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Abstract

Managing commodity price uncertainty is an integral part of many firms’ business

process. Firms adopt a variety of operational strategies to manage this uncertainty,

subject to operational constraints such as finite procurement and processing capaci-

ties. The availability of financial derivative instruments provide firms with additional

options to manage the risk from commodity operations. This dissertation explores

different aspects of managing the price uncertainty for a commodity processing firm

in a series of four related essays.

The first three essays consider the integrated procurement, processing and trade

decisions for a firm operating a single location with procurement and processing

capacity constraints under risk-neutral and risk-averse objective functions. These

essays focus on deriving the optimal policy structure and developing computation-

ally tractable heuristics where required. The first essay considers a risk-neutral firm

maximizing expected profits from operations over a multi-period horizon and derives

the optimal operational policy for the firm. The second essay deals with the issue of

time-consistent decision making in risk-averse settings while the third essay looks at

the value of operational hedging, such as excess procurement or processing capacity.

The fourth essay extends the single location problem to a network setting and

considers a ‘star’ network configuration. While solving the network problem optimally

is hard, this essay proposes heuristics based on insights from the optimal policy

structure for the single node problem to address the computational complexities.

In addition, this essay also proposes a myopic heuristic to manage the commodity

procurement and processing decisions in a network. Numerical studies indicate that
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these heuristics provide a significant improvement in expected profits, compared to

heuristics used in practice.
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Chapter 1

Introduction

Many firms use commodities as inputs, while for other firms commodities are an out-

put of their production process. In some cases, firms deal with commodities as both

inputs to and outputs of their production process. In general, the commodity prices

are quite volatile and fluctuate over time, reflecting the dynamics of the underly-

ing demand and supply for the commodities (Figure 1.1 provides an example of the

price uncertainty that Soybean processors face). As a result, firms dealing with such

commodities use a variety of strategies to manage the commodity price uncertainty.

Consider the example of the ITC Group, one of India’s largest private sector

companies, whose operations provide the original motivation for this research. The

International Business Division (IBD) of ITC, started in 1990, exports agricultural

commodities such as soybean meal, rice, wheat and wheat products, lentils, shrimp,

fruit pulps, and coffee. Increased competition, along with an inefficient farm-to-

market supply chain made it imperative for ITC-IBD to re-engineer the procurement

process for commodities in rural India. Specifically, in the year 2000 ITC-IBD (here-

after referred to as ITC) embarked on the e-Choupal initiative to deploy information

and communication technology (ICT) to reengineer the procurement of commodities

from rural India. By purchasing directly from the farmers, and not just the local spot

markets, ITC significantly improved the efficiency of the channel and created value for

both the farmer and itself. The initiative has been hailed as an outstanding example
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Figure 1.1: Soybean and Soymeal Prices

of the use of ICT by a private enterprise to streamline supply chains, alleviate poverty

and bring about social transformation. The e-Choupal platform has been extremely

successful for ITC and has been well documented by Prahalad (2005) and Anupindi

and Sivakumar (2006).

The e-Choupal platform for commodity procurement consists of a hub-and-spoke

network where spokes correspond to village level ICT kiosks (called e-Choupals) con-

sisting of a personal computer with internet access and the hubs are procurement

centers or processing plants where direct deliveries occur (called the direct-channel).

ITC creates a one-day forward market for procurement of commodities by announc-

ing an offered price at each of its hubs. Typically, the forward price offered for the
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next period is the realized spot price in the current period. Farmers can access the

e-Choupal kiosks for various information including ITC’s prices, but have the option

to sell their produce in the local spot market or directly to ITC at their hub location.

One of the benefits to the farmers of selling directly to ITC is that the farmers are

guaranteed same day service, which is not usually the case when they sell in the spot

market. In order to satisfy the same day service guarantee, ITC places an upper limit

on the total quantity that it will purchase through the direct channel in any period.

In addition to the direct channel, ITC can also procure in the local spot market, if

necessary. By 2007, there were close to 6000 e-Choupals and 140 procurement hubs

in the network, with soybean being one of the largest commodities procured by ITC

using the e-Choupal network. A schematic of the eChoupal network for soybean is

shown in Figure 1.2.

Meal & Oil
Processing

Plant

Hub

Hub

e-Choupals

Spot Mkt

Spot Mkt (Forward)

Trade Bean

(Off-season)
Trade Bean

(Off-season)

Figure 1.2: ITC e-Choupal Network.

Close to seventy percent of the soybean procured is processed at several processing

plants; the rest is traded. Beans are processed to produce soybean oil and soymeal,

both of which are traded through various channels. Managing this network requires

decisions regarding procurement and trading of commodities to maximize profits and

mitigate the losses from adverse commodity price movements. Procurement decisions,

which include price and quantity decisions for each hub, need to be integrated with the

sales decision in terms of the form of output commodity and channels to trade in; that
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is, for the soybean procured, ITC needs to make decisions regarding whether to trade

the bean or process it and trade the oil and soymeal. Trade options include trading

in open markets and with other processors. While operational decisions help manage

some of the risk from the underlying commodity price uncertainty, the availability of

derivative instruments on various commodities provide additional options to manage

the risk effectively. Thus, ITC in addition to physical procurement, processing and

trade decisions, needs to make financial hedging decisions to manage the risk in its

commodity operations more effectively.

While ITC’s operations provide the basic context for research, the problems con-

sidered in this dissertation are quite generic and applicable for firms in the commodi-

ties processing business. Profits for such firms are affected by both the input and

output commodity prices in international exchanges and local spot markets. Ad-

ditionally, inputs for processing such as agricultural commodities, metals etc. are

typically procured from many different locations. In this context, the procurement,

transshipment, processing and trade (of commodities) decisions for the firm are inter-

linked and affect the overall profits of the firm. Also, the integration of operational

and financial trading decisions are essential for effective risk management and avoid-

ing the costs of financial distress.

This dissertation consists of four essays that explore different aspects of man-

aging price uncertainty for a commodity processing firm. This introduction briefly

describes the problem considered in each essay. Section 1.1 introduces the first essay:

the integrated procurement, processing and trade decisions for a commodity process-

ing firm facing operational capacity constraints and interested in maximizing total

expected profits. Section 1.2 introduces the second essay which considers risk aver-

sion in a multi-period context and develops optimal operational and financial hedging

decisions for a commodity processor. Section 1.4 introduces the problem for a firm

operating a network of procurement and processing locations.
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1.1. Essay 1: “Integrated Optimization of Procurement Processing and
Trade of Commodities”

This essay considers a risk-neutral commodity processing firm, operating a single

facility with procurement and processing capacity constraints. The firm procures an

input commodity and converts the input into a processed product (‘output’) using

the processing capacity. The firm earns revenues by selling the output using forward

contracts and also by trading the input with other processors at the end of the horizon.

We model the multi-period problem for the expected profit maximizing firm using

a stochastic dynamic program and characterize the optimal procurement, processing

and trade policy structure. We show that the procurement and processing decisions

are governed by two price and inventory dependent thresholds, while the output

commodity sales commitment is akin to the exercise of a compound exchange option.

Using commodity market data for the soybean complex—soybean, soybean meal

and soybean oil—we conduct numerical experiments to compare the performance

of the optimal policy with that of heuristics used in practice and option valuation

literature.

1.2. Essay 2: “Dynamic Risk Management of Commodity Operations:
Model and Analysis”

While Essay 1 considers a risk-neutral firm, many firms in the commodities busi-

ness exhibit risk aversion and use a variety of operational and financial strategies to

manage risk from commodity price uncertainty. In this essay, we consider a risk-averse

commodity processing firm concerned about managing the risk over a multi-period

planning horizon. The firm procures an input commodity and processes it to produce

an output commodity. The output commodity is sold using forward contracts, while

the input itself is traded at the end of the horizon. The firm also trades financial

derivative instruments to manage the commodity price risk.

In a multi-period setting, efficient risk management requires controlling risk over
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the entire horizon, and not just in the total payoffs at the end of the planning horizon.

We propose a time-consistent dynamic risk measure, DCVaR, based on the conditional

value at risk (CVaR) to model the firm’s risk aversion over the planning horizon. We

obtain the optimal operational—procurement, processing and trade—and financial

hedging policies by formulating the risk management problem as a stochastic dy-

namic program. We show that the optimal operational policies are governed by price

dependent inventory thresholds which, conditional on optimal financial hedging deci-

sions, can be calculated without knowing the details of the financial hedging decisions

themselves.

We develop tractable heuristics to overcome the computational complexity in de-

termining the optimal policy parameters and provide numerical studies to illustrate

the performance of the heuristics. Using numerical experiments, we also show that

a time-consistent risk measure (such as the DCVaR proposed here) provides a better

mean-risk tradeoff for total profits as well as better risk control over the entire horizon,

compared to optimizing static risk measures such as CVaR on terminal wealth.

1.3. Essay 3: “Commodity Operations in Partially Complete Markets”

Essay 2 considers the problem of a risk-averse commodity processing firm and

shows the benefit of using time-consistent risk measures to model risk aversion in

a multi-period setting. While it considers trading financial instruments to manage

the commodity price risk, it does not provide specific details of the structure of the

financial trading decisions themselves. Further, the analysis in Essay 2 does not

explore in depth the benefits of operation hedging; e.g., the benefit of having excess

procurement or processing capacity to manage price uncertainty.

In this essay, we analyze the structure of the optimal financial trading policy

and explore the benefits from operational hedging, in addition to financial hedging,

for a commodity processing firm. We use the partially complete markets framework

to model the underlying uncertainty in commodity prices and distinguish between
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financial market and firm specific (or private) factors. Extending the time-consistent

risk measure DCVaR to this framework, we characterize the optimal financial trading

policy explicitly as a portfolio which replicates the CVaR of cashflows measured over

states of private uncertainty for each realization of the market uncertainty. Contingent

on the optimal financial trading policy, we show that the optimal commitment policy

for selling the output is identical to the risk-neutral commitment policy and that the

procurement and processing decisions for the input are governed by price and horizon

dependent inventory thresholds.

Under the mild restriction that the worst case expected salvage value for the

input is no more than the benefit from processing and selling the output, we show

that excess processing capacity (relative to procurement capacity) does not provide

any additional value. On the other hand, excess procurement capacity serves as

an operational hedge to manage the input commodity price uncertainty. We also

characterize the value of this operational hedge analytically.

1.4. Essay 4: “Commodity Operations in a Network Environment: Model,
Analysis and Heuristics”

Many commodities, e.g., corn, crude oil, are produced in different geographical

areas and transported to multiple locations. Firms using these commodities as inputs

generally procure them from multiple locations for a variety of reasons, including

price differentials across locations and capacity constraints. Further, firms usually

have processing capacities at fixed locations, requiring transshipment of the processed

product to various locations for delivery. Profits for such firms are affected by the

network characteristics such as transshipment costs, capacities at various locations

and transportation costs. In the fourth essay, we consider the integrated commodity

operations for a firm managing a network. We explore how the results for the single

node problem can be extended to a network setting and study the impact of the

network characteristics on the optimal policies.
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We consider a risk-neutral firm operating a star network with processing capacity

at a central location and procurement over multiple locations. Our analysis of the star

network, which has a simple structure, shows that characterizing and computing the

optimal policies is hard because of high dimensionality of the state space. However,

for a special case when the transshipment costs are symmetric and the input salvage

values across different locations are sufficiently close, we find that the network problem

reduces to a single node problem with piecewise linear and convex cost of procurement.

Based on this similarity, we propose a heuristic, termed the ‘Equivalent Single Node’

(ESN) heuristic, for solving the star network problem by approximating it as an

equivalent single node problem. We also propose a myopic heuristic for solving the

network problem; this is termed the ‘Network Full Commitment’ (NFC) heuristic and

is based on a heuristic used in practice. We use the technique of information relaxation

and dual penalties for stochastic dynamic programs to compute an upper bound on

the optimal expected profits. Using commodity market data for the soybean complex,

we evaluate the performance of these heuristics through numerical experiments.

8



Chapter 2

Integrated Optimization of Procurement, Processing and
Trade of Commodities

2.1. Introduction

Profits for commodity processing firms are affected by changes in both input and

output commodity prices. Typically, such firms have little influence or control over the

prices of these commodities which are driven by global supply and demand shocks and

determined by trading activities on global exchanges and spot markets. Under these

conditions, it is important for the processing firms to coordinate their procurement,

processing and trade decisions in order to maximize the total value from their opera-

tions. Further, operational constraints such as limited procurement and/or processing

capacities impose additional complications, making the various decisions interdepen-

dent and the optimization of such operations a non-trivial exercise. While different

aspects of the problem—procurement, processing and trade—have been studied ear-

lier, the integrated problem itself, even for operations at a single node, has not received

much attention in the literature. In practice, firms consider the interdependencies be-

tween procurement, processing and trade decisions (see Plato, 2001, for instance), but

do so in a myopic fashion and ignore the dynamic nature of decisions.

In this essay, we consider a firm that procures an input commodity with the

marginal cost of procurement equal to the spot price of the commodity. The firm

earns revenues by processing the input commodity and committing to sell the pro-

cessed outputs using forward contracts in every period. In addition, the firm can also
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trade the input inventory with other processors at the end of the horizon. We model

the firm’s multi-period optimization problem as a stochastic dynamic program, with

the procurement and processing decisions in each period subject to capacity con-

straints. We provide a precise, analytical description of the optimal policy structure.

We investigate the benefits of using a forward looking, optimization based policy

relative to myopic spread-option-based policies that are used in practice. We do

this by conducting numerical studies using commodity markets data for the soybean

complex—soybean, soybean meal and soybean oil. To summarize our results:

1. We show that the optimal value function is separable in the input and output

commodity inventories, and piecewise linear and concave in the inventory levels.

We derive recursive expressions to quantify the marginal value of the input and

output commodity inventories.

2. We find that it is optimal for the firm to postpone the output trade against a

forward contract with given maturity to the last possible period; i.e., period just

before the maturity of the forward contract and the optimal output commitment

policy is similar to the exercise of a compound exchange option.

3. We characterize the optimal procurement and processing policy and find that

the optimal decisions are governed by procure up to and process down to in-

ventory thresholds, with these thresholds dependent on the realized prices and

remaining horizon length.

4. Using commodity markets data for the soybean complex, we find that a myopic

heuristic used in practice performs almost as well as the optimization based

dynamic programming policy under normal operating conditions. However, the

dynamic programming policy provides significant benefits under conditions of

tight processing capacities and high price volatilities.

5. The complexity in computing the dynamic programming policy increases rapidly

10



as the number of output products increases. We approximate multiple output

commodities as a single composite output to address this computational com-

plexity, and find that this approximation is near-optimal.

The rest of the chapter is organized as follows. In the next section, we review

literature relevant to this research and position our work. In section 2.3, we solve

the integrated procurement, processing and trade decisions for a risk-neutral firm

and obtain expressions for the marginal value of inventory. Section 2.3.1 presents the

analysis for the case when a single output commodity is produced upon processing

the input, while section 2.3.2 generalizes the result to a situation where multiple

products are produced upon processing. Section 2.4 provides numerical illustrations

using commodity market data for the soybean complex and describes the computation

of the optimal policy when all commodity prices are driven by single factor mean

reverting processes. The computational policy described here can be extended to the

case of multi-factor commodity process models using heuristics which builds on the

works of Brown et al. (2010) and Lai et al. (2010a). Details of the heuristic and

computational results are given in section 2.5. Section 2.6 concludes with directions

for future research.

2.2. Literature Review

The problem studied in this paper is related to the warehouse management prob-

lem originally studied by Bellman (1956) and Dreyfus (1957). The warehouse man-

agement problem deals with determining the optimal trading policy for a commodity

with constraints on the total inventory that can be stored. Charnes et al. (1966) show

that the value function is linear in the starting inventory level and derive expressions

for the marginal value of inventory. These papers do not consider constraints on the

procurement and sales; i.e., it is assumed that any desired quantity of the commodity

can be procured or sold in a period. Secomandi (2010b) considers a similar prob-

lem in the context of managing a natural gas storage asset. In addition to storage

11



constraints, the paper also incorporates injection and withdrawal constraints and es-

tablishes the optimality of a price dependent double base-stock policy. In contrast

to the above papers, we consider multiple commodities and, in addition to the pro-

curement and trading decisions, incorporate a processing decision that irreversibly

transforms input to outputs. Moreover, unlike a single commodity procurement and

trading operation where the procure up to threshold is always less than or equal to

the process down to threshold, the procure up to level can be higher than the process

down to level in our model.

The methodology used in the current paper relies on characterizing the value

function as a piecewise linear function, with changes in slope at integral multiples of

the greatest common divisor of the procurement and processing capacities. While a

similar approach has been used by Secomandi (2010b) and Nascimento and Powell

(2009), they do so under the assumption of discrete price evolutions. Nascimento and

Powell (2009) use the discrete price evolution assumption to prove the convergence

of their approximate dynamic program (ADP), while Secomandi (2010b) uses it for

computational purposes using lattices. While we use price lattices for computational

studies, the characterization of the value function itself, i.e., the piecewise linear

property and the marginal values of inventories, is not dependent on the assumption

that prices are discretely distributed. In contrast to Secomandi (2010b), where the

procure up to threshold is always less than or equal to the sell down to threshold, the

procure up to levels can be higher than the process down to threshold in our context,

representing arbitrage opportunities across the different commodities; i.e., the value

from selling the output is higher than the cost of the input plus the processing cost.

In comparison to Nascimento and Powell (2009), who characterize the marginal value

of inventory of a single commodity, we model processing decisions and characterize

the marginal value of inventory of both input and output commodities.

The decision making framework considered in this paper is related to the valuation
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of real options and exotic commodity options. The concept of spread options is closely

related to the problem considered here, especially the processing decision. Spread op-

tions are call or put options on the spread between the prices of two commodities

and arise naturally in the context of commodity industries. Geman (2005) provides a

discussion of different spread options in the commodity industries; e.g., crush spreads

for agricultural commodities (soybean, for instance), crack spread (crude oil and re-

fined petroleum products), location spreads (natural gas prices at different locations),

calendar spreads (difference in natural gas forward prices for different maturities).

The existing literature has mainly focused on valuation of spread options with a

given maturity; i.e., options of the European type with a single exercise date. Sec-

omandi (2010a) uses location spread options on natural gas prices to value pipeline

capacity. While the pipeline capacity places an upper limit on the total amount of

natural gas that can be shipped, the unit spread option value is the same for each

unit of the pipeline capacity and is not affected by the total capacity available. In a

closely related context, Plato (2001) examines the decision of US soybean processors

to commit processing capacity to crush soybeans and produce soybean meal and oil.

The decision to commit processing capacity available on different future dates is mod-

eled as the exercise of a simple spread option on the gross processing margin on that

date, i.e., the spread between the futures price of soybean meal and oil and soybean,

with the exercise price being equal to the variable cost of processing. Deng et al.

(2001) use spark spread options on the spread between electricity and generating fuel

prices to value electricity generation assets. In these papers, no inventory is carried

over time and the exercise of spread options maturing on different dates is evaluated

independent of each other. In our current paper, unlike the aforementioned papers,

decisions across periods are linked through the storage of input inventory and opera-

tional capacity constraints, making the processing decision considered here different

from the exercise of a simple spread option. In contrast to Secomandi (2010a), we also
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find that the marginal value of input inventory is affected by the capacity constraints.

Tseng and Barz (2002) and Tseng and Lin (2007) extend Deng et al. (2001) to

include operational constraints such as minimum up/downtime, startup/shutdown

times, ramp constraints etc. in the electricity generation unit commitment decisions.

The main focus of both these papers is to provide a computational framework for

valuing the generation assets. We focus on deriving structural results that are useful

for decision making and, in the process, derive analytical expressions for the marginal

value of input and output commodity inventories. Similar to Tseng and Barz (2002)

and Tseng and Lin (2007), our computational study also uses a lattice framework to

represent the joint evolution of the multiple commodity prices.

The capacitated procurement of the input commodity over a horizon has simi-

larities to the exercise of swing options (Jaillet et al., 2004; Keppo, 2004). A swing

option provides the option holder the flexibility to procure more or less than a baseline

amount, at a fixed price and is subject to volume constraints. While we do consider

capacitated procurement in the current paper, there is no baseline quantity or price

around which the procurement quantity can vary. Further, unlike the swing options

pricing literature which typically considers only a single commodity, the procurement

decisions in our problem are driven not only by the price of the commodity being

procured, but also the price of the output that is produced upon processing.

The single node problem considered here has similarities to the firm level produc-

tion and inventory control problem studied in Wu and Chen (2010) for a storable

input-output commodity pair. While Wu and Chen (2010) consider the optimal pro-

curement and sales policy for the individual firm, their main focus is analysis of the

propagation of demand and supply shocks across production stages and the price-

inventory relationship across input-output commodities using a rational expectations

equilibrium model. Martınez-de Albéniz and Simón (2010) consider a related prob-

lem of commodity traders who take advantage of price spreads across locations, and
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model the impact of the trading decisions on price evolution at the different locations.

Routledge et al. (2001) also consider a multi-commodity processing and storage net-

work, but focus on deriving a rational expectations equilibrium model that can be

used to extend the theory of storage to non-storable commodities like electricity and

explain some of the empirically observed features of electricity prices. In contrast

to these papers, we are interested in characterizing the optimal policy and deriving

managerial insights for a firm operating a commodity processing business. As such,

we do not adopt an equilibrium approach and instead model the evolution of the

various commodity prices as exogenously given.

The analysis carried out in this paper on the value of a forward looking dynamic

programming policy relative to myopic policies is similar to the analysis in Lai et al.

(2010b), who consider the real option to store liquified natural gas (LNG) in a LNG

value chain. Lai et al. (2010b) develop a model which integrates LNG shipping,

natural gas price evolution and inventory control and sales, and find that using a

dynamic programming policy is important when the throughput of the LNG shipping

process is low compared to the storage capacity. Although in a different context

involving multiple commodities and processing decisions, our findings mirror theirs

in that the value of a dynamic programming policy is high relative to myopic policies

when the processing capacity is tight relative to the procurement capacity.

2.3. Model Formulation and Analysis
2.3.1 Single Output Commodity

Model formulation. We consider a finite horizon problem with the time periods

indexed by n = 1, 2, . . . , N − 1, N where n = 1 is the first decision period. In

any period n, the firm can procure the input commodity from the spot market at

the current spot price Sn. The firm processes the input and sells all the output

using forward contracts.The procurement season for the input commodity may span

multiple output forward maturities. The delivery date for forward contract ℓ is given
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by Nℓ, with ℓ ∈ {1, 2, . . . , L}. We assume Nℓ − 1 is the last possible period in which

the firm can sell the output using forward contract ℓ. Without loss of generality, we

assume Nℓ < Nℓ+1 for all ℓ < L and NL ≤ N . Let F ℓ
n denote the period n forward

price on contract ℓ, for n < Nℓ ≤ N . In addition to selling the output commodity,

the firm can also trade the input itself with other processors over the horizon. For

ease of exposition, we assume that all, if any, input sales happen at the end of the

horizon with a per-unit trade (or salvage) value of SN .

Due to physical or other operational limitations, the firm has a per-period pro-

curement capacity restriction of K units and a processing capacity of C units per

period. The marginal cost of processing one unit of the input commodity into the

output commodity is p. The firm incurs a per period holding cost of hI and hO per

unit of input and output inventory respectively. We assume hO ≥ hI . We consider

a linear cost of procurement, i.e., the cost of procuring x units of input is equal to

Sn × x when the input spot price is equal to Sn.

The relevant information available to the firm at the beginning of period n re-

garding the spot market prices, output forward prices and trade prices for the input

is given by In and all expectations are taken under the risk-neutral measure (see Hull

(1997) or Bjork (2004) for discussion on risk-neutral measures). We assume interest

rates are constant and there is no counter-party risk associated with the forward con-

tracts. As a result, the discount factor per period, β, is the risk-free discount factor.

It is a well known result that under these conditions forward prices are equal to the

futures prices and further, the futures prices are a martingale process (see Hull (1997),

Section 3.9 or Bjork (2004), Section 7.6 for details). The output forward prices for

each contract thus satisfy

En[F ℓ
n+1] = F ℓ

n for n < Nℓ, ∀ ℓ (2.1)

where En[·] denotes expectation, conditional on In.
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In each time period n ≤ N−1, the firm makes the following sequence of decisions:

a) the quantity of the input commodity to be procured: xn, b) the quantity of input

to be processed into output: mn and c) the quantity of the output commodity to

be committed for sale against forward contract ℓ: qℓn for all ℓ such that Nℓ > n. In

the last period, N , the firm trades any remaining input inventory. Optimal values of

these decisions will be denoted by a ‘*’ superscript. Let Qn (respectively, en) denote

the total output (respectively, input) inventory available at the beginning of period

n.

It is easy to see that in any given period it is optimal to commit against at most

one forward contract. Thus, let ℓ∗(n) be the forward contract that the firm commits

against in period n, if a commitment is made. Notice that the firm can potentially

commit to sell more output than is currently available; i.e., ‘over-commit’ such that

q
ℓ∗(n)
n > Qn + mn. This is possible because the output needs to be delivered only

in period Nℓ∗(n) and the firm can process in some future period(s) t between n and

Nℓ∗(n) to meet the shortfall q
ℓ∗(n)
n − (Qn + mn), which would require that we keep

track of the shortfall against each forward contract. However, in light of the mar-

tingale property (equation (2.1)), we can see that such a ‘anticipatory commitment’

strategy would never be optimal and thus the firm will never over-commit. There-

fore, we do not need to keep track of the shortfall against each forward contract

and (en, Qn, In) is sufficient to describe the state of the system at the beginning

of period n. Further, because commitments once made cannot be reversed, we can

recognize the revenues associated with output sales at the time of making the com-

mitment rather than at the time of delivery without loss of generality. Thus, if a

commitment is made in period n, it would be against forward contract ℓ∗(n) where

ℓ∗(n) = argmax
ℓ∈ L(n)

{
βNℓ−nF ℓ

n − hO

Nℓ−n−1∑
t=0

βt

}
where L(n) = {ℓ ≤ L s.t. Nℓ > n}. The

term inside the maximization is the discounted forward price minus the total dis-

counted holding costs incurred from the current period till delivery at the maturity of
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the forward contract. We can formulate the firm’s problem as a stochastic dynamic

program (SDP) in the following manner.

Vn(en, Qn, In) = max
0≤xn≤K,

0≤mn≤min{C,en+xn},
0≤qℓ

∗(n)
n ≤Qn+mn


βNℓ∗(n)−nF ℓ∗(n)

n − hO

N
ℓ̂
−n−1∑
t=0

βt

 qℓ∗(n)n

− Snxn − pmn − hI [en + xn −mn]

− hO[Qn +mn − qℓ
∗(n)
n ]

+ βEn[Vn+1(en+1, Qn+1, In+1)]

 (2.2)

for n < N and

VN(eN , QN , IN) =

 SNeN QN ≥ 0

−∞ otherwise
(2.3)

where the state transition equations are given by en+1 = en + xn −mn and Qn+1 =

Qn +mn − q
ℓ∗(n)
n .

The constraints on xn and mn in equation (2.2) are capacity and input availability

constraints. The constraint on the commitment quantity is the no ‘over-commitment’

condition, which is without loss of optimality and ensures (en, Qn, In) is sufficient to

describe the state of the system.

Marginal value of output inventory. Consider the commitment decision in period

n. By committing against any specific contract ℓ withNℓ > n, the firm earns a revenue

of βNℓ−nF ℓ
n−hO

Nℓ−n−1∑
t=0

βt on each unit committed for sale. The firm can earn the same

expected revenue (discounted to period n dollars) by postponing the commitment to

period Nℓ − 1, the last opportunity to commit against contract ℓ. By postponing

the decision to period Nℓ − 1, the firm retains the option not to commit the unit of
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output to contract ℓ if some other contract ℓ′ provides a higher revenue. Extending

this argument, we have the following result.

Lemma 2.1. It is optimal to commit to sell output using contract ℓ, if at all, only in

period Nℓ − 1 for ℓ = 1, 2, . . . , L.

To determine if it is optimal to commit against a specific contract ℓ, consider

the case of L = 2, with maturities N1 and N2 respectively. In period N2, it will be

optimal for the firm to commit all the available output inventory against contract 2,

as this is the last opportunity to commit the output inventory for sale against any

forward contract and all uncommitted output inventory beyond period N2 will earn

zero revenue. Therefore, in any period n such that N1 ≤ n < N2, the marginal value

of output inventory is equal to βN2−nEn
[
F 2
N2−1

]
− hO

N2−1−n∑
t=0

βt. In period N1 − 1, it

will be optimal for the firm to commit against contract 1, if and only if βF 1
N1−1−hO >

βN2−N1+1EN1−1

[
F 2
N2−1

]
− hO

N2−N1∑
t=0

βt. Further, the optimal commitment decision is

‘all or nothing’; i.e., if it is optimal to commit against contract 1, then it is optimal

to commit all the available output inventory, QN1−1+mN1−1. Extending this analysis

to a more general case of L > 2, we can prove the following result about the marginal

value of output inventory and the optimal commitment policy.

Lemma 2.2. The marginal value of a unit of output inventory in period n, denoted

by ∆n, is given by

∆n =


0 if n ≥ NL

βmax
{
F ℓ
n,En [∆n+1]

}
− hO if n = Nℓ − 1 for ℓ = 1, . . . , L

βEn [∆n+1]− hO otherwise

(2.4)
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and the optimal quantity to commit against contract ℓ is given by

q∗Nℓ−1 =

 0 if F ℓ
Nℓ−1 ≤ ENℓ−1 [∆Nℓ

]

QNℓ−1 +mNℓ−1 otherwise
(2.5)

Substituting the optimal commitment quantity in the objective function of equa-

tion (2.2), and using an induction argument, we can show that the value function is

linear in Qn and moreover, separable in Qn and en. We can write

Vn(en, Qn, In) = ∆nQn + Un(en, In) for n < N (2.6)

VN(eN , QN , IN) = UN(eN , IN) (2.7)

where Un(en, In) is given by

Un(en, In) = max
0≤xn≤K,

0≤mn≤min{en+xn,C}

{
[∆n − p]mn − Snxn

− hI [en + xn −mn]

+ βEn[Un+1(en+1, In+1)]
}

(2.8)

for n < N and

UN(eN , IN) = SNeN (2.9)

Notice that in any period n < Nℓ − 1, the marginal value of a unit of output

inventory is equal to the expected discounted payoff from the optimal commitment

decision in period Nℓ − 1, after adjusting for holding costs. The payoff from optimal

commitment in period Nℓ − 1 is nothing but the payoff of a compound exchange

option on the remaining L−ℓ+1 forward contracts (cf., Carr, 1988); i.e., an option to

exchange revenue from the immediately maturing forward contract ℓ for a compound
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exchange option on the remaining L− ℓ forward contracts, after adjusting for holding

costs. Thus, each unit of output inventory can be considered a compound exchange

option, with the remaining forward contracts as the underlying assets.

Marginal value of input inventory. We next turn to determining the marginal

value of input inventory. As the firm has limited processing capacity, the marginal

value-to-go of input inventory depends on the total input inventory available. For

instance, when the ending input inventory en+1 is greater than the remaining pro-

cessing capacity (N−(n+1))×C, the marginal value-to-go is equal to the discounted

expected salvage value minus the total input holding costs, irrespective of the value

from processing, ∆n− p. The processing decision is therefore dependent on the input

inventory levels; i.e., the decision depends on whether ∆n − p is higher or lower than

the marginal value-to-go of unprocessed input at the given input inventory levels.

We now derive expressions for the marginal value of input inventory, with the aim of

using them to determine the optimal procurement and processing decisions in period

n.

To this end, let D be the largest value such that the processing capacity C = aD

and the procurement capacity K = bD, where a and b are positive integers; i.e., D is

the greatest common divisor of C and K.1 Theorem 2.1 below states that Un(en, In)

is piecewise linear, with breaks at integral multiples of D and provides an expression

for Θk
n, the marginal value of input inventory at the beginning of period n, when

en ∈ [(k − 1)D, kD), where k is a positive integer. (For notational convenience, we

do not show the dependence of Θk
n on In, explicitly.)

Theorem 2.1. The value function Un(en, In) is continuous, concave and piecewise

linear in en with changes in slope at integral multiples of D, for each realization of

In.

