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ABSTRACT 

MULTIDISCIPLINARY DESIGN OPTIMIZATION OF COMPLEX  
ENGINEERING SYSTEMS FOR COST ASSESSMENT UNDER UNCERTAINTY 

by 
Christopher Gregory Hart 

 

Chair:  Nickolas Vlahopoulos 

 

First, research is performed for investigating the performance of a 

Multidisciplinary Design Optimization (MDO) algorithm by integrating a particle swarm 

optimization (PSO) solver in both the system and discipline levels.  The PSO solver is 

developed based on theoretical information available from the literature and the MDO 

framework is based on the Target Cascading (TC) method.  The integrated MDO/PSO 

algorithm is employed for analyzing a conceptual ship design problem from the 

literature.  Next, performance models are developed and employed within a gradient-

based MDO framework for conducting a conceptual submarine design analysis.  Four 

discipline level performances—internal deck area, powering, maneuvering, and 

structural analysis—are optimized simultaneously.  The four discipline level 

optimizations are driven by a system level optimization which minimizes the 

manufacturing cost while at the same time coordinates the exchange of information and 

the interaction among the discipline level optimizations.  The results from this 

coordinated MDO capture the interaction among disciplines and demonstrate the value 
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that the MDO solution offers in consolidating the results to a single design which 

improves the discipline level objective functions while at the same time produces the 

highest possible improvement at the system level.  Thirdly, a general method for 

improving the fidelity of cost estimation in the design of complex engineering systems is 

proposed.  In this method, principal component analysis (PCA) and an adaptive Kriging 

method are used to increase the level of sophistication and predictive capability of 

existing cost assessment methodologies. Finally, an evidence theory-based uncertainty 

estimation algorithm is created and integrated into the cost assessment model 

developed earlier in order to capture the uncertainty surrounding the relationship 

between the system design variables and cost.  The general cost assessment under 

uncertainty model is utilized as the system-level driver in the representative MDO study 

of a conceptual submarine design.  A set of several MDO analyses which highlight the 

effects of different levels of uncertainty is also performed.  The theoretical 

developments and the results from all four interrelated areas of research are 

summarized and discussed. 
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CHAPTER 1:   
INTRODUCTION 

 

As the systems used to facilitate mankind’s existence on this planet increase in 

complexity, the resources available to create them are dwindling.  At the forefront are 

dwindling financial resources, as manifested both in the raising costs of labor and a need 

to do more with less capital.  The work summarized in this dissertation strives toward a 

better understanding of how the process of creating these complex systems should 

change in the face of dwindling financial resources.  A more detailed discussion of 

additional objectives and motivation for the research is presented in the next section. 

1.1:  Research Objectives and Motivation 

There are four distinct phases to this work.  The main objective of the first phase 

is to document the integration of a particle swarm optimization (PSO) algorithm into the 

top and discipline levels of a multidisciplinary design optimization framework in an 

effort to improve the optimization capability of the framework.  Secondary objectives 

include creating a PSO algorithm and comparing it against a gradient based algorithm, 

previously published results, and a simple Monte Carlo model as an optimization driver 

for single and multicriterion optimization. 

The main objective of the second phase of the work is to use multidisciplinary 

design optimization to systematically build a foundation for increasing the 
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understanding of the multifaceted relationship between affordability and performance 

in the conceptual design of a complex engineering system.  Secondary objectives include 

creating a sophisticated, automated affordability model based on the manufacturing 

costs associated with a component of such a system, and creating automated first-order 

models for four engineering disciplines that are typical of those encountered in 

conceptual design.  Finally, results from the single-discipline optimization of these 

disciplines will be discussed and compared to the results obtained from optimizing all 

disciplines in a coordinated effort governed by the response of a system-level objective.   

The third phase’s goal is the creation of a higher fidelity cost model for the 

manufacture of a complex engineering system, thus extending the goal of the second 

phase of the work.  Secondary objectives include:  1.) the application of methodologies 

from datamining in order to learn more about a set of cost data and 2.) an investigation 

of various regression-type methods with the goal of allowing the lessons from the 

datamining analysis to be used to improve the predictive capability of a cost estimation 

model.   

The fourth, and final, phase of this research works to create an evidence theory-

based algorithm for quantifying uncertainty, integrating the algorithm into an improved 

methodology for cost assessment and then utilizing this cost assessment under 

uncertainty model in an MDO framework.  Demonstrating the impact of considering 

cost uncertainties in the MDO decision-making process is the secondary objective. 

A detailed review of the current literature that discusses each of these objectives 

is presented in the next section. 
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1.2:  Literature Review 

First introduced in 1995 by social psychologist James Kennedy and electrical 

engineer Russ Eberhart, PSO served two purposes in its original form.  The first purpose 

was to model human social behavior in abstract n-dimensional psychological space.  The 

second purpose was the optimization of continuous nonlinear multivariate functions [1].  

In the early years of the algorithm’s existence, there were several studies [2 - 4] 

investigating improvements to the original algorithm through the creation of new 

parameters and the permutation of their values. 

PSO, along with evolutionary algorithms [5], genetic algorithms, and other 

biology-mimicking algorithms [6 - 8], has been gaining in popularity in the literature as a 

method of solving large-scale problems in several different engineering disciplines [9 - 

12].  Of particular note to this work is that PSO has been given special attention recently 

in the naval architecture literature [13, 14]. 

PSO has been employed in many different forms; including a ranking selection-

based PSO [15], asynchronous and synchronous parallel applications of PSO [16 - 18], 

and hybrid PSO/GA [19, 20]; in a multidisciplinary design optimization (MDO) 

environment.  In addition to these different “flavors” of PSO, its basic form has also 

been applied in several different disciplines, including the design of an aircraft wing [21].  

An editorial on the subject [22] brings the interested researcher up-to-date on the 

current state of the theory and entreats scholars to continue to explore novel uses and 

formulations of the algorithm.   
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Even though there are many success stories of PSO and its use, the same 

characteristics which give PSO its strength, that is the pseudo-random nature of the 

algorithm, have also caused trouble for certain applications such as the MDO-governed 

shape optimization of a fan blade [23].  The work summarized here is motivated by the 

author’s desire to introduce a simple PSO algorithm into the system and discipline levels 

of a Target Cascading- based MDO formulation in order to use the strengths of PSO, as 

outlined in the literature selections above, to search for a “better” answer to a typical 

conceptual ship design problem. 

The literature covering engineering design optimization is extensive, to say the 

least.  The interested researcher can start very general [24 - 28] in order to establish a 

firm foundation before delving deeper into a particular engineering discipline.  Optimal 

ship design has been a topic of academic interest in naval architecture for decades [29, 

30].  As in other fields in which complex engineering systems are designed, such as 

aerospace [31 - 33], automotive [34, 35], mechanical [36 - 38] and even biomedical 

engineering [39], naval architecture has seen a growing research and development 

trend towards discovering methods for automatically synthesizing the conflicting 

outputs from several disciplines into the search for one globally optimum design.  Topics 

of study in naval architecture along the design optimization lines include specific topics 

such as high speed vessels [40, 41], sloshing and impact in containers being transported 

at sea [42], computational fluid dynamics (CFD) and its use in design optimization [43, 

44], the use of a hybrid agent approach to design and numerical optimization methods 
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[45, 46], and simulation-based design [47].  Topics of a more general ship design interest 

have also found space in the literature [48 - 51]. 

Of the design optimization methods considered and proposed in the literature, 

multidisciplinary design optimization (MDO) was widely recognized at an early stage by 

many on the cutting edge of engineering design as the key to the future [52, 53].  This 

recognition stems from MDO’s robust ability to synthesize several complex and 

computationally intensive disciplines simultaneously into a single resultant design that is 

the optimum from the perspective of an equally complex top level objective function 

[54].  For guidance in using MDO, there are papers outlining the steps in creating an 

MDO framework [55], discussing the characteristics of existing frameworks [56], and 

applying MDO in various disciplines [57].  The discussions of MDO in naval architecture 

have become especially numerous in recent years [58 - 61]. 

The MDO method used in this work is based upon the target cascading (TC) 

method [62 - 69].  The TC method is a way of mathematically organizing an MDO 

analysis that facilitates the interaction between disciplines and the coordination of the 

decision-making process.  In the past a MDO framework has been developed based on 

the TC method and used for MDO analysis of a thermal protection system, aircraft, and 

undersea vehicle [70 - 73].  The existing MDO framework utilizes a gradient based solver 

as an optimization driver for all the disciplines and for the top level.  In this work, the 

PSO algorithm is chosen to replace the gradient based optimizer in all discipline levels 

and in the top level.  This choice was made due to the documented [10 – 18, 74] 

improvement in results and performance that non-gradient-based algorithms have seen.  
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It is realized that there is a computational burden associated with using a metaheuristic 

such as PSO.  It is hypothesized that the change in optimizers will produce an 

improvement in the results of the optimization that outweighs the increase in 

computational cost.   

Another objective of this work, in addition to the exploration of PSO in the 

system- and discipline-levels of an MDO framework, is the study of a submarine 

conceptual design using MDO.  Before creating models to represent the different 

disciplines of interest in the integrated, multidisciplinary conceptual design of a 

submarine, the author turned to the literature to create a basis for understanding 

submarine design.  Classical texts on the topic [75 - 81] were the first consulted, 

followed by treatises on similar work in various countries around the world [82 - 86], 

and even the work presented by [87].  There have been several worthwhile books 

written on the subject [88 - 90], and many of the chapters contained therein proved 

very helpful in setting the stage for this work.  Additionally, the topic has been studied 

at other academic institutions [91], and has been the subject of recent attempts at a 

higher fidelity treatment [92].  Lastly, several articles providing discourse on current 

policy issues surrounding the topic [93, 94] were also found to provide an interesting 

backdrop.  Once sufficient knowledge was gleaned concerning submarine design in 

general, attention was turned to the specific disciplines of internal deck area, resistance, 

structures, and maneuvering. 

The first model created in this work calculates the internal deck area of a 

submarine defined by a set of design variables.  These design variables—length of 
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parallel midbody (Lpmb), maximum diameter (D), aft form factor (na), and forward form 

factor (nf)—have been used for decades in the literature to represent a submarine 

hullform in the conceptual design phase [95, 96].  The deck area discipline also uses 

parameters such as clearance between the hydrodynamic and pressure hulls, between 

deck height, and bilge height to build the pressure hull inside the hydrodynamic hull and 

assign the number and location of decks within this pressure hull.  The model then 

references simplified geometric relationships governing the shape of the cylindrical 

pressure hull and its hemispherical endcaps to calculate the area of each of these decks.  

The goal of the optimization of this discipline is to maximize the calculated deck area 

subject to a pseudo-arbitrary displacement constraint. 

Several sources were consulted in the search for an ideal resistance model that 

combined simplicity and ease of use with acceptable accuracy [97, 98].  The decision 

was eventually made to use Jackson’s interpretation of the classic formulation [95, 96] 

because it meets the above criteria and integrates seamlessly with the deck area 

discipline.  The same displacement requirement that was imposed for the deck area 

discipline is used to constrain the minimization of the resistance.   

The structural discipline minimizes the buoyancy factor, defined as the hull 

weight to displaced water weight ratio [99], with frame spacing (Lf), plate thickness (tp), 

flange thickness (tf), flange width(wf), web thickness(tw), and web height (Hw) as the 

design variables.  The structural discipline adds constraints in five failure modes; i.e. 

shell and frame yielding, general and frame instability, and lobar buckling [91, 100, 101] 

to the constraints from the previous two disciplines. 
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Preliminary research in the maneuvering discipline began with the classics [102 - 

109].  After reading through these works, it was apparent that a method for 

automatically calculating the hydrodynamic derivatives at each iteration of the design 

process would be necessary.  The concepts discussed in the literature covering the 

calculation of hydrodynamic coefficients [110 - 116] did not prove readily applicable to 

this particular problem formulation.  There was a wealth of literature treating various 

specifics in the subject of submarine maneuverability [117 - 125], but none that directly 

applied to the task at hand, that is the highly iterative multi-level design optimization 

techniques used in MDO.  There were also several general publications on the topic [126 

- 132] that relied on model testing for the determination of the hydrodynamic 

derivatives and did not provide a succinct model for repetitive engagement by an 

automated optimizer.   

The publication by [133] is very promising but requires the use of restricted 

software for evaluating the hydrodynamic derivatives.  At this point in the process, the 

author selects a suitable maneuvering model introduced in the first section of Tsamilis’ 

thesis [134].  The maneuvering discipline is constrained in the same manner as both the 

deck area and effective power disciplines.   

A major effort of this work was spent on researching the creation of a from-

scratch affordability model for the lifecycle of a vessel-of-the-sea.  The author started 

with the fundamentals in this research in an effort to create something novel.  In the 

early stages, it was realized that several macroeconomic issues—such as foreign 

exchange rates, commodities prices, international labor policies, etc.—play a major role 
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in these lifecycle costs.  As such, the author scoured general texts and articles on 

macroeconomics [135 - 142] in search of helpful ideas for the creation of the 

affordability model.  The commentary contained in these original sources pointed 

towards econometrics [143 - 146], engineering economy/economics [147 - 152], cost 

engineering [153, 154], logistics engineering [155], parametric costs analysis [156, 157], 

economic decision analysis [158], activity-based costing (ABC) [159], and multiple 

regression [160] as possible next steps to increase understanding of affordability in 

complex engineering systems.  The author looked at each of these methods in turn and 

determined that no single one of them was appropriate for this model due to lack of 

translation from the current or original application, complexity of implementation, or a 

requirement for detailed historical data which was not available to the author.  If any of 

these methods were to be incorporated, it would need to be done in a blended, or 

hybrid manner. 

With this in mind, the author spent a considerable amount of time examining 

treatments of affordability and costing in several different engineering systems, 

including aircraft [161 - 164], spacecraft [165, 166], commercial ships [167 - 184], 

warships [185 - 195], and finally, submarines [185, 196].  Several of these existing 

costing methods were weight-based or regression-based methods.  Examination of 

these sources provided the author with an excellent idea of what is in the marketplace, 

and how the system developed for this work must improve upon this selection.  Of all 

these sources, the best two candidates for modeling the affordability were determined 

to be:  1.) a commercially available software package entitled SEER, offered by Galorath, 



 

10 
 

which automatically incorporates many of the macro and microeconomic issues 

revealed to be important from the research above, and 2.)  a framework called 

“Business Dynamics” [197] which had already produced a lifecycle costing model for the 

industry [198].  Due to the proprietary nature of the Business Dynamics framework, 

SEER was chosen as the method to create the affordability model for integration into 

the MDO analysis of the conceptual submarine design, thus building upon the work in 

[199 – 202]. 

In the third phase of the work, an effort is undertaken to add further fidelity to 

the cost assessment methodologies currently available in the literature.  A key element 

in addressing the shortcomings in current cost estimation involves improving the 

accuracy of parametric models by looking at historical cost data in a novel, more 

sophisticated way.  In this vein, the author concentrates first on examining the literature 

on datamining, and the related knowledge discovery from databases (KDD) [203].  

Recently-published general overviews were identified as an introduction to the world of 

datamining and KDD [204 - 208].  The information contained in these chapters, and 

several of their references [209 - 221], provided an excellent understanding of the 

current state of the art and a broad foundation upon which to build.  Of particular 

interest for potential adaptation and application in this problem were datamining 

methods broadly identified as classification [204] and association analysis [208] 

methods.  Specifically, the classification and regression trees (CART) [213] approach was 

very interesting in its broad application in the literature [204] as well as its fairly logical 

and straight-forward theoretical base.   
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It was also discovered during this initial research that there exists a large body of 

research which introduces and examines several methods, each based on the founding 

principles of linear and matrix algebra, for analyzing data held in matrix form [222].  

Familiar with some of these methods, due to exposure to their usage in various aspects 

of multidisciplinary design [223, 224], the author began an inquiry into this space by 

investigating how some of these methods could be applied in developing an improved 

cost model.  It was quickly discovered that methods such as singular value 

decomposition (SVD), data envelope analysis (DEA), and especially principal component 

analysis (PCA) were not only used in structural design, but also to analyze gene 

expression data in bioinformatics [225, 226], the effects of deregulation on the airline 

industry [227], and several other types of relationships, including those in finance [228, 

229].  Interesting papers highlighting modifications to PCA [230] in order to facilitate its 

application in a nonlinear space were also discovered.   

In addition to following the leads generated by the general papers listed above, 

the review of the literature on the topic of datamining also examined several other 

related areas.  Since the problem at hand deals with cost estimation, papers on general 

business applications of datamining [231, 232], and more specifically, datamining in 

customer relationship management (CRM) [233] also proved enlightening.  This path led 

to a brief examination of a growing area in computer science, called quantum 

computing, in which principles from the physical world are mapped to the world of 

designing and creating the computer hardware and software of the future [234 - 237].  
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As this area of research expands, it could have a very meaningful impact on problems 

such as those addressed in this dissertation.  

After examining the datamining and knowledge discovery from database 

literature, it was determined that the best candidate for application in this problem was 

PCA.  This decision was based on the breadth of problems that had already seen success 

using PCA, as well as the author’s familiarity with the technology.  The details of this 

method will be covered later in this work.   

Once a candidate for executing a more sophisticated examination of historical 

cost data had been identified, attention turned to determining the best method of 

engaging the lessons learned from this examination into a better regression model.  

Certain aspirants identified during the datamining exploration mentioned earlier were 

natural fits into this phase of the work.  CART and PCA are two prime examples.  It was 

quickly determined that PCR (principal component regression) would not perform as 

well as desired, but another method which is a close relative to PCA and PCR, but that 

produces a better match to the training data, was chosen instead.  This method is called 

Partial Least Squares (PLS) [228].   PLS was abandoned however, in the face of much 

better methods, known broadly as “metamodels”, which are described in the next two 

paragraphs. 

