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ABSTRACT

Most of the new and important findings in biomedicine are only available in the

text of the published scientific articles. The first goal of this thesis is to design

methods based on natural language processing and machine learning to extract in-

formation about genes, proteins, and their interactions from text. We introduce a

dependency tree kernel based relation extraction method to identify the interacting

protein pairs in a sentence. We propose two kernel functions based on cosine similar-

ity and edit distance among the dependency tree paths connecting the protein names.

Using these kernel functions with supervised and semi-supervised machine learning

methods, we report significant improvement (59.96% F-Measure performance over

the AIMED data set) compared to the previous results in the literature. We also

address the problem of distinguishing factual information from speculative informa-

tion. Unlike previous methods that formulate the problem as a sentence classification

task, we propose a two-step method to identify the speculative fragments of sentences.

First, we use supervised classification to identify the speculation keywords using a

diverse set of linguistic features that represent their contexts. Next, we use the syn-

tactic structures of the sentences to resolve their linguistic scopes. Our results show

that the method is effective in identifying speculative portions of sentences. The

speculation keyword identification results are close to the upper bound of human

inter-annotator agreement.

The second goal of this thesis is to generate new scientific hypotheses using the

xii



literature-mined protein/gene interactions. We propose a literature-based discovery

approach, where we start with a set of genes known to be related to a given concept

and integrate text mining with network centrality analysis to predict novel concept-

related genes. We present the application of the proposed approach to two different

problems, namely predicting gene-disease associations and predicting genes that are

important for vaccine development. Our results provide new insights and hypothe-

ses worth future investigations in these domains and show the effectiveness of the

proposed approach for literature-based discovery.
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CHAPTER I

Introduction

1.1 Motivation

The post-genome era, which started with the completion of the Human Genome

Project (Lander et al., 2001; Venter et al., 2001) has brought new research opportu-

nities and challenges. The primary goal in this new era is interpreting the genome

data, in other words understanding the functions of the genes, the proteins they

code for, and their roles in the biological pathways. New techniques such as high-

throughput experimental methods have been developed, which contributed to the

generation of massive amounts of biomedical data and to the rapid increase in the

number of published scientific articles in the domain.

The main system that provides access to the biomedical article citations and ab-

stracts from MEDLINE and additional life sciences journals is the PubMed system1,

which is maintained by the U.S. National Library of Medicine and the National In-

stitutes of Health. Some of the entries in PubMed include links to full-text articles

from publisher web sites or PubMed Central2, which contains nearly 2 million arti-

cles. Biomedical literature is growing at a double-exponential rate (Cohen & Hunter,

2004; Hunter & Cohen, 2006). In other words, both the total size of PubMed and the

1http://www.ncbi.nlm.nih.gov/pubmed/
2http://www.pubmedcentral.nih.gov/

1



2

growth rate of PubMed are increasing exponentially. Figure 1.1 shows the new en-

tries added to PubMed each year between 1948 and 2008. While the average number

of publications added to PubMed per day was only 194 in 1948, between 2000 and

4000 entries per working day have been added to PubMed since 20053. For example,

811375 new entries were added to PubMed during 2008, which corresponds to an

average of 2216 new entries per day. Figure 1.2 shows the total number of entries

in PubMed at the end of each year between 1948 and 2008. While there were only

70871 entries in PubMed in 1948, currently there are over 19 million publications.

Over 6.8 million of these publications were added in the last 10 years.

Figure 1.1: Growth in the Biomedical literature between 1948-2008. The plot shows the new entries
added to the PubMed database each year.

The main way that biomedical researchers communicate their new findings is

through scientific publications, written in natural language. Given the current

amount and the growth rate of the biomedical literature, it is difficult or impos-

3http://www.nlm.nih.gov/pubs/factsheets/medline.html
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Figure 1.2: Growth in the Biomedical literature between 1948-2008. The plot shows the total entries
indexed in the PubMed database at the end of each year.

sible for biomedical scientists to keep up with the relevant publications and utilize

the knowledge contained in them. For example, consider a researcher interested in

the interferon-gamma gene. A search in PubMed for “(ifn-gamma OR interferon-

gamma)” will return 75464 articles4. Even if the researcher is interested in only

certain aspects of the gene such as in its relatedness to vaccine development and re-

stricts his search to “vaccine AND (ifn-gamma OR interferon-gamma)”, the number

of articles retrieved is 7536, which is still too high for reading manually.

There are a number of manually curated databases that store protein interac-

tions, such as the Molecular INTeraction database (MINT) (Zanzoni et al., 2002),

the Biomolecular Interaction Network Database (BIND) (Bader et al., 2003), Swis-

sProt (Bairoch & Apweiler, 2000), and the Human Protein Reference Database

(HPRD) (Keshava Prasad et al., 2009). Many databases also summarize results

4As of October, 2009
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from publications about gene-disease relationships, such as the Online Mendelian

Inheritance in Man (OMIM) (OMIM, 2007), the Pathogen-Host Interaction Data

Integration and Analysis System (PHIDIAS) (Xiang et al., 2007), and the Genetic

Association Database (GAD) (Becker et al., 2004). However, it usually takes a lot of

time and effort before new discoveries are included in these databases. As a result,

most of the knowledge remains hidden in the unstructured text of the published

articles. Developing text mining techniques to uncover this knowledge is not only

useful, but also necessary to facilitate biomedical research.

This thesis has two main objectives. The first goal is to design methods based

on natural language processing and machine learning to extract information about

genes, proteins, and their interactions from text. The second goal is to use the

extracted information to build literature-mined protein interaction networks and to

generate new scientific hypotheses by analyzing these networks.

The next section gives a brief introduction of protein interaction networks, biomed-

ical information extraction and literature-based discovery. Work more closely related

to ours is discussed in the related work sections of the subsequent chapters. We con-

clude this chapter with a summary of the remaining chapters.

1.2 Background

1.2.1 Protein Interaction Networks

The major goal in the post-genome era is not only to understand the functions

of the genes and the proteins they code for, but also to understand their roles in

the biological pathways, in other words the interactions among them. Proteins are

the basic components of biological systems and most of the time they achieve their

tasks by interacting with other proteins. These interactions might be permanent

or transient (Zhang, 2009). An example of a permanent interaction is attaching of
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proteins to each other to form a protein complex. On the other hand, transport of

proteins across membranes involves transient protein interactions (Phizicky & Fields,

1995). For example, Importin is a type of protein that binds to another protein and

transports it from the cytoplasm to the nucleus or vice versa. Post Translational

Modifications (PTMs) such as phosphorylation, acetylation, and methylation are

other examples of transient interactions. For example, in phosphorylation a protein

kinase binds briefly to a target protein and adds a phosphate to the target protein.

PTMs can affect the functions and interactions of the proteins in important ways.

For instance, a protein might be able to bind to another protein, only if it has been

phosphorylated.

Information about protein interactions is crucial for understanding the vital biological
processes

Protein-protein interactions (PPIs) play important roles in many, if not all, vital

biological processes such as metabolic and signaling pathways, cell cycle control,

cell growth, and cell death (Phizicky & Fields, 1995). Information about these

interactions is crucial not only for understanding these biological processes, but also

for improving our understanding of diseases and developing approaches for their

prevention and cure. As an example, consider apoptosis, which is the process of

genetically controlled cell death. It plays an important role in tissue and organ

development, which comprises the division and differentiation of a particular cell, and

the apoptosis of the unwanted cells. For instance, the differentiation of the fingers

in a developing human embryo is a result of the apoptosis of the cells between the

fingers. While apoptosis is an important biological phenomenon in an organism’s life

cycle, defective apoptotic processes have been associated with various diseases. For

example, damage in the apoptotic capabilities of cells might result in uncontrolled cell
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proliferation, such as cancer. Figure 1.3 shows the pathway of apoptosis from KEGG5

(Kanehisa & Goto, 2000; Kanehisa et al., 2006, 2010), which is a manually drawn

pathway map of the currently known molecular interaction and reaction network for

apoptosis. A chain of bio-molecular events that lead to apoptosis is outlined below.

1. Caspase-8 (CASP8) activation is triggered by death receptor engagement.

2. CASP8 activation regulates caspase-3 (CASP3) activation.

3. CASP3 activation leads to the degradation of cellular proteins that are required

for cell survival.

4. Degradation of cellular proteins that are required for cell survival causes apop-

tosis.

Figure 1.3 shows that the Inhibitor of Apoptosis (IAP) family of proteins inhibit

CASP3, thus suppressing apoptosis. Information about these interactions can help

the development of strategies to treat insufficient amount of apoptosis (e.g. in can-

cer). For example, one approach could be identifying mechanisms that can inhibit

IAP, thus preventing it from suppressing apoptosis (Danson et al., 2007; Fulda, 2008).

Size of protein interaction networks correlates with the biological complexities of the
organisms

One of the most surprising results of the genome sequencing projects (Lander

et al., 2001; Venter et al., 2001) was that the number of genes in organisms does

not necessarily reflect their organismal complexity, which is often measured with the

number of distinct cell types (Copley, 2008). It is interesting that the number of

protein-coding genes in humans, which has been estimated as 20500 (Clamp et al.,

2007), is similar to the number of protein-coding genes in the nematode Caenorhab-

5http://www.genome.jp/kegg/pathway/hsa/hsa04210.html (Accessed on October 4, 2009.)
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Figure 1.3: Apoptosis pathway from KEGG (http://www.genome.jp/kegg/pathway/hsa/hsa04210.html),
which shows the map of the currently known molecular interaction and reaction net-
work for apoptosis (Kanehisa & Goto, 2000; Kanehisa et al., 2006, 2010). The image
is included with the permission of the GenomeNet team.

ditis elegans, which has been estimated as 19735 (Hillier et al., 2005). It has been

suggested that the biological complexities of organisms does not only depend on the

number of genes that they have, but on the number of bio-molecular interactions

(Lander et al., 2001; Copley, 2008). A recent study has shown that the size of the

protein interaction networks correlates with the biological complexities of the organ-

isms (Stumpf et al., 2008). The number of protein interactions in humans has been

estimated as 650000, which is around ten times more than the estimated number

of interactions in fruit fly (Drosophila melanogaster) and around three times more

than the estimated number of interactions in Caenorhabditis elegans (Stumpf et al.,
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2008).

Many protein interactions are available only in the text of published scientific articles

The development of high-throughput experimental methods such as two-hybrid

system, mass spectrometry, and protein chip technology has led to rapid increase in

data and publications relevant to PPI (Zhang, 2009). A number of mostly manually

curated databases that store PPI data in structured formats have been developed

as a response. However, these databases cover only a small fraction of the available

PPI data. For example, one of the most comprehensive databases for human protein

interactions is the HPRD database (Keshava Prasad et al., 2009), which currently

contains 38806 PPIs6. This number is much smaller than the total estimated number

of human PPIs of 650000 (Stumpf et al., 2008). Although there might be many PPIs

that are not uncovered yet, a recent study by Ramani et al. (2005), has demonstrated

that there is only a small overlap (< 0.1%) between the PPIs reported in the manually

curated HPRD (Keshava Prasad et al., 2009), Reactome (Matthews et al., 2009),

and BIND (Bader et al., 2003) databases. This suggests that, the number of PPIs

available in the literature is much larger than the ones existing in the manually

curated databases.

PPI networks can be represented as graphs

A PPI network can be represented as a graph, where the proteins are repre-

sented as nodes and an interaction between a pair of proteins is represented with

an edge connecting them. Figure 1.4 shows a sample PPI network created by using

the VisANT7 online visualization and analysis tool for biological interaction data

(Hu et al., 2004). VisANT is supported by the Predictome database (Mellor et al.,

6http://www.hprd.org/ (Accessed on October 5, 2009.)
7http://visant.bu.edu/
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2002), which stores interactions that are identified using experimental techniques

(e.g. yeast two-hybrid system, coimmunoprecipitation, mass spectrometry) or com-

puational techniques (e.g. gene fusion, chromosomal proximity, gene co-evolution).

The Predictome databases also integrates experimentally determined interactions

from curated databases such as MINT (Zanzoni et al., 2002), BIND (Bader et al.,

2003), and HPRD (Keshava Prasad et al., 2009). The network in Figure 1.4 shows

the human protein interactions determined by the yeast two hybrid method. The

network consists of 7314 nodes and 19443 edges.

Figure 1.4: Network of human protein interactions, which were derived by using the yeast two
hybrid method. The network is created with VisANT (http://visant.bu.edu/) (Hu et
al., 2004). The picture is included with the permission of the authors.

The graph representation allows the analysis of PPIs from a graph theory and

complex networks perspective, which can give biologists a variety of new insights.
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For example, the function of a protein may be predicted by looking at the proteins

with which it interacts, as it is generally assumed that neighboring proteins in the

network have common functions (Schwikowski et al., 2000; Zhang, 2009). Similarly,

subgraphs that are densely connected within themselves but sparsely connected with

the rest of the network might form molecular modules that function as a unit in

certain biological processes (Spirin & Mirny, 2003; Zhang, 2009).

Topological features of PPI networks can also facilitate our understanding of bi-

ological systems. Recent studies have shown that PPI networks share similar topo-

logical properties such as being small-world and scale-free (Chen & Sharp, 2004;

Hoffmann & Valencia, 2005; Jeong et al., 2001), with each other and with various

non-biological complex systems such as the WWW (Huberman & Adamic, 1999),

the Internet (Yook et al., 2002), and social networks (Barabási et al., 2002; Watts &

Strogatz, 1998). A scale-free network is characterized by having a power-law degree

distribution, P (k) ∼ k−γ, where P (k) is the probability that a randomly selected

node will have a degree (i.e. number of connections) of k (Albert & Barabási, 2002).

In scale-free networks most nodes make only a few connections, while a small set

of nodes (known as hubs) have very large number of links. This is different from

random networks, which follow Poisson distribution, where majority of the nodes

have degrees close to the average degree of the network. Small-world networks have

a relatively short distance between any two nodes, where distance is defined as the

number of edges along the shortest path connecting them, and a clustering coefficient

that is significantly higher than that of a random network with the same number of

nodes. The clustering coefficient of a node describes how well connected a node’s

neighbors are and is defined as the number of connections between this node’s neigh-

bors divided by the number of possible connections between them (Watts & Strogatz,
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1998). The clustering coefficient of a network is the average of the clustering coef-

ficients of the nodes in the network (Watts & Strogatz, 1998). The small-world

phenomenon was first studied as a concept in sociology. The most popular example

of small world networks is the “six-degree-of-separation” concept uncovered by the

social psychologist Stanley Milgram in 1967, where he concluded that there is a path

of acquaintances with a typical length of six between most pairs of people in the

United States (Milgram, 1967).

1.2.2 Biomedical Information Extraction

This section provides a brief background on biomedical information extraction. A

current survey on information extraction in general can be found in (Sarawagi, 2008)

and surveys on biomedical information extraction and text mining can be found

in (Cohen & Hersh, 2005; Zweigenbaum et al., 2007).

The goal of information extraction (IE) is to automatically extract the explicitly

stated factual information in structured format from unstructured text. Concep-

tually, IE consists of two main components, named entity recognition (NER) and

relation extraction. NER is the task of identifying the mentions of specific types of

entities. Once the named entities have been identified, the next step in IE is rela-

tion extraction that involves the extraction of predefined types of relations among

these entities. NER and relation extraction are usually targeted to specific domains.

The named entities and the relevant relations depend on the domain of focus. For

example, names of persons, organizations, and locations are types of named enti-

ties and company employee and company acquisition are types of relations consid-

ered in the newspaper articles domain. Consider the sentence “Medical Corp said

it named Victor Vaguine as president and chief executive officer”, which is taken

from a newspaper article. A relation that can be extracted from this sentence is
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the employee of(PERSON, ORGANIZATION) relation, where “Victor Vaguine” is

a person who is an employee of the “Medical Corp” organization.

Our focus is on the biomedical domain, which has a very specialized language with

complex and continually changing terminology. What makes the IE task even more

challenging is the abundance of sentences with complex structures. Gene and protein

names, diseases, drugs, metabolites, cellular components, cell and tissue types are

examples of named entity types encountered in the biomedical domain. While the

earliest systems for biomedical NER were usually based on rule-based approaches

(e.g. (Fukuda et al., 1998)), as annotated corpora became available machine-learning

based methods have recently gained popularity (e.g. (GuoDong & Jian, 2004; Zhao,

2004; Mcdonald & Pereira, 2005; Tsai et al., 2006; Hsu et al., 2008)). State-of-the-art

gene and protein NER systems achieve a practically applicable level of performance

(e.g. 87% F-score performance was obtained at the second BioCreative shared task

on gene mention tagging (Smith et al., 2008)). Genia Tagger (Tsuruoka et al., 2005),

ABNER (Settles, 2005), and BANNER (Leaman & Gonzalez, 2008) are some of the

publicly available biomedical NER tools.

In this thesis we focus on extracting relations and either use the gold standard

names for the entities when available or use one of the available NER tools to iden-

tify the named entities. While referring to genes and proteins, we usually adapt

the commonly applied GENETAG-style named entity annotation, which does not

differentiate between genes and proteins (Tanabe et al., 2005). In other words, the

terms gene and protein are usually used interchangeably to refer to the genes and

gene products.

Types of relations that have been targeted in the biomedical domain include gene-

disease associations (Gonzalez et al., 2007; Chen et al., 2006; Adamic et al., 2002; Al-
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Mubaid & Singh, 2005), protein localizations (Craven & Kumlien, 1999), gene-drug

interactions (Rindflesch et al., 2000), and disease-treatment relationships (Rosario &

Hearst, 2004). The relation extraction problem that has drawn the most attention in

the biomedical IE field is the recognition of protein-protein interactions (PPI) (Jelier

et al., 2005; Blaschke et al., 1999; Ono et al., 2001; Temkin & Gilder, 2003; Daraselia

et al., 2004; Fundel et al., 2007; Mitsumori et al., 2006; Bunescu & Mooney, 2007).

The PPI extraction problem is typically formulated as extracting the binary rela-

tionships between the proteins from a given biomedical text. The goal is to identify

the pairs of proteins that are stated to interact with each other in the text. Most

PPI extraction systems operate on a sentence-level to extract the interactions. The

underlying assumption is that the majority of the relations are contained within a

single sentence. Analysis of the Genia event corpus (Kim et al., 2008, 2009) sup-

ports this assumption, since only 5% of the relations in the corpus span multiple

sentences (Björne et al., 2009).

Figure 1.5 displays a sample biomedical abstract (Sato et al., 2005) with all pro-

tein names shown in blue. Consider the sentence “ZIPK specifically interacted with

STAT3, and did not bind to STAT1, STAT4, STAT5a, STAT5b or STAT6.”. There

are seven proteins in this sentence, which means there are
(

7
2

)
= 21 difference protein

pairs. The sentence states an interaction only between one pair (i.e., ZIPK -STAT3

pair). The last sentence in the abstract “Taken together, our data suggest that ZIPK

interacts with STAT3 within the nucleus to regulate the transcriptional activity of

STAT3 via phosphorylation of Ser727.”, also provides an interesting example. The

speculation keyword “suggest” renders the statement “ZIPK interacts with STAT3

within the nucleus to regulate the transcriptional activity of STAT3 via phosphoryla-

tion of Ser727” speculative, conveying that the authors are not completely certain
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Physical and functional interactions between STAT3 and ZIP kinase.

Signal transducer and activator of transcription 3 (STAT3) is a latent cytoplasmic transcription
factor that can be activated by cytokines and growth factors. It plays important roles in cell
growth, apoptosis and cell transformation, and is constitutively active in a variety of tumor cells.
In this study, we provide evidence that zipper-interacting protein kinase (ZIPK) interacts phys-
ically with STAT3. ZIPK specifically interacted with STAT3, and did not bind to STAT1, STAT4,
STAT5a, STAT5b or STAT6. ZIPK phosphorylated STAT3 on serine 727 (Ser727) and enhanced
STAT3 transcriptional activity. Small interfering RNA-mediated reduction of ZIPK expression
decreased leukemia inhibitory factor (LIF)- and IL-6-induced STAT3-dependent transcription.
Furthermore, LIF- and IL-6-mediated STAT3 activation stimulated ZIPK activity. Taken together,
our data suggest that ZIPK interacts with STAT3 within the nucleus to regulate the transcrip-
tional activity of STAT3 via phosphorylation of Ser727.

Figure 1.5: A sample biomedical abstract with all protein names shown in blue.

about the inferred conclusion. Even though speculations are frequently occurring

language phenomena that modify the factuality of the information contained in text,

they have been neglected by most information extraction systems. While specula-

tive information might still be useful, it is important that it is distinguished from

factual information. As protein interaction extraction and speculation detection are

the focus of Chapters II and III, respectively, we will discuss the related work in

more detail in these corresponding chapters.

1.2.3 Literature-Based Discovery

Relationship extraction targets extracting the explicitly stated relationships be-

tween entities from text. Literature-based discovery (LBD) on the other hand, aims

to go beyond that, and use the extracted information to infer new (implicit) relation-

ships. These new relationships can be proposed as potential scientific hypotheses,

which can be verified by further (experimental) studies. There is no an immediately

available ground truth for potentially currently unknown knowledge. This makes

evaluating LBD systems difficult. One strategy to test LBD systems is trying to
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replicate some of the already known discoveries. Another approach is manually re-

viewing the literature to find evidence supporting the generated hypotheses.

The idea of discovering new relations from bibliographic databases of scientific

literature was introduced by Swanson, who proposed a LBD model that is based on

connecting concepts using logical inference (Swanson, 1986). The intuition behind

this model, which is commonly referred to as Swanson’s ABC model, is that “if A is

related to B, and B is related to C, then it is likely that A is related to C”. Swanson

used this model to discover various new hypotheses by manually linking concepts

between journal articles. For example, literature related to fish oil, provided the

information that fish oil lowers blood viscosity, inhibits platelet aggregation, and

causes vascular reactivity. Raynauds disease related literature contained the infor-

mation that patients with Raynauds disease have impaired vascular reactivity, high

blood viscosity, and high platelet aggregation. By connecting the information from

these two disjoint literatures, Swanson hypothesized that fish oil may have bene-

ficial effects in patients with Raynauds disease (Swanson, 1986), two years before

clinical trials confirmed its correctness. In another study, Swanson discovered 11

indirect links between migraine and magnesium (Swanson, 1988). These connections

were later verified experimentally (Ramadan et al., 1989; Ferrari, 1992). Swanson,

together with Smalheiser, subsequently contributed several other discoveries includ-

ing the relationships between magnesium deficiency – neurologic disease (Smalheiser

& Swanson, 1994), Estrogen – Alzheimers Disease (Smalheiser & Swanson, 1996b),

Indomethacin – Alzheimers Disease (Smalheiser & Swanson, 1996a) and Calcium

Independent Phospholipase A2 – Schizophrenia (Smalheiser & Swanson, 1998).

Swanson’s original discoveries were based on exhaustively reading the titles and

abstracts of articles. Since then, several studies have tried to automate the process
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(an overview is presented in (Weeber et al., 2005)). For example, the Arrowsmith

system was developed by making use of Swanson’s search strategies in his earlier

work (Swanson & Smalheiser, 1997). The Arrowsmith system, as well as the many

others that followed make use of Swanson’s ABC model (Gordon & Dumais, 1998;

Weeber et al., 2000; Fuller et al., 2004; Hristovski et al., 2005; Srinivasan, 2004;

Lindsay & Gordon, 1999; Yetisgen-Yildiz & Pratt, 2006; Wren, 2004; Swanson et al.,

2006; Baker & Hemminger, 2010). The discovery process begins with an A term

(e.g. migraine). A correlation-mining approach, which is typically based on term co-

occurrence, is used to identify B terms (e.g. calsium channel blockers, and spreading

cortical depression) that are correlated with the A term. Some of the different

correlation mining approaches that have been used in LBD systems are Association

Rules (Hristovski et al., 2005), TF-IDF (Lindsay & Gordon, 1999; Srinivasan, 2004),

Z-score (Yetisgen-Yildiz & Pratt, 2006), and Mutual Information (Wren, 2004). After

identifying the B terms, the same correlation mining technique is used to detect the

C terms that are correlated with the B terms. The C terms (e.g. magnesium) are the

potential new discoveries that are related to the A term. In general, a large number

of C terms is produced. So, a ranking approach (e.g. B term count (Yetisgen-Yildiz

& Pratt, 2006) and literature cohesiveness (Swanson et al., 2006)) is used to order

the discovered C terms.

