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Chapter I. 

Overview 

 

Schizophrenia (SZ) and Bipolar disorder (BD) are chronic, severe forms of mental 

illness that are accompanied by detrimental outcomes (e.g. suicidal attempts, substance 

abuse; Baldessarini, 2006; Simon et al., 2007). SZ is characterized by positive symptoms 

(e.g. hallucination and delusions), and negative symptoms (e.g. blunted affect and social 

withdrawal) and affects about 1.1 percent of the population. BD is characterized by 

recurrent episodes of mania and depression and affect approximately 5.7 million (2.6%) 

adult Americans (American Psychiatric Association [DSM-IV-TR], 2000; Kessler et al., 

2005; U.S. Census Bureau Population Estimates by Demographic Characteristics, 2005). 

Even though the historically Kraepelinian classification of mental disorders, and current 

nomenclatures make an explicit, fundamental distinction between dementia praecox 

(schizophrenia) and manic-depressive psychosis (bipolar disorder), clinically, BD with 

psychotic features often appears phenomenologically similar to SZ, which can lead to 

misdiagnosis (Goodwin and Jamison, 2007; Weiser et al., 2001).  This nosological 

distinction between the disorders has been widely accepted in the diagnosis and treatment 

of SZ and BD (Goodwin and Jamison, 2007), and has been supported by empirical 

research (Kendler et al., 1998; Dikeos et al., 2006). 
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 However, the delineation of a group showing the mixture of psychotic and 

affective symptoms (e.g. schizoaffective disorder, SAD) has led an alternative 

perspective that   BD and SZ disorders may actually be on the same psychosis-affective 

continuum (Crow, 1998). Although the schizoaffective disorder continuum hypothesis 

has not been fully supported (Cheniaux et al., 2008; Goldstein, Shemansky, and Allen, 

2005; Szoke et al., 2008; Vieta et al., 2001), recent genetic linkage studies have found an 

overlapping candidate region for susceptibility genes in BD and SZ, although specific 

candidate genes are not yet available (Maier et al., 1999). Epidemiological similarity has 

also been found in the two disorders including lifetime risk, stress vulnerability, and risk 

for suicide (Berretini, 2000). Furthermore, the literature suggests that both SZ and BD 

have similarly impaired cognition such as attentional and executive control (Burdick, 

Goldberg, and Harrow, 2006; Tabares-Seisdedos et al., 2003). In turn, executive control 

has been closely associated with impulsive behaviors which likely increase the risk of 

substance abuse and repetitive suicidal attempts in these populations (Christodoulou et al., 

2006).   

Neurocognitive studies have suggested that an array of frontal/executive function 

deficits in SZ and BD (Burdick et al., 2006; Hill et al., 2004; Shad et al., 2006; Szoke et 

al., 2008) may have a stronger genetic basis than the full clinical syndromes themselves 

(Bramon et al., 2005). Among the deficient components of executive functioning, 

response inhibition (withholding inappropriate behavioral responses) plays a very crucial 

role in organizing human behaviors (Bellgrove et al., 2005; Fassbender et al., 2006; 

Folstein & Van Patten, 2008; Kiefer et al., 1998; Kaladjian et al., 2007; Weisbrod et al., 

2000) and emotions (Goldstein et al., 2007; Hare et al., 2008; Schulz et al., 2009). Thus, 
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deficits in response inhibition may result in disorganized speech (e.g. derailment, 

tangentiality), difficulty with goal-directed behaviors, or impulsivity and related risk 

behaviors (e.g. suicidal attempts, substance abuse) that are commonly found in SZ and 

BD (Christodoulou et al., 2006; Enticott, Ogloff, & Bradshaw, 2008).  

One measure of response inhibition is the ability to withhold prepared responses 

in a specific context (Weisbrod et al., 2000). A task that is frequently used to investigate 

response inhibition is the Go/NoGo task, in which participants are asked to respond to the 

frequent target (Go trials), but to with hold a respond to the less frequent distracter 

stimuli (NoGo trials). A standard model of the Go/NoGo task suggests that prefrontal 

regions of the brain are responsible for inhibiting NoGo responses by signaling the motor 

system to override an automatic tendency to respond (Swick, Ashley, & Turken, 2008).   

Event-related brain potentials (ERPs) studies have identified two robust 

components that index the cognitive processes associated with the visual Go/NoGo: an 

early negative component with a fronto-central distribution between 250-400 millisecond 

(ms) post-stimulus (N200 component) and a late positive component with centro-parietal 

distribution between 300-600 ms after stimulus onset (P300 component). Both N200 and 

P300 are larger for NoGo trials than for Go trials, which suggested that withholding 

responses to less frequent NoGo trials requires more attentional resources than executing 

responses for Go stimuli (for review see Folstein and Van Petten, 2008; Polich, 2009). 

Enhanced P300 for NoGo trials has been considered a prominent index of inhibition 

(Eimer, 1993; Bruin, Wijers, and Van Staveren, 2001;  Folstein and Van Petten, 2008; 

Polich, 2009), while the nature of enhanced NoGo N200 amplitude is less clear (Donkers 

and Van Boxtel, 2004; Eimer, 1993; Nieuwenhuis and Yeung, 2003). Studies that support 
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that NoGo N200 is associated with inhibition have noted that it is enhanced with 

equiprobable Go/NoGo paradigm (Eimer, 1993; Van Boxtel, 2001), while proponents of 

conflict monitoring hypothesis have argued that NoGo N200 was enhanced for low-

frequency stimuli irrespective of whether these stimuli were associated with response 

execution (Go) or response inhibition (NoGo) (Donkers and Van Boxtel, 2004; Folstein 

and Van Petten, 2008; Niuewenhuis and Yeung, 2003).  Therefore, both interpretations of 

N200 need to be considered. 

Though a general reduction of P300 amplitude is arguably the most reliable 

biological findings among SZ (Pitchard, 1986; Regan, 1989; Keifer et al., 1998; 

Weisbrod et al., 2000, Wood et al., 2006), there has been little literature on whether such 

attenuated NoGo P300 is specific to SZ compared to SAD and BD. The specificity of SZ 

abnormal P300 is important because it provides key information whether such deficit is 

unique to schizophrenia (Chapman & Chapman, 1973; Garber & Hollon, 1991) and 

therefore whether it can become a physiological endophenotype of SZ. Supporting 

evidence of P300 as a promising endophenotype of schizophrenia, P300 amplitude 

reduction and P300 latency delay were found in patients with schizophrenia and their 

first-degree relatives (see Bramon et al., 2005 for review; Turetsky et al., 2007).  

Furthermore, given that the robust findings of NoGo P300 among SZ were obtained from 

simple non-affective stimulus (e.g. letters, shapes, symbols), studies on whether 

Go/NoGo responses in ERPs can be preserved with more complicated stimuli (e.g. 

emotional faces) are seemingly nonexistent. Because there are fewer studies of emotion 

in SZ than cognition (Kring & Moran, 2008), assessing the impact of emotion on 

cognitive response inhibition can fill a gap between research of cognition and emotion 
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among SZ. This eventually can contribute to developing more effective assessments and 

treatments for social cognition in schizophrenia, which requires higher cognitive 

functioning and emotional information processing (Barch, 2008; Green et al., 2005).  

In summary, for theoretical (e.g. diagnostic delineation between individuals with 

psychotic and affective symptoms) and clinical reasons (misdiagnosis), it is important to 

directly compare SZ, SAD, and BD (Daban et al., 2006; Szoke et al., 2008) in a single 

paradigm. Thus, this dissertation aims to investigate disorder-specific patterns of 

response inhibition among SZ, SAD, and BD by varying stimulus type utilizing the 

Go/NoGo paradigm in the following three studies: 

 (1) An archival study examining left-lateralized response inhibition deficit in SCZ 

compared to SAD and controls, 

(2) A original study examining response inhibition deficit in SZ compared to BD and 

controls, 

(3) The second original  study will further extend the first two studies by replacing letter 

stimuli of Go/NoGo paradigm into facial stimuli with four categories of emotions (e.g. 

happy, sad, angry, and neutral) comparing SZ, BD and controls.       

                                               



 

Chapter II. 

Inhibition dysfunction and event-related potentials in schizophrenia and 

schizoaffective disorder 

 

                                                Introduction 

 

Response inhibition, the ability to inhibit inappropriate responses in order to 

prevent detrimental social outcome, is a core mechanism of the frontal executive control 

system (Norman & Shallice,1986) and may be dysfunctional in schizophrenia (Henik et 

al., 2002; Thoma et al., 2007b; Wang et al., 2005).  In fact, the inhibition deficits in 

schizophrenic patients (SZ) noted in Kraepelin (1913) and Bleuler (1911) were described 

as similar to those shown by patients with frontal lobe damage (Berman et al., 1986; 

Bushcbaum et al., 1992). The purpose of this study is to investigate deficits in neural 

response inhibition that may support the notion of frontal lobe dysfunction of SZ. 

The neural mechanisms of response inhibition likely encompass structures of the 

prefrontal cortex (PFC) including inferior prefrontal cortex, anterior cingulate cortex 

(ACC), and/or supplementary motor area (SMA) (Aron et al., 2003; Chevrier, 

Noseworthy, & Schachar, 2007; Fassbender et al., 2006; Ford, 2004; Garavan et al.,1999; 

Kelly et al., 2004;Knight et al., 1999; Konishi et al., 1998). A response inhibition deficit 

6 
 



 

in SZ has been reported as reduced activation over left anterior cingulate cortex (ACC) 

and dorsolateral prefrontal cortex (dlPFC) (Rubia et al., 2001a), and right frontal and 

parietal regions (Fort et al., 2004).  

 Two components of the event-related brain potential (ERP) are widely utilized in 

investigating response inhibition. First, an enhanced P300 amplitude and delayed P300 

latency to the infrequent distractor (NoGo trials) compared to the frequent target (Go 

trials) has been regarded as an index of response inhibition because it requires more 

attentional resources to suppress an infrequent stimulus than to respond to more frequent 

stimulus , (Eimer, 1993; Polich, 2009).  In this paradigm, the P300 component is defined 

as a positive wave with centro-parietal scalp distribution at approximately 300 and 600 

ms post-stimulus (Hillyard et al., 1976; Johson & Donchin, 1980; see Polich, 2009 for 

review). N200 is a negative potential with a fronto-central peak that occurs around 200 

ms post-stimulus indexing an early process of response inhibition. There have been 

disputes as to the exact nature of the N200 component in the Go/NoGo task (Donkers and 

Van Boxtel, 2004; Folstein & van Petten, 2008 ;Nieuwenhuis and Yeung, 2003).  

Enhanced or delayed frontocentral N200 for NoGo stimulus (NoGo-N200) has be 

interpreted as either an index of cognitive effort in stimulus classification prior to motor 

response inhibition (Boruka et al., 2001; Donchin & Coles, 1988; Eimer, 1993) or as  

difficulty in conflict monitoring between a target and a distractor (Donkers and Van 

Boxtel, 2004; Nieuwenhuis and Yeung, 2003).  

Further, the neural indices of response inhibition may be lateralized. Specifically, 

recent fMRI studies with healthy controls or patients with frontal lobe damage have 

suggested that the right inferior PFC is the most strongly associated with response 
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inhibition (Garavan et al., 1999; de Zubicaray et al., 2000; Zheng, Oka, Boruka, and 

Yamaguchi, 2008) while others studies  have shown the strongest activation over left 

inferior frontal gyrus (IFG) (Picton et al., 2007; Swick, Ashley, and Turken, 2008), and 

yet other studies have suggested the process is bilateral (Kawashima et al., 1996; Konishi 

et al., 1998, 1999).  Perhaps these studies have artifactually found different regions of 

interest because of the temporal limitations associated with fMRI.  Evidence for this 

conjecture comes from a recent source localization ERP study using LORETA which 

located the neural generator of NoGo N200 in the right orbito-frontal cortex (OFC), and 

the generator of the NoGo P300 in the left lateral OFC (Boruka et al., 2001). This 

suggests that response inhibition may require attentional resources from both 

hemispheres, but at different time points and for different sub-processes that fMRI might 

not be temporally sensitive enough to differentiate. 

SZ have consistently shown reduced P300 amplitude relative to controls (Ford et 

al., 2004; Kiefer et al., 1998; Kiehl et al., 2000; Weisbrod et al., 1999, 2000).   However, 

only a couple studies have investigated N200 deficits among SZ using response inhibition 

tasks. Kiehl et al. (2000) found reduced visual N200 amplitude for NoGo trials in SZ .  

However, NoGo N200 amplitude deficits were not found in a second study that utilized a 

binaural Go/NoGo task (Weisbrod et al, 2000) perhaps because the pitch of rare tone 

(NoGo) was individually adjusted beforehand and therefore SZ were able to discriminate 

the rare tones as well as CT.  

Given that response inhibition is probably lateralized it is not surprising that there 

is evidence that SZ deficits may also be lateralized.  Specifically, some studies have 

shown  left hemisphere  ERP deficits ( N200, Kiehl et al., 2000 and P300 Hill and 
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Weisbrod, 1999; Weisbrod et al., 1997, 2000) while other studies have shown right 

hemisphere deficits (Bellgrove et al., 2005) and blunted activation over right ventrolateral 

prefrontal cortex (vlPFC; Kaladjian et al., 2007). Lateralization differences are 

theoretically important because Crow and his colleagues have suggested that SZ have a 

developmental failure in establishing left hemisphere dominance for language. This 

developmental failure would most likely be associated with the symptoms thought 

disorder.  Thought disorder, in turn, may be caused by dysfunctional inhibition in 

maintaining a stream of thought and not being distracted by inappropriate or unrelated 

thoughts (Crow, 1990, 1995; Crow et al., 1996; review by Mahrer & Deldin, 2001, p351-

352). 

 To this end, this study tested whether SZ have deficits in response inhibition and 

whether this deficit is lateralized over the left frontal region. In order to test this 

hypothesis, the current study used a modified Go/NoGo paradigm (Eimer, 1993) with 

lateralized stimulus presentation (Eimer, 1993; Clarke, Halgren, and Chauvel, 1999). It 

was hypothesized that if SZ is more affected by left hemisphere dysfunction, reduced 

ERPs over the left-side electrodes would be observed only when the stimulus is presented 

to the right visual field. If SZ is more affected by a right hemisphere dysfunction, then 

reduced ERPs over the right-side electrodes would be observed only when the stimulus is 

presented to the left visual field. 

Finally, this study explored whether response inhibition deficit is specific to SZ or 

if it is also present in schizoaffective disorder (SAD), a disorder intermediately 

positioned between schizophrenia and affective disorders. In many studies, patients with 

SAD are combined with schizophrenics on the assumption that the two disorders are not 

9 
 



 

discrete disorders. However, an extensive meta-analysis, examining the validity of SAD 

as a distinct nosologic category found that SAD could not simply be interpreted as 

atypical forms of SZ or mood disorders (Cheniaux et al., 2008; Szoke et al., 2008). 

Furthermore, a recent ERP study with auditory oddball paradigm reported that patients 

with schizoaffective disorder demonstrated significantly delayed P300 latency, while 

schizophrenic patients showed both attenuated and delayed P300 (Mahaler et al., 2008). 

Thus, in this study, it was hypothesized that all three groups, SZ, SAD and CT will have 

differential abilities to inhibit responses.   

In summary, this study investigated response inhibition deficit in patients with 

schizophrenia (SZ) and schizoaffective disorder (SAD) with a lateralized visual 

Go/NoGo paradigm. The hypotheses are as follows: 

(1) SZ will show a left-lateralized inhibition deficit manifested as reduced N200 and 

P300 amplitude over the frontal region. 

(2) ERP indices of response inhibition (e.g. reduced P300 amplitude, prolonged N200 

latency) will differentiate SZ from SAD. 

SZ will make more commission errors when the stimulus is presented to the right 

visual field (Left hemisphere projection) than to the left visual field. SZ will show the 

lowest overall accuracy rate, the controls the highest, with SAD falling in the middle.  

 

Method 

Participants  

Fourteen SCZ (4 women), eleven SAD (8 women), and fifteen healthy controls (11 

women) with age range of 19 – 62 years old participated in this study.  All research 
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participants diagnosed with SZ and SAD were outpatients at the Dr. John C. Corrigan 

Mental Health Center, Fall River, MA, USA. Staff and chart diagnoses  were confirmed 

using the Structured Clinical Interview for the DSM-IV, Patient Edition (SCID-I/P), 

administered by a doctoral-level clinical psychologist or graduate students trained in 

SCID administration (First et al., 1995).  Demographic information, including age and 

parental years of education, were obtained from all study participants, while year of 

illness, types of anti-psychotic medication and its dosage were further provided by patient 

groups. Control participants were recruited from the Fall River, Massachusetts area 

through newspaper advertisements and were prescreened over the telephone. Control 

participants with no self-reported history of seizures or head injuries and who had no 

learning, neurological, or medical disorders were invited to participate in a SCID 

interview. Those participants who were found to have no current or past DSM-IV Axis I 

psychiatric diagnosis were then asked to return for the physiological data recording 

session. All participants’ primary language was English and their vision was normal or 

corrected-to-normal. To ensure that all participants were right-handed, the Annett’s 

Handedness questionnaire was administered. According to Harvard Institutional Review 

Board approval, the details of the study were explained to all participants and written 

consent obtained. Participants were compensated with $ 10 dollars for each hour of their 

time.  
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Schizophrenia 

(n=14) 
Schizoaffective 

(n=11) 
Control 
(n=15) 

 
Test 

 
p-value 

Age (years) 41.4 (10.1) 44.5 (8.6) 38.1 (15.8) F(2,37)  =  .85, = .43 
Education (years) 11.6 (3.2) 13.1 (1.6) 13.6 (1.6) F(2,37)  =  .85, = .072 
Gender (male/female) 10/4 3/8 4/11 2(2)  =  7.19, p = .027 

Handedness 
12 = right 
36 = left 

13.5 (2.1) 13.3 (1.2) 12.9 (1.3) 2(2)  =  .65 = .72 

PANSS 63.4 (13.9) 61.5 (10.3) 39.1 (5.0) F(2,37)  =  23.76 < .001 
SANS 7.7 (3.4) 6.2 (2.9) 0.9 (1.3) F (2,37)  =  25.77 < .001 
SAPS 6.1 (3.4) 4.6 (3.2) 0.3 (.5) F(2,37)  =  19.36 < .001 
Age of onset 22.1 (3.7) 23.6 (9.0) N/A F(1,23)  =  .35 = .56 
Duration of illness 31.4 (31.2) 20.8 (9.0) N/A F(1,23)  =  1.19 = .29 

Chlorpromazine 
Equivalents (mg) 

266.4 (191.8) 227.8 (193.8) 0 F(1,23)  =  .25 = . 62 

Note. Means and standard deviation (SD) are given for age, number of years of education, handedness, Scale of Assessment of 
Positive Symptoms (SAPS), Scale of Assessment of Negative Symptoms (SANS), Positive and Negative Syndrome Rating Scale 
(PANSS), length of illness and chlorpromazine equivalent of antuosychotic  daily dosage.   
 