An investigation of the world of metamodels led to some promising directions 

regarding regression.  A metamodel is a mathematically sophisticated interpolation 

framework which is generated from a limited number of time consuming simulations (or 

a set of real-world data that is difficult to recreate) and are utilized subsequently as a 
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replacement for the time consuming simulations (or real-world data).  In other work in 

multidisciplinary design optimization with uncertainty (MDO-U), the author has had 

exposure to the idea of metamodels.  Due to the large number of iterations required 

during a MDO process, and in an effort to include high fidelity physical simulations 

(which require a significant computational time even for a single analysis) in that 

process, theories for developing metamodels have been established.  After careful 

consideration, it was determined that these more sophisticated models could see a 

worthy application in addressing the problem in the present work.   

Polynomials, interpolating and smoothing splines [238], neural networks [239 - 

242], radial basis functions [243], and wavelets [244] have been investigated in the past.  

References [245 - 247] introduce the concept of the Kriging method.  The Kriging 

method provides an efficient predictor for a given set of data and constitutes a Gaussian 

process type of metamodel since it utilizes Gaussian kernels for expressing the spatial 

correlation functions.  It treats the deterministic output as the realization of a stochastic 

process and provides a statistical basis for efficient prediction [248 - 251].  Kriging (i.e. 

Gaussian process metamodels) have been utilized in variable fidelity optimization 

strategies [252]; for managing system level uncertainty during conceptual design [253]; 

for approximating deterministic computer models [254]; and for design optimization 

[255].  An adaptive feature has been added to the Kriging capability employed in this 

work.  This adaptive feature will be described in the “Adaptive Kriging Method” section 

of Chapter 5.  To summarize, metamodels are employed in this chapter for creating a 
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high fidelity regression model that relates the predictor variables (physical and 

component-influenced parameters) to the response variables (cost parameters). 

The final phase of this work integrates concepts from evidence theory with the 

cost assessment methodology developed in the third phase and then uses this new cost 

under uncertainty model as the driver in the MDO conceptual submarine design study.  

There have been several formal, mathematical methods proposed for quantifying 

uncertainty, or assessing risk.  The one most often used is probability theory.  

Probability theory works well if enough is known about the event in question that an 

appropriate distribution can be assigned to that event.  In the absence of this 

knowledge, probability often creates a level of comfort with the estimation that does 

not match the actual uncertainty associated with the event in question.  Additional 

formal mathematical methods proposed to handle information that cannot be defined 

using the probability distributions necessary to apply probability theory include 

evidence theory [256], possibility theory [257], and interval analysis [258].   

Evidence theory has been applied in engineering optimization [259] and shows a 

high level of promise for application to cost assessment due to its ability to quantify 

both aleatoric uncertainty (from the Latin word alea, or dice, also known as variability, 

irreducible uncertainty, inherent uncertainty, stochastic uncertainty, and uncertainty 

due to chance) and epistemic uncertainty (from the Greek word epist, or knowledge, 

also known as reducible uncertainty, subjective uncertainty and uncertainty due to lack 

of knowledge, ignorance or stupidity).  Epistemic uncertainty is prevalent in any activity 

where subjective human error is present, such as cost estimation and assessment.   
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Evidence theory is built around two measures, known as belief and plausibility 

measures, which are analogous to the upper and lower bounds of probability.  These 

measures are used to determine the likelihood that the event to be predicted will 

actually occur and signify the concept that, due to the broad range of data available, a 

precise probability of a certain event occurring cannot be determined.  Probability 

theory can actually be thought of as a subset of evidence theory, since it applies when 

the belief and plausibility measures are equal.  A very thorough background on the topic 

of evidence theory can be found at [260].  The algorithm presented in this paper for 

introducing uncertainty in the cost estimation process is utilized within a MDO analysis 

of a representative conceptual submarine design when defining the system level 

objective function.  The MDO algorithm discussed throughout this dissertation is utilized 

for carrying out the optimization analysis.  The same conceptual submarine design study 

is also employed in this phase’s work.   

1.3:  Dissertation Contributions 

The contributions of this work to the existing body of knowledge are summarized 

in the following paragraphs.  In the first part of this research, an effort is undertaken to 

investigate the performance of a Multidisciplinary Design Optimization algorithm by 

integrating a non-gradient based optimizer at the top and discipline levels.  A particle 

swarm optimization (PSO) solver is developed based on theoretical information 

available from the literature.  The implementation is validated by utilizing the PSO 

optimizer as a driver for a single discipline optimization and for a multicriterion 

optimization and comparing the results to a commercially available gradient based 
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optimization algorithm, previously published results, and a simple sequential Monte 

Carlo model.  A typical conceptual ship design statement from the literature is employed 

for developing the single discipline and the multicriterion benchmark optimization 

statements.  In the first new effort presented in this dissertation, an approach is 

developed for integrating the PSO algorithm as a driver at both the top and the 

discipline levels of a multidisciplinary design optimization (MDO) framework which is 

based on the Target Cascading (TC) method.  The integrated MDO/PSO algorithm is 

employed for analyzing a multidiscipline optimization statement reflecting the 

conceptual ship design problem from the literature.  Results are compared to MDO 

analyses performed when a gradient based optimizer comprised the optimization driver 

at all levels.  The results, the strengths, and the weaknesses of the integrated MDO/PSO 

algorithm, are discussed as related to conceptual ship design.  

Performance assessment models are developed and utilized in a gradient-based 

MDO analysis of a conceptual submarine design.  In the second part of this research, a 

step is taken towards relating cost and performance in a more meaningful manner.  

Four discipline level performances—internal deck area, powering, maneuvering, and 

structural analysis—are optimized simultaneously.  The four discipline level 

optimizations are driven by a system level optimization which minimizes the 

manufacturing cost while at the same time coordinates the exchange of information and 

the interaction among the discipline level optimizations.  Thus, the interaction among 

individual optimizations is captured along with the impact of the physical characteristics 

of the design on the manufacturing cost.  A geometric model for the internal deck area 
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of a submarine is created, and resistance, structural design, and maneuvering models 

are adapted from theoretical information available in the literature.  These models are 

employed as simulation drivers in the discipline level optimizations.  Commercial cost 

estimating software is leveraged to create an automated affordability model for the 

fabrication of a submarine pressure hull at the system level.  First, each one of the four 

discipline optimizations and also the cost related top level optimization are performed 

independently.  As expected five different design configurations result, one from each 

analysis.  These results represent the “best” solution from each individual discipline 

optimization and they are used as reference for comparison with the MDO solution.  

The deck area, resistance, structural, maneuvering, and affordability models are then 

synthesized into a multidisciplinary optimization statement reflecting a conceptual 

submarine design problem.  The results from this coordinated MDO capture the 

interaction among disciplines and demonstrate the value that the MDO system offers in 

consolidating the results to a single design which improves the discipline level objective 

functions while at the same time produces the highest possible improvement at the 

system level.  

In the third section of this research, a general method for improving the fidelity 

of cost estimation in the design of complex engineering systems is proposed.  In this 

method, physical parameters and historical cost records are gathered for a given 

complex engineering system and combined into an original data set.  An engineering 

build-up cost model is created from this original data set.  An expanded data set is 

generated using this engineering build-up cost model.  The expanded data set is then 
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analyzed using principal component analysis (PCA) in order to identify which original 

physical parameters, and resulting principal components (PCs) account for the greatest 

amount of variation in the design.  Each high-variation PC is composed of values that are 

treated as weights.  These weights are used to create one component-influenced 

parameter, or a weighted sum of the original design variables, for each PC.  A set of 

predictor variables, composed of the high-variation physical parameters and 

component-influenced parameters from the original data set, is then developed.  This 

new set of predictor variables is regressed, using the sophisticated adaptive Kriging 

method, on the historical cost values (response variables), thus creating a cost 

estimation model with a high level of predictive capability and fidelity.  The same case 

study addressing the fabrication of a submarine pressure hull that was developed for 

the previous section is engaged in order to illustrate this method.  The results from the 

final regression model are presented and compared to results from the original data set.  

The differences and overall benefits of the novel general method are presented and 

discussed.   

The last section ties together the previous sections.  An evidence theory-based 

uncertainty estimation algorithm is integrated into the cost assessment model for 

capturing the uncertainty surrounding the relationship between the system design 

variables and cost.  The general cost assessment under uncertainty model is utilized as 

the system-level driver in the same representative multidisciplinary design optimization 

(MDO) study of a conceptual submarine design that was developed in the second phase 

of this research.  The results from this coordinated MDO capture the interaction among 
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disciplines and demonstrate the value that the MDO solution offers in consolidating the 

results to a single design which improves the discipline level objective functions while at 

the same time produces the highest possible improvement at the system level.  A set of 

several MDO analyses which highlight the effects of different levels of uncertainty is 

performed in this work.  The results of these MDO analyses are presented and 

discussed. 

1.4:  Dissertation Overview 

The body of this dissertation, that is Chapters 2 through 5, are organized to 

follow the phases of the research as discussed above.  As such, the next Chapter 

highlights the PSO algorithm used, how it is integrated into the basic MDO framework, 

the case study that is explored by the integrated MDO/PSO algorithm, and the results 

from this case study.  The third Chapter introduces the conceptual submarine design 

case study that was created for this work and the results from the MDO analysis of this 

case study.  The creation of an improved cost assessment methodology, integration of 

evidence theory uncertainty estimation, and application of this cost under uncertainty 

model as the driver of an MDO analysis of the conceptual submarine design are the 

topics of Chapters 4 and 5.  The author concludes the dissertation and recommends 

future work in Chapter 6.
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CHAPTER 2:   
AN INTEGRATED MULTIDISCIPLINARY PARTICLE SWARM OPTIMIZATION APPROACH 

TO CONCEPTUAL SHIP DESIGN  
 

The main objective of this chapter is to document the integration of a particle 

swarm optimization (PSO) algorithm into the top and discipline levels of a 

multidisciplinary design optimization framework.  As was outlined in the literature 

review, the praises of PSO, and other non-gradient-based optimizers have been sung in 

the engineering design optimization literature.  The motivation of this work is to see if 

PSO can be used, along with multidisciplinary optimization, to provide better results to 

an engineering problem from the literature.  This chapter focuses on applications 

related to conceptual ship design when discussing the results obtained by this 

integrated approach, and a conceptual ship design case study from the literature is 

employed for developing all optimization examples.  Secondary objectives include 

creating a PSO algorithm and comparing it against a gradient based algorithm, 

previously published results, and a simple Monte Carlo model as a driver for single and 

multicriterion optimization. 

The primary contribution of this chapter is the integration of a PSO optimization 

driver within a MDO framework and the evaluation of the strengths and weaknesses of 

the integrated MDO/PSO algorithm as related to conceptual ship design.  New 

developments are necessary for linking the evolutionary nature of the PSO optimizer 
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with the mathematical structure of the TC method.  A PSO solver is developed first 

based on information from the literature and its implementation is validated by 

engaging it in solving a single discipline and a multicriterion optimization related to 

conceptual ship design.  The results are compared to previously published data, a 

commercially available gradient based algorithm, and a simple sequential Monte Carlo 

solution.  The developed PSO solver is integrated with an available TC implementation.  

The newly integrated MDO/PSO algorithm is employed in conceptual ship design, the 

results are compared to MDO analysis performed when the gradient based optimizer 

comprises the optimization driver at all levels.  The strengths and the weakness of the 

integrated MDO/PSO algorithm are discussed as related to conceptual ship design.   

2.1:  Particle Swarm Optimization (PSO) 

A thorough introduction to PSO is given in many sources.  The author found the 

information given on this topic in [14] to be most instructive.  The development of the 

basic algorithm presented here draws heavily from this work.  For completeness, several 

ideas from their paper are included here.     

The original PSO was created to solve a single-objective unconstrained 

optimization problem.  Since most ship design problems are heavily, and even over-, 

constrained the formulation used in this work is modified to solve the following general 

constrained optimization problem wherein the objective function ( )f x  is minimized 

subject to the inequality constraints ( )g x .   
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( )min f
x

x subject to: ( ) 0≤g x   

where [ ]1 2, ,..., Nx x x=x  

(1) 

The fundamental steps in the creation of the algorithm are summarized: 

Step 0. (Initialization)  An initial particle swarm is randomly distributed inside 

the design space and assigned an initial set of random “velocities”.  The 

number of iterations (n) is equal to 0. 

Step 1. (Analysis)  In the first step of the first iteration (n = 1), the objective 

function is evaluated for each particle of the swarm.  The values of the 

design variables ( x  vector) which yield the minimum value in the swarm 

are recorded as n
bp  .  Those that result in the minimum value 

encountered by each particle over all iterations are dubbed n
ip . 

Step 2.  (Velocity vector updating)  A new velocity vector is calculated using 

Equation (2).  

( ) ( )1
1 1 2 2

n n n n
i i b in n n n n

i i

p x p x
v K w v c r c r

t t
+

 − −
 = + +

∆ ∆  
 

(2) 

In this Equation the subscript “i” signifies the particle, and the superscript 

“n” signifies the iteration.  There are three terms in this equation.  The 

first term, known as the inertia term, will be discussed in greater depth 

later in the chapter.  The second term, or the cognitive term, uses the 

particle’s “memory” in order to influence its new position.  The final term 

is known as the social term.  This term uses the best location that any 

member of the swarm has seen to influence the trajectory of each 
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particle of the swarm.  Table 1 outlines the definitions of each of the 

parameters contained in Equation (2).  

Table 1:  PSO Parameter Definition 

Parameter Definition Value 
1n

iv +

 
Particle velocity for next iteration. varies 

K  Constriction factor.  Limits the particle velocity at each 
iteration.   

0.1 

nw  Weight function.  Determines the “inertia” of the 
particle.  Decreases with each iteration.  Set to 0 if 
constraints are violated. 

varies 

n
iv  

Particle velocity for current iteration. varies 

1c  and 2c  Cognitive and social parameters. 1.4 

1
nr  and 2

nr  Randomly generated constants, uniformly distributed 
[0,1]. 

varies 

n
ix  

Particle position (design variable vector) for current 
iteration. 

varies 

t∆  Time step. 1 

maxw  Maximum weight allowed. 0.9 

minw  Minimum weight allowed. 0.1 

maxn  Maximum iterations allowed. 1000 

n  Current iteration varies 

 

Step 3.  (Updating)  The position of the particle is updated using Equation (3). 

1 1n n n
i i ix x v t+ += + ∆  

(3) 

Step 4.  (Check convergence)  Return to Step 1 and repeat until user defined 

convergence criteria are met. 

The original PSO algorithm was created to solve unconstrained optimization 

problems.  The basic algorithm can be modified to handle constraints using the 

weighting function in the inertia term of the PSO equation.  The weighting function in 

this work is calculated as follows.  
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max min
max

max

n w ww w n
n

 −
= −  

   

(4) 

Equation (4) introduces four new parameters, all of which are defined in the last 

four rows of Table 1.   

When a constraint is violated, the modified PSO algorithm creates a deviation 

from this method of calculating nw  and sets its value to 0.  This effectively causes the 

particle to rely solely on its cognitive and social influences to bring it back into the 

feasible realm. 

Much work has been done in the literature concerning adjustments to the 

parameters in the PSO algorithm.  The values used in this work are contained in the 

third column of Table 1.  There is very minor deviation from these values as gross 

manipulation of the algorithm itself was beyond the scope of this work.   

One of the modifications suggested in the literature is to suppress the 

generation of the random coefficients at each iteration [16, 17].  This approach was 

attempted in the early stages of this work.  The results of this so-called deterministic 

particle swarm optimization (DPSO) did not compare favorably with those obtained with 

the pure PSO, and the approach was summarily abandoned. 

There was no convergence criterion enumerated in the original formulation of 

PSO.  In this work, a simple criterion of a comparison between each function value in the 

swarm and the minimum value that the swarm has seen to that point serves as the 

convergence criterion. 

( )n
i ccf C K C− ≤x  

(5) 
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In Equation (5), ccK is a user-defined convergence criterion constant (set as 0.01 

for this work) and C  is the minimum ( )f x  value attained by the algorithm to that 

point.   

2.2:  Multicriterion Design Optimization 

Many of the equations and ideas for this section covering multicriterion design 

optimization originate from [46].  They are included here to ensure a complete 

statement of the problem at hand and an accurate comparison between optimization 

methods.   

A multicriterion optimization problem is defined in the following way. 

min ( )
x

f x   where  

( ) ( ) ( )1 2( ) , ,..., Kf f f=   f x x x x
 

subject to 
( )
( )

0

0

=

≥

h x

g x
  

(6) 

This problem is similar to the single criterion optimization, except the objective 

function is now a vector instead of a scalar.  The approach chosen for the comparison in 

this chapter is the normed weighted sum method [46].   

The normed weighted sum method is the first method developed for solving 

problems of this type and it is also the simplest to employ.  In effect, the multicriterion 

optimization problem is turned into a single objective optimization problem by 

performing three operations on each function value.  First, a base value is calculated for 

each of the functions.  This value, termed ( )0
kf x , where 1,...,k K= , is used to 
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normalize each of the resulting function values.  If this action is not completed, the 

method will attempt to minimize the largest value of the functions in the objective 

function vector.  As is the case with this chapter’s case study, the values of the objective 

functions are often several orders of magnitude different. 

After the function values are normalized, a multiplicative weighting factor is 

applied to each and their products are summed.  It is customary in this method for the 

chosen weights to sum to unity.  The resulting objective function is often termed the 

scalar preference function, P .   

( ) ( )
0

1

K
k

k k
k k

f
P f w

f=

 
=    

 
∑

x
x

 

where 
1

1
K

k
k

w
=

=∑  

(7) 

The choice of the weights is left to the user and their values represent the 

relative importance of each objective function to the designer.  In the work presented 

here, equal weights were chosen for simplicity in the comparison of the results from the 

different optimization methods.  

2.3:  Background on Multidisciplinary Design Optimization (MDO) 

In this work the PSO optimizer is integrated as the optimization driver in a MDO 

framework that is based on the target cascading (TC) method [62 - 69].  In the past a 

MDO framework has been developed based on the TC method and used for MDO 

analysis of a thermal protection system design, for aircraft design, and for undersea 



 

27 
 

vehicle design [70 - 73]; brief technical information is presented here for the TC method 

since it comprises a foundation for the new developments.   

The TC method provides the ability to coordinate an optimization among 

multiple disciplines through a top level optimization statement.  Typically, the top level 

optimization addresses a global, overall system metric (such as cost, weight, etc.), while 

the discipline level optimizations target improvement in different performance 

attributes of a system.  Each discipline has its own objective function and design 

variables.   