For all n, let Θk
n , ∞ for k ∈ Z− ∪ {0}. For any period n ≤ N and positive

1Technically, a greatest common divisor may not exist if either C or K is not a rational number.
We assume C and K are both rational.
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integer k, we have

Θk
n =

 SN if n = N

max
{
Ω

(k+b)
n ,min

{
Sn,Ω

(k)
n

}}
if n < N

(2.10)

where Ω
(j)
n is the marginal value of en + xn, the input inventory after procurement in

period n, when en + xn ∈ [(j − 1)D, jD) and is given by

Ω(j)
n = max

{
βEn[Θj

n+1]− hI ,min
{
∆n − p, βEn[Θj−a

n+1]− hI
}}

(2.11)

Proof: Clearly, UN = SNeN is concave and piecewise linear in eN for all eN ≥ 0.

Further, Θk
N = SN for all positive integers k. Suppose Ut is piecewise linear and

concave, with change in slope at integral multiples of D for all t = n+1, n+2, . . . , N .

That is, for each t ≥ n+ 1, we have

Ut(et, It) = Θk
t et + λkt for et ∈ [(k − 1)D, kD)

where λkt is a constant independent of et for et ∈ [(k−1)D, kD). Also, Ut is continuous

in et and Θk
t ≥ Θk+1

t for all integers k ≥ 1.

When et ∈ [(k−1)D, kD) for k ≥ (N−t)a+1, we have et ≥ (N−t)aD = (N−t)C;

i.e., there is not enough processing capacity available over the remaining horizon to

process all the available input inventory. Thus, the marginal unit of input inventory

can only be salvaged and the marginal value of input for all et ≥ (N − t)C is equal

to the expected salvage value net of input holding costs; i.e., Θk
t = Θ

(N−t)a+1
t =

βN−t−1En [SN ]− hI

N−t−1∑
m=0

βm for all k ≥ (N − t)a+ 1.
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We have

Un(en, In) = max
0≤xn≤K

{
max

0≤mn≤min{C,en+xn}

{
(∆n − p)×mn − hI × (en + xn −mn)

+ βEn[Un+1(en + xn −mn, In+1)]
}
− Snxn

}
= max

0≤xn≤K
{Ln(en + xn, In)− Snxn} for n < N

where

Ln(yn, In) = max
0≤mn≤min{C,yn}

{
(∆n − p)×mn − hI × (yn −mn)

+ βEn[Un+1(yn −mn, In+1)]
}

Let yn = en + xn denote the input inventory after procurement, but before pro-

cessing. For yn and mn such that yn −mn ∈ [(j − 1)D, jD) for some positive integer

j, we can write the objective function in the maximization underlying Ln as

(
(∆n − p)− (βEn[Θj

n+1]− hI)
)
×mn +

(
βEn[Θj

n+1]− hI
)
× yn + βEn[λjn+1] (2.12)

for yn −mn ∈ [(j − 1)D, jD) and λjn+1 is a constant independent of yn and mn.

For a given yn, as mn increases, j such that yn −mn ∈ [(j − 1)D, jD) decreases.

Therefore, as mn increases, the coefficient of mn,
(
(∆n − p)− (βEn[Θj

n+1]− hI)
)
,

decreases since Θj
n+1 ≥ Θ

(j+1)
n+1 . Thus, the optimal value of mn is the maximum

possible value for which the coefficient remains non-negative or zero, which ever is

higher. For yn ∈ [(s − 1)D, sD) where s is a positive integer and recalling that the

processing capacity C = aD, we can determine the optimal processing quantity m∗
n
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as

m∗
n =


C if βEn[Θs−a

n+1]− hI ≤ ∆n − p

yn − r̂nD if βEn[Θs
n+1]− hI ≤ ∆n − p < βEn[Θs−a

n+1]− hI

0 if ∆n − p < βEn[Θs
n+1]− hI

(2.13)

where r̂n = max
{
r ∈ Z+ ∪ {0} s.t. βEn[Θr

n+1]− hI > ∆n − p
}
. Upon substituting

m∗
n corresponding to each of the three cases in the objective function (2.12), we have

for yn ∈ [(s− 1)D, sD)

Ln(yn, In) =



(βEn[Θs−a
n+1]− hI)yn +Υs,1

n if βEn[Θs−a
n+1]− hI ≤ ∆n − p

(∆n − p)yn +Υs,2
n if βEn[Θs

n+1]− hI ≤ ∆n − p

and ∆n − p < βEn[Θs−a
n+1]− hI

(βEn[Θs
n+1]− hI)yn +Υs,3

n if ∆n − p < βEn[Θs
n+1]− hI

where Υs,·
n are constants independent of yn for yn ∈ [(s − 1)D, sD). Combining all

three cases above, we can write

Ln(yn, In) = max
{
βEn[Θs

n+1]− hI ,min
{
∆n − p, βEn[Θs−a

n+1]− hI

}}
yn +Υs

n

for yn ∈ [(s− 1)D, sD), where Υs
n denotes the relevant constant terms not dependent

on yn.

Notice that the slope of Ln(·, ·) with respect to yn when yn ∈ [(s − 1)D, sD) is

equal to Ω
(s)
n , where Ω

(s)
n is given by equation (2.11). Thus, Ω

(s)
n denotes the marginal

value of a unit of input inventory after procurement but before processing. We now
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have

Un(en, In) = max
en≤yn≤en+K

{Ln(yn, In)− Sn(yn − en)} (2.14)

For yn ∈ [(s − 1)D, sD), substituting Ln(yn, In), the objective function in the

maximization above can be written as
(
Ω

(s)
n − Sn

)
× yn +Υs

n + Snen.

By the induction assumption, we have Θj
n+1 ≥ Θ

(j+1)
n+1 for all j and as a result

Ω
(s)
n is non-increasing in s. Thus, the slope of yn decreases as yn increases. For

en ∈ [(k − 1)D, kD) where k is a positive integer and recalling that the procurement

capacity K = bD, we can determine the optimal value of yn as

y∗n =


en +K if Ω

(k+b)
n ≥ Sn

ŝnD if Ω
(k)
n ≥ Sn > Ω

(k+b)
n

en if Sn > Ω
(k)
n

(2.15)

where ŝn = max
{
s ∈ Z+ ∪ {0} s.t. Ω(s)

n > Sn
}
. Substituting y∗n in the objective func-

tion of (2.14), we get

Un(en, In) = max
{
Ω(k+b)
n , min

{
Sn,Ω

(k)
n

}}
en +Ψk

n for en ∈ [(k − 1)D, kD)

where Ψk
n is a constant independent of en for en ∈ [(k − 1)D, kD).

In the above expression, notice that the slope of en is constant for en ∈ [(k −

1)D, kD) for all positive integers k. Further, by the induction hypothesis, we have

Θk
n ≥ Θk+1

n , where Θk
n = max

{
Ω

(k+b)
n , min

{
Sn,Ω

(k)
n

}}
. Thus, Un is piecewise linear

with non-increasing slopes which change only at integral multiples of D. Finally, by

equation (2.11), we have Ω
(s)
n = βEn

[
Θ

(N−[n+1])a+1
n+1

]
− hI for all s ≥ (N − n)a + 1,

which leads to Θk
n = Ω

(k)
n = βEn

[
Θ

(N−[n+1])a+1
n+1

]
− hI for all k ≥ (N − n)a + 1,

completing the proof.
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Optimal policy structure. Theorem 2.1 shows that the optimal procurement and

processing policy is governed by two price and horizon dependent inventory thresh-

olds, ŝnD and r̂nD. In order to compare these thresholds, it is useful to restate the

optimal processing policy, obtained by substituting the optimal procure up to level

given by equation (2.15) into equation (2.13), as follows.

m∗
n =


C if Ω

(k)
n < ∆n − p

min{(y∗n − r̂nD)+, C} if Ω
(k)
n ≥ ∆n − p ≥ Ω

(k+b)
n

0 if Ω
(k+b)
n > ∆n − p

(2.16)

where r̂n = max
{
r ∈ Z+ ∪ {0} s.t. Ω(r)

n > ∆n − p
}
.

Consider the situation when the ‘processing margin’ from procuring and processing

is negative; i.e., ∆n−p−Sn ≤ 0. Any procurement in the current period is beneficial

only if the expected marginal value-to-go of the procured unit is greater than Sn.

Similarly, it is optimal to process whenever the benefit from processing, ∆n − p, is

greater than the expected marginal value-to-go. By concavity of the value function,

ŝnD ≤ r̂nD and the starting inventory level can be divided into three regions: a)

en ∈ [0, ŝnD) where it is optimal to only procure input, b) en ∈ [ŝnD, r̂nD] where it

is optimal to neither procure nor process any input and c) en ∈ (r̂nD,∞) where it is

optimal to only process the input. The optimal procurement and processing quantities

are given by x∗n = y∗n − en = min{K, (ŝnD − en)
+} and m∗

n = min{C, (en − r̂nD)+}.

It is important to notice that even though the processing margin is negative, it is

still optimal to process when the input inventory is sufficiently high. On the other

hand when the processing margin is positive, i.e., ∆n − p − Sn > 0, there is benefit

from procuring and processing the input immediately. Thus, for some starting input

inventory levels, it may be optimal to both procure and process the input. This fact

makes it difficult to divide the starting input inventory level into mutually exclusive

regions where only one of the actions, procurement or processing, is optimal. At
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least one of the two activities is at capacity for all starting inventory levels and both,

procurement and processing of the input, are optimal for some inventory levels.

We illustrate the features of the optimal policy using an example. To make the

intuition clear, and keep the exposition simple, we consider a 3–period problem with

deterministic prices, no holding costs and β = 1.

Example. Consider the situation where K = C and the output commodity prices

are such that ∆1 − p = ∆2 − p ≡ ∆ − p. The input spot prices in periods 1 and 2

and the salvage value in period 3 are such that S3 < S1 < ∆− p < S2.

Now, consider the procurement decision in period 1. Because S1 < ∆1 − p, it

is optimal for the firm to procure input to meet period 1’s processing requirements.

Because S1 < ∆2 − p < S2, it is optimal to procure for period 2’s processing require-

ments in period 1 itself. Finally, because S1 > S3, it is not optimal to procure for

salvaging at the end of the horizon. The total quantity that can be processed over

periods 1 and 2 is equal to 2C, and therefore the optimal procurement quantity in

period 1 is given by x∗1 = min{K, (2C − e1)
+}.

In this example, we have a = b = 1. Using equations (2.11) and (2.10), we can

calculate Ω
(1)
1 = Ω

(2)
1 = ∆ − p and Ω

(k)
1 = S3 for k ≥ 3. We see that ŝ1D = 2D

for period 1. The optimal procurement quantity in period 1 is therefore given by

x∗1 = y∗1 − e1 = min{K, (2C − e1)
+}, corresponding to the first two cases in equation

(2.15).

The benefit from processing is identical in periods 1 and 2 and greater than the

salvage value. Thus, it is optimal for the firm to process all the available input

inventory up to processing capacity. The optimal processing quantity in period 1 is

thus given bym∗
1 = min{C, e1+x∗1}. We see that r̂1D = 0, and the optimal processing

quantity corresponds to the second case in equation (2.16).

Figure 2.1 illustrates the optimal procurement and processing quantities in period

1 along with Ω
(k)
1 values, for different starting inventory levels.
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Figure 2.1: Illustration of optimal policy

2.3.2 Multiple Output Commodities

In reality, multiple output commodities may be produced upon processing the

input; e.g., soybean is crushed to produce soybean meal and oil, both of which are

commodities that can be traded. The results obtained in the previous section can

be extended to the case when multiple output commodities are produced upon pro-

cessing the input. To keep the exposition simple, we illustrate the case when two

products are produced upon processing the input; the extension to more products is

straightforward.

Let one unit of input when processed yield αM units of product M and αO units

of product O, with αM and αO non-negative and 0 < αM + αO ≤ 1 (one could think

ofM and O to denote meal and oil in the soybean processing context). Let ℓm and ℓo

index the forward contracts available for output M and O respectively with maturity

at Nℓm and Nℓo . Let M
ℓm
n and OℓO

n be the forward prices on these contracts. Let hM

and hO be the unit holding cost per period for M and O.

After processing, the decision to commit commodity M or O for sale against a

forward contract can be made independent of the decision for the other commodity,

as there are no capacity constraints on the commitment decision itself. Thus, similar

to the single output case, the optimal commitment policy for each output commodity

is given by Lemma 2.1. Also, the marginal value of inventory for output j, denoted
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by ∆
(j)
n , is given by equation (2.4). The expected benefit from processing in period n

is therefore equal to
∑
j=M,O

αj∆
(j)
n − p. The marginal value of input inventory, optimal

procurement and processing policy are given by equations (2.10), (2.15) and (2.16),

with ∆n =
∑
j=M,O

αj∆
(j)
n .

2.4. Numerical Study

In this section, we illustrate our analytical results using numerical studies. We

consider the soybean procurement and processing decisions as the context and use

commodity market data for the soy complex for our numerical studies.

While the analytical results derived in Section 2.3 did not depend on the specific

dynamics of the various commodity prices, computing the marginal values and opti-

mal policy parameters does depend on the specific price processes. Single-factor mean-

reverting price processes have often been used to model the spot price processes for

various commodities, including agricultural commodities (cf. Geman (2005), Chapter

3). These models capture an essential feature of commodity spot prices, which is that

commodity prices tend to revert to a mean level. An attractive feature of the single-

factor mean-reverting price processes is their analytical tractability. While other

multi-factor price processes are also used to model commodity prices (see discussion

at the end of this section), in this section we model the various commodity prices

as single-factor mean-reverting processes and demonstrate the computation of the

optimal policy using binomial lattices to model the joint evolution of the commodity

prices. We compare the performance of the optimal policy (described in Sections 2.3.1

and 2.3.2) with that of heuristics used in practice and the option valuation literature.

Specifically, we consider two heuristics: a) modeling multiple outputs produced upon

processing as a single, composite product to determine the input procurement and

processing policies and b) a myopic, full commitment policy which uses the net mar-

gin from processing and committing all the output immediately to determine the
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procurement and processing decisions.

2.4.1 Implementation

Modeling the commodity price processes. We use a single factor, mean-

reverting price process as in Jaillet et al. (2004) to describe the evolution of the spot

prices of the various commodities under the risk-neutral measure. Specifically, Si(t),

the spot price of commodity i at time t is modeled as lnSi(t) = χi(t) + µ(t), where

χi(t) is the logarithm of the deseasonalized price and µ(t) is a deterministic factor

which captures the seasonality in spot prices. The deseasonalized price χi(t) follows

a mean-reverting process given by dχi(t) = κi(ξi−χi(t))dt+σidWi(t) where κi is the

mean-reversion coefficient, ξi is the long run log price level, σi is the volatility and

dWi(t) is the increment of a standard Brownian motion.

Data and estimation of the price process parameters. The parameters of

the spot price process under the risk-neutral measure can be estimated by calibrating

them to the observed futures prices for the various commodities, as described in Jaillet

et al. (2004). Specifically, the futures price at time t, for delivery at T ≥ t is given by

Fi(t, T ) = EQ [Si(T )|I(t)] where Q denotes the risk-neutral probability measure and

we have

lnFi(t, T ) = µ(T ) +
(
1− e−κi(T−t)

)
ξi + e−κi(T−t)χi(t) +

σ2
i

4κi

[
1− e−2κi(T−t)

]
The futures price information on futures contracts traded on the Chicago Board

of Trade (CBOT) for different maturities on each trading day of the month of June

2010 was used to calibrate the parameters for soybean, soybean meal and soybean

oil spot price processes. Futures contracts with the nearest 9 maturities for soybean,

nearest 13 maturities for soybean meal and nearest 12 maturities for soybean oil were

used for the calibration. While contracts with further maturities are traded for each

commodity, these contracts were not included in the calibration as they had very little
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Table 2.1: Price Process Parameters

Soybean Soybean Meal Soybean Oil

Mean-Reversion Coeff κi 0.229 0.656 0.399
Longrun Log level ξi 6.738 5.500 3.734

Volatility σi 0.244 0.270 0.233
Seasonality Factor eµ(t)

Jan 0.992 0.981 1.000
Feb 0.992 0.981 1.000
Mar 0.998 0.987 1.000
Apr 0.998 0.987 1.000
May 1.000 0.989 1.000
Jun 1.000 0.989 1.000
Jul 1.017 1.066 1.000
Aug 1.010 1.026 1.000
Sep 0.991 0.995 1.000
Oct 0.991 0.976 1.000
Nov 0.989 0.976 1.000
Dec 0.989 0.980 1.000

trading volume on each of the trading days used in the sample. For each trading day,

the parameters were estimated by minimizing the sum of the absolute deviations

between the actual and estimated futures prices for various maturities.

The minimization was carried out by approximating the seasonality factors to be

constant between different maturity months in a year and imposing a normalization

constraint such that
∑t=12

t=1 µ(t) = 0. In addition, we also impose the constraint that

the estimated 30-day and 60-day volatilities match the implied volatility information

for each commodity. The implied volatility is the volatility implied by the market

price of the option based on an option pricing model, and this data was obtained

from the Bloomberg service. The average of the estimated parameters obtained over

each trading day are given in Table 2.1 and used to model the price processes. The

standard errors for the key parameters and root mean squared errors (RMSE) between

the observed and estimated prices for each commodity are given in Table 2.2.

The various commodities are related through input-output processes, and the un-
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Table 2.2: Estimation Errors

Soybean Soybean Meal Soybean Oil

Standard Errors
Mean-Reversion Coeff κi 0.0310 0.0252 0.0049
Longrun Log level ξi 0.0028 0.0035 0.0032

Volatility σi 0.0006 0.0005 0.0002

RMSE (% terms)

1.40% 2.15% 1.58%

Table 2.3: Correlation Between Weekly Returns

Soybean Soybean Meal Soybean Oil

Soybean 1 0.846 0.654
Soybean Meal 1 0.411
Soyean Oil 1

derlying uncertainty in their price processes are likely to be correlated. We estimated

the correlation between the Brownian motion increments for the three commodities

using historical weekly returns on the nearest maturing futures contracts over the time

period 1/1/2000 – 12/31/2009. The estimated correlations are given in Table 2.3.

Computation of the optimal policy. For computing the optimal policy, we use

the re-combining binomial tree procedure described in Peterson and Stapleton (2002),

which can handle mean reversion in prices, to discretize the dynamics of the price

processes and approximate the joint evolution of the spot price of the various com-

modities. Each period in the discrete binomial tree corresponds to a week and we

discretize the price process with δ steps between each period. In our computational

studies, we set δ = 5. We have [(n− 1)δ + 1]J nodes in the tree for period n, where

J is the total number of commodities whose joint price evolution is approximated.

At each node in the tree, we can compute the forward price F ℓ
n for l = 1, 2, . . . , L

for each output commodity using the discrete transition probabilities at that node.

Finally, using equations (2.4) and (2.10), we can compute ∆n for each output and Θk
n

for k = 1, . . . , (N − n)a + 1, and thereby the procurement and processing policy at
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each node in the tree.

We evaluate the performance of this policy using Monte Carlo simulation. We

generate sample paths of prices for each period n = 1, 2, . . . , N by sampling from

the continuous time price process for the commodities. We round the realized in-

put and output spot prices to the closest node in the binomial tree and obtain

the procurement, processing and commitment quantity corresponding to the node

and inventory level. Expected profits from the policy are computed as the aver-

age profit over 10,000 sample paths. All the numerical studies were conducted us-

ing MATLAB (version 7.9.0 R2009b) software on a Dell Optiplex 755 with E8400

3.00 GHz Intel Core2 Duo CPU and 2 GB RAM, running Windows Vista Ent..

While we refer to the policy computed above as the optimal policy, it is optimal

only if the various commodity prices evolve as the binomial lattices. In reality, the

binomial lattice is an approximation of the true, continuous time and space price

processes and strictly speaking, the policy is only an optimization based policy (our

numerical experiments indicate that the gap between the value of the policy computed

using lattices and the value estimated using Monte Carlo simulation is small enough

that making this distinction is not important).

Other operational parameters. For all the numerical studies, we set the variable

cost of processing p to equal 72 cents / bushel, which corresponds to about 35%

of the gross margin from processing one bushel of soybean, based on the long run

average prices of the three commodities. This value of the processing cost is close

to the average processing costs estimated for the US soybean processing industry

(Soyatech, 2008). The procurement and processing capacities are set to 5 and 3

units respectively. These capacities can be considered to be in multiples of bushels,

e.g., million bushels. For the base case, we set processing capacity to 60% of total

procurement capacity, which is roughly the percentage of soybeans produced in the

United States that were estimated to have been crushed 2008 and 2009 (Ash, 2011).
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Table 2.4: Optimal Expected Profits for Different Horizon Lengths

Horizon Length Forward Expected Profits Avg.
(# of Forwards) Maturities (Std. Error) CPU Time

5 (5) 1557.65 8.68 sec.
(1) (0.33%)
10 (5,9) 3095.66 206.74 sec.
(2) (0.44%)
20 (5,9,18) 6954.21 4284.39 sec.
(3) (0.69%)

We leave the exact units for the capacities unspecified as only the relative values

of the procurement and processing capacities matter for computing the policies and

multiplying both the capacities by a common factor will scale the expected profits also

by the same factor. We assume the physical holding costs for the various commodities

are negligible and normalize them to zero.

2.4.2 Numerical Results

We conduct numerical studies to compute the expected profits for the firm from

its procurement and processing operations over the procurement season ranging from

August to December. We initialize the prices for all the commodities to their long run

average values at the beginning of the planning horizon and evaluate the performance

of the policy for different horizon lengths. Table 2.4 gives the optimal expected profits

for different horizon lengths, when the firm uses all forward contracts available over

the horizon for each output commodity.

The optimal policy above is obtained by modeling the joint evolution of the input

and individual output commodity prices and using the results in Section 2.3.2. As

the number of output commodities produced upon processing increases, the number

of nodes in the binomial tree used to represent the joint evolution of the various

prices increases exponentially. Thus, the computational complexity increases quickly

as the number of output commodities increases, requiring one to consider tractable
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approximations.

Composite Output Approximation. A potential approach to compute heuristic

policies when multiple output commodities are produced is to model all the outputs

together as a single ‘composite’ product and model the price process for this composite

product. This is similar to the approach used by Borovkova et al. (2007) in the

valuation of basket options, i.e., options on a linear combination of different assets,

where the entire basket of commodities is modeled as a single ‘composite’ product.

We model a hypothetical, composite output whose price in any period is equal to the

total value of soybean meal and soybean oil produced upon processing one bushel

of soybeans, where the value is calculated based on the current prices of the two

products. As only futures instruments are publicly traded for the different output

commodities, we consider futures instruments for the composite output as well, where

the futures price for a particular maturity is a combination of the futures prices of

the individual output commodities , to estimate the price process parameters for

the composite output. The parameters of the price process for the composite output

can be estimated as described in Section 2.4.1 by considering the hypothetical futures

instruments for the composite output. The joint evolution of the input and composite

output can be modeled using a binomial tree and a heuristic policy computed using

the results for the single output case in Section 2.3.1. This heuristic yields a feasible

policy for the original model with separate output commodities and the total expected

profits from following such a heuristic policy and the gap with respect of the optimal

expected profits for different horizon lengths are shown in Table 2.5.2

As seen from Table 2.5, approximating the multiple outputs as a single composite

output comes with very little loss in optimality. The composite output approximation

is also computationally far less burdensome than the optimal policy, as seen from the

CPU times.

2Unless indicated, the gaps shown in all tables are significant with p < 0.05.
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Table 2.5: Expected Profits Using Composite Output (CO) Approximation

Horizon Length Forward Expected Profits Gap Avg.
(# of Forwards) Maturities (Std. Error) (as % of Optimal) CPU Time

5 (5) 1557.71 0.0%† 1.17 sec.
(1) (0.33%)
10 (5,9) 3061.71 1.10% 11.89 sec.
(2) (0.46%)
20 (5,9,18) 6917.71 0.52% 112.48 sec.
(3) (0.69%)

†p− value > 0.1

The composite output approximation, in addition to approximating the joint evo-

lution of two output commodity prices as a single composite price, also leads to a

lower flexibility in the commitment decision for the two output products. This is

because when the composite output is committed for sale against a forward contract,

both the underlying output products are committed for sale against their respective

forward contracts, maturing in the same period. This is not necessarily the case under

the optimal policy, where the commitment decisions for the individual outputs are

independent of each other. The results in Table 2.5 imply that the loss in value by

ignoring this flexibility in commitment is negligible. Further, the loss in information

because of approximating the outputs by a single product has negligible impact on

the total expected profits.

Full commitment policy. We evaluate the benefit of following an optimal policy

by comparing the optimal expected profits with the expected profits from following

a myopic policy, which only considers the value from processing and committing the

output immediately in the same period. Under this myopic policy, termed the full

commitment policy, the firm procures up to the minimum of procurement and pro-

cessing capacities if there exists a positive margin from processing and committing

the output immediately and nothing otherwise. Notice that full commitment pol-

icy ignores the ‘option’ value from postponing commitment of the output, as also
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Table 2.6: Expected Profits From Full Commitment (FC) Policy

Horizon Length Forward Expected Profits Gap
(# of Forwards) Maturities (Std. Error) (as % of Optimal)

5 (5) 1563.56 -0.38%†

(1) (0.11%)
10 (5,9) 3106.67 -0.36%†

(2) (0.16%)
20 (5,9,18) 6829.88 1.79%
(3) (0.23%)

†p− value > 0.1

the value from holding and trading the input inventory at the end of the horizon.

The expected profits and gap with respect to optimal profits from following the full

commitment policy for different horizon lengths are shown in Table 2.6.3

The results in Table 2.6 suggest that the benefits of integrated decision making are

negligible, compared to a myopic policy. However, these results are for the base set of

parameters and do not necessarily imply the same behavior under all circumstances.

To investigate this issue, we consider sensitivity of the different policies to two key

parameters; processing capacity and price volatilities.4

Impact of processing capacity. When processing capacity is limited compared to

the procurement capacity, we expected the value of integrated decision making to be

higher. This is because when the input spot prices are low, the optimal policy is likely

to procure input for current period processing as well as for the future. The myopic

policy however does not do so. Further, including the option to trade input inventory

at the end of the horizon is more valuable when processing capacity is limited. The

results in Table 2.7, which shows the expected profits under the three policies as the

3The negative gaps are because the optimal policy is computed assuming the various commodities
prices evolve in discrete space and time, while the performance of the policies are evaluated using
a Monte Carlo simulation which samples from the continuous time and space price processes. As
indicated, the negative values for the gaps are statistically insignificant. The same explanation holds
for negative gaps seen in Tables 2.7 and 2.8 also.

4We also ran sensitivity analysis by varying the correlation between the different price processes.
For various values of the correlation factors, we observed gaps that ranged from 0.85% to 1.32%.
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Table 2.7: Impact of Processing Capacity
(N = 20, L = 3, Nℓ = {5, 9, 18})

Processing Expected Profits Gap (% of Optimal)
Capacity (C)

(as % of K) FC CO Optimal FC CO

20% 2274.03 2495.24 2511.97 9.4% 0.67%
40% 4545.13 4673.40 4710.69 3.5% 0.79%
60% 6813.65 6852.33 6907.15 1.35% 0.79%
80% 9064.14 9030.05 9103.55 0.43%† 0.81%
100% 11381.80 11013.50 11295.94 -0.76%† 2.50%

†p− value > 0.1

processing capacity is varied from 20% to 100% of the procurement capacity, support

this intuition.

Compared to a myopic policy, the benefits from using the optimal policy can be

as high as 9.4% for highly constrained processing firms and reduces as the processing

capacity increases (the negative value in the last row is statistically insignificant). On

the other hand, we notice that the gap between the optimal profits and the profits

using the composite output approximation increases with the processing capacity,

because more of the input procured is processed and sold as output. Thus, the loss

in flexibility to commit the different outputs to contracts maturing at different dates

has a higher impact. However, the maximum gap, at 2.5%, is still low.

Impact of price volatilities. All three policies–full commitment, composite output

and optimal–have option like features. While the full commitment policy is equivalent

to the exercise of an European spread option between the output and input prices, the

composite output and optimal policies model the output commitment decision as a

compound exchange option, in addition to modeling the procurement and processing

decisions based on spread options. Given this, the expected profits under each policy

increases with commodity price volatilities, as seen in Table 2.8.

We also notice that the gap between the optimal policy and the full commitment
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Table 2.8: Impact of Price Volatility
(N = 20, L = 3, Nℓ = {5, 9, 18})

Volatility Expected Profits Gap (% of Optimal)

(σB, σM , σO) FC CO Optimal FC CO

0.25 6787.03 6827.70 6849.08 0.90% 0.31%
0.30 6899.90 6997.81 7029.71 1.85% 0.45%
0.35 7041.81 7105.27 7253.73 2.92% 2.05%
0.40 7216.42 7541.87 7546.57 4.37% 0.06%
0.45 7429.53 7873.10 7893.37 5.88% 0.26%
0.50 7675.51 8305.80 8297.09 7.49% -0.10%†

†p− value > 0.1

policy increases as the volatility increases. This is because the full commitment policy

models the marginal value of output based on the realized output prices and does

not account for the exchange option inherent in the output commitment decision.

Further, the full commitment policy does not procure additional input in periods

with low input spot price for processing needs in future periods. The value of this

opportunistic input procurement also increases as price volatility increases.

In summary, approximating multiple outputs using a hypothetical, single compos-

ite output product is near-optimal and captures almost the entire value from following

an optimal policy. The value of integrated decision making can be significant for firms

with tight processing capacities and facing high commodity price volatility.

While single factor, mean-reverting processes are good approximations for model-

ing commodity price processes, they also have drawbacks. For instance, under a single

factor, mean-reverting process, the volatility of futures prices decreases exponentially

to zero, as time to maturity increases. To overcome these drawbacks and explain other

empirical features of commodity prices, various multi-factor models have also been

proposed to model different commodity prices (see Schwartz and Smith, 2000; Geman

and Nguyen, 2005, for instance). While these models provide a better description of

the price processes, they come with added computational complexity. Computing
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the optimal policy is difficult because modeling the joint evolution of these multi-

factor price processes becomes computationally inefficient (the number of nodes in

the lattice increases exponentially with the number of factors). As a result, one has

to resort to tractable heuristics. We discuss one particular heuristic to address these

computational challenges. Details of the heuristic, along with the computation of an

upper bound against which the heuristic can be compared and numerical illustrations

can be found in the online appendix.

2.5. Heuristic and Upper Bound for Multi-Factor Models

While the analytical results in Section 2.3 are not dependent on the specific price

process, the numerical experiments implemented in Section 2.4 assumed all the com-

modity prices follow single factor, mean-reverting processes. In this section, we de-

scribe a heuristic to compute policy parameters when the output commodity price

dynamics follow multi-factor processes. We also describe a computationally tractable

upper bound on the optimal expected profits and perform numerical studies to eval-

uate the performance of the heuristic.

2.5.1 Heuristics for Computation of Marginal Values

The primary difficulty in computing the optimal policy with multi-factor price

processes is the fact that modeling the joint evolution of more than three factors

becomes computationally inefficient. We now describe a tractable heuristic to com-

pute approximate policies for such cases. The heuristic is based on approximating

the input spot and output forward price for each maturity as single factor processes.

For instance, if the output commodity spot price dynamics follow a multi-factor pro-

cesses, the output forward price for each maturity, F ℓ
n, can be modeled as a single

factor, driftless geometric Brownian motion with the Brownian motion increments for

different maturities ℓ,m correlated with a correlation factor ρℓm ∈ (−1, 1).

In any period n, we only model the joint evolution of the input spot price and the
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nearest maturing output forward price. More precisely, define

În = (Sn, F
ℓ
n, F

ℓ+1
1 , F ℓ+2

1 , . . . , FL
1 ) for n such that Nℓ−1 ≤ n < Nℓ (2.17)

The variable În approximates the information available in period n by only con-

sidering Sn and F ℓ
n, while assuming no information other than the initial prices of

the remaining contracts is known. Thus, in the interval, Nℓ−1 ≤ n < Nℓ, we only

consider the joint evolution of (Sn, F
ℓ
n) and take all expectations conditional on În.

This approach is similar to the information approximation used in the approximate

dynamic programming model of Lai et al. (2010a).

Next, we approximate the marginal value of output inventory given in equation

(2.4) by conditioning the expectations on În as follows.