Table 1. Demographic characteristics and medical status of participants  

 

Materials and Procedure 

Participants’ electroencephalograms (EEGs) were recorded while they completed 

a modified version1 of a visual Go/NoGo task (Eimer, 1993).Visual stimuli were created 

using the Corel Photopaint 6.0 graphics program. The central plus sign or central arrow, 

subtending 1 degree of visual angle (deg), was flanked by two squares that each 

subtended 2 deg of visual angles. Each square was 6 deg to the left and right on the 

horizontal meridian. Two letters (M and W), subtending 1 deg each, were presented at the 

center of either the right or left square. All stimuli were presented in white on a blue 

                                                 
1 In Eimer et al’s original paradigm (1993), 25% of the pre-cues were mismatched and 75% were matched 
with the stimulus presentation. However, only valid pre-cues generated larger NoGo amplitudes for N200 
and P300. Therefore, this study only included valid pre-cues. 
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background displayed from the screen located 120 cm in front of the subject. Participants 

were seated in a darkened room and were instructed to focus on a centrally located cross 

before the onset of the first trial. Subjects were presented with the arrow, followed by a 

fixation period. The pre-cue indicated which side the target stimulus would appear. Two 

letters, M and W, were designated as the Go/NoGo cues respectively. Each trial included 

a pre-cue (200 ms), followed by an inter-stimulus interval, (700 ms) and the onset of the 

cue (150 ms). The interval between letter offset and the onset of the next arrow was 1750 

ms. Participants had a maximum of 1900 ms from the onset of the cue to make a response 

(Appendix I). The subjects were told that the letter cues would appear at the center of 

either the right or left positioned squares. The participants were instructed to press the 

right or left button when the Go stimulus was presented on the right or left side 

respectively, and were instructed to withhold response when the NoGo-stimulus was 

presented on either side. Overall, for each subject, there were 60 trials (42 Go (70 %) and 

18 NoGo (30 %)) in each of the four separate blocks of the experiment, with a total of 

240 trials. 

 

Physiological Recording 

  EEG was recorded from ten sites (F3, Fz, F3, C3, Cz, C4, P3, Pz, P4, Oz) on the 

scalp during the task, using a conductive gel and tin electrodes located on the electrode 

cap (Electro Cap International, Inc., Eaton OH) arranged according to the International 

10-20 System. Electrooculograms (EOG) were recorded using tin electrodes placed on 

the outer canthus (horizontal) and supraorbital/infraorbital (vertical) positions of the left 

eye. EEG was referenced to the left mastoid (A1) and algebraically re-referenced to both 
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ears off-line. Impedance for all electrodes was checked prior to the presentation of stimuli 

and kept below 10 kΩ. During acquisition, a high-pass filter was set for 0.01 Hz, while a 

low-pass filter was fixed at 30 Hz. Signals were digitally sampled at 512 Hz for the 

duration of the experiment.  

Data Analysis  

Analysis of the physiological data was completed using software designed by the 

James Long Company. Of the original 10 sites, 9 were further analyzed (F3, Fz, F3, C3, 

Cz, C4, P3, Pz, P4)2 in order to ascertain effects of Caudality (frontal, central and 

parietal) and Laterality (left, center, right). As N200 amplitude is maximal at the fronto-

central regions of the scalp (Donkers & van Boxtel, 2004; Eimer, 1993; Jodo & Kayama, 

1992), only these regions (F3, Fz, F4, C3, Cz, and C4) are included in the N200 analyses.  

EEG data was resampled to 225 Hz and digitally filtered using an 8 Hz low-pass 

filter. All trials with remaining artifacts (e.g. large muscle movement, eye movement, 

skin conductance, slow voltage shift) were removed from later analyses. Artifact due to 

eye blinks was corrected via a regression algorithm in the time domain to derive 

parameters characterizing the appearance and spread of EOG artifact in the EEG channel. 

The EEG data were baseline corrected at 150 ms before averaging. Individual ERPs were 

obtained separately for each group: Stimulus type (Go-left/Go-right/NoGo-left/No-Go-

right) and Laterality. The P300 latency window was defined as 300-450ms after stimulus 

presentation, while N200 latency window was defined as 250-300 ms after stimulus 

presentation (Folstein & van Petten, 2008). The mean amplitudes of P300 and N200 were 

centered on their peak latency in grand-average waveforms. 

                                                 
2 EEG was also collected at the Oz site but was not included in the analysis because of technical problems 
with the electrode. 
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Task performance in target detection was assessed by calculating the accuracy 

score as a percentage of correct responses (button push for ‘M’ or no button press for 

‘W’). Commission error, an index of failure in response inhibition, was also calculated by 

counting the number of NoGo items to which participants responded. A three-way 

ANOVA was performed with Task (Go/NoGo) and Stimulus (left/right) as within-subject 

factors and with Group (controls/ SCZ/ SAD) as a between-subject factor. For the Go 

task, differences in the reaction times of each group were analyzed in a Group x Stimulus 

ANOVA. A four way ANOVA was performed for ERP amplitudes and latencies for 

Group, Stimulus, Laterality, and Caudality. Simple effect ANOVAs and Newman-Keuls 

tests were performed as post hoc tests. An interaction effect among variables was 

reported only when its preceding higher-order interactions were also significant. For 

example, a 2-way interaction was only reported if the preceding 3-way interaction was 

also significant. Greenhouse- Geisser correction was applied to the variables that violated 

sphericity assumption. Discriminant function analyses (DA) were performed to determine 

whether the three groups could be distinguished from one another based on the linear 

combination of ERP amplitudes or latencies, and also to determine which variables 

contribute to the separation (Norusis, 2008). Wilk’s lambda was used to test the 

significance of the discriminant function as a whole.  

 

Results 

Behavioral data analysis 

The three groups differed in overall accuracy F (1,37) = 3.82, p < .032. Consistent 

with our expectation, Newman-Keuls analysis revealed that the SZ group performed 
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worse than controls (p < .037).  SZ were also marginally less accurate than SAD, (p 

=.075).  No difference in overall accuracy was found between the control and SAD. 

Contrary to our hypothesis, differences between groups were not modified by task or 

stimulus presentation. Analyses of the error responses revealed that the three groups 

differed in neither omission errors (not pressing the button for the Go stimulus) (p > .10) 

nor commission errors (inappropriately pressing the button for the NoGo stimulus) (p 

> .10) despite the overall group difference in error rate, F(2,37)= 4.02, p < .05. However, 

post hoc analysis demonstrated that SZ made more errors in both omission and 

commission errors than controls (p < .05), but there was no difference between SZ and 

SAD (p > .30), nor controls and SAD ( p > .19) (Table 2). 

 For reaction time (RT), no group difference was observed. However,  participants 

responded more quickly to stimuli presented to the right visual field (right button press, 

531 ms) than to the left visual field (left button press, 561 ms), Stimulus, F (1,37) = 8.13, 

p < . 01.  

 

 

   Go-Left 
Hit (SD) 

Go-Left 
Omission 
(SD) 

Go-Right 
Hit (SD) 

Go-Right 
Omission 
(SD) 

NoGo-Left 
Hit (SD %) 

NoGo-Left 
Commission 
(SD) 

NoGo-
Right 
Hit Rate 
(SD) 

NoGo-Right 
Commission 
(SD) 

Controls 98.9  
(1.9) 

0.9 
(1.9) 

99.1  
(1.7) 

0.9  
(1.6) 

96.1 
(5.53) 

3.9 
 (5.5) 

95.2  
(5.7) 

4.8  
(5.7) 

SZ 93.2 
a 

(8.6) 
6.2 

a 
(7.8) 

93.5 
a  

(11.2) 
5.9  
(10.4) 

90.7 
a, b 

(12.7) 
8.5 

a 

 (12.6) 
91.1 

a, b 
 (8.5) 

8.3 
a 

 (.5) 
SAD 95.9  

(8.7) 
3.7 
 (8.4) 

96.7 
(7.16) 

2.9 
 (6.9) 

95.2  
 (5.4) 

4.5 
 (5.6) 

95.4  
(5.3) 

4.5  
(5.3) 

Table 2. Mean accuracy rate, Omission error rate, and Commission error rate with 
standard deviation for controls, SCZ, and SAD for the Go and NoGo task with left (LVF) 
and right visual field (RVF) stimuli. a. difference between SZ and CT (p < .05), b. 
difference between SZ and SAD (p < .05)   
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P300  

P300 latency in response to NoGo stimuli (447 ms) was longer than in response to 

Go stimuli (407 ms), Task, F (1,37) = 22.59, p < .001. P300 latency was the shortest at 

the frontal leads (F3, Fz, and F4) followed by central leads and parietal leads, Caudality, 

F (2,76)= 10.97, p < .001. No difference in P300 latency was found between central and 

parietal regions, and no latency group effects or interactions with group were observed.  

NoGo-P300 amplitude was larger than Go-P300 amplitude, Task, F (1,37) = 

10.97, p < .01.  P300 amplitude was larger along the midline than left (p <.05) or right 

leads (p < .05), Laterality, F(2,74)=20.90, p <.001. Frontal-P300s were the smallest (p 

<.01) and there was no difference between central and parietal P300s, Caudality, F(2,74) 

= 54.82,  p < .001. When the stimulus was presented to the left visual field, NoGo-P300 

was consistently larger than Go-P300 on the three lateral positions of electrodes. 

However, when the stimulus was presented to the right visual field of a subject, larger 

NoGo-P300 than Go-P300 was observed only over the midline electrodes (Fz, Cz, Pz), 

Stimulus   Task   Laterality, F(1.49, 55.02) = 3.78, p < .05. Furthermore, NoGo-P300 

was larger than Go-P300 at C4 (right-central) only when the stimulus was presented to 

the left visual field, Task   Stimulus   Caudality   Laterality, F(4,148) = 5.81, p 

< .0001.  

As predicted, P300 amplitude varied by group, Group  Task   Stimulus   

Caudality  Laterality, F (8,148)=2.23, p< .05.  Specifically, simple effects ANOVAs 

dissecting the 5-way-interaction produced a series of significant effects including Group 

  Stimulus   Laterality   Caudality interaction only for NoGo task, F (5.27, 97.59) = 

2.36, p < .05. Over the frontal region, NoGo P300 amplitude was smaller over the left 
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side electrodes compared to right and midline electrodes Group   Stimulus   Laterality, 

F(2.31, 42.79) = 2.63, p  < .05. Specifically over the frontal left electrode (F3), NoGo 

P300 amplitude was more reduced when the stimulus was presented to the right visual 

field (RVF) than to the left visual field (LVF), Group   Stimulus, F(2,37) = 3.47, p < .05 

(Figure 1a.,1b). Post-hoc tests indicated that the NoGo-P300 at F3, especially when the 

stimulus was presented to RVF, was reduced in SZ compared to CT (p < .05) but not to 

SAD (p >.26), while none of group-wise comparisons were significant for LVF stimulus 

presentation (p SZ-SAD > .72, p SZ-CT > .80, p CT-SAD > .56).  Furthermore, within each 

group when the stimulus was presented to the right visual field, P300 amplitude at left 

frontal  (F3) was smaller than at left midline  (Fz), whereas no such difference was 

observed for the left visual field stimulus presentation, Stimulus, F(1,13)= 6.17, p < .05. 

No difference in NoGo P300 was found when frontal left (F3) was compared with frontal 

right (F4) (p= .62). SAD and controls NoGo-P300 at F3 were not different (p = .283).   

 

F3 Go LVF F3 NoGo LVF F4 Go LVF F4 NoGo LVF 

    

F3 Go RVF F3 NoGo RVF F4 Go RVF F4 NoGo RVF 
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Figure 1-a. Grand Average ERP waveforms over frontal left and frontal right with left 
visual field (LVF) and right visual field (RVF) presentation  
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Figure 1-b. Mean amplitudes of NoGo P300 over the left frontal (F3) for healthy controls, 
schizoaffective disorder and schizophrenic patients for left visual field stimuli (LVF) and 
right visual field stimuli (RVF) 
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N200  

The N200 latency for the NoGo task (302 ms) was longer than that of Go task 

(289ms), Task (F(1,37) = 8.89, p = .005). The latency differed by groups, Group, F(2,37) 

= 3.62, p < .05. The SAD group showed longer latency (309 ms) than the SZ (291 ms) (p 

= .05) and controls (287 ms) (p < .01). This effect varied by stimulus type, Group × 

Stimulus, F(2,37) = 3.62, p < .05, indicating that such group difference in N200 latency 

was observed only when the stimulus was presented to the left visual field, Group, 

F(2,37) = 5.73, p = .01, SZ = 291.93 ± 27.47 ms, SAD = 313.88 ± 28.85 ms, CT = 278.96 

± 15.76 ms. Post-hoc tests revealed that N200 latency differed between CT and SAD (p 

< .01), while the difference was marginal between SZ and SAD (p < .10). No significant 

correlation was found among N200 latency for the Go task and reaction time. 
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Consistent with previous studies, N200 amplitudes showed regional variation for 

the NoGo task (Donkers & van Boxtel, 2004; Eimer, 1993; Jodo & Kayama, 1992; Kok, 

1986; Pfefferbaum, Ford, Weller, & Kopell, 1985). Specifically, N200 amplitude was 

enhanced for NoGo task in comparison to the Go task, Task, F(1,37) = 6.35, p < .05. 

Compared to the central electrodes, frontal N200 showed greater negativity, Caudality, 

F(1,37) = 49.31, p < .0001 (Appendix 2). N200 amplitude was greater over the left side 

of the electrodes than those on the right side, Laterality, F(2,74) = 5.12, p < .01.  

Specifically, over the left side electrodes (F3, C3), N200 amplitude was greater when the 

stimulus was presented on the left visual field than to the right visual field, Laterality   

Stimulus, F(2,74)=4.07, p < .05. Over the frontal electrodes (F3, Fz, and F4), N200 

amplitude was larger when the stimulus was presented to the right than to the left visual 

field, Caudality   Stimulus, F(1,37) = 4.15, p < .05. No difference between N200 in 

response to stimulus presentation was found over the central leads.   

As predicted, N200 amplitude differed by groups, Group × Task × Stimulus, 

F(2,37) = 4.57, p < .05. Dissecting this three-way interaction demonstrated that controls 

showed greater fronto-central N200 negativity for NoGo task than SZ and SAD, Group × 

Stimulus, F(2,37) = 4.18, p < .05. Post-hoc test further revealed that in SZ, N200 for 

NoGo task was smaller for left visual field stimulus presentation than right, Stimulus, 

F(1,13) = 12.01,  p = .004 (Figure 1-a, 2). Such stimulus presentation effect in NoGo 

N200 amplitude was not observed in control and SAD. 
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Figure 2. N200 amplitude for Group × Task × Stimulus at fronto-central region  

 

Discriminant Function Analysis3 

Discriminant Function analysis (DA) was performed in order to test whether the 

P300 amplitude could discriminate the three groups.  Among the thirty six independent 

variables (laterality  caudality  stimulus  task; 3  3  2  2), four variables under 

NoGo right visual stimulus presentation failed to pass the tolerance test, and therefore 

were excluded from the discriminant function analysis. The two functions, specifically 

P300 amplitude classified the three groups with 100% accuracy (Wilk’s Lamda =.008, p 

= .001). Even with only six variables representing Frontal-right visual field, DA 

classified 67.5% of the group (Wilk’s Lamda = .58, p = .09). High canonical correlation 

coefficients for Function 1 (r = .96) and Function 2 (r = .95) indicated that discriminant 
 

3 DA resulted in 95% classification (Wilk’s Lambda= .08, p=.07) with all frontal and central leads (F3, F4, 
Fz, C3, C4, Cz), and  77.5% classification (Wilk’s Lambda=.22,  p=.003) with variables representing only 
frontal leads. 
DA for P300 amplitude difference between left electrodes (F3, C3, P3) and midline electrodes (Fz, Cz, Pz) 
was not significant enough to discriminate three groups (Wilk’s Lambda= .41, p = .25). DA with all 
variables for P300 latency was not significant to discriminate the group membership (Wilk’s Lambda= .26, 
p = .39). 
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scores based on P300 amplitudes were well explained by differences between the three 

groups. As shown in Table 3, Function I consisted of many variables related to NoGo 

task, while Function II consisted of variables related to the Go task. Function I 

discriminates the control group from the patient groups (MControl = 4.14, MSZ = -1.75, 

MSAD = -3.42), while Function II discriminate schizophrenic group (Mcontrol = .76, MSZ = 

-3.69, MSAD = 3.66) from the other groups (Figure 3).  

The discriminant function analyses of N200 latency revealed that it classified the 

three groups with 91% accuracy (Wilk’s Lambda = .07, p < .05), while N200 amplitude 

failed to discriminate the three groups (Wilk’s Lambda = .14, p= .38). Canonical 

correlation coefficients (r Function 1 = .91, r  Function 2 = .77) were high enough to indicate 

that N200 latency discriminant scores predicted group membership well. Among the 

sixteen variables (Laterality  Caudality  Stimulus  Task; 2  2  2  2), seven 

variables comprised Function I mainly consisted of N200 for Go LVF and NoGo RVF 

presentation , while Function II was a combination of Go RVF and NoGo LVF 

presentation (see Table 4). As shown in Figure 4, Function I clearly discriminated 

controls from SAD, while Function II separates SZ from the other two groups. Function I 

discriminates SAD from the other two groups (MControl = - .66, MSZ = -1.85, MSAD = 

3.26), while Function II separated control group from the patient groups (MControl = 1.46, 

MSZ = -1.20, MSAD = - .46). Specifically, the fact that Function I mainly consisted of 

NoGo-right variables indicated that response inhibition among SAD was distinctively 

different from SZ and even from controls when they were asked to withhold response 

with their dominant (right) hands. 
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                                Function  I   Function II 

Variable coefficient Variable  coefficient Variable coefficient Variable Coefficient 
P3 NoGo Left .11 P4 NoGo Right .08 F4 Go Left .14 F3 Go Right .08 
P4 NoGo Left .11 Cz Go Left .08 C3 Go Right .12 C4 Go Right .08 
C3 NoGo Right .10 Fz NoGo Right .08 F4 Go Right .10 P3 Go Right .07 
Pz NoGo Left .10 Pz Go Left .07 C4 Go Left .10 F4 NoGo Right .07 
C4 NoGo Left .10 Cz Go Right .06 Fz Go Left .10 P4 Go Left .06 
C3 NoGo Left .10 F4 NoGo Left .05 F3 Go Left .09 P4 Go Right .06 
Cz NoGo Left .09 Fz NoGo Left .04 C3 Go Left .08 Pz Go right .05 
F3 NoGo Right .09 F3 NoGo Left .03 Fz Go Right .08 P3 Go Left .05 

Table 3.  Structural matrix of P300 amplitude Discriminant Functional Analysis.  
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Figure 3. Discriminant analysis group classification based on P300 amplitude. Function I 
consisted of NoGo P300 amplitude, which separated control group from patients group, 
while Function II consisted of Go P300 amplitude which separated schizophrenic group 
from the other two. Overall, P300 amplitude classified the three different groups with 
100% accuracy. 
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 Function I                                                                                Function II 
variable         coefficient      variable           coefficient    variable          coefficient       variable             coefficient 

C4 Go Left .24 C4 NoGo Right .12  F3 Go Right -.34   C4 NoGo Left - .21 

Cz Go Left .23 C3 NoGo Right .10  F4 Go Right -.27   F4 NoGo Right   .21 

F3 NoGo Right .23 F3 Go Left .10  C3 Go Right - .27   Fz NoGo Left - .21 

Cz NoGo Right .13    C3 Go Right - .24    F3 NoGo Left - .20 

     Cz NoGo Left -.24   C4 Go Right - .17 

     Cz Go Right   .16   Fz NoGo Right -. 21 

     F4 NoGo Left -.16   C3 Go Left - .10 
     Fz Go Right - .06   F4 Go Left - .04 

Table 4.  Structural matrix of N200 latency in discriminant functional analysis    
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Figure 4. Canonical Discriminant Functions for N200 latencies. Function I consisted of  
N200 latency for NoGo – RVF and Go-LVF, which separated SCZ from the other two 
groups, while Function II consisted of N200 latency for Go-RVF and NoGo-LVF , which 
separated controls from the patients group. Overall, N200 latency classified the three 
different groups with 91% accuracy. 
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  This study investigated response inhibition deficits in schizophrenia (SZ) and 

schizoaffective disorder (SAD) using a lateralized Go/NoGo paradigm. Discriminant 

function analysis (DA) demonstrated that the three groups could be perfectly 

distinguished based on P300 amplitude and N200 latency, which strongly supports the 

notion that both P300 amplitude (Bramon et al., 2005; Turetsky, 2007) and N200 latency 

may be  physiological endophenotypes of SZ and SAD. Given that executing responses 

with non-dominant (left) hand and inhibiting the prepotent responses with dominant 

(right) hand was harder for right-handed participants, Go-left and NoGo-right conditions 

could be cognitively more challenging than Go-right and NoGo-left conditions. This 

suggests that early stage response inhibition deficit in SAD may manifest when they 

perform cognitively demanding tasks.  To this end, the findings of N200 latency delay in 

SAD provides physiological evidence demonstrating that SAD are distinguishable from 

both SZ and CT in the speed of stimulus evaluation and provide further support that SAD 

is a nosologically independent diagnostic category (Cheniaux et al., 2008). 

