
Simple Partial Models for Complex Dynamical
Systems

by

Erik N. Talvitie

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2010

Doctoral Committee:

Professor Satinder Singh Baveja, Chair
Professor Benjamin Kuipers
Professor John E. Laird
Assistant Professor Ryan M. Eustice

c© Erik Talvitie 2010

All Rights Reserved

ACKNOWLEDGEMENTS

First I would like to thank my advisor, Satinder Singh. He has been an inspiring

mentor and his impact both on my thesis and on me as a scientist has been profound.

Under his guidance I have to learned to sharpen both my questions and my answers

and I am truly grateful for all the time, effort, and support he’s given me. Thanks

also to the other members of my committee. Conversations and meetings with them

have significantly improved not only the work itself, but my ability to communicate

the work to others.

My fellow grad students have also been great friends and colleagues over the course

of this work. I would particularly like to thank Nick, David, Britton, Jon, Vishal,

and Matt for conversations, brainstorms, feedback, foosball, and for generally being

brilliant and inspiring people.

Thank you as well to my family (in the expansive sense of the word) and particu-

larly my parents. I am fortunate to have been surrounded for my entire life by people

who love and support me in my every endeavor. They are responsible for opening the

doors that led me here as well as the thirst for knowledge and the confidence that I

can obtain it that allow me to do this work.

Finally, I want to thank my partner, Annie. Without her love, her support, her

confidence in my strength, and her patience with my weakness, this work would

simply not have been possible.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vi

LIST OF TABLES . ix

LIST OF APPENDICES . x

ABSTRACT . xi

CHAPTER

1. Introduction and Background . 1

1.1 Preliminaries . 4
1.1.1 Predictions . 5
1.1.2 The System Dynamics Matrix and Linear Dimension 6
1.1.3 Complete and Partial Models 7

1.2 Related Notions of Complete and Partial Models 8
1.2.1 Markov Systems . 8
1.2.2 Partially Observable Systems 14

1.3 Summary . 21

2. Observation Abstraction . 23

2.1 Observation Abstraction . 25
2.1.1 Abstract Systems 26
2.1.2 Abstract Models . 27

2.2 Properties of Abstractions . 29
2.2.1 Expressiveness . 30
2.2.2 Accuracy . 31
2.2.3 Homomorphism . 32
2.2.4 Other Criteria . 35

2.3 Constructing an Abstraction 36

iii

2.3.1 Constructing an Expressive Abstraction 39
2.3.2 Constructing an Accurate Abstraction 40
2.3.3 Constructing a Homomorphic Abstraction 45
2.3.4 Experiments . 48

2.4 A Note on Action Abstraction 53
2.5 Limitations of Observation Abstraction 55

2.5.1 The 1D Ball Bounce Example 57
2.6 Summary . 59

3. Prediction Profile Models . 61

3.1 Prediction Profiles . 63
3.1.1 Learning Predictions via Regression 64
3.1.2 Prediction Profile Models 66

3.2 The Prediction Profile System 67
3.3 Learning a Prediction Profile Model 72

3.3.1 Estimating the Prediction Profiles 72
3.3.2 Generating Prediction Profile Trajectories 75
3.3.3 Learning a Prediction Profile Model 76

3.4 Complexity of the Prediction Profile System 79
3.4.1 Linear Dimension Comparison 79
3.4.2 Bounding the Complexity of The Prediction Profile

System . 82
3.4.3 Bounding the Number of Prediction Profiles 86

3.5 Related Work . 87
3.6 Experiments . 89

3.6.1 Predictive Features for Policy Gradient 90
3.6.2 Experimental Setup 91
3.6.3 Three Card Monte 92
3.6.4 Shooting Gallery . 95

3.7 Scaling Prediction Profile Models (Future Directions) 98
3.8 Summary . 99

4. Histories of Interest . 102

4.1 Histories of Interest . 103
4.2 The Bridging Test System . 105
4.3 Learning an Accurate Bridging Test Abstraction 109

4.3.1 Evaluating Accuracy 111
4.3.2 Refinement step . 114
4.3.3 Coarsening step . 118
4.3.4 Complexity of Learning a Bridging Test Abstraction 120

4.4 Controlled Systems and Prediction Profile Models 121
4.5 Scaling Abstraction Learning (Future Directions) 123
4.6 Summary . 124

iv

5. Collections of Partial Models . 126

5.1 Collection of Partial Models (CPM) 127
5.1.1 Tests of Interest . 127
5.1.2 Histories of Interest 129
5.1.3 Combining Predictions 130
5.1.4 Collections of Partial Models: Summary 138

5.2 Discussion and related work 140
5.2.1 DBNs and CPMs 140
5.2.2 Other Relevant Work 145

5.3 Experiments . 147
5.3.1 DBNs and CPMs 148
5.3.2 High Dimensional Examples 155

5.4 Summary . 174

6. Concluding Remarks . 176

6.1 Summary of Contributions 176
6.2 Discussion and Future Directions 179

6.2.1 Relational Predictions 179
6.2.2 Continuous Systems 180
6.2.3 Learning the Structure of a CPM 181
6.2.4 Planning with CPMs 182

APPENDICES . 185

BIBLIOGRAPHY . 207

v

LIST OF FIGURES

Figure

2.1 The 4x4 grid world. 24

2.2 Abstractions of the 4x4 grid world: (a) expressive, (b) expressive and
accurate, and (c) expressive, accurate, and homomorphic 30

2.3 The coarsest accurate abstraction yields a simpler system than the
coarsest accurate homomorphic abstraction. 34

2.4 Accurate refinements in the 4x4 gridworld. (a) is a coarsest abstrac-
tion, (b) is not. 40

2.5 The iterative algorithm on the k × k gridworld. 47

2.6 Percentage of accurate learned refinements (out of 20) for different
test lengths in the 5x5 grid world domain. 50

2.7 Average number of abstract observations (out of 20 runs) in the 5×5
grid world. 51

2.8 Results in the machine maintenance domain. 53

2.9 Size 10 1D Ball Bounce . 56

2.10 POMDP model of the size 10 1D Ball Bounce 57

2.11 POMDP model of the abstract 1D Ball Bounce system 58

2.12 A transition diagram for the predictions of interest 59

3.1 The prediction profile system for Three Card Monte. Transitions are
labeled with the dealer’s swaps. States are labeled with the predicted
position of the special card. 66

vi

3.2 Size 10 1D Ball Bounce . 69

3.3 A transition diagram for the predictions of interest 70

3.4 Flow of the algorithm. 72

3.5 Results in the Three Card Monte domain. 92

3.6 The Shooting Gallery domain. 94

3.7 Results in the Shooting Gallery domain. 96

4.1 Size 10 1D Ball Bounce . 104

4.2 The bridging test system . 105

5.1 The stochastic 1D Ball Bounce example 130

5.2 A possible CPM for 1D Ball Bounce 131

5.3 A CPM in which models make independent predictions. 132

5.4 Each model conditions its predictions on the pixel two positions to
the left . 135

5.5 Incorporating κ into the bridging test abstraction. 137

5.6 DBN structures for 1D Ball Bounce 148

5.7 CPM-PixelHOI Structure . 149

5.8 Learning results for 1D Ball Bounce Variant 1. 151

5.9 Learning results for 1D Ball Bounce Variant 2. 154

5.10 The Brick Breaker Domain . 156

5.11 Whether a brick disappears depends on the ball’s behavior 159

5.12 Results of planning using learned CPMs in Brick Breaker. 160

5.13 Prediction accuracy results for Brick Breaker. 162

5.14 Training time results in Brick Breaker 165

vii

5.15 The Snake Domain . 166

5.16 Planning results for Snake. 169

5.17 Prediction performance results for Snake. 172

5.18 Training time results for Snake. 173

A.1 A family of abstract systems where the only violations occur at his-
tories of length quadratic in the linear dimension of the system . . . 192

viii

LIST OF TABLES

Table

5.1 CPM structure for Brick Breaker 157

5.2 CPM structure for Snake. Rows contain multiple model types that
make the same predictions in different situations. 167

ix

LIST OF APPENDICES

Appendix

A. Proofs from Chapter 2 . 186

B. Incomparable Observations . 195

C. Proofs from Chapter 3 . 197

D. Proofs from Chapter 4 . 203

x

ABSTRACT

Simple Partial Models for Complex Dynamical Systems

by

Erik N. Talvitie

Chair: Satinder Singh Baveja

An agent behaving in an unknown environment may wish to learn a model that allows

it to make predictions about future events and to anticipate the consequences of its

actions. Such a model can greatly enhance the agent’s ability to make good decisions.

However, in environments like the physical world in which we live, which is stochastic,

partially observable, and high dimensional, learning a model is a challenge.

One natural approach when faced with a difficult model learning problem is not

to model the entire system. Instead, one might focus on capturing the most im-

portant aspects of the environment and give up on modeling complicated, irrelevant

phenomena. This intuition can be formalized using partial models, which are models

that make only a restricted set of (abstract) predictions in only a restricted set of

circumstances. Because a partial model has limited prediction responsibilities, it may

be significantly simpler than a complete model.

Partial models (and similar ideas) have been studied in many contexts, mostly

under the Markov assumption, where the agent is assumed to have access to the full

state of the world. In this setting, predictions can typically be learned directly as

functions of state and the process of learning a partial model is often as simple as

xi

estimating only the desired predictions and omitting the rest from the model. As such,

much of the relevant work has focused on the interesting and challenging question

of which partial models should be learned (rather than how to learn them). In the

partially observable case, however, where the state of the world is (more naturally)

assumed to be hidden from the agent, just the basic problem of how to learn a partial

model poses significant challenges.

The goal of this thesis is to provide general results and methods for learning partial

models in partially observable systems. Some of the main challenges posed by partial

observability are formalized and learning methods are developed to address some of

these issues. The learning methods presented are demonstrated empirically to be able

to learn partial models in systems that are too complex for standard, complete model

learning methods. Finally, many partial models are learned and composed to form

complete models that are used for model-based planning in high dimensional arcade

game examples.

xii

CHAPTER 1

Introduction and Background

This thesis is concerned with the problem of an agent that wishes to learn about

an unknown, complex, stochastic, partially observable world. As it interacts with its

environment, this agent would like to use its experience to learn a model that allows it

to make predictions about future events and anticipate the consequences of its actions.

Such a model can help the agent plan its behavior and make better decisions. We

humans, for instance, live in a rich, noisy environment where all kinds of information is

hidden from us and yet somehow often manage to make reasonable predictions about

a wide variety of phenomena. How can we cope so readily with such complexity?

This work is inspired by two intuitive observations about the models humans build

in the face of a high dimensional environment.

First, the world in which we live is vastly more complex than an individual’s

model could ever capture. Our models cannot possibly make every prediction there

is to make. For instance, how many leaves will you see on your way from home to

work tomorrow? A truly complete model of the world would attempt to answer this

question by keeping track of how many leaves there were yesterday, perhaps taking

into account the speed of the wind, the life cycle of each species of plant and how they

relate to the current time of year, etc. In practice, building such a model is not only

hopeless, but pointless. There are many phenomena that are simply too complicated

1

or too irrelevant to a person’s life to bother trying to model. Rather, a person spends

their modeling effort on answering more important questions about their commute

like how long it will take to get to work, or whether there will likely be more traffic

on one street or another street. This suggests that an agent in a complex world ought

to be able to selectively learn to make some predictions, but not others, in order to

focus on what is most important (and what is tractable).

Second, the world is compositional, and correspondingly, so is a human’s knowl-

edge. A person who is cooking dinner while watching a baseball game on TV does

not suddenly find themselves in a strange, new “Cooking+Baseball” situation they’ve

never encountered before. They have a model of how onions behave when sauteed and

they have a model of how a ball responds when hit with a stick and they are able to

compose the predictions these models make to form more detailed predictions about

what will happen in the kitchen in the near future. This suggests that an agent in a

world like ours, which is comprised of many interacting but relatively self-contained

components, should be able to isolate those components and learn to model them

separately and then re-combine those models to form a more complete, compositional

model of the environment.

Inspired by these observations, this thesis focuses on the problem of learning

partial models. A partial model is a model that makes only some particular (often

abstract) predictions in only some situations. One may have a partial model that is

in charge of predicting what happens to onions when they are sauteed, one in charge

of predicting the trajectory of a baseball, one that is in charge of predicting whether

there will be traffic on Main Street during rush hour, and so on. The central question

in this thesis is: given a set of predictions of interest, how can one learn a model that

makes just those predictions accurately? Ideally this could be done far more simply

than learning a complete model (in order to learn about onions, one shouldn’t have

to learn about the number of leaves seen during a commute).

2

The general idea of learning simple models with restricted responsibilities is cer-

tainly not new. The idea of decomposing a model into many simpler sub-models is a

common and powerful approach in AI that has been studied in many different con-

texts. A great deal of this work has been done under the Markov assumption, where

it is assumed that the agent has access to the full state of the world. In that setting,

the problem of actually how to learn a model that makes a limited set of predictions is

fairly straightforward. Because the state is known, predictions can be learned directly

as functions of state. One can choose to learn to make all predictions, or just some

predictions and the learning procedure remains essentially the same. This is not to

imply that learning Markov models is trivial. On the contrary, as with essentially

any machine learning problem, if the environment is very high-dimensional it can be

a serious challenge to find ways to generalize across world states, using data from one

state to learn about many other states. However, the problems of learning complete

models and partial models in the Markov setting are not conceptually different from

each other. As a result, much of the work in this setting has focused on which partial

models to learn, since there is already a fairly general conceptual understanding of

how to learn them.

In the partially observable setting, on the other hand, the state of the world is

presumed to be hidden from the agent. In this setting the generalization problem is

still present, but there is the added challenge of automatically finding and maintain-

ing some compact representation of state. The standard methods for learning models

in the partially observable setting learn complete models that make all possible pre-

dictions, and are not easily adapted for the purpose of learning partial models. As

such, even if one knows which partial models to learn, in the partially observable

case, it is not necessarily clear how to learn them. So, this thesis will focus on the

problem of learning simple partial models in partially observable systems. Some of

the fundamental issues inherent in solving this problem will be formalized, methods

3

will be presented that at least begin to address those issues, and applications of those

methods will demonstrate some of the ways in which partial models can be used in

artificial agents. It is hoped that the solutions presented for learning partial models

can serve as a foundation for progress on the problem of automatically determining

which models to learn in partially observable systems, though this next step will not

be addressed in this thesis.

Some of the points just discussed will be expanded on in the context of discussing

some relevant existing representations of partial (and complete) models later in the

chapter. First, however, the next section will establish some notation and terminology

and formally describe the general setting addressed by the work in this thesis.

1.1 Preliminaries

This thesis focuses on discrete dynamical systems. This allows for a particularly

clean exploration of the main issues posed by partial observability, without adding

in the additional challenges found in continuous systems. The ideas presented here

will be briefly related to continuous-valued dynamical systems in Chapter 6. The

agent has a finite set A of actions that it can take. The environment has a finite

set O of observations that it can emit. Though it will generally be assumed that

the number of actions is small, the observations can themselves be complex, high-

dimensional structures. In several of the examples in this thesis, the observations will

be images represented as pixel arrays. Time proceeds in discrete steps and at every

time step the agent chooses an action a ∈ A and the environment stochastically emits

an observation o ∈ O.

Definition 1.1. At time step i, the sequence of past actions and observations hi =

a1o1a2o2...aioi is the history at time i.

The history at time zero, before the agent has taken any actions or seen any

4

observations h0 is called the null history and is often written with the null symbol ∅.

1.1.1 Predictions

An agent uses its model to make conditional predictions about future events, given

the history of actions and observations and given its own future behavior. Because

the environment is assumed, in general, to be stochastic, a prediction is not a descrip-

tion of what will happen, but rather a probability of some future event. Events are

described in terms of action-observation sequences. Let T be the set of all possible

action observation sequences of all lengths. Rivest & Schapire (1994) and Littman

et al. (2002) call such a sequence t = a1o1a2o2...akok a test. In this thesis, a sequence

of actions and observations will instead be called a primitive test and the term “test”

will be used broadly to include more abstract descriptions of future events. Primitive

tests will be the basic building block for specifying predictions.

A primitive test t describes a sequence of actions the agent could conceivably take

in the future and a sequence of observations the agent might observe as a result.

Test t is said to have succeeded if the agent actually takes the action sequence in t

and observes the observation sequence in t. A prediction p(t|h) is the conditional

probability that primitive test t succeeds, given that history h has already occurred

and given that the agent takes the actions in t. Essentially, the prediction of a

primitive test is the answer to the question “If I were to take this particular sequence

of actions, with what probability would I see this particular sequence of observations,

given the history so far?” Formally,

Definition 1.2. The prediction of a test t = a1o1a2o2...akok at history h is defined as

p(t|h)
def

= Pr(o1|h, a1)Pr(o2|ha1o1, a2)...Pr(ok|ha1o1a2o2...ak−1ok−1, ak). (1.1)

Of course, there are many more sophisticated predictions one could make. For

5

instance a set test (Wingate et al. 2007) is a sequence of actions and sets of obser-

vations. A set test succeeds when the agent takes the specified action sequence and

any sequence of observations occurs where each observation is contained within the

corresponding sets in the test. Set tests allow the expression of abstract predictions.

While primitive tests allow an agent, for instance, to express the question “If I go

outside, what is the probability I will see this exact image?” a set test can express

the far more useful abstract question “If I go outside, what is the probability that

it will be sunny?” by grouping together all observations of a sunny day. One can

also define tests with a more abstract description of the agent’s behavior, for instance

using option tests (Wolfe & Singh 2006, Soni & Singh 2007). Note that, because

the predictions over the primitive tests fully capture the probability distribution over

future events, the prediction for any kind of abstract test can be computed from the

predictions for primitive tests. Any model that can make predictions for all primitive

tests can make any conditional prediction about future observations, given history.

1.1.2 The System Dynamics Matrix and Linear Dimension

It is sometimes useful to describe a dynamical system using a conceptual object

called the system dynamics matrix (Singh et al. 2004). Essentially, the system dynam-

ics matrix contains the values of all possible predictions, and therefore fully encodes

the dynamics of the system. Specifically,

Definition 1.3. The system dynamics matrix of a dynamical system is an infinity-

by-infinity matrix. There is a column corresponding to every primitive test t ∈ T .

There is a row corresponding corresponding to every history h ∈ H. The ijth entry

of the system dynamics matrix is the prediction p(tj|hi) of the test corresponding

to column j at the history corresponding to row i and there is an entry for every

history/test pair.

Though the system dynamics matrix is infinite in size, for many systems it has a

6

finite rank. The rank of the system dynamics matrix can be thought of as a measure

of the complexity of the system (Singh et al. 2004).

Definition 1.4. The linear dimension of a dynamical system is the rank of the

corresponding system dynamics matrix.

For some modeling representations, the linear dimension is a major factor in the

complexity of representing and learning a complete model of the system. For instance,

in POMDPs, the number of hidden states required to represent the system is lower-

bounded by the linear dimension. In this work linear dimension will be used as the

measure of the complexity of a dynamical system. If a system has smaller linear

dimension than another, it is said to be “simpler.”

1.1.3 Complete and Partial Models

Recall that T is the set of all primitive tests (sequences of actions and observa-

tions). Then the set of all possible histories H is the set of all action-observation

sequences that could possibly occur starting at the beginning of time: H
def

= {t ∈

T |p(t|∅) > 0}. Note that a model that can make a prediction p(t|h) for all t ∈ T and

h ∈ H can make any conditional prediction about the future, given the history and

the agent’s proposed behavior (Littman et al. 2002). As such, a model that makes all

such predictions is a complete model. In fact, note as an immediate consequence of

Equation 1.1 that the prediction for any multi-step primitive test can be computed

from the predictions of one-step tests:

p(a1o1a2o2...akok|h) = p(a1o1|h)p(a2o2|ha1o1)...p(akok|ha1o1a2o2...akok).

Thus, any model that can provide one-step predictions p(ao|h) for all actions a ∈ A,

observations o ∈ O and histories h ∈ H is a complete model that is capable of making

any prediction.

7

A partial model, then, is a model that does not make all predictions in all histories.

There are two main ways in which a model can be partial. It might be limited in

which predictions it makes and it might be limited to make predictions in only certain

situations. The following definition of a partial model takes both possibilities into

account:

Definition 1.5. A partial model has a set T I of tests of interest and a set HI ⊆ H of

histories of interest. A partial model can be used to make the predictions of interest:

p(t|h) for all t ∈ T I and h ∈ HI .

For instance, one might have a model that just makes predictions about cooking

onions, but only when cooking with a cast iron pan. Another model might make

predictions about cooking onions in a non-stick pan. Still another might make pre-

dictions about a baseball game on television.

1.2 Related Notions of Complete and Partial Models

This section will discuss some of the existing literature on learning models, and

most importantly partial models. First, the commonly studied special case of Markov

systems will be discussed, followed by the more general partially-observable case,

which is the focus of this thesis.

1.2.1 Markov Systems

A dynamical system is Markov if all one needs to know about history in order to

make predictions about the future is the most recent observation.

Definition 1.6. A system is Markov if for any two histories h and h′ (that could

be the null history), any two actions a and a′, any observation o, and any test t,

p(t|hao) = p(t|h′a′o).

8

A Markov system is often called a Markov decision process (MDP) and the most

recent observation is often referred to as state because it contains all the information

necessary to make any prediction about the future. In this way it essentially captures

everything there is to know about the current situation, or the “state of the world.”

The fact that the state is so readily available significantly simplifies the model-learning

problem in comparison to the partially observable setting, which will be discussed in

the next section. In the Markov case, the notational shorthand p(t|o) will be used to

indicate the prediction of t at any history that ends in observation o.

1.2.1.1 Complete Models

Note that a model of an MDP is complete if it makes predictions p(ao|o′) for every

action a ∈ A and every pair of observations o, o′ ∈ O. There are finitely many such

predictions and, as such, it is often possible to represent a complete Markov model as

a |A| × |O|2 look-up table. It is straightforward to estimate the entries of this table

from data:

p̂(ao|o′)
def

=
times ao succeeds from histories ending in o′

times action a taken from histories ending in o′
.

If the number of observations is very large, this look-up table will be too large

to represent extensively and, in addition, a large number of samples will be required

in order to obtain good estimates of the one-step predictions. As a result, learning

methods that generalize across many states at once are necessary. In this case, learn-

ing a partial model (or several partial models) may afford more generalization, and

result in a simpler learning problem.

9

1.2.1.2 Partial Models

Many approaches learn models that make only certain predictions. Note that, like

a complete model, learning a Markov model that makes a limited set of predictions

is straightforward. If the model has some set of tests of interest T I to be predicted

(and no others), then for every test t ∈ T I and every observation o,

p̂(t|o)
def

=
times t succeeds from histories ending in o

times actions in t taken from histories ending in o
.

While simply estimating fewer predictions can have benefits (if |T I | ≪ |O|), the main

reason to limit the predictions made by a model is that often the full detail of the

observation is not necessary in order to accurately make the predictions of interest.

The main learning challenge then often becomes learning what details are necessary.

This is a process known as state abstraction. One can also gain compactness by

limiting the situations in which the model makes predictions. In the Markov case,

this is as simple as only computing estimated predictions for the states in which the

model should make predictions. If there are many fewer such states than states in

total, one can gain significant savings in computation and space.

STRIPS Models: In the well-studied STRIPS framework (Fikes & Nilsson 1971),

“operators,” or “update rules” associated with a particular action only predict the

effects of taking that action. As a result, these update rules often require only a

partial (or abstract) description of the state of the world (called “pre-conditions”).

So, in the classic Blocks World example where the agent controls an arm and stacks

blocks, if the action is to pick up block A, one need only know whether block A

is covered by something in order to predict the effect of this action. One need not

know the full configuration of all other blocks. A great deal of work has been done

on learning update rules, that is learning what effects actions have and learning

10

which distinctions need to be made in order to predict those effects, for instance by

Gil (1994) and Wang (1995) in the deterministic case and more recently by Pasula

et al. (2007) in the stochastic case. Each update rule in a STRIPS model can be

thought of as a partial model with histories of interest defined by the pre-conditions

and tests of interest defined by its effects. Note that STRIPS models represent the

state (and correspondingly the update rules) using first-order predicates. On the one

hand, this expressiveness grants them compactness and a sophisticated framework for

generalization and parameter-tying. On the other hand, it requires that the state be

encoded in terms of objects and relations between those objects and therefore typically

relies upon a human designer’s knowledge to translate the low-level observations that

an agent receives into high-level, first-order state descriptions. Furthermore, the

first-order inference required for learning these representations presents a significant

challenge itself. The methods presented in this thesis will be propositional in nature

in an effort to focus on the challenges presented by partial observability without the

added challenges of learning a relational representation. That said, extending this

work to allow for more expressive, first-order partial models would be an interesting

direction for future work, as discussed briefly in Chapter 6.

Factored MDPs: Another well-studied representation, the factored MDP (Boutilier

et al. 1999), decomposes the state into independent variables. The problem of pre-

dicting the next state can then also be decomposed into multiple prediction problems:

one for each variable. Essentially a factored MDP consists of multiple models, each

one restricted to making predictions only about its assigned state variables (its tests

of interest) and making no predictions about other variables. The compactness of a

factored MDP comes from its structure, the specification of conditional independence

relationships amongst the variables across time, which allows the partial model in

charge of predicting a particular variable to ignore irrelevant variables in the previous

11

time-step. Given a structure, the parameters of a factored MDP are straightforward

to learn. As such, much of the work on factored MDPs has focused on efficient plan-

ning in a factored MDP (e.g. Guestrin et al. 2003) and learning the correct structure

(e.g. Degris et al. 2006, Strehl et al. 2007).

Option Models: Options (Sutton et al. 1999) are descriptions of temporally ex-

tended ways of behaving. They consist of a set of states in which the option can be

initiated (the initiation set), a policy which determines how the agent will behave

while executing the option, and a set of states in which the option terminates (the

termination set). For instance, one might have an option for “Go to the kitchen”

which encodes all the necessary muscles twitches to accomplish this high-level task.

It has been well-demonstrated that planning using long-range options can be far more

efficient than planning at the primitive time scale. This, of course, requires a model

that can predict the outcome of executing an option. These models are called option

models. An option model is only required to make predictions about the termination

state of its associated option (its tests of interest), and it is only required to make

these predictions in states where the option can be initiated (its histories of inter-

est). Option models can be far more compact than a complete model, because they

need not make any predictions involving the intermediate states encountered during

the execution of an option. Again, in the Markov case, option models themselves are

straightforward to learn so much of the associated work focuses on determining which

option models will be most useful for planning (e.g. Stolle & Precup 2002, Menache

et al. 2002, Şimşek & Barto 2008).

Qualitative State: Recent work by Stober & Kuipers (2008) and Mugan & Kuipers

(2009) focuses attention on automatically determining which partial models to learn

in continuous environments. Stober & Kuipers present a “bootstrapping” framework

for learning models in high-dimensional pixel-based environments by which a model

12

learning algorithm can progressively develop more and more abstract models, based

on concepts defined in terms of the earlier models. They first attempt to learn a

static model of the world. Spatial clusters of high prediction error in this model are

interpreted as objects moving through the world. Movement models are then learned

for the objects, as algebraic expressions of various features of the objects (position,

size, etc.). In this framework, the static model and the object movement models are

all partial models, each in charge of predicting some reasonably independent facet of

the world.

Mugan & Kuipers present a method for automatically finding useful qualitative,

abstract, descriptions of state and actions (typically in the form of ranges of contin-

uous variables). This involves both determining which qualitative predictions can be

made reliably (and are useful for control) as well as which qualitative features are

needed to make good predictions. Then partial models are created for making these

predictions. The models themselves ultimately take the form of look-up tables of

conditional predictions of qualitative features, given the values of other qualitative

features.

As seen above, the question of how to learn a partial model in the Markov setting

is not typically a research focus. Learning a partial Markov model is essentially the

same as learning a complete Markov model, though learning a partial model can save

both computational and representational complexity. Since there is already a general

understanding of how to learn partial models in the Markov setting, most of the work

discussed above has focused on how to exploit partial models and how to identify

which partial models to learn. As will be discussed in the next section, removing the

Markov assumption introduces substantial additional challenges both to learning a

model in general, and to learning a partial model in particular.

13

1.2.2 Partially Observable Systems

When a dynamical system is not Markov, it is called partially observable. There

are some cases where partial observability does not necessarily present a major chal-

lenge. For instance, if knowing the most recent observation is not enough information

to make accurate predictions about the future, but knowing the most recent k obser-

vations is, the system is called kth order Markov. If k is very small, then methods for

Markov systems can often be straightforwardly applied (simply by treating the last

k observations as state, rather than just the most recent observation). Even when

the system is not short-order Markov, sometimes prior knowledge of the system can

allow a human to augment the observation with extra state variables that make the

system Markov (or approximately so).

In general, however, predictions about the future in a partially observable system

may depend arbitrarily on the history of interaction since the beginning of time,

instead of just the most recent observation. History grows unboundedly with time

and so cannot be conditioned on explicitly. So, while the generalization problem

found in the Markov case is still certainly an issue in the partially observable case,

there is an additional challenge that it is necessary to learn to maintain some compact

summary of the relevant information contained in history. This summary is called

state, in analogy to the state in a Markov system.

1.2.2.1 Complete Models

In a Markov system the state is readily available as the last observation of a given

history, and as a result, predictions can be directly estimated as functions of obser-

vations. In a partially observable system, a large part of the model-learning problem

is learning what state should be, that is learning a compact sufficient statistic of his-

tory, with respect to predictions about the future. The following briefly introduces

two approaches to representing and learning complete models of partially observable

14

systems.

POMDPs A popular representation for complete models of partially observable

systems is the partially observable Markov decision process (POMDP) (Monahan

1982). A POMDP posits an underlying MDP with a set S of hidden states that

the agent never observes. At any given time-step i, the system is in some particular

hidden state si−1 ∈ S (unknown to the agent). The agent takes some action ai ∈ A

and the system transitions to the next state si according to the transition probability

Pr(si|si−1, ai). An observation oi ∈ O is then emitted according to a probability

distribution that in general may depend upon si−1, ai, and si: Pr(oi|si−1, ai, si).

Of course because the agent does not observe the hidden states, it cannot know

which hidden state the system is in. The agent can however maintain a probability

distribution that represents the agent’s current beliefs about the hidden state. This

probability distribution is called the belief state. If the belief state associated with

history h is known, then it is straightforward to compute the prediction of any test

t: p(t|h) =
∑

s∈S Pr(s|h)Pr(t|s), where Pr(t|s) can be computed using the transition

and observation emission probabilities. The belief state is a finite summary of history

from which any prediction about the future can be computed. So, the belief state is

the state vector for a POMDP. Given the transition probabilities and the observation

emission probabilities, it is possible to maintain the belief state using Bayes’ rule. If

at the current history h one knows Pr(s|h) for all hidden states s and the agent takes

action a and observes observation o, then one can compute the probability of any

hidden state s at the new history:

Pr(s|hao) =

∑

s′∈S Pr(s′|h)Pr(s|s′, ai)Pr(oi|s
′, ai, s)

∑

s′′∈S

∑

s′∈S Pr(s′|h)Pr(s′′|s′, ai)Pr(oi|s′, ai, s′′)
.

The parameters of a POMDP that must be learned in order to be able to maintain

state are the transition probabilities and the observation emission probabilities. Given

15

these parameters, the belief state corresponding to any given history can be recursively

computed and the model can thereby make any prediction at any history. POMDP

parameters are typically learned using the Expectation Maximization (EM) algorithm

(Baum et al. 1970). Given some training data and the number of actions, observations,

and hidden states as input, EM essentially performs gradient ascent to find transition

and emission distributions that (locally) maximize the likelihood of the provided data.

PSRs Another, more recently introduced modeling representation is predictive state

representations (PSRs) (Littman et al. 2002). Instead of hidden states, PSRs are de-

fined more directly in terms of the system dynamics matrix (described in Section

1.1.2). Specifically, PSRs find a set of core tests Q whose corresponding columns in

the system dynamics matrix form a basis. Recall that the system dynamics matrix

often has finite rank (for instance, the matrix associated with any POMDP with finite

hidden states has finite rank) and thus Q is finite for many systems of interest. Since

the predictions of Q are a basis, the prediction for any other test at some history can

be computed as a linear combination of the predictions of Q at that history. The

vector of predictions for Q is called the predictive state. While the belief state was

the state vector for POMDPs, the predictive state is the state vector for PSRs. It

can also be maintained by application of Bayes’ rule. Specifically, if at some history

h, p(q|h) is known for all core tests q and the agent takes some action a ∈ A and

observes some observation o ∈ O, then one can compute the prediction of any core

test q at the new history:

p(q|hao) =
p(aoq|h)

p(ao|h)
=

∑

q′∈Q p(q
′|h)maoq(q

′)
∑

q′∈Q p(q
′|h)mao(q′)

,

where maoq(q
′) is the coefficient of p(q′|h) in the linear combination that computes

the prediction p(aoq|h).

So, given a set of core tests, the parameters of a PSR that must be learned in

16

order to maintain state are the coefficients mao for every action a and observation o

and the coefficients maoq for every action a, observation o, and core tests q. Given

these parameters the predictive state at any given history can be recursively com-

puted and used to make any prediction about the future. PSRs are learned (James

& Singh 2004, Wolfe et al. 2005) by directly estimating the system dynamics matrix

using sample averages in the training data. The estimated matrix is used to find a

set of core tests and the parameters are then estimated using linear regression.

Both of these representations, and other related representations such as, e.g.,

observable operator models (Jaeger 2000), are highly sensitive to the linear dimension

of the system. For POMDPs, the number of hidden states needed to represent the

system is lower-bounded by the linear dimension. Both computational and space

complexity of a POMDP are quadratic in the number of hidden states. In addition,

being a hill-climbing algorithm, EM is subject to converging to local maxima. More

hidden states means searching for parameters in a higher-dimensional space, which

often leads to more local extrema, and correspondingly poorer results. For PSRs,

the number of core tests is precisely the linear dimension. As with POMDPs, the

number of parameters to be learned in a PSR is quadratic in the linear dimension.

Furthermore, the search for core tests can be extremely sensitive to linear dimension.

A high linear dimension can drastically increase the amount of data needed to obtain

a correct core set. In practice it is rare for POMDPs or PSRs to be learned from

data in systems with linear dimension of more than a few hundred, which is tiny in

comparison to most systems of interest.

1.2.2.2 Partial Models

Compared to the Markov case, the problem of learning partial models in the

partially observable case is far less straightforward. If, as in the Markov case, the

17

compact representation of state associated with every history were available a priori,

learning a model that makes only some predictions in only some situations would

simply be a matter of estimating only the predictions of interest, as a function of

state. Unfortunately, as seen above, learning to maintain state is deeply intertwined

with the model-learning process itself. In order to maintain state, both POMDPS and

PSRs require access, in principle, to all one-step predictions. Recall that any model

that can make all one-step predictions can make all possible predictions. So, these

models cannot maintain state without the ability to make all possible predictions, and

without state, they cannot make predictions at all. As such, it is not as clear how to

learn a partial model without first learning a complete model. Nevertheless, there are

some examples of partial models in partially observable systems. The following are

just a few particularly relevant examples.

Partially Observable STRIPS Models: There has been some work on extending

the STRIPS framework to partially observable domains. For instance, Amir (2005)

presents an algorithm for learning propositional STRIPS rules in partially observable

problems. The main idea of the method is to maintain a set of all possible models

consistent with the data seen so far in a process analogous to Bayesian model learning.

However, this method applies only to deterministic systems with a very particular type

of partial observability. Essentially the assumption is that the true world state is the

conjunction of some propositions and that observations consist of the true values

of some (possibly changing) subset of these propositions. Because the observations

are so closely tied to the true state of the system, one can still enjoy some of the

benefits of the Markov case. Furthermore, because of the determinism, once one

obtains an update rule, the partial observability is no longer an issue: the effects of

a deterministic rule are known, regardless of whether they are observed or not. As

such, this work does not seem to grapple with some of the central problems associated

18

with learning in partially observable environments.

DBNs: A popular representation that handles stochasticity and partial observabil-

ity, dynamic Bayes nets (DBNs) (Ghahramani & Jordan 1995), are a generalization

of both factored MDPs and POMDPs. Like a factored MDP, a DBN decomposes the

world state into a number of variables but, like a POMDP, some of these variables

are observed and some are hidden. The structure of a DBN, much like the structure

of a factored MDP, is a set of conditional independence relationships between these

variables across (and within) time-steps. A DBN can be far more compact than

its corresponding unstructured POMDP if each variable depends on very few other

variables. The parameters of a DBN, like those of a POMDP, are learned using EM.

While a DBN decomposes its representation of the world into many pieces, it is not

easily interpreted as a composition of partial models. The variables in a DBN are all

linked together and there is typically no easily separable piece that can be identified

as a model that makes some particular subset of predictions. In this sense, a DBN is

still a complete model, albeit a structured one. A more thorough comparison between

DBNs and partial models can be found in Section 5.2.1.

Factored PSRs: Another representation similar to factored MDPs is called the

factored PSR (Wolfe et al. 2008). In a factored PSR, the observation is broken up

into several component variables and, as in a factored MDP, a model is learned to

make predictions about each variable. The component models of a factored PSR are

made simpler than a complete model by allowing them to ignore the history of many

of the other observation variables. Wolfe et al. demonstrated that if the component

models ignored more observation variables they became easier to learn and if they

attended to more observation variables they became more accurate. However, they

offered no principled method for determining which variables each model could safely

ignore while still making accurate predictions. This problem of learning what can

19

safely be ignored will be discussed in detail in the more general context of observation

abstraction in Chapter 2.

Hierarchical PSRs: The idea of options has also been studied in the partially

observable case. One type of model that makes use of them is the hierarchical PSR

(Wolfe & Singh 2006). A hierarchical PSR applies in settings where the agent is

given a finite set of options a priori and behaves by selecting an option, executing

it to completion, selecting another option, executing it to completion, and so on. In

this case, Wolfe & Singh learn a model that makes predictions only in histories that

can be reached by executing a sequence of options. Instead of updating at every

time-step with an action and an observation, the model only updates at the termi-

nation of an option, where it is told which option was executed and only the last

observation that was seen (rather than the whole observation sequence experienced

during execution). Correspondingly, this option-level model only makes predictions

about the observation that will be seen at the end of execution of each option. This

idea of a model that makes predictions at only some histories and is updated with an

abstract description of what happens in between those histories will be explored in

more generality in Chapter 4.

While exploiting particular examples of partial models, none of this work offers

a general, principled foundation for learning partial models in partially observable

systems. This thesis attempts to provide such a foundation by addressing the general

question, “If one is given a set of tests of interest T I and a set of histories of interest

HI , how can one learn a model that makes the predictions of interest p(t|h),∀t ∈

T I , h ∈ HI more simply than a complete model?” An ideal answer to this question

would be a method that learns to maintain just enough state information to make the

predictions of interest, and no more.

20

This thesis will not introduce new model-learning methods, per se. Instead, the

focus will be on developing ways to transform the training data so that existing

methods like POMDPs can be applied to a simplified problem, and yet produce

a model that can be used to make the predictions of interest. Chapters 2 and 3

will discuss two complementary strategies for addressing one aspect of the central

question: limiting predictions to a set of tests of interest. Chapter 4 will incorporate

the concept of histories of interest. Chapter 5 will demonstrate one of the main

motivating applications of partial models: combining them to form a more complete

model. Finally, Chapter 6 will summarize the contributions of this thesis and discuss

some of the future directions suggested by the findings herein.

