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ABSTRACT

Compiler and Runtime Techniques for Automatic Parallelization of Sequential Applications

by

Mojtaba Mehrara

Chair: Scott Mahlke

Multicore designs have emerged as the mainstream design paradigm for the microprocessor

industry. Unfortunately, providing multiple cores does not directly translate into performance

for most applications. An attractive approach for exploiting multiple cores is to rely on tools,

both compilers and runtime optimizers, to automatically extract threads from sequential applica-

tions. This dissertation tackles many challenges faced in automatic parallelization of sequential

applications, including general-purpose applications written in C/C++ and client-side web ap-

plications written in JavaScript, with the goal of achieving speedup on commodity multicore

systems. First, a complete parallelizing compiler system for C/C++ is introduced. This system

successfully identifies parallelization opportunities inprograms and transforms the code to a

parallel version. A matching runtime system, STMlite, is proposed to monitor the parallelized

program behavior and fix any misspeculations that might happen. We show that this system can

xi



generate and execute parallel programs that are upto 2.2x faster than their sequential counter-

parts, when executed on an 8-core commodity system.

The second piece of work focuses on a similar problem in a verydifferent application do-

main, JavaScript programs running on the client’s web browser. This dissertation is the first

research work that proposes dynamic and automatic parallelization of JavaScript applications.

The nature of the JavaScript language and its target execution environments impose a com-

pletely different set of challenges that we intend to solve.We first propose the ParaScript par-

allelizing engine, which identifies and speculatively parallelizes potentially parallel code seg-

ments while the code is running in the browser. A low-cost andhighly customized speculation

approach verifies the execution of the parallelized client-side code and rolls back in case of any

misspeculation. Dynamic parallelization using ParaScript yields an average of 2.18x speedup

over sequential JavaScript code on an 8-core commodity system. In addition, we introduce

ParaGuard, a technique which executes the runtime checks required by trace-based JavaScript

compilers in parallel with the main execution. ParaGuard isable to improve performance by

15% by using an additional core in multi-core systems.
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CHAPTER 1

Introduction

For more than four decades, the semiconductor industry has depended on Moore’s law to

deliver consistent application performance gains throughthe multiplicative effects of increased

transistor counts and higher clock frequencies. However, power dissipation and thermal con-

straints have emerged as dominant design issues and forced architects away from relying on

increasing clock frequency to improve performance. Exponential growth in transistor counts

still remains intact and a powerful tool to improve performance, though the paradigm through

which performance is perceived has shifted. Performance isnow based on throughput, utilizing

multiple cores performing computation in parallel to complete a larger volume of work in a

shorter period of time. These multicore systems have becomethe industry standard from high-

end servers, down through desktops, gaming, and even mobileplatforms. However, one of the

most difficult challenges going forward is software: if the number of devices per chip continues

to grow with Moore’s law, can the available hardware resources be converted into meaningful

application performance gains? Multiple cores readily help where threads are plentiful, such as

web servers. However, they provide little or no gains for sequential applications. In fact, the

performance of sequential applications may suffer due to the use of simpler cores.
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Figure 1.1: Performance of SPEC CPU benchmarks over the past two decades. The y-axis is in loga-
rithmic scale.

This effect is clearly illustrated in Figure1.1, which shows the performance of sequen-

tial SPEC CPU benchmarks over the past two decades. Up until 2004, sequential applications

were enjoying exponential performance improvements as a result of various architectural tech-

niques, larger caches, and scaling in the processor’s operating frequency. However, with the

industry-wide shift to multicore systems, this exponential growth slowed down mainly due to

the adoption of simpler architectures, smaller caches per core, and lower frequencies.

One way to alleviate this performance deficiency is to develop explicitly parallel programs

to make use of the additional resources in multicore processors. Many new languages have been

proposed to ease the burden of writing these programs, including Atomos [27], Cilk [ 39], and

StreamIt [85]. Despite these and many other languages, the effort involved in creating correct

and efficient parallel programs is still far more substantial than writing the equivalent sequential

version. Developers must be trained to program and debug their applications with the additional

concerns of deadlock, livelock, and race conditions. Converting an existing sequential applica-

tion is often more challenging, as it may not have been developed to be easily parallelized in

the first place. The lack of necessary compiler technology isincreasingly apparent as the push

2



to run general-purpose software on multicore platforms is required [59].

An attractive approach for exploiting multiple cores is to rely on tools, both compilers and

runtime systems, to automatically extract threads from sequential applications. However, de-

spite decades of research on automatic parallelization, most techniques are only effective in the

scientific and data parallel domains where array dominated codes can be precisely analyzed

by the compiler. Thread-level speculation offers the opportunity to expand parallelization to

general-purpose programs, but at the cost of expensive hardware support. In addition, these

techniques provide means for the automatic parallelization of statically typed general-purpose

languages such as C, C++ and Java, without providing solutions for the emerging and increas-

ingly important web applications.

As the web becomes the platform of choice for the execution ofmore complex applica-

tions, a growing portion of computation is handed off by developers to the client side to reduce

network traffic and improve application responsiveness. Therefore, the client-side component,

often written in JavaScript, is becoming larger and more compute-intensive, increasing the de-

mand for high performance JavaScript execution.

Historically, achieving high performance has been a difficult challenge for dynamically

typed languages such as JavaScript. The types of variables and expressions may vary at run-

time, thus the compiler must emit generic code that can handle all potential type combinations.

The most straight forward technique for executing such a generic code is through interpretation,

which is extremely slow in comparison to executing binariesgenerated for statically typed lan-

guages such as C or C++. There have been many recent and on-going efforts to tackle this per-

formance bottleneck by web browser developers, with a greatfocus on improving the sequential

3



performance of JavaScript programs [3, 40]. They mostly try to accelerate these programs by

compiling them down to the binary code, while adding some flexibility to fix the execution

flow in case types change dynamically. However, with the industry-wide move to multicore

platforms, these techniques provide no solutions to scale the performance. On the other hand,

due to the lack of concurrency support in the language and runtime systems, JavaScript appli-

cations have been written as sequential programs by default. Therefore, there is no immediate

way of exploiting available hardware resources in multicores to improve performance. Straight

forward application of static parallelization techniquesis ineffective for a number of reasons,

including the inability to perform whole program analysis,and expensive profiling and memory

dependence analysis.

In this dissertation, the above challenges in exploiting parallelism are addressed by intro-

ducing novel techniques for automatically extracting parallelism from sequential, butimplicitly

parallel, applications. Such applications are written and debuggedusing a sequential language,

such as C, C++ or JavaScript. However, they contain implicitparallelism that can be identified

and exploited using advanced compilation and runtime mechanisms. We focus on automatic

parallelization on commodity multicore systems in two verydifferent domains, general-purpose

applications written in C/C++ and client-side web applications written in JavaScript. In the fol-

lowing sections, we first look into the static versus dynamicparallelization paradigm, and then

we detail our contributions in this work.
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Figure 1.2: Static parallelization framework. Analysis and code generation is done at compile time,
while the runtime provides speculation support.

1.1 Static and Dynamic Parallelization: Challenges and Opportunities

1.1.1 Static Speculative Parallelization

There is a long history of static techniques for automatic and speculative parallelization of

scientific and general purpose applications. As shown in Figure 1.2, these techniques usually

make use of a combination of memory dependence analysis (pointer alias analysis), memory

access profiling, execution graph profiling, and data flow analysis to identify potential loops for

parallelization and generate parallel binary code using different speculative frameworks such as

speculative DOALL [57, 93] and DSWP [87]. This binary is later executed along with a runtime

speculation engine to monitor execution and roll-back in case of any misspeculations.

There have been various proposals for providing speculation support to programs both at

5



the hardware and software level. In hardware, many researchworks introduce techniques for

speculation at the cost of complicated and expensive hardware support [29, 46, 64]. However,

with the exception of Sun’s Rock processor [31], which had very limited hardware speculation

support, none of these works have made their way into real products yet, mainly due to the high

implementation costs and complex verification challenges.

Providing speculation support in software in the form of software transactional memory

systems, has also been a very popular research topic. However, obviating the need for extra

hardware support comes at a considerable performance cost.Many previous works [18, 35, 49]

tackle various performance and correctness issues in software transactional memory models.

Despite being effective in some applications, the kind of per-access logging and expensive soft-

ware checks makes them unusable in many scenarios [28], especially sequential program par-

allelization where the performance improvements might getcompletely offset by the software

speculation overhead. Therefore, we look into lowering thecost of software speculation by cus-

tomizing it to the loop level parallelization target. As we describe in Chapter2, by removing a

number of requirements associated with conventional software transactional memories, and uti-

lizing software bloom-filter based signatures to track memory accesses, we are able to achieve

speedup by static parallelization of C/C++ applications oncommodity multi-core hardware.

1.1.2 Dynamic Speculative Parallelization

While static parallelization techniques prove effective for languages such as C/C++ and

Java, they fail to operate efficiently for highly dynamic environments like that of JavaScript,

where the source code is shipped to the client right before execution and all the efforts of inter-
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Figure 1.3: Dynamic parallelization framework. Analysis, code generation and speculation is done at
runtime.

pretation, just-in-time compilation, and execution is performed on the client’s web browser. In

such a setting, as shown in Figure1.3, all steps of the parallelization process including analysis,

parallel region selection, and parallel code generation needs to be done at runtime, in addition to

the runtime speculation. Therefore, many of the techniquesused for static parallelization would

be too expensive to be applied at runtime. For instance, authors in [42] recently proposed a static

JavaScript pointer analysis for security purposes, which takes about 3 seconds to complete on a

set of JavaScript programs with an average size of 200 lines of code. Performing this analysis

at runtime is quite prohibitive, even for programs of that size. This overhead would be higher

for larger applications that consist of hundreds of lines ofcode [73]. In addition to compiler

analysis, the overhead of performing memory access profiling at runtime is also unacceptable.

The work in [56] reported 100x to 500x increase in the execution time as a result of performing

static memory profiling on C/C++ applications.

Therefore, with the exception of simple data flow analysis and code generation (both of

which are already done at runtime in JavaScript engines), a dynamic parallelization framework

cannot afford to utilize any of the static compile time stepsin Figure1.2. The lack of static

information makes the use of C/C++ customized software speculation engines, as proposed in
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Chapter2 and also in [57, 69, 86], very expensive. As we show in Section2.5, this overhead

could make the parallelized version of the code up to 4x slower than the original sequential

application.

Having these constraints in mind, we introduce low-cost andhighly customized analysis and

speculation techniques in Chapters3 and4 to alleviate most of the overheads associated with

static parallelization, and achieve speedup for JavaScript applications on off-the-shelf multicore

hardware.

1.2 Contributions

In this dissertation, with our goal of parallelization on commodity hardware, we look into

reducing compilation and runtime overhead for both C/C++ and JavaScript platform using two

main insights. First, instead of fine-grain runtime checking for conflict detection, we perform

coarse-grain checks using software bloom filter signaturesin Chapter2, range-based and ref-

erence counting-based checks in Chapter3, and decoupled parallel checks in Chapter4. This

gives us the opportunity to significantly reduce the checking overhead, which has been done on

a fine-grain per-access fashion in prior art, and enable realization of automatic parallelization

techniques on off-the-shelf multicore hardware. Second, by taking less risk and perform more

pessimistic speculation, we are able to reduce a large portion of checking overhead in Chap-

ters2 and 3 and snapshot taking overhead in Chapter4. In particular, the contributions offered

in this dissertation are as follows:

• First, a complete parallelizing compiler system for C/C++ is presented. This system

identifies parallelization opportunities in sequential programs and generates their parallel
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counterpart. In order to ensure the correctness of the parallelized code, a runtime specu-

lation system, called STMlite, is proposed. STMlite [57] is a low-cost software transac-

tional memory system which monitors and validates parallelized execution at runtime and

rolls back execution in case of any misspeculations. STMlite eliminates a considerable

amount of checking and locking overhead in conventional software transactional mem-

ory models by decoupling the commit phase from the main transaction execution, and

using software-based bloom filter signatures to detect conflicts between transactions. By

utilizing these signatures, the overhead of individual memory accesses within each spec-

ulative region is minimized. The centralized commit process enables both effective cross

checking of signatures and in-order speculative region commits with minimal overhead.

• The second part of this dissertation focuses on extracting parallelism from JavaScript

web applications. In order to exploit hardware concurrencywhile retaining the traditional

sequential programming model, we propose ParaScript [58], an automatic runtime par-

allelization system for JavaScript applications. First, we introduce a runtime scheme for

identifying parallelizable regions, generating the parallel code on-the-fly, and specula-

tively executing it. Second, we propose an ultra-lightweight software speculation mecha-

nism to manage parallel execution. This speculation engineconsists of a selective check-

pointing scheme and a novel runtime dependence detection mechanism based on refer-

ence counting and range-based array conflict detection. Oursystem is able to achieve

speedup over the Firefox web browser using multiple threadson commodity multi-core

systems, while performing all required analyses and conflict detection dynamically at

runtime.
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• The final part of this dissertation, ParaGuard, exploits theextra processing power in mul-

ticore systems to further improve the performance of trace-based JavaScript executions.

Trace-based just-in-time compilation has been proposed toaddress the sequential per-

formance bottleneck in JavaScript applications. In trace-based engines, a considerable

portion of execution time is spent on runningguardswhich are operations inserted in the

native code to check if the properties assumed by the compiled code actually hold during

execution. We introduce ParaGuard [60] to off-load these guards along with their back-

ward slices to another thread, while speculatively executing the main trace, and thereby,

take the checking overhead off the execution’s critical path. In a manner similar to what

happens in current trace-based JITs, if a check fails, ParaGuard aborts the native trace ex-

ecution and reverts back to interpreting the JavaScript bytecode. We also propose several

optimizations including guard branch aggregation and profile-based snapshot elimination

to further improve the performance of our technique.

The rest of this dissertation is organized as follows. Chapter 2 introduces the C/C++ paral-

lelizing system and theSTMlitesoftware transactional memory system. TheParaScriptsystem

for automatically and speculatively parallelizing JavaScript execution is described in Chapter3.

Parallelizing runtime checks with the main execution inParaGuardis presented in Chapter4.

Finally, Chapter5 provides a summary and concludes the dissertation.
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CHAPTER 2

Parallelizing Sequential C/C++ Applications on

Commodity Hardware using a Low-cost Software

Transactional Memory

2.1 Introduction

As the scaling of clock frequency and complexity of uniprocessors has reached physical

limitations, the industry has turned to multicore designs.However, having multiple cores does

not directly translate into performance for most applications. The industry has already fallen

short of the decades-old performance trend of doubling performance every 18 months. While

explicit parallel programming is one potential solution tothe problem, it is not a panacea. These

systems may burden the programmer with implementation details and can severely restrict pro-

ductivity and creativity. In particular, getting performance for a parallel application on a het-

erogeneous hardware platform, such as the Cell architecture, often requires substantial tuning,

a deep knowledge of the underlying hardware, and the use of special libraries. Further, there is

a large body of legacy sequential code that cannot be parallelized at the source level.
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Techniques for parallelizing Fortran programs [20, 25, 34, 44] usually target counted loops

that manipulate array accesses with affine indices, where memory dependence analysis can be

precisely performed. Unfortunately, these techniques do not often translate well to C and C++

applications. These applications, including those in the scientific and media processing do-

mains, are much more difficult for compilers to analyze due tothe extensive use of pointers,

recursive data structures, and dynamic memory allocation.More sophisticated memory depen-

dence analysis, such as points-to analysis [83], can help, but parallelization often fails due to

unresolvable memory accesses.

Thread-level speculation (TLS) offers an opportunity for parallelizing C and C++ applica-

tions. With TLS, the architecture allows optimistic execution of code regions before all values

are known [23, 45, 51, 65, 80, 84, 94]. Hardware and/or software structures track memory ac-

cesses to determine if any dependence violations occur. In such cases, register and memory state

are rolled back to a previous correct state and sequential re-execution is initiated. With TLS, the

programmer or compiler can delineate regions of code believed (but not provably) to be inde-

pendent and amenable to parallelization [32, 37, 53, 55]. Profile data is often utilized during this

process. The POSH compiler is an excellent example where TLSyielded approximately 1.3x

speedup for a 4-way CMP on SPECint2000 benchmarks [53]. More recent work has shown that

additional loop-level parallelism is covered up by a small number of register and control depen-

dences, but can be unlocked with several dependence breaking transformations [93]. Outer-loop

pipeline parallelism has also been identified as a key parallelization opportunity. Bridgeset al.

report a geometric mean of 5.5x gain on SPECint2000 (with variable number of threads up to

32) using decoupled software pipelining [26].
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Proponents of TLS advocate hardware support for speculation generally in the form of trans-

actional memory or similar techniques [45, 84]. Bulk tracking of memory dependences using

signatures along with dedicated structures for managing speculative state provide an efficient

environment for TLS [29]. However, the cost and complexity of implementing hardware or hy-

brid Rock processor [31], hardware support for TLS has not made it into mainstream multicore

systems yet.

Alternatively, software TMs, or STMs, offer the opportunity for TLS support without any

dedicated hardware. The first STM by Shavitet al. maintained read and write access locations

in order to roll back in case of a transaction abort [77]. Many other works [35, 47, 50, 54, 74]

proposed different forms of STM to tackle various performance and correctness issues involved

in these systems. However, these STM implementations are far too expensive in terms of run-

time overhead. For parallel applications, STMs typically result in visible slowdowns of 2x or

more. The problem is even worse for compiler parallelized sequential applications where all

the gains and more are typically wiped out by the STM.

STMs generally focus on flexibility to support a wide varietyof transactions and scalability

to enable many concurrent threads. STM control is fully distributed to the running threads. In

this chapter, we take the opposite approach by introducingSTMlite, a lean and efficient STM

specifically customized for automatic parallelization. With our focus on compiler paralleliza-

tion, the goal is managing a modest number of speculative threads (2-8) that a compiler can re-

alistically expect to find in C and C++ applications. Further, we focus on tightly integrating the

STM with the compiler parallelization framework to ensure low overhead. Some requirements

of more generic STMs such as strong atomicity [78] and special handling of local variables

13



are not needed in this setting. Locks are removed by centralizing the TM bookkeeping on a

single, perhaps idle, core. In this manner, bookkeeping tasks occur in parallel with transaction

execution and the overhead on each work thread is minimized.Most importantly, centralized

control obviates the need for locks and their associated overhead. The obvious downside of

centralized control is the lack of scalability, but for a modest number of threads, large increases

in efficiency are possible for both parallelized and multithreaded applications.

This chapter is organized as follows. In Section2.2, we discuss challenges in STM systems

and customization opportunities based on our main goal – exploiting loop-level parallelism.

Section2.3describes STMlite, our proposed STM model. We discuss our parallelization frame-

work and the interaction between the compiler-generated code and STMlite in Section2.4. In

Section2.5, we present our experimental results. Finally, Section2.6 discusses related work

and Section2.7provides a summary of the work presented in this chapter.

