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Abstract 
 

The extraordinary toughness and stiffness of bone are associated with its three main 

constituents - apatite mineral, collagen protein and water. Variations in composition and 

organization of these constituents are known to exist as a function of disease and aging. 

These variations greatly influence bone quality and need to be understood in greater 

detail. This thesis advances the understanding of molecular organization in bone along 

three directions: quantification of molecular orientation, analysis of mineral deformation 

in response to hydration changes and loading and investigation of age-dependent bone 

quality.  

 

First, polarized Raman spectroscopy was adapted for bone tissue applications to quantify 

molecular organization in non-deproteinated, turbid tissue. This enabled the simultaneous 

quantitative measurements of altered mineral and collagen orientations in Osteogenesis 

Imperfecta, a bone disease associated with collagen mutations. Second, the effect of 

distorting the water environment in bone was investigated by replacing matrix water with 

deuterium oxide. Changes in hydrogen bonding affected collagen secondary structure, 

resulting in compression of the mineral lattice as evidenced by changes in peak positions 

and widths of mineral Raman bands. Further, polarized Raman spectroscopy was used to 

probe nano-scale deformations due to tensile loading and orientation-dependent strains 



xi 

 

within the mineral lattice were observed. These results demonstrate the potential of 

Raman spectroscopy to provide insights on molecular orientation and interaction at the 

nano-scale.  

 

Third, exploratory data mining tools were employed to identify tissue-level 

compositional (Raman) and mechanical (nanoindentation) metrics that predict bone 

quality, instead of the traditionally used linear regressions. The results showed that 

compositional properties offer only a partial understanding of mechanical properties at 

the tissue-level and vice versa. Hence, a specific combination of compositional and 

mechanical metrics was required to reliably classify femoral specimens according to age. 

These findings suggest that combined metrics will better predict transformations in bone 

quality than individual metrics and call for novel techniques to explore the complex 

multi-scale interactions in bone. The multiple lines of evidence presented in this thesis 

provide an insight into the complex roles that mineral, collagen and water play in 

governing tissue quality and mechanical properties of bone. 

 

 



CHAPTER 1 
 

Introduction 
 
 

In this thesis, we explore the application of Raman spectroscopy to understand molecular 

organization in bone tissue. A method to quantify bone mineral and collagen orientations 

is developed to understand the molecular mechanisms of genetic disorder in bone. The 

role of water in bone is investigated by studying the effects of distorting the aqueous 

environment on the composition and orientation of bone mineral and collagen. 

Orientation-dependent mineral behavior in response to tensile loading of bone is studied 

to understand the molecular mechanisms in bone under stress. Finally, the contributions 

of tissue-level compositional and mechanical properties to bone quality are analyzed 

using exploratory data analysis tools. 

 

1.1   Bone composition  

Bone is a heterogeneous and hierarchical material composed primarily of collagen fibrils, 

mineral crystals and water [1]. The collagen component gives the bone material its 

compliance and the ability to dissipate energy under load. This organic matrix is 

primarily made up of type I collagen fibrils in a hydrated environment. Tropocollagen 

molecules assemble into triple helices that are bound together to form collagen fibrils. 

Cross-links join several fibrils together and therefore, are important for mechanical 
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strength of mature bone tissue [2]. As the bone tissue grows and matures, nanometer 

sized mineral crystallites are formed in the gaps between the collagen fibrils and then 

grow into the fibril overlap zones. The crystallites are highly substituted, poorly 

crystalline carbonated apatite and impart stiffness to the tissue [3]. By combining the high 

toughness of collagen and the high stiffness of mineral, bone achieves its remarkable 

mechanical properties. The third significant component is water which facilitates solute 

transport, contributes to viscoelastic properties and plays a key role during mineralization. 

Water exists on the surface of mineral crystallites, within the crystallites and in between 

collagen fibers [4]. The three major components are associated into the basic building 

block of bone, the mineralized collagen fibril. At the microscale, mineralized collagen 

fibrils make up fiber bundles, which are in turn arranged into lamellae. At the next higher 

scale are osteons and trabeculae which make up the cortical and cancellous regions of the 

bone. The composite nature of the material and the spatial relationship between the three 

components at different length scales contribute to bone’s remarkable resistance to 

fracture [5]. However, the interactions between mineral, collagen and water are not yet 

fully understood. 

 

1.2   Bone quality 

Degradation of bone tissue with age and disease can be considered in terms of bone 

quality [6]. One aspect of bone quality is bone mass or bone mineral density (BMD), 

which is the current clinical standard for predicting fracture risk. Non-BMD parameters 

such as chemical composition, mineralization, architectural properties, material 

properties, remodeling and microdamage also influence the bone’s resistance to fracture. 
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Studies have demonstrated that BMD alone does not reliably predict whether or not a 

patient will fracture [7, 8]. However, at present, there are no accepted measures of bone 

quality (a single measure or a combination of measures) that will fully characterize bone 

structural integrity or predict risk of fracture with great accuracy. Hence, it is important to 

understand bone tissue properties at various hierarchical scales and develop biomarkers 

combining information about different properties for improved prediction of the 

occurrence of fracture.  

 

1.3   Raman spectroscopic characterization of bone 

Raman microspectroscopy has been established as a versatile tool for compositional 

analysis at the micron-scale spatial resolution in bone tissue.  In Raman spectroscopy, a 

form of inelastic light scattering, an exciting laser photon interacts with a sample causing 

light to be scattered at a new, lower frequency which is determined by the energy of its 

characteristic molecular vibrations [9]. Hence, the Raman spectral band positions are 

specific to particular chemical groups. Raman spectroscopy is non-destructive, 

compatible with aqueous solutions, wet and thick specimens, glass and fused silica 

containers and its spectral resolution approaches that of light microscopy. For these 

reasons, Raman spectroscopy has proved to be an exceedingly powerful tool for the 

characterization of bone tissue.  

 

The Raman spectra of bone tissue provide us with much information about the structure 

and composition of the mineral and collagen constituents of bone [10, 11]. Figure 1.1 

gives a general view of the Raman spectra from a bone sample showing the major 
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mineral and matrix bands. The phosphate ν1 band at ~960 cm-1 and the B-type carbonate 

ν1 band at ~1070 cm-1 are the important Raman mineral bands. The band positions, 

heights and shapes of the phosphate and carbonate bands report on mineral parameters 

such as crystal structure, crystallite size and deviations from stoichiometry [12, 13]. 

These bands respond to local perturbations of the mineral structure resulting from 

mechanical deformation, genetic defects or disease. The important Raman collagen bands 

are the amide I envelope at ~1660-1680 cm-1, the hydroxyproline bands at 855 cm-1 and 

875 cm-1, the amide III envelope at 1245-1270 cm-1 and the methylene wag at 1450 cm-1. 

The band positions, intensities and widths of these matrix bands are sensitive to changes 

in protein secondary structure and changes in collagen hydrogen bonding. Bone 

composition can be studied using four Raman metrics: mineral to matrix ratio (MMR), 

mineral crystallinity, carbonate to phosphate ratio and collagen crosslinking. MMR which 

is a measure of the mineral content in bone is calculated as the ratio of band height or 

area of the phosphate ν1 band to that of amide I or hydroxyproline band.  Mineral 

crystallinity is calculated from the width of the phosphate ν1 band and is considered to be 

an indicator of mineral crystal size and also depends on disorder and strain in the 

crystallites [14]. Carbonate to phosphate ratio is calculated as the intensity ratio of the 

carbonate ν1 to phosphate ν1 peaks and denotes the carbonate content of the mineral in the 

bone specimen. Collagen crosslinking is the area or height ratio of amide I 1680 cm-1 

component to the 1660 cm-1 component.  

 

Raman spectroscopy has been used to study tissue mineralization, a physiological process 

where carbonated apatite is deposited in collagenous matrix of bone. Raman spectroscopy 
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confirmed the presence of an octacalcium phosphate like mineral in newly mineralized 

tissue [15] and has been used, more recently, to study mineral formation kinetics in cell 

cultures and fetal mouse skulls [16].  

 

Raman spectroscopy has been applied to study age-related changes in bone material 

composition [17-19]. A combined mechanical testing and Raman spectroscopic study on 

human bones reported changes in the degree of collagen crosslinking with age [18]. 

These changes in crosslinking were correlated to a dramatic decrease in the resistance of 

bone to crack initiation and propagation. Spectroscopic abnormalities have been reported 

in bones from Brtl and oim/oim mice, which are models for osteogenesis imperfecta [20, 

21]. Compositional differences have been observed between osteoporotic bones and 

matched controls [22, 23] .  

 

1.4   Polarized Raman spectroscopy of bone 

The remarkable mechanical properties of bone tissue are related to its structural 

organization. The conformation, orientation and arrangement of its molecular 

components at all different hierarchical levels are adapted to meet a wide variety of 

mechanical challenges [24-26]. Polarization of Raman scatter has the additional capacity 

to provide information on the structure and orientation of the molecular components of 

bone. Phosphate ν1 and amide I Raman bands are sensitive to molecular orientation and 

polarization direction of incident light. The intensities of the mineral Raman bands are 

sensitive to the orientation of the crystallite c-axis with respect to the polarization of the 
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incident light. The amide I band, which is associated with the C=O stretching vibration, is 

more intense in the direction perpendicular to the collagen fiber axis.  

 

Polarized Raman spectroscopy has been recently used to provide qualitative orientation 

information on bone molecular components. Kazanci et al. pioneered the investigation of 

molecular arrangement and composition in human osteons using polarized Raman 

spectroscopy [27]. They showed that mineral to matrix intensity ratios are influenced by 

both chemical composition and molecular orientation. A follow up study using polarized 

Raman analysis distinguished between orientation and composition changes in lamellar 

bone specimens [28].  Recently, spatial changes in molecular composition and orientation 

in the Haversian bone structure have been analyzed [29].    

 

Polarized Raman spectroscopy can also be used to quantify the orientation distribution of 

molecules [30]. Unfortunately, measuring the molecular order is more complex from an 

experimental and theoretical point of view, compared to qualitative orientation analysis. 

Not surprisingly, no quantitative Raman spectroscopic measurements of molecular order 

in bone have been performed. X-ray diffraction studies in bone tissue provide direct 

measures of the molecular orientation distribution function which are, however, limited 

to the crystalline regions (mineral) of the sample [31]. Although polarized Raman 

spectroscopy yields only the orientation averages and not the distribution function 

directly, it can provide information on both crystalline and non-crystalline regions of the 

sample. Further, this technique offers a more accurate estimation of the orientation 

distribution function compared to polarized infrared spectroscopy.  
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Hence, we wanted to develop a quantitative polarized Raman spectroscopic technique for 

bone tissue applications. The molecular orientation functions for mineral and collagen 

components would be useful in establishing structure-function properties and providing a 

detailed understanding of deformation and disorder mechanisms at the microscale. In 

chapter 2, we describe the application of polarized Raman spectroscopy to study 

molecular orientations in bone tissue. We also explain overcoming experimental 

constraints that concern the choice of objective lens and the optical properties of the 

sample. We validated the technique by measuring orientation distribution functions in 

genetically disordered bone specimens for which X-ray diffraction measurements of 

orientation have been previously reported.      

   

1.5   Age-related changes in bone micro-scale properties 

The risk of bone fracture markedly increases with aging [32]. To understand the skeletal 

changes that occur in healthy bone tissue with ageing, it is necessary to study 

composition-function relationships at the macro-, micro- and nano-scales. While it is 

apparent that changes in chemical composition will be reflected in changes in mechanical 

properties at the tissue level, the specific relation between tissue level material properties 

is not fully understood. Nanoindentation and Raman spectroscopy are well suited to test 

the mechanical and chemical properties at the micro- and nano-scale of the material. 

Nanoindentation testing involves pressing a hard and stiff 50-nm diamond tip on the 

surface of a bone specimen and measuring simultaneously the load and deformation with 

micro-Newton and nanometer resolution. Because the mineral content and anisotropy of 

bone can vary at the microscale, nanoindentation provides insight into the spatial 
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distribution of mechanical properties at such small size scales [33]. Raman spectroscopy 

provides a complementary approach to nanoindentation by allowing comparison of 

chemical and mechanical properties at a similar spatial scale.  

 

While there has been substantial progress in characterizing compositional changes with 

age, only a small number of studies have examined relationships between tissue 

composition and nanomechanical properties [34-37]. However, in these studies, 

spectroscopic and indentation measurements were performed on dehydrated bone 

specimens embedded in epoxy or resin to facilitate sample preparation. It is well known 

that sample processing affects the mechanical and compositional properties of bone tissue 

[38, 39]. Also, indentation studies on dehydrated and embedded bones have reported 

significant increases in indentation modulus [40, 41]. Therefore, it is important to 

conduct these measurements on hydrated tissue considering the viscoelastic and time-

dependent deformation properties of bone. In chapter 3, we explore changes in 

nanomechanical properties and tissue composition between young mice that are skeletally 

mature and old mice that have compromised skeletal integrity. Co-localization of Raman 

spectroscopy and nanoindentation testing on hydrated cortical bones provided 

measurements at similar length scales, at the same spatial location and at similar depth.  

 

Traditionally, studies often use univariate analysis and modeling of linear variable 

interactions to offer straightforward correlations between tissue composition and 

mechanical properties. However, the organization of bone is quantitatively complex at 

many scales of time and space and its mechanical and structural properties are not simply 
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the sum of the individual mineral and collagen components [42]. The system is more than 

the sum of its parts. The Raman and nanoindentation measurements which reflect bone 

material properties at the micro- and nano-scale are likely to exhibit multivariate 

dependencies and non-linear interactions. Much of the existing studies use traditional 

correlation and regression based methods which do not capitalize on the nature of 

multivariate and non-linear associations between different measured variables. Also, the 

direction of dependencies between composition and mechanical properties is unclear. 

Hence, considering correlation measures alone may provide an incomplete understanding 

of structure – function relationships in bone. Given the functional complexity and poorly 

understood nature of bone quality, data mining approaches are needed to analyze 

biologically relevant models or patterns from the underlying data. The advantage of 

machine learning and data mining is that no assumptions about linearity or interaction 

effects are needed. Such approaches will offer insight into how changes in bone quality 

(composition, mechanics, orientation, microdamage, etc) increase or decrease the risk of 

bone fracture through complex networks of molecular components that are hierarchically 

organized, highly interactive.  

 

In chapter 3, we describe the use of non-linear, multivariate visualization and 

classification algorithms, RadViz and VizRank, to identify a set of compositional and 

mechanical properties that will predict age-related skeletal changes. These algorithms 

were chosen because of their ability to combine visualization and mining to provide 

interpretable predictive models whose biological relevance can be easily understood [43]. 
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We used the open source Orange data mining suite (http://www.ailab.si/orange/) to 

implement the algorithms through an easy-to-use graphical interface.  

 

1.6   Influence of water on collagen – mineral interactions 

Bone tissue has a significant water component that influences its mechanical and 

structural properties and has been observed to decrease with age [44-47]. Water in bone 

is distributed as water bound to collagen and mineral crystallites [4] and as mobile water 

in the microscopic pores such as canaliculi, lacunae and Haversian canals [48].  It is well 

known that water plays an important role in maintaining collagen conformation and 

matrix stability [49]. Hydration related changes in Raman mineral to matrix ratios have 

been reported in bone specimens fixed with ethanol and glycerol [38]. Dehydration is 

known to increase collagen stiffness, decrease spacing between collagen fibrils leading to 

a decrease in bone toughness and an increase in hardness [50, 51]. Polar solvents have 

also been shown to affect the physical and mechanical properties of collagen and bone 

[52].  

 

The nature of the interface between collagen and mineral at the nano-scale is still under 

discussion. Water bound to the mineral surface, non-collagenous glutamate containing 

protein and sacrificial ionic bonds have been hypothesized to mediate the interaction 

between mineral and matrix [4, 53, 54]. X-ray diffraction studies of bone deformation at 

the nano-scale demonstrated the influence of the hydration state of collagen on the 

amount of strain distributed to the mineral crystallites [55].  In dry bone specimens, a 

stiffer collagen matrix increased the strain fraction carried by the mineral phase compared 
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to that in hydrated bone. Hence, irrespective of the actual mechanism of interaction 

between collagen and mineral, the hydration state of collagen seems to influence this 

interaction.  

