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CHAPTER I

Introduction

The world has been changed by the improvement of technology, which has given

birth to computers, cell phones and many other electronics used every day. Technol-

ogy continues to progress: faster computer processing, more e�cient heat removal

from devices, smaller electronic devices, and so on. Solids such as metals, semicon-

ductors, and semimetals play a major role in technological products, and their sizes

are growing smaller and smaller with time. Nano-technology is now an important

�eld of scienti�c research, with consequences for energy storage, energy transfer,

processing speed, etc.

To study materials at small size scales and to study their physical properties

occurring within very short time spans are both important challenges. Ultrafast

lasers have become an important non-contact tool for scientists to study generation

of elementary excitations in materials and to probe fundamental dynamical processes

in solids. A large amount of energy stored in a short laser pulse can coherently excite

materials, creating a perturbation which is detectable using either weak pulsed lasers

or x rays to capture snapshots over time. The energy from lasers is absorbed in

materials to alter the original con�guration of electrons and atoms, leading to an

unstable system that (for low enough excitations) tends to return to its original

1
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state by a series of processes. Understanding how a excited material relaxes back to

equilibrium is important fundamental research and has direct applications towards

development of technology. The energy transfer from laser to electrons and then to

the lattice is of particular interest due to potential applications for technology such

as the improvement of energy storage. One major application is heat removal from

devices which may consist of a heterostructure such as a �lm grown on a substrate.

Measurements of thermal and charge transport in thin �lms and heat removal

across an interface are fundamentally and practically important for manipulating

devices where many of the materials properties are still unknown.

In this dissertation, I study the thermal and carrier transport properties of bis-

muth �lms on sapphires using ultrafast x-ray and optical techniques. Bismuth is

a semimetal and one of the best bulk-thermoelectric materials because it simulta-

neously exhibits poor thermal conductivity and substantial electrical conductivity,

while sapphire is an insulator with high thermal conductivity. Ultrafast techniques

are ideally suited for measuring transport phenomena in the sense that they measure

the change in physical properties as a function of time following laser irradiation.

Time-resolved x-ray di�raction is a relatively new, non-contact method to directly

measure changes in atomic structures after materials are rapidly heated by an ul-

trafast laser. It becomes an important tool for thermal transport by measuring

temperature in di�erent materials directly through changes in the lattice constant

[1, 2], but is not yet widely used due to a lack of suitable sources and techniques. A

similar method for optical pump and probe, measuring change in optical re�ectivity

or transmission with temperature, is widely used for thermal transport studies [3];

however, it is only indirectly sensitive to atomic-scale structural changes. Also, due

to limited laser penetration of the material, optical probes only detect signals near
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the surface of an opaque material.

Though we can learn about thermal transport in bismuth from time resolved x-

ray di�raction, the detailed mechanisms of energy transfer from photoexcited carriers

to the lattice upon ultrafast laser excitation are not yet clear, due to limited x-ray

time resolution and lack of x-ray sensitivity to photoexcited carriers.

In addition, recent experiments demonstrate that strong electron-phonon cou-

pling in bismuth can lead to the generation of large-amplitude coherent atomic mo-

tion. Studies of these coherent atomic motions investigate the mechanism of optical

phonon generation and its subsequent decay. [4, 5, 6, 7, 8, 9, 10]. The observed phe-

nomena become interesting as excitation increases: the frequency of optical phonons

is softened, and a frequency chirp is discovered [6, 8]. The photoexcited carriers in

Bi are proved to a�ect the atomic bonding, leading to the observed softening and

frequency chirp at high excitation [8]. Although it is clear that photoexcited carriers

a�ect atomic motion as well as lattice heating, the precise mechanism is still not

completely understood.

I perform two types of measurements to study the dynamics of photoexcted bis-

muth �lms grown on sapphires: time-resolved x-ray di�raction, and optical pump

and probe. Time-resolved x-ray experiments directly investigate the atomic motion

induced by the laser, while optical pump-probe measurements are carried out to

study the change in re�ectivity caused by laser modulation of carrier density and

atomic motion upon irradiation. The change in atomic motions upon laser excita-

tion includes optical phonon oscillations, strain generation as well as propagation,

and lattice heating, which are detectable using both x-ray and laser measurements

if time resolution is achieved.

