
transaction writes to a precommit log entry which is latedrey the TCM).

2.3.1 Overview

Figure 2.2 summarizes the operation of STMlite. The top rectangle shihve execution
flow inside each transaction. The bottom part is a summaryhatt\Wwappens inside the TCM.

Centralized management of individual transactions is npedsible by using transactional
read and write signatures, which are essentially hashdbaegeesentations of all reads and
writes performed during execution. Using signatures irdivare was first proposed i29].
However, unlike hardware, hash-based computations camntequite expensive in software.
Therefore, choosing the right set of hash functions anditbiegr size for signatures is crucial in
software systems to ensure minimal overhead and few falséyes at the same time. 149,
hashing schemes are used to remove duplicates in the rgatbundo-logs of the “same”

transaction. However, in order to use signatures for cdrdétection between different trans-
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Figure 2.3: STMlite data structures. Each transaction has an indiVideader. The TCM has a single
commit log and there is a precommit log for each executioe awide the TCM.

actions, a central manager is needed to check signaturgsagach other. In signature-based

HTMs [29, 92], this is done in the coherence protocol. Here, it is doneheyliCM.

Each transaction maintains a transaction header, whidtoisrsin Figure2.3. The transac-
tion header contains some information gathered duringéetion execution and is used during
the commit process. The main idea behind STMlite is thatrafigactions compute read and
write signatures during their execution. At commit, theypyohese signatures to a list called

the precommit log (Figur@.3). This log is basically a single-reader/single-writerfeuthat is
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TxLoad (Addr) {
if SignatureFind(Addr, Self->wrSig)
Load the correct value from the wrSet
else
Load from memory
SignaturelInsert (Addr, Self->rdSig)
}
TxStore(Addr, Data){
Store Data to the WriteSet
SignaturelInsert (Addr, Self->wrSig)

b

Figure 2.4: Pseudocode for transactional loads and stores.
read by the TCM and written by transactions. Its operationgpired by the reservation station
in traditional out-of-order processors. Committed tratisas reside in another data structure
called commit log (Figur@.3). The commit log is only updated and read by the TCM.

The TCM goes through precommit log entries and checks wh#ibe read signatures have
conflicts with the write signatures of overlapping alreadynmitted transactions in the commit
log. If there is no hash collision, the transaction is natifie start writing back its write set.
Otherwise, the transaction aborts and restarts its exatuiluring the write back process, the
TCM is responsible for preventing concurrent writes to thme addresses in memory. TCM
operation is detailed in Secti¢h3.3

In order to keep track of the relative start and commit timesamsactions, we use a global
clock mechanism similar to3p]. The TCM increments the global clock value whenever a
writing transaction commits. We define the start versiorefch transaction as the value of the
global clock at transaction start. Likewise, the commitsi@n is the value of the global clock

at commit time.
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2.3.2 Transactional Loads and Stores

Figure 2.4 shows the pseudocode for STMlite’s transactional load aock Sunctions.
TxLoad first checks the transaction’s write signatureqig) to see if this transaction has pre-
viously written toAddr. If so, it reads the data from the write setfet) and returns. In order
to avoid walking through the entire write set when the nundiestore-to-load forwarding in-
stances is high, we added a hash map to each transactiomtha&iscthe latest stored addresses
and values for quick retrieval. ThereforeAddr is found in the write signature, this hash table
is checked before walking through the write set. This hedgewer transactional load overhead
in many cases. If the transaction hasn’t writterAddr, data is loaded from memory anddr
IS inserted into the read signatureifig). TxStore StoresData to the write set and inserts
Addr to the write signature.

As can be seen, the only major extra overhead in transattmads and stores is due to the
signature insert and find operations, though they remainrcast for moderately sized signa-
tures. Furthermore, the signature operations can be @tseria decomposed fashion, separate
form transactional loads and stores, enabling more aggeessmpiler optimizations such as

hoisting the signature calculations out of the loops withdid of pointer alias analysis.

2.3.3 Transaction Commit Manager

As mentioned before, the TCM has two main data structuresptbcommit log and the
commit log (Figure2.3). The commit log keeps track of committed transactions, taedore-
commit log contains transactions waiting to be served by tkl. In order to reduce contention

among transactions, a separate precommit log is assigresittocore. Figur@.5 provides a
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TCMO {
for entry precommitTX in PrecommitLogs
if (precommitTX.Ready)
if (ConflictCheck(precommitTX))
Grant commit permission to precommitTX
else
Abort precommitTX
}
ConflictCheck(precommitTX) {
for entry committedTX in CommitLog {
if (precommitTX.startVersion < committedTX.commitVersion)
if HashCollision(precommitTX.rdSig, committedTX.wrSig)
return O;
+
if !(precommitTX.readOnly){
Go through WBActionList
wait for concurrent conflicting
WBs to finish
+
return 1;

}

Figure 2.5: Commit management in the TCM.

summary of what happens in the TCM during runtime.

The TCM constantly pollReady flags of precommit log entries (firsbr loop in the figure).

When it detects &eady is set, it reads the transaction’s start version and che@gainst the

commit versions of commit log entries (in the ConflictCheakdtion). If the start version of the

committing transaction is less than the commit version aframit log entry, we know that their

execution has overlapped at some point in time. Therefbey, should be checked for possible

conflicts (in theHashCollision function). In case of a hash collision between the signature

the committing transaction is instructed to abort by sgttime Abort flag in its header. If the

committing transaction passes the check against all qygrig commit log entries, it is safe to

be committed. This is all that needs to be done for read-oalystctions. Therefore, the TCM

23



sets theCommiitflag in the transaction header. It is not necessary to copyrdogmation about
read-only transactions to the commit log.

However, the mechanism is more subtle for writing transasti Since we want to avoid
having individual locks for writing back the write set to mery, the TCM needs to make
sure no concurrent writes are happening to the same addresg eriteback. The TCM uses
a secondary structure called the writeback action-WBi¢tionList) for this purpose. The
action-list has the same number of entries as the activadbra the system. At any given
time, it contains the write signatures of the transactidva have passed the commit check
in the TCM and are writing back their write set to the memoryhait a transaction is ready
to commit, the commit manager checks its write signaturenagjall write signatures in the
writeback action-list. If there is no collision, the commanager sets theommitflag in the
transaction header and writes the transaction’s writeasige to the action-list. Otherwise, it
keeps checking the list until the colliding entry has findkiting back. An extra bit is added
to the list to make sure that TCM does not repeatedly keepkangthe signatures that have
passed the collision test with the current committing teatisn before. These checks could
potentially become the TCM’s bottleneck, though we did notiage any considerable busy
waiting in our experiments. Subsequently, the TCM writes tiecessary information about
the committed transaction to the commit log, and moves orhézking the next entry in the
precommit log.

Since commit log entries are no longer needed after all apprhg transactions have fin-
ished, a clean up mechanism is required to remove unnegessaies. For this purpose, we

maintain a minimum start version (minSV) log which contaims start versions of all in-flight
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transactions. Each transaction adds an entry to this ldgi@tsne and removes it at commit or
abort. After each transaction commit or abort, the TCM stadm the commit log head entry
and checks it against the start versions in the minSV loghdfé are no overlapping in-flight
transactions with the commit log head entry, that entrynsaeed and the head pointer is incre-
mented. We keep doing this until the head entry in the conogitlas an overlapping in-flight
transaction. The reason we decided to use a circular buffehé commit log (as opposed to
a linked-list buffer) is to avoid the extra overhead of maining a linked list. Our commit log

model only allows us to remove entries from the head of thealudjadd entries to the tail.

2.3.4 Individual Transaction Commits

When a transaction reaches the commit point, it fills up aryentts precommit log with a
pointer to its transaction header and sets the erkggdy flag. Subsequently, it keeps polling
Commitand Abort fields, waiting for them to be filled by the TCM. In order to asddiusy
waiting at this point, we can relinquish the cbrghich is particularly useful when we have a
larger number of threads than cores.

After a transaction receives commit permission from the T@Malks through its write set
and writes back the actual values to memory. Because the T&@Mlheady made sure that there
are no concurrent transactions writing to the same locatitire committing transaction does
not need to lock any memory locations. We chose to use a lagjovemanagement strategy,
because an eager version management system without ldokduoes many complications in
rolling back updates to memory locations after a conflict.

To minimize the overhead of individual transactional lgaszy conflict detection scheme

In Linux, this can be done usingched_yield function.
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is employed. This works particularly well for speculatiarpport in loop parallelism, because
minimum transactional load overhead is important for gagrperformance from parallelizing
loops. Furthermore, conflicts are rare due to the smart lebgcson, and trying to detect
conflicts eagerly at each transactional load provides na&ednefit. In eager conflict detection
mechanism, since transactions are checked for conflicechtlead and store, the possibility of
having zombie transactions is really low. However, eageifla detection incurs substantial
overhead on individual transactional operations.

Lazy conflict detection makes STMlite vulnerable to zomb#nsactions. These transac-
tions may never reach the commit point and the commit managenally does not get the
chance to force them to abort. As a matter of fact, zombiestretions are particularly bad
for our implementation because their corresponding entaeain valid within the minSV log
and prevent the other commit log entries from being cleampedHowever, we can exploit the
minSV log to resolve the zombie transaction issue. Each wimgo through the commit log
reading the minSV entries, if the difference between the g&asion of a particular transaction
and the global clock is more than a threshold, the TCM idestifine corresponding transaction
as a potential zombie. Subsequently, the TCM checks thecoigp transaction’s read signa-
ture against write signatures of the commit log entriehlgh it has not reached the commit
point yet). If there is a conflict, the TCM forcibly aborts thembie transaction by sending an
abort signal. We have a signal handler in each transactadrc#tls the abort function whenever
it receives the TCM’s abort signal. Otherwise, the TCM cadels that the suspicious zombie
was just a long running transaction and avoids abortingnitthis work, since we do not par-

allelize loops with complicated linked list operations {@lhare the main sources of zombies
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transactions), the possibility of having zombies is quote in our framework.

2.4 Loop Parallelization Using STMlite

In this section, we introduce our loop parallelization feaork and customizations made to
STMlite for parallelizing speculative DOALL loops. Our freework successfully handles loops
with cross iteration control dependences (e.g., while $y@s well as normal counted loops.

The general structure of our parallelization frameworkoiwk the code generation schema
used in P3. However, using that framework without the extra hardwsueport imposes a
large overhead on the execution time. At the same time, S€Mlves us the opportunity to
simplify the parallelization framework by exploiting sorméits underlying features that are

already used for providing transactional correctness.

2.4.1 Baseline Parallelization Framework

The purpose of the parallelization framework is to distréloop execution across multiple
cores. In this framework, DOALL loops are categorized intOALL-counted and DOALL-
uncounted types. In DOALL-counted loops, the number ofatiens is known at runtime,
whereas in DOALL-uncounted loops, this number is dependenthe loop execution (e.g.,
while loops). In these cases, starting every iteration igeddent on the outcome of exit
branches in previous iterations (cross iteration contepleshdence).

Figure2.6 shows the detailed implementation of the framework. In $icsiseme, loop itera-
tions are divided into chunks. The operating system pakgsasumber of available cores to the

application and the framework is flexible enough to use amgher of cores for loop execution.
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if (global_brk_flag)
break;

IE = min(IS+CS*SS,n) ;

(\for (i=IS;i<IE;i+=SS)

// original loop code

live outy =.. //kt? liveout assignment

last_upd_idx,=1i;

if (brk_cond)
local brk flag=1;

break;
TxCommit

if (local_brk_flag)
global brk flag= 1;
kill other_threads;
IS+=CS * TC * SS;

v

Parallel Loop

In all threads
for (all live_outs)

store live_out;and last upd idx; to memory
In THREAD 0

Get live_outs and last_upd_idx values

Set live_out; to the last updated value

T |

Loop Barrier

Consolidation

Figure 2.6: Overview of the parallelization framework (CS: chunk sil&, iteration start, IE: iteration
end, SS: step size, TC: thread count).

An outer loop is inserted around the original loop body to aggnparallel execution between
different chunks. The main threadHREAD_0), which runs the sequential parts of the program,
spawns the required number of threads at the start of thécapph. When a parallel loop is
reached, a function pointer containing the proper loop kralang with necessary parameters
is sent to each spawned thread and they start the executioopthunks.

In order to capture the correct live-out registers afterajbalr loop execution, we use a

set of registers calletlast_upd_idx, one for each conditional live-out (i.e., updated in an if-
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statement). When a conditional live-out register is updiatiee correspondin@jast_upd_idx

is set to the current iteration number to keep track of thestanhodifications to the live-out val-
ues. If the live-out register is unconditional (i.e., upgthin every iteration), the final live-out
value can be retrieved from the last iteration and no tragkinlast_upd_idx is needed. It
should be noted that loop chunks in the framework do not slxaydocal memory variables on
stack. Otherwise, the loop would have unresolvable cresatiobn dependences and would be
unparallelizable. This leads to one of the simplificatiomsmade in STMlite which is the elim-
ination of the handling mechanism needed for speculatigal Imemory variables. Following
is a description of the functionality of each segment in Fef.6.

Spawn: THREAD_O, the main thread, sends the function pointer pointing tcsthg of loop
chunks to the in-flight threads through memory. It also sexldsg the necessary parameters
(chunk size, thread count, etc.) and live-in values.

Parallel Loop: The program stays in the parallel loop segment as long as #rersome
iterations to run and no break has happened. In this segmeaci, thread executes a set of
chunks. Each chunk consists of several iterations stafttorg IS (iteration start) and ending
at IE (iteration end). The value of IS and IE are updated aftah chunk using the chunk
size (CS), thread count (TC), and step size (SS). Each cluerkdlosed in a transaction using
TxBegin andTxCommit function calls. In order to ensure correctness, an abonbsig sent to
transactions running higher iterations if a conflict is detd.

One important requirement for parallelizing loop chunksoigorce in-order chunk com-
mit. This is necessary for maintaining correct executioth @mabling partial loop rollback and

recovery. The TCM in STMlite already provides the means tioree ordering among trans-
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actions in the commit log. The same infrastructure can bd mein-order chunk execution
as well. Therefore, there is no need for send/receive icbns and a scalar operand network
as was used irf3. However, some extra book-keeping data is required bat&iMlite and
the parallelization framework. Since this is mostly don&ifMlite and it is almost transpar-
ent to the generated code, we explain these necessary stiyesriext subsection detailing the
interaction between STMlite and loop parallelization.

For uncounted loops, if a break happens in any thread, higiesactions are not aborted
immediately because thread execution is speculative antrébak could be false. Instead, the
local_brk_flag variable in each thread is used to keep track of breaks iwishel chunks.

If a transaction commits successfully with itscal brk_flag set, the break is no longer spec-
ulative, and a transaction abort signal is sent to all trse&daddition, gglobal_brk_flag is
set, so that all threads break out of the outer loop aftearsg) the transaction as a result of the
abort signal. The reason for explicitly aborting higheratens is that, if an iteration is started
by misspeculation after the loop breaks, it could produci#egal state. The execution of this
iteration might cause unwanted exceptions or might nevistfiifiiit contains inner loops. This
procedure of explicit handling of breaks has the benefit oiding zombie transactions, and
although STMlite can handle zombies, this explicit hargllvas much lower cost.

Consolidation: After all cores are done with the execution of iteration dkajrthey enter
the consolidation phase. Each core sends its live-outs asiel upd_idx array toTHREAD_O
through memory. THREAD_O picks the last updated live-out values. All other threadspke
waiting for chunks from other parallel loops later in the gmam.

Since the goal is to provide a low-cost software-based lediztion mechanism, most of
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the extra code is kept outside the main loop body, and is éed@nly once per chunk.