 

In chapter 4, we explore the influence of water on bone mineral and collagen by 

artificially manipulating the hydration state through H/D exchange. Raman spectroscopy 

is well suited to study disorder of collagen secondary structure caused by substitution of 

deuterium oxide (D2O) for a fraction of the labile collagen water. We report the effects of 

H/D exchange on collagen and mineral Raman bands. We found that the mineral lattice 

was slightly distorted by changes in collagen conformation on H/D exchange.  

 

1.7   Effects of tensile loading on bone mineral 

Nano-scale deformation in bone has been investigated using X-ray scattering leading to 

the quantification of mineral strains and collagen fibril strains [55, 56]. Mineral lattice 

strain is measured as the deformation of the interplanar spacing in crystals as calculated 

from the widths of the X-ray diffraction (XRD) peaks before and after loading [56]. 

Changes in mineral structure have also been observed using Raman spectroscopy as a 

consequence of mechanical loading and high pressure deformation [57-61]. XRD and 

Raman methods probe disorder on different size scales. Raman probes disorder within the 

unit cell, i.e. at the lowest hierarchical level of ordering, whereas XRD probes at a higher 

scale of ordering within a crystallite [14]. Given the nano-crystalline size of bone mineral, 

distortion in the internal structure is expected to show up as increased peak widths in both 

Raman spectra and XRD patterns.  
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It is known that the principal orientation of bone minerals is along the long axis of bone. 

Therefore, the stiffness of bone is determined by the orientation of mineral crystallites 

with respect to the loading direction. XRD studies have provided useful information on 

orientation dependent deformation of crystallites under load [62]. Differently oriented 

crystallites were observed to experience varying deformations along the loading direction. 

In chapter 5, we explore the application of polarized Raman spectroscopy to study 

anisotropic deformation of mineral crystallites on tensile loading. We observed that the 

phosphate peak width was strongly dependent on the optical polarization direction and 

the applied load. This result confirmed that polarized Raman spectroscopy can be used to 

map direction-dependent strains in bone and will be complementary to XRD in probing 

nano-scale deformation mechanisms in normal and diseased bone.  
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Figure 1.1 Typical Raman spectrum of cortical murine bone 
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CHAPTER 2 

Quantitative polarized Raman spectroscopy in highly turbid bone tissue 

 

2.1   Introduction 

Polarized Raman spectroscopy has long been used to study orientation in crystalline 

solids [1]  and in both natural and synthetic fibers [2], because it is possible to determine 

the most probable distributions of molecular orientations. Because diseases are frequently 

marked by changes in molecular organization of tissues, it is useful to have 

methodologies that can quantitatively report on molecular orientation. Bone is a 

composite tissue consisting of apatite mineral crystallites embedded within a 

predominantly collagen matrix. We focus on bone because maintenance of bone tissue 

organization at all hierarchical levels is important to its mechanical functioning. In long 

bones, the collagen fibers are preferentially aligned parallel to the long axis of the bone. 

The crystallographic c-axes of the crystals align along the long axis of the collagen fibrils 

[3, 4]. Many disorders of bone are characterized, qualitatively, by changes in collagen 

and/or mineral organization [5, 6]. It is therefore imperative to quantitatively assess how 

this ordering is influenced by genetic defects, metabolic disorders and other factors that 

affect bone quality.  
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Techniques such as X-ray diffraction [7, 8], and scanning small-angle X-ray scattering 

(SAXS) [9, 10] have been used to measure quantitative orientation distributions for 

collagen and mineral crystallites in bone and other mineralized tissues. X-ray diffraction 

is limited to the crystalline regions within the tissue and involves harsh preparation 

techniques such as deproteination [11]. Hence, such orientation distributions have never 

been simultaneously obtained for collagen and mineral crystallites and never on fresh 

bone specimens. 

 

Previous polarized Raman spectroscopy studies of dental enamel [12, 13] and model 

apatite compounds [14] have only been qualitative. Qualitative polarized Raman 

spectroscopic imaging has been used to study mineral and matrix orientation in cortical 

bone tissue by examination of the polarization components of phosphate ν1 (P-O 

symmetric stretch) and amide I (carbonyl stretch) [15, 16].  Because the crystallites are 

oriented with their c-axes along the length of collagen fibrils, phosphate ν1 scattering is 

more intense along this axis. Similarly, because collagen carbonyl groups are oriented 

perpendicular to the collagen chain, amide I scattering is more intense in the direction 

perpendicular to the collagen fibril orientation.   

 

The polarized Raman data on bone confirm what was shown by polarized Fourier 

transform infrared spectroscopic (FTIR) studies [17]. It is widely understood that FTIR 

and Raman spectroscopies provide similar information. Spectral correspondences have 

recently been validated [18]. Raman spectroscopy provides experimental advantages that 

include minimal specimen preparation and applicability to specimens of irregular shape 
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or even intact bones. The problem of interference from fluorescence can be minimized by 

using excitation in the 650-800 nm range and by appropriate spectral processing methods, 

such as background subtraction. Polarized Raman spectroscopy yields both the second 

and fourth coefficients of the orientation distribution function, whereas IR spectroscopy 

yields only the second coefficient [2]. Both coefficients are needed to calculate the most 

probable orientation distribution function. 

 

Bone tissue poses special challenges to the use of polarized Raman spectroscopy for 

measurement of quantitative orientation distribution functions because the tissue is turbid 

and birefringent. Standard theory assumes that the medium is completely transparent. 

However, multiple scattering in turbid media depolarizes light and introduces errors in 

the polarized Raman measurements [19]. It is difficult or impossible to correct orientation 

functions for multiple scattering, so measurements must be made under conditions in 

which multiple scattering is negligible. Similarly, the simplest polarized Raman theory 

assumes that refractive index is the same in all Cartesian directions. Thus, a birefringence 

correction may be needed to describe bone tissue [20].  

 

In this context, the conditions under which polarized Raman spectroscopy can be used to 

quantitatively measure mineral and matrix orientation in bone were examined. Objectives 

of increasingly higher numerical aperture (NA) were used to find the values at which 

polarized Raman measurements are independent of NA. The use of polarized Raman 

spectroscopy was tested and validated using genetically modified osteogenesis imperfecta 

(oim/oim) murine bones for which mineral crystallite orientation distribution functions 
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have been measured by small angle X-ray scattering [9]. Finally, polarized Raman 

spectroscopy was used to compare mineral and matrix orientation distributions in cortical 

bone tissue from oim/oim mice and wild type mice. 

 

2.2   Specimen preparation 

Both tibiae from four five-week old wild type and four oim/oim female mice were used. 

The mice were part of a larger Institutional Animal Care and Use Committee approved 

study at the Hospital for Special Surgery, NY. specimens were harvested and immersed 

in phosphate buffered saline (PBS) and frozen at -20˚C until use. The specimens were 

thawed to room temperature before collection of spectra. They were kept moist 

throughout the experiment by a drip of phosphate buffered saline. Bone powders used to 

acquire isotropic Raman spectra were prepared from the mid-diaphyses of the wild type 

specimens using a cryogenic impact grinder (Spex 6750 Freezer Mill, Spec CertiPrep, 

Metuchen, New Jersey). The age, bone and background strain of the oim/oim specimens 

used in this study match that of the specimens (tibiae from five week-old oim/oim mouse) 

used in the small angle X-ray scattering study [9].  

 

2.3   Light scattering measurements 

To quantify the changes in elastic light scattering in wild type vs. oim/oim bone 

specimens, an integrating sphere (RT-060-SF, Labsphere, North Sutton, New Hampshire) 

setup was used to extract the scattering coefficient of the wild type and oim/oim tibiae 

[21]. A lamp attached to a Kohler Illuminator (KI-120, Labsphere, North Sutton, New 

Hampshire) and powered by an LPS preset power supply (LPS-150-0660, Labsphere, 
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North Sutton, New Hampshire) was used to deliver a uniform beam of light to the mid-

diaphysis of the bone specimens, with the beam diameter (1µm) controlled by a 1:2 

telescope and an adjustable iris. The specimens were placed between the telescope and 

the sphere, such that diffusely transmitted light was sent into the sphere and ultimately 

detected by a spectrograph (HR 2000+, Ocean Optics, Dunedin, Florida, 200-1100 nm). 

All measured transmittance spectra were corrected for both dark current and the lamp 

spectrum. Since the wavelength regime of interest was in the near infrared (800 - 896 

nm), it was assumed that tissue absorption would have a negligible effect on the 

transmittance of the samples. The reduced scattering coefficient μs’ was calculated by 

setting the corrected measured transmittance of the samples equal to a Beer-Lambert 

factor of the form exp(-μs’d), where d is the thickness of the tissue (set equal to the cross-

sectional diameter of the bone specimens: 1.37 ± 0.06 mm for wild type and 1.25 ± 0.08 

mm for oim/oim specimens). For linearly polarized light depolarization length 

calculations, the anisotropy was taken to be 0.9 [22].  

 

2.4   Polarized Raman spectroscopy 

The locally-constructed Raman microprobe has been described previously [23]. The 

system was constructed around a Nikon E600 microscope frame (Nikon USA, Melville, 

New York). The exciting laser was a 400 mW, 785 nm diode laser (Invictus, Kaiser 

Optical Systems Inc., Ann Arbor, Michigan) from which the circularizing optics had been 

removed to allow line-focusing.  An axial transmissive imaging spectrograph (HoloSpec, 

Kaiser Optical Systems Inc., Ann Arbor, Michigan) with 25 µm entrance slit 

(approximately 3 cm-1 to 4 cm-1 resolution) and a 1024x256 pixel deep depletion charge-
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coupled device detector (Andor Technology, Model DU 401-BR-DD, South Windsor, 

Connecticut) were used to disperse and record the spectrum. The polarization direction of 

the beam was selected using a half-wave plate. The collected Raman scatter was passed 

through an analyzing polarizer and directed onto the slit of the spectrograph. A wedge 

depolarizer after the analyzer eliminated intensity artifacts caused by the polarization 

dependence of the grating transmission efficiency.  

 

Polarized Raman spectra were collected from at least 3 mid-diaphyseal locations along 

the length of the bone in each of the eight wild type and oim/oim tibial bone specimens 

and from powdered bones. For comparisons of wild type to oim/oim, each mouse is 

treated as an independent measure. In all experiments the polarization of the incident 

laser beam was maintained either parallel (x) or perpendicular (y) to the long axis of the 

bones.  The analyzer was adjusted to pass either the component of Raman scatter 

polarized parallel or perpendicular to the polarization direction of the incident laser. The 

intensities (I) of the four possible polarization components of the Raman scatter are 

described by their excitation and detection polarizations along the conventional 

directions: Ixx, Ixy, Iyy and Iyx respectively. 

 

2.5   Effect of elastic scattering on polarized Raman measurements 

To assess the effect of light scattering on the molecular orientation measurements, the 

depth of field was varied using a series of objectives with differing numerical apertures 

(NA). These were 4X (0.20 NA), 20X (0.50 NA), 20X (0.75 NA) and 40X (0.90 NA). The 
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depth of field, zmin, was taken to be equal to the diffraction-limited axial resolution of an 

objective [24] and is given by, 

           ( )2
min /2 NAnz λ=                     

where n is the refractive index of bone tissue, NA is the numerical aperture of the 

objective and λ is the laser wavelength (785 nm). Polarized Raman spectra (Ixx and Iyy) 

from the wild type specimens measured using the different objectives were compared to 

define the numerical aperture needed for artifact-free polarization measurements 

independent of NA.      

 

2.6   Data analysis 

The wavenumber scale of the spectrograph was calibrated against the emission lines of a 

neon lamp discharge. Intensities were corrected for polarization dependence of the optics 

by calibration against cyclohexane [25]. The spectra were corrected for spectrograph 

image curvature.  Dark current subtraction and white light correction (flat-fielding) were 

performed using locally written scripts on MATLAB (Mathworks Inc., Natick, 

Massachusetts). Spectra were analyzed using GRAMS/AI 7.01 (Thermo Galactic, 

Waltham, Massachusetts).  

 

For the wild type and oim/oim specimens, peak fitting was performed using GRAMS/AI 

7.01 (ThermoGalactic, Waltham, Massachusetts) and the intensities of the characteristic 

mineral band (phosphate ν1 at 959 cm-1), and the collagen band (amide I at 1665 cm-1) 

were measured. Band intensities were used because they can be measured with less error 

from spectral background subtraction than areas. The Raman intensity ratios (Rx = Ixy / Ixx 
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and Ry = Iyx / Iyy) for the mineral and amide I bands were corrected for the influence of 

sample birefringence (reflectivity, internal field, divergence) by assuming the typical 

collagen and mineral birefringence values of 3x10-3 and 7x10-3 respectively [18, 26]. 

Statistical tests were performed on band intensities and intensity ratios using two-tailed 

unpaired t-tests to compare the effect of NA and to compare wild type with oim/oim 

specimens.  A value of p < 0.05 was considered significant.  

 

Polarized Raman spectroscopy provides both the second- and fourth- order parameters, 

<P2> and <P4>, which are the first two coefficients of the expansion in Legendre 

polynomials of the orientation distribution function [27, 28]. The refractive index of the 

bone specimens was set as 1.55 [29, 30]. Assuming a uniaxial cylindrical symmetry, the 

orientational order parameters, henceforth referred to as P2 and P4, were calculated for 

both phosphate ν1 and amide I components of the wild type and oim/oim groups from 

their respective intensity ratios, Rx and Ry, and the parameter a. The parameter a of the 

Raman tensor for both phosphate ν1 and amide I was determined from their isotropic 

depolarization ratio, Riso, using the bone powder. From P2 and P4, the most probable 

orientation distribution functions, N(θ), of the phosphate ν1 and amide I groups for the 

wild type and oim/oim groups were estimated.  A detailed description of the procedure 

used to derive the orientational order parameters and the most probable orientation 

distribution function can be found in the paper by Rousseau et al. [27] and is reproduced 

in Appendix A1.  
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As a uniaxial cylindrical symmetry is assumed, y and z directions are not distinguished in 

an x-y-z plane. Hence, the probability that these groups are oriented at an angle θ  with 

respect to the axis of reference was calculated by multiplying N(θ) by sin(θ).The 

maximum position of this N(θ)*sin(θ) distribution corresponds to the direction of 

preferred orientation with respect to the axis defined and the mean of the distribution 

calculated as the first moment characterizes the average orientation angle [9]. The 

average orientation angle for the phosphate group obtained by Raman spectroscopy was 

compared to the typical tilt angle (i.e. distribution of orientation angles) of mineral 

crystals obtained using small-angle X-ray scattering [9, 10]. The MATLAB scripts used 

for calculating the orientation distribution function are given in appendices A2 - A4.  

 

2.7   Results 

Representative peak fitted spectra of the mineral and collagen amide I bands are shown in 

figure 2.1. The reduced scattering coefficient, μs’, of the wild type and oim/oim 

specimens was obtained from integrating sphere measurements of diffuse transmittance 

in the 800 – 896 nm wavelength range. The mean μs’ for the wild type and oim/oim 

specimens using a flat slab model were calculated to be 14.7 ± 0.5 cm-1 and 12.3 ± 0.8 

cm-1, respectively (p < 0.05). The lower scattering coefficient in oim/oim bones is 

consistent with observations that molecular spacing in collagen fibrils from oim/oim mice 

is larger than normal [31].   

 

Polarized mineral spectra (Ixx and Iyy) from the wild type specimens as functions of depth 

of field were measured using different objectives (figure 2.2). For the largest depth of 
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field (0.2 NA), complete depolarization occurs and no polarization effects are observed, 

i.e., Ixx and Iyy are identical. As the depth of field decreases (NA increases to 0.90), the 

polarization effects in the phosphate ν1 band become more prominent, i.e., Ixx is stronger.  

