
Stochastic Analysis of Insurance Products

by

Ting Wang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Applied and Interdisciplinary Mathematics)

in The University of Michigan
2011

Doctoral Committee:

Professor Virginia R. Young, Co-chair
Professor Haitao Li, Co-chair
Associate Professor Erhan Bayraktar
Associate Professor Kristen S. Moore



c© Ting Wang 2011
All Rights Reserved



Dedicated to my family.

ii



ACKNOWLEDGEMENTS

This thesis would not have been possible without the support and encouragement

of my Ph.D. advisors Professor Virginia Young and Professor Haitao Li. They have

given me enormous freedom to pursue my own interests while providing me the right

amount of guidance to ensure that my work contributes to the mainstream research

in actuarial science and mathematical finance.

I would like to express my gratitude to Professor Erhan Bayraktar, who taught

me everything I know about probability and stochastic analysis.

I wish to thank Professor Virginia Young and Professor Erhan Bayraktar for being

my dissertation readers and Professor Haitao Li and Professor Kristen S. Moore for

serving on my thesis committee.

I owe many thanks to the Department of Mathematics, University of Michigan,

for providing me the financial support during the last five years.

Finally, I would like to thank my mother, Guoping Zhao, and my father, Heping

Wang, for their unconditional love and support. To them I dedicate this thesis.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Optimal asset allocation with reversible annuities . . . . . . . . . . . . . . . 1
1.2 Pricing and hedging mortality derivatives . . . . . . . . . . . . . . . . . . . . 3

II. Optimal reversible annuities to minimize the probability of lifetime ruin . 5

2.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Minimizing the probability of lifetime ruin . . . . . . . . . . . . . . . . . . . 8

2.2.1 Financial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 No borrowing restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Motivation for the Hamilton-Jacobi-Bellman variational inequality 12
2.3.2 Verification theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Linearizing the equation for ψ via duality arguments . . . . . . . . 17
2.3.4 Relation between the FBP and the minimum probability of ruin . . 23
2.3.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Borrowing restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 HJB variational inequality and verification theorem . . . . . . . . . 27
2.4.2 Solving for ψ via duality arguments . . . . . . . . . . . . . . . . . . 28
2.4.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

III. Maximizing the utility of consumption with reversible annuities . . . . . . 67

3.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.1 The financial market and reversible life annuities . . . . . . . . . . 71
3.2.2 Utility of lifetime consumption . . . . . . . . . . . . . . . . . . . . 72
3.2.3 A preliminary discussion . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.4 A verification theorem . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Determining the maximized utility U . . . . . . . . . . . . . . . . . . . . . . 81
3.3.1 Two special cases: p = 0 and p = 1 . . . . . . . . . . . . . . . . . . 81
3.3.2 The case for which p < p∗ . . . . . . . . . . . . . . . . . . . . . . . 84

iv



3.3.3 The case for which p ≥ p∗ . . . . . . . . . . . . . . . . . . . . . . . 103
3.4 Properties of the optimal strategies . . . . . . . . . . . . . . . . . . . . . . . 111

3.4.1 Properties of z0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.4.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.4.3 Optimal strategies as γ →∞ . . . . . . . . . . . . . . . . . . . . . 119

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

IV. Hedging pure endowments with mortality derivatives . . . . . . . . . . . . . 126

4.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.2 Incomplete market of financial and mortality derivatives . . . . . . . . . . . 129

4.2.1 Mortality model and financial market . . . . . . . . . . . . . . . . . 129
4.2.2 Pricing the pure endowment via the instantaneous sharpe ratio . . 133

4.3 Properties of P (n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.4 Limiting behavior of
1

n
P (n) as n→∞ . . . . . . . . . . . . . . . . . . . . . . 155

4.5 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

v



LIST OF FIGURES

Figure

2.1 The region for solving minimum probability of ruin when borrowing against annuity
is allowed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2 Ruin probabilities and optimal investment strategies for different p when A is 0 . . 54
2.3 Ruin probabilities and optimal investment strategies for different p when A is 0.25 55
2.4 Ruin probabilities and optimal investment strategies for different p when A is 0.5 . 56
2.5 Ruin probabilities and optimal investment strategies for different p when A is 0.75 57
2.6 Ruin probabilities and optimal investment strategies for different p when A is 0 . . 58
2.7 Ruin probabilities and optimal investment strategies for different p when A is 0.25 59
2.8 Ruin probabilities and optimal investment strategies for different p when A is 0.5 . 60
2.9 Ruin probabilities and optimal investment strategies for different p when A is 0.75 61
2.10 Ruin probabilities and optimal investment strategies for different p when A is 0 . . 62
2.11 Ruin probabilities and optimal investment strategies for different p when A is 0.25 63
2.12 Ruin probabilities and optimal investment strategies for different p when A is 0.5 . 64
2.13 Ruin probabilities and optimal investment strategies for different p when A is 0.75 65
2.14 b as a function of p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1 Optimal annuitization strategies for small and large proportional surrender charges 123
3.2 Optimal consumption strategies for wealth equal to zero . . . . . . . . . . . . . . . 124
3.3 Optimal investment strategies for wealth equal to zero . . . . . . . . . . . . . . . . 124
3.4 Maximized utilities when the proportional surrender charges differ . . . . . . . . . 125
3.5 How the proportional surrender charge p affects the maximized utility . . . . . . . 125
4.1 Price of hedged pure endowment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

vi



LIST OF TABLES

Table

3.1 How do the proportional surrender charge p and risk aversion γ affect annuitization?116
3.2 How do the proportional surrender charge p and risk aversion γ affect investment? 117
3.3 How do the proportional surrender charge p and risk aversion γ affect consumption?118

vii



CHAPTER I

Introduction

In this dissertation, we study two insurance products: (i) reversible annuities and

(ii) mortality derivatives.

1.1 Optimal asset allocation with reversible annuities

For a single premium immediate life annuity (SPIA), in exchange for a lump

sum payment, a company guarantees to pay the annuitant a fix amount of money

periodically until his or her death. With the assumption that there are only bonds

and annuities in the financial market, Yaari [1965], as well as Davidoff et al. [2005]

among others, prove that it is optimal for an individual with no bequest motive to

fully annuitize. In reality, the volume of voluntary purchases by retirees is much lower

than predicted by such models, which is the so-called “annuity puzzle.” According

to a recent survey in the United Kingdom by Gardner and Wadsworth [2004], the

dominant reason given for not wanting to annuitize is the preference for flexibility.

In Chapter II and III, we propose an innovative annuity product, namely, a re-

versible annuity. Our goal is to reveal the relation between the reversibility (a type of

flexibility) of annuities and retirees’ reluctance to annuitize. The reversible annuity,

which is a SPIA with a surrender option, has a surrender value equal to its purchase

price less a proportional surrender charge (denoted by p). We assume the existence

1
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of a market of reversible life annuities, a riskless asset (bond or money market), and

a risky asset (stock). A retiree is allowed to purchase additional annuity income or

to surrender his or her existing annuity income. We investigate the behavior of the

retiree under two distinct criteria: (i) minimizing the probability of lifetime ruin, the

probability that one’s wealth will reach zero before his death and (ii) maximizing

the utility of lifetime consumption.

Mathematically, the reversibility of annuities complicates the optimal decisions

of the retirees in both problems. For each problem, the optimal strategies of the

retiree include continuous controls, instantaneous controls, and singular controls.

We solve the two-dimensional control problems via duality arguments and validate

the optimality of these solutions through verification theorems. Taking advantage of

a duality argument, we are able to express the value functions and optimal strategies

in semi-analytical forms, that is, transforms of explicit functions. In each problem,

we find a critical value p∗ such that the optimal strategies are divided into two

categories depending on whether or not p is larger than p∗.

In Chapter II, we assume that the retiree consumes at an exogenous rate, and we

determine the optimal investment strategy, as well as the optimal time to annuitize or

to surrender, in order to minimize the probability of lifetime ruin. We find that when

p ≥ p∗, the individual will not buy life annuities unless he or she can buy enough

to cover all of consumption. When p < p∗, the retiree is more willing to annuitize

and purchases annuities to cover part of the exogenously given consumption. This

chapter is based on Wang and Young [2009]. Parts of this work has been presented

at 44th Actuarial Research Conference, Madison, Wisconsin, July 30, 2009.

In Chapter III, we consider the optimal strategies of a utility-maximizing retiree

with constant relative risk aversion. In this setting, the consumption of the retiree
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becomes a control variable. Adjusting the consumption level is an important strat-

egy for the retiree to avoid bankruptcy. We find that when p ≥ p∗, a retiree does

not surrender existing annuity income under any circumstance. The retiree stops in-

vesting in the risky asset and consumes less than existing annuity income as wealth

approaches zero. In other words, an individual behaves as if annuities are not re-

versible at all when p ≥ p∗. When p < p∗, a retiree surrenders enough annuity income

to keep wealth non-negative, as needed, and continues to invest in the risky asset as

wealth approaches zero. This chapter is based on Wang and Young [2010b]. Part of

this work has been presented at Department of Statistics and Actuarial Science, Uni-

versity of Waterloo, February 11, 2011; Department of Mathematics, University of

Pittsburgh, January 6, 2011; SIAM Conference on Financial Mathematics and Engi-

neering, San Francisco, November 19, 2010; Department of Mathematics, University

of Michigan, November 29, 2009.

1.2 Pricing and hedging mortality derivatives

Mortality risk, which is is due to the uncertain development of future hazard rates,

has attracted much attention in recent years. Many capital market instruments have

been proposed to deal with mortality risk for annuity providers and pension funds;

see Dowd et al. [2006], Blake and Burrows [2001], and Blake et al. [2006]. However,

few researchers have focused on the effectiveness of hedging mortality risk with the

proposed mortality-linked derivatives; one notable exception is the work of Lin and

Cox [2005].

In Chapter IV, we price pure endowments assuming that the issuing company

hedges its contract with a mortality forward in order to minimize the variance of

the value of the hedging portfolio and then requires compensation for the unhedge-
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able part of the mortality risk in the form of a pre-specified instantaneous Sharpe

ratio. We investigate the hedging efficiency by comparing the prices of the hedged

pure endowments and the corresponding unhedged ones. By analyzing the partial

differential equations whose solutions are values of pure endowments, we identify

the properties of the prices of pure endowments and the factors that affect hedging

efficiency. This chapter is based on Wang and Young [2010a] . Part of this work

has been presented in the 6th International Longevity Risk and Capital Markets

Solutions Conference, Sydney, Australia, September 9, 2010.



CHAPTER II

Optimal reversible annuities to minimize the probability of
lifetime ruin

2.1 Introduction and motivation

The so-called “annuity puzzle” is that in financial markets for which annuity

purchase is not mandatory, the volume of voluntary purchases by retirees is much

smaller than predicted by models, such as those proposed by Yaari [1965], Richard

[1975] and Davidoff et al. [2005]. Although life annuities provide income security

in retirement, very few retirees choose a life annuity over a lump sum. According

to a recent survey exploring attitudes towards annuitization among individuals ap-

proaching retirement in the United Kingdom by Gardner and Wadsworth [2004],

over half of the individuals in the sample chose not to annuitize given the option.

Whether the option was 100% annuitization or only partial (50%) annuitization, the

attitude was the same. The dominant reason given for not wanting to annuitize in

the survey is the preference for flexibility. It is well known that annuity income is

not reversible. In other words, annuity holders can neither surrender for a refund

nor short-sell (borrow against) their earlier purchased annuities, even when such a

deal is desirable.

In this paper, we explore a way to add flexibility to life annuities by proposing a

financial innovation, specifically a reversible annuity, an immediate life annuity with

5
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a surrender option. The option to surrender allows an annuity holder to either borrow

against or surrender any portion of her annuities at any time when she is still alive.

The purchase value of this reversible annuity is determined by the expected present

value of future payments to the annuity holder, which follows the same principle as

regular annuities. The surrender value is set as a fixed proportion of its purchase value

at the time of surrendering. The surrender value can also be viewed as the purchasing

value less a proportional surrender charge, which is a combination of transaction

cost, operating charge, and compensation for adverse selection. To explore how this

reversible annuity would work for retirees as a reliable flow of income, as well as an

asset able to be surrendered under certain personal circumstance, we investigate the

optimal investment strategy and optimal annuity purchase and surrender strategies

for an individual who seeks to minimize the probability that she outlives her wealth,

also called the probability of lifetime ruin. In other words, we assume that the retiree

consumes at a exogenous level, and we determine the optimal investment strategy,

as well as the optimal time to annuitize or to surrender, in order to minimize the

probability that wealth will reach zero before her death.

As a risk metric, the probability of lifetime ruin is widely used to investigate op-

timization problems faced by retirees in a financial market. This metric was first in-

troduced by Milevsky and Robinson [2000] in a static environment and was extended

by Young [2004a] to a stochastic environment without immediate life annuities. A

recent paper by Milevsky et al. [2006a] determined the optimal dynamic investment

policy for an individual who consumes at a specific rate, who invests in a complete

financial market, and who can buy irreversible immediate life annuities. Milevsky,

Moore, and Young show that the individual will not annuitize any of her wealth until

she can fully cover her desired consumption with an immediate life annuity. Addi-
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tionally, Bayraktar and Young [2009] investigate the optimal strategy for an retiree

in a financial market with deferred (not immediate) life annuities. Within the topic

of minimizing probability of lifetime ruin in a complete financial market without life

annuities, Bayraktar et al. [2008] consider the case for which the exogenous con-

sumption is random, and in Bayraktar and Young [2008], consumption is ratcheted

(that is, it is a non-decreasing function of maximum wealth). Bayraktar and Young

[2007c] investigate the optimal strategy when consumption level is deterministic but

borrowing is constrained.

In contrast to the literature mentioned above, we allow an individual not only

to buy an immediate life annuity, but also to surrender existing immediate life an-

nuities with a proportional surrender charge. This reversibility of life annuities and

the incompleteness of the annuity market (due to the proportional surrender charge)

creates a more complex optimization environment and makes the problem mathe-

matically challenging. Our model can be viewed as a generalization of the model

by Milevsky et al. [2006a] in which annuities are irreversible, and the limiting case

for which the surrender value of existing annuity approaches zero is consistent with

their study.

Our work is the first to investigate the optimal strategies for a retiree in a market

with reversible immediate life annuities. We comprehensively analyze the annuitiza-

tion and investment strategies for such a retire. We focus on how the proportional

surrender charge, which ranges from 0% to 100% of the purchasing value of annu-

ity, affects an individual’s optimal strategies. We predict that, when the surrender

charge is low enough, the individual has incentive to annuitize partially. This distin-

guishes our model from the one with irreversible annuities, in which an individual is

only willing to fully annuitize. This difference shows that the flexibility offered by
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reversible annuities might be able to resolve the “annuity puzzle.”

The remainder of the paper is organized as follows: In Section 2, we present the

financial market in which the individual invests her wealth. In addition to investing

in riskless and risky assets, the individual can purchase reversible immediate life an-

nuities. In Section 3, we consider the life annuity as part of her total wealth, thereby

allowing her assets to have negative value as long as the imputed surrender value

of her annuity makes her total wealth positive. We prove a verification theorem

for the minimal probability of lifetime ruin in this case, and we obtain the minimal

probability, along with optimal investment and annuitization strategies. In Section

4, we consider the case for which individual is forced to keep the value of her risk-

less and risky assets non-negative (excluding the surrender value of the annuity) by

surrendering the annuity when needed. It turns out that the optimal annuitization

strategy depends on the size of the proportional surrender charge. We consider the

case when the charge is large in Section 4.2.1, and in Section 4.2.2, we discuss the

case when the charge is small.

2.2 Minimizing the probability of lifetime ruin

In this section, we describe the financial market in which the individual can invest

her wealth, and we formulate the problem of minimizing the probability of lifetime

ruin in this market. We allow the individual to purchase and surrender her reversible

life annuity at any time.

2.2.1 Financial model

We consider an individual with future lifetime described by the random variable

τd. Suppose τd is an exponential random variable with parameter λS, also referred to

as the force of mortality or hazard rate; in particular, E[τd] = 1/λS. The superscript
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S indicates that the parameter equals the individual’s subjective belief as to the

value of her hazard rate.

We assume that the individual consumes wealth at a constant rate of c ≥ 0; this

rate might be given in real or nominal units. One can interpret c as the minimum

net consumption level below which the individual cannot (or will not) reduce her

consumption further; therefore, the minimum probability of lifetime ruin gives a

lower bound for the probability of ruin under any consumption function bounded

below by c.

The individual can invest in a riskless asset, which earns interest at the constant

rate r ≥ 0. Also, she can invest in a risky asset whose price satisfies

dSt = µSt dt+ σ St dBt, S0 = S > 0, (2.2.1)

in which µ > r, σ > 0, and B is a standard Brownian motion with respect to a

filtration F = {Ft} of a probability space (Ω,F ,P). We assume that B is independent

of τd, the random time of death of the individual. If c is given as a real rate of

consumption (that is, inflation adjusted), then we also express r and µ as real rates.

Moreover, an individual can buy any amount of reversible immediate life annuity

or surrender any portion of her existing annuity income and receive some fraction

of its value. The purchase price of an immediate life annuity that pays $1 per year

continuously until the insured’s death is given by

a =

∫ ∞
0

e−rse−λ
Os ds =

1

r + λO
, (2.2.2)

in which λO > 0 is the constant objective hazard rate that is used to price annuities.

In other words, in return for each $a the individual pays for an immediate life annuity,

she receives $1 per year of continuous annuity income until she dies.
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Due to the reversibility of the life annuity, she can surrender any amount of the

annuity she owns. The surrender value for $1 of annuity income is (1 − p)a with

0 < p ≤ 1. The factor p is the proportional surrender charge. In other words, the

individual can get $(1−p)a dollars from the issuer by giving up $1 of annuity income.

Notice that the surrender value is less than the purchase price, and the difference is

the surrender charge (in dollars).

Let Wt denote the amount of wealth the individual has invested in the risky and

riskless assets at time t, with πt in the risky asset and Wt−πt in the riskless. Let A+
t

denote the cumulative amount of annuity income bought on or before time t, and let

A−t denote the cumulative amount of annuity income surrendered on or before time

t. Then, At = A+
t −A−t represents the cumulative amount of immediate life annuity

income at time t. The investment and annuitization strategy {πt, At}t≥0 is said to

be admissible if the processes {πt}t≥0 and {A±t }t≥0 are adapted to the filtration F, if∫ t
0
π2
s ds <∞, almost surely, for all t ≥ 0, and if At ≥ 0, almost surely, for all t ≥ 0.

The wealth dynamics of the individual for a given admissible strategy are given by

dWt = [rWt−+(µ−r)πt−−c+At−]dt+σπt−dBt−adA+
t +a(1−p)dA−t , W0 = w ≥ 0.

(2.2.3)

By “lifetime ruin,” we mean that the individual’s wealth reaches the line w =

−(1 − p)aA before she dies. We denote the time of ruin by τ0 , {t ≥ 0 : W π,A
t +

(1 − p)aAπ,At ≤ 0}. In Section 3, we allow wealth (namely, the value of the riskless

and risky assets) to be negative with the individual effectively borrowing against her

annuity income. Then, in Section 4, we require that wealth remain non-negative.

Note that τ0 is independent of τd. The minimum probability of lifetime ruin ψ for

the individual at time 0 is defined by



11

ψ(w,A) , inf
{πt,At}

P
[
τ0 < τd

∣∣∣W0 = w,A0 = A, τd > 0, τ0 > 0
]
. (2.2.4)

Remark 2.2.1. Notice that because we assume that the hazard rates λS and λO, as

well as the financial parameters r, µ, and σ, are constant, ψ only depends on the

state variables w and A and not upon time.

Remark 2.2.2. We can derive an equivalent form for the minimum probability of

ruin due to the independence of the τd from τ0 :

ψ(w,A) = inf
{πt,At}

P
[
τ0 < τd

∣∣∣W0 = w,A0 = A, τd > 0, τ0 > 0
]

= inf
{πt,At}

E
[∫ ∞

0

λSe−λ
St 1{0≤τ0≤t} dt

∣∣∣W0 = w,A0 = A, τd > 0, τ0 > 0

]
= inf

{πt,At}
E
[∫ ∞

τ0

λSe−λ
St dt

∣∣∣W0 = w,A0 = A, τd > 0, τ0 > 0

]
= inf

{πt,At}
E
[
e−λ

Sτ0
∣∣∣W0 = w,A0 = A, τd > 0, τ0 > 0

]
. (2.2.5)

We will use this expression in our proof of verification theorem in next section.

Remark 2.2.3. Milevsky et al. [2006a] show that if one only allows irreversible life

annuities, then the individual will not buy a life annuity until her wealth is large

enough to cover all her consumption. Specifically, if w ≥ (c−A)a, then it is optimal

for the individual to spend (c−A)a to buy an immediate annuity that will pay at the

continuous rate c − A for the rest of her life. This income, together with the prior

income of A, will cover her desired consumption rate of c. In this case, the individual

will not ruin, under the convention that if her net consumption rate becomes c, then

she is not considered ruined even if her wealth is 0. (The latter occurs if her wealth

is identically (c− A)a immediately before buying the annuity.)
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2.3 No borrowing restriction

In this section, we consider the case in which the individual’s wealth w is allowed

to be negative, as long as w + (1 − p)aA is positive. Effectively, the individual is

allowed to borrow against her life annuity income.

2.3.1 Motivation for the Hamilton-Jacobi-Bellman variational inequality

Let us first consider the strategies one can choose to minimize the probability of

ruin. Before ruin occurs or the individual dies, she can execute one or more of the

following strategies: (i) purchase additional annuity income, (ii) surrender existing

annuity income, or (iii) do neither.

Now, suppose that at point (w,A), it is optimal not to purchase or surrender any

annuity income. In this case, we expect ψ will satisfy the equation

λSψ = (rw − c+ A)ψw + min
π

[
(µ− r)πψw +

1

2
σ2π2ψww

]
. (2.3.1)

Because the above policy is in general suboptimal, (2.3.1) holds as an inequality;

that is, for all (w,A),

λSψ ≤ (rw − c+ A)ψw + min
π

[
(µ− r)πψw +

1

2
σ2π2ψww

]
. (2.3.2)

As we shall prove later, no continuous purchase of lifetime annuity income is

optimal; that is, the problem of purchasing or surrendering annuity is one of singular

control. Thus, if at the point (w,A), it is optimal to purchase annuity income

instantaneously, then the individual moves instantly from (w,A) to (w − a∆A,A +

∆A), for some ∆A > 0. The optimality of this decision implies that

ψ(w,A) = ψ(w − a∆A,A+ ∆A), (2.3.3)

which in turn yields

aψw(w,A) = ψA(w,A). (2.3.4)
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Similarly, if it is optimal to surrender annuity income at the point (w,A), the

following equation holds:

ψ(w,A) = ψ(w + (1− p)a∆A,A−∆A), (2.3.5)

which implies

(1− p)aψw(w,A) = ψA(w,A). (2.3.6)

Notice that the surrender value is a portion of the value of annuity determined by

the proportional surrender charge p.

In general, such purchasing or surrendering policies are suboptimal; therefore,

(2.3.4) and (2.3.6) hold as inequalities and become

aψw(w,A) ≤ ψA(w,A), (2.3.7)

and

(1− p)aψw(w,A) ≥ ψA(w,A). (2.3.8)

Because the individual will either buy additional annuity income, surrender existing

annuity income, or neither, we expect that the probability of lifetime ruin is a solution

of the following Hamilton-Jacobi-Bellman (HJB) variational inequality

max

{
λSψ − (rw − c+ A)ψw −min

π

[
(µ− r)πψw +

1

2
σ2π2ψww

]
,

aψw(w,A)− ψA(w,A), ψA(w,A)− (1− p)aψw(w,A)

}
= 0.

(2.3.9)

Define ws(A) ,
pc

1
a
− (1− p)r

− aA, in which A is the existing annuity income. At

the point (ws(A), A), suppose an individual borrows w̃(A) ,
(c− A)a− ws(A)

1− ra
at

the interest rate r. She, then, has wealth ws(A) + w̃(A), which she spends to buy

1

a
(ws(A)+w̃(A)) additional life annuity income. Therefore, the total annuity income
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she has is A+
1

a
(ws(A)+w̃(A)) = rw̃(A)+c, which is just enough to cover the interest

for the debt and the consumption and thereby ensure that lifetime ruin is impossible.

Note that ws(A) is the minimum required wealth to execute this strategy, so we call

it the safe level for the case in which we allow wealth w to be negative. If asset

and annuity income initially satisfy w ≥ ws(A), then the individual will immediately

execute this strategy to guarantee that her probability of lifetime ruin is zero. It

follows that

ψ(w,A) = 0, (2.3.10)

for w ≥ ws(A).

Recall that ruin occurs when w + (1− p)aA ≤ 0, from which it follows that

ψ(w,A) = 1, (2.3.11)

for w ≤ w(A) , −(1− p)aA.

The two boundaries ws(A) and w(A) meet at A =
c

1− (1− p)ra
> 0 as in Figure

2.1. Thus, it remains to solve the minimum probability of ruin in the region

D ,

{
(w,A) : w(A) ≤ w ≤ ws(A), 0 ≤ A <

c

1− (1− p)ra

}
.

2.3.2 Verification theorem

The discussion in Section 3.1 motivates the following verification theorem:

Theorem 2.3.1. For any π ∈ R, define the functional operator Lπ through its action

on a test function f by

Lπf = [rw + (µ− r)π − c+ A]fw +
1

2
σ2π2fww − λSf, (2.3.12)

Let v = v(w,A) be a non-increasing, non-negative, convex function of w that is twice-

differentiable with respect to w, except possibly at w = ws(A) where we assume that
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it has right- and left-derivatives, and that is differentiable with respect to A. Suppose

v satisfies the following conditions on D:

1. Lπv(w,A) ≥ 0 for any π ∈ R.

2. avw(w,A)− vA(w,A) ≤ 0.

3. (1− p)avw(w,A)− vA(w,A) ≥ 0.

4. v(w(A), A) = 1, where w(A) is the lower boundary of wealth for the problem.

Then,

v(w,A) ≤ ψ(w,A), (2.3.13)

on D.

Proof. Suppose {πt} is an admissible investment strategy, and define τn , {t ≥ 0 :∫ t
0
π2
t dt ≥ n} and τ , τ0 ∧ τn, which is a stopping time with respect to the filtration

F. Then, by using Itô’s formula for semi-martingales, we can write

e−λ
Sτv(Wτ , Aτ ) = v(w,A) +

∫ τ

0

e−λ
Stvw(Wt, At)σ πtdBt +

∫ τ

0

e−λ
StLπtv(Wt, At)dt

+

∫ τ

0

e−λ
St [vA(Wt, At)− avw(Wt, At)] d(A+

t )(c)

+

∫ τ

0

e−λ
St [(1− p)avw(Wt, At)− vA(Wt, At)] d(A−t )(c)

+
∑

0≤t≤τ

e−λ
St [v(Wt, At)− v(Wt−, At−)] .

(2.3.14)

Here, (A±)(c) is the continuous part of A±; that is,

(A±t )(c) , A±t −
∑

0≤s≤t

(A±s − A±s−). (2.3.15)

Since v is non-increasing and convex in w, v2
w(w,A) ≤ v2

w(w(A), A) for w ≥ w(A).

Therefore,

E
[∫ τ

0

e−2λSt v2
w(Wt, At)σ

2 π2
t dt

∣∣∣∣W0 = w,A0 = A

]
<∞, (2.3.16)
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which implies that

E
[∫ τ

0

e−λ
St vw(Wt, At)σ πt dBt

∣∣∣∣W0 = w,A0 = A

]
= 0. (2.3.17)

By taking expectations of equation (2.3.14), as well as using (2.3.17) and Condi-

tions 1, 2, and 3 in the statement of the theorem, we obtain

E
[
e−λ

Sτv(Wτ , Aτ )
∣∣∣Wt = w,At = A

]
≥ v(w,A). (2.3.18)

In deriving (2.3.18), we also use the fact that

∑
0≤t≤τ

e−λ
St [v(Wt, At)− v(Wt−, At−)] ≥ 0, (2.3.19)

because Assumptions 2 and 3 imply that v is non-decreasing in the direction of

purchase and surrender.

Since τn ↗∞ and v is bounded, applying the dominated convergence theorem to

(2.3.18) yields

E
[
e−λ

Sτ0v(Wτ0 , Aτ0)
∣∣∣W0 = w,A0 = A, τd > 0, τ0 > 0

]
≥ v(w,A). (2.3.20)

By using Assumption 4, one can rewrite (2.3.20) as

v(w,A) ≤ E
[
e−λ

Sτ0
∣∣∣W0 = w,A0 = A, τd > 0, τ0 > 0

]
. (2.3.21)

From this expression and from (2.2.5), we infer that

v(w,A) ≤ inf
{πt,At}

E
[
e−λ

Sτ0

∣∣∣∣W0 = w,A0 = A, τd > 0, τ0 > 0

]
= ψ(w,A).

(2.3.22)
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We will use the following corollary of Theorm 2.3.1 to determine ψ, the minimum

probability of ruin, along with an optimal investment and annuitization strategy.

Corollary 2.3.1. Suppose v satisfies the conditions in Theorem 2.3.1 and addition-

ally is the probability of ruin associated with an admissible strategy, then v = ψ on

D and the associated strategy is optimal.

2.3.3 Linearizing the equation for ψ via duality arguments

We hypothesize that in the region D\{w = ws(A) or w = w(A)} as defined in

Section 2.3.1, the optimal strategy for minimizing the probability of ruin is neither

to purchase nor to surrender any life annuity income. In other words, the individual

does not buy any additional annuity income until her wealth reaches the safe level

ws(A), which is consistent with the results of Milevsky et al. [2006a]. Additionally,

the individual never surrenders her annuity income. Intuitively, this makes sense

because we count the annuity income’s wealth equivalence in the ruin level w(A)

and thereby allow the individual to borrow against future annuity income without

actually forcing her to surrender the annuity.

Under this hypothesis, the first inequality in the HJB variational inequality (2.3.9)

holds with equality in the region D\{w = ws(A) or w = w(A)}, and the minimum

probability of ruin ψ is the solution to the following boundary-value problem (BVP)

λSψ = (rw − c+ A)ψw + min
π

[
(µ− r)πψw +

1

2
σ2π2ψww

]
, (2.3.23)

with the boundary conditions

ψ(w(A), A) = 1, (2.3.24)

and

ψ(ws(A), A) = 0. (2.3.25)
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After solving this BVP, we will show that its solution satisfies the conditions of the

Verification Theorem 2.3.1 to verify our hypothesis.

To solve the BVP, we transform the nonlinear boundary value problem above

into a linear free-boundary problem (FBP) via the Legendre transform. Assume

ψ(w,A) is convex with respect to w, which we verify later; therefore, we can define

the concave dual ψ̂ of ψ by

ψ̂(y, A) = min
w≥w(A)

[ψ(w,A) + wy]. (2.3.26)

The critical value w∗(A) solves the equation ψw(w,A) + y = 0; thus, w∗ = I(−y, A),

in which I is the inverse of ψw with respect to w. It follows that

ψ̂y(y, A) = I(−y, A), (2.3.27)

ψ̂yy(y, A) = − 1

ψww(w,A)

∣∣∣∣∣
w=ψ−1

w (−y,A)

, (2.3.28)

ψ̂A(y, A) = ψA(w,A)
∣∣∣w=ψ−1

w (−y,A), (2.3.29)

and

ψ̂Ay(y, A) = ψAw(w,A)ψ̂yy(y, A)
∣∣∣w=ψ−1

w (−y,A). (2.3.30)

Rewrite the differential equation (2.3.23) in terms of ψ̂ to get

− λSψ̂ − (r − λS)yψ̂y +my2ψ̂yy + y(c− A) = 0, (2.3.31)

in which m =
1

2

(
µ− r
σ

)2

. The general solution of (2.3.31) is

ψ̂(y, A) = D1(A)yB1 +D2(A)yB2 +
c− A
r

y, (2.3.32)
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in which

B1,2 =
1

2m

(
(r − λS +m)±

√
(r − λS +m)2 + 4mλS

)
, (2.3.33)

with B1 > 1 and B2 < 0. It remains for us to determine the coefficients D1(A) and

D2(A) via the two boundary conditions.

To that end, consider the boundary conditions (2.3.24) and (2.3.25). Define

y(A) = −ψw(w(A), A), (2.3.34)

and

ys(A) = −ψw(ws(A), A). (2.3.35)

We will show later that ys(A) ≤ y(A), which is obvious if ψ is decreasing and convex

with respect to w. Then, for the free boundaries y(A) and ys(A), we obtain from

(2.3.24) and (2.3.34)
ψ̂(y(A), A) = ψ(w(A), A) + w(A)y(A) = 1− (1− p)aAy(A),

ψ̂y(y(A), A) = w(A) = −(1− p)aA;

(2.3.36)

and from (2.3.25) and (2.3.35)
ψ̂(ys(A), A) = ψ(ws(A), A) + ws(A)ys(A) =

(
pc

1
a
− (1− p)r

− aA
)
ys(A),

ψ̂y(ys(A), A) = ws(A) =
pc

1
a
− (1− p)r

− aA.

(2.3.37)

Next, we find D1(A) and D2(A) along with y(A) and ys(A). To do so, we use the

four equations in (2.3.36) and (2.3.37) to find these four unknowns in terms of A.

Substitute (2.3.32) into (2.3.36) and (2.3.37) to get

D1(A)y(A)B1 +D2(A)y(A)B2 +
c− A
r

y(A) = 1− 1− p
r + λO

Ay(A), (2.3.38)
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D1(A)B1y(A)B1−1 +D2(A)B2y(A)B2−1 +
c− A
r

= − 1− p
r + λO

A, (2.3.39)

D1(A)ys(A)B1 +D2(A)ys(A)B2 +
c− A
r

ys(A) =

(
pc

pr + λO
− A

r + λO

)
ys(A),

(2.3.40)

and

D1(A)B1ys(A)B1−1 +D2(A)B2ys(A)B2−1 +
c− A
r

=
pc

pr + λO
− A

r + λO
. (2.3.41)

From (2.3.40) and (2.3.41), solve for D1(A) and D2(A) to obtain

D1(A) =
1−B2

B1 −B2

1

ys(A)B1−1

(
pc

pr + λO
− A

r + λO
− c− A

r

)
< 0, (2.3.42)

D2(A) =
B1 − 1

B1 −B2

1

ys(A)B2−1

(
pc

pr + λO
− A

r + λO
− c− A

r

)
< 0. (2.3.43)

Substituting D1(A) and D2(A) into (2.3.39) gives

− 1− p
r + λO

A =
B1(1−B2)

B1 −B2

x(A)B1−1

(
pc

pr + λO
− A

r + λO
− c− A

r

)
+
B2(B1 − 1)

B1 −B2

x(A)B2−1

(
pc

pr + λO
− A

r + λO
− c− A

r

)
+
c− A
r

(2.3.44)

with x(A) , y(A)/ys(A) as a function of A.

With A fixed, (i) if x(A) = 1, the right-hand side of (2.3.44) equals
pc

pr + λO
−

A

r + λO
= ws(A) > − 1− p

r + λO
A = w(A); (ii) if x(A) → +∞, then the right-hand

side of (2.3.44) approaches −∞; and (iii) one can show that the right-hand side is

strictly decreasing with respect to x(A). Therefore, there exists a unique x(A) > 1

that satisfies equation (2.3.44).

Substitute for D1(A) and D2(A) into (2.3.38) to get

1

y(A)
=
c− A
r

+
1− p
r + λO

A+

(
pc

pr + λO
− A

r + λO
− c− A

r

)
·
(

1−B2

B1 −B2

x(A)B1−1 +
B1 − 1

B1 −B2

x(A)B2−1

)
.

(2.3.45)
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Then, by the definition of x(A), the solution for ys(A) is simply

ys(A) =
y(A)

x(A)
. (2.3.46)

Thus, we have solved the FBP given in (2.3.31), (2.3.36), and (2.3.37), and we state

this formally in the following proposition.

Proposition 2.3.1. The solution of the FBP (2.3.31) with conditions (2.3.36) and

(2.3.37) is given by (2.3.32), with D1(A), D2(A), y(A), ys(A), and x(A) defined in

(2.3.42), (2.3.43), (2.3.45), (2.3.46), and (2.3.44), respectively.

Next, we determine some properties of ψ̂(y, A); in particular, we show that it is

concave. Also, notice that we can rewrite the inequalities (2.3.7) and (2.3.8) in terms

of ψ̂ as

ψ̂A(y, A) ≥ − 1

r + λO
y, (2.3.47)

ψ̂A(y, A) ≤ − 1− p
r + λO

y, (2.3.48)

for ys(A) ≤ y ≤ y(A), and we show below that these inequalities hold for our solution

ψ̂.