1.3 Summary

Key points from this chapter:

• Partial models are useful for complex environments.

– They allow one to focus on important/easy predictions, avoid useless/difficult

predictions.

– One can learn separate models of independent phenomena, and combine

them to form a more complete, compositional model.

• The central problem of this thesis is learning partial models in partially observ-

able systems:

– Given a set of tests of interest T I .

– Given a set of histories of interest HI .

– Learn a model that makes the predictions of interest:

∗ p(t|h),∀t ∈ T I , h ∈ HI .

21

• How to learn a partial model in the Markov setting is conceptually straightfor-

ward.

– State is provided (most recent observation).

– As a result, one can directly estimate the predictions as function of state.

• How to learn a partial model in the partially observable setting is a challenge

in itself.

– Discovery of state and model-learning are intertwined.

– Ideally one would learn to maintain just enough state to make the predic-

tions of interest, and no more.

– This thesis attempts to provide a general foundation for learning partial

models in partially observable problems.

22

CHAPTER 2

Observation Abstraction

The central goal of this thesis is to learn partial models that make only some

particular predictions. Specifically, given a set of tests of interest T I , one would like

to learn a model that can accurately provide the predictions for p(t|h) for all t ∈ T I

and all histories h ∈ H and ideally one would like that model to be easier to learn

than a complete model.

This chapter will focus on one strategy for learning a simple partial model: ignor-

ing some details of the environment that are irrelevant for making the predictions of

interest. A partial model for predicting the weather, for instance, can probably safely

ignore the outcomes of sports games, the workings of the stock market, and many

other irrelevant details. By modeling less, the model can often be far simpler than

one that tries to capture all these phenomena and yet still make the predictions of

interest accurately (predictions about the weather).

As a more concrete example, consider the 4x4 grid world pictured in Figure 2.1a.

The agent has 4 actions that move it one square in each cardinal direction: n, e, s, and

w and it observes the label (numbers 1-16) of the square it moves into. Now imagine

that the agent’s goal is to reach the right-hand column. As such, perhaps it is only

really interested in predicting whether it will reach the right-most column in the next

time step. As such, the agent has a test of tests of interest T I = {nR, sR,wR, eR},

23

Figure 2.1: The 4x4 grid world.

where R = {4, 8, 12, 16} is a set observation including all squares in the right col-

umn. Note that the agent’s vertical position is entirely irrelevant to making correct

predictions for the tests of interest; all that matters is what column the agent cur-

rently inhabits. One can imagine constructing a model that only keeps track of which

column the agent is in and ignores the agent’s row (pictured in Figure 2.1b). This

model could still be used to make predictions for the tests of interest (will the agent

enter the right-most column in the next time-step?) but is much simpler than a fully

detailed model as there are only 4 columns, but there are 16 possible positions.

The “column” model of the gridworld is an example of an abstract model. It

intentionally ignores the distinctions between many primitive observations (position)

and instead deals only with aggregate, abstract observations (column). The word

“abstract” here simply refers to the fact that the same label is being applied to

multiple distinct concrete positions. This chapter will describe conditions on an

abstraction that guarantee that the corresponding abstract model can make accurate

predictions for the tests of interest (in Section 2.2). Because the abstract model

ignores irrelevant details, it may be far simpler than a complete model. Section 2.3

will present theoretical results regarding the learnability of abstractions that satisfy

these conditions as well as conceptual algorithms for finding such abstractions (these

algorithms will be tested empirically in Section 2.3.4). Finally, in Section 2.5 some

24

limitations of abstraction as a means to learn partial models will be discussed, which

will motivate the next chapter. First, however, the next section will carefully define

observation abstractions and some related concepts.

2.1 Observation Abstraction

An observation abstraction is a clustering of primitive observations. An abstrac-

tion can be thought of as a partitioning of the set of observations O (that is, a set

of abstract observations such that every primitive observation is contained within

exactly one abstract observation). An abstract observation, then, is best thought of

as a set of observations. For instance, in the gridworld example above, the abstract

observation C1 = {1, 5, 9, 13}.

Equivalently, an abstraction can be defined as a surjection (many-to-one mapping)

η that maps primitive observations to some set of abstract observations. Viewed this

way, an observation abstraction is essentially the same as a feature of the observa-

tion. In the gridworld example, the abstraction takes a primitive observation and

provides what could be interpreted as the “column” feature. Throughout the thesis

abstractions will be treated as partitions or surjections interchangeably, as best suits

the discussion. In fact, it will often be notationally expedient to mix the two notions

and treat η(o) directly as the set of observations that all map to the same abstract

observation as o. So, again in the gridworld example, η(1) = {1, 5, 9, 13}.

A key concept relating to abstractions is that of refinement. A refinement η′ of

an abstraction η is an abstraction that makes all the same distinctions η does (and

potentially more). Correspondingly, η is called a coarsening of η′. Formally:

Definition 2.1. An abstraction η′ is a refinement of another abstraction η if and

only if for any pair of primitive observations o1, o2 ∈ O, if η′(o1) = η′(o2), then

η(o1) = η(o2). If η′ is a refinement of η then η is called a coarsening of η′.

25

The finest possible abstraction maps primitive observations to themselves. The

coarsest possible abstraction maps all primitive observations to the same abstract

observation.

2.1.1 Abstract Systems

A given abstraction η can be used to define a dynamical system, called the abstract

system, as a transformation of the original, primitive system. Specifically, the abstract

system has the same set A of actions but its observations are the abstract observations

which will be denoted Oη. The dynamics of the abstract system are determined

by the dynamics of the original system. Whenever the original system would emit

the observation o ∈ O, the abstract system instead emits the abstract observation

η(o) ∈ Oη.

The abstract tests T η and abstract histories Hη are sequences of actions and ab-

stract observations. Just as abstract observations can be thought of as sets of prim-

itive observations, abstract tests and histories can be thought of as sets of primitive

tests and histories, respectively. An abstract test T ∈ T η contains all the primitive

tests whose observations map to the abstract observations in T . It is straightforward

to compute predictions in the abstract system. For any abstract test T ∈ T η and

primitive history h ∈ Hη,

p(T |h) =
∑

t∈T

p(t|h), (2.1)

that is, the conditional probability of any of the tests in T occurring, given h. Then

for any abstract test T ∈ T η and abstract history H ∈ Hη,

p(T |H) =
p(HT |∅)

p(H|∅)
=

∑

h∈H p(h|∅)
∑

t∈T p(t|h)
∑

h∈H p(h|∅)
, (2.2)

which is essentially the expected prediction for T where the expectation is taken over

26

the primitive histories h ∈ H.

In the gridworld example the abstract system was simpler than the primitive

system, as measured by linear dimension. Extending the example to a general k × k

grid, the primitive system intuitively has a linear dimension of k2, while the abstract

system has a linear dimension of k. It is straightforward to show that the abstract

system never has linear dimension greater than that of the primitive system. In fact,

it can be shown more generally that if η′ is a refinement of η, then the abstract system

induced by η is never more complex than that induced by η′.

Proposition 2.2. Consider a dynamical system, an abstraction η, and a refinement

η′ of η. The linear dimension of the abstract system corresponding to η, nη, is no

greater than nη′
, the linear dimension of the abstract system corresponding to η′.

Proof. See Appendix A

Because the abstract system can be far simpler than the primitive system (and, at

least as measured by linear dimension, can never be more complex), it is often easier

to learn, represent, and make use of abstract models than primitive models.

2.1.2 Abstract Models

Given an abstraction and training data from the original system, it is straight-

forward to learn a model of the abstract system. Simply take the training data and

apply the abstraction. This translates trajectories of experience with the primitive

system into trajectories of experience with the abstract system. The resulting abstract

data set can then be supplied to any appropriate model-learning method (e.g. EM for

POMDPs). As mentioned in Chapter 1, this idea of transforming training data from

the primitive system and then applying existing model-learning methods to obtain

a model of some other, ideally simpler, dynamical system is a recurring approach in

this thesis.

27

A model of the abstract system will typically be easier to learn than a model of

the primitive system. One reason is that the abstract system tends to have a lower

linear dimension (and as seen above cannot have a higher linear dimension) than the

primitive system. Another reason is that, because abstract events are, by nature, less

specific than primitive events, they tend to occur more often. For example, one might

encounter one day in a year with a specific temperature and amount of precipitation,

but many days that can be described as “cold and rainy.” As such, it may be easier

to learn about cold and rainy days in general than days with a high of 45◦ and 0.7

inches of rainfall, because they occur with much higher frequency.

There are also ways in which an abstraction can make a model harder to learn.

For instance, if the primitive system is Markov, then an observation abstraction of

that system will, in general, be non-Markov. Markov systems are often much easier

to model (as discussed in Chapter 1). The focus of this thesis, however, is partially

observable systems, so this effect will not be of major concern.

A model of the abstract system is, in some sense, a partial model in that it cannot

make every possible prediction. The column model in the gridworld example cannot

be used to make predictions about the vertical position of the agent. It is impossible

to even express that prediction in terms of the abstract observations! An abstract

model can provide the conditional probability of any future abstract event, given an

abstract history. That is, it provides p(T |H) for any abstract test T ∈ T η and any

abstract history H ∈ T η. As such, if one has a set T I of tests of interest to make, one

would like an abstraction η such that the tests of interest are contained within T η,

or some further abstraction thereof. Such an abstraction is expressive with respect to

the tests of interest.

Note that while an abstract model predicts less than a primitive model (because it

only makes predictions on an abstract level), it also conditions on less than a primitive

model, because it only conditions on abstract histories, which are less detailed than

28

primitive histories. In general, there is no reason to expect that the predictions an

abstract model makes for abstract tests given abstract histories to be the same as the

predictions made by a primitive model for the same abstract tests given fully detailed

primitive histories. An abstract model of the weather that only pays attention to

whether each day was sunny or rainy will have some prediction about whether the

next day will be sunny, conditioned on the history of sunny and rainy days. A more

detailed model that also pays attention to temperature could also make a prediction

about whether the next day will be sunny, conditioned now on the history of sunny

and rainy days and the history of temperature readings. The second model will make

more informed predictions because it can take into account, say, that a large change

in temperature is likely to correlate with rain. Even if both models make perfect

predictions in the sense of providing the correct conditional probabilities, one will

make more accurate predictions because it conditions its predictions on more detail.

The next section will discuss some properties, such as expressiveness and accuracy

that may be desirable in an abstraction and discuss specifically how they relate to

learning partial models. Later in the chapter some theoretical results about the

feasibility of automatically constructing abstractions with these properties will be

presented.

2.2 Properties of Abstractions

At its heart, an abstract model ignores detail about the world. From this it gains

its simplicity but also its limitations. How much detail can be safely ignored depends

on what the abstract model will be used for. Many different criteria for selecting

abstractions exist. Li et al. (2006) provide a description (and unifying framework)

for several abstraction criteria that have been used to select abstractions in MDPs.

The central problem in this work is to learn a model that makes the predictions

of interest. For the purposes of this chapter, this means making predictions p(t|h)

29

Figure 2.2: Abstractions of the 4x4 grid world: (a) expressive, (b) expressive and
accurate, and (c) expressive, accurate, and homomorphic

for the tests of interest t ∈ T I at every history h ∈ H. This section will introduce

properties required of an abstraction so that the abstract model can be used as such a

partial model: expressiveness and accuracy. A third property, homomorphism, will be

discussed as well, as it is a highly related and well studied criterion for abstractions.

2.2.1 Expressiveness

If the abstract model is going to be used to make predictions for the tests of inter-

est, it is necessary that those tests be expressible in terms of abstract observations.

Definition 2.3. An observation abstraction η is expressive with respect to a set of

tests of interest T I if and only if for every test of interest t ∈ T I there is a set of

abstract tests St ⊂ T η such that p(t|h) =
∑

T∈St p(T |h) for all primitive histories

h ∈ H.

This property ensures that for every test of interest, there is an equivalent (ab-

stract) test in the abstract system. Put another way, it requires that every set obser-

vation that occurs in some test of interest t ∈ T I is either an abstract observation in

Oη itself, or the union of several abstract observations. Seen in this light, it is clear

that if η is expressive with respect to T I , then any refinement η′ of η is also expressive

with respect to T I .

30

As a simple example, recall the 4x4 grid world example in which the tests of inter-

est T I = {nR, sR,wR, eR}, where R = {4, 8, 12, 16} is a set observation including all

squares in the right column. An expressive abstraction for this set of tests of interest

is pictured in Figure 2.2a. It groups the observations into two abstract observations:

R as already defined, and L, containing all other observations. Clearly the tests of

interest can be expressed in terms of these abstract observations.

2.2.2 Accuracy

Expressiveness ensures that a model of the abstract system can be used to make

predictions for the tests of interest, however it does not ensure that those predictions

will be the same predictions a model of the primitive system would make. The

ultimate goal is to learn a model that provides the predictions p(t|h) for all tests of

interest t ∈ T I and all primitive histories h ∈ H. Given an expressive abstraction η,

one is still only guaranteed to be able to make the predictions p(t|H) for all t ∈ T I

and all abstract histories H ∈ Hη.

Even if an abstraction is expressive, it may ignore some details that are important

for making good predictions for the tests of interest. An abstraction with the accuracy

property guarantees that the predictions for the tests of interest given an abstract

history are the same as they would be given a corresponding primitive history.

Definition 2.4. An abstraction η is accurate with respect to a set of tests of interest

T I if and only if for all abstract histories H ∈ Hη, all primitive h ∈ H, and all t ∈ T I ,

p(t|H) = p(t|h).

An accurate abstraction for the 4x4 grid world example is pictured in Figure 2.2b.

It groups the observations into three abstract observations: R as already defined, L2,

containing all squares in the third column, and L1 containing all other observations.

As previously noted, the agent’s horizontal position is irrelevant to predicting whether

it will reach the right-most column in the next step. Also, if the agent is in any

31

square in the 2 left-most columns, the probability of reaching the right-most column

by taking any action is zero. It is, however, important to know whether the agent is in

the right-most column or in the third column for making the predictions of interest.

It is trivial to see from Equation 2.2 that the accuracy property holds if and

only if the abstraction groups together only histories that have the same associated

predictions for the tests of interest. It is also straightforward to see that if η is

accurate, then so is any refinement of η.

If an abstraction is expressive and accurate, then a model of the corresponding

abstract system can accurately make the predictions of interest in every history.

2.2.3 Homomorphism

Accuracy guarantees that a model of the abstract system makes accurate predic-

tions for the tests of interest at every history. However, it makes no guarantees about

any other predictions. A closely related property of abstractions is homomorphism,

which requires that all abstract tests can be predicted accurately given an abstract

history.

Definition 2.5. An abstraction η is a homomorphism if and only if for all T ∈ T η,

H ∈ Hη, and h ∈ H, p(T |H) = p(T |h).

A homomorphism essentially promises that it can accurately predict all the infor-

mation needed to make its own predictions. This is not necessarily so of an accurate

abstraction. The accurate abstraction shown in Figure 2.2b makes all the distinc-

tions necessary to predict whether the agent will be in the right-most column in the

next time-step. However, it does not make enough distinctions to accurately predict

whether the agent will see the abstract observation L1 in the next time step. Specif-

ically, if the agent is placed randomly in the world at the beginning of an episode,

in the history nL1, the model cannot tell whether the agent is in the first or second

column. As such, it would make the prediction p(eL1|nL1) = 0.5, whereas given the

32

primitive history, the prediction would be deterministic (1 if in the first column, 0

if in the second). In contrast, consider the homomorphism pictured in Figure 2.2c.

It groups the observations into four abstract observations: R (as previously defined)

and L1, L2, and L3, containing all squares in the 1st, 2nd, and 3rd column, respec-

tively. Knowing which column the agent is in is sufficient to make accurate predictions

about which column the agent will enter in the next time-step, so this abstraction is

a homomorphism.

Homomorphisms can be useful if the model is required to “roll forward,” or “sim-

ulate the world.” At any given history, a homomorphic model can accurately predict

the next abstract observation, which will yield another abstract history, which yields

another accurate prediction and so on. This ability is particularly useful for planning

purposes. In contrast, an abstraction that is accurate but not a homomorphism allows

accurate predictions for the tests of interest, but not for other abstract tests. Thus,

an accurate model can accurately make the predictions of interest at any history, but

it cannot accurately predict how likely that history may be.

Note that the homomorphism property makes no reference to tests of interest and

can hold independently of expressiveness and accuracy. That said, if the expressive-

ness and homomorphism properties hold, then so must accuracy (in an expressive

abstraction, the tests of interest can be expressed in terms of tests in T η and a

homomorphism guarantees accurate predictions for all abstract tests). For this rea-

son, expressiveness and homomorphism are often combined. MDP Homomorphisms

(Ravindran 2004) and relatedly bisimulation (Larsen & Skou 1991) are abstractions

for MDPs that are expressive with respect to the MDP’s reward signal (that is, if two

states have different associated reward, they must be distinguished) and homomor-

phic. An MDP homomorphism guarantees that the optimal policy in in the abstract

system is the same as the optimal policy in the primitive system. Relatedly, Wolfe

& Barto (2006) learn “reusable” homomorphisms that, rather than being expressive

33

Figure 2.3: The coarsest accurate abstraction yields a simpler system than the coars-
est accurate homomorphic abstraction.

with respect to reward, are expressive with respect to some particular set of state

features that are likely to be useful for computing reward. This is a special case of

the more general concept of tests of interest.

If all that is truly required of the model is to make accurate predictions for the

tests of interest (and not additionally to be able to roll forward) a homomorphism

is unnecessary, and could potentially result in a more complex model than would

result from an abstraction that is accurate, but not a homomorphism. For instance,

consider the uncontrolled example shown in Figure 2.3. States are labeled with their

observations. Multiple arrows from a single state indicate a stochastic transition with

the probabilities indicated. States a and b are the initial state with equal probability.

Now say there is a single, two-step test of interest Xf , where X is a set observation:

X
def

={a, b, c, d, e}. Consider the abstraction with 6 abstract observations: g, f , e, d, c,

and Y
def

={a, b}. This abstraction is not accurate with respect to its own abstract tests

(and so is not a homomorphism). For instance: p(c|a) = 0.2 and p(c|b) = 0.6 even

though a, b ∈ Y . By construction, however, this refinement is accurate with respect

to the test of interest, most notably because p(Xf |a) = p(Xf |b) = p(Xf |Y) = 0.3.

Therefore this is an accurate abstraction that is not a homomorphism. It can be

straightforwardly determined that the abstract system with respect to this abstraction

34

has a linear dimension of 4. On the other hand, the only abstraction that satisfies

both the accuracy and homomorphism properties is the primitive system itself, which

results in a linear dimension of 5.

2.2.4 Other Criteria

The properties discussed here focus mainly on the accuracy of some predictions.

In some cases, accuracy may not be the primary goal. For instance, it may be that in

some problems, getting the exact values of the predictions of interest is not important

and only some more qualitative feature of the predictions is necessary (like identifying

the most likely test at a given history, or identifying which tests are possible following

a history). Accuracy is a very general criterion in this sense since an accurate model

can be used to accurately compute any function of the tests of interest. Then again,

a more qualitative criterion may admit a coarser abstraction (and perhaps one that

is easier to obtain). Because it is both a simply-stated and general-purpose goal,

the discussion in this chapter (and this thesis more generally) will tend to focus on

accuracy. However, many of the results and methods discussed could be adapted to

other criteria by replacing the accuracy property

p(t|H) = p(t|h) ∀t ∈ T I , H ∈ Hη, h ∈ H

with the equality of some function of the predictions:

f(p(t1|H), p(t2|H), ...) = f(p(t1|h), p(t2|h), ...) ∀H ∈ Hη, h ∈ H,

where t1, t2, ... are the tests of interest. Much of the mathematical and algorithmic

development will remain essentially unchanged.

35

2.3 Constructing an Abstraction

This section will present algorithms for constructing abstractions that satisfy ex-

pressiveness and accuracy, as well as homomorphism. There is already a great deal

of work on constructing abstractions for MDPs, mainly focusing on the problem of

finding a homomorphism that allows for accurate prediction of the reward signal.

There are algorithms for finding MDP homomorphisms (and approximate homomor-

phisms) using exhaustive search (Ravindran 2004), optimization of bisimulation met-

rics (Taylor et al. 2009), and gradient descent (Sorg & Singh 2009), just to name

a few. Wolfe & Barto (2006), as mentioned before, present an algorithm that uses

decision tree methods to find an MDP homomorphism that is accurate with respect

to predictions about some set of observation features.

This thesis is focused on the partially observable case, which is far less well-

studied in the context of abstraction learning and in many ways more challenging.

The main difference is that in partially observable systems predictions depend upon

the entire history, and not just the most recent observation. This dramatically affects

the problem of learning an accurate abstraction. For instance, in the Markov case,

since histories with the same last observation are guaranteed to correspond to the

same predictions, one can test the accuracy of an abstraction η by performing a

finite number of comparisons: for every primitive observation o ∈ O and every test

of interest t ∈ T I , simply check if p(t|o) = p(t|η(o)). In the “model-minimization”

setting these predictions are assumed to be available a priori. Otherwise, they can

be estimated from data. In the partially-observable case, however, the full history

must be taken into account, so the analogous procedure would be to check if p(t|h) =

p(t|η(h)) for every history h ∈ H. Of course, since there are infinitely many histories,

this procedure will never finish. It is not immediately clear if it is possible to determine

whether an abstraction is accurate in the partially observable case, let alone whether

it is homomorphic (which requires checking infinitely many tests, as well as histories).

36

Later in this chapter it will be shown that both accuracy and homomorphism can be

verified in a finite amount of time related to the system’s linear dimension.

Another affected issue is determining how to improve an abstraction that is not

accurate. In the Markov case, if one finds a pair of observations o1 and o2 such that

p(t|o1) 6= p(t|o2) for some test of interest t, then it is immediately clear that o1 and

o2 must be distinguished in any accurate abstraction. In the partially observable

case, if one finds a pair of histories, say h1 = a1o1a1o2 and h2 = a1o3a1o4 such

that p(t|h1) 6= p(t|h2), what conclusions can one draw? Surely h1 and h2 must

be distinguished but that could be accomplished by distinguishing o1 from o3 or

by distinguishing o2 from o4. It is not immediately clear how to identify which

observations can be safely lumped together and which must be distinguished in the

partially observable case. This chapter will address this issue as well.

Compared to the Markov case, there has been relatively little work done on au-

tomatically constructing abstractions for partially observable systems. Soni & Singh

(2007) defined PSR homomorphisms, which are a generalization of the class of abstrac-

tions presented here because they also allow action abstraction and history-dependent

abstraction. However, they provide no algorithms for constructing an abstraction or

even for determining if a given abstraction is a PSR homomorphism.

Wolfe (2010) defined POMDP homomorphisms which abstract not only the obser-

vations and actions, but also the hidden states in a POMDP. They present polynomial

time algorithms for determining whether a given abstract POMDP is homomorphic

to the primitive system. However, these algorithms only test sufficient conditions for

homomorphism, not necessary conditions, and thus may generate false negatives (re-

jecting legitimate homomorphisms). Furthermore, these algorithms are developed for

the model-minimization problem, and therefore assume access to a complete POMDP

model of the primitive system a priori. Wolfe also provides a heuristic method that

searches for the coarsest possible POMDP homomorphism. Though their algorithm

37

is guaranteed to provide a homomorphism, it is not guaranteed to find the coarsest

homomorphism.

The results in the following sections provide the first necessary and sufficient con-

ditions for accurate and homomorphic abstractions of partially observable systems

that can be computed in finite time. These conditions lead to conceptual algorithms

that are guaranteed to find the coarsest abstraction (or the family of coarsest ab-

stractions) that satisfies the desired property (accuracy or homomorphism). These

algorithms are computationally expensive, but they are provably sound, and can be

applied to small problems with some practically-minded tweaks (as will be seen in

Section 2.3.4). A more practical abstraction learning algorithm that scales to larger

problems will be presented in Chapter 4.

Since the primary goal of obtaining an abstraction in this work is to simplify

the model-learning problem, it would be counter-productive to assume a complete

model of the primitive system a priori as is typically done in the model-minimization

literature. That said, the algorithms in the next few sections will be developed in the

idealized case that the predictions p(t|h) for all primitive tests t ∈ T and all primitive

histories h ∈ H are known exactly and the linear dimension of the original system

is known. These assumptions are similar to assuming the existence of a perfect,

primitive model. However, because there is no assumed access to the internals of a

primitive model (such as its hidden states, or its parameters) the algorithms will be

easily adapted to the more practical setting where the predictions are not known but

can be estimated from data (this will be discussed further in Section 2.3.4).

The following sections describe algorithms (and supporting theoretical results) for

automatically constructing coarse abstractions with the three properties described in

the previous section: expressiveness, accuracy, and homomorphism.

38

2.3.1 Constructing an Expressive Abstraction

Compared to the other two properties, constructing an expressive abstraction is

fairly straightforward. Basically, in order to satisfy expressiveness, one must ensure

that η does not group together any observations that are distinguished by the tests

of interest. In some cases, this is trivial. For instance, it is common to be interested

only in predictions about certain observation features. In this case there may be some

surjection ψ defined over O which gives the value of the feature for any observation

and the tests of interest are all set tests with respect to the observation feature ψ:

T I def

= {a1ψ(o1)a2ψ(o2)...akψ(ok) : 1 ≤ k < ∞, a1, ..., ak ∈ A, o1, ..., ok ∈ O}. In this

case, simply setting η = ψ clearly satisfies expressiveness.

When the tests of interest are explicitly defined in terms of a partition, that parti-

tion can serve as the expressive observation abstraction. For arbitrary sets of tests of

interest, finding an expressive abstraction is slightly more complicated. Let T I be any

finite set of set tests. Each test T ∈ T I is a sequence of actions and set observations:

T = a1O1a2O2...akOk. Let OT I

be the set of all abstract observations that appear in

the tests of interest. Note that OT I

does not itself comprise an observation abstrac-

tion as it is not necessarily a partitioning of O: the set observations may overlap and

they may not collectively cover the entire space of primitive observations. The task

is to find an abstraction η that respects all distinctions made by the observations in

OT I

. This is actually fairly simple: for any two primitive observations o1 and o2, let

η(o1) = η(o2) if for all O ∈ OT I

either o1 ∈ O and o2 ∈ O or o1 /∈ O and o2 /∈ O. In

other words, if o1 and o2 are never distinguished by any set observation in OT I

they

can be grouped together. The result is an abstraction in which every set observation

in OT I

is the union of some set of abstract observations. So, η can be constructed

in O(|O|2|OT I

|) time (it performs this check for every pair of observations) and is

expressive with respect to T I .

39

Figure 2.4: Accurate refinements in the 4x4 gridworld. (a) is a coarsest abstraction,
(b) is not.

2.3.2 Constructing an Accurate Abstraction

This section will present the main contribution of this chapter: a method for

automatically finding an accurate abstraction with respect to some given set of tests

of interest T I . The algorithm will apply to any finite set of tests of interest and also

to infinite sets of tests of interest under some conditions that will be described below.

Note that an accurate abstraction always exists because this property is trivially

true of the primitive system. Thus, it does not suffice to simply find some accurate

abstraction. A far more sensible goal is to find the coarsest accurate abstraction (or

one of them).

Definition 2.6. A coarsest accurate abstraction with respect to a set of tests of

interest T I is an accurate abstraction η with respect to T I such that any coarsening

of η is not accurate.

Note that the definition is for a coarsest accurate abstraction, rather than the

coarsest accurate abstraction. In general, refinement induces only a partial order over

abstractions and therefore there may be more than one coarsest accurate abstraction.

In a subsequent section it will be shown that, under some conditions, the coarsest

accurate abstraction is, in fact, unique. For some systems, a coarsest and a non-

coarsest accurate refinement can induce drastically different linear dimensions in the

40

resulting abstract systems. For instance, recall the abstraction η of the 4x4 grid

world pictured in Figure 2.4a that is accurate with respect to the tests of interest

T I def

= {nR, eR, sR,wR}. It is easy to check that the linear dimension of the system

abstracted according to η is 4. Now consider η′, a refinement of η, pictured in Figure

2.4b. Clearly η′ is still accurate with respect to the tests of interest (any refinement

of an accurate abstraction is accurate). However, though it may not be obvious from

inspection, its corresponding abstract system has a linear dimension of 16, the same

as the primitive system. On a general k × k grid, this would represent a quadratic

increase over the linear dimension induced by the coarsest accurate refinement.

So, given a set of tests of interest T I , the goal is to find a coarsest accurate

abstraction with respect to T I . The algorithm will rely upon three theoretical results,

presented in the next section.

2.3.2.1 Violations of the Accuracy Property

The procedure for finding an accurate abstraction will search for pairs of histories

h and h′ for which there exists some test of interest t ∈ T I with p(t|h) 6= p(t|h′). Such

a pair of histories violates the accuracy property, and must be distinguished by the

abstraction. The main result of this section will be to show that only finitely many

such pairs of histories need to be checked in order to construct an accurate refinement.

The proofs for the theorems stated in this section can be found in Appendix A.

Note that, as discussed above, identifying such a pair of histories is not, in itself,

very informative. Knowing that h and h′ must be distinguished indicates only that

at least one pair of observations at corresponding time steps in the two histories must

be distinguished, but not which pair. That said, for some pairs of histories, it is clear.

If h and h′ differ only at one time step, then the pair of observations at that time

step must be split apart. As will be demonstrated below, it turns out that it suffices

to check only such pairs of histories.

41

Definition 2.7. A violation for observations o1 and o2 is a tuple 〈t, a, h1, h2〉 such

that t ∈ T I , a ∈ A, h1 ∈ H, h2 ∈ T , and p(t|h1ao1h2) 6= p(t|h1ao2h2).

Note that a violation can only occur between two observations if they can both

occur after the same history. Two such observations are called comparable.

Definition 2.8. Two observations o1, o2, are comparable if there exists some history

h and some action a such that p(hao1|∅) > 0 and p(hao2|∅) > 0.

The first result (stated below) implies that, in order to construct a coarsest, ac-

curate refinement, it suffices to distinguish observations that have a violation, as

defined above. If all observations are comparable, then the pair-wise relation “Have

no violations” is an equivalence relation and, as such, induces a partition over the

set of primitive observations O. Using this partition as an observation abstraction

distinguishes every observation that must be split in any accurate refinement, and no

more:

Theorem 2.9. If all observations are comparable and η is the abstraction induced by

the relation “Have no violations,” then η is the unique coarsest, accurate abstraction.

Furthermore, there is no accurate abstraction that results in an abstract system with

a smaller linear dimension than the abstract system corresponding to η.

Proof. See Appendix A.

Incomparable observations have only a minor impact on finding a coarsest, accu-

rate refinement, though they can affect the linear dimension of the abstract system

that results. For a brief discussion of incomparable observations, see Appendix B.

For the remainder of this chapter, all observations are assumed to be comparable.

Because of Theorem 2.9, the search for pairs of histories that violate the accuracy

criterion can be limited to pairs of histories that differ in only one time step. However,

there are still infinitely many such history pairs. The next result will show that only

finitely many pairs of histories need be considered.

42

Theorem 2.10. If the linear dimension of the system is n, and a violation 〈t, a, h1, h2〉

exists for observations o1, o2 ∈ O then a violation 〈t, a, h′1, h
′
2〉 exists for o1 and o2 with

length(h′1ao1h
′
2) < n2.

Proof. See Appendix A.

Theorem 2.10 implies that it can be determined whether or not any pair of ob-

servations has a violation by comparing histories of length n2 or less, where n is the

linear dimension of the system. Thus only a finite (albeit large) number of com-

parisons are required to determine whether an abstraction is accurate, where that

number naturally depends upon the complexity of the primitive system.

Note that a comparison must be made for every test of interest. If the set of tests

of interest T I is infinite, there are still infinitely many comparisons to make. The final

result in this section deals with a natural special case of infinite T I . Consider the case

where there is some abstraction of interest ηI and the set of tests of interest T I = T ηI

,

the set of all abstract tests induced by ηI (that is, all sequences of primitive actions

and abstract observations under ηI). In that case, it is still possible to determine

whether two observations have a violation in finite time.

Theorem 2.11. If the linear dimension of the system is n, T I = T ηI

for some

abstraction ηI , and a violation 〈t, a, h1, h2〉 exists for observations o1, o2 ∈ O then a

violation 〈t′, a, h1, h2〉 exists for o1 and o2 with length(t′) ≤ n.

Proof. See Appendix A.

These results have shown that it is possible to find an accurate refinement by

comparing a finite number of predictions. They also suggest a straightforward algo-

rithm for finding an accurate abstraction: simply perform an exhaustive search for

violations to find observations that must be distinguished in an accurate refinement.

43

2.3.2.2 One-Pass Algorithm

The one-pass algorithm is a conceptual procedure for finding an accurate abstrac-

tion. It is an exhaustive search for violations p(t|h1ao1h2) 6= p(t|h1ao2h2) over all

o1, o2 ∈ O, a ∈ A, t ∈ T I (or, for the case where T I = T ηI

for some abstraction ηI ,

t ∈ T I with length(t) ≤ n), and h1, h2 ∈ H with length(h1) + length(h2) < n2 − 1.

Once all possible violations have been accounted for, equivalence classes are found

and serve as the abstract observations. The resulting abstraction is guaranteed to be

a coarsest accurate abstraction and, as long as all observations are comparable, the

resulting abstract system will have the smallest possible linear dimension while still

retaining accuracy.

The goal of the development of the one-pass algorithm so far has simply been to

find the coarsest possible accurate abstraction. One can also adapt the algorithm

to take as input an intial abstraction η0 and find the coarsest accurate refinement of

η0. This would be useful, for instance, if one wanted an abstraction that was both

expressive and accurate. Then one could first find an expressive abstraction, and

then apply the one-pass algorithm to find an accurate refinement of that abstraction,

obtaining an expressive, accurate abstraction at the end. The only change to the

algorithm necessary is that for every pair of primitive observations o1, o2 ∈ O such

that η0(o1) 6= η0(o2), it must be ensured that η(o1) 6= η(o2). This can be accomplished

by asserting that o1 and o2 have a violation, regardless of whether or not they do.

Then the one-pass algorithm is guaranteed to produce a coarsest accurate refinement

of η0.

Note that, in its pure form, the one-pass algorithm is computationally daunting.

Even putting aside the fact that the linear dimension of most problems of real interest

will be enormous in itself, the number of tests and histories to be checked grows

exponentially in the length to be considered. Thus in the worst case, even for systems

of moderate complexity, finding all violations is entirely impractical. An example

44

in Appendix A demonstrates that the worst case bound of O(n2) on the length of

histories necessary to detect a violation is tight. However, in many cases one might

expect to see violations involving much shorter tests and histories. The next section

will describe an algorithm that finds a homomorphic abstraction and can also take

advantage of the existence of such violations

2.3.3 Constructing a Homomorphic Abstraction

Because the homomorphism property is a statement about accuracy, it is intuitive

to imagine that the one-pass algorithm could be adapted to produce a homomorphism.

Recall that, to be a homomorphism, an abstraction must be accurate with respect

to all of its own corresponding abstract tests. Much like accuracy, a homomorphism

always exists because the primitive system is trivially homomorphic to itself. Unlike

accuracy, it is not very sensible to search for the coarsest possible homomorphism, as

the coarsest possible abstraction (that maps all primitive observations to the same ab-

stract observation) is also always a homomorphism. This is why the homomorphism

property is often combined with another property (such as expressiveness) when eval-

uating abstractions. As such, the goal of this section will be to take some initial

abstraction η0 that satisfies some other property such as expressiveness or accuracy

and to find the coarsest refinement of η0 that is a homomorphism.

Consider the initial abstraction η0. One can use the one-pass algorithm to find a

refinement η1 of η0 such that η1 is accurate with respect to all abstract tests induced

by η0 (T η0). As shown in Section 2.3.2.1, this can be done in finite time. Of course,

η1 may not be accurate with respect to its own set tests, so it still may not satisfy

the homomorphism property. One can, however, use the one-pass algorithm to find a

refinement of η1, called η2 such that η2 is accurate with respect to the abstract tests

induced by η1. This iterative refinement procedure can proceed until an abstraction

ηk is found for which the one-pass algorithm finds no violations. By definition, ηk is

45

a homomorphism. This iterative process is guaranteed to stop eventually since the

completely refined abstraction that is equivalent to the primitive system trivially sat-

isfies the homomorphism property. Because the one-pass algorithm finds the coarsest

accurate refinement at every step, this iterative procedure will stop at a coarsest

homomorphic refinement.

Of course, naively applying the one-pass algorithm iteratively may not be neces-

sary. Though in order to ensure that all violations are found the one-pass algorithm

must consider long tests and histories, one might expect in general to be able to

find some violations involving short tests and histories. This is the inspiration for

the following improvement over the naive iterative procedure just described that can

exploit the existence of violations involving short tests and histories by being more

opportunistic in its splitting.

2.3.3.1 Iterative Algorithm

The iterative algorithm is a variation of the one-pass algorithm which, rather

than searching for all violations before refining, produces a refinement as soon as it

can do so “safely.” A safe refinement is any one that only distinguishes observation

pairs that were previously grouped together if they have a violation. It will often

be possible to make a safe refinement without finding all violations. In each itera-

tion i, given abstraction ηi−1, the algorithm looks at increasingly long histories and

tests (up to length n2 and n, respectively) searching for a safe refinement. Once

one is found, the safe refinement is named ηi and the next iteration begins. Because

a safe refinement always exists (the full one-pass algorithm always produces a safe

refinement), this algorithm is guaranteed to stop at a refinement that satisfies the ho-

momorphism property. In fact, because it only makes safe refinements, and therefore

only distinguishes observations that have a violation between them, this algorithm

never distinguishes two observations that the naive iterative procedure presented ear-

46

Figure 2.5: The iterative algorithm on the k × k gridworld.

lier would not. It produces precisely the same refinement in the end, though it may

perform more iterations along the way.

This more opportunistic iterative algorithm can enjoy substantial improvements in

the length of tests and histories that must be considered, since intermediate splits can

create new violations. Consider the k×k grid world pictured in Figure 2.5, analogous

to the earlier 4× 4 grid world example. Let the initial abstraction be expressive with

respect to the tests of interest (that is, one abstract observation for the right-most

column, and one for the all the rest of the positions). In order to find a violation for

observations 1 and 2, the one-pass algorithm must look at histories and tests that

have a combined length of k − 1 (because it takes one step to see observation 1 or

2 and k − 2 steps to reach the right side from square 2 and not from square 1). In

comparison, the iterative algorithm would find, by looking at 1-step histories and

1-step tests, that the (k−1)th column must be split off because it is possible to reach

the kth column from those squares in one step, and not from any others. In the next

iteration, again checking only one-step tests and one-step histories, it would discover

that the (k− 2)th column should be split off, and so on until the final, homomorphic

refinement was found (one set observation per column).

Ultimately, of course, when the iterative algorithm reaches a stopping point, it

must still check tests and histories of the same length as the one-pass algorithm in

order to verify that there are indeed no more violations. So, it is appropriate to think

of the iterative algorithm as a “fail-fast” style algorithm, which will tend to rule out

47

non-solutions quickly, but which may still take a long time to verify a solution once

it is ultimately found.