While most LBD studies target the biomedical domain, there have been a few that

focus on other domains. Gordon et al. (2002) apply Swanson’s ABC model on the

World Wide Web to discover novel applications for existing problem solutions. For

example, they use “genetic algorithms” as their A term and discover many poten-

tial fields of application such as “virtual reality”, “computer graphics”, and “fluid

dynamics”. Cory (1997) applied LBD on online humanities databases to discover
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hidden analogies.

1.3 Guide to Remaining Chapters

Chapters II and III describe our work towards meeting the first goal of this thesis,

i.e., developing natural language processing and machine learning based methods to

extract information about proteins, genes, and their interactions from biomedical

text. Our work related to the second goal of this thesis, which is using the extracted

information to generate new scientific hypothesis, is presented in Chapters III and

IV. Most of what follows is published work. Below is a summary of the remaining

chapters with references to the relevant publications.

• Chapter II: We introduce a kernel based relation extraction method to identify

the interacting protein pairs in sentences. Our approach is based on making use

of the shortest path between a protein pair in the dependency parse tree of the

corresponding sentence. Our motivating assumption is that this path is a good

representation of the semantic relationship between the protein pair. We pro-

pose two separate kernel functions based on cosine similarity and edit distance

among the dependency parse tree paths connecting the protein names. Using

these kernel functions, we investigate the performances of the supervised ma-

chine learning algorithms Support Vector Machines and k-nearest-neighbor, and

their semi-supervised counterparts, transductive SVMs and harmonic functions.

We report significant improvement over the previous results in the literature.

Chapter II is based on the work published as (Erkan, Özgür, & Radev, 2007a,

2007b). Using the dependency path edit kernel we also contributed to the

BioCreaive Meta-Server by annotating abstracts as containing protein interac-

tions or not (Leitner et al., 2008)8.
8http://bcms.bioinfo.cnio.es/



18

• Chapter III: While speculative information might still be useful for scientists,

it is important that it is distinguished from factual information. For exam-

ple, identifying whether a protein interaction that is extracted from an article

has been reported with a speculative language rather than being reported as a

fact is an important context information regarding that extracted information.

Most previous studies on speculation detection focus on identifying speculative

sentences. However, in many cases, not the entire sentence, but fragments of

a sentence are speculative. We propose an approach based on solving two sub-

problems to identify speculative fragments of sentences. The first sub-problem

is identifying the speculation keywords in the sentences and the second one is

resolving their linguistic scopes. We tackle the first sub-problem as a supervised

classification task, where we classify the potential keywords as real speculation

keywords or not. We investigate using a diverse set of linguistic features that

represent the contexts of the keywords with the Support Vector Machines clas-

sifier. To determine the scopes of the keywords, we develop a rule-based method

using the part of speech tags of the keywords and the syntactic parse trees of

the sentences. Chapter III is published as (Özgür & Radev, 2009).

• Chapter IV: We propose a literature-based discovery (LBD) approach to gen-

erate new scientific hypothesis using the known gene-gene relationships auto-

matically extracted from the literature. Unlike most previous LBD methods

that are based on Swanson’s ABC model and depend on co-occurrence infor-

mation among the entities, our approach integrates text mining with network

analysis in a novel way. We start with a set of genes (seed genes) known to be

related to a concept and extract the interactions of these genes from the litera-

ture using the natural language processing and machine learning based method
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introduced in Chapter II. Analyzing the concept-specific literature-mined net-

work using graph centrality metrics enables us to infer novel genes that are

likely to be related to the concept of interest. In this chapter we present the

application of this approach to identify gene-disease associations. We use full

text articles from PubMed Central Open Access9 and a set of 15 genes known

to be related to prostate cancer and show the effectiveness of our LBD method

in predicting new genes related to the disease. Chapter IV is based on the work

published as (Özgür, Vu, Erkan, & Radev, 2008).

• Chapter V: We adapt the LBD method that we introduced in Chapter IV to

discover genes potentially important for vaccine development research. We use

only one seed gene, i.e., human interferon-gamma (IFNG), as a gene known to

be critical for vaccine induced protective immunity and analyze all the article

abstracts available in PubMed. We build two gene interaction networks. The

first network is the generic IFNG network, which is the network of interactions

of IFNG and its neighbors. We use the concept in which we are interested,

i.e., the term “vaccine”, to create the second network. The second network is a

sub-graph of the first one, which only consists of the gene interactions extracted

from sentence that contain the term “vaccine” or its variants. Analyzing these

two networks from graph centrality perspective and comparing them enabled us

to identify several genes that are good candidates for further IFNG and vaccine

development studies. We also investigated incorporating ontology support to

our LBD method. Integrating the Vaccine Ontology10 led to the discovery of

vaccine related genes, which we were not able to discover without ontology

support. Chapter V is based on the work published as (Özgür, Xiang, Radev,

9http://www.ncbi.nlm.nih.gov/pmc/about/openftlist.html
10http://www.violinet.org/vaccineontology/
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& He, 2010; Özgür, Radev, & He, 2010).

• Chapter VI: We conclude by summarizing the main contributions and the

future directions of our research.

• Appendix: We describe two tools, i.e. GIN-IE (Gene INteraction - Information

Extraction) and GIN-NA (Gene INteraction - Network Analysis) that are by-

products of this research. State-of-the-art machine learning based approaches

for relationship extraction usually achieve high F-Measure performances. How-

ever, high F-Measure performance of a system does not necessarily reflect its

usability to the end users. Most real-life applications require high precision,

even if it comes at the expense of recall. We developed a high-precision inter-

action extraction system (GIN-IE) based on rules defined on the dependency

parse trees of the sentences. GIN-IE has been integrated with the Michigan

Molecular Interactions (MiMI) database11 and made available to the end users

(e.g. biomedical scientists) (Tarcea et al., 2009). GIN-NA is designed to support

literature-based discovery of genes related to a concept. Given a gene or a list

of genes known to be related to a concept, GIN-NA retrieves their interaction

network from MiMI and provides an analysis of this network as well as its most

central genes.

11http://mimi.ncibi.org/



CHAPTER II

Dependency Parsing and Machine Learning for Extracting
Protein Interactions from Biomedical Text

2.1 Introduction

Protein-protein interactions (PPIs) play critical roles in vital biological processes

such as metabolic and signaling pathways, cell cycle control, and DNA replication and

transcription (Phizicky & Fields, 1995). PPI information is crucial for understanding

these processes. The manual construction of databases such as MINT (Zanzoni et al.,

2002), BIND (Bader et al., 2003), and HPRD (Keshava Prasad et al., 2009) that store

PPI information in structured and standard formats, is very time-consuming and

labor-intensive. As a consequence, most PPI information is only available in the text

of published articles. Therefore, the automatic extraction of PPI information from

free texts has become an important research area in Natural Language Processing

for Biology (BioNLP).

We introduce an information extraction approach to identify sentences in text

that indicate an interaction relation between two proteins. Our method is different

than most of the previous studies (see Section 2.2) on this problem in two aspects:

First, we generate the dependency parses of the sentences that we analyze, making

use of the dependency relationships among the words. This enables us to make

more syntax-aware inferences about the roles of the proteins in a sentence compared

21
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to the classical pattern-matching information extraction methods. We propose two

kernel functions based on the dependency parse trees of the sentences. Second,

we investigate semi-supervised machine learning methods on top of the dependency

features we generate. Although there have been a number of learning-based studies

in this domain, our methods are the first semi-supervised efforts to our knowledge.

The high cost of labeling free text for this problem makes semi-supervised methods

particularly valuable.

We focus on two semi-supervised learning methods: transductive SVMs (TSVM)

(Joachims, 1999b), and harmonic functions (Zhu et al., 2003). We also compare

these two methods with their supervised counterparts, namely SVMs and k-nearest

neighbor (kNN) algorithm. Because of the nature of these algorithms, we propose

two similarity functions (kernels in SVM terminology) among the instances of the

learning problem. The instances in this problem are natural language sentences with

protein names in them, and the similarity functions are defined on the positions of

the protein names in the corresponding parse trees. Our motivating assumption is

that the path between two protein names in a dependency tree is a good description

of the semantic relation between them in the corresponding sentence. We propose

two kernel functions; one based on the cosine similarity and the other based on the

edit distance among such paths. This chapter is based on the work published as

(Erkan, Özgür, & Radev, 2007a, 2007b).

2.2 Related Work

There have been many approaches to extract protein interactions from free text.

The simplest approach is using the co-occurrence statistics of the proteins in text (Je-

lier et al., 2005). The underlying assumption is that whenever two (or more) entities
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are mentioned together in text, there is a semantic relationship between them. How-

ever, this does not necessarily mean that the two entities interact. As a consequence,

this approach can provide high recall, but usually suffers from low precision.

Another common approach is based on matching pre-specified patterns and rules

based on the sequence of words and/or their parts of speech in the sentences (Blaschke

et al., 1999; Ono et al., 2001; Blaschke & Valencia, 2002). However, complex cases

that are not covered by the pre-defined patterns and rules cannot be extracted by

these methods. Huang et al. (2004) proposed a method where patterns are discovered

automatically from a set of sentences by dynamic programming. Bunescu et al. (2005)

have studied the performance of rule learning algorithms. They propose two methods

for protein interaction extraction. One is based on the rule learning method Rapier

and the other on longest common subsequences. They show that these methods

outperform hand-written rules.

Another class of approaches is using more syntax-aware natural language process-

ing (NLP) techniques. Both full and partial (shallow) parsing strategies have been

applied in the literature. In partial parsing the sentence structure is decomposed

partially and local dependencies between certain phrasal components are extracted.

An example of the application of this method is relational parsing for the inhibi-

tion relation (Pustejovsky et al., 2002). In full parsing, however, the full sentence

structure is taken into account. Temkin and Gilder (2003) used a full parser with a

lexical analyzer and a context free grammar (CFG) to extract protein-protein inter-

action from text. Another study that uses full-sentence parsing to extract human

protein interactions is (Daraselia et al., 2004). Alternatively, Yakushiji et al. (2005)

propose a system based on head-driven phrase structure grammar (HPSG). In their

system protein interaction expressions are presented as predicate argument structure
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patterns from the HPSG parser. These parsing approaches consider only syntactic

properties of the sentences and do not take into account semantic properties. Thus,

although they are complicated and require many resources, their performance is not

satisfactory.

Machine learning techniques for extracting protein interaction information have

gained interest in the recent years. The PreBIND system uses SVM to identify the

existence of protein interactions in abstracts and uses this type of information to

enhance manual expert reviewing for the BIND database (Donaldson et al., 2003).

Words and word bigrams are used as binary features. This system is also tested

with the Naive Bayes classifier, but SVM is reported to perform better. Mitsumori

et al. (2006) also use SVM to extract protein-protein interactions. They use bag-

of-words features, specifically the words around the protein names. These systems

do not use any syntactic or semantic information. Sugiyama et al. (2003) extract

features from the sentences based on the verbs and nouns in the sentences such as

the verbal forms, and the part of speech tags of the 20 words surrounding the verb

(10 before and 10 after it). Further features are used to indicate whether a noun is

found, as well as the part of speech tags for the 20 words surrounding the noun, and

whether the noun contains numerical characters, non-alpha characters, or uppercase

letters. They construct k-nearest neighbor, decision tree, neural network, and SVM

classifiers by using these features. They report that the SVM classifier performs the

best. They use part-of-speech information, but do not consider any dependency or

semantic information.

For relation extraction in the newswire domain syntactic parse trees augmented

with semantic labels have been used in a generative model (Miller et al., 2000). A

fairly new class of algorithms that have also been used for relation extraction are
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kernel-based methods. Kernel functions based on the shallow, syntactic, and depen-

dency parses of the sentences have been proposed (Collins & Duffy, 2001; Zelenko

et al., 2003; Culotta & Sorensen, 2004; Bunescu & Mooney, 2005a; Moschitti, 2006).

Although machine learning methods with features extracted from the syntactic or

dependency parse trees of the sentences have been successfully applied for relation

extraction in the newswire domain, this approach is relatively new in the biomedical

domain.

2.3 Sentence Similarity Based on Dependency Parsing

In order to apply the semi-supervised harmonic functions and its supervised coun-

terpart kNN, and the kernel based TSVM and SVM methods, we need to define a

similarity measure between two sentences. For this purpose, we use the dependency

parse trees of the sentences. Unlike a syntactic parse (which describes the syntactic

constituent structure of a sentence), the dependency parse of a sentence captures

the semantic predicate-argument relationships among its words. The nodes of a de-

pendency parse tree represent the words of a sentence and the edges represent the

types of the dependencies among the words such as subject, object and modifier

(Figure 2.1). We define the similarity between two sentences based on the paths

between two proteins in the dependency parse trees of the sentences.

In this study we assume that the protein names have already been annotated and

focus instead on the task of extracting protein-protein interaction sentences for a

given protein pair. We parse the sentences with the Stanford Parser1 (de Marneffe

et al., 2006). From the dependency parse trees of each sentence we extract the

shortest path between a protein pair.

Figure 2.1 shows the dependency tree we got for the sentence “The results demon-

1http://nlp.stanford.edu/software/lex-parser.shtml
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strated that KaiC interacts rhythmically with KaiA, KaiB, and SasA.” This example

ccomp

prep_with

results interacts

The

KaiA KaiB

rhytmically SasAthat KaiC

demonstrated

nsubj

complm nsubj advmod

conj_and conj_and

det

Figure 2.1: The dependency tree of the sentence “The results demonstrated that KaiC interacts
rhythmically with KaiA, KaiB, and SasA.”

sentence illustrates that the dependency path between a protein pair captures the rel-

evant information regarding the relationship between the proteins better compared to

using the words in the unparsed sentence. Consider the protein pair KaiC and SasA.

The words in the sentence between these proteins are interacts, rhythmically, with,

KaiA, KaiB, and and. Among these words rhythmically, KaiA, and and KaiB are

not directly related to the interaction relationship between KaiC and SasA. On the

other hand, the words in the dependency path between this protein pair (i.e., nsubj,

interacts, and prep with) give sufficient information to identify their relationship.

In this sentence we have four proteins (KaiC, KaiA, KaiB, and SasA). So there

are six pairs of proteins for which the sentence may or may not be describing an

interaction. The following are the paths between the six protein pairs.

1. KaiC – nsubj – interacts – prep with – SasA

2. KaiC – nsubj – interacts – prep with – SasA – conj and – KaiA

3. KaiC – nsubj – interacts – prep with – SasA – conj and – KaiB

4. SasA – conj and – KaiA
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5. SasA – conj and – KaiB

6. KaiA – conj and – SasA – conj and – KaiB

In this example there is a single path between each protein pair. However, there may

be more than one paths between a protein pair, if one or both appear multiple times

in the sentence. In such cases, we select the shortest paths between the protein pairs.

If a sentence contains n different proteins, there are
(
n
2

)
different pairs of proteins.

We use machine learning approaches to classify each sentence as an interaction sen-

tence or not for a protein pair. A sentence may be an interaction sentence for one

protein pair, while not for another protein pair. For instance, our example sentence

is a positive interaction sentence for the KaiC and SasA protein pair. However, it

is a negative interaction sentence for the KaiA and SasA protein pair, i.e., it does

not describe an interaction between this pair of proteins. Thus, before parsing a

sentence, we make multiple copies of it, one for each protein pair. To reduce data

sparseness, we rename the proteins in the pair as PROTX1 and PROTX2, and all

the other proteins in the sentence as PROTX0. So, for our example sentence we have

the following instances in the training set:

1. PROTX1 – nsubj – interacts – prep with – PROTX2

2. PROTX1 – nsubj – interacts – prep with – PROTX0 – conj and – PROTX2

3. PROTX1 – nsubj – interacts – prep with – PROTX0 – conj and – PROTX2

4. PROTX1 – conj and – PROTX2

5. PROTX1 – conj and – PROTX2

6. PROTX1 – conj and – PROTX0 – conj and – PROTX2

The first three instances are positive as they describe an interaction between

PROTX1 and PROTX2. The last three are negative, as they do not describe an
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interaction between PROTX1 and PROTX2.

We propose two kernel functions to use with the machine learning algorithms.

The first one is based on the cosine similarity and the second one is based on the

edit distance between the dependency tree path representations of the instances. Our

underlying assumption is that, the more similar two dependency tree paths are, the

more likely they belong to the same class; that is, either both describe or both do

not describe an interaction for the corresponding protein pair.

2.3.1 Dependency Path Cosine Kernel

Suppose pi and pj are the paths between PROTX1 and PROTX2 in instance xi

and instance xj, respectively. We represent pi and pj as vectors of term frequencies

in the vector-space model. The cosine similarity measure is the cosine of the angle

between these two vectors and is calculated as follows:

(2.1) cos sim(pi, pj) = cos(pi,pj) =
pi • pj

‖pi‖‖pj‖

that is, it is the dot product of pi and pj divided by the lengths of pi and pj. The

cosine similarity measure takes values in the range [0, 1]. If all the terms in pi and

pj are common, then it takes the maximum value of 1. If none of the terms are

common, then it takes the minimum value of 0.

2.3.2 Dependency Path Edit Kernel

A shortcoming of cosine similarity is that it only takes into account the common

terms, but does not consider their order in the path. For this reason, we also use

a similarity measure based on edit distance (also called Levenshtein distance). Edit

distance between two strings is the minimum number of operations that have to

be performed to transform the first string to the second. In the original character-

based edit distance there are three types of operations. These are insertion, deletion,
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or substitution of a single character. We modify the character-based edit distance

into a word-based one, where the operations are defined as insertion, deletion, or

substitution of a single word.

The edit distance between path 1 and path 2 of our example sentence is 2. We

need to perform two insertion operations (i.e., insert PROTX0 and conj and) to

path 1 to transform it to path 2.

1. PROTX1 – nsubj – interacts – prep with – insert (PROTX0) – insert

(conj and) – PROTX2

2. PROTX1 – nsubj – interacts – prep with – PROTX0 – conj and – PROTX2

We normalize edit distance by dividing it by the length (number of words) of

the longer path, so that it takes values in the range [0, 1]. We convert the distance

measure into a similarity measure (kernel function) as follows.

(2.2) edit sim(pi, pj) = e−γ(edit distance(pi,pj))

Bunescu and Mooney (2005a) propose a similar method for relation extraction

in general (i.e., in the newswire domain). To extract the relationship between two

entities, they design a kernel function that uses the shortest path in the dependency

tree between them. They show that their approach outperforms the dependency tree

kernel of Culotta and Sorensen (2004), which is based on the subtree that contains

the two entities.

Here, we adapt the idea of using the shortest dependency tree paths to the task

of identifying protein-protein interaction sentences and propose the path cosine and

path edit kernel functions. The kernel function proposed by Bunescu and Mooney

(2005a) is based on the number of overlapping words between two paths. When
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two paths have different lengths, they assume the similarity between them is zero.

On the other hand, our cosine similarity and edit distance based kernel functions

can also account for deletions and insertions of words. The shortest path kernel in

(Bunescu & Mooney, 2005a) only encodes the information about the direction of

the dependencies among the words. The two kernel functions that we define also

take into account the dependency relationship types among the words, which could

carry important information about the semantic relationship between the entities.

Consider path 1 of the example sentence. The dependency direction between “in-

teracts” and “PROTX1” is “interacts → PROTX1”, in other words “interacts” is

the governor and “PROTX1” is the dependent. The dependency relationship type

is “nsubj”, that is “PROTX1” is the noun subject of “interacts”.

2.4 Supervised and Semi-Supervised Machine Learning Approaches

2.4.1 kNN and Harmonic Functions

When a similarity measure is defined among the instances of a learning problem, a

simple and natural choice is to use a nearest neighbor based approach that classifies

each instance by looking at the labels of the instances that are most similar to it.

Perhaps the simplest and most popular similarity-based learning algorithm is the

k-nearest neighbor classification method (kNN).

Suppose L is the set of labeled instances, and U is the set of unlabeled instances

in a learning problem. Given an instance x ∈ U , the k nearest neighbors among

the labeled instances (i.e., NL
k (x)) are found. The category labels of these neighbors

are used to estimate the category label of x. In the traditional approach, the most

common category label among the k nearest neighbors is assigned to x. Weighted

kNN is a refinement to the traditional approach, where the contribution of each

of the k nearest neighbors is weighted according to its similarity to x. The protein
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interaction extraction problem that we consider in this study is a binary classification

problem. The task is to assign one of the two categories 0 (the instance does not

describe an interaction) or 1 (the instance describes an interaction) to the unlabeled

instances. Each instance is a dependency path between the proteins in the pair and

the similarity function can be one of the functions we have defined in Section 2.3.

The weighted kNN equation for a binary classification problem can be written as

follows (Erkan, 2007):

(2.3) y(x) =
∑

z∈NL
k (x)

sim(x, z)y(z)∑
z′∈NL

k (x) sim(x, z′)

y(z) ∈ {0, 1} is the label of instance z and y(x) is a real number in the [0, 1] interval.

The class label of x can be assigned by setting a threshold in this interval. For

example, if the threshold is set as 0.5, x is assigned to class 1 if y(x) > 0.5 and it is

assigned to class 0, otherwise.

Erkan (2007) has shown that a semi-supervised version of the weighted kNN

algorithm can be formulated as follows by taking into account both the labeled and

unlabeled instances when computing the nearest neighbors of x:

(2.4) y(x) =
∑

z∈NL∪U
k (x)

sim(x, z)y(z)∑
z′∈NL∪U

k (x) sim(x, z′)

This can be represented as an undirected graph, where each instance z′ ∈ L∪U is a

node and each of the k nearest neighbors of z′ are connected to z′ with an edge. For

each z ∈ L, y(z) is set to 0 or 1 depending on the label of z. For each x ∈ U , y(x) is

equal to the average of the y(z′) values of its neighbors, where z′ ∈ NL∪U
k (x). Such a

function is called a harmonic function and has been shown to exist and have a unique

solution (Doyle & Snell, 1984). Harmonic functions were first introduced as a semi-

supervised learning method by Zhu et al. (2003). They were shown to be effective in
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text clustering and classification (Erkan, 2007). Here we present the first application

of the harmonic functions to the problem of recognizing protein interactions in text.

2.4.2 SVM and Transductive SVM

Support vector machines (SVM) is a supervised machine learning approach de-

signed for solving two-class pattern recognition problems. The aim is to find the

decision surface that separates the positive and negative labeled training examples

of a class with maximum margin (Burges, 1998).

Transductive support vector machines (TSVM) are an extension of SVM, where

unlabeled data is used in addition to labeled data. The aim now is to assign labels

to the unlabeled data and find a decision surface that separates the positive and

negative instances of the original labeled data and the (now labeled) unlabeled data

with maximum margin. Intuitively, the unlabeled data pushes the decision boundary

away from the dense regions. However, unlike SVM, the optimization problem now

is NP-hard (Zhu, 2005). Pointers to studies for approximation algorithms can be

found in (Zhu, 2005).

In Section 2.3 we defined the similarity between two instances based on the cosine

similarity and the edit distance based similarity between the paths in the instances.

Here, we use these path similarity measures as kernels for SVM and TSVM and mod-

ify the SVM light package (Joachims, 1999b) by plugging in our two kernel functions.

A well-defined kernel function should be symmetric positive definite. While cosine

kernel is well-defined, Cortes et al. (2004) proved that edit kernel is not always

positive definite. However, it is possible to make the kernel matrix positive definite

by adjusting the γ parameter, which is a positive real number. Li and Jiang (2005)

applied the edit kernel to predict initiation sites in eucaryotic mRNAs and obtained

improved results compared to polynomial kernel.
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2.5 Experimental Results

2.5.1 Data Sets and Evaluation Metrics

One of the problems in the field of protein-protein interaction extraction is that

different studies generally use different data sets and evaluation metrics. Thus, it

is difficult to compare their results. Bunescu et al. (2005) manually developed the

AIMED corpus2 for protein-protein interaction and protein name recognition. They

tagged 199 Medline abstracts, obtained from the Database of Interacting Proteins

(DIP) (Xenarios et al., 2001) and known to contain protein interactions. This corpus

is becoming a standard, as it has been used in the recent studies by (Bunescu et al.,

2005; Bunescu & Mooney, 2005b, 2007; Mitsumori et al., 2006; Yakushiji et al.,

2005).