    

 

Different disciplines can share common design variables and the communication of the 

information among all the disciplines is coordinated through the top level optimization.  

Figure 1 depicts the flow chart of the MDO framework.   

The essence of this approach is based on tracking the values of the objective 

function kO  and the values of all the “ j ” design variables jkx  from each discipline “ k ” 

…. 

Top Level 

, , , , constraintsT T k k TO Ox x  

Kth Discipline 

, , ,
constraints

K K K

K

O Fx
 

1st Discipline 

1 1 1

1

, , ,
constraints
O Fx

 

1x 1
currentO

1
currentx

2 ,..., KF F
1F

current
KO
current
Kx

KF

Kx

1 1,..., KF F −

Figure 1:  Flow chart of the MDO approach 
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during the iterations of the top level optimization statement.  At the top level 

optimization extra constraints are introduced limiting the amount of change allowed in 

each discipline level objective function and design variables.  The extra constraints are 

expressed as: 

1

0

0

previous current O
k k k

K
previous current
jk jk j

k

O O

x x

ε

ε
=

− − ≤

− − ≤∑ x

 

(8) 

In Equation (8) the superscripts “ previous ” and “ current ” indicate the values for the 

objective functions and the design variables originating from the previous and the 

current step of the top level optimization; the summation 
1

K

k=
∑ represents a summation 

over the disciplines that a particular design variable may share.  The limits O
kε  and jε

x  

are not user prescribed limits, but instead are treated as design variables for the top 

level optimization that augment the top level objective function.  Therefore, the overall 

top level objective function can be stated as: 

( )
1 1

kJK
O

T T k j
k j

F O ε ε
= =

= + +∑ ∑ xx
 

(9) 

 

where kJ  is the total number of design variables in the kth discipline; and the overall 

top level optimization statement becomes: 
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( )
,

min
T k

TF
x x

x
 

subject to  

( )
( )

1

, , , 0

, , , 0

0

0

T k T k k

T k T k k

previous current O
k k k

K
previous current
jk jk j

k

O F

O F

O O

x x

ε

ε
=

≤

=

− − ≤

− − ≤∑ x

g x x

h x x
 

(10) 

where g  and h  represent inequality and equality constraints of the top level 

optimization; and kF  represents a functional that is evaluated at the kth discipline that 

influences the constraints of the top level optimization.  In order to simplify notation, 

the constraints can be written as follows: 

( )
( )

, , , , , 0

, , , 0

O
T k T jk k k j

T k T jk k

O x F

O x F

ε ε ≤

=

xg x

h x
 

(11) 

where the Tg  includes all inequality constraints listed in Equation (10). 

Through the constraints articulated by Equation (11), the top level optimization 

limits the amount of change introduced to the discipline level objective functions by the 

discipline level optimizations within each top level iteration.  In addition, the changes 

introduced in the discipline level design variables are also limited within each top level 

iteration.  This process allows coordination of the multiple discipline optimizations by 

the top level and facilitates the flow of information among disciplines. 

The existing MDO framework utilizes a gradient based solver as an optimization 

driver for all the disciplines and for the top level.  In this chapter the PSO algorithm 

discussed in Section 2 is chosen to replace the gradient based optimizer in all discipline 

levels and in the top level.  This choice was made due to the documented [10 – 18, 74] 
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improvement in results and performance that non-gradient-based algorithms have seen.  

It is realized that there is a computational burden associated with using a metaheuristic 

such as PSO.  It is hypothesized that the change in optimizers will produce an 

improvement in the results of the optimization that outweighs the increase in 

computational cost.   

Due to the nature of the PSO method, multiple particles are activated during 

each optimization iteration, thus a separate interaction between the top level 

optimization and the discipline level optimizations is required for each particle of the 

top level optimization during each top level iteration.  In addition, multiple particles are 

activated within each discipline level optimization.  Thus, substantial new developments 

were required for integrating the PSO optimizer within the MDO framework as 

explained in the next Section.  It is recognized that the implementation of a PSO 

algorithm at both levels of the MDO framework will be very expensive.   

2.4:  Integration of PSO into MDO Framework 

One of the main contributions of this research is the integration of the PSO 

algorithm into both the top and discipline levels of an MDO framework and the 

presentation of the results that this integrated approach produces when applied to a 

conceptual ship design problem.  Efforts to integrate the PSO into the discipline level 

optimizations alone were abandoned after these efforts did not produce appreciable 

improvements in the results.  The integration into the top and discipline levels is 

discussed here and the results are presented later in the chapter.   



 

31 
 

The first step in the MDO algorithm used for this research is to call a top-level 

optimization routine.  The inputs to this optimization routine are an initial design 

variable vector and a vector of maxima and minima for these design variables.  As 

mentioned earlier, the vector of design variables at the top level includes the additional 

variables that define the TC method, namely, the O
kε  and jε

x .   

, ,, ,T T T Tn n n O n
T j j kx ε ε =  

xx
 

where 
1,...,
1,...,

j J
k K
=
=

 

(12) 

In Equation (12), “ Tn ” is the top level iteration number, “ T ” denotes that the 

value is part of the top level optimization, “ J ” is the number of design variables, and     

“ K ” is the number of disciplines in the optimization problem. 

In the MDO method, there are no explicitly defined bounds for the O
kε  and jε

x  

parameters, thus technically they can acquire values between zero and infinity.  In 

practice the objective function expressed by Equation (10) tries to reduce their values as 

much as possible as the MDO solution progresses.  

max max ,max ,max

min min ,min ,min

, ,

, ,

O
T j j k

O
T j j k

x

x

ε ε

ε ε

 =  
 =  

x

x

x

x
 

where 
,max ,max

,min ,min 0

O
j k

O
j k

ε ε

ε ε

= = ∞

= =

x

x
 

(13) 

In the second major step of the MDO algorithm, the objective function for the 

top level optimization is evaluated.  Following this step, the constraints for the top level 

optimization are called.  Part of the calculation of these top level constraints is a call to 
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the discipline level optimizations.  When the discipline level optimizations are called, 

they are provided with the current set of top level design variables, which then become 

kx .  The discipline level optimizer then creates a set of upper and lower bounds, max
kx  

and min
kx .  The lower and upper bounds for the discipline level optimizations are 

calculated as a predetermined percent deviation, indicated in Equation (14) as “ d ”, on 

the actual design variables (not the epsilon values) that are passed to the discipline 

level.   

( )
( )

0

,max

,min

1

1

T

k k

k k

n
k j

n n
k k

n n
k k

x

d

d

 =  
 = −  
 = +  

x

x x

x x
 

(14) 

The “ kn ” in this Equation is the number of discipline level iterations.  When 

0kn =  as in the first line of Equation (14), then the discipline level x vector, 0
kx , is equal 

to the current top level x vector.  For each subsequent discipline level iteration, kn
kx  is 

determined internally by the optimizer.  The index “ k ” in Equation (14) signifies that the 

quantity is a discipline level quantity.   

Once the discipline level optimizations have completed their operation, including 

the evaluation of their constraints, kg  and kh , they pass their optimum function value, 

kO∗ , and the corresponding set of design variables, k
∗x , back to the top level constraint 

function.  The top level constraint function then uses these values to calculate its 

constraint values, Tg  and Th , as shown in Equation (11).  Once this action has been 

completed, the next iteration of the top level optimization begins.  When the algorithm 
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satisfies a predetermined convergence criterion, it returns the optimum top level 

objective function value and the corresponding design variable vector, TO∗  and T
∗x  

respectfully.  Figure 2 gives a flow chart for the steps performed in the existing MDO 

algorithm.   

                 

 

The initial steps in the PSO algorithm require a new development effort for 

integrating it as an optimization driver in the TC based MDO framework.  When the PSO 

is initiated, it is provided only the lower and upper bounds on the design variables, the 

objective function and the constraint function.  It generates its own initial values in the 

form of a matrix defining the location of a swarm of points or particles,  Tn
Tx , rather than 

a vector defining a single point.   

 

 

Objectivesk 

GBO 

ObjectiveT 

GBOT 

 

Constraintsk 

MDO 

ConstraintT 

1 

2 3 4 

10 5 

7 6 9 8 

11 

12 

step Quantities passed 
1 max min, ,Tn

T T Tx x x  
2 Tn

Tx  
3 ( )Tn

TF x  
4 max min, ,Tn

T T Tx x x  

5 , ,max min, ,k kkn n n
k k kx x x  

6 kn
kx  

7 
kO  

8 kn
kx  

9 ,k kg h  

10 ,k kO∗ ∗x  

11 ,T Tg h  

12 ,T TO∗ ∗x  

 
Figure 2:  Gradient based MDO algorithm 
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, ,, ,T T T Tn n n O n
T ij ij ikx ε ε =  

xx
 

where 1,...,i I=  

(15) 

The “ I ” in this Equation is the number of particles in a swarm.   

The actual calculation of the initial value, 0
Tx , as expressed in Equation (15) when 

0Tn = , is calculated using the following equations for the initial iteration.  

( )( )
( )( )
( )( )

0 max max min

,0 max max min

,0 max max min

rand
ij j ij j j

x rand
ij j ij j j

O rand
ik k ik k k

x x x x x

ε ε ε ε ε

ε ε ε ε ε

= − −

= − −

= − −
 

(16) 

If the ,maxxε  and ,maxOε  values, which are part of max
Tx , remain unbounded, 

Equation (16) cannot determine a starting value.  Thus, ,maxxε  and ,maxOε  must be set at 

a low enough value, i.e. within a reasonable order of magnitude of the objective 

function, that the algorithm is forced to change the actual design variables, and 

sequentially the objective function values, rather than just trying to lower the epsilon 

values.  Figure 3 illustrates the entire integrated MDO/PSO process.  
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Fig. 3  PSO based MDO algorithm 

 

In the MDO/PSO, a single particle from the swarm, ,
Tn

i Tx , is passed to each 

discipline level, one at a time.  The discipline level PSO then creates a percent boundary 

band, signified by ,maxkn
ikx  and ,minkn

ikx , which are calculated using an equation similar to 

Equation (14), and an equation similar to (16) in order to generate its own initial swarm.   

A full PSO is then executed at each discipline level, and the optimum point and 

corresponding design variables for that top level particle,  ikO∗  and ik
∗x , are passed back 

to the top level constraint function.  This process is continued for every particle in the 

top level swarm.  Once the entire top level swarm has been treated, the next top level 

iteration can proceed.  In this manner an extra loop of swarm iterations is introduced by 

the top level optimization. 
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Figure 3 presents a flow chart of the MDO/PSO process.  In this figure, “ i ” is 

defined as previously, however 1,...,k ki I=  where “ kI ” is the number of particles in the 

discipline level swarm. 

2.5:  Case Study Definition 

The optimization statements solved in this chapter are based on a conceptual 

ship design application originally presented in [26] and adapted in [46].  The problem 

here is adapted further from Parsons and Scott’s work for this chapter and is presented 

here as a six design variable, three objective, 21-constraint design optimization problem 

which uses regression data to model a family of bulk carriers.    

The design variables used in the model are length ( L ), beam ( B ), depth ( D ), 

draft (T ), block coefficient ( BC ) and speed in knots ( kV ).  The three objective functions 

are ( )1min f =x Transportation Cost (£/t), ( )2max f =x  Annual Cargo (t/yr), and 

( )3min f =x  Lightship Weight (t).  Table 2 summarizes the complete model. 

The constraints that are employed in the various optimization statements of this 

chapter are summarized in Table 3. Nine of the constraints in Table 3 are physical 

constraints on the design itself.  The remaining 12 are upper and lower bounds on the 

six design variables.   



 

 

Table 2:  Model Definition 

Parameter Equation/Definition Parameter Equation/Definition 
Steel weight ( sW ) 1.7 0.7 0.4 0.50.034 BL B D C  

Fuel price ( FP ) 100  (£/t) 
Outfit weight ( oW ) 0.8 0.6 0.3 0.51.0 BL B D C  

Fuel costs ( FC ) ( )( )( )1.05 SDC D FP  
A 24977.06 8105.61 4456.51B BC C− +  

Port cost ( PC ) 0.86.3DWT  
B 210847.2 12817 6960.32B BC C− + −  

Fuel carried ( FC ) ( )5SDC D +  
Displacement (∆ ) 1.025 BLBTC  Misc. deadweight ( MDWT ) 0.52.0DWT  
Froude number ( nF ) V

gL  where 0.5144 kV V= and 9.8065g =  

Cargo deadweight ( CDWT ) MDWT FC DWT− −  

Power ( P ) 

( )
3 2 3

k

n

V
a bF
∆
+  

Handling rate ( HR ) 8000  (t/day) 

Machinery weight ( mW ) 0.90.17P  Port days ( PD ) 
2 0.5CDWT

HR
   +      

Ship cost ( SC ) ( )0.85 0.81.3 2000 3500 2400s oW W P+ +
 

Round trips per year ( RTPA ) 
( )

350

S PD D+  
Capital costs ( CC ) 0.2 SC  Voyage costs ( VC ) ( )( )F PC C RTPA+  
Lightship weight ( LSW ) C R VC C C+ +  Annual cost ( AC ) ( )( )CDWT RTPA  
Deadweight ( DWT ) LSW∆ −  Annual cargo ( AC ) s o mW W W+ +  
Running cost ( RC ) 0.340000DWT  Transportation cost ( TC ) AC

AC  
Daily consumption ( DC ) ( )( )0.19 24

0.2
1000

P
+

 

KB  0.53T  
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Table 2:  Model Definition 

Parameter Equation/Definition Parameter Equation/Definition 
Round trip miles ( RTM ) 5000  (nm) TBM  ( ) 20.085 0.002B

B

C B
TC
−

 
Sea days ( SD ) 

24 k

RTM
V  

KG  1.0 0.52D+  

 

Table 3:  Constraint Definition 

Const. Equation/Definition Explanation Const. Equation/Definition Explanation 
c(1) 

6 0L
B

− ≤
 

Constraint on the length-
to-beam ratio. 

c(9) 0.07 0TB KB BM KG− − + ≤  Empirical constraint on 
relationship between 
symbols 

c(2) 
15 0L

D
− ≤

 

Constraint on length-to-
depth ratio. 

c(10,11) 150 274.32L≤ ≤  Upper and lower bounds of 
ship length. 

c(3) 
19 0L

T
− ≤

 

Constraint on length-to-
draft ratio. 

c(12,13) 20 32.31B≤ ≤  Upper and lower bounds of 
beam. 

c(4) 0.310.45 0T DWT− ≤  Empirical constraint on 
the relationship between 

   

c(14,15) 13 25D≤ ≤  Upper and lower bounds of 
depth. 

c(5) 0.7 0.7 0T D− + ≤  Empirical constraint on 
relationship between 

   

c(16,17) 10 11.71T≤ ≤  Upper and lower bounds of 
draft. 

c(6) 500000 0DWT − ≤  Upper constraint on 
d d h  

c(18,19) 0.63 0.75BC≤ ≤  Upper and lower bounds of 
bl k ff  c(7) 25000 0DWT− ≤  Lower constraint on 

d d h  
c(20,21) 11 20kV≤ ≤  Upper and lower bounds of 

d (  k )  c(8) 0.32 0nF − ≤  Upper constraint on 
d  b   
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2.6:  Comparison of PSO and a Gradient-Based Optimization Method for Single and 

Multicriterion Optimization 

In order to demonstrate proper implementation of the PSO algorithm, a single 

discipline and a multicriterion conceptual ship design problem is solved and results are 

compared to data reported in Parsons and Scott’s paper and with results from a 

commercial gradient based optimization driver (fmincon, which is available in MATLAB).   

2.6.1:  Single Criterion Optimization and Results 

Results from the single objective optimization comparison are contained in Table 

4.  The candidates provided by each optimization algorithm for Minimum Transportation 

Cost, Minimum Light Ship Cost, and Maximum Annual Cargo Design are bolded.  All PSO 

results presented therein were obtained after executing 12 runs of 1000 particles.  It 

was found through trial and error experimentation with the algorithms that this 

combination of runs and particles provided an acceptable balance between 

computation time and results.  Minimum values from these 12 runs (mean in 

parentheses) are presented for comparison.   

One interesting note that came out of running each optimization concerns 

maximization of a function using PSO.  There are normally two ways of doing this.  The 

first is to minimize the negative of the function, and the second is to minimize the 

reciprocal of the function.  The PSO algorithm does not behave well when dealing with 

the negative of the function for reasons unknown to the author.  Because of this fact, 

the reciprocal of the annual cost objective function was used in all PSO iterations.  



 

 

Table 4:  Single Objective Results 

 Min Transportation Cost Design Min Light Ship Design Max Annual Cargo Design 
Parameters Excel PSO (mean) fmincon Excel PSO (mean) fmincon Excel PSO (mean) fmincon 

Transport Cost 
(£/t) 

8.377 8.213 
(8.355) 

8.401 9.474 9.374 9.002 10.294 10.884 12.185 

Light ship (t) 9,029.0 8,444.3 9,565.2 5,240.3 5,043.2 
(5,622.3) 

4,983.8 12,436 12,617 13,095 

Annual cargo 
(t/yr) 

551,265 507,940 558,490 386,500 353,670 328,680 700,553 684,310 
(656,510) 

724,560 

Length (m) 193.86 187.63 194.85 150.73 155.32 150.09 222.49 221.86 222.49 
Beam (m) 32.31 30.89 32.31 25.12 23.36 25.01 32.31 31.50 32.31 
Depth (m) 15.73 15.54 15.73 13.84 14.43 13.84 15.73 17.60 15.73 
Draft (m) 11.71 11.58 11.71 10.39 10.76 10.39 11.71 11.68 11.71 
Block Coefficient 0.681 0.730 0.750 0.750 0.693 0.750 0.750 0.730 0.750 
Speed (knots) 14.00 12.25 14.00 14.00 13.62 11.00 18.00 18.69 20.00 
Deadweight (t) 42,160 41,787 47,107 25,000 22,678 25,000 52,277 48,402 51,618 
Power (kW) 5,358 3,604 6,651 5,018 3,613 1,923 19,060 20,459 30,906 
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A gradient based algorithm handles both the negative and the reciprocal methods of 

maximization equally well.  It does provide different final answers depending on which 

method is used.  The reciprocal method was also used with all gradient based 

calculations in order to preserve the comparison between the results it generated and 

those generated by the PSO algorithm.   

