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Abstract 

This dissertation uses polynomial chaos theory to address recursive parameter 

estimation in state space systems.  It joins the recursive estimators with base excitation 

modeling concepts to determine the mass of off road vehicles, and successfully 

demonstrates the methods on actual vehicle data. 

The recursive, polynomial chaos based estimators of this dissertation can be 

applied to linear and nonlinear state space systems having linear time invariant output 

equations.  Unlike regressor model based estimators, this dissertation’s estimators can be 

applied directly to state space systems, and in some situations, the proposed methods can 

be more easily tuned than state filtering methods.  The new estimation techniques 

contribute to the solution of the vehicle mass estimation problem. 

An accurate onboard estimate of vehicle mass is valuable to the optimal 

performance of safety systems, chassis controllers, and drivetrain controllers.  These 

systems schedule gear shifts, actuate brakes, induce steer, schedule fuel injection, warn 

drivers of rollover susceptibility, etc.  Since vehicle mass can vary significantly from one 

loading condition to the next, the estimate of vehicle mass must be updated online. 

A significant number of mass estimation algorithms have been developed for on 

road conditions; however, the rough terrain real-time vehicle mass estimation problem 

remains relatively unexplored.  Existing rough terrain solutions are difficult to apply in 

practice because they assume that the terrain profile is known, estimated, or measured, or 

they assume that the vehicle is equipped with an active or semi-active suspension.  



xiv 
 

Instead, this dissertation adopts a base excitation approach.  This approach treats the 

vertical accelerations of the four unsprung masses as measured inputs to the dynamic 

equations governing the motion of the sprung mass; the estimator uses these sprung 

dynamics to calculate the most likely value of the vehicle mass.   

This dissertation applies the polynomial chaos estimators and base excitation 

concepts to experimental data from an actual vehicle.  When joined with a detection 

algorithm, the proposed approach had a success rate of 94%: 31 predicted successes with 

only 2 false positives.  Without the detection algorithm, the proposed approach had a 

success rate of 78%: 31 total successes out of 40 total experiments.  
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Chapter 1 

Introduction 

A main objective of this dissertation is to address the problem of recursively 

estimating the sprung mass of a vehicle traversing rough terrain.  An accurate onboard 

estimate of vehicle mass is valuable for optimizing the performance of safety systems, 

chassis controllers, and drivetrain controllers.  These systems schedule gear shifts, actuate 

brakes, induce steer, schedule fuel injection, warn drivers of rollover susceptibility, etc.  

Since vehicle mass can vary significantly from one loading condition to the next, the 

estimate of vehicle mass needs to be updated online.   

As an important part of the solution to this mass estimation problem, this 

dissertation introduces new recursive estimation techniques based on polynomial chaos 

theory.  These estimation techniques can be applied to a variety of linear or nonlinear 

state-space systems, and hence their scope extends beyond the mass estimation problem.  

A review of the scientific literature covering parameter estimation for state space systems 

using polynomial chaos theory is provided in Chapter 2.  Chapter 4 presents a recursive 

solution based on polynomial chaos theory for estimating the maximum likelihood values 

of unknown parameters of state-space systems.  This maximum likelihood estimator is 

relatively easy to tune compared to other benchmark estimation approaches, and it is 

sufficiently numerically efficient for the real-time mass estimation problem of this 

dissertation.  Chapter 5 presents Bayesian approaches to the recursive estimation 

problem.  The recursive Bayesian maximum a posteriori estimator is similar in 
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computational demand and ease of tuning to the maximum likelihood approach of 

Chapter 4.  The Bayesian approach can also be used to estimate moments of the statistical 

distributions of the unknown parameters (in addition to the most likely values), but to do 

so requires more computational resources because of the requirement to evaluate an 

integral at each time iteration. 

The model of the vehicle dynamics is, of course, also an essential component to 

the solution of the vehicle mass estimation problem.  Chapter 3 reviews the different 

modeling approaches for vehicle mass estimation.  A significant number of mass 

estimation algorithms have been developed for on road conditions, and for the most part, 

these techniques use models of the longitudinal vehicle dynamics for mass estimation.  

The rough terrain real-time vehicle mass estimation problem, however, remains 

relatively unexplored, and existing solutions to this problem remain difficult to apply in 

practice.  One of the main challenges is the fact that the motions introduced by rough 

terrain are significant enough to make estimation based on longitudinal vehicle dynamics 

infeasible; this rough terrain, however, makes mass estimation based on vertical vehicle 

dynamics more viable due to significant terrain-induced excitations.   

The scientific literature has explored the use of vertical vehicle dynamics for mass 

estimation.  However, existing approaches assume that the terrain profile is known, 

estimated, or measured, or they assume that the suspension is equipped with an active or 

semi-active force actuator which provides a known suspension force.  Instead, Chapter 6 

of this dissertation derives and experimentally validates base excitation models of vehicle 

ride dynamics.  These base excitation models treat the four vertical unsprung mass 

accelerations, instead of the terrain profile, as the input to the state-space equations that 
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govern the dynamic motion of the sprung body of the vehicle.  The measured vertical 

acceleration of the sprung mass is the output of these equations.   

In Chapter 7, the estimation approaches of Chapters 4 and 5 are combined with 

the base excitation models of Chapter 6 to formulate the complete solution to the sprung 

mass estimation problem.  The techniques of this dissertation are validated in Chapter 8 

using experimental data of an actual vehicle traversing a variety of terrains.  The 

experimental results demonstrate the viability of the proposed solution and explore the 

limitations of the modeling assumptions.  In the experimental study, the polynomial 

chaos based estimators of this dissertation are compared with traditional estimators 

including least squares algorithms and filtering algorithms.  Both the approaches of this 

dissertation and the filtering methods perform more accurately than the least squares 

algorithms.  In the experimental results, the polynomial chaos based algorithms have a 

higher success rate than the benchmark estimators.  The polynomial chaos based 

algorithms are easier to tune that the state-filtering methods, but they are also more 

computationally expensive than the extended Kalman filter. 
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Chapter 2 

Literature Review of Estimation Algorithms Based on Polynomial Chaos Theory 

This chapter reviews the scientific literature that uses polynomial chaos theory as 

a framework for estimating unknown parameters of dynamic state space systems.  

Polynomial chaos theory provides a tool for evaluating dynamic systems with static/fixed 

stochastic uncertainties such as unknown parameters or initial conditions.  This theory 

can be joined with estimation algorithms to calculate the most likely values of these 

stochastic uncertainties given only the system’s known input and output signals.  The 

scientific literature has generated a variety of polynomial chaos based estimators.  This 

literature review groups the various estimators into two categories: (a) non-recursive or 

batch estimators and (b) recursive estimators – the methods of this dissertation fit into 

this second category. Before reviewing the various polynomial chaos based estimators, 

the following section provides a brief background on polynomial chaos theory.  Then 

Section 2.2 reviews the non-recursive estimators and Section 2.3 reviews the recursive 

estimators.  Finally, Section 2.4 provides conclusions. 

2.1 Introduction to Generalized Polynomial Chaos Theory 

The Generalized Polynomial Chaos (gPC) framework was developed by Xiu and 

Karniadakis (Xiu and Karniadakis, 2002) building off groundbreaking work by Ghanem 

and Spanos (Ghanem and Spanos, 1991) and the conceptualization by Wiener (Weiner, 
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1938).  When gPC theory is applied to state space equations, the state and output 

equations are expressed as expansions of orthogonal polynomials of random variables.  

Galerkin projection (Xiu and Karniadakis, 2002) or collocation (Xiu, 2007) techniques 

solve for the coefficients of these polynomial expansions.  Given the expansion 

coefficients, the output equation describes an output process or family of output 

trajectories.  Given any realization of the random variables, the output process collapses 

to a single output trajectory.   

The goal of estimation theory is to calculate the realization of the random 

variables that causes the output process to collapse to the output trajectory that is most 

like (in some sense) the trajectory of the measured system output.  The following section 

reviews algorithms that perform this estimation in a batch manner, e.g., after all the data 

have been collected. 

2.2 Batch Polynomial Chaos Estimators 

Batch estimators calculate estimates of unknown parameters by evaluating an 

entire set or batch of data as opposed to updating the estimates iteratively as data arrive.  

Blanchard et al. proposed a batch Bayesian parameter estimator for state space systems 

that selects estimates based on the maximum a posteriori estimate (Blanchard et al., 

2008).  Marzouk and Xiu (Marzouk and Xiu, 2009) proposed a Bayesian approach to 

estimate parameters of systems governed by partial differential equations; they provided 

a valuable study on the convergence of the polynomial chaos based estimators.  Their 

work used the stochastic collocation approach and extended earlier but similar work 

(Marzouk et al., 2007) which used the Galerkin method. 
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Another batch estimator proposed by (Blanchard et al., 2010b) called the “whole-

set-of-data-at-once” approach, combines polynomial chaos theory with the extended 

Kalman filter.  Blanchard et al. report that the “whole-set-of-data-at-once” approach 

yields better results than the recursive or so-called “one-time-step-at-a-time” approach 

also proposed by (Blanchard et al., 2010b). 

2.3 Recursive Estimators 

The polynomial chaos based algorithms of this section estimate system 

parameters iteratively as data arrive.  The polynomial chaos estimators of this section can 

be categorized into three groups: (a) observer/Kalman filter based estimators, (b) 

estimators based on evaluating gradients of instantaneous cost functions, and (c) 

recursive Bayesian and maximum likelihood estimators.  The estimators proposed in this 

dissertation fit in the third category. 

2.3.1  Observer/Kalman Filter Based gPC Estimators 

Polynomial chaos theory can be combined with observer theory to predict 

estimates of the system states and then update the state predictions when measurements 

of the output signal become available.  System parameters can also be estimated by these 

observers if the unknown parameters are explicitly treated as dynamic system states. 

Blanchard et al. combined polynomial chaos theory with the extended Kalman 

filter for state and parameter estimation (Blanchard et al., 2010b).  Li and Xiu proposed a 

gPC ensemble Kalman filter for improved estimation accuracy and computational 

efficiency (Li and Xiu, 2009).  Saad et al. proposed a gPC-based ensemble Kalman filter 
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for system identification and monitoring (Saad et al., 2007), and Smith et al. (Smith et al., 

2006) combined gPC with the Luenberger observer for state estimation. 

2.3.2 gPC Estimation via Gradients of Instantaneous Cost Functions 

Southward developed a unique framework for recursive parameter estimators 

based on gPC theory (Southward, 2008).  Southward's method calculates parameter 

estimates by searching in the direction of gradients of instantaneous quadratic cost 

functions.  Shimp (Shimp, 2008) and the author (Pence et al., 2010) applied Southward's 

method to the problem of real-time vehicle mass estimation.  Because of (Shimp, 2008), 

the algorithm by (Southward, 2008) inspired and initiated the author’s interest in 

polynomial chaos based estimators. 

2.3.3 gPC Bayesian and Maximum Likelihood Estimators 

The algorithms of this section - and the proposed algorithms of this dissertation - 

recursively seek parameter estimates that are optimal in the Bayesian or maximum 

likelihood sense.  Therefore, these estimators are similar to the estimators of Section 

2.3.1; they are different, however, because they do not use state observers such as 

Kalman filters.  Instead, polynomial chaos theory propagates parametric uncertainty 

through the dynamic system, and the Bayesian or maximum likelihood estimation 

theories are applied directly to the stochastic system output to calculate parameter 

estimates.  This is the method taken by the proposed estimators of this dissertation.  Dutta 

and Bhattacharya also proposed a Bayesian estimator based on polynomial chaos theory 

(Dutta and Bhattacharya, 2010).  Unlike the methods of this dissertation, their estimator 
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requires all of the inner products in the estimation algorithm to be recomputed at each 

time step. 

2.4 Conclusions 

This chapter has reviewed estimators for state space systems that are founded on 

polynomial chaos theory.  This chapter reviewed non-recursive or batch estimators as 

well as recursive estimators.  The proposed estimators of this dissertation recursively 

seek parameter estimates that are optimal in the Bayesian or maximum likelihood sense.  

However, they do not rely on observers nor require computing inner products at each 

time step. 

Although they can be applied to a broad range of estimation problems, the 

estimators of this dissertation were motivated by the vehicle mass estimation problem of 

this dissertation.   In this problem, the computation is performed onboard the vehicle 

where computational memory and resources are typically limited.  Recursive algorithms 

with low computation requirements (like the methods of this dissertation) are attractive 

for this problem.    
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Chapter 3 

Vehicle Mass Estimation Literature Review 

This chapter reviews the literature covering online vehicle mass estimation.  To 

date, the scientific literature has explored more than 50 different ways to estimate in real-

time the mass of a vehicle.  The large number of different approaches hints to the 

importance and difficulty of the mass estimation problem.  While all of the approaches 

have differences, this dissertation categorizes the various methods into groups according 

to the approach’s underlying physical model.  These underlying models are based on (a) 

the longitudinal vehicle dynamics, (b) vertical ride (or suspension) physics, and (c) 

combined axes dynamics and (d) the drivetrain shuffle dynamics.  First, Section 3.1 

reviews vehicle mass estimation techniques based on the longitudinal vehicle dynamics.  

Section 3.2 reviews approaches that use combined axes dynamics, and Section 3.3 

reviews mass estimation via drivetrain shuffle dynamics.  Finally, Section 3.4 reviews the 

methods based on the vertical vehicle physics – the approach of this dissertation fits into 

this group. 

3.1 Longitudinal Dynamics Mass Estimation 

The longitudinal axis is in line with the vehicle’s forward and reverse directions 

of travel.  The vehicle’s acceleration and deceleration in the longitudinal direction is 

proportionally related to the vehicle’s net longitudinal forces; the proportionality 
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constant, by Newton’s second law, is the mass of the vehicle.  The various estimation 

approaches that use the longitudinal dynamics differ based on how they estimate or 

measure the three parts – force, acceleration, and mass – of the longitudinal equation. 

3.1.1 Longitudinal Acceleration/Deceleration 

Longitudinal vehicle acceleration can potentially be measured directly using an 

accelerometer, and some techniques suggest this approach (Massel et al., 2004), 

(Lingman and Schmidtbauer, 2003).  Typically, however, longitudinal acceleration is 

inferred from vehicle velocity using, for example, measurements of wheel speed (e.g. 

(Vahidi et al., 2003b), (Eriksson, 2009), (Ritzen, 1998)), angular velocity of the engine 

drive shaft (e.g. (Eriksson)), and/or a Global Positioning System (GPS) (Bae et al., 2001).  

The motivation to avoid measuring acceleration directly may be to reduce cost by using 

equipment and signals already available onboard the vehicle or to reduce disturbances 

caused be the pitching motion of the vehicle.  Filtering, smoothing, and/or other 

techniques have been employed to reduce noise in acceleration estimates (Vahidi et al., 

2005), (Bae et al., 2001), (Eriksson), and (Ritzen, 1998).  Also some techniques fuse 

information from two or more sensors to potentially improve the estimates of the 

longitudinal acceleration (Lingman and Schmidtbauer, 2003), (Bae et al., 2001), and 

(Eriksson). 

3.1.2 Longitudinal Forces 

The net longitudinal force acting on a vehicle at any time is a sum of a number of 

components: engine induced forces, braking forces, gravitational forces, rolling 

resistance, aerodynamic drag, longitudinal force components due to uneven terrain, 
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dynamic inertial forces from rotating components, parasitic losses such as air 

conditioning and alternator forces, torque converter losses, and other mechanical resistive 

forces (see Chapter 4 of (Rajamani, 2006)).  Estimating the actual longitudinal forces 

acting on the vehicle may be the most difficult part of the longitudinal mass estimation 

problem (Eriksson).  The various mass estimation techniques differ by how they measure, 

estimate, or creatively neglect the different force components. 

An estimate of engine torque may be calculated from an engine map ((Vahidi et 

al., 2003b), (Bae et al., 2001), (Eriksson, 2009), (Winstead and Kolmanovsky, 2005), 

(Ritzen, 1998)) based on engine speed, throttle position, engine temperature and/or other 

available sensors (see for example (Eriksson, 2009), (Ritzen, 1998)).  In general, the 

longitudinal mass estimation research assumes that the engine torque estimate is known 

and reliable (notable exceptions include (Druzhinina et al., 2002) and (Winstead and 

Kolmanovsky, 2005) where model predictive control is used to enhance parameter 

estimation under uncertain engine torque conditions).  Resistive, inertial, and parasitic 

losses are subtracted from the estimate of engine torque and converted to wheel torque 

based on the current transmission gear ratio (and possibly a gain from a torque converter) 

(see Sections 4.2 and 5.5.1 of (Rajamani, 2006) and (Eriksson, 2009)).  The resultant 

longitudinal force at the wheel/terrain surface is a function of the estimated wheel torque, 

the effective wheel radius (which can vary), wheel inertia, and other tire properties (see 

Chapter 4 of (Rajamani, 2006)).   

Environmental disturbance forces include rolling resistance, gravitational forces, 

and aerodynamic drag.  In most proposed methods, the rolling resistance and 

aerodynamic drag (assuming negligible headwind) are calculated based on the vehicle 
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velocity and subtracted from the estimated wheel force.  In (Bae et al., 2001) the road 

grade is estimated based on GPS measurements.  In (Lingman and Schmidtbauer, 2003) 

the road grade is measured using a specific force sensor.  In (Klatt, 1985), (Reiner et al., 

1990), (Genise, 1996), (Phillips and Richardson, 1997), (Leimbach et al., 2001), 

(Leimbach et al., 2002), and (Eriksson, 2009) the environmental forces were estimated 

during driveline disengagement or assumed to be constant between measurements so that 

taking the difference between the force equation at the two time instances removed the 

effect of environmental forces.  In (Vahidi et al., 2003a), (Vahidi et al., 2005), (Bae et al., 

2001), (Massel et al., 2004), (Druzhinina et al., 2002), (Winstead and Kolmanovsky, 

2005), (Lingman and Schmidtbauer, 2003) and (Ritzen, 1998), unknown environmental 

forces are estimated simultaneously as an explicit part of the mass estimation routine.  In 

(Fathy et al., 2008), (Hayakawa et al., 2002), and (Yamada et al., 2006) filtering 

techniques extract high frequency force/acceleration information; since environmental 

forces generally occur at lower frequencies, this filtering approach allows the mass 

estimation algorithm to neglect these disturbance forces.  In (Massel et al., 2004), (Lee et 

al., 2009), (Breen, 1996), (Genise, 1996), and (Bellinger et al., 2003), the mass was 

estimated only when specific conditions were met (e.g. transmission in a specified gear, 

longitudinal force and its derivative were above a threshold, acceleration above a 

threshold, steady state braking (Breen)); in some cases, environmental forces were 

neglected in these estimation techniques.  In (Yanase), the forces for driving at a constant 

speed on level ground were found prior to runtime and used to correct the force estimates 

during runtime.  The method by (Grieser) also accounted for longitudinal forces due to 

steering angle. 
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3.1.3 Longitudinal Mass Estimation Techniques 

Even with measurements or estimates of the longitudinal forces and acceleration, 

there are many different approaches for estimating the vehicle mass.  Least squares and 

filtering approaches iteratively update their prediction of the vehicle mass as they 

repeatedly evaluate the longitudinal dynamic equation.  Conversely, other algorithms 

seek high acceleration/deceleration events in which inertia dominates the equation, and 

update the mass estimate only during these events. 

The approaches taken by (Winstead and Kolmanovsky, 2005), (Vahidi et al., 

2003a), (Eriksson, 2009), and (Lingman and Schmidtbauer, 2003) use Kalman filtering 

techniques to estimate the mass.  The methods proposed by (Fathy et al., 2008), (Bae et 

al., 2001), (Vahidi et al., 2003a), (Vahidi et al., 2005), (Ritzen, 1998), (Zhu et al., 2000), 

(Zhu et al., 2002), (Rieker et al., 2002), (Yanase, 2005), and (Germann and Isermann, 

1994) use least squares or other regression approaches.  As part of a model reference 

adaptive control strategy, (Druzhinina et al., 2000) and (Druzhinina et al., 2002) estimate 

mass, road grade, and rolling resistance using a speed gradient algorithm.  The various 

approaches of (Massel et al., 2004), (Lee et al., 2009), (Klatt, 1985), (Reiner et al., 1990), 

(Phillips and Richardson, 1997), (Leimbach et al., 2002), and (Bellinger et al., 2003) seek 

events in which the acceleration signal is large enough that the equation ݉ܽݏݏ ൌ

 is sufficiently well conditioned.  Then the mass estimate can be ݊݋݅ݐܽݎ݈݁݁ܿܿܣ/݁ܿݎ݋ܨ

simply calculated by evaluating that equation.  Sometimes when this last approach is 

used, filtering, averaging, or another scheme is also used to reduce noise. In (Bellinger 

and Shutty, 2000), the estimates of mass and road grade were taken from a lookup table 

with at least vehicle speed and fueling command as inputs. 
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3.2 Combined Axes Methods 

The mass of a vehicle can be estimated based on evaluating Newton’s second law 

for two or more axes of the vehicle.  The estimation scheme may combine multiple axes 

into one coupled set of equations as in (Wenzel et al., 2006) and (Huang and Lin, 2009) 

and then estimate the mass based on the entire set of equations.  Alternatively, it may 

calculate multiple estimates of the vehicle mass by evaluating the dynamics of each axis 

individually and then determine the best estimate using supervisory logic as in (Huh et 

al., 2007) and (Han et al., 2009). 

The method of (Huang and Lin, 2009) uses a combination of the lateral, yaw, and 

roll axes of the vehicle.  The estimator of (Wenzel et al., 2006) combines the 

longitudinal, lateral, roll, and yaw axes.  And the technique of (Huh et al., 2007) and 

(Han et al., 2009) evaluate the lateral, longitudinal, and vertical ((Huh et al., 2007) only) 

axes individually and combine the estimates using the supervisory logic.  

3.3 Drivetrain Shuffle Dynamics Method 

Fremd (Fremd) exploited the relationship between the vehicle’s drivetrain shuffle 

frequencies and its mass for a creative approach to vehicle mass estimation. 

3.4 Vertical Axis Methods 

The majority, if not all, of the algorithms in Sections 3.1 through 3.3 have been 

developed for on road conditions, and for the most part, these techniques use models of 

the longitudinal vehicle dynamics for mass estimation.  The rough terrain real-time 

vehicle mass estimation problem, however, remains relatively unexplored, and existing 
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solutions to this problem remain difficult to apply in practice.  As stated in the 

introduction, one of the main challenges is the fact that the motions introduced by rough 

terrain are significant enough to make estimation based on longitudinal vehicle dynamics 

infeasible; this rough terrain, however, makes mass estimation based on vertical vehicle 

dynamics much more viable due to significant terrain-induced excitations.  This section 

reviews the different vehicle mass estimation techniques that use a vertical vehicle 

model. 

The scientific literature has explored the use of vertical vehicle dynamics for mass 

estimation.  Many existing approaches assume that the terrain profile is known, 

estimated, or measured, (Blanchard et al., 2010a), (Best and Gordon, 1998), (Huh et al., 

2007), (Kim and Ro, 2000), (Lin and Kortum, 1991), and (Shimp, 2008).  Others assume 

that the suspension is equipped with an active or semi-active force actuator which 

provides a known suspension force ((Rajamani and Hedrick, 1995), (Ohsaku and Nakai, 

2000), (Song et al., 2005), (Du et al., 2008), (Du and Zhang, 2010), and (Priyandoko et 

al., 2009)).  A third group uses modal analysis or frequency domain techniques ((Rozyn 

and Zhang, 2010) and (Tal and Elad, 1999)).  Finally, (Hac, 2009) investigated using 

dynamic tire pressure measurements to estimate mass.  Instead, Chapter 6 of this 

dissertation derives base excitation models of vehicle ride dynamics.  These base 

excitation models treat the four vertical unsprung mass accelerations, instead of the 

terrain profile, as the input to the state-space equations that govern the dynamic motion of 

the sprung body of the vehicle.  The measured vertical acceleration of the sprung mass is 

the measured output of these equations.  This base excitation approach furnishes 
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estimation schemes that do not require active suspensions, wheel pressure sensors, or a 

priori knowledge, measurement, or estimation of the terrain. 
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Chapter 4 

Recursive Maximum Likelihood Parameter Estimation for State Space Systems 

using Polynomial Chaos Theory

This chapter describes a novel method for recursively estimating the unknown 

static parameters of linear and nonlinear state space systems.  This method combines two 

established theories: generalized polynomial chaos (gPC) theory (Xiu and Karniadakis, 

2002) and maximum likelihood estimation theory (see Chapter 12 of (Moon and Stirling, 

2000)).   

Unlike many traditional methods such as recursive least squares (Chapter 4 of 

(Ioannou and Sun, 1996)) and total least squares (Section 7.7 of (Moon and Stirling, 

2000)), the proposed method does not require the underlying model to be formatted into a 

regressor model form but can be applied directly to state space models.  Other state-space 

estimation methods, such as Kalman filtering approaches (Simon, 2006) and sequential 

Monte Carlo (or particle filtering (Simon, 2006), (Ristic et al., 2004), (Arulampalam et 

al., 2002)) approaches treat unknown parameters as dynamic states and formally include 

them in the state vector, thus differing from the proposed approach.  This chapter will use 

a numerical simulation to study the benefits of the proposed approach compared with the 

filtering methods. 

Many researchers in the estimation community have recognized the benefit of 

using polynomial chaos theory for parameter estimation of dynamic systems.  Chapter 2 

of this dissertation reviews the scientific literature on polynomial chaos based estimators. 
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This chapter combines polynomial chaos theory with maximum likelihood 

estimation to recursively estimate the static unknown parameters of state space systems.  

Similar to the approaches discussed in Chapter 2, this chapter applies polynomial chaos 

theory to solve the stochastic differential equations that govern the underlying system 

dynamics.  However, unlike any of the methods of the existing literature, this chapter 

recursively calculates the maximum likelihood values of the unknown parameters based 

on all of the past system observations.  To the best of the author’s knowledge, this is the 

first proposed approach to address recursive maximum likelihood parameter estimation 

for state space systems using polynomial chaos theory. 

