
Performance, Power, and Thermal Modeling and
Optimization for High-Performance Computer Systems

by

Xi Chen

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2011

Doctoral Committee:

Associate Professor Robert Dick, Chair
Associate Professor Heath Hofmann
Assistant Professor Satish Narayanasamy
Assistant Professor Thomas F. Wenisch



© Xi Chen 2011



ACKNOWLEDGEMENTS

I would like to express my gratitude towards all the people who have helped and in-

spired me during my Ph.D. study.

First, I am heartily thankful to my advisor, Professor Robert Dick, for his guidance,

encouragement, and support during my research and study. We closely collaborated on all

the work presented in the body of this dissertation. His perpetual energy and enthusiasm in

research was always contagious and motivational for me, especially during the tough times

in my Ph.D. pursuit. Despite his tight schedule, Professor Dick is always accessible and

willing to provide his insights and share his wisdom when I am stuck at research. Without

his patience and suggestions, this thesis would not have been completed.

I am sincerely grateful to Professor Li Shang, from the University of Colorado at Boul-

der, for his insightful comments and suggestions on the dynamic thermal analysis work

described in Chapter 5, and hardware-based cache compression work described in Chap-

ter 6. I especially would like to thank him for taking the time to verify the correctness of

the proof in Chapter 5 and discuss its applications with me.

I am deeply thankful to my dissertation committee, Professor Thomas F. Wenisch, Pro-

fessor Satish Narayanasamy, and Professor Heath Hofmann, for spending their time review-

ing my dissertation and providing stimulating suggestions to improve my work. In partic-

ular, I am grateful to Professor Wenisch and Professor Narayanasamy for their comments

on the performance maximization work described in Chapter 8, and Professor Hofmann for

generously spending his time discussing the stability issues in the thermal analysis work in

Chapter 5.

ii



I would like to thank Dr. Christopher Sadler and Dr. Xiaobo Fan for their guidance and

suggestions during my internship, from which I realized how modeling and optimization

techniques can be applied in real-world scenarios. Such experience broadened my perspec-

tive on the practical aspects in the industry and directly motivated the power-constrained

performance maximization technique described in Chapter 8. In addition, their invaluable

insights helped me to define the problem in Chapter 8.

I was fortunate to have the opportunity to collaborate and disucss research with many

brilliant researchers, including Lan Bai, David Bild, Lide Zhang, Yun Xiang, Xuejing He,

Yue Liu, Phil Knag, Chi Xu, Sausan Yazji, Lei Yang, Alex Shye, Haris Lekatsas, Professor

Peter Scheuermann, and Professor Zhuoqing Morley Mao. I would also like to extend my

gratitude to my friends at Northwestern University and University of Michigan for their

help and support, which makes my life joyful and exciting.

Finally, I am forever indebted to my parents for their constant love and support through-

out my life. They deserve far more credit than I can ever give them.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Modeling High-Performance Computers . . . . . . . . . . . . . . 1

1.2 Optimizing High-Performance Computers . . . . . . . . . . . . . 3

1.3 Important system metrics . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Performance and Power Modeling . . . . . . . . . . . . . . . . . 10

2.2.1 Memory Hierarchy . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Impact of Computer Architecture Evolution on Modeling 11

2.2.3 Hardware Performance Counters . . . . . . . . . . . . . 15

iv



2.3 Thermal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3. Performance Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 CAMP: Shared Cache Aware Performance Model for CMPs . . . . 23

3.3.1 Problem Formulation and Assumptions . . . . . . . . . 23

3.3.2 Estimating Effective Size After n Accesses . . . . . . . 25

3.3.3 Equilibrium Condition . . . . . . . . . . . . . . . . . . 26

3.4 Automated Profiling . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Reuse Distance Profiling . . . . . . . . . . . . . . . . . 27

3.4.2 Automated Parameter Estimation . . . . . . . . . . . . 31

3.4.3 Potential Sources of Error . . . . . . . . . . . . . . . . 32

3.5 Evaluation Methodology and Results . . . . . . . . . . . . . . . . 33

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4. Power Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . 37

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Power Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . 41

4.3.2 Handling Context Switching and Cache Contention . . . 44

4.4 Combining Performance and Power Models . . . . . . . . . . . . 46

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . 49

v



4.5.2 Power Model Validation . . . . . . . . . . . . . . . . . 50

4.5.3 Combined Model Validation . . . . . . . . . . . . . . . 53

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5. Thermal Modeling and Thermal Analysis . . . . . . . . . . . . . . . . . 55

5.1 Introduction and Past Work . . . . . . . . . . . . . . . . . . . . . 56

5.2 Thermal Model and Problem Formulation . . . . . . . . . . . . . 59

5.3 Globally Adaptive Runge-Kutta Methods: Are They Really Adap-
tive? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 FATA: Fast Asynchronous Time Marching Technique . . . . . . . 69

5.4.1 Algorithm Overview . . . . . . . . . . . . . . . . . . . 69

5.4.2 Temperature Update . . . . . . . . . . . . . . . . . . . 70

5.4.3 Step Size Adaptation . . . . . . . . . . . . . . . . . . . 72

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5.1 Comparison of GARK4, ISAC, and FATA . . . . . . . . 74

5.5.2 Combining Temperature Update Functions with Step
Adaptation Methods . . . . . . . . . . . . . . . . . . . 75

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6. Optimization Technique 1: A High-Performance Microprocessor Cache
Compression Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Related Work and Contributions . . . . . . . . . . . . . . . . . . . 82

6.3 Cache Compression Architecture . . . . . . . . . . . . . . . . . . 85

6.4 C-Pack Compression Algorithm . . . . . . . . . . . . . . . . . . . 86

6.4.1 Design Constraints and Challenges . . . . . . . . . . . 87

vi



6.4.2 C-Pack Algorithm Overview . . . . . . . . . . . . . . . 87

6.4.3 Effective System-Wide Compression Ratio and Pair Match-
ing Compressed Line Organization . . . . . . . . . . . 91

6.4.4 Design Tradeoffs and Details . . . . . . . . . . . . . . 97

6.5 C-Pack Hardware Implementation . . . . . . . . . . . . . . . . . . 100

6.5.1 Compression Hardware . . . . . . . . . . . . . . . . . 100

6.5.2 Decompression Hardware . . . . . . . . . . . . . . . . 104

6.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.6.1 C-Pack Synthesis Results . . . . . . . . . . . . . . . . . 108

6.6.2 Comparison of Compression Ratio . . . . . . . . . . . 108

6.6.3 Comparison of Hardware Performance . . . . . . . . . 109

6.6.4 Implications on Claims in Prior Work . . . . . . . . . . 111

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7. Optimization Technique 2: Memory Access Aware On-Line Voltage
Control for Performance and Energy Optimization . . . . . . . . . . . 114

7.1 Introduction and Related Work . . . . . . . . . . . . . . . . . . . 117

7.2 Motivation and Problem Formulation . . . . . . . . . . . . . . . . 120

7.2.1 Performance and Energy Trade-Offs . . . . . . . . . . . 121

7.2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . 122

7.3 System Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3.1 Performance Modeling . . . . . . . . . . . . . . . . . . 124

7.3.2 Power Modeling . . . . . . . . . . . . . . . . . . . . . 125

7.3.3 Cost Minimization . . . . . . . . . . . . . . . . . . . . 127

7.3.4 P-DVFS System Architecture . . . . . . . . . . . . . . 136

vii



7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 137

7.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . 138

7.4.2 Comparison with Prior Work . . . . . . . . . . . . . . . 139

7.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . 140

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8. Optimization Technique 3: Power-Constrained Throughput Maximiza-
tion in CMPs With Chip-Wide DVFS . . . . . . . . . . . . . . . . . . . 148

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.3 Problem Definition and System Architecture . . . . . . . . . . . . 157

8.4 CAMP-Guided Process Assignment Optimization . . . . . . . . . 161

8.4.1 Handling Multi-Phase Processes . . . . . . . . . . . . . 163

8.4.2 Off-Chip Memory Contention . . . . . . . . . . . . . . 164

8.5 NLP-Based Power Control With Online Model Estimation . . . . . 167

8.5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . 167

8.5.2 Online Model Estimation . . . . . . . . . . . . . . . . . 170

8.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 172

8.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . 172

8.6.2 Comparisons with Prior Work . . . . . . . . . . . . . . 175

8.6.3 Evaluation Results – Assignment Manager . . . . . . . 178

8.6.4 Evaluation Results – Power Manager . . . . . . . . . . 181

8.6.5 Evaluation Results – PerfMax . . . . . . . . . . . . . . 189

8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

viii



9. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

ix



LIST OF FIGURES

Figure

2.1 Basic structure of a single-core processor. The size of each level of the
memory hierarchy does not reflect its size or capacity in a real processor. 12

2.2 Basic structure of a two-core CMP. The size of each level of the memory
hierarchy does not reflect its size or capacity in a real processor. . . . . . 13

4.1 Algorithm for power estimation for process assignment. . . . . . . . . . 47

4.2 Power model validation on 4-core server. Estimations and measurements
are shown for the maximum power and minimum power cases. . . . . . . 50

5.1 Model for a single thermal element. . . . . . . . . . . . . . . . . . . . . 59

5.2 Overview of asynchronous time marching algorithm in FATA. . . . . . . 70

6.1 System architecture in which cache compression is used. . . . . . . . . . 85

6.2 C-Pack (a) compression and (b) decompression. . . . . . . . . . . . . . 88

6.3 Compression examples for different input words. . . . . . . . . . . . . . 88

6.4 Structure of a pair-matching based cache. . . . . . . . . . . . . . . . . . 91

6.5 Distribution of compression ratios. . . . . . . . . . . . . . . . . . . . . . 96

6.6 Compressor architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.7 Decompressor architecture. . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1 System architecture for P-DVFS. . . . . . . . . . . . . . . . . . . . . . . 136

x



7.2 Processor frequency as a function of the number of instructions retired
for (a) the oracle solution, (b) P-DVFS, and (c) F-DVFS for “mcf” with
a performance degradation ratio of 20%. . . . . . . . . . . . . . . . . . . 140

7.3 Processor frequency as a function of the number of instructions retired
for (a) the optimal solution, (b) P-DVFS, and (c) F-DVFS during “art”
execution with a performance degradation ratio of 20%. . . . . . . . . . . 143

8.1 System architecture of PerfMax. . . . . . . . . . . . . . . . . . . . . . . 159

8.2 System architecture of the assignment manager. . . . . . . . . . . . . . . 161

8.3 CAMP-guided performance prediction for multi-phase processes. . . . . 162

8.4 Steady-state power deviations of Priority, MPC, and NLP. . . . . . . . . 181

8.5 A typical run of baseline, Priority, MPC, and NLP. . . . . . . . . . . . . 183

8.6 Performance overhead of the power manager. . . . . . . . . . . . . . . . 188

xi



LIST OF TABLES

Table

4.1 Power Model Validation on a 2-Core Workstation . . . . . . . . . . . . . 50

4.2 Power Model Validation on a 4-Core Server . . . . . . . . . . . . . . . . 51

4.3 Performance Model Validation . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Validating the Combined Model on a 4-Core Server . . . . . . . . . . . . 52

5.1 Comparison of GARK4, ISAC, and FATA . . . . . . . . . . . . . . . . . 73

5.2 Comparison Among Different Combinations of Temperature Update Func-
tions and Step Size Adaptation Techniques . . . . . . . . . . . . . . . . . 74

6.1 Pattern Encoding For C-Pack . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Effective System-Wide Compression Ratios For C-Pack . . . . . . . . . . 97

6.3 Design Choices For Different Parameters . . . . . . . . . . . . . . . . . . 98

6.4 Synopsys Design Compiler Synthesis Results . . . . . . . . . . . . . . . 107

6.5 Compression Ratio Comparison . . . . . . . . . . . . . . . . . . . . . . 109

7.1 Performance Degradations of F-DVFS and P-DVFS in terms of total ex-
ecution time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2 Deviation of Energy Consumptions from the Optimal Solution when us-
ing using N-DVFS, F-DVFS, and P-DVFS . . . . . . . . . . . . . . . . . 142

8.1 Comparison Among Random, Similarity, and CAMP . . . . . . . . . . . 179

xii



8.2 Performance comparison among Priority, MPC, and NLP without guard-
banding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.3 Performance comparison among Priority, MPC, and NLP with guard-
banding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.4 Performance comparison among “Random + Priority”, “Similarity + MPC”,
and PerfMax without guardbanding . . . . . . . . . . . . . . . . . . . . . 189

8.5 Performance comparison among “Random + Priority”, “Similarity + MPC”,
and PerfMax with power guardbanding. . . . . . . . . . . . . . . . . . . 190

xiii



ABSTRACT

This dissertation presents several models for performance, power, and thermal estima-

tions in high-performance computer systems. In addition, it also describes a hardware-

oriented cache compression algorithm, a software-based online dynamic voltage and fre-

quency scaling (DVFS) algorithm, and a software-based performance maximization tech-

nique in a power-constrained CMP environment, all of which are motivated by the obser-

vations obtained when developing the aforementioned models.

After summarizing the impact of architectural evolutions on various aspects of com-

puter modeling, we present three models that estimate the performance, power, and tem-

perature in such systems. The first model, CAMP, is a fast and accurate cache aware perfor-

mance model for chip multiprocessors (CMPs) that estimates the performance degradation

due to cache contention of processes running on cache-sharing cores. We then propose

a system-level power model in a multi-programmed CMP environment that accounts for

cache contention and explain how to integrate the two models for power estimation during

process assignment, helpful for power-aware assignment. We also describe an IC thermal

model and analyze the performance and accuracies of a variety of time-domain dynamic

thermal analysis techniques that build upon the aforementioned thermal model, which mo-

tivates our new thermal analysis technique that significantly improves performance while

maintaining similar accuracy.

xiv



When developing the performance model and the power model, we realized that mem-

ory hierarchy is of critical importance to system performance and energy consumption.

This observation inspires the design and implementation of a high-performance micropro-

cessor cache compression algorithm to expand effective on-chip last-level cache size and

improve cache performance. It also leads to a predictive dynamic voltage and frequency

control (DVFS) algorithm that takes advantage of the performance model and the power

model for on-line minimization of energy consumption under a performance constraint

without requiring a priori knowledge of an application’s behavior. Finally, we propose

PerfMax, a performance optimization technique that considers both process assignment

and local power state control in a power-constraint environment for multi-chip CMPs with

chip-wide DVFS based on accurate performance and power models.
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CHAPTER 1

Introduction

High-performance computer systems are commonly seen. Typical high-performance

computer systems include stationary desktop computers, workstations, and servers. Unlike

battery-powered handheld devices and smartphones, high-performance computer systems

are equipped with significant processing power and abundant on-chip and off-chip mem-

ory, thus making them the ideal platform for processing resource (e.g., CPU and memory)

intensive tasks. In addition, they usually have less stringent power and thermal constraint

than embedded systems due to external power supplies and better cooling conditions.

1.1 MODELING HIGH-PERFORMANCE COMPUTERS

Modeling high-performance computer systems is a difficult task. Typically, there are

four major challenges when designing such models: (1) models need to be accurate. Al-

though model estimation errors are tolerable or addressable through proper guardbanding

in many applications, inaccurate estimation results will reduce the usability of such mod-

els. (2) Models need to be fast. Significant performance overhead prevents them from

being used during runtime, making them inapplicable to many scenarios. In addition, when

integrated with optimization techniques, slow models can lead to diminishing returns, or

in extreme cases, render the entire optimization technique unusable. (3) The model con-
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struction process should be easy and automatic. Ideally, such modeling techniques should

require no changes to the underlying hardware or operating system (OS) so that they can

be applied to a variety of systems with different architectures. (4) The models should be

scalable. With the on-going move from uniprocessors to chip-multiprocessors (CMPs), we

still want to use the models as we are integrating more and more cores on chip. The first re-

quirement implies that the model designers must carefully test the models to ensure that the

model estimation errors are small in all cases. A designer can improve model accuracy by

incorporating more details into the model and simulating the interactions among different

model components. However, this leads to higher computational complexity and there-

fore conflicts with the second requirement. In addition, the amount of inter-component

interactions grows exponentially as more and more cores are integrated into the system.

Hence, this approach cannot scale and thus conflicts with the last requirement. Similarly,

the model performance can be improved by implementing it on hardware. However, this

conflicts with the third requirement. Therefore, designers need to think carefully about the

trade-offs among the aforementioned attributes of the models to develop one that satisfies

all the requirements.

Although there are many challenges when designing the models, it is usually worth

the effort. Roughly speaking, models can be categorized into design-time models, assign-

time models, and run-time models. Design-time models such as power grid models and

IC thermal models can help designers to validate the correctness of their decisions during

chip design. For example, understanding the thermal implications is essential because

early-stage architectural decisions can significantly affect the design of cooling solutions.

Assign-time models can predict the impact of process assignment on system metrics such

2



as performance and power, helpful for designing intelligent assignment algorithms. Run-

time models such as performance and power models enable system administrators and

optimizers to dynamically monitor and predict changes in these runtime parameters, usually

with little or no changes to the underlying hardware or applications. Furthermore, all these

models have the potential to reveal the bottlenecks in the system, thus motivating new

software and hardware optimization techniques. Finally, modeling techniques is usually

the first step toward optimization. In fact, all the optimization techniques proposed in this

dissertation are motivated by the modeling techniques, most of which also heavily rely

on these models. The ongoing move from single-core to CMP architecture leads to more

complex system architecture and applications, further emphasizing the need for fast and

accurate models. In the future, processors are likely to integrate several tens or hundreds of

cores on a single chip and probably requires a network on chip. Intel’s recently unveiled 48-

core chip is one such example. Without modeling and techniques similar to those described

in this dissertation, it is very difficult, if possible at all, to develop optimization algorithms

for such systems.

1.2 OPTIMIZING HIGH-PERFORMANCE COMPUTERS

Optimization techniques for high-performance computers are equally, if not more, im-

portant than modeling techniques. There are numerous attributes in high-performance com-

puters designers attempt to optimize, e.g., performance, power consumption, temperature,

and energy. Therefore, optimization techniques have a direct impact on user experience or

system monetary cost by optimizing these attributes.

It is usually possible to optimize one metric at the cost of another. However, this re-

3



quires that the designers understand the trade-offs among various system metrics when de-

veloping such optimization techniques. There has been extensive studies on system-level

optimization techniques for high-performance computers (see Chapter 6, Chapter 7, and

Chapter 8). However, a large number of existing techniques only optimizes one metric and

completely ignores other system metrics. Few algorithms that attempt to optimize a metric

while constraining others either make unsubstantiated claims without resorting to accurate

models, or rely on over-simplified models that produce inaccurate predictions and degrade

the quality of optimization results. In our research, we carefully evaluate the trade-offs

among various system metrics and design the optimization techniques based on accurate

models when applicable.

1.3 IMPORTANT SYSTEM METRICS

For high-performance systems, performance has always been a critical design metric

because most consumers are willing to pay extra money for improved performance. Early

work on performance modeling includes queueing network theory based analytical mod-

els [24, 27] and trace-driven simulation models [88]. Such models are general-purpose per-

formance models that aim at modeling the entire computer. However, with new computer

architectures including superscalar processors and multi-threading processors becoming

popular in the 1990s and early 2000s, general-purpose performance models were no longer

feasible due to the complicated interactions among different system components. Hence,

new component-specific performance models have been developed [112, 86]. However,

as continued technology scaling leads to higher and higher power density, industry has

shifted their focus from high-performance single-core chips to CMP chips to sustain con-

4



tinued performance improvement. This major architectural change once again calls for new

performance models.

Historically, power consumption only matters to battery-powered portable systems such

as laptops and cellphones. The exponential increase in power consumption due to process

scaling brings critical challenges to various aspects of high-performance microprocessor

design. Although the current transition to CMP systems temporarily alleviates the growth

rate of power consumption, it is likely that power will remain as a first-class design con-

straint due to non-stopping desire for higher performance. This implies the need for a fast

and accurate power model to justify power-related design decisions. In addition, resources

such as last-level cache are usually shared among multiple cores on the same chip in a CMP

processor, implying new complications to power modeling techniques. Without a properly

designed power model for CMP systems, many severe power-related problems will remain

unresolved.

Temperature has a huge impact on IC performance and power. Increased IC tempera-

ture can lead to increased gate delays, increased subthreshold leakage power consumption,

accelerated wear, and even functional failures. Thermal issues have been largely ignored in

the past. However, As power density has increased exponentially with each new technol-

ogy generation, managing on-chip temperatures have become a major obstacle to continued

scaling of VLSI systems. Researchers have shown a growing interest in addressing thermal

problems at the architecture level and the system level. Therefore, a configurable ther-

mal simulator that can quickly and accurately generate both steady-state and dynamic chip

thermal profiles is highly desirable.
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1.4 DISSERTATION OVERVIEW

The rest of this dissertation is organized as follows. In Chapter 2, we first give an

overview of the parameters that influence performance, power, and temperature. We then

describe the performance, power, and thermal implications of architectural evolutions, es-

pecially the shift from single-core to CMP systems.

Chapter 3–Chapter 5 present our models for performance, power, and thermal estima-

tion for high-performance computers. Chapter 3 describes a shared cache aware perfor-

mance model for CMPs [94]. We also provide an automated technique to collect process-

dependent information needed by CAMP without resorting to simulation. Chapter 4 de-

scribes a system-level shared cache aware power model and an integrated model for fast

and accurate power estimations during assignment in a multi-programmed CMP environ-

ment [99]. Chapter 5 points out the problems with various time-domain dynamic thermal

analysis algorithms during IC thermal simulation. We then present a novel dynamic ther-

mal analysis algorithm [95]. For each of these models, we present experimental data to

demonstrate that these models are fast and accurate.

Chapter 6–Chapter 8 describe our optimization techniques motivated by the afore-

mentioned models. Chapter 6 presents a microprocessor cache compression algorithm to

increase the effective capacity of the last-level on-chip cache with little hardware over-

head [98, 97]. Chapter 7 describes a predictive on-line dynamic voltage and frequency

control (DVFS) algorithm that achieves close-to-optimal energy savings with a bounded

performance degradation ratio [96]. Chapter 8 presents a power-constrained performance

maximization technique that optimizes performance across the boundary of process assign-
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ment and local power state control for multi-chip CMPs with chip-wide DVFS. All three

techniques are inspired by the findings obtained during the modeling process. We summa-

rizes the contributions of the work presented in this dissertation in Chapter 9.
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CHAPTER 2

Background

Performance, power, and thermal issues are important challenges for the development

of high-performance processors. As the industry has shifted their focus from single-core

processors to CMPs, new performance model, power model, and thermal models are de-

sired. This chapter examines the impact of the current architecture paradigm shift on vari-

ous modeling techniques and provides insights and motivations for the techniques proposed

in this dissertation.

The rest of this chapter is organized as follows. Section 2.1 gives an overview of the fun-

damental parameters that influences performance, power, and temperature, many of which

must be accounted for in the models to generate accurate estimations. Section 2.2 briefly

summarizes the impact of architectural evolutions, especially the changes in memory hier-

archy, on performance and power modeling. Section 2.3 introduces thermal analysis and

new requirements due to constantly evolving computer architectures.

2.1 OVERVIEW

The performance of a computer can be defined as the amount of time required to ac-

complish one unit of work with one unit of resource. Not surprisingly, the performance of

a chip is closely related to its clock frequency, which largely depends on the propagation
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delay of the transistors on the critical path, affected by supply voltage, temperature, and

technology [83]. However a computer’s performance cannot be solely determined by its

chip’s clock frequency; other factors such as instruction-level parallelism, thread-level par-

allelism, off-chip memory access latency, resource contention all contribute to the system

performance.

The power consumption can be decomposed into dynamic power and static power. Dy-

namic power consumption is caused by the charging and discharging events during voltage

transitions in transistors. It scales quadratically with the supply voltage and linearly with

the frequency of energy-consuming transitions. Static power, on the other hand, is inde-

pendent of the frequency of such transitions. However, it has an exponential dependence

on the supply voltage and temperature. Researchers have proposed numerous techniques

to reduce the soaring power of computer systems, among which are dynamic voltage and

frequency scaling [53, 87] and clock modulation [31].

The chip thermal profile, i.e., the spatial temperature distribution on a chip, is governed

by the heat equation. In order to prevent the chip from overheating, there exists an efficient

heat transfer path from the chip to the ambient environment. A typical heat transfer path

includes the active layer, the bulk silicon, a heat spreader, the thermal interface material,

a heat sink in a forced-air ambient environment, and the packaging material. Intuitively,

the chip temperature depends on the geometry and thermal properties such as thermal con-

ductance and heat capacitance of the components on the heat transfer path. In addition,

the chip power profile, i.e., the spatial power distribution on a chip, also has a significant

impact on the chip thermal profile.
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2.2 PERFORMANCE AND POWER MODELING

Performance modeling and power modeling in high-performance computers have re-

ceived significant research attention in the past. However, most prior work focus on mod-

eling single-core (SC) systems or a specific system component [20, 58, 86, 112]. With

the increase in VLSI integration density and on-chip power density, CMP architecture is

becoming more and more popular in high-performance computers. Such transition neces-

sitates the redesign of performance and power models due to the presence of new architec-

tural features such as cache sharing. This is one of the fundamental problems that motivate

the techniques presented in the following chapters of the dissertation, in particular the cache

aware performance model and the system-level power model. In this section, we first give

an overview of the memory hierarchy and explain how it affects system performance and

power. We then describe the impact of computer architecture evolution, especially the

memory hierarchy evolution, on performance and power modeling. Finally, we introduce

hardware performance counters and its role in performance and power modeling.

2.2.1 Memory Hierarchy

The concept of memory hierarchy takes advantage of the principle of locality in com-

puter systems: (1) temporal locality: recently accessed data will tend to be accessed again

soon and (2) spatial locality: data adjacent to recently accessed data will tend to be accessed

soon. A typical memory hierarchy consists of register files, caches, main memory, and I/O

devices such as disks. Different levels in the memory hierarchy have different speeds and

sizes, with register files being the fastest and smallest and I/O devices being the largest and

slowest.
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The memory hierarchy has a great impact on system performance and power. To ex-

plain this more clearly, we trace the events that occur during the execution of an instruction.

When the new instruction is fetched, the CPU first determine whether the current instruc-

tion is a load instruction or a store instruction. If not, the CPU will serve the instruction by

reading from the registers, executing it, and writing the results back into the registers. Oth-

erwise, the CPU uses the memory management unit (MMU) to translate the virtual memory

address to a physical address, which is then used to access the data in the cache. Data are

fetched from cache to CPU immediately on a cache hit; on a cache miss, the requested

memory contents must be read from the main memory, which may in turn lead to a page

fault if the desired memory page does not reside in the main memory. Therefore, each level

of the memory hierarchy can influence the number of CPU cycles to retire an instruction

and hence, the system performance. In addition, the system power is inversely proportional

to the amount of time spent on each instruction. Therefore, factors such as last-level cache

miss rate also affect the system power. Since the memory hierarchy changes dramatically

as the system architecture evolves from SC to CMP, it is necessary to examine the features

of each architecture and their performance and power implications.

2.2.2 Impact of Computer Architecture Evolution on Modeling

The SC architecture is the dominant system architecture in early 2000s. As illustrated in

Figure 2.1, an SC processor consists of a single CPU core running at a high clock frequency.

In a single-issue, single-threading SC processor, only one hardware thread is active at any

point of time. Therefore, processes running on a single-threaded SC system interact with

each other through time multiplexing the resources such as CPU and memory, known as the
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Figure 2.1: Basic structure of a single-core processor. The size of each level of the memory
hierarchy does not reflect its size or capacity in a real processor.

time sharing problem. For example, a process can affect other processes’ performance by

either taking over the CPU, thus temporarily suspending other processes, or evicting cache

lines or memory pages that belong to other processes, thereby causing more cache misses

or page faults. However, such interactions are indirect since all resources are exclusively

used by the current running process. This indicates the corresponding performance model

and the power model should focus on the time sharing problem.

In order to boost SC system performance, researchers have proposed multiple-issue pro-

cessors including superscalar processors and very long instruction word (VLIW) processors

to exploit instruction-level parallelism and multi-threading processors including simultane-
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Figure 2.2: Basic structure of a two-core CMP. The size of each level of the memory
hierarchy does not reflect its size or capacity in a real processor.

ous multithreading (SMT) processors to exploit thread-level parallelism. While multiple-

issue processors can be modeled similarly to single-issue processors, multi-threading pro-

cessors, especially SMT-enabled processors can be modeled similarly to CMPs, as multiple

hardware threads may contend for the same resource simultaneously. Finally, researchers

have also proposed multiprocessor systems in which a set of processing unit, each com-

prising a CPU and a private memory, cooperate by communicating through a bus or over

an on-chip network. However, since no resource contention exists within each processing

unit, performance models for such systems are inapplicable to shared cache based CMPs,

which is the focus of our dissertation.

Figure 2.2 illustrates a basic architecture of a two-core CMP. Although only two cores

are shown in Figure 2.2, there can be more than two cores per chip in real CMPs. Each
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CMP processor is composed of two or more independent CPU cores, thereby allowing

more parallelism than SC architecture. Each CPU core has its own private L1 caches, with

the last-level cache (L2 cache in this case) being shared among all the cores to improve

performance by supporting on-chip inter-process communication and allowing heteroge-

neous allocation of cache to processes running on different cores. However, a process may

evict the data belonging to other processes with which it shares cache space, known as

the cache contention problem. Intuitively, simultaneously running processes may influence

each other’s performance through sharing the cache. Furthermore, the performance (and

indirectly power) impact is non-uniform, as the cache-sharing processes may have distinct

memory access patterns. This requires that the performance model and power model for

CMP systems explicitly account for the cache contention problem in addition to the time

sharing problem in SC systems. It is worth mentioning that there is no concensus regarding

the last-level cache structure; some CMPs have private last-level caches [16], i.e., each core

has its own L2 cache. Shared cache and private cache have their own advantages and disad-

vantages [18, 82, 117]. This dissertation focuses on shared cache based CMP systems be-

cause it is more commonly found in modern high-performance commercial CMPs [49, 50]

and (2) compared to on-chip caches, CMP systems usually have abundant off-chip memory.

This makes the memory sharing problem a second order effect on system performance and

power compared to cache effects, indicating private cache based systems may be modeled

similarly to SC systems. We also note that there exist CMPs that consists of multiple chips,

each of which in turn contains multiple CPU cores [52]. We focus on single-chip systems

for a similar reason: the memory sharing problem posed by multi-chip systems is a second

order effect compared to cache contention problem.
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2.2.3 Hardware Performance Counters

Hardware performance counters (HPCs) are a set of special-purpose registers that are

built into most of the modern high-performance computers to store the counts of various

hardware events such as last-level cache misses and branch mispredictions. The number of

available HPCs in a processor is quite limited (usually no more than 8) [3]. In addition, the

set of hardware events that can be monitored by the HPCs can vary widely depending on the

processor architecture. Nonetheless, HPCs provide a better alternative to software profilers

for performance and power modeling because they provide detailed information about low-

level hardware events related to system components such as integer unit, float point unit,

and cache with very low performance overhead. In addition, it does not require changes

to the underlying software or hardware, making it an ideal tool for building non-intrusive

models, as shown in Chapter 3, Chapter 4, and Chapter 7.

2.3 THERMAL ANALYSIS

Thermal analysis for integrated circuits (ICs) is the process of building the IC thermal

model and simulating the thermal conduction from an IC’s power sources through cool-

ing packages to the ambient environment. Thermal analysis can be separated into two

subproblems: steady-state thermal analysis and dynamic thermal analysis. Steady-state

thermal analysis determines the thermal profile (i.e., a temperature at each physical posi-

tion) as time proceeds to infinity resulting from a power profile (i.e., a power consumption

at each physical position). Dynamic thermal analysis determines the thermal profile as a

function of time resulting from time-varying power profiles.

Thermal analysis has a long history. In the past, most of the prior work address thermal
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issues during cooling and packaging design using worst-case analysis. Although there

exists a number of industrial tools widely used by packaging designers [38, 17, 32], it

usually takes minutes or even hours to conduct each simulation with these tools because

they are not designed for IC synthesis. It is not until very recently that researchers start to

propose thermal analysis techniques that are suitable for IC designers. Traditionally, the

dynamic thermal analysis problem can be solved using either frequency-domain or time-

domain techniques. Time-domain methods rely on numerical integration. Therefore, with

increasing time scale, their running times increase while their accuracies decrease, making

them most suitable for short-time-scale thermal analysis. On the other hand, frequency-

domain methods approximate the chip thermal profile using analytical solutions to avoid

the problems of numerical integration. However, the one-time computational cost to derive

the analytical solutions is very high. In addition, they ignore high-frequency components,

thereby introducing errors to short-time-scale simulations. Hence, they are most suitable

for long-time-scale thermal analysis.

With process scaling and increasing device density, thermal issues are becoming a ma-

jor concern due to increased IC power densities and competing requirements of higher

density, higher performance, and lower cost. It is envisioned that such thermal problems

must not be addressed not only during packaging, but also during chip design and synthe-

sis. However, as the design complexity of high-performance chips continues to grow, the

thermal implications of various design decisions and optimization techniques are not intu-

itive. Nonetheless, understanding such thermal impacts is essential because transistor delay

and leakage power are dependent on temperature. Therefore, an accurate thermal analysis

algorithm is highly desirable. In addition, the impacts of changed IC thermal profiles on
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performance, power consumption, and reliability need to be analyzed repeatedly during the

iterative IC design process. This calls for a fast thermal analysis technique to enable numer-

ous detailed simulation runs of a IC thermal model consisting of a large number of thermal

elements in the inner loop of a IC synthesis flow. Developing a fast and accurate thermal

analysis algorithm is challenging. This is especially true for high-performance chips be-

cause they have complex architecture for performance and power purposes, which leads

to complicated thermal interactions among different chip components and thus a longer

simulation time.

In this dissertation, we focus on dynamic thermal analysis. Although more compu-

tationally intensive, dynamic thermal analysis is necessary when the power profile varies

before the thermal profile converges and to detect transient violation of thermal constraints.

In addition, we focus on time-domain techniques due to short simulation runs normally seen

in IC synthesis. In particular, we experimented with Hotspot 4.0 [93] and ISAC [115] for

dynamic thermal analysis on power profiles produced by behavioral synthesis algorithms

during architectural optimization for high-performance ICs. To our surprise, we noticed

that the step sizes of the time-domain methods used by Hotspot 4.0 converge to a constant

value after a few iterations regardless of the initial power profile, thermal profile, and error

threshold. On the other hand, the performance overhead of ISAC is quite high (it some-

times took quite more than a minute to conduct a 2 ms thermal simulation). The strange

behavior of Hotspot 4.0 and the inefficiency of ISAC motivate us to explore the proper-

ties of various time-domain dynamic thermal analysis algorithms, which leads to a new

temporally-adaptive technique that achieves significant speedup compared to Hotspot and

ISAC, as shown in Chapter 5. It is worth mentioning that the proposed dynamic thermal
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analysis algorithm can handle both SC processors and CMP processors. In addition, it

supports both two-dimensional (2D) and three-dimensional (3D) chips.