The findings also indicated that neural response inhibition deficits in SZ were left-

lateralized over the frontal region. Further, different hemispheres were involved in 

different stages of SZ deficient response inhibition Specifically, the P300 deficit reflected 

SZ’s difficulty in allocating attentional resources to inhibit motor responses during right 

visual field (the  left-frontal hemisphere activity), while reduced N200 reflecting the 

earlier stage of response inhibition may reflect earlier right hemisphere dysfunction. The 

deficits are specific to the regions found in a previous study which demonstrated that 
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N200 is mediated by the right orbito-frontal cortex (OFC), while P300 is mediated by the 

left OFC (Boruka et al., 2001).  

 The specificity of response inhibition deficit in SZ was supported by their intact 

neural responses to Go trials. In addition to the lateralized P300 deficit for NoGo trials, 

SZ showed fronto-central N200 amplitude deficits for NoGo trials when the stimulus was 

presented to left visual field (LVF) but not to the RVF. Based on sensory information 

processing in a lateralized stimulus presentation, the findings reflect the involvement of 

right hemisphere dysfunction in stimulus classification during the early stage of response 

inhibition (Clarke, Halgren, and Chauvel, 1999).  In lateralized stimulus presentation, a 

stimulus presented to LVF would be projected to right hemisphere contralaterally and to 

left hemisphere ipsilaterally.  Difficulty in allocating attentional resources from the right 

hemisphere for early NoGo stimulus processing may negatively affect contralateral 

processing of stimuli presented stimulus to the right hemisphere.  In SAD, N200 

amplitude did not differ from that in SZ and from CT, but they showed delayed N200 

latency when the stimulus was presented to the LVF. This finding indicates that SAD can 

recruit attentional resources for inhibiting response though they needed a longer time to 

do so. 

In conclusion, the present study highlighted specific deficits of response 

inhibition in schizophrenia and schizoaffective disorder and further suggests the 

possibility of utilizing neural responses in lateralized Go/NoGo task as biological marker 

of the two disorders. In patients with schizophrenia, response inhibition deficit in early 

stage of response inhibition reflected right hemispheric dysfunction, while the deficit was 

specifically observed over the left frontal region during the later stage of response 
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inhibition. However, it should be noted that discriminant function analysis in this study 

was used for the limited purpose of identifying ERP variables (e.g. P300 amplitude, N200 

latency) that separated the three groups. Thus, in order to test whether the same 

discriminant functions as in this study can classify different psychiatric groups including 

SZ and SAD, cross-validation method such as leave-one-out measure needs to be 

considered in the future studies. Further, more ERP source localization studies with larger 

sample sizes should be utilized to replicate the findings of current study and to provide 

more spatial information about the role of the two hemispheres in different stages of 

response inhibition in SZ and SAD. Due to the poor time resolution, neuroimaging 

studies may have difficulty in separating the lateralized cognitive processing deficits in 

SAD and SZ. 
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Chapter II. APPENDICES 
 
Appendix 1. Visual Go/NoGo paradigm 
 

M

Precue 
(200 ms)

Interstimulus
(700 ms)

Cue
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Intertrial
(1750 ms)

either a left thumb response (Go task) or
an inhibition of a left thumb response (NoGo task)

Figure 1
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Appendix 2-a. Grand Average ERP waveforms for Go task 
 
                

 
     
Appendix 2-b. Grand Average ERP waveforms for NoGo task 
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Appendix 3. Repeated-measure ANOVA for P300 amplitude 
 

 
    F-value p-value 

Group F (2,37) = 2.40 = .104) 
Stim F (1,37) = 3.09 = .087) 

Task 
F (1,37) = 10.97 = .0021 

Lat F (2,36) = 16.88 < .001 
Cau F (2,36) = 30.55 < .001 
Task x Stim F (1,37) = 4.25 = .046 
Stim(Go) F (1,37) = 0.21 = .65 
Stim(NoGo) F (1,37) = 4.8 = .035 
Task x Lat F (2,36) = 7.05 = .003 
Task x Cau F (2,36) = 27.99 < .001 
Cau (Go) F (2,36) = 42.24 < .001 
Cau (NoGo) F (2,36) = 23.57 < .001 
Task (frontal) F (1,37) = 26.08 < .001 
Task (central) F (1,37) = 13.33 < .001 
Task (parietal) F (1,37) =  .34 = .57 

Lat x Cau F (4,34) = 9.39 < .001 

Task x Cau x Lat F (4,34) = 7.31 < .001 
Cau x Lat (Go) F (4,34) = 12.14 < .001 
Cau x Lat (NoGo) F (4,34) = 9.4 < .001 
Cau (Go, left) F (2,36) = 51.97 < .001 
Cau (Go, right) F (2,36) = 29.08 < .001 
Cau (Go, central) F (2,36) = 42.39 < .001 
Cau (NoGo, left) F (2,36) = 20.03 < .001 
Cau (NoGo, right) F (2,36) = 21.29 < .001 
Cau (NoGo, central) F (2,36) = 24.18 < .001 

Task x Stim x Cau x Lat F (4,34) = 4.97 = .003 

Task x Cau x Lat (left) F (4,34) = 8.28 < .001 
Task x Cau x Lat (right) F (4,34) = 5.09 = .003 
Task x Cau (left, left) F (2,36) = 17.26 < .001 
Task (left, left, frontal) F (1,37) = 36.35 < .001 
Task (left, left, central) F (1,37) = 10.55 = .002 
Task (left, left, parietal) F (1,37) = .82 = .37 
Task x Cau (left, right) F (2,36) = 12.42 < .001 
Task (left, right, frontal) F (1,37) = 28.02 < .001 
Task (left, right, central) F (1,37) = 17.99 < .001 
Task (left, right, parietal) F (1,37) = 3.12 = .081 
Task x Cau (left, middle) F (2,36) = 15.2 < .001 
Task (left, middle, frontal) F (1,37) = 26.33 < .001 
Task (left, middle, central) F (1,37) = 19.62 < .001 
Task (left, middle, parietal) F (1,37) = 2.3 = .081 
Task x Cau (right, left) F (2,36) = 34.07 = .014 
Task (right, left, frontal) F (1,37) = 11.83 < .001 
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Task (right, left, central) F (1,37) = 6.44 = .015 
Task (right, left, parietal) F (1,37) = 1.38 = .25 
Task x Cau (right, right) F (2,36) = 5.36 = .009 
Task (right, right, frontal) F (1,37) = 4.39 = .043 
Task (right, right, central) F (1,37) = 2.71 = .11 
Task (right, right, parietal) F (1,37) = 0.003 = .96 
Task x Cau (right, middle) F (2,36) = 21.25 < .001 
Task (right, middle, frontal) F (1,37) = 12.08 < .001 
Task (right, middle, central) F (1,37) = 7.37 = .01 
Task (right, middle, parietal) F (1,37) = 0.74 = .79 
Lat x Cau (Go, left) F (4,34) = 7.98 < .001 
Lat (Go, left, frontal) F (2,36) = 4.07 = .025 
Lat (Go, left, central) F (2,36) = 21.23 < .001 
Lat (Go, left, parietal) 

F (2,36) = 11.77 < .001 

Lat x Cau (Go, right) F (4,34) = 16.55 < .001 
Lat (Go, right, frontal) F (2,36) = 8.89 < .001 
Lat (Go, right, central) F (2,36) = 16.73 < .001 
Lat (Go, right, parietal) F (2,36) = 14.92 < .001 
Lat x Cau (NoGo, left) F (4,34) = 11.73 < .001 
Lat (NoGo, left, frontal) F (2,36) = 1.63 = .21 
Lat (NoGo, left, central) F (2,36) = 23.12 < .001 
Lat (NoGo, left, parietal) F (2,36) = 16.92 < .001 
Lat x Cau (NoGo, right) F (4,34) = 5.92 < .001 
Lat (NoGo, right, frontal) F (2,36) = 5.07 = .011 
Lat (NoGo, right, central) F (2,36) = 20.84 < .001 
Lat (NoGo, right, parietal) F (2,36) = 16.87 < .001 
Cau (Go, left, left) F (2, 36) = 38.06 < .001 
Cau (Go, left, right) F (2, 36) = 21.78 < .001 
Cau (Go, left, midle) F (2, 36) = 36.87 < .001 
Cau (Go, right, left) F (2, 36) = 48.50 < .001 
Cau (Go, right, right) F (2, 36) = 32.90 < .001 
Cau (Go, right, middle) F (2, 36) = 42.98 < .001 
Cau (NoGo, left, left) F (2, 36) = 14.68 < .001 
Cau (NoGo, left, right) F (2, 36) = 15.87 < .001 
Cau (NoGo, left, midle) F (2, 36) = 23.53 < .001 
Cau (NoGo, right, left) F (2, 36) = 22.26 < .001 
Cau (NoGo, right, right) F (2, 36) = 24.29 < .001 
Cau (NoGo, right, middle) F (2, 36) = 23.69 < .001 

Group x Task x Stim x Cau x Lat  F (4,70) = 2.22 = .036 

Group x Stim x Lat x Cau (Go) F (8,70) = 7.66 = .63 
Group x Stim x Lat x Cau (NoGo) F (8,70) = 2.36 = .026 
Group x Stim x Lat (NoGo, frontal) F (4,74) = 3.53 = .011 
Group x Stim (NoGo, frontal, left) 

F (2,37) = 3.47 = .042 

Group x Stim (NoGo, frontal, right) F (2,37) = 0.74 = .48 
Group x Stim (NoGo, frontal, middle) F (2,37) = 1.18 = .32 
Task x Stim x Lat x Cau (controls) 

F (4,11) = 8.86 
= .002 
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Task x Lat x Cau (controls, left) 
F (4,11) = 11.28 

= .001 

Task x Lat x Cau (controls, right) 
F (4,11) = 3.26 

= .051 

Lat x Cau (controls, left, Go) 
F (4,11) = 6.32 

= .007 

Lat (controls, left, Go, central) 
F (4,13) = 19.78 

< .001 

Lat (controls, left, Go, parietal) 
F (4,13) = 4.8 

= .028 

 
 



 

Chapter III.  

 Response inhibition deficits among Bipolar I disorder and Schizophrenia: an 

ERP study 

Introduction  
 
 

Impulse control is a prominent characteristic of Bipolar disorder (BD) and may 

lead to problematic coping behaviors such as substance abuse or repetitive suicidal 

attempts (Chirstodoulou et al., 2006). Impulsivity has been conceptualized as being 

related to dysfunctional response inhibition by definition, impulsivity means having 

difficulties withholding inappropriate responses or making poor decision regardless of the 

outcome (Quraishi & Frangou, 2002; Strakowski et al., 2005; Roth et al., 2006). 

Neuropsychological studies suggest that, although response inhibition deficit is worse 

during the active affective state of illness in BD (Dixon et al., 2004; Murphy et al., 1999), 

such deficit persists across different phases of illness, including during the absence of 

mood symptoms (Bearden et al., 2001; Martinez-Arran et al., 2004; McClure et al., 2005; 

Olley et al., 2005; Roth et al., 2006; Strakowski et al., 2005). This suggests that BD’s 

dysfunctional response inhibition is a trait rather than a state deficit (Bearden et al., 2001; 

Daban et al., 2006; Dixon et al., 2004) and therefore, may serve as an endophenotype of 

BD.  

Behavioral data during Go/NoGo tasks, which assesses response inhibition, often 

shows normal accuracy, perceptual sensitivity, and reaction time in euthymic BD 
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compared to healthy controls (Altshuler et al., 2005; Kaladjian et al., 2009;; Roth et al., 

2006), although other studies found lower accuracy in BD during reponse inhibition tasks 

including counting Stroop task (Langenecker et al., 2010; Strakowski et al., 2005).  

However, a number of neuroimaging studies using a variety of inhibition tasks (e.g., 

counting Stroop interference task, stop-signal task) have shown reduced brain activation 

in the following areas that have been associated with response inhibition in euthymic BD 

patients:  left frontopolar cortex and bilateral dorsal amygdala (Kaladjian et al., 2009), 

right inferior and medial frontal gyri (Roth et al., 2006; Strakowski et al., 2005),  

orbitofrontal cortex (OFC) and anterior cingulate cortex (ACC) (Altshuler et al., 2005; 

Elliott et al., 2004). These findings provide evidence of reduced resources allocated 

toward the suppression context-inappropriate dominant responses in BD.   

Response inhibition is a complex psychological construct, involving at least two 

distinct cognitive processes: response execution (Go trials) and response inhibition 

(NoGo trials). It is likely that these two processes may occur in serial within a very brief 

period of time or in parallel. For example, a number of authors suggest that response 

inhibition occurs within 600 ms after the onset of the stimulus (Kaladjian et al., 2009; 

Roth et al., 2006; Strakowski et al., 2005). Therefore, stages of cognitive processing 

involved in response inhibition may not be revealed by commonly used neuroimaging 

techniques such as fMRI because of its low temporal resolution. Therefore, ERPs may 

have an advantage over other neuroimaging studies to investigate the different cognitive 

stages in response inhibition because of its excellent temporal resolution. Specifically, in 

Go/NoGo paradigms, two ERP components, N200 (200-300 ms post-stimulus) and P300 

(300–500 ms post-stimulus) have been consistently reported to be enhanced when 
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suppressing (NoGo task) than executing (Go task) a prepared response responses (Boruka 

et al., 2001; Kiefer et al., 1998; Nieuwenhuis et al., 2003; Lavric et al., 2004). Larger 

P300 amplitude for NoGo than Go suggests that more attentional resources are require for 

withholding than executing prepared responses. 

Reduced P300 and prolonged P300 latency BD have been noted in a few ERP 

studies using simple auditory paradigms (i.e. oddball task; Hall et al., 2007; Degabriele 

and Lagopoulous, 2009), while intact P300 amplitude was reported in one study (Lahera 

et al., 2009). In addition to the inconsistent P300 findings in novelty detection in BD, 

ERP studies specific to response inhibition in BD are, to our knowledge non-existent, 

leaving it a question as to whether response inhibition deficits in BD are attributable to 

resource allocation deficits indexed by P300. 

  Another question is whether the neural mechanisms associated with the observed 

response inhibition deficits are similar in BD and SZ. As discussed in previous chapters, 

there is compelling neural evidence for response inhibition deficits in schizophrenia from 

previous studies (Hill and Weisbrod, 1999; Kiehl et al., 2002; Weisbrod et al., 1997, 

2000). The results of Study 1 of this dissertation suggest that response inhibition deficits 

among schizophrenia patients lie in a failure to recruit attentional resources to inhibit 

inappropriate response.  

This study   explores the neural abnormalities that are associated with response 

deficits in BD and compare them with those found in SZ. Specifically, if neural responses 

in this Go/Nogo paradigm separate the three groups without overlap, it would support a 

nosological dichotomy (Bleuler, 1911; see Goodwin and Jamison, 2007 for review) rather 

than a spectrum (Benabarre et al., 2001; Berrettini, 2000; Crow et al., 1998; Cheniaux et 
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al., 2008; Szoke et al., 2008), thereby addressing the controversy over where to 

appropriopriately split the affective/psychotic disorders.  

In summary, this study aims to explore the psychophysiological differences in 

response inhibition between SZ and BD. Behavioral (accuracy, reaction time) and 

psychophysiological responses (amplitudes and latencies of N200 and P300) during a 

Go/NoGo task with lateralized stimulus presentation (Eimer, 1993) were examined 

among three groups of participants: SZ, BD, and healthy controls (CT). Unlike traditional 

centralized stimulus presentation, lateralized presentation allows projection of stimuli to 

one hemisphere at a time, thus enabling the test of any lateralized ERP abnormalities in 

response inhibition. While a left response inhibition deficit has been reported in some 

schizophrenia studies (e.g., Hill & Weisbrod, 1999; Weisbrod et al., 2000 reported), data 

regarding lateralized deficits in response inhibition in BD, to our knowledge, is non-

existent.  

 The hypotheses of this study are as follows: 

(1) Response inhibition deficits, as indexed by reduced P300 and/or N200 amplitudes and 

delayed latencies, will be observed for NoGo trials in euthymic BD compared to CT. This 

would support the notion of previous studies that suggest response inhibition deficits are 

a stable and state-independent endophenotype of BD (Burdick et al., 2006; Dixon et al., 

2004; Strakowski et al., 2005).  

(2) SZ are expected to show reduced P300 amplitudes over frontal regions for NoGo 

trials relative to CT, replicating the finding of Study 1 and other previous studies (Kiehl 

et al., 2002 ; Rubia et al., 2001a ;Weisbrod et al., 1999, 2000).  
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(3) BD, SZ, and healthy controls (CT) would demonstrate different ERP patterns in this 

lateralized Go/NoGo task. In particular, ERP variables are expected to discriminate these 

three groups from one another, thus supporting the notion that BD and SZ are two distinct 

illness entities with differential neural mechanisms underlying their response inhibition 

deficits.  

 

Method 

Participants 

 Twenty individuals (women = 4) diagnosed with schizophrenia, twenty-five 

individuals (women = 14) diagnosed with bipolar I disorder, and twenty-seven 

individuals (women = 11) with no DSM-IV axis I diagnosis participated in this study. 

There were no group differences in age and parental education between the three groups. 

SZ and BD did not differ in the age of onset or in the number of hospitalization, and sex 

(Table 5). Individuals diagnosed with schizophrenia and bipolar I were recruited (1) 

among the outpatients treated in the Washtenaw County Community Support and 

Treatment Services clinics (WCCSTS, Ellsworth and Towner sites); (2) From the Adult 

Ambulatory Psychiatric clinics at Pretcher Bipolar Research Lab in the University of 

Michigan and (3) Community advertisements placed in the hospital, on campus, local 

newspapers, the Engage website of the UM, and the Internet (e.g., Google text ads, 

Facebook, Craigslist). The Structured Clinical Interview for the DSM-IV, Patient Edition 

(SCID-I/P) was administered by a doctoral-level clinical psychologist or two graduate 

students trained in SCID administration (First et al., 1995) to assure schizophrenia 

diagnoses in the SZ group and no Axis I diagnosis in the CT group. Participants were 
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only included when both interviewers came to consensus on the diagnosis of all 

participants. All controls were phone screened before participation and only those who do 

not have history of mental disorders, seizures, head injuries, or learning, neurological, or 

medical disorders were invited for a SCID interview. After the SCID interview, those 

who were found to have no current or past DSM-IV Axis I psychiatric diagnosis 

proceeded to the physiological data recording session. Since the BD patients who 

participated in this study were also part of the genetic studies of UM Longitudinal Study 

of Bipolar disorder, the Diagnostic Interview for Genetic Studies (DIGS; Nurnberger et 

al., 1994) was administered, which is the standard in genetic research with compatibility 

to DSM-III-R. All DIGS interviews were completed by a medically trained interviewer 

who was either a junior psychiatrist or a research nurse trained extensively in psychiatric 

interviewing. All participants’ primary language was English and their vision was normal 

or corrected-to-normal. To ensure that all participants were right-handed, the Edinburgh 

Handedness Inventory was administered. Consistent with University of Michigan 

Institutional Review Board approval, the details of the study was explained to all 

participants and written consent was obtained. Participants were compensated with $15  

for each hour of participation. 