 

Table 2.1 compares the intensity ratios and P2 value of the phosphate ν1 component of the 

wild type specimens as a function of depth of field. The P2 order parameter qualitatively 

defines the molecular orientation, with a value of -0.5 defining perfect perpendicular 

orientation and a value of +1 corresponding to perfect parallel orientation. A P2 value of 0 

indicates random orientation with respect to the reference axis. With decreasing depth of 

field, depolarization decreases resulting in higher P2 values. The 0.90 NA objective (i.e. 

smallest depth of field) gives P2 values indicating parallel or near parallel orientation of 

mineral crystallites and therefore, was found suitable for further quantitative polarized 

Raman measurements. Lower NA objectives (0.75 NA or 0.80 NA) could be employed 

for qualitative measures, but are not suitable for quantitative estimations of molecular 

orientation. Higher NA objectives (water or oil-immersion) might indeed give slightly 

higher P2 values, but calibration and correction for partial depolarization by the high 

gathering angle would be challenging and laborious.  

 

Table 2.2 compares the order parameters, P2 and P4, of the 959 cm-1 phosphate ν1 band 

and the 1665 cm-1 amide I band for the wild type and oim/oim specimens obtained using a 

0.90 NA objective. The order parameters were calculated from the intensity ratios, Rx and 

Ry. The parameter a was calculated to be -0.04 for the phosphate ν1 band and -0.48 for 

the amide I 1665 cm-1 band using isotropic samples of murine cortical bone powder. 
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Correcting for the effects of birefringence has a small effect, i.e., less than 1% change in 

the computed values of P2 and P4 and can be neglected for these samples.   

       

The N(θ)*sin(θ) plot for amide I is shown in figure 2.3 for the wild type and oim/oim 

groups. For the wild type group, the plot peaks at θ = 90˚ ± 19˚ demonstrating that the 

amide I groups have a preferred orientation perpendicular to the longitudinal axis of the 

bone (x direction of the diaphysis in the nomenclature used here), although there is a 

distribution of approximately 20˚. For the oim/oim group, the amide I N(θ)*sin(θ) peaks 

at θ = 90˚ ± 32˚. This indicates that although the preferred orientation is still 

perpendicular to the x direction of the diaphysis, collagen orientation is more variable in 

oim/oim mice. The influence of uncertainty in the P4 order parameter value on the 

orientation distribution function should be noted here. For example, at one standard 

deviation below the mean, the calculated amide I distribution for the oim/oim group 

(Table 2.2) is an improbable asymmetric unimodal shape peaked at 69˚, rather than the 

Gaussian shape that is expected.  

 

Calculation of the first moments for these distributions for amide I give an average 

orientation angle of 76˚ ± 2˚ for the wild type group and that of 72˚ ± 4˚ for the oim/oim 

group. For comparison purposes, we have calculated the average orientation angles for 

the collagen backbone considering that amide I carbonyl groups are perpendicular to the 

collagen backbone. The average orientation angle for collagen backbone with respect to 

the x direction is 14˚ (90˚- 76˚) in the wild type group. In the oim/oim group the average 

orientation angle is 18˚ (90˚- 72˚). There could be a tendency for a larger average 
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orientation in oim/oim, although the difference is not statistically significant. In case of 

random orientation of the collagen backbone, the average orientation angle would be 

57.3˚. 

 

The N(θ)*sin(θ) plot for phosphate ν1 is shown in figure 2.4. The N(θ)*sin(θ) 

distribution peaks at θ = 10˚ ± 8˚ for the wild type group and at θ = 11˚ ± 11˚ for the 

oim/oim group indicating that the mineral crystallites are highly oriented along the x 

direction of the bone diaphysis and have a narrower distribution than collagen. 

Calculation of the mean of these distributions yields an average orientation angle of 22˚ ± 

3˚ for the mineral crystallites in the wild type group. This is in agreement with values 

published in earlier X-ray scattering [32] and electron microscopic tomography studies 

[33] on normal mice (typically around 20˚). For the oim/oim group, the mean of the 

distribution yields an average orientation angle of 28˚ ± 3˚ for the mineral crystallites, 

which is significantly larger than that measured in the wild type specimens (p<0.05). This 

average orientation angle is in agreement with the distribution of orientation angles of 

aligned crystals (25˚ ± 3˚ with respect to the bone long axis) observed in a small-angle X-

ray scattering study on cortical bone samples also from 5-week old oim/oim mice [9]. 

These changes in the mineral crystallites could be due to the increased molecular spacing 

and reduced packing order of osteogenesis imperfecta type collagen fibrils [31]. 

 

2.8   Discussion 

The orientation distributions of mineral crystallites and collagen fibers in the cortical 

regions of murine wild type and oim/oim bone specimens have been determined for the 
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first time by polarized Raman spectroscopy. The orientation distribution functions for 

mineral and collagen in the wild type group are in agreement with mineral and collagen 

orientation distributions obtained using small angle X-ray scattering and X-ray pole 

figure analysis on bone [32, 34] and X-ray diffraction on demineralized bone [35].  

Further, the average orientation angle of mineral crystallites in the oim/oim group from 

our measurements agrees with that observed in an earlier SAXS study [9]. These 

measurements provide validation for the use of Raman spectroscopy to assess mineral 

and matrix orientation simultaneously in intact normal and diseased or damaged tissues. 

  

Using line illumination or point illumination requires trade-offs. A slit aperture has worse 

axial and lateral performance than a pinhole aperture, making the line illumination 

technique more vulnerable to artifacts rising from scattering effects [36]. However, line 

illumination has the advantage of power distribution, which limits thermal damage to the 

tissue specimen [37]. Further, line illumination allows faster data acquisition over a wider 

region of interest. Hence, line illumination was the method of choice for this study. The 

line focus enabled the simultaneous collection of 126 spectra (one for each row of pixels 

on the CCD detector).  

 

Systematic errors from elastic scattering in bone tissue can be reduced by the use of a 

high numerical aperture objective to minimize depolarization. In tissues with higher 

turbidity and anisotropy factor greater than 0.9, an oil-immersion or water-immersion 

objective might be required to limit depth of field. However, such objectives themselves 

partially depolarize Raman scatter because of their high gathering angles. Corrections for 
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this effect are complicated. In soft tissues with a lower anisotropy factor and reduced 

turbidity, a lower NA objective might prove sufficient for quantitative polarized Raman 

measurements. Techniques such as spatially offset Raman spectroscopy and transmission 

Raman spectroscopy have been used to study bulk scattering materials, but it is unclear if 

they will be suitable for quantitative polarization analysis.   

 

In the present study, the mathematical description of orientation effects in Raman spectra 

has been derived for single fibers, not for extended arrays of fibers that are found in bone. 

We used a microscope objective with NA = 0.90 with a nominal axial resolution of 

approximately 3.0 µm. Taking the thickness of a lamella to be approximately 300 nm, our 

microscope is integrating over almost 10 lamellae of intact bone. In the case of small 

angle X-ray scattering, the orientation information is averaged over a 200 µm thick 

section of demineralized bone [9]. That we obtain agreement with SAXS orientation 

measurements in our wild type and oim/oim groups suggests that extension of 

polarization theory to bone is valid. The elastic scattering problem would have to be 

addressed in human bone specimens, such as those that have previously been used in 

polarized FTIR [17]. In humans, the lamellae are about 2-9 µm thick [38] so confounding 

effects of multiple lamellae would be diminished, but multiple scattering would still 

occur. 

 

2.9   Conclusion 

This chapter reports the first simultaneous quantitative measurements of matrix collagen 

and mineral orientation in non-deproteinated, genetically disordered (OI) bone 
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specimens. Systematic errors in the orientation distribution calculations due to 

contributions from sample turbidity and multiple elastic scattering effects have been 

minimized by employing a high numerical aperture objective.  Mineral crystallite 

orientations in OI mouse bones calculated using polarized Raman spectroscopy have 

been validated against small angle X-ray scattering results.  The techniques described in 

this chapter may have widespread utility because the mechanical properties of calcified 

tissue are dependent on the molecular structure and the arrangement of the constituent 

mineral crystals within the organic matrix [39]. For example, in the SAMP6 mouse 

model for skeletal fragility, the reduced strength of the bone matrix is attributed to poorer 

organization of collagen fibers and reduced collagen content, although the animals have 

normal levels of collagen cross-links and normal mineral crystallite structure [40].  In 

biglycan-deficient mice, alterations in collagen and over-expression of non-collagenous 

proteins lead to an increase in mineralization, yet reduced mechanical properties [41]. 

The ability to probe simultaneously mineral and matrix composition and orientation 

makes Raman spectroscopy a valuable tool to study such problems.   
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Table 2.1 Intensity ratios and orientational order parameter, P2, for phosphate ν1 as a function of the 
objective depth of field (zmin) for wild type group. 
 
 Objective Intensity Ratios  

Rx                                 Ry 
Order Parameter, P2  

4X, 0.20 NA 
(zmin=60.8 µm) 

0.60 ± 0.2 0.78 ± 0.1 0.03 ± 0.02 

20X, 0.50 NA 
(zmin= 9.7 µm) 

0.26 ± 0.1 0.36 ± 0.11 0.06 ± 0.01 

20X, 0.75 NA 
(zmin= 4.3 µm) 

0.29 ± 0.05 0.59 ± 0.09 0.20 ± 0.02 

40X, 0.90 NA 
(zmin= 3.0 µm) 

0.06 ± 0.03 0.74 ± 0.1 0.72 ± 0.06 
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Table 2.2 Orientational order parameters, P2 and P4, for phosphate ν1 and amide I with a 0.90 NA 
objective for wild type and oim/oim groups. (* p < 0.05) 
 

 

 

Raman bands Order Parameters Wild Type Group

(Mean + SD) 

oim/oim Group  

(Mean + SD) 
P2 0.72 ± 0.06 0.60 ± 0.06*  

Phosphate  
ν1 

P4 0.58 ± 0.08 0.48 ± 0.06 

P2 -0.37 ± 0.09 -0.32 ± 0.05  

Amide I P4 0.15 ± 0.05 0.06 ± 0.03* 
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Figure 2.1 Typical curve-fit spectra illustrating the sub-bands contributing to the overall contour of 
the mineral (phosphate and carbonate) and amide I bands. The spectrum shown is from a wild type 
specimen using a 0.90 NA objective.  
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Figure 2.2 Mineral bands of the parallel-polarized bone spectra of a representative wild type 
specimen as a function of depth of field. The polarization effects in the phosphate band (Ixx> Iyy) are 
more prominent with the use of a high NA objective. 
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Figure 2.3 Rectangular coordinate plot of the orientation distribution function, N(θ)*sin(θ), of amide 
I for wild type and oim/oim groups. The average orientation angles are 76 ± 2˚ for the wild type 
group and 72 ± 4˚ for the oim/oim group. The average orientation of collagen backbone can be 
calculated by subtracting the average orientation angle of amide I group from 90˚. 
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Figure 2.4 Rectangular coordinate plot of the orientation distribution function, N(θ)*sin(θ), of  
phosphate for wild type and oim/oim groups.  The average orientation angles are 22 ± 3˚ for the wild 
type group and 28 ± 3˚ for the oim/oim group. Note that the carbonated apatite is preferentially 
aligned along the backbone axis of collagen (x direction). 
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CHAPTER 3 

Age-based classification using Raman and nanoindentation metrics 
from murine cortical bone specimens 

 

3.1   Introduction 

The strength and fracture resistance of bone are primarily dependent on its mass, 

architecture, and material properties. Bone mass density (BMD) measured using dual-

energy X-ray absorptiometry (DXA) remains the gold standard for diagnosis of 

osteoporosis. While BMD is correlated with fracture, it inadequately predicts increase in 

fracture risk and explains only a limited proportion of the anti-fracture efficacy observed 

with anti-resorptive therapies [1]. The heterogeneous and hierarchical nature of bone 

makes it unlikely for a single measurement to fully characterize its structural integrity or 

accurately predict fracture risk. A diagnostic marker can be a combination of quantifiable 

features on the level of an organ, tissue, cell, protein or gene. Hence, studies are 

increasingly focused on understanding the contributions of architecture, composition and 

remodeling dynamics to the maintenance of bone strength [2-5].  

 

At the tissue level, contributions from collagen and mineral components to bone quality 

and strength are not yet fully understood. Quantification of molecular structure and 

material properties at the tissue level would assist in examining the composite nature of 

bone and its effect on whole bone strength [6]. Factors such as aging and disease alter 
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bone mass, architecture and tissue properties. Age-related degradation of bone mass and 

architecture can compromise bone integrity. While compositional changes with age may 

precede failure, the relationship between tissue composition and material behavior at 

different ages is not fully characterized [7-9]. Combining different well-established 

methods for characterizing the material quality of bone allows us to study how age-

related material changes relate to tissue and whole bone mechanics. For instance, by co-

localizing Raman microspectroscopy and nanoindentation testing, the material quality of 

bone tissue can be studied at defined spatial positions at the sub-micrometer scale. Raman 

spectroscopy provides important compositional measures of the mineral and matrix 

components such as amount of mineralization, crystallinity, degree of carbonate 

substitution in the mineral, collagen content and cross-linking. Nanoindentation testing 

provides information on the hardness, elastic modulus and creep behavior of the tissue.  

 

A common assumption in studies investigating relationships between composition and 

mechanical properties is linearity. Univariate strategies make an assumption that 

variables are independent and exclude potentially informative interactions that might 

exist with other variables. For example, composition and nanomechanical properties have 

either been examined independently [10, 11] or by assuming linear relationships [12, 13]. 

One would expect that biological variables may be associated in a non-linear fashion and 

hence, more information can be gained by observing a set of metrics as a group, rather 

than averaging their individual effects. Probing the complex relationships between 

composition and mechanics at the tissue level will provide us with a better understanding 
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of how aging and disease affect bone function at different hierarchical levels. Eventually, 

this information can be useful in developing clinical predictive models of fracture risk.  

 

Exploratory data analysis techniques such as machine learning and high-dimensional data 

visualization can be applied to extract useful knowledge from a heterogeneous assortment 

of data. Machine learning involves applying statistical modeling algorithms to a data set. 

These models follow a ‘top down’ approach and attempt to learn the underlying concept 

rather than fit a provided model. Applications to microarray analysis [14], mass 

spectrometry [15] and spectroscopy [16] for biomarker discovery are examples of where 

data mining has made contributions. Popular dimension reduction methods such as linear 

principal component analysis and linear discriminant analysis find linear combinations of 

variables that best predict a class type. However, they do not account for the inherent 

underlying nonlinear structure associated with most biomedical data and the new features 

they create are difficult to interpret.  

 

Our previous study combined complementary techniques, Raman spectroscopy and 

nanoindentation testing, to investigate tissue level material properties at specific spatial 

locations [17]. Compositional and mechanical changes at the tissue microscale as a 

consequence of aging were measured. Compositional measurements were significantly 

correlated with mechanical properties in an age-dependent manner, highlighting the 

complex changes in bone material properties with age. In this study, we adopted a 

retrospective data mining approach to describe changes in femoral material properties 

between young and old mice. We applied two exploratory data analysis tools, RadViz 

 45



which a non-linear visualization method, and VizRank which is a classification and 

visual projection scoring algorithm. The utility of these data mining tools in identifying 

compositional and mechanical properties that are important in determining age-related 

differences is demonstrated here.   

 

3.2   Data sets 

Mechanical and compositional measurements from the right femora of 4, 5, and 19 month 

old male C57Bl/6 mice were used in this study.  4 month old mice are nearing skeletally 

maturity but still growing, 5 month old mice have fully developed skeletal integrity, and 

19 month old mice have compromised structural integrity [18-20]. The 5 and 19 month 

age groups included both non-exercised mice and mice subjected to an exercise program 

(running on a treadmill, 12 m/min, 5 degree incline, 30 minutes/day) for the 21 days prior 

to euthanization. There were 8 femora from four month old mice (all non-exercised), 13 

from five month old mice (6 non-exercised and 7 exercised), and 12 from nineteen month 

old mice (6 non-exercised and 6 exercised).   

 

Femora were prepared for co-localized analysis so that Raman and nanoindentation 

measurements could be taken at the same location on the mid-diaphysis [21]. Specimens 

were first analyzed using Raman microspectroscopy and followed by nanoindentation. 

The depth of field from the Raman analysis and the indentation depth were matched to be 

about 2-3 μm. The data set contained four Raman (carbonate to phosphate ratio, mineral 

to matrix ratio (MMR), crystallinity and cross-linking) and seven nanoindentation 

(hardness, plasticity index, elastic modulus, creep displacement, creep viscosity_series, 
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creep viscosity_parallel and creep modulus) variables for 33 specimens. The creep 

variables were used without any transformation.  

