
POSITIVITY IN REAL GRASSMANNIANS:

COMBINATORIAL FORMULAS

by

Kelli F. Talaska

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mathematics)

in The University of Michigan
2010

Doctoral Committee:

Professor Sergey Fomin, Chair
Professor Samuel D. Epstein
Professor Karen E. Smith
Professor John R. Stembridge
Associate Professor Thomas F. Y. Lam



This dissertation is dedicated to the memory of my mother, Kathleen Marie Harter.

ii



ACKNOWLEDGEMENTS

I have come this far largely because I have had a great deal of support, encour-

agement, and companionship from amazing teachers, friends, and colleagues, and I

would like to take this opportunity to thank some of those people.

Graduate school at Michigan has had a tremendous impact on my life, and I am

especially grateful for the influence of two outstanding mathematicians. The first is

Sergey Fomin, who is a better advisor than I could possibly have imagined. I am

incredibly grateful for all the hours we’ve spent discussing mathematics and life in

mathematics, and for all the opportunities I’ve had in graduate school. The second

is Karen Smith, who has been an outstanding mentor, teacher, and friend. I cannot

even begin to list all the great lessons I’ve learned from these two.

I would also like to thank my remaining committee members, Samuel Epstein,

Thomas Lam, and John Stembridge, for their hard work and insightful comments.

Irina Arakelian, Gavin Larose, and Karen Rhea have been excellent teaching role

models for me at the University of Michigan, and Tara McQueen and Anjie Ridenour

have been especially helpful on the administrative side.

I am grateful that I have had the chance to discuss my research and related

topics with other mathematicians. In particular, Lauren Williams has been a fan-

tastic mentor and mathematical companion. In addition, I am lucky to have had

stimulating conversations with the following people: Federico Ardila, Sami Assaf,

Florian Block, Sylvie Corteel, Philippe Di Francesco, Christopher Hillar, Rinat Ke-

iii



dem, Stephane Launois, Gregg Musiker, Kyle Petersen, Alexander Postnikov, Pavlo

Pylyavskyy, Nathan Reading, Brendon Rhoades, Michael Shapiro, David Speyer,

Bernd Sturmfels, Seth Sullivant, Alek Vainshtein, and Alexander Yong.

Of course, my mathematical development began far before my time at Michigan.

Algebra with James Taylor was by far the best class I took in high school, and he

really pushed me to play around with math and see what I could come up with. At

the Southwest Texas High School Math Camp, Max Warshauer and Terry McCabe

introduced me to the world of conjecture and proof that I have come to know and

love. I am lucky to have had so many great teachers and mentors at Texas A&M,

including Jeff Morgan, Amy Austin, Kirby Smith, David Larson, and especially Jon

McCammond. At the Duluth REU, Joe Gallian, Mike Develin, Stephen Hartke, and

Dan Isaken all gave me great advice as I was learning to attack problems, write about

mathematics, and give talks. At Lowell High School, I had the joy of working with

Bruce Cohen, who continues to be a great inspiration in terms of connecting with

students and making mathematics seem natural and fun.

I am grateful to my friends who ended up at Berkeley – Chris Hillar, Darren

Rhea, Anna Ayzenshtat, and especially Scott Armstrong and Charlie Smart – for

their overwhelmingly generous hospitality (which was very useful in getting through

Michigan winters) and for the all the hours we’ve spent tossing around ideas and

figuring out how to piece things together.

Finally, to Andra, Cara, Mary, and Neal Talaska: thank you for being the best

family anyone could wish for; your love and support mean the world to me. To

Helena, Tapio, and Sanelma Heinonen-Smith: you keep me young, ask unexpectedly

good questions time and time again, and remind me that we do math (and all of our

other clever activities) mostly for the pure joy of it.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Fundamentals of total positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 The origins and applications of total positivity for matrices . . . . . . . . . . 8
2.2 The combinatorial perspective: planar networks and totally positive matrices 10
2.3 Total positivity and cluster algebras . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Total positivity and Grassmannians . . . . . . . . . . . . . . . . . . . . . . . 19

3. Positivity in real Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 The boundary measurement matrix of a planar circular network . . . . . . . 25
3.3 Le-diagrams and Γ-networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 The positroid stratification of (Grkn)≥0 . . . . . . . . . . . . . . . . . . . . . 34

4. Formulas for the boundary measurement map . . . . . . . . . . . . . . . . . . 37

4.1 Statements of the formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Some technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Proofs of the main formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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CHAPTER 1

Introduction

The purpose of this dissertation is to provide explicit formulas for a combinato-

rial approach to studying totally nonnegative Grassmannians. A totally nonnegative

Grassmannian consists of the points in a real Grassmannian where all Plücker coor-

dinates can be taken to be simultaneously nonnegative.

From an elementary perspective, the study of totally nonnegative Grassmannians

is a natural step up from the study of totally nonnegative matrices, i.e., those matrices

whose minors are all nonnegative; in fact, totally nonnegative matrices can be viewed

as a special case of the Grassmannian theory. Totally nonnegative matrices have a

rich history, and they have significant applications in many areas of mathematics and

related fields. The developing theory of total positivity in Grassmannians aspires

to make a similar impact, via its emerging connections to algebra, combinatorics,

geometry, and topology. In both cases, total positivity can be studied in a very

concrete way, namely via path enumeration in planar networks.

Both matrices and Grassmannians fit into a broader notion of positivity, framed

in terms of cluster algebras. The cluster variables play the role that minors play

in the matrix setting; the totally positive part of a space carrying a cluster algebra

structure consists of the points at which all cluster variables take positive values.
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This introduction summarizes the two key results of the dissertation and explains

how the remaining chapters are organized.

1.1 Overview of the main results

We begin with a rough sketch of the main results. The first major theorem is an

explicit combinatorial formula describing Postnikov’s main construction in [Pos07]:

the boundary measurement map assigning a point in the totally nonnegative Grass-

mannian to each planar directed network with positive edge weights:






planar directed networks

with k boundary sources

and n− k boundary sinks






→






points in the

totally nonnegative

Grassmannian (Grkn)≥0






.

Informally, the boundary measurement map constructs a matrix that encodes

all ways to get from each boundary source to each boundary sink. If the edges of

the network have positive weights, then this boundary measurement matrix can be

viewed as a point in the Grassmannian (of k-dimensional subspaces of R
n). Through

recursive methods, Postnikov showed that boundary measurement matrices indeed

lie in the totally nonnegative part of the Grassmannian. We provide a direct proof of

this fact by giving an explicit combinatorial formula for the maximal minors of the

boundary measurement matrix, writing each of them as a ratio of two polynomials

in the edge weights, with positive integer coefficients.

To state our result, we will need to quickly recall the basic features of Postnikov’s

construction; for examples and complete details, see Chapter 3.

The construction begins with a planar directed graph G properly embedded in a

disk. Every vertex of G lying on the boundary of the disk is assumed to be a source
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or a sink. Each edge of G is assigned a weight, which we treat as a formal variable.

Postnikov defines the boundary measurement matrix A with columns labeled by the

boundary vertices and rows labeled by the set I of boundary sources, as follows.

Each matrix entry of A is, up to a sign that accounts for how the sources and sinks

interlace along the boundary, a weight generating function for directed walks from a

given boundary source to a given boundary vertex, where each walk is counted with

a sign reflecting the parity of its topological winding index.

The maximal minors ∆J(A) of the boundary measurement matrix A (here J is

a subset of boundary vertices with |J | = |I|) are formal power series in the edge

weights of the network (possibly with infinitely many nonzero terms). Remarkably,

each minor ∆J(A) can be rewritten as a subtraction-free rational expression in the

edge weights [Pos07]. This allows us to specialize to positive edge weights without

worrying about convergence. The minors ∆J (A) can then be interpreted as Plücker

coordinates of a point in a Grassmannian. Since they are all nonnegative, we obtain

a point in the totally nonnegative Grassmannian.

Our formula is easiest to state in the case when G is perfectly oriented, i.e., every

interior vertex of G has exactly one incoming edge or exactly one outgoing edge (or

both). Every graph can be easily transformed into a perfectly oriented one without

changing the boundary measurement matrix, so this simple set-up essentially covers

all cases. Complete details and proofs for both the perfectly oriented case and the

general case can be found in Chapter 4.

To state our formula, we need the following notions. A conservative flow in a

perfectly oriented graph G is a (possibly empty) collection of pairwise vertex-disjoint

oriented cycles. (Each cycle is self-avoiding, i.e., it is not allowed to pass through

a vertex more than once. For perfectly oriented graphs G, this is equivalent to not
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repeating an edge.) For |J | = |I|, a flow from I to J is a collection of self-avoiding

walks and cycles, all pairwise vertex-disjoint, such that each walk connects a source

in I to a boundary vertex in J . (The sets I and J may overlap, in which case a

boundary source may be connected to itself by a walk with no edges.) The weight

of a flow (conservative or not) is the product of the weights of all its edges. A flow

with no edges has weight 1.

Theorem 1.1. The maximal minor ∆J(A) is given by ∆J =
f

g
, where f and g are

nonnegative polynomials in the edge weights, defined as follows:

• f is the weight generating function for all flows from I to J ;

• g is the weight generating function for all conservative flows in G.

If the underlying graph G is acyclic, then g = 1, and Theorem 1.1 reduces to

a well known result [KM59, Lin73, GV85] expressing the determinant of a matrix

associated with a planar acyclic network in terms of non-intersecting path families;

see, e.g., [FZ00a] and references therein.

The boundary measurement map is (infinitely) many-to-one. However, the re-

striction of the boundary measurement map to a special class of networks, called

Γ-networks, is one-to-one, and its image is the entire totally nonnegative Grassman-

nian. In this thesis, we also give combinatorial formulas for the inverse map to

this restriction. Our second major theorem is the resulting explicit combinatorial

bijection between Γ-networks and points in the totally nonnegative Grassmannian:






Γ-networks

with k boundary sources

and n− k boundary sinks






↔






points in the

totally nonnegative

Grassmannian (Grkn)≥0






.
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Finding the Γ-network associated to a point in the totally nonnegative Grass-

mannian is a two-step process. First, we give a simple algorithm for determining the

underlying graph of the network. Postnikov [Pos07] has described a cell decomposi-

tion of a totally nonnegative Grassmannian into positroid cells, each characterized by

requiring that certain Plücker coordinates vanish and the rest do not. The first part

of our process is a matter of checking whether particular Plücker coordinates vanish

or not at a given point, or equivalently, determining which positroid cell contains the

point. The networks corresponding to points in the same positroid cell of a totally

nonnegative Grassmannian will have the same underlying graph.

Postnikov also introduced a parametrization of each positroid cell using a collec-

tion of parameters which we call Le-coordinates. In the context of Γ-networks, this

translates into finding appropriate weights for the graph found in the first step. In

the second step, we give combinatorial expressions for the weights in the network:

each one is a ratio of products of Plücker coordinates. In fact, we provide two such

expressions. In the first, the Möbius function for the set of faces partially ordered by

“northwest-ness” determines which Plücker coordinates appear in the numerator or

denominator of any given weight. The second expression involves tracing out paths

which form the north and south boundaries of faces in the network, keeping track

of where these paths change direction. The second formulation is especially nice in

that it uses a minimal subset of the Plücker coordinates to express the entire set of

weights. This minimal subset forms a totally positive base (in the sense of Fomin

and Zelevinsky [FZ99]) for the set of Plücker coordinates which do not vanish on

the specified cell; i.e., every non-vanishing Plücker coordinate can be formed by tak-

ing products, sums, and ratios of those Plücker coordinates appearing in the totally

positive base.
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1.2 Organization

The remainder of the thesis is organized as follows. Chapter 2 is meant to provide

motivation for the study of total positivity in Grassmannians. It begins with a

discussion of total positivity for matrices, with a bit of history in Section 2.1 and a

discussion of the combinatorial approach using acyclic planar networks in Section 2.2.

In Section 2.3, we look at total positivity from the perspective of cluster algebras, and

in Section 2.4, we provide some context for the study of Grassmannians in particular.

Chapter 3 is a rigorous description of Postnikov’s combinatorial approach to total

positivity in Grassmannians. Section 3.1 is a brief introduction to Grassmannians.

Section 3.2 contains all the details on Postnikov’s construction of the boundary mea-

surement matrix of a network. A running example illustrates each step of the process.

Section 3.3 introduces Γ-networks, which are in bijection with points in the totally

nonnegative Grassmannian, and their corresponding Le-tableaux. Section 3.4 de-

scribes Postnikov’s positroid stratification of the totally nonnegative Grassmannian

and provides explicit formulas for the restriction of the boundary measurement map

to Γ-networks, using classical results from the matrix case.

Chapter 4 presents the first major result described above, namely the explicit

combinatorial formulation of the boundary measurement map (c.f. Theorem 1.1).