 Bipolar I  Schizophrenia Control   Group difference p-value 
Sex (M/F) 11/14 16/4 16/11 χ2 =1.21 (BD - CT) 

χ2 = 2.27(SZ - CT) 
.27 
.13 

Age 45.28 (10.58) 43.75 (12.87) 37.22 (13.74) F(2,69) = .26 .77 
Parental 
Education 

15.52 (2.92) 14.85 (3.57) 15.37 (3.13) F(2,69) = 1.84 .16 

Age of Onset  17.38 (8.88) 21.3 (7.10)  N/A F(1,44) = 2.62 .12 
Number of 
Hospitalization 

2.84 (4.87) 6.0 (5.86)  N/A F(1,44) = 2.49 .21 

 
Table 5. Demographic data of bipolar I patients, schizophrenic patients and healthy 
controls   
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Procedure   

Task: Lateralized Go/NoGo task 

All participants completed four blocks of standard Go/NoGo task during the 

physiological recording. They were seated in a darkened room with 120 cm distance from 

the LCD monitor (60 Hz refresh rate). Participants performed four blocks of Go/NoGo 

task using computer keyboard. Two alphabet letters (M and W) served as Go and NoGo 

stimulus. Half of the participants were shown M as Go stimulus, while the other half of 

them were presented W as Go stimulus. The stimulus was presented for 150 ms either on 

the left or right side of the screen after 200 ms of pre-cue was presented. Between the 

actual stimulus and the pre cue, there was 700 ms interval. The maximum response time 

was 1750 ms. The pre-cue indicated to which side the letter would be presented. They 

were specifically asked to press the right/left shift keys for Go stimulus according to 

where the stimulus was presented and not to press any buttons when the NoGo stimulus 

was presented. All visual stimuli were created and presented via E-Prime software 

(Psychology Software Tools, Pittsburgh).  

Physiological Recording and EEG data preprocessing 

 The electroencephalogram (EEG) was recorded from 32 electrodes using 

BrainCap MR-32 (Brain Products GmbH, Germany) designed for EEG data acquisition. 

The electrode positions included all standard positions of the International 10/20 system. 

Data from nine electrodes were further analyzed (F3, Fz, F3, C3, Cz, C4, P3, Pz, P4) in 

order to ascertain effects of Caudality (frontal, central and parietal) and Laterality (left, 

center, right). As N200 amplitude is maximal at the fronto-central regions of the scalp 

(Donkers & van Boxtel, 2004; Eimer, 1993; Jodo & Kayama, 1992), only these regions 
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(F3, Fz, F4, C3, Cz, and C4) are included in the N2 analyses.   An electro-oculogram 

(EOG) electrode was placed beneath the left eye and at FP1 to monitor eye blinks. 

Common recording reference was FCz. Impedance for all electrodes was kept below 5 

kΩ  during the course of the study. During data acquisition, a high-pass filter was set for 

0.01 Hz, while a low-pass filter was fixed at 30 Hz. Signals were digitally sampled at 512 

Hz.  

Vision Analyzer 1.05 (Brain Products GmbH, Germany) was used to analyze the 

EEG data. The EEG data were re-referenced to right mastoid (TP10) and left mastoid 

(TP9), re-sampled to 256 Hz. The continuous recording was divided into 1000ms 

segment for each trial, beginning 150ms before stimulus onset. Trials in which 

participants responded erroneously or over the inter-trial-interval (1000ms) were 

discarded. The EOG artifact was corrected via a regression-based algorithm described by 

Gratton et al. (1983) with EOG channel referenced to Fp1 lead. After baseline was 

corrected, any trials in which subjects responded outside the inter-trial-interval (1000ms) 

or containing over 80µV in amplitude were eliminated before averaging. Individual ERPs 

were obtained separately for each group: Stimulus type (Go-left, Go-right, NoGo-left, 

NoGo-right), Laterality (left, middle, right), Caudality (frontal, central, and parietal).  

 

Data Analysis 

All statistical analyses described below were performed using the SPSS software package 

(Version 17.0; SPSS Inc, Chicago, USA). Outliers were defined as data points that fell 

beyond two standard deviations and were eliminated before statistical analysis. Data from 

two participants (1 BD, 1 CT) was eliminated due to substantial, uncorrectable eye 
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movement artifact. In all statistical contrasts, including repeated-measure analysis of 

variance (ANOVAs), the Greenhouse - Geisser (CG) epsilon correction was applied to 

adjust the degree of freedom of the F-ratios. For the significant F- tests, Student-Newman 

Keuls post-hoc comparisons were applied in order to determine where the effect emerged 

(α < .05).  

 

Behavioral Analysis 

Omission (OE) and commission error (CE) rates (i.e. no responses in Go trials 

and button presses in NoGo trials, respectively, divided by the number of trials) and 

reaction time (RT) for correct Go responses were analyzed. For RT, outliers (defined as 

responses that went beyond two standard deviations (SD)) were eliminated. Three-way 

repeated-measure ANOVAs were performed for accuracy rate, OE, and CE and varied 

with the types of task (Go/NoGo), stimulus presentation (left visual field 

presentation/right visual field presentation) as within-subject factors and group 

(BD/SZ/CT) as the between-subject factor. For the Go task, differences in RT in the three 

groups were analyzed in a Group × Stimulus ANOVA.  

ERP analysis 

In order to test whether P300 and N200 components were present in ERP data, 

components explaining most of the ERP variance in temporal domains were detected and 

quantified through temporal principal component analysis (tPCA). The main advantage of 

tPCA over visual inspection of ERPs based on temporal windows of interest is that it 

presents each ERP component separately with clean shape, extracting and quantifying it 

without being influenced by adjacent components (Chapman and McCrary, 1995; Coles 
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et al., 1986; Donchin and Heffley, 1978). In this study, tPCA was performed by 

computing the covariance between all ERP time points (-150ms – 1000ms), which 

resulted in a set of independent factors consisting highly covarying time points 

corresponding to ERP components. Temporal factor scores, the tPCA derived parameter 

where extracted temporal factors were quantified. Extracted components were submitted 

to Varimax rotation, which confirmed the presence of P300 and N200. The time window 

of P300 in the present dataset was identified between 300-500ms, while N200 time 

window was set between180 -280ms (Appendix I). 

Consistent with previous studies (Boruka et al., 2003; Donkers & Van Boxtel, 

2004; Kiehl et al., 2002; Weisbrod et al., 2000), the ERP data from nine electrodes (F3, 

Fz, F4, C3, Cz, C4, P3, Pz, and P4) were included in data analysis to investigate laterality 

(left, middle, and right) and caudality (frontal, central, and parietal) effects.  Based on the 

temporal window identified by tPCA, mean amplitudes of P300 and N200 were obtained 

by averaging amplitudes within the temporal window of each ERP component. P300 and 

N200 latency data were obtained by 50 percent area latency measure, which was 

calculated but computing the area under each ERP waveform over a given temporal 

window identified by tPCA and then searching the time point (ms) which divides that 

area into 50 percent. This technique has been recently recommended (Luck, 2005) 

because of the following advantages over the simple peak latency measure: 50 percent 

area latency measure 1) is less sensitive to noise than is peak latency measure, 2) can 

detect timing of a component without any distinct peak or with multiple peaks, 3) it 

corresponds to grand average waveforms better than does simple peak latency measure. 
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In this present study, 50 percent latency was carried out using the MATLAB software 

(version 7.7; MathWorks Inc, Natick, USA) (Appendix 5).  

For ERP data, a five-way ANOVA was performed for ERP amplitudes and 

latencies: Group × Laterality × Caudality × Task × Stimulus. Main effect simple effect 

ANOVAs and Newman-Keuls tests were performed as post hoc tests. In performing 

planned post-hoc contrasts using ANOVA was applied to break down the omnibus effect, 

interaction effect among variables was reported when its preceding higher-order 

interactions were also significant. For example, a 2-way interaction was only reported if 

the preceding 3-way interaction was also significant. Any interaction effect among 

variables was reported only when its preceding higher-order interactions were also 

significant. In terms of statistical power, high statistical power of 0.91 was expected for 

five-way interaction, Caudality (frontal, central, parietal)  Laterality (left, middle, right) 

 Task (go, NoGo)  Stimulus (LVF, RVF)  Group (bipolar I, schizophrenia, controls) 

with medium ANOVA effect size (f = .30 or 2= .08) under = .05(Cohen, 1988). 

 

Discriminant functional analysis (DA) 

 Discriminant functional analyses (DA) was performed to test whether the three 

groups could be discriminated based on the linear combination of ERP amplitudes or 

latencies, and also to determine which variables contribute to the separation. In order to 

achieve this aim, Wilk’s Lambda smaller than .20 , Chi-square p-value less than .05, 

Eigen values larger or close to 1.0 were used as testing parameters (Norusis, 2008). In 

brief, Wilk’s Lambda, which is the proportion of the total variance in the discriminant 

scores not explained by group difference was used to test the significance of the 
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discriminant function as a whole, becomes smaller for a function that is more important 

than the other. Chi-square and its p-value test the null hypothesis that there is no mean 

group difference in population for any discriminant functions (Huberty, 1984). 

Descriptive and predictive functions were considered in interpreting the results of 

the DA. The focus of descriptive discriminant analysis (DDA) was to interpret the linear 

combination of the variables associated with group difference (Thompson, 1998), while 

predictive discriminant analysis (PDA) focuses more on allocating new cases to 

previously defined groups (Huberty & Lowman, 2000). Since the specific aim of DA for 

the present study was to find variables (behavioral and/or ERPs) that separates the three 

groups, DDA was considered to be more useful than PDA. Although predicting the 

diagnostic groups (bipolar I, schizophrenia, and healthy controls) based on each 

participant’s task performance and/or physiological responses was not the main focus of 

the present DA, classification accuracy (CA) was also reported to estimate how well the 

three groups were separated. Leave-one-out classification method (LOOC), where the 

classification rule is determined from one set of samples and then used to classify another 

set of sample was not applied because of the relatively small sample size (< 30) in each 

group (Hwang, 2001; Norusis, 2008). Thus, structure matrices presenting the weights of 

each variable on each discriminant function and classification accuracy rate were reported 

in result section. 
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 Result 

1. Behavioral Data 

1-1. Accuracy   

  All three groups demonstrated high accuracy rate for both Go (BD: 99.15%, SZ: 

98.4%, Control: 99.1%) and NoGo (BD: 97%, SZ: 97%, CT: 97.54%) trials. The effect of 

stimulus presentation differed in number of omission error (OE) and commission error 

(CE), Task × Stimulus, F(1,67) =22.11, p  < .001.  For Go stimulus, participants made 

more OE when the stimulus was presented to RVF than to LVF, Stimulus, F(1,67) = 7.52, 

p =.008 , while they made more CE for the NoGo stimulus presented to LVF than to RVF, 

F(1,67) = 12.17, p =.001. Among the three groups, it was only BD that was less accurate 

when the stimulus was presented to the left visual field (LVF) than to the right visual 

field (RVF), Stimulus × Group, F(2,67 = 3.84, p <  .05, LVF = 3.04 ± 3.87, RVF = 2.20 ± 

3.12. No main effect of task, stimulus presentation, and group was found.  

 

1-2. Reaction Time (RT) 

 Reaction time was obtained from correct Go trials. As expected, SZ showed the 

longest RT with BD in the middle and CT in order, Group, F(2,67) = 18.45, p  < .001, SZ 

= 439.77 ± 132.31 ms, BD = 352.16 ± 79.83 ms, CT = 270.16 ± 68.87 ms. Post-hoc test 

revealed that SZ showed longer latency than BD (p < .05) and  CT (p < .01). Longer RT 

was observed when the stimulus was presented to LVF than to RVF, Stimulus, F (1,63) 

=22.72, p  < .001, LVF = 353.65 ± 114.37 ms, RVF = 337.31 ± 112.95 ms. There was no 

interaction effect between Stimulus and Group.  
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2. ERP Data 

2-1. P300 Amplitude  

 As predicted, P300 amplitude was larger for NoGo task than for Go task, Task, F 

(1,66)  = 45.04,  p <.001, NoGo = 2.83 ± 2.66 µV, Go = 4.81 ± 3.71 µV. Consistent with 

the hypothesis, SZ demonstrated the smallest P300 amplitude for NoGo task over the 

frontal region when the stimulus was presented to RVF, Caudality × Stimulus × Task × 

Group, F (2,66)  = 2.31,  p = .056, SZ = .67 ± 3.02 µV, CT = 2.49 ± 4.77 µV, BD = 3.76 

± 3.61 µV. Dissecting this four-way interaction resulted in a series of significant 

interactions including  Stimulus × Task × Group only over the frontal region, F (2,66)  = 

2.79, p = .056. Over the frontal region, Stimulus × Group was significant only for NoGo 

task, F (2,66)  = 6.05, p < .01. The three groups differed specifically in NoGo task that 

was presented to RVF, Group, F (2,66)  = 2.89, p = .05. Post-hoc test revealed that the 

interaction effect emerged from the amplitude difference between SZ and of BD (p <.05), 

while marginally significant with that in CT (p < .10).   
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Figure 5-a. Grand average waveforms over frontal region with right visual field (RVF) 
and left visual field (RVF) presentation. In each waveform, positive polarity (0 – 2.5 µV) 
was down and negative polarity was up (-2.5 – 0 µV).  
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Figure 5-b. P300 mean amplitude over frontal region among bipolar group (BD), 
schizophrenic group (SZ), and control (CT) (F: frontal, G: Go, NG: NoGo, RVF: Right 
visual field stimulus presentation, LVF: left visual field presentation) Error bars are 
presented.   
 
 

2-2. P300 Latency 

As predicted, longer P300 latency for NoGo task than for Go task was observed 

(F (1,65)  = 42.89,  p < .001).  Bipolar showed the longest P300 latency for NoGo task 

among the three groups, Task × Group (F (2,65)  = 3.82,  p < .03, BD = 426.76 ± 30.03 

ms, SZ = 410.0 ± 35.29 ms, CT = 399.55 ± 33.65 ms). Post-hoc tests suggested that the 

interaction effect was due to the difference between BD and CT (p < .05). BD was 

delayed P300 latency for NoGo stimulus compared to the other two groups only at the 

parietal sites, Group × Task × Caudality (F(2.78, 9.04)  = 3.46, p < .02, BD = 431.24 ± 

21.40 ms, SZ = 413.26  ± 41.39 ms, CT = 397.08 ± 33.46 ms). Post-hoc test revealed 

there were differences between BD and CT (p < .05) (Figure 6-a, b). Different from 

expectation, there was no stimulus presentation main effect or its related interaction effect. 
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-150           0                200              400               600             800        1000 
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Figure 6-a. ERP grand average waveforms for NoGo Right visual field (RVF) stimulus 
presentation. In each waveform, positive polarity (0 - 10 µV) was down and negative 
polarity was up (-10 – 0 µV).   
 

  

  

 

-150           0                200              400               600             800        1000 
(ms) 

Figure 6-b. ERP waveforms for NoGo Right visual field (LVF) stimulus presentation. In 
each waveform, positive polarity (0 - 10 µV) was down and negative polarity was up (-10 
– 0 µV). Each waveform was presented with -200 – 1000(ms) based on the onset of 
stimulus.  
 
 
 
 
2-3. N200 Amplitude 

The mean amplitude of N200 amplitude (180-280 ms) obtained from six fronto-

central electrodes (F3, F4, Fz, C3, C4, Cz) were included for data analysis. N200 

amplitude negativity was larger over the frontal region compared to central region, 

Caudality, F (1,66)  = 7.54, p < .01, Frontal = .66 ± 3.07 µV , Central = 1.29 ± 2.74 µV. 
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N200 amplitude for NoGo was the larger in CT over the frontal region compared to the 

patient groups, Group × Caudality × Task, F (2,66)  = 2.54, p = .05, CT = -.74 ± 1.27 µV, 

SZ = 1.45 ± 1.87 µV, BD = 1.57 ± 1.41 µV (Figure 2-b). Post-hoc test further revealed 

that the effect emerged from CT’s large N200 amplitude compared to SZ (p < .05) and 

BD (p < .05). BD and SZ did not show N200 amplitude differences. Contrary to our 

expectation, no task main effect was observed. 

2-4. N200 Latency 

The three groups differed in N200 latency over the right-central site (C4), specifically 

when the stimulus was presented to RVF, Laterality × Caudality × Stimulus × Group (F 

(3.66, 120.78) = 2.56, p < .05). As expected, SZ showed longer N200 latency for RVF 

stimulus presentation over the right central site (C4) than CT, but did not differ from BD, 

Group, F (2,67) = 3.57, p < .05, SZ = 257.68 ± 24.59 ms, BD = 249.44 ± 29.50 ms, CT = 

237.08 ± 23.67 ms. Post-hoc test further revealed that the interaction effect emerged from 

the difference between SZ and CT (p <.05), indicating that SZ was slower than control by 

approximately 20 ms in evaluating NoGo stimuli when the stimulus was presented to 

RVF.   

  

3. Discriminant Functional Analysis (DA) 

 3-1. P300 

Discriminant Function analysis (DA) was performed in order to test whether the P300 

amplitude could separate SZ, BD, and CT. With thirty six variables (Laterality  

Caudality  Stimulus  Task; 3  3  2  2), P300 amplitude identified the group 

membership with 94.2% accuracy (Wilk’s Lambda = .106, p = .003). Two BD patients 
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were grouped incorrectly, one as a schizophrenic and the other as a control. One 

schizophrenic patient was placed in control group, while another patient was grouped as 

bipolar. There were two control cases that were not classified in any groups. Function I 

mainly consisted of Go P300 amplitudes, while Function II consisted of NoGo P300 

amplitudes (Table 2). Frontal P300 amplitudes showed different signs in correlation  

coefficient with Function I, which indicated that large amplitudes in centro-parietal 

region and small amplitudes over frontal region separated control group from the two 

patient groups  while Function II discriminated schizophrenic group from bipolar group 

(Figure 7). DA based on P300 latency failed to provide a model to classify the three 

groups (Wilk’s Lambda = .17, p = .14) . DA for P300 latency was not valid to 

discriminate the group membership (Wilk’s Lambda = .31 , p = .18). 

 

   
Figure 7. Discriminant Analysis for P300 amplitude. Function I group centroid score: SZ 
(-.59), BD (-1.75), CR (2.06). Function II group centroid score: SZ (-1.84), BD (1.02), 
CT (.41).  
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3-2. N200  

Discriminant Function analysis (DA) was applied to test whether the N200 latency 

classified SZ, BD, and CT. With twenty four variables (laterality  caudality  stimulus 

task; 3  2  2  2), N200 latency classified the group membership with 77% accuracy 

(Wilk’s Lambda = .29, p = .03). Based on N200 latency, two bipolar patients were placed 

in schizophrenic group, one as CT, while one schizophrenic patient was placed in BD, 

while four of them grouped as CT. Two controls were not classified in any groups.  

Function I consisted of Go RVF N200 latency, while Function II consisted of NoGo 

N200 latency. Function I discriminated SZ from CT and BD, while Function II separated 

BD from CT (Table 3, Figure 8).  DA for N200 amplitude was not valid (Wilk’s 

Lambda= .42, p = .66). 

