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ABSTRACT 

Diabetic neuropathy (DN) is the most common complication of diabetes affecting 

approximately 60% of all diabetic patients leading to significant mortality, morbidity, and 

poor quality of life. Though more than 50% of patients with DN develop substantial 

nerve damage prior to noticeable symptoms, no biomarkers for predicting the onset or 

progression of DN are currently available. Here we present a biomarker discovery 

platform integrating literature mining and a systems biology approach to identify 

potential DN biomarkers. A web-based target identification and functional analysis tool, 

SciMiner (http://jdrf.neurology.med.umich.edu/SciMiner), was developed that identifies 

targets using a context specific analysis of MEDLINE abstracts and full texts. A 

comprehensive list of 1,026 targets from diabetes and reactive oxygen species (ROS) 

related literature was compiled by SciMiner. The expression levels of nine genes, 

selected from the over-represented ROS-diabetes targets, were measured in the dorsal 

root ganglia (DRG) of diabetic and non-diabetic DBA/2J mice. Eight genes exhibited 

significant differential expression and the directions of expression change in six of those 

genes paralleled enhanced oxidative stress in the DRG, suggesting the involvement of 

ROS related targets in DN. A microarray analysis was also performed on sural nerve 

biopsies from two DN patient groups with fast or slow DN progression to identify gene 

expression profiles related to DN progression. In the fast progressing DN, defense 

response and inflammatory response related genes were up-regulated, while lipid 

metabolic process and peroxisome proliferator-activated receptor (PPAR) signaling 

pathway related genes were down-regulated. We also developed mRNA expression 



 xi

signatures that predict DN progression in humans with a high prediction accuracy. Ridge-

regression based predictive models with 14 genes achieved a prediction accuracy of 92% 

(correct prediction of 11 out of 12 patients). Our results identifying the unique gene 

signatures of progressive DN and compiling ROS-diabetes targets can facilitate the 

development of new mechanism-based therapies and predictive biomarkers of DN.  
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CHAPTER 1  

INTRODUCTION 

1.1 DIABETIC NEUROPATHY 

1.1.1 DIABETES MELLITUS 

Diabetes is a metabolic disease in which the body does not produce or properly use 

insulin, a hormone required to convert sugar into energy for daily life.  Approximately 

twenty-three million children and adults, 7.8% of the population in the United States, 

have diabetes and the incidence is increasing by 5% per year [1]. An additional fifty-

seven million Americans have impaired glucose tolerance, or pre-diabetes, in which 

blood glucose levels are higher than normal but not high enough to be diagnosed as 

diabetes [1]. The American Diabetes Association estimated the total annual economic 

cost of diabetes in 2007 to be $174 billion ($116 billion in medical expenditures, $27 

billion in direct diabetes care, $58 billion in treating diabetes-related chronic 

complications, and $31 billion in excess general medical costs) [1].  

Diabetes is typically characterized by elevated blood glucose levels (known as 

hyperglycemia) with symptoms such as increased urination, increased thirst, unexpected 

weight change, fatigue and blurred vision. There are two main types of diabetes: Type 1 

and Type 2 diabetes. In Type 1 diabetes, often referred to as juvenile diabetes or insulin 

dependent diabetes mellitus (IDDM), the body cannot produce enough insulin due to a 
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destruction of insulin-creating beta-cells in the pancreas by the body’s immune system. 

Thus, patients with Type 1 diabetes need to be supplied with exogenous insulin. In Type 

2 diabetes, often called adult-onset diabetes, patients usually begin by developing insulin 

resistance, in which cells in the body do not properly respond to insulin. Both types of 

diabetes will result in collateral damage to nerves and blood vessels that accumulates 

over years of hyperglycemic conditions, leading to the spectrum of conditions referred to 

as diabetic complications.   

1.1.2 DIABETIC NEUROPATHY 

Diabetic complications are the most common cause of renal failure, blindness and 

amputations, and lead to significant mortality, morbidity, and poor quality of life. The 

most common complication of diabetes is diabetic neuropathy (DN) affecting 

approximately 60% of all diabetic patients [2, 3]. Diabetic neuropathy (DN) is 

characterized by a progressive loss of peripheral nerve axons, resulting in decreased 

sensation, pain, and eventually complete loss of sensation. Twenty-five years following 

diagnosis of diabetes, patients have a cumulative risk of 22% for a lower extremity 

amputation [4], which makes DN the leading cause of non-traumatic amputation in the 

United States [5].  

Diagnosis of DN is based on symptoms and a physical examination, which often 

reveals a characteristic “stocking and glove” loss of sensation.  Patients lose the function 

of their longest sensory axons first, causing loss of sensation in the feet and hands that 

progressively moves more proximally along the limbs. Qualitative assessments of 

sensory loss can be quantified by electrophysiological measures of sensory and motor 

function, including nerve conduction studies.  Changes in such studies are a direct 
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reflection of nerve fiber loss and routinely reveal low or absent sensory responses and 

slowed sensory and motor nerve conduction velocities (NCV) [6, 7]. These parameters 

therefore closely correlate with anatomical evidence of decreased myelinated fiber 

density (MFD) in the sural nerve and decreased intra-epidermal nerve fiber density 

(IENF) measured from skin biopsies in the lower leg [7-9]. Treatment for DN is currently 

limited to glycemic control, good foot hygiene (as insensate feet are often injured without 

the patient’s knowledge, leading to chronic wound ulceration) and symptomatic care for 

pain [10]. While tight glycemic control may slow peripheral nerve deterioration, no 

treatment is currently available to reverse nerve fiber loss and restore function in DN.   

1.1.3 CELLULAR PATHWAYS IMPLICATED IN DN  

The current understanding of the underlying mechanisms of DN pathogenesis is far from 

complete, which hinders not only the development of mechanism-based therapies 

targeting the genes, proteins and signaling cascades underlying DN but also the 

identification of potential DN biomarkers. Potential risk factors for DN such as 

hyperglycemia, hypertension, duration of diabetes, and hyperlipidemia have been studied 

for their roles in the pathogenesis of DN [10, 11]. Among these factors, hyperglycemia 

has long been considered the primary risk factor for DN and extensively investigated to 

elucidate its potential downstream mechanisms. Numerous mechanisms downstream of 

hyperglycemia have been implicated in the pathogenesis of DN, including increased 

polyol pathway activity with NAD(P)-redox imbalance [2, 12], oxidative stress [2, 12, 

13], mitochondrial dysfunction [14, 15], inflammation [16, 17] and the accumulation of 

advanced glycosylation endproducts (AGEs) [18].  
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There is also increasing evidence suggesting that hyperlipidemia substantially 

contributes to the development of DN [19-21]. In the Eurodiab Trial, a longitudinal study 

of over 3,000 individuals with type 1 diabetes, dyslipidemia was closely associated with 

the onset of DN [19, 20]. In our recent retrospective analysis of fast and slow progressing 

DN, elevated triglycerides was the only clinical parameter that correlated with decreased 

myelinated fiber density in the sural nerves [21]. Oxidized low density lipoprotein 

(oxLDL) also strongly correlates with nervous system injury in animal models of high fat 

induced diabetes [22]. Therefore, lipid-lowering drugs may have potential in the 

treatment of DN. One such drug, the PPARα agonist fenofibrate demonstrated improved 

symptoms and slowed the progression of DN as well as other diabetic complications 

(retinopathy and nephropathy) [23-25].  

1.1.4 OXIDATIVE STRESS 

Despite this progress, the exact mechanisms underlying the pathogenesis of DN are still 

not fully understood. Only recently has a link among the various implicated pathways 

been established that provides a unified mechanism of tissue damage.  Each of these 

pathways directly and indirectly leads to overproduction of reactive oxygen species 

(ROS) [2, 12]. ROS are highly reactive ions or small molecules including oxygen ions, 

free radicals and peroxides, and are formed as natural byproducts of cellular energy 

metabolism. Due to the highly reactive properties of ROS, excessive ROS may cause 

significant damage to proteins, DNA, RNA and lipids.   

All cells have protective mechanisms against ROS; however, under diabetic 

conditions, these protective mechanisms are overwhelmed due to the substantial increase 

in ROS, leading to cellular damage and dysfunction [26] . The idea that increased ROS 
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and oxidative stress contribute to the pathogenesis of diabetic complications has led 

scientists to investigate different oxidative stress pathways [27, 28]. Inhibition of ROS or 

maintenance of euglycemia restores metabolic and vascular imbalances and blocks both 

the initiation and progression of complications [29, 30]. Despite the significant 

implications and extensive research into the role of ROS in diabetes, no comprehensive 

database regarding ROS-related genes or proteins is currently available.  

1.1.5 BIOMARKERS FOR DN PREDICTION 

In greater than 50% of patients with DN, there is substantial, irreparable nerve damage 

prior to the development of noticeable symptoms. The ability to measure specific 

biomarkers of DN prior to the onset of permanent damage would permit the initiation of 

aggressive therapy in time to preserve nerve function.  Biomarkers that are highly 

predictive of the development and worsening of diabetic complications are available for 

diabetic nephropathy [31].  Currently, no biomarkers exist for DN, making it impossible 

to detect until clinically obvious symptoms appear, at which point irreparable damage has 

occurred.  Our overall goal for this thesis is to develop a biomarker discovery system for 

DN by integrating literature mining and systems biology. 

 

1.2 BIOMEDICAL LITERATURE MINING  

Knowledge obtained through scientific discoveries in biomedical disciplines has been 

accumulated in the biomedical literature. One key resource for the biomedical literature, 

the PubMed database maintained by the National Center for Biotechnology Information 

(NCBI), comprises a vast amount of biomedical articles. Approximately 20 million 
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records from over 25,000 journals are indexed by PubMed today and the volume is 

rapidly expanding [32]. Due to this rapid growth of published information, it is no longer 

feasible to keep up to date with all of the new literature manually, even within one’s own 

research area. The field of text mining, a computer-assisted information extraction from 

text data, is becoming increasingly important to cope with the increasing volume of 

electronically available biomedical literature. The goal of biomedical text mining is to aid 

researchers by having computers read and summarize the literature and efficiently 

identify publications that are most relevant to the researchers’ interests.  

1.2.1 DISCIPLINES OF BIOMEDICAL LITERATURE MINING 

There are three main areas of biomedical literature mining [33, 34]: (1) information 

retrieval (IR), which is the process of identifying relevant papers; (2) entity recognition 

(ER) or named entity recognition (NER), which is the recognition of biological entities 

such as genes, proteins, metabolites and chemical compounds within papers; and (3) 

information extraction (IE), which is the extraction of specific facts from papers.  Each of 

these three main areas constitutes its own research topic and application, but they are also 

closely related to each other. 

1.2.1.1 Information Retrieval 

IR, one fundamental discipline of biomedical literature mining, aims to properly identify 

and retrieve text data relevant to a certain topic from document repositories. The topic 

could be a pre-defined set of papers or a user-provided query. IR technologies have been 

widely adopted in the biomedical community and the best-known system is the Entrez 

query and retrieval system available through PubMed [33, 35]. This system employs two 

IR methodologies: simple Boolean query searches (logical combinations of terms 
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connected by operators such as ‘AND’, ‘OR’ and ‘NOT’) on indexed documents, and a 

vector model, which incorporates a frequency-based scoring scheme to calculate 

document similarity and identify related articles [36]. PubMed is indexed with Medical 

Subject Headings (MeSH), a controlled vocabulary of over 25,000 terms organized in a 

hierarchical fashion with 15 top-level categories [37].  

1.2.1.2 Entity Recognition 

Named Entity Recognition (NER) or simply Entity Recognition (ER) is the most 

fundamental discipline of biomedical literature mining. ER aims to identify all the 

instances of named entities such as genes, proteins, chemical compounds and diseases in 

the biomedical literature. Correct identification of such named entities provides a solid 

ground for facilitating the retrieval of relevant literature (IR) and the identification of 

relationships among these entities (IE) [38].  

Various methods and algorithms have been applied to ER, which can be 

categorized into two groups: rule-based approaches and machine learning (ML)-based 

approaches.  The first approach relies on manually devised rules and patterns of 

systematic variations in names, such as identifying gene symbols with letters followed by 

numbers, or identifying protein names as those ending with ‘-ase’ or followed by terms 

like ‘receptor’ and ‘protein’ [33, 39-42].  The ML-based approaches use statistical and 

probabilistic models that estimate the degree of confidence in making identifications of 

terms. Various ML approaches, such as the hidden Markov model (HMM) [43, 44], the 

support vector machine (SVM) [45, 46], and the naïve Bayesian learning (along with 

decision tree and inductive rule learning) [47] have been applied to biomedical literature 

mining.  
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Though the task of ER has the simple goal of identifying biological entities in 

text, it has been challenging for several reasons. Firstly, there is no complete dictionary 

for most types of biological named entities. The lack of a complete dictionary makes it 

impossible for relatively simple text matching algorithms to identify all the entities in the 

literature. Secondly, different expressions such as synonymous protein names, gene 

symbols (acronyms) and typographical variants can refer to the same entity (protein or 

gene) [34].  For example, the terminology referring to ‘tumor necrosis factor alpha’ can 

include ‘TNFA’, ‘Tnfa’, ‘TNF-A’, ‘TNF-alpha’, ‘cachectin’, ‘APC1 protein’, ‘TNF, 

monocyte-derived’, ‘TNF superfamily, member 2’ and many other different forms. There 

are ongoing efforts to standardize and maintain gene symbols and protein names by 

biomedical science communities and annotation databases such as the HGNC (HUGO 

Gene Nomenclature Committee) [48] and the National Center for Biotechnology 

Information (NCBI) Entrez Gene database [49].  Such standardization will substantially 

improve the accuracy of the literature mining techniques.  

Lastly, abbreviations and acronyms of genes are often ambiguous and can refer to 

different genes, or even non-gene symbols such as experimental methods. For instance, 

the abbreviation ‘PSA’ refers to five different human genes in the NCBI Gene database: 

‘pleiomorphic adenoma gene 1 (PLAG1)’, ‘kallikrein-related peptidase 3 (KLK3)’, 

‘aminopeptidase puromycin sensitive (NPEPPS)’, ‘protein S alpha (PROS1)’, and 

‘phosphoserine aminotransferase 1 (PSAT1)’. PSA refers to KLK3 in the context of 

prostate cancer, while it refers to PSAT1 in the context of amino acid metabolism. 

Various methods have been introduced to resolve this ambiguity issue in ER using rule 

and ML-based approaches [43-46, 50, 51]. Chapter 2 of this thesis will introduce a 
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conflict resolving scheme based on the co-occurrence of gene symbols and longer 

descriptions (names).  

1.2.1.3 Information Extraction 

IE is an approach to identify pre-defined types of facts such as the relationship between 

biological entities within the text. Particularly, the identification of physical protein-

protein interactions (PPI) has been an active application of IE in the molecular biology 

domain [46, 52-54].  The Michigan Molecular Interactions database (MiMI, 

http://mimi.ncibi.org/), the most comprehensive PPI database, incorporates literature-

derived PPI information to augment the coverage of PPI in the database [55]. The scope 

of IE can be extended to ‘Knowledge Discovery’, which aims at discovering hidden 

information in the literature and providing new insights for future research [34].  

1.2.2 APPLICATIONS OF BIOMEDICAL LITERTURE MINING  

Biomedical literature mining has already had a critical impact on several biomedical 

research areas, and as discussed already, will increase in value for biomedical research in 

general as the body of published information continues to expand beyond the point of 

manageability. Some of the areas already impacted by literature mining are summarized 

below.  

1.2.2.1 Functional Annotation of Genes 

With the advance of genome sequencing technology, we are now seeing a dramatic 

increase in the number of available complete genomic sequences. Over 1,000 species 

have been completely sequenced to date, and more than 5,500 species are currently being 

sequenced [56].  Traditional functional analysis approaches cannot keep up with the 
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speed of newly sequenced genomes. Therefore, computational approaches relying on 

protein or DNA sequence similarities with known species have been extensively used to 

annotate newly sequenced genomes [57-59]. Text mining technologies have also been 

employed to assist gene annotation. Keywords found in the biomedical literature that are 

highly associated with protein families, were assigned to the newly identified genes 

belonging to the same protein families [60]. Gene Ontology (GO) terms identified in the 

literature were also used in annotating newly identified genes [61, 62].  

1.2.2.2 High-throughput Expression Analysis 

High-throughput gene expression assay platforms like Microarray and RNA-Seq are 

extensively used to survey the expression profiles of tens of thousands of genes.  

Typically, sets of genes (clusters) with similar expression patterns are identified and 

studied for their coherence in biological functions or common regulatory mechanisms. 

Text mining approaches are also used to assist array analyses. One such approach is 

assigning highly relevant terms to clusters based on significant association of the genes 

and terms within the literature [63, 64]. Another approach is using gene-gene co-citation 

networks in the literature to explore the possible connections among the genes of interest.  

PubGene (http://pubgene.org) [65] and BiblioSphere PathwayEdition (Genomatix 

Software GmbH, Munich, Germany) [66, 67] allows researchers to navigate and visualize 

the potential functional connections among the genes from microarray results using the 

co-citation networks constructed from the entire PubMed abstracts.  

1.2.2.3 Extracting Protein-Protein Interactions (PPI) 

As introduced in Section 1.2.1.3, identifying relationships between biological entities 

within the text is one of the major disciplines of biomedical literature mining. PPI has 
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been of particular interest to researchers since it forms the basis for the majority of 

cellular events such as transcriptional regulation and signal transduction [68]. The current 

PPI networks collectively in all PPI databases are estimated to represent only 10~50% of 

the complete PPI networks [69, 70]. Thus, identifying potential PPIs from the literature to 

augment the current PPI networks is an active research area.  Various methods based on 

semantic proposition [71], rules and patterns  [72, 73], or support vector machine (SVM) 

[46, 74] have been developed. The current release of the MiMI database, which provides 

a comprehensive literature derived PPI information [55], is a good example of this 

application.  

1.2.2.4 Application in this Thesis 

Chapter 3 of this thesis will describe how SciMiner, a literature mining tool (Chapter 2), 

is employed to identify targets related to the reactive oxygen species (ROS) and diabetes 

context.  A subset of the ROS-diabetes targets is evaluated for their biological relevance 

in diabetic mice.  

 

1.3 SYSTEMS BIOLOGY APPROACH 

A significant challenge in the biomedical sciences is to decipher the biological functions 

of individual genes, pathways, and networks that drive complex phenotypes.  Over the 

last decade, we have witnessed the paradigm shift from trying to understand the isolated 

functions of individual genes and pathways to trying to piece together the complex 

interactions of regulatory networks in biological systems. Systems biology is an 

interdisciplinary research field that focuses on how these complex networks function to 
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control cell physiology and the biology of diseases by integrating multi-level data, such 

as gene expression, protein expression and metabolite profiles [75, 76]. Analyses of these 

data via ‘-omics’ (transcriptomics for gene expression, proteomics for protein expression, 

and metabolomics for metabolite profiles) must be integrated in the setting of a strong 

bioinformatics infrastructure.  This thesis focuses on how bioinformatics systems and 

transcriptomics can be used to analyze systems-level changes in gene expression that 

correlate to a disease state. 

1.3.1 MICROARRAY AS TRANSCRIPTOMICS TOOL  

In the 1990s, DNA microarray technology was introduced to the field of molecular 

biology, allowing for measurement of the expression of tens of thousands of genes 

simultaneously on a single glass slide [77, 78].  DNA microarray technology is based on 

the specific hybridization of cRNA to probes imprinted on the array. Probes, which are 

oligonucleotides, cDNA, or small fragments of PCR products, are either spotted or 

synthesized right on the array using photolithographic technology (and available as 

commercial products from Agilent and Affymetrix). After labeled complementary 

cRNAs obtained from samples are hybridized to microarrays under high-stringency 

conditions, laser scanners are used to detect and quantify the intensity of fluorescence of 

spots on a microarray. With the advance of microarray technology, there has been an 

explosion of studies using this technology to examine whole genome expression patterns. 