∆̂n =


0 if n ≥ NL

βmax
{
F ℓ
n,EÎn

[
∆̂n+1

]}
− hO if n = Nℓ − 1 for ℓ = 1, . . . , L

βEÎn

[
∆̂n+1

]
− hO otherwise

(2.18)

We approximate marginal value of input inventory in a similar manner. That is,

Θ̂k
n = max{Ω̂(k+b)

n ,min{Sn, Ω̂(k)
n }} (2.19)

where

Ω̂(k)
n = max

{
βEÎn [Θ̂

k
n+1]− hI ,min

{
∆̂n − p, βEÎn [Θ̂

k−a
n+1]− hI

}}
(2.20)

for n < N and all positive integers k and Θ̂k
N = SN for all positive integers k. For all

n < N , we set Θ̂k
n , ∞ for k ≤ 0.

The heuristic procurement, processing and commitment quantities (x̂n, m̂n, q̂n) are

then given by equations (2.15), (2.16) and (2.5) respectively, with the approximate
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marginal values replacing the true marginal values. Notice that this heuristic requires

only modeling the joint evolution of single factor price processes in any given period.

Thus, the binomial discretization approaches mentioned in section 2.4.1 can be used

to compute the approximate marginal values efficiently. Further, the heuristic is

exact in the case when the input and output commodity prices truly follow single

factor price processes. We now describe a computationally tractable upper bound on

the optimal expected profits, which can be used to evaluate the performance of the

heuristic.

2.5.2 Upper Bound on Optimal Expected Profits

We construct an upper bound for the optimal expected profits using the approach

of information relaxation and dual penalties described in Brown et al. (2010). The

key idea is that when information constraints are relaxed, i.e., more information is

available at the time of decision than in the original problem, the solution to the

relaxed problem will be an upper bound on the solution to the original problem.

This is similar to relaxing the constraints in a linear program. Analogous to the

dual variables corresponding to the constraints in a linear program which penalize

violations of the constraints in the original problem, Brown et al. (2010) define feasible

dual penalties for information relaxations, such that for any appropriately defined

feasible dual penalty, the solution to the relaxed problem provides an upper bound

to the optimal solution of the original problem. We use this technique to compute an

upper bound on the optimal expected profits of the original problem.

We consider the perfect information relaxation for developing an upper bound on

the optimal expected profits; that is, we consider a information structure where the

input spot prices and output forward prices for all periods are known at the beginning

of the horizon. Let ΓN = (In)Nn=1 be a particular sample path of prices over the entire

horizon. In period n, let zn(en, qn, xn,mn,ΓN) be a feasible dual penalty. For a specific
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ΓN , let H
UB
n (en, Qn; ΓN) be defined as

HUB
N (eN , QN ; ΓN) = SNeN (2.21)

HUB
n (en, Qn; ΓN) = max

qn,xn,mn∈Bn

{[
βNℓ−nF ℓ

n − hO

nℓ−n−1∑
t=0

βt

]
qn − p×mn

−Sn × xn − hIen+1 − zn(en, qn, xn,mn,ΓN)

+ βHUB
n+1(en+1, Qn+1; ΓN)

}
for n < N (2.22)

where en+1 = en + xn −mn and Qn+1 = Qn +mn − qn. The set of feasible decisions,

Bn, is given by

Bn =


(qn, xn,mn) :

0 ≤ xn ≤ K

0 ≤ mn ≤ min{en + xn, C}

qn = 0 if n ̸= Nℓ − 1 for ℓ ∈ {1, . . . , L}

0 ≤ qn ≤ Qn +mn if n = Nℓ − 1 for ℓ ∈ {1, . . . , L}


Notice that HUB

n is the same as Vn given by equations (2.2)–(2.3), except for the

penalty term zn and the fact that decisions involved in evaluating HUB
n are made

under perfect information. Define V UB
1 (e1, Q1, I1) as

V UB
1 (e1, Q1, I1) = EI1 [H

UB
1 (e1, Q1; ΓN)] (2.23)

where the expectation is taken over all ΓN .

Using different dual feasible penalties gives different values of V UB
1 . For instance,

by setting the dual penalty zn = 0 identically for all n, we get the perfect informa-

tion upper bound equal to the optimal profit when the decision maker has perfect

foresight. Using a feasible dual penalty that is easy to compute and approximates
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the ideal penalty closely can be expected to provide a close upper bound on the op-

timal expected profits. Consequently, we consider dual penalties derived from the

approximate value-to-go function

V̂n+1(en+1, Qn+1, În+1) = ∆̂n+1Qn+1 + Θ̂k
n+1en+1 + λ̂kn for en+1 ∈ [(k − 1)D, kD)

where the marginal values, ∆̂n+1 and Θ̂k
n+1, are given by equations (2.18) and (2.19)

and λ̂kn+1 are constants such that V̂n+1 is continuous in en+1 and λ̂1n = 0 for all n.

We then have

Proposition 2.1. V UB
1 (e1, Q1, I1) as defined in equation (2.23), with dual penalties

given by

zn(en, qn, xn,mn,ΓN) = β
[
V̂n+1(en+1, Qn+1, În+1)

−EÎn

[
V̂n+1(en+1, Qn+1, În+1)

]]
(2.24)

is an upper bound on the optimal value function V1(e1, Q1, I1).

Proof: The dual penalty in equation (2.24) is a feasible penalty and hence, by Propo-

sition 3.1 in Brown et al. (2010), V UB
1 (e1, Q1, I1) ≥ V1(e1, Q1, I1).

Notice that the DP given by (2.22) is a deterministic DP for each ΓN . Thus

the upper bound V UB
1 can be computed using Monte Carlo simulation by solving a

deterministic optimization problem for each sample path, and averaging over sample

paths. The computation of the upper bound problem along each sample path as a

mixed-integer linear program is described in Appendix 2.7.

2.5.3 Numerical Study

We study the performance of the heuristic described in section 2.5.1 by comparing

the expected profits using the heuristic with expected profits under the full commit-

ment policy, and the upper bound on optimal expected profits. We consider a single
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composite output for the purposes of illustrating the heuristic (as seen from previous

results, the composite output approximation itself does not lead to significant loss of

optimality). The performance of the heuristic is quantified in Section 2.5.3.2. In the

next section, we describe the implementation of the heuristics. Our implementation

of the heuristic follows Lai et al. (2010a) closely.

2.5.3.1 Implementation

We model the risk-neutral dynamics of the output forward price with maturity at time

Tℓ, F (t, Tℓ), by a driftless geometric Brownian motion and with constant volatility

σℓ > 0 as dF (t,Tℓ)
F (t,Tℓ)

= σℓdWℓ(t) where dWℓ(t) is the increment of a standard Brownian

motion. The Brownian motion increments corresponding to forward prices with ma-

turities Tℓ and Tk have a constant correlation coefficient ρℓk ∈ (−1, 1). The Brownian

motion increment corresponding to forward price with maturity Tℓ has a constant cor-

relation coefficient ρℓs ∈ (−1, 1) with the Brownian motion increment corresponding

to the input spot price. We continue to model the input spot price as a mean-reverting

process, as described in section 2.4.1.

The volatilities of the forward prices and correlation coefficients were estimated

using historical data for futures contracts traded on CBOT. These parameters for the

four immediately maturing contracts were estimated using the closing futures price

on each trading day in the months of June and July, for the years 2001 to 2010. We

use only June and July trading dates because futures contracts with maturities every

month are not available during other calendar months of the year (soybean meal and

oil futures contracts traded on CBOT have maturities in Jan., Mar., May, Jul., Aug.,

Sept., Oct., and Dec.). The volatilities of the four output forward contracts and the

correlation matrix are given in Table 2.9.

The dynamics of the input spot and output forward prices are discretized using the

same procedure described in section 2.4.1. We construct recombining binomial trees to
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Table 2.9: Multi-factor Price Parameters
(a) Output Forward Price Volatility

Maturity (Month) Volatility

1 0.269

2 0.252
3 0.249
4 0.257

(b) Correlation Matrix

Input Output Forward Maturity

1 2 3 4

Input 1 0.921 0.914 0.885 0.823
1 1 0.946 0.894 0.825
2 1 0.976 0.927
3 1 0.976
4 1

represent the joint evolution of (S(t), F (t, Tℓ)) for each ℓ ∈ {1, 2, . . . , L}, conditional

on F k
0 for k > ℓ. We also generate binomial trees to represent the evolution of

(F (t, Tℓ), F (t, Tℓ,ℓ+1)) for each ℓ ∈ {1, 2, . . . , L− 1}.

We obtain a probability mass function Gℓ
n(Sn+1, F

ℓ
n+1|Sn, F ℓ

n) for each n ≤ nℓ− 1,

for each node in the (S, F ℓ) tree at time n. From the (F ℓ, F ℓ+1) tree, we obtain

a probability mass function Ĥℓ
nℓ−1(F

ℓ+1
nℓ−1|F ℓ

nℓ−1) which denotes the probability that

the next immediately maturing forward price is equal to F ℓ+1, conditional on the

immediately maturing forward price being equal to F ℓ. The probability mass function

Gℓ
n(·) is used to compute expectations, conditional on În for nℓ−1 ≤ n < nℓ − 1. The

probability mass function Ĥℓ
n(·), along with Gℓ(·) is used to compute expectations at

the boundary of contracts ℓ and ℓ+ 1. Specifically, for ℓ < L, we use

Ĝℓ
nℓ−1

(
Sn+1, F

ℓ+1
n+1|Snℓ−1, F

ℓ
nℓ−1

)
= Gℓ+1

nℓ−1

(
Sn+1, F

ℓ+1
n+1|Snℓ−1, F

ℓ+1
nℓ−1

)
× Ĥℓ

nℓ−1

(
F ℓ+1
nℓ−1|F ℓ

nℓ−1

)
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to approximate the transition probabilities at the expiration of forward contract ℓ.

We compute the heuristic marginal values ∆̂n and Θ̂k
n for each period n at each

node in the binomial tree by using the input spot price value Sn at the node, forward

price F ℓ
n for n such that nℓ−1 ≤ n < nℓ, and the probability mass functions Gℓ

n

for nℓ−1 ≤ n < nℓ − 1 and Ĝℓ
nℓ−1 for n = nℓ − 1. The heuristic policy parameters

(x̂n, m̂n, q̂n) are computed based on the values of ∆̂n+1 and Θ̂k
n+1 stored at each node.

We evaluate the policies using Monte Carlo simulation and compute the expected

profits from using the heuristic by averaging the performance on the generated sample

paths. We also compute the upper bound for each sample path by solving the mixed-

integer program described in Section 2.5.2.

The operational parameters are the same as in section 2.4.1; p = 72, the physical

holding costs are zero, β = 1 and the procurement and processing capacities are set

to 5 and 3 units.

2.5.3.2 Performance of Heuristic

We consider the procurement, processing and trade operations for the firm over the

period June to October. We initialize the input spot price to its long run average

value, while the output forward prices are set to the average closing price over June

2010. Table 2.10 gives the optimal expected profits for different horizon lengths when

using the full commitment and heuristic policies, along with the gap with respect to

the upper bound.

We find that the heuristic is able to capture the option value inherent in the

commitment decision, especially for short horizon lengths, and outperforms the full

commitment policy.

As seen in section 2.4.2, the processing capacity and price volatilities had a signif-

icant impact on the performance of the full commitment policy. We investigate the

impact of varying these parameters on the performance of the heuristic.
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Table 2.10: Performance of Heuristic for Different Horizon Lengths

Horizon Length (N) Expected Profits Upper Gap (% of UB)

(Maturities Nℓ) FC Heuristic Bound (UB) FC Heuristic

10 1353.46 1417.35 1491.23 9.24% 4.95%
(5,10)
15 1950.31 1981.83 2117.66 7.90% 6.41%

(5,10,15)
20 2594.98 2565.21 2868.54 9.55% 10.58%

(5,10,15,20)

Table 2.11: Impact of Processing Capacity
(N = 10, L = 2, Nℓ = {5, 10})

Processing Expected Profits Upper Gap (% of UB)

Capacity (C) FC Heuristic Bound (UB) FC Heuristic
(as % of K)

20% 451.15 556.31 595.70 24.26% 6.61%
40% 902.30 1000.90 1050.05 14.07% 4.68%
60% 1353.46 1417.35 1491.23 9.24% 4.95%
80% 1804.61 1833.51 1914.71 5.75% 4.24%
100% 2255.76 2248.66 2324.93 2.98% 3.28%

Impact of processing capacity. As seen from section 2.4.2, the performance of

the full commitment policy deteriorates as the processing capacity becomes tight.

Table 2.11 shows the expected profits under the full commitment and heuristic policies

for different processing capacities. These numerical results are for a horizon length

of 10 periods, with two forward contracts available for the output commodity.

For the same procurement capacity, the fraction of the total profits contributed by

the output sales are lower for tighter processing capacities. As a result, it is important

to extract the full value of the option to postpone commitment. As the results in

Table 2.11 show, the heuristic captures this option value and performs well even for

tight processing capacities. In comparison, the full commitment policy has a gap as

high as 24.26% with respect to the upper bound for very tight capacities.
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Table 2.12: Impact of Price Volatility
(N = 10, L = 2, Nℓ = {5, 10})

Volatility Expected Profits Upper Gap (% of UB)

(σs, σ1, σ2) FC Heuristic Bound (UB) FC Heuristic

0.30 1338.45 1404.70 1529.48 12.49% 8.16%
0.35 1345.89 1421.64 1593.85 15.56% 10.80%
0.40 1355.89 1444.18 1672.86 18.95% 13.67%
0.45 1367.55 1457.94 1763.00 22.43% 17.30%
0.50 1380.21 1486.18 1864.14 25.96% 20.28%
0.55 1393.52 1556.54 1974.13 29.41% 21.15%

Impact of price volatilities. As price volatilities increase, we expect the value of

the options inherent in the various decisions to increase. As the results in Table 2.12

show, the value of the upper bound increases more than the expected profits under

both the policies as the price volatilities increase. The heuristic is able to capture the

option value inherent in the various decisions better than the full commitment policy,

as seen from the results in Table 2.12.

In summary, the numerical results for both, single factor as well as multi-factor,

price processes illustrate the advantage of using integrated decision making. Taking

the option like properties of the various decisions into account, even if it be through

approximations, provides a significant improvement in profits compared to myopic

heuristics such as the full-commitment policy.

2.6. Conclusion

In this chapter, we have considered the integrated procurement, processing and

trade decisions for a firm dealing in commodities and subject to procurement and

processing constraints. We solved the problem optimally and showed that the pro-

curement and processing decisions in any period are governed by price dependent in-

ventory thresholds. We developed recursive expressions to computes these thresholds

and illustrate our analytical results using commodity markets data for the soybean
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complex. Through numerical studies, we find that approximating multiple outputs

produced upon processing (e.g., soybean meal and oil) by a single, composite out-

put product is near-optimal. Integrated decision making provides significant benefits

compared to a myopic policy which considers only the benefit from processing and

trading the output immediately. The value of integrated decision making is especially

high under conditions of tight processing capacities and high price volatilities. We

also propose a computationally tractable heuristic for computing procurement and

processing decisions when commodity prices are driven by multi-factor processes.

The results in the current chapter can easily be extended to incorporate convex,

piecewise linear procurement costs and/or concave piecewise linear salvage values for

the input inventory. Further, input trade opportunities throughout the horizon can

also be easily incorporated into the analysis.

This work lays the foundation for further research in commodity processing and

trading operations. Typically, commodity processors operate networks, with procure-

ment and processing activities spread across multiple locations. For instance, the ITC

e-Choupal network has multiple procurement hubs, along with a few central processing

locations. While commodity production and distribution networks have been studied

earlier (cf., Markland (1975); Markland and Newett (1976)), these papers assume

deterministic commodity prices and no operational constraints. In Chapter 5, we ex-

tend the model in the current chapter to a network setting, incorporating stochastic

commodity prices and operational constraints. We find that the results developed in

the current chapter are useful in developing computationally tractable heuristics for

the network problem.
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2.7. Appendix: Upper Bound Calculation

The upper bound computation along a sample path ΓN is given by

HUB
N (eN , QN ; ΓN) = SNeN

HUB
n (en, Qn; ΓN) = max

qn,xn,mn∈Bn

{[
βNℓ−nF ℓ

n − hO

nℓ−n−1∑
t=0

βt

]
qn − pmn

− Snxn − hIen+1 − zn(en, qn, xn,mn,ΓN)

+ βHUB
n+1(en+1, Qn+1; ΓN)

}
for n = 1, 2, . . . , N − 1

where the dual penalty is given by

zn(en, qn, xn,mn,ΓN) = β
[
V̂n+1(en+1, Qn+1, În+1)

− EÎn

[
V̂n+1(en+1, Qn+1, În+1)

]]
= β

[
Θk
n+1(În+1)− EÎn [Θ

k
n+1(În+1)]

]
en+1

+β
[
∆̂n+1 − EÎn [∆̂n+1]

]
Qn+1

+ β[λ̂kn+1 − EÎn [λ
k
n+1]] for en+1 ∈ [(k − 1)D, kD)

Notice that the penalty function above is piecewise linear in en+1, with change in

slopes at integral multiples of D. Since the procurement and processing capacities are

integral multiples of D, we can solve the upper bound computation as a mixed-integer

linear program, where the binary integer variables identify the segment that en+1 lies

in, for each n.

Specifically, (N − (n+1))a+1 is the maximum number of segments with different

slopes in the penalty function. Further, en+1 ∈ [0, nbD] always. Therefore, in period

n we need min{nb, (N − (n + 1))a + 1} binary variables to indicate which segment

the ending input inventory lies in, in order to compute the dual penalty value at the
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corresponding inventory level. Let

κ(n) = min{nb, (N − (n+ 1))a+ 1}

akn = kD for k = 0, 1, . . . , κ(n)− 1 and aκ(n)n = nbD

Following Sherali (2001), let φ
(k,l)
n and φ

(k,r)
n be continuous variables and ykn a

binary variable for each k = 1, 2, . . . , κ(n) and n = 1, 2, . . . , N − 1. Also define

zkn =
[
Θk
n+1(În+1)− EÎn [Θ

k
n+1(În+1)]

]
kD + [λ̂kn+1 − EÎn [λ

k
n+1]]

for k = 1, 2, . . . , κ(n), for n = 1, 2, . . . , N − 1

z0n = 0 for n = 1, 2, . . . , N − 1

We can then write the upper bound maximization problem as follows

max
N−1∑
n=1

([
βNℓ−nF ℓ

n − hO

nℓ−n−1∑
t=0

βt

]
qn − pmn − Snxn − hIen+1 −

β
[
∆̂n+1 − EÎn [∆̂n+1]

]
Qn+1 − β

κ(n)∑
k=1

[zk−1
n φ(k,l)

n + zknφ
(k,r)
n ]

+ SNeN
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subject to

xn ≤ K n = 1, 2, . . . , N − 1

mn ≤ C n = 1, 2, . . . , N − 1

qn = 0 n ̸= Nℓ − 1 for ℓ ∈ {1, 2, . . . , L}

qn ≤ Qn +mn n = Nℓ − 1 for ℓ ∈ {1, 2, . . . , L}

Qn+1 = Qn +mn − qn n = 1, 2, . . . , N − 1

en+1 = en + xn −mn for n = 1, 2, . . . , N − 1

en+1 =

κ(n)∑
k=1

[ak−1
n φ(k,l)

n + aknφ
(k,r)
n ] for n = 1, 2, . . . , N − 1

φ(k,l)
n + φ(k,r)

n = ykn for k = 1, 2, . . . , κ(n),

n = 1, 2, . . . , N − 1
κ(n)∑
1

ykn = 1 for n = 1, 2, . . . , N − 1

ykn ∈ {0, 1} k = 0, 1, . . . , κ(n),

n = 1, 2, . . . , N − 1

xn,mn, qn, en+1, φ
(k,l)
n , φ(k,r)

n ≥ 0 n = 1, 2, . . . , N − 1

The above problem can then be solved using a standard mixed-integer program-

ming solver.
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Chapter 3

Dynamic Risk Management of Commodity Operations:
Model and Analysis

3.1. Introduction

Chapter 2 shows the importance of coordinating procurement, processing and

trade decisions in the face of commodity price uncertainty, to maximize expected

profits. However, many firms are interested in not just maximizing expected profits

but also managing the risk in operations, because an adverse change in commodity

prices can greatly impact the firm’s profitability and viability. As a result, firms use

a variety of operational and financial strategies, including procuring from multiple

suppliers and processing to transform the commodities. The option to transform

the commodity is especially pertinent to commodity processors, as the output and

input commodity price changes are correlated and provide natural hedges. For in-

stance, Yanglin Soybean Inc., a soybean processing firm in China faced increasing

soybean prices, but the effect of the increased input prices was offset to some extent

by increased soyoil prices, the output produced by the firm (PR Newswire, 2008).

With the growth of commodity exchanges and availability of financial derivatives on

commodities, firms can now supplement their operational hedging strategies with fi-

nancial instruments. However, misplaced hedges on commodities using these financial

instruments can also have disastrous effects. For instance, VeraSun Energy, a bio-fuel

company and one of the biggest producers of ethanol, could not take advantage of

falling corn prices because of hedges it had entered into at a time when the corn prices
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were high. A combination of the high input prices and falling ethanol prices, along

with other factors led to the company filing for bankruptcy (Mandaro, 2008).

The examples cited above underscore the need for efficient risk management strate-

gies to mitigate the loss in profitability and financial distress caused by adverse com-

modity price movements. In fact, managers cite the costs of financial distress and

high costs of external financing as some of the key drivers for risk management and

hedging (Bickel, 2006). And yet there are no agreed upon practical models for risk

management (by a firm) in a dynamic context of operational decision making. One

approach to model risk aversion treats firms as an entity or individual to whom a

utility function can be attributed. However, a firm’s risk preferences are never de-

fined in terms of a corporate utility function and thus, in a normative sense, there is

no ‘right’ corporate utility function to use. An alternate approach to model the risk

management problem for firms is to use mean-risk objective functions that represent

a tradeoff between the expected value and the cost associated with uncertainty or

variability of cash flows. Perhaps the most well known instance of such objective

functions is the mean-variance objective function, where risk is measured by the vari-

ance in profits. Another risk measure to quantify risk is the value at risk (VaR),

which is popular in the financial industry. However, measures such as variance and

VaR have drawbacks (e.g., variance penalizes both under and over performance, while

VaR is not sub-additive). Coherent risk measures, such as conditional value at risk

(CVaR), have been proposed that overcome these drawbacks.

In a multi-period setting, efficient risk management requires controlling risk in

intermediate periods in addition to controlling the risk in total payoffs at the end of

the planning horizon. For instance, grain elevators use futures contracts to reduce

the risk of falling prices at the time of delivery. However, the increased volatility and

near doubling of corn and soybean prices in 2008 led to significant margin calls on

these futures positions and put severe pressure on the working capital requirements
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for many grain elevators (Serres, 2008). Mean-risk objective functions on terminal

wealth that ensure the risk in final payoffs are minimized, but do not account for

adverse outcomes in intermediate periods in a consistent manner, may not be truly

effective when modeling risk averse decisions in a multi-period setting. Such objective

functions do not incorporate the timing of uncertainty resolution over the horizon in a

consistent manner and can lead to situations where significantly more risky positions

are taken in intermediate periods. This aspect of dynamic risk management has

not received much attention in the OM literature and we specifically focus on the

issue of time consistency in multi-period risk averse decision making in this essay.

Specifically, we model the risk averse firm’s objective by extending the single period

coherent risk measure CVaR to incorporate uncertainty resolution in a consistent

manner and control risk over the entire horizon, and not just in the terminal wealth.

We model a commodity processing firm that procures an input commodity from

the spot market and processes the commodity to produce an output commodity. At

the beginning of each period, the firm decides how much input commodity to procure

from the spot market and how much of the total available input to process, subject to

capacity constraints on procurement and processing. The firm uses forward contracts

to sell the output commodity and in each period, given the current forward prices,

the firm decides the quantity to commit for sale. All forward sale commitments

are delivered at the maturity of the forward contract. In addition to operational

decisions, the firm also makes financial trading decisions using derivative instruments

on the input commodity to manage the commodity risk.

We model the firm’s multi-period risk management problem using a proposed

time-consistent risk measure based on the conditional value at risk (CVaR). Broadly

speaking, CVaR measures the conditional expectation of the worst case profits, where

worst case profits are profits in the left tail of the distribution. However, using CVaR

of net present value of total profits does not lead to consistent decisions over time;
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i.e., optimal policies in the current period may not appear optimal when evaluated

in earlier periods (see Section 3.3 for an example). To overcome this problem and

ensure that the firm’s risk preferences are represented in a consistent manner over the

planning horizon, we extend CVaR to dynamic settings using a recursive definition

(see Section 3.4 for details of our objective function). The new objective function

is time-consistent in the sense that an optimal policy in the current period will also

be optimal when evaluated in earlier periods. Using the time-consistent objective

function, we characterize the structure of the optimal operational and financial hedg-

ing policy in the presence of capacity constraints and inventory. To summarize our

contributions and results,

1. We propose a model to capture risk aversion in a multi-period setting that is

time-consistent.

(a) Specifically, we propose a time-consistent variation of the conditional value

at risk measure to model risk aversion in a multi-period setting. While the

CVaR measure provides a specific illustration, our approach can be used

more generally to extend other coherent risk measures in a time-consistent

manner.

(b) Using numerical studies, we find that a time-consistent risk measure dom-

inates static risk measures defined on the total profits in a mean-CVaR

sense. That is, the mean-CVaR tradeoff achieved using policies for opti-

mizing a time-consistent objective function outperforms the mean-CVaR

tradeoff achieved using policies for optimizing a static risk measure on the

total profits over the horizon.

2. For the proposed time-consistent risk measure, we obtain the optimal opera-

tional and financial risk management policy. We show that

(a) The optimal procurement and processing decisions are characterized by
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price dependent ‘procure up to’ and ‘process down to’ inventory thresholds.

These thresholds are however hard to compute because of high dimension-

ality of the state space. We develop efficient heuristics to approximate

the target inventory levels. Using numerical results, we demonstrate near-

optimality of the heuristics.

(b) The optimal financial hedging decisions are a function of the ending input

inventory levels. Thus, integration of financial and operational decisions is

crucial for effective risk management.

(c) Conditional on the optimal financial trading decisions, the optimal opera-

tional decisions can be obtained as the solution to a dynamic programming

equation that does not involve the financial decisions.

The remainder of the chapter is organized as follows. In section 3.2, we review the

relevant OM literature. Section 3.3 provides an overview of different approaches to

model risk averse decision making and describes the issue of time consistency in multi-

period settings. Our time-consistent objective function based on CVaR is presented in

section 3.4, while section 3.5 describes the model and analysis of the multi-period in-

tegrated risk management problem for a commodity processor. Section 3.6 illustrates

the analytical results using numerical experiments and we conclude in section 3.7.

3.2. Previous Work

This essay spans two areas of literature. The first concerns integrated operational

and financial risk management. The second pertains to models for risk aversion; we

postpone its discussion to the next section, including identifying issues that arise in

a dynamic context. A majority of the existing literature related to frameworks of

integrated operational and financial risk management (Kleindorfer, 2008) deals with

integrating long term contracts with short term spot market procurement to manage

price and demand uncertainty in single period contexts. Kleindorfer and Wu (2003)
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review the literature on integrating B2B commodity exchanges in procurement con-

tracts. Wu and Kleindorfer (2005) and Mart́ınez-de Albéniz and Simchi-Levi (2006)

consider the optimal portfolio of contracts for a buyer who can sign option/capacity

reservation contracts with multiple suppliers and also has access to a spot market.

In contrast to these papers which consider single period models, we study dynamic

decision making in a multi-period setting. Further, risk management which is an im-

portant aspect of decision making in the current work, is not dealt with in the above

literature.

The research on multi-period integrated operational and financial hedging is fairly

limited and deals primarily with non-storable commodities. Since decisions across pe-

riods are not linked by inventory, the problem can be decomposed into single period

problems thus simplifying the analysis. For instance, Kleindorfer and Li (2005) con-

sider the multi-period risk management problem for a electricity generator using a

mean-risk objective, where the risk measure used is the value at risk (VaR). Broadly

speaking, VaR is the level of losses that is exceeded only with a small probability,

e.g., 1% (or alternately, the value below which profits fall only with a small prob-

ability). By decomposing the problem, Kleindorfer and Li show the equivalence of

the mean-VaR and mean-variance frontiers. Further, they solve the problem in an

open-loop manner, where all decisions are made at the beginning of the horizon. In

a dynamic decision making context, Zhu and Kapuscinski (2006) model operational

and financial hedging for a risk-averse multinational newsvendor exposed to exchange

rate risk, with the newsvendor maximizing an additive exponential utility function on

consumption streams. Notably, Zhu and Kapuscinski (2006) do not allow inventory

to be carried across periods, with only the financial decisions affecting income across

periods.

The papers by Kouvelis et al. (2009) and Geman and Ohana (2008) are the closest

to ours in terms of modeling the integrated risk management problem for a storable
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commodity in a multi-period context. Kouvelis et al. model the dynamic procurement

and financial trading decisions for a firm managing a storable commodity used to

satisfy uncertain demand in each period. A critical difference between our work and

Kouvelis et al. (2009) is in terms of how the firm’s objective function is modeled.

They use a mean-variance objective function, where the objective at the start of

each period is the expected profits over the remaining periods minus a multiple of

the sum of variances of profits from the current and future periods. This objective

function is not necessarily time-consistent and indeed, the authors mention that their

choice of the risk averse objective function can lead to inconsistent decisions over

time and as a result they cannot use dynamic programming techniques to solve the

multi-period problem (see Kouvelis et al., 2009, pg. 12–13). In contrast, we use

a time-consistent risk measure to model the risk averse firm’s objective function.

Fundamentally, time consistency ensures that the objective function represents the

firm’s underlying preferences in a consistent manner over time and leads to consistent

decision making, thus enabling the use of dynamic programming techniques to solve

the multi-period risk management problem. While our modeling of the objective

function is similar to Geman and Ohana (2008), they only model trading decisions

for a single commodity and their model does not include decisions to irreversibly

transform some of the commodities through processing. They do not consider capacity

constraints that play a central role in our model and analysis. Finally, in contrast to

our work, Geman and Ohana (2008) neither provide any results for the optimal policy

structure nor do they study the interaction of operational and financial decisions.

3.3. Modeling Risk Averse Decision Making

Use of utility functions to model risk averse preferences with expected utility

as a criteria for decision making is a common approach in economics. The OM

literature has often followed a similar approach; see for instance Eeckhoudt et al.

(1995); Agrawal and Seshadri (2000); Bouakiz and Sobel (1992). This approach treats
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firms as an entity or individual to whom a utility function can be attributed. Smith

(2004) notes that some of the suggested approaches to model a corporate utility

function include using the individual unit manager / decision maker’s preferences or

have the corporate leaders define a utility function for the firm as a whole, which

the employees then adopt. Finance theorists argue that a firm’s management should

maximize the benefits of the shareholders of the firm, thereby suggesting that the

firm should use the shareholders’ utility function. However, it is unlikely that even

when acting to benefit the shareholders there will be unanimous agreement between

all shareholders and maximizing shareholders’ benefit can at best place limits on the

risk preferences that inform the firm’s decision, but not yield a utility function for

the firm itself (Smith, 2004).

Corporate finance also argues that firms should only care about systematic risk,

because shareholders can diversify away any unsystematic risk (Brealey and Myers,

2003). However, managers do exhibit risk averse behavior and cite risk management

as a priority (Walls and Dyer, 1996; Bickel, 2006). The need for risk management

in corporations result from costs of financial distress, differences between cost of

external and internal financing and principal-agent problems between shareholders

and management (Bickel, 2006). An approach that is more closely aligned with the

risk management motives of avoiding or minimizing the costs of financial distress

and external financing is the use of risk measures or mean-risk models to capture

the tradeoff between expected value and risk and has its roots in the mean-variance

framework for optimal portfolio selection (Markowitz, 1952).

Since Markowitz (1952) several refinements have been proposed to capture the

mean-risk tradeoff more efficiently and overcome the drawbacks associated with the

mean-variance approach (it penalizes over- and under-performance equally and ex-

cludes stochastically dominant portfolios, for instance). In a seminal paper, Artzner

et al. (1999) proposed the theory of coherent risk measures and introduced mean-risk
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functionals that satisfy properties desirable from the perspective of intuitive decision

making. Specifically, coherent risk measures satisfy a) monotonicity, b) sub-additivity,

c) positive homogeneity and d) translation invariance. Some of the popular risk mea-

sures do not necessarily satisfy all the properties required of coherent risk measures,

e.g., VaR violates sub-additivity and variance in a mean-variance criterion violates

monotonicity.

The monotonicity and sub-additivity properties of coherent risk measures ensure

that using coherent risk measures as a risk-averse objective function is consistent with

the use of increasing, concave utility functions under the expected utility approach.