2.2 Motivation

2.2.1 Challenges in Software Transactional Memory Systems

STMs have the advantage of requiring no additional hardware. However, since it is im-

plemented entirely in software, it entails a large runtime overhead in maintaining transactional

state. The high overheads of an STM are due to several reasons. The largest bottleneck in STMs

is the maintenance and validation of read sets in read-writetransactions. These sets keep track

of every address read by a transaction, and are used to maintain coherence between transactions.

For each load, the STM has to execute at least one transactional load and revalidate its times-

tamp when the transaction commits. As transactions read larger amounts of data, this overhead
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Figure 2.1: Single-threaded runtime breakdown of the Transactional Locking II STM system [35] on
two STAMP transactional benchmarks.

becomes substantial.

Secondly, global locks are necessary for transactions to write back their final “correct” data.

During a transactional store, the address and value are stored into a write set, deferring any

change in memory until commit. This allows transactions to remain coherent with each other,

but adds a considerable overhead during commit time for obtaining the locks on these addresses

and writing them back to their final location. The use of locksin the data write back is expensive

as it involves atomic instructions.

In order to get a better understanding of what the major sources of overhead are in an

advanced STM system, we performed an experiment on two STAMPbenchmarks [62] using a

state-of-the-art STM system - Sun’s Transactional Locking2 (TL2) [36]. We measured the time

spent in each TM component of a single threaded transactional execution of these benchmarks

using the TL2 library. A similar analysis has also been done in [63]. Figure2.1shows the result
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of this experiment. The vertical is the execution time normalized to the sequential runtime.

Vertical bars show the fractions of runtime spent in the mainapplication, transactional commits

(TxCommit), transactional stores (TxStore), and transactional loads (TxLoad).

The chart clearly shows the large overhead of read set maintenance in theVacation bench-

mark, which has large transactions with many transactionalreads. Keeping track of the read

set causes considerable overhead, as depicted by the TxLoadportion of each bar. Additionally,

the checks required during commit to maintain read set coherence are extremely costly [81],

representing over half the runtime inVacation with high contention. For theKmeans bench-

mark, the overheads are not as severe because its read sets are smaller, but it still exhibits similar

behavior.

2.2.2 Speculation Requirements for Loop Parallelization

There are several aspects of STM models that are crucial for correctness in general. How-

ever, we can loosen some of these limitations and requirements in the loop parallelization do-

main to make the software-based speculation more efficient.

1. One of the shortcomings in STM models is the lack of strong atomicity guarantees, which

raises correctness issues in parallel programs. Previous works [17, 78, 75] have addressed

the issue of strong atomicity in STMs. While being effective, these approaches impose a

non-trivial amount of complexity or performance overhead on the system. However, us-

ing STM for speculation in loop parallelization obviates the need for strong atomicity, be-

cause the execution consists of at most a single in-flight parallel loop at each point. Since

all the code in the loop is running inside transactions, there can be no non-transactional
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code running at the same time as transactional code.

2. Special handling of local variables in a STM is not required for loop parallelization, be-

cause the loop iterations are not supposed to share any localvariables on stack. Otherwise,

they cause unresolvable cross iteration dependences, which prevent loop parallelization

to begin with. Therefore, there is no need to have specialized transactional loads and

stores for local variables.

3. Zombie transactions are transactions that have read a stale value or pointer from memory

and have taken an incorrect code path which might lead to an infinite loop. One of the

main sources of zombie transactions are loops with complicated linked-list operations.

These loops are generally not parallelizable and therefore, we do not need to provide

efficient and complicated ways for handling zombies in a STM for loop parallelization.

However, to ensure correctness in other cases, we provide a mechanism for handling

zombies in later sections that does not affect normal execution of transactions.

With these challenges in mind, we aim to tackle the two main sources of STM overhead: read-

set maintenance and lock-based writeback mechanism. In addition, based on the specific spec-

ulation requirements in loop-level parallelism, we make simplifications to STMlite that makes

it even more efficient.

2.3 STMlite

In this section, we describe our proposed STM model, STMlite. As was mentioned in

Section2.2, in traditional STM models, a considerable part of the execution time is spent in
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maintaining auxiliary data structures needed for providing correctness guarantees. In particu-

lar, one of the major bottlenecks is construction, maintenance, and frequent checking of read

logs. The read log structure keeps track of the addresses (orobjects in object-based implemen-

tations) read by each transaction. At transaction commit, each address in these logs is checked

for consistency. In addition, although the programmer doesnot have to deal with the sub-

tleties of lock-based programming, thanks to the usage of atomic blocks and TM primitives, the

performance of the underlying runtime system still suffersfrom the downsides of using locks

in many implementations. In order to address these problems, and as a step towards stylized

customization for speculation used in loop-level parallelization, we developed a new software-

based model that eliminates the need for read log maintenance during transaction execution and

explicit locking during memory writebacks.

We assign a dedicated software thread for managing the execution of the transactions in-

volved in the main computation. This thread, which runs on anindividual core, is referred to

as the Transaction Commit Manager (TCM). Having a central commit manager provides an

environment in which the manager is responsible for ensuring that, at any given time, at most

one transaction is writing to a particular memory location.With higher numbers of transactions,

there can be several coordinating TCMs with each TCM managing a group of execution trans-

actions (TCM virtualization). In this way, we can avoid having a single point of serialization in

highly parallel applications.

The STMlite model essentially consists of several execution cores for running individual

transactions and a TCM core for maintaining transactional consistency in the system. In the

following subsections, we explain in more detail how each step works.
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Figure 2.2: STMlite execution model. Solid lines denote execution flow.Dashed lines denote passing
messages by signals or memory polling. The dash-dot line shows an indirect write/read relation (each
transaction writes to a precommit log entry which is later read by the TCM).

2.3.1 Overview

Figure2.2 summarizes the operation of STMlite. The top rectangle shows the execution

flow inside each transaction. The bottom part is a summary of what happens inside the TCM.

Centralized management of individual transactions is madepossible by using transactional

read and write signatures, which are essentially hash-based representations of all reads and

writes performed during execution. Using signatures in hardware was first proposed in [29].

However, unlike hardware, hash-based computations can become quite expensive in software.

Therefore, choosing the right set of hash functions and the proper size for signatures is crucial in

software systems to ensure minimal overhead and few false positives at the same time. In [49],

hashing schemes are used to remove duplicates in the read-log and undo-logs of the “same”

transaction. However, in order to use signatures for conflict detection between different trans-
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commit log and there is a precommit log for each execution core inside the TCM.

actions, a central manager is needed to check signatures against each other. In signature-based

HTMs [29, 92], this is done in the coherence protocol. Here, it is done by the TCM.

Each transaction maintains a transaction header, which is shown in Figure2.3. The transac-

tion header contains some information gathered during transaction execution and is used during

the commit process. The main idea behind STMlite is that all transactions compute read and

write signatures during their execution. At commit, they copy these signatures to a list called

the precommit log (Figure2.3). This log is basically a single-reader/single-writer buffer that is
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TxLoad(Addr){

if SignatureFind(Addr, Self->wrSig)

Load the correct value from the wrSet

else

Load from memory

SignatureInsert(Addr, Self->rdSig)

}

TxStore(Addr, Data){

Store Data to the WriteSet

SignatureInsert(Addr, Self->wrSig)

}

Figure 2.4: Pseudocode for transactional loads and stores.

read by the TCM and written by transactions. Its operation isinspired by the reservation station

in traditional out-of-order processors. Committed transactions reside in another data structure

called commit log (Figure2.3). The commit log is only updated and read by the TCM.

The TCM goes through precommit log entries and checks whether their read signatures have

conflicts with the write signatures of overlapping already-committed transactions in the commit

log. If there is no hash collision, the transaction is notified to start writing back its write set.

Otherwise, the transaction aborts and restarts its execution. During the write back process, the

TCM is responsible for preventing concurrent writes to the same addresses in memory. TCM

operation is detailed in Section2.3.3.

In order to keep track of the relative start and commit times of transactions, we use a global

clock mechanism similar to [35]. The TCM increments the global clock value whenever a

writing transaction commits. We define the start version foreach transaction as the value of the

global clock at transaction start. Likewise, the commit version is the value of the global clock

at commit time.
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2.3.2 Transactional Loads and Stores

Figure 2.4 shows the pseudocode for STMlite’s transactional load and store functions.

TxLoad first checks the transaction’s write signature (wrSig) to see if this transaction has pre-

viously written toAddr. If so, it reads the data from the write set (wrSet) and returns. In order

to avoid walking through the entire write set when the numberof store-to-load forwarding in-

stances is high, we added a hash map to each transaction that caches the latest stored addresses

and values for quick retrieval. Therefore, ifAddr is found in the write signature, this hash table

is checked before walking through the write set. This helps to lower transactional load overhead

in many cases. If the transaction hasn’t written toAddr, data is loaded from memory andAddr

is inserted into the read signature (rdSig). TxStore storesData to the write set and inserts

Addr to the write signature.

As can be seen, the only major extra overhead in transactional loads and stores is due to the

signature insert and find operations, though they remain low-cost for moderately sized signa-

tures. Furthermore, the signature operations can be inserted in a decomposed fashion, separate

form transactional loads and stores, enabling more aggressive compiler optimizations such as

hoisting the signature calculations out of the loops with the aid of pointer alias analysis.

2.3.3 Transaction Commit Manager

As mentioned before, the TCM has two main data structures: the precommit log and the

commit log (Figure2.3). The commit log keeps track of committed transactions, andthe pre-

commit log contains transactions waiting to be served by theTCM. In order to reduce contention

among transactions, a separate precommit log is assigned toeach core. Figure2.5 provides a
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TCM() {

for entry precommitTX in PrecommitLogs

if (precommitTX.Ready)

if (ConflictCheck(precommitTX))

Grant commit permission to precommitTX

else

Abort precommitTX

}

ConflictCheck(precommitTX) {

for entry committedTX in CommitLog {

if (precommitTX.startVersion < committedTX.commitVersion)

if HashCollision(precommitTX.rdSig, committedTX.wrSig)

return 0;

}

if !(precommitTX.readOnly){

Go through WBActionList

wait for concurrent conflicting

WBs to finish

}

return 1;

}

Figure 2.5: Commit management in the TCM.

summary of what happens in the TCM during runtime.

The TCM constantly pollsReady flags of precommit log entries (firstfor loop in the figure).

When it detects aReady is set, it reads the transaction’s start version and checks it against the

commit versions of commit log entries (in the ConflictCheck function). If the start version of the

committing transaction is less than the commit version of a commit log entry, we know that their

execution has overlapped at some point in time. Therefore, they should be checked for possible

conflicts (in theHashCollision function). In case of a hash collision between the signatures,

the committing transaction is instructed to abort by setting theAbort flag in its header. If the

committing transaction passes the check against all overlapping commit log entries, it is safe to

be committed. This is all that needs to be done for read-only transactions. Therefore, the TCM
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sets theCommitflag in the transaction header. It is not necessary to copy anyinformation about

read-only transactions to the commit log.

However, the mechanism is more subtle for writing transactions. Since we want to avoid

having individual locks for writing back the write set to memory, the TCM needs to make

sure no concurrent writes are happening to the same address during writeback. The TCM uses

a secondary structure called the writeback action-list (WBActionList) for this purpose. The

action-list has the same number of entries as the active threads in the system. At any given

time, it contains the write signatures of the transactions that have passed the commit check

in the TCM and are writing back their write set to the memory. When a transaction is ready

to commit, the commit manager checks its write signature against all write signatures in the

writeback action-list. If there is no collision, the commitmanager sets theCommitflag in the

transaction header and writes the transaction’s write signature to the action-list. Otherwise, it

keeps checking the list until the colliding entry has finished writing back. An extra bit is added

to the list to make sure that TCM does not repeatedly keep checking the signatures that have

passed the collision test with the current committing transaction before. These checks could

potentially become the TCM’s bottleneck, though we did not notice any considerable busy

waiting in our experiments. Subsequently, the TCM writes the necessary information about

the committed transaction to the commit log, and moves on to checking the next entry in the

precommit log.

Since commit log entries are no longer needed after all overlapping transactions have fin-

ished, a clean up mechanism is required to remove unnecessary entries. For this purpose, we

maintain a minimum start version (minSV) log which containsthe start versions of all in-flight
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transactions. Each transaction adds an entry to this log at start time and removes it at commit or

abort. After each transaction commit or abort, the TCM starts from the commit log head entry

and checks it against the start versions in the minSV log. If there are no overlapping in-flight

transactions with the commit log head entry, that entry is removed and the head pointer is incre-

mented. We keep doing this until the head entry in the commit log has an overlapping in-flight

transaction. The reason we decided to use a circular buffer for the commit log (as opposed to

a linked-list buffer) is to avoid the extra overhead of maintaining a linked list. Our commit log

model only allows us to remove entries from the head of the logand add entries to the tail.

2.3.4 Individual Transaction Commits

When a transaction reaches the commit point, it fills up an entry in its precommit log with a

pointer to its transaction header and sets the entry’sReady flag. Subsequently, it keeps polling

CommitandAbort fields, waiting for them to be filled by the TCM. In order to avoid busy

waiting at this point, we can relinquish the core1 which is particularly useful when we have a

larger number of threads than cores.

After a transaction receives commit permission from the TCM, it walks through its write set

and writes back the actual values to memory. Because the TCM has already made sure that there

are no concurrent transactions writing to the same locations, the committing transaction does

not need to lock any memory locations. We chose to use a lazy version management strategy,

because an eager version management system without locks introduces many complications in

rolling back updates to memory locations after a conflict.

To minimize the overhead of individual transactional loads, a lazy conflict detection scheme

1In Linux, this can be done usingsched yield function.
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is employed. This works particularly well for speculation support in loop parallelism, because

minimum transactional load overhead is important for gaining performance from parallelizing

loops. Furthermore, conflicts are rare due to the smart loop selection, and trying to detect

conflicts eagerly at each transactional load provides no extra benefit. In eager conflict detection

mechanism, since transactions are checked for conflicts at each load and store, the possibility of

having zombie transactions is really low. However, eager conflict detection incurs substantial

overhead on individual transactional operations.

Lazy conflict detection makes STMlite vulnerable to zombie transactions. These transac-

tions may never reach the commit point and the commit managernormally does not get the

chance to force them to abort. As a matter of fact, zombie transactions are particularly bad

for our implementation because their corresponding entries remain valid within the minSV log

and prevent the other commit log entries from being cleaned up. However, we can exploit the

minSV log to resolve the zombie transaction issue. Each timewe go through the commit log

reading the minSV entries, if the difference between the start version of a particular transaction

and the global clock is more than a threshold, the TCM identifies the corresponding transaction

as a potential zombie. Subsequently, the TCM checks the suspicious transaction’s read signa-

ture against write signatures of the commit log entries (although it has not reached the commit

point yet). If there is a conflict, the TCM forcibly aborts thezombie transaction by sending an

abort signal. We have a signal handler in each transaction that calls the abort function whenever

it receives the TCM’s abort signal. Otherwise, the TCM concludes that the suspicious zombie

was just a long running transaction and avoids aborting it. In this work, since we do not par-

allelize loops with complicated linked list operations (which are the main sources of zombies
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transactions), the possibility of having zombies is quite low in our framework.

2.4 Loop Parallelization Using STMlite

In this section, we introduce our loop parallelization framework and customizations made to

STMlite for parallelizing speculative DOALL loops. Our framework successfully handles loops

with cross iteration control dependences (e.g., while loops) as well as normal counted loops.

The general structure of our parallelization framework follows the code generation schema

used in [93]. However, using that framework without the extra hardwaresupport imposes a

large overhead on the execution time. At the same time, STMlite gives us the opportunity to

simplify the parallelization framework by exploiting someof its underlying features that are

already used for providing transactional correctness.

2.4.1 Baseline Parallelization Framework

The purpose of the parallelization framework is to distribute loop execution across multiple

cores. In this framework, DOALL loops are categorized into DOALL-counted and DOALL-

uncounted types. In DOALL-counted loops, the number of iterations is known at runtime,

whereas in DOALL-uncounted loops, this number is dependenton the loop execution (e.g.,

while loops). In these cases, starting every iteration is dependent on the outcome of exit

branches in previous iterations (cross iteration control dependence).

Figure2.6shows the detailed implementation of the framework. In thisscheme, loop itera-

tions are divided into chunks. The operating system passes the number of available cores to the

application and the framework is flexible enough to use any number of cores for loop execution.
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TxBegin
if (global_brk_flag)
break;

IE = min(IS+CS*SS,n);

for (i=IS;i<IE;i+=SS)
// original loop code 
live_outk =… //kth liveout assignment
last_upd_idxk= i;
if (brk_cond)
local_brk_flag = 1;
break;

In all threads
for (all live_outs)

store live_outj and last_upd_idxj to memory
In THREAD_0
Get live_outs and last_upd_idx values 
Set live_outj to the last updated value

TxCommit
if (local_brk_flag)

global_brk_flag = 1;
kill_other_threads;

IS+=CS * TC * SS;
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Figure 2.6: Overview of the parallelization framework (CS: chunk size,IS: iteration start, IE: iteration
end, SS: step size, TC: thread count).

An outer loop is inserted around the original loop body to manage parallel execution between

different chunks. The main thread (THREAD 0), which runs the sequential parts of the program,

spawns the required number of threads at the start of the application. When a parallel loop is

reached, a function pointer containing the proper loop chunk along with necessary parameters

is sent to each spawned thread and they start the execution ofloop chunks.

In order to capture the correct live-out registers after parallel loop execution, we use a

set of registers calledlast upd idx, one for each conditional live-out (i.e., updated in an if-
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statement). When a conditional live-out register is updated, the correspondinglast upd idx

is set to the current iteration number to keep track of the latest modifications to the live-out val-

ues. If the live-out register is unconditional (i.e., updated in every iteration), the final live-out

value can be retrieved from the last iteration and no tracking by last upd idx is needed. It

should be noted that loop chunks in the framework do not shareany local memory variables on

stack. Otherwise, the loop would have unresolvable cross iteration dependences and would be

unparallelizable. This leads to one of the simplifications we made in STMlite which is the elim-

ination of the handling mechanism needed for speculative local memory variables. Following

is a description of the functionality of each segment in Figure2.6.

Spawn: THREAD 0, the main thread, sends the function pointer pointing to thestart of loop

chunks to the in-flight threads through memory. It also sendsalong the necessary parameters

(chunk size, thread count, etc.) and live-in values.

Parallel Loop: The program stays in the parallel loop segment as long as there are some

iterations to run and no break has happened. In this segment,each thread executes a set of

chunks. Each chunk consists of several iterations startingfrom IS (iteration start) and ending

at IE (iteration end). The value of IS and IE are updated aftereach chunk using the chunk

size (CS), thread count (TC), and step size (SS). Each chunk is enclosed in a transaction using

TxBegin andTxCommit function calls. In order to ensure correctness, an abort signal is sent to

transactions running higher iterations if a conflict is detected.

One important requirement for parallelizing loop chunks isto force in-order chunk com-

mit. This is necessary for maintaining correct execution and enabling partial loop rollback and

recovery. The TCM in STMlite already provides the means to enforce ordering among trans-
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actions in the commit log. The same infrastructure can be used for in-order chunk execution

as well. Therefore, there is no need for send/receive instructions and a scalar operand network

as was used in [93]. However, some extra book-keeping data is required both for STMlite and

the parallelization framework. Since this is mostly done inSTMlite and it is almost transpar-

ent to the generated code, we explain these necessary steps in the next subsection detailing the

interaction between STMlite and loop parallelization.