Section 4.1 gives precise statements of the theorem, first for perfectly oriented net-

works, and then for the general case. Section 4.2 contains some auxiliary lemmas

needed for the main proofs, which are given in Section 4.3. Section 4.3 mirrors Sec-

tion 4.1, as the perfectly oriented case is not only easier to state than the general

case, but also easier to prove. Section 4.4 is an aside containing a discussion of

non-planar networks; it can be skipped without any loss of continuity.
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Chapter 5 presents the second major result of this thesis, an explicit construction

of the Γ-network associated to a point in the totally nonnegative Grassmannian.

Section 5.1 describes the first stage, determining which positroid cell a point belongs

to. Section 5.2 gives our first formula for the weights of the network, in terms of the

Möbius function of the partially ordered set of faces of the network, and Section 5.3

provides an alternative formula for the weights, using a minimal totally positive base

for the non-vanishing Plücker coordinates of the appropriate positroid cell.



CHAPTER 2

Fundamentals of total positivity

This chapter has two key goals. The first is to provide a brief introduction to the

study of total positivity for matrices. In the matrix setting, we will make a point

of highlighting the combinatorial approach, which has provided the tools for many

recent advances in total positivity. Most remarkably, this approach yields a rather

simple way to construct every totally nonnegative matrix. Section 2.1 discusses the

origins of total positivity, and Section 2.2 provides the combinatorial perspective.

The second goal is to informally introduce a broader notion of total positivity,

using cluster algebras. Section 2.3 provides the “big picture” and shows how to-

tal positivity for matrices fits into the cluster framework. Section 2.4 specifically

addresses Grassmannians, which are the key objects studied in this dissertation.

This chapter does not include any sort of rigorous treatment of total positivity;

instead, it should be treated as an informal discussion which aims to provide some

background and context. Plenty of references are included for the reader interested

in further details.

2.1 The origins and applications of total positivity for matrices

The study of totally positive matrices has its roots in analysis, but it has in-

fluenced and been influenced by many other areas of mathematics and other fields

8
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as well. To give just a few examples, total positivity has played important roles

in stochastic processes and approximation theory [GM96, Kar68], the theory of im-

manants [Ste91], the representation theory of S∞ [Edr52, Tho64], unimodality and

log-concavity [Sta89], and matrix Poisson varieties [GLL09b, GLL09a].

Definition 2.1. A matrix with real entries is totally positive if each of its minors is

strictly positive. Similarly, a matrix with real entries is totally nonnegative if each

of its minors is nonnegative.

Example 2.2. The 2×2 matrix below is totally nonnegative, but not totally positive.

The 1× 1 minors are simply the entries of the matrix, and each of these is positive.

However, the determinant, which is the only 2× 2 minor, is zero.



4 2

6 3




Prior to the combinatorial approach that we describe in Section 2.2, total posi-

tivity was dominated by four mathematicians: Schoenberg, Gantmacher, Krein, and

Karlin. Several surveys and books describe this history quite well (see, for exam-

ple, [And87], [Kar68], [GK02], and [Pin10]). Below, we give a brief and informal

summary of some of the key topics from the early history of total positivity.

Beginning with the work of Schoenberg in the 1930’s, we find total positivity in the

guise of the variation diminishing property ; a matrix M satisfies this property if the

vector Mx has no more sign changes than the vector x. While this characterization

seems at first glance to be quite different from our definition above, the two are

essentially equivalent. In the late 1930’s, the fundamentals of the classical theory

were developed in the work of Gantmacher and Krein on oscillations in mechanics.

In particular, they showed that every n × n totally positive matrix has n distinct

eigenvalues, each of which is positive [GK02].
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Total positivity is a special case of sign-regularity, a property requiring all minors

of the same size to have the same sign. Totally positive matrices are also the sim-

plest examples of totally positive kernels, a class of functions which includes Pólya

frequency functions.

In the 1950’s, Karlin explored the probabilistic aspects of total positivity; his work

was rooted in the observation that transition kernels of one-dimensional diffusion

processes are totally positive.

2.2 The combinatorial perspective: planar networks and totally positive

matrices

We begin this section by showing how to construct totally nonnegative matrices

associated to certain planar networks. It is perhaps not surprising that this combi-

natorial approach provides an important class of examples in total positivity. What

is remarkable is the fact that we obtain every totally nonnegative matrix in this way.

See Theorem 2.6, Corollary 2.8, and Theorem 2.9 for details.

The following construction makes sense in a much more general setting, but for

the sake of simplicity, we present only the material necessary to give the combina-

torial characterization of total positivity. The interested reader may consult [Lin73],

[GV85], [Bre96], and [FZ00a] for more details.

Suppose that G is a finite acyclic directed graph which has a set S of sources, a

set T of sinks, and a planar embedding (in a disk) satisfying the following properties:

• all sources in S and all sinks in T lie on the boundary of the disk,

• all remaining vertices of G lie in the interior of the disk, and

• for any pair of subsets S ′ = {s1, . . . , sk} ⊂ S and T ′ = {t1, . . . , tk} ⊂ T , there

exists a unique bijection π : S ′ → T ′ such that no two chords [si, tπ(i)] intersect.
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Typical graphs used in studying totally positive matrices will have the sources on

one side of the disk and the sinks on the other (with no interlacing), as in Figure 2.1.

b

b

b

b b

b

b

bs1

s2

s3

s4

t1

t2

t3

t4

a

c

f

b

d

g

e

h

Figure 2.1: An appropriately embedded graph G with source set S and sink set T .

Assume that we assign a weight xe to each edge e in G. We will refer to this

weighted graph as a network, denoted N = (G, x). In this setting, the weights may

be viewed as formal variables, or we can specialize to positive real edge weights.

A walk P = (e1, . . . , em) in G is formed by traversing the edges e1, e2, . . . , em in

the specified order. We write P : s  t to indicate that P is a walk starting at a

vertex s and ending at a vertex t.

Define the weight of a walk P = (e1, . . . , em) to be

wt(P ) = xe1 · · ·xem
.

Definition 2.3. For a source si ∈ S and a sink tj ∈ T in an acyclic network N , the

weighted path matrix A(N), with rows indexed by S and columns indexed by T , is
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defined by its entries:

aij =
∑

P :si tj

wt(P ),

with the sum taken over all directed walks P : si  tj .

Each entry of the weighted path matrix is simply a polynomial in the edge weights,

since there are finitely many paths from any source to any sink.

Remark 2.4. If we set xe = 1 for each edge e in G, then the entry aij in the weighted

path matrix is the number of paths from si to tj .

Example 2.5. If we assume that each unlabeled edge in Figure 2.1 has weight 1,

then the weighted path matrix of the network is




1 b be 0

a 1 + ab d + e + abe 0

0 c 1 + cd + ce + gh g

0 0 f + h + fgh 1 + fg




.

Theorem 2.6, expressing determinants of a weighted path matrix as sums of

weights of families of paths in the corresponding network, is a simple but powerful

tool. The formula can essentially be found in [KM59] and [Lin73], though its use-

fulness in combinatorics was first highlighted by Gessel and Viennot [GV85]. Many

more applications have been developed since then. For example, the Jacobi-Trudi

identities for Schur functions can be proved using this technique [GV85]. Several

more examples involving commonly encountered combinatorial objects, including

Catalan numbers and rhombus tilings of hexagons, can be found in [Aig01].

To state the theorem, we need to introduce notation for the minors of a matrix.

If I = {i1 < · · · < ik} ⊂ S and J = {j1 < · · · < jk} ⊂ T , let ∆I,J(A(N)) denote the
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I, J-minor of A(N), that is, the determinant of the submatrix of A(N) with rows in

I and columns in J .

Theorem 2.6. [KM59, Lin73, GV85] Given a planar acyclic network N with source

set S and sink set T arranged as above, the minors of the weighted path matrix of N

are given by the formula

∆I,J(A(N)) =
∑

P={P1:si1
 tπ(i1),...,Pk:sik

 tπ(ik)}

wt(P1) · · ·wt(Pk),

where the sum is taken over all collections P of non-intersecting paths in N con-

necting the sources in I to the sinks in J (and π is the unique bijection for which

non-intersecting collections of paths may exist).

Example 2.7. Using Theorem 2.6, a quick glance at Figure 2.1 implies that the

weighted path matrix in Example 2.5 has determinant 1, since there is only one way

to choose four non-intersecting paths Pi : si  ti, namely by taking the four strictly

horizontal paths, and each such path has weight 1.

Theorem 2.6 has an elegant and elementary proof involving a sign-reversing in-

volution on the collections of paths in which one or more pairs of paths has an

intersection. This “proof from the book” can be found in [AZ10]. Care must be

taken to produce an actual involution, of course, but the basic idea is that such path

collections can all grouped into pairs which are identical except that two of their

paths have had their “tails swapped”, as in Figure 2.2.

Corollary 2.8. If the network N = (G, x) has positive real edge weights, then the

weighted path matrix A(N) is a totally nonnegative matrix.

Anne Whitney’s main result in [Whi52] can be restated as follows: every invertible

totally nonnegative matrix can be factored into a product consisting of a diagonal



14

↔

Figure 2.2: Tail swapping.

matrix and n2 − n elementary Jacobi matrices, that is, matrices which differ from

the identity matrix in a single (nonnegative) entry on the superdiagonal or sub-

diagonal. In fact, Whitney’s particular factorization parametrizes totally positive

matrices. Furthermore, the Whitney-Loewner Theorem [Whi52, Loe55] tells us that

every invertible totally nonnegative matrix can be approximated arbitrarily closely

by totally positive matrices. The former result hints at the form of a graph for which

different choices of weights yield all totally positive matrices, and the latter suggests

that we may be able to modify this graph to obtain all invertible totally nonnegative

matrices. Theorem 2.9 tells us that the invertibility condition is actually unnecessary.

Theorem 2.9. [Bre95] Every totally nonnegative matrix is the weighted path matrix

of some planar acyclic network.

Figure 2.3 displays the network corresponding to Whitney’s factorization for n×n

totally positive matrices. To obtain the remaining n×n totally nonnegative matrices,

we need to take certain degenerations of this network; it is possible to do so in a

way that ensures we encounter each totally nonnegative matrix exactly once in our

collection. The poset of graphs for 2× 2 matrices is given in Figure 2.4. A natural

extension of this construction yields networks corresponding to non-square matrices,
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s1

s2

s3

...

sn

t1

t2

t3

...

tn

Figure 2.3: The graph corresponding to an arbitrary totally positive n × n matrix. All edges are
directed to the right. The slanted bold edges correspond to elementary Jacobi matrices
in Whitney’s factorization, and the bold edges in the middle of the network correspond
to entries of the diagonal matrix, assuming all other edges have weight 1.

though we will not provide the details here.

2.3 Total positivity and cluster algebras

In the previous sections of this chapter, we explored the totally positive part of

the space of matrices of a given size. In this section, we wish to convey the idea that

this is just the tip of the iceberg – in fact, there is a much broader notion of positivity

in which totally positive matrices simply give us the first interesting example.

Consider G = SLn, the space of n × n matrices with determinant ±1. The

Loewner-Whitney Theorem [Whi52, Loe55] tells us that the semigroup of totally

nonnegative matrices in G is generated by the Chevalley generators of the corre-

sponding Lie algebra. This observation lead Lusztig [Lus94] to develop a theory of

positivity for semisimple Lie groups, taking the totally nonnegative part G≥0 of a

group G to be the semigroup generated by the corresponding Chevalley generators.

Lusztig has shown that, just as in the case of matrices, the totally nonnegative part

G≥0 can be described by a collection of inequalities. Lusztig’s characterization, how-

ever, involves an infinite set of inequalities of the form ∆(x) ≥ 0, with ∆ ranging

over the elements of the appropriate dual canonical basis, which is quite difficult



16

2 2

1 1

b b

b b

a, b, c, d, ∆ = 0

2 2

1 1

b b

b b

b 6= 0
a, c, d, ∆ = 0

2 2

1 1

b b

b b

d 6= 0
a, b, c, ∆ = 0

2 2

1 1

b b

b b

a 6= 0
b, c, d, ∆ = 0

2 2

1 1

b b

b b

c 6= 0
a, b, d, ∆ = 0

2 2

1 1

b b

b b

a, b 6= 0
c, d, ∆ = 0

2 2

1 1

b b

b b

b, d 6= 0
a, c, ∆ = 0

2 2

1 1

b b

b b

a, d, ∆ 6= 0
b, c = 0

2 2

1 1

b b

b b

c, d 6= 0
a, b, ∆ = 0

2 2

1 1

b b

b b

a, c 6= 0
b, d, ∆ = 0

2 2

1 1

b b

b b

a, b, d, ∆ 6= 0
c = 0

2 2

1 1

b b

b b

a, b, c, d 6= 0
∆ = 0

2 2

1 1

b b

b b

a, c, d, ∆ 6= 0
b = 0

2 2

1 1

b b

b b

a, b, c, d, ∆ 6= 0

(
a b
c d

)

∆ = ad− bc

Figure 2.4: Graphs corresponding to 2× 2 totally nonnegative matrices.

to understand. Later work by Fomin and Zelevinsky [FZ99, FZ00b] shows that a

finite set of such inequalities will suffice; each such inequality specifies that a given

generalized minor is nonnegative.