In our study we used the AIMED corpus and the CB (Christine Brun) corpus

that is provided as a resource by BioCreAtIvE II (Critical Assessment for Information

Extraction in Biology) challenge evaluation3. We pre-processed the CB corpus by

first annotating the protein names in the corpus automatically and then, refining the

annotation manually. As discussed in Section 2.3, we pre-processed both of the data

sets as follows. We replicated each sentence for each different protein pair. For n

different proteins in a sentence,
(
n
2

)
new sentences are created, as there are that many

different pairs of proteins. In each newly created sentence we marked the protein

pair considered for interaction as PROTX1 and PROTX2, and all the remaining

proteins in the sentence as PROTX0. If a sentence describes an interaction between

PROTX1 and PROTX2, it is labeled as positive, otherwise it is labeled as negative.

The summary of the data sets after pre-processing is displayed in Table 2.14. Since

2ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/
3http://biocreative.sourceforge.net/biocreative 2.html
4The pre-processed data sets are available at http://clair.si.umich.edu/clair/biocreative/datasets/
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previous studies that use AIMED corpus perform 10-fold cross-validation. We also

performed 10-fold cross-validation in both data sets and report the average results

over the runs.

Data Set Sentences + Sentences - Sentences
AIMED 4026 951 3075

CB 4056 2202 1854

Table 2.1: Data Sets

We use precision, recall, and F-score as our metrics to evaluate the performances

of the methods. Precision (π) and recall (ρ) are defined as follows:

(2.5) π =
TP

TP + FP
; ρ =

TP

TP + FN

Here, TP (True Positives) is the number of sentences classified correctly as pos-

itive; FP (False Positives) is the number of negative sentences that are classified

as positive incorrectly by the classifier; and FN (False Negatives) is the number of

positive sentences that are classified as negative incorrectly by the classifier.

F-score is the harmonic mean of recall and precision.

(2.6) F -score =
2πρ

π + ρ

2.5.2 Results and Discussion

We evaluate and compare the performances of the semi-supervised machine learn-

ing approaches (TSVM and harmonic functions) with their supervised counterparts

(SVM and kNN) for the task of protein-protein interaction extraction. As discussed

in Section 2.3, we use cosine similarity and edit distance based similarity as similar-

ity functions in harmonic functions and kNN, and as kernel functions in TSVM and
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SVM. Our instances consist of the shortest paths between the protein pairs in the

dependency parse trees of the sentences. In our experiments, we tuned the γ param-

eter of the edit distance based path similarity function to 4.5 with cross-validation.

The results in Table 2.2 and Table 2.3 are obtained with 10-fold cross-validation. We

report the average results over the runs.

Table 2.2 shows the results obtained for the AIMED data set. Edit distance

based path similarity function performs considerably better than the cosine similar-

ity function with harmonic functions and kNN and usually slightly better with SVM

and TSVM. We achieve our best F-score performance of 59.96% with TSVM with

edit kernel. While SVM with edit kernel achieves the highest precision of 77.52%,

it performs slightly worse than SVM with cosine kernel in terms of F-score mea-

sure. TSVM performs slightly better than SVM, both of which perform better than

harmonic functions. kNN is the worst performing algorithm for this data set.

In Table 2.2, we also show the results obtained previously in the literature by using

the same data set. Yakushiji et al. (2005) use an HPSG parser to produce predicate

argument structures. They utilize these structures to automatically construct protein

interaction extraction rules. Mitsumori et al. (2006) use SVM with bag of words

features to extract protein interaction sentences. Here, we show their best result

obtained by using the three words to the left and to the right of the proteins. The

most closely related study to ours is the shortest path kernel (SPK) method proposed

by Bunescu and Mooney (2005a) (see Section 2.3). They apply this method to

the domain of protein-protein interaction extraction in (Bunescu & Mooney, 2007).

Here, they also test the methods Extraction Using Longest Common Subsequences

(ELCS) (Bunescu et al., 2005) and Subsequence Kernel (SSK ) (Bunescu & Mooney,

2005b). We cannot compare our results to theirs directly, because they report their
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results as a precision-recall graph. However, the best F-score in their graph seems

to be around 0.50 and definitely lower than the best F-scores we have achieved

(≈ 0.60). Bunescu and Mooney (2007) also use SVM as their learning method in

their SPK approach. Our improved performance with SVM and the shortest path

edit and cosine kernel functions might be due to the fact that, unlike the SPK method,

these functions use the dependency relationship types among the words on the paths

and can also handle paths of different lengths. Besides the overlapping words, path

edit kernel also takes into account the word order. Our results show that, SVM,

TSVM, and harmonic functions achieve better F-score and recall performances than

the previous studies by Yakushiji et al. (2005), Mitsumori et al. (2006), and the SSK

and ELCS approaches of Bunescu and Mooney (2007). SVM and TSVM also achieve

higher precision scores. Since, Mitsumori et al. (2006) also use SVM in their study,

our improved results with SVM confirms our motivation of using dependency paths

as features instead of the surface representations of the sentences.

Table 2.3 shows the results we got with the CB data set. The F-score perfor-

mance with the edit distance based similarity function is always better than that of

cosine similarity function for this data set. The difference in performances is con-

siderable for harmonic functions and kNN. Our best F-score is achieved with TSVM

with edit kernel (85.22%). TSVM performs slightly better than SVM. When cosine

similarity function is used, kNN performs better than harmonic functions. How-

ever, when edit distance based similarity is used, harmonic functions achieve better

performance. SVM and TSVM perform better than harmonic functions. But, the

gap in performance is low when edit distance based similarity is used with harmonic

functions.

Semi-supervised approaches are usually more effective when there is less labeled
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Method Precision Recall F-Score
SVM-edit 77.52 43.51 55.61
SVM-cos 61.99 54.99 58.09
TSVM-edit 59.59 60.68 59.96
TSVM-cos 58.37 61.19 59.62
Harmonic-edit 44.17 74.20 55.29
Harmonic-cos 36.02 67.65 46.97
kNN-edit 68.77 42.17 52.20
kNN-cos 40.37 49.49 44.36
(Yakushiji et al., 2005) 33.70 33.10 33.40
(Mitsumori et al., 2006) 54.20 42.60 47.70

Table 2.2: Experimental Results – AIMED Data Set

Method Precision Recall F-Score
SVM-edit 85.15 84.79 84.96
SVM-cos 87.83 81.45 84.49
TSVM-edit 85.62 84.89 85.22
TSVM-cos 85.67 84.31 84.96
Harmonic-edit 86.69 80.15 83.26
Harmonic-cos 72.28 70.91 71.56
kNN-edit 72.89 86.95 79.28
kNN-cos 65.42 89.49 75.54

Table 2.3: Experimental Results – CB Data Set

data than unlabeled data, which is usually the case in real applications. To see the

effect of semi-supervised approaches we perform experiments by varying the amount

of labeled training sentences in the range [10, 3000]. For each labeled training set

size, sentences are selected randomly among all the sentences, and the remaining

sentences are used as the unlabeled test set. The results that we report are the

averages over 10 such random runs for each labeled training set size. We report the

results for the algorithms when edit distance based similarity is used, as it mostly

performs better than cosine similarity.

Figure 2.2 shows the results obtained over the AIMED data set. Semi-supervised

approaches TSVM and harmonic functions perform considerably better than their

supervised counterparts SVM and kNN when we have small number of labeled train-

ing data. It is interesting to note that, although SVM is one of the best performing
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Figure 2.2: The F-score on the AIMED dataset with varying sizes of training data
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Figure 2.3: The F-score on the CB dataset with varying sizes of training data
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algorithms with more training data, it is the worst performing algorithm with small

amount of labeled training sentences. Its performance starts to increase when num-

ber of training data is larger than 200. Eventually, its performance gets close to that

of the other algorithms. Harmonic functions is the best performing algorithm when

we have less than 200 labeled training data. TSVM achieves better performance

when there are more than 500 labeled training sentences.

Figure 2.3 shows the results obtained over the CB data set. When we have

less than 500 labeled sentences, harmonic functions and TSVM perform significantly

better than kNN, while SVM is the worst performing algorithm. When we have more

than 500 labeled training sentences, kNN is the worst performing algorithm, while

the performance of SVM increases and gets similar to that of TSVM and slightly

better than that of harmonic functions.

2.6 Conclusion

We introduced a relation extraction approach based on dependency parsing and

machine learning to identify protein interaction sentences in biomedical text. Un-

like syntactic parsing, dependency parsing captures the semantic predicate argument

relationships between the entities in addition to the syntactic relationships. We ex-

tracted the shortest paths between protein pairs in the dependency parse trees of

the sentences and proposed two kernel functions for these paths based on cosine

similarity and edit distance. Supervised machine learning approaches have been ap-

plied to this domain. However, they rely only on labeled training data, which is

difficult to gather. To our knowledge, this is the first effort in this domain to ap-

ply semi-supervised algorithms, which make use of both labeled and unlabeled data.

We evaluated and compared the performances of two semi-supervised machine learn-
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ing approaches (harmonic functions and TSVM), with their supervised counterparts

(kNN and SVM). We showed that, in the task of protein interaction extraction path

edit kernel usually performs better than path cosine kernel since it takes into account

not only common words, but also word order. Our 10-fold cross validation results

showed that, TSVM performs slightly better than SVM, both of which perform bet-

ter than harmonic functions. The worst performing algorithm is kNN. We compared

our results with previous results published with the AIMED data set. We achieved

the best F-score performance with TSVM with the path edit kernel (59.96%) which

is significantly higher than the previously reported results for the same data set.

In most real-world applications there are much more unlabeled data than labeled

data. Semi-supervised approaches are usually more effective in these cases, because

they make use of both the labeled and unlabeled instances when making decisions.

To test this hypothesis for the application of extracting protein interaction sentences

from text, we performed experiments by varying the number of labeled training

sentences. Our results show that, semi-supervised algorithms perform considerably

better than their supervised counterparts, when there are small number of labeled

training sentences. An interesting result is that, in such cases SVM performs sig-

nificantly worse than the other algorithms. Harmonic functions achieve the best

performance when there are only a few labeled training sentences. As number of

labeled training sentences increases the performance gap between supervised and

semi-supervised algorithms decreases.



CHAPTER III

Identifying Speculative Sentence Fragments in Scientific
Text

3.1 Introduction

Speculation, also known as hedging, is a frequently used language phenomenon

in scientific articles, especially in experimental studies, which are common in the

biomedical domain. When researchers are not completely certain about the inferred

conclusions, they use speculative language to convey this uncertainty. Consider the

following example sentences from abstracts of articles in the biomedical domain. The

abstracts are available at the U.S. National Library of Medicine PubMed web page1.

The PubMed Identifier (PMID) of the corresponding article is given in parenthesis.

1. We showed that the Roaz protein bound specifically to O/E-1 by using the yeast

two-hybrid system. (PMID: 9151733)

2. These data suggest that p56lck is physically associated with Fc gamma RIIIA

(CD16) and functions to mediate signaling events related to the control of NK

cellular cytotoxicity. (PMID: 8405050)

The first sentence is definite, whereas the second one contains speculative infor-

mation, which is conveyed by the use of the word “suggest”. While speculative

1http://www.ncbi.nlm.nih.gov/pubmed/

41
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information might still be useful for biomedical scientists, it is important that it is

distinguished from the factual information.

Recognizing speculations in scientific text has gained interest in the recent years.

Previous studies focus on identifying speculative sentences (Light et al., 2004; Med-

lock & Briscoe, 2007; Szarvas, 2008; Kilicoglu & Bergler, 2008). However, in many

cases, not the entire sentence, but fragments of a sentence are speculative. Consider

the following example sentences.

1. The mature mitochondrial forms of the erythroid and housekeeping ALAS isozymes

are predicted to have molecular weights of 59.5 kd and 64.6 kd, respectively.

(PMID: 2050125)

2. Like RAD9, RAD9B associates with HUS1, RAD1, and RAD17, suggesting that

it is a RAD9 paralog that engages in similar biochemical reactions. (PMID:

14611806)

Both sentences are speculative, since they contain speculative information, which is

signaled by the use of the word “predicted” in the first sentence and the word “sug-

gesting” in the second sentence. The scope of the speculation keyword “predicted”

in the first sentence spans the entire sentence. Therefore, classifying the sentence as

speculative does not cause information loss. However, the scope of the speculation

keyword “suggesting” in the second sentence applies only to the second clause of the

sentence. In other words, only the statement “RAD9B is a RAD9 paralog that en-

gages in similar biochemical reactions” is speculative. The statement “Like RAD9,

RAD9B associates with HUS1, RAD1, and RAD17” conveys factual information.

Therefore, classifying the entire sentence as speculative will result in information

loss.
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In this study, we aim to go beyond recognizing speculative sentences and tackle the

problem of identifying speculative fragments of sentences. We propose an approach

which is based on solving two sub-problems: (1) detecting the real speculation key-

words, (2) resolving their linguistic scopes in the sentences. As the previous examples

demonstrated, speculations are signaled with speculation keywords (e.g. might, sug-

gest, likely, hypothesize, could, predict, and etc.). However, these keywords are not

always used in a speculative context. In other words, they are not always real specu-

lation keywords. Unlike previous approaches which classify sentences as speculative

or not, we formulate the problem as classifying the keywords as real speculation

keywords or not. We extract a diverse set of features such as linguistic features that

represent the context of the keyword and positional features of the sentence in which

the keyword occurs. We use these features with Support Vector Machines (SVM)

to learn models to classify whether the occurrence of a keyword is in a speculative

context or not. After detecting the real speculation keywords, we use the syntactic

structures of the sentences to identify their linguistic scopes. This chapter was first

published as (Özgür & Radev, 2009).

3.2 Related Work

Although hedging in scientific articles has been studied from a linguistics perspec-

tive since the 1990s (e.g. (Hyland, 1998)), it has only gained interest from a natural

language processing perspective in the recent years.

The problem of identifying speculative sentences in biomedical articles has been

introduced by Light et al. (2004). The authors discussed the possible application

areas of recognizing speculative language and investigated whether the notion of

speculative sentences can be characterized to enable manual annotation. The authors
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developed two automated systems to classify sentences as speculative or not. The

first method is based on substring matching. A sentence is classified as speculative

if it contains one of the 14 predefined strings (suggest, potential, likely, may, at

least, in part, possibl, further investigation, unlikely, putative, insights, point toward,

promise, propose). The second method is based on using SVM with bag-of-words

features. The substring matching method performed slightly better than the SVM

with bag-of-words features approach.

Medlock and Briscoe (2007) extended the work of Light et al. (2004) by refining

their annotation guidelines and creating a publicly available data set (FlyBase data

set) for speculative sentence classification. They proposed a weakly supervised ma-

chine learning approach to classify sentences as speculative or not with the aim of

minimizing the need for manually labeled training data. Their approach achieved

76% precision/recall break-even point (BEP) performance on the FlyBase data set,

compared to the BEP of 60% obtained by Light et al. (2004)’s substring matching ap-

proach on the same data set. Szarvas (2008) extended the weakly supervised machine

learning methodology of Medlock and Briscoe (2007) by applying feature selection

to reduce the number of candidate keywords, by using limited manual supervision

to filter the features, and by extending the feature representation with bigrams and

trigrams. In addition, by following the annotation guidelines of Medlock and Briscoe

(2007), Szarvas (2008) made available the BMC Bioinformatics data set, by anno-

tating four full text papers from the open access BMC Bioinformatics website. They

achieved a BEP performance of 85.29% and an F-measure of 85.08% on the FlyBase

data set. The F-measure performance achieved on the BMC Bioinformatics data set

was 74.93% when the FlyBase data set was used for training. Kilicoglu and Bergler

(2008) compiled a list of speculation keywords from the examples in (Hyland, 1998)
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and extended this list by using WordNet (Fellbaum, 1998) and UMLS SPECIALIST

Lexicon (McCray et al., 1994). They used manually crafted syntactic patterns to

identify speculative sentences and achieved a BEP and an F-measure of 85% on the

FlyBase data set and a BEP and an F-measure of 82% on the BMC Bioinformatics

data set.

Unlike pervious studies, which treat the problem of identifying speculative lan-

guage as a sentence classification task, we tackle the more challenging problem of

identifying the portions of sentences which are speculative. In other words, we al-

low a sentence to include both speculative and non-speculative parts. We introduce

and evaluate a diverse set of features that represent the context of a keyword and

use these features in a supervised machine learning setting to classify the keywords

as real speculation keywords or not. Then, we develop a rule-based method to de-

termine their linguistic scopes by considering the keyword-specific features and the

syntactic structures of the sentences. To the best of our knowledge, the BioScope

corpus (Vincze et al., 2008) is the only available data set that has been annotated

for speculative sentence fragments and we report the first results on this corpus.

3.3 Corpus

The BioScope corpus2 has been annotated at the token level for speculation key-

words and at the sentence level for their linguistic scopes (Vincze et al., 2008). The

corpus consists of three sub-corpora: medical free texts (radiology reports), biomed-

ical article abstracts, and biomedical full text articles. In this study we focus on

identifying speculations in scientific text. Therefore, we use the biomedical article

abstracts and the biomedical full text articles in our experiments. The statistics

(number of documents, number of sentences, and number of occurrences of spec-

2Available at: http://www.inf.u-szeged.hu/rgai/bioscope
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ulation keywords) for these two sub-corpora are given in Table 3.1. The scientific

Data Set Documents Sentences Hedge Keywords
Abstracts 1273 11871 2694
Full Papers 9 2670 682

Table 3.1: Summary of the biomedical scientific articles sub-corpora of the BioScope corpus

abstracts in the BioScope corpus were included from the Genia corpus (Collier et al.,

1999). The full text papers consist of five articles from the FlyBase data set and

four articles from the open access BMC Bioinformatics website. The sentences in

the FlyBase and BMC Bioinformatics data sets were annotated as speculative or

not and made available by Medlock and Briscoe (2007) and Szarvas (2008), respec-

tively and have been used by previous studies in identifying speculative sentences

(Medlock & Briscoe, 2007; Kilicoglu & Bergler, 2008; Szarvas, 2008). Vincze et al.

(2008) annotated these full text papers and the Genia abstracts for speculation key-

words and their scopes and included them to the BioScope corpus. The keywords

were annotated with a minimalist strategy. In other words, the minimal unit that

expresses speculation was annotated as a keyword. A keyword can be a single word

(e.g. suggest, predict, might) or a phrase (complex keyword), if none of the words

constituting the phrase expresses a speculation by itself. For example the phrase “no

evidence of‘” in the sentence “Direct sequencing of the viral genomes and reinfection

kinetics showed no evidence of wild-type reversion even after prolonged infection with

the Tat- virus.” is an example of a complex keyword, since the words forming the

phrase can only express speculation together.

In contrast to the minimalist strategy followed when annotating the keywords,

the annotation of scopes of the keywords was performed by assigning the scope to

the largest syntactic unit possible by including all the elements between the keyword

and the target word to the scope (in order to avoid scopes without a keyword) and
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by including the modifiers of the target word to the scope (Vincze et al., 2008).

The reader can refer to (Vincze et al., 2008) for the details of the corpus and the

annotation guidelines.

The inter-annotator agreement rate was measured as the F-measure of the anno-

tations of the first annotator by considering the annotations of the second one as the

gold standard. The agreement rate for speculation keyword annotation is reported as

92.05% for the abstracts and 90.81% for the full text articles and the agreement rate

for speculation scope resolution is reported as 94.04% for the abstracts and 89.67%

for the full text articles (Vincze et al., 2008). These rates can be considered as the

upper bounds for the automated methods proposed in this study.

3.4 Identifying Speculation Keywords

Words and phrases such as “might”, “suggest”, “likely”, “no evidence of”, and

“remains to be elucidated” that can render statements speculative are called specu-

lation keywords. Speculation keywords are not always used in speculative context.

For instance, consider the following sentences:

1. Thus, it appears that the T-cell-specific activation of the proenkephalin promoter

is mediated by NF-kappa B. (PMID: 91117203)

2. Differentiation assays using water soluble phorbol esters reveal that differentia-

tion becomes irreversible soon after AP-1 appears. (PMID: 92088960)

The keyword “appears” in the first sentence renders it speculative. However, in the

second sentence, “appears” is not used in a speculative context.

The first sub-problem that we need to solve in order to identify speculative sen-

tence fragments is identifying the real speculation keywords in a sentence (i.e. the

keywords which convey speculative meaning in the sentence). We formulate the
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problem as a supervised classification task. We extract the list of keywords from the

training data which has been labeled for speculation keywords. We match this list of

keywords in the unlabeled (test data) and train a model to classify each occurrence

of a keyword in the unlabeled test set as a real speculation keyword or not. The

challenge of the task can be demonstrated by the following statistics from the Genia

Abstracts of the BioScope corpus. There are 1273 abstracts in the corpus. There

are 138 unique speculation keywords and the total number of their occurrence in the

abstracts is 6125. In only 2694 (less than 50%) of their occurrences they are used in

speculative context (i.e., are real speculation keywords).

In this study we focus on identifying the features that represent the context of a

speculation keyword and use SVM with linear kernel (we used the SVM light pack-

age (Joachims, 1999a)) as our classification algorithm. The following sub-section

describes the set of features that we propose.

3.4.1 Feature Extraction

We introduce a set of diverse types of features including keyword specific features

such as the stem and the part-of-speech (POS) of the keyword, and keyword context

features such as the words surrounding the keyword, the dependency relation types

originating at the keyword, the other keywords that occur in the same sentence

as the keyword, and positional features such as the section of the paper in which

the keyword occurs. While designing the features, we were inspired by studies on

other natural language processing problems such as Word Sense Disambiguation

(WSD) and summarization. For example, machine learning methods with features

based on part-of-speech tags, word stems, surrounding and co-occurring words, and

dependency relationships have been successfully used in WSD (Montoyo et al., 2005;

Ng & Lee, 1996; Dligach & Palmer, 2008) and positional features such as the position
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of a sentence in the document have been used in text summarization (e.g. (Radev

et al., 2004)).

Keyword Features

Statistics from the BioScope corpus suggest that different keywords have different

likelihoods of being used in a speculative context (Vincze et al., 2008). For example,

the keyword “suggest” has been used in a speculative context in all its occurrences in

the abstracts and in the full papers. On the other hand, “appear” is a real speculation

keyword in 86% of its occurrences in the abstracts and in 83% of its occurrences in

the full papers, whereas “can” is a real speculation keyword in 12% of its occurrences

in the abstracts and in 16% of its occurrences in the full papers. POS of a keyword

might also play a role in determining whether it is a real speculation keyword or

not. For example, consider the keyword “can”. It is more likely to have been used

in a speculative context when it is a modal verb, than when it is a noun. Based

on these observations, we hypothesize that features specific to a keyword such as

the keyword itself, the stem of the keyword, and the POS of the keyword might

be useful in discriminating the speculative versus non-speculative use of it. We use

Porter’s Stemming Algorithm (Porter, 1980) to obtain the stems of the keywords

and Stanford Parser (de Marneffe et al., 2006) to get the POS of the keywords. If

a keywords consists of multiple words, we use the concatenation of the POS of the

words constituting the keyword as a feature. For example, the extracted POS feature

for the keywords “no evidence” and “no proof” is “DT.NN”.

Dependency Relation Features

Besides the occurrence of a speculation keyword, the syntactic structure of the

sentence also plays an important role in characterizing speculations. Kilicoglu and
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Bergler (2008) showed that manually identified syntactic patterns are effective in

classifying sentences as speculative or not. They identified that, while some keywords

do not indicate hedging when used alone, they might act as good indicators of hedging

when used with a clausal complement or with an infinitival clause. For example, the

“appears” keyword in the example sentences, which are given in the beginning of

Section 3.4, is not a real speculation keyword in the second example “...soon after

AP-1 appears.”, whereas it is a real speculation keyword in the first example, where

it is used with a that clausal complement “...it appears that...”. Similarly, “appears”

is used in a speculative context in the following sentence, where it is used with an

infinitival clause: “Synergistic transactivation of the BMRF1 promoter by the Z/c-

myb combination appears to involve direct binding by the Z protein.”.

Another observation is that, some keywords act as real speculation keywords only

when used with a negation. For example, words such as “know”, “evidence”, and

“proof” express certainty when used alone, but express a speculation when used

with a negation (e.g., “not known”, “no evidence”, “no proof”).

Auxiliaries in verbal elements might also give clues for the speculative meaning

of the main verbs. Consider the example sentence: “Our findings may indicate the

presence of a reactivated virus hosted in these cells.”. The modal auxiliary “may”

acts as a clue for the speculative context of the main verb “indicate”.