2.4.2 Interaction of Parallel Loops with STMlite

As mentioned in the previous subsection, in-order commiindfvidual loop chunks is
crucial for correct parallel execution. In order to enfoticat requirement, we add another data
structure, called the loop chunk commit log (LCCL), to theMCThis log contains the loop
ID of the last committing parallel loop and the chunk ID of flast committed chunk in that
loop. The loop ID is assigned to each loop statically at céenjone. It should be noted that
our model allows only one in-flight parallel loop at a time bgluding a lightweight barrier at
end of each chunk. Thus, there will be no problem if a parédiep is invoked twice, because
there is guaranteed to be no previous instances of this loammg. This is important, because
if two in-flight loops have the same loop ID, they can completiestort each other’s execution.
The only problem is the case of loops in recursive functidmshis work, we do not parallelize
loops with recursion. However, even in that case, a hastevased on the call site trace of the
loop can be used to uniquely identify individual looF$§]|

We reuse the initial value of IS (iteration start) which isrquuted at the beginning of each
loop chunk as the chunk ID. When a loop chunk reaches the cbmstiuction, it writes its
loop ID, chunk ID, chunk size, and the loop’s first chunk ID be torecommit log. After the

TCM reads in an entry from the precommit log, it performs ofine following two operations:

1. If the loop ID in the precommit log does not match the LCGtésnmitting loop ID, it
infers that a new loop has started committing. Subsequenthyites the new loop ID

and the loop’s first chunk ID to the LCCL. If the committing ctiuis the first chunk
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in the loop, the TCM proceeds with the commit process. Otisawit just moves on
to checking the next precommit log entry. This is becauseumich commit process
should not be started until all earlier chunks have been attexin(i.e, have got commit

permission from the TCM and started the writeback process).

2. If the loop ID of the committing chunk matches the entryhia Lt CCL, the TCM checks
to see if the current chunk is right after the last committednk. If so, it proceeds with

the chunk’s commit process. Otherwise, it starts checkiegiext precommit log entry.

The above mechanism provides low-cost commit ordering layrgdminimal complexity
to the STMIite library. This integration of loop paralleizon with STMlite leads to an efficient

parallel loop execution platform.

2.5 Results

We set up two sets of experiments. First, we evaluated howl&d pkerforms in a typical
transactional environment using the STAMP transactioeathmarks62]. In the second set of
experiments, we implemented the code generation part gfdredlelization framework in the
LLVM compiler [52]. Using this framework, a set of SPECfp benchmarks and aékernel
benchmarks are parallelized. All benchmarks were writted or converted from Fortran to?C
While the original Fortran applications can be paralle@izsing compilers such as SUIE4],
Fortran to C conversion introduces a large number of poiddables, thus compiler analysis
alone was insufficient to parallelize all applications. BRECint benchmarks, as previous

works have shown 93, 53], the level of loop-level parallelism is quite low, thus tbeerhead

2Fortran to C conversion was done using thetool with -a flag.
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of using an all-software parallelization approach is tagéato yield meaningful performance
gains. More sophisticated parallelization techniquesrtager applications are possible, such
as those proposed b2§], and can lead to substantial gains. However, we have ndemgnted
these transformations within our compiler system, yet tir@yorthogonal to what we are doing

here.

2.5.1 STMlite on STAMP

We measured the performance of the STAMP benchmarks on aiSURFO00 with an
8-core UltraSPARC T1 processor, running Solaris 10. We @mpur performance with an
implementation of the Transactional Locking 2 (TL2) softevransactional memorg§]. Fig-
ure 2.7 shows the benchmark speedups on STMlite and TL2, both naedato sequential
execution. The number of cores in the STMIite results ineltite one extra core used for the
TCM. For example, the 8 core results in STMlite have 7 comiputacores and one TCM core.
Thus, STMlite results start from two cores on the horizoatas.

As can be seen, STMlite noticeably outperforms TL2 in botfni@nd low contention execu-
tions of theVacation benchmark. This is mainly because this benchmark has langdrctions
with a large number of loads. Therefore, the traditional Sgé&ffforms poorly due to the high
overhead of transactional loads and it can hardly achiegedip over sequential even with 8
cores. However, using STMlite is particularly beneficialtirese types of benchmarks. The
overhead of transactional loads in our model is minimal dué¢ complete elimination of the
read set. Furthermore, long length transactions andvelgiow contention amortize the slight

serialization effect that happens at commit time. Theeefour model achieves about 2.5x and
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Figure 2.7: STMlite performance on STAMP benchmarks. The vertical akisws the speedup com-
pared to the sequential execution and horizontal axis isitimeber of cores. The number of cores in
STMiIite includes one core that is used for the TCM.

3.1x speedup over TL2 with 8 cores, which is quite close tosfieedup achieved by previous
hybrid schemes33].

STMilite follows the performance of TL2 iKkmeans, Labyrinth andBayes. First, it should
be noted that poor scalability from 4 to 8 corexteans and from 2 to 8 cores iBayes IS
mainly due to the fact that these benchmarks contain heaatirfppoint computations. Since

the UltraSPARC processor only has a single floating point tnait is shared by all proces-

34



/* Lock-based Kmeans Code */
pthread_mutex_lock(&mutex1);
start = global_i;

global_i = start + CHUNK;
pthread_mutex_unlock(&mutex1) ;

/* Original Kmeans Codex*/

TxBegin;

start = TxLoad(global_i);
TxStore(global_i, (start + CHUNK));
TxCommit () ;

TxBegin() ;
TxStore_f (global_delta,

TxLoad_f (global_delta) + delta);
TxCommit () ;

pthread_mutex_lock(&mutex2) ;
global_delta += delta;

pthread_mutex_unlock(&mutex?2) ;

Figure 2.8: Small transactions ikmeans working on global data and their equivalent lock-based @npl
mentation.

sors, these floating point computations become the seaiibottleneck of parallel execution,
especially with higher number of threads.

The main reason STMlite performs similarly to TL2 in thesadienarks is the short length
of transactions irkmeans and relatively high rate of contention Bayes and Labyrinth.
Therefore, the savings STMlite gets in transactional lpardasactional stores, and writebacks
gets offset by the extra overhead of communications betwe&enution transactions and the
TCM. However, STMlite is still about 15% to 30% faster thanZlin Kmeans for 4 and 8
threads. An interesting issue we found while looking thiotite performance bottlenecks of
STMlite in Kmeans, is that there is a small transaction in the source code tistae end of the
program that increments a global variable in all transasti@-igure2.8). This part of the code
causes a large number of transaction aborts in STMlite,wihicurs a high cost considering the
short transaction lengths. Whereas in TL2, since the §asaacquiring locks for each address
during writeback and uses a back-off mechanism if the locloidree, there are fewer transac-

tion aborts. In order to validate this observation, we piieglobal lock around the transaction
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Figure 2.9: Profiled DOALL, provable DOALL and selected parallel looprecage. The vertical axis
shows fraction of sequential execution.

in Figure2.8and changed the transactional loads and stores to normsl ®he performance
of the resulting execution is also shown in Fig@.&. This change in the benchmark did not
affect the runtime for TL2 — since TL2 essentially does thae#hing in short transactions. As
can be seen in the figure, although STMlite still suffers fitaok of enough floating point units,

it performs better after replacing the small transactiotiacks inKmeans andBayes.

2.5.2 STMlite on Parallelized Sequential Programs

Figure 2.9 shows the fraction of dynamic sequential execution thatbmaparallelized in
several SPECfp benchmarkhe first bar, profiled coverage, shows the fraction of setjalen
execution in loops identified as DOALL after profiling. Thecead bar, provable coverage, is
the fraction of sequential execution spent in loops thatcdcbe statically identified as DOALL

at compile time using LLVM’s memory dependence analysis. CAs be seen, a non-trivial

3These applications are a subset of SPECfp92/95/2000 thanbeerate to high amount of loop level paral-
lelism.
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percentage of DOALL coverage is obtained only after prdjilifinally the third bar, selected
coverage, shows fraction of loops that were eventuallyljedizzed.

It should be noted that not all the loops included in the cagernumbers are suitable for
parallelization. There are many DOALL loops in these agtians that do not contain any
computation, or the computation is not substantial. Foraimse, parallelizing a loop which
initializes an array’s elements to zero or increments aignts in an array, can not provide
much benefit, since the overhead of parallelization wouldrimee than the actual work in
these loops. Therefore, we added a loop selection heuiristiar compiler which, according
to the profile data, computes a “parallelizability” metrigsed on the total number of dynamic
operations in the loop, number of iterations and total nurob®op invocations in the program.
The last bars in Figur2.9 shows the total coverage of DOALLSs that passed this metric.

We have parallelized all these loops using the frameworkdhiced in Sectio2.4.1 Dur-
ing the code generation pass, according to the static medepgndence analysis data, we
performed a selective replacement of the loops’ loads am@stwithTxLoad and TxStore
function calls. We essentially avoid changing loads andestthat can be proved to cause no
cross iteration dependences.

As a step towards showing the effectiveness of our appreeehirst tried the parallelization
framework and STMlite on four kernel benchmarks, FMradio, DCT, and beamformer.
RLS is an implementation of recursive least squares filter wiialsed in system identification
problems and time series analysiBCT performs a discrete cosine transform and is used in
image processing applicatior®iradio andbeamformer are two streaming applications from

the Streamlt benchmark suit89]. All these benchmarks have very high profiled DOALL
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Figure 2.10: STMlite performance on automatically parallelized kerpehchmarks. The vertical axis
shows the speedup compared to the sequential executioroardriial axis is the number of cores. The
number of cores in STMlite includes one core that is usedifermMCM.

coverage. Figur@.10 shows the achieved speedup using STMlite and TL2. The S&MlIit
results include the resource used for the TCM (1 extra cérajthermore, since TL2 does not
have any primitives for supporting chunk commit seriaimat we implemented a software-
based send/recv mechanism similar@g][ Lastly, we estimated the results on a similar system
with HTM support by replacing all transactional loads aratas$ with normal ones. This would
represent a best-case HTM, and since we are only doing thpefformance measurement, we
ignore the possibility of incorrect execution due to thekla€ proper speculation and we only
take into account the performance numbers for executiatscttimplete successfully. As can
be seen, STMlite outperforms TL2 with software based chymiclsronization by as much as
a factor of 3x inFMradio. In beamformer andDCT, STMlite follows the HTM results quite

closely. ForRLS, STMlite performs poorly compared to HTM results due to highmber of
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Figure 2.11: STMlite performance on automatically parallelized SPE&fpchmarks. The vertical axis
shows the speed up compared to the sequential executiorodrdrtal axis is the number of cores. The
number of cores in STMlite includes one core that is usediferitCM.

transactional operations, yet it still achieves 2x speexign sequential for 8 threads.

Returning to SPECfp, Figuiz11shows the speedup for these benchmarks. Runtime values
are normalized to the sequential execution of the prograhe figure shows that we achieve
0.6x to 2.2x speedup compared to sequential by going frontdveight cores.

One of the reasons for performance degradation in TL2 wiftweoe synchronization is
the lack of library support for enforcing commit orderingTih2. Adding this explicit software

synchronization has a noticeably negative impact on thiepeance. Performance degradation
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would be even more in traditional TM systems with eager confletection, such a8f]. As
previous works have also suggest8d][ workloads with transactions that have large read sets
and low contention (similar to our parallelized sequentiatkloads), perform poorly with eager
conflict detection. This is because eager conflict deteetdus extra overhead to transactional
loads and stores, but since conflicts are rare, it does nptiimgiroving the performance.
STMilite achieves decent speedup compared to HTM resultsatperforms TL2 with soft-
ware chunk synchronization #%62.alvinn, 056.ear, and102.swim. This is due to the lower
overhead of transactional operations in STMlite which nsakeuite efficient with moderate
number of these operations. However, the relative STMtiteeved speedup, while being no-
ticeably higher than TL2 with software synchronizatiorguste low compared to HTM in other
benchmarks. In SPECfp benchmarks, the parallelized looptm a large number of memory
operations that may cause cross iteration dependences drafiee static analysis and therefore
need to be transactified. Changing these operations tcataosal versions causes the paral-
lelized versions to become slow in some cases. Softwaredbsgeculation mechanisms are
useful for parallelization in cases that the number of s|aive variables is low, otherwise, the

speculation mechanism amortizes the benefit caused byeaation.

2.5.3 Effects of static memory analysis and signhature sizes

To better understand the tradeoffs involved in compilaiod execution parameters, we ran
two other experiments. In the first experiment, we measuredathieved speedup with and
without selective replacement of loads and stores withstational versions. As mentioned

before, LLVM’s memory dependence analysis is used to avaiakstctifying memory instruc-
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Figure 2.12: Effect of using static pointer analysis on speedupofé2 . alvinn.

tions that provably do not cause cross iteration dependéigere2.12shows the result of this
experiment on thé52.alvinn benchmark. As can be seen, filtering out unnecessary transac
tional operations, while keeping the necessary ones, hesaaighpact on performance in both
STMilite and TL2. This result further proves that softwaregation systems are best suited
for applications in which speculation is applied to a liditeumber of memory variables.

Our second experiment involves changing the signaturessidestudying the resulting per-
formance impact. The effect of changing signature sizesTvlife’s performance is inter-
esting. There is a subtle tradeoff involved in determinihg tight signature size. Larger
sizes reduce the number of false positives and thereby eedgiexecution of correct trans-
actions. However, at the same time, they lead to more timewuimg signature operations.

Since STMlite is dependent on these operations in severtal pithe implementation, this can
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cause a noticeable performance degradation. Fd&llustrates this effect on thigL.S kernel
benchmark. Speedup values keep increasing up to signagesed 32, after which they start

going down.

2.6 Related Work

There is a significant amount of previous efforts in the afdeamsactional memory. Harris
et al. go through a detailed survey of different transactional mgntechniques in48].

In particular, Shaviet al. proposed the first implementation of software transactiorean-
ory in [77]. Several other works such as DSTEO and OSTM j7] proposed non-blocking
STM implementations. A major part of non-blocking STMs isint@nance of publicly shared
transaction structures which contain the undo informatiorour implementation, the transac-
tion structures only need to be visible to the TCM and indmalexecuting transactions, keeping

contention on those structures to a minimum. The authord9n1{8] proposed a lock-based
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approach where write locks are acquired when an addres#ismwrAlso, they maintain a read
set which needs to be validated before commit. In our STMlésign, no locks are required
and correctness is guaranteed by the commit manager. Fudhe we eliminate the need for
the read set, which reduces the overhead of transactioads land transaction commits3q|
proposes the Transactional Locking implementation whiglntains a read set and a write set
during transaction execution. Subsequently, at commig tilnacquires locks for each indi-
vidual write set entry and writes back the data after the isckecured. Also, the read set is
checked during commit to ensure consistency.

There is also a large body of work in parallelization of seqia applications. Hydra45]
and StampedeBfl] were two of the earlier efforts in the area of general puegm®gram paral-
lelization. The POSH compileb] uses loop-level parallelization with TLS hardware suppor
The authors in 93] proposed compiler transformation to extract more looglgarallelism
from sequential programs. The compiler transformatiort pathat work is orthogonal to
what we are doing and can be applied simultaneously herecuiwe decoupled software
pipelining [87] is another approach that focuses on extracting paratidliem loops with cross
iteration dependencies. In that work, they distribute glsinteration of the loop over several
cores. The SUDS frameworB@| performs automatic speculative parallelization of aqgli
tions for the RAW processor. This system relies on the spacthitectural features in RAW
to accomplish efficient speculative state management amchsynization, such as the scalar
operand network. However in all these works, hardware TL®8amsactional memory support
and additional hardware mechanisms for synchronizatierreguired. Whereas in this work,

we are looking at a software-only solution and although ehieved speed up in some cases is
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lower than these works, we have the advantage of runningysters on commodity hardware.