Another interesting point with the PSO algorithm is that it periodically returns 

optima which violate one of the constraints by more than an acceptable amount.  This is 

caused by the manner in which the PSO algorithm allows each particle to explore 

outside the bounds of the design space in order to ensure that they travel on a smooth 

trajectory.  In the later stages of this work, an additional optimization was performed on 

any results that were found to violate the constraints.  The design variables in this 

additional optimization were constrained to keep them within an acceptable range of 

their values that produced the PSO “optimum”.  An example of this phenomenon is 

contained in the PSO “Min Light Ship Design” value.  This design violates one constraint 

by more than an acceptable amount.  The results are presented here to highlight this 

characteristic of the PSO algorithm employed in this work.   

All gradient based optimizations started from point (195; 32.31; 20; 10.5; 0.7; 

16).  This point was chosen because it serves as a “good” design that satisfies all 

constraints. It is customary for such a “good” design to serve as a starting point for a 

design optimization that will work to improve this design.  This initial set of design 

variables produced initial, normalizing values of 9.9264 £/t, 547,680 t/yr, and 10,304 t 

for the objectives.   
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Parsons and Scott used the Solver tool in Microsoft Excel (8.0) to perform their 

optimizations.  The Solver was set to use the gradient algorithm with a 100 second time 

limit, maximum iterations of 600, precision of 1e10-9, a convergence criterion of 1e10-

7, tangent initial estimates for the one-dimensional searches, and forward difference 

partial derivative option.  Finally, independent variables were designated as 

nonnegative in their method. 

The conclusion that should be drawn from the data contained in Table 4 is that 

different optimizers provide different results on different objective functions.  This is not 

a new discovery.  When the actual practical or physical gains or losses realized by these 

differences are calculated (an 8.3% transportation cost savings between the Excel design 

and the PSO design) it becomes valuable to investigate these differences further.   

Another conclusion that began to become apparent in these preliminary 

experiments is that there is a considerable expense, regarding computation time, 

associated with using an algorithm like PSO.  Each iteration of the algorithm, with 1000 

particles, took approximately 2 minutes to complete.  Again, this is not new knowledge.  

The question remains:  Will this increased computation burden be outweighed by an 

improvement in the overall value of the optimum objective function?  The answer to 

this question will be given in the conclusion of this chapter. 

2.6.2:  Multicriterion Optimization and Results 

Results from the multicriterion optimization are presented in Table 5.  Values for 

the multicriterion preference function are bolded.  As in the single criterion results, a 

series of 12 PSOs of 1000 particles each were run in order to find the best value.  The 
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minimum value found in the 12 runs is included in the table with the mean value in 

parentheses.  

Table 5:  Multicriterion Optimization Results 

Parameters Excel fmincon PSO (mean) MC MC SMC 

( )kP f x  


= 
0.960 0.885 0.893 

(0.898) 
0.895 0.892 0.885 

Transport Cost 
( / ) 

9.474 8.573 8.722 8.692 8.778 8.584 

Light ship (t) 5,240 7,473 7,578 7,480 7,945 7,473 

Annual cargo (t/yr) 386,500 514,080 514,480 505,560 536,040 514,260 

Length (m) 150.73 173.72 176.41 175.12 178.82 173.72 

Beam (m) 25.12 28.95 29.34 28.85 29.73 28.95 

Depth (m) 13.84 15.73 15.45 15.45 15.82 15.72 

Draft (m) 10.39 11.71 11.51 11.41 11.65 11.70 

Block Coefficient 0.750 0.750 0.725 0.747 0.731 0.750 

Speed (knots) 14.00 14.00 14.48 14.08 14.77 14.03 

Deadweight (t) 25,000 37,804 36,707 36,639 38,513 37,752 

Power (kW) 5,018 6,061 6,427 6,033 7,234 6,103 

CPU time (s) UNK 2.3 1,093.7 71.3 388.7 3,026.7 

Function 
l  

UNK 168 542,413 542,413 5.05x106 2.13x107 

       
A fourth and fifth algorithm were introduced at this stage of the 

experimentation.  After noticing the computation cost that was paid in order to use the 

PSO algorithm in the previous step, the author began to wonder how a simple Monte 

Carlo (MC) method and a sequential Monte Carlo (SMC) method would perform on this 

problem.  The SMC method also served as a verification of the actual minimum of the 

function.  

The MC method used in this chapter was a completely random, uniform seeding 

of points in the feasible design space.  The method was executed with two stopping 

points.  First, the MC method was allowed to run until it had evaluated the function the 
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same number of times as the PSO.  Secondly, the MC method was run until it returned a 

value that was better than the PSO value.  The results from the MC method are in 

columns four and five in Table 5.   

The SMC method is only slightly more complex than the MC method.  Due to its 

ability to “drill down” towards a specific minimum, it reaches a minimum more quickly 

than a pure MC method.  The SMC method is initiated when a sequence of random 

points, 0x , is distributed throughout the design space, using the inequality constraints, 

the upper and lower limits on the design variables, and a minimum function value as 

bounds.  This initial distribution creates a set of points which satisfy all constraints and 

whose output function values are below the minimum.   

The method continues with the newly created set of points, ix , the maximum 

and minimum values of each design variable in the set, max,ix and min,ix , and the mean 

function value that is produced by the set of points.  In each successive iteration, the 

max,ix and min,ix  become the new bounds on the design variables, and the mean function 

value becomes the new minimum function value accepted.  The method continues until 

a convergence criteria is met.   

The SMC results are summarized in the sixth column of Table 5.  Notice that the 

SMC algorithm took over 21 million function evaluations to reach a value close to the 

fmincon value.  The SMC was manually stopped at this point.  For comparison, a simple, 

that is, completely random, MC algorithm reached a value below the PSO value in just 

over 5 million function evaluations. 
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In addition to a fourth, fifth, and sixth column, two rows were added to the 

bottom of Table 5 for this phase of experimentation.  As attention shifts from the actual 

values of the objective functions, it becomes necessary to track the CPU time and the 

number of function evaluations performed.  For the PSO CPU time results, the time 

taken for all 12 runs is documented.  Table 5 begins to document the computational 

expense associated with using the non-gradient-based algorithms. 

Again, the same conclusions can be drawn from this data as could be drawn from 

the previous tables:  different optimizers provide different results.  Of particular note is 

the value that fmincon attained for this particular objective function.  This is the lowest 

value that the author have seen for this particular objective function using any 

optimizer.  Also of particular interest is the exceptional performance by all 

measurements of the fmincon optimizer.  The strong performance in this example by 

fmincon could lead one to believe that this optimizer is the strongest presented here.  It 

does have several positive qualities.  The minimum transportation cost results in Table 4 

show that it is not perfect however-- depending on the function being evaluated and the 

starting point for the optimizer, fmincon can be outperformed by other algorithms.   

2.7:  MDO Using Gradient-Based and PSO Algorithms 

The multidisciplinary design optimization formulation of the conceptual ship 

design problem is stated as follows.   

( )min Tf =x Transportation Cost (£/t) 

( )1max f =x  Annual Cargo (t/yr) 

( )2min f =x  Lightship Weight (t) 

(17) 
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In Equation (17), the subscripts “ T ”, “ 1 ”, and “ 2 ” denote the top level objective 

function, the first discipline level objective function, and the second discipline level 

objective function, respectively.  This formulation was chosen because the author are 

interested more in cost than annual cargo carrying capacity or lightship weight as a 

system-level attribute.  Table 6 contains the complete results from the MDO run of the 

bulk carrier design problem with a gradient based and PSO algorithms.  The results are 

compared to the “best” multicriterion optimization design.  In the MDO columns, a 

value is included in the preference function row only to serve as a comparison between 

the multicriterion optimization and the MDO results.  The goal of the MDO was to 

minimize the top level objective function, which is the transportation cost.  The goal of 

the multicriterion optimization was to minimize the preference function.  Of particular 

interest here is the tradeoff that the MDO algorithm’s structure makes between each of 

the disciplines.  Even though it performs worse if measured by the multicriterion 

preference function, it produces a far better transportation cost value, the objective 

that was identified at the system level as the most important.  It also ensures that the 

chosen set of design variables produces respectable values for the other disciplines.



 

 

Table 6:  MDO results 

Parameter Units Multi-criterion MDO MDPSO Parameter Units Multi-criterion MDO MDPSO 

( )kP f x  


= none 0.8848 0.8996 0.9464 Running cost  £ 944,700 1.00M 1.01M 

Length m 173.72 193.38 221.77 Daily consumption  t 27.84 29.83 33.48 

Beam  m 28.95 32.23 31.17 Sea days  Days 14.88 14.88 14.16 

Depth m 15.73 15.72 14.38 
 

Fuel costs  £ 43,496 46,602 49,789 

Draft  m 11.71 11.71 11.29 Port cost  £ 28,929 33,962 34,407 

Block Coef. none 0.750 0.743 0.723 Fuel carried  t 553.44 592.96 641.59 

Speed  kts 14.00 14.00 14.71 Misc. deadweight  t 388.84 429.84 433.36 

Steel weight  t 6,006.2 7,731.0 9,072.9 Cargo deadweight  t 36,857 45,167 45,875 

Outfit weight  t 1,036.1 1,202.6 1276.9 Port days  Days 10.21 12.29 12.47 

Displacement  m3 45,273 55,583 57,810 Round trips per year  None 13.95 12.88 13.14 

Froude number  None 0.17 0.17 0.16 Voyage costs  £ 1.01M 1.04M 1.11M 

Power  KW 6,061 6,497 7,298.4 Annual cost  £ 4.41M 4.89M 5.25M 

Machinery wt  t 431.25 459.07 509.75 Annual cargo  t/yr 514,080 581,660 602,900 

Ship cost  £ 12.3M 14.2M 15.7M Transportation cost  £/t 8.573 8.397 8.705 (9.722) 

Capital costs  £ 2.45M 2.84M 3.13M CPU time (s) S 2.3 53.0 7894.6 

Light ship wt  t 7,473.5 9,390.2 10,860 Function evals None 168 28,630 3x107 

Deadweight  t 37,800 46,174 46,950      

 

47 



 

48 
 

The MDO/PSO results in Table 6 are based on 12 initial runs with 100 particles in 

the top level and 10 in each discipline level.  The average value of the 12 runs for the 

transportation cost is included in parentheses.   

The results from the initial set of 12 MDO/PSO produces results inferior to the 

MDO results as it can be observed in Table 6.  The original MDO/PSO results violated 

constraints and were modified using an additional optimization, as described in section 

7.1.  Additional efforts to obtain satisfactory results from the MDO/PSO algorithm by 

increasing the number of particles at the discipline level were not successful.  It was 

quickly discovered just how costly an increase in particles was.  It is projected that it 

would take several months to run the MDO/PSO analysis with the same fidelity as was 

used to obtain the results shown in Table 5.  For the sake of comparison, results from 

additional runs of the MDO/PSO are presented in Table 7.   

Table 7:  MDPSO Results 

Parameter Units 
# of particles (top/discipline) 

500/100 (fixed) 100/100 100/50 100/20 (fixed) 
Transport Cost  £/t 8.882 (9.962) 9.404 (10.248) 9.612 (10.148) 9.022(11.385) 
Light ship t 8,681.4 8,042.3 12,289.0 9,205.5 

Annual cargo t 514,410 488,140 586,360 549,070 

Length m 196.59 188.68 242.27 207.09 

Beam m 32.31 27.91 29.09 29.37 

Depth  m 13.94 15.54 16.49 15.78 

Draft  m 10.46 10.65 10.88 11.71 

Block Coef. None 0.652 0.704 0.687 0.630 

Speed  kts 14.88 15.20 15.93 16.192 

CPU time  s 621,073.7 110,883.8 46,351.1 14,717.2 
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It can be seen from the data in Table 7 that the result did improve as more 

particles were added to the PSO algorithm.  The trend of the results violating constraints 

can also be seen in the 500/100 trial and the 100/20 results, as both were “fixed” using 

the method described.  It can also be seen that the CPU time increased dramatically.  At 

a time of over 1 week, the 500/100 particle combination, which still does not provide as 

good of results as the gradient based MDO method, is just too long. 
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CHAPTER 3:   
A MULTIDISCIPLINARY DESIGN OPTIMIZATION APPROACH TO RELATING 

AFFORDABILITY AND PERFORMANCE IN A CONCEPTUAL SUBMARINE DESIGN 
 

The main objective of this chapter is to document the use of multidisciplinary 

design optimization to systematically build a foundation for increasing the 

understanding of the multifaceted relationship between affordability and performance 

in the conceptual design of a complex engineering system.  Secondary objectives include 

creating a sophisticated, automated affordability model based on the manufacturing 

costs associated with a component of such a system, and creating automated first-order 

models for four engineering disciplines that are typical of those encountered in 

conceptual design.  Finally, results from the single-discipline optimization of these 

disciplines will be discussed and compared to the results obtained from optimizing all 

disciplines in a coordinated effort governed by the response of a system-level objective.   

A comprehensive literature review on the topics related to this work is 

presented in Chapter 1.  It should be noted that, although the open literature does not 

accurately reflect practical aspects of submarine design due to the sensitive nature of 

the topic, the work summarized in this chapter draws heavily from the established body 

of literature for the development of the discipline-level objective functions and 

constraints.  This is deemed acceptable since the work presented in this chapter is not 

meant to be an accurate representation of current practice in the world of conceptual 
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submarine design.  Rather, this chapter aims to introduce the capabilities of a very 

powerful tool for MDO analysis with the understanding that the technology is modular 

enough to accept practical models for the various submarine performance disciplines in 

a setting where such models are available.  Figure 4 presents a schematic of the 

conceptual submarine design study conducted in this work.   

This chapter demonstrates how affordability can be linked to the physical design 

characteristics of a system and how, in submarine design, MDO analysis can 

simultaneously coordinate multiple optimizations while optimizing at the same time the 

overall system objective.  The value of the MDO analysis is demonstrated by comparing 

the MDO results with individual discipline-level optimizations.  Each single-discipline 

optimization method creates a different optimum configuration for the system, each in 

respect to its own discipline.  These results are compared to the MDO optimum and the 

benefits of a coordinated and organized MDO analysis are discussed. 

3.1:  Creation of the Discipline-Level Objective and Constraint Functions 

In the conceptual submarine application presented in this chapter, the technical 

disciplines considered are:  deck area, resistance (or actually the effective power 

necessary to overcome this resistance), structures, and maneuvering (or dynamic 

stability).  Low-fidelity, first-order representations were chosen to model the four 

engineering performance disciplines.  Examining each of these disciplines in the manner 

suggested in this work is not the way in which submarines are actually designed today 

since this chapter demonstrates the MDO process using models that are available in the 

open literature.  



 

 

 

Figure 4:  Schematic of conceptual submarine design MDO process for affordability

Design variables (x): 
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Due to the modularity of the MDO system, disciplines that are more representative of 

practice, such as arrangements, volumetrics, weights, and ship balance, can be 

considered instead if representative models are available for each discipline.   

3.1.1:  Deck Area 

The first engineering performance discipline created was the deck area 

discipline.  As mentioned in Chapter 1, the design variables used to approximate the 

shape of the hydrodynamic hull of a submarine in the conceptual design phase are those 

prescribed by Jackson [95, 96].  Additionally, since Jackson’s treatment allows only for 

the creation of the hydrodynamic hull, the deck area model created here used these 

initial design variables, along with several parameters.  Descriptions of the parameters 

and design variables, and nominal values for the parameters are contained in Table 8.  

The deck area discipline is constrained by a semi-arbitrary minimum displacement value.  

The hydrodynamic hull is broken up into three sections: the aft section, the 

forward section and the parallel midbody.  According to Jackson and many others, the 

ideal shape for the bare submarine hull from a purely hydrodynamic standpoint would 

be one in which there was no parallel midbody and in which the sum of the aft and 

forward lengths was six times the maximum diameter.  It is understood that the 

required operational capabilities and potential operating environment required by 

today’s submarine requires more volume than is available in a hull without parallel 

midbody, and so the hull is stretched accordingly by increasing this value.  It is also 

understood that adding appendages to a hull increases the optimum length to diameter 
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ratio considerably and that the constraints on draft often outweigh desires to design a 

submarine at the optimum ratio. 

Table 8:  Deck Area Discipline Parameter and Design Variable Definitions 

Parameter Definitions Design Variable Definitions 
Param
 

Definition Value Var. Definition Max Min 

tdH  
‘tween deck height 2.286 m pmbL

 
Length of the 
parallel midbody 

40 m 1 m 

bH  
Bilge height   2.438 m D  Maximum hull 

diam. 
13 m 8.4 m 

sH  
standard separation 
between 
hydrodynamic 
pressure hulls 

0.607 m an  
Aft form factor 5 2 

,minsH
 

minimum 
separation between 
hydrodynamic 
pressure hulls 

0.25 m fn
 

Forward form 
factor 

5 2 

,maxdn
  

Maximum number 
of decks 

4     

n  Discretizations of 
hull 

1000     

 

There is some disagreement in the literature about this “ideal” length-to-beam 

ratio because the resistance vs. L/B curve for a “clean” (that is, without appendages) 

hull is relatively flat in this region, and, using this curve as a judge, a ratio of six or seven 

would provide very nearly the same resistance.  This work uses a L/B ratio of seven but 

maintains the same percent relationship between the aft and forward lengths that 

Jackson specifies, giving the length relationships summarized in Equation (18) below.   

4.3
2.7

a

f

tot a f pmb

L D
L D
L L L L

=
=

= + +
 

(18) 
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In Equation (18), aL  is the aft length, fL  is the forward length, and totL  is the 

total length of the hydrodynamic hull.  The remaining variables in Equation (18) are 

defined in Table 8. 