We defined boolean features to represent the syntactic structures of the contexts

of the keywords. We used the Stanford Dependency Parser (de Marneffe et al., 2006)

to parse the sentences that contain a candidate speculation keyword and extracted

the following features from the dependency parse trees.

Clausal Complement: A Boolean feature which is set to 1, if the keyword has

a child which is connected to it with a clausal complement or infinitival clause
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dependency type.

Negation: A Boolean feature which is set to 1, if the keyword (1) has a child which

is connected to it with a negation dependency type (e.g. “not known”: “not”

is a child of “known”, and the Stanford Dependency Type connecting them is

“neg”) or (2) the determiner “no” is a child of the keyword (e.g., “no evidence”:

“no” is a child of “evidence” and the Stanford Dependency Type connecting

them is “det”).

Auxiliary: A Boolean feature which is set to 1, if the keyword has a child which is

connected to it with an auxiliary dependency type (e.g. “may indicate”: “may”

is a child of “indicate”, and the Stanford Dependency Type connecting them is

“aux”).

If a keyword consists of multiple-words, we examine the children of the word

which is the ancestor of the other words constituting the keyword. For example,

“no evidence” is a multi-word keyword, where “evidence” is the parent of “no”.

Therefore, we extract the dependency parse tree features for the word “evidence”.

Surrounding Words

Recent studies showed that using machine learning with variants of the “bag-

of-words” feature representation is effective in classifying sentences as speculative

vs. non-speculative (Light et al., 2004; Medlock & Briscoe, 2007; Szarvas, 2008).

Therefore, we also decided to include bag-of-words features that represent the context

of the speculation keyword. We extracted the words surrounding the keyword and

performed experiments both with and without stemming, and with window sizes

of one, two, and three. Consider the sentence: “Our findings may indicate the

presence of a reactivated virus hosted in these cells.”. The bag-of-words features for
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the keyword “indicate”, when a window size of three and no stemming is used are:

“our”, “findings”, “may”, “indicate”, “the”, “presence”, “of”. In other words, the

feature set consists of the keyword, the three words to the left of the keyword, and

the three words to the right of the keyword.

Positional Features

Different parts of a scientific article might have different characteristics in terms

of the usage of speculative language. For example, Hyland (1998) analyzed a data

set of molecular biology articles and reported that the distribution of speculations is

similar between abstracts and full text articles, whereas the Results and Discussion

sections tend to contain more speculative statements compared to the other sections

(e.g. Materials and Methods or Introduction and Background sections). The analysis

of Light et al. (2004) showed that the last sentence of an abstract is more likely to

be speculative than non-speculative.

For the scientific abstracts data set, we defined the following boolean features to

represent the position of the sentence the keyword occurs in. Our intuition is that

titles and the first sentences in the abstract tend to be non-speculative, whereas the

last sentence of the abstract tends to be speculative.

Title: A Boolean feature which is set to 1, if the keyword occurs in the title.

First Sentence: A Boolean feature which is set to 1, if the keyword occurs in the

first sentence of the abstract.

Last Sentence: A Boolean feature which is set to 1, if the keyword occurs in the

last sentence of the abstract.

For the scientific full text articles data set, we defined the following features that

represent the position of the sentence in which the keyword occurs. Our assumption
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is that the “Results and Discussion” and the “Conclusion” sections tend to contain

more speculative statements than the “Materials and Methods” and “Introduction

and Background” sections. We also assume that figure and table legends are not

likely to contain speculative statements.

Title: A Boolean feature which is set to 1, if the keyword occurs in the title of the

article, or in the title of a section or sub-section.

First Sentence: A Boolean feature which is set to 1, if the keyword occurs in the

first sentence of the abstract.

Last Sentence: A Boolean feature which is set to 1, if the keyword occurs in the

last sentence of the abstract.

Background: A Boolean feature which is set to 1, if the keyword occurs in the

Background or Introduction section.

Results: A Boolean feature which is set to 1, if the keyword occurs in the Results

or in the Discussion section.

Methods: A Boolean feature which is set to 1, if the keyword occurs in the Mate-

rials and Methods section.

Conclusion: A Boolean feature which is set to 1, if the keyword occurs in the

Conclusion section.

Legend: A Boolean feature which is set to 1, if the keyword occurs in a table or

figure legend.

Co-occurring Keywords

Speculation keywords usually co-occur in the sentences. Consider the sentence:

“We, therefore, wished to determine whether T3SO4 could mimic the action of thy-

roid hormone in vitro.”. Here, “whether” and “could” are speculation keywords
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and their co-occurence might be a clue for their speculative context. Therefore, we

decided to include the co-occurring keywords to the feature set of a keyword.

3.5 Resolving the Scope of a Speculation

After identifying the real speculation keywords, the next step is determining their

scopes in the sentences, so that the speculative sentence fragments can be detected.

Manual analysis of sample sentences from the BioScope corpus and their parse trees

suggests that the scope of a keyword can be characterized by its part-of-speech and

the syntactic structure of the sentence in which it occurs. Consider the example

sentence whose parse tree is shown in Figure 3.1. The sentence contains three specu-

lation keywords, “or” and two occurrences of “might”. The scope of the conjunction

“or”, extends to the “VP” whose children it coordinates. In other words, the scope

of “or” is “[might be one of the earliest crucial steps in the lysis of normal and

dex-resistant CEM cells, or might serve as a marker for the process]”. Here, “or”

conveys a speculative meaning, since we are not certain which of the two sub-clauses

(sub-clause 1: [might be one of the earliest crucial steps in the lysis of normal and

dex-resistant CEM cells] or sub-clause 2: [might serve as a marker for the process])

is correct. The scope of both occurrences of the modal verb “might” is the parent

“VP”. In other words, the scope of the first occurrence of “might” is “[might be

one of the earliest crucial steps in the lysis of normal and dex-resistant CEM cells]”

and the scope of the second occurrence of “might” is “[might serve as a marker for

the process]”. By examining the keywords, sample sentences and their syntactic

parse trees we developed the following rule-based approach to resolve the scopes of

speculation keywords. The examples given in this section are based on the syntactic

structure of the Penn Tree Bank. But, the rules are generic (e.g. “the scope of a



55

Figure 3.1: The syntactic parse tree of the sentence “Positive induction of GR mRNA might be one
of the earliest crucial steps in the lysis of normal and dex-resistant CEM cells, or might
serve as a marker for the process.”

verb followed by an infinitival clause, extends to the whole sentence”).

The scope of a conjunction or a determiner (e.g. or, and/or, vs) is the syntactic

phrase to which it is attached. For example, the scope of “or” in Figure 3.1 is the

“VP” immediately dominating the “CC”.

The scope of a modal verb (e.g. may, might, could) is the “VP” to which it is

attached. For example, the scope of “might” in Figure 3.1 is the “VP” immediately

dominating the “MD”.

The scope of an adjective or an adverb starts with the keyword and ends with the

last token of the highest level “NP” which dominates the adjective or the adverb.

Consider the sentence “The endocrine events that are rapidly expressed (seconds) are

due to a [possible interaction with cellular membrane].” The scope of the speculation

keyword “possible” is enclosed in rectangular brackets. The sub-tree that this scope

maps to is: “(NP (NP (DT a) (JJ possible) (NN interaction)) (PP (IN with) (NP (JJ

cellular) (NN membrane))))”. If there does not exist a “NP” dominating the adverb
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or adjective keyword, the scope extends to the whole sentence. For example the

scope of the speculation adverb “probably” in the sentence “[The remaining portion

of the ZFB motif was probably lost in TPases of insect Transib transposons]” is the

whole sentence.

The scope of a verb followed by an infinitival clause extends to the whole sentence.

For example, the scope of the verb “appears” followed by the “to” infinitival clause is

the whole sentence in “[The block of pupariation appears to involve signaling through

the adenosine receptor (AdoR)]”.

The scope of a verb in passive voice extends to the whole sentence such as the

scope of “suggested” in “[The existence of such an independent mechanism has also

been suggested in mammals]”.

If none of the above rules apply, the scope of a keyword starts with the key-

word and ends at the end of the sentence (or clause). An example is the scope of

“suggested” in “This [suggested that there is insufficient data currently available to

determine a reliable ratio for human]”.

3.6 Evaluation

We evaluated our approach on two different types of scientific text from the

biomedical domain, namely the scientific abstracts sub-corpus and the full text arti-

cles sub-corpus of the BioScope corpus (see Section 3.3). We used stratified 10-fold

cross-validation to evaluate the performance on the abstracts. In each fold, 90% of

the abstracts are used for training and 10% are used to test. To facilitate comparison

with future studies the PubMed Identifiers of the abstracts that we used as a test set

in each fold are provided3. The full text papers sub-corpus consists of nine articles.

We used leave-one-out cross-validation to evaluate the performance on the full text

3http://clair.si.umich.edu/clair/bioscope/
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papers. In each iteration eight articles are used for training and one article is used

to test. We report the average results over the runs for each data set.

3.6.1 Evaluation of Identifying Speculation Keywords

To classify whether the occurrence of a keyword is in speculative context or not,

we built linear SVM models by using various combinations of the features introduced

in Section 3.4.1. Tables 3.2 and 3.3 summarize the results obtained for the abstracts

and the full text papers, respectively. BOW N is the bag-of-words features obtained

from the words surrounding the keyword. N is the window size. We experimented

both with the stemmed and non-stemmed versions of this feature type. The non-

stemmed versions performed slightly better than the stemmed versions. The reason

might be due to the different likelihoods of being used in a speculative context of

different inflected forms of words. For example, consider the words “appears” and

“appearance”. They have the same stems, but “appearance” is less likely to be a

real speculation keyword than “appears”. Another observation is that, decreasing

the window size led to improvement in performance. This suggests that the words

right before and right after the candidate speculation keyword are more effective in

distinguishing its speculative vs. non-speculative context compared to a wider local

context. Wider local context might create sparse data and degrade performance.

Consider the example, “it appears that TP53 interacts with AR”. The keyword

“appears”, and BOW1 (“it” and “that”) are more relevant for the speculative context

of the keyword than “TP53”, “interacts”, and “with”. Therefore, for the rest of the

experiments we used the BOW 1 version, i.e., the non-stemmed surrounding bag-of-

words with window size of 1. KW stands for the keyword specific features, i.e., the

keyword, its stem, and its part-of-speech. DEP stands for the dependency relation

features. POS stands for the positional features and CO-KW stands for the co-
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occurring keywords feature.

Our results are not directly comparable with the prior studies about identifying

speculative sentences (see Section 3.2), since we attempted to solve a different prob-

lem, which is identifying speculative parts of sentences. Only the substring matching

approach that was introduced in (Light et al., 2004) could be adapted as a keyword

classification task, since the substrings are keywords themselves and we used this

approach as a baseline in the keyword classification sub-problem. We compare the

performances of our models with two baseline methods, which are based on the

substring matching approach. Light et al. (2004) have shown that the substring

matching method with a predefined set of 14 strings performs slightly better than

an SVM model with bag-of-words features in classifying sentences as speculative vs.

non-speculative (see Section 3.2). In baseline 1, we use the 14 strings identified in

(Light et al., 2004) and classify all the keywords in the test set that match any of

them as real speculation keywords. Baseline 2 is similar to baseline 1, with the dif-

ference that rather than using the set of strings in (Light et al., 2004), we extract

the set of keywords from the training set and classify all the words (or phrases) in

the test set that match any of the keywords in the list as real speculation keywords.

Baseline 1 achieves high precision, but low recall. Whereas, baseline 2 achieves

high recall in the expense of low precision. All the SVM models in Tables 3.2 and 3.3

achieve more balanced precision and recall values, with F-measure values significantly

higher than the baseline methods. We start with a model that uses only the keyword-

specific features (KW). This type of feature alone achieved a significantly better

performance than the baseline methods (90.61% F-measure for the abstracts and

80.57% F-measure for the full text papers), suggesting that the keyword-specific

features are important in determining its speculative context. We extended the
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feature set by including the dependency relation (DEP), surrounding words (BOW

1), positional (POS), and co-occurring keywords (CO-KW) features. Each new type

of included feature improved the performance of the model for the abstracts. The

best F-measure (91.69%) is achieved by using all the proposed types of features.

This performance is close to the upper bound, which is the human inter-annotator

agreement F-measure of 92.05%.

Including the co-occurring keywords to the feature set for full text articles slightly

improved precision, but deceased recall, which led to lower F-measure. The best F-

measure (82.82%) for the full text articles is achieved by using all the feature types

except the co-occurring keywords. The achieved performance is significantly higher

than the baseline methods, but lower than the human inter-annotator agreement

F-measure of 90.81%. The lower performance for the full text papers might be due

to the small size of the data set (9 full text papers compared to 1273 abstracts).

Method Recall Precision F-Measure
Baseline 1 52.84 92.71 67.25
Baseline 2 97.54 43.66 60.30
BOW 3 - stemmed 81.47 92.36 86.51
BOW 2 - stemmed 81.56 93.29 86.97
BOW 1 - stemmed 83.08 93.83 88.05
BOW 3 82.58 92.04 86.98
BOW 2 82.77 92.74 87.41
BOW 1 83.27 93.67 88.10
KW: kw, kw-stem, kw-pos 88.62 92.77 90.61
KW, DEP 88.77 92.67 90.64
KW, DEP, BOW 1 88.46 94.71 91.43
KW, DEP, BOW 1, POS 88.16 95.21 91.50
KW, DEP, BOW 1, POS, CO-KW 88.22 95.56 91.69

Table 3.2: Results for the Scientific Abstracts

3.6.2 Evaluation of Resolving the Scope of a Speculation

We compared the proposed rule-based approach for scope resolution with two

baseline methods. Previous studies classify sentences as speculative or not, therefore
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Method Recall Precision F-Measure
Baseline 1 33.77 86.75 47.13
Baseline 2 88.22 52.57 64.70
BOW 3 - stemmed 70.79 83.88 76.58
BOW 2 - stemmed 72.31 85.49 78.11
BOW 1 - stemmed 73.49 84.35 78.41
BOW 3 70.54 82.56 75.88
BOW 2 71.52 85.93 77.94
BOW 1 73.72 86.27 79.43
KW: kw, kw-stem, kw-pos 75.21 87.08 80.57
KW, DEP 75.02 89.49 81.53
KW, DEP, BOW 1 76.15 89.54 82.27
KW, DEP, BOW 1, POS 76.17 90.81 82.82
KW, DEP, BOW 1, POS, CO-KW 75.76 90.82 82.58

Table 3.3: Results for the Scientific Full Text Papers

implicitly assigning the scope of a speculation to the whole sentence (Light et al.,

2004; Medlock & Briscoe, 2007; Szarvas, 2008; Kilicoglu & Bergler, 2008). Baseline

1 follows this approach and assigns the scope of a speculation keyword to the whole

sentence. Szarvas (2008) suggest assigning the scope of a keyword from its occurrence

to the end of the sentence. They state that this approach works accurately for clinical

free texts, but no any results are reported (Szarvas, 2008). Baseline 2 follows the

approach proposed in (Szarvas, 2008) and assigns the scope of a keyword to the

fragment of the sentence that starts with the keyword and ends at the end of the

sentence. Table 3.4 summarizes the accuracy results obtained for the abstracts and

the full text papers.

The poor performance of baseline 1, emphasizes the importance of detecting the

portions of sentences that are speculative, since less than 5% of the sentences that

contain speculation keywords are entirely speculative. Classifying the entire sen-

tences as speculative or not leads to loss in information for more than 95% of the

sentences. The rule-based method significantly outperformed the two baseline meth-

ods, indicating that the part-of-speech of the keywords and the syntactic parses of

the sentences are effective in characterizing the speculation scopes.
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Method Accuracy-Abstracts Accuracy-Full text
Baseline 1 4.82 4.29
Baseline 2 67.60 42.82
Rule-based method 79.89 61.13

Table 3.4: Scope resolution results

3.7 Conclusion

We presented an approach to identify speculative sentence fragments in scientific

articles. Our approach is based on solving two sub-problems. The first one is iden-

tifying the keywords which are used in speculative context and the second one is

determining the scopes of these keywords in the sentences. We evaluated our ap-

proach for two types of scientific texts, namely abstracts and full text papers from

the BioScope corpus.

We formulated the first sub-problem as a supervised classification task, where

the aim is to learn models to classify the candidate speculation keywords as real

speculation keywords or not. We focused on identifying different types of linguistic

features that capture the contexts of the keywords. We achieved a performance which

is significantly better than the baseline methods and close to the upper bound, which

is the human inter-annotator agreement F-measure.

We hypothesized that the scope of a speculation keyword can be characterized by

its part-of-speech and the syntactic structure of the sentence and developed rules to

map the scope of a keyword to the nodes in the syntactic parse tree. Our results

show that the rule-based method is effective in resolving the scopes of the specula-

tion keywords. The considerably lower performance of the baseline of assigning the

scope of a speculation keyword to the whole sentence indicates the importance of

detecting speculative sentence portions rather than classifying the entire sentences

as speculative or not.



CHAPTER IV

Centrality-Based Literature Mining for Discovering
Gene-Disease Associations

4.1 Introduction

In Chapter II we proposed a dependency tree kernel-based method to extract

protein interactions from text. An exciting usage of the information extracted from

the scientific literature is trying to uncover hidden links. In this chapter we pro-

pose a literature-based discovery (LBD) method to infer gene-disease associations

by analyzing the topology of a gene interaction network extracted from the biomed-

ical scientific literature. In Chapter V we will present the general framework of this

LBD approach and adapt it to solve a different biological problem, namely to dis-

cover genes which are potentially important for vaccine development. Unlike most

previous LBD methods that are based on Swanson’s ABC model and depend on co-

occurrence information among the entities (see Chapter I), our approach integrates

natural language processing based text mining with network analysis in a novel way.

One of the major goals of the post-genome era is to understand the role of genetics

in human health and diseases (Lander et al., 2001; Venter et al., 2001). While fewer

than 100 gene-disease associatons were known before the project started in 1990, cur-

rently more than 1400 gene-disease relationships have been identified1. Determining

1http://www.genome.gov/11006929

62
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gene-disease associations will enhance developing new techniques for prevention, di-

agnosis, and treatment of the diseases.

There are curated databases that store gene-disease association information. One

of the most well-known such databases is (OMIM, 2007), which provides summaries of

publications about gene-disease relationships. However, it usually takes time before

new discoveries are included in the curated databases. Given that the amount of

biomedical literature regarding the identification of disease genes is increasing rapidly,

one of the challenges that scientists in this domain face is that most of the relevant

information remains hidden in the unstructured text of the published papers.

Another challenge is that the identification of new disease genes requires laborious

experiments. For example, the genetic linkage analysis method is successfully used

to determine the genomic regions that are associated with a disease. However, these

regions often contain hundreds of genes and experimentally identifying the actual

disease genes out of the large amount of candidate genes is very time-consuming and

costly. Therefore, predicting good candidate genes before experimental analysis is

crucial.

To address these challenges, we propose an approach based on integrating text

mining and network analysis methods to automatically extract known disease genes

and to predict unknown disease genes, which can be good candidates for experimen-

tal study. We started by collecting an initial set of genes (seed genes) known to

be related to a disease from curated databases such as OMIM. We then used the

information extraction approach based on dependency parsing and support vector

machines (SVM), which we introduced in Chapter II, to extract the interactions of

the seed genes and their neighbors (the genes that the seed genes interact with) from

the biomedical literature. We generated the dependency parses of the sentences that
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contain at least two seed or neighbor genes and extracted the paths between all pairs

of genes from the dependency parse trees. We used SVM with dependency path edit

kernel to classify the sentences as describing an interaction between a gene pair or

not.

After extracting the interactions, we constructed a disease-specific gene interaction

network, where the nodes are the seed genes and their neighbors, and two genes are

linked, if we have extracted an interaction between them. Next, we ranked the genes

in the network by degree, eigenvector, betweenness, and closeness network centrality

metrics. Our main hypothesis is that the central genes in the disease-specific network

are likely to be related to the disease. To our knowledge, this is the first effort of

building a gene interaction network by automatic literature mining and applying

network centrality to predict gene-disease associations on that network. This chapter

is based on the work published as (Özgür et al., 2008).

4.2 Related Work

In this section we discuss closely related work on protein interaction networks and

identifying gene-disease associations. Related work on literature-based discovery was

discussed in Chapter I and related work on protein interaction extraction from text

was presented in Chapter II.

Most of the previous studies that use text mining to extract gene-disease associ-

ations from the biomedical literature are based on the co-occurrence frequencies of

genes and diseases. For example, Adamic et al. (2002) present a method based on

determining whether the frequency of occurrence of a gene in articles that mention

a certain disease is statistically significantly higher than the expected frequency of

occurrence computed by the Binomial distribution. They evaluated their approach
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for breast cancer and confirmed the relevance of 7 out of the 10 highest ranked

genes to breast cancer by using a human edited breast cancer gene database2. An-

other relevant study is conducted by Al-Mubaid and Singh (2005). Given a disease

name, the set of documents that contain the disease name (positive document set)

and a randomly-selected document set (negative document set) are extracted. Co-

occurrence and term frequency based concepts from information theory are used to

determine the genes that are significantly associated with the disease. The authors

found six genes significantly associated with Alzheimer’s disease and confirmed the

correctness of their results through articles from PubMed. Ade et al. (2007) de-

veloped the Gene2MeSH3 web system that links genes to MeSH (Medical Subject

Heading) terms based on the significance of their associations in PubMed abstracts.

Determining the genes that cause a disease usually requires laborious experiments

over a large number of candidate genes. Therefore, another challenge in the domain is

predicting and prioritizing candidate disease genes, which can further be validated by

detailed experiments. Most proposed data mining approaches make use of available

curated databases and predict gene-disease associations by using keyword similarity

to known disease genes and phenotypes. For example, GeneSeeker (van Driel et al.,

2002) is a web-based system that integrates positional and expression/phenotypic

data from nine different human and mouse databases and provides a quick overview

of interesting candidate genes. The authors evaluated their approach for ten syn-

dromes. On average, the system reduced a list of 163 candidate genes to a list of

22 genes, which still contained the correct disease gene. Freudenberg and Propping

(2002) proposed a method based on clustering diseases based on their phenotypic sim-

ilarity, which is computed by considering the similarity of the disease index terms

2http://tyrosine.biomedcomp.com
3http://gene2mesh.ncibi.org/
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in the OMIM database. Candidate genes for a disease in a cluster are predicted by

selecting functionally similar genes to the genes associated with the other diseases in

the cluster. The authors performed a leave-one-out cross-validation of 878 diseases

using 10, 672 genes. They reported that in roughly one-third of the diseases, the

correct disease gene was within the top scoring 321 genes, and in the two-third of

the diseases, the correct disease gene was within the top scoring 1, 600 genes. The

G2D system (Perez-Iratxeta et al., 2002, 2005) uses a fuzzy logic and text mining

approach based on co-occurrence of relevant keywords in biomedical abstracts to

associate pathological conditions with gene ontology (GO) terms (Ashburner et al.,

2000). Prediction of candidate genes is performed by searching for genes homologous

to the GO-annotated and disease-associated genes. The authors evaluated their sys-

tem with 100 known disease-associated genes and found that the correct disease gene

was among the 8 top-scoring genes with 25% chance, and among the 30 top-scoring

genes with 50% chance.

Another line of research that is related to ours is building and analyzing protein-

protein interaction (PPI) networks (see Chapter I for an overview on PPI networks).

PPIs can be represented as complex networks, where the nodes are the proteins and

the edges represent the interactions between the pairs of proteins they connect. This

representation makes it possible to analyze PPI networks from a graph theory and

complex networks perspective, which can give biologists a variety of new insights.

Most graph-theoretic studies of PPI networks extract the interactions from curated

databases (Jeong et al., 2001; Wuchty et al., 2003; Spirin & Mirny, 2003; Schwikowski

et al., 2000). There are also recent studies that analyze protein interaction networks

constructed by mining the literature (Chen & Sharp, 2004; Hoffmann & Valencia,

2005). It has been shown that the interaction networks constructed in either way,
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share similar topological properties such as being small-world and scale-free, with

each other and with various non-biological complex systems such as the WWW, the

Internet, and social networks (Chen & Sharp, 2004; Hoffmann & Valencia, 2005;

Jeong et al., 2001).