Cezeet al. [29] proposed the idea of using Bloom filters to represent readnaite sets for
transactions. They showed how, with specialized hardweaesaction state can be maintained
through signatures with less overhead. This technique wiheed in LogTM-SE 92] and
SigTM [63], which are hybrid TM systems requiring no modifications &mdware caches. Our
work uses the idea of storing Bloom filter-based read andevgets in software data structures,
alleviating the need for the extra hardware. Authors4f] use software hashing to remove
duplicates in the read-log and undo-log of the same tralmsaathereas in STMlite, it is used
for conflict detection between different transactions.

The most similar speculation management mechanism to stRiNgSTM B2] that uses
a global ring structure to organize committing transaciomhey use Bloom filters to repre-
sent read and write sets for transactions. However, bed¢hasing is global, all threads face
contention for ownership of the ring during commit, and ptimation is required to prevent
starvation. Meanwhile, STMlite has thread local preconogs and can relinquish the cores
while the corresponding transaction is waiting for the calmanager to validate the transac-
tion. Our commit log works in a round-robin fashion, ensgrati threads waiting to commit are
serviced equally. Furthermore, i87], the read signature is checked against several write sig-
natures at each transactional load (eager conflict detgctidich adds considerable overhead.
However, in STMlite, transactional load overhead is midibecause the only extra operation
added is insertion of the address in the read signature. miikees our model more prone to
zombie transactions, but as mentioned in Secldh4 the possibility of having zombies in

parallelized loops is quite low, though STMlite can stilhiolée them successfully.
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Furthermore, we have customized STMlite to work for loopafiatization. This customiza-
tion would be more complicated in RingSTM. The reason is titzatsaction commit is done by
individual transactions after checking against the wiidgmatures of ring elements. Therefore,
if a loop chunk does not get a chance to commit in the first toe(th an unfinished previous
chunk), there would be no efficient way of checking agairrlatéhe execution. The only way
would be to use a back off mechanism and check back from tintieny which is inefficient.
Whereas in STMlite, since the TCM is in charge of orderingpl@hunks for commit, even
if a chunk misses its chance, the TCM makes sure that it woelldnecked again in a timely
manner.

FlexTM [79] adds mechanisms in hardware to coordinate read and wgitatsire checking,
speculative updates to caches and eager notificationsrsatrtions about coherence events.
They propose software mechanisms for deciding how to manag#icts and for choosing

appropriate conflict management and commit protocols.

2.7 Summary

As we move further into the multicore era, a major challemgeadath hardware and software
communities is exploiting the abundant computing resairmade available by technology
advancements. Automatic parallelization of applicatisnan appealing solution for utilizing
these resources; however, parallelization efforts arenconty dependent on complex hardware
changes such as adding speculation support. These chaaged get popular among hardware
manufacturers. On the other hand, software-based specutatpport is still quite expensive

in terms of performance to be widely used in parallel and lized applications. In this
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work, we strived to tackle these issues from two closelyteel@angles. First, we minimize the
overheads of software based transactional memory modealedupling and centralizing the
commit stage in STMlite. We also eliminate the need for naamihg a read set during loads
and checking them during commit. Secondly, we are able teldhe overhead of loop par-
allelization by reusing some of the underlying structureStMlite. We have shown that our
work outperforms current transactional memory implemigona on transactional benchmarks
with large transactions while achieving similar perforroann smaller transactions. Further-
more, we show that achieving real speculative speedup areségl applications is possible

without extra hardware support.
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CHAPTER 3

Dynamic Parallelization of JavaScript Applications Usingan

Ultra-lightweight Speculation Mechanism

3.1 Introduction

JavaScript was developed at Netscape in the early 1990®ruhd name Mocha to pro-
vide enhanced user interfaces and dynamic content on webditwas released as a part of
Netscape Navigator 2.0 in 1996, and since then it has bectandasd with more than 95%
of web surfers using browsers with enabled JavaScript cipegoDynamically downloaded
JavaScript programs combine a rich and responsive clidatexperience with centralized ac-
cess to shared data and services provided by data centezsus€k of JavaScript range from
simple scripts utilized for creating menus on a web page phisticated applications that con-
sist of many thousands of lines of code executing in the sibeowser. Some of the most visible
applications, such as Gmail and Facebook, enjoy widesprsady millions of users. Other
applications, such as image editing applications and gaaneslso becoming more common-

place due to the ease of software distribution.
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Figure 3.1: Performance of JavaScript, compared to C, C++ and Java.

As the complexity of these applications grows, the need iigindr performance will be es-
sential. However, poor performance is the biggest probléim JavaScript. Figur8.1presents
the performance of an image edge detection algorithm im@ieed in a variety of program-
ming languages on an Intel Core i7 processor. Not surptigitige C implementation is the
fastest. Following are the C++ implementation with 2.8x&lown and the Java version with
6.4x slowdown. The default JavaScript implementation is §@wer than the C implementa-
tion. The performance gap occurs because JavaScript isardgally typed language and is
traditionally executed using bytecode interpretationterpretation makes JavaScript execution
much slower in comparison to the native code generateddtically typed languages such as
C or C++. Using the trace-based optimizer in Firefox, Traoekky §0], that identifies hot
execution traces in the code and compiles them into natide,cthhe JavaScript execution is
brought down in line with the Java implementation which i 6t9x slower.

Bridging this performance gap requires an understanditiggoéharacteristics of JavaScript

programs themselves. However, there is disagreement inaimenunity about the forms of
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JavaScript applications that will dominate and thus thé stestegy for optimizing performance.
JSMeter 1] characterizes the behavior of JavaScript applicatioos fcommercial websites
and argues that long-running loops and functions with mapgated bytecode instructions are
uncommon. Rather, they are mostly event-driven with maoys$hnds of events being handled
based on user preferences. We term this class of applisanteraction-intensive

While this characterization reflects the current dominamicapplications such as Gmail
and Facebook, it may not reflect the future. More recentlghRidset al. [73] performed
similar analyses on a fairly large number of commercial wiebsand concluded that in many
websites, execution time is, in fact, dominated by hot lodyos less so than Java and C/C++.
Furthermore, an emerging class of online games and clidatimage editing applications are
becoming more and more popular. There are already suctegsiuples of image editing ap-
plications written in ActionScript for Adobe Flash availalonline B, 10]. There are also many
efforts in developing online games and gaming engines iaSenpt [L, 14]. These applications
are dominated by frequently executed loops and functions aee termedompute-intensive

The main obstacle preventing wider adoption of JavaScoiptdmpute-intensive applica-
tions is historical performance deficiencies. These apptios must be distributed as native
binaries because consumers would not accept excessivalyppdormance. A circular depen-
dence has developed where poor performance discourage®plers from using JavaScript
for compute-intensive applications, but there is littledeo improve JavaScript performance
because it is not used for heavy computation. This circidpeddence is being broken through
the development of new dynamic compilers for JavaScriptziMoFirefox’s TraceMonkey40Q]

and Google Chrome’s V&] are two examples of such efforts. While these engines addre
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a large portion of inefficiencies in JavaScript executitieytdo not provide solutions to scale
performance.

With multicore architectures becoming the standard foktigss, servers, and smart phones,
it is apparent that parallelism must be exploited in Jav@Seapplications to sustain their
ever increasing performance requirements. However, tapghkcations are generally single-
threaded because the language and run-time system praieedncurrency support. The
primary problem is that the document object model (DOM),dubg JavaScript to interact
with web pages and browser state, does not have a model fiiedshecess. So, for example,
since JavaScript has no internal locking mechanism, tweatls may invoke multiple event
handlers that change the same DOM object and create eitbercomditions or correctness
bugs. Considering this limitation, developing paralletalacript applications manually would
be cumbersome and error-prone.

To exploit hardware concurrency, while retaining the tiiadial sequential programming
model, this work focuses on dynamic parallelization of cabepintensive JavaScript applica-
tions. Our parallelization technique, calldraScript performs automatic speculative paral-
lelization of loops and generates multiple threads to coeatly execute iterations in these ap-
plications. A novel and low-cost software speculationeystietects misspeculations occurred
during parallel execution and rolls back the browser state previously correct checkpoint.
Our technigues are built on top of the TraceMonkey engd@g thus we retain the benefits of
trace-based optimizations.

While speculative loop parallelization has an extensiveybaf prior work [26, 32, 37, 45,

53, 70, 84, 93, the key new challenge here is performing parallelizag@itiently at runtime,
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while ensuring correct execution through runtime spetudatvithout any extra hardware sup-
port. Recent efforts for speculative parallelization o€€#+ applications on commodity hard-
ware (b7, 69, 86]) make extensive use of static analysis along with stattkeagastrumentation
with speculation constructs. Straight-forward applieatof these static parallelization tech-
niques is ineffective for a number of reasons including trability to perform whole program
analysis, and expensive memory dependence analysis afiihgrat runtime. In addition,
without effective use of static analysis, considerablerlogad of per-access logging and com-
mit time operations involved in software speculation systesuch as software transactional
memories 18, 49], makes immediate use of these systems impractical in andignsetting.
Previous proposals for dynamic parallelizati@3][are also not suitable for our target due to
high dependency on expensive extra hardware support. $nmbik, we show that practical
speedups can be achieved on commodity multi-core hardwisineetfective runtime analysis
and efficient speculation management. These techniquas ktoid high-cost static analyses
and expensive hardware support for dynamic anal\&3% ih traditional parallelization sys-
tems and the kind of per-access logging and commit time @ipasawhich contribute to high
overheads in software speculation systems, such as SI8/49).

In particular, the contributions offered in this chaptetiu# thesis are:

e An technique for automatically identifying parallelizadbops dynamically at runtime
and a code generation scheme to create parallelized vemsidavaScript applications.

e An ultra-lightweight software speculation system consgbf selective checkpointing of
the system state and a novel runtime dependence detectiramsm based on conflict

detection using reference counting and range-based chachksays.
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Figure 3.2: Static parallelization flow.

The rest of this chapter is organized as follows. Sec3i@explores some of the challenges
involved in dynamic parallelization and provide hints tdgadial solutions. Sectio8.3intro-
duces novel analysis technique employed in ParaScripb¥oicst parallelization detection at
runtime and presents the code generation framework. PapéSaltra-lightweight speculation
mechanism is proposed in SectiB, while Section3.5 presents evaluation framework and
experimental results. Sectid6 reviews some of the related work, and finally, Sect®n

provides a summary and concludes the chapter.

3.2 Dynamic Parallelization Challenges

There is a long history of static techniques for automatid apeculative parallelization
of scientific and general purpose applications. A typicatistparallelization framework is
depicted in Figure8.2 This framework uses memory dependence analysis (pointdyss),
memory access profiling and data flow analysis to find canelidaips for parallelization, after
which generates the parallel code. This code is later rucLggigvely on the target system using

a software or hardware memory speculation mechanism.
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Static frameworks are usually optimized to achieve the hesime performance by em-
ploying complex and often time-consuming compile-timelgsia. However, in a highly dy-
namic setting like that of JavaScript execution, where theeds run via interpretation or dy-
namic just-in-time (JIT) compilation on the client’s brosvsapplying these analyses at compi-
lation time would be too expensive and will offset all potehparallelization benefits. It might
even lead to slowdown in some cases. For instadk& recently proposed a static JavaScript
pointer analysis for security purposes. They show that @realysis takes about 3 seconds to
complete on a set of JavaScript programs with an averageQolir&s of code. While being an
effective and fairly fast analysis for offline purposeshiétanalysis were to be used at runtime,
it could become quite prohibitive even for programs of thaéslet alone larger applications
that consist of hundreds of lines of cod&]. In addition to compiler analysis, the overhead
of runtime memory profiling would be unacceptable — the waorks6] reported 100x to 500x
increase in the execution time as a result of performingestaemory profiling on C/C++ appli-
cations. Therefore, with the exception of simple data floalgsis and code generation (both of
which are already done at runtime in JavaScript enginesjnardic parallelization framework
can not afford to utilize any of the static compile time stapBigure3.2

Furthermore, by targeting commodity systems, an efficiadtlaw-cost software specula-
tion mechanism is required. Traditional software speautatnechanisms (e.g, STMs) focus
on flexibility and scalability to support a wide variety ofespulative execution scenarios and
thereby increase the runtime by 2-28]. Large overheads of memory operation instrumen-
tation along with expensive checking mechanisms are twm sairces of overhead. Recent

proposals $7, 69, 86] introduce customized speculation systems for paradabn of C/C++
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applications. However, as was reported5d][ without the aid of static memory analysis and
profiling, their overhead could go up to 4x compared to setjaieas well.
With these challenges in mind, we approach dynamic paizdlebn of JavaScript applica-

tions by proposing the following techniques:

Light-weight dynamic analysis: Limited information is carefully collected early on at run-
time, based on which initial parallelization decisions mu&de. A low-cost and effective initial

assessment is designed to provide optimistic, yet sungisaccurate decisions to the specula-
tion engine. Loops that require complicated transfornmatidigh-cost runtime considerations

or have high misspeculation risk are not chosen to be phzaite

Low-cost customized speculation mechanism: A lean and efficient software speculation
mechanism is proposed, which is highly customized for haong loop-level speculation sup-

port in JavaScript programs. A low-cost conflict detectioechanism is introduced based on
tracking scalar array access ranges and reporting corfflietoi threads access overlapping
ranges. Parallelism-inhibiting heap references are agected at runtime to guarantee correct
execution. A reference counting scheme is introduced teati@btential conflicts in arrays of

objects. Finally, an efficient checkpointing mechanismls® @lesigned that is specialized for
the JavaScript runtime setting. Two checkpointing optahans, selective variable checkpoint-

ing and array clone elimination, are introduced to furtleeluce speculation overhead.
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Figure 3.3: ParaScript dynamic parallelization flow.

3.3 Dynamic Analysis and Code Generation

In this work, we propose a dynamic mechanism, called PaiatSfor exploiting parallelism
in JavaScript applications. FiguBe3 shows the ParaScript execution flow at runtime. It first
selects candidate hot loops for parallelization. Subsettyyén the dependence assessment step,
using a mixture of data flow analysis and runtime tests, gctstimmediately identifiable cross-
iteration memory dependences during the execution of thiestveral loop iterations. In case of
no immediate memory dependence, ParaScript dynamicatigrgees a speculatively parallel
version of the loop and inserts necessary checkpointingcantlict detection constructs. The
detailed process of instrumentation with these constrasteell as their implementation is
presented in SectidB.4.

The runtime system continues by executing the parallel pmzulatively. In case a cross-
iteration dependence is found, the parallel loop is abottezl system reverts back to the pre-
vious correct checkpoint and runs the loop sequentiallye fHiled loop is also blacklisted to
avoid parallelization in further loop invocations in thersarun. Furthermore, a cookie is stored

in the browser’s cache to blacklist the loop in future apgimn executions as well.
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To keep the framework and speculation rollback overheagdaly loops whose number of
iterations is known at runtime (DOALL-counted, e.gor loops) are considered for dynamic
speculative parallelization. Implementing a general gauork similar to P3] which handles
DOALL-uncounted loops (e.gwhile loops) needs a more elaborate framework and more fre-
quent checkpointing, imposing negative impact on our gbdlaving a low-cost near-certain
speculation and infrequent checkpointing mechanism.