 

3.3   Multidimensional visualization  

RadViz is a nonlinear radial visualization method which maps n data dimensions 

(variables) onto two dimensional space for the purpose of clustering [22]. Variables 

describing specimen characteristics are equally spaced around the perimeter of a circle 

and called dimension anchors. The values of each dimension (variable) are standardized 

to the interval between 0 and 1. Each specimen is shown as a point inside the unit circle 

with its location determined by the influence of its dimension anchors [23]. A physical 

metaphor would be multiple springs attaching a specimen point to its dimension anchors. 

The influence (‘force’) that any dimension exerts on a specimen point is determined by 

Hooke’s law: f = k*d. The spring constant, k, is the value of the scaled dimension of that 

specimen (value ranges from 0 to 1) and d is the distance between the specimen point and 

the perimeter point on the circle assigned to that dimension. Given a set of n dimensions 

(or variables), each specimen point is placed inside the circle where the sum of its 

dimension spring forces equals zero.  The equations used to calculate the locations of 

specimens points are described in Appendix A5 and have been adapted from [24].  

  

In the representative RadViz illustration in figure 3.1, there are eight variables or 

dimensions associated with the one specimen point plotted. All dimensions are equally 

spaced around the circle in numerical order and eight imaginary springs connect these 

variables to the specimen point inside the circle. The spring constants or dimensional 
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values are higher for variables 7 and 8 (black springs) and lower for the other variables 

(grey springs).  Hence, the specimen point is positioned closer to variables 7 and 8 than 

the others. If all dimensions had equal values, then the specimen point would be placed 

close to the center. Thus, the specimen points visualized by RadViz are described 

uniquely by their x-y position and could carry class labels, if any.  

 

3.4   Variable selection and classification 

The selection and ordering of variables around the circle circumference influences the 

RadViz visualization. For instance, with given set of n variables, a total of (n-1)!/2 

unique RadViz projections are possible. To find interesting and informative projections 

of class-labeled data, the VizRank algorithm assesses possible RadViz projections and 

scores them by their ability to visually discriminate between classes [25]. The 

classification quality is the predictive accuracy of k-nearest neighbor (k-NN) classifier on 

the RadViz data set as estimated through 10-fold cross validation, with k is set to sqrt(N), 

where N is the number of specimen points. Projections are given a score between 0 and 

100 with projections providing perfect class separation receiving 100 and less 

informative projections receiving correspondingly lower scores. In this study, we used 

only the single best-ranked projection for classification. For a good quality RadViz 

projection, only a certain number of top ranked variables need to be used, instead of all 

available variables in the data. These top ranked variables can be considered as the 

significant variables that characterize the data features.  
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3.5   Classifier accuracy 

To compare VizRank’s accuracy to that of other machine learning approaches, we trained 

and classified upon the same dataset using support vector machines (SVM) with a linear 

kernel, a k-nearest neighbor learner (kNN, where k equal to square root of number of data 

instances in learning set), a naive Bayesian classifier and a C4.5 decision tree. A 

bootstrap resampling technique was used with the sampling repeated 100 times, as this 

technique provides a less variable estimate than cross-validation despite its computational 

cost [25]. The classification performance was obtained using the 0.632 bootstrap 

estimator that combines both the bootstrap sampling error rate and the resubstitution error 

rate [26]. The area under the receiver operating curve (AUC) was also calculated as a 

performance measure. A classifier is considered better if it has a larger AUC compared to 

a different classifier.  

 

3.6   Implementation 

RadViz and VizRank methods were implemented within Orange 

(http://www.ailab.si/orange), an open-source data mining suite featuring Python scripting 

and a graphic interface [27]. The other machine learning approaches such as linear SVM, 

kNN, naïve Bayesian and decision tree were also implemented within Orange. 

 

3.7   Results 

3.7.1 Univariate statistics: Raman spectroscopic and nanoindentation variables from the 

data set are presented in table 3.1. The material properties of 4 month old specimens were 

not significantly different from that of 5 month old specimens. Therefore, these two age 
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groups were combined and considered as a single age group (young). Mineral to matrix 

ratio (MMR), carbonate to phosphate ratio and crystallinity were significantly greater in 

the old specimens compared to that of young specimens. Crosslinking ratio and 

nanoindentation measurements were not different between the two groups. Exercise had 

no significant or marginally significant effect of the means of any metric. Between 4 and 

5 month old specimens, only collagen cross-linking ratio and hardness were marginally 

different (p < 0.1). Multivariate linear regressions with Raman covariates and 

nanoindentation dependent variables were previously reported [17].   

 

3.7.2 Nanoindentation measures as the dependent metric: Non-linear projection and 

classification were performed with nanoindentation metrics as the dependent class, and 

Raman metrics, age (young/old) and exercise (control/exercise) groups as independent 

variables. All data were grouped under two age classes (4 and 5 months combined as 

‘young’ and 19 month as ‘old’). Nanoindentation variables were binned into two classes 

(high and low) using an equal-frequency discretization method, because the classification 

algorithm requires a discrete dependent class. Table 3.2 (top panel) outlines the best 

RadViz projections for the dataset containing both the age classes. The cutoff point for 

two-class equal-frequency discretization is provided for each nanoindentation metric. 

VizRank algorithm was restricted to combinations of up to four variables. MMR, 

crystallinity, carbonate/phosphate and age metrics distinguished specimens with high or 

low plasticity index with a classification accuracy of 80%. The other nanoindentation 

metrics were classified with less than 80% accuracy. 
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Tables 3.2 (center and bottom panels) outline the best RadViz projections for the dataset 

containing only young and old specimens respectively. Independent variables consisted 

of Raman metrics and exercise group. VizRank algorithm was restricted to combinations 

of up to four variables. Classification accuracy greater than 80% was observed for 

plasticity index, creep modulus parallel and creep viscosity parallel in the young age 

group and hardness in the old age group.  

 

3.7.3 Raman measures as the dependent metric: The direction of dependencies 

between compositional and mechanical variables is not clear. Hence, non-linear 

projection and classification were also performed with Raman metrics as the dependent 

class, and nanoindentation metrics, age (young/old) and exercise (control/exercise) 

groups as independent variables. All data were grouped under two age classes (4 and 5 

months combined as ‘young’ and 19 month as ‘old’). Raman variables were binned into 

two classes (high and low) using an equal-frequency discretization method, while 

nanoindentation variables were left continuous and untransformed. Table 3.3 (top panel) 

outlines the best RadViz projections for the dataset containing both age groups. The 

cutoff point for equal-frequency discretization is provided for each Raman metric. 

VizRank algorithm was restricted to combinations of up to four variables. MMR and 

crystallinity were classified with greater than 90% accuracy.  

 

Tables 3.3 (center and bottom panels) outline the best RadViz projections for the dataset 

containing only young and old specimens respectively. Independent variables consisted 

of nanoindentation metrics and exercise group. VizRank algorithm was restricted to 
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combinations of up to four variables. In the young age group, classification accuracy 

greater than 80% was seen for MMR and carbonate to phosphate ratio. In the old age 

group, classification accuracy greater than 80% was observed for cross-linking and 

MMR.   

 

3.7.4 Multivariate discrimination of age classes: There might not always be a linear or 

non-linear dependence between bone compositional and mechanical metrics at the tissue 

level. Therefore, multidimensional projection and classification was used to distinguish 

young and old mice using Raman and nanoindentation variables. Different data sub-sets 

were considered for age-based classification: with only Raman variables, with only 

nanoindentation variables, and with combined Raman and nanoindentation variables. 

Classification was performed with 2 age classes (4 or 5 months and 19 months) and 3 age 

classes (4, 5 and 19 months).  

 

The best ranked RadViz projections for all three data sets are shown in figures 3.2, 3.3 

and 3.4 respectively and the corresponding best classification scores are given in table 

3.4.  The best ranked projections in figures 3.2 and 3.3 show that no suitable projections 

were found where class separation could be achieved with all measurements taken from 

either only Raman or only nanoindentation experiments. Figure 3.4 shows that VizRank 

identified a combination of Raman and nanoindentation variables that distinguish the age 

classes with greater than 80% accuracy. It is evident from figure 3.4 (bottom panel) that 

4-month and 5-month old specimens could not be easily distinguished. Hence, the best 
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projection for classifying three age groups required 8 variables (bottom panel) as 

compared to only 4 variables for classifying two age groups (top panel). 

 

The prediction accuracy of the best ranked projections found by Vizrank were compared 

to four standard machine learning approaches: support vector machines (SVM with a 

linear kernel), k-nearest neighbors (with k equal to square root of number of training 

instances), naive Bayesian classifier and decision trees. The predictive accuracies were 

assessed on the 2-age and 3-age class datasets using bootstrap resampling (repeated 100 

times) and the performance scores computed using the 0.632 bootstrap estimator. The 

performance of the classifiers in labeling blinded data was assessed during this 

procedure. The average classification accuracies and the area under the ROC curve with 

their respective standard deviations are reported in table 3.5.  

 

Figure 3.5 shows histograms of the seven variables most often used in top-rated RadViz 

visualizations of the datasets with 2-age classes and 3-age classes respectively. The y-

axis score shows the number of appearances of a variable in 100 best ranked projections.  

The colors of the bars indicate the class that has the highest average association for that 

variable, which is computed by examining the role of a variable taking into account its 

interaction with other variables in the data set [28]. The order in which features appear in 

the histogram reflects their importance. The list of variables defining the best ranked 

projections holds the most information for class discrimination as seen in top and bottom 

panels of figure 3.4. 
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3.8   Discussion 

The results revealed an age-dependent pattern in the relationships between 

nanoindentation and Raman metrics. In young specimens nearing skeletal maturity (table 

3.2 center panel), Raman compositional metrics contained more information on the visco-

elastic properties (plasticity index, creep metrics), whereas in old specimens with 

compromised structural integrity (table 3.2 bottom panel), they related better to the 

measure of hardness (resistance to plastic deformation). The classification accuracies of 

these results showed that these composition metrics offer only a partial understanding of 

the mechanical properties at the tissue scale.  

 

Age-dependent patterns were again evident in the results where Raman metrics are the 

dependent variables. In young specimens (table 3.3 center panel), nanoindentation 

metrics contained more information on MMR and carb/phos, whereas in aged specimens 

(table 3.3 bottom panel), they related better to collagen crosslinking. When both age 

groups were combined (table 3.3 top panel), nanoindentation variables offered more 

information on the mineralization state (MMR and crystallinity) of the bone. While 

changes in compositional metrics may be responsible for variations in mechanical 

properties and vice versa, these results demonstrated that changes in composition and 

mechanics might be due to other factors that remain unmeasured and interactions that 

remain unexplored.   

 

The visual projections in figures 3.2 and 3.3 confirmed the hypothesis that it is unlikely 

that a single variable or a single analytical technique will provide complete information 
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about bone quality and its transformation through various stages of aging. By analyzing a 

combination of Raman and nanoindentation variables together, a good classification 

performance was achieved and a set of variables that contain the most discriminative 

information were identified. Figure 3.4 depicts the biologically relevant Raman and 

nanoindentation variables from the present dataset. In the 2 age group dataset, the 

variables containing the most discriminative information were MMR, crystallinity, 

plasticity index and modulus. The visualization suggests that the contributions of 

compositional changes were different in young mice (4 or 5 months) and old (19 months) 

mice. Higher mineralization and crystallinity were characteristic of 19-month old 

specimens and possibly contributed to a decrease in structural integrity. In young 

specimens (4 or 5 months old), increased elastic and viscoelastic modulus contributed to 

mechanical competence. In the 3 age group dataset, the best projection used a higher 

number of variables to yield a good separation of the three age classes. While MMR and 

crystallinity distinguished specimens from the 19-month old group, the visual quality of 

the classification showed that 4-month old (nearing skeletal maturity) and 5-month old 

(skeletally mature) mice specimens exhibited similar material properties at the 

ultrastructural scale. Therefore, metrics corresponding to these two age groups were 

harder to interpret. This is in agreement with an earlier finding in C57BL/6 mice that 

while increases in cross-sectional femur geometry continued up to 5 months, material 

properties appeared to reach peak values at 4 months [29].  

 

Based on classification accuracy (table 3.5 top panel), VizRank performed better than 

other algorithms in the 2-age classes dataset and ranked third in the 3-age classes dataset. 

The area under ROC values, as given in table 3.5 (bottom panel), also confirmed that 
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VizRank performed comparably to other classification algorithms and was stable and 

robust. Further, VizRank offers an interpretable graphical model that indicates which 

variables in the data are responsible for class discrimination. The classifier performance 

can be improved through preprocessing by data transformation. For instance, logarithmic 

transformation and normalization methods can be used to stabilize variance in the dataset 

and thereby, improve classification accuracy. 

 

A small set of potentially significant features were identified using VizRank algorithm. 

MMR and plasticity index were the two most important variables present in the almost 

30% of the top-rated projections with the role of separating young (4 or 5 months) and 

old (19 months) specimens (figure 3.5 top panel). MMR, crystallinity, modulus and 

hardness were present in almost 30% of the top-rated projections in figure 3.5 (bottom 

panel). The other variables - crosslinking, plasticity index and creep displacement, 

appeared in almost 25% of the top 100 projections. Figure 3.5 (bottom panel) portrays the 

complexity in interpreting short term, age-related changes in bone quality. This study 

would benefit from adding more clinically relevant age groups and measurements of 

mechanical and chemical properties across multiple scales.  The results presented here 

suggest that, given a large enough data set, it may be possible to derive sets or rules of 

metrics that are predictive of ageing effects on the material quality of bone tissue. 

 

3.9   Conclusion 

In summary, we have probed the statistical combination of bone quality measures from 

Raman spectroscopy and nanoindentation testing to distinguish young and old femora. 
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This was performed by applying RadViz and VizRank classification algorithms to model 

a combined diagnostic composed of compositional and mechanical measures. Our results 

demonstrate that not all variables have good discriminatory information. A few selected 

Raman and nanoindentation variables can reflect the complex changes in bone material 

properties that occur with aging. Classification was better for the 2-age class dataset than 

for the 3-age class dataset, because the 4-month and 5-month old specimens exhibited 

similar material properties. Combinations of multi-scale, multi-technology measures can 

provide valuable insight into factors affecting bone quality. Such combined measures 

would be more likely to offer better sensitivities and specificities than individual markers 

and single out critical features that are relevant for diagnostic purposes.  
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Table  3.1 Compositional and mechanical metrics determined by Raman spectroscopy and 
nanoindentation testing for the two age groups (* p<0.05) 
 

 
Variable 

Young  
(4 or 5 months)

Old 
(19 months) 

Difference vs. 
young (%) 

MMR 7.327 ± 0.996 10.18 ± 1.28* +39 

Carbonate/Phosphate 0.267 ± 0.018 0.284 ± 0.029* +6 

Crystallinity 0.0534 ± 0.0004 0.0544 ± 0.0005* +2 

Cross-linking 2.08 ± 0.36 1.92 ± 0.22 -4 

Modulus (GPa) 7.55 ± 1.97 8.11 ± 2.30 +7 

Hardness (GPa) 1.22 ± 0.41 1.40 ± 0.45 +13 

Plasticity index 0.77 ± 0.03 0.76 ± 0.03 -0.2 

Creep displacement (nm) 833 ± 336 823 ± 360 -1 

Creep modulus parallel (GPa) 884 ± 782 992 ± 740 +12 

Creep viscosity parallel(GPa-s) 11200 ± 8826 12175 ± 8280 +9 

Creep viscosity series (GPa-s) 15179 ± 15166 15508 ± 17900 +2 

 

 58



Table 3.2 Nanoindentation vs. Raman metrics for both age groups (top), young age group (center) 
and old age group (bottom) 
 

Dependent class 
(Discretized) 

Classification 
Accuracy 

Independent variables used in the top projection 

Modulus  
(Cutoff = 7.64) 

66% C/P, Crystallinity, MMR, Cross-linking 

Hardness   
(Cutoff = 1.23) 

77% Crosslinking, MMR, Exercise 

Plasticity index   
(Cutoff = 0.77) 

80% MMR, Crystallinity, C/P, Age 

Creep displacement   
(Cutoff = 812.4) 

67% Cross-linking, Crystallinity, MMR, Exercise 

Creep modulus parallel 
(Cutoff = 674) 