Here we begin to see a larger pattern – for certain algebraic varieties, we have

been able to specify a set of regular functions which play the role of minors, and the

totally positive part of such a variety consists of those points for which all of these

“minors” are positive. We can ask which varieties have such a notion of positivity,

and for those that do, which families of regular functions should be used to define
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the positive part. The theory of cluster algebras can be viewed as an attempt to

provide a general answer to this question. (See [Fom10] for further details.)

For the purposes of positivity, we will consider cluster algebras over R. A cluster

algebra is an R-algebra with a distinguished set of generators, called cluster variables,

which are grouped into non-disjoint sets called clusters, all of the same cardinality1.

The cluster algebra carries some additional information, namely a collection of ex-

change relations, each of which describes how to transform one cluster into another

by exchanging a single cluster variable. An exchange relation swapping one cluster

variable x for another cluster variable x′ must have the form

(2.1) xx′ = M1 + M2,

where M1 and M2 are monomials in the cluster variables of the current cluster.

Although the precise definition is quite technical (see [FZ02]), the following ex-

ample illustrates many of the key properties of cluster algebras.

Example 2.10. Let us examine a cluster structure in the ring A of regular functions

on SL3(R). We have

SL3(R) =






X =




x11 x12 x13

x21 x22 x23

x31 x32 x33




:
x11, x12, . . . , x33 ∈ R

and det(X) = 1






,

so A is the ring of polynomials in the nine matrix entries xij , modulo the relation

det(X)− 1 = 0.

Viewed as a cluster algebra, A is generated by twenty cluster variables, including

the eighteen nontrivial minors of the matrix X ∈ SL3(R). These cluster variables

1Experts will note that what we call clusters are usually called “extended clusters”. In particular, we do not make
a distinction between cluster variables and frozen variables.
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are grouped into fifty overlapping clusters, each containing eight cluster variables.

For example, one of the clusters is

(2.2) {x11, x12, x13, x21, x31, ∆12,12, ∆12,23, ∆23,12},

corresponding to the initial minors of the matrix, i.e. those in which we take the

first k rows and any block of k consecutive columns, or vice versa.

The minors of a matrix satisfy certain identities, the (generalized) Plücker rela-

tions. For example, a direct calculation verifies that

(2.3) x21∆13,12 = x11∆23,12 + x31∆12,12.

This equation is one of our exchange relations, and its right-hand side involves only

cluster variables which appear in the cluster in (2.2). Thus, we may replace the

cluster variable x21 with the cluster variable ∆13,12 =
x11∆23,12 + x31∆12,12

x21
to obtain

another cluster:

(2.4) {x11, x12, x13, ∆13,12, x31, ∆12,12, ∆12,23, ∆23,12}.

By performing sequences of exchanges corresponding to Plücker relations, we can

obtain all fifty clusters of this cluster algebra.

This example illustrates why cluster algebras are a powerful tool for understanding

total positivity. Indeed, if all of the cluster variables in our initial cluster (2.2) are

positive, then the Plücker relation (2.3) forces ∆13,12 to be positive as well, so that

all cluster variables in the resulting cluster (2.4) are positive. This is a general

phenomenon due to the fact that all exchange relations take the form in (2.1) and

hence preserve positivity.

This gives us an efficient way to test for total positivity. If all of the cluster

variables of a given cluster are positive, then we can conclude that all cluster variables
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are positive. For matrices in SL3(R), this means that it is sufficient to test the eight

minors in a particular cluster, instead of all eighteen minors, to verify that a matrix

is totally positive.

There are many benefits to the cluster algebra perspective, but two stand out

above the rest. First of all, many well-studied algebras arising throughout mathemat-

ics have cluster algebra structures, particularly those associated to highly symmetric

geometric situations. These include algebraic groups, such as SLn; homogeneous

spaces on which they act, e.g., Grassmannians, flag varieties, and spaces of quiver

representations; certain nice moduli spaces, such as decorated Teichmüller spaces

and spaces of laminations on surfaces; and so on.

Second, the nature of cluster mutations ensures that if the cluster variables of

some initial cluster are all positive, then all cluster variables are positive. If cluster

variables are indeed the right functions to play the role of minors, this positivity

property implies that we only need a finite number of inequalities to define the

totally positive part of a variety.

This emerging notion of positivity via cluster algebras is still in flux, but there

are many indications that this is the most natural way to think about positivity

in a broader sense. The classical notion of positivity for matrices and Lusztig’s

positivity for semisimple groups both fit into this framework, as does total positivity

in Grassmannians, to which this thesis is dedicated.

2.4 Total positivity and Grassmannians

Total positivity for matrices is by now well understood. A natural next step is

to look at positivity in Grassmannians, which will be the focus of this dissertation.

Chapter 3 carefully describes Postnikov’s combinatorial approach to the totally non-



20

negative Grassmannian; this section is meant to provide some context before diving

into details.

Various aspects of totally nonnegative Grassmannians have already been studied.

They naturally appear in the work by Rietsch and coauthors ([Rie99],[Rie06], [MR04],

and [RW08]) on cell decompositions and parametrizations for flag varieties, studied

from the perspective of Lusztig’s work on total positivity. Geometric and topological

properties of the totally nonnegative Grassmannian have garnered a great deal of

interest as well. Although matroid strata in a large enough Grassmannian can have

arbitrarily bad singularities [Vak06], the positroid strata of the totally nonnegative

part are all expected to be well-behaved; for evidence towards this claim, see work

by Fomin-Shapiro [FS00], Williams [Wil05], Postnikov [Pos07], Postnikov-Speyer-

Williams [PSW09], and Hersh [Her10]. Speyer and Williams have also investigated

the tropicalization of the totally nonnegative part of the Grassmannian [SW05].

Scott has shown that every Grassmannian can be given the structure of a clus-

ter algebra [Sco06]. The set of cluster variables includes the Plücker coordinates,

together with some much more complicated functions. Every Grassmannian has

clusters consisting entirely of Plücker coordinates.

Postnikov [Pos07] has provided the foundation for a combinatorial approach to to-

tally nonnegative Grassmannians which is similar in spirit to that found in the study

of totally positive matrices. This required developing an analogue of the weighted

path matrix for planar networks which are not necessarily acyclic. These boundary

measurement matrices represent points in the totally nonnegative part of the Grass-

mannian, and furthermore, every such point comes from a planar network [Pos07].

A critical step in Postnikov’s construction is a proof that every Plücker coordinate

of a boundary measurement matrix is a ratio of two polynomials in the edge weights
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of the network, each with positive coefficients. Though his proof is recursive, the

fact that the Plücker coordinates can be written in this form suggests that explicit

combinatorial formulas may be found.

There are two key results in this dissertation. In Chapter 4, we provide com-

binatorial formulas of the kind alluded to above, that is, explicit subtraction-free

formulas for the Plücker coordinates of the boundary measurement matrices of net-

works which are not necessarily acyclic. This gives a constructive proof that such

networks yield points in the totally nonnegative Grassmannian.

In Chapter 5, we go in reverse, providing a constructive proof that every point

in the totally nonnegative Grassmannian is realized by some network. We explicitly

describe how to construct the underlying graph of a network and give combinatorial

formulas for its weights. The result gives a bijection between points in the totally

nonnegative Grassmannian and certain planar networks, called Γ-networks. These

Γ-networks are in obvious bijection with certain fillings of Young diagrams, called Le-

tableaux. As a result, we are able to give a parametrization of the totally nonnegative

Grassmannian using very simple combinatorial objects.



CHAPTER 3

Positivity in real Grassmannians

In this chapter, we will present Postnikov’s construction assigning a point in the

Grassmannian to each planar network satisfying certain properties. This will allow

us to carefully state two key results from [Pos07], which are summarized informally

below:

• the construction always produces points in the totally nonnegative Grassman-

nian, i.e. the part of the Grassmannian in which all Plücker coordinates have

the same sign (see Theorem 3.10 and Corollary 3.11 for details), and

• every point in the totally nonnegative Grassmannian can be realized using this

construction (see Theorem 3.12 and its refinement, Theorem 3.14).

Note that these results are the analogues of Corollary 2.8 and Theorem 2.9 for the

Grassmannian setting. Chapters 4 and 5 will provide explicit formulas, completing

the picture for Grassmannians.

3.1 Grassmannians

Let Grkn denote the appropriate real Grassmannian: the space whose points are

k-dimensional linear subspaces of R
n. Grassmannians have a great deal of structure;

they can be viewed as smooth manifolds or projective varieties, for example, but we

22
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will not need such heavy machinery. We are primarily interested in elementary ways

to manipulate points in Grkn. We will describe points in Grkn in two ways: first

using matrix representatives, and then using Plücker coordinates.

The most elementary way to write down an element of Grkn is as follows. Fix an

ordered basis {w1, w2, . . . , wn} of R
n. Suppose that V is the k-dimensional subspace

of R
n such that V = span〈v1, v2, . . . , vk〉, where for each i, we have

vi = ai1w1 + ai2w2 + · · ·+ ainwn.

Then the matrix A = (aij) encodes all the information about V , and we call it a

matrix representative of V .

Example 3.1. Suppose {e1, e2, e3, e4, e5} is the standard basis for R
5, and let V =

span{v1, v2}, where

v1 = 2e1 − 4e2 + 8e4 + 17e5, and

v2 = 3e1 − 6e2 + 7e3 + e4.

Then one matrix representative for W is

M =




2 −4 0 8 17

3 −6 7 1 0


 ,

with rows indexed by the vi and columns indexed by the ei.

We can also write V = span{v1, 2v2−3v1}, which yields another matrix represen-

tative for V :

M ′ =




2 −4 0 8 17

0 0 14 −22 −51


 .

The matrix point of view is useful because we can easily manipulate matrix rep-

resentatives. On the other hand, matrix representatives are quite far from unique. If
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M ∈ GLn(R), then left multiplication of A by M is equivalent to a change of basis

for V , so that the every matrix in the collection {MA : M ∈ GLn(R)} is a matrix

representative for the same subspace.

A point x ∈ Grkn can also be described by a collection of (projective) Plücker co-

ordinates (PJ(x)), indexed by k-element subsets J ⊂ [n]. These Plücker coordinates

satisfy certain quadratic relations, called Plücker relations. The simplest Plücker

relations are three-term Plücker relations. They take the form

PS∪{a,c}PS∪{b,d} = PS∪{a,b}PS∪{c,d} + PS∪{a,d}PS∪{b,c},

where a < b < c < d, and S is a set which does not contain any of the elements

a, b, c, d.

The Plücker coordinates can be easily obtained from a matrix representative; they

are simply the k × k minors of our k × n matrix representative, and the subsets J

simply tell us which columns to choose. In the other direction, it is also possible to

construct explicit matrix representatives given a valid collection of Plücker coordi-

nates, but this is not quite as simple.

Example 3.2. Let us find the Plücker coordinates for the matrix representatives M

and M ′ given for V in Example 3.1.

J 1, 2 1, 3 1, 4 1, 5 2, 3 2, 4 2, 5 3, 4 3, 5 4, 5

PJ(M) 0 14 -22 -51 -28 44 102 -56 -119 -17

PJ(M ′) 0 28 -44 -102 -56 88 204 -112 -238 -34

Notice that for every J , we have PJ(M ′) = 2PJ(M). This is because the change
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of basis matrix producing M ′ from M , shown below, has determinant 2.




1 0

−3 2







v1

v2


 =




v1

2v2 − 3v1




This is an explicit example of the fact that different matrix representatives for V will

yield the same collection of Plücker coordinates, up to multiplication by a common

scalar.

Using Plücker coordinates, we can give a simple definition for the main object we

will study in this chapter.

Definition 3.3. The totally nonnegative Grassmannian (Grkn)≥0 is the subset of

points x ∈ Grkn whose nonzero Plücker coordinates all have the same sign. That is,

(Grkn)≥0 =

{
x ∈ Grkn :

PJ(x)

PJ ′(x)
≥ 0 whenever PJ ′(x) 6= 0

}
.

In other words, a point x ∈ Grkn is totally nonnegative if and only if it has a matrix

representative for which all k × k minors are nonnegative.

3.2 The boundary measurement matrix of a planar circular network

Definition 3.4. A planar circular directed graph is a finite directed graph G properly

embedded in a closed oriented disk (so that its edges intersect only at the appropriate

vertices), together with a distinguished labeled subset {b1 . . . , bn} of boundary vertices

such that

• b1, . . . , bn appear in clockwise order around the boundary of the disk,

• all other vertices of G lie in the interior of the disk, and

• each boundary vertex bi is incident to at most one edge.
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A non-boundary vertex in G is called an interior vertex. Loops and multiple edges

are permitted. Each boundary vertex is designated a source or a sink, even if it is an

isolated vertex. We denote by I ⊆ [n] = {1, . . . , n} the indexing set for the boundary

sources of G, so that these sources form the set {bi : i ∈ I}.