Transcriptomics, the analysis of the set of all RNA molecules (especially mRNAs) 

produced in an individual cell or population of a particular cell type [79], has become one 

of the most prominent fields of study in biomedical science. In Chapter 4 of this thesis, 
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we will use microarrays to survey differences in the transcriptional profiles from patients 

with different degrees of DN progression.  

1.3.2 MICROARRAY ANALYSIS PLATFORM (GENEPATTERN AND 

CHIPINSPECTOR) 

1.3.2.1 GenePattern Analysis Platform 

Computational methods for microarray analysis are typically developed as either stand-

alone applications or as libraries for a mathematical toolkit such as R (http://www.r-

project.org/) or MATLAB (http://www.mathworks.com/).  This approach scales poorly 

with increases in the number of tools and the complexity of the desired analyses.  Users 

must cope with numerous technology maintenance tasks, including locating programs 

and keeping them up to date, converting between file formats, retaining old versions of 

analysis applications and entering parameters for each analysis step, as well as self-

correction when errors occur.  GenePattern (http://www.broadinstitute.org/cancer/ 

software/genepattern/) is an analysis environment that automates some aspects of data 

analysis, making the process less cumbersome for the user [80].  GenePattern provides 

the ability to use programs written in Java, Perl, R and MATLAB in an environment with 

standardized file formats, a common user interface, integrated versioning, and 

mechanisms for documentation.  These programs, called modules, can run automatically 

as part of analysis pipelines, which reduce analysis time and may be distributed to other 

users to enable reproduction of the precise computational methods performed [80].  In 

Chapter 4 of this thesis, GenePattern is used as the primary analysis platform for 

microarray data using Robust Multi-array Average (RMA), which is a typical probe set-

based microarray analysis approach using a quantile normalization method [81].  
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1.3.2.2 ChipInspector 

ChipInspector (CI; version 2.1; Genomatix Software GmbH, Munich, Germany) provides 

a unique opportunity to investigate the gene expression microarray data at the level of an 

individual probe, instead of at the level of the Affymetrix probe set [82].  Recent studies 

estimated that approximately 50~75% of multi-exon genes in human and mouse genomes 

generate multiple mRNA isoforms through alternative splicing [83-85].  A probe set-

based approach that averages signals in a probe set may obscure the resolution of 

alternative transcripts, leading to increased noise in the analysis [76].  Therefore, keeping 

the mRNA signal on the transcript level allows identification of genes that change only in 

the relative abundance of alternative transcripts but without a net overall change in gene 

expression [76].  This ChipInspector-based approach is expected to provide a reduced 

level of experimental background noise with enhanced sensitivity. In this thesis, we take 

an integrative approach by combining RMA- and ChipInspector-based results.  

1.3.3 FUNCTIONAL ENRICHMENT ANALYSES 

The typical initial results of microarray experiments are lists of genes that are 

differentially expressed between the sample groups being compared.  These lists are then 

subjected to a functional enrichment analysis that attempts to identify over-represented 

biological functions or pathways among these genes. Various tools for this purpose have 

been developed, including the Gene Set Enrichment Analysis (GSEA) 

(http://www.broadinstitute.org/gsea/) [86, 87], the Database for Annotation, Visualization 

and Integrated Discovery (DAVID) (http://david.abcc.ncifcrf.gov/) [88, 89], ConceptGen 

(http://conceptgen.ncibi.org) [90], and LRpath [91]. Using publicly available sources, 

such as GO [92] and pathways databases including Kyoto Encyclopedia of Genes and 
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Genomes (KEGG, http://www.genome.jp/kegg/) [93] and Reactome 

(http://www.reactome.org/) [94], these tools provide statistical significance of enrichment 

in diverse types of biological categories. Typically, these tools require users to provide a 

predefined set of genes as input; however, LRpath accepts p-values of all genes in 

microarrays tested by a statistical significance test (e.g., t-test) and calculates the odds of 

gene set membership with the significance of differential expression [91].  

1.3.4 PREDICTION MODELING USING GENE EXPRESSION PROFILES 

Prediction modeling is a process of finding characteristics of an object that predicts its 

class (discrete) or values (continuous) based on a set of training data [95].  When 

performing microarray experiments, the object is usually a tissue sample and its 

characteristics are the observed levels of gene expression.  Biomedical applications of 

prediction modeling include both diagnostic and prognostic uses, such as distinguishing 

types of cancer or predicting the outcome of a specific cancer [96, 97].  There are many 

ML- or regression-based classification algorithms available, such as Naïve Bayse, neural 

network, support vector machine, decision tree, and logistic regression [98, 99]. Their 

performance varies depending on the data set, but ridge regression-based prediction has 

demonstrated superior performance in predicting the survival of cancer patients [100, 

101] and chronic kidney diseases [102] using microarray expression data. Ridge 

regression is particularly useful for modeling gene expression data from microarrays, 

which often have genes with high correlations with each other, referred to as collinearity. 

Ridge regression handles this collinearity issue by reducing the number of dimensions, 

which imposes some bias on the regression coefficients. In Chapter 4, we will employ 
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ridge regression-based modeling to classify (predict) the class of DN patients based on 

the gene expression profiles obtained from microarray analyses of sural nerves.  

  

1.4 SPECIFIC AIMS AND APPROACHES OF THIS THESIS 

Our overall goal for this thesis is to develop a biomarker discovery system for DN by 

integrating literature mining and systems biology.  These two approaches will provide 

unprecedented insight into the ROS-diabetes genes and the large-scale changes in gene 

expression that occur during DN.  This systems-level knowledge will serve as the first 

step in our effort to identify biomarkers of DN.  We have the following three specific 

aims in this thesis.  

1.4.1 AIM1: DEVELOP A LITERATURE MINING TOOL 

We hypothesized that an easy-to-use web-based literature mining tool that correctly 

identifies targets from the vast amount of biomedical literature for a given topic would 

substantially enhance researchers’ understanding of the topic by providing functional 

summaries of the related targets. We developed SciMiner, a web-based literature mining 

tool [42]. The target identification is accomplished using comprehensive dictionaries of 

gene symbols and names along with term expansion rules. Ambiguous symbols are 

resolved by a unique confidence-scoring scheme based on the co-occurrence of 

abbreviated symbols and longer descriptions in the same document. SciMiner provides a 

convenient web-based platform for mining targets (genes and proteins) from the 

biomedical literature with the capacity for functional enrichment analyses. SciMiner 

performs well compared to other methods [103-105], but is unique in that it (i) searches 
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full text documents (not just abstracts), (ii) allows users to directly edit the mining results, 

and (iii) allows comparisons to be made between search results of multiple queries. 

1.4.2 AIM2: IDENTIFY REACTIVE OXYGEN SPECIES (ROS) - AND 

DIABETES-RELATED TARGETS USING SCIMINER 

We hypothesized that SciMiner would be able to compile a comprehensive list of ROS-

diabetes targets from the biomedical literature. To identify ROS-diabetes targets, 

SciMiner was applied to ROS-diabetes related literature indexed by (“Reactive Oxygen 

Species”[MeSH] AND “Diabetes Mellitus”[MeSH]) in PubMed. The identification 

accuracy was improved by reviewing the sentences in which each target was identified. 

The collected ROS-diabetes targets were further tested against randomly selected non-

ROS-diabetes literature to identify targets significantly over-represented in the ROS-

diabetes literature. Functional enrichment analyses were performed on these targets to 

summarize the biological functions of the ROS-diabetes targets in terms of Gene 

Ontology (GO) terms and pathways. In order to confirm the biological relevance of the 

over-represented ROS-diabetes targets, the gene expression levels of nine selected targets 

were measured in dorsal root ganglia (DRG) from mice with and without diabetes.  

1.4.3 AIM3: IDENTIFY GENE EXPRESSION SIGNATURES PREDICTIVE OF 

DIABETIC NEUROPATHY PROGRESSION 

We hypothesized that diabetes directly affects gene expression in peripheral nerves that 

could be detected by microarray analyses. To identify the gene expression signatures 

correlated with DN progression, we performed the first high-throughput genome-wide 

expression study of human sural nerve biopsies obtained from patients with DN. Our 

laboratory is in possession of a unique repository of human sural nerve biopsies from 
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participants in a large randomized placebo-controlled clinical DN trial testing acetyl-L-

carnitine (ALC), which improved neuropathic pain but did not affect nerve conduction 

velocities and amplitudes in the sural nerves [21, 106]. Sural nerve samples from two 

groups of patients with either fast progressing or slow/non-progressing DN were 

surveyed with high-throughput Affymetrix Microarray for their gene expression profiles. 

A series of bioinformatics analyses were performed to analyze differential gene 

expression profiles between the two groups and revealed gene networks and pathways 

that are potentially responsible for the progression of DN.  Ridge regression-based 

computational predictive models using the expression profiles of these genes were then 

developed to accurately predict the class of DN progression (fast or slow progression).  

 

1.5 THESIS OUTLINE 

Chapter 2 presents the development of SciMiner, a web-based literature mining tool for 

target identification and functional enrichment analysis, and demonstrates the superior 

performance of SciMiner using the BioCreAtIvE (Critical Assessment of Information 

Extraction systems in Biology) evaluation system. The basic architecture and 

implemented text mining techniques are described.  

Chapter 3 demonstrates the application of SciMiner to the ROS-diabetes related 

literature to compile a comprehensive list of ROS-diabetes targets. Identification of the 

key ROS-diabetes targets and a preliminary evaluation of these targets as potential DN 

biomarkers are presented.  

Chapter 4 presents the first high-throughput genome-wide expression analysis of 

human sural nerve biopsies obtained from patients with either fast or slow DN 
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progression. Differentially regulated genes and cellular pathways between different rates 

of DN progression are presented. Computational prediction models for DN progression 

class (progressing or non-progressing) based on the gene expression profiles of 

differentially expressed genes are also presented. 

Chapter 5 summarizes overall conclusions from the study and presents possible 

future work. 
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CHAPTER 2  

SCIMINER: WEB-BASED LITERATURE MINING TOOL FOR TARGET 

IDENTIFICATION AND FUNCTIONAL ENRICHMENT ANALYSIS 

2.1 INTRODUCTION 

The PubMed database maintained by the National Center for Biotechnology Information 

(NCBI) is a key resource for biomedical science. It is a large and rapidly expanding data 

set; more than 20 million records from over 25 thousands journals are indexed by 

PubMed today. With the increasing volume of the published biomedical literature, text 

mining has emerged as an increasingly important technology. The goal of biomedical text 

mining is to aid researchers in identifying relevant information more efficiently by having 

computers read the literature. 

Currently available web-based biomedical text mining tools include EBIMed 

[104]. ALI BABA [103], and PolySearch [105]. EBIMed provides a simple interface for 

identifying associations among named entities (genes/proteins, gene ontologies, drug 

names, and species). Ali Baba visualizes associations in a graphical way. PolySearch 

provides more than 50 different classes of queries against various types of text, scientific 

abstract or biomedical databases. Though these tools provide valuable resources, they are 

limited in that (i) they only access MEDLINE abstracts as their literature data source, (ii) 

they do not allow users to edit the mining results, and (iii) they are unable to perform 

comparisons between search results of multiple queries.  
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Here we present SciMiner, a web-based literature mining tool, which 

automatically collects MEDLINE records and available full text. Targets (genes and 

proteins) are extracted and ranked by the number of documents in which they appear. To 

provide an overall summary of their biological functions, these targets are further 

analyzed for their enrichments in Gene Ontology terms, pathways, MeSH terms, and 

protein-protein interaction networks based on external annotation resources. Table 2-1 

compares the features of SciMiner and other existing tools.  

The performance of target symbol and name identification is assessed using the 

BioCreAtIvE II (Critical Assessment of Information Extraction systems in Biology) Gene 

Normalization Task [107]. SciMiner achieved 87.1% recall, 71.3% precision, and 75.8% 

F-measure. SciMiner’s literature mining performance coupled with functional enrichment 

analyses provides an efficient platform for retrieval and summary of rich biological 

information from corpora of users’ interest. 

2.2 IMPLEMENTATION  

2.2.1 DOCUMENT RETRIEVAL 

Figure 2-1 illustrates the overall workflow how SciMiner processes users’ queries to 

retrieve literature data. Once a query is submitted to SciMiner, it is sent to the NCBI 

PubMed server (http://www.ncbi.nlm.nih.gov/pubmed/) via Entrez E-utilities 

(http://eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html) to retrieve all the 

resulting PMIDs (PubMed Unique Identifiers). The retrieved PMID list checked against 

the SciMiner database to determine which documents need to be retrieved and processed. 

Only the PMIDs that were not previously processed are retrieved and processed.  
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Table 2-1. Comparison of SciMiner Features with Other Web-based Literature Mining Tools 

Features  SciMiner EBIMed Ali Baba PolySearch 
Text Data 
Source 

MEDLINE Abstracts1) O O O O 
Full text HTMLs2) O X X X 

Query Input Search terms as in PubMed3) O O O X 
Structured query4) X X X O 
Accepting PMID list as input5) O O O X 
Limit of document number6) 500-Unlimiteda) 10,000 10,000 500-Unlimited 

Document 
processing 

Genes and protein recognition7) O O O O 
Ambiguity (conflict) resolution8) O O X ? 
Other named entity recognition9) X b) drug, species, cells, diseases GO, drug, species Drug, disease, metabolite, tissue, cell 

User editability to increase accuracy10) O X X X 
Document processed on the fly11) O O O O 

Filtering Minimum number of citations per target12) O X X O 
Minimum score13) O X X O 

Enrichment 
Analysis 

Comparison among search results14) O X X X 
Functional enrichment (GO, Pathway, 
MeSH) of queries15) 

O X X Δ 

Result Result notification by email16) O X X O 
Downloadable result17) O Graph X X 
Results are cached18) O X X O 
Highlighted target in abstract19) O O O O 
Visualization of interacting targets20) Via Cytoscape O X X 
Links to PubMed21) O O X O 
Links to journal HTML (publishers) 22) O X X X 
Links to other databases23) NCBI Gene, HGNC, MiMI, QuickGO, 

KEGG, Reactome, NCBI MeSH 
PubMed, MeSH, DrugBank, UniProt QuickGO, NCBI Taxonomy viewer, 

DrugBank 
PubMed, OMIM, DrugBank, UniProt, 
HMDB, HPRD, GAD 

Document based summary24)

(Highlight in abstract) 
O O O X 

Other features Execution time estimation25) O O O X 
Standalone version26) O X X X 
Bulk data set27) O X X O 
EndNote citation export28) O X X X 
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O: available or supported, X: unavailable or unsupported. Compared features are as follows: 1) MEDLINE Abstracts (MEDLINE abstracts are 
used as the source of the text data); 2) Full Text HTMLs (full text HTML documents are used as the source of the text data if available); 3) 
Search terms as in PubMed (tool supports search terms as being used in PubMed query); 4) Structured Query (available in PolySearch such as 
“Given X condition, find every Y”); 5) Accepting PMID list as input (a list of PMIDs can be used as a search query.); 6) Limit of document 
number (the maximum number of documents per query); 7) Genes and protein recognition (tool identifies genes and proteins names and 
symbols); 8) Ambiguity (conflict) resolution (conflicting symbols are resolved); 9) Other named entity recognition (other named entities like 
GO terms and drug names are identified by text-mining); 10) User editability to increase accuracy (users can manually edit individual target 
identification results and additional filters of IGNORE, EXCLUDE, and INCLUDE may be used); 11) Documents processed on the fly 
(documents are processed depending on users’ queries. Previously processed documents by any previous queries would not need to be 
reprocessed); 12) Minimum number of citations per target (the number of associated documents per target in users’ search can be specified to 
show such targets with a specified number of documents associated); 13) Minimum score (a score thresholds can be specified as an additional 
filter); 14) Comparison among search results (comparisons can be performed among different search results (or different queries) in terms of 
target lists, GO terms, MeSH terms and pathways); 15) Functional enrichment (GO, Pathway, MeSH) of queries (enriched biological features 
can be identified by Fisher’s exact test in comparisons among different search results); 16) Result notification by email (an email notice will be 
sent out to users when the results are ready); 17) Downloadable results (mining and analysis results are available for download); 18) Results are 
cached (processed documents will be kept in database to provide a quicker result in later queries. Users can maintain their search and analysis 
results in users’ account); 19) Highlighted target in abstract (identified targets are color highlighted. In SciMiner, this is limited to those targets 
from abstracts); 20) Visualization of interacting targets (Protein-Protein Interaction (PPI) are visualized in Cytoscape); 21) Links to PubMed 
(tool provides a URL link to the PubMed AbstractPlus page for each document); 22) Links to journal HTML (tool provides a URL link to the 
full text page for each document); 23) Links to other databases (tool provides links to external databases including NCBI Entrez Gene, HGNC 
(HUGO Nomenclature, MiMI (Michigan Molecular Interactions), QuickGO, KEGG (Kyoto Encyclopedia of Genes and Genomes), Reactome, 
DrugBank, UniProt, HMDB (Human Metabolome Database), HPRD (Human Protein Reference Database), and GAD (Genetic Association 
Databsae)); 24) Document based summary (tool provides a document centric summary page for each processed document. SciMiner provides 
detailed list targets and related information, while others only highlight identified entities in the abstract); 25) Execution time estimation (tool 
provides an estimated time for each query and analysis job); 26) Standalone version (a standalone package is available for download); 27) Bulk 
data set (tool provides annotation and gene / protein details in a downloadable format. SciMiner provides some of these data on the public web 
version. All of the other data are available in the standalone package); 28) User account (tool allows users to manage their previous search and 
analysis results. User account is essential since SciMiner allows user to merge and compare multiple search results); 29) EndNote citation export 
(tool provides EndNote citation data for every processed document. Users can import these citation data directly from the SciMiner webpage 
without visiting PubMed or publishers’ websites to download such citation files).  a) the public version of SciMiner has a default limit of 500 
documents per query, which can be increased upon request. For standalone version, 20,000 documents per 1GB of RAM are recommended. b) GO 
terms, MeSH terms, pathways, protein-protein interactions are not directly identified from the text data. Instead, SciMiner uses external annotation 
resources to associate identified targets to these entities.  
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Figure 2-1. Schematic Diagram of SciMiner Query Process and Document Retrieval 

 

Each document’s MEDLINE record is retrieved by NCBI e-fetch utility and 

processed by SciMiner document processing pipeline. In order to retrieve available full 

text HTML, ‘NCBI PubMed’s link-out to journal’ information is fetched for each 

document to acquire the corresponding journal’s URL. If multiple links are available, the 

PubMed Central (PMC) gets the highest priority since PMC maintains a consistent layout 

for html document, which makes the parsing process smooth. For URLs directing to an 

abstract page or a service provider selection page, SciMiner automatically tries to locate 

possible full text URLs and retrieve the full text HTML. Such publishers are noted as 

‘Multi’ in the ‘Retrieval Steps’ column in. Depending on the subscription status of users’ 



 

 25

institutional library, full text availability may be variable for the standalone local 

installation of SciMiner. shows the list of journal publishers that are currently supported 

by SciMiner. PDF documents are not supported by SciMiner. 