In addition, coherent risk measures are also translation invariant and positive ho-

mogenous, properties that are not necessarily true for utility functions. Translation

invariance implies that initial endowments do not alter risk preferences and hence

coherent risk measures provide a good way to quantify the risk inherent in a specific

project or the risk from specific decisions. Positive homogeneity ensures that adding

same risks together do not reduce the total risk and neither do changing the units

of measurement. For these reasons, coherent risk measures suggest themselves as de-

sirable criteria for modeling risk averse decision making at the firm level. A popular

coherent risk measure that has been used in finance is the conditional value at risk

(CVaR), a modification of VaR (e.g., Rockafellar and Uryasev, 2000). CVaR is a

downside risk measure that captures payoffs in the worst case scenarios. Generally

speaking, CVaR is equal to the conditional expectation of losses above the VaR; e.g.,

conditional expectation of highest 1% of losses (alternately, lowest 1% of profits).

Managers often express risk as only those events associated with negative outcomes

(March and Shapira, 1987) and a downside risk measure such as CVaR captures these

preferences. Increasingly, CVaR has also been used in the OM literature to model

risk averse decision making in single period contexts (e.g., Gotoh and Takano (2007);

Chen et al. (2008); Choi et al. (2009) for newsvendor problems, Tomlin and Wang
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(2005); Tomlin (2006) in the context of flexibility and supply disruptions, etc.)

Whether using utility functions or risk measures to capture risk aversion, dynamic

risk averse decision making also requires incorporating preferences over time. It is

known that using expected utility over net present value of wealth leads to a tem-

poral risk problem; i.e., it does not differentiate between alternatives that have the

same distribution of terminal wealth, but different times for uncertainty resolution

(Smith, 1998). Presumably, a risk-averse decision maker is sensitive to the timing of

uncertainty resolution, and not just the distribution of total wealth. One approach

used to overcome the temporal risk problem in the utility framework is to model

utility over consumption streams rather than incomes and allow borrowing and lend-

ing to smooth consumption across time periods. This is the approach followed for

instance in Chen et al. (2007) to model dynamic, risk averse decision making. Such

an approach requires optimization of consumption, borrowing and lending decisions

in addition to the operational decisions and other than for specific utility functions,

e.g., additive exponential utility, it is hard to solve the problem and gather insights.

Using static risk measures, i.e., single period risk measures, on the net present

value of wealth suffers from a related problem of time inconsistency. That is, the

preferences represented by the static measure on the NPV is not consistent over

time. To illustrate this, consider the following example adapted from Roorda and

Schumacher (2007).

Example 3.1. An operational investment A, e.g., inventory investment, pays off at

the end of two periods, with payoffs as shown in Figure 3.1. The payoffs are dependent

on the state of the world in periods 1 and 2, and the probabilities for the different states

of the world are as shown on the branches of the tree.

Consider a risk-averse decision maker who needs to make this investment and

whose risk aversion can be represented by CVaR at the η = 2
3
level on the final payoffs.

Broadly speaking, CV aR at the 2
3
level represents the conditional expectation of the
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Figure 3.1: Two period investment A

payoffs in the worst 2
3
states of the world. For investment A, the payoffs in the

worst 2
3
states of the world as evaluated at t = 0 are (−20,−10, 12, 14), each with an

unconditional probability of 1/2 × 1/3 = 1/6. Thus, we have CV aR at η = 2
3
equal

to 1
2/3

× (−20−10+12+14)
6

= −1. We can also evaluate CV aR for A at t = 1, conditional

on the state realized at t = 1, in a similar manner. Table 3.1 summarizes the CV aR

of A at η = 2
3
, evaluated at t = 0 and t = 1. With the default option of doing nothing

Table 3.1: CVaR calculations for A

CV aR at η = 2
3

t = 0 −1
t = 1, u 1
t = 1, d 1

(which has a CV aR = 0), the decision maker would undertake the investment only if

the CV aR value is greater than 0. The CVaR in period 0 is equal to −1. Thus, A will

be deemed unacceptable in period 0. Notice however that the CVaR in all possible

states of the world in period 1 is equal to 1. Thus, the same investment would have

been considered acceptable in all states of the world in period 1. Notice that there are

no cash flows occurring between periods 0 and 1 and there is no discounting. Thus,

using a static risk measure such as CVaR can lead to inconsistent decision making.
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3.4. A Time Consistent Objective Function

The problem of time inconsistency has been considered in the area of mathematical

finance and different notions of time consistency that a dynamic risk measure should

satisfy have been suggested (Wang (1999), Detlefsen and Scandolo (2005), Artzner

et al. (2007), Roorda and Schumacher (2007), Roorda et al. (2005) , Geman and

Ohana (2008) etc.). The basic idea underlying these notions is that the dynamic risk

measure should indicate the underlying preferences in a consistent manner over time.

That is, if the risk measure suggests that a particular stream of cashflows is preferred

in all possible states of the world in the next period, then the risk measure should

also imply the same preference in the current period as well, all other things being

the same. Following these ideas, we propose a dynamic, time-consistent risk measure

based on CVaR, to represent risk preferences in a multi-period problem.

Formally, V aRη(X), the VaR of a stochastic payoff X at a particular probability

level η is the value below which profits fall only with a probability of η (Duffie and

Pan, 1997). CV aRη(X) of a stochastic payoff X is the expectation of X, conditional

on X ≤ V aRη(X). While this definition is exact when the random variable X has a

continuous distribution and no atoms at V aRη(X), in the general case CV aRη(X) is

given by (Rockafellar and Uryasev, 2000)

CV aRη(X) = max
υ

{
υ − 1

η
E
[
(υ −X)+

]}
(3.1)

where E[·] is the expectation (the expression for CVaR above considers X to denote

profits or gains, while the definition in Rockafellar and Uryasev (2000) is based on

X denoting the losses). The maximizer υ∗ in the above problem is unique and equal

to V aRη(X) if the distribution of X has no atoms. Otherwise, the set of optimizers

is not necessarily unique, with V aRη(X) being one of the optimizers. Of course,

CV aRη(X) is still uniquely defined.
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In the definition of CV aRη(X), the probability level η represents the degree

of risk aversion, with risk aversion decreasing as η increases. For η = 1, we have

CV aR1(X) = E[X], representing risk neutrality. The stochastic payoff X can repre-

sent a single period payoff or the cumulative payoff over multiple periods. In the latter

case, CV aRη(X) represents a risk measure on the total cumulative payoff, evaluated

based on the current information available.

A dynamic risk measure ρ = (ρ1, . . . , ρN) is a sequence of risk measures on a

cashflow stream A = (A1(S1), . . . ,AN(SN)) such that ρn(A,Sn) measures the risk

associated with A, given the state Sn in period n. We follow Geman and Ohana

(2008) to define a time-consistent dynamic risk measure as follows

Definition 3.1. (Geman and Ohana, 2008) A dynamic risk measure ρ = (ρ1, ρ2, . . . , ρN)

is intrinsically time-consistent if for any two cash flow streams A = (A1,A2, . . . ,AN)

and B = (B1,B2, . . . ,BN), for all Sn
An(Sn) ≥ Bn(Sn)

ρn+1(A,Sn+1) ≥ ρn+1(B,Sn+1) ∀Sn+1 ∈ Hn+1(Sn)

⇒ ρn(A,Sn) ≥ ρn(B,Sn)

where Sn is the state in period n and Hn+1(Sn) is the set of all possible states in

period n+ 1 given that the state in period n is Sn.

The above definition implies that if a particular cash flow stream, A, is preferred

over another, B, in all possible states of the world in the next period, and the cash

flow in the current period under A is at least as much as the cash flow under B, then

A should be preferred over B in the current period also. In Example 3.1, we had

ρ = (ρ0, ρ1, ρ2), where ρn(A,Sn) = CV aR( 2
3
)

(
N∑
t=n

At(St)
∣∣∣Sn). If we take B as the

cashflow stream that has zero payoff in all periods, in all states of the world, we saw

that ρ0(A,S0) < ρ0(B,S0), while ρ1(A,S1) > ρ1(B,S1) for all S1 ∈ H1(S0). Thus,

CV aR of total cashflow over the remaining horizon is not necessarily a time-consistent
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risk measure.

We now define a dynamic version of the conditional value at risk, DCV aR(· ; η) =

(DCV aR1(· ; η1), . . . , DCV aRN(· ; ηN)) as follows

DCV aRN(A,SN ; ηn) = AN(SN) (3.2)

DCV aRn(A,Sn ; ηn) = CV aRηn

(
An(Sn)

+DCV aRn+1

( N∑
t=n+1

At(St),Sn+1; ηn+1

)∣∣∣ Sn) (3.3)

for n < N

In the above definition, the mean-risk tradeoff evaluated in period n using CV aR

is based on the sum of cashflow in the current period An and the DCV aRn+1 of the

cash flow over the remaining periods. Thus, it is the ‘risk adjusted’ value of the future

period cash flows, rather than just the value of the future cash flows, that is taken

into account when evaluating the risk over the remaining horizon. As Proposition 3.1

states, DCV aR(· η) is a time-consistent risk measure (The proofs for all results are

provided in the Appendix).

Proposition 3.1. According to Definition 3.1, the dynamic risk measure given by

equation (3.3) is time-consistent.

Before continuing, we briefly re-visit Example 3.1 to illustrate the time-consistent

measure. We have A0 = 0 and A1(S1) = 0 for S1 = u, d. We have,

DCV aR1(A,S1; 2/3) = CV aR(2/3)(A2(S2)|S1) = 1

for S1 = u, d. Also,

DCV aR0(A,S0; 2/3) = CV aR(2/3)(DCV aR1(A,S1)|S0) = 1.
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Notice that the DCV aR(·) measure accounts for the uncertainty resolved in period

1 in a consistent manner, resulting in DCV aR0(A,S0; 2/3) = 1. Thus, using a time-

consistent risk measure such as DCV aR will lead to no inconsistency in decision

making since the DCV aR in period 0 is equal to 1, thus indicating that A is deemed

acceptable in period 0 also. For the integrated operational and financial risk man-

agement problem considered here, we use DCV aR, the time-consistent risk measure

defined in equation (3.3) to model the firm’s objective.

3.5. Model Description and Analysis

We consider the integrated operational and financial risk management problem

for a commodity processor who procures, processes and trades commodities over a

finite horizon. The time periods are indexed by n = 1, . . . , N with n = 1 denoting the

first decision period. In each period n, the firm procures the input commodity from

a spot market, where Sn denotes the spot price in period n. The firm earns revenues

by processing the input and selling the output commodity (processed product) using

a forward contract, with the forward price in period n given by Fn. We assume the

delivery period for the forward contract is period N and period N − 1 is the last

period in which the firm can commit to sell the output commodity using the forward

contract. In addition to the output commodity sales, the firm can also earn revenues

by trading the input commodity with other processors. For ease of exposition, we

assume that all input commodity trading occurs at the end of the horizon, at the

trade (salvage) price of SN . Let In denote the relevant information available to the

firm at the beginning of period n regarding the various commodity prices.

On the operational side, the firm has a per-period procurement and processing

capacity restriction of K and C units respectively. The firm incurs a variable cost of

p to process one unit of input into the output commodity. For simplicity, we assume

all physical holding costs for the various commodities are negligible. We first consider

the situation when the firm uses only operational decisions, without any trading in
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the financial markets, to manage the risk. Later, in Section 3.5.3, we analyze the role

of financial hedging decisions for risk management.

3.5.1 Operational Hedging

In the current section, we focus on the optimal procurement, processing and physi-

cal commodity trade decisions to manage risk in the commodity processing operations.

The output sale commitments require physical delivery of the output commodity on

the delivery date and are hence included in the operational decisions.

At the beginning of each period n, the firm observes the input spot price, Sn,

and the output forward price, Fn, for the period. Based on the input commodity

inventory, en, and the uncommitted output commodity inventory, Qn, the firm makes

the following decisions: 1) The quantity of input commodity to procure, xn, 2) the

quantity to process, mn and 3) the quantity of the output commodity to commit to

sale against the forward contract, qn.

The uncommitted output inventory refers to the total output inventory that is in

excess (or shortfall) of the total commitments made till the beginning of period n:

i.e., Qn =
∑n−1

t=1 mt−
∑n−1

t=1 qt. It is not necessary that Qn ≥ 0, as the firm can commit

to sell more output than is available on hand as long as all the output committed

for sale against the forward contract is delivered on the delivery date specified in the

forward contract, which in our case is period N . Thus, it is not necessary that Qn ≥ 0

for all n < N . However, all commitments made over the horizon have to be satisfied

and hence we require QN ≥ 0. Further, we assume commitments once made cannot

be reneged on, i.e., qn ≥ 0 for all n.

The procurement and processing decisions in any period are subject to capacity

and inventory availability constraints and the feasible set of actions in period n is

given by An(en) where

An(en) = {(xn,mn) : 0 ≤ xn ≤ K, 0 ≤ mn ≤ min{C, en + xn}} (3.4)
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and the state transitions are given by en+1 = en+xn−mn and Qn+1 = Qn+mn− qn.

The profits realized by the firm in period n, for n ≤ N − 1, are given by

Πn(xn,mn, qn, In) = βN−nFnqn − Snxn − pmn (3.5)

where β is the discount factor. In the final period, we have

ΠN(eN , QN , IN) =

 SNeN if QN ≥ 0

−∞ otherwise
(3.6)

The profit function in equation (3.5) above recognizes revenues from output sales

at the time of commitment rather than at delivery. Since commodity sale commit-

ments are not reversible and we assume no counter party risk is present, recognizing

revenue at the time of commitment rather than at delivery is without loss of gen-

erality. As our focus in this research is on managing the commodity price risk, we

assume no counter-party risk associated with the buyer of the output commodity.

Notice that the profit function for the last period given by equation (3.6) accounts

for the fact that all output sale commitments have to be met on the delivery date for

the forward contract.

We model the risk-averse firm’s objective function by the time-consistent risk mea-

sure DCV aR(·; η), defined in equation (3.3), on the stream of discounted cashflows.

To keep the exposition simple, we assume that the probability levels η are the same

across all periods. The firm’s risk management problem in period n can then be

written as

Vn(en, Qn, In) = max
((xt,mt)∈At(et), qt≥0),

t=n,...,N−1

{
DCV aRη

n

(
N−1∑
t=n

βt−nΠt(xt,mt, qt, It) +

βN−nΠN(eN , QN , IN)

)}
(3.7)
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where we have used the short hand DCV aRη
n(·) , DCV aRn(·,Sn; ηn) to keep the

notation simple.

The fact that DCV aRη
n is a time-consistent risk measure ensures that the max-

imization problem in equation (3.7) can be solved as a stochastic dynamic program

(SDP) as stated below.

Theorem 3.1. The optimal DCV aRη
n of profits from period n till end of the horizon,

Vn(en, Qn, In) in equation (3.7), is given by the solution of the following stochastic

dynamic program

Vn(en, Qn, In) = max
(xn,mn)∈An(en,Qn), qn≥0

{
Πn(xn,mn, qn, In) +

βCV aRη
n

(
Vn+1(en+1, Qn+1, In+1)

)}
(3.8)

for n = 1, . . . , N − 1 and

VN(eN , QN , IN) =

 SNeN if QN ≥ 0

−∞ QN < 0
(3.9)

Notice that the objective function in equation (3.8) is very similar to the objective

function in SDP formulations for expected value maximization. However, there are

crucial differences. In equation (3.8), Vn+1 is the optimal value of DCV aRn+1 of cash

flows over periods n+ 1, . . . , N , conditional on In+ and the starting inventory levels.

Thus, Vn+1 incorporates the firm’s risk aversion over future cash flows and can be

thought of as a ‘risk adjusted’ value of future period cash flows. Evaluated in period

n, the ‘risk adjusted’ value of cash flows over periods n, . . . , N is itself uncertain.

The optimization problem incorporates the firm’s risk aversion in period n over the

‘risk adjusted’ value of future cash flows through the CV aRη
n term. As mentioned

earlier, varying the value of η varies the level of risk aversion and for η = 1, the above
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problem is the same as expected value maximization.

While equation (3.8) enables us to use the tools developed for SDP in the expected

value maximization context to analyze and solve the risk-averse problem, the analysis

is significantly more complex because CV aRη
n involves only the left tail of the distri-

bution of cash flows. Nevertheless, we can establish a basic concavity property of the

value function. Concavity implies that there exists an optimal decision, (x∗n,m
∗
n, q

∗
n),

for each starting state (en, Qn, In), in each period n.

Lemma 3.1. For all n ≤ N , the value function Vn(en, Qn, In) is concave in (en, Qn)

for each In and increasing in en and Qn.

In computations, it is often useful to represent the evolution of the prices as a

discrete process, e.g., as lattice models. Such discrete price models have been used for

instance by Secomandi (2010b) and Jaillet et al. (2004) in the context of risk-neutral

commodity trading and option valuation problems. Further, the qualitative insights

obtained by considering discrete price processes will hold for the general processes as

well. To gain more insights about the dynamic risk management decisions, we restrict

attention to the situation where the price processes follow a discrete distribution and

the following assumption holds for the remainder of this chapter.

Assumption 3.1. (Finite price sets). In each period n, the set of possible commodity

prices is finite.

The above assumption implies that in each period n, the random variable In+1,

conditional on In, has a discrete probability distribution for all n < N . Let Mn =(
I1
n, . . . , IMn

n

)
denote the set of possible realizations of In and Mn = |Mn| be the

number of possible realizations for n = 1, 2, . . . , N − 1, N . We use the shorthand

notation V m
n (en, Qn) , Vn(en, Qn, Imn ) to denote the value function for a specific

realization of Imn ∈ Mn, while retaining Vn(·, ·, In) to denote the value function for

a general In. Also, let CV aRm
n (·) denote CV aRn(·|Imn ) (we have suppressed η, the

level at which the CVaR is calculated, for ease of notation).
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When prices belong to a finite set, equation (3.6) can be modified to

ΠN(eN , QN , IN) =

 SNeN if QN ≥ 0

ΓQN if QN < 0

where Γ > 0 is sufficiently large to ensure that QN ≥ 0 under an optimal policy.

For instance, we could choose Γ to be a value larger than the maximum possible

output forward price across all periods. As a result of this modification, equation

(3.9) becomes

VN(eN , QN , IN) =

 SNeN if QN ≥ 0

ΓQN QN < 0
(3.10)

in the case of discrete prices (there is no change to equation (3.8)). Theorem 3.2

establishes an additional property of the value function under Assumption 3.1.

Theorem 3.2. Suppose Assumption 3.1 holds. Then, the value function V l
n(en, Qn)

is piecewise linear and continuous in (en, Qn) for each I ln ∈ Mn.

Consider the commitment decision, qn. Recall that the firm can potentially over-

commit; i.e., have qn > Qn +mn in any period n < N − 1 as long as it ensures that

QN ≥ 0, as implied by equation (3.10). The next lemma proves that under mild

restrictions on the output forward price process, it is never optimal to commit more

than the current output inventory.

Lemma 3.2. If the output forward prices are unbiased, i.e., EIn [Fn+1] = Fn, then the

optimal commitment quantity in any period is limited by the available uncommitted

output inventory. That is, q∗n ≤ [Qn +m∗
n]

+.

The firm has to satisfy all output commitments before the end of the planning

horizon. Thus, any over-commitment made in period n has to be satisfied by pro-

cessing (and possibly procuring,) additional input in the future periods. Further, any
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over-commitment in the current period also means a forgone commitment opportunity

in the future. Lemma 3.2 states that the DCV aR of satisfying the over-commitment

in terms of the cost of meeting the commitment and/or the forgone future commit-

ment opportunities is higher than the forward price earned by committing the extra

unit. Under an optimal policy, we will never have a situation where Qn < 0 for any

n.

In general, the optimal procurement, processing and commitment decisions will

depend on each other and the starting inventory levels in a non-trivial fashion. For

instance, concavity of CV aRl
n(Vn+1) in Qn+1 implies that there exists a target output

inventory level Ql

n+1
≥ 0 such that q∗n = (Qn +mn − Ql

n+1
)+ for a given realization

I ln. However, this target output inventory level is not necessarily independent of en+1.

The manner in which Ql

n+1
changes with en+1 will depend on the joint evolution of

the input and output price processes. If the commodity prices satisfy the conditions

of Assumption 3.2 below, we can obtain more insights into the optimal decisions.

Assumption 3.2. For every period n < N , (a) the distribution of Fn+1 conditional

on the forward price Fn realized in period n stochastically increases in Fn; (b) the

output forward prices are unbiased, i.e., En[Fn+1] = Fn.

The two conditions stated in Assumption 3.2 are quite natural. In particular,

part (a) of the assumption implies that the expected output forward price in the next

period is increasing in the output forward price realized in the current period. Well

known models of commodity prices such as the mean-reverting model or geometric

Brownian motion models satisfy this condition. The second condition implies that

the firm has no speculative motive to hold the output inventory. Under these condi-

tions, Lemma 3.3 shows that it is optimal for the firm to commit all available output

inventory in any period.

Lemma 3.3. If the output forward prices satisfy the conditions in Assumption 3.2,

then it is optimal to commit all the available output inventory. That is, q∗n = Qn+m
∗
n
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is an optimal solution.

The above result implies that there always exists an optimal policy where all

available output inventory is committed. Under such a policy, we will always have

Qn = 0 and further, qn = mn for all n. Restricting our attention to only such policies,

we do not need to consider the commitment and processing decisions separately.

Further, we do not need to carry the output inventory as a state variable since Qn = 0

for all n under such an optimal policy. We can write the SDP formulation in equation

(3.8) as

V l
n(en) = max

(xn,mn)∈An(en)

{
(βN−nF l

n − p)mn − Slnxn

+ βCV aRl
n

(
Vn+1(en+1, In+1)

)}
(3.11)

for each I ln ∈ Mn.

By Theorem 3.2, V l
n(en) is piecewise linear and concave in en for each I ln ∈ Mn,

for all n. As a result, the function H l
n(en+1) , βCV aRl

n(Vn+1(en+1, In+1)) is also

piecewise linear and concave in en+1 for all n < N . We use the piecewise linear

nature of the value functions to characterize the optimal procurement and processing

decisions next.

Let 0 = bln(0) < bln(1) < . . . < bln(k) < bln(k + 1) < . . . < bln(κ(l)) <∞ denote the

break points for H l
n(en+1); these are the points at which there is a change in slope of

H l
n(en+1). As the number of possible price realizations are finite in each period, we

can use an induction argument to prove that both the number of break points κ(l)+1

as well as the magnitude bln(κ(l)) is finite. We can express the ending input inventory

for period n in terms of these break points, enabling us to write the optimization
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problem in equation (3.11) as a linear program. To see this, for a given en+1, define

δeln+1(k) =


0 if en+1 ≤ bln(k − 1)

en+1 − bln(k − 1) if bln(k − 1) < en+1 ≤ bln(k)

gln(k) if bln(k) < en+1

(3.12)

for k = 1, 2, . . . , κ(l), where gln(k) = bln(k)− bln(k − 1) and

δeln+1(κ(l) + 1) =

 0 if en+1 ≤ bln(κ(l))

en+1 − bln(κ(l)) if bln(κ(l)) < en+1

(3.13)

We can write en+1 =
∑κ(l)+1

k=1 δeln+1(k) and

H l
n(en+1) = H l

n(0) +

κ(l)+1∑
k=1

Υl
n(k)δe

l
n+1(k) (3.14)

where

Υl
n(k) =

H l
n(b

l
n(k))−H l

n(b
l
n(k − 1))

gln(k)
(3.15)

for k = 1, 2, . . . , κ(l) and Υl
n(κ(l) + 1) is the slope of H l

n for en+1 > bln(κ(l)). By

concavity of H l
n(en+1), we have Υl

n(k + 1) < Υl
n(k) for all k ≤ κ(l) + 1. As a result,
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we can write the problem in equation (3.11) as a linear program

V l
n(en) = max

(βN−nF l
n − p)mn − Slnxn

+H l
n(0) +

κ(l)+1∑
k=1

Υl
n(k)δe

m
n+1(k)

(3.16)

subject to

0 ≤ xn ≤ K, 0 ≤ mn ≤ C

0 ≤ δeln+1(k) ≤ gln(k) for k = 1, . . . , κ(l) and

0 ≤ δeln+1(κ(l) + 1)
κ(l)+1∑
k=1

δeln+1(k) = en + xn −mn

To characterize the optimal solution for the above linear program, we define bn(l)

and bn(l) as follows

bn(l) =


bln(k) if ∃ k ≤ κ(l) s.t. Υl

n(k) > βN−nF l
n − p ≥ Υl

n(k + 1)

0 if Υl
n(1) ≤ βN−nF l

n − p

∞ if Υl
n(κ(l) + 1) > βN−nF l

n − p

(3.17)

bn(l) =


bln(k) if ∃ k ≤ κ(l) s.t. Υl

n(k) > Sln ≥ Υl
n(k + 1)

0 if Υl
n(1) ≤ Sln

∞ if Υl
n(κ(l) + 1) > Sln

(3.18)

The optimal procurement and processing policy is then given by the following

proposition.

Proposition 3.2. In any period n, for a realization I ln ∈ Mn of the prices, there exist

two input inventory levels, bn(l) and bn(l) given by equations (3.17) and (3.18) re-

spectively, such that the optimal procurement and processing quantities (x∗n(l),m
∗
n(l))
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are given by

x∗n(l) =

 min{K, (bn(l)− en)
+} if bn(l) ≤ bn(l)

min{K, (bn(l) + C − en)
+} if bn(l) > bn(l)

(3.19)

m∗
n(l) =

 min{C, (en − bn(l))
+} if bn(l) ≤ bn(l)

min{C, (en +K − bn(l))
+} if bn(l) > bn(l)

(3.20)

The quantities bn(l) and bn(l) represent input inventory levels above which the

marginal risk-adjusted value-to-go is less than the processing margin βN−nFn−p and

the spot price Sn respectively. When Sn ≥ βN−nFn − p, we have bn(l) ≤ bn(l) and

the starting input inventory en can be separated into three regions: a) 0 ≤ en < bn(l)

where it is optimal to procure, b) bn(l) ≤ en ≤ bn(l) where it is optimal to do nothing

and c) en > bn(l) where it is optimal to process. When bn(l) > bn(l), there is value

from procuring and processing the input immediately since Sn < βN−nFn − p. In

this case, for input inventory levels en ≥ bn(l) it is optimal for at least one of the

activities, procurement and processing, to be up to capacity.

Determining the target inventory levels requires knowledge of the break points

and slopes of H l
n(·) = βCV aRl

n(Vn+1(·, ·)). Since CV aR is not a linear operator, it is

possible for the number of break points for H l
n(·) to be more than the total number

of break points of V m
n+1. Further, it is not necessary that H l

n(·) has the same set of

break points for all I ln ∈ Mn. These facts make the computation of V m
n complicated,

in spite of the piecewise linear nature of the function. In the next section, we describe

an approximation to the value function by restricting the set of break points of H l
n(·)

to be no more than the set of break points of the approximation to Vn+1.

3.5.2 Approximating the Value Function

We define piecewise linear, concave approximations to V m
t for each m ≤ Mt, for

each t = 1, . . . , N with the objective of ensuring that the break points for these
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approximate value functions can be determined in a simple and systematic manner.

To this end, let V̂ m
t denote the approximate value function such that V̂ m

t ≤ V m
t for

all m, for all t. Starting with

V̂ l
N(eN) = SlNeN for each I lN ∈ MN (3.21)

we define V̂ m
n in a recursive manner.

Let Bmn+1 denote the set of break points of V̂ m
n+1. Then, Bn+1 =

Mn+1∪
m=1

Bmn+1 is the

set of all break points of V̂n+1. Let K be the number of elements in Bn+1 and without

loss of generality, assume the elements of Bn+1 are in ascending order. Further, let

Bn+1(k) denote the kth element of Bn+1 and set Bn+1(0) = 0. For each l ≤ Mn, we

define Ĥ l
n, a piecewise linear and concave function with break points in the set Bn+1

and slope Υ̂l
n(k) between [Bn+1(k − 1),Bn+1(k)) as follows.

We set H l
n(Bn+1(k)) = βCV aRl

n

(
V̂n+1(Bn+1(k), In+1)

)
for each k, where k =

0, . . . ,K. The slope between [Bn+1(k − 1),Bn+1(k)) is given by

Υ̂l
n(k) =

Ĥ l
n (Bn+1(k))− Ĥ l

n (Bn+1(k − 1))

Bn+1(k)− Bn+1(k − 1)

for k = 1, . . . ,K and Υ̂l
n(K+1) = βN−nDCV aRl

n(SN). To complete the specification,

we set

Ĥ l
n(en+1) =



H l
n(Bn+1(k − 1))

+Υ̂l
n(k)× [en+1 − Bn+1(k − 1)] for en+1 ∈ [Bn+1(k − 1),

Bn+1(k))

and k ≤ K

H l
n(Bn+1(K))

+Υ̂l
n(K + 1)× [en+1 − Bn+1(K)] for en+1 ≥ Bn+1(K)

(3.22)
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and define V̂ l
n as

V̂ l
n(en) = max

0≤xn≤K,
0≤mn≤C,

0≤en+1=en+x−m

{
[βN−nF l

n − p]m− Slnx+ Ĥ l
n(en+1)

}
(3.23)

Bn+1(0) Bn+1(2) Bn+1(K)Bn+1(1)

CV aR
l
n
(V̂n+1(en+1))

Ĥ
l
n
(en+1)

. . .
en+1

Figure 3.2: H l
n(en+1) and βCV aR

l
n(V̂n+1(en+1))

Notice that equation (3.22) coincides with βCV aRl
n(V̂n+1) for en+1 ∈ Bn+1. For

en+1 not coinciding with the break points, H l
n(en+1) is a linear interpolation of

the values of βCV aRl
n(V̂n+1) at the break points and therefore a lower bound on

βCV aRl
n(V̂n+1) (see Figure 3.2). As a result, V̂ l

n is a lower bound on V l
n for each

l ≤Mn. The next theorem states that the set of break points of V̂ l
n are integral mul-

tiples of the greatest common divisor of the processing and procurement capacities.

Theorem 3.3. Let D be the greatest common divisor of the procurement and pro-

cessing capacities C and K such that C = aD and K = bD where a and b are positive

integers. Then Bln, the set of break points of V̂ l
n, is the set of integer multiples of D

such that Bln = {0, D, . . . , [N − n]a×D} for each l ≤Mn, for each n = 1, . . . , N .

By Theorem 3.3, the break points for each V̂ l
n occur only at integral multiples of

D. This greatly simplifies the computation of the approximate value function and

we can use known results to obtain recursive expressions to compute the slopes of
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V̂ l
n between the break points (see Nascimento and Powell, 2009, proposition 2.1) and

thereby obtain the heuristic operational policy. We will test the performance of this

heuristic policy numerically in Section 3.6.2.

3.5.3 Role of Financial Instruments

As discussed in the introduction and motivation for this research, the growth of

commodity exchanges provides firms with additional options to manage the risk from

commodity procurement and processing operations. For instance, commodity futures

are used extensively by oilseed processors and grain elevators to manage risk in their

operations (see Soyatech, 2008; Plato, 2001, for instance). In this section, we consider

a firm that maximizes the DCV aR of cash flows over the horizon where the cash flows

are a result of both operational and financial activities. Thus, the firm’s problem in

each period n is still described as in equation (3.7). However, the profits in each

period Πn now include the proceeds from financial trading activity.

In the problem considered here, all output inventory is traded using forward con-

tracts and no counter party risks are assumed. If well traded financial instruments

exist for the output commodity, it is possible to perfectly replicate the revenues from

output sale commitments and the firm can completely hedge the risk from the output

commodity. For instance, when interest rates and commodity price changes are not

correlated, the forward prices will coincide with traded futures prices for the commod-

ity (see Hull, 1997, Chap. 3). On the other hand, the input commodity is procured

from local spot markets. Further, any input inventory left at the end of the horizon

is salvaged / traded. While the spot market and salvage prices may be correlated

with the prices of financial derivatives on the input commodity, they are usually not

perfectly correlated. Thus, it is of considerable interest to analyze how the firm can

use the financial instruments for the input commodity, along with its operational de-

cisions to manage the commodity risk. For the rest of the section, we shall restrict

attention to the set of financial instruments available for the input commodity.
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Let j = 1, 2, . . . , J index the financial instruments available for the input com-

modity and Hn = (H1n, . . . , HJn) indicate the firm’s position in these instruments at

the beginning of period n. We assume that all of the financial positions of the firm

are marked to market in each period; that is, at the end of each period the loss or gain

in the value of the firm’s financial position is assessed and the value of the financial

portfolio reset to the current period value (see Hull, 1997, Chap. 2). Thus, without

loss of generality, we assume that the firm liquidates its financial positions each period

and decides on the positions for the next period. Let Θn = (θ1n, θ2n, . . . , θJn) denote

the vector of payoffs for these financial instruments in period n (For example, the

payoff in period n on a futures contract would be equal to Kn − Kn−1

β
, where Kn is

the futures price in period n). Thus, the payoff from the financial trading in period

n is equal to
∑J

j=1 θjnHjn = ΘT
nHn. We can write the firm’s optimization problem as

V l
n(en,Hn) = max

(xn,mn)∈An(en), Hn+1

{
(βN−nF l

n − p)mn − Slnxn + (Θl
n)

THn

+ βCV aRl
n

(
Vn+1(en+1,Hn+1, In+1)

)}

for n < N

V l
N(eN ,HN) = SlNeN + (Θl

N)
THN

for each I ln ∈ Mn.