4.1 Generalized Polynomial Chaos Theory 

The generalized polynomial chaos (gPC) framework is essential to the methods of 

this chapter.  The gPC framework was developed by Xiu and Karniadakis (Xiu and 

Karniadakis, 2002) building off groundbreaking work by Ghanem and Spanos (Ghanem 

and Spanos, 1991) and the conceptualization by Wiener (Weiner, 1938). 

A set of continuous-time state equations, which are often nonlinear, are used to 

describe the dynamic behavior of a system. 

ሶݔ ൌ ݂ሺݐ, ,ݔ ;ݑ ሻ (4.1)ߠ

ሺ0ሻݔ ൌ  ଴ (4.2)ݔ

The vector ݔ א Թ௡ೞ contains the system states which have known initial 

conditions ݔ଴, and the vector ߠ ൌ ቂߠଵ ߠଶ ௡೛ቃߠ ڮ
்
 contains the unknown parameters. If 

any of the initial conditions ݔ଴ is unknown, it can be treated as one of the unknown 

parameters.  Or, if the state equation is linear, asymptotically stable, and time invariant, it 
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may be possible to neglect the initial conditions; this is explored in Appendix A1.  The 

input vector ݑ א Թ௡ೠ is known and time-varying. The “dot” notation signifies the 

derivative with respect to time ݐ. 

In general, observations on a system may be governed by a nonlinear, time-

varying output model ݕ ൌ ݄ሺݐ, ,ݔ ;ݑ  ሻ.  However, the scope of this chapter is limited toߠ

systems having observations described by a linear, time-invariant, discrete-time output 

model: 

௞ݕ ൌ ௞ሻݐሺݔሻߠሺܥ ൅ ௞. (4.3)ݒ

The output vector ݕ௞ א Թ௡೤ contains the observations on the system at time ݐ௞.  

The vector ݒ௞ א Թ௡೤ represents an additive Gaussian disturbance with known covariance 

ܴ௞ א Թ௡೤ൈ௡೤. 

The unknown parameters are viewed as being functions of random variables ߦ௜, 

i.e., ߠ௜ ൌ ݅ ௜ሻ forߦ௜ሺߠ ൌ 1, … , ݊௣.  The random variables are independently identically 

distributed (IID), and the joint density function is ߩҧሺߦሻ ൌ ∏ ௜ሻ௡೛ߦሺߩ
௜ୀଵ  where ߩሺߦ௜ሻ is the 

distribution of the ݅௧௛ random variable ߦ௜, and ߦ ൌ ሾߦଵ ߦଶ  ௡೛ሿ.  Parametric uncertaintyߦ ڮ 

leads to uncertainty in the system states.  Therefore, ݔሺݐሻ ൌ ,ݐሺݔ  ሻ is also a function ofߦ

the random variables ߦ. 

Following the gPC method, the unknown parameters ߠሺߦሻ and system states 

,ݐሺݔ    :ሻ are expanded in terms of orthogonal polynomial basis functions Φ஑ሺξሻߦ

ሻߦሺߠ ൎ ෍ ఈΦ஑ሺξሻߠ
ௌ

|ఈ|ୀ଴

, (4.4)

,ݐොሺݔ ሻߦ ൎ ෍ ሻΦ஑ሺξሻݐఈሺݔ
ௌ

|ఈ|ୀ଴

. (4.5)
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Here, the vector ߙ ؔ ቂߙଵ, … ,  is |ߙ| ௡೛ቃ is an ݊௣-dimensional multi-index, andߙ

the sum of the vector elements, i.e. |ߙ| ؔ ଵߙ ൅ ڮ ൅  can take ߙ ௜ ofߙ ௡೛.  Each elementߙ

on a non-negative integer value between 0 and ܵ.  Under certain assumptions (see (Xiu 

and Karniadakis, 2002)), Equations (4.4) and (4.5) become exact in the ܮଶ sense as 

ܵ ՜ ∞.  An infinite expansion is not computationally attainable, so truncation is 

necessary, and (4.4) and (4.5) are only approximations. 

The expansion coefficients ߠఈ, |ߙ| ൑ S are chosen such that (4.4) is distributed 

according to the known parameter prior distribution  ߩҧሺߠሻ, and hence ߠఈ is known for all 

 ሻ of the polynomialݐఈሺݔ Polynomial chaos theory then solves for the coefficients  .ߙ

chaos state expansion (4.5) using either the Galerkin (Ghanem and Spanos, 1991) or 

collocation approach (Xiu, 2007).  Some helpful examples that use the Galerkin and 

collocation approaches can be found in (Ghanem and Spanos, 1991), (Sandu et al., 2006), 

(Li and Xiu, 2009), and (Pence et al., 2010).   

4.1.1 Galerkin Approach 

The Galerkin approach solves for the expansion coefficients ݔఈሺݐሻ by projecting 

the state equations (4.1) and (4.2) onto the polynomial chaos basis functions Φ஑ሺξሻ i.e., 

ොሶݔۃ ሺݐ, ,ሻߦ Φ஑ሺξሻۄ ൌ ,ݐ൫݂ۃ ,ݐොሺݔ ,ሻߦ ;ݑ ,ሻ൯ߦሺߠ Φ஑ሺξሻۄ, 

,ොሺ0ሻݔۃ Φ஑ሺξሻۄ ൌ ,଴ݔۃ Φ஑ሺξሻۄ, |ߙ| ൑ ܵ. 
(4.6)

This results in a set of deterministic state equations having the state-expansion 

coefficients ݔఈሺݐሻ as the new state variables.  These new deterministic state equations can 

be solved using numerical integration.  The number of states in the new set of 

deterministic state equations is equal to the total number of state-expansion coefficients 



21 
 

multiplied by the number ݊௦ of original states.  The total number of state-expansion 

coefficients ݔఈሺݐሻ (and polynomial chaos basis functions Φ஑ሺξሻ) is (Xiu and Karniadakis, 

2002) 

ݎ ؔ
൫ܵ ൅ ݊௣൯!

ܵ! ݊௣! . (4.7)

This number grows rapidly as the polynomial order ܵ and/or the number of 

unknown parameters ݊௣ increases. The inner product ܨۃሺߦሻ,  is an integral of the ۄሻߦሺܩ

product of ܨሺߦሻ and ܩሺߦሻ, integrated over the event space of the random variables ߦ: 

,ሻߦሺܨۃ ۄሻߦሺܩ ؔ න ሻߦሺܩ (4.8) .ߦሻ݀ߦሻܹሺߦሺܨ

The weighting function ܹሺߦሻ depends on the choice of polynomial basis 

functions, and is generally equal to the prior distribution ߩҧሺߦሻ of the random variables ߦ 

(Xiu and Karniadakis, 2002). 

4.1.2 Collocation Approach 

The collocation approach (Xiu, 2007) can be more straightforward to implement 

than the Galerkin method, especially for nonlinear systems (Sandu et al., 2006).  

However, it is generally less accurate than the Galerkin method (Xiu, 2007).  A set of 

collocation points (or nodes) ߤሺଵሻ, … , ܳ) ,ሺொሻߤ ൒ ሺ௜ሻߤ and ݎ א Թ௡೛) are drawn from the 

parameter prior distribution ߩҧሺߦሻ.  These collocation points are substituted for the 

random variables ߦ in (4.1) and (4.2), i.e., 

ሶሺ௜ሻݖ ൌ ݂൫ݐ, ;ሻݐሺ௜ሻሺݖ ,ሺ௜ሻሻ൯ߤሺߠ ݅ ൌ 1, … , ܳ (4.9)

ሺ௜ሻሺ0ሻݖ ൌ ଴ (4.10)ݔ

Here, ݖሺ௜ሻ ൎ ∑ ሺ௜ሻ൯ௌߤሻΦఈ൫ݐఈሺݔ
|ఈ|ୀ଴  is the ݅௧௛  deterministic state vector.  The 

resulting ܳ uncoupled sets of state equations (each set having ݊௦ states) can be solved 
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using numerical integration.  Stacking the new sets of states ݖሺ௜ሻ into a matrix ܼ א Թொൈ௡ೞ  

yields: 

ܼ ؔ ൦
൫ݖሺଵሻ൯்

ڭ
൫ݖሺொሻ൯்

൪. (4.11)

The transpose of the state-expansion of (4.5) can be written as the vector-matrix 

product: 

ሺݔොሺݐ, ሻሻ்ߦ ൌ ൫ܲሺߦሻ൯்߯ሺݐሻ, ߯ሺݐሻ ؔ ൦
൫ݔ|ఈ|ୀ଴ሺݐሻ൯்

ڭ
൫ݔ|ఈ|ୀௌሺݐሻ൯்

൪. (4.12)

In this equation, if Φఈሺξሻ is the ݇௧௛ element of the column vector ܲሺߦሻ א Թ௥ then 

ሺݔఈሺݐሻሻ் is the ݇௧௛ row of ߯ሺݐሻ א Թ௥ൈ௡ೞ.  The matrix ܼ from (4.11) can be written in 

terms of ܲ and ߯ as follows: 

ܼ ൌ ൦
൫ܲሺߤଵሻ൯்

ڭ
ቀܲ൫ߤொ൯ቁ

்
൪ ߯ሺݐሻ. (4.13)

The estimates of ߯ሺݐሻ., i.e. the estimates of the state expansion coefficients ݔఈሺݐሻ, 

are obtained by left-multiplying both sides of (4.13) by the pseudo-inverse of 

ൣܲሺߤଵሻ| ڮ |ܲ൫ߤொ൯൧்
. 

Another way to write the state expansion (4.5) that will be useful for concise 

notation in the following sections is to stack the columns of ߯, i.e. ߯ሺଵሻ, … , ߯ሺ௡ೞሻ, into a 

single column vector.  Then Equation (4.5) can be written as follows: 

,ݐොሺݔ ሻߦ ൌ Զሺߦሻܺሺݐሻ. (4.14)

Here, Զሺߦሻ א Թ௡ೞൈ௥·௡ೞ and ܺሺݐሻ א Թ௥·௡ೞ, are defined respectively as 
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Զሺߦሻ ؔ ቎
ܲሺߦሻ் ૙ ૙

૙ ڰ ૙
૙ ૙ ܲሺߦሻ்

቏, (4.15)

ܺሺݐሻ ؔ ቎
߯ሺଵሻሺݐሻ

ڭ
߯ሺ௡ೞሻሺݐሻ

቏. (4.16)

Sandu et al. (Sandu et al., 2006) provide a note on the relationship between the 

stochastic collocation and stochastic Galerkin methods, and they also suggest methods for 

implementing the Galerkin method on nonlinear systems. 

In summary, the deterministic part of the system is calculated using either the 

Galerkin or collocation method.  Solving the deterministic dynamic equations results in 

known trajectories of the time dependent part ݔఈሺݐሻ which is then recombined using (4.5) 

with the random variable dependent part Φ஑ሺξሻ to obtain the complete stochastic solution 

,ݐොሺݔ  .ሻߦ

4.2 Recursive Parameter Estimation 

This section derives the recursive parameter update law for estimating the 

maximum likelihood values of the random variables ߦ given the system output 

observations.  The estimates of the unknown parameters ߠሺߦሻ are then calculated using 

(4.4).  The derivations and resulting parameter estimators of this section constitute the 

main contributions of this chapter. 

This development assumes that the noise in the system output observations is zero 

mean and Gaussian with known covariance matrix ܴ௞ א Թ௡೤ൈ௡೤.  It also assumes that the 

system observations ݕ௞ are mutually independent for all ݇.  It assumes the uncertainty in 

(4.1) and (4.2) is entirely due to the unknown parameters.  Finally it assumes that the 
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polynomial chaos approximations in (4.4) and (4.5) are exact.  (As mentioned above, this 

last assumption is satisfied as the number of expansion terms goes to infinity (Xiu and 

Karniadakis, 2002).  In practice, the expansion must be truncated after a finite number of 

terms, and thus the parameter estimates via this method will only approximately satisfy 

the maximum likelihood criterion.)  Under these assumptions, the likelihood function 

becomes (see Chapter 12 of (Moon and Stirling, 2000)): 

ࣦ௞ሺݕ|ߦ଴:௞ሻ ൌ ෑ ሻߦ|ఛݕሺߩ
௞

ఛୀ଴

 

ן ݌ݔ݁ ൝െ
1
2 ෍൫ݕఛ െ ሻ൯்ܴఛߦොఛሺݕ

ିଵ൫ݕఛ െ ሻ൯ߦොఛሺݕ
௞

ఛୀ଴

ൡ. 

(4.17)

Here, ࣦ௞ሺݕ|ߦ଴:௞ሻ: Թ௡೛ ՜ Թ is the scalar likelihood at time ݐ௞ of the unknown 

parameters ߦ conditioned on a matrix ݕ଴:௞ which contains all of the output observations 

up to the current time ݐ௞.  The function ߩሺݕ௞|ߦሻ  is the conditional probability of the 

observation ݕ௞ at time ݐ௞ given ߦ.  In general, ݕ௞ א Թ௡೤ is the argument of ߩሺݕ௞|ߦሻ, but 

in calculating the likelihood (4.17), ߦ is the argument of ߩሺݕ௞|ߦሻ: Թ௡೛ ՜ Թ and ݕ௞ is 

assumed to be given.  The vector ݕො௞ሺߦሻ א Թ௡೤ is the output of the stochastic model, 

which, using (4.14) can be written as 

ො௞ݕ ൌ ௞ሻ. (4.18)ݐሻܺሺߦሻ൯Զሺߦሺߠ൫ܥ

The maximum likelihood estimate ߦመ is the realization of ߦ that maximizes the 

likelihood function (4.17).  Equation (4.17) is maximized when the magnitude of the 

negative term in the exponent, i.e., the negative log-likelihood, is minimized: 

ሻߦ௞ሺܬ ؔ
1
2 ෍൫ݕఛ െ ሻ൯்ܴఛߦොఛሺݕ

ିଵ൫ݕఛ െ ሻ൯ߦොఛሺݕ
௞

ఛୀ଴

. (4.19)
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Thus the most likely value of ߦ at time ݐ௞ is ߦመ௞ ൌ  ሻ.  The ability toߦ௞ሺܬ ݊݅݉݃ݎܽ

update ܬ௞ሺߦሻ: Թ௡೛ ՜ Թ iteratively is critical to making the approach of this chapter 

recursive.  This chapter leverages the linearity of the output model (4.18) and the ability 

of polynomial chaos to separate the time and unknown parameter parts of the equation to 

make this recursion possible.  By substituting (4.13) and (4.18) into (4.19) and 

performing a few algebraic manipulations, the objective function ܬ௞ሺߦሻ can be written as: 

ሻߦ௞ሺܬ ؔ
1
2 ෍ ෍ ቀܦ௞

௬ሺ೔ሻ௬ሺೕሻ
െ ௞ܦሺ௜ሻԶܥ2

௑௬ሺೕሻ
൅ ௞ܦሺ௜ሻԶܥ

௑௑೅൫ܥሺ௝ሻԶ൯்ቁ

௡೤

௝ୀଵ

௡೤

௜ୀଵ

. (4.20)

In Equation (4.20), the term ܦ௞
ீ is defined as ܦ௞

ீ ؔ ∑ ሾܴఛ
ିଵሿሺ௜,௝ሻܩఛ

௞
ఛୀ଴  where 

௞ܩ א ቄݕ௞
ሺ௜ሻݕ௞

ሺ௝ሻ, ܺሺݐ௞ሻݕ௞
ሺ௝ሻ, ܺሺݐ௞ሻ൫ܺሺݐ௞ሻ൯்ቅ.  The scalar term ሾܴ௞

ିଵሿሺ௜,௝ሻ is the ݆௧௛ element 

in the ݅௧௛ row of the inverse covariance matrix ܴ௞
ିଵ.  Also, the scalar ݕሺ௟ሻ is the ݈௧௛ 

element of the observation vector ݕ௞ and ܥሺ௟ሻ is the ݈௧௛ row of the output matrix ܥ.  

Equation (4.20) can be updated recursively from time ݐ௞ to ݐ௞ାଵ since ܦ௞ାଵ
ீ ൌ ௞ܦ

ீ ൅

 .ߦ ௞ is not a function ofܩ ௞ାଵ, andܩ

The forgoing discussion has outlined a procedure for determining recursively 

 ሻ, i.e. the term  in the exponent of the likelihood function (4.17).  The remainingߦ௞ሺܬ

challenge is to determine the value of ߦ that minimizes ܬ௞ሺߦሻ, thus maximizing the 

likelihood at each time step.  This can be viewed as an optimization problem in which the 

objective function ܬ௞ሺߦሻ is time-varying. The following sections offer potential solution 

approaches. 
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4.2.1 Solution via Gradient Descent 

Proceeding in a manner inspired by Southward's estimator (Southward, 2008), 

this chapter proposes a gradient based parameter update law. 

መ௞ାଵߦ ൌ መ௞ߦ െ Γ௞
ሻߦ௞ሺܬ߲

ߦ߲ ቤ
కୀక෠

 (4.21)

Here Γ௞ is a user-specified gain matrix that may vary in time.  In static 

optimization, if Γ௞ is the identity matrix, (4.21) is a steepest descent method.  If Γ௞ is the 

inverse Hessian matrix (matrix of second derivatives), then (4.21) is Newton's method, 

and if Γ௞ is proportional to the Hessian matrix, then (4.21) is a modified Newton's 

method.  These static optimization concepts may be helpful for selecting Γ௞. 

As stated above, this gradient based approach is similar to the approach taken by 

Southward (Southward, 2008) (and Shimp (Shimp, 2008)).  There is, however, an 

important difference.  This chapter addresses maximum likelihood parameter estimation, 

and hence uses gradients of an integrated cost function, i.e. the cost function (4.19) is a 

function of all the data up to time ݐ௞.  Southward's method uses gradients of an 

instantaneous cost function and does not propose to maximize a likelihood function. 

Substituting (4.20) into (4.21) and using the fact that the time-dependent parts 

௞ܦ
௬ሺ೔ሻ௬ሺೕሻ

௞ܦ ,
௑௬ሺೕሻ

, and ܦ௞
௑௑೅ can be moved outside of the partial derivatives since they do 

not depend on the unknown parameters gives the following update law: 

መ௞ାଵߦ ൌ መ௞ߦ െ Γ௞ ෍ ෍ሾ
ሺ௜ሻԶܥ߲

ߦ߲ ቀܦ௞
௑௑೅൫ܥሺ௝ሻԶ൯் െ ௞ܦ

௑௬ሺೕሻ
ቁሿకୀక෠ೖ

௡೤

௝ୀଵ

௡೤

௜ୀଵ

. (4.22)

In practice, it may be helpful to normalize Equation (4.22) by dividing by 

ቀ1 ൅ ቛܦ௞
௑௬ሺೕሻ

ቛ
ଶ

ቁ. Then the final update law becomes: 
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መ௞ାଵߦ ൌ መ௞ߦ െ Γ௞ ෍ ෍ ൮
ሾ߲ܥሺ௜ሻԶ

ߦ߲ ቀܦ௞
௑௑೅൫ܥሺ௝ሻԶ൯் െ ௞ܦ

௑௬ሺೕሻ
ቁሿకୀక෠ೖ

ቀ1 ൅ ቛܦ௞
௑௬ሺೕሻ

ቛ
ଶ

ቁ
൲ .

௡೤

௝ୀଵ

௡೤

௜ୀଵ

 (4.23)

The normalization scalar ቀ1 ൅ ቛܦ௞
௑௬ሺೕሻ

ቛ
ଶ

ቁ
ିଵ

 is not a function of the random 

variables ߦ and therefore (4.23) still seeks to maximize the likelihood (4.17).  

4.2.2 Solution via Random Search 

The gradient descent solution of Section 3.1 does not guarantee that the estimated 

parameters will globally minimize ܬ௞ሺߦሻ, but may potentially select parameters satisfying 

only local minima.  This subsection proposes a strategy for enabling the parameter update 

law to escape local minima in order to satisfy the global maximum likelihood criterion. 

Using (4.20), the function ܬ௞ሺߦሻ can be evaluated at time ݐ௞ for any realization of 

 :This enables the following strategy  .ߦ

At time ݐ௞ାଵ, select an integer number ݊௥ ൐ 0 of realizations of ߦ randomly, and 

evaluate the cost of each realization using (4.20).  Then compare these costs with the cost 

of the current parameter estimate ߦመ௞, and set the new estimate ߦመ௞ାଵ to be the realization 

with the lowest cost.  This random search strategy allows the algorithm to search any 

point in the entire parameter space and thus escape local minima. 

A guided random search policy combines the random search with the gradient 

search: The cost of the gradient solution from (4.23) is compared with the costs of the ݊௥ 

randomly selected realizations as well as the cost of the current estimate ߦመ௞.  The new 

estimate ߦመ௞ାଵ is chosen to be the realization with the lowest cost. 
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4.3 Example (1): Nonlinear Oscillator 

This section uses a simulation study of a nonlinear Van der Pol oscillator to 

demonstrate the proposed method and to compare it with a (hybrid) Extended Kalman 

Filter (EKF) (Section 13.2.2 of (Simon, 2006)). The equations for the Van der Pol 

oscillator are given in state-space representation as follows (page 57 of (Khalil, 2002)): 

ሶଵݔ  ൌ  ଶݔ

ሶଶݔ ൌ െݔଵ െ ଵݔሺߝ
ଶ െ 1ሻݔଶ 

௞ݕ ൌ ௞ሻݐଵሺݔ ൅  .௞ݒ

(4.24)

The term ߝ ൐ 0 represents a nonlinear damping coefficient, and also provides a 

measure of the nonlinearity of the system.  The trajectory of the Van der Pol oscillator 

tends to a stable limit cycle.  The initial conditions were ሾݔଵሺ0ሻ, ଶሺ0ሻሿ்ݔ ൌ ሾ0.1, െ0.1ሿ; 

this study assumes that only ݔଵሺ0ሻ is known and that the value of ݔଶሺ0ሻ is unknown, but 

prior information suggests that it could be any value between െ0.2 and 0.2 with equal 

probability.  Measurements of the output sequence ݕ௞ are taken at a uniform rate with a 

sampling step size of 0.01 seconds.  The measurement noise ݒ௞ is an unknown normally 

distributed random sequence with constant variance ܴ.  Without the added noise, i.e.  

௞ݒ ൌ 0 for all ݇, the output signal had a mean-squared value of 1.9, and the (assumed 

unknown) noise variance ܴ was set to be 8 times smaller, i.e., ܴ ൌ 0.24.   This 

simulation study assumes that ߝ ~ ܷሾ0.3, 1.3ሿ is uniformly distributed, and the true (but 

unknown) value is ߝ ൌ 1.1. 
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Because the noise variance ܴ is assumed to be unknown, it becomes a user-

specified tuning parameter in both the proposed polynomial chaos algorithm and the EKF 

filtering algorithm.  Because the noise variance is a constant with respect to time and with 

respect to the unknown parameters, its assumed (positive) value has no effect on the 

value of ߦ that minimizes the cost function shown in (4.19).  It therefore has no effect on 

the estimate calculated by the proposed polynomial chaos approach.  Thus, for all 

assumed values of ܴ, the convergence of the proposed approach is shown in Figure 4.1. 

Figure 4.2 shows the convergence of the EKF algorithm for different user-

assumed values of ܴ.  Clearly, the EKF approach is sensitive to the assumed value of ܴ, 

and hence is more difficult to tune than the polynomial chaos approach for this simulation 

example. 

 

 Figure 4.1: Convergence of the proposed polynomial chaos estimator.  The dotted lines are the true values. 
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Figure 4.2: Convergence of EKF algorithm to various assumed values of 0.24 ,0.02 ,0.01 = ࡾ.  The dotted line is 
the true value. 

4.4 Chapter 4 Conclusions 

This chapter derived a recursive approach based on polynomial chaos theory for 

estimating the maximum likelihood values of unknown parameters of state space 

systems.  The proposed method was demonstrated using a simulation of a nonlinear Van 

der Pol oscillator to illustrate the method and to show that it has the potential to be less 

difficult to tune than the filtering approach.  Most importantly, because of its ability to 

recursively calculate the maximum likelihood values of unknown parameters in both 

linear and nonlinear systems, the authors believe that the approach will be valuable to a 

wide range of estimation problems. 
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Chapter 5 

Recursive Bayesian Parameter Estimation using Polynomial Chaos Theory 

This chapter introduces a recursive algorithm based on polynomial chaos theory 

that seeks Bayesian a posteriori estimates of unknown parameters of state-space systems 

given input and output data.  The Bayesian parameter estimators of this chapter build on 

the ideas presented in Chapter 4; the likelihood function of Chapter 4 is an integral part of 

the Bayesian estimators.  The main difference between the maximum likelihood estimator 

of Chapter 4 and the Bayesian estimators of this chapter is that the Bayesian approach 

explicitly uses the a priori parameter distribution information in calculating optimal 

parameter values.   

Filtering approaches, e.g. the Extended Kalman Filter (EKF), Unscented Kalman 

Filter (UKF), and particle filter, provide potential solutions to the recursive Bayesian 

parameter estimation problem.  To estimate the unknown parameters, these methods 

formally extend the state-vector to include estimates of the unknown parameters; this 

generally increases the nonlinearity of the system, especially if the system was originally 

linear.  Like the filtering methods, the approaches of this chapter also result in a higher 

dimensional state equation, but the resulting expanded equations have the same degree of 

linearity/nonlinearity as the original system.  For example, if the initial system is linear, 

the expanded system is also linear, etc. 

The concept of using polynomial chaos theory for calculating Bayesian estimates 

of unknown parameters of state space system is not unique to this chapter; however, the 
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recursive approach of this chapter is unique.  Chapter 2 of this dissertation reviews the 

scientific literature on polynomial chaos based estimators.  The approach of this chapter 

builds on the framework of these earlier approaches as well as the techniques of Chapter 

4 to provide a novel recursive solution to Bayesian parameter estimation of state-space 

systems. 

5.1 Bayesian Estimation 

The development of the recursive Bayesian parameter estimator of this chapter 

requires the same assumptions as were made for the maximum likelihood estimator of 

Chapter 4.  Also, the notation of this chapter adopts the notation from Chapter 4. 