Time-resolved x-ray di�raction investigates lattice dynamics at various depths,
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using grazing incident x-ray geometries to reveal the existence of a large thermal

gradient near the surface in thick bismuth �lm (284 nm). Using symmetric di�rac-

tion, x rays can monitor the cooling of entire �lm. The Kapitza conductance of

the bismuth/sapphire interface is extracted directly by numerically solving the one-

dimensional di�usion equation with corresponding boundary conditions and only two

free parameters: initial maximum temperature rise and Kapitza conductance.

In optical measurements, the conventional pump-probe geometry detects the

modulation of the dielectric constant corresponding to carrier di�usion, carrier re-

combination, optical phonon oscillation, acoustic strain propagation, lattice heating

and thermal di�usion, which all contribute to early relative change in re�ectivity

before ∼ 20 ps and result in a carrier peak. Although the conventional pump-probe

data cannot isolate the individual factors contributing to carrier peak, by investi-

gating counter-propagating pump-probe data we can separate carrier dynamics from

acoustic strain as well as lattice heating, making a simple di�usion-decay model

possible for data analysis on carrier dynamics.

Optical measurements include low and high excitation, which display dramatic

di�erences in carrier peak and acoustic strain behaviors. The low and high excitations

can be characterized by inspecting the A1g phonon softening or the behavior of

re�ectivity signal as a function of �uence. At low excitation, A1g phonons su�er no

softening from excitation carriers and re�ectivity signal is nearly linear as a function

of �uence in both conventional and counter-propagating pump-probe data, whereas

at high excitation the phonon softening occurs and the carrier peak in counter-

propagating pump-probe data shows strong saturation as �uence increases.

Analysis of acoustic strain generation allows us to study lattice thermalization

after laser irradiation. Expanding on Thomsen's model [11] for strain generation by
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incorporating a two-decay model for carriers and comparing data with simulations, an

estimate can be made for lattice thermalization time. This analysis further supports

a large thermal gradient created near the bismuth surface upon excitation, consistent

with the data from time-resolved x-ray di�raction.

This dissertation is organized into 10 chapters. Chapter II is an overview of the

properties of bismuth, starting from the introduction of its rhombohedral structure.

Thereafter, I introduce the electronic band structure, which plays a particularly

important role for the electronic properties of bismuth such as e�ective mass, optical

properties and so on.

Chapter III contains the theory of thermal properties in the solid state. It starts

with an introduction of lattice thermal conductivity and the Kapitza conductance.

The mechanism of lattice thermal conductivity is discussed. Thermal transport

across an interface along with the phonon transmission is presented in terms of

two important models, acoustic mismatch and di�usive mismatch models. A review

of interface quality and interface scattering is given to explain the limits on phonon

transmission.

In chapter IV, I present the theories of three major ultrafast dynamical processes

in solids initiated by ultrafast lasers, including optical phonon generation, carrier

dynamics, and lattice thermalization with strain generation. First, the section on

optical phonon generation compares the impulsive and displacive excitation mech-

anisms. The displacive excitation can in fact be explained within the framework

of impulsive excitation with the introduction of two distinct tensors, one being the

standard Raman susceptibility and the other describing the electrostrictive force

acting on the ions. Second, the section on carrier dynamics introduces one- and

two-chemical potential models which are assumed in the theoretical calculations of
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optical phonon generation [8, 12]. The carrier di�usion and carrier recombination

mechanisms are presented within the model of two-chemical potential. Finally, the

section on lattice thermalization and acoustic strain generation opens with the in-

troduction of Thomsen's model [11] which assumes instantaneous lattice heating. I

modify Thomsen's generation model by taking carrier di�usion and recombination

into account. In addition to thermally-generated acoustic strain, I also include the

non-thermal strain generated from deformation potential coupling. At the end of

this section, I use numerical simulation to make the comparison between thermal

and non-thermal strain by analyzing the strain generated in bismuth �lms.