For notational simplicity, we drop the argument A in w(A), ws(A), y(A), and

ys(A) in much of the remainder of this subsection. By taking the derivative of

(2.3.44) with respect to A, we get(
ws −

c− A
r

)
(B1 − 1)(1−B2)

B1 −B2

{
B1x(A)B1−1 −B2x(A)B2−1

} dx(A)/dA

x(A)

=

(
1

r
− 1− p
r + λO

)
−
(

1

r
− 1

r + λO

) w − c− A
r

ws −
c− A
r

.

(2.3.49)

It is easy to check that the right-hand side of the equation above is 0, which implies

that

dx(A)

dA
= 0. (2.3.50)
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In other words, x(A) = x is a constant, independent of A, and the equation (2.3.44)

holds for all A with the same value x > 1.

By taking the derivative of (2.3.45) and (2.3.46) with respect to A, we get

dys(A)

dA
= −ys(A)

λO

r(r + λO)

1

ws(A)− c− A
r

. (2.3.51)

Also, after substituting for D1(A) and D2(A) in (2.3.32), we differentiate ψ̂(y, A)

with respect to A to get

ψ̂A(y, A) = −y

{(
1

r + λO
− 1

r

)[
1−B2

B1 −B2

(
y

ys

)B1−1

+
B1 − 1

B1 −B2

(
y

ys

)B2−1
]

+
1

r

}

− dys(A)

dA

(B1 − 1)(1−B2)

B1 −B2

(
ws(A)− c− A

r

)[(
y

ys

)B1

−
(
y

ys

)B2
]
.

(2.3.52)

Proposition 2.3.2. ψ̂(y, A) given by Proposition 2.3.1 is concave with respect to y

and satisfies inequalities (2.3.47) and (2.3.48).

Proof. First, it is straightforward to show the positivity of y(A) from (2.3.45). This

confirms that y(A) = ys(A)x > ys(A) > 0 because x > 1. It follows that ψ̂(y, A) is

concave with respect to y since both D1(A) < 0 and D2(A) < 0, and both B1(B1 −

1) > 0 and B2(B2 − 1) > 0.

To prove the inequalities, we first substitute (2.3.51) into (2.3.52) to get

ψ̂A(y, A) = y
λO

r(r + λO)

[
B1(1−B2)

B1 −B2

(
y

ys

)B1−1

+
(B1 − 1)B2

B1 −B2

(
y

ys

)B2−1
]
− y

r
,

(2.3.53)

Substitute the expression for ψ̂A(w,A) from (2.3.53) into inequalities (2.3.47) and

(2.3.48) to obtain the equivalent inequalities

1 ≥ r + λO

r
− λO

r

[
B1(1−B2)

B1 −B2

(
y

ys

)B1−1

+
(B1 − 1)B2

B1 −B2

(
y

ys

)B2−1
]
≥ 1− p.

(2.3.54)
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Notice that the first inequality holds with equality if y = ys(A) and the second

inequality holds with equality if y = y(A). Define the auxiliary function

f(z) =
B1(1−B2)

B1 −B2

zB1−1 +
(B1 − 1)B2

B1 −B2

zB2−1, (2.3.55)

which is increasing for 1 =
ys(A)

ys(A)
≤ z ≤

y(A)

ys(A)
= x. Indeed, in this interval,

f ′(z) =
(B1 − 1)(1−B2)

B1 −B2

[
B1z

B1−2 −B2z
B2−2

]
> 0. (2.3.56)

It follows that, for ys(A) ≤ y ≤ y(A), the inequality (2.3.54), and equivalently

(2.3.47) and (2.3.48) hold.

In the next section, we rely on the work in this section to show that the convex

dual of ψ̂(y, A) equals the minimum probability of ruin ψ(w,A).

2.3.4 Relation between the FBP and the minimum probability of ruin

In this section, we show that the Legendre transform of the solution to the FBP

given in (2.3.31), (2.3.36), and (2.3.37) is in fact the minimum probability of ruin

ψ. Since ψ̂ is concave from Propostion 2.3.2, we can define its convex dual via the

Legendre transform for w ≥ w(A) as

Ψ(w,A) = max
y≥0

[ψ̂(y, A)− wy]. (2.3.57)

Given A, the critical value y∗ solves the equation ψ̂y(y, A) − w = 0. Thus y∗(A) =

I(w,A), in which I is the inverse of ψ̂y. In this case, we also have expressions similar

to those in (2.3.27)-(2.3.30).

Given ψ̂, we proceed to find the boundary-value problem that Ψ solves. In the

partial differential equation for ψ̂ in (2.3.31), let y = I(w,A) = −Ψw(w,A) to obtain

λSΨ(w,A) = (rw − c)Ψw(w,A)−m Ψ2
w(w,A)

Ψww(w,A)
. (2.3.58)
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Notice that we can rewrite (2.3.58) as

min
π
LπΨ = 0, (2.3.59)

with the minimizing strategy π∗ given in feedback form by

π∗(w,A) = −µ− r
σ2

Ψw(w,A)

Ψww(w,A)
. (2.3.60)

Therefore, Ψ satisfies Condition 1 in Verification Theorem 2.3.1.

Next, consider the boundary conditions for (2.3.31). First, the boundary condi-

tions at ys(A), namely ψ̂(ys(A), A) = ws(A)ys(A) and ψ̂y(ys(A), A) = ws(A), imply

that the corresponding dual value of w is ws(A) and that

Ψ(ws(A), A) = 0. (2.3.61)

Similarly, the boundary conditions at y(A), namely ψ̂(y(A), A) = 1 +w(A)y(A) and

ψ̂y(y(A), A) = w(A), imply that the corresponding dual value of w is w(A) and that

Ψ(w(A), A) = 1. (2.3.62)

Finally, Propostion 2.3.2 implies that

aΨw(w,A)−ΨA(w,A) ≤ 0, (2.3.63)

and

(1− p)aΨw(w,A)−ΨA(w,A) ≥ 0. (2.3.64)

Therefore, Ψ(w,A) satisfies Conditions 2 and 3 in Theorem 2.3.1.

From Ψw(w,A) = −y∗(A) and the fact that y ≥ ys(A) > 0, Ψ(w,A) is decreasing

with respect to w, and consequently 0 ≤ Ψ(w,A) ≤ 1 for (w,A) ∈ D due to (2.3.61)

and (2.3.62). Thus, Ψ is the minimum probability of ruin by Corollary 2.3.1, and we

state this formally in the next theorem.
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Theorem 2.3.2. The minimum probability of ruin ψ(w,A) for (w,A) ∈ D, in which

D is defined by D =

{
(w,A) : w(A) ≤ w ≤ ws(A), 0 ≤ A <

c

1− (1− p) r
r+λO

}
equals

Ψ(w,A) in (2.3.57). The associated optimal annuitization and investment strategies

are given by

1. never to surrender existing annuity income;

2. to purchase additional annuity income only when wealth reaches ws(A), the safe

level;

3. for w ∈ D\{w = ws(A) or w = w(A)}, to invest the following amount of wealth

in the risky asset:

π∗(w,A) = −µ− r
σ2

ψw(w,A)

ψww(w,A)
.

2.3.5 Numerical examples

In this section, we present numerical examples to demonstrate the results of Sec-

tion 2.3.4. We calculate the probabilities of lifetime ruin ψ(w,A), as well as the

associated investment strategies π∗(w,A) for different values of the existing annuity

income A and the surrender charge p. We use the following values of the parameters

for our calculation:

• λS = λO = 0.04; the hazard rate is such that the expected future lifetime is 25

years.

• r = 0.02; the riskless rate of return is 2% over inflation.

• µ = 0.06; the drift of the risky asset is 6% over inflation.

• σ = 0.20; the volatility of the risky asset is 20%.

• c = 1; the individual consumes one unit of wealth per year.
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We focus on how the surrender penalty affects the probability of ruin and the

optimal investment strategy.

Figures 2.2-2.5 show the ruin probability ψ(w,A) and the associated optimal

investment π∗(w,A) in the risky asset with the parameters described above, as well

as with values for A and p as indicated in the figures. Each curve gives values from

w = w(A) to w = ws(A), in which w(A) and ws(A) vary with respect to A and p.

This is the reason why each curve lies in a distinct domain. From the figures, we can

see that the proved properties are verified in these examples: the probability of ruin

is decreasing and convex with respect to w. We also observe that investment in the

risky asset increases as wealth increases for each case.

2.4 Borrowing restriction

In this section, we consider the case in which the individual is forced to keep

her wealth non-negative by surrendering the life annuity when needed. With this

restriction, the situation is different from the one we studied in the previous section

because in this section, the individual cannot borrow against future life annuity

income. It is reasonable to apply this restriction because if the individual were to

die, then the annuity income ceases. Therefore, if the individual were to borrow

against future annuity income and die, there might be insufficient assets available to

pay the debt.

Therefore, ruin occurs when both an individual’s annuity income A and wealth w

are 0 since she has no more annuity income to surrender to raise her wealth. It follows

that τ0 in this case reduces to the hitting time of (w,A) = (0, 0) because on the line

w = −(1− p)aA, (0, 0) is the only point at which wealth w is non-negative. Notice

that the probability of lifetime ruin is not 1 when wealth reaches 0 if an individual
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still has existing annuity income, which differs from the case of irreversible annuities.

2.4.1 HJB variational inequality and verification theorem

As the preceding case without a borrowing restriction, we have the same HJB

variational inequality because the individual still has only three options to minimize

the probability of ruin: purchasing additional annuity income, surrendering existing

annuity income, and doing neither. Suboptimality of each strategy, in general, is

represented by an inequality, while the optimality of one’s executed strategy at all

time requires that at least one of the three inequalities holds as an equality.

We need only consider when A < c; otherwise the individual already has enough

annuity income to cover her consumption and lifetime ruin is impossible. In this case,

the safe level is given by ws(A) , (c−A)a. When the individual’s wealth reaches the

safe level, she is able to purchase (c−A) of additional annuity income and, thereby,

ensure that lifetime ruin is impossible. Therefore, we have the condition

ψ(ws(A), A) = 0. (2.4.1)

Notice that, for a given existing annuity income A, more wealth is needed to reach

the safe level if borrowing against the annuity is not allowed; that is, ws(A) in this

section is greater than ws(A) in the previous section.

When the individual’s wealth reaches 0, she is forced to surrender her life annuity

to keep her wealth non-negative. In this case, an annuitization strategy {At} is

admissible if the associated wealth process Wt ≥ 0. almost surely, for all t ≥ 0.

Inspired by the optimal annuitization strategy obtained in Theorem 2.3.2 for the

case in which borrowing is not restricted, we hypothesize that the individual will

only surrender enough annuity income to keep wealth non-negative. This means

that on the boundary w = 0, she executes instantaneous control, so we expect the
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following Neumann condition:

(1− p)aψw(0, A) = ψA(0, A). (2.4.2)

Moreover, if both her wealth and annuity income are 0, ruin occurs; that is,

ψ(0, 0) = 1. (2.4.3)

Therefore, we need to solve for ψ(w,A) in the region D , {(w,A) : 0 ≤ w ≤

ws(A), 0 ≤ A < c}. Notice that the safe level ws(A) = (c − A)a is different from

the previous case. With D thus redefined, we obtain the same verification theorem

and corollary as Theorem 2.3.1 and Corollary 2.3.1, respectively. Please refer to the

previous section for details.

2.4.2 Solving for ψ via duality arguments

Through the course of our study, we determined that the optimal annuitization

strategy for the individual to minimize her probability of lifetime ruin depends on the

value of p. We will show that when the penalty for surrendering is greater than p∗,

a critical value to be determined later, the individual will not purchase any annuity

until her wealth reaches the safe level ws(A), at which point she buys annuity income

to cover the shortfall c−A. On the other hand, if the penalty is low enough, namely

p < p∗, the individual has incentive to annuitize partially; that is, the individual

purchases additional annuity to cover part of the shortfall c − A when her wealth

is strictly below the safe level. In this case, the individual will keep some wealth

to invest in the risky financial market and spend the surplus to purchase annuity

income. We solve for the minimum probability of lifetime ruin ψ for the first case

p ≥ p∗ in Section 2.4.2 and for the second case p < p∗ in Section 2.4.2. We also

obtain the corresponding optimal annuitization and investment strategies.
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p ≥ p∗

When p ≥ p∗, we hypothesize that in the domain D\{w = ws(A) or w = 0}, the

optimal strategy for minimizing the probability of ruin is neither to purchase nor

to surrender any annuity income. Under this hypothesis, the first inequality in the

HJB variational inequality (2.3.9) holds with equality, and the minimum probability

of ruin ψ is the solution to the following BVP

λSψ = (rw − c+ A)ψw + min
π

[
(µ− r)πψw +

1

2
σ2π2ψww

]
, (2.4.4)

with boundary conditions

ψ(ws(A), A) = 0, (2.4.5)

(1− p)aψw(0, A) = ψA(0, A), (2.4.6)

and

ψ(0, 0) = 1. (2.4.7)

After solving the BVP, we will show that its solution satisfies the conditions of the

Verification Theorem 2.3.1 to verify our hypothesis.

As in Section 2.3.3, we can define a related linear free-boundary problem via the

Legendre transform. Specifically, for (w,A) ∈ D, define

ψ̂(y, A) = min
w≥0

[ψ(w,A) + wy]. (2.4.8)

We can rewrite (2.4.4) as

− λSψ̂ − (r − λS)yψ̂y +my2ψ̂yy + y(c− A) = 0. (2.4.9)

Its general solution is

ψ̂(y, A) = D1(A)yB1 +D2(A)yB2 +
c− A
r

y, (2.4.10)
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with B1 > 1 and B2 < 0 defined in (2.3.33).

Define

y0(A) = −ψw(0, A), (2.4.11)

and

ys(A) = −ψw(ws(A), A). (2.4.12)

We get from (2.4.6) and (2.4.11) that
ψ̂A(y0(A), A) = −(1− p)ay0(A),

ψ̂y(y0(A), A) = 0;

(2.4.13)

from (2.4.5) and (2.4.12) that
ψ̂(ys(A), A) = (c− A)ays(A),

ψ̂y(ys(A), A) = (c− A)a;

(2.4.14)

and from (2.4.7) and (2.4.11) that

ψ̂(y0(0), 0) = 1. (2.4.15)

Next, we determine D1(A) and D2(A) along with y0(A) and ys(A). Rewrite

(2.4.13), (2.4.14), and (2.4.15) using (2.4.10) to get

D1(A)B1y0(A)B1−1 +D2(A)B2y0(A)B2−1 +
c− A
r

= 0, (2.4.16)

D′1(A)y0(A)B1−1 +D′2(A)y0(A)B2−1 =
1

r
− 1− p
r + λO

, (2.4.17)

D1(A)B1ys(A)B1−1 +D2(A)B2ys(A)B2−1 =
c− A
r + λO

− c− A
r

, (2.4.18)

D1(A)ys(A)B1−1 +D2(A)ys(A)B2−1 =
c− A
r + λO

− c− A
r

, (2.4.19)

D1(0)y0(0)B1 +D2(0)y0(0)B2 +
c

r
y0(0) = 1. (2.4.20)
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From (2.4.18) and (2.4.19), we get

D1(A) = − 1−B2

B1 −B2

λO

r(r + λO)
(c− A)

1

ys(A)B1−1
< 0, (2.4.21)

D2(A) = − B1 − 1

B1 −B2

λO

r(r + λO)
(c− A)

1

ys(A)B2−1
< 0. (2.4.22)

Then, substitute D1(A) and D2(A) into (2.4.16) to get

λO

r + λO

[
B1(1−B2)

B1 −B2

(
y0(A)

ys(A)

)B1−1

+
B2(B1 − 1)

B1 −B2

(
y0(A)

ys(A)

)B2−1
]

= 1. (2.4.23)

It is clear that
y0(A)

ys(A)
is independent of A, and one can show that it is greater than 1

through an argument similar to the one following (2.3.44). So, we define the constant

x ,
y0(A)

ys(A)
. (2.4.24)

Now, differentiate (2.4.21) and (2.4.22) with respect to A and substitute into (2.4.17)

to get

dys(A)

dA
(c− A)

λO

r(r + λO)

(B1 − 1)(1−B2)

B1 −B2

(
xB1 − xB2

)
= − 1− p

r + λO
xys(A)− ys(A)

{
λO

r(r + λO)

[
1−B2

B1 −B2

xB1 +
B1 − 1

B1 −B2

xB2

]
− x

r

}
.

(2.4.25)

Solve (2.4.23) for xB2−1 to simplify (2.4.25) and obtain

1

ys(A)

dys(A)

dA
=

K

c− A
, (2.4.26)

in which

K =

− B2

1−B2

1− p
r + λO

+
λO

r(r + λO)
xB1−1 − 1

r

λO

r(r + λO)
xB1−1 − 1

r

(2.4.27)

Define the critical value p∗ as follows:

p∗ ,
1

B2

− 1−B2

B2

λO

r

(
xB1−1 − 1

)
. (2.4.28)
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It is straightforward to show that K ≥ 0 iff p ≥ p∗. As we mentioned, we only

consider the case p ≥ p∗ here and leave the discussion for p < p∗ in Section 2.4.2.

The expressions in (2.4.24) and (2.4.26) imply that

y0(A) =

(
c

c− A

)K
y0(0), (2.4.29)

and

ys(A) =
y0(A)

x
. (2.4.30)

We determine the value of y0(0) by substituting (2.4.21) and (2.4.22) into (2.4.20):

1

y0(0)
=
c

r

[
1− λO

r + λO
1−B2

B1 −B2

xB1−1 − λO

r + λO
B1 − 1

B1 −B2

xB2−1

]
. (2.4.31)

By solving for xB2−1 from (2.4.23) and substituting it into (2.4.31), we get

1

y0(0)
=
c

r

(
−1−B2

B2

)(
1− λO

r + λO
xB1−1

)
> 0. (2.4.32)

The inequality in (2.4.32) holds because xB1−1 <
(
r + λO

)
/λO, which is straightfor-

ward to show from equation (2.4.23) and the fact that the left-hand of that equation

is increasing with respect to x. From this inequality, we conclude that both ys(A)

and y0(A) are positive for (w,A) ∈ D.

Proposition 2.4.1. The solution ψ̂(y, A) for the FBP (2.4.9) with conditions (2.4.13),

(2.4.14), and (2.4.15) is given by (2.4.10), with D1(A), D2(A), y0(0), y0(A), ys(A),

x, and K defined in (2.4.21), (2.4.22), (2.4.31), (2.4.29), (2.4.30), (2.4.23), and

(2.4.27), respectively.

Notice that we can rewrite the inequalities (2.3.7) and (2.3.8) in terms of ψ̂ as

ψ̂A(y, A) ≥ − 1

r + λO
y, (2.4.33)

ψ̂A(y, A) ≤ − 1− p
r + λO

y. (2.4.34)
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Proposition 2.4.2. ψ̂(y, A) given by Proposition 2.4.1 is concave and satisfies in-

equalities (2.4.33) and (2.4.34).

Proof. The proof of the concavity of ψ̂ with respect to y follows from the observations

that both D1(A) < 0 and D2(A) < 0 and that both B1(B1−1) > 0 and B2(B2−1) >

0.

To prove the inequalities, differentiate (2.4.21) and (2.4.22) with respect to A,

substitute those expressions into ψ̂A(y, A), use (2.4.26) to simplify, and obtain

ψ̂A(y, A) = yK
λO

r(r + λO)

(B1 − 1)(1−B2)

B1 −B2

[(
y

ys(A)

)B1−1

−
(

y

ys(A)

)B2−1
]

+ y

{
λO

r(r + λO)

[
1−B2

B1 −B2

(
y

ys(A)

)B1−1

+
B1 − 1

B1 −B2

(
y

ys(A)

)B2−1
]
− 1

r

}
.

(2.4.35)

Then, rewrite inequalities (2.4.33) and (2.4.34) in the equivalent form as

1 ≥ −KλO

r

(B1 − 1)(1−B2)

B1 −B2

[(
y

ys(A)

)B1−1

−
(

y

ys(A)

)B2−1
]

− λO

r

[
1−B2

B1 −B2

(
y

ys(A)

)B1−1

+
B1 − 1

B1 −B2

(
y

ys(A)

)B2−1
]

+
r + λO

r
≥ 1− p.

(2.4.36)

To prove (2.4.36), define the function g by

g(z) = −K (B1 − 1)(1−B2)

B1 −B2

[
zB1−1 − zB2−1

]
−
[

1−B2

B1 −B2

zB1−1 +
B1 − 1

B1 −B2

zB2−1

]
.

For z ≥ 1, g is decreasing because

g′(z) = −K (B1 − 1)(1−B2)

B1 −B2

[
(B1 − 1)zB1−2 + (1−B2)zB2−2

]
− (B1 − 1)(1−B2)

B1 −B2

[
zB1−2 − zB2−2

]
≤ 0.

(2.4.37)

Also, the first inequality in (2.4.36) holds with equality when y = ys(A), and the

second inequality holds with equality when y = y0(A). Therefore, (2.4.36) holds for

ys(A) ≤ y ≤ y0(A).
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Since ψ̂ is concave, we can define its convex dual via the Legendre transform:

Ψ(w,A) = max
y≥ys(A)

[
ψ̂(y, A)− wy

]
. (2.4.38)

As in Section 2.3.4, we can prove that Ψ is the minimum probability of ruin ψ, and

we have the following theorem.

Theorem 2.4.1. When p ≥ p∗ and the borrowing restriction is enforced, the min-

imum probability of ruin ψ(w,A) for (w,A) ∈ D, in which D is defined by D =

{(w,A) : 0 ≤ w ≤ ws(A), 0 ≤ A < c}, is given by Ψ(w,A) in (2.4.38). The associ-

ated optimal annuitization and investment strategies are given by

1. to surrender existing annuity income instantaneously to keep wealth non-negative

as needed;

2. to purchase additional annuity income only when wealth reaches ws(A), the safe

level;

3. for w ∈ D\{w = ws(A)}, to invest the following amount of wealth in the risky

asset:

π∗(w,A) = −µ− r
σ2

ψw(w,A)

ψww(w,A)
. (2.4.39)

It is clear from Theorem 2.4.1 that the optimal annuitization strategy is indepen-

dent of the surrender charge p as long as p ≥ p∗. However, it is not clear how the

optimal investment strategy and the minimum probability of ruin vary with p. We

investigate this in the next proposition.

Proposition 2.4.3. π∗(w,A) given in (2.4.39) is independent of the surrender charge

p, and the probability of ruin ψ(w,A) increases with respect to p.

Proof. Fix w and A. Given w, the corresponding y is defined by (2.4.38) as

w = ψ̂y(y, A), (2.4.40)
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which implies that ψw(w,A) = −y and ψww(w,A) = −1/ψ̂yy(y, A). Thus, we can

write the optimal investment amount as

π∗(w,A) = −µ− r
σ2

yψ̂yy(y, A). (2.4.41)

By substituting (2.4.10), (2.4.21), (2.4.22), (2.4.29), and (2.4.30) into (2.4.40) and

(2.4.41), we get the following two expressions, respectively:

w = D̃1(A)

[(
c− A
c

)K
y

]B1−1

+ D̃2(A)

[(
c− A
c

)K
y

]B2−1

+
c− A
r

, (2.4.42)

and

π∗(w,A) =− µ− r
σ2

(B1 − 1)D̃1(A)

[(
c− A
c

)K
y

]B1−1

− µ− r
σ2

(B2 − 1)D̃2(A)

[(
c− A
c

)K
y

]B2−1

,

(2.4.43)

in which

D̃1(A) = −B1(1−B2)

B1 −B2

λO

r(r + λO)
(c− A)

(
x

y0(0)

)B1−1

, (2.4.44)

D̃2(A) = −B2(B1 − 1)

B1 −B2

λO

r(r + λO)
(c− A)

(
x

y0(0)

)B2−1

. (2.4.45)

The numbers x and y0(0) are independent of p by (2.4.23) and (2.4.31), respectively.

Thus, D̃1(A) and D̃2(A) are also independent of p. From (2.4.42), we deduce that

z =

(
c− A
c

)K
y, which determines π∗(w,A) via (2.4.43), does not depend on p.

Indeed, differentiate (2.4.42) with respect to p to obtain

0 =
[
D̃1(A)(B1 − 1)zB1−2 + D̃2(A)(B2 − 1)zB2−2

] ∂z
∂p

= ψ̂yy(y, A)
x

y0(0)

∂z

∂p
.

(2.4.46)

Because ψ̂ is strictly concave with respect to y for ys(A) ≤ y ≤ y0(A), it follows that

∂z
∂p

= 0, from which we deduce that z =

(
c− A
c

)K
y is independent of p. Therefore,

the optimal investment strategy π∗(w,A) does not depend on p.
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Next, we show that ∂ψ(w,A)/∂p > 0. To this end, recall from (2.4.38) that

ψ(w,A) = ψ̂(y, A)− wy

=
x

y0(0)

[
D̃1(A)zB1 + D̃2(A)zB2

]
+

(
c− A
r
− w

)
y,

(2.4.47)

in which y is given by (2.4.40). Differentiate this expression with respect to p to

obtain

∂ψ(w,A)

∂p
=

(
c− A
r
− w

)
∂y

∂p
∝ ∂y

∂p

= − ln

(
c− A
c

)
∂K

∂p
y > 0,

(2.4.48)

in which we use the fact that z =

(
c− A
c

)K
y is independent of p in order to

compute ∂y/∂p, and we use the definition of K in (2.4.27) to deduce that ∂K/∂p is

positive. Thus, the probability of ruin ψ(w,A) increases as p increases.

Remark 2.4.1. Proposition 2.4.3 indicates that, when borrowing is restricted and

p ≥ p∗, an individual follows exactly the same investment and annuitization strategies

regardless of the value of p ≥ p∗. The individual makes her decision based on her

wealth and existing annuity income only. It is not surprising that for given values

of w and A, the probability of ruin is smaller for a smaller p because with a smaller

surrender charge p, one receives more wealth when surrendering a given amount of

annuity income.

In this section, we determined the optimal annuitization and investment strategies

and the corresponding minimum probability of ruin under the condition p ≥ p∗. The

latter is equivalent to the condition K ≥ 0, which plays a critical role in the proof

of Proposition 2.4.2. If K were negative, then inequality (2.4.33) would not hold

for y just above ys(A). Consequently, Ψ(w,A) would not satisfy Condition 2 in

the Verification Theorem 2.3.1. From this, we infer that buying additional annuity
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income before reaching the safe level w = ws(A) might be optimal when p < p∗.

With this in mind, we proceed to the next section.

p < p∗

In this section, we consider the case for which p < p∗. Define D1 , {(w,A) : 0 ≤

w ≤ wb(A), 0 ≤ A < c} with wb(A) ∈ [0, ws(A)] to be specified later. Also, define

D2 , {(w,A) : wb(A) < w ≤ ws(A), 0 ≤ A < c}, and note that D = D1 ∪ D2. As in

the case for which p ≥ p∗ in Section 2.4.2, we only need to determine the minimum

probability ψ(w,A) for (w,A) ∈ D.

We hypothesize that the following annuitization strategy is optimal: If (w,A) ∈

D1\{w = 0 or w = wb(A)}, the individual neither purchases or surrenders any

life annuity income. If (w,A) ∈ D2, the individual purchases just enough annuity

income to reach the region D1. That is to say, if she starts with (w,A) ∈ D2, the

optimal strategy is to purchase ∆A of annuity income such that w−∆A/(r+λO) =

wb(A + ∆A). Thereafter, whenever wealth reaches the barrier wb(A), she keeps her

portfolio of wealth and annuity income (w,A) in the region D1 by instantaneously

purchasing enough annuity income. On the other hand, when wealth reaches 0,

the individual instantaneously surrenders enough annuity income to keep her wealth

non-negative as we hypothesized in Section 2.4.2.

Ruin occurs only when (w,A) = (0, 0), at which point one has no existing annuity

income to surrender to keep wealth non-negative. Under the hypothesis for the op-

timal annuitization strategy, we anticipate that the associated minimum probability

of ruin ψ satisfies the following boundary-value problem. After we solve this BVP,

we will verify our hypothesis via Verification Theorem 2.3.1.
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1. For (w,A) ∈ D1, ψ(w,A) solves the following BVP:

λSψ = (rw − c+ A)ψw + min
π

[
(µ− r)πψw +

1

2
σ2π2ψww

]
, (2.4.49)

with boundary conditions

aψw(wb(A), A) = ψA(wb(A), A), (2.4.50)

(1− p)aψw(0, A) = ψA(0, A), (2.4.51)

and

ψ(0, 0) = 1. (2.4.52)

2. For (w,A) ∈ D2 , we have

ψ(w,A) = ψ

(
w − ∆A

r + λO
, A+ ∆A

)
, (2.4.53)

in which w−∆A/(r+ λO) = wb(A+ ∆A). Notice that (w−∆A/(r+ λO), A+

∆A) ∈ D1, and thus ψ(w −∆A/(r + λO), A + ∆A) is determined by the BVP

(2.4.49)-(2.4.52).

3. To solve for ψ in the entire region D, as well as to determine the purchase

boundary wb(A), we also rely on a smooth fit condition across the boundary

wb(A), namely,

aψww(wb(A), A) = ψwA(wb(A), A). (2.4.54)

We first consider ψ(w,A) in the region D1 by solving the related BVP (2.4.49)-

(2.4.52). Hypothesize that ψ is convex with respect to w, and define its concave dual

via the Legendre transform by

ψ̂(y, A) = min
w≥0

[ψ(w,A) + wy] . (2.4.55)
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As before, rewrite (2.4.49) as

− λSψ̂ − (r − λS)yψ̂y +my2ψ̂yy + y(c− A) = 0. (2.4.56)

Its general solution is

ψ̂(y, A) = D1(A)yB1 +D2(A)yB2 +
c− A
r

y, (2.4.57)

in which B1 > 1 and B2 < 0 are defined in (2.3.33). Define

y0(A) = −ψw(0, A), (2.4.58)

and

yb(A) = −ψw(wb(A), A). (2.4.59)

We get the following free-boundary conditions from (2.4.50), (2.4.51), (2.4.52), (2.4.58),

and (2.4.59): 
ψ̂A(y0(A), A) = −(1− p)ay0(A),

ψ̂y(y0(A), A) = 0;

(2.4.60)


ψ̂A(yb(A), A) = −ayb(A),

ψ̂y(yb(A), A) = wb(A);

(2.4.61)

and

ψ̂(y0(0), 0) = 1. (2.4.62)

The smooth fit condition on the boundary w = wb(A) implies

ψ̂Ay(yb(A), A) = −a. (2.4.63)
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Use (2.4.57) to rewrite (2.4.60), (2.4.61), (2.4.62), and (2.4.63) as follows:

D1(A)B1y0(A)B1−1 +D2(A)B2y0(A)B2−1 +
c− A
r

= 0, (2.4.64)

D′1(A)y0(A)B1−1 +D′2(A)y0(A)B2−1 =
1

r
− 1− p
r + λO

, (2.4.65)

D1(A)B1yb(A)B1−1 +D2(A)B2yb(A)B2−1 +
c− A
r

= wb(A), (2.4.66)

D′1(A)yb(A)B1−1 +D′2(A)yb(A)B2−1 =
1

r
− 1

r + λO
, (2.4.67)

D1(0)y0(0)B1 +D2(0)y0(0)B2 +
c

r
y0(0) = 1, (2.4.68)

D′1(A)B1yb(A)B1−1 +D′2(A)B2yb(A)B2−1 =
1

r
− 1

r + λO
. (2.4.69)

Solve (2.4.64) and (2.4.66) for D1(A) and D2(A):

D1(A) =
1

B1

yb(A)1−B1
1

xB1−B2 − 1

[
−wb(A) +

c− A
r

(
1− x1−B2

)]
,(2.4.70)

D2(A) =
1

B2

yb(A)1−B2
1

xB2−B1 − 1

[
−wb(A) +

c− A
r

(
1− x1−B1

)]
,(2.4.71)

in which

x ,
y0(A)

yb(A)
. (2.4.72)

Recall that wb(A) is to be determined. We solve for D′1(A) and D′2(A) from (2.4.67)

and (2.4.69) to get:

D′1(A) =
λO

r(r + λO)

1−B2

B1 −B2

yb(A)1−B1 , (2.4.73)

D′2(A) =
λO

r(r + λO)

B1 − 1

B1 −B2

yb(A)1−B2 . (2.4.74)

By substituting (2.4.73) and (2.4.74) into (2.4.65), we get

1−B2

B1 −B2

λO

r(r + λO)
xB1−1 +

B1 − 1

B1 −B2

λO

r(r + λO)
xB2−1 =

1

r
− 1− p
r + λO

, (2.4.75)

which has a unique solution for x > 1; the argument is similar to the corresponding

one in Section 2.3.3 for the solution of (2.3.44). It is clear from (2.4.75) that x is

independent of A.
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Differentiate D1(A) and D2(A) in (2.4.70) and (2.4.71) with respect to A to get

a second expression for D′1(A) and D′2(A); set equal the two expressions for each of

D′1(A) and D′2(A) to get

dyb(A)/dA

yb(A)
=

λO

r(r + λO)

B1(1−B2)

B1 −B2

(
xB1−B2 − 1

)
+ w′b(A) +

1

r

(
1− x1−B2

)
(1−B1)

[
−wb(A) +

c− A
r

(1− x1−B2)

] ,(2.4.76)

dyb(A)/dA

yb(A)
=

λO

r(r + λO)

B2(B1 − 1)

B1 −B2

(
xB2−B1 − 1

)
+ w′b(A) +

1

r

(
1− x1−B1

)
(1−B2)

[
−wb(A) +

c− A
r

(1− x1−B1)

] .(2.4.77)

Set equal the right-hand sides of the two equations above to get a non-linear ODE

for wb(A):

α1(c− A)w′b(A) + α2wb(A) + α3w
′
b(A)wb(A) + α4(c− A) = 0, (2.4.78)

in which

α1 = −1

r

[
(B1 − 1)

(
1− x1−B2

)
+ (1−B2)

(
1− x1−B1

)]
,

α2 = (B1 − 1)

[
λO

r(r + λO)

(B1 − 1)B2

B1 −B2

(
xB2−B1 − 1

)
+

1

r

(
1− x1−B1

)]
+(1−B2)

[
λO

r(r + λO)

B1(1−B2)

B1 −B2

(
xB1−B2 − 1

)
+

1

r

(
1− x1−B2

)]
,

α3 = B1 −B2 > 0,

α4 = −1

r

{
(B1 − 1)

[
λO

r(r + λO)

(B1 − 1)B2

B1 −B2

(
xB2−B1 − 1

)
+

1

r

(
1− x1−B1

)] (
1− x1−B2

)
+(1−B2)

[
λO

r(r + λO)

B1(1−B2)

B1 −B2

(
xB1−B2 − 1

)
+

1

r

(
1− x1−B2

)] (
1− x1−B1

)}
.

(2.4.79)

Also, we have the boundary condition wb(c−) = 0 because 0 ≤ wb(A) ≤ ws(A) for

all 0 ≤ A < c and ws(c−) = 0. A solution of the ODE, together with the boundary

condition at A = c, is given by

wb(A) = b · (c− A), (2.4.80)
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in which

b =
(α2 − α1) +

√
(α2 − α1)2 + 4α3α4

2α3

. (2.4.81)

Note that this solution for the purchase boundary wb(A) is linear with respect to A.

From the expression on the right-hand side of (2.4.76) and from (2.4.80), define

K ,

λO

r(r + λO)

B1(1−B2)

B1 −B2

(
xB1−B2 − 1

)
− b+

1

r

(
1− x1−B2

)
(1−B1)

[
−b+

1

r
(1− x1−B2)

] . (2.4.82)

Solve (2.4.76) and (2.4.72) to obtain

y0(A) =

(
c

c− A

)K
y0(0), (2.4.83)

and

yb(A) =
y0(A)

x
. (2.4.84)

To finish solving the FBP, we substitue (2.4.70), (2.4.71), and (2.4.80) into (2.4.68)

to get

1

y0(0)
=

c

B1

xB1−1

xB1−B2 − 1

[
−b+

1

r

(
1− x1−B2

)]
+
c

B2

xB2−1

xB2−B1 − 1

[
−b+

1

r

(
1− x1−B1

)]
+
c

r
.

(2.4.85)

Proposition 2.4.4. The solution of the FBP (2.4.56) with conditions (2.4.60),

(2.4.61), and (2.4.62) is given by (2.4.57), with D1(A), D2(A), y0(0), y0(A), yb(A),

x, and K defined in (2.4.70), (2.4.71), (2.4.85), (2.4.83), (2.4.84), (2.4.75), and

(2.4.82), respectively.

Notice that we can rewrite the inequalities (2.3.7) and (2.3.8) in terms of ψ̂ as

ψ̂A(y, A) ≥ − 1

r + λO
y, (2.4.86)

ψ̂A(y, A) ≤ − 1− p
r + λO

y. (2.4.87)

Next, we prove that ψ̂ is concave with respect to y and satisfies inequalities (2.4.86)

and (2.4.87).
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Proposition 2.4.5. ψ̂(y, A) given by Proposition 2.4.4 is concave with respect to y

and satisfies inequalities (2.4.86) and (2.4.87).