For uncounted loops, if a break happens in any thread, highertransactions are not aborted

immediately because thread execution is speculative and the break could be false. Instead, the

local brk flag variable in each thread is used to keep track of breaks in individual chunks.

If a transaction commits successfully with itslocal brk flag set, the break is no longer spec-

ulative, and a transaction abort signal is sent to all threads. In addition, aglobal brk flag is

set, so that all threads break out of the outer loop after restarting the transaction as a result of the

abort signal. The reason for explicitly aborting higher iterations is that, if an iteration is started

by misspeculation after the loop breaks, it could produce anillegal state. The execution of this

iteration might cause unwanted exceptions or might never finish if it contains inner loops. This

procedure of explicit handling of breaks has the benefit of avoiding zombie transactions, and

although STMlite can handle zombies, this explicit handling has much lower cost.

Consolidation: After all cores are done with the execution of iteration chunks, they enter

the consolidation phase. Each core sends its live-outs andlast upd idx array toTHREAD 0

through memory. THREAD 0 picks the last updated live-out values. All other threads keep

waiting for chunks from other parallel loops later in the program.

Since the goal is to provide a low-cost software-based parallelization mechanism, most of
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the extra code is kept outside the main loop body, and is executed only once per chunk.

2.4.2 Interaction of Parallel Loops with STMlite

As mentioned in the previous subsection, in-order commit ofindividual loop chunks is

crucial for correct parallel execution. In order to enforcethat requirement, we add another data

structure, called the loop chunk commit log (LCCL), to the TCM. This log contains the loop

ID of the last committing parallel loop and the chunk ID of thelast committed chunk in that

loop. The loop ID is assigned to each loop statically at compile time. It should be noted that

our model allows only one in-flight parallel loop at a time by including a lightweight barrier at

end of each chunk. Thus, there will be no problem if a parallelloop is invoked twice, because

there is guaranteed to be no previous instances of this loop running. This is important, because

if two in-flight loops have the same loop ID, they can completely distort each other’s execution.

The only problem is the case of loops in recursive functions.In this work, we do not parallelize

loops with recursion. However, even in that case, a hash value based on the call site trace of the

loop can be used to uniquely identify individual loops [76].

We reuse the initial value of IS (iteration start) which is computed at the beginning of each

loop chunk as the chunk ID. When a loop chunk reaches the commit instruction, it writes its

loop ID, chunk ID, chunk size, and the loop’s first chunk ID to the precommit log. After the

TCM reads in an entry from the precommit log, it performs one of the following two operations:

1. If the loop ID in the precommit log does not match the LCCL’scommitting loop ID, it

infers that a new loop has started committing. Subsequently, it writes the new loop ID

and the loop’s first chunk ID to the LCCL. If the committing chunk is the first chunk
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in the loop, the TCM proceeds with the commit process. Otherwise, it just moves on

to checking the next precommit log entry. This is because a chunk’s commit process

should not be started until all earlier chunks have been committed (i.e, have got commit

permission from the TCM and started the writeback process).

2. If the loop ID of the committing chunk matches the entry in the LCCL, the TCM checks

to see if the current chunk is right after the last committed chunk. If so, it proceeds with

the chunk’s commit process. Otherwise, it starts checking the next precommit log entry.

The above mechanism provides low-cost commit ordering by adding minimal complexity

to the STMlite library. This integration of loop parallelization with STMlite leads to an efficient

parallel loop execution platform.

2.5 Results

We set up two sets of experiments. First, we evaluated how STMlite performs in a typical

transactional environment using the STAMP transactional benchmarks [62]. In the second set of

experiments, we implemented the code generation part of theparallelization framework in the

LLVM compiler [52]. Using this framework, a set of SPECfp benchmarks and several kernel

benchmarks are parallelized. All benchmarks were written in C or converted from Fortran to C2.

While the original Fortran applications can be parallelized using compilers such as SUIF [44],

Fortran to C conversion introduces a large number of pointervariables, thus compiler analysis

alone was insufficient to parallelize all applications. ForSPECint benchmarks, as previous

works have shown [93, 53], the level of loop-level parallelism is quite low, thus theoverhead

2Fortran to C conversion was done using thef2c tool with -a flag.
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of using an all-software parallelization approach is too large to yield meaningful performance

gains. More sophisticated parallelization techniques forinteger applications are possible, such

as those proposed by [26], and can lead to substantial gains. However, we have not implemented

these transformations within our compiler system, yet theyare orthogonal to what we are doing

here.

2.5.1 STMlite on STAMP

We measured the performance of the STAMP benchmarks on a SunFire T2000 with an

8-core UltraSPARC T1 processor, running Solaris 10. We compare our performance with an

implementation of the Transactional Locking 2 (TL2) software transactional memory [35]. Fig-

ure 2.7 shows the benchmark speedups on STMlite and TL2, both normalized to sequential

execution. The number of cores in the STMlite results include the one extra core used for the

TCM. For example, the 8 core results in STMlite have 7 computation cores and one TCM core.

Thus, STMlite results start from two cores on the horizontalaxis.

As can be seen, STMlite noticeably outperforms TL2 in both high and low contention execu-

tions of theVacation benchmark. This is mainly because this benchmark has long transactions

with a large number of loads. Therefore, the traditional STMperforms poorly due to the high

overhead of transactional loads and it can hardly achieve speedup over sequential even with 8

cores. However, using STMlite is particularly beneficial inthese types of benchmarks. The

overhead of transactional loads in our model is minimal due to the complete elimination of the

read set. Furthermore, long length transactions and relatively low contention amortize the slight

serialization effect that happens at commit time. Therefore, our model achieves about 2.5x and
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Figure 2.7: STMlite performance on STAMP benchmarks. The vertical axisshows the speedup com-
pared to the sequential execution and horizontal axis is thenumber of cores. The number of cores in
STMlite includes one core that is used for the TCM.

3.1x speedup over TL2 with 8 cores, which is quite close to thespeedup achieved by previous

hybrid schemes [63].

STMlite follows the performance of TL2 inKmeans, Labyrinth andBayes. First, it should

be noted that poor scalability from 4 to 8 cores inKmeans and from 2 to 8 cores inBayes is

mainly due to the fact that these benchmarks contain heavy floating point computations. Since

the UltraSPARC processor only has a single floating point unit that is shared by all proces-
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/* Original Kmeans Code*/ | /* Lock-based Kmeans Code */

TxBegin; | pthread_mutex_lock(&mutex1);

start = TxLoad(global_i); | start = global_i;

TxStore(global_i, (start + CHUNK)); | global_i = start + CHUNK;

TxCommit(); | pthread_mutex_unlock(&mutex1);

TxBegin(); | pthread_mutex_lock(&mutex2);

TxStore_f(global_delta, | global_delta += delta;

TxLoad_f(global_delta) + delta); |

TxCommit(); | pthread_mutex_unlock(&mutex2);

Figure 2.8: Small transactions inKmeans working on global data and their equivalent lock-based imple-
mentation.

sors, these floating point computations become the sequential bottleneck of parallel execution,

especially with higher number of threads.

The main reason STMlite performs similarly to TL2 in these benchmarks is the short length

of transactions inKmeans and relatively high rate of contention inBayes and Labyrinth.

Therefore, the savings STMlite gets in transactional loads, transactional stores, and writebacks

gets offset by the extra overhead of communications betweenexecution transactions and the

TCM. However, STMlite is still about 15% to 30% faster than TL2 in Kmeans for 4 and 8

threads. An interesting issue we found while looking through the performance bottlenecks of

STMlite in Kmeans, is that there is a small transaction in the source code towards the end of the

program that increments a global variable in all transactions (Figure2.8). This part of the code

causes a large number of transaction aborts in STMlite, which incurs a high cost considering the

short transaction lengths. Whereas in TL2, since the library is acquiring locks for each address

during writeback and uses a back-off mechanism if the lock isnot free, there are fewer transac-

tion aborts. In order to validate this observation, we placed a global lock around the transaction
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Figure 2.9: Profiled DOALL, provable DOALL and selected parallel loop coverage. The vertical axis
shows fraction of sequential execution.

in Figure2.8and changed the transactional loads and stores to normal ones. The performance

of the resulting execution is also shown in Figure2.7. This change in the benchmark did not

affect the runtime for TL2 – since TL2 essentially does the same thing in short transactions. As

can be seen in the figure, although STMlite still suffers fromlack of enough floating point units,

it performs better after replacing the small transaction with locks inKmeans andBayes.

2.5.2 STMlite on Parallelized Sequential Programs

Figure2.9 shows the fraction of dynamic sequential execution that canbe parallelized in

several SPECfp benchmarks.3 The first bar, profiled coverage, shows the fraction of sequential

execution in loops identified as DOALL after profiling. The second bar, provable coverage, is

the fraction of sequential execution spent in loops that could be statically identified as DOALL

at compile time using LLVM’s memory dependence analysis. Ascan be seen, a non-trivial

3These applications are a subset of SPECfp92/95/2000 that had moderate to high amount of loop level paral-
lelism.
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percentage of DOALL coverage is obtained only after profiling, Finally the third bar, selected

coverage, shows fraction of loops that were eventually parallelized.

It should be noted that not all the loops included in the coverage numbers are suitable for

parallelization. There are many DOALL loops in these applications that do not contain any

computation, or the computation is not substantial. For instance, parallelizing a loop which

initializes an array’s elements to zero or increments all elements in an array, can not provide

much benefit, since the overhead of parallelization would bemore than the actual work in

these loops. Therefore, we added a loop selection heuristicin our compiler which, according

to the profile data, computes a “parallelizability” metric based on the total number of dynamic

operations in the loop, number of iterations and total number of loop invocations in the program.

The last bars in Figure2.9shows the total coverage of DOALLs that passed this metric.

We have parallelized all these loops using the framework introduced in Section2.4.1. Dur-

ing the code generation pass, according to the static memorydependence analysis data, we

performed a selective replacement of the loops’ loads and stores withTxLoad andTxStore

function calls. We essentially avoid changing loads and stores that can be proved to cause no

cross iteration dependences.

As a step towards showing the effectiveness of our approach,we first tried the parallelization

framework and STMlite on four kernel benchmarks:RLS, FMradio, DCT, andbeamformer.

RLS is an implementation of recursive least squares filter whichis used in system identification

problems and time series analysis.DCT performs a discrete cosine transform and is used in

image processing applications.FMradio andbeamformer are two streaming applications from

the StreamIt benchmark suite [85]. All these benchmarks have very high profiled DOALL
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Figure 2.10: STMlite performance on automatically parallelized kernelbenchmarks. The vertical axis
shows the speedup compared to the sequential execution and horizontal axis is the number of cores. The
number of cores in STMlite includes one core that is used for the TCM.

coverage. Figure2.10 shows the achieved speedup using STMlite and TL2. The STMlite

results include the resource used for the TCM (1 extra core).Furthermore, since TL2 does not

have any primitives for supporting chunk commit serialization, we implemented a software-

based send/recv mechanism similar to [93]. Lastly, we estimated the results on a similar system

with HTM support by replacing all transactional loads and stores with normal ones. This would

represent a best-case HTM, and since we are only doing this for performance measurement, we

ignore the possibility of incorrect execution due to the lack of proper speculation and we only

take into account the performance numbers for executions that complete successfully. As can

be seen, STMlite outperforms TL2 with software based chunk synchronization by as much as

a factor of 3x inFMradio. In beamformer andDCT, STMlite follows the HTM results quite

closely. ForRLS, STMlite performs poorly compared to HTM results due to highnumber of
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Figure 2.11: STMlite performance on automatically parallelized SPECfpbenchmarks. The vertical axis
shows the speed up compared to the sequential execution and horizontal axis is the number of cores. The
number of cores in STMlite includes one core that is used for the TCM.

transactional operations, yet it still achieves 2x speedupover sequential for 8 threads.

Returning to SPECfp, Figure2.11shows the speedup for these benchmarks. Runtime values

are normalized to the sequential execution of the program. The figure shows that we achieve

0.6x to 2.2x speedup compared to sequential by going from twoto eight cores.

One of the reasons for performance degradation in TL2 with software synchronization is

the lack of library support for enforcing commit ordering inTL2. Adding this explicit software

synchronization has a noticeably negative impact on the performance. Performance degradation
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would be even more in traditional TM systems with eager conflict detection, such as [82]. As

previous works have also suggested [81], workloads with transactions that have large read sets

and low contention (similar to our parallelized sequentialworkloads), perform poorly with eager

conflict detection. This is because eager conflict detectionadds extra overhead to transactional

loads and stores, but since conflicts are rare, it does not help improving the performance.

STMlite achieves decent speedup compared to HTM results andoutperforms TL2 with soft-

ware chunk synchronization in052.alvinn, 056.ear, and102.swim. This is due to the lower

overhead of transactional operations in STMlite which makes it quite efficient with moderate

number of these operations. However, the relative STMlite achieved speedup, while being no-

ticeably higher than TL2 with software synchronization, isquite low compared to HTM in other

benchmarks. In SPECfp benchmarks, the parallelized loops contain a large number of memory

operations that may cause cross iteration dependences based on the static analysis and therefore

need to be transactified. Changing these operations to transactional versions causes the paral-

lelized versions to become slow in some cases. Software-based speculation mechanisms are

useful for parallelization in cases that the number of speculative variables is low, otherwise, the

speculation mechanism amortizes the benefit caused by parallelization.

2.5.3 Effects of static memory analysis and signature sizes

To better understand the tradeoffs involved in compilationand execution parameters, we ran

two other experiments. In the first experiment, we measured the achieved speedup with and

without selective replacement of loads and stores with transactional versions. As mentioned

before, LLVM’s memory dependence analysis is used to avoid transactifying memory instruc-
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Figure 2.12: Effect of using static pointer analysis on speedup for052.alvinn.

tions that provably do not cause cross iteration dependence. Figure2.12shows the result of this

experiment on the052.alvinn benchmark. As can be seen, filtering out unnecessary transac-

tional operations, while keeping the necessary ones, has a great impact on performance in both

STMlite and TL2. This result further proves that software speculation systems are best suited

for applications in which speculation is applied to a limited number of memory variables.

Our second experiment involves changing the signature sizeand studying the resulting per-

formance impact. The effect of changing signature sizes on STMlite’s performance is inter-

esting. There is a subtle tradeoff involved in determining the right signature size. Larger

sizes reduce the number of false positives and thereby reduce re-execution of correct trans-

actions. However, at the same time, they lead to more time consuming signature operations.

Since STMlite is dependent on these operations in several parts of the implementation, this can
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.

cause a noticeable performance degradation. Figure2.13illustrates this effect on theRLS kernel

benchmark. Speedup values keep increasing up to signature sizes of 32, after which they start

going down.

2.6 Related Work

There is a significant amount of previous efforts in the area of transactional memory. Harris

et al. go through a detailed survey of different transactional memory techniques in [48].

In particular, Shavitet al. proposed the first implementation of software transactional mem-

ory in [77]. Several other works such as DSTM [50] and OSTM [47] proposed non-blocking

STM implementations. A major part of non-blocking STMs is maintenance of publicly shared

transaction structures which contain the undo information. In our implementation, the transac-

tion structures only need to be visible to the TCM and individual executing transactions, keeping

contention on those structures to a minimum. The authors in [49, 18] proposed a lock-based
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approach where write locks are acquired when an address is written. Also, they maintain a read

set which needs to be validated before commit. In our STMlitedesign, no locks are required

and correctness is guaranteed by the commit manager. Furthermore, we eliminate the need for

the read set, which reduces the overhead of transactional loads and transaction commits. [36]

proposes the Transactional Locking implementation which maintains a read set and a write set

during transaction execution. Subsequently, at commit time, it acquires locks for each indi-

vidual write set entry and writes back the data after the lockis secured. Also, the read set is

checked during commit to ensure consistency.

There is also a large body of work in parallelization of sequential applications. Hydra [45]

and Stampede [84] were two of the earlier efforts in the area of general purpose program paral-

lelization. The POSH compiler [53] uses loop-level parallelization with TLS hardware support.

The authors in [93] proposed compiler transformation to extract more loop level parallelism

from sequential programs. The compiler transformation part of that work is orthogonal to

what we are doing and can be applied simultaneously here. Speculative decoupled software

pipelining [87] is another approach that focuses on extracting parallelism from loops with cross

iteration dependencies. In that work, they distribute a single iteration of the loop over several

cores. The SUDS framework [38] performs automatic speculative parallelization of applica-

tions for the RAW processor. This system relies on the special architectural features in RAW

to accomplish efficient speculative state management and synchronization, such as the scalar

operand network. However in all these works, hardware TLS ortransactional memory support

and additional hardware mechanisms for synchronization are required. Whereas in this work,

we are looking at a software-only solution and although our achieved speed up in some cases is
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lower than these works, we have the advantage of running our system on commodity hardware.

Cezeet al. [29] proposed the idea of using Bloom filters to represent read and write sets for

transactions. They showed how, with specialized hardware,transaction state can be maintained

through signatures with less overhead. This technique was extended in LogTM-SE [92] and

SigTM [63], which are hybrid TM systems requiring no modifications to hardware caches. Our

work uses the idea of storing Bloom filter-based read and write sets in software data structures,

alleviating the need for the extra hardware. Authors in [49] use software hashing to remove

duplicates in the read-log and undo-log of the same transaction, whereas in STMlite, it is used

for conflict detection between different transactions.

The most similar speculation management mechanism to ours is RingSTM [82] that uses

a global ring structure to organize committing transactions. They use Bloom filters to repre-

sent read and write sets for transactions. However, becausethe ring is global, all threads face

contention for ownership of the ring during commit, and prioritization is required to prevent

starvation. Meanwhile, STMlite has thread local precommitlogs and can relinquish the cores

while the corresponding transaction is waiting for the commit manager to validate the transac-

tion. Our commit log works in a round-robin fashion, ensuring all threads waiting to commit are

serviced equally. Furthermore, in [82], the read signature is checked against several write sig-

natures at each transactional load (eager conflict detection), which adds considerable overhead.

However, in STMlite, transactional load overhead is minimal because the only extra operation

added is insertion of the address in the read signature. Thismakes our model more prone to

zombie transactions, but as mentioned in Section2.3.4, the possibility of having zombies in

parallelized loops is quite low, though STMlite can still handle them successfully.
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Furthermore, we have customized STMlite to work for loop parallelization. This customiza-

tion would be more complicated in RingSTM. The reason is thattransaction commit is done by

individual transactions after checking against the write signatures of ring elements. Therefore,

if a loop chunk does not get a chance to commit in the first try (due to an unfinished previous

chunk), there would be no efficient way of checking again later in the execution. The only way

would be to use a back off mechanism and check back from time totime, which is inefficient.

Whereas in STMlite, since the TCM is in charge of ordering loop chunks for commit, even

if a chunk misses its chance, the TCM makes sure that it would be checked again in a timely

manner.