Graph-theoretic analysis of protein interaction networks have been successfully

applied in many biological domains. For example, protein interaction networks have

been used for evolutionary comparisons among organisms (Wuchty et al., 2003),

for identifying functional modules and network motifs (Spirin & Mirny, 2003), and

for predicting functional annotations based on network connectivity (Schwikowski

et al., 2000). Schwikowski et al. (2000) used a majority-rule method that assigns to

a protein the function that occurs most commonly among its neighbors and reported

an accuracy of 70% for the yeast protein interaction network.

Recently, protein interaction networks have also been used to predict gene-disease

associations (Chen et al., 2006; Gonzalez et al., 2007). Chen et al. (2006), used an

initial gene list (seed genes) for Alzheimer’s from the OMIM database, and built an

interaction network by extracting the interactions of these genes from the Online

Predicted Human Interaction Database (OPHID) (Brown & Jurisica, 2005). They

define a heuristic scoring function for the genes based on their connectedness in the

graph. When building the network, only the interactions among the seed genes and

the interactions of seed genes with their neighbors are considered. The interactions

among the neighbors is not taken into account. Thus, this approach is biased in

favor of the seed genes. 19 of the top scoring genes are seed and only one is a non-

seed (inferred) gene. Gonzalez et al. (2007) start with a list of seed genes obtained

from the automatically mined CBioC database and create an interaction network by

extracting the interactions of the seed genes from the CBioC database (Baral et al.,
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2005) and curated databases such as BIND (Bader et al., 2003) and MINT (Zanzoni

et al., 2002). Like Chen et al. (2006), they do not take into account the interactions

among the non-seed genes. To eliminate the bias in favor of the seed genes, they

refine the scoring function by considering just the interactions with seed genes and

including a measure for the impact of each gene on the connectivity of the network.

45% of their top scoring 20 genes are non-seed and 66.67% of these non-seed genes

are correctly inferred genes, i.e., reported in OMIM or in the literature as being

related to the disease.

Our approach is different than most previous approaches in two aspects. First,

we create a protein interaction network by automatic literature mining using the de-

pendency path edit kernel method introduced in Chapter II. Second, we use degree,

eigenvector, betweenness, and closeness centrality to rank the gene-disease associa-

tions. Centrality measures, which define the relative importance of a node in the

graph, have originally been developed and used in nonbiological domains. For ex-

ample, the web pages in the popular search engine Google are ranked by using the

Pagerank algorithm, which is based on eigenvector centrality (Page et al., 1999).

Recently, eigenvector centrality has also been used in document summarization to

identify the most important sentences (Erkan & Radev, 2004) as well as to identify

the most influential members of the US Senate (Fader et al., 2007). A number of

recent studies have successfully applied centrality measures in biological domains.

For example, Jeong et al. (2001) used degree centrality to predict lethal mutations

in the yeast protein interaction network. They showed that the network is tolerant

to random errors, whereas errors related to the most central proteins cause lethality.

Similarly, Joy et al. (2005) and Hahn and Kern (2005) have found that there is an

association between the betweenness centrality and the essentiality of a gene, where
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an essential gene is a gene that causes the organism to die when it malfunctions.

Goh et al. (2007) showed that central genes based on degree are also essential.

4.3 Methods

The high level system description for predicting gene-disease associations is shown

in Figure 4.1. The approach is described in more detail in the following subsections.

4.3.1 Corpus

To construct the literature-mined protein interaction network we used 48, 245

articles from PubMed Central (PMC) Open Access4, which is an open access digital

archive of biomedical and life science journals. Unlike PubMed, articles in PMC are

full-text.

We pre-processed the corpus by segmenting the articles into sentences with Mx-

Terminator (Reynar & Ratnaparkhi, 1997). Protein and gene names are annotated

with Genia Tagger (Tsuruoka et al., 2005), whose developers report an F-score per-

formance of 71.37% for biological named entity recognition5.

4.3.2 Initial List of Seed Genes

To build an interaction network for a disease and to infer gene-disease associations

from the network properties, we started with an initial list of seed genes known to

be related to the disease.

We evaluated our system for prostate cancer. We compiled 15 prostate cancer

seed genes from the Morbid Map component of Online Mendelian Inheritance in Man

database (OMIM, 2007). OMIM Morbid Map shows the cytogenetic map location

of disease-associated genes described in OMIM. Table 4.1 lists the seed genes for

prostate cancer.
4http://www.pubmedcentral.nih.gov/about/openftlist.html
5http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
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PubMed Central Open 
Access (PMCOA) Papers

Interaction Extraction
(Dependency Parsing and 

Machine Learning)

Disease
Related Genes

Sentence Splitting

Gene Name Tagging and
Normalization

Sentence Filtering

Network Centrality 
Analysis

Figure 4.1: Description of the literature-based discovery system for identifying gene-disease associ-
ations.
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Gene Description
AR androgen receptor
BRCA2 breast cancer 2, early onset
MSR1 macrophage scavenger receptor 1
EPHB2 EPH receptor B2
KLF6 Kruppel-like factor 6
MAD1L1 MAD1 mitotic arrest deficient-like 1 (yeast)
HIP1 huntingtin interacting protein 1
CD82 CD82 molecule
ELAC2 elaC homolog 2 (E. coli)
MXI1 MAX interactor 1
PTEN phosphatase and tensin homolog
RNASEL ribonuclease L (2’,5’-oligoisoadenylate synthetase-dependent)
HPC1 hereditary prostate cancer 1
CHEK2 CHK2 checkpoint homolog (S. pombe)
PCAP predisposing for prostate cancer

Table 4.1: The prostate cancer seed genes retrieved from OMIM Morbid Map.

4.3.3 Gene Name Normalization

Identifying the gene and protein names in text is usually not sufficient to uniquely

identify the corresponding entities. This is due to the fact that, most gene and pro-

tein names have several different synonyms and spelling variations. In order to link

the gene/protein names to their corresponding entries in the interaction databases

such as UniProt (Bairoch et al., 2005) and MiMI (Tarcea et al., 2009) or to build an

interaction network using the interactions extracted from the literature, the gene and

protein names have to be normalized (mapped) to a canonical name. For example,

the PTEN gene might appear in text as MMAC1, TEP1, PTEN1, or phosphatase

and tensin homolog. Similarly, the TP53 gene can occur in text as TP53, p53, LFS1,

or tumor protein p53. If the gene names that correspond to the same gene are not

normalized, each different synonym and spelling variant will be represented as a sep-

arate node in a gene-interaction network extracted from the literature as shown in

Figure 4.2. With five different synonyms for PTEN and four different synonyms for

TP53, 20 different edges can be obtained although they actually represent the same
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edge (interaction). Therefore, we used a dictionary-based approach to normalize the

gene names tagged by Genia Tagger so that each gene is represented by a single

node in the interaction network. We used the HUGO Gene Nomenclature Commit-

tee (HGNC) database6 (Wain et al., 2004) as the dictionary for gene names and

their synonyms7. We matched the tagged gene names against the approved symbol,

approved name, previous symbols, previous names, aliases, and name aliases fields

of the database. We unified each tagged gene name to its corresponding approved

gene symbol.

4.3.4 Extracting the Gene Interaction Network from the Literature

We used the initial list of seed genes to build a disease-specific gene interaction

network mined automatically from the literature. Before applying our text mining

approach to extract gene interactions, we selected the potential interaction sentences

from the PMC Open Access corpus. A list of interaction words, which consists

of 45 noun and 53 verb roots was compiled from the literature. We extended the

list to contain all the inflected forms of the words and spelling variations such as

coactivate/co-activate and localize/localise. Our assumption is that a sentence that

describes an interaction between a pair of genes should contain at least two genes

and an interaction word (e.g. binds, bound, interacts, activates, inhibits, and phos-

phorylates). We expanded the seed gene list, by including all the genes that appear

in the same sentence with a seed gene. We filtered out the sentences that do not

contain an interaction word and at least two genes from the expanded gene list.

To build the gene interaction network, we used the path edit kernel with SVM,

which was introduced in Chapter II, to automatically extract the protein interactions

from the literature. We trained the system by combining the AIMED and CB data
6http://www.genenames.org/index.html
7As of September, 2007 the database contains 24, 680 approved gene records
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PTEN

phosphatase and 
tensin homolog

MMAC1

TEP1

PTEN1

tumor protein p53

p53

LFS1

Normalization

PTEN TP53

TP53

Figure 4.2: Gene name normalization example.

sets. The trained system is used to classify the new sentences as describing an

interaction between a gene pair or not.

4.3.5 Network Centrality for Inferring Gene-Disease Associations

Centrality of a node in a graph defines how important a node in the graph is. The

importance of a node can be defined in different ways.
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Degree Centrality

A graph can be represented by an adjacency matrix A, where Aij = 1, if there

is an edge between nodes i and j; and Aij = 0, if there does not exist an edge

between nodes i and j. Degree centrality is the simplest network centrality measure.

It only takes into account the degree of a node, which is the number of nodes that a

given node is connected to (Freeman, 1979). The degree ki of node i is calculated as

follows.

(4.1) ki =
n∑
j=1

Aij

Degree centrality measures the extent of influence that a node has on the network.

The more neighbors a node has, the more important it is.

Eigenvector Centrality

In degree centrality each neighbor contributes equally to the centrality of a node.

However, in many real-world situations not all the relationships (connections) be-

tween nodes in a network are equally important in determining the centrality of a

node. This notion is defined as “prestige” in social networks. Intuitively, the prestige

of a person does not only depend on the number of acquaintances he has, but also

how prestigious his acquaintances are. A node in a network is more central if it is

connected to many central nodes. The centrality xi of node i is proportional to the

sum of the centralities of its neighbors (Newman, 2003):

(4.2) xi = λ−1

n∑
j=1

Aijxj

Let’s represent the centralities of the nodes as a vector x = (x1, x2, ..., xn) and

rewrite Equation 4.2 in matrix form.
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(4.3) λx = Ax

Here, x is an eigenvector of the adjacency matrix A with eigenvalue λ. By Perron-

Frobenius theorem, there is only one eigenvector x with all centrality values non-

negative and this is the unique eigenvector that corresponds to the largest eigenvalue

λ (Newman, 2003). Eigenvector centrality assigns each node a centrality that not

only depends on the quantity of its connections, but also on their qualities.

Closeness Centrality

Closeness centrality of a node measures the centrality of a node based on how

close it is to other nodes in the network. The smaller the total distance of a node to

other nodes, the higher its closeness is. We calculate the closeness centrality measure

xi for node i by inverting the sum of the shortest distances from it to other nodes in

the network (Freeman, 1979) (Equation 4.4).

(4.4) xi =

[
n∑
j=1

dij

]−1

Here, dij is the geodesic distance (i.e., the length of the shortest path) between node

i and node j.

Betweenness Centrality

Betweenness centrality of a node is the number of shortest paths between other

nodes that run through the node in interest (Freeman, 1977). For a node i, this

measure is computed by taking the sum of the number of shortest paths between

pairs of nodes that pass through node i divided by the total number of shortest

paths between pairs of nodes (Equation 4.5).
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(4.5) xi =
n∑
j<k

gjk(i)

gjk

Here, gjk(i) is the number of shortest paths between nodes j and k that pass through

node i. gjk is the total number of shortest paths between nodes j and k.

Betweenness centrality characterizes the control of a node over the information

flow of the network. A node is considered central if it appears on many paths that

connect pairs of nodes (i.e. it acts as a bridge between pairs of nodes in the network).

4.4 Results and Discussion

4.4.1 Properties of the Prostate Cancer Network

The prostate cancer related gene interaction network consists of 226 nodes (dis-

tinct genes) and 1, 187 edges (interactions among these genes). The diameter of the

network (the longest of the shortest paths between the pairs of genes in the interac-

tion network) is 6 and the average shortest path length (the average of the shortest

paths between all genes in the network) is 2.57. The clustering coefficient (Watts

& Strogatz, 1998) is 0.4497, which is significantly higher than the clustering coef-

ficient of a random graph with the same number of nodes (0.0487). The prostate

cancer network is a small-world network, characterized by having a small average

shortest path length and a clustering coefficient that is significantly higher than that

of a random network with the same number of nodes. In addition, the network is a

scale-free network, which is characterized by having a power-law degree distribution,

P (k) ∼ k−γ, where P (k) is the probability that a randomly selected node will have

a degree (i.e. number of connections) of k (Albert & Barabási, 2002). The expo-

nent (γ) of the power-law degree distribution of the network is 2.24. The scale-free

and small-world characteristics of the network confirm the results of previous PPI
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network studies (Chen & Sharp, 2004; Hoffmann & Valencia, 2005; Jeong et al.,

2001).

4.4.2 Centrality and Gene-Disease Associations

We used the Prostate Gene DataBase (PGDB) (Li et al., 2003), which is a curated

database of genes related to prostate cancer, for the initial evaluation of the methods.

In the next sub-section we analyze the most central 20 genes in more detail.

Table 4.2 shows the precisions of the methods for the top ranked n genes, i.e., the

percentage of the top ranked “n” genes that are marked by PGDB as being related to

prostate cancer. The entire network (226 genes) is the neighborhood of the seed genes

and 17.70% of the 226 genes are related to prostate cancer. As the centrality score

of the genes decreases (i.e., as “n” increases ), the percentage of the genes related to

prostate cancer decreases and the performances of the four methods converge to each

other. For genes with high centrality, eigenvector, degree, and betweenness metrics

achieve similar performances, whereas closeness centrality performs worse than them.

For baseline evaluation, we created a co-occurrence network by linking two genes

if they appear in the same sentence and at least one of them is a seed gene. We

ranked the genes by the number of connections they make with the seed genes.

Top n Degree Eigenvector Betweenness Closeness Baseline
10 80.00 80.00 90.00 70.00 50.00
20 75.00 80.00 70.00 55.00 45.00
30 60.00 63.33 63.33 56.67 43.33
40 55.00 57.50 52.50 47.50 32.50
50 46.00 50.00 48.00 42.00 28.00
75 33.33 36.00 34.67 33.33 34.67

100 26.00 28.00 26.00 27.00 27.00
125 23.20 25.60 23.20 23.30 22.40
150 20.67 22.00 20.00 20.00 18.67
175 18.29 20.57 18.29 18.29 17.14
200 17.50 19.00 18.50 17.00 15.00
226 17.70 17.70 17.70 17.70 13.27

Table 4.2: Percentage of top n genes associated with prostate cancer based on the PGDB database



78

Betweenness centrality achieves the highest precision (90%) for the top 10 genes.

The precision of degree and eigenvector centrality measures is 80%, and the precision

of closeness centrality is 70%. The baseline approach performs considerably worse

(50% precision).

When we consider the top 20 genes, the highest precision is achieved by eigenvector

centrality (80%). Degree centrality follows eigenvector centrality with 75% precision,

whereas the precision of betweenness centrality drops to 70% and the precision of

closeness centrality drops to 55%. Degree, eigenvector, and betweenness centrality

perform significantly better than the baseline method (p-value < 0.05, Fisher’s Exact

Test (Fisher, 1970)).

To analyze the error tolerance of the gene-disease identification approach, we per-

formed experiments by randomly removing edges from the gene interaction network.

When up to 25% of the edges were removed randomly from the network, there was no

decrease in the precisions of the centrality metrics for the top 20 genes. An insignif-

icant decrease in the precisions of the metrics was observed when 40% of the edges

were removed. The precision of degree centrality dropped by 13.3% (from 75% to

65%), eigenvector centrality by 6.25%, betweenness centrality by 7.14%, and close-

ness centrality by 9.1%. This shows that the proposed approach is robust against

random errors.

4.4.3 Detailed Analysis of the Most Central Genes

For each centrality method, we performed a detailed evaluation for the top 20

ranked genes by finding evidence of their association to the disease from various

resources as presented in Table 4.3. The descriptions of the genes are presented in

Table 4.4. Seed genes are known to be related to the disease. To verify the newly

found (inferred) genes, we first used the PGDB database. If a gene is not marked
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by PGDB as being related to prostate cancer, we searched for published articles in

the literature that state that the gene is related to prostate cancer and also checked

whether the gene appears in the KEGG pathway for prostate cancer8, which is a

manually drawn pathway map of the currently known molecular interaction and

reaction network for prostate cancer (Kanehisa & Goto, 2000; Kanehisa et al., 2006,

2010).

12 of the genes in Table 4.3 are confirmed to be related to prostate cancer by

using the PGDB database. The centrality methods were able to find four genes,

which are not included in PGDB, but were confirmed to be related to prostate cancer

by searching for evidence in the literature and in the KEGG pathway for prostate

cancer. Two genes (MDM2 and INS) are part of the KEGG pathway for prostate

cancer. For these genes we also found articles in the literature that support their

association to prostate cancer. For example, Wang et al. (2003) and Zhang et al.

(2003) state that “MDM2 has a role in prostate cancer growth via p53-dependent

and p53-independent mechanisms”. For the INS (insulin) gene, Ho et al. (2003)

state that “Polymorphism of the insulin gene is associated with increased prostate

cancer risk”. Supportive evidence for the association of NR3C1 to prostate cancer

is presented by Wei et al. (2007), who show that it is differentially expressed in

androgen-independent prostate cancer. For the gene MAPK1, Sarfaraz et al. (2006)

state that “apoptosis induced by cannabinoid receptor CB1 and CB2 agonists leads

to activation of ERK1/2 leading to G1 cell cycle arrest in prostate cancer cells”. Here

ERK2 is a synonym of MAPK1. Another article that provides supportive evidence

for the MAPK1-prostate cancer association includes the statement “lysophosphatidic

acid (LPA), the receptor LPA(1), ERK2 and p38alpha are important regulators for

8http://www.genome.ad.jp/kegg/pathway/hsa/hsa05215.html
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prostate cancer cell invasion and thus could play a significant role in the development

of metastasis” (Hao et al., 2007). For the remaining 7 genes in the table, we found

neither positive nor negative evidence for their association to prostate cancer.

Gene Degree Eigenvector Closeness Betweenness Evidence
TP53 + + + + PGDB
BRCA1 + + + + PGDB
EREG + + + + None
AKT1 + + + + PGDB
MAPK1 + + + + Literature (Sarfaraz et al., 2006; Hao et al., 2007)
TNF + + + + PGDB
CCND1 + + + + PGDB
MYC + + + + PGDB
APC + + − − PGDB
CDKN1B + + + − PGDB
MAPK8 + + + + PGDB
NR3C1 − + + − Literature (Wei et al., 2007)
VEGFA + + + − PGDB
MDM2 + + + − KEGG & Literature (Wang et al., 2003; Zhang et al., 2003)
POLD1 − − + + None
SNORA62 − − + + None
CNTN2 − − − + None
PPA1 − − − + None
TMEM37 − − + − None
FZR1 − − + − PGDB
SSSCA1 − − + − None
BCL2 + − − − PGDB
INS + − − − KEGG & Literature (Ho et al., 2003)

Table 4.3: Genes inferred by degree, eigenvector, closeness, and betweenness centralities. “+” in-
dicates that the given gene is found by the centrality method with score ranking within
the top 20 and “−” indicates that the gene is not among the top 20 genes inferred by
the method. Evidences for each gene-disease relationship are confirmed by using PGDB,
KEGG pathway for prostate cancer, and published articles (literature).

Table 4.5 lists the definitions used in Table 4.6, which shows the summary of the

results for the top 20 genes.

Using degree centrality, among its top 20 ranking genes, 5 genes of the original 15

seed genes are found (AR, BRCA2, CD82, PTEN, and CHEK2). The remaining 15

genes (75% of the top 20 genes) are inferred genes in which we were able to confirm

the association of 14 genes (93.33% of the inferred genes) to prostate cancer, except

for 1 gene: EREG. For this exceptional gene, we did not find negative nor positive

evidence, which implies that the gene may still potentially be a prostate cancer gene.

The result of eigenvector centrality is as successful as degree centrality method
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Gene Description
TP53 tumor protein p53 (Li-Fraumeni syndrome)
BRCA1 breast cancer 1, early onset
EREG epiregulin
AKT1 v-akt murine thymoma viral oncogene homolog 1
MAPK1 mitogen-activated protein kinase 1
TNF tumor necrosis factor (TNF superfamily, member 2)
CCND1 cyclin D1
MYC v-myc myelocytomatosis viral oncogene homolog (avian)
APC adenomatosis polyposis coli
CDKN1B cyclin-dependent kinase inhibitor 1B (p27, Kip1)
MAPK8 mitogen-activated protein kinase 8
NR3C1 nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)
VEGFA vascular endothelial growth factor A
MDM2 mouse double minute 2, human homolog of; p53-binding protein
POLD1 polymerase (DNA directed), delta 1, catalytic subunit 125kDa
SNORA62 small nucleolar RNA, H/ACA box 62
CNTN2 contactin 2 (axonal)
PPA1 pyrophosphatase (inorganic) 1
TMEM37 transmembrane protein 37
FZR1 fizzy/cell division cycle 20 related 1 (Drosophila)
SSSCA1 Sjogren’s syndrome/scleroderma autoantigen 1
BCL2 B-cell CLL/lymphoma
INS insulin

Table 4.4: Gene names normalized by Hugo and their description

Seed gene: A gene, which is one of the prostate cancer genes retrieved from
OMIM Morbid Map (i.e., one of the genes in Table 4.1).

Inferred gene: A non-seed gene.
% of inferred genes: (# of inferred genes / 20) * 100
Confirmed inferred gene: An inferred gene found to be related to prostate cancer based on

PGDB, KEGG pathway for prostate cancer, and published articles.
% of confirmed inferred genes: (# of confirmed inferred genes / # of inferred genes) * 100
% of confirmed genes: ((# of confirmed inferred genes + # of seed genes) / 20) * 100

Table 4.5: Definitions used in the evaluation of the top 20 genes

Degree Eigenvector Betweenness Closeness
# of seed genes 5 6 7 2

# of inferred genes 15 14 13 18
% of inferred genes 75 70 65 90

# of confirmed inferred genes 14 13 8 13
% of confirmed inferred genes 93.33 92.86 61.54 72.22

% of confirmed genes 95 95 75 75

Table 4.6: Summary of the results for the top 20 genes
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with 95% of the top ranked 20 genes having supportive evidence. Eigenvector cen-

trality found 6 seed genes (AR, BRCA2, CD82, MXI1, PTEN, and CHEK2) and 14

inferred genes. Out of the 14 inferred genes, 13 are confirmed (92.86% of the inferred

genes) and the same gene EREG is not.

Using closeness centrality, we found 2 seed genes (AR and BRCA2) and inferred

18 new genes. 13 of the inferred genes (72.22% of the inferred genes) have evidence

which indicate that they are related to prostate cancer and 5 inferred genes (EREG,

POLD1, SNORA62, TMEM37, and SSSCA1) do not have such affirmative evidence.

Betweenness centrality found the most seed genes among the four centrality meth-

ods. In its result, we have 7 seed genes (AR, BRCA2, CD82, MXI1, PTEN, CHEK2,

and KLF6) and 13 inferred genes, of which 8 inferred genes (61.54% of the inferred

genes) are verified to have relation to the disease. The five inferred genes that we

were not able to confirm are EREG, POLD1, SNORA62, CNTN2, and PPA1.

We observed that degree and eigenvector centrality methods generate highly ac-

curate results; 95% of the top ranked 20 genes are actually related to prostate cancer.

They are significantly better than the baseline method in which only 65% of the top

20 genes are prostate cancer genes. We used Fisher’s Exact Test (Fisher, 1970) to

measure the significance level of the differences in performances between the cen-

trality methods and the baseline method. Degree and eigenvector centrality perform

significantly better (p-value < 0.05) than the baseline approach in terms of the per-

centage of the confirmed genes and confirmed inferred genes. These methods are

good candidates for use in practice for mining existing genes related to a particular

disease. On the other hand, although closeness and betweenness centrality methods

are not statistically significantly better than the baseline method in finding known

prostate cancer genes, compared to degree and eigenvector centrality they introduce
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more genes that are not currently identified as related to the disease of interest.

These methods can be used to generate new hypothesis on gene-disease research,

which are candidates for experimental validation. In our experiments, even though

we were not able to find evidence of whether gene EREG is related to prostate can-

cer or not; the fact that all four centrality methods suggest this gene gives more

confidence to EREG-prostate cancer relation. We believe that EREG is a strong

candidate for prostate cancer gene research.

Our approach of building a disease-specific PPI network by literature mining (in-

cluding the interactions among the non-seed genes), and applying network centrality

measures achieved a higher proportion of non-seed (inferred) genes and a higher ac-

curacy of the inferred genes compared to the previous studies (Chen et al., 2006;

Gonzalez et al., 2007) (see Section 4.2). For example, with closeness centrality the

proportion of inferred genes is 90% and 72.22% of these inferred genes are correct;

with degree centrality the proportion of inferred genes is 75% and 93.33% of these

genes are correct.