In principle, since the iterative algorithm’s last iteration is necessarily a full run

of the one-pass algorithm, one should always prefer the one-pass algorithm if only

accuracy is desired. In practice, however, the iterative algorithm can have advantages

over the one-pass algorithm, even if a homomorphism is not required, due to the fact

that it may only need to search for violations involving short tests and histories. This

will be empirically demonstrated in the next section.

2.3.4 Experiments

While the algorithms presented here are conceptual rather than practical in nature,

it is possible, with a few tweaks, to apply them to learning partial models in small

problems. Assume a set of tests of interest are given, as well as a training data set of

action/observation sequences of interaction with the system.

First and foremost, the true values of predictions are not known in this setting.

Instead, predictions will be estimated from data, using basic sample averages1:

p̂(t|h) =
times t succeeds from h

times acts(t) taken from h
. (2.3)

Due to sampling error, no two estimates are likely to be the same, rendering

the equality tests used in the abstraction learning algorithms overly strict. Instead,

estimated values will be compared using a chi-square test of homogeneity to determine

if the predictions are statistically significantly different.

Secondly, it will be impractical to perform the violation search with histories and

tests of the length required to guarantee accuracy because in most systems of interest

1Bowling et al. (2006) note that the estimator in Equation 2.3 is biased when the behavior
policy used to generate the training data depends upon past observations. These experiments use a
uniform random behavior policy and therefore do not suffer from this issue. Bowling et al. provide
an estimator that is unbiased for any stationary data-collection policy and adapting these algorithms
to handle more general classes of exploration policies is an interesting subject for future work.

48

the linear dimension n will be large. Furthermore n is typically not even known a

priori, though it could, in principle, be estimated from the data (James & Singh 2004).

For many systems, however, a coarsest, accurate refinement can be found by checking

only short tests and histories, especially if the iterative algorithm is employed. In

practice a maximum test length ltmax and a maximum history length lhmax will be set

as parameters to the violation search.

In the following experiments, data was collected by an agent exploring the envi-

ronment using a uniform random policy in a number of distinct trajectories. Both

abstraction learning algorithms were applied with various amounts of training data.

The experiments compare the performance of the one-pass algorithm to that of the

iterative algorithm, and explore the effect of different choices of α, the significance

level for the chi-square tests used to compare table entries.

The algorithms are first applied to a 5×5 version of the running grid world example

and then to a more complex problem with a linear dimension of roughly 1000. The

main results can be seen in Figures 2.6 and 2.8a, which show that both algorithms

were able to learn accurate abstractions, though in both cases the iterative algorithm

outperformed the one-pass algorithm in terms of sample complexity. Figures 2.7 and

2.8b show that the value of α effectively controls the “agressiveness” of the refinement,

and this effect is particularly pronounced in the iterative algorithm. Details about

both experiments follow.

2.3.4.1 Grid World

The first set of experiments is on the grid world example seen throughout the

chapter, in this case a 5 × 5 grid. The primitive system has 25 observations and a

linear dimension of 25. Let R be an abstract observation containing all positions

in the right-most column and let L contain the rest of the positions. Let η0 be the

corresponding abstraction. In the previous examples the goal was to predict whether

49

0 5 10 15

x 10
4

0

20

40

60

80

100

Accuracy (1−step tests, one−pass)

Training Trajectories

P
e

rc
e

n
t

A
c
c
u

ra
te

 (
2

0
 t

ri
a

ls
)

α = 0.2
α = 0.1
α = 0.05
α = 0.01

0 5 10 15

x 10
4

0

20

40

60

80

100

Accuracy (1−step tests, iterative)

Training Trajectories

P
e

rc
e

n
t

A
c
c
u

ra
te

 (
2

0
 t

ri
a

ls
)

α = 0.2
α = 0.1
α = 0.05
α = 0.01

0 5 10 15

x 10
4

0

20

40

60

80

100

Accuracy (3−step tests, one−pass)

Training Trajectories

P
e

rc
e

n
t

A
c
c
u

ra
te

 (
2

0
 t

ri
a

ls
)

α = 0.01

α = 0.05

α = 0.1
α = 0.2

0 5 10 15

x 10
4

0

20

40

60

80

100

Accuracy (3−step tests, iterative)

Training Trajectories

P
e

rc
e

n
t

A
c
c
u

ra
te

 (
2

0
 t

ri
a

ls
)

α = 0.2
α = 0.1
α = 0.05
α = 0.01

Figure 2.6: Percentage of accurate learned refinements (out of 20) for different test
lengths in the 5x5 grid world domain.

the agent would be in the right-most column in the next step so the tests of interest

were {nR, eR, sR,wR}. In this experiment, to exercise the algorithms’ abilities to

deal with infinitely many tests of interest, the tests of interest are all abstract tests

involving R and L. Since η0 is already expressive with respect to the tests of interest,

the goal is to find the coarsest accurate (or homomorphic) refinement of η0. In this

case, the coarsest accurate refinement and the coarsest homomorphic refinement are

the same. They have 5 abstract observations (one for each column) and result in an

abstract system with linear dimension 5.

Figure 2.6 shows the percentage of refinements found that were accurate (out of

20 runs) compared to the number of trajectories in the training data for four choices

of α (0.01, 0.05, 0.1, and 0.2), and two choices of ltmax (1 and 3). In all cases lhmax = 1.

50

0 5 10 15

x 10
4

0

5

10

15

20

25

Training Trajectories

A
v
g

.
#

 A
b

s
tr

a
c
t

O
b

s
e

rv
a

ti
o

n
s

Coarseness (One−Pass)

α = 0.2
α = 0.1

α = 0.05
α = 0.01

0 5 10 15

x 10
4

0

5

10

15

20

25

Coarseness (Iterative)

Training Trajectories

A
v
g

.
#

 A
b

s
tr

a
c
t

O
b

s
e

rv
a

ti
o

n
s

α = 0.05

α = 0.01

α = 0.1

α = 0.2

Figure 2.7: Average number of abstract observations (out of 20 runs) in the 5×5 grid
world.

As predicted in section 2.3.3.1, the one-pass algorithm is unable to find an accurate

refinement using only 1-step tests, while the iterative algorithm can. Even with 3-

step tests, when both algorithms are capable of finding an accurate refinement, the

iterative algorithm seems to be significantly more data-efficient, regardless of the

choice of α. This is because short tests and short histories tend to occur more often

than long tests and long histories. As a result, they will tend to have more associated

data and therefore better estimates. It takes more training trajectories to obtain good

enough estimates for the length 3 tests required for the one-pass algorithm to detect

a violation.

Figure 2.7 shows the average number of abstract observations found (out of 20

trials) compared to the number of training trajectories for the same four choices of

alpha (and 3-step tests). The effect of α is unsurprising: higher values of α tend to

cause over-refinement (because the statistical tests are prone to identifying spurious

differences) while lower values require more data to make the necessary distinctions.

The over-splitting effect is especially pronounced with the iterative algorithm, be-

cause spurious splits in early iterations can propagate into later ones. That said, the

iterative algorithm performed well with a low value of α that did not generally result

51

in overly-fine abstractions.

2.3.4.2 Machine Maintenance

The second set of experiments is in a slightly modified version of the Machine

Maintenance domain presented by Cassandra (1998). In this domain the agent is

in charge of a manufacturing machine with k components. The components can

be in any of 4 states of disrepair, each associated with decreasing probabilities of

working properly. At every time step, the agent can choose from four actions. If it

chooses to replace the machine all components are reset to excellent condition. If it

repairs the machine each component upgrades its status with some probability. In

either of these cases, the agent observes only that the machine has been serviced, but

not the results of the servicing. If it inspects the machine the current status of all

components is revealed. Finally, if the agent chooses to manufacture, the machine

produces a product, stochastically good or bad (each component independently and

stochastically either works or fails and if any component fails the product is bad),

and the components downgrade their status with some probability due to “wear and

tear.”

This experiment presumes that the agent would be primarily interested in whether

the machine produces good or bad products and not in the internal workings of the

machine per se. So, let the initial abstraction η0 have four abstract observations:

{good}, {bad}, {serviced}, and {excellent, fair, poor, broken}k, where the last ab-

stract observation contains all 4k possible machine states that could be observed

after an inspection. The tests of interest are all abstract tests under η0, T
η0 . In order

to make predictions at this level, one need not actually know the full machine state.

For instance, if any component is broken, the machine will always produce bad prod-

ucts. If no component is broken, it suffices to merely know how many components are

in each state of disrepair, rather than which specific components are in which specific

52

0 0.5 1 1.5 2 2.5

x 10
8

0

20

40

60

80

100

Accuracy

Training Trajectories

P
e

rc
e

n
t

A
c
c
u

ra
te

 (
2

0
 t

ri
a

ls
)

α = 0.01, iterative

α = 0.01, one−pass
α = 0.05, one−pass

α = 0.2, one−pass
α = 0.1, one−pass

0 0.5 1 1.5 2 2.5

x 10
8

0

5

10

15

20

25

30

Training Trajectories

A
v
g

.
#

 A
b

s
tr

a
c
t

O
b

s
e

rv
a

ti
o

n
s

Coarseness

α = 0.01, iterative

α = 0.01, one−pass

α = 0.05, one−pass
α = 0.1, one−pass

α = 0.2, one−pass

Figure 2.8: Results in the machine maintenance domain.

states.

This experiment uses a 5 component machine. Thus, the primitive system has

linear dimension of 45 = 1024, large enough to pose a significant challenge to stan-

dard complete model-learning methods such as POMDPs. However, the abstract

system that considers only how many components are in each state and whether any

component is broken has a more manageable linear dimension of 22.

In these experiments ltmax = 2 and lhmax = 1. At the beginning of each trajectory

each component’s state was chosen uniformly randomly. Figure 2.8 shows that, as

with the grid world domain, the iterative splitting algorithm with a small α (solid line)

significantly outperforms the one-pass algorithm (dashed lines), in this case requiring

an order of magnitude fewer trajectories to find an accurate refinement.

2.4 A Note on Action Abstraction

Just as one can ignore details from the observations that are irrelevant to making

the predictions of interest, one can imagine ignoring details from the agent’s actions.

For instance, MDP homomorphisms (Ravindran 2004), PSR homomorphisms (Soni

& Singh 2007), and POMDP homomorphisms (Wolfe 2010) all incorporate action

53

abstraction into their formalisms. While this thesis will not focus explicitly on action

abstraction, this section will briefly describe some specific challenges in learning an

action abstraction and how they relate to the discussion in this chapter.

An action abstraction is similar to an observation abstraction: a partitioning (or

surjection) over the set of possible actions. By lumping actions together, one can

ignore extraneous details in the history of decisions the agent has made (which is

particularly useful when the agent has a large or infinite number of available actions).

Action abstraction, however, faces a challenge that observation abstraction does not.

While in observation abstraction, a coarser abstraction always leads to a simpler

(or at least no more complex) abstract system, this same monotonicity does not

hold for action abstraction. As a simple example, consider a world called the “Echo

Chamber.” This world has k actions a1, a2, ..., ak and k observations o1, o2, ..., ok.

Whenever the agent takes action ai, the environment responds deterministically by

emitting oi (the echo). This system is extremely simple; it has a linear dimension

of 1. Now consider applying an action abstraction. In fact, consider the coarsest

possible action abstraction that maps all primitive actions to a single abstract action

A. What is, for instance, p(Ao1|h)? Because the abstract test does not specify which

action the agent will take, the outcome will depend upon the agent’s behavior policy.

Specifically, p(Ao1|h)
def

=
∑

a∈A Pr(a|h)Pr(o1|h, a). Note that the second factor is 1 if

a = a1 and 0 otherwise. Therefore, in this particular example, p(Ao1|h) = Pr(a1|h),

simply the probability that the agent will choose action a1. As such, in order to make

predictions in the abstract system, one must make predictions about the agent’s own

behavior. If the agent’s behavior is complex (for instance, if it is a learning agent),

the abstract system will be correspondingly complex.

The echo chamber example demonstrates that a coarser action abstraction can

lead to a more complex abstract model, because it may capture the agent’s behavior

as well as the system’s dynamics. In order to avoid this, one must seek an action

54

abstraction that has the policy independence property. Formally:

Definition 2.12. Given an observation abstraction η, an action abstraction ξ is policy

independent with respect to η if and only if for any abstract history H (sequence of

abstract actions and observations), and any primitive test t = a1o1a2o2...akok,

p(ξ(a1)η(o1)ξ(a2)η(o2)...ξ(ak)η(ok)|H) = p(a1η(o1)a2η(o2)...akη(ok)|H)

Essentially, an action abstraction is policy independent if the abstract actions

still contain enough detail to make accurate predictions about abstract observations.

Thus, once one obtains action and observation abstractions that satisfy the main

objective (say, expressiveness and accuracy), one generally must refine the action

abstraction even further in order to obtain policy independence.

When the observation abstraction in question is homomorphic, policy indepen-

dence is fairly easy to obtain. It can be straightforwardly shown that if η is a ho-

momorphism, then an action abstraction ξ is policy independent with respect to η if

and only if p(ξ(a)η(o)|H) = p(aη(o)|H) for all abstract histories H and all primitive

actions a and observations o (see, for instance Soni & Singh 2007). When η is not

homomorphic, however, verifying policy independence in the one-step tests does not

suffice, making the problem of learning a policy independent action abstraction more

challenging. While it is likely that bounds like the ones presented in Section 2.3 may

be developed to obtain a finite-time algorithm for obtaining policy independence, this

issue will not be explored in this thesis.

2.5 Limitations of Observation Abstraction

This chapter presented a particular strategy for learning a partial model. Specif-

ically, given a set of tests of interest and some training data, one can learn an ex-

pressive, accurate abstraction (or alternatively an expressive homomorphism). This

55

Figure 2.9: Size 10 1D Ball Bounce

abstraction can be applied to the training data and then an abstract model can be

learned using any applicable model-learning method, such as EM for POMDPs. The

abstract system may be far simpler than the primitive system, as seen in the exam-

ples in this chapter, and a model of the abstract system can still be used to make the

predictions of interest accurately.

This approach does, however, suffer from some of the same drawbacks of learning

a complete model. The abstract model one learns can be simpler because it only

makes predictions at an abstract level, rather than making fully detailed predictions

about the environment. On the other hand, an abstract model will still make all

abstract predictions. If the abstraction is a homomorphism, those predictions are

made accurately. If the abstraction is merely accurate, they are not guaranteed to be

made accurately, but the model makes those predictions nevertheless. So, if the goal

is to predict the weather, maybe an accurate abstraction can determine that what

the agent sees on the weather channel is important but what the agent sees on the

sports channel is not important. But even then, the result is to learn a model that

makes predictions about the weather and about what will happen on the weather

channel. The agent has no particular interest in predicting what will happen on the

weather channel in the future; it only wishes to incorporate what has happened on

the weather channel in the past into its predictions about the actual weather in the

future.

56

Figure 2.10: POMDP model of the size 10 1D Ball Bounce

2.5.1 The 1D Ball Bounce Example

As a more concrete example, consider the uncontrolled system pictured in Figure

2.9, called the “1D Ball Bounce” system. Variations on this system will serve as

recurring motivating examples in this thesis. The agent observes a strip of pixels that

can be black or white. The black pixel represents the position of a ball that moves

around on the strip. The ball has a current direction and every time-step it moves

one pixel in that direction. Whenever it reaches an edge pixel, its current direction

changes to move away from the edge. In Figure 2.10 a complete POMDP model of

a 10 pixel version of this system is pictured. If there are k pixels, the POMDP has

2k − 2 hidden states (because the ball can have one of 2 possible directions in one of

k possible positions, except the two ends, where there is only one possible direction).

Now say the agent wishes only to predict whether the ball will be in the position

marked with the x in the next time step. Clearly this prediction can be made by

only paying attention to the immediate neighborhood of the x. The details of what

happens to the ball while it is far away do not matter for making these predictions.

57

Figure 2.11: POMDP model of the abstract 1D Ball Bounce system

So, one could apply an abstraction that lumps together all observations in which the

neighborhood about x looks the same. The problem is that an abstract model of this

system makes predictions not only about x, but also about the pixels surrounding x.

Specifically, the model still makes predictions about whether the ball will enter the

neighborhood in the near future. This of course depends on how long it has been

since the ball left the neighborhood. So, the POMDP model of the abstract system

(pictured in Figure 2.11) has exactly the same state diagram as the original system,

though its observations have changed to reflect the abstraction. The abstract system

and the primitive system have the same linear dimension.

Counterintuitively, the abstract model’s complexity is mainly devoted to making

predictions other than the predictions of interest. While learning an abstract model

can drastically simplify the learning problem by ignoring irrelevant details, an abstract

model still learns to make predictions about any details that are relevant, even if they

are not directly of interest.

A more sensible model is pictured in Figure 2.12. This is a transition diagram in

which each state is associated with the predictions for whether the ball will be in x in

58

Figure 2.12: A transition diagram for the predictions of interest

the next time step (denoted by the black square or the white square inside the circle).

The transitions are labeled with possible observations (limited to the neighborhood

around x). When an observation is seen, one simply follows the appropriate transi-

tion to update the predictions of interest. In this case, the transitions capture the

ball entering the neighborhood, entering position x (the center of the neighborhood),

leaving the neighborhood, staying away for some indeterminate amount of time, and

then returning. At every time step the predictions of interest can be provided condi-

tioned on relevant events in the past, without also predicting whether those relevant

events will occur in the future. Note that regardless of the number of pixels, this

state diagram will always have 3 states. The next chapter will present a method that

learns a model like that pictured in Figure 2.12.

2.6 Summary

Key points from this chapter:

• Observation abstraction is a strategy for learning a partial model

– One can ignore details irrelevant to making the predictions of interest.

– An abstract model is no more complex than a primitive model, and may

be far simpler.

59

• An abstract model can be used to make the predictions of interest accurately if

it has two properties:

– Expressiveness – the tests of interest must be expressible in terms of ab-

stract tests.

– Accuracy – predictions for the tests of interest given abstract histories must

be the same as predictions given primitive histories.

• This chapter presented conceptual algorithms for constructing abstractions.

– The main contribution is the first theoretically sound, finite-time algorithm

for finding the coarsest accurate abstraction.

– A tight worst-case bound was presented for determining whether an ab-

straction is accurate that is exponential in n2, where n is the linear dimen-

sion of the primitive system.

– This algorithm was adapted to form the first theoretically sound, finite-

time algorithm for finding the coarsest homomorphic refinement of a given

abstraction.

• The approach of learning an abstract model has limitations.

– A model of the abstract system makes all abstract predictions, which in-

cludes many predictions not directly of interest.

60

CHAPTER 3

Prediction Profile Models

The last chapter demonstrated that when an agent has a restricted set of predic-

tions to make, there may be irrelevant details in its observations that it can ignore.

By learning a model of an abstract system that ignores these details rather than a

complete model of the primitive system, the agent can still make its predictions of

interest accurately, but with a far simpler model. On the other hand, as seen in

Section 2.5, this approach suffers from the fact that a model of the abstract system,

though it avoids making many unnecessary predictions, still in general makes more

predictions than are strictly of interest.

To further illustrate this, consider the game of Three Card Monte. The agent is

shown three cards, one of which is the “special card.” The dealer then flips over the

cards to hide their faces and proceeds to mix them up by swapping the positions of

two cards at every time step. The agent can observe which cards the dealer swaps.

At the end of the game, the agent must identify which card is the special card. To

perform well in this game, the agent need only answer one question: “Where is the

special card?”

Via an accurate observation abstraction, an agent wishing to learn a model that

will answer this question can ignore a great deal of complex and irrelevant phenomena:

traffic and passersby on the street, the ambient temperature, the direction of the wind,

61

even the identity of the dealer and physical characteristics of the playing cards. So

long as the agent observes which cards are swapped, it can accurately predict the

location of the special card. On the other hand, as seen in Section 2.5, an abstract

model makes all abstract predictions. In this case this includes predictions about the

current location of the special card, but also its location in the future. Furthermore,

since the abstract observations necessarily include the swaps made by the dealer,

this also includes predictions about how the dealer will behave in the future. If the

decision-making process the dealer uses to choose swaps is very complex, learning a

model even of the abstract system may be be correspondingly difficult.

This issue arises because training a POMDP model (for instance) of the abstract

system produces a model that represents the probability distribution over all possible

abstract sequences. Such a model is called generative because it can be used to

generate simulated trajectories of experience. Note that POMDPs (and PSRs for

that matter) are inherently generative. The state update equations (given in Section

1.2.2.1) for these models require access to one-step predictions and any model that

can make all one-step predictions can make any prediction.

Generative models are often desirable because the ability to sample possible fu-

tures is very useful for planning purposes. On the other hand, learning a generative

model tightly couples what information the model uses to make predictions and what

predictions the model makes. If, as in Three Card Monte, the predictions of interest

are simple, but rely on the observations of some complex process, a generative model

will attempt to capture that more complex process. Furthermore, a generative model

is unnecessary for good decision making in Three Card Monte. The agent only needs

to predict the current location of the special card at any given moment, with no need

to predict what the dealer will do in the future or where the special card will be

10 steps from now. Intuitively, one might hope that the complexity of maintaining

the predictions about the position of the special card would be independent of the

62

complexity of predicting what cards the dealer will swap and that therefore it might

be possible to learn to make this restricted set of important predictions even more

simply than learning a generative abstract model.

This chapter presents a type of partial model called a prediction profile model,

which is a non-generative model that maintains the predictions of interest over time

but makes no other predictions. As with observation abstraction, learning a predic-

tion profile model will involve learning some transformation of the training data and

then applying standard modeling methods to the transformed data. Once again, the

transformed learning problem can be much simpler than the original problem.

3.1 Prediction Profiles

As in the previous chapter, the agent is given some set of tests of interest, which

in this chapter is assumed to be finite: T I = {t1, t2, ..., tm}. As always, the tests

of interest represent what future events the model should predict at any history.

Generically speaking, the goal is to learn a function φ : H → [0, 1]m where

φ(h)
def

= 〈p(t1|h), p(t2|h), ..., p(tm|h)〉, (3.1)

that is, a function from histories to the predictions of interest. Note that the out-

put of φ is not necessarily a probability distribution. The tests of interest may be

selected arbitrarily and therefore need not represent mutually exclusive events, nor

is it generally guaranteed that at least one of the tests of interest will succeed after

any particular history h. A particular vector of predictions for the tests of interest is

called a prediction profile.

Definition 3.1. Let φ(h) be the prediction profile at history h.

One obvious way to learn φ is to learn a complete, generative model of the primitive

system. Such a model makes all possible predictions in all possible histories, so it

63

surely can be used to compute φ. A second way, as seen in Chapter 2, is to learn

an accurate, expressive abstraction with respect to the tests of interest, and then to

learn a generative model of the abstract system, rather than the primitive system. The

resulting model makes all possible abstract predictions (which include the predictions

of interest) in all histories and can also be used to compute φ. A third approach

is to more directly estimate φ using function approximation techniques, rather than

modeling techniques. The next section briefly discusses this alternate approach. The

subsequent section introduces prediction profile models, which marry some of the

strengths of both model learning and direct function approximation.

3.1.1 Learning Predictions via Regression

Note that when the system is Markov, learning φ is straightforward. Recall that,

by definition, predictions in a Markov system depend only on the most recent ob-

servation, rather than the entire history. Thus, rather than learning φ which takes

histories as input, one can instead learn a function φMarkov : O → [0, 1]m, which maps

an observation to the predictions for the tests of interest resulting from all histories

that end in that observation. Note that, as an immediate consequence, in Markov

systems with a finite number of observations, there is a finite number of distinct

prediction profiles: there can be no more distinct prediction profiles than there are

observations. When the number of observations and the number of tests of interest

are small enough, φMarkov can be represented as a |O| × |T I | look-up table, and the

entries estimated using the typical sample averages:

p̂(ti|o) =
times t succeeds from histories ending in o

times acts(t) taken from histories ending in o
. (3.2)

When the number of observations is too large for a look-up table to be feasible,

one may be able to exploit the fact that some observations will be associated with

64

the same (or similar) predictions for the tests of interest by generalizing across these

observations through observation abstraction, or by some other means.

Even when the system is non-Markov, one can still attempt to learn φ directly,

typically by performing some sort of regression over a set of features of entire histories.

For instance, U-Tree (McCallum 1995) takes a set of history features and learns a

decision tree that attempts to distinguish histories that result in different expected

asymptotic return under optimal behavior. Wolfe & Barto (2006) applied a U-Tree-

like algorithm but rather than restricting the model to predicting future rewards,

they learn to make predictions about some pre-selected set of features of the next

observation (a special case of the more general concept of tests of interest).

Note that by directly approximating φ, these methods have abandoned the gen-

erative property of a complete model (or an abstract model). That is, these types

of models only make predictions for T I . These predictions depend upon the values

of some set of features, but the model does not generally predict the future values of

those features. Directly learning φ effectively decouples what predictions the model

makes from what information it uses to make those predictions.

Though this type of approach has demonstrated promise, it also faces a clear

pragmatic challenge: feature selection. In the non-Markov case, φ is a function of

history, an ever-expanding sequence of actions and observations. Finding a reason-

able set of compactly represented features that collectively capture all of the history

information needed to make the predictions of interest is a significant challenge. In

this sense directly learning φ through regression, unlike learning a generative model,

takes only a small step away from the Markov case. Though the approach explicitly

addresses partially observable environments it still requires a good idea a priori of

what information should be extracted from history in order to make the predictions

of interest.

The method presented in this chapter possesses the main strength of the direct

65

Figure 3.1: The prediction profile system for Three Card Monte. Transitions are
labeled with the dealer’s swaps. States are labeled with the predicted
position of the special card.

function approximation approach (in that the model will only make the predictions

of interest) and yet retains the main strength of generative model learning methods

(learning to maintain state, rather than assuming it is given in the form of some

history features).

3.1.2 Prediction Profile Models

Recall that, in the Three Card Monte example, all that is necessary for good

performance is to keep track of the special card’s position. One can do so using a

prediction profile model, as shown in Figure 3.1. Each state in the diagram is labeled

with a prediction about the location of the special card. Each transition is labeled with

an observation of the dealer’s behavior (which cards it swaps). Given the predictions

in the current history and an observation, one can use this diagram to obtain the

predictions associated with the next history. Quite intuitively, if the special card is

predicted to be in position 1 and the agent observes the dealer swapping cards 1 and

2, then the updated prediction will be that the special card is in position 2. If the

dealer swaps cards 1 and 3, then the new predicted position is 3. If the dealer swaps

cards 2 and 3, then the prediction does not change. As such, predictions about the

66

location of the special card can be maintained, conditioning on observations of the

dealer’s behavior but not predicting what swaps the dealer will make in the future.

Another example of a prediction profile model is shown in Figure 2.12 in Section 2.5.

While generative models learn to make predictions about future observations con-

ditioned on the agent’s action choices, the main idea behind prediction profile models

is to learn to make predictions about the future values of the predictions of interest,

conditioned on both the agent’s action choices and the observations emitted by the

environment. Because they model how the predictions themselves change over time,

prediction profile models are able to take any history and provide the predictions of

interest at that history. On the other hand, they cannot make any other predictions.

3.2 The Prediction Profile System

The results in this chapter make the restrictive assumption that, as in the Markov

case, there is a finite number of distinct prediction profiles (that is, the predictions

of interest take on only a finite number of distinct values). Certainly this is not true

of all partially observable systems and all sets of tests of interest, though it is true

in many interesting examples. Formally, this assumption requires that φ map all

histories to a finite set of prediction profiles:

Assumption 3.2. Assume there exists a finite set P = {ρ1, ρ2, ..., ρk} ⊂ [0, 1]m such

that for every history h, φ(h) ∈ P .

This assumption allows the definition of the prediction profile system (or PP for

short), as a discrete dynamical system that captures the sequence of prediction profiles

over time, given an action observation sequence. The prediction profile system’s

actions, observations, and dynamics are defined in terms of quantities associated

with the original system:

67

Definition 3.3. The prediction profile system is defined by a set of observations, a

set of actions, and a rule governing its dynamics.

1. Observations: The set of prediction profile observations, OPP , is defined to be

the set of distinct prediction profiles. That is, OPP
def

= P = {ρ1, ..., ρk}.

2. Actions: The set of prediction profile actions, APP , is defined to be the set of

action-observation pairs in the original system. That is, APP
def

= A×O.

3. Dynamics: The dynamics of the prediction profile system are deterministically

governed by φ. At any prediction profile history, 〈a1, o1〉ρ1〈a2, o2〉ρ2...〈aj, oj〉ρj,

and for any next PP -action, 〈aj+1, oj+1〉, the prediction profile system deter-

ministically emits the PP -observation φ(a1o1a2o2...ajojaj+1oj+1).

The following are some important facts about the prediction profile system. Specif-

ically, it will be demonstrated that the prediction profile system is always determin-

istic. Also, though the prediction profile system may be Markov (as it is in the Three

Card Monte example), in general it is partially observable.

Proposition 3.4. Even if the original system is stochastic, the prediction profile

system is always deterministic.

Proof. This follows immediately from the definition: every history corresponds to

exactly one prediction profile. So a PP -history (action-observation-profile sequence)

and a PP -action (action-observation pair) fully determine the next PP -observation

(prediction profile). The stochastic observations in the original system have been

folded into the un-modeled actions of the prediction profile system.

Proposition 3.5. If the original system is Markov, the prediction profile system is

Markov.

Proof. By definition, if the original system is Markov the prediction profile at any

time step depends only on the most recent observation. So, if at time step t, the

68

Figure 3.2: Size 10 1D Ball Bounce

current profile is ρt, the agent takes action at+1 and observes observation ot+1, the

next profile is simply ρt+1 = φMarkov(ot+1). So, in fact, when the original system

is Markov, the prediction profile system satisfies an even stronger condition: the

next PP -observation is fully determined by the PP -action and has no dependence on

history whatsoever (including the most recent PP -observation).

Proposition 3.6. Even if the original system is partially observable, the prediction

profile system may be Markov.

Proof. Consider the Three Card Monte example. The original system is clearly non-

Markov (the most recent observation, that is the dealer’s most recent swap, tells one

very little about the location of the special card). However, the prediction profile

system for the tests of interest regarding the location of the special card (pictured in

Figure 3.1) is Markov. The next profile is fully determined by the current profile and

the PP -action.

In general, however, the PP system may be partially observable. Though in

the Three Card Monte example the current prediction profile and the next action-

observation pair together fully determine the next prediction profile, in general the

next prediction profile is determined by the history of action-observation pairs (and

prediction profiles).

Proposition 3.7. The prediction profile system may be partially observable.

Proof. Recall the 1D Ball Bounce example from Section 2.5.1, reproduced here in

Figure 3.2. There is a line of pixels and a ball bounces back and forth across them,

69

Figure 3.3: A transition diagram for the predictions of interest

moving one pixel in its current direction in each time-step and changing direction

when it enters an edge pixel. The goal is to predict whether the ball will enter the

pixel marked with an x in the next time step. Figure 3.3 shows the corresponding

prediction profile system (where the square in each state indicates what color pixel x

will be and only the neighborhood surrounding x is shown on the transitions). Note

that two distinct states in the update graph are associated with the same prediction

profile (pixel x will be white). Given only the current prediction profile (pixel x will

be white) and the PP -action (the ball enters the neighborhood on the left or right),

one cannot determine whether the ball is entering or leaving the neighborhood, and

thus cannot uniquely determine the next profile. This prediction profile system is

partially observable.

So, in general, the prediction profile system is a deterministic, partially-observable

dynamical system. A model of the prediction profile system can only be used to make

the predictions of interest. As such, if one wishes to use a prediction profile model as

a generative model, one must select the tests of interest carefully. For instance:

Proposition 3.8. If the tests of interest include the set of one-step primitive tests,

that is {ao : a ∈ A, o ∈ O} ⊆ T I , then a model of the prediction profile system can

be used as a generative model of the original system.

Proof. It was shown in Section 1.1.1 that any conditional prediction about the future

70

given history can be recursively computed using the predictions of one-step tests.

Since the prediction profile model in this case provides all one-step predictions in all

histories, it can be used to compute any prediction. It can also be used to “simulate

the world” (sample possible futures) as would a generative model. At any given his-

tory and for any given action, the current prediction profile provides the distribution

over next observations. As such, one can sample a next observation and use it to

update the model, which gives the next profile, which can be used to sample the next

observation, and so on.

While in this special case a prediction profile model can be a complete, generative

model of the system, it will be shown in Section 3.4 that if one desires a generative

model, it is essentially never preferable to learn a prediction profile model over a more

traditional model. A prediction profile model is best applied when it is relatively

simple to make and maintain the predictions of interest in comparison to making all

predictions. In general, a prediction profile model conditions on the observations,

but it does not necessarily predict the next observation. As such, a model of the

prediction profile model cannot typically be used for the purposes of model-based

planning/control like a generative model could. The experiments in Section 3.6 will

demonstrate that the output of prediction profile models can, however, be useful for

model-free control methods.

The next section discusses the problem of learning a prediction profile model from

data. Subsequent sections will discuss the complexity of the prediction profile model,

particularly in comparison to the complexity of the original system (and relatedly

when it is preferable to use a prediction profile model over a more typical generative

model).

71

Figure 3.4: Flow of the algorithm.

3.3 Learning a Prediction Profile Model

Let S be a training data set of trajectories of experience with the original system

(action-observation sequences) and let T I = {t1, t2, ..., tk} be the set of tests of inter-

est. The main contribution of this section is a method for learning a model of the

prediction profile system. The learning algorithm has three main steps (pictured in

Figure 3.4). First the training data is used to estimate the prediction profiles (both

the number of unique profiles and their values). Next, the learned set of prediction

profiles is used to translate the training data into trajectories of experience with the

prediction profile system. Finally, any applicable model learning method is used on

the transformed data to learn a model of the prediction profile system. Ultimately

the learned prediction profile models will be evaluated by how useful their predictions

are as features for control.

3.3.1 Estimating the Prediction Profiles

Given S and T I , the first step of learning a prediction profile model is to determine

how many distinct prediction profiles there are, as well as their values. The estimated

prediction for a test of interest t at a history h is:

p̂(t|h) =
times t succeeds from h

times acts(t) taken from h
. (3.3)

72

One could, at this point, directly estimate φ by letting the estimated prediction pro-

file at a history h be the vector of estimated predictions for the tests of interest,

φ̂(h)
def

= 〈p̂(t1|h), p̂(t2|h), ..., p̂(tk|h)〉 = ρ̂. Of course, due to sampling error, it is un-

likely that any of these estimated profiles will be exactly the same, even if the true

underlying prediction profiles are equal. So, to estimate the number of distinct un-

derlying profiles, statistical tests will be used to find histories that have significantly

different prediction profiles.

To compare the profiles of two histories, a likelihood-ratio test of homogeneity is

performed on the counts for each test of interest in the two histories. If the statistical

test associated with any test of interest rejects the null hypothesis that the prediction

is the same in both histories, then the two histories have different prediction profiles.

In order to find the set of distinct prediction profiles, an initially empty set of

exemplar histories is maintained. The algorithm searches over all histories in the

agent’s experience, comparing each history’s estimated profile to the exemplar his-

tories’ estimated profiles. If the candidate history’s profile is significantly different

from the profiles of all exemplar histories, the candidate is added as a new exemplar.

In the end, the estimated profiles corresponding to the exemplar histories are used

as the set of prediction profiles. In order to obtain the best estimates possible, the

search is ordered to prioritize histories with lots of data.

The prediction profile estimation procedure has two main sources of complexity.

The first is the sample complexity of estimating the prediction profiles. It can take a

great deal of exploration to see each history enough times to obtain good statistics,

especially as the number of actions and observations increases. This issue could be

addressed by adding generalization to the estimation procedure, so that data from

one sample trajectory could improve the estimates of many similar histories. In one of

the experiments in Section 3.6, observation abstraction will be employed as a simple

form of generalization. The second bottleneck is the computational complexity of

73

searching for prediction profiles, as this involves exhaustively enumerating all histories

in the agent’s experience. It would be valuable to develop heuristics to identify the

histories most likely to provide new profiles. In the experiments in Section 3.6, a

simple heuristic of limiting the search to short histories is employed, as long histories

will tend to have less associated data, and will therefore be less likely to provide

distinguishably new profiles.

3.3.1.1 Alternative Prediction Clusterings

It is worth noting that this process of finding a finite number of distinct predictions

is, at its core, simply a clustering of the estimated prediction profiles. The choice

to use statistical tests to determine which prediction profiles are distinct has some

advantages, most notably that it automatically combats overfitting by taking into

account the amount of data used to obtain the estimates when determining whether

two estimated profiles are different. However, one could imagine using other clustering

methods.

In fact, as mentioned in Section 2.2.4, it will not even always be the case that

obtaining high-fidelity estimates of the prediction profiles is the right goal. One

might know a priori that estimates within some error-bound are all that are needed,

or perhaps where the predictions fall in some discretization of probability space, or

maybe only some qualitative feature of the profile is needed, such as which test is

most likely. The main ideas behind prediction profile models can easily be adapted

to these cases and the learning algorithm presented here can, in principle, be applied

using essentially any clustering method that assigns discrete labels to estimated pre-

diction profiles. Again, because it is such a basic, general-purpose goal, the remaining

development will continue to focus on obtaining accurate estimates of the predictions

of interest.

74

3.3.2 Generating Prediction Profile Trajectories

Having generated a finite set of distinct prediction profiles, the next step is to

translate the agent’s experience into sequences of action-observation pairs and pre-

diction profiles. These trajectories will be used to train a model of the prediction

profile system.

The process of translating a raw action-observation sequence s into a prediction

profile trajectory s′ is straightforward and, apart from a few practical concerns, fol-

lows directly from Definition 3.3. Recall that, for an action-observation sequence

s = a1o1a2o2...akok, the corresponding PP -action sequence for the prediction pro-

file system is simply 〈a1, o1〉〈a2, o2〉...〈ak, ok〉. The corresponding sequence of pro-

files is φ(a1o1)φ(a1o1a2o2)...φ(a1o1...akok). Thus, in principle, every primitive action-

observation sequence can be translated into an action-observation-profile sequence.

Of course φ is not available to generate the sequence of prediction profiles. So, it is

necessary to use an approximation φ̂, generated from the training data. Specifically,

the estimated predictions for the tests of interest at each history h (computed using

Equation 3.3) are compared, using statistical tests, to the estimated prediction profiles

from Section 3.3.1. If there is only one estimated profile ρ̂ that is not statistically

significantly different from the estimated predictions at h, then let φ̂(h) = ρ̂.

Given sufficient data, the statistical tests will uniquely identify the correct match

with high probability. In practice, however, some histories will not have very much

associated data. It is possible in such a case for the test of homogeneity to fail to

reject the null hypothesis for two or more profiles. This indicates that there is not

enough data to distinguish between multiple possible matches. This is especially

common when some profiles have similar values, or when a particular history is expe-

rienced only a small number of times. In the experiments in Section 3.6, two different

strategies for handling this situation are employed. The first strategy lets φ̂(h) be the

matching profile that has the smallest empirical KL-Divergence from the estimated

75

predictions (summed over all tests of interest). This is a heuristic choice that may

lead to noise in the prediction profile labeling, which could in turn affect the accuracy

of the learned model. The second strategy is to simply cut off any trajectory at the

point where multiple matches occur, rather than risk assigning an incorrect labeling.

This ensures that labels only appear in the prediction profile trajectories if there is

a reasonable level of confidence in their correctness, but on the other hand, it is also

quite wasteful to throw out training data that might contain useful information.