 In the deck area model, it is necessary to calculate the actual location of each 

point on the hydrodynamic hull.  Equation (19) outlines the first step in determining this 

location 

( )
1... 1

tot

i

Lx
n

i n
x i x

δ

δ

=

= +

=   

(19) 

where xδ  is the change in the longitudinal direction along the submarine, and ix  is the 

actual longitudinal location.  The next step in the process of determining the actual 

location of each point on the hydrodynamic hull is summarized in Equation (20).   

( )

,

,

,

1
2

2

1
2

a

f

n

i
hh i

a

hh i

n

i a pmb
hh i

f

xDy
L

Dy

x L LDy
L

 
= − 

 

=

 − +
 = −
 
    

(20) 

Here ,hh iy  is the ith transverse location of the hydrodynamic hull.  The first line 

of Equation (20) is used to calculate the aft portion of the hydrodynamic hull when 

( ) ai x Lδ ≤ , the second line when ( ) a pmbi x L Lδ ≤ + , and the third for all other values of 

i .  The resulting values for ,hh iy  construct a halfplan of the hydrodynamic hull.  All that 

is left is for the halfplan to be rotated one full rotation about the longitudinal axis of the 
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submarine, and the full hydrodynamic hull is now represented.  Once the hydrodynamic 

hull has been built, the next step is to create a representation of the pressure hull. 

 The diameter of the pressure hull, phD , is simply the outer hull diameter, D , less 

twice the standard separation between the outer and pressure hulls.  In determining the 

length of the pressure hull, it is instructive to divide it into the aft, parallel midbody, and 

forward section in a similar manner to the hydrodynamic hull.  The parallel midbody 

section of the pressure hull will be the same length as the parallel midbody section of 

the hydrodynamic hull.  The lengths of the fore and aft sections of the pressure hull are 

composed of two parts.  The first part is the radius or depth of the hemispherical 

endcap, which is the same as the radius of the pressure hull itself.  This part is the same 

for both the forward and the aft sections of the pressure hull.  The second, and more 

difficult to calculate, part of the forward and aft length is the part of these sections that 

extend into the fore and aft sections of the hydrodynamic hull, but at the same 

diameter as the actual pressure vessel.  The minimum separation between the outer 

and pressure hulls is used in the manner shown in Equation (21) to determine these two 

lengths. 

, ,minmin
2

ph
ph hh i s

D
y y H

 
= − + 

    

(21) 

Equation (21) is used to generate two phy  values, one for the aft section of the 

hydrodynamic hull, when ( ) ai x Lδ ≤ , and one for the forward section of the hull, when 

( ) a pmbi x L Lδ ≥ + .  These phy  values have a corresponding x  value, and this value aids 

in determining the two lengths in question.  



 

57 
 

After the hydrodynamic and pressure hulls have been modeled, the decks within 

the pressure hull must be created.  Since the pressure hull is a cylinder with 

hemispherical endcaps of the same diameter as the cylinder, simple geometric 

relationships can help to determine the required location and dimensions of these 

decks, and their resulting area.  There is another measurement that can be taken from 

the dimensions of these decks, and that is the weld length needed to attach them to the 

hull.  This weld length will be used in the affordability model.   

The size of the first deck, that immediately above the bilge, is calculated in the 

same manner for every iteration of the deck area code.  Equation (22) outlines this 

calculation. 

2 2

1

2
1 1 1

,1 1

2 2

2 2

2 4

ph ph
b

ph

w ph

D D
r H

A r L r
L r L

π

π

   
= − −   

   

= +

= +
  

(22) 

where 1r  is the half-width of the first deck in the parallel midbody, and the radius of the 

deck in the two hemispherical endcaps, afA  is the area of the deck in the two endcaps, 

1A  is the total area of the first deck, ,1wL  is the weld length of the first deck, and phL  is 

the length of the pressure hull.  

As mentioned, the first deck will always be calculated in the same manner, 

regardless of the values of the design variables.  The additional decks however, will not 

only vary in their size and location as the design variables change, but also in their 

number.  The maximum number of decks in a submarine, as constrained by the depth 
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needed to enter some ports and the ‘tween deck height required by the crew, has 

traditionally been four.  Most submarines today are built with three decks.  These decks 

do not span the length of the submarine, but are rather limited to the operations 

spaces, where the crew live and fight the ship.  For the first-order model summarized 

here, if the pressure hull diameter is greater than the sum of four times the ‘tween deck 

height and the bilge height, then the size of the remaining decks, which traverse the 

entire length of the hull in this model, is calculated in the following manner: 

( )

( )( )

2 2

2

2 2

2 2

1
2 2

ph ph
b td

ph ph
i b td

D D
r H H

D D
r H i H

   
= − − +   

   

   
= − + − −   

      

(23) 

Here, 2r  is the halfwidth/radius of the second deck.  The second calculation 

determines ir  , the halfwidth/radius of the ith deck as ,max3... di n= .  After these r  

values are calculated, the areas and weld lengths for each deck are computed in much 

the same manner as outlined in Equation (22).  Once the deck areas and weld lengths 

are determined for each of the decks, these values are summed to provide the values 

for the entire submarine.  If the diameter of the pressure hull is less than the sum of 

four times the ‘tween deck height and the bilge height, there are similar calculations for 

determining the deck area.  These calculations are mere extensions of those 

summarized above and will not be covered here. 

3.1.2:  Resistance/ Effective Power 
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The effective power model adapted for this work is very familiar to Naval 

Architects and hydrodynamicists the world over.  It is a first-order model that is used as 

the basic foundation for the study of the subject [75, 95, 96].  As such, only a summary 

of how the method was applied in this work will be discussed here for the purposes of 

clarity and identification.   

Table 9 lists the parameters used in this discipline, their definitions, and their 

values.  The design variables used in this discipline are the same as those listed and 

defined in Table 8.   

Table 9:  Effective Power Discipline Parameter Definitions 

Parameter Definitions 
Parameter Definition Value 
ρ  Seawater Density 1025 kg/m3 

υ  Kinematic viscosity  1.05e-6 m2/s 

maxU  
Maximimum speed 12.35 m/s 

sH  
Sail Height 5.5 m 

sW   
Sail width 2 m 

SfL
 

Length of sail, forward 3 m 

SaL  
Length of sail, aft 4 m 

Sfn
 

Sail form factor, forward 2.5 

San  
Sail form factor, aft 2.5 

fHCδ
 

Hull roughness coefficient 0.0004 

fSCδ
 

Sail roughness coefficient 0.0004 

rSC  
Sail residuary resistance coefficient 0.005 

 

Using the design variables and the parameters defined above, the calculation of 

the effective power needed by the submarine progressed in the classic manner.  First, 

the wetted surface of the aft, forward, and parallel midbody sections of the hull and the 
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Reynold’s number for the hull were calculated.  The frictional and residuary resistances 

for the hull are then calculated using the familiar expressions summarized in Equation 

(24). 

( )( )2
10

0.075
log 2

0.00789

2

fH

H

rH
tot

C
Re

C L K
D

=
−

=
−

  

(24) 

In Equation (24), fHC  is the frictional resistance coefficient for the hull, HRe  is 

the Reynold’s number for the hull, rHC  is the residuary resistance coefficient for the 

hull, totL  and D  are the same as identified in the previous section, that is, the total 

length of the hydrodynamic hull and the maximum diameter of the hydrodynamic hull, 

and 2K  is calculated as illustrated in Jackson’s work. 

Similar calculations as those outlined above are performed for the sail.  A value 

for the appendage resistance of 1/1000 of the product of the total length and diameter 

of the hull is assumed.  These values are then used to calculate the effective power 

needed to propel the hull, and that needed to propel the sail using Equation (25) 

( )( )
( )( )

3
max

3
max

1
2
1
2

eH H fH fH rH

eS S fS fS rS app

P U WS C C C

P U WS C C C R

ρ δ

ρ δ

= + +

= + + +
  

(25) 

where eHP  is the effective power for the hull, eSP  is the effective power for the sail, 

there is a wetted surface, or WS  for the hull and the sail, and appR  is the assumed value 

for the resistance of the appendages.  Naturally, the eHP  and eSP  are then summed to 
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obtain a first-order estimate of the effective power necessary to propel the submarine 

at the given speed.  

The effective power discipline is constrained by the same minimum 

displacement value, corresponding to the displacement when the design variables are at 

the midpoint of their normalized range, that constrains the optimization of the deck 

area discipline.   

3.1.3:  Structures 

The model used in this work for the structures discipline was adapted from two 

seminal Society of Naval Architects and Marine Engineers publications [99, 100].  Several 

new design variables and parameters are introduced in this discipline.  They are 

summarized in Table 10. 

Upon introduction to the figures in Table 10, one may immediately recognize 

that there are mixed units.  The units issue is due to the fact that the model adapted 

from the literature is an empirical model with all calculations based upon the English 

units whereas the work summarized in this chapter is executed in the Metric units 

system.  Therefore all metric input units were converted to the English system before 

being applied to the structures discipline model.  

The values in Table 10 were used to calculate the buoyancy factor for external 

framing, defined as the hull weight to displaced water weight ratio, for the assigned 

structural values, as well as the associated thickness of the endplates, bulkheads, and 

decks.   
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Table 10:  Structures Discipline Parameter and Design Variable Definitions 

Parameter Definitions 
Param. Definition Value 
g  Gravity 9.81 m/s2 

maxD  
Maximum Depth   47.2 m 

yσ
 

Yield stress for steel 1.0e5 psi 

sρ  
Density of steel 7.87e3 kg/m3 

giSF
  

Safety factor in general instability 3.75 

Design Variable Definitions 

Variable Definition Max Min 

fL
 

Frame spacing 0.75 m 1.5 m 

pt
 

Plate thickness 0.0127 m 0.0191 m 

ft
 

Flange thickness 0.0127 m 0.0254 m 

fw
 

Flange width 0.0762 m 0.1143 m 

wt  
Web thickness 0.0051 m 0.0111 m 

wh  
Web height 0.127 m 0.203 m 

 

2

2
2 2 2

2
2 2

p fw
H s f p w w w f f

fw
w f w w w f f

H

w

t thW R L t R t h R h w t

thW R L R t h R h w t

WBF
W

ρ

ρ

     = − + + + + +     
     

    = + + + + +          

=
  

(26) 

Equation (24) shows the calculation for HW , the weight of the hull structure, wW

, the weight of the displaced water, and BF , the buoyancy factor, using variables and 

parameters previously defined and the radius of the pressure hull, R .  The thickness of 

the end plate is calculated using the pressure, p , at maximum depth and Equation (27), 

which is a restatement of a calculation for the thickness of hemispherical pressure 

vessel endcaps taken from the sources mentioned at the beginning of this section. 
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( )
2ec

y

pR
t

σ
=

  

(27) 

The thickness of the bulkheads and the decks is assumed to be the same as the 

thickness of the endcaps, ect . 

The structures discipline is constrained by a limit on five modes of failure.  The 

relationships that define these failure modes—i.e. shell yielding, lobar buckling, general 

instability, frame yielding, and frame instability—were taken from several sources [91, 

98-100].  As with the displacement constraint that works with the other discipline level 

objective functions, there are no new design variables introduced in the constraints for 

the structures problem.  There are several new parameters however.  These new 

parameters are summarized in Table 11 below. 

The full formulation of the constraints defined in Table 11 is summarized well in 

the sources listed above and will not be discussed in depth here.  The interested reader 

is referred to the listed works for a detailed derivation. 

Table 11:  Constraint Parameter Definitions 

Parameter Definitions 
Param. Definition Value 

sySF
 

Safety factor in shell yielding 1.5 

lbSF  
Safety factor in lobar buckling 2.25 

fySF
 

Safety factor in frame yielding 1.5 

fiSF
 

Safety factor in frame instability 1.8 

E   Young’s modulus 29.7e6 psi 

pυ  
Poisson’s ratio 0.3 
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3.1.4:  Maneuvering 

The model for the maneuvering discipline is adapted from a Naval Postgraduate 

School thesis [134].  The remainder of this section restates the highlights of Tsamilis’ 

work as they apply directly to the new concepts discussed in this chapter.  The 

theoretical derivation of the model that comprises the maneuvering discipline 

introduces several new parameters.  These new parameters are summarized in Table 

12.   

Table 12:  Maneuvering Discipline Parameter Definition 

Param. Definition Param. Definition 
( )b x  Local beam of the hull ( ), ,φ θ ψ  

Euler angles 

DC  
Quadratic drag coef. U  Constant vehicle speed  

rδ  
Rudder deflection ( ), ,u v w  

Translational velocities  

( )h x  Local height of the hull ( ), ,x y z  
Distances along body axes 

( ), ,xx yy zzI I I
  

Veh. mass mmts of inert.  ( ), ,X Y Z  
Force components  

( ), ,xy yz zxI I I
 

Cross products of inertia ( ), ,G G Gx y z  
Coordinates of the CG 

( ), ,K M N  
Moment components  ( ), ,B B Bx y z  

Coordinates of the CB 

m  Vehicle mass nosex  
Fore coordinate of body 

( ), ,p q r  
Rot. vel. componentss  tailx  

Aft coordinate of vehicle 

The derivation which applies directly to this work begins with a linearization of 

the simplified equations of motion show in Equation (28). 

( )= +Ax Bx g x  (28) 

The state vector x , and the state matrices A  and B  are defined as 
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,

0
0

,
0

0 0 0 1

v G r G p

G v zz r xz p

G v xz r xx p

v
r
p

m Y mx Y mz Y
mx N I N I N
mz K I K I K

φ

 
 
 =
 
 
 

− − − − 
 − − − − =
 − − − −
 
 

x

A

  

  

  

 

 

and 

0
0

.
0

0 0 1 0

v r p

v G r p

v G r p

Y U Y U mU Y U
N U mx U N U N U
K U mz U K U K U

− 
 − + =
 +
 
 

B

 

 

All nonlinear terms of the equations of motion are contained in the ( )g x  term: 

( ) ( )( )

( ) ( )( )

( ) ( )

2 2 2
1

2 2
2

2 2
3

4

sin ,

sin

cos sin ,

0

nose

r y
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nose

r y
tail

x

G G r D x

x

xy yz G G B r D x

xy yz G prop G B G B

g y p y r W B Y U C h x v xr v xr dx

g I p I pr y vr x W x B N U C h x v xr v x

g I pr I r my vp U K y W y B z W z B
g

δ

δ

φ δ

φ δ

φ φ

= + + − + − + +

= + + + − + − + +

= − − − + + − − −

=

∫

∫

 

 

Since this analysis is only interested in the linear approach, the nonlinearities 

expressed in the ( )g x  term must be linearized using a Taylor series expansion about an 

initial starting point 0x . 

0

0
0

0

0

0

v
r
p
φ

 
 
 = =
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 
 

x

 

 

The linearized equations of motion can now be written in matrix form 
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′ ′=A x B x  (29) 

where ′A  and ′B  are defined as follows: 

,

.

0 0 1 0

v r p

v G r p G B

v G r p G B

Y U Y U mU Y U W B
N U mx U N U N U x W x B
K U mz U K U K U z W z B

′ =

− − 
 − + − ′ =
 + − +
 
 

A A

B

 

 

The next step is to conduct an eigenvalue analysis of the linearized system 

expressed in Equation (29) in order to assess the dynamic stability of the submarine.  

The polynomial form of the characteristic equation of the linearized system is given by: 

4 3 2 0.A B C D Eλ λ λ λ+ + + + =  (30) 

The coefficients of the characteristic equation are developed using algebra and 

will not be discussed in this concise summary of the derivation.   

Once the coefficients of the characteristic equation are known, the stability of 

the system can be examined using Routh’s criterion, which states that two inequality 

criteria must be met in order for the vessel to be stable.  Since the purpose of the 

maneuvering discipline is to determine the limiting case of a loss of dynamic stability, 

the first criterion is set equal to zero, as is shown in Equation (31).    

2
2 0.BCD AD EB− − =  

(31) 

 The coefficients of this equation can be rewritten using algebra to be in the form 
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2
1 2 3

2
1 2 3

2
1 2 3

1 2

1 2

,

,

,
,

.

G G

G G

G G

G

G

A A z A z A
B B z B z B
C C z C z C
D D z D
E E z E

= + +

= + +

= + +
= +
= +  

(32) 

For a complete definition of the coefficients, 

1 2 3 1 2 3 1 2 3 1 2 1, , , , , , , , , , , ,A A A B B B C C C D D E and 2E , the author refers the interested reader 

to pages 14-16 in the Tsamilis thesis.  The lines of Equation (32) can be substituted into 

Equation (31), and the result can be rewritten as follows,  

5 4 3 2
5 4 3 2 1 0 0,G G G G GF z F z F z F z F z F+ + + + + =  

(33) 

where 0F  through 5F  are functions of the coefficients 1A  through 1E  .  Using Equation 

(33), and several values of the longitudinal location of the center of gravity, Gx , a 

corresponding value for the vertical center of gravity, Gz , can be determined.  The 

objective of the maneuvering discipline in this work is to maximize the number of these 

Gx  values that produce a stable, that is positive, value for Gz  subject to a constraint on 

the displacement. 

3.2:  Creation of the System-Level Objective Function 

SEER is a commercially available cost estimation software package that is 

capable of producing a sophisticated approximation of the financial burden of 

fabricating a particular product.  The version used for this research is SEER-DFM, taking 

its name from the popular industry concept of “design for manufacturing”.  SEER-DFM 
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allows for the modeling of the manufacturing costs of a product, in this case a 

submarine pressure hull.  In order to use SEER, the following steps are necessary:  

 

1. Develop the Work Breakdown Structure (WBS) of the product to be developed; 

2. Define all the types of production operations that are needed; 

3. Define the geometry of each component; 

4. Gather data about the production operations; and 

5. Input the data in the code (can be accomplished remotely). 

 

As is mentioned in the final step above, the SEER products enable remote 

operation via a text-based command file.  This fact is instrumental in incorporating the 

existing code into the larger MDO framework used in this research.  The costs for the 

components of the product are determined in the lower levels of the WBS and are 

basically divided into: 

 

1. Labor costs/unit – calculated using the time needed to do the work and the 

hourly labor cost.  Includes the setup costs for the machines needed to do the 

work; 

2. Material costs/unit – calculated using the material selected for the components;  

3. Tooling costs/unit – calculated using the machines/tools needed for the 

components. 
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Based on these costs, the SEER-DFM code determines the total cost/unit, using a 

bottom-up strategy, adding all the costs until the top level of the WBS is reached. 