 

Table 2-2. Full Text Sources (Journal Publishers) 

Publishers 
Full Text MEDLINE 

Abstract Note Availability Supported by 
SciMiner 

Retrieval 
Steps1) 

PubMed Central O O Single O  
Nature O O Multi O  
Science O O Single O  
Elsevier (ScienceDirect) O O Single O  
Highwire O O Single O  
Blackwell synergy O O Multi O  
Informaworld O O Multi O  
Springer link O O Multi O  
Ovid O O Multi O  
Karger O O Multi O  
PortlandPress O O Single O  
Generic2) O, X O, X Single O  
Wiley Science O X  O PDF 
Libert online O X  O PDF 
Ingenta O X  O  

O: available or supported, X: unavailable or unsupported. 1) There are two types of retrieval 

steps: Single where the NCBI Link-out URL directly points to the full text html and Multi where 

the NCBI Link-out URL should be processed in multiple steps to get the correct full text html. 2) 

Generic indicates all other publishers that are not specified in this table.  

 

 

Table 2-3 shows the statistics in the SciMiner database as of 11/10/2008 with 

92,089 documents processed. These statistics do not necessarily represent the whole 

literature available in PubMed due to its very small number of documents. 
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Table 2-3. Proportion of Publishers in the SciMiner Database Sorted by Percentage (a 
Snapshot at 11/10/2008 with 92,089 Documents) 

Document Source Type Publisher/Journal Type count percentage 

Full text (if available) AND 
MEDLINE Abstract 

Elsevier (Science Direct) 19654 21.3% 
HighWire 9672 10.5% 
Other (Generic) 6333 6.9% 
PubMed Central 6218 6.8% 
Wiley Science 4874 5.3% 
Springer link 2287 2.5% 
Ingenta 1156 1.3% 
Nature 1122 1.2% 
Ovid 1066 1.2% 
Informaworld 898 1.0% 
Libert online 595 0.6% 
Karger 559 0.6% 
Science 159 0.2% 
Portland Press 120 0.1% 
BlackWell Synergy 78 0.1% 

MEDLINE Abstract Only 
NCBI (MEDLINE only) 25312 27.5% 
PDFONLY 4942 5.4% 
Full Text Retrieval Failed 444 0.5% 

 

 

2.2.2 ANNOTATION RESOURCES 

Targets (genes/proteins) used in the SciMiner system are based on the HUGO (Gene 

Nomenclature Committee, http://www.genenames.org/) gene set [48, 108]; thus, 

SciMiner reports are based on human targets. SciMiner does not distinguish between 

human genes from other species genes. Even though the actual biological functions can 

vary from species to species, SciMiner assumes that overall biological functions are 

relatively well conserved among species if genes are using the same symbol or name. For 

example, if a paper mentions superoxide dismutase 1 (Sod1) in mice, SciMiner assigns 

this occurrence to SOD1 (as human gene) and disregards taxonomy information. This 

approach is expected to get an overview of biological functions. 



 

 27

Annotation information for each HUGO entry is collected from the following 

resources. It should be noted that from the literature text data, SciMiner tries to identify 

only targets (genes and proteins). Other data types (pathway, Gene Ontology terms, 

MeSH, and Protein-Protein interactions) for identified targets are collected through 

external annotation resources listed below in Table 2-4. Mapping among database entries 

have been made available by in-house Perl scripts and the Clone/Gene ID converter 

[109].  

 
Table 2-4. External Annotation Databases 

Type Data Source Name URL 

Gene Protein HGNC (HUGO Gene Nomenclature) http://www.genenames.org/ 

NCBI Entrez Gene http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene 

Pathway KEGG Pathway http://www.genome.ad.jp/kegg/pathway.html 

Reactome Pathway http://www.reactome.org/ 

NCBI Entrez Gene http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene 

PPI MiMI (Michigan Molecular 

Interactions) 

http://mimi.ncibi.org/  

MeSH PubMed http://www.ncbi.nlm.nih.gov/pubmed/  

Gene 

Ontology 

Gene Ontology Consortium http://www.geneontology.org  

NCBI Entrez Gene http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene 
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2.2.3 SCIMINER DICTIONARIES 

2.2.3.1 Dictionary Compilation and Expansion 

SciMiner uses two dictionaries, referred to as ‘Symbol’ and ‘Name’, compiled from the 

HGNC (HUGO Gene Nomenclature) database (http://www.genenames.org) and the 

NCBI Entrez Gene database (http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene) 

previously known as LocusLink. The Symbol dictionary holds single word acronyms, 

while the Name dictionary contains longer descriptions (at least two words) of targets. In 

the current version (SciMiner 2.2), the Symbol dictionary has 83,735 unique entries and 

the Name dictionary has 136,827 unique entries.  These dictionaries are extended to 

87,014 and 263,304 entries, respectively, via the SciMiner dictionary expansion rules, 

which include relaxed special character handling and Greek character conversions such 

as TNF-alpha to TNF-A and TNFA. 

2.2.3.1.1 Source of Symbol and Name 

As the primary source for gene symbols and names, the following data from the HGNC 

database for each gene are retrieved: ‘Approved Symbols’, ‘Approved Names’, ‘Previous 

Symbols’, and ‘Previous Names’. As the secondary source, the following data from the 

NCBI Entrez Gene database for each gene are retrieved: ‘OFFICIAL_SYMBOL’, 

‘ALIAS_SYMBOL’, ‘OFFICIAL_GENE_NAME’, ‘ALIAS_PRODUCT’, and 

‘ALIAS_PROT’. For any conflicting symbols and names, the ‘Symbol’ and ‘Name’ 

dictionaries maintain a default assignment. Full conflict information is kept in separate 

files and used during the SciMiner mining process. The following order of preference is 

used for assigning a default HUGO ID to conflicting symbols or names: for the Symbol 
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dictionary (HUGO Approved Symbol > NCBI Official Symbol > HUGO Previous 

Symbols > NCBI Alias Symbol) and for the Name dictionary (HUGO Approved Name > 

NCBI Official Gene Name > HUGO Previous Names > NCBI Alias Product > NCBI 

Alias Prot).  

2.2.3.1.2 Dictionary Expansion Rules 

The Symbol and Name dictionaries are extended to include possible variations of the 

terms to increase the overall sensitivity of SciMiner target identification system.  

1) For entries in the Symbol dictionary 

a) Special characters are removed for entries in the symbol dictionary, Greek 

words frequently used in gene symbols such as alpha, beta, gamma and 

kappa are replaced by their corresponding single characters if no such 

symbol already exists in the dictionary. (e.g., TNF-alpha (HGNC ID: 11892) 

 ‘TNF-A’ is added to the Symbol dictionary for HGNC ID: 11892)  

b) Dashes ‘-‘ are removed and the resulting symbol is added as a new entry 

unless there is already such symbol in the dictionary. (e.g., TNF-A (HGNC 

ID: 11892)  TNFA is added to the dictionary terms for HGNC ID:11892) 

2) For entries in the Name dictionary 

a) Special characters are removed and resulting names are added to the 

dictionary as explained. 

b) Phrases in parentheses are removed. (e.g., AFG3 ATPase family gene 3-like 

1 (yeast)   AFG3 ATPase family gene 3-like 1) 

c) Phrases before the first comma, if any, are added as a new term. (e.g., 39S 

ribosomal protein L10, mitochondrial  39S ribosomal protein L10) 
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d) Commas are removed. (e.g., ANKRD26-like family C, member 1A  

ANKRD26-like family C member 1A) 

2.2.3.1.3 English Dictionary 

General English words are excluded in the SciMiner mining process. A dictionary 

containing 135,000 words was obtained from http://vburton.ncsa.uiuc.edu/wordlist.txt. 

Any word ending with ‘~ase’ or those frequently used for gene symbols such as ski and 

Jun were manually removed from this dictionary. SciMiner checked any identification of 

a symbol against this English dictionary to filter out possible false positive findings. For 

example, SciMiner does not accept the gene ‘CLOCK’ if it is identified by a relaxed 

match as ‘Clock’ in text and without any relevant longer description form of ‘CLOCK’. 

For any symbols having the same alphabets with the symbol dictionary, case should be 

completely matched. 

 

2.2.4 TARGET IDENTIFICATION 

2.2.4.1 Overall Target Recognition (Mining) Process 

Retrieved documents (both MEDLINE records and full text HTMLs) are pre-processed 

for removal of unnecessary hyperlinks and UTF-8 characters in text, and then split by an 

in-house sentence-splitter into individual sentences. Sentences undergo the target 

recognition process via ‘Symbol search’ and ‘Gene name search’ depending on the base 

dictionary as introduced in the Section 2.2.3. In the current version of SciMiner v2.2, 

targets identified by Symbol search are subjected to a name-resolving process, while 

those targets identified by Name search are not. This is because single-word symbols or 
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acronyms can have many different meanings, while multi-word names are usually 

specific. Figure 2-2 illustrates the overall mining process.  

 

 

 
 

Figure 2-2. Schematic Diagram of SciMiner Target Recognition Process 
Retrieved documents are subjected to ‘Symbol search’ and ‘Gene name search’. In Symbol 

search, conflict-resolving step is additionally employed to correctly assign HGNC ID to identified 

target (see Section 2.2.4.2 Confidence Scoring Scheme for more details). All identified targets are 

further filtered by user-provided ‘EXCLUDE’ and ‘INCLUDE’ lists to improve the overall 

accuracy. 
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2.2.4.1.1 Symbol search 

The following steps summarize the Symbol search process.  

1) Symbol dictionary loading: The pre-compiled symbol dictionary is loaded into 

two hash tables; one with keeping the case and another with making all in lower 

case from the second character. For example, SOD1 is hashed as ‘SOD1’ in the 

first hash and ‘Sod1’ in the second hash. The following rules are employed to 

create possible alternative symbols as an extension. 

a) Anything ending with –ALPHA, -BETA, -GAMMA, and –KAPPA to –A or 

A, -B or B, -G or G, and –K or K. (e.g., PI4K-BETA  PI4K-B and PI4KB) 

b) [All non-numeric characters]-[Numbers] to [All non-numeric 

characters][Numbers] without ‘-dash’ in-between. (e.g., SOD-1  SOD1) 

c) Any symbol entry is filtered by the IGNORE list as well as the general 

English dictionary. 

2) Sentences in the retrieved documents are further split by a space ‘ ‘ and each 

word is checked against the hash tables of symbol dictionary. A word containing 

special characters such slash ‘/’ or parentis ‘(‘ are checked as a whole as well as 

split forms by such special characters. (e.g., Smad3/Smad4  Smad3 Smad4) 

3) Checking against dictionary hash tables and further rules: 

a) Check the word keeping the case. 

b) If no match has been identified above, try to convert characters from the 

second position to the end into a lower case, while keeping the first character 

as it is and check hash table if there is a match. (e.g., SOD1 -> Sod1) 
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c) If no match has been identified above and the word has the following pattern 

(^[h|m]([A-Z].*)), then [h|m] is removed and the remaining is checked. (e.g., 

hPop1  POP1, or mSin3a => SIN3A) 

d) If no match has been identified above and the word contains a dash ‘-‘, 

i. A starting or ending dash is removed. (e.g., SOD1-  SOD1) 

ii. Ending  ‘–receptor ‘ is converted to –R or R. (e.g., INS-receptor  

INS-R and INSR) 

iii. Ending ‘–(alpha|beta|gamma|kappa)’ is converted to–A or A and etc. 

(e.g., TNF-alpha  TNF-A) 

(1) Anything ending with the followings are truncated: 

like|dependent|specific|receptor|staining|induced|inducible|activated|repre

ssed|stimulated|controlled|enhanced|mediated (e.g., SOD1-induced  

SOD1) 

iv. If no match has been identified above and the word is in the following 

pattern /^(alpha|beta|gamma)(\d+)-(\S+)&/, the order of words are 

changed. (e.g., beta1-syntrophin  syntrophin beta 1) 

v. Dashes are simply removed unless it is in a (number)-dash-(number) 

pattern. 

e) If no match has been identified above and the word ends with 

(alpha|beta|gamma|kappa), single greek characters are used with and without 

a dash. (e.g., TNFgamma  TNF-G and TNFG) 

f) If no match has been identified above and the word ends with a ‘s’ which is a 

probable plural form. 
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i. If the word is in all lower case, then it is ignored. 

ii. Otherwise, the word is checked against the dictionary alone. 

iii. Accompanying words are also checked for any possible expansion forms. 

(e.g., SMADs 3 and 4  SMAD3 and SMAD4) 

g) If no match has been identified above and the word contains at least one 

upper case character, then the word is converted to all upper case and 

checked. Discard any word in all lower case. 

h) Further expansions rules are applied if a match has been identified from 

above (at ith position) and accompanying word (i+1th position) is either ‘and’ 

or ‘to’ (e.g., SMAD3 and 4   SMAD3 and SMAD4). 

4) Confidence scoring calculation: Positive score is assigned if there exist longer 

descriptions of the word (acronym) being tested in the same document (not only 

in the same sentence) (see Section 2.2.4.2  for more details). Longer descriptions 

refer to the entries in the name dictionary and expanded names.  

5) Conflict resolution:  If the identified symbol has a conflict (belonging to a 

precompiled symbol-conflict set), confidence scores is calculated for all of the 

possible candidates specified by the symbol-conflict set. Only the top scoring 

match is selected and reported. 

6) Acronyms that are less likely to be gene symbols are further checked and filtered 

out. 

a) Anything followed by (et al, buffer, score, version, medium, media, cell, 

software, program, algorithm, system, test, company, agent) and their plural 

forms if available. (e.g., SPSS program or MES buffer) 
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b) Anything that has ‘acknowledge’ or ‘thank’ in its flanking text. Usually 

identified words with these words are author names matched usually by the 

5)B) step above. Sentences from the acknowledgement section are excluded 

in SciMiner process.  

c) Anything that has a pattern of multiple /[AGCTU] [AGCTU] [AGCTU]$/i is 

filtered out as RNA codons such as AGT, AUG and etc. 

7) Score boosting: Partial positive scores is given if zero-scored match meet any of 

the following criteria. This is based on the assumption that a legitimate symbol 

can have a zero-confidence score if there is no supporting longer form of gene 

names. This happens quite frequently, where only the abstract is available.  

a) If there is any positive score target within the same block, a partial score of 

0.2 is assigned to the zero-scored target. (e.g., ‘SOD1/NOS1’ where scores 

were 0 for SOD1 and 0.5 for NOS1. In this case, SOD1 gets a partial score of 

0.2. Our assumption is that if part of the word contains a positive scored 

match, the remaining is also likely to be a legitimate gene symbol (as long as 

it is found as a match from the mining steps above). 

b) If there are one or more positive scored neighbors within two-word distance, 

a partial score of 0.2 is assigned to the zero-scored target (e.g., ‘SOD1 TP53 

NOX3 were up-regulated’ where scores were 0 for SOD1, 2.5 for TP53, and 

0.9 for NOX3. Our algorithm assigned 0.2 to SOD1).  

8) Any remaining matches go through EXCLUDE/INCLUDE filtering process.  
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a) Any positive scored matches is checked against EXCLUDE list. If it belongs 

to EXCLUDE list and a corresponding condition is found in the same 

document, then this positive scored match is marked as ‘EXCLUDED’. 

b) Any zero scored matches are also checked against INCLUDE list. If it 

belongs to the INCLUDE list unless it also belongs to EXCLUDE list and its 

corresponding condition is met. 

2.2.4.1.2 Gene name search 

Compared to the Symbol search above, Gene name search is much simpler, as 

summarized below.  

1)  Dictionary loading: The pre-compiled Gene name dictionary is loaded into an 

array (@UNIQNAME) after the following processing. 

A. Replacement of any special characters with a blank space. 

B. Removal any multiple consecutive spaces into a single space. 

C. Conversion into lower case.  

D. Removal of any gene name entry with less than 4 characters. 

E. Additional hash of partial gene names: The official HUGO gene names are 

processed and used for confidence-scoring purpose only. These are not used 

as individual gene name identification but only used during confidence score 

calculation for Symbol search above. Anything that has a match in IGNORE 

list or English dictionary are not included. Minimum word length is 3 to be 

included. FAS: Fas (TNF receptor superfamily, member 6) is given as an 

example. 

i. Fas: Not to be included since it is identical to the main entry. 
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ii. TNF: Included with a partial score of 0.3 

iii. receptor: Not included since it is filtered by English dictionary. 

iv. superfamily: Not included since it is filtered by English dictionary. 

v. member: Not included since it is filtered by English dictionary. 

vi. Fas TNF: Included with a partial score of 0.3 

vii. Fas TNF receptor: Included with a partial score of 0.3 

viii. Fas TNF receptor superfamily: Included with a partial score of 0.3 

ix. Fas TNF receptor superfamily member: Included with a partial score of 

0.3    

F. The main gene name array is sorted in an alphabetical order. 

G. First four characters of each gene name are collected and two hash tables are 

generated. These hash tables are employed as indexes to reduce the search 

space during gene name searching. Four-character threshold has been 

empirically chosen. 

i. %first4codeStart: This hash contains the starting index of 

@UNIQNAME for the entries starting with the given 4-character. 

ii. %first4codeEnd: This hash contains the last index of @UNIQNAME for 

the entries starting with the given 4-character. 

2) Sentences are further split by a space ‘ ‘ and any special characters are removed.  

3) The first four characters of every single word in the document are collected. 

4) For each four-character code, candidate gene names are obtained from the 

@UNIQNAME array using %first4codeStart (as starting index) 
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and %first4codeEnd (as ending index). These names are used in Perl regular 

expression to identify any occurrence in the full document.  

A. Since gene names are so variable in length, we cannot use hash-table based 

approach as in the Symbol search.  

5) Any identification made above is checked against the EXCLUDE filter. 

6) Remaining identifications is reported and the confidence score of 1 is assigned.  

 

In the final step, symbol based identification result and gene name based 

identification result are merged into a single result. 

2.2.4.2 Confidence Scoring Scheme 

The same acronym can be shared by multiple distinct targets, which becomes a major 

obstacle in correctly recognizing abbreviated forms of target names. This ambiguity is 

resolved with a confidence scoring scheme based on the co-occurrence of abbreviated 

symbols and longer descriptions in the same document. Compared to other systems 

employing co-occurrence based approaches (e.g. ProMiner [50]), SciMiner extends the 

co-occurrence search scope to the MEDLINE MeSH records and further allows partial 

name matches. This becomes particularly useful when the full text bodies are not 

available. This scoring scheme is used to 1) resolve the name conflict and 2) increase the 

precision. 

Targets identified through the name dictionary are given a score of ‘1’ and do not 

go through the name resolution process. Targets identified through the symbol dictionary 

are subjected to confidence score calculation based on co-occurrence of longer 

descriptions (entries in the name dictionary and expanded forms). Scores are assigned to 
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each identification (match) according to the following rules: 1) A score of ‘0.5’ is given 

to perfect matches with a longer description from the unique name dictionary; 2) A score 

of ‘0.3’ is given to a partial match to the approved name of the corresponding HUGO 

symbol or full match to the expanded names.  

The following rules are further employed to increase the overall accuracy of the 

mining result by minimizing possible false positives:  

1) A score of 0.5 is given to a match preceding or followed by the following terms; 

gene(s), protein(s), mRNA(s);  

2) A score of 0.3 is given to a match within in a same block of positively scored 

target (a single word in the original text but only separated by special characters) 

like ‘Bcl-xL/Bad’;  

3) A score of 0.2 is given to a match with one word apart from other positive 

matches.  

4) A score of 0.1 is given to a match with two words apart from other positive 

matches.  

5) Any sentence from Acknowledgement and author lines are excluded since 

matches from these sections are very prone to have false positive matching of 

symbols to author names. 