Bayes’ rule provides the framework for Bayesian estimators. It describes how a 

prior parameter distribution ߩҧሺߦሻ: Թ௡೛ ՜ Թ of a random vector ߦ א Թ௡೛ evolves to its 

posterior parameter distribution ߩҧሺݕ|ߦ଴:௞ሻ: Թ௡೛ ՜ Թ.  The posterior distribution 

 ௞.  Oneݐ ଴:௞ up through timeݕ ଴:௞ሻ is conditioned on all of the system observationsݕ|ߦҧሺߩ

representation of Bayes’ rule is as follows (Blanchard et al., 2009): 

଴:௞ሻݕ|ߦҧሺߩ ൌ
1

׬ ࣦሺݕ|ߦ଴:௞ሻߩҧሺߦሻ݀ߦ
ࣦሺݕ|ߦ଴:௞ሻߩҧሺߦሻ. (5.1)

The function ࣦሺݕ|ߦ଴:௞ሻ: Թ௡೛ ՜ Թ  is the likelihood function, and for additive 

Gaussian noise assumptions, it is defined in Equation (4.17) of Chapter 4.  The 

denominator is integrated over the event space of the random vector ߦ (and hence is 

constant with respect to ߦ).  Using the notation from Chapter 4, the Gaussian likelihood 

can be written as follows: 

ࣦሺݕ|ߦ଴:௞ሻ ן ሻሽ. (5.2)ߦ௞ሺܬሼെ݌ݔ݁
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Section 4.2 described a process of recursively calculating the negative log 

likelihood ܬ௞ሺߦሻ: Թ௡೛ ՜ Թ  for state space systems.  Since ܬ௞ሺߦሻ can be calculated 

recursively using Equation (4.20), the likelihood (5.2) and the Bayes’ posterior 

distribution, Equation (5.1), can also be calculated recursively (the prior distribution 

function ߩҧሺߦሻ is known and constant with respect to time). 

5.1.1 Recursive MAP Estimator 

The Maximum A Posteriori (MAP) estimate of the unknown parameter vector ߦ 

is the realization of ߦ that maximizes the posterior distribution ߩҧሺݕ|ߦ଴:௞ሻ.  Since the 

denominator of (5.1) is constant with respect to ߦ, the MAP estimator is given by 

௞ߦ
ሺெ஺௉ሻ ൌ argmax

క
ሻ. (5.3)ߦҧሺߩሻሽߦ௞ሺܬሼെ݌ݔ݁

Using the monotonic property of the logarithm function, the MAP estimator also 

satisfies the following equation (Blanchard et al., 2009): 

௞ߦ
ሺெ஺௉ሻ ൌ argmin

క
൛ܬ௞ሺߦሻ െ log ൫ߩҧሺߦሻ൯ൟ. (5.4)

The techniques used in Section 4.2 for finding the realization of ߦ that minimizes 

௞ߦ ሻ can also be used to findߦ௞ሺܬ
ሺெ஺௉ሻ.  

5.1.2 Recursive MMSE Estimator 

The Minimum Mean-Squared Error (MMSE) estimate of ߦ is given as follows 

(see pages 350-354 of (Gubner, 2006)): 

௞ߦ
ሺெெௌாሻ ൌ ଴:௞ሽݕ|ߦሼܧ ൌ

1
׬ ࣦሺݕ|ߦ଴:௞ሻߩҧሺߦሻ݀ߦ

න (5.5) .ߦሻ݀ߦҧሺߩ଴:௞ሻݕ|ߦሺࣦߦ

Both integrals in (5.5) are integrated over the event space of ߦ.  Because these 

integrals must be evaluated at each time step, the MMSE estimator is more 
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computationally demanding than the MAP and maximum likelihood estimators.  Monte 

Carlo integration (see Section 6.12 of (Antia, 2002)) or other numerical integration 

techniques can be applied to numerically evaluate these integrals. 

Higher order moments of the estimated posterior distribution ߩҧሺݕ|ߦ଴:௞ሻ can be 

calculated in a similar manner.  The ݉௧௛ moment is calculated as follows: 

଴:௞ሽݕ|௠ߦሼܧ ൌ
1

׬ ࣦሺݕ|ߦ଴:௞ሻߩҧሺߦሻ݀ߦ
න (5.6) .ߦሻ݀ߦҧሺߩ଴:௞ሻݕ|ߦ௠ࣦሺߦ

These higher order moments provide valuable information about the statistical 

distribution of the unknown parameters.  For example, the variance of the estimate is 

calculated using the MMSE estimate and the second order moment by ݎܽݒሺߦሻ ൌ

଴:௞ሽݕ|ଶߦሼܧ െ ቀߦ௞
ሺெெௌாሻቁ

ଶ
.  Like the MMSE estimate, calculations of the higher order 

moments require evaluating integrals at each time step and thus require more 

computational resources. 

5.1.3 A Note on Numerical Implementation 

This section provides a useful note on numerical implementation of the MMSE 

and higher-order-moments estimators Equations (5.5) and (5.6) respectively.  First note, 

however, that the MMSE estimator of (5.5) is a special case of the higher order moment 

estimator of (5.6) with ݉ ൌ 1.  Therefore, the same numerical techniques that apply to 

(5.6) also apply to (5.5).  Substituting the likelihood function ࣦሺݕ|ߦ଴:௞ሻ from (5.2) into 

Equation (5.6) results in the following equation for the higher order moment estimator: 

଴:௞ሽݕ|௠ߦሼܧ ൌ
1

׬ ߦሻ݀ߦҧሺߩሻሽߦ௞ሺܬሼെ݌ݔ݁
න (5.7) .ߦሻ݀ߦҧሺߩሻሽߦ௞ሺܬሼെ݌ݔ௠݁ߦ
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The numerical problem with Equation (5.7) is as follows:  Because the objective 

function ܬ௞ሺߦሻ is the sum over time of the squared difference between ݕ and ݕො (see 

Equation (4.19)), its value may tend to positive infinity as time increases.  The 

exponential functions in (5.7) quickly (exponentially) converge to zero as the magnitude 

of ܬ௞ሺߦሻ increases.  Thus, the integrals in the numerator and denominator of (5.7) quickly 

become smaller than the precision of the computer, and Equation (5.7) becomes a 

numerical problem of dividing zero by zero. 

To avoid this issue of dividing zero by zero, this section formulates Equation (5.7) 

in the following manner by multiplying by one: 

଴:௞ሽݕ|௠ߦሼܧ

ൌ
1

׬ ߦሻ݀ߦҧሺߩሻሽߦ௞ሺܬሼെ݌ݔ݁
න ߦሻ݀ߦҧሺߩሻሽߦ௞ሺܬሼെ݌ݔ௠݁ߦ

݌ݔ݁ ቄܬ௞ቀߦ௞ିଵ
ሺெெௌாሻቁቅ

݌ݔ݁ ቄܬ௞ቀߦ௞ିଵ
ሺெெௌாሻቁቅ

. 
(5.8)

Here, ܬ௞ቀߦ௞ିଵ
ሺெெௌாሻቁ is the current cost of the previous MMSE estimate ߦ௞ିଵ

ሺெெௌாሻ. 

The term ݁݌ݔ ቄܬ௞ቀߦ௞ିଵ
ሺெெௌாሻቁቅ is constant with respect to ߦ and can therefore be moved 

inside the integrals of (5.8).  The equation can then be written 

଴:௞ሽݕ|௠ߦሼܧ ൌ
1

׬ ݌ݔ݁ ቄെܬ௞ሺߦሻ ൅ ௞ିଵߦ௞ቀܬ
ሺெெௌாሻቁቅ ߦሻ݀ߦҧሺߩ

න ݌ݔ௠݁ߦ ቄെܬ௞ሺߦሻ

൅ ௞ିଵߦ௞ቀܬ
ሺெெௌாሻቁቅ  .ߦሻ݀ߦҧሺߩ

(5.9)

The term in the exponent െܬ௞ሺߦሻ ൅ ௞ିଵߦ௞ቀܬ
ሺெெௌாሻቁ is small for some ߦ (its value is 

zero for ߦ ൌ ௞ିଵߦ
ሺெெௌாሻ) and thus Equation (5.9) avoids the problem of dividing zero by 

zero assuming ߦ௞ିଵ
ሺெெௌாሻ is one of the numerical integration points. 
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5.2 Example (1) Revisited 

This section uses the Bayesian techniques developed in this chapter to estimate 

the unknown parameters of the nonlinear oscillator of Example (1).  Because the prior 

distribution ߩҧሺߦሻ is uniform (and hence constant when ߦଵ א ሾെ1, 1ሿ and ߦଶ א ሾെ1, 1ሿ), 

the Bayesian MAP estimator is identical to the maximum likelihood estimator of Chapter 

4 for ߦଵ א ሾെ1, 1ሿ and ߦଶ א ሾെ1, 1ሿ.  Therefore, similar to the maximum likelihood 

estimator, the MAP estimator does not depend on the assumed value of the noise variance 

ܴ.  However, the MMSE estimator does depend on the assumed value of ܴ.  The results 

of the MMSE estimator shown in Figure 5.1 are for ܴ ൌ 0.24.  The Monte Carlo 

integration technique (see Section 6.12 of (Antia, 2002)) with 24 randomly sampled 

points was used to evaluate the integrals in the MMSE estimator.  In addition, one 

integration point at each iteration was chosen to be ߦ௞ିଵ
ሺெெௌாሻ. 

In the Matlab® 2008a simulation environment, the time required to compute the 

estimate based on the MMSE estimator with 25 integration points required roughly 3.8 

times the amount of Central Processing Unit (CPU) time than the maximum likelihood 

estimator of Chapter 4. The MMSE estimator required 64 seconds and the maximum 

likelihood estimator required 17 seconds.  The code for the estimators was not optimized 

for numerical efficiency, and the Matlab® 2008a simulation environment is generally not 

as fast as compiled code.  Therefore this CPU time evaluation is only used to suggest that 

the MMSE estimator is more computationally demanding than the maximum likelihood 

estimator, but the time ratio and time requirements are likely to be different in actual real-

time implementation than those listed here. 
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Figure 5.1: Convergence of the MMSE estimator for ࢿ and ࢞૛ሺ૙ሻ.  The dotted line is the true value. 
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The main benefit of using the Bayesian estimator is that it has the ability to 

quantify the uncertainty in the parameter estimates.  Figure 5.2 shows the estimated 

values of the standard deviations of the estimates of ߝ and ݔଶሺ0ሻ assuming ܴ ൌ 0.24. 

 

Figure 5.2: Estimates of the standard deviations of the parameter estimates. 

5.3 Chapter 5 Conclusions 

This chapter introduced algorithms for recursively calculating the Bayesian 

estimates of unknown parameters of state-space systems.  The MAP, MMSE, and higher-

order moment estimators were discussed.  In addition to calculating the most likely 

values of the unknown parameters, this chapter also presented methods for estimating 
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their statistical distributions.  The MMSE and higher-order moment estimators are more 

computationally demanding than the MAP estimator of this chapter and the maximum 

likelihood estimator of Chapter 4.  The methods of this chapter can be applied to a wide 

range of both linear and nonlinear systems, and thus may be valuable to many parameter 

estimation problems. 
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Chapter 6 

Base Excitation Modeling of Vehicle Ride Dynamics 

This chapter introduces base excitation models of vehicle ride dynamics.  These 

base excitation models enable mass estimation without requiring prior knowledge or real-

time estimation of the terrain input.  The base excitation models treat the unsprung mass 

motions instead of the terrain as the model input (as illustrated in Figure 6.1).   

 

 
Figure 6.1: Base excitation concept. 

The base excitation concept is adopted from the vibrations literature (see Section 

2.4 of (Inman, 2001)).  This chapter reviews the quarter-car base excitation model and 

then introduces the base excitation half and full-car models for mass estimation.  The 

base excitation quarter-car model has been used previously for vehicle sprung mass 

estimation for vehicles with adaptive suspension components (Song et al., 2005).  

Input = Terrain Profile
Difficult to measure

Input = Vertical Accelerations
Measureable with low cost sensors
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6.1 Quarter­Car Model 

A two degree-of-freedom quarter-car model of suspension dynamics is shown in 

Figure 6.2 (see Chapters 10-12 of (Rajamani, 2006)).  The vertical motion ݖ௚ at the 

tire/ground contact surface is the input to this model. 

 

Figure 6.2: Quarter-car model of vehicle ride dynamics. 

The base excitation model of quarter-car dynamics differs from the traditional 

model by treating the unsprung mass motion, instead of the terrain profile, as the model 

input.  The base-excitation quarter-car model is shown in Figure 6.3.  The advantage of 

this model for real-time mass estimation is that the unsprung mass motion may be more 

easily measured than the terrain profile. 

 

Figure 6.3: Base excitation quarter-car model. 

Defining the states ݔଵ and ݔଶ to be the relative suspension displacement (ݖ௦ െ  (௨ݖ

and velocity (ݖሶ௦ െ  ሷ௨, andݖ to be the unsprung acceleration ݑ ሶ௨) respectively, the inputݖ
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the output ݕ to be the sprung mass acceleration ݖሷ௦, the state and output equations are as 

follows: 

൤ݔሶଵ
ሶଶݔ

൨ ൌ ቎
0 1

െ݇௤

݉௤

െܾ௤

݉௤

቏ ቂ
ଵݔ
ଶݔ

ቃ ൅ ቂ 0
െ1ቃ  ݑ

ݕ ൌ ቈ
െ݇௤

݉௤

െܾ௤

݉௤
቉ ቂ

ଵݔ
ଶݔ

ቃ. 

(6.1)

The low system order of this quarter-car model makes it attractive for real-time 

estimation in which computational resources may be limited. 

6.2 Half­Car Model 

The half-car model includes the pitch and vertical motion of vehicle ride 

dynamics.  The development of the half-car model in this section assumes linear 

suspension elements, left-right symmetry in suspension components, and negligible 

coupling between longitudinal or roll motion and the vertical/pitch dynamics.  The base 

excitation model of half-car dynamics is shown in Figure 6.4. 

 

Figure 6.4: Base excitation half-car model. 

In Figure 6.4, ݖ௨,௙ (ݖ௨,௥) is the average vertical position of the two front (rear) 

unsprung masses, ݖ௦,௙ (ݖ௦,௥) is the vertical position of a point on the body of the vehicle 

that is located directly above the front (rear) axle and centered between the two front 

zs,cg

zu,fzu,r kf bf

m, Jφ

kr br

L
b a

cg

φ

zs,fzs,r



43 
 

(rear) wheels, ݖ௦,௖௚ is the vertical position of the center of gravity of the vehicle, ܬథ is the 

pitch moment of inertia, ݉ is the vehicle sprung mass, ܮ is the wheelbase length, and the 

lengths ܽ and ܾ  are respectively the distances from the front and rear axles to the center 

of gravity, cg.  The front (rear) stiffness coefficient ݇௙ (݇௥) is the sum of the two front 

(rear) suspension stiffness coefficients, and the front (rear) damping coefficient  ௙ܾ (ܾ௥) is 

the sum of the two front (rear) suspension damping coefficients.  Assuming small angles, 

the pitch ߶ can be written as a function of the vertical positions ݖ௦,௙ and ݖ௦,௥ of the front 

and rear respectively of the vehicle: 

߶ ൌ
௦,௙ݖ െ ௦,௥ݖ

ܮ . (6.2)

The vertical position of the center of gravity (cg) can also be written as a function 

of the two vertical positions ݖ௦,௙ and ݖ௦,௥: 

௦,௖௚ݖ ൌ
௦,௙ݖܾ ൅ ௦,௥ݖܽ

ܮ . (6.3)

The dynamic equations that govern the motion of the base excitation half-car 

model are given as follows: 

ሷ௦,௖௚ݖ݉ ൌ െ݇௙൫ݖ௦,௙ െ ௨,௙൯ݖ െ ௙ܾ൫ݖሶ௦,௙ െ ሶ௨,௙൯ݖ െ ݇௥൫ݖ௦,௥ െ ௨,௥൯ݖ െ ܾ௥൫ݖሶ௦,௥ െ  ሶ௨,௥൯ݖ

థ߶ሷܬ ൌ െ ቀ݇௙൫ݖ௦,௙ െ ௨,௙൯ݖ ൅ ௙ܾ൫ݖሶ௦,௙ െ ሶ௨,௙൯ቁݖ ܽ

൅ ቀ݇௥൫ݖ௦,௥ െ ௨,௥൯ݖ ൅ ܾ௥൫ݖሶ௦,௥ െ ሶ௨,௥൯ቁݖ ܾ. 

(6.4)

The states of the base excitation half-car model are as follows: ݔଵ ൌ ௦,௙ݖ െ  ௨,௙ isݖ

the deflection in the front suspension; ݔଶ ൌ  ሶଵ is the relative velocity in the frontݔ

suspension;  ݔଷ ൌ ௦,௥ݖ െ ସݔ ௨,௥ is the deflection of the rear suspension; andݖ ൌ  ሶଷ is theݔ

relative velocity in the rear suspension.  The system inputs ݑ௙ and ݑ௥ are the vertical 
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accelerations ݖሷ௨,௙ and ݖሷ௨,௥ of the front and rear unsprung masses respectively.  Then, using 

(6.2) and (6.3), Equation (6.4) can be written in the following state-space form: 

൦

ሶଵݔ
ሶଶݔ
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൅

1
݉

ቇ ௙ܾ

0 0

ቆ
ܾܽ
థܬ

െ
1
݉

ቇ ݇௥ ቆ
ܾܽ
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(6.5)

Choosing the output signals to be the vertical accelerations ݕଵ ൌ ଶݕ ሷ௦,௙ andݖ ൌ

ଵݕ ሷ௦,௥ of the sprung mass above the front and rear axles, the output equations areݖ ൌ ሶݔ 2 ൅

ଶݕ and ݂ݑ ൌ ሶݔ 4 ൅  If the acceleration at the sprung mass of the vehicle is chosen as the output  .ݎݑ

signal ݕ, then the output equation is ݕ ൌ ܾሺݔሶଶ ൅ ܮ/௙ሻݑ ൅ ܽሺݔሶସ ൅  The equation for the  .ܮ/௥ሻݑ

output  ݕ can be written in terms of the states in (6.5) as follows: 

ݕ

ൌ ቈቆ
ܾܽଶ െ ܽଷ

ܮథܬ െ
1
݉ቇ ݇௙ ቆ

ܾܽଶ െ ܽଷ

ܮథܬ െ
1
݉ቇ ௙ܾ ቆ

ܽଶܾ െ ܾଷ

ܮథܬ െ
1
݉ቇ ݇௥ ቆ

ܽଶܾ െ ܾଷ

ܮథܬ െ
1
݉ቇ ܾ௥቉ ൦

1ݔ
2ݔ
3ݔ
4ݔ

൪ 
(6.6)

The dynamics of the front and rear suspensions can be decoupled under a special 

case in which ܬథ ൌ ܾ݉ܽ (see pages 315-321 of (Rajamani, 2006)).  Substituting ܬథ ൌ

ܾ݉ܽ into Equation (6.5) results in two decoupled sets of quarter-car equations (see 

Equation (6.1)): 
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൨ ൌ ൥
0 1
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െ1ቃ  ௥ݑ

(6.7)

The choice of output signals ݕଵ ൌ ଶݕ ሷ௦,௙ andݖ ൌ  ሷ௦,௥ results in the followingݖ

decoupled output equations: 

ଵݕ ൌ ൤െ݇ܮ௙

ܾ݉
െܮ ௙ܾ

ܾ݉
൨ ቂ

ଵݔ
ଶݔ

ቃ 

ଶݕ ൌ ൤െ݇ܮ௥

ܽ݉
െܾܮ௥

ܽ݉
൨ ቂ

ଷݔ
ସݔ

ቃ 

(6.8)

In this special case, only one set of state and output equations is needed to 

estimate the vehicle sprung mass.  This may allow a designer to reduce costs by using 

fewer sensors.  Alternatively, a second estimator may offer validation and/or redundancy. 

6.3 Base Excitation Full Car Ride Model 

The vehicle dynamics literature commonly uses a seven degree of freedom system 

to model the general behavior of a vehicle’s ride dynamics.  An illustration of this model 

is provided in Figure 6.5.  The seven degrees of freedom include the vertical ݖ௦,௖௚, roll ߠ௦, 

and pitch ߮௦ motion of the sprung mass, as well as the vertical motions 

,௨,௙௟ݖ ,௨,௙௥ݖ ,௨,௥௟ݖ ,௚,௙௟ݖ ௨,௥௥ of the four unsprung masses.  The motionsݖ ,௚,௙௥ݖ ,௚,௥௟ݖ  ௚,௥௥ ofݖ

the four tire surfaces at the ground are the inputs to the seven degree of freedom model. 
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Figure 6.5: Seven degree of freedom model of vehicle ride dynamics. 

As a key difference from the traditional model, the full-car base excitation model 

(as illustrated in Figure 6.6) treats the vertical unsprung mass accelerations 

,ሷ௨,௙௟ݖ ,ሷ௨,௙௥ݖ ,ሷ௨,௥௟ݖ  ሷ௨,௥௥, the longitudinal velocity ܷ in the x-direction with respect to bodyݖ

fixed axes, and the sprung mass pitch velocity ሶ߮ ௦ as measured model inputs.  (A reduced 

order model at the end of this section will require only the unsprung mass accelerations 

as the system inputs).  The resulting model describes the dynamics of the sprung mass in 

the following three degrees of freedom: vertical ݖ௦,௖௚, pitch ߮௦, and roll ߠ௦. The base 

excitation model is shown in Figure 6.6. 

 
Figure 6.6: Base excitation model of full car ride dynamics. 
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The base excitation model has a number of key benefits for vehicle mass 

estimation compared with the traditional full-car ride model: the model avoids requiring 

knowledge of the values of the unsprung masses, tire stiffness and damping, and, most 

importantly, terrain profile.  Also, the reduced degrees of freedom result in fewer model 

states and hence, less computational complexity. 

This section makes the following simplifying assumptions: 

1. Negligible yaw velocity ( ሶ߰ ൌ 0) 

2. Negligible lateral velocity (ܸ ൌ 0) 

3. Small pitch ߮ and roll ߠ angles 

4. Linear suspension elements 

5. Left-right symmetry in suspension elements, e.g., the front left spring stiffness is the 

same as the front right spring stiffness, e.g.,  ݇௙௟ ൌ ݇௙௥ ൌ: ݇௙. 

6. The c.g. is at half the track width ܶ/2, a known distance ܽ behind the front axle of the 

vehicle, and a distance ܾ forward from the rear axle.  The wheelbase length is ܽ ൅ ܾ. 

7. The sprung mass is a rigid body. 

Applying Euler’s laws of motion to the sprung mass of Figure 6.6 results in the 

following equations which govern the dynamic behavior of the base excitation full car 

model: 

ݖ െ :݊݋݅ݐܽݑݍ݁ ݉൫ݖሷ௦,௖௚ െ ሶ߮௦ܷ൯ ൌ  ௭ܨ

߮ െ :݊݋݅ݐܽݑݍ݁ ఝܬ ሷ߮௦ ൌ  ఝܯ

ߠ െ :݊݋݅ݐܽݑݍ݁ ሷ௦ߠఏܬ ൌ  .ఏܯ

(6.9)
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Here, ܨ௭ is the net downward force acting on the sprung mass, ܯఝ is the net 

moment or torque about the ݕ axis, and ܯఏ is the moment acting about the ݔ axis.  These 

forces and moments are produced via the suspension elements as follows: 

௭ܨ ؔ ෍ ௜ܨ
௜ୀ௙௟,௙௥,௥௟,௥௥

 (6.10)

ఝܯ ؔ െ൫ܨ௙௟ ൅ ௙௥൯ܽܨ ൅ ሺܨ௥௟ ൅ ௥௥ሻܾ (6.11)ܨ

ఏܯ ؔ െ
ܶ
2 ൫ܨ௙௟ ൅ ௥௟൯ܨ ൅

ܶ
2 ൫ܨ௙௥ ൅ ௥௥൯. (6.12)ܨ

The forces ܨ௜, ݅ ൌ ݂݈, ,ݎ݂ ,݈ݎ  are due to suspension deflections and velocities ݎݎ

and are calculated by 

௙௟ܨ ؔ ݇௙ ൬ݖ௨,௙௟ െ ௦,௖௚ݖ ൅ ܽ߮௦ ൅
ܶ
2 ௦൰ߠ ൅ ௙ܾ ൬ݖሶ௨,௙௟ െ ሶ௦,௖௚ݖ ൅ ܽ ሶ߮௦ ൅

ܶ
2 ሶ௦൰ (6.13)ߠ

௙௥ܨ ؔ ݇௙ ൬ݖ௨,௙௥ െ ௦,௖௚ݖ ൅ ܽ߮௦ െ
ܶ
2 ௦൰ߠ ൅ ௙ܾ ൬ݖሶ௨,௙௥ െ ሶ௦,௖௚ݖ ൅ ܽ ሶ߮௦ െ

ܶ
2 ሶ௦൰ (6.14)ߠ

௥௟ܨ ؔ ݇௥ ൬ݖ௨,௥௟ െ ௦,௖௚ݖ െ ܾ߮௦ ൅
ܶ
2 ௦൰ߠ ൅ ܾ௥ ൬ݖሶ௨,௥௟ െ ሶ௦,௖௚ݖ െ ܾ ሶ߮௦ ൅

ܶ
2 ሶ௦൰ (6.15)ߠ

௥௥ܨ ؔ ݇௥ ൬ݖ௨,௥௥ െ ௦,௖௚ݖ െ ܾ߮௦ െ
ܶ
2 ௦൰ߠ ൅ ܾ௥ ൬ݖሶ௨,௥௥ െ ሶ௦,௖௚ݖ െ ܾ ሶ߮௦ െ

ܶ
2 ሶ௦൰. (6.16)ߠ

For convenience, this section defines the following terms: 

௨,௖௚ݖ ؔ
ܾ൫ݖ௨,௙௟ ൅ ௨,௙௥൯ݖ ൅ ܽ൫ݖ௨,௥௟ ൅ ௨,௥௥൯ݖ

2ሺܽ ൅ ܾሻ  (6.17)

߮௨ ؔ
െ൫ݖ௨,௙௟ ൅ ௨,௙௥൯ݖ ൅ ൫ݖ௨,௥௟ ൅ ௨,௥௥൯ݖ

2ሺܽ ൅ ܾሻ  (6.18)

ܼ ؔ ௦,௖௚ݖ െ ௨,௖௚ (6.19)ݖ

Φ ؔ ߮௦ െ ߮௨. (6.20)

The terms ݖ௨,௖௚ and ߮௨ can be interpreted as the average vertical position and 

average pitch of the unsprung masses.   Then, the terms ܼ and Φ can be interpreted as the 
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average vertical and angular displacements of the sprung mass relative to the unsprung 

masses.  