Proof. The proof that ψ̂ is concave with respect to y is not obvious (unlike the

previous two cases), so we relegate that (long) proof to the Appendix.

Substitute D′1(A)yB1 + D′2(A)yB2 − y

r
for ψ̂A(y, A) to rewrite the inequalities

(2.4.86) and (2.4.87) in the equivalent form as

− 1 ≤ λO

r

[
1−B2

B1 −B2

(
y

yb(A)

)B1−1

+
B1 − 1

B1 −B2

(
y

yb(A)

)B2−1
]
− r + λO

r
≤ −(1− p).

(2.4.88)

To prove the inequality above, define

h(z) =
1−B2

B1 −B2

zB1−1 +
B1 − 1

B1 −B2

zB2−1, (2.4.89)

and note that

h′(z) =
(1−B2)(B1 − 1)

B1 −B2

[
zB1−2 − zB2−2

]
≥ 0, z ≥ 1. (2.4.90)

Also, the first inequality in (2.4.88) holds with equality when y = yb(A), and the

second inequality holds with equality when y = y0(A). Thus, because h(z) is non-

decreasing for z ≥ 1, inequality (2.4.88) holds for yb(A) 6 y 6 y0(A).

As before, we define the convex dual of ψ̂ via the Legendre transform for (w,A) ∈

D1 as

Ψ(w,A) = max
y≥yb(A)

[
ψ̂(y, A)− wy

]
. (2.4.91)

For (w,A) ∈ D2, we define

Ψ(w,A) = Ψ(w − a∆A,A+ ∆A), (2.4.92)

in which ∆A solves w−a∆A = b(c−(A+∆A)); that is, ∆A =
w − b(c− A)

a− b
. Notice

that since (w−a∆A,A+ ∆A) ∈ D1, Ψ(w−a∆A,A+ ∆A) is given through (2.4.91).
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Now we proceed to the following lemma, which demonstrates that Ψ is the mini-

mum probability of ruin by Verification Theorem 2.3.1.

Lemma 2.4.1. Ψ(w,A) defined in (2.4.91) and (2.4.92) satisfies Conditions 1-4 of

the Verification Theorem 2.3.1.

Proof. First, consider (w,A) ∈ D1. In terms of Ψ(w,A), we rewrite (2.4.56) as

follows:

λSΨ(w,A) = (rw − c)Ψw(w,A)−m Ψ2
w(w,A)

Ψww(w,A)
, (2.4.93)

as well as (2.4.86) and (2.4.87)

aΨw(w,A) ≤ ΨA(w,A), (2.4.94)

(1− p)aΨw(w,A) ≥ ΨA(w,A). (2.4.95)

Expressions (2.4.93)-(2.4.95) show that Ψ(w,A) satisfies Conditions 1-3 of the Veri-

fication Theorem 2.3.1 on D1. It is clear by construction that Ψ satisfies Condition

4, namely, Ψ(0, 0) = 1.

Now, consider (w,A) ∈ D2. By definition,

Ψ(w,A) = Ψ(w′, A′), (2.4.96)

with w′ = w − w − b(c− A)

1− b/a
and A′ = A+

w − b(c− A)

a− b
. From (2.4.96), we get the

following relations

Ψw(w,A) = − b

a− b
Ψw(w′, A′) +

1

a− b
ΨA(w′, A′), (2.4.97)

Ψww(w,A) =

(
b

a− b

)2

Ψww(w′, A′)− 2b

(a− b)2
ΨwA(w,A) +

(
1

a− b

)2

ΨAA(w′, A′),

(2.4.98)

and

ΨA(w,A) = − ba

a− b
Ψw(w′, A′) +

a

a− b
ΨA(w′, A′). (2.4.99)
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Since (w′, A′) is on the boundary w = wb(A), we have

aΨw(w′, A′) = ΨA(w′, A′). (2.4.100)

This along with (2.4.97) leads to

Ψw(w,A) = Ψw(w′, A′). (2.4.101)

Differentiate (2.4.101) with respect to w to get

Ψww(w,A) = − b

a− b
Ψww(w′, A′) +

1

a− b
ΨwA(w′, A′). (2.4.102)

From (2.4.102) and from the smooth fit condition on the purchase boundary, namely

aΨww(w
′, A′) = ΨwA(w′, A′), (2.4.103)

we obtain

Ψww(w,A) = Ψww(w′, A′). (2.4.104)

We know that for (w′, A′) ∈ D1 and for π ∈ R,

LπΨ(w′, A′) = [rw′+(µ−r)π−c+A′]Ψw(w′, A′)+
1

2
σ2π2Ψww(w′, A′)−λSΨ(w′, A′) ≥ 0.

(2.4.105)

It follows that for (w,A) ∈ D2,

LπΨ(w,A) =

[
r

(
w′ +

w − b(c− A)

1− b/a

)
+ (µ− r)π − c+

(
A′ − w − b(c− A)

a− b

)]
Ψw(w′, A′)

+
1

2
σ2π2Ψww(w′, A′)− λS Ψ(w′, A′)

=LπΨ(w′, A′) +

[
r
w − b(c− A)

1− b/a
− w − b(c− A)

a− b

]
Ψw(w′, A′) ≥ 0,

(2.4.106)

because LπΨ(w′, A′) ≥ 0, Ψw(w′, A′) ≤ 0, and r
w − b(c− A)

1− b/a
− w − b(c− A)

a− b
≤ 0.

Thus, Ψ(w,A) satisfies Condition 1 of the Verification Theorem for (w,A) ∈ D2.
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Next, consider Conditions 2 and 3 for (w,A) ∈ D2. From (2.4.97) and (2.4.99),

Condition 2 holds for (w,A) if and only if

a

[
− b

a− b
Ψw(w′, A′) +

1

a− b
ΨA(w′, A′)

]
≤ − ba

a− b
Ψw(w′, A′) +

a

a− b
ΨA(w′, A′),

(2.4.107)

which is true with equality. Thus, we conclude that Condition 2 holds with equality

for (w,A) ∈ D2. Finally, because 0 < p < p∗ ≤ 1, Ψw ≤ 0, and ΨA ≤ 0, it follows

that Condition 3 also holds on D2.

Therefore, Ψ(w,A) is the minimum probability of ruin by the Verification Theo-

rem 2.3.1, and we present the following theorem that summarizes the work of this

section.

Theorem 2.4.2. When p < p∗ and the borrowing restriction is enforced, the min-

imum probability of ruin for (w,A) ∈ D = D1 ∪ D2, with D1 = {(w,A) : 0 ≤ w ≤

wb(A), 0 ≤ A < c} and D2 = {(w,A) : wb(A) < w < ws(A), 0 ≤ A < c}, is given by

Ψ(w,A) defined above. The associated optimal strategy is:

1. to purchase additional annuity income so that wealth and annuity income lie on

the boundary w = b · (c− A) of the region D1 when (w,A) ∈ D2;

2. to purchase additional annuity income instantaneously to keep (w,A) in the

region D1 when w = wb(A);

3. to surrender exisiting annuity income instantaneously to keep w non-negative

when needed;

4. to invest in the risky asset with amount

π∗(w,A) = −µ− r
σ2

Ψw(w,A)

Ψww(w,A)
,

when (w,A) ∈ D1.
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2.4.3 Numerical examples

In this section, we present numerical examples to demonstrate the results of Sec-

tion 2.4.2 and 2.4.2. The basic scenario is the same as in Section 2.3.5, and we focus

on the role of the surrender penalty p.

p ≥ p∗

Figures 2.6-2.9 show the ruin probabilities and associated optimal investment

strategies when p ≥ p∗. We fix all the parameters except for annuity income A and

surrender penalty p. Note that the smallest p value of the selected is 0.258, which

is the value of p∗ for the scenario we chose. The boundary w = 0 and ws does not

depend on p. Therefore, for each figure, all four curves have the same domain. By

showing the ruin probabilities and investment strategies for different A and p, we see

some common patterns as well as the effect of p. Within each figure, the probabilities

of ruin are decreasing and convex. On the surrender boundary w = 0, the curves

of the ruin probabilities begin with different values, not necessarily 0. This occurs

because if the individual has some annuity income, she surrenders some of it to avoid

ruin when reaching that boundary. We also observe that bigger p results in higher

probability of ruin. This is consistent with the financial intuition that an individual

receives less wealth from surrendering annuity income when the penalty p is bigger,

as we also show in Proposition 2.4.3.

If A is not 0, reversibility makes difference in the ruin probability on the boundary

w = 0, and consequently on the whole ruin probability curve. Reversibility of the

annuity offers an extra chance to avoid bankrupcty. This is demonstrated by the

difference of ruin probabilities between p = 0.258 and p = 1 for given values of

(w,A). Note that at w = 0, the difference increases dramatically as A increases.
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When A = 0, both ruin probabilities are 1. On the other hand, when A = 0.75,

the individual with the reversible annuity (p = 0.258) has only about a 25% chance

to ruin when her wealth is 0 if she follows the optimal strategy. By contrast, if the

annuity is irreversible (p = 1), she ruins immediately when wealth is 0 because the

annuity is effectively worthless. This gap in the ruin probabilities shrinks as wealth

w increases, and the ruin probabilities associated with different p’s converge to 0 at

w = ws(A), the safe level.

The interesting phenomenon that the investment in the risky asset does not de-

pend on p is demonstrated in all figures, as we also show in Proposition 2.4.3. This

indicates that the individual invests in the risky asset as if the annuity is irreversible

when p ≥ p∗. That is, we see a type of separation result: optimal investment in the

risky asset is independent of the optimal annuitization strategy when p ≥ p∗.

p < p∗

Figures 2.10-2.13 show the ruin probabilities and associated optimal investment

strategies when p < p∗. Recall from Section 2.4.2 that it is optimal to purchase

immediate life annuities before wealth reaches the safe level. Note that the largest

value of p we can choose is 0.258. It is natural to believe that one’s behavior changes

smoothly as penalty p changes. This belief is confirmed in these figures. By observing

the curves associated with p = 0.258 in Figures 2.6-2.9 and in Figures 2.10-2.13,

we conclude that the optimal investment strategies and ruin probabilities from the

two different sets of equations are the same. (We can also demonstrate this fact

algebraically, but in the interest of space, we omit that computation.)

We see that the ruin probabilities in Figures 2.10-2.13 are all decreasing and

convex. The wealth domain for a given function in these figures is [0, b · (c − A)],

and note that b decreases as p decreases because for a smaller surrender charge, the
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individual has more incentive to annuitize at a lower wealth level. It remains true

that, with all else equal, a smaller surrender charge p results in a smaller probability

of ruin. Also, note that investment in risky asset increases as wealth increases, as in

the case for which p ≥ p∗. However, different from what we see for p ≥ p∗ case, the

investment strategy is no longer independent of p. More cash is invested in the risky

asset if one can get a larger portion of her annuity value back by surrendering.

Figure 2.14 demonstrates the relation between b and the proportional surrender

penalty p. The sign ∗ in the figure indicates the b value of
1

r + λO
. We see that b

increases monotonically and continuously from 0 to
1

r + λO
as p increases from 0 to

p∗, as we expect.

2.5 Conclusion

The annuity puzzle has been widely noted both in practice and in theoretical work;

see Milevsky and Young [2007] and Milevsky et al. [2006a] and the references therein.

In this paper, we considered a financial innovation that might encourage more retirees

to purchase immediate life annuities, namely the option to surrender one’s annuity

for cash. We explained the relation between the irreversibility of annuitization and

the retirees’ reluctance to purchase. We investigated how reversibility would affect

the decision of a retiree seeking to minimize her lifetime probability of ruin. We

analyzed the optimal investment and annuitization strategies for such a retiree when

borrowing against the surrender value of the annuity is prohibited. We found that

the individuals annuity purchasing strategy depends on the size of the proportional

surrender charge. When the charge is large enough, the individual will not buy a life

annuity unless she can cover all her consumption, the so-called safe level. When the

charge is small enough, the individual will buy a life annuity at a wealth lower than



50

this safe level. In both cases, the individual only surrenders annuity income in order

to keep her wealth non-negative.

These results confirm the point of view in Gardner and Wadsworth [2004] that the

lack of flexibility discourages retirees from purchasing immediate life annuities. In our

model, if annuities are irreversible, then retirees will buy annuities only when their

wealth reaches the safe level. Moreover, we showed that if annuities are reversible,

then a retiree will partially annuitize if the surrender charge is low enough. In

numerical examples, we noticed that the threshold value of surrender charge for an

individual to consider partial annuitization might be too low for annuity providers.

This perhaps explains why reversible immediate life annuities are not offered in the

annuity market.

The model in this paper offers a mathematical framework to understand the an-

nuity puzzle. Even though we assumed constant hazard rates and interest rate in our

analysis, we believe that the main qualitative insight will be true in general and will

be useful to develop better structured annuity products for retirees. Our analysis

also implies that a well developed secondary market of annuities would benefit both

potential annuity buyers and providers.

2.6 Appendix

In this appendix, we prove that the ψ̂ given in Proposition 2.4.4 is concave thereby

completing the proof of Proposition 2.4.5.

Take the second derivative of (2.4.57) with respect to y to get

ψ̂yy(y, A) = D1(A)B1(B1 − 1)yB1−2 +D2(A)B2(B2 − 1)yB2−2. (2.6.1)

We want to show that ψ̂yy(y, A) ≤ 0 for yb(A) ≤ y ≤ y0(A). Substitute (2.4.70)

and (2.4.71) into (2.6.1), and define z , y/yb(A) ∈ [1, x], with x defined by (2.4.72).
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Then, we get

ψ̂yy(y, A) ≤ 0 ⇐⇒ (B1 − 1)

[
y

yb(A)

]B1−B2 1

xB1−B2 − 1

[
−b+

1

r

(
1− x1−B2

)]
+ (1−B2)

xB1−B2

xB1−B2 − 1

[
−b+

1

r

(
1− x1−B1

)]
≤ 0

⇐⇒ (B1 − 1)

[
−b+

1

r

(
1− x1−B2

)] (z
x

)B1−B2

+ (1−B2)

[
−b+

1

r

(
1− x1−B1

)]
≤ 0.

(2.6.2)

Note that B1 − 1 > 0 and xB2−1 < 1. It follows that

(B1 − 1)

[
−b+

1

r

(
1− x1−B2

)]
< 0. (2.6.3)

Hence the left-hand side of the last inequality in (2.6.2) reaches its maximum value

when z = 1. So, to prove that ψ̂ is concave with respect to y, it is sufficient to show

that

(B1 − 1)

[
−b+

1

r

(
1− x1−B2

)]
xB2−1 + (1−B2)

[
−b+

1

r

(
1− x1−B1

)]
xB1−1 ≤ 0.

(2.6.4)

Solve for xB2−1 from (2.4.75); then, substitute into (2.6.4), which becomes

(B1 − 1)

[(
1

r
− b
)
B1 −B2

B1 − 1

λO + pr

λO
−
(

1

r
− b
)

1−B2

B1 − 1
xB1−1 − 1

r

]
+ (1−B2)

[(
1

r
− b
)
xB1−1 − 1

r

]
≤ 0

⇐⇒
(

1

r
− b
)

(B1 −B2)
λO + pr

λO
− 1

r
(B1 −B2) ≤ 0 ⇐⇒ b ≥ p

λO + pr
.

(2.6.5)

Therefore, if we show that b ≥ p/(λO + pr), then we are done. To this end, note

that

b ≥ p

λO + pr
⇐⇒ 2α3

r

(
1− λO

λO + pr

)
−(α2−α1) ≤

√
(α2 − α1)2 + 4α3α4, (2.6.6)
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in which the αi are given in (2.4.79) for i = 1, . . . , 4. The second inequality above

holds automatically if its left-hand side is less than or equal to 0. Thus, suppose

that the left-hand side is positive, and square both sides to get that b ≥ p/(λO + pr)

holds if

α4 +
1

r

(
1− λO

λO + pr

)
(α2 − α1)− α3

r

(
1− λO

λO + pr

)2

≥ 0. (2.6.7)

By substituting for the αi, i = 1, . . . , 4, by substituting for λO/(λO + pr) via the

following expression from (2.4.75)

λO

λO + pr
=

(B1 −B2)x1−B1x1−B2

(B1 − 1)x1−B1 + (1−B2)x1−B2
, (2.6.8)

and by simplifying carefully, we learn that (2.6.7) is equivalent to

0 ≤ λO

λO + pr
− λO

λO + r
, (2.6.9)

which is true because 0 < p ≤ 1. We have proved that b ≥ p/(λO + pr) and, thereby,

that ψ̂ is concave with respect to y.
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Figure 2.1: The region for solving minimum probability of ruin when borrowing against annuity is
allowed
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Figure 2.2: Ruin probabilities and optimal investment strategies for different p when A is 0
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Figure 2.3: Ruin probabilities and optimal investment strategies for different p when A is 0.25
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Figure 2.4: Ruin probabilities and optimal investment strategies for different p when A is 0.5
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Figure 2.5: Ruin probabilities and optimal investment strategies for different p when A is 0.75
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Figure 2.6: Ruin probabilities and optimal investment strategies for different p when A is 0
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Figure 2.7: Ruin probabilities and optimal investment strategies for different p when A is 0.25
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Figure 2.8: Ruin probabilities and optimal investment strategies for different p when A is 0.5
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Figure 2.9: Ruin probabilities and optimal investment strategies for different p when A is 0.75
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Figure 2.10: Ruin probabilities and optimal investment strategies for different p when A is 0
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Figure 2.11: Ruin probabilities and optimal investment strategies for different p when A is 0.25
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Figure 2.12: Ruin probabilities and optimal investment strategies for different p when A is 0.5
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Figure 2.13: Ruin probabilities and optimal investment strategies for different p when A is 0.75
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Figure 2.14: b as a function of p



CHAPTER III

Maximizing the utility of consumption with reversible
annuities

3.1 Introduction and motivation

As a financial product designed for hedging lifetime uncertainty, a life annuity

is a contract between an annuitant and an insurance company. For a single pre-

mium immediate annuity (SPIA), in exchange for a lump sum payment, the company

guarantees to pay the annuitant a fix amount of money periodically until her death.

Optimal investment problems in a market with life annuities have been extensively

studied since the seminal paper of Yaari [1965]; see, for example, the references in

Milevsky and Young [2007]. With the assumption that there are only bonds and an-

nuities in the financial market, Yaari [1965], as well as Davidoff et al. [2005] among

others, prove that it is optimal for an individual with no bequest motive to fully

annuitize. In reality, the volume of voluntary purchases by retirees is much lower

than predicted by such models, which is the so-called “anuity puzzle.” According

to a recent survey in the United Kingdom by Gardner and Wadsworth [2004], over

half of the individuals in the sample chose not to annuitize given the option. The

dominant reason given for not wanting to annuitize is the preference for flexibility.

It is well known that annuity income is not reversible. Annuity holders can neither

surrender for a refund nor short-sell (borrow against) their purchased annuities, even

67
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when they are in urgent need of money. This paper is motivated by the potential

relation between the irreversibility of life annuities, specifically SPIAs, and retirees’

reluctance to annuitize.

In this paper, we investigate how reversibility (a type of flexibility) of an annuity

affects the annuitization, consumption, and investment strategies of an retiree. To

this end, we assume the existence of a market of reversible life annuities, a riskless

asset (bond or money market), and a risky asset (stock). The reversible annuity,

which is a SPIA with a surrender option, has both a purchase price and a surrender

value. The purchase price of this reversible annuity is equal to the present value of

expected future payments to the annuity holder. The surrender value is the pur-

chase price less a proportional surrender charge (denoted by p). A retiree is allowed

to purchase additional annuity income or to surrender her existing annuity income.

She can invest in the other assets in the market as well. To model the behavior of a

utility-maximizing retiree in such a financial market, we formulate a continuous-time

optimal consumption and asset allocation problem. We assume that the utility func-

tion of the retiree exhibits constant relative risk aversion (CRRA), and we determine

the optimal strategy that maximizes the expected utility of lifetime consumption.

We are especially interested in the relation between the optimal annuitization strat-

egy and the size of the proportional surrender charge, the factor that determines the

financial flexibility of the annuities.

Our model is an extension of the classical asset allocation framework of Merton

[1971]. Merton considers the problem of optimal consumption and investment in

a complete market with a riskless asset and a risky asset. Cox and Huang [1989]

first extended the model to the case of an incomplete market. He and Pages [1993]

considered the case with the presence of labor income. Koo [1998] considered the case
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in which labor income is subject to uninsurable risk and a liquidity constraint. Davis

and Norman [1990] extended the model to an imperfect market in which buying and

selling of the risky asset is subject to proportional transaction costs. Øksendal and

Sulem [2002] considered the case with the presence of both fixed and proportional

transaction costs. See also Elie and Touzi [2008], Karatzas et al. [1997], Tahar et al.

[2005], and Egami and Iwaki [2008] for other extensions. The problem treated in our

paper is a direct generalization of the one in Milevsky and Young [2007], in which

the life annuity is irreversible.

The reversibility of annuities in our model complicates the optimal decisions of

the retiree. It leads to a two-dimensional optimal control problem in an incomplete

market. The optimal strategy depends on two state variables, wealth and existing

annuity income. Taking advantage of the homogeneity of CRRA utility, we simplify

our problem to a one-dimensional equivalent problem. Via a duality argument, we

solve for the maximized utility and the optimal strategies in feedback form. We prove

the optimality of these solutions through a verification theorem. The advantage of

the duality method we use is that it is not necessary to formulate a control problem

that is “dual” to the original one. Milevsky et al. [2006a] and Milevsky and Young

[2007] also apply this duality argument.

In this paper, we find that when the proportional surrender charge is smaller than

a critical value, an individual keeps wealth to one side of a separating ray in wealth-

annuity space by purchasing more annuity income. The slope of this ray increases as

the the proportional surrender charge decreases; that is, an individual is more willing

to annuitize as p decreases. When her wealth reaches zero, the individual continues

to invest in the risky asset by borrowing from the riskless account and surrenders

just enough annuity income to keep her wealth non-negative when needed
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In contrast, when the proportional surrender charge is larger than this critical

value, an individual does not invest in the risky asset when her wealth is zero.

Additionally, the retiree does not surrender her annuity income; instead, she reduces

her consumption to a level lower than her annuity income in order to accumulate

wealth. More surprisingly, we find that in the case when the surrender charge is

larger than the critical value, the optimal annuitization, investment, consumption

strategies do not depend on the size of the surrender charge. An individual behaves

as if the annuity is not reversible and does not surrender existing annuity income

under any circumstance. We use a variety of numerical examples to demonstrate our

results.

The remainder of this paper is organized as follows: In Section 3.2, we present the

financial market in which the individual invests her wealth. In addition to investing

in riskless and risky assets, the individual can purchase or surrender reversible life

annuities. In Section 3.3.1, we consider two special cases: p = 0 and p = 1. We

solve the case p = 0 in the primal space by connecting it to the classical Merton

problem. By analyzing the retirees’ optimal strategies in these two special cases,

we gain insight in solving the more general cases. We consider the case when the

proportional surrender charge is smaller than some critical value in Section 3.3.2,

and in Section 3.3.3, we discuss the case when the proportional surrender charge is

larger than some critical value. We present properties of the optimal strategies in

Section 3.4 both analytically and numerically. Section 3.5 concludes our paper.

3.2 Problem formulation

In this section, we first introduce the assets in the financial market: a riskless asset

(bond or money market account), a risky asset (stock) and reversible life annuities.
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Then, we define the maximized utility function, which is the objective function for

our optimal control problem. After that, we preliminarily discuss a retiree’s optimal

strategy. Finally, we construct a verification theorem, which we will use to validate

our solution in the next section.

3.2.1 The financial market and reversible life annuities

We consider an individual with future lifetime described by the random variable

τd. We assume that τd is an exponential random variable with parameter λS, also

referred to as the force of mortality or hazard rate; in particular, E[τd] = 1/λS. The

superscript S indicates that the parameter equals the individual’s subjective belief

as to the value of her hazard rate.

We assume a frictionless financial market, which has no transaction costs, no

taxes and no restrictions on borrowing or short selling. In this financial market, the

individual can invest in or borrow from a riskless asset at interest rate r > 0. Also,

she can buy or short sell a risky asset whose price follows geometric Brownian motion

dSt = µSt dt+ σ St dBt, S0 = S > 0, (3.2.1)

in which µ > r, σ > 0, and B is a standard Brownian motion with respect to

a filtration F = {Ft}t≥0 of a probability space (Ω,F ,P). We assume that B is

independent of τd, the random time of death of the individual.

Moreover, we assume an unrestricted life annuity market in which an individual

can purchase any amount of reversible life annuity income or surrender any portion

of existing annuity income at anytime. The price of a life annuity (specifically, a

SPIA) that pays $1 per year continuously until the individual dies is given by

a =

∫ ∞
0

e−rse−λ
Os ds =

1

r + λO
, (3.2.2)
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in which λO > 0 is the (constant) objective hazard rate that is used to price annuities.

In other words, in return for each $a the individual pays for a life annuity, she receives

$1 per year of continuous annuity income until she dies. Due to the reversibility of

the life annuity, she can surrender any amount of the annuity income she has already

bought to get some money back from the issuer of the annuity. The surrender value

of $1 of annuity income is (1 − p)a with 0 ≤ p ≤ 1, in which p is the proportional

surrender charge. In other words, the individual can get $(1− p)a dollars back from

the issuer by giving up $1 of annuity income. Notice that the surrender value is less

than the purchase price, and the difference is the surrender charge (in dollars).

3.2.2 Utility of lifetime consumption

Following Yaari [1965], we consider a retiree without a bequest motive; therefore,

utility only comes from her consumption. She chooses to consume at a rate of ct

at time t. Let πt denote the amount invested in the risky asset at time t. Let A+
t

denote the cumulative amount of annuity income bought on or before time t, and

A−t the cumulative amount of annuity income surrendered on or before time t. Then,

At = A+
t − A−t equals the cumulative amount of immediate life annuity income at

time t. The wealth dynamics of the individual for a given admissible strategy are

given by

dWt = [rWt−+(µ−r)πt−−ct+At−] dt+σπt− dBt−a dA+
t +a(1−p) dA−t , W0 = w ≥ 0,

(3.2.3)

whereby the investment, consumption and annuitization strategies {πt, ct ≥ 0, At ≥

0}t≥0 are said to be admissible if

1. The processes {πt}t≥0, {ct}t≥0, and {A±t }t≥0 are adapted to the filtration F.

2.
∫ t

0
π2
s ds <∞,

∫ t
0
cs ds <∞, and At ≥ 0 a.s. for all t ≥ 0.
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3. The associated wealth process Wt ≥ 0 a.s. for all t ≥ 0.

We denote by Ap(w,A) the collection of all admissible strategies when the initial

wealth and annuity is (w,A), and when the corresponding surrender charge is p.

Remark 3.2.1. We highlight our assumption that wealth does not include the im-

puted value (1 − p)aA of the individual’s annuity. In order for the individual to

include any of that amount in her wealth, she must physically surrender the corre-

sponding annuity income, so that her income is reduced in future. In particular, we

prevent the retiree from borrowing against her annuity income. This assumption is

reasonable because annuity income will cease when she dies, so we do not allow her

to die with negative wealth.

We assume that the individual is risk averse and that her preferences exhibit

constant relative risk aversion (CRRA); that is, the utility function for the individual

is given by

u(c) =
c1−γ

1− γ
, γ > 0 and γ 6= 1, (3.2.4)

in which γ is the (constant) relative risk aversion. In this paper, we assume that

an individual seeks to maximize her expected utility of discounted consumption over

admissible strategies {πt, ct, At}. In addition, we assume that an individual dis-

counts the utility at the riskless rate r. Therefore, the maximized utility for such an

individual is defined as

U(w,A; p) = sup
{πt,ct,At}∈Ap(w,A)

E
[∫ τd

0

e−rt u(ct) dt

∣∣∣∣w0 = w,A0 = A, τd > 0

]
. (3.2.5)

Remark 3.2.2. For the rest of the this paper, we will simply write U(w,A; p) as

U(w,A) or even U when it is appropriate.
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Remark 3.2.3. Because we assume that the hazard rates λS and λO, as well as

the financial parameters r, µ, σ and p, are constant, U only depends on the state

variables w and A and not upon time.

Remark 3.2.4. We derive an equivalent form for the maximized utility as follows:

U(w,A; p) = sup
{πt,ct,At}∈Ap(w,A)

E
[∫ τd

0

e−rt u(ct) dt

∣∣∣∣w0 = w,A0 = A, τd > 0

]
= sup
{πt,ct,At}∈Ap(w,A)

E
[∫ ∞

0

1{τd>t} e
−rt u(ct) dt

∣∣∣∣w0 = w,A0 = A, τd > 0

]
= sup
{πt,ct,At}∈Ap(w,A)

E
[∫ ∞

0

e−λ
St e−rt u(ct) dt

∣∣∣∣w0 = w,A0 = A, τd > 0

]
= sup
{πt,ct,At}∈Ap(w,A)

E
[∫ ∞

0

e−(r+λS)t u(ct) dt

∣∣∣∣w0 = w,A0 = A, τd > 0

]
(3.2.6)

We will use this expression in the proof of our verification theorem.

Proposition 3.2.1. For an arbitrary p ∈ [0, 1], A0(w,A) ⊇ Ap(w,A) ⊇ A1(w,A);

thus, U(w,A; 0) ≥ U(w,A; p) ≥ U(w,A; 1).

Proof. If {πt, ct ≥ 0, At ≥ 0}t≥0 is admissible when the surrender charge is p1, it is also

admissible when surrender charge is p2 < p1. In other words, Ap2(w,A) ⊇ Ap1(w,A)

for p2 < p1. It follows from the definition of U that

U(w,A; p2) = sup
{πt,ct,At}∈Ap2 (w,A)

E
[∫ τd

0

e−rt u(ct) dt

∣∣∣∣w0 = w,A0 = A, τd > 0

]
≥ sup
{πt,ct,At}∈Ap1 (w,A)

E
[∫ τd

0

e−rt u(ct) dt

∣∣∣∣w0 = w,A0 = A, τd > 0

]
= U(w,A; p1),

(3.2.7)
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3.2.3 A preliminary discussion

We now formally discuss the utility maximization problem described in previous

section. Consider the strategies the retiree can choose to maximize her utility of con-

sumption. Before her death, an individual can execute one or more of the following

strategies: (i) purchase additional annuity income, (ii) surrender existing annuity

income, or (iii) do neither.

Suppose that at the point (w,A), it is optimal not to purchase or surrender any

annuity income. In this case, it follows from Itô’s lemma that the maximum utility

U satisfies the following equation:

(
r + λS

)
U = (rw + A)Uw + max

π

[
1

2
σ2π2Uww + (µ− r)πUw

]
+ max

c≥0
[−cUw + u(c)].

(3.2.8)

Because the above policy is in general suboptimal, (3.2.8) holds as an inequality;

that is, for all (w,A),

(
r + λS

)
U ≥ (rw + A)Uw + max

π

[
1

2
σ2π2Uww + (µ− r)πUw

]
+ max

c≥0
[−cUw + u(c)].

(3.2.9)

One can show that no absolutely continuous purchasing (or surrendering) pol-

icy with bounded rate is optimal; that is, the policy of purchasing or surrendering

annuity income is one of singular control. This can be verified through the same ar-

gument as in Davis and Norman [1990]. If it is optimal to purchase annuity income

instantaneously at the point (w,A), then the individual moves instantly from (w,A)

to (w − a∆A,A + ∆A), for some ∆A > 0. The optimality of this decision implies

that

U(w,A) = U(w − a∆A,A+ ∆A), (3.2.10)
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which in turn yields

aUw(w,A) = UA(w,A). (3.2.11)

Similarly, if it is optimal to surrender annuity income at the point (w,A), the

following equation holds:

U(w,A) = U(w + (1− p)a∆A,A−∆A), (3.2.12)

which implies

(1− p)aUw(w,A) = UA(w,A). (3.2.13)

Notice that the surrender value is a portion of the value of annuity determined by

the proportional surrender charge p.

In general, such purchasing or surrendering policies are suboptimal; therefore,

(3.2.11) and (3.2.13) hold as inequalities and become

aUw(w,A) ≥ UA(w,A), (3.2.14)

and

(1− p)aUw(w,A) ≤ UA(w,A). (3.2.15)

Because the individual will either buy additional annuity income, surrender exist-

ing annuity income, or do neither, we expect that the maximum utility solves the

following Hamilton-Jacobi-Bellman variational inequality (HJBVI):

max

{
− (λS + r)U + (rw + A)Uw + max

π

[
(µ− r)πUw +

1

2
σ2π2Uww

]

+ max
c≥0

(
c1−γ

1− γ
− c Uw

)
, UA − aUw, (1− p)aUw − UA

}
= 0.

(3.2.16)

3.2.4 A verification theorem

Inspired by the discussion in Section 3.2.3, we present the following verification

theorem:
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Theorem 3.2.1. For any (π, c) ∈ R×R+, define the functional operator Lπ,c through

its action on a test function f as

Lπ,cf = −(r + λS)f + (rw + A)fw +

[
(µ− r)πfw +

1

2
σ2π2fww

]
+

[
c1−γ

1− γ
− cfw

]
.

(3.2.17)

Let the function v = v(w,A) be non-decreasing, twice-differentiable, and concave with

respect to w > 0 and non-decreasing and differentiable with respect to A. Suppose v

satisfies the following conditions on D , {(w,A) : w ≥ 0, A ≥ 0}:

1. Lπ,cv(w,A) ≤ 0 for (π, c) ∈ R× R+.

2. a vw(w,A)− vA(w,A) ≥ 0.

3. (1− p)a vw(w,A)− vA(w,A) ≤ 0.

Then,

v(w,A) ≥ U(w,A),

on D.

Remark 3.2.5. Note that for the utility function u(c) =
c1−γ

1− γ
, when 0 < γ < 1,

the utility u(c) > 0 for all c > 0 and u(0) = 0. In contrast, when γ > 1, the utility

u(c) < 0 for all c > 0 and limc→0 u(c) = −∞. Thus, U(w,A) ≥ 0 (< 0) when

0 < γ < 1 (γ > 1). In particular, we have no reason to expect that U(w,A) is

bounded from below when γ > 1.

Proof of Theorem 3.2.1. We prove the theorem in two steps. First, we prove the

theorem with two additional assumptions:

1. v(w,A) is bounded from below; that is, v(w,A) ≥ V > −∞ for all (w,A) ∈ D.

2. vw(0, A) < +∞ for all A ≥ 0.
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Then, we remove these assumptions and show that the conclusion still holds.

Let τan , inf{s ≥ 0 :
∫ s

0
π2
s ds ≥ n} and τ bn , inf{s ≥ 0 : A ≥ n}. Define

τn = n ∧ τan ∧ τ bn, which is a stopping time with respect to the filtration F; then,

using Itô’s formula for semi-martingales (see Protter [2004]), we can write, for any

admissible strategy {πt, ct, At},

e−(λS+r)τn v(Wτn , Aτn) = v(w,A) +

∫ τn

0

e−(λS+r)t vw(Wt, At)σ πt dBt

+

∫ τn

0

e−(λS+r)t

[
Lπt,ctv(Wt, At)−

c1−γ
t

1− γ

]
dt

+

∫ τn

0

e−(λS+r)t [vA(Wt, At)− a vw(Wt, At)] d(A+
t )(c)

+

∫ τn

0

e−(λS+r)t [(1− p)a vw(Wt, At)− vA(Wt, At)] d(A−t )(c)

+
∑

0≤t≤τn

e−(λS+r)t [v(Wt, At)− v(Wt−, At−)] .

(3.2.18)

Here, (A±)(c) is the continuous part of A±, respectively; that is,

(A±t )(c) , A±t −
∑

0≤s≤t

(A±s − A±s−). (3.2.19)

Since v is non-decreasing and concave in w, v2
w(w,A) ≤ v2

w(0, A) for w ≥ 0. There-

fore,

Ew,A
[∫ τn

0

e−2(λS+r)t v2
w(Wt, At)σ

2 π2
t dt

∣∣∣∣W0 = w,A0 = A

]
<∞, (3.2.20)

which implies that

Ew,A
[∫ τn

0

e−(λS+r)t vw(Wt, At)σ πt dBt

∣∣∣∣W0 = w,A0 = A

]
= 0. (3.2.21)

Here, Ew,A denotes conditional expectation given W0 = w and A0 = A.

By taking expectations of equation (3.2.18), as well as using (3.2.21), assumptions

(i)-(iii) in the statement of the Verification Theorem, and the additional assumptions
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(i) and (ii), we obtain

Ew,A
[
e−(λS+r)τnV

]
≤ Ew,A

[
e−(λS+r)τnv(Wτn , Aτn)

]
≤ v(w,A)−Ew,A

[∫ τn

0

e−(λS+r)t c
1−γ
t

1− γ
dt

]
.

(3.2.22)

In deriving (3.2.22), we also use the fact that

∑
0≤t≤τn

e−(λS+r)t [v(Wt, At)− v(Wt−, At−)] ≤ 0, (3.2.23)

because assumptions (ii) and (iii) in the statement of the Verification Theorem imply

that v is non-increasing in the direction of jumps.