2.2.4.3 User-Provided Filters and Manual Correction 

SciMiner accuracy is increased by allowing users to provide their own filters. The 

IGNORE list may contain entities to be ignored. The INCLUDE and EXCLUDE lists of 

acronyms (or symbols) are included or excluded when conditions are met. For example, 

the default SciMiner EXCLUDE list has ‘SDS’ and ‘sodium dodecyl sulfate’ as its 
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condition. Identification of ‘SDS’ in a text as ‘serine dehydratase’ will be excluded if 

there is an occurrence of ‘sodium dodecyl sulfate’ in the same document. In order to 

further improve the accuracy of mined targets, SciMiner allows users to manually edit 

identified targets on the mining result pages. 

2.2.5 POST-MINING ANALYSIS 

Functional enrichment analyses are performed by comparing the identified targets of one 

search to those of other search results. Fisher’s exact test [110] is used to identify 

statistically significant over-representations of target list entries, Gene Ontology terms, 

MeSH terms, and pathways. This post-mining analysis step provides a simple but 

intuitive way to understand over-represented biological functions. 

2.2.6 VISUALIZATION 

A summary is provided for the Target Recognition and Post-Mining Analysis results and 

the full results are available as a web-page, a simple text file, and an Excel file. The 

molecular interaction networks of the targets can be visualized in Cytoscape [111] by 

following links from the Target Recognition result page. This functionality is enabled by 

the Cytoscape MiMI plug-in [112] and Java Web Start (http://java.sun.com/). 

2.2.7 DATA MANAGEMENT 

SciMiner is implemented in Perl and uses a MySQL database to store compiled 

dictionaries and identified targets. Server-client communication is handled by CGI 

(Common Gateway Interface) scripts. 
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2.3 RESULTS AND DISCUSSION 

2.3.1 PERFORMANCE EVALUATION ON BIOCREATIVE CORPUS 

The performance of target identification was evaluated using the BioCreAtIvE (Critical 

Assessment of Information Extraction systems in Biology) II (Year 2006) Gene 

Normalization (GN) Task as a gold standard [107]. The Gene Normalization task aims at 

correctly identifying the unique identifiers of genes and proteins mentioned in literature 

data and linking them to the NCBI Entrez Gene database. The gold standard set contains 

785 human gene identifiers in a corpus of 262 abstracts. 

With the scoring scheme disabled, SciMiner identified 1,114 human gene 

identifiers of which 677 identifiers were matched to the gold standard set. This 

corresponds to 86.2% recall, 60.8% precision, and 71.3% F-measure. Utilizing the 

SciMiner scoring scheme and optimally tuning the score threshold parameter for each of 

the evaluation measures resulted in maximum values of 87.1% recall (at score threshold 

of zero), 71.3% precision (at score threshold of 0.7), and 75.8% F-measure (at score 

threshold of 0.3). This result suggests that using scoring scheme based improves the 

precision of the target identification.  

Without scoring scheme, an acronym conflict is not resolved and the default 

HUGO ID for the acronym in SciMiner dictionary was reported. Unresolved conflicts 

have contributed to a slight increase in the total number of identifications (1,114 vs 

1,092). For example, the document of PMID 10072587 (titled as “Cloning of a novel 

gene (ING1L) homologous to ING1, a candidate tumor suppressor”) includes the 

following sentence, “The ING1 gene encodes p33 (ING1), a putative tumor suppressor 
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for neuroblastomas and breast cancers, which has been shown to cooperate with p53 in 

controlling cell proliferation.”. With the scoring scheme on, SciMiner correctly identified 

p33 as ING1, but without the scoring scheme, SciMiner incorrectly identified p33 as LTB 

(lymphotoxin beta TNF superfamily, member 3), which had ‘p33’ as one of its 

synonyms.  

Table 2-5 shows the performance summary of SciMiner with various scoring 

thresholds applied and Figure 2-3 illustrates how these measures vary with different score 

thresholds. Recall decreases as score threshold increases. Precision improves as the score 

threshold increases to a value of 0.7, and then decreases slightly. This indicates that 

utilizing the scoring scheme increases the overall precision, but further optimization is 

required. 

 

Table 2-5. Recall, Precision, and F-score for Multiple SciMiner Confidence Score 
Thresholds.  

Score 
Threshold 

Total 
Identification 

True 
Positive 

False 
Positive 

False 
Negative Recall Precision F-

measure 
No Scoring 
Scheme 1114 677 437 108 0.862 0.608 0.713 

0 1092 684 408 101 0.871 0.626 0.729 
0.1 956 659 297 126 0.839 0.689 0.757 
0.2 937 652 285 133 0.831 0.696 0.757 
0.3 929 650 279 135 0.828 0.700 0.758 
0.4 842 597 245 188 0.761 0.709 0.734 
0.5 838 595 243 190 0.758 0.710 0.733 
0.6 816 581 235 204 0.740 0.712 0.726 
0.7 764 545 219 240 0.694 0.713 0.704 
0.8 764 545 219 240 0.694 0.713 0.704 
0.9 738 521 217 264 0.664 0.706 0.684 
1 699 490 209 295 0.624 0.701 0.660 
1.1 689 484 205 301 0.617 0.702 0.657 
1.2 670 468 202 317 0.596 0.699 0.643 
1.3 643 446 197 339 0.568 0.694 0.625 
1.4 637 440 197 345 0.561 0.691 0.619 
1.5 610 417 193 368 0.531 0.684 0.598 
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Figure 2-3 SciMiner Recall, Precision, and F-measure by Different Score Thresholds 

 

At low or zero confidence score thresholds, SciMiner shows very high recall 

rates, but also registers high numbers of false positive identifications leading to relatively 

low precision. However, it should be noted that SciMiner provides users with 

opportunities to improve the overall accuracy. Users are allowed to edit the identification 

results if they find any misidentified targets and can also use custom filters (IGNORE, 

INCLUDE, and EXCLUDE) to improve accuracy. 

Compared to the 54 BioCreAtIvE II Gene Normalization Task results posted by 

20 groups [107], SciMiner’s recall, precision and F-measure rank 2nd, 34th, and 19th, 

respectively. 
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2.3.2 APPLICATION 

SciMiner was run on a query of “Amyotrophic Lateral Sclerosis” and found 3,226 targets 

from 10,625 documents as of 08/31/2008. The most frequently found target was 

superoxide dismutase 1 (SOD1) from 2,198 papers, followed by amyloid beta (APP), 

ubiquitin (RPS27A), microtubule-associated protein tau (MAPT). Post-Mining Analysis 

identified 183 enriched pathways in these targets (p<0.001). They include KEGG 

pathways of amyotrophic lateral sclerosis, apoptosis, and signaling pathways (e.g. MAPK 

and JAK-STAT). 

Post-Mining Analysis was performed between two subsets of the above corpus; 

Query1 (“Amyotrophic Lateral Sclerosis” AND “Reactive Oxygen Species”) and Query2 

(“Amyotrophic Lateral Sclerosis” AND “Inflammation”). This comparison identifies 

targets that are over-represented in either “Reactive Oxygen Species” or “Inflammation” 

in the domain of “Amyotrophic Lateral Sclerosis”. Query1 found 401 targets from 172 

documents, while Query2 found 561 from 168 documents. Catalase (CAT) and SOD1 

were highly over-represented in the Query1 result, while tumor necrosis factor (TNF) and 

interleukin-6 (IL-6) were highly over-represented in the Query2 result. The pathway 

enrichment analysis further found that “DNA repair” and “cytokine-cytokine receptor 

interactions” were the most significantly enriched pathways from the targets of Query1 

and Query2, respectively. 
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2.3.3 CONCLUSION  

SciMiner provides a convenient web-based platform for mining targets (genes and 

proteins) from the biomedical literature with the capacity for functional enrichment 

analyses. SciMiner performs well compared to other methods, but is unique in that it (i) 

searches full text documents (not just abstracts), (ii) allows users to directly edit the 

mining results, and (iii) allows comparisons to be made between search results of 

multiple queries. 
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CHAPTER 3  

LITERATURE-BASED DISCOVERY OF DIABETES- AND ROS-RELATED 

TARGETS 

3.1 INTRODUCTION  

Diabetes is a metabolic disease in which the body does not produce or properly respond 

to insulin, a hormone required to convert carbohydrates into energy for daily life.  

According to the American Diabetes Association, twenty-three million children and 

adults, approximately 7.8% of the population in the United States, have diabetes [1].  The 

cost of diabetes in 2007 was estimated to be $174 billion [1].  The micro- and macro-

vascular complications of diabetes are the most common causes of renal failure, 

blindness and amputations leading to significant mortality, morbidity and poor quality of 

life; however, incomplete understanding of the causes of diabetic complications hinders 

the development of mechanism-based therapies.  

In vivo and in vitro experiments implicate a number of enzymatic and non-

enzymatic metabolic pathways in the initiation and progression of diabetic complications 

[2] including: (1) increased polyol pathway activity leading to sorbitol and fructose 

accumulation, NAD(P)-redox imbalances and changes in signal transduction; (2) non-

enzymatic glycation of proteins yielding "advanced glycation end-products" (AGEs); (3) 

activation of protein kinase C (PKC), initiating a cascade of intracellular stress responses; 
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and (4) increased hexosamine pathway flux [2, 12]. Only recently has a link among these 

pathways been established that provides a unified mechanism of tissue damage.  Each of 

these pathways directly and indirectly leads to overproduction of reactive oxygen species 

(ROS) [2, 12]. 

ROS are highly reactive ions or small molecules including oxygen ions, free 

radicals and peroxides, formed as natural byproducts of cellular energy metabolism.  

ROS are implicated in multiple cellular pathways such as mitogen-activated protein 

kinase (MAPK) signaling, c-Jun amino-terminal kinase (JNK), cell proliferation and 

apoptosis [113-115].  Due to the highly reactive properties of ROS, excessive ROS may 

cause significant damage to proteins, DNA, RNA and lipids.  All cells express enzymes 

capable of neutralizing ROS.  In addition to the maintenance of antioxidant systems such 

as glutathione and thioredoxins, primary sensory neurons express two main detoxifying 

enzymes: superoxide dismutase (SOD) [28] and catalase [116].  SOD converts 

superoxide (O2
-) to H2O2, which is reduced to H2O by glutathione and catalase [116].  

SOD1 is the main form of SOD in the cytoplasm; SOD2 is located within the 

mitochondria.  In neurons, SOD1 activity represents approximately 90% of total SOD 

activity and SOD2 approximately 10% [117].  Under diabetic conditions, this protective 

mechanism is overwhelmed due to the substantial increase in ROS, leading to cellular 

damage and dysfunction [26] .  

The idea that increased ROS and oxidative stress contribute to the pathogenesis of 

diabetic complications has led scientists to investigate different oxidative stress pathways 

[27, 28].  Inhibition of ROS or maintenance of euglycemia restores metabolic and 

vascular imbalances and blocks both the initiation and progression of complications [29, 
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30].  Despite the significant implications and extensive research into the role of ROS in 

diabetes, no comprehensive database regarding ROS-related genes or proteins is currently 

available.  

In the present study, a comprehensive list of ROS- and diabetes-related targets 

(genes/proteins) was compiled from the biomedical literature through text mining 

technology.  SciMiner, a web-based literature mining tool [42], was used to retrieve and 

process documents and identify targets from the text.  The collected ROS-diabetes targets 

were further tested against randomly selected non-ROS-diabetes literature to identify 

targets that are significantly over-represented in the ROS-diabetes literature.  Functional 

enrichment analyses were performed on these targets to identify significantly over-

represented biological functions in terms of Gene Ontology (GO) terms and pathways.   

In order to confirm the biological relevance of the over-represented ROS-diabetes 

targets, the gene expression levels of 9 selected targets were measured in dorsal root 

ganglia (DRG) from mice with and without diabetes. DRG contain primary sensory 

neurons that relay information from the periphery to the central nervous system (CNS) 

[26, 28, 118].  Unlike the CNS, DRG are not protected by a blood-nerve barrier, and are 

consequently vulnerable to metabolic and toxic injury [119]. We hypothesize that 

differential expression of identified targets in DRG would confirm their involvement in 

the pathogenesis of diabetic neuropathy. 

 

3.2 METHODS 

3.2.1 DEFINING ROS-DIABETES LITERATURE 
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To retrieve the list of biomedical literature associated with ROS and diabetes, PubMed 

was queried using (“Reactive Oxygen Species”[MeSH] AND “Diabetes 

Mellitus”[MeSH]).  This query yielded 1,154 articles as of April 27, 2009.  SciMiner, a 

web-based literature mining tool [42], was used to retrieve and process the abstracts and 

available full text documents to identify targets (full text documents were available for 

approximately 40% of the 1,154 articles).  SciMiner-identified targets, reported in the 

form of HGNC [HUGO (Human Genome Organization) Gene Nomenclature Committee] 

genes, were confirmed by manual review of the text.  

 

3.2.2 COMPARISON WITH HUMAN CURATED DATA (NCBI 

GENE2PUBMED) 

The NCBI Gene database provides links between Gene and PubMed.  The links are the 

result of (1) manual curation within the NCBI via literature analysis as part of generating 

a Gene record, (2) integration of information from other public databases, and (3) 

GeneRIF (Gene Reference Into Function) in which human experts provide a brief 

summary of gene functions and make the connections between citation (PubMed) and 

Gene databases.  For the 1,154 ROS-diabetes articles, gene-paper associations were 

retrieved from the NCBI Gene database.  Non-human genes were mapped to homologous 

human genes through the NCBI HomoloGene database.  The retrieved genes were 

compared against the SciMiner derived targets.  Any genes missed by SciMiner were 

added to the ROS-diabetes target set. 
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3.2.3 PROTEIN-PROTEIN INTERACTIONS AMONG ROS-DIABETES 

TARGETS 

To indirectly evaluate the association of literature derived targets (by SciMiner and NCBI 

Gene2PubMed) with ROS and diabetes, protein-protein interactions among the targets 

were surveyed.  This was based on an assumption that targets are more likely to have 

protein-protein interactions if they are truly associated within the same biological 

functions/pathways.  A Protein-Protein Interaction (PPI) network of the ROS-diabetes 

targets was retrieved from the Michigan Molecular Interactions (MiMI, 

http://mimi.ncibi.org/) database and compared against the networks of 100 randomly 

drawn sets from HUGO.  A standard Z-test and one sample T-test were used to calculate 

the statistical significance between the ROS-diabetes PPI network and the random PPI 

networks.  

 

3.2.4 FUNCTIONAL ENRICHMENT ANALYSIS 

Literature derived ROS-diabetes targets (by SciMiner and NCBI Gene2PubMed) were 

subject to functional enrichment analyses to identify significantly over-represented 

biological functions in terms of Gene Ontology [92], pathways (Kyoto Encyclopedia of 

Genes and Genomes (KEGG, http://www.genome.jp/kegg/) [93] and Reactome 

(http://www.reactome.org/) [94]).  Fisher’s exact test [110] was used to calculate 

statistical significance with Benjamini-Hochberg adjusted p-value < 0.05 [120] as the 

cut-off.  

 

3.2.5 OVER-REPRESENTED ROS-DIABETES TARGETS 
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3.2.5.1 Defining Background Corpora 

To identify a subset of targets that are highly over-represented within the ROS-diabetes 

targets, the frequency of each target (defined as the number of documents in which the 

target was identified divided by the number of total documents in the query) was 

compared against the frequencies in randomly selected background corpora.  Depending 

on how the background set is defined, over-represented targets may vary widely; 

therefore, to maintain the background corpora close to the ROS and diabetes context, 

documents were selected from the same journal, volume, and issue of the 1,154 ROS-

diabetes documents, but were NOT indexed with “Reactive Oxygen Species”[MeSH] nor 

“Diabetes Mellitus”[MeSH].  For example, one of the ROS-diabetes articles 

(PMID:18227068), was published in the Journal of Biological Chemistry, Volume 283, 

Issue 16.  This issue contained 85 papers, 78 of which were not indexed with either 

“Reactive Oxygen Species”[MeSH] or “Diabetes Mellitus”[MeSH] indexed.  One of 

these 78 papers was randomly selected as a background document.  Three sets of 1,154 

documents were selected using this approach and processed using SciMiner.  Identified 

targets were confirmed by manual review for accuracy. 

3.2.5.2 Identifying Significantly Over-represented Targets 

ROS-diabetes targets were tested for over-representation against targets identified from 

the three background sets.  Fisher’s exact test was used to determine if the frequency of 

each target in the ROS-diabetes target set was significantly different from that of the 

background sets.  Any targets with a p-value < 0.05 after Benjamini-Hochberg multiple 

testing corrections in at least two of the three comparisons were deemed to be an over-
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represented ROS-diabetes target.  Functional enrichment analyses were performed on 

these over-represented ROS-diabetes targets as described above in Section 3.2.4.  

3.2.5.3 Selecting Targets for Real-time RT-PCR 

A subset of targets were selected for real-time RT-PCR from the top 10 over-represented 

ROS-diabetes targets excluding insulin and NADPH oxidase 5 (NOX5), which does not 

have a mouse ortholog. Nitric oxide synthase 1 (NOS1), the main generator of nitric 

oxide, ranked at the 15th position and was additionally selected for inclusion in the test 

set. 

3.2.6 DIFFERENTIAL GENE EXPRESSION IN DIABETIC DRG  

3.2.6.1 Mice 

DBA/2J mice were purchased from the Jackson Laboratory (Bar Harbor, ME).  Mice 

were housed in a pathogen-free environment and cared for following the University of 

Michigan Committee on the Care and Use of Animals guidelines. Mice were fed AIN76A 

chow (Research Diets, New Brunswick, NJ). Male mice were used for this study. 

3.2.6.2 Induction of Diabetes 

Two treatment groups were defined: control (n=4) and diabetic (n=4).  Diabetes was 

induced at 13 weeks of age by low-dose streptozotocin (STZ) injections, 50 mg/kg/day 

for 5 consecutive days. All diabetic mice received LinBit sustained release insulin 

implants (LinShin, Toronto, Canada) at 8 weeks post-STZ treatment.  Insulin implants 

were replaced every 4 weeks, at 12 and 16 weeks post-STZ treatment.  At 20 weeks post-

STZ treatment, mice were euthanized by sodium pentobarbital overdose and DRG were 

harvested as previously described [121].  
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3.2.6.3 Real-time RT-PCR 

The gene expression of the selected 9 literature-derived ROS-diabetes targets in DRG 

was measured using real-time RT-PCR.  The amount of mRNA isolated from each DRG 

was normalized to an endogenous reference [Tbp: TATA box binding protein; Δ cycle 

threshold (CT)] [122]. 
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3.3 RESULTS  

3.3.1 IDENTIFICATION OF ROS-DIABETES TARGETS 

A total of 1,021 unique targets were identified by SciMiner from the 1,154 ROS-diabetes 

papers defined by the query of (“Reactive Oxygen Species”[MeSH] AND “Diabetes 

Mellitus”[MeSH]) and confirmed by manual review.  Table 3-1 contains the top 10 most 

frequently mentioned targets in the ROS-diabetes papers.  Insulin was the most 

frequently mentioned target, followed by SOD1 and catalase.  