A planar circular network N = (G, x) is a planar circular directed graph G to-

gether with a collection x = (xe) of (commuting) formal variables xe labeled by the

edges e in G. We call xe the weight of e.

b4

b3b2

b1

b5

w2w4

w3

w1

y2y4

y3

y1

z2z4

z3

z1

a4

a3

a2

a1

a5

cd

f

g

h

The cycles of N

have weights

W = w1w2w3w4,

Y = y1y2y3y4,

Z = z1z2z3z4, and

T = y1gw1w2w3fy3y4.

Figure 3.1: A planar circular network N with boundary vertices b1, b2, b3, b4, b5. Edges are labeled
by their weights.

A walk P = (e1, . . . , em) in G is formed by traversing the edges e1, e2, . . . , em in

the specified order. (The head of ei is the tail of ei+1.) We write P : u  v to

indicate that P is a walk starting at a vertex u and ending at a vertex v.
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Define the weight of a walk P = (e1, . . . , em) to be

wt(P ) = xe1 · · ·xem
.

A walk P : u u with no edges is called a trivial walk and has weight 1.

Definition 3.5 ([Pos07]). Let P : u  v be a non-trivial walk in a planar circular

directed graph G connecting boundary vertices u and v. Performing an isotopy if

necessary, we may assume that the tangent vector to P at u has the same direction as

the tangent vector to P at v. The winding index wind(P ) is the signed number of full

360◦ turns the tangent vector makes as we travel along P , counting counterclockwise

turns as positive and clockwise turns as negative. For a trivial walk P , we set

wind(P ) = 0.

Definition 3.6 ([Pos07]). For boundary vertices bi and bj in a planar circular net-

work N , the (formal) boundary measurement Mij is the formal power series

(3.1) Mij =
∑

P :bi bj

(−1)wind(P ) wt(P ),

the sum over all directed walks P : bi  bj .

Example 3.7. In the circular network N shown in Figure 3.1, any walk P from

b1 to b2 consists of the edges with weights a1, z4, a2, together with some number of

repetitions of the cycle of weight Z = z1z2z3z4. Consequently,

M12 = a1z4a2 − a1Zz4a2 + a1Z
2z4a2 − a1Z

3z4a2 + . . . =
a1z4a2

1 + Z
.

Definition 3.8 ([Pos07]). Let N be a planar circular network, and suppose that

I = {i1 < · · · < ik}, so that the boundary sources, listed in clockwise order, are

bi1 , bi2 , . . . , bik . The boundary measurement matrix A(N) = (atj) is the k × n matrix

defined by

atj = (−1)s(it,j)Mitj ,
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where s(it, j) denotes the number of elements of I strictly between it and j.

Let ∆J(A(N)) denote the k × k minor of A(N) whose columns are indexed by

the subset J ∈
(
[n]
k

)
. That is, ∆J (A(N)) = det(atj)t∈[1,k],j∈J . When no confusion will

arise, we may simply write ∆J .

With this notation, we can rephrase our definition as follows. The matrix A(N)

is the unique matrix which has an identity submatrix in the I columns and which

has entries atj = ±Mitj in the remaining columns, with signs chosen so that for each

t ∈ [k] and j ∈ [n] \ I, we have ∆I\{it}∪{j} = Mitj .

Example 3.9. Suppose that N is the planar circular network in Figure 3.1. Then

the boundary source set is indexed by I = {1, 4}, and we have

A(N) =




1 M12 M13 0 −M15

0 M42 M43 1 M45


 .

The 10 minors ∆J (A(N)) are listed below.

∆{1,2}(A(N)) = M42 ∆{2,4}(A(N)) = M12

∆{1,3}(A(N)) = M43 ∆{2,5}(A(N)) = M12M45 + M15M42

∆{1,4}(A(N)) = 1 ∆{3,4}(A(N)) = M13

∆{1,5}(A(N)) = M45 ∆{3,5}(A(N)) = M13M45 + M15M43

∆{2,3}(A(N)) = M12M43 −M13M42 ∆{4,5}(A(N)) = M15

Theorem 3.10 ([Pos07]). If N = (G, x) is a planar circular network, then each

maximal minor ∆J(A(N)) of the boundary measurement matrix can be written as a

subtraction-free rational expression in the edge weights xe.

We have already seen Theorem 3.10 in action. Example 3.7 shows that the infinite

formal power series for the boundary measurement M12, which is precisely the minor
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∆{2,4}, can be rewritten as a subtraction-free rational expression in the edge weights

of the network.

Postnikov’s proof of Theorem 3.10 is inductive. In Section 4.1, we give an explicit

combinatorial formula for the boundary measurements in a planar circular network,

providing a constructive proof.

Since each minor ∆J (A(N)) can be written as a subtraction-free rational expres-

sion, it is now possible to consider networks with positive real weights. To make this

precise, let E(G) denote the edge set of G, and suppose that α : {xe}e∈E(G) → R
+

assigns a positive real weight αe to each edge e. That is, xe 7→ αe. Then ∆J(A(N))|α

denotes the evaluation of the subtraction-free rational expression ∆J(A(N)) under

the specialization xe = αe for all e ∈ E(G). Let Mij |α denote the specialization of

the corresponding minor. Each entry of A(N) is some Mij , so we can also take the

specialization A(N)|α.

Corollary 3.11. If α : {xe}e∈E(G) → R
+ is a positive specialization map, then each

∆J(A(N))|α is a nonnegative real number. In particular, each Mij |α is nonnegative.

Thus,
(
∆J(A(N))|α : J ∈

(
[n]
k

))
is a point in the totally nonnegative Grassmannian

(Grkn)≥0, given by its Plücker coordinates.

Just as every totally nonnegative matrix is the weighted path matrix of some pla-

nar acyclic network, we see in Theorem 3.12 that every point in the totally nonnega-

tive Grassmannian has a matrix representative which is the boundary measurement

matrix of some planar circular network.

Theorem 3.12 ([Pos07]). For every V ∈ (Grkn)≥0, there exists a planar circular

network N = (G, x) and a positive specialization map α : E(G)→ R
+ such that the

Plücker coordinates of V are given by
(
∆J(A(N))|α : J ∈

(
[n]
k

))
.
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In fact, Postnikov shows much more, providing a (CW complex) decomposition of

the totally nonnegative Grassmannian into positroid cells, each defined by its vanish-

ing pattern of Plücker coordinates. Furthermore, there is a bijection between certain

planar networks, called Γ-networks, and points of the totally nonnegative Grassman-

nian. Sections 3.3 and 3.4 will provide further details on this decomposition, and the

bijection will be made explicit in Chapter 5.

3.3 Le-diagrams and Γ-networks

In this section, we will describe a special subset of planar circular directed net-

works called Γ-networks. These networks are relatively simple, in that they are

acyclic and can be described by purely combinatorial information. Every point in

the totally nonnegative Grassmannian can be realized as the boundary measure-

ment matrix of a Γ-network, and the structure of this bijection will be discussed in

Section 3.4.

Definition 3.13. A Le-diagram is a partition λ together with a filling of the boxes

of the Young diagram of λ with entries 0 and + satisfying the Le-property: there is

no 0 which has both a + above it (in the same column) and a + to its left (in the

same row).

Replacing the boxes labeled + in a Le-diagram with positive real numbers, called

Le-coordinates, we obtain a Le-tableau. Let TL denote the set of Le-tableaux whose

vanishing pattern is given by the Le-diagram L. Note that TL is an affine space

whose dimension is equal to the number of “+” entries in L, which we denote by |L|.

For a box B in λ, we let LB and TB denote the labels of the box B in the Le-

diagram L and the Le-tableau T , respectively.

For each Le-diagram L of shape λ which fits inside a k × (n − k) rectangle, we
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0
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T33

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0

Figure 3.2: A Le-diagram L of shape λ = (7, 7, 7, 6, 4) and a Le-tableau T ∈ TL.

will construct a Γ-graph GL corresponding to L. For each Le-tableau T ∈ TL, we

will then assign weights to the faces of GL to obtain a Γ-network NT .

We begin by establishing the boundary of the planar network. First, we draw a

disk whose boundary consists of the north and west edges of the k× (n−k) box and

the path determining the southeast boundary of λ, all shifted slightly northwest.

Place a vertex, called a boundary source, at the right end of each row (including

empty rows) of λ, and a vertex, called a boundary sink, at the bottom of each

column of λ (including empty columns). Label these in sequence with the integers

{1, 2, . . . , n}, following the path from the northeast corner to the southwest corner

which determines λ. Let I = {i1 < i2 < · · · < ik} ⊂ [n] be the set of boundary

sources, so that the complement of I, [n] \ I = {j1 < j2 < · · · < jn−k}, is the set of

boundary sinks.

Whenever LB = +, we draw the B hook, i.e., the hook whose corner is the

northwest corner of the box B = (r, c) (in the rth row from the top and the cth

column from the right) and which has a horizontal path directed from the boundary

source ir to the corner and a vertical path directed from the corner to the boundary



32

sink jc. This process yields a Γ-graph GL.

To obtain the Γ-network NT from GL, we would expect to assign weights to each

of the edges of GL. Instead, we will assign weights to the faces of GL; the rationale

for this will be explained immediately afterwards.

Note that there is exactly one face for each box B in λ satisfying LB = + (and

this face has a portion of the B hook as its northwest boundary), and in addition,

there is one face whose northwest boundary is the boundary of the disk. For each

box B with LB = +, we assign to the corresponding face the positive real weight TB.

To the face whose northwest boundary is the boundary of the disk, we assign the

weight
∏

1
TB

, taking the product over boxes satisfying LB = +, so that the product

of all face weights in N is exactly 1.

1

2

3

8

91112 10

4
5

67

T17

T24

T36 T34 T33 T31

T45 T44 T43

T57 T56 T55 T54

Figure 3.3: Face weights for the Γ-network NT of the Le-tableau T given in Figure 3.2.
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Our previous constructions used weights on the edges of the network. However,

there are too many degrees of freedom when using edge weights. One way to deal with

this is to fix the weights of certain edge weights. For example, in Γ-networks, we can

assume all vertical edges have weight 1, but assign variables to the horizontal edges.

(See the discussion on gauge transformations in [Pos07] to see why there is no loss of

generality with this restriction.) Another is to use Postnikov’s transformation from

edge weights to face weights. This can be done for arbitrary planar circular networks

(see [Pos07] for details), but we will only present the special case of Γ-networks.

Given a face R in a Γ-network NT with edge weights {xe}, let NW (R) denote the

set of edges forming the northwest boundary of R, and let SE(R) denote the set of

edges forming the southeast boundary of R. Define the weight of the face R to be

the following ratio of edge weights:

yR =

∏
e∈NW (R) xe∏
e∈SE(R) xe

.

Under the assumption that the vertical edges in NT each have weight 1, this is a

birational map from edge weights to face weights. That is, we can easily recover the

weights of horizontal edges from the face weights. In fact, the weight of an edge will

be the product of the weights of the faces lying directly south of that edge.

With this equivalence in mind, we will typically use face weights when working

with Γ-networks. The weight of a walk P between two boundary vertices in a Γ-

network is

wt(P ) =
∏

yR,

with the product taken over all faces lying southeast of P . This notion of the weight

of a walk is equivalent to the edge weight definition. It is easiest to see this with

an example. See Figures 3.3 and 3.4 for an example of a network in terms of face
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weights and the corresponding edge weights, respectively.

1

2

3

8

91112 10

4
5

67

T17T57T36T56T45T55T24T34T44T54T33T43T31

T24T34T44T54T33T43T31

T36T56T45T55 T34T44T54 T33T43 T31

T45T55 T44T54 T43

T57 T56 T55 T54

1 1 1 1

1

1

1 1 1

1 1 1

1

Figure 3.4: A set of edge weights corresponding to the face weights in Figure 3.3.

3.4 The positroid stratification of (Grkn)≥0

In [GGMS87], the authors give a decomposition of the Grassmannian Grkn into

matroid strata. Each stratum satisfies the property that certain Plücker coordinates

are zero for all points in the stratum, and the remaining Plücker coordinates are

all nonzero. More precisely, for a matroid M whose bases are k-element subsets

of [n], let SM denote the stratum consisting of precisely the points x ∈ Grkn such

that PJ(x) 6= 0 if and only if J ∈ M. In particular, each possible vanishing pattern

of Plücker coordinates is given by a unique (realizable) matroid M. In [Pos07],

Postnikov studies a natural analogue of the matroid stratification for the totally
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nonnegative Grassmannian, a decomposition into disjoint positroid cells of the form

(SM)≥0 = SM ∩ (Grkn)≥0.