Chapter V discusses synchrotron radiation sources and several x-ray techniques.

My experiments use a synchrotron source which has high �ux and higher coherence,

and can reduce the data collection time by several orders of magnitude compared to

the laboratory-based source. The x-ray experiments were carried out in the Advanced

Photon Source (APS) at Argonne National Laboratory. I describe the mechanism

for x-ray radiation in synchrotron sources and the basic parameters important for

timing schemes in APS. I combine Batterman's and Gibaud's approaches [13, 14] to

discuss x-ray re�ectivity, which is used to measure the �lm thickness. The timing

scheme between ultrafast lasers and x rays is presented, starting from the clock of

x-ray bunches. The electronic gates managed to control the delay between lasers and

x rays are described. The time resolution is limited by the x-ray bunch duration.

Lastly, I discuss the geometry for asymmetric di�raction, which is chosen for grazing

incident x-ray measurements. In contrast to symmetric di�raction which preserves

the beam divergence (when beam is not focused), asymmetric di�raction requires an

understanding of out-going beam divergence in order to manage the geometry for

experimental needs.
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Chapter VI introduces optical pump-probe techniques, starting from the mech-

anism of two ultrafast laser systems, oscillator and regenerated ampli�ed laser. I

describe the pump-probe setup including two geometries, conventional and counter-

propagating. The conventional geometry which pumps and probes the sample from

the same side is normally used in the literature for bismuth [5, 6, 8, 10, 15, 16].

I present the setup of counter-propagating pump-probe geometry, which is used to

separate carrier peak from acoustic echoes and lattice heating. At the end of the

section, I explain the dependence of re�ectivity change in carrier density, phonon co-

ordinate, strain, and lattice heating. In addition, I describe the di�erent sensitivity

of the change in re�ectivity to dielectric function at the two interfaces (air/bismuth

and sapphire/bismuth).

In chapter VII, I present the x-ray experiments along with the analysis and discus-

sion. The chapter starts with the �lm thickness characterization by x-ray re�ectivity.

Following �lm characterization, I discuss the relation between lattice change and re-

ciprocal lattice index using a Gaussian beam approximation [2], in order to make

the connection between the lattice change and the asymmetric di�raction in recip-

rocal space. The overview section discusses the measurements from various depths

and the related application to lattice thermal conductivity and Kapitza conductance

measurement. Subject to certain limitations, I present a condition for distinguishing

measurements of �lm thermal conductivity from Kapitza conductance. From data

analysis, the cooling for 65 nm �lm measured at various depths is dominated by the

Kapitza conductance. While the temperature is near homogeneous in the 65 nm �lm,

the 284 nm �lm shows a large thermal gradient from the study of various grazing

incident x-ray measurements. The Kapitza conductance is directly extracted using

the symmetric di�raction measurement.
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In chapter VIII, I present the optical pump-probe measurements under low exci-

tation, i.e. ∼ 1018 cm−3 excited carriers. The experiments include the combination

of pump and probe from either the bismuth surface or the bismuth/sapphire inter-

face. Surface-pump-surface-probe data is presented �rst, showing no clear di�erence

among �lm thicknesses above 185 nm. Carrier peak, acoustic echoes and lattice

heating are discriminated later in the surface-pump-interface-probe data. A simple

di�usion and single decay model is used to �t the data, and the di�usion and recom-

bination of bismuth are extracted at low excitation. In addition, the acoustic strain

including thermal and non-thermal contributions is numerically simulated using the

modi�ed Thomsen's model discussed in chapter IV. I show that the di�erent bound-

ary conditions for air/bismuth and sapphire/bismuth can be observed from compari-

son between interface-pump-interface-probe and interface-pump-surface-probe data.

The relatively fast di�usion and slow recombination with rapid lattice thermalization

of photoexcited bismuth �lms are concluded in the summary.