4.5 Conclusion

We have presented a new approach to predict gene-disease associations based on

integrating text mining and network analysis. We collected an initial list of seed genes

known to be related to a disease and constructed a disease-specific gene interaction

network by extracting the interactions among the seed genes and their neighbors

automatically from the biomedical literature by using support vector machines with

dependency path edit kernel. Next, we used degree, eigenvector, closeness, and

betweenness centrality metrics to rank the genes in the network according to their

relevance to the disease. We hypothesized that the genes that are central in the
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constructed disease-specific network are likely to be associated with the disease.

We evaluated our approach for prostate cancer and showed that degree and eigen-

vector centrality metrics achieve highly accurate results (95% of the top 20 genes are

actually related to the disease), whereas closeness and betweenness centrality metrics

introduce genes that are currently unknown to be related to the disease. We were

able to extract genes, which are not marked as being related to prostate cancer by the

curated Prostate Gene DataBase (PGDB) even though there are recent articles that

confirm the association of these genes with the disease. The proposed approach can

be used to extract known gene-disease associations from the literature, as well as to

infer unknown gene-disease associations which are good candidates for experimental

analysis.



CHAPTER V

Literature-Based Discovery of Vaccine Mediated Gene
Interaction Networks

5.1 Introduction

In Chapter IV we introduced a literature-based discovery (LBD) method to infer

gene-disease associations, and demonstrated its effectiveness in identifying prostate

cancer related genes. In this chapter we present the general framework of this LBD

approach and adapt it to find genes that are important for vaccine development.

Figure 5.1 shows the general framework of the proposed LBD approach which inte-

grates literature mining with network centrality analysis. Given a concept of interest

and a set of known concept-related genes (seed genes), the goal is to predict novel

concept-related genes. First, a gene interaction network is built by automatically

extracting the interactions of the seed genes and their neighbors from the literature.

Then, network centrality metrics are used to rank the genes in the network. Our

underlying hypothesis is that the central genes in this concept-specific network of

interactions are also likely to be related to the concept.

In Chapter IV our concept of interest was “prostate cancer” and we started with

a set of 15 seed genes known to be associated with prostate cancer. We processed

a collection of 48245 full text articles from PubMed Central (PMC) Open Access1

1http://www.ncbi.nlm.nih.gov/pmc/about/openftlist.html

85
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Figure 5.1: General framework of the literature-based discovery approach.

to build the prostate cancer-specific gene interaction network. We were able to

identify genes that are not marked as being related to prostate cancer by the curated

OMIM (OMIM, 2007) or PGDB (Li et al., 2003) databases even though there are

recent articles that confirm their association to the disease.

In this chapter, our concept of interest is “vaccine”. To the best of our knowl-

edge, we present the first literature-based discovery study in the vaccine informatics

domain. We use only one gene, interferon gamma (synonyms: IFNG, IFN-γ), as

a seed gene and analyze all the abstracts indexed in PubMed2 (over 19 million) to

discover novel vaccine-related genes. We build two gene interaction networks by ex-

tracting the interactions of IFN-γ and its neighbors from abstracts in PubMed using

the method presented in Chapter II. The first network is the generic IFNG network,

which is the network of interactions of IFNG and its neighbors. The strategy used to

build the prostate cancer gene interaction network in Chapter IV is used to build this

network. The second network is the vaccine-specific subgraph of the first network
2http://www.ncbi.nlm.nih.gov/pubmed/
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(IFNG-vaccine network), which is built using only the interactions that are extracted

from vaccine relevant sentences. We use the concept term “vaccine” and its variants

to identify these sentence. Analysis and comparison of these two types of networks

using network centrality methods provides new insights and hypotheses worth future

investigations. The results support our hypothesis that the central genes in the two

IFN-γ networks are related to the functions of IFN-γ and part of the gene list are

important for vaccine development. Many predicted genes and gene networks are

good candidates for further IFN-γ and vaccine development studies.

We also investigate incorporating concept ontology support to our LBD method.

We create a third network by using terms from tthe Vaccine Ontology (VO)3 (He

et al., 2009) besides the concept term “vaccine” and its variants. This network

(IFNG-vaccine-VO network) is a sub-graph of the generic IFNG network and contains

the IFNG-vaccine network. Our results indicate that VO support facilitates the

literature-based discovery of vaccine-associated genes. This chapter is based on the

work published as (Özgür et al., 2010a, 2010b).

5.2 Biological Motivation

In 1965 Wheelock et al. first reported Interferon-gamma (IFN-γ)-like virus in-

hibitor, induced in supernatant fluid of cultures of fresh human leukocytes following

incubation with phytohemagglutinin (Billiau & Matthys, 2009). In early 1970s, IFN-

γ was further studied, and its name was eventually designated. IFN-γ is the only

type II IFN family member. It is secreted by activated immune cells - primarily T

and NK cells, but also B-cells, NKT cells and professional antigen presenting cells.

IFN-γ has been widely studied and found critical in anti-infectious host defense, in-

flammatory conditions, cancer, and auto-immune diseases (Billiau & Matthys, 2009;

3http://www.violinet.org/vaccineontology/
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Wieder et al., 2008). The most striking phenotype from mice lacking either IFN-γ or

its receptor has increased susceptibility to bacterial and viral pathogens (Schroder

et al., 2004). IFN-γ is also critical for tumor immuno-surveillance as assessed using

spontaneous, transplantable and chemical carcinogen-induced experimental tumors.

Additionally, IFN-γ is found important in leukocyte homing, cellular adhesion, im-

munoglobulin class switching, T helper cell polarity, antigen presentation, cell cy-

cle arrest and apoptosis, neutrophil trafficking and NK cell activation (Billiau &

Matthys, 2009; Gough et al., 2008; Takayanagi et al., 2005).

The induction of IFN-γ response is critical for successful development of vaccines

against various viruses and intracellular bacteria, for example, human immunode-

ficiency virus (HIV) (Streeck et al., 2009), Mycobacterium tuberculosis (Fletcher,

2007), Leishmania spp. (Mansueto et al., 2007), and Brucella spp. (He et al., 2001,

2002). The IFN-γ analysis is widely used for the quantification and characterization

of the HIV-specific CD8+ T cell responses (Streeck et al., 2009). It is a marker

used as a representative function of cytotoxic T cells to quantify the HIV-specific

cellular immune response. IFN-γ is required for protection against mycobacterial

infection (Wallis et al., 2009). M. tuberculosis-stimulated whole-blood production of

IFN-γ, although imperfect, is the best available correlate of protective immunity to

M. tuberculosis in humans (Fletcher, 2007). In humans, complete IFN-γR deficiency

is associated with frequent infection and ultimately death from the attenuated M.

tuberculosis BCG vaccine (Jouanguy et al., 1996). The inability to secrete IFN-γ or

the development of auto-antibodies neutralizing endogenous IFN-γ resulted in the

death of a patient by overwhelming mycobacterium infection (Doffinger et al., 2004).

Today IFN-γ is ranked as one of the most important endogenous regulators of

immune responses. Thousands of relevant papers have been published. However, a
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comprehensive understanding of how it works and what other factors it interacts with

is still largely unclear. Although IFN-γ is essential for protective immunity, animal

and human studies have found that IFN-γ alone is not sufficient for the prevention

of tuberculosis disease (Fletcher, 2007). Our goal is to analyze the network of IFN-

γ with other genes through literature mining and investigate what other genes or

gene interaction networks are needed to stimulate protective immunity. Since IFN-γ

is one of the most important immune factors and critical for vaccine development,

we hypothesized that genes central in the networks built around IFN-γ might be

important for vaccine development as well.

5.3 Methods

The details of the literature-based discovery approach to predict new concept-

related genes were presented in Chapter IV in the context of identifying gene-disase

associations. In this section, we summarize the main steps of applying this approach

to discover genes important for vaccine research (Figure 5.2).

5.3.1 Literature corpus

In Chapter IV we used 48, 245 full text articles from PubMed Central (PMC)

Open Access to extract the prostate cancer gene interaction network. In this chapter

we use all article abstracts available in PubMed to construct the literature-mined

IFN-γ gene interaction network. The sentences of the abstracts are obtained from

the BioNLP database in the National Center for Integrative Biomedical Informatics

(NCIBI)4, which were generated using the MxTerminator sentence boundary detec-

tion tool (Reynar & Ratnaparkhi, 1997).

We tagged the gene names using Genia Tagger (Tsuruoka et al., 2005) and nor-

4http://ncibi.org/
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PubMed Abstracts

Interaction Extraction
(Dependency Parsing and 

Machine Learning)

 IFNG and Vaccine
Related Genes
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Sentence Filtering
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Figure 5.2: Description of the literature-based discovery system for identifying IFN-γ and vaccine
related genes.
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malized them using the HUGO Gene Nomenclature Committee (HGNC) database5

(Wain et al., 2004). Each tagged gene name was unified with its corresponding

approved gene symbol6. In the HGNC database, the official gene symbol for the

IFN-γ gene is listed as IFNG, and the description is listed as “interferon, gamma”.

The database does not include any synonyms for the gene. However, IFN-γ is fre-

quently mentioned in text with the names “interferon-gamma”, “interferon gamma”,

“IFN-gamma”, and “IFNgamma”. Therefore, we included these names to the HGNC

dictionary as synonyms for IFN-γ.

5.3.2 Gene interaction extraction from the literature

To extract the IFN-γ (IFNG) gene-interaction network from the literature, we

used path edit kernel with SVM (see Chapter II), which is the same method that

we used to extract the prostate cancer gene interaction network in Chapter IV. The

system was trained by combining the AIMED and CB data sets.

Before classifying the sentences in the literature corpus as describing an interaction

between a gene pair or not, the potential interaction sentences were selected from

the abstracts in PubMed that have “human” in the MeSH heading. We extended

the list of interaction keywords described in Chapter IV to include 826 interaction

keywords such as binds, bound, interacts, activates, inhibits, and phosphorylates7.

Our assumption is that a sentence that describes an interaction between a pair of

genes should contain an interaction keyword and at least two distinct normalized

gene names. The sentences that do not meet this requirement were filtered out.

The IFNG gene-interaction network was built in two steps. In the first step,

the genes that interact with IFNG (i.e., the neighbors of IFNG) were extracted.

5http://www.genenames.org/index.html
6As of October, 2009 the database contains 28, 240 approved gene records
7The list of interaction keywords is available at: http://clair.si.umich.edu/clair/ifngnet/interaction keywords.txt
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The number of sentences that contain IFNG or one of its synonyms (case-insensitive

match) and are from abstracts that have “human” in the MeSH headings is 73, 024.

We filtered out those sentences that don’t have at least one interaction keyword and

at least two distinct normalized gene names, one of which is IFNG. As a result, 26, 876

sentences were analyzed with our interaction extraction module for identification of

the genes that interact with IFNG. The interaction extraction module extracted 1059

neighbors of IFNG.

In the second step, the interactions among the neighbors of IFNG were extracted.

There are over 9 million sentences that are from abstracts which have “human”

in the MeSH headings and contain at least one of the IFNG neighbors or their

synonyms. Out of these, the sentences for further processing by the interaction

extraction module are those that have at least one interaction keyword, and at least

two distinct normalized gene names, which were identified as neighbors of IFNG

in the first step. In total, 422, 566 sentences met these criteria and were further

processed by the interaction extraction module.

5.3.3 Network centrality analysis

We build the IFNG network by representing IFNG and its neighbors as nodes and

connecting two genes with an edge if we have extracted an interaction between them

from the literature. The gene names in the network are normalized and represented

with their official HGNC symbols. We also create a vaccine-specific subgraph of this

network, i.e., the IFNG-vaccine network. This network contains only the interactions

that have been extracted from sentences that contain the term “vaccin”, which is

the root form of the vaccine related terms such as vaccine, vaccines, vaccination, and

vaccinated. Therefore, the edges in this subgraph are all vaccine specific. Analysis

of this IFNG-vaccine network helps us understand the genes and interactions that
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play important roles in both the vaccine and IFNG network. We analyze the two

literature-mined IFNG interaction networks using the degree, eigenvector, between-

ness, and closeness centrality methods that were discussed in Chapter IV. Since

IFNG is one of the most important immune factors and critical for vaccine devel-

opment, we hypothesized that genes central in the generic IFNG and IFNG-vaccine

networks might be important for vaccine development. The results presented in the

next section support the hypothesis.

5.3.4 Gene annotation enrichment analysis

The web-based DAVID bioinformatics program was used to perform the gene

annotation enrichment analysis (Huang et al., 2009).

5.4 Comparison of the IFNG and IFNG-vaccine Networks

5.4.1 Topological properties of the networks

Our method detected 1060 nodes (genes including IFNG and its neighbors) linked

by 26, 313 edges (interactions) (Figure 5.3). Since all the genes in the IFNG network

are connected to IFNG, the diameter of the network is 2 and the average shortest path

length is 1.95. The clustering coefficient of the network is 0.4933, which is an order of

magnitude higher than the clustering coefficient of a random network with the same

number of nodes (0.0473). The IFNG network is a small-world network, characterized

by having a small average shortest path length and a clustering coefficient that is

significantly higher than that of a random network with the same number of nodes.

The IFNG network is a scale-free network with a power-law degree distribution,

where the exponent γ is 2.15. The graph of the IFNG network is shown in Figure 5.4.

The IFNG and vaccine-associated network (IFNG-vaccine network) is a much

smaller subset of the generic IFNG network. This small subnetwork contains 102
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Figure 5.3: Summary of the IFNG network and its vaccine-specific subnetwork

genes and 154 interactions (Figure 5.3). Since the IFNG-vaccine network is built by

removing the edges that are not associated with “vaccine” from the IFNG network,

some of the genes that were connected in the IFNG network are not connected in

the IFNG-vaccine network. Therefore, the IFNG-vaccine network contains 84 genes

that are interconnected and 18 genes that are separated from this largest connected

component of 84 genes (Figure 5.5). Also, the diameter of the IFNG-vaccine network

and the average shortest path length are larger than those of the IFNG network.

The diameter of the IFNG-vaccine network is 9 and the average shortest path length

is 3.55. The IFNG-vaccine network still possesses the small-world property with a

relatively small average shortest path length and a clustering coefficient (0.2218) that

is significantly higher than the clustering coefficient of a random network with the

same number of nodes (0.0388). The network is scale-free with a power-law degree

distribution with exponent 2.37. The small-world and scale-free characteristics of

the generic IFNG and the IFNG-vaccine networks are consistent with the topological

properties of the prostate cancer network presented in Chapter IV as well as with
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Figure 5.4: The graph of the generic IFNG network extracted from the literature. The network
consists of 1060 nodes (genes) and 26,313 edges (interactions). The purple nodes are
the genes that are central in both the generic and the IFNG-vaccine networks. The
green nodes are the genes that are central in only the generic IFNG network and the
red nodes are the genes that are central in only the IFNG-vaccine network. The rest of
the nodes are shown in yellow.
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previously studied biological networks (Jeong et al., 2001; Chen & Sharp, 2004;

Hoffmann & Valencia, 2005) and non-biological networks such as the Internet (Yook

et al., 2002) and social networks (Watts & Strogatz, 1998).

Figure 5.5: The graph of the IFNG-vaccine network extracted from the literature. The network
consists of 102 nodes (genes) and 154 edges (interactions). All the edges in the network
are associated with the term “vaccine” and its variants. The purple nodes are the genes
that are central in both the generic and the IFNG-vaccine networks. The red nodes
are the genes that are central only in the IFNG-vaccine network. The green nodes are
the genes that are central only in the generic IFNG network. The rest of the nodes are
shown in yellow.

5.4.2 Lists of genes are predicted and sorted by centrality analyses

All the genes in the two networks (generic IFNG network and IFNG-vaccine net-

work) are sorted based on centrality analyses. The files that list the rankings of all

the genes in the generic IFNG network and the genes in the IFNG-vaccine network

are available at the following URLs, respectively.
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• http://www.hindawi.com/journals/jbb/2010/426479.f2.pdf

• http://www.hindawi.com/journals/jbb/2010/426479.f3.pdf

IFNG is not included in these rankings, since it is trivially ranked highest by all the

centrality measures in both networks due to the fact that the networks are specific

to IFNG. The most central genes (the genes ranked among the top 25 by at least

one of the centrality measures) are analyzed in more detail in Table 5.1. These

genes (a total of 56 genes) are predicted to be associated with IFNG and relevant

for vaccine development. Literature evidence was manually curated for the IFNG

association (IFNG-Ref column in Table 5.1) and the vaccine development relatedness

(Vaccine-Ref column in Table 5.1) of these genes.

It is interesting that in the generic IFNG network, all centrality measures find

the same 23 genes among the top 25, although the ranking might change slightly

(Table 5.1). For example IL10 is ranked 5th by degree and closeness centralities, but

4th by eigenvector and betweenness centralities. Since all the genes in the generic

IFNG network are connected to IFNG, the distance (shortest path length) between

a pair of genes is at most two. In other words, the distance between a pair of genes

is one if they are directly connected to each other and it is two if they are not

directly connected to each other (i.e., they are connected through IFNG). Therefore,

in this network, the more genes a gene is connected to (higher degree centrality),

the less distant it is to the other genes (higher closeness centrality). So, the degree

and closeness centralities produce the same rankings for the generic IFNG network.

For the IFNG-vaccine network, the top 25 genes sorted based on centrality analyses

overlapped with the sorted results from the generic IFNG network.

Three different levels of prediction are available based on the comparison between

the generic IFNG network and the more specific IFNG-vaccine network:
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Generic IFNG Network IFNG-vaccine Network
Gene D E B C IFNG-Ref D E B C Vaccine-Ref
TNF 1 1 1 1 3132506 2 3 2 7 16446013
NFKB1 2 2 2 2 9888423 - 23 - - 16971487
IL6 3 3 3 3 1719090 3 4 7 3 10225849
IL8 4 5 6 4 8473010 10 13 10 9 11378044
IL10 5 4 4 5 8102388 6 8 11 2 10930151
IL4 6 6 5 6 2136895 4 2 4 4 8519092
MAPK1 7 9 9 7 15307176 - - - - 19428911
IL2 8 7 8 8 6429853 1 1 1 1 8459207
VEGFA * 9 10 10 9 12816689 - - - - 17502972
TP53 * 10 8 7 10 16391798 - - - - 18846387
BCL2 * 11 13 13 11 11064392 - - - - 19389797
AKT1 * 12 11 12 12 11135576 - - - - 19107122
MAPK8 13 14 14 13 18950753 - - 15 - 19428911
INS 14 12 11 14 8383325 - - - 16 19203100
MAPK14 15 15 18 15 10700460 - - - - 19428911
CSF2 16 18 17 16 11665752 7 6 6 6 19459853
FAS 17 17 16 17 10895367 - - - - 15979942
CCL2 18 19 19 18 9407497 - - - - 19833737
IFNA1 19 16 15 19 11449378 - - - 13 19667099
EGFR * 20 20 23 20 17362940 - - - - 19178753
JUND * 21 21 22 21 10070035 - - - - 19124729
KITLG * 22 24 - 22 7540064 - - - - -
CCL5 23 23 21 23 8921438 - 24 - - 15827150
CD4 24 22 20 24 15173593 9 5 3 12 17298856
EGF * 25 25 - 25 18160214 - - - - 16357522
CRP - - 24 - 10675363 - - - - 16395099
STAT3 * - - 25 - 7488223 - - - - -
IL5 - - - - 9432015 5 7 20 8 11138639
IL13 - - - - 12670721 8 9 5 5 12232042
IL7 - - - - 7594482 11 14 12 17 17496983
EIF2AK2 - - - - 11342638 12 10 8 - 19596385
CD28 - - - - 7634349 13 12 - - 12594842
HSPD1 - - - - 12407015 14 19 16 14 12218165
SILV - - - - 11839572 15 20 17 23 11459172
IL21 - - - - 14657853 16 17 - - 16785513
IL18 - - - - 8666798 17 - - 10 19467215
HBEGF - - - - 9062364 18 25 - 21 10729731
CD46 - - - - 15307176 19 11 9 - 11757799
CD40 - - - - 7554483 20 16 - - 11403919
PSG2 - - - - 2516715 21 - 22 - 11155821
GAD1 - - - - 9703171 22 - - 18 12421990
IL15 - - - - 9834271 23 - - 22 16785513
C3 - - - - 1337336 24 15 - - 19477524
PRF1 - - - - 19651871 25 22 19 - 15214037
ZAP70 - - - - 11034358 - 18 23 - -
CD40LG - - - - 10769003 - 21 18 - 11403919
GNLY - - - - 17382591 - - 13 19 10644038
PTPN11 - - - - 12270932 - - 14 - -
CD86 - - - - 9836505 - - 21 - 12594842
CCR5 - - - - 9616137 - - 24 - 16672545
HSPA4 - - - - 18442794 - - 25 - 11779704
TPBG - - - - 16630022 - - - 11 16630022
KLK3 - - - - 16000955 - - - 15 19171173
CD8A - - - - 1904117 - - - 20 18425263
CD80 - - - - 7537534 - - - 24 10498243
LTA - - - - 3102976 - - - 25 15908422

Table 5.1: Predicted 56 genes related to IFN-γ and vaccine networks. The genes that are ranked
among the top 25 by the centrality measures (D: Degree; E: Eigenvector; B: Betweenness;
C: Closeness) in the generic IFNG network or the IFNG-vaccine network. The genes are
represented with their official HGNC symbols. Literature evidences for the relatedness of
the genes to IFNG (IFNG- Ref) and to vaccine development (Vaccine-Ref) are manually
curated. “-” indicates that the gene is not ranked among the top 25 by the corresponding
centrality measure in the corresponding network or no literature evidence was found.
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(i) Genes ranked high in both networks

Thirteen genes were ranked among the top 25 in both networks by at least one of

the centrality measures. Among these 13 genes, 8 genes are central by all centrality

measures in both networks: TNF, IL6, IL8, IL10, IL4, IL2, CSF2, and CD4. These

genes are well studied in both generic IFNG research and vaccine specific research.

The ranking may change in both networks. For example, IL2 was ranked top 1 in

the IFNG-vaccine network, while it was ranked top 7-8 in the generic IFNG network

based on different centrality scores. This is probably due to the fact that the role of

IL2 in vaccine research has widely been recognized and studied in more depth in the

vaccine context.

Among the 13 genes in this group, five genes (NFKB1, MAPK8, INS, IFNA1,

and CCL5) were ranked high in the IFNG network by all measures but only high

in the IFNG-vaccine network by certain centrality measures. For example, MAPK8

(mitogen-activated protein kinase 8; Aliases: JNK, JNK1, SAPK1) was ranked high

by all centrality metrics in the IFNG network, whereas it was ranked high by only the

betweenness centrality metric in the IFNG-vaccine network (Table 5.1). The high

betweenness score was reflected by the fact that MAPK8 connects the two genes

(ZAP70 and MAPK1) to the rest of the network (Figure 5.5). In the generic IFNG

network, 322 other genes are directly connected to MAPK8 (Figure 5.6). Many of

these genes (e.g., NFKB1, IL4, and CD40) also exist in the IFNG-vaccine network

(Figure 5.5) although they do not directly interact with MAPK8. However, the

majority of these 322 genes (e.g., TLR4 and IL1B) are not in the IFNG-vaccine

network. It is reasonable to suggest that many of these genes that were found in

the IFNG-MAPK8 network (Figure 5.6) but not in the IFNG-vaccine network (Fig-

ure 5.5) may also be important for vaccine specific network through an interaction
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with MARK8. Therefore, the comparison between these two networks may lead to

hypothesis of new genes involved in vaccine specific immune network, some of which

deserve further experimental verifications.

Figure 5.6: Interactions of MAPK8 with other genes in the generic IFNG network (the IFNG-
MAPK8 network). MAPK8 is shown in purple. The two genes that MAPK8 also
interacts in the IFNG-vaccine network are shown in red.

(ii) Genes ranked high in the generic IFNG network but not in the IFNG-vaccine
network

In total 14 genes are included in this group. Nine out of these 14 genes were not

found in the IFNG-vaccine network. These genes are labeled with “*” in Table 5.1.