3.3.3 Learning a Prediction Profile Model

The translation step produces a set S ′ of trajectories of interaction with the pre-

diction profile system. Recall that the prediction profile system is a deterministic,

partially observable, discrete dynamical system and these trajectories can be used

to train a model of the prediction profile system using, in principle, any applicable

model-learning method.

There is one important issue faced by models of the prediction profile system that

is not present in the usual discrete dynamical systems modeling setting. While the

prediction profile labels are present in the training data, when actually using the

model in the wild, of course the labels are not available. Say the current history is h,

and an action a1 is taken and an observation o1 is emitted, which together constitute

a PP -action. Being a model of the prediction profile system, a prediction profile

model can provide the predictions for the next profile: p(〈a1, o1〉ρi|h) for every profile

ρi. Ideally these predictions will deterministically identify the next profile, ρ, since

the underlying prediction profile system is deterministic. These predictions about

profiles can be used to actually make predictions p(t|ha1o1) for the tests of interest

at the history ha1o1. Now another action a2 and observation o2 occur. It is now

necessary to update the model’s state in order to obtain the next prediction profile.

A typical dynamical systems model makes predictions about the next observation,

76

but is then able to update its state with the actual observation that occurred. A

prediction profile model’s observations are prediction profiles themselves, which are

not observable when interacting with the world. As such, the prediction profile model

will update its state with the PP -action taken (〈a1, o2〉) and the prediction profile

it itself predicted (ρ). Once it is updated, the prediction profile model can make the

predictions p(〈a2, o2〉ρi|h〈a1, o1〉ρ), which give the predictions for the tests of interest

at the new history ha1o1a2o2.

If the prediction profile model is a perfect model of the prediction profile system,

this is acceptable. Because the prediction profile system is deterministic, there is no

need for the environment to emit the true prediction profile label, because it is fully

determined by the history. In practice, of course, the model will be imperfect and

different modeling representations will require different considerations when perform-

ing the two functions of providing predictions for the tests of interest, and providing

a profile for the sake of updating the model.

3.3.3.1 PP-POMDPs

Since the prediction profile system is partially observable it is natural to model

it using a POMDP. Unfortunately, even when the training data is from a determin-

istic system, POMDP training using the EM algorithm will generally not return a

deterministic POMDP. Thus, at any given history, a learned POMDP model of the

prediction profile system (PP-POMDP) will provide a distribution over prediction

profiles instead of deterministically providing the one profile associated with that his-

tory. The implementation used in Section 3.6, simply takes the most likely profile

from the distribution to be the profile associated with the history and uses it to make

predictions for the tests of interest, as well as to update the POMDP model.

77

3.3.3.2 PP-LPSTs

Another natural choice of representation for a prediction profile model is a looping

predictive suffix tree (LPST) (Holmes & Isbell 2006). Because LPSTs are specialized

to deterministic partially observable systems they could not be used to model the

original system (which is assumed to be stochastic in general), but they do apply to

the prediction profile system, and they do not have to be determinized like a POMDP.

Briefly, an LPST captures the parts of recent history relevant to predicting the

next observation. Every node in the tree corresponds to an action-observation pair.

A node can either have children, or it can loop to one of its ancestors. Every leaf

of the tree corresponds to a history suffix that has a deterministic prediction of an

observation for every action. In order to predict the next observation from a particular

history, one reads the history in reverse order, following the corresponding links on

the tree until a leaf is reached, which gives the prediction. Holmes & Isbell provide a

learning algorithm that, under certain conditions on the training data, is guaranteed

to produce an optimal tree. The reader is referred to Holmes & Isbell (2006) for

details.

A weakness of LPSTs, however, is that they fail to make a prediction for the next

observation if the current history does not lead to a leaf node in the tree (or if the leaf

node reached does not have a prediction for the action being queried). This typically

occurs when some history suffixes do not occur in the training data but do occur while

using the model. For a PP-LPST, this can mean that in some histories the model

cannot uniquely determine the corresponding prediction profile. When this happens

the implementation used in Section 3.6 simply finds the longest suffix of the current

history that does occur in the data. This suffix will be associated with multiple

prediction profiles (otherwise the LPST would have provided a prediction). To make

predictions for the tests of interest, the model provides the average prediction over

this set of profiles. The profile used to update the model is picked out of the set

78

uniformly randomly.

3.4 Complexity of the Prediction Profile System

This section will present some results characterizing the complexity of the predic-

tion profile system. This will give us some indication of how difficult it is to learn

a prediction profile model and thereby provide insight into when it is appropriate to

apply a prediction profile model over a more typical generative model approach.

There are many factors that affect the complexity of learning a model. This

section will largely focus on linear dimension as the measure of complexity, taking

the view that, generally speaking, systems with smaller linear dimension are easier to

learn than systems with larger linear dimension. As discussed in Section 1.1.2, this is

generally true for POMDPs, for instance, where the linear dimension lower-bounds the

number of hidden states. So comparing the linear dimension of the prediction profile

system to that of the original system can give some idea of whether it would be easier

to learn a PP-POMDP or just to learn a complete POMDP of the original system. Of

course, there are other model-learning methods for which other complexity measures

would be more appropriate (for instance it is not known how LPSTs interact with

linear dimension). Extending some of these results to other measures of complexity

may be an interesting topic of future investigation.

3.4.1 Linear Dimension Comparison

This section will discuss how the linear dimension of the prediction profile system

relates to that of the original system. The first result is a “proof of concept” that

simply states that there exist problems in which the prediction profile system is

vastly more simple than the original system. In fact, such a problem has already

been presented in the Three Card Monte example.

79

Proposition 3.9. The prediction profile system can have linear dimension that is

arbitrarily smaller than that of the original system.

Proof. Recall the Three Card Monte example. Thus far the domain has been de-

scribed without specifically describing the dealer’s behavior. However, note that the

prediction profile system for the tests of interest relating to the location of the special

card (pictured in Figure 3.1) has a linear dimension of 3, regardless of how the dealer’s

swaps are chosen. If a very complex dealer is chosen, the original system will have

high linear dimension, but the prediction profile system’s linear dimension will remain

constant. For instance, in the experiments in Section 3.6, the dealer chooses which

cards to swap stochastically, but is more likely to choose the swap that has been

selected the least often so far. Thus, in order to predict the dealer’s next decision,

one must keep track of how many times each swap has been chosen in history and as

a result the system effectively has infinite linear dimension.

On the other hand, prediction profile models are not a panacea. The following

results indicate that there are problems for which learning a prediction profile model

would not be advisable over learning a standard generative model, in that the linear

dimension of the prediction profile system can be far greater than that of the original

system. Later in the section some special cases will be characterized where prediction

profile models are likely to be useful. The next result shows that the linear dimension

of the prediction profile model can be infinite when the original system has finite linear

dimension, via a lower bound on linear dimension that is true of all deterministic

dynamical systems.

Proposition 3.10. For any deterministic dynamical system with actions A, and

observations O, the linear dimension, n ≥ log(|A|−1)+log(|O|+1)
log |A|

.

Proof. See Appendix C.

80

Because Proposition 3.10 applies to all deterministic dynamical systems, it cer-

tainly applies to the prediction profile system. Though it is a very loose bound, the

basic implication is that as the number of prediction profiles (the observations of

PP) increases in comparison to the number of action-observation pairs (the actions

of PP), the linear dimension of the prediction profile system necessarily increases.

This bound also clearly illustrates the importance of the assumption that there are a

finite number of distinct prediction profiles.

Corollary 3.11. If there are infinitely many distinct prediction profiles, the prediction

profile system has infinite linear dimension.

Proof. Clearly |APP | = |A×O| is finite so long as there are finitely many actions and

observations. So, from the last result it follows immediately that as the number of

distinct prediction profiles |OPP | approaches infinity, then so does the linear dimension

of the prediction profile system.

Hence, so long as prediction profile models are represented using methods that

rely heavily on a finite linear dimension, it is critical that there be finitely many

prediction profiles. Note that this is not a fundamental barrier, but a side effect

of the representational choice. Model learning methods whose complexity depends

mainly on other aspects of the problem, rather than linear dimension may be able to

effectively capture systems with infinitely many prediction profiles.

One conclusion to be drawn from the last few results is that knowing the linear

dimension of the original system does not, in itself, necessarily say much about the

complexity of the prediction profile system. The prediction profile system may be

far simpler or far more complex than the original system. Thus it may be more

informative to turn to other factors when trying to characterize the complexity of the

prediction profile system.

81

3.4.2 Bounding the Complexity of The Prediction Profile System

The results in the previous section fail to take into account an obviously impor-

tant aspect of the prediction profile system: the predictions it is asked to make. Some

predictions of interest can be made very simply by keeping track of very little infor-

mation. Other predictions will rely on a great deal of history information and will

therefore require a more complex model. The next result identifies the “worst case”

set of tests of interest for any system, that is the tests of interest whose corresponding

prediction profile model has the highest linear dimension. Ultimately this section will

present some (non-exhaustive) conditions under which the prediction profile system

is likely to be simpler than the original system.

Proposition 3.12. For any system, the set of tests whose corresponding prediction

profile system has the highest linear dimension is Q, the set of core tests for that

system (as described in Section 1.2.2.1).

Proof. See Appendix C.

With this worst case identified, one can immediately obtain bounds on how com-

plex any prediction profile system can possibly be.

Corollary 3.13. For any system and any set of tests of interest, the corresponding

prediction profile system has linear dimension no greater than the number of distinct

predictive states for the original system.

Proof. The prediction profile system for the set of core tests, Q is a deterministic

MDP where the observations are prediction profiles for Q (that is, predictive states).

The linear dimension of an MDP is never greater than the number of observations

(Singh et al. 2004). Therefore, by the previous result the prediction profile system

for any set of tests of interest can have linear dimension no greater than the number

of predictive states.

82

Corollary 3.14. If the original system is a POMDP, the prediction profile system

for any set of tests of interest has linear dimension no greater than the number of

distinct belief states.

Proof. This follows immediately from the previous result and the fact that the number

of distinct predictive state is no greater than the number of distinct belief states

(Littman et al. 2002).

The bounds presented so far help explain why the prediction profile system can

be more complex than the original system. However, because they are focused on the

worst possible choice of tests of interest, they do little to illuminate when the opposite

is true. A prediction profile model is at its most complex when it is asked to perform

the same task as a generative model: keep track of as much information from history

as is necessary to make all possible predictions (or equivalently, the predictive state

or the belief state). These results indicate that, generally speaking, if one desires a

generative model, standard approaches would be preferable to learning a prediction

profile model.

On the other hand, the stated goal of this chapter is not to learn a generative

model, but instead to focus on some particular predictions that will hopefully be far

simpler to make than all predictions. Examples presented in this chapter make it

clear that in some cases, some predictions can be made by a prediction profile model

far more simple than a generative model of the original system. In general one might

expect the prediction profile model to be simple when the predictions of interest rely

on only a small amount of the state information required to maintain a generative

model. The next bound aligns with this intuitive reasoning.

Essentially what this result will point out is that often much of the hidden state

information in a POMDP will be irrelevant to the predictions of interest. The linear

dimension of the prediction profile system is actually bounded only by the number

of distinct beliefs over the relevant parts of the hidden state, rather than the number

83

of distinct beliefs states overall. The idea of the result is that if one can impose

an abstraction over the hidden states of a POMDP (not the observations) that still

allows the predictions of interest to be made accurately and that allows the abstract

belief states to be computed accurately, then the prediction profile system’s linear

dimension is bounded by the number of abstract belief states.

Proposition 3.15. Consider a POMDP with hidden states S, actions A, and ob-

servations O. Let T I be the set of tests of interest. Let ai be the action taken at

time-step i, si be the hidden state reached after taking action ai, and oi be the obser-

vation emitted by si. Now, consider any surjection σ : S → Sσ mapping hidden states

to a set of abstract states with the following properties:

1. For any pair of primitive states s1, s2 ∈ S, if σ(s1) = σ(s2), then for any

time-step i and any test of interest t ∈ T I , p(t|si = s1) = p(t|si = s2).

2. For any pair of primitive states s1, s2 ∈ S, if σ(s1) = σ(s2), then for any

time-step i, abstract state S ∈ Sσ, observation o ∈ O, and action a ∈ A,

Pr(σ(si+1) = S|si = s1,a
i+1 = a, oi+1 = o) =

Pr(σ(si+1) = S|si = s2, a
i+1 = a, oi+1 = o).

If such a σ exists, then the prediction profile system for T I has linear dimension no

greater than the number of distinct beliefs over abstract states, Sσ.

Proof. See Appendix C.

There are a few things to note about this result. First, a surjection σ always exists

that has properties 1 and 2. One can always define σ : S → S with σ(s)
def

= s. This

degenerate case trivially satisfies the requirements of Proposition 3.15 and recovers

the bound given in Corollary 3.14. However, Proposition 3.15 applies to all surjections

84

that satisfy the conditions. There must be a surjection that satisfies the conditions

and results in the smallest number of beliefs over abstract states. Essentially, this

is the one that ignores as much state information as possible while still allowing the

predictions of interest to be make accurately and it is this surjection that most tightly

bounds the complexity of the prediction profile system (even if σ is not known).

Of course, there may still be a large or even infinite number of distinct beliefs,

even over abstract states, so other factors must come into play to ensure a simple

prediction profile system. Furthermore, this result does not characterize all settings

in which the prediction profile system will be simple. That said, this result does

support the intuition that the prediction profile system will tend to be simple when

the predictions it is asked to make depend on small amounts of state information.

In order to build intuition about how this result relates to earlier examples, recall

the Three Card Monte problem. In Three Card Monte there are two sources of hidden

state: the special card’s unobserved position and whatever hidden mechanism the

dealer uses to make its decisions. Clearly the agent’s predictions of interest depend

only on the first part of the hidden state. So, in this case one can satisfy Property

1 with a surjection σ that maps two hidden states to the same abstract state if the

special card is in the same position, regardless of the dealer’s state. Under this σ

there are only 3 abstract states (one for each possible position), even though there

might be infinitely many true hidden states. Now, different states corresponding

to the same special card position will have different distributions over the special

card’s next position; this distribution does, after all, depend upon the dealer’s state.

However, Property 2 is a statement about the distribution over the next abstract

state given the observation that is emitted after entering the abstract state. If one

knows the current abstract state and observes what the dealer does, the next abstract

state is fully determined. So Property 2 holds as well. In fact, since the special card’s

position is known at the beginning of the game, this means the current abstract

85

state is always known with absolute certainty, even though beliefs about the dealer’s

state will in general be stochastic. Hence, there are only 3 distinct beliefs about the

abstract states (one for each state). As such, the prediction profile model’s linear

dimension is upper-bounded by 3, regardless of the dealer’s complexity (and in this

case the bound is tight).

3.4.3 Bounding the Number of Prediction Profiles

The previous section described some conditions under which the prediction profile

system may be simpler than the original system in terms of linear dimension. Also of

concern is the number of prediction profiles, and particularly whether that number is

finite. This section will briefly discuss some (non-exhaustive) special cases in which

the number of prediction profiles can be bounded.

One case that has already been discussed is when the original system is Markov.

In that case the number of prediction profiles is bounded by the number of observa-

tions (states). Of course, when the original system is Markov, there is little need to

use prediction profile models. Another, similar case is when the system is partially

observable, but completely deterministic (that is, the next observation is completely

determined by history and the selected action). If the system is, for instance, a deter-

ministic POMDP, then at any given history, the current hidden state is known. As

such, the number of belief states is bounded by the number of hidden states. Since

there obviously cannot be more prediction profiles than belief states, the number of

prediction profiles are bounded as well.

One can move away from determinism in a few different ways. First, note that

the important aspect of a deterministic system is really that the hidden state is fully

determined by history. It is possible to satisfy this property even in stochastic systems,

so long as one can uniquely determine the hidden state, given the observation that was

emitted when arriving there. In that case, observations can be emitted stochastically,

86

but the number of belief states (and therefore the number of prediction profiles) is

still bounded by the number of hidden states.

Another step away from determinism is a class of systems, introduced by Littman

(1996), called Det-POMDPs. A Det-POMDP is a POMDP where the transition

function and the observation function are both deterministic, but the initial state

distribution may be stochastic. A Det-POMDP is not a deterministic dynamical

system, as there is uncertainty about the hidden state. Because of this uncertainty

regarding the initial state, the system appears to emit observations stochastically.

It is only the underlying dynamics that are deterministic. Littman showed that a

Det-POMDP with n hidden states and an initial state distribution with m states in

its support has at most (n+1)m−1 distinct belief states. So, this bounds the number

of prediction profiles as well.

Finally, and most importantly, if the hidden state can be abstracted as in Propo-

sition 3.15, then these properties only really need to hold for abstract beliefs. That

is, the environment itself may be complex and stochastic in arbitrary ways, but if

the abstract hidden state described in Proposition 3.15 is fully determined by history,

then the number of prediction profiles is bounded by the number of abstract states.

Similarly, Det-POMDP-like properties can be imagined for abstract hidden states as

well.

These cases by no means cover all situations where the number of prediction

profiles can be bounded, but they do seem to indicate that the class of problems

where the number of prediction profiles is finite is quite broad, and may contain

many interesting examples.

3.5 Related Work

The idea of modeling only some aspects of the observations of a dynamical system

has been raised before. In some recent examples, Rudary (2008) and Wolfe (2010)

87

both learn models that split the observation into two pieces, one of which is modeled

while the other is treated as an action, or an “exogenous input.” Such a model makes

all conditional predictions about the modeled portion of the observation, given the

exogenous inputs (as well as actual actions and the history). A prediction profile

model is a slightly different idea. Instead of predicting future sequences of some piece

of the next observation conditioned on another piece, prediction profile models predict

the values of an arbitrary set of predictions of interest at the next time step, given

the action and observation. This allows significantly more freedom in choosing which

predictions the model will make.

One modeling method closely related to prediction profiles is Causal State Split-

ting Reconstruction (CSSR) (Shalizi & Klinker 2004). CSSR is an algorithm for

learning generative models of discrete, partially observable, uncontrolled dynamical

systems. The basic idea is to define an equivalence relation over histories where two

histories are considered equivalent if they are associated with identical distributions

over possible futures. The equivalence classes under this relation are called causal

states. The CSSR algorithm learns the number of causal states, the distribution over

next observations associated with each causal state, and the transitions from one

causal state to the next, given an observation. It is straightforward to see that there

is a one-to-one correspondance between causal states and the predictive states of a

PSR. As such, a causal state model is precisely the prediction profile model where the

set of tests of interest is Q, the set of core tests. With this correspondance in hand,

the results in Section 3.4.2 show that in many cases the number of causal states will

greatly exceed the linear dimension of the original system and that therefore CSSR

may be inadvisable in many problems, in comparison to more standard modeling

approaches. It is possible that the CSSR algorithm could be adapted to the more

general setting of arbitrary sets of tests of interest, however the algorithm does rely

heavily on the fact that a prediction profile model with Q as the tests of interest is

88

Markov, which is not generally the case for other sets of tests of interest.

The prediction profile system is also similar in spirit to finite state controllers for

POMDPs. Sondik (1978) noted that in some cases, it is possible to represent the

optimal policy for a POMDP as a finite state machine. These finite state controllers

are very much like prediction profile models in that they take action-observation pairs

as inputs, but instead of outputting predictions associated with the current history,

they output the optimal action to take. Multiple authors (e.g. Hansen 1998, Poupart

& Boutilier 2003) provide techniques for learning finite state controllers. However,

these algorithms typically require access to a complete POMDP model of the world

to begin with which, in the setting of this thesis, is assumed to be impractical.

3.6 Experiments

This section will empirically evaluate the prediction profile model learning proce-

dure developed in Section 3.3. In each experiment an agent faces an environment that

would be challenging to model completely due to its high linear dimension. However,

in each problem the agent could make good decisions if it could only have the predic-

tions to a small number of important tests. A prediction profile model is learned for

these important tests and the accuracy of the learned predictions is evaluated.

These experiments also demonstrate one possible use of prediction profile models

(and partial models in general) for control. Because they are not generative, pre-

diction profile models cannot be used directly by model-based planning methods.

However, their output may be useful for model-free methods of control. Specifically,

in these experiments, the predictions made by the learned prediction profile models

are provided as features to a policy gradient algorithm.

89

3.6.1 Predictive Features for Policy Gradient

Policy gradient methods (e.g. Williams 1992, Baxter & Bartlett 2000, Peters &

Schaal 2008) have been very successful as a viable option for model-free control in par-

tially observable domains. Though there are differences between various algorithms,

the common thread is that they assume a parametric form for the agent’s policy and

then attempt to alter those parameters in the direction of the gradient with respect to

expected average reward. These experiments will make use of Online GPOMDP with

Average Reward Baseline (Weaver & Tao 2001), or OLGARB (readers are referred

to the original paper for details). OLGARB assumes there is some set of features of

history, and that the agent’s policy takes the parametric form:

Pr(a|h; ~w) =
e

P

i wi,afi(h)

∑

a′ e
P

i wi,a′fi(h)

where fi(h) is the ith feature and each parameter wi,a is a weight specific to the

feature and the action being considered.

Typically the features used in policy gradient are features that can be directly read

from history (e.g. features of the most recent few observations or the presence/absence

of some event in history). It can be difficult to know a priori which historical features

will be important for making good control decisions. In contrast, the idea in these

experiments is to provide the values of some predictions as features. These predictive

features have direct consequences for control, as they provide information about the

effects of possible behaviors the agent might engage in. As such, it may be easier to

select a set of predictive features that are likely to be informative about the optimal

action to take (e.g. “Will the agent reach the goal state when it takes this action?”

or “Will taking this action damage the agent?”). Furthermore, information may

be expressed compactly in terms of a prediction that would be complex to specify

purely in terms of past observations. As seen in the discussion of PSRs in Section

90

1.2.2.1, an arbitrary-length history can be fully captured by a finite set of short-

term predictions. For these reasons it seems reasonable to speculate that predictive

features, as maintained by a prediction profile model, may be particularly valuable

to model-free control methods like policy gradient.

3.6.2 Experimental Setup

The learning algorithm will be applied to two example problems. In each problem

prediction profile models are learned (using both LPSTs and POMDPs as the repre-

sentation and using both strategies for dealing with multiple matches, as described

in Section 3.3.3) with various amounts of training data. The prediction accuracy of

the models is evaluated, as well as how useful their predictions are as features for

control. The training data is generated by executing a uniform random policy in the

environment.

The free parameter of the learning algorithm is the significance value of the sta-

tistical tests, α. Given the large number of contingency tests that will be performed

on the same data set, which can compound the probability of a false negative, α

should be set fairly low. In these experiments α = 0.00001, though several reasonable

values were tried with similar results. As discussed in Section 3.3, there will also be

a maximum length of histories to consider during the search for prediction profiles.

This cutoff allows the search to avoid considering long histories, as there are many

long histories to search over and they are unlikely to provide new prediction profiles.

After a prediction profile model is learned, its predictions are evaluated as features

for the policy gradient algorithm OLGARB. Specifically, for each test of interest t

the unit interval is split up into 10 equally-sized bins b and a binary feature ft,b is

provided that is 1 if the prediction of t lies in bin b, and 0 otherwise. Also provided

are binary features fo, for each possible observation o. The feature fo = 1 if o is the

most recent observation and 0, otherwise. The parameters of OLGARB, the learning

91

0 2 4 6

x 10
4

0

0.2

0.4

0.6

0.8

1

Training Trajectories

A
v
g

.
R

M
S

E
 (

2
0

 T
ri
a

ls
)

Prediction Performance

Flat POMDP

PP−LPST(KLD)
PP−LPST(cut)

PP−POMDP(KLD)
PP−POMDP(cut)

0 2 4 6

x 10
4

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Training Trajectories

A
v
g

.
R

e
w

a
rd

 (
2

0
 t

ri
a

ls
)

Control Performance

Flat POMDP

True

Expert

SOM

PP−POMDP(KLD)
PP−POMDP(cut)

PP−LPST(KLD)
PP−LPST(cut)

Figure 3.5: Results in the Three Card Monte domain.

rate and discount factor, are set to 0.01 and 0.95, respectively in all experiments.

To evaluate a prediction profile model OLGARB is run for 1,000,000 steps. The

average reward obtained and the prediction error for the tests of interest the model

accrued along the way are reported. Prediction performance is compared to that

obtained by learning a POMDP on the training data and using it to make the predic-

tions of interest. Because these problems are too complex to feasibly train a POMDP

with the correct number of underlying states, 30-state POMDPs were used (stopping

EM after a maximum of 50 iterations)1. Control performance is compared to that

obtained by OLGARB using the predictions provided by a learned POMDP model

as features, as well as OLGARB using the true predictions as features (the best the

prediction profile model could hope to do), OLGARB using second-order Markov fea-

tures (the two most recent observations, as well as the action between them) but no

predictive features at all, and a hand-coded expert policy.

3.6.3 Three Card Monte

The first domain is the Three Card Monte example discussed earlier in the chapter.

The agent is presented with three cards. Initially, the card in the middle (card 2) is

1Similar results were obtained with 5, 10, 15, 20, and 25 states.

92

the “special card.” The agent has four actions available to it: watch, flip1, flip2,

and flip3. If the agent chooses a flip action, it observes whether the card it flipped

over is the special card. If the agent chooses the watch action, the dealer can swap

the positions of two cards, in which case the agent observes which two cards were

swapped, or the dealer can ask for a guess. If the dealer has not asked for a guess,

then watch results in 0 reward and any flip action results in -1 reward. If the dealer

asks for a guess and the agent flips over the special card, the agent gets reward of 1.

If the agent flips over one of the other two cards, or doesn’t flip a card (by selecting

watch), it gets reward of -1. The agent has three tests of interest, and they take the

form flipX special, for each card X (that is, “If I flip card X, will I see the special

card?”).

As discussed previously, the complexity of this system is directly related to the

complexity of the dealer’s decision-making process. In this experiment, when the

agent chooses “watch” the dealer swaps the pair of cards it has swapped the least so

far with probability 0.5; with probability 0.4 it chooses uniformly amongst the other

pairs of cards; otherwise it asks for a guess. Since the dealer is keeping a count of

how many times each swap was made, the process governing its dynamics effectively

has an infinite linear dimension. The prediction profile system, on the other hand,

has only 3 states, regardless of the dealer’s complexity (see Figure 3.1).

Training trajectories were of length 10. Figure 3.5 shows the results for various

amounts of training data, averaged over 20 trials. Both PP-POMDPs and PP-LPSTs

learned to make accurate predictions for the tests of interest, eventually achieving

zero prediction error. In this case, PP-POMDPs did so using less data. This is likely

because a POMDP model is more readily able than a LPST model to take advantage

of the fact that the prediction profile system for Three Card Monte is Markov. As

expected, the standard POMDP model was unable to accurately predict the tests of

interest.

93

Figure 3.6: The Shooting Gallery domain.

Also compared are the two different strategies for dealing with multiple matches

discussed in Section 3.3.3. Recall that the first one (marked “KLD” in the graph) picks

the matching profile with the smallest empirical KL-Divergence from the estimated

predictions. The second (marked “cut” in the graph) simply cuts off the trajectory

at the point of a multiple match to avoid any incorrect labels. In this problem

these two strategies result in almost exactly the same performance. This is likely

because the profiles in 3 Card Monte are deterministic, and are therefore quite easy

to distinguish (making multiple matches unlikely). The next experiment will have

stochastic profiles.

The predictive features provided by the prediction profile models are clearly use-

ful for control, as the control performance of OLGARB using their predictions ap-

proaches, and eventually exactly matches that of OLGARB using the true predictions

(marked “True”). The inaccurate predictions provided by the POMDP were not very

useful for control; OLGARB using the POMDP provided predictions does not even

break even, meaning it loses the game more often than it wins. The POMDP fea-

tures did, however, seem to contain some useful information beyond that provided

by the second-order Markov features (marked “SOM”) which, as one might expect,

performed very poorly.

94

3.6.4 Shooting Gallery

The second example is called the Shooting Gallery, pictured in Figure 3.6. The

agent has a gun aimed at a fixed position on an 8×8 grid (marked by the X) . A

target moves diagonally, bouncing off of the edges and 2×2 obstacles (an example

trajectory is pictured). The agent’s task is to shoot the target. The agent has two

actions: watch and shoot. When the agent chooses watch, it gets 0 reward. If the

agent chooses shoot and the target is in the crosshairs in the time-step after the agent

shoots, the agent gets reward of 10, otherwise it gets a reward of -5. Whenever the

agent hits the target, the shooting range resets: the agent receives a special “reset”

observation, each 2× 2 square on the range is made an obstacle with probability 0.1,

and the target is placed in a random position. There is also a 0.01 probability that the

range will reset at every time step. The difficulty is that the target is “sticky.” Every

time step with probability 0.7 it moves in its current direction, but with probability

0.3 it sticks in place. Thus, looking only at recent history, the agent may not be able

to determine the target’s current direction. The agent needs to know the probability

that the target will be in its sights in the next step, so clearly the single test of

interest is: watch target (that is “If I choose the watch action, will the target enter

the crosshairs?”).

This problem has stochastic prediction profiles, so it is expected that more data

will be required to differentiate them. Also, due to the number of possible config-

urations of obstacles and positions of the target, this system has roughly 4,000,000

observations and even more latent states. This results in a large number of possible

histories, each with only a small probability of occurring. As discussed in Section 3.3,

this can lead to a large sample complexity for obtaining good estimates of prediction

profiles. Here this is addressed with a simple form of generalization: observation

abstraction. Two observations are treated as the same if the target is in the same

position and if the configuration of obstacles in the immediate vicinity of the tar-

95

0 2 4 6 8 10

x 10
5

0

0.05

0.1

0.15

0.2

0.25

Training Trajectories

A
v
g

.
R

M
S

E
 (

2
0

 T
ri
a

ls
)

Prediction Performance

Flat POMDP

PP−POMDP(cut)

PP−LPST(cut)
PP−LPST(KLD)

PP−POMDP(KLD)

0 2 4 6 8 10

x 10
5

−0.005

0

0.005

0.01

0.015

0.02

0.025

Training Trajectories

A
v
g

.
R

e
w

a
rd

 (
2

0
 T

ri
a

ls
)

Control Performance

PP−LPST(KLD)

Expert
True

PP−POMDP(KLD)

PP−LPST(cut)

PP−POMDP(cut)

SOM

Flat POMDP

Figure 3.7: Results in the Shooting Gallery domain.

get is the same. Even with this abstraction, there are over 2000 action-observation

pairs. This abstraction is accurate, so two histories have the same prediction profile

if they have the same action sequence and their observation sequences correspond to

the same sequence of aggregate observations. This enables one sample trajectory to

improve the estimates for several histories. The same observation abstraction was

applied when training the POMDP model.

Note that this demonstrates the complimentary relationship between the methods

presented in Chapter 2 and prediction profile models. Though one can apply these

ideas independently of one another, they can be effectively combined. Using both

methods together to learn a non-generative model that ignores irrelevant details in

the observations can simplify the learning problem even further than applying either

method alone would.

Training trajectories were length 4 and the search for profiles was restricted to

length 3 histories. Results are shown in Figure 3.7. Perhaps the most eye-catching

feature of the results is the upward trending curve in the prediction error graph,

corresponding to the PP-POMDP with the KL-Divergence based matching (labeled

“PP-POMDP(KLD)”). Recall that the danger of the KL-divergence based matching

strategy is that it may produce incorrect labels in the training data. Apparently these

96

errors were severe enough in this problem to drastically mislead the POMDP model.

With a small amount of data it obtained very good prediction error, but with more

data came more misleading labelings, and the performance suffered. The PP-POMDP

trained with the other matching method (“PP-POMDP(cut)”) displays a more typical

learning curve (more data results in better error), though it takes a great deal of data

before it begins to make reasonable predictions. This is because cutting off trajectories

that have multiple matches throws away data that might have been informative to the

model. The PP-LPSTs generally outperform the PP-POMDPs in this problem. With

the trajectory cutting method, the PP-LPST (“PP-LPST(cut)”) quickly outperforms

the flat POMDP and, with enough data, outperforms both versions of PP-POMDP.

The PP-LPST with the KL-divergence based matching (“PP-LPST(KLD)”) is by far

the best performer, quickly achieving small prediction error. Clearly the incorrect

labels in the training data did not have as dramatic an effect on the LPST learning,

possibly because, as a suffix tree, an LPST mostly makes its predictions based on

recent steps in history, limiting the effects of labeling errors to a few time-steps.

Control performance essentially mirrors prediction performance, with some in-

teresting exceptions. Note that even though PP-POMDP(KLD) obtains roughly the

same prediction error as the flat POMDP at 1,000,000 training trajectories, the predic-

tive features it provides still result in substantially better control performance. This

indicates that, even though the PP-POMDP is making errors in the exact values of

the predictions, it still has captured more the important dynamics of the predictions

than the flat POMDP has. The flat POMDP itself provides features that are roughly

as useful as second-order Markov features, which do not result in good performance.

Again, OLGARB using these features does not break even, meaning it is wasting bul-

lets on times when the target is not likely to enter the crosshairs. The best-performing

prediction profile model, PP-LPST(KLD) approaches the performance of OLGARB

using the true predictions with sufficient data.

97

3.7 Scaling Prediction Profile Models (Future Directions)

While the experiments in Section 3.6 demonstrate that it is possible to learn pre-

diction profile models in contrived systems too complex for POMDPs, the specific

learning algorithm presented in this chapter is not likely to scale to more natural

domains without modification. The most critical scaling issues for prediction profile

models are the sample complexity of estimating the prediction profiles, and the com-

putational complexity of searching for prediction profiles and translating the data. In

both cases, the critical source of complexity is essentially how many distinct histories

there are in the training data (more distinct histories means the data is spread thin

amongst them and there are more estimated profiles to search through). As such,

observation abstraction is a key tool for combatting these issues because it lumps

histories together. That said, observation abstraction can only generalize across his-

tories of the same length. Because the number of distinct histories is exponential in

the length of histories, it would be far more effective to be able to generalize across

histories of different lengths as well. The concept of histories of interest (introduced

in the next chapter) will provide one possible avenue to incorporate this type of

temporal abstraction, and experiments in Chapter 5 will empirically demonstrate its

benefits. That said, these results will rely heavily on a human designer to specify

which histories have similar predictions and which are more “interesting.”

So, one of the main ways the applicability of prediction profile models can be

expanded is by developing methods that induce a temporal abstraction as part of

the learning process. For instance, one idea would be to assume that from time-step

to time-step, predictions mostly stay the same, and only occasionally change values

(this is the case in a few of the examples seen in this thesis). In that case, one might

attempt to discover the circumstances under which predictions change, and otherwise

lump consecutive histories together, assuming they have the same prediction profiles.

Another approach might start with a very simple representation for the prediction

98

profile model (for instance a state-based model with only a few states or a depth-

limited suffix tree) and then progressively allow the representation to become more

sophisticated, as is warranted by the data. This way, if a very simple model is

sufficient, learning will be very fast (whereas using the current algorithm, it may

take a large number of samples to get good enough estimates just to learn that the

prediction profile model is very simple). This idea is similar in spirit to the state-

splitting approach of Shalizi & Klinker (2004) and the incremental suffix tree building

approach of McCallum (1995).

Another limitation of the prediction profile model learning method presented here

is its reliance on the assumption of a finite number of prediction profiles. While

this assumption does hold in many cases, an ideal method would be able to deal

gracefully with a very large or infinite number of prediction profiles. One possibility

is to simply cluster the predictions in other ways. For instance, one may only desire

a certain level of prediction accuracy and may therefore be willing to lump some

distinct prediction profiles together in exchange for a simpler prediction profile system.

Another idea would be to learn a prediction profile model using continuous-valued

representations (e.g. Kalman 1960, Rudary et al. 2005), which explicitly deal with

systems with an infinite number of observations (prediction profiles in this case).

While it is extremely unlikely that the prediction profile system is linear, there do

exist methods for learning non-linear models of partially observable systems as well

(e.g. Julier & Uhlmann 1997, Wingate 2008). Even when there are finitely many

prediction profiles, methods for learning non-linear continuous models may still be

able to (approximately) capture the discrete dynamics.

3.8 Summary

Key points from this chapter:

99

• Prediction profile models are non-generative partial models

– A prediction profile models makes only the predictions of interest and no

others

– The main idea is to learn a model of the dynamics of the predictions them-

selves, rather than the dynamics of the system.

– Prediction profile models currently rely on the assumption that the pre-

dictions of interest take on only a finite number of distinct values.

• A prediction profile model can be far simpler than a complete, generative model,

and it can be far more complex.

– A prediction profile model is best applied when the predictions of interest

require relatively little state information to make (in comparison to all

predictions).

• A procedure for learning a prediction profile model was presented that has three

main steps:

– First, estimate the number of distinct prediction profiles and their val-

ues (using statistical tests to determine which estimated predictions are

significantly different).

– Second, translate the training data into sequences of experience with the

prediction profile system by assigning a profile to each history.

– Finally, learn a model using the transformed training data.

• Experiments showed that prediction profile models can be used to learn to make

some particularly important predictions in systems too complex to be modeled

using standard POMDPs.

100

– The predictions made by the learned models were demonstrated to be

useful as features for model-free control

101

CHAPTER 4

Histories of Interest

The previous two chapters have focused on a particular form of partial model,

demonstrating that a partial model restricted to making only a small set of predictions

of interest can be much simpler (and correspondingly easier to learn) than a complete

model. However, making only some predictions is not the only way for a model to

be partial. Another important way in which a model’s prediction responsibilities can

be restricted is by limiting the situations in which the model can be used. Chapter

1, for instance, discussed update rules with pre-conditions and option models, both

of which benefit from learning models that apply in some specific situations, but not

in others. This chapter introduces the concept of histories of interest, which extends

the concept of partial models used in Chapters 2 and 3 to allow models that only

make predictions in some particular histories. Limiting a model’s responsibilities in

this way can even further simplify the learning task.

As in the previous two chapters, the general approach to learning partial models

that only make predictions in some histories will be to transform the training data

in such a way that the transformed model-learning task is simpler and the resulting

model can still be used to make the predictions of interest at the histories of interest.

Abstraction will play a large role in this process and, as will be seen, the abstraction

learning algorithms developed in Chapter 2 will not apply in this new setting. Thus,

102

this chapter will describe an abstraction learning algorithm that is far more practical

and scalable than those found in Chapter 2, though it will lack theoretical performance

guarantees.

4.1 Histories of Interest

Similar to the set of tests of interest T I , which specifies what predictions a partial

model should make, it is possible to define a set of histories of interest HI ⊆ H, which

specifies in which histories a partial model should make predictions. Specifically, a

partial model is responsible for providing the predictions p(t|h) for all tests of interest

t ∈ T I and histories of interest h ∈ HI , but no other tests and no other histories.

The partial models discussed in the previous two chapters have been examples of the

special case where all histories are of interest: HI = H.

It will simplify the discussion in this chapter to place a constraint on HI , which,

in analogy to a similar concept in the options literature (Sutton et al. 1999), will be

called the semi-Markov property. Essentially, the semi-Markov property requires that

in order to determine if a particular history is a history of interest, one need only

look at what has happened since the last history of interest. Formally,

Definition 4.1. A set of histories of interest HI is semi-Markov if and only if for any

two histories of interest h, h′ ∈ HI ∪{∅}, if there exists some test t such that ht ∈ HI ,

then either h′t ∈ HI or p(h′t|∅) = 0 (that is, h′t /∈ H).