Since τn ↗∞ as n→∞, applying the monotonic convergence theorem to (3.2.22)

yields

v(w,A) ≥ Ew,A
[∫ ∞

0

e−(λS+r)t c
1−γ
t

1− γ
dt

]
. (3.2.24)

This implies that

v(w,A) ≥ sup
{πt,ct,At}∈Ap(w,A)

Ew,A
[∫ ∞

0

e−(λS+r)t c
1−γ
t

1− γ
dt

]
= U(w,A). (3.2.25)

Next, we show that the conclusion still holds even when v(w,A) is not bounded

from below or when vw(0, A) is not finite. We follow an argument similar to the one

in Davis and Norman [1990]. For a sequence of εn ↘ 0, define vεn(w,A) , v(w +

εn, A+εn). The function vεn is non-decreasing, twice-differentiable, and concave with

respect to w and non-decreasing and differentiable with respect to A. Note that on

D, vεn(w,A) is bounded from below by v(εn, εn) and that vεnw (0, A) = vw(εn, A+εn) <

+∞. Since vεnw (w,A) = vw(w + εn, A + εn) and vεnA (w,A) = vA(w + εn, A + εn), we
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have

0 ≥ Lπ,cv(w + εn, A+ εn) =− (r + λS)vεn(w,A) + [r(w + εn) + (A+ εn)]vεnw (w,A)

+

[
(µ− r)πvεnw (w,A) +

1

2
σ2π2vεnww(w,A)

]
+

[
c1−γ

1− γ
− cvεnw (w,A)

]
=Lπ,cvεn(w,A) + (r + 1)εnv

εn
w (w,A).

(3.2.26)

Because vεnw (w,A) ≥ 0 and εn > 0, we get Lπ,cvεn(w,A) ≤ 0. Also, we have

a vεnw (w,A)− vεnA (w,A) = a vw(w + εn, A+ εn)− vA(w + εn, A+ εn) ≥ 0, (3.2.27)

and

(1− p)a vεnw (w,A)− vεnA (w,A) = (1− p)a vw(w+ εn, A+ εn)− vA(w+ εn, A+ εn) ≤ 0,

(3.2.28)

which are exactly assumptions (ii) and (iii) in Theorem 3.2.1. Therefore, vεn(w,A) ≥

U(w,A) for all n. Since v(w,A) is continuous in both w and A, we conclude that

v(w,A) = limn→∞ v
εn(w,A) ≥ U(w,A).

We use the following corollary of Theorem 3.2.1 to determine U , the maximized

utility, along with an optimal strategy.

Corollary 3.2.1. Suppose v is the expected utility of lifetime consumption associated

with an admissible strategy {πt, ct, At}. If v satisfies the conditions in Theorem 3.2.1

with equality and the condition that

lim
n→∞

Ew,A
[
e−(λS+r)τn v(Wτn , Aτn)

]
= 0, (3.2.29)

with the stopping time (τn)n≥1 defined in the proof of Theorem 3.2.1, then v = U on

D and the associated strategy is optimal.
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Proof. The proof is similar to the proof for Theorem 3.2.1. Note that when all the

inequalities in the Verification Theorem hold as equalities for the specific strategy,

the second inequality in (3.2.22) becomes an equality. Take the limit on both sides

of that equality and apply the condition (3.2.29) to prove this corollary.

3.3 Determining the maximized utility U

To solve the utility maximization problem defined in the previous section, we first

consider two special cases: p = 0 and p = 1, which give hints for the optimal strategy

of a retiree in a more general case when p is arbitrary. After analyzing these two

special cases, we solve the general case for which p ∈ [0, 1] .

3.3.1 Two special cases: p = 0 and p = 1

Consider the two special cases: p = 0 and p = 1. The significance of these two

cases is already indicated by Proposition 3.2.1. By investigating the cases for p = 0

and p = 1, we will find upper and lower bounds for both the maximized utility

function and the admissible strategy set for an arbitrary p.

We first consider the case p = 0, in which the annuity is completely reversible. We

solve this special case by connecting it to a classical Merton problem. When p = 0,

the life annuity acts as another money market account with a higher risk free rate,

namely, r+λO. It is optimal for the individual to annuitize all her wealth immediately

and to invest in the risky asset with money borrowed from riskless asset at rate r. As

an optimal strategy, all her earnings will be used to purchase more annuity income

immediately, and all her losses will be paid back by surrendering existing annuity

income. Although there exist two accounts growing with different rates (r versus

r + λO), there is no arbitrage opportunity to make an arbitrary amount of money,

due to our restriction that wealth be non-negative. Since the imputed value of the
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annuity is not included in wealth, the individual is prohibited from purchasing an

arbitrary amount of annuity income with money borrowed from the riskless account.

The wealth Wt is always zero when the individual follows the optimal strategy

describe above, for t > 0, because she fully annuitizes at t = 0. Therefore, we

only need to consider the dynamics of her annuity income At. For convenience of

the following discussion, we use W t to represent the imputed value of her annuity

income At (that is, W t = aAt), and we give the dynamics of W t instead. Assume

that the individual shorts πt in riskless asset, invests this amount of money in the

risky asset, and consumes at a rate of ct. The dynamics of W t are given by

dW t =
[(
r + λO

)
W t + (µ− r) πt − ct

]
dt+ σ πt dBt.

=
{(
r + λO

)
W t +

[
(µ+ λO)− (r + λO)

]
πt − ct

}
dt+ σπt dBt.

(3.3.1)

with

W 0 = w , w + aA. (3.3.2)

Therefore, the utility maximization problem becomes

U(w,A) = sup
{πt,ct}

E
[∫ τd

0

e−rt u(ct) dt

∣∣∣∣W0 = w,A0 = A, τd > 0

]
= sup
{πt,ct}

E
[∫ +∞

0

e−(r+λS)t u(ct) dt

∣∣∣∣W 0 = w + aA, τd > 0

]
.

(3.3.3)

In fact, the stochastic optimization problem defined by (3.3.1)-(3.3.3) is equivalent

to Merton’s problem of solving for

U(w) = sup
{πt,ct}

E
[∫ +∞

0

e−(r+λS)t u(ct) dt

∣∣∣∣W 0 = w

]
, (3.3.4)

in a complete market with a riskless asset P t that evolves as

dP t = (r + λO)P t dt, (3.3.5)

and a risky asset St that follows

dSt = (µ+ λO)St dt+ σ St dBt. (3.3.6)



83

It is well know that, with CRRA utility u(c) =
c1−γ

1− γ
, Merton’s problem defined by

(3.3.4)-(3.3.6) is explicitly solvable. Indeed, define

K ,
1

γ

[(
r + λS

)
− (1− γ)

(
r + λO

)
− 1− γ

γ
m

]
, (3.3.7)

with m =
1

2

(
µ− r
σ

)2

. The maximized utility and optimal strategies for this version

of Merton’s problem are given by

U(w) = K−γ
w1−γ

1− γ
, (3.3.8)

c∗(w) = K w, (3.3.9)

π∗(w) =
µ− r
γσ2

w. (3.3.10)

Note that the solutions (3.3.8)-(3.3.10) hold under the following well-posedness

condition:

K =
1

γ

[(
r + λS

)
− (1− γ)

(
r + λO

)
−m 1− γ

γ

]
> 0. (3.3.11)

If this condition is not satisfied, arbitrarily large discounted utility could be obtained

by a strategy of prolonged investment followed by massive consumption. With the

result above, we directly obtain the maximized utility for (3.3.3) with p = 0 as

follows:

U(w,A) = K−γ
(w + aA)1−γ

1− γ
. (3.3.12)

Remark 3.3.1. We assume that the condition (3.3.11) holds for rest of this paper.

Note that given the same initial wealth w and annuity income A, the maximized

utility function for p > 0 is less than that for p = 0. Therefore, by imposing the

condition (3.3.11), we guarantee that maximized utility with any initial w and A is

finite for all p ∈ [0, 1].
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When p = 1, we have a utility maximization problem with irreversible annuities.

This problem is throughly investigated via duality argument by Milevsky and Young

[2007]. In their paper, the authors found that an individual purchases annuity to keep

herself to one side of a separating ray in wealth-annuity space and stops investing in

risky asset when her wealth is zero. Since the annuity is irreversible, she will never

surrender it. The reader can refer to that paper for more details.

These two extreme cases help us to better understand our optimization problem

for p ∈ (0, 1). For an arbitrary value of p, we expect that the maximized utility is

bounded by those of the two extreme cases. We also expect that the optimal strategy

is similar to one of the two cases above. Inspired by solutions for these two special

cases, we solve our problem for an arbitrary proportional surrender charge p ∈ [0, 1]

in the following sections.

3.3.2 The case for which p < p∗

Consider the utility maximization problem in the region D , {(w,A) : w ≥

0, A ≥ 0} with an arbitrary value of p. For a strategy to be admissible, the wealth

w of the individual is required to be non-negative. In other words, whenever one’s

wealth reaches zero, she is forced to keep her wealth from further decline. Through

our study, we learn that an individual handles this situation in one of two ways,

depending on size of the proportional surrender charge p. If p < p∗, a critical value

to be determined later, the retiree prefers to keep investing in the risky asset by

borrowing the same amount from the riskless account. To keep her wealth from

declining due to a decline in the price of the risky asset, she surrenders some of her

existing annuity income when needed. If p ≥ p∗, then the surrender charge is large,

and she prefers to stop investing. Instead, by saving from the annuity income, she

increases her wealth to w > 0. We investigate the two cases of p < p∗ and p ≥ p∗ in
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this section and in Section 3.3.3, respectively. Figure 3.1 demonstrates the optimal

annuitization strategies in both cases on the wealth-annuity (w − A) plane.

When p < p∗, we hypothesize that there exists a critical ratio z0 of wealth-to-

annuity income. At a point (w,A) such that w/A > z0, the individual purchases

annuity income to raise her annuity to A′ and reduces her wealth to w′ such that

w′/A′ = z0. Additionally, we hypothesize that the individual neither purchases nor

surrenders annuity income if 0 < w/A ≤ z0. On the boundary w = 0, we hypothesize

that she will surrender existing annuity income when needed to keep her wealth w

non-negative.

We set up equations and boundary conditions based on our hypotheses above and

solve for U and the associated optimal strategies. We also determine the critical

proportional surrender charge p∗ and critical ratio of wealth-to-annuity income z0.

Lastly, we verify our hypothesis through the Verification Theorem 3.2.1.

Based on our hypotheses for the optimal strategies, we formulate the problem as

follows:

1. In the region D1 , {(w,A) : 0 ≤ w/A ≤ z0, A ≥ 0}, U is the solution of the

following boundary value problem (BVP)

(λS+r)U = (rw+A)Uw+max
π

[
(µ− r)πUw +

1

2
σ2π2Uww

]
+max

c≥0

(
c1−γ

1− γ
− cUw

)
,

(3.3.13)

with boundary conditions

UA(z0A,A) = aUw(z0A,A), (3.3.14)

UA(0, A) = (1− p)aUw(0, A), (3.3.15)

for A ≥ 0.
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2. In the region D2 , {(w,A) : w/A > z0, A ≥ 0}, we have

U(w,A) = U(w − a∆A,A+ ∆A), (3.3.16)

in which ∆A =
w − z0A

z0 + a
. Notice that (w − a∆A,A+ ∆A) ∈ ∂D1.

3. Since the separating line w/A = z0 for purchasing annuity income is optimally

chosen, we apply the smooth fit condition

UAw(z0A,A) = aUww(z0A,A), A > 0. (3.3.17)

This condition is also assumed in Davis and Norman [1990] and Karatzas et al.

[2000]. An intuitive derivation of the smooth fit condition for optimal regulation

problem in a discrete-time setting is given in Dixit [1991]. A discussion on the

smooth fit condition can be found in Dumas [1991].

Dimension reduction

The value function U defined in (3.2.6) is homogeneous of degree 1 − γ with

respect to wealth w and annuity A due to the homogeneity property of the CRRA

utility function. More precisely, U(αw, αA) = α1−γU(w,A) for α > 0. We utilize

this property to define V (z) = U(z, 1) and to write U in terms of V by

U(w,A) = A1−γV (w/A), for A > 0. (3.3.18)

This transform simplifies our problem by reducing it to a one-dimensional prob-

lem. Implementations of this transformation in optimal consumption and investment

problems can be also found in Davis and Norman [1990] and Koo [1998].

Now, we apply the dimension reduction to equations (3.3.13)-(3.3.17) to get a set

of equations for V (z) with z = w/A. Then, we will solve for V and recover U from
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V . To that end, we obtain the following BVP for V :

−(λS+r)V+(rz+1)Vz+max
π̂

[
(µ− r)π̂Vz +

1

2
σ2π̂2Vzz

]
+max

ĉ≥0

(
ĉ1−γ

1− γ
− ĉVz

)
= 0, 0 ≤ z ≤ z0,

(3.3.19)

(1− γ)V (z0) = (z0 + a)Vz(z0), (3.3.20)

(1− γ)V (0) = (1− p)a Vz(0). (3.3.21)

In terms of V , the smooth fit condition (3.3.17) is

(z0 + a)Vzz(z0) + γVz(z0) = 0. (3.3.22)

Linearization via the Legendre transform

To avoid handling the non-linear PDE in equation (3.3.19) directly, we apply the

Legendre transform to V (z), the solution of the above BVP, and obtain a linear PDE

with free boundaries for the convex dual V̂ (y) of V (z). Recall that the maximized

utility U is non-decreasing and concave with respect to w because the CRRA utility

function is non-decreasing and concave; thus, V (z) = U(z, 1) is also non-decreasing

and concave. However, we do not know a priori that the solution V of the BVP

is non-decreasing and concave. Despite this shortcoming, we hypothesize that the

solution of the BVP is non-decreasing and concave, which allows us to define its

convex dual via the Legendre transform. Later, in Proposition 3.3.4, we will show

that the convex dual is indeed convex, so the solution to the BVP, V , is concave.

Define

V̂ (y) = max
z≥0

[V (z)− yz] . (3.3.23)

For a given y, the critical z∗ that maximizes V (z)− yz solves Vz(z
∗)− y = 0. Thus,

z∗ = I(y), (3.3.24)



88

in which I is the inverse of Vz(z). It follows that

V̂y(y) = −V −1
z (y) = −z∗ ≤ 0, (3.3.25)

V̂yy = − 1

Vzz(z)

∣∣∣z=V −1
z (y) ≥ 0 . (3.3.26)

Rewrite (3.3.19) in terms of V̂ to obtain a linear PDE for V̂ (y):

− (r + λS)V̂ (y) + λSyV̂y(y) +my2V̂yy(y) + y +
γ

1− γ
y
γ−1
γ = 0, (3.3.27)

in which m =
1

2

(
µ− r
σ

)2

. The general solution of (3.3.27) is given by

V̂ (y) = D1y
B1 +D2y

B2 +
y

r
+ Cy

γ−1
γ , (3.3.28)

in which

B1 =
1

2m

[
(m− λS) +

√
(m− λS)2 + 4m(r + λS)

]
> 1, (3.3.29)

B2 =
1

2m

[
(m− λS)−

√
(m− λS)2 + 4m(r + λS)

]
< 0, (3.3.30)

C =
γ

1− γ

[
r +

λS

γ
−m1− γ

γ2

]−1

. (3.3.31)

Remark 3.3.2. Condition (3.3.11) implies that

r +
λS

γ
−m1− γ

γ2
> 0. (3.3.32)

Because [1 + γ(B1 − 1)] · [1 + γ(B2 − 1)] = −γ
2

m

[
r +

λS

γ
−m1− γ

γ2

]
, the inequality

above implies that 1 + γ(B2 − 1) < 0.

Define

ys = Vz(0), (3.3.33)

yb = Vz(z0). (3.3.34)

Thus,

V̂y(ys) = 0, (3.3.35)

V̂y(yb) = −z0. (3.3.36)
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Under the assumption that V is non-decreasing and concave, it follows that 0 ≤ yb ≤

ys, and we discuss this further when we solve for yb and ys.

Rewrite equations (3.3.20), (3.3.21), and (3.3.22) in terms of V̂ (y) to get

(1− γ)V̂ (yb) + γybV̂y(yb) = a yb, (3.3.37)

(1− γ)V̂ (ys) = (1− p)a ys, (3.3.38)

V̂y(yb) + γybV̂yy(yb) = a. (3.3.39)

Instead of solving for V (z) directly, we solve for V̂ (y) given by the free-boundary

problem (FBP) (3.3.27) with boundary conditions (3.3.37) and (3.3.38) and smooth

fit condition (3.3.39).

To solve for V̂ (y), we substitute (3.3.28) into (3.3.35)-(3.3.39) to get

D1[1 + γ(B1 − 1)]yB1
b +D2[1 + γ(B2 − 1)]yB2

b +
yb
r

=
yb

r + λO
,(3.3.40)

(1− γ)D1y
B1
s + (1− γ)D2y

B2
s + (1− γ)

ys
r

+ (1− γ)Cy
γ−1
γ

s =
(1− p)ys
r + λO

,(3.3.41)

D1B1[1 + γ(B1 − 1)]yB1−1
b +D2B2[1 + γ(B2 − 1)]yB2−1

b +
1

r
=

1

r + λO
,(3.3.42)

D1B1y
B1−1
s +D2B2y

B2−1
s +

1

r
+
γ − 1

γ
Cy
− 1
γ

s = 0, (3.3.43)

D1B1y
B1−1
b +D2B2y

B2−1
b +

1

r
+
γ − 1

γ
Cy
− 1
γ

b = −z0. (3.3.44)

We solve for D1, D2, ys, yb, and z0 from the equations above. From (3.3.40) and

(3.3.42), we get

D1 = − λO

r(r + λO)

1−B2

B1 −B2

1

1 + γ(B1 − 1)
y1−B1
b , (3.3.45)

D2 = − λO

r(r + λO)

B1 − 1

B1 −B2

1

1 + γ(B2 − 1)
y1−B2
b . (3.3.46)

By substituting (3.3.45) and (3.3.46) into (3.3.41) and (3.3.43) (and eliminating the

term with C in it), we obtain

1−B2

B1 −B2

xB1−1 +
B1 − 1

B1 −B2

xB2−1 = 1 +
pr

λO
, (3.3.47)
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with x ,
ys
yb

. Note that x has a unique solution in [1,+∞) because (i) when x = 1,

LHS = 1 ≤ RHS; (ii) when x → ∞, LHS → ∞ > RHS; and (iii)
dLHS

dx
> 0 for

x ∈ (1,+∞). Given B1 and B2, x is a function of p. In our paper, when we write x,

we will mean this unique solution.

We substitute (3.3.45) and (3.3.46) into (3.3.43) to get

− λO

r(r + λO)

B1(1−B2)

B1 −B2

xB1−1

1 + γ(B1 − 1)
− λO

r(r + λO)

B2(B1 − 1)

B1 −B2

xB2−1

1 + γ(B2 − 1)
+

1

r
=

1− γ
γ

Cy
− 1
γ

s .

(3.3.48)

This expression gives ys in terms of x, and yb is, therefore,

yb =
ys
x
. (3.3.49)

The purchasing boundary z0 is obtained by substituting (3.3.45) and (3.3.46) into

(3.3.44),

z0 =
λO

r(r + λO)

1− γ +B1B2γ

[1 + γ(B1 − 1)][1 + γ(B2 − 1)]
− 1

r
− γ − 1

γ
Cy
− 1
γ

b

= − λO

r(r + λO)

m(1− γ)− (r + λS)γ

γ2

[
r +

λS

γ
−m1− γ

γ2

] − 1

r
− γ − 1

γ
Cy
− 1
γ

b .
(3.3.50)

Proposition 3.3.1. The solution for the FBP (3.3.27) with conditions (3.3.37),

(3.3.38), and (3.3.39) is given by (3.3.28), with D1, D2, ys, yb and x defined in

(3.3.45), (3.3.46), (3.3.48), (3.3.49), and (3.3.47), respectively.

Remark 3.3.3. To make the solution meaningful, we require that ys > 0, which

implies that 0 < yb ≤ ys because x ≥ 1. After we define the critical proportional

surrender charge p∗ below, we will prove that ys > 0 for 0 ≤ p < p∗.
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The Critical proportional surrender charge p∗

We will demonstrate later that the value of the critical proportional surrender

charge is given by

p∗ =
λO

r

[
1−B2

B1 −B2

x̃B1−1 +
B1 − 1

B1 −B2

x̃B2−1 − 1

]
, (3.3.51)

in which x̃ > 1 is the unique solution of the following equation:

λO

r + λO

[
B1(1−B2)

B1 −B2

x̃B1−1 +
B2(B1 − 1)

B1 −B2

x̃B2−1

]
= 1. (3.3.52)

Note that p∗ is independent of γ. Moreover, x(p∗) = x̃, in which x = x(p) is given

by (3.3.47).

In the next proposition, we show that ys is positive.

Proposition 3.3.2. The well-posedness condition (3.3.11) implies that ys as defined

in (3.3.48) is positive for 0 ≤ p < p∗.

Proof. The well-posedness condition implies that (1− γ)C defined in (3.3.31) is pos-

itive, so ys > 0 if and only if h(x) > 0 for all 1 ≤ x < x̃, in which

h(x) , 1− λO

r + λO
B1(1−B2)

B1 −B2

xB1−1

1 + γ(B1 − 1)
− λO

r + λO
B2(B1 − 1)

B1 −B2

xB2−1

1 + γ(B2 − 1)
.

(3.3.53)

By differentiating h with respect to γ, one can show that h strictly increases with

respect to γ. When γ = 0, we get

h(x)
∣∣
γ=0

= 1− λO

r + λO
B1(1−B2)

B1 −B2

xB1−1 − λO

r + λO
B2(B1 − 1)

B1 −B2

xB2−1. (3.3.54)

From the definition of x̃ in (3.3.52) and from the fact that the left-hand side of

(3.3.52) strictly increases with respect to x̃ for x̃ > 1, the latter expression is positive

for 1 ≤ x < x̃. Thus, h(x) > 0 for 1 ≤ x < x̃ for all γ > 0.
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Proposition 3.3.3. 0 < p∗ < 1.

Proof. First, we show that p∗ > 0. Taking the derivative of p∗ in (3.3.51) with respect

to x̃, we have

dp∗

dx̃
=
λO

r

(B1 − 1)(1−B2)

B1 −B2

(
x̃B1−2 − x̃B2−2

)
> 0, ∀x > 1. (3.3.55)

If x̃ = 1, we have p∗ = 0. Since x̃ > 1, we conclude that p∗ > 0. To show that p∗ < 1,

we write x̃B1−1 in terms of x̃B2−1 from (3.3.52) and substitute it into (3.3.51) to get

p∗ =
1

B1

λO

r

[
r + λO

λO
+ (B1 − 1)x̃B2−1 −B1

]
≤ 1

B1

λO

r

[
r + λO

λO
+ (B1 − 1)−B1

]
=

1

B1

< 1.

(3.3.56)

Properties of V̂

Rewrite (3.2.14) and (3.2.15) in terms of V̂ as

(1− γ)V̂ + γyV̂y ≤ ay, (3.3.57)

(1− γ)V̂ + γyV̂y ≥ (1− p)ay, . (3.3.58)

In the next proposition, we will prove that the FBP’s solution, V̂ , as determined in

Proposition 3.3.1, satisfies these inequalities and satisfies other expected properties.

Remark 3.3.4. The maximized utility U is non-decreasing and concave with respect

to w because the CRRA utility function is concave. Thus, V (z) = U(z, 1) is non-

decreasing and concave, and V̂ (y) is non-increasing and convex because it is the

convex dual of V . However, in Proposition 3.3.1, we determine V̂ as the solution

to a FBP that is suggested by our ansatz at the beginning of Section 3.3.2. Because

we do not know a priori that our ansatz is correct, we must demonstrate that the

solution V̂ has all the properties that we expect it to have as the Legendre transform

of V .
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Proposition 3.3.4. V̂ given in Proposition 3.3.1 satisfies inequalities (3.3.57) and

(3.3.58) and is decreasing and convex for 0 < yb ≤ y ≤ ys.

Proof. By substituting (3.3.28) into (3.3.57) and (3.3.58), we rewrite the inequalities

as

− pr + λO

r(r + λO)
≤ f(y) ≤ − λO

r(r + λO)
, (3.3.59)

in which

f(y) = D1[1 + γ(B1 − 1)]yB1−1 +D2[1 + γ(B2 − 1)]yB2−1. (3.3.60)

Note that f(ys) = − pr + λO

r(r + λO)
and f(yb) = − λO

r(r + λO)
by (3.3.41) and (3.3.40),

respectively. Also, we check that

f ′(y) = D1(B1 − 1)[1 + γ(B1 − 1)]yB1−2 +D2(B2 − 1)[1 + γ(B2 − 1)]yB2−2

= −1

y

λO

r(r + λO)

(B1 − 1)(1−B2)

B1 −B2

[(
y

yb

)B1−1

−
(
y

yb

)B2−1
]
≤ 0,

(3.3.61)

for 0 < yb ≤ y ≤ ys. Therefore, the inequalities in (3.3.59) hold.

To show that V̂ is non-increasing, compute V̂y from (3.3.28) after substituting for

D1, D2, and C:

V̂y(y) = − λO

r(r + λO)

1

B1 −B2

[
B1(1−B2)

1 + γ(B1 − 1)

(
y

yb

)B1−1

+
B2(B1 − 1)

1 + γ(B2 − 1)

(
y

yb

)B2−1
]

−
[
r +

λS

γ
−m1− γ

γ

]−1

y−
1
γ

< 0,

(3.3.62)

in which the inequality follows because all three terms are non-negative for 0 < yb ≤

y ≤ ys, and the third is strictly negative because of inequality (3.3.32).
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As for the convexity of V̂ , we see that for 0 < yb ≤ y ≤ ys,

V̂yy(y) ≥ 0

⇐⇒ − λO

r(r + λO)

(B1 − 1)(1−B2)

B1 −B2

[
B1

1 + γ(B1 − 1)

(
y

yb

)B1−1

− B2

1 + γ(B2 − 1)

(
y

yb

)B2−1
]

+

(
1− 1

γ

)(
−1

γ

)
Cy−

1
γ ≥ 0.

(3.3.63)

Define

g(y) =− λO

r(r + λO)

(B1 − 1)(1−B2)

B1 −B2

[
B1

1 + γ(B1 − 1)

(
y

yb

)B1−1

− B2

1 + γ(B2 − 1)

(
y

yb

)B2−1
]

+

(
1− 1

γ

)(
−1

γ

)
Cy−

1
γ .

(3.3.64)

We note that

g′(y) =− 1

yb

λO

r(r + λO)

(B1 − 1)(1−B2)

B1 −B2

[
B1(B1 − 1)

1 + γ(B1 − 1)

(
y

yb

)B1−2

− B2(B2 − 1)

1 + γ(B2 − 1)

(
y

yb

)B2−2
]

+

(
1− 1

γ

)(
−1

γ

)2

Cy−
γ+1
γ < 0,

(3.3.65)

in which the inequality follows because all three terms are non-negative, and the

third is strictly negative because of inequality (3.3.32). Therefore, to complete our

proof, we just need to show that g(ys) ≥ 0. Note that by (3.3.47) and (3.3.48),

g(ys) =
1

γr

[
−B1

pr + λO

r + λO
+

λO

r + λO
(B1 − 1)xB2−1 + 1

]
. (3.3.66)

By taking the derivative of (3.3.47) implicitly with respect to p, we obtain

dx

dp
=

r

λO
B1 −B2

(B1 − 1)(1−B2)

(
xB1−2 − xB2−2

)−1
> 0, for x > 1. (3.3.67)

Therefore,

dg(ys)

dp
=

1

γr

[
−B1

r

r + λO
+

λO

r + λO
(B1 − 1)(B2 − 1)xB2−2dx

dp

]
< 0. (3.3.68)
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When p = p∗,

g(ys) =
1

γr

[
−B1

p∗r + λO

r + λO
+

λO

r + λO
(B1 − 1)x̃B2−1 + 1

]
=

1

γr

[
−
λO(B1 − 1)

(
x̃B2−1 − 1

)
+ r + λOB1

r + λO
+

λO

r + λO
(B1 − 1)x̃B2−1 + 1

]

= 0,

(3.3.69)

in which the second line follows from expressing p∗ in terms of x̃B2−1 by using equa-

tions (3.3.51) and (3.3.52). Therefore, g(ys) ≥ 0 for any p ∈ [0, p∗]. The convexity

of V̂ follows.

Remark 3.3.5. It is at this point that we see the importance of the critical value

p∗. If p > p∗, then V̂ as given in Proposition 3.3.1 is not necessarily convex, and

our argument hinges on this property. If V̂ were not convex, then it would not be the

Legendre dual of a concave function, and V must be concave.

construction of U from V̂

In this section, we construct U from V̂ , and verify that it is, indeed, the solution

for our utility maximization problem through the Verification Theorem 3.2.1. First,

we define the concave dual of V̂ by

Ṽ (z) = min
y≥0

[V̂ (y) + zy]. (3.3.70)

For a given z, the critical y∗ that minimizes V̂ (y) + zy is given by V̂y(y
∗) + z = 0.

Thus, y∗ = V̂ −1
y (−z). Then,

Ṽz(z) = V̂ −1
y (−z) = y∗, (3.3.71)

Ṽzz(z) = − 1

V̂yy(y)

∣∣∣y=V̂ −1
y (−z). (3.3.72)

We next define the function Ũ(w,A), with z0 given by (3.3.50):
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1. In the region D1 = {(w,A) : 0 ≤ w/A ≤ z0 , A ≥ 0},

Ũ(w,A) , A1−γṼ (w/A). (3.3.73)

2. In the region D2 = {(w,A) : w/A > z0, A ≥ 0}, define

Ũ(w,A) , Ũ(w′, A′), (3.3.74)

in which w′ = w− a∆A, A′ = A+ ∆A, and ∆A =
w − z0A

z0 + a
. It is easy to check

that w′ = z0A
′.

In the remainder of this section, we show that the Ũ defined above equals the

maximized utility U for 0 ≤ p ≤ p∗. First, consider (w,A) ∈ D1. Note that

Ũw(w,A) = A−γṼz(w/A) = A−γy, with y = V −1
y (−w/A). Because 0 ≤ w/A ≤ z0,

we have that 0 < yb ≤ y ≤ ys. It follows that Ũw(w,A) > 0. Similarly, Ũww(w,A) =

A−(γ+1)Ṽzz(w/A) = −A−(γ+1)/V̂yy(y) ≤ 0. Therefore, Ũ(w,A) is increasing and

concave with respect to w in the region D1.

By rewriting (3.3.27) in terms of Ũ(w,A) in the region D1, we get

− (λS + r)Ũ + (rw + A)Ũw −m
Ũ2
w

Ũww
+

γ

1− γ
Ũ

γ−1
γ

w = 0, (3.3.75)

or equivalently

max
{π,c}
Lπ,cŨ = 0, (3.3.76)

with the optimal strategies π∗ and c∗ given, respectively, in feedback form by

π∗t = −µ− r
σ2

Ũw(W ∗
t , A

∗
t )

Ũww(W ∗
t , A

∗
t )
, (3.3.77)

c∗t = Ũ
− 1
γ

w (W ∗
t , A

∗
t ), (3.3.78)

in which W ∗ and A∗ are the optimally controlled wealth and annuity income pro-

cesses, respectively. Thus, in D1, Ũ solves the same HJB equation as the one given

in equation (3.3.13).
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For (w,A) ∈ D1, rewrite (3.3.57) and (3.3.58) in terms of Ũ to get

ŨA(w,A) ≤ a Ũw(w,A), (3.3.79)

ŨA(w,A) ≥ (1− p)a Ũw(w,A). (3.3.80)

Inequality (3.3.80) implies that Ũ is increasing with respect to A in D1. From

(3.3.37), (3.3.38), and (3.3.39), we have the following conditions for Ũ on the bound-

ary of D1:

ŨA(z0A,A) = a Ũw(z0A,A), (3.3.81)

ŨA(0, A) = (1− p)a Ũw(0, A), (3.3.82)

ŨAw(z0A,A) = a Ũww(z0A,A). (3.3.83)

Based on our construction of Ũ(w,A) for (w,A) ∈ D2, define (w′, A′) ∈ D1 by

w′ = z0 ·
w + aA

z0 + a
and A′ =

w + aA

z0 + a
. Since w′/A′ = z0, we get the following equations

from (3.3.81) and (3.3.83):

ŨA(w′, A′) = a Ũw(w′, A′), (3.3.84)

ŨAw(w′, A′) = a Ũww(w′, A′). (3.3.85)

Then, from (3.3.74), (3.3.84), and (3.3.85), we obtain the following conditions for

(w,A) ∈ D2:

Ũw(w,A) = Ũw(w′, A′) ≥ 0, (3.3.86)

ŨA(w,A) = ŨA(w′, A′) ≥ 0, (3.3.87)

Ũww(w,A) = Ũww(w′, A′) ≤ 0. (3.3.88)

Thus, Ũ is non-decreasing and concave with respect to w and is non-decreasing with

respect to A in D2. Moreover, (3.3.86) and (3.3.87) lead to the inequalities (3.3.79)

and (3.3.80) for (w,A) ∈ D2.
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Next, consider max
{π,c}
Lπ,cŨ(w,A) for (w,A) ∈ D2. Due to the concavity of U(w,A),

we have that

max
{π,c}
Lπ,cŨ(w,A) =− (λS + r)Ũ(w,A) + (rw + A)Ũw(w,A)

−m Ũ2
w(w,A)

Ũww(w,A)
+

γ

1− γ
Ũw(w,A)

γ−1
γ

=− (λS + r)Ũ(w′, A′) + (rw′ + A′)Ũw(w′, A′)

−m Ũ2
w(w′, A′)

Ũww(w′, A′)
+

γ

1− γ
Ũw(w′, A′)

γ−1
γ

+ [r(w − w′) + (A− A′)]Ũw(w′, A′)

= max
{π,c}
Lπ,cŨ(w′, A′) + [r(w − w′) + (A− A′)]Ũw(w′, A′)

=− λO

r + λO
∆A Uw(w′, A′) ≤ 0.

(3.3.89)

Here, we use the fact that max{π,c} Lπ,cŨ(w′, A′) = 0 for (w′, A′) ∈ D1.

To prove that the utility function Ũ defined in equations (3.3.73) and (3.3.74) is

the maximized utility U , we require the following lemma:

Lemma 3.3.1. For every sequence of bounded stopping times (τn)n≥1 with τn →∞

a.s.,

lim
n→∞

Ew,A
[
e−(λS+r)τnŨ(W ∗

τn , A
∗
τn)
]

= 0, (3.3.90)

in which W ∗ and A∗ are the optimally controlled wealth and annuity processes, re-

spectively.

Proof. Consider Ũ(w,A) defined in (3.3.73). First, observe that for any (w,A) ∈ D1,

we have:

• When γ < 1, then Ũ(w,A) 6= 0 ⇐⇒ (w,A) 6= (0, 0).

• When γ > 1, then Ũ(w,A) > −∞ ⇐⇒ (w,A) 6= (0, 0).
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Without loss of generality, we assume that (W0, A0) ∈ D1\{(0, 0)}. Define τ ,

inf{t > 0 : (W ∗
t , A

∗
t ) = (0, 0)}. For the optimally controlled wealth and annuity

income processes, we have that τ > 0 a.s.

Let T > 0 be fixed but arbitrary. We follow Davis and Norman [1990] and apply

Itô’s formula to ln
[
e−(λS+r)(T∧τ)Ũ(W ∗

T∧τ , A
∗
T∧τ )

]
under the optimal consumption,

investment, and annuitization strategies to get

ln
[
e−(λS+r)(T∧τ)Ũ(W ∗

T∧τ , A
∗
T∧τ )

]
− ln

[
Ũ(W0, A0)

]
=

∫ T∧τ

0

Ũw

Ũ
σ π∗t dBt +

∫ T∧τ

0

1

Ũ

[
Lπ∗

t ,c
∗
t Ũ − (c∗t )

1−γ

1− γ

]
dt

+

∫ T∧τ

0

1

Ũ

(
ŨA − a Ũw

)
d(A+

t )(c) +

∫ T∧τ

0

1

Ũ

[
(1− p)a Ũw − ŨA

]
d(A−t )(c)

+
∑

0≤t≤T∧τ

{
ln
[
Ũ(W ∗

t , A
∗
t )
]
− ln

[
Ũ(W ∗

t−, A
∗
t−)
]}
− 1

2

∫ T∧τ

0

Ũ2
w

Ũ2
σ2 (π∗t )

2 dt

=

∫ T∧τ

0

[
− 1

Ũ

(c∗t )
1−γ

1− γ
− Ũ2

w

2Ũ2
σ2 (π∗t )

2

]
dt+

∫ T∧τ

0

Ũw

Ũ
σ π∗t dBt,

(3.3.91)

in which π∗t and c∗t are defined in (3.3.77) and (3.3.78) and the annuitization strategy

is to buy or surrender annuities only in order to keep (W ∗
t , A

∗
t ) ∈ D1. In this equation,

Ũ , Ũw, etc. are evaluated at (W ∗
t , A

∗
t ) unless noted otherwise. We simplify (3.3.91)

to

e−(λS+r)(T∧τ)Ũ(W ∗
T∧τ , A

∗
T∧τ ) = Ũ(W0, A0) · exp

(∫ T∧τ

0

− 1

Ũ

(c∗t )
1−γ

1− γ
dt

)

· exp

(∫ T∧τ

0

− Ũ2
w

2Ũ2
σ2 (π∗t )

2 dt+
Ũw

Ũ
σ π∗t dBt

)
.