FlexTM [79] adds mechanisms in hardware to coordinate read and write signature checking,

speculative updates to caches and eager notifications to transactions about coherence events.

They propose software mechanisms for deciding how to manageconflicts and for choosing

appropriate conflict management and commit protocols.

2.7 Summary

As we move further into the multicore era, a major challenge in both hardware and software

communities is exploiting the abundant computing resources made available by technology

advancements. Automatic parallelization of applicationsis an appealing solution for utilizing

these resources; however, parallelization efforts are commonly dependent on complex hardware

changes such as adding speculation support. These changes are not yet popular among hardware

manufacturers. On the other hand, software-based speculation support is still quite expensive

in terms of performance to be widely used in parallel and parallelized applications. In this
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work, we strived to tackle these issues from two closely related angles. First, we minimize the

overheads of software based transactional memory models bydecoupling and centralizing the

commit stage in STMlite. We also eliminate the need for maintaining a read set during loads

and checking them during commit. Secondly, we are able to lower the overhead of loop par-

allelization by reusing some of the underlying structures of STMlite. We have shown that our

work outperforms current transactional memory implementations on transactional benchmarks

with large transactions while achieving similar performance in smaller transactions. Further-

more, we show that achieving real speculative speedup on sequential applications is possible

without extra hardware support.
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CHAPTER 3

Dynamic Parallelization of JavaScript Applications Usingan

Ultra-lightweight Speculation Mechanism

3.1 Introduction

JavaScript was developed at Netscape in the early 1990’s under the name Mocha to pro-

vide enhanced user interfaces and dynamic content on websites. It was released as a part of

Netscape Navigator 2.0 in 1996, and since then it has become standard with more than 95%

of web surfers using browsers with enabled JavaScript capabilities.Dynamically downloaded

JavaScript programs combine a rich and responsive client-side experience with centralized ac-

cess to shared data and services provided by data centers. The uses of JavaScript range from

simple scripts utilized for creating menus on a web page to sophisticated applications that con-

sist of many thousands of lines of code executing in the user’s browser. Some of the most visible

applications, such as Gmail and Facebook, enjoy widespreaduse by millions of users. Other

applications, such as image editing applications and games, are also becoming more common-

place due to the ease of software distribution.
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Figure 3.1: Performance of JavaScript, compared to C, C++ and Java.

As the complexity of these applications grows, the need for higher performance will be es-

sential. However, poor performance is the biggest problem with JavaScript. Figure3.1presents

the performance of an image edge detection algorithm implemented in a variety of program-

ming languages on an Intel Core i7 processor. Not surprisingly, the C implementation is the

fastest. Following are the C++ implementation with 2.8x slowdown and the Java version with

6.4x slowdown. The default JavaScript implementation is 50x slower than the C implementa-

tion. The performance gap occurs because JavaScript is a dynamically typed language and is

traditionally executed using bytecode interpretation. Interpretation makes JavaScript execution

much slower in comparison to the native code generated for statically typed languages such as

C or C++. Using the trace-based optimizer in Firefox, TraceMonkey [40], that identifies hot

execution traces in the code and compiles them into native code, the JavaScript execution is

brought down in line with the Java implementation which is still 6.9x slower.

Bridging this performance gap requires an understanding ofthe characteristics of JavaScript

programs themselves. However, there is disagreement in thecommunity about the forms of
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JavaScript applications that will dominate and thus the best strategy for optimizing performance.

JSMeter [71] characterizes the behavior of JavaScript applications from commercial websites

and argues that long-running loops and functions with many repeated bytecode instructions are

uncommon. Rather, they are mostly event-driven with many thousands of events being handled

based on user preferences. We term this class of applications asinteraction-intensive.

While this characterization reflects the current dominanceof applications such as Gmail

and Facebook, it may not reflect the future. More recently, Richardset al. [73] performed

similar analyses on a fairly large number of commercial websites and concluded that in many

websites, execution time is, in fact, dominated by hot loops, but less so than Java and C/C++.

Furthermore, an emerging class of online games and client-side image editing applications are

becoming more and more popular. There are already successful examples of image editing ap-

plications written in ActionScript for Adobe Flash available online [8, 10]. There are also many

efforts in developing online games and gaming engines in JavaScript [1, 14]. These applications

are dominated by frequently executed loops and functions, and are termedcompute-intensive.

The main obstacle preventing wider adoption of JavaScript for compute-intensive applica-

tions is historical performance deficiencies. These applications must be distributed as native

binaries because consumers would not accept excessively poor performance. A circular depen-

dence has developed where poor performance discourages developers from using JavaScript

for compute-intensive applications, but there is little need to improve JavaScript performance

because it is not used for heavy computation. This circular dependence is being broken through

the development of new dynamic compilers for JavaScript. Mozilla Firefox’s TraceMonkey [40]

and Google Chrome’s V8 [3] are two examples of such efforts. While these engines address
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a large portion of inefficiencies in JavaScript execution, they do not provide solutions to scale

performance.

With multicore architectures becoming the standard for desktops, servers, and smart phones,

it is apparent that parallelism must be exploited in JavaScript applications to sustain their

ever increasing performance requirements. However, theseapplications are generally single-

threaded because the language and run-time system provide little concurrency support. The

primary problem is that the document object model (DOM), used by JavaScript to interact

with web pages and browser state, does not have a model for shared access. So, for example,

since JavaScript has no internal locking mechanism, two threads may invoke multiple event

handlers that change the same DOM object and create either race conditions or correctness

bugs. Considering this limitation, developing parallel JavaScript applications manually would

be cumbersome and error-prone.

To exploit hardware concurrency, while retaining the traditional sequential programming

model, this work focuses on dynamic parallelization of compute-intensive JavaScript applica-

tions. Our parallelization technique, calledParaScript, performs automatic speculative paral-

lelization of loops and generates multiple threads to concurrently execute iterations in these ap-

plications. A novel and low-cost software speculation system detects misspeculations occurred

during parallel execution and rolls back the browser state to a previously correct checkpoint.

Our techniques are built on top of the TraceMonkey engine [40], thus we retain the benefits of

trace-based optimizations.

While speculative loop parallelization has an extensive body of prior work [26, 32, 37, 45,

53, 70, 84, 93], the key new challenge here is performing parallelizationefficiently at runtime,
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while ensuring correct execution through runtime speculation without any extra hardware sup-

port. Recent efforts for speculative parallelization of C/C++ applications on commodity hard-

ware ([57, 69, 86]) make extensive use of static analysis along with static code instrumentation

with speculation constructs. Straight-forward application of these static parallelization tech-

niques is ineffective for a number of reasons including the inability to perform whole program

analysis, and expensive memory dependence analysis and profiling at runtime. In addition,

without effective use of static analysis, considerable overhead of per-access logging and com-

mit time operations involved in software speculation systems such as software transactional

memories [18, 49], makes immediate use of these systems impractical in a dynamic setting.

Previous proposals for dynamic parallelization [33] are also not suitable for our target due to

high dependency on expensive extra hardware support. In this work, we show that practical

speedups can be achieved on commodity multi-core hardware with effective runtime analysis

and efficient speculation management. These techniques letus avoid high-cost static analyses

and expensive hardware support for dynamic analysis [33] in traditional parallelization sys-

tems and the kind of per-access logging and commit time operations which contribute to high

overheads in software speculation systems, such as STMs [18, 49].

In particular, the contributions offered in this chapter ofthe thesis are:

• An technique for automatically identifying parallelizable loops dynamically at runtime

and a code generation scheme to create parallelized versions of JavaScript applications.

• An ultra-lightweight software speculation system consisting of selective checkpointing of

the system state and a novel runtime dependence detection mechanism based on conflict

detection using reference counting and range-based checksfor arrays.
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Figure 3.2: Static parallelization flow.

The rest of this chapter is organized as follows. Section3.2explores some of the challenges

involved in dynamic parallelization and provide hints to potential solutions. Section3.3 intro-

duces novel analysis technique employed in ParaScript for low-cost parallelization detection at

runtime and presents the code generation framework. ParaScript’s ultra-lightweight speculation

mechanism is proposed in Section3.4, while Section3.5 presents evaluation framework and

experimental results. Section3.6 reviews some of the related work, and finally, Section3.7

provides a summary and concludes the chapter.

3.2 Dynamic Parallelization Challenges

There is a long history of static techniques for automatic and speculative parallelization

of scientific and general purpose applications. A typical static parallelization framework is

depicted in Figure3.2. This framework uses memory dependence analysis (pointer analysis),

memory access profiling and data flow analysis to find candidate loops for parallelization, after

which generates the parallel code. This code is later run speculatively on the target system using

a software or hardware memory speculation mechanism.
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Static frameworks are usually optimized to achieve the bestruntime performance by em-

ploying complex and often time-consuming compile-time analysis. However, in a highly dy-

namic setting like that of JavaScript execution, where the code is run via interpretation or dy-

namic just-in-time (JIT) compilation on the client’s browser, applying these analyses at compi-

lation time would be too expensive and will offset all potential parallelization benefits. It might

even lead to slowdown in some cases. For instance, [42] recently proposed a static JavaScript

pointer analysis for security purposes. They show that their analysis takes about 3 seconds to

complete on a set of JavaScript programs with an average of 200 lines of code. While being an

effective and fairly fast analysis for offline purposes, if the analysis were to be used at runtime,

it could become quite prohibitive even for programs of that size, let alone larger applications

that consist of hundreds of lines of code [73]. In addition to compiler analysis, the overhead

of runtime memory profiling would be unacceptable – the work in [56] reported 100x to 500x

increase in the execution time as a result of performing static memory profiling on C/C++ appli-

cations. Therefore, with the exception of simple data flow analysis and code generation (both of

which are already done at runtime in JavaScript engines), a dynamic parallelization framework

can not afford to utilize any of the static compile time stepsin Figure3.2.

Furthermore, by targeting commodity systems, an efficient and low-cost software specula-

tion mechanism is required. Traditional software speculation mechanisms (e.g, STMs) focus

on flexibility and scalability to support a wide variety of speculative execution scenarios and

thereby increase the runtime by 2-5x [28]. Large overheads of memory operation instrumen-

tation along with expensive checking mechanisms are two main sources of overhead. Recent

proposals [57, 69, 86] introduce customized speculation systems for parallelization of C/C++
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applications. However, as was reported in [57], without the aid of static memory analysis and

profiling, their overhead could go up to 4x compared to sequential as well.

With these challenges in mind, we approach dynamic parallelization of JavaScript applica-

tions by proposing the following techniques:

Light-weight dynamic analysis: Limited information is carefully collected early on at run-

time, based on which initial parallelization decisions aremade. A low-cost and effective initial

assessment is designed to provide optimistic, yet surprisingly accurate decisions to the specula-

tion engine. Loops that require complicated transformations, high-cost runtime considerations

or have high misspeculation risk are not chosen to be parallelized.

Low-cost customized speculation mechanism: A lean and efficient software speculation

mechanism is proposed, which is highly customized for providing loop-level speculation sup-

port in JavaScript programs. A low-cost conflict detection mechanism is introduced based on

tracking scalar array access ranges and reporting conflict if two threads access overlapping

ranges. Parallelism-inhibiting heap references are also detected at runtime to guarantee correct

execution. A reference counting scheme is introduced to detect potential conflicts in arrays of

objects. Finally, an efficient checkpointing mechanism is also designed that is specialized for

the JavaScript runtime setting. Two checkpointing optimizations, selective variable checkpoint-

ing and array clone elimination, are introduced to further reduce speculation overhead.
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Figure 3.3: ParaScript dynamic parallelization flow.

3.3 Dynamic Analysis and Code Generation

In this work, we propose a dynamic mechanism, called ParaScript, for exploiting parallelism

in JavaScript applications. Figure3.3 shows the ParaScript execution flow at runtime. It first

selects candidate hot loops for parallelization. Subsequently, in the dependence assessment step,

using a mixture of data flow analysis and runtime tests, it detects immediately identifiable cross-

iteration memory dependences during the execution of the first several loop iterations. In case of

no immediate memory dependence, ParaScript dynamically generates a speculatively parallel

version of the loop and inserts necessary checkpointing andconflict detection constructs. The

detailed process of instrumentation with these constructsas well as their implementation is

presented in Section3.4.

The runtime system continues by executing the parallel loopspeculatively. In case a cross-

iteration dependence is found, the parallel loop is aborted, the system reverts back to the pre-

vious correct checkpoint and runs the loop sequentially. The failed loop is also blacklisted to

avoid parallelization in further loop invocations in the same run. Furthermore, a cookie is stored

in the browser’s cache to blacklist the loop in future application executions as well.
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To keep the framework and speculation rollback overhead low, only loops whose number of

iterations is known at runtime (DOALL-counted, e.g.,for loops) are considered for dynamic

speculative parallelization. Implementing a general framework similar to [93] which handles

DOALL-uncounted loops (e.g.,while loops) needs a more elaborate framework and more fre-

quent checkpointing, imposing negative impact on our goal of having a low-cost near-certain

speculation and infrequent checkpointing mechanism.

Loops that contain document object model (DOM) interactions, HTTP request functions

and several JavaScript constructs such as theeval keyword, Function object constructor,

andsetTimeout andsetInterval keywords are not parallelized. Parallelizing loops with

DOM interactions requires locking mechanisms on DOM elements inside the browser and also

a heavy-weight checkpointing mechanism to take snapshots of DOM state at various times.

Furthermore, most DOM accesses inside loops are to the same DOM element and inherently

sequential. Therefore, parallelization will not yield much performance benefits. Accesses to dif-

ferent elements also require locking DOM tree structures which eventually makes the accesses

sequential. Speculative execution of HTTP requests requires speculation and rollback support

at the server side [88]. In this work, we focus on the client-side speculation and do not have

this support. Theeval keyword,Function constructor,setTimeout andsetInterval take

strings as arguments and execute them like normal JavaScript code at runtime. For instance, a

call toeval or Function constructor could be the following:

var addFunction = new Function("a" , "b", "return a+b;");

eval("a = 7; b = 13; document.write(a+b)");

The problem with using these constructs is that they introduce new code at runtime and the
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compiler has no access to the string contents and thereby, noanalysis can be done on it before

execution. In the following subsections, ParaScript stages are explained in more detail.

3.3.1 Dynamic Parallel Loop Selection

The loop selection process essentially consists of two steps: detecting hot loops and per-

forming initial analyses to determine parallelization potential. During runtime, after a loop

execution is detected, it is marked as hot if it passes the initial selection heuristic. This runtime

heuristic takes into account iteration count and number of instructions per iteration.

In nested loops, if the outer loop’s number of iterations is higher than a threshold, it is given

the priority for being marked as hot by the system. Therefore, even if an inner loop is detected

as hot, the system holds off on passing it to the next stage until a decision about the outer loop

is made. However, if the outer loop turns out not to be hot or fails the dependence assessment,

the inner loop is marked as hot. This mechanism is based on theintuitive assumption that

parallelizing outer loops is always more beneficial and avoids premature parallelization of inner

loops.

After a hot loop is detected, the system proceeds with the initial dynamic dependence as-

sessment. There have been recent proposals for static pointer analysis in JavaScript [42]. There

are also array analysis techniques such as the Omega Test [66] which could be employed for an-

alyzing JavaScript code. However, due to the tight performance and responsiveness constraints

on JavaScript execution, the overhead of using these traditional static analysis techniques at

runtime in ParaScript is quite prohibitive.

In order to compensate for lack of static information and prior memory profiles, several tests
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1: … = y;
2: z = …;
3: … = x;
4: … = z;
5: y = …;
6: w+= 2;

var x,y,z,w = 0;

(a) Scalar dependences

1: … = y.field1;
2: … = w.field2;
3: z[propName] = …;
4: … = x;
5: … = z.field1;
6: w.field1 = …;
7: y.field1 = …;
8: t = t.next;

var x,y,z,w,t = new myObj();
var propName = ‘field1’;

(b) Object dependences

1: a[i+x] = a[i+y];
2: … = d[i]; 
3: c[i] = b[i];
4: a[i] = b[i-x];
5: d[i] = …;
6: e[i] = …;

var a,b,c,d,e = new Array(); 
[arrays of scalars]

?

?

!

!

(c) Scalar array dependences

1: a[i+x] = a[i+y];
2: … = d[i]; 
3: c[i] = b[i];
4: a[i] = b[i-x];
5: d[i] = …;
6: f[i].field++;
7: e[i] = …;
8: f[i] = z;

var a,b,c,d,e,f = new Array(); 
[arrays of Objects]
var z = new myObj(); 

?

?
!

!

!

!

(d) Object array dependences

Figure 3.4: Examples of dependence instances in various variable categories. Solid and dashed arrows
depict control flow and data flow edges respectively. Question marks on dashed arrows show possible
data flow dependences. Check-marks show operations that aresafe for parallelization, while cross-
marked operations are the ones that hinder parallelisms. Both of these operation categories are identified
by the simple JIT-time data flow analysis with DU chains. Exclamation marks are instances of possible
cross iteration dependences that could not be figured out at JIT-time. Final safety decisions on these are
deferred to further runtime analysis and speculation (Section 3.4).

are performed during the dependence assessment stage at runtime, in addition to the simple

data flow analysis. Analysis is categorized based on four variable types: scalars, objects, scalar

arrays and object arrays.

Scalars: Figure3.4(a)shows an example of a loop with various forms of scalar dependences.

ParaScript avoids parallelizing loops that contain any cross-iteration scalar dependences other

than reduction and temporary variables. Using basic data flow analysis (with use-def chains),
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all instances of cross-iteration scalar dependences can befound [90].

One example of such dependence is variabley in Figure3.4(a)which is both a live-in and

is written inside the loop. Reduction variables such as accumulator (w in Figure3.4(a)) and

min/max variables are also instances of such dependences and can be found by simple pattern

matching on the code. Furthermore, global temporary variables that are used inside each it-

eration and do not carry values past the iteration scopes arealso identified (variablez in the

example). A scalar which is used in the loop, but is not live-in belongs to the mentioned tem-

porary variable category. These variables can be safely privatized, allowing the loop iterations

to be executed in parallel. Scalar dependences caused by temporary locals are ignored, because

they will automatically become private to each parallel thread.

Object references: Since JavaScript has no pointer arithmetic, objects can also be dealt with

using data flow analysis. Figure3.4(b) is an example of a loop with object dependences. Ini-

tially, statically resolvable object field accesses are identified and resolved. In JavaScript, object

properties and methods can be accessed both using the “.” operation and also by passing the

field name as string to the object name as in line 3 of the code inFigure3.4(b). In this ex-

ample,propName is a constant string and can be resolved using a local constant propagation

analysis [90] and converted to an access using the “.” operation (z.field1 = ...;).

After this initial step, data flow analysis is used to find cross-iteration dependences caused

by object references. Similar to scalars, a live-in reference which has been written inside the

loop is an example of such dependences (y.field1 in 3.4(b)). Likewise, global temporary

objects are also handled by privatization (z.field1). Furthermore, this analysis successfully

finds instances of parallelism-inhibiting linked list or tree operations in the loop (e.g., variable
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t) and avoids loop selection.