Loops that contain document object model (DOM) interactjdATTP request functions
and several JavaScript constructs such asethd keyword, Function object constructor,
and setTimeout andsetInterval keywords are not parallelized. Parallelizing loops with
DOM interactions requires locking mechanisms on DOM elemarside the browser and also
a heavy-weight checkpointing mechanism to take snapsHdOd state at various times.
Furthermore, most DOM accesses inside loops are to the s&hé &ement and inherently
sequential. Therefore, parallelization will not yield rymerformance benefits. Accesses to dif-
ferent elements also require locking DOM tree structureglvbventually makes the accesses
sequential. Speculative execution of HTTP requests reguipeculation and rollback support
at the server sideBB]. In this work, we focus on the client-side speculation andndt have
this support. Theval keyword,Function constructorsetTimeout andsetInterval take
strings as arguments and execute them like normal Java$odp at runtime. For instance, a

call toeval or Function constructor could be the following:

var addFunction = new Function("a" , "b", "return a+b;");

eval("a = 7; b = 13; document.write(a+b)");

The problem with using these constructs is that they inttechew code at runtime and the
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compiler has no access to the string contents and therelanalgsis can be done on it before

execution. In the following subsections, ParaScript sage explained in more detail.

3.3.1 Dynamic Parallel Loop Selection

The loop selection process essentially consists of twosstdgtecting hot loops and per-
forming initial analyses to determine parallelizationgudtal. During runtime, after a loop
execution is detected, it is marked as hot if it passes thialiselection heuristic. This runtime
heuristic takes into account iteration count and numbenstfuctions per iteration.

In nested loops, if the outer loop’s number of iterationsghkr than a threshold, itis given
the priority for being marked as hot by the system. Therefeven if an inner loop is detected
as hot, the system holds off on passing it to the next stageautécision about the outer loop
is made. However, if the outer loop turns out not to be hot its the dependence assessment,
the inner loop is marked as hot. This mechanism is based omthi¢éive assumption that
parallelizing outer loops is always more beneficial and @spremature parallelization of inner
loops.

After a hot loop is detected, the system proceeds with thi@mimlynamic dependence as-
sessment. There have been recent proposals for statiepairdlysis in JavaScripd®]. There
are also array analysis technigues such as the Omega&®patiich could be employed for an-
alyzing JavaScript code. However, due to the tight perforceaand responsiveness constraints
on JavaScript execution, the overhead of using these itraditstatic analysis techniques at
runtime in ParaScript is quite prohibitive.

In order to compensate for lack of static information andpmemory profiles, several tests
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var x,y,z,w,t = new myObj() ;
var propName = ‘fieldl’;

var x,y,z,w = 0;

1: — .. 1: . =y.fieldl; « |
9w = Y4 S 2: . =w.field2; |>
A 3: z[propName] = .;4
3: .= x; \ v
4: _z;’I Vi 4: .. =x; /0
5. v= .k’ 5: .. = z.fieldl; -
Y= iz P s Eendl ’
6: wh=2; |V 6: w.fieldl = .; R3
>l 7: y.fieldl = ;3”7
4 8: t = t.next; \
y 2 2
[ 1 1

(a) Scalar dependences
(b) Object dependences

var a,b,c,d,e,f = new Array();

var a,b,c,d,e = new Array() ; [arrays of Objects]
[arrays of scalars] var z = new myObj();
s
. alitx] = ality] ;e W2 et = atiei]
= d[il; - :\~ ' 2: .. =d[i]; I
_b'_ ‘ N 3: c[i] = b[i]; 1Yy
¢ elil = bli]; ? \ Ia: ari] = bri-x1; 4 .
: a[i] = b[i-x]; I}/ ®ls: daril = . -
. -
: d[i] = .; - =l 6: f[i].field++; ™
D e[i] = .; 7: eti1 = . )
#8: £1i] = z; .

I
(c) Scalar array dependences (d) Object array dependences

Figure 3.4: Examples of dependence instances in various variablearésg Solid and dashed arrows
depict control flow and data flow edges respectively. Questiarks on dashed arrows show possible
data flow dependences. Check-marks show operations thaaggdor parallelization, while cross-
marked operations are the ones that hinder parallelismit ddhese operation categories are identified
by the simple JIT-time data flow analysis with DU chains. Bxrchtion marks are instances of possible
cross iteration dependences that could not be figured olif-titde. Final safety decisions on these are
deferred to further runtime analysis and speculation (&e&t4).

are performed during the dependence assessment stagdiaterun addition to the simple
data flow analysis. Analysis is categorized based on fouabkertypes: scalars, objects, scalar

arrays and object arrays.

Scalars: Figure3.4(a)shows an example of a loop with various forms of scalar depeces.
ParaScript avoids parallelizing loops that contain angsiiteration scalar dependences other

than reduction and temporary variables. Using basic datadlalysis (with use-def chains),
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all instances of cross-iteration scalar dependences ctouhd [90].

One example of such dependence is varighie Figure3.4(a)which is both a live-in and
is written inside the loop. Reduction variables such as mcdator ¢ in Figure3.4(a) and
min/max variables are also instances of such dependendesaarbe found by simple pattern
matching on the code. Furthermore, global temporary veesathat are used inside each it-
eration and do not carry values past the iteration scopealapeidentified (variable in the
example). A scalar which is used in the loop, but is not Iiwd&longs to the mentioned tem-
porary variable category. These variables can be safehatpred, allowing the loop iterations
to be executed in parallel. Scalar dependences caused pptaim locals are ignored, because

they will automatically become private to each parallettd.

Object references: Since JavaScript has no pointer arithmetic, objects cantaglealt with
using data flow analysis. FiguB4(b)is an example of a loop with object dependences. Ini-
tially, statically resolvable object field accesses aratified and resolved. In JavaScript, object
properties and methods can be accessed both using the “tatapeand also by passing the
field name as string to the object name as in line 3 of the codeguare 3.4(b) In this ex-
ample,propName is a constant string and can be resolved using a local cdrstapagation
analysis §0] and converted to an access using the “.” operatiaf{eldl = ...;).

After this initial step, data flow analysis is used to find sriteration dependences caused
by object references. Similar to scalars, a live-in refeeewhich has been written inside the
loop is an example of such dependencesff{eldl in 3.4(b). Likewise, global temporary
objects are also handled by privatizatien field1). Furthermore, this analysis successfully

finds instances of parallelism-inhibiting linked list oe¢r operations in the loop (e.g., variable
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t) and avoids loop selection.

Scalar arrays: Many cross-iteration dependences in scalar arrays cabealisientified using
data flow analysis. Array in Figure3.4(c)is an example of these cases. However, the data flow
analysis can not determine the self-dependence on opedatind also the dependence between
operations 4 and 1. In order to make parallelization dexssia these cases, we introduce an
initial dependence assessment along with a set of rangstbasstime checks. During the initial
assessment, a copy of the loop code is made and all arraysasa@a® instrumented in this copy
to record accessed element indexes during each iteratiandigpendence log. After a few
iterations, these logs are checked to detect any immedia$s @teration array dependences.
If no dependences are found, the system optimisticallyrassuthat the loop is DOALL and
selects it for parallelization. However, since this demisis based on only a few iterations, it
might be wrong. ParaScript uses a range-based checkingamisomto detect possible conflicts

at runtime. More details about this mechanism is discuss&gction3.4.2

Objectarrays: Dynamic analysis for arrays of objects is more challengBiqilar to scalar
arrays, data flow analysis can determine dependences dayiffeglarray as a whole (assuming
all elements point to the same location). For instanceyatia the example of Figur8.4(d)
causes a cross iteration dependence which can be identyfiddta flow analysis. Assuming
that objectz is loop-invariant, data flow analysis can also find the citastion dependence
caused through the assignmentdb elements of array.

In addition to the data flow edges in Figudet(d) any two array pairs in the loop can be

dependent on each other through referencing to the samet ahjeng execution. Therefore,
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if there are writes to array elements inside the loop and #ta flow analysis does not detect
dependences, ParaScript optimistically assumes thabtei$ parallelizable and employs a
novel runtime mechanism to ensure correctness. Duringibekpointing stage, before parallel
loop execution, this runtime technique, which is based gaatlveference counting is applied
to object arrays to avoid indirect writes to the same objeaiugh individual array element
writes in different parallel threads. This mechanism, axgd in more detail in Sectid®i4.],
is effective in dynamic resolution of dependences that tighcaused by arrays c, ande in
Figure3.4(d)

As we explained in this section, ParaScript is able to makenigtic parallelization deci-
sions using only a single data flow analysis pass, while dafgcomplete correctness checks

to the runtime speculation engine.

3.3.2 Parallel Code Generation

After the loop is chosen to be parallelized, the parallepledytecode is generated at run-
time according to the template in FiguBéb. The chunk size determines the number of iterations
after which speculative loop segments are checked for assilple conflicts{onflictcheck()).
The value of chunk size is determined at runtime based onutnbar of threads, total number
of iterations, iteration size and number of memory acces&sghe execution makes progress
without conflicts, the runtime system increases the churd sh barrier is inserted at the end
of each chunkdhunkbarrier()) and is released when all threads are done with their chunk
execution after which the conflict checking routine (Satt®4.2 is invoked.

To capture the correct value of live-out registers, if tivedout is unconditional and is up-
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Take checkpoint -- Spawn threads

I_IE = min (IS+CS*SS,n) ;
y
for (i=IS;i<IE;i+=SS)
// original loop code

L
conflictcheck () ;

chunkbarrier ()
IS+=CS * TC * SS; i

L 2
Loop Barrier

Parallel Loop

Reduction variable expansion
Conditional live-out aggregation

Figure 3.5: Dynamic code generation template (CS: chunk size, IStiteratart, IE: iteration end, SS:
step size, TC: thread count).

dated in every iteration, the final live-out value can simpé retrieved from the last itera-
tion of the loop. For conditional live-outs (those updatedn if-statement), a set of registers
called update_index are used. Whenever the live-out value is updated, the qonekng
update_index IS set to the current iteration number to keep track of thestatnodifications
to live-out values. After passing the loop barriers, tipdate_index values are checked to
capture the correct final value for the live-out variable.

Another piece of code inserted after the last loop barri¢éhéscode performing reduction
variable expansion. Reduction variables (e.g., accumngdand min/max values) normally
cause cross-iteration register dependences. The Pgra8amework resolves these depen-
dences by creating a local accumulator or min/max value pardtely accumulating the totals
for each individual trace. After all chunks are finished dloeccumulators are summed up and

global min/max values are determined amongst the localm@rialues.
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In this work, in order to minimize the checkpoining overheadsingle checkpoint (Sec-
tion 3.4.9 is taken at the beginning of the parallelized loop, and if ahthe conflict checks
fail, the loop is executed sequentially from the beginnimue to the high accuracy of our
initial dependence assessment and stability of array adoesds in the JavaScript programs
we investigated (both ones with and without parallelisreptitil), this approach proved quite

effective.

3.4 Ultra-lightweight Speculation Support

In this section, we introduce our approach for misspeautatietection, checkpointing and
recovery. Furthermore, we describe two optimizations tthir lower the checkpointing over-
head. Figure3.6(a)shows an example target loop for parallelization. Usingéditronal spec-
ulation mechanism such as an STM for speculative paradiatia (Figure3.6(b) requires the
code generator to instrument all memory accesses with tliesgonding speculative versions
— TXLOAD and TXSTORE — and enclose loop chunks wittXBEGIN and TXCOMMIT. Replacing
all memory accesses with transactional versions causesitiiene to spend substantial time
tracking each individual memory access. Furthermore, laineib time, considerable overhead
is incurred for locking target memory locations and perfimgrconsistency checks with reads.
These overheads are the main reasons that STM systemsyusaatiup to 5x slow down over
sequential versions of applicatiorg].

However, in ParaScript, the data flow analysis done duriegJiii compilation, obviates
the need for speculation on scalar values and individuaabbjariables. Furthermore, a ref-

erence counting based analysis is performed during cheukpp on the object arrays, while
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[ TXLOAD ()

TXBEGIN Check WrSet for RAW deps

1: TXLOAD (a[i+y]) Check writes by other TXs
TXSTORE (a[i+y]) ; Load from mem

2: TXLOAD (b[i-x]); Store Addr to RdSet

3: TXLOAD(b[i]) ;
TXSTORE (c[i]) ; TXSTORE ()

4: TXSTORE(d[i]) ; Store Addr & Data to WrSet

- - TXCOMMIT 1
: ali+x] = al[i+yl]l:; -

TXCOMMIT ()

. = b[i-x]; Lock WrSet

cl[i] bl[i]; Validate RdSet
d[i] i Writeback WrSet
Release locks

[PV S )

(a) Original Loop. (b) Speculative parallelization using a traditional STM.

During checkpointing,
RefCount(a,b,c,d)

1 UpdateXXRangelog (A, idx)
1: a[i+x] = a[i+yl]; if (idx>XXMaxIdxA)
UpdateWrRangelLog(a,i+x) ; (XXMaxIdxA=idx) ;
UpdateRdRangelog (a,i+y) ; If (idx<XXMinIdxA)

2: .. =Db[i-x]; (XXMinIdxA=idx) ;

3: c[i] = b[i];

UpdateWrRangelog(c,i) ;

4: el[i] = ..;

UpdateWrRangelog(d, i) ; iy

N——"

(c) Speculative parallelization using ParaScript.

Figure 3.6: Extra steps needed at runtime for speculation support éqr farallelization in a traditional
STM (TL2 [35]) and in ParaScript.

a minimal set of operations consisting mostly of array indemparisons is added to each ar-
ray access to enable range-based dependence checkinge t€bksiques are detailed in the

following subsections.

3.4.1 Conflict Detection Using Reference Counting

As mentioned in SectioB.3.1 manipulating object arrays inside the loop potentially-cr
ates dependence cases that are not resolvable using siatplalv analysis. For example,

if the same object reference is assigned to two differeratyagtements, since those elements
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might be written to during different iterations of the lodlpe loop has potential cross iteration
dependences, and can not be parallelized.

In order to identify these cases, we employ a technique airtol what reference counting
garbage collectors use. At runtime, a header is added tdgtts involved with loop arrays.
This header, which is only used during array checkpointingludes a reference count and
entries for storing array IDs (e.g., starting address). Glmeckpointing mechanism already
goes through all live-in array elements and stores themdrstate checkpoint (Secti@4.4).
During this process which happens before starting paraltgl execution, if an array element
refers to an object, the object’s reference count and aiagntries are queried. If it had
been referenced by the same array before, the system will kinat there are two elements
in the same array that refer to the same object, and therebypop is disqualified from the
parallelization process.

If the object has been referred to by another array and amyeglts of the two arrays are
dependent through def-use chains, the loop is disqualifieekd (this condition might disqual-
ify loops that are actually parallelizable, but in order tionénate the need for more in-depth
and expensive speculation, this pessimistic assumptioragde to ensure correct execution in
all cases).

If, according to the header, the object has no array eleneéetances so far, the reference
count is incremented and the array’s starting address iscatll array ID list in the object
header. If all object arrays in the loop pass this referencaiing phase, parallel loop execution

is started and range-based checks as described next aieddpghe arrays.
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3.4.2 Conflict Detection Using Range-based Checks

A mechanism is needed to detect cross-iteration conflictsdalar arrays and for object
arrays that have passed the reference counting checksden tar avoid instrumenting every
array access with speculative operations, a range-bageshdence checking is employed. In
this method, during the speculative loop execution, eadlyanaintains four local variables
calledrdMinIndex, rdMaxIndex, wrMinIndex, andwrMaxIndex. These values keep track of
the minimum and maximum read and write indexes for the aBaying parallel code genera-
tion, at each array read or write access, necessary coropsige inserted in the bytecode to
update these values if needed. After several iteratiortsedbiop, accessed array references and
their minimum and maximum access index values are writtdhdarray write and read sets
(arrayWrSet andarrayRdSet) in the memory. Each thread of execution maintains its own ar
ray read and write sets. The number of iterations after wivigte and read sets are updated is
determined based on a runtime heuristic depending on théeuoharrays in the loop, number
of array accesses and the difference between minimum anagrmaxaccessed index values.
As was shown in Figur8.5, after a predefined number of iterations, all threads stegbatrrier
and the conflict checking routine checks the read and writesscranges of each array in each
thread against write access ranges of the same array ifat thireads. If any conflict is found,
the state is rolled back to the previous checkpoint and the i® run sequentially.