(3.3.92)

We wish to show that Ũ is bounded away from 0 on D1\{(0, 0}. Recall that

Ũ(w,A) = A1−γṼ (w/A); thus, it is equivalent to show that Ṽ is bounded away

from 0 for 0 ≤ z ≤ z0. Equations (3.3.20) and (3.3.21) hold with V replaced by
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Ṽ ; therefore, from these equations, it follows that it is sufficient to show that Ṽz is

bounded away from 0 for 0 ≤ z ≤ z0. The latter condition holds due to equations

(3.3.33), (3.3.34), and (3.3.71).

From equation (3.3.72), it follows that 1/Ṽzz is uniformly bounded for 0 ≤ z ≤ z0.

Thus, because
Ũw

Ũ
σ π∗t = −µ− r

σ

Ṽ 2
z

Ṽ Ṽzz
, the integral

∫ T∧τ
0

Ũw

Ũ
σ π∗t dBt is finite for

any 0 < T <∞. Similarly, we have that
1

Ũ

(c∗t )
1−γ

1− γ
=

1

1− γ
Ṽ
−(1−γ)/γ
z

Ṽ
> 0 is bounded

away from zero for 0 ≤ z ≤ z0 by, say, K > 0.

Suppose τ < ∞ on some set ∆ with positive measure. Choose a sample path

in the set ∆, and let T → τ . Due to the continuity of (3.3.92), we have that

lim
T→τ

e−(λS+r)(T∧τ)Ũ(W ∗
T∧τ , A

∗
T∧τ ) does not equal 0 nor −∞. On the other hand, by

the definition of τ ,

lim
T→τ

e−(λS+r)(T∧τ)Ũ(W ∗
T∧τ , A

∗
T∧τ ) = 0 or −∞. (3.3.93)

By contradiction, we conclude that τ =∞ almost surely. In other words, the optimal

strategy does not lead an individual to bankruptcy within finite time.

Since
1

Ũ

(c∗t )
1−γ

1− γ
≥ K > 0 as we showed above,

∫ τn
0
− 1

Ũ

(c∗t )
1−γ

1− γ
dt ≤ −Kτn. Thus,

for every sequence of bounded stopping times (τn)n≥1 with τn →∞ a.s.,

e−(λS+r)τnŨ(W ∗
τn , A

∗
τn) ≤ Ũ(W0, A0) e−Kτn exp

(∫ τn

0

− Ũ2
w

2Ũ2
σ2 (π∗t )

2 dt+
Ũw

Ũ
σ π∗t dBt

)
,

(3.3.94)

∀n ≥ 1. As n→∞, (3.3.94) leads to the transversality condition
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lim
n→∞

EW0,A0

[
e−(λS+r)τnŨ(W ∗

τn , A
∗
τn)
]

≤ lim
n→∞

Ũ(W0, A0) ess sup
(
e−Kτn

)
EW0,A0

[
exp

(∫ τn

0

− Ũ2
w

2Ũ2
σ2 (π∗t )

2 dt+
Ũw

Ũ
σ π∗t dBt

)]

= Ũ(W0, A0) lim
n→∞

ess sup
(
e−Kτn

)
= 0.

(3.3.95)

To get from the second to the third line in (3.3.95), we apply the optional stopping

theorem to the exponential martingle

{
exp

(∫ t

0

− Ũ2
w

2Ũ2
σ2 (π∗s)

2 ds+
Ũw

Ũ
σ π∗s dBs

)}
with bounded stopping times (τn)n≥1.

Remark 3.3.6. In the proof of Lemma 3.3.1 above, we obtain a non-bankruptcy

condition, that is, (w∗t , A
∗
t ) 6= (0, 0) almost surely for all t ≥ 0. This condition is

implicit in the proof of Corollary 3.2.1. Indeed, we proved Corollary 3.2.1 using

the second equality in (3.2.22), which comes from (3.2.18), and we derived (3.2.18)

assuming that v(w,A) and vw(w,A) are bounded from below. But, this assumption

does not necessarily hold in the case for which γ > 1. To get (3.2.18) in the case

for which γ > 1, we need to guarantee that each term in (3.2.18) is finite, that is,

(wt, At) 6= (0, 0) almost surely for t ∈ (0, τn). To this end, one can define τ cn ,

inf{s ≥ 0 :
√
w2
s + A2

s ≤ 1
n
} and set τn = n ∧ τan ∧ τ bn ∧ τ cn with the stopping times τan

and τ bn defined in the proof of Theorem 3.2.1. With this modified definition of τn, all

our deductions in the proof of Theorem 3.2.1 are valid in the case for which γ > 1.

Moreover, the non-bankruptcy condition guarantees that τn →∞ a.s. as n→∞.

So far we have shown that Ũ is non-decreasing and concave with respect to w, non-

decreasing with respect to A, and satisfies the conditions (i)-(iii) of the Verification

Theorem 3.2.1. More precisely, (3.3.76) and (3.3.89) prove condition (i), and (3.3.79),
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(3.3.80), (3.3.81), and (3.3.82) prove conditions (ii) and (iii). Therefore, with Lemma

3.3.1 and Corollary 3.2.1, we get the following theorem.

Theorem 3.3.1. When p < p∗, the maximized utility U defined in equation (3.2.5)

in the region D = D1 ∪ D2, with D1 = {(w,A) : 0 ≤ w/A ≤ z0, A ≥ 0} and

D2 = {(w,A) : w/A > z0, A > 0}, is given by Ũ defined in equations (3.3.73) and

(3.3.74). The associated optimal strategy is as follows:

1. When (w,A) ∈ D2, purchase additional annuity income of ∆A = w−z0A
z0+a

;

2. When w/A = z0, purchase additional annuity income instantaneously to keep

(w,A) in the region D1;

3. Surrender existing annuity income instantaneously to keep w non-negative when

needed;

4. Invest in the risky asset with the dollar amount

π∗(w,A) = −µ− r
σ2

Ũw(w,A)

Ũww(w,A)
,

and consume continuously at the rate

c∗(w,A) = Ũ
− 1
γ

w (w,A),

when (w,A) ∈ D1.

Remark 3.3.7. When p = 0, the solution given in this section is same as the one

given in Section 3.3.1. To show this, we write ys in terms of K defined in (3.3.7) to

obtain

ys = (aK)−γ . (3.3.96)

When p = 0, the solution of (3.3.47) is x = 1; that is, ys = yb. From (3.3.43)

and (3.3.44), we conclude that z0 = 0. Also, note that Ṽ (0) = V̂ (ys). Based on the
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construction of U(w,A) given in (3.3.73) and (3.3.74), as well as equation (3.3.38),

we obtain the maximized utility with initial wealth w and annuity income A:

U(w,A) = U
(

0,
w

a
+ A

)
=
(w
a

+ A
)1−γ

Ṽ (0) =
(w
a

+ A
)1−γ ays

1− γ
= K−γ

(w + aA)1−γ

1− γ
.

(3.3.97)

This expression is identical to the one in equation (3.3.8). Similarly, we obtain

c∗(w,A) = K(w + aA), (3.3.98)

π∗(w,A) =
µ− r
γσ2

(w + aA), (3.3.99)

which equal to the expressions in (3.3.9) and (3.3.10), respectively.

3.3.3 The case for which p ≥ p∗

The difference between this case and the case for which p < p∗ is in the different

optimal strategy that an individual uses when wealth reaches zero. As we showed

in the previous section, when p < p∗, a retiree keeps her wealth non-negative by

surrendering existing annuity income. When the size of the proportional surrender

charge p is larger, namely, when the cost of surrendering is higher, the retiree has

more incentive not to surrender annuity income. Instead, we will show in this section

that, as her wealth reaches zero, the optimal strategy is for the retiree to consume

less than her existing annuity income and to invest nothing in the risky asset. As

before, we also hypothesize the existence of a ratio of wealth-to-annuity income z0

such that, at a point (w,A) with w/A > z0, the individual purchases annuity income

to reach (w′, A′) such that w′/A′ = z0. Additionally, the retiree does not purchase

any annuity income when 0 < w/A < z0, and she does not surrender existing annuity

income under any circumstance.

One can see that our hypothesized optimal strategy is different from the one in

the previous section only at the boundary w = 0. We solve the problem the same
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way as we did in the previous section, and the details of the solution in this case

are very similar to the case for which p < p∗. For this reason, we omit some of the

details in the following derivations and proofs.

Based on our hypotheses, U = U(w,A) satisfies the following conditions:

1. In the region D1 , {(w,A) : 0 ≤ w/A ≤ z0 , A ≥ 0}, U is the solution of the

following BVP:

(λS+r)U = (rw+A)Uw+max
π

[
(µ− r)πUw +

1

2
σ2π2Uww

]
+max

c≥0

(
c1−γ

1− γ
− cUw

)
,

(3.3.100)

with boundary conditions

UA(z0A,A) = aUw(z0A,A), (3.3.101)

π(0, A) = −µ− r
σ2

Uw(0, A)

Uww(0, A)
= 0, (3.3.102)

for A ≥ 0. The expression in (3.3.102) imposes the condition that the optimal

investment strategy is not to invest in risky asset when w = 0.

2. In the region D2 , {(w,A) : w/A > z0, A ≥ 0}, we have

U(w,A) = U(w′, A′), (3.3.103)

in which w′ = w − a∆A, A′ = A+ ∆A, and ∆A =
w − z0A

z0 + a
.

3. The smooth fit condition holds on the line w/A = z0:

UAw(z0A,A) = aUww(z0A,A), A > 0. (3.3.104)

As in the previous section, we rewrite the BVP (3.3.100) and the conditions

(3.3.101), (3.3.102), and (3.3.104) in terms of V (z) = U(z, 1). Recall that we can
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recover U from V via U(w,A) = A1−γV (w/A).

− (λS +r)V +(rz+1)Vz +max
π̂

[
(µ− r)π̂Vz +

1

2
σ2π̂2Vzz

]
+max

ĉ≥0

(
ĉ1−γ

1− γ
− ĉVz

)
= 0,

(3.3.105)

with 0 ≤ z ≤ z0, and

(1− γ)V (z0)− (z0 + a)Vz(z0) = 0, (3.3.106)

π̂(0, A) = −µ− r
σ2

A
Vz(0)

Vzz(0)
= 0, (3.3.107)

(z0 + a)Vzz(z0) + γVz(z0) = 0. (3.3.108)

Next, we proceed to solve the V ’s BVP via a duality argument. Because V is

concave, then we define its convex dual V̂ by

V̂ (y) = max
z≥0

[V (z)− yz] . (3.3.109)

and because V̂ solves the same linear differential equation as in the previous section,

namely, (3.3.27), its general form is

V̂ (y) = D1y
B1 +D2y

B2 +
y

r
+ Cy

γ−1
γ , (3.3.110)

with B1, B2, and C given in equations (3.3.29), (3.3.30), and (3.3.31), respectively.

D1 and D2 are to be determined.

As before, define

ys = Vz(0), (3.3.111)

yb = Vz(z0). (3.3.112)

Notice that the conditions in the case p ≥ p∗ are same as in the case p < p∗, except

for the boundary condition at z = 0. Rewrite (3.3.107) in terms of V̂ as

ysV̂yy(ys) = 0. (3.3.113)
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Substitute (3.3.110) into (3.3.113), and restate the other conditions from the previous

section, namely, (3.3.40) and (3.3.42)-(3.3.44), to obtain the following:

D1[1 + γ(B1 − 1)]yB1
b +D2[1 + γ(B2 − 1)]yB2

b +
yb
r

=
yb

r + λO
,(3.3.114)

D1B1(B1 − 1)yB1−1
s +D2B2(B2 − 1)yB2−1

s − γ − 1

γ2
Cy
− 1
γ

s = 0, (3.3.115)

D1B1[1 + γ(B1 − 1)]yB1
b +D2B2[1 + γ(B2 − 1)]yB2

b +
yb
r

=
yb

r + λO
,(3.3.116)

D1B1y
B1−1
s +D2B2y

B2−1
s +

1

r
+
γ − 1

γ
Cy
− 1
γ

s = 0, (3.3.117)

D1B1y
B1−1
b +D2B2y

B2−1
b +

1

r
+
γ − 1

γ
Cy
− 1
γ

b = −z0. (3.3.118)

The proportional surrender charge p does not appear in these equations. Its absence

indicates that the solution is the same for any p ∈ [p∗, 1].

Solve for D1 and D2 from (3.3.114) and (3.3.116) to obtain

D1 = − λO

r(r + λO)

1−B2

B1 −B2

1

1 + γ(B1 − 1)
y1−B1
b , (3.3.119)

D2 = − λO

r(r + λO)

B1 − 1

B1 −B2

1

1 + γ(B2 − 1)
y1−B2
b . (3.3.120)

Then, substitute (3.3.119) and (3.3.120) into (3.3.115) and (3.3.117) to get the fol-

lowing equation for x̃ ,
ys
yb

:

λO

r + λO

[
B1(1−B2)

B1 −B2

x̃B1−1 +
B2(B1 − 1)

B1 −B2

x̃B2−1

]
= 1. (3.3.121)

We conclude that x̃ has a unique solution in (1,∞) through the same argument

as the one following equation (3.3.47). Note that equation (3.3.121) is identical to

(3.3.52); thus, we use the same notation for its solution, namely, x̃.

Substitute (3.3.119) and (3.3.120) into (3.3.117) and (3.3.118) to get expressions

for ys, yb, and z0, respectively,

1− γ
γ

Cy
− 1
γ

s = − λO

r(r + λO)

[
B1(1−B2)

B1 −B2

x̃B1−1

1 + γ(B1 − 1)
+
B2(B1 − 1)

B1 −B2

x̃B2−1

1 + γ(B2 − 1)

]
+

1

r
,

(3.3.122)
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yb =
ys
x̃
, (3.3.123)

z0 = − λO

r(r + λO)

m(1− γ)− (r + λS)γ

γ2

[
r +

λS

γ
−m1− γ

γ2

] − 1

r
− γ − 1

γ
Cy
− 1
γ

b , (3.3.124)

One can prove that ys > 0 with an argument parallel to the one in Proposition

3.3.2, so we state the following proposition without proof.

Proposition 3.3.5. The well-posedness condition (3.3.11) implies that ys as defined

in (3.3.122) is positive for p ≥ p∗.

As in the case of Proposition 3.3.1, the next proposition follows from the deriva-

tions above.

Proposition 3.3.6. The solution V̂ for the FBP (3.3.27) with conditions (3.3.37),

(3.3.113), and (3.3.39) is given by (3.3.110), with D1, D2, ys, yb, and x̃ defined in

(3.3.119), (3.3.120), (3.3.122), (3.3.123), and (3.3.121), respectively.

As before, we wish to show that V̂ , indeed, has the properties that we expect, so

we present the following proposition.

Proposition 3.3.7. V̂ given in Proposition 3.3.6 satisfies inequalities (3.3.57) and

(3.3.58) and is decreasing and convex for 0 < yb ≤ y ≤ ys.

Proof. By substituting (3.3.110) into (3.3.57) and (3.3.58), we rewrite the inequalities

as

− pr + λO

r(r + λO)
≤ f(y) ≤ − λO

r(r + λO)
, (3.3.125)

in which

f(y) = D1[1 + γ(B1 − 1)]yB1−1 +D2[1 + γ(B2 − 1)]yB2−1. (3.3.126)

One can show that f(ys) = − p∗r + λO

r(r + λO)
and f(yb) = − λO

r(r + λO)
. Also, f is non-

increasing for 0 < yb ≤ y ≤ ys, as in the proof of Proposition 3.3.4. Therefore, the

inequalities in (3.3.125) hold for all p ∈ [p∗, 1].
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That V̂ is decreasing follows as in the proof of Proposition 3.3.4. As for the

convexity of V̂ , we see that for 0 < yb ≤ y ≤ ys,

V̂yy(y) ≥ 0 ⇐⇒ g(y) ≥ 0, (3.3.127)

in which

g(y) =− λO

r(r + λO)

(B1 − 1)(1−B2)

B1 −B2

[
B1

1 + γ(B1 − 1)

(
y

yb

)B1−1

− B2

1 + γ(B2 − 1)

(
y

yb

)B2−1
]

+

(
1− 1

γ

)(
−1

γ

)
Cy−

1
γ .

(3.3.128)

As in the proof of Proposition 3.3.4, g′(y) < 0; therefore, it is enough to show that

g(ys) ≥ 0. By (3.3.122) and (3.3.121), g(ys) = 0.

We will use the following proposition at the end of this section to show that when

wealth equals zero, the retiree consumes at a rate less than the rate of her annuity

income. Thereby, she is able (instantaneously) to return to positive wealth.

Proposition 3.3.8. y
−1/γ
s < 1.

Proof.

y
− 1
γ

s < 1

⇐⇒
{
− λO

r(r + λO)

[
B1(1−B2)

B1 −B2

1

1 + γ(B1 − 1)
x̃B1−1 +

B2(B1 − 1)

B1 −B2

1

1 + γ(B2 − 1)
x̃B2−1

]
+

1

r

}
× γ

(1− γ)C
< 1

⇐⇒
{
− λO

r(r + λO)

[
B1(1−B2)

B1 −B2

1

1 + γ(B1 − 1)
x̃B1−1 +

B2(B1 − 1)

B1 −B2

1

1 + γ(B2 − 1)
x̃B2−1

]
+

1

r

}
×
[
r +

λS

γ
−m1− γ

γ2

]
< 1

⇐⇒ − λO

r + λO

[
B1(1−B2)

B1 −B2

1

1 + γ(B1 − 1)
x̃B1−1 +

B2(B1 − 1)

B1 −B2

1

1 + γ(B2 − 1)
x̃B2−1

]
·
[
r +

λS

γ
−m1− γ

γ2

]
+

[
λS

γ
−m1− γ

γ2

]
< 0.

(3.3.129)
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Recall that [1 + γ(B1− 1)] · [1 + γ(B2− 1)] = −γ
2

m

[
r +

λS

γ
−m1− γ

γ2

]
< 0; multiply

the above inequality by this factor to get

y
− 1
γ

s < 1

⇐⇒ − λO

r + λO

{
B1(1−B2)

B1 −B2

[1 + γ(B2 − 1)] x̃B1−1 +
B2(B1 − 1)

B1 −B2

[1 + γ(B1 − 1)] x̃B2−1

}
·
[
r +

λS

γ
−m1− γ

γ2

]
+

[
λS

γ
−m1− γ

γ2

]
· [1 + γ(B1 − 1)] · [1 + γ(B2 − 1)] > 0

⇐⇒ − λO

r + λO
(1− γ)

[
B1(1−B2)

B1 −B2

x̃B1−1 +
B2(B1 − 1)

B1 −B2

x̃B2−1

]
·
[
r +

λS

γ
−m1− γ

γ2

]
− λO

r + λO
γB1B2

[
1−B2

B1 −B2

x̃B1−1 +
B1 − 1

B1 −B2

x̃B2−1

]
·
[
r +

λS

γ
−m1− γ

γ2

]
+

[
λS

γ
−m1− γ

γ2

]
· [1 + γ(B1 − 1)] · [1 + γ(B2 − 1)] > 0.

(3.3.130)

Use (3.3.121) to simplify the above expression to obtain

y
− 1
γ

s < 1

⇐⇒ − (1− γ)

[
r +

λS

γ
−m1− γ

γ2

]
− λO

r + λO
γB1B2

[
1−B2

B1 −B2

x̃B1−1 +
B1 − 1

B1 −B2

x̃B2−1

]
·
[
r +

λS

γ
−m1− γ

γ2

]
+

[
λS

γ
−m1− γ

γ2

]
· [1 + γ(B1 − 1)] · [1 + γ(B2 − 1)] > 0

⇐⇒ − λO

r + λO
γB1B2

[
1−B2

B1 −B2

x̃B1−1 +
B1 − 1

B1 −B2

x̃B2−1

]
·
[
r +

λS

γ
−m1− γ

γ2

]
− γλ

S

m

[
r +

λS

γ
−m1− γ

γ2

]
> 0

⇐⇒ − λO

r + λO
B1B2

[
1−B2

B1 −B2

x̃B1−1 +
B1 − 1

B1 −B2

x̃B2−1

]
− λS

m
> 0.

(3.3.131)

We demonstrate this last inequality by using (3.3.121) and the equality B1 +B2−1 =
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−λ
S

m
:

− λO

r + λO
B1B2

[
1−B2

B1 −B2

x̃B1−1 +
B1 − 1

B1 −B2

x̃B2−1

]
− λS

m

= −B2 −
λO

r + λO
B2(B1 − 1)x̃B2−1 − λS

m

= (B1 − 1)

[
1− λO

r + λO
B2 x̃

B2−1

]
> 0.

(3.3.132)

We now construct the maximized utility U from V̂ as we did for the case p < p∗.

First, define the concave dual Ṽ of V̂ by

Ṽ (z) = min
y≥0

[V̂ (y) + zy]. (3.3.133)

Then, define Ũ , with z0 given by (3.3.124), as follows:

1. In the region D1 , {(w,A) : 0 ≤ w/A ≤ z0 , A ≥ 0},

Ũ(w,A) , A1−γṼ (w/A). (3.3.134)

2. In the region D2 , {(w,A) : w/A > z0, A ≥ 0}, define

Ũ(w,A) , Ũ(w′, A′),

in which w′ = w − a∆A, A′ = A+ ∆A, and ∆A =
w − z0A

z0 + a
.

That Ũ is the maximized utility U follows as in Section 3.3.2. Thus, we obtain the

following theorem.

Theorem 3.3.2. When p ≥ p∗, the maximized utility U defined in equation (3.2.5)

in the region D = D1 ∪ D2, with D1 = {(w,A) : 0 ≤ w/A ≤ z0, A ≥ 0} and

D2 = {(w,A) : w/A > z0, A > 0}, is given by Ũ defined in equations (3.3.134) and

(2). The associated optimal strategy is:
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1. When (w,A) ∈ D2, purchase additional annuity income of ∆A = w−z0A
z0+a

;

2. When w/A = z0, purchase additional annuity income instantaneously to keep

(w,A) in the region D1;

3. Never surrender exisiting annuity income;

4. Invest in the risky asset with the dollar amount

π∗(w,A) = −µ− r
σ2

Ũw(w,A)

Ũww(w,A),

and consume continuously at the rate

c∗(w,A) = Ũ
− 1
γ

w (w,A).

when (w,A) ∈ D1. Specifically, π∗(0, A) = 0.

Remark 3.3.8. When p ≥ p∗, the optimal annuitization, investment, consumption

strategies as well as the maximized utility of an retiree do not depend on the size of

surrender charge. An individual behaves as if the annuity is not reversible at all and

does not surrender existing annuities under any circumstance.

Corollary 3.3.1. When wealth is zero, the optimal rate of consumption is less than

the rate of annuity income; that is, c∗(0, A) < A.

Proof. From Theorem 3.3.2 and Proposition 3.3.8, it follows that

c∗(0, A) = U
− 1
γ

w (0, A) =
(
A−γVz(0)

)− 1
γ = Ay

− 1
γ

s < A. (3.3.135)

3.4 Properties of the optimal strategies

In this section, we analyze the optimal strategies of a retiree under a variety of

conditions. We demonstrate the relation between the proportional surrender charge
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and the retiree’s optimal strategies via numerical examples. We also analyze the

retiree’s optimal strategies as she becomes very risk averse.

3.4.1 Properties of z0

The (derived) parameter z0 is a measure of the willingness of the retiree to annu-

itize. Indeed, if w/A is greater than z0, then she immediately annuitizes enough of

her wealth to bring that ratio equal to z0. The smaller the value of z0, the lower her

wealth has to be in order for her to annuitize. Thus, we associate smaller values of

z0 with greater willingness to annuitize.

We expect that a retiree will be less willing to annuitize if the proportional sur-

render charge p is larger. It turns out that z0 is increasing with respect to p fpr

p < p∗, and we prove fact this in the next proposition. Recall that z0 is independent

of p for p ≥ p∗.

Proposition 3.4.1. z0, given in (3.3.50), increases with respect to p < p∗.

Proof. From equations (3.3.50), (3.3.31), and (3.3.49), it follows that

∂z0

∂p
∝ −∂yb

∂p
∝ ys

∂x

∂p
− x∂ys

∂p
. (3.4.1)

From (3.3.47), we get

(B1 − 1)(1−B2)

B1 −B2

(
xB1−1 − xB2−1

) ∂x
∂p

=
r

λO
; (3.4.2)

which implies that
∂x

∂p
> 0 for x > 1. Next, from (3.3.48), we obtain

−1

γ
y
− 1
γ
−1

s
∂ys
∂p

=− λO

r(r + λO)

[
r +

λS

γ
−m1− γ

γ2

]
(B1 − 1)(1−B2)

(B1 −B2)

·
[

B1 x
B1−2

1 + γ(B1 − 1)
− B2 x

B2−2

1 + γ(B2 − 1)

]
∂x

∂p
.

(3.4.3)
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Thus,

∂z0

∂p
∝ ys − γ x y

1
γ

+1
s

λO

r(r + λO)

[
r +

λS

γ
−m1− γ

γ2

]
(B1 − 1)(1−B2)

(B1 −B2)

·
[

B1 x
B1−2

1 + γ(B1 − 1)
− B2 x

B2−2

1 + γ(B2 − 1)

]
∝
[

1

r
− λO

r(r + λO)

B1(1−B2)

B1 −B2

xB1−1

1 + γ(B1 − 1)
− λO

r(r + λO)

B2(B1 − 1)

B1 −B2

xB2−1

1 + γ(B2 − 1)

]
− γ λO

r(r + λO)

(B1 − 1)(1−B2)

B1 −B2)

[
B1 x

B1−1

1 + γ(B1 − 1)
− B2 x

B2−1

1 + γ(B2 − 1)

]
∝ 1− λO

r + λO

[
B1(1−B2)

B1 −B2

xB1−1 +
B2(B1 − 1)

B1 −B2

xB2−1

]
.

(3.4.4)

This last expression is positive for 1 ≤ x < x̃ because the left-hand side of equation

(3.3.52) is increasing with respect to x̃ for x̃ > 1.

As the retiree becomes more risk averse, we expect her to be more willing to annu-

itize her wealth in order to guarantee a particular income to fund her consumption.

It turns out that z0 is decreasing with respect to γ, and we prove fact this in the

next proposition.

Proposition 3.4.2. z0, given in (3.3.50), decreases with respect to γ.

Proof. First, consider the case for which p < p∗. From equations (3.3.50), (3.3.49),

and (3.3.48), we can express z0 as

z0 =
λO

r(r + λO)

[
1 + r

(
1

γ
− 1

)
1

r + λS

γ
−m 1−γ

γ2

]
− 1

r

+ x
1
γ

[
− λO

r(r + λO)

B1(1−B2)

B1 −B2

xB1−1

1 + γ(B1 − 1)
− λO

r(r + λO)

B2(B1 − 1)

B1 −B2

xB2−1

1 + γ(B2 − 1)
+

1

r

]
.

(3.4.5)
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It follows that

∂z0

∂γ
=

λO

r + λO

(1

γ
− 1

)
−1[

r + λS

γ
−m 1−γ

γ2

]2

(
−λ

S

γ2
−m

(
− 2

γ3
+

1

γ2

))
− 1

γ2

1

r + λS

γ
−m 1−γ

γ2


− 1

γ2
x

1
γ lnx

[
− λO

r(r + λO)

B1(1−B2)

B1 −B2

xB1−1

1 + γ(B1 − 1)
+

1

r

]
+

1

γ2
x

1
γ lnx

λO

r(r + λO)

B2(B1 − 1)

B1 −B2

xB2−1

1 + γ(B2 − 1)

+ x
1
γ

λO

r(r + λO)

(B1 − 1)(1−B2)

B1 −B2

[
B1 x

B1−1

(1 + γ(B1 − 1))2
− B2 x

B2−1

(1 + γ(B2 − 1))2

]
∝ −

[
(r + λS) +m

(
1− γ
γ

)2
]
− y

− 1
γ

s x
1
γ lnx

(
r +

λS

γ
−m 1− γ

γ2

)
r + λO

λO

+
x

1
γ

γ2

m

B1 −B2

[
B1 x

B1−1(1 + γ(B2 − 1))2 −B2 x
B2−1(1 + γ(B1 − 1))2

]
=: g(x)

(3.4.6)

It is straightforward to show that g(1) = 0. Thus, if we prove that g′(x) < 0 for

1 < x < x̃, then it follows that
∂z0

∂γ
< 0 for p < p∗. Additionally, because z0 is

independent of p for p ≥ p∗, from continuity of
∂z0

∂γ
, we conclude that

∂z0

∂γ
< 0 for

all p.

To that end,

g′(x) =
1

γ
y
− 1
γ
−1

s
∂ys
∂x

x
1
γ lnx

r + λO

λO

(
r +

λS

γ
−m 1− γ

γ2

)
− y

− 1
γ

s

[
1

γ
x

1
γ
−1 lnx+ x

1
γ
−1

]
r + λO

λO

(
r +

λS

γ
−m 1− γ

γ2

)
+

m

γ3(B1 −B2)
x

1
γ
−1(1 + γ(B1 − 1))2(1 + γ(B2 − 1))2

[
B1 x

B1−1

1 + γ(B1 − 1)
− B2 x

B2−1

1 + γ(B2 − 1)

]
∝
(

lnx

γ
+ 1

)[
B1(1−B2)

B1 −B2

xB1−1 +
B2(B1 − 1)

B1 −B2

xB2−1 − r + λO

λO

]
.

(3.4.7)

From the definition of x̃ in (3.3.52) and from the fact that the left-hand side of (3.3.52)

strictly increases with respect to x̃ for x̃ > 1, the latter expression is negative for

1 ≤ x < x̃.
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3.4.2 Numerical examples

We provide numerous numerical examples to illustrate the analytical results of

Section 3.3. We focus our attention on the effects of the proportional surrender

charge p and risk aversion γ on the optimal annuitization, consumption, and in-

vestment strategies of an individual. We use the following parameter values for our

computations:

• λS = λO = 0.04; the hazard rate is such that the expected future lifetime is 25

years.

• r = 0.04; the riskless rate of return is 4% over inflation.

• µ = 0.08; the drift of the risky asset is 8% over inflation.

• σ = 0.20; the volatility of the risky asset is 20%.

With the parameter values given above, the critical proportional surrender charge

is p∗ = 0.308. Recall that this is the critical value of p above which the optimal

annuitization, investment, consumption strategies, as well as the maximized utility,

of a retiree do not depend on the size of surrender charge. This feature along with

others are demonstrated in the tables and figures in this section.

In Table 3.1, we give the value of z0 = w/A for various values of surrender charge

p and risk aversion γ. The value of z0 is the critical ratio of wealth to annuity income

above which an individual will purchase more annuities; it indicates the willingness of

an individual to annuitize. For example, assuming γ = 2.5 and p = 0.3, a retiree with

$100, 000 of assets and with $25, 000 of existing annuity income would immediately

trade $47, 116 of assets for $3, 773 of additional annuity. By so doing, the critical

ratio of wealth-to-annuity income becomes z0 = 1.8362. By comparison, a retiree
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Table 3.1: How do the proportional surrender charge p and risk aversion γ affect annuitization?

p z0 for various levels of p and γ

(p∗ = 0.308) γ = 0.8 γ = 1.5 γ = 2.0 γ = 2.5 γ = 3.0 γ = 5.0
0.01 1.5794 0.8173 0.6078 0.4838 0.4018 0.2394
0.02 2.2400 1.1443 0.8478 0.6733 0.5584 0.3318
0.04 3.1723 1.5904 1.1722 0.9280 0.7680 0.4545
0.08 4.4593 2.1759 1.5919 1.2548 1.0355 0.6093
0.10 4.9542 2.3914 1.7444 1.3726 1.1314 0.6642
0.20 6.5875 3.0593 2.2088 1.7276 1.4184 0.8263
0.30 7.1591 3.2723 2.3530 1.8362 1.5052 0.8743
0.40 7.1622 3.2734 2.3537 1.8367 1.5057 0.8746
0.60 7.1622 3.2734 2.3537 1.8367 1.5057 0.8746
1.00 7.1622 3.2734 2.3537 1.8367 1.5057 0.8746

with γ = 0.8 and all other parameters the same, would not purchase additional

annuities since her critical ratio of wealth-to-annuity income of 4.0 is already below

the level of 7.1591.

A higher value of z0 indicates less interest in annuitization. In table 3.1, we observe

that z0 increases with respect to p for a fixed value of γ and decreases with respect to

γ for a fixed value of p, as expected from Propositions 3.4.1 and 3.4.2, respectively. In

other words, a lower proportional surrender charge encourages retirees to annuitize,

and those who are more risk averse are more willing to purchase annuities. This

result is consistent with our position that lack of flexibility discourages retirees from

purchasing (irreversible) immediate life annuities. In the case for which p ≥ p∗, z0

does not change with p. An individual treats reversible annuities with a surrender

charge greater than p∗ as an irreversible one (p = 1) regardless of the size of p ∈ [p∗, 1].

Tables 3.2 and 3.3 demonstrate, respectively, the impact of the surrender charge

on the individual’s optimal investment and consumption strategies when wealth is

zero. In these cases, we assume that the existing annuity income is two units, that

is, A = 2. This assumption of existing annuity income is reasonable due to the fact

that most American retirees have annuity income at the time of retirement, say, from
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Table 3.2: How do the proportional surrender charge p and risk aversion γ affect investment?

p Investment in the risky asset for various levels of p and γ when w = 0 (A = 2)

(p∗ = 0.308) γ = 0.8 γ = 1.5 γ = 2.0 γ = 2.5 γ = 3.0 γ = 5.0
0.01 25.2800 13.4827 10.1120 8.0896 6.7413 4.0448
0.02 22.9429 12.2362 9.1772 7.3417 6.1181 3.6709
0.04 19.7310 10.5232 7.8924 6.3139 5.2616 3.1570
0.08 15.2923 8.1559 6.1169 4.8935 4.0780 2.4468
0.10 13.5110 7.2059 5.4044 4.3235 3.6029 2.1618
0.20 6.3519 3.3877 2.5408 2.0326 1.6938 1.0163
0.30 0.4460 0.2378 0.1784 0.1427 0.1189 0.0714
0.40 0 0 0 0 0 0
0.60 0 0 0 0 0 0
1.00 0 0 0 0 0 0

Social Security or a private pension.

From the tables, we observe that the optimal strategy is divided into two cate-

gories: In the cases for which p < p∗, an individual continues to invest in the risky

asset; in the cases for which p ≥ p∗, it is optimal not to invest in the risky asset

and to consume less than the annuity income. When p < p∗, the optimal strategy is

to continue investing in the risky asset by borrowing from the riskless account and

to surrender just enough annuity income to keep wealth non-negative when needed.

In contrast, when p ≥ p∗, it is optimal not to surrender the annuity income under

any circumstance, as we showed in Section 3.3.3. Therefore, when w = 0, the cor-

responding investment and consumption strategies guarantee that wealth will not

decrease farther. These numerical results are consistent with our analytical results

in Theorems 3.3.1 and 3.3.2.

Note that the amount invested in the risky asset at w = 0 decreases with respect

to p (and γ) other parameters fixed. In fact, we can show that investment decreases

with respect to p at any level of wealth, but for the sake of brevity, we omitted that

proposition and corresponding proof from this paper. Similarly, we can show that

investment decreases with respect to γ when w = 0.
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Table 3.3: How do the proportional surrender charge p and risk aversion γ affect consumption?

p Rate of consumption for various levels of p and γ when w = 0 (A = 2)

(p∗ = 0.308) γ = 0.8 γ = 1.5 γ = 2.0 γ = 2.5 γ = 3.0 γ = 5.0
0.01 1.8486 2.0766 2.0911 2.0891 2.0832 2.0607
0.02 1.8353 2.0549 2.0718 2.0721 2.0682 2.0507
0.04 1.8013 2.0168 2.0389 2.0438 2.0435 2.0345
0.08 1.7235 1.9477 1.9812 1.9947 2.0010 2.0071
0.10 1.6824 1.9147 1.9540 1.9719 1.9814 1.9946
0.20 1.4682 1.7559 1.8254 1.8644 1.8893 1.9363
0.30 1.2478 1.6016 1.7018 1.7617 1.8016 1.8811
0.40 1.2300 1.5893 1.6920 1.7536 1.7947 1.8768
0.60 1.2300 1.5893 1.6920 1.7536 1.7947 1.8768
1.00 1.2300 1.5893 1.6920 1.7536 1.7947 1.8768

Also, the rate of consumption at w = 0 decreases with p given γ. However, the

relationship between the rate of consumption and risk aversion is not monotonic.