In the positroid cell decomposition of (Grkn)≥0 given in [Pos07], the positroid cells

are indexed by the Le-diagrams L which fit inside a k×(n−k) rectangle. Furthermore,

the positroid cell corresponding to a fixed Le-diagram L is parametrized by the Le-

tableaux T ∈ TL, that is, those whose vanishing pattern is given by L.

Recall that for a Le-diagram L, we have the corresponding Γ-graph GL with source

set I. Define the positroid ML ⊆
(
[n]
k

)
by the condition that J ∈ ML if and only if

there exists a non-intersecting path collection in GL with sources I and destinations

J . It can be shown thatML has the structure of a matroid, but this is not necessary

for our purposes. It is easily verified that for distinct Le-diagrams L and L∗, we have

ML 6=ML∗ .

Just as realizable matroids characterize the vanishing patterns of points in the

full Grassmannian, positroids give the vanishing patterns of points in the totally

nonnegative Grassmannian. Of course, each positroid ML is a realizable matroid,

but there do exist realizable matroids which are not positroids.

In [Pos07], the map MeasL takes a Le-tableau T with vanishing pattern given

by L to the point in the totally nonnegative Grassmannian given by the boundary

measurement matrix of its corresponding Γ-network NT .

Theorem 3.14. [Pos07] For each Le-diagram L which fits in a k×(n−k) rectangle,

the map MeasL : TL → (Grkn)≥0 is injective, and the image MeasL(TL) is precisely

the positroid cell (SML
)≥0.

These positroid cells are pairwise disjoint, and the union
⋃

L(SML
)≥0, taken over

all Le-diagrams L which fit inside the k × (n − k) rectangle, is the entire totally

nonnegative Grassmannian (Grkn)≥0. Each positroid cell (SML
)≥0 is a topological
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cell; that is, (SML
)≥0 is isomorphic to R

|L|, where |L| is the number of “+” entries

in L. Thus, the positroid cells form a cell decomposition of (Grkn)≥0.

In [Pos07], Postnikov’s boundary measurement map takes a planar circular net-

work N with a positive specialization map α to the point in the totally nonnega-

tive Grassmannian corresponding to the specialized boundary measurement matrix

A(N)|α. In the special case of Γ-networks, we can give formulas for the minors

∆J(A(N))|α using the classical formula of Lindström [Lin73]. (General formulas

are given in Chapter 5.) Although Lindström’s formula is usually given in terms of

weights of edges, we may also view the formula as a polynomial in face weights.

Definition 3.15. For each Le-diagram L which fits in a k × (n − k) rectangle, the

boundary measurement map MeasL : TL → (Grkn)≥0 is defined by

PJ(MeasL(T )) =
∑

F∈FJ (NT )

wt(F ),

where

• NT is the Γ-network corresponding to the Le-tableau T , and its boundary source

set is labeled by I,

• FJ(NT ) is the collection of non-intersecting directed path families F = {Fi}i∈I

in NT from the boundary sources I to the boundary destinations J , and

• wt(F ) =
∏

i∈I wt(Fi).

We note that the destination set J may contain both sources and sinks, so that I

and J may overlap, in which case some of the paths in the collection will have zero

edges.



CHAPTER 4

Formulas for the boundary measurement map

This chapter contains the statements and proofs of explicit combinatorial formulas

for the Plücker coordinates of the boundary measurement matrix of a planar circular

network.

4.1 Statements of the formulas

We will first present the case of planar circular networks which are perfectly ori-

ented. Perfectly oriented networks form a particularly nice class of examples, and

every planar circular network can be transformed into a perfectly oriented one using

a few simple local moves.

The perfectly oriented case

Definition 4.1 ([Pos07]). A planar circular directed graph (or network) is said to

be perfectly oriented if every interior vertex either has exactly one outgoing edge

(with all other edges incoming) or exactly one incoming edge (with all other edges

outgoing).

For example, let G be a circular directed graph in which all interior vertices are

trivalent, with no interior sources or sinks. Then G is perfectly oriented. Such a

graph is shown in Figure 3.1; this will serve as our running example in the perfectly

37
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oriented case.

Note that in a perfectly oriented circular graph, any self-intersecting walk between

boundary vertices must repeat at least one edge at every point of self-intersection.

Recall that I = {i1 < · · · < ik} indexes the set of boundary sources of G.

Definition 4.2. A subset F of (distinct) edges in a graph G is called a flow if, for

each interior vertex v in G, the number of edges of F that arrive at v is equal to the

number of edges of F that leave from v.

For our perfectly oriented planar circular directed graphs, this means that each

flow is a union of k non-intersecting self-avoiding walks, each connecting a boundary

source bi (i ∈ I) to a distinct boundary vertex bj (j ∈ J), together with a (possibly

empty) collection of pairwise disjoint cycles, none of which intersect any of the walks.

A flow C is conservative if it contains no edges incident to the boundary. We

denote by C(G) the set of all conservative flows in G.

Let J be a k-element subset of [n]. We say that a flow F is a flow from I to J

if each boundary source bi is connected by a walk in F to a (necessarily unique)

boundary vertex bj with j ∈ J . If G is perfectly oriented, we denote by FJ(G) the

set of all flows from I to J .

The weight of a flow F , denoted wt(F ), is by definition the product of the weights

of all edges in F . A flow with no edges has weight 1.

We note that each flow of a perfectly oriented planar circular directed graph G

lies in precisely one of the sets FJ(G). In particular, for a conservative flow, each of

the k walks between boundary vertices is trivial, and C(G) = FI(G).

We can now precisely state the key theorem in the perfectly oriented case.

Theorem 4.3. Let N = (G, x) be a perfectly oriented planar circular network. Then
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the maximal minors of the boundary measurement matrix A(N) are given by

(4.1) ∆J(A(N)) =

∑

F∈FJ(G)

wt(F )

∑

C∈C(G)

wt(C)
.

This is the subtraction-free rational expression we will use when evaluating at

a positive specialization of the edge weights. Recall Corollary 3.11, which states

that each minor will be nonnegative if we choose positive edge weights. Viewing the

∆J(A(N)) as Plücker coordinates, we then obtain a point in the totally nonnegative

Grassmannian (Grkn)≥0.

Example 4.4. Consider the planar circular network N in Figure 3.1, in which I =

{1, 4}. For J = {1, 5}, let us describe the set of flows FJ(G). The boundary vertex

b1 must be connected to itself by the trivial walk b1  b1. Together with the unique

self-avoiding walk P : b4  b5 of weight a4w3fy3a5, this gives a flow from {1, 4}

to {1, 5}. There is one additional flow, consisting of P and the cycle of weight

Z = z1z2z3z4 (along with the trivial walk b1  b1). See Figure 4.1.

b4

b3b2

b1

b5

w3y3 a4

a5

f
b4

b3b2

b1

b5

w3y3

z2z4
z3

z1

a4

a5

f

Figure 4.1: The two flows in F1,5(G), shown in bold.
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Thus, for this particular network, the numerator of (4.1) is

∑

F∈F{1,5}(G)

wt(F ) = a4w3fy3a5(1 + Z).

The only cycles in the network N are those of weights W , Y , Z, and T . Since

conservative flows in G are unions of disjoint cycles, we have

∑

C∈C(G)

wt(C) = 1 + W + Y + Z + T + WZ + WY + Y Z + WY Z + ZT

= (1 + Z)[(1 + W )(1 + Y ) + T ].

Consequently,

∆{1,5}(A(N)) =
a4w3fy3a5(1 + Z)

(1 + Z)[(1 + W )(1 + Y ) + T ]
=

a4w3fy3a5

(1 + W )(1 + Y ) + T
.

The general case

In this section, we provide an extension of Theorem 4.3 for arbitrarily oriented

planar circular networks.

When G is a perfectly oriented graph, the following definition is equivalent to Def-

inition 4.2. This extension provides the appropriate setup for working in arbitrarily

oriented planar circular directed graphs.

Definition 4.5. A subset F of (distinct) edges in a planar circular directed graph G

(not necessarily perfectly oriented) is called an alternating flow if, for each interior

vertex v in G, the edges e1, . . . , ed of F which are incident to v, listed in clockwise

order around v, alternate in orientation (that is, directed towards v or directed away

from v).

In an alternating flow F , define the walks Wi (with i ∈ I) as follows. If bi is

isolated in F , set Wi to be the trivial walk from bi to itself. Otherwise, let Wi be

the unique path leaving bi which, at each subsequent vertex, takes the first left turn

in F , until it arrives at another boundary vertex.
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For a k-element subset J of [n], we say that an alternating flow F is a flow from

I to J if each boundary source bi is connected by Wi to a boundary vertex bj with

j ∈ J . (The vertices bj are necessarily distinct.) Let AJ denote the set of alternating

flows from I to J . In particular, AI is precisely the set of conservative alternating

flows.

Note that in the special case of perfectly oriented networks, every flow is an

alternating flow.

Definition 4.6. Suppose F is an alternating flow. For each vertex v in G, let τ(v, F )

denote the number of edges of F coming into v. Set

θ(F ) =
∑

v

max{τ(v, F )− 1, 0}.

Theorem 4.7. Let N = (G, x) be a planar circular network with source set indexed

by I. Then the maximal minors of the boundary measurement matrix A(N) are given

by the formula

(4.2) ∆J(A(N)) =

∑

F∈AJ (G)

2θ(F ) wt(F )

∑

C∈AI (G)

2θ(C) wt(C)
.

Corollary 3.11 applies here as well; if we choose positive edge weights, then each

minor is nonnegative, and we obtain a point in the totally nonnegative Grassmannian

(Grkn)≥0.

4.2 Some technical lemmas

Definition 4.8 ([Pos07]). Let π : I → J be a bijection such that π(i) = i for all

i ∈ I ∩ J . A pair of indices (i1, i2), where {i1 < i2} ⊂ I \ J , is called a crossing, an

alignment, or a misalignment of π, if the two directed chords [bi1 , bπ(i1)] and [bi2 , bπ(i2)]
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are arranged with respect to each other as shown in Figure 4.2. Define the crossing

number xing(π) of π as the number of crossings of π.

crossing

bi1 bπ(i2)

bi2 bπ(i1)

alignment

bi1 bπ(i1)

bi2 bπ(i2)

misalignment

bi1 bπ(i1)

bπ(i2) bi2

Figure 4.2: Crossings, alignments, and misalignments

Lemma 4.9. For distinct i1, i2, j1, j2 ∈ [n], the chords [bi1 , bj1] and [bi2 , bj2 ] cross if

and only if

(4.3) (i1 − j2)(j2 − j1)(j1 − i2)(i2 − i1) < 0.

Proof. The proof is a straightforward verification. Without loss of generality, we may

assume that i1 < i2, so that i2−i1 is always positive. The following table summarizes

the possibilities in this case.

i1 − j2 j2 − j1 j1 − i2

+ + + i2 > i1 > j2 > j1 > i2 impossible

+ + - i2 > i1 > j2 > j1 crossing

+ - + j1 > i2 > i1 > j2 crossing

+ - - i2 > i1 > j2 and i2 > j1 > j2 (mis)alignment

- + + j2 > j1 > i2 > i1 crossing

- + - j2 > i1, j1 and i2 > i1, j1 (mis)alignment

- - + j1 > i2 > i1 and j1 > j2 > i1 (mis)alignment

- - - i2 > j1 > j2 > i1 crossing

For each sign pattern, the consequent inequalities ensure that we have crossings
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precisely when the inequality (4.3) holds.

Definition 4.8 and Lemma 4.9 immediately yield the following corollary.

Corollary 4.10. Let π : I → J be a bijection such that π(i) = i for all i ∈ I ∩ J .

For {i1 < i2} ⊂ I \ J , the following are equivalent:

1. (i1, i2) is a misalignment;

2. the chords [bi1 , bi2 ] and [bπ(i1), bπ(i2)] cross;

3. (i1 − π(i2))(π(i2)− i2))(i2 − π(i1))(π(i1)− i1) < 0.

We provide a new proof of the following result.

Proposition 4.11 ([Pos07]). Let I index the boundary sources of a planar circular

network N and let J ⊆ [n], with |J | = |I|. Then

(4.4) ∆J(A(N)) =
∑

π:I→J

(−1)xing(π)
∏

i∈I

Mi,π(i),

the sum over all bijections π from I to J .

Proof. Taking the appropriate determinant, we see that

∆J(A(N)) =
∑

π:I→J

(−1)inv(π)
∏

i∈I

(−1)s(i,π(i))Mi,π(i),

where s(i, π(i)) is the number of elements of I strictly between i and π(i), as in

Definition 3.8, and inv(π) is the number of inversions of π. Here, an inversion of π

is a pair (i1, i2) with i1 < i2 and π(i1) > π(i2). Note that
∏

i∈I Mi,π(i) = 0 unless

π(i) = i for all i ∈ I ∩J . Thus, we wish to show that if π fixes the elements in I ∩J ,

then

(4.5) (−1)xing(π) = (−1)inv(π)
∏

i∈I

(−1)s(i,π(i)).
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Consider the right-hand side of (4.5). Each pair (i1, i2) with i1 < i2 contributes

a factor of sgn((π(i2) − π(i1)) to (−1)inv(π). Furthermore, i1 contributes a factor

of sgn((i1 − i2)(i1 − π(i2)) = − sgn(i1 − π(i2)) to (−1)s(i2,π(i2)), since this product

is negative if and only if π(i2) < i1 < i2. Similarly, i2 contributes a factor of

sgn((i2 − i1)(i2 − π(i1))) = − sgn((i2 − i1)(π(i1) − i2)) to (−1)s(i1,π(i1)). Thus, the

total contribution by the pair (i1, i2) is

sgn[(i2 − i1)(i1 − π(i2))(π(i2)− π(i1))(π(i1)− i2)].