 
Figure 8. Discriminant Analysis for N200 latency. Function I group centroid score: SZ (-
1.52), BD (.73), CR (.42). Function II group centroid score: SZ (.196), BD (.94), CT (-
1.09).  
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Discussion 
 

This study investigated response inhibition deficit in SZ and BD with lateralized 

Go/NoGo paradigm. It is the first ERP study to directly compare response inhibition of 

BD with that in SZ. As predicted, SZ showed reduced P300 amplitude for NoGo task 

over the frontal region specifically when the stimulus was presented to the right visual 

field. Furthermore, reduced NoGo P300 amplitude was found only when the stimulus was 

presented to the right visual field (RVF) and projected to the left hemisphere suggesting 

that SZ had difficulty in recruiting attentional resources from the left hemisphere needed 

to suppress prepotent responses. Findings from discriminant functional analysis further 

supported that NoGo P300 amplitude with RVF stimulus presentation successfully 

discriminated SZ from the other two groups (Table 2).  

Intriguingly, BD showed larger frontal NoGo P300 amplitude compared to that of 

SZ and even that of CT when the stimulus was presented to RVF, which indicated that 

BD did not have difficulty in this task recruiting resources from left hemisphere. The 

findings are inconsistent with the previous neuroimaging studies, where reduced 

activation over the frontal region was found. However, counting Stroop tasks (Roth et al., 

2006 ; Strakowski et al., 2005) measured cognitive resistance to interference along with 

motor response inhibition by adding the ‘ignore’ piece to inhibition process, which may 

increase cognitive burden for BD.  NoGo P300 amplitude highlighted SZ’s neural deficit 

in response inhibition is differentiated from BD, combined with the findings that the three 

groups did not differ in overall accuracy. Further, replicated findings in successful 

discrimination of SZ based on P300 for NoGo trials added to the literature that neural 
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deficits in response inhibition may become a candidate of endophenotype for 

schizophrenia. 

  Although NoGo P300 amplitude showed that BD have the cognitive resources 

available for inhibiting motor responses, their longer overall P300 latency than CT and 

SZ, indicated deficits in cognitive speed in stimulus evaluation among BD. In addition, 

our findings that BD’s prolonged latency was not modulated by task suggested that delay 

cognitive evaluation in BD may be more general deficits in classifying stimuli rather than 

specific to response inhibition. This view can be supported by the consistent findings 

from the previous studies that reported BD’s prolonged P300 latency for oddball stimuli 

that do not require cognitive inhibition. These findings suggest that P300 latency may 

become a candidate for BD’s endophenotype if the findings can be further replicated.  

Further, concerns often arise in psychophysiological research regarding 

medication effects on ERPs.  Even though medication was not experimentally controlled, 

it is noteworthy that the largest P300 NoGo amplitude was in BD even though all BD 

patients were taking psychotropic medication (46.1 % on antidepressants, 57.7% on 

mood stabilizers and 19.2% on antipsychotics, 38.5% were on multiple medications).  

Therefore, the typically found reduced P300 amongst psychiatric patients is unlikely due 

to simple medication effects.  

 In contrast to the results of previous chapter that reported lateralized inhibition 

deficit in SZ (Bellgrove et al., 2005; Kaladjian et al., 2007; Rubia et al., 2001a; Weisbrod 

et al., 1997, 2000), the findings were not replicated here. This failure to replicate may be 

due to the horizontal eye movement between the pre-cue stimulus and the letter stimulus 

in this lateralized Go/NoGo paradigm. As seen in Figure 5 (solid lines), horizontal eye 
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movement occurred before the off set of pre-cue stimulus (-900 – -700 ms) and continued 

until the onset of  the actual stimulus, which propagated on frontal left (F3) and frontal 

right (F4). Such lateral eye movement between the pre-cue and actual stimulus can be 

problematic in two ways. First, the stimulus would be presented directly to the central 

foveal region instead of lateral visual field. This could weaken the association between 

left hemispheric dysfunction in SZ and response inhibition deficits such that NoGo 

stimulus presented to the right-side of the screen may not have correctly projected to left 

hemisphere through right visual field. Further, failure in presenting the stimuli on the 

lateral visual field in this study may have caused lateralized EEG activity in this study. 

Although regression-based ocular correction was applied (dashed lines in Figure 9-a) 

with F7 as HEOG channel and F8 as its reference channel, those two channels were also 

sensitive to the brain activity. Furthermore, it was not clearly monitored whether 

participants moved their eyes back to the central fixation point after stimulus onset. If 

there was a significant group difference in post-stimulus eye movement, then there could 

be differences in post-stimulus ERP activities related to the eye movement, which may 

have been subtracted or added to during the horizontal eye movement correction (Figure 

9-b).    Thus, in the future studies, more attention needs to be paid to control horizontal 

eye movement in order to obtain clear laterality effect. As Eimer (1993) suggested, 

having a practice block to train participants to keep their eyes in the middle of the screen 

during the task would improve the quality of lateralized ERPs.  

As expected, frontal N200 amplitude for NoGo was attenuated in both SZ and BD 

compared to CT, indicating an early deficit in the inhibition process among patients . 

Given the controversy in the nature of NoGo N200 (see Folstein & van Patten, 2008 for 
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review), patients’ attenuated NoGo N200 amplitude may also reflect their deficit in 

conflict monitoring between the execution and the inhibition processes (Donkers & van 

Boxtel., 2004; Nieuwenhuis & Yeung, 2003) not just inhibition process itself. In this 

study, N200 amplitude for Go task did not differ for the three groups which supported the 

view that patients groups can recruit cognitive resources to execute responses and 

therefore they had deficits specific to response inhibition. However, according to the 

proponents of conflict monitoring, it could be due to the low-frequency of NoGo stimulus 

(30%) not because of the nature of NoGo stimulus (generating inhibition). Therefore, 

obtaining N200 amplitudes from equiprobable Go/NoGo task would be beneficial to 

clarify patients’ early deficit in NoGo N200, since NoGo N200 amplitude would be 

enhanced than Go amplitude if NoGo N200 specifically reflects inhibition process. 

In conclusion, this study suggests that neural response inhibition deficits in SZ are 

associated with processing stimulus projected to the frontal left hemisphere. This was not 

found in BD.  Current findings of delayed P300 latency in BD supported the previous 

findings that P300 latency could become a biological marker of bipolar disorder.    

Further, as indicated by a 98% overall accuracy rate, it was speculated that the Go/NoGo 

task in this study may not have been challenging enough to capture  response inhibition 

deficits in BD that have previously been noted in neuropsychological studies (Burdick et 

al., 2006; Daban et al., 2006). Given the prolonged latency in BD, tasks with greater time 

pressure may reveal BD’s dysfunctional neural responses associated with response 

inhibition.   
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Figure 9-a. Grand average of horizontal eye movements between the onset of the precue 
and the onset of the stimulus. Gratton & Coles ocular correction algorithm was applied 
with F7 as HEOG channel and F8 was its reference channel.  
 
 

 

 
Figure 9-b. Grand average of eye movements after the onset of the stimulus  
(-150ms – 1000ms) on VEOG and HEOG (F7, F8) channels. Gratton & Coles ocular 
correction algorithm was applied with F7 as HEOG channel and F8 was its reference 
channel, while EOG was used as VEOG channel and Fp1 was its reference. 
 

                Pre-cue onset (-900 ms)      Pre-cue offset (-700 ms)     Inter stimulus – Pre-cue interval              Stimulus onset  

EOG 

F7 

F8 

                     Onset                 200                       400                     600                         800                    1000 (ms) 
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Chapter III. APPENDICES 

Appendix 4. Temporal principal component analysis (tPCA) with eight temporal factors. 
P300 time window was identified between 300 – 500ms and 180 – 280ms for N200 
component   
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Appendix 5. An example of 50 percent latency measure in MATLAB. In this example, 
396 ms was identified as 50 percent latency of P300 amplitude on F3.  
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Appendix 6. Main effects and interaction effects for repeated measure ANOVA for P300 
amplitude (NS: p-value > .10) 
 
Main effect and interaction effect F (df1, df2) p-value 
Caudality 

Central (mean = 4.77 µV, SD = 3.71 µV)  
Parietal (mean = 4.65 µV, SD = 3.06 µV)  
Frontal (mean = 2.04 µV, SD = 3.44 µV) 

F(1.49,98.22)  = 42.67 p < .001 

Stimulus 
Right visual field (RVF) (mean = 3.60 µV, SD = 2.99 µV)  
Left visual field (LVF) (mean = 4.04 µV, SD = 3.17 µV). 

F(1,66)  = 8.29 p <.01 

Task × Group 
   Go (Group) 
   NoGo (Group) 
     SZ (mean = 3.29 µV, SD = 3.46 µV)  
     BD (mean= 5.10 µV, SD = 3.03 µV)  
     CT (mean = 5.66 µV, SD = 4.22 µV) 

F(2,66)  = 2.60 
NS 
F(2.84,93.6)  = 4.39 
 

p < .10 
NS 
p < .01 

Laterality × Stimulus × Group 
   Left-sites (Stimulus × Group ) 
   Right-sites (Stimulus × Group) 
     Right-sites RVF (Group) 
       SZ (mean = 4.20 µV, SD = 2.72 µV)  
       BD (mean= 1.86 µV, SD = 3.15 µV)  
       CT (mean = 4.39µV, SD = 3.39 µV) 
     Right-sites LVF (Group) 
   Midline (Stimulus × Group) 

F(2.88,95.11)  = 2.38 
NS 
F(2,66)  = 6.12 
F(2,66)  = 4.29 
 
 
 
NS 
NS 

p < .10 
NS 
p < .01 
p < .05 
 
 
 
NS 
NS 

Caudality × Laterality × Stimulus × Task 
Frontal (Laterality × Stimulus× Task) 
  Frontal, Go task (Laterality × Stimulus) 
    Frontal-left (F3) Go (Stimulus) 
       RVF (mean = .92 µV, SD = 2.93 µV) 
       LVF (mean = 1.93 µV, SD = 3.28 µV) 
    Frontal-right (F4) (Stimulus) 
    Frontal-midline (Fz) (Stimulus) 
       RVF (mean = .93 µV, SD = 3.50 µV) 
       LVF (mean = 1.51 µV, SD = 3.49 µV) 
  Frontal, NoGo task (Laterality × Stimulus) 
    Frontal-left (F3) (Stimulus) 
    Frontal-right (F4) (Stimulus) 
    Frontal-midline (Fz) (Stimulus) 
Central (Laterality × Stimulus× Task)  
  Central, Go task (Laterality × Stimulus) 
    Central-left (C3) Go (Stimulus) 
       RVF (mean = 2.14 µV, SD = 3.10 µV) 
       LVF (mean = 3.89 µV, SD = 3.45 µV) 
    Central-right (C4) Go (Stimulus) 
       RVF (mean = 3.88 µV, SD = 3.60 µV) 
       LVF (mean = 2.73 µV, SD = 3.28 µV) 
    Central-midline (Cz) Go (Stimulus) 

F(2,66)  = 2.31 
F(1.70,112.24)  = 15.25 
F(1.77,118.8)  = 13.11 
F(1.77,118.80)  = 13.11 
 
 
NS 
F(1,67)  = 4.82,   
 
 
F(1.77,117.29)  = 2.90 
NS 
F(1,66)  = 7.14 
F(1,67)  = 7.10,   
F(1.45,97.19)  = 42.13 
F(1.30,87.34)  = 48.48 
F(1,67)  = 41.49 
 
 
F(1,67)  = 12.24 
 
 
NS 

p = .056 
p < .001 
p < .001 
p < .001 
 
 
NS 
p < .05 
 
 
p = .065 
NS 
p < .01 
p = .01 
p < .001 
p < .001 
p < .001 
 
 
p = .001 
 
 
NS 
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Appendix 7. Main effects and interaction effects for repeated measure ANOVA for N200 
latency (NS: p-value > .10) 
 
Main effect and interaction effect F (df1, df2) p-value 
Caudality 

Frontal (mean=261.36 ms, SD = 20.66 ms) 
Central (mean=249.54 ms, SD = 24.64 ms)  

F(1,66)  = 37.15  p < .001 

Laterality × Stimulus 
Right visual field (RVF) (Laterality)  
     Right-site (mean=253.07 ms, SD=23.93 ms) 
     Left-site (mean= 254.87 ms, SD = 22.36 ms) 
     Midline (mean = 257.72ms, SD = 23.37ms) 
Left visual field (LVF) (Laterality) 

F(1.98,130.87)  = 2.68  
F(1.89,124.73)  = 4.66 
 
 
 
NS 

p =.069 
 p < .05 
 
 
 
NS 

Laterality ×Caudality × Task × Stimulus 
     Frontal (Laterality × Task × Stimulus) 
     Central (Laterality × Task × Stimulus) 
         Central Go task (Laterality × Stimulus) 
             RVF (Laterality) 
                 Right-site (mean=245.71ms, SD=30.48 ms) 
                 Left-site (mean=251.86ms, SD=32.38ms) 
                 Midline (mean =252.91ms, SD=32.11ms) 
            LVF (Latearlity) 
        Central NoGo task (Laterality × Stimulus) 

F(1.58,104.38)  = 2.8  
NS 
F(1.78,119.63)  = 3.26 
F(1.97,136.3)  = 5.37 
F(1.78,123.39)  = 4.04 
 
 
 
NS 
NS 

p =.068 
NS 
p < .05 
p < .05 
p < .05 
 
 
 
NS 
NS 

 

 

Appendix 8. P300 mean amplitude Discriminant functional analysis Structural matrix. 
 
                                Function I.  
  variable                           correlation coefficient 

             Function II.         
    variable           

 
correlation coefficient 

P3 Go LVF  .231 C4 NoGo RVF     .303 
P4 Go LVF  .200 P4 NoGo RVF     .295 
Pz Go LVF  .191 F4 NoGo RVF    .287 
P3 Go RVF  .191 P3 NoGo RVF    .228 
Pz Go RVF  . 168 Pz NoGo RVF     .223 
F3 Go RVF -.114 P4 NoGo LVF    .216 
Fz Go RVF -.098 Cz NoGo RVF    .214 
C3 Go LVF   .094 C4 Go RVF    .208 
C4 Go LVF   .091 Fz NoGo RVF    .207 
Fz Go LVF -.085  F3 NoGo RVF    .195 
Cz Go LVF   .081 P4 Go RVF    .194 
F3 Go LVF -.080 Pz NoGo LVF    .182 
F3 NoGo LVF  -.076 P3 NoGo LVF    .175 
Fz NoGo LVF -. 071 C3 NoGo RVF   .175 
F4 Go LVF -. 071 C4 NoGo LVF   .166 
F4 NoGo LVF - .067 Cz NoGo LVF   .126 
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Appendix 9. N200 latency Discriminant Functional Analysis Structural matrix 

                  Fucntion I.      
   variable                            

                              
correlation coefficient 

                      Function II.       
   variable                            

 
correlation coefficient 

C4 Go RVF -. 292  C4 NoGo RVF  . 305 
Cz Go RVF -. 248 C4 Go LVF  . 301 
C3 Go RVF -. 157 C4 NoGo LVF  . 273 
F4 Go LVF -. 154 C3 NoGo RVF  . 268 
F4 Go RVF -. 148 C3 NoGo LVF  . 262 
F3 NoGo RVF -. 106 Cz NoGo RVF  . 236 
Fz Go RVF -. 085 Cz NoGo LVF  . 224 
F3 Go LVF -. 082 C3 Go LVF .  221 
Fz NoGo LVF  . 061 F3 NoGo LVF -.204 

  Cz Go LVF . 197 

  F3 Go RVF -185 

  Fz Go LVF . 106 

  F4 NoGo RVf . 091 

  F4 NoGo LVF . 063 

  Fz NoGo RVF -.018 

 



 

Chapter IV. 

 Emotion modulation in response inhibition in schizophrenia and bipolar I 

disorder: an ERP study 

 

 

Introduction  

 

Selecting context-appropriate responses and, at the same time, inhibiting 

competing context-inappropriate responses,  is critical to adaptation to the environment 

(Schulz et al., 2009). For humans, the demand for appropriate response selection and 

inhibition often occurs in the social context, particularly in social situations that involve 

emotions (e.g., suppressing inappropriate sexual behavior when an attractive member of 

the opposite sex is smiling at you). Given the close relationship between successful social 

adaptation and response inhibition in the face of emotional stimuli, the investigation of 

emotion modulation in response inhibition in SZ and BD may provide insight into the 

prevalent, maladaptive behaviors (e.g., substance abuse, social withdrawal, suicidality) 

that may stem from response inhibition deficits. 

Recent studies have provided evidence that emotional cues, including emotional 

faces, modulate response inhibition (Hare et al., 2005; Schulz et al., 2007, 2009). For 

example, compared to neutral stimuli, exposure to positive stimuli (e.g. happy faces, 

positive words) facilitates ‘approach’ behaviors in research participants, making it more 

difficult for them to inhibit task-inappropriate behavior (Albert et al., 2010; Johansson & 
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Ronnberg, 1996; Schulz et al., 2009). This positive bias illustrates how emotion may 

interrupt ongoing cognitive process by competing for attentional resources with the 

ongoing task demands (Pessoa, 2009; Verbruggen & De Houwer, 2007).  Researchers 

have also used affective versions of the Go/NoGo task to assess how emotion influences 

response inhibition in healthy individuals, such as those with affective words (Chiu et al., 

2008), facial emotions (Luo et al, 2010; Wessa et al., 2007; Schulz et al., 2009), or 

emotion-provoking images (e.g., car accident; Albert et al., 2010). However, findings 

have been inconsistent. In some studies, emotional stimuli generated larger NoGo P300 

amplitudes relative to the neutral faces (Albert et al., 2010), greater activation over the 

frontal cortical regions including dorso-lateral prefrontal cortex (dlPFC), anterior 

cingulate cortex (ACC), orbitofrontal cortex (OFC), and inferior frontal gyrus (IFG) 

(Elliot et al., 2000; Hare et al., 2008; Schulz et al., 2009), indicating that inhibiting 

affective stimulus requires larger amount of attentional resources than inhibiting non-

affective stimulus.  In other studies, however, affective stimuli elicited larger N200 and 

P300 amplitudes only for Go trials (response execution) but not for NoGo trials (response 

inhibition) (Chiu et al., 2008). These findings, taken together, suggest that emotion 

modulates response inhibition in healthy control and that it may affect not only the 

inhibition process but also the response execution process, though the presence of the 

effect on Go trials could involve some process other than response execution. 

 
There is compelling evidence that both SZ and BD have deficits in response 

inhibition and social cognition (see Pinkham, Penn, Perkins, & Lieberman, 2003 for 

review). Specifically, SZ have lower accuracy (Seok et al., 2005; Suslow et al., 2003) and 

reduced ERP amplitudes for facial affect recognition (Streit et al.,2001; Turetsky et al., 
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2007), and blunted activation in the limbic network for discriminating emotion tasks (Gur 

et al., 2002; see Kring & Moran, 2008 and  Pinkham et al., 2003 for review). It was noted 

that this impairment was more profound when processing negatively valenced than 

positively valenced stimulus (Dougherty et al., 1974; Bell et al., 1997; An et al., 2003).  

This was further supported by the increase in neural activation over the right amygdala 

for the fearful faces (Holt et al., 2006; Silver et al., 2002).  

Since facial expression processing is a complex, multifaceted task (Bentin et al., 

1996; Carretié et al., 2001; Eimer and McCarthy, 1999; Kiefer et al., 1998; Lew et al., 

2005; Luo et al., 2010), it likely involves multiple cognitive processes. Indeed, there are 

at least two face-specific cognitive processes that have been frequently reported in ERP 

studies using face stimuli.  First, N170, a negative-going ERP component detected at the 

lateral occipito-temporal electrodes that peaks around 170ms post-stimulus, is thought to 

be an index of structural encoding of the face (Bentin et al., 1996; Bentin & Deouell, 

2000; Rossion et al., 2003). Second, N250, which peaks at approximately 250ms post-

stimulus, is thought to be an index of decoding of the emotional content of the face (Streit 

et al., 1999, 2001a; Tanaka et al., 2006). In addition, in some cases, the P300 component 

is thought to reflect further affect decoding in the processing of facial emotions (Johnston 

et al., 1986; Oliver-Rodriguez et al., 1999).  