 For this particular work, the five steps necessary to use the SEER code are all 

accomplished through the use of a MATLAB program.  This information is then written 

and saved to a text-based command file, the MATLAB code calls the SEER code and uses 

the command file for input.  The SEER code processes the information in the command 

file and outputs a file with results which are read by the MATLAB code and integrated 

into the MDO routine.  The details of these operations are discussed below.   

 As is illustrated in the WBS for the submarine pressure hull in the “System-Level 

Optimization” box on the left side of Figure 4 of this chapter, the first step in the process 

is to fabricate the hull itself.  Industrial knowledge [89] indicates that submarines are 

constructed in a series of modules or hoops, which are then joined together.  In order to 

accomplish this, the pressure hull must be further broken down from the  ,ph aL ,  ,ph pmbL , 

and ,ph fL  measurements, which were calculated in the deck area discipline, into hoops. 

These hoops must then be formed and populated with decks and a limited outfit before 

they are joined together to form the pressure hull itself.   

The process of breaking the hull down further into hoops is accomplished in two 

steps.  First, the pressure hull is segmented using bulkheads.  The aftmost section is 

assumed to be 11.583 meters long and the foremost section to be 9.144 m long—values 

which were brought from the literature [91]—and the remaining length of the hull is 

considered to be a uniform cylinder interrupted only periodically by kingposts for 
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stiffness.  These three sections are then split up further into actual hoops in the 

following manner. 

In the affordability discipline code, the dimensions of each hoop are determined 

automatically.  The standard hoop width is set to four times the frame spacing.  This 

hoop width is then used to divide the three lengths of the pressure hull into the number 

of hoops that will make up each of these sections.  The result of this breakdown is a 

certain number of standard hoops, and one “leftover” hoop of some nonstandard width, 

for each section.  The diameter of the pressure hull is then used to determine the length 

of the piece of material that will be formed into these hoops.  The thickness of the plate 

is a design variable, and therefore it is easily passed to the affordability discipline.  

Finally, since the hoop widths are not uniform along the length of the hull, an array of all 

hoop widths is generated to be used later in the code.   

Creating values that define the dimensions of the endcaps is not as involved as 

creating the dimensions of the hoops.  Since each endcap is modeled as a hemisphere, 

the radii of these hemispheres serve as the main dimension necessary to define their 

construction.  The fabrication process for the endcaps is assumed to include the dual-

axis bending of four plates into the shape of ¼ of each hemispherical endcap.  The 

dimensions of these plates are easily obtained from the geometry of a hemisphere, and 

therefore the input dimensions for the code are also readily available.  The thickness of 

the endcap was calculated in the structures discipline and is passed to the affordability 

discipline accordingly.   
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Once the dimensions for the hoops and endcaps have been created and stored, 

the next step is to populate the matrix which contains the dimensions for the decks of 

the vessel.  The necessary dimensions of the decks have already been calculated in the 

deck area discipline.  These values are passed to the affordability code at this stage.  It is 

during this stage of the affordability code that the bulkheads are also manufactured. 

The dimensions of the material that makes up each section of the pressure hull, 

are not the only inputs into the SEER-DFM program which must be entered.  There are 

also several additional inputs, most of which are specified in the input data file for the 

SEER code, that provide specifics to the program concerning the manufacturing process 

being modeled.  These additional inputs include such things as material used (low 

carbon steel), the material yield for each part (varies), the type of procedure being 

performed (plate roll bending on several), and specific information about the details of 

the procedure (the form diameter and number of passes for the plate roll bending 

procedure).   

After every major piece of the pressure hull has been fabricated, it must then be 

assembled into the complete hull.  In order to accomplish this task, the affordability 

discipline counts the total number of parts that must be assembled and measures the 

total length of the weld that must be run in order to complete the pressure hull.  A 

general weight category is assigned to each part type, i.e. hoops, decks, endcaps, 

bulkheads, structure for each of them, etc., along with a general distance traveled.   

All of this manufacturing data is saved by MATLAB into one matrix and passed to 

a text-based file.  MATLAB then calls the SEER-DFM package to take the data and 
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process it as a command file input.  Once SEER-DFM has completed its simulation, it 

sends its output file to be read by MATLAB.  The output file contains per unit cost 

information for each level of the WBS, as well as summary for each type of cost, i.e. 

labor, material, and tooling, and total cost for the entire manufacturing process.  

3.3:  Benchmarking and Single Discipline Optimization Results 

Before the single discipline optimization results are discussed, a note must be 

made regarding the normalization of the design variable and objective function values 

used in this work.  The design variables have been normalized between 0.5 and 1.5 using 

their maximum and minimum values.  The objective function values are multiplied by 

100, a measure shown through experience with the MDO algorithm to improve 

performance, and then normalized using the objective function value given when all 

design variables are at the midpoint of their range.  Lastly, the displacement constraint 

was set to the value that results when all design variables are at their midpoint.  The 

objective functions are defined as in Equation (34). 

( )1max f =x  Deck Area 

( )2min f =x  Effective Power 

( )3min f =x  Structures 

( )4max f =x  Maneuvering 

( )5min f =x Affordability 

(34) 

In Equation (34), the subscripts “ 1 ” through “ 5 ” denote the different objective 

functions that were optimized in this section.  Single discipline optimization of the 

discipline level and system level objective functions was completed using a straight 

Monte Carlo simulation, coupled with engineering logic and experience.  The author 
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chose a Monte Carlo over other non-gradient-based methods, such as a Particle Swarm 

Optimizer, or Genetic Algorithm, since the disciplines were relatively inexpensive in 

terms of computational time.  In addition, based on previous experience, a PSO 

algorithm is not necessarily less computationally expensive, nor does it produce 

appreciable improvement in the results, when compared to a Monte Carlo solution.  The 

Monte Carlo simulation was allowed to progress until 2500 points were found that 

satisfied all constraints.  Table 13 lists the minimum values for each discipline that were 

found during the exploration of these five objective functions using the Monte Carlo 

simulation.   

In addition to using the Monte Carlo results as a method of finding the single 

discipline optimization results—in actuality, in keeping with the original motivation for 

using a Monte Carlo algorithm—the results were also used to create plots relating 

affordability to each of the other discipline level objective function results.  These plots 

are discussed later in the chapter. 

3.4:  Background for Multidisciplinary Design Optimization (MDO) 

The basic framework for the MDO analyses conducted in this phase of the 

research was outlined in detail in section 2.3 of this dissertation. 

3.5:  Multidiscipline Optimization and Results 

Once the ranges for each design variable were selected, the values that 

correspond to a normalized value of 1.0 were considered to comprise the nominal 

design and the starting point for the optimization. 



 

74 
 

The objective functions involved in the multidiscipline optimization are defined similarly 

as those involved in the single discipline optimization.  The only change is that the 

affordability objective function is no longer ( )5f x , but is now the top-level objective 

function, or ( )Tf x  , where the subscript “ T ” denotes “top”.  Table 13 compares the 

MDO results to those from the single discipline optimizations as discussed previously.   

It can be seen from Table 13 that, although the MDO results posted significant 

losses when compared to the benchmark single discipline optimization results, it indeed 

improved in every single one of the disciplines compared to the affordability-based 

single discipline results.   

Table 13:  Comparison of MDO Results 

Value Starting 
Point 

Deck 
Area 

Effective 
Power 

Structures Maneuvering Cost MDO 

(1)x  1.0 1.5 0.52 1.0 1.5 1.40 1.50 

(2)x  1.0 1.5 1.3 1.2 1.2 0.86 0.75 

(3)x  1.0 1.5 1.1 1.0 0.56 0.81 1.02 

(4)x  1.0 1.5 0.89 1.0 1.51 1.37 1.50 

(5)x  1.0 1.0 1.0 0.96 1.0 0.92 1.37 

(6)x  1.0 1.0 1.0 0.53 1.0 1.04 0.74 

(7)x  1.0 1.0 1.0 0.5 1.0 1.32 1.12 

(8)x  1.0 1.0 1.0 0.5 1.0 0.83 1.49 

(9)x  1.0 1.0 1.0 0.5 1.0 1.07 0.99 

(10)x  1.0 1.0 1.0 0.5 1.0 1.42 0.68 

( )1f x  
100 39.9 104 84.4 81.4 133 131.12 

( )2f x
 

100 162 99.0 115 129 105 103.03 

( )3f x
 

100 80.3 90.8 68.5 89.5 115 101.63 

( )4f x
 

100 100 130 108 72.2 81.3 81.27 

( )Tf x
 

100 256 128 133 139 80.4 72.56 
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Table 14 highlights the percent change associated with each of these differences.  

Italicized and bolded values indicate a worsening of the performance criteria. 

Table 14:  Percent Improvement of MDO values 

Value % change 
(from best in discipline) 

% change 
(from starting point) 

% change 
(from best-cost) 

( )1f x
 

229 31.1 1.15 

( )2f x
 

4.07 3.03 1.96 

( )3f x
 

48.4 1.63 11.5 

( )4f x
 

12.6 18.7 0.00 

( )5f x
 

9.8 27.4 9.8 

 

To summarize the contents of Table 14 in practical terms, the MDO submarine 

will be 229% smaller than the submarine designed just for the maximization of deck 

area.  It will require 4% more power to propel it through the water at a given speed than 

the hull designed with just this parameter as a goal.  Its structure will be 48% less 

efficient than the most structurally efficient design, and it will be 13% less dynamically 

stable than the most dynamically stable design.  Perhaps more telling is the fact that the 

MDO submarine will cost 9.8% less than the least expensive design if just cost is taken 

into consideration and nearly 30% less than the starting design.  

In addition to a tabular representation of the results, it is helpful to see where 

the MDO design falls in the design space using graphical means.  Figures 5 through 9 

highlight the location of the MDO point, and the path the algorithm followed to get 

from the starting point to that MDO-optimum point, compared to the points 

determined by the Monte Carlo simulation using plots of each discipline objective 
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function versus the affordability objective function.  All results in these figures are 

unitless and the affordability is always plotted horizontally.  

From the normalized deck area vs. affordability plot, it is obvious that the MDO 

algorithm has arrived at a very good point.  Not only is the point at a minimum cost, as 

will be seen throughout the remaining three plots as well, but it is also at a 

comparatively high deck area, i.e. the elbow in the front at approximately 80 on the 

affordability axis was avoided.  It is also worth noting that the algorithm chose the 

correct direction to progress from this elbow, that is to the higher deck area, but lower 

cost, point.  Finally, it can be seen from Figure 5 that the MDO algorithm did not simply 

select the lowest cost design.  It explored these points, but pulled itself back due to the 

interaction between the top-level and the discipline-level objective functions.  Similar 

conclusions can be drawn when examining the points in Figures 6, 7, and 8.  The MDO 

solution identified the configuration with the lowest system level objective while at the 

same time improving each discipline objective to the largest possible extent.   

In addition to those contained in Figures 5 through 8, one additional summary 

plot is presented in Figure 9.  The purpose of this plot is to show how the MDO 

algorithm performed compared to a more traditional multi-objective type of 

formulation.  It can be seen from this figure that the MDO algorithm out-performed this 

simple weighted sum (all weights are equal) approach.  



 

 

 

Figure 5:  Normalized Deck Area vs. Affordability 
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Figure 6:  Normalized Effective Power vs. Affordability 
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Figure 7:  Normalized Structural Buoyancy Factor vs. Affordability 
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Figure 8:  Normalized Dynamic Stability vs. Affordability 
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Figure 9:  Sum of Top- and Discipline-level Objective Function Values vs. Affordability 
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CHAPTER 4:   
AN IMPROVED COST ESTIMATION METHODOLOGY FOR THE DESIGN OF COMPLEX 

ENGINEERING SYSTEMS 
 

The main objective of this chapter is the creation of a higher fidelity cost model 

for the manufacture of a complex engineering system.  Secondary objectives include:  

1.) the application of methodologies from datamining in order to learn more about a set 

of cost data and 2.) an investigation of various regression-type methods that allows the 

lessons from the datamining analysis to be used to improve the predictive capability of a 

cost estimation model.  The use of more sophisticated methods will aid in gaining insight 

into novel economic drivers in a cost data set derived from physical parameters and 

historical cost information and in developing a meaningful relationship between 

predictive (physical parameters) and response (cost) variables.  Figure 10 outlines the 

approach taken in this research to meet these objectives.  The steps in Figure 10 are 

outlined in depth in the next section of this chapter. 

 The method covered in this chapter introduces principal component analysis 

(PCA) into the modeling of cost in the design of a complex engineering system.  

Additionally, the outputs from PCA are used to improve a sophisticated regression 

model based on an adaptive Kriging method.  The result is a cost estimation 

methodology, the “Method of Improved Cost Estimation for the Design of Complex 
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Engineering Systems” or MISERLY, which has a much higher fidelity and increased 

predictive capability when compared to methods currently in use.  The next section of 

this chapter will cover the steps of MISERLY.   This section will be followed by three 

which provide background and theoretical foundation for the algorithms and methods 

used by the MISERLY process.  The background and theoretical foundation for the 

process will be followed by a section framing the case study used to apply the MISERLY 

process, and the chapter will close with results, closure, and acknowledgements 

sections. 

 

Figure 10.  A graphical representation of the steps associated with MISERLY  

4.1:  MISERLY:  Step-by-Step 
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Figure 10 above provides a graphical representation of the steps taken by 

MISERLY in the creation of a higher fidelity cost model.  These steps are described in 

further detail in this section. 

 

a. Original Data:  The original data set is made up of physical parameters and 

historical cost records that are gathered for a given complex engineering system.  

Examples of a complex engineering system include, but are not limited to:  ships, 

aircraft, spacecraft, advanced ground vehicles, submarines, offshore oil and gas 

platforms and other energy production facilities, and large land-based structures 

subjected to a diverse set of dynamic loads.  Ideally, several copies and/or 

versions of this complex engineering system have already been constructed.  The 

original data set consists of the X  (physical parameter) and Y  (cost parameter) 

matrices that should be arranged as shown in Equation (35). 

 

(35) 

In these relationships, the X  matrix consists of the p  physical 

parameters of the n  different designs upon which data was gathered.  Similarly, 

the Y  matrix consists of the q  historical cost parameters which were gathered 

for each of the n  designs. 

b. Engineering Build-up Model:  An interim engineering build-up cost model is 

created from this original data set.  This engineering build-up model must be 

11 1 11 1

1 1

X= ;Y=
p q

n np n nq

x x y y

x x y y

   
   
   
   
   

 

     

 
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formulated from a combination of sound engineering judgment and experience 

in the particular domain of the system in question.  It also must be capable of 

recreating the values contained the original data set. 

c. Expanded Data:  An expanded data set is generated using this engineering build-

up cost model.  The expanded data set should be considerably larger, by at least 

an order of magnitude, than the original data set.   

11 1 11 1

e e

1 1

X ;Y
p q

m mp m mq

x x y y

x x y y

   
   

= =   
   
   

 

     

 

where  m  >> n     

(36) 

Here, eX  is the expanded matrix of physical parameters and eY  is the 

matrix of expanded cost parameters.  The physical parameters chosen to 

populate the expanded data set should represent a uniform distribution 

throughout the feasible design space.  The expanded data set should include the 

original data set. 

d. PCA and Component-Influenced Parameters:  The expanded data set of physical 

parameters eX  is then analyzed using principal component analysis (PCA).  Two 

outputs from the PCA, the C  array and U  matrix, are used to identify which of 

the original p  physical parameters, and which of the principal components (PCs) 

that are output from PCA, account for the greatest amount of variation in the 

design.  Each high-variation PC is composed of values that are treated as weights 

and are denoted by the variable w .  These weights are used to create one 

component-influenced parameter, or a weighted sum of the original design 
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variables, for each PC.  Component-influenced parameters are denoted by the 

variable t .  When the PCA step is finished, there will be r  physical parameters 

and s  PCs identified as high-variation.  A more thorough discussion of the 

concept of component-influenced parameters is undertaken in the next section.  

e. Improved Data:  A set of predictor variables is developed using the r  high-

variation physical parameters from the original set and s  component-influenced 

parameters which were calculated using a weighted sum of the physical 

parameters in the original data set.  Equation (37) shows the structure of this 

improved data set, X∗ . 

11 1 11 1

1 1

X
r s

n nr n ns

x x t t

x x t t

∗

 
 =  
 
 

 

     

 

   

(37) 

 

f. Adaptive Kriging:  This new set of predictor variables is regressed, using the 

sophisticated adaptive Kriging method, on the historical cost values (response 

variables), or the Y  matrix from Equation (35).  The adaptive Kriging method 

engages the engineering build-up model in order to create additional data in 

areas of the design space that are covered in a deficient manner by the improved 

data set.   

 

Once the adaptive Kriging model has identified and corrected problem areas in 

the model, the high fidelity cost model is ready to be employed in predicting cost 

information given a new set of physical parameters.  Now that the steps of MISERLY 
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have been outlined in detail, the next three sections will build the theoretical 

foundation upon which the process was built. 

4.2:  Principal Component Analysis  

PCA is a method for reducing the dimensionality of a set of data while still 

retaining most of the variation in the data set.  This reduction in dimensionality allows a 

large, complex data set which relates thousands, or even tens of thousands, of variables, 

to be expressed by a new set, usually much smaller in number, of variables.  In most 

cases, these new variables are linear combinations of the original variables, and identify 

directions in the data along which variation is the maximum [226].  A specific 

relationship between these individual components is not defined in PCA.  The mechanics 

of PCA are summarized in [228], and are presented here for completeness. 

There are several methods for performing principal component analysis, the 

most popular being dubbed R-, Q-, and N-analysis.  The most general method of these is 

N-analysis, also known as singular value decomposition (SVD).  N-analysis was chosen 

for this work due to this generality, as well as the method’s simplicity.  Although N-

analysis requires familiarity with a new algorithm (SVD), it is a single-stage procedure 

that contrasts with the two-stage R- and Q-analyses.   