 

Table 3-1. Top 10 Most Frequent ROS-diabetes Targets 

Symbol Name #Paper Match Strings
INS insulin 503 INS | insulin | proinsulin |
SOD1 superoxide dismutase 1 368 Sod1 | SOD1 | SOD-1| *
CAT catalase 241 CAT | catalase | CAT-reversible | *
PRKCA protein kinase C, alpha 194 PKCA | PKC-alpha | PKC-A * 
ALB albumin 179 albumin | serum albumin |
NOX5 NADPH oxidase 5 177 NOX5 | nadph oxidase |
NOS2A nitric oxide synthase 2A 144 NOS | iNOS | Nos2 |*
XDH xanthine dehydrogenase 133 XOR |xanthine dehydrogenase| *
AGT angiotensinogen 131 Ang-II | ANG | AGT | AngI | *
TNF tumor necrosis factor 120 TNFA | TNF | TNF-alpha | *

* Matching strings were truncated to fit in the table. The full contents are available at the ROS-

diabetes webpage (http://jdrf.neurology.med.umich.edu/ROSDiabetes/) [123]. ‘#Paper’ refers to 

the number of documents in which each target was mentioned at least once.  

 

The NCBI Gene2PubMed database, containing expert-curated associations 

between the NCBI Gene and PubMed databases, revealed 90 unique genes associated 

with the 1,154 ROS-diabetes papers.  SciMiner identified 85 out of these 90 targets, 

indicating a 94% recall rate. These Gene2PubMed associations were integrated with the 
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SciMiner results to augment the ROS-diabetes target list to result in 1,026 unique ROS-

diabetes targets (see the ROS-diabetes webpage for more details [123]). 

3.3.2 PROTEIN-PROTEIN INTERACTION NETWORK OF THE ROS-

DIABETES TARGETS  

The PPI network among the ROS-diabetes targets was evaluated using MiMI interaction 

data.  This was based on the assumption that targets commonly related to a certain topic 

are more likely to have frequent interactions with each other.  One hundred PPI networks 

were generated for comparison using the same number of genes (1,026) randomly 

selected from the complete HUGO gene set (25,254).  The PPI network of the ROS-

diabetes targets was significantly different from the randomly generated networks 

indicating their strong association with the topic “ROS and Diabetes”.   

Table 3-2 demonstrates that the mean number of targets with any PPI interaction 

in the randomly generated target sets was 528.9 (approximately 52% of 1,026 targets), 

while the number of targets with any PPI interaction in the ROS-diabetes target was 983 

(96%).  The number of targets interacting with each other was also significantly different 

between the random networks (mean=155.4) and the ROS-diabetes network (mean=879).  

Figure 3-1 illustrates the distributions of these measurements from the 100 random 

networks with the ROS-diabetes set depicted as a red vertical line.  It is obvious that the 

PPI network of the ROS-diabetes targets is significantly different from the random 

networks. 
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Table 3-2. Summary of 100 Randomly Generated PPI Networks 

 
# of targets with any 
interaction 

# of targets interacting with 
each other 

# of direct interactions 
among targets Max degree 

ROS-diabetes Targets 983 879 5002 173 

Mean (100 networks) 528.9 155.4 165.4 25.0 

STDEV (100 networks) 16.0 36.2 54.2 39.7 

Z-Score  28.5 20.0 89.2 3.7 

P-value(Z)  0 0 0 9.6E-05 

T-Statistics -284.8 -200 -891.9 -37.3 

P-value(T)  4.6E-146 6.7E-131 4.0E-195 4.2E-60 
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Figure 3-1. Histograms of Randomly Generated PPI Networks 

The blue histograms illustrate the distributions of 100 randomly generated networks, 

while the red line indicates the ROS-diabetes targets. The network of the ROS-diabetes 

targets is significantly different from the 100 randomly generated networks, indicating 

the overlap of ROS-diabetes targets with respect to the topic “Reactive Oxygen Species 

and Diabetes” 

A B

C D
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3.3.3 FUNCTIONAL ENRICHMENT ANALYSES OF THE ROS-DIABETES 

TARGETS 

Functional enrichment analyses of the 1,026 ROS-diabetes targets were performed to 

identify over-represented biological functions of the ROS-diabetes targets.  After 

Benjamini-Hochberg multiple testing corrections, a total of 189 molecular functions, 450 

biological processes, 73 cellular components and 341 pathways were significantly 

enriched in the ROS-diabetes targets (see the ROS-diabetes webpage for more details 

[123]).  Table 3-3 lists the top 3 most over-represented GO terms and pathways ranked by 

p-values of Fisher’s exact test: e.g., apoptosis, oxidoreductase activity and insulin 

signaling pathway. 

 

Table 3-3. Enriched Functions of 1,026 ROS-diabetes Targets 

Category Term #target p-value Fold 
Biological 
Processes 
GO 

metabolic process 113 3.40E-26 3.3 
protein amino acid phosphorylation 98 2.90E-24 3.5 
response to hypoxia 36 8.80E-24 12 

Molecular 
Functions 
GO 

protein binding 514 2.80E-71 2.1 
oxidoreductase activity 103 1.50E-31 4.2 
transferase activity 148 1.70E-26 2.7 

Cellular 
Components 
GO 

cytoplasm 381 1.50E-57 2.3 
extracellular region 220 9.10E-44 2.9 
mitochondrion 154 6.30E-43 3.9 

Pathway Focal adhesion 75 2.40E-42 9.4 
Apoptosis 49 6.70E-35 14.5 
MAPK signaling pathway 73 4.30E-34 6.9 

‘#target’ refers to the number of ROS-diabetes targets with each biological function with 

Benjamini-Hochberg adjusted p-values. Fold is the ratio of targets from the ROS-diabetes set to 

the complete HUGO gene set. 
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3.3.4 IDENTIFICATION OF OVER-REPRESENTED ROS-DIABETES 

TARGETS 

To identify the ROS-diabetes targets highly over-represented in ROS-diabetes literature, 

three sets of background corpora of the same size (n=1,154 documents) were generated 

using the same journal, volume and issue approach.  The overlap among the three 

background sets in terms of documents and identified targets are illustrated in Figure 3-2.  

Approximately 90% of the selected background documents were unique to the individual 

set, while 50% of the identified targets were identified in at least one of the three 

background document sets.  The frequencies of the identified targets were compared 

among the background sets for significant differences.  None of the targets had a p-value 

< 0.05 after Benjamini-Hochberg corrections, indicating no significant difference among 

the targets from the three different background sets (Table 3-4).  

 

Figure 3-2. Venn Diagrams of Document Compositions and Identified Targets of the 
Randomly Generated Background Sets.  

Approximately 90% of the selected background documents were unique to individual set (A), 

while 50% of the identified targets were identified in at least two of the three background 

document sets (B). 
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Table 3-4. Comparison of Target Frequencies among Three Background Sets. 

  
Symbol Name p-value 

BH 
adjusted 
p-value 

B
G

 S
et

#1
 V

s B
G

 S
et

#2
 

PDHX pyruvate dehydrogenase complex, component X 3.82E-02 1 

IL2 interleukin 2 4.53E-02 1 

MPO myeloperoxidase 4.83E-02 1 

PLAU plasminogen activator, urokinase 6.22E-02 1 

SLC12A1 solute carrier family 12 (sodium/potassium/chloride transporters), member 1 6.22E-02 1 

JAK2 Janus kinase 2 (a protein tyrosine kinase) 6.49E-02 1 

ACACA acetyl-Coenzyme A carboxylase alpha 6.49E-02 1 

MET met proto-oncogene (hepatocyte growth factor receptor) 6.49E-02 1 

PTEN phosphatase and tensin homolog (mutated in multiple advanced cancers 1) 6.49E-02 1 

ACTC1 actin, alpha, cardiac muscle 1 6.90E-02 1 

B
G

 S
et

#1
 V

s B
G

 S
et

#3
 

GFAP glial fibrillary acidic protein 2.21E-02 1 

CD44 CD44 molecule (Indian blood group) 3.11E-02 1 

MYST2 MYST histone acetyltransferase 2 3.11E-02 1 

FCGR3A Fc fragment of IgG, low affinity IIIa, receptor (CD16a) 3.11E-02 1 

IGF1 insulin-like growth factor 1 (somatomedin C) 3.44E-02 1 

IL6 interleukin 6 (interferon, beta 2) 3.62E-02 1 

AGT angiotensinogen (serpin peptidase inhibitor, clade A, member 8) 4.36E-02 1 

PLCG1 phospholipase C, gamma 1 5.14E-02 1 

CBL Cas-Br-M (murine) ecotropic retroviral transforming sequence 6.22E-02 1 

NES nestin 6.22E-02 1 

B
G

 S
et

#2
 V

s B
G

 S
et

#3
 

ACTC1 actin, alpha, cardiac muscle 1 1.46E-03 1 

IGF1 insulin-like growth factor 1 (somatomedin C) 6.06E-03 1 

VWF von Willebrand factor 1.87E-02 1 

PLCG1 phospholipase C, gamma 1 2.20E-02 1 

PLCB1 phospholipase C, beta 1 (phosphoinositide-specific) 2.33E-02 1 

CS citrate synthase 3.11E-02 1 

ALPP alkaline phosphatase, placental (Regan isozyme) 3.82E-02 1 

NPY neuropeptide Y 5.66E-02 1 

CD28 CD28 molecule 6.22E-02 1 

MYST2 MYST histone acetyltransferase 2 6.22E-02 1 
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Comparisons of the ROS-diabetes targets against these background sets revealed 

53 highly over-represented ROS-diabetes targets as listed in Table 3-5.  These 53 targets 

were significant (p-value < 0.05) against all three background sets and significant 

following Benjamini-Hochberg corrections (BH adjusted p-value < 0.05) against at least 

two of the three background sets. SOD1 was the most over-represented in the ROS-

diabetes targets. 

 

3.3.5 FUNCTIONAL ENRICHMENT ANALYSES OF THE OVER-

REPRESENTED ROS-DIABETES TARGETS 

Functional enrichment analyses of the 53 ROS-diabetes targets were performed to 

identify over-represented biological functions. Following Benjamini-Hochberg 

correction, a total of 65 molecular functions, 209 biological processes, 26 cellular 

components and 108 pathways were significantly over-represented when compared 

against all the HUGO genes (see the ROS-diabetes webpage for more details [123]).  

Table 3-6 shows the top three most significantly over-represented GO terms and 

pathways ranked by p-values of Fisher’s exact test.  GO terms related to oxidative stress 

such as “superoxide metabolic process”, “superoxide release”, “electron carrier activity” 

and “mitochondrion” were highly over-represented in the 53 ROS-diabetes targets. 
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Table 3-5. Fifty-three Targets Over-represented in ROS-diabetes Literature  
Rank Symbol HUGO_ID Name #Paper BG #1 BG #2 BG #3 

1 SOD1 11179 superoxide dismutase 1, soluble (amyotrophic lateral sclerosis 1 (adult)) 368 3.1E-84 2.0E-78 2.0E-78
2 CAT 1516 catalase 241 2.1E-50 3.9E-44 3.9E-44 
3 NOX5 14874 NADPH oxidase, EF-hand calcium binding domain 5 177 3.1E-42 3.6E-39 2.1E-37 
4 INS 6081 insulin 503 5.9E-41 2.0E-43 2.3E-39 
5 XDH 12805 xanthine dehydrogenase 133 1.5E-30 1.2E-28 8.8E-28 
6 PRKCA 9393 protein kinase C, alpha 194 7.1E-23 6.4E-26 8.9E-24 
7 NCF1 7660 neutrophil cytosolic factor 1, (chronic granulomatous disease, autosomal 1) 72 7.6E-19 7.7E-16 8.7E-16 
8 NOS3 7876 nitric oxide synthase 3 (endothelial cell) 115 1.6E-18 3.9E-16 7.6E-18 
9 SOD2 11180 superoxide dismutase 2, mitochondrial 85 2.1E-18 7.7E-16 3.8E-15 
10 CYBA 2577 cytochrome b-245, alpha polypeptide 69 4.2E-17 5.0E-13 6.9E-14 
11 NOS2A 7873 nitric oxide synthase 2A (inducible, hepatocytes) 144 3.9E-16 5.2E-12 4.5E-14 
12 AGT 333 angiotensinogen (serpin peptidase inhibitor, clade A, member 8) 131 1.8E-14 1.4E-09 3.5E-08 
13 AKR1B1 381 aldo-keto reductase family 1, member B1 (aldose reductase) 61 8.0E-13 9.5E-13 3.6E-11 
14 CYBB 2578 cytochrome b-245, beta polypeptide (chronic granulomatous disease) 49 4.0E-12 2.6E-09 5.8E-11 
15 NOS1 7872 nitric oxide synthase 1 (neuronal) 82 4.9E-12 3.7E-10 4.7E-09 
16 NCF2 7661 neutrophil cytosolic factor 2 (65kDa, chronic granulomatous disease, autosomal 2) 50 2.4E-11 1.5E-09 3.8E-08 
17 CYCS 19986 cytochrome c, somatic 81 8.7E-10 2.2E-10 2.1E-10 
18 HBB 4827 hemoglobin, beta 101 1.4E-08 5.9E-10 2.2E-08 
19 GSR 4623 glutathione reductase 61 1.4E-08 4.8E-08 4.8E-08 
20 UCP1 12517 uncoupling protein 1 (mitochondrial, proton carrier) 38 4.1E-07 2.1E-06 9.7E-06 
21 NOX4 7891 NADPH oxidase 4 31 6.2E-07 2.3E-04 2.7E-05 
22 PARP1 270 poly (ADP-ribose) polymerase family, member 1 37 7.1E-07 1.1E-07 5.3E-05 
23 UCP2 12518 uncoupling protein 2 (mitochondrial, proton carrier) 34 7.0E-07 4.5E-06 2.1E-05 
24 HBA1 4823 hemoglobin, alpha 1 30 1.1E-06 1.2E-06 9.3E-06 
25 ALB 399 albumin 179 7.0E-06 4.9E-06 1.7E-06 
26 NOX1 7889 NADPH oxidase 1 30 8.2E-06 8.6E-06 9.7E-06 
27 NFKB1 7794 nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105) 90 9.4E-06 1.2E-04 4.5E-04 
28 VEGFA 12680 vascular endothelial growth factor A 57 2.6E-04 1.9E-04 4.1E-03 
29 SOD3 11181 superoxide dismutase 3, extracellular 18 2.5E-04 8.1E-02 3.4E-02 
30 REN 9958 renin 51 3.6E-04 2.2E-02 7.2E-02 
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Rank Symbol HUGO_ID Name #Paper BG #1 BG #2 BG #3 

31 MPO 7218 myeloperoxidase 28 5.7E-04 2.4E-01 5.1E-02 
32 SORD 11184 sorbitol dehydrogenase 15 1.8E-03 1.9E-03 1.8E-03 
33 COL4A1 2202 collagen, type IV, alpha 1 15 1.8E-03 1.3E-02 1.8E-03 
34 TGFA 11765 transforming growth factor, alpha 46 2.1E-03 3.5E-02 3.5E-04 
35 ACE 2707 angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 69 3.8E-03 1.1E-02 1.1E-02 
36 AGTR1 336 angiotensin II receptor, type 1 36 3.7E-03 4.9E-02 1.8E-03 
37 G6PD 4057 glucose-6-phosphate dehydrogenase 19 5.6E-03 3.7E-01 2.1E-01 
38 CP 2295 ceruloplasmin (ferroxidase) 13 6.2E-03 3.1E-01 2.9E-01 
39 NCF4 7662 neutrophil cytosolic factor 4, 40kDa 16 6.7E-03 9.9E-04 9.9E-04 
40 MT-CYB 7427 mitochondrially encoded cytochrome b 15 1.3E-02 1.3E-02 1.3E-01 
41 DUOX1 3062 dual oxidase 1 11 2.2E-02 2.9E-01 1.1E-01 
42 SERPINE1 8583 serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), 37 2.4E-02 2.5E-02 1.1E-03 
43 GSTCD 25806 glutathione S-transferase, C-terminal domain containing 37 2.4E-02 3.8E-01 9.1E-02 
44 COQ7 2244 coenzyme Q7 homolog, ubiquinone (yeast) 16 2.8E-02 1.9E-01 3.1E-02 
45 RAC1 9801 ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein 18 3.0E-02 4.3E-01 7.8E-02 
46 MAOB 6834 monoamine oxidase B 10 3.9E-02 4.1E-01 4.4E-01 
47 UCP3 12519 uncoupling protein 3 (mitochondrial, proton carrier) 17 4.7E-02 1.7E-02 1.8E-02 
48 VCAM1 12663 vascular cell adhesion molecule 1 29 5.4E-02 6.3E-02 3.5E-02 
49 AKT1 391 v-akt murine thymoma viral oncogene homolog 1 75 5.5E-02 4.9E-02 6.4E-02 
50 LEPR 6554 leptin receptor 21 8.7E-02 3.1E-01 1.4E-02 
51 EDN1 3176 endothelin 1 38 8.8E-02 3.8E-01 2.6E-02 
52 COL1A1 2197 collagen, type I, alpha 1 84 8.7E-02 2.6E-02 1.7E-01 
53 CCL2 10618 chemokine (C-C motif) ligand 2 38 2.0E-01 4.9E-02 1.0E-02 

‘ #Paper’ is the number of papers in ROS-diabetes corpus; BG#1, BG#2 and BG#3 are Benjamini-Hochberg adjusted p-values between ROS-
diabetes targets and background sets.  
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Table 3-6. Enriched Functions of the 53 Over-represented Targets in ROS-diabetes 
Literature 

Category Term # target p-value Fold 

Biological 
Processes 
GO 

superoxide metabolic process 7 3.70E-15 303 

electron transport 13 1.50E-12 16 

superoxide release 5 4.20E-11 298 

Molecular 
Functions 
GO 

electron carrier activity 15 1.80E-17 27 

oxidoreductase activity 18 2.20E-16 14 

iron ion binding 15 4.20E-16 21 

Cellular 
Components 

GO 

mitochondrion 13 9.90E-08 6 

extracellular space 10 6.60E-07 8 

soluble fraction 7 3.20E-06 11 

Pathway Leukocyte transendothelial migration 9 6.40E-12 36 

Small cell lung cancer 7 1.00E-09 38 

Formation of Platelet plug 6 1.10E-08 41 

 

3.3.6 GENE EXPRESSION CHANGE IN DIABETES 

Two groups of DBA/2J mice exhibited significantly different levels of glycosylated 

hemoglobin (%GHb). The mean ± SEM were 6.2 ± 0.3 for the non-diabetic control group 

and for 14.0 ± 0.8 for the diabetic group (p<0.001), indicative of prolonged 

hyperglycemia in the diabetic group [121]. DRG were harvested from these animals for 

gene expression assays. Nine genes were selected from the top ranked ROS-diabetes 

targets: superoxide dismutase 1 (Sod1), catalase (Cat), xanthine dehydrogenase (Xdh), 

protein kinase C alpha (Prkca), neutrophil cytosolic factor 1 (Ncf1), nitric oxide synthase 

3 (Nos3), superoxide dismutase 2 (Sod2), cytochrome b-245 alpha (Cyba), and nitric 

oxide synthase 1 (Nos1). Eight genes exhibited differential expression between diabetic 
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and non-diabetic mice (P < 0.05) as shown in Figure 3-3. Cat, Sod1, Sod2, Prkca, and 

Nos1 expression levels were decreased, while Ncf1, Xdh, Cyba expression levels were 

increased in diabetes. 