The exact nature of the facial processing deficit in SZ is unclear. Some studies 

have found normal N170 but reduced N250 amplitudes (Streit et al., 2001b; Wynn et al., 

2008) suggesting normal structural encoding but impaired facial affect decoding, while 

others found reduced N170 but normal N250 amplitudes (Johnston et al., 2005; Turetsky 
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et al., 2007) suggesting deficits in early facial structure encoding  but relatively intact 

facial affect decoding  

In contrast, a reduced  asymmetry in N170 amplitude has often been reported in 

SZ (Hermann et al., 2004; Johnston et al., 2005; Streit et al., 2001b; Turetsky et al., 2007), 

suggesting that the impairment in early facial structure encoding in SZ may be due to a 

lateralization abnormality. Additionally, P300 reduction, regardless of valence is 

typically observed in patients with schizophrenia (Turetsky et al., 2007). Further, there 

appears to be further P300 reduction in response to negative faces than to positive faces 

(An et al., 2003). These findings suggest that deficits in early facial expression may make 

it more difficult for SZ patients to allocate attentional resources for response inhibition, 

and result in a reduced P300 for inhibition task. Taken together, these findings suggest 

that it is possible that deficits in early facial emotion processing in SZ interfere with later 

attentional resources allocation. If applied to the context of a response inhibition task, 

such early facial emotion processing deficits may interfere with response inhibition 

performance through reducing attentional resources allocation.  

It is unclear whether BD is also associated with deficits in facial emotion 

recognition (Gets et al., 2003). Euthymic BD showed blunted activation in the anterior 

limbic structures compared to healthy controls (CT) in one study (Strakowski et al., 2000), 

while relatively intact behavioral performance was reported in other studies (Addinton 

and Addington, 1998).  

 Given the deficits in emotion processing in SZ and BD, it is likely that emotion 

affects response inhibition in these two populations. However, no data exist as to if and 

how emotion modulates response inhibition in SZ. However, a recent fMRI study using 
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an emotional Go/NoGo task reported that increased neural activity over the fronto-striatal 

region for emotional NoGo faces than neutral NoGo faces for euthymic BD when 

compared to healthy controls (Wessa et al., 2007), suggesting that individuals diagnosed 

with BD require excessive attentional resources to inhibit inappropriate response to 

emotional faces. However, it was not clear from their findings whether the overactivation 

for emotional faces was only observed for NoGo trials because they did not include the 

contrast between emotional Go versus neutral Go. Further, the absence of emotion 

modulation effect in CT, which is inconsistent with other studies where CT showed 

greater activation for emotional NoGo stimuli (Elliot et al., 2000; Hare et al., 2008; 

Schulz et al., 2009), makes it difficult to interpret the significant group difference 

resulting from the double contrast (BD(NoGo-Go)>CT(NoGo-Go)).  

The main focus of the current study is to investigate how affective information 

influences response inhibition in SZ, BD and HC. Further, as shown in the previous two 

dissertation studies, neural responses to emotional Go/NoGo task will be used to attempt 

to discriminate the three groups. To this end, an affective version of Go/NoGo task with 

four different types of facial stimuli (neutral, happy, angry, and sad) was developed. 

Emotion modulation effect will be measure by amplitudes and latencies from  three ERP 

components:  N170, N250, and P300. The hypotheses are as follows: 

(1) Emotion will modulate both response inhibition (NoGo trials) and response execution 

(Go trials) since processing facial emotions should occur prior to both Go and NoGo 

trials. Both N250 and P300 would be larger for faces with emotions than those for neutral 

faces. However, if emotion modulates only response inhibition, then larger N250 and 

P300 amplitude for faces with emotion would be observed only for NoGo trials. If 
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emotion modulates only response execution, then enhanced ERPs by faces with emotion 

would be only observed for Go trials. 

(2) N170 amplitude will not differ in Go and NoGo tasks, while N250 and P300 will be 

larger for NoGo trials than for Go trials. No task effects on the N170 component will 

suggest that the inhibition effect in ERP amplitudes may stem from differences in early 

structural encoding.  

(3) Emotion modulation effects of the Emotional Go/NoGo task will characterize SZ 

group, BD group, and CT group differentially. It particular, SZ group is expected to show 

the smallest NoGo ERP enhancement in response to emotional faces, followed by BD 

group and then the CT group. If this is found, it would reflect diminished attentional 

resources for response inhibition during facial recognition.  

 

Method 

Task and procedure 

In this task, participants were presented with twelve active task blocks, where 

they had to respond as quickly as possible to a face with a target emotion (Go) and to 

withhold the response to a face with a distractor emotion (NoGo). In every block, one 

type of emotional face (happy, sad, and angry) served as target while neutral faces were 

distractor and vice versa. This resulted in six sets of Go-NoGo pairs including Go happy 

– NoGo neutral, Go angry – NoGo neutral, Go sad – NoGo neutral, Go neutral – NoGo 

happy, Go neutral – NoGo sad, and Go neutral – NoGo angry.  All face stimuli consisted 

of grey-scaled faces with happy, sad, angry, and neutral expression from 32 individuals 

(9 female) taken from the NimStim set (Tottenham et al., in press; http:// 
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www.macbrain.org.) In order to control race/ethnicity effect on amplitudes or latencies of 

ERP components, only Caucasian faces will be used. 

In each block, 35 Go (70%) stimuli and 15 NoGo (30%) stimuli (Eimer,1993) 

were presented for 150 ms on the center of the screen on a black background after 500 ms 

of fixation cross. The order of Go/NoGo stimuli was pseudorandomized in order not to 

have two consecutive NoGo stimuli (Schulz, 2007). The maximum amount of response 

time allowed was 1500ms. In order to obtain enough number of trials for ERP analysis, 

each set was repeated with the reverse order of stimulus presentation. The order of 

presenting twelve blocks was counterbalanced across participants in each group 

(Appendix 10).  

All participants performed the task in a darkened, electrically shielded room.  

Prior to each block, participants were given a written instruction on the screen indicating 

to which type of face they should respond. All participants were encouraged to respond as 

quickly as possible to establish the prepotency effect of Go stimulus. Responses and 

reaction times were recorded online via E-data Aid (Psychology Software Tools, 

Pittsburgh, USA), while EEG data were recorded via Vision Recorder (BrainProducts, 

GmbH, Munich, Germany) at the same time. A total of twelve blocks with 600 trials took 

about 20-25 minutes. After completing the computerized task, all participants were given 

a rating booklet in which they are going to rate the level of valence and arousal of each 

face. 

Data Analysis 

The same data pre-processing were completed as in study 2 (see Study 2 data 

analysis section). The temporal domain of N170, N250, and P300 were detected and 
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quantified through covariance matrix-based temporal principal component analysis 

(tPCA). (Chapman & McCray, 1995). As explained in detail later in the Appendix 11, the 

presence of N170, N250 and P300 were confirmed. 

For behavioral data, omission and commission error rates (i.e. no responses in Go 

trials and button presses in NoGo trials, respectively), and reaction time (RT) for correct 

Go responses were analyzed. For RT, outliers defined as responses above and beyond 2 

SD were eliminated. Repeated-measure ANOVAs on error rates were applied to Task (2) 

× Facial emotion (4). For RT, a univariate repeated-measure ANOVAs was carried out 

using facial emotion as a factor. 

Consistent with previous studies, individual ERPs were obtained from nine 

electrodes (F3, F4, Fz, C3, C4, Cz, P3, P4, Pz) separately for each variable for further 

analysis: Task type (Go, NoGo), Facial emotion (happy, angry, sad, and neutral), 

Laterality (left, middle, and right), and Caudality (frontal, central, and parietal). A five-

way ANOVA was performed for ERP mean amplitudes and 50 percent area latencies for 

Group (BD, SZ, and CT) × Task (Go, NoGo) × Facial emotion (Happy, Sad, Angry, 

neutral) × Laterality (left, middle, and right) × Caudality (frontal, central, and parietal), 

which will result in high statistical power of .92 with medium ANOVA effect size (f 

= .30 or 2= .08) under = .05(Cohen, 1988). As Simple effect ANOVAs were 

performed to test main effects and interaction effects among the abovementioned 

variables and Newman-Keuls tests will be performed as post hoc tests for any significant 

effects. Any interaction effects among variables were reported only when its preceding 

higher-order interactions are also significant.  
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Discriminant function analyses (DA) were performed for N170, N250 and P300 

amplitudes and latencies to determine whether the three groups could be delineated and 

also to describe which variables contribute to the separation (Norusis, 2008). Given the 

purpose of applying DA in this present study, DA structure matrices and  classification 

accuracy rate were reported to explore how the amplitudes and latencies in each ERP 

component separates the three groups. 

 

Result 

1. Behavioral Data 

Accuracy Rate, omission and commission error: within-subject effects 

 Among the four categories of emotion, accuracy rate was the lowest for sad faces 

when compared to other types of emotions, Emotion, F (1.84, 128.87) = 95.13, p < .0001, 

Happy = 96.0 ± 3.7 %, Angry = 95.5 ± 3.5 %, Neutral = 90.3 ± 7.4 %, Sad = 82.1 ± 8.3. 

For neutral faces, NoGo was more accurate than the Go task, Emotion × Task, F (1, 70) 

=43.84, p < .0001, Go = 84.7 ± 14.8 %, NoGo = 95.9 ± 1.2 %, while Go responses were 

more accurate than the NoGo responses for happy , Emotion × Task , F(1,70) =17.67, p 

< .0001, Go = 97.9 ± 2.83 %, NoGo = 94.2 ± 6.92% and sad faces Emotion × Task , F(1, 

70)=11.35, p= .001, Go = 86.1 ± 12.2 %, NoGo = 78.1 ± 12.2%. For angry faces,  no task 

effect was observed. Dissecting the Emotion × Task based on task type, an emotion effect 

was found for both the Go, Emotion, F (2.01.141.27) = 51.10, p < .001 and the NoGo 

task, Emotion, F (1.71, 119.93) = 120.99, p < .001. Post-hoc tests further revealed that 

for Go task, neutral faces showed lower accuracy rate than that for angry faces (p < .001) 

and happy faces (p < .001) but not to sad faces (p > .58). For the NoGo task, the post-hoc 
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tests showed that NoGo responses were significantly more accurate for neutral faces than 

for sad faces (p < .001) and happy faces (p < .05), while there was no difference was 

found between neutral and sad (p > .38; Figure 1). 

Accuracy Rate, omission and commission error: between-subject(Group) effects 

  Twenty six BD (women = 14), twenty SZ (women = 4), and twenty seven CT 

(women = 11) performed an Emotional Go/NoGo task. The three groups were marginally 

different in overall accuracy rate, F (2,70) = 2.75, p = .07 (SZ = 85.2 ± 10.8 %, BD = 

89.5 ± 8.13 %, CT = 91.4 ± 8.1 %).  Post-hoc tests revealed that the SZ group was less 

accurate than the CT group (p = .05), while BD was not different from the other two 

groups. Accuracy rate difference for emotion and task marginally differed by diagnosis, 

Emotion × Task × Group, F (2.31, 161.41) = 2.11, p= .074. Within BD, Go was more 

accurate than NoGo for happy and sad faces, while NoGo was more accurate for neutral 

faces, Emotion × Task , F(1.89, 47.48) = 28.64, p< .0001. CT also showed higher Go 

accuracy rates for happy, angry, and sad faces than for NoGo, while their neutral NoGo 

was more accurate than neutral Go, Emotion × Task, F(2.19, 57.57) = 19.99, p< .0001. 

SZ were more accurate for neutral NoGo than neutral Go but happy Go was more 

accurate than happy NoGo, Emotion × Task F(2.38, 48.25) = 12.20, p< .001 (Figure 1).  

Relatively higher numbers of OE was observed in neutral faces and in sad faces 

compared to happy and angry faces, Emotion, F (2.02, 141.2) = 51.07, p< .0001. As 

predicted, SZ made the most OE with BD in the middle and CT the least, Group, F (2,70) 

= 4.51, p < .05. Post-hoc tests revealed that SZ made more OE than CT (p < .05) but did 

not differ from BD (Table 1). Participants also made more commission errors (CE) for 

                                                 
4 Emotion × Task × Group violated sphericity assumption (p < .000). Without Greenhouse-Geisser 
adjustment, this three-way interaction was significant  (p =.05) 
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sad faces followed by neutral faces, happy faces, and angry faces, respectively , Emotion, 

F (2.35, 164.61) = 78.83, p < .0001, Sad = 7.01 ± 4.12, Neutral = 4.42 ± 3.79, Happy = 

1.86 ± 2.21, Angry = 1.67 ± 1.85. No group main effect and related interaction effects 

were found in CE (Table 6).  

 

Figure 10. Emotion × Task × Group Accuracy rate. BD=bipolar group, SZ= 
Schizophrenia group, CT= healthy controls.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

73 
 



 

Omission 
Error 

Group Mean Post-hoc 
p-value 

Standard 
Deviation  

Commission 
Error 

Mean Standard 
Deviation 

Neutral 
Go 

BD 
(N=26) 
SZ (N=20) 
CT (N=27) 

10.05 
13.37 
8.62 

SZ – CT 
(p < .05) 

8.92 
11.33 
10.11 

Neutral 
NoGo 

1.81 
1.95 
1.33 

1.77 
2.33 
1.54 

Angry 
Go 

BD 
SZ 
CT 

3.04 
3.50 
1.37 

SZ – CT 
(p < .05) 

3.16 
4.22 
1.24 

Angry 
NoGo 

7.15 
6.85 
7.00 

4.33 
4.28 
3.95 

Sad Go BD 
SZ 
CT 

7.96 
14.45 
7.22 

SZ – BD 
(p < .05) 
SZ – CT 
(p < .05) 

7.16 
9.70 
6.77 

Sad NoGo 2.12 
2.20 
1.37 

2.12 
2.69 
1.88 

Happy 
Go 

BD 
SZ 
CT 

1.58 
2.15 
.74 

SZ – CT 
(p < .05) 

1.45 
2.94 
.98 

Happy 
NoGo 

4.85 
4.69 
3.96 

4.16 
4.58 
2.72 

 
Table 6. Number of omission errors and commission errors for neutral, angry, sad, and 
happy faces. BD=bipolar group, SZ= Schizophrenia group, CT= healthy controls.  
 
Reaction Time (RT) for Go stimulus 

The speed of response differed by facial emotion, Emotion, F (2.29, 158.50) = 133.63, p 

< .0001. As predicted, RT for neutral faces was the longer than all emotional faces 

(Neutral – Angry = 96.43 ± 50.04 ms, Neutral – Happy = 110.92 ± 66.41 ms, Neutral – 

Sad =38.57 ± 50.32 ms, p < .01 for all). RT differed for the three groups, Group, F 

(2,69)= 11.13, p <.001. Post-hoc tests revealed that  RT among SZ was significantly 

delayed (61.60 ± 22.28 ms; p < .05) compared to BD (p <.05) and controls (103.35 ± 

21.91 ms; p <.001), (Table 7). No interaction effect between emotion and group was 

found. 
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Go Stimulus Group RT Mean (ms) Standard deviation (ms) 

Neutral Go BD SZ CT  428.97 
495.26 
388.55 

93.46 
86.67 
77.29 

Angry Go BD 
SZ 
CT 

343.17 
383.20 
288.83 

87.11 
78.78 
62.77 

Sad Go BD 
SZ 
CT 

383.75 
457.65 
350.59 

102.02 
86.47 
73.81 

Happy Go BD 
SZ 
CT 

315.59 
381.78 
276.50 

71.38 
87.37 
58.63 

 
Table7. Reaction Time (RT) for correct Go response in three groups (BD= bipolar group, 
SZ= schizophrenia group, CT= healthy controls). Neutral Go RT was obtained by 
averaging the three RTs where neutral faces were paired with angry, sad, and happy faces.  

 
 
 
2. ERP data 

Among the seventy two subjects that participated in this study, one data set from BD was 

excluded from ERP data analysis because ocular artifact was not successfully corrected 

due to the numerous consecutive blinking within a trial. 

2-1. N170  

N170 Amplitude 

As hypothesized, emotion did not modulate N170 amplitude, Emotion, F (2.83, 

192.21) = 2.09, p  = .19. However, consistent with expectation, N170 amplitude over the 

right site (P8) was larger than over the left site (P7), Laterality, F (1,68) = 7.76, p < .01 
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(Figure 3-a). Specifically, N170 for Go task was larger in CT than the patient groups for 

sad, Task × Group, F (2, 69) = 3.34, p < .05 and angry faces, Task × Group, F (2,69) = 

4.28, p < .05 at P8. Post-hoc comparison revealed that compared to CT, SZ showed 

smaller Go N170 for angry faces (p < .05), while BD showed reduced Go N170 for sad 

faces (p < .05). There was no main effect of emotion for NoGo N170 over P8 (Figure 11, 

12-a, b). There was no five-way interaction of Group × Task  Emotion  Caudality  

Laterality for N170 amplitude. 

 

N170 Latency 

As predicted, at P8, BD showed a marginally delayed latency compared to that of 

CT (p < .05), Group, F( 1.31, 49.27)  = 2.99,  p = .06, BD = 171.43 ±12.76 ms, CT = 

163.23 ±12.32 ms). N170 latency in BD was not different from that in SZ (p > .21) This 

effect depended marginally on task , Group  Task , F (2,68)  = 2.45, p = .07. For the 

NoGo task,  N170 latency in BD was delayed compared to CT, Group  Task,  F (2,68)  

= 4.67, p < .05, BD = 171.26 ±10.74 ms, CT = 162.49 ±10.06 ms. There were no further 

main effects or interactions of emotion, laterality, task, and group. 
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Angry Go Happy Go 

  

Sad Go Neutral Go 

 
 

Angry NoGo Happy NoGo 

  

Sad NoGo Neutral NoGo 

  

-150      0                 200                  400                   600                    800             1000 (ms)     -150      0                 200                   400                   600                   800           1000 (ms)  

    -150      0                 200                   400                 600                    800             1000 (ms)  
-150      0                 200                 400                600                  800          1000 (ms)  

-150          0                  200                 400                 600                   800          1000 (ms)  -150         0                  200                 400                   600                    800           1000 (ms)  

-150           0                 200                 400                  600                    800           1000 (ms)    -150          0               200                  400                    600                 800              1000 (ms)  

 Figure 11. waveforms over occipito-temporal (P7 and P8) sites. (± 5µV for both positive 
and negative polarity) 
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P7 Angry Go  Angry NoGo    P7 Happy Go  Happy NoGo     P7 Sad Go   Sad NoGo        P7 Neutral Go  Neutral NoGo 

Figure 12-a. N170 mean amplitude over P7 for angry, happy and neutral faces. (Standard 
error bars are presented.)  
 

 
 

P8 Angry Go  Angry NoGo       P8 Happy Go  Happy NoGo      P8 Sad Go Sad NoGo            P8 Neutral Go  Neutral NoGo 

Figure 12-b. N170 mean amplitude over P8 (right temporal-occipital) for angry, happy 
and neutral faces. (Standard error bars are presented.) 
  

2-2. N250  

N250 Amplitude 

Six fronto-central leads (F3, F4, Fz, C3, C4, and Cz) were included in data 

analysis (Appendix 12). As predicted, N250 amplitude was modulated by emotion, F 

(2.76, 191.02) = 22.19, p < .000, Neutral = -2.51 ± 2.59 µV, Happy = -1.88 ± 2.77 µV, 

Angry = -1.48 ± 2.95 µV, Sad = -1.39 ± 2.63 µV. Post-hoc tests revealed that N250 

amplitude was larger for neutral faces than for sad faces (p <.05). NoGo N250 amplitude 
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was marginally larger for Go task, Task, F (1, 69) = 2.88, p = .075,  NoGo = -1.91± 

2.67µV, Go = -1.70 ± 2.71 µV. There was no group main effect and group-related 

interactions. 