These genes have not been well studied in the vaccine context. However, since these
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genes are strongly associated with IFNG, it is likely that each of these genes may also

play an important role in vaccine-induced protective immune network. For example,

as one of the 14 genes, the serine/threonine kinase AKT1 is a key regulator of cell

proliferation and death. AKT1 regulates lymphocyte apoptosis and Th1 cytokine

propensity (Bommhardt et al., 2004). IFNG is a representative cytokine in Th1

response that is crucial for induction of vaccine-induced protection. Therefore, it is

reasonable to hypothesize that AKT1 plays an important role in regulated vaccine-

induced protective immune responses.

Among the 14 genes in this group, five genes (MAPK1, MAPK14, FAS, CCL2,

and CRP) were found in the IFNG-vaccine network but not ranked high based on

any centrality analysis. For example, FAS is a critical gene in regulation of pro-

grammed cell death through the FAS pathway. FAS (TNF receptor superfamily,

member 6; Aliases: CD95, APO-1) has been found to play an important role in pro-

moting an appropriate effector response following vaccinations against Helicobacter

pylori (Avitzur et al., 2005), hepatitis C virus (Langhans et al., 2005), and can-

cer (Shi et al., 2005). Since FAS is well studied and ranked top in the generic IFNG

network, more knowledge about its interactions with other genes shown form the

generic IFNG network provides valuable basis for further analysis of FAS-related,

vaccine-specific interaction network.

(iii) Genes ranked high in the IFNG-vaccine network but not in the generic IFNG
network

In total, 29 genes that were ranked among the top 25 in the IFNG-vaccine network

based on at least one of the centrality scores are not ranked among the top 25 in the

generic IFNG network (Table 5.1). These genes may be more vaccine-specific and

play relatively less important roles in many other IFNG-regulated immune systems



102

(e.g., cell cycle). It is also possible that some of these genes are very important

for other IFNG-related immune functions. In that case, the data for these genes

obtained from vaccine research may provide supportive results for expanded studies.

One important set of these 29 genes cover many interleukins including IL5, IL7,

IL13, IL15, IL18, and IL21. For example, interleukin-18 (IL18) is a newly discovered

cytokine with profound effects on T-cell activation. IL18 can possibly be used as a

strong vaccine adjuvant (Dinarello, 1999). The new knowledge obtained from IL18

in vaccine research may be applied to other IFNG-related immune systems.

5.4.3 Gene annotation enrichment shows various immune responses regulated by
IFN-γ

The 56 genes ranked among the top 25 by at least one of the centrality methods in

one or both networks were used for gene enrichment analysis using DAVID (Huang

et al., 2009). These genes were classified in various immune mechanisms such as

response to extracellular stimulus, lymphocyte activation, and regulation of apoptosis

(Table 5.2). These gene annotation enrichment results are correlated with current

knowledge about IFN-γ (Billiau & Matthys, 2009; Gough et al., 2008; Takayanagi

et al., 2005). It further demonstrates the capability of our literature-based discovery

approach in correctly extracting genes related to IFN-γ.

5.5 Vaccine Ontology Support

We were able to generate many new observations and hypotheses by compar-

ing the generic IFNG network and its vaccine-specific subnetwork (IFNG-vaccine).

It is possible to further improve the literature-based network discovery by apply-

ing biomedical ontologies. A biomedical ontology represents the consensus-based

controlled vocabularies of terms and relations which are logically formulated to pro-
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Category Term Count P-Value FDR
GOTERM BP ALL GO:0050896 ∼ response to stimulus 43 2.99E-22 5.71E-19
GOTERM BP ALL GO:0007154 ∼ cell communication 39 5.74E-13 1.10E-09
GOTERM BP ALL GO:0007165 ∼ signal transduction 35 9.70E-11 1.86E-07
GOTERM BP ALL GO:0006950 ∼ response to stress 29 7.14E-20 1.37E-16
GOTERM BP ALL GO:0030154 ∼ cell differentiation 28 6.94E-13 1.33E-09
GOTERM BP ALL GO:0006952 ∼ defense response 26 7.12E-23 1.36E-19
GOTERM BP ALL GO:0006955 ∼ immune response 26 8.88E-18 1.70E-14
GOTERM BP ALL GO:0008283 ∼ cell proliferation 23 9.37E-16 1.70E-12
GOTERM BP ALL GO:0008219 ∼ cell death 23 2.28E-15 4.46E-12
GOTERM BP ALL GO:0006915 ∼ apoptosis 22 9.38E-15 1.78E-11
GOTERM BP ALL GO:0007242 ∼ intracellular signaling cascade 19 4.85E-07 9.27E-04
GOTERM BP ALL GO:0001775 ∼ cell activation 18 5.86E-19 1.12E-15
GOTERM BP ALL GO:0006954 ∼ inflammatory response 17 8.26E-16 1.49E-12
GOTERM BP ALL GO:0046649 ∼ lymphocyte activation 14 1.77E-14 3.38E-11
GOTERM BP ALL GO:0006468 ∼ protein amino acid phosphorylation 14 2.60E-07 4.98E-04
GOTERM BP ALL GO:0006807 ∼ nitrogen compound metabolic process 13 4.47E-08 8.56E-05
GOTERM BP ALL GO:0042110 ∼ T cell activation 12 9.02E-14 1.73E-10
GOTERM BP ALL GO:0048534 ∼ hemopoietic or lymphoid organ development 12 4.57E-11 8.74E-08
GOTERM CC ALL GO:0005576 ∼ extracellular region 29 5.33E-18 8.27E-15
GOTERM MF ALL GO:0005125 ∼ cytokine activity 19 5.30E-21 9.51E-18
GOTERM MF ALL GO:0008083 ∼ growth factor activity 12 6.77E-12 1.21E-08
KEGG PATHWAY hsa04060: Cytokine-cytokine receptor interaction 23 7.90E-16 9.77E-13
KEGG PATHWAY hsa04620: Toll-like receptor signaling pathway 13 3.12E-10 3.91E-07
KEGG PATHWAY hsa04660: T cell receptor signaling pathway 12 2.04E-09 2.57E-06
KEGG PATHWAY hsa04630: Jak-STAT signaling pathway 11 2.99E-06 0.003745

Table 5.2: Gene annotation enrichment among top predicted genes in the generic IFNG and the
IFNG-vaccine networks.

mote intelligent information retrieval and modeling. The Vaccine Ontology (VO) is

a community-based ontology in the domain of vaccine and vaccination8 (He et al.,

2009). VO has classified a large number of existing vaccines in licensed use, on trial,

or in research. Each subclass in VO has an “is a” relationship with its parent class.

This ensures that all vaccine subclasses (e.g., BCG) can be included when a par-

ent class (e.g., “Mycobacterium tuberculosis vaccine” or “vaccine”) is searched in

literature mining. Currently, VO contains more than 400 vaccine names.

As discussed in the previous section the IFNG-vaccine subgraph of the generic

IFNG network contains only the interactions that have been extracted from sentences

that contain the term “vaccine” (or its variants like “vaccines”, “vaccination”, and

“vaccinated”). However, there are many vaccine-related sentences in the literature

where the term “vaccine” or its variants do not occur. Consider the sentence “These
8http://www.violinet.org/vaccineontology
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results suggest that the BCG-CWS induces TNF-alpha secretion from DC via TLR2

and TLR4 and that the secreted TNF-alpha induces the maturation of DC per se”

from (Tsuji et al., 2000). The term “vaccine” or its variants do not occur in the

sentence or in the abstract. However, this sentence is vaccine-related, since “BCG”

(Bacillus Calmette-Guerin) is a licensed tuberculosis vaccine. The “BCG” vaccine is

included in the VO.

In this section, we investigate whether incorporating the Vaccine Ontology to

our LBD system will enhance the literature-based discovery of IFN-γ and vaccine-

mediated gene interaction networks. We extended the IFNG-vaccine network by

including the interactions that have been extracted from sentences that contain one

of the vaccine names included in the VO. The vaccine names that contain the term

“vaccine” were filtered out, since this term is explicitly included in the query for se-

lecting the vaccine-related sentences. In total 197 vaccines, which are the leaf nodes

under the “vaccine” ontology hierarchy, were obtained from VO for this analysis. The

resulting network (IFNG-vaccine-VO) is a subgraph of the generic IFNG network. It

contains the small network (IFNG-vaccine) and also genes and interactions associated

with specific VO vaccine terms or their synonyms (e.g., tuberculosis vaccine BCG).

The three layers of IFNG-associated gene interaction networks are summarized in

Figure 5.7. The application of VO allows discovery of 38 more genes and 60 more in-

teractions (IFNG-vaccine-VO). These new genes and interactions were not identified

if only the term vaccine (or its variants) were used (IFNG-vaccine network). Our

results indicate VO significantly increases the retrieval of the IFNG-vaccine network.

Analyzing and comparing the vaccine-specific networks generated with or without

VO support provides new insights and hypotheses for future investigations.
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Figure 5.7: Three layers of IFNG-associated gene networks.

5.5.1 List of genes for vaccines or specific VO vaccine terms are predicted and sorted
by centrality analyses

Figure 5.7 provides the general numbers of the different IFNG networks. To make

more specific analysis, the most central genes (the genes ranked among the top 20

by at least one of the four centrality measures) are analyzed in more detail in Table

5.3. These genes (a total of 32 genes) are predicted to be associated with IFNG

and relevant for the general vaccine or specific vaccine term(s). Literature evidence

was manually curated for the vaccine development relatedness (Reference column in

Table 5.3) of these genes. Based on Table 5.3, three different levels of prediction are

available based on the comparison between the IFNG-vaccine network and the more

specific IFNG-vaccine-VO network.

(i) Genes ranked high in both networks

23 genes were ranked high in both the IFNG-vaccine and IFNG-vaccine-VO net-

works. It suggests that the roles of certain genes (e.g., IL6) in vaccine research have
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widely been recognized but studied in more depth in certain vaccines.

(ii) Genes ranked high in the IFNG-vaccine-VO network but not in the IFNG-vaccine
network

Six genes (marked with “*”) are included in this group, i.e., NFKB1, TLR2,

NCAM1, CXCL10, CD86, and CCL2. These genes are found in the IFNG-vaccine

network, but are not inferred as genes important for vaccine development, although

there exists supporting literature evidence (Table 5.3). Using the VO enabled the

identification of these vaccine-related genes.

(iii) Genes ranked high in the IFNG-vaccine-VO network but not found in the IFNG-
vaccine network

This group includes three genes (marked with “**”), i.e., TLR4, TP53, and

FCGR2B. These genes are not contained in the IFNG-vaccine network. Using the

VO enabled the discovery of these genes as belonging to the IFNG-vaccine mediated

gene interaction network and as genes important for vaccine research.

These gene lists provide new information to study vaccine-induced human gene

networks associated with IFNG. For example, Toll-like receptor-4 (TLR4) is an im-

portant cell receptor that participates in many immune responses against pathogen

infections. TLR4-active agents are often developed as vaccine adjuvants (Johnson,

2008). The finding of the presence of TLR4 in the IFNG-vaccine-VO network, but

absence from the IFNG-vaccine network is a demonstration that our ontology-based

method provides reasonable and useful information to better understand the vaccine-

associated immune networks.

5.5.2 The predicted IFNG-BCG network

As an example of specific study on a single vaccine, Bacillus Calmette-Guérin

(BCG) is a licensed tuberculosis vaccine to protect against infection of Mycobac-
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Gene Reference (PMID) Gene Reference (PMID)
IL2 8459207 CD40 11403919
TNF 16446013 CD28 12594842
IL10 10930151 C3 19477524
IL6 10225849 TLR4 ** 12874299
IL4 8519092 TP53 ** 10379742
CSF2 19459853 FCGR2B ** 12874345
IL8 11378044 HSPD1 12218165
IL5 11138639 CD46 11757799
NFKB1 * 16971487 NCAM1 * 16316416
IL13 12232042 CXCL10 * 10799249
CD4 17298856 CD86 * 12594842
TLR2 * 12874299 IFNA1 19667099
IL7 17496983 CCL2 * 19833737
IL18 19467215 TPBG 16630022
EIF2AK2 19596385 GNLY 10644038
CD40LG 11403919 CD8A 18425263

Table 5.3: Predicted 32 genes related to IFN-γ and vaccine networks. These genes were ranked
among the top 20 by at least one of the centrality measures in the literature-mined IFN-
γ and vaccine network using VO (i.e. IFNG-vaccine-VO network). Genes marked with
“*” were not ranked high in the IFNG-vaccine network built without using the VO (i.e.
IFNG-vaccine network). Genes marked with “**” were not found in the IFNG-vaccine
network. The PubMed PMIDs are listed to confirm the associations.

terium tuberculosis. In many cases, the term “BCG”, instead of the term “vaccine”

(or its variants), is used in sentences when talking about interaction with some other

gene(s). Therefore, the sentence-based NLP text mining approaches won’t retrieve

those sentences with “BCG” when we only use the term “vaccine” for text retrieval.

We used the “BCG” term and all its synonyms in VO to extract the network of

interactions related to the BCG vaccine. The resulting network consists of 56 genes

and 77 interactions (Figure 5.8). In total, 24 of these genes (colored with purple

in Figure 5.8) were not found in the IFNG-vaccine network, which was constructed

without using the “BCG” term in the VO.

The interactions between BCG treatment, TLR2 and TLR4 are interesting. BCG

is able to activate TLR2 and TLR4 (PMID: 12874299). It induces the maturation

of dendritic cells (DCs) via both TLR2 and TLR4 (PMID: 12630564), as well as the

transcription and secretion of the chemokine CXCL8, by signalling through TLR2
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Figure 5.8: The IFNG-BCG network. All edges represent gene-gene interactions that are associated
with the BCG vaccine. In total 24 new genes (colored with purple) are found by using
the term BCG contained in the VO.
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and TLR4 (PMID: 15760459). It can also induce TNF-alpha secretion from DC via

TLR2 and TLR4 (PMID: 11083809).

As examples of more BCG-induced gene interactions, our system identified TN-

FSF10 (synonym: TRAIL) and TLR2 that are associated with BCG treatment (Fig.

2). It was reported that BCG can directly stimulate the release of tumor necrosis fac-

tor (TNF)-related apoptosis-inducing ligand (TRAIL, a synonym for TNFSF10) from

polymorphonuclear leukocytes (PMN) through toll-like receptor-2 (TLR2) recogni-

tion that is augmented by IFNG (PMID: 18593617). BCG treatment on PMN trig-

gers the induction of FCGR2B (synonym: CD32) (PMID: 12874345). BCG treat-

ment also induces urinary IFNG, IP-10, TNF-alpha, and vascular endothelial growth

factor (VEGF) (PMID: 10799249).

It is possible to generate new hypotheses by comparing the three layers of IFNG

networks. For example, those new genes and interactions induced by BCG treatment

may be possibly inferred to other vaccines (e.g., vaccines for intracellular pathogens

such as Influenza vaccines or Brucella vaccines). Those genes and networks in the

general IFNG or IFNG-vaccine network may provide new genes and interactions for

inferring future BCG mechanism research.

5.6 Conclusion

In Chapter IV we proposed a centrality-based LBD approach to identify gene-

disease associations and demonstrated that it is effective in discovering prostate

cancer related genes, using 48, 245 articles from PubMed Central (PMC) Open Access

and 15 seed genes. In this chapter, we presented the general framework of the LBD

method and showed that it can be generalized and used in different applications. We

applied the LBD method to generate new hypotheses for IFNG and vaccine research
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by using all abstracts in PubMed and only one gene (IFNG) as the seed gene.

Our analysis discovered a large number of genes that interact with IFNG and

genes important for both IFNG and vaccine. Many of these genes have been studied

but never been collected for systematic network analysis. Current databases contain

limited information about IFNG gene interaction network. The Michigan Molecular

Interactions (MiMI) database is a repository that includes interaction data from over

10 databases such as the Database of Interacting Proteins (DIP), the Human Protein

Reference Database (HPRD), and the Biomolecular Interaction Network Database

(BIND) (Tarcea et al., 2009). As of October 2009, MiMI contains only 12 genes

that interact with IFNG and 27 interactions among these genes. Our IFNG gene

interaction network contains more than 80 fold of genes that interact with IFNG.

While the correctness of all these interactions require further confirmation, our man-

ual confirmation of selected 56 interactions (Table 5.1) has already demonstrated

the power of our literature-based discovery method. Since IFNG is an important im-

mune regulator for vaccine-induced protective immunity, the systematical analysis

of vaccine-induced IFNG-regulated gene network is critical to understand vaccine-

induced immune mechanism and support rational vaccine design. Our selective anal-

yses of the IFNG-vaccine subnetwork showed that genes potentially important for

vaccine research can be predicted. Many predicted genes and gene networks deserve

further experimental verifications.

We also investigated extending the centrality-based LBD approach by incorpo-

rating Vaccine Ontology (VO) support. Our study indicates that the application of

VO significantly increases the discovery of IFNG and vaccine associated networks,

leading to our finding of new genes and interactions that could not be found before.



CHAPTER VI

Conclusion

6.1 Summary of Contributions

Scientific publications are the main media through which researchers report their

new findings. The huge amount and the continuing exponential growth of the number

of published articles in biomedicine, has made it particularly difficult for researchers

to access and utilize the knowledge contained in them. We had two main goals

in this thesis: (i) develop methods to automatically extract biologically important

information from published articles; (ii) use the information automatically extracted

from the biomedical scientific literature to infer new knowledge (i.e., generate new

scientific hypotheses). This chapter summarizes our main contributions and describes

future directions for research. Chapters II and III target our first goal and contribute

mainly to the areas of natural language processing (NLP) and information extraction

(IE). Chapters IV and V address our second goal. While the main contributions of

these chapters are in the area of literature-based discovery (LBD), the generated new

hypotheses are contributions to the biomedical sciences.

In Chapter II we introduced a relation extraction method to identify protein-

protein interactions in text. We proposed two kernel functions, i.e., path cosine

kernel and path edit kernel, based on the paths between protein names in the de-

111
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pendency parse trees of the sentences. Using these kernel functions we evaluated the

performances of two classes of learning algorithms, Support Vector Machines (SVMs)

and k-nearest-neighbor (kNN), and their semi-supervised counterparts, transductive

SVMs (TSVM) and harmonic functions. We achieved significant improvement in

protein-protein interaction extraction performance compared to results previously

reported in the literature. To our knowledge, we presented the first effort of utilizing

semi-supervised learning in this domain. We showed that semi-supervised algorithms

perform better than their supervised versions by a wide margin when the amount

of labeled data is limited. Harmonic functions achieve the best performance in such

cases. When there is sufficient amount of labeled data, TSVM and SVM perform

similarly to each other, and outperform kNN and harmonic functions. Unlike path

cosine kernel, path edit kernel takes into account not only the common words on

the dependency paths, but also the sequence of the words on the paths. Our re-

sults show that path edit kernel performs better than path cosine kernel in this

domain. Chapters IV and V demonstrate the effectiveness of SVM with path edit

kernel as a component of an LBD system for new hypothesis generation. We also

used SVM with path edit kernel to contribute to the BioCreaive Meta-Server project

by identifying abstracts that contain protein interaction information (Leitner et al.,

2008)1. Another way that automatically extracted protein interactions can be used

is to populate protein interaction databases. Our machine learning based approach

achieved state-of-the-art F-measure performance for protein interaction extraction.

However, in general, protein interaction databases favor high precision over high

recall for higher user satisfaction. We developed a high-precision dependency tree

rule-based interaction extraction system (GIN-IE). This system, which we describe in

1http://bcms.bioinfo.cnio.es/
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the Appendix, has been integrated with the Michigan Molecular Interactions (MiMI)

database2 and made available to the end users (Tarcea et al., 2009).

Extracting protein-protein interactions from text is an active research area. Sev-

eral new methods have been proposed (e.g. (Airola et al., 2008; Miwa et al., 2009;

Wang, 2008)) after the work in Chapter II was published (Erkan, Özgür, & Radev,

2007a, 2007b). A recent study by Tikk et al. (2010) evaluates nine recent kernel

methods for protein interaction extraction, including the path cosine kernel and the

path edit kernel presented in Chapter II. The performances of our kernels are com-

parable to the current state-of-the-art dependency tree based kernel methods such as

all-paths graph kernel (Airola et al., 2008) and k-band shortest path spectrum kernel

(Tikk et al., 2010), and are better compared to syntactic parse tree based kernels

such as subtree kernel (Vishwanathan & Smola, 2003), subset tree kernel (Collins &

Duffy, 2001), and partial tree kernel (Moschitti, 2006).

Researchers often use speculative language in scientific articles when they are

not certain about the statements that they make. It is important to distinguish

factual information from speculative information. Previous studies on speculation

detection approach the problem as a sentence classification task. In other words,

sentences are classified as speculative or not. However, there are many sentences

that contain both speculative and factual parts. In Chapter III, which was first

published as (Özgür & Radev, 2009), we present one of the first efforts for identifying

speculative fragments of sentences. A machine learning based method for detecting

speculative sentence portions was independently proposed by (Morante & Daelemans,

2009). We approached the task in two steps, identifying speculation keywords and

resolving their scopes. We used supervised classification to identify the speculation

2http://mimi.ncibi.org/
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keywords. We introduced several linguistic features representing the contexts of

the keywords and evaluated them using SVM with linear kernel. Our speculation

keyword identification results (Abstracts: 91.69% F-measure, Full text: 82.58% F-

measure) are close to the upper bound of human inter-annotator agreement scores for

the BioScope corpus (Vincze et al., 2008). The best results were obtained by using all

the features that we proposed: keyword-specific features (i.e., keyword, part of speech

tag, stem), co-occurring keywords in the sentence, surrounding words with window

size of one, positional features of the sentence in the article, and dependency tree

relation features. To determine the scopes of the speculation keywords, we developed

a rule-based system that exploits the syntactic structures of the sentences. This

system achieved a significantly better performance (Abstracts: 79.89.% Accuracy,

Full text: 61.13% Accuracy) compared to the baseline methods. Especially, the

considerably lower performance of the baseline method that assigns the scope of a

keyword to the whole sentence, emphasizes the importance of detecting speculative

portions of the sentences. The fact that our scope resolution results are lower than

the upper bound of human inter-annotator agreement, suggests that there is still

room for improvement.

In Chapter IV we proposed a literature-based discovery (LBD) approach for iden-

tifying gene-disease associations. Most previous LBD systems are based on Swanson’s

ABC model and make use of the co-occurrence statistics among the entities. The

novelty of our approach is that it integrates natural language processing (NLP) with

network analysis to infer new relationships among entities. Given a concept of inter-

est, we start with a set of one or more genes known to be related to the concept. We

build a concept-specific gene interaction network by extracting the interactions of

the concept-related genes from the biomedical literature using the path edit kernel
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introduced in Chapter II with SVM. We analyze the constructed literature-mined

network using network centrality methods. Our hypothesis is that genes central in

the concept-specific network are also likely to be related to the concept. We showed

that our approach is effective in identifying prostate cancer related genes. We were

able to find genes which are not marked as being relayed to prostate cancer by the

curated databases such as OMIM and PGDB, but there are recent articles in the

literature that provide evidence for the relatedness of these genes to the disease. Our

study also identified several genes which are currently not know to be related to

prostate cancer, but are good candidates for further experimental studies, since they

are found to be important in the prostate cancer specific network. Predicting good

candidate genes is particularly important, given that wet lab experiments are costly

and time consuming.

In Chapter V we showed that the LBD method proposed in Chapter IV to predict

gene-disease associations can be generalized and applied to other problems. We

adapted the approach to discover genes important for vaccine development starting

with a single known vaccine-related gene, i.e., the interferon-gamma gene (IFNG).

We analyzed all the article abstracts available in PubMed and reported the first high-

throughput literature mining of human interferon-gamma and vaccine-mediated gene

interaction networks. We created three different literature-mined networks. The first

one is the generic IFNG network. The other two are its vaccine-specific sub-networks.

The first vaccine-specific network is built by selecting the sentences that contain the

concept term “vaccine”. The second network extends the first one by including the

terms in the Vaccine Ontology (VO) to the sentence selection process. Comparative

analysis of these three layers of networks from graph centrality perspective led to the

generation of several hypotheses. The evidences provided from the literature suggest
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that many of the predicted genes are good candidates for further IFNG and vaccine

development studies. Our results also showed that incorporating VO support to

the LBD method enhanced the retrieval of IFNG and vaccine associated genes and

provided new insights and hypotheses for future investigations.