A model that makes predictions in only some histories may be useful simply

because predictions are only needed in some restricted situations. However, a far

more common idea is to have several partial models such that some partial model

applies at every history and can be used to make predictions for the tests of interest.

This partitioning of the possible histories can lead to individual partial models that are

simpler than one that applies in all histories, but that collectively cover all situations.

103

Figure 4.1: Size 10 1D Ball Bounce

This idea of switching between partial models represents one way in which multiple

partial models can be combined to form a more complete model. Chapter 5 will

discuss “collections of partial models” more generally. This chapter will continue the

focus on how to learn a single partial model with its own set of tests of interest and

now with its own set of histories of interest.

Limiting when a partial model makes predictions can significantly simply its learn-

ing problem. For instance, recall the 1D Ball Bounce example from Section 2.5.1,

reproduced in Figure 4.1. In that example there was a partial model in charge of pre-

dicting whether a bouncing ball would be in position x in the next time-step. This

model can accurately make this prediction if it only pays attention to the pixels in the

immediate neighborhood of position x and ignores the rest of the observation. The

problem, of course, was that this abstraction did not actually simplify the model; the

abstract model had the same complexity as a model of the primitive observations.

This is, as discussed in Chapter 3, because a generative model of the abstract system

makes all abstract predictions, including a prediction about whether the ball will en-

ter the neighborhood of position x in the next time-step. This extraneous prediction

requires the model to keep track of the ball’s position and direction when the ball is

outside of the neighborhood, even though this information is irrelevant for making

the prediction of interest: “Will be the ball be in position x or not in the next time

step?” Prediction profile models in Chapter 3 offered a solution to this problem by

making only the predictions of interest and no others. Histories of interest offer an

alternative approach in this domain.

104

Figure 4.2: The bridging test system

Consider a similar partial model that must predict whether the ball will be in

position x in the next time step but now it is only required to make that prediction in

histories that end with the ball in the immediate neighborhood of x. Intuitively, its

job is significantly easier. Because it is only required to make predictions when the

ball is already in the neighborhood, the model clearly has no need to pay attention

to the ball’s position when it is outside the neighborhood. To make an accurate

prediction when the ball is already in the neighborhood, the model need only keep

track of the ball’s current direction.

Note that, as in this example, limiting a partial model to making predictions only

in some histories of interest can simplify the abstract system, making it even easier

to learn a generative, abstract model. Histories of interest can also be helpful if

one intends to learn a prediction profile model, rather than a generative model, but

in a different way. This will be discussed later in the chapter. The next section will

formalize the intuitive ideas illustrated by this example, demonstrating how restricting

when it must make predictions can simplify a partial model.

4.2 The Bridging Test System

It will simplify the development in this chapter to limit the discussion to uncon-

trolled systems (where the agent has no available actions and can only observe the

world’s dynamics over time). Controlled systems will be discussed in Section 4.4.

As in the previous two chapters, the strategy here will be to learn a model of a

transformation of the original system. In this case, the transformed model should

105

be able to make predictions at the histories of interest, but need not in any other

histories. Intuitively, one way to accomplish this is for the model to only update

its predictions at histories of interest. Essentially the model “wakes up” whenever

a history of interest occurs, updates its predictions according to what has happened

since the last history of interest, and then goes dormant again until the next history

of interest. Sequences of observations that happen between histories of interest are

called bridging tests (as illustrated in Figure 4.2).

It is straightforward to formally define the set of all bridging tests T B, as induced

by the set of histories of interest:

Definition 4.2. A test t ∈ T is a bridging test if and only if

1. Either ∃h ∈ HI such that ht ∈ HI or t is of infinite length.

2. For any prefix t′ of t, there is no history of interest h ∈ HI such that ht′ ∈ HI .

Note that as a consequence of the semi-Markov property, every history of interest

can be uniquely decomposed into a sequence of bridging tests. Furthermore, every

sequence of bridging tests is a history of interest (or has probability zero and is thus

not a possible history at all). Lastly, because no bridging test is a prefix of any

other bridging test, at any given history of interest there is a well-defined probability

distribution over which bridging test will occur next (that is, some bridging test must

occur and two bridging tests cannot simultaneously occur).

The bridging test system, then, is a conceptual dynamical system in which the

observations are bridging tests. Every time-step in the bridging test system corre-

sponds to a history of interest in the original system. The conditional probability

distribution over the next “observation,” given history in the bridging test system is

precisely the conditional probability distribution over the next bridging tests given

the corresponding history of interest in the original system.

106

Because the bridging test system only has time-steps at histories of interest, it

can be much simpler than the original system. For instance, consider the 1D Ball

Bounce system of size k. As discussed in Section 2.5.1, it has linear dimension 2k− 2

(because the state includes the ball’s position and direction). Now let the histories

of interest be histories that end with the ball in position x and consider the resulting

bridging test system. The “observations,” of course, are bridging tests: in this case

all possible ways for the ball to leave position x and then come back to position x (it

could go off to the left and come back, or go off to the right and come back). Note

that in every time-step of the bridging test system, the ball is in the same position

(position x). As such, which bridging test will occur next depends only on the ball’s

current direction. So, in this case, the bridging test system has linear dimension 2,

regardless of k, as compared to the linear dimension of the original system, which

grows linearly with k.

Not only can the bridging test system be far simpler than the original system, it

is possible to show that it is never more complex than the original system.

Proposition 4.3. If the linear dimension of a dynamical system is n then, given

a semi-Markov set of histories of interest HI , the linear dimension of the induced

bridging test system, nBT ≤ n.

Proof. Recall that the linear dimension of a system is the rank of the system dynamics

matrix. The matrix corresponding to the bridging test system is simply the submatrix

of the system dynamics matrix of the original system with only the columns and

rows corresponding to histories and tests that are sequences of bridging tests. A

submatrix never has greater rank than the matrix that contains it, so the result

follows immediately.

In principle, a model of the bridging test system could be used to make any

prediction, but only at the histories of interest. On the other hand, recall that the

107

observations of the bridging test system are sequences of observations in the original

system. As such, even if the original system has a very small number of observations,

the bridging test system will in general have infinitely many “observations,” making

it rarely (if ever) advantageous to directly learn a model of the bridging test system

in practice.

That said, if the partial model has a restricted set of tests of interest as well as

histories of interest then, just as it was possible to ignore much of the detail of the

observations in Chapter 2, the model may be able to safely ignore much of the detail

contained in the bridging tests and still make accurate predictions. For instance

consider a variation on the 1D Ball Bounce system which behaves similarly, except

now the ball’s movement is noisy. At every time step it either moves in its current

direction with probability 0.7 or it moves in the opposite direction with probability

0.3. Direction still changes deterministically on the end pixels. Now consider a partial

model that is in charge of making predictions about whether the ball will be in position

x in the next time step, but only when the ball is in the immediate neighborhood of

x. There are infinitely many ways the ball could leave the neighborhood and return

(because the ball is now performing a biased random walk). As a result, there are

infinitely many bridging tests. However, all the model really needs to know about

the ball’s journey is whether it changed direction (whether it hit a side wall). Thus,

an accurate abstraction could lump together all bridging tests where the ball leaves

the neighborhood and hits, for instance, the left side, all the bridging tests where the

ball hits the right side, and all the bridging tests where the ball hits neither side.

Even though there are infinitely many bridging tests, there will be a small number of

abstract observations.

So, as in Chapter 2, the main task becomes finding an accurate abstraction, only

now the observation abstraction is applied to the bridging test system. That is, instead

of abstracting single observations, the abstraction is now defined over bridging tests:

108

sequences of observations. Recall that the conceptual abstraction learning algorithm

presented in Chapter 2 required pair-wise enumeration of all observations. Since the

bridging test system can easily have infinitely many observations, this method does

not apply in this setting. The next section describes an abstraction learning method

that, while it lacks the theoretical guarantees of the algorithm in Chapter 2, is far

more practical and can be used to find an accurate abstraction of the bridging test

system. The results of applying this algorithm in example domains will be presented,

but deferred to the next chapter, where abstractions will be learned in the context of

learning many partial models and combining them into a collection of partial models.

4.3 Learning an Accurate Bridging Test Abstraction

As described in Chapter 2, an abstraction is a surjection η, now more generally

defined over the set of bridging tests T B rather than the set of observations O. The

abstraction maps bridging tests to abstract observations. The short-hand η(h) where

h is a history of interest will denote the abstract history, or the sequence of abstract

observations obtained by applying η to each bridging sequence making up h. Note

that, because η now maps sequences of observations to a single abstract observation,

the abstract history η(h) will, in general, be shorter than the primitive history h. The

various properties of abstractions defined in Chapter 2 are easily transferred to this

setting. Most notably an accurate abstraction is one such that every abstract history

contains enough detail to make accurate predictions: for every h ∈ HI and t ∈ T I ,

p(t|η(h)) = p(t|h).

This section presents an incremental refinement procedure for learning an accurate

abstraction, inspired by decision trees. It is similar to many existing abstraction

learning algorithms, (e.g. Givan et al. 2003, Wolfe & Barto 2006) though for the most

part these algorithms have only been applied in the Markov setting. The partially

observable setting particularly exacerbates some scaling challenges which will need to

109

Algorithm 1 Abstraction Learning (basic flow)
η = η0

repeat
R = proposeRefinements(η) {Adding each feature in F}
if R 6= ∅ then
η = arg maxη′∈R evaluateAbstraction(η′)
repeat
C = proposeCoarsenings(η) {Merging each pair of abstract observations}
if C 6= ∅ then
η = arg maxη′∈C evaluateAbstraction(η′)

end if
until C = ∅

end if
until R = ∅

be addressed.

In addition to the histories of interest and tests of interest, the algorithm assumes

as input a set F of potentially relevant features of bridging tests. It is from these

features that the abstraction will be built. The algorithm begins with the coars-

est possible abstraction η0 that maps everything to the same abstract symbol1 and

iteratively refines the abstraction by incorporating features from F .

The basic form of the algorithm is presented in Algorithm 1. At each iteration,

a number of refinements are proposed: the cross product of each feature from F and

the current abstraction. The refinement that most improves prediction accuracy is

greedily selected, essentially adding a feature to the abstraction. Much like the algo-

rithm provided by Givan et al. (2003), the algorithm alternates between refinement

steps and coarsening steps, merging abstract observations when doing so does not

impact accuracy. This keeps the number of abstract observations low and combats

over-fitting. The coarsening step is itself iterative. In each iteration, each pair of

abstract observations is considered for merging and, once again, the pair that retains

the most accuracy is greedily selected.

1Alternatively, if an expressive abstraction is desired, the initial abstraction can be set to be any
expressive abstraction, ideally the coarsest one.

110

Note that this greedy, incremental procedure is not guaranteed to find the coarsest

accurate abstraction. In part, this is because F is not guaranteed to contain features

that admit an accurate abstraction. However, even if the features in F can express an

accurate abstraction, it is not guaranteed to be found. If, for instance, two features in

F are jointly very informative for making the predictions of interest, but individually

do not improve predictions, then they will never be added to the abstraction. This is

an issue common to all similar greedy, incremental algorithms.

Though the basic idea of the algorithm is both simple and familiar, some of the

details of the implementation used in later experiments are specific to learning an

abstraction in a partially observable environment. The remainder of this section

will describe and motivate some of these implementation details in the three main

components of the algorithm: evaluating abstractions for accuracy, proposing and

selecting refinements, and proposing and selecting coarsenings. Section 4.4 will discuss

how the results in this chapter can be applied to controlled systems, and how they

relate to prediction profile models.

4.3.1 Evaluating Accuracy

Because the algorithm greedily selects the “best” refinement at every iteration,

it is critical to be able to evaluate a given abstraction’s accuracy. The end goal, of

course, is an abstraction η such that for any t ∈ T I and any h ∈ HI p(t|h) = p(t|η(h)).

So one intuitive way to measure an abstraction’s accuracy is to measure the difference

between p(t|h) and p(t|η(h)).

To simplify the discussion, assume that
∑

t∈T I p(t|h) = 1 for all h. That is, assume

there is a well-defined probability distribution over the occurrence of the tests of

interest. The algorithm described here can be adapted to handle more general sets of

tests of interest. Let Hk be the set of length k histories. Let T be a random variable

ranging over the tests of interest that could follow the current history. Then let ǫk(η)

111

be the inaccuracy of η for length k histories and define it to be the expected KL

Divergence:

ǫk(η)
def

= Eh [DKL(T |h||T |η(h))]

=
∑

h∈Hk

p(h|∅)
∑

t∈T I

p(t|h) log

(

p(t|h)

p(t|η(h))

)

.

This measure is intuitive for several reasons. First, an abstraction η satisfies the

accuracy property if and only if, for all k, ǫk(η) = 0. It also penalizes abstractions

more for inaccuracies in common histories than in rare histories. Finally, it is possible

to show that no refinement can ever increase inaccuracy by this measure. So, ideally,

ǫ could be computed to evaluate any candidate refinement, and pick the one that is

the most accurate at every iteration. However, estimating ǫ is impractical at best.

In a complex domain, it is unlikely that any individual history will be experienced

many times, if even more than once. As a result, estimates of the necessary quantities

p(h|∅) and p(t|h) from data will be extremely noisy, because there will only be a small

number of samples of the history h. To address this, consider an alternate measure

ξk(η) = ǫk(η0) − ǫk(η). Note that the abstraction that minimizes ǫk maximizes ξk

so while ǫk(η) was the inaccuracy of η, let ξk(η) be the accuracy. Furthermore, ξk

can be computed using only predictions involving abstract histories, as the following

result demonstrates. Following the convention set in Chapter 2, let Hη
k be the set of

abstract histories obtained by applying η to the set of length k histories Hk: Hη
k =

{η(h) : h ∈ Hk}.

Proposition 4.4. For any abstraction η and any k,

ξk(η) = ǫk(η0) − ǫk(η) = EH∈Hη
k
[D(T |H||T |η0(H))]

=
∑

H∈Hη
k

p(H|∅)
∑

t∈T I

p(t|H) log

(

p(t|H)

p(t|η0(H))

)

.

112

Proof. See Appendix D.

As a result of Proposition 4.4, ξk can be computed using quantities only involving

abstract histories, rather than primitive histories. Abstract histories will tend to

occur far more frequently than the corresponding primitive histories (since many

primitive histories map to the same abstract history) and therefore it is more likely

that enough samples will be available to obtain good estimates of the predictions

involved in computing ξk.

Note that ξk(η) is equivalent to the information gain of η with respect to the initial

abstraction η0. Information gain is frequently used in decision tree algorithms as a

means of scoring possible expansions (notably the C4.5 algorithm by Quinlan 1992),

though it is more typical to use the information gain from the current abstraction,

rather than the initial one. However, this more common scoring function can only

be used to compares refinements of the current abstraction. Using information gain

with respect to η0 ensures that every abstraction we consider is comparable on the

same scale. This is important for the coarsening step, where candidates may not all

be refinements of the most recent abstraction, but are guaranteed to be refinements

of η0.

In practice, an abstraction’s accuracy is estimated using a finite set of training

data and looking at only one particular length of history would be wasteful. To take

histories of all lengths into account, the final accuracy measure will be

ξ(η)
def

=
∑

k≤K

ξk(η),

where K is the maximum history length in the data.

113

4.3.2 Refinement step

In the refinement step, a number of candidate refinements of the current abstrac-

tion η are proposed and evaluated. Specifically, for every feature f ∈ F , a new

abstraction ηf is created whose abstract observations are the cross-product of the

values of f and the values of the current abstraction. That is, for some bridging test

b, ηf (b) = 〈η(b), f(b)〉. The proposed refinements are evaluated using ξ and the one

with the highest accuracy is selected.

The main challenge in choosing a refinement is that, in the partially observable

setting, the computational cost of evaluating candidate refinements is much higher

than in the Markov case. Consider the estimate for p(t|H) for some abstract history

H ∈ Hη:

p̂(t|H) =

∑

h∈H # times t follows h
∑

h∈H # times h happens
.

Note that computing p̂(t|H) requires enumerating all primitive histories h ∈ H that

appeared in the data. Furthermore, since computing the estimate of ξ involves com-

puting p̂(t|H) for all abstract histories H, ultimately it involves enumerating all prim-

itive histories in the training data.

In contrast, in the Markov case, histories that end in the same observation are

guaranteed to be associated with the same predictions. As such, one need only

consider abstract observations, rather than abstract histories:

p̂Markov(t|O) =

∑

o∈O # times t follows o
∑

o∈O # times o happens
.

So, in the Markov case, where much of the work on abstraction learning has been

done, evaluating the accuracy of a candidate abstraction is linear in the number of

observations: O(|O|). In the partially observable setting, on which this thesis is

114

focused, evaluating a candidate abstraction is linear in the number of histories which,

in the worst case is O(|O|K) (where K, again, is the maximum history length found

in the data), representing a serious scaling challenge.

One way to lower the cost of evaluating candidate refinements is to avoid perform-

ing the full computation of ξ. The strategy employed here is not to consider every

abstract history when evaluating a refinement but instead to focus on abstract histo-

ries in most need of improvement, as measured by a heuristic. Specifically, consider

the improvement in accuracy caused by combining the current abstraction η with

feature f to produce the refinement ηf :

ξ(ηf) − ξ(η) =
∑

k≤K

E
H′∈H

ηf
k

[D(T |H ′||T |η0(H
′)] − EH∈Hη

k
[D(T |H||T |η0(H)].

Each abstract history under the current abstraction η contributes some amount to

the improvement, essentially how much is gained by just refining that history. One

can think of any particular abstract history H under the current abstraction as a set

of abstract histories under the refined abstraction. In that case, the contribution of

H to the improvement in accuracy can be written as

δη,ηf
(H)

def

=
∑

H′∈H

p(H ′|∅)D(T |H ′||T |η0(H
′)) − p(H|∅)D(T |H||T |η0(H)),

where H ′ denotes an abstract history under the refinement ηf .

By definition,
∑

k≤K

∑

H∈Hη
k
δη,ηf

(H) = ξ(ηf) − ξ(η). Furthermore, it is possible

to place an easily computed bound on δη,ηf
(H), giving an indication of which histories

are in most need of refinement. For the remainder of this chapter, let Y be the symbol

for entropy (instead of the more typical H) in order to avoid confusion with abstract

histories H.

Proposition 4.5. For any abstraction η, any refinement η′, and any abstract history

115

H under η, δη,η′(H) ≤ p(H|∅)Y(T |H) where Y(T |H) is the conditional entropy of the

distribution over tests of interest, given the abstract history H.

Proof. See Appendix D

Proposition 4.5 is actually quite intuitive. It says that the biggest possible change

in predictions is if all the randomness in the predictions were suddenly explained

away. A coarse abstraction may ignore important details, making deterministic events

seem random (for instance, a person who does not pay attention to federal holidays

might think their trash collection service is sometimes randomly perturbed by a day).

In that case, the best possible refinement is the one that completely explains the

variation (the one that incorporates the dates of holidays). As such, the entropy of the

predictions associated with an abstract history bounds how much those predictions

could conceivably be improved by refining that history. Of course, in practice it may

be impossible to obtain zero entropy, whether because the environment truly has

stochastic events or (essentially equivalently) because the features available are not

expressive enough to capture all the relevant details necessary to make the tests of

interest deterministic. In that case this bound on the possible improvement will not

be tight. That said, it is always true that very deterministic predictions will not be

improved much by refining the abstraction and therefore cannot contribute much to

the change in ξ.

So, when evaluating a candidate refinement, its accuracy is only measured with

respect to the abstract histories in most need of improvement (those associated with

the highest entropy in their predictions). In practice, a priority queue is maintained

in order to sort abstract histories by their entropy. Each abstract history is associated

with some number of primitive histories and it is the translation of these primitive

histories using each proposed refinement that is the main computational bottleneck.

As such, abstract histories are drawn from the priority queue until the number of

primitive histories to translate reaches some threshold (in all experiments using this

116

algorithm, this threshold was set to 10,000). Let the set of selected high-entropy

abstract histories be HY. The proposed refinements are then evaluated based on just

on the accuracy of the predictions obtained when refining the histories in HY:

ξHY(ηf)
def

=
∑

H∈HY

∑

H′∈H

p(H ′|∅)
∑

t∈T I

p(t|H ′)

(

log

(

p(t|H ′)

p(t|η0(H ′))

))

where the H ′ are that abstract histories under the refinement ηf that all map to H

under the current abstraction η. The refinement with the highest ξHY is selected. If no

refinement makes any difference (that is, if ξHY(ηf) = ξHY(η) for all f) then another

set of abstract histories are drawn off of the priority queue and used to compute new

evaluations. This continues until a refinement is picked or until the set of abstract

histories is exhausted (indicating that no refinement improves the predictions in any

abstract history).

Of course, picking the refinement that maximizes ξHY is a heuristic and may result

in the selection of different refinements than would have been chosen using the full ξ

as the evaluation. Then again, recall that selecting the refinement with the maximum

ξ was already a heuristic, not guaranteed to produce the optimal abstraction in the

end. Furthermore, any feature that is added according to this criterion is still clearly

informative, at least in some abstract histories, and refinement only stops if no feature

helps in any history. As such, there is little reason to suspect that this heuristic

would significantly harm the chances of learning a good abstraction. In exchange, the

computational cost of evaluating refinements is now tunable (by setting the threshold

on the number of primitive histories to re-translate), allowing for far larger sets of

candidate features than would be feasible if ξ had to be fully computed for every

proposal.

Apart from computational cost, there is another important concern requiring one

last modification to the evaluation procedure: overfitting. Since ξ (or, more accu-

117

rately, ξHY) is estimated empirically, it is possible for it to be artificially inflated by

sampling error, especially if a refinement produces such detailed histories that each

one appears very few times in the data. The predictions may appear to have changed

a great deal, but in fact this could be because the estimates of the predictions associ-

ated with the refined histories are poor. In order to address this, the computation of

ξHY is somewhat altered. Specifically, note that estimating ξHY requires estimating

p(t|H ′) for every test of interest t ∈ T I and every abstract history under the pro-

posed refinement ηf contained within HY. To combat overfitting, the estimates of

p(t|H ′) are only used if they are statistically significantly different from the estimates

of p(t|H), the estimated predictions associated with the corresponding abstract his-

tory under the current abstraction η. For each H ′, if there is no significant difference

(as measured by a likelihood ratio test), the estimates for p(t|H ′) are replaced with

the estimates for p(t|H). As such, if adding a feature f into the abstraction does

not make a significant difference in predictions, it will correspondingly not appear to

increase accuracy over the current abstraction, and will therefore not be selected.

4.3.3 Coarsening step

After each refinement, an iterative coarsening step is performed that merges ab-

stract observations if doing so does not affect accuracy. This step critically keeps the

number of abstract observations low, which in turn means that there will be fewer

abstract histories (reducing the computational cost of the next refinement step) and

that each abstract history will have more associated data (improving the estimates

of predictions). Finally, as seen in Chapter 2, a coarser abstraction typically results

in a simpler model and should therefore be preferred.

In each iteration of the coarsening step, each pair of abstract observations is

considered for merging. Ideally one would only merge observations that result in no

change in accuracy. Of course, since accuracy is only empirically estimated, this is

118

overly restrictive. Instead, the proposed merging that does not cause a statistically

significant change in predictions and that has the highest ξ is selected.

Here, the quadratic number of proposed coarsenings in each iteration is the main

computational bottleneck. Unfortunately, the trick used in the refinement step of only

evaluating abstractions on some histories cannot be applied here. If a coarsening were

selected on the basis that it did not change accuracy on some subset of histories, it

might be missed that it causes a large drop in accuracy in some other set of histories,

undoing key progress. So, ξ must be computed in full to evaluate a coarsening.

Note that in the coarsening step, it can be cheaper to compute ξ than in the

refinement step. When refining, the estimates of the predictions of the tests of interest

given refined abstract histories p(t|H ′) must be computed from the counts associated

with primitive histories (as in Equation 5.1). In the coarsening step, they can be

computed from the counts associated with the abstract histories being coarsened.

That is, if one wishes to estimate p(t|H) where H is an abstract history under the

candidate coarsened abstraction, one need only compute:

p̂(t|H) =

∑

H′∈H # times t follows H ′

∑

H′∈H # times H ′ happens
.

where the histories denoted H ′ are abstract histories under the current abstraction

being coarsened. Since there are typically many fewer abstract histories than primitive

histories, computing ξ can be substantially cheaper in the coarsening step than in the

refinement step. Nevertheless, computing it a quadratic number of times in each

iteration is still a computational burden.

Instead of reducing the cost of evaluation, the strategy here is to reduce the number

of proposals to be evaluated, based on the intuition that if merging two abstract

observations causes a drop in accuracy in the current iteration, it will probably do

so in future iterations as well. Any coarsenings that are found to cause a significant

119

difference in predictions in one iteration of the coarsening step are eliminated from

consideration in future iterations. Such a coarsening is not proposed again until all

other pairs are exhausted. Though it is in principle possible that some coarsening

that would have been selected will have been removed from consideration in an earlier

iteration, it will be re-considered eventually. So, once again, it is unlikely that this

heuristic has a dramatic impact on the abstractions found by algorithm.

Finally, even with the statistical tests combating overfitting, the coarsening step

was still found to occasionally undo too much of the progress made in the refinement

step (causing refinement/coarsening loops). To combat this effect a threshold in the

form of a percentage of the improvement in ξ made by the most recent refinement was

set and only coarsenings that retained at least that much accuracy were performed.

In all subsequent experiments that threshold is set to 0.9.

4.3.4 Complexity of Learning a Bridging Test Abstraction

This section will quickly summarize the complexity of applying the abstraction

learning procedure just presented. At each iteration, the refinement step makes a

number of proposals linear in the number of features. Each proposal can be evaluated

in time linear in the number of histories being evaluated. This number is tunable, and

can be as high as the number of distinct histories in the training data. The coarsening

step is itself iterative. Each iteration proposes a number of coarsenings quadratic in

the number of abstract observations. There cannot possibly be more iterations than

there are abstract observations so in the very worst case (that will rarely, if ever,

occur) the coarsening step performs a number of evaluations cubic in the number

of abstract observations of the abstraction being evaluated. Each evaluation in the

coarsening step is linear in the number of distinct histories in the training data.

The main factors affecting the computational complexity are:

1. The number of features necessary to construct an accurate abstraction (affects

120

the number of iterations)

2. The number of distinct histories in the training data (affects the cost of evalu-

ating abstractions)

3. The number of abstract observations in the accurate abstraction (affects the

number of proposals in the coarsening steps)

4. The number of features (affects the number of proposals in the refinement steps)

Thus, the algorithm is at its most efficient when a small number of very informative

features are provided, when the abstraction being learned is very simple, and when

the system itself has a small branching factor or when training episodes are very short

(small number of distinct histories).

4.4 Controlled Systems and Prediction Profile Models

The discussion in this chapter has been limited to uncontrolled systems though

it can, to some degree, be extended to address controlled systems as well. In a

controlled system, a bridging test will be a sequence of observations and actions.

One possibility is to use the machinery discussed in this chapter unchanged and still

learn an abstraction that maps each bridging test to a single symbol. One could then

treat those symbols as observations and learn an uncontrolled model. However, if one

attempts to learn a generative model of this abstract system, it is important to note

that this approach effectively folds the agent’s own decisions into its observations.

As discussed in Section 2.4, this can result in a drastic increase in model complexity

as the model attempts to predict the agent’s own behavior, as well as the world’s

dynamics.

To avoid this, it would be necessary to map the bridging test to both an abstract

observation, that only contained information about the world’s dynamics, and an

121

abstract action, that only contained information about the agent’s decisions. The

abstract actions would have to be constructed carefully to produce policy independent

predictions. As seen in Section 2.4, this is difficult to achieve even when primitive

actions are being abstracted, let alone sequences of actions. This thorny issue of

finding an action abstraction that results in a model that makes accurate predictions

for the tests of interest and makes policy independent abstract predictions will not

be addressed in this thesis.

However, this does not mean abandoning hope of learning partial models that

have histories of interest in controlled systems. The search for policy independence is

only an issue when learning a generative model, that makes all abstract predictions.

A prediction profile model, as described in Chapter 3, is not a generative model and

only makes the predictions of interest. In fact, a prediction profile model deliberately

folds together action and observation into a single symbol. As such, there is no need

to map bridging tests into separate abstract actions and observations for the purposes

of learning a prediction profile model. The algorithm discussed in Section 4.3 can be

used to learn an accurate abstraction that maps bridging tests (now sequences of

actions and observations) to single abstract symbols. Those symbols will be used as

prediction profile actions, as discussed in Section 3.2. Experiments in Chapter 5 that

involve histories of interest in controlled systems will use prediction profile models to

represent partial models, thus side-stepping the action abstraction issue.

It is also worth noting that histories of interest and prediction profile models com-

plement each other in other ways. The discussion in Section 4.2 centered on showing

that having a restricted set of histories of interest reduces the linear dimension of the

system being modeled, which is mainly relevant if one wishes to learn a generative

model. Recall from Section 3.4 that the linear dimension of the system has little

bearing per se on the complexity of a prediction profile model. That said, restricting

when the model must make predictions simplifies the prediction profile model learn-

122

ing task in other ways. Most importantly, it introduces temporal abstraction to the

model. Recall that one of the main performance bottlenecks for prediction profile

models was the sample complexity of estimating prediction profiles themselves. The

probability of seeing a particular history becomes progressively smaller and smaller

as the length of the history grows. As such, it could take a large number of sampled

trajectories from the world before enough experience was gained with a long history

to get a reasonable estimate of its prediction profile. Observation abstraction can

help with this issue by lumping some histories together but bridging test abstraction

can have an even more dramatic effect. Collapsing entire sequences into single ab-

stract observations can result in many more primitive histories being lumped together

into the same abstract history, which will have correspondingly more associated data.

Some of these intuitions will be seen empirically in the experimental section of the

next chapter.

4.5 Scaling Abstraction Learning (Future Directions)

By far the tightest computational bottleneck in the abstraction learning procedure

discussed in this chapter is the coarsening step. Recall that the coarsening step is

critical, as learning an abstraction by only refining will rapidly spread the data thin

across many overly-fine abstract histories, making it difficult to obtain good prediction

estimates. In addition, the learned abstraction will make too many distinctions,

likely resulting in a more complex abstract model. That said, in the worst case the

coarsening procedure must evaluate a number of abstractions that is cubic in the

number of abstract observations after the previous refinement step. Each one of

those evaluations is linear in the number of distinct abstract histories. As such, this

algorithm scales very poorly if the abstraction being learned has a large number of

abstract observations (or if intermediate abstractions along the way do as well).

Recall that the main idea behind making the refinement step computationally

123

cheaper was to only evaluate candidate refinements using a subset of the histories

in the data. The reason this strategy could not be straightforwardly applied to the

coarsening step was the danger that a coarsening that doesn’t reduce accuracy in some

histories might undo critical refinement progress in other histories. One approach

that might address this concern is to “lock” the progress made on some histories to

prevent it from being undone. Essentially the idea would be to perform the entire

abstraction procedure on a subset of the histories in the data: find the coarsest,

most accurate abstraction the procedure could find for just those histories. Then,

initializing with that learned abstraction, perform the procedure on a different subset

of histories, ensuring that the coarsening steps never undo the distinctions made in

the first round. This can repeat incrementally until all histories have been considered.

Because only a subset of histories are used during evaluations, each iteration may be

computationally cheaper. Furthermore, if the abstraction learned on one subset of the

histories is useful for other histories, this procedure may find a good abstraction early

on, alleviating the need to ultimately consider all histories. That said, it remains to

be seen whether this incremental approach would lead to overly-fine abstractions. It

will also rely upon good heuristics for selecting the history subsets used to evaluate

the abstraction. This chapter has provided one such heuristic, though there is surely

more investigation to be done in this space.

4.6 Summary

Key points from this chapter:

• This chapter extended the definition of partial models used in the previous two

chapters to allow partial models to make predictions in only some situations.

– A partial model is given a set of histories of interest HI ⊆ H which are

the histories in which it must make its predictions.

124

– The previous two chapters dealt with the special case where all histories

are of interest (that is, HI = H).

• Learning a partial model with limited histories of interest is done via the for-

malism of the bridging test system.

– The bridging test system updates only at histories of interest.

– The “observations” of the bridging test system are sequences of observa-

tions that occur between histories of interest (bridging tests).

– A model of the bridging test system makes predictions only at histories of

interest and can be far simpler than a model that makes predictions at all

histories (and can be no more complex).

– The bridging test system has infinitely many “observations” and thus ab-

straction is necessary (and the methods from Chapter 2 cannot be applied).

• An algorithm for learning an accurate bridging test abstraction was presented.

– The algorithm (inspired by decision trees) incrementally and greedily re-

fines the abstraction using a set of pre-defined features.

– The problems of proposing and evaluating refinements are particularly

challenging in the partially observable case.

∗ Heuristic changes to the basic algorithm were presented that make it

more practically applicable.

– Experiments applying this method to example problems will be presented

in the next chapter.

125

CHAPTER 5

Collections of Partial Models

The previous chapters have focused on the problem of learning a single partial

model. The experiments in Section 3.6 demonstrated one possible use of a partial

model: in some cases it is possible that the values of a small number of important

predictions may be particularly informative for decision making. In these cases a

partial model can be used to maintain the values of these important predictions

and provide them as features to model-free control methods. Of course, in most

interesting environments it will not be sufficient to make only a handful of predictions.

Humans seem to have a model of their environment that can be used to make many

predictions about a wide variety of phenomena. Humans can also use their models

for generative planning, mentally trying out various courses of action and predicting

possible outcomes. A single partial model would not likely suffice for these purposes.

This chapter will explore the intuitive idea of learning many partial models, each

responsible for making predictions about some particular aspect of the agent’s en-

vironment, and then combining their predictions to form a more complete model

that can make detailed predictions and be used for planning purposes. As will be dis-

cussed in more detail, a collection of partial models is a structured representation that

exploits conditional independence relationships between the predictions of its com-

ponent models. This approach will primarily be contrasted with dynamic Bayes nets

126

(DBNs), a popular and well-studied structured representation that exploits condi-

tional independence relationships between unobserved hidden variables. This chapter

will also serve to bring together the methods discussed in previous chapters, learn-

ing bridging test abstractions and prediction profiles models to make up collections

of partial models of high-dimensional arcade game examples, that are then used for

model-based planning.

5.1 Collection of Partial Models (CPM)

A collection of partial models (CPM) consists of a set M of partial models. As

discussed in Chapters 2 and 3, each partial model M has a set of tests of interest, T I
M

that determine what predictions the model will make and, as discussed in Chapter

4, a set of histories of interest HI
M that determine when the model will be available

to make predictions. For instance, in the recurring 1D Ball Bounce example, one

might have partial models that each predict whether the ball will be in a particular

position in the next time-step whenever the ball is nearby and other models that

make the same prediction when the ball is not nearby. Intuitively one could imagine

that, if there were such a pair of models for every position, this collection of partial

models could be used as a complete, generative model, so long as the predictions of

the individual models could be combined into a joint prediction. The next sections

discuss the role of tests of interest and histories of interest in a CPM and then, most

importantly, how to combine the predictions of the component models.

5.1.1 Tests of Interest

Though in principle the learning methods discussed in the previous chapters apply

to a very general class of possible tests of interest, it will simplify the development

of CPMs to constrain the tests of interest and focus on partial models that make

abstract predictions about the next time-step. To that end, the predictions made by

127

each partial model in the collection are defined using an observation abstraction.

Definition 5.1. For a partial model M ∈ M, let the surjection ωM be the abstraction

of interest that defines what predictions model M will make. Specifically, model M

makes only one-step predictions about the abstract observations defined by ωM . If

the current time-step is k, and the actual observation that occurs at time k + 1 is

ok+1, then call ωM(ok+1) model M ’s outcome. So, each model M is only responsible

for making predictions about its own outcome.

In the 1D Ball Bounce example, for a model in charge of predicting whether the

ball will be in some position x, there are two outcomes (either pixel x is black or pixel

x is white) and ωM maps all observations appropriately to one of those two outcomes.

The model provides a conditional probability distribution over these two outcomes,

given history and a selected action.

In a CPM, multiple models make predictions simultaneously. The outcomes pre-

dicted by the different models capture different (abstract) aspects of the next obser-

vation (for instance, each might predict the color of a single pixel). If multiple partial

models are making abstract predictions about the next observation at the same time,

then, together, they may offer a more detailed prediction.

Definition 5.2. Consider a set of partial models {M1,M2, ...,Mj}. At the kth

time-step, the corresponding joint outcome is a function of k + 1th observation:

ωM1...Mj
(ok+1)

def

= ωM1
(ok+1) ∩ ωM2

(ok+1) ∩ ... ∩ ωMj
(ok+1).

In the 1D Ball Bounce example, each model is responsible for predicting the color

of its associated pixel. So, each model has two possible outcomes, one for when its

pixel is black and one for when it is white. The joint outcomes for all the models are

full images with the color of each pixel specified (so for a size 10 1D Ball Bounce there

are 10 such joint outcomes, one for each possible image). A joint outcome for some

128

subset of the models would be a partial image with the colors of only some pixels

specified.

5.1.2 Histories of Interest

Each partial model in the collection is required to make predictions only at certain

histories HI
M ⊆ H. This means that at any particular history, only some subset of the

models in M will be able to make predictions. At history h, let Mh = {M : h ∈ HI
M}

be the set of active models, those that are available to make predictions.

In the 1D Ball Bounce example, one might have models that are active when the

ball is nearby their assigned position, and those that are active when the ball is not

nearby. The set of active models changes over time, depending on the position of the

ball.

At any given history, the predictions made by the active models determine the

predictions that can be made by the CPM. Specifically, the CPM can be used to

make predictions about the joint outcomes of the active models, written ωMh
(o) (for

a given next observation o). Recall that any model that can make all primitive one-

step predictions in all histories is a complete model that can be used to make any

prediction. This leads straightforwardly to a condition on a CPM that, when satisfied,

allow it to be used as a complete model.

Proposition 5.3. A CPM comprises a complete model if for every history h ∈ H

and every primitive observation o ∈ O, the corresponding joint outcome of the active

models ωMh
(o) =

⋂

M∈Mh
ωM(o) = {o}.

For this condition to hold, at every history and for every distinct pair of possible

next primitive observations, there must be some active model whose abstraction of

interest distinguishes those two observations. In the 1D Ball Bounce example, for

instance, it is sufficient that the color of each pixel is predicted by some model in

every time-step.

129

Figure 5.1: The stochastic 1D Ball Bounce example

On the other hand, if the condition does not hold, the CPM is effectively a partial

model itself. It can make only abstract predictions about the next time step, where

the abstraction is defined by the joint outcomes of the active models at each step. The

remainder of the chapter will focus on CPMs that can be used as complete models,

and can therefore be used by standard model-based planning methods.

5.1.3 Combining Predictions

Each partial model in a CPM makes some abstract prediction about the next ob-

servation (it predicts its outcome). In order to predict the next primitive observation,

a CPM must efficiently combine those marginal predictions into a joint prediction.