Taking the product over all pairs {i1 < i2}, we get (−1)xing(π), by Lemma 4.9.

Lemma 4.12. Let π : I → J be a bijection such that π(i) = i for all i ∈ I ∩ J . For

l, m ∈ I \J with l < m, let sπ(l),π(m) denote the transposition of the boundary vertices

bπ(l) and bπ(m), and let π∗ = sπ(l),π(m) ◦ π. Then

(−1)xing(π∗) =






(−1)xing(π)+1 if (l, m) is a crossing or an alignment;

(−1)xing(π) if (l, m) is a misalignment.

Proof. Applying Lemma 4.9 and simplifying, we obtain:

(−1)xing(π)(−1)xing(π∗) = sgn

[
∏

i1<i2

(i1 − π(i2))(π(i2)− π(i1))(π(i1)− i2)

]

· sgn

[
∏

i1<i2

(i1 − π∗(i2))(π
∗(i2)− π∗(i1))(π

∗(i1)− i2)

]

= sgn [(l − π(m))(π(m)−m)(m− π(l))(π(l)− l)] ,

and the lemma follows from Corollary 4.10.
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4.3 Proofs of the main formulas

Proof of Theorem 4.3

Proof of Theorem 4.3. For a bijection π : I → J , let Pπ denote the set of all (possibly

intersecting) collections of walks P=(Pi)i∈I connecting I and J in accordance with π:

Pπ = {P = (Pi : bi  bπ(i))i∈I}.

In view of (3.1) and (4.4), we can rewrite the claim (4.1) as

(4.6)
∑

C∈C(G)

∑

π:I→J

∑

P∈Pπ

wt(C,P) =
∑

F∈FJ(G)

wt(F ),

where wt(C,P), for P ∈ Pπ, is defined by

wt(C,P) = wt(C)(−1)xing(π)
∏

i∈I

(−1)wind(Pi) wt(Pi).

Note that if C and P form a flow F from I to J , then xing(π) = 0 and wind(Pi) = 0

for all i, so that wt(C,P) = wt(F ). Hence (4.6) can be restated as saying that all

terms on its left-hand side cancel except for the ones for which C and P form a flow

from I to J . It remains to construct a sign-reversing involution proving this claim.

More precisely, we need an involution ϕ on the set of pairs (C,P) such that

(i) C ∈ C(G) is a conservative flow,

(ii) P is a collection of k = |I| walks connecting I and J , and

(iii) C and P do not form a non-conservative flow.

Furthermore, ϕ must satisfy wt(ϕ(C,P)) = −wt(C,P).

For a pair (C,P) satisfying (i)-(iii), we define ϕ(C,P) = (C∗,P∗) as follows. Let

P = (Pi)i∈I ∈ Pπ, with π : I → J a bijection. Choose the smallest i ∈ I such that

Pi is not self-avoiding or has a common vertex with C or with some Pi′ with i′ > i.

(Such an i exists by the assumptions we made regarding (C,P).)
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Let Pi = (e1, . . . , em). Choose the smallest q such that the edge eq lies in C or in

some Pi′ with i′ > i, or eq = er for some r > q.

• If eq lies in some Pi′ with i′ > i, choose the smallest such i′. (This case allows

for the possibility that Pi intersects itself or C at eq.) We will then swap the

tails of Pi and Pi′ as follows. Let Pi′ = (h1, . . . , hm′), and choose the smallest

q′ such that hq′ = eq. Set P ∗
i = (e1, . . . , eq−1, eq = hq′ , hq′+1, . . . , hm′) and

P ∗
i′ = (h1, . . . , hq′−1, hq′ = eq, eq+1, . . . , em). Set P∗ = P \ {Pi, Pi′} ∪ {P

∗
i , P ∗

i′}

and set C∗ = C. (Note that q < min(m, m′) in this case, so P∗ 6= P.)

• Otherwise we will find the first point along Pi where we can move a cycle from

C to Pi or vice versa, as follows. If Pi is not self-avoiding, let ℓP be the first

cycle that Pi completes. That is, choose the smallest s such that er = es for

some r < s; then ℓP = (er, er+1, . . . , es−1). If Pi is self-avoiding, then set s =∞.

If C intersects Pi, choose the smallest t such that et occurs in a (necessarily

unique) cycle ℓC = (l1, l2 . . . , lw) in C, where l1 = et. If C ∩ Pi = ∅, then set

t =∞. Note that at least one of t or s must be finite, and t 6= s, since es = er

and r < s.

◦ If t < s, we move ℓC from C to Pi, as follows. Set C∗ = C \ {ℓC}, P ∗
i =

(e1, . . . , et−1, et = l1, . . . , lw, et, . . . , em), and P∗ = P \ {Pi} ∪ {P
∗
i }.

◦ If t > s, we move ℓP from Pi to C, as follows. Set C∗ = C ∪ {ℓP},

P ∗
i = (e1, . . . , er−1, es, . . . , em), and P∗ = P \ {Pi} ∪ {P

∗
i }.

It is easy to see that, with this definition, the image (C∗,P∗) is again a pair of

the required kind, i.e., it satisfies the conditions (i)-(iii) above.
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Let us verify that ϕ is an involution. First, we check that ϕ does not change the

value of i. That is, among all walks in P∗ which intersect themselves, another walk,

or a cycle in C∗, the walk with the smallest index (of its starting point) is P ∗
i . Indeed,

our moves only affect Pi, Pi′, and C, keeping their combined set of edges intact, so

the involution will not introduce a new self-intersection in any Pa with a < i, nor

will it introduce an intersection between Pa and any path or cycle.

Consider ϕ(C,P) = (C,P∗) in the first case. After swapping tails, P ∗
i still has

no intersections with C or any of the other paths before the edge eq. Further, P ∗
i

does not have any self-intersections before eq (though it may have self-intersections

at eq), since Pi did not have any self-intersections before eq and the tail of Pi′ did not

intersect Pi before eq. Thus, eq remains the first edge along P ∗
i with an intersection.

Now, P ∗
i and P ∗

i′ intersect at this edge, and no path with smaller index intersects P ∗
i

at eq, so we will swap the same tails again.

Consider the second case, with ϕ(C,P) = (C \ {ℓC},P
∗) or ϕ(C,P) = (C ∪

{ℓP},P
∗). Here, Pi intersects itself or C at eq, but does not intersect any other path

at eq. After moving a cycle, the same is true for P ∗
i . (If the cycle moved starts at eq,

then either a self-intersection becomes an intersection with C, or an intersection with

C becomes a self-intersection. If the cycle moved starts later, then the intersections

at eq remain as they are.) If Pi intersects C before completing its first cycle, then

P ∗
i will complete its first cycle before intersecting C \ {ℓC}. If Pi completes its first

cycle ℓP before intersecting C, then P ∗
i will intersect C ∪ {ℓP} before completing its

first cycle. Thus, the same cycle is moved both times. We have now shown that ϕ is

an involution.
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Finally, we verify that ϕ is sign-reversing. In the case of tail swapping, we need to

show that wind(Pi) + wind(Pi′) + xing(π) + wind(P ∗
i ) + wind(P ∗

i′) + xing(π∗) is odd,

where π∗ is the bijection such that P∗ ∈ Pπ∗ . By Lemma 4.12, xing(π) + xing(π∗)

is even if and only if (i, i′) is a misalignment. Thus, we need to show that (i, i′) is a

misalignment if and only if

(4.7) wind(Pi) + wind(Pi′) + wind(P ∗
i ) + wind(P ∗

i′) ≡ 1(mod 2).

! !

Figure 4.3: Winding index and tail swapping

This statement is in fact true for any instance of tail swapping, i.e., it does not

rely on our particular choice of the walks Pi and Pi′ sharing an edge eq. Viewing

(4.7) as a purely topological condition, we can “unwind” each of the 4 subwalks from

which our walks Pi and Pi′ are built, keeping eq fixed. This will not change the parity

in (4.7) since each loop contained entirely in one of the initial or terminal subwalks

will contribute twice, once to wind(Pi)+wind(Pi′) and once to wind(P ∗
i )+wind(P ∗

i′).

Deforming the walks as necessary, we then obtain one of the four pictures shown in

Figure 4.3. The last two of the four pictures represent misalignments, and indeed,

these are precisely the two cases in which (4.7) holds.

In the remaining case (moving a cycle from C to P or vice versa), wind(Pi)

changes parity, but xing(π) and all other winding numbers remain the same. Hence

wt(ϕ((C,P)) = −wt(C,P), as desired.
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Proof of Theorem 4.7

We begin by explaining the process given in [Pos07] for transforming an arbitrary

planar circular network into a partially specialized perfectly oriented planar circular

network.

For boundary measurements, there is no loss of generality in assuming that G has

no internal sources or sinks. Further, we may assume that there are no vertices of

degree 2. Indeed, if there is a vertex v with exactly one incoming edge e1 and exactly

one outgoing edge e2, we may remove v and glue e1 and e2 into a single edge e of

weight xe = xe1xe2 .

Let N = (G, x) be a planar network with boundary sources indexed by I and

positive weight function α : {xe}e∈E(G) → R, with xe 7→ αe. Let N ′ = (G′, x′) and

α′ : {xe}e∈E(G′) → R (with x′
e 7→ α′

e) denote a perfectly oriented planar network

and corresponding positive weight function obtained from N and α by the process

described below.

In general, N ′ will not be unique. That is, different choices made during the

process below may yield different trivalent planar networks, though all of them will

have the same boundary measurements.

To obtain a trivalent planar network N ′ from N , we perform the following oper-

ations in stages (1)-(3).

1. First, suppose that N has an internal vertex v of degree greater than 3; let

e1, . . . , ed denote the edges incident to v, listed in clockwise order. If two adja-

cent edges ei and ei+1 (modulo d) have the same orientation, either both towards

v or both away from v, we choose such a pair, pull these edges away from v,

insert a new vertex v′ and a new edge e (directed from v′ to v when ei and ei+1
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are edges entering v and from v to v′ when ei and ei+1 are edges leaving v), and

attach the edges ei and ei+1 to v′. (See Figure 4.4.) We set α′
e = 1. Repeat

until the resulting network has no vertices v of this form.

αe5

αe4
αe3

αe2

αe1

 

αe5

αe4
αe3

αe2

αe1

1
 

αe5

αe4
αe3

αe2

αe1

1 1

Figure 4.4: Pulling out adjacent edges with the same orientation (first e4 and e5, then e2 and e3).

2. If a vertex v of degree greater than 3 remains, its incident edges must alternate

orientation in clockwise order. In this case we blow up1 the vertex v into a cycle

whose edges are all oriented clockwise, as in Figure 4.5. If e is an edge coming

into v, we set α′
e = 2αe, and if e is one of the new edges created to make the

cycle, we set α′
e = 1. Repeat until the resulting network has no vertices v of

this form.

αe6

αe5

αe4

αe3

αe2

αe1

 1 1

1 1

1 1

2αe6

αe5

2αe4

αe3

2αe2

αe1

Figure 4.5: Blowing up a vertex with alternating edge directions.

1This terminology is taken from [Pos07] and has nothing to do with the notion of blowing up found in algebraic
geometry.
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3. Finally, for any remaining edge e unaffected by these steps (i.e. such that α′
e

has not yet been specified), set α′
e = αe. Let N ′ and α′ denote the final result.

Proposition 4.13 ([Pos07]). If N ′ = (G′, α′) is obtained from N = (G, α) via the

process above, then for all J ⊂ [n] with |J | = |I|, we have

∆J(A(N))|α = ∆J(A(N ′))|α′ .

By contracting an edge e, we mean removing the edge e and identifying its two

endpoints. (If we contract all edges in a connected subset of edges, the image is

a single vertex.) It is easy to see that by contracting all new edges created in

Proposition 4.13, we obtain G from G′.

b1 b2

b3b4

b5

a1 a2

a3a4

a5

c

d
e

f

g

h

N

a5

a2

g

a3

c

2a1

f

2e

2h

a4

2d

1

1
1

1

1

1

1

1

b1 b2

b3b4

b5

N ′

Figure 4.6: A network N and the corresponding perfectly oriented network N ′.

Definition 4.14. Let B(G) denote the set of vertices of G around which the ori-

entations of edges switch at least four times. Call such a vertex v a blowup vertex.