18



CHAPTER 3

Performance Modeling

The ongoing move to chip multiprocessors (CMPs) permits greater sharing of last-

level cache by processor cores but this sharing aggravates the cache contention problem,

potentially undermining performance improvements. Accurately modeling the impact of

inter-process cache contention on performance and power consumption is required for op-

timized process assignment. However, techniques based on exhaustive consideration of

process-to-processor mappings and cycle-accurate simulation are inefficient or intractable

for CMPs, which often permit a large number of potential assignments.

In this chapter, we propose CAMP, a fast and accurate shared cache aware performance

model for CMPs. CAMP estimates the performance degradation due to cache contention

of processes running on CMPs. We have developed a fast and automated way to obtain

process-dependent characteristics, such as reuse distance histograms, as input parameters

to CAMP without offline simulation, operating system (OS) modification, or additional

hardware. We tested the accuracy of CAMP using 55 different combinations of 10 SPEC

CPU2000 benchmarks on a dual-core CMP machine. The average throughput prediction

error was 1.57%. This work was done in collaboration with other researchers. In particular,

Chi Xu was the leader on designing and evaluating the performance model. The author of
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this dissertation was responsible for automating the offline parameter extraction process

and evaluating the performance model on one of the evaluation platforms.

This chapter gives a brief background introduction of the shared cache aware perfor-

mance model for CMPs (CAMP), and focuses on the automated profiling process to char-

acterize process memory access behavior to permit later prediction of cache contention

and the potential sources of error during the automated profiling stage. Interested readers

may refer to a previous publication [94] for a detailed discussion of the cache aware per-

formance model. The rest of this chapter is organized as follows. Section 3.1 motivates

the problem and summarizes our contributions. Section 3.2 describes related techniques.

Section 3.3 provides a high-level overview of the assumptions and CAMP model itself.

Section 3.4 provides an automated way to characterize process memory access behavior

to permit later prediction of cache contention. It also discusses the potential sources of

error during the automated profiling stage. Section 3.5 describes the experimental set-up

and the workloads we evaluated and briefly summarizes the experimental results. Finally,

Section 3.6 concludes this chapter.

3.1 INTRODUCTION

In recent chip multiprocessor (CMP) architectures, last-level caches are often shared

among cores. This can improve performance by supporting on-chip inter-process commu-

nication and allowing heterogeneous allocation of cache to processes running on different

cores. However, a process may cause the eviction of data belonging to other processes with

which it shares cache space. This contention for shared cache space can cause simultane-

ously running processes to influence each other’s performance. Moreover, the performance
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impact is non-uniform: it depends on the memory access behaviors of all processes with

which it shares cache space.

The importance of inter-process cache contention for CMPs has been recognized in

prior work [37, 48, 79]. However, the problem of predicting the impact of cache sharing

on application performance during process assignment has been considered by only a few

researchers [29, 25]. Knowing the performance implications of alternative assignment de-

cisions can improve their quality. We therefore seek to build a cache contention model that

permits fast and accurate performance prediction of processes on CMPs.

The construction of such a model should be easy and automatic; it should not re-

quire modifications to existing operating systems (OS) or hardware. Exhaustive offline

simulation of process combinations is computationally intractable and should therefore be

avoided. Moreover, prior work does not permit accurate prediction of the steady-state cache

partition among arbitrary combinations of processes, which is a prerequisite for accurate

performance prediction during assignment.

The chapter describes a fast and accurate shared cache aware performance model for

CMPs (called CAMP). This model uses non-linear equilibrium equations in a least-recently-

used (LRU) or pseudo-LRU last-level cache, taking into account process reuse distance his-

tograms, cache access frequencies, and miss rate aware performance degradation. CAMP

models both cache miss rate and performance degradation as functions of process effective

cache size, which in turn is a function of the memory access behavior of other processes

sharing the cache. CAMP can be used to accurately predict the effective cache sizes of pro-

cesses running simultaneously on CMPs, allowing performance prediction with an average

error of only 1.57%. We also propose an easy-to-implement method of obtaining the reuse
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distance histogram of a process without offline simulation or modification to commodity

hardware or OS. In contrast with existing techniques, the proposed technique uses only

commonly available hardware performance counters. All the measurements are performed

on real processors.

3.2 RELATED WORK

Past work [59, 36] has considered modeling transient performance penalties as a result

of miss events such as branch mispredictions, instruction cache misses, and data cache

misses for superscalar processors. However, our work intends to predict the performance

impact of tentative assignment decisions on cache contention level in a CMP environment.

Numerous researchers [57, 61, 101, 82] has considered the problem of adjusting cache

partitioning during run time after process assignment decisions have already been made.

In contrast, the goal of our work is to predict the performance implications of process

assignment decisions before execution. Other researchers have developed performance

prediction models to guide process assignment. However, most [100, 39] addressed cache

contention only for uniprocessors on which only a single process may run at a time. The

move to CMPs will aggravate the cache contention problem since multiple processes can

run on different cores simultaneously.

Researchers have considered addressing the performance prediction problem using of-

fline simulation [2] or modifications to the existing hardware or operating system [120]. For

example, Suh et al. [101] proposed to add a hardware counter to each cache way and use

them to determine the reuse distance histogram. Our goal in this work is runtime predic-

tion of the performance of processes concurrently running on a shared-cache CMP, without
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requiring prior characterization.

There also exist numerous analytical performance models for cache contention aware

performance prediction. Tam et al. [103] previously developed a technique to predict miss

rate as a function of cache size by using built-in hardware performance counters, with a

primary goal of supporting on-line optimization of cache partitioning among processes.

However, They do not explain how to use miss rate curves to predict instruction throughput

for processes sharing cache space. Their approach relies on performance counters peculiar

to the POWER5 architecture. Chandra et al. [25] proposed using the reuse distances and/or

circular sequence profiles for each thread to predict inter-thread cache contention. Chen

et al. [29] proposed a two-phase approach for performance prediction. In the first phase,

the access frequency of a process running alone is used to estimate performance. In the

second phase, the performance estimates from the first phase are refined to consider the

implications of cache contention. However, both techniques require input information that

cannot be obtained without expensive simulation.

3.3 CAMP: SHARED CACHE AWARE PERFORMANCE MODEL FOR CMPS

In this section, we first formulate the performance modeling problem. We then give

details on how to derive the non-linear equilibrium equations for effective cache size pre-

diction.

3.3.1 Problem Formulation and Assumptions

The problem of performance prediction in the presence of cache contention can be

formulated as follows: given N processes assigned to cores sharing the same N -way set-

associative last-level cache, predict the steady-state cache size occupied by each process
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during concurrent execution. Solving this problem is helpful for process assignment and

migration in a CMP environment. However, accurate prediction of process performance is

challenging due to the exponential number of possible process-to-core mappings.

In this paper, we consider a N -core processor with an L2 cache being the last-level

on-chip cache. In the rest of paper, we refer to L2 cache simply as “cache” whenever this

does not introduce ambiguity. We assume no hardware prefetching. Hardware prefetching

complicates the model by predictively fetching cache lines based on access patterns. The

model might therefore be inaccurate for systems using prefetching. However, we argue that

the default prefetching mechanism is of limited value to the platforms and benchmarks we

evaluated. For the 10 benchmarks tested on our target platforms, the average improvement

was 3.25%, and only equake benefitted significantly. Note that our conclusion applies only

to the particular computer systems and benchmarks for which data were gathered. For sys-

tems or benchmarks where prefetching plays a crucial role and thus should not be disabled,

our performance model may lead to less accurate results. We also make the following

assumptions: (1) the cache uses an LRU replacement policy and (2) processes are single-

phased. In the case of multiple non-repeating phases with distinct memory access patterns,

non-repeating phases should be modeled separately. Although these two assumptions sim-

plify model design and explanation, we will later experimentally evaluate the proposed

models when many of the assumptions are violated.

When multiple processes share a cache, contention may occur. We define the number

of ways occupied by process i in a set, denoted as Si, as the effective cache size associated
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with process i. Therefore,
N∑

i=1

Si = A, (3.1)

where N is the total number of processes sharing the cache.

We define the reuse distance, Ri, of cache line i as the number of distinct cache lines

within the same set accessed between two consecutive accesses to line i. A reuse dis-

tance histogram represents the distribution of cache line reuse distances for an entire shared

cache. For process i with an effective cache size of S, all accesses to the cache lines with

a reuse distance larger than S result in cache misses. Hence, the probability of a cache

access resulting in a miss for a process with an effective cache size of Si, i.e., the misses

per access (MPA), can be expressed as follows.

MPAi(Si) =

∫ ∞

Si

histi(x) dx. (3.2)

We also experimentally determined that SPI, number of seconds per instruction, can be

expressed as a linear function of MPA,

SPI = α ·MPA + β, (3.3)

where α and β are parameters that can be obtained during offline characterization. This

observation is re-affirmed by Choi et al. [30].

3.3.2 Estimating Effective Size After n Accesses

In this section, we use the reuse distance histogram of a process to derive its effective

cache size. To simplify explanation, we will for the moment assume that the cache is
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initially empty. This assumption will later be relaxed. Given that Pi,n is the probability

of having an effective cache size of i after n consecutive cache accesses, the following

recursive equation can be derived:

Pi,n = Pi,n−1 · (1−MPA(i)) + Pi−1,n−1 ·MPA(i− 1), 1 < i ≤ n. (3.4)

This can be explained as follows. The fact that n cache accesses result in an effective cache

size of i can only be the result of the following two scenarios: (1) the first n − 1 cache

accesses lead to an effective cache size of i and the nth access results in a cache hit. The

probability of this scenario, P (A), is thus Pi,n−1 · (1 −MPA(i)); (2) the first n − 1 cache

accesses lead to an effective cache size of i−1 and the nth access causes a cache miss. The

probability of this scenario, P (B), is thus Pi−1,n−1·MPA(i−1). Since Pi,n = P (A)+P (B),

we can derive Equation 3.4. Note that P1,1 = 1 because the first cache access will always

occupy a cache line. Assuming the process reaches its steady state after n accesses, let

G(n) be a process’ effective cache size, we have

G(n) =
n∑

i=1

(Pi,n × i) (3.5)

3.3.3 Equilibrium Condition

Given a cache with an LRU-like replacement policy, it is reasonable to assume that at

time t, we can always find a duration T such that data accessed before time t − T have

been evicted and data accessed during [t − T , t] are preserved in the cache. Since none

of these accesses will evict any data lines accessed during [t − T , t], it is as if the data
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were written to an empty cache with no cache misses during [t − T , t], which indicates

Equation 3.4 and Equation 3.5 hold. Hence, the effective cache size of process i, denoted

as Si, can be written as Gi(APSi · T ). Conversely, APSi can be expressed as G−1
i (Si)/T .

From Equation 3.3, we can derive an expression for APSi:

APSi = G−1
i (Si)/T = APIi/(αiMPAi(Si) + βi). (3.6)

Note that Equation 3.6 holds for any process i, where i = 1, 2, · · · , k, given that k is the

total number of processes. Therefore, we have

G−1
1 (S1)

G−1
i (Si)

− API1 · (αiMPAi(Si) + βi)

APIi · (α1MPA1(S1) + β1)
= 0,∀N

i=1 (3.7)

where G−1(Si) and MPA(Si) are application-dependent nonlinear functions of Si. Com-

bined with Equation 3.1, we have N equations that are independent of each other. Newton–

Raphson iteration can therefore be used to solve for each Si, 1 ≤ i ≤ N .

3.4 AUTOMATED PROFILING

In this section, we first explain how to obtain the reuse distance histogram of a process.

We then describe how to derive other parameters such as API and MPA. After that, we

give details about the automated profiling process. Finally, we indicate possible sources of

prediction error.

3.4.1 Reuse Distance Profiling

In this section, we describe how we characterize the inputs for our model using build-in

hardware performance counters (HPC). We propose a new way to approximately capture
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the reuse distance histogram without using any offline simulation or additional hardware,

instead, we calculate it by intentionally assigning a co-running process with multiple phases

of different memory access behavior, based on the characteristics of the process we assign

and the information collected from performance counter, we can calculate reuse distance

histogram using the model above.

Process reuse distance histograms play a central role in the proposed performance mod-

eling technique. It would be possible to extract the reuse distance histograms of processes

via simulation, and CAMP would dramatically improve estimation speed even if simulation

were used for initial characterization; however, there is a faster alternative.

Most modern processors have built-in hardware performance counters (HPCs) that

record information about architectural events such as the number of instructions retired,

number of last-level cache accesses, and number of last-level cache misses [3]. Therefore,

we can gather information about parameters such as SPI and MPA accurately. However, ex-

isting hardware or software resources do not directly provide reuse histogram data. We now

explain the process of deriving reuse histogram data from directly monitored parameters.

Consider two processes running on separate cores sharing an A-way last-level cache.

We assume if one process occupies l ways in a cache set, the concurrently running process

will occupy A − l ways. Based on Equation 3.2, we can compute the effective cache size

of a stressmark with a controlled MPA and a known reuse distance histogram. We obtain

the reuse distance histogram of a process (denoted as B) as follows. Run the stressmark

along with B multiple times. In the lth run, we tune the parameters in the stressmark to

change the effective cache size, denoted as Sstress,l. Record B’s MPA in each run, denoted

as MPAB,l, where l ∈ {1, 2, · · · , A}. Given that SB,l is process B’s effective cache size in
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the lth run, and considering the lth and the l + 1st runs, we have

MPAB,l+1 =

∫ ∞

SB,l+1

histB(x)dx and

MPAB,l =

∫ ∞

SB,l

histB(x)dx. (3.8)

See the discussion after Equation 3.2 for the definition of hist(x). Hence, we can estimate

the probability of process B having an effective cache size of SB,l as

histB(SB,l) ≈MPAB,l+1 −MPAB,l. (3.9)

By varying SB,l from 1 to A, we can estimate the probability at each effective cache size,

thus allowing us to construct the reuse distance histogram. Since we can not control SB,l

directly, in practice we adaptively tune the effective cache size of the stressmark from run

to run. SB,l + Sstress,l = A. Therefore, varying Sstress,l changes SB,l.

As indicated above, the stressmark should have the following properties.

1. High cache access frequency, i.e., high API. API is related to the degree to which

a process competes for cache space. In order to estimate the probability of a pro-

cess having a small effective cache size, the concurrently running stressmark should

occupy a large portion of the cache with few cache misses.

2. A uniform reuse distance histogram, i.e., the probability is the same across all pos-

sible reuse distances. This makes it easy to compute the effective cache size given

an MPA value. In addition, given a pseudo-LRU cache replacement policy, cache

lines other than the least recently used will sometimes be evicted. Having a uniform
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Algorithm 1 Stressmark with k-Way Occupation
1: Set is the number of cache sets.
2: Step is the number of integers per cache line.
3: S[Set · Step·k] is an array of integers.
4: Index ← {s1, s2, · · · , sn}
5: The following loop loads a predefined random sequence into Index.
6: for j = 0 : n− 1 do
7: flag ← Index [j]
8: T ← &S[flag · Set · Step]
9: for i = 0 : Set − 1 do

10: read T [i · Step]
11: end for
12: end for

reuse distance histogram minimizes the impact of this potential problem because the

replacement noise will affect cache lines with all reuse distances equally.

The pseudo-code of the stressmark is shown in Algorithm 1, where Set is the number

of sets in the cache, Step is the number of integers per cache line. Index[n] is an integer

array whose elements are uniformly distributed from [1, k], which contains a random access

location sequence. In order to maintain high cache access frequency for the stressmark, we

pre-generate these arrays. Note that in Line 10 in Algorithm 1, two consecutive reads are

Step elements apart to ensure an 100% L1 cache miss rate. Since the stressmark randomly

accesses k cache lines within a cache set, the effective cache size of the stressmark is

expected to be k. However, this may not be very accurate due to conflict misses between

the stressmark and the process of interest. In reality, we use Equation 3.2 to estimate the

effective cache size of the stressmark, i.e., Sstress = MPA−1(MPAstress), where MPAstress

is the MPA of the stressmark and MPA−1() is the inverse function for MPA in Equation 3.2

that converts MPA to an effective cache size, i.e., MPA−1(MPA(x)) = x.
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3.4.2 Automated Parameter Estimation

In this section, we describe how we calculate parameters such as API and SPI for a

process. Given an A-way associative cache, in order to get the reuse distance histogram

for a process, we run the stressmark concurrently with the process A times. In the lth run,

we set k to l for the stressmark in Algorithm 1. Since API is fixed for a process with the

same input data, given that API l is the process’s API in the lth run, the average API of the

process can be estimated as

API =

∑A
l=1 API l

A
. (3.10)

Similarly, we can get A pairs of a process’s MPA and SPI values from the A runs. Given

that MPAl and SPIl are the average MPA and SPI of the process in the lth run, the α and

β in Equation 3.3 can be determined using linear regression, i.e.,

α =
A · (

∑A
l=1 MPAl · SPI l)− (

∑A
l=1 MPAl)(

∑A
l=1 SPI l)

A · (
∑A

l=1 MPAl
2)− (

∑A
l=1 MPAl)2

(3.11)

and β =
(
∑A

l=1 SPI l)− α · (
∑A

l=1 MPAl)

A
. (3.12)

We note that most programs have repeating phases with periods ranging from 200 ms to

2,000 ms [53]. Numerous work exists on phase detection, i.e., finding the time at which

the process switches from one phase to another. Since the process behavior is by definition

similar within a phase, one set of parameters per phase is sufficient. In the rest of the

chapter, we will treat processes as having a single phase each to simplify explanation. Note

that the proposed technique is also suitable for multi-phase processes, for which each phase
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may have a different set of extracted parameters.

Process characterization can be automated as follows. First, run the stressmark along

with the process A times, varying the effective cache size. After A runs, API, α, β, and the

reuse distance histogram can be estimated using Equations 3.9–3.12. These four parameters

form the feature vector of a process. Given the feature vectors of two processes, we can

predict their effective cache sizes when sharing cache, which in turn can be translated to SPI

values using Equations 3.2 and 3.3. Note that the SPIs for the two processes are predicted

without actually running them concurrently. Hence, given N processes for assignment

to N cores, only N feature vectors are needed (O (N) complexity). These vectors can

be used to predict the performance of any subset of the N processes during assignment

(2N − 1 combinations). Thus, the proposed technique is dramatically more efficient than

one requiring simulation or execution of 2N − 1 combinations of processes.

3.4.3 Potential Sources of Error

There are two primary sources of error in the proposed technique: error in histogram

estimation and error in linear regression analysis. We will explain these error sources now,

but note that even with these error sources, the proposed technique is highly accurate (see

Section 3.5).

When estimating the reuse distance histogram for a process, it is very difficult to cap-

ture the probability corresponding to a reuse distance close to 0 because the concurrently

running stressmark cannot consume all of the cache space. Similarly, the estimation for

a reuse distance close to A may also have some error. In practice, we assume a uniform

distribution for reuse distances close to 0 or A. Linear interpolation, given an assumed miss
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rate of 1 at an effective cache size of zero, is used for very small effective cache sizes. In

addition, the probability of reuse distances larger than A cannot be captured by our tech-

nique. Hence, we extrapolate this probability based on the derivative of the probability

density function at a sample point close to A.

Error may also be introduced due to noise in sample parameters. When the <MPA,

SPI> pairs gathered during profiling are clustered within a small region, linear regression

may lead to inaccurate estimation of coefficients due to noise. We addressed this problem

by bounding the step size during Newton–Raphson iteration when solving for the effective

cache size (see Equation 3.7), permitting convergence.

3.5 EVALUATION METHODOLOGY AND RESULTS

We evaluated our technique on a computer equipped with an Intel Core 2 Duo P8600

processor and the Mac OS X 10.5 operating system. The processor has a 3 MB, 12-way set

associative on-chip L2 cache with a line size of 64 B. We used Shark, a built-in profiling

tool, to sample performance counters at a period of 2 ms. The samples are used for calcu-

lating parameters (e.g., API, MPA, and SPI) on each core. We used the SPEC CPU2000

benchmark suite, which contains 26 benchmarks. Since validating all 351 pairwise combi-

nations would be costly, we instead selected a subset containing five CPU-intensive and five

memory-intensive benchmarks, and considered all pairwise combinations of these ten. We

recorded the program phase information for each benchmark during pre-characterization.

Experimental results indicate that all but two benchmarks have only one significant phase,

as defined by our parameters of interest. The longest phases in art and mcf were used.

We can thus address the prediction problem one phase at a time using phase detection
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algorithms, as described in Section 3.4.2. We examined all 55 possible pairwise combina-

tions of 10 benchmarks: each benchmark is paired with every other benchmark (including

another instance of itself) and assigned to the two cache-sharing cores. Experimental re-

sults indicate that CAMP has an average of 1.57% performance estimation error over all

10 benchmarks. For a more detailed description of experimental results and comparison,

please refer to [94].

3.6 CONCLUSION

Cache contention among processes running on different CMP cores heavily influences

performance. We have described CAMP, a predictive model that uses non-linear equilib-

rium equations for fast and accurate estimation of system performance degradation due to

cache contention. An efficient off-line method is proposed to automate the profiling and

performance prediction process with little performance overhead compared to expensive

simulation. We evaluated the proposed technique on 55 different combinations of 10 SPEC

CPU2000 benchmarks on a dual-core machine. The average performance prediction error

is 1.57%.
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CHAPTER 4

Power Modeling

In the previous chapter, we described CAMP, a shared cache aware performance model

for CMPs. By taking advantage of hardware performance counters built into most modern

high-performance computers, we can automate the process of gathering process-dependent

characteristics such as reuse distance histograms, cache access frequencies, and the rela-

tionship between the throughput and cache miss rate of each process without exhaustive

simulation or modification to the underlying hardware or software infrastructure. CAMP

takes these inputs as parameters in non-linear equilibrium equations to model the steady-

state effective cache sizes of different processes in a least-recently-used (LRU) or pseudo-

LRU last-level cache, which are then solved using Newton-Raphson method to obtain per-

formance estimations for each cache-sharing process. CAMP has been validated on real

processors. In addition, we demonstrate the generality of CAMP by profiling processes

on one CMP and using the resulting models for accurate performance estimations on two

other CMPs with different cache sizes.

However, performance is not the only critical design metric to high-performance com-

puters. With the continuously increasing system integration density and performance re-

quirements, power consumption is becoming a major challenge for computer architects
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and system designers; some high-performance servers are now consuming several hundred

watts [51]. High power consumption leads to increased cooling and packaging cost, re-

duced system reliability, and increased energy consumption and expensive electricity bills.

Power modeling is an essential first step in design optimization. Accurate power models

allow the architects to explore new power-efficient architectures. In addition, they are the

critical building block for optimization techniques such as power-aware scheduling and

assignment. Therefore, it is desirable to have a fast and accurate power model for high-

performance processors.

In this chapter, we propose a fast, fully-automated technique to accurately estimate the

core power consumption and the processor power consumption during runtime in a multi-

programmed CMP environment with no modifications to the underlying hardware and soft-

ware platform. The system-level power model takes advantage of hardware performance

counters, existing on most modern processors, to infer the relationship between hardware

events and processor power consumption. More specifically, the power model is derived

through multi-variable linear regression using event rates recorded in 5 different hardware

performance counters, implicitly accounting for time sharing and cache contention in a

CMP environment. We validated the power model using SPEC CPU2000 benchmarks on

a dual-core processor and a 4-core server to demonstrate the generality of the proposed

modeling technique. Finally, we explain how to integrate CAMP and the power model

to estimate processor power for any tentative assignment without run-time information.

The combined model is validated on the 4-core server using SPEC CPU2000 benchmarks.

The average estimation error is 2.38%, with a maximum error of 6.29%. Therefore, the

combined model is effective in estimating processor power during assignment, useful for
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power-aware assignment.

The rest of the chapter is organized as follows. Section 4.1 discusses the implications of

power consumption and motivates the power modeling problem for high-performance com-

puters. Section 4.2 summarizes the past work on power modeling. Section 4.3 describes the

power model construction process and elaborates on how the power model handles core-

wise time sharing and chip-wise cache contention. Section 4.4 describes how to combine

the proposed performance and power models to quickly and accurately estimate the proces-

sor power consumption for any process-to-core mapping during assignment. Section 4.5

describes the experimental setup for model validation and presents the validation results

for the power model and the combined model. Section 4.6 concludes this chapter.

4.1 INTRODUCTION AND MOTIVATION

Power consumption is important due to its impact on energy cost, reliability, and ther-

mal issues. This is especially for high-performance computers, given that modern server

power consumption may reach several hundred watts. High dynamic power consumption

indicates high current density, leading to accelerated wear and permanent faults due to pro-

cess such as electromigration. Both dynamic power and static power including the leakage

power produce heat, thereby increasing processor temperature and potentially degrading

performance. Finally, high power consumption implies high energy cost, resulting in ex-

pensive electricity bills.

Although monitoring and controlling power consumption is critically important, power

measurement devices are usually not available in off-the-shelf modern processors, thus

making the power models necessary for monitoring and optimization purposes. However,
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power modeling in a multi-programmed single-core environment is challenging due to is-

sues such as time sharing among processes. The on-going move to chip multiprocessors

(CMPs) introduces the cache contention problem (see Chapter 3), impacting the power

consumption and further complicating the modeling problem. Accurately modeling the

performance and power consumption in a multi-programmed CMP environment is nec-

essary for design-time architectural optimization and run-time dynamic resource manage-

ment [22, 54].

Power modeling in a multi-programmed CMP environment presents several challenges:

(1) the models should be easy to construct without modifications to existing software or

hardware. Exhaustive off-line simulation of all process combinations is computationally

intractable and thus should be avoided; (2) the models should handle time sharing among

processes on the same core and resource contention among processes on cache-sharing

cores; and (3) to be useful in on-line process assignment, the models must estimate power

before processes are assigned. To the best of our knowledge, no existing power models

satisfy the requirements mentioned above.

This chapter makes the following contributions: (1) we propose a modeling framework

that generates fast, accurate, on-line estimates of power consumption for any process-to-

core mapping during runtime; (2) the system-level power model can handle time sharing

among processes on the same core and cache contention among processes on cache-sharing

cores; (3) this is the first work to estimate the processor power for any tentative assign-

ment without run-time information by integrating CAMP and the power model; and (4) our

models are general enough to accommodate heterogeneous tasks and processors. Both the

power model and the combined model have been validated on different machines with dif-
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ferent architectures and nominal power consumptions. Note that although constructing the

CAMP model (and thus the combined model) requires profiling each process of interest,

this does not limit the generality of our approach because profiling can be done on-line.

When a new application makes up a significant percentage of the workload, we force it to

run alone on an idle machine and record profiling information. Therefore, the approach is

suitable for high-performance computing systems.

4.2 RELATED WORK

Past work on power modeling can be roughly decomposed into two categories: simula-

tion based power models and runtime power models. A number of researchers has proposed

simulation-based power models for power analysis. Brooks et al. proposed a simulation

framework named Wattch for architectural power estimation and optimizations [22]. Benini

et al. proposed power macro-models for major system components including processor

core, register file, instruction caches and data caches [19]. Their power models have been

integrated into a system-level simulation framework for power analysis in VLIW-based em-

bedded systems. However, such models impose significant performance overhead and are

therefore inappropriate to use during runtime. In addition, the accuracy of power models is

dependent on the accuracy of the underlying hardware model, thus making them platform-

dependent. Other researchers have proposed performance counter based power models for

on-line power estimation. Isci et al. proposed a performance-counter-based, per-unit power

model for processor power estimation [54]. However, their model construction requires the

die layout to identify each physical components, which is not always feasible. In addition, it

targets at the power consumption of a single application; it is not straightforward to extend
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them for power estimation in a multi-programmed CMP environment considering CPU

time multiplexing and cache contention. Economou et al. proposed a full-system power

model that takes the utilization ratios of various system components as input to estimate

the total system power for server environments [33]. Rivoire surveyed a number of high-

level full-system power models for a variety of workloads and machine configurations [85].

However, their model uses only as many counters as can be collected at one time, therefore

unnecessarily reducing estimation accuracy. Compared to our technique, their technique

suffers from relatively large errors (an average error of 13% for SPECINT with a maxi-

mum error larger than 21%). Furthermore, it cannot be determined whether their model

can accurately estimate power in a multi-programmed CMP environment based on their

experimental results. Singh et al. proposed a performance counter based power model in

a multi-programmed CMP environment [90]. This work is the closest to ours. However,

their power model construction process is ad hoc and requires the user manually tune the

model parameters and fitting functions. In addition, their power model cannot handle time

sharing among processes on the same core. In contrast, the model building process for our

power model can be fully automated. As demonstrated in Section 4.5, it can handle time

sharing among processes and applies to CMP systems with different architectures without

any changes to the model construction process.

Researchers have also proposed various techniques during assignment for optimization.

Xie and Hung proposed a temperature-aware task allocation and scheduling algorithm for

MPSoC embedded systems [114]. Hanumaiah et al. proposed a throughput-optimal task

allocation technique under thermal constraints for CMPs [43]. However, to the best of

our knowledge, we are the first to propose a solution for processor power consumption
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estimation during assignment.

4.3 POWER MODELING

In this section, we first formulate the power modeling problem. We then explain the

model construction process. Finally, we describe how we handle time sharing among pro-

cesses sharing cores and cache contention among processes running on multiple cores.

4.3.1 Problem Formulation

The power modeling problem in a multi-programmed CMP environment can be for-

mulated as follows: given k processes running on N cores with some of the cores having

multiple processes and some of them being idle, estimate the core and processor power

consumption during concurrent execution.

It is natural to decompose core power consumption into idle power consumption and

the active power consumptions of individual architectural blocks. Given that there are M

components in a system, the total power consumption is P = Pidle +
∑M

i=1 Pi, in which

Pidle is the idle power consumption when no process is actively using the core and Pi is

the power consumption of component i. In order to make online estimates of Pi, we again

use HPCs: by carefully choosing the HPC-detected hardware events monitored, we can

map an event rate, i.e., number of events per second, to the power consumption of the

corresponding architectural block.

It is inaccurate to monitor all HPC-detected hardware events and associate each of them

with the components generating the event due to two reasons: (1) the number of HPCs that

can be monitored simultaneously is usually limited to 2 to 4 [3] due to limited number of

counter registers per core. Although it is possible to rotate the event sets monitored assum-
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ing the program behavior is consistent, the assumption is unlikely to hold if it takes quite

a few rotations to finish gathering all HPC values needed to generate a power estimation.

In addition, event set rotation introduces additional performance overhead. (2) A lot of

system components may not have a big impact on the total core power. Choosing these

irrelevant features will reduce the accuracy of the power model and increase computational

complexity. Therefore, it is desired to use only a limited number of system components for

model construction.

In order to determine the most significant contributors among all the HPC-detected

events, we use 8 SPEC CPU2000 benchmarks consisting of 5 integer programs and 3 float-

ing point programs 1 as our training data. For each benchmark, we run one instance on each

core. Note that we start these instances at the same time and gather the HPC values and

power consumption for one core, assuming every core has the same power consumption

and HPC values for different instances of the same program. However, it is impractical

to exhaustively evaluate all combinations of HPC-detected events because there are more

than 130 events available. Therefore, we associate each event with a system component,

resulting in a total of 10 components. For each component, we pick an event that is most

related to the access frequency of the component to represent its power consumption. Since

we can only monitor 2 HPCs at the same time on the test system, we then run each bench-

mark 5 times to gather its power consumption and the event rates (number of events per

second) of the 10 events with a sampling frequency of 10 ms. Note that the HPC values and

the power consumption are measured on a real system (see Section 4.5 for detailed exper-

imental setup). Finally, we combine the sampling data of 8 benchmarks and calculate the

1We used the 8 benchmarks that compiled on the test system using gcc 4.1
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Pearson’s correlation coefficient between each event rate and the power consumption. The

top 5 events with the highest correlation coefficients are L1RPS, L2RPS, L2MPS, BRPS,

and FPPS, which represent the number of L1 data cache references per second, the number

of L2 cache references per second, the number of L2 cache misses per second, the num-

ber of branch instructions retired per second, and the number of floating point instructions

retired per second, respectively. We ruled out components such as L1 instruction cache

and ITLB because the power consumption is insensitive to the changes in their access fre-

quency. Note that these events are supported by HPCs on most existing systems, which

indicates our power model is widely applicable.

Although we have identified the 5 events that are most related to the core power, it still

remains undetermined how to map the event rates to the corresponding component power:

the power consumption of a component may be nonlinearly dependent on the event rate

associated with it. We first wrote a micro-benchmark with 6 phases, each of which lasts

80 s. In the first phase, the core idle power is recorded, whereas one of the aforementioned

5 architectural blocks are explicitly accessed in each of the following 5 phases. Note that

the access frequency is the highest at the start of a phase and reduced to a lower level every

10 s, i.e., there are 8 different access frequencies for one component in one phase. We then

use 8 SPEC CPU2000 benchmarks (see Section 4.5) and the micro-benchmark for model

construction. Given an N -core processor, we run N instances of one benchmark on N

cores (one instance per core) and gather the HPC values along with the processor power

throughout the execution, assuming each core has the same power and HPC values. We then

evaluate the modeling results based on two different algorithms, the multi-variable linear

regression (MVLR) algorithm and a three-layer sigmoid activation function neural network
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(NN). Experimental results indicate that the MVLR-based model achieves an accuracy

of 96.2% while the NN-based model reaches an accuracy of 96.8%. Given an accuracy

comparable to NN-based model and the simplicity in model construction and evaluation,

MVLR-based model is chosen. Hence, the core power Pcore can be expressed as

Pcore = Pidle + c1 · L1RPS + c2 · L2RPS + c3 · L2MPS + c4 · BRPS + c5 · FPPS, (4.1)

where Pidle and c1 through c5 are coefficients determined from MVLR.

4.3.2 Handling Context Switching and Cache Contention

The proposed power model can accurately estimate the core power consumption when

a single process is running. However, there are usually multiple processes running on the

same core in a multi-programmed environment, limiting the usability of the power model.

We define process power consumption as the core power consumption when this process

is running. Since we assume there are no data dependencies among processes, the ma-

jor interactions among processes on the same core are contention for resources such as

cache. More specifically, when a context switch from process A to process B occurs, com-

ponents such as L1 caches and TLB are flushed, impacting the performance and power

consumption of process B. We experimentally determined the average amount of time re-

quired to fill the cache after a context switch is only 1% of the timeslice length given a

20 ms timeslice, which indicates the impact of context switches on performance and power

is negligible. Therefore, the core power consumption is the linear weighted sum of all pro-

cess power consumptions with the timeslice length of each process being its weight. Due to

the uncertainty in the timeslice length of a process, which is dynamically calculated based

upon its priority and interactivity [89], we make the simplifying assumption that every pro-
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cess has the same weight. Hence, assuming there are k processes running on the single

core with process i’s power consumption being Pi, the core power consumption is simply

Pcore = 1
k

∑k
i=1 Pi. We note that this formula needs to be adjusted if one or more pro-

cesses have longer timeslice on average than other processes due to differences in priority

or interactivity.