65% Age, MMR, Exercise, Cross-linking 

Creep viscosity parallel 
(Cutoff = 9117) 

66% MMR, Crosslinking, Age, Exercise 

Creep viscosity series 
 (Cutoff = 8556) 

78% MMR, Crosslinking, Age, Exercise 

 
 
Modulus  
(Cutoff = 7.37) 

75% MMR, Crosslinking, C/P,  Crystallinity 

Hardness   
(Cutoff = 1.15) 

67% MMR, Crosslinking, Exercise 

Plasticity index   
(Cutoff = 0.76) 

86% C/P, Crosslinking, MMR, Exercise 

Creep displacement   
(Cutoff = 812.4) 

63% Crosslinking, MMR, Exercise 

Creep modulus parallel 
(Cutoff = 565) 

84% MMR, Crystallinity, Crosslinking, Exercise 

Creep viscosity parallel 
(Cutoff = 8324) 

84% MMR, Crystallinity, Crosslinking, Exercise 

Creep viscosity series 
 (Cutoff = 8605) 

75% MMR, Crystallinity, Crosslinking, Exercise 

 
 
Modulus  
(Cutoff = 8.0) 50% MMR, Crystallinity, Crosslinking, Exercise 
Hardness   
(Cutoff = 1.32) 87% MMR, Crystallinity, Crosslinking, Exercise 
Plasticity index   
(Cutoff = 0.77) 75% Crystallinity, MMR, C/P, Exercise 
Creep displacement   
(Cutoff = 819) 65% Crosslinking, Exercise, MMR 
Creep modulus_parallel 
(Cutoff = 907) 65% Crosslinking, Exercise, MMR 
Creep viscosity_parallel 
(Cutoff = 11352) 65% Crosslinking, Exercise, MMR 
Creep viscosity_series 
 (Cutoff = 7703) 65% Crosslinking, MMR, Exercise 
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Table 3.3: Raman vs. nanoindentation metrics for both age groups (top), young age group (center) 
and old age group (bottom) 
 

Dependent class 
(Discretized) 

Classification 
Accuracy 

Independent variables used in the top 
projection 

Carb/Phos 
(cutoff = 0.27) 80% Hardness, Plasticity index, Modulus, Age  
Crystallinity  
(Cutoff = 0.054) 92% 

Creep viscosity parallel, Plasticity index, Age, 
Creep modulus parallel 

MMR 
(cutoff = 8.79) 96% Creep displacement, Age, Hardness, Modulus  
Crosslinking 
(cutoff = 1.96) 71% Hardness, Modulus, Age and Plasticity index 
 

Dependent class 
(Discretized) 

Classification 
Accuracy 

Independent variables used in the top 
projection 

Carb/Phos 
(cutoff = 0.27) 86% 

Creep modulus parallel, Hardness, Modulus, 
Creep viscosity parallel 

Crystallinity  
(Cutoff = 0.053) 69% 

Creep displacement, Hardness, Creep viscosity 
parallel, Modulus 

MMR 
(cutoff = 7.15) 88% 

Modulus, Hardness, Creep viscosity parallel, 
Creep viscosity series 

Crosslinking 
(cutoff = 1.96) 78% 

Modulus, Creep viscosity series, Plasticity 
index, Creep modulus parallel 

 

Dependent class 
(Discretized) 

Classification 
Accuracy 

Independent variables used in the top 
projection 

Carb/Phos 
(cutoff = 0.27) 76% 

Hardness, Modulus Creep viscosity parallel, 
Creep modulus parallel 

Crystallinity  
(Cutoff = 0.054) 74% 

Creep modulus parallel, Plasticity index, 
Hardness, Exercise 

MMR 
(cutoff = 8.79) 83% 

Hardness, Modulus, Plasticity index, Creep 
viscosity series 

Crosslinking 
(cutoff = 1.96) 90% 

Creep modulus parallel, Creep displacement, 
Hardness, Exercise 
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Table 3.4: Raman and nanoindentation data sets used in the experimental analysis 
Data Set Specimens 

(Sample points) 
Variables 

(dimensions) 
Age  

classes 
Best projection

score 
2* 79.0%  

Raman 
 

33 
 
4 3 59% 

2* 63.0% 
Nanoindentation 33 7 3 62.3% 

2* 96 % 
Combined 33 11 3 86% 

* 4-month & 5-month old specimens combined into a single group   
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Table 3.5: Bootstrap estimated classification accuracy (top) and area under ROC (bottom) of 
VizRank compared to four standard machine learning algorithms 
 

Data set Classification 
Accuracy 2 age classes 3 age classes 

VizRank 89.5 ± 11.5 73.0 ± 14.3 

SVM 87.6 ± 19.8 76.2 ± 18.9 

kNN 85.7 ± 11.9 77.5 ± 13.1 

Naive Bayes 84.6 ± 11.8 62.9 ± 14.1 

Decision trees 87.2 ± 8.2 72.6 ± 13.3 
 
 

Data set Area under  
ROC 2 age classes 3 age classes 

VizRank 0.94 ± 0.12 0.85 ± 0.12 

SVM 0.91 ±  0.21 0.92 ± 0.13 

kNN 0.90 ± 0.13 0.87 ± 0.11 

Naive Bayes 0.87 ± 0.11 0.77 ± 0.12 

Decision trees 0.87 ± 0.09 0.83 ± 0.11 
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Figure 3.1 RadViz representation of a specimen point with eight dimensions. 
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Figure 3.2 Classification using only Raman variables for 2 age groups (top) and 3 age groups 
(bottom). The projection scores for the best quality RadViz projections computed by VizRank are 
79% and 59% respectively.  
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Figure 3.3 Classification using only nanoindentation variables for 2 age groups (top) and 3 age 
groups (bottom). Projection scores for the best quality RadViz projections computed by VizRank are 
63% and 62% respectively.  
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Figure 3.4 Classification using both Raman and nanoindentation variables to classify 2 age groups 
(top) and 3 age groups (bottom). Projection scores for the best quality RadViz projections computed 
by VizRank are 96% and 86% respectively.  
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Figure 3.5 A histogram of the seven Raman and nanoindentation variables most often used in the top 
100 RadViz visualizations of the dataset with 2 age groups (top) and with 3 age groups (bottom). 
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CHAPTER 4 

Raman spectroscopic study of deuterated bone tissue 

 
4.1   Introduction 

Water is an important, but often overlooked component of bone tissue, with influences on 

the structure and stability of both the mineral and the collagenous matrix. For example, 

collagen has an internal hydration layer that mediates hydrogen bonding in the triple 

helix. The collagen hydrogen bonds are of two types: interchain peptide-peptide and 

peptide-water hydrogen bonds [1, 2]. Referring to the conventional Gly-X-Y notation, the 

interchain peptide-peptide hydrogen bonds include direct hydrogen bonds between the 

backbone NH group of glycine and the backbone C=O group of a residue in the X-

position of the neighboring chain, usually proline [3],  and indirect hydrogen bonds 

formed by water bridges between the backbone NH group of proline in the X-position 

and the C=O group of glycine [4]. In bone mineral, several different water environments 

including water in the c-axis vacancies, in vacancies elsewhere in the crystallites and in 

the electrolyte-rich monolayer or very thin layer at the crystallite surfaces, have been 

previously identified [5].  

 

Studies investigating bone dehydration and replacement of water with polar solvents in 

bone and dentin have demonstrated tissue shrinkage and an increase in the tensile 

strength, brittleness and stiffness of the tissue. These effects are a consequence of 
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increased direct collagen-collagen hydrogen-bonding as fewer hydrogen-bonding sites 

are occupied by the solvent. This leads to change in the bonding patterns and the 

hydration structure and hence, changes in the matrix protein conformation [6-12].  

 

A model system to study the aqueous environment of bone tissue is achieved by replacing 

water (H2O) with deuterium oxide (D2O). Deuterium oxide forms hydrogen bonds that 

are stronger by ~0.1 - 0.2 kcal mol-1 than water while having a similar size. Equilibration 

of a bone tissue specimen with a D2O-based buffer will result in partial or complete 

replacement of collagen water with D2O [13]. Side chains in the X and Y positions of the 

collagen Gly-X-Y sequence are exposed to the molecular surface and hence, could be 

affected by solvent exchange. The labile water on the mineral crystallite surface layer is 

also expected to exchange with D2O. Knowledge of the influence of D2O on the 

molecular components of bone may be important in identifying how water interacts with 

collagen and mineral at the ultrastructural scales.  

 

Raman spectroscopy makes it possible to explore the effects of solvent environment on 

protein and mineral structure. As a general rule, hydrogen bonding lowers the frequency 

of stretching vibrations, but increases the frequency of bending vibrations [14]. For 

vibrational modes of carbonyl groups the shifts may be no more than a few 

wavenumbers, although there can be much larger shifts for OH and NH vibrations. The 

effect of H-bonding on the peptide linkage is to shorten the C-N bond and to lengthen the 

C=O bond. The amide I band in the bone infrared spectrum (1665 cm-1 & 1685 cm-1) has 

been used as an indirect measure of the maturity of collagen cross-links with realization 
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that collagen secondary structure changes are the source of the effect [15, 16]. The same 

spectroscopic measures of collagen secondary structure have been used in bone Raman 

spectroscopy as metrics for cross-link distortion and rupture under mechanical load [17]. 

The 1665 cm-1 band of amide I arises mainly from the C=O stretching vibration with 

minor contributions from the out-of-phase CN stretching vibration, the CCN deformation 

and the NH in-plane bend. The latter is responsible for the sensitivity of the amide I band 

to N-deuteration of the backbone.   

 

In this study, we analyzed the effects of D2O equilibration on the collagen and mineral 

components of bone tissue using Raman spectroscopy. The solvent environment was 

manipulated by equilibrating bone tissue with phosphate-buffered saline (PBS) prepared 

in different concentrations of D2O.  Changes in mineral and matrix Raman bands on H/D 

(H2O to D2O) exchange were observed in the different treatment groups.  

 

4.2   Specimen preparation  

Left and right femora were harvested from fifteen mice (strain: C57BL/6J male, age: 4 

weeks) were used. Five samples of about 1 mm length were sectioned from the mid-

diaphyses of the right and left femora using a low-speed sectioning saw. For each mouse, 

five bone samples each were equilibrated in PBS prepared with known D2O/H2O 

mixtures (0%, 25%, 50%, 75% and 100%) for twelve hours. D2O (99.99 atom%) was 

purchased from Sigma-Aldrich (St. Louis, MO). After equilibration, the cross-sections 

were frozen until use. The specimens were thawed before collection of spectra. They 
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were kept moist throughout an experiment by a drip of PBS prepared with the appropriate 

D2O/H2O mixture.  

 

4.3   Raman spectroscopy 

Raman spectra were collected from the femoral cross-sections using a locally-constructed 

Raman microprobe that has been described [18]. The system was constructed around a 

Nikon E600 microscope frame (Nikon USA, Melville, NY). The exciting laser was a 400 

mW, 785 nm diode laser (Invictus, Kaiser Optical Systems Inc., Ann Arbor, MI) from 

which the circularizing optics had been removed to allow line-focusing.  The line focus 

enabled the simultaneous collection of 126 spectra (one for each row of pixels on the 

CCD detector). An axial transmissive imaging spectrograph (Holospec, Kaiser Optical 

Systems Inc., Ann Arbor, MI) with 25 µm entrance slit (approx. 4 cm-1 resolution) and a 

1024x256 pixel deep depletion charge-coupled device detector (Andor Technology, 

South Windsor, CT) were used to disperse and record the spectrum.  

 

Raman spectra were acquired from the D2O/H2O-equilibrated samples through a 40X, 

0.90 NA objective (Nikon USA, Melville, NY) at an exposure time of 120s for 

unpolarized spectra and 180s for polarized spectra. The polarization direction of the beam 

was selected using a half-wave plate. The collected Raman scatter was passed through an 

analyzing polarizer and a wedge depolarizer and directed onto the slit of the 

spectrograph. In order to measure the polarization dependence of Raman bands, parallel-

polarized (Ipar) and cross-polarized spectra (Iperp) were obtained with the analyzer 

polarization oriented parallel and perpendicular to the incident linearly polarized light.  
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4.4   Spectral processing and data analysis 

The wavenumber scale of the spectrograph was calibrated against the emission lines of a 

neon lamp discharge. Intensities were corrected for polarization dependence of the optics 

by calibration against cyclohexane. The spectra were corrected for spectrograph image 

curvature. Dark current subtraction and white light correction (flat-fielding) were 

performed using locally written scripts on MATLAB (Mathworks Inc., Natick, MA). 

Spectra were analyzed and peak fitting was performed using GRAMS/AI 7.01 (Thermo 

Galactic, Waltham, MA). The peak positions, widths and intensities of the characteristic 

mineral bands were measured: phosphate ν1 (959 cm-1) and carbonate ν1 (1071 cm-1). 

Likewise, the peak positions and areas of the collagen bands were measured: amide I 

(1665 cm-1 and 1685 cm-1) and hydroxyproline (855 cm-1 and 876 cm-1). Depolarization 

ratios, R = Iperp/ Ipar, were calculated for the phosphate band for the different D2O/H2O-

equilibrated groups.  

 

Raman metrics measured on the different D2O/H2O-equilibrated groups were analyzed 

using Friedman’s two-way analysis of variance, a nonparametric equivalent of repeated-

measures ANOVA (SPSS 18, Chicago, IL). A nonparametric post hoc test was used for 

multiple comparisons between D2O concentrations. For all analyses, p ≤ 0.05 was 

considered significant. Effect size, r, was calculated using the Wilcoxon signed-rank test. 

The value of r for small, medium and large sizes was considered to be 0.1, 0.3 and 0.5 

respectively. Non-linear visualization and classification algorithms were then applied to 

identify Raman metrics which are most important in classifying the different D2O/H2O 
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treatment groups. RadViz and VizRank algorithms have been described earlier in Chapter 

3 and were implemented within Orange data mining software.  

 

4.5   Results  

Table 4.1 shows the descriptive statistics for the Raman spectroscopic measures of bone 

mineral and matrix in each of the D2O/H2O treatment groups. All Raman measures 

except mineral to matrix ratio (MMR) significantly differed among D2O/H2O treatment 

groups, such as (a) phosphate peak position (p<0.05, Friedman's chi-square 24.4), (b) 

mineral crystallinity (p<0.05, Friedman's chi-square 9.76), (c) carbonate peak position 

(p<0.05, Friedman's chi-square 9.52), (d) carbonate to phosphate ratio (p<0.05, 

Friedman's chi-square 10.03), (e) phosphate depolarization ratio (p<0.05, Friedman's chi-

square 10.64), (f) hydroxyproline 855 cm-1 peak (p<0.05, Friedman's chi-square 34.96) 

and 875 cm-1 peak position (p<0.05, Friedman's chi-square 18.16), (g) amide I 1660 cm-1 

peak (p<0.05, Friedman's chi-square 28.4) and 1680 cm-1 peak position (p<0.05, 

Friedman's chi-square 20.8).  

 

Post hoc multiple comparisons on the mineral bands showed that the shift in phosphate 

peak position to a higher wavenumber in the 100% D2O/H2O treatment group compared 

to 0%, 25% and 50% D2O/H2O treatment groups was statistically significant. The shift in 

carbonate peak position to a higher wavenumber for the 100% D2O/H2O treatment group 

compared to the 25% D2O/H2O treatment group was statistically significant. However, 

the shift in carbonate peak position was less than for phosphate.  The apparent carbonate 

to phosphate ratio was significantly higher for the 100% D2O/H2O treatment group 
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compared to the 25% D2O/H2O treatment group, suggesting that with shifts in 

corresponding peak positions, these bands are no longer fully resolved. The 

depolarization ratio for phosphate was significantly reduced on equilibration with 100% 

D2O/H2O as compared to 0% D2O/H2O solution.  

 

Post hoc multiple comparisons on the collagen bands showed that the hydroxyproline 

peak position shifted to lower wavenumbers on equilibration with deuterium oxide. 