Given definitions (6.10) through (6.20), the ݖ and ߮ equations of (6.9) can be 

written as: 

ݖ െ :݊݋݅ݐܽݑݍ݁ ݉ ሷܼ ൌ ௭ܨ ൅ ݉൫ ሶ߮௦ܷ െ  ሷ௨,௖௚൯ݖ

߮ െ :݊݋݅ݐܽݑݍ݁ ఝΦሷܬ ൌ ఝܯ െ ఝܬ ሷ߮௨. 
(6.21)

The vertical force ܨ௭ and pitch moment ܯఝ can also be written as functions of the 

terms defined in (6.17) through (6.20): 

௭ܨ ൌ െ2൫݇௙ ൅ ݇௥൯ܼ െ 2൫ ௙ܾ ൅ ܾ௥൯ ሶܼ ൅ 2൫ܽ݇௙ െ ܾ݇௥൯Φ ൅ 2൫ܽ ௙ܾ െ ܾܾ௥൯Φሶ  (6.22)

ఝܯ ൌ 2൫ܽ݇௙ െ ܾ݇௥൯ܼ ൅ 2൫ܽ ௙ܾ െ ܾܾ௥൯ ሶܼ െ 2൫ܽଶ݇௙ ൅ ܾଶ݇௥൯Φ

െ 2൫ܽଶ
௙ܾ ൅ ܾଶܾ௥൯Φሶ . 

(6.23)

Equations (6.21) through (6.23) are independent of the roll motion of the sprung 

mass.  As a result, the roll dynamics can be neglected without sacrificing accuracy in the 

calculation of the vertical and pitch motion.  This result enables a lower order (and less 

computationally expensive) estimator. 

The state space representation of Equations (6.21) through (6.23) is as follows: 

൦

ሶଵݔ
ሶଶݔ
ሶଷݔ
ሶସݔ

൪ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

0 1
െ2൫݇௙ ൅ ݇௥൯

݉
െ2൫ ௙ܾ ൅ ܾ௥൯

݉

0 0
2൫ܽ݇௙ െ ܾ݇௥൯

݉
2൫ܽ ௙ܾ െ ܾܾ௥൯

݉
0 0

2൫ܽ݇௙ െ ܾ݇௥൯
ఝܬ

2൫ܽ ௙ܾ െ ܾܾ௥൯
ఝܬ

0 1
െ2൫ܽଶ݇௙ ൅ ܾଶ݇௥൯

ఝܬ

െ2൫ܽଶ
௙ܾ ൅ ܾଶܾ௥൯
ఝܬ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

቎

ଵݔ
ଶݔ
ଷݔ
ସݔ

቏

൅

ۏ
ێ
ێ
ێ
ێ
ۍ

0 0
െܾ
ܮ2

െܾ
ܮ2

0 0
െܽ
ܮ2

െܽ
ܮ2

0
1

0 0
1

ܮ2
1

ܮ2

0 0
െ1
ܮ2

െ1
ܮ2

0
ے0

ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ
ሷ௨,௙௟ݖ
ሷ௨,௙௥ݖ
ሷ௨,௥௟ݖ
ሷ௨,௥௥ݖ

ሶ߮ ௦ܷ ے
ۑ
ۑ
ۑ
ۑ
ې

. 

(6.24)
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The states are ݔଵ ൌ ଶݔ ,ܼ ൌ ሶܼ ଷݔ , ൌ Φ, and ݔସ ൌ Φሶ . The set of dynamic state 

equations in (6.24) govern the motion of the base excitation system shown in Figure 6.6.  

The resulting dynamic equations are similar to the half car model equations of (6.5).  

However, the states are defined differently, and Equation (6.24) accounts for the vertical 

acceleration component ሶ߮ ௦ܷ. 

The dynamic equations of (6.24) can be combined with state-space estimation 

techniques like those of Chapters 4 and 5 for a potential solution to vehicle mass 

estimation.  There are a few factors, however, that motivate reducing this set of state 

equations/sensor inputs in (6.24) to a lower dimensional set.   The first motivating factor 

is the desire to reduce the computational complexity of the estimator.  This is important 

for online/onboard algorithms which may have limited access to memory and 

computational resources on an onboard computer.  The second factor is motivated by the 

desire to reduce the number of sensors required to perform the online estimation.  Based 

on these motivating factors, the remainder of this section derives a reduced order model. 

To reduce the set of state equations/sensor inputs to a lower dimensional set, this 

paper notes that in many vehicles, the coupling term between the vertical and pitch 

dynamics may be negligible.  In Equation (6.24), the vertical and pitch dynamics are 

coupled by the terms 2൫ܽ݇௙ െ ܾ݇௥൯/݉, 2൫ܽ ௙ܾ െ ܾܾ௥൯/݉, 2൫ܽ݇௙ െ ܾ݇௥൯/ܬఝ and 

2൫ܽ ௙ܾ െ ܾܾ௥൯/ܬఝ.  In some cases, the numerator of each term may be small, and the 

denominator is large.  For example, if ܽ݇௙ ൌ ܾ݇௥, and ܽ ௙ܾ ൌ ܾܾ௥ the numerators are zero 

and there is no coupling between the vertical and pitch dynamics.  When these coupling 

terms are not weak, a stronger assumption is required, which is to assume that the pitch 

motion of the vehicle is negligible.  Either of these assumptions enables decoupling of the 
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pitch and vertical dynamics, and the set of equations given in (6.24) can be reduced to the 

following second order state equations that govern the vertical motion of the sprung 

mass: 

൤ݔሶ 1
ሶݔ 2
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0 1
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(6.25)

Here, ܤ௭ ൌ 2൫ ௙ܾ ൅ ܾ௥൯.  The measured output ݕ is the vertical acceleration ݖሷ௦,௖௚ 

of the sprung mass at the center of gravity location, and the output equation is as follows:  

ݕ ൌ ൤െ2൫݇௙ ൅ ݇௥൯
݉

െܤ௭

݉
൨ ቂ

ଵݔ
ଶݔ

ቃ. (6.26)

The known or measured variables/parameters of equations (6.25) – (6.26) are the 

four unsprung mass accelerations, the distances from the axles to the sprung mass c.g. 

location, and the front and rear spring stiffness values.  The unknown 

parameters/variables include the value of the vehicle sprung mass ݉, the damping term 

 .ଶݔ ଵ andݔ ௭, and the state variablesܤ

6.4 Experimental Validation 

This section compares the base excitation half-car model of Equations (6.5) – 

(6.6) and the reduced order full-car model of Equations (6.25) – (6.26) with the response 

of an actual vehicle.  The experimental setup is described in Section 8.1 of this 

dissertation.  The vehicle parameters for Equations (6.5) – (6.6) and (6.25) – (6.26) are 

given in Table 6.1. 
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Table 6.1: Model parameters for the half-car and reduced order full-car base excitation equations. 

Parameter Half-car Eq. (6.5) – (6.6) Full-car Eq. (6.25) – (6.26) 

Sprung mass ݉ ൌ 1295 kg ݉ ൌ 1295 kilograms 

Suspension stiffness ݇௙ ൌ 83600 N/m 

 ݇௥ ൌ 63400 N/m 

ݏݏ݂݂݁݊݅ݐܵ ݈ܽݐ݋ܶ ൌ

147000 N/m 

Pitch inertia ܬథ ൌ 2192 kg m2  Not Applicable 

Damping ௙ܾ ൌ 7000 Ns/m 

ܾ௥ ൌ 6000 Ns/m 

௭ܤ ൌ 13000 Ns/m 

C.G. location ܽ ൌ 1.2 m 

ܾ ൌ 1.42 m 

ܽ ൌ 1.2 m 

ܾ ൌ 1.42 m 

Wheelbase length ܮ ൌ 2.62 m ܮ ൌ 2.62 m 

 

Table 6.2 shows validation results of the reduced full-car and half-car base 

excitation models for a range of road profiles and vehicle speeds. The Signal-to-Noise 

Ratio (SNR) is used as a tool for analyzing how well the model outputs match the actual 

vehicle outputs.  The SNR is calculated as follows: 

ܴܵܰ ൌ ቆ
ሺܻሻܵܯܴ

ሺܻܵܯܴ െ ௠ܻሻቇ
ଶ

 (6.27)

Here, ܻ א Թே is a vector containing all of the actual vehicle outputs (sprung mass 

acceleration measurements) and ௠ܻ א Թே is a vector containing all of the corresponding 

model outputs.  The term ܴܵܯ denotes the Root Mean Square value and is calculated as 

follows: 
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ሺܻሻܵܯܴ ൌ
1

√ܰ
ඩ෍ ௜ݕ

ଶ
ே

௜ୀଵ

 (6.28)

Here, ݕ௜ is the ݅௧௛ element of ܻ. 

Table 6.2 lists the results of the experiment in order from best SNR to worst SNR 

for the reduced full-car model.  The SNR values for the reduced order full-car model of 

(6.25) – (6.26) and the half-car model of (6.5) – (6.6) are shown in the last two columns 

of the table.  The range of SNR values for the reduced full-car model spans from about 

0.27 to about 24, and for the half-car model spans from about 0.30 to about 41.   

Figure 6.7 shows the output results of the models for the first row in Table 6.2 – 

the experiment in which the models best match (in the SNR sense) the actual vehicle.  

Figure 6.8 shows the results for Road No. 21 (halfway through Table 6.2).  Finally, 

Figure 6.9 shows the results for the worst SNR case, Road No. 40 in Table 6.2. 
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Figure 6.7: Time trajectories of the half-car (Hcar) and reduced order full-car (Qcar) base excitation models 
compared with the output of the actual vehicle (True) for the best SNR case, Road No. 1. 
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Figure 6.8: Time trajectories of the half-car (Hcar) and reduced order full-car (Qcar) base excitation models 
compared with the output of the actual vehicle (True) for Road No. 21. 
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Figure 6.9: Time trajectories of the half-car (Hcar) and reduced order full-car (Qcar) base excitation models 
compared with the output of the actual vehicle (True) for the worst SNR case, Road No. 40.  
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Table 6.2: Validation results for the Reduced Full-car and Half-car models. 

Road 

No. 

Description  Target 

Speed 

(mph) 

Name  Input 

RMS (g) 

Output 

RMS (g) 

SNR 

Reduced 

Full­car 

SNR 

Half­car 

1  Rough Dirt  10  Light10  0.0691  0.0541  23.6114  41.3609 

2  Rough Dirt  5  Light5  0.0465  0.0355  18.4218  33.1298 

3  Rough Dirt  10  PL10  0.071  0.0581  16.9782  35.7559 

4  Rough Dirt  15  Light15  0.0864  0.0678  15.0068  30.8806 

5  Rough Dirt  3  Light2  0.0323  0.0256  13.7319  24.3111 

6  Rough Dirt  5  PL5  0.047  0.0373  12.6351  29.2153 

7  Rough Dirt  5  NCparking  0.0329  0.0258  12.1297  22.5208 

8  Rough Dirt  15  PL15  0.0895  0.0664  12.0064  25.5087 

9  Rough Dirt  3  PL2  0.0314  0.0253  10.1264  20.1533 

10  Rough Dirt  10  hvnew10  0.0255  0.0157  8.679  12.5054 

11  Paved  30  LoopValid  0.0362  0.0231  8.0943  8.2712 

12  Smooth Dirt  15  ltlll15  0.0209  0.0158  7.2456  7.6782 

13  Paved  30  NearGR  0.0178  0.0114  6.7477  7.4152 

14  Smooth Dirt  15  hvlll15  0.0204  0.0148  6.2971  6.6279 

15  Smooth Dirt  10  ltlll10  0.0191  0.014  5.7535  6.535 

16  Paved  70  Free696  0.0396  0.0335  5.7086  6.0526 

17  Rough Dirt  5  hvnew5  0.0173  0.0133  5.6219  7.6379 

18  Smooth Dirt  10  hvjoy10  0.0188  0.0121  5.0007  6.9882 

19  Paved  30  NeGR3800  0.0367  0.0223  4.5858  6.8605 

20  Rough Paved  30  LtFullGas  0.047  0.0252  4.2848  4.6251 
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Road 

No. 

Description  Target 

Speed 

(mph) 

Name  Input 

RMS 

Output 

RMS 

SNR 

Reduced 

Full­car 

SNR 

Half­car 

21  Smooth Dirt  10  hvlll10  0.0174  0.0125  4.24  4.9453 

22  Paved  35  OW2Brick  0.0374  0.0225  4.2164  5.6049 

23  Smooth Dirt  20  ltlll20  0.0233  0.0156  3.7439  4.2131 

24  Paved  70  FreeNew  0.0393  0.037  3.4469  3.3975 

25  Paved  70  I23ply2sal  0.0317  0.0282  3.1145  3.6073 

26  Paved/Dirt  50  PontWar  0.0336  0.024  2.9586  3.859 

27  Rough Dirt  35  CFB2F  0.0164  0.0084  2.5737  2.8026 

28  Rough Dirt  15  hvnew15  0.0274  0.0162  2.5283  3.2742 

29  Rough Paved  30  GR3800  0.0527  0.0252  2.439  3.4255 

30  Smooth Dirt  25  ltlll25  0.0263  0.0159  2.109  2.4989 

31  Smooth Dirt  20  hvlll20  0.0246  0.0164  1.7685  2.0715 

32  Smooth Dirt  25  FLkRdNrth  0.0318  0.0144  1.1677  1.462 

33  Paved/Dirt  50  InSaline  0.0402  0.0255  1.1436  1.2654 

34  Rough Dirt  20  hvnew20  0.0313  0.0154  1.1291  1.4217 

35  Rough Dirt  25  hvnew25  0.0359  0.0184  1.0088  1.2172 

36  Smooth Dirt  25  hvlll25  0.0303  0.0175  0.9013  1.1522 

37  Rough Dirt  30  hvnew30  0.0364  0.0186  0.6347  0.7351 

38  Rough Dirt  20  N2BonC20  0.0343  0.0154  0.5571  0.6966 

39  Rough Dirt  30  B2N30  0.0212  0.0081  0.394  0.4695 

40  Rough Dirt  45  N2BonC45  0.0525  0.0259  0.2696  0.2957 
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6.4.1 Discussion of Results 

The experiments in the top quarter of Table 6.2, corresponding to the best signal-

to-noise ratios, had vehicle speeds in the range of 3-15 miles per hour (mph) (5-25 

kilometers per hour) and were on rough dirt terrain.  The vehicle speeds in the bottom 

quarter of the table were above 20 miles per hour (30 kilometers per hour) and were 

mostly on smooth or rough dirt terrains.  The experiments in the middle of the table were 

mostly on smooth dirt or paved terrains with a wide range of speeds. 

The results also show that, in almost every case, the higher-order half-car model 

matches the true vehicle better (in the SNR sense) than the reduced order full car model.  

The effect is more significant in the top quarter of Table 6.2 than in the rest of the table.  

From Road No. 11 to Road No. 40, the SNR for the reduced full-car and half-car models 

are fairly comparable.  This suggests that the (lower computationally expensive) reduced 

full-car model may be sufficient for the vehicle mass estimators, assuming that the SNR 

is a good indication of the performance of the mass estimators.  This last assumption will 

be verified in Section 8.2.  In that case, the potential improvement due to the half-car 

model may not be worth the extra computational cost. 

If SNR is a good indicator for estimation success (as will be explored and verified 

in Section 8.2), the mass estimation algorithm could benefit from knowledge of the SNR.  

For example, a supervisory control strategy could switch the estimator on or off 

depending on the current value of the SNR.  Unfortunately, the SNR requires knowledge 

of the system parameters, some of which are unknown.  Fortunately, as will be shown in 

Section 7.1.3, polynomial chaos theory enables recursive estimation of the SNR. 
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6.5 Summary 

This chapter derived base-excitation models of vehicle ride dynamics from first 

principles.  The base excitation models are valuable to the sprung mass estimation 

problem because they enable estimation without knowledge of the terrain profile and 

without requiring the vehicle to be equipped with an active/semi-active suspension. 

This chapter experimentally validated two of the proposed base excitation models 

against the actual vehicle for 40 different experimental conditions.  The two models 

validated were the base-excitation half-car model and the reduced order base excitation 

model of the full-car vertical dynamics.  The validation showed that the more 

computationally expensive model, the half-car model, performed better than the reduced-

order full-car model.  However, the performance of both models was comparable for the 

majority of the experiments, suggesting that in most cases, the marginal improvement of 

the half-car model may not be worth the extra computational expense. 

In the next chapter, base excitation models are combined with estimation 

techniques to derive algorithms for estimating the vehicle sprung mass.   
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Chapter 7 

Vehicle Sprung Mass Estimators 

This chapter combines base excitation models from Chapter 6 with the 

polynomial chaos estimators of this dissertation and other benchmark estimators. The 

benchmark estimators include Recursive Least Squares (RLS) (see pages 192-245 of 

(Ioannou and Sun, 1996)), Recursive Total Least Squares (RTLS) (see for example 

(Kubus et al., 2008)), Extended Kalman Filter (EKF) (Simon, 2006), and Unscented 

Kalman Filter (UKF) (Simon, 2006).     

Section 7.1 formulates the sprung mass estimator based on the polynomial chaos 

techniques of Chapters 4 and 5.  Sections 7.2 and 7.3 formulate mass estimators based on 

the least squares algorithms and filtering algorithms respectively.   

7.1 Polynomial Chaos and Maximum Likelihood Approach 

Chapter 4 developed a recursive maximum likelihood estimator for state-space 

systems using polynomial chaos theory.  This estimator builds on the polynomial chaos 

technique for modeling multibody dynamic systems with uncertainties developed by 

Sandu, Sandu, and Ahmadian (Sandu et al., 2006) and extends the batch maximum a 

posteriori estimator developed by Blanchard, Sandu, and Sandu (Blanchard et al., 2009) 

to applications that require recursive estimation. Existing research has explored the use of 

recursive polynomial chaos based algorithms for vehicle mass estimation ((Pence et al., 
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2010) and (Shimp, 2008)).  The study presented here, however, uses an algorithm that 

estimates parameters based on an integrated cost function which is different from the 

previous approaches which used an algorithm that updates parameter estimates based on 

an instantaneous cost function.  The earlier work by Pence, Fathy, and Stein (Pence et al., 

2010) showed that estimators based on the instantaneous cost criteria resulted in 

estimates having significant variance. 

7.1.1 Polynomial  Chaos  Estimator  for  the  Quarter­car/Reduced 

Order Full Car Model 

The polynomial chaos approach is applied directly to the reduced order base 

excitation equations (recall Equations (6.25) – (6.26)): 

൤ݔሶ 1
ሶݔ 2

൨ ൌ ൥
0 1

െ2൫݇௙ ൅ ݇௥൯
݉

െܤ௭

݉
൩ ቂ

1ݔ
2ݔ

ቃ ൅ ቂ 0
െ1ቃ (7.1) ݑ

ݕ ൌ ൤െ2൫݇௙ ൅ ݇௥൯
݉

െܤ௭

݉
൨ ቂ

ଵݔ
ଶݔ

ቃ. (7.2)

  Because these equations are linear, this chapter uses the Galerkin approach 

described in Chapter 4.  To apply the polynomial chaos based algorithms, the unknown 

parameters are treated as random variables.  The polynomial chaos algorithm based on 

Legendre polynomials requires upper and lower bounds on the unknown parameters 

which can be inferred from prior knowledge.  This paper assumes that the true values of 

the unknown parameters could potentially be any values between the lower and upper 

bounds with equal probability, i.e., it assumes that the prior distributions are uniform.  

With known upper and lower bounds, the random variables representing the unknown 

mass and damping terms can be written as functions of independently identically 
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distributed (IID) polynomial chaos variables ߦ௠ and ߦ஻, each of which are uniformly 

distributed over the interval ሾെ1, 1ሿ: 

݉ ൌ ௠ߤ ൅  ௠ߦ௠ݒ

௭ܤ ൌ ஻ߤ ൅  .஻ߦ஻ݒ
(7.3)

Here, ߤ௠ and ߤ஻ are respectively the known mean values of the mass ݉ and 

damping ܤ௭ random variables.  The terms ݒ௠ and ݒ஻ are the known maximum variation 

possible of ݉ and ܤ௭ respectively from the mean values ߤ௠ and ߤ஻; e.g., ݒ௠ ൌ

 ݉௨௣௣௘௥௅௜௠௜௧ െ  ௠ where ݉௨௣௣௘௥௅௜௠௜௧ is the largest possible numerical value of the massߤ

݉.  The goal of polynomial chaos based estimation is to estimate the most likely 

realizations of ߦ௠ and ߦ஻ and hence, by (7.3), the most likely values of the unknown 

mass ݉ and damping term ܤ௭. 

Applying the Galerkin method of polynomial chaos theory to the system of 

Equations (7.1) – (7.2) (with the unknown parameters ݉ and ܤ௭ replaced by their 

polynomial chaos counterparts given in (7.3)) results in the following set of deterministic 

state equations: 

ሶܺ ൌ ൤૙௥ൈ௥ ௥ൈ௥ࡵ
ଶଵܣ ଶଶܣ

൨ ܺ ൅ ൥
૙௥
െ1

૙௥ିଵ

൩ (7.4) .ݑ

Here, ૙௞ is a matrix/vector of zeros having dimension ݇ א ሼݎ ൈ ,ݎ ,ݎ ݎ െ 1ሽ, the 

identity matrix ࡵ௥ൈ௥ has dimensions ݎ ൈ ݎ and ,ݎ ൌ ሺܵଶ ൅ 3ܵ ൅ 2ሻ/2 where ܵ is the user-

selected maximum polynomial chaos order, (ܵ ൌ 6 in the experiments of this Chapter).  

The state vector ܺ א Թଶ௥ is a vector of polynomial chaos expansion coefficients.  Finally, 

the matrices  ܣଶଵ א Թ௥ൈ௥ and ܣଶଶ א Թ௥ൈ௥ are defined as follows: 
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ଶଵܣ ؔ ௗ௜௔௚ܣ ൦

,Φଵۃ ܳΦଵۄ ,Φଵۃ ܳΦଶۄ
,Φଶۃ ܳΦଵۄ ,Φଶۃ ܳΦଶۄ ڮ

,Φଵۃ ܳΦ௥ۄ
,Φଶۃ ܳΦ௥ۄ

ڭ ڰ ڭ
,Φ௥ۃ ܳΦଵۄ ,Φ௥ۃ ܳΦଶۄ ڮ ,Φ௥ۃ ܳΦ௥ۄ

൪ , ܳ ൌ
െ2ሺ݇௙ ൅ ݇௥ሻ
௠ߤ ൅ ௠ߦ௠ݒ

 (7.5)

ଶଶܣ ؔ ௗ௜௔௚ܣ ൦

,Φଵۃ ۄΦଵܩ ,Φଵۃ ۄΦଶܩ
,Φଶۃ ۄΦଵܩ ,Φଶۃ ۄΦଶܩ ڮ

,Φଵۃ ۄΦ௥ܩ
,Φଶۃ ۄΦ௥ܩ

ڭ ڰ ڭ
,Φ௥ۃ ۄΦଵܩ ,Φ௥ۃ ۄΦଶܩ ڮ ,Φ௥ۃ ۄΦ௥ܩ

൪ , ܩ ൌ
െሺߤ஻ ൅ ஻ሻߦ஻ݒ

௠ߤ ൅ ௠ߦ௠ݒ
 (7.6)

ௗ௜௔௚ܣ ؔ ൦

,Φଵۃ Φଵିۄଵ 0
0 ,Φଶۃ Φଶିۄଵ ڮ 0

0
ڭ ڰ ڭ

0 0 ڮ ,Φ௥ۃ Φ௥ିۄଵ

൪. (7.7)

The polynomial chaos based estimator is asymptotically stable if the eigenvalues 

of the state transition matrix in Equation (7.4) have negative real parts.  For the base 

excitation model, stability is guaranteed when the lower bounds on the parameter prior 

distributions are greater than zero.  The multivariate polynomials Φ௞, ݇ ൌ 1,2, … ,  are ݎ

functions of the Legendre polynomials (Poularikas, 1999) ߶௜ሺߦ௠ሻ, ݅ ൌ 0,1, … , ܵ and 

߶௝ሺߦ஻ሻ, ݆ ൌ 0,1, … , ܵ as follows: 

Φ௞ ൌ ߶௜ሺߦ௠ሻ ߶௝ሺߦ஻ሻ, ݇ ൌ ݅ ൬ܵ ൅
3 െ ݅

2
൰ ൅ ݆ ൅ 1, ݅ ൌ 0,1, … , ܵ,

݆ ൌ 0,1, … , ܵ െ ݅. 
(7.8)

The inner products ݂ۃሺߦ௠, ,஻ሻߦ ݃ሺߦ௠,  :are defined as follows ۄ஻ሻߦ

,௠ߦሺ݂ۃ ,஻ሻߦ ݃ሺߦ௠, ۄ஻ሻߦ ؔ න න ݃ሺߦ௠, ,௠ߦ஻ሻ݂ሺߦ ஻ߦ௠݀ߦ஻ሻ݀ߦ

ଵ

ିଵ

ଵ

ିଵ

. (7.9)

Since the integrals are evaluated over the event space of the random variables, the 

inner product ݂ۃሺߦ௠, ,஻ሻߦ ݃ሺߦ௠,  ,is a known deterministic quantity; as a result ۄ஻ሻߦ

Equation (7.4) is a deterministic set of state equations that can be solved numerically to 

determine the value of the state vector ܺ.  Also, since the multivariate polynomials 
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Φ௞, ݇ ൌ 1,2, … ,  are orthogonal with respect to the inner product in Equation (7.9), the ݎ

matrix ܣௗ௜௔௚ is well defined. 