Perhaps the simplest way to combine the models’ marginal predictions is to multiply

them together:

Pr(o|h, a) = Pr(ωMh
(o)|h, a) = Pr(∩M∈Mh

ωM(o)|h, a) =
∏

M∈Mh

Pr(ωM(o)|h, a)

Of course, this product form will only produce the correct joint prediction if the

active models at any given history make mutually conditionally independent predic-

tions, given history. Making this independence assumption when it does not hold

can produce counter-intuitive results. For instance, it does not hold for the natural

CPM discussed so far for the 1D Ball Bounce example. Recall the noisy version of the

1D Ball Bounce example presented in Section 4.2 and pictured in Figure 5.1. With

probability 0.7 the ball moves in its current direction and with probability 0.3, the

130

Figure 5.2: A possible CPM for 1D Ball Bounce

opposite direction. Direction changes on the edge pixels. Consider the CPM pictured

in Figure 5.2 where there is a partial model (represented by a circle) for each pixel

that predicts whether the ball will be in that position in the next time-step. Now

imagine that the ball is in some position x and its current direction is to the right.

Then with probability 0.7 it will move to position x + 1 and with probability 0.3 it

will move to position x−1. So, there is an active partial model for predicting whether

the ball will be in position x + 1 and one for predicting whether the ball will be in

position x − 1. If these models’ predictions are treated as independent and simply

multiplied together, the CPM will provide incorrect joint predictions. For instance,

the CPM would assign only probability 0.7×0.7 = 0.49 to the ball landing in position

x + 1 and not in position x − 1 (because the x + 1 model assigns 0.7 probability to

the ball moving to its position and the x − 1 model assigns 0.7 probability to the

ball not moving to its position). Worse, the CPM would assign positive probability

(0.7 × 0.3 = 0.21) to the ball landing in neither position x + 1 nor position x− 1 as

well as to the ball landing in both positions x+1 and x−1, both of which eventualities

should obviously have zero probability.

The problem in this example stems from the fact that the models provide only

marginal probabilities for correlated events and there is no general method for com-

puting a joint probability from marginal probabilities. Thus, in order for the product

form to be correct, the individual partial models in a CPM must be designed in a

way to make it so. This section will discuss two strategies for constructing CPMs so

that the product form does produce correct joint predictions. The first strategy is to

131

Figure 5.3: A CPM in which models make independent predictions.

ensure that any predictions that are correlated are made jointly by a single partial

model, thus satisfying the mutual independence assumption. Histories of interest can

limit that model’s responsibilities so joint predictions are only made when necessary.

The second, more general strategy is to allow partial models’ predictions to depend

upon the outcomes of other models, thus allowing for arbitrary joint distributions, in

principle.

5.1.3.1 Making Joint Predictions When Necessary

In the CPM for 1D Ball Bounce in the previous example, there is a model for

predicting whether the ball will be in each position. Because treating individual

pixels independently is problematic, one might imagine instead having a model that

jointly predicts positions that are correlated. Whether or not the ball will be in

position x is correlated with whether or not the ball will be in position x − 2 and

whether it will be in position x + 2. Of course, whether the ball will be in position

x − 2 is also correlated with whether it will be in position x − 4, which is, in turn,

correlated with whether it will be in position x − 6, and so on. One partial model

that jointly predicts all of these positions would be so complex as to essentially defeat

the purpose of having partial models in the first place. That said, there is structure

here that can be exploited through the use of histories of interest.

Note that predictions about position x and position x−2 are only correlated when

the ball is in position x−1 (because it can move either left or right, but not both). In

132

any other situation predictions about positions x and x− 2 are, in fact, independent.

As such, it is possible to have a partial model that jointly predicts whether the ball

will be in position x and whether it will be in position x − 2, but only in histories

that end with the ball in position x − 1. In the new CPM (pictured in Figure 5.3)

there is a pair of partial models associated with each position x. The first type of

model (pictured above the line of pixels) is active in histories that end with the ball

outside the immediate neighborhood of x (inactive models are in grey) and predicts

whether the ball will be in position x in the next time step (this model has an easy

job: always predict “no”). The second type of model (pictured beneath the line of

pixels) is active in histories that end with the ball in position x. This model predicts

the color of all three pixels in the immediate neighborhood of x.

In this CPM the mutual independence property holds because the pixels whose

values are correlated are predicted jointly. However, histories of interest allow for

partial models that only make joint predictions when necessary and otherwise treat

pixels as independent, essentially allowing the intra-step dependency structure to

change over time. As a result, the individual partial models can still have quite

restricted prediction responsibilities (in comparison to a model that must jointly

predict all pixels that are ever correlated).

This example illustrates that CPMs have a great deal of flexibility in decompos-

ing predictions about the next observation. Because different models can be active

at different times, predictions can be made jointly or independently as appropriate

for the particular situation. Of course, this requires that the prediction responsi-

bilities of the component models of the CPM be defined with the knowledge built

in about which predictions are correlated when. While it is conceivable that this

type of structural information might be available to a domain expert, or could be

learned before the partial models themselves are learned, a small extension to the

definition of partial models (described next) will allow for more expressiveness when

133

decomposing predictions. It will also suggest a straightforward method for learning

the dependence relationship between the predictions of partial models that leverages

methods described in earlier chapters.

5.1.3.2 Conditioned Outcomes

Instead of making the assumption that all active models make mutually condi-

tionally independent predictions, it is far more expressive to allow models’ predictions

to depend upon the outcomes of other models and thus explicitly model correlation

between predictions. In order to ensure that there are no circular dependencies, an

ordering is imposed over the models: M1,M2, ...,M|M|. In principle any model Mi

conditions its predictions upon the outcomes of all previous models that are also ac-

tive: Mi
h

def

= {M1, ...,Mi−1} ∩ Mh. Let the joint outcome of all active models from

M1, ...,Mi−1 for a particular next observation o be ωMi
h
(o). Now model Mi’s pre-

dictions are required to be conditioned on this joint predicted abstract observation.

Thus, model Mi’s predictions of interest become:

Pr(ωMi
(o)|h, a, ωMi

h
(o)) (5.1)

for all histories of interest h ∈ HMi
, actions a ∈ A, and primitive observations o.

Note that model Mi does not depend upon any internal state of the previous models,

only their predicted abstract observations.

For instance, in the 1D Ball Bounce example, the models are associated with

positions. One might order the models from left to right, allowing each model to

condition on the values of all pixels to the left when making its own prediction.

Consider a model predicting whether the ball will be in position x when the ball is in

position x− 1 and is currently moving to the right. Then, instead of predicting that

the ball will move to position x with probability 0.7, the model will make conditional

134

Figure 5.4: Each model conditions its predictions on the pixel two positions to the
left

predictions based on the outcome of pixels to the left. So the model will predict that

if the ball moves to position x − 2, then it will move to position x with probability

0. If the ball does not move to position x − 2, then it will move to position x

with probability 1. As such, the previously discussed problem of assigning positive

probability to impossible events has been addressed, now that the models’ predictions

explicitly model the dependencies amongst their outcomes.

If all partial models accurately make their predictions of interest, conditioned on

the outcomes of the previous models in the order, then any arbitrary conditional

probability distribution over the next observation o at history h can be represented

as the product of the predictions of the active models, simply by the chain rule of

probability:

Pr(o|h, a) = Pr(ωMh
(o)|h, a) = Pr(ωM1

(o) ∩ ωM2
(o) ∩ ... ∩ ω|Mh|(o)|h, a)

=
∏

Mi∈Mh

Pr(ωMi
(o)|h, a, ωMi

h
(o))

This generality comes at a cost, however. Late in the order, the joint outcomes of

the previous models will almost fully specify the (possibly high-dimensional) primi-

tive observation. Thus, the compactness of late models, that must condition on this

extremely detailed abstract feature of the next observation, will suffer. Taking inspi-

ration from the graphical models literature, CPMs address this by assuming structure

in the conditional independence relationships amongst models’ predictions. That is,

it is assumed that only some of the information predicted by previous models is rel-

135

evant for any given model; much of it can be ignored. For instance, in the 1D Ball

Bounce example, a model associated with position x need only condition on the pixel

in position x−2; the values of all other pixels to the left are independent of the value

of the pixel at position x. A collection of these partial models is shown in Figure

5.4. More generally, each model will depend only on some abstraction of the joint

predicted observation of the previous models.

Definition 5.4. For each model Mi the conditioned abstraction is a surjection κMi

over joint outcomes of the previous models in the order. At time-step k, when making

predictions about the next observation ok+1, model Mi will only condition its predic-

tions upon κMi
(ok+1), where the notational shorthand κMi

(ok+1) is taken to mean

κMi
(ωMi

h
(ok+1)). Call κMi

(ok+1) model Mi’s conditioned outcome.

The joint probability distribution as computed by the CPM will be correct if each

model’s prediction is conditionally independent of all earlier models’ predictions, given

history, the action, and its own conditioned outcome. That is, if:

Pr(ωMi
(o)|h, a, ωMi

h
(o)) = Pr(ωMi

(o)|h, a, κMi
(o)).

In other words κMi
(o) is required to summarize everything about the joint outcome

of the previous models ωMi
h
(o) that is relevant to making predictions about the model

Mi’s outcome ωMi
(o). If this property holds true of κ for every partial model (and if

the partial models make accurate predictions), then the product of the predictions of

the partial models is the correct prediction for the next observation:

∏

Mi∈Mh

Pr(ωMi
(o)|h, a, κMi

(o)) =
∏

Mi∈Mh

Pr(ωMi
(o)|h, a, ωMi

h
(o))

= Pr(ωM1
(o) ∩ ωM2

(o) ∩ ... ∩ ωM|Mh|
(o)|h, a)

= Pr(o|h, a)

136

Figure 5.5: Incorporating κ into the bridging test abstraction.

5.1.3.3 Learning the Conditioned Observation Abstraction

In analogy with graphical models, the conditioned outcomes, as specified by the

κMi
for each partial model Mi, essentially defines the structure of the CPM: the

conditioned abstractions define the conditional independence relationships that will

be assumed between the models’ predictions during parameter learning. It is common

in the graphical models literature for structure of this form to be provided by domain

experts, leaving only the model parameters to be learned from data. Note that if the

designer of a CPM has access to knowledge about which models are independent in

various situations, as in the previous section, this knowledge can be used to design

models with simple conditioned outcomes, using histories of interest to model complex

dependencies only when necessary. That said, it is also straightforward to learn κ

(or to adapt a given abstraction) using the abstraction learning process discussed in

Chapter 4.

Recall that the algorithm in Chapter 4 assumed as given a set F of features of

bridging tests (sequences of actions and observations that occur between histories

of interest) and employed a decision-tree-like algorithm to construct an abstraction

using these features. To fold in learning of κMi
, one simply allows the abstraction to

incorporate features of the observation being predicted (the observation immediately

137

following the bridging test). Specifically, one can add to F features of the joint

outcome of the previous models ωMi
h
(o) (where o is the next observation) and allow

the abstraction learning procedure to incorporate these features as well. The abstract

sequence is generated as pictured in Figure 5.5: each abstract symbol is the result of

applying the abstraction to a bridging test and the part of the next observation that

the partial model conditions on. When the model is queried for a specific prediction

Pr(o|h, a), the observation being predicted is known and can easily be provided to the

abstraction for the relevant features to be computed. When the model is being used

to sample a next observation, the partial models are sampled in order, and since the

abstraction only depends upon the previous models in the order, an abstract symbol

can be assigned to the most recent bridging test using the sampled outcomes of

the previous models. In subsequent experiments, the abstraction learning algorithm

introduced in Chapter 4 will be used in this way to simultaneously learn an accurate

abstraction of the bridging tests and a κ that results in accurate joint predictions.

5.1.4 Collections of Partial Models: Summary

This section briefly collects the discussion of the previous sections into a concise

description of a CPM. A collection of partial models (CPM) consists of an ordered set

M = {M1,M2, ...,M|M|} of partial models. Each model Mi has prediction responsi-

bilities, given by three components:

1. A set of histories of interest, HI
Mi

, which determine in which histories model Mi

is active and able to make predictions.

2. An abstraction of interest, ωMi
, which is a surjection defined over all primitive

observations. The model makes predictions about its outcome, ωMi
(o), where o

is the next observation.

3. A conditioned abstraction, κMi
, which is a surjection defined over the joint out-

138

comes of the previous models in the order. The model conditions its predictions

about its own outcome ωMi
(o) on the conditioned outcome κMi

(o), where o is

the next observation.

Each partial model Mi is then responsible for making the predictions

Pr(ωMi
(o)|h, a, κMi

(o))

for all histories h ∈ HI
Mi

, all actions a ∈ A, and all primitive observations o ∈ O.

At any given history h, some subset of the partial models are active and able

to make predictions: Mh
def

= {M : h ∈ HI
M}. The CPM provides predictions about

the joint outcome of the models in Mh. That is, the CPM predicts the value of

ωCPM(o, h)
def

=
⋂

M∈Mh
ωM(o) (where o is the next observation). The CPM’s prediction

is computed as the product of the predictions of the active partial models:

PrCPM(ωCPM(o, h)|h, a)
def

=
∏

Mi∈Mh

Pr(ωMi
(o)|h, a, κMi

(o))

A CPM is a complete model (i.e. provides predictions for all primitive one-step

tests) if for all histories h ∈ H and all primitive observations o ∈ O, ωCPM(o, h) = {o}.

That is, for every pair of primitive observations and every history, some active model’s

abstraction of interest distinguish those observations.

A CPM makes accurate predictions, that is, all observations o ∈ O, all actions

a ∈ A, and all histories h ∈ HI
Mi

, PrCPM(ωCPM(o, h)|h, a) = Pr(ωCPM(o, h)|h, a), if

for all models Mi, , Pr(ωMi
(o)|h, a, κMi

(o)) = Pr(ωMi
(o)|h, a, ωMi

h
(o)) (and, obviously,

if all partial models make accurate predictions). In words, each model Mi’s outcome

must be conditionally independent of the joint outcome of all previous models in the

order, given history and model Mi’s conditioned outcome.

With CPMs described in full, the next section will discuss some strengths and

weaknesses of CPMs and relate them to existing types of structured models (primarily

139

dynamic Bayes nets).

5.2 Discussion and related work

A CPM is essentially a “divide and conquer” approach to modeling. Consisting

of many partial models, a CPM decomposes the problems of learning, representation,

and prediction. Since each partial model can itself be quite simple and learnable, the

CPM can be correspondingly more compact and more learnable than an unstructured

complete model. Of course, decomposition into many partial models is not the only

way to introduce structure into a model. This section will discuss the relationship

between CPMs and some other structured representations. Perhaps the deepest, and

most interesting connection is to dynamic Bayes nets (DBNs), a popular and well-

studied structured representation (described in Section 1.2.2.2). The comparison to

DBNs in the next section will also serve as a useful context in which to discuss

some key properties of CPMs. Comparisons between CPMs and some other relevant

representations will be briefly discussed in the subsequent section.

5.2.1 DBNs and CPMs

As described in Section 1.2.2.2, DBNs are a generalization of POMDPs that de-

compose their representation of the hidden state and the observation into a set of

variables, some of which are observable, and some of which are hidden. The value of

each variable in a given time-step is stochastic, and may depend upon the values of

other variables in the same step, or the values of variables in the previous step. The

structure of a DBN is the specification of the conditional independence relationships

between variables. If each variable in a DBN depends on the values of very few other

variables, then it can be represented far more compactly than a flat POMDP (which

implicitly assumes every variable is dependent on every other variable).

There are some clear parallels between DBNs and CPMs. In a CPM, each partial

140

model makes predictions about some abstraction of the primitive observation, much

like an observed variable in a DBN. If the partial models in a CPM use a hidden-

variable-based representation (such as a POMDP), then the hidden variables of the

models roughly correspond to the hidden variables in a DBN. There are, however,

several differences between the two representations that result in trade-offs for choos-

ing to use one over the other. The main difference is that the structure in a DBN

is primarily focused on the conditional independence amongst unobserved hidden

variables while the structure in a CPM is expressed entirely in terms of conditional

independence of observable events. This has two main consequences:

Localized Training: Partial models in a CPM do not share any state information

they may maintain in order to make their predictions. Partial models only inter-

act with each other insofar as the predictions of one model may depend upon the

outcomes of other models, which are observable. Because each partial model is self-

contained in this sense, each partial model can be trained independently of any others:

everything needed to learn a partial model can be obtained from the observations in

the training data. In contrast, the hidden variables in a DBN typically depend di-

rectly upon each others’ (unobserved) values, inextricably intertwining the learning

problems associated with the various hidden variables. As a result, DBN training

using the EM algorithm requires a global inference step over all hidden variables that

must be approximated in general (Boyen & Koller 1998). In essence, while DBNs

do successfully decompose the problems of representation and prediction, they do not

decompose the learning problem.

On the other hand, because there is no mechanism for partial models in a CPM

to directly share state information, there may be duplicated effort across multiple

models. For instance, recall the 1D Ball Bounce example. The CPM discussed in

Section 5.1.3.2 has a partial model associated with each position that predicts whether

141

the ball will be in that position in the next time-step, conditioned on whether it will be

in any position to the left in the next time-step. In order to make correct predictions,

such a partial model must maintain information about the ball’s current direction

(as this affects the distribution over its next position). Because the models do not

share information, each partial model in the CPM must maintain the ball’s current

direction for itself. A DBN, in contrast, could represent the ball’s current direction

once as a single hidden variable whose value can be accessed by any other variable

that depends upon it.

So, one would expect the decoupling of the component models in a CPM to be an

advantage mainly when the models maintain relatively disjoint state information. In

this case one can independently train many simple models instead of attempting to

perform global inference over the hidden state as a whole, as in DBN training. If, on

the other hand, the hidden state can be expressed very concisely (as in the 1D Ball

Bounce example), a DBN will likely be a more compact representation and may not

suffer much from the need for global inference during learning.

Verifiable Structure: The structural assumptions made by a CPM are given by

each model Mi’s conditioned abstraction κMi
. The assumption is that each model’s

outcome is conditionally independent of the outcomes of the previous models, given

its conditioned outcome (as given by κMi
). Note that this assumption involves only

the conditional independence of observable events. As a result, a CPM’s structural

assumptions can be tested via statistical analysis of the training data and, given

sufficient data, may be falsified if they are incorrect. In contrast a DBN’s structure

primarily makes assumptions about the conditional independence of hidden variables,

whose values are never observed. As a result, a DBN’s structural assumptions can

never be verified or falsified by data. Though structure learning is not a focus of

this dissertation, it seems reasonable to hypothesize that being able to evaluate the

142

objective correctness of structural assumptions would make structure learning signif-

icantly easier. Indeed, Section 5.1.3.3 has already discussed how κMi
can be straight-

forwardly learned from training data. Because the assumptions implied by a given

κMi
are testable, one can apply an incremental generate-and-test algorithm like that

presented in Chapter 4 to learn it.

The trade-off is that there may exist systems that can be compactly represented

using structured hidden variables but whose observations cannot be easily decom-

posed. It is not difficult, for instance, to imagine an environment with complex,

factored dynamics, but only a binary observation. Clearly the type of structure ex-

ploited by a CPM would be of no use in such a system. On the other hand, in a

trivial sense CPMs do not rule such systems out, since an individual partial model

could itself be represented as a DBN. This point is expanded on below.

Apart from the difference in the nature of their structural assumptions, there are

some other ways in which CPMs differ from DBNs that are worth discussing briefly.

Histories of Interest: While histories of interest are central to a CPM, they do

not have a direct analog in a DBN. As discussed in Chapter 4 and Section 5.1.2,

histories of interest provide a number of benefits. Allowing models to make predictions

in only some situations can simplify the modeling task, provide an opportunity for

temporal abstraction, and allow the CPM to alter independence assumptions over

time, as necessary. Some of these features can be obtained in a DBN in other ways.

For instance, by imposing additional structure such as context-specific independence

(Boutilier et al. 1996), a DBN can represent independence relationships that change

over time. That said, context-specific dependence sets dependence relationships based

on the values of variables, rather than explicit features of history. While this is

reasonable when the DBN is being specified by an expert, when learning, it can

143

be difficult or impossible to know a priori what specific values of hidden variables

will “mean” after training, making the specification of context-specific independence

structure before learning difficult.

Representational Flexibility: Note that a CPM is specified by the responsibili-

ties of its component models, not the models themselves. That is, a CPM’s structure

tells each model what to predict and when to predict, but not how to predict. For the

CPM’s purposes, the individual models are black-box predictors. This offers a great

deal of representational flexibility. Dynamic Bayes nets, by their very nature make

a commitment to a Bayesian network representation which is very powerful in many

ways, but can also be limiting. The parameters of Bayes nets with hidden variables

are typically learned using Expectation Maximization which, even apart from the

necessity of approximate inference mentioned earlier, is a hill-climbing algorithm and

therefore prone to converging on local maxima. In a CPM, while individual partial

models could be represented using Bayes networks, such as POMDPs or even struc-

tured representations like a DBN, the framework makes no such commitment. As

such, partial models are free to use representations whose learning algorithms have

stronger convergence properties and that do not easily fit in the graphical models

framework (such as PSRs or OOMs). This also allows the use of prediction profile

models, and the attendant advantages discussed in Chapter 3. Finally, this flexibility

offers the possibility of using different representations for different models: applying

the right method to each individual phenomenon in the world. Intriguing though it

is, exploration of this last possibility will be left to future work.

Some of the comparisons between CPMs and DBNs made here will be explored

empirically in Section 5.3.1. First, however, it is worth briefly discussing the connec-

tions between CPMs and other related existing representations.

144

5.2.2 Other Relevant Work

Stochastic relational models (e.g. Pasula et al. 2007) are a structured represen-

tation of Markov environments. The state is represented as the conjunction of a

number of predicates. The dynamics are driven by a set of “update rules,” each with

pre-conditions on the state determining when the rule applies and stochastic post-

conditions specifying how the rule changes the state. Partial models are similar to

update rules with histories of interest and abstract observations playing the roles of

pre- and post-conditions, respectively. The main difference is that update rules always

make the same prediction whenever they are active. That is, the pre-conditions them-

selves must be informative enough to make accurate predictions. A partial model,

in contrast, maintains the state information necessary to make its predictions. This

allows CPMs to enjoy the benefits of model decomposition in partially observable

environments. A strength of relational models not reflected in CPMs is the use of

variables and first-order reasoning. First order update rules can bring to bear sophis-

ticated generalization and parameter tying, which can greatly impact compactness

and learnability. While the experiments in Section 5.3.2 will make use of more ad hoc

parameter tying schemes, first-order representations have not been incorporated into

the definition of CPMs.

Product of experts models (Hinton 1999) represent a conditional probability dis-

tribution as the normalized product of the output of several “experts.” However,

while a partial model is defined by its prediction responsibilities, the semantics of the

experts’ output is not defined a priori. As a result, POE models are trained globally

to ensure that different experts make different predictions. Also, with no conditional

independence assumptions placed on the experts, POE models suffer from a costly

re-normalization step when making predictions. A CPM does not re-normalize its

predictions on the assumption that the provided structure correctly represents the

true dependence relationships between models’ predictions. Unlike CPMs, however,

145

POE models do automatically learn a decomposition of the problem into experts.

It is possible that product of expert models could inspire methods for learning the

structure in a CPM.

Maximum entropy models (e.g. Berger et al. 1996) represent a conditional prob-

ability distribution as a weighted, normalized product of a set of features (of both

the outcome being predicted, and the values of the variables being conditioned on).

The basic idea is to assume that the expected values of the features are equal to

the estimated expected values from the training data. Then it can be shown that

the least commitment model that produces a distribution with the highest possible

entropy (while still retaining the expected values for the features) take this weighted

product form. The learning problem is then to learn values for the weights that ac-

tually maximize the entropy. One way to see CPMs in the light of maximum entropy

models is to imagine that the features are binary and take the form “Model M is ac-

tive and test of interest t occurs” (remember, the features are of both the history and

the future being predicted). The weights, then, are the actual predictions made by

the models. Seen this way, the computation of a CPM’s prediction and a maximum

entropy model’s prediction roughly correspond. On the other hand, in a maximum

entropy model, the weights associated with each feature are fixed. In a CPM, the

predictions of the models reflect the changing state of those models. A such, a CPM

is in some ways more expressive.

As mentioned in Chapter 1, Wolfe et al. (2008) introduced a structured repre-

sentation called the factored PSR. In a factored PSR, the observation is split into

variables and for each variable, a PSR model is learned to make predictions about

that variable. The joint prediction of the model as a whole is the product of the

predictions of the individual models. A factored PSR is an example of a CPM, as

described here. Collections of partial models are more general in several ways but,

nevertheless, the results obtained by Wolfe et al. can serve as further evidence of the

146

promise of this approach.

Wolfe (2009) also introduced a representation called the multi-mode PSR. In a

multi-mode PSR, the system is assumed to have many distinct “modes” which can

be labeled in the training data. A separate model is learned for each mode. Then an

abstract model is learned that predicts the dynamics of the modes themselves. When

the model is used for prediction in the actual environment (where mode labels are not

available), this upper-level model provides a probability distribution over the current

mode, and the various specific mode-models’ predictions are mixed appropriately.

This example is notable mostly as an interesting generalization of histories of interest.

In a CPM, each model is either active, or inactive. In a multi-mode PSR, there is a

soft notion of when models should make predictions, where models contribute more

or less to the overall prediction, depending on how likely it is that they actually apply.

It may be interesting to extend CPMs to include similar ideas.

5.3 Experiments

This section will describe empirical results of applying CPMs to some example

problems. The first set of experiments will supplement the discussion comparing

DBNs and CPMs by applying both methods in an illustrative example (1D Ball

Bounce). These experiments will also show the effect that different decompositions

can have on the difficulty of learning a CPM. The second set of experiments will apply

CPMs to two arcade game examples. These experiments will serve two purposes.

First, they will illustrate the application of CPMs in high dimensional problems.

Second, they will integrate several facets of the discussion so far, as the individual

partial models in the CPMs will be learned using the abstraction learning algorithm

from Chapter 4 and the prediction profile model learning algorithm from Chapter 3.

147

(a) Variant 1 (b) Variant 2

Figure 5.6: DBN structures for 1D Ball Bounce

5.3.1 DBNs and CPMs

The first set of experiments will serve as an empirical companion to Section 5.2.1,

which compared DBNs to CPMs. Both will be applied to the stochastic version of 1D

Ball Bounce that has been discussed in several previous sections, as well as another

variant meant to contrast the difference between the two approaches.

5.3.1.1 Variant 1: Simple Hidden State

First consider the stochastic 1D Ball Bounce. As described earlier, the ball has

a current direction (starts to the left) and position (starts in the middle pixel) and

every time-step moves one pixel in its current direction with probability 0.7 and one

pixel in the opposite direction with probability 0.3. When the ball enters an edge

pixel its direction is set to point away from the edge (e.g. entering the left edge pixel

sets the ball’s direction to the right).

148

Figure 5.7: CPM-PixelHOI Structure

Figure 5.6(a) shows a DBN structure for a size 5 1D Ball Bounce. Observed

variables are shaded and hidden variables are white. There is one observed variable

for each pixel and a single hidden variable representing the ball’s direction. The

arrows denote the conditional dependence relationships (the conditional probability

of a node depends on the values of the nodes pointing to it, and is conditionally

independent of the rest). To avoid clutter, the arrows from “Dir” in the first time-

slice to all position nodes in the second time-slice have been omitted. Note that, in

addition to inter-time-slice links, there are some intra-time arrows as well, necessary

to capture the correlation between locations the ball might move to.

This experiment will apply 3 different CPM structures. Note that the DBN struc-

ture specifies for each variable what it can safely ignore from the previous state and

what it can safely ignore from the variables above it in the current time-step. Analo-

gously, in this experiment the models in the CPM will be provided with an accurate

bridging test abstraction η and conditioned abstraction κ to provide a fair comparison.

These abstractions will be learned in later experiments. The three CPMs are:

• “CPM-Pixel” – Pictured in Figure 5.4. There is one partial model for each

position x, responsible for predicting whether the ball will enter x in the next

time-step, conditioned on the color of position x − 2. Each model is active

in all histories. Thus, the bridging test abstractions are actually observation

abstractions, and include the pixels in the immediate neighborhood of x and

the edge pixels.

149

• “CPM-PixelHOI”– Pictured in Figure 5.7. There are two partial models for

each position x, both responsible for predicting whether the ball will enter that

position in the next time-step. The first model is active when the ball is in

the immediate neighborhood of x and conditions its predictions on position

x− 2. Its bridging test abstraction includes whether the ball hit an edge pixel

during the bridging test, as well as the values of the pixels in the immediate

neighborhood of x at the end of the bridging test. The second model is active

when the ball is not in the immediate neighborhood of x and does not condition

its predictions on other models. Its abstraction maps all bridging tests to the

same observation.

• “CPM-NeighborhoodHOI”– Pictured in Figure 5.3. There are also two partial

models for each position x. One is familiar: it predicts whether the ball will

be in position x when the ball is not in the neighborhood of x. The other is

active in histories that end with the ball in x. It jointly predicts the pixels

in the immediate neighborhood of x. In this CPM, all partial models make

conditionally independent predictions. Each model’s bridging test abstraction

indicates whether the ball hit the edge pixels during the bridging test.

One of the main differences between the DBN and the various CPMs in this

example is that the DBN represents the ball’s current direction once as a single

random variable. In contrast, each individual model in the CPMs must learn to keep

track of that information for itself. Another difference is that the DBN is trained

using EM, which is not guaranteed to find optimal parameters due to local maxima.

The partial models in the CPMs will be represented as PP-LPSTs (as described in

Chapter 3), whose learning algorithm is not subject to local extrema.

The difference between the various CPMs is essentially how much knowledge is

being put into the structure. “CPM-Pixel” is essentially based on knowledge about

the conditional independence relationships between pixels within and between time-

150

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Training Trajectories

A
v
g
.
L
L
R

 (
2
0
 T

ri
a
ls

)

Prediction Accuracy

CPM−Pixel

Flat POMDP

DBN
CPM−PixelHOI

CPM−NeighborhoodHOI

0 2000 4000 6000 8000 10000
10

−3

10
−2

10
−1

10
0

10
1

Training Trajectories

A
v
g
.
#
 M

in
u
te

s
 (

2
0
 t
ri
a
ls

)

Training Time

Flat POMDP

DBN

CPM−Pixel
CPM−PixelHOI

CPM−NeighborhoodHOI

Figure 5.8: Learning results for 1D Ball Bounce Variant 1.

steps, a similar type of knowledge built into the DBN structure. “CPM-PixelHOI”

adds the knowledge that for a particular position “interesting” things only happen

when the ball is in the neighborhood of that position and that much of what happens

at other times can be abstracted away. Finally, “CPM-NeighborhoodHOI” further

adds knowledge about when pixels are correlated and when they independent, allow-

ing for a CPM where all active models make independent predictions (and thus have

simple conditioned outcomes).

Figure 5.8 shows the results of training these various models on data from 1D

Ball Bounce (size 10). Also included for comparison is the result of training a 20

state flat POMDP on the same data (with flattened observations). Both the DBN

and POMDP were trained using the Graphical Models Toolkit (Bilmes 2007). As

mentioned earlier, the partial models in the various CPMs were PP-LPSTs. The

results are averaged over 20 trials. In each trial, the models were trained with 50-

step sampled trajectories. The learned models were then evaluated by measuring the

likelihood they assigned to 1000 length 50 test trajectories.

The graph on the left reports the average log-likelihood ratio (LLR), which is the

true log-likelihood divided by the log-likelihood of the learned model. So the optimal

value, corresponding to perfect predictions, is 1. The DBN and flat POMDP (solid

151

lines) perform comparably well. They both arrive at good models with extremely

little data (achieving an average LLR above 0.9 with only 25 trajectories) but barely

improve when given more data. The structured DBN only performs marginally better

than the POMDP, likely because the training for both models is converging to a local

maximum. The CPMs (dashed lines) take comparatively more data to achieve the

same performance as the DBN, but given sufficient data they outperform it (with

CPM-NeighborhoodHOI achieving essentially perfect LLR after 5000 trajectories).

The three CPM structures perform as expected. More informed structures lead to

simpler individual model-learning problems, and correspondingly require less data to

obtain good performance.

The graph on the right reports average training time for each of the methods

in minutes (note the log scale). The experiments were run on an Intel Core2 Quad

2.66GHz processor. One cannot draw too many conclusions from the absolute differ-

ence in run-times, since the CPMs and DBNs were trained using different software

with potentially different optimization priorities. However, it is true that EM for

training DBNs and POMDPs is expensive. In every iteration, for every training tra-

jectory, EM must perform probabilistic inference to obtain a distribution over the

sequence of hidden variable values. This likely plays some role in the 2 orders of

magnitude difference in training time between the Bayes nets and the CPMs. The

difference in training time amongst the three CPMs can largely be explained by the

increasing amount of temporal abstraction afforded as the structure becomes more

informed. Temporal abstraction results in fewer (and shorter) abstract histories for

the prediction profile model learning procedure to process.

5.3.1.2 Variant 2: Complex Hidden State

This second experiment uses another variant of the 1D Ball Bounce example. Now,

instead of the ball having an associated direction, each position has an associated

152

direction (all start out to the left). Every time-step, with probability 0.7 the ball

moves in the direction associated with its current position and with probability 0.3

it moves in the opposite direction. When the ball leaves a position, that position’s

direction is set to the opposite of the direction the ball went (so if the ball moves to

the left, the position’s direction changes to point to the right).

A DBN structure diagram of this version of 1D Ball Bounce is shown in Figure

5.6(b). Notice that there are many more hidden variables: one for each position to

represent its associated direction. Recall that DBN training must perform global

inference over all hidden variables so one would expect DBN performance to be worse

in this domain, where the joint hidden state is so much more complex.

The same 3 CPM structures will be used with one small change: models’ abstrac-

tions no longer need to include whether the ball hit an edge pixel. Unlike a DBN, a

CPM is specified entirely in terms of the independence relationships amongst abstract

predictions. These relationships have not changed much and so the CPM structure

need not change much. The state information needed to capture the dynamics is en-

capsulated within the partial models themselves and so the necessary representation

changes will come about through the parameter learning process, rather than through

structural changes. In addition, though the joint hidden state has been made much

more complex, the state information needed by each partial model remains roughly

the same, so one would not expect a dramatic difference in the CPMs’ performance

between the two problems.

Figure 5.9 shows the results. This version of 1D Ball Bounce is too high-dimensional

to feasibly train a flat POMDP (the linear dimension is greater than 1,000). As can

be seen in the training time graph (on the right) the DBN took nearly an order of

magnitude longer to train than it did for the first variant of 1D Ball Bounce. The

DBN was not tested at 10,000 trajectories for this reason. The training time of the

CPMs are essentially the same, as expected.

153

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Prediction Accuracy

Training Trajectories

A
v
g
.
L
L
R

 (
2
0
 T

ri
a
ls

)

DBN

CPM−NeighborhoodHOI
CPM−PixelHOI

CPM−Pixel

0 2000 4000 6000 8000 10000

10
−2

10
0

10
2

Training Time

Training Trajectories

A
v
g
.
#
 M

in
u
te

s
 (

2
0
 T

ri
a
ls

)

CPM−NeighborhoodHOI

CPM−PixelHOI
CPM−Pixel

DBN

Figure 5.9: Learning results for 1D Ball Bounce Variant 2.

The prediction performance of the models did not change much between these

two examples. The DBN still learned a good model with very little data, but did not

improve when provided with more data. Its average LLR is marginally less than what

it obtained in Variant 1. The CPMs also perform similarly. The drop in CPM-Pixel’s

performance at 10,000 trajectories is due to 2 trials where the learned model assigned

zero probability to some test trajectory. This results in an LLR of 0 for those trials,

regardless of the quality of the rest of the predictions. With those outlying trials

ignored, CPM-Pixel’s average LLR for 10,000 training trajectories was 0.96, which is

comparable to the average obtained in Variant 1.

Overall, these results seem to align with the discussion in Section 5.2.1. Collections

of partial models are best applied when the individual partial models keep track of

relatively disjoint, compact information. Because a DBN does not decompose the

learning problem, it is negatively affected (in this case mainly in terms of training

time) by a high-dimensional hidden state, even if that hidden state is very structured.

There are also other reasons that learning a DBN may not be desirable, namely that

EM is both computationally expensive and not guaranteed to converge to optimal

parameters. Nevertheless, in these experiments EM did produce far better models on

average when very little data was available.

154

5.3.2 High Dimensional Examples

One of the most important driving motivations behind this work is the creation

of agents that can learn to make predictions in very complex environments. At the

same time, it is clear that the learning methods presented in this thesis face some

serious scaling challenges. This section will demonstrate that even so they can be

applied to high dimensional problems. CPMs will be learned in two example problems

based on classic arcade games, with some twists to make the modeling problem more

interesting. These experiments will also serve to demonstrate the full learning pipeline

described in this thesis. First an abstraction will be learned for each model, then a

prediction profile model will be trained, then the models will be combined into a

CPM, which will be used for planning.

In these experiments the prediction responsibilities for each model in the CPM

are given, as well as a set of features F . It is also assumed that the reward function

and rules for ending a trajectory are given and the focus is on learning a dynamics

model. For each partial model an accurate abstraction is learned, and a prediction

profile model is trained on the abstract data. Results are presented for CPMs using

both PP-LPSTs and 10 state PP-POMDPs as the underlying representation for the

partial models. The significance level of all the statistical tests involved in learning

was set to α = 10−10.

Results are averaged over 20 trials. In each trial CPMs are learned with increasing

amounts of training data. Data was generated by a model-based planning method

called UCT (Kocsis & Szepesvári 2006) given access to a perfect model and given a

0.25 chance of taking a random action at every time-step (to ensure that the training

data includes mistakes as well as expert play). UCT uses its model at every time-step

to sample future trajectories in order to obtain estimates of the value of each action.

At each step UCT was allowed 1000 sampled trajectories of length no more than 200.

The quality of the learned CPMs is evaluated both in terms of prediction accu-

155

Figure 5.10: The Brick Breaker Domain

racy and how useful the model is for planning. Planning performance is evaluated by

comparing the average score obtained by UCT using the learned model to the average

score obtained by UCT using a perfect model on 100 test episodes. Prediction perfor-

mance is measured by computing the likelihood each CPM assigns to the generated

test trajectories and the root mean-square error (RMSE) of the probability it assigns

to the observation that occurs at each step during the tests.

5.3.2.1 Brick Breaker

In the first arcade game example (pictured in Figure 5.10), the agent observes a

64×44 pixel image and controls a paddle at the bottom of the screen. A ball bounces

around the image hitting bricks. When a brick is hit, it disappears and agent gets

one point. When the ball hits the paddle, the angle at which it bounces depends

on where on the paddle it hit (hitting the left side of the paddle causes the ball to

bounce to the left, and like-wise the right; hitting the outside of the paddle causes a

shallow angle and the middle causes a steep angle). If the ball falls past the paddle

at the bottom of the screen, the game ends.

A few wrinkles have been added that make the domain more interesting (by incor-

porating stochastic and partially observable elements). First, when the agent moves

the paddle, it moves 2 pixels in the chosen direction with probability 0.75 and one

156

ωM (o): Predict HM : Histories ending with

Ball color in 6 × 6 pixels around position p? Ball at p, coming from direction d

Color of 6×4 pixels in brick b Ball hitting brick b

Paddle/electric color in 14 × 2 pixels around
position p?

Paddle at p

Color of 6×4 pixels in brick b Ball not hitting brick b

Color of pixel p No brick in p, no ball near p, no
paddle near p

Table 5.1: CPM structure for Brick Breaker

pixel with probability 0.25. As a result, the paddle is on average slightly slower than

the ball, and the agent must therefore anticipate the ball’s movement rather than

simply chasing it across the screen. Second, there are some special bricks scattered

on the screen that cause changes in the dynamics. If the ball hits a light brick, instead

of bouncing, it continues to move in its current direction (the brick still disappears).