Specifically, for the 855 cm-1 hydroxyproline band, the peak positions for the 75% and 

100% D2O/H2O treatment groups were significantly lower compared to that of 0% and 

25% D2O/H2O treatment groups. The 875 cm-1 peak position was significantly lower for 

the 100% D2O/H2O treatment group compared to that of the 50% treatment group. The 

amide I Raman bands also exhibited a shift to lower wavenumbers on equilibration with 

deuterium oxide. For the 1660 cm-1 amide I band, the peak positions for the 50%, 75% 

and 100% D2O/H2O treatment groups were significantly lower compared to the 0% 

treatment group. For the 1680 cm-1 amide I band, the peak position for the 75% D2O/H2O 

treatment group was significantly lower than that of the 0%, 25% and 50% treatment 

groups and the peak position of the 100% D2O/H2O treatment group was significantly 

lower compared to the 0% treatment group. Wilcoxon signed-rank tests revealed a 

medium to large effect size (r = 0.43 to 0.72) on D2O/H2O treatment. No statistically 

significant trend within individual treatment groups was observed for other metrics.  

 

All Raman spectroscopic measures of bone mineral and collagen from this study were 

evaluated for their ability to discriminate between the five D2O/H2O treatment groups. 
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The best RadViz projections for this five class dataset using only collagen measures and 

only mineral measures are shown in figure 4.1. The classification scores computed by 

VizRank for these projections were 47% and 39% respectively. Combining collagen and 

mineral measures provided a projection with an increased classification accuracy of 68% 

as shown in figure 4.2. However, even with the use of seven Raman measures, the five 

treatment groups were not discriminated. Specimen points corresponding to 0%, 25% and 

50% D2O/H2O treatment groups are clustered together and separated from the cluster 

formed by the 75% and 100% D2O/H2O groups. The non-parametric test results also 

show that significant differences in Raman metrics are observed primarily in the 75% 

and/or 100% D2O/H2O treatment groups compared to other groups.  

 

The five class dataset was converted into a two class dataset by combining the 0%, 25% 

and 50% D2O/H2O treatment groups into one class and the 75% and 100% D2O/H2O 

treatment groups into another. The best RadViz projections for this two class dataset 

using only collagen measures and only mineral measures (figure 4.3) yielded 

classification scores of 66% and 67% respectively. Combining collagen and mineral 

measures provided a projection with a classification accuracy of 96.5% (figure 4.4). The 

variables holding the most discriminative information were hydroxyproline 855 cm-1 peak 

position, amide I 1660 cm-1 peak position and mineral crystallinity.  

 

4.6   Discussion 

The decrease in amide I and hydroxyproline wave numbers on deuteration offer insights 

into the role of hydrogen bonding in collagen fibrils. Water bridges contribute to chain 
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stabilization [19]. As H/D exchange occurred, labile protons on the amino acids, 

especially on glycine, were replaced by deuterium ions. On deuteration of the glycine 

amine and the hydroxyl groups of hydroxyproline, the hydroxyproline Raman bands 

shifted down in frequency. The shifts in amide I bands could also result from loss of 

water bridges, i.e. water-mediated hydrogen bonds. These observations indicate a change 

in the secondary structure and dynamics of collagen as a result of H/D exchange. In these 

experiments, an increase in the 1685 cm-1 component of amide I with deuteration was not 

observed. Increases in this band have been associated with the lack of mature 

interfibrillar cross-links, whether from mechanical damage [17], osteoporosis [16] or 

collagen immaturity [20]. However, we cannot conclude definitively from our 

measurements whether mature cross-links are broken or distorted with deuteration. 

 

The hydrogen bond in H2O is shorter and more asymmetric than in D2O [21]. The 

influence of H/D exchange on the stability of globular proteins and collagen model 

peptides has been studied using circular dichroism and differential scanning calorimetry 

[22, 23]. While the increased strength of the hydrogen bond of D2O was found to increase 

the stability of the proteins, the mechanism of stability remains unclear. A recent NMR 

study on bovine cortical bone specimens reported that dehydration and H/D exchange 

caused similar spectral changes due to local conformational disorder of the collagen 

matrix [24].  Dehydration of bone results in closer spacing of collagen fibrils [25]. Hence, 

the changes in collagen Raman bands on deuteration could be similarly explained by the 

increased rigidity of the protein structure due to the increased strength of the hydrogen 

bonds of D2O.  
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While the primary effect of H/D exchange was observed in collagen bands, a significant 

increase in phosphate and carbonate peak positions, mineral crystallinity and carbonate to 

phosphate ratio occurred on equilibration with 100% D2O/H2O. We hypothesize that 

these observed changes are related to the compression of the mineral phase in response to 

stiffening of collagen fibrils on H/D exchange. It is unlikely that mineral composition 

was affected by H/D exchange. The reduced spacing of the collagen molecules would 

change the strain environment of the mineral lattice. This is in agreement with an earlier 

study which reported that fixation of bones with ethanol and glycerol had a significant 

effect on apparent mineral crystallinity [26]. Synchrotron diffraction and scattering 

studies on bone have also shown that drying and consequent stiffening of collagen 

increases the strain fraction carried by mineral particles in the mineralized fibril [27].  

 

The increased polarization of the phosphate Raman band on deuteration indicates 

changes to the degree of mineral crystallite orientation. The mineral crystallites are 

mainly within the gap regions within the collagen fibril [28] and the crystallographic c-

axes are aligned with the fibril long axis [29, 30]. In a polarized Raman study of dental 

caries, disordered mineral was reported to increase the depolarization ratio of the 

phosphate 959 cm-1 peak [31]. In contrast, collagen stiffening on deuteration would 

compress the mineral crystallites, causing them to become better oriented, which is 

reflected in the decreased Raman depolarization ratio of the 959 cm-1 peak in this study.  

 

Compression of the mineral crystallite lattice causes the anions within the apatite unit cell 

to be compressed. However, the carbonate ion compresses less than the phosphate ion 
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[32, 33]. This could explain why the observed change in Raman shift for carbonate was 

less than for phosphate. Similar changes in bone mineral bands have been observed 

during high-pressure Raman spectroscopy [34]. While spectroscopic changes were 

observed in amide I collagen even at 50% H/D exchange, a significant increase in 

wavenumber for the mineral bands were evident only at 100% H/D exchange. In 

addition, spectral changes in the mineral bands on H/D exchange were no greater than 

~1-2 cm-1. These observations for the mineral bands can be understood on the basis that 

compression of the phosphate ion is two to four times smaller than lattice compression 

[33]. Therefore, as collagen fibrils stiffen on H/D exchange and compress the mineral 

lattice, the spectroscopic changes reflecting the compression on the phosphate ion can be 

too small to be detected by Raman spectroscopy until a certain compressive stress 

threshold is reached.   

 

Interpretation of Raman spectral shifts in terms of stress distribution in the mineral lattice 

is not straightforward [35]. However, assuming uniaxial compressive stress along the 

main crystallographic direction, the wavenumber shifts of the mineral band can be 

converted into compressive stress values using known values of δV/δP, the compressive 

coefficient. δV/δP represents the average change in position of the mineral Raman band 

per unit pressure. We used the δV/δP value of 5.152 cm-1/GPa for phosphate and 3.228 

cm-1/GPa for carbonate measured in powdered mouse bone under hydrostatic 

compression [34]. For spectroscopic shifts of 1.2 cm-1 for phosphate peak and 0.4 cm-1 for 

carbonate peak in the 100% D2O/H2O treatment group, the corresponding compressive 

stresses on the phosphate and carbonate ions are estimated to be 233 MPa and 123 MPa 
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respectively. We hypothesize that these stress values represents the threshold 

compressive stresses exerted by the stiffening collagen matrix, below which changes in 

mineral components will be difficult to resolve spectroscopically.  

 

Non-linear, multidimensional visualization of the dataset confirmed that significant 

changes in bone mineral and matrix Raman bands were observed predominantly in the 

75% and 100% D2O/H2O groups. When all five treatment groups were included in the 

classification, collagen and mineral spectroscopic measures provided poor discrimination 

of the different groups. However, when specimens were grouped into two classes (0%-

50% D2O/H2O and 75%-100% D2O/H2O), the RadViz projections confirmed that 

classification accuracy improved. The visual quality of the classification showed that 

specimens belonging to the 0%, 25% and 50% D2O/H2O groups exhibited similar mineral 

and matrix spectroscopic measures. Likewise, classification accuracy improved 

dramatically when both mineral and matrix Raman measures were included in the 

classification.  

  

Our results suggest that equilibration with D2O alters the aqueous and chemical 

environment of bone tissue. This has practical implications for the interpretation of NMR 

studies involving H/D exchange in bone tissue. These results also hold clinical relevance 

for the study of changes in collagen structure accompanying bone disorders [36] and 

changes in water content bonded to bone mineral and collagen with increasing age [37]. 

While the present work has focused on the Raman spectroscopic changes due to 

deuteration, future work will employ cross-polarization NMR studies to study the spatial 
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relationships between the chemical components of bone mineral and matrix and the 

influence of water on these interactions.  

 

4.7   Conclusion 

Using a combination of D2O/H2O concentrations and Raman spectroscopy, we have 

studied the response of bone mineral and the matrix components to the substitution of 

H2O with D2O. Although the increase in hydrogen bond strength upon deuteration is 

small, we identified significant shifts in the Raman bands of bone mineral and matrix at 

high D2O concentrations. A striking result is that D2O equilibration not only enhances 

collagen stability but also compresses the mineral phase. We hypothesize that changes in 

mineral Raman bands reflect orientation and stress effects and not compositional 

changes.  
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Table 4.1: Raman measures of the mineral (top) and matrix (bottom) components reported as mean 
(SD)  
 

D2O/H2O 
concentration Phosphate 

Peak (cm-1) 
Phosphate 

crystallinity 

 
Carbonate 
Peak (cm-1) 

Carbonate 
/Phosphate 

ratio 

Phosphate 
Depolarization 

Ratio 
0% 958.30 

(0.39) 
.0545 

(.0013) 
1070.43 
(0.63) 

0.154 
(0.007) 

0.088 
(0.054) 

25% 958.35 
(0.58) 

.0546 
(.0015) 

1069.97 
(0.67) 

0.153 
(0.013) 

0.041 
(0.029) 

50% 958.47 
(0.95) 

.0546 
(.0015) 

1070.81 
(0.83) 

0.161 
(0.025) 

0.042 
(0.016) 

75% 958.44 
(0.66) 

.0558 
(.0021) 

1070.83 
(0.47) 

0.164 
(0.019) 

0.035 
(0.009) 

100% 959.53 
(0.10) 

.0564 
(.0011) 

1070.82 
(1.14) 

0.178 
(0.019) 

0.028 
(0.008) 

p-value* <0.05 <0.05 <0.05 <0.05 <0.05 
 
 

D2O/H2O 
concentration 

Hydroxyproline 
Peak (cm-1) 

Amide I  
Peak (cm-1) 

Mineral to 
Matrix Ratio 

0% 853.05 
(0.65) 

874.54 
(1.49) 

1662.25 
(0.79) 

1682.59 
(0.98) 

7.80 
(1.18) 

25% 851.84 
(0.97) 

874.46 
(0.95) 

1660.24 
(0.85) 

1681.73 
(1.85) 

7.61 
(1.36) 

50% 851.59 
(0.65) 

875.43 
(0.87) 

1659.47 
(0.99) 

1681.29 
(2.13) 

7.04 
(1.87) 

75% 850.50 
(1.01) 

873.91 
(1.48) 

1656.75 
(1.78) 

1677.95 
(2.30) 

7.53 
(177) 

100% 850.09 
(0.80) 

872.99 
(0.90) 

1658.24 
(0.64) 

1679.78 
(1.51) 

7.93 
(1.56) 

p-value* <0.05 <0.05 <0.05 <0.05 >0.05 
(* - p-value comparing the median among 5 treatment groups using Friedman’s ANOVA) 
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Figure 4.1 Classification of five D2O/H2O treatment groups involving only collagen measures (top) 
and only mineral measures (bottom). The projection scores of the best quality RadViz projections 
computed by VizRank were 47% and 39% respectively.  
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Figure 4.2 Classification of five D2O/H2O treatment groups involving both collagen and mineral 
measures. The projection score of the best quality RadViz projection computed by VizRank was 
68%.  The specimen points are scaled up by a factor of 1.3 to assist with visualization. 
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Figure 4.3 Classification of two D2O/H2O treatment groups involving only collagen measures (top) 
and only mineral measures (bottom). The projection scores of the best quality VizRank projections 
computed by VizRank were 66% and 67% respectively. 
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Figure 4.4 Classification of two D2O/H2O treatment groups involving both collagen and mineral 
measures. The projection score of the best quality RadViz projection computed by VizRank was 
96.5%.   
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CHAPTER 5 

Raman spectroscopic study of bone mineral behavior on tensile loading 

 

5.1   Introduction 

The Raman spectrum is sensitive to changes in mineral parameters such as crystal 

structure, crystallite size and deviations from stoichiometry [1] and to changes in protein 

conformation [2]. Because these ultrastructural parameters change with age and 

mechanical loading, Raman spectroscopy is a powerful tool for assessing the effects of 

these parameters on the bone tissue. Biomechanical studies on the bone have focused on 

relating the biology and the mechanics of the tissue. Because of the hierarchical nature of 

bone, the biomechanical testing of bone at different levels of scale can be used to isolate 

changes at each level which affect the bone quality. It is well-known that the organization 

of the bone ultrastructure i.e., collagen conformation, cross-linking, mineral type, crystal 

alignment and collagen-mineral interfaces, determine the mechanical behavior of bone 

[3]. However, the structural behavior of mineral and its influence on the overall 

mechanical properties of bone has been more difficult to evaluate.  

 

Raman spectroscopy is well-suited to study atomic-level deformations in mineral due to 

mechanical loading. Previous spectroscopic studies during mechanical testing of bone 

demonstrated that mechanical damage caused spectral shifts and that different changes in 
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collagen and mineral occur in response to mechanical loading and deformation [4-7]. 

Mineral spectral shifts were attributed to ionic movement and distortion. Polarized 

Raman spectroscopic imaging has been used to study the orientation and composition of 

cortical bone tissue [8-10]. In the present study, we used polarized Raman 

microspectroscopy to investigate about mineral crystallite behavior in bovine bone tissue 

under tensile loading in the elastic regime.   

 

5.2   Specimen preparation 

Three bovine bone specimens were milled from a bovine femur obtained from a local 

abattoir and stored at -80˚C until use. Each specimen was machined to about 3 cm in 

length and 2mm x 2mm in cross sectional area, while being irrigated with Calcium-

buffered saline. To prepare the specimens for mechanical testing, the ends were 

embedded in a cold-setting acrylic and the exposed section was kept moist with gauze 

soaked in phosphate-buffered saline. A custom-made fixture was used to align the 

specimen. The thawed specimens were loaded onto a custom designed mechanical testing 

apparatus [6]. Under computer control, a DC motor was used to extend the specimen, 

while a load cell measured the applied load. The specimens were photo-bleached for 15 

minutes at 200 mW prior to the experiments and kept moist throughout the experiment 

using phosphate buffered saline. 

 

5.3   Polarized Raman spectroscopy 

The Raman microspectroscopy system employed in the present study consisted of a 

research grade microscope (E600, Nikon USA), a 2 Watt 532 nm laser (Millennia II, 
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Spectra Physics, Mountain View, CA), and an f/1.8 axial transmissive spectrograph 

(HoloSpec, Kaiser Optical Systems, Inc., Ann Arbor, MI) [6]. The spectrograph was 

fitted with a 512 x 512 pixel back-illuminated EMCCD (iXon, Andor Technology, 

Belfast, Northern Ireland). The mechanical tester containing the specimen was placed on 

the micrometer stage with the laser line focused parallel to the long axis of the bone 

diaphysis. All Raman spectra were acquired through a 100X, 0.90 NA plan apochromatic 

objective (Nikon USA) with an exposure time of 30s. The polarization direction of the 

beam was selected using a half-wave plate and the collected Raman scatter was passed 

through an analyzing polarizer and directed onto the slit of the spectrograph. A wedge 

depolarizer after the analyzer eliminated intensity artifacts caused by the polarization 

dependence of the grating transmission efficiency.  In all experiments the polarization of 

the incident laser beam was maintained parallel to the long axis of the diaphysis. The 

analyzer was adjusted to pass either the parallel or perpendicular component of the 

Raman scatter. The intensities (I) of the two polarized components of the Raman scatter 

are described by their excitation and detection polarizations: Ipar and Iperp respectively.  