We now define the processor power consumption as the sum of all core power con-

sumptions in a multi-programmed CMP environment, in which cache contention problem

becomes more severe. On one hand, increased cache contention leads to lower processor

power consumption because c3 is negative in Equation 4.1. On the other hand, increased

resource utilization implies higher processor power consumption. The amount of increase

in processor power consumption depends on the balance between the two factors. This

is consistent with our experimental results (see Section 4.5). As indicated in Section 4.5,

the amount of power increase resulting from adding a process to a nearby idle core differs

greatly depending on the degree of cache contention. Therefore, the proposed power model

can handle the CMP environment without any modifications. If there is more than one pro-

cess per core, given core 1 through core N share the last-level cache and Si is the set of

processes running on core i, the average power consumption of these cores Pcore-set can be

calculated as

Pcore-set =

∑
p1∈S1

· · ·
∑

pN∈SN
P (p1, p2, · · · , pn)∏N

i=1 |Si|
, (4.2)

where P (p1, p2, · · · , pn) is the sum of power consumptions of core 1 through core N when

processes p1, p2, · · · , pn run simultaneously. In other words, if S is the cartesian product

of Si, i = 1, 2, ..., N , we assume each element in S is equally likely to happen. The power
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consumption of an idle core is Pidle. The total power consumption is the sum of each core’s

power consumption.

4.4 COMBINING PERFORMANCE AND POWER MODELS

In this section we describe how to combine the proposed performance and power mod-

els for use in optimization. One such application is power-aware assignment. More specif-

ically, if we can accurately estimate the processor power consumption for each tentative

assignment decision, we can choose the one that optimizes power or energy usage. How-

ever, such power estimation is usually impossible because the HPC values needed for power

estimation are unknown until the processes are assigned. Nonetheless, by integrating the

performance model and the power model, we are able to estimate the process power con-

sumption for each assignment, as explained below.

Given the power model in Equation 4.1, we can decompose the process power Pprocess

into two parts:

P1 = Pidle + (c1 · L1RPI + c2 · L2RPI + c4 · BRPI + c5 · FPPI)/SPI,

P2 = c3 · L2MPS = c3 · L2MPR · L2RPI/SPI, and

Pprocess = P1 + P2.

Here, Pidle is the power consumption of an idle core, L1RPI represents the number of L1

data cache accesses per instruction, L2RPI represents the number of L2 cache references

per instruction, BRPI represents the number of branches per instruction, FPPI represents

the number of floating point instructions retired per instruction, and L2MPR represents
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Figure 4.1: Algorithm for power estimation for process assignment.

the number of L2 cache misses per L2 cache reference. We define a instruction-related

event rate as the number of events per instruction. L1RPI, L2RPI, BRPI, and FPPI in P1

are process properties: given the same input data, these instruction-related event rates are

fixed and not affected by the execution of other processes. Therefore, the impact of cache

contention is only reflected in the change of SPI. However, P2 is not only influenced by SPI

but also L2MPR. Fortunately, both SPI and L2MPR can be determined by the performance

model given enough profiling information, as explained in Chapter 3. Hence, if we record

the instruction-related event rates during profiling for each process and use performance

model in Chapter 3 to predict SPI and L2MPR whenever cache contention exists, we can

estimate P1, P2, and thus the process power.

We first assume the performance and power model are built as described in Chapter 3

and Section 4.3. We also assume for each process i, the profiling vector PFi, i.e., (Pi,alone,

L1RPIi, L2RPIi, BRPIi, FPPIi) is recorded during profiling. Note that Pi,alone represents

process i’s average power consumption when it runs alone with no other active processes.

Figure 4.1 illustrates how to combine the performance model, power model, and process

profiles for power estimation during assignment. Suppose we want to evaluate the resulting

47



power consumption by assigning process K to core C. We denote the set of cores that share

the last-level cache with core C as core C’s partner set PSC . Depending on the states of

core C and PSC , there are four different outcomes: (1) both C and PSC are idle, (2) C is

busy and PSC is idle, (3) C is idle and PSC is busy, and (4) both C and PSC are busy. We

only analyze scenario (1) and scenario (4) since scenarios (2) and (3) are special cases of

scenario (4). In scenario (1), we set core C’s power consumption to PK,alone, fetched from

profiling vector PFK . The processor power consumption is also increased by PK,alone. In

scenario (4), we assume there are N cores in PSC numbered from 1 to N , among which

core 1 through core m have processes running on them and core m + 1 through core N

are idle. For convenience, we use Si to represent the set of processes running on core i.

We define a process combination as an ordered tuple (PCC , PC1, PC2, · · · , PCm) where

PCC ∈ SC , PC1 ∈ S1, · · · , PCm ∈ Sm, indicating processes PCC , PC1, PC2, · · · ,

PCm run simultaneously on core C and its partners core 1 through core m. For the set

of process combinations that do not include process K, denoted as Sex, the average power

consumption, denoted by Pex, is the sum of current power consumptions of core C and

cores in PSC . On the other hand, if we use Sin to represent the set of process combinations

that include process K, for each item I in Sin, we use the performance model to predict

the SPI and L2MPS for each process that belongs to I , which are then fed into the power

model to calculate the corresponding power consumption for the process combination I .

We use Pin to denote the average power consumptions for all combinations in Sin. Hence,

the processor power consumption Pprocessor can be written as

Pprocessor = (N −m) · Pidle +
Pex · |Sex|+ Pin · |Sin|
|Sex|+ |Sin|

+ Prest, (4.3)
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where Prest is the current power consumption of cores that do not share cache with core

C. Therefore, by profiling each process individually, we are able to estimate the proces-

sor power consumption for any process-to-core mapping, reducing the exponential time

complexity for a simulation based approach to linear time complexity.

4.5 EXPERIMENTAL RESULTS

In this section, we first describe the experimental setup for model validation. We then

present the validation results for the power model and the combined model.

4.5.1 Experimental Setup

We use PAPI 3.6.2 [6] to sample the HPCs. The sampling period is 30 ms. Our test-

suite includes 8 SPEC CPU2000 benchmarks that compiled on the test system using gcc

4.1. This set contains both memory-intensive and CPU-intensive benchmarks. We record

the program phase information for each benchmark during profiling. Experimental results

indicate all but two benchmarks have only one significant phase, as defined by our param-

eters of interest. The longest phases in art and mcf were used (refer to Tam et al. [103] for

details).

To determine power consumption, we use a Fluke i30 current clamp on one of the 12 V

processor power supply lines, the output of which is sampled by an NI USB6210 data

acquisition card. An on-chip voltage regulator converts this voltage to the actual processor

operating voltage. We assume a fixed regulator efficiency of 90%. Therefore, P = 0.9V ·

I = 10.8 · I , where P is the processor power and I is the measured current. The data

acquisition card samples at a frequency of 10 kHz in our experiments.
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Figure 4.2: Power model validation on 4-core server. Estimations and measurements are
shown for the maximum power and minimum power cases.

Table 4.1: Power Model Validation on a 2-Core Workstation

Scenarios
Number of Avg./max. error for Avg./max. error

assignments power samples (%) for avg. power (%)
1 proc./core 36 5.32 / 14.12 3.63 / 13.83
2 proc./core 24 6.65 / 8.84 2.47 / 4.05

4.5.2 Power Model Validation

We validated our power models on (1) a Pentium Dual Core E2220 processor with 1 MB

L2 cache, which runs Linux 2.6.25 and (2) an Intel Core2 Quad core Q6600 processor with

two chips (and two cores per chip) and 8 MB 16-way set-associative L2 cache in total,

which runs Linux 2.6.28 (denoted as “4-core server”). For each machine, we first build the

power model using 8 SPEC CPU2000 benchmarks and the customized micro-benchmark as

explained in Section 4.3.1. We then validate the power model by assigning a combination of

several SPEC CPU2000 benchmarks to some or all of the cores and compare the real power

consumption with the power estimations using HPC values gathered during runtime. Note
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Table 4.2: Power Model Validation on a 4-Core Server

Scenarios
Number of Avg./max. error for Avg./max. error

assignments power samples (%) for avg. power (%)
1 proc./core 24 4.09 / 8.52 3.26 / 7.71
2 proc./core 3 5.51 / 6.25 4.47 / 5.95
4 proc. with

10 3.39 / 4.73 2.54 / 4.14
unused cores

that we only analyze the duration in which all processes assigned are running concurrently.

Figure 4.2 illustrates the sample-based power model validation on the 4-core server for

the assignments with the maximum and the minimum average power among all test cases.

The X axis is time and the Y axis is the power consumption. The solid lines represent power

estimations, while the dotted lines represent measured values. They generally overlap,

indicating good estimation accuracy. The average estimation errors are 2.46% and 2.51%

for the maximum-power scenario and the minimum-power scenario, respectively.

Table 4.1 and Table 4.2 show the validation results for the power model on the 2-core

workstation and 4-core server, respectively. Column 1 shows the testing scenario, e.g., “1

proc./core” refers to assignment schemes in which all cores are used with one SPEC pro-

gram per core. Column 2 represents the number of different assignments evaluated given

the testing scenario indicated in Column 1. Note that the processes in each assignment

are chosen randomly in order to test the model on a wide range of scenarios. Column 3

presents the average and maximum error resulting from comparing the estimated processor

power with the measured power for all power estimation samples. Column 4 presents the

average and maximum error resulting from comparing the estimated average power with

the measured average power.

On the 2-core workstation, we tested 36 different assignments with 1 process per core
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Table 4.3: Performance Model Validation

Benchmark gzip vpr mcf bzip2 twolf art equake ammp Avg.

MPA
E (%) 0.16 2.54 1.33 2.97 1.91 1.33 0.42 3.48 1.76

>5% (%) 0 0 0 25 0 0 0 12.5 4.69

SPI
E (%) 0.58 5.58 2.15 2.06 4.54 5.51 1.89 3.80 3.38

>5% (%) 0 50 0 0 37.5 50 12.5 25 21.9

Table 4.4: Validating the Combined Model on a 4-Core Server

Scenarios
Number of Avg./max. error

assignments for avg. power (%)
1 proc./core 32 2.84 / 5.78
2 proc./core 10 1.92 / 6.29

4 proc., 1 core unused 16 2.68 / 5.48
4 proc., 2 core unused 16 2.53 / 5.99
4 proc., 3 core unused 9 0.49 / 1.95

and 24 assignments with 2 processes per core. For a sample-based comparison, the average

error for both scenarios are 5.32% and 6.65%, with maximum errors of 14.12% and 8.84%.

For an average-power–based comparison, the average error for both scenarios are 3.63%

and 2.47%, with maximum errors of 13.83% and 4.05%.

On the 4-core server, we tested 24 different assignments with 1 process per core, 3

assignments with 2 processes per core, and 10 assignments with 1 or 2 cores unused. For

a sample-based comparison, the average error for the three scenarios are 4.09%, 5.51%,

and 3.39%, with maximum errors of 8.52%, 6.25%, and 4.73%. For an average power

comparison, the average errors for the three scenarios are 3.26%, 4.47%, and 2.54%, with

maximum errors of 7.71%, 5.95%, and 4.14%. Therefore, we conclude the proposed power

model is accurate and is sufficiently general to be used for different architectures, although

the limited number of architectures considered is not sufficient to determine the were the

limits on generality are located.
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4.5.3 Combined Model Validation

In order to validate the combined performance and power model for average power esti-

mation during assignment on the 4-core server, we first built the CAMP model as explained

in Chapter 3. More specifically, we first obtained the feature vectors of all 8 benchmarks

using the stressmark. CAMP then takes the feature vector of each process for performance

prediction. We measured all 36 possible pairwise combinations of 8 benchmarks: each

benchmark is paired with every other benchmark (including another instance of itself) and

assigned to two cache-sharing cores. The measured performance data are then compared

to those predicted by CAMP.

Table 4.3 presents the average prediction error in MPA and SPI for each benchmark

when it runs simultaneously with each of the 8 benchmarks. Row 2 shows the average

absolute estimation error in MPA based on CAMP. Row 4 indicates the average relative

estimation error in SPI. Row 3 and 5 present the percentage of test cases with an estima-

tion error larger than 5% among all 8 test cases for each benchmark. The last column

corresponds to the average result of all 8 benchmarks, i.e., 36 testcases. As indicated in Ta-

ble 4.3, our technique has an average of 3.38% SPI estimation error across all 8 benchmarks

with only 21.9% of the cases having an estimation error greater than 5%.

Given that both the CAMP model and the power model are applicable to the 4-core

server, we then estimated the power consumption of an assignment following the algorithm

in Figure 4.1. Note that only profiling information are used for estimation. The estimated

average power is then compared to the measured average power to determine the accuracy

of the combined model.
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As indicated in Table 4.4, we tested 32 assignments with 1 process assigned to each

core, 10 assignments with 2 processes assigned to each core, 16 assignments with 4 pro-

cesses assigned to 3 cores, 16 assignments with 4 processes assigned to 2 cores, and 9

assignments with 4 processes assigned to a single core. The average errors for the 5 scenar-

ios were 2.84%, 1.92%, 2.68%, 2.53%, and 0.49%, while the maximum errors were 5.78%,

6.29%, 5.48%, 5.99%, and 1.95%. We thus conclude that the combined model is effective

in estimating the processor power consumption during assignment.

4.6 CONCLUSIONS

Accurately modeling the power consumption in a multi-programmed CMP environment

is challenging but essential for optimizing process assignment and migration. This chap-

ter describes an on-line power modeling framework that rapidly and accurately estimates

the power consumption of particular process-to-core mappings. This process requires no

changes to existing operating system or hardware. The power model has been validated on

multiple CMP machines with distinct architectures and nominal power consumptions. We

conclude that the proposed framework is effective for power estimation during both process

assignment and execution.
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CHAPTER 5

Thermal Modeling and Thermal Analysis

Temperature has a strong influence on integrated circuit (IC) performance, power con-

sumption, and reliability. With continued technology scaling and increasing performance

demand, thermal issues are becoming a major challenge during high-performance micro-

processor design, thereby making thermal analysis an indispensable step. However, ac-

curate thermal analysis can impose high computation costs during the IC design process.

We analyze the performance and accuracies of a variety of time-domain dynamic thermal

analysis techniques and use our findings to propose a new analysis technique that improves

performance by 38–138× relative to popular methods such as the fourth-order globally

adaptive Runge-Kutta method while maintaining accuracy. More precisely, we prove that

the step sizes of step doubling based globally adaptive fourth-order Runge-Kutta method

and Runge-Kutta-Fehlberg methods always converge to a constant value regardless of the

initial power profile, thermal profile, and error threshold during dynamic thermal analysis.

Thus, these widely-used techniques are unable to adapt to the requirements of individual

problems, resulting in poor performance. We also determine the effect of using a number of

temperature update functions and step size adaptation methods for dynamic thermal anal-

ysis, and identify the most promising approach considered. Based on these observations,
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we propose FATA, a temporally-adaptive technique for fast and accurate dynamic thermal

analysis.

The rest of this chapter is organized as follows. Section 5.1 motivates the thermal anal-

ysis problem and summarizes our contributions. Section 5.2 presents the IC thermal model

that characterizes the heat transfer among IC, package, heatsink, and the ambient environ-

ment. We also formulate the dynamic thermal analysis problem in the matrix-vector form.

Section 5.3 explores the properties of various adaptive time-domain dynamic analysis al-

gorithms and proves that popular numerical methods such as globally adaptive fourth-order

Runge-Kutta method suffer from step size convergence problem, making them inappropri-

ate for thermal analysis. Section 5.4 gives an overview of the proposed technique named

FATA and describes the major components in FATA that enable fast and accurate simula-

tion. Section 5.5 explains the experimental set-up, evaluates the accuracy and performance

of FATA, and compares it with existing thermal analysis techniques. We also discuss the

impact of various temperature update functions and step size adaptation methods on accu-

racy and performance. Section 5.6 concludes this chapter.

5.1 INTRODUCTION AND PAST WORK

Temperature has a strong influence on integrated circuit (IC) performance, power con-

sumption, and reliability. High temperature leads to high charge-carrier concentration,

which in turn results in high leakage power consumption. In addition, it affects system

performance by decreasing charge-carrier mobility, thus degrading performance, and de-

creasing transistor threshold voltage, thus increasing performance. Finally, it significantly

increases the probability of electromigration failure rate and causes reliability problems.
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Therefore, accurate and fast thermal analysis that models and analyzes microprocessor tem-

perature is essential for performance, power, and reliability. As mentioned in Section 2.3,

thermal analysis can be separated into steady-state thermal analysis and dynamic thermal

analysis. In this chapter, we focus on dynamic thermal analysis because it allows us to

capture dynamic temperature changes rather than steady-state thermal profiles.

IC dynamic thermal analysis models the thermal conduction from an IC’s power sources

through cooling packages to the ambient environment, usually using partial differential

equations. In order to approximate the solutions to these equations using numerical meth-

ods, an IC model is decomposed into a large number of thermal elements such that the

thermal variation within an element is negligible. This permits accurate thermal simula-

tion. The resulting large system matrix makes direct solutions such as LU decomposition

prohibitive. Traditionally, the dynamic thermal analysis problem can be solved using either

frequency-domain or time-domain techniques [67, 93, 115]. Compared with frequency-

domain techniques, time-domain techniques are fast and accurate for the shorter simulation

runs typically encountered when power profiles frequently change. This chapter focuses on

time-domain techniques.

A number of researchers have worked on the time-domain dynamic thermal analy-

sis problem. Skadron et al. developed HotSpot [93], which uses an adaptive fourth-order

Runge-Kutta method that dynamically adjusts the step size according to the local error at

each time step to solve the finite difference equations. However, it is a synchronous time

marching method: all the thermal elements have the same step size at each time point.

Recently Yang et al. [115] developed an IC thermal analysis technique called ISAC. This

technique adapts to spatial and temporal variation in material properties and power pro-
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files. Although it achieved speedups over the fourth-order Runge-Kutta method in some

circumstances, its assumption about the temperatures of the neighbors when solving finite

difference equations is inaccurate (see Section 5.4), often reducing performance and/or ac-

curacy. We know of no work that does a thorough analysis of the properties of commonly

used time-domain thermal analysis techniques or points out fundamental problems with

using popular finite difference techniques, such as adaptive Runge-Kutta methods, to solve

the dynamic thermal analysis problem.

This chapter makes the following contributions. First, it proves that the step size will

always converge to a constant value for (a) a step doubling based globally adaptive fourth-

order Runge-Kutta (GARK4) method and (b) Runge-Kutta-Fehlberg method regardless of

the initial power profile, thermal profile, and error threshold during dynamic thermal anal-

ysis. This reveals a fundamental and surprising performance limitation when these tech-

niques are used for thermal analysis. Second, we propose FATA, a new fast asynchronous

dynamic thermal analysis technique. This technique improves performance by 38–138×

relative to popular methods such as the GARK4 method [93] and by 118.59–222.60× rel-

ative to existing work in asynchronous time-domain thermal analysis [115] with similar

accuracy. Third, this article indicates the impact of various combinations of temperature

update functions and step adaptation methods on performance and accuracy. Our analysis

suggests that combining the trapezoidal method with third-order finite temperature differ-

ence based step size adaptation yields the best combination of performance and accuracy.
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Figure 5.1: Model for a single thermal element.

5.2 THERMAL MODEL AND PROBLEM FORMULATION

In this section, we first give details on the IC thermal model that characterizes the heat

transfer among IC, package, heatsink, and the ambient environment. We then formulate the

dynamic thermal analysis problem in the matrix-vector form.

Heat and electrical conduction are both governed by the diffusion equation and can be

similarly modeled; thermal conductance corresponds to electrical conductance, heat capac-

ity corresponds to electrical capacitance, temperature corresponds to voltage, and power

dissipation corresponds to electrical current. We model a chip as a regular mesh containing

N discretized elements, or a thermal grid, with the ambient temperature corresponding to

ground. Each element has a ground capacitance and a ground thermal conductance. In the

case where no heat dissipation channel exists between a thermal element and the ambient,

the corresponding ground thermal conductance is set to zero. Physically adjacent elements

are connected with resistors. The power consumption of each thermal element is modeled

as a current source with current flowing into the element. Using this model, the thermal

grid can be modeled as a linear system.
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Figure 5.1 illustrates the model for a given element i, which is connected to n neighbors

via resistors. Ground represents the ambient temperature. We use Ni to represent element

i’s neighbors. Given n ∈ Ni, Ti(t) is the temperature of element i at time t, Tn(t) is the

temperature of element i’s neighbor n, Tamb is the ambient temperature, Ci is the ground

capacitance at element i, Pi(t) is the heat source associated with element i, Ris is the

ground thermal resistance at element i, and Rin is the resistance between element i and its

neighbor n, Kirchhoff’s Current Law can be used to derive the following equation:

(∑
n∈Ni

Ti(t)− Tn(t)

Rin

)
+

Ti(t)− Tamb

Ris

+ Ci
dTi(t)

dt
− Pi(t) = 0. (5.1)

Equation 5.1 can be simplified as follows:

Letting T ′
i = Ti − Tamb,∀i in the thermal grid and (5.2)

αi =
∑
n∈Ni

1

Rin

+
1

Ris

, (5.3)

dT ′
i (t)

dt
=

1

Ci

(
∑
n∈Ni

T ′
n(t)

Rin

− αiT
′
i (t) + Pi(t)). (5.4)

For convenience, we will use Ti(t) instead of T ′
i (t) to represent the normalized temper-

ature of element i, i.e., the difference between element i’s temperature and the ambient

temperature. Assume the jth neighbor of element i is kj , we define −→gi as

−→gi =

0, · · · , 0︸ ︷︷ ︸
k1−1

,
1

Ri1
, 0, · · · , 0︸ ︷︷ ︸

k2−1

,
1

Ri2
, · · · ,−α, · · · , 1

Rini

, · · · , 0

 , (5.5)

where 1
Rij

is the kjth entry of vector −→gi , representing the thermal conductance between i

and its jth neighbor kj , −α (defined in Equation 5.3) is the ith entry of the vector, and all

other entries are 0s. Similarly, we use
−−→
T (t) and

−−−−→
T (1)(t) to represent the temperature and
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first-order temperature derivatives of all N elements in the system at time t, i.e.,

−−→
T (t) = (T1(t), T2(t), · · · , TN(t))T and (5.6)

−−−−→
T (1)(t) = (dT1(t)/dt, dT2(t)/dt, · · · , dTN(t)/dt)T . (5.7)

Hence, Equation 5.4 can be written as

dTi(t)

dt
=
(−→gi ·

−−→
T (t) + Pi(t)

)
/Ci. (5.8)

Equation 5.4 holds for all elements in the system. If we define system matrix A (size

N × N ), thermal capacitance matrix C (size N × N ), and N -dimensional power vector

−−→
P (t) as

A =
(−→g1

T ,−→g2
T , · · · ,−→gN

T
)T

, (5.9)

C = diag (C1, C2, · · · , CN) , and (5.10)

−−→
P (t) = (P1(t), P2(t), · · · , PN(t))T , (5.11)

the dynamic thermal analysis problem can be described using the following equation:

−−−−→
T (1)(t) = C−1

(
A
−−→
T (t) +

−−→
P (t)

)
. However, it is computationally expensive to directly

solve the system equation due to the high order of system matrices A and C for a typical

thermal model with tens of thousands of discrete elements. A common approach is to di-

vide time into discrete time steps and approximate the solutions using finite temperature

difference equations, i.e., using finite difference methods.
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5.3 GLOBALLY ADAPTIVE RUNGE-KUTTA METHODS: ARE THEY REALLY

ADAPTIVE?

Traditionally, finite difference equations are solved by synchronous numerical methods.

Runge-Kutta methods such as the fourth-order Runge-Kutta method and the Runge-Kutta-

Fehlberg (RKF) method are commonly used solve ordinary differential equations [93, 115].

We have determined that, despite their popularity, these step size control methods are not

appropriate for thermal analysis.

Theorem 5.3.1 (Step Size Convergence Property). Given an IC thermal model with N

thermal elements that satisfy Equation 5.4, the step size of (1) a step doubling based glob-

ally adaptive 4th-order Runge-Kutta (GARK4) method and (2) RKF method converge to a

constant value ch regardless of initial step size and specified error threshold.

Proof. Since the proofs for both methods are similar, we present only the proof for the

synchronous, adaptive GARK4 method used in HotSpot [93]. We assume the power profile,

−→
P , is constant during a simulation run. Given that

−→
Tk is the temperature vector at iteration

k,
−−→
T

(1)
k is the first-order temperature derivative at iteration k, and hk+1 is the step size at

iteration k + 1, the temperature vector at iteration k + 1, i.e.,
−−→
Tk+1 can be expressed as
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follows:

−→
k1 =

−−→
T

(1)
k = C−1

(
A
−→
Tk +

−→
P
)

, (5.12)

−→
k2 = C−1

[
A
(−→
Tk + 1/2hk+1

−→
k1

)
+
−→
P
]

=
−→
k1 + 1/2hk+1C

−1A
−→
k1 , (5.13)

−→
k3 =

−→
k1 + 1/2hk+1C

−1A
−→
k2 , and (5.14)

−→
k4 =

−→
k1 + hk+1C

−1A
−→
k3 , yielding (5.15)

−−→
Tk+1 =

−→
Tk + 1/6hk+1

(−→
k1 + 2

−→
k2 + 2

−→
k3 +

−→
k4

)
. (5.16)

Starting from Equations 5.12, 5.13, 5.14, and 5.15, substitute the corresponding terms into

Equation 5.16, resulting in

−−→
Tk+1 =

−→
Tk +

4∑
n=1

hn
k+1

n!
(C−1A)n−1−→k1 . (5.17)

Next, we present the temperature and step size update functions in the matrix-vector form.

Using Equation 5.12, we introduce a few variables to simplify Equation 5.17.

Let B = C−1A and D = C−1−→P .

−−→
Tk+1 =

−→
Tk +

(
B
−→
Tk + D

) 4∑
n=1

hn
k+1

n!
Bn−1

=
4∑

n=0

(hk+1B)n

n!

−→
Tk +

4∑
n=1

(hn
k+1B

n−1)

n!
D. (5.18)
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Given that fB(h) =
∑4

n=0
(hB)n

n!
, the temperature vector at iteration k + 1 is

−−→
Tk+1 = fB(hk+1)

−→
Tk + (fB(hk+1)− IN×N)B−1D, (5.19)

where IN×N is a N × N unit matrix. Given that
−→
Tk and hk are the temperature vector

and step size at iteration k, step doubling based step size adaptation first determines the

absolute difference between the results computed by taking one hk step and two hk

2
steps,

where
−−−→
Tk+1,s is the temperature vector at iteration k + 1 using one step and

−−−→
Tk+1,d is the

predicted temperature vector at iteration k + 1 using two steps.

−−−→
Tk+ 1

2
= fB(

hk

2
)
−→
Tk + (fB(

hk

2
)− IN×N)B−1D, (5.20)

−−−→
Tk+1,s = fB(hk)

−→
Tk + (fB(hk)− IN×N)B−1D, (5.21)

−−−→
Tk+1,d = fB(

hk

2
)
−−→
Tk+ 1

2
+ (fB(

hk

2
)− IN×N)B−1D. (5.22)

The step size for the next iteration, hk+1, is calculated by dividing the error threshold by

that difference, as shown below:

hk+1 = hk ×
(
ε/||
−−−→
Tk+1,d −

−−−→
Tk+1,s||∞

) 1
5
, (5.23)

where ε is a user-specified error threshold used to control accuracy. Combining Equa-

tions 5.20, 5.22, and 5.21 yields the next safe step size:

hk+1 = hk ×
(

ε/||[f 2
B(

hk

2
)− fB(hk)](

−→
Tk + B−1D)||∞

) 1
5

. (5.24)
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Equation 5.19 and Equation 5.24 can be simplified by defining
−→
Yk =

−→
Tk + B−1D, yielding

the following temperature and step size update functions:

hk+1 = hk ×
(

ε/||[f 2
B(

hk

2
)− fB(hk)]

−→
Yk||∞

) 1
5

(5.25)

−−→
Yk+1 = fB(hk+1)

−→
Yk. (5.26)

We now prove that the numerical solution of
−→
Y converges to a constant vector regardless

of the user-specified error threshold ε. This will be used to prove step size convergence,

i.e., hk will converge to a constant. Due to the characteristics of RC linear systems, the

exact temperature vector (or
−−→
Ytrue) will become stable as time proceeds to infinity, i.e.,

limk→∞ |
−−−−−→
Yk+1,true −

−−−→
Yk,true | = 0. Given that step doubling is used to control the step size,

we have |
−→
Yk −

−−−→
Yk,true | = O(h6

k) and |
−−→
Yk+1 −

−−−−−→
Yk+1,true | = O(h6

k+1), where
−→
Yk and

−−→
Yk+1 are

obtained by GARK4 at iterations k and k + 1 [77]. Therefore, when the thermal profile

reaches steady state,

|
−−→
Yk+1 −

−→
Yk| = |

−−→
Yk+1 −

−−−−−→
Yk+1,true +

−−−−−→
Yk+1,true −

−−−→
Yk,true +

−−−→
Yk,true −

−→
Yk|

≤ |
−−→
Yk+1 −

−−−−−→
Yk+1,true |+

|
−−−−−→
Yk+1,true −

−−−→
Yk,true |+ |

−−−→
Yk,true −

−→
Yk|

= O(h6
k) + O(h6

k+1). (5.27)

As shown later in the section, the steady-state step size is on the order of 10−6, i.e., the

difference between two consecutive
−→
Y vectors, is on the order of 10−36, which is dominated
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by numerical error. Hence, we assume limk→∞
−→
Yk = −→cY , where −→cY is a constant vector. If

we use ch to represent the step size in steady state, Equation 5.26 gives us

−→cY = lim
k→∞

−−→
Yk+1 = fB(ch) lim

k→∞

−→
Yk = fB(ch)

−→cY . (5.28)

Therefore, fB(ch) has an eigenvalue of 1, with −→cY being one of the corresponding eigen-

vectors. Note that this argument still holds in the presence of a typical numerical error

of 10−16. We omit the numerical analysis here due to space limitations. According to

Equation 5.28, −→cY = fB(ch)
−→cY = · · · = limk→∞ fk

B(ch)
−→cY . Based on the matrix analysis

theory on the relationship between convergence of matrix powers and eigenvalues, given

that λ1(fB(h)), λ2(fB(h)), · · · , λN(fB(h)) are the N eigenvalues of fB(h), limk→∞ fk
B(h)

exists if and only if max1≤i≤N |λi(fB(h))| ≤ 1, with |λi(fB(h))| = 1 only if λi(fB(h)) is

not defective and λi(fB(h)) = 1 [47].

We then determine the relationship between ch and max1≤i≤N |λi(fB(h))|. A is real

and symmetric because Rij = Rji,∀1 ≤ i, j ≤ N . We also notice that each row of matrix

A satisfies

∀i : |aii| −
N∑

j=1,j 6=i

|aij| =
1

Ris

≥ 0. (5.29)

Furthermore, there exists at least one positive thermal conductance 1
Rks

between element

k and the ambient such that the heat flow into the chip can be conducted through Rks to

the ambient, i.e., |akk| >
∑N

j=1,j 6=k |akj|. Therefore, A is a Hermitian diagonally domi-

nant matrix with negative diagonal elements and non-positive off-diagonal elements. This

indicates A is invertible and negative semi-definite. Define diagonal matrix Q to have
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an ith element that is the reciprocal of the square root of the ith element of the ther-

mal capacitance matrix C, i.e., ∀1≤i≤N : qii = 1√
cii

. Note that Q−1C−1 = Q. Thus,

Q−1BQ = Q−1C−1AQ = QAQ = QTAQ. Since A is negative semi-definite, QTAQ

is also negative semi-definite. Given QTAQ is also real and symmetric, its eigenval-

ues are non-defective and non-positive. It has no zero eigenvalues because it is invert-

ible (A is invertible). Therefore, QTAQ is diagonalizable with negative eigenvalues. B

is similar to QTAQ, B is also diagonalizable with negative eigenvalues, i.e., there ex-

ists an invertible matrix P such that B = P × Λ(B) × P−1, where Λ(B) is the di-

agonal matrix consisting of B’s eigenvalues. Thus, we can express fB(h) as follows:

fB(h) = P
∑4

n=0
(hΛ(B))n

n!
P−1. Hence, if λi(B) is the ith eigenvalue of B, the ith eigen-

value of fB(h) is λi(fB(h)) =
∑4

n=0
(hλi(B))n

n!
. Since function f(x) =

∑4
n=0

xn

n!
is mono-

tonically decreasing when x < 0, we have f(x) = 1 ⇔ x = −2.785 when x is negative.

We know (1) 1 is an eigenvalue of fB(ch) and (2) hλi(B) < 0, 1 ≤ i ≤ N , so the steady-

state step size is

ch = 2.785/ max 1≤i≤N |λi(B)|. (5.30)

Note that max1≤i≤N |λi(B)| can be found numerically, e.g., using von Mises’ power method

[44]. Thus, we have proven that the step size of the GARK4 method with step doubling

based step size adaptation converges to ch regardless of initial thermal profile and error

threshold. This conclusion has been validated using different thermal grid structures in

Hotspot 4.0 [93] and ISAC [115]. Note that this argument also holds for step doubling

based low-order explicit methods such as the forward Euler, other variants of step doubling

adaptation [93], and RKF. For example, HotSpot uses a variant of step doubling method in
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which auxiliary bounds are imposed on the maximum and minimum safe step size relative

to the current step size. However, the constraints have no impact on the steady-state ther-

mal behavior, i.e., Equations 5.28 and 5.30 still hold, leading to the same steady-state step

size. A similar proof also applies to RKF.

Implications of Step Size Convergence Property

In each iteration, the step size adaptation function calculates a new safe step size based

on the current thermal profile activity. Intuition suggests that it will use small steps when

the chip temperature is rapidly changing and large step sizes when there is little change

in temperature. When the IC thermal profile reaches steady state, the temperature func-

tion can be accurately approximated with very large step sizes. Therefore, the steady-state

step size will generally be the longest encountered during dynamic thermal analysis. We

validated our conclusion using different benchmarks and different grid structures (see Sec-

tion 5.5.1). We found that the percentage of step sizes exceeding ch (the step size after

temperature convergence) ranges from 0.3% to 0.8%, i.e., the steady-state step size is only

rarely exceeded. In summary, the step sizes of the step doubling based GARK4 method

converge to ch long before IC thermal profile reaches steady state, significantly degrading

performance.

Steady-State Step Size Analysis

In this section, we give a rough estimate of the steady-state step size using the thermal

resistances and thermal capacitances in the thermal grid based on Equation 5.30. Similar

analysis can also be applied to RKF method. Given trace(B) =
∑N

i=1 bii =
∑N

i=1 λi(B) ≤

N × max1≤i≤N |λi(B)|, we can estimate the spectral radius of B as max1≤i≤N |λi(B)| ≥
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∑N
i=1 bii

N
. We define 1

τavg
=

∑
1≤i,j≤N,i6=j

1
RijCii

m
, where m is the number of non-zero off-

diagonal entries in B. Since
∑N

i=1 bii =
∑

1≤i,j≤N,i6=j
1

RijCii
= m

τavg
, the estimated steady-

state step size ch,s is

ch,s =
2.785

max1≤i≤N |λi(B)|
≤ 2.785

m
Nτavg

=
2.785N

m
τavg . (5.31)

Note that τavg is the harmonic mean of the RC constants of different thermal elements.

In our validation experiments, m
N
≈ 6. Therefore, ch,s ≈ 0.464τavg . Furthermore, τavg

usually underestimates the RC constant of the chip. In our test cases, τavg is approxi-

mately 10 µs while the thermal RC constant associated with the IC, i.e., τIC , is on the order

of 100 µs [92], i.e., τIC ≈ 10τavg . This indicates the stable step size is approximately

1
10
× 0.464τIC ≈ 0.05τIC , even when the thermal profile is perfectly approximated by the

temperature update function, i.e., the thermal profile is stable. Hence, the steady-state step

size is severely limited for explicit step-doubling GARK4 methods.