Following the concepts of polynomial chaos theory, the states ݔଵ and ݔଶ of 

Equation (7.1) are functions of the random variables ߦ௠ and ߦ஻, and are related to the 

state vector ܺ of Equation (7.4) through a polynomial chaos expansion approximation: 

ቂ
ଵݔ
ଶݔ

ቃ ൎ ܲܺ, ܲ ؔ ൤
Φଵ ڮ Φ௥ ૙ଵൈ௥

૙ଵൈ௥ Φଵ ڮ Φ௥
൨. (7.10)

This approximation becomes exact in the least squares sense as ܵ ՜ ∞ (Ghanem 

and Spanos, 1991).  Substituting Equations (7.10) and (7.3) into (6.26) results in the 

polynomial chaos approximation output ݕො  which is a function of the unknown variables 

 .஻ߦ ௠ andߦ

ොݕ ൎ ൤
െ2ሺ݇௙ ൅ ݇௥ሻ
௠ߤ ൅ ௠ߦ௠ݒ

െሺߤ஻ ൅ ஻ሻߦ஻ݒ
௠ߤ ൅ ௠ߦ௠ݒ

൨ ܲܺ (7.11)

The output ݕො is not an output trajectory but rather an output process or family of 

trajectories.  From (7.11), one can see that given realizations of ߦ௠ and ߦ஻, ݕො collapses to 

an output trajectory.  The goal of recursive maximum likelihood is to determine the 

realizations of ߦ௠ and ߦ஻ that make ݕො most like the measured output trajectory ݕ in some 

sense.   This is done by selecting ߦ௠ and ߦ஻ so that they optimize the likelihood function 

(assuming additive zero mean Gaussian measurement noise with variance ߪ௞
ଶ): 

ࣦሺߦ௠, ሻݕ|஻ߦ ן ݌ݔ݁ ൝െ ෍
൫ݕሺݐ௞ሻ െ ,௞ݐොሺݕ ,௠ߦ ஻ሻ൯ଶߦ

௞ߪ2
ଶ

ே

௞ୀ଴

ൡ (7.12)

Chapter 4 developed techniques for recursively calculating estimates of the 

unknown parameters that recursively seek to optimize the likelihood function (7.12).  

Since the prior distributions of ߦ௠ and ߦ஻ are uniform, the MAP estimator of Chapter 5 
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reduces to the maximum likelihood estimator for ߦ௠ א ሾെ1, 1ሿ and ߦ஻ א ሾെ1, 1ሿ.  The 

key limitation of the polynomial chaos based methods of Chapters 4 and 5 is the fact that 

the polynomial chaos approximation is only exact in the limiting sense as ܵ ՜ ∞ which 

is not numerically feasible.  The author has found, as a rule of thumb, that ܵ ൒ 6 is a 

good approximation for this mass estimation problem.  A general procedure to determine 

an acceptable value for ܵ is to start with a small value for ܵ and then increase the value 

until the change in the resulting estimates is acceptably small. 

7.1.2 Polynomial Chaos Estimator for the Half­car Model 

The half car base excitation model can be described by the following equations 

(recall Equations (6.5) and (6.6)): 

൦

ሶଵݔ
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൪.
(7.14)

The unknown parameters of this model are assumed to be ݉, ௙ܾ, and ܾ௥.  The states 

are also unknown.  (The term ܬథ is probably unknown as well, but the pitch dynamics are not 

observable, and ܬథ is not identifiable based on the input and output signals of (7.13) and (7.14).  

In the following development, its value is assumed to be known.  In the experimental studies, 
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large variations in the assumed value of ܬథ had a negligible effect on the estimated values of ݉, 

௙ܾ, and ܾ௥.) 

The development of the polynomial chaos half-car estimator follows the same steps as 

the development of the quarter-car model in the previous section.  The estimator can be 

summarized by the following procedure: 

1. Expand the unknown parameters in terms of the polynomial chaos variables: 

݉ ൌ ௠ߤ ൅ ,௠ߦ௠ݒ ,௠~ܷሾെ1ߦ 1ሿ 

௙ܾ ൌ ௕೑ߤ
൅ ௕೑ߦ௕೑ݒ

, ௕೑ߦ
~ܷሾെ1, 1ሿ 

ܾ௥ ൌ ௕ೝߤ
൅ ௕ೝߦ௕ೝݒ

, ௕ೝߦ
~ܷሾെ1, 1ሿ. 

(7.15)

2. Apply the Galerkin method to get a deterministic set of state equations: 

ሶܺ ൌ ൦

૙௥ൈ௥ ௥ൈ௥ࡵ
ଶଵܣ ଶଶܣ

૙௥ൈ௥ ૙௥ൈ௥
ଶଷܣ ଶସܣ

૙௥ൈ௥ ૙௥ൈ௥
ସଵܣ ସଶܣ

૙௥ൈ௥ ௥ൈ௥ࡵ
ସଷܣ ସସܣ

൪ ܺ ൅

ۏ
ێ
ێ
ێ
ێ
ۍ

૙௥ൈଶ
ሾെ1 0ሿ
૙௥ିଵൈଶ

૙௥ൈଶ
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૙௥ିଵൈଶ ے

ۑ
ۑ
ۑ
ۑ
ې

ቂ
݂ݑ
ݎݑ

ቃ. (7.16)

The components ܣ௜௝ are defined as follows: 

௜௝ܣ ؔ ௗ௜௔௚ܣ

ۏ
ێ
ێ
ۍ
,Φଵۃ ܳ௜௝Φଵۄ ,Φଵۃ ܳ௜௝Φଶۄ
,Φଶۃ ܳ௜௝Φଵۄ ,Φଶۃ ܳ௜௝Φଶۄ ڮ

,Φଵۃ ܳ௜௝Φ௥ۄ
,Φଶۃ ܳ௜௝Φ௥ۄ

ڭ ڰ ڭ
,Φ௥ۃ ܳ௜௝Φଵۄ ,Φ௥ۃ ܳ௜௝Φଶۄ ڮ ,Φ௥ۃ ܳ௜௝Φ௥ےۄ

ۑ
ۑ
ې
,  (7.17)
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The inner product and polynomial chaos terms Φ௜ are also defined differently 

from the case with only two unknown parameters: 

Φ௞ ؔ ߶௜ሺߦ௠ሻ ߶௝ ቀ݂ܾߦቁ ߶௟ ቀ݂ܾߦቁ , ݅ ൌ 0,1, … , ܵ, ݆ ൌ 0,1, … , ܵ െ ݅,

݈ ൌ 0,1, … , ܵ െ ݅ െ ݆, ݇ ൌ 1, … ,  .ݎ
(7.19)

,௠ߦሺ݂ۃ ,݂ܾߦ ,ሻݎܾߦ ݃ሺߦ௠, ,݂ܾߦ ۄሻݎܾߦ ؔ න න නሺ݂ · ݃ሻ݀ߦ௠݀ݎܾߦ݂ܾ݀ߦ

ଵ

ିଵ

ଵ

ିଵ

ଵ

ିଵ

. (7.20)

3. Determine the polynomial chaos output ݕො௞ as a function of the unknown 

polynomial chaos parameters ݂ܾߦ ,݉ߦ, and ݎܾߦ: 

ො௞ݕ ൎ ሾܥଵ ଶܥ ଷܥ ௞ሻ (7.21)ݐସሿԶܺሺܥ

ଵܥ ؔ ቆ
ܾܽଶ െ ܽଷ

ܮథܬ െ
1

௠ߤ ൅ ௠ߦ௠ݒ
ቇ ݇௙, 
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ଶܥ ؔ ቆ
ܾܽଶ െ ܽଷ

ܮథܬ െ
1

௠ߤ ൅ ௠ߦ௠ݒ
ቇ ቀ݂ܾߤ ൅  ቁ݂ܾߦ݂ܾݒ

ଷܥ ؔ ቆ
ܽଶܾ െ ܾଷ

ܮథܬ െ
1

௠ߤ ൅ ௠ߦ௠ݒ
ቇ ݇௥ 

ସܥ ؔ ቆ
ܽଶܾ െ ܾଷ

ܮథܬ െ
1

௠ߤ ൅ ௠ߦ௠ݒ
ቇ ൫ݎܾߤ ൅  ൯ݎܾߦݎܾݒ

The matrix Զ and vector ܺ follow from Chapter 4, Equations (4.15) and (4.16). 

4. Calculate estimates of ݂ܾߦ ,݉ߦ, and ݎܾߦ using the methods of Chapter 4, 

Section 4.2, and/or Chapter 5, Section 5.1. 

5. Substitute the estimates of ݂ܾߦ ,݉ߦ, and ݎܾߦ into Equation (7.15) to get the 

estimates of ݉, ௙ܾ, and ܾ௥. 

7.1.3 Polynomial Chaos Estimator for the Signal­to­Noise Ratio 

As discussed in Section 6.4, the Signal-to-Noise Ratio (SNR) can potentially be 

used as a tool for analyzing how well the model outputs match the actual vehicle outputs.  

If an estimate of the SNR is available, it may be used to improve the robustness of the 

estimation algorithm (see Section 8.2).  Unlike the filtering and regressor model based 

estimators which will be discussed later, polynomial chaos theory can be used to 

calculate an estimate of the SNR.  Using polynomial chaos theory, the estimated SNR can 

be calculated iteratively as follows assuming that ݕ௞ is a scalar: 

ܵܰ෣ܴ௞ ൌ
௞ܯ

௬

෡௞ܯ
௬ି௬ො , 

௞ܯ
௬ ؔ ௞ିଵܯ

௬ ൅ ௞ݕ
ଶ, ଴ܯ

௬ ൌ 0, 

෡௞ܯ
௬ି௬ො ؔ ௞ܯ

௬ ൅ ௞ܯመ௞൯ߦመ௞൯ܲ൫ߦ൫ܥ
௑௑೅ ቀܥ൫ߦመ௞൯ܲ൫ߦመ௞൯ቁ

்
െ ௞ܯመ௞൯ߦመ௞൯ܲ൫ߦ൫ܥ2

௑௬, 

(7.22)
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௞ܯ
௑௑೅ ؔ ௞ିଵܯ

௑௑೅ ൅ ܺሺݐ௞ሻ்ܺሺݐ௞ሻ, ଴ܯ
௑௑೅ ൌ 0, 

௞ܯ
௑௑೅ ؔ ௞ିଵܯ

௑௬ ൅ ܺሺݐ௞ሻݕ௞, ଴ܯ
௑௬ ൌ 0. 

Here, ܺሺݐሻ א Թ௥·௡ೞ  is the polynomial chaos system’s state vector, and for the 

reduced full-car model, it is calculated using Equation (7.4).  For the reduced order full-

car model, ܲ൫ߦመ௞൯ is defined in Equation (7.10) and ܥ൫ߦመ௞൯ follows from Equation (7.11).  

The term ߦመ௞ is the current estimate calculated by the polynomial chaos estimators of 

Chapters 4 and/or 5. 

7.2 Regressor Model Based Estimation Methods 

An alternative approach to using polynomial chaos based estimation is to use 

regressor-model based algorithms such as recursive least squares (RLS) (Ioannou and 

Sun, 1996) or recursive total least squares (RTLS) (Kubus et al., 2008).  Under certain 

Gaussian measurement noise assumptions, and if the states ݔଵ and ݔଶ of Equations (7.1) – 

(7.2) are measured explicitly, RLS methods can potentially produce unbiased estimates.  

Unfortunately, full-state measurements require measuring suspension displacements and 

velocities at each corner of the vehicle, as well as the sprung mass acceleration.  This 

dissertation follows Fathy, Kang, and Stein's (Fathy et al., 2008) method in using pre-

filtering as a precursor to mass estimation.  Such pre-filtering has two attractive 

advantages, namely, (a) it allows the estimation process to focus on those frequencies 

where inertial dynamics are more visible, and (b) it makes it possible to estimate sprung 

mass using sprung and unsprung mass accelerations, without any need to use additional 

sensors for displacement and velocity.  This section outlines the regressor approach to 

vehicle sprung mass estimation for the reduced full-car model. 
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RLS and RTLS algorithms rely on the regressor model shown in Equation (7.23) 

and cannot be applied directly to state-space systems such as the system modeled by 

Equations (7.1) – (7.2). 

ோݕ ൌ ߶ோ
ோ (7.23)ߠ்

The term ݕோ is the measured regressor output, the term ߶ோ is the regressor vector 

which is also known/measured, and the term ߠோ is the unknown parameter vector.  For 

vehicle mass estimation, the regressor model can be derived from the output equation, 

Equation (7.2).  Then, the regressor output ݕோ is െ2൫݇௙ ൅ ݇௥൯ݔଵ, the regressor vector ߶ோ 

is ሾݕ ோ isሾ݉ߠ ଶሿ், and the unknown parameter vectorݔ  ,.௭ሿ், i.eܤ

െ2൫݇௙ ൅ ݇௥൯ݔଵ ൌ ሾݕ ଶሿݔ ቂ
݉
௭ܤ

ቃ. (7.24)

The regressor output ݕோ and regressor vector ߶ோ must only contain 

known/measured variables, but the states ݔଵ and ݔଶ are not measured.  To address this 

problem, this paper applies Laplace-domain filtering to obtain a regressor model in which 

both ݕோ and ߶ோ only contain known/measured values.  These Laplace domain filters act 

as pseudo-integrators to obtain estimates of velocity and displacement from 

measurements of suspension acceleration.  Assuming zero initial conditions for the states 

 ଶ, the system of equations given in (7.1) – (7.2) can be represented in theݔ ଵ andݔ

Laplace-domain by the following transfer function: 

ܻሺݏሻ
ܷሺݏሻ ൌ

ݏ௭ܤ ൅ 2൫݇௙ ൅ ݇௥൯
ଶݏ݉ ൅ ݏ௭ܤ ൅ 2൫݇௙ ൅ ݇௥൯

. (7.25)

In (7.25), ݏ is the Laplace operator, ܻሺݏሻ is the Laplace transform of the sprung 

mass accelerations ݕ, and ܷሺݏሻ is the Laplace transform of the input ݑ.  Alternatively, 

(7.25) can be written as follows: 
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െ2൫݇௙ ൅ ݇௥൯ሺܻሺݏሻ െ ܷሺݏሻሻ ൌ ሻݏଶܻሺݏ݉ ൅ ሻݏሺܻሺݏ௭ܤ െ ܷሺݏሻሻ. (7.26)

Dividing both sides of (7.26) by Λሺݏሻ, results in the following filtered regressor 

model: 

െ2൫݇௙ ൅ ݇௥൯
ሺܻሺݏሻ െ ܷሺݏሻሻ

Λሺݏሻ ൌ ቈ
ሻݏଶܻሺݏ

Λሺݏሻ
ሻݏሺܻሺݏ െ ܷሺݏሻሻ

Λሺݏሻ
቉ ቂ

݉
௭ܤ

ቃ. (7.27)

The user-selected denominator Λሺݏሻ should be a polynomial function of ݏ that is 

at least second order to ensure that the transfer functions in (7.27) are proper.  The roots 

of the polynomial Λሺݏሻ must have negative real parts to guarantee stability.  Reverting 

back to the time domain, the regressor model shown in Equation (7.27) becomes:  

െ2൫݇௙ ൅ ݇௥൯ ൜
1

Λሺ݌ሻൠ ሺݕ െ ሻݑ ൌ ቈቊ
ଶ݌

Λሺ݌ሻቋ ݕ ൜
݌

Λሺ݌ሻൠሺݕ െ ሻ቉ݑ ቂ
݉
௭ܤ

ቃ. (7.28)

The term ሼ1/Λሺ݌ሻሽሺݕ െ ݕ ሻ represents the time domain signalݑ െ  filtered by ݑ

the Laplace domain transfer function ሼ1/Λሺݏሻሽ.  The use of the operator ݌ instead of ݏ is 

to distinguish between the time and Laplace domains. 

The regressor output ݕோ ൌ െ2൫݇௙ ൅ ݇௥൯ሼ1/Λሺ݌ሻሽሺݕ െ  ሻ and regressor vectorݑ

߶ோ ൌ ሾሼ݌ଶ/Λሺ݌ሻሽݕ ሼ݌/Λሺ݌ሻሽሺݕ െ  ሻሿ் of Equation (7.28) contain onlyݑ

known/measured variables.  The only unknown variables in (7.28) are the elements of the 

parameter vector ߠோ ൌ ሾ݉  ௭ሿ்.  Therefore, Equation (7.28) is a valid for regressorܤ

model based algorithms.  However, two significant problems arise when using Equation 

(7.28).  First, both the regressor output ݕோ and regressor vector ߶ோ contain measurements 

of both ݕ and ݑ.  As a result, the noise in the output ݕோ and regressor vector ߶ோ is 

correlated.  This leads to biased estimates when using recursive least squares algorithms.  

This approach was explored in a simulation study by Pence, Fathy, and Stein (Pence et 

al., 2009).  Total least squares regression can potentially lead to less biased estimates (see 
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Section 7.7 of (Moon and Stirling, 2000)).  However, a second problem with using 

Equation (7.28) affects both least squares and total least squares methods: these methods 

are both sensitive to the user-selected denominator Λሺݏሻ.  As the experimental validation 

section will show, slightly different tunings of Λሺݏሻ lead to significantly different 

estimates of the unknown parameters, and tunings that are appropriate for one terrain are 

not necessarily appropriate for another.  

7.3 Filtering Methods 

Filtering algorithms (see Appendix A2), such as the Extended Kalman Filter 

(EKF), Unscented Kalman Filter (UKF) (Simon, 2006), particle filter (Ristic et al., 2004), 

etc., can estimate both the states and unknown parameters of state space systems.  Unlike 

the estimation methods discussed in the paragraphs above which require a regressor 

model, the filtering algorithms can be applied to state space systems such as the base 

excitation system of Equations (7.1) – (7.2) and Equations (7.13) – (7.14).  First, 

however, the state vector must be augmented to include estimates of the unknown 

parameters.   

7.3.1 Augmented  Equations  for  the  Quarter­car/Reduced  Order 

Full Car Model 

The augmented set of state and output equations for the base excitation system of 

Equations (7.1) – (7.2) is given as follows: 

൦

ሶଵݔ
ሶଶݔ
ሶଷݔ
ሶସݔ

൪ ൌ

ۏ
ێ
ێ
ێ
ۍ

ଶݔ

െ
2൫݇௙ ൅ ݇௥൯

ଷݔ
ଵݔ െ

ସݔ

ଷݔ
ଶݔ െ ݑ

0
0 ے

ۑ
ۑ
ۑ
ې

 (7.29)
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ݕ ൌ െ
2൫݇௙ ൅ ݇௥൯

ଷݔ
ଵݔ െ

ସݔ

ଷݔ
ଶ. (7.30)ݔ

The state ݔଷ is an estimate of the unknown value of the vehicle sprung mass ݉, 

and the state ݔସ estimates the unknown damping term ܤ௭.  The filtering methods 

summarized in Appendix A2 can be applied to this augmented system of equations. 

The EKF algorithm requires Jacobain matrices, i.e., matrices of partial 

derivatives.  The Jacobian matrices for Equations (7.29) – (7.30) are provided in 

Appendix A2, Equations (A2.6) and (A2.7). 

The augmented system, Equations (7.29) – (7.30), has a higher dimension and is 

significantly more nonlinear than the (linear) system of Equations (7.1) – (7.2).  Similar 

to the regressor model approaches, the filtering methods may be more difficult to tune 

than the proposed polynomial chaos approach.  The filtering methods have a large 

number of user-defined tuning variables: the process noise covariance matrix, the 

measurement noise variance, the initial conditions for the estimate covariance matrix, and 

the initial conditions for the state vector (a total of at least 25 scalar tuning parameters for 

the mass estimation problem).  Despite being difficult to tune, the EKF is especially 

attractive because of its low computational demand compared with the polynomial chaos 

approach, the UKF approach, and particle filter.  Appendix A2 summarizes the filtering 

algorithms used in this dissertation and offers insights on how to tune the filters so that 

they calculate estimates that are similar to those calculated by the polynomial chaos 

estimators of this dissertation.  
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7.3.2 Augmented Equations for the Half­car Model 

The augmented set of state equations for the half car model described by 

Equations (7.13) and (7.14) is as follows: 

ۏ
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ێ
ێ
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ۍ
ሶଵݔ
ሶଶݔ
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ےሶ଻ݔ

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

ଶݔ

െ ቆ
ܽଶ

థܬ
൅

1
ହݔ

ቇ ݇௙ݔଵ െ ቆ
ܽଶ

థܬ
൅

1
ହݔ

ቇ ଶݔ଺ݔ ൅ ቆ
ܾܽ
థܬ

െ
1
ହݔ

ቇ ݇௥ݔଷ ൅ ቆ
ܾܽ
థܬ

െ
1
ହݔ

ቇ ସݔ଻ݔ െ ௙ݑ

ସݔ

ቆ
ܾܽ
థܬ

െ
1
ହݔ

ቇ ݇௙ݔଵ ൅ ቆ
ܾܽ
థܬ

െ
1
ହݔ

ቇ ଶݔ଺ݔ െ ቆ
ܾଶ

థܬ
൅

1
ହݔ

ቇ ݇௥ݔଷ െ ቆ
ܾଶ

థܬ
൅

1
ହݔ

ቇ ସݔ଻ݔ െ ௥ݑ

0
0
0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې
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(7.32)

The state ݔହ is the sprung mass ݉, ݔ଺ is the front suspension damping coefficient 

௙ܾ, and ݔ଻ is the rear suspension damping coefficient ܾ௥.   

Filtering algorithms such as the EKF, UKF and particle filter can be applied 

directly to the augmented state equations of (7.31) and (7.32).  The Jacobain matrices that 

the EKF requires are provided in Appendix A2. 
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Chapter 8 

Experimental Validation of Vehicle Mass Estimators 

This chapter describes the experimental setup, procedures, and results for 

estimating the mass of an actual vehicle traversing a variety of terrains.  This chapter has 

two purposes, first to asses the validity of using base excitation models with polynomial 

chaos estimators for accurate and robust vehicle mass estimation; Section 8.2 explores 

this objective.  The second purpose of this chapter is to experimentally compare the 

performance of the polynomial chaos estimators of this dissertation with benchmark 

algorithms such as filtering methods and least squares methods.  This comparison is done 

in Sections 8.3 and 8.4.  Finally, Section 8.5 offers conclusions. 

8.1 Experimental Setup 

The vehicle used for the experiments of this dissertation was a 2001 Nissan 

Altima, GXE sedan.  The experimental work used single-axis accelerometers, model 

2210-005 made by Silicon Designs, Inc.  Unsprung mass accelerometers were attached to 

the suspension struts below the spring (Figure 8.1) using J.B. Weld® epoxy.  The sprung 

mass accelerometer was attached to the base of the cup holder between the front seats 

(Figure 8.2) using Duro® super-glue.  The data acquisitioning system was a National 

Instruments® model NI USB-6221.  Data samples were acquired at either a 500 Hz or 1 

kHz rate, band-pass filtered, and then downsampled to a 100 Hz rate.  The band-pass 
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filter attenuated frequencies below 0.3 Hz to remove accelerometer bias and above 5 Hz 

to remove high frequency noise.  The accelerometers were connected to the 

acquisitioning system in differential mode. 

A Proform® 67650 Vehicle Scale System was used to measure the total vehicle 

weight (including the driver and acquisitioning equipment weight), which was found to 

be 1460 kg (3220 lbs).  This Vehicle Scale System also determined the Center of Gravity 

(cg) location to be a distance of 62% of the wheelbase length (2.62 m) forward from the 

rear axle.  The tires and wheels were removed from the vehicle and weighed; they were 

found to have a total mass of 70 kg (150 lbs).  The remaining mass of the unsprung 

components (hub, suspension, axle, etc.) was estimated to be 94 kg (210 lbs) based on 

shipping weight calculations published on an internet website: Amazon.comTM.   These 

unsprung components with their associated shipping weight estimates are listed in Table 

8.1.  Based on the measurements of the tire and wheel weight and the estimated value of 

the remaining unsprung mass, the total sprung mass was determined to be 1296 kg (2860 

lbs) 1. 

 

                                                 
1 In some of the experiments of this paper, additional known mass was added to the 

sprung mass of the vehicle, either by adding passengers, equipment, and/or boxes filled with 
sand.  The values shown in Table 6.2 and Table 8.2 automatically account for this added mass.  
For example, in Table 6.2, the SNR calculation for an experiment with added mass used a vehicle 
model that had the added mass included.  The estimation errors reported in Table 8.2 are with 
respect to the total sprung mass (including the added mass).  The value of the added mass for any 
experiment was less than 260 kg (575 lbs). 
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Figure 8.1: Placement of the unsprung accelerometer. 

 

 

Figure 8.2: Location of sprung mass accelerometer. 
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Table 8.1: Mass of unsprung suspension components. 

Unsprung Suspension Components and Corresponding Shipping Weights (kg) 

Front suspension (one corner) Rear suspension (one corner) 

Hub Assembly 2.3 kg Hub Assembly 2.4 kg 

½ of Front Axle 4.2 kg Knuckle 6.4 kg 

Steering Knuckle 3.7 kg Strut Assembly 4.8 kg 

Strut Assembly 4.4 kg Brake Drum 4.4 kg 

Disc Brake Rotor  6.3 kg Drum Shoes 1.0 kg 

Brake Caliper and Pads 2.9 kg Brake Hardware 0.8 kg 

½ of Control Arm 2.2 kg Wheel Cylinder 0.5 kg 

  ½ of Bottom Control Arm 0.6 kg 

Total 26 kg Total 20.9 kg 

 

The stiffness values of the front and rear suspensions were determined 

respectively to be 41800 േ 3000 N/m and 31700 േ 3000 N/m per corner, e.g., the 

front-right suspension stiffness was 41,800 N/m which was also the value of the front-left 

stiffness; the total front stiffness was 83,600 N/m and the total rear stiffness was 63,400 

N/m.  These values were determined by placing a known load of 53 kg on the sprung 

body at the front center and then rear center of the vehicle and measuring the respective 

suspension displacement at each corner of the vehicle using a ruler with millimeter 

precision.  Then the experiment used a vertical static force balance (evaluating vertical 

force verses suspension displacement assuming a linear suspension) to determine the 

stiffness values of the suspensions. 
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8.2 Experimental Validation of Polynomial Chaos Estimators 

This section explores the validity and robustness of the vehicle mass estimators 

that use the polynomial chaos algorithms and base excitation models developed in this 

dissertation.  Section 7.1.3 provided an algorithm based on polynomial chaos theory that 

can be used to iteratively calculate an estimate of the signal-to-noise ratio (SNR).  This 

section, Section 8.2, aims to address the question of whether the estimated SNR is a good 

indicator of estimator success.  If so, robust estimation can be achieved by using 

supervisory logic that only provides mass estimates when the current estimated SNR is 

above a given threshold; otherwise, the supervisory controller resets the estimator. 