N250 latency 

As expected, longer N250 latency for NoGo than for Go task was found, Task, F 

(1, 66) = 38.97, p< .0001, NoGo = 265.17 ± 14.48 ms, Go = 251.94 ± 15.50 ms. 

However, no emotion modulation effect was found in N250 latency. Among the three 

groups, SZ showed the longest N250 latency, Group, F (2,66)  = 3.12, p= .05, SZ = 

259.45 ±14.95ms, BD = 254.98 ±16.63ms, CT = 248.86 ±10.99ms. Post-hoc tests 

revealed that N250 was significantly delayed in SZ compared to CT (p < .05), while there 

was no difference between BD and CT, and BD and SZ. There were no group-related 

interactions.  

 

2-3. P300 

P300 Amplitude: within-subject effects 

P300 mean amplitudes (350 – 550ms) from all nine electrodes were included 

(Appendix 14).  P300 amplitude was the largest over the parietal, followed by central, 

and frontal, respectively, Caudality, F (2,134) = 51.39, p < .001. As predicted, P300 

amplitude was modulated by emotion, Emotion, F (3,201) = 4.60, p= .004, Neutral = 

5.20 ± 3.29 V, Angry = 5.86 ± 3.47 V, Happy = 5.63 ± 3.30 V, Sad = 5.75 ± 3.21V. 

Post-hoc test showed that P300 amplitude for neutral faces was smaller than that for 

angry faces (p = .004), happy faces (p = .003), and sad faces (p = .005). Unexpectedly, 

however, emotion modulation was differentially manifested in the Go and NoGo task, 
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where enhanced P300 amplitude was observed for emotional Go faces, while attenuated 

P300 amplitude was shown for NoGo task, Emotion × Task, F (3,201) = 4.52, p< .01. 

Specifically, NoGo task P300 amplitude for neutral faces was larger than Go P300 

amplitude, Task, F (1,68) = 5.04, p< .05, while Go P300 amplitude was larger than that 

for NoGo P300 amplitude for sad faces, Task, F(1,67) = 4.27, p< .05, and happy faces, 

Task, F(1,67) = 2.78, p = .05 (Figure 13).  

 

P300 Amplitude: between-subject (Group) effects 

Over the parietal region, all three groups showed larger Go P300 amplitude for 

faces with emotions than for neutral faces, while only CT showed smaller NoGo P300 

amplitude for faces with emotions compared to that for neutral faces, Group × Emotion × 

Task × Caudality, F(8.04, 269.35) = 2.98, p < .01. In BD, parietal Go P300 amplitude 

was larger for angry faces (p < .05) and sad faces (p < .01) compared to that for neutral 

faces, while the difference was marginal for happy (p = .059). Parietal Go P300 

amplitude in SZ was larger for angry faces (p <. 05) compared to neutral P300 amplitude, 

while marginal enhancement was found for happy (p = .06) and sad (p = .057) faces. In 

CT, all three categories of emotions enhanced parietal Go P300 compared to neutral faces 

(Happy-neutral: p <.001, Angry-neutral: p < .001, Sad-neutral: p = .001) (Figure 14, 15). 
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Figure 13. Emotion modulation effect on Go and NoGo task P300 mean amplitudes. All 
nine electrodes were included. 
   

 

Figure 14. Group difference in emotion modulation effect over the parietal Go and NoGo 

P300 mean amplitudes 
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Angry Go Happy Go 

  

Sad Go Neutral Go 

  
Angry NoGo Happy NoGo 

  
Sad NoGo Neutral NoGo 

  
Figure 15. ERP waveform over Pz for BD, SZ, and CT (± 10µV for both positive and 
negative polarity) 
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P300 latency: within-subject effect 

P300 latency was longer for NoGo than Go, Task, F(1,67) = 23.31, p< .001, 

NoGo = 392.29 ± 27.34 ms, Go = 383.70 ± 21.38 ms. Compared to neutral, emotional 

faces elicited shorter Go P300 latency, Emotion, F(3, 204) = 3.58, p < .05, Happy –

neutral: p <.05, Angry - neutral: p <.05, Sad – neutral: p > .63. NoGo P300 latency 

difference in emotion was marginally significant, Emotion, F (2.47,165.71)  = 2.47 , 

p= .076. Compared to neutral faces longer NoGo P300 latency was observed only for 

angry faces (p < .05).  

 

P300 latency: between-subject (Group) effect 

Among the three groups, BD showed the longest overall latency, Group, F (2,67)  

= 15.10, p< .001, BD = 404.17 ± 22.87 ms, SZ = 388.06 ± 18.53 ms, CT = 374.52 ± 

15.70 ms. Post-hoc revealed that BD showed longer overall P300 latency than both SZ (p 

< .05) and CT (p < .001). BD was the only group that showed longer NoGo P300 latency 

than that for Go task, Task × Group, F (2,67) = 12.96, p< .001, BD = 415.29 ± 29.45 ms, 

SZ = 385.66 ± 14.86 ms, CT = 376.18 ± 16.88 ms. Emotion modulation effect in P300 

latency was marginal only in BD for Go task, Task × Emotion × Group, F (5.37, 179.99) 

= 1.96, p= .069. Only in BD was observed faster Go P300 latency for faces with 

emotions compared to neutral faces, Emotion, F (3,72) = 3.29, p < .05. Post-hoc test 

further revealed that Go P300 latency was significantly faster for happy faces than for 

neutral faces in BD (p < .007).  
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3. Discriminant functional Analysis (DA)  

DA for behavioral data 

A series of DA was performed including accuracy rate, RT for Go task, and 

number of omission and commission error. Based on Wilk’s Lambda and Chi-square p-

values, DA was not valid to classify the three groups based on both accuracy rates 

(Wilk’s Lambda = .71, p >.48) and number of OE and CE (Wilk’s Lambda = .60, p >.10).  

Go RTs for neutral, sad, happy, and angry faces classified the three groups with 

63.9% accuracy (Wilk’s Lambda = .62, p < .001). All four variables were strongly 

correlated with Function I, which discriminated SZ from the other groups (Appendix 18, 

Figure 16). 

  

Figure 16. Canonical Discriminant Functions for Go reaction time (RT). Group centroid 
scores for Function I: BD (-.21), SZ (1.0), CT (-.55).  
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DA for N170 

Discriminant functional analysis was not valid to classify the three groups based 

on both N170 mean amplitude (Eigen value < 1.0, Wilk’s Lambda = .372, p >.20), N170 

latency (Eigen value <.10, Wilk’s Lambda = .53, p >.22).  

 
DA for N250 

Discriminant function analysis (DA) was significant  for N250 latency (Wilk’s 

Lambda = .06, p =.05), but not N250 amplitude. Function I and II separated the three 

groups with 92.8% accuracy based on fronto-central N250 latency. Function I 

discriminated SZ from CT, which mainly consisted of neutral Go, neutral NoGo, and 

angry NoGo over central region (Appendix 15). Function II mostly included sad Go and   

NoGo, which separated BD from CT (Figure 17). Discriminant functional analysis was 

not valid to classify the three groups based on both N170 mean amplitude (Eigen value < 

1.0, Wilk’s Lambda = .372, p >.20), N170 latency (Eigen value <.10, Wilk’s Lambda 

= .53, p >.22), and N250 amplitude (Eigen value < 1.0, Wilk’s Lambda = .477, p >.64) 
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Figure 17.  Discriminant function analysis for N250 latency. Function I group centroid 
score: SZ (2.82), BD (-.60), CR (-1.68). Function II group centroid score: SZ (.56), BD (-
1.97), CT (1.44). 
 
 

DA for P300 

When P300 amplitudes from all nine electrodes were included, Function I and II 

in this model classified group membership with 98.6% accuracy (Wilk’s Lambda= .002, 

p < .001). Function I discriminated SZ from the other two groups, which consisted of 

P300 amplitudes for happy NoGo, angry NoGo, neutral Go and NoGo over fronto-central 

region. Function II mostly included parietal P300 amplitudes, which separated BD from 

CT ( Figure 18, Appendix 17).  

With P300 latency from all nine electrodes, DA identified the three groups with 

100% accuracy (Wilk’s Lambda= 0.001, p <.0001). Function I discriminated BD from 

the other two groups, which mainly consisted of emotional NoGo latencies from central 

and parietal region, while Function II included neutral Go and happy Go which separated 

SZ from CT (Figure 19, Appendix 16).  
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Figure 18. Discriminant functional analysis for P300 amplitude with all nine electrodes: 
Function I group centroid score: SZ (-7.94), BD (4.36), CT (2.25). Function II group 
centroid score: SZ (.99), BD (4.16), CT (-4.44)    
 
 

 

Figure 19. Discriminant functional analysis for P300 latency. Function I group centroid 
score: SZ (-5.61), BD (10.22), CT (-5.11). Function II group centroid score: SZ (6.03), 
BD (.16), CT ( -4.77).  
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Discussion 

 

In this study, the neural responses to emotion-modulated response inhibition 

separated bipolar disorder and schizophrenia in comparison with healthy controls using 

emotional Go/NoGo paradigm. These findings supported the view that ERPs (N250 

latency, P300 amplitude, P300 latency) could become an endophenotype of schizophrenia 

(Bramon et al., 2005;Turetsky et al., 2007) and bipolar disorder (O’Donnell et al., 2004; 

Souza et al., 1995). Further, findings from N250 and P300 latency indicated that groups 

were separated by neural responses to emotion rather than by task types (Go/NoGo), 

while scalp region (e.g. fronto-central vs. parietal) separated the groups in P300 

amplitude. Both SZ and BD patients demonstrated deficient initial structural encoding of 

faces as indicated by reduced N170 amplitudes over right occipito-temporal region.  

However, affect decoding was relatively intact in the early visual components, as 

indicated by normal N250 amplitude and latency. Between the two cognitive processes 

involved in Go/NoGo paradigm, emotion modulated response execution process, but not 

the inhibition process.   

N170: Structural encoding and response inhibition 

As predicted, no emotion modulation effect was found (no difference between 

neutral vs. affective faces or any differences between affective faces) in early visual 

component (N170), which supported the previous studies that there is no difference in 

encoding facial structure of faces with and without emotions (Eimer & Holmes, 2002; 

Holmes et al., 2003; Luo et al., 2009). When the three groups were compared, patients’ 

N170 amplitude was less lateralized to the right occipito-temporal region than controls. 
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Given that right hemisphere dominance in N170 component has been replicated in 

previous studies with controls (Bentin et al., 1996; Luo et al., 2009; Lynn et al., 2008 

Sagiv and Bentin, 2001), the findings in this study reflect the deficit in the initial 

encoding of facial structures over the right side of the brain in both BD and SZ. 

Specifically, N170 amplitude was more reduced in BD with negative stimuli (sad faces), 

while such reduction in amplitude was more prominent in schizophrenic patients with 

threat-provoking stimuli (angry faces). This indicates that SZ showed deficits in 

processing faces with negative high-arousal, while euthymic BD showed impaired early 

face processing for the faces with negative low-arousal. These results are consistent with 

the previous studies which showed profound deficit in schizophrenics’ ability to 

accurately recognizing negative emotions (Dougherty et al., 1974; Bell et al., 1997; An et 

al., 2003). Specifically, schizophrenic patients demonstrate less activation in left-

amygdala and bilateral hippocampus when processing threat-related stimuli (i.e. fearful 

faces, threat-words ; Gur et al., 2002; Kosaka et al., 2002), fusiform, cingulate areas 

(Russell et al., 2007; Streit et al., 2001a; Williams et al., 2007) and attenuated N170 

amplitude for fearful faces in recent studies of emotion recognition task (Lee et al., 2010; 

Turetsky et al., 2007). Lower accuracy rate and longer reaction time in BD has been 

reported for faces expressing fear and sadness (for review, see Rocca et al.,2009; Derntl 

et al., 2009). Thus, findings from this study suggest that schizophrenic patients have 

prominent deficit in encoding threat-provoking faces, while euthymic bipolar patients 

may have difficulty in encoding negative affect such as sad faces.  
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N250: Structural decoding and response inhibition 

In line with Chiu et al. (2008), N250 amplitude for Go task was more enhanced 

for neutral faces than for emotional faces. Given that N250 amplitude has been associated 

with affect decoding (Streit et al., 2001; Wynn et al., 2008), the findings from this study 

may reflect that detecting neutral targets (Go) among affective distractors (NoGo) was 

more cognitively demanding than detecting emotional targets among neutral distractors.  

In support of this idea, accuracy rate for Go neutral faces was less accurate and RT was 

longer than those for Go faces with emotions, suggesting that executing responses to 

neutral faces was more difficult than faces with emotions. In contrast to the N170 

component, N250 amplitude in patient groups was not modulated by task type, emotion, 

or hemispheric location.  This indicated that both SZ and BD can discriminate neutral 

faces from emotionally salient faces in order to generate correct responses. Further, 

patients’ normal N250 for facial affect decoding may reflect that patients could utilize 

cognitive resources to identify neutral versus faces with emotions despite their restricted 

amount of structural information of a face. The findings supported previous studies (Lee 

et al., 2010; Johnston et al., 2005; Turetsky et al., 2007) that also reported reduced N170 

and intact N250 in SZ.  

 

P300: Emotion processing and response inhibition 

Emotion affected P300 and N200 go responses differently. Larger Go P300 

amplitude for faces with emotion was found than for neutral faces, indicating that 

emotion facilitated detecting targets among the neutral distractors.   However, N250 

amplitude was larger for neutral than all emotional Go faces, supporting the notion that 
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ERPs to response execution (Go task) did not vary by affective valence but by affective 

intensity (arousal) (Chiu et al., 2008; Bradley and Lang, 2007). However, in other studies 

with emotional Go/NoGo paradigm, emotion modulation effect was exclusive to NoGo 

task (Wessa et al., 2007; Luo et al., 2010), where larger NoGo N200 or P300 amplitudes 

were reported for emotional stimuli than for neutral stimuli. Such discordance in findings 

may be attributed to the difference in the duration of stimulus presentation across the 

studies. Both studies that showed NoGo emotion modulation effect used much longer 

stimulus presentation ( > 500ms) than in Chiu et al. (2008; 280 ms) and in this study (150 

ms). Presenting stimuli for longer period of time may help establishing the prepotency 

effect of neutral Go stimulus by lowering the task demand of discriminating neutral target 

from emotional distractors . Similar behavioral accuracy between neutral and affective 

stimuli (Schulz, 2007) provides converging evidence.   

Emotion modulation effect on NoGo ERP components was not clearly observed. 

NoGo P300 amplitudes for emotional were not enhanced compared to neutral faces. 

Substantial evidence has accumulated that emotional stimuli interfere with ongoing 

cognitive activities by capturing attention automatically (Pessoa, 2009; see Verbruggen 

and De Houwer, 2007 for review). When applied to the findings in this study, affective 

information in NoGo stimulus may have restricted the availability of cognitive resources 

for suppressing motor response, as instantiated by reduced P300 amplitudes for emotional 

faces compared to the neutral faces. Limited attentional resources for inhibition may also 

weaken the prepotency effect combined with short stimulus presentation, which was 

further supported by larger Go P300 amplitude than that for NoGo with emotional faces 

in this study.  
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Different from a priori hypothesis, all three groups showed enhanced Go P300 

amplitude for faces with emotions compared to neutral faces over the parietal region, 

although Go P300 amplitudes of patients were smaller than those for controls across all 

types of emotions. Emotion facilitation effect in Go task was consistent with accuracy 

rate which was higher for angry and happy faces compared to neutral faces in all three 

groups. In P300 latency, however, it was observed that bipolar patients showed delayed 

overall P300 latency, reflecting that it took more time for bipolar patients to evaluate 

stimuli to execute correct responses than other groups. Specifically, only happy faces 

generated shorter Go P300 latency compared to neutral faces in bipolar patients, 

indicating that positive emotion facilitated bipolar patient’s ability to evaluate the 

stimulus for executing responses. This was further supported by reaction time, where 

bipolar patients showed much shorter RT for happy faces compared to neutral faces.  

In sum, this study showed that emotion facilitated executing responses in all three 

groups, while emotion may have interrupted suppressing motor responses by restricting 

attentional resources for inhibition processing. Although emotion modulation effect on 

both response execution and response inhibition did not differ between the three groups, 

discriminant functional analysis further demonstrated how these groups could be 

separated based on linear decomposition of the original ERP scores.  

This is important because reduced N170 in both schizophrenic patients and 

euthymic bipolar patients might lead them to misinterpret initial structural information.  

However, as indicated by their relatively intact N250 amplitude, patients were able to 

compensate for the deficit in the early stage of face processing by generating correct 

responses for this task. Such findings can be applied to the rehabilitation of social 
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cognition deficit: focusing the patient’s attention on correctly decoding affective 

information to strengthen their compensatory mechanism should benefit both groups of 

patients.  