Chapter IX contains optical pump-probe measurements and discussion under high

excitation for carrier density above 5×1019 cm−3. While surface-pump-surface-probe

data shows nearly linear behavior up to ∼ 1020 cm−3, surface-pump-interface-probe

data displays strong saturation of the carrier peak. The carrier peak intensity is

reduced by up to a factor of 5 compared with the linear prediction for �lm thickness

ranging 185�384 nm. From the �t using two di�erent scaling methods, we conclude

the carrier di�usion becomes slower and recombination faster at high excitation, with

the possibility of density- or temperature-dependent di�usion and recombination or

Auger recombination.

In both chapters VIII and IX, I include the studies for the optically thin �lm,

i.e. 35 nm and 66 nm �lm. The counter-propagating pump-probe experiments are
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not able to isolate carrier peak from acoustic echoes and lattice heating. Under

high excitation, the re�ectivity data for 35 nm �lm shows an abnormal negative

signal, including carrier peak, for both conventional and counter-propagating pump-

probe experiments. The conclusion of fast recombination applies to thin �lm at high

excitation density phenomenologically.

The last chapter contains discussions and conclusions, including suggestions for

the improvement in current studies and for possible areas in future research.



CHAPTER II

Bismuth

Bismuth is a group V element with symbol Bi and atomic number 83 in the

periodic table. The electronic con�guration of Bi is [Xe]4f145d106s26p3 with 5 valence

electrons in the outer shell per atom. Bi is a poor metal (semimetal) which has the

second lowest thermal conductivity of all the metals. However, it has highest Hall

coe�cient among the metals.

The band structure of semimetal Bi has a conduction band slightly lower than

the valence band. The charge carriers are holes at T point and electrons at L point

in Brillouin zone [17]. Bi has been studied for transport properties for a long time.

Many experiments have been performed for carriers near the fermi surface, includ-

ing acoustoelectric e�ect, thermoelectric power, thermomagnetic wave propagation,

semimetal-semiconductor transition for thin �lm, superconducting phase transition

at a few kelvin, and so on. The well known de Haas-van Alphen e�ect and Shubnikov-

de Haas e�ect were �rst observed in Bi [18]. The oscillation observed in physical

properties such as resistivity, speci�c heat, conductivity, etc., as a function of the

�eld at low temperature originates from the quantization of electron orbits.

Bi is also known as a thermoelectric material. The thermoelectric e�ect results

from a temperature di�erence at the two ends of a material, creating a voltage

10
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di�erence and current �ow across the specimen. The inverse process occurs when a

voltage di�erence is applied across the material. Yielding a large voltage di�erence

in response to a small temperature gradient, Bi as well as its III-V compounds are

attractive thermoelectric materials for power generation.

The above e�ects are related to Bismuth's electronic band structure, which is

strongly in�uenced by the atomic structure and vice-versa. For example, change in

the atomic structure may change the semi-metal Bi to a semiconductor or a better

metal. Therefore, it is critical to investigate the crystal structure of Bi and to

understand the electronic band structure, in order to study its physical properties

further.

In the following section, I overview the rhombohedral structure of Bi. Thereafter,

I turn to the electronic band structure, which plays a particularly important role for

electronic properties such as e�ective mass, optical properties, and so on.

2.1 Crystal structure

Two atoms contribute to a unit cell of Bi, which crystalizes with rhombohedral

A7 structure. The lattice parameter a is 4.7236 Å and the rhombohedral angle α is

57.35o [19]. A simple way to construct the A7 structure is to perform two consecutive

distortions to sodium chloride (face center cubic lattice), as illustrated in Fig. 2.1.