One downside of this mechanism for array conflict checkingasstrided accesses to arrays
are always detected as conflicts. However, this is a mindramapared to the large overhead

reduction as a result of efficient range-based conflict detea other cases.
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| Function || Description | new Min | new Max |
pop Q) Remove last array element | 01dMin oldArray.length()
push () Add elements to end of arraly o1dMin oldArray.length()+1
reverse() Reverse array elements 0 oldArray.length()
shift() Remove first array element| 0 oldArray.length()
sort () Sorts array elements 0 oldArray.length()
splice(i,n,el,...,en) | nemovesnandforaddN 1 . o 14uin i) | max(oldMax,i+N,i+n)
elements from position i
unshift(el,...,eN) Add N elements to beginning 0 oldArray.length + N
of array

Table 3.1: JavaScript Array manipulation functions’ effect on minimuand maximum access index
values.oldArray.length() is the length of the array before applying the function. Wiks®,01dMin
andoldMax are old values of minimum and maximum read and write accekexivalues.

3.4.3 Instrumenting Array Functions

As mentioned before, all array read and write accesses bdeeinstrumented for updating
minimum and maximum access index values. In addition to abamay access using indexes,
JavaScript provides a wide range of array manipulationtfans which are implemented inside
the JavaScript engine and read or write various points earrin order to correctly capture
their effect, their uses in the JavaScript application e mstrumented. Tabl& 1shows these
functions and their effect on min/max access index values.

In JavaScript, it is possible to add custom functions tothnibbject types such asrray,
String, or Object using theprototype keyword inside the program source code. These
custom functions are able to change values or propertigseafitespective object. This could
pose complications in determining the values of minimum @uackimum access index values.
Therefore, any additional properties of functions addethbyrototype keyword are detected

and instrumented to correctly update access index values.
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3.4.4 Checkpointing and Recovery

At any point during runtime, thglobal objectcontains references to all application objects
in the global namespace. Inside the JavaScript source ttaalglobal object can always be ac-
cessed using thehis keyword in the global scope and is equivalent toihedow object in web
pages. Pointers to local objects, variables and functigaraents reside in the corresponding

function’scall object and can be accessed from within the engine.

Checkpointing: When a checkpoint is needed in the global scope, only a gldisdkpoint

is taken, whereas in case the checkpoint request is issgatkia function, both global and
local checkpoints need to be taken. The stack and framegusiate also checkpointed in the
latter case. While going through variable references irgtbbal or local namespace, they are
cloned and stored in the heap. Since there will be no refesetathese checkpoints from within
the JavaScript application, the garbage collector neetis tsked explicitly not to touch them
until the next checkpoint is taken. During checkpointirtggensure proper roll-back, objects are
deep-copied. However, based on a runtime threshold, P@paStiops the deep-copying process
and avoids parallelizing the loop if checkpointing becoteesexpensive. Although a function’s
source code can be changed at runtime in JavaScript, sina8d gt avoids parallelizing loops
containing code injection constructs, the checkpointiregin@nism does not need to clone the

source code. All other function properties are cloned.

Recovery: In case of a rollback request, the checkpoint is used to réaek to the original
state and the execution starts from the original checkpgrbcation. Similar to checkpoint-

ing, recovery is also done at two levels of global and locahespaces. Due to complications
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of handling different stack frames at runtime, cross-fiorcspeculation is not supported. This
means that speculative code segments should start and #redglobal scope or the same func-
tion scope (obviously, different functions could be cabed returned in between). During local
recovery, stack and frame pointers are over-written by tieekpointed values. This makes sure
that when an exception happens in the speculative segmeénhamexception handler is called
from within some child functions, if a rollback is triggerdtie stack and frame pointers have

the correct values after recovery.

3.4.5 Checkpointing Optimizations

Using the speculation mechanism inside the ParaScriptefnark provides several opti-

mization opportunities to further reduce the checkpombtmerhead.

Selective variable cloning: The original checkpointing mechanism takes checkpointb®f
whole global or local state at any given time. However, inaBaript, only a checkpoint of
variables written during speculative code segment execugineeded. In the selective variable
cloning optimization, these written variables are ideetifusing the data flow information. If
any variable is passed as an argument to a function, thedmstiata flow information is used
to track down the variable accesses and determine if therargr writes to that variable. This
information is passed to the checkpointing mechanism, asdiegtive rather than a full variable

cloning is performed.

Array clone elimination: In some applications, there are large arrays holding retalues

from calls to functions implemented inside the browser. @rample of these functions is
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getImageData from the canvas HTML5 element implementation inside the browser. This
function returns some information about the image insigecinvas element. Since spec-
ulative code segments in ParaScript do not change anythside DOM, the original image
remains intact during the speculative execution. Theegfostead of cloning the array contain-
ing the image data information, ParaScript calls the oabinnction again with the same input

at rollback time (e.g.getImageData is called again on the same image).

3.5 Evaluation

3.5.1 Experimental Setup

ParaScript is implemented in Mozilla Firefox's JavaSceapgine, SpiderMonkey1P] dis-
tributed with Firefox 3.7alpre. All experiments are donéhvthe tracing optimization40]
enabled. In SpiderMonkey, at a high-level, each enginait& has &untimeobject, which
is mainly responsible for memory management and handliogayldata. Each JavaScript pro-
gram in the browser has only ofuntimeobject, in which references to all other objects in
the program reside. Objects cannot move or be shared betviéerent Runtime. Context
objects, on the other hand, are per-thread objects thatapemsible for tasks such as excep-
tion handling. EacliRuntimecan have multipl€ontexs and other objects can be shared among
differentContexs. Multithreading support in SpiderMonkey is made posdilyi¢he serializa-
tion of several data structures belonging to Buentimeobject and special handling of garbage
collection and object property accesstg]|

The proposed techniques in this work are evaluated on th8@@der [L3] benchmark suite

and a set of filters from the Pixastic JavaScript Image psiogd.ibrary [L11].
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SunSpider has 26 JavaScript programs. All these were ranghrthe ParaScript engine
and 11 were found to benefit from parallelization. Lack ofgilatization opportunities in the
rest of them, however, was found early on in the dependersmsament stage (SectiBiB)
without any noticeable performance overhead (an averagéos$low down due to the initial
analysis across the 15 excluded benchmarks). From thesaralletizable benchmarks, three
bitops benchmarks do not perform useful tasks and are only in thte swibenchmark bit-
wise operations performance. Therefore, they are alsaéadlfrom the final results (These 3
benchmarks gained an average of 2.93x speedup on 8 threadsiahing through ParaScript).

The Pixastic library has 28 filters and effects, out of which 11 most compute-intensive
filters were selected. The rest of the filters perform simagks$ such as inverting colors, so
their loops did not even pass the initial loop selection Istigrbased on the loop size. Out of
the 11 selected filters, 3 benchmarks (namlyr, mosaic andpointilize) were detected by
ParaScript to be not parallelizable, due to cross iteratioay dependence between all iterations
in blur, and DOM accesses inside loopsmesaic andpointilize. All benchmarks were
run 10 times, and the average execution time is reportedtarpet platform is an 8-processor

system with 2 Intel Xeon Quad-core processors, running tibario.

3.5.2 Parallelism Potential and Speculation Cost

Figure3.7 shows the fraction of sequential execution time selecteBdmaScript for paral-
lelization in our subset of the SunSpider and Pixastic suit@&ese ratios show the upper bound
on parallelization benefits. In the image processing bemacksn a high fraction of sequential

execution outside parallelized loops is spent ingbeImageData function implementation in-
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Figure 3.7: Parallelization coverage as ratio of parallelizable cad#ime to total sequential program
execution.

side the browser. This function takes the image inside an HEkhvas element as the input
and returns a 2D array containing the RGB and alpha valuenrgton for all pixels in the

image. The function’s implementation inside the Firefogveser mainly consists of a DOALL
loop that walks over all pixels in the image. We exploited tharallelization opportunity and
hand-parallelized this DOALL loop inside the browser. THiea of this parallelization is

discussed in the next subsection.

Checkpointing and speculation overheads are presentadunel3.8. This study has been
done on single-threaded versions of the applications. Xperements are set up such that the
sequential program is passed through the ParaScript syamtenparallelization and specula-
tion constructs required for proper execution of the paliakkd version are inserted into the
sequential benchmark. The benchmark is then executed wéllwead. The overhead is mea-
sured after applying both optimizations in Secti®4.5 Array clone elimination proved to

be quite effective in Pixastic benchmarks, due to clonimgiektion in the return array of the
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Figure 3.8: Speculation and checkpointing overhead as a fraction aff sequential program execution.
getImageData function. The only overhead missing in these bars is theldchgoverhead at
the end of each parallel chunk. Due to the efficient storageoéssed array ranges, this check-
ing overhead turned out to be negligible in the experimefs.average, checkpointing and
speculation overhead is around 17% of the sequential érecuintime of the whole applica-
tion. The main reasons for this low overhead are accuraterakgnce prediction, light-weight
array access instrumentation, efficient conflict checkimgimanism due to the use of array ac-
cess bound checks instead of individual element checkstrang@roposed optimizations on
checkpointing. Furthermore, due to the high predictiorceas rate of the parallelization as-
sessment step, ParaScript is able to take checkpoints ool at the beginning of the loop,

which in turn lowers the overhead.

3.5.3 Results

Figure3.9shows performance improvements as a result of speculanad@lization using

the ParaScript framework, across subsets of SunSpiderauit the Pixastic image processing
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Figure 3.9: ParaScript performance improvement over sequential féra2\d 8 threads. Black lines on
top of the graphs show the performance of a system with haedswgpport for speculation (e.g., HTM).

applications. The Y-axis shows the speedup versus sequeilinese performance numbers
include all overheads from the JIT compilation time anaysuntime analysis and runtime
speculation. The black line on top of each bar presents thetedf replacing our light-weight
speculation mechanism with hardware speculation suppett as a hardware transactional
memory system. Speculation costs of such a hardware systassumed to be zero.

Overall, across the subset of SunSpider benchmarks, tleziments show and average of

1.51x, 2.14x and 2.55x improvement over sequential for 2ndl, 8 threads of execution (Fig-
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ure3.9(a)!. In case of using hardware speculation support, the speadopld have increased
to an average of 1.66x, 2.27x and 2.72x over sequential #yand 8 threads.
Figure3.9(b)presents the results for Pixastic applications. The lowergf each bar shows
the performance improvement as a result of speculativelglleizing the application itself.
The top part of each bar is the extra performance improvemainied by parallelizing the
getImageData function inside the browser with the same number of threadBeparallelized
application. Finally, the black line on top of each bar shake performance improvement,
assuming hardware speculation support. On average, Speefid.29x, 1.43x, and 1.55x are
gained after parallelization for 2, 4, and 8 threads of eitenu Additional speedups of 14%,
23%, and 27% are gained after parallelizing the Firefox am@ntation of thgetImageData
function which increases the performance improvement sevarage of 1.43x, 1.66x, and 1.82x
respectively. Using hardware speculation support, sgeeda upto 1.58x, 1.79x and 1.92x for

2, 4 and 8 threads.

3.5.4 Discussion

In SunSpider benchmarks (FigiB®(a), access-nbody, access-nsieve andstring-b-
ase64 do not show much scaling past 2 threads. The reason is thaathelized loops in these
benchmarks are unbalanced and the final runtimes are alveayslbd by the longest running
iteration, irrespective of the number of threads used faalpaization. Comparatively low
overall speedup iraytrace (1.65x for 8 threads) is due to the low coverage (less than)60%
of parallelizable loops.

The loop selection mechanism discovered many loops witbselteration dependences in

LAverage speedup for all 26 SunSpider benchmarks is 1.6% ttareads.
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these programs and avoided parallelizing them, so the abtwtwas zero in almost all the
benchmarks. The only case of abort was from an inner loop iragttace, which contributed
to less than 5% of the total execution time.

In Pixastic applications, other than the inherent paiabigion limitation due to relatively
low coverage of parallelizable sections (an average of 60%rage), the large ratio of memory
to computation operations in these benchmarks is a limitwtpr to their parallelism poten-
tial. This causes the program to become limited by the mersgstem latency rather than the
amount of computation.

The negative effect of this factor has the most impact onstiga benchmark where it
causes slowdown rather than speedup for 4 and 8 threads. iteaa&tion in the inner loop
of this benchmark has 3 multiply operations, 7 adds, and 6 eangmperations. This causes
the program to be quite memory intensive and therefore badby the performance of the
memory system. Although the computations and memory reésjaes parallelized in the 4 and
8 threaded versions, the program is sequentialized at tmeonyesystem bus, waiting for its
memory requests to be serviced and returned. Based on teéswaltion, the loop selection
heuristic was updated to account for the memory to commurtatperation ratio when making
parallelization decision to avoid such slowdowns.

The same effect limits the performance improvements frorallgizing theget ImageData
function inside the browser. Although, this function carpbeallelized without any speculation,
the innermost loop has 8 memory operations versus 8 add,tgigand 3 division operations.
Therefore, becoming sequential at the memory system busdgagdive impacts on the paral-

lelization gains of this function as well.
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3.6 Related Work

There is a long history of work in the area of parallelizingwential C/C++ applications.
Hydra [45] and StampedeBf] are two of the first efforts in the area of general purposgam
parallelization. The POSH compileb3] uses loop-level parallelization with TLS hardware
support. The authors i®B] proposed compiler transformations to extract more loopllpar-
allelism from sequential programs. Speculative decouptétivare pipelining 87] is another
approach that focuses on extracting parallelism from lomils cross iteration dependences.
In that work, they distribute a single iteration of the loogenpseveral cores. All these works
use static analysis and profiling for parallelization ansuase hardware support for specula-
tion, while in this work, we do not rely on any static memoryabsis and we perform the
speculation completely in software.

There have been previous proposals for dynamic paralteizgechniques. The JPRM sys-
tem [33] focuses on dynamic parallelization of Java applicatibusjt is dependent on complex
and costly hardware support for online memory profiling thags not exist in commodity pro-
cessor systems. The LRPD teg2], performs speculative dynamic parallelization of Fantra
applications. This framework is dependent on static amabysd transformation of loops, and
runtime checkpointing and speculative execution. In troskyno static analysis is done on the
code and the code is generated on the fly. Furthermore, LR&dy dependence testing is
based on tracking individual array accesses, while Pai@tSurly tracks array bounds which
significantly reduces tracking and checking overheads.

The work in R4] employs range tests based on static symbolic analysigeakd’araScript

performs these tests dynamically and at a lower cost atmantiThe Ninja projectdl] uses
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array reference comparison for linear arrays, which doésower arrays of objects or arrays
of arrays. Their tests on higher order arrays involves dhiming a custom array package and
changing the source code.

The work in [L9] proposes a C++ library which is dependent on the prograniteetifica-
tion of parallel regions and performs dynamic orchestratibthese regions. Being dependent
on the programmers, they do not have any speculation sugfdtiors in P1] and [89] inves-
tigate dynamic parallelization of binary executables. yrhse binary rewritting to transform
sequential to parallel code. Howeve89[ while exploiting slice-based parallelization, assumes
hardware speculation and hardware parallel slice suppdtiaer of which exist in current sys-
tems. The work in 91] only performs control speculation and does not speculateaia.
Therefore, after identifying the parallel loop, they hawgerform data dependence analysis to
prove lack of cross iteration memory dependence, which evbal quite costly (Sectio8.2).
Furthermore, none of these dynamic parallelization temines work on dynamic languages
such as JavaScript.