Both Tables 3.2 and 3.3 confirm our analytical conclusion that when p ≥ p∗, an

individual behaves as if the annuity is not reversible at all; compare with Theorem

3.3.2.

Figures 3.2-3.4 considers the problem from a different point of view. In these

figures, we plot the optimal investment, optimal consumption, and maximized utility,

respectively, for wealth w ranging from 0 to 1. We choose the parameters as described

above and assume that γ = 2.5 and A = 1. In each figure, we plot two curves

representing the cases p = 0.05 and p = 0.6. The graphs show that a larger p value

leads to lower investment, consumption, and utility for all w. Namely, both the

investment and consumption strategies are more conservative when the surrender

charge is higher. Lastly, Figure 3.5 displays the maximized utility as a function of

p ∈ [0, 1] for fixed (w,A) = (100, 0) and γ = 2.5. This representative graph shows

that the maximized utility is a monotonically decreasing function of p and is of the

same value for all p ≥ p∗.
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3.4.3 Optimal strategies as γ →∞

In this section, we examine the optimal consumption, investment, and annuitiza-

tion strategies as the individual becomes highly risk averse.

Proposition 3.4.3. As γ →∞, c∗(0, A)→ A for all p ∈ [0, 1].

Proof. Recall that c∗(w,A) = U
− 1
γ

w (w,A) = AV
− 1
γ

z (w/A); thus, c∗(0, A) = AV
− 1
γ

z (0) =

Ay
− 1
γ

s , and it sufficient to show that limγ→∞ y
− 1
γ

s = 1. The latter follows from equa-

tions (3.3.31), (3.3.48), and (3.3.122).

Proposition 3.4.4. As γ →∞, π∗(0, A)→ 0 for all A > 0 and p ∈ [0, 1].

Proof. When p ≥ p∗, from Theorem 3.3.2, we know that π∗(0, A) = 0 regardless of

the value of γ. When p < p∗, from Theorem 3.3.1 and the work in Section 3.3.2, we

have

π∗(0, A) =
µ− r
σ2

A · ysV̂yy(ys). (3.4.8)

Using (3.3.28), (3.3.45), and (3.3.46), we obtain

lim
γ→∞

ysV̂yy(ys)

= lim
γ→∞

{
− λO

r(r + λO)

(B1 − 1)(1−B2)

B1 −B2

[
B1

1 + γ(B1 − 1)
xB1−1 − B2

1 + γ(B2 − 1)
xB2−1

]}
+ lim

γ→∞

[
1− γ
γ

(
−1

γ

)
Cy
− 1
γ

s

]
= 0.

(3.4.9)

This completes the proof.

Proposition 3.4.5. As γ →∞, z0 → 0 for all p ∈ [0, 1].

Proof. We prove this property for the case p < p∗. The proof for the case p ≥ p∗

is similar. First, consider the definition of z0 in (3.3.50). Recall that yb = ys/x, in
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which x is independent of γ. Thus, lim
γ→∞

x1/γ = 1, and as shown in Proposition 3.4.3,

lim
γ→∞

y−1/γ
s = 1. By taking the limit in (3.3.50), we obtain

lim
γ→∞

z0 = − lim
γ→∞

λO

r(r + λO)

m(1− γ) + (r + λS)γ

γ2

[
r +

λS

γ
−m1− γ

γ2

] − lim
γ→∞

γ − 1

γ
Cy
− 1
γ

b − 1

r

= 0 +
1

r
− 1

r
= 0.

(3.4.10)

From Propositions 3.4.3, 3.4.4, and 3.4.5, we deduce that the optimal strategy for

a highly risk averse retiree is to annuitize fully and to consume her annuity income

thereafter. Her wealth is always zero because z0 = 0 in the limit.

3.5 Conclusion

In this paper, we considered a utility maximization problem with reversible life

annuities. In an incomplete financial market with a riskless asset, a risky asset, and

reversible annuities, we investigated a retiree’s optimal annuitization, consumption,

and investment strategies. In our model, the reversibility of an annuity is quanti-

fied by a proportional surrender charge, which ranges from 0% to 100%. A retiree’s

willingness to annuitize is indicated by the critical ratio of wealth-to-annuity income

above which she would immediately purchase more annuities. We proved that a

smaller surrender charge leads to a smaller critical ratio of wealth-to-annuity in-

come. This result indicates that the reversibility of annuities encourages retirees to

annuitize.

We found that the individual’s optimal strategy depends on the size of the pro-

portional surrender charge. When the surrender charge is larger than the so-called

critical value, a retiree does not surrender her existing annuity income under any cir-

cumstance. She stops investing in the risky asset and consumes less than her annuity
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income as her wealth approaches zero. When the surrender charge is smaller than

the critical value, a retiree surrenders enough annuity income to keep her wealth non-

negative whenever needed. She continues to invest in the risky asset as her wealth

approaches zero.

One might think that a smaller surrender charge is always better than a larger

one. But surprisingly, we found that in the case for which the surrender charge

is larger than the critical value, the optimal strategies and maximized utility of a

retiree do not depend on the size of surrender charge. A reversible annuity with a

proportional surrender charge above the critical value is equivalent to an irreversible

one for an optimally behaving retiree. We also found that, for a retiree without a

bequest motive, full annuitization is optimal when the surrender charge is zero or as

the risk aversion of the retiree approaches infinity.

In our paper, we assumed a constant hazard rate and a constant interest rate in our

analysis as simplifications of reality. However, we believe that the main qualitative

insights will hold in general.

The relation between reversibility of annuities and retirees’ willingness to annuitize

revealed in this paper offers an explanation for the “annuity puzzle” and suggests a

way to better structure life annuities. Also, a well developed second market for life

annuities could partially function as a surrender option and, hence, should encourage

voluntary annuitization. We note that there are other possible reasons that cause the

the “annuity puzzle,” such as the default risk of the insurance companies investigated

by Jang et al. [2009] and bequest motive investigated by Lockwood [2009]. Based on

our model, we expect that the existence of the bequest motive will further discourage

a retiree from annuitization, but the mathematical tractability of our model will be

lost if a bequest motive is added. This occurs because with a bequest motive, we
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can no longer reduce the dimension of the problem. The critical ratio of wealth-to-

annuity income would likely be a non-linear curve in the wealth-annuity plane.

To investigate reversible annuities, an alternative to the utility metric is the prob-

ability of lifetime ruin. As a risk metric, it is some times used to investigate optimiza-

tion problems faced by retirees in a financial market. An investigation of reversible

annuities within that framework can be found in Wang and Young [2009]. Wang and

Young assume that a retiree consumes at an exogenously given level, and they deter-

mine the optimal investment strategy, as well as the optimal time to annuitize or to

surrender, in order to minimize the probability that wealth reaches zero before her

death. By contrast, in this paper, consumption is determined by the retiree herself.

Results in Wang and Young [2009] are consistent with what we found in this work.
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(a) Optimal annuitization with a small proportional surrender charge (p < p∗)

(b) Optimal annuitization with a small proportional surrender charge (p ≥ p∗)

Figure 3.1: Optimal annuitization strategies for small and large proportional surrender charges: In
each case, there exists a critical ratio of wealth-to-annuity income z0 indicated by the blue ray in
the graph. It is optimal for a retiree to keep herself to the left of the blue ray. Different investment
strategies are applied in the two different cases when w = 0, as indicated in each graph.
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Figure 3.2: Optimal consumption strategies for wealth equal to zero: We set the existing annuity
income A to be 1 in this example. The blue dotted line represents the case p ≥ p∗; recall that in
this case, the optimal rate of consumption at w = 0 is less that the rate of annuity income. By
contrast, the optimal rate of consumption is allowed to be above A when p < p∗. In this example,
we set r = 0.04, µ = 0.08, λS = λO = 0.04, σ = 0.2, γ = 2.5, and A = 1.

Figure 3.3: Optimal investment strategies for wealth equal to zero: When p ≥ p∗, a retiree invests
nothing in the risky asset when w = 0. This case is represented by the blue dotted line. By contrast,
when p < p∗, it is optimal to invest in risky asset when w = 0. In this example, we set r = 0.04,
µ = 0.08, λS = λO = 0.04, σ = 0.2, γ = 2.5, and A = 1.
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Figure 3.4: Maximized utilities when the proportional surrender charges differ: In this example, we
set r = 0.04, µ = 0.08, λS = λO = 0.04, σ = 0.2, γ = 2.5, and A = 1.

Figure 3.5: How the proportional surrender charge p affects the maximized utility: The shape of the
curve above is representative for situations with different given initial wealth and annuity income.
In this example, we set r = 0.04, µ = 0.08, λS = λO = 0.04, σ = 0.2, γ = 2.5, w = 100, and A = 0.



CHAPTER IV

Hedging pure endowments with mortality derivatives

4.1 Introduction and motivation

A basic assumption in many actuarial texts is that mortality risk can be elimi-

nated based on the law of large number. It is believed that the standard deviation

per insurance policy vanishes as the number of policies sold becomes large enough.

However, this assumption is valid only when the mortality intensity is deterministic,

and a number of recent researchers argue that mortality intensity, or hazard rate,

is stochastic; see, for example, Dowd et al. [2006] and the references therein. The

uncertainty of hazard rates is significant enough that stochastic mortality risk has to

be considered in the valuation of life insurance and annuity contracts and in pension

fund management. A concrete example of stochastic mortality risk is longevity risk,

namely, the risk that future lifetimes will be greater than expected. Longevity risk

has attracted much attention in recent years, and many capital market instruments

have been proposed to deal with this risk for annuity providers and pension funds;

see Dowd et al. [2006], Blake and Burrows [2001], and Blake et al. [2006] for more

details.

However, few researchers have focused on the effectiveness of hedging mortal-

ity risk with the proposed mortality-linked derivatives; one notable exception is

126



127

the work of Lin and Cox [2005]. In this paper, we investigate the application of

mortality-linked derivatives for hedging mortality risk and offer suggestions for fur-

ther mortality-linked innovation based on our analysis. To this end, we select a

stochastic model to describe the mortality dynamics. Several stochastic mortality

models have been proposed in the recent literature. Milevsky and Promislow [2001],

Biffis [2005], Schrager [2006], and Dahl [2004] use continuous-time diffusion processes

to model the hazard rate, as we do in this paper. Alternatively, Miltersen and Persson

[2005] and Cairns et al. [2006a] model the forward mortality. Milidonis et al. [2010]

incorporate mortality state changes into the mortality dynamics with a discrete-

time Markov regime-switching model. Also, see Cairns et al. [2006b] for a detailed

overview of various modeling frameworks. In this paper, we use the model proposed

by Bayraktar et al. [2009] to describe the dynamics of both hazard rates: λPt , the

one inherent in the insurance contract to be hedged, and λIt , the one referenced by

the mortality-linked derivative.

Another issue is the choice of pricing paradigm. Different methods for pricing

mortality risk have been proposed in recent literatures, and Bauer et al. [2010] ex-

tensively discusses them. Among these methods, Bayraktar et al. [2009] developed a

dynamic pricing theory, which can be considered as a continuous version of the ac-

tuarial standard deviation premium principle. In our paper, we extend their pricing

mechanism to a market that includes mortality-linked derivatives. We price a pure

endowment assuming that the issuing company hedges its contract with a mortality

forward in order to minimize the variance of the value of the hedging portfolio and

then requires compensation for the unhedgeable part of the mortality risk in the form

of a pre-specified instantaneous Sharpe ratio.

The main purpose of this paper is to investigate the hedging of life insurance
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and annuity contracts with mortality-linked derivatives. To this end, we develop a

partial differential equation (PDE) whose solution is the value of the hedged insur-

ance contract. We compare the values of the hedged contract under different market

prices of mortality risk. We also analyze how the correlation between λPt and λIt

affects the values of the hedged contract. The main contribution of our paper is to

show that hedging can reduce the price of the insurance contract only under certain

conditions on the correlation of the hazard rates and on the market price of mortality

risk. As part of the procedure, we also show that the desired features of the pricing

mechanism by Milevsky et al. [2005] and Bayraktar et al. [2009] still hold in our

extension.

The remainder of this paper is organized as follows: In Section 4.2, we present our

financial market, describe the pricing mechanism of the pure endowment in a market

with mortality-linked derivatives, and derive a non-linear PDE whose solution is the

value of the hedged pure endowment. In Section 4.3, we analyze the value P (n) of

n pure endowments on conditionally independent and identically distributed lives,

with the emphasis on how the correlation of the hazard rates and the market price

of mortality risk affect the price of the hedged pure endowments. We then present

the PDE that gives the limiting value of 1
n
P (n) as n goes to infinity in Section 4.4.

We show that this limiting value solves a linear PDE and represent this value as

an expectation with respect to an equivalent martingale measure. In Section 4.5,

we demonstrate our results with numerical examples, discuss whether and when the

hedging with mortality-risk derivatives reduces the price of pure endowments, and

provide suggestions on the application of mortality-linked derivatives for insurance

companies. We describe a numerical scheme to compute the value of a pure endow-

ment in Section 4.7. Section 4.6 concludes the paper.
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4.2 Incomplete market of financial and mortality derivatives

In this section, we describe the pure endowment contract and the financial market

in which the issuer of the contract invests to hedge the risk. In the financial market,

there are three products: a money market fund, a bond, and a mortality derivative.

We obtain the optimal strategy to hedge the risk of the contract with bonds and

mortality derivatives in order to minimize the variance of the value of the investment

portfolio. We, then, price the pure endowment using the instantaneous Sharpe ratio.

4.2.1 Mortality model and financial market

First, we set up the model for the dynamics of hazard rates–either the hazard

rate for the pure endowment or the one for the mortality derivative. We assume

that a hazard rate λt follows a diffusion process with some positive lower bound λ.

Thus, we require that as λt goes to λ, the drift of λt is positive and the volatil-

ity of λt approaches 0. Biologically, the lower bound λ represents the remaining

hazard rate after all accidental or preventable causes of death have been removed.

Mathematically, the need for such a lower bound appears later in this paper.

Specifically, we use the following diffusion model for a hazard rate:

dλt = a(λt, t) (λt − λ) dt+ b(t) (λt − λ) dWt, (4.2.1)

in whichW is a standard Brownian motion on a filtered probability space (Ω,F, (Ft)t≥0,P).

We require that the volatility b(t) is a continuous function of t and is bounded from

below by a positive constant κ in [0, T ]. We also assume that a(λt, t) is Hölder con-

tinuous with respect to λ and t, and that a(λt, t) > 0 when 0 < λt − λ < ε for some

ε > 0.

In this paper, we consider two different but correlated hazard rates. One is the

hazard rate of the insured population; namely, the hazard rate of the people who
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purchase the pure endowments. For simplicity, when we consider a portfolio of n

pure endowment contracts in this paper, we assume that all individuals are of the

same age and are subject to the same hazard rate. We denote as λPt the hazard rate

of insured population, and the dynamics of λPt is given by

dλPt = aP (λPt , t)
(
λPt − λP

)
dt+ bP (t)

(
λPt − λP

)
dW P

t . (4.2.2)

We also consider a second hazard rate on which the mortality derivatives are based,

namely, the hazard rate of an indexed population. We denote this hazard rate as λIt ,

whose dynamics is given by

dλIt = aI(λIt , t)
(
λIt − λI

)
dt+ bI(t)

(
λIt − λI

)
dW I

t . (4.2.3)

The uncertainties of the two hazard rates are correlated such that dW I
t dW P

t = ρ dt

with ρ ∈ [−1, 1].

Suppose, at time t = 0, an insurer issues a pure endowment to an individual that

pays $1 at time T if the individual is alive at that time. To price this contract, we

will create a portfolio composed of the obligation to pay this pure endowment and

investment in the financial market.

In the financial market, the dynamics of the short rate rt is given by

drt = µ(rt, t) dt+ σ(rt, t) dW r
t (4.2.4)

in which µ and σ ≥ 0 are deterministic functions of the short rate and time, and W r

is a standard Brownian motion adapted to (Ω,F, (Ft)t≥0,P). We assume that W r is

independent of W P and W I , and that µ and σ are such that rt > 0 almost surely for

all t ≥ 0 and such that (4.2.4) has a unique solution.

Both the T -bond and the mortality derivative are priced based on the principle

of no-arbitrage. Thus, for the short rate r, there exists a market price of risk qr that
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is adapted to the filtration generated by W r; and for the hazard rate λIt , there exists

a market price of risk qλ
I

that is adapted to the filtration generated by W I . We,

therefore, write either qrt or qr(rt, t) for the market price of the short rate risk at time

t; similarly, we write either qλ
I

t or qλ
I
(λIt , t) for the market price of the hazard rate

risk at time t.

Define an equivalent martingale measure Q whose Radon-Nikodym derivative with

respect to P is given by

dQ
dP

= exp

{
−
∫ T

0

[
qr(rs, s) dW r

s + qλ
I

(λIs, s) dW I
s

]
− 1

2

∫ T

0

[
(qr(rs, s))

2 +
(
qλ

I

(λIs, s)
)2
]

ds

}
.

(4.2.5)

In the Q-space, the dynamics of the hazard rates and the short rate are given by

dλPt = aP,Q(λPt , λ
I
t , t)

(
λPt − λP

)
dt+ bP (t)

(
λPt − λP

)
dW P,Q

t ,

dλIt = aI,Q(λIt , t)
(
λIt − λI

)
dt+ bI(t)

(
λIt − λI

)
dW I,Q

t ,

drt = µQ(rt, t) dt+ σ(rt, t) dW r,Q
t ,

(4.2.6)

in which 

W P,Q
t = W P

t + ρ
∫ t

0
qλ

I
(λIs, s) ds,

W I,Q
t = W I

t +
∫ t

0
qλ

I
(λIs, s) ds,

W r,Q
t = W r

t +
∫ t

0
qr(rs, s) ds,

(4.2.7)

and 

aP,Q(λIt , λ
P
t , t) = aP (λPt , t)− ρ qλ

I
(λIt , t) b

P (t),

aI,Q(λIt , t) = aI(λIt , t)− qλ
I
(λIt , t) b

I(t),

µQ(rt, t) = µ(rt, t)− qr(rt, t)σ(rt, t).

(4.2.8)

The time-t price of the T -bond is given by

F (r, t;T ) = EQ
[
e−

∫ T
t rs ds

∣∣∣∣ rt = r

]
, (4.2.9)
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and the bond price F solves the following partial differential equation (PDE), Björk

[2004]: 
Ft + µQ(r, t)Fr + 1

2
σ2(r, t)Frr − rF = 0,

F (r, T ;T ) = 1.

(4.2.10)

From this PDE, we obtain the dynamics of F for t ≤ s ≤ T :
dF (rs, s) = [rsF (rs, s) + qr(rs, s)σ(rs, s)Fr(rs, s)] ds+ σ(rs, s)Fr(rs, s) dW r

s

F (rt, t) = F (r, t).

(4.2.11)

Without loss of generality, we specify the mortality derivative as a q-forward.

Define the cumulative hazard rate process by ΛI
t =

∫ t
0
λIs ds for 0 ≤ t ≤ T . Then,

the time-t value of a q-forward with delivery time T is given by

S
(
r, λI ,ΛI , t;T

)
= EQ

[
e−

∫ T
t rs ds

(
e−

∫ T
0 λIs ds −K

) ∣∣∣∣ rt = r, λIt = λI ,ΛI
t = ΛI

]
.

(4.2.12)

in which K = EQ
[
e−

∫ T
0 λIt dt

∣∣∣∣F0

]
is the delivery price. As for the T -bond, we have

the following PDE for the mortality derivative:
St + µQ Sr + 1

2
σ2 Srr + aI,Q ·

(
λI − λI

)
SλI +

1

2

(
bI
)2 (

λI − λI
)2
SλIλI + λI SΛI − rS = 0,

S(r, λI ,ΛI , T ;T ) = e−ΛI −K.
(4.2.13)

From the PDE above, we obtain the dynamics of S for t ≤ s ≤ T :
dSs =

[
rsS + qrs σSr + qλ

I

s bI ·
(
λIs − λI

)
SλI
]

ds+ σ Sr dW r
s + bI ·

(
λIs − λI

)
SλI dW I

s ,

S(rt, λ
I
t ,Λ

I
t , t) = S(r, λI ,ΛI , t).

(4.2.14)

Since we fixed the maturity T for both the bond and the q-forward in this paper, we

drop the notation T when appropriate.
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4.2.2 Pricing the pure endowment via the instantaneous sharpe ratio

Recipe for valuation

Even with the mortality derivatives, the market for insurance is incomplete when

ρ 6= ±1 due to the fact that the mortality of the insured population and the mortal-

ity of the indexed population are not perfectly correlated. This mismatch is called

basis risk; see Coughlan et al. [2007] for more details. Therefore, there is no unique

method of pricing for insurance contracts, and to value contracts in this market, one

has to choose a pricing mechanism. For example, Bayraktar and Ludkovski [2009]

used indifference pricing and Dahl and Moller [2006] consider the set of equivalent

martingale measures when pricing the unhedgeable mortality risk. We use the instan-

taneous Sharpe ratio proposed by Milevsky et al. [2005] and Bayraktar et al. [2009]

to price the risk due to the desirable properties of the resulting price. We will show

these properties in Section 4.3. Moreover, as the number of contracts approaches

infinity, the limiting price per contract can be represented as an expectation with

respect to an equivalent martingale measure. In a market without mortality deriva-

tives, this pricing methodology has been proved useful for pricing pure endowments

(Milevsky et al. [2005]), life insurance (Young [2008]), life annuities (Bayraktar et al.

[2009]), and financial derivatives (Bayraktar and Young [2007b]). In this paper, we

extend this pricing mechanism to incorporate mortality derivatives in the financial

market. Our method for pricing in an incomplete market with mortality derivatives

is as follows:

1. First, we set up a portfolio composed of two parts: (1) the obligation to un-

derwrite the pure endowment, and (2) a self-financing sub-portfolio of T -bonds,

q-forwards maturing at T , and money market funds to partially hedge the pure

endowment contract.
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2. Second, we find the optimal investments in bonds and mortality derivatives to

minimize the local variance of the portfolio. This method is called local risk

minimization by Schweizer [2001]. In case of a complete market, the minimized

local volatility is zero. However, the incompleteness of the insurance market

leads to residual risk, as measured by the local variance.

3. Third, we assume that the insurance provider requires compensations for the

unhedgeable risk. The price of the contingent claim is set to make the instanta-

neous Sharpe ratio of the total portfolio equal to a pre-specified value. This is

equivalent to setting the price of the contingent claim such that the drift of the

portfolio equals the short rate times the portfolio value plus the pre-specified

Sharpe ratio times the local standard deviation of the portfolio. Thus, our

pricing method is a type of local standard deviation premium principle, Young

[2004b].

Hedging and pricing a single pure endowment

Denote by P (r, λI , λP , t;T ) the time-t value of a pure endowment that pays $1 at

maturity T if the individual is alive at that time. Here, we explicitly recognize that

the price of the pure endowment depends on the short rate r, the hazard rate λP

of the insured individual, and the hazard rate λI of the indexed population. Since

the maturity T is fixed, we simplify the notation to P (r, λI , λP , t). (By writing P to

represent the value of the pure endowment, we assume that the individual is alive.

If the individual dies before T , the value of the pure endowment jumps to $0.)

Suppose the insurer creates a portfolio Π as described in Step (i) in Section 4.2.2.

This portfolio is consist of two parts: (1) the obligation to underwrite the pure

endowment with value −P , and (2) a self-financing sub-portfolio Vt of T -bonds, q-
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forwards, and money market funds to hedge the risk of the pure endowment. Thus,

Πt = −P (rt, λ
I
t , λ

P
t , t) + Vt. Let πrt equal the number T -bonds and πλ

I

t the number

of q-forwards in the self-financing sub-portfolio at time t with the rest, namely,

Vt − πrtF (rt, t)− πλ
I

t S(rt, λ
I
t , t), in money market funds.

By Itô’s lemma, the dynamics of the value of the pure endowment P (r, λI , λP , t)

in the physical probability space is given by

dP (r, λI , λP , t) = Pt dt+ Pr drt + PλI dλIt + PλP dλPt +
1

2
Prr d[r, r]t

+
1

2
PλIλP d[λI , λI ]t + PλIλP d[λI , λP ]t +

1

2
PλPλP d[λP , λP ]t − P dNt

=
[
Pt + µPr + aI ·

(
λIt − λI

)
PλI + aP ·

(
λPt − λP

)
PλP

]
dt

+

[
1

2
σ2 Prr +

1

2

(
bI
)2 (

λIt − λI
)2
PλIλI +

1

2

(
bP
)2 (

λPt − λP
)2
PλPλP

]
dt

+ ρ bIbP
(
λIt − λI

) (
λPt − λP

)
PλIλP dt− P dNt

+ σ Pr dW r
t + bI ·

(
λIt − λI

)
PλI dW I

t + bP ·
(
λPt − λP

)
PλP dW P

t ,

(4.2.15)

in which [·, ·]t represents the quadratic variation at time t, andNt is a time-inhomogeneous

Poisson process with intensity λPt that indicates when the individual dies. Recall that

the value of P jumps to $0 when the individual dies; thus, we have the term −P dNt

to account for this drop.

Since the sub-portfolio Vt is self-financing, its dynamics are given by

dVt = πrt dF (rt, t) + πλ
I

t dSt
(
rt, λ

I
t , t
)

+ rt

[
Vt − πrt F (rt, t)− πλ

I

t St
(
rt, λ

I
t , t
)]

dt

=
[
πrt q

r
t σ Fr + πλ

I

t q
r
t σ Sr + πλ

I

t q
λI

t bI ·
(
λIt − λI

)
SλI + rt Vt

]
dt

+
(
πrt σ Fr + πλ

I

t σ Sr

)
dW r

t + πλ
I

t b
I ·
(
λIt − λI

)
SλI dW I

t ,

(4.2.16)

in which the second equality follows from equations (4.2.11) and (4.2.14), and we

suppress the dependence of the functions on the underlying variables.
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It follows from equations (4.2.15) and (4.2.16) that the value of the portfolio Πt+h

at time t+ h for h > 0, given Πt = Π, is

Πt+h = Π−
∫ t+h

t

dP (rs, λ
P
s , λ

I
s, s) +

∫ t+h

t

dVs

= Π−
∫ t+h

t

DP (rs, λ
P
s , λ

I
s, s) ds+

∫ t+h

t

rs Πs ds

+

∫ t+h

t

[
πrsq

r
sσFr + πλ

I

s q
r
sσSr + πλ

I

s q
λI

s b
I ·
(
λIs − λI

)
SλI
]

ds

+

∫ t+h

t

(
πrsσFr + πλ

I

s σSr − σPr
)

dW r
s −

∫ t+h

t

bP ·
(
λPs − λP

)
PλP dW P

s

+

∫ t+h

t

bI ·
(
λIs − λI

) (
πλ

I

s SλI − PλI
)

dW I
s +

∫ t+h

t

P (dNs − λPs ds),

(4.2.17)

in which D is the operator defined on the set of appropriately differentiable functions

on R+ × (λI ,∞)× (λP ,∞)× [0, T ] by

Dv =−
(
r + λP

)
v + vt + µvr + aI ·

(
λI − λI

)
vλI + aP ·

(
λP − λP

)
vλP +

1

2
σ2vrr

+
1

2

(
bI
)2 (

λI − λI
)2
vλIλI + ρ bIbP

(
λI − λI

) (
λP − λP

)
vλIλP

+
1

2

(
bP
)2 (

λP − λP
)2
vλPλP .

(4.2.18)

Note that the compensated counting process Nt −
∫ t

0
λPs ds is a (local) martingale .

When we consider the single life case, the value of Pt becomes zero immediately

after the individual’s death, so the value of the portfolio increase by P . If we consider

the price P (n) of n conditionally independent and identically distributed lives as in

Section 4.2.2, the intensity of the counting process Nt is nλPt at time t. As one of

the n individual dies, the value of the portfolio increases by P (n) − P (n−1). We will

consider P (n) later and continue with the single-life case for now.

The second step as stated in Section 4.2.2 is to choose πrt and πλ
I

t to minimize the

local variance of the portfolio. To this end, we calculate the conditional expectation
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and variance of Πt+h at time t given Πt = Π. First, we define a stochastic process

Yh for h > 0 by

Yh = Π−
∫ t+h

t

DP (rs, λ
I
s, λ

P
s , s) ds+

∫ t+h

t

rs Πs ds

+

∫ t+h

t

[
πrs q

r
s σ Fr + πλ

I

s qrs σ Sr + πλ
I

s q
λI

s b
I ·
(
λIs − λI

)
SλI
]

ds.

(4.2.19)

Thus, E(Πt+h

∣∣Ft) = Er,λI ,λP ,t(Yh), in which Er,λI ,λP ,t denotes the conditional expec-

tation given rt = r, λIt = λI , and λPt = λP . From (4.2.17) and (4.2.19) we have

Πt+h = Yh +

∫ t+h

t

(
πrsσFr + πλ

I

s σSr − σPr
)

dW r
s −

∫ t+h

t

bP ·
(
λPs − λP

)
PλP dW P

s

+

∫ t+h

t

bI ·
(
λIs − λI

) (
πλ

I

s SλI − PλI
)

dW I
s +

∫ t+h

t

P (dNs − λPs ds).

(4.2.20)

It follows that

Var
[
Πt+h

∣∣Ft] = E
[(

Πt+h − Er,λI ,λP ,t(Yh)
)2
∣∣∣∣Ft]

= E(Yh − EYh)2 + E
∫ t+h

t

(
πrsσFr + πλ

I

s σSr − σPr
)2

ds

+ E
∫ t+h

t

(
bI
)2 (

λIs − λI
)2
(
πλ

I

s SλI − PλI
)2

ds

− 2E
∫ t+h

t

ρ bIbP
(
λIs − λI

) (
λPs − λP

)
PλP

(
πλ

I

s SλI − PλI
)

ds

+ E
∫ t+h

t

(
bP
)2 (

λPs − λP
)2

(PλP )2 ds+ E
∫ t+h

t

λPP 2ds+ o(h),

(4.2.21)

in which all the expectations are conditional on the information available at time t.

Thus, the optimal investments in the q-forward and T -bond to minimize the local

variance are given by, respectively,(
πλ

I

t

)∗
=

1

SλI

[
PλI + ρ

bP ·
(
λPt − λP

)
bI ·
(
λIt − λI

) PλP

]
, (4.2.22)

(πrt )
∗ =

1

Fr

(
Pr −

(
πλ

I

t

)∗
Sr

)
. (4.2.23)

Equations (4.2.22) and (4.2.23) show that in the self-financing sub-portfolio, the q-

forward is used to hedge the mortality risk in the pure endowment, and T -bonds are
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used to hedge the interest risk of the portfolio. Under this investment strategy, the

drift and local variance of the portfolio become

lim
h→0

1

h

[
E(Πt+h

∣∣Ft)− Π
]

= −DQP + rΠ, (4.2.24)

and

lim
h→0

1

h
Var

[
Πt+h

∣∣Ft] = (1− ρ2)
(
bP
)2 (

λP − λP
)2
P 2
λP + λPP 2, (4.2.25)

with

DQP = −
(
r + λP

)
P + Pt + µQPr + aI,Q

(
λI − λI

)
PλI + aP,Q

(
λP − λP

)
PλP

+
1

2

(
bI
)2 (

λI − λI
)2
PλIλI + ρ bIbP

(
λI − λI

) (
λP − λP

)
PλIλP

+
1

2

(
bP
)2 (

λP − λP
)2
PλPλP +

1

2
σ2Prr.

(4.2.26)

Remark 4.2.1. When ρ = ±1, the q-forward and the pure endowment bear identical

uncertainty risk in the hazard rates. In this case, the mortality risk in the pure

endowment can be completely hedged with the q-forward, and the minimum local

variance of the portfolio only comes from the random occurrence of death, namely,

lim
h→0

1

h
Var

[
Πt+h

∣∣∣∣Ft] = λPP 2. (4.2.27)

Remark 4.2.2. As we will show in Property 4.3.8 in Section 4.3, PλI ≡ 0 when ρ =

0, and the corresponding optimal investment in the q-forward is πλ
I

t

∗ ≡ 0. Intuitively,

the q-forward is not used to hedge the mortality risk in the pure endowment when the

two underlying hazard rates are not correlated.

Next, we price the pure endowment via the instantaneous Sharpe ratio as stated

in Step (iii) in Section 4.2.2. The minimized local variance of the portfolio in (4.2.25)

is positive; therefore, the insurer is not able to hedge all the risk underlying the pure
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endowment. The insurer requires an excess return on this unhedgeable risk so that

the instantaneous Sharpe ratio of the portfolio equals a pre-specified value α. We

could allow α to be a function of say r, λI , λP , and t to parallel the market price

of the risk process
{
qrt , q

λI

t

}
. However, for simplicity we choose α to be a constant.

(Further discussion of the instantaneous Sharpe ratio is available in Milevsky et al.

[2006b].) We assume that 0 ≤ α ≤
√
λP ; as we will see, some of the properties of P

rely on this upper bound for α.

To achieve a Sharpe ratio of α and thereby to determine the value P of the pure

endowment, we set the drift of the portfolio equal to short rate times the portfolio

value plus α times the minimized local standard deviation of the portfolio. Thus, we

get the following equation for P from (4.2.24) and (4.2.25):

−DQP + rΠ = rΠ + α

√
(1− ρ2) (bP )2 (λP − λP )2

P 2
λP

+ λPP 2. (4.2.28)

If the individual is still alive at time T , then the policy is worth exactly $1 at that

time, that is, P
(
r, λI , λP , T

)
= 1. Thus, P = P (r, λI , λP , t) solves the following

non-linear PDE on R+ × (λI ,∞)× (λP ,∞)× [0, T ]:

Pt + µQPr + aI,Q ·
(
λI − λI

)
PλI + aP,Q ·

(
λP − λP

)
PλP

+1
2
σ2Prr +

1

2

(
bI
)2 (

λI − λI
)2
PλIλI +

1

2

(
bP
)2 (

λP − λP
)2
PλPλP

+ρ bIbP
(
λI − λI

) (
λP − λP

)
PλIλP −

(
r + λP

)
P

= −α
√

(1− ρ2) (bP )2 (λP − λP )2
P 2
λP

+ λPP 2,

P (r, λI , λP , T ) = 1.

(4.2.29)

We can simplify the solution to (4.2.29) because the uncertainty in the short

rate is uncorrelated with the uncertainty in mortality rates. Indeed, note that

P (r, λI , λP , t) = F (r, t)ψ
(
λI , λP , t

)
, in which F is the price of the T -bond and
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solves (4.2.10), and ψ solves the following non-linear PDE:

ψt + aI,Q ·
(
λI − λI

)
ψλI + aP,Q ·

(
λP − λP

)
ψλP +

1

2

(
bI
)2 (

λI − λI
)2
ψλIλI

+ρ bIbP
(
λI − λI

) (
λP − λP

)
ψλIλP +

1

2

(
bP
)2 (

λP − λP
)2
ψλPλP − λPψ

= −α
√

(1− ρ2) (bP )2 (λP − λP )2
ψ2
λP

+ λPψ2,

ψ
(
λI , λP , T

)
= 1.

(4.2.30)

The existence of a solution to (4.2.30) follows from standard techniques; see, for

example, Chapter 36 in Walter [1970]. Uniqueness of the solution follows from the

comparison result in Section 4.3 of this paper.

Hedging and pricing a portfolio of pure endowments

In this section, we develop the PDE for the price P (n) of n pure endowment

contracts. We assume that all the individuals are of the same age and are subject

to the same hazard rate given in (4.2.2). We further assume that, given the hazard

rate, occurrences of death are independent. As discussed in the paragraph following

equation (4.2.18), when an individual dies, the portfolio value Π increases by P (n)−

P (n−1). By paralleling the derivation of (4.2.29), one gets the following PDE for P (n):

P
(n)
t + µQP

(n)
r + aI,Q ·

(
λI − λI

)
P

(n)

λI
+ aP,Q ·

(
λP − λP

)
P

(n)

λP

+1
2
σ2P

(n)
rr +

1

2

(
bI
)2 (

λI − λI
)2
P

(n)

λIλI
+

1

2

(
bP
)2 (

λP − λP
)2
P

(n)

λPλP

+ρ bIbP
(
λI − λI

) (
λP − λP

)
P

(n)

λIλP
− rP (n) − nλP ·

(
P (n) − P (n−1)

)
= −α

√
(1− ρ2) (bP )2 (λP − λP )2

(
P

(n)

λP

)2

+ nλP (P (n) − P (n−1))
2
,

P (n)(r, λI , λO, T ) = n,

(4.2.31)

with initial value P (0) ≡ 0, and P (1) = P , as given by (4.2.29).
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As in Section 4.2.2, P (n)(r, λI , λP , t) = F (r, t)ψ(n)(λI , λP , t), in which F solves

(4.2.10) and ψ(n) solves the following PDE

ψ
(n)
t + aI,Q ·

(
λI − λI

)
ψ

(n)

λI
+ aP,Q ·

(
λP − λP

)
ψ

(n)

λP
+

1

2

(
bI
)2 (

λI − λI
)2
ψ

(n)

λIλI

+ρ bIbP
(
λI − λI

) (
λP − λP

)
ψ

(n)

λIλP
+

1

2

(
bP
)2 (

λP − λP
)2
ψ

(n)

λPλP

−nλP ·
(
ψ(n) − ψ(n−1)

)
= −α

√
(1− ρ2) (bP )2 (λP − λP )2

(
ψ

(n)

λP

)2

+ nλP (ψ(n) − ψ(n−1))
2
,

ψ(n)
(
λI , λP , T

)
= n,

(4.2.32)

with initial value ψ(0) ≡ 0, and ψ(1) = ψ, as given by (4.2.30).