Scalar arrays: Many cross-iteration dependences in scalar arrays can alsobe identified using

data flow analysis. Arrayd in Figure3.4(c)is an example of these cases. However, the data flow

analysis can not determine the self-dependence on operation 1 and also the dependence between

operations 4 and 1. In order to make parallelization decisions in these cases, we introduce an

initial dependence assessment along with a set of range-based runtime checks. During the initial

assessment, a copy of the loop code is made and all array accesses are instrumented in this copy

to record accessed element indexes during each iteration ina dependence log. After a few

iterations, these logs are checked to detect any immediate cross iteration array dependences.

If no dependences are found, the system optimistically assumes that the loop is DOALL and

selects it for parallelization. However, since this decision is based on only a few iterations, it

might be wrong. ParaScript uses a range-based checking mechanism to detect possible conflicts

at runtime. More details about this mechanism is discussed in Section3.4.2.

Object arrays: Dynamic analysis for arrays of objects is more challenging.Similar to scalar

arrays, data flow analysis can determine dependences causedby the array as a whole (assuming

all elements point to the same location). For instance, array d in the example of Figure3.4(d)

causes a cross iteration dependence which can be identified by data flow analysis. Assuming

that objectz is loop-invariant, data flow analysis can also find the cross-iteration dependence

caused through the assignment ofz to elements of arrayf.

In addition to the data flow edges in Figure3.4(d), any two array pairs in the loop can be

dependent on each other through referencing to the same object during execution. Therefore,
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if there are writes to array elements inside the loop and the data flow analysis does not detect

dependences, ParaScript optimistically assumes that the loop is parallelizable and employs a

novel runtime mechanism to ensure correctness. During the checkpointing stage, before parallel

loop execution, this runtime technique, which is based on object reference counting is applied

to object arrays to avoid indirect writes to the same object through individual array element

writes in different parallel threads. This mechanism, explained in more detail in Section3.4.1,

is effective in dynamic resolution of dependences that might be caused by arraysa, c, ande in

Figure3.4(d).

As we explained in this section, ParaScript is able to make optimistic parallelization deci-

sions using only a single data flow analysis pass, while deferring complete correctness checks

to the runtime speculation engine.

3.3.2 Parallel Code Generation

After the loop is chosen to be parallelized, the parallel loop’s bytecode is generated at run-

time according to the template in Figure3.5. The chunk size determines the number of iterations

after which speculative loop segments are checked for any possible conflicts (conflictcheck()).

The value of chunk size is determined at runtime based on the number of threads, total number

of iterations, iteration size and number of memory accesses. As the execution makes progress

without conflicts, the runtime system increases the chunk size. A barrier is inserted at the end

of each chunk (chunkbarrier()) and is released when all threads are done with their chunk

execution after which the conflict checking routine (Section 3.4.2) is invoked.

To capture the correct value of live-out registers, if the live-out is unconditional and is up-
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IE = min(IS+CS*SS,n);

for (i=IS;i<IE;i+=SS)
// original loop code

conflictcheck();
chunkbarrier()
IS+=CS * TC * SS;

P
a

ra
ll

e
l 

Lo
o

p

Loop Barrier

Reduc!on variable expansion

Condi!onal live-out aggrega!on

Take checkpoint -- Spawn threads

Figure 3.5: Dynamic code generation template (CS: chunk size, IS: iteration start, IE: iteration end, SS:
step size, TC: thread count).

dated in every iteration, the final live-out value can simplybe retrieved from the last itera-

tion of the loop. For conditional live-outs (those updated in an if-statement), a set of registers

called update index are used. Whenever the live-out value is updated, the corresponding

update index is set to the current iteration number to keep track of the latest modifications

to live-out values. After passing the loop barriers, theupdate index values are checked to

capture the correct final value for the live-out variable.

Another piece of code inserted after the last loop barrier isthe code performing reduction

variable expansion. Reduction variables (e.g., accumulators and min/max values) normally

cause cross-iteration register dependences. The ParaScript framework resolves these depen-

dences by creating a local accumulator or min/max value, andprivately accumulating the totals

for each individual trace. After all chunks are finished, local accumulators are summed up and

global min/max values are determined amongst the local min/max values.
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In this work, in order to minimize the checkpoining overhead, a single checkpoint (Sec-

tion 3.4.4) is taken at the beginning of the parallelized loop, and if any of the conflict checks

fail, the loop is executed sequentially from the beginning.Due to the high accuracy of our

initial dependence assessment and stability of array access trends in the JavaScript programs

we investigated (both ones with and without parallelism potential), this approach proved quite

effective.

3.4 Ultra-lightweight Speculation Support

In this section, we introduce our approach for misspeculation detection, checkpointing and

recovery. Furthermore, we describe two optimizations to further lower the checkpointing over-

head. Figure3.6(a)shows an example target loop for parallelization. Using a traditional spec-

ulation mechanism such as an STM for speculative parallelization (Figure3.6(b)) requires the

code generator to instrument all memory accesses with the corresponding speculative versions

– TXLOAD andTXSTORE – and enclose loop chunks withTXBEGIN andTXCOMMIT. Replacing

all memory accesses with transactional versions causes theruntime to spend substantial time

tracking each individual memory access. Furthermore, at commit time, considerable overhead

is incurred for locking target memory locations and performing consistency checks with reads.

These overheads are the main reasons that STM systems usually incur up to 5x slow down over

sequential versions of applications [28].

However, in ParaScript, the data flow analysis done during the JIT compilation, obviates

the need for speculation on scalar values and individual object variables. Furthermore, a ref-

erence counting based analysis is performed during checkpointing on the object arrays, while
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1: a[i+x] = a[i+y];
2: … = b[i-x];
3: c[i] = b[i];
4: d[i] = …;

(a) Original Loop.

TXBEGIN
1: TXLOAD(a[i+y]) 

TXSTORE(a[i+y]);
2: TXLOAD(b[i-x]);
3: TXLOAD(b[i]);

TXSTORE(c[i]);
4: TXSTORE(d[i]);
TXCOMMIT

TXLOAD()
Check WrSet for RAW deps
Check writes by other TXs
Load from mem
Store Addr to RdSet

TXSTORE()
Store Addr & Data to WrSet

TXCOMMIT()
Lock WrSet
Validate RdSet
Writeback WrSet
Release locks

(b) Speculative parallelization using a traditional STM.

1: a[i+x] = a[i+y];
UpdateWrRangeLog(a,i+x);
UpdateRdRangeLog(a,i+y);
2: … = b[i-x];
3: c[i] = b[i];
UpdateWrRangeLog(c,i);
4: e[i] = …;
UpdateWrRangeLog(d,i);

During checkpointing,
RefCount(a,b,c,d)

UpdateXXRangeLog(A,idx)
if (idx>XXMaxIdxA)
(XXMaxIdxA=idx);
If (idx<XXMinIdxA)
(XXMinIdxA=idx);

(c) Speculative parallelization using ParaScript.

Figure 3.6: Extra steps needed at runtime for speculation support for loop parallelization in a traditional
STM (TL2 [35]) and in ParaScript.

a minimal set of operations consisting mostly of array indexcomparisons is added to each ar-

ray access to enable range-based dependence checking. These techniques are detailed in the

following subsections.

3.4.1 Conflict Detection Using Reference Counting

As mentioned in Section3.3.1, manipulating object arrays inside the loop potentially cre-

ates dependence cases that are not resolvable using simple data-flow analysis. For example,

if the same object reference is assigned to two different array elements, since those elements
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might be written to during different iterations of the loop,the loop has potential cross iteration

dependences, and can not be parallelized.

In order to identify these cases, we employ a technique similar to what reference counting

garbage collectors use. At runtime, a header is added to all objects involved with loop arrays.

This header, which is only used during array checkpointing,includes a reference count and

entries for storing array IDs (e.g., starting address). Thecheckpointing mechanism already

goes through all live-in array elements and stores them in the state checkpoint (Section3.4.4).

During this process which happens before starting parallelloop execution, if an array element

refers to an object, the object’s reference count and array ID entries are queried. If it had

been referenced by the same array before, the system will know that there are two elements

in the same array that refer to the same object, and thereby, the loop is disqualified from the

parallelization process.

If the object has been referred to by another array and any elements of the two arrays are

dependent through def-use chains, the loop is disqualified as well (this condition might disqual-

ify loops that are actually parallelizable, but in order to eliminate the need for more in-depth

and expensive speculation, this pessimistic assumption ismade to ensure correct execution in

all cases).

If, according to the header, the object has no array element references so far, the reference

count is incremented and the array’s starting address is added to array ID list in the object

header. If all object arrays in the loop pass this reference counting phase, parallel loop execution

is started and range-based checks as described next are applied to the arrays.
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3.4.2 Conflict Detection Using Range-based Checks

A mechanism is needed to detect cross-iteration conflicts for scalar arrays and for object

arrays that have passed the reference counting checks. In order to avoid instrumenting every

array access with speculative operations, a range-based dependence checking is employed. In

this method, during the speculative loop execution, each array maintains four local variables

calledrdMinIndex, rdMaxIndex, wrMinIndex, andwrMaxIndex. These values keep track of

the minimum and maximum read and write indexes for the array.During parallel code genera-

tion, at each array read or write access, necessary comparisons are inserted in the bytecode to

update these values if needed. After several iterations of the loop, accessed array references and

their minimum and maximum access index values are written tothe array write and read sets

(arrayWrSet andarrayRdSet) in the memory. Each thread of execution maintains its own ar-

ray read and write sets. The number of iterations after whichwrite and read sets are updated is

determined based on a runtime heuristic depending on the number of arrays in the loop, number

of array accesses and the difference between minimum and maximum accessed index values.

As was shown in Figure3.5, after a predefined number of iterations, all threads stop ata barrier

and the conflict checking routine checks the read and write access ranges of each array in each

thread against write access ranges of the same array in all other threads. If any conflict is found,

the state is rolled back to the previous checkpoint and the loop is run sequentially.

One downside of this mechanism for array conflict checking isthat strided accesses to arrays

are always detected as conflicts. However, this is a minor cost compared to the large overhead

reduction as a result of efficient range-based conflict detection in other cases.
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Function Description new Min new Max

pop() Remove last array element oldMin oldArray.length()

push() Add elements to end of arrayoldMin oldArray.length()+1

reverse() Reverse array elements 0 oldArray.length()

shift() Remove first array element 0 oldArray.length()

sort() Sorts array elements 0 oldArray.length()

splice(i,n,e1,...,eN)
Removes n and/or add N
elements from position i

min(oldMin,i) max(oldMax,i+N,i+n)

unshift(e1,...,eN) Add N elements to beginning
of array

0 oldArray.length + N

Table 3.1: JavaScript Array manipulation functions’ effect on minimum and maximum access index
values.oldArray.length() is the length of the array before applying the function. Likewise,oldMin
andoldMax are old values of minimum and maximum read and write access index values.

3.4.3 Instrumenting Array Functions

As mentioned before, all array read and write accesses have to be instrumented for updating

minimum and maximum access index values. In addition to normal array access using indexes,

JavaScript provides a wide range of array manipulation functions which are implemented inside

the JavaScript engine and read or write various points in arrays. In order to correctly capture

their effect, their uses in the JavaScript application are also instrumented. Table3.1shows these

functions and their effect on min/max access index values.

In JavaScript, it is possible to add custom functions to built-in object types such asArray,

String, or Object using theprototype keyword inside the program source code. These

custom functions are able to change values or properties of their respective object. This could

pose complications in determining the values of minimum andmaximum access index values.

Therefore, any additional properties of functions added bytheprototype keyword are detected

and instrumented to correctly update access index values.
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3.4.4 Checkpointing and Recovery

At any point during runtime, theglobal objectcontains references to all application objects

in the global namespace. Inside the JavaScript source code,the global object can always be ac-

cessed using thethis keyword in the global scope and is equivalent to thewindow object in web

pages. Pointers to local objects, variables and function arguments reside in the corresponding

function’scall object, and can be accessed from within the engine.

Checkpointing: When a checkpoint is needed in the global scope, only a globalcheckpoint

is taken, whereas in case the checkpoint request is issued inside a function, both global and

local checkpoints need to be taken. The stack and frame pointers are also checkpointed in the

latter case. While going through variable references in theglobal or local namespace, they are

cloned and stored in the heap. Since there will be no references to these checkpoints from within

the JavaScript application, the garbage collector needs tobe asked explicitly not to touch them

until the next checkpoint is taken. During checkpointing, to ensure proper roll-back, objects are

deep-copied. However, based on a runtime threshold, ParaScript stops the deep-copying process

and avoids parallelizing the loop if checkpointing becomestoo expensive. Although a function’s

source code can be changed at runtime in JavaScript, since ParaScript avoids parallelizing loops

containing code injection constructs, the checkpointing mechanism does not need to clone the

source code. All other function properties are cloned.

Recovery: In case of a rollback request, the checkpoint is used to revert back to the original

state and the execution starts from the original checkpointing location. Similar to checkpoint-

ing, recovery is also done at two levels of global and local namespaces. Due to complications
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of handling different stack frames at runtime, cross-function speculation is not supported. This

means that speculative code segments should start and end inthe global scope or the same func-

tion scope (obviously, different functions could be calledand returned in between). During local

recovery, stack and frame pointers are over-written by the checkpointed values. This makes sure

that when an exception happens in the speculative segment and the exception handler is called

from within some child functions, if a rollback is triggered, the stack and frame pointers have

the correct values after recovery.

3.4.5 Checkpointing Optimizations

Using the speculation mechanism inside the ParaScript framework provides several opti-

mization opportunities to further reduce the checkpointing overhead.

Selective variable cloning: The original checkpointing mechanism takes checkpoints ofthe

whole global or local state at any given time. However, in ParaScript, only a checkpoint of

variables written during speculative code segment execution is needed. In the selective variable

cloning optimization, these written variables are identified using the data flow information. If

any variable is passed as an argument to a function, the function’s data flow information is used

to track down the variable accesses and determine if there are any writes to that variable. This

information is passed to the checkpointing mechanism, and aselective rather than a full variable

cloning is performed.

Array clone elimination: In some applications, there are large arrays holding returnvalues

from calls to functions implemented inside the browser. Oneexample of these functions is
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getImageData from thecanvas HTML5 element implementation inside the browser. This

function returns some information about the image inside the canvas element. Since spec-

ulative code segments in ParaScript do not change anything inside DOM, the original image

remains intact during the speculative execution. Therefore, instead of cloning the array contain-

ing the image data information, ParaScript calls the original function again with the same input

at rollback time (e.g.,getImageData is called again on the same image).

3.5 Evaluation

3.5.1 Experimental Setup

ParaScript is implemented in Mozilla Firefox’s JavaScriptengine, SpiderMonkey [12] dis-

tributed with Firefox 3.7a1pre. All experiments are done with the tracing optimization [40]

enabled. In SpiderMonkey, at a high-level, each engine instance has aRuntimeobject, which

is mainly responsible for memory management and handling global data. Each JavaScript pro-

gram in the browser has only oneRuntimeobject, in which references to all other objects in

the program reside. Objects cannot move or be shared betweendifferent Runtimes. Context

objects, on the other hand, are per-thread objects that are responsible for tasks such as excep-

tion handling. EachRuntimecan have multipleContexts and other objects can be shared among

differentContexts. Multithreading support in SpiderMonkey is made possibleby the serializa-

tion of several data structures belonging to theRuntimeobject and special handling of garbage

collection and object property accesses [12].

The proposed techniques in this work are evaluated on the SunSpider [13] benchmark suite

and a set of filters from the Pixastic JavaScript Image processing Library [11].
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SunSpider has 26 JavaScript programs. All these were run through the ParaScript engine

and 11 were found to benefit from parallelization. Lack of parallelization opportunities in the

rest of them, however, was found early on in the dependence assessment stage (Section3.3)

without any noticeable performance overhead (an average of2% slow down due to the initial

analysis across the 15 excluded benchmarks). From these 11 parallelizable benchmarks, three

bitops benchmarks do not perform useful tasks and are only in the suite to benchmark bit-

wise operations performance. Therefore, they are also excluded from the final results (These 3

benchmarks gained an average of 2.93x speedup on 8 threads after running through ParaScript).

The Pixastic library has 28 filters and effects, out of which the 11 most compute-intensive

filters were selected. The rest of the filters perform simple tasks such as inverting colors, so

their loops did not even pass the initial loop selection heuristic based on the loop size. Out of

the 11 selected filters, 3 benchmarks (namelyblur, mosaic andpointilize) were detected by

ParaScript to be not parallelizable, due to cross iterationarray dependence between all iterations

in blur, and DOM accesses inside loops inmosaic andpointilize. All benchmarks were

run 10 times, and the average execution time is reported. Thetarget platform is an 8-processor

system with 2 Intel Xeon Quad-core processors, running Ubuntu 9.10.

3.5.2 Parallelism Potential and Speculation Cost

Figure3.7shows the fraction of sequential execution time selected byParaScript for paral-

lelization in our subset of the SunSpider and Pixastic suites. These ratios show the upper bound

on parallelization benefits. In the image processing benchmarks, a high fraction of sequential

execution outside parallelized loops is spent in thegetImageData function implementation in-
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Figure 3.7: Parallelization coverage as ratio of parallelizable code runtime to total sequential program
execution.

side the browser. This function takes the image inside an HTML canvas element as the input

and returns a 2D array containing the RGB and alpha value information for all pixels in the

image. The function’s implementation inside the Firefox browser mainly consists of a DOALL

loop that walks over all pixels in the image. We exploited this parallelization opportunity and

hand-parallelized this DOALL loop inside the browser. The effect of this parallelization is

discussed in the next subsection.

Checkpointing and speculation overheads are presented in Figure3.8. This study has been

done on single-threaded versions of the applications. The experiments are set up such that the

sequential program is passed through the ParaScript systemand parallelization and specula-

tion constructs required for proper execution of the parallelized version are inserted into the

sequential benchmark. The benchmark is then executed with one thread. The overhead is mea-

sured after applying both optimizations in Section3.4.5. Array clone elimination proved to

be quite effective in Pixastic benchmarks, due to cloning elimination in the return array of the
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Figure 3.8: Speculation and checkpointing overhead as a fraction of total sequential program execution.

getImageData function. The only overhead missing in these bars is the checking overhead at

the end of each parallel chunk. Due to the efficient storage ofaccessed array ranges, this check-

ing overhead turned out to be negligible in the experiments.On average, checkpointing and

speculation overhead is around 17% of the sequential execution runtime of the whole applica-

tion. The main reasons for this low overhead are accurate dependence prediction, light-weight

array access instrumentation, efficient conflict checking mechanism due to the use of array ac-

cess bound checks instead of individual element checks, andthe proposed optimizations on

checkpointing. Furthermore, due to the high prediction success rate of the parallelization as-

sessment step, ParaScript is able to take checkpoints only once at the beginning of the loop,

which in turn lowers the overhead.