There is a significant amount of previous efforts in the afea@mory speculation. Harris
et al. go through a detailed survey of different transactional mgntechniques in48]. In
particular, Shaviet al. proposed the first implementation of software transactior@mory in
[77]. Several other works such as DSTMEO and OSTM R|7] proposed non-blocking STM
implementations. The authors A9, 18] proposed a lock-based approach where write locks
are acquired when an address is written. Also, they maiatagad set which needs to be val-
idated before commit. Our speculation mechanism is notlddatured software transactional

memory. ParaScript introduces a customized speculatisteisywhich is tailored towards effi-
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cient speculative loop level parallelism in JavaScript. Bgluding many features required by
general-purpose TM models, speculation in ParaScript @asrbe highly lean and efficient.
Due to the lack of concurrency support in the JavaScriptuagg, there have not been
many previous efforts for exploiting multicore systemsngrove the execution performance
of client-side web applications. There has been a recepiogal to add a limited form of con-
currency calledveb workerdo the language. There are already standardization etbeitsy
undertaken on this proposdaldq] and almost all major browsers are starting to support these
structs. However, due to separate memory spaces among tkerajdhe only means of com-
munication between them is through message passing, whagksrdeveloping multithreaded
applications very difficult. Cromdl], is a recent effort in employing speculative execution
to accelerate web browsing. Crom runs speculative versibesent handlers based on user
behavior speculation in a shadow context of the browserijfahd user generates a speculated-
upon event, the precomputed result and the shadow contegbarmitted to the main browser
context. Crom exploits a different parallelization lay&das orthogonal to our work. One
could use both approaches at the same time to enjoy pazatieln benefits at multiple levels.
We implemented our framework on top of Mozilla’s TraceMownkee trace-based JIT com-
piler described in 40] and released as a part of recent versions of Firef@xTraceMonkey is
able to achieve more than 10x speedup on some programs inuttf&piler suite compared to
previous versions of SpiderMonkey on Firefox (which is aefpreter-only JavaScript engine).
All this performance is achieved by intelligent type spbz&ion and the tracing mechanism.
Trace-based compilation approach is orthogonal to oumigcdes. As a matter of fact, all re-

ported results in our work (including baseline sequengalits), have been generated with the
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tracing support enabled inside our modified Firefox browser

3.7 Summary

JavaScript is the dominant language in the client-side ypebaation domain due to its flex-
ibility, ease of prototyping, and portability. Furthernegias larger and more applications are
deployed on the web, more computation is moved to the clidatte reduce network traffic and
provide the user with a more responsive browsing experiddoeever, JavaScript engines fall
short of providing required performance when it comes tgdaand compute-intensive appli-
cations. At the same time, multicore systems are the stdmaanputing platform in the laptop
and desktop markets and are making their way into cell phonbkerefore, in addition to the
efforts underway by browser developers to improve engipesformance, parallel execution
of JavaScript applications is inevitable to sustain rezpiperformance in the web application
market. In this chapter, we proposed ParaScript, a fullyadyic parallelizing engine along with
a highly customized software speculation engine to autimadft exploit speculative loop level
parallelism in client-side web applications. We show thattechnique can efficiently identify
and exploit implicit parallelism in JavaScript applicatf The prototype parallelization system
achieves an average of 2.55x speedup on a subset of the 8anBenchmark suite and 1.82x

speedup a set of image processing filters, using 8 threads@mm@odity multicore system.
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CHAPTER 4

Dynamically Accelerating Client-side

Web Applications through Decoupled Execution

4.1 Introduction

TraceMonkey, a trace-based JavaScript engine, was dedfopthe Firefox web browser
to remove some of the inefficiencies associated with dynaypiag [40]. TraceMonkey iden-
tifies hot bytecode sequences and compiles them to nativeingacode with statically as-
sumed types. As long as these sequences (traces) remaistijgde, execution remains in the
type-specialized machine code. TraceMonkey works at theugarity of individual loops, and
therefore, is very well suited for compute-intensive weplegations.

While compiling hot traces to the native code, TraceMonkegrts runtime checks, called
guardinstructions, into the trace to check for type, control flawd other assumptions made
during the just-in-time compilation process. These chexcksheavily biased not to fire as the
vast majority of the time, types do not vary and a single aarftow path is dominant4Q].

However, these guards comprise a significant fraction af stecuted instructions. Figudel
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Figure 4.1: Fraction of total instructions devoted to computing guaadsoss four groups of bench-
marks: SunSpider, V8, Pixastic image processing appdicatiand a set of JavaScript games. These
bars include guards and portion of the backward slice onégad by guards and not used elsewhere.

presents the overhead of guards consisting of the guandiatisins themselves as well as the
dependent computation used by the them. These are thedtistrsionly used by guards and
are not needed elsewhere in the trace. The average overheaesented for four groups of
applications: SunSpidef 8] and V8 [15] benchmark suites, and two sets of applications from
the image processing and gaming domains (more details ohathehmarks are provided in
Section4.5). These values range from a low of 22% to a high of 42%, whighasent a
significant runtime penalty.

In this work, we focus on reducing this overhead using a nthiaded dynamically decou-
pled execution framework calldeghraGuard We decompose traces generated by TraceMonkey
into two concurrent threads. The main thread consists ottiie to implement the bulk of
the user program, while thearaGuardthread performs most of the runtime checks. With this
model, the main thread speculatively executes ahead asguhat the checks will not fire and
the common execution scenario will proceed. When a check fhileit reverts back to the in-

terpreter and safely discards the improper speculativéwburing speculative execution, the
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program is sandboxed to make sure no catastrophic exedatiores happen until ParaGuard
checks have been validated. In multicore systems with uatiéred cores, we can execute the
main and guard threads concurrently to increase perforenanc

The contributions offered by this work are as follows:

e We propose ParaGuard, a method to dynamically decompopea&pecialized trace into
two concurrent threads: the first speculatively perfornesdbre computation along the
expected path of control and the second verifies that thergdgans used to create the

trace are valid.

e We introduce several optimizations including guard braamregation and profile-based

shapshot elimination to increase the efficiency of the dplembexecution.

4.2 Background

In statically typed languages such as C or C++, the compilergenerate efficient machine
code based on the type information provided by the programidewever, in dynamically
typed languages such as JavaScript, variable types camgefamruntime and therefore, the
compiler cannot generate machine code specialized foramyspecific type. This forces the
compiler to generate generalized machine code with thétyabd handle potential dynamic
type changes, causing the code to be considerably slowerthigastatically typed machine
code. Some static compile-time type inference techniqaege applied to dynamically typed
languages, but such techniques are far too slow for a lamglilkeJavaScript that needs to be
loaded and compiled quickly in the web browser.

There have been a number of efforts to efficiently compile exetute JavaScript applica-
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tions on different browsers. One of the most recent progasalraceMonkey40] by Mozilla
which is implemented on top of SpiderMonkey?] and is now integrated in their web browser,
Firefox [7].

TraceMonkey uses a trace-based compilation method thatesdlavaScript execution time
by exploiting high performance type-specialized machiogecwhen possible. It starts off by
running the JavaScript application in a bytecode integuranhd at the same time identifies and
records hot bytecode execution sequences. These sequealted traces, are then compiled
to native code. In TraceMonkey, traces are formed out ofviddal hot loops. This choice
is based on the assumption that hot loops are mostly tydesthereby allowing most of the
program execution to be expressed by type-specialized aiingely compiled traces.

Each compiled trace consists of a single path in the programanspecific value-type map-
ping. However, this type-mapping is not guaranteed to baydworrect, because different code
paths may be taken or different types may be assigned to a wrakubsequent loop iterations.
Therefore, executing the same trace for later loop itematie based on the speculation that the
path and types will match what was observed during recordihgse speculations are verified
using a number of checks (callgdiard9 along the trace. The guards are inserted wherever
there is a need to check for alternate typing, control flovhgatr other runtime checks (as
described in the beginning of SectidtB). If these checks fail, the trace exits and reverts back
to interpreting the bytecode. Likewise, if the exit becorhes a branch trace is generated and
compiled to cover the new path. In this way, a trace tree istenadly formed which covers all
hot paths in the loop.

Figure 4.2 describes the major phases of JavaScript execution in Vi@aeey. These
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Figure 4.2: JavaScript tracing and type specialization in TraceMonKeyis state machine describes
how the trace monitor manages trace-based just-in-timepiation.

phases happen in theace monitorwhich coordinates the whole tracing process. |Initially,
the program starts in the bytecode interpreter, and wheimntbepreter reaches a loop edge,
the trace monitor is called to determine whether a new trhoald be recorded or an existing
native trace could be executed for the loop. At the start eCakon, since there are no com-
piled traces, the trace monitor simply profiles the numbdoop edge crossings and enters the
recording state after a loop becomes hot. During recordireggode along the trace is recorded
in a low-level intermediate representation (LIR) which etes all the operations and types in
the trace. The LIR also contains guards to ensure that theatdlow and types are identical to
what was observed during recording. If the recorder is umtbtontinue recording, for exam-
ple when faced witkeval calls or reaching the trace length limits in a small-memayice,

it chooses to abort the recording. On such an abort, the oradigcards the recorder and and
returns to the monitoring state. The monitor also keep&todtrow many times the recording
has failed for a trace starting at each program counter (BDgv Therefore, if a particular PC

causes too many aborted recordings, the mobismkliststhe PC and will not attempt to record
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it again.

The recording is finished when execution reaches the loogenea exits the loop. Sub-
sequently, the trace is compiled to the native code basetetypes and control path of the
recorded trace. From then on, whenever the monitor intexréackward jump to a PC with
a matching compiled trace (with the same type map), it emtatise execution mode. In this
mode, before calling the native trace, the monitor allozatérace activation record containing
imported local and global variables, temporary stack spaiceé space for arguments to native
calls.

The monitor then calls the trace native code with the adtimatecord as an argument. The
native code returns with a pointer to a structure contaimnfigrmation about how the trace
exited. Based on this information, the monitor restoresrpreter state by copying back the
imported variables from the trace activation record. Thamoo behaves differently afterwards,
based on the success of the trace return. If the trace exstscaassfully (e.g., due to having
garbage collection triggered, running out of native stackoticing other abnormal conditions),
the monitor returns to the monitoring state. However, if tifaee exits successfully (e.g., due
to running out of native code or hitting a branch condition Which no native code exists
yet), the monitor checks whether the side exit PC has becanermot. If not, it just keeps
monitoring the interpretation to find other hot traces. Hidis become hot, the monitor moves
on to the recording state immediately, starting a new brarade from that point and patching
the side exit to jump directly to that branch. Using this agmh, a single trace expands to a
multiple-exit trace which could span a fairly large portimiithe frequent execution graph.

In practice, loops are typically entered with only a few eli#fint combinations of variable
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types. Therefore, a small number of traces per loop is seffidio run a program efficiently.
TraceMonkey is able to achieve speedups of 2x to 20x on pmegyfar which tracing is feasi-

ble [4Q].

4.3 ParaGuard: Concurrent Guard Execution

During LIR generation, the following categories of guards be inserted into the trace.

Loop guards: They are inserted at the end of the loop and check for the leopination
condition. In general, loop traces end with an unconditidsnanch to the top of the loop and

this guard ensures that the execution exits the loop wheodirect condition is met.

Branch and case guards: When the LIR corresponding to a trace is generated, comaitio
branches and case statements are first replaced with uticoationes, taking the same path
that had been taken during trace recording. Guard instmtare then inserted to actually

check the branch/case conditions and abort the trace ifexelift path needs to be taken.

Condition mismatch guards: These guards are inserted to terminate trace executiorsé ca
a condition, relied upon at recording time, no longer holtts some of these situations, the
alternate path of execution is so rare or difficult to handlgne native code, that it is preferable
to have it interpreted rather than traced and compiled. Qaeple is a negative array index
access which requires string-based property lookups, acedo a positive index access which
is merely a simple memory access. Type mismatch guardssarénaluded in this category, and

they check if the actual type during native execution matakigh what was observed during
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Figure 4.3. Breakdown of different types of guards in SunSpider, V8aBiic image processing and
JavaScript games.

recording.

Miscellaneous guards: There are several other categories of guards such as atlo&ature,
execution timeout, variable overflow, and deep bail gudtgsp bail guards are triggered when
during the execution of a native C function call in the treec&ace exit is triggered.

Figure 4.3 shows the average relative ratio of different guard typeSunSpider and V8
suites, and our suite of image processing programs and ddwegames. Miscellaneous guards
comprise the top five sections in each bar. As can be seergtbgarards are the most frequently
generated guards across all benchmarks. Condition mismlatep and overflow guards are
other common ones.

In the ParaGuardtechnique (Figurd.4), the majority of guards are moved to another trace
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Figure 4.4. Offloading guard execution to the ParaGuard thread.
(ParaGuard trace) and are executed in a separate threas(Rad thread), in parallel to the
main trace. ParaGuard trace code is generated along witmaire trace and is invoked at
the same time during trace monitoring. The following subises describe how we generate
ParaGuards and restore the correct state of the inter@ftégra ParaGuard is triggered and
the trace is aborted. In Secti@n4, two optimizations are introduced to further improve the

performance of our technique.

4.3.1 ParaGuard Generation

The optimizations in TraceMonkey are performed in two piped phases over the trace.
During trace recording, immediately after the recordertemn LIR instruction, the instruction
is sent through the forward optimization pipeline. Thisward pass consists of several op-
timizations including common subexpression eliminatiod axpression simplifications such
as constant folding. The second phase is a backward pask gbés through the whole trace
from bottom to top after trace recording is complete. Théwojations in this pass include dead

code elimination and dead data-stack and call-stack slioneation. After an LIR instruction
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passes the last stage in the optimization pipeline, the gederator emits the corresponding
machine instructions.

Traditional guards are generated and inserted in the LIRhguhe forward pass. How-
ever, since we want to move guard instructions along with.tReinstructions that they depend
on (their backward slice), we need to generate ParaGuards astra pipeline stage after all
optimizations in the backward pass. We call this stage&rd promotion The goal of guard
promotion is to identify LIR instructions (guards and namagds) that can be moved to the
ParaGuard trace. A non-guard instruction is moved to tha®aard trace if it is only used
for computing the inputs of a relocated guard. Furthermsoeje instructions are marked for
duplication in the ParaGuard trace, since they need to lexeeuted there to minimize com-
munication between the ParaGuard and main threads. Dudiaglgromotion, two groups of
instructions are constructed. The first category is “tazbpied” which contains the instructions
duplicated on both the main and ParaGuard traces. The sgrond, called “to-be-moved”,
consists of all instructions that are moved from the maicgita the ParaGuard trace by the end
of the guard promotion pass. This pass is performed in twusste

Step 1: This is essentially a partial implementation of backwardisf). Starting from each
guard instruction in the trace, the compiler keeps traakedinstructions for the guard’s source
operands. Likewise, it trackdef of the source operands of thadefinstructions. This proce-
dure is continued recursively, traversidgf/usechains and markindef as “to-be-copied”. The
destinations of thesgefinstructions are also kept in a list for use in the second. Steavoid
violating memory consistency between the main and Paral3bezad, trackinglefs is stopped

after reaching a load instruction. Because if the load isezbpr moved to the ParaGuard trace,
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the code needs to ensure that the load in the ParaGuard thneaitexecuted before the corre-
sponding store in the main thread. Enforcing this requidesrey locking primitives, which can
cause high overheads.