5.4 FATA: FAST ASYNCHRONOUS TIME MARCHING TECHNIQUE

In this section, we first give an overview of the proposed technique: FATA. We then

describe the major components in FATA that enable fast and accurate simulation.

5.4.1 Algorithm Overview

FATA is an adaptive asynchronous time marching finite-difference method. Compared

to a synchronous method, FATA permits different elements to have different step sizes with

their own local times. Figure 5.2 illustrates the algorithm in FATA. During dynamic thermal

analysis, the algorithm takes, as input, an initial thermal profile, a power profile, and various
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Figure 5.2: Overview of asynchronous time marching algorithm in FATA.

IC thermal model parameters such as material thermal conductivities and heat capacities.

After determining the initial step size for each element, FATA initializes an event queue

containing temperature update events sorted by their target times, i.e., the element’s current

time plus its step size. In each iteration, the event with the earliest target time is selected and

the corresponding element’s temperature is updated. It then determines whether the thermal

profile of the chip has reached quiescent state and if so, advances the local times of all the

thermal elements to the user specified simulation end time. Otherwise, FATA calculates the

element’s next safe step size and reinserts the temperature update event into the event queue

with a new target time. This process is repeated until the user specified simulation end time

is reached. As illustrated in Figure 5.2, the major components in FATA are temperature

update, step size adaptation, and quiescence detection. The following sections explain

these components.

5.4.2 Temperature Update

Existing asynchronous methods [115] use exponential functions to update the temper-

ature of the target element i, i.e., the element under consideration. The derivation is based

on the assumption that the temperature of the neighbors of element i do not change over
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[ti, ti + hi], where ti is element i’s local time and hi is element i’s current step size. This

assumption can lead to a large error when the neighboring nodes experience significant

temperature changes during that period. Worse yet, these errors can accumulate as time

advances, resulting in errors in temperature and step size calculation that degrade perfor-

mance or accuracy. We therefore propose modeling temperature change using a variant of

trapezoidal method that is tailored to asynchronous time marching. First, note that Equa-

tion 5.4 can be simplified as follows:

Let β =
∑
n∈N

Tn(t)

Rin

+ Pi(t) = αTi(t) + Ci
dTi(t)

dt
. (5.32)

The trapezoidal method can be used to extrapolate element i’s voltage at the target time

ti + hi:

Ti(ti + hi) = Ti(ti) +
hi

2
(f ′i(ti) + f ′i(ti + hi)), (5.33)

where f ′i(ti) is the element i’s temperature derivative at ti and f ′i(ti +hi) is the correspond-

ing derivative at ti + hi. Given target time t = ti + hi, combining Equation 5.32 and

Equation 5.33 yields

Ti(ti + hi) =
βhi + Cihif

′
i(ti) + 2CiTi(ti)

αhi + 2Ci

(5.34)

However, we still face the problem of computing Tn(ti + hi) (n ∈ Ni) to obtain β at target

time ti +hi. The trapezoidal method cannot be used to compute neighbor temperatures, for

that would result in circular dependency problems. More specifically, Tn(ti + hi) must be

known before Ti(ti+hi) is computed. Similarly, Tn(ti+hi) depends on Ti(ti+hi). To solve
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this problem, we use the forward Euler method to extrapolate Tn(ti + hi) based on Tn(tn)

and f ′n(tn), where Tn(tn) represents element n’s temperature at tn and f ′n(tn) represents the

derivative of element n’s temperature at tn. We experimented with approximation functions

with different orders and determined combining the trapezoidal method with the forward

Euler method achieves a good balance between accuracy and performance.

5.4.3 Step Size Adaptation

Given the trapezoidal method we use to estimate Ti(t), the local truncation error in step

n of element i can be expressed as εin =
h3

i,nf ′′′i (ζ)

12
, where hi,n is the size of step n, ζ is

between local times tn and tn+1, and f ′′′i (ζ) is the third-order derivative of i’s temperature

at time ζ . In practice, we approximate the step size using a third-order divided difference.

For element i at time step n, the third-order finite difference is expressed as follows:

DD1(tn) = (Ti(tn)− Ti(tn−1))/(tn − tn−1), (5.35)

DD2(tn) = (DD1(tn)−DD1(tn−1)/(tn − tn−1), (5.36)

DD3(tn) = (DD2(tn)−DD2(tn−1)/(tn − tn−1), (5.37)

εin = h3
i,nf

′′′
i (ζ)/12 = DD3(tn)/2, (5.38)

where tn and tn−1 are the local times at time step n and n − 1. The (n + 1)th step size

estimation is thus given by

hi,n+1 = k1 ∗
(

(RELTOL ∗ |Ti(tn)|+ ABSTOL)

max(ABSTOL, εin)

)k2

. (5.39)
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Table 5.1: Comparison of GARK4, ISAC, and FATA

GARK4 ISAC FATA
Problem CPU Error CPU Error Speedup CPU Error Speedup

time (s) (%) time (s) (%) (×) time (s) (%) (×)
dct ijpeg 2.05 0.01 10.67 0.04 0.19 0.05 0.03 37.86
dct lee 32.74 0.00 43.16 0.08 0.76 0.27 0.03 122.55
dct wang 36.93 0.00 32.02 0.1 1.15 0.27 0.02 138.30
jacobi 2.70 0.01 8.82 0.02 0.31 0.04 0.1 70.68
mac 2.04 0.01 11.13 0.03 0.18 0.05 0.03 38.33
pr2 31.71 0.00 85.15 0.03 0.37 0.39 0.09 80.56
rand100 33.87 0.00 47.51 0.08 0.71 0.31 0.05 109.58
rand200 14.60 0.00 48.14 0.02 0.30 0.28 0.05 52.57

where ABSTOL and RELTOL are the maximum tolerable absolute and relative temperature

errors. k1 and k2 are determined empirically to achieve a good balance between accuracy

and speed. In practice, we use a k1 of 1.5 and a k2 of 0.3. This method of computing a new

step size is similar to that in SPICE3 [81]. However, that formula uses a more complicated

step control algorithm that also considers the maximum number of iteration at a given time

point during its iterative solving process.

When the power profile is mostly static for a long time and the IC thermal profile

approaches its steady state, i.e., the system becomes quiescent, we advance all nodes to the

simulation end time. This step is called quiescence detection.1

5.5 EVALUATION

In this section, we evaluate FATA and compare it with existing thermal analysis tech-

niques. Experiments were conducted on a Linux workstation equipped with a 1 GHz AMD

Sempron 3100 Processor and 1 GB memory. We use a non-adaptive lock-step RK4 method

with a very small step size as our accuracy (but not speed) reference; error values are com-

puted relative to this reference. We first compare the accuracy and analysis times of the step

1We omit the details due to space constraints. A extended technical report will be published.
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Table 5.2: Comparison Among Different Combinations of Temperature Update Functions
and Step Size Adaptation Techniques

TR w. Step Doubling FE w. Step Doubling FE w. DD3 TR w. DD3
Problem CPU Error Slowdown CPU Error Slowdown CPU Error Slowdown CPU Error

time (s) (%) (×) time (s) (%) (×) time (s) (%) (×) time (s) (%)
dct ijpeg 0.39 0.02 6.93 9.84 0.06 174.68 5.65 0.07 100.23 0.06 0.04
dct lee 1.57 0.05 3.29 47.62 0.03 99.90 40.60 0.03 85.17 0.48 0.02
dct wang 1.46 0.06 2.64 49.00 0.02 88.23 41.22 0.02 74.22 0.56 0.02
jacobi 0.27 0.01 5.17 6.52 0.03 123.29 4.88 0.04 92.31 0.05 0.07
mac 0.39 0.01 7.06 9.79 0.05 177.20 5.66 0.07 102.48 0.06 0.05
pr2 2.17 0.05 4.34 66.70 0.06 133.25 50.29 0.07 100.47 0.50 0.05
rand100 1.69 0.07 3.33 50.32 0.03 98.86 43.52 0.04 85.49 0.51 0.02
rand200 1.40 0.02 4.17 39.33 0.06 117.20 33.47 0.06 99.75 0.34 0.03

doubling based GARK4 method, ISAC, and FATA. We also compare temperature update

functions and step adaptation methods.

5.5.1 Comparison of GARK4, ISAC, and FATA

This section reports the accuracy and analysis time of the GARK4, ISAC, and FATA.

Note that speedup over GARK4 claimed for ISAC in prior work [115] was incorrect due

to an implementation error in the step size adjustment algorithm of the reference GARK4

method. We used eight real and synthetic behavioral synthesis benchmarks with different

grid structures to evaluate the candidate analysis techniques. The dynamic power profiles

are generated using a switching model proposed in the literature [77]. Three different power

profiles were used to simulate different input patterns during behavioral synthesis and the

average runtime for a power profile was reported. To permit a fair comparison among

different techniques, we set the parameters for each technique to maximize performance

while constraining the peak temperature error over all benchmarks and all time to 0.1%.

Table 5.1 presents the experimental results. Each row shows the results for a spe-

cific benchmark. Columns two, four, and seven indicate the CPU time used by GARK4,

ISAC, and FATA. Columns six and nine indicate the speedups achieved by ISAC and FATA
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compared to GARK4 given the same error constraint. FATA speeds up analysis by 37.86–

138.30× compared to GARK4 method and 118.59–222.60× compared to ISAC, while

maintaining accuracy.

We also examined the performance of synchronous methods. We first compared the ac-

curacy and performance of non-adaptive lock-step synchronous methods, namely forward

Euler (FE), backward Euler (BE), trapezoidal (TR), and explicit RK4. Due to space lim-

itations, we omit the full results. FE is inaccurate, with a peak error of 0.52% regardless

of step size. FE and RK4 are impractical because they require manual specification of safe

step size. FATA is 4.4–20.6× faster than all the non-adaptive synchronous methods. Adap-

tive implicit methods are prohibitive because they require matrix-vector solve at each time

step.

5.5.2 Combining Temperature Update Functions with Step Adaptation Methods

This section analyzes the impact of temperature update function and step size adaptation

method on asynchronous method performance. We use FE and the variant of TR describe

in Section 5.4 as temperature update candidates and consider step doubling and third-order

divided difference (DD3) as potential step size adaptation methods. We use the approach

adopted by FATA, i.e., TR combined with DD3 as the base case.

Columns two, five, eight, and eleven of Table 5.2 indicate the runtime for each com-

bination, while columns four, seven, and ten show the slowdown using the corresponding

combination compared to the base case, i.e., TR combined with DD3. Note that the runtime

for TR combined with DD3 is slightly larger than FATA because quiescence detection is not

used. In comparison, DD3 is generally better than step doubling, resulting in a speedup of
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2.61–6.5× for TR and a speedup of 1.16–1.74× for FE. The temperature update function is

critical and TR is consistently faster than FE. This explains why FATA is much faster than

ISAC, which makes the inaccurate assumption that neighboring element temperatures do

not change during the integration interval of the current element. This can cause temper-

ature estimation errors that decrease step size and degrade performance. The combination

of TR and DD3 based step size adaptation is the best among all candidates. Although a

higher-order temperature update function might further improve accuracy, this would im-

pose additional computational overhead. In addition, high-order numerical methods are

generally more likely to cause numerical instability problems in asynchronous methods.

We experimented with a third-order temperature update function. Experimental results in-

dicate the increase in the computational cost outweighs the improvement in accuracy: their

use is not recommended.

5.6 CONCLUSIONS

This chapter proves that step doubling based globally adaptive fourth-order Runge-

Kutta and Runge-Kutta-Fehlberg methods will fail to appropriately adapt step sizes regard-

less of initial power profile, thermal profile, and user-specified error threshold, i.e., the

steady-state step size will converge to a constant value even when the thermal profile has

converged, leading to poor performance. We proposed FATA, an asynchronous time march-

ing thermal analysis technique that corrects this problem and uses other ideas to improve

speed and accuracy. Experimental results indicate that FATA speeds up dynamic thermal

analysis by 37.86–138.30× compared to an existing synchronous globally-adaptive fourth-

order Runge-Kutta method and by 118.59–222.60× relative to an existing asynchronous
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adaptive dynamic thermal analysis technique, while maintaining accuracy. FATA will re-

place the time-domain solver used in ISAC; a new version will be released after integra-

tion [14]. Note that our findings do not imply that Runge-Kutta based thermal analysis

methods are inaccurate, only that they may be inefficient due to inappropriately adapting

step sizes to problem conditions.
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CHAPTER 6

Optimization Technique 1: A High-Performance
Microprocessor Cache Compression Algorithm

In Section 2.2, we explore the memory hierarchies of different system architectures

such as single-core systems and CMP systems and argue that the memory hierarchy can

significantly affect system performance. This claim is supported by the findings in Chap-

ter 3. As illustrated in Chapter 3, accurate performance estimation is impossible without

considering the cache access patterns of cache-sharing processes. In particular, CAMP,

the cache contention aware performance model proposed in Chapter 3, estimates the per-

formance degradations due to cache contention based on last-level cache access related

information such as cache reuse distance histograms, cache access frequencies, and the

relationship between the throughput and the cache miss rate of each cache-sharing pro-

cess. This indicates that the last-level cache plays a significant role in determining system

performance; optimization techniques applied to the last-level cache has the potential to

significantly improve performance with little software or hardware overhead. However,

such optimization techniques need to be carefully designed and evaluated to justify their

design trade-offs.

This chapter presents an optimization technique that targets at the last-level on-chip

cache in high-performance processors to addresses the increasingly important issue of con-

trolling off-chip communication in computer systems in order to maintain good perfor-
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mance and energy efficiency. This technique is motivated by the continuously increasing

processor–memory performance gap [56]: accessing off-chip memory generally takes an

order of magnitude more time than accessing on-chip cache, and two orders of magni-

tude more time than executing an instruction. In addition, the microprocessor performance

improves at a much faster speed than off-chip memory performance. The current transi-

tion from single-core processors to CMP processors further aggravates the problem: more

processors require more memory accesses, but the performance of the processor–memory

bus is not keeping pace. Therefore, the microprocessor designers have been torn between

tight constraints on the amount of on-chip cache memory and the high latency of off-chip

memory, such as dynamic random access memory.

Computer systems and microarchitecture researchers have proposed using hardware

data compression units within the memory hierarchies of microprocessors in order to im-

prove performance, energy efficiency, and functionality. However, most past work, and all

work on cache compression, has made unsubstantiated assumptions about the performance,

power consumption, and area overheads of the proposed compression algorithms and hard-

ware. It is not possible to determine whether compressing the on-chip caches is beneficial

without understanding its costs. Furthermore, as we show in this chapter, raw compression

ratio is not always the most important metric.

In this chapter, we present a lossless compression algorithm that has been designed

for fast on-line data compression, and cache compression in particular. The algorithm

has a number of novel features tailored for this application, including combining pairs of

compressed lines into one cache line and allowing parallel compression of multiple words

while using a single dictionary and without degradation in compression ratio. We reduced
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the proposed algorithm to a register transfer level hardware implementation, permitting

performance, power consumption, and area estimation. Experiments comparing our work

to previous work are described.

The rest of this chapter is organized as follows. Section 6.1 describes the cache com-

pression problem and presents the design challenges. Section 6.2 summarizes related work

and our contributions. Section 6.4 briefly describes the C-Pack compression algorithm and

several design trade-offs that permit efficient hardware compression. We also introduce

the concept of effective system-wide compression ratio and discuss pair-matching based

compressed line organization. Section 6.5 describes the proposed hardware implementa-

tion of C-Pack. Section 6.6 presents the evaluation results of the C-Pack hardware. We also

discuss the implications of our findings regarding using C-Pack based cache compression

algorithm in high-performance systems. Finally, Section 6.7 concludes this chapter.

6.1 INTRODUCTION

Microprocessor speeds have been increasing faster than off-chip memory latency, rais-

ing a “wall” between processor and memory. The ongoing move to CMPs is further in-

creasing the problem; more processors require more accesses to memory, but the perfor-

mance of the processor–memory bus is not keeping pace. Techniques that reduce off-chip

communication without degrading performance have the potential to solve this problem.

Cache compression is one such technique; data in last-level on-chip caches, e.g., L2 caches,

are compressed, resulting in larger usable caches. In the past, researchers have reported

that cache compression can improve the performance of uniprocessors by up to 17% for

memory-intensive commercial workloads [11] and up to 225% for memory-intensive sci-
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entific workloads [42]. Researchers have also found that cache compression and prefetch-

ing techniques can improve CMP throughput by 10%–51% [12]. However, past work did

not demonstrate whether the proposed compression/decompression hardware is appropri-

ate for cache compression, considering the performance, area, and power consumption

requirements. This analysis is also essential to permit the performance impact of using

cache compression to be estimated.

Cache compression presents several challenges. First, decompression and compres-

sion must be extremely fast: a significant increase in cache hit latency will overwhelm the

advantages of reduced cache miss rate. This requires an efficient on-chip decompression

hardware implementation. Second, the hardware should occupy little area compared to

the corresponding decrease in the physical size of the cache, and should not substantially

increase the total chip power consumption. Third, the algorithm should losslessly com-

press small blocks, e.g., 64-byte cache lines, while maintaining a good compression ratio

(throughout this chapter we use the term compression ratio to denote the ratio of the com-

pressed data size over the original data size). Conventional compression algorithm quality

metrics, such as block compression ratio, are not appropriate for judging quality in this

domain. Instead, one must consider the effective system-wide compression ratio (defined

precisely in Section 6.4.3). This chapter will point out a number of other relevant quality

metrics for cache compression algorithms, some of which are new. Finally, cache com-

pression should not increase power consumption substantially. The above requirements

prevent the use of high-overhead compression algorithms such as the PPM family of algo-

rithms [72] or Burrows-Wheeler transforms [23]. A faster and lower-overhead technique is

required.
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6.2 RELATED WORK AND CONTRIBUTIONS

Researchers have commonly made assumptions about the implications of using existing

compression algorithms for cache compression and the design of special-purpose cache

compression hardware.

A number of researchers have assumed the use of general-purpose main memory com-

pression hardware for cache compression. IBM’s MXT (Memory Expansion Technol-

ogy) [105] is a hardware memory compression/decompression technique that improves the

performance of servers via increasing the usable size of off-chip main memory. Data are

compressed in main memory and decompressed when moved from main memory to the

off-chip shared L3 cache. Memory management hardware dynamically allocates storage

in small sectors to accommodate storing variable-size compressed data block without the

need for garbage collection. IBM reports compression ratios (compressed size divided by

uncompressed size) ranging from 16% to 50%. X-Match is a dictionary-based compression

algorithm that has been implemented on an FPGA [74]. It matches 32-bit words using a

content addressable memory that allows partial matching with dictionary entries and out-

puts variable-size encoded data that depends on the type of match. To improve coding

efficiency, it also uses a move-to-front coding strategy and represents smaller indices with

fewer bits. Although appropriate for compressing main memory, such hardware usually

has a very large block size (1 KB for MXT and up to 32 KB for X-Match), which is inap-

propriate for compressing cache lines. It is shown that for X-Match and two variants of

Lempel-Ziv algorithm, i.e., LZ1 and LZ2, the compression ratio for memory data deterio-

rates as the block size becomes smaller [74]. For example, when the block size decreases
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from 1 KB to 256 B, the compression ratio for LZ1 and X-Match increase by 11% and 3%.

It can be inferred that the amount of increase in compression ratio could be even larger

when the block size decreases from 256 B to 64 B. In addition, such hardware has perfor-

mance, area, or power consumption costs that contradict its use in cache compression. For

example, if the MXT hardware were scaled to a 65 nm fabrication process and integrated

within a 1 GHz processor, the decompression latency would be 16 processor cycles, about

twice the normal L2 cache hit latency.

Other work proposes special-purpose cache compression hardware and evaluates only

the compression ratio, disregarding other important criteria such as area and power con-

sumption costs. Frequent pattern compression (FPC) [9] compresses cache lines at the L2

level by storing common word patterns in a compressed format. Patterns are differentiated

by a 3-bit prefix. Cache lines are compressed to predetermined sizes that never exceed their

original size to reduce decompression overhead. Based on logical effort analysis [102], for

a 64-byte cache line, compression can be completed in three cycles and decompression in

five cycles, assuming 12 fan-out-four (FO4) gate delays per cycle. To the best of our knowl-

edge, there is no register-transfer-level hardware implementation or FPGA implementation

of FPC, and therefore its exact performance, power consumption, and area overheads are

unknown. Although the area cost for FPC [9] is not discussed, our analysis shows that

FPC would have an area overhead of at least 290 K gates, almost eight times the area of the

approach proposed in this chapter, to achieve the claimed 5-cycle decompression latency.

This will be examined in detail in Section 6.6.3.3.

In short, assuming desirable cache compression hardware with adequate performance

and low area and power overheads is common in cache compression research [64, 60, 42,
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116, 69, 35, 78]. It is also understandable, as the microarchitecture community is more

interested in microarchitectural applications than compression. However, without a cache

compression algorithm and hardware implementation designed and evaluated for effective

system-wide compression ratio, hardware overheads, and interaction with other portions

of the cache compression system, one can not reliably determine whether the proposed

architectural schemes are beneficial.

In this work, we propose and develop a lossless compression algorithm, named C-Pack,

for on-chip cache compression. The main contributions of our work follow:

1. C-Pack targets on-chip cache compression. It permits a good compression ratio even

when used on small cache lines. The performance, area, and power consumption

overheads are low enough for practical use. This contrasts with other schemes such

as X-match which require complicated hardware to achieve an equivalent effective

system-wide compression ratio [74].

2. We are the first to fully design, optimize, and report performance and power con-

sumption of a cache compression algorithm when implemented using a design flow

appropriate for on-chip integration with a microprocessor. Prior work in cache com-

pression does not adequately evaluate the overheads imposed by the assumed cache

compression algorithms.

3. We demonstrate when line compression ratio reaches 50%, further improving it has

little impact on effective system-wide compression ratio.

4. C-Pack is twice as fast as the best existing hardware implementations potentially
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Figure 6.1: System architecture in which cache compression is used.

suitable for cache compression. For FPC to match this performance, it would require

at least 8× the area of C-Pack.

5. We address the challenges in design of high-performance cache compression hard-

ware while maintaining some generality, i.e., our hardware can be easily adapted to

other high-performance lossless compression applications.

6.3 CACHE COMPRESSION ARCHITECTURE

In this section, we describe the architecture of a CMP system in which the cache com-

pression technique is used. We consider private on-chip L2 caches, because in contrast to a

shared L2 cache, the design styles of private L2 caches remain consistent when the number

of processor cores increases. We also examine how to integrate data prefetching techniques

into the system.

85



Figure 6.1 gives an overview of a CMP system with n processor cores. Each processor

has private L1 and L2 caches. The L2 cache is divided into two regions: an uncompressed

region (L2 in the figure) and a compressed region (L2C in the figure). For each processor,

the sizes of the uncompressed region and compression region can be determined statically

or adjusted to the processor’s needs dynamically. In extreme cases, the whole L2 cache

is compressed due to capacity requirements, or uncompressed to minimize access latency.

We assume a three-level cache hierarchy consisting of L1 cache, uncompressed L2 region,

and compressed L2 region. The L1 cache communicates with the uncompressed region

of the L2 cache, which in turn exchanges data with the compressed region through the

compressor and decompressor, i.e., an uncompressed line can be compressed in the com-

pressor and placed in the compressed region, and vice versa. Compressed L2 is essentially

a virtual layer in the memory hierarchy with larger size, but higher access latency, than

uncompressed L2. Note that no architectural changes are needed to use the proposed tech-

niques for a shared L2 cache. The only difference is that both regions contain cache lines

from different processors instead of a single processor, as is the case in a private L2 cache.

6.4 C-PACK COMPRESSION ALGORITHM

This section gives an overview of the proposed C-Pack compression algorithm. We

first briefly describe the algorithm and several important features that permit an efficient

hardware implementation, many of which would be contradicted for a software implemen-

tation. We also discuss the design trade-offs and validate the effectiveness of C-Pack in a

compressed-cache architecture.
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Table 6.1: Pattern Encoding For C-Pack

Code Pattern Output Length (b) Freq. (%)
00 zzzz (00) 2 39.7
01 x (01)BBBB 34 32.1
10 mmmm (10)bbbb 6 7.6

1100 mmxx (1100)bbbbBB 24 6.1
1101 zzzx (1100)B 12 7.3
1110 mmmx (1110)bbbbB 16 7.2

6.4.1 Design Constraints and Challenges

We first point out several design constraints and challenges particular to the cache com-

pression problem:

1. Cache compression requires hardware that can de/compress a word in only a few

CPU clock cycles. This rules out software implementations and has great influence

on compression algorithm design.

2. Cache compression must be lossless to maintain correct microprocessor operation.

3. The block size for cache compression applications is smaller than for other compres-

sion applications such as file and main memory compression. Therefore, achieving a

low compression ratio is challenging.

4. The complexity of managing the locations of cache lines after compression influences

feasibility. Allowing arbitrary, i.e., bit-aligned, locations would complicate cache

design to the point of infeasibility. A scheme that permits a pair of compressed lines

to fit within an uncompressed line is advantageous.

6.4.2 C-Pack Algorithm Overview

C-Pack (for Cache Packer) is a lossless compression algorithm designed specifically

for high-performance hardware-based on-chip cache compression. It achieves a good com-
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Figure 6.3: Compression examples for different input words.

pression ratio when used to compress data commonly found in microprocessor low-level

on-chip caches, e.g., L2 caches. Its design was strongly influenced by prior work on

pattern-based partial dictionary match compression [41]. However, this prior work was

designed for software-based main memory compression and did not consider hardware

implementation.

C-Pack achieves compression by two means: (1) it uses statically decided, compact

encodings for frequently appearing data words and (2) it encodes using a dynamically up-

dated dictionary allowing adaptation to other frequently appearing words. The dictionary

supports partial word matching as well as full word matching. The patterns and coding

schemes used by C-Pack are summarized in Table 6.1, which also reports the actual fre-
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quency of each pattern observed in the cache trace data file mentioned in Section 6.4.4. The

‘Pattern’ column describes frequently appearing patterns, where ‘z’ represents a zero byte,

‘m’ represents a byte matched against a dictionary entry, and ‘x’ represents an unmatched

byte. In the ‘Output’ column, ‘B’ represents a byte and ‘b’ represents a bit.

The C-Pack compression and decompression algorithms are illustrated in Figure 6.2.

We use an input of two words per cycle as an example in Figure 6.2. However, the algorithm

can be easily extended to cases with one, or more than two, words per cycle. During

one iteration, each word is first compared with patterns “zzzz” and “zzzx”. If there is

a match, the compression output is produced by combining the corresponding code and

unmatched bytes as indicated in Table 6.1. Otherwise, the compressor compares the word

with all dictionary entries and finds the one with the most matched bytes. The compression

result is then obtained by combining code, dictionary entry index, and unmatched bytes,

if any. Words that fail pattern matching are pushed into the dictionary. Figure 6.3 shows

the compression results for several different input words. In each output, the code and the

dictionary index, if any, are enclosed in parentheses. Although we used a 4-word dictionary

in Figure 6.3 for illustration, the dictionary size is set to 64 B in our implementation. Note

that the dictionary is updated after each word insertion, which is not shown in Figure 6.3.

During decompression, the decompressor first reads compressed words and extracts the

codes for analyzing the patterns of each word, which are then compared against the codes

defined in Table 6.1. If the code indicates a pattern match, the original word is recovered

by combining zeroes and unmatched bytes, if any. Otherwise, the decompression output

is given by combining bytes from the input word with bytes from dictionary entries, if the

code indicates a dictionary match.
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The C-Pack algorithm is designed specifically for hardware implementation. It takes

advantage of simultaneous comparison of an input word with multiple potential patterns

and dictionary entries. This allows rapid execution with good compression ratio in a hard-

ware implementation, but may not be suitable for a software implementation. In general,

software must process operations sequentially. For example, matching against multiple

patterns can be prohibitively expensive for software implementations when the number of

patterns or dictionary entries is large. C-Pack’s inherently parallel design allows an effi-

cient hardware implementation, in which pattern matching, dictionary matching, and pro-

cessing multiple words are all done simultaneously. In addition, we chose various design

parameters such as dictionary replacement policy and coding scheme to reduce hardware

complexity, even if our choices slightly degrades the effective system-wide compression

ratio. Details are described in Section 6.4.4.

In the proposed implementation of C-Pack, two words are processed in parallel per

cycle. Achieving this, while still permitting an accurate dictionary match for the second

word, is challenging. Let us consider compressing two similar words that have not been

encountered by the compression algorithm recently, assuming the dictionary uses first-

in first-out (FIFO) as its replacement policy. The appropriate dictionary content when

processing the second word depends on whether the first word matched a static pattern. If

so, the first word will not appear in the dictionary. Otherwise, it will be in the dictionary,

and its presence can be used to encode the second word. Therefore, the second word

should be compared with the first word and all but the first dictionary entry in parallel.

This improves compression ratio compared to the more naı̈ve approach of not checking

with the first word. Therefore, we can compress two words in parallel without compression
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ratio degradation.

6.4.3 Effective System-Wide Compression Ratio and Pair Matching Compressed

Line Organization

Compressed cache organization is a difficult task because different compressed cache

lines may have different lengths. Researchers have proposed numerous variants of line

segmentation techniques [42, 64, 11] to handle this problem. The main idea is to divide

compressed cache lines into fixed-size segments and use indirect indexing to locate all the

segments for a compressed line. Hallnor et al. [42] proposed IIC-C, i.e., indirect index

cache with compression. The proposed cache design decouples accesses across the whole

cache, thus allowing a fully-associative placement. Each tag contains multiple pointers to

smaller fixed-size data blocks to represent a single cache block. However, the tag storage

overhead of IIC-C is significant, e.g., 21% given a 64 B line size and 512 KB cache size,

compared to less than 8% for our proposed pair-matching based cache organization. In
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addition, the hardware overhead for addressing a compressed line is not discussed in the

paper. The access latency in IIC-C is attributed to three primary sources, namely additional

hit latency due to sequential tag and data array access, tag lookup induced additional hit

and miss latency, and additional miss latency due to the overhead of software management.

However, the authors do not report worst-case latency. Lee et al. [64] proposed selective

compressed caches using a similar idea. Only the cache lines with a compression ratio

of less than 0.5 are compressed so that two compressed cache lines can fit in the space

required for one uncompressed cache line. However, this will inevitably result in a larger

system-wide compression ratio compared to that of pair-matching based cache because

each compression ratio, not the average, must be less than 0.5, for compression to occur.

The hardware overhead and worst-case access latency for addressing a compressed cache

line is not discussed. Alameldeen et al. [11] proposed decoupled variable-segment cache,

where the L2 cache dynamically allocates compressed or uncompressed lines depending on

whether compression eliminates a miss or incurs an unnecessary decompression overhead.

However, this approach has significant performance and area overhead, discussed later in

this section.

We propose the idea of pair-matching to organize compressed cache lines. In a pair-

matching based cache, the location of a newly compressed line depends on not only its

own compression ratio but also the compression ratio of its “partner”. More specifically,

the compressed line locator first tries to locate the cache line (within the set) with sufficient

unused space for the compressed line without replacing any existing compressed lines. If

no such line exists, one or two compressed lines are evicted to store the new line. A com-

pressed line can be placed in the same line with a partner only if the sum of their compres-
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sion ratios is less than 100%. Note that successful placement of a line does not require that

it have a compression ratio smaller than 50%. It is only necessary that the line, combined

with a “partner line” be as small as an uncompressed line. To reduce hardware complexity,

the candidate partner lines are only selected from the same set of the cache. Compared

to segmentation techniques which allow arbitrary positions, pair-matching simplifies de-

signing hardware to manage the locations of the compressed lines. More specifically, line

extraction in a pair-matching based cache only requires parallel address tag match and takes

a single cycle to accomplish. For line insertion, neither LRU list search nor set compaction

is involved.

Figure 6.4 illustrates the structure of an 8-way associative pair-matching based cache.

Since any line may store two compressed lines, each line has two valid bits and tag fields

to indicate status and indexing. When compressed, two lines share a common data field.

There are two additional size fields to indicate the compressed sizes of the two lines.

Whether a line is compressed or not is indicated by its size field. A size of zero is used

to indicate uncompressed lines. For compressed lines, size is set to the line size for an

empty line, and the actual compressed size for a valid line. For a 64-byte line in a 32-bit

architecture the tag is no longer than 32 bits, hence the worst-case overhead is less than 32

(tag) + 1 (valid) + 2 × 7 (size) bits, i.e., 6 bytes.

As we can see in Figure 6.4, the compressed line locator uses the bitlines for valid

bits and compressed line sizes to locate a newly compressed line. Note that only one

compressed line locator is required for the entire compressed cache. This is because for a

given address, only the cache lines in the set which the specific address is mapped to are

activated thanks to the set decoder. Each bitline is connected to a sense amplifier, which
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usually requires several gates [84], for signal amplification and delay reduction. The total

area overhead is approximately 500 gates plus the area for the additional bitlines, compared

to an uncompressed cache.

Based on the “pair-matching” concept, a newly compressed line has an effective com-

pression ratio of 100% when it takes up a whole cache line, and an effective compression

ratio of 50% when it is placed with a partner in the same cache line. Note that when a

compressed line is placed together with its partner without evicting any compressed lines,

its partner’s effective compression ratio decreases to 50%. The effective system-wide com-

pression ratio is defined as the average of the effective compression ratios of all cache lines

in a compressed cache. It indicates how well a compression algorithm performs for pair-

matching based cache compression. The concept of effective compression ratio can also

be adapted to a segmentation based approach. For example, for a cache line with 4 fixed-

length segments, a compressed line has an effective compression ratio of 25% when it takes

up one segment, 50% for two segments, and so on. Varying raw compression ratio between

25% and 50% has little impact on the effective cache capacity of a four-part segmentation

based technique. Figure 6.5 illustrates the distribution of raw compression ratios for dif-

ferent cache lines derived from real cache data. The x-axis shows different compression

ratio intervals and y-axis indicates the percentage of all cache lines in each compression

ratio interval. For real cache trace data, pair-matching generally achieves a better effective

system-wide compression ratio (58%) than line segmentation with four segments per line

(62%) and the same compression ratio as line segmentation with eight segments, which

would impose substantial hardware overhead.

We now compare the performance and hardware overhead of pair-matching based cache
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with decoupled variable-segment cache. The hardware overhead can be divided into two

parts: tag storage overhead and compressed line locator overhead. For a 512 KB L2 cache

with a line size of 64 bytes, the tag storage overhead is 7.81% of the total cache size for

both decoupled variable-segment cache and pair-matching based cache. The area overhead

of the compressed line locator is significant in a decoupled variable-segment cache. During

line insertion, a newly inserted line may be larger than the LRU line plus the unused seg-

ments. In that case, prior work proposed replacing two lines by replacing the LRU line and

searching the LRU list to find the least-recently used line that ensures enough space for the

newly arrived line [11]. However, maintaining and updating the LRU list will result in great

area overhead. Moreover, set compaction may be required after line insertion to maintain

the contiguous storage invariant. This can be prohibitively expensive in terms of area cost

because it may require reading and writing all the set’s data segments. Cache compression

techniques that assume it are essentially proposing to implement kernel memory allocation

and compaction in hardware [21]. However, for pair-matching based cache, the area of

compressed line locator is negligible (less than 0.01% of the total cache size).