 

 

Figure 3-3. Gene Expression Levels of 9 ROS-diabetes Targets in DRG Examined by 
Real-time RT-PCR 

Expression levels are relative to Tbp, an internal control (error bar = Standard Error Mean) (*, P 

< 0.05; **, P < 0.01; and ***, P < 0.001).  Eight (Cat, Sod1, Ncf1, Xdh, Sod2, Cyba, Prkca, and 

Nos1) out of the 9 ROS-diabetes genes were significantly regulated by diabetes. 
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3.4 DISCUSSION AND CONCLUSIONS 

Reactive oxygen species (ROS) are products of normal energy metabolism and play 

important roles in many other biological processes such as the immune response and 

signaling cascades [113-115].  As mediators of cellular damage, ROS are implicated in 

pathogenesis of multiple diseases including diabetic complications [124-127].  With the 

aid of literature mining technology, we collected 1,026 possible ROS-related targets from 

a set of biomedical literature indexed with both ROS and diabetes.  

Fifty-three targets were significantly over-represented in the ROS-diabetes papers 

when compared against three background sets.  Depending on how the background set is 

defined, the over-represented targets may vary widely.  An ideal background set would 

be the entire PubMed set; however, this is not possible due to limited access to full texts 

and computational resources.  An alternative method would be to use only abstracts in 

PubMed, but this may not fully represent the literature.  In the present study, background 

documents were randomly selected from the same journal, volume, and issue of the 1,154 

ROS-diabetes documents, which were not indexed with “Reactive Oxygen 

Species”[MeSH] nor “Diabetes Mellitus”[MeSH]. This approach maintained the 

background corpora not far from the ROS and diabetes context. 

The gene expression levels of nine targets selected from the 53 over-represented 

ROS-diabetes targets were measured in diabetic and non-diabetic DRG. Our laboratory is 

particularly interested in deciphering the underlying mechanisms of diabetic neuropathy, 

a major complication of diabetes. Data published by our laboratory both in vitro and in 

vivo confirm the negative impact of oxidative stress in complication-prone neuronal 

tissues like DRG [22, 26, 28, 118]. In an effort to obtain diabetic neuropathy specific 



 

 67

targets, SciMiner was employed to further analyze a subset of the ROS-diabetes papers 

(data not shown). Nerve growth factor (NGF) was identified as the most over-represented 

target in this subset when compared to the full ROS-diabetes set; however, the 

Benjamini-Hochberg adjusted p-value of NGF was not statistically significant (P = 0.06). 

The relatively small numbers of papers and associated targets may have contributed to 

this non-significance. Therefore, the candidate targets for gene expression validation 

were selected from among the 53 over-represented ROS-diabetes targets derived from the 

full ROS-diabetes corpus.  

Among the tested genes, the expression levels of Cat, Sod1, Sod2, Prkca, and 

Nos1 were decreased, while the expression levels of Ncf1, Xdh, and Cyba were increased 

under diabetic conditions. Cat, Sod1, and Sod2 are responsible for protecting cells from 

oxidative stress by destroying superoxides and hydrogen peroxides [26, 27, 116, 117]. 

Decreased expression of these genes may result in oxidative stress [128].  Increased 

expression of Cyba and Ncf1, subunits of superoxide-generating nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase complex [127], also supports enhanced 

oxidative stress. Xdh and its inter-convertible form, Xanthine oxidase (Xod), show 

increased activity in various rat tissues under oxidative stress conditions with diabetes 

[129], and also showed increased expression in diabetic DRG in the current study. 

Unlike the above concordant genes, protein kinase C and nitric oxide synthases 

did not exhibit predicted expression changes in diabetes. Protein kinase C activates 

NADPH oxidase, further promoting oxidative stress in the cell [130, 131]. Decreased 

expression of Prkca in our diabetic DRG is not parallel with expression levels of other 

enzymes expected to increase oxidative stress. Between the two nitric oxide synthases 
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tested in the present study, Nos1 (neuronal) expression was significantly decreased 

(P<0.001) in diabetes, while Nos3 (endothelial) expression was not significant (P = 0.06). 

The neuronal Nos1 is expected to play a major role in producing nitric oxide, another 

type of highly reactive free radical. Thus, with some exceptions, the majority of the 

differentially expressed genes in DRG show parallel results to the known activities of 

these targets in diabetes, suggesting enhanced oxidative stress in the diabetic DRG.  

Among the 53 over-represented ROS-diabetes targets, SOD1 was the most over-

represented and was differentially expressed under diabetic and non-diabetic conditions. 

To the best of our knowledge, no published study has investigated the role of SOD1 in 

the onset and/or progression of diabetic neuropathy.  Mutations of SOD1 have long been 

associated with the inherited form of amyotrophic lateral sclerosis (ALS) [132] and the 

theory of oxidative stress-based aging [133]. Early reports indicate that knockout of the 

SOD1 gene does not affect nervous system development [134], although recovery 

following injury is slow and incomplete [135, 136]. With respect to diabetes, SOD1 KO 

accelerates the development of diabetic nephropathy [137] and cataract formation [138]. 

Thus, examining the SOD1 KO mouse as a model of diabetic neuropathy would be a 

reasonable follow-up study.  

One limitation of the current approach using literature mining technology is 

incorrect or missed identification of the mentioned targets within the literature.  Based on 

a performance evaluation using a standard text set BioCreAtIvE (Critical Assessment of 

Information Extraction systems in Biology) version 2 [139], SciMiner achieved 87.1% 

recall (percentage identification of targets in the given text), 71.3% precision (percentage 

accuracy of identified target) and 75.8% F-measure (harmonious average of recall and 
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precision = (2 x recall x precision) / (recall + precision)) before manual revision [42].  In 

order to improve the accuracy of SciMiner’s results, each target was manually reviewed 

and corrected by checking the sentences in which each target was identified.  

Approximately, 120 targets (~10% of the initially identified targets from the ROS-

diabetes papers) were removed during the manual review process.  The overall accuracy 

is expected to improve through the review process; however, the review process did not 

address targets missed by SciMiner, since we did not thoroughly review individual 

papers.  Instead, five missed targets, whose associations with ROS-diabetes literature 

were available in the NCBI Gene2PubMed database, were added to the final ROS-

diabetes target list.  

Even with these limitations, the present approach enabled us to collect a 

comprehensive list of ROS and diabetes related targets and led us to confirm the 

biological relevance to diabetic neuropathy of the selected ROS-diabetes targets. Using 

SciMiner to identify significantly enriched targets is applicable to any disease or topic of 

interest and will shorten the time needed to assess the literature for relevant and potential 

biological markers of disease. 
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CHAPTER 4  

GENE EXPRESSION PROFILES PREDICTIVE OF DIABETIC NEUROPATHY 

PROGRESSION 

4.1 INTRODUCTION 

Twenty-three million Americans have diabetes and the incidence is increasing by 5% per 

year [1].  The most common complication of diabetes is peripheral neuropathy occurring 

in approximately 60% of all diabetic patients [2, 3].  An additional fifty-seven million 

Americans have impaired glucose tolerance, or pre-diabetes, and up to 30% of these 

patients will exhibit peripheral neuropathy at diagnosis [1, 140, 141].  Diabetic 

neuropathy (DN) is characterized by progressive loss of peripheral nerve axons, resulting 

in decreased sensation, pain, and eventually complete loss of sensation.   

In greater than 50% of patients with DN, there is substantial and irreversible nerve 

damage prior to the development of noticeable symptoms.  The discovery of DN 

biomarkers measurable prior to the onset of permanent damage would permit aggressive 

early therapy of DN to preserve nerve function.  Biomarkers that are highly predictive of 

the development and worsening of diabetic complications are only available for diabetic 

nephropathy [142-145].  Currently, no biomarkers exist for DN, making it impossible to 

detect until clinically obvious symptoms and signs appear, at which point irreparable 

damage has occurred.  
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Our goal is to develop rational treatment paradigms to halt or reverse DN 

progression and to identify individuals at high risk of developing DN.  We are in 

possession of a unique repository of human sural nerve biopsies with matched blood 

chemistries, electrophysiology, and nerve function tests from participants in a large 

randomized placebo-controlled clinical trial [21, 106].  Our initial analyses revealed that 

after correcting for baseline DN severity, the strongest factor correlating with loss of 

sural myelinated fiber density (MFD) was serum triglycerides [21].  These results 

indicate a role for dyslipidemia in the progression of DN.  

In the current study, we use a bioinformatics approach to identify genes and 

pathways altered by DN over the course of one year.  We report the first high-throughput 

genome-wide expression study of human sural nerve biopsies obtained from patients with 

DN.  Gene expression profiles were examined in sural nerve samples from two groups of 

patients with either fast progressing or slow/non-progressing DN by high-throughput 

Affymetrix microarray.  A series of bioinformatics analyses were employed to analyze 

differential gene expression profiles between the two groups and revealed gene networks 

and pathways linked to the progression of DN.  Computational predictive models, based 

on the expression profiles of selected genes, were developed and correctly classified 

patients as exhibiting either progressing or non-progressing DN.  Our best predictive 

models included 14 genes and demonstrated a prediction accuracy of 92% in a separate 

test cohort of patients.  To our knowledge, these gene sets provide the first predictive 

measures of human DN progression and may be used to explore new pathways 

underlying disease pathogenesis. In addition, it provides a unique starting point for 
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targeted serum biomarker development to identify patients at risk for DN prior to the 

onset of irreversible peripheral nerve damage. 

  

4.2 RESEARCH DESIGN AND METHODS 

4.2.1 HUMAN SURAL NERVE SAMPLES 

Human sural nerve biopsies were obtained as part of a double-blind, placebo-controlled, 

52-week clinical trial of acetyl-L-carnitine (ALC) for DN treatment [21, 106].  The 

inclusion and exclusion criteria were described previously [21, 106].  In brief, both type 1 

and 2 diabetic patients were included, all with existing, mild neuropathy.  Measures of 

nerve conduction velocity and sensory function were measured prior to the collection of a 

sural nerve biopsy (week 0 – denoted as the primary sample).  Following 52 weeks of 

treatment, measures of DN were re-assessed and a second sural nerve biopsy was 

harvested (week 52 – denoted as the secondary sample). 

By comparing changes in sural nerve myelinated fiber density (MFD) across the 

course of the study, our post-hoc analysis classified the patient samples into two groups: 

progressors and non-progressors.  Patient samples in the progressor group lost ≥ 500 

fibers/mm2 between the primary and secondary biopsies, while patient samples in the 

non-progressor group lost ≤ 100 fibers/mm2 over 52 weeks [21].  Primary and secondary 

biopsies from 36 patients (18 progressors and 18 non-progressors) were used in this 

study.  The selection of patient samples from each group was adjusted for MFD at trial 

onset, insulin treatment, gender and type of diabetes.  The use of the human sural nerve 

samples was approved by the Institutional Review Board for Human Subject Research at 
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the University of Michigan. 

4.2.2 RNA PREPARATION  

Total RNA was isolated from a 1 cm segment of each sural nerve biopsy using a 

commercially available kit (RNeasy Mini Kit; QIAGEN, Inc., Valencia, CA), including 

an on-column deoxyribonuclease digestion and following the manufacturer’s protocol.  

RNA quality and quantity were assessed by microfluid electrophoresis using an RNA 

6000 Pico LabChip on a 2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA).  

Samples with a minimum RNA Integrity Number (RIN) of 6.5 were used for Microarray 

hybridization [146].  

4.2.3 AFFYMETRIX MICROARRAYS 

Samples meeting the RNA quality criteria were analyzed by microarray.  Total RNA (75 

ng) was amplified and biotin labeled using the Ovation Biotin-RNA Amplification and 

Labeling System (NuGEN Technologies, Inc., San Carlos, CA) according to the 

manufacturer’s protocol.  The University of Michigan Comprehensive Cancer Center 

Affymetrix and Microarray Core Facility (University of Michigan, Ann Arbor, MI) 

performed the amplification and hybridization using the Affymetrix GeneChip Human 

Genome U133 Plus 2.0 Array.  Intensities of target hybridization to respective probe 

features were detected by laser scan of the array.  Image files were generated by 

Affymetrix GeneChip software (MAS5). 

4.2.4 DATA ANALYSIS 

4.2.4.1 Quality Assessment and Data Preprocessing 
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The Affymetrix CEL files were initially analyzed using a local version of the 

GenePattern genomic analysis platform from the Broad Institute [80].  The samples were 

Robust Multi-array Average (RMA) normalized using the BrainArray Custom CDF 

HGU133Plus2_Hs_ENTREZG version 12 [147].  Microarray quality was assessed using 

the probe-level modeling (PLM) and quality metrics provided by the affy package of 

BioConductor [148-150].  Outlier arrays that did not cluster with other arrays in Principal 

Component Analysis (PCA) results were excluded from further analyses [151].    

4.2.4.2 Identification of differentially expressed genes (DEGs) 

Two independent analysis platforms were employed to identify DEGs between different 

biological groups (secondary biopsies; progressors and non-progressors): the GenePattern 

platform using the standard RMA based probe-set approach and ChipInspector (CI; 

version 2.1; Genomatix Software GmbH, Munich, Germany).  The RMA approach 

averages normalized expression levels across all probes for the gene (probe set level 

analysis) whereas Genomatix ChipInspector calculates the change in each probe (probe 

level analysis) [82].  Genes were deemed as DEGs using Cyber-T [152], based on a 

Bayesian regularized t-test, p-value < 0.05 in the RMA approach and a False Discovery 

Rate (FDR) < 0.1% using ChipInspector [82] with a minimum of 4 probes per transcript. 

4.2.4.3 Functional Enrichment Analyses 

The Database for Annotation, Visualization and Integrated Discovery (DAVID) 

(http://david.abcc.ncifcrf.gov/) [88, 89], ConceptGen (http://conceptgen.ncibi.org) [90], 

and LRpath [91] were used to identify over-represented biological functions and 

pathways among the DEGs.  
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4.2.4.4 Network Analysis 

A gene co-citation network of the DEGs was generated by Genomatix BiblioSphere 

(Genomatix Software GmbH, Munich, Germany) using a sentence level co-citation filter.  

This network allows us to visualize an entire network of DEGs and their biological 

connections identified in the literature.  The topology of the network was further analyzed 

by the Fast-Greedy community-structure identification algorithm, implemented in 

Cytoscape plug-in GLay (http://brainarray.mbni.med.umich.edu/sugang/glay/) to identify 

coherent sub-networks.  Identified sub-networks were subjected to functional enrichment 

analyses by DAVID to reveal the over-represented biological functions within each sub-

network. 

4.2.5 PREDICTIVE MODELING USING GENE EXPRESSION PROFILES 

The expression profiles of the DEGs were evaluated for their ability to predict 

progressors versus non-progressors using ridge regression modeling [100-102].  The gene 

expression profiles of the secondary samples, excluding those samples with paired 

primary samples, were used as the training set (13 progressors and 11 non-progressors).  

The expression profiles of the primary samples were used as the testing set (5 progressors 

and 7 non-progressors).  Three different sets of DEGs were used as predictors; set 1 

included all 532 DEGs, set 2 contained 63 DEGs with a minimum fold-change of 1.5, and 

set 3 included 10 DEGs with a minimum fold-change of 2.  To identify a set of genes 

with the least number of genes but with high prediction accuracy, the genes from set 2 

were added to set 3 one at a time until the prediction accuracy of the expanded set 

reached the maximum level of accuracy.  

4.2.6 REAL-TIME RT-PCR 
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The gene expression of eight DEGs identified by microarray was confirmed by real-time 

RT-PCR performed on five independent samples from each secondary group (progressor 

and non-progressor).  Reverse transcription was performed using iScript cDNA Synthesis 

kit (Bio-Rad, Hercules, CA).  Real-time PCR amplification and SYBR Green 

fluorescence detection were performed using iCycler iQ Real-time Detection System 

(Bio-Rad Laboratories, Hercules, CA).  The fluorescence threshold value (CT) was 

calculated using iCycler iQ system software and the levels were normalized to an 

endogenous reference gene TATA box binding protein (TBP) [122].  A Pearson 

correlation coefficient was calculated for each gene between the log2-transformed 

expression values as measured by microarray and the negative of the CT by RT-PCR 

[153].  

 

4.3 RESULTS 

4.3.1 SAMPLE INFORMATION 

Patient information regarding type and duration of diabetes, gender, body mass index and 

circulating lipids is provided in Table 4-1.  The O’Brien score for neuropathy and 

baseline and final MFD are also listed.  The only significant difference between the 

progressor and non-progressor groups was the change in MFD over 52 weeks.  Eighty 

percent of the study participants had type 2 diabetes and 61% were treated with insulin. 
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Table 4-1. Patient Characteristics (n=36) 

    Non-Progressor Progressor P-value 
Gender Male 10 11 1 
 Female 8 7  
Diabetes Types Type 1 3 4 1 
 Type 2 15 14  
Insulin Treatment Yes 11 11 1 
 No 7 7  
Age (years) 54.7 ± 12.9 52.2 ± 10.3 0.524 
Diabetes Duration (years) 10.8 ± 7.2 12.0 ± 7.3 0.622 
Body Mass Index (kg/cm2) 30.0 ± 5.7 31.6 ± 10.3 0.568 
Homoglobin A1C (%) 8.9 ± 1.6 9.2 ± 1.4 0.449 
Triglyceride (mmol/L) 1.8 ± 0.8 2.7 ± 1.9 0.088 
Cholesterol (mmol/L) 5.5 ± 0.8 5.5 ± 0.9 0.938 
O'Brein Score 4179.7 ± 772.2 3854.5 ± 860.1 0.241 
MFD_Base (fibers/mm2) 5133.2 ± 1139.2 5132.8 ± 1450.8 0.999 
MFD_52Wks (fibers/mm2) 5256.8 ± 1200.0 4066.6 ± 1538.7 0.014 * 
MFD_Change (fibers/mm2) 123.6 ± 209.2 -1066.2 ± 391.1 3.84E-13 *** 

Continuous variables are reported as mean ± standard deviation. P-values were calculated by two-

sample t-test for continuous variable and Fisher’s exact test for categorical variables (*: p < 0.05, 

***: p < 0.001) . 

 

4.3.2 IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES AND 

MICROARRAY QUALITY ASSESSMENT  

Figure 4-1 illustrates how many sural nerve biopsies are used in this study. Fifty samples 

(14 primary (7 progressors and 7 non-progressors) and 36 secondary (18 progressors and 

18 non-progressors) samples) met the RNA quality criteria and were examined by global 

gene expression profiling using the Affymetrix Human Genome U133 Plus 2.0 platform.  

Two outlier arrays from the primary progressor group were excluded from further 

analyses (data not shown) and one array from the secondary non-progressor group was 

also excluded due to a labeling error.   
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Primary biopsies
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DN prediction modeling
(n=24) (13 P and 11 NP)

DEG between 
18 P and 17 NP

 

Figure 4-1. Primary and Secondary Biopsies Selection in the Present Study 

Primary and secondary biopsies of 36 DN patients were included in this study. Samples 

with a minimum RIN of 6.5 were used for microarray hybridization. Two outlier arrays 

(primary) and one array with a mislabeling error (secondary) were excluded from further 

analyses.  The secondary samples, excluding those samples with paired primary samples, 

were used as the training set (13 progressors and 11 non-progressors) for DN prediction 

modeling, and the primary samples were used as the testing set (5 progressors and 7 non-

progressors). P denotes progressor and NP denotes non-progressor. 
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The changes in gene expression described below represent changes between 

secondary biopsies from the progressor (n=18) and non-progressor (n=17) groups tested 

by Cyber-T and ChipInspector.  Of the 22,288 Entrez genes available on the array, 

14,885 genes were expressed above background in at least one of the 47 samples.  Genes 

with a Cyber-T Bayesian p-value of less than 0.05 and a ChipInspector FDR < 0.1% were 

considered DEGs.  A total of 558 genes had a Bayesian p-value of less than 0.05, while 

4,899 genes had a ChipInspector FDR < 0.1%.  Only 532 genes deemed as a DEG by 

both methods were included for further analyses.   