Step 2: The goal of this step is to remove ttef that are only used in the guard’s backward
slice from the main trace. First the candidate guard for mgvs marked as “to-be-moved”.
As the trace is traversed backwards, ks of the candidate guard’s source operands are re-
cursively kept in a “use-set”. Whendefmarked as “to-be-copied” (during step 1) is reached,
its “use-set” is checked to see whether all its members argedas “to-be-moved”. If so, it
is clear that thiglefis not going to be used in the main trace before the guardiictson, if all
“to-be-moved” instructions are moved to the ParaGuarcetr&urthermore, defs destination
liveness after the guard instruction should also be checkedrder to do that, the live set at
the guard instruction is used and if ttiefs destination operand is not a member of this live set,
thedefs category can safely be changed from “to-be-copied” tedgemoved”. These live sets
are already generated prior to the guard promotion passumongirize, alefmust meet three
conditions to qualify for relocation to the ParaGuard trace

1. Itis marked as “to-be-copied”.

2. All its uses before the guard are marked as “to-be-moved”.

3. Its destination is not live after the guard instruction.

In addition to this analysis, guard promotion uses a hearikat rejects promotion of the
guard instructions whose backward slice is either very konahould be mostly copied to the
ParaGuard trace rather than moved. Therefore, by the ergeafuitard promotion pass, some

guards still remain in the main trace.
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var myArray = new Array();
function init() {
var j = 0;
for (j = 0; j < 200; ++j)
myArray[j] = j*2;
Figure 4.5: Sample JavaScript source code.

Atruntime, live-in values to the ParaGuard trace are cofmedoer-guard single-reader/single
writer buffer, similar to the buffers ing9)], which is written by the main trace and read by the
ParaGuard trace. Initializing these per-guard buffereoisedn the ParaGuard thread and is off
the critical path in the main trace. The initial sizes of thesffers are determined at compila-
tion time and in case more space is needed at runtime, thelyaeamically expanded. During
native execution, ParaGuard trace can start or resumet@xeomce these values are written in
the buffers by the main trace.

Figure4.5 shows an example JavaScript code snippet. TraceMonkelRsfar this code
can be seen in Figuré.6. Backward slices for each guard are highlighted with a ceffié
gray shade. Instructions belonging to multiple backwaickslare highlighted with the same
shade as the earliest observed guard in the trace. For ¢estdre backward slice for guard
instruction 30 consists of instructions 29, 24 and 2. Lilsaythe backward slice for instruction
26 are instructions 25, 24 and 2, and for instruction 23 as&rutions 22, 21, 10, 6 and 2.
Instructions marked with (*) are “to-be-copied” and the smath (+) are “to-be-moved” after
performing the guard promotion algorithm on the guardssHhgorithm decided not to move
the guard at instruction number 23, since it would have oaled two instructions (22 and 23)

on the main trace, while eithgs_Array_set had to be re-executed in the ParaGuard trace or

its return value had to be copied to the ParaGuard tracerbuffe
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labell:

7 : stqi sp[0] = $globl0 // store myArray on stack
8 : sti sp[8] = 1d1 // store j on the stack
9 : sti spl[24] =2 // store 2 on the stack

15: sti sp[16] = mull // store mul result on stack

(¥)24: addl = add 1d1, 1 // add 1 to j

(+)25: ovl = ov addl // check add for overflow

(+)26: xt ovi // side exit if overflows
27: sti sp[-8] = addl // store add result on stack
28: sti sp[8] = 200 // store 200 on stack

(¥)29: 1t1 = 1t addl, 200 // check loop condition

(¥)30: =xf 1t1 // exit trace if finished
31: sti sp[-8] = addl // store add result on stack

(¥)32: j -> labell // jump back to the top

Figure 4.6: Original TraceMonkey’s Low-level IR for the source code iglire4.5. Instructions marked
with (*) are to be copied and the ones with (+) are to be movdted?araGuard trace.

Finally, Figurest.7and4.8show the modified main trace and the generated ParaGuaed trac
after applying guard promotion respectively. The same glagdes have been applied to guard

instructions’ backward slices.



labell:

2 : 1d1 = 1d sp[-8] // load ‘“j’’ from stack
st shared_buf[0] = 1d1 // store 1d1 in the shared_buff

7 : stqi spl[0] = $globlO // store myArray on stack
8 : sti spl8] = 1d1 // store j on the stack
9 : sti spl24] =2 // store 2 on the stack
15 @ sti spl[16] = mull // store mul result on stack
116 : 1dgl = 1dq $globlO[8]  // (*) load myArray class
21 : returng=js_Array set( // set myArray element
$globl0 1d1 mull)
22 : eql = eq returng, O // check js_Array_set return val
23 : xt eql // side exit if failed
24 : addl = add 1d1, 1 // () add 1 to j
count = add count, 1 inc snapshot counter
27 : sti sp[-8] = addl // store add result on stack
28 : sti spl[8] = 200 // store 200 on stack
29 : 1tl1 = 1t addl, 200 // (%) check loop condition
30 @ xf 1t1 // (%) exit trace if finished
eq2 = eq count, N check snapshot condition
jt eq2 -> label2 jump if snapshot needed
31 : sti sp[-8] = addl // store add result on stack
32 ¢ j -> labell // (%) jump back to the top
label2:

barrier paraguard_finish
take_snapshot ()

count = 0

j —> labell

Figure 4.7: Main Trace LIR after guard promotion.

PGx instructions highlighted in black are added to these trdoeisig guard promotioreG1
copiesldi to the shared buffer between the main and ParaGuard tra&dsis the barrier
waiting for this value in the ParaGuard trace @& is loading it from the shared buffer. As
can be seen, guard promotion has moved 13 out of 32 instngcinothe original trace, while
only adding four instructions. Instructio®s2, PG3, PG4, PG7, PG8, andPG9 are used for

taking the native state snapshot for interpreter statesegg@s described in the next subsection.
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labell:

PG5: barrier shared buf [0] // wait for of shared_buf [0]
PG6: 1d1 = 1d shared buf[0] // load 1d1 from shared buf [0]

: count = add count, 1 snapshot counter
24’: addl = add 1d1, 1 // (%) add 1 to j
25 : ovl = ov addl // (+) check add for overflow
26 : xt ovl // (+) side exit if overflows
29°: 1t1 = 1t addil, 200 // (%) check loop condition
30°: xf 1t1 // (x) exit trace if finished

eq3 = eq count, N check snapshot condition

: jt eqd3 —-> label2 jump if snapshot needed
327: j -> labell // (%) jump back to the top
label2:

bdcast paraguard_finish

j —> labell

Figure 4.8: ParaGuard trace LIR after guard promotion.

4.3.2 Recovering Interpreter State using Selective Snapsts

As mentioned in Sectiod.2, before invoking a trace, the interpreter builds a tracevact
tion record that consists of the temporary stack spacegdpa@rguments to native calls, and
all imported global and local variables. These global arwdllwvalues are copied from i the

interpreter state to the trace activation record and theetis later called like a normal call-
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through-pointer in C. After a guard is triggered and thedreall returns, the interpreter state
is restored by copying the imported global and local vagalfiom the trace activation record
back to the interpreter state.

When using ParaGuard, this process gets more complicaitecke ®ie guards trigger asyn-
chronously, the main thread may have corrupted its statedagyuging instructions past the orig-
inal guard location and overwriting the correct state. €hme, some form of checkpointing
support is needed for imported native variables, so thatwvehguard triggers in the ParaGuard
trace, execution can roll back to a previous snapshot ofdirect execution state.

Traditional rollback support such as those in softwaredaational memory would incur a
high performance overhead and is unacceptable here. Tiaisad of making a backup copy
of memory locations on every memory write, we useuk snapshot mechanism in which
the frequency of taking memory snapshots is reduced to éNergrations. The exact value
of N is determined dynamically according to a runtime heurisftiich is based on the loop’s
instruction count, total iteration count, and number of rogynoperations per iteration. When
the execution on the main trace reaches the loop guard andhsount is a multiple ofN,
it stops at a barrier, waiting for the ParaGuard thread tohcap. In most cases, there is no
waiting, because the ParaGuard trace is shorter than the tnage. Subsequently, the main
trace takes the state snapshot, after which it continuesiérg. Since TraceMonkey does not
perform tracing if the code path contains I/O accesses, tapshot taking mechanism does not
have to deal with checkpointing I/0O operations.

In order to further reduce the overhead of bulk snapshotglectivesnapshot is taken

which only includes critical memory locations. These lowas are all trace live-outs including
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1t0 = 1t 1d1,min0 // compare with min index

jt -> updateMin // if smaller, replace min
gtO= gt 1dl,max0 // compare with max index
jt -> updateMax // if larger, replace max
labelO:
updateMin:

min0 = 1d1

j —> labelO
updateMax:

max0 = 1d1

j —> labelO // resume execution

Figure 4.9: Extra code added aft®G7 in Figure4.8. 1abelO is inserted right before instructicazs’.
updateMin andupdateMax code segments are inserted aftertheel2 code segment.

stack, heap and global variables, objects and data stasctitBnapshots of scalar non-object
variables are taken by simply cloning their value, whiletwut objects are deep-copied. The
deep-copying process is set up such that there are no digptiopies of the same object in
the snapshot in case of cycles in the object graph or when twiables point to the same
object. For live-out arrays, an accumulative snapshot en@sim is employed where after an
array snapshot is taken before the loop, during each Nib@rperiod at runtime, the minimum
and maximum accessed array indices are recorded. Subsigga#drelements between these
indices are stored into the array’s accumulative snapsBioice all array indices are already
passed to the ParaGuard trace to be checked by the condiisomatch guards, keeping track
of these maximum and minimum values is performed inside #tra®uard trace. Therefore,
they impose no extra overhead on the main trace. These \aladater sent back to the main
trace at the time of periodic snapshot taking. Figlu@shows the extra code for this purpose
that needs to be added to Figur&.

TraceMonkey uses a mark-and-sweep garbage collector (@&LChas an API function to
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add variables to the GCiwot setto prevent anything the root points to from getting collecte
Since there will be no references to the snapshots from nitieé JavaScript application, the
garbage collector needs to be asked explicitly not to toliemtuntil the next snapshot is taken
by adding the snapshot entries to the root set. Furthernb@eguse heap objects are deep-
copied while taking snapshots, no object in the snapshatdgploack to the actual application
heap. Therefore, although as explained later, snapsteotee@wvered once a GC is triggered, in
theory, there would be no issue of the GC collecting objetthé heap that are pointed to by
the snapshot.

When a guard triggers inside the ParaGuard or the main ttheeruntime aborts both
threads by sending a signal, restores the previous snagstiohoves back to the interpreter.
The rollback operation itself does not add extra overheatpewed to the original tracing tech-
nique, since it performs the same value forwarding that dbalve been done for updating the
interpreter’s state using the native trace data.

Another important issue is what happens when a GC is schetdiriethe original tracing
technique, the trace aborts when a GC is invoked. In ParalGtles latest correct snapshot is
restored after a GC call is triggered. The control is laterdeal off to the interpreter from the
execution location of the previous snapshot. Finally, ideorto ensure execution safety in the
main trace and avoid catastrophic failures such as nulltpootereference in the native code,
signal handlers were defined to catch runtime exceptiodspagk execution to a previous
shapshot and switch to the interpretation mode.

In Figure 4.7, instructionsPG2, PG3 andPG4 are used to branch tbabel2 everyN it-

erations. Atlabel2, the main thread waits on a condition, set by the ParaGuaehdhand
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marks the end of its execution. When the condition is setirthim trace starts to take the snap-
shot. LikewisePG7, PG8, andPG9 are used to branch tmbel?2 in the ParaGuard trace. After

branching, the ParaGuard thread broadcasts the bargasestondition to the main thread.

4.4 Optimizations on ParaGuard

In order to further improve the performance benefit of guamhwtion, two additional
optimizations are introduced. As mentioned in Secdd® 2 before starting the snapshot tak-
ing process, the main thread needs to wait for the ParaGhasdd to catch up. Therefore,
the ParaGuard thread should be made as fast as possible.tfdéuine theguard branch ag-
gregationoptimization, during which, mid-trace guard conditions aggregated into a single
variable, branches are removed, and at the end oflddéelnations, the single condition variable
is checked for any possible triggered guard. Furthermakeng snapshots can impose a high
overhead on the runtime. To tackle this issue, we proposie-based snapshot elimination
in which, based on a profile of previous executions, the gutrat are likely to trigger are kept

on the main trace, and snapshots are removed altogethettimprogram.

4.4.1 Guard Branch Aggregation

Taking a snapshot of the trace state at every N iteratioresgig the opportunity to perform
another optimization, called guard branch aggregatiothénParaGuard trace. At the end of
each N iteration chunk, we only need to know if trace executi@s successful or not and
knowing which guard actually triggered is not important.gRelless of the triggered guard,

execution is started from the previous snapshot. Theretprard branch executions can be
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labell:

PG5: barrier shared_buf [0] // wait for of shared_buf [0]
PG6: 1d1 = 1d shared buf[0] // load 1dl1 from the shared_buf [0]

: count = add count, 1 // snapshot counter
24°: addl = add 1d1, 1 // () add 1 to j
25 : ga flag &= ov addl // (+) check add for overflow
29°: 1t1 = 1t addl, 200 // (%) check loop condition
307: xf 1t1 // (%) exit trace if finished

eq3 = eq count, N check snapshot condition

: jt eqd3 —> label2 jump if snapshot needed
327: j -> labell // (%) jump back to the top
label2:
GAl: xt ga flag //side exit if guard triggered

bdcast paraguard_finish

j —> labell

Figure 4.10: ParaGuard Trace LIR after applying guard branch aggregatidi is the final and only
guard check in the ParaGuard trace.

postponed until the end of each N iteration execution chartké ParaGuard trace. The two
final instructions for every guard are the guard conditiomegator and the branch itself. Guard
branch aggregation combines all guard conditions to a singtiable which is later checked
by a final branch at the end of the trace after each N iterateog@. After applying this

optimization, we have essentially converted a trace witlingls input and multiple output

edges, to one with a single input and two output edges. Onaside/to using this approach is
that in case one of the middle guards fails, the trace hasaioues until the end of the iteration

chunk. However, in type-stable loops this does not caussearyus performance issues.
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Figure 4.10 shows the LIR before and after applying guard branch aggjmgaAs the
figure illustrates, five guard branches (instructions 5,142,20, and 26 in Figurd.8) can be

aggregated to just one brandia,1.

4.4.2 Profile-based Snapshot Elimination

In some traces, the overhead of taking snapshots turns dnat ¢mite high, mainly due to
the high overhead of taking heap and array snapshots. le theses, the number of unique
memory updates per loop is high and causes the snapshag taechanism to be inefficient.
This effect can be detected early on during trace executyoménitoring the snapshot tak-
ing overhead. When detected, the native trace is abortedh@ndxecution falls back to the
original tracing mode without guard promotion. After swiiteg to normal tracing execution,
triggered guards are recorded and stored on the cliente $iese operations are done inside
the JavaScript engine, the profile information can be storethe client’s file system. During
the next execution of the same JavaScript program on thetcliee guard promotion phase
only moves the guards that, according to the stored profiiee Imot triggered during previous
executions. After guard promotion, since no snapshotsadent if a guard is triggered in the
ParaGuard trace, the execution aborts native executivartseback to interpretation from the
beginning of the loop and adds that guard to the profile fordusg future executions.

However, if a guard is triggered in the main trace, extra messsshould be taken to enable
the interpreter to continue from the guard point rather ti@nbeginning of the loop. During
guard promotion, the main execution thread stores the s¢éiquierder of all guards (both in

the main and ParaGuard traces) in a list referenced by tlgggrocounter. If a guard triggers

101



in the main trace, it checks to see if all previous guards eRaraGuard trace have passed
successfully. If so, it falls back to the interpreter andtoures interpretation from the guard
point. Otherwise, it waits for the remaining guards in thealBuard trace to pass. Meanwhile,
if a guard triggers in the ParaGuard trace, the executids balck to the beginning of the loop
in the interpretation mode.