The performance overhead comes from two primary sources: addressing a compressed

line and compressed line insertion. The worst-case latency to address a compressed line in a

pair-matching based cache is 1 cycle. For a 4-way associative decoupled variable-segment

cache with 8 segments per line, each set contains 8 compression information tags and 8

address tags because each set is constrained to hold no more than eight compressed lines.

The compression information tag indicates (1) whether the line is compressed and (2) the

compressed size of the line. Data segments are stored contiguously in address tag order. In

order to extract a compressed line from a set, eight segment offsets are computed in parallel
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Figure 6.5: Distribution of compression ratios.

with the address tag match. Therefore, deriving the segment offset for the last line in the

set requires summing up all the previous 7 compressed sizes, which incurs a significant

performance overhead. In addition, although the cache array may be split into two banks

to reduce line extraction latency, addressing the whole compressed line may still take 4

cycles in the worst case. To insert a compressed line, the worst-case latency is 2 cycles

for pair-matching based cache with a peak frequency of more than 1 GHz. The latency

of a decoupled variable-segment cache is not reported [11]. However, as explained in the

previous paragraph, LRU list searching and set compaction introduce great performance

overhead. Therefore, we recommend pair-matching and use the pair-matching effective

system-wide compression ratio as a metric for comparing different compression algorithms.
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Table 6.2: Effective System-Wide Compression Ratios For C-Pack

Effective system-wide compression ratio (%)
Dictionary size (B) 16 32 64 128 256 512

FIFO Huffman 58.14 57.56 57.46 57.46 57.66 57.73
Two-level 58.81 58.47 57.95 58.30 58.29 58.68

LRU Huffman 58.13 57.70 57.61 57.91 58.07 58.17
Two-level 58.97 58.54 58.38 58.73 58.72 58.92

Two Huffman 58.05 57.61 57.48 57.46 57.66 57.73
FIFOs Two-level 58.71 58.49 57.97 58.30 58.29 58.68
RLE Huffman 57.20 56.68 56.63 56.73 56.75 56.87

w/ LRU Three-level 57.66 57.31 57.08 57.11 57.35 57.44

6.4.4 Design Tradeoffs and Details

In this section, we present several design tradeoffs encountered during the design and

implementation of C-Pack. We also validate C-Pack’s effectiveness in pair-matching.

Dictionary design and pattern coding:

We evaluated the impact of different parameters during algorithm and hardware design

and optimization, including dictionary replacement policy, dictionary size, and pattern cod-

ing scheme. The effective system-wide compression ratio of C-Pack was evaluated based

on cache trace data collected from a full microprocessor, operating system, and application

simulation of various workloads, e.g., media applications and SPEC CPU2000 benchmarks

on a simulated 1 GHz processor. The cache is set to 8-way associative with a 64 B line size.

The evaluation results are shown in Table 6.2. The candidates for different parameters and

the final selected values are shown in Table 6.3, in which the first column shows various pa-

rameters, the second column shows the corresponding candidates for each parameter, and

the third column shows the selected values. Note that the two or three level coding scheme

in Table 6.3 refers to one in which the code length is fixed within the same level, but differs

from level to level. For example, a two-level code can contain 2-bit and 4-bit codes only.
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The criteria of choosing design parameters can be explained as follows. For design

parameters that have only have small impact on design complexity, we choose values to

optimize compression ratio. For design parameters that have great impact on design com-

plexity, we choose the simplest design when the design complexity varies a lot as the cur-

rent design parameter changes. For replacement policy, hardware LRU algorithm maintains

a table of n × n bits given a dictionary size of n words. The kth row and kth column is

updated on every access to word k, which complicates hardware design. Using 2 FIFO

queues to simulate LRU essentially doubles the dictionary size. In addition, moving the

words between two queues adds additional hardware complexity. Combining FIFO with

RLE also complicates hardware design because special care is needed when the current

word has been encountered several times before. For all of the replacement policies ex-

cept the simplest FIFO, dictionary updates depend not only on the current word but also

on recently processed words. This complicates algorithm design because decompression

of the second word depends on the dictionary updates due to decompression of the first

word. A replacement policy that records the exact sequence of recently processed words

would incur a large area overhead during decompression hardware design. This is also true

Table 6.3: Design Choices For Different Parameters

Parameters Candidates Selected Candidate

Dictionary (1) First-in first out (FIFO)

replacement (2) Least recently used (LRU) FIFO – least HW complexity

policy (3) Using FIFO queues to simulate LRU only 1.32% higher CR than best case
(4) FIFO with run-length encoding (RLE)

(1) Huffman coding Two-level coding due to best HW complexity
Coding scheme (2) Two or Three-level coding with at most 0.95% increase in CR given the

same dictionary size and replacement policy
Dictionary size Ranging from 16 B to 512 B 64 B – optimal CR for FIFO and low HW cost
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when selecting a coding scheme because for Huffman coding, there is a larger variance in

the length of a compressed word, thus making it more difficult to determine the location of

the second compressed word. Therefore, choosing Huffman coding also negatively affects

the decompression hardware design. However, varying the dictionary size only affects the

area by a negligible amount (in the order of several hundred gates). Moreover, it has no

impact on the structure of compression or decompression hardware. Therefore, we choose

the dictionary size that minimizes the compression ratio. With the selected parameters, the

effective system-wide compression ratio for a 64 byte cache line is 58.47% for our test data.

Trade-Off Between Area and Decompression Latency:

Decompression latency is a critically important metric for cache compression algo-

rithms. During decompression, the processor may stall while waiting for important data. If

the decompression latency is high, it can undermine potential performance improvements.

It is possible to use increased parallelism to increase the throughput of a hardware imple-

mentation of C-Pack, at the cost of increased area. For example, decompressing the second

word by combining bytes from the input and the dictionary is challenging because the lo-

cations of bytes that compose the decompression output depend on the codes of the first

word and second word. Given that each code can have 6 possible values, as indicated in

Table 6.1, there are 36 possible combinations of the two codes, each of which corresponds

to a unique combination of bytes from the input and dictionary. If we double the number

of words processed in one cycle, i.e., 4 words per cycle, there can be 1,296 possible com-

binations for decompressing the fourth word, thereby dramatically increasing the area cost.

To achieve a balance between area and throughput, we decided to compress or decompress

two words per cycle.
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Evaluating Compression Ratio for C-Pack Pair-Matching:

In order to determine whether the mean and variance of the compression ratio achieved

by C-Pack is sufficient for most lines to find partners, we simulated a “pair-matching”

based cache using the cache trace data described above to compute the probability of two

cache lines fitting within one uncompressed cache line. The simulated cache size ranges

from 64 KB to 2 MB and the set associativity ranges from 4 to 8. We adopt a “best fit +

best fit” policy: for a given compressed cache line, we first try to find the cache line with

minimal but sufficient unused space. If the attempt fails, the compressed line replaces one

or two compressed lines. This scheme is penalized only when two lines are evicted to store

the new line. Experimental results indicate that the worst-case probability of requiring the

eviction of two lines is 0.55%, i.e., the probability of fitting a compressed line into the

cache without additional penalty is at least 99.45%. We implemented and synthesized this

line replacement policy in hardware. The delay and area cost are reported in Table 6.4.

6.5 C-PACK HARDWARE IMPLEMENTATION

In this section, we provide a detailed description of the proposed hardware implemen-

tation of C-Pack. Note that although the proposed compressor and decompressor mainly

target on-line cache compression, they can be used in other data compression applications,

such as memory compression and network data compression, with few or no modifications.

6.5.1 Compression Hardware

This section describes the design and optimization of the proposed compression hard-

ware. It first gives an overview of the proposed compressor architecture, and then discusses

the data flow among different pipeline stages inside the compressor.
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Figure 6.6: Compressor architecture.

Compressor Architecture:

Figure 6.6 illustrates the hardware compression process. The compressor is decom-

posed into three pipeline stages. This design supports incremental transmission, i.e., the

compressed data can be transmitted before the whole data block has been compressed.

This reduces compression latency. We use bold and italic fonts to represent the devices and

signals appearing in figures.

1. Pipeline Stage 1: The first pipeline stage performs pattern matching and dictionary

matching on two uncompressed words in parallel. As illustrated in Figure 6.6, com-

parator array 1 matches the first word against pattern “zzzz” and “zzzx” and com-

parator array 2 matches it with all the dictionary entries, both in parallel. The same

is true for the second word. However, during dictionary matching, the second word is

compared with the first word in addition to the dictionary entries. The pattern match-

ing results are then encoded using priority encoders 2 and 3, which are used to
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determine whether to push these two words into the FIFO dictionary. Note that the

first word and the second word are processed simultaneously to increase throughput.

2. Pipeline Stage 2: This stage computes the total length of the two compressed words

and generates control signals based on this length. Based on the dictionary matching

results from Stage 1, priority encoders 1 and 4 find the dictionary entries with the

most matched bytes and their corresponding indices, which are then sent to word

length generators 1 and 2 to calculate the length of each compressed word. The

total length calculator adds up the two lengths, represented by signal total length.

The length accumulator then adds the value of total length to two internal signals,

namely sum partial and sum total. Sum partial records the number of compressed

bits stored in register array 1 that have not been transmitted. Whenever the updated

sum partial value is larger than 64 bits, sum partial is decreased by 64 and signal

store flag is generated indicating that the 64 compressed bits in register array 1

should be transferred to either the left half or the right half of the 128-bit register

array 2, depending on the previous state of register array 2. It also generates signal

out shift specifying the number of bits register array 1 should shift to align with

register array 2. Sum total represents the total number of compressed bits produced

since the start of compression. Whenever sum total exceeds the original cache line

size, the compressor stops compressing and sends back the original cache line stored

in the backup buffer.

3. Pipeline Stage 3: This stage generates the compression output by combining codes,

bytes from input word, and bytes from dictionary entries depending on the pattern
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and dictionary matching results from previous stages.

Placing the compressed pair of words into the right location within register array

1, denoted by Reg1[135:0], is challenging. Since the length of a compressed word

varies from word to word, it is impossible to pre-select the output location statically.

In addition, register array 1 should be shifted to fit in the compressed output in a

single cycle without knowing the shift length in advance. We address this problem

by analyzing the output length. Notice that a single compressed word can only have

7 possible output lengths, with the maximum length being 34 bits. Therefore, we

use two 34-bit buffers, denoted by A[33:0] and B[33:0], to store the first and second

compressed outputs generated by code concatenators 1 and 2 in the lower bits, with

the higher unused bits set to zero. Reg1[135:0] is shifted by total length using barrel

shifter 2, with the shifting result denoted by Reg1s[135:0]. At the same time, A[33:0]

is shifted using barrel shifter 1 by the output length of the second compressed word.

The result of this shift is held by S[65:0], also with all higher (unused) bits set to

zero. Note that Reg1[135:68] only has one input source, i.e., Reg1s[135:68], because

the maximum total output length is 68. However, Reg1[67:2] can have multiple input

sources: B, S, and Reg1s. For example, Reg1[4] may come from B[4], S[2], or

Reg1s[0]. To obtain the input to Reg1[135:0], we OR the possible inputs together

because the unused bits in the input sources are all initialized to zero, which should

not affect the result of an OR function.

Meanwhile, Reg1[135:0] is shifted by out shift using barrel shifter 3 to align with

register array 2, denoted by Reg2[135:0]. Multiplexer array 1 selects the shifting
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result as the input to Reg2[135:0] when store flag is 1 (i.e., the number of accumu-

lated compressed bits has exceeded 64 bits) and the original content of Reg2[135:0]

otherwise. Whether Latch is enabled depends on the number of compressed bits ac-

cumulated in Reg2[135:0] that have not been transmitted. When output flag is 1, indi-

cating that 128 compressed bits have been accumulated in Reg2[135:0], Reg2[135:0]

is passed to Multiplexer array 1. Multiplexer array 3 selects between fill shift and

the output of latch using fill flag. Fill shift represents the 128-bit signal that pads

the remaining compressed bits that have not been transmitted with zeros and fill flag

determines whether to select the padded signal. Multiplexer array 2 then decides

the output data based on the total number of compressed bits. When the total number

of compressed bits has exceeded the uncompressed line size, the contents of backup

buffer are selected as the output. Otherwise, the output from Multiplexer array 3

is selected.

6.5.2 Decompression Hardware

This section describes the design and optimization of the proposed decompression hard-

ware. We describe the data flow inside the decompressor and point out some challenges

specific to the decompressor design. We also examine how to integrate data prefetching

with cache compression.

6.5.2.1 Decompressor Architecture:

Figure 6.7 illustrates the decompressor architecture. Recall that the compressed line,

which may be nearly 512 bits long, is processed in 128-bit blocks, the width of the bus used

for L2 cache access. The use of a fixed-width bus and variable-width compressed words
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Figure 6.7: Decompressor architecture.

implies that a compressed word may sometimes span two 128-bit blocks. This complicates

decompression. In our design, two words are decompressed per cycle until fewer than

68 bits remain in register array 1 (68 bits is the maximum length of two compressed

words). The decompressor then shifts in more compressed data using barrel shifter 2

and concatenates them with the remaining compressed bits. In this way, the decompressor

can always fetch two whole compressed words per cycle. The decompressor also supports

incremental tranmission, i.e., the decompression results can be transmitted before the whole

cache line is decompressed provided that there are 128 decompressed bits in register array

3. The average decompression latency is 5 cycles.

1. Word Unpacking: When decompression starts, the unpacker first extracts the two

codes of the first and second word. Signals first code and second code represent

the first two bits of the codes in the two compressed words. Signal first bak and

second bak refer to the two bits following first code and second code, respectively.
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They are mainly useful when the corresponding code is a 4-bit code.

2. Word Decompressing: Decoders 1 and 2 compare the codes of the first and second

word against the static codes in Table 6.1 to derive the patterns for the two words,

which are then decompressed by combining zero bytes, bytes from FIFO dictionary,

and bytes from register array 1 (which stores the remaining compressed bits). The

way the bytes are combined to produce the decompression results depends on the

values of the four code-related signals. The decompressed words are then pushed into

the FIFO dictionary, if they do not match pattern “zzzz” and “zzzx”, and register

array 3. Note that the decompression results will be transmitted out as soon as

register array 3 has accumulated four decompressed words, given the input line is a

compressed line.

3. Length Updating: Length generator derives the compressed lengths of the two

words, i.e., first len and second len, based on the four code-related signals. The two

lengths are then subtracted from chunk len, which denotes the number of the remain-

ing bits to decompress in register array 1. As we explained above, the subtraction

result len r is then compared with 68, and more data are shifted in and concatenated

with the remaining compressed bits in register array 1 if len r is less than 68. Mean-

while, register array 1 is shifted by total length (the sum of first len and second len)

to make space for the new incoming compressed bits.

6.5.2.2 Decompressor & Data Prefetching: Data prefetching [107] has been pro-

posed as a technique to hide data access latency. It anticipates future cache misses and

fetches the associated data into the cache in advance of expected memory references. In or-

106



Table 6.4: Synopsys Design Compiler Synthesis Results

Parameters 180 nm 90 nm 65 nm
Compressor Decompressor Loc. Compressor Decompressor Loc. Compressor Decompressor Loc.

Worst-case delay (cycles) 13 8 2 13 8 2 13 8 2
Max. frequency (GHz) 0.38 0.31 0.60 1.09 0.91 1.79 1.25 1.20 2.00
Area (mm2) 0.34 0.25 0.063 0.076 0.076 0.013 0.043 0.043 0.007
Power consumption at 111.78 75.18 110.03 73.88 51.50 15.96 32.63 24.14 5.20max. internal freq. (mW)

der to integrate data prefetching with cache compression, resource conflicts must be taken

into account: a processor may request a line in the compressed region of the L2 cache while

the corresponding decompressor prefetches data from the compressed region into the un-

compressed region. Although we can disable data prefetching from the compressed region

of an L2 cache, i.e., only allowing prefetching data from off-chip memory into the uncom-

pressed region of L2, this may result in higher average data prefetching latency and lower

performance benefit compared to a scheme where prefetching from both off-chip memory

and compressed region of L2 caches are enabled. One possible solution is to add an extra

decompressor for each processor. This enables simultaneously serving processor requests

and prefetching data from the compressed region into the uncompressed region.

6.6 EVALUATION

In this section, we present the evaluation of the C-Pack hardware. We first present the

performance, power consumption, and area overheads of the compression/decompression

hardware when synthesized for integration within a microprocessor. Then, we compare

the compression ratio and performance of C-Pack to other algorithms considered for cache

compression: MXT [105], Xmatch [74], and FPC [10]. Finally, we describe the implica-

tions of our findings on the feasibility of using C-Pack based cache compression within a

microprocessor.
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6.6.1 C-Pack Synthesis Results

We synthesized our design using Synopsys Design Compiler with 180 nm, 90 nm, and

65 nm libraries. Table 6.4 presents the resulting performance, area, and power consumption

at maximum internal frequency. “Loc” refers to the compressed line locator/arbitrator in a

pair-matching compressed cache and “worst-case delay” refers to the number of cycles re-

quired to compress, decompress, or locate a 64 B line in the worst case. As indicated in Ta-

ble 6.4, the proposed hardware design achieves a throughput of 80 Gb/s (64 B× 1.25 GHz)

for compression and 76.8 Gb/s (64 B × 1.20 GHz) for decompression in a 65 nm technol-

ogy. Its area and power consumption overheads are low enough for practical use. The

total power consumption of the compressor, decompressor, and compressed line arbitrator

at 1 GHz is 48.82 mW (32.63 mW/1.25 GHz + 24.14 mW/1.20 GHz + 5.20 mW/2.00 GHz)

in a 65 nm technology. This is only 7% of the total power consumption of a 512 KB cache

with a 64 B block size at 1 GHz in 65 nm technology, derived using CACTI 5 [1].

6.6.2 Comparison of Compression Ratio

We compare C-Pack to several other hardware compression designs, namely X-Match,

FPC, and MXT, that may be considered for cache compression. We exclude other com-

pression algorithms because they either have not been implemented in hardware or are not

suitable for cache compression. Although the proposed hardware implementation mainly

targets online cache compression, it can also be used in other high-performance lossless

data compression applications with few or no changes.

We tested the compression ratios of different algorithms on four cache data traces gath-

ered from a full system simulation of various workloads from the Mediabench [63] and
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Table 6.5: Compression Ratio Comparison

Raw compression ratio (%) System-wide compression ratio (%)
Benchmark MXT FPC X-Match C-Pack MXT FPC X-Match C-Pack

mpeg2 70.88 63.39 49.50 52.10 75.55 64.28 57.97 58.47
mesa 49.50 69.81 42.80 51.97 60.50 66.18 53.59 55.80
art 57.69 59.27 46.60 51.74 64.84 66.67 60.63 61.40

twolf 84.09 80.73 70.20 77.40 85.90 75.60 62.37 69.92
Average 65.54 68.30 52.28 58.30 71.70 68.18 58.64 61.40

SPEC CPU2000 benchmark suites. The block size and the dictionary size are both set to

64 B in all test cases. Since we are unable to determine the exact compression algorithm

used in MXT, we used the LZSS Lempel-Ziv compression algorithm to approximate its

compression ratio [40]. The raw compression ratios and effective system-wide compres-

sion ratios in a pair-matching scheme are summarized in Table 6.5. Each row shows the raw

compression ratios and effective system-wide compression ratios using different compres-

sion algorithms for an application. As indicated in Table 6.5, raw compression ratio varies

from algorithm to algorithm, with X-Match being the best and MXT being the worst on

average. The poor raw compression ratios of MXT are mainly due to its limited dictionary

size. The same trend is seen for effective system-wide compression ratios: X-Match has

the lowest (best) and MXT has the highest (worst) effective system-wide compression ratio.

Since the raw compression ratios of X-Match and C-Pack are close to 50%, they achieve

better effective system-wide compression ratios than MXT and FPC. On average, C-Pack’s

system-wide compression ratio is 2.76% worse than that of X-Match, 6.78% better than

that of FPC, and 10.3% better than that of MXT.

6.6.3 Comparison of Hardware Performance

This subsection compares the decompression latency, peak frequency, and area of C-

Pack hardware to that of MXT, X-Match, and FPC. Power consumption comparisons are
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excluded because they are not reported for the alternative compression algorithms. Decom-

pression latency is defined as the time to decompress a 64 B cache line.

6.6.3.1 Comparing C-Pack with MXT : MXT has been implemented in a memory

controller chip operating at 133 MHz using 0.25 µm CMOS ASIC technology [106]. The

decompression rate is 8 B/cycle with 4 decompression engines. We scale the frequency

up to 511 MHz, i.e., its estimated frequency based on constant electrical field scaling if

implemented in a 65 nm technology. 511 MHz is below a modern high-performance pro-

cessor frequency. We assume an on-chip counter/divider is available to clock the MXT

decompressor. However, decompressing a 64 B cache line will take 16 processor cycles in

a 1 GHz processor, twice the time for C-Pack. The area cost of MXT is not reported.

6.6.3.2 Comparing C-Pack with X-Match:

X-Match has been implemented using 0.25 µm field programmable gate array (FPGA)

technology. The compression hardware achieved a maximum frequency of 50 MHz with

a throughput of 200 MB/s. To the best of our knowledge, the design was not synthesized

using a flow suitable for microprocessors. Therefore, we ported our design for C-Pack

for synthesis to the same FPGA used for X-Match [74] in order to compare the peak fre-

quency and the throughput. Evaluation results indicate that our C-Pack implementation is

able to achieve the same peak frequency as X-Match and a throughput of 400 MB/s, i.e.,

twice as high as X-Match’s throughput. Note that in practical situations, C-Pack should be

implemented using an ASIC flow due to performance requirement for cache compression.

6.6.3.3 Comparing C-Pack with FPC :

FPC has not been implemented on a hardware platform. Therefore, no area or peak

frequency numbers are reported. To estimate the area cost of FPC, we observe that the FPC
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compressor and decompressor are decomposed into multiple pipeline stages as described

in its tentative hardware design [10]. Each of these stages imposes area overhead. For

example, assuming each 2-to-1 multiplexer takes 5 gates, the fourth stage of the FPC de-

compression pipeline takes approximately 290 K gates or 0.31 mm2 in 65 nm technology,

more than the total area of our compressor and decompressor. Although this work claims

that time-multiplexing two sets of barrel shifters could help reduce area cost, our analy-

sis suggest that doing so would increase the overall latency of decompressing a cache line

to 12 cycles, instead of the claimed 5 cycles. In contrast, our hardware implementation

achieves much better compression ratio and a comparable worst-case delay at a high clock

frequency, at an area cost of 0.043 mm2 compressor and 0.043 mm2 decompressor in 65 nm

technology.

6.6.4 Implications on Claims in Prior Work

Many prior publications on cache compression assume the existence of lossless algo-

rithms supporting a consistent good compression ratio on small (e.g., 64-byte) blocks and

allowing decompression within a few microprocessor clock cycles (e.g., 8 ns) with low area

and power consumption overheads [64, 69, 116]. Some publications assume that existing

Lempel–Ziv compression algorithm based hardware would be sufficient to meet these re-

quirements [42]. As shown in Section 6.6.3.1, these assumptions are not supported by evi-

dence or analysis. Past work also placed too much weight on cache line compression ratio

instead of effective system-wide compression ratio (defined in Section 6.4.3). As a result,

compression algorithms producing lower compressed line sizes were favored. However, the

hardware overhead of permitting arbitrary locations of these compressed lines prevents ar-
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bitrary placement, resulting in system-wide compression ratios much poorer than predicted

by line compression ratio. In fact, the compression ratio metric of merit for cache com-

pression algorithms should be effective system-wide compression ratio, not average line

compression ratio. Alameldeen et al. proposed segmented compression ratio, an idea sim-

ilar to system-wide compression ratio. However, segmented compression ratio is only de-

fined for a segmentation-based approach with fixed-size segments. Effective system-wide

compression ratio generalizes this idea to handle both fixed size segments (segmentation-

based schemes) and variable length segments (pair-matching based schemes). C-Pack was

designed to optimize performance, area, and power consumption under a constraint on

effective system-wide compression ratio.

C-Pack meets or exceeds the requirements assumed in former microarchitectural re-

search on cache compression. It therefore provides a proof of concept supporting the

system-level conclusions drawn in much of this research. Many prior system-wide cache

compression results hold, provided that they use a compression algorithm with character-

istics similar to C-Pack.

6.7 CONCLUSIONS

This chapter has proposed and evaluated an algorithm for cache compression that hon-

ors the special constraints this application imposes. The algorithm is based on pattern

matching and partial dictionary coding. Its hardware implementation permits parallel com-

pression of multiple words without degradation of dictionary match probability. The pro-

posed algorithm yields an effective system-wide compression ratio of 61%, and permits

a hardware implementation with a maximum decompression latency of 6.67 ns in 65 nm
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process technology. These results are superior to those yielded by compression algorithms

considered for this application in the past. Although the proposed hardware implementa-

tion mainly targets online cache compression, it can also be used in other high-performance

lossless data compression applications with few or no modifications.
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CHAPTER 7

Optimization Technique 2: Memory Access Aware
On-Line Voltage Control for Performance and Energy

Optimization

In the previous chapter, we present C-Pack, a high-performance cache compression al-

gorithm that increases effective last-level cache size by adding low-overhead compression

and decompression hardware. C-Pack is twice as fast as the best existing hardware imple-

mentations potentially suitable for cache compression. The design of C-Pack is inspired

by the observation that last-level cache is critical to system performance. Therefore, it is

desirable to significantly increase usable cache capacity at a low area cost, thereby reducing

the amount of time spent on off-chip communication.

In this chapter, we will explore the impact of the memory hierarchy on another im-

portant metric: energy. Since energy can be expressed as the product of performance (in

terms of execution time) and power, we first examine the performance and power impli-

cations of the memory hierarchy when deriving the CAMP model (see Chapter 3) and the

system-wide power model (see Chapter 4). We first note that CAMP expresses SPI as a

linear function of last-level cache miss rate. More specifically, the execution time of a

process can be decomposed into on-chip time, i.e., the time spent waiting for on-chip re-

sources such as integer unit and floating point unit to finish executing instructions that are

dispatched to them, and the off-chip time, i.e., the time spent waiting for off-chip resources
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such as off-chip memory and hard disk to transfer data to the chip. While the on-chip time

is usually inversely proportional to CPU frequency because most on-chip resources share

the same clock, the off-chip time is independent of CPU frequency because the off-chip

resources have their own clocks. Therefore, the same computer system may exhibit dra-

matically different performances to CPU-bound processes and memory-bound processes.

Regarding the power model, we observed that the coefficient associated with L2MPS, i.e.,

the number of L2 cache misses per second, is negative. This implies that the processor is

stalled during a last-level cache miss, thereby reducing the power consumption. Combin-

ing these two observations, we found a great energy saving opportunity at no performance

cost: if we can adjust CPU voltage and CPU frequency during runtime with no performance

overhead, we can reduce the voltage and frequency to the lowest level on every last-level

cache miss and raise them back to the highest level as soon as the processor resumes execu-

tion. Although this is an ideal case since for example, adjusting voltage and frequency will

always incur some performance penalty in the real world, it indicates the last-level cache

miss rate is potentially a good metric to evaluate the trade-offs between performance and

energy consumption. This intuition motivates a predictive on-line DVFS control algorithm

that can produce close-to-optimal results with the aid of a performance model and a power

model, as explained later in this chapter.

This chapter describes an off-chip memory access-aware runtime dynamic voltage and

frequency scaling (DVFS) control technique that minimizes energy consumption subject to

constraints on application execution times. We consider application phases and the impli-

cations of changing cache miss rates on the ideal power control state. We first propose a

two-stage DVFS algorithm based on formulating the throughput-constrained energy min-
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imization problem as a multiple-choice knapsack problem (MCKP). This algorithm uses

a power model that adapts to application phase changes by observing processor hardware

performance counter values. The solutions it produces provide upper bounds on the en-

ergy savings achievable under a performance constraint. However, this algorithm assumes

a priori (oracle or profiling-based) knowledge of application phase change behavior. To

relax this assumption, we propose P-DVFS, an predictive DVFS algorithm for on-line min-

imization of energy consumption under a performance constraint without requiring a pri-

ori knowledge of an application’s behavior. P-DVFS uses hardware performance counter

based performance and power models. It predicts remaining execution time online in order

to control voltage and frequency settings to optimize energy consumption and performance.

The P-DVFS problem is formulated as a multiple-choice knapsack problem, which can be

efficiently and optimally solved online. We evaluated P-DVFS using direct measurement of

a real DVFS-equipped system. When bounding performance loss to at most 20% of that at

the maximum frequency and voltage, P-DVFS leads to energy consumptions within 1.83%

of the optimal solution for our problem instances on average with a maximum deviation

of 4.83%. In addition to producing results approaching those of an oracle formulation, P-

DVFS reduces power consumption for our problem instances by 9.93% on average, and up

to 25.64%, compared with the most advanced related work.

The rest of the chapter is organized as follows. Section 7.1 motivates the performance-

constrained energy minimization problem and summarizes our contributions. Section 7.2

discusses the performance and energy trade-offs and presents the formal problem definition.

Section 7.3 briefly describes the performance model, the power model, and their roles in

the problem formulation. We also present the oracle algorithm which assumes a priori
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knowledge about application behavior and a practical predictive on-line DVFS algorithm.

Section 7.4 describes the experimental results for the oracle algorithm and the predictive

DVFS algorithm. We also compare the results with those produced by the most advanced

related work. Section 7.5 concludes this chapter.

7.1 INTRODUCTION AND RELATED WORK

Energy consumption is important in high-performance stationary computers, due to its

impact on energy and cooling costs. Prior work has considered minimizing processor en-

ergy consumption. Chang et al. proposed a dynamic programming energy minimization

technique for multiple supply voltage scheduling in both pipelined and non-pipelined dat-

apaths [28]. Zhang et al. developed a two-phase technique that integrates task assignment,

task scheduling, and voltage selection for energy minimization [119]. Varatkar et al. pro-

posed a communication-aware task scheduling and voltage selection algorithm to minimize

the overall system energy consumption in a multiprocessor environment [108]. However,

the goal of these techniques is to minimize energy without affecting performance; trade-

offs between performance and energy consumption were not considered.

Other researchers have considered power management mechanisms that trade off per-

formance and power consumption. One of the most promising of these is dynamic voltage

and frequency scaling (DVFS). Two characteristics are important to DVFS control poli-

cies. First, a well-designed DVFS control policy must model and react to the dynamically

changing trade-offs between application performance and power consumption. A reduc-

tion in processor voltage and frequency has very different energy and performance impacts

on applications that are heavily accessing off-chip memory, and those that are consistently
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hitting in cache and therefore have performance constrained only by the current frequency

of the processor. A well-designed DVFS policy must continuously monitor and adapt to

the behavior of applications. Second, if a DVFS control policy is to guarantee that a partic-

ular application consistently runs with adequate performance, e.g., honoring an instruction

throughput constraint, it should maximize energy consumption savings by predicting the

distribution of future instructions among different memory access behaviors categories.

This allows the control policy to increase processor voltage and frequency when the per-

formance benefit per lost energy unit is the highest and reduce frequency and voltage when

the energy benefit per lost performance unit is the highest.

A number of researchers have worked on DVFS-related control to optimize power and

energy consumption. Isci et al. proposed a runtime phase monitoring and prediction tech-

nique to reduce power consumption using DVFS [55]. However, this technique does not

bound performance degradation. Wu et al. proposed dynamic compiler driven DVFS for

controlling microprocessor energy and performance [113]. However, their work requires

changes to the underlying compilation infrastructure. In addition, their technique does not

attempt to honor performance constraints. Liu et al. proposed a technique to optimize peak

temperature subject to a real-time performance constraint using DVFS [68]. However, their

assumption that the execution time of a task is inversely proportional to CPU frequency is

correct only for systems in which all layers of the memory hierarchy operate at the same

frequency, as we will demonstrate in Section 7.2.1. The technique proposed by Choi et al.

is the closest to ours [30]. The goal of their technique is to minimize energy consumption

under a constraint on the total program execution time. Detailed comparisons with their

work can be found in Section 7.4.2. Their DVFS policy considers the impact of application
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phases and off-chip memory accesses. However, it considers only immediate application

behavior instead of adaptively controlling power state using predictions based on long-term

behavior history. There also exist numerous prior work on DVFS-related scheduling and

power budgeting in virutalized environment [109, 73].

In this paper, we propose

1. We propose a two-stage DVFS algorithm that allows us to formulate the throughput-

constrained energy minimization problem as an MCKP problem, solve it optimally,

and use the solution to guide online frequency and voltage control. This algorithm

builds on an application phase-dependent power model, taking advantage of pro-

cessor hardware performance counters. The solutions obtained using the two-stage

algorithm determine the optimal energy savings under a performance degradation ra-

tio, for our formulation and problem instances. However, it assumes access to oracle

or profiling-based information about application behavior. In the rest of the chapter,

we will use “optimal solution” in the context of our problem formulation when this

does not introduce ambiguity.

2. We also propose P-DVFS, a predictive online DVFS algorithm that requires no a pri-

ori knowledge of application behavior. P-DVFS uses hardware performance counter

based power and performance models to adapt to the behavior of running applica-

tions. It predicts remaining execution time online in order to control voltage and fre-

quency to minimize energy consumption under application-level performance con-

straints. Like the two-stage oracle DVFS algorithm, P-DVFS is also formulated as a

multiple-choice knapsack problem. This formulation permits rapid, optimal, on-line
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solution of real problem instances.

3. In contrast with all related work, except that of Choi et al. [30], we consider the

dependence of the power consumption performance tradeoffs available via DVFS

upon application memory access behavior, i.e., phase. By adapting to application

phase, our technique supports more aggressive power management settings when

they have the least negative performance impact. To this end, we describe a method

of modeling the performance and power consumption of the processor using built-in

hardware performance counters.

4. In contrast with all past work, our problem formulation supports application-level

throughput requirement, not instantaneous instruction throughput requirement. This

is supported by on-line monitoring of application behavior as well as prediction of

application run times.

We evaluated P-DVFS via direct measurement during operation on a real system. When

limiting performance loss to at most 20% of that possible at the maximum frequency and

voltage, P-DVFS leads to energy savings within 1.83% of optimal on average with a max-

imum deviation of 4.83%, for our problem instances. It improves energy consumption by

9.80% on average, and up to 29.86%, compared to the most advanced related DVFS control

technique. P-DVFS also reduces power consumption by up to 25.64% (9.93% on average)

compared with the most advanced related work.

7.2 MOTIVATION AND PROBLEM FORMULATION

In this section, we first describe how the trade-offs between performance and energy

consumption change depending on application off-chip memory access behavior. We then
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present the problem formulation for energy minimization given a user-specified constraint

on application execution time. Finally, we present a dynamic power state control policy

that adjusts CPU frequency based on off-chip memory access patterns.

7.2.1 Performance and Energy Trade-Offs

The execution time of a task can be decomposed into on-chip and off-chip latencies.

The latencies of on-chip components scale linearly with CPU frequency, because they share

the same clock with the processor. In contrast, off-chip latencies, caused by accesses to off-

chip resources such as main memory and disk, are independent of CPU frequency, because

the off-chip resources have one or more separate clock.