Using an induction argument, we can show that V l
n(en,Hn) is separable in en and

Hn and can be written as V l
n(en,Hn) = (Θl

n)
THn + U l(en), where

U l
n(en) , Un(en, I ln) = max

(xn,mn∈An(en)

{
(βN−nF l

n − p)mn − Slnxn

+max
Hn+1

{
βCV aRl

n

(
ΘT
n+1Hn+1 + Un+1(en+1, In+1)

)}}
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and U l
N(eN) , UN(eN , I lN) = SlNeN .

The next theorem states for each In ∈ Mn, conditional on the optimal financial

hedging decisions, U l
n(en) can be computed without knowing the optimal hedging

decision, H∗
n+1, explicitly.

Theorem 3.4. The optimal procurement and processing decisions, conditional on op-

timal financial hedging decisions being made, are given by the solution to the following

SDP:

U l
n(en) = max

(xn,mn)∈An(en)

{
(βN−nF l

n − p)mn − Slnxn + βCln(en+1)
}

(3.24)

where

Cln(e) = min
ψ

Mn+1∑
m=1

ψmUm
n+1(e) (3.25)

subject to
Mn+1∑
m=1

ψm = 1, 0 ≤ ψm ≤ p(l,m)

η
for m = 1, . . . ,Mn+1 (3.26)

Mn+1∑
m=1

ψmθmj(n+1) = 0 for j = 1, . . . , J (3.27)

and p(l,m) = P{In+1 = Imn+1|In = I ln}, the transition probability from I ln to Imn+1.

The SDP in equation (3.24) involves Cln, which is the result of financial trading

decisions. However, calculating Cln does not require knowledge of the financial trading

decisions, but only knowledge of the set of financial instruments traded. This allows

for a sequential determination of the optimal operational and financial decisions in the

following sense. For a given realization of In and starting input inventory level en, the

firm can determine the optimal procurement and processing decisions as a solution to

equation (3.24). The firm can then solve equation (3.25) for the resulting ending input

inventory and obtain the optimal position in financial instrument j as the dual variable

83



to the jth constraint in (3.27). While information exchange between operational and

financial trading divisions is necessary for efficient risk management, it is sufficient

that operations only needs to know the set of financial instruments traded, and the

financial trading division only needs to know the ending input inventory.

3.6. Numerical Study

In this section, we illustrate the analytical results developed in Section 3.5 through

numerical experiments. The main goals of the numerical experiments are to 1) study

the performance of the heuristic developed in Section 3.5.2, 2) illustrate the benefit

of consistent decision making by comparing the performance of a time-consistent risk

measure with that of static risk measure on the terminal wealth and 3) quantify the

benefit of integrated operational and financial hedging compared to only operational

hedging.

3.6.1 Implementation

We model the input spot price as a single factor, mean-reverting process as in

Schwartz (1997), while the output forward price is modeled as a driftless geometric

Brownian motion with exponentially decreasing volatility (consistent with a mean-

reverting price process for the spot price). Specifically, Si(t), the spot price of the

input at time t is modeled as lnSi(t) = χi(t) + µ(t), where χi(t) is the logarithm

of the deseasonalized price and µ(t) is a deterministic factor which captures the

seasonality in spot prices. The deseasonalized price χi(t) follows a mean-reverting

process given by dχi(t) = κi(ξi − χi(t))dt + σidWi(t) where κi is the mean-reversion

coefficient, ξi is the long run log price level, σi is the volatility and dWi(t) is the

increment of a standard Brownian motion. The output forward price F (t, T ) is given

by F (t, T ) = eµf (T )F̂ (t, T ) where µf (t) is a deterministic factor to capture the sea-

sonality in output prices and F̂ (t, T ) is the deseasonalized output forward price with

dynamics dF̂ (t,T )

F̂ (t,T )
= σfe

−κf (T−t)dWf (t). The Brownian motion increments underlying
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the input and output prices have a constant correlation, ρ. We discretize the input

spot and output forward prices and represent the joint evolution of the prices as

a multi-dimensional, recombining binomial tree (cf., Peterson and Stapleton (2002)

for details on approximating the joint evolution of correlated price processes). The

parameters underlying the dynamics of the price processes were estimated based on

the soybean, soymeal and soyoil futures prices information for contracts traded on

the Chicago Board of Trade (CBOT). For the purposes of the numerical study, we

model a single composite output, instead of two individual outputs - meal and oil.

The parameters for the composite output are estimated by combining the prices of

the soymeal and oil in the proportion in which they are produced upon processing

one unit of the input commodity. Such approximations of multiple commodities as

a single, composite product have been used in the context of valuing basket options

(see Borovkova et al., 2007, for instance) and are sufficient to illustrate the main goals

of the numerical study, namely the benefit of time-consistent decision making. The

estimated parameters for the price processes of the input and output commodity are

given in Table 3.2.

For all the numerical studies, we set the variable cost of processing p to equal 72

cents / bushel, which corresponds to about 35% of the gross margin from processing

one bushel of soybean, based on the long run average prices of the three commodities.

This value of the processing cost is close to the average processing costs estimated

for the US soybean processing industry (Soyatech, 2008). The procurement and

processing capacitiesK and C, were set to 5 and 3 units respectively. These capacities

can be considered to be in multiples of bushels, e.g., million bushels. We assume all

holding costs are negligible and normalize them to zero, and no discounting, i.e.,

β = 1.

3.6.2 Performance of Heuristic
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Table 3.2: Price Process Parameters

Input Output

Mean-Reversion Coeff κ 0.229 0.5348
Volatility σ 0.244 0.4360

Longrun Log level ξ 6.738

Seasonality Factor eµ(t)

Jan 0.992 0.988
Feb 0.992 0.988
Mar 0.998 0.993
Apr 0.998 0.993
May 1.000 0.995
Jun 1.000 0.995
Jul 1.017 1.037
Aug 1.010 1.013
Sep 0.991 1.000
Oct 0.991 0.987
Nov 0.989 0.987
Dec 0.989 0.984

The heuristic described in Section 3.5.2 is based on approximating the optimal

value-to-go function by a piecewise linear, concave function with breaks at integral

multiples of D. The approximation helps to make the computation tractable by

ensuring that the break points of V̂n for all n occur only at integral multiples of D.

Notice that the statement of Theorem 3.3 will still be true if the optimal value-to-

go function was approximated by a piecewise linear, concave function with breaks

at integral multiples of D/2m, where m is any positive integer; i.e., following the

approximation procedure will ensure that the break points of V̂n for all n will occur

only at integral multiples of D/2m. As m increases, the approximation will capture

all the break points in the optimal value function and the heuristic value computed

using the approximation will converge to the optimal value as m→ ∞.

We measure the incremental improvement in the heuristic value as m increases.

That is, let LBη
n(m) be the DCV aR value of total profits at the η level for a n

period problem when using an approximation with break points at integral multiples
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Figure 3.3: Performance of the heuristic: Incremental improvement as number of
break points increases

of D/2m for m = 0, 1, . . . . Then, the % incremental improvement is measured as

LBη
n(m)−LBη

n(m−1)
LBη

n(m−1)
× 100 for m = 1, 2, . . . . Figure 3.3 illustrates the % incremental

improvement for different η levels for horizon lengths of 10 and 20 periods. As seen

in Figure 3.3, the incremental improvement for m ≥ 4 is negligible for all η values

and horizon lengths, especially longer horizon lengths. Notice that D/64 ≈ 0.015 is

typical of the step size that may be used when discretizing the inventory values to

solve the problem optimally. Thus, we can use the approximation with break points

at D/8 or D/16 with very little loss in optimality and much less computational

burden (the computational times for D/8 and D/16 are roughly 15% to 20% of the

computational time using a step size of D/64). While we do not report it, we observe
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similar behavior for other horizon lengths and η values, illustrating that the heuristics

are near-optimal for sufficiently small values of m.

3.6.3 Does Time Consistency Matter?

In this section, we compare the performance of a time-consistent risk measure

such as DCV aR with that of a static risk measure on the total profits, such as

CV aRη. In order to keep the comparison meaningful, we look at the trade-off be-

tween the expected terminal wealth and CVaR of terminal wealth when different

objective functions are used for decision making. More precisely, we calculate the

distribution of terminal wealth using the policies generated when the decision maker

is maximizing DCV aRη and CV aRη of total profits respectively, for different values

of η. One of the motivations for using a time-consistent risk measure was also to

manage the risk over the entire horizon, and not just the risk in total payoffs. We

consider the distribution of the lowest accumulated profits at any point in the horizon

(with negative values representing losses), Wmin, using the policies generated when

DCV aRη and CV aRη objective functions are used. Since CV aRη of total profits is

not a time-consistent objective function, we need to consider two situations when the

decision maker maximizes CV aRη of total profits: 1) a commitment strategy where

the decision maker commits to following the optimal policy determined at the begin-

ning of the horizon for all periods and 2) a re-evaluation strategy when the decision

maker maximizes CV aRη of total profits over the remaining horizon in each period

and implements the optimal decision for the current period.

We compare the performance of the different strategies when the initial margin

from processing and committing to sell is positive (Figure 3.4), and when it is zero

(Figure 3.5). The tradeoff between expected total profits and CV aRα of total profits

is generated by computing the distribution of total profits under each strategy for

different values of η, and computing the expectation and CV aRα, for different values

of α. The distribution of minimum wealth over the entire horizon is also computed
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under each strategy for different values of η. Figures 3.4 and 3.5 show the trade-off

between the expected total profits and CV aRα of total profits for α = 0.10 and the

distribution of minimum wealth over the horizon for policies generated with η = 0.25.

We see that the time-consistent risk measure dominates the others in the Mean-

CVaR sense (Figure 3.4) and distribution of minimum wealth over the horizon (Fig-

ure 3.5). While we do not report it here, similar results were obtained when the

Mean-CVaR tradeoff of total profits were evaluated for different values of α and the

distribution of minimum wealth generated for different values of η were compared.

This suggests that the firm can achieve a better risk-return tradeoff in terminal pay-

offs as well as better risk control over the entire horizon by using time-consistent risk

measures.

3.6.4 Benefits of Financial Hedging

We evaluate the benefit of integrating financial trading, in addition to operational

decisions, as part of the risk management process. We consider a single financial

instrument, a futures contract with maturity at the end of the horizon, and illustrate

the benefits of trading the futures contract. Clearly, having the additional option to

trade the futures instrument will improve the DCV aR of total profits. Intuitively,

using the financial instrument to hedge uncertainty in future period cash flows should

also enable the firm to make operational decisions that will maximize the expected

value of total profits.

Figure 3.6 shows the tradeoff between the expected total profits and the DCV aRα

of total profits for α = 0.05 and α = 0.10 with and without financial trading. As seen

in the figure, integrating financial trading as part of the risk management strategy

clearly has benefits for the firm in terms of increased expected profits for the same

amount of risk undertaken.

3.7. Conclusions
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Figure 3.4: Role of Time Consistency: Performance of different risk-averse objective
functions when initial processing margin is positive

In this chapter, we have considered the dynamic operational and financial risk

management for a commodity processing firm. We proposed a model to capture the

firm’s risk aversion using a time consistent, dynamic risk measure based on CVaR.

We characterized the optimal operational policies and showed that the procurement

and processing decisions in any period are governed by price dependent ‘procure up

to’ and ‘process down to’ input inventory thresholds. Further, we showed that in

the presence of optimal financial hedging, these thresholds can be obtained without

knowing the details of the financial hedging decisions themselves. We developed an
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Figure 3.5: Role of Time Consistency: Performance of different risk-averse objective
functions when initial processing margin is zero

efficient heuristic to compute the optimal operational and financial decisions and using

numerical studies showed that these heuristics are near optimal. Using numerical

studies, we showed that using the optimal policies obtained from a time consistent

objective function provide a better mean-CVaR tradeoff for the total profits, compared

to those obtained when using the CVaR of the total profits as the objective function.

In addition, we found that using a time consistent risk measure also minimizes the

probability of extreme losses over the entire horizon.

Our work is one of the few early attempts to model the dynamic risk management
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Figure 3.6: Value of Financial Hedging: Mean-DCVaR profiles of total profits with
and without financial hedging

problem for firms dealing with storable commodities. While we have considered a firm

that maximizes a dynamic risk measure, many commodity trading and processing

firms think of risk control in terms of constraints. That is, they are interested in

maximizing expected profits over the horizon, while imposing limits on the total

risk that can be taken, where risk is measured using a risk measure such as CVaR

or variance. This is the approach taken in Kleindorfer and Li (2005), for instance.

Exploring the issue of time consistency in such dynamic risk constrained optimization

problems will be an interesting area for future research. Further, the context of the

problem can be expanded to include multiple input / output commodity sets where

the firm has a choice to decide which input to process or what output to produce.
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3.8. Appendix: Proofs of Theorems and Lemmas

Proof of Proposition 3.1. Suppose A and B are two cash flow streams such that

An(Sn) ≥ Bn(Sn) and DCV aRn+1 (A,Sn+1 ; ηn+1) ≥ DCV aRn+1 (B,Sn+1 ; ηn+1) for

all Sn+1 ∈ Hn+1(Sn) Then, we have

DCV aRn (A,Sn ; ηn) = CV aRη
n

(
An(Sn) +DCV aRn+1 (A,Sn+1 ; ηn+1) |Sn

)
≥ CV aRη

n

(
Bn(Sn) +DCV aRn+1 (B,Sn+1 ; ηn+1) |Sn

)

where the inequality follows from the fact that CV aRη is a coherent risk measure and

therefore monotonic. Notice that

CV aRη
n

(
Bn(Sn) +DCV aRn+1 (B,Sn+1 ; ηn+1) |Sn

)
= DCV aRn (B,Sn ; ηn) .

Thus, DCV aR(·; η) given by equation (3.3) is time consistent.

Proof of Theorem 3.1. From equation (3.7) and the definition of DCV aRη
n given
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in equation (3.3), we have

Vn (en, Qn, In)

= max
((xt,mt,qt)∈At(et,Qt)),

t=n,...,N−1

{
CV aRη

n

(
Πn(xn,mn, qn, In)

+ DCV aRη
n+1

(
N∑

t=n+1

βt−nΠt(xt,mt, qt, It)

))}

= max
((xt,mt,qt)∈At(et,Qt)),

t=n,...,N−1

{
Πn(xn,mn, qn, In) + CV aRη

n

(

βDCV aRη
n+1

(
N∑

t=n+1

βt−(n+1)Πt(xt,mt, qt, It)

))}

= max
(xn,mn,qn)∈An(en,Qn)

{
Πn(xn,mn, qn, In) +

max
((xt,mt,qt)∈At(et,Qt)),

t=n+1,...,N−1

{
βCV aRη

n

(
DCV aRη

n+1

(
N∑

t=n+1

βt−(n+1)Πt(xt,mt, qt, It)

))


= max
(xn,mn,qn)∈An(en,Qn)

{
Πn(xn,mn, qn, In) +

βCV aRη
n max

((xt,mt,qt)∈At(et,Qt)),
t=n+1,...,N−1{

DCV aRη
n+1

(
N∑

t=n+1

βt−(n+1)Πt(xt,mt, qt, It)

)})}

= max
(xn,mn,qn)∈An(en,Qn)

{
Πn(xn,mn, qn, In)

+ βCV aRη
n

(
Vn+1(en+1, Qn+1, In+1)

)}

The second equality follows from the fact that the CV aR is a coherent risk measure
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and therefore translation invariant and Π(qn, xn, In) is known with certainty in period

n. The interchange between max and CV aRη operations in the fourth step is valid

because CV aRη is monotonic. Thus, we can write the optimization problem as a

stochastic dynamic program.

Proof of Lemma 3.1. The proof follows from a standard induction argument. The

statement is true for n = N . Suppose it is true for all t = n+ 1, . . . , N . The set

{
(en, Qn, xn,mn, qn) : en ∈ R+, Qn ∈ R, qn ≥ 0, (xn,mn) ∈ An(en)

}
is convex. Further, since CV aRη is a coherent risk measure, it is concave and there-

fore the maximand in equation (3.8) is concave in (xn,mn, qn, en, Qn). Thus, from

Proposition B-4 in Heyman and Sobel (1984), Vn(en, Qn, In) is concave in (en, Qn)

for each In. The increasing part is straightforward to prove using similar induction

arguments.

We state and prove a lemma that will be used in many of the subsequent proofs.

Lemma 3.8.1. For a random variable X with finite support X = (X1, . . . , XM), we

have

CV aRη(X) = min
ψ

M∑
m=1

ψmXm (3.28)

s.t. 0 ≤ ψm ≤ pm

η
for all m,

M∑
m=1

ψm = 1

where pm = P {X = Xm} for each m.

Proof. From equation (3.1), we have CV aRη(X) = maxυ

{
υ − 1

η
E [(υ −X)+]

}
which
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can be written as the following linear program when X has finite support.

CV aRη(X) = max
υ,y

{
υ − 1

η

M∑
m=1

pmym

}

s.t. ym ≥ υ −Xm, ym ≥ 0 for all m

Writing the dual of the above linear program, where ψm is the dual variable corre-

sponding to the mth constraint, we have

CV aRη(X) = min
ψ

M∑
m=1

ψmXm

s.t. 0 ≤ ψm ≤ pm

η
for all m,

M∑
m=1

ψm = 1

and the lemma is proved.

Proof of Theorem 3.2. Clearly, V m
N (eN , QN) is linear and thus piecewise linear

and concave in (eN , QN), for each m ≤ MN . Suppose V m
t (et, Qt), for t = n + 1, n +

2, . . . , N is piecewise linear, concave and continuous in (et, Qt), for each m ≤Mt.

It is useful to consider the functionH l
n(en+1, Qn+1) , CV aRl

n(Vn+1(en+1, Qn+1, In+1)).

Let p(l,m) denote the transition probability from I ln to Imn+1. From Lemma 3.8.1, we

can write

H l
n(en+1, Qn+1) = min

ψm

Mn+1∑
m=1

ψmV m
n+1(en+1, Qn+1)

s.t.

Mn+1∑
m=1

ψm = 1 and 0 ≤ ψm ≤ p(l,m)

η
for all m

Let ψm∗ be the optimal solution to the dual problem above for a given value of

(en+1, Qn+1). By the continuity of V m
n+1, there exist δe > 0 and δQ > 0 such that ψm∗

is optimal for all values (e,Q) such that |e− en+1| < δe and |Q−Qn+1| < δQ. Thus,
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it is easy to see that H l
n(en+1, Qn+1) is the weighted sum of piecewise linear, concave

functions in (en+1, Qn+1) and therefore H l
n is piecewise linear, concave and continuous

in (en+1, Qn+1). We have

V l
n(en, Qn) = max

(xn,mn)∈An(en), qn≥0

{
βN−nF l

nqn − pmn − Slnxn + βH l
n(en+1, Qn+1)

}
Since H l

n(en+1, Qn+1) is piecewise linear and concave in (en+1, Qn+1), V
l
n is the

solution of a linear program in which en appears in the right hand side of the constraint

set. Thus, V l
n is piecewise linear, concave and continuous in (en, Qn), for each l. Thus,

by induction, the theorem is true for all l ≤Mn, for all n.

Proof of Lemma 3.2. From equation (3.9), it is clear that q∗N−1 ≤ [QN−1+m
∗
N−1]

+.

Notice that VN−1 is the solution of a linear programming problem and it can be shown

that ∂VN−1

∂QN−1
≥ βFN−1 for all QN−1 < 0.

For a given procurement and processing decision, consider the optimal commit-

ment decision in period n. We can write the optimization problem as

max
q,qo

{
βN−nFn(q + qo) + βCV aRn (Vn+1(en+1, Qn +mn − (q + qo), In+1))

}
s.t. 0 ≤ q ≤ Qn +mn, qo × (Qn +mn − q) = 0, qo ≥ 0

where qo denotes the extent of over-commitment.

If q < Qn+mn at optimality, then qo = 0 and there is nothing to prove. Therefore

we only consider the situation where q = Qn +mn and show that qo = 0 even in this

case.

Since Vn is piecewise linear in (en, Qn), there exist Q̂m
n > 0 for all n and m ∈ Mn

such that V m
n (en,−Q) = V m

n (en, 0) − γmn Q for 0 ≤ Q ≤ Q̂m
n . As the induction

assumption, let γmt ≥ βN−tFm
t for all m ∈ Mt, for all t > n. By concavity of V m

n

in Qn, the slope of the value function for Q < −Q̂m
t will be less than −γmt for all
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m ≤ Mt, for all t. Thus proving qo = 0 at optimality by substituting V m
n (en,−Q) =

V m
n (en, 0)− γmn Q for all Q ≥ 0 is sufficient to prove the theorem.

The optimal over-commitment can be obtained as a solution to the following linear

program

max
qo≥0, y≥0, υ

{
βN−nFnqo + β{υ − 1

η

Mn+1∑
m=1

p(l,m) × ym}

}
s.t. ym ≥ υ − (V m

n+1(en+1, 0)− γmn+1qo) for all m ∈ Mn+1

where p(l,m) is the transition probability from I ln to Imn+1.

Writing the dual of the linear program above, we have

min
ψ≥0

β

Mn+1∑
m=1

ψmV m
n+1(en+1, 0)

s.t. 0 ≤ ψm ≤ p(l,m)

η
for all m ∈ Mn+1,

Mn+1∑
m=1

ψm = 1,

Mn+1∑
m=1

ψmγm ≥ βN−(n+1)Fn

By the condition in the statement of the lemma that the forward prices are unbiased

and the induction assumption that γm ≥ βN−(n+1)Fm
n+1, we know that ψm = pm

is a feasible solution to the above problem. Thus, the optimal value to the above

problem is bounded from above. Noticing that qo is the lagrange multiplier for the

last constraint in the above minimization problem, the optimal solution to the above

problem can be written as

max
qo≥0

{
min
ψ

{
β

Mn+1∑
m=1

ψmV m
n+1(en+1, 0)− qo × (

Mn+1∑
m=1

ψmγm − βN−(n+1)Fn)

}}

= min
ψ

{
max
qo≥0

{
β

Mn+1∑
m=1

ψmV m
n+1(en+1, 0)− qo × (

Mn+1∑
m=1

ψmγm − βN−(n+1)Fn)

}}

subject to the constraints 0 ≤ ψm ≤ pl,m

η
for all m ∈ Mn+1,

∑Mn+1

m=1 ψm = 1. The

equality above follows from strong duality.
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By linearity of the objective function in qo, we will always have qo = 0 or qo = ∞

at optimality in the inner maximization problem above. Since the optimal value for

the overall problem is finite and bounded, the optimal choice of ψ will be such that

qo = 0 at optimality. Hence, over-commitment is never optimal.

Notice that
∑Mn+1

m=1 ψmγmn+1 ≥ βN−(n+1)Fn at optimality. Using optimality condi-

tions for the commitment decision, we can show that γln ≥ βN−nF l
n where V

l
n(en, Qn) =

V l
n(en, 0)− γlnQn for Qn < 0, for all l ≤ Mn. Thus, by induction, it is never optimal

to over-commit in any period.

Proof of Lemma 3.3. In period N − 1, for QN−1 ≥ 0, it is clearly optimal to

commit all available output inventory for sale; i.e., q∗N−1 = QN−1 +m∗
N−1. Further,

we can write V m
N−1(eN−1, QN−1) = βFm

N−1QN−1 + Um
N−1(eN−1) where

Um
N−1(eN−1) = max

x,m∈AN−1(eN−1)

{
(βFm

N−1 − p)m− SN−1x

+βCV aRm
N−1(SN)× [eN−1 + x−m]

}
As the induction assumption, for all t ≥ n+1, let V m

t (et, Qt) = βN−tFm
t Qt+U

m
t (et)

for all Qt ≥ 0 and Um
t (et) is such that Um1(et) ≥ Um2(et) whenever F

m1
t ≥ Fm2

t for

all m1,m2 ∈ Mt. From Lemma 3.8.1, we have

CV aRl
n(Vn+1(en+1, Qn+1, In+1)) = min

ψ

Mn+1∑
m=1

ψmUm(en+1)

+

Mn+1∑
m=1

ψmβN−(n+1)Fm
n+1Qn+1

s.t. 0 ≤ ψm ≤ p(l,m)

η
for all m,

M∑
m=1

ψm = 1

Notice that ψm = p(l,m) for all m is a feasible solution to the above problem and by

the condition in Lemma 3.3,
∑Mn+1

m=1 p(l,m)Fm
n+1 = F l

n. By the induction assumption
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that Um1
n+1 ≥ Um2

n+1 whenever Fm1
n+1 ≥ Fm2

n+1, an optimal solution to the above problem

will always be such that
∑
ψmβN−(n+1)Fm

n+1 ≤ βN−(n+1)F l
n for all values of en+1 and

Qn+1 ≥ 0. Therefore, the slope of βCV aRl
n(Vn+1(en+1, Qn+1)) with respect to Qn+1

is never greater than βN−nF l
n.

Now consider the optimal commitment decision in period n. Since the slope of

βCV aRl
n(Vn+1(en+1, Qn+1)) with respect to Qn+1 is never greater than βN−nFn for

all Qn+1 ≥ 0, it is optimal to commit all available output inventory in period n. As

a result, we can write

V l
n(en, Qn) = max

x,m∈An(e)

{
βN−nF l

n(Qn +mn)− pm− Slnx+ βCV aRl
n (Un+1(en+1))

}
= βN−nF l

nQn

+ max
x,m∈An(e)

{
(βN−nF l

n − p)m− Slnx+ CV aRl
n (Un+1(en+1))

}
︸ ︷︷ ︸

U l
n(en)

By the condition in the lemma that Fn+1 is stochastically increasing in Fn, the in-

duction assumption about Um
n+1 and the monotonicity of CV aR, we have U l1

n ≥ U l2
n

whenever F l1
n ≥ F l2

n . Thus, by induction, the lemma is true for all l ∈ Mn, for all

n.

Proof of Proposition 3.2. Consider the optimization given by equation (3.29).

The quantities bn(l) and bn(l) are the optimal ending input inventory levels when

the procurement and processing decisions are considered independently and without

imposing the capacity constraints.

By concavity of H l
n, we have bn(l) ≤ bn(l) whenever S

l
n ≥ F l

n−p. Thus, the start-

ing inventory levels for which positive procurement and processing are optimal are

mutually exclusive. Imposing the procurement and processing capacity constraints

gives the optimal procurement and processing quantities given by equations (3.19)–

(3.20) for this case.
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When bn(l) > bn(l), we have S
l
n < F l

n− p. That is, there is value in procuring and

processing immediately in the current period. The optimal quantity to process, when

there is no processing capacity restriction but a procurement capacity limit ofK units

would therefore be (en+K−bn(l))+. Likewise, the optimal quantity to procure would

be (bn(l)+C−en)+ when there is no procurement capacity restriction, but a processing

capacity restriction of C units. Imposing the procurement and processing capacity

limits together leads to the optimal quantities given in equations (3.19)–(3.20) for

this case.

Proof of Theorem 3.3. We prove the theorem by induction. The theorem is true

for V l
N = SlNeN , with the set BlN = {0} for each l ∈ MN .

Assume the theorem is true for t = n+ 1, . . . , N − 1, N . Thus,

Bn+1 = {0, D, . . . , kD, . . . , [N − (n+ 1)]aD}.

By construction, the set of break points of Ĥ l
n, for each l ∈ Mn is the same as

Bn+1. Recall that C = aD and K = bD, where a and b are positive integers.

The approximate value function V l
n as given by equation (3.23) is the solution of a

linear program where all the decision variables are integral multiples of D. Therefore,

V̂ l
n also has changes in slope only at integral multiples of D; i.e., Bln contains only

integral multiples of D for each l ≤ Mn. Further, for en ≥ [N − n]aD we have

en+1 = en − C + K ≥ en − aD + K ≥ [N − (n + 1)]aD. Thus, by the induction

assumption, the slope of V̂ l
n with respect to en is constant for en ≥ [N − n]aD. By

induction, the theorem is therefore true for all n.

Proof of Theorem 3.4. For a given realization I ln ∈ Mn and starting inventory
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level, the optimal operational decisions are given by the solution to

max
(xn,mn)∈An(en)

{
(F l

n−p)mn−Slnxn+βmax
Hn+1

{
CV aRl

n

(
ΘT
n+1Hn+1 + Un+1(en+1, In+1)

)}}

Considering the maximization over the financial hedging decisions above, we have

Cln(en+1) = max
Hn+1

{
CV aRl

n

(
ΘT
n+1Hn+1 + Un+1(en+1, In+1)

)}
= max

Hn+1,υ

{
υ − 1

η
E
[(
υ − (ΘT

n+1Hn+1 + Un+1(en+1, In+1))
)+]}

where the second equality follows from Rockafellar and Uryasev (2000). For a discrete

price process, Cln can be written as the solution of a linear program, given by

max
Hn+1,υ,y

υ − 1

η

Mn+1∑
m=1

p(l,m)ym

subject to

ym ≥ υ −
(
Um
n+1(en+1) + (Θm

n+1)
THn+1

)
for m = 1, . . . ,Mn+1

ym ≥ 0 for m = 1, . . . ,Mn+1

Writing the dual of the above linear program, we have

Cln(en+1) = min
ψ

Mn+1∑
m=1

ψmUm
n+1(en+1)

subject to

0 ≤ ψm ≤ p(l,m)

η
for m = 1, . . . ,Mn+1,

Mn+1∑
m=1

ψm = 1,

Mn+1∑
m=1

ψmθmj(n+1) = 0 for j = 1, . . . , J

where ψm for m = 1, . . . ,Mn+1 is the dual variable corresponding to the mth inequal-
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ity constraint in the primal problem. Thus, we can obtain the optimal operational

decisions without explicitly calculating the financial hedging decisions. Also note that

the optimal position in financial instrument j for a given ending inventory level en+1 is

given by the dual variable corresponding to the constraint
∑Mn+1

m=1 ψmθmj(n+1) = 0.

3.9. Appendix: Break points of Value Function V l
n

We show there exists a step size such that the break points for V l
n, for all l, for all n

are integral multiples of the step size. To this end, recall that bln(k), for k = 0, . . . , κ(l)

are the break points of H l
n(e) = βCV aRl

n (Vn+1(e, In+1)), for each l ≤ Mn, for each

n < N and gln(k) = bln(k) − bln(k − 1) for k = 1, . . . , κ(l). Define Gln =
∪
k g

l
n(k), the

set of lengths of the linear segments of H l
n(e). Now, let Gn =

∪
l Gln and G =

∪
n Gn.

Thus, G is the set of lengths of all the linear segments of H l
n(·), for all l, for all

n < N . Since the set of possible prices in each period is a finite set, all the elements

of G are rational numbers. Let τ be the greatest common divisor of all the elements of

G ∪{K,C}. Thus, the break points of H l
n for each l, for each n are integral multiples

of τ . From equation (3.16), we see that V l
n is the solution of a linear program in which

the right hand side coefficients of all the inequality constraints are integral multiples

of τ . Thus, V l
n also has break points at integral multiples of τ for all l, for all n.
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Chapter 4

Commodity Operations in Partially Complete Markets

4.1. Introduction

The growth of commodity exchanges provides a wide variety of financial instruments—

futures, forwards, options etc.—for firms involved in the commodities business to

manage the risk from commodity price uncertainty (Geman, 2005). Thus, firms have

an opportunity to combine financial trading along with operational decisions to bet-

ter manage the commodity price uncertainty. While Chapter 3 considers the role

of financial hedging for a risk-averse commodity processing firm, it does not provide

specific details of the structure of the financial trading decisions themselves. Further,

the analysis therein did not look into the value of operational hedging, i.e., the benefit

of having excess procurement or processing capacity to manage the price uncertainty.