In fact, from then on, the ball plows through all bricks it encounters in the same way.

This condition lasts until the ball hits a dark brick, after which the usual behavior of

bouncing off of bricks returns. Thus, it is necessary to remember past events (which

was hit most recently, a dark or light brick) in order to effectively anticipate the ball’s

trajectory. In the initial placement, bricks are regular (medium gray) with probability

5
6
, dark with probability 1

9
, and light with probability 1

18
. Finally, the paddle is “elec-

trified.” Spots near the left edge and right edge of the paddle flash with electricity

(probability 0.4 in each time-step). If the ball touches an electric spot when it is on,

the game ends immediately. Thus, one must be especially careful about where on the

paddle the ball will hit. This domain is stochastic, partially-observable, and has over

1020 observations, and even more hidden states.

Decomposition The CPM consists of five types of partial model, specified in Table

5.1. Each row specifies what each model predicts, and when it is active. What each

model conditions on will be described below.

A model in the first row predicts where the ball will be in a specific patch of pixels

157

when the ball is in the middle of that patch (and came from a certain direction). This

type of model will have to learn to pay attention to the configuration of bricks/paddle

around the ball, as well as whether the ball is currently moving through or bouncing

off of bricks in order to make accurate predictions. All other models condition on the

outcomes of these models.

A model in the second row predicts what color a brick will be in histories where

that brick is being hit (the ball is adjacent to the brick and moving toward the brick).

This type of model actually has a surprising amount to learn as well. Whether or

not the brick will disappear depends in part on the configuration of the neighboring

bricks, as well as whether the ball is moving through or bouncing off of bricks. As a

quick example, see Figure 5.11. In that configuration, brick A is “being hit,” but will

only disappear if the ball moves through brick B. That both the models in row 1 and

the models in row 2 must keep track of the same state information (whether the ball

will pass through a brick) is somewhat mitigated by the fact that the models in row 2

condition their predictions on the outcomes of the models in row 1. Specifically, the

brick models will be able to condition their predictions on whether the ball bounces

or not, thus absolving them of predicting that part of the dynamics themselves.

A model in the third row predicts where the paddle will be (and whether the

electric stripes will be “on” or not) when the paddle is in a particular position. The

model mainly needs to attend to the position of the paddle in order to make its

predictions, since it cannot move off of the edge of the screen.

Finally, models in rows 4 and 5 make predictions for a brick or a non-brick pixel

when the ball and paddle are nowhere nearby. These models are very simple; they

need simply predict “no change” at every time-step.

Learning As mentioned earlier, the training data was generated with UCT using

a perfect model and with a 0.25 chance of taking a random action. The training

158

(a) Ball Bounces (b) Ball Passes Through

Figure 5.11: Whether a brick disappears depends on the ball’s behavior

episodes consisted of full games (the average length was 176 steps). Note that, as

specified, there are roughly 30,000 individual partial models in the collection (as-

sociated with various pixels, bricks, etc.). In order to avoid having to train 30,000

individual models, each of which having very little associated data, a parameter tying

scheme was employed. Specifically, training data was pooled for all models of a cer-

tain type, across positions. This allowed the models to exploit the spatial invariance

in this domain (the dynamics of the ball in one position are the same as in another

position). That said, the parameter tying was not simply imposed on the models.

Included in the feature set available to the abstraction learning algorithm were fea-

tures that provide the x and y coordinates associated with the bridging test. So, the

abstraction learning algorithm could attend to or ignore position as it sees fit. In

fact, these position features were used in the learned abstractions. The x coordinate

is informative for the paddle dynamics (to determine if it is on the edge of the screen)

and the y coordinate is informative for the ball (there are many positions where the

ball cannot possibly bounce).

The abstraction learning algorithm was supplied with over 900 multi-valued fea-

159

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

Training Episodes

A
v
g
.
S

c
o
re

 (
2
0
 T

ri
a
ls

)

Planning Performance

Fully Observable

Most Likely

Follow Ball

Perfect Model

Learned CPM (PP−LPST)

Learned CPM (PP−POMDP)

Figure 5.12: Results of planning using learned CPMs in Brick Breaker.

tures (including the position features). There were three types of features. The first

type is straightforward: the color of each pixel in the 11×11 neighborhood centered on

the position associated with the model at the end of the bridging test. For the second

type of feature, a number of salient events were defined (a brick of each color being

broken, the ball hitting the outside wall, and the ball hitting the paddle). For each

event there was a feature indicating whether that event ocurred during the bridging

test and for each pair of events there was a feature indicating the relative order in

which they ocurred during the bridging test. Finally, the third type of feature (pro-

vided to all models except the ball models) indicated whether each pixel in the 11×11

neighborhood centered on the position associated with the model will be ball-colored

in the observation being predicted. These last features facilitated the models learning

to condition their predictions on the ball’s position, if necessary.

Results: Planning Performance Figure 5.12 shows the average performance of

UCT using the learned models (solid black lines). Clearly, as the amount of train-

ing data increases, the model improves and correspondingly so does planning perfor-

160

mance. In this example, PP-LPSTs seem to outperform PP-POMDPs by a wide mar-

gin. The large standard deviation on the performance obtained using PP-POMDPs

indicates that the learned models’ usefulness for planning is very inconsistent. This is

most easily attributable to POMDP training’s tendency to converge to local extrema.

Also shown are a few performance baselines for comparison (grey dashed lines).

The line marked “Perfect Model” is the average performance of UCT using a

perfect model. This is the best performance the learned models could hope to achieve.

With enough training data, the learned CPMs using PP-LPSTs produce comparable

levels of performance (though not quite as good).

The line marked “Most Likely” is the performance of UCT using a determinized

model that always predicts the most likely outcome (rather than providing the proba-

bility distribution), but is perfect in every other way. The poor performance obtained

using this model indicates that it is indeed important to model the stochasticity in

the problem and the fact that the learned CPMs using PP-LPSTs perform better

means that they are capturing that stochasticity.

The line marked “Fully Observable”is the performance of UCT using a perfect

model that has been hobbled in a different way, this time to test whether capturing

the partially observable aspects of the problem is important. Specifically, the “Fully

Observable” model does not keep track of which special bricks have been hit, and

therefore thinks that whether the ball bounces off of a brick or moves through it

is random. As one might expect, this results in poor performance, as the model

cannot correctly anticipate the path of the ball. The fact that the learned models

perform better than this baseline means that they must be capturing this key partially

observable element of the domain, at least to some degree.

Finally, the line marked “Follow Ball” is the performance of a very simple control

strategy in Brick Breaker: always move the paddle towards the ball. The poor per-

formance of this strategy simply demonstrates that to perform well in this problem,

161

0 2000 4000 6000 8000 10000
0

0.5

1

Training Trajectories

A
v
g

.
L

L
R

 (
2

0
 T

ri
a

ls
)

PP−LPST Prediction Performance (LLR)

0 2000 4000 6000 8000 10000
0

50

100

A
v
g

.
%

 D
ro

p
p

e
d

 T
e

s
ts

(a)

0 2000 4000 6000 8000 10000
0

0.5

1

Training Trajectories

A
v
g

.
L

L
R

 (
2

0
 T

ri
a

ls
)

PP−POMDP Prediction Performance (LLR)

0 2000 4000 6000 8000 10000
0

50

100

A
v
g

.
%

 D
ro

p
p

e
d

 T
e

s
ts

(b)

0 2000 4000 6000 8000 10000

10
−4

10
−3

10
−2

10
−1

10
0

PP−LPST Prediction Performance (RMSE)

Training Trajectories

A
v
g

.
R

M
S

E
 (

2
0

 T
ri
a

ls
)

Full CPM

Paddle Models

Brick Models

Ball Models

(c)

0 2000 4000 6000 8000 10000

10
−4

10
−3

10
−2

10
−1

10
0

PP−POMDP Prediction Performance (RMSE)

Training Trajectories

A
v
g

.
R

M
S

E
 (

2
0

 T
ri
a

ls
) Brick Models

Ball Models

Full CPM

Paddle Models

(d)

Figure 5.13: Prediction accuracy results for Brick Breaker.

one must anticipate the ball’s movement. Clearly at least the learned models using

PP-LPSTs have this capability.

Results: Prediction Performance Figure 5.13 shows the prediction performance

of the learned CPMs. Figures 5.13(a) and 5.13(b) report the average log-likelihood

ratio (LLR) the learned models (solid black lines) assigned to the test trajectories

generated by UCT using the learned models. In some test episodes, the models

assigned zero probability to some time-steps. This results in an infinite log-likelihood,

regardless of the quality of the remainder of the predictions. As a result, these test

162

episodes were dropped from the computation of the log-likelihood and the percentage

of test trajectories that were dropped is also reported (grey dashed lines). The learned

CPMs using PP-LPSTs, shown in Figure 5.13(a) made accurate predictions (LLR

close to 1, and very few dropped test trajectories) with very little training data.

Note that the prediction performance climbs significantly faster than the planning

performance. This is likely because the prediction performance is measured on the

test episodes that actually occur. With a small amount of training data, the model

is clearly making errors during planning that detrimentally affect performance. As

a result, the planning agent loses the game very quickly. So, when there is very

little training data, the model obtains good prediction error, but only on poorly

played games. The CPMs using PP-POMDPs (Figure 5.13(b)) are not as accurate

(lower LLR, higher number of test trajectories dropped). Assigning zero probability

to an event that could actually happen will clearly affect planning. The fact that

the PP-POMDPs do this so often may be an important contributing factor to their

comparitively poor planning performance.

Figures 5.13(c) and 5.13(d) show a different measure of the prediction perfor-

mance of the models, the RMSE of the probabilities they assign to each step of the

test trajectory (solid black line). This measure is less sensitive to erroneously small

predictions and so it can take into account the test trajectories dropped when measur-

ing the LLR. As with the LLR, the prediction error obtained by the CPM composed

of PP-LPSTs drops quickly and remains low (note the log scale). The error obtained

by the PP-POMDPs is higher, consistent with the other results. Also pictured is the

average RMSE of the predictions made by various component models in the CPM.

The line marked “Ball Models” averages the RMSE of the predictions made by all

the models in charge of predicting the ball’s position (row 1 in Table 5.1). The line

marked “Brick Models” averages the RMSE of the models in charge of predicting the

color of bricks, when they are hit (row 2 in the table). Finally, the line marked “Pad-

163

dle Models” averages the RMSE of the models in charge of predicting the paddle’s

position (row 3). The “easy models” from rows 4 and 5 obtained zero error. Both

representations learn fairly accurate ball models (near zero RMSE), though the PP-

LPSTs seem to consistently improve with more training data while the PP-POMDPs

have a flatter learning curve. This is yet another indication that the PP-POMDPs are

likely converging to local maxima. For both types of representation, the paddle mod-

els obtain a fairly small, but steady amount of prediction error. Since these models

are stochastic, this is to be expected. In order to obtain zero error, the models must

report the exact true probabilities at every time-step. This is unlikely to ever occur

due to sampling error. The results indicate that the paddle models generally report

probabilities that are off by less than 0.01. The brick models are the main source

of error. Recall that predicting whether a brick will disappear is actually a fairly

complex endeavor. It requires that one pay attention to the position and velocity of

the ball relative to the brick, the color of the surrounding bricks, and which type of

special brick was hit most recently. The errors made by these models may go some

distance toward explaining the performance disparity between the learned models

using PP-LPSTs and the perfect model as well as between the PP-LPST and the

PP-POMDP-based CPM. Incorrectly predicting whether bricks will disappear could

lead to incorrect predictions of the ball’s path which could in turn lead to incorrect

decisions.

Results: Training Time Figure 5.14(a) shows the average total time taken to

learn abstractions and prediction profile models for all model types in the CPM

for Brick Breaker. These experiments were run on an Intel Core2 Quad 2.66GHz

processor. The training time appears to be linear in the amount of training data.

This is not surprising. By far the majority of the training time is spent on abstraction

learning (prediction profile models are trained within minutes once the abstraction

164

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6

Training Trajectories

A
v
g

.
#

 T
ra

in
in

g
 H

o
u

rs
 (

2
0

 T
ri
a

ls
)

Total Training Time

(a)

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

Learned Abstractions

Features Added

T
ra

in
in

g
 T

im
e
 (

H
o
u
rs

)

Background

Paddle

Brick (Not Being Hit)

Ball

Brick (Being Hit)

(b)

Figure 5.14: Training time results in Brick Breaker

is learned) and the primary operation in the abstraction learning process (evaluating

abstractions) is linear in the amount of training data.

Figure 5.14(b) plots the training time for individual model types across all trials

(with 10,000 training trajectories) against the number of features ultimately used

in the abstraction. The radius of the circles corresponds to the number of abstract

observations in the learned abstraction (the smallest is 1 and the largest is 52). The

main message to be taken from this graph is that the complexity of abstraction

learning depends on many factors. For instance, the abstractions for the brick models

(when being hit by the ball) clearly present the most involved learning problem.

These abstractions have many abstract observations and incorporate many features.

Correspondingly, they take the longest to train. Counterintuitively, however, the

abstraction for the paddle models also takes a long time to learn, even though it only

involves one feature and is ultimately a very coarse abstraction with few abstract

observations. The reason for this is that the one feature that is used is the x position

of the paddle. This feature has many values, and so the intermediate abstractions have

many abstract observations, even if the end result is a coarse abstraction with very few

abstract observations. Furthermore, the paddle’s movement is stochastic. For partial

165

Figure 5.15: The Snake Domain

models predicting deterministic aspects of the environment, an accurate abstraction

means predictions at all histories are deterministic, and can therefore obviously not

be improved any further. For a stochastic model, even once an accurate abstraction

is found, it must be verified that further refinement does not improve the predictions

at any history, which can significantly add to training time.

5.3.2.2 Snake

The second arcade game example is pictured in Figure 5.15. Here the agent

controls the head of a long snake (initially 20 pixels long) and tries to eat 10 dots

of “food” scattered on the screen. The agent observes the 20×20 image and has 5

actions corresponding to the cardinal directions and “do nothing.” The snake’s head

has a current direction and moves in that direction every time-step (its body and

tail follow behind). The agent’s actions change the direction of the head (but cannot

reverse it). The snake must eat the food in a particular order (indicated by a grey-

scale in the image). If the snake collides with itself, the wrong dot, or the edge of the

screen, the agent receives a small penalty and the game ends. If the agent eats the

166

ωM (o): Predict HM : Active in histories ending with

Head color in
pixel p?

Head in immediate neighborhood of p No head in neighbor-
hood of p

Tail color in
pixel p?

Tail in p Head and/or tail
in neighborhood
of p (but tail not
in p)

No head or tail in
neighborhood of p

Color of pixel p Head within 2 steps of
p and current color is c

Tail within 2
steps of p (but
not head) and
current color is c

Neither head nor tail
within 2 steps of p

and current color is c

Table 5.2: CPM structure for Snake. Rows contain multiple model types that make
the same predictions in different situations.

correct dot, it receives reward, but its tail stays still for 5 time-steps (lengthening the

snake by 5 units, thereby making the control problem harder).

Again, a few tweaks were added to make the domain more interesting. First,

except for the first dot, the location of the dot the agent is currently supposed to

eat is not displayed on the screen unless the head is in its immediate neighborhood.

Note that all dots that the agent will eventually have to eat are displayed through

the entire game, but when a dot becomes the next dot in the order, it disappears.

Thus, it is necessary to remember the location of the dot in order to find it and eat

it. Second, recall that the tail stops moving briefly when the head has eaten a dot.

When the tail is not stopped for that reason, the tail only moves with probability 0.8

and remains still with probability 0.2. This adds some stochasticity into the domain

and also provides time pressure to the agent, since the snake is always growing longer,

whether the agent eats dots or not. Like Brick-Breaker, this domain is stochastic,

partially observable, and it is high-dimensional with over 1030 observations and even

more hidden states.

Decomposition Table 5.2 shows the decomposition into partial models used in this

experiment (note: there are multiple model types per row in the table with different

167

histories of interest). Each model is associated with a particular pixel and makes

predictions about the color of that pixel in the next time-step in certain situations.

The models in the first row of the table predict whether their associated pixel will

contain the snake’s head when the head is nearby and when it is not, respectively.

The head models were allowed to condition on other head models associated with

positions above and to the left in the image. The first type of head model must learn

how the head responds to the agent’s actions, and must pay attention to the head’s

direction in order to make accurate predictions. The second type is easy: the head

will not be in the pixel.

The models in the second row predict whether their pixel will contain the snake’s

tail in various situations. All of these models condition on the predictions of the head

models (that is, whether each pixel will be head-colored) as well as the predictions

of tail models above and to the left in the image. The first type is active when the

tail is in its pixel already. Essentially, this model predicts whether the tail will move

and must therefore keep track of how long it has been since a dot was eaten. The

other tail models condition on this model’s outcome, thus alleviating them of also

learning whether the tail should move. The second type predicts whether its pixel

will be tail-colored, when the tail (or the head) is in the immediate neighborhood

of its pixel. In order to make accurate predictions, this model must remember what

the head does in each neighboring position, in order to determine where the tail will

move. The last model is simple: the tail will not be in the pixel.

Finally, the models in the third row predict the color of a particular pixel in

various situations, when the pixel is already a particular color. These models depend

on the outcomes of both the head and the tail models, and thus can condition their

predictions on whether their associated pixel will be head-colored or tail-colored.

Most notable is the model that makes predictions when the head is nearby and the

pixel’s current color is white. This model must predict whether the pixel will contain

168

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6

7

8

Training Trajectories

A
v
g
.
S

c
o
re

 (
2
0
 t
ri
a
ls

)

Planning Performance

Perfect Model

Fully Observable

Most Likely

Learned CPM (PP−POMDP)

Learned CPM (PP−LPST)

Figure 5.16: Planning results for Snake.

the target dot in the next time-step if the head comes near. As such, this model must

learn to pay attention to where the head will move in the next step, whether a dot

was in this position in the past, as well as whether that dot has already been eaten.

Learning As in Brick Breaker, training episodes were full games (the average length

was 93 steps). The same parameter tying scheme used in Brick Breaker was employed

and the abstraction learning algorithm was provided with roughly 2500 binary fea-

tures (as well as the position features). The features included the color of the pixels

in the 5×5 square centered on the model’s position 0, 1, and 2 time-steps from the

beginning and end of the bridging test. There were also features indicating whether

any pixel changed from one color to another color (for all pairs of colors) at the end

of the bridging sequence. Finally, similar features of the outcomes of other models

were provided to the appropriate models (whether nearby pixels in the will contain

the head or tail and whether any pixel will change from some particular color to the

head or the tail).

169

Results: Planning Performance Figure 5.16 shows the average performance

of UCT using the learned models (solid black lines). In this example, the CPM

comprised of PP-POMDPs significantly outperforms the one comprised of PP-LPSTs.

The reason for this large qualitative difference lies in the particular implementation

of PP-LPSTs. Specifically, recall that LPSTs can fail to make a prediction, especially

when a history suffix is encountered that is not represented in the training data.

The implementation choice made in these cases was to find the longest matching

suffix in the data and average together all prediction profiles associated with that

suffix in order to make a prediction. Now recall the partial model that predicts the

color of a white pixel when the head is nearby. This model is important because it

predicts whether the target dot will appear in the next step or not. If this model

encounters an unfamiliar history suffix, averaging the appropriate prediction profile

models together will produce a prediction that assigns positive probability to a dot

appearing, even when this is impossible. This has an extremely undesirable effect

on the planning process. Specifically, this means that, during the planning process,

if the agent can produce an unfamiliar history suffix, then it will think that there

is a positive probability that a dot will appear. This causes the agent to actively

seek these histories out by performing complicated maneuvers that do not in reality

produce dots and often lead to its death. This effect is exacerbated with more data

because the learned abstractions for these models tend to be finer with more training

data. This leads to more accurate abstractions, but also makes it more likely that

history suffixes will be missing from the training data. PP-POMDPs do not suffer

from this particular issue, and result in far better performance.

The performance baselines shown (dashed grey lines) are similar to those from the

Brick Breaker example. The line marked “Perfect Model” is the performance of UCT

using a perfect model of Snake. The line marked “Most Likely” is the performance

of UCT using a model that always predicts the most likely outcome (but is perfect

170

in every other way). The line marked “Fully Observable” is the performance of UCT

using a model that fails to capture the important partially observable components

of the domain. Specifically, the model does not remember where the target dot

was when it disappeared, and therefore thinks it might appear at random in any

given time-step. The learned CPMs using both representations outperform the “Fully

Observable” model and so must be capturing the partially observable dynamics in the

domain to some degree. The learned CPM using PP-POMDPs obtains performance

comparable to that of the determinized perfect model (within a standard deviation).

Both CPMs obtain performance greater than the “Fully Observable”, indicating that

they are learning at least to some degree to keep track of where the invisible dot is.

The prediction performance results will provide some insight into the reasons behind

the performance gap between the PP-POMDP CPM and the perfect model.

Results: Prediction Performance As in the Brick Breaker domain, the average

log-likelihood ratio, the average percentage of training trajectories dropped from the

likelihood calculation, and the RMSE of the one-step predictions made by the learned

models are reported in Figure 5.17. Figures 5.17(c) and 5.17(d) also show the average

prediction error of some notable model types: the models that predict whether their

associated pixel will be the head when the head is nearby, the models that predict

whether their associated pixel will be the tail when the tail is nearby, and the models

that predict the color of a white pixel when the head is nearby. These are the most

difficult partial models to learn in this domain.

Neither type of CPM obtains particularly good prediction performance overall.

Both clearly make substantial prediction errors resulting in low LLR and relatively

high RMSE. However, they do obtain good prediction error for some particularly

important partial models. The head models in particular make very accurate pre-

dictions (even reaching an average RMSE of zero with sufficient training data). The

171

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Training Trajectories

A
v
g

.
L

L
R

 (
2

0
 T

ri
a

ls
)

PP−LPST Prediction Performance (LLR)

0 2000 4000 6000 8000 10000

20

40

60

80

100

A
v
g

.
%

 D
ro

p
p

e
d

 T
e

s
ts

(a)

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

PP−POMDP Prediction Performance (LLR)

Training Trajectories

A
v
g

.
L

L
R

 (
2

0
 T

ri
a

ls
)

0 2000 4000 6000 8000 10000

20

40

60

80

100

A
v
g

.
%

 D
ro

p
p

e
d

 T
e

s
ts

(b)

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Training Trajectories

A
v
g

.
R

M
S

E
 (

2
0

 T
ri
a

ls
)

PP−LPST Prediction Performance (RMSE)

Head (Head Nearby)
Tail (Tail Nearby)

Background (Head Nearby)

Full CPM

(c)

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

PP−POMDP Prediction Performance (RMSE)

Training Trajectories

A
v
g

.
R

M
S

E
 (

2
0

 T
ri
a

ls
)

Full CPM

Head (Head Nearby)

Tail (Tail Nearby)Background (Head Nearby)

(d)

Figure 5.17: Prediction performance results for Snake.

172

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

Training Trajectories

A
v
g

.
#

 T
ra

in
in

g
 H

o
u

rs

Total Training Time

(a)

0 5 10 15

0

20

40

60

80

100

120

Features Added

T
ra

in
in

g
 T

im
e

 (
H

o
u

rs
)

Learned Abstractions

Tail (Tail Nearby)

Background (Head Nearby)

Head (Head Nearby)

(b)

Figure 5.18: Training time results for Snake.

PP-LPSTs and the PP-POMDPs have the most trouble with different partial models.

The PP-LPSTs learn to make significantly better predictions about the movement

of the tail than the PP-POMDPs. Incorrectly predicting the tail’s movement is not

likely to drastically impact planning performance, however, since the head must al-

ready avoid any pixels where the tail might go (i.e. pixels that contain the snake’s

body). That said, the PP-POMDP’s highly inaccurate predictions about the tail

may at least partly explain the difference in planning performance between UCT us-

ing the perfect model and UCT using the PP-POMDP-based CPM. In contrast, the

PP-POMDPs do a much better job than the PP-LPSTs of learning the partial model

that predicts whether a dot will appear when the head is nearby. The errors made by

the PP-LPSTs regarding when dots will or will not appear lead directly to the poor

planning performance seen above.

Results: Training Time The average total training time in Snake is shown in

Figure 5.18(a). It takes substantially longer to learn a CPM of Snake than of Brick

Breaker. In part this is because there are simply more distinct types of models to

learn. However, Figure 5.18(b) shows that the bulk of training time is taken up by

173

one particular type of model: the model that predicts where the tail will move. As

in the Brick Breaker results, this graph plots all learned abstractions in all trials

with 10,000 training trajectories. The training time of each abstraction is plotted

against the number of features used in the abstraction. The diameter of each circle

represents the number of abstract observations in each abstraction (the range was

from 1 to 59). The tail models are particularly expensive to learn because they

require a large number of features (they must attend to the movement of the head

and the tail) and they are active in many time-steps (whenever the head or the tail

is nearby). Notably, making good predictions about the tail’s movement does not

seem to be necessarily critical to performance, as evidenced by the PP-POMDP-

based CPM’s planning results. As such, automatic methods for determining which

predictions are important and which can be made very approximately could save the

learning algorithm a great deal of effort in this domain.

5.4 Summary

Key points from this chapter:

• Partial models can be combined to form a more complete, compositional model

of the environment.

• This chapter introduced collections of partial models (CPM).

– Each partial model in a CPM makes abstract predictions about the next

observation in some particular histories of interest, conditioned on the out-

comes of some other models.

– Allowing models’ predictions to condition on other models’ outcomes ex-

plicitly models correlation between models’ predictions.

174

• Under some conditions on the component partial models, a CPM can be a

complete, accurate model of the primitive system.

– If the various abstract features predicted by the partial models jointly

specify a unique primitive observation, then the CPM is a complete model.

– If each model’s predictions are conditionally independent of other mod-

els’ outcomes, given its conditioned outcome, the CPM makes accurate

predictions (assuming each partial model makes accurate predictions).

• Collections of partial models were compared to dynamic Bayes nets (DBNs) as

they are both structured models of partially observable systems.

– The main difference: CPMs express their structure in terms of the condi-

tional independence of observable events, while DBNs express their struc-

ture in terms of the conditional independence relationships amongst hidden

variables.

∗ Each partial model in a CPM can be trained independently (DBN

training is global).

∗ CPM structure is verifiable (DBN structure is not).

∗ The models in a CPM may repeat effort because each must maintain

its own state information (in a DBN state information is shared by all

variables).

– CPMs are best applied when the environment can be decomposed into

many simple models, each relying on relatively disjoint state features.

• CPMs were trained on two high dimensional arcade game environments, using

the methods presented in the previous chapters.

– The learned models were shown to make accurate predictions and to be

useful for model-based planning.

175

CHAPTER 6

Concluding Remarks

The idea of learning, and composing, many models associated with distinct facets

of the world is both natural and arguably necessary in complex, compositional envi-

ronments. As such, methods for learning partial models that are responsible for mak-

ing only some predictions about the future, in only some particular situations have

been developed in many different contexts, especially under the Markov assumption.

As has been demonstrated in the preceding chapters, the problem of learning partial

models in the partially observable setting presents unique challenges. This thesis

represents an attempt to lay some general foundations for solving this problem.

6.1 Summary of Contributions

The first contribution, from which all the others spring, is the formalization of a

partial model using the concepts of tests of interest and histories of interest (Section

1.1.3). This establishes a language for specifying a broad class of partial models

that incorporates the main intuitions surrounding what a partial model ought to be

(something that makes only certain predictions in certain situations), not to mention

specifically generalizing many existing examples of partial models. Most importantly,

this formal description of a partial model provides a concrete learning problem for

study: learn a model that makes predictions for the tests of interest in the histories

176

of interest, ideally as simply as possible.

The main way one can exploit having only a limited set of predictions to make

in the Markov case is by ignoring irrelevant details in the state via an abstraction.

Chapter 2 presented several results regarding the generalization of this idea into the

partially observable case: observation abstraction. Specifically, formal properties of

an abstraction were defined that, if satisfied, allow an abstract model to be used to

make accurate predictions for the tests of interest (expressiveness in Section 2.2.1 and

accuracy in Section 2.2.2). The main contribution of this chapter was the first prov-

ably sound, finite-time algorithm for constructing such an abstraction in the partially

observable case (Section 2.3.2), as well as a tight worse-case bound on the complexity

of determining whether an abstraction is accurate, in terms of the complexity of the

primitive system (Theorem 2.10). This algorithm was also adapted to provide the

first provably sound, finite-time algorithm for finding a homomorphic abstraction of

a partially observable system.

The end of Chapter 2 pointed out an issue with learning an abstract model that

does not pose a challenge in the Markov case. Because standard methods for learning

partially observable models learn inherently generative models, even an abstract model

will generally make more predictions than are directly of interest. A generative model

using an accurate abstraction will make all abstract predictions, including predictions

for the tests of interest, but also including predictions about any details the abstrac-

tion has deemed necessary to make accurate predictions (but that are not themselves

of interest). In fact, it can be the case that the abstract model devotes most of its

complexity to making predictions the model will never be asked to make. The main

contribution of Chapter 3 is the development of prediction profile models, which ad-

dress this issue by allowing one to learn a non-generative model that makes only the

predictions of interest, and no others. Chapter 3 also introduced a learning algorithm

for prediction profile models under the assumption that the predictions of interest

177

take on only a finite number of distinct values. Like an abstraction, the method for

learning prediction profile models is to learn a transformation of the training data,

and then learn a model by applying an existing method to the new data.

The main contributions of Chapter 4 were two-fold. First, the formalism of his-

tories of interest and the bridging test system were introduced, which allowed results

from the previous chapters to be extended to the case where a model only needs to

make predictions in certain histories. Second, an algorithm for learning an accurate

abstraction was presented that, while it lacks the theoretical guarantees of the al-

gorithm presented in Chapter 2, is significantly more practical. Though the general

form of this algorithm is a natural application of existing ideas, a number of practical

considerations specific to the partially observable case were addressed.

Chapter 5 discussed one of the main motivations behind learning partial models

in the first place: composing partial models to form a more complete model. A struc-

tured representation called the collection of partial models (CPM) was introduced.

Section 5.1.4 provides conditions on the component models that result in a CPM that

can be used as a complete, accurate model. A CPM’s structure is entirely expressed

in terms of conditional independence relationships between observable events (as op-

posed to a DBN, which expresses its structural assumptions in terms of conditional

independence between hidden variables). As a direct result, the component models

of a CPM can be trained independently (as opposed to a DBN which requires global

training). Furthermore, the correctness of the structure of a CPM can be tested via

statistical analysis of the data (the structure of a DBN cannot be verified or falsified).

This fact leads to a straightforward extension of the abstraction learning algorithm

presented in Chapter 4 to additionally learn some of the structure of a CPM, and may

have further implications for structure learning. The weakness of a CPM is that the

partial models do not share state information. So, if multiple models make use of the

same state information, they must all maintain it for themselves, possibly duplicating

178

effort. Thus, a CPM is best applied when the world can be decomposed into com-

ponents that depend on relatively disjoint aspects of the state. Collections of partial

models were learned in two high-dimensional arcade game examples. The learned

models were shown to make accurate predictions and to be useful for model-based

planning techniques.

6.2 Discussion and Future Directions

The methods presented in this thesis have been demonstrated to learn partial

models in partially observable problems that are far too complex to be modeled com-

pletely (at least in an unstructured way). The experiments in Section 5.3 in particular

illustrated their application to problems with over 1020 observations and underlying

states. That said, there are many possible extensions to this work that could sig-

nificantly expand its applicability in more natural domains (most importantly, the

physical world in which we live). This section will briefly discuss some of the lim-

itations the work presented here, and some possible extensions that may begin to

address those limitations.

6.2.1 Relational Predictions

The experiments in Section 5.3 illustrated the limitations of propositionally de-

fined partial models. Recall, for instance, in Brick Breaker, that there was a separate

partial model for every single brick. In Snake, there were several models for each

individual pixel that made predictions about the head, the tail, and other parts of

the system. In both cases, the CPM consisted of tens of thousands of partial models.

While parameter tying did alleviate some of the challenges inherent in training so

many models, this is nevertheless a counter-intuitive way to structure a representa-

tion of knowledge about the world. It would be far more natural, and more in keeping

with the inspiration behind this work, to have a model that represents “how bricks

179

behave” or “how the snake’s head behaves” in general. This requires models that can

make relative, rather than absolute predictions. Rather than, for instance, making

a prediction whether a specific pixel will be a specific color when the snake’s head

is nearby, what is required is a model that makes predictions about the colors of

some pixels relative to the head’s location. Relational representations (like STRIPS

models, discussed in Chapter 1) are able to express predictions like these through the

use of variables and predicates. Extending the definition of tests of interest to allow

for relational predictions could significantly impact the compactness of a CPM and

allow for more sophisticated generalization and parameter tying.

6.2.2 Continuous Systems

This thesis has focused on discrete dynamical systems, mainly because doing so

allowed a particularly clean exploration of the central issues of learning partial models.

In practice, many systems have both continuous observations and continuous state,

which imposes a number of additional challenges. The methods presented here do

straightforwardly apply to continuous systems under some special circumstances. If

the predictions being made are of some discrete features of the continuous observations

(“Will I need a sweater?” as opposed to “What will the temperature be?”) and if

the abstractions are also composed of discrete features, then the methods presented

in this thesis apply without alteration. That is, one might be able to use the methods

presented here to learn discrete partial models of continuous dynamical systems.

Mugan & Kuipers (2009), for example, take this approach in the Markov case, both

learning which discrete features should be predicted in order to make good decisions,

and learning discrete partial models to make those predictions.

The problem of learning continuous partial models presents more open questions.

The essential ideas of abstraction and prediction profile models still likely apply,

though the specific procedures presented here may not. Learning an accurate ab-

180

straction with continuous features may be particularly challenging because even an

abstract history is unlikely to ever be experienced twice. As such, it may be impossi-

ble to decouple abstraction and model learning by first learning an abstraction and

then learning an abstract as has been done in this work. Instead, it may be necessary

to evaluate proposed abstractions by learning an abstract model and evaluating its

accuracy.

The main motivation behind prediction profile models also has purchase in the

continuous setting. Typical methods for learning models of partially observable sys-

tems in continuous systems, much like their discrete valued counterparts, learn gen-

erative models. As such, the non-generative approach of prediction profile models

may provide similar benefits in the continuous setting. That said, in a continuous

system, there will typically be infinitely many tests of interest, making the extensive

vector representation of prediction profiles used in Chapter 3 impossible. Instead,

prediction profiles might be represented in a parametric form (for instance, the mean

and variance of a Gaussian). The main idea of Chapter 3 (though not the specific

method) could still then be applied: learn a model of the dynamics of these distribu-

tion parameters, rather than the dynamics of the system itself.

6.2.3 Learning the Structure of a CPM

When learning a collection of partial models in Chapter 5, the structure (that is,

the prediction responsibilities of each model) was assumed to be given. As seen in

Section 5.3.1, different structural choices can significantly affect learning performance

so it would be advantageous to be able to learn a good structure from data (or at

least adapt a provided structure). One aspect of structure learning was, at least in

part, addressed: learning for each partial model which other partial models’ abstract

observations it should condition its predictions upon. That still does not address

the main question, “Which partial models should be learned in the first place?”

181

Ultimately, the work presented here on how to learn a partial model is meant to

provide a foundation on which to build answers to this challenging question.

One of the clearest criteria for selecting which models to learn (or equivalently

which predictions to make) is that an agent should make predictions that help it

make good decisions. So, for instance, an agent might begin by attempting to learn

a model that makes predictions only about whether it will be rewarded. This model

will almost certainly have to attend to observation features beyond the reward signal

itself. So, it may then make sense to learn models that make predictions about those

features...and then learn models that make predictions about features that help to

predict those features, and so on. Another interesting approach is to learn to make

predictions that can be made, given the constraints of the agent. In any complex

environment, there are bound to be predictions that are easy to make and predictions

that are difficult to make. Furthermore, a given finite training data set might provide

enough experience to learn to reliably make some predictions, but not others. As

such, a possible direction for future research is identifying predictions that can be

made simply and reliably, in order to focus modeling efforts appropriately. The work

of Mugan & Kuipers (2009) shows promise in this direction in the Markov case. They

start by making very abstract predictions and refine their predictions of interest over

time, seeking abstract predictions that can be made deterministically. It is possible

that similar ideas may be adapted to the partially observable case.

6.2.4 Planning with CPMs

While the experiments in Section 5.3 demonstrate a planning algorithm using

learned CPMs to obtain good performance, that algorithm does not exploit the spe-

cific advantages of having a CPM. Many planning algorithms like the one used in

Chapter 5.3 expect a generic generative model, specifically one that can simulate the

world in full detail one step at a time. In complex worlds, like the one in which we

182

live, this is an unreasonable approach for a few reasons.

First, one simply cannot expect to have a complete and accurate model, even if

one applies a structured representation. While the CPMs learned in Section 5.3 were

complete models, in more naturalistic domains, obtaining a complete, accurate model

is not a reasonable goal. As discussed in Chapter 1, there are many phenomena in the

world that are very complex and any reasonable agent will be forced to prioritize its

resources on capturing phenomena that can be understood simply and that are most

important for making good decisions. As such, an interesting direction for future

research is the development of planning algorithms that work well with collections of

partial models that simply do not make predictions (or at least make very innaccurate

predictions) for some complicated aspects of the world. Such a planning algorithm

would need to be robust to missing or innacurate predictions while still exploiting the

predictions the model is confident about.

Second, a planning algorithm that reasons on the most primitive level (one prim-

itive observation at a time) fails to take into account the rich structure present in

many problems of interest. Many qualitatively different phenomena occur on multiple

time scales and levels of abstraction at once. Even arcade games, like the ones shown

in Section 5.3 possess this quality. A planning algorithm should be able to simul-

taneously deal with the low level reasoning necessary to take actions from time-step

to time-step, but also more abstract planning like achieving some sub-goal or setting

up a more favorable future situation, and even more abstract plans like obtaining an

end-of-level bonus, or beating a high score. One particularly exciting possibility that

was not explored in this thesis is the collection of partial models as a heterogeneous

representation that might be able to capture some of this richness. One can imag-

ine a CPM with many models making predictions on different levels of abstraction

and each employing different underlying modeling representations, as best suits their

prediction responsibilities. Such a model could provide a planning algorithm with

183

many qualitatively different types of knowledge all at once. Though significant work

remains in determining how best to compose such different models and how to exploit

such a model during planning, the results in this thesis may provide the basic building

blocks of this type of rich knowledge representation.

184

APPENDICES

185

APPENDIX A

Proofs from Chapter 2

This appendix contains proofs of the main theoretical results from Chapter 2.

A.1 Proof of Proposition 2.2

Proposition 2.2. Consider a dynamical system, an abstraction η, and a refinement

η′ of η. The linear dimension of the abstract system corresponding to η, nη, is no

greater than nη′
, the linear dimension of the abstract system corresponding to η′.

Proof. Recall that the linear dimension is the rank of the system dynamics matrix

(defined in Section 1.1.2). Let n be the linear dimension of the primitive system.

Using Equations 2.1 and 2.2 one can construct the system dynamics matrix of the

abstract system, Dη′
(whose columns correspond to abstract tests and whose rows

correspond to abstract histories) from the system dynamics matrix of the original

system, D (whose columns and rows correspond to primitive tests and histories).