The power consumption of a task can be divided into dynamic power and static power.

Dynamic power consumption is caused by switching transistors charging and discharging

capacitive loads. It generally scales superlinearly with CPU clock frequency [26]. Static

power consumption is primarily due to gate and subthreshold leakage currents of transis-

tors. It does not directly depend on CPU frequency but depends on the voltage. In general,

reducing frequency and voltage reduces both dynamic and static power consumption.

Many modern processors support dynamic voltage and frequency scaling (DVFS) ca-

pability. The typical voltage change overhead for our evaluation platform is 50 µs. Given

an application with some phases in which instruction throughput is limited largely by pro-

cessor core performance and other phases in which instruction throughput is limited largely

by (processor frequency independent) off-chip memory access latency, we can maximize

energy consumption improvement and minimize performance overhead by using a low

CPU frequency during memory-bound application phases and a high CPU frequency dur-
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ing core-bound application phases. What temporal granularity should this control use?

The DVFS switching overhead of 50 µs (see Section 7.4) implies that adjustments should

happen no more frequently than once every hundred microseconds, thus limiting overhead.

7.2.2 Problem Formulation

The performance-constrained energy minimization problem can be formulated as fol-

lows: Given that α is the user-specified performance degradation ratio relative to the max-

imum performance of a given task and Tfmax is the execution time of the task running at

the highest frequency, find the optimal CPU frequency as a function of time t, such that the

total energy consumption of the task is minimized and the actual execution time of the task

subject to DVFS, is no larger than (1 + α)Tfmax . Note that this performance constraint is

soft, i.e., it is highly desirable to meet it. However, violating the constraint does not mean

failure: a cost function may be associated with the degree of constraint violation.

As indicated in Section 7.2.1, the energy saving potential directly relates to the pro-

portion of total execution time resulting from waiting for off-chip data access, which are

primarily L2 cache misses in our experiments. We assume that each L2 cache miss takes

the same amount of time. Hence, the number of L2 cache misses per instruction (MPI), is a

good indicator of the potential for saving energy. Intuitively, it is beneficial to assign higher

frequencies for intervals with low MPIs (to improve performance) and lower frequencies

for intervals with high MPIs (to save energy).

In real operating systems, power control policies are usually implemented using ad-

justments at discrete time intervals. Discretized MPI values are used. We define a control

point as a time at which control decisions are made and a scaling point as a time at which
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the CPU frequency is modified. The control period is the duration between two consecu-

tive control points and the scaling period is the duration between two consecutive scaling

points. Note that these periods need not be the same. In fact, it is reasonable to use a much

larger control period than scaling period to minimize performance overhead incurred by the

controller and use time multiplexing to emulate continuous DVFS within a control period.

Given an MPI distribution within a control period, S is the set of all MPI slots and F is

the set of all available frequency levels. Our goal is to find the correct frequency level fi for

each slot i ∈ S such that the total energy consumption Etotal is minimized and the actual

execution time Tact satisfies Tact ≤ (1 + α)Tfmax . Therefore, assuming the distribution

is independent of frequency, for each i ∈ S with frequency fi, given that SPIi(fi) is the

number of seconds per instruction at frequency fi, Pi(fi) is the power consumption, and

poi i is the percentage of instruction associated with slot i, the objective function and the

constraint can be expressed in terms of total number of instructions Itotal and total energy

consumption Etotal , i.e.,

Etotal = Itotal ·
∑
i∈S

Pi(fi) · poi i · SPIi(fi) and (7.1)

Tact ≤ (1 + α)Tfmax . (7.2)

The goal is to minimize Etotal subject to Equation 7.2. Since the DVFS switching overhead

ranges from 50 µs to 200 µs, the performance (or energy) overhead due to a frequency

change is less than 0.7%, given a scaling period of 30 ms. Therefore, we ignore its impact

in our problem formulation. Note that Pi(fi) in Equation 7.1 depends on both the CPU

frequency and application behavior, e.g., the number of last-level cache misses per second
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(see Section 7.3.2).

7.3 SYSTEM MODELING

In this section, we first explain our task performance and power models. We then for-

mulate the energy minimization problem as a multiple-choice knapsack problem (MCKP)

and solve it optimally, assuming knowledge of the average SPI at the maximum frequency

(SPIfmax ) and the exact application MPI distribution. We then relax our assumptions and

propose an execution time predictor that is accurate at the highest frequency. This allows us

to formulate the online DVFS problem again as an MCKP, which can be solved efficiently

on-line. Finally, we explain the software system architecture used to control DVFS in order

to accurately adjust the trade-off between performance and energy consumption.

7.3.1 Performance Modeling

Equation 7.2 depends on a formula that accurately expresses the relationship between

SPI, MPI, and CPU frequency. Intuitively, the amount of time consumed per instruction

can also be decomposed into on-chip and off-chip latencies. On-chip latency is inversely

proportional to frequency, while off-chip latency, captured by MPI, is independent of fre-

quency. Prior work has reached the same conclusion [55]. SPI can be expressed as

SPI(MPI, f) = c1 ·MPI + c2/f, or equivalently, (7.3)

CPI(MPI) = c1 · f ·MPI + c2, (7.4)

where CPI is the number of cycles per instruction, f is the CPU frequency, and c1 and c2

are constants to be determined via fitting.
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Most modern processors have built-in hardware performance counters that record infor-

mation about architectural events, e.g., number of instructions retired and cache misses [3].

By gathering these two event counts, we can compute SPI and MPI during application exe-

cution. Therefore, given the last N data points reported by hardware performance counters,

we can determine c1 and c2 can be determined using linear regression. The relevant for-

mulæ follow.

c1 =
N · (

∑N
i=1 xi · yi)− (

∑N
i=1 xi) · (

∑N
i=1 yi)

N · (
∑N

i=1 x2
i )− (

∑N
i=1 xi)2

and (7.5)

c2 =

(
N∑

i=1

yi − c1 ·
N∑

i=1

xi

)
/N, (7.6)

where xi denotes the product of MPI and CPU frequency for the ith data point and yi rep-

resents the CPI for the ith data point. Note that N should be carefully chosen to capture

changes in memory access pattern quickly and support accurate regression-based model-

ing. In our experiments, varying N between 10 and 50 has insignificant impact on energy

consumption (a variation of 0.5% in total energy was observed). However, if N is smaller

than 10, e.g., 4, we see an 4% energy consumption increase due to inaccuracies in the linear

regression model. In our experiments, we set N to 20.

7.3.2 Power Modeling

Equation 7.1 indicates the necessity of having an accurate formula to describe the re-

lationship between power consumption and MPI. Since an L2 cache misses are time con-

suming, the power consumption is higher for larger MPI values and smaller for lower MPI

values. However, the power consumption also depends on other architectural events such
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as number of floating point instructions executed and number of L1 data cache accesses.

We experimented with different combinations of hardware performance counter events and

observed that following five were sufficient to permit accurate estimation of power con-

sumption:

1. number of L1 data cache references per second (L1DPS),

2. number of L2 cache references per second (L2PS),

3. number of L2 cache misses per second (L2MPS),

4. number of floating point instructions executed per second (FPPS), and

5. number of branch instructions retired per second (BRPS).

As a first-order approximation, we assume each access to system components such as L1

caches and L2 cache consumes a fixed amount of energy. Therefore, the total power con-

sumption depends linearly on these five events. In addition, the dynamic power consump-

tion depends nonlinearly on CPU frequency [83]. Given that f is the CPU frequency, the

power consumption can be estimated as follows:

P = b0 + b1 · L1DPS + b2 · L2PS + b3 · L2MPS + b4 · FPPS + b5 ·BRPS + b6 · f 1.5, (7.7)

where bi, i = 0, · · · , 6 are task-specific constants that can be determined during pre-

characterization. The frequency exponent of 1.5 was determined empirically. It is worth

mentioning that b0 accounts for system idle and leakage power. For example, the formula
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for the “mcf” benchmark (see Section 7.4) follows:

P = 4.778 + 2.2864× 10−9 · L1DPS + 6.517× 10−8 · L2PS− 3.596× 10−7 · L2MPS+

0.6342 · FPPS− 3.136× 10−9 · BRPS + 4.308 · f 1.5. (7.8)

For all the benchmarks we evaluated, the application-dependent power models have an

average error of 6.67% and a maximum error of 12.2% across all four CPU frequencies.

Note that if the processor has built-in power sensors [76], the pre-characterization phase

can be eliminated and the constants can be determined during execution using a regression-

based approach such as that described in Section 7.3.1.

7.3.3 Cost Minimization

This section describes formulation of the DVFS power management state control prob-

lem as a multiple-choice knapsack problem (MCKP). Given multiple sets, each containing

multiple items, each of which is associated with a profit and a weight, MCKP requires the

selection of one item from each set. The selection is optimal when the total profit is maxi-

mized and the total weight of the selected items is below a constraint. The DVFS problem

instance can be converted into an MCKP instance by treating each potential frequency level

as an item. The weight of the item is the expected throughput at the associated frequency

level. The profit of the item is the associated reduction in expected energy consumption

compared to the energy at the highest frequency. Note that, depending on whether we have

a priori knowledge SPIfmax and the MPI distribution throughout program execution, the

DVFS problem instance can be formulated as different MCKP instances, as explained in

Section 7.3.3.2 and Section 7.3.3.3.
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7.3.3.1 Cost Function: Equations 7.3 and 7.7 can be substituted into Equation 7.1.

For each slot i ∈ S within a control period where S is the set of all MPI slots, SPIi and

Pi depend only on the frequency level assigned to MPI slot i. However, both are nonlinear

due to the nonlinearity of SPI and power consumption in CPU frequency. The resulting

nonlinear optimization problem cannot be efficiently solved online.

We use a binary variable xij to indicate whether the frequency fj is assigned to MPI

slot i.

xij =


1, fj is assigned to MPI slot i and

0, otherwise.

(7.9)

Note that
∑

fj∈F xij = 1,∀ slot i ∈ S. Therefore, for each slot i ∈ S, SPIi can be expressed

as follows.

SPIi =
∑
fj∈F

xij · (c1 ·MPIi + c2/fj) = c1 ·MPIi +
∑
fj∈F

c2/fj · xij. (7.10)

Since constants c1, c2, and F are known at the control point, Equation 7.10 can be simplified

as follows.

Letting s0 = c1 ·MPIi and

sj = c2/fj,∀fj ∈ F,

SPIi = s0 +

|F |∑
j=1

sjxij. (7.11)

where |F | is the number of elements in F . Similarly, the value of the five events in Equa-

tion 7.7 are also known at the control point. It is worth mentioning that the five event counts
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are also frequency dependent. We therefore normalize event count to instruction count in-

stead of time. For example, for L1 data accesses, we record the number of L1 data cache

accesses per instruction (L1DPI), which is independent of frequency. Hence, for MPI slot

i with frequency fj , we have

L1DPSi(fj) = L1DPIi/SPIi(fj) , mij,1. (7.12)

Similarly, we use mij,2, mij,3, mij,4, and mij,5 to denote L2PSi(fj), L2MPSi(fj), FPPSi(fj),

and BRPSi(fj). Defining w0 = b0 and wij =
∑5

k=1 bi ·mij,k + b6 · f 1.5
j ,∀fj ∈ F , allows

the power consumption for MPI slot i to be expressed as follows:

Pi = w0 +

|F |∑
j=1

wijxij. (7.13)

Combining Equations 7.11 and 7.13, Equation 7.1 can be rewritten as follows:

Etotal = Itotal

∑
i∈S

poi i · (w0 +

|F |∑
j=1

wijxij)(s0 +

|F |∑
k=1

skxik). (7.14)

Note that poi i is known at the control point. In addition,

xij · xik =


xij, if and only if j = k and

0, otherwise.

(7.15)
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Therefore, Equation 7.14 can be simplified as follows.

Letting e0 = Itotal · w0s0 and

eij = poi i(w0sj + wijs0 + wijsj),

Etotal = e0 +
∑
i∈S

∑
fj∈F

eijxij. (7.16)

7.3.3.2 Performance Constraint – the Oracle Solution: We first assume that we

have a priori knowledge of SPIfmax and the MPI distribution throughout the program exe-

cution and demonstrate we can solve this problem optimally. Our solution has two stages:

profiling and evaluation. During profiling, we record the necessary information, e.g.,

SPIfmax as well as the percentage of instructions and the hardware performance counter

values, for each MPI slot. This allows an optimal solution to the problem. During eval-

uation, we use the optimal solution obtained in the profiling stage to adjust the frequency

dynamically to minimize energy consumption while honoring the performance constraint.

The formulation we have just described computes the optimal solutions an oracle would

yield. It therefore allows us to determine an upper bound on the energy savings given a

particular performance constraint. We will later propose an on-line DVFS technique re-

quiring no application pre-characterization. We will evaluate the quality of this prediction-

based technique, called P-DVFS, by comparing its results with those of the optimal oracle

formulation.

Assuming the number of instructions associated with MPI slot i is denoted as Ii, Equa-
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tion 7.2 can be rewritten as

∑
i∈S

∑
fj∈F

Ii · SPIi(fj) · xij ≤ (1 + α)Tfmax . (7.17)

Dividing both sides by Itotal yields

∑
i∈S

∑
fj∈F

poi i · SPIi(fj) · xij ≤ (1 + α)SPIfmax . (7.18)

Although we can use Equation 7.3 to express SPI as a function of MPI and frequency,

in reality we record SPIi(fj) during profiling to eliminate the impact of linear regression

error on the quality of the optimal solution. More specifically, at each scaling point during

profiling, the frequency is reduced to the closest lower level. When the frequency cannot

be reduced further, we increase the frequency to the highest level. This process is repeated

until the program under profiling finishes. We then compute the average SPIi(fj) associated

with each MPI slot i and each frequency fj . Hence, we can treat SPIi(fj) as a constant kij .

Equation 7.18 thus becomes

∑
i∈S

∑
fj∈F

poi i · kij · xij ≤ (1 + α)SPIfmax . (7.19)

Itotal and e0 are constants. Thus, the problem can be formulated as follows:

Minimize
∑

i∈S

∑
fj∈F eijxij (7.20)

Subject to
∑

i∈S

∑
fj∈F poi i · kij · xij ≤ (1 + α)SPIfmax and

xij ∈ {0, 1},
∑

fj∈F xij = 1,∀i ∈ S (7.21)
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Note that xij are binary integer variables and eij , poi i, and ki,j are positive constants. There-

fore, by scaling the constants with a large positive number, we can make the coefficients

eij , poi i, and ki,j and the right hand side of the constraint in Equation 7.21 positive integers.

Thus, the formulation can be treated as an multiple-choice knapsack problem (MCKP) [91].

We solve this problem optimally using “lp solve” [5]. We record the frequencies assigned

to each MPI value in an |S| × |F | lookup table. During evaluation, we use the current MPI

value to look up and adjust the frequency at each scaling point.

7.3.3.3 Performance Constraint – P-DVFS: For this formulation, we assume that

the MPI distribution is unknown. However, our MPI distribution prediction technique re-

lies on the similarity between present and future MPI distributions. It is known that most

programs have repeated phases with periods ranging from 200 ms–2 s [53]. Therefore, this

assumption holds given a reasonable observation duration. In our experiments, we use per-

formance counter values during the most recent control period when deriving the optimal

frequency settings for the next control period. We will also discuss our using solutions

when the total number of instructions are known or unknown. In the rest of the chapter, we

will use P-DVFS (predictive DVFS) to indicate the online predictive DVFS technique.

At each control point, the number of instructions retired is known. It is therefore nat-

ural to use the remaining number of instructions Ir and remaining energy consumption Er

instead of Itotal and Etotal in our problem formulation. We first note that Equation 7.16

is still applicable, except that Etotal and Itotal should be replaced with Er and Ir. Given

that Telap is the elapsed time and Tr is the remaining execution time, Equation 7.2 can be
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written as

Tr = Ir ·
∑
i∈S

poi i · SPIi(fi) ≤ (1 + α)Tfmax − Telap . (7.22)

Equation 7.3 allows us to rewrite the left side of Equation 7.22 as

Ir ·
∑
i∈S

poi i · SPIi(fi) = Ir ·
∑
i∈S

∑
fj∈F

dijxij, (7.23)

where dij = poi i/ (c1 ·MPIi + c2/fj) ,∀fj ∈ F . Therefore, Equation 7.22 can be simplified

as follows: ∑
i∈S

∑
fj∈F

dijxij ≤
(1 + α)Tfmax − Telap

Ir

. (7.24)

Execution Time Prediction: Equation 7.24 requires an accurate prediction of Tfmax at

each control point. By comparing Telap with (1 + α)Tfmax , we can roughly estimate how

aggressively we should adjust the CPU frequency during the remaining execution time. If

Telap << (1 + α)Tfmax , we can reduce the CPU frequency to a much lower level than that

if Telap >> (1 + α)Tfmax . However, it is challenging to predict Tfmax accurately online

because (1) the control algorithm changes the CPU frequency very rapidly, thus resulting

in rapid and significant performance fluctuations and (2) the prediction algorithm should

impose little overhead.

In order to derive a fast and accurate prediction method, we fist decompose Tfmax into

two parts: the amount of time it takes to execute the instructions retired when running at

the highest frequency Telap,max and the remaining time to finish execution when running at

the highest frequency Tremain,max . We can derive Telap,max using Equation 7.26. fk is the

frequency used for scaling period k, Tk,fk
is the amount of time elapsed at frequency fk,
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fmax is the highest frequency, and MPIk is the average MPI value, i.e., the amount of time

required to execute the same number of instructions in period k when the highest frequency

is employed.

Tk ,max = Tk,fk
· SPI(MPIk, fmax )

SPI(MPIk, fk)
. (7.25)

Therefore, Telap,max can be expressed as

Telap,max =
∑

k

Tk ,max =
∑

k

(
Tk,fk

· SPI(MPIk, fmax )

SPI(MPIk, fk)

)
. (7.26)

In order to determine Tremain,max , we first assume the instruction count of the current

task is known, e.g., by examining the input data file size or history information. This as-

sumption holds for most data processing applications such as image encoding and decod-

ing, data compression, and placement and routing, whose run times are generally functions

of input file size. Given that Itotal is the total instruction count, Ielap is the number of in-

structions retired, Ir is the remaining number of instructions to be executed, and SPI(f) is

the amount of time per instruction at frequency f , we can express Tremain,max as follows.

Ir = Itotal − Ielap and (7.27)

Tremain,max = Ir · SPI(fmax ) (7.28)

Combining Equations 7.26 and 7.28, Tfmax can be expressed as

Tfmax = Telap,max + Tremain,max . (7.29)
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We also consider the scenario in which the total instruction count is unknown before

the task is executed. We use Ir to denote the remaining number of instructions, in billions.

We start with an Ir of 1. At every scaling point, we subtract, from the current Ir, the num-

ber of instructions retired since the last reset of Ir. If the result is smaller than 1, we reset

Ir to the number of instructions retired since the task started. If the resulting Ir exceeds

an upper bound Iup , we set Ir to Iup . Ir is then substituted into Equation 7.28 to estimate

the remaining execution time. Note that Iup should be large enough to permit aggressive

frequency control and yet small enough to preserve accuracy. We use an Iup of 30 (bil-

lion) in our experiments. We experimentally determined that the energy consumption is

relatively insensitive to changes in Iup: a variation of only 0.8% in total energy consump-

tion is observed when varying Iup from 5 to 500. In our experiments, given a performance

degradation ratio of 0.2, the energy consumptions only deviate by 2% from those if Itotal

is known beforehand, i.e., from pre-characterization, file size based estimates, or assuming

an oracle with knowledge of future application behavior.

Given that Tfmax and Ir can be estimated online, the energy minimization problem can

then be formulated as an MCKP.

Minimize
∑

i∈S

∑
fj∈F eijxij (7.30)

subject to
∑

i∈S

∑
fj∈F dijxij ≤ (1+α)Tfmax−Telap

Ir
and (7.31)

xij ∈ {0, 1},
∑

fj∈F xij = 1,∀i ∈ S. (7.32)

We can treat the right hand side of the constraint in Equation 7.31 as positive. Otherwise,

the constraint is trivially satisfied. Unlike the oracle scenario, the P-DVFS technique re-
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Figure 7.1: System architecture for P-DVFS.

quires solving MCKP online. Although MCKP isNP-hard, there exist algorithms that can

solve it in pseudo-polynomial time [75, 91]. We used “lp solve” to obtain optimal solu-

tions online. Our experiments had 15 MPI slots and 4 frequency levels. For each of the

evaluated benchmarks, it took less than 1 ms to obtain the optimal solution, which is fast

enough for online control. Note that this also indicates the energy overhead of the MCKP

solver is approximately 0.1%, given the control period of 1 s in our experiments. Pisinger’s

MCKP solver implementation would permit an even more efficient solution in a production

version of the control software [75].

7.3.4 P-DVFS System Architecture

We have integrated the performance model, power model, execution time predictor, and

MCKP solver to accurately control the CPU frequency for a fine-grained trade-off between

performance and energy. Figure 7.1 illustrates the system architecture for the P-DVFS tech-
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nique. We use Tcontrol and Tscaling to represent the control and scaling periods. As indicated

in Figure 7.1, whenever a timer interrupt occurs, we increment the time counters t1 and t2.

We first determine whether t1 has reached Tcontrol . If so, we analyze MPI-related statistics,

i.e., divide the range of MPI values into distinct MPI slots and calculating the percentage

of instructions (poi i) associated with each MPI slot i, and determine the values of coeffi-

cients such as {sj} in Equation 7.11 and {wij} in Equation 7.13 using the performance and

power models. We also gather information about the available processors frequencies fj .

These values are translated to {eij} and {dij} in Equations 7.30 and 7.31, which are then

provided to the MCKP solver along with estimates of Tfmax and Ir in Equation 7.27 and

7.28. The optimal solutions are then stored in a mapping table and time counters t1 and t2

are reset to 0. When t1 < Tcontrol, we continue to check whether t2 has reached Tscaling

and if so, we set the CPU frequency to the value corresponding to the current MPI in the

mapping table and reset the time counter t2. Otherwise, the Tfmax estimate is updated. The

task then continues executing until the next timer interrupt occurs. Note that the DVFS

algorithm is implemented in software and has very low performance and energy overhead

(approximately 0.3%).

7.4 EXPERIMENTAL RESULTS

In this section, we first describe the experimental setup and implementation details of

the proposed techniques. We then present the experimental results for both P-DVFS and

the optimal two-stage solution. Finally, we compare the results produced by P-DVFS with

those produced by the optimal oracle solution and the most advanced previous work [30].
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7.4.1 Experimental Setup

We implemented our techniques on a Pentium Dual Core E2220 processor running

Linux 2.6.25 and operates at 1.2, 1.6, 2.0, and 2.4 GHz. Experimental results indicate the

switching overhead ranges from 50 µs to 200 µs. We use PAPI 3.6.2 [6] for hardware perfor-

mance counter measurement and experimentally determined that the performance overhead

for accessing hardware performance counter is negligible. Due to hardware limitations, we

can only sample two architectural events at a time. Therefore, we time multiplex architec-

tural event sampling to obtain all the values needed for power calculation. The switching

interval is 10 ms and five architectural event counters are monitored, yielding a scaling pe-

riod, (Tscaling ) of 30 ms. The control period Tcontrol is set to 1 s, i.e., we solve the MCKP

formulation every 1 s such that we can obtain a stable MPI distribution and capture changes

in memory access behavior quickly enough for accuracy. We use a sliding window of 2 s

to build the MPI distribution histogram. 15 MPI slots are used to permit different mem-

ory access behaviors to be distinguished while controlling MCKP solver overheard. We

experimentally determined that energy consumption is relatively insensitive to changes in

the number of MPI slots: a variation of less than 0.5% in total energy was observed when

varying the number of slots from 5 to 30. The same MPI slots are used throughout the

execution of a benchmark.

To determine power consumption, we use a Fluke i30 current clamp on the 12 V proces-

sor power supply lines, the output of which is sampled at 10 kHz using a National Instru-

ments USB6210 data acquisition card. This approach permits processor power consump-

tion measurement without requiring printed circuit board rework or access to internal metal
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layers. An on-chip voltage regulator converts this voltage to the actual processor operating

voltage. We assume a regulator efficiency of 90%.

7.4.2 Comparison with Prior Work

Choi et al. [30] proposed a fine-grained runtime DVFS technique that minimizes en-

ergy consumption while meeting soft timing constraints. We will use “F-DVFS” to refer

to their technique. In order to adapt to changes in the rate of off-chip accesses, F-DVFS

dynamically constructs a performance model and uses it to calculate the expected work-

load for the next slot; frequency and voltage levels are adjusted accordingly. F-DVFS

ignores long-term behavior such as the total application execution time. For example, at

each scaling point, it considers only an immediate, local, user-specified performance con-

straint. However, sometimes even setting the frequency to the lowest level still results in a

performance level higher than the user-specified constraint due to large number of off-chip

accesses, opening the opportunity to improve energy savings when the MPI becomes lower

later during execution. Neglecting total execution time makes it impossible to take advan-

tage of such energy saving opportunities. Note that this sort of time-varying application

behavior is very common for scientific computing applications, which commonly read a

large amount of data into memory before processing. Moreover, F-DVFS neglects the re-

lationship between frequency and energy consumption, assuming that reducing frequency

is always beneficial to energy. However, this is not true when leakage power consumption

is significant or the overall optimization goal is to minimize system energy consumption

instead of processor power consumption. In contrast, P-DVFS automatically models and

optimizes leakage power consumption and can be easily extended to handle the energy
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Figure 7.2: Processor frequency as a function of the number of instructions retired for (a)
the oracle solution, (b) P-DVFS, and (c) F-DVFS for “mcf” with a performance degradation
ratio of 20%.
consumptions of other components such as main memory and disk.

7.4.3 Experimental Results

We evaluated P-DVFS on the 8 SPEC2000 benchmarks that compiled on our evaluation

platform and 3 ALPBench benchmarks [45, 15]. We did not consider the remaining 2

benchmarks (“MPGenc” and “MPGdec”) in the ALPBench benchmark suite because they

are very disk I/O intensive: we are presently interested in evaluating the impact of off-

chip memory access on energy savings. We considered 3 floating point programs and

8 integer programs. The execution time of each benchmark ranges from 40–425 s. For

each benchmark, we specify a performance degradation ratio (the maximum increase in

execution time relative to that at the maximum frequency and voltage) ranging from 5%

to 20% with a step of 5%. The actual execution time and the average energy savings

are reported compared to a scheme without DVFS (N-DVFS), F-DVFS, and the optimal

oracle solution; we use the same window size for each to permit a fair comparison. Both

techniques use 4 discrete frequency levels.

Table 7.1 shows the actual performance degradation for both F-DVFS and P-DVFS

compared with the user-specified performance degradation ratios. The first column spec-

ifies the benchmarks we evaluated. The “P-DVFS” and “F-DVFS” columns indicate the
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Table 7.1: Performance Degradations of F-DVFS and P-DVFS in terms of total execution
time

Benchmark F-DVFS (%) P-DVFS (%)
Goal 5% 10% 15% 20% 5% 10% 15% 20%
gzip 0.27 0.34 1.36 10.59 4.74 8.03 10.82 16.62
vpr 0.00 1.91 10.06 11.62 4.83 9.93 14.05 19.39
mcf 2.02 4.51 6.61 7.78 4.50 6.50 13.50 17.00
bzip2 0.51 0.62 0.67 17.9 3.11 6.09 10.76 15.36
twolf 0.0 1.87 16.31 17.9 4.13 7.92 12.40 17.23
art 0.0 4.47 5.20 5.85 3.09 6.85 13.16 16.83
equake 0.0 0.0 0.0 9.64 3.04 7.59 11.72 15.42
ammp 0.23 0.93 7.18 16.13 4.24 10.40 14.41 19.29
facerec 0.0 4.09 10.12 20.2 3.19 7.65 13.65 18.38
sphinx3 0.0 0.54 1.48 9.34 2.80 7.50 11.10 13.84
tachyon 0.0 5.91 6.83 16.4 3.22 8.41 13.57 18.43
Average 0.28 2.29 5.98 13.03 3.72 7.90 12.65 17.10

performance degradation ratios resulting from using the two techniques, with the user-

specified performance degradation constraint listed on the second “Goal” row. Given that

the performance constraint is satisfied, a larger performance degradation usually corre-

sponds to more energy savings; this was confirmed by our experiments. Experimental

results indicate that P-DVFS approaches the user-specified performance level more closely

than F-DVFS, implying greater energy savings. P-DVFS has finer-grained control over the

trade-offs between performance and energy given a user-desired performance constraint.

F-DVFS does not reach the user-specified performance degradation ratio partially because

the number of available frequencies is limited: whenever the calculated frequency fcalc

does not correspond to any available frequency, F-DVFS uses the closest frequency that is

larger than fcalc to approximate it. This may reduce the energy benefit when the number

of available frequency is small. Switching between two closest available frequencies may

address this problem. However, there are more fundamental reasons why F-DVFS does not

work as well as P-DVFS, as we will explain later in this section. Note that both techniques

may violate the soft timing constraint due to inaccuracies in the online performance model.
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Table 7.2: Deviation of Energy Consumptions from the Optimal Solution when using using
N-DVFS, F-DVFS, and P-DVFS

Benchmark Eopt (J) N-DVFS (%) F-DVFS (%) P-DVFS (%)
gzip 804 7.88 6.88 0.12
vpr 1520 21.91 8.09 3.36
mcf 2401 71.10 29.86 4.83
bzip2 1345 8.18 1.93 0.30
twolf 5281 12.61 1.50 1.38
art 1810 52.49 23.20 4.42
equake 2736 14.58 7.20 1.90
ammp 7344 12.15 2.08 0.14
facerec 2621 12.59 6.37 0.04
sphinx3 1428 19.54 11.13 3.64
tachyon 2210 15.43 9.55 0.05
Average 2682 22.59 9.80 1.83

However, for P-DVFS, the maximum violation for these benchmarks is less than 1%, which

could be eliminated by using a 1% guard band for the constraint.

We compared the energy savings of N-DVFS, F-DVFS, and P-DVFS with those of the

optimal oracle solution, which might be better than the actual optimal on-line solution. For

performance degradation percentages of 5%, 10%, and 15%, N-DVFS generates solutions

that deviate from the optimal solution by 9.31%, 12.81%, and 18.46%, with maximum

deviations of 22.29%, 33.72%, and 56.55%; F-DVFS leads to energy consumptions that

deviate from the optimal solution by 7.1%, 8.23%, and 9.51%, with maximum deviations

of 16.84%, 15.89%, and 29.8%; and P-DVFS results in energy consumptions that devi-

ate from the optimal solution by 1.43%, 1.16%, and 1.59%, with maximum deviations of

2.80%, 3.88%, and 4.63%. Since the results are similar for different performance degrada-

tion ratios, we only present the energy numbers for a maximum performance degradation

ratio of 20% in Table 7.2. The first column specifies the application being evaluated. The

second column indicates the optimal, i.e., minimum, energy consumption for each bench-

mark with a performance degradation ratio of 20%. The third, the fourth, and the fifth
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Figure 7.3: Processor frequency as a function of the number of instructions retired for (a)
the optimal solution, (b) P-DVFS, and (c) F-DVFS during “art” execution with a perfor-
mance degradation ratio of 20%.

columns represent the deviation in energy consumption from that of the optimal oracle

solution when using N-DVFS, F-DVFS, and P-DVFS. As indicated in Table 7.2, the en-

ergy consumption deviates from the optimal oracle solution by 22.59% on average when

no DVFS is used, with a maximum deviation of 71.1%. F-DVFS produces solutions that

deviate 9.80% from the optimal oracle solution on average, with a maximum deviation of

29.86%. Among the three candidates, P-DVFS achieves the best solution quality, i.e., an

average of 1.83% deviation from the optimal oracle solution with a maximum deviation of

4.83%. Therefore, we conclude that P-DVFS can very closely approximate optimal solu-

tions. It is also worth noting that for performance degradation ratios of 5%, 10%, 15%,

and 20%, P-DVFS has average power savings of 8.3%, 11.31%, 12.3%, and 9.93% and

maximum power savings of 15.94%, 12.69%, 27.36%, and 25.64% compared to F-DVFS.

For benchmarks “mcf” and “art”, F-DVFS leads to solutions that are far worse than

those using P-DVFS (25.03% and 18.78% difference, respectively). We now analyze their

results for these benchmarks.

Analyzing Mcf Results:Figure 7.2 illustrates the dynamic processor frequency changes

for the optimal oracle solution, P-DVFS, and F-DVFS during execution of the “mcf” bench-

mark, given a performance degradation ratio of 20%. The X-axis indicates the number of
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billion instructions retired and the Y-axis indicates the frequency. Figure 7.2(a) suggests

that the optimal solution is to always set the frequency to the lowest level. While P-DVFS

yields a near-optimal solution, F-DVFS behaves very differently. We note that “mcf” is

a two-phase benchmark: the cache miss rate is very high during the first 20 billion in-

structions and alternates between a high value and a low value afterwards. In both phases,

F-DVFS leads to a higher frequency on average. Recall that F-DVFS requires accurate

model estimation and accurate individual coefficients so that it can correctly estimate the

ratio of off-chip to on-chip memory accesses. Although the former is generally true for

linear regression, the second assumption does not necessarily hold. In this case, since the

MPI and CPI values do not change much in the first phase, the coefficients derived using

linear regression can be inaccurate, causing F-DVFS to significantly over-estimate the av-

erage on-chip latency and thus limit itself to a relatively high frequency (2 GHz). Note that

the output of the performance model, or CPI, is still accurate. In contrast, P-DVFS only

requires that the output of the model match the real CPI value: the individual coefficients in

the regression formula do not matter. Therefore, P-DVFS allows the CPU frequency to be

decreased to a lower level, alternating between 1.6 GHz and 1.2 GHz most of the time. The

frequency does not stay at the lowest level due to inaccuracies in the online performance

model and the remaining execution time predictor. In the second phase, F-DVFS increases

the frequency when the cache miss rate is lower and decreases the frequency when the miss

rate is higher. This happens because F-DVFS considers only immediate application be-

havior and ignores long-term behavior. P-DVFS takes history and long-term behavior into

account, allowing it to correctly determine that the frequency can be set to the lowest level

even when the cache miss rate is low. Therefore, P-DVFS achieves much larger energy
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savings in this case, which approach those of the optimal oracle solution.

Analyzing Art Results:Figure 7.3 illustrates the dynamic processor frequency changes

for the optimal oracle solution, P-DVFS, and F-DVFS during the execution of the “art”

benchmark, given a performance degradation ratio of 20%. P-DVFS closely approximates

the optimal oracle solution and F-DVFS does not. This can be explained as follows. “Art”

has periodic cache access behavior with a period of approximately 300 ms at the highest

frequency. In each period, the MPI value starts from a low value (0.003 in our experiments)

and gradually increases before it reaches the point with the highest MPI (0.005 in our

experiments). Then, the MPI value starts to decrease until it returns to the previous value

of 0.003. F-DVFS gathers the sampling points within the most recent second to build the

performance model. The coefficients in the regression formula remain nearly constant due

to the small period and large window size. Therefore, the frequency was set to a fixed

number (2 GHz in our case) for all the sampling points in each period. In contrast, P-DVFS

builds the MPI distribution based on the sampling points from the most recent second,

translates the energy minimization problem into an MCKP instance, and solves it to get

the optimal solution. This solution uses high frequency (2 GHz) for sampling points with

low MPI and low frequency (1.2 GHz) for sampling points with high MPI. This permits

significant reduction in energy consumption compared to F-DVFS. Since F-DVFS is not

distribution-oriented, it cannot determine how SPI and power consumption change with

MPI. Therefore, it cannot assign different frequencies to sampling points with different

MPIs while still meeting the performance constraint.