This is partly because the underlying model for the price uncertainty made no specific

assumptions regarding the dynamics of commodity price movements and hence did

not lend itself to tractable analysis.

We address these issues in the current chapter. Specifically, we model the un-

certainty in commodity prices using a partially complete markets framework. The

partially complete markets framework distinguishes between market related and firm

specific (private) uncertainty, and was introduced by Smith and Nau (1995) in the

context of valuing a stream of uncertain cash flows. We extend DCV aR, the time-

consistent risk measure introduced in Chapter 3, to this framework and model the
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operational and financial trading decisions for a risk-averse firm. Specifically,

1. We characterize the optimal financial trading policy for a risk-averse firm maxi-

mizing the time-consistent risk measure over the total cash flows from financial

trading and any specific operational policy.

2. Contingent on optimal financial trading, we characterize the optimal operational

decisions for a commodity processing firm that procures an input commodity

from the spot market, processes and sells the output using forward contracts

over a multi-period horizon. The firm also earns revenues by trading any re-

maining input inventory at the end of the horizon. We show that

(a) The optimal trade policy for selling the output is identical to the risk-

neutral optimal commitment policy.

(b) The value function is concave and piecewise linear, with breakpoints at

integral multiples of the greatest common divisor of the procurement and

processing capacities.

(c) The optimal procurement and processing decisions are governed by ‘pro-

cure up to’ and ‘process down to’ thresholds. These thresholds depend

on the realized market and private uncertainties as well as the horizon

length. Unlike in the risk-neutral case, these thresholds depend on the

firm’s subjective probabilities over private uncertainties.

3. We characterize the value of operational hedging. Under the restriction that the

worst case expected salvage value is no more than the benefit from processing

and selling the output,

(a) We show that excess processing capacity (relative to procurement capacity)

does not provide any value.
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(b) On the other hand, we show that excess procurement capacity has value as

an operational hedge because it helps the firm to opportunistically procure

additional input in periods when the realized spot price is sufficiently low,

for processing in future periods. We develop recursive expressions that

quantify the value from excess procurement capacity.

The rest of the chapter is organized as follows. In section 4.2, we describe the

partially complete market framework and extend the definition of DCVaR to this

framework. We also characterize the optimal financial trading policy to hedge any

specific stream of random cash flows; e.g., cash flows from operations. Section 4.3

models the commodity processing firm’s operations, while section 4.4 characterizes the

optimal operational policies. We quantify the value of operational hedging, i.e., the

benefit of having excess procurement or processing capacity, in section 4.5. Section 4.6

concludes with directions for future research. Proofs for the various theorems and

lemmas are given in the chapter appendix.

4.2. Partially Complete Markets

We use the framework of partially complete markets to model the commodity

price uncertainty. We distinguish between market uncertainties, which can be hedged

perfectly by trading market securities, and private uncertainties which are specific to

the firm. Formally, we assume the period n state of information In can be written

as a vector of market and private states of information In = (Imn , Ipn). The market is

partially complete if the following conditions are satisfied (Smith and Nau, 1995):

1. Security prices depend only on the market states and can be written as a func-

tion of the market state of uncertainty.

2. The market is complete with respect to market uncertainties; i.e., the security

prices span the space of cashflows dependent only on the market states.
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3. Private events convey no information about future market events; i.e., given

Imn−1, the firm believes that Imn and Ipn−1 are independent.

Conditions 1 and 2 above imply that there exist unique risk-neutral probabilities,

πn(Imn+1, Imn ), on the market states Imn+1 such that β
∑
Im
n+1

πn(Imn+1, Imn )Mn+1(Imn+1) =

Mn(Imn ) where Mn(Imn ) = (Mn(0, Imn ), . . . ,Mn(J, Imn )) ≥ 0 is the vector of the

J + 1 market security prices and β = 1
1+rf

is the risk-free discount rate. Also,

let pn(Imn+1, Imn ) denote the firm’s subjective probabilities over the market states of

uncertainty Imn+1, given Imn and qn(Ipn, Imn ) denote the subjective probabilities over

the private states of uncertainty in period n, given Imn .

4.2.1 Dynamic Risk Measure

We extend the dynamic, time-consistent risk measure DCVaR defined in Chapter 3

to the partially complete market setting. LetX = (X1(Im1 , I
p
1 ), . . . , XN(ImN , I

p
N)) be a

stream of random cashflows over the horizon, with the cashflow in any specific period

n dependent on the realized market and private uncertainties. We define the dynamic

risk measure, DCV aR, as follows.

DCV aRn(X; ηn) =



CV aRm
N

(
CV aRp

N

(
XN(ImN , I

p
N) | ImN

))
for n = N

CV aRm
n

(
CV aRp

n

(
Xn(Imn , Ipn)+

βDCV aRn+1(X; ηn+1) | Imn
))

for n < N

(4.1)

where CV aRp
n(·|Imn ) denotes the conditional value-at-risk evaluated over the private

states of uncertainty in period n, conditional on Imn and CV aRm(·) is the condi-

tional value-at-risk evaluated over the market states of uncertainty. Both CV aRp
n
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and CV aRm
n are evaluated at the level 0 < ηn ≤ 1, using the firm’s subjective proba-

bilities over the different market and private states of uncertainty. DCV aRn(X; ηn)

defined in equation (4.1) represents a conditional risk mapping (cf. Ruszczynski and

Shapiro, 2006) and is time-consistent.

We end this section by proving an useful property of DCV aRn(X; ηn), which will

be used in the subsequent analysis.

Lemma 4.1. For all n < N , the risk measure DCV aRn+1(X; ηn+1) is measurable

with respect to the σ-algebra generated by the market states of uncertainty Imn and

DCV aRn(X; ηn) = CV aRm
n

(
CV aRp

n

(
Xn(Imn , Ipn) | Imn

)
+ βDCV aRn+1(X; ηn+1)

)
(4.2)

In the next section, we consider the problem of a firm using market securities

to hedge the uncertainty in a cashflow stream X, with the objective of maximizing

DCV aR of the total cashflows.

4.2.2 Hedging using Market Securities

We consider a firm that owns a project which generates a cash flow stream X,

with the cash flow in any period n depending on the realized private and market

uncertainty. The firm is interested in hedging the uncertainty in the cashflow stream

by trading market securities. Let αn = (αn(0), . . . , αn(J)) be the firm’s position in the

various market securities, after observing the state of market uncertainty in period n.

Let B = (α1, . . . , αN) be the trading policy for market securities.We can model the

firm’s problem as

max
B

DCV aR1 (X+ F(B); η1)
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where F(B) = (F1(B, Im1 ), . . . , FN(B, ImN )) is the stream of cash flows from trading

the market securities. Specifically,

Fn(B, Imn ) = [αn−1 − αn]
TMn(Imn ) (4.3)

The firm’s optimal trading policy can be determined by solving the following

stochastic dynamic program.

Vn(X, αn−1, Imn ) = max
αn

{
[αn−1 − αn]

TMn(Imn )

+CV aRp
n

(
Xn(Imn , Ipn) | Imn

)
+CV aRm

n

(
βVn+1(X, α(n), Imn+1)

)}
for n < N (4.4)

VN(X, αn−1, ImN ) = (αN−1)
TMN(ImN )

+ CV aRp
N

(
XN(ImN , I

p
N) | I

m
N

)
(4.5)

The next theorem states, under some mild restrictions on the firm’s preferences

and subjective probabilities, that the value function Vn(·) of the above maximization

problem has a particularly simple form. Theorem 4.1 parallels the result obtained

by Smith and Nau (1995), who impose the restriction that the firm’s risk aversion is

represented by an additive exponential utility function over net cashflows.

Theorem 4.1. When the firm’s subjective probabilities pn(Imn+1, Imn ) over market un-

certainty and ηn are such that
pn(Im

n+1,Im
n )

ηn
≥ πn(Imn+1, Imn ) for each (Imn+1, Imn ) for all

n < N , then

Vn(X, αn−1, Imn ) = (αn−1)
TMn(Imn )

+ Eπn

[
N∑
τ=n

βτ−nCV aRp
τ

(
Xτ (Imτ , Ipτ ) | Imτ

)]
(4.6)
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where Eπn [·] denotes expectation over Imn+1 under the risk-neutral probability measure,

conditional on Imn .

The above result implies that under an optimal financial trading policy, the

firm’s subjective probabilities over the states of market uncertainty does not af-

fect the optimization. However, the firm’s subjective probabilities over the private

states affects the optimization through CV aRp
n(·). Notice that for a risk-neutral

firm, ηn = 1 for each n and the condition,
pn(Im

n+1,Im
n )

ηn
≥ πn(Imn+1, Imn ) reduces to

pn(Imn+1, Imn ) = πn(Imn+1, Imn ); i.e., the risk-neutral firm’s subjective probabilities over

market uncertainties coincide with the risk-neutral probabilities implied by the secu-

rity prices.

Now, consider the situation where the project cashflows, X, depend on an oper-

ational policy, γ, and the firm is interested in maximizing DCV aR of total cash

flows, by optimizing over the joint operational and financial policy. The above

result implies that an operational policy γ∗ is an optimal policy, if it maximizes

Eπ1

[
N∑
τ=1

βτ−1CV aRp
τ

(
Xτ (γτ , Imτ , Ipτ ) | Imτ

)]
. Subsequently, the optimal financial

trading policy is the CV aRp
τ

(
Xτ (γ

∗
τ , Iτ ), Imτ

)
, CV aRp

τ

(
Xτ (γ

∗
τ , Imτ , Ipτ ) | Imτ

)
repli-

cating portfolio. In the next section, we apply these results to a commodity processing

firm’s operations and analyze the optimal operational policies.

4.3. Model Description and Analysis

We consider a commodity processor who procures, processes and trades commodi-

ties over a finite horizon. The time periods are indexed by n, with n = 1 denoting

the first period and n = N the last period. In each period, the firm procures the in-

put commodity from a spot market, where Sn(In) denotes the spot price in period n.

While market instruments exist, and are used extensively, to manage commodity price

uncertainty, not all of the uncertainty in the commodity spot price can be hedged

using such instruments. The difference between the price of the market instrument
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(say, futures contract) and spot price is termed basis risk and exists because of factors

such as timing, location and quality discrepancies between the physical commodity

and the commodity underlying the market instrument (see Lapan and Moschini, 1994;

Paroush and Wolf, 1989; Moschini and Lapan, 1995, for instance). For this reason,

we model the commodity spot price as a function of both the market and private

uncertainty.

The firm earns revenues by processing the input and selling the output commodity

(processed product) using forward contracts of different maturities. The forward price

on contract ℓ is denoted by F ℓ
n(Imn ), where Nℓ, the maturity period of contract ℓ,

is greater than n. We use Fn(Imn ) = (F ℓ
n(Imn ), . . . , FL

n (Imn )) to denote the vector

of forward prices of all contracts yet to mature as of period n. We assume the

forward prices are pegged to the price of actively traded futures instruments on the

output commodity and therefore, the forward prices depend only on the state of

market uncertainty. Output quality differences, i.e., difference between the quality

of output produced and quality of the output underlying the futures instrument, can

be accounted for by assuming the firm only produces output of the required quality.

Further, the uncertainty in output quality can be incorporated by modeling the input

spot price as the per-unit price of input required to produce a unit of the output

of the specified quality and modeling the input spot price to depend on market and

private uncertainties.

The delivery period for all commitments made against contract ℓ is Nℓ and period

Nℓ − 1 is the last period in which the firm can commit to sell the output commodity

using the forward contract ℓ. In addition to the output commodity sales, the firm

can also earn revenues by trading the input commodity with other processors. For

ease of exposition, we assume that all input commodity trading occurs at the end of

the horizon, at the trade (salvage) price of SN(IN). Let In = (Imn , Ipn) denote the

relevant information available to the firm at the beginning of period n regarding the
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various commodity prices.

On the operational side, the firm has a per-period procurement and processing

capacity restriction of K and C units respectively. The firm incurs a variable cost of

p to process one unit of input into the output commodity. For simplicity, we assume

all physical holding costs for the various commodities are negligible.

At the beginning of each period n, the firm observes the input spot price, Sn,

and the output forward prices, Fn, for the period. Let en and Qn denote the input

and output commodity inventories respectively at the beginning of period n. Let

Rn = (Rℓ
n, . . . , R

L
n) denote the vector of cumulative commitments against all forward

contracts yet to mature. Based on this information, the firm makes the following

decisions in each period: 1) the quantity of input commodity to procure, xn, 2) the

quantity to process, mn and 3) the quantity of the output commodity to commit to

sale against the forward contracts, qn = (qℓn, . . . , q
L
n ).

The procurement and processing decisions in any period are subject to capacity

and inventory availability constraints and the feasible set of actions in period n is

given by An(en) where

An(en) = {(xn,mn) : 0 ≤ xn ≤ K, 0 ≤ mn ≤ min{C, en + xn}} (4.7)

The output commodity sale commitments are not reversible; i.e., qn ≥ 0. It is

not necessary that
∑L

l=ℓR
l
n + qln ≤ Qn + mn, as the firm can commit to sell more

output than is available on-hand as long as all the output committed for sale against

a forward contract is delivered on the delivery date specified in the forward contract.

That is, for each ℓ we require Rℓ
Nℓ−1 + qℓNℓ−1 ≤ QNℓ−1 +mNℓ−1. We denote the set of

feasible commitment vectors in period n by Q(Rn, Qn,mn).
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The state transition equations are given by

en+1 = en + xn −mn (4.8)

Rn+1 = Rn + qn (4.9)

Qn+1 =

 Qn +mn n ̸= Nℓ − 1 for any ℓ

Qn +mn −Rℓ
n − qℓn n = Nℓ − 1

(4.10)

The profits realized by the firm in period n are given by

Πn(xn,mn,qn, In) =


∑L

l=ℓ β
Nl−nF l

nq
l
n − Snxn − pmn n < N

SNeN n = N
(4.11)

where β is the risk-free discount factor.

The profit function in equation (4.11) above recognizes revenues from output sales

at the time of commitment rather than at delivery. Since commodity sale commit-

ments are not reversible and we assume no counter party risk is present, recognizing

revenue at the time of commitment rather than at delivery is without loss of gener-

ality.

We model the risk-averse firm’s objective function by the time-consistent risk mea-

sure DCV aR(·; η), defined in equation (4.1), on the stream of discounted cashflows.

To keep the exposition simple, we assume that the levels η are the same across all

periods (we also suppress η in the following, in the interests of keeping the notation

manageable). LetCFN
n =

(
πn(·)+[αn−1−αn]TMn(·), . . . , πN(·)+(αN−1)

TMN(·)
)
and

BNn = (αn, . . . , αN−1). Using the short hand notation DCV aRη
n(·) , DCV aRn(· ; ηn),

the firm’s joint operational and financial risk management problem in period n can

then be written as

Vn(en, Qn,Rn, αn−1, In) = max
(xτ ,mτ )∈Aτ (eτ )
qτ∈Qτ (Rτ ,Qτ ,mτ )

τ=n,...,N−1

{
max
BN
n

{
DCV aRη

n

(
CFN

n

)}}
(4.12)
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Assuming the conditions of Theorem 4.1 hold and assuming the firm uses the

optimal financial trading policy, we can use the result therein to determine the optimal

operational policy by solving the following stochastic dynamic program

Vn(en, Qn,Rn, In) = max
(xn,mn)∈An(en),

qn∈Qn(Rn,Qn,mn)

{
Πn(xn,mn,qn, In) +

βEπn
[
CV aRp

n+1

(
Vn+1(·), Imn+1

)]}
(4.13)

for n = 1, . . . , N − 1 and

VN(eN , QN ,RN , IN) = SNeN (4.14)

Notice that the objective function in equation (4.13) is very similar to the objective

function in SDP formulations for expected value maximization. However, there are

crucial differences. Specifically, the expectation is taken with respect to the risk-

neutral probability measure and only over the states of market uncertainty. Further,

the argument for the expectation operator is CV aRp
n+1

(
Vn+1(·), Imn+1

)
, the CVaR of

Vn+1 evaluated over the states of private uncertainty for each Imn+1.

In the next section, we derive the structure of the optimal operational policy.

Later, we use these results to quantify the value from operational flexibility.

4.4. Optimal Operational Policy
4.4.1 Optimal Commitment Policy

4.4.1.1 Single forward contract.

We start our analysis by considering the case when only a single forward contract is

available to sell the output. This would be the situation for n such that NL−1 ≤ n <

NL. Without loss of generality, we assume NL = N . In period N − 1, the firm solves
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the following optimization problem to determine the optimal actions

VN−1(eN−1, QN−1, R
L
N−1, IN−1) = max

{
πN−1(xN−1,mN−1, q

L
N−1) +

βEπN−1

[
CV aRp

N

(
(SN × eN), ImN

)]}
s.t.

0 ≤ qLN−1 ≤ QN−1 +mN−1 −RL
N−1

0 ≤ eN = eN−1 + xN−1 −mN−1

0 ≤ mN−1 ≤ C

0 ≤ xN−1 ≤ K

It is optimal to have qLN−1 = QN−1 + mN−1 − RL
N−1, as any left over output

inventory does not earn any revenue in the next period. Substituting the optimal

commitment quantity, we can write

VN−1(eN−1, QN−1, C
L
N−1, IN−1) = = βFL

N−1(QN−1 −RL
N−1) + UN−1

(
eN−1, IN−1

)

where

UN−1

(
eN−1, IN−1

)
= max

{
(βFL

N−1 − p)mN−1 − SN−1xN−1

+βEπN−1

[
CV aRp

N

(
SN , ImN

)]
× eN

}
s.t.

0 ≤ eN = eN−1 + xN−1 −mN−1

0 ≤ mN−1 ≤ C

0 ≤ xN−1 ≤ K

As UN−1(·) is the solution of a linear program where eN−1 is on the right hand side

of the constraints, it is piecewise linear and concave in eN−1 for each realization of
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IN−1. Also notice that VN−1 is separable in QN−1 and eN−1 and furthermore, linear

in QN−1 with the coefficient of QN−1 dependent only on ImN−1.

We have βN−(N−2)FL
N−2(ImN−2) = βEπN−2

[
βN−(N−1)FL

N−1(ImN−1)
]
for each ImN−2;

i.e., the revenue from making a commitment to sell the output in period N−2 is equal

to the discounted expected revenue from postponing and making the commitment in

period N − 1. Thus, it is without loss of optimality to postpone all commitments

against contract L to period N − 1. Thus, under an optimal commitment policy we

would have RL
n = 0 for all n < N . Using an induction argument, we can show that

Vn(Qn, en, In) = ∆m
n Qn + Un(en, In) for NL−1 ≤ n ≤ N

where ∆m
n = βN−nFL

n (Imn ) with the superscript m indicating that it depends only on

Imn . Further, Un(·) is piecewise linear and concave in en for each In.

4.4.1.2 Multiple forward contracts.

Now consider the commitment decision at n = NL−1 − 1. The firm can commit

against contract L − 1 and earn a revenue of βFL− 1NL−1−1. By not committing,

the risk-adjusted value of uncommitted inventory is βEπNL−1−1

[
∆m
NL−1

]
. Thus, the

optimal commitment quantity against L−1 is equal to QNL−1−1+mNL−1−1−RL−1
NL−1−1

if FL−1
NL−1−1 ≥ EπNL−1−1

[
∆m
NL−1

]
and zero otherwise. Thus, we have

Vn(Qn, en, In) = βmax
{
FL−1
n ,Eπn

[
∆m
n+1

]}
(Qn −RL−1

n ) + Un(en, In)

for n = NL−1 − 1.

For any n < NL−1 − 1, the benefit from committing against contract L − 1 is

βNL−1−nFL−1
n . However, the benefit from not committing and postponing the com-

mitment decision to period NL−1 − 1 is βNL−1−1−nEπn
[
βmax

{
FL−1
n ,Eπn

[
∆m
n+1

]}]
which is greater than βNL−1−nFL−1

n because the markets are complete with respect to
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market uncertainties and the forward prices are a martingale under the risk-neutral

probabilities. Using induction, we can prove

Lemma 4.2. It is optimal to postpone commitment against any specific contract ℓ to

period Nℓ − 1 and the optimal commitment decision in period Nℓ − 1 is given by

q
(ℓ∗)
Nℓ−1 =

 QNℓ−1 +mNℓ−1 −Rℓ
1 if F ℓ

Nℓ−1 ≥ EπNℓ−1

[
∆m
Nℓ

]
0 otherwise

(4.15)

where

∆m
n =


0 n = N

βmax{F ℓ
n,Eπn

[
∆m
n+1

]
} if n = Nℓ − 1 for ℓ = 1, . . . , L

βEπn
[
∆m
n+1

]
otherwise

(4.16)

Under an optimal commitment policy, Rℓ
n = Rℓ

1 for all n < Nℓ and it does not

affect the value function. Therefore, we do not need to keep track of the vector Cn

as part of the state variable. As a consequence of the optimal commitment policy, we

can write

Vn(Qn, en, In) = ∆m
n Qn + Un(en, In) (4.17)

for all n ≤ N , where

Un(en, In) = max
0≤mn≤min{C,en+xn},

0≤xn≤K

{
(∆m

n − p)mn − Snxn

+βEπn
[
CV aRp

n+1

(
Un+1(·), Imn+1

)]}
(4.18)

for n < N and UN(eN , IN) = SNeN .

4.4.2 Optimal Procurement and Processing Policy
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Using an induction argument, similar to the one used in Chapter 3, we can prove

that Un(en, In) defined in equation (4.18) is continuous, concave and piecewise linear

in en for each realization of In, for all n ≤ N . Consequently, we can also prove that

Hn(en+1, In) , βEπn
[
CV aRp

n+1

(
Un+1(en+1, In+1), Imn+1

)]
is concave and piecewise

linear in en+1 for all n < N .

Let 0 = bn(0) < bn(1) < . . . < bn(k) < bn(k + 1) < . . . < bn(κn) < ∞ denote

the break points for Hn(en+1, In); these are the points at which there is a change in

slope of Hn(en+1, In) (to keep the notation simple, we do not show the dependence

of the breakpoints bn(k) on In, but the reader should be aware of this dependence

and that the breakpoints are not necessarily the same for different realizations of In).

As the number of possible price realizations are finite in each period, we can use an

induction argument to prove that both the number of break points κn + 1 as well as

the magnitude bn(κn) are finite.

For k = 1, . . . , κn let g
(k)
n = bn(k)− bn(k − 1) and Υ

(k)
n = Hn(bn(k),In)−Hn(bn(k−1),In)

g
(k)
n

and Υ
(κn+1)
n is the slope of Hn for en+1 > bn(κn). By concavity of Hn, we have

Υ
(k+1)
n < Υ

(k)
n for all k ≤ κn. Using arguments similar to those in Chapter 3 we can

prove that

Proposition 4.1. In any period n, for a realization In of the prices, there exist two

input inventory levels, bn and bn such that

bn =


bn(k) if ∃ k ≤ κn s.t. Υ

(k)
n > ∆m

n − p ≥ Υ
(k)
n

0 if Υ
(1)
n ≤ ∆m − p

∞ if Υ
(κn+1)
n > ∆m

n − p

(4.19)

bn =


bn(k) if ∃ k ≤ κn s.t. Υ

(k)
n > Sn ≥ Υ

(k+1)
n

0 if Υ
(1)
n ≤ Sn

∞ if Υ
(κn+1)
n > Sn

(4.20)
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The optimal procurement and processing quantities (x∗n,m
∗
n) are then given by

x∗n =

 min{K, (bn − en)
+} if bn ≤ bn

min{K, (bn + C − en)
+} if bn > bn

(4.21)

m∗
n =

 min{C, (en − bn)
+} if bn ≤ bn

min{C, (en +K − bn)
+} if bn > bn

(4.22)

4.5. Operational Hedging

As seen from the analysis in the previous section, trading in the financial markets

helps the firm hedge the uncertainty in revenues from output sales and the firm’s

risk aversion does not affect the value of output inventory. However, financial trading

does not help the firm hedge against private uncertainties that affect input prices, and

therefore it also needs operational levers such as excess procurement or processing

capacity to manage the input price uncertainty. In this section, we explore how

the firm’s choice of procurement and processing capacities, affects the value from

operations.

As the firm cannot completely hedge the uncertainty in input commodity prices, it

is more likely that the firm will process and carry output inventory rather than have

unprocessed input inventory. However, having excess procurement capacity relative

to processing capacity allows the firm to opportunistically procure more in periods

when the realized input price is sufficiently low and process in later periods. To

determine the value of excess procurement capacity, we first consider the case where

the firm has equal procurement and processing capacity.

4.5.1 Equal Procurement and Processing Capacity
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With identical procurement and processing capacities (i.e., K = C), consider the

firm’s problem in period N − 1. We have

UN−1(eN−1, IN−1) = max
0≤m≤min{C,eN−1+x},

0≤x≤C

{
(∆m

N−1 − p)m− SN−1x+

βEπN−1
[CV aRp

N(SN , I
m
N )] (eN−1 + x−m)

}

Suppose βEπN−1
[CV aRp

N(SN , ImN )] < ∆m
N−1− p. Then, it is optimal to process all

available input inventory, up to the processing capacity; i.e., m∗ = min{C, eN−1+x}.

The optimal procurement quantity is then given by

x∗ =



C if SN−1 ≤ βEπN−1
[CV aRp

N(SN , ImN )]

(C − eN−1)
+ if βEπN−1

[CV aRp
N(SN , ImN )] < SN−1 ≤ ∆m

N−1 − p

0 if ∆m
N−1 − p < SN−1

Substituting the optimal procurement and processing quantities, we get

UN−1(eN−1, IN−1) =



max
{
βEπN−1

[CV aRp
N(SN , ImN )] ,

min{SN−1,∆
m
N−1 − p}

}
eN−1 + Λ1

N−1 eN−1 ∈ [0, C]

βEπN−1
[CV aRp

N(SN , ImN )] eN−1 + Λ2
N−1 eN−1 > C

where Λ1
N−1 and Λ2

N−1 denote constant terms independent of eN−1.

Notice that the marginal, risk-adjusted value of input inventory ∂UN−1

∂eN−1
is less than

∆m
N−1−p for all eN−1. The next theorem states that this is true for all n < N , provided

the firm’s subjective probabilities on the salvage value SN satisfy the condition that

CV aRp
N(SN , ImN ) < FL

N − p for each ImN .
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Theorem 4.2. Let the firm’s subjective probabilities on salvage value SN be such that

CV aRp
N(SN , I

m
N ) < FL

N − p for each ImN (4.23)

Then, the marginal risk-adjusted value of input inventory in any period n < N is no

more than ∆m
n −p for all en ≥ 0, for each realization of In and m∗

n = min{C, en+x∗n}.

The condition implied by equation (4.23) says that the expected salvage value in

the worst η fraction of cases is less than the value from processing the input and

selling the output, for a given realization of market uncertainty. This is a reasonable

assumption for a risk-averse firm that would prefer the certain revenue from processing

and selling the output rather than the possibly higher but uncertain revenue from

salvaging. In fact, for a risk-averse firm it is reasonable to assume that EqN [SN ] <

FL
N − p; i.e., the expected salvage value based on the firm’s subjective probabilities is

no more than the value from processing and selling the output. As CV aRp
N(SN) ≤

EqN [SN ] for all η ∈ (0, 1], the condition in equation (4.23) is less restrictive.

A consequence of the above result is that the firm prefers to process any input

available, and carries input inventory into the next period only when constrained by

the processing capacity. Thus, when K = C and e1 = 0, we will always have en = 0

for n > 1 under an optimal processing policy and the value function can be written

as

Un(0, In) = (∆m
n − p− Sn)

+ × C

+ Eπn

[
N−1∑
τ=n+1

βτ−nCV aRp
τ

(
(∆m

τ − p− Sτ )
+, Imτ

)]
× C

= (∆m
n − p− Sn)

+ × C

+ βEπn
[
CV aRp

n+1

(
Un+1(0, In+1), Imn+1

)]
(4.24)
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Notice that the analysis remains the same for allK < C, with the only change that

C in equation (4.24) is replaced by K; i.e., any processing capacity in excess of the

procurement capacity does not provide additional value to the firm. This is because

the firm’s preferred action in each period is to process all available input inventory, up

to the processing capacity. When K < C, the processing capacity constraint is never

binding. However, excess procurement capacity can be valuable to procure input in

periods when the realized spot price is sufficiently low. We now consider the value

from operations when the firm has excess procurement capacity available.

4.5.2 Excess Procurement Capacity

We consider the scenario where the firm has excess procurement capacity relative

to the processing capacity. Specifically, the procurement capacity in each period, K,

is such that K > C.

Consider period T − 1. From the analysis in the earlier section, we have m∗
N−1 =

min{eN−1 + xN−1, C} for any procurement quantity x in period T − 1 and

UN−1(eN−1, IN−1) = max
0≤x≤K

{
(∆m

N−1 − p)m∗
N−1 − SN−1x+

βEπN−1

[
CV aRp

N

(
SN , ImN

)]
× (eN−1 + x−m∗

N−1)

}

It is easy to see that the optimal procurement quantity, x∗N−1 is given by

x∗N−1 =


K if SN−1 ≤ βEπN−1

[
CV aRp

N

(
SN , ImN

)]
(C − eN−1)

+ if βEπN−1

[
CV aRp

N

(
SN , ImN

)]
< SN−1 ≤ ∆m

N−1 − p

0 if ∆m
N−1 − p < SN−1
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Substituting the optimal procurement quantity above, we get

UN−1(eN−1, IN−1) = βEπN−1

[
CV aRp

N

(
SN , ImN

)]
eN−1

+
(
∆m
N−1 − p− βEπN−1

[
CV aRp

N

(
SN , ImN

)])
C

+
(
βEπN−1

[
CV aRp

N

(
SN , ImN

)]
− SN−1

)+
K (4.25)

when eN−1 ≥ C and

UN−1(eN−1, IN−1) = max
{
βEπN−1

[
CV aRp

N

(
SN , ImN

)]
,

min
{
Sn,∆

m
N−1 − p

}}
eN−1

+(∆m
N−1 − p− SN−1)

+C

−
(
βEπN−1

[
CV aRp

N

(
SN , ImN

)]
− SN−1

)+
C

+
(
βEπN−1

[
CV aRp

N

(
SN , ImN

)]
− SN−1

)+
K (4.26)

when 0 ≤ eN−1 < C.

Notice that UN−1 is piecewise linear and concave in eN−1 and the marginal value

of input inventory is never more than ∆m
N−1 − p for a given realization of ImN−1. The

next theorem shows that these properties are true for any general n and further-more,

the breakpoints of the value function are integral multiples of the greatest common

divisor of the procurement and processing capacities.

Theorem 4.3. Let the firm’s subjective probabilities over the salvage values satisfy

equation (4.23) and D denote the greatest common divisor of the procurement and

processing capacities. Then, the value function Un(en, In) is piecewise linear, concave

and continuous in en with break points at integral multiples of D.

Let the marginal risk-adjusted value of input inventory in period t when en ∈
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[(k − 1)D, kD) for k = 1, 2, . . . be denoted by Θ
(k)
n . Then, Θ

(k)
N = SN and

Θ(k)
n = max

{
Υ

(k+b−a)
n+1 ,min

{
∆m
n − p,Υ

(k−a)
n+1

}}
for n < N and k ≥ 1 (4.27)

where a and b are integers such that C = aD and K = bD with b > a, and

Υ(k)
n =


βEπn

[
CV aRp

n+1

(
Θ

(k)
n+1, Imn+1

)]
for n = N − 1 and k ≥ 1

βEπn
[
−CV aRp

n+1

(
−Θ

(k)
n+1, Imn+1

)]
for n < N − 1 and k ≥ 1

(4.28)

with Υ
(k)
n , ∞ for k ≤ 0, for all n.

Theorem 4.3 provides a way to recursively determine the total risk-adjusted value

from operations for a given set of procurement and processing capacities. We can

use this to determine the benefit from having excess procurement capacity. More

specifically, let νn(K,C) denote the value of the excess procurement capacity, when

the excess capacity is available from periods n through N − 1. (Clearly, νn also

depends on In. In order to keep the notation simple, we do not explicitly show this

dependency.)

In periods 1, . . . , n−1, the procurement capacity is equal to C. From the analysis

in Section 4.5.1, we know that en = 0 under an optimal policy. Therefore,

νn(K,C) = Un(0, In)− Ûn(0, In) (4.29)

where Ûn(0, In) is given by equation (4.24). Proposition 4.2 provides a recursive

expression for νn.