 

5.4   Mechanical testing 

The three bovine bone samples were loaded in tension in a series of discrete steps. The 

specimens were first loaded to 12.5 MPa, unloaded back to 0 MPa. Polarized Raman 

spectra were acquired from the mid-diaphysis region of the bone specimens at each 

loading magnitude.  
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5.5   Data analysis 

Spectra were analyzed and peak fitted using GRAMS/AI 7.01 (Thermo Galactic, 

Waltham, MA) and the intensities of the characteristic mineral band, phosphate ν1 (959 

cm-1), were measured. Depolarization ratios, i.e., the ratio of the intensity of the 

perpendicularly polarized component (Iperp) to that of the parallel polarized component 

(Ipar), were calculated. Two-factor ANOVA (polarization direction x load magnitude) 

without replication was used to calculate significance in the shift in peak position and 

width on tensile loading. Paired t-test was performed on the depolarization ratio data 

from the first loading cycle.  

 

5.6   Results 

Table 5.1 compares the depolarization ratios and peak positions calculated for the 

phosphate ν1 band (958 cm-1) along the long axis of the bone diaphysis at various tensile 

loads. As the bone specimens were loaded in tension, the depolarization ratio (Iperp/Ipar) 

decreased to about 0.6 times the original ratio (p<0.05). This significant decrease in 

depolarization ratio suggested that the mineral crystals have become more well-ordered 

when loaded in tension. As the specimens were unloaded, no significant increase in 

depolarization ratio was observed (p>0.05). No significant changes in phosphate peak 

position were observed on tensile loading of the bone tissue (table 5.1). The sample size 

and low signal-to-noise ratio made it difficult to ascertain if the bone mineral crystallites 

undergo a very small change in response to stress. The phosphate peak positions for the 

two polarization components of the Raman scatter were also not significantly different.  
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Figure 5.1 compares the full width at half maximum (FWHM) for the phosphate band at 

different tensile stresses. The two polarization components showed significantly different 

FWHM’s (p<0.01) and underwent significantly different shifts in width at different 

applied loads (p<0.01). The width of the phosphate band increased by about 2.9 cm-1 and 

3.2 cm-1 for the parallel and perpendicular components as the bone was loaded from 0 

MPa to 12.5 MPa. On unloading to 0 MPa, the width decreased by 1.6 cm-1 and 1.8 cm-1 

for the parallel and perpendicular components respectively.  

 

5.7   Discussion 

For murine cortical femora, the phosphate ν1 band is highly polarized at zero load, 

indicating highly oriented mineral crystallites [10]. In this study, a depolarization ratio of 

about 0.5 was measured for bovine bone tissue at the starting zero load point. This 

indicates that the mineral crystallites in bovine bone are less well-ordered than the 

crystallites in murine cortical bone. While mineral crystallites are generally oriented 

parallel to the long axis of the bone in bovine plexiform tissue, there is a significant 

number of crystallites that are oriented in other directions [11]. Tensile loading of the 

bovine bone samples caused the phosphate bands to be more strongly polarized, which 

was reflected in a decrease in the depolarization ratio in the first loading step. This 

suggests that the mineral crystallites are becoming more ordered on extension of the bone 

tissue.  

 

It is well-known that the crystallographic c-axes of the mineral crystallites align along the 

long axis of the collagen fibrils in bone tissue [12, 13]. Studies have reported that the 
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mineral particle orientation and the degree of alignment trace the orientation of the 

mineralized collagen fibrils within the bone material [14-16]. We suggest that the 

increase in orientation of the mineral crystallites at higher loads is due to collagen chains 

becoming extended, more aligned and tighter on application of tensile loads. The mineral 

crystallite orientation is increased because crystallites remain bonded to a matrix that is 

more-ordered with tensile loading. Comparison of the depolarization ratio of the 

phosphate band before and after loading suggests that the mineral crystallite ordering was 

not completely reversible in the time frame of the experiment. 

 

That the mechanical properties of bone tissue are dependent on the properties of the 

mineral crystallites and the matrix proteins as well as the interactions between them is 

well-known [17]. Our present data confirms that mineral crystallites undergo change in 

response to macro-scale stress. The broadening of the phosphate band at higher stress is 

similar to that seen at increasing pressure [18]. The change in width can be attributed to 

both the strain on the crystallite and the change in its ordering on tensile loading. It is 

highly unlikely that these shifts in width reflect a change in the mineral crystallinity. This 

is in agreement with a recent NMR study on bone tissue which reported that even sub-

physiological loads induce changes in phosphate ion spacing, but do not change the 

mineral structure itself [19].  

 

Different widths of the phosphate band were observed in the parallel and perpendicular 

directions of the Raman scatter. When a uniaxial tensile stress is applied to a crystalline 

sample (i.e. mineral), the crystal lattice expands along the applied stress direction and 
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compresses along directions normal to the applied stress axis. These bidirectional strains 

on the mineral, i.e. tensile strain parallel to and compressive strain perpendicular to the 

long axis of bone, are reflected in the changes in phosphate peak width in the two 

polarized Raman spectra. This is in agreement with results from synchrotron diffraction 

studies which reported that mineral crystallites in bone tissue experience varying strains 

along different crystal planes and loading directions [20, 21]. There is greater load-

induced broadening perpendicular to the collagen axis. It is known that increased 

pressure decreases anion-cation spacing in the a,b crystallographic plane in flourapatite 

[1]. We propose that the same behavior occurs in bone mineral, resulting in band width 

dispersion in the polarization direction perpendicular to the collagen axis.  

 

We see very small changes in peak position of up to 0.8 cm-1 on tensile loading and 

unloading of the bovine bone tissue. Further experiments on a larger number of samples 

are necessary to comment on the effect of mechanical loading on the phosphate peak 

position. Peak width appears to be a more sensitive metric for the change in mineral 

crystallite lattice on tensile loading of bone tissue. The observed changes in the phosphate 

band width are likely a consequence of the changes in mineral crystallite structure and 

ordering due to the applied stress.  

 

5.8   Conclusion 

Milled bovine bone samples were elastically loaded in tension and the spectral changes in 

the phosphate band component were followed using polarized Raman spectroscopy. 

Significant orientation dependent changes in broadening of the phosphate bands were 
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observed at increased tensile loads and these were partially reversible on unloading of the 

bone tissue. Further, a decrease in the depolarization ratio of the phosphate band was 

observed on tensile loading, indicating that the mineral crystallites were becoming more 

ordered. Thus, our preliminary results show that polarized Raman spectroscopy can be 

used to study orientation dependent deformation of mineral crystallites in bone tissue. 

This technique can be extended to study deformation behavior of mineral crystallites in 

dehydrated or diseased bone tissue in response to applied load. Such studies will provide 

unique insight into the role of water and mineral-collagen interactions at the nano-scale 

and help understand the nano-scale mechanisms of bone fracture. 
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Table 5.1: Depolarization ratio and peak position of the phosphate ν1 band as a function of applied 
stress. Measurements from the parallel and perpendicular polarized components along the long axis 
direction are reported. (* p<0.05) 
 

Phosphate Peak Position (cm-1)  Phosphate 
Depolarization 

Ratio 
Parallel  

polarization 
Perpendicular 
polarization 

0 MPa 0.49 ± 0.07 958.1 ± 0.22 957.8 ± 0.03 

12.5 MPa 
(loading) 

0.28 ± 0.01* 958.4 ± 0.50 958.0 ± 0.45 

0 MPa 
(unloading) 

0.39 ± 0.04 957.9 ± 0.20 958.1 ± 0.05 
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Figure 5.1 Full width at half maximum (FWHM) of the phosphate ν1 band as a function of applied 
stress. The measurements from the parallel and perpendicular components of the Raman scatter 
along the long axis direction are reported.  
 

 

 

 

 
 

100



References 
 

[1] P. Comodi, Y. Liu, M. L. Frezzotti, Structural and vibrational behaviour of 
fluorapatite with pressure. Part II: in situ micro-Raman spectroscopic investigation, 
Physics and Chemistry of Minerals 28 (2001) 225-231. 

[2] J. T. Pelton, L. R. McLean, Spectroscopic methods for analysis of protein 
secondary structure, Analytical Biochemistry 277 (2000) 167-176. 

[3] P. Fratzl, H. S. Gupta, E. P. Paschalis, P. Roschger, Structure and mechanical 
quality of the collagen-mineral nano-composite in bone, Journal of Materials Chemistry 
14 (2004) 2115-2123. 

[4] A. Carden, R. M. Rajachar, M. D. Morris, D. H. Kohn, Ultrastructural changes 
accompanying the mechanical deformation of bone tissue: A Raman imaging study, 
Calcified Tissue International 72 (2003) 166-175. 

[5] M. D. Morris, W. F. Finney, R. M. Rajachar, D. H. Kohn, Bone tissue 
ultrastructural response to elastic deformation probed by Raman spectroscopy, Faraday 
Discussions 126 (2004) 159-168. 

[6] A. F. Callender, W. F. Finney, M. D. Morris, N. D. Sahar, D. H. Kohn, K. M. 
Kozloff, S. A. Goldstein, Dynamic mechanical testing system for Raman microscopy of 
bone tissue specimens, Vibrational Spectroscopy 38 (2005) 101-105. 

[7] K. A. Dooley, J. McCormack, D. P. Fyhrie, M. D. Morris, Stress mapping of 
undamaged, strained, and failed regions of bone using Raman spectroscopy, Journal of 
Biomedical Optics 14 (2009) 044018-044018. 

[8] M. Kazanci, P. Roschger, E. P. Paschalis, K. Klaushofer, P. Fratzl, Bone osteonal 
tissues by Raman spectral mapping: Orientation-composition, Journal of Structural 
Biology 156 (2006) 489-496. 

[9] M. Kazanci, H. D. Wagner, N. I. Manjubala, H. S. Gupta, E. Paschalis, P. 
Roschger, P. Fratzl, Raman imaging of two orthogonal planes within cortical bone, Bone 
41 (2007) 456-461. 

[10] M. Raghavan, N. D. Sahar, R. H. Wilson, M.-A. Mycek, N. Pleshko, D. H. Kohn, 
M. D. Morris, Quantitative polarized Raman spectroscopy in highly turbid bone tissue, 
Journal of Biomedical Optics 15 (2010) 037001-037007. 

[11] N. Sasaki, N. Matsushima, T. Ikawa, H. Yamamura, A. Fukuda, Orientation of 
bone mineral and its role in the anisotropic mechanical properties of bone--Transverse 
anisotropy, Journal of Biomechanics 22 (1989) 157-159, 161-164. 

[12] W. Traub, T. Arad, S. Weiner, Three-dimensional ordered distribution of crystals 
in turkey tendon collagen fibers, Proceedings of the National Academy of Sciences 86 
(1989) 9822-9826. 

[13] S. Weiner, W. Traub, Organization of hydroxyapatite crystals within collagen 
fibrils, FEBS Letters 206 (1986) 262-266. 

 
 

101



 
 

102

[14] O. Paris, I. Zizak, H. Lichtenegger, P. Roschger, K. Klaushofer, P. Fratzl, 
Analysis of the hierarchical structure of biological tissues by scanning X-ray scattering 
using a micro-beam, Cellular and Molecular Biology 46 (2000) 993-1004. 

[15] S. Rinnerthaler, P. Roschger, H. F. Jakob, A. Nader, K. Klaushofer, P. Fratzl, 
Scanning small angle X-ray scattering analysis of human bone sections, Calcified Tissue 
International 64 (1999) 422-429. 

[16] P. Roschger, B. M. Grabner, S. Rinnerthaler, W. Tesch, M. Kneissel, A. 
Berzlanovich, K. Klaushofer, P. Fratzl, Structural development of the mineralized tissue 
in the human L4 vertebral body, Journal of Structural Biology 136 (2001) 126-136. 

[17] A. L. Boskey, T. M. Wright, R. D. Blank, Collagen and bone strength, Journal of 
Bone and Mineral Research 14 (1999) 330-335. 

[18] O. de Carmejane, M. D. Morris, M. K. Davis, L. Stixrude, M. Tecklenburg, R. M. 
Rajachar, D. H. Kohan, Bone chemical structure response to mechanical stress studied by 
high pressure Raman spectroscopy, Calcified Tissue International 76 (2005) 207-213. 

[19] P. Zhu, J. Xu, M. D. Morris, N. Sahar, D. H. Kohn, A. Ramamoorthy. Chemical 
structure effects on bone response to mechanical loading. In: Orthopedic Research 
Society Transactions. Las Vegas, NV; 2009. p. 0670. 

[20] B. Giri, S. Tadano, K. Fujisaki, N. Sasaki, Deformation of mineral crystals in 
cortical bone depending on structural anisotropy, Bone 44 (2009) 1111-1120. 

[21] J. D. Almer, S. R. Stock, Internal strains and stresses measured in cortical bone 
via high-energy X-ray diffraction, Journal of Structural Biology 152 (2005) 14-27. 

 

 



103 
 

CHAPTER 6 

Conclusions and recommendations 

 

6.1. Conclusions 

Although bone fracture occurs at the organ level, physical mechanisms at the micro- and 

nano-scales underlie several physiologically important properties of bone. The 

sophisticated structure and interaction of collagen and mineral at the molecular level give 

rise to exceptional fracture resistance and mechanical capabilities at the whole bone level. 

Insights into such structure – function relationships across many spatial scales (nano to 

macro) are vital to understand transfer of loads and stresses, dissipation of energy, 

distribution of damage and resistance to cracking within the bone composite. However, 

there is still only limited understanding of how these structural and mechanical properties 

control bone quality and adapt in response to aging and disease.  

 

As outlined in Chapter 1, the principal goal of this thesis is to investigate molecular 

structure and organization in bone tissue using Raman spectroscopy. Much of the 

challenge lies in studying the anisotropic behavior and nano-scale interactions of mineral 

and collagen components. This chapter discusses some of the key contributions of this 

thesis towards these challenges and highlights some useful avenues of inquiry for further 

work.  
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The results presented in Chapter 2 confirm that quantitative information on molecular 

orientation in bone tissue can be extracted from polarized Raman spectra. It was 

demonstrated for the first time that orientation distributions of mineral and collagen can 

be calculated simultaneously and even from intact, non-deproteinated bone tissue. The 

profound effect of collagen genetic disorder on collagen/mineral ordering in Osteogenesis 

Imperfecta was observed using polarized Raman spectroscopy. Depolarization problems 

due to tissue turbidity can be overcome by choosing an appropriate objective. This work 

suggests that polarized Raman spectroscopy will be a powerful tool to investigate 

molecular order and composition in healthy and diseased bones.  

 

Chapters 4 and 5 examined the effects of disrupting the aqueous environment and tensile 

loading on the molecular organization in bone tissue. Equilibration of bone with D2O not 

only affected collagen conformation but also mineral properties. Disruption of matrix 

hydration caused collagen stiffening which in turn compressed the mineral crystallite 

lattice as evidenced by shifts in peak positions and widths of the mineral Raman bands. 

On deformation of bone tissue by tensile loading, changes in mineral lattice strains and 

ordering were observed. Changes in the widths of the mineral Raman bands in the 

polarized Raman spectra revealed direction-dependent strains in the mineral lattice. 

These Raman spectroscopic studies highlight the influence of hydrogen bonding on 

mineral and matrix interactions and allow detection of mineral behavior at the nano-scale.  

 

A ‘top down’ approach to elucidate the complexity of age-related changes in bone tissue 

was presented in Chapter 3. A higher order analysis method, data mining, was 
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successfully applied to describe changes in femoral material properties between young 

and old mice. RadViz and VizRank algorithms were used to infer the underlying non-

linear relationships and to select the most informative and biologically relevant 

compositional (Raman) and mechanical (nanoindentation) properties. Combinations of 

these selected measures offered good classification of bone quality changes that occur 

with aging. These results suggest that the complexities of tissue quality far exceed the 

capability of individual measures, either compositional or mechanical, to provide 

complete information on bone quality. Further, data mining will be more effective as a 

general strategy for discovering markers of bone quality than traditional linear regression 

methods.  