These are precisely the vertices which are blown up into cycles in the second stage

of Proposition 4.13.
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b1 b2

b3b4

b5

An alternating

flow in G.

b1 b2

b3b4

b5

The (unique)

corresponding

flow in G′.

Figure 4.7: An alternating flow in G and the unique corresponding flow in G′.

Example 4.15. In Figure 4.6, we have an example of a network N and a corre-

sponding perfectly oriented network N ′. (In this example, N ′ happens to be the

only possible network resulting from the process above.) Notice that the edges of

the newly created cycles each have weight 1, and the weights of the edges entering

those cycles have doubled.

Let us examine what happens to flows during the transformation from N to N ′.

We will find A{2,5}(N). We can see that N has precisely two alternating flows from

{1, 3} to {2, 5}, namely those in Figures 4.7 and 4.8.

In Figure 4.7, there is only one flow in N ′ whose contraction is the given alternating

flow in N . In Figure 4.8, there are two such flows in N ′ which contract to the given

alternating flow in N . Note that they are identical except that one includes the cycle

which contracts to the blowup vertex marked in G, and the other does not. Since

this cycle has weight 1, these two flows both have the same weight.
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b1 b2

b3b4

b5

An alternating

flow in G and

a blowup vertex.

b1 b2

b3b4

b5

One corresponding

flow in G′.

b1 b2

b3b4

b5

The other corresponding

flow in G′.

Figure 4.8: An alternating flow in G and the two corresponding flows in G′.

For an alternating flow F in a planar network N , we define ǫ(F ) to be the number

of edges of F which enter a blowup vertex of G, β(F ) to be the number of blowup

vertices of G which occur as the endpoint of some edge in F , and η(F ) to be the

number of blowup vertices of G which are not endpoints of any edge in F . Recalling

Definition 4.6, note that θ(F ) = ǫ(F )− β(F ).

Proof of Theorem 4.7. Fix an image N ′ of N under the transformation in Proposi-

tion 4.13, and let F ′ be a flow in N ′. It is easily verified that contracting all edges

in E(G′) − E(G) gives a bijection between flows F ′ in the perfectly oriented graph
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G′ and pairs (F, A), where F is an alternating flow in the original graph G and A is

a subset of the η(F ) vertices in B(G) which are not endpoints of any edges in F .

Further, extending α and α′ linearly, we have

α′(wt(F ′)) = 2ǫ(F )α(wt(F )),

and there are 2η(F ) flows F ′ in G′ corresponding to a given alternating flow F in G,

all with the same weight.

Since this relationship holds for every positive specialization α, Theorem 4.3 and

Proposition 4.13 then imply that

∆J(A(N)) =

∑

F∈AJ (G)

2ǫ(F )+η(F ) wt(F )

∑

C∈AI (G)

2ǫ(C)+η(C) wt(C)
.

Cancelling a factor of |B(G)| = η(F ) + β(F ) from each term in the numerator

and denominator, we obtain

∆J(A(N)) =

∑

F∈AJ (G)

2ǫ(F )−β(F ) wt(F )

∑

C∈AI (G)

2ǫ(C)−β(C) wt(C)
,

which is equivalent to the desired formula (4.2), since θ(F ) = ǫ(F )− β(F ).

4.4 Plücker coordinates for perfectly oriented non-planar networks

It is natural to ask to what extent we can develop these constructions in the non-

planar setting; this section is a slight detour which addresses this question. While the

notion of the topological winding index only makes sense for planar graphs, Lawler’s

notion of loop-erasure in [Law80] allows us to give a non-planar analogue of the

winding index if G is perfectly oriented. In this non-planar setting, we no longer
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have the positivity results, but we can describe those Plücker coordinates which are

individual boundary measurements.

We begin by extending the definition of circular directed graphs and networks

(Definition 3.4) to suit the non-planar setting. For a general circular directed graph,

we no longer require that G has a planar embedding in a disk, but we still ask for

the boundary vertices to be labeled in cyclic order and for each boundary vertex to

be adjacent to at most one edge.

Definition 4.16 ([Fom01, Law91]). The loop-erased part of a walk P : bi  bj ,

denoted LE(P ), is defined recursively as follows. If P = (e1, . . . , em) does not have

any self-intersections, then LE(P ) = P . Otherwise, we set LE(P ) = LE(P ′), where

P ′ is obtained from P by removing the first cycle it completes. More precisely, when

G is perfectly oriented, find the smallest value of s such that there exists r < s

with er = es, and remove the segment er, er+1, . . . , es−1 from P to obtain P ′. The

loop-erasure number loop(P ) is defined as the number of cycles erased during the

calculation of LE(P ). With the notation as above, we have loop(P ) = loop(P ′) + 1,

and loop(P ) = 0 when P is a self-avoiding walk.

Proposition 4.17 ([Pos07]). Suppose that G is a perfectly oriented planar circular

directed graph. If P is a walk from a boundary vertex bi to a boundary vertex bj, then

(−1)loop(P ) = (−1)wind(P ).

Proof. Each boundary vertex is incident to at most one edge, so P has no self-

intersections at its endpoints. Since G is perfectly oriented, P repeats at least one

edge at every self-intersection. The claim then follows by induction on loop(P ), as

an erasure of a cycle changes the winding index by ±1.

Proposition 4.17 allows us to view loop(P ) as a natural generalization of wind(P )
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for perfectly oriented graphs, allowing us to work with non-planar graphs. This

observation leads to an extension of Postnikov’s construction (which applies to planar

networks and employs the winding index) to arbitrary perfectly oriented graphs.

Definitions 4.1, 3.5, 3.6, 3.8, 4.8, and 4.2 then extend to perfectly oriented non-planar

networks in the obvious way, replacing wind(P ) with loop(P ) wherever appropriate.

Corollary 4.18. Suppose N = (G, x) is a perfectly oriented circular network with

boundary source set indexed by I. Then, for i ∈ I and j ∈ [n], we have

Mij = ∆(I\{i})∪{j}(A(N)) =

∑

F∈F(I\{i})∪{j}(G)

wt(F )

∑

C∈C(G)

wt(C)
.

Proof. This follows directly from the proof of Theorem 4.3, since for these special

Plücker coordinates, the tail swapping process of the proof is never called upon.

Although the result holds for those minors ∆J which are boundary measurements

Mij , it is generally not valid for the remaining Plücker coordinates. For non-planar

networks, tail swapping does not always yield the sign change in (−1)xing that we

obtain in the planar case. As a result, the numerator and denominator of a minor ∆J

do not necessarily simplify to linear combinations of flow weights after cancellation

of common factors.

Example 4.19. Consider the network N in Figure 4.9, with boundary measurement

matrix A(N) below. The minors ∆12, ∆13, ∆14, ∆24, and ∆34 all satisfy Theorem 4.3.

A(N) =




1 a1fa2

1+cdef

a1feda3

1+cdef
0

0 a4dcfa2

1+cdef
a4da3

1+cdef
1




However, for ∆23, we do not get the desired cancellation; in the simplified rational

expression, both the numerator and denominator are quadratic in flow weights. We
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have

∆23(A(N)) =
a1a2a3a4 · df(1− cdef)

(1 + cdef)2
.

b1

b2 b3

b4

a2

a1

c

f d

e

a3

a4

Figure 4.9: Boundary measurements in a non-planar network.

Remark 4.20. If we consider flow weights as polynomials with coefficients in the finite

field of two elements, F2, then equation (4.1) holds for all ∆J in the perfectly oriented

non-planar case; this also follows directly from the proof of Theorem 4.3.



CHAPTER 5

Formulas for the inverse boundary measurement map

In Postnikov’s work [Pos07], Theorem 3.14 is proved by giving a recursive algo-

rithm for finding the Le-tableau T corresponding to a given point in (Grkn)≥0. In

this paper, we obtain explicit combinatorial formulas solving the same problem. This

is done in two stages. In Section 5.1, we give an explicit rule for determining which

positroid cell contains a given point. In Sections 5.2 and 5.3, we give two combina-

torial formulas for the inverse of each particular map MeasL (i.e., formulas for the

corresponding Le-coordinates) in terms of the relevant Plücker coordinates.

5.1 Determining the positroid cell of a point in (Grkn)≥0

In this section, we give an explicit formula for the Le-diagram L(x) that determines

which positroid cell (SML
)≥0 a given point x ∈ (Grkn)≥0 belongs to.

Let x ∈ (Grkn)≥0 be given by its Plücker coordinates (PJ(x) : J ∈
(
[n]
k

)
). Order

the k-subsets of [n] lexicographically. That is, a set {a1 < a2 < · · · < ak} is less than

or equal to a set {b1 < b2 < · · · < bk} if at the smallest index m for which am 6= bm,

we have am < bm.

For M ⊆
(
[n]
k

)
, let I = {i1 < i2 < · · · < ik} be the lexicographically minimum

set in M. Let [n] \ I = {j1 < j2 < · · · < jn−k} be the complement of I. The set I

determines the shape λ(M) of the Le-diagram L(x).

58



59

Let λ(M) be the partition in the k× (n−k) rectangle whose southeastern border

is given by the path from the northeast corner of the k × (n − k) rectangle to its

southwest corner which has vertical edges in positions I and horizontal edges in

positions [n] \ I. More precisely, the length of the tth row of λ is the number of

elements of [n] \ I which are greater than it, i.e., λt = |js ∈ [n] \ I : js > it|.

For a box B = (r, c) in λ(M), set

Ar,c = [n] \ {ir + 1, ir + 2, . . . , jc − 2, jc − 1}

= {1, 2, . . . , ir − 1, ir} ∪ {jc, jc + 1, . . . , n− 1, n}

Set M(B,M) = (M ′(B,M) \ {ir}) ∪ {jc}, where

M ′(B,M) = lexmax {J ∈M : J ∩ Ar,c = I ∩ Ar,c} .

In plain language, this says that we are taking the maximum over sets J which

contain all of the sources outside the open interval from ir to jc and none of the

sinks, i.e., those sets whose interesting behavior happens inside the interval.

Recall that for a Le-diagram L, we have J ∈ ML if and only if there exists a

non-intersecting path collection in GL with source set I and destination set J . Note

that the lexicographically minimum set inML labels the sources of the appropriate

Γ-graph, so that this set corresponds to the family of |I| zero-edge paths, one from

each source to itself.

Lemma 5.1. Suppose that B is a box in a Le-diagram L of shape λ(L). Then

1. M ′(B,ML) is the destination set of a unique non-intersecting path collection

in the Γ-graph GL, namely the northwest-most path collection whose edges lie

strictly southeast of the B hook;

2. M(B,ML) ∈ML if and only if LB = +; and
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3. the vanishing pattern for the Plücker coordinates of (SML
)≥0 is uniquely deter-

mined by the vanishing pattern of the subset {PM(B,ML)}, ranging over all boxes

B in λ(L).

Proof. The proof of the first claim is left as a straightforward exercise for the reader;

the second and third then follow immediately from the definitions.

Example 5.2. On the left in Figure 5.1, we have the Γ-graph of the example in

Figure 3.2. We see that M ′((2, 6),ML) = {1, 2, 7, 9, 10}, corresponding to the solid

path collection on the right in Figure 5.1. Adding in the potential (dotted) hook

from i2 = 2 to j6 = 11, we have M((2, 6),ML) = {1, 7, 9, 10, 11}. Since this hook

does not occur in the Γ-graph, we must have PM((2,6),ML)(x) = 0 for this point.

1

2

3

8

91112 10

4
5

67

1

2

3

8

91112 10

4
5

67

Figure 5.1: The Γ-graph of an example in (Gr5,12)≥0 and the path families corresponding to
M ′((2, 6),ML) and M((2, 6),ML).

Theorem 5.3. For x ∈ (Grkn)≥0, set M(x) = {J ∈
(
[n]
k

)
: PJ(x) 6= 0}. Then the

filling of λ(M(x)) given by

(5.1) L(x)B =






0 if PM(B,M(x))(x) = 0;

+ if PM(B,M(x))(x) 6= 0.

is a Le-diagram, and x lies in the positroid cell (SML(x)
)≥0.
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Proof. Combining Theorem 3.14 and Lemma 5.1, each point x ∈ (Grkn)≥0 lies in a

unique positroid cell (SML
)≥0 and therefore we must have a unique Le-diagram L

such that PM(B,M(x)) = PM(B,ML) for all boxes B ∈ λ(L) = λ(M(x)).

5.2 The Le-tableau associated with a point in (SML
)≥0

In Postnikov’s original work, the map from (Grkn)≥0 to
⋃

L TL is given recursively.

In this section, we provide an explicit description of that map. More precisely,

given a point x ∈ (SML
)≥0, we give combinatorial formulas for the entries of the

parametrizing Le-tableau, which we call Le-coordinates for x.