Proposition 4.2. The risk-adjusted value of having excess procurement capacity (K−
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C) from periods n through N − 1, where K > C, is equal to

νn(K,C) = βEπn
[
CV aRp

n+1

(
νn+1, Imn+1

)]
+

b−a∑
j=1

(
Υ(j)
n − Sn

)+
D (4.30)

with νN(K,C) , 0.

4.6. Conclusions

In this chapter, we considered the dynamic financial and operational decisions

for a commodity processing firm operating in a partially complete financial market.

We extended the time-consistent risk measure introduced in Chapter 3 to the par-

tially complete market framework and characterized the optimal financial trading

and operational policies. Specifically, we showed that the optimal financial portfolio

replicates the CV aR over states of private uncertainty of the operational cashflows

for each market state. We also showed that the optimal output commitment policy

is identical to the optimal commitment policy for a risk-neutral firm, which is a con-

sequence of the fact that the uncertainty in revenue from output sales depend only

on market uncertainties. Similar to the risk-neutral case, the optimal procurement

and processing decisions in any period are governed by ‘procure up to’ and ‘process

down to’ thresholds. However, unlike the risk-neutral case, these thresholds are also

dependent on the firm’s risk aversion and subjective probabilities over the states of

private uncertainty. Under a mild restriction on the salvage value of input inventory

at the end of the horizon, we showed that excess processing capacity does not provide

any benefit, while excess procurement capacity provides an additional lever for the

firm to manage input price uncertainty.

This work extends our analysis in Chapter 3 and provides additional insights into

the value of financial and operational hedging for a commodity processing firm in a

dynamic setting. While we characterize the value of operational hedging analytically,

we did not perform any comparative statics on how this benefit varies as a function
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of factors such as degree of risk aversion, horizon length or amount of additional

capacity. It will be useful to explore these analytically and/or numerically as part

of future research. An analytical characterization of the comparative statics will

presumably require more specific assumptions on the dynamics of how the market

uncertainties evolve over time. It would also be worthwhile to consider the other

extensions suggested in Chapter 3, e.g., multiple input / output commodities, time

consistent risk constraints, under a partially complete market setting and quantify

the value of financial and operational hedging.
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4.7. Appendix: Proofs of Theorems and Lemmas

Proof of Lemma 4.1. Notice that CV aRm
N

(
CV aRp

N

(
XN(ImN , I

p
N) | ImN

))
is mea-

surable with respect to ImN−1, because I
p
N−1, the state of private uncertainty in period

N − 1, does not convey any information about future market uncertainty and the

probability distribution, pN−1(ImN ), over market states of uncertainty in period N is

completely determined by ImN−1. Suppose DCV aRn+1(X; ηn+1) is measurable with

respect to Imn . Then, from equation (4.1) we have

DCV aRn(X; ηn) = CV aRm
n

(
CV aRp

n

(
Xn(In) + βDCV aRn+1(X; ηn+1) | Imn

))

= CV aRm
n

(
CV aRp

n

(
Xn(In) | Imn

)
+ βDCV aRn+1(X; ηn+1)

)

where the second equality follows from the fact that CV aR is a coherent risk measure

and satisfies the property of translation invariance. The right hand side expression

in the second equality above is measurable with respect to Imn−1, thus completing the

proof.

Proof of Theorem 4.1. The theorem is clearly true for period N . Suppose it is

true for periods n+ 1, . . . , N . Let

Cn+1(Imn+1) , Eπ

[
T∑

τ=n+1

βτ−(n+1)CV aRp
τ

(
Xτ (Imτ , Ipτ ) | Imτ

)∣∣∣∣∣Imn+1

]
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From equation (4.4), we have

Vn(X, αn−1, Imn ) = max
αn

{
[αn−1 − αn]

TMn(Imn ) + CV aRp
n

(
Xn(Imn , Ipn) | Imn

)
+ CV aRm

n

(
βαT

nMn+1(Imn+1) + βCn+1(Imn+1)

)}
= (αn−1)

TMn(Imn ) + CV aRp
n

(
Xn(Imn , Ipn) | Imn

)
+max

αn

{
CV aRm

n

(
(αn)

T[βMn+1(Imn+1)−Mn(Imn )]

+βCn+1(Imn+1)

)}

The maximization over αn can be written as the following linear program

max
αn,υ,z(Im

n+1,Im
n )
υ − 1

ηn

∑
Im
n+1

pn(Imn+1, Imn )z(Imn+1, Imn )

s.t.

z(Imn+1, Imn ) ≥ υ −
(
(αn)

T[βMn+1(Imn+1)−Mn(Imn )] + βCn+1(Imn+1)
)
∀ Imn+1

z(Imn+1, Imn ) ≥ 0 ∀ Imn+1

The dual of the above linear program is then

min
ψn(Im

n+1,Im
n )

∑
Im
n+1

ψn(Imn+1, Imn )βC(n+ 1, Imn+1)

s.t.

0 ≤ ψn(Imn+1, Imn ) ≤
pn(Imn+1, Imn )

ηn
∀ Imn+1∑

Im
n+1

ψn(Imn+1, Imn ) = 1

∑
Im
n+1

ψn(Imn+1, Imn )βMn+1(j, Imn+1) =Mn(j, Imn ) ∀ j

By the partial markets assumption, there is a unique solution, namely the risk-

neutral probabilities πn(Imn+1, Imn ), which satisfy the set of linear equalities in the
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above minimization. By the conditions of the theorem, the risk-neutral probabilities

also satisfy the inequalities in the above problem. Substituting this, we get

Vn(X, αn−1, Imn ) = (αn−1)
TMn(Imn ) + CV aRp

n

(
Xn(Imn , Ipn) | Imn

)
+ βEπ

[
Cn+1(Imn+1)|Imn

]
= (αn−1)

TMn(Imn ) + Eπ

[
N∑
τ=n

βτ−nCV aRp
τ

(
Xτ (Imτ , Ipτ ) | Imτ

)∣∣∣∣∣Imn
]

Proof of Theorem 4.2. The inequality (4.23) implies βEπN−1
[CV aRp

N(SN , ImN )] <

∆m
N−1 − p and hence the theorem is true for n = N − 1. Suppose the theorem is true

for n+ 1, . . . , N − 1.

Now, ∂Un+1

∂en+1
≤ ∆m

n+1−p for each In+1 implies that
∂CV aRp

n+1

(
Un+1,Im

n+1

)
∂en+1

≤ ∆m
n+1−p

and hence Υn(k), the slope of βEπn
[
CV aRp

n+1

(
Un+1, Imn+1

)]
is ≤ βEπn

[
∆m
n+1 − p

]
=

∆m
n − p for k = 1, . . . , κn + 1. From equation (4.19), we have bn = 0 and the optimal

processing quantity is given bym∗
n = min{C, en+xn} for a given procurement quantity

xn.

By the concavity and piecewise linear nature of Hn(en+1) in en+1, we can write

Hn(en+1) = max
δe

(k)
n+1

Hn(0) +
κn+1∑
k=1

Υ(k)
n δe

(k)
n+1

s.t.

0 ≤ δe
(k)
n+1 ≤ g(k)n k = 1, . . . , κn

δe
(κn+1)
n+1 ≥ 0

κn+1∑
k=1

δe
(k)
n+1 = en+1

for any en+1 ≥ 0 and for each In
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Using the above representation for Hn, we have

Un(en, In) = max
0≤xn≤(C−en)

{(∆m
n − p)(en + xn)− Snxn +Hn(0)}

if 0 ≤ en ≤ C and Sn > Υ
(1)
n and

Un(en, In) = max
(C−en)+≤xn≤C

{
(∆m

n − p)C − Snxn +Hn(0) +
κn+1∑
k=1

Υ(k)
n δe

(k)
n+1

}
s.t.

0 ≤ δe
(k)
n+1 ≤ g(k)n k = 1, . . . , κn

δe
(κn+1)
n+1 ≥ 0

κn+1∑
k=1

δe
(k)
n+1 = en + xn − C

if en > C or Sn ≤ Υ
(1)
n .

In the first scenario, the marginal risk-adjusted value of input inventory, i.e., the

slope of Un with respect to en is equal to min{∆m
n − p, Sn} ≤ ∆m

n − p. In the second

scenario, the slope of Un with respect to en is equal to max{Sn,Υ(k̄)
n } where k̄ is such

that en +C ∈ [bn(k̄ − 1), bn(k̄)). By concavity of Hn and the fact that Sn ≤ Υ
(1)
n , we

have max{Sn,Υ(k̄)
n } ≤ Υ

(1)
n ≤ ∆m

n − p where the second inequality follows from the

induction hypothesis. Thus, for all en and all In, we have ∂Un

∂en
≤ ∆m

n − p.

Proof of Theorem 4.3. We prove the theorem by induction. Clearly, the theorem

is true for period N − 1 and we can write

UN−1(eN−1, IN−1) = Θ
(k)
N−1eN−1 + Λ

(k)
N−1 for eN−1 ∈ [(k − 1)D, kD)
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We have

CV aRp
N−1

(
UN−1(eN−1, IN−1), ImN−1

)
= min

ψ(Ip
N−1,I

m
N−1)

∑
Ip
N−1

ψ(IpN−1, I
m
N−1)UN−1(eN−1, IN−1)

s.t.

0 ≤ ψ(IpN−1, I
m
N−1) ≤

qN−1(IpN−1, ImN−1)

η
∀ IpN−1∑

Ip
N−1

ψ(IpN−1, I
m
N−1) = 1

Let ψ∗(·) be the optimal solution to the above problem so that

CV aRp
N−1

(
UN−1(eN−1, IN−1), ImN−1

)
=

∑
Ip
N−1

ψ∗(IpN−1, I
m
N−1)UN−1(eN−1, IN−1)

=
∑
Ip
N−1

ψ∗(IpN−1, I
m
N−1)Θ

(k)
N−1eN−1 +

∑
Ip
N−1

ψ∗(IpN−1, I
m
N−1)Λ

(k)
N−1

= −
∑
Ip
N−1

ψ∗(IpN−1, I
m
N−1)(−Θ

(k)
N−1)eN−1

+
∑
Ip
N−1

ψ∗(IpN−1, I
m
N−1)Λ

(k)
N−1

For a given ImN−1, notice that Θ
(k)
N−1 ≤ ∆m

N−1 − p. Let IpN−1(i) and IpN−1(j)

be such that SN−1(ImN−1, I
p
N−1(i)) > SN−1(ImN−1, I

p
N−1(j)) (In the following, we use

the shorthand notation gn(·, j) to denote gn(·, Imn , Ipn(j)) in order to simplify the

notation). From equations (4.25) and (4.26) we can verify that UN−1(eN−1, i) ≤

UN−1(eN−1, j) and Θ
(k)
N−1(i) ≥ Θ

(k)
N−1(j) for all eN−1 ∈ [(k−1)D, kD), for each k. Also,

the two inequalities together imply that Λ
(k)
N−1(i) ≤ Λ

(k)
N−1(j) for each k. As a result,

we have CV aRp
N−1

(
Λ

(k)
N−1, ImN−1

)
=
∑

Ip
N−1

ψ∗(IpN−1, ImN−1)Λ
(k)
N−1 and CV aRp

N−1

(
−
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Θ
(k)
N−1, ImN−1

)
=
∑

Ip
N−1

ψ∗(IpN−1, ImN−1)(−Θ
(k)
N−1) and thus

CV aRp
N−1

(
UN−1(eN−1, IN−1), ImN−1

)
= CV aRp

N−1,l

(
Λ

(k)
N−1, I

m
N−1

)
− CV aRp

N−1

(
−Θ

(k)
N−1, I

m
N−1

)
× eN−1

and βEπN−1

[
CV aRp

N−1

(
UN−1(eN−1, IN−1), ImN−1

)]
= Ψ

(k)
N−1 + Υ

(k)
N−1eN−1 for eN−1 ∈

[(k − 1)D, kD), where Ψ
(k)
N−1 , βEπN−1

[
CV aRp

N−1

(
Λ

(k)
N−1, ImN−1

)]
.

Suppose the above hold for periods n+ 1, . . . , N − 1. In period n+ 1, we have

Un+1(en+1, In+1) = Θ
(k)
n+1en+1 + Λ

(k)
n+1 for en+1 ∈ [(k − 1)D, kD)

where ∆m
n+1 − p ≥ Θ

(k)
n+1 ≥ Θ

(k+1)
n+1 . Further, for i and j such that Sn+1(i) > Sn+1(j),

we have Un+1(en+1, i) ≤ Un+1(en+1, j) and Θ
(k)
n+1(i) ≥ Θ

(k)
n+1(j) for all k for all en+1 ∈

[(k − 1)D, kD), for a given Imn+1.

In period n, we have

Un(en, In) = max
0≤x≤K

{
max

0≤m≤min{C,en+x}
{(∆m

n − p)m+Hn(en+1, In)} − Snx

}

where

Hn(en+1, In) = βEπn
[
CV aRp

n+1

(
Un+1(en+1, In+1), Imn+1

)]
= Ψ(k)

n +Υ(k)
n en+1

for en+1 ∈ [(k − 1)D, kD), for each k ≥ 1.

As ∆m
n+1 − p ≥ Θ

(k)
n+1 for each k, we have

CV aRp
n+1

(
−Θ

(k)
n+1, Imn+1

)
≥ −(∆m

n+1 − p)

⇒ −CV aRp
n+1

(
−Θ

(k)
n+1, Imn+1

)
≤ (∆m

n+1 − p)

⇒ βEπn
[
−CV aRp

n+1

(
−Θ

(k)
n+1, Imn+1

)]
= Υ(k)

n ≤ βEπn
[
∆m
n+1 − p

]
= ∆m

n − p
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and therefore the optimal processing quantity in period n is equal to min{C, en + x}

for each In.

Consider the case when en ∈ [(k − 1)D, kD) with k ≥ a+ 1; i.e., en ≥ C. In this

case, m∗
n = C and we have

Un(en, In) = (∆m
n − p)C + max

0≤x≤K

{
Υ(s−a)
n × (en + x− C)− Snx+Ψ(s−a)

n

}
where s is an integer such that en + x ∈ [(s− 1)D, sD). By concavity of Hn, we can

determine the optimal procurement quantity, x∗n, as follows

x∗n =


K if Υ

(k+b−a)
n ≥ Sn

r̂nD + C − en if Υ
(k−a)
n ≥ Sn > Υ

(k+b−a)
n and r̂n s.t. Υr̂n

n ≥ Sn > Υ
(r̂n+1
n

0 if Sn > Υ
(k−a)
n

Substituting x∗n, we can therefore write

Un(en, In) = max
{
Υ

(k+b−a)
n+1 ,min

{
Sn,Υ

(k−a)
n+1

}}
en + Λ(k)

n

where Λ
(k)
n represents constant terms not involving en, when en ∈ [(k − 1)D, kD) for

k ≥ a+ 1.

For a given Imn , suppose Ipn(i), with i = 1, 2, 3 are such that Sn(1) > Υ
(k−a)
n ≥
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Sn(2) > Υ
(k+b−a)
n ≥ Sn(3). Substituting x

∗
n, we get

Un(en, 3) = (∆m
n − p)C +Υ(k+b−a)

n en +Ψ(k+b−a)
n −Υ(k+b−a)

n C

+
[
Υ(k+b−a)
n − Sn(3)

]
K

≥ (∆m
n − p)C +Υ(k+b−a)

n en +Ψ(k+b−a)
n −Υ(k+b−a)

n C

+
[
Υ(k+b−a)
n − Sn(3)

]
(r̂nD + C − en)

(since K > r̂nD + C − en)

= (∆m
n − p)C +Υ(k+b−a)

n r̂nD +Ψ(k+b−a)
n

+ Sn(3)en − Sn(3)r̂nD − Sn(3)C

≥ (∆m
n − p)C +Υ(r̂n)

n r̂nD +Ψ(r̂n)
n − Sn(3)(r̂nD + C − en)

(by concavity of Hn+1)

≥ (∆m
n − p)C +Υ(r̂n)

n r̂nD +Ψ(r̂n)
n − Sn(2)(r̂nD + C − en)

(since Sn(3) < Sn(2))

= Un(en, 2)

≥ (∆m
n − p)C +Υ(r̂n)

n (en − C) + Ψ(r̂n)
n − Sn(2)(en − C + C − en)

(since r̂nD ≥ en − C)

= (∆m
n − p)C +Υ(r̂n)

n (en − C) + Ψ(r̂n)
n

≥ (∆m
n − p)C +Υ(k−a)

n (en − C) + Ψ(k−a)
n (by concavity of Hn+1)

= Un(en, 1)

Also, Θ
(k)
n (1) = Υ

(k−a)
n ≥ Θ

(k)
n (2) = Sn(2) > Θ

(k)
n (3) = Υ

(k+b−a)
n . As a result, we

have

CV aRp
n

(
Un(en, In), Imn

)
= CV aRp

n

(
Λ(k)
n , Imn

)
− CV aRp

n

(
−Θ(k)

n , Imn
)
en

for en ∈ [(k − 1)D, kD) and k ≥ a+ 1.
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For the case en ∈ [(k−1)D, kD) with k ≤ a; i.e., en < C, the optimal procurement

quantity is given by

x∗n =



K if Υ
(k+b−a)
n ≥ Sn

r̂nD + C − en if ∆m
n − p ≥ Sn > Υ

(k+b−a)
n and r̂n s.t. Υr̂n

n ≥ Sn > Υ
(r̂n+1)
n

0 if Sn > ∆m
n − p

Substituting the optimal procurement quantity in the optimization, we get

Un(en, In) = max
{
Υ(k+b−a)
n ,min {Sn,∆m

n − p}
}
en + Λ(k)

n

where Λ
(k)
n represents constant terms not involving en, when en ∈ [(k − 1)D, kD) for

k ≤ a.

Using arguments similar to the case when en ≥ C, we can show that Un(en, 1) ≤

Un(en, 2) ≤ Un(en, 3) and Θ
(k)
n (1) ≥ Θ

(k)
n (2) ≥ Θ

(k)
n (3) where Ipn(i) are such that

Sn(1) > Sn(2) > Sn(3), for a given Imn . Thus, by induction, Un(en, In) is concave,

continuous and piecewise linear in en with break points at integral multiples of D, and

the marginal risk-adjusted value of input inventory is given by equation (4.27).

Proof of Proposition 4.2. We know that Un(en, In) = Θ
(k)
n en + Λ

(k)
n for en ∈

[(k − 1)D, kD) for each k ≥ 1. Thus, Un(0, In) = Λ
(1)
n .

We have

Λ(1)
n , Un(0, In) = (∆m

n − p− Sn)
+C +Υ(r̂n)

n × (r̂nD) + Ψ(r̂n)
n − Snr̂nD

= (∆m
n − p− Sn)

+C +Ψ(1)
n +

r̂n∑
j=1

Υ(j)
n D − Snr̂nD

= (∆m
n − p− Sn)

+C +Ψ(1)
n +

b−a∑
j=1

(
Υ(j)
n − Sn

)+
D
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where r̂n is such that Υ
(r̂n)
n ≥ Sn > Υ

(r̂n+1)
n or (b− a), which ever is smaller. The first

equality follows from the continuity ofHn whereby Ψ
(k)
n = Ψ

(1)
n +

∑k−1
j=1

(
Υ

(j)
n −Υ

(k)
n

)
D

for each k. The second equality follows from the concavity of Hn.

Notice, Λ
(1)
n and Ûn(0, In) are both decreasing in Sn for each n < N . Further,

νn(K,C) = Λ(1)
n − Ûn(0, In)

= (∆m
n − p− Sn)

+C +Ψ(1)
n +

b−a∑
j=1

(
Υ(j)
n − Sn

)+
D

− (∆m
n − p− Sn)

+C − βEπn
[
CV aRp

n+1

(
Ûn+1(0, In+1), Imn+1

)]
= Ψ(1)

n +
b−a∑
j=1

(
Υ(j)
n − Sn

)+
D − βEπn

[
CV aRp

n+1

(
Ûn+1(0, In+1), Imn+1

)]

is also decreasing in Sn, for all n < N . Thus, we have

CV aRp
n

(
νn(K,C), Imn

)
= CV aRp

n

(
Λ(1)
n , Imn

)
− CV aRp

n

(
Ûn(0, In), Imn

)

for all n < N . Finally,

νn(K,C) = Ψ(1)
n +

b−a∑
j=1

(
Υ(j)
n − Sn

)+
D − βEπn

[
CV aRp

n+1

(
Ûn+1(0, In+1), Imn+1

)]
= βEπn

[
CV aRp

n+1

(
Λ

(1)
n+1, In+1

)]
+

b−a∑
j=1

(
Υ(j)
n − Sn

)+
D

− βEπn
[
CV aRp

n+1

(
Ûn+1(0, In+1), Imn+1

)]
= βEπn

[
CV aRp

n+1

(
Λ

(1)
n+1, Imn+1

)
− CV aRp

n+1

(
Ûn+1(0, In+1), Imn+1

)]
+

b−a∑
j=1

(
Υ(j)
n − Sn

)+
D

= βEπn
[
CV aRp

n+1

(
νn+1(K,C), Imn+1

)]
+

b−a∑
j=1

(
Υ(j)
n − Sn

)+
D
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Chapter 5

Commodity Operations in a Network Environment: Model,
Analysis and Heuristics

5.1. Introduction

Many agricultural commodities, e.g., wheat, corn, soybean are produced in dif-

ferent, geographically spread locations. Energy commodities such as natural gas and

crude oil are also procured and transported across multiple locations. Firms which

use these commodities as inputs to their production process generally procure them

from multiple locations for a variety of reasons, including price differentials across

locations and capacity constraints. Similarly, firms may have processing capacities at

fixed locations, with the output commodities requiring delivery to various locations.

Profits for such firms are affected not only by the stochastic prices of the commodities

at different locations, but also by other network characteristics such as transshipment

costs, capacity constraints, transportation lead times, etc. In this essay, we study the

impact of network characteristics on the integrated procurement, processing and trade

decisions for a commodity processing firm operating a multi-location network.

While commodity production and distribution networks have been studied earlier

(cf., Markland (1975), Markland and Newett (1976)), these papers assume determin-

istic commodity prices and no operational constraints. A large stream of literature

in the operations management area also looks at optimal inventory and/or transship-

ment decisions for any given network; see for example, Karmarkar (1981), Karmarkar

(1987), Federgruen and Zipkin (1984), Robinson (1990) Hu et al. (2004) etc. How-
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ever, all these papers deal with known, proportional costs of procurement and do not

consider multiple options for earning revenues. In contrast, we explicitly incorpo-

rate stochastic commodity prices and capacity constraints, which makes the problem

non-trivial.

Papers that do incorporate stochastic commodity prices across multiple locations

are usually restricted to single period models. Secomandi (2010a) considers the valua-

tion of pipeline capacity to transport natural gas between two locations. Martınez-de

Albéniz and Simón (2010) consider a capacitated commodity trading model, where a

trader takes advantage of geographical spread in commodity prices by transshipping

the commodity from the location with lower price and selling in the location with a

higher price. They model a trader who has market power and the influence of the

trader’s actions on future prices of the commodities. In contrast, the firm in our model

does not influence the market prices of the commodities through its actions. We also

consider inventory carried across periods in our model, in contrast to Martınez-de

Albéniz and Simón (2010). Finally, our model considers multiple commodities, with

the ability to irreversible transform the input to an output commodity.

Somewhat related to this research is the work by Goel and Gutierrez (2008),

who consider commodity procurement and distribution decisions in a supply chain.

They model a two-echelon supply chain with a central warehouse supplying multiple

retailers, each of who faces a stochastic demand. The central warehouse can procure

the commodity from the spot and forward markets, with the two sources having

different lead times. They derive optimal replenishment and distribution policies for

the supply chain. In our network model, we allow transshipment between procurement

and processing locations. Further, we consider processing decisions and capacity

constraints, which are absent in their model.

The rest of this chapter is organized as follows. We formulate the problem for a

firm operating a star network in Section 5.2. We propose various heuristic to solve
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the star network problem in Section 5.3 and quantify the performance of the various

heuristics in Section 5.4. Section 5.5 concludes with directions for future research.

5.2. Model Formulation and Analysis

We consider the integrated problem of procurement, processing and trade over

a multi-node network of M procurement nodes each with procurement capacity of

Ki units per period at location i ∈ {1, 2, . . . ,M}. Let Sin denote the price for the

input in the spot market at location i. We consider a star network configuration,

with location 1 being the central node with a processing capacity of C units, while

all other nodes only have a procurement capacity. In addition to providing analytical

tractability, a star network configuration also approximates real world commodity

processing networks fairly well. In a star network, a procurement source for the input

commodity usually serves at most one processing location, while a processing plant

may have the input transshipped from multiple locations. This is definitely the case

with the e-Choupal network, where a set of procurement hubs are associated with a

processing plant. Due to the geographic proximity and availability of information,

differences in prices across the various procurement hubs are usually not significant

enough to justify transshipment of the input between the non-processing locations.

The transshipment cost is t(ij) per unit between locations i and j, with i ̸= j.

Since the only source of (direct) revenue at the non-processing locations is through

trade of the input commodity, the firm has an incentive to transship input from one

non-processing location to another only when there is an arbitrage opportunity on the

input commodity between the locations; i.e., if the difference in expected trade prices

is more than the transshipment cost between the locations. These arbitrage oppor-

tunities are not relevant to the core operations considered in our model and therefore

to eliminate such opportunities, we do not allow direct transshipment between the

non-processing locations1; i.e., t(ij) = ∞ for (i, j) ∈ {2, 3, . . . ,M} × {2, 3, . . . ,M}.
1This restriction on possible transshipment is also consistent with the actual features of the ITC
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Similar to the single node problems considered in Chapter 2, the firm sells all the

output using forward contracts and the procurement season for the input commod-

ity may span multiple output forward maturities. We consider L forward contracts

available for selling the output during the planning horizon. The forward contracts

are indexed by ℓ, with ℓ ∈ {1, 2, . . . , L} and maturity Nℓ. We assume Nℓ − 1 is the

last possible period in which the firm can sell the output using forward contract ℓ.

Without loss of generality, we assume Nℓ < Nℓ+1 for all ℓ < L. Let F ℓ
n denote the

period n forward price on contract ℓ, for n < Nℓ ≤ N . In addition to selling the

output commodity, the firm can also trade the input itself with other processors over

the horizon. To keep the exposition simple, we assume that all, if any, input sales

happen at the end of the horizon with a per-unit trade (or salvage) value of SiN at

location i.

Let en = (e1, e2, . . . , eM) be the vector of input inventories at the M locations.

Since there is only a single processing location, the output inventory is still a scalar

value Qn. The firm’s decisions include a) the quantity of input to procure at each

location: xn = (x1n, x
2
n, . . . , x

M
n ), b) the quantity of the input commodity to be trans-

shipped between the processing and other procurement locations: yn = (y
(ij)
n : i ̸=

j, i = 1 or j = 1) where y
(ij)
n is the quantity transshipped from location i to location

j, c) the quantity of the output commodity to be committed for sale against contract

ℓ for all ℓ such that Nℓ > n: qℓn, and d) the quantity of input to be processed into

output in period n: mn.

Notice that the network structure does not affect the optimal commitment policy

for selling the output and the marginal value of a unit of output inventory. Thus,

Lemmas 2.1 and 2.2 hold for the network case also and the marginal value of output

is given by equation (2.4). Further, the value function Vn(en, Qn, In) is separable in

network, where a processing plant is supported by a set of procurement hubs, but transshipment of
soybean between the procurement hubs is very rarely observed.
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en and Qn as given by equation (2.6) and we have

Un(en, In) = max
(xn,yn,mn)∈Bn

{
[∆n − p]mn −

M∑
i=1

Sinx
i
n

−
M∑
i=2

t(i)[y(1i)n + y(i1)n ]

− hI

[
M∑
i=1

(ein + xin)−mn

]

+ βEIn [Un+1(en+1, In+1)]

}
for n < N (5.1)

UN(eN, IN) =
M∑
i=1

SiNe
i
N (5.2)

where the set of feasible actions in period n, Bn is given by

Bn =



0 ≤ xin ≤ Ki for i = 1, 2, . . . ,M

0 ≤ mn ≤ C

mn +
∑M

i=2 y
(1i) ≤ e1n + x1n +

∑M
j=2 y

(j1)
n

y(i1) ≤ ein + xin for i = 2, 3, . . . ,M

xn ≥ 0,yn ≥ 0,mn ≥ 0


(5.3)

and the state transition equations are given by

ein+1 =


ein + xin +

M∑
j=2

y(j1)n −
M∑
j=2

y(1j)n −mn for i = 1

ein + xin + y
(1i)
n − y

(i1)
n for i = 2, . . . ,M

(5.4)

Notice that (5.2) is linear in eN and thereby, also piecewise linear. Similar to

the single node problem, we can use induction arguments to show that Un(en, In) is

piecewise linear and concave in en. While it is theoretically possible, it is hard to

derive expressions for the marginal value of inventory at location i as it depends not

just on ein, but the entire inventory vector en. As a result, the optimal procurement
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and processing policy also depend on the entire inventory vector en and it is hard

to solve the network problem without additional simplifications. In the next section,

we consider some simplifications and use these simplifications to develop tractable

heuristics for the network problem.

5.3. Heuristics and Upper Bound for the Network Problem

The complexity in solving the DP given by (5.1)–(5.2) arises primarily from the

complexity in computing the value-to-go function, Un+1(en+1, In+1), for a multi-

dimensional state space. We develop heuristics by considering approximations to

Un+1(en+1, In+1) that are easy to compute. Approximations to the value-to-go func-

tion can be achieved by reducing the number of periods considered in the remaining

planning horizon or by reducing the dimensions of the state variable. We present

heuristic policies based on both these approaches in this section. The Equivalent

Single Node (ESN) heuristic uses the similarities between the network problem and

single node problem with convex cost of procurement to reduce the dimensionality of

the state space. On the other hand, the Network Full Commitment (NFC) heuristic

is a myopic heuristic which approximates the value-to-go function by reducing the

number of periods considered in the remaining planning horizon.

5.3.1 Equivalent Single Node (ESN) Heuristic

Solving the network problem optimally is complicated by the fact that the marginal

value of input inventory is generally different across the various locations and depen-

dent on the inventory levels at the different locations and not just the aggregate input

inventory. However, the network problem is tractable and is equivalent to the single

node problem with piecewise linear, convex cost of procurement under some simpli-

fying assumptions. To see this, consider a situation where all the procurement nodes

are close to the central processing location such that the transshipment costs between

the nodes are a very small fraction of the commodity prices. The input commodity
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prices realized in the spot markets can still be different across locations. Further,

consider the case when the trade price at the end of the horizon for the input is the

same, irrespective of which node the input is physically stored at. Thus we have,

t(i) ≃ 0 and SiN ≃ SN for all i. Thus, we can write the SDP equations (5.1)–(5.2) as

Un(en, In) = max
(xn,yn,mn)∈Bn

{
[∆n − p]mn −

M∑
i=1

Sinx
i
n

− hI

[
M∑
i=1

(ein + xin)−mn

]
+ βEIn [Un+1(en+1, In+1)]

}

UN(eN, IN) = SN

M∑
i=1

eiN

with the same state transition equations as before.

Notice that the input inventory across different locations are indistinguishable in

their marginal values in this case. Thus, we can replace en by ên =
∑

i e
i
n and drop

the transshipment decisions from the optimization problem to write

Un(ên, In) = max
(xn,mn)∈B̂n

{
[∆n − p]mn −

M∑
i=1

Sinx
i
n

− hI

[
(ên +

M∑
i=1

xin)−mn

]

+ βEIn [Un+1(ên+1, In+1)]

}
for n < N(5.5)

UN(êN , IN) = SN êN (5.6)

where B̂n is the set of constraints on the procurement and processing quantities given

by

B̂n =


0 ≤ xin ≤ Ki for i = 1, 2, . . . ,M

0 ≤ mn ≤ C

mn ≤ ên +
∑M

i=1 x
i
n


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Notice that even though the input inventory across various locations are indistin-

guishable, the marginal cost of procurement, Sin, is still different across locations and

is retained in the above optimization. The SDP equations above are the same as

those for the single node problem analyzed in Chapter 2, albeit with a convex cost

of procurement in each period. We now re-visit the single node problem analyzed in

Chapter 2, with the change that the procurement cost is a convex function of the total

quantity procured, and derive expressions for the marginal value of input inventory.

We then propose a tractable heuristic, the equivalent single node (ESN) heuristic, to

solve the network problem.