3.5.3 Results

Figure3.9shows performance improvements as a result of speculative parallelization using

the ParaScript framework, across subsets of SunSpider suite and the Pixastic image processing
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Figure 3.9: ParaScript performance improvement over sequential for 2,4 and 8 threads. Black lines on
top of the graphs show the performance of a system with hardware support for speculation (e.g., HTM).

applications. The Y-axis shows the speedup versus sequential. These performance numbers

include all overheads from the JIT compilation time analysis, runtime analysis and runtime

speculation. The black line on top of each bar presents the effect of replacing our light-weight

speculation mechanism with hardware speculation support such as a hardware transactional

memory system. Speculation costs of such a hardware system is assumed to be zero.

Overall, across the subset of SunSpider benchmarks, the experiments show and average of

1.51x, 2.14x and 2.55x improvement over sequential for 2, 4,and 8 threads of execution (Fig-
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ure3.9(a))1. In case of using hardware speculation support, the speedups would have increased

to an average of 1.66x, 2.27x and 2.72x over sequential for 2,4, and 8 threads.

Figure3.9(b)presents the results for Pixastic applications. The lower part of each bar shows

the performance improvement as a result of speculatively parallelizing the application itself.

The top part of each bar is the extra performance improvementgained by parallelizing the

getImageData function inside the browser with the same number of threads as the parallelized

application. Finally, the black line on top of each bar showsthe performance improvement,

assuming hardware speculation support. On average, speedups of 1.29x, 1.43x, and 1.55x are

gained after parallelization for 2, 4, and 8 threads of execution. Additional speedups of 14%,

23%, and 27% are gained after parallelizing the Firefox implementation of thegetImageData

function which increases the performance improvement to anaverage of 1.43x, 1.66x, and 1.82x

respectively. Using hardware speculation support, speedups go upto 1.58x, 1.79x and 1.92x for

2, 4 and 8 threads.

3.5.4 Discussion

In SunSpider benchmarks (Figure3.9(a)), access-nbody, access-nsieve andstring-b-

ase64 do not show much scaling past 2 threads. The reason is that theparallelized loops in these

benchmarks are unbalanced and the final runtimes are always bounded by the longest running

iteration, irrespective of the number of threads used for parallelization. Comparatively low

overall speedup inraytrace (1.65x for 8 threads) is due to the low coverage (less than 60%)

of parallelizable loops.

The loop selection mechanism discovered many loops with cross-iteration dependences in

1Average speedup for all 26 SunSpider benchmarks is 1.69x for8 threads.
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these programs and avoided parallelizing them, so the abortrate was zero in almost all the

benchmarks. The only case of abort was from an inner loop in 3d-raytrace, which contributed

to less than 5% of the total execution time.

In Pixastic applications, other than the inherent parallelization limitation due to relatively

low coverage of parallelizable sections (an average of 60% coverage), the large ratio of memory

to computation operations in these benchmarks is a limitingfactor to their parallelism poten-

tial. This causes the program to become limited by the memorysystem latency rather than the

amount of computation.

The negative effect of this factor has the most impact on thesepia benchmark where it

causes slowdown rather than speedup for 4 and 8 threads. Eachiteration in the inner loop

of this benchmark has 3 multiply operations, 7 adds, and 6 memory operations. This causes

the program to be quite memory intensive and therefore be bound by the performance of the

memory system. Although the computations and memory requests are parallelized in the 4 and

8 threaded versions, the program is sequentialized at the memory system bus, waiting for its

memory requests to be serviced and returned. Based on this observation, the loop selection

heuristic was updated to account for the memory to computation operation ratio when making

parallelization decision to avoid such slowdowns.

The same effect limits the performance improvements from parallelizing thegetImageData

function inside the browser. Although, this function can beparallelized without any speculation,

the innermost loop has 8 memory operations versus 8 add, 3 multiply and 3 division operations.

Therefore, becoming sequential at the memory system bus hasnegative impacts on the paral-

lelization gains of this function as well.
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3.6 Related Work

There is a long history of work in the area of parallelizing sequential C/C++ applications.

Hydra [45] and Stampede [84] are two of the first efforts in the area of general purpose program

parallelization. The POSH compiler [53] uses loop-level parallelization with TLS hardware

support. The authors in [93] proposed compiler transformations to extract more loop level par-

allelism from sequential programs. Speculative decoupledsoftware pipelining [87] is another

approach that focuses on extracting parallelism from loopswith cross iteration dependences.

In that work, they distribute a single iteration of the loop over several cores. All these works

use static analysis and profiling for parallelization and assume hardware support for specula-

tion, while in this work, we do not rely on any static memory analysis and we perform the

speculation completely in software.

There have been previous proposals for dynamic parallelization techniques. The JPRM sys-

tem [33] focuses on dynamic parallelization of Java applications,but it is dependent on complex

and costly hardware support for online memory profiling thatdoes not exist in commodity pro-

cessor systems. The LRPD test [72], performs speculative dynamic parallelization of Fortran

applications. This framework is dependent on static analysis and transformation of loops, and

runtime checkpointing and speculative execution. In this work, no static analysis is done on the

code and the code is generated on the fly. Furthermore, LRPD’sarray dependence testing is

based on tracking individual array accesses, while ParaScript only tracks array bounds which

significantly reduces tracking and checking overheads.

The work in [24] employs range tests based on static symbolic analysis, whereas ParaScript

performs these tests dynamically and at a lower cost at runtime. The Ninja project [21] uses
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array reference comparison for linear arrays, which does not cover arrays of objects or arrays

of arrays. Their tests on higher order arrays involves introducing a custom array package and

changing the source code.

The work in [19] proposes a C++ library which is dependent on the programmeridentifica-

tion of parallel regions and performs dynamic orchestration of these regions. Being dependent

on the programmers, they do not have any speculation support. Authors in [91] and [89] inves-

tigate dynamic parallelization of binary executables. They use binary rewritting to transform

sequential to parallel code. However, [89] while exploiting slice-based parallelization, assumes

hardware speculation and hardware parallel slice support neither of which exist in current sys-

tems. The work in [91] only performs control speculation and does not speculate on data.

Therefore, after identifying the parallel loop, they have to perform data dependence analysis to

prove lack of cross iteration memory dependence, which would be quite costly (Section3.2).

Furthermore, none of these dynamic parallelization techniques work on dynamic languages

such as JavaScript.

There is a significant amount of previous efforts in the area of memory speculation. Harris

et al. go through a detailed survey of different transactional memory techniques in [48]. In

particular, Shavitet al. proposed the first implementation of software transactional memory in

[77]. Several other works such as DSTM [50] and OSTM [47] proposed non-blocking STM

implementations. The authors in [49, 18] proposed a lock-based approach where write locks

are acquired when an address is written. Also, they maintaina read set which needs to be val-

idated before commit. Our speculation mechanism is not a full-featured software transactional

memory. ParaScript introduces a customized speculation system which is tailored towards effi-
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cient speculative loop level parallelism in JavaScript. Byexcluding many features required by

general-purpose TM models, speculation in ParaScript has become highly lean and efficient.

Due to the lack of concurrency support in the JavaScript language, there have not been

many previous efforts for exploiting multicore systems to improve the execution performance

of client-side web applications. There has been a recent proposal to add a limited form of con-

currency calledweb workersto the language. There are already standardization effortsbeing

undertaken on this proposal [16] and almost all major browsers are starting to support thesecon-

structs. However, due to separate memory spaces among the workers, the only means of com-

munication between them is through message passing, which makes developing multithreaded

applications very difficult. Crom [61], is a recent effort in employing speculative execution

to accelerate web browsing. Crom runs speculative versionsof event handlers based on user

behavior speculation in a shadow context of the browser, andif the user generates a speculated-

upon event, the precomputed result and the shadow context are committed to the main browser

context. Crom exploits a different parallelization layer and is orthogonal to our work. One

could use both approaches at the same time to enjoy parallelization benefits at multiple levels.

We implemented our framework on top of Mozilla’s TraceMonkey, the trace-based JIT com-

piler described in [40] and released as a part of recent versions of Firefox [7]. TraceMonkey is

able to achieve more than 10x speedup on some programs in the SunSpider suite compared to

previous versions of SpiderMonkey on Firefox (which is an interpreter-only JavaScript engine).

All this performance is achieved by intelligent type specialization and the tracing mechanism.

Trace-based compilation approach is orthogonal to our techniques. As a matter of fact, all re-

ported results in our work (including baseline sequential results), have been generated with the
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tracing support enabled inside our modified Firefox browser.

3.7 Summary

JavaScript is the dominant language in the client-side web application domain due to its flex-

ibility, ease of prototyping, and portability. Furthermore, as larger and more applications are

deployed on the web, more computation is moved to the client side to reduce network traffic and

provide the user with a more responsive browsing experience. However, JavaScript engines fall

short of providing required performance when it comes to large and compute-intensive appli-

cations. At the same time, multicore systems are the standard computing platform in the laptop

and desktop markets and are making their way into cell phones. Therefore, in addition to the

efforts underway by browser developers to improve engines’performance, parallel execution

of JavaScript applications is inevitable to sustain required performance in the web application

market. In this chapter, we proposed ParaScript, a fully dynamic parallelizing engine along with

a highly customized software speculation engine to automatically exploit speculative loop level

parallelism in client-side web applications. We show that our technique can efficiently identify

and exploit implicit parallelism in JavaScript applications. The prototype parallelization system

achieves an average of 2.55x speedup on a subset of the SunSpider benchmark suite and 1.82x

speedup a set of image processing filters, using 8 threads on acommodity multicore system.
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CHAPTER 4

Dynamically Accelerating Client-side

Web Applications through Decoupled Execution

4.1 Introduction

TraceMonkey, a trace-based JavaScript engine, was developed for the Firefox web browser

to remove some of the inefficiencies associated with dynamictyping [40]. TraceMonkey iden-

tifies hot bytecode sequences and compiles them to native machine code with statically as-

sumed types. As long as these sequences (traces) remain type-stable, execution remains in the

type-specialized machine code. TraceMonkey works at the granularity of individual loops, and

therefore, is very well suited for compute-intensive web applications.

While compiling hot traces to the native code, TraceMonkey inserts runtime checks, called

guard instructions, into the trace to check for type, control flow,and other assumptions made

during the just-in-time compilation process. These checksare heavily biased not to fire as the

vast majority of the time, types do not vary and a single control flow path is dominant [40].

However, these guards comprise a significant fraction of total executed instructions. Figure4.1
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Figure 4.1: Fraction of total instructions devoted to computing guardsacross four groups of bench-
marks: SunSpider, V8, Pixastic image processing applications, and a set of JavaScript games. These
bars include guards and portion of the backward slice only needed by guards and not used elsewhere.

presents the overhead of guards consisting of the guard instructions themselves as well as the

dependent computation used by the them. These are the instructions only used by guards and

are not needed elsewhere in the trace. The average overhead is presented for four groups of

applications: SunSpider [13] and V8 [15] benchmark suites, and two sets of applications from

the image processing and gaming domains (more details on thebenchmarks are provided in

Section4.5). These values range from a low of 22% to a high of 42%, which represent a

significant runtime penalty.

In this work, we focus on reducing this overhead using a multi-threaded dynamically decou-

pled execution framework calledParaGuard. We decompose traces generated by TraceMonkey

into two concurrent threads. The main thread consists of thecode to implement the bulk of

the user program, while theParaGuardthread performs most of the runtime checks. With this

model, the main thread speculatively executes ahead assuming that the checks will not fire and

the common execution scenario will proceed. When a check does fail, it reverts back to the in-

terpreter and safely discards the improper speculative work. During speculative execution, the
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program is sandboxed to make sure no catastrophic executionfailures happen until ParaGuard

checks have been validated. In multicore systems with under-utilized cores, we can execute the

main and guard threads concurrently to increase performance.

The contributions offered by this work are as follows:

• We propose ParaGuard, a method to dynamically decompose a type-specialized trace into

two concurrent threads: the first speculatively performs the core computation along the

expected path of control and the second verifies that the assumptions used to create the

trace are valid.

• We introduce several optimizations including guard branchaggregation and profile-based

snapshot elimination to increase the efficiency of the decoupled execution.

4.2 Background

In statically typed languages such as C or C++, the compiler can generate efficient machine

code based on the type information provided by the programmer. However, in dynamically

typed languages such as JavaScript, variable types can change at runtime and therefore, the

compiler cannot generate machine code specialized for onlyone specific type. This forces the

compiler to generate generalized machine code with the ability to handle potential dynamic

type changes, causing the code to be considerably slower than the statically typed machine

code. Some static compile-time type inference techniques can be applied to dynamically typed

languages, but such techniques are far too slow for a language like JavaScript that needs to be

loaded and compiled quickly in the web browser.

There have been a number of efforts to efficiently compile andexecute JavaScript applica-
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tions on different browsers. One of the most recent proposals is TraceMonkey [40] by Mozilla

which is implemented on top of SpiderMonkey [12] and is now integrated in their web browser,

Firefox [7].

TraceMonkey uses a trace-based compilation method that reduces JavaScript execution time

by exploiting high performance type-specialized machine code when possible. It starts off by

running the JavaScript application in a bytecode interpreter and at the same time identifies and

records hot bytecode execution sequences. These sequences, called traces, are then compiled

to native code. In TraceMonkey, traces are formed out of individual hot loops. This choice

is based on the assumption that hot loops are mostly type-stable, thereby allowing most of the

program execution to be expressed by type-specialized and natively compiled traces.

Each compiled trace consists of a single path in the program with a specific value-type map-

ping. However, this type-mapping is not guaranteed to be always correct, because different code

paths may be taken or different types may be assigned to a value in subsequent loop iterations.

Therefore, executing the same trace for later loop iterations is based on the speculation that the

path and types will match what was observed during recording. These speculations are verified

using a number of checks (calledguards) along the trace. The guards are inserted wherever

there is a need to check for alternate typing, control flow paths or other runtime checks (as

described in the beginning of Section4.3). If these checks fail, the trace exits and reverts back

to interpreting the bytecode. Likewise, if the exit becomeshot, a branch trace is generated and

compiled to cover the new path. In this way, a trace tree is eventually formed which covers all

hot paths in the loop.

Figure 4.2 describes the major phases of JavaScript execution in TraceMonkey. These
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Figure 4.2: JavaScript tracing and type specialization in TraceMonkey. This state machine describes
how the trace monitor manages trace-based just-in-time compilation.

phases happen in thetrace monitorwhich coordinates the whole tracing process. Initially,

the program starts in the bytecode interpreter, and when theinterpreter reaches a loop edge,

the trace monitor is called to determine whether a new trace should be recorded or an existing

native trace could be executed for the loop. At the start of execution, since there are no com-

piled traces, the trace monitor simply profiles the number ofloop edge crossings and enters the

recording state after a loop becomes hot. During recording,the code along the trace is recorded

in a low-level intermediate representation (LIR) which encodes all the operations and types in

the trace. The LIR also contains guards to ensure that the control flow and types are identical to

what was observed during recording. If the recorder is unable to continue recording, for exam-

ple when faced witheval calls or reaching the trace length limits in a small-memory device,

it chooses to abort the recording. On such an abort, the monitor discards the recorder and and

returns to the monitoring state. The monitor also keeps track of how many times the recording

has failed for a trace starting at each program counter (PC) value. Therefore, if a particular PC

causes too many aborted recordings, the monitorblackliststhe PC and will not attempt to record
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it again.

The recording is finished when execution reaches the loop header or exits the loop. Sub-

sequently, the trace is compiled to the native code based on the types and control path of the

recorded trace. From then on, whenever the monitor interprets a backward jump to a PC with

a matching compiled trace (with the same type map), it entersnative execution mode. In this

mode, before calling the native trace, the monitor allocates a trace activation record containing

imported local and global variables, temporary stack space, and space for arguments to native

calls.

The monitor then calls the trace native code with the activation record as an argument. The

native code returns with a pointer to a structure containinginformation about how the trace

exited. Based on this information, the monitor restores interpreter state by copying back the

imported variables from the trace activation record. The monitor behaves differently afterwards,

based on the success of the trace return. If the trace exits unsuccessfully (e.g., due to having

garbage collection triggered, running out of native stack,or noticing other abnormal conditions),

the monitor returns to the monitoring state. However, if thetrace exits successfully (e.g., due

to running out of native code or hitting a branch condition for which no native code exists

yet), the monitor checks whether the side exit PC has become hot or not. If not, it just keeps

monitoring the interpretation to find other hot traces. If ithas become hot, the monitor moves

on to the recording state immediately, starting a new branchtrace from that point and patching

the side exit to jump directly to that branch. Using this approach, a single trace expands to a

multiple-exit trace which could span a fairly large portionof the frequent execution graph.

In practice, loops are typically entered with only a few different combinations of variable
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types. Therefore, a small number of traces per loop is sufficient to run a program efficiently.

TraceMonkey is able to achieve speedups of 2x to 20x on programs for which tracing is feasi-

ble [40].

4.3 ParaGuard: Concurrent Guard Execution

During LIR generation, the following categories of guards can be inserted into the trace.

Loop guards: They are inserted at the end of the loop and check for the loop termination

condition. In general, loop traces end with an unconditional branch to the top of the loop and

this guard ensures that the execution exits the loop when thecorrect condition is met.

Branch and case guards: When the LIR corresponding to a trace is generated, conditional

branches and case statements are first replaced with unconditional ones, taking the same path

that had been taken during trace recording. Guard instructions are then inserted to actually

check the branch/case conditions and abort the trace if a different path needs to be taken.

Condition mismatch guards: These guards are inserted to terminate trace execution in case

a condition, relied upon at recording time, no longer holds.In some of these situations, the

alternate path of execution is so rare or difficult to handle in the native code, that it is preferable

to have it interpreted rather than traced and compiled. One example is a negative array index

access which requires string-based property lookups, compared to a positive index access which

is merely a simple memory access. Type mismatch guards are also included in this category, and

they check if the actual type during native execution matches with what was observed during
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Figure 4.3: Breakdown of different types of guards in SunSpider, V8, Pixastic image processing and
JavaScript games.

recording.

Miscellaneous guards: There are several other categories of guards such as allocation failure,

execution timeout, variable overflow, and deep bail guards.Deep bail guards are triggered when

during the execution of a native C function call in the trace,a trace exit is triggered.

Figure4.3 shows the average relative ratio of different guard types inSunSpider and V8

suites, and our suite of image processing programs and JavaScript games. Miscellaneous guards

comprise the top five sections in each bar. As can be seen, branch guards are the most frequently

generated guards across all benchmarks. Condition mismatch, loop and overflow guards are

other common ones.

In theParaGuardtechnique (Figure4.4), the majority of guards are moved to another trace
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Figure 4.4: Offloading guard execution to the ParaGuard thread.

(ParaGuard trace) and are executed in a separate thread (ParaGuard thread), in parallel to the

main trace. ParaGuard trace code is generated along with themain trace and is invoked at

the same time during trace monitoring. The following subsections describe how we generate

ParaGuards and restore the correct state of the interpreterafter a ParaGuard is triggered and

the trace is aborted. In Section4.4, two optimizations are introduced to further improve the

performance of our technique.

4.3.1 ParaGuard Generation

The optimizations in TraceMonkey are performed in two pipelined phases over the trace.