The fundamental identity of SVD:  

1
2X=ZL U′  

(38) 

decomposes the centered and scaled n p×  data matrix  X  into the p p×  U  and 
1
2L  

matrices and the n p×  Z  matrix.  The U  matrix represents the characteristic vectors of 
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X X′ , Z  the characteristic vectors of XX′ , and 
1
2L  is a diagonal matrix that is function 

of their characteristic roots. 

For this work, the matrices of interest from SVD are the U  and 
1
2L  matrices.  

The diagonal elements of the 
1
2L  matrix were converted into an array and then modified 

in order to facilitate interpretation using the following relationship: 

21
2
ij

i

L
C =

-1n

 
 
 
 
 

 where i = j = 1,2,…,p 

(39) 

By performing this modification, the C  array, like its source 
1
2L  matrix, contains 

a ranking of the amount of variance accounted for by each of the p  PCs.  The benefit of 

the modification is that the sum of the values in the C  array now equals p .  This is 

powerful because it relates each of the PCs to the physical parameters.  If one of the PCs 

has a value in the C  array that is greater than one, it accounts for greater variation than 

any of the design variables.   

The U  matrix is not modified in this work.  The columns of the U  matrix 

correspond to each PC while its rows correspond to each of the original physical 

parameters.  Therefore each PC contains weights for each of the original predictor 

variables.  These weights can also be interpreted as an indication of the importance of 

each of these predictor variables in each of the PCs.   

When the high-variability PCs are engaged in creating the component-influenced 

parameters, each of their values is treated as a weight for the corresponding physical 
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parameter.  The component-influenced parameters are then a sum of these weighted 

physical parameters: 

{ }
1

jk 1=
k

j jp

pk

w
t x x

w

 
 × 
 
 

   where j = 1,2,…,n and k = 1,2,…,s 

(40) 

In this relationship, j  refers to the number of designs in the original data set, 

and k  to the number of principal components determined to be high variation PCs.  This 

analysis follows that contained in section 12.3.1 of [228] except that Adaptive Statistical 

Kriging, which is covered in the next two sections, takes the place of the regression 

methods, i.e. latent root regression, partial least-squares regression and maximum 

redundancy, used in the reference 

4.3:  Statistical Kriging Models 

The Kriging model is based on treating ( )Z x , the difference between the actual 

performance variable ( )y x  and a regression model prediction ( )F̂ x , as a stochastic 

process:  

( ) ( ) ( )ˆy F Zx x x= +  

 
(41) 

Where x  is the d-dimensional vector of the variables that defines the point 

where the performance variable is evaluated, and “d” is the number of variables.  A 

regression model which is a linear combination of “m” selected functions ( )f x  is used 

here: 
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( ) ( ) ( ) ( )T
1 1F̂ f ... f fm mx x x xβ β= + + =   

 
(42) 

where { }T
1 1, ,... mβ β β β=  are regression parameters.  ( )Z x  is considered as a normal 

process with zero mean and a covariance that can be expressed as: 

( ) ( )( ) ( )2cov Z , Z , R ,i j i jx x x xσ=   

 
(43) 

where 2σ  is the process variance and ( )R ,i jx x    is the spatial correlation function.  The 

equation used for the spatial correlation function is a Gaussian spatial correlation 

function: 

( ) ( )( )2

, ,
1

R , exp
d

i j k i k j k
k

x x x xθ
=

= − −∏   

 

(44) 

and it indicates a process with infinitely differentiable paths in the mean square sense.  

kθ  is the correlation parameter that corresponds to the kth component of the d-

dimensional vector of the random variables x , i.e. k = 1,2,…,d; and θ  represents the 

vector of the kθ  parameters.  For a set sx  comprised of “n” number of sample points  

{ }1 1, ,...,
si
T
s s s sn

x
x x x x=



   

 where i = 1,2,…,n 
(45) 

The corresponding performance variable sy  is considered known and its values 

are defined as: 

( ) ( ) ( ){ }T
1 2, ,...,s s s sny y x y x y x=   

 
(46) 

The vector of correlations between the sample points sx  and the evaluation 

point x  can be expressed as: 
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( ) ( ) ( ) ( ){ }T
1 2R , ,R , ,...,R ,s s snr x x x x x x x=       

 
(47) 

The correlation matrix [R] is also defined among all the sample points: 

[ ] ( )si sjR R x , x
nxn

 =   

 
(48) 

The spatial correlation function in Equations (47) and (48) has been defined by 

Equation (44).  In the Kriging method the value of the performance function evaluated 

by the metamodel at the evaluation point x  is treated as a random variable.  The 

computation of β  and ( )Z x  in Equations (41) and (42) is based on minimizing the 

mean square error (MSE) in the response: 

( ) ( ) ( ) 2ˆ ˆMSE x E x xy y y= −        

 
(49) 

subjected to the unbiased constraint: 

( ) ( )ˆE x E xy y=       

 
(50) 

The matrix R and the parameters β  and 2σ  depend on θ .  Once θ  is 

determined, the regression parameter β  and the variance 2σ  can be computed as: 

( ) 1T 1 T 1ˆ
sF R F F R yβ

−− −=   



 
(51) 

( ) ( )T
2 11 ˆ ˆˆ s sy F R y F

n
σ β β−= − − 

 

 

(52) 

where  the matrix F  is defined as ( )jf si nxm
F x =  


 .  The value for the response of 

interest is computed as: 

( ) ( ) ( ) ( )T T 1ˆ ˆˆ x f x sy r x R y Fβ β−= + −     

 
(53) 
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In the traditional Kriging method, the optimal value of θ  is computed as the 

maximum likelihood estimator of the likelihood function: 

( ) ( )

( )
( )( )

( ) ( )

2 2

T
1

2
22

, , , ,

ˆ ˆ1, , exp
22 det R

s s

s s
s

L y p y

y F R y F
p y

θ β σ θ β σ

β β
θ β σ

σπσ

−

=

 − − = −  
 

 

 

 



 

(54) 

where ( )2, ,sp y θ β σ  is the multivariate normal distribution for the “n” observations 

sy  given the model parameters θ , β , and 2σ .  In the ordinary Kriging method this is 

accomplished by minimizing the product ( )( ) ( )1/ 2det R
n
σ 

    while neglecting the 

variations in the model parameters θ , β , and 2σ . 

4.4:  Adaptive Kriging Models 

This section presents the development of an adaptive metamodel generation 

code. The code determines a specified number of adaptive sample points that are 

generated from an initial metamodel in regions of the variable domain defined 

according to the specified target result of the modeled function. 

As mentioned above, a metamodel is a technique used to predict the response 

of a process and intends to reduce the number of expensive numerical simulations, and 

hence, reduce the computational cost.  In this work, it has been applied as a 

sophisticated interpolation function with the purpose of increasing the predictive 

capability of a parametric cost estimation model.  The metamodel predictor of a process 

defined by a relation ( )Y X , where { }1 2, ,... mX X X X=  and 
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( ) ( ) ( ){ }1 2, ,... nY Y X Y X Y X=  is constructed based on experiments, which consists in a 

series of sample points X   and their correspondent response Y .  

The adaptive metamodel intends to generate more accurate responses Y  of the 

modeled function ( )Y X  when the responses Y  are inside or in the vicinity of a desired 

target response T .  The target T  can be defined either as a single value or as a 

response region with minimum and maximum values, { }min max,T T , as shown in Figure 11.  

Hence, the adaptive metamodel generated in these regions with response inside or in 

the vicinity of T  will be more accurate due to the presence of a larger number of SP’s 

conveniently distributed than the metamodel created by sampling all SP’s with random 

generators. 

The adaptive metamodel is generated from a previous conventional metamodel.  

The criteria for determining the new adaptive SP’s is to reduce the mean square error 

(MSE) of the metamodel for responses Y  inside the target response region T .  It is also 

desirable to consider regions in the vicinity of T , such that responses Y  that are 

outside T  due to errors in the initial metamodel evaluation can also be improved. 

From the initial conventional metamodel, the mean square error (MSE) is 

estimated inside the domain of the input variable X .  By defining the target region T , a 

weight function, W , is calculated, such that W  is higher when the modeled function 

result approaches or is inside T .  The new adaptive SP’s are attracted to the target 

region based on the values of W MSE× .  Hence, if in the variable domain a position has 

a high value of MSE and is inside T  (high value of W ), it is a potential candidate to 

receive a sample point there.  Regions with very small MSE inside T  or regions with high 
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MSE with results out of T  have a smaller probability of attracting adaptive SP’s.  

Regions outside and far from T  (small value of W ) and with small MSE will have 

virtually zero probability of receiving a SP.  

 

Figure 11.  Metamodel response ( )Y X  and target regions of response T . 

The weight function W  must be flexible in order to attract adaptive SP’s to 

positions where the MSE is large enough to provoke an error in the estimated function 

value such that it can take this value out of the target region.  Several types of weight 

functions can be used.  These functions are similar to probability density functions, with 

a higher probability of sampling a SP inside the target region and a smaller probability 

outside it.  A suitable weight function is based on an exponential decay and considers 

both the MSE and a user defined decay parameter 2
εσ  for selecting the size of the 

domain of interest.  This function is shown in Equation (55).  
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( )
( )( )

( )

2

2 22
k

K

m X T

s X
W X e εσ

 − −
 + =

 

(55) 

where:  

( )W X  = weight function at X coordinates; 

X  = coordinates of the variables (example: for a two dimensional metamodel: 

1 2,X x x= ); 

T  = target value; 

( )km X  = metamodel prediction of ( )Y X  at X  coordinates; 

2
εσ  = parameter that defines the size of the domain of interest (works like a 

variance, which increases or decreases the length of decay of the exponential); and 

( )2
ks X   = MSE of the Kriging Metamodel at X  coordinates. 

If the response target value T is defined as a region delimitated by values 

{ }min max,T T , as shown in Figure 11, Equation (56) is used to determine the weight 

function in the following way: 

( ) ( )( )
( )

2

2 22

1
k

K

m X T

s X
W X

e εσ

 − −
 + 


= 

    

if ( )km X  is inside T  

if ( )km X  is outside T  

(56) 

If the target value T  is defined as a single value (not a region), Equation (56) is 

used directly, presenting a maximum value of ( )W X  equal to 1 if the metamodel 

prediction of function ( )Y X , ( )km X , is equal to the target T . The value of the weight 
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function ( )W X  decays exponentially as the value of  ( )km X   goes away from the 

target T .  

The relative maxima of the product W MSE×  define the coordinates X  where 

the adaptive SP’s must be positioned.   

A summary of steps to be performed in the adaptive Kriging model follow. 

 

1. Create an initial metamodel with a specified number of SPs. 

2. Create the grid coordinates for determination of W MSE× , according to the 

domain. 

3. Determine the MSE (Mean Square Error) of the original Metamodel at the grid 

coordinates. 

4. Determine W at the grid coordinates, according to the target value, for the 

Adaptive Metamodel. 

5. Calculate W MSE×  at the grid coordinates. 

 

The peak values of the product of W and MSE indicate the positions that are 

close or inside the target region and that have a large MSE. These positions are the 

candidates to receive a new adaptive SP.  

Generate the new adaptive SP’s.  (The regions where the peaks of the function 

W MSE×  occurred are identified and the adaptive SP’s are generated in these regions.  

In order to eliminate very small peaks, a filter is used, which considers only the positions 

where the values of W MSE×  are larger than the average value of W MSE×  calculated 
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over the grid.  If more adaptive sample points than peaks are needed, the remaining 

SP’s are generated at positions defined according to a probability determined as: 

( )
1

Probability G

ii

W MSE

W MSE
=

=

∑
 where G = size of the grid 

(57) 

which considers only the filtered regions.  Positions with higher value of W MSE  have 

more chance to receive an adaptive SP.   

The results (new adaptive SP’s) are passed to the solver. 

4.5:  Case Study Definition 

Since actual cost information is not readily available from open sources, a 

conceptual submarine design was chosen as a generic and representative case study 

that highlights the nature of many manufacturing processes.  This case study is an 

extension of the system-level objective function created in Chapter 3 of this 

dissertation.  

A commercially available cost estimation software package was utilized to create 

the bottom-up cost model.  In reality, this bottom-up cost model would be created using 

the actual cost data and physical parameters from the actual manufacture of several 

designs.   

4.6:  Results 

The results of the case study are presented in a manner which matches closely 

the step-by-step discussion of how the MISERLY process is executed.   
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4.6.1:  Original Data   

The original data set for the case study consists of physical parameters and 

historical cost information for a hypothetical set of 50 designs.  As has been discussed, it 

is assumed that this data set would originate from actual cost data in a practical 

application of this method.  For this case study, the SEER-DFM model described in the 

previous section was used to generate the submarine cost data. 

4.6.2:  Engineering Build-up Model 

 The same SEER-DFM model that created the original data set for this case study 

is also used as a proxy for the engineering build-up model.  In a “real-world” application 

of this process, the engineering build-up model would have been created using the 

actual design data from the manufacturing of a class, or several classes, of submarines.     

4.6.3:  Expanded Data   

The engineering build-up model creates the expanded data set.  The physical 

parameters modeled in this work are those listed in the “design variables” section of 

Table 15, and the total cost and the total labor hours were the two pieces of cost 

information used.  The columns of the case study expanded data set are summarized 

below.  Thousands of designs (two orders of magnitude more than the original data set) 

comprised the expanded data set for this case study. 
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Table 15:  Data Variable definition 

Model variable Description 

1x  
Length of the parallel midbody 

2x  
Maximum hull diam. 

3x  
Aft form factor 

4x  
Forward form factor 

5x  
Frame spacing 

6x  
Plate thickness 

1y  
Total labor hours 

2y  
Total cost 

 

4.6.4:  PCA and Component-Influenced Parameters 

PCA can be used in many ways to investigate a data set.  For this particular work, 

PCA was performed on the several subsets of the expanded data.  PCA was performed 

on the top and bottom 10% of the data when sorted from highest to lowest total cost.  

This analysis was executed in an effort to determine the design variables which had the 

greatest effect on making a design expensive (or more affordable) to manufacture.  A 

myriad variations on this theme can be imagined by the interested researcher.  For this 

chapter, a more general application of PCA—that is to determine which physical 

parameters, and the resulting PCs, account for the majority of the variation in the 

data—is envisioned and discussed in depth here.  To realize this goal, PCA is executed 

on the physical parameters of the expanded data set.  The C  array and U  matrix from 

these calculations are included in Tables 16 and 17. 
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Table 16:  C Matrix for Conceptual Submarine Design Case Study 

C array 

PC1 PC2 PC3 PC4 PC5 PC6 

1.36 1.05 1.03 1.00 0.99 0.57 

Table 17:  U Matrix for Conceptual Submarine Design Case Study 

 U matrix 

 PC1 PC2 PC3 PC4 PC5 PC6 

pmbL
 

0.69 -0.30 0.14 0.00 0.02 -0.64 

D  -0.72 -0.19 0.09 0.05 -0.02 -0.66 

an  
0.05 0.88 0.19 -0.08 0.28 -0.31 

fn
 

0.06 0.23 -0.84 -0.03 -0.42 -0.24 

fL
  

-0.04 -0.05 0.11 -0.98 -0.18 0.00 

pt
 

-0.02 -0.19 -0.47 -0.19 0.84 -0.02 

 

The C  array and U  matrix contain a significant amount of information 

regarding the data set in question.  The C  array indicates how much of the variation in 

the model is accounted for by each of the PCs.  As was indicated earlier, the numbers in 

the matrix shown in Table 15 have added value—their importance can be compared 

directly to the original predictor variables due to a modification procedure followed in 

this work.  For this example, the 1st, 2nd, 3rd, and 4th PCs account for more variation 

than any single of the original predictor variables.  This fact is noted, and the four PCs 

will be used in the creation of the component-influenced parameters that will make up 

part of the improved data set.   

In addition to identifying which of the PCs account for more variability than any 

of the physical parameters, the raw numbers contained in the C  array show not only 

that the first PC accounts for the largest amount of the variation, but also, by looking at 



 

101 
 

the change in the amount of variation accounted for by each PC, that there is a much 

larger drop in importance between the first and second PCs.  In fact, the relative 

importance of the 2nd, 3rd, 4th, and 5th PCs are very close indeed, and they are much 

lower than the importance of the 1st PC.  It isn’t until the last PC that there is another 

significant drop in importance.  This relationship between the PCs aids in the next step 

of the method—looking at the original predictor variables in an effort to select the most 

influential.   

Like the C  array, the U  matrix also carries a tremendous amount of 

information.  Most importantly for this application, it relates each of the principal 

components to the original predictor variables.  For this particular example it was 

determined that the first PC accounts for a large amount of the variation of the data set 

and that the second, and subsequent, PCs account for a significantly lesser amount of 

the variation.  With this in mind, the first PC will be used to determine the most 

influential of the original values.  It is very obvious, when examining the absolute values 

in the first column of the U  matrix, that the first two variables, the length of the 

parallel midbody and the diameter, have by far the largest impact on the data.  In fact, 

their influence is so strong that the first PC can be assigned a general physical 

interpretation as the “Large Dimension Component”.   

In addition to their absolute values, there is significance in their opposite sign.  

After careful evaluation of the application of PCA to several instances, the author 

determined that the absolute signs of the weights do not matter, as has been observed 

in other applications of PCA as well, but the relative signs of the weights do.  The 
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opposite sign of the two weights in a PC indicates an inverse relationship.  In this 

particular instance, this inverse relationship has an important physical interpretation:  

there is a strong correlation between large values of the parallel midbody length and 

small values of the diameter and vice versa. 

4.6.5:  Improved data 

In this case study, the improved data set was composed of the first two original 

physical parameters, and the first four component-influenced parameters.  The matrix 

for the improved data is identical to that shown in Equation (37) with n = 50, r = 2,     

and s = 4.   

4.6.6:  Adaptive Kriging 

First, a Kriging model was created for the 50 “sample” points in both the original 

and the improved data sets.  Once these models were created, they were tested against 

10 additional points for which the response was known.  Additionally, two “advanced” 

regression tools discussed in the introduction, PLS and CART, were also used to create a 

model from the 50 “sample” points and tested against the same 10 sample points.  

Table 18 summarizes these results.   