In this thesis we focused on natural language processing and text mining in the

biomedical domain. We designed and evaluated the proposed techniques for problems

in biomedicine. However, it is important to note that, except for gene name identi-

fication, we did not use any tools that were specifically designed for the biomedical

domain. Although verifying their success requires further investigations, the methods

that we proposed here can be potentially applied to other domains. The relation ex-

traction method that we introduced for protein interaction extraction in Chapter II,

can be applied to extract pairwise relationships between other types of entities, e.g.,

employee-organization relationships. The characteristics of speculative language can

differ across domains. However, given annotated training data the speculation de-

tection method proposed in Chapter III can be trained for other domains. The scope

resolution component is a rule-based system. However, the rules do not depend on

the specific speculation keywords, but are based on the part of speech tags of the

keywords. Therefore, in principle they can be generalized to other domains. In the

LBD approach that we introduced in Chapters IV and V, we used genes as our enti-

ties and diseases or vaccines as our concepts of interest. The approach can be applied

to problems in other domains with different types of entities and concepts. For ex-

ample, we can start with a set of people who are known to be influential in a certain

scientific field and build a co-authorship network around them. Identifying the most

central people in this graph, can enable the detection of overlooked researchers who

have implicitly influenced the development of the field.
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6.2 Future Directions

Most information extraction systems including the methods that are proposed in

this thesis operate on a sentence basis, neglecting the wider context information.

Some types of information are not always found in the sentence, but need to be

extracted non-locally from the entire document. For example, none of the sentences

in the abstract in Figure 1.5 contain information regarding the species of the proteins

and the experimental methods used to identify the interactions. However, the full

text of the paper describes the experiments that were performed (e.g. yeast two

hybrid, immunoprecipitation, and immunofluorescence microscopy) and the species

studied (e.g. human) (Sato et al., 2005). Developing strategies to address this

problem using global features from the entire article, considering not only the text but

also the figures, tables, their legends, and the citation information is an interesting

future direction for research.

In Chapters IV and V, even with a simple network design, where the nodes are

the proteins/genes and the edges represent undirected and unweighted relationships

among them, we were able to discover novel genes related to prostate cancer, and

novel genes important for vaccine development. A possible avenue of research is

enriching the network of interactions by including context information such as in-

teraction type and causality (directionality), and developing new network analysis

strategies to predict unknown relationships from such enriched networks. Another di-

rection of research is to develop knowledge discovery methods based on integrating in-

formation extracted from the literature with data from various other available hetero-

geneous sources such as experimental results and manually curated databases. There

are several different experimental techniques that can be used to detect an interac-
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tion between a protein pair, as well as several different manually curated databases,

and various journals and conference proceedings. Each experimental method is asso-

ciated with different error rates and confidence levels. Similarly, different databases,

journals, and conference proceedings are associated with different quality and relia-

bility values. Weighting the edges in the network based on the confidence, quality,

and reliability of the source from which the interaction was obtained, can lead to in-

ferences of higher quality. In addition, analyzing such large-scale enriched networks

can enable the identification of contradictory and anomalous knowledge.
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APPENDIX A

GIN-IE: A System for Extracting High Precision Gene
Interactions using Dependency Tree Rules

A.1 Introduction

GIN-IE (Gene Interaction - Information Extraction) is a system that is developed

with the goal of making the literature-mined bio-molecular interactions accessible

and useful to the end users. While in general the state-of-the-art machine learning

based approaches for interaction extraction achieve more balanced precision-recall

performances, rule-based methods achieve higher precision in the expense of recall.

High precision is an important requirement for most real-life applications. Therefore,

a dependency tree rule-based approach for extracting protein/gene interactions with

high precision is developed and integrated with the MiMI database1 (Tarcea et al.,

2009). The integration of GIN-IE with MiMI is a joint work with the National Center

for Integrative Biomedical Informatics (NCIBI)2.

Most previous approaches on protein interaction extraction focus on extracting

that “there is an interaction” between a pair of proteins. Consider the sentence

“ZIPK phosphorylated STAT3 on serine 727 (Ser727) and enhanced STAT3 tran-

scriptional activity.” from the abstract in Figure 1.5. Besides the fact that there is

1http://mimi.ncibi.org/
2http://ncibi.org/



121

an interaction relationship between ZIPK and STAT3, the facts that the relation-

ship type is phosphorylation, and that the directionality is from ZIPK to STAT3 (i.e.

ZIPK phosphorylated STAT3, not the other way around), are also very important

for biomedical scientists. GIN-IE extracts not only the interacting protein pairs, but

also the types and directionalities of the interactions between them. GIN-IE has also

rules to detect negations and speculations.

A.2 System Description

A.2.1 Data

GIN-IE is integrated with the daily processing and updates pipeline of the BioNLP

database in NCIBI. This database stores parsed and tagged text from NLM’s PubMed

literature database. GIN-IE obtains the sentences, tagged gene names, dependency

parse trees, and word stems from NCIBI’s BioNLP database, processes these data

for protein interactions, and stores the results back in the same database.

The GIN-IE pipeline has also been adjusted to process the full text articles in

NCIBI’s Pubmed Central (PMCOA) database.

A.2.2 Dependency Tree Rules for Protein Interaction Extraction

The dependency parse trees in NCIBI’s BioNLP database were obtained using the

Stanford Parser3 (de Marneffe et al., 2006). We examined the dependency trees of

various sentences to define high precision protein interaction extraction rules. The

rules that we defined are based on, first identifying the interaction keywords in the

sentences and then, inferring the protein pair that are related with that interaction

keyword. The interaction keywords are identified by matching all the words in the

sentence against a list of predefined interaction keywords. Matching is done using

the stemmed words. The matched keywords are further mapped to interaction types
3http://nlp.stanford.edu/software/lex-parser.shtml
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using an interaction ontology developed collaboratively in NCIBI. For example, if

the matched keyword is “inhibit”, the mapped interaction type is “negative regu-

lation”. Some of the interaction types are directional, while others are symmetric.

For example, “binding” is symmetric. If “A binds to B”, “B binds to A” as well.

On the other hand, “phosphorylation” is directional. “Phosphorylation of A by B”,

does not imply that “A phosphorylates B”. This section describes the different rules

that we extracted. GIN-IE’s implementation allows new rules to be added easily.

Rule 1:

Rule 1 is applied as follows. There is an interaction between two proteins, if they

are the children of an interaction keyword, and the dependency type between the

interaction keyword and one of the children is “nsubj”, while the dependency type

between the interaction keyword and the other child is “dobj”. An example sentence

and the portion of its dependency parse tree that triggers this rule is shown below.

Sentence:
‘‘Recombinant Sin3A bound Ebp1 directly, but recombinant HDAC2
failed to bind Ebp1.”

Portion of the dependency parse tree:
nsubj(bound-3, Sin3A-2)
dobj(bound-3, Ebp1-4)

Extracted Interaction:
Agent: Sin3A
Target: Ebp1
Interaction word: bound

Rule 2:

Rule 2 captures interactions expressed in passive voice. It is applied as follows.

There is an interaction between two proteins, if they are the children of an interaction

keyword, and the dependency type between the interaction keyword and one of the

children is “nsubjpass”, while the dependency type between the interaction keyword



123

and the other child is “agent”. An example sentence, the portion of its dependency

parse tree that triggers this rule, and the extracted interaction are shown below.

Sentence:
‘‘Such a notion is supported by the findings that phosphorylation of pp32
by p56lck correlated with expression of the CD45 molecules and that in
vitro phosphorylated pp32 was completely dephosphorylated by purified
CD45.”

Portion of the dependency parse tree:
nsubjpass(dephosphorylated-30, pp32-27)
agent(dephosphorylated-30, CD45-33)

Extracted Interaction:
Agent: CD45
Target: Ebp1
Interaction word: dephosphorylated

Rule 3:

Rule 3 is applied as follows. There is an interaction between two proteins, if they

are the children of an interaction keyword, and the dependency type between the

interaction keyword and one of the children is “nsubj”, while the dependency type

between the interaction keyword and the other child is “prep with”. An example

sentence, the portion of its dependency parse tree that triggers this rule, and the

extracted interaction are shown below.

Sentence:
‘‘Taken together, these results indicate that the Ras-interacting region on
AF-6 is structurally similar to that on Raf-1 and on RalGDS and that AF-6
interacts with activated Ras and ZO-1 in vivo. ”

Portion of the dependency parse tree:
nsubj(interacts-26, AF-6-25)
prep with(interacts-26, Ras-29)

Extracted Interaction:
Agent: AF-6
Target: Ras
Interaction word: interacts
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Rule 4:

Rule 4 is applied as follows. There is an interaction between two proteins, if

they are the children of an interaction keyword, and the dependency type between

the interaction keyword and one of the children is “prep of”, while the dependency

type between the interaction keyword and the other child is “prep by”. An example

sentence, the portion of its dependency parse tree that triggers this rule, and the

extracted interaction are shown below.

Sentence:
‘‘The activation of PKBbeta and PKBgamma by PDK1 was accompanied by
the phosphorylation of the residues equivalent to Thr308 in PKBalpha,
namely Thr309 (PKBbeta) and Thr305 (PKBgamma). ”

Portion of the dependency parse tree:
prep of(activation-2, PKBbeta-4)
prep by(activation-2, PDK1-8)

Extracted Interaction:
Agent: PDK1
Target: PKBbeta
Interaction word: activation

Rule 5:

Rule 5 is applied as follows. There is an interaction between two proteins, if one

of them is a child of an interaction keyword, and the dependency type between the

interaction keyword and that child is “prep between”, while the other protein is a

child of the first protein and the dependency type between them is “conj and”. An

example sentence, the portion of its dependency parse tree that triggers this rule,

and the extracted interaction are shown below.
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Sentence:
‘‘The interaction between Shank2 and NHE3 was further confirmed
by immunoprecipitation and surface plasmon resonance studies.”

Portion of the dependency parse tree:
prep between(interaction-2, Shank2-4)
conj and(Shank2-4, NHE3-6)

Extracted Interaction:
Agent: Shank2
Target: NHE3-6
Interaction word: interaction

Rule 6:

Rule 6 is applied as follows. There is an interaction between two proteins, if they

are the children of an interaction keyword, and the dependency type between the

interaction keyword and one of the children is “prep of”, while the dependency type

between the interaction keyword and the other child is “prep with”. An example

sentence, the portion of its dependency parse tree that triggers this rule, and the

extracted interaction are shown below.

Sentence:
‘‘Interactions of RPB2, ERH, NDR1 and PRMT5 with FCP1
were confirmed by co-immunoprecipitation or in vitro pull-down assays.”

Portion of the dependency parse tree:
prep of(interactions-1, RPB2-3)
prep with(interactions-1, FCP1-9)

Extracted Interaction:
Agent: FCP1
Target: RPB2
Interaction word: interactions

Rule 7:

Rule 7 is applied as follows. There is an interaction between two proteins, if

they are the children of an interaction keyword, and the dependency type between

the interaction keyword and one of the children is “nsubj”, while the dependency

type between the interaction keyword and the other child is “prep to”. An example
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sentence, the portion of its dependency parse tree that triggers this rule, and the

extracted interaction are shown below.

Sentence:
‘‘These results suggest a model in which p53 binds to TBP and interferes
with transcriptional initiation.”

Portion of the dependency parse tree:
nsubj(binds-9, p53-8)
prep to(binds-9, TBP-11)

Extracted Interaction:
Agent: p53
Target: TBP
Interaction word: binds

Rule 8:

Rule 8 is applied as follows. There is an interaction between two proteins, if one

of them is a child of an interaction keyword, and the dependency type between the

interaction keyword and that child is “prep of”, while the other protein is a child of

the first protein and the dependency type between them is “prep with”. An example

sentence, the portion of its dependency parse tree that triggers this rule, and the

extracted interaction are shown below.

Sentence:
‘‘The interaction of Ngb with flotillin-1 was confirmed by glutathione S-transferase
pull-down experiments.”

Portion of the dependency parse tree:
prep of(interaction-2, Ngb-4)
prep with(Ngb-4, flotillin-1-6)

Extracted Interaction:
Agent: flotillin-1
Target: Ngb
Interaction word: interaction
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A.2.3 Dependency Tree Simplification

The rules described in the previous section, were implemented by extracting and

analyzing the dependency tree paths from the interaction keywords to the protein

names in the sentences. If the interaction keyword and/or the protein names consist

of multiple tokens. The shortest path between the tokens is used.

Consider the sentence “These results demonstrate that Duplin inhibits not only

Tcf-4 but also STAT3.”, whose dependency tree is shown in Figure A.1.

Figure A.1: The dependency tree of the sentence “These results demonstrate that Duplin inhibits
not only Tcf-4 but also STAT3.” The proteins are shown in red and the interaction
keyword is circled.

The sentence describes two interactions:

• Interaction 1:

– Type: Negative regulation

– Interaction keyword: inhibits

– Agent: Duplin

– Target: Tcf-4
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• Interaction 2:

– Type: Negative regulation

– Interaction keyword: inhibits

– Agent: Duplin

– Target: STAT3

The first interaction is captured by Rule 1. The dependency tree path from the

interaction keyword “inhibits” to “Duplin” is “nsubj” (noun subject), which encodes

that “Duplin” is the agent of the interaction signaled by the keyword “inhibits”. Sim-

ilarly, the dependency tree path, “dobj” (direct object), from “inhibits” to “Tcf-4”,

encodes the information that “Tcf-4” is the target of the interaction. However, Rule

1 fails to detect the second interaction. The dependency tree path from “inhibits”

to the target of the second interaction “STAT3” is “dobj Tcf-4 conj and”. The main

information that “STAT3” is a target of the interaction signaled by “inhinits” is

encoded by the dependency type “dobj” on the path. “Tcf-4” and “conj and” on

the path don’t modify the role of “STAT3”. The words such as Tcf-4 on the path

might result in over-fitting and poor generalization. Another observation is that

dependency relations on the path such as conjunctions, abbreviations, determiners,

numbers, and appositives generally don’t modify the meaning for the relation, so

can be eliminated for better generalization. For example, removing “Tcf-4” and

“conj and” from the path from “inhibits” to “STAT3”, wouldn’t change the seman-

tics of the information encoded by the path for the second interaction. In addition,

better generalization is achieved since, the targets of both interactions are now rep-

resented with the same dependency path “dobj”. We implemented dependency tree

simplification in GIN-IE, which resulted in higher recall with no loss in precision.
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A.2.4 Negation and Speculation Detection

GIN-IE contains rules to detect negations and speculations. The dependency

parse trees of the sentences are used to detect negations with “not” and “no”. An

extracted interaction is negated if one of the following dependency tree patterns are

matched.

• The interaction keyword has a child connected to it with a dependency type

“neg” (negation).

• The interaction keyword has a child “no” connected to it with a dependency

type “det” (determiner).

Besides the dependency tree rules for negation, GIN-IE contains additional sen-

tence pattern matching rules to detect negations with “fail to”, “neither nor”, and

“lack of”.

Speculative sentences are identified matching a set of manually derived speculation

keywords including suggest, likely, may, putative, hypothesis, probable, speculate,

investigate, examine, explore, and might. As future work, we will integrate the

method proposed in Chapter III for detecting speculative sentence fragments to GIN-

IE.

A.2.5 Evaluation

The MiMI database contains interactions integrated from several manually cu-

rated protein interaction databases. Some of these interactions are associated with

the PubMed ID’s of the articles from where they were curated. To compile a protein

interaction data set, we used the abstracts of the articles for which there is an inter-

action reported in MiMI. 200 sentences that contain protein pairs that are reported

as interacting in MiMI were randomly selected and manually annotated for inter-
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actions. The annotation includes the interacting protein pair, interaction keyword,

and directionality. 100 sentences were used for training and the remaining 100 were

used to test. The training and test sets contain 114 and 90 interactions, respectively.

The performance results of GIN-IE over the test set are shown in Table A.1.

Dependency tree simplification improves not only recall, but also precision.

Dependency Tree Simplification Precision Recall F-Measure
No 0.92 0.14 0.25
Yes 0.95 0.22 0.36

Table A.1: GIN-IE results over the test set.

A.3 Availability

The interactions extracted by GIN-IE are accessible through the MiMI Web in-

terface (http://mimi.ncibi.org/). Currently the are over 30, 000 interactions in MiMI

that were extracted by GIN-IE. Figure A.2 shows the screen shot from MiMI Web

displaying the GIN-IE extracted interactions of the TP53 protein. The interacting

protein pair, the sentence from where the interaction was extracted, together with a

link to the corresponding abstract in PubMed are shown. Including the interaction

type to MiMI is ongoing work.

GIN-IE is run on a daily basis, together with the NCIBI BioNLP database to

extract the most recent interactions in PubMed. The new interactions are published

as an RSS feed (http://gin.ncibi.org/rss/gin-ie/interactions.rss).

The GIN-IE source code is included to Clairlib (http://www.clairlib.org/), which

is an open source library of Perl modules to simplify generic tasks in natural language

processing, information retrieval, and network analysis.
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Figure A.2: Screen shot from MiMI Web showing the interactions of the TP53 protein extracted
by GIN-IE.
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APPENDIX B

GIN-NA: A system for Gene Network Analysis

B.1 System Description

GIN-NA (Gene Interaction - Network Analysis) is a system for analysing molecule

interaction networks. The interaction networks are retrieved from the MiMI database,

which integrates protein interactions from diverse biological data sources. Analysis of

two types of networks are performed, namely molecule-specific networks and disease-

specific networks. Molecule-specific networks are the networks of interactions in the

neighborhood of a molecule or a list of molecules. Besides the general network statis-

tics such as average degree, power-law degree distribution, clustering coefficient, and

shortest path statistics, GIN-NA ranks the molecules in the network based on graph

centrality measures and second neighbor statistics. Network statistics and network

centrality scores are computed using Clairlib (http://www.clairlib.org/). Disease-

specific networks are built by compiling lists of known disease genes and retrieving

the interactions among these genes and their neighborhood. We hypothesize that the

genes central in the disease-specific gene interaction network are likely to be related

to the disease and rank the genes based on their centrality scores. Currently, GIN-NA

provides disease-specific networks for the Prostate Cancer, Type 1 Diabetes, Type 2

Diabetes, and Bipolar Disorder.
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B.2 Availability

The GIN-NA web system is available at http://gin.ncibi.org/. The query page

of GIN-NA is shown in Figure B.1. The user can query for a molecule or a list of

molecules, and restrict his search by organism, molecule type, and data source.

Figure B.1: Molecule query screen of GIN-NA.

The computed network analysis results are displayed to the user on the GIN-NA

web-site and/or emailed to him if he provides an email address. The screen shot

showing the molecule specific network analysis results for the “CSF1R” molecule

is presented in Figure B.2. The screen shot showing the disease-specific network

analysis results for prostate cancer is presented in Figure B.3.

GIN-NA is also accessible through web-services, where the user can provide a

network of interactions in edge-list format and get the network analysis results:

http://clair.si.umich.edu/clair/webservice/gin-na/netserver.cgi.
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Figure B.2: Molecule-specific network analysis for CSF1R using GIN-NA.
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Figure B.3: Disease-specific network analysis for prostate cancer using GIN-NA.
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Cavalcoli, Barbara Mirel, Jignesh Patel, Dragomir Radev, Brian Athey, David States, and H. V.
Jagadish (2009). Michigan molecular interactions r2: from interacting proteins to pathways.
Nucl. Acids Res., 37 (suppl 1), D642–646.

Joshua M. Temkin and Mark R. Gilder (2003). Extraction of protein interaction information
from unstructured text using a context-free grammar. Bioinformatics, 19, 2046–2053.

Domonkos Tikk, Philippe Thomas, Peter Palaga, Jörg Hakenberg, and Ulf Leser (2010). A com-
prehensive benchmark of kernel methods to extract protein–protein interactions from literature.
PLoS Comput Biol, 6 (7), e1000837+.

Richard Tsai, Cheng L. Sung, Hong J. Dai, Hsieh C. Hung, Ting Y. Sung, and Wen L. Hsu
(2006). NERBio: using selected word conjunctions, term normalization, and global patterns to
improve biomedical named entity recognition. BMC Bioinformatics, 7 (Suppl 5).

Shoutaro Tsuji, Misako Matsumoto, Osamu Takeuchi, Shizuo Akira, Ichiro Azuma, Akira
Hayashi, Kumao Toyoshima, and Tsukasa Seya (2000). Maturation of human dendritic cells
by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like
receptors. Infect Immun, 68 (12), 6883–6890.

Yoshimasa Tsuruoka, Yuka Tateishi, Jin-Dong Kim, Tomoko Ohta, John McNaught, Sophia
Ananiadou, and Jun’ichi Tsujii (2005). Developing a robust part-of-speech tagger for biomedical
text. In Proceedings of the 10th Panhellenic Conference on Informatics, pp. 382–392.

Marc A. van Driel, Koen Cuelenaere, Patrick P. C. W. Kemmeren, Jack A. M. Leunissen, and
Han G. Brunner (2002). A new web-based data mining tool for the identification of candidate
genes for human genetic disorders. Eur J Hum Genet., 11 (1), 57–63.

J. Craig Venter, Mark D. Adams, Eugene W. Myers, Peter W. Li, Richard J. Mural, Granger G.
Sutton, Hamilton O. Smith, Mark Yandell, Cheryl A. Evans, Robert A. Holt, Jeannine D. Go-
cayne, Peter Amanatides, Richard M. Ballew, Daniel H. Huson, Jennifer R. Wortman, Qing
Zhang, Chinnappa D. Kodira, Xiangqun H. Zheng, Lin Chen, Marian Skupski, and et al. (2001).
The sequence of the human genome. Science, 291 (5507), 1304–1351.

Veronika Vincze, Gyorgy Szarvas, Richard Farkas, Gyorgy Mora, and Janos Csirik (2008). The
BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes. BMC
Bioinformatics, 9 (Suppl 11).



148

S. V. N. Vishwanathan and Alexander J. Smola (2003). Fast kernels for string and tree matching.
In Advances in Neural Information Processing Systems 15, pp. 569–576. MIT Press.

Hester M. Wain, Michael J. Lush, Fabrice Ducluzeau, Varsha K. Khodiyar, and Sue Povey
(2004). Genew: the Human Gene Nomenclature Database, 2004 updates. Nucleic Acids Res.,
32 (D255-7), 1257–1261.

Robert S. Wallis, T. Mark Doherty, Phillip Onyebujoh, Mahnaz Vahedi, Hannu Laang, Ole
Olesen, Shreemanta Parida, and Alimuddin Zumla (2009). Biomarkers for tuberculosis disease
activity, cure, and relapse. The Lancet Infectious Diseases, 9 (3), 162–172.

Hui Wang, Dong Yu, Sudhir Agrawal, and Ruiwen Zhang (2003). Experimental therapy of
human prostate cancer by inhibiting MDM2 expression with novel mixed-backbone antisense
oligonucleotides: in vitro and in vivo activities and mechanisms. Prostate, 54 (3), 194–205.

Mengqui Wang (2008). A re-examination of dependency path kernels for relation extraction. In
IJCNLP’08: Proceedings of the third International Conference on Natural Language Processing.

Duncan J. Watts and Steven H. Strogatz (1998). Collective dynamics of small-world networks.
Nature, 393, 440–442.

Marc Weeber, Henny Klein, Alan R. Aronson, James G. Mork, Lolkje T. W. de Jong-van den
Berg, and Rein Vos (2000). Text-Based Discovery in Biomedicine: The Architecture of the DAD-
system. In Proceedings of AMIA, the Annual Conference of the American Medical Informatics
Association, pp. 903–907.

Marc Weeber, Jan A. Kors, and Barend Mons (2005). Online tools to support literature-based
discovery in the life sciences. Brief Bioinform, 6 (3), 277–286.

Q. Wei, M. Li, Xuping Fu, Rong Tang, Y. Na, M. Jiang, and Yao Li (2007). Global analysis of
differentially expressed genes in androgen-independent prostate cancer. Prostate Cancer Prostatic
Dis., 10 (2), 167–174.

Thomas Wieder, Heidi Braumuller, Manfred Kneilling, Bernd Pichler, and Martin Rocken (2008).
T cell-mediated help against tumors. Cell Cycle, 7 (19), 2974–2977.

Jonathan D. Wren (2004). Extending the mutual information measure to rank inferred literature
relationships. BMC Bioinformatics, 5, 145.

Stefan Wuchty, Zoltan N. Oltvai, and Albert-László Barabási (2003). Evolutionary conservation
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