 

6.2 Recommendations 

Going forward, the models describing polarized Raman spectroscopic approaches will 

increase in complexity to better describe the sophisticated bone material. The current 

study made a reasonable assumption of a uniaxially oriented material with cylindrical 

symmetry for calculating molecular orientation distributions. However, it might be 

worthwhile to investigate molecular orientations assuming a biaxially oriented material. 

In this case, polarized Raman spectra have to be measured in backscattering as well as 

right-angle scattering geometries [1]. Although this increases the experimental 

complexity, biaxial models may improve the accuracy of orientation calculations. This 

can be verified by comparing molecular orientation distributions with and without the 

assumption of a biaxial orientation against those obtained by X-ray scattering. A variety 

of bone-related research areas will benefit from this quantitative molecular orientation 
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approach combined with other analytical tools. Some of these include bone diseases 

(such as osteogenesis imperfecta, Paget’s disease, osteomalacia, osteonecrosis and 

osteoporosis), biomineralization, osseointegration, and tissue engineering [2-6]. 

Information on molecular orientation will provide better insights into macroscopic 

mechanical properties, crystallite growth direction, or structural optimization.  

 

Raman spectroscopy is widely used as an indirect probe of crystallite behavior in 

response to deformation. Our preliminary results suggest that polarized Raman spectra 

provide information on the anisotropy-dependent deformation of mineral crystallites. 

Future work will involve investigating stress/strain distributions across a wider range of 

physiological loads to establish correlations between structural anisotropy and 

deformation behavior at the nano-scale. Challenges will involve shortening measurement 

times and employing dynamic mechanical loading while still maintaining a good signal-

to-noise ratio for the Raman scatter. Extending this technique to bones from different 

anatomical locations will throw more light on adaptation of nano-scale mineral 

deformation and orientation to macro-scale functional requirement [7]. For instance, 

femur and tibia in the lower limbs resist bending while vertebrae in the chest resist 

compression. Another area of application will be to study the effect of metabolic 

disorders, and aging on molecular order and mineral deformation behavior. 

Understanding how nano-scale mechanisms adapt to exercise, nutrition, aging, therapy 

and disease will prove critical in bridging the gap between the nano- and macro-scale 

properties of bone.   
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Although the water component in bone is often overlooked, our work highlights the 

importance of the hydrated environment within bone tissue. Hence, the traditional two 

phase composite model of bone has to be extended to include water [8]. Future work 

should address the role of solvent environment in influencing the organization and 

interaction of mineral and matrix at the ultrastructural scale. By dehydrating and/or 

replacing water with solvents like ethanol, acetone, urea, etc., hydrogen bonding effects 

on molecular deformation mechanisms and ordering can also be studied using polarized 

Raman spectroscopy. Another avenue of enquiry is to study nano-scale behavior in bones 

from different species that have different volumetric combinations of mineral, matrix and 

water. These experiments will provide new insights on the role of water in bone 

ultrastructure. All these studies put together may impact the medical field by providing 

important information on the mechanisms of disease and aging which will help in 

designing better therapies.  

 

The Holy Grail in bone material research is to fully understand how the hierarchical 

levels and composite nature contribute to its varied physiological roles, particularly to 

maintain bone quality. However, most studies have focused on a single type of analysis 

(mechanics, composition, microdamage, etc) or a single hierarchical level for 

investigation of bone quality. It is clear that single measures are unlikely to provide 

complete information about bone quality or age- and disease-related skeletal changes. 

There is a need to implement strategies that integrate data from different analytic 

techniques and different hierarchical and time scales. More attention should be focused 

on the use of multiple metrics to improve overall predictive accuracy and to develop 
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stable models that reflect bone dynamics. With the increasing use of atomistic and 

molecular simulations in bone materials research, approaches such as data mining and 

multi-scale models are necessary to bridge the gap in time- and length-scales [9, 10]. By 

understanding how nano-, micro- and macro-scale properties of bone control and respond 

to a variety of biochemical and mechanical cues, we might be able to better understand 

skeletal fragility and identify biomarkers or metrics of bone quality that are clinically 

significant.  

 

Most techniques that assess aspects of bone quality are confined to research settings. It is 

important to identify biologically relevant bone quality metrics that can be measured non-

invasively in the clinic. Imaging techniques such as Raman tomography, quantitative 

ultrasound, high-resolution computed tomography and MRI show good translational 

potential [11-13]. Another important approach is identifying genes relevant to fracture 

susceptibility by performing genetic analyses on bone [14]. Fracture risk prediction can 

be improved by involving information from different hierarchical scales because bone is 

a complex organ. Future work on fracture risk algorithms should consider bone quality 

metrics, biomarkers and fracture susceptible genes in addition to areal bone mineral 

density and clinical risk factors. With osteoporosis and musculoskeletal disorders posing 

a global challenge, fracture risk assessment using bone mineral density is costly and often 

unavailable [15, 16]. Hence, researchers should also address the development of effective 

and inexpensive tools for fracture risk prediction and diagnosis that are appropriate for 

low-resource settings.  
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APPENDIX 
 

A1. Determination of the orientation distribution function 

The orientation of a molecule is a description of its spatial position with respect to a 

macroscopic xyz coordinate system as described by three Euler’s angles (θ, φ, ε). For a 

complete orientation description of the molecule, an orientation distribution function N(θ, 

φ, ε) is required. By assuming a uniaxial system with cylindrical symmetry, the 

orientational distribution function only depends on the angle θ and can be expanded in a 

series of even Legendre polynomials.  

( )( )θθ cos
2
1)(

1
ii

even

PPiN ⋅⋅⎟
⎠
⎞

⎜
⎝
⎛ += ∑                         (1) 

where ( )θcosiP  is the Legendre polynomial of degree i, and its average value, also 

defined as the orientation order parameter, is 

( ) ( ) ( ) θθθθ
π

dNPP ii sincos
0

⋅⋅= ∫                 (2) 

Using polarized Raman spectroscopy, the order parameters iP  can be obtained for i = 2 

and 4 only. With only these order parameters (hereafter referred to as P2 and P4), the 

orientation distribution function, N(θ), can be predicted as the most probable orientation 

distribution function by maximizing the information entropy of the distribution: 

( )[ ] ( ) ( )( ) ( ) θθθθθ
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dNNNS sinln
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⋅⋅−= ∫                         (3) 

This is subject to the probability constraint:  
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                (4) ( ) ( ) 1sin
0

=⋅∫ θθθ
π

dN

Lagrangian multipliers, λ2 and λ4, are introduced to take care of the constraints while 

defining the maximum. λ2 and λ4 are numerically calculated from equation 2 and from the 

first derivative of equation 3. The most probable distribution function is then given by: 
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To determine the order parameters, P2 and P4, Raman depolarization ratios are calculated 

for different orientations of the incident laser with respect to the sample. The 

depolarization ratios, R1 and R2, are dependent on the collection geometry and the Raman 

tensor components.  
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where Iij is the scattered Raman intensity polarized in the j direction when the incident 

light is polarized along the i direction (i, j being x or z). Constants A and B quantify the 

influence of objective semi-angular aperture ( mθ ) and sample refractive index (n).    
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( )2ijα  is the average component of the Raman tensor ( i, j being  x, y, z) and is related 

to the order parameters, P2 and P4,  as follows: 

( ) 42
2

35
3

21
2

15
1 bPdPcxx +−=α              (11) 

( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+=== 42

222

35
4

21
1

15
1 PPbzyzxxz ααα         (12)  

( ) 42
2

35
8

21
4

15
1 bPdPczz ++=α            (13) 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +−= 42

2

35
1

21
2

15
1 PPbxyα            (14) 

where               (15) 

             (16)  

( 22
3 1 ab −= α

(2
3 43 ac += α

)

)28a+

 ( )22
3 33 aad −+= α                (17) 

The Raman tensor parameter, a, is determined from the depolarization ratio of an 

isotropic sample, Riso, by setting P2 = P4 = 0 in equations 8-11.   

21 RRRiso ==               (15) 

The order parameters, P2 and P4, are obtained using the experimentally measured R1 and 

R2 and the parameter a (see Appendix A2 for MATLAB code). The limiting values for P2 

and P4 are 1 and -0.5 for perfect orientation at 0˚ and 90˚ from the axis of reference. 

Based on the values of P2 and P4, Lagrangian multipliers are calculated using equations 2 

and 3 (see Appendix A3 for MATLAB code).  Finally, the Lagrangian multipliers are 

inserted into equation 5 to plot the most probable orientation distribution function (see 

Appendix A4 for MATLAB code).  
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A2. MATLAB program code for calculating order parameters, P2 and 
P4, from Raman depolarization ratios, R1 and R2  
% polarization.m: Calculates the orientation order parameters 
% Requires depolarization ratios (R1, R2 and Riso) as inputs  
% Mekhala Raghavan, University of Michigan 
 
% Enter sample refractive index and numerical aperture of objective  
n=1.55; 
NA=0.90; 
theta=asind(NA/n) 
 
% Calculate constants A and B based on theta.  
A=(pi^2)*(1.33-cosd(theta)-((cosd(theta))^3/3)) 
B=(2*pi^2)*(0.67-cosd(theta)+((cosd(theta))^3/3)) 
 
% Calculate parameter ‘a’ from the isotropic depolarization ratio.  
% Roots of the polynomial gives ‘a’. Use one of the two. 
riso=0.44; 
poly=[08*riso-1 4*riso+2 3*riso-1]; 
roots(poly) 
 
% Solve for order parameters, P2 and P4.  
% Enter depolarization ratios (R1 & R2), a (polynomial root), A & B  
% X gives P2 and P4. 
 
a=-0.147; 
A=3.3157; 
B=0.705; 
R1=0.65; 
R2=0.56; 
P21=((((4*A*(3+a-4*a^2))+(B*(1-a)^2))*R1)-((A+B)*(1-a)^2))/21; 
P22=(-(2*((A*(3+a-4*a^2))+(B*(1-a)^2))*R2)-((A-2*B)*(1-a)^2))/21; 
P41= ((R1*(8*A-4*B)*(1-a)^2)+(4*(A+B)*(1-a)^2))/35; 
P42=((3*R2*(A+B)*(1-a)^2)-((B-4*A)*(1-a)^2))/35; 
C1=((R1*(A*(3+4*a+8*a^2)+B*(1-a)^2))-((A+B)*(1-a)^2))/15; 
C2=((R2*(A*(3+4*a+8*a^2)+B*(1-a)^2))-((A+B)*(1-a)^2))/15; 
A=[P21 P41  
   P22 P42]; 
B=[-C1 
   -C2]; 
X=A\B 
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A3. MATLAB program code for calculating Lagrangian multipliers, λ2 
and λ4 , from order parameters, P2 and P4 

 
% Lagrangian Multipliers for Maximum Entropy  
% Determines Lagrangian multipliers L2 and L4 using order parameters P2 and P4 
% Requires Appendix A2 results as input 
% Mekhala Raghavan & Raghu Kainkaryam, University of Michigan 
 
% lagmult_int_main.m: Main File - where parameters can be set 
% this script calls for lagmult_int_opt.m, lagrange_int.m listed below 
tic 
% Set P2 and P4 
P2=-0.37; 
P4=0.17; 
P=[P2 P4]; 
% L_orig=[L2 L4]; 
% Guess for L2, L4 
L0=[0 0]; 
options = optimset('Display','iter','MaxIter',100,'TolX',1e-8,'TolFun',1e-10); 
[x,fval,exitflag] = fsolve(@(x)lagmult_int_opt(x,P),L0,options); 
% L_orig 
L_opt=x 
residual=sum(fval.^2) 
exitflag  
P_orig=P  
[P2_opt P4_opt]=lagrange_int(L_opt(1),L_opt(2));  
P_opt=[P2_opt P4_opt] 
time_mins=toc/60 
 
 
% lagmult_int_opt.m: Optimization File - sets up the search for L2 & L4 
% this script calls for lagrange_int.m described below 
function F=lagmult_int_opt(L,P) 
[P2 P4]=lagrange_int(L(1),L(2)); 
F=[P(1)-P2;P(2)-P4]; 
% End of Function 
 
 
%lagrange_int.m: Integral File - Calculates P2 & P4 from L2 & L4 
% this script calls for P2top.m, P4top.m and Pdenom.m listed below 
function [P2 P4]=lagrange_int(L2,L4) 
del_t=1e-2; 
t_min=0; 
t_max=1; 
t=t_min:del_t:t_max; 
% MATLAB's integration method 
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P2=quad(@(t)P2top(t,L2,L4),t_min,t_max); 
P4=quad(@(t)P4top(t,L2,L4),t_min,t_max); 
denom=quad(@(t)Pdenom(t,L2,L4),t_min,t_max); 
P2=P2/denom; 
P4=P4/denom; 
% End of Function 
 
 
%P2top.m: For integration 
function f = P2top(t,L2,L4) 
f=0.5*(3*t.^2-1).*exp((L2/2)*(3*t.^2-1)+(L4/8)*(35*t.^4-30*t.^2+3)); 
% End of Function 
 
 
%P4top.m: For integration 
function f=P4top(t,L2,L4)  
f = 0.125*(35*t.^4-30*t.^2+3).*exp((L2/2)*(3*t.^2-1)+(L4/8)*(35*t.^4-30*t.^2+3)); 
% End of Function 
 
 
%Pdenom.m: For integration 
function f=Pdenom(t,L2,L4) 
f=exp((L2/2)*(3*t.^2-1)+(L4/8)*(35*t.^4-30*t.^2+3)); 
% End of Function 
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A4. MATLAB program code for calculating most probable orientation 
distribution function from Lagrangian multipliers, λ2 and λ4  
% odf.m: Calcualtes most probable orientation distribution function 
% % Determines most probable ODF from Lagrangian multipliers, L2 and L4 
% Uses p2cosx and p4cosx derivation to determine ODF 
% Requires Appendix A2 and A3 as inputs 
% Mekhala Raghavan, University of Michigan 
 
clear 
syms l2 l4 x y z P2 P4 t 
L2=-3.99; 
L4=5.83; 
x= (0:90); 
y=cosd(x); 
z=sind(x); 
 
% to get answer in radians 
% x= 0:.01:2*pi; 
% y=cos(x); 
% z=sin(x); 
 
P2=0.5*((3*y.^2)-1); 
P4=0.125*((35*y.^4)-(30*y.^2)+3); 
num=exp(L2*P2+L4*P4); 
deno=num.*z; 
den=trapz(deno); 
func=num/den; 
% multiply by sind(x) considering uniaxial cylindrical symmetry 
func2=func.*z; 
% plots the most probable odf  
plot(x,func2,'r') 
% calculate first moment (mean) of distribution which gives the  
% average orientation angle 
angle=trapz(x.*func2) 
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A5. RadViz multidimensional visualization 

RadViz (radial coordinate visualization) uses an analog of Hooke’s law to map a set of n-

dimensional points into a 2D plane. The main advantage of using such a method is that 

no projections of data are necessary and a global view of the multidimensional data is 

provided.  

 

 

Figure A1: Definition of RadViz mapping 
 
 
Input:  

i is the number of specimens, where i= 1 to m 

j is the number of variables (dimensions), where j=1 to n 

yij is the value of variable j for specimen i 

 

Output:  

ui and uj are the resulting specimen coordinates in 2D space, i= 1 to m 
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Algorithm:  
  

1. The dimension anchors (variables), Vj, are equally spaced around the perimeter of 

a circle (see Figure A1) 

2. The data for each variable is normalized to interval <0, 1> 

( ) ( )jjjijij xx minmax/min −−=                                          (1) 

3. The location of the specimen point, ui, in the 2D plane is next determined as 

follows:  

• For each anchor (variable) Vj, the stiffness of the spring connecting it to ui 

is calculated to be yj, where 

 ∑
=

=
n

j
ijj xy

1
                                                   (2) 

• The location of ui is the point where all spring forces are in equilibrium 

(according to Hooke’s law of mechanics) 

i.e. 0
1

=⎟
⎠
⎞

⎜
⎝
⎛ −∑

=
j

n

j
j yuV rr

                                              (3)  

• The position of u = [u1, u2] is calculated for each specimen i using:                                 

  ( ) ∑∑ ==
=

n

j jj
n

j j yyu
111 cos α                     (4) 

   ( ) ∑∑ ==
=

n

j jj
n

j j yyu
112 sin α                      (5) 
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