4.3 Properties of P (n)

To demonstrate properties of P (n), we need a comparison principle similar to

the one in Walter [1970]. To this end, we first state a relevant one-sided Lips-

chitz condition along with growth conditions. We require that the function g =

g
(
λI , λP , t, v, p1, p2

)
satisfies the following one-sided Lipschitz condition: For v > w,

g
(
λI , λP , t, v, p1, p2

)
− g

(
λI , λP , t, w, q1, q2

)
≤ c

(
λI , λP , t

)
(v − w)

+ d1

(
λI , λP , t

)
|p1 − q1|+ d2

(
λI , λP , t

)
|p2 − q2|,

(4.3.1)

with growth conditions on c, d1 and d2 given by

0 ≤ c
(
λI , λP , t

)
≤ K

[
1 +

(
ln
(
λI − λI

))2
+
(
ln
(
λP − λP

))2
]
,

0 ≤ d1

(
λI , λP , t

)
≤ K

(
λI − λI

) [
1 + ln

(
λI − λI

)
+ ln

(
λP − λP

)]
,

0 ≤ d2

(
λI , λP , t

)
≤ K

(
λP − λP

) [
1 + ln

(
λI − λI

)
+ ln

(
λP − λP

)]
,

(4.3.2)

for some constant K ≥ 0 and for all
(
λI , λP , t

)
∈ (λI ,∞)× (λP ,∞)× [0, T ].

To prove Lemma 4.3.2 below, as well as many of the properties of P (n), we rely

on the following lemma.
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Lemma 4.3.1.
√
C2 + A2 ≤ |A−B|+

√
C2 +B2

Proof. It is clear that the inequality holds if A ≤ B. For the case A > B, see the

proof of Lemma 4.5 in Milevsky et al. [2005].

Lemma 4.3.2. Define gn, for n ≥ 1, by

gn
(
λI , λP , t, v, p1, p2

)
= aI,Q ·

(
λI − λI

)
p1 + aP,Q ·

(
λP − λP

)
p2 − nλP

(
v − ψ(n−1)

)
+ α

√
(1− ρ2) (bP )2 (λP − λP )2

p2
2 + nλP (v − ψ(n−1))

2
,

(4.3.3)

in which ψ(n−1) solves (4.2.32) with n replaced by n − 1. Then, gn satisfies the

one-sided Lipschitz condition (4.3.1) on
(
λI , λP , t

)
∈ (λI ,∞) × (λP ,∞) × [0, T ].

Furthermore, condition (4.3.2) holds if
∣∣aI,Q∣∣ ≤ K

[
1 + ln

(
λI − λI

)
+ ln

(
λP − λP

)]
,∣∣aP,Q∣∣ ≤ K

[
1 + ln

(
λI − λI

)
+ ln

(
λP − λP

)]
,

(4.3.4)

for some constant K ≥ 0.

Proof. Suppose that v > w, then

gn
(
λI , λP , t, v, p1, p2

)
− gn

(
λI , λP , t, w, q1, q2

)
= aI,Q

(
λI − λI

)
(p1 − q1) + aP,Q

(
λP − λP

)
(p2 − q2)− nλP (v − w)

+ α

√
(1− ρ2) (bP )2 (λP − λP )2

p2
2 + nλP (v − ψ(n−1))

2

− α
√

(1− ρ2) (bP )2 (λP − λP )2
q2

2 + nλP (w − ψ(n−1))
2

≤
∣∣aI,Q∣∣ (λI − λI) |p1 − q1|+

[∣∣aP,Q∣∣ (λP − λP )+ α
√

1− ρ2 bP
(
λP − λP

)]
|p2 − q2|

−
(
nλP − α

√
nλP

)
(v − w)

≤
∣∣aI,Q∣∣ (λI − λI) |p1 − q1|+

[∣∣aP,Q∣∣+ α
√

1− ρ2 bP
] (
λP − λP

)
|p2 − q2|.

(4.3.5)
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In the above series of inequalities, we use α ≤
√
λP ≤

√
λP and Lemma 4.3.1.

Therefore, (4.3.1) holds with c = 0, d1 =
∣∣aI,Q∣∣ (λI − λI) and d2 =

∣∣aP,Q∣∣ (λP − λP )+
α
√

1− ρ2 bP
(
λP − λP

)
. Notice that d1 and d2 satisfy condition (4.3.2) if (4.3.4)

holds.

Assumption. Henceforth, we assume that the condition (4.3.4) holds for rest of the

paper. For later purpose, we also assume that aP,Q
λP

(
λP − λP

)
is Hölder continuous

and satisfies the following growth condition∣∣∣aP,QλP (λP − λP )+ aP,Q
∣∣∣ ≤ K

[
1 +

(
ln
(
λP − λP

))2
]
. (4.3.6)

Theorem 4.3.1. Let G = (λI ,∞)× (λP ,∞)× [0, T ], and denote by G the collection

of functions on G that are twice differentiable in their first two variables and once-

differentiable in their third variable. Define an operator L on G by

Lv = vt +
1

2

(
bI
)2 (

λI − λI
)2
vλIλI + ρ bI bP

(
λI − λI

) (
λP − λP

)
ψλIλP

+
1

2

(
bP
)2 (

λP − λP
)2
vλPλP + gn

(
λI , λP , t, v, vλI , vλP

)
,

(4.3.7)

in which gn is given by (4.3.3). Suppose that v, w ∈ G are such that there exists a con-

stant K ≥ 0 with v ≤ e
K
{
(ln(λI−λI))

2
+(ln(λP−λP ))

2
}

and w ≥ −eK
{
(ln(λI−λI))

2
+(ln(λP−λP ))

2
}

for large
(
ln
(
λI − λI

))2
+
(
ln
(
λP − λP

))2
. Then, if (a) Lv ≥ Lw on G and if (b)

v
(
λI , λP , T

)
≤ w

(
λI , λP , T

)
for all λI > λI and λP > λP , then v ≤ w on G.

Proof. Define y1 = ln
(
λI − λI

)
, y2 = ln

(
λP − λP

)
, and τ = T−t. Write ṽ(y1, y2, τ) =

v
(
λI , λP , t

)
, etc. Therefore, ṽ ≤ eK(y21+y22)and w̃ ≥ −eK(y21+y22) for large y2

1 + y2
2. Un-

der this transformation, (4.3.7) becomes

Lṽ = −ṽτ +
1

2
(b̃I)2 ṽy1y1 + ρ b̃I b̃P ṽy1y2 +

1

2
(b̃P )2 ṽy2y2 + h̃(y1, y2, v, ṽy1 , ṽy2), (4.3.8)

in which

h̃(y1, y2, τ, ṽ, p̃1, p̃2) = −1

2
(b̃I)2 p̃1 −

1

2
(b̃P )2 p̃2 + g̃n(y1, y2, τ, ṽ, p̃1, p̃2), (4.3.9)
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and ṽ is a differentiable function defined on R2 × [0, T ]. The differential operator in

(4.3.8) is of the form considered by Walter [1970].

To complete the proof, we consider the Lipschitz and growth conditions in the

original variables λI , λP , and t. From Walter [1970], we know that the conditions on

h̃ required for Walter’s comparison principle are

h̃(y1, y2, τ, ṽ, p̃1, p̃2)− h̃(y1, y2, τ, w̃, q̃1, q̃2) ≤ c̃(y1, y2, τ)(ṽ − w̃) + d̃1(y1, y2, τ)|p̃1 − q̃1|

+ d̃2(y1, y2, τ)|p̃2 − q̃2|,

(4.3.10)

with 

0 ≤ c̃(y1, y2, τ) ≤ K (1 + y2
1 + y2

2) ,

0 ≤ d̃1(y1, y2, τ) ≤ K (1 + |y1|+ |y2|) ,

0 ≤ d̃2(y1, y2, τ) ≤ K (1 + |y1|+ |y2|) .

(4.3.11)

Under the original variables, it follows from (4.3.9) and (4.3.5) that, for v > w,

h̃(y1, y2, τ, ṽ, p̃1, p̃2)− h̃(y1, y2, τ, w̃, q̃1, q̃2)

≤
[

1

2
(b̃I)2 +

∣∣∣ãI,Q∣∣∣] |p̃1 − q̃1|+
[

1

2
(b̃P )2 +

∣∣∣ãP,Q∣∣∣+ α
√

1− ρ2 b̃P
]
|p̃2 − q̃2|.

(4.3.12)

Note that p1=e−y1 p̃1 since ψλI = e−yψ̃y1 ; similarly, for p̃2, q̃1, and q̃2. Thus, (4.3.10)

is satisfied with c̃ = c = 0, d̃1 = (b̃I)2 +
∣∣∣ãI,Q∣∣∣, and d̃2 = (b̃P )2 +

∣∣∣ãP,Q∣∣∣+α
√

1− ρ2 b̃P ,

and (4.3.11) is satisfied due to Lemma 4.3.2 and (4.3.4) and the fact that b̃I and b̃P

are continuous on [0, T ] and are, thus, bounded.

For the remainder of this section, we apply Theorem 4.3.1 to investigate properties

of the price P (n) for n pure endowment contracts. For simplicity, we will state and

prove properties of ψ(n) and afterwards interpret the results in terms of P (n).

Property 4.3.1. For n ≥ 0, 0 ≤ ψ(n) ≤ n e
−
(
λP−α
√
λP
)

(T−t)
on G.



145

Proof. For ease of presentation, define h by h(t) = e
−
(
λP−α
√
λP
)

(T−t)
for t ∈ [0, T ].

We proceed by induction to prove that ψ(n) ≤ nh on G. Note that the inequality

holds for n = 0 since ψ(0) ≡ 0. For n ≥ 1, assume that ψ(n−1)(λI , λP , t) ≤ (n− 1)h,

and show that 0 ≤ ψ(n)(λI , λP , t) ≤ nh.

To apply Theorem 4.3.1, define a differential operator L on G by (4.3.7). We have

Lψ(n) = 0 due to equation (4.2.32). Apply the operator L to nh to get

L (nh) =

(
λP − α

√
λP
)
nh−

(
nλP − α

√
nλP

) (
nh− ψ(n−1)

)
≤
(
λP − α

√
λP
)
nh−

(
nλP − α

√
nλP

)
(n− (n− 1))h

=

[
n

(
λP − α

√
λP
)
−
(
nλP − α

√
nλP

)]
h ≤ 0.

(4.3.13)

Because L(nh) ≤ 0 = Lψ(n) and nh(T ) = ψ(n)(λI , λP , T ) = n, Theorem 4.3.1

implies that ψ(n) ≤ ne
−
(
λP−α
√
λP
)

(T−t)
on G.

Similarly, we prove that ψ(n) ≥ 0 by induction. Suppose that ψ(n−1) ≥ 0 for n ≥ 1,

and show that ψ(n) ≥ 0. We apply the same operator L from the first part of this

proof to the constant function 0 on G. Because L0 =
(
nλP + α

√
nλP

)
ψ(n−1) ≥ 0 =

Lψ(n) and 0 ≤ n = ψ(n)(λI , λP , T ), Theorem 4.3.1 implies that ψ(n) ≥ 0 on G.

It follows immediately from Property 4.3.1 that 0 ≤ P (n)(r, λI , λP , t) ≤ nF (r, t)

for (r, λI , λP , t) ∈ R+×G, in which F is the price of a T -bond with face value of $1.

Thus, the price per risk
1

n
P (n) lies between 0 and F . This is a no-arbitrage condition

since the total payoff of n pure endowments at time T is non-negative and is no more

than $n.

Property 4.3.2. For n ≥ 1, ψ(n) ≥ ψ(n−1) on G.

Proof. We prove this property by induction. First, the inequality holds for n = 1

since ψ(1) ≥ 0 by Property 4.3.1 and ψ(0) ≡ 0. For n ≥ 2, assume that ψ(n−1) ≥
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ψ(n−2), and show that ψ(n) ≥ ψ(n−1).

Define a differential operator L on G by (4.3.7). We have that Lψ(n) = 0 due

to equation (4.2.32). Apply the operator L to ψ(n−1), and use the fact that ψ(n−1)

solves (4.2.32) with n replaced by n− 1:

Lψ(n−1) = (n− 1)λP
(
ψ(n−1) − ψ(n−2)

)
+ α

√
(1− ρ2) (bP )2 (λP − λP )2

(
ψ

(n−1)

λP

)2

− α
√

(1− ρ2) (bP )2 (λP − λP )2
(
ψ

(n−1)

λP

)2

+ (n− 1)λP (ψ(n−1) − ψ(n−2))
2

≥ (n− 1)λP
(
ψ(n−1) − ψ(n−2)

)
− α

√
(n− 1)λP

(
ψ(n−1) − ψ(n−2)

)
=
[
(n− 1)λP − α

√
(n− 1)λP

] (
ψ(n−1) − ψ(n−2)

)
≥ 0.

(4.3.14)

Note that the first inequality is due to the fact that
√
A2 +B2 ≤ |A|+ |B|. We also

use the induction assumption that ψ(n−1) ≥ ψ(n−1). Because ψ(n) = n > n − 1 =

ψ(n−1) at t = T , Theorem 4.3.1 implies that ψ(n) ≥ ψ(n−1) on G.

We use Property 4.3.2 to prove Property 4.3.5 below; however, Property 4.3.2 is

interesting in its own right because it confirms our intuition that P (n) increases with

the number of policyholders.

Property 4.3.3. Suppose 0 ≤ α1 ≤ α2 ≤
√
λP , and let ψ(n),αi be the solution of

(4.2.32) with α = αi, for i = 1, 2 and for n ≥ 0. Then, ψ(n),α1 ≤ ψ(n),α2 on G.

Proof. We prove this property by induction. First, the inequality holds for n = 0

since ψ(0),αi ≡ 0 for i = 1, 2. For n ≥ 1, assume that ψ(n−1),α1 ≤ ψ(n−2),α2 , and show

that ψ(n),α1 ≤ ψ(n),α2 .

Define a differential operator L on G by (4.3.7) with α = α1. We have that

Lψ(n),α1 = 0 since ψ(n),α1 solves (4.2.32) with α = α1. Apply the operator L to
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ψ(n),α2 to get

Lψ(n),α2 = −nλP
(
ψ(n),α2 − ψ(n−1),α1

)
+ nλP

(
ψ(n),α2 − ψ(n−1),α2

)
+ α1

√
(1− ρ2) (bP )2 (λP − λP )2

(
ψ

(n),α2

λP

)2

+ nλP (ψ(n),α2 − ψ(n−1),α1)
2

− α2

√
(1− ρ2) (bP )2 (λP − λP )2

(
ψ

(n),α2

λP

)2

+ nλP (ψ(n),α2 − ψ(n−1),α2)
2

= −nλP
(
ψ(n−1),α2 − ψ(n−1),α1

)
+ α1

{√
(1− ρ2) (bP )2 (λP − λP )2

(
ψ

(n),α2

λP

)2

+ nλP (ψ(n),α2 − ψ(n−1),α1)
2

−
√

(1− ρ2) (bP )2 (λP − λP )2
(
ψ

(n),α2

λP

)2

+ nλP (ψ(n),α2 − ψ(n−1),α2)
2

}

− (α2 − α1)

√
(1− ρ2) (bP )2 (λP − λP )2

(
ψ

(n),α2

λP

)2

+ nλP (ψ(n),α2 − ψ(n−1),α2)
2

≤ −
(
nλP − α1

√
nλP

) (
ψ(n−1),α2 − ψ(n−1),α1

)
≤ 0 = Lψ(n),α1 .

(4.3.15)

Here, we use the Lemma 4.3.1 withA =
√
nλP

(
ψ(n),α2 − ψ(n−1),α1

)
, B =

√
nλP

(
ψ(n),α2 − ψ(n−1),α2

)
,

and C = bP
(
λP − λP

)
ψ

(n),α2

λP
, as well as the induction hypothesis and α2 ≥ α1. Be-

cause ψ(n),α1 = ψ(n),α1 = n at t = T , Theorem 4.3.1 implies that ψ(n),α1 ≤ ψ(n),α2 on

G.

Property 4.3.3 shows that P (n) increases with the instantaneous Sharpe ratio α.

The more that the insurance company wants to be compensated for the unhedgeable

portion of the mortality risk, the higher it will set α. We have the following corollary

of Property 4.3.3.

Property 4.3.4. Let ψ(n),α0 be the solution to (4.2.32) with α = 0. Then, for

0 ≤ α ≤
√
λP , ψ(n),α ≥ ψ(n),α0 on G, and we can express the lower bound ψ(n),α0 as

follows: ψ(n),α0 = nψα0, in which ψα0 is given by

ψα0(λI , λP , t) = EQ
[
e−

∫ T
t λPs ds

∣∣∣∣λIt = λI , λPt = λP
]
, (4.3.16)
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and the Q-dynamics of
{
λIt
}

and
{
λPt
}

follow, respectively,

dλIt = aI,Q(λIt , t)
(
λIt − λI

)
dt+ bI(t)

(
λIt − λI

)
dW I,Q

t , (4.3.17)

and

dλPt = aP,Q(λIt , λ
P
t , t)

(
λPt − λP

)
dt+ bP (t)

(
λPt − λP

)
dW P,Q

t . (4.3.18)

Proof. Let α1 = 0 and α2 = α ≥ 0 in Property (4.3.3), and the inequality follows.

By substituting α = 0 in (4.2.30), the Feyman-Kac Theorem leads to the expression

of ψα0 in (4.3.16). Finally, it is straightforward to show that nψα0 solves (4.2.32)

with α = 0; thus, ψ(n),α0 = nψα0.

Note that nψ(1),α0 = nψα0 is the expected number of survivors under the physical

measure, so the lower bound of 1
n
P (n) (as α approaches zero) is the same as the lower

bound of P , namely, F ψα0.

Property 4.3.5. ψ
(n)

λP
≤ 0 on G for n ≥ 0.

Proof. We prove this property by induction. First, it is clear that ψ
(0)

λP
≡ 0. For

n ≥ 1, assume that ψ
(n−1)

λP
≤ 0, and apply a modified version of Theorem 4.3.1 to

compare ψ
(n)

λP
≤ 0 and the constant function 0. To this end, we first differentiate
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ψ(n)’s equation, (4.2.32), with respect to λP to get an equation for f (n) = ψ
(n)

λP
:

f
(n)
t +

[
aP,Q
λP
·
(
λP − λP

)
+ aP,Q

]
f (n) +

[
aI,Q + ρ bI bP

] (
λI − λI

)
f

(n)

λI

+
[
aP,Q +

(
bP
)2
] (
λP − λP

)
f

(n)

λP
+

1

2

(
bI
)2 (

λI − λI
)2
f

(n)

λIλI

+ρ bI bP
(
λI − λI

) (
λP − λP

)
f

(n)

λIλP
+

1

2

(
bP
)2 (

λP − λP
)2
f

(n)

λPλP

−n
(
ψ(n) − ψ(n−1)

)
− nλP

(
f (n) − f (n−1)

)
= −α

(1− ρ2)
(
bP
)2 (

λP − λP
) (
f (n)

)2
+ (1− ρ2)

(
bP
)2 (

λP − λP
)2
f (n)f

(n)

λP√
(1− ρ2) (bP )2 (λP − λP )2

(f (n))
2

+ nλP (ψ(n) − ψ(n−1))
2

−α

1

2
n
(
ψ(n) − ψ(n−1)

)2
+ nλP

(
ψ(n) − ψ(n−1)

) (
f (n) − f (n−1)

)√
(1− ρ2) (bP )2 (λP − λP )2

(f (n))
2

+ nλP (ψ(n) − ψ(n−1))
2
,

f (n)
(
λI , λP , T

)
= 0.

(4.3.19)

Define a differential operator L on G by (4.3.7) with gn replaced by

g̃n(λI , λP , t, v, p1, p2)

=
[
aP,Q
λP
·
(
λP − λP

)
+ aP,Q

]
v +

[
aI,Q + ρ bI bP

] (
λI − λI

)
p1

+
[
aP,Q +

(
bP
)2
] (
λP − λP

)
p2 − n

(
ψ(n) − ψ(n−1)

)
− nλP

(
v − f (n−1)

)
+ α

(1− ρ2)
(
bP
)2 (

λP − λP
)
v2 + (1− ρ2)

(
bP
)2 (

λP − λP
)2
vp2√

(1− ρ2) (bP )2 (λP − λP )2
v2 + nλP (ψ(n) − ψ(n−1))

2

+ α

1

2
n
(
ψ(n) − ψ(n−1)

)2
+ nλP

(
ψ(n) − ψ(n−1)

) (
v − f (n−1)

)√
(1− ρ2) (bP )2 (λP − λP )2

v2 + nλP (ψ(n) − ψ(n−1))
2
.

(4.3.20)

From Walter [1970], we know that we only need to verify that (4.3.1) holds for

v > w = 0 = q1 = q2. It is not difficult to show that

g̃n(λI , λP , t, v, p1, p2)− g̃n(λI , λP , t, 0, 0, 0) ≤
[∣∣∣aP,QλP · (λP − λP )+ aP,Q

∣∣∣+ α
√

1− ρ2 bP
]
v

+
[ ∣∣aI,Q∣∣+ ρ bI bP

] (
λI − λI

)
|p1|+

[∣∣aP,Q∣∣+
(
bP
)2

+ α
√

1− ρ2 bP
] (
λP − λP

)
|p2|.

(4.3.21)
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Also, by Assumption 4.3, the corresponding c =
∣∣∣aP,QλP (λP − λP )+ aP,Q

∣∣∣+α√1− ρ2 bP ,

d1 =
∣∣aI,Q∣∣ + ρ bI bP , and d2 =

∣∣aP,Q∣∣ +
(
bP
)2

+ α
√

1− ρ2 bP in (4.3.21) satisfy the

growth conditions in (4.3.2).

Note that Lf (n) = 0 on G. Apply the operator L to the constant function 0

to get L0 =
(
nλP − α

√
nλP

)
f (n−1)−

(
n− α/2

√
n/λP

) (
ψ(n) − ψ(n−1)

)
≤ 0 by the

induction assumption, by Property 4.3.2, and by the assumption that λP > λP ≥ α2.

Since f (n)(λI , λP , T ) = 0, Theorem 4.3.1 implies that f (n) = ψ
(n)

λP
≤ 0 on G.

It is intuitively pleasing that ψ
(n)

λP
≤ 0 because for physical survival probabilities, if

the hazard rate increases, then the probability of surviving until time T , and thereby

paying the $1 benefit, decreases. A related result is that P (n) decreases as the risk-

adjusted drift of the hazard rate, aP,Q, increases because the hazard rate tends to

increase with its drift.

Property 4.3.6. Suppose aP,Q1 ≤ aP,Q2 on G, and let ψ(n),ai denote the solution to

(4.2.32) with aP,Q = aP,Qi , for i = 1, 2 and for n ≥ 0. Then, ψ(n),a1 ≥ ψ(n),a2 on G.

Proof. Define a differential operator L on G by (4.3.7) with aP = aP1 ; then, it is clear

that Lψ(n),a1 = 0. Apply this operator L to ψ(n),a2 to obtain

Lψ(n),a2 =
(
aP,Q1 − aP,Q2

) (
λP − λP

)
ψ

(n),a2
λP

≥ 0. (4.3.22)

Since ψ(n),a1
(
λI , λP , T

)
= ψ(n),a2

(
λI , λP , T

)
= n, Theorem 4.3.1 implies that ψ(n),a1 ≥

ψ(n),a2 on G.

Next, we prove the subadditivity property of P (n). To that end, we use Lemma

4.10 in Milevsky et al. [2005]. We restate the lemma, and one can find its proof in

the original paper.
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Lemma 4.3.3. Suppose A ≥ C ≥ B, Bλ, and Cλ are constants; then, for non-

negative integers m and n,

√
(Bλ + Cλ)

2 + (m+ n)A2−
√
n(A−C) ≤

√
B2
λ +mB2+

√
C2
λ + nB2+

√
m(A−B).

(4.3.23)

Property 4.3.7. ψ(m+n) ≤ ψ(m) + ψ(n) for m,n ≥ 0.

Proof. We prove this inequality by induction on m + n. When m + n = 0 or 1, we

know that ψ(0) = ψ(0) + ψ(0) and ψ(1) = ψ(1) + ψ(0) since ψ(0) = 0. For m + n ≥ 2,

suppose that ψ(l+k) ≤ ψ(l) + ψ(k) for any non-negative integers k and l such that

k+ l ≤ m+n−1. We need to show that ψ(m+n) ≤ ψ(m) +ψ(n). Define ξ = ψ(m) +ψ(n)

and η = ψ(m+n) on G. The function ξ solves the PDE given by

ξt + aI,Q ·
(
λI − λI

)
ξλI + aP,Qc ˙(

λP − λP
)
ξλP +

1

2

(
bI
)2 (

λI − λI
)2
ξλIλI

+ρ bI bP
(
λI − λI

) (
λP − λP

)
ξλIλP +

1

2

(
bP
)2 (

λP − λP
)2
ξλPλP

−nλP
(
ψ(n) − ψ(n−1)

)
−mλP

(
ψ(m) − ψ(m−1)

)
= −α

√
(1− ρ2) (bP )2 (λP − λP )2

(
ψ

(n)

λP

)2

+ nλP (ψ(n) − ψ(n−1))
2

−α
√

(1− ρ2) (bP )2 (λP − λP )2
(
ψ

(m)

λP

)2

+mλP (ψ(m) − ψ(m−1))
2
,

ξ
(
λI , λP , T

)
= m+ n.

(4.3.24)

Define a differential operator L on G by (4.3.7) with n replaced by m+n. It is clear
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that Lη = 0 on G. Apply the operator L to ξ to get

Lξ = nλP
(
ψ(n) − ψ(n−1)

)
+mλP

(
ψ(m) − ψ(m−1)

)
− (m+ n)λP

(
ξ − ψ(m+n−1)

)
− α

√
(1− ρ2) (bP )2 (λP − λP )2

(
ψ

(n)

λP

)2

+ nλP (ψ(n) − ψ(n−1))
2

− α
√

(1− ρ2) (bP )2 (λP − λP )2
(
ψ

(m)

λP

)2

+mλP (ψ(m) − ψ(m−1))
2

+ α

√
(1− ρ2) (bP )2 (λP − λP )2

ξ2
λP

+ (m+ n)λP (ξ − ψ(m+n−1))
2

≤
(
ψ(m+n−1) − ψ(m−1) − ψ(n)

) (
mλP − α

√
mλP

)
+
(
ψ(m+n−1) − ψ(m) − ψ(n−1)

) (
nλP − α

√
nλP

)
≤ 0.

(4.3.25)

To get the first inequality in (4.3.25), we apply Lemma 4.3.3 after assigning A =

√
λP
(
ξ − ψ(m+n−1)

)
, B =

√
λP
(
ψ(m) − ψ(m−1)

)
, C =

√
λP
(
ψ(n) − ψ(n−1)

)
, Bλ =√

1− ρ2 bP ·
(
λP − λP

)
ψ

(m)

λP
, and Cλ =

√
1− ρ2 bP ·

(
λP − λP

)
ψ

(n)

λP
. The second

inequality in (4.3.25) follows from the induction assumption ψ(m+n−1) ≤ ψ(k) + ψ(l)

with k+l = m+n−1, and from the assumption that
√
λP ≥ α. Since ξ

(
λI , λP , T

)
=

η
(
λI , λP , T

)
= m+ n, Theorem 4.3.1 implies that η ≤ ξ on G.

Property 4.3.7 states that our pricing mechanism satisfies subadditivity, P (m+n) ≤

P (m) + P (n). This is reasonable since if subadditivity did not hold, then buyers of

pure endowments could purchase separately and thereby save money.

Property 4.3.8. Let ψ(n),ρ0 be the solution to (4.2.32) with ρ = 0 for n ≥ 0; then,
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ψ(n),ρ0 = ψ(n),ρ0(λP , t) is independent of λI and solves the following PDE:

ψ
(n),ρ0
t + aP,Q ·

(
λP − λP

)
ψ

(n),ρ0

λP
+

1

2

(
bP
)2 (

λP − λP
)2
ψ

(n),ρ0

λPλP
− nλP

(
ψ(n),ρ0 − ψ(n−1),ρ0

)
= −α

√
(bP )2 (λP − λP )2

(
ψ

(n),ρ0

λP

)2

+ nλP (ψ(n),ρ0 − ψ(n−1),ρ0)
2
,

ψ(n),ρ0
(
λP , T

)
= n,

(4.3.26)

with ψ(0),ρ0 ≡ 0 for n = 0.

Proof. The solution of (4.3.26) is independent of λI and also solves (4.2.32) when

ρ = 0. Uniqueness of the solutions of (4.3.26) and (4.2.31) implies that the solutions

of the two PDEs are equal.

When ρ = 0, the optimal investment in the mortality derivative is zero, as we

discussed in Remark 4.2.2. Also, equation (4.3.26) is identical to equation (4.1) of

Milevsky et al. [2005], which determines the price of n pure endowments in a market

without mortality derivatives. The coincidence of the two results in the case of ρ = 0

shows that the pricing mechanism we apply is consistent.

It is natural to ask if the hedging will reduce the price of pure endowments. To

answer this question, we first make an assumption on qλ
I

to simplify the equation

for ψ(n) as follows.

Property 4.3.9. When the market price of risk for mortality qλ
I

is independent of

λI , then ψ(n) = ψ(n)(λP , t) is also independent of λI and solves the following PDE:

ψ
(n)
t + aP,Q ·

(
λP − λP

)
ψ

(n)

λP
+

1

2

(
bP
)2 (

λP − λP
)2
ψ

(n)

λPλP
− nλP

(
ψ(n) − ψ(n−1)

)
= −α

√
(1− ρ2) (bP )2 (λP − λP )2

(
ψ

(n)

λP

)2

+ nλP (ψ(n) − ψ(n−1))
2
,

ψ(n)
(
λP , T

)
= n.

(4.3.27)
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Proof. The solution of (4.3.27) is independent of λI and also solves (4.2.32) when

qλ
I

is independent of λI . Uniqueness of the solutions of (4.2.32) and (4.3.27) implies

that the solutions of the two PDEs are equal.

Because P (n) = F ψ(n), Property 4.3.9 implies that if qλ
I

is independent of λI ,

then P (n) is also independent of λI . It follows from this property and Property 4.3.6

that if the qλ
I

is independent of λI , then P (n) increases with increasing market price

of mortality risk qλ
I
, as one expects.

Property 4.3.10. Suppose qλ
I

is independent of λI and qλ
I

1 ≤ qλ
I

2 . Let ψ(n),qλ
I

i

be the solution of (4.3.27) with qλ
I

= qλ
I

i , for i = 1, 2 and for n ≥ 0. Then,

ψ(n),qλ
I

1 ≤ ψ(n),qλ
I

2 on G.

Proof. From (4.2.8) we have that aP,Q1 ≥ aP,Q2 , and we conclude that ψ(n),qλ
I

1 ≤ ψ(n),qλ
I

2

on G from Property 4.3.6 and Property 4.3.9.

Next, we give a condition under which hedging with mortality derivatives reduces

the price of pure endowments.

Theorem 4.3.2. Suppose qλ
I

is independent of λI . Let ψ(n),− denote the solution

of (4.3.27) with ρ qλ
I ≤ 0, and let ψ(n),0 denote the solution of (4.3.27) with ρ = 0.

Then, ψ(n),− ≤ ψ(n),0 on G.

Proof. Define a differential operator L on G by (4.3.7) with gn replaced by

ĝn
(
λP , t, v, p2

)
= aP ·

(
λP − λP

)
p2 − nλP

(
v − ψ(n−1),0

)
+ α

√
(bP )2 (λP − λP )2

p2
2 + nλP (v − ψ(n−1),0)

2
.

(4.3.28)

It is straightforward to check that the function ĝn in (4.3.28) satisfies the one-sided

Lipschitz condition (4.3.1) and the growth condtion (4.3.2). We have that Lψ(n),0 = 0
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since ψ(n),0 solves (4.3.27) with ρ = 0. Apply the operator L to ψ(n),− to get

Lψ(n),− = ρ qλ
I

bP ·
(
λP − λP

)
ψ

(n),−
λP

+ α

√
(bP )2 (λP − λP )2

(
ψ

(n),−
λP

)2

+ nλP (ψ(n),− − ψ(n−1),0)
2

− α
√

(1− ρ2) (bP )2 (λP − λP )2
(
ψ

(n),−
λP

)2

+ nλP (ψ(n),− − ψ(n−1),−)
2

≥ α
√
nλP

(
ψ(n−1),0 − ψ(n−1),−) ≥ 0 = Lψ(n),0.

(4.3.29)

The first inequality above follows from ψ
(n),−
λP

≤ 0, ρ qλ
I ≤ 0, and Lemma 4.3.1.

The second inequality follows by an induction step; recall that ψ(0),0 = ψ(0),− = 0.

Additionally, ψ(n),− (λP , T) = ψ(n),0
(
λP , T

)
, so Theorem 4.3.1 implies that ψ(n)− ≤

ψ(n),0 on G.

Remark 4.3.1. One can interpret the price P (n) with ρ = 0 as the price for which

no hedging with the mortality derivative is allowed because the optimal investment in

the mortality derivative when ρ = 0 is 0, which follows from Property 4.3.8. Thus,

Theorem 4.3.2 asserts that when ρ qλ
I ≤ 0, the price when hedging is allowed is less

than the price with no hedging. However, if ρ qλ
I
> 0, then we cannot conclude that

hedging necessarily reduces the price of the pure endowment. We discuss this more

fully at the end of the next section.

4.4 Limiting behavior of
1

n
P (n) as n→∞

In this section, we consider the limiting behavior of 1
n
P (n). First, we show that

the price per risk, 1
n
P (n), decrease as n increases; that is, by increasing the number

of pure endowment contracts, we reduce the price per contract. Then, we further

explore how far 1
n
P (n) decreases by determining the limiting value of the decreasing

sequence
{

1
n
P (n)

}
. Surprisingly, we find in Theorem 4.4.1 that the limiting value
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solves a linear PDE. The proofs of most results in this section are modifications of

the proofs given by Milevsky et al. [2005].

To prove the limiting properties of 1
n
P (n), we use the Lemma 4.12 in Milevsky

et al. [2005]. We restate this lemma without proof.

Lemma 4.4.1. If n ≥ 2, and if A ≥ C ≥ 0 and Bλ are constants, then the following

inequality holds√
B2
λ +

1

n
C2 ≤

√
n− 2 (A− C) +

√
B2
λ +

1

n− 1
[(n− 1)C − (n− 2)A]2 . (4.4.1)

Proposition 4.4.1. 1
n
P (n) decreases with respect to n for n ≥ 1.

Proof. It is sufficient to show that 1
n
ψ(n) decreases with respect to n. Define φ(n) ,

1
n
ψ(n), and we will show that φ(n−1) ≥ φ(n) for n ≥ 2 by induction. From (4.2.32),

we deduce that φ(n) solves

φ
(n)
t + aI,Q ·

(
λI − λI

)
φ

(n)

λI
+ aP,Q ·

(
λP − λP

)
φ

(n)

λP
+

1

2

(
bI
)2 (

λI − λI
)2
φ

(n)

λIλI

+ρ bI bP
(
λI − λI

) (
λP − λP

)
φ

(n)

λIλP
+

1

2

(
bP
)2 (

λP − λP
)2
φ

(n)

λPλP

−λP
[
nφ(n) − (n− 1)φ(n−1)

]
= −α

√
(1− ρ2) (bP )2 (λP − λP )2

(
φ

(n)

λP

)2

+
1

n
λP [nφ(n) − (n− 1)φ(n−1)]

2
,

φ(n)
(
λI , λP , T

)
= 1,

(4.4.2)

with φ(1) = ψ, in which ψ solves (4.2.30).

We first show that φ(1) ≥ φ(2). To this end, we define a differential operator L on

G by (4.3.7) with gn replaced by

ĝ2(λI , λP , t, v, p1, p2) = aI,Q ·
(
λI − λI

)
p1 + aP,Q ·

(
λP − λP

)
p2 − λP (2v − ψ)

+ α

√
(1− ρ2) (bP )2 (λP − λP )2

(p2)2 +
1

2
λP (2v − ψ)2.