Table 18:  Comparison of Regression Results (avg absolute % error) 

 PLS CART MISERLY 

Labor hours 38.6 33.5 2.28 

Total cost 303.4 520.7 4.21 
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Once a normal Kriging model had been created, an adaptive model was engaged 

in an effort to reduce the error of the cost model further.  A minimal amount of grid 

divisions (10) were chosen in the creation of the model with a low-cost target.  As 

indicated by a user-generated input file, the adaptive Kriging model determined 25 

points that were areas which should be examined further.  When the adaptive Kriging 

model had selected the 25 points, two new Kriging models were created.  The first was 

created using the 50 original sample points, and the second using 75 sample points (50 

originals plus 25 adaptive).  Both of these models were tested with 10 new points whose 

costs were known, and whose costs fell below the low-cost target value.  When these 25 

points were included in the creation of the new model, the mean error of the ten test 

points prediction of the total cost was reduced from 4.1% to 3.6%.  
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CHAPTER 5:   
COST ASSESSMENT UNDER UNCERTAINTY IN MULTIDISCIPLINARY SUBMARINE 

CONCEPTUAL DESIGN OPTIMIZATION 
 

The main objective of this chapter is the creation of an evidence theory-based 

algorithm for quantifying uncertainty, integrating the algorithm into an improved 

methodology for cost assessment and then utilizing this cost assessment under 

uncertainty model in an MDO framework.  Secondary objectives include:  demonstrating 

how multidisciplinary design optimization can increase the understanding of the 

multifaceted relationship between affordability and performance in the conceptual 

design of a submarine; employing first-order models for four representative engineering 

disciplines that are typical of those encountered in conceptual submarine design; and 

demonstrating the impact of considering cost uncertainties in the MDO decision-making 

process.  

The evidence theory-based algorithm presented in this paper for introducing 

uncertainty in the cost estimation process is utilized within a MDO analysis of a 

representative conceptual submarine design.  The MDO algorithm discussed throughout 

this dissertation is utilized for carrying out the optimization analysis.  The same 

conceptual submarine design study is also employed in the discipline-level.  The 

MISERLY cost model that is prescribed in Chapter 4 of this dissertation evaluates the 

system level objective function in the representative conceptual submarine design.  
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Finally, the influence of uncertainty on the optimal design and the effect on the cost 

estimation are also discussed. 

5.1:  Algorithm for Including Uncertainty in the Cost Estimation 

In this section, the new algorithm for integrating elements of the evidence 

theory in the MISERLY cost estimation model is presented.  The MISERLY process is 

described in detail in Chapter 4 of this dissertation. 

Numerical and computational models of physical phenomena, as well as safety, 

financial performance, and reliability, are finding more and more favor in commercial 

and government applications.  As these models are not capable of capturing the entirety 

of the systems they represent, various methods have been developed in order to 

quantify, or estimate, the uncertainty associated with the predictive capacity of this 

models.  Evidence theory, originally known as the Dempster-Schafer theory of evidence 

after its originators, is one such method.  Evidence theory is especially interesting in 

business and financial applications because it is able to handle both aleatoric (objective 

or traditional) and epistemic (subjective or lack-of-knowledge-based) uncertainty and 

presents a range of likelihoods that a certain event will occur.  This range of likelihoods 

is bounded by the two measures associated with evidence theory, belief and plausibility.  

A summary of the steps used in the integration of evidence theory into the system-level 

objective function for this study is presented here.  In order to illustrate the steps, each 

step below is tied to the integration of evidence theory into the MISERLY framework.  

The foundation for this algorithm is contained in [260]. 
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a) Function Definition:  A function or operation that will serve as an input/output 

mapping tool for the analysis is defined.  In this study, the input parameters are 

going to be the design variables.  The output value is cost, as calculated by 

MISERLY. 

b) Data Collection:  Data must be collected in order to quantify the uncertainty 

associated with the input parameters for the function defined in Step 1.  This can 

be done in several ways and can consist of actual, measured uncertainties as 

well as more subjective sources of uncertainty for relationships that cannot be 

readily assigned a measured uncertainty, or do not conform to a traditional 

distribution.  The  subjective uncertainty from  expert opinion regarding the 

relationship between design variables and cost is considered in this work.   

In this study, the “experts” comment on upper and lower values for two 

cost-influencing parameters, given values of a  and b , and likelihoods (called 

mass function values or Basic Probability Assignments, or BPA, in evidence 

theory) that the a  and b  values will fall between these upper and lower values.  

The data is compiled into la , ua , lb , and ub  vectors, which contain the lower 

and upper values of the two variables, and matrices containing the mass 

function values.  In this work, a  and b  are taken to be coefficients that 

determine the influence that the two most important design variables, i.e. length 

and diameter, as determined by MISERLY, have on the cost. 

The upper and lower value vectors are created by listing all values 

mentioned by the experts in ascending order for all (both, in this case) variables.  
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Thus, the lower value vectors, la  and lb , contain all of the listed values except 

the greatest one and the upper value vectors, ua  and ub , are all of the listed 

values except the least one.  The matrix of mass function values is of a three-

dimensional, lower triangular structure.  Each element in the matrix corresponds 

to a mass function value for a given upper value (row), lower value (column), and 

expert (third dimension) for a single variable.  An example of the structure for 

the a  variable mass function value matrix for the first expert is shown in 

Equation (58). 
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(58) 

c) Data Combination:  Once the data has been collected from all of the experts for 

each of the variables, it must be combined into one, two-dimensional matrix for 

each of the variables.  This is accomplished by averaging each element across the 

third dimension.  All non-zero mass function values for each variable, denoted as 

Am  and Bm  for this study, are then collected, along with their corresponding 

upper and lower variable values, and form the basis for the calculation of Cm , or 

collection matrix.  The elements of the d  dimensional, where d  is the number 

of variables (two in this example) with uncertainty, collection matrix are then 

calculated as the product of the non-zero mass function values for each variable.   
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Using this 2d =  example, Am  is arranged corresponding to the columns 

of Cm , and Bm  according to the rows.  Each element of Cm  is then calculated as 

the product of the mass function values of the associated Am  and Bm .  Each 

element of Cm  also has values corresponding to the upper and lower values of 

each of the variables that resulted in the collection matrix values.  In the space 

defined by axes for each of the design variables, the upper and lower values for 

each of the variables that correspond to each Cm  element create a d  

dimensional cube wherein the mass function is equal to the value in each 

element of the collection matrix.  

d) Create Output Range:  A discretized range of outputs from the function defined 

in Step 1 is calculated in Step 4.  There are several methods for doing this.  A 

Monte Carlo simulation is a fairly efficient method.   

e) Test Output Range:  Each entry in the discretized range of outputs created in 

Step 4, must now be tested against the d  dimensional cubes created in Step 3.  

If all design variable values within a d  dimensional cube satisfy the criteria in 

question (for this example, it is to determine the likelihood that a given design 

can be manufactured for less than a given cost) for the output value being 

examined, then the Cm  value for that d  dimensional cube will be counted in the 

belief measure sum.  If any of the design variable values within a d  dimensional 

cube satisfy the criteria in question for the output value being examined, than 
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the Cm  value for that d  dimensional cube will be counted in the plausibility 

measure sum.   

f) Collect and Plot Bel and Pl:  Once each of the function output values has been 

tested against each of the d  dimensional cubes, a Bel and Pl value can be 

calculated for each of the function output values.  These values can then be 

plotted against the function output values, and the evidence theory process is 

complete. 

 

In the representative conceptual submarine design application, the objective 

function value is the cost with Pl = 0.05, or that with only a 5% likelihood of being 

exceeded. 

5.2:  Creation of the Discipline-Level Objective and Constraint Functions 

In the conceptual submarine application presented in this chapter, the technical 

disciplines under consideration are:  deck area, resistance (or actually the effective 

power necessary to overcome this resistance), structures, and maneuvering (or dynamic 

stability).  The same low-fidelity, first-order models explained in Chapter 3 were chosen 

to model the four engineering performance disciplines.  It should be noted that 

examining each of these disciplines in the manner suggested in this work is not the way 

in which submarines are actually designed today since this chapter demonstrates the 

MDO process as applied to a conceptual submarine design based on models take from 

the open literature.  Due to the modularity of the MDO system, arrangements, 



 

110 
 

volumetrics, weights, and ship balance can be considered instead if representative 

models are available for each discipline.   

5.3:  Results 

The results of the multidisciplinary conceptual submarine design study are 

presented in two subsections.  The first highlights the results of the MISERLY analysis, 

including varying levels of uncertainty, for the starting point of the optimization.  The 

second presents the results of the MDO analyses that correspond to each level of 

uncertainty.   

5.3.1:  MISERLY Results, with Uncertainty 

The cost, without uncertainty, for the starting point of the optimization is 

normalized to 100 in order to clearly illustrate change.   

As is to be expected, the value of the cost no longer takes the deterministic value 

of 100 when uncertainty is introduced.  The following figures plot the Complimentary 

Cumulative Plausibility and Belief Functions, CCPF and CCBF respectively, against cost.  

Figures 12 and 13 provide a clear visualization of the result of the application of 

evidence theory to the costs associated with a single design point.  They also provide a 

means of understanding the top-level objective function for the MDO analysis 

performed in this work.  The optimization statements for the system and discipline 

levels are summarized below. 
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( )1max f =x  Deck Area 

( )2min f =x  Effective Power 

( )3min f =x  Structures 

( )4max f =x  Maneuvering 

( )5min f =x Cost, as indicated by ( )Pl 0.05Y> =  

(59) 

 

Equation (58) illustrates that the MDO analysis is working to maximize the 

internal deck area, minimize the effective power, minimize the buoyancy factor, 

maximize the maneuverability of the submarine and, at the system level, to minimize 

the cost that has only a 5% likelihood of being exceeded. 

5.3.2:  MDO Results 

Five cases were performed in this multidisciplinary conceptual submarine design 

optimization study.  Each of the cases were identical in structure and execution with the 

exception of how the uncertainty surrounding the relationship between two design 

variables and the cost was defined.  The five cases are summarized in the table below. 

 

Table 19:  MDO Case Definition 

Case Title Case description 
Base Deterministic relationship between variables 

  
Narrow Low uncertainty on both variables 

Wide High uncertainty on both variables 

A_wide High uncertainty on only the first variable 

B_wide High uncertainty on only the second variable 

 

The results from the five cases are tabulated below.   
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Table 20:  MDO Results  

Case Title Cost Deck Area Power Structures Maneuvering 
Base 39.1 

 

 

 

 

166.3 86.1 87.6 108.4 

Narrow 48.0 193.6 85.4 120.8 108.4 

Wide 151.5 94.6 108.6 87.8 86.7 

A_wide 124.4 100.1 106.7 92.8 100.0 

B_wide
 

66.9 146.8 95.0 134.8 86.7 

 

The emphasis of this paper is the integration of uncertainty into the cost 

assessment methodology and the impact this integration has on the results of a 

multidisciplinary design optimization study.  As such, the discussion will focus largely on 

the system level results.   

Table 20 shows, as would be expected, that the base case cost, i.e. the one 

without uncertainty in the relationship between the design variables and cost, is the 

lowest.  It also shows that the remaining costs relate to this base case in a logical 

manner, that is, added uncertainty raises the cost.  It is interesting to note the 

magnitude of the jump between the narrow bounds on uncertainty and the wide 

bounds on both variables.  To put it in perspective, there is a better than 50% 

improvement (lowering) in cost over the arbitrarily chosen starting design, even when 

narrow uncertainty surrounding the relationship between the design variables and the 

cost is included.  When that uncertainty is widened, there is a greater than 50% 

worsening (raising) of the assessed cost.   

To add even more interest to the analysis, it becomes obvious, from the A_wide 

and B_wide rows, that the two variables effect the cost very differently.  There is a 

general improvement, over the wide uncertainty results, if one of the variables are 
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returned to the narrow values.  The results in Table 20 show that uncertainty in the “B” 

variable’s relationship to cost is much more acceptable than uncertainty in the “A” 

variable’s relationship to cost.  To the designer, this indicates that efforts to eliminate 

uncertainty should be focused on the “A” variable.   

In a traditional method for considering uncertainty in design, a “safety factor” is 

added to the final design.  It can be seen from the remaining columns of information in 

this analysis that this method does not accurately reflect the true extent of the 

uncertainty’s effect on the design as indicated by the available information.  The 

relationship between uncertainty and cost is much more nuanced than can be captured 

by a simple safety factor, and the various types of uncertainty are also important to 

capture, and thus the recommended use of a technique such as evidence theory.  By 

incorporating uncertainty into the analysis from the beginning, a much more thorough 

understanding of how that uncertainty effects the final design can be achieved. 

The plots contained in Figures 14 through 17 provide a graphical representation 

of the final designs corresponding to each uncertainty case on the backdrop of a two-

dimensional design space.  Each of the black points on the plots represent a feasible 

design in that design space.  The green spot is the starting point of the design, and the 

various colored “x’s” are the final designs for each of the uncertainty cases.  Even 

though, as Equation (58) shows, the algorithm is working to maximize some objective 

functions and minimize others, all of the plots here are representing the minimization, 

that is the inverse of the objective function values in the case of the disciplines that are 

maximized.  Therefore the “ideal” design, from the perspective of just the two 
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dimensions shown, in each of the plots would be a design that is in the lower left corner.  

Notice that there are few of these ideal designs in the plots shown here.  What we see 

instead is a tradeoff between the various disciplines and the system level objectives.  

The exact definition of this tradeoff changes as the uncertainty model changes.  This is 

one of the strengths of an MDO analysis.   

Figure 18 is included simply to highlight a typical trajectory of a design through 

the design space.  There are several additional plots such as this one which could be 

created, but Figure 18 is presented here as a sample.   



 

 

 

Figure 12:  Final Deck Area and Cost design values for all uncertainty cases  
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Figure 13:  Final Effective Power and Cost design values for all uncertainty cases  
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Figure 14:  Final Structural Efficiency and Cost design values for all uncertainty cases  
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Figure 15:  Final Maneuverability and Cost design values for all uncertainty cases  
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Figure 16:  Representative design trajectories for two uncertainty cases in maneuvering discipline  
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CHAPTER 6:   
CONCLUSIONS AND RECOMMENDATIONS 

 

The preceding pages contain an exploration of how dwindling financial resources 

change the process of creating the complex systems that facilitate mankind’s existence 

on this planet.  Specific conclusions that can be taken from this exploration and a set of 

recommendation on where it can go from here are presented in this last chapter. 

6.1:  Conclusions 

In the first phase of this research, a particle swarm optimization (PSO) algorithm 

has been created, compared to existing optimization algorithms, and integrated into a 

multidisciplinary design optimization (MDO) framework which is based on the target 

cascading method.  The integrated MDO/PSO algorithm is applied to a conceptual ship 

design case study from the literature and the results are presented. 

The PSO algorithm is found to produce results of comparable quality to existing 

algorithms, but at a much higher computational cost.  Depending on the objective 

function and the starting point, the PSO algorithm is observed to find a better optimum 

than the existing gradient based algorithms.  Additionally, PSO is observed to perform 

worse, both in terms of minimum function value and computational expense, compared 

to a simple Monte Carlo (MC) model in a single and multicriterion environment.   
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The extreme computation cost associated with PSO was exacerbated by the multi-level 

approach to multidisciplinary design optimization (MDO).  Thus it is concluded that it is 

not feasible to obtain high fidelity results using this form of PSO as the driver for an 

MDO framework. 

Next, a geometric model for the internal deck area of a submarine was created, 

and resistance, structural design, and maneuvering models are adapted from theoretical 

information available in the literature.  Commercial cost estimating software was 

leveraged to create an automated affordability model for the fabrication of a submarine 

pressure hull that takes into account the physical dimensions of the submarine and the 

manufacturing process.  These five implementations were synthesized into a 

multidisciplinary optimization statement reflecting a conceptual submarine design 

problem.  The multidisciplinary design optimization (MDO) framework was used to 

systematically build a foundation for increasing the understanding of the multifaceted 

relationship between affordability and performance in the conceptual design of a 

complex engineering system.  The results from this coordinated effort governed by the 

response of a system-level objective, with special emphasis on defining the complicated 

relationship between performance and affordability metrics, were presented in both 

tabular and graphical form and discussed.   

Thirdly, a general method for improving the fidelity of cost estimation in the 

design of complex engineering systems is proposed and a case study addressing the 

fabrication of a submarine pressure hull is developed in order to illustrate this method.  

The new general method is known as MISERLY. In the case study, a significant level of 
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improvement is realized when the results from MISERLY’s final regression model are 

presented and compared to results from the original data set.   

Lastly, an evidence theory method for quantifying uncertainty was created and 

integrated into an improved methodology for cost assessment.  The cost assessment 

under uncertainty methodology was then applied as the top-level driver for the MDO 

analysis of a conceptual submarine design.  This MDO analysis was performed for five 

cases, each with varying levels of uncertainty associated with the relationship between 

the design variables and the resulting costs.  The results from the five cases showed the 

benefits of incorporating uncertainty in to a design study from the beginning. 

6.2:  Recommendations for Future Work 

It is recommended that the next step of this work be to replace the classic 

models for each discipline with higher fidelity models such as CFD, FEA, and internal 

arrangements optimization codes.  Additionally, the affordability model should be 

expanded to include the entire life-cycle costs associated with the production, sale, use, 

and disposal of a complex engineering system.  Another idea is that optimization 

algorithms capable of handling nonlinearities and singularities in complex mathematical 

functions should be brought to bear on these higher-fidelity models in order to ensure 

that the “best” optimum design results.  An effort could also be initiated that replaces 

the model-generated data in the MISERLY model with actual cost data from the 

manufacture of a complex engineering system.  This would allow the method proposed 

here to be applied in a real-world scenario and would greatly improve the applicability 

and validity of the method.  Lastly, the MISERLY driven MDO approach should be 
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applied to any variety of complex engineering systems.  Marine renewable energy 

systems, such as offshore wind and marine hydrokinetic systems, would benefit 

tremendously from this type of analysis since they, unlike more traditional energy (oil 

and gas) systems, which are capable of generating revenues that more than offset costs, 

are cost driven operations.
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