Technical validation of the microarray data was performed by real-time RT-PCR 

of 8 DEGs with a minimum fold-change of 1.5.  A subset of 4 DEGs including cystatin 

SN, hepcidin antimicrobial peptide, MLX interacting peptide and beta A2 crystallin 

demonstrated strong positive correlations with the microarray data.  Eosinophil-derived 

neurotoxin (RNASE2) and “family with sequence similarity 43, member B” (FAM43B) 

were negatively correlated with the microarray data.  Real-time RT-PCR compared to 

microarray data revealed 63% of the DEGs were regulated in parallel (Table 4-2). 

 

Table 4-2. Genes Tested by Real-time RT-PCR 

Gene ID Symbol Description Correlation

1469 CST1 cystatin SN  0.9864 

57817 HAMP hepcidin antimicrobial peptide  0.9373 

51085 MLXIPL MLX interacting protein-like  0.8397

1412 CRYBA2 crystallin, beta A2  0.7377 

56605 ERO1LB ERO1-like beta (S. cerevisiae)  0.4713 

10804 GJB6 gap junction protein, beta 6, 30kDa  0.1152 

6036 RNASE2 ribonuclease, RNase A family, 2 (liver, eosinophil-derived 
neurotoxin) 

-0.0535 

163933 FAM43B family with sequence similarity 43, member B -0.7099 
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4.3.3 FUNCTIONAL ENRICHMENT ANALYSES 

Functional enrichment analyses of the 532 DEGs discovered in the secondary biopsies 

(progressor versus non-progressor) were performed to identify over-represented 

biological functions in Gene Ontology (GO) terms and pathways.  DAVID identified 31 

and 168 over-represented biological functions among the up- and down-regulated DEGs 

in the progressor group, respectively (DAVID p-value < 0.05).  Table 4-3 lists a selected 

subset of the over-represented biological functions; the up-regulated genes in progressors 

(i.e., down-regulated in non-progressors) were enriched in “extracellular region”, 

“defense response” and “inflammatory response” (Table 4-4), while down-regulated 

genes in progressors (i.e., up-regulated genes in non-progressors) were enriched in energy 

metabolism related functions such as “glucose metabolic process”, “PPAR signalling 

pathway” and “regulation of lipid metabolic process” (Table 4-5). 

 

Table 4-3. Over-represented Biological Functions in DEGs 

  Biological function Gene 
Count p-value Enrichment 

fold 

Up-regulated in 
progressors 

extracellular region 58 6.86E-07 1.9 

prostanoid metabolic process 4 2.24E-03 14.9 

defense response 18 5.99E-03 2.1 

inflammatory response 12 6.24E-03 2.6 

regulation of axonogenesis 5 8.34E-03 6.2 

response to wounding 15 1.75E-02 2.0 

Down-regulated 
in progressors 

chemical homeostasis 20 8.25E-06 3.3 

glucose metabolic process 11 1.21E-05 6.1 

glycerolipid metabolic process 11 2.01E-05 5.8 

PPAR signaling pathway 8 7.04E-05 7.6 

regulation of lipid metabolic process 9 4.93E-05 6.8 

response to insulin stimulus 8 1.67E-04 6.8 
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Table 4-4. DEGs Related to Defense Response and Inflammatory Response (Up-regulated Genes in Progressors) 

 

  
Entrez 
ID Symbol Description P-value 

Fold-
change 

defense 
response 

 136 ADORA2B adenosine A2b receptor 0.0133 1.4 
2788 GNG7 guanine nucleotide binding protein (G protein), gamma 7 0.0336 1.2 
7033 TFF3 trefoil factor 3 (intestinal) 0.0127 1.5 
23601 CLEC5A C-type lectin domain family 5, member A 0.0207 1.7 
57817 HAMP hepcidin antimicrobial peptide 0.0025 2.4 
81035 COLEC12 collectin sub-family member 12 0.0152 1.2 

 inflammatory 
response 

140 ADORA3 adenosine A3 receptor 0.0327 1.3 
624 BDKRB2 bradykinin receptor B2 0.0273 1.2 
3075 CFH complement factor H 0.0010 1.2 

4282 MIF 
macrophage migration inhibitory factor (glycosylation-
inhibiting factor) 0.0282 1.1 

4973 OLR1 oxidized low density lipoprotein (lectin-like) receptor 1 0.0003 1.6 
7852 CXCR4 chemokine (C-X-C motif) receptor 4 0.0388 1.3 
10344 CCL26 chemokine (C-C motif) ligand 26 0.0004 3.2 
10630 PDPN podoplanin 0.0202 1.2 
25824 PRDX5 peroxiredoxin 5 0.0200 1.1 
53833 IL20RB interleukin 20 receptor beta 0.0185 1.3 
57834 CYP4F11 cytochrome P450, family 4, subfamily F, polypeptide 11 0.0372 1.4 
148022 TICAM1 toll-like receptor adaptor molecule 1 0.0379 1.2 
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Table 4-5. DEGs Related to Lipid Metabolism and PPAR Signaling Pathway (Down-regulated Genes in Progressors) 

 

  Entrez ID Symbol Description 
P-
value 

Fold-
change 

regulation of 
lipid 
metabolic 
process 

348 APOE apolipoprotein E 0.0266 0.8 
2180 ACSL1 acyl-CoA synthetase long-chain family member 1 0.0379 0.8 
3952 LEP leptin 0.0099 0.7 
5140 PDE3B phosphodiesterase 3B, cGMP-inhibited 0.0126 0.7 
5468 PPARG peroxisome proliferator-activated receptor gamma 0.0426 0.7 
8660 IRS2 insulin receptor substrate 2 0.0118 0.9 
9370 ADIPOQ adiponectin, C1Q and collagen domain containing 0.0094 0.7 
51085 MLXIPL MLX interacting protein-like 0.0083 0.7 
57104 PNPLA2 patatin-like phospholipase domain containing 2 0.0206 0.8 
100129500 LOC100129500 hypothetical LOC100129500 0.0485 0.7 

PPAR 
signaling 
pathway 

948 CD36 CD36 molecule (thrombospondin receptor) 0.0373 0.7 
2180 ACSL1 acyl-CoA synthetase long-chain family member 1 0.0379 0.8 
4199 ME1 malic enzyme 1, NADP(+)-dependent, cytosolic 0.0181 0.8 
5105 PCK1 phosphoenolpyruvate carboxykinase 1 (soluble) 0.0497 0.8 
5346 PLIN perilipin 0.0092 0.7 
5468 PPARG peroxisome proliferator-activated receptor gamma 0.0426 0.7 
6319 SCD stearoyl-CoA desaturase (delta-9-desaturase) 0.0241 0.7 
9370 ADIPOQ adiponectin, C1Q and collagen domain containing 0.0094 0.7 
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The DEGs were further analyzed by ConceptGen, another gene set enrichment 

analysis tool equipped with a network visualization capability.  ConceptGen also applies 

additional biological information such as MeSH terms and differential expression profiles 

from the Gene Expression Omnibus (GEO).  Figure 4-2 illustrates the over-represented 

concepts (sets of genes associated with common biological functions) of the up-regulated 

(1A) and down-regulated (1B) DEGs.  Over-represented GO terms and pathways are 

similar to those identified by DAVID, for example, the concepts of “defense response” 

and “inflammatory response” in the up-regulated DEGs and the energy metabolism 

related concepts in the down-regulated DEGs.  ConceptGen also identified MeSH terms 

that are highly associated with the DEGs.  Interestingly, the down-regulated DEGs were 

enriched with MeSH terms such as lipids, fatty acids, triglycerides, cholesterol, and 

insulin suggesting decreased energy metabolism in fast progressing DN. 

LRpath identified over-represented biological functions regarding GO terms and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.  Unlike DAVID or 

ConceptGen, LRpath does not require users to provide a predefined set of DEGs.  

Instead, LRpath analyzes statistical significance (Cyber-T p-value in the current study) of 

all genes expressed above background in the microarray.  LRpath identified 606 GO 

terms and 31 KEGG pathways, which were differentially expressed (LRpath p-value < 

0.05).  The most over-represented terms included metabolic process related terms such as 

“regulation of lipid metabolic process”, “monocarboxylic acid metabolic process” and 

“PPAR signaling pathway”. 
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Figure 4-2. A Network of Over-represented Biological Concepts by ConceptGen 

The concepts (gene sets) over-represented in the up-regulated genes (A) and down-regulated genes (B) in progressors. The center 

nodes in violet, titled as “GP-CI-Common-SP-SN…”, refers to the DEGs 
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4.3.4 NETWORK ANALYSIS 

Once over-represented biological functions of DEGs were identified, we examined 

potential relationships among DEGs. Figure 4-3 illustrates a literature derived gene 

network of the DEGs created by BiblioSphere based on sentence level co-citations of 

DEGs.  The network is composed of five sub-networks centered on the 5 most connected 

genes: jun oncogene (JUN), leptin (LEP), serpin peptidase inhibitor E Type 1 

(SERPINE1), apolipoprotein E (APOE) and PPARG.  The complete network was further 

analyzed by a Cytoscape plug-in GLay to cluster the genes into subgroups based on the 

network structure.  As depicted in Figure 4-4, 6 clusters with a minimum of 8 genes were 

identified by the Fast-Greedy algorithm [154] implemented in the GLay plug-in.  

Functional enrichment analyses of these sub-networks using DAVID identified 

representative biological functions within each cluster: cell death and inflammatory 

response for cluster 1, glucose and lipid metabolism for cluster 2, cell projection and 

axonogenesis for cluster 3, cellular homeostasis and cofactor metabolic process for 

cluster 4, cytoskeletal protein binding for cluster 5, and Wnt receptor signaling pathway 

for cluster 6. 
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Figure 4-3. Gene Co-citation Network of DEGs by BiblioSphere PathwayEdition 
A literature derived gene network of the DEGs was created by BiblioSphere PathwayEdition using sentence level co-citations of 

DEGs. The network is composed of five sub-networks centered on the 5 most connected genes: JUN, PPARG, LEP, SERPINE1 and 

APOE. 
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Figure 4-4. Gene Co-citation Network Clustered by Fast-Greedy Community Structuring Algorithm
The complete co-citation network of the DEGs was clustered based on network topology by Fast-Greedy algorithm implemented in

the Cytoscape GLay plug-in. Nodes (genes) highlighted in red or yellow refer to the highly connected genes: nodes in red refer to the

core genes in Figure 2, while nodes in yellow refer to highly connected genes that were not core genes in Figure 2. 
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4.3.5 PREDICTIVE MODELING OF DN PROGRESSION BASED ON GENE 

EXPRESSION PROFILES  

Ridge regression models based on a subset of DEGs were used to predict the status of 

patient samples as progressors/non-progressors.  Three different sets of DEGs were used 

in our initial models; set 1 included all 532 DEGs, set 2 contained 63 DEGs with a 

minimum fold-change of 1.5, and set 3 included 10 DEGs with a minimum fold-change 

of 2.  The regression models were trained using the gene expression profiles of the 24 

secondary samples obtained at the 52-week time point and then tested on 12 primary 

samples obtained at study initiation.  Table 4-6 summarizes the performance of these 

models.  Briefly, both models using DEG sets 1 and 2 achieved a prediction accuracy of 

92% (11 correct predictions of 12), while the smallest model based on set 3 demonstrated 

a prediction accuracy of 50%. 

 

Table 4-6. Performance of Predictive Models 

Model # of 
genes 

classification 
accuracy 

sensitivity (true 
progressor prediction) 

specificity (true non-
progressor prediction) 

M1 529 0.92 (11/12) 0.80 (4/5) 1.00 (7/7) 

M2 63 0.92 (11/12) 0.80 (4/5) 1.00 (7/7) 

M3 10 0.5 (6/12) 0.40 (2/5) 0.57 (4/7) 
 

 

In order to create a model using the smallest set of DEGs but with the same 

prediction accuracy, we began with set 3 and individual DEGs from set 2 were 

sequentially added.  The predictive power was assessed following each addition until the 

new set achieved the original prediction accuracy.  The result was 4 sets of 14 DEGs, 
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beyond which the addition of new DEGs did not increase accuracy.  Table 4-7 lists these 

4 models, all of which achieved a prediction accuracy of 92% when tested on the primary 

samples.  Each model includes 10 base DEGs from set 3 and 4 combinations of 11 DEGs 

from set 2 (Table 4-8).  

 

Table 4-7. Predictive Models with 14 Genes Achieving a Prediction Accuracy of 92% on 

the Primary Sample 

Model 
classification 
accuracy 

sensitivity (true 
progressor prediction) 

specificity (true non-
progressor prediction) 

1 0.92 (11/12) 0.80 (4/5) 1.00 (7/7) 

2 0.92 (11/12) 1.00 (5/5) 0.86 (6/7) 

3 0.92 (11/12) 0.80 (4/5) 1.00 (7/7) 

4 0.92 (11/12) 1.00 (5/5) 0.86 (6/7) 

Iterative search identified 4 models composed of 14 achieving the highest prediction 

accuracy on the primary samples. 
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Table 4-8. The Gene Content of the 4 Models with 14 Genes 

 

 
 Model# EntrezID Symbol Description Cyber-T 

P-value 
Fold-
Change

B
as

e 

        1469 CST1 cystatin SN 0.0349 10.0 
    10804 GJB6 gap junction protein, beta 6, 30kDa 0.0011 5.5 
    10344 CCL26 chemokine (C-C motif) ligand 26 0.0004 3.2 
    10647 SCGB1D2 secretoglobin, family 1D, member 2 0.0033 2.9 
    57817 HAMP hepcidin antimicrobial peptide 0.0025 2.4 
    6036 RNASE2 ribonuclease, RNase A family, 2 (liver, eosinophil-derived neurotoxin) 0.0088 2.4 
    3860 KRT13 keratin 13 0.0315 2.4 
    4741 NEFM neurofilament, medium polypeptide 0.0036 2.1 
    1412 CRYBA2 crystallin, beta A2 0.0065 2.1 
        80763 C12orf39 chromosome 12 open reading frame 39 0.0057 0.4 

A
dd

iti
on

al
 

 2   1381 CRABP1 cellular retinoic acid binding protein 1 0.0361 1.8 
1    11341 SCRG1 stimulator of chondrogenesis 1 0.0096 1.7 
1   4 163933 FAM43B family with sequence similarity 43, member B 0.0268 1.7 
   4 11081 KERA keratocan 0.0010 1.6 
   4 10562 OLFM4 olfactomedin 4 0.0013 1.6 
  3  55825 PECR peroxisomal trans-2-enoyl-CoA reductase 0.0043 0.7 
1    51085 MLXIPL MLX interacting protein-like 0.0083 0.7 
 2 3  153918 FAM164B family with sequence similarity 164, member B 0.0052 0.6 
  3  3112 HLA-DOBmajor histocompatibility complex, class II, DO beta 0.0356 0.6 
1 2 3 4 56605 ERO1LB ERO1-like beta (S. cerevisiae) 0.0014 0.6 
  2     225 ABCD2 ATP-binding cassette, sub-family D (ALD), member 2 0.0054 0.6 
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4.4 DISCUSSION 

DN is the most common diabetic complication, affecting up to 60% of all diabetic 

patients and is a major factor contributing to injury, poor wound healing and lower 

extremity amputation [155, 156].  The pathogenesis of DN includes hyperglycemia-

induced oxidative stress and deranged polyol metabolism, changes in nerve 

microvasculature, decreased growth factor support and dysregulated lipid metabolism [2, 

124].  Any one of these factors is enough to severely impair nerve function and all are 

likely to contribute to DN.  Addressing these deficits alone or in combination has yet to 

result in effective DN treatment, confirming that an increased understanding of the 

mechanisms underlying the onset and progression of DN is of prime importance.  The 

current study takes an important first step towards this goal by identifying a specific set 

of genes whose expression is predictive of human DN progression and analyzing their 

interactions within known cellular pathways.  Identifying common elements in these 

complex networks will yield novel insights into disease pathogenesis, provide new 

therapeutic targets and identify potential DN biomarkers. 

Our initial analyses of this data set classified the patient samples based on MFD 

and found that two large groups emerged; those with a loss of MFD > 500 fibers/mm2 

over 52 weeks (progressors) and those whose MFD was relatively stable (MFD loss ≤ 

100 fibers/mm2 over 52 weeks, non-progressors) [21].  We examined sural nerve biopsies 

from these two patient groups to discover differences in gene expression that could 

account for the differences in the clinical course of human DN.  We employed statistical 

methods to refine our data analyses [82, 122, 152] and narrowed our results from 14,885 
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expressed genes to 532 DEGs that were differentially expressed between the secondary 

nerve biopsies from the progressors and non-progressors. 

Functional enrichment analyses identified two biological functions, “defense 

response” and “inflammatory response”, containing 12 or more up-regulated genes in 

patients classified as progressors.  Increasing evidence implicates these same two 

processes in the development and progression of diabetic nephropathy [157-159].  For 

example, chemokines, toll-like receptors, adhesion molecules, and cytokines, which are 

all involved in inflammation and identified as up-regulated DEGs in progressors, are 

instrumental in the pathogenesis of diabetic nephropathy [160].  One specific gene from 

the inflammatory group, bradykinin receptor B2 (BDKRB2), is of particular interest for 

two reasons.  First, BDKRB2 regulates the expression of genes involved in progressive 

glomerulosclerosis such as tumor growth factor beta 1 (TGF-β1) and p53 [161] and, 

second, we recently reported that type 1 diabetic mice with dysregulated BDKRB2 

developed enhanced nephropathy and neuropathy [162].  Another specific gene of 

interest, membrane-associated adenosine A3 receptor (ADORA3), comes from the family 

of “defense” genes.  It is also implicated in the pathogenesis of diabetic nephropathy as 

ADORA3 along with other adenosine receptors exhibit differential gene expression and 

cellular and tissue distribution in diabetic kidney [163].  Thus, the up-regulation of 

cytokines, chemokines and genes such as DBKRB2 and ADORA3 in our study (Table 

4-4) suggests enhanced inflammation and dysregulated defense responses in the sural 

nerves of patients with progressive DN.  Further exploration of these pathways in 

experimental models of DN could yield sufficiently new insight into the human disease 

process to allow for the development of mechanism-based therapies. 
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The down-regulated DEGs in the progressors were enriched with biological 

functions related to energy metabolism including “glucose metabolic process” and 

“PPAR signaling pathway”.  Among these DEGs, PPARG, encoding a nuclear receptor 

for glitazone, plays a key role in regulating glucose and lipid metabolism [164-166].  

Agonists of PPARG are effective in ameliorating DN and nephropathy in animal models 

[122, 167, 168].  Another key gene is APOE, encoding an apolipoprotein class, which 

regulates the normal catabolism of triglycerides and cholesterol [169, 170].  A 

polymorphism of this gene is linked to the progression of diabetic nephropathy [171, 

172].  Decreased levels of PPARG and APOE as well as other lipid metabolism related 

DEGs correlates well with the increased levels of lipids in these patients and our recent 

finding that altered lipid metabolism may play a role in the progression of DN [21]. 