(4.4.3)
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It is clear that ĝ2 satisfies conditions (4.3.1) and (4.3.2); hence, we can apply Theorem

4.3.1. Note that Lφ(2) = 0 since φ(2) solves (4.4.2) with n = 2. By applying the

operator L to φ(1) = ψ, we get

Lφ(1) = α

√
(1− ρ2) (bP )2 (λP − λP )2

ψ2
λP

+
1

2
λPψ2

− α
√

(1− ρ2) (bP )2 (λP − λP )2
ψ2
λP

+ λPψ2

≤ 0 = Lφ(2).

(4.4.4)

Since φ(1)
(
λI , λP , T

)
= φ(2)

(
λI , λP , T

)
= 1, Theorem 4.3.1 implies that φ(1) ≥ φ(2)

on G.

Assume that for n ≥ 3, φ(n−2) ≥ φ(n−1) on G, and we show that φ(n−1) ≥ φ(n).

We define a differential operator L on G by (4.3.7) with gn replaced by

ĝn(λI , λP , t, v, p1, p2) = aI,Q ·
(
λI − λI

)
p1 + aP,Q ·

(
λP − λP

)
p2 − λP

[
nv − (n− 1)φ(n−1)

]
+α

√
(1− ρ2) (bP )2 (λP − λP )2

p2
2 +

1

n
λP [nv − (n− 1)φ(n−1)]

2
.

(4.4.5)

It is clear that ĝn satisfies conditions (4.3.1) and (4.3.2); hence, we can apply Theorem

4.3.1. Note that Lφ(n) = 0 since φ(n) solves (4.4.2). Apply the operator L to φ(n−1)

to get

Lφ(n−1) = (n− 2)λP
(
φ(n−1) − φ(n−2)

)
+ α

√
(1− ρ2) (bP )2 (λP − λP )2

(
φ

(n−1)

λP

)2

+
1

n
λP (φ(n−1))

2

− α
√

(1− ρ2) (bP )2 (λP − λP )2
(
φ

(n−1)

λP

)2

+
1

n− 1
λP [(n− 1)φ(n−1) − (n− 2)φ(n−2)]

2

≤
[
(n− 2)λP − α

√
(n− 2)λP

] (
φ(n−1) − φ(n−2)

)
≤ 0 = Lφ(n).

(4.4.6)

To get the first inequality in (4.4.6), we use Lemma 4.4.1 by assigningA =
√
λP φ(n−2),

C =
√
λP φ(n−1), and Bλ =

√
1− ρ2 bP ·

(
λP − λP

)
φ

(n−1)

λP
. We also use the induction
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assumption that φ(n−2) ≥ φ(n−1). Additionally, φ(n−1)
(
λI , λP , T

)
= φ(n)

(
λI , λP , T

)
=

1, and Theorem 4.3.1 implies that φ(n−1) ≥ φ(n) on G.

In what follows, we answer the question inspired by Proposition 4.4.1, namely,

what is the limit of the non-negative, decreasing sequence
{

1
n
P (n)

}
? In Theorem

4.4.1 below, we will show the limit equals F β, in which β = β
(
λI , λP , t

)
denote the

solution of the following PDE:

βt + aI,Q ·
(
λI − λI

)
βλI +

[
aP,Q − α

√
1− ρ2 bP

] (
λP − λP

)
βλP

+
1

2

(
bI
)2 (

λI − λI
)2
βλIλI + ρ bI bP

(
λI − λI

) (
λP − λP

)
βλIλP

+
1

2

(
bP
)2 (

λP − λP
)2
βλPλP − λPβ = 0,

β
(
λI , λP , T

)
= 1.

(4.4.7)

By applying the Feyman-Kac Theorem to (4.4.7), we obtain an expression for β as

an expectation:

β(λI , λP , t) = EQ̃
[
e−

∫ T
t λPs ds

∣∣∣∣λIt = λI , λPt = λP
]
, (4.4.8)

in which the Q̃-dynamics of
{
λIt
}

and
{
λPt
}

follow, respectively,

dλIt = aI,Q(λIt , t)
(
λIt − λI

)
dt+ bI(t)

(
λIt − λI

)
dW I,Q

t (4.4.9)

and

dλPt =
[
aP,Q(λIt , λ

P
t , t)− α

√
1− ρ2 bP (t)

] (
λPt − λP

)
dt+ bP (t)

(
λPt − λP

)
dW̃ P,Q

t .

(4.4.10)

Here, W̃ P,Q
t = W P,Q

t + α
√

1− ρ2 t.

We begin by proving that 1
n
P (n) is bounded below by F β, and for that purpose,

we need the following lemma.
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Lemma 4.4.2. The function β defined by (4.4.7) is non-increasing with respect to

λP .

Proof. Denote f = βλP , and we deduce from (4.4.7) that f solves the following PDE:

ft +
[
aI,Q + ρ bI bP

] (
λI − λI

)
fλI +

[
aP,Q − α

√
1− ρ2 bP

] (
λP − λP

)
fλP

+
[
aP,Q
λP
·
(
λP − λP

)
+ aP,Q − α

√
1− ρ2 bP − λP

]
f +

1

2

(
bI
)2 (

λI − λI
)2
fλIλI

+ρ bI bP
(
λI − λI

) (
λP − λP

)
fλIλP +

1

2

(
bP
)2 (

λP − λP
)2
fλPλP − β

= 0,

f
(
λI , λP , T

)
= 0.

(4.4.11)

Define a differential operator L on G by (4.3.7) with gn replaced by

g̃(λI , λP , t, v, p1, p2) =
[
aI,Q + ρ bI bP

] (
λI − λI

)
p1 +

[
aP,Q − α

√
1− ρ2 bP

] (
λP − λP

)
p2

+
[
aP,Q
λP
·
(
λP − λP

)
+ aP,Q − α

√
1− ρ2 bP − λP

]
v − β

(4.4.12)

Because of Assumption 4.3, it is straightforward to check that the function g̃ in

(4.4.12) satisfies the one-sided Lipschitz condition (4.3.1) and the growth condtion

(4.3.2). Because f solves (4.4.11), we have that Lf = 0. Because β is clearly non-

negative, L0 = −β ≤ 0, in which 0 is the constant function of 0 on G. Additionally,

f
(
λI , λP , T

)
= 0, so Theorem 4.3.1 implies that βλP ≤ 0.

Lemma 4.4.3. For n ≥ 1, 1
n
P (n) ≥ Fβ, in which β is given in (4.4.7)

Proof. It is sufficient to show that 1
n
ψ(n) ≥ β on G. We prove this property by

induction. First, for n = 1, we show that β ≤ ψ(1) = ψ. Define a differential

operator L on G by (4.3.7) with n = 1. Recall that ψ(0) = 0 in (4.3.3). Since ψ solves
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(4.2.30), Lψ = 0. Also,

Lβ = α

√
(1− ρ2) (bP )2 (λP − λP )2

β2
λP

+ λPβ2−α
√

1− ρ2bP
(
λP − λP

)
|βλP | ≥ 0 = Lψ.

(4.4.13)

Additionally, β
(
λI , λP , T

)
= 1 = ψ

(
λI , λP , T

)
, so Theorem 4.3.1 implies that β ≤

ψ ≥ on G.

For n ≥ 1, assume that β ≤ φ(n−1) and show that β ≤ φ(n), in which φ(n) = 1
n
ψ(n)

for n ≥ 1, as we defined in the proof of Proposition 4.4.1. Define a differential

operator L by (4.3.7) with gn replaced by ĝn given by (4.4.5). Since φ(n) solves

(4.4.2), Lφ(n) = 0. By applying this operator on β, we get

Lβ = α

√
(1− ρ2) (bP )2 (λP − λP )2

(βλP )2 +
1

n
λP [nβ − (n− 1)φ(n−1)]

2

− α
√

1− ρ2 bP
(
λP − λP

)
|βλP |+ λP

[
(n− 1)φ(n−1) − (n− 1)β

]
≥ 0 = Lφ(n).

(4.4.14)

Also, β
(
λI , λP , T

)
= φ(n)

(
λI , λP , T

)
= 1; thus, Theorem 4.3.1 implies that β ≤

φ(n) = 1
n
ψ(n) on G.

Next, we show that limn→∞
1
n
P (n) = Fβ. To this end, we need some auxiliary

results. First, we prove that ψ(n) is bounded from above by γ(n) = γ(n)(λI , λP , t) for

n ≥ 0, in which the function γ(n) solves the following PDE:

γ
(n)
t + aI,Q ·

(
λI − λI

)
γ

(n)

λI
+
[
aP,Q − α

√
1− ρ2 bP

] (
λP − λP

)
γ

(n)

λP

+
1

2

(
bI
)2 (

λI − λI
)2
γ

(n)

λIλI
+ ρ bI bP

(
λI − λI

) (
λP − λP

)
γ

(n)

λIλP

+
1

2

(
bP
)2 (

λP − λP
)2
γ

(n)

λPλP
−
(
nλP − α

√
nλP

) (
γ(n) − γ(n−1)

)
= 0,

γ(n)
(
λI , λP , T

)
= n,

(4.4.15)

in which γ(0) ≡ 0.
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Lemma 4.4.4. The function γ(n) given by (4.4.15) is non-increasing with respect to

λP , and γ(n) ≥ γ(n−1) for n ≥ 1 on G.

Proof. The proof that γ
(n)

λP
≤ 0 is similar to the proof that ψ

(n)

λP
≤ 0 in Property

4.3.5. Also, the proof that γ(n) ≥ γ(n−1) is similar to the proof that ψ(n) ≥ ψ(n−1) in

Property 4.3.2. Therefore, we omit the details of the proof.

Lemma 4.4.5. For n ≥ 0, γ(n) ≥ ψ(n) on G.

Proof. We prove this lemma by induction. For n = 0, we have γ(0) = ψ(0) = 0.

Assume that for n ≥ 1, we have γ(n−1) ≥ ψ(n−1), and show that γ(n) ≥ ψ(n). For this

purpose, define a differential operator L on G by (4.3.7). Then, Lψ = 0, and

Lγ(n) = α
√

1− ρ2 bP
(
λP − λP

)
γ

(n)

λP
+
(
nλP − α

√
nλP

) (
γ(n) − γ(n−1)

)
− nλP

(
γ(n) − ψ(n−1)

)
+ α

√
(1− ρ2) (bP )2 (λP − λP )2

(
γ

(n)

λP

)2

+ nλP (γ(n) − ψ(n−1))
2

≤ −
(
nλP − α

√
nλP

) (
γ(n−1) − ψ(n−1)

)
≤ 0 = Lψ(n).

(4.4.16)

The first inequality above is due to the fact that γ
(n)

λP
≤ 0, that γ(n) ≥ γ(n−1) ≥ ψ(n−1),

and that
√
A2 +B2 ≤ |A| + |B|. Additionally, we have that γ(n)

(
λI , λP , T

)
=

ψ(n)
(
λI , λP , T

)
= n; then, Theorem 4.3.1 implies that γ(n) ≥ ψ(n) on G.

Next, we prove the main result of this section.

Theorem 4.4.1. limn→∞
1

n
P (n)(r, λI , λP , t) = F (r, t) β

(
λI , λP , t

)
on G.

Proof. By Lemmas 4.4.3 and 4.4.5, it is sufficient to show that limn→∞
(

1
n
γ(n) − β

)
=

0 since 1
n
γ(n) − β ≥ 1

n
ψ(n) − β ≥ 0. For n ≥ 1, define Γ(n) on G by Γ(n) = 1

n
γ(n) − β,

so we just need to prove that limn→∞ Γ(n) = 0. For n ≥ 1, the function Γ(n) solves
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the following PDE:

Γ
(n)
t + aI,Q ·

(
λI − λI

)
Γ

(n)

λI
+
[
aP,Q − α

√
1− ρ2 bP

] (
λP − λP

)
Γ

(n)

λP

+
1

2

(
bI
)2 (

λI − λI
)2

Γ
(n)

λIλI
+ ρ bI bP

(
λI − λI

) (
λP − λP

)
Γ

(n)

λIλP

+
1

2

(
bP
)2 (

λP − λP
)2

Γ
(n)

λPλP
−
(
nλP − α

√
nλP

)
Γ(n)

= −α
√
λP

n
β − (n− 1)

(
λP − α

√
λP

n

)
Γ(n−1),

Γ(n)
(
λI , λP , T

)
= 0,

(4.4.17)

with 0 ≤ Γ(1) = γ(1) − β ≤ 1 on G. By applying the Feyman-Kac Theorem to

(4.4.17), we obtain the following expression for Γ(n) in terms of Γ(n−1):

Γ(n)(λI , λP , t) = αEQ̃
[∫ T

t

√
λPs
n
β
(
λIs, λ

P
s , s
)
e
−
∫ s
t

(
nλPu−α

√
nλPu

)
du

ds

∣∣∣∣λIt = λI , λPt = λP

]

+ (n− 1)EQ̃
[∫ T

t

(
λPs − α

√
λPs
n

)
Γ(n−1)e

−
∫ s
t

(
nλPu−α

√
nλPu

)
du

ds

∣∣∣∣λIt = λI , λPt = λP

]
,

(4.4.18)

in which the Q̃-dynamics of
{
λIt
}

and
{
λPt
}

follow, respectively, equations (4.4.9)

and (4.4.10).

Suppose Γ(n−1) ≤ Kn−1 on G for some n ≥ 2 and for some constant Kn−2 ≥ 0.

Note that β ≤ 1 on G, so we get the following inequality:

Γ(n)(λI , λP , t) ≤ αEQ̃
[∫ T

t

√
λPs
n
e
−
∫ s
t

(
nλPu−α

√
nλPu

)
du

ds

∣∣∣∣λIt = λI , λPt = λP

]

+ (n− 1)Kn−1 EQ̃
[∫ T

t

(
λPs − α

√
λPs
n

)
e
−
∫ s
t

(
nλPu−α

√
nλPu

)
du

ds

∣∣∣∣λIt = λI , λPt = λP

]
.

(4.4.19)

Equivalently, we can write the inequality (4.4.19) as

Γ(n)(λI , λP , t) ≤ 1

n3/2
A(n)

(
λI , λP , t

)
+
n− 1

n
Kn−1B

(n)
(
λI , λP , t

)
, (4.4.20)



163

in which the functions A(n) and B(n) are defined as

A(n)
(
λI , λP , t

)
= αEQ̃

[∫ T

t

n
√
λPs e

−
∫ s
t

(
nλPu−α

√
nλPu

)
du

ds

∣∣∣∣λIt = λI , λPt = λP
]
,

(4.4.21)

and

B(n)
(
λI , λP , t

)
= EQ̃

[∫ T

t

(
nλPs − α

√
nλPs

)
e
−
∫ s
t

(
nλPu−α

√
nλPu

)
du

ds

∣∣∣∣λIt = λI , λPt = λP
]
.

(4.4.22)

After the next two lemmas that give us bounds on A(n) and B(n), respectively, we

finish the proof of Theorem 4.4.1.

Lemma 4.4.6. For n ≥ 2, A(n) ≤ J =
α
√

2√
2λP − α

on G, in which A(n) is defined in

(4.4.21).

Proof. By the Feyman-Kac Theorem, A(n) in (4.4.21) solves the following PDE

A
(n)
t + aI,Q ·

(
λI − λI

)
A

(n)

λI
+
[
aP,Q − α

√
1− ρ2 bP

] (
λP − λP

)
A

(n)

λP

+
1

2

(
bI
)2 (

λI − λI
)2
A

(n)

λIλI
+ ρ bI bP

(
λI − λI

) (
λP − λP

)
A

(n)

λIλP

+
1

2

(
bP
)2 (

λP − λP
)2
A

(n)

λPλP
−
(
nλP − α

√
nλP

)
A(n) = −αn

√
λP ,

A(n)
(
λI , λP , T

)
= 0.

(4.4.23)

For n ≥ 2, we define a differential operator L by (4.3.7) with gn replaced by

g̃n(λI , λP , t, v, p1, p2) = aI,Q ·
(
λI − λI

)
p1 +

[
aP,Q − α

√
1− ρ2 bP

] (
λP − λP

)
p2

−
(
nλP − α

√
nλP

)
v + αn

√
λP .

(4.4.24)

Since g̃n satisfies conditions (4.3.1) and (4.3.2), we can apply Theorem 4.3.1. It is

clear that LA(n) = 0, and by applying the operator L to J, the function that is

identically equal to J , we get

LJ = −
(
nλP − α

√
nλP

)
J + αn

√
λP ≤ 0 = LA(n). (4.4.25)
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Since A(n)
(
λI , λP , T

)
= 0 ≤ J , Theorem 4.3.1 implies that A(n) ≤ J on G.

Lemma 4.4.7. For n ≥ 2, B(n) ≤ 1 on G, in which B(n) is defined in (4.4.22).

Proof. By the Feyman-Kac Theorem, B(n) in (4.4.22) solves the following PDE

B
(n)
t + aI,Q ·

(
λI − λI

)
B

(n)

λI
+
[
aP,Q − α

√
1− ρ2 bP

] (
λP − λP

)
B

(n)

λP

+
1

2

(
bI
)2 (

λI − λI
)2
B

(n)

λIλI
+ ρ bI bP

(
λI − λI

) (
λP − λP

)
B

(n)

λIλP

+
1

2

(
bP
)2 (

λP − λP
)2
B

(n)

λPλP
−
(
nλP − α

√
nλP

)
B(n)

= −
(
nλP − α

√
nλP

)
,

B(n)
(
λI , λP , T

)
= 0.

(4.4.26)

For n ≥ 2, we define a differential operator L on G by (4.3.7) with gn replaced by

ĝn(λI , λP , t, v, p1, p2) = aI,Q ·
(
λI − λI

)
p1 +

[
aP,Q − α

√
1− ρ2 bP

] (
λP − λP

)
p2

−
(
nλP − α

√
nλP

)
v +

(
nλP − α

√
nλP

)
.

(4.4.27)

Since ĝn satisfies conditions (4.3.1) and (4.3.2), we can apply Theorem 4.3.1. It

is clear that LB(n) = 0, and by applying the operator L to 1, we get L1 =

−
(
nλP − α

√
nλP

)
+
(
nλP − α

√
nλP

)
= 0 = LB(n). Since B(n)

(
λI , λP , T

)
= 0 ≤ 1,

Theorem 4.3.1 implies that B(n) ≤ 1 on G.

End of Proof of Theorem 4.4.1. By Lemmas 4.4.6 and 4.4.7, we get the following

result: for n ≥ 2, if Γ(n−1) ≤ Kn−1, then

Γ(n) ≤ Kn ,
J

n3/2
+
n− 1

n
Kn−1, (4.4.28)

with K1 = 1. Define Ln = nKn and note that Ln = Ln−1 +
J√
n

for n ≥ 2. It follows

that

Ln = 1 +
n∑
i=2

J√
i
≤ 1 + J

∫ n

1

dx√
x
≤ 1 + 2J

√
n, n ≥ 2, (4.4.29)
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which implies that on G,

Γ(n) ≤ Kn ≤
1

n
+

2J√
n
, n ≥ 1. (4.4.30)

limn→∞
1
n

+ 2J√
n

= 0; therefore, Γ(n) converges to 0 uniformly on G as n goes to

infinity. In other words, limn→∞
1
n
P (n) = F β on G.

We end this section with some properties of β with the goal of determining the

effect of ρ on β.

Property 4.4.1. If qλ
I

is independent of λI , then β = β(λP , t) is independent of λI

and solves the following PDE:
βt +

[
aP,Q − α

√
1− ρ2 bP

] (
λP − λP

)
βλP +

1

2

(
bP
)2 (

λP − λP
)2
βλPλP − λPβ = 0,

β
(
λP , T

)
= 1.

(4.4.31)

Proof. The solution of (4.4.31) is independent of λI and also solves (4.4.7) when qλ
I

is independent of λI . Uniqueness of the solutions of (4.4.7) and (4.4.31) implies that

solutions of the two PDEs are equal.

Theorem 4.4.2. Suppose qλ
I

is independent of λI , and define â , aP−
[
ρ qλ

I
+ α

√
1− ρ2

]
bP .

Let βâi denote the solution of (4.4.31) with â = âi, for i = 1, 2. Then, βâ1 ≥ βâ2 on

G if â1 ≤ â2.

Proof. Define a differential operator L on G by (4.3.7) with gn replaced by

ĝ(λI , v, p) = â1 ·
(
λP − λP

)
p− λPv. (4.4.32)

It is straightforward to check that the function ĝ in (4.4.32) satisfies the one-sided

Lipschitz condition (4.3.1) and the growth condition (4.3.2). Since βâ1 solves (4.4.31)

with â = â1, we have that Lβâ1 = 0. Apply this operator on βâ2 to obtain

Lβâ2 = (â1 − â2)
(
λP − λP

)
βâ2
λP
≥ 0 = Lβâ1 . (4.4.33)
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Since βâ1
(
λP , T

)
= βâ2

(
λP , T

)
= 1, Theorem 4.3.1 implies that βâ1 ≥ βâ2 on G.

Remark 4.4.1. When ρ = 1, namely the the insured individuals and the reference

population face the same uncertainty in their respective hazard rates, the limiting

price per contract is reduced by hedging when qλ
I

is less than the pre-specified in-

stantaneous Sharpe ratio α. Indeed, the drift â = aP −
[
ρ qλ

I
+ α

√
1− ρ2

]
bP from

Theorem 4.4.2 equals aP −qλI bP when ρ = 1. Also, the effect of not allowing hedging

can be achieved by setting ρ = 0 throughout our work, as discussed in Remark 4.2.2;

in that case, the drift â becomes aP − α bP . Thus, according to Theorem 4.4.2, the

limiting price per contract is reduced when hedging is allowed if qλ
I
< α.

In other words, hedging with mortality derivative benefits the insured, through a

reduced price, when the market price of mortality risk is lower than that required by

the insurance company. In this limiting case, the risks inherent in the contract can

be fully hedged using the interest rate derivative and the mortality derivative. Indeed,

the variance of the hedging portfolio goes to 0 as n goes to infinity when ρ = 1. Refer

to Remark 4.2.1 in which we discuss the mortality risk in the single-life case. So,

as n → ∞, the risk coming from the timing of the deaths disappears; compare with

(4.2.27).

The price of the contract is reduced by transferring the mortality risk to a coun-

terparty who requires a lower compensation for the risk than the insurance company

does. By contrast, for a single pure endowment contract, the volatility in the con-

tract due to the uncertainty of the individual’s time of death is not hedgeable with

mortality derivatives even when ρ = 1. In the single-life case, even if qλ
I

is less than

α, hedging does not guarantee a reduction of the contract price.

Corollary 4.4.1. Suppose qλ
I

is independent of λI , and let βai denote the solution

of (4.4.31) with aP = ai, for i = 1, 2. Then, βa1 ≥ βa2 on G if a1 ≤ a2.
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The result above is consistent with our intuition. Indeed, with a higher drift on

the hazard rate, the individual is less likely to survive to time T , and, consequently,

the (limiting) value of the pure endowment contract is lower.

Corollary 4.4.2. Suppose qλ
I

is independent of λI , and let βρi denote the solution

of (4.4.31) with ρ = ρi for i = 1, 2. Then, βρ1 ≤ βρ2 on G if ρ1 q
λI + α

√
1− ρ2

1 ≤

ρ2 q
λI + α

√
1− ρ2

2 for all t ∈ [0, T ].

Remark 4.4.2. A natural question that follows from Corollary 4.4.2 is when is

f(ρ, t) , ρ qλ
I
(t) + α

√
1− ρ2 decreasing with respect to ρ for t ∈ [0, T ]? Suppose

that ρ > 0, which is what one expects between the insured and reference populations.

If f is decreasing with respect to ρ > 0, then greater positive correlation will lead to a

lower per-contract price, an intuitively pleasing result. It is straightforward to show

that f decreases with respect to ρ if and only if

ρ >
qλ

I√
α2 +

(
qλI
)2
. (4.4.34)

This inequality holds automatically if qλ
I
< 0, that is, if the mortality derivative is

a so-called natural hedge, which we discuss more fully in Remark 4.4.3 below. When

qλ
I
> 0, it holds for ρ in a neighborhood of 1.

We have the following special case of Corollary 4.4.2.

Corollary 4.4.3. Suppose qλ
I

is independent of λI . If ρ qλ
I

+ α
√

1− ρ2 < α, then

the limiting price per risk in which hedging is allowed is less than the limiting price

with no hedging (ρ = 0).

Remark 4.4.3. In particular, when qλ
I

is negative (and ρ is positive), the unit price

of the contract is reduced by hedging, as demonstrated in Corollary 4.4.3. Since the

correlation is usually positive, a mortality derivative with a negative market price
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of risk qλ
I
, that is, a natural hedge, is preferred. An example of a natural hedge is

life insurance, as discussed in Young [2008], although strictly speaking this insurance

product is not a mortality derivative traded in the financial market. Both Bayraktar

and Young [2007a] and Cox and Lin [2007] proposed hedging pure endowment or life

annuity contracts with life insurance.

4.5 Numerical example

In this section, we demonstrate our result with numerical examples. We assume

that the risk-free rate of return r is constant and focus on the effect of the correlation

ρ and the market price of mortality risk qλ
I
. We also assume that the market price

of mortality risk is constant, and, thereby, is automatically independent of λI . In

this case, P (n) and limn→∞
1
n
P (n) do not depend on λI , as we prove in Properties

4.3.9 and 4.4.1. Moreover, we assume that the hazard rate λP follows the process

in (4.2.2) with aP and bP constant. We compute the price for a single contract,

P (r, λP , t) = e−r(T−t) ψ(λP , t), and the limiting price per contract for arbitrarily

many insureds, limn→∞
1
n
P (n)(r, λP , t) = e−r(T−t) β(λP , t), and we use the following

parameter values:

• The pure endowment contract matures in T = 10 years.

• The constant riskless rate of return is r = 0.04.

• The drift of the hazard rate is aP = 0.04.

• The volatility of the hazard rate is bP = 0.1.

• The minimum hazard rate of the insured individuals is λP = 0.02.

• The risk parameter is α = 0.1.
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See Section 4.7 for the algorithm that we use to compute ψ and β.

In Figure 4.1, for a variety of values of the market price of mortality risk qλ
I
,

we present the price of a single-life contract P and the limiting price per contract

limn→∞
1
n
P (n). It follows from Theorem 4.4.2 that, given a positive correlation ρ > 0,

the limiting unit price of a pure endowment is greater with a greater market price

of mortality risk qλ
I
, and the second set of graphs in Figure 4.1 demonstrates this

result. Notice that the price of the unhedged contract is the price with ρ = 0. Since

in the pricing mechanism, we hedge the volatility with the mortality derivative as

much as possible to reduce the variability of our hedging portfolio, a large value of

qλ
I

could lead to a higher contract price than that of an unhedged one. Observe this

numerically in graphs in Figure 4.1.

In Remark 4.4.1, we concluded that if qλ
I
< α and if ρ = 1, then the limiting

price per contract is less than the limiting price per contract of an unhedged portfolio

of pure endowments. This result is supported by our numerical work; indeed, the

curve for qλ
I

= 0.15 in the second set of graphs lies above the unhedged price of

approximately 0.343, the price when ρ = 0.

In that same remark, we noted that for a single-life contract, we cannot conclude

that the price with hedging will be smaller than the price without hedging, even

when qλ
I
< α. This conclusion is also supported by our numerical work; indeed,

the curve for qλ
I

= 0.09 in the first set of graphs lies above the unhedged price of

approximately 0.435, the price when ρ = 0.

Figure 4.1 also demonstrates the relation between the unit price of a contract and

the correlation ρ. Take the limiting price per contract limn→∞
1
n
P (n) with qλ

I
= 0.05,

for example. When ρ = 1, hedging is preferred to not hedging, in terms of reducing

the price of the contract. By contrast, when ρ < 1, that is, the two mortality
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rates λP and λI are not perfectly correlated, hedging may increase the unit price

of the contract such as the case when ρ = 0.8. This observation indicates that the

population basis risk, which is the risk due to the mismatch of the insured population

and the reference population, diminishes the effectiveness of hedging. This mismatch,

or equivalently, a correlation ρ < 1, may lead to a higher unit price for the hedged

contract. See Coughlan et al. [2007] for discussion of population basis risk.

4.6 Conclusion

In this paper, we developed a pricing mechanism for pure endowments, assuming

that the issuing company hedges its pure endowment risk with bonds and mortality

derivatives, and requires compensation for the unhedged part of mortality risk in the

form of a pre-specified instantaneous Sharpe ratio. In our model, we took the hazard

rates of the insured population and reference population, as well as the interest rates,

to be stochastic. We derived the pricing formulae for the hedged contracts on single

life and on multiple conditionally independent lives. Also, we obtained the pricing

formula for the limiting price per pure endowment contract as the number of the

insureds in the portfolio goes to infinity. In each case, the price solves a PDE, and

we analyzed these PDE and thereby determined properties of the prices of the hedged

pure endowments. The limiting price per contract solves a linear PDE and represent

this value as an expectation with respect to an equivalent martingale measure. We

noted that, in the limiting case, the mortality risk inherent in the pure endowment

is fully hedged by the mortality derivative when the correlation between the two

hazard rates λP and λI is 1.

To investigate the factors that affect the effectiveness of hedging, we devoted our

attention to the market price of the reference mortality risk qλ
I

and the correlation
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ρ between λP and λI . Since the correlation ρ is more likely to be positive in reality,

we focused on the case for which ρ ≥ 0 during our discussion (and especially in

our numerical work) and assumed that the market price of the mortality risk qλ
I

is

independent of λI . We found that hedging with a mortality derivative requiring a

negative market price of mortality risk always reduces the price of the contract. This

result is consistent with the conclusions in Bayraktar and Young [2007a] and Cox

and Lin [2007] that hedging pure endowments (or life annuities) with life insurance

reduces the price of the former.

For the limiting case, we reached a more straightforward conclusion, as we discuss

in Remark 4.4.1. Specifically, if ρ = 1, the condition that qλ
I
< α guarantees a

reduction in the per-contract price through hedging. However, if ρ < 1, it is possible

that hedging with the mortality derivatives increases the price of the contract even if

this condition is satisfied. This result reflects the significance of ρ on the effectiveness

of hedging. We also found that, in our numerical work, hedging with the mortality

derivatives is less effective in reducing the variance of the hedging portfolio for pure

endowments of a finite number of individuals.

Our results suggest that, to make it efficient for underwriters to hedge mortality

risk and thereby benefit the insured, transparent design of mortality indices and

mortality derivatives is essential. Reducing the market price of the mortality risk qλ
I

is also critical. Therefore, it is important to build up a liquid mortality market and

provide more flexible mortality-linked securities in order to reduce qλ
I
.

In our paper, we only investigated the prices of pure endowments and assumed

that the mortality derivative is a q-forward. However, we believe that the main

qualitative insights will hold in general.
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4.7 Appendix

In this section, we present an algorithm for numerically computing ψ. Recall that

in our numerical example, we assume that qλ
I
, the market price of mortality risk λI ,

is a constant, as well as aP and bP . Then, equation (4.2.30) becomes

ψt +
[
aP − ρ qλIbP

] (
λP − λP

)
ψλP +

1

2

(
bP
)2 (

λP − λP
)2
ψλPλP − λPψ

= −α
√

(1− ρ2) (bP )2 (λP − λP )2
ψ2
λP

+ λPψ2,

ψ
(
λP , T

)
= 1.

(4.7.1)

Next, we describe our numerical scheme to compute ψ.

Transformation Define τ = T − t, y = ln
(
λP − λP

)
, and ψ̂ (y, τ) = ψ

(
λP , t

)
. By

(4.7.1), ψ̂ solves
ψ̂τ = â ψ̂y +

1

2

(
bP
)2
ψ̂yy −

(
ey + λP

)
ψ̂ + α

√
(1− ρ2) (bP )2 ψ̂2

y +
(
ey + λP

)
ψ̂2,

ψ̂ (y, 0) = 1,

(4.7.2)

in which â = aP − ρ qλIbP − 1
2

(
bP
)2

.

Boundary Condtions While equation (4.7.2) for ψ̂ is defined in the domain R ×

[0, T ], we solve it numerically in the domain [−M,M ]× [0, T ] such that e−M is

approximately zero. Therefore, we require boundary conditions at y = ±M .

1. If λPt = λP , then λPs = λP for all s ∈ [t, T ]. From equation (4.7.1), we

have that ψ
(
λP , t

)
= exp

{
−
(
λP − α

√
λP
)

(T − t)
}

. Thus, it is rea-

sonable to set the boundary condition at y = −M to be ψ̂ (−M, τ) =

exp
{
−
(
λP − α

√
λP
)
τ
}

.

2. If λPt is very large, we expect the individual to die immediately, so the value
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of the pure endowment is approximately 0. Thus, we set the boundary

condition at y = M to be ψ̂ (M, τ) = 0.

Finite Difference Scheme We discretize the differential equation (4.7.2) and get

a corresponding difference equation as follows:

1. Choose the step sizes of y and τ as h and k, respectively, so that I = 2M/h

and J = T/k are integers.

2. Define yi = −M + ih, τj = jk, and ψ̂i,j = ψ̂ (yi, τj), for i = 0, 1, . . . , I and

j = 0, 1, . . . , J .

3. We use a backward difference in time, central differences in space, and a for-

ward difference for the square-root term. Therefore, we have the following

expressions:

ψ̂τ (yi, τj) =
ψ̂i,j+1 − ψ̂i,j

k
+O(k),

ψ̂y (yi, τj) =
ψ̂i+1,j+1 − ψ̂i−1,j+1

2h
+O(h2),

ψ̂yy (yi, τj) =
ψ̂i+1,j+1 − 2ψ̂i,j+1 + ψ̂i−1,j+1

h2
+O(h2).

(4.7.3)

Also, for the non-linear term in (4.7.2), we have√
(1− ρ2) (bP )2 ψ̂2

y +
(
ey + λP

)
ψ̂2

=

√√√√(1− ρ2) (bP )2

(
ψ̂i+1,j − ψ̂i−1,j

2h

)2

+
(
eyi + λP

)
ψ̂2
i,j +O(h).

(4.7.4)

Therefore, we approximate (4.7.2) to order O(k + h) with the following

difference equation:

ψ̂i,j+1 − ψ̂i,j
k

= â
ψ̂i+1,j+1 − ψ̂i−1,j+1

2h
+

1

2

(
bP
)2 ψ̂i+1,j+1 − 2ψ̂i,j+1 + ψ̂i−1,j+1

h2

−
(
eyi + λP

)
ψ̂i,j+1 + αAi,j,

(4.7.5)
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in which

Ai,j =

√√√√(1− ρ2) (bP )2

(
ψ̂i+1,j − ψ̂i−1,j

2h

)2

+
(
eyi + λP

)
ψ̂2
i,j . (4.7.6)

If we define a = â k
2h
−
(
bP
)2 k

2h2
, b = 1 +

(
bP
)2 k

h2
+ k λP , and c = −â k

2h
−(

bP
)2 k

2h2
, then (4.7.5) becomes

aψ̂i−1,j+1 + (b+ keyi) ψ̂i,j+1 + cψ̂i+1,j+1 = ψ̂i,j + αkAi,j, (4.7.7)

for i = 1, 2, . . . , I − 1 and j = 0, 1, . . . , J − 1, with the following boundary

conditions:
(b+ key1) ψ̂1,j+1 + cψ̂2,j+1 = ψ̂1,j + αkA1,j − ae

−
(
λP−α

√
λP
)

(j+1)k

aψ̂I−2,j+1 + (b+ keyI−1) ψ̂I−1,j+1 = ψ̂I−1,j + αkAI−1,j,

(4.7.8)

for j = 0, 1, . . . , J − 1. It is convenient to write equations (4.7.7)-(4.7.8) in

matrix form as

MΨ̂j+1 = Ψ̂j + αkAj −
[
ae
−
(
λP−α

√
λP
)

(j+1)k
, 0, . . . , 0

]t
. (4.7.9)

for j = 0, 1, . . . , J − 1, in which the superscript t represents matrix trans-

pose. In the equation above, Ψ̂j =
[
ψ̂1,j, ψ̂2,j, . . . , ψ̂I−1,j

]t
and Aj =

[A1,j, A2,j, . . . , AI−1,j]
t with Ai,j defined in (4.7.6). The matrix M is a tri-

diagonal matrix with the sub-diagonal identically a, with the main diagonal

b+ key1 , b+ key2 , . . . , b+ keyI−1 , and with the super-diagonal identically c.

4. Begin with the initial condition ψ̂i,0 = 1, for i = 1, 2, . . . , I − 1, or equiv-

alently, Ψ̂0 = 1, in which 1 is an (I − 1) × 1 column vector of 1s. Then,

solve (4.7.9) repeatedly for j = 0, 1, . . . , J − 1 until we reach Ψ̂J .
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One can modify this algorithm to compute ψ(n) for any n > 1 and the limiting result

β = limn→∞ ψ
(n). Computing the latter is particularly straightforward because β

solves a linear PDE.
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Figure 4.1: Price of hedged pure endowment
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