The estimator is described in Section 7.1.  The estimation algorithm was set as 

follows: The polynomial order was set to be ܵ ൌ 6, the bounds on the mass estimate were 

800 ൑ ݉ ൑ 2300 kilograms, and the bounds on the damping coefficient were 4000 ൑

௭ܤ ൑ 28000 Newton seconds per meter.  The value of ߪ௞
ଶ was estimated at each iteration 

to be ߪ௞
ଶ ൌ 0.007 ൅ ቀݕ௞ െ ௞ሻቁݐመ௞ିଵ൯ܺሺߦመ௞ିଵ൯ܲ൫ߦ൫ܥ

ଶ
.   The MMSE estimator used 25 

Monte Carlo integration points, one of which was ߦመ௞ିଵ. 

8.2.1 Results 

The recursive estimation algorithm based on polynomial chaos theory and the 

reduced order full-car model was applied to the 40 experiments in Table 6.2 of Chapter 6.   

The last two columns of Table 8.2 report the results for the estimated SNR and the error 

in the estimated sprung mass.  The error in the mass estimate was calculated as follows:  

݁ݐܽ݉݅ݐݏܧ ݏݏܽܯ ݊݅ ݎ݋ݎݎܧ ൌ
݉݁ܽ݊൫|ܶݏݏܽܯ ݁ݑݎ െ ௧ೖୀଵ଴଴|ݏݏܽܯ ݀݁ݐܽ݉݅ݐݏܧ

௧೐೙೏ ൯
ݏݏܽܯ ݁ݑݎܶ ൈ 100. 
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Table 8.2: Polynomial Chaos Results for the Reduced Full-car Estimator. 

Road 

No. 

Description  Target 

Speed 

(mph) 

Name  SNR 

Reduced 

Full­car 

Estimated 

SNR  

Full­car 

Error in 

Mass 

Estimate 

1  Rough Dirt  10  Light10  23.6114  18  8.5% 

2  Rough Dirt  5  Light5  18.4218  15  2.6% 

3  Rough Dirt  10  PL10  16.9782  14  2.7% 

4  Rough Dirt  15  Light15  15.0068  15  15% 

5  Rough Dirt  3  Light2  13.7319  11  4.8% 

6  Rough Dirt  5  PL5  12.6351  11  1.7% 

7  Rough Dirt  5  NCparking  12.1297  11  2.0% 

8  Rough Dirt  15  PL15  12.0064  12  7.7% 

9  Rough Dirt  3  PL2  10.1264  9.0  1.9% 

10  Rough Dirt  10  hvnew10  8.679  7.3  3.6% 

11  Paved  30  LoopValid  8.0943  8.5  0.007% 

12  Smooth Dirt  15  ltlll15  7.2456  8.2  4.8% 

13  Paved  30  NearGR  6.7477  6.9  1.2% 

14  Smooth Dirt  15  hvlll15  6.2971  7.4  8.9% 

15  Smooth Dirt  10  ltlll10  5.7535  8.0  2.9% 

16  Paved  70  Free696  5.7086  4.8  21% 

17  Rough Dirt  5  hvnew5  5.6219  6.7  1.5% 

18  Smooth Dirt  10  hvjoy10  5.0007  4.7  8.7% 

19  Paved  30  NeGR3800  4.5858  4.5  6.0% 

20  Rough Paved  30  LtFullGas  4.2848  4.1  4.9% 
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Road 

No. 

Description  Target 

Speed 

(mph) 

Name  SNR 

Reduced 

Full­car 

Estimated 

SNR  

Full­car 

Error in 

Mass 

Estimate 

21  Smooth Dirt  10  hvlll10  4.24  6.4  3.7% 

22  Paved  35  OW2Brick  4.2164  3.8  4.2% 

23  Smooth Dirt  20  ltlll20  3.7439  3.7  6.7% 

24  Paved  70  FreeNew  3.4469  3.2  10% 

25  Paved  70  I23ply2sal  3.1145  3.3  6.9% 

26  Paved/Dirt  50  PontWar  2.9586  3.0  7.6% 

27  Rough Dirt  35  CFB2F  2.5737  2.5  4.1% 

28  Rough Dirt  15  hvnew15  2.5283  2.6  9.4% 

29  Rough Paved  30  GR3800  2.439  2.4  3.1% 

30  Smooth Dirt  25  ltlll25  2.109  2.3  4.0% 

31  Smooth Dirt  20  hvlll20  1.7685  2.0  2.9% 

32  Smooth Dirt  25  FLkRdNrth  1.1677  1.4  70% 

33  Paved/Dirt  50  InSaline  1.1436  1.4  59% 

34  Rough Dirt  20  hvnew20  1.1291  1.4  53% 

35  Rough Dirt  25  hvnew25  1.0088  1.1  7.8% 

36  Smooth Dirt  25  hvlll25  0.9013  1.2  42% 

37  Rough Dirt  30  hvnew30  0.6347  0.7  9.8% 

38  Rough Dirt  20  N2BonC20  0.5571  0.76  72% 

39  Rough Dirt  30  B2N30  0.394  0.57  81% 

40  Rough Dirt  45  N2BonC45  0.2696  0.38  70% 
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Figure 8.3 through Figure 8.9 plot the sprung mass and SNR estimates for seven 

roads: Road Numbers 1, 4, 11, 16, 21, 31, and 40. 

 

 

 

Figure 8.3: Estimates of sprung mass and SNR using the polynomial chaos estimators for Road No. 1.  The dot 
sequence is calculated via the MMSE estimator of Chapter 5, and the solid line is calculated via the maximum 

likelihood (ML) estimator of Chapter 4. 
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Figure 8.4: Estimates of sprung mass and SNR using the polynomial chaos estimators for Road No. 4.  The dot 
sequence is calculated via the MMSE estimator of Chapter 5, and the solid line is calculated via the maximum 

likelihood (ML) estimator of Chapter 4. 
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Figure 8.5: Estimates of sprung mass and SNR using the polynomial chaos estimators for Road No. 11.  The dot 
sequence is calculated via the MMSE estimator of Chapter 5, and the solid line is calculated via the maximum 

likelihood (ML) estimator of Chapter 4. 
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Figure 8.6: Estimates of sprung mass and SNR using the polynomial chaos estimators for Road No. 16.  The dot 
sequence is calculated via the MMSE estimator of Chapter 5, and the solid line is calculated via the maximum 

likelihood (ML) estimator of Chapter 4. 

0 50 100 150 200 250 300

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

m
 (k

g)

Time(s)

 

 
True
+10%
-10%
MMSE
ML

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

Time (s)

E
st

im
at

ed
 S

N
R



87 
 

 

 

 

Figure 8.7: Estimates of sprung mass and SNR using the polynomial chaos estimators for Road No. 21.  The dot 
sequence is calculated via the MMSE estimator of Chapter 5, and the solid line is calculated via the maximum 

likelihood (ML) estimator of Chapter 4. 
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Figure 8.8: Estimates of sprung mass and SNR using the polynomial chaos estimators for Road No. 31.  The dot 
sequence is calculated via the MMSE estimator of Chapter 5, and the solid line is calculated via the maximum 

likelihood (ML) estimator of Chapter 4. 
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Figure 8.9: Estimates of sprung mass and SNR using the polynomial chaos estimators for Road No. 40.  The dot 
sequence is calculated via the MMSE estimator of Chapter 5, and the solid line is calculated via the maximum 

likelihood (ML) estimator of Chapter 4. 
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8.2.2 Discussion of Results 

The results of Table 8.2 show that with only two exceptions, an estimated SNR 

above 2.0 was a good indicator that the estimator would converge to within the 

acceptable ±10% error range.  Out of 31 “predicted positives”, there were only two “false 

positives” – a success rate of 94%.  The two exceptions include Road No. 4 (see Figure 

8.4) and Road No. 16 (see Figure 8.6).  The experiment in Road No. 4 took place in an 

oval shaped, dirt parking lot with a driving speed of 15 miles per hour (24 kilometers per 

hour).   At that speed in the small parking lot, the vehicle experienced significant yaw 

velocities and lateral velocities; these conditions violate the modeling assumptions of 

Section 6.3 and may account for the 15% error in the mass estimate (conversely, 

however, this does not answer the question of why the SNR was so high).  The 

experiment in Road No. 16 was on a sectioned freeway at a speed of 70 miles per hour 

(112 kilometers per hour).  Because the vehicle had two adult passengers in the rear seat 

for this experiment, it is the author’s hypothesis that the rigid body assumption for the 

sprung mass was violated causing the estimator to fail.  Seven out of nine experiments 

with an estimated SNR below 2.0 converged to a value outside of the ±10% error range. 

Figure 8.3 through Figure 8.9 illustrate that the polynomial chaos based 

estimators, i.e., the Minimum Mean Squared Error (MMSE) estimator of Chapter 5 and 

the Maximum Likelihood (ML) estimator of Chapter 4, converge to nearly identical 

estimates of the vehicle mass.  Because of the inherent randomness in Monte Carlo 

integration, the MMSE estimator is more “noisy” than the maximum likelihood 

estimator.  And as discussed in Chapter 5, the MMSE estimator is more computationally 
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demanding than the maximum likelihood estimator.  Therefore, these results suggest that 

the maximum likelihood estimator is more appropriate for the mass estimation problem. 

 The results of Table 8.2 show that the proposed mass estimators of this chapter 

can be used to robustly estimate the mass of the vehicle to within ±10% of the true value. 

8.3 Experimental Validation of Regressor Methods 

The regressor model approach to vehicle mass estimation was outlined in Section 

7.2.  This section, Section 8.3, uses experiments performed on Road No. 1 (best SNR 

case) and Road No. 12 of Table 6.2 to demonstrate the performance of the regressor 

model based estimators. 

This dissertation chose the denominator Λሺݏሻ (see Section 7.2) to be second order, 

i.e., Λሺݏሻ ൌ ଶݏ ൅ ݏ߱ߞ2 ൅ ߱ଶ.  In Figure 8.10, the value of ߞ was fixed at ߞ ൌ 0.1 for 

RLS and ߞ ൌ 0.2 for RTLS, and the value of ߱ was varied between 6 and 20 rad/s (0.95 

– 3.2 Hz).  In Figure 8.11, the value of ߱ was fixed at 13 for RLS and 14 for RTLS, and 

the value of ߞ was varied between 0.1 and 0.8.  

8.3.1 Discussion of Results 

Figure 8.10 through Figure 8.12 illustrate two important limitations of the 

regressor model approaches for sprung mass estimation.  Figure 8.10 and Figure 8.11 

illustrate that the bias of the estimator is strongly dependent on the user-specified tuning 

of the filter denominator Λሺݏሻ, even for data having a good signal-to-noise ratio.  Figure 

8.12 illustrates that although the tuning of the estimators was appropriate for Road No. 1 

(see Figure 8.10 and Figure 8.11), it was not appropriate (within the 10% error limit) for 
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Road No. 12 (especially for the RLS algorithm).  I.e., the tuning of Λሺݏሻ is case 

dependent, and different speeds/terrains require different tuning. 

 

 

 

Figure 8.10: Convergence of RLS (top figure) and RTLS (bottom figure) for variations in ࣓.  
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Figure 8.11: Convergence of RLS (top figure) and RTLS (bottom figure) for variations in ࣀ. 
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Figure 8.12: Convergence of RLS and RTLS for Road No. 12. 

8.4 Experimental Validation of Filtering Methods 

This section uses the experiments of Table 6.2 to explore two questions: (a) How 

well do the mass estimation techniques that use state-filtering perform?  (b) Does a low 

estimator variance indicate good filter performance, i.e., mass estimate within the 

acceptable 10% error range? 

One important feature of the polynomial chaos estimators is their ability to 
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how well the estimates can be trusted.  If so, a supervisory controller could set a threshold 

on the estimator variance to indicate when the current estimate can be trusted.   

8.4.1 Results 

Section 7.3 presented the augmented equations used by the filtering algorithms to 

estimate the vehicle sprung mass. Appendix A2 summarizes the filtering algorithms and 

describes the tuning of the filtering methods.  This section applies the EKF and UKF 

mass estimation algorithms to the 40 experiments of Table 6.2; the results are given in 

Table 8.3.  The notation “EKF StDev” corresponds to the square root of the estimated 

variance of the mass estimate produced by the EKF.  The “EKF Mass Error” and “UKF 

Mass Error” are calculated in the same way as “Error in Mass Estimate” was calculated in 

Section 8.2.1.   

This dissertation applied a particle filter having 25 particles to most of the 

experiments of Table 6.2.  The particle filter was significantly more computationally 

demanding than the other estimators, and the results were also less repeatable (likely due 

to the stochastic nature, e.g. simulated process noise and Monte Carlo integration, of the 

particle filter).  Therefore, the results of the particle filter are not reported in Table 8.3; 

however, to demonstrate the particle filter performance, Figure 8.13 and Figure 8.14 plot 

the results of the particle filter along with the results of the EKF and UKF for Road No. 1 

and 11. 
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Table 8.3: State-Filtering Results for the Reduced Full-car Estimator. 

Road 

No. 

Description  Target 

Speed 

(mph) 

Name  SNR 

Reduced 

Full­car 

EKF 

StDev  

EKF 

Mass 

Error 

UKF 

StDev  

UKF 

Mass 

Error 

1  Rough Dirt  10  Light10  23.6114  21.1  8.9%  21.5  8.9% 

2  Rough Dirt  5  Light5  18.4218  33.9  3.7%  32.3  3.1% 

3  Rough Dirt  10  PL10  16.9782  19.2  2.8%  19.4  2.7% 

4  Rough Dirt  15  Light15  15.0068  18.2  15%  18.6  15% 

5  Rough Dirt  3  Light2  13.7319  49.3  6.5%  46.9  5.7% 

6  Rough Dirt  5  PL5  12.6351  29.2  0.94%  28.3  1.6% 

7  Rough Dirt  5  NCparking  12.1297  65  0.19%  60.6  1.5% 

8  Rough Dirt  15  PL15  12.0064  22.5  8.1%  21.7  7.6% 

9  Rough Dirt  3  PL2  10.1264  45.7  0.67%  43.4  0.79% 

10  Rough Dirt  10  hvnew10  8.679  82.7  6.6%  85.6  4.5% 

11  Paved  30  LoopValid  8.0943  37.5  1.1%  34.9  0.27% 

12  Smooth Dirt  15  ltlll15  7.2456  71.8  1.4%  68  4.3% 

13  Paved  30  NearGR  6.7477  66.7  6.8%  59.8  2.8% 

14  Smooth Dirt  15  hvlll15  6.2971  76.4  5.4%  71.6  8.2% 

15  Smooth Dirt  10  ltlll10  5.7535  95.2  1.0%  111  0.72% 

16  Paved  70  Free696  5.7086  42.6  15%  49.6  25% 

17  Rough Dirt  5  hvnew5  5.6219  97.8  1.7%  118  1.3% 

18  Smooth Dirt  10  hvjoy10  5.0007  94.2  7.9%  108  9.0% 

19  Paved  30  NeGR3800  4.5858  35.8  6.1%  35  7.2% 

20  Rough Paved  30  LtFullGas  4.2848  46.7  9.0%  42.6  6.4% 
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Road 

No. 

Description  Target 

Speed 

(mph) 

Name  SNR 

Reduced 

Full­car 

EKF 

StDev  

EKF 

Mass 

Error 

UKF 

StDev  

UKF 

Mass 

Error 

21  Smooth Dirt  10  hvlll10  4.24  101  4.2%  125  3.6% 

22  Paved  35  OW2Brick  4.2164  49.9  3.8%  46.7  2.1% 

23  Smooth Dirt  20  ltlll20  3.7439  84.02  4.5%  82.9  3.2% 

24  Paved  70  FreeNew  3.4469  27.4  11%  430  1355% 

25  Paved  70  I23ply2sal  3.1145  104.1  10%  336  55.6% 

26  Paved/Dirt  50  PontWar  2.9586  47.8  6.4%  218  119% 

27  Rough Dirt  35  CFB2F  2.5737  143  31%  411  204% 

28  Rough Dirt  15  hvnew15  2.5283  116.2  13%  311  96.9% 

29  Rough Paved  30  GR3800  2.439  51.9  5.5%  47.7  3.2% 

30  Smooth Dirt  25  ltlll25  2.109  120.3  9.5%  406  312% 

31  Smooth Dirt  20  hvlll20  1.7685  105  2.4%  340  153% 

32  Smooth Dirt  25  FLkRdNrth  1.1677  183  44%  265  266% 

33  Paved/Dirt  50  InSaline  1.1436  86.6  130%  240  392% 

34  Rough Dirt  20  hvnew20  1.1291  172.3  21%  459  224% 

35  Rough Dirt  25  hvnew25  1.0088  53.61  7.4%  544  9500% 

36  Smooth Dirt  25  hvlll25  0.9013  124.7  20%  472  3854% 

37  Rough Dirt  30  hvnew30  0.6347  85.7  14%  548  515% 

38  Rough Dirt  20  N2BonC20 0.5571  110.1  48%  535  2329% 

39  Rough Dirt  30  B2N30  0.394  141.1  34%  550  1510% 

40  Rough Dirt  45  N2BonC45 0.2696  116  160%  538  5483% 
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Figure 8.13: Convergence of EKF, UKF, and Particle filter for Road No. 1. 

 

Figure 8.14: Convergence of EKF, UKF, and Particle filter for Road No. 11. 
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8.4.2 Discussion of Results 

The first objective was to address the question, “How well do the mass estimation 

techniques that use state-filtering perform?”  Comparing Table 8.3 with Table 8.2 shows 

that whenever the EKF or UKF algorithm estimated the mass successfully within the 

acceptable 10% error range, then so did the polynomial chaos methods.  Also, the 

polynomial chaos algorithms calculated estimates within the acceptable 10% error range 

for Road No. 24, 27, 28, and 37; the EKF and UKF algorithms failed in these cases.  The 

UKF algorithm also failed for Road No. 25, 26, 30, 31, and 35 whereas the EKF and 

polynomial chaos approaches were successful for these experiments. 

The second question was, “Does a low estimator variance indicate good filter 

performance, i.e., mass estimate within the acceptable 10% error range?”  Table 8.3 

shows that an estimator standard deviation less than 106 kilograms corresponded to an 

EKF success rate of 84% (26 successes out of 31 predicted successes). An estimator 

standard deviation below 130 kilograms corresponded to a UKF success rate of 92% (22 

successes out of 24 predicted successes). 

Based on these results, this section concludes that the performance of the EKF 

and UKF was less accurate than the polynomial chaos methods for the vehicle mass 

estimation problem.  It also concludes that the estimator standard deviation is a good 

indicator of estimator success based on the 84% success rate for the EKF and 92% 

success rate for the UKF. 

This dissertation does not recommend the particle filter for mass estimation due to 

its high computational demand and low repeatability compared with the EKF and UKF in 

the experiments of this section. 
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8.5 Conclusions 

The experimental results of this chapter demonstrate that the proposed method 

which joins polynomial chaos estimators with base excitation models is viable for vehicle 

sprung mass estimation for vehicles driving on rough (and smooth) terrain.  No prior 

knowledge of the terrain profile was required, and no active/semi-active suspension was 

required.  The polynomial chaos approach was compared with regressor model 

approaches and filtering approaches.  The regressor methods are concluded as not 

appropriate for this sprung mass estimation approach because of their sensitivity to tuning 

parameters.  The polynomial chaos technique had a success rate of 94% whereas the EKF 

had a success rate of 84% and the UKF had a success rate of 92%.  Based on these 

results, this chapter concludes that the polynomial chaos approach is best suited for the 

vehicle mass estimation problem of this dissertation. 

The experimental results also demonstrated that the signal-to-noise ratio 

calculated iteratively by the polynomial chaos estimator is a good indicator of estimator 

success (94% of the time).  For the filtering methods, the estimated variance of the mass 

estimate was a good (84% for EKF and 92% for UKF) indicator of estimator success. 
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Chapter 9 

Conclusions 

This dissertation has addressed recursive parameter estimation of state space 

systems using polynomial chaos theory applied to vehicle mass estimation for rough 

terrain.  It reviewed the scientific literature that addresses state space estimators based on 

polynomial chaos theory and has proposed novel maximum likelihood and Bayesian 

estimation algorithms.  This dissertation also reviewed the vehicle mass estimation 

literature and has proposed novel approaches that rely on base excitation modeling of 

vertical vehicle dynamics.  The unique concepts of this dissertation which join this 

dissertation’s estimators and base excitation modeling concepts provide a solution to 

sprung mass estimation of vehicles traversing rough terrain that was successful 94% of 

the time (only two false positives out of 31 predicted successes).  The estimator that 

combined the extended Kalman filter (EKF) with the base excitation models was 

successful 84% of the time (four false positives out of 31 predicted successes), and the 

estimator based on the unscented Kalman filter was successful 92% of the time (two false 

positives out of 24 predicted successes). 

This dissertation has successfully demonstrated the proposed polynomial chaos 

based estimation algorithms in an experimental setting.  It has validated its proposed base 

excitation models of vehicle ride dynamics against experimental data.  The combination 

of the base excitation modeling and the polynomial chaos estimators provides a viable 

solution to the vehicle mass estimation problem for rough terrain. 
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Appendices 

Appendix A1 

Treatment of Unknown Initial Conditions in Polynomial Chaos Estimation 

The development of the polynomial chaos estimators of Chapters 4 and 5 assumes 

that the initial conditions are either known or estimated as part of the estimation routine.  

This assumption may be relaxed in special cases; if the underlying dynamic equations are 

asymptotically stable for all possible realizations of the unknown parameters, the effect 

of initial conditions may become negligible as time progresses.  This appendix provides a 

sketch of the proof for linear systems that are asymptotically stable and time-invariant.  

Specifically, this appendix proves that the contribution of the initial conditions on the 

objective function is bounded.  Then based on an intuitive argument it conjectures that 

the objective function tends to infinity as time increases.  Hence the effect of the initial 

conditions on the estimate becomes negligible. 

The development assumes that the input signal satisfies some type of persistent 

excitation requirement.  E.g., if the initial conditions and excitation source are both zero, 

the dynamics of the system will not be excited, and any realization of ߦመ௞ will satisfy 

መ௞ߦ ൌ argminక  ሻ.  Since this appendix assumes the initial conditions are unknown, theߦ௞ሺܬ

input signal must be persistently exciting in some sense.  Similar persistent excitation 

requirements are common for other estimation algorithms to guarantee that the estimate is 
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unique (e.g., see Section 5.2 of (Ioannou and Sun, 1996)).  Another assumption that this 

appendix makes is that the input signal is bounded. 

Consider the following linear, time-invariant state and output equations in which 

the matrices ܣ௖ א Թ௡ೞൈ௡ೞ, ܤ௖ א Թ௡ೞൈ௡ೠ, and ܥ א Թ௡೤ൈ௡ೞ may be functions of the 

unknown polynomial chaos vector ߦ א Թ௡೛: 

,ݐሶሺݔ ሻߦ ൌ ,ݐሺݔ௖ܣ ሻߦ ൅  ሻݐሺݑ௖ܤ

௞ݕ ൌ ,௞ݐሺݔܥ ሻߦ ൅  .௞ݒ
(A1.1)

The state vector is ݔሺݐ, ሻߦ א Թ௡ೞ, and ݑሺݐሻ א Թ௡ೠ is the input vector.  The 

discrete-time output vector is ݕ௞ א Թ௡೤.  The true output response of the system is 

,ݐሺݔܥ  ௞ is corrupted by the additive Gaussianݕ ሻ, however the measured output signalߦ

noise sequence ݒ௞ א Թ௡೤.    The noise sequence ݒ௞, ݇ ൌ 0,1, … is zero mean with 

positive definite covariance matrix ܴ௞ א Թ௡೤ൈ௡೤. 

 Because the system of Equation (A1.1) is asymptotically stable for all 

realizations of ߦ, applying the Galerkin projection (see Section 4.1.1) to Equation (A1.1) 

results in an asymptotically stable, (higher order) deterministic set of state equations with 

stochastic output equations which can be written as follows: 

ሶܺ ሺݐሻ ൌ ሻݐሺܺܣ ൅  ሻݐሺݑܤ

ො௞ݕ ൌ  .௞ሻݐሻܺሺߦመԶሺܥ
(A1.2)

Here, ݔሺݐ௞, ሻߦ ൌ Զሺߦሻܺሺݐ௞ሻ follows from Equation (4.14) of Chapter 4.  The 

eigenvalues of the matrix ܣ א Թ௡ೞ௥ൈ௡ೞ௥ (which is not a function of ߦ) all have negative 

real parts; the matrix ܤ א Թ௡ೞ௥ൈ௡ೠ is not a function of ߦ.  The term ݕො௞ א Թ௡೤ is an 

approximation of the output ݕ௞, and ܥመ א Թ௡೤ൈ௡ೞ (which may be a function of ߦ) is an 
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approximation of ܥ.  Because the state equations of (A1.2) are deterministic and time-

invariant, its solution is given by (see Section 4.2 of (Chen, 1999)): 

ܺሺݐሻ ൌ expሼݐܣሽ ܺሺ0ሻ ൅ න expሼܣሺݐ െ ߬ሻሽ
௧

଴
ሺ߬ሻ݀߬. (A1.3)ݑܤ

If the initial conditions ݔሺ0ሻ for (A1.1) were known, then the best choice of the 

initial conditions ܺሺ0ሻ for (A1.2) could be determined as a function of ݔሺ0ሻ.  However, 

this development assumes that the initial conditions ݔሺ0ሻ are unknown, and hence ܺሺ0ሻ 

is user-selected (and known).  Using (A1.3), the output equation of (A1.2) can be written 

as follows: 

ො௞ݕ ൌ ො௞ݕ
ሺ௛ሻ ൅ ො௞ݕ

ሺ௙ሻ 

ො௞ݕ
ሺ௛ሻ ൌ ሻߦመԶሺܥ expሼݐܣ௞ሽ ܺሺ0ሻ, 

ො௞ݕ
ሺ௙ሻ ൌ ሻߦመԶሺܥ න expሼܣሺݐ௞ െ ߬ሻሽ

௧ೖ

଴
 .ሺ߬ሻ݀߬ݑܤ

(A1.4)

The measured system output ݕ௞ can be written in a similar manner: 

௞ݕ ൌ ௞ݕ
ሺ௛ሻ ൅ ௞ݕ

ሺ௙ሻ 

௞ݕ
ሺ௛ሻ ൌ ܥ expሼܣ௖ݐ௞ሽ  ,ሺ0ሻݔ

௞ݕ
ሺ௙ሻ ൌ ܥ න expሼܣ௖ሺݐ௞ െ ߬ሻሽ

௧ೖ

଴
ሺ߬ሻ݀߬ݑ௖ܤ ൅  .௞ݒ

(A1.5)

The superscripts ݄ and ݂ denote the homogenous (or non-forced) and forced 

responses respectively.  The initial conditions, ݔሺ0ሻ and ܺሺ0ሻ appear only in the 

homogenous responses.  The proof that the effect of initial conditions on the parameter 

estimates becomes negligible as time progresses will follow from showing that the 

homogenous responses converge to zero exponentially in time.  Then, as time progresses, 
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the effect of the homogenous response becomes negligible and hence the effect of initial 

conditions also becomes negligible. 