During trace recording, immediately after the recorder emits an LIR instruction, the instruction

is sent through the forward optimization pipeline. This forward pass consists of several op-

timizations including common subexpression elimination and expression simplifications such

as constant folding. The second phase is a backward pass which goes through the whole trace

from bottom to top after trace recording is complete. The optimizations in this pass include dead

code elimination and dead data-stack and call-stack store elimination. After an LIR instruction
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passes the last stage in the optimization pipeline, the codegenerator emits the corresponding

machine instructions.

Traditional guards are generated and inserted in the LIR during the forward pass. How-

ever, since we want to move guard instructions along with theLIR instructions that they depend

on (their backward slice), we need to generate ParaGuards asan extra pipeline stage after all

optimizations in the backward pass. We call this stage,guard promotion. The goal of guard

promotion is to identify LIR instructions (guards and non-guards) that can be moved to the

ParaGuard trace. A non-guard instruction is moved to the ParaGuard trace if it is only used

for computing the inputs of a relocated guard. Furthermore,some instructions are marked for

duplication in the ParaGuard trace, since they need to be re-executed there to minimize com-

munication between the ParaGuard and main threads. During guard promotion, two groups of

instructions are constructed. The first category is “to-be-copied” which contains the instructions

duplicated on both the main and ParaGuard traces. The secondgroup, called “to-be-moved”,

consists of all instructions that are moved from the main trace to the ParaGuard trace by the end

of the guard promotion pass. This pass is performed in two steps:

Step 1:This is essentially a partial implementation of backward slicing. Starting from each

guard instruction in the trace, the compiler keeps track ofdefinstructions for the guard’s source

operands. Likewise, it tracksdefs of the source operands of thosedef instructions. This proce-

dure is continued recursively, traversingdef/usechains and markingdefs as “to-be-copied”. The

destinations of thesedef instructions are also kept in a list for use in the second step. To avoid

violating memory consistency between the main and ParaGuard thread, trackingdefs is stopped

after reaching a load instruction. Because if the load is copied or moved to the ParaGuard trace,
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the code needs to ensure that the load in the ParaGuard threadis not executed before the corre-

sponding store in the main thread. Enforcing this requires adding locking primitives, which can

cause high overheads.

Step 2:The goal of this step is to remove thedefs that are only used in the guard’s backward

slice from the main trace. First the candidate guard for moving is marked as “to-be-moved”.

As the trace is traversed backwards, alluses of the candidate guard’s source operands are re-

cursively kept in a “use-set”. When adefmarked as “to-be-copied” (during step 1) is reached,

its “use-set” is checked to see whether all its members are marked as “to-be-moved”. If so, it

is clear that thisdef is not going to be used in the main trace before the guard instruction, if all

“to-be-moved” instructions are moved to the ParaGuard trace. Furthermore, adef’s destination

liveness after the guard instruction should also be checked. In order to do that, the live set at

the guard instruction is used and if thedef’s destination operand is not a member of this live set,

thedef’s category can safely be changed from “to-be-copied” to “to-be-moved”. These live sets

are already generated prior to the guard promotion pass. To summarize, adefmust meet three

conditions to qualify for relocation to the ParaGuard trace:

1. It is marked as “to-be-copied”.

2. All its uses before the guard are marked as “to-be-moved”.

3. Its destination is not live after the guard instruction.

In addition to this analysis, guard promotion uses a heuristic that rejects promotion of the

guard instructions whose backward slice is either very small or should be mostly copied to the

ParaGuard trace rather than moved. Therefore, by the end of the guard promotion pass, some

guards still remain in the main trace.
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var myArray = new Array();

function init() {

var j = 0;

for (j = 0; j < 200; ++j)

myArray[j] = j*2;

}

Figure 4.5: Sample JavaScript source code.

At runtime, live-in values to the ParaGuard trace are copiedto a per-guard single-reader/single

writer buffer, similar to the buffers in [69], which is written by the main trace and read by the

ParaGuard trace. Initializing these per-guard buffers is done in the ParaGuard thread and is off

the critical path in the main trace. The initial sizes of these buffers are determined at compila-

tion time and in case more space is needed at runtime, they aredynamically expanded. During

native execution, ParaGuard trace can start or resume execution once these values are written in

the buffers by the main trace.

Figure4.5 shows an example JavaScript code snippet. TraceMonkey’s LIR for this code

can be seen in Figure4.6. Backward slices for each guard are highlighted with a different

gray shade. Instructions belonging to multiple backward slices are highlighted with the same

shade as the earliest observed guard in the trace. For instance, the backward slice for guard

instruction 30 consists of instructions 29, 24 and 2. Likewise, the backward slice for instruction

26 are instructions 25, 24 and 2, and for instruction 23 are instructions 22, 21, 10, 6 and 2.

Instructions marked with (*) are “to-be-copied” and the ones with (+) are “to-be-moved” after

performing the guard promotion algorithm on the guards. This algorithm decided not to move

the guard at instruction number 23, since it would have only saved two instructions (22 and 23)

on the main trace, while eitherjs Array set had to be re-executed in the ParaGuard trace or

its return value had to be copied to the ParaGuard trace buffer.
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label1:

(*)1 : cx = ldq state[16] // load context pointer

2 : ld1 = ld sp[-8] // load ’j’ from stack

(+)3 : ld2 = ld cx[0] // load context object

(+)4 : eq3 = eq ld2, 0 // check if context is valid

(+)5 : xf eq3 // side exit if it’s not

(*)6 : $globl0 =ldq state[848] // load myArray pointer from

// trace activation record

7 : stqi sp[0] = $globl0 // store myArray on stack

8 : sti sp[8] = ld1 // store j on the stack

9 : sti sp[24] = 2 // store 2 on the stack

(*)10: mul1 = mul ld1, 2 // multiply j by 2

(+)11: ov2 = ov mul1 // check overflow on mul op

(+)12: xt4: xt ov2 // side exit if mul overflows

(+)13: eq2 = eq mul1, 0 // check if mul1 is zero

(+)14: xt eq2 // side exit if so

15: sti sp[16] = mul1 // store mul result on stack

(*)16: ldq1 = ldq $globl0[8] // load myArray class

(+)17: qi1 = qiand ldq1, //

quad #FFFFFFFF:FFFFFFFC

(+)18: cl = quad #0:803D20 //

(+)19: arrayg = qeq qi1, cl // check if class is an array

(+)20: xf arrayg // side exit if not

21: returng=js Array set( // set myArray element

$globl0 ld1 mul1)

22: eq1 = eq returng, 0 // check js Array set return value

23: xt eq1 // side exit if failed

(*)24: add1 = add ld1, 1 // add 1 to j

(+)25: ov1 = ov add1 // check add for overflow

(+)26: xt ov1 // side exit if overflows

27: sti sp[-8] = add1 // store add result on stack

28: sti sp[8] = 200 // store 200 on stack

(*)29: lt1 = lt add1, 200 // check loop condition

(*)30: xf lt1 // exit trace if finished

31: sti sp[-8] = add1 // store add result on stack

(*)32: j -> label1 // jump back to the top

Figure 4.6: Original TraceMonkey’s Low-level IR for the source code in Figure4.5. Instructions marked
with (*) are to be copied and the ones with (+) are to be moved tothe ParaGuard trace.

Finally, Figures4.7and4.8show the modified main trace and the generated ParaGuard trace

after applying guard promotion respectively. The same grayshades have been applied to guard

instructions’ backward slices.
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label1:

1 : cx = ldq state[16] // (*) load context pointer

2 : ld1 = ld sp[-8] // load ‘‘j’’ from stack

PG1: st shared buf[0] = ld1 // store ld1 in the shared buff

6 : $globl0 =ldq state[848] // (*) load myArray pointer

// from trace activation record

7 : stqi sp[0] = $globl0 // store myArray on stack

8 : sti sp[8] = ld1 // store j on the stack

9 : sti sp[24] = 2 // store 2 on the stack

10 : mul1 = mul ld1, 2 // (*) multiply j by 2

15 : sti sp[16] = mul1 // store mul result on stack

16 : ldq1 = ldq $globl0[8] // (*) load myArray class

21 : returng=js Array set( // set myArray element

$globl0 ld1 mul1)

22 : eq1 = eq returng, 0 // check js Array set return val

23 : xt eq1 // side exit if failed

24 : add1 = add ld1, 1 // (*) add 1 to j

PG2: count = add count, 1 // inc snapshot counter

27 : sti sp[-8] = add1 // store add result on stack

28 : sti sp[8] = 200 // store 200 on stack

29 : lt1 = lt add1, 200 // (*) check loop condition

30 : xf lt1 // (*) exit trace if finished

PG3: eq2 = eq count, N // check snapshot condition

PG4: jt eq2 -> label2 // jump if snapshot needed

31 : sti sp[-8] = add1 // store add result on stack

32 : j -> label1 // (*) jump back to the top

label2:

barrier paraguard finish

take snapshot()

count = 0

j -> label1

Figure 4.7: Main Trace LIR after guard promotion.

PG* instructions highlighted in black are added to these tracesduring guard promotion.PG1

copiesld1 to the shared buffer between the main and ParaGuard traces.PG5 is the barrier

waiting for this value in the ParaGuard trace andPG6 is loading it from the shared buffer. As

can be seen, guard promotion has moved 13 out of 32 instructions in the original trace, while

only adding four instructions. InstructionsPG2, PG3, PG4, PG7, PG8, andPG9 are used for

taking the native state snapshot for interpreter state recovery as described in the next subsection.
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label1:

1’ : cx = ldq state[16] // (*) load context pointer

3 : ld2 = ld cx[0] // (+) load context object

4 : eq3 = eq ld2, 0 // (+) check if context is valid

5 : xf eq3 // (+) side exit if it’s not

6 : $globl0 =ldq state[848] // (*) load myArray pointer

PG5: barrier shared buf[0] // wait for of shared buf[0]

PG6: ld1 = ld shared buf[0] // load ld1 from shared buf[0]

10’ : mul1 = mul ld1, 2 // (*) multiply j by 2

11 : ov2 = ov mul1 // (+) check overflow on mul op

12 : xt4: xt ov2 // (+) side exit if mul overflows

13 : eq2 = eq mul1, 0 // (+) check if mul1 is zero

14 : xt eq2 // (+) side exit if so

16’: ldq1 = ldq $globl0[8] // (*) load myArray class

17 : qi1 = qiand ldq1, // (+)

quad #FFFFFFFF:FFFFFFFC

18 : cl = quad #0:803D20 // (+)

19 : arrayg = qeq qi1, cl // (+) check if class is array

20 : xf arrayg // (+) side exit if not

PG7: count = add count, 1 // inc snapshot counter

24’: add1 = add ld1, 1 // (*) add 1 to j

25 : ov1 = ov add1 // (+) check add for overflow

26 : xt ov1 // (+) side exit if overflows

29’: lt1 = lt add1, 200 // (*) check loop condition

30’: xf lt1 // (*) exit trace if finished

PG8: eq3 = eq count, N // check snapshot condition

PG9: jt eq3 -> label2 // jump if snapshot needed

32’: j -> label1 // (*) jump back to the top

label2:

bdcast paraguard finish

j -> label1

Figure 4.8: ParaGuard trace LIR after guard promotion.

4.3.2 Recovering Interpreter State using Selective Snapshots

As mentioned in Section4.2, before invoking a trace, the interpreter builds a trace activa-

tion record that consists of the temporary stack space, space for arguments to native calls, and

all imported global and local variables. These global and local values are copied from i the

interpreter state to the trace activation record and the trace is later called like a normal call-
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through-pointer in C. After a guard is triggered and the trace call returns, the interpreter state

is restored by copying the imported global and local variables from the trace activation record

back to the interpreter state.

When using ParaGuard, this process gets more complicated. Since the guards trigger asyn-

chronously, the main thread may have corrupted its state by executing instructions past the orig-

inal guard location and overwriting the correct state. Therefore, some form of checkpointing

support is needed for imported native variables, so that when a guard triggers in the ParaGuard

trace, execution can roll back to a previous snapshot of the correct execution state.

Traditional rollback support such as those in software transactional memory would incur a

high performance overhead and is unacceptable here. Thus, instead of making a backup copy

of memory locations on every memory write, we use abulk snapshot mechanism in which

the frequency of taking memory snapshots is reduced to everyN iterations. The exact value

of N is determined dynamically according to a runtime heuristicwhich is based on the loop’s

instruction count, total iteration count, and number of memory operations per iteration. When

the execution on the main trace reaches the loop guard and thetrip count is a multiple ofN,

it stops at a barrier, waiting for the ParaGuard thread to catch up. In most cases, there is no

waiting, because the ParaGuard trace is shorter than the main trace. Subsequently, the main

trace takes the state snapshot, after which it continues executing. Since TraceMonkey does not

perform tracing if the code path contains I/O accesses, the snapshot taking mechanism does not

have to deal with checkpointing I/O operations.

In order to further reduce the overhead of bulk snapshots, aselectivesnapshot is taken

which only includes critical memory locations. These locations are all trace live-outs including
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lt0 = lt ld1,min0 // compare with min index

jt -> updateMin // if smaller, replace min

gt0= gt ld1,max0 // compare with max index

jt -> updateMax // if larger, replace max

label0: ...

...

updateMin:

min0 = ld1

j -> label0

updateMax:

max0 = ld1

j -> label0 // resume execution

Figure 4.9: Extra code added afterPG7 in Figure4.8. label0 is inserted right before instruction24’.
updateMin andupdateMax code segments are inserted after thelabel2 code segment.

stack, heap and global variables, objects and data structures. Snapshots of scalar non-object

variables are taken by simply cloning their value, while live-out objects are deep-copied. The

deep-copying process is set up such that there are no duplicate copies of the same object in

the snapshot in case of cycles in the object graph or when two variables point to the same

object. For live-out arrays, an accumulative snapshot mechanism is employed where after an

array snapshot is taken before the loop, during each N iteration period at runtime, the minimum

and maximum accessed array indices are recorded. Subsequently, all elements between these

indices are stored into the array’s accumulative snapshot.Since all array indices are already

passed to the ParaGuard trace to be checked by the condition mismatch guards, keeping track

of these maximum and minimum values is performed inside the ParaGuard trace. Therefore,

they impose no extra overhead on the main trace. These valuesare later sent back to the main

trace at the time of periodic snapshot taking. Figure4.9 shows the extra code for this purpose

that needs to be added to Figure4.8.

TraceMonkey uses a mark-and-sweep garbage collector (GC) and has an API function to
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add variables to the GC’sroot setto prevent anything the root points to from getting collected.

Since there will be no references to the snapshots from within the JavaScript application, the

garbage collector needs to be asked explicitly not to touch them until the next snapshot is taken

by adding the snapshot entries to the root set. Furthermore,because heap objects are deep-

copied while taking snapshots, no object in the snapshots points back to the actual application

heap. Therefore, although as explained later, snapshots are recovered once a GC is triggered, in

theory, there would be no issue of the GC collecting objects in the heap that are pointed to by

the snapshot.

When a guard triggers inside the ParaGuard or the main trace,the runtime aborts both

threads by sending a signal, restores the previous snapshotand moves back to the interpreter.

The rollback operation itself does not add extra overhead compared to the original tracing tech-

nique, since it performs the same value forwarding that would have been done for updating the

interpreter’s state using the native trace data.

Another important issue is what happens when a GC is scheduled. In the original tracing

technique, the trace aborts when a GC is invoked. In ParaGuard, the latest correct snapshot is

restored after a GC call is triggered. The control is later handed off to the interpreter from the

execution location of the previous snapshot. Finally, in order to ensure execution safety in the

main trace and avoid catastrophic failures such as null pointer dereference in the native code,

signal handlers were defined to catch runtime exceptions, roll back execution to a previous

snapshot and switch to the interpretation mode.

In Figure 4.7, instructionsPG2, PG3 andPG4 are used to branch tolabel2 everyN it-

erations. Atlabel2, the main thread waits on a condition, set by the ParaGuard thread and
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marks the end of its execution. When the condition is set, themain trace starts to take the snap-

shot. Likewise,PG7, PG8, andPG9 are used to branch tolabel2 in the ParaGuard trace. After

branching, the ParaGuard thread broadcasts the barrier release condition to the main thread.

4.4 Optimizations on ParaGuard

In order to further improve the performance benefit of guard promotion, two additional

optimizations are introduced. As mentioned in Section4.3.2, before starting the snapshot tak-

ing process, the main thread needs to wait for the ParaGuard thread to catch up. Therefore,

the ParaGuard thread should be made as fast as possible. We introduce theguard branch ag-

gregationoptimization, during which, mid-trace guard conditions are aggregated into a single

variable, branches are removed, and at the end of eachN iterations, the single condition variable

is checked for any possible triggered guard. Furthermore, taking snapshots can impose a high

overhead on the runtime. To tackle this issue, we proposeprofile-based snapshot elimination,

in which, based on a profile of previous executions, the guards that are likely to trigger are kept

on the main trace, and snapshots are removed altogether fromthe program.

4.4.1 Guard Branch Aggregation

Taking a snapshot of the trace state at every N iterations gives us the opportunity to perform

another optimization, called guard branch aggregation, inthe ParaGuard trace. At the end of

each N iteration chunk, we only need to know if trace execution was successful or not and

knowing which guard actually triggered is not important. Regardless of the triggered guard,

execution is started from the previous snapshot. Therefore, guard branch executions can be
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label1:

1’ : cx = ldq state[16] // (*) load context pointer

3 : ld2 = ld cx[0] // (+) load context object

4 : ga flag &= eq ld2, 0 // (+) check if context is valid

PG5: barrier shared buf[0] // wait for of shared buf[0]

PG6: ld1 = ld shared buf[0] // load ld1 from the shared buf[0]

10’: mul1 = mul ld1, 2 // (*) multiply j by 2

11 : ga flag &= ov mul1 // (+) check overflow on mul op

13 : ga flag &= eq mul1, 0 // (+) check if mul1 is zero

16’: ldq1 = ldq $globl0[8] // (*) load myArray class

17 : qi1 = qiand ldq1, // (+)

quad #FFFFFFFF:FFFFFFFC

18 : cl = quad #0:803D20 // (+)

19 : ga flag &= qeq qi1, cl // (+) check if class is array

PG7: count = add count, 1 // inc snapshot counter

24’: add1 = add ld1, 1 // (*) add 1 to j

25 : ga flag &= ov add1 // (+) check add for overflow

29’: lt1 = lt add1, 200 // (*) check loop condition

30’: xf lt1 // (*) exit trace if finished

PG8: eq3 = eq count, N // check snapshot condition

PG9: jt eq3 -> label2 // jump if snapshot needed

32’: j -> label1 // (*) jump back to the top

label2:

GA1: xt ga flag //side exit if guard triggered

bdcast paraguard finish

j -> label1

Figure 4.10: ParaGuard Trace LIR after applying guard branch aggregation. GA1 is the final and only
guard check in the ParaGuard trace.

postponed until the end of each N iteration execution chunk in the ParaGuard trace. The two

final instructions for every guard are the guard condition generator and the branch itself. Guard

branch aggregation combines all guard conditions to a single variable which is later checked

by a final branch at the end of the trace after each N iteration period. After applying this

optimization, we have essentially converted a trace with a single input and multiple output

edges, to one with a single input and two output edges. One downside to using this approach is

that in case one of the middle guards fails, the trace has to execute until the end of the iteration

chunk. However, in type-stable loops this does not cause anyserious performance issues.
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Figure 4.10 shows the LIR before and after applying guard branch aggregation. As the

figure illustrates, five guard branches (instructions 5, 12,14, 20, and 26 in Figure4.8) can be

aggregated to just one branch,GA1.