For the rest of the benchmarks, P-DVFS slightly outperforms F-DVFS. This is because

both consider the effects of off-chip memory access latencies on energy. P-DVFS achieves
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the greatest energy savings compared to past work for applications with phases during

which the energy cost per instruction differ.

7.5 CONCLUSIONS

This chapter has described a new power state control technique that adapts to the time-

varying memory access behaviors of applications. We first proposed a two-stage DVFS

algorithm based on formulating the throughput-constrained energy minimization problem

as a multiple-choice knapsack problem (MCKP), assuming a priori characterization-based

or oracle knowledge of application behavior. This algorithm builds on an application phase-

dependent power model, which can be constructed offline using processor hardware perfor-

mance counters. We then present an online DVFS technique, called P-DVFS, that predicts

remaining execution time in order to control voltage and frequency to minimize energy con-

sumption subject to a soft performance constraint. P-DVFS requires no a priori knowledge

of application behavior. P-DVFS also uses a model that accurately captures the relationship

between performance and off-chip memory access rate. These two models, combined with

an execution time predictor, allow us to formulate the energy minimization problem as a

multiple-choice knapsack problem, which can be efficiently and optimally solved online.

Experimental results indicate that given a performance degradation ratio of 0.2, P-DVFS

leads to energy consumptions within 1.83% of the optimal oracle solutions on average

with a maximum deviation of 4.83%, whereas the most advanced related DVFS control

technique (F-DVFS) results in energy consumptions within 9.80% of the optimal oracle

solution on average with a maximum deviation of 29.86%. For the same performance

constraint, we found that P-DVFS also reduces power consumption by 9.93% on average
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and up to 25.64% compared to F-DVFS. These energy and power savings are all directly

measured on a real system.
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CHAPTER 8

Optimization Technique 3: Power-Constrained
Throughput Maximization in CMPs With Chip-Wide

DVFS

In the previous chapter, we investigate the impact of performance and power models

on local power state control techniques for throughput-constrained energy minimization.

As demonstrated in Chapter 7, with the aid of an accurate performance model and power

model, a predictive on-line DVFS control algorithm can precisely determine the trade-off

between performance and energy consumption, thus achieving close-to-optimum results

under a performance constraint by adapting to an application’s off-chip memory access

patterns.

In this chapter, we will explore the implications of accurate performance and power

models for performance optimization in CMP processors with chip-wide DVFS. This work

builds upon our observations and experience gathered from modeling and optimizing high-

performance processors. Having demonstrated (1) CAMP can accurately predict the cache

contention level in single-chip processors in Chapter 3 and (2) accurate power models can

aid online power control techniques for energy minimization in Chapter 7, we intend to ex-

amine the possibility of improving system-level performance in CMPs under the guidance

of such models. In particular, we plan to solve a power-constrained throughput maximiza-

tion problem for multi-chip, CMP platforms with chip-wide DVFS. Based on the con-
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clusions of Chapter 3 and Chapter 7, it is plausible to anticipate significant performance

improvement over prior techniques by (1) carefully selecting process-to-core mappings

during assignment and (2) intelligently adjusting voltage and frequency at runtime while

still honoring the power constraint.

With the pressing need to address on-chip power and thermal issues, CMPs are grad-

ually taking the place of single-core processors. Various power management techniques

have been proposed to maximize system performance under a given power constraint, most

of which assume availability of DVFS mechanisms to dynamically adjust system power

consumption. However, some solutions rely on open-loop ad hoc search without the aid

of accurate performance or power models, while others adopt over-simplified models in

their problem formulation, leading to suboptimal results (see Section 8.2. In addition, none

of them considered combining assignment techniques with local power state control algo-

rithms to systematically improve performance under a given power budget. This chapter

proposes a system-level performance maximization technique (PerfMax) subject to con-

straints on processor power consumption for a multi-chip CMP platform with chip-wide

DVFS. PerfMax consists of two major algorithms: a CAMP-guided assignment optimiza-

tion algorithm and an online DVFS control algorithm based on a nonlinear system-level

power model (NLP). The assignment optimization algorithm uses CAMP to predict the per-

formance impact of individual tentative assignment decisions and chooses the one that max-

imizes system-level throughput, accounting for cache contention, process phases, and off-

chip memory contention. The online DVFS control algorithm builds upon an application-

dependent performance model and a system-level power model, assuming the existence of

a power monitoring device. It formulates the power-constrained performance maximiza-
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tion problem as a constrained nonlinear programming problem, solves it online, and uses

the solutions to guide per-chip frequency selection. PerfMax combines the solutions from

both algorithms to produce a global solution that spans both the assignment layer and the

local power state control layer. We evaluate PerfMax using direct measurement of a real

DVFS-equipped system. When bounding power consumption to at most 87.5% of that at

the maximum frequency and voltage, PerfMax improves performance by 13.94% on aver-

age and up to 23.87% for SPEC CPU2000 benchmarks, and 16.7% on average and up to

34.03% for BioBench benchmarks when compared to the most closely related work, while

still honoring the power constraint.

The rest of the chapter is organized as follows. Section 8.1 motivates the power-

constrained performance maximization problem and summarizes our contributions. Sec-

tion 8.2 describes related work on process assignment and power control. Section 8.3

presents the problem definition and the proposed system architecture. Section 8.4 describes

CAMP-guided assignment optimization algorithm and explains how to handle multi-phase

processes and off-chip memory contention in addition to cache contention. Section 8.5 for-

mulates the target problem as a constrained nonlinear optimization problem by integrating

the performance model and the power model into the problem formulation. We also explain

how the power model adjusts itself during runtime based on the readings from the power

monitoring device to correct for model inaccuracies. Section 8.6 provides the experimental

setup and empirical experimental results conducted for PerfMax on a physical testbed with

different benchmark suites. We also compare the results with those produced by the most

related work. Section 8.7 concludes this chapter.
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8.1 INTRODUCTION

With the pressing need to address on-chip power and thermal issues without sacrificing

performance, CMPs are gradually taking the place of single-core processors. However,

power consumption still remains the major constraint for further performance improve-

ment of CMP processors due to the ever-increasing demand for single-thread performance

growth. In addition, the power consumption of a high-performance processor often needs

to be controlled to meet a predetermined design constraint.For example, the maximum

power density of computing equipment in a server room is usually limited, which can be

translated into different power constraints for each server in it. Similarly, a datacenter is de-

signed with a pre-determined power capacity, thus implicitly imposing a per-server power

constraint. In addition, the electricity bill of the datacenter directly depends on the peak

power it draws. By constraining the peak power of each server in the datacenter, we can

control and potentially cut down the eletricity cost. Finally, large-scale datacenters usually

employ over-subscription to maximally utilize the provisioned power capacity. In over-

subscribed datacenters, the sum of the possible peak power consumptions of the servers

is greater than the provisioned capacity. This indicates the necessity of having an intelli-

gent power management technique to dynamically control the power consumption of each

server to ensure that the datacenter power consumption never exceeds its capacity. How-

ever, a poorly designed power management scheme may be overly conservative, resulting

in unnecessary performance degradations. Therefore, an online power control technique

needs to be carefully designed to maximize system performance while ensuring the power

consumption stays below the allowed threshold.
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Researchers have proposed various power management mechanisms that trade off per-

formance for power consumption, among which DVFS remains the most popular method

due to its low overhead and high availability on modern CMP systems [71, 118, 66]. How-

ever, although researchers have studied the benefits and overheads associated with per-core

DVFS by implementing one on-chip regulator per core [62], most current processors are

still using off-chip voltage regulators (or a single on-chip regulator) to control the chip

voltage. Therefore, all the cores sitting on the same chip are forced to use the same CPU

voltage, although they may or may not use different frequencies [80]. Given the additional

design complexity and hardware overhead of adding per-core on-chip voltage regulators,

multi-chip CMPs with chip-wide DVFS capability are commonly seen. Such processors

often adopt a symmetric multiprocessor design with multiple cores sitting on each chip.

On these machines, non-uniform DVFS can still be achieved on a per-chip basis. Recent

work [118, 71] recognized this design constraint and proposed various optimization tech-

niques for these platforms.

There exist several major challenges to designing an effective power control algorithm

for a multi-chip CMP with chip-wide DVFS. First, during process assignment, the per-

formance and power implication of each tentative assignment decision must be carefully

evaluated. This is essential because assignment decisions can have a significant impact on

the overall power efficiency; serious missteps made during assignment might be too diffi-

cult to correct during local power state control (see Section 8.6). Second, processes running

on different cores may have different performance and power characteristics. For instance,

some cores may be running CPU-intensive processes with few cache misses, while others

are hosting memory-intensive processes with a large number of cache misses. Hence, the
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power control algorithm should be able to handle heterogeneous concurrently running pro-

cesses by simultaneously adjusting the power states of different cores to maximize power

efficiency under the given power budget. Third, the control strategy must adapt to tempo-

ral workload variations on different cores to achieve optimal control performance. Control

algorithms that rely on static models may lead to unnecessary performance degradations

and runtime power constraint violations due to model inaccuracies. Fourth, the control al-

gorithm must be extremely fast; performance overhead associated with the controller leads

to diminishing returns or even overwhelms the benefits of online power control. Finally,

the algorithm should require no changes to the underlying hardware or operating system so

that it is applicable to platforms with different architectures or operating systems.

Our work makes the following main contributions:

• We propose PerfMax, a two-stage algorithm for power-constrained performance max-

imization. Unlike most existing work that treats process assignment and local power

state control as two different problems, PerfMax considers them as two optimization

stages in our problem. It combines assignment decisions with power control tech-

niques to maximize performance on both levels, therefore achieving better results

than those when only a single stage is considered.

• While most prior work uses simple heuristics to guide process assignment such

as similarity grouping or complementary mixing (see Section 8.2), PerfMax uses

CAMP to predict the performance impact of individual tentative assignment deci-

sions and chooses the one that maximizes system-level throughput, accounting for

cache contention, process phases, and off-chip memory contention, which yields bet-
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ter prediction accuracy.

• Unlike most existing work that relies on open-loop search or heuristics for dynamic

power management, we formulate the power-constrained performance maximization

problem as a constrained nonlinear programming problem in PerfMax by integrating

application-dependent performance models and a system-level power model into the

problem formulation. PerfMax then solves the problem periodically during runtime

and uses the solutions to guide per-chip frequency selection.

• To accommodate temporal workload variations, the power model dynamically ad-

justs its parameters based on the feedback from the power monitoring device, en-

abling accurate power estimation. In addition, both the performance model and the

power model only require standard hardware performance counters (HPCs) for pre-

diction, results, thus requiring no changes to the underlying hardware or operating

system.

• While most existing work is validated using simulation, we evaluated PerfMax on

real physical platforms for different benchmark suites. We also compared PerfMax

with two state-of-the-art techniques: “Random + Priority” and “Similarity + MPC”

(see Section 8.6.5). Experimental results indicate that PerfMax is able to achieve

an average performance improvement of 13.94% for SPEC CPU2000 benchmarks

and 16.7% for BioBench benchmarks compared to the most related work, while still

honoring the desired power constraint.
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8.2 RELATED WORK

The proposed power-constrained performance maximization technique builds upon prior

work on performance-oriented process assignment optimization and dynamic power con-

trol.

Researchers have proposed performance maximization techniques by carefully select-

ing process-to-core mappings during process assignment. Merkel and Bellosa proposed a

memory-aware application scheduling technique for CMPs with chip-wide DVFS to mini-

mize energy-delay product [71]. Zhang et al. proposed grouping applications with similar

frequency-to-performance effects to create opportunities for setting a chip-wide desirable

frequency level in the later stage [118]. However, both techniques are solving different

problems from ours. In particular, they intend to maximize energy-delay product or en-

ergy savings with bounded performance degradations. In contrast, PerfMax solves a per-

formance maximization problem under a given power budget, thus requiring an accurate

power model. In addition, the “similarity” metric proposed by Zhang et al. is ad hoc and

thus may not applicable to other benchmarks or CMP systems with different architectures.

In contrast, PerfMax uses CAMP to accurately predict the performance implications of

each tentative assignment to select the best assignment, making it applicable to a wide

range of applications and platforms. Teodorescu and Torrellas proposed process variation

(PV) aware algorithms for application scheduling and power management by formulat-

ing the power-constraint throughput maximization problem as a linear programming prob-

lem [104]. They proposed assigning processes with highest IPC to cores with highest peak

frequency. However, our target platform is a multi-chip homogeneous CMP, in which dif-
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ferent cores have the same peak frequency, making the PV-aware assignment algorithm

inapplicable. In addition, they model the performance and processor power as linear func-

tions of frequency, leading to 132% and 9.1% error in performance and power estimation,

respectively [46]. In contrast, PerfMax relies on accurate performance and power models to

adapt to different application behavior (e.g., cache miss rates), leading to better prediction

accuracy and thus better results.

There is prior work on DVFS-based power control techniques in CMP systems. Isci et

al. analyzed several different policies for global CMP power management assuming per-

core DVFS is available [54]. They proposed MaxBIPS, a prediction based algorithm to

choose the combination of power modes for each core to maximize throughput while ad-

hering to a chip-level power constraint. However, they assume that performance is a linear

function of frequency and power is a cubic function of frequency, potentially resulting in

large estimation error and constraint violations. MaxBIPS uses exhaustive search to find the

best combination, making it inapplicable to CMPs with a large number of cores. Wang et

al. proposed a chip-level power control algorithm for performance optimization based on

model predictive control theory [111]. To our knowledge, their work is the closest to ours.

In their problem formulation, they intend to minimize the weighted sum of the quadratic

difference between each core’s frequency and the peak frequency, with each core’s weight

being its CPU utilization. In addition, they assume power consumption is a linear func-

tion of frequency and dynamically adjusts the coefficients in their power model based on

the feedback from the on-chip current sensor. However, their technique suffers from in-

accurate performance and power models and relatively large solver overhead, leading to

suboptimal results (see Section 8.6). Finally, none of the aforementioned power control
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algorithms considered the impact of process assignment on system-level throughput.

Some researchers considered the trade-off between performance and power. Li and

Martinez proposed dynamically adjusting the number of active cores and applying DVFS

to optimize power for a parallel application under a given performance constraint [66].

Lee et al. proposed a linear runtime performance projection model for dynamic power

management [65]. However, power is not a constraint in their problem formulation.

8.3 PROBLEM DEFINITION AND SYSTEM ARCHITECTURE

In this section, we first describe the formal definition for the power-constrained perfor-

mance maximization problem. We then explain the system architecture of PerfMax.

The power constrained throughput maximization problem in a chip-wide DVFS en-

abled, multi-chip CMP can be formulated as follows: given (1) K processes to be assigned

to a N -core, M -chip processor with chip-wide DVFS and (2) a power constraint Pmax ,

determine (1) the process assignment and (2) the chip-wide CPU frequency schedules for

each chip such that the the total system power is no more than Pmax while the system-level

throughput (measured in terms of IPS, i.e., number of instructions retired per second) is

maximized.In this dissertation, we focus on the scenario where K = N because it allows

us to simplify our explanations. We note that the same analysis can also be applied to cases

where K 6= N . In addition, we impose several constraints on the target problem: (1) we

examine the problem in a multi-programmed CMP environment, in which there is limited

communication among processes. (2) The processes of interest have limited I/O access. (3)

Process migration is not considered in this work.

In order to solve this problem, we make three important observations: (1) different pro-
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cess assignments have different impact on system performance. For example, when “art”

and “gzip” are running on the two cores of chip 0 and “mcf” and “mesa” are running on

the two cores of chip 1 on our two-chip, four-core testbed, the system-level throughput

is 18.6% higher than that when “art” and “mcf” are running on chip 0 and “gzip” and

“mesa” are running on chip 1. (2) Different power controllers can affect system perfor-

mance differently. For instance, we implemented two power controllers in prior work (see

Section 8.6). When “vpr”, “mesa”, “gzip”, and “parser” are simultaneously running on

our testbed with MPC being the power controller, the throughput is 7.76% higher than that

when using Priority to control the processor power. (3) When optimizing system through-

put, the assignment layer and the power control layer are weakly coupled. For example,

we conduct two experiments on our four-core, two-chip testbed (see Section 8.6) using

30 process combinations, each of which contains four processes randomly selected from

SPEC CPU2000 benchmarks. Hence, each process combination is associated with three

different assignments. In the first experiment, we determine the system throughput associ-

ated with three assignments for each process combination and identify the assignment with

the highest throughput. We note that no power controllers exist in this experiment, i.e., all

cores are running at the maximum frequency after the four processes are assigned. The

resulting 30 assignments are denoted as group A. In the second experiment, we determine

the amount of performance degradation (compared to the oracle solutions) as a result of

ignoring the inter-dependency between the assignment layer and the power control layer

when assigning processes. We first implemented the model predictive control (MPC) the-

ory based technique (see Section 8.6) as our power controller. The power constraint is set to

87.5% of the full CMP power. For each process combination, we then determine the differ-
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Figure 8.1: System architecture of PerfMax.

ence between the highest throughput achieved across all three assignments (denoted as the

oracle solution) and that achieved by using the corresponding assignment in group A, with

the MPC power controller dynamically adjusting the power to meet the power constraint

after the processes are assigned. Our experiments indicate that compared to the oracle so-

lutions, using the assignments in group A only degrades performance by 0.97% on average.

Combining these observations, we conclude that the power-constrained performance opti-

mization problem can be solved by dividing it into two subproblems, namely assignment

optimization and power control optimization, solving the two subproblems separately, and

combining the solutions together.

Figure 8.1 illustrates the system structure of PerfMax, the proposed solution to the

power-constrained throughput maximization problem. PerfMax consists of three compo-

nents: the assignment manager, the power manager, and the power monitoring and control
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layer. A N -core, M -chip machine has a single assignment manager, a single power man-

ager, a single local power monitor, and N core-level local controller.

The assignment manager (see Section 8.4) takes process-dependent information such

as feature vectors, instruction counts, and phase transition points (see Chapter 3) as inputs.

Such information can be gathered by profiling each individual process separately on a sin-

gle core of the target machine. The assignment manager is responsible for identifying the

best process-to-core mapping among all possible mappings. Ideally, it should be able to ac-

count for the performance impact due to cache contention and off-chip memory contention

as a result of each assignment to select the best candidate.

After the assignment decision is made, the power manager (see Section 8.5) is noti-

fied. The power manager periodically communicates with the local controllers sitting on

each core to collect statistics about currently running processes. Such information is then

converted to power estimations based on the system-level power model stored internally.

In order to adapt to temporal workload variations and compensate for inaccuracies in the

power model, the power manager also takes periodic readings from the local power moni-

tor as feedback and adjusts the power model accordingly. Finally, the power state control

algorithm embedded in the power manager uses per-core performance and power data to

determine the appropriate power states for each core while ensuring the power constraint is

not violated. Among the different functionalities of the power manager, the design of the

power state control algorithm is a major challenge, as explained in Section 8.1.

Within each core, the local controller collects process-dependent information such as

last-level cache miss rates using hardware performance counters and periodically sends it to

the power manager. In return, it receives power state updates from the power manager and

160



Process-dependent information
(feature vectors, instruction counts, 

phase transition points, etc.)

All assignments 

evaluated?

Find next assignment

All chips examined?

Use CAMP to 
estimate the  

throughput of 

the next chip

Compute system-level 

throughput TPcur

TPcur > TPmax?

TPmax = TPcur, record 

current assignment

Yes

No

No

Yes

Yes

No

Assignment 

manager

Best recorded 

assignment

Figure 8.2: System architecture of the assignment manager.

adjusts its frequency and voltage level accordingly. PerfMax also assumes the existence

of a local power monitor to provide processor power information during runtime. Such

monitoring module could be an on-chip current sensor similar to that available in the Foxton

controller of the Montecito chip [70] or an external measurement device such as a data

acquisition card connected to a current clamp that measures processor current.

8.4 CAMP-GUIDED PROCESS ASSIGNMENT OPTIMIZATION

In this section, we describe the assignment manager in PerfMax in more detail. We first

explain how to use CAMP to guide process assignment. We then discuss how to handle

multi-phase processes and off-chip memory contention.
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As explained in Chapter 3, CAMP provides us with a fast and accurate way to esti-

mate cache contention, and therefore instruction throughput, as a result of each tentative

assignment. It takes (1) process reuse distance histogram, (2) cache access frequency, and

(3) the relationship between performance and cache miss rate of each process as input and

accurately predicts the effective cache size of each process when they are simultaneously

running on different cores of the same chip. Hence, the assignment manager uses CAMP

to evaluate the performance implications of each individual assignment and selects the best

candidate.

Figure 8.2 illustrates the system architecture of the assignment manager in PerfMax.

The input to the assignment manager includes process-dependent information such as the
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feature vectors, instruction counts, and phase transition points. It then checks whether all

the assignments have been evaluated and if so, outputs the best recorded assignment. Oth-

erwise, it finds the next tentative assignment and uses CAMP to predict the instruction

throughput of each chip until all the chips have been examined. Finally, it computes the

aggregated system-level instruction throughput and saves or discards the current assign-

ment, depending on whether the current throughput TP cur is larger than the best recorded

throughput TPmax . Note that TPmax is initialized to -1, which is not shown in Figure 8.2.

8.4.1 Handling Multi-Phase Processes

When predicting the throughput of a single chip, CAMP uses a single cache reuse dis-

tance histogram for each process. However, processes can have phases due to loop-oriented

execution semantics, with each phase associated with a distinct cache reuse distance his-

togram [54]. Therefore, it is necessary to profile each phase of a process separately and

treat it as if it were a new process with its own feature vector during performance predic-

tion. Process phase detection has been well studied in the past [34, 55]. Since automatically

detecting phase transitions is beyond the scope of our work, we assume the phase transi-

tion points are known a priori. In our experiment, we sample the hardware performance

counters every 100 million instructions when profiling a process and identify the phase

transition points by grouping sample points with similar L2 cache miss rate patterns.

Figure 8.3 illustrates how the assignment manager uses CAMP to predict the perfor-

mance of multi-phase processes on a single chip. Although a 2-core chip is shown in

Figure 8.3, the algorithm is equally applicable to chips with more than two cores. Given

process information such as feature vectors associated with each phase and phase tran-
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sition points, the algorithm first checks whether either process has terminated and if so,

outputs predicted system-level throughput information since we are interested in the sys-

tem throughput when all processes are concurrently running. Otherwise, it identifies the

current phase of each process and uses the phase combination as lookup index to query

the prediction cache. Figure 8.3 shows a prediction cache with four entries, the first two

of which store the mappings from a phase combination to predicted per-process through-

put. If a cache hit occurs, the algorithm fetches the corresponding prediction results from

the prediction cache. Otherwise, it uses CAMP to predict each process’ throughput under

current phase combination and updates the prediction cache. Finally, it updates the current

phases of processes that encounter a phase transition point and repeats the aforementioned

steps. The algorithm terminates when any process exhausts its instructions.

8.4.2 Off-Chip Memory Contention

In addition to cache contention, the assignment manager must also take off-chip mem-

ory contention into account when estimating system performance. When using CAMP for

performance prediction, we assume that compared to cache contention, off-chip memory

contention has second-order effects on performance and thus can safely be ignored when

predicting performance. This assumption has been validated on multiple two-core pro-

cessors in Chapter 3 and is consistent with our experimental results. More specifically,

we examined all 55 pairwise combinations of 10 SPEC CPU2000 benchmarks (see Sec-

tion 8.6) on two cache-sharing cores of chip 0 on our two-chip processor while leaving

chip 1 idle (known as the 2-core case). Experimental results indicate CAMP has an av-

erage of 3.94% performance estimation error over all 55 combinations, with a maximum
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error of 13.86%. However, this assumption fails when all 4 cores are simultaneously host-

ing memory-intensive processes. For example, when four instances of “mcf” (a program

with high L2 cache miss rate) are concurrently running, the measured throughput is 28.52%

lower than the predicted throughput. We hypothesize that this inaccuracy is due to off-chip

memory contention. We first note that our target process has a 64-bit wide front side bus

(FSB) operating at a frequency of 266 MHz that performs 4 transfers per cycle [4]. Thus,

the memory bus transfer rate is 8× 266× 4 = 8.512 GB/s, assuming the memory bus and

FSB operate at the same frequency. On the other hand, the average MPS (number of L2

cache misses per second) of “mcf” is 1.517 × 107 in the 2-core case. In addition, the tar-

get processor always fetches two adjacent cache lines on a L2 cache miss [3]. Therefore,

the average system-wide MPS when four instances of “mcf” are concurrently running can

be calculate as 4 × 1.517 × 107 × 128 = 7.767 GB/s, which is very close to the memory

bus transfer rate of 8.512 GB/s. As a related experiment, we simultaneously run four in-

stances of each SPEC CPU2000 benchmark on four cores (known as the 4-core case) and

analyze the performance prediction errors. The experimental results are consistent with

our hypothesis: (1) the prediction errors are larger for processes with larger MPS and (2)

the prediction errors for processes with low MPS are the same for the 2-core case and the

4-core case.

Although the predicted system throughput deviates from the measurement results when

off-chip memory contention becomes severe due to increased number of L2 cache misses

when all cores are active, we note that the ultimate goal of the assignment manager is

to identify the best assignment among all candidates rather than produce accurate perfor-

mance estimations. Intuitively, a bad assignment, i.e., one that results in low throughput,
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causes more cache contention among processes and thus is more likely to generate more

L2 cache misses, which in turn leads to a higher off-chip memory contention level, fur-

ther deteriorating system performance. Therefore, we expect that CAMP has very good

fidelity when compared with an oracle performance model that takes both cache contention

and off-chip memory contention into account. To test this hypothesis, we first divide 10

SPEC CPU2000 benchmarks into two groups, with group A being the high cache miss-rate

group and group B being the low cache miss-rate group. We then evaluated 100 process

combinations, each of which consists of 3 benchmarks randomly selected from group A

and 1 benchmark randomly selected from either group A or group B. Experimental results

indicate that the best assignment selected by CAMP agrees with the measurement results

96% of the time, implying CAMP is able to guide process assignment under both cache

contention and off-chip memory contention.

The assignment manager solves Equation 3.7 using Newton–Raphson iteration, a stan-

dard numerical method for finding the roots of non-linear equations. In our prototype

system, we implemented CAMP in C. For our 2-chip, 4-core processor, the experimen-

tal results indicate that the average performance overhead per iteration is 4 ms. Since the

shortest execution time of the benchmarks we evaluated is approximately 40 s, we assume

the process arrival rate to be one per 40 seconds. Given an average number of 5 iterations

for each assignment, the performance overhead is 0.05% for each evaluation, or 0.15% per

process combination since each process combination is associated with three assignments.

In general, the number of chips under consideration influences the number of evaluations

per process combination and thus the performance overhead of the assignment manager.
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8.5 NLP-BASED POWER CONTROL WITH ONLINE MODEL ESTIMATION

In this section, we describe the details of the power manager in PerfMax. We first

present the problem formulation for power-constrained performance maximization. We

then describe how to translate the target problem into a constrained nonlinear optimiza-

tion problem using application-dependent performance models and a system-level power

model. We also empirically determine the performance overhead of the algorithm. Fi-

nally, we explain how to adjust the parameters in the power model to account for workload

variations and model inaccuracy.

8.5.1 Problem Formulation

Given that N processes are simultaneously running on an N -core, M -chip CMP with

chip-wide DVFS and Pmax is the power budget, the power-constrained throughput maxi-

mization problem can be formulated as follows:

Maximize
∑N

i=1 Perfi (8.1)

Subject to
∑N

i=1 Pi ≤ Pmax . (8.2)

Here Perfi and Pi represent the instruction throughput and the power consumption of core

i. Note that there is a hard constraint on Pi.

In real systems equipped with power control techniques, power control policies are

usually enforced at discrete time intervals. As in Chapter 7, we define a control point as a

time at which control decisions are made and a control period as the duration between two

consecutive control points. At each control point, the power manager solves Equation 8.1

subject to Equation 8.2 and uses the solution to choose per-chip frequency level for the next
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control period.

Since our control algorithm adjusts system performance and power consumption by

tuning each chip’s frequency and voltage, it is imperative to express Perfi and Pi as func-

tions of core i’s frequency fi (or equivalently, core i’s voltage). As indicated in Equation 7.3

in Chapter 7, Perfi (measured in BIPS, i.e., billion instructions per second) can be written

as

IPSi =
fi

αi ·MPAi · fi + βi

, (8.3)

where αi and βi are part of the feature vector of the process running on core i and MPAi

corresponds to the cache miss rate associated with core i. Note that although αi and βi are

derived by the assignment manager through off-line characterization (see Section 3.4) in

our experiment, they can also be computed online using linear regression to eliminate the

need for profiling, as demonstrated in Chapter 7. Since αi, MPAi, and βi in Equation 8.3

are either known a priori or easy to determine by sampling HPCs, IPSi only relies on fi.

Similarly, we can determine the relationship between Pi and fi following the approach

proposed in Chapter 4. More specifically, we use 10 SPEC CPU2000 benchmarks along

with micro-benchmarks that exercise individual architectural components with different

frequencies to build a system-level model that is used to estimate power consumption based

on HPC values and core frequency level. The average estimation error when building the

model is 3.18%. Combined with online model estimation (see Section 8.5.2), the power

model can accurately predict processor power consumption during runtime, thus helping

the power controller to improve system performance, as indicated in Section 8.6. Therefore,
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Pi = Pidle +c1 ·L1DPSi+c2 ·L2PSi+c3 ·L2MPSi+c4 ·FPPSi+c5 ·BRPSi+c6 ·f 2.5
i , (8.4)

where Pidle is the idle power of a core, while L1DPSi, L2PSi, L2MPSi, FPPSi, and BRPSi

are core i’s HPC values (see Section 7.3.2). In order to express Pi as a function that only

depends on fi, we note that L1DPSi = L1DPIi · IPSi. Given that (1) L1DPIi is a process

property and thus independent of fi and (2) IPSi only depends on fi, we can establish a

one-to-one mapping between L1DPSi and fi. Thus, Equation 8.4 can be transformed into

the following equation:

Pi = Pidle+(c1·L1DPIi+c2·L2PIi+c3·L2MPIi+c4·FPPIi+c5·BRPIi)·IPSi+c6·f 2.5
i . (8.5)

Let b0 = Pidle , b1 = c1 · L1DPIi + c2 · L2PIi + c3 · L2MPIi + c4 · FPPIi + c5 · BRPIi, and

b2 = c6, we have

Pi = b0 + b1 ·
fi

αi ·MPAi · fi + βi

+ b2 · f 2.5
i . (8.6)

Combining Equation 8.3 and Equation 8.6, a more concrete problem formulation follows.

Maximize
∑N

i=1
fi

αi·MPAi·fi+βi
(8.7)

Subject to
∑N

i=1(b0 + b1 · fi

αi·MPAi·fi+βi
+ b2 · f 2.5

i ) ≤ Pmax , (8.8)

fi = fj, ∀i, j on the same chip, and (8.9)

fmin ≤ fi ≤ fmax, 1 ≤ i ≤ N. (8.10)
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Equation 8.9 indicates cores on the same chip need to use the same frequency (and there-

fore voltage) level, while Equation 8.10 implies any feasible solution must fall within the

range between the minimum frequency level fmin and the maximum frequency level fmax.

Note that αi, βi, MPAi, b0, b1, and b2 are all positive constants that can be easily deter-

mined at each control point; the only unknown variables are fi, i = 1, · · · , N . Hence, the

formulation can be treated as a constrained nonlinear optimization problem. Since DVFS

has very low performance overhead (approximately 0.36% in our experiment), we do not

account for it in our problem formulation. We also note that our problem formulation can

be easily extended to incorporate other constraints such as temperature or handle CMPs

with per-core DVFS by slightly changing Equation 8.9.

We solve the constrained nonlinear problem optimally during runtime using “NLopt” [8],

an open-source library for nonlinear optimization. Our experiments indicate the nonlinear

programming solver has a performance overhead of less than 0.1%, given a control period

of 100 ms. More detailed analysis of solver overhead is presented in Section 8.6.4.

8.5.2 Online Model Estimation

The power manager is designed to achieve optimal results when the performance model

has good fidelity and the power model is accurate. Since there is a hard constraint on power,

accurately predicting power is of great importance to the power controller. However, it is

unrealistic to expect the power model to track the real processor power very closely at all

times without any feedback information. This is because (1) processes have phases and

thus temporal behavior variations and (2) the power model only considers the activities of

a subset of architectural components. To accommodate workload variations and compen-
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sate for inherent model inaccuracies, power manager periodically samples the local power

monitor and corrects the internal power model based on the measured power data. At each

control point, assuming Ppred and Pmesaure are predicted and measured processor power for

the most recent control period, the power manager updates the power model in Equation 8.4

according to the following formula:

Let e =
Pmeasure − Pidle

Ppred − Pidle
and

di = ci · (λ · e + (1− λ)), i = 1, · · · , 6,

Pi = Pidle + d1 · L1DPSi + d2 · L2PSi + d3 · L2MPSi

+ d4 · FPPSi + d5 · BRPSi + d6 · f 2.5
i . (8.11)

Here e represents the discrepancy between the prediction results and the measured data. A

perfect power model will always have an e value of 1. Depending on whether the power

model under-estimates or over-estimates processor power, we scale up or down the coef-

ficients ci, i = 1, · · · , 6. λ is the constant forgetting factor with 0 ≤ λ ≤ 1. A large

λ allows the power manager to forget the history faster. In our experiments, we set λ to

0.8. It is worth mentioning that we do not scale Pidle during model update because Pidle

can be accurately determined during offline model construction, therefore eliminating the

need for online estimation. To verify the benefit of online model estimation, we randomly

pick four processes, namely “ammp”, “bzip2”, “mesa”, and “twolf”, and run them simul-

taneously on our testbed. Our experiments indicate that the average estimation error is

2.35%, compared to 7.37% with a static power model. This suggests that adjusting power

model during runtime can effectively reduce model inaccuracies and thus potentially help
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the power controller to improve performance.

8.6 EXPERIMENTAL RESULTS

In this section, we first provide the experimental setup and the implementation details

of each component in PerfMax. We then present the experimental results regarding the

assignment manager, the power manager, and PerfMax, including comparisons with most

related work.

8.6.1 Experimental Setup

Our testbed is an Intel Core 2 Quad Q6600 processor running Linux 2.6.35, with core

0 and core 1 sitting on chip 0 and core 2 and core 3 sitting on chip 1. We note that cores

on the same chip must use the same voltage and frequency level, i.e., the same power

state. Our processor has a 4 MB, 16-way set-associative on-chip L2 cache with a cache

line size of 64 B. In addition, it supports four DVFS levels: 2.4 GHz, 2.13 GHz, 1.87 GHz,

and 1.6 GHz. Experimental results indicate the frequency transition overhead ranges from

50 µs to 100 µs.