First, consider an intermediate matrix Dη′

test whose columns correspond to abstract

tests but whose rows correspond to primitive histories. Note that, by Equation 2.1,

each column in Dη′

test is simply the sum of several columns in D. As such, the columns

of Dη′

test lie in the span of the columns of D so rank(Dη′

test) ≤ rank(D). Now note

186

that, by Equation 2.2, each row in the abstract system dynamics matrix Dη′
can

be computed as a linear combination of rows in Dη′

test. Since the rows of Dη′
lie in

the span of the rows of Dη′

test, it must be that rank(Dη′
) ≤ rank(Dη′

test) ≤ rank(D).

As such, nη′
≤ n. Now, note that, because η′ is a refinement of η, abstract tests

under η correspond to sets of tests under η′ (and similarly histories). As such, Dη

can be constructed in precisely the same way from Dη′
. Thus, the final relationship

is nη ≤ nη′
≤ n.

A.2 Proof of Theorem 2.9

This result will require the use of some supporting lemmas. The first lemma shows

that any accurate refinement must split any pair of observations that have a violation.

Lemma A.1. Consider two primitive observations o1, o2 ∈ O. If there exists a ∈ A,

t ∈ T I and primitive sequences h1 ∈ H, h2 ∈ T such that p(t|h1ao1h2) 6= p(t|h1ao2h2)

then in any accurate abstraction η, η(o1) 6= η(o2).

Proof. In any abstraction that does not split o1 and o2, h1ao1h2 and h1ao2h2 will

belong to the same abstract history. Since they have different predictions for t, such

a refinement could not possibly be accurate.

The following result will be used to show that, in fact, it is sufficient to compare

only pairs of histories that differ in one time step.

Lemma A.2. Consider two primitive histories with the same action sequence h =

a1o1...akok and h′ = a1o
′
1...ako

′
k. Let hi = h[1...i]h′[i+1...k] be the concatenation of the

length i prefix of h and the length k − i suffix of h′. If for some test t and all

i ∈ {0, 1, ..., k} p(t|hi) = p(t|hi+1), then p(t|h) = p(t|h′).

Proof. The result is easy to see by transforming h into h′ by swapping only one

observation at a time. For any t, p(t|h) = p(t|hk) = p(t|hk−1) = ... = p(t|h0) =

p(t|h′).

187

Note that for any i, hi and hi−1 differ in only one time-step (the ith time-step).

As such, by the contrapositive of Lemma A.2, it can inferred that for any pair of

histories h and h′ of length k with p(t|h) 6= p(t|h′) for some test t, there exists another

pair of histories h[1...i−1]aioih
′[i+1...k] and h[1...i−1]aio

′
ih

′[i+1...k] that also disagree on the

prediction of t. These two histories differ on only one time step. So, in searching for

a split, it suffices to consider every pair of primitive observations o1 and o2 and check

for all h1 ∈ H, h2 ∈ T , a ∈ A, and t ∈ T I , whether p(t|h1ao1h2) = p(t|h1ao2h2). If

any one of these equalities does not hold, o1 and o2 must be distinguished.

Theorem 2.9 follows closely from these two results.

Theorem 2.9. If all observations are comparable and η is the abstraction induced by

the relation “Have no violations,” then η is the unique coarsest, accurate abstraction.

Furthermore, there is no accurate abstraction that results in an abstract system with

a smaller linear dimension than the abstract system corresponding to η.

Proof. Let η be the abstraction induced by the equivalence classes of “Have no vi-

olations.” Lemma A.2 shows that if all pairs of observations with a violation are

distinguished, then η is accurate. Lemma A.1 shows that η is, in fact, a coarsest ac-

curate abstraction, since all pairs of observations with a violation must be split in any

accurate refinement. As such, merging any such pair would result in an inaccurate

abstraction. Furthermore, any accurate refinement must be a refinement of η, since

it must make at least the distinctions made by η (due to Lemma A.1). As a result,

due to Proposition 2.2, any other accurate abstraction η′ must induce an abstraction

system with linear dimension no less than that induced by η.

A.3 Proof of Theorem 2.10

For the purposes of this argument, it will be useful to introduce a transforma-

tion of the system dynamics matrix D, called D2. Each row in D2 corresponds

188

to a pair of histories 〈h1, h2〉, and each column a pair of tests 〈t1, t2〉. Each entry

D2
〈h1,h2〉,〈t1,t2〉

def

= p(t1|h1)p(t2|h2). It is straightforward to bound the rank of D2:

Lemma A.3. If rank(D) = n, then rank(D2) ≤ n2.

Proof. Let Q be a set of n tests corresponding to columns that form a basis for D.

Then for any test t and history h, p(t|h) =
∑

q∈Q p(q|h)mt(q), where mt(q) is some

scalar weight. Then

D2
〈h1,h2〉,〈t1,t2〉

= p(t1|h1)p(t2, h2)

=
∑

q∈Q

∑

q′∈Q

p(q|h1)p(q
′|h2)mt1(q)mt2(q

′)

=
∑

〈q,q′〉∈Q×Q

D2
〈q,q′〉,〈h1,h2〉

m〈t1,t2〉(〈q, q
′〉).

So the columns corresponding to Q×Q are a column basis of D2and rank(D2) ≤

|Q×Q| = n2.

Using this fact, one can prove a general result about the system dynamics matrix

which will lead directly to the bound in Theorem 2.10.

Theorem A.4. Let the linear dimension of a system be n and consider two primitive

histories with the same action sequence: h1 = a1o
1
1...ako

1
k and h2 = a1o

2
1...ako

2
k. If

for some test t p(t|h1) 6= p(t|h2), then there exists a (non-consecutive) subsequence

{i1, i2, ...ij} of {1, ..., k} such that j < n2 and:

p(t|ai1o
1
i1
ai2o

1
i2
...aijo

1
ij
) 6= p(t|ai1o

2
i1
ai2o

2
i2
...aijo

2
ij
).

Proof. If k < n2, this result holds trivially, so assume k ≥ n2. This result will use a

(k+ 1)× (k+ 1) matrix, X, constructed from entries of D2, defined entry-wise for all

189

0 ≤ i, j ≤ k:

Xij
def

= p(h
[j...k]
1 t|h

[1...i]
1)p(h

[j...k]
2 |h

[1...i]
2) − p(h

[j...k]
2 t|h

[1...i]
2)p(h

[j...k]
1 |h

[1...i]
1),

where h[j...k] is the sequence of actions and observations in h starting from the jth time-

step and ending with the kth time-step. So, the entries in X correspond to histories

that are prefixes of h1 and h2 and tests that are suffixes of h1 and h2 concatenated

with the test t.

Note that the rows of X are a subset of the rows of D2 and the columns are

weighted sums of the columns of D2. Therefore, rank(X) ≤ rank(D2) ≤ n2.

If an entry Xij is zero, then by simple algebraic manipulation, it must be that

p(h
[j...k]
1 t|h

[1...i]
1)

p(h
[j...k]
1 |h

[1...i]
1)

=
p(h

[j...k]
2 t|h

[1...i]
2)

p(h
[j...k]
2 |h

[1...i]
2)

and, by definition of conditional probability,

p(t|h
[1...i]
1 h

[j...k]
1) = p(t|h

[1...i]
2 h

[j...k]
2).

These predictions are predictions of t given a history that is formed by “erasing”

some time-steps in the middle of h1 (and h2). Contrapositively, if p(t|h
[1...i]
1 h

[j...k]
1) 6=

p(t|h
[1...i]
2 h

[j...k]
2) then Xij 6= 0.

Since p(t|h1) 6= p(t|h2), it must be that Xi(k−i) 6= 0 for any i, because these entries

correspond to not removing any time-steps from the histories. These entries lie on

the diagonal of X. If Xij = 0 for all i and all j < k − i, then X would be triangular

with non-zero entries on the diagonal, and therefore have full rank: k + 1 > n2, a

contradiction. As such, there must be some i and j < k − i such that Xij 6= 0. That

is, if p(t|h1) 6= p(t|h2) and k ≥ n2, then another, shorter pair of histories can be found

190

that disagree on t by removing the same time-steps from both h1 and h2. Specifically:

p(t|a1o
1
1...aio

1
i ak−j+1o

1
k−j+1...ako

1
k) 6=

p(t|a1o
2
1...aio

2
i ak−j+1o

2
k−j+1...ako

2
k).

The resulting subsequence of indices has length k′ = i+ j. If k′ ≥ n2, simply repeat

the argument to remove more substrings until a subsequence with length less than n2

is found.

Theorem 2.10 follows immediately from Theorem A.4.

Theorem 2.10. If the linear dimension of the system is n, and a violation 〈t, a, h1, h2〉

exists for observations o1, o2 ∈ O then a violation 〈t, a, h′1, h
′
2〉 exists for o1 and o2 with

length(h′1ao1h
′
2) < n2.

Proof. Note that, since h1ao1h2 and h1ao2h2 only differ in one time-step, the subse-

quences from Theorem A.4 that disagree on t must still contain that step, otherwise

they would be equal. As such, the subsequences comprise a violation for o1 and o2

using histories with length less than n2.

This completes the proof of Theorem 2.10. It may be possible to tighten these

bounds in terms of other parameters of the primitive system. The quadratic de-

pendence on n, however, is necessary in the worst case, as the following example

demonstrates.

Consider the family of uncontrolled POMDPs (or HMMs), indexed by k, of the

form given in Figure A.1. The distribution over observations is shown next to each

state. State 0 is the initial state. The linear dimension is equal to the number of

hidden states, n = 2k. Imagine that η distinguishes a from b and c, but aggregates b

and c into the set observation X and there is a single test of interest: ak−1X, which

191

Figure A.1: A family of abstract systems where the only violations occur at histories
of length quadratic in the linear dimension of the system

corresponds to seeing the observation a for the next k − 1 steps, followed by either b

or c.

This abstraction is not accurate because p(ak−1X|hb) = 0.25 and p(ak−1X|hc) =

0.5 for any history h. That is, if one sees c, one knows that after k− 1 steps, one will

be in state k − 2 and will therefore reach state k − 1 and have a 0.5 probability of

seeing b in the next time-step. If one sees b, then after k− 1 steps one will be in state

2k − 2 and will have a 0.5 chance of reaching state 2k − 1 and then a 0.5 chance of

seeing c in the next time-step for total of 0.25. As such, b and c must be distinguished

in any accurate abstraction.

Furthermore, there do exist histories h such that p(b|h) > 0 and p(c|h) > 0, so

there are violations between b and c. The shortest such history is a(n+1)k−1, as will

be argued next. Clearly, if it weren’t for the stochastic transition in state 2k − 2, or

if the bs and cs were emitted deterministically there would be no history after which

b and c both have positive probability. However, if all one sees are as, the stochastic

transition adds uncertainty about the state. After seeing k − 1 as, one is definitely

192

in state k− 2 and could only possibly observe a or b in the next time-step. However,

after going around the loop and seeing k− 1 + 2k as in total, one cannot tell if one is

in state k−2 or state k−1 (because one might have “slipped” in state 2k−2). After

k − 1 + 2(2k) as, one might be in state k − 2, state k − 1, or state k. It is only after

k − 1 + k(2k) as that the uncertainty grows enough that one might be in any state

from k − 2 to 2k − 2 (and thus one might see an a b, or a c in the next time-step).

Substituting n = 2k, one can see that k − 1 + k(2k) = (n+ 1)k − 1 = 1
2
(n2 + n− 2).

Since this is the shortest history after which b and c both have positive probability, it

is also the shortest history that can be involved in a violation between b and c. Thus,

in this family of systems, the shortest history at which a violation occurs has length

quadratic in the linear dimension. This demonstrates that the bound in Theorem

2.10 is tight in the worst case.

A.4 Proof of Theorem 2.11

This analysis will require the concept of the set test matrix for an abstraction of

interest ηI . This is an infinity-by-infinity matrix like the system dynamics matrix,

and each entry is a prediction. In the set test matrix, however, columns correspond to

the abstract tests under ηI , T ηI

only (the rows still correspond to primitive histories).

The rank of this matrix, n̄, can be at most n and must be at least nηI

, the rank of the

abstract system dynamics matrix induced by ηI (which has abstract tests for columns

and abstract histories for rows).

The set test matrix also has the useful property that there always exists a linear

column basis corresponding to abstract tests of length at most n̄. This can be shown

as a straightforward extension of the result by Wolfe (2009), which showed that there

always exists a basis of the system dynamics matrix corresponding to tests of length

less than the rank of the system dynamics matrix. Using this fact, one can show that

it is only necessary to consider finitely many tests in the violation search.

193

Theorem 2.11. If the linear dimension of the system is n, T I = T ηI

for some

abstraction ηI , and a violation 〈t, a, h1, h2〉 exists for observations o1, o2 ∈ O then a

violation 〈t′, a, h1, h2〉 exists for o1 and o2 with length(t′) ≤ n.

Proof. Note that if Q̄ is any set of abstract tests whose columns form a basis for

the set test matrix and for some pair of histories p(q̄|h) = p(q̄|h′) for all q̄ ∈ Q̄,

then p(T |h) = p(T |h′) for any abstract test T ∈ T ηI

. By contrapositive, then, if a

violation exists involving some set test T , there must also be a violation involving

one of the tests in Q̄. Since there exists a Q̄ consisting of tests length n̄ or less, the

result immediately follows.

194

APPENDIX B

Incomparable Observations

Recall that a pair of observations o1, o2 are comparable if there exists some history

h and action a such that p(hao1|∅) > 0 and p(hao2|∅) > 0. Observations that are

incomparable are notable because, by definition, they cannot have a violation and

can, as a result, cause intransitivities in the “Have no violations” relation.

First note that, by Lemma A.2, whether two incomparable observations are distin-

guished cannot affect accuracy, since they cannot cause a violation. Furthermore, it

is possible to identify incomparable observations in the course of the violation search

by the following result, which is presented without proof (the argument is essentially

the same as that of Theorem A.4).

Lemma B.5. If p(ao1|h)p(ao2|h) = 0 for all histories h with length(h) < n2, then

p(ao1|h)p(ao2|h) = 0 for all histories h of any length.

Thus, it is possible to construct a minimal, accurate refinement by respecting

all comparisons that can be made and otherwise grouping incomparable observations

arbitrarily. One procedure for achieving this would first group together all pairs of ob-

servations that are comparable and have no violations. This will produce an accurate

abstraction, but not a coarsest accurate abstraction. Two abstract observations can

195

still be safely merged if all primitive observations contained in one abstract observa-

tion are incomparable with all members of the other abstract observation (otherwise,

by construction, there is a violation between primitive observations contained in the

two abstract observations). Thus, to find a coarsest accurate abstraction, one can

simply merge pairs of abstract observations until no more safe merges are available.

The result will be a coarsest accurate abstraction since no two observations with a

violation will be grouped together and every pair of sets has at least one violation

and thus, cannot be merged while retaining accuracy.

This simple procedure could result in any of several abstractions, depending on

how incomparable sets are merged. All of them will be coarsest, accurate refinements.

However, they may differ in the linear dimension of the aggregate system they induce,

which is, in some sense, the true decision criterion. Heuristics for grouping incompa-

rable observations in order to produce a compact abstract model could be an avenue

for future research.

196

APPENDIX C

Proofs from Chapter 3

C.1 Proof of Proposition 3.10

This result will follow straightforwardly from a general fact about dynamical sys-

tems. Let h[i...j] be the sequence of actions and observations from h starting with the

ith time-step and ending with the jth time-step. The following two results will show

that if some test t ever has positive probability, then it must have positive probability

at some history with length less than the linear dimension of the system.

Lemma C.6. For any test t and history h, if p(t|h) > 0 and the linear dimension of

the system is n and length(h) = k ≥ n, then ∃i, j < k− i such that p(t|h[1...i]h[j...k]) >

0.

Proof. Note that because p(t|h) > 0, p(h[(k−i)...k]t|h[1...i]) = p(t|h)p(h[(k−i)...k]|h[1...i]) >

0 for all 0 ≤ i ≤ k. Now assume that for all i and all 0 ≤ j < k−i, p(h[j...k]t|h[1...i]) = 0

and seek a contradiction. Imagine the submatrix of the system dynamics matrix in

which rows correspond to h[1...i] for all 0 ≤ i ≤ k and columns correspond to h[i...k]t

for all 0 ≤ i ≤ k. This is a k + 1 × k + 1 matrix. Under the above assumption, this

matrix is triangular with positive entries along the diagonal. As such, this matrix is

197

full rank (rank k + 1). This is a contradiction since k + 1 > n and a submatrix can

never have higher rank than the matrix that contains it.

The next result follows immediately from Lemma C.6.

Corollary C.7. If the system has linear dimension n and for some test t and history

h p(t|h) > 0, then there exists a (possibly non-consecutive) subsequence h′ of h such

that length(h′) < n with p(t|h′) > 0.

Proof. By Lemma C.6, every history h with length k ≥ n such that p(t|h) > 0 must

have a subsequence h1 with length k1 < k such that p(t|h) > 0. If k1 ≥ n, then h1

must have a subsequence h2 with length k2 < k1. This argument can be repeated

until the subsequence has length less than n.

The consequence of Corollary C.7 is that every test that ever has positive prob-

ability, must have positive probability following some history of length less than n.

With this fact in hand, Proposition 3.10 can now be proven.

Proposition 3.10. For any deterministic dynamical system with actions A, and

observations O, the linear dimension, n ≥ log(|A|−1)+log(|O|+1)
log |A|

.

Proof. Since the system is deterministic, each history and action correspond to ex-

actly one resulting observation. A history is a sequence of actions and observations.

However, since the sequence of observations is uniquely determined by the sequence

of actions in a deterministic system, the number of distinct histories of length k is

simply |A|k. At each history there are |A| action choices that could each result in a

different observation. So, the number of observations that could possibly occur after

histories of length k is simply |A|k+1. By Corollary C.7, if the linear dimension is n,

all observations must occur after some history h with length(h) ≤ n − 1. Thus, the

198

number of observations that can possibly follow histories of length less than n:

|O| ≤
n−1
∑

i=0

|A|i+1 =
|A|n+1 − 1

|A| − 1
− 1.

Solving for n yields the bound on linear dimension in terms of the number of actions

and the number of observations.

C.2 Proof of Proposition 3.12

Proposition 3.12. For any system, the set of tests whose corresponding prediction

profile system has the highest linear dimension is Q, the set of core tests for that

system (as described in Section 1.2.2.1).

Proof. Recall from the discussion of PSRs in Section 1.2.2.1 that the set of core tests,

Q, is a set of tests whose corresponding columns in the system dynamics matrix

constitute a basis. The predictions for the core tests at a given history form the

predictive state at that history. So, the predictive state is precisely the prediction

profile for the core tests Q. The prediction for any other test can be computed as a

linear function of the prediction profile for Q. Note that the prediction profile system

for Q is itself an MDP. It was shown in Section 1.2.2.1 how to compute the next

predictive state given the current predictive state and an action-observation pair.

Now consider some other set of tests of interest T I . Because the predictions for Q

can be used to compute the prediction for any other test, it must be that there is some

function ζ that maps the prediction profiles for Q to the prediction profiles for T I . In

general, multiple predictive states may map to the same prediction profile for T I so

ζ is a surjection. Now it is easy to see that the prediction profile system for T I is the

result of applying the observation abstraction ζ to the prediction profile system for

Q. Performing observation abstraction on an MDP generally produces a POMDP,

but never increases the linear dimension, as shown in Proposition 2.2. Hence, the

199

prediction profile system for any set of tests of interest T I has linear dimension no

greater than that of the prediction profile system for Q.

C.3 Proof of Proposition 3.15

Proposition 3.15. Consider a POMDP with hidden states S, actions A, and ob-

servations O. Let T I be the set of tests of interest. Let ai be the action taken at

time-step i, si be the hidden state reached after taking action ai, and oi be the obser-

vation emitted by si. Now, consider any surjection σ : S → Sσ mapping hidden states

to a set of abstract states with the following properties:

1. For any pair of primitive states s1, s2 ∈ S, if σ(s1) = σ(s2), then for any

time-step i and any test of interest t ∈ T I , p(t|si = s1) = p(t|si = s2).

2. For any pair of primitive states s1, s2 ∈ S, if σ(s1) = σ(s2), then for any

time-step i, abstract state S ∈ Sσ, observation o ∈ O, and action a ∈ A,

Pr(σ(si+1) = S|si = s1,a
i+1 = a, oi+1 = o) =

Pr(σ(si+1) = S|si = s2, a
i+1 = a, oi+1 = o).

If such a σ exists, then the prediction profile system for T I has linear dimension no

greater than the number of distinct beliefs over abstract states, Sσ.

Proof. The proof follows similar reasoning to the proof of Proposition 3.12. Note that,

because of Property 1 the belief over abstract states at a given history is sufficient to

compute the prediction profile. For any history h and any test of interest t ∈ T I :

p(t|h) =
∑

s∈S

Pr(s|h)p(t|s) =
∑

S∈Sσ

∑

s∈S

Pr(s|h)p(t|s)

=
∑

S∈Sσ

p(t|S)
∑

s∈S

Pr(s|h) =
∑

S∈Sσ

p(t|S)Pr(S|h),

200

where the third equality follows from property 1: for any S ∈ Sσ, all hidden states

s ∈ S have the same associated probabilities for the tests of interest.

Now, consider the dynamical system with beliefs over abstract states as “observa-

tions” and action-observation pairs as “actions.” Call this the abstract belief system.

Just as with the predictive state, because it is possible to compute the prediction

profile from the abstract beliefs, the prediction profile model for T I can be seen as

the result of an observation aggregation of the abstract belief system. As a result, the

prediction profile system has linear dimension no greater than that of the abstract

belief system.

The rest of the proof shows that, because of Property 2, the abstract belief system

is an MDP, and therefore has linear dimension no greater than the number of distinct

beliefs over abstract states.

Given the probability distribution over abstract states at a given history h, and

the agent takes an action a and observes and observation o, it is possible to compute

the probability of an abstract state S ∈ Sσ at the new history:

Pr(S|hao) =
∑

s∈S

Pr(s|h)Pr(S|s, a, o) =
∑

S′∈Sσ

∑

s∈S′

Pr(s|h)Pr(S|s, a, o)

=
∑

S′∈Sσ

Pr(S|S ′, a, o)
∑

s∈S′

Pr(s|h) =
∑

S′∈Sσ

Pr(S|S ′, a, o)Pr(S ′|h),

where the third equality follows from Property 2: for any S ∈ Sσ, all hidden states

s ∈ S have the same associated conditional distribution over next abstract states,

given the action and observation.

So, because one can compute the next abstract beliefs from the previous abstract

beliefs, the abstract belief system is an MDP, and therefore has linear dimension

no greater than the number of distinct abstract beliefs. Because one can compute

the prediction profile from the abstract beliefs, the prediction profile system can be

constructed by applying an observation abstraction to the abstract belief system.

201

Thus, the prediction profile system has linear dimension no greater than the number

of distinct abstract beliefs.

202

APPENDIX D

Proofs from Chapter 4

D.1 Proof of Proposition 4.4

Proposition 4.4. For any abstraction η and any k,

ξk(η) = ǫk(η0) − ǫk(η) = EH∈Hη
k
[D(T |H||T |η0(H))]

=
∑

H∈Hη
k

p(H|∅)
∑

t∈T I

p(t|H) log

(

p(t|H)

p(t|η0(H))

)

.

Proof. This fact can be shown algebraically. First, by the definition of KL-Divergence,

ξk(η) =Eh∈Hk
[D(T |h||T |η0(h)) −D(T |h||T |η(h))]

=
∑

h∈Hk

p(h|∅)
∑

t∈T I

p(t|h)

(

log

(

p(t|h)

p(t|η0(h))

)

− log

(

p(t|h)

p(t|η(h))

))

=
∑

h∈Hk

p(h|∅)
∑

t∈T I

p(t|h) log

(

p(t|η(h))

p(t|η0(h))

)

Now, the summation ranges over all primitive histories. Since every primitive

203

history belongs to exactly one abstract history, one can re-arrange the summation:

=
∑

H∈Hη
k

∑

h∈H

p(h|∅)
∑

t∈T I

p(t|h) log

(

p(t|H)

p(t|η0(H))

)

=
∑

H∈Hη
k

∑

t∈T I

log

(

p(t|H)

p(t|η0(H))

)

∑

h∈H

p(h|∅)p(t|h)

=
∑

H∈Hη
k

∑

t∈T I

log

(

p(t|H)

p(t|η0(H))

)

∑

h∈H

p(ht|∅)

=
∑

H∈Hη
k

∑

t∈T I

log

(

p(t|H)

p(t|η0(H))

)

p(Ht|∅)

=
∑

H∈Hη
k

p(H|∅)
∑

t∈T I

p(t|H) log

(

p(t|H)

p(t|η0(H))

)

=EH∈Hη
k
[D(T |H||T |η0(H)],

which yields the result.

D.2 Proof of Proposition 4.5

Proposition 4.5. For any abstraction η, any refinement η′, and any abstract history

H under η, δη,η′(H) ≤ p(H|∅)Y(T |H) where Y(T |H) is the conditional entropy of the

distribution over tests of interest, given the abstract history H.

Proof. Recall, δη,ηf
(H)

def

=
∑

H′∈H p(H
′|∅)D(T |H ′||T |η0(H

′))−p(H|∅)D(T |H||T |η0(H))

where H is an abstract history under η and H ′ is an abstract history under η′ that is

204

contained in H. Then,

δη,ηf
(H)

∑

H′∈H

p(H ′|∅)D(T |H ′||T |η0(H
′)) − p(H|∅)D(T |H||T |η0(H))

=
∑

H′∈H

p(H ′|∅)
∑

t∈T I

p(t|H ′) log

(

p(t|H ′)

p(t|η0(H ′)

)

− p(H|∅)
∑

t∈T I

p(t|H) log

(

p(t|H)

p(t|η0(H)

)

=
∑

H′∈H

p(H ′|∅)
∑

t∈T I

p(t|H ′) log

(

p(t|H ′)

p(t|η0(H ′)

)

−
∑

H′∈H

p(H ′|∅)
∑

t∈T I

p(t|H ′) log

(

p(t|H)

p(t|η0(H)

)

=
∑

H′∈H

p(H ′|∅)
∑

t∈T I

p(t|H ′) log

(

p(t|H ′)

p(t|H

)

,

where the first equality is by the definition of KL-Divergence, the second follows from

the fact that the H ′s are all the abstract histories under η′ contained within H, and

the third follows from the fact that η0(H) = η0(H
′) because η′ is a refinement of η.

Now by the definition of entropy,

∑

H′∈H

p(H ′|∅)
∑

t∈T I

p(t|H ′) log

(

p(t|H ′)

p(t|H

)

=
∑

H′∈H

p(H ′|∅)

(

∑

t∈T I

p(t|H ′) log(p(t|H ′)) −
∑

t∈T I

p(t|H ′) log(p(t|H))

)

= −
∑

H′∈H

p(H ′|∅)
∑

t∈T I

p(t|H ′) log(p(t|H)) −
∑

H′∈H

p(H ′|∅)Y (T |H ′)

Noting that, in the first term, log(p(t|H)) does not change with the summation

205

index, the summations can be re-arranged.

−
∑

H′∈H

p(H ′|∅)
∑

t∈T I

p(t|H ′) log(p(t|H)) −
∑

H′∈H

p(H ′|∅)Y (T |H ′)

= −
∑

t∈T I

log(p(t|H))
∑

H′∈H

p(H ′|∅)p(t|H ′) −
∑

H′∈H

p(H ′|∅)Y (T |H ′)

= −
∑

t∈T I

log(p(t|H))p(H|∅)p(t|H) −
∑

H′∈H

p(H ′|∅)Y (T |H ′)

= −p(H|∅)
∑

t∈T I

log(p(t|H))p(t|H) −
∑

H′∈H

p(H ′|∅)Y (T |H ′)

= p(H|∅)Y (T |H) −
∑

H′∈H

p(H ′|∅)Y (T |H ′)

Since the second term is necessarily positive, this yields the result: δη,η′(H) ≤

p(H|∅)Y(T |H).

206

BIBLIOGRAPHY

207

BIBLIOGRAPHY

Amir, E. (2005), Learning partially observable deterministic action models, in ‘Pro-
ceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI)’, pp. 1433–1439.

Baum, L. E., Petrie, T., Soules, G. & Weiss, N. (1970), ‘A maximization technique
occuring in the statistical analysis of probabalistic functions of markov chains’,
The Annals of Mathematical Statistics 41(1), 164–171.

Baxter, J. & Bartlett, P. L. (2000), Reinforcement learning in pomdps via direct
gradient ascent, in ‘Proceedings of the Eighteenth International Conference on
Machine Learning (ICML)’, pp. 41–48.

Berger, A., Pietra, S. D. & Pietra, V. D. (1996), ‘A maximum entropy approach to
natural language processing’, Computational Linguistics 22(1), 39–71.

Bilmes, J. (2007), ‘The graphical models toolkit (gmtk)’. http://ssli.ee.

washington.edu/~bilmes/gmtk.

Boutilier, C., Dean, T. & Hanks, S. (1999), ‘Decision-theoretic planning: Structural
assumptions and computational leverage’, Journal of Artificial Intelligence Re-
search 11, 1–94.

Boutilier, C., Friedman, N., Goldszmidt, M. & Koller, D. (1996), Context-specific
independence in bayesian networks, in ‘Uncertainty in Artificial Intelligence 12
(UAI)’, pp. 115–123.

Bowling, M., McCracken, P., James, M., Neufeld, J. & Wilkinson, D. (2006), Learning
predictive state representations using non-blind policies, in ‘Proceedings of the
Twenty-Third International Conference on Machine Learning (ICML)’, pp. 129–
136.

Boyen, X. & Koller, D. (1998), Tractable inference for complex stochastic processes,
in ‘Uncertainty in Artificial Intelligence 14 (UAI)’, pp. 33–42.

Cassandra, A. R. (1998), Exact and Approximate Algorithms for Partially Observable
Markov Decision Processes, PhD thesis, Brown University.

208

Degris, T., Sigaud, O. & Wuillemin, P.-H. (2006), Learning the structure of factored
markov decision processes in reinforcement learning problems, in ‘Proceedings of
the 23rd International Conference on Machine Learning (ICML)’, pp. 257–264.

Fikes, R. E. & Nilsson, N. J. (1971), Strips: a new approach to the application of
theorem proving to problem solving, in ‘Proceedings of the 2nd International
Joint Conference on Artificial intelligence (IJCAI)’, pp. 608–620.

Ghahramani, Z. & Jordan, M. I. (1995), Factorial hidden Markov models, in ‘Ad-
vances in Neural Information Processing Systems 8 (NIPS)’, pp. 472–478.

Gil, Y. (1994), Learning by experimentation: Incremental refinement of incomplete
planning domains, in ‘Proceedings of the 11th International Joint Conference on
Artificial Intelligence (IJCAI)’, pp. 10–13.

Givan, R., Dean, T. & Greig, M. (2003), ‘Equivalence notions and model minimization
in markov decision processes’, Artificial Intelligence 147, 163–223.

Guestrin, C., Koller, D., Parr, R. & Venkataraman, S. (2003), ‘Efficient solution al-
gorithms for factored mdps’, Journal of Artificial Intelligence Research 19, 399–
468.

Hansen, E. (1998), Finite-Memory Control of Partially Observable Systems, PhD
thesis, University of Massachussetts, Amherst, MA.

Hinton, G. E. (1999), Products of experts, in ‘Proceedings of the 9th International
Conference on Artificial Neural Networks (ICANN)’, pp. 1–6.

Holmes, M. & Isbell, C. (2006), Looping suffix tree-based inference of partially observ-
able hidden state, in ‘Proceedings of the Twenty-Third International Conference
on Machine Learning (ICML)’, pp. 409–416.

Jaeger, H. (2000), ‘Observable operator models for discrete stochastic time series’,
Neural Computation 12(6), 1371–1398.

James, M. & Singh, S. (2004), Learning and discovery of predictive state representa-
tions in dynamical systems with reset, in ‘International Conference on Machine
Learning 21 (ICML)’, pp. 417–424.

Julier, S. J. & Uhlmann, J. K. (1997), A new extension of the kalman filter to nonlinear
systems, in ‘Proceedings of AeroSense: the 11th International Symposium on
Aerospace/Defense Sensing, Simulation and Controls’, pp. 182–193.

Kalman, R. E. (1960), ‘A new approach to linear filtering and prediction problems’,
Transactions of the ASME – Journal of Basic Engineering 82, 35–45.

Kocsis, L. & Szepesvári, C. (2006), Bandit based monte-carlo planning, in ‘Proceed-
ings of the 17th European Conference on Machine Learning (ECML)’, pp. 282–
293.

209

Larsen, K. G. & Skou, A. (1991), ‘Bisimulation through probabalistic testing’, Infor-
mation and Computation 94(1), 1–28.

Li, L., Walsh, T. J. & Littman, M. L. (2006), Towards a unified theory of state
abstraction for mdps, in ‘Proceedings of the 9th International Symposium on
Artificial Intelligence and Mathematics (ISAIM)’.

Littman, M. L. (1996), Algorithms for Sequential Decision Making, PhD thesis, Brown
University, Providence, RI.

Littman, M., Sutton, R. & Singh, S. (2002), Predictive representations of state, in
‘Advances in Neural Information Processing Systems 14 (NIPS)’, pp. 1555–1561.

McCallum, A. K. (1995), Reinforcement Learning with Selective Perception and Hid-
den State, PhD thesis, Rutgers University.

Menache, I., Mannor, S. & Shimkin, N. (2002), Q-cut - dynamic discovery of sub-goals
in reinforcement learning, in ‘Proceedings of the 13th European Conference on
Machine Learning (ECML)’, pp. 295–306.

Monahan, G. E. (1982), ‘A survey of partially observable markov decisions processes:
Theory, models, and algorithms’, Management Science 28(1), 1–16.

Mugan, J. & Kuipers, B. (2009), Autonomously learning an action hierarchy using a
learned qualitative state representation, in ‘Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI)’, pp. 1175–1180.

Pasula, H. M., Zettlemoyer, L. S. & Kaelbling, L. P. (2007), ‘Learning symbolic
models of stochastic domains’, Journal of Artificial Intelligence 29, 309–352.

Peters, J. & Schaal, S. (2008), ‘Natural actor-critic’, Neurocomputing 71, 1180–1190.

Poupart, P. & Boutilier, C. (2003), Bounded finite state controllers, in ‘Advances in
Neural Information Processing Systems 16 (NIPS)’.

Quinlan, R. J. (1992), C4.5: Programs for Machine Learning, Vol. 8 of Morgan Kauf-
mann Series in Machine Learning, Morgan Kaufmann Publishers.

Ravindran, B. (2004), An Algebraic Approach to Abstraction in Reinforcement Learn-
ing, PhD thesis, University of Massachusetts, Amherst, MA.

Rivest, R. L. & Schapire, R. E. (1994), ‘Diversity-based inference of finite automata’,
Journal of the Association for Computing Machinery 41(3), 555–589.

Rudary, M. (2008), On Predictive Linear Gaussian Models, PhD thesis, University of
Michigan.

Rudary, M., Singh, S. & Wingate, D. (2005), Predictive linear-gaussian models of
stochastic dynamical systems, in ‘Uncertainty in Artificial Intelligence 21 (UAI)’,
pp. 501–508.

210

Shalizi, C. R. & Klinker, K. L. (2004), Blind construction of optimal nonlinear recur-
sive predictors for discrete sequences, in ‘Proceedings of the 20th Conference on
Uncertainty in Artificial Intelligence (2004)’, pp. 504–511.

Şimşek, Ö. & Barto, A. G. (2008), Skill characterization based on betweeness, in
‘Proceedings of the 22nd Conference on Neural Information Processing Systems
(NIPS)’, pp. 1497–1504.

Singh, S., James, M. R. & Rudary, M. R. (2004), Predictive state representations: A
new theory for modeling dynamical systems, in ‘Uncertainty in Artificial Intelli-
gence: Proceedings of the Twentieth Conference (UAI)’, pp. 512–519.

Sondik, E. J. (1978), ‘The optimal control of partially observable markov processes
over the infinite horizon: Discounted costs’, Operations Research 26, 282–304.

Soni, V. & Singh, S. (2007), Abstraction in predictive state representations, in ‘Pro-
ceedings of the Twenty-Second National Conference on Artificial Intelligence,
(AAAI)’. To appear.

Sorg, J. & Singh, S. (2009), Transfer via soft homomorphisms, in ‘Proceedings of the
8th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS)’, pp. 741–748.

Stober, J. & Kuipers, B. (2008), From pixels to policies: a bootstrapping agent, in
‘Proceedings of the IEEE International Conference on Development and Learning
(ICDL)’, pp. 103–108.

Stolle, M. & Precup, D. (2002), Learning options in reinforcement learning, in ‘Pro-
ceedings of the 5th International Conference on Abstraction, Reformulation, and
Approximation’, pp. 212–223.

Strehl, A. L., Diuk, C. & Littman, M. L. (2007), Efficient structure learning in
factored-state mdps, in ‘Proceddings of the 22nd Natioanl Conference on Ar-
tificial Intelligence (AAAI)’, pp. 645–650.

Sutton, R., Precup, D. & Singh, S. (1999), ‘Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning’, Artificial Intelligence
112, 181–211.

Taylor, J., Precup, D. & Panagaden, P. (2009), Bounding performance loss in ap-
proximate mdp homomorphisms, in ‘Advances in Neural Information Processing
Systems 21 (NIPS)’, pp. 1649–1656.

Wang, X. (1995), Learning by observation and practice: an incremental approach for
planning operator acquisition, in ‘Proceedings of the 12th International Confer-
ence on Machine Learning (ICML)’, pp. 549–557.

211

Weaver, L. & Tao, N. (2001), The optimal reward baseline for gradient-based rein-
forcement learning, in ‘Uncertainty in Artificial Intelligence 17 (UAI)’, pp. 538–
545.

Williams, R. (1992), ‘Simple statistical gradient-following algorithms for connectionist
reinforcement learning’, Machine Learning 8, 229–256.

Wingate, D. (2008), Exponential Family Predictive Representations of State, PhD
thesis, University of Michigan.

Wingate, D., Soni, V., Wolfe, B. & Singh, S. (2007), Relational knowledge with
predictive state representations, in ‘Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI)’, pp. 2035–2040.

Wolfe, A. P. (2010), Paying Attention to What Matters: Observation Abstraction in
Partially Observable Environments, PhD thesis, University of Massachussetts,
Amherst, MA.

Wolfe, A. P. & Barto, A. G. (2006), Decision tree methods for finding reusable MDP
homomorphisms, in ‘Proceedings of the Twenty-First National Conference on
Artificial Intelligence, (AAAI)’.

Wolfe, B. D. (2009), Modeling Dynamical Systems with Structured Predictive State
Representations, PhD thesis, University of Michigan.

Wolfe, B., James, M. R. & Singh, S. (2005), Learning predictive state representations
in dynamical systems without reset, in ‘Proceedings of the 22nd International
Conference on Machine Learning (ICML)’, pp. 985–992.

Wolfe, B., James, M. & Singh, S. (2008), Approximate predictive state representa-
tions, in ‘Autonomous Agents and Multiagent Systems 7 (AAMAS)’.

Wolfe, B. & Singh, S. (2006), Predictive state representations with options, in ‘Pro-
ceedings of the Twenty-Third International Conference on Machine Learning
(ICML)’, pp. 1025–1032.

212