4.4.2 Profile-based Snapshot Elimination

In some traces, the overhead of taking snapshots turns out tobe quite high, mainly due to

the high overhead of taking heap and array snapshots. In these traces, the number of unique

memory updates per loop is high and causes the snapshot taking mechanism to be inefficient.

This effect can be detected early on during trace execution by monitoring the snapshot tak-

ing overhead. When detected, the native trace is aborted andthe execution falls back to the

original tracing mode without guard promotion. After switching to normal tracing execution,

triggered guards are recorded and stored on the client. Since these operations are done inside

the JavaScript engine, the profile information can be storedon the client’s file system. During

the next execution of the same JavaScript program on the client, the guard promotion phase

only moves the guards that, according to the stored profile, have not triggered during previous

executions. After guard promotion, since no snapshots are taken, if a guard is triggered in the

ParaGuard trace, the execution aborts native execution, reverts back to interpretation from the

beginning of the loop and adds that guard to the profile for useduring future executions.

However, if a guard is triggered in the main trace, extra measures should be taken to enable

the interpreter to continue from the guard point rather thanthe beginning of the loop. During

guard promotion, the main execution thread stores the sequential order of all guards (both in

the main and ParaGuard traces) in a list referenced by the program counter. If a guard triggers
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in the main trace, it checks to see if all previous guards in the ParaGuard trace have passed

successfully. If so, it falls back to the interpreter and continues interpretation from the guard

point. Otherwise, it waits for the remaining guards in the ParaGuard trace to pass. Meanwhile,

if a guard triggers in the ParaGuard trace, the execution rolls back to the beginning of the loop

in the interpretation mode.

The ParaGuard execution model when applying profile-based snapshot elimination is that

the first time a JavaScript application is executed, profile is collected if taking snapshots seem

to be too costly. From then on, whenever the same applicationis run on the client, this profile

information can be used and updated. Therefore, the first execution of the application, in the

worst case, is almost as fast as the baseline tracing execution. In later executions, the application

will be enjoying the extra performance benefits of ParaGuard.

4.5 Experimental Evaluation

4.5.1 Methodology

We evaluated our technique on the TraceMonkey version distributed with Firefox 3.7a1pre

using four sets of benchmarks. In addition to the two popularbenchmark suites, SunSpider [13]

and Google V8 [3], we put together two other suites consisting of 12 image processing filters

and 5 games implemented in JavaScript. The image processingfilters were extracted from the

Pixastic JavaScript Image Processing Library [11]. This library contains 28 filters and effects,

out of which the 12 most compute-intensive filters were selected. In the JavaScript game suite,

four of the benchmarks (Collision demo [2], Thunder fighter [4], Super JS fighter [5], and

Invaders from earth [6]) are demos written using the gameQuery JavaScript game engine [1].
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The last benchmark is a PacMan game written in JavaScript [9]. All benchmarks were run 10

times, and the average execution time is reported.

In evaluating the profile-based snapshot elimination optimization, we used different input

sets for profiling and actual execution in all 4 benchmark suites. In SunSpider and V8, default

inputs are used for actual execution and smaller inputs weregenerated for the profile run. For

the image processing benchmarks, different images were used for profiling and execution. In

the gaming benchmarks, since the input to all of them involved some kind of random element

along with interactions with the user, the evaluation was more involved. In order to make the

performance comparisons feasible, the fact that the behavior of these programs are uniform

during the execution time was exploited. Therefore, they were executed for a fixed number of

events at the beginning of the benchmark without any user interaction involved. All random

events during the execution were recorded and fed back to theprogram for all runs (different

random events were recorded for profiling and actual runs). For instance, in thePacMan game,

the pathsghostswere taking were fixed and the application ran until aghosthit the PacMan

which stayed still at its original position. Likewise, in the Collision Demo benchmark, all

box locations, orientations and movement paths were fixed and the benchmark ran until 10

small boxes collided with the main box in the center. Similarmeasures were taken in the other

three programs as well.

SunSpider has 26 JavaScript programs. However, TraceMonkey does not support recursion,

theeval function, and regular expressionreplace operations, limiting the number of programs

that can be traced properly [40]. Consequently, we excluded the following six benchmarks from

our experiments:controlflow-recursive, access-binary-trees, date-format-to-fte,

103



0%

20%

40%

60%

80%

100%

3
d

-c
u

b
e

3
d

-m
o

rp
h

3
d

-r
a

y
tr

a
ce

a
cc

e
ss

-f
a

n
n

k
u

ch

a
cc

e
ss

-n
b

o
d

y

a
cc

e
ss

-n
si

e
v

e

b
it

o
p

s-
3

b
it

-b
it

s-
in

-b
y

te

b
it

o
p

s-
b

it
s-

in
-b

y
te

b
it

o
p

s-
b

it
w

is
e

-a
n

d

b
it

o
p

s-
n

si
e

v
e

-b
it

s

cr
y

p
to

-a
e

s

cr
y

p
to

-m
d

5

cr
y

p
to

-s
h

a
1

m
a

th
-c

o
rd

ic

m
a

th
-p

a
r 

a
l-

su
m

s

m
a

th
-s

p
e

ct
ra

l-
n

o
rm

st
ri

n
g

-b
a

se
6

4

st
ri

n
g

-f
a

st
a

st
ri

n
g

-t
a

g
cl

o
u

d

st
ri

n
g

-v
a

li
d

a
te

-i
n

p
u

t

C
ry

p
to

ri
ch

a
rd

s

b
le

n
d

-e
x

cl
u

si
o

n

b
le

n
d

-v
iv

id
li

g
h

t

b
lu

r

e
d

g
e

s2

e
d

g
e

s

e
m

b
o

ss

la
p

la
ce

m
o

sa
ic

p
o

in
 

ll
iz

e

p
o

st
e

ri
ze

se
p

ia

sh
a

rp
e

n

C
o

ll
is

io
n

 D
e

m
o

T
h

u
n

d
e

r 
F

ig
h

te
r

S
u

p
e

r 
JS

 F
ig

h
te

r

In
v

a
d

e
rs

 f
ro

m
 E

a
rt

h

P
a

c-
m

a
n

SunSpider V8 Pixas c Image Processing JavaScript

Games

R
a

 
o

 o
f 

p
ro

m
o

te
d

 t
o

 a
ll

 g
u

a
rd

s

Figure 4.11: Ratio of promoted guards to total number of guards.

date-format-xparb, string-unpack-code, andregexp-dna.

In the V8 suite, we excluded theRegExp benchmark due to its dependence on the regular

expression library inside the engine rather than tracing. In addition,DeltaBlue, RayTrace, and

EarleyBoyer perform poorly on the tracing JIT as only a small fraction of execution is spent

running natively, mainly due to the lack of support for recursion in TraceMonkey. Therefore,

we excluded them from our results as well. All experiments were performed on a system with

an Intel Core i7 processor running at 3.20 GHz, and 4 GBs of main memory.

4.5.2 Results

Figure4.11 presents the number of guards that passed the promotion heuristic and were

moved to the ParaGuard trace. These ratios are based on the dynamic LIR instruction count.

The heuristic basically rejects the promotion of all guard instructions whose backward slice
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Figure 4.12: Number of triggered guards in ParaGuard during every 100,000 instructions in the guard
promotion technique without applying the profile-based snapshot elimination. The y-axis is in logarith-
mic scale.

is either very small or should be mostly copied to the ParaGuard trace rather than moved. In

addition to loop guards, which are always present in the maintrace after guard promotion and

are counted as non-promoted guards, most guards that check the integrity of various function

return values (such as allocation functions) get rejected by the guard promotion heuristic. In

order to move these guards, guard promotion either has to copy the corresponding function

calls or move the return value directly using the buffers between the main and ParaGuard thread.

Both of these approaches are inefficient, since they add overhead while only saving the guard

comparison and branch on the main trace. However, many branch/case, overflow and mismatch

guards successfully pass the heuristic and are moved to the ParaGuard trace. As can be seen,

the ratio of moved guards varies between 25% and more than 80%.
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Figure4.12shows the number of triggered guards in the ParaGuard trace,per 100,000 pro-

gram instructions after applying guard promotion. This figure shows that many hot loops in

these applications are type-stable and have infrequent changes in control-flow. This is the rea-

son for effectiveness of the original tracing approach [40] and also the reason behind infrequent

roll-backs from snapshots in our method. The majority of these triggered guards are branch

guards after which ParaGuard rolls back the state and continues recording other paths of the

branch in the interpretation mode.

We originally applied guard branch aggregation to the ParaGuard trace. However, since

the ParaGuard trace is shorter than the main trace in all benchmarks, in practice, applying this

optimization proved ineffective on the overall performance. Furthermore, due to the infrequent

number of side exits in these benchmarks (Figure4.12), the drawback from identifying guard

failures after N iterations rather than at each individual guard was negligible. Therefore, we

present the performance results without applying guard branch aggregation. The effect of this

optimization on ParaGuard thread’s CPU utilization is discussed later in this section.

Figure 4.13 shows the results of applying ParaGuard to the four benchmark suites on 2

processors, where one of them is running the main thread and the other one is running the

ParaGuard thread. The left bars in this figure represent the speedup gained compared to sequen-

tial trace-based execution after applying guard promotion. The right bars show the resulting

speedup after performing profile-based elimination of state snapshots.

Applying guard promotion by itself leads to an average slowdown of 12.2%, 0.1%, 14.7%

and 24.2% on SunSpider, V8, image processing and gaming benchmarks, respectively, on two

processors compared to the original tracing on one processor. The main reason for the slow-
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Figure 4.13: ParaGuard speedup on 2 processors compared to the baseline tracing. The left bars show
the speedup after guard promotion and the right bars show thespeedup after applying the profile-based
snapshot elimination optimization.

downs in these benchmarks is the large overhead of taking snapshots due to high number of

individual array and heap accesses. In some of the benchmarks (16 out of 39 programs), where

variable accesses are mostly scalar or multiple iterationsupdate the same array or heap elements,

the overhead of taking snapshots is much less and an average speedup of 8% is achieved.

After performing the profile-based snapshot elimination, all triggered guards during pre-

vious executions are kept in the main trace. The distribution of the number of these guards

is similar to Figure4.12. As can be seen in Figure4.13, applying this optimization improves

the performance of SunSpider, V8, image processing and gamebenchmarks to 11.2%, 21.4%,
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Figure 4.14: Utilization of the ParaGuard thread relative to the main thread before and after applying
guard branch aggregation optimization.

18.3% and 19.8% over the baseline tracing, respectively. This improvement is mainly caused

by the elimination of the snapshot taking process, and sincethe guard behaviors are quite stable

with different inputs, the number of guards triggered in theParaGuard trace after applying this

optimization is close to zero. The main source of overhead inthe execution is the synchroniza-

tion between the main and the ParaGuard traces.

The highest variation in the profile-based promotion results exists in the SunSpider bench-

mark suite. This is mainly due to various ratios of promoted guards and also the non-uniform

benefit from original tracing in these benchmarks. For instance,crypto-md5 spends less than

20% of its total execution time in the native mode, and thereby, total performance benefit of our

technique is around 1% in this benchmark. Overall, across the 39 benchmarks we studied, the

ParaGuard technique achieves an average of 15% speedup overthe original tracing technique.
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Figure4.14shows the CPU utilization of the ParaGuard thread relative to the main thread

with and without applying the guard branch aggregation optimization. The average utilization

across all our benchmarks is 55% and guard branch optimization is able to reduce it to an

average of 51%. This level of utilization shows a potential for using one processor for running

ParaGuard threads in two JavaScript execution instances atthe same time with each ParaGuard

thread exploiting approximately half of the processing power in the extra core. Therefore, for

instance, using 3 processors, two JavaScript programs can be accelerated with ParaGuard.

4.6 Related Work

The idea of running traces for specializing hot code regionswas proposed in the Dynamo

binary rewriting system [22]. Dynamo utilizes run-time information to find hot patches and

optimizes machine code accordingly. It also uses trace linking to connect traces together if

possible. The idea of trace trees (extending the trace to incorporate new branches rather than

forming new traces) used in [30, 40], had been proposed by Gal et al. [41] for Java which is

a statically typed language. Our work is based on Mozilla’s TraceMonkey, the trace-based JIT

compiler described in [40] and released as a part of recent versions of Firefox [7]. TraceMonkey

is able to achieve more than 10x speedup on some programs in the SunSpider suite compared to

previous versions of SpiderMonkey on Firefox (which is an interpreter-only JavaScript engine).

All this performance is achieved by intelligent type specialization and the tracing mechanism.

Chang et al. [30] proposed a trace-based JIT compiler implemented on top of Adobe’s Tamarin-

Central (Tamarin-Tracing) which is their VM for implementing ActionScript and can execute

JavaScript programs without any modifications. They also investigate using simpler opcodes
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in their IR and achieve up to 116% performance improvement over the non-traced code on

SunSpider benchmarks. As we showed, by dynamically decomposing execution to main and

ParaGuard traces and using extra resources in multicore systems, additional speedups can be

achieved on top of tracing techniques on multicore systems.A recent proposal [43] presents

a concurrent trace-based JIT in which the compilation from LIR to native code is performed

as a background thread. This technique can achieve an average of 6% and a maximum of

25% speedup on the SunSpider benchmark suite. We chose a different approach and actually

tried to parallelize the execution by decoupling and parallel execution of runtime checks rather

than performing the compilation in parallel with the monitoring/recording. However, these two

approaches are orthogonal and can be applied simultaneously.

SlipStream processors [67] speculate on certain code path and executes a pruned version of

the program itself in parallel with the original execution.In SlipStream, the speculation support

is provided by hardware. In [53], the authors introduce a compilation framework for transforma-

tion of the program code to a TLS compatible version and perform thread level speculation. The

Mitosis compiler [68] proposes a general framework to extract speculative threads as well as

pre-computation slices (p-slices) that allow speculativethreads to start earlier. MSSP [94] trans-

forms code into master and slave threads to expose speculative parallelism. It creates a master

thread that executes an approximate version of the program containing a frequently executed

path, and slave threads that run to check results. All of these speculative multi-threading works

parallelize the main computation for purposes of prefetching or exploiting computational par-

allelism, where as in ParaGuard, we perform domain-specificruntime checks in parallel with

the main computation in a dynamic language. Furthermore, incontrast to these works, we
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propose an all-software solution which works on commodity hardware. The LRPD test [72]

performs runtime array tracking by using shadow arrays to follow exactly what array elements

are touched in each thread. However, in our array snapshot optimization, we only keep track of

range of array accesses.

4.7 Summary

As the web becomes the ubiquitous platform for execution of more complicated applica-

tions, a growing amount of computation is being handed-off to the client to minimize network

traffic and improve user experience. The flexibility and easeof prototyping in the JavaScript

language has made it the language of choice for most client-side web applications. However,

as JavaScript applications are becoming larger and more computation intensive, there is more

need for building high performance JavaScript engines in the client’s browser. Trace-based

JIT compilation is one approach towards tackling this issue. In this work, we proposed Para-

Guard, which decouples execution from the runtime checks ina trace-based JavaScript engine

and accelerates the execution by utilizing extra resourceson multicore systems. We also intro-

duced optimizations to further improve the performance. Weshowed that ParaGuard obtains

an average of 15% speedup on two processors across 2 industry-standard benchmark suites,

SpiderMonkey and V8, and two sets of JavaScript applications from the image processing and

gaming domains.
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CHAPTER 5

Summary and Conclusion

As multicore systems become the dominant mainstream computing platform, one of the

most difficult challenges the industry faces is software. Applications with large amounts of

explicit thread-level parallelism naturally scale performance with the number of cores, but se-

quential applications realize little to no gains with additional cores.

In this dissertation, we investigate solutions to this problem through automatic speculative

parallelization that frees the programmer from the difficult task of parallel programming and of-

fers hope to scale the performance for the vast amount of legacy sequential software. We looked

into the automatic parallelization problem in two sequential application domains of C/C++ pro-

grams and client-side web applications written in JavaScript. Due to the different language

properties and deployment methods, each application domain poses different set of challenges

that needed to be tackled. There have been previous proposals on speculative parallelization of

C/C++ and Java applications. However, the key distinctive goal in our work is realization of

parallelism on commodity hardware without any hardware speculation support for C/C++ and

JavaScript. Furthermore, this dissertation is the first work proposing automatic parallelization

of JavaScript web applications.
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In Chapter2, we presented the required compiler technology along with aspeculative run-

time system,STMlite, for automatic parallelization of sequential C/C++ applications. By cen-

tralizing the commit stage in STMlite, making use of software bloom filter based signatures of

read and written addresses, and lifting some of the general STM requirements such as strong

atomicity while retaining correctness, we were able to reduce much of the overhead involved in

conventional software transactional memory systems.

As many software and services are pushed to the web front, andweb applications are becom-

ing more complex, a growing portion of computation is shifted to the client side by developers

to improve responsiveness in these applications and reducethe load on the network. Therefore,

there is an increasing demand for high performance client-side execution, often implemented

in JavaScript. This has led to many recent efforts to improvethe performance of JavaScript en-

gines in web browsers. Furthermore, considering the wide-spread deployment of multicores in

today’s computing systems, exploiting parallelism in these applications is a promising approach

to meet their performance requirements. However, JavaScript has traditionally been treated as

a sequential language with no support for multithreading, limiting its potential to make use of

the extra computing power in multicore systems. In this work, to exploit hardware concurrency

while retaining traditional sequential programming model, we introduced automatic runtime

parallelization methods for JavaScript applications on the client’s browser.

In Chapter3, we proposedParaScript, a runtime scheme for identifying parallelizable loops,

generating the parallel code on-the-fly, and speculativelyexecuting it. The ultra low-cost spec-

ulation engine consists of a checkpointing scheme and a runtime dependence detection mech-

anism. It is shown that by employing these schemes, JavaScript applications achieve consider-
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able performance improvements over sequential execution in current browsers using the extra

resources on commodity multicore systems.

The last part of this dissertation in Chapter4, focuses on optimizing trace-based compilation

for JavaScript programs. Trace-based just-in-time compilation techniques have been proposed

to address the performance bottleneck in JavaScript applications by compiling hot execution

traces down to the binary code. During compilation, runtimechecks (called guards) are inserted

to the binary to abort execution in case a condition not predicted at binary code generation time

happens. We introduceParaGuardto off-load these checks in tracing compilers to another

thread, while speculatively executing the main trace. If a check fails, ParaGuard aborts the

native trace execution and reverts back to interpreting theJavaScript bytecode.

This dissertation have introduced many novel techniques for static and dynamic paralleliza-

tion of sequential C/C++ and JavaScript programs on commodity hardware. These techniques

prove useful in extracting parallelism from legacy applications, while paving the way to ex-

plore parallelism potential in emerging application domains such as web applications, where

parallelism have rarely been investigated before.
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