The ParaGuard execution model when applying profile-basagshot elimination is that
the first time a JavaScript application is executed, prddileoillected if taking snapshots seem
to be too costly. From then on, whenever the same applicatinm on the client, this profile
information can be used and updated. Therefore, the firsiugm of the application, in the
worst case, is almost as fast as the baseline tracing esaciliilater executions, the application

will be enjoying the extra performance benefits of ParaGuard

4.5 Experimental Evaluation

4.5.1 Methodology

We evaluated our technique on the TraceMonkey versioniloiséd with Firefox 3.7alpre
using four sets of benchmarks. In addition to the two popodgarchmark suites, SunSpidég]
and Google V8 3], we put together two other suites consisting of 12 imagegssing filters
and 5 games implemented in JavaScript. The image procefisang were extracted from the
Pixastic JavaScript Image Processing Library][ This library contains 28 filters and effects,
out of which the 12 most compute-intensive filters were getkdn the JavaScript game suite,
four of the benchmarks (Collision dem@&]] Thunder fighter 4], Super JS fighter5], and

Invaders from earthg]) are demos written using the gameQuery JavaScript gameefij.
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The last benchmark is a PacMan game written in JavaS&jip#l benchmarks were run 10
times, and the average execution time is reported.

In evaluating the profile-based snapshot elimination ojgttion, we used different input
sets for profiling and actual execution in all 4 benchmarkesuiln SunSpider and V8, default
inputs are used for actual execution and smaller inputs generated for the profile run. For
the image processing benchmarks, different images wekfos@rofiling and execution. In
the gaming benchmarks, since the input to all of them inwbk@me kind of random element
along with interactions with the user, the evaluation wasemovolved. In order to make the
performance comparisons feasible, the fact that the behavithese programs are uniform
during the execution time was exploited. Therefore, theyevexecuted for a fixed number of
events at the beginning of the benchmark without any userantion involved. All random
events during the execution were recorded and fed back tprttggam for all runs (different
random events were recorded for profiling and actual rurm)ifstance, in th@acMan game,
the pathgghostswere taking were fixed and the application ran untgheosthit the PacMan
which stayed still at its original position. Likewise, inglfollision Demo benchmark, all
box locations, orientations and movement paths were fixedtlam benchmark ran until 10
small boxes collided with the main box in the center. Simitegasures were taken in the other
three programs as well.

SunSpider has 26 JavaScript programs. However, TraceMaltdes not support recursion,
theeval function, and regular expressioaplace operations, limiting the number of programs
that can be traced properl(]. Consequently, we excluded the following six benchmartsf

our experimentscontrolflow-recursive, access-binary-trees, date-format-to-fte,
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Figure 4.11: Ratio of promoted guards to total number of guards.
date-format-xparb, string-unpack-code, andregexp-dna.

In the V8 suite, we excluded tiregExp benchmark due to its dependence on the regular
expression library inside the engine rather than tracingddition DeltaBlue, RayTrace, and
EarleyBoyer perform poorly on the tracing JIT as only a small fraction xé@ution is spent
running natively, mainly due to the lack of support for restan in TraceMonkey. Therefore,
we excluded them from our results as well. All experimentsengerformed on a system with

an Intel Core i7 processor running at 3.20 GHz, and 4 GBs ofimma&mory.

45.2 Results

Figure4.11 presents the number of guards that passed the promotiorstieand were
moved to the ParaGuard trace. These ratios are based onriamuyLIR instruction count.

The heuristic basically rejects the promotion of all guarstiuctions whose backward slice
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Figure 4.12: Number of triggered guards in ParaGuard during every 1@0i@tructions in the guard
promotion technique without applying the profile-basedoshat elimination. The y-axis is in logarith-
mic scale.

is either very small or should be mostly copied to the Paractrace rather than moved. In
addition to loop guards, which are always present in the rirage after guard promotion and
are counted as non-promoted guards, most guards that dmedaktégrity of various function
return values (such as allocation functions) get rejectethb guard promotion heuristic. In
order to move these guards, guard promotion either has tp ttepcorresponding function
calls or move the return value directly using the buffersveein the main and ParaGuard thread.
Both of these approaches are inefficient, since they addceadrwhile only saving the guard
comparison and branch on the main trace. However, many Iiease, overflow and mismatch
guards successfully pass the heuristic and are moved tcattaé&Bard trace. As can be seen,

the ratio of moved guards varies between 25% and more than 80%
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Figure4.12shows the number of triggered guards in the ParaGuard wacd,00,000 pro-
gram instructions after applying guard promotion. This figgahows that many hot loops in
these applications are type-stable and have infrequengelsan control-flow. This is the rea-
son for effectiveness of the original tracing approatj fnd also the reason behind infrequent
roll-backs from snapshots in our method. The majority osth&riggered guards are branch
guards after which ParaGuard rolls back the state and etirecording other paths of the
branch in the interpretation mode.

We originally applied guard branch aggregation to the Paea trace. However, since
the ParaGuard trace is shorter than the main trace in alhpesudks, in practice, applying this
optimization proved ineffective on the overall performanEurthermore, due to the infrequent
number of side exits in these benchmarks (Figut), the drawback from identifying guard
failures after N iterations rather than at each individuzg was negligible. Therefore, we
present the performance results without applying guarddbraggregation. The effect of this
optimization on ParaGuard thread’s CPU utilization is dssed later in this section.

Figure 4.13 shows the results of applying ParaGuard to the four bendhmates on 2
processors, where one of them is running the main threadtendther one is running the
ParaGuard thread. The left bars in this figure represenpibedsip gained compared to sequen-
tial trace-based execution after applying guard promotidhe right bars show the resulting
speedup after performing profile-based elimination ofessaiapshots.

Applying guard promotion by itself leads to an average skowal of 12.2%, 0.1%, 14.7%
and 24.2% on SunSpider, V8, image processing and gamindhbenks, respectively, on two

processors compared to the original tracing on one proce$é@ main reason for the slow-
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Figure 4.13: ParaGuard speedup on 2 processors compared to the basading.t The left bars show
the speedup after guard promotion and the right bars showsptbedup after applying the profile-based
snapshot elimination optimization.

downs in these benchmarks is the large overhead of takingshogs due to high number of
individual array and heap accesses. In some of the bencbr{iglout of 39 programs), where
variable accesses are mostly scalar or multiple iteratipdsate the same array or heap elements,
the overhead of taking snapshots is much less and an averegeup of 8% is achieved.

After performing the profile-based snapshot eliminatidhfraygered guards during pre-
vious executions are kept in the main trace. The distributibthe number of these guards
is similar to Figure4.12 As can be seen in Figu#e13 applying this optimization improves

the performance of SunSpider, V8, image processing and gemehmarks to 11.2%, 21.4%,
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Figure 4.14: Utilization of the ParaGuard thread relative to the mairaicr before and after applying
guard branch aggregation optimization.

18.3% and 19.8% over the baseline tracing, respectivelis iffprovement is mainly caused

by the elimination of the snapshot taking process, and shreeguard behaviors are quite stable
with different inputs, the number of guards triggered in BagaGuard trace after applying this
optimization is close to zero. The main source of overhedderexecution is the synchroniza-
tion between the main and the ParaGuard traces.

The highest variation in the profile-based promotion resekists in the SunSpider bench-
mark suite. This is mainly due to various ratios of promotadrdgs and also the non-uniform
benefit from original tracing in these benchmarks. For imstacrypto-md5 spends less than
20% of its total execution time in the native mode, and thgradtal performance benefit of our
technique is around 1% in this benchmark. Overall, acras8¢hbenchmarks we studied, the

ParaGuard technique achieves an average of 15% speedupeweiginal tracing technique.
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Figure4.14shows the CPU utilization of the ParaGuard thread relatwhé main thread
with and without applying the guard branch aggregationroption. The average utilization
across all our benchmarks is 55% and guard branch optiroizadi able to reduce it to an
average of 51%. This level of utilization shows a potentlidsing one processor for running
ParaGuard threads in two JavaScript execution instand¢be aame time with each ParaGuard
thread exploiting approximately half of the processing pom the extra core. Therefore, for

instance, using 3 processors, two JavaScript programsecaodelerated with ParaGuard.

4.6 Related Work

The idea of running traces for specializing hot code regiwas proposed in the Dynamo
binary rewriting systemZ2]. Dynamo utilizes run-time information to find hot patchesla
optimizes machine code accordingly. It also uses tracengko connect traces together if
possible. The idea of trace trees (extending the trace twrpocate new branches rather than
forming new traces) used in3(, 40], had been proposed by Gal et a1] for Java which is
a statically typed language. Our work is based on Mozillasac&Monkey, the trace-based JIT
compiler described in40] and released as a part of recent versions of FirefpxXlraceMonkey
is able to achieve more than 10x speedup on some prograne SutiSpider suite compared to
previous versions of SpiderMonkey on Firefox (which is aetpreter-only JavaScript engine).
All this performance is achieved by intelligent type spbz&ion and the tracing mechanism.
Chang et al.30] proposed a trace-based JIT compiler implemented on toglobA&’s Tamarin-
Central (Tamarin-Tracing) which is their VM for implememgi ActionScript and can execute

JavaScript programs without any modifications. They alsestigate using simpler opcodes
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in their IR and achieve up to 116% performance improvemest tive non-traced code on
SunSpider benchmarks. As we showed, by dynamically decemg@&xecution to main and
ParaGuard traces and using extra resources in multicotensgsadditional speedups can be
achieved on top of tracing techniques on multicore systefnsecent proposal43] presents
a concurrent trace-based JIT in which the compilation frdR to native code is performed
as a background thread. This technique can achieve an avefd&fo and a maximum of
25% speedup on the SunSpider benchmark suite. We chosesgedtfipproach and actually
tried to parallelize the execution by decoupling and pata&kecution of runtime checks rather
than performing the compilation in parallel with the moming/recording. However, these two
approaches are orthogonal and can be applied simultaryeousl|

SlipStream processor67] speculate on certain code path and executes a prunedweisio
the program itself in parallel with the original executidn SlipStream, the speculation support
is provided by hardware. I, the authors introduce a compilation framework for tramnsfa-
tion of the program code to a TLS compatible version and pertbread level speculation. The
Mitosis compiler B8] proposes a general framework to extract speculative dsrea well as
pre-computation slices (p-slices) that allow speculdtiveads to start earlier. MSS#4 trans-
forms code into master and slave threads to expose speeybatiallelism. It creates a master
thread that executes an approximate version of the progaataining a frequently executed
path, and slave threads that run to check results. All ofetlspeculative multi-threading works
parallelize the main computation for purposes of prefetgtir exploiting computational par-
allelism, where as in ParaGuard, we perform domain-spetifitme checks in parallel with

the main computation in a dynamic language. Furthermorepoirtrast to these works, we
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propose an all-software solution which works on commodéydiware. The LRPD tes?§]
performs runtime array tracking by using shadow arrays toioexactly what array elements
are touched in each thread. However, in our array snapshiatiaption, we only keep track of

range of array accesses.

4.7 Summary

As the web becomes the ubiquitous platform for execution ofentomplicated applica-
tions, a growing amount of computation is being handedeafthe client to minimize network
traffic and improve user experience. The flexibility and eafsprototyping in the JavaScript
language has made it the language of choice for most clidatvgeb applications. However,
as JavaScript applications are becoming larger and mor@utaion intensive, there is more
need for building high performance JavaScript engines éendient’s browser. Trace-based
JIT compilation is one approach towards tackling this isdunethis work, we proposed Para-
Guard, which decouples execution from the runtime checkstrace-based JavaScript engine
and accelerates the execution by utilizing extra resowsnasulticore systems. We also intro-
duced optimizations to further improve the performance. Shiewed that ParaGuard obtains
an average of 15% speedup on two processors across 2 indtetidard benchmark suites,
SpiderMonkey and V8, and two sets of JavaScript applicatioym the image processing and

gaming domains.
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CHAPTER 5

Summary and Conclusion

As multicore systems become the dominant mainstream caongpptatform, one of the
most difficult challenges the industry faces is software.pligations with large amounts of
explicit thread-level parallelism naturally scale penfiance with the number of cores, but se-
quential applications realize little to no gains with aduhital cores.

In this dissertation, we investigate solutions to this peabthrough automatic speculative
parallelization that frees the programmer from the diftitask of parallel programming and of-
fers hope to scale the performance for the vast amount ofyesgjuential software. We looked
into the automatic parallelization problem in two sequardpplication domains of C/C++ pro-
grams and client-side web applications written in JavgbcrDue to the different language
properties and deployment methods, each application doptaes different set of challenges
that needed to be tackled. There have been previous prgpmsapeculative parallelization of
C/C++ and Java applications. However, the key distinctval gn our work is realization of
parallelism on commodity hardware without any hardwarecs|aion support for C/C++ and
JavaScript. Furthermore, this dissertation is the firstkypzoposing automatic parallelization

of JavaScript web applications.
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In Chapter2, we presented the required compiler technology along wépegulative run-
time systemSTMlite for automatic parallelization of sequential C/C++ apafions. By cen-
tralizing the commit stage in STMlite, making use of softevatoom filter based signatures of
read and written addresses, and lifting some of the gendidl I@quirements such as strong
atomicity while retaining correctness, we were able to ceduuch of the overhead involved in
conventional software transactional memory systems.

As many software and services are pushed to the web frontyab@pplications are becom-
ing more complex, a growing portion of computation is shifte the client side by developers
to improve responsiveness in these applications and reédadead on the network. Therefore,
there is an increasing demand for high performance cliiet-sxecution, often implemented
in JavaScript. This has led to many recent efforts to imptbegyerformance of JavaScript en-
gines in web browsers. Furthermore, considering the wiiteagl deployment of multicores in
today’s computing systems, exploiting parallelism in thapplications is a promising approach
to meet their performance requirements. However, JavaiSuas traditionally been treated as
a sequential language with no support for multithreadimgiting its potential to make use of
the extra computing power in multicore systems. In this wawlexploit hardware concurrency
while retaining traditional sequential programming mode¢ introduced automatic runtime
parallelization methods for JavaScript applications andirent’s browser.

In Chapte3, we proposetaraScript a runtime scheme for identifying parallelizable loops,
generating the parallel code on-the-fly, and speculatiergcuting it. The ultra low-cost spec-
ulation engine consists of a checkpointing scheme and awardependence detection mech-

anism. It is shown that by employing these schemes, JayaSgplications achieve consider-
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able performance improvements over sequential executicornrent browsers using the extra
resources on commodity multicore systems.

The last part of this dissertation in Chapdefocuses on optimizing trace-based compilation
for JavaScript programs. Trace-based just-in-time caatipih techniques have been proposed
to address the performance bottleneck in JavaScript aiglits by compiling hot execution
traces down to the binary code. During compilation, runtainecks (called guards) are inserted
to the binary to abort execution in case a condition not ptediat binary code generation time
happens. We introducBaraGuardto off-load these checks in tracing compilers to another
thread, while speculatively executing the main trace. lhaadk fails, ParaGuard aborts the
native trace execution and reverts back to interpretingé@vaScript bytecode.

This dissertation have introduced many novel techniquestétic and dynamic paralleliza-
tion of sequential C/C++ and JavaScript programs on comiybdirdware. These techniques
prove useful in extracting parallelism from legacy apgimas, while paving the way to ex-
plore parallelism potential in emerging application donsasuch as web applications, where

parallelism have rarely been investigated before.
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