Although the functional enrichment analyses identify over-represented biological 

functions in general, they do not reveal how the DEGs are potentially interacting with 

each other in a network.  To obtain a global view of the network, we examined gene 

interaction networks based on literature derived co-citation information (Figure 4-3 and 

Figure 4-4).  Although co-citation of two genes in a single sentence does not necessarily 

indicate there is a direct interaction, this process may reveal novel associations and lend 

new insights into function [65, 173, 174].  In the current study, the BiblioSphere co-

citation network demonstrated potential interactions among DEGs and identified 5 major 

sub-networks centered on the following genes; PPARG, APOE, SERPINE1, JUN and 

LEP.  Figure 4-3 is a snapshot of a BiblioSphere Pathway View of this network with 

PPARG used as the seed node; however, this view does not show all of the identified co-

citations.  
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The majority of the key genes identified in our network analyses are implicated in 

the pathogenesis of diabetes and diabetic complications (mainly diabetic nephropathy) as 

summarized in Table 4-9.  PPARG and APOE, of particular interest in diabetic 

nephropathy, regulate fatty acid storage and glucose metabolism [165], and are down-

regulated in progressors.  Systemically, down-regulation of either gene in adipocytes 

leads to a decrease in serum lipid uptake with subsequent hyperlipidemia [166] and a 

predisposition towards developing DN [21].  Thiazolidinediones, powerful PPARG 

agonists, have proven effective in ameliorating DN in experimental models of diabetes 

[122, 167, 168].  These effects may result from direct action on neurons [175] or 

Schwann cells [122, 167] or by indirectly inhibiting macrophage infiltration [167] and 

local cytokine regulation [168].  SERPINE1, encoding plasminogen activator inhibitor 1 

(PAI-1), regulates fibrinolysis [176]. Elevated levels of plasma PAI-1 are associated with 

higher incidences of diabetes [177-180] and knocking out PAI-1 ameliorated diabetic 

nephropathy in mice [181, 182].  Mutations in the appetite controlling LEP gene (ob/ob) 

and its receptor LEPR (db/db) have been extensively studied as animal models of type 2 

diabetes with hyperglycemia and hyperlipidemia [121, 183].  A recent study suggested 

leptin’s therapeutic effect in a combinatorial treatment with insulin in type 1 mice [184].  

JUN oncogene, forming the AP-1 transcription factor, is involved in cellular processes of 

cell cycle control and death [185].  JUN’s associated protein family, c-Jun N-terminal 

kinases (JNK), key signaling molecules linking inflammation and insulin resistance, are 

significantly activated in multiple tissues including sural nerve of type 1 and 2 diabetic 

patients [186-188].  Thus, the enriched biological functions and the networks of the 
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DEGs reflect current theories with regard to metabolic dysregulation in diabetes and its 

complications [189].   

To fully incorporate all of the co-citation connections among the DEGs, we 

applied the Fast-Greedy algorithm, a community structure identification algorithm, to the 

entire co-citation network.  Fast-Greedy, based on a hierarchical agglomeration 

algorithm, outperformed other methods in detecting community structure or sub-networks 

[190-192], the gathering of nodes into groups such that nodes are more densely connected 

within groups than between groups [154].  Analysis by Fast-Greedy grouped LEP and 

PPARG together within the context of glucose and lipid metabolism and JUN and 

SERPINE1 within the context of cell death and inflammation.  Three other sub-networks 

were identified with noteworthy key genes: “cell projection and axonogenesis” with 

nerve growth factor receptor (NGFR), “cellular homeostasis and inflammatory response” 

with thioredoxin (TXN) and “cytoskeletal protein binding” with stathmin 1 (STMN1).  

NGFR exerts protection against nerve damage [193, 194] and the expression of NGFR 

protein in plasma correlates with DN progression in diabetic rats [195].  Thioredoxin, 

which regulates cellular oxidative stress, is also implicated in diabetes.  Thioredoxin’s 

anti-oxidant activity was significantly inhibited by hyperglycemia, which suggests its 

important role in vascular oxidative stress and inflammation in diabetes [196].  No direct 

implication of STMN1, a major regulator of microtubule dynamics, in diabetes is 

currently known; however, microtubule-stabilizing agents (MSTA) including taxanes and 

epothilones induce severe peripheral neuropathy in over 30% of MSTA-treated cancer 

patients [197].  This finding may suggest STMN1’s possible involvement in neuropathy 

pathogenesis, and is worth further investigation. 
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Our next goal was to use observed DEG expression to predict and/or classify the 

separate subset of biopsies.  Ridge regression models based on subsets of DEGs were 

evaluated for their accuracy in identifying samples as progressors and non-progressors.  

Regression modeling is extremely useful in predicting the progression of cancer and 

diabetic nephropathy [100-102].  In the current study, gene expression profiles from 

secondary biopsy samples of known MFD (progressors or non-progressors) were 

compared and used in training the models.  The models were then used to classify the 

expression profiles of a set of primary biopsies for the progression endpoint 12 months 

later.  The best predictive models included 14 genes and correctly classified 11 out of 12 

test samples.   

Naïve Bayes classification algorithm based on physiologic and demographic data 

of these patients demonstrated a classification accuracy of 63% in our previous study 

[21].  The most influential factors in this model were triglycerides, cholesterol, and a 

clinical symptom score.  The present study demonstrates that gene expression profiles 

achieve much higher prediction accuracy (92%) than the clinical parameters and are 

better predictors of future DN progression.  As shown in Table 1, the study population 

included both type 1 and 2 diabetes patients with a wide range of clinical parameters.  

Nevertheless, our expression-based predictive models correctly predicted DN progression 

regardless of diabetes type and other clinical characteristics.  

We hypothesize that the genes identified in our best predictive models (Table 4-8) 

represent products or “genetic biomarkers” of the biological networks involved in DN 

onset and progression.  This idea is reinforced by the fact that several of the genes have 

known associations with diabetes or diabetic complications. We are particularly 
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interested in CST1, whose expression was increased by 10 fold in progressors.  CST1, 

encoding a cysteine protease inhibitor, was initially implicated in gastric and colorectal 

tumorigenesis [198, 199]. Another member of this protein family, cystatin C (CST3), has 

been identified as a prime predictor of diabetic nephropathy progression [200, 201]. 

Although the CST1 gene product has not been investigated in the context of diabetic 

complications, it is detectable in saliva, tears and urine [199].  To date, there are no 

definitive biomarkers of DN progression easily accessed from body fluids and we 

speculate that CST1 could prove to be a novel and easily measureable biomarker for DN. 

Other identified genes with measurable endproducts and a previous association with 

diabetes and its complications include CRYBA2, encoding beta-crystallin A2.  Beta-

crystallin A2 is enhanced in both the lens and serum of STZ-induced diabetic rats during 

the course of cataractogenesis [202], but has not been measured in either experimental 

animals or humans with DN. Neurofilament medium peptide (NEFM) along with 

neurofilament heavy peptides (NEFH) are decreased in experimental DN and 

significantly correlate with lowering of both motor and sensory nerve conduction 

velocities in DN [203]. Serum antibodies to NEFM have been reported in an 

experimental model of toxic neuropathy, but have not been studied in DN [204]. HLA-

DOB, encoding the histocompatibility complex class II DO beta, is identified as a type 1 

diabetes susceptibility gene [205], but there are no reports how this HLA antigen is 

associated with DN.  

As we hypothesized, other genes in the predictive models are not directly known 

to be involved in diabetes or its complications but are downstream markers of the 

biological networks we identified as being activated in DN progression.  Of these, the 
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most noteworthy are the gene products associated with inflammation or oxidative stress 

that may be measured in serum.  These include CCL26 encoding eotaxin-3, an immune-

regulatory cytokine [206]; HAMP encoding hepcidin antimicrobial peptide, whose 

expression is increased by inflammation [207]; and olfactomedin 4 (OLFM4), a robust 

marker for stem cells, is regulated by NF-kappaB, which modulates inflammation and 

oxidative stress [208]. Two genes are associated with another identified biological 

network, lipid metabolism.  Peroxisomal trans-2-enoyl-CoA reductase (PECR) is 

involved in fatty acid metabolic processes [209] and ABCD2, encoding ATP-binding 

cassette subfamily D (ALD) member 2, regulates the peroxisomal import of fatty acids 

and fatty acyl-CoAs [210].  Like the markers of inflammation, these products may be 

measured in serum and could prove to be novel biomarkers.  

In summary, we report for the first time differential gene expression of human 

sural nerves from patients with progressive and non-progressive DN.  Biological 

enrichment and network analyses identified several novel areas of biological importance, 

yielding new insight into disease pathogenesis and opening up new areas of potential 

investigation for the discovery of mechanism-based therapies.  While translating gene 

expression to predictive biomarkers measurable in the clinic remains a challenge, we 

report several novel potential biomarker candidates for DN.  Collectively, our results 

represent the first exploration of gene expression arrays from human sural nerves of 

patients with varying degrees of DN and provide new insight into disease pathogenesis 

and biomarker identification. 
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Table 4-9. Key Genes Identified in the Co-citation Network Analyses  

PPARG.  PPARG gene encodes a type 2 nuclear receptor, the glitazone receptor or 
nuclear receptor subfamily 1 group C member (NR1C3) [164]. PPARG plays a crucial role 
in regulating glucose metabolism and fatty acid storage [165], where the genes activated by 
PPARG stimulate uptake of serum lipid and glucose. Down-regulation of PPARG increases 
serum lipid with subsequence hyperlipidemia [166], a predisposition towards developing 
DN [21].  Agonists of PPARG have proven effective in ameliorating DN in experimental 
models of diabetes [122, 167, 168]. 

APOE. APOE gene encoding a class of apolipoprotein, a major component of the 
chylomicron, plays an essential role for the normal catabolism of triglyceride and 
cholesterol [169]. APOE was mainly studied in the context of dyslipoproteinemia [170] and 
cardiovascular diseases [211]; however, APOE has been implicated other biological 
processes such as Alzheimer’s disease [212] and immunoregulation [213]. With respect to 
diabetes, polymorphism of APOE has also been implicated in the progression of diabetic 
nephropathy [171, 172]. 

SERPINE1. SERPINE1 gene encodes plasminogen activator inhibitor 1 (PAI-1), a 
member of the serine protease inhibitor superfamily. PAI1 inhibits fibrinolysis (the 
physiological breakdown of blood clots) by suppressing tissue plasminogen activator (tPA) 
and urokinase (uPA) [176]. Elevated levels of plasma PAI-1are associated with higher 
incidence of both type 1 and 2 diabetes [177-180].  Kidney of human with diabetic 
nephropathy and animal models exhibited enhanced levels of PAI-1 [214, 215]. Diabetic 
nephropathy was ameliorated by knockout of PAI-1 in a mouse model [181, 182].  

JUN.  JUN gene encodes c-Jun forming the AP-1 transcription factor in 
combination with c-Fos, c-Maf, and ATF [185]. The transcription factor AP-1 is involved in 
cellular processes of cell cycle control, proliferation, transformation and death [185]. 
Mutations in JUN have been implicated in various cancers including hepatocellular 
carcinomas [216] and intestinal cancer [217]. The associated protein family,  c-Jun N-
terminal kinases (JNK), considered as key signaling molecules linking inflammation and 
insulin resistance, are significantly activated in various tissues of type 2 diabetes [186, 187]. 
Increased activation and total level of JNK was reported in sural nerve of type 1 and 2 
diabetic patients [188]. 

LEP.  LEP gene encodes an appetite controlling hormone leptin, whose increased 
level inhibit food intake and regulate energy expenditure. Mutations in leptin (ob/ob) or in 
leptin receptor (db/db) mice, exhibiting hyperglycemia and hyperlipidemia, have been 
extensively studied as animal models of type 2 diabetes [121, 183]. Leptin has been 
demonstrated its therapeutic potential in multiple studies: over-expression of leptin 
completely prevented the development of hyperglycemia and nephropathy in a genetic 
model of lipoatrophic diabetes (A-ZIP/F-1 mice) [218], and combinatorial treatment with 
insulin demonstrated a better efficiency in glycemic and lipidemic control in type 1 mice 
than a treatment of insulin alone [184].  
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NGFR. NGFR gene encodes a receptor for the neurotrophins, growth factors 
stimulating survival, differentiation, or growth of neurons as neurotrophic factors. NGFR 
exerts protection against nerve damage in human [193, 194]. With respect to diabetes, 
diabetic rats exhibited the expression of NGFR protein in plasma, possibly indicating 
diabetic neuropathy [195]; however, protein expression of NGFR in serum was not 
observed in type 2 diabetes patients [219]. 

KRT19. KRT19 gene encodes keratin type 1 cytoskeletal 19 proteins, which are 
intermediate filament proteins that maintain the structural integrity of epithelial cells. 
Keratin 19 is biomarkers in various cancers [220, 221].  

TXN.  TXN gene encodes a 12-kD oxidoreductase enzyme, thioredoxin regulating 
oxidative stress status in cell. Hyperglycemia inhibits thioredoxin activity through 
thioredoxin-interacting protein thus resulting in increased vascular oxidative stress in 
diabetes mellitus [196]. 

STMN1. STMN1 gene encodes stathmin 1, a cytosolic phosphorprotein regulating 
microtubule dynamics [222]. Mutation in STMN1 is implicated in development of various 
types of cancers [223-225]. 
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CHAPTER 5  

CONCLUSION AND FUTURE STUDY  

5.1 CONCLUSION  

DN is the most common complication of diabetes affecting approximately 60% of all 

diabetic patients and leading to significant mortality, morbidity, and poor quality of life 

[2, 3]. More than 50% of patients with DN will develop substantial nerve damage prior to 

noticeable symptoms. No treatments are currently available to reverse nerve damage in 

DN; therefore, early identification of DN prior to the onset of symptoms indicative of 

nerve damage is extremely important to allow for early intervention. To date, no 

biomarkers are available to identify or predict the development and progression of DN in 

patients with diabetes. To discover potential DN biomarkers and to better understand the 

pathogenesis of DN, this thesis took two distinctive approaches, employing both 

literature mining technology and genome-wide gene expression studies in nerve tissues 

with DN.   

In Chapter 2, we described the development of a new literature mining tool, 

SciMiner [42]; a web-based target identification and functional analysis tool that 

identifies targets (genes and proteins) using a context specific analysis of MEDLINE 

abstracts and full texts. SciMiner uses both regular expression patterns and dictionaries of 

gene symbols and names compiled from multiple sources. Ambiguous acronyms, a major 

challenge in the literature mining community, are resolved by a scoring scheme based on 

the co-occurrence of acronyms and corresponding description terms that incorporates 
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optional user-defined filters. In a performance evaluation using BioCreAtIvE II Gene 

Normalization Task, SciMiner demonstrated 86.2% recall, 60.8% precision, and 71.3% 

F-measure and ranked 2nd, 34th, and 19th, respectively among the 54 results published by 

other groups [107]. In addition to comparable performance with other methods [103-105, 

107], SciMiner has unique features including the capability to examine full text 

documents, user feedback-based improvement of target identification, and comparisons 

between search results among multiple queries.  

In Chapter 3, we applied SciMiner to the identification of ROS-diabetes targets 

from the biomedical literature and evaluated the biological relevance of selected targets 

in the pathogenesis of DN. A total of 1,026 ROS-diabetes targets were identified from 

1,154 papers indexed with diabetes and ROS by PubMed. Fifty-three targets were 

significantly over-represented in the ROS-diabetes literature compared to a randomly 

selected set of papers.  These over-represented targets included well-known members of 

the oxidative stress response including catalase, the NADPH oxidase, and superoxide 

dismutase families of proteins.  The expression levels of nine genes, selected from the top 

ranked ROS-diabetes set, were measured in the dorsal root ganglia (DRG) of diabetic and 

non-diabetic DBA/2J mice. Eight genes exhibited significant differential expression 

between diabetic and non-diabetic mice and the directions of expression change in 

diabetes of 6 genes paralleled enhanced oxidative stress in the DRG.  

In Chapter 4, microarray analysis was performed on sural nerve biopsies from two 

patient groups with fast or slow DN progression to identify gene expression profiles 

related to DN progression. In progressors, defense response and inflammatory response-

related genes were up-regulated, while lipid metabolic process and PPAR pathway-
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related genes were down-regulated. Analysis of literature-derived co-citation network of 

the DEGs revealed gene networks centered on APOE, JUN, LEP, SERPINE1 and 

PPARG. We also developed mRNA expression signatures that predict DN progression in 

humans with high accuracy. Ridge-regression based models with 14 genes achieved a 

prediction accuracy of 92% (correct prediction of 11 out of 12 patients).  

In summary, we report for the first time differential gene expression in human 

sural nerves from patients with progressive and non-progressive DN.  Biological 

enrichment and network analyses identified several novel areas of biological importance, 

yielding new insight into disease pathogenesis and opening up new areas of potential 

investigation for the discovery of mechanism-based therapies. While translating gene 

expression to predictive biomarkers measurable in the clinic remains a challenge, we 

report several novel potential biomarker candidates for DN.   

Collectively, our results represent the first exploration of gene expression in 

human sural nerves with varying degrees of DN.  Along with the compiled ROS-diabetes 

targets, our results provide new insight into disease pathogenesis and biomarker 

identification.  

 

5.2 FUTURE STUDY  

As demonstrated in Chapter 3, SOD1 was the most over-represented ROS-diabetes 

targets in literature and was differentially expressed in diabetic and non-diabetic DRG. 

Mutations of SOD1 have long been associated with the inherited form of amyotrophic 

lateral sclerosis (ALS) [132] and the theory of oxidative stress-based aging [133]. Early 

reports indicate that knockout of the SOD1 gene does not affect nervous system 
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development [134], although recovery following injury is slow and incomplete [135, 

136]. With respect to diabetes, SOD1 KO accelerates the development of diabetic 

nephropathy [137] and cataract formation [138]. To the best of our knowledge, however, 

no published study has investigated the role of SOD1 in the onset and/or progression of 

diabetic neuropathy.  Thus, examining the SOD1 KO mouse as a model of DN would be 

a reasonable next step.  

The computational predictive models in Chapter 4 require validation in a larger 

independent patient cohort. Our laboratory currently maintains a repository of over a 

thousand of human sural nerve biopsies. We will retrieve and examine additional biopsies 

to further evaluate our predictive models. Since we have a limited set of genes in our 

models, a middle-throughput expression measurement system such as Applied 

Biosystems® TaqMan Low Density Arrays (TLDA, Carlsbad, California) could be used 

instead of microarray analyses.  

For practical use in clinical care, these predictive biomarkers must be easily 

measured in readily accessible body fluids such as urine and plasma or skin biopsies. To 

apply the predictive models to the expression profiles in these non-invasive tissues, the 

correlation of gene expression profiles between sural nerve and non-invasive tissues must 

also be examined. Using only genes with high correlation, the current models may be 

applied to these non-invasive tissues, which make the genes in the models excellent 

biomarker candidates.  

We still do not entirely understand the underlying mechanisms of DN 

pathogenesis, so critical to the development of mechanism specific therapeutic strategies.  

The level of complexity of the potentially dysregulated biological pathways in DN is too 
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high to be easily understood without intelligent integration of multiple levels of 

biological information.  Transcriptomics only represents one aspect of gene regulation, 

and changes in the transcriptome do not always correlate with protein expression or 

activity [226, 227]. Therefore, integrating gene expression data (transcriptome) with 

protein (proteome) and metabolites (metabolome) will provide a more complete picture 

of DN pathogenesis. 

In order to identify essential cellular responses in humans that lead to DN, a 

careful comparison with other complications, for example, diabetic nephropathy would 

be necessary.  Comparison of transcriptional networks between DN and diabetic 

nephropathy will identify cellular responses shared by these complications. From this 

cross-tissue comparison, those responses amenable to conventional and novel therapies 

will be identified and validated in murine models of diabetic complications. Following 

verification in animal models, these responses would be evaluated as potential 

biomarkers in non-invasive plasma and urine samples. These future studies have the 

power to discover relevant regulatory networks in DN and diabetic nephropathy and to 

identify candidate pathways and molecules whose regulation alters disease progression. 
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