The following development assumes that the eigenvalues of the matrices ܣ௖ and ܣ 

are all distinct so that ܣ௖ and ܣ can be written in diagonal form.  (This development can 

be extended to the general case by using the Jordan form instead of the diagonal form for 

the matrices ܣ௖ and ܣ.)  Then these matrices have the following diagonal form (see 

Section 3.5 of (Chen, 1999)): 

௖ܣ ൌ ௖ܯ௖Λ௖ܯ
ିଵ 

ܣ ൌ  .ଵିܯΛܯ
(A1.6)

Here, Λ௖ א ԧ௡ೞൈ௡ೞ is a diagonal matrix containing the eigenvalues of ܣ௖ as the 

diagonal entries, and Λ א ԧ௡ೞ௥ൈ௡ೞ௥ is a diagonal matrix containing the eigenvalues of ܣ as 

the diagonal entries.  The matrices ܯ௖ א ԧ௡ೞൈ௡ೞ and ܯ א ԧ௡ೞ௥ൈ௡ೞ௥ are composed of 

eigenvectors of ܣ௖ and ܣ respectively.  Using (A1.6), the homogenous responses ݕ௞
ሺ௛ሻ and 

ො௞ݕ
ሺ௛ሻ can be written as follows: 

௞ݕ
ሺ௛ሻ ൌ ܥ expሼܯ௖Λ௖ܯ௖

ିଵݐ௞ሽ  ሺ0ሻݔ

ො௞ݕ
ሺ௛ሻ ൌ ሻߦመԶሺܥ expሼܯΛିܯଵݐ௞ሽ ܺሺ0ሻ. 

(A1.7)

Then using a series expansion of the exponential function and also using the fact 

that ݐ௞ is a scalar variable, ݕ௞
ሺ௛ሻ can be written as 

௞ݕ
ሺ௛ሻ ൌ ܥ ൭෍

ሺܯ௖Λ௖ܯ௖
ିଵሻ௡ݐ௞

௡

݊!

ஶ

௡ୀ଴

൱ ሺ0ሻ (A1.8)ݔ
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Note that ሺܯ௖Λ௖ܯ௖
ିଵሻ௡ ൌ ሺܯ௖Λ௖ܯ௖

ିଵሻሺܯ௖Λ௖ܯ௖
ିଵሻሺܯ௖Λ௖ܯ௖

ିଵሻ ڮ ൌ ௖Λ௖ܯ
௡ܯ௖

ିଵ, 

and since ܯ௖ is not a function of ݊, it can be moved outside the series expansion, then 

௞ݕ
ሺ௛ሻ and ݕො௞

ሺ௛ሻ can be written as follows: 

௞ݕ
ሺ௛ሻ ൌ ௖ܯܥ ൭෍

Λ௖
௡ݐ௞

௡

݊!

ஶ

௡ୀ଴

൱ ௖ܯ
ିଵݔሺ0ሻ ൌ ௖ܯ௞ሽݐ௖expሼΛ௖ܯܥ

ିଵݔሺ0ሻ 

ො௞ݕ
ሺ௛ሻ ൌ  ଵܺሺ0ሻିܯ௞ሽݐexpሼΛܯሻߦመԶሺܥ

(A1.9)

Because all of the entries of Λ௖ and Λ have negative real parts, each entry of the 

matrices expሼΛݐ௞ሽ and expሼΛ௖ݐ௞ሽ converge to zero at an exponential rate as time 

progresses.  Therefore, ݕ௞
ሺ௛ሻ and ݕො௞

ሺ௛ሻ also converge to zero at an exponential rate as time 

progresses.  Due to the persistent excitation property of the input signal, the effect of the 

initial conditions becomes negligible in the complete responses ݕ௞ and ݕො௞ as time 

increases. 

The objective function of Equation (4.19) can be written in terms of the 

homogeneous and forced responses: 

ሻߦ௞ሺܬ ൌ
1
2 ෍ ൬ݕఛ

ሺ௛ሻ ൅ ఛݕ
ሺ௙ሻ െ ቀݕොఛ

ሺ௛ሻ ൅ ොఛݕ
ሺ௙ሻቁ൰

்
ܴఛ

ିଵ ൬ݕఛ
ሺ௛ሻ ൅ ఛݕ

ሺ௙ሻ
௞

ఛୀ଴

െ ቀݕොఛ
ሺ௛ሻ ൅ ොఛݕ

ሺ௙ሻቁ൰ 

ൌ ሺ௛ሻܬ ൅ ሺ௛,௙ሻܬ ൅  ሺ௙ሻܬ

ሺ௛ሻܬ ؔ
1
2 ෍ቀݕఛ

ሺ௛ሻ െ ොఛݕ
ሺ௛ሻቁ

்
ܴఛ

ିଵቀݕఛ
ሺ௛ሻ െ ොఛݕ

ሺ௛ሻቁ
௞

ఛୀ଴

 

ሺ௛,௙ሻܬ ؔ
1
2 ෍ቀݕఛ

ሺ௛ሻ െ ොఛݕ
ሺ௛ሻቁ

்
ܴ௞

ିଵ ቀݕఛ
ሺ௙ሻ െ ොఛݕ

ሺ௙ሻቁ
௞

ఛୀ଴

 

(A1.10)
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ሺ௙ሻܬ ؔ
1
2 ෍ ቀݕఛ

ሺ௙ሻ െ ොఛݕ
ሺ௙ሻቁ

்
ܴఛ

ିଵ ቀݕఛ
ሺ௙ሻ െ ොఛݕ

ሺ௙ሻቁ
௞

ఛୀ଴

 

Using (A1.9), the terms ܬሺ௛ሻ and ܬሺ௛,௙ሻ are functions of the initial conditions; the 

term ܬሺ௙ሻ is not a function of the initial conditions.  The remainder of the proof requires 

showing that ܬሺ௛ሻ and ܬሺ௛,௙ሻ are convergent, and hence their effect is limited, whereas ܬሺ௙ሻ 

goes to infinity as time progresses to infinity. 

This appendix first shows that ܬሺ௛ሻ converges to a finite value.  Given any two 

vectors ݓ, ݖ א Թ௡೤ and the (positive definite) inverse covariance matrix ܴ௞
ିଵ, the inner 

product ݓۃ, ۄݖ ؔ ௞்ܴݓ
ିଵݖ on the vector space Թ௡೤ defines an inner product space in 

which the Cauchy-Schwartz and triangle inequalities apply.  The purely homogenous part 

 :ሺ௛ሻ of the objective function can be written in terms of this inner product as followsܬ

ሺ௛ሻܬ ൌ
1
2 ෍ݕۃఛ

ሺ௛ሻ െ ොఛݕ
ሺ௛ሻ, ఛݕ

ሺ௛ሻ െ ොఛݕ
ሺ௛ሻۄ

௞

ఛୀ଴

. (A1.11)

Then by the triangle inequality, the following condition holds: 

ሺ௛ሻܬ ൑
1
2 ෍ݕۃఛ

ሺ௛ሻ, ఛݕ
ሺ௛ሻۄ ൅ ොఛݕۃ

ሺ௛ሻ, ොఛݕ
ሺ௛ሻۄ ൅ 2

௞

ఛୀ଴

ቀݕۃఛ
ሺ௛ሻ, ఛݕ

ሺ௛ሻۄቁ
ଵ/ଶ

ቀݕۃොఛ
ሺ௛ሻ, ොఛݕ

ሺ௛ሻۄቁ
ଵ/ଶ

. (A1.12)

Breaking this inequality into three terms will simplify the development. 

ሺ௛ሻܬ ൑ ሺ௛ሻ,ଵܬ ൅ ሺ௛ሻ,ଶܬ ൅  ሺ௛ሻ,ଷܬ

ሺ௛ሻ,ଵܬ ؔ
1
2 ෍ݕۃఛ

ሺ௛ሻ, ఛݕ
ሺ௛ሻۄ

௞

ఛୀ଴

 

ሺ௛ሻ,ଶܬ ؔ
1
2 ෍ݕۃොఛ

ሺ௛ሻ, ොఛݕ
ሺ௛ሻۄ

௞

ఛୀ଴

 

ሺ௛ሻ,ଷܬ ؔ ෍ቀݕۃఛ
ሺ௛ሻ, ఛݕ

ሺ௛ሻۄቁ
ଵ
ଶቀݕۃොఛ

ሺ௛ሻ, ොఛݕ
ሺ௛ሻۄቁ

ଵ
ଶ

௞

ఛୀ଴

 

(A1.13)
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The process for showing that the first two terms, ܬሺ௛ሻ,ଵ and ܬሺ௛ሻ,ଶ, are convergent 

is identical for both terms, and so this appendix will only show that the first and third 

terms, ܬሺ௛ሻ,ଵ and ܬሺ௛ሻ,ଷ, are convergent. Using (A1.9), the product ݕۃ௞
ሺ௛ሻ, ௞ݕ

ሺ௛ሻۄ becomes: 

௞ݕۃ
ሺ௛ሻ, ௞ݕ

ሺ௛ሻۄ ൌ ൫ܯܥ௖ expሼΛ௖ݐ௞ሽ ௖ܯ
ିଵݔሺ0ሻ൯்ܴ௞

ିଵ൫ܯܥ௖ expሼΛ௖ݐ௞ሽ ௖ܯ
ିଵݔሺ0ሻ൯ (A1.14)

Let ߣ௖ ൏ 0 be the real part of the slowest decaying eigenvalue of Λ௖, and let 1௡ೞ 

be a unitary column vector of length ݊௦ (all elements equal to one).  Finally, let ܽ௖ ൐ 0 be 

chosen such that ܽ௖ ൒ ൫1ܥ௡ೞ൯்ܴ଴
ିଵ൫1ܥ௡ೞ൯.  Note that the actual (fixed) value for ܽ௖ does 

not need to be known; the only requirement is that ܽ௖ exists and is finite.  Then the 

following inequalities hold: 

௞ݕۃ
ሺ௛ሻ, ௞ݕ

ሺ௛ሻۄ ൑ ܽ௖ expሼ2ߣ௖ݐ௞ሽ, 

ሺ௛ሻ,ଵܬ ൑
ܽ௖

2 ෍ expሼ2ߣ௖ݐఛሽ
௞

ఛୀ଴

. 
(A1.15)

Assuming a uniform sampling period Δݐ ൌ ௞ݐ െ  ௞ିଵ, the last inequality inݐ

(A1.15) can be written: 

ሺ௛ሻ,ଵܬ ൑
ܽ௖

2Δݐ ෍ expሼ2ߣ௖ݐఛሽ Δݐ
௞

ఛୀ଴

൏
ܽ௖

2Δݐ න expሼ2ߣ௖߬ሽ ݀߬
௧ೖ

௧షభ

. (A1.16)

The fact that the last inequality in (A1.16) holds can be seen from Figure A1.1.  

For a more formal proof, see Theorem 123 on pages 600-601 of (Garner, 2002).  

Therefore, if the integral in (A1.16) has a well defined solution in the limit as ݇ ՜ ∞, the 

series in (A1.16) also converges to a finite number that provides an upper bound for 

ଵିݐ ሺ௛ሻ,ଵ.  Noting thatܬ ൌ െΔݐ, the limiting solution to the integral in (A1.16) is as 

follows: 
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lim
௞՜ஶ

ܽ௖

2Δݐ න expሼ2ߣ௖߬ሽ ݀߬
௧ೖ

௧షభ

ൌ െ
ܽ௖

ݐ௖Δߣ4 expሼെ2ߣ௖Δݐሽ. (A1.17)

The limit exists and is finite, and thus ܬሺ௛ሻ,ଵ also converges to a finite value. 

The process for showing that ܬሺ௛ሻ,ଶ also converges to a finite value is identical to 

the argument for ܬሺ௛ሻ,ଵ, and so it is not shown here.  Next, this appendix shows that ܬሺ௛ሻ,ଷ 

is convergent.  This development has already shown that ݕۃ௞
ሺ௛ሻ, ௞ݕ

ሺ௛ሻۄ ൑ ܽ௖ expሼ2ߣ௖ݐ௞ሽ.  

By a similar argument, ݕۃො௞
ሺ௛ሻ, ො௞ݕ

ሺ௛ሻۄ ൑ ܽ expሼ2ݐߣ௞ሽ.  Here ߣ ൏ 0 is the real part of the 

slowest decaying eigenvalue of Λ, and ܽ ൐ 0 satisfies 

ܽ ൒ ൫ܥመԶሺߦሻ1௡ೞ௥൯்ܴ଴
ିଵ൫ܥመԶሺߦሻ1௡ೞ௥൯ for all possible realizations of ߦ (this assumes that 

 :Then the following inequality holds  .(ߦ ሻ is finite for allߦመԶሺܥ

ሺ௛ሻ,ଷܬ ൑ ෍ሺܽ௖ expሼ2ߣ௖ݐఛሽሻ
ଵ
ଶሺܽ expሼ2ݐߣఛሽሻ

ଵ
ଶ

௞

ఛୀ଴

ൌ ෍൫ඥܽ௖ expሼߣ௖ݐఛሽ൯൫√ܽ expሼݐߣఛሽ൯
௞

ఛୀ଴

ൌ
ඥܽ௖ܽ

Δݐ ෍ሺexpሼሺߣ௖ ൅ ݐఛሽሻΔݐሻߣ
௞

ఛୀ଴

൏
ඥܽ௖ܽ

Δݐ න expሼሺߣ௖ ൅ ሻ߬ሽߣ ݀߬
௧ೖ

௧షభ

 

(A1.18)

In the limit as ݇ ՜ ∞, the integral in (A1.18) is finite, thus bounding the term 

 ሺ௛ሻ of the objective function converges to aܬ ሺ௛ሻ,ଷ.  Therefore the purely homogenous partܬ

finite value as time progresses.  The goal of this appendix now is to show that ܬሺ௛,௙ሻ also 

converges to a finite limit in time.  The function ܬሺ௛,௙ሻ can be written in terms of the inner 

product (defined above) as follows: 

ሺ௛,௙ሻܬ ൌ
1
2 ෍ ఛݕۃ

ሺ௛ሻ െ ොఛݕ
ሺ௛ሻ, ఛݕ

ሺ௙ሻ െ ොఛݕ
ሺ௙ሻۄ

௞

ఛୀ଴

 (A1.19)
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An asymptotically stable, linear time-invariant system with a bounded input 

signal has a bounded output response (see pages 121-132 of (Chen, 1999), also note that 

this assumes that the noise sequence ݒ௞ is bounded).  Let ܾ௖ ൐ 0 and ܾ ൐ 0 be the 

bounds on the outputs ݕ௞
ሺ௙ሻ and ݕො௞

ሺ௙ሻ respectively, i.e. |ݕ௞
ሺ௙ሻ| ൑ ܾ௖ and |ݕො௞

ሺ௙ሻ| ൑ ܾ.  Then 

the following inequality holds: 

หܬሺ௛,௙ሻห ൑
1
2 ෍ ఛݕቚۃ

ሺ௛ሻቚ ൅ ቚݕොఛ
ሺ௛ሻቚ, ቚݕఛ

ሺ௙ሻቚ ൅ ቚݕොఛ
ሺ௙ሻቚۄ

௞

ఛୀ଴

ൌ
ሺܾ௖ ൅ ܾሻ

2 ෍ቚݕఛ
ሺ௛ሻቚ ൅ ቚݕොఛ

ሺ௛ሻቚ
௞

ఛୀ଴

 (A1.20)

In (A1.20), ቚݕ௞
ሺ௛ሻቚ ൑ ඥܽ௖ expሼߣ௖ݐ௞ሽ and ቚݕො௞

ሺ௛ሻቚ ൑ √ܽ expሼݐߣ௞ሽ using the 

arguments and definitions above.  Hence, หܬሺ௛,௙ሻห satisfies the following inequality: 

 

Figure A1.1: The area under ࢖࢞ࢋሼ૛࢚ࢉࣅሽ from ࢚ି૚ to ࢚࢑ is greater than ∑ ሽઢ࢚࢑࢚࣎ࢉࣅሼ૛ܘܠ܍
࣎ୀ૙ . 

2 cte λ

2 cte λ
shifted by Δt

Δt
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หܬሺ௛,௙ሻห ൑
ሺܾ௖ ൅ ܾሻ

2 ෍ ඥܽ௖ expሼߣ௖ݐఛሽ ൅ √ܽ expሼݐߣఛሽ
௞

ఛୀ଴

൑
ሺܾ௖ ൅ ܾሻ

2Δݐ ቆඥܽ௖ න expሼߣ௖߬ሽ ݀߬
௧ೖ

௧షభ

൅ √ܽ න expሼ߬ߣሽ ݀߬
௧ೖ

௧షభ

ቇ 

(A1.21)

Both integrals are bounded as ݇ ՜ ∞ and thus ܬሺ௛,௙ሻ is also bounded.   

For the final part of the proof, this appendix shows that the expected value of the 

objective function, ܧሼlim௞՜ஶ ܬ௞൫ߦመ௞൯ሽ, tends to infinity.  Then the effect of the 

homogenous response, and hence the effect of the unknown initial conditions, becomes 

negligible.  The expected cost ܧሼܬ௞൫ߦመ௞൯ሽ can be written as follows: 

መ௞൯ൟߦ௞൫ܬ൛ܧ ൌ መ௞൯ൟߦ௞ିଵ൫ܬ൛ܧ ൅  ,መ௞൯ൟߦ௞൫ܦ൛ܧ

መ௞൯ߦ௞൫ܦ ؔ ௞ݕۃ െ ,መ௞൯ߦො௞൫ݕ ௞ݕ െ  ۄመ௞൯ߦො௞൫ݕ
(A1.22)

This appendix assumes that ܧ൛ܦ௞ାଵ൫ߦመ௞ାଵ൯ൟ ൒  መ௞൯ൟ based on the followingߦ௞൫ܦ൛ܧ

intuition. The estimate ߦመ௞ାଵ ൌ argminక መ௞ߦ ሻ has all of the constraints thatߦ௞ାଵሺܬ ൌ

argminక ሻߦ௞ሺܬ መ௞ାଵ must minimizeߦ ሻ has plus one more becauseߦ௞ሺܬ ൅   .ሻߦ௞ାଵሺܦ

Therefore, the set of all possible realizations of ߦ that minimize ܧ൛ܦ௞ାଵ൫ߦመ௞ାଵ൯ൟ is smaller 

than the set of all possible realizations of ߦ that minimize ܧ൛ܦ௞൫ߦመ௞൯ൟ.  I.e., ߦመ௞ାଵ has less 

flexibility to minimizeܧ൛ܦ௞ାଵ൫ߦመ௞ାଵ൯ൟ than ߦመ௞ has to minimize ܧ൛ܦ௞൫ߦመ௞൯ൟ, therefore, 

መ௞ାଵ൯ൟߦ௞ାଵ൫ܦ൛ܧ ൒ መ௞൯ൟ. (A1.23)ߦ௞൫ܦ൛ܧ

Equality in (A1.23), i.e. ܧ൛ܦ௞ାଵ൫ߦመ௞ାଵ൯ൟ ൌ  መ௞൯ൟ, is only possible whenߦ௞൫ܦ൛ܧ

መ௞ାଵߦ ൌ  :መ௞.  In that caseߦ

መ௞ାଵ൯ൟߦ௞ାଵ൫ܦ൛ܧ ൌ መ௞൯ൟߦ௞ାଵ൫ܦ൛ܧ ൒ ݊௬. (A1.24)

The proof of the inequality in (A1.24) is as follows.  By assumption, the noise 

sequence ݒఛ, ߬ ൌ 0, … , ݇ is independent of the dynamics of the system.  The estimate ߦመ௞ 
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(and hence ݕො௞ሻ is a function of ݒఛ, ߬ ൌ 0, … , ݇ since it minimizes ܬ௞ሺߦሻ, but ݒ௞ାଵ and ߦመ௞ 

are mutually independent.  Let ݕො௞ାଵ൫ߦመ௞൯ ൌ ௞ݕ
ሺ௛ሻ ൅ ௞ݕ

ሺ௙ሻ ൅ Δ୩൫ߦመ௞൯ where Δ୩൫ߦመ௞൯ ؔ

መ௞൯ߦො௞ାଵ൫ݕ െ ቀݕ௞
ሺ௛ሻ ൅ ௞ݕ

ሺ௙ሻቁ.   The following holds: 

௞ାଵݕۃ൛ܧ െ ,መ௞൯ߦො௞ାଵ൫ݕ ௞ାଵݕ െ ൟۄመ௞൯ߦො௞ାଵ൫ݕ

ൌ ௞ାଵݒۃሼܧ െ Δ୩, ௞ାଵݒ െ Δ୩ۄሽ

ൌ ,௞ାଵݒۃሼܧ ሽۄ௞ାଵݒ ൅ ,Δ୩ۃሼܧ Δ୩ۄሽ െ ,௞ାଵሽݒሼܧۃ2 ۄሼΔ୩ሽܧ

ൌ ,௞ାଵݒۃሼܧ ሽۄ௞ାଵݒ ൅ ,Δ୩ۃሼܧ Δ୩ۄሽ

ൌ ݊௬ ൅ ,Δ୩ۃሼܧ Δ୩ۄሽ

൒ ݊௬. 

(A1.25)

The second equality is satisfied because ݒ௞ାଵ and ݕො௞ାଵ൫ߦመ௞൯ are independent and 

hence ݒ௞ାଵ and Δ୩൫ߦመ௞൯ are independent.  The third equality holds because ܧሼݒ௞ାଵሽ ൌ 0.  

The fourth equality holds because ܧሼݒۃ௞ାଵ, ሽۄ௞ାଵݒ ൌ ݊௬ (see Appendix B of (Seghers)).  

The inequality follows from the definition of the inner product, and equality is only 

satisfied when Δ୩ ൌ 0. 

This appendix has shown that ܧ൛ܦ௞ାଵ൫ߦመ௞ାଵ൯ൟ ൒ min ሺ݊௬, ௞ߜ ൅  መ௞൯ൟሻߦ௞൫ܦ൛ܧ

where ߜ௞ ൐ 0 is defined as ߜ௞ ؔ መ௞ାଵ൯ൟߦ௞ାଵ൫ܦ൛ܧ െ  መ௞൯ൟ.  It follows from theߦ௞൫ܦ൛ܧ

previous sentence that ܧ൛ܦ௞ାଵ൫ߦመ௞ାଵ൯ൟ ൐ 0 for ݇ ൒ 1.  Now this appendix will show that 

መ௞ାଵ൯ൟߦ௞ାଵ൫ܬ൛ܧ ൒ ∑൛ܧ መఛ൯௞ାଵߦఛ൫ܦ
ఛୀ଴ ൟ, and because ܧ൛ܦ௞ାଵ൫ߦመ௞ାଵ൯ൟ ൒ መ௞൯ൟߦ௞൫ܦ൛ܧ ൐ 0 for 

݇ ൒    .መ௞൯ሽ tends to infinityߦ௞൫ܬ ሼlim௞՜ஶܧ ,1

First consider ܧ൛ܬଵ൫ߦመଵ൯ൟ: 

መଵ൯ൟߦଵ൫ܬ൛ܧ ൌ መଵ൯ൟߦ଴൫ܦ൛ܧ ൅ መଵ൯ൟߦଵ൫ܦ൛ܧ ൒ መ଴൯ൟߦ଴൫ܦ൛ܧ ൅ መଵ൯ൟ (A1.26)ߦଵ൫ܦ൛ܧ
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The inequality follows from the fact that ܧ൛ܦ଴൫ߦመ଴൯ൟ ൌ መ଴൯ൟߦ଴൫ܬ൛ܧ ൑  መଵ൯ൟߦ଴൫ܬ൛ܧ

since ߦመ଴ ൌ argminక  :መଶ൯ൟߦଶ൫ܬ൛ܧ ሻ.  Now considerߦ଴ሺܬ

መଶ൯ൟߦଶ൫ܬ൛ܧ ൌ መଶ൯ൟߦ଴൫ܦ൛ܧ ൅ መଶ൯ൟߦଵ൫ܦ൛ܧ ൅ መଶ൯ൟߦଶ൫ܦ൛ܧ

൒ መଵ൯ൟߦଵ൫ܬ൛ܧ ൅ መଶ൯ൟߦଶ൫ܦ൛ܧ

൒ መ଴൯ൟߦ଴൫ܦ൛ܧ ൅ መଵ൯ൟߦଵ൫ܦ൛ܧ ൅  መଶ൯ൟߦଶ൫ܦ൛ܧ

(A1.27)

The first inequality follows from the fact that ܧ൛ܬଵ൫ߦመଵ൯ൟ ൑  መଶ൯ൟ.  The secondߦଵ൫ܬ൛ܧ

inequality follows from (A1.26).  Continuing this process leads to the desired result: 

መ௞ାଵ൯ൟߦ௞ାଵ൫ܬ൛ܧ ൒ ∑൛ܧ መఛ൯௞ାଵߦఛ൫ܦ
ఛୀ଴ ൟ  where ܧ൛ܦ௞ାଵ൫ߦመ௞ାଵ൯ൟ ൒ መ௞൯ൟߦ௞൫ܦ൛ܧ ൐ 0.  Thus 

 .መ௞൯ሽ tends to infinity, and the proof is completeߦ௞൫ܬ ሼlim௞՜ஶܧ

In summary, this appendix has shown that the effect of initial conditions on the 

parameter estimates becomes negligible as time progresses to infinity under certain 

assumptions.  This result relaxes the requirement that the initial conditions must either be 

known or estimated by the algorithm.   