    In comparison with previous studies with longer stimulus presentation, this 

study showed that the duration of stimulus presentation may have compromised 

establishing prepotency effect in response inhibition specifically with affective facial 

stimuli. Thus, in the future studies with emotional Go/NoGo paradigm need to pay more 

attention to secure prepotency effect by having longer stimulus presentation than 150 ms 

in all types of emotion in order to better understand the time course of the neural 

inhibition processing modulated by emotion in order to establish prepotency effect 

between Go and NoGo trials. Further, the present study only included correct responses 

which may have narrowed the variability in the perception of neutral faces in patient 

groups. Thus, further research that reflects subjective feelings (e.g. like vs. dislike) in 

response inhibition may benefit the field to search for the emotion processing deficits 

associated with response inhibition in patient groups. 
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Chapter IV. APPENDICES 
 
 

Appendix 10. Structure of emotional Go/NoGo Task (Block 2 example) 

+

+

Pre-cue: 200ms

Interval: 700ms

Stimulus: 
150ms

Response:  
1750ms (max)Go

NoGo

Trial #1:
2800ms

Go NoGo

Block 1 Neutral Angry

Block 2 Angry Neutral

Block 3 Neutral Sad

Block 4 Sad Neutral

Block 5 Neutral Happy

Block 6 Happy Neutral
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Appendix 11. Temporal principal component analysis (tPCA) with eight factors. 
Temporal factor 8 corresponded to N170 component (160 – 190 ms), factor 3 for N250 
(200 – 280 ms), and factor 2 for P300 (330 – 580 ms) 
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Appendix 12. N250 amplitude repeated-measure ANOVA 
 
variable F (df1, df2) p-value 

Laterality 
   Left: -1.60 ± 2.38 µV 
   Right: -1.57 ± 2.67 µV 
   Midline: -2.25 ± 3.02 µV 

F (1.96, 135.12) = 22.02 p < .001 

Laterality × Task 
   Left-side (Task) 
   Right-side (Task) 
     Right-side Go: -1.45 ± 2.74 µV 
     Right-side NoGo: -1.69 ± 2.69 µV 
   Midline (Task) 
     Midline Go: -2.09 ± 3.09 µV 
     Midline NoGo : -2.39 ± 3.03 µV         

F (1.94, 134.04) = 7.91 
NS 
F(1,69) = 4.20 
 
 
F(1,70) = 4.56 

p = .001 
 
p < .05 
 
 
p < .05 

Caudality × Laterality × Task 
   Frontal (Laterality× Task) 
     Frontal Go (Laterality) 
        Left-side: -1.45 ± 2.39 µV 
        Right-side: -1.57 ± 2.66 µV 
        Midline: -2.07 ± 2.75 µV 
     Frontal NoGo (Laterality) 
        Left-side: -1.53 ± 2.40 µV 
        Right-side: -1.74 ±2.74 µV 
        Midline: -2.27 ± 2.79 µV 
   Central (Laterality× Task) 
     Central Go (Laterality) 
        Left-side: -1.68 ± 2.75 µV 
        Right-side: -1.32 ± 3.10 µV 
        Midline: -2.13 ± 3.85 µV 
     Central NoGo (Laterality)  
        Left-side: -1.72 ± 2.75 µV 
        Right-side: -1.64 ± 3.06 µV 
        Midline: -2.53 ± 3.70 µV 
    Central Left-side (Task)  
    Central Right-side (Task) 
         Go: -1.32 ± 3.10 µV 
         NoGo: -1.64 ± 2.50 µV 
    Central Midline (Task) 
         Go: -2.13 ± 3.85 µV 
         NoGo: -2.53 ± 3.70 µV 

F(1.99, 137.64)  = 2.87 
F(2,138)  = 2.98 
F(1.59, 110.14)  = 12.10 
 
 
 
F(1.52, 104.64)  = 13.67 
 
 
 
F(2,140)  = 7.51 
F(1.77,123.72)  = 9.71 
 
 
 
F(1.84,128.87)  = 19.48 
 
 
 
NS 
F(1,70)  = 4.84 
 
 
F(1,70)  = 4.72 
 

p = .054 
p = .05 
p < .001 
 
 
 
p < .001 
 
 
 
p = .001 
p < .001 
 
 
 
p < .001 
 
 
 
 
p < .05 
 
 
p < .05 

Caudality  Task  Emotion 
   Frontal (Task  Emotion)  
   Central (Task  Emotion) 
      Neutral (Task) 
        Go: -2.78  3.13 µV 
        NoGo: -2.26  3.24 µV 
      Angry (Task)   
      Happy (Task) 
      Sad (Task) 
        Go: -1.14  3.10 µV  
        NoGo: -1.77  3.33 µV 

F(3, 207) = 2.64 
NS 
F(2.3, 160.81)  = 3.21 
F(1, 70)  = 4.82 
 
 
NS 
NS 
F(1, 70)  = 5.94 
 
 

p = .05 
NS 
p < .05 
p < .05 
 
 
 
 
p < .05 
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Appendix 13. N250 latency repeated measure ANOVA 
 
variable F (df1, df2) p-value 
Caudality  Task 

Frontal (Task) 
  Go: 252.25 ± 15.62 ms 
  NoGo: 255.62 ± 14.56 ms 
Central (Task) 
  Go: 251.60 ± 16.79 ms 

    NoGo: 256.44 ± 15.92 ms   

F(1,66) = 3.18 
F(1,69) = 23.64 
 
 
F(1,69) = 30.21 
 

p =.079 
p < .001 
 
 
p < .001 

Caudality  Task  Laterality 
Frontal (Task  Laterality) 
Central (Task  Laterality) 
  Left-side (Task) 
    Go: 251.83 ± 16.08 ms 
    NoGo: 255.13 ± 15.59 ms 
  Right-side (Task) 
    Go: 251.05 ± 18.18 ms 
    NoGo: 256.85 ± 17.14 ms 
  Midline (Task) 
    Go: 251.59 ± 16.88 ms 

    NoGo: 256.95 ± 16.21 ms 

F(1.67,110.52) = 5.61 
NS 
F(1.70,117.6) = 7.17 
F(1,70) = 15.19 
 
 
F(1,70) = 27.42 
 
 
F(1,69)= 34.28 
 

p < .01 
NS 
p < .01 
p < .001 
 
 
p < .001 
 
 
p < .001 
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Appendix 14. P300 amplitude repeated measure ANOVA 
 
variable F (df1, df2) p-value 
Caudality  Laterality  Task  
   Frontal (Laterality  Task) 
      Left (Task) 
         Go: 3.68 ± 3.17 V 
         NoGo: 4.06 ± 3.51 V 
      Right (Task) 
      Midline (Task) 
   Central (Laterality  Task) 
      Left (Task) 
         Go: 4.87 ± 3.02 V 
         NoGo: 5.44 ± 3.71 V 
      Right (Task) 
      Midline (Task) 
   Parietal (Laterality  Task) 
      Left (Task) 
         Go: 6.79 ± 3.36 V 
         NoGo: 6.30 ± 3.45 V 
      Right (Task) 
         Go: 6.98 ± 3.47 V 
         NoGo: 6.21 ± 3.51 V 
      Right (Task) 
         Go: 8.43 ± 3.93 V 
         NoGo: 7.74 ± 4.02 V 

F(3.10, 208) = 3.02 
F(2,136) = 6.24  
F(1,68) = 3.85 
 
 
NS 
NS 
F(2,136) = 9.59 
F(1,68) = 6.16 
 
 
NS 
NS 
F(2,138) = 2.75 
F(1,69) = 6.04 
 
 
F(1,69) = 18.83 
 
 
 
F(1,69) = 12.26 

p < .05 
p < .01 
p = .054 
 
 
NS 
NS 
p < .001 
p < .05 
 
 
NS 
NS 
p = .067 
p < .05 
 
 
p < .001 
 
 
 
p = .001 
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Appendix 15. Discriminant functional analysis Structural matrix for N250 latency 

  Function I. variable          correlation coefficient      Function II. variable   correlation coefficient 

Cz neutral Go .224 Cz angry Go -.133 
F4 angry NoGo .223 C4 sad Go -.133 
C3 neutral Go .205 Cz sad Go -.128 
Cz neutral NoGo .200 F4 sad NoGo -.109 
Fz angry NoGo .199 Cz sad NoGo -.104 
C4 neutral NoGo .195 Cz happy NoGo -.079 
Cz happy Go .192 F3 happy Go -.071 
C4 angry NoGo .190 Fz happy NoGo -.070 
C4 neutral Go .184 C4 sad NoGo -.057 
C3 neutral NoGo .182 F4 sad go -.057 
F3 angry NoGo .182   
Cz angry NoGo .161   
C3 angry NoGo .161   
C4 happy Go .157   
C3 happy Go .143   
C3 sad NoGo .136   
Fz sad NoGo .130   
Fz neutral Go .128   
C4 happy Nogo .127   
F4 neutral NoGo .124   
Fz happy Go .124   
C4 angry Go .117   
F3 neutral Go .109   
C3 sad Go .106   
F4 happy Go .105   
F3 sad NoGo .103   
F3 neutral NoGo .102   
C3 angry Go .096   
Fz neutral NoGo .092   
F3 angry Go .088   
F3 neutral NoGo .087   
F4 angry Go .077   
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Appendix 16. Discriminant functional analysis Structural matrix for P300 latency.  

Function I. variable              correlation coefficient       Function II. variable correlation coefficient 

C3 angry NoGo .112 F3 neutral Go .087 
C4 sad NoGo .097 F4 neutral Go .081 
P4 sad NogO .095 Fz neutral Go .076 
F3 angry NoGo .095 C3 neutral Go .074 
Pz sad NoGo .088 Fz happy Go .071 
C4 angry NoGo .087 P4 happy Go .066 
F4 angry NoGo .083 F4 happy Go .066 
P3 sad NoGo .082 F3 happy Go .064 
C4 sad NoGo .082 C4 neutral Go .060 
P3 happy NoGo .080 Cz happy Go .058 
Fz happy NoGo .080 Pz sad Go .054 
P3 angry NoGo .079 Pz happy Go .052 
Cz happy NoGo .078 F3 sad Go .049 
Cz angry NoGo .076 P4 sad Go .048 
C4 happy NoGo .075 P3 happy Go .048 
F3 happy NoGo .075 C4 happy Go .041 
Fz sad NoGo .074 C3 happy Go .041 
P4 happy NoGo .071 Fz angry Go .039 
Fz angry NoGo .070 F4 angry Go .038 
C3 happy NoGo .069 F3 angry Go .036 
P4 neutral Go .068 F4 sad Go .033 
F4 neutral NoGo .066   
F3 neutral NoGo .066   
P3 neutral Go .065   
P4 angry NoGo .064   
F3 sad NoGo .062   
F4 sad NoGo .061   
Pz angry NoGo .059   
Fz neutral NoGo .059   
C3 sad NoGo .058   
C3 sad Go .058   
Pz happy NoGo .056   
P3 sad Go .054   
Cz sad Go .054   
F4 happy NoGo .051   
P3 angry Go .051   
Pz neutral Go .051   
Cz angry Go .049   
C4 sad Go .044   
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Fz sad Go .043   
C4 angry Go .042   
C3 angry Go .042   
Pz angry Go .038   
P4 angry Go .034   
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Appendix 17. Discriminant functional analysis Structural matrix for P300 amplitude 

Function I. variable             correlation coefficient      Function II. variable             correlation coefficient 

F4 angry NoGo .062 P3 happy Go -.161 
C4 sad Go .059 P4 happy Go -.152 
C4 happy NoGo .057 P3 angry Go -.133 
F3 neutral Go .057 P4 angry Go -.128 
C3 neutral NoGo .055 P4 sad Go -.128 
F4 neutral Go .054 P3 sad Go -.127 
C3 happy NoGo .053 P4 neutral NoGo .-101 
F4 happy NoGo .051 P4 neutral Go -.097 
C4 neutral NoGo .051 P3 neutral NoGo -.096 
Fz happy NoGo .051 P4 happy NoGo -.094 
C4 angry Go .050 P4 angry NoGo -.091 
C4 angry NoGo .050 Pz angry NoGo -.088 
C3 sad Go .049 P3 happy NoGo -.087 
F3 happy NoGo .047 P3 angry NoGo -.083 
F3 angry NoGo .047 P3 neutral Go -.082 
Cz happy NoGo .047 C4 happy Go -.079 
C4 neutral Go .047 C3 happy Go -.076 
Cz neutral NoGo .046 Fz sad Go  .071 
Fz neutral Go .046 F3 sad Go  .061 
C3 sad NoGo .045 Cz happy Go -.060 
P3 sad NoGo .045 P4 sad NoGo -.060 
C3 angry NoGo .043 F4 sad Go  .058 
C3 neutral Go .043 F4 sad NoGo  .056 
F4 happy Go .043 F3 sad NoGo  .053 
C4 sad NoGo .042 Fz angry Go  .050 
C3 angry Go .039 F3 angry Go  .049 
Cz sad NoGo .039   
F3 neutral NoGo .039   
F4 neutral NoGo .038   
Fz angry NoGo .036   
Cz neutral Go .034   
Cz angry Go .025   
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Appendix 18. Discriminant functional analysis Structural matrix for reaction time for 
emotional Go/NoGo 
 
 

               variable                   Function I.    
correlation coefficient 

Function II.                    
correlation coefficient 

Happy Go .90* .29 

Neutral Go .76* .27 
Sad Go .74* .14 
Angry Go .71* .59 



 

Chapter V.  

General discussion 

 

The three studies investigated response inhibition deficits and emotion 

modulation of response inhibition utilizing event-related brain potentials (ERPs) in 

schizophrenia, schizoaffective disorder, bipolar I disorder, and healthy controls. The 

findings were consistent: all psychiatric groups had response inhibition deficits. 

Specifically, in all three studies, N200 latency (N250 for face stimuli) and P300 

amplitude discriminated psychiatric groups with high accuracy which strongly suggest 

the possibility that these components are potential biological markers of these psychiatric 

illnesses. Treatment implication and future direction are discussed below. 

 

Response inhibition deficit in schizophrenia 

Individuals diagnosed with schizophrenia (SZ) showed reduced frontal P300 

amplitude for response inhibition when the stimulus was presented to their left 

hemisphere (Study 1 & Study 2). These findings strongly suggest that SZ have deficits in 

recruiting attentional resources to inhibit on-going responses when utilizing left 

hemisphere. In line with previous studies (Hill and Weisbrod et al., 1999; Weisbrod et al., 

2000), the first two studies further support the notion of left hemisphere dysfunction in 
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schizophrenia (Crow et al., 1995). However, NoGo P300 reduction over the 

frontal region was more left-lateralized in Study 1 than in Study 2 with contralateral 

stimulus presentation (electrode located on the left side while the stimulus was presented 

to the right visual field). Such differences in laterality effect, however, might be due to 

the fact that there was much eye movements toward the stimuli which means the stimuli 

were presented to both hemispheres of the brain, thus eliminating the possibility of 

finding lateralized deficit in SZ in Study 2.   

Findings were also discordant in N200 response inhibition deficits. In Study 1, the 

NoGo deficits in N200 amplitude in SZ was affected by stimulus presentation location 

not electrode location, demonstrating SZ’s deficits in allocating resources from right 

hemisphere in the early stage of response inhibition (N200 left visual field < N200 right 

visual field) and not electrode location (e.g. frontal) as in study 2. Therefore, the 

association between right hemisphere dysfunction and SZ’s deficits in response inhibition 

seen in study 1 was not replicated.  

In study 3, SZ when compared to controls demonstrated an overall P300 reduction 

regardless of stimulus type. This is consistent with the previous literature which 

consistently suggests that SZ have overall difficulty in allocating attention for cognitive 

tasks (see Maher and Deldin, 2001 for review).  

Perhaps deficits in initial visual processing as indexed by the N170, limited the 

available resources required for a later stage of response execution and response 

inhibition. This interpretation was supported by recent studies that investigated three 

stages model of facial information processing where SZ’s reduced N170 was positively 

correlated with attenuation in the later ERP components (Lee et al., 2010; Turetsky et al., 
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2007).  Consistent findings from discriminant function analysis (DA) of the three studies 

highlighted SZ’s distinct neural deficits in response inhibition. In all studies, P300 

amplitude and N200 latency discriminated SZ group from other groups (Table 8). With 

facial stimuli, face-specific N250 amplitudes for neutral faces and angry NoGo faces also 

separated SZ from CT and also from BD (Study 3 function I). In sum, findings from DA 

in three studies strongly supports the view that deficits manifested in P300 amplitude 

(and perhaps in N200 latency) in Go/NoGo paradigms can become biological markers for 

schizophrenia (see Bramon et al., 2005 for review). 

 

ERP 
component 

Groups 
discriminated 

Study Discrimination  
Accuracy 

                   Supporting evidence 

NoGo P300 
amplitude 

SZ / CT Study 1 
(Function I) 

 100% 
 

 SZ / BD Study 2 
(Function II) 
Study 3 
(Function I) 

94.2% 
 
98.6% 

Frontal NoGo P300 amplitudes 
with right visual field stimulus 
presentation (RVF) were highly 
correlated with the functions that 
that separated SZ from SAD (Study 
1) and from BD and CT (Study 2 & 
Study 3) 

Go N200 
latency 

SZ/ CT,  
SZ/ SAD 

Study 1 
(Function II) 

91% SAD showed prolonged overall 
N200 latency with left visual 
stimulus presentation (LVF)  

 SZ/ BD, CT Study 2 
(Function I) 

77% SZ showed delayed N200 latency 
over central right site (C4) with 
RVF, which is included in 
discriminant function I 

P300 latency BD/SZ, 
BD/CT 

Study 3  
(Function I) 

100% In Study 3, BD showed longer Go 
P300 latency than that in CT and 
that in SZ.  

Table 8. Discriminant analyses in three studies 

 

Schizoaffective disorder and response inhibition 

Patients with schizoaffective disorder (SAD) were only included in Study 1 and 

were run in the non-affective Go/NoGo paradigm. Relatively intact P300 and N200 

amplitudes for NoGo trials suggest that individuals diagnosed with SAD do not have 

difficulty in recruiting attentional resources during response inhibition. However, 
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prolonged N200 latency with left visual field presentation (LVF) raised the question 

whether the delayed latency reflected SAD’s deficits in cognitive stimulus evaluation 

time associated with right hemisphere because such delay was not observed for stimulus 

presented to RVF. However, to date, no data have been existent in SAD’s hemispheric 

deficits in response inhibition. Further, due to the small number of SAD the results and 

suggestion of N200 latency as a biological marker in this group must be considered with 

caution. Future studies with larger sample sizes of SAD will help to clarify whether N200 

latency in Go/NoGo task is an endophenotype of SAD. 

 

Bipolar disorder and response inhibition 

BD showed normal P300 enhancement for NoGo trials for non-affective (Study 2) 

and affective (Study 3) stimuli, suggesting that BD did not show reduced attentional 

resources for response inhibition. However, in the non-affective Go/NoGo task, patients 

with Bipolar I disorder (BD) showed the largest frontal NoGo P300 amplitude compared 

to both SZ and CT when the stimulus was presented to RVF (Study 2).  These are quite 

striking findings because few, if any, previous studies have found larger P300s in a 

psychiatric group when compared with a normal population. The BD, however, 

demonstrated longer P300 latency for NoGo task   (Study 2 & Study 3) and even 

compared to SZ (Study 3). The results suggests that BD may use a different 

speed/accuracy tradeoff when evaluating NoGo regardless of stimulus types (affective vs. 

non-affective).  

In both Study 2 and Study 3 P300 responses to Go/NoGo   P300 latency 

discriminated BD from SZ (Study 2- Function II, Study 3- Function I) and CT (Study 3, 
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Function I), while parietal P300 amplitudes separated BD from CT (Study 3, Function II), 

again highlighting the potential endophenic nature of ERPs. 

 

Treatment implication 

Deficits in response inhibition may to detrimental behavioral and psychological 

problems such as addiction to drugs or alcohol (Christodoulou et al., 2006; Kiehl et al., 

2000; Thoma, Wiebel, and Daum, 2007). About 50% of individuals diagnosed with SZ 

and between 14% and 60% of individuals diagnosed with BD also develop substance 

abuse or dependence at some point in their life (Buckly, 2006; Cassidy et al., 2001). In a 

previous study, individuals with better performance during a  Go/NoGo task was better 

able to abstain from alcohol (Thoma, Wiebel, and Daum, 2007). This suggests that 

remediation of response inhibition deficits could improve deleterious impulse related 

problems in these populations. As indicated by P300 amplitudes in this study, treatment 

focused on response inhibition may help SZ who show generalized lack of attentional 

resources, and SAD that showed delayed stimulus evaluation time in this study. Given 

their deficit in early visual ERPs, it will further benefit both BD and SZ to strengthen 

their initial structural encoding of faces or other complex affective stimuli. Furthermore, 

reduced P300 amplitudes with facial stimuli in SZ suggest that they might benefit from 

affective response inhibition training that focuses on increasing cognitive availability 

when processing affective information.  
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Limitations and Future directions 

Considering the controversy as to whether BD and SZ are on a continuum (Crow 

et al., 1998) or are nosologically distinct (Bleuler, 1911), one of the major focus of these 

three studies was set to investigate whether the ERP components could delineate the three 

psychiatric groups – schizophrenia, schizoaffective disorder, and bipolar disorder from 

each other and from controls. The findings from this study suggest that a deficit in early 

neural response to inhibition among SAD group was unique to that group. However, due 

to the small number of SAD patients in study 1 and also to the fact that SAD and BD 

were not directly compared in the same study, the findings cannot address whether  SAD 

and BD are nosologically distinct. Thus, larger sample size than in studies that include SZ, 

SAD, and BD has the potential to provide answers to this controversy.  

In this series of studies, P300 amplitude and N200 latency consistently 

discriminated the groups. This supports the robust literature that suggest P300 amplitude 

reduction and/or delay as a stable endophenotype for schizophrenia (Bramon et al., 2005; 

O’Donnell et al., 2004; Souza et al., 1995;  Turetsky et al., 2007)However,  little has been 

previously reported as to whether N200 component is also a strong candidate 

endophenotype. More N200 studies including psychiatric patients will facilitate the 

understanding of early neural processing of response inhibition. 

Finally, due to the different stimulus presentations (Study 1 & 2: lateralized 

presentation, Study 3: central presentation), it was not possible to test the impact of face 

on the task performance by direct comparison across the studies. Thus, in the future 

testing two Go/NoGo paradigms with faces, one with facial emotion as Go/NoGo cues 
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and the other one with non-emotional features (e.g. gender) will be helpful to elucidate 

the effect of emotion information on response inhibition. 
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