For each box B in λ, let H(B) denote the collection of boxes lying weakly southeast

of the B hook. For each box B with LB = +, let R(B) denote the face with

northwest corner B, i.e., the collection of boxes which lie in the same face as B in

the corresponding Γ-graph G. We may simply write R for R(B) if there is no need

to emphasize the northwest corner of R. The Le-property ensures that the northwest

boundary of each face R = R(B) is a portion of a single hook, namely the B hook;

we may also refer to this hook as the R hook.

Definition 5.4. In a Γ-graph G, call a collection W of paths a generalized path if

the paths in W are pairwise disjoint, and no path of W lies southeast of another

path in W . (An example of a generalized path which is not a path can be seen on

the right in Figure 5.1. The union of the hook from 5 to 7 and the hook from 8 to 9

is a generalized path.)

We say that a collection of paths lies (strictly or weakly) southeast of a given

generalized path W if each of the edges in the path collection lies (strictly or weakly)

southeast of some path of W .

For a generalized path W in a Γ-graph G, let OC(W ) denote the set of outer
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corners of W , that is, those boxes B for which the northern and western boundaries

of B are both edges of W . We order the outer corners from northeast to southwest.

Let IC(W ) denote the inner corners of W , that is, those boxes B such the northwest

boundary of B is formed by portions of the hooks of two consecutive outer corners.

Note that an inner corner need not be adjacent to the corresponding outer corners.

The Le-property ensures that each outer or inner corner B satisfies LB = +.

Consider the generalized paths which lie weakly southeast of the R hook and

contain the entire southeast border of R; these generalized paths must all have the

same edge set. That is, they are all identical up to addition or removal of paths

with zero edges; take DR to be the unique such generalized path whose paths each

consist of at least one edge. Essentially, DR traces out the southeast boundary of

R, but it may be broken into several paths if R borders the boundary of our disk.

We can see that OC(DR) indexes the hooks which determine the southeast boundary

of the face R, and IC(DR) indexes the hooks which are intersections of two hooks

corresponding to adjacent outer corners.
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Figure 5.2: Finding the corners of DR(4,4) and DR(1,7).

Example 5.5. Consider the Γ-graph in Figure 5.2. We find the inner and outer

corners of DR(4,4) and of DR(1,7). In each graph, the relevant face is labeled “R”, the
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generalized path DR is in bold, and outer and inner corners are labeled “oc” and “ic”

respectively. Note that DR(4,4) consists of two paths, and it has no inner corners.

We recall that the Möbius function µS of a partially ordered set S is given recur-

sively by the rules

µS(x, x) = 1, for all x ∈ S, and

µS(x, y) = −
∑

x≤z<y

µS(x, z), for all x < y in S.

For a Le-diagram L, let RL denote the set of faces of the Γ-graph GL which are

indexed by + entries in L. We partially order RL by the condition that R1 ≤L R2 if

the R1 hook lies weakly northwest of the R2 hook.

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b b

b

b

bb

b

b b

b b

Figure 5.3: Here we have the poset for the example shown in Figures 3.2 and 5.1. Dotted lines
indicate the boundaries of the original faces, rotated so that the northwest corner is at
the lowest point of the poset.
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Lemma 5.6. Let µL = µRL
denote the Möbius function for RL, with the partial

order ≤L. Then for any two faces R1 = R(B1) and R2 = R(B2) of GL, we have

µL(R1, R2) =






1 if R1 = R2 or B2 ∈ IC(DR1)

−1 if B2 ∈ OC(DR1)

0 otherwise.

Proof. We see that our Möbius function µL has the following interpretation. For a

fixed face R1, we assign to each face in the collection H(R2) the quantity µL(R1, R2).

That is, we count the faces lying southeast of the R2 hook with signed multiplicity

µL(R1, R2). By the definition of a Möbius function, this means we want the total

count for a face R to be exactly one if R = R1 and zero if R 6= R1. The proof is then

completed by a simple inclusion-exclusion argument, which is left to the reader.

To avoid unwieldy notation, we will write M(B) and M ′(B) in place of M(B,ML)

and M ′(B,ML) when the appropriate Le-diagram L is clear from context.

Theorem 5.7. Suppose x ∈ (SML
)≥0. Then the Le-coordinates of x are the entries

of the Le-tableau T (x) ∈ TL defined below.

(5.2) T (x)B =






0 if PM(B)(x) = 0;

∏
LC=+

(
PM(C)(x)

PM′(C)(x)

)µL(B,C)

if PM(B)(x) 6= 0.

That is, MeasL(T (x)) = x, and T (x) is the unique Le-tableau whose image under

MeasL is x.

Before proving Theorem 5.7, we note that the concrete description of µL given

in Lemma 5.6 allows us to quickly write the expressions in equation (5.2) by simply

inspecting the graph.
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Proof. By Theorem 3.14, there exists a unique Le-tableau T satisfying MeasL(T ) = x.

Here we show that T must be the Le-tableau T (x) defined above. Suppose that T

satisfies PJ(MeasL(T )) = PJ(x) for all J ∈
(
[n]
k

)
. By Theorem 5.3, if PM(B)(x) = 0,

we must have LB = 0, and therefore TB = 0. Whenever LB = +, we can easily see

that the ratio

PM(B)(MeasL(T ))

PM ′(B)(MeasL(T ))

is the product of the weights of all faces southeast of the B hook in the Γ-network

NT , each with multiplicity one. By assumption, we have

PM(B)(MeasL(T ))

PM ′(B)(MeasL(T ))
=

PM(B)(x)

PM ′(B)(x)
.

Since the weight of a hook is simply the product of the weights of faces southeast of

the hook, a multiplicative version of Möbius inversion implies that the weight of the

face whose northwest corner is B is given by the ratio

∏

LC=+

(
PM(C)(x)

PM ′(C)(x)

)µL(B,C)

.

Since the positive entries of T are simply the weights of the faces in NT , the entries

of T must be those of T (x) given in equation (5.2).

5.3 Le-coordinates in terms of a minimal set of Plücker coordinates

By Theorem 3.14, the dimension of a positroid cell (SML
)≥0 is |L|, the number of

“+” entries in the corresponding Le-diagram L. However, finding the Le-coordinates

of a point x ∈ (SML
)≥0 via equation (5.2) may require roughly twice this many

Plücker variables. In this section, we give a formula for the map from (SML
)≥0 to

TL, using precisely |L| Plücker variables. This formula is, of course, equivalent to our

first formula modulo Plücker relations, but we now use exactly the desired number

of parameters.
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Suppose x ∈ (SML
)≥0 and MeasL(T ) = x. For a box B in λ with LB = +, let

R = R(B) be the corresponding face in the Γ-network NT . We have already defined

UR and DR. Let U ′
R and D′

R be the northwest-most generalized paths lying strictly

southeast of UR and DR, respectively. See Figure 5.4 for an example.

1
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91112 10

4
5

67

R

1
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8

91112 10

4
5

67

R

Figure 5.4: On the left, we have UR(3,6) in bold and U ′
R(3,6) dotted; on the right, we have DR(3,6)

in bold and D′
R(3,6) dotted.

For a generalized path W in a Γ-network N and a box B in λ, set

εW (B) =






1 if B ∈ OC(W );

−1 if B ∈ IC(W );

0 otherwise.

Theorem 5.8. Suppose x ∈ (SML
)≥0 and let T (x) be the Le-tableau corresponding

to x, so that MeasL(T (x)) = x. Then the Le-coordinates of x may be written in the

alternate form

(5.3) T (x)B =






0 if PM(B)(x) = 0;

∏
LC=+(PM(C)(x))ε(B,C) if PM(B)(x) 6= 0,

where ε(B, C) = [εUR(B)
(C)− εU ′

R(B)
(C)]− [εDR(B)

(C)− εD′
R(B)

(C)].
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Before proving Theorem 5.8, we first state one nearly immediate corollary using

the notion of a totally positive base given in [FZ99].

Corollary 5.9. The set of Plücker coordinates

PL = {PM(B) : LB = +}

forms a totally positive base for the collection {PJ : J ∈ ML} of non-vanishing

Plücker coordinates of the positroid cell (SML
)≥0. That is, every Plücker coordinate

PJ with J ∈ML can be written as a subtraction-free rational expression (i.e., a ratio

of two polynomials with nonnegative integer coefficients) in the elements of PL, and

PL is a minimal set (with respect to inclusion) with this property. Further, each

PJ with J ∈ ML is a Laurent polynomial in the elements of PL, with nonnegative

coefficients.

Proof. Suppose x ∈ (SML
)≥0, with MeasL(T ) = x. By Theorem 5.8, every face

weight of the Γ-network NT can be written as a monomial rational expression in

the elements of PL. Each Plücker coordinate PJ(x) is a sum of products of face

weights, by Definition 3.15. It is then clear that each PJ is a Laurent polynomial

with nonnegative coefficients in elements of PL. Finally, PL is minimal, as it is easily

verified that the elements of PL are algebraically independent. Indeed, the simple

form of equation (5.3) shows that we can explicitly construct a network realizing

any choice of positive values for the Plücker coordinates in PL, starting by choosing

appropriate face weights for those faces at the top of the poset in Figure 5.2 (that

is, in the northwest corner of the Le-tableau) and working towards the faces at the

bottom of the poset.

To prove Theorem 5.8, we will need the following technical lemma, which gives

the weights of certain nested path families. For a generalized path W , let Nest(W )
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denote the northwest-most non-intersecting path family lying weakly southeast of W .

That is, Nest(W ) consists of W , the northwest-most generalized path W ′ which lies

strictly southeast of W , the northwest-most generalized path W ′′ which lies strictly

southeast of W ′, and so on, until no more paths will fit.

Lemma 5.10. Suppose T is a Le-tableau with corresponding Γ-network NT . Let W

be a generalized path in NT . Then

(5.4) wt(Nest(W )) =
∏

LC=+

(
PM(C)(MeasL(T ))

)εW (C)
.

W1

W2

W3

Ŵ1

−→
W1

−→
W2

−→
W 3

←−
W1

Figure 5.5: Finding the weight of a nested path family.

Proof. We proceed by induction on the number of outer corners of W . If W has

a single outer corner, the result follows from the definition of M(B). Otherwise,

assume W has ℓ outer corners and split W as follows: let
−→
W be the path determined

by the first ℓ−1 outer corners of W (ordered from northeast to southwest) and let
←−
W

be the hook determined by the last outer corner of W . If
−→
W and

←−
W do not intersect,

the result clearly holds. (This can happen when λ is not the full k × n rectangle.)

Otherwise, let Ŵ be the hook determined by the inner corner of W which is between

the last two outer corners of W . See Figure 5.5 for an example.
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Now, Nest(W ) is a disjoint union of paths in NT . Write Nest(W ) as the ordered

collection of path families (W1, W2, . . .), where a path Y in Nest(W ) lies in the block

Wi if exactly i− 1 paths of Nest(W ) lie strictly northwest of Y . (For i large enough,

Wi will be empty. Recall that the weight of an empty path collection is 1.) Write

Nest(
−→
W ), Nest(

←−
W ), and Nest(Ŵ ) in the same manner.

We claim that for each i, wt(
−→
W i) wt(

←−
W i) = wt(Wi) wt(Ŵi). More precisely, let

(v1, . . . , vm) be the vertices at which
−→
W i and

←−
W i intersect. Then we claim that Wi

is the path along edges of
−→
W i or

←−
W i which starts at the source of

−→
W i and takes the

northwest-most path between each vm and vm+1 and Ŵi is the path which starts at

the source of
←−
W i and takes the southeast-most path between each vm and vm+1. This

is clearly true for i = 1. The remainder, which depends on the Le-property, is left as

an exercise for the reader.

Since the weight of a path family is the product of the weights of the individual

paths, we then have

wt(Nest(W )) =

∏
B

(
PM(B)(MeasL(T ))

)ε−→
W

(B)
·
∏

B

(
PM(B)(MeasL(T ))

)ε←−
W

(B)

∏
B

(
PM(B)(MeasL(T ))

)ε
Ŵ

(B)
,

which is precisely equation (5.4), since
←−
W has a single outer corner (which is an outer

corner of W ) and no inner corners, and Ŵ has a single outer corner (which is an

inner corner of W ) and no inner corners.

Proof of Theorem 5.8: Suppose W is a generalized path in NT . Let W ′ be the

northwest-most generalized path lying strictly southeast of W . We can easily see

that the ratio wt(Nest(W ))
wt(Nest(W ′))

is the product of the weights of the faces lying southeast of

W , each with multiplicity one, since the weight of each face appearing in this ratio

occurs exactly one more time in wt(Nest(W )) than it does in wt(Nest(W ′)).

Then, since UR and DR bound precisely the face R = R(B), the face weight TB
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must be given by the ratio

(
wt(Nest(UR))

wt(Nest(U ′
R))

)
/

(
wt(Nest(DR))

wt(Nest(D′
R))

)
.

Combining this with equation (5.4) then yields equation (5.3), since we require that

PJ(MeasL(T )) = PJ(x) for all J ∈
(
[n]
k

)
.
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