This appendix outlines a proof for linear time-invariant state equations.  The main 

observation that made the proof possible is the fact that the effect of initial conditions on 

the system’s output response eventually becomes negligible.  Based on this observation, 

this dissertation conjectures that the results of the above proof will apply for any dynamic 

system whose unforced response eventually becomes negligible.  In other words, this 

appendix conjectures that for all asymptotically stable systems, the effect of initial 

conditions on the parameter estimates obtained via polynomial chaos estimation will 

become negligible. 
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Appendix A2 

Implementation of Filters for Sprung Mass Estimation 

This appendix discusses the implementation of the filtering methods that this 

dissertation uses for vehicle mass estimation.  As Example (1) of Chapter 4 suggests, the 

filtering algorithms may in some cases be more difficult to tune than the polynomial 

chaos estimators of this dissertation.  This appendix first summarizes the filtering 

algorithms used by this dissertation and then discusses how the algorithms were tuned in 

order to produce the results presented in the experimental sections of this dissertation.  

Consider the following continuous-time state equation having a discrete-time 

output equation: 

ሻݐሶሺݔ ൌ ݂൫ݐ, ,ሻݐሺݔ ,ሻݐሺݑ  ሻ൯ݐሺݓ

௞ݕ ൌ ݄௞ሺݔሺݐ௞ሻ, ,௞ሻݐሺݑ  ௞ሻݒ
(A2.1)

The state vector ݔሺݐሻ א Թ௡ೞ has been extended to include the unknown 

parameters.  The input vector is ݑሺݐሻ א Թ௡ೠ and is assumed to be known at time ݐ, and 

the white process noise ݓሺݐሻ א Թ௡ೞ is zero mean with covariance matrix ܳሺݐሻ א Թ௡ೞൈ௡ೞ.  

The discrete-time output vector ݕ௞ א Թ௡೤ is distorted by the measurement noise sequence 

௞ݒ א Թ௡೤ which is zero mean with covariance matrix ܴ௞ א Թ௡೤ൈ௡೤.   
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A2.1  Hybrid Extended Kalman Filtering 

The hybrid Extended Kalman Filter (EKF) algorithm (see page 405 of (Simon, 

2006)) is as follows.  Integrate the following equations from time ݐ௞ିଵ to ݐ௞ to predict the 

state mean ݔො௞|௞ିଵ ൌ ௞ሻ and covariance ௞ܲ|௞ିଵݐොሺݔ ൌ ܲሺݐ௞ሻ א Թ௡ೞൈ௡ೞ.  

ොሶݔ ൌ ݂ሺݐ, ,ොݔ ,ݑ 0ሻ 

ሶܲ ൌ ܲܨ ൅ ்ܨܲ ൅  ்ܮܳܮ
(A2.2)

At time ݐ௞ିଵ the initial conditions are set as ݔොሺݐ௞ିଵሻ ൌ ௞ିଵሻݐො௞ିଵ|௞ିଵ and ܲሺݔ ൌ

௞ܲିଵ|௞ିଵ (at time ݐ଴, the initial conditions are ݔොሺݐ଴ሻ ൌ ଴ሻݐ଴ሻሽ and ܲሺݐሺݔሼܧ ൌ

ܧ ቄ൫ݔሺݐ଴ሻ െ ଴ሻݐሺݔ଴ሻ൯൫ݐොሺݔ െ ܨ ଴ሻ൯்ቅ).  The matricesݐොሺݔ א Թ௡ೞൈ௡ೞ and ܮ א Թ௡ೞൈ௡ೞ are 

defined as follows: 

ܨ ؔ
߲݂
ฬݔ߲

௫ොሺ௧ሻ,௨ሺ௧ሻ
 

ܮ ؔ
߲݂
ฬݓ߲

௫ොሺ௧ሻ,௨ሺ௧ሻ
. 

(A2.3)

Once the measurement ݕ௞ is available, the Kalman gain ܭ௞ א Թ௡ೞൈ௡೤ is 

calculated, and the predictions of the state mean and covariance are updated as follows: 

௞ܭ ൌ ௞ܲ|௞ିଵܪ௞
்൫ܪ௞ ௞ܲ|௞ିଵܪ௞

் ൅ ௞ܯ௞ܴ௞ܯ
்൯ିଵ

 

ො௞|௞ݔ ൌ ො௞|௞ିଵݔ ൅ ௞ܭ ቀݕ௞ െ ݄௞൫ݔො௞|௞ିଵ, ,௞ሻݐሺݑ 0൯ቁ 

௞ܲ|௞ ൌ ሺܫ െ ௞ሻܪ௞ܭ ௞ܲ|௞ିଵሺܫ െ ௞ሻ்ܪ௞ܭ ൅ ௞ܯ௞ܴ௞ܯ௞ܭ
௞ܭ்

் 

(A2.4)

The matrices ܪ௞ א Թ௡೤ൈ௡ೞ and ܯ௞ א Թ௡೤ൈ௡೤ are defined as follows: 

௞ܪ ؔ
߲݄௞

ݔ߲ ฬ
௫ොೖ|ೖషభ,௨ሺ௧ೖሻ

 (A2.5)
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௞ܯ ؔ
߲݄௞

௞ݒ߲
ฬ

௫ොೖ|ೖషభ,௨ሺ௧ೖሻ
 

Equations (A2.2) through (A2.5) have summarized the hybrid EKF algorithm.  In 

the vehicle mass estimation problems of this dissertation, the process and measurement 

noise sequences are assumed additive, so ܮ and ܯ௞ are identity matrices.  For the reduced 

full car model of Equations (7.29) and (7.30), the ܨ and ܪ௞ are found by analytically 

calculating the partial derivatives of the functions of Equations (7.29) and (7.30) 

respectively: 

ܨ ൌ

ۏ
ێ
ێ
ێ
ۍ

0 1

െ
2൫݇௙ ൅ ݇௥൯

ොଷݔ
െ

ොସݔ

ොଷݔ

0 0
2൫݇௙ ൅ ݇௥൯ݔොଵ ൅ ොଶݔොସݔ

ොଷݔ
ଶ െ

ොଶݔ

ොଷݔ
         0    0

       0  0
0 0
0 0 ے

ۑ
ۑ
ۑ
ې

 (A2.6)

௞ܪ ൌ ቈെ
2൫݇௙ ൅ ݇௥൯

ොଷݔ
െ

ොସݔ

ොଷݔ

2൫݇௙ ൅ ݇௥൯ݔොଵ ൅ ොଶݔොସݔ

ොଷݔ
ଶ െ

ොଶݔ

ොଷݔ
቉ (A2.7)

For the half-car model with the augmented equations of (7.31) and (7.32), the 

Jacobian matrices ܨ and ܪ௞ are given as follows noting that ܨ ൌ  ሺ௜,௝ሻ൧ܨൣ

ܨ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

0

െ ቆ
ܽ2

߶ܬ
൅

1
ො5ݔ

ቇ ݂݇

0

1

െ ቆ
ܽ2

߶ܬ
൅

1
ො5ݔ

ቇ ො6ݔ

0

0

ቆ
ܾܽ
߶ܬ

െ
1
ො5ݔ

ቇ ݎ݇

0

0

ቆ
ܾܽ
߶ܬ

െ
1
ො5ݔ

ቇ ො7ݔ

1

ቆ
ܾܽ
߶ܬ

െ
1
ො5ݔ

ቇ ݂݇

0
0

ቆ
ܾܽ
߶ܬ

െ
1
ො5ݔ

ቇ ො6ݔ

0
0

െ ቆ
ܾ2

߶ܬ
൅

1
ො5ݔ

ቇ ݎ݇

0
0

െ ቆ
ܾ2

߶ܬ
൅

1
ො5ݔ

ቇ ො7ݔ

0
0

0 0 0                         0

 ڮ
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0
݇௙ݔොଵ ൅ ොଶݔො଺ݔ ൅ ݇௥ݔොଷ ൅ ොସݔො଻ݔ

ොହݔ
ଶ

0

0

െ ቆ
ܽ2

߶ܬ
൅

1
ො5ݔ

ቇ ො2ݔ

0

0

ቆ
ܾܽ
߶ܬ

െ
1
ො5ݔ

ቇ ො4ݔ

0
݇௙ݔොଵ ൅ ොଶݔො଺ݔ ൅ ݇௥ݔොଷ ൅ ොସݔො଻ݔ

ොହݔ
ଶ

0
0

ቆ
ܾܽ
߶ܬ

െ
1
ො5ݔ

ቇ ො2ݔ

0
0

െ ቆ
ܾ2

߶ܬ
൅

1
ො5ݔ

ቇ ො4ݔ

0
0

0 0 0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

௞ܪ ൌ ቈቆ
ܾܽଶ െ ܽଷ

ܮథܬ െ
1
ොହݔ

ቇ ݇௙ ቆ
ܾܽଶ െ ܽଷ

ܮథܬ െ
1
ොହݔ

ቇ ො଺ݔ ቆ
ܽଶܾ െ ܾଷ

ܮథܬ െ
1
ොହݔ

ቇ ݇௥ … 

ቆ
ܽଶܾ െ ܾଷ

ܮథܬ െ
1
ොହݔ

ቇ ො଻ݔ
݇௙ݔොଵ ൅ ොଶݔො଺ݔ ൅ ݇௥ݔොଷ ൅ ොସݔො଻ݔ

ොହݔ
ଶ ቆ

ܾܽଶ െ ܽଷ

ܮథܬ െ
1
ොହݔ

ቇ ොଶݔ  ڮ

ቆ
ܽଶܾ െ ܾଷ

ܮథܬ െ
1
ොହݔ

ቇ  ොସ቉ݔ

For the vehicle mass estimation problem, the EKF parameters ܲሺݐ଴ሻ, ݔොሺݐ଴ሻ, ܳሺݐሻ, 

and ܴ௞ are unknown and are treated as user specified tuning parameters.  Section A2.4 

will discuss how these parameters were selected.  The next section outlines the Unscented 

Kalman Filter (UKF). 

A2.2  Unscented Kalman Filtering 

The Unscented Kalman Filter (UKF) algorithm (see Chapter 14 of (Simon, 2006)) 

is provided in this section.  This section assumes that the noise sequences ݓሺݐሻ and ݒ௞ 

are additive, i.e., ݔሶ ൌ ݂ሺݐ, ,ݔ ሻݑ ൅ ௞ݕ and ݓ ൌ ݄௞ሺݔ, ሻݑ ൅  .௞ݒ

The UKF filter is initialized in the same way as the EKF: ݔො଴|଴ ൌ  ଴ሻሽ andݐሺݔሼܧ

଴ܲ|଴ ൌ ܧ ቄ൫ݔሺݐ଴ሻ െ ଴ሻݐሺݔො଴|଴൯൫ݔ െ ௞ିଵ, 2݊௦ݐ ො଴|଴൯்ቅ.  Then at timeݔ ൅ 1 “sigma points” 

ሺ௜ሻݔ א Թ௡ೞ are chosen as follows: 
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௞ିଵݔ
ሺ଴ሻ ൌ  ො௞ିଵ|௞ିଵݔ

௞ିଵݔ
ሺ௜ሻ ൌ ො௞ିଵ|௞ିଵݔ ൅  ෤ሺ௜ሻݔ

෤ሺ௜ሻݔ ൌ ൬ටሺ݊௦ ൅ ሻߢ ௞ܲିଵ|௞ିଵ൰
௜

்

,   ݅ ൌ 1, … , ݊௦ 

෤ሺ௡ೞା௜ሻݔ ൌ െ ൬ටሺ݊௦ ൅ ሻߢ ௞ܲିଵ|௞ିଵ൰
௜

்

, ݅ ൌ 1, … , ݊௦. 

(A2.8)

The operator √· in (A2.8) is the matrix square root operator such that ൫√ܲ൯
்

√ܲ ൌ

ܲ where ܲ is a square matrix, and ൫√·൯௜ is the ݅௧௛ row of the matrix square root.  A set of 

2݊௦ ൅ 1 weighting coefficients corresponding to the sigma points are chosen as follows: 

ܹሺ଴ሻ ൌ
ߢ

݊௦ ൅  ߢ

ܹሺ௜ሻ ൌ
1

2ሺ݊௦ ൅ ሻߢ , ݅ ൌ 1, … ,2݊௦. 
(A2.9)

The variable ߢ ് െ݊௦ is a design choice, and ߢ ൌ 3 െ ݊௦ is optimal in some 

sense if ݔ is Gaussian (see page 454 of (Simon, 2006)).  The prediction step integrates the 

following state equations from time ݐ௞ିଵ to time ݐ௞ to calculate the transformed sigma 

points ݔ௞
ሺ௜ሻ: 

ሶݔ ሺ௜ሻ ൌ ݂൫ݐ, ,ሺ௜ሻݔ ,൯ݑ ݅ ൌ 0, … ,2݊௦ (A2.10)

Equation (A2.10) is initialized at time ݐ௞ିଵ by ݔሺ௜ሻሺݐ௞ିଵሻ ൌ ௞ିଵݔ
ሺ௜ሻ .  The predicted 

mean ݔො௞|௞ିଵ, output ݕො௞, and output covariance ௬ܲ א Թ௡೤ൈ௡೤ are given as follows: 

ො௞|௞ିଵݔ ൌ ෍ ܹሺ௜ሻݔ௞
ሺ௜ሻ

ଶ௡ೞ

௜ୀ଴

 

ሺ௜ሻݕ ؔ ݄௞ ቀݔ௞
ሺ௜ሻ,  ௞ሻቁݐሺݑ

(A2.11)
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ො௞ݕ ൌ ෍ ܹሺ௜ሻݕሺ௜ሻ

ଶ௡ೞ

௜ୀ଴

 

௬ܲ ൌ ෍ ܹሺ௜ሻ൫ݕሺ௜ሻ െ ሺ௜ሻݕො௞൯൫ݕ െ ො௞൯்ݕ
ଶ௡ೞ

௜ୀ଴

൅ ܴ௞. 

The cross covariance ௫ܲ௬ א Թ௡ೞൈ௡೤ is also estimated as a function of the sigma 

points: 

௫ܲ௬ ൌ ෍ ܹሺ௜ሻቀݔ௞
ሺ௜ሻ െ ሺ௜ሻݕො௞|௞ିଵቁ൫ݔ െ ො௞൯்ݕ

ଶ௡ೞ

௜ୀ଴

. (A2.12)

Finally the following equations calculate the Kalman gain ܭ௞ and update the 

predictions of the state mean and covariance: 

௞ܭ ൌ ௫ܲ௬ ௬ܲ
ିଵ 

ො௞|௞ݔ ൌ ො௞|௞ିଵݔ ൅ ௞ݕ௞ሺܭ െ  ො௞ሻݕ

௞ܲ|௞ିଵ ؔ ෍ ܹሺ௜ሻቀݔ௞
ሺ௜ሻ െ ௞ݔො௞|௞ିଵቁቀݔ

ሺ௜ሻ െ ො௞|௞ିଵቁݔ
்

ଶ௡ೞ

௜ୀ଴

൅ ܳ௞ିଵ 

௞ܲ|௞ ൌ ௞ܲ|௞ିଵ െ ௞ܭ ௬ܲܭ௞
். 

(A2.13)

Equations (A2.8) through (A2.13) have summarized the UKF algorithm.  To use 

the UKF algorithm, the dissertation work had to evaluate 2݊௦ ൅ 1 sets of state equations 

and compute the matrix square root given in Equation (A2.8) at each time interval.  This 

was found to be significantly more computationally burdensome than the EKF algorithm 

and even than the proposed polynomial chaos algorithms (in the Matlab® environment 

without optimizing the code for computational speed).  Sections 14.4.2 and 14.4.3 of 

(Simon, 2006) suggest alternative options for selecting sigma points that minimize the 

computational burden. 
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As with the EKF, the UKF parameters ܲሺݐ଴ሻ, ݔොሺݐ଴ሻ, ܳሺݐሻ, and ܴ௞ are unknown 

and are treated as user specified tuning parameters.  Appendix section A2.4 will discuss 

how these parameters were selected. 

A2.3  Particle Filtering 

In addition to the EKF and UKF, this dissertation explored using a particle filter 

for vehicle mass estimation (see Chapter 15 of (Simon, 2006)).  The conclusion, 

however, was that no visible benefits were achieved by using the particle filter compared 

with the EKF, UKF, and proposed polynomial chaos algorithms, and the particle filter 

resulted in the highest computational burden (for non-optimized code in the Matlab® 

environment).  This result was not surprising because the particle filter finds its greatest 

advantages over Kalman filtering algorithms in highly nonlinear estimation problems 

with non-Gaussian disturbance sources (Arulampalam et al., 2002). 

The particle filtering algorithm used in this dissertation is presented in this 

section.  To initialize the filter, ܰ “particles” - i.e. estimates ݔ଴|଴
ሺ௜ሻ א Թ௡ೞ, ݅ ൌ 1, … , ܰ of 

the state vector - are drawn randomly from the prior distribution ݌൫ݔሺݐ଴ሻ൯: Թ௡ೞ ՜ Թ.  

Each of these particles are assigned a weight ܹሺ௜ሻ ൌ 1/ܰ.   

The following state equations are integrated from time ݐ௞ିଵ to ݐ௞ to predict the 

new values of the particles ݔ௞|௞ିଵ
ሺ௜ሻ : 

ሶݔ ሺ௜ሻ ൌ ݂൫ݐ, ,ሺ௜ሻݔ ൯ݑ ൅ ෥ݓ ሺ௜ሻ, ݅ ൌ 0, … , ܰ. (A2.14)

Equation (A2.14) is initialized at time ݐ௞ିଵ by ݔ௞ିଵ|௞ିଵ
ሺ௜ሻ .  This step of the particle 

filter is similar to one of the steps in the UKF algorithm.  However, there are two 
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important differences: (a) The particles are randomly selected whereas the sigma points 

of the UKF are chosen in a deterministic manner.  (b) The particle filter simulates the 

process noise when evaluating the state equation (A2.14) whereas the UKF does not.  

This dissertation simulated the process noise ݓ෥ ሺ௜ሻ א Թ௡ೞ, ݅ ൌ 1, … , ෥ݓ) ܰ ሺ௜ሻ was assumed 

constant over the interval ݐ௞ିଵ to ݐ௞) by randomly sampling from the Gaussian 

distribution with zero mean and covariance ܳሺݐሻ (whose true value is unknown, further 

discussion is in Section A2.4). 

Evaluating (A2.14) from time ݐ௞ିଵ to ݐ௞ results in an updated set of particles 

௞|௞ିଵݔ
ሺ௜ሻ .  The prediction of the state mean ݔො௞|௞ିଵ is computed as a function of the particles 

and their weights: 

ො௞|௞ିଵݔ ൌ ෍ ܹሺ௜ሻݔ௞|௞ିଵ
ሺ௜ሻ

ே

௜ୀଵ

 (A2.15)

Once the output measurement ݕ௞ is available, each weight ܹሺ௜ሻ is updated based 

on the likelihood of its corresponding particle: 

ܹሺ௜ሻ ן ࣦቄݔ௞|௞ିଵ
ሺ௜ሻ  ௞ቅݕ|

෍ ܹሺ௜ሻ
ே

௜ୀଵ

ൌ 1. 
(A2.16)

For zero mean, additive Gaussian noise ݒ௞, Equation (A2.16) becomes: 

ܹሺ௜ሻ ן ݌ݔ݁ ቊെ
1
2 ൬ݕ௞ െ ݄௞ ቀݔ௞|௞ିଵ

ሺ௜ሻ , ௞ሻቁ൰ݐሺݑ
்

ܴ௞
ିଵ ൬ݕ௞ െ ݄௞ ቀݔ௞|௞ିଵ

ሺ௜ሻ ,  ௞ሻቁ൰ቋݐሺݑ

෍ ܹሺ௜ሻ
ே

௜ୀଵ

ൌ 1. 

(A2.17)
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The particle filter used in this dissertation updates the set of particles at each time 

step using resampling.  With resampling, particles with greater weights, i.e. higher 

likelihood, are more likely to be sampled and reused as initialization particles for the next 

time step. This resampling step is sometimes referred to as “Survival of the Fittest”.  

Particles with lower likelihood are likely to be replaced by particles with higher 

likelihood.  Resampling is carried out in the following three steps (see page 467 of 

(Simon, 2006)): (a) Randomly sample a number ߛ א ሾ0,1ሿ such that ߛ is uniformly 

distributed on ሾ0,1ሿ.  (b) Find the integer ݆ such that ∑ ܹሺ௟ሻ ൏ ௝ିଵݎ
௟ୀଵ  but ∑ ܹሺ௟ሻ ൒ ௝ݎ

௟ୀଵ .  

Then set the updated particle as ݔ௞|௞
ሺ௜ሻ ൌ ௞|௞ିଵݔ

ሺ௝ሻ .  (c) Repeat steps (a) and (b) for ݅ ൌ

1, … , ܰ. Finally, reset each weight as ܹሺ௜ሻ ൌ 1/ܰ.  Then the updated state estimate at 

time ݐ௞ is as follows: 

ො௞|௞ݔ ൌ ෍ ܹሺ௜ሻݔ௞|௞
ሺ௜ሻ

ே

௜ୀଵ

. (A2.18)

This appendix section has summarized the particle filter used by this dissertation.  

As with the other filtering methods, the parameters ܲሺݐ଴ሻ, ݔොሺݐ଴ሻ, ܳሺݐሻ, and ܴ௞ are 

unknown and are treated as user specified tuning parameters.  The following section will 

discuss how these parameters were selected for the vehicle mass estimation problem. 

A2.4  Tuning the Filtering Algorithms 

In the vehicle mass estimation problem of this dissertation, the filtering 

parameters ܲሺݐ଴ሻ, ݔොሺݐ଴ሻ, ܳሺݐሻ, and ܴ௞ are unknown.  This section discusses how they 

were selected for the purposes of this dissertation.  The intuition gained by this 
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dissertation for tuning these algorithms may be helpful to similar problems, i.e. problems 

in which the main objective is parameter estimation, not state filtering. 

The goal of the polynomial chaos estimators is to accurately estimate system 

parameters and not necessarily the system states.  The assumptions underlying the 

polynomial chaos estimators may therefore provide insights into the tuning of the 

filtering algorithms when parameter estimation is the main objective.   

A key assumption of the polynomial chaos estimators is that the uncertainty in the 

state equations is entirely due to the uncertainty in the system parameters.  In other 

words, there is no state process noise, only output measurement noise; the model of the 

system dynamics is perfect except that some of the parameters are unknown.  This same 

assumption can be captured by the filtering algorithms via a specific tuning of the initial 

state covariance ܲሺݐ଴ሻ and process noise covariance ܳሺݐሻ.  Setting ܳሺݐሻ ൌ 0 is similar to 

saying that there is no process noise, and that the unknown parameters are static 

variables.  Tuning the initial state covariance ܲሺݐ଴ሻ to mimic the polynomial chaos 

algorithm is only slightly more complicated.  Consider the extended state vector ݔ௘ א

Թ௡ೞା௡೛ written explicitly in terms of the system states ݔ א Թ௡ೞ and unknown static 

parameters ߠ א Թ௡೛: 

௘ݔ ൌ ቂݔ
ቃ. (A2.19)ߠ

Then, assuming that the model of the system differs from the true system only by 

the unknown parameters, the initial state covariance ܲሺݐ଴ሻ can be written as follows: 
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ܲሺݐ଴ሻ ൌ ܧ ൜൤
଴ሻݐሺݔ െ ଴ሻݐොሺݔ

ߠ െ ଴ሻݐ෠ሺߠ ൨ ሾ்ݔሺݐ଴ሻ െ ଴ሻݐො்ሺݔ ்ߠ െ ଴ሻሿൠݐ෠்ሺߠ

ൌ ܧ ൜൤ 0
ߠ െ ଴ሻ൨ݐ෠ሺߠ ሾ0் ்ߠ െ  .଴ሻሿൠݐ෠்ሺߠ

(A2.20)

The above discussion has outlined a procedure for selecting ܲሺݐ଴ሻ and ܳሺݐሻ; 

unfortunately, the polynomial chaos based estimators do not provide insight into selecting 

the value of ܴ௞, even if it is constant.  As shown in Chapter 4, this is one of the reasons 

that the polynomial chaos algorithm is easier to tune in some situations than the filtering 

algorithms. 

Table A2.1 shows the values of the tuning parameters that were used in the 

experiments of this dissertation.  The term ߝ is ߝ ൌ 2.22 · 10ିଵ଺. 

 

Table A2.1: Filter parameters for the EKF, UKF, and Particle filters. 

  ሺ࢚૙ሻ  ࢞ሺ࢚૙ሻࡼ  ࢑ࡾ  ሺ࢚ሻࡽ 

EKF ቎
ߝ 0
0 ߝ

0   0
0   0

0 0
0 0

0.2 0
0 0.2

቏  0.007 5 · 10଺ ൈ ቎
ߝ 0
0 ߝ

0 0
0 0

0 0
0 0

1 0
0 1

቏  ቎
0
0

1500
16000

቏

UKF ቎
ߝ 0
0 ߝ

0      0
0      0

0 0
0 0

0.008 0
0 0.008

቏ 0.007 3 · 10଺ ൈ ቎
ߝ 0
0 ߝ

0 0
0 0

0 0
0 0

1 0
0 1

቏  ቎
0
0

1500
16000

቏

Particle 

Filter 
቎
ߝ 0
0 ߝ

0    0
0    0

0 0
0 0

2.2 0
0 9.5

቏  0.007 10଺ ൈ ൦
10ି଼ 0

0 10ି଼
0 0
0 0

0 0
0 0

1 0
0 2.5

൪  ቎
0
0

1500
16000

቏
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