5.3.1.1 Single Node Problem with Convex Cost of Procurement

The analysis in Chapter 2 assumed that the procurement cost is linear in the quantity

procured and the firm pays the spot price per unit. This is generally true when the

firm is small and the firm’s actions do not affect the market prices. However, even

for such firms the cost of procurement may not necessarily be linear. Consider ITC’s

e-Choupal network where at each hub procurement is through the direct channel as

well as the spot market. Under such circumstances, the total cost of procurement

over both sources would ideally be a piecewise linear convex function because of

the ‘merit order’ of procurement (cf., Bannister and Kaye (1991)); i.e., the firm will

procure from the cheaper source first before using the more costly channel.2 Other

instances where a convex cost of procurement may arise is when the firm procures

over multiple locations to serve a single processing and trade location. As we will see

in Section 5.3.1.2, the results obtained here will be useful in developing a heuristic

for the network problem. With this motivation, we consider the situation when the

2We should note that while this is true in general for ITC, there are instances when the firm
procures from the direct channel at a higher price, even if the price in the spot market is lower.
Because the firm has better control over the quality of the soybean procured in the direct channel,
however, the true marginal cost after adjusting for quality is still lower in the direct channel. Thus,
the total procurement cost is still convex.
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firm has a convex cost of procurement.

We assume all aspects of the operations remain the same as in Section 2.3, except

for the procurement cost. Let the total cost of procuring xn units of input when the

spot price is Sn be denoted by C (Sn, xn). We model C (Sn, xn) as a piecewise linear,

convex function such that

C (Sn, xn) =



γ1Sn × xn if 0 ≤ xn ≤ K1

γjSn × [xn −Kj−1]

+

j−1∑
i=1

γiSn × [Ki −Ki−1] if Kj−1 < xn ≤ Kj

for j = 2, . . . , J

(5.7)

where γj > γj−1 and Kj > Kj−1 for all j = 1, 2, . . . , J , with γ0 = 0 and K0 = 0.

Notice that the linear cost of procurement is a special case of this function with

J = 1, and for which γ1 = 1 and K1 = K. One can think of Kj − Kj−1 as the

procurement capacity of the jth lowest cost source, from the J available sources.

Further, a general convex cost of procurement can be approximated by a piecewise

linear function such as the one given by equation (5.7) to any required degree of

accuracy by varying the number of segments in the cost function.

Notice that the optimal commitment policy for selling the output and the marginal

value of a unit of output inventory is not affected by the procurement cost. Thus,

Lemma 2.1 holds for this case and the marginal value of output is given by equation

(2.4).

We now focus on computing the marginal value of input inventory when the pro-

curement cost is given by equation (5.7). To this end, let D be the greatest common

divisor (GCD) of (C,K1 − K0, K2 − K1, . . . , KJ − KJ−1). Let (a, b1, b2, . . . , bJ) be

positive integers such that C = aD and Kj = bjD for all j = 1, 2, . . . , J and b0 = 0.

Using arguments similar to those in the proof of Theorem 2.1, we can prove the next
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result.

Theorem 5.1. The value function Un(en, In) is continuous, concave and piecewise

linear in en with changes in slope at integral multiples of D, for each realization of

In when the procurement cost is given by C (Sn, xn), as defined in equation (5.7).

Let Θk
n denote the marginal value of input inventory (i.e., slope of Un) when en ∈

[(k − 1)D, kD) where k is an integer.

For all n, let Θk
n , ∞ for k ≤ 0. In the last period, Θk

N = SN for all k ≥ 1.

For any period n < N and k ≥ 1, the marginal value of input inventory Θk
n , Θ

(k,J)
n

where

Θ(k,j)
n =

 Ω
(k)
n j = 0

max
{
Ω

(k+bj)
n ,min

{
γjSn,Θ

(k,j−1)
n

}}
for j = 1, 2, . . . , J

(5.8)

and Ω
(k)
n is given by

Ω(k)
n = max

{
βEn[Θk

n+1]− hI ,min
{
∆n − p, βEn[Θk−a

n+1]− hI
}}

Similar to the linear procurement cost case, we can define thresholds based on Ω
(k)
n

to characterize the optimal procurement and processing policy when the procurement

cost is convex and piecewise linear. However, the procurement policy is more involved

and characterized by J + 1 thresholds. Specifically,

Proposition 5.1. For all n < N , let Ω
(k)
n be as defined in equation (2.11). Then, in

period n

1. The optimal procurement quantity is given by

x∗n =


Kj−1 if γj−1Sn ≤ Ω

(k+bj−1)
n < γjSn

ŝjD − en if Ω
(k+bj−1)
n ≥ γjSn ≥ Ω

(k+bj)
n

Kj if γj+1Sn > Ω
(k+bj)
n > γjSn

146



where ŝj = argmax
s∈Z

{
Ω(s)
n > γjSn

}
.

2. The optimal quantity to process is given by

m∗
n =


C if Ω

(k)
n < ∆n − p

min{(en + x∗n − r̂D)+, C} if Ω
(k)
n ≥ ∆n − p ≥ Ω

(k+bJ )
n

0 if Ω
(k+bJ )
n > ∆n − p

where r̂ = argmax
r∈Z

{Ω(r)
n > ∆n − p}.

The results in Theorem 5.1 have been derived assuming the γj are stationary.

However, equation (5.8) can easily incorporate non-stationary values of γj, thus al-

lowing us to model time varying procurement cost functions. More significantly, the

γj values can also be stochastic, with the realized values of γj being used in equa-

tion (5.8). In such a case, the variable In would include (γ1n, γ
2
n, . . .) as part of the

state variable. Similarly, equation (5.8) can be modified to easily incorporate non-

stationary and stochastic values of bj; i.e., the procurement capacities in each segment

of the piecewise linear cost function need not be the same across periods. Stochas-

tic γj and bj are useful to model multiple sources of procurement, with stochastic

marginal cost of procurement at each source. These generalizations are useful in

developing heuristics for the star network problem.

5.3.1.2 The ESN Heuristic

The SDP equations (5.5)–(5.6) are the same as those for the single node, convex

procurement cost case, albeit with stochastic γj because the Sin are stochastic. We can

therefore use the results from Section 5.3.1.1 to solve this simplified network problem.

The heuristic for the general star network is based on the equivalence between the

simplified network and the single node problem and we call this the ‘Equivalent Single

Node’ (ESN) heuristic. We develop the ESN heuristic by first replacing en+1 with
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ên+1 =
∑

i e
i
n. We then replace the stochastic procurement cost over the network in

any period by a piecewise linear, convex cost function as follows.

Let S
(j)
n be the jth order statistic of Sn = (S1

n, S
2
n, . . . , S

M
n ). Let ij be the index of

the location corresponding to the jth order statistic of Sn. Define

γjn = EI1

[
S
(j)
n

S1
n

∣∣∣∣∣S1
1

]
(5.9)

K̄j
n = EI1

[
j∑

k=1

Kik

∣∣∣∣∣S1
1

]
(5.10)

for j = 1, 2, . . . ,M , for all n.

Let D be the greatest common divisor of (C, K̄1, K̄2−K̄1, . . . , K̄M−K̄M−1) where

K̄j is the average K̄j
n over all n. Define (a, b1, . . . , bM) to be positive integers such

that C = aD and K̄j = bjD. We approximate the star network by an equivalent

single node with a procurement cost function given by equation (5.7), where Sn = S1
n

and the γjn and Kj are given as above. For this single node network, we can calculate

the approximate marginal value of input inventory Θ̂k
n, according to equation (5.8).

To compute the heuristic procurement, transshipment and processing quantities

for the general network problem, we define the approximate value function as

Ûn(en, În) = Θ̂k
n

∑
i

ein + λ̂kn if (k − 1)D ≤ ên < kD (5.11)

where the λ̂kn are constants such that Ûn is continuous in
∑

i e
i
n and λ̂1n = 0 for all n

and all In. The heuristic policy for the general network in any period n < N is then

given by the solution to the following optimization problem

max
xn, yn, mn∈Bn

{
[∆̂n − p]mn −

M∑
i=1

Sin × xin

−
M∑
i=2

t(i)[y(1i)n + y(i1)n ]− hI

M∑
i=1

ein+1 + βEIn

[
Ûn+1(en+1, În+1)

]}

148



5.3.2 Network Full Commitment (NFC) Heuristic

Myopic policies are examples of heuristics that approximate the value-to-go func-

tion by reducing the number of periods considered in the planning horizon. Myopic

policies, as approximations to optimal policies, are well studied in the context of

multi-period stochastic inventory problems; see for example, Lovejoy (1990), Lovejoy

(1992), Morton and Pentico (1995), Anupindi et al. (1996), and Iida (2001). The

Network Full Commitment (NFC) heuristic is a myopic heuristic and based on the

full commitment policy used in practice (see Section 2.4.2 for a description of the full

commitment policy in a single node context).3

Under the NFC heuristic, the firm only considers the value from processing and

committing to sell the output immediately in the same period. Setting t(11) = 0,

let mj be the location corresponding to the jth order statistic of (S1
n + t(11), S2

n +

t(21), . . . , Sjn + t(j1), . . . , SMn + t(M1)). We determine the procurement and processing

quantities for period n in the following manner.

1. δC = C.

2. xjn = 0 for j = 1, 2, . . . ,M .

3. For j = 1 to M

if max
ℓ

{F ℓ
n} − p ≥ Smj

n + t(mj1) where ℓ s.t. Nℓ > n

• x
mj
n = min{Kmj , δC};

• y
(mj1)
n = x

mj
n ;

• δC = δC − y
(mj1)
n ;

3The NFC heuristic is a modification of the full commitment policy used in practice. In practice,
the value from processing and committing to sell the output immediately is compared against a
weighted average cost of procurement across all locations where the procurement capacity at each
location is used as the weight. Our numerical studies indicate that this heuristic performs very
badly, and the NFC heuristic is a significant improvement on the full commitment policy used in
practice.
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4. mn =
M∑
j=1

y(j1)n .

Similar to the full commitment policy in the single node case, the NFC heuristic

ignores the ‘option’ value from postponing commitment of the output, as well as the

value from holding and trading the input inventory at the end of the horizon at each

location.

We can use dual penalties based on the ESN heuristic and compute an upper

bound on the optimal expected profits for the network case by appropriately modi-

fying the information relaxation procedure described in Section 2.5.2 to account for

the network characteristics. This upper bound can then be used to evaluate the

performance of the two heuristics for the network case.

5.4. Numerical Study

In this section, we quantify the performance of the ESN and NFC heuristics using

numerical studies. We consider the soybean procurement and processing decisions as

the context and use commodity market data for the soy complex for our numerical

studies.

As in Section 2.4, we model the various commodity prices as single-factor mean-

reverting processes. As seen in Section 2.4.2, the composite output approximation

was close to optimal and for the purposes of this numerical study we model a single

composite output. We investigate the performance of the heuristic for a two-node

and a five-node network respectively.

5.4.1 Implementation

Price process parameters. We model the parameters of the single factor, mean-

reverting price process parameters for the input and a hypothetical, composite output

whose price in any period is equal to the total value of soybean meal and soybean

oil produced upon processing one bushel of soybeans, where the value is calculated
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Table 5.1: Price Process Parameters for Input and Output Commodities

Input (Soybean) Output (Composite)

Mean-Reversion Coeff κi 0.229 0.5348
Longrun Log level ξi 6.738 6.8327

Volatility σi 0.244 0.4360
Seasonality Factor eµ(t)

Jan 0.992 0.988
Feb 0.992 0.988
Mar 0.998 0.993
Apr 0.998 0.993
May 1.000 0.995
Jun 1.000 0.995
Jul 1.017 1.037
Aug 1.010 1.013
Sep 0.991 1.000
Oct 0.991 0.987
Nov 0.989 0.987
Dec 0.989 0.984

based on the current prices of the two products. As only futures instruments are

publicly traded for the different output commodities, we consider futures instruments

for the composite output as well, where the futures price for a particular maturity is a

combination of the futures prices of the individual output commodities , to estimate

the price process parameters for the composite output. The futures price information

on futures contracts traded on the Chicago Board of Trade (CBOT) for different

maturities on each trading day of the month of June 2010 was used to calibrate

the parameters for soybean and composite output spot price processes using the

same procedure described in Section 2.4.1. The average of the estimated parameters

obtained over each trading day are given in Table 5.1 and used to model the price

processes.

The input spot price across various locations in the network are not expected to

diverge greatly, even though the realizations are not necessarily equal across locations.

As a result, we set the parameters of the input spot price process at each location equal
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to the values given in Table 5.1.4 However, we model the Brownian motion increments

in the input spot prices across different locations to be imperfectly correlated and set

the correlation coefficient, ρij, equal to 0.9.5 The correlation between the Brownian

motion increments for the input and output commodities, ρio, was estimated as 0.883.

Evaluation of the heuristics. For computing the ESN heuristic policy, we use the

re-combining binomial tree procedure described in Peterson and Stapleton (2002),

which can handle mean reversion in prices, to discretize the dynamics of the price

processes and approximate the joint evolution of the spot price of the input and output

commodities. Each period in the discrete binomial tree corresponds to a week and we

discretize the price process with δ steps between each period. In our computational

studies, we set δ = 20.

We generate sample paths of input spot prices across different locations and esti-

mate γj and K̄j using equations (5.9) and (5.10) respectively over these sample paths.

Using equations (2.4) and (5.8), we can compute ∆n and Θk
n for k = 1, . . . , (N−n)a+1,

and thereby the ESN procurement and processing policy at each node in the tree.

We evaluate the performance of the heuristics using Monte Carlo simulation. We

generate sample paths of prices for each period n = 1, 2, . . . , N by sampling from the

continuous time price processes. We round the realized input spot price at location

1 and output spot prices to the closest node in the binomial tree and obtain the

procurement, processing and commitment quantity suggested by the ESN heuristic

for the corresponding to the node and inventory level. For each sample path, the

procurement and processing quantities for the NFC heuristic are determined according

to the algorithm given in Section 5.3.2. Expected profits from both heuristics are

computed as the average profit over 10,000 sample paths. We also compute an upper

bound value for each sample path by solving the upper bound problem and average

4We also lacked data on spot prices at different locations, prompting us to set the parameters to
the values estimated from data available for a single location.

5This ensures that while the individual realizations of the spot prices across locations are not
identical, they are not greatly divergent either.
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across sample paths to obtain the upper bound on expected profits.

Other operational parameters. For all the numerical studies, we set the variable

cost of processing p to equal 72 cents / bushel, same as in the single node case of

Chapter 2. The procurement capacities in the two-node network are set to 3 and 2

units respectively at the two locations, while in the five-node network the procurement

capacity at each location is set to 2 units. These capacities can be considered to be

in multiples of bushels, e.g., million bushels. For the base case, we set processing

capacity to 60% of total procurement capacity, which is roughly the percentage of

soybeans produced in the United States that were estimated to have been crushed

2008 and 2009 (Ash, 2011). We leave the exact units for the capacities unspecified

as only the relative values of the procurement and processing capacities matter for

computing the policies and multiplying both the capacities by a common factor will

scale the expected profits also by the same factor. We set the transportation cost

per unit between the central and any of the other procurement locations as 20 cents

/ bushel, which is roughly 20% of the expected input spot price. We assume the

physical holding costs for the various commodities are negligible and normalize them

to zero.

5.4.2 Numerical Results

We conduct numerical studies to compute the expected profits for the firm from

its procurement and processing operations over the procurement season ranging from

August to December. We initialize the prices for all the commodities to their long run

average values at the beginning of the planning horizon and evaluate the performance

of the heuristics for different horizon lengths. Table 5.2 gives the expected profits and

upper bound for different horizon lengths when the firm uses all forward contracts

available over the horizon for the output commodity.6

The results in Table 5.2 suggest that approximating the network effects (as is done

6Unless indicated, the gaps shown in all tables in this section are significant with p < 0.05.
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Table 5.2: Performance of Heuristics for Different Horizon Lengths

(a) Two-Node Network

Horizon Length Expected Profits Upper Gap

(# of Fwds. and NFC ESN Bound (ESN-NFC) (UB-ESN)
Maturities) (% of ESN) (% of UB)

5 1489.48 1485.32 1606.45 -0.28%† 7.54%
(1, {5})

10 3164.31 3138.56 3434.34 -0.82%† 8.64%
(2, {5, 9})

20 7049.61 6999.77 8304.22 -0.71%† 15.71%
(3, {5, 9, 18})

†p− value > 0.1

(b) Five-Node network

Horizon Length Expected Profits Upper Gap

(# of Fwds. and NFC ESN Bound (ESN-NFC) (UB-ESN)
Maturities) (% of ESN) (% of UB)

5 2736.80 2621.50 3025.69 -4.40% 13.36%
(1, {5})

10 5936.40 5631.90 6830.30 -5.41% 17.55%
(2, {5, 9})

20 13470.72 12575.80 16899.20 -7.12% 25.58%
(3, {5, 9, 18})
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by the ESN heuristic) is worse than approximating the effect of future period decisions

(as is done by the NFC heuristic) for large networks, as is evident from the large

negative gaps between the ESN and NFC heuristics for the five-node network case.

The results in the table above are for a base set of parameters and the same behavior is

not necessarily true under all circumstances. Specifically, under the current parameter

values, a positive processing margin exists at the beginning of the planning horizon

and the expected processing margin throughout the horizon is positive. Also, the

expected salvage value at the end of the horizon is lower than the expected spot

price throughout the horizon. With a processing capacity that is 60% of the total

procurement capacity, profits from processing and selling the output are a major

portion of the total profits. Taking advantage of the lowest cost of procurement, as

is done by the NFC heuristic explicitly, leads to better expected profits.

To investigate how the heuristics perform under different scenarios, we consider

sensitivity of the different policies to some key parameters; processing capacity, price

volatilities and initial processing margin.

Impact of processing capacity. When processing capacity is limited compared

to the procurement capacity, we expected the value of a forward looking heuristic

such as ESN to be higher. This is because when the input spot prices are low, the

ESN heuristic is likely to procure input for current period processing as well as for the

future. Further, including the option to trade input inventory at the end of the horizon

is more valuable when processing capacity is limited. However, the ESN heuristic

takes into account the network characteristics only in an approximate manner. A

myopic heuristic such as NFC does not account for future processing needs or salvage

at the end of the horizon, but takes the effect of the network characteristics for the

current period decision. Table 5.3 shows the expected profits when using the two

heuristics as the processing capacity is varied from 20% to 100% of the procurement

capacity.
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Table 5.3: Impact of Processing Capacity on ESN and NFC Heuristics
(N = 10, L = 2, Nℓ = {5, 9})

(a) Two-Node Network

Processing Expected Profits Upper Gap

Capacity NFC ESN Bound (ESN-NFC) (UB-ESN)
(% of Total K) (% of ESN) (% of UB)

20% 1061.41 1086.95 1474.24 2.35% 26.27%
40% 2122.83 2118.38 2457.90 -0.21%† 13.81%
60% 3164.31 3149.33 3435.23 -0.48%† 8.32%
80% 4029.82 4020.91 4248.37 -0.22%† 5.35%
100% 4895.32 4888.84 5032.34 -0.13%† 2.85%

†p− value > 0.1

(b) Five-Node network

Processing Expected Profits Upper Gap

Capacity NFC ESN Bound (ESN-NFC) (UB-ESN)
(% of Total K) (% of ESN) (% of UB)

20% 2180.91 2169.84 3306.81 -0.51%† 34.38%
40% 4124.09 3918.57 5041.06 -5.25% 22.27%
60% 5936.40 5660.03 6688.09 -4.88% 15.37%
80% 7624.75 7405.84 8205.72 -2.96% 9.75%
100% 9153.31 9148.37 9516.90 -0.15%† 3.87%

†p− value > 0.1
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The benefits of using a forward looking policy such as ESN, albeit by approxi-

mating the network characteristics, are significant compared to a myopic policy such

as NFC for smaller networks and highly constrained processing firms. This advan-

tage disappears as the processing capacity increases and the gap is negative for larger

networks. We see that approximating the network characteristic becomes important

for large networks with moderate processing capacities, as seen from Table 5.3 for

the five-node network. This is because profits from processing and selling the output

are a major portion of the total profits and taking advantage of the lowest cost of

procurement, as is done by the NFC heuristic explicitly, leads to better expected prof-

its. As the expected processing margin is positive throughout the horizon, both the

ESN and NFC heuristic lead to almost identical policies as the processing capacity

increases and thus the gap between the two decreases. Further, because the expected

salvage value at the end of the horizon is less than the expected spot price through

the horizon, the gap between the heuristics and upper bound also decreases as the

processing capacity increases.

Impact of price volatilities. Both heuristics, NFC and ESN, have option like

features. The NFC heuristic is equivalent to exercising an European spread option

between the output and input spot price for each location, where the number of

options exercised is smaller of the remaining processing capacity and procurement

capacity at the location. Further, the NFC heuristic incorporates the transportation

cost to bring the input to the processing location while making the exercise decision.

The ESN heuristic models the output commitment decision as a compound exchange

option, while modeling the the procurement and processing decisions based on spread

options. However, the spread option exercise decisions at each location in the network

are made based on an approximation of the network characteristics and do not capture

the full value.

We expect the option value, and hence expected profits under each heuristic, to
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Table 5.4: Impact of Price Volatility on ESN and NFC Heuristics
(N = 10, L = 2, Nℓ = {5, 9})

(a) Two-Node Network

Price Expected Profits Upper Gap

Volatility NFC ESN Bound (ESN-NFC) (UB-ESN)
(σi, σo) (% of ESN) (% of UB)

0.25 2927.98 2897.91 3151.79 -1.04% 8.06%
0.35 3024.55 2987.42 3405.79 -1.24% 12.28%
0.45 3162.87 3114.77 3745.61 -1.54% 16.84%
0.55 3339.12 3302.25 4178.24 -1.12%† 20.97%
0.65 3549.26 3547.43 4703.01 -0.05%† 24.57%

†p− value > 0.1

(b) Five-Node network

Price Expected Profits Upper Gap

Volatility NFC ESN Bound (ESN-NFC) (UB-ESN)
(σi, σo) (% of ESN) (% of UB)

0.25 5467.65 5168.62 6114.04 -5.79% 15.46%
0.35 5725.01 5321.56 6888.96 -7.58% 22.75%
0.45 6058.97 5549.81 7929.61 -9.17% 30.01%
0.55 6464.19 5889.12 9252.71 -9.76% 36.35%
0.65 6933.43 6375.69 10836.98 -8.75% 41.17%

increase as the volatility of the commodity price processes increases. This can be seen

in Table 5.4 which quantifies the performance of the heuristics as the price volatili-

ties are varied. We notice that the gap between the heuristics and the upper bound

increases as the volatility increases. This is because the upper bound calculation

incorporates the option value in the various decisions fully, while the heuristics only

capture the option value partially through approximations. Thus, the gap increases.

As seen from the results for the five-node network, the exchange option value in-

herent in the output commitment decision as modeled by the ESN heuristic is not

enough to overcome the reduction in profits because of approximating the network
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characteristics for large networks.

Impact of initial processing margin. As discussed earlier, the NFC heuristic

determines the procurement and processing decisions in a given period based only on

the margin from processing and committing to sell the output immediately. As such,

we would expect the NFC heuristic to perform well when the expected processing

margin is positive throughout the horizon. On the other hand, the ESN heuristic

also considers future procurement and processing decisions, albeit by approximating

the network as a single node, while determining the current period decisions. Thus,

we expect the ESN heuristic to perform better than the NFC heuristic when the

processing margins are tight and for smaller networks. Further, as the processing

margin increases, we expect both the heuristics to yield similar expected profits as

the share of profits obtained from the sale of output in total profits increases. Further,

we also expect the gap between the heuristics and the upper bound to decrease as

the processing margin increases. The results in Table 5.5 reflect this intuition (The

initial margin per unit is calculated as output spot price in period 1−processing cost−

input spot price in period 1 at location 1 ).

Overall, the numerical studies indicate sizeable gaps between the heuristics and

the upper bound for a variety of conditions. The forward looking ESN heuristic per-

forms well for firms operating smaller networks and facing processing capacity and/or

processing margin constraints. On the other hand, the myopic NFC heuristic per-

forms better than the ESN heuristic for large networks. While part of the gap between

the upper bound and heuristics is the gap between the upper bound and optimal ex-

pected profits, the numerical study provides sufficient evidence that a heuristic policy

that is forward looking and also combines the network characteristics is required to

capture more of the value from operating a commodity procurement and processing

network.

5.5. Conclusions
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Table 5.5: Impact of Initial Processing Margin on ESN and NFC Heuristics
(N = 10, L = 2, Nℓ = {5, 9})

(a) Two-Node Network

Initial Expected Profits Upper Gap

Processing Mgn. NFC ESN Bound (ESN-NFC) (UB-ESN)
(per unit) (% of ESN) (% of UB)

-15 467.31 479.11 851.50 2.46%† 43.73%
10 756.01 753.65 1126.56 -0.31%† 33.10%
35 1173.14 1153.96 1505.22 -1.66%† 23.34%
60 1646.31 1625.77 1949.47 -1.26%† 16.60%
85 2153.27 2130.99 2437.94 -1.05%† 12.59%

†p− value > 0.1

(b) Five-Node network

Initial Expected Profits Upper Gap

Processing Mgn. NFC ESN Bound (ESN-NFC) (UB-ESN)
(per unit) (% of ESN) (% of UB)

-15 801.72 740.19 2036.07 -8.31% 63.65%
10 1303.44 1167.96 2430.10 -11.60% 51.94%
35 2030.50 1826.84 3048.07 -11.15% 40.07%
60 2941.21 2690.09 3844.26 -9.33% 30.02%
85 3933.50 3666.94 4757.96 -7.27% 22.93%
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In this chapter, we have considered the integrated optimization of commodity

procurement and processing operations over a network with multiple procurement

nodes and a central processing node. Our analysis shows that solving the network

problem optimally is considerably more complex and computationally hard, unlike

the single node problem considered in Chapter 2. We proposed two computationally

efficient heuristics to solve the network problem: a) the Equivalent Single Node (ESN)

heuristic approximates the network as a single node with piecewise linear cost of

procurement, while b) the Network Full Commitment (NFC) heuristic is a myopic

heuristic which only considers the margin from processing and committing to sell the

output immediately.

We conducted extensive numerical studies to evaluate the performance of the

heuristics by comparing the expected profits against an upper bound on the optimal

expected profits. We find that the ESN heuristic performs better than the NFC heuris-

tic for firms operating small networks, with tight processing capacity constraints, and

when the processing margins are tight. On the other hand, using a myopic policy

such as the NFC is better than approximating the network as a single node, for larger

networks. We also find that the gap between the upper bound and both the heuristics

is fairly high when processing capacity is tight, initial processing margins are low and

commodity prices have high volatility.

Our work lays the foundation for further research in commodity processing and

trading networks. Our numerical studies indicate that heuristic policies that are dy-

namic and also incorporate the network characteristics more explicitly are necessary

to capture more of the value from operating commodity procurement and processing

networks. An important extension to the present work would be to formulate im-

proved heuristics which combine the ESN and NFC heuristics in an efficient manner

to improve performance. The heuristics proposed here model the various commodity

price processes as single factor, mean-reverting processes. An important area for fu-
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ture research would be to develop heuristics for managing commodity networks when

commodity prices follow multi-factor models.

Another direction for future research is to extend the risk-averse formulation in

Chapter 3 to a network setting. An especially interesting problem in this context

would be the situation where decisions in the network are made in a de-centralized

manner, with each procurement location making procurement decisions indepen-

dently. In such a situation, the allocation of risk over the network and the impact of

decentralized decision making on overall risk are important questions for the firm.
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Chapter 6

Conclusion

This dissertation considers various aspects of managing price uncertainty for a com-

modity processing firm in the presence of operational constraints. Chapters 2, 3 and

4 explored the interdependence between procurement, processing and trade decisions

for a firm managing a single location under risk-neutral and risk-averse objective

functions, while Chapter 5 looked at the impact of network characteristics on the

integrated decision making.

The main insight from the analysis in Chapter 2 is that operational capacity

constraints affect how firms interpret price information from commodity markets. We

see that a ‘low’ price, below which it is optimal to buy up to capacity, is dependent

on the current inventory level of the input commodity. Similarly, a ‘high’ price, above

which it is optimal to process up to capacity is also dependent on the current inventory

levels. We derive the optimal procurement, processing and trade policies for a firm in

the presence of operational constraints. While the optimal policies can be computed

efficiently when the number of output commodities produced upon processing is small

and the commodity prices follow single factor processes, we find that heuristics are

needed for computing the policies in more general cases.

The second essay deals with the impact of risk aversion in managing commodity

price uncertainty over a multi-period horizon. We elaborate on the notion of time-

consistency in risk-averse decision making in Chapter 3. Broadly, time-consistency
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ensures that optimal decisions for the current period, contingent upon the state in

the current period, are also optimal when evaluated in earlier periods. Surprisingly,

using risk measures such as conditional value at risk (CVaR) on the total payoffs at

the end of the horizon, do not necessarily lead to time-consistent decision making. We

propose a dynamic risk measure, DCVaR, to model the firm’s risk aversion and ensure

time-consistency in decision making. Our results show that the optimal procurement

and processing policy under this risk measure are characterized by ’procure up to’ and

‘process down to’ thresholds for the input inventory. Our numerical studies indicate

that using a time-consistent risk measure provides a better mean-risk tradeoff in total

payoffs over the horizon, as well as better risk control by minimizing the probability

of extreme losses over the entire horizon.

Chapter 4 extends the risk-averse analysis of Chapter 3 using a specific framework

for modeling the commodity price uncertainty. The partially complete markets frame-

work used in this essay distinguishes between financial market and firm specific or

private factors that drive commodity price uncertainty. Extending the time-consistent

risk measure introduced in Chapter 3, we characterize the optimal financial trading

portfolio as a portfolio which replicates the CVaR over private states of uncertainty of

the cashflows generated from operational decisions. Interestingly, we find that the op-

timal policy to trade the output commodity is not affected by the firm’s risk aversion

under this framework. Similar to the results in Chapter 3, the optimal operational

policy is characterized by ‘procure up to’ and ‘process down to’ thresholds for the

input inventory. Our results also show that excess processing capacity (relative to

procurement capacity) does not provide any additional benefit, while excess procure-

ment capacity provides an operational hedge to manage part of the commodity price

uncertainty driven by firm specific factors.

The research in Chapter 5 extends the single node problem considered in Chap-

ter 2 to a network setting and considers the integrated optimization of commodity

164



procurement and processing operations over a network with multiple procurement

nodes and a central processing node. Our analysis shows that solving the network

problem optimally is considerably more complex and computationally hard, unlike

the single node problem. We proposed two computationally efficient heuristics to

solve the network problem: a) the Equivalent Single Node (ESN) heuristic, which

approximates the network as a single node and b) a myopic heuristic, the Network

Full Commitment (NFC) heuristic, which only considers the margin from processing

and committing to sell the output immediately. Our numerical studies show that the

ESN heuristic performs better than the NFC heuristic for firms operating small net-

works, with tight processing capacity constraints, and when the processing margins

are tight. On the other hand, using a myopic policy such as the NFC is better than

approximating the network as a single node, for larger networks.

The work in this dissertation addresses some of the real world issues involved in

managing commodity operations. However, there are many other problems that we

have not considered here which could potentially be addressed using the framework

developed in this research. For instance, firms may have a choice regarding what out-

put commodity to produce from the same input; e.g., oil refineries can refine crude oil

to yield different proportions of various gasoline products. The framework considered

in this research has potential to be extended to include the firm’s choice of what out-

put to produce, given current commodity prices and various operational constraints

including lead times to switch production from one output to another. Another aspect

of commodity operations that is not considered in this research is that of stochastic

demand. While a vast literature exists on inventory management in the presence of

stochastic demand, there is not much work that explores the effect of both demand

and commodity price uncertainty, especially in the presence of capacity constraints.

It is an interesting research topic to extend the decision making framework considered

here to include demand uncertainty.
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The research in this dissertation also indicates that heuristic policies that are for-

ward looking while also incorporating the network characteristics more explicitly, are

necessary to capture more of the value from operating commodity procurement and

processing networks. An important extension to the present work would be to formu-

late improved heuristics which combine the ESN and NFC heuristics in an efficient

manner to improve performance. Another direction for future research is to extend

the risk-averse formulation to a network setting. An especially interesting problem

in this context would be the situation where decisions in the network are made in

a de-centralized manner, with each procurement location making procurement deci-

sions independently. In such a situation, the allocation of risk over the network and

the impact of decentralized decision making on overall risk are important questions

for the firm.
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