We evaluated our technique on (1) 10 SPEC CPU2000 benchmarks that compiled on

our testbed (denoted as SPEC) and 6 BioBench benchmarks (denoted as BioBench) [13].

We did not consider “blast” in the BioBench benchmark suite because it is very disk I/O

intensive: we make no claims for disk intensive processes. SPEC includes four floating-

point programs and six integer programs, four of which have high cache miss rates. The

execution time of each benchmark ranges from 40 s to 276 s. BioBench includes six bioin-

formatics workloads, each of which represents a different application area within the larger

domain of data mining. Among the six programs, three of them have high cache miss rates.
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Their execution times range from 56 s to 328 s. For comparisons in Section 8.6.3, Sec-

tion 8.6.4, and Section 8.6.5, we conducted two sets of experiments. The first set includes

100 process combinations, each of which consists of four processes randomly selected from

SPEC CPU2000 (referred to as SPEC process combinations). The second set includes 50

process combinations containing processes randomly selected from BioBench (referred to

as BioBench process combinations).

We now introduce the implementation details of each component in PerfMax.

Assignment Manager: In our experiment, the assignment manager takes each process’

phase transition points and its feature vector, i.e., a 4-entry tuple consisting of API, α,

β (see Equation 3.3), and cache reuse distance program as input. For each process-to-

core mapping, it then uses Newton–Raphson iteration to solve the nonlinear equilibrium

equation, i.e., Equation 3.7. Finally, it finds the assignment with the highest throughput

and notifies the power manager.

Power Manager: In our experiment, the power manager is implemented as a C pro-

gram running on the same processor as the benchmarks to account for its performance and

power overhead. When started, it spawns a child process to communicate with a power log-

ging process sitting on another machine through a Unix domain socket. The child process

listens for new power samples and sends them to the power manager through a FIFO (a.k.a.

named pipe). In addition, the power manager accepts hardware performance counter value

samples from each core’s local controller through the same FIFO and stores them internally.

At each control point, the power manager computes the difference between the predicted

power and measured power for the last control period and updates the power model. It then

uses the globally–convergent method-of-moving-asymptotes (MMA) algorithm in NLopt
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to solve the constrained nonlinear optimization problem and notifies the local controller of

power state changes. In our experiment, the control period for the power manager is set to

100 ms. However, much shorter control periods can be used due to the low performance

overhead of our solver (0.064% overhead per invocation on our testbed).

Local Controller: The local controller is responsible for (1) periodically collecting

hardware performance counter values and sending them to the power manager and (2)

tuning the frequency and voltage levels after being notified by the power manager.

1. We use PAPI 4.1.2.1 [7] for hardware performance counter sampling and experimen-

tally determined that the overhead for accessing hardware performance counters is

negligible. Due to hardware limitations, we can only sample two architectural events

at a time. Given that five architectural event rates are needed for power estimation,

we time multiplex architectural event sampling with a switching interval of 10 ms.

2. We control the CPU frequency and voltage via the Linux CPUFreq driver. More

specifically, we use cpufreq set frequency() to control each chip’s power state. Please

note that when the frequency is changed, the voltage will be automatically adjusted

by the CPUFreq driver. It is also worth mentioning that the frequency solutions

provided by the power manager are continuous variables. Since the processor only

supports four discrete frequency levels, we divide each control period into K shorter

periods (known as “scaling periods”) and use first-order delta-sigma modulation to

generate the frequency sequence in each scaling period to emulate continuous DVFS

in a control period. In our experiment, we set K to 4. Given a frequency transition

overhead of 100 µs and a control period of 100 ms, the overhead of frequency modu-
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lation is 0.4% even in the worst case when the frequency level needs to be changed

in every scaling period and is thus negligible.

Local Power Monitor: To determine power consumption, we use a Fluke i30 current

clamp on one of the 12 V processor power supply lines, the output of which is sampled by

an NI USB6210 data acquisition card. An on-chip voltage regulator converts this voltage

to the actual processor operating voltage. We assume a fixed regulator efficiency of 90%.

Therefore, P = 0.9V · I = 10.8 · I , where P is the processor power and I is the mea-

sured current. A power logging process samples the data acquisition card at a frequency

of 10 kHz. It then computes the average power consumption and sends it to the power

controller every 10 ms.

8.6.2 Comparisons with Prior Work

In this section, we describe the most related work for the assignment manager, the

power manager, and PerfMax.

8.6.2.1 Assignment Manager: Our first baseline, referred to as Random, resembles a

typical industrial solution that intends to balance the workload on different chips. For each

assignment request, Random randomly groups processes into pairs and assigns each pair to

a different chip.

The second baseline, referred to as Similarity, is a heuristic-based assignment technique

proposed by Zhang et al. [118]. To the best of our knowledge, their work is the closest to

ours. They claim that most high cache miss rate processes do not benefit from an increased

cache size and yet aggressively occupy the cache space when running concurrently with

other processes on sibling cores. Therefore, Similarity groups applications with similar
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on-chip cache miss ratios to run on the same chip to reduce the adverse impact of high

miss ratio processes on low miss ratio processes. In our experiment, for each assignment

request, Similarity identifies the top two processes with higher miss ratios and schedules

them to run on the same chip, while the remaining two processes are paired together and

run on the other chip.

Both Random and Similarity are ad-hoc approaches that rely on simple and incomplete

observations to guide their assignment decisions. In particular, Random did not consider

the performance implications of each tentative assignment in terms of cache contention or

memory contention, leading to suboptimal results. Similarity tries to account for cache

contention by looking at a process’ cache miss ratio. However, as demonstrated in Chap-

ter 3, cache contention level not only depends upon the miss ratio when a process is run-

ning alone, but also its cache access frequency and reuse distance histogram. Therefore,

two co-running processes might generate many cache misses even if each has a low miss

ratio when running alone. The quality of the results produced by Similarity depends on

whether the cache miss ratio is sufficient to estimate cache contention: Similarity may

achieve good results when this is true and yet do poorly (even worse than Random) when

it is false, as demonstrated in Section 8.6.3. In contrast, our CAMP-guided assignment

manager (referred to as CAMP hereafter when there is no ambiguity) takes all these factors

into account when predicting cache contention levels, thus generating near-optimal results

(see Section 8.6.3).

8.6.2.2 Power Manager: Our first baseline, referred to as Priority, is a heuristic-based

approach for power control proposed by Isci et al. [54]. Priority represents a typical ad

hoc dynamic power management scheme when feedback information is available. In our
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experiment, Priority first assigns priorities to different chips. It then periodically checks

the current processor power and compares it with the power budget. When the power

constraint is violated, Priority identifies the core with the lowest priority whose frequency

level exceeds fmin and reduces its frequency level by one step. On the other hand, when

the current power is below the power budget, Priority chooses the core with the highest

frequency whose frequency level is below fmax and increases its frequency level by one

step.

As a proactive approach, Priority reacts after the power constraint is violated, making

it inappropriate for power control when the constraint is hard constraint. In addition, it

only lowers frequency by one step even when the current power consumption is signifi-

cantly higher than the power constraint, thereby producing long-lasting constraint viola-

tions. Similarly, Priority may miss precious opportunities for performance improvement

because it only raises frequency level by one step per control period even when there is a

large power slack. Both indicate Priority cannot adapt to workload variations. In contrast,

our power manager (referred to as NLP hereafter when no ambiguity exists) solves the con-

strained nonlinear programming problem, determines the exact frequency levels each chip

should use, and simultaneously adjusts the frequency levels of all the chips to the desired

value. Therefore, NLP can achieve better performance and respond to constraint violations

more quickly.

Our second baseline, known as MPC, is a power control algorithm based on model

predictive control theory. To the best of our knowledge, their work is the closest to ours.

MPC assumes that the power consumption of a core is a linear function of its frequency

whose parameters can be determined through offline characterization. Based on this as-
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sumption, MPC formulates the power-constrained performance maximization problem as a

standard constrained least squares problem whose objective function consists of two terms:

the first term represents the tracking error, i.e., the difference between the total power and

a reference trajectory along which the total power should change from the current power

to the power constraint Pmax. The second term represents the control penalty, which forces

MPC to optimize system performance by minimizing the difference between fmax and the

new frequency levels. In addition, MPC uses a control vector to represent the preference

among chips. In our experiment, we use a core’s CPU utilization level as its weight in the

control vector, as used by Wang et al. [111]. In addition, MPC uses recursive least square

estimator with directional forgetting to estimate and update its internal power model based

on power measurements. Compared with MPC, NLP uses more accurate performance and

power models and has a smaller performance overhead, both of which lead to better per-

formance than MPC. More detailed comparison between MPC and NLP are presented in

Section 8.6.4.

8.6.2.3 Combining Assignment and Power Control: To the best of our knowledge,

no prior work combines assignment techniques with local power control to address the

performance maximization problem in a power-constrained environment. Therefore, we

compare PerfMax with “Random + Priority” and “Similarity + MPC” to demonstrate the

effectiveness of PerfMax.

8.6.3 Evaluation Results – Assignment Manager

In this section, we provide detailed evaluation results for the assignment manager

(CAMP) and compare them with those of Random and Similarity (see Section 8.6.2). When

178



Table 8.1: Comparison Among Random, Similarity, and CAMP

Random Similarity CAMP
Benchmarks Accuracy (Avg., max.) Accuracy (Avg., max.) Accuracy (Avg., max.)

(%) degradation (%) (%) degradation (%) (%) degradation (%)
SPEC 47 (2.94, 23.34) 61 (1.46, 17.62) 93 (0.02, 2.07)
BioBench 46 (3.99, 21.45) 46 (2.4, 12.66) 90 (0.41, 12.66)

evaluating the assignment manager, we compare each assignment technique with an oracle

assignment manager that maximizes throughput. For each assignment technique, the accu-

racy is defined as the percentage of prediction results that agree with the oracle solutions,

while the performance degradation is defined with regard to the throughput (measured in

terms of IPS) of the oracle solutions.

Table 8.1 shows our evaluation results for CAMP and its competitors, where each row

shows the results for one benchmark suite. Columns two, four, and six present the ac-

curacies of Random, Similarity, and CAMP, while columns three, five, and seven show

the average and maximum performance degradation of each technique. For SPEC, CAMP

achieves the highest accuracy of 93%, compared to 47% for Random and 61% for Similar-

ity. This indicates CAMP can accurately account for cache contention, cache miss induced

memory contention, and process phases. In addition, CAMP results in the smallest av-

erage performance degradation of 0.02% (relative to the oracle results) with a maximum

degradation of 2.07%, compared to an average degradation of 2.94% with a maximum

degradation of 23.34% for Random and an average degradation of 1.46% with a maximum

degradation of 17.62% for Similarity. The average difference between the best assignment

and the worst assignment across all 100 SPEC process combinations is 5.1%, i.e., there is

little throughput difference between the best assignment and the worst assignment for most

179



of the combinations we evaluated. For the combinations where the best assignment and

the worst assignment differs by more than 5%, CAMP leads to 0.04% performance degra-

dation on average, while Random and Priority result in an average degradation of 4.85%

and 2.43%, respectively. The results are similar for BioBench benchmarks. In particular,

CAMP achieves the highest accuracy of 90%, while Random and Similarity achieve the

same accuracy of 46%. In addition, CAMP leads to an average performance degradation of

0.41% and up to 12.66%, compared to an average degradation of 3.99% and up to 21.45%

for Random and an average degradation of 2.4% and up to 12.66% for Similarity. We

also note that the average difference between the best assignment and the worst assignment

across all 50 BioBench process combinations is 5.72%.

We now examine the performance of the three techniques in more detail for a specific

benchmark, namely “art”. “art” is a low miss-ratio process when it runs alone. However,

when it runs together with other processes such as other instances of “art” itself on sibling

cores, it generates lots of cache misses because it is very sensitive to effective cache size.

We evaluated all 45 process combinations, each of which consists two instances of “art” and

two processes selected from the other 9 SPEC benchmarks. Experimental results indicate

that CAMP is able to predict correctly for all process combinations, while Random incurs

an average performance degradation of 4.95% with a maximum degradation of 21.01%

and Similarity leads to an average degradation of 7.8% with a maximum degradation of

20.26%. Random outperforms Similarity for this benchmark because Similarity is based

on the erroneous assumption that when two low miss-ratio processes are assigned to the

same chip, their behavior is close to that when either runs alone. Hence, Similarity cannot

correctly handle cache-sensitive processes such as “art” in SPEC and “fasta” in BioBench.
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Figure 8.4: Steady-state power deviations of Priority, MPC, and NLP.

In contrast, CAMP accurately predicts the cache contention level produced by each assign-

ment for processes with different cache behaviors, thus achieving better performance than

Random and Similarity.

8.6.4 Evaluation Results – Power Manager

In this section, we compare the evaluations results for our Power Manager, NLP, with

those of Priority and MPC.

8.6.4.1 Control Accuracy Comparison: For each experiment, the steady-state power

of a technique is defined as the average power during the entire execution, with the tech-

nique being the power controller. Ideally, the steady-state power should be very close to the

power constraint and yet smaller than the constraint: the smaller the deviation is, the more

power it uses and thus the higher the throughput might be (given a fixed power/performance
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ratio). The control accuracy is thus defined as the deviation between steady-state power and

the power constraint. In order to compare the control accuracy of the three techniques, we

randomly selected a SPEC benchmark “bzip2” and run four instances simultaneously on

four cores. We then evaluate the steady-state power of each technique for a set of power

constraints ranging from 45 W to 60 W with a step size of 1 W, as shown in Figure 8.4.

The average differences between the steady-state power and the power budget are 1.47 W,

0.33 W, and 0.11 W for Priority, MPC, and NLP, respectively. Hence, both MPC and NLP

are able to meet the power constraint, although NLP has a much smaller steady-state error,

indicating potentially better throughput. Priority has very large steady-state error and thus

cannot effectively control power. We note that the same argument also holds for other pro-

cess combinations. In our experiment, the control periods of Priority and MPC are set to

1 s, the same as those used by Wang et al. [111]. We experimentally determined that MPC

has an overhead of 8.315 ms. Hence, we hypothesize that they chose a control period of 1 s

to restrict the power controller overhead to 0.83%.

8.6.4.2 Analyzing A Typical Run:

Figure 8.5 (b), (c), and (d) represent the results of Priority, MPC, and NLP for a typical

run, during which “ammp” and “bzip2” are running on chip 0, while “mesa” and “twolf”

are running on chip 1. We also include the original power consumption curve when no

power control exists in Figure 8.5 (a) as a baseline. The power constraint is initially set

to 55 W. At time 20 s, we artificially reduce the constraint to 40 W to resemble emergency

situations in which the constraint must be suddenly reduced, e.g., due to hardware failures

or another machine in the same cluster as the target machine needs more power and has

a higher priority. At time 40 s, the power constraint is raised back to 55 W, indicating the
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Figure 8.5: A typical run of baseline, Priority, MPC, and NLP.

emergency has been resolved.

Priority starts with all cores running at the lowest frequency and gradually increases

the frequency levels until the power consumption exceeds the power budget. Since Priority

reduces frequency by one level when the constraint is violated and increases frequency

by one level when there is power slack, the processor power oscillates around the power

budget of 55 W because 55 W is between the power values of two adjacent frequency levels.

Hence, the power consumption never settles to the power budget.

MPC achieves a better control performance than Priority because it adopts a formal
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Table 8.2: Performance comparison among Priority, MPC, and NLP without guardbanding

Benchmarks
Max. violation (W) (Avg., max.) performance improvement (%)

Priority MPC NLP Priority MPC

SPEC
87.5% 7.51 3.99 1.26 (6.71, 19.37) (6.63, 16.97)
75% 9.78 5.45 1.19 (2.23, 8.08) (3.54, 8.86)

BioBench
87.5% 11.52 7.66 1.44 (7.04, 27.35) (7.54, 29.05)
75% 12.26 5.78 1.08 (4.4, 17.69) (5.03, 17.77)

approach to systematically reduce the difference between current power and the power

budget. In Figure 8.5 (c), MPC has a zero steady-state error with much smaller power

spikes than Priority. However, the power fluctuations are still much larger than NLP. In

particular, MPC has a maximum constraint violation of 1.63 W, while NLP only has a

maximum constraint violation of 0.47 W.

NLP performs the best among all three techniques: it precisely controls the CMP power

with very small steady-state errors (the maximum constraint violation is 0.47 W) by peri-

odically solving the constrained nonlinear optimization problem and selecting appropriate

frequency levels based on the solutions. In addition, it can quickly respond to changes in

power constraint, as illustrated in Figure 8.5 (d), making it attractive for use in servers and

large-scale datacenters.

8.6.4.3 Performance Comparison:

In order to compare the control performance achieved by each technique, we evaluated

the three techniques on 100 SPEC process combinations and 50 BioBench process com-

binations under different power constraints. Since both MPC and NLP require an initial

power model to start with, we used the power model built from SPEC to control the power

for BioBench in both techniques to examine how the offline power model accommodates

unknown applications. Table 8.2 presents the experimental results when no power guard-
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Table 8.3: Performance comparison among Priority, MPC, and NLP with guardbanding

Benchmarks
Max. violation (W) (Avg., max.) performance improvement (%)

Priority MPC NLP Priority MPC

SPEC
87.5% 0.0 0.0 0.0 (16.34, 24.95) (11.38, 20.88)
75% 0.0 0.0 0.0 (9.5, 14.85) (8.95, 12.96)

BioBench
87.5% 0.0 0.0 0.0 (18.14, 27.87) (13.64, 29.44)
75% 0.0 0.0 0.0 (12.48, 23.22) (10.91, 20.49)

banding is used. Column one refers to the benchmark suite we used. Column two describes

the power constraint we used as a percentage of the total power when all cores are running

at the maximum frequency. For example, a percentage of 87.5% indicates that the power

budget is set to 87.5% of the CMP power when all four processes are running at full speed.

Columns three, four, and five represent the maximum constraint violations across all pro-

cess combinations (100 for SPEC and 50 for BioBench). Columns six and seven show the

average and maximum performance improvement when comparing NLP to Priority and

MPC under the same power constraint. When the power constraint is set to 87.5% of the

maximum power, NLP has the smallest violation of 1.26 W for SPEC process combina-

tions, while the largest violations of Priority and MPC are 7.51 W and 3.99 W, respectively.

When the same constraint is used, NLP results in an average performance improvement of

6.71% with a maximum improvement of 19.37% when compared to Priority and an average

improvement of 6.63% with a maximum improvement of 16.97% when compared to MPC.

Hence, NLP is able to achieve a better performance with smaller constraint violations given

the same power budget as Priority and MPC. The same argument also holds for a different

power constraint (i.e., 75%) or a different benchmark suite (i.e., BioBench). However, we

note that without proper power guardbanding, all three techniques will violate the power

constraint due to workload variations and inaccuracies in the power model.
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Since the power constraint is a hard constraint, we need to set a power guardband and

subtract it from the real power constraint so that each technique never violates the power

budget. In our experiment, we use the maximum constraint violation across all the exper-

iments in Section 8.6.4 and Section 8.6.5 as the guardband. More specifically, the guard-

bands for Priority, MPC, and NLP are 12.26 W, 7.69 W, and 1.46 W. Table 8.3 presents

the experimental results when power guardbands are added. The columns have the same

meanings as in Table 8.2. As indicated in Table 8.3, all three techniques are able to meet

the power constraint when the power guardband is used. Since the results for both bench-

mark suites are similar, we only analyze the results for SPEC. When the power constraint

is set to 87.5% of the maximum power, NLP improves performance by 16.34% on average

and up to 24.95% when compared to Priority, and 11.38% on average and up to 20.88%

when compared to MPC. There are three reasons why MPC is less effective than NLP. First,

MPC uses a linear power model to map frequency to processor power. This is inaccurate

because the power consumption is linearly dependent on frequency and quadratically de-

pendent on voltage, which implies the power is a superlinear function of frequency, given

that a frequency change is always accompanied with a corresponding voltage change. In

contrast, NLP uses a nonlinear system-level power model that more accurately captures

the relationship between HPC values and power consumption, leading to better prediction

results and thus improved performance. Please note that the problem formulation in MPC

does not permit the use of a nonlinear power model or any model that depends on variables

other than frequency. Second, in MPC’s problem formulation, the quadratic difference be-

tween chip frequency and fmax is minimized to indirectly optimize performance. Hence,

MPC implicitly assumes a performance model in which throughput is a linear function of
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frequency. However, this may lead to suboptimal results as instruction throughput depends

on factors other than frequency, e.g., cache miss rates. In contrast, the objective function

in NLP is the system-level throughput based on a more accurate performance model that

accounts for not only core frequency but also last-level cache miss rate, thus yielding better

results. Finally, MPC has a control period of 1 s, as used by Wang et al. [111] to restrict the

controller performance overhead within 1%. Hence, it cannot respond to short-term tem-

poral workload variations (e.g., on the order of hundred milliseconds) very quickly, thus

leading to large constraint violations, or equivalently, worse performance. In contrast, NLP

has a much smaller overhead (0.064% given a control period of 100 ms) and is thus able to

use a shorter control period and adapt to temporal workload changes very quickly.

8.6.4.4 Impact of Model Accuracy on Results: In order to determine the perfor-

mance improvement due to enhanced model accuracy, we replaced the nonlinear power

model with the same linear model as that in MPC and evaluated the modified NLP (M-NLP)

using 100 SPEC process combinations and 50 BioBench process combinations. The power

constraint is set to 87.5% of the maximum power consumption. Without power guard-

banding, M-NLP and NLP have maximum constraint violations of 4.78 W and 1.44 W,

while NLP performs 3.09% better for SPEC process combinations and 1.73% better for

BioBench process combinations on average under the same constraint compared to M-

NLP. With power guardbanding, NLP has no constraint violations, while M-NLP violates

the constraint by 0.02 W, implying that a larger power margin is needed. In addition, NLP

improves performance over M-NLP by 7.52% for SPEC process combinations and 4.97%

for BioBench process combinations on average. Compared with Table 8.2, 53.95% of the

performance improvement is due to the improved power model for SPEC process com-
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Figure 8.6: Performance overhead of the power manager.

binations, while 29.76% of the performance improvement is due to the improved power

model for BioBench process combinations. Hence, we conclude that (1) the linear power

model in MPC result in larger constraint violations and degraded performance compared to

the nonlinear power model in NLP and (2) accurate power models are essential to power-

constrained performance maximization.

8.6.4.5 Solver Overhead Analysis: We analyze the controller overhead of MPC and

NLP and discuss their scalability. Figure 8.6 illustrates the average execution time of our

solver as a function of the number of cores in the CMP, assuming two cores per chip. For

MPC, we use the data reported by Wang et al. [110]. For our testbed, NLP costs 0.064 ms

per invocation, i.e., a performance overhead of 0.064% given a control period of 100 ms.

On the other hand, MPC takes 8.315 ms per invocation, which translates into a performance

overhead of 0.8% given a control period of 1 s. For a 32-chip CMP with 2 cores per chip,

NLP costs 2.21 ms per invocation, or equivalently, a performance overhead of 2.21%. On
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Table 8.4: Performance comparison among “Random + Priority”, “Similarity + MPC”, and
PerfMax without guardbanding

Benchmarks
Max. violation (W) (Avg., max.) performance improvement (%)

Ran + Pri Sim + MPC PerfMax Ran + Pri Sim + MPC

SPEC
87.5% 7.44 3.24 1.46 (8.9, 26.57) (8.38, 19.37)
75% 7.23 2.96 0.92 (2.81, 26.52) (3.62, 9.91)

BioBench
87.5% 11.73 7.69 1.31 (11.07, 31.88) (11.88, 36.31)
75% 9.88 6.53 0.97 (5.49, 20.59) (6.56, 21.11)

the other hand, MPC takes 174 ms per invocation, or equivalently, a performance overhead

of 17.4%. When considering many-core CMPs such as 1024-core CMPs with 2 cores per

chip, the performance overhead of NLP and MPC are 11.6% and 452.1%, respectively. In

summary, NLP has much better scalability than MPC.

8.6.5 Evaluation Results – PerfMax

In this section, we present the experimental results for PerfMax and its competitors,

i.e., Random combined with Priority (referred to as “Ran + Pri”) and Similarity combined

with MPC (referred to as “Sim + MPC”).

Although power guardband is required to ensure that the power constraint is always

honored, Table 8.4 present the results for the three techniques when no power guardbanding

is used to provide a conservative estimation of the performance improvement achievable by

PerfMax with no regard to constraint violations. When the power constraint is set to 87.5%

of the full CMP power, the maximum constraint violations for SPEC process combinations

are 7.44 W, 3.24 W, and 1.46 W for “Random + Priority”, “Similarity + MPC”, and Perf-

Max. Under the same power constraint, the maximum constraint violations for BioBench

process combinations are 11.73 W, 7.69 W, and 1.31 W for “Random + Priority”, “Sim-

ilarity + MPC”, and PerfMax. BioBench has larger constraint violations than SPEC for
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Table 8.5: Performance comparison among “Random + Priority”, “Similarity + MPC”, and
PerfMax with power guardbanding.

Benchmarks
Max. violation (W) (Avg., max.) performance improvement (%)

Ran + Pri Sim + MPC PerfMax Ran + Pri Sim + MPC

SPEC
87.5% 0.0 0.0 0.0 (19.65, 47.65) (13.94, 23.87)
75% 0.0 0.0 0.0 (11.1, 25.89) (9.69, 16.84)

BioBench
87.5% 0.0 0.0 0.0 (22.93, 44.3) (16.7, 34.03)
75% 0.0 0.39 0.0 (14.78, 29.99) (12.32, 24.49)

“Random + Priority” and “Similarity + MPC” because the power fluctuations in BioBench

are more frequent and larger than those in SPEC on average, causing Priority and MPC

to violate the constraint by a larger amount. In contrast, NLP accurately computes the ex-

act frequency levels to keep the total power below the constraint and is thus immune to

changes in workload behavior. Compared to “Random + Priority”, PerfMax improves per-

formance by 8.9% on average with a maximum improvement of 26.57% for SPEC process

combinations and 11.07% with a maximum improvement of 31.88% for BioBench, given

a constraint of 87.5% maximum CMP power. Under the same constraint, PerfMax im-

proves performance by 8.38% with a maximum improvement of 19.37% for SPEC process

combinations and 11.88% with a maximum improvement of 36.31% for BioBench process

combinations, when compared to MPC. When the power constraint is set to 75% of the full

CMP power, the results are similar.

Table 8.5 show the results when power guardbands are added. We note that the per-

formance improvements achieved by PerfMax in Table 8.5 are the actual improvements

when no constraint violations are allowed. As indicated in Table 8.5, both “Random +

Priority” and PerfMax are able to meet the power constraints, while “Similarity + MPC”

violates the constraint by 0.39 W when the power constraint is set to 75% of the full CMP

190



power, indicating the necessity of a larger power margin. When the power constraint is

set to 87.5% of the CMP power, PerfMax results in an average improvement of 19.65%

with a maximum improvement of 47.65% for SPEC process combinations, and an average

improvement of 22.93% with a maximum improvement of 44.3% for BioBench process

combinations, when compared to “Random + Priority”. Under the same constraint, Perf-

Max leads to an average improvement of 13.94% with a maximum improvement of 23.87%

for SPEC process combinations, and an average improvement of 16.7% with a maximum

improvement of 34.03% for BioBench process combinations, when compared to “Similar-

ity + MPC”. Hence, we conclude that PerfMax is able to achieve a much better control

performance compared to the most closely related work. Compared with Table 8.3 where

all three techniques use the same assignment scheme, CAMP further improves the perfor-

mance for SPEC process combinations by 3.31% and 2.56% on average when compared to

Random and Similarity. In addition, CAMP further improves performance for BioBench

process combinations by 4.79% and 3.06% on average when compared to Random and

Priority. Therefore, we conclude that combining assignments that lead to low contention

levels and adaptive local power control techniques produces better results than those when

optimizing performance within either of the two stages. The same argument holds when

changing the power constraint to 75% of the CMP power.

8.6.5.1 Deviation From Oracle Results: We define an oracle technique as one that

assigns processes and dynamically controls the power consumption in the best possible way

to maximize system performance. Moreover, this technique has knowledge of the future

power and performance implications of assignment decisions. Although PerfMax can sig-

nificantly improve performance compared to prior work under the same power constraint,
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it is still inferior to the oracle technique. This is because when assigning processes, the

assignment manager always chooses the assignment with the highest predicted throughput

when no power control techniques are applied. However, this assignment scheme deviates

from the oracle solution for two reasons: (1) CAMP may occasionally make wrong predic-

tions and thus pick the wrong assignment and (2) when optimizing system throughput, the

assignment layer and the power control layer are inter-dependent in that the local power

control technique can affect the choice of best assignment in the assignment layer. Hence,

an oracle technique accounts for the inter-dependency between the two layers when assign-

ing processes. However, these two layers are decoupled in PerfMax to simplify its design.

Consequently, this leads to degraded performance for cases where the oracle assignment,

i.e., one that maximizes throughput, differs from the one selected by the assignment man-

ager in PerfMax.

In order to determine how much the results generated by PerfMax deviate from the or-

acle solutions, we evaluate PerfMax on 100 SPEC process combinations and 50 BioBench

process combinations, each of which is associated with three different assignments. For

each process combination, we then compare the results produced by PerfMax with the

highest throughput among all three assignments. The power constraint is set to 87.5% of

the maximum CMP power. Experimental results indicate that PerfMax’s results deviate

from the optimal solutions by 0.39% on average and up to 3.63% for SPEC process com-

binations, and by 1.01% on average and up to 11.3% for BioBench process combinations.

Hence, we conclude that PerfMax can achieve close-to-oracle results for different bench-

marks under different power constraints.
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8.7 CONCLUSIONS

This chapter has described PerfMax, a power control technique for maximizing perfor-

mance in a power-constrained environment for multi-chip CMPs equipped with chip-wide

DVFS. PerfMax consists of two major components: the assignment manager and the power

manager. The assignment manager uses CAMP to accurately estimate the performance im-

pact of each tentative assignment and selects the best process-to-core mapping, accounting

for cache contention, process phases, and cache miss induced off-chip memory contention.

The power manager formulates the power-constrained throughput maximization problem

as a constrained nonlinear optimization problem based on accurate performance and power

models. During runtime, the power manager solves the problem optimally and use the

solution to guide frequency selection for different chips to control the CMP power while

maximizing the system-level throughput. We evaluated PerfMax on a physical testbed

with different benchmark suites. When the power constraint is set to 87.5% of the full

CMP power, PerfMax achieves an average performance improvement of 13.94% with a

maximum improvement of 23.87% for SPEC CPU2000 benchmarks, and an average im-

provement of 16.7% with a maximum improvement of 34.03% for BioBench benchmarks

when compared to the most related work, while still honoring the power constraint.
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CHAPTER 9

Conclusions

In this dissertation, we have presented a comprehensive set of modeling techniques

for design-time validation and run-time monitoring and optimization for high-performance

computer systems such as workstations and servers. We also described both software and

hardware optimization techniques that are motivated by the performance and power impli-

cations of such models.

We have designed and evaluated a shared cache aware performance model named

CAMP for CMPs in a multi-programmed environment. CAMP is capable of accurately

and quickly predicting the effective cache sizes of cache-sharing processes on a CMP ma-

chine using last-level cache access related information. Thanks to the hardware perfor-

mance counters that are built into most modern high-performance computers, CAMP does

not require modifications to applications, operating system, or the underlying hardware.

We also describe an automated way of gathering process-dependent information for using

CAMP online. CAMP has been validated on multiple CMP machines with different archi-

tectures. The average performance prediction error is 3.38% across 36 different process

combinations on a quad-core server and 1.57% across 55 different process combinations

on a dual-core workstation, respectively.

194



We presented a system-level power model for processor power estimation during run-

time in a multi-programmed CMP environment, account for core-wise time sharing and

chip-wise cache contention. Similar to CAMP, the power model makes use of hardware

performance counters, thus requiring no changes to the underlying hardware or software.

We validated the power model on a dual-core workstation and a four-core server. Experi-

mental results indicate the average error is 3.17% for the dual-core workstation across 60

different process-to-core mappings and 3.16% for the four-core server across 37 different

process-to-core mappings, respectively. We also explain how to integrate CAMP with the

power model for power estimation during assignment. We validated the combined model

on the four-core server. The average error is 2.38% across 83 different process-to-core

mappings.

We presented FATA, a temporally-adaptive asynchronous time marching technique for

fast and accurate dynamic thermal analysis. FATA improves performance by 38–138×

compared to the fourth-order globally adaptive Runge-Kutta method while maintaining ac-

curacy. We proved that step sizes of step doubling based globally adaptive fourth-order

Runge-Kutta method and Runge-Kutta-Fehlberg methods regardless of initial power pro-

file, thermal profile, and error threshold. We also analyzed the impact of temperature update

functions and step size adaptation methods on accuracy and performance of dynamic ther-

mal analysis. We concluded the combination used by FATA achieves the best performance

among all candidates while maintaining accuracy.

As indicated by CAMP, last-level cache affects system performance significantly, thus

making them the ideal target for optimization. We presented C-Pack, a lossless compres-

sion algorithm designed for fast, on-line cache compression using pattern matching and
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partial dictionary coding. C-Pack achieves a system-wide compression ratio of 61%, com-

parable to that achieved by most advanced related work. In addition, we reduced the pro-

posed algorithm to a register transfer level hardware implementation, which is twice as fast

as the best existing hardware implementations potentially suitable for cache compression.

Both CAMP and the system-wide power model indicates the last-level cache miss rate

is a good indicator of energy saving opportunities. Therefore, we proposed an off-chip

memory access-aware runtime DVFS control technique for performance-constrained en-

ergy minimization problem. We first proposed an oracle algorithm to determine the best

case energy savings achievable under a performance constraint, assuming a priori knowl-

edge about application behavior. We then proposed a practical on-line predictive DVFS

algorithm that is capable of generating close-to-optimal results without requiring a priori

knowledge of application behavior. Both algorithms have been evaluated on a real system.

When compared with the most advanced related work (F-DVFS), P-DVFS leads to energy

consumptions within 1.83% of the optimal oracle solutions on average with a maximum

deviation of 4.83%, whereas the F-DVFS results in energy consumptions within 9.80%

of the optimal oracle solution on average with a maximum deviation of 29.86%. In ad-

dition, P-DVFS also reduces power consumption by 9.93% on average and up to 25.64%

compared to F-DVFS.

Finally, we propose PerfMax, a throughput optimization technique for power con-

strained multi-chip CMPs equipped with chip-wide DVFS. PerfMax takes advantage of

accurate performance model and power model for throughput maximization across the

boundary of process assignment and local power state control. In particular, it relies on

CAMP to predict the performance implications of individual process-to-core mapping, con-
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sidering cache contention, off-chip memory contention, and process phases. In addition,

it formulates the power-constrained performance maximization as a constrained nonlinear

optimization problem, solves it optimally, and uses the solutions to guide chip frequency

selection. We evaluated PerfMax on a physical testbed and compared the results with those

produced by the most related work. Experimental results indicate when the power con-

straint is set to 87.5% of the full CMP power, PerfMax achieves an average performance

improvement of 13.94% with a maximum improvement of 23.87% for SPEC CPU2000

benchmarks, and an average improvement of 16.7% with a maximum improvement of

34.03% for BioBench benchmarks when compared to the most related work, while still

honoring the power constraint.
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