We can take sodium and chlorine as two sub-lattices and replace sodium and chloride

atoms by Bi atoms. Each sub-lattice contributes an atom to the unit cell. First, a

shear distortion extends along the body diagonal, reducing the rhombohedral angle

to be less than 60o. The second distortion, known as the Peierls, translates one sub-

lattice along the body diagonal. Two atoms in the unit cell located at ±(0.25a, 0.25a,

0.25a) are now at ±(0.234a, 0.234a, 0.234a) [19, 20]. The distortions transform cubic
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α

Figure 2.1: A7 structure using NaCl structure with distortions. Blue and magenta
points form two sublattices of Bi. A7 crystal structure is derived �rst by a shear
distortion along body diagonal, as indicated in arrows, and second a translation of
one sublattice (magenta-point groups) along body diagonal. Rhombohedral structure
is indicated by purple line with rhombohedral angle α=57.35o after 2 distortions.

to rhombohedral structure with three-fold symmetry and with trigonal axis (1 1 1)

along the body diagonal in cubic lattice. This slight deviation from cubic structure

results in a carrier density reduced by a factor of 5 compared with normal metals.

We can also imagine rhombohedral structure by using a hexagonal basis with

trigonal axis along ( 0 0 1 ) , which is a three Miller index representation in Hexagonal

basis. Every six planes (A' B C' A B' C) repeat the same stacking. Planes of (A' C'f

B' A') stacking and (A C B A) stacking form two sub-lattices in Bi, shown in Fig.

2.2.
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B’

A’

α

Figure 2.2: A7 structure in hexagonal representation, shown in purple lines. Stacking
of (A' C' B' A') and (A C B A) are two sublattice of Bi.

2.2 Electronic band structure

Metals in groups I, II, III, and IV of the periodic table can be described using a

near-constant potential for electron motion (very weak periodic potential). Electrons

are free-moving conduction electrons and only weakly perturbed by the periodic

potential of ions (the so-called near-free-electron model). On the other hand, the

isolated atom's wave functions require justi�cations when the overlap is enough but

not too much. This tight-binding approximation is useful for transition metals in

which the energy bands arise from partially �lled d-shell electrons.

In a perfect crystal, electrons experience a potential U(r) with periodicity U(r + R) =

U(r), where R is the Bravais lattice vector. In general, electrons experience both an

ionic potential as well as an electron-electron Coulomb interaction, and should be

treated as many-body problems. However, the valence electrons are separated from
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the ions by the core electrons, and the conduction electrons can screen the positive

potential, resulting in a very weak e�ective potential. For the �rst order approxima-

tion, electrons can thus be treated as a near-free-electron gas in a weakly perturbed

periodic potential without electron-electron interaction. Alternatively, the individ-

ual atomic wave functions hardly overlap, unless the interatomic spacing becomes

comparable to the spatial extent of their wave functions. The Hamiltonian can be

treated as arising from isolated atoms at each lattice site (tight-binding model), and

the single electronic wave function ψn is a linear combination of atomic orbitals φn.

The near-free-electron model solving the one-electron Schrödinger equation works

well especially for alkali metals that have a single valence electron per atom, while

the tight-binding model is more appropriate for the band arising from the core ion

such as transition metals. For a real crystal, more sophisticated approximations are

required for band calculations that deal with many-body e�ects.

Before exploring electronic band structure in periodic crystals, it is crucial to

recall Bloch's theorem, which gives remarkable insight into solid state. The theorem

states that the wave function corresponding to a one-electron Hamiltonian can be

written as a plane wave times a function with periodicity of the Bravais lattice in a

periodic potential U(r + R) = U(r):

ψnk = eik·runk(r) (2.1)

where

unk(r+ R) = unk(r). (2.2)

From the periodic boundary condition ψ(r+ Niai) = ψ(r), it can be found that the
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allowed Bloch wave vector is

k =
3∑

i=1

mi

Ni

bi, (2.3)

where bi are reciprocal vectors of the primitive vectors ai, and Ni are integers such

that N = N1N2N3 is the total number of primitive cells in the crystal. Bloch's

theorem implies that the wave function at position r times plane wave eik·R will give

the wave function at position r + R, i.e.

ψ(r +R) = eik·Rψ(r). (2.4)

Any wave vector k′ not in the �rst Brillouin zone can be represented as k′ = k + K

where K is the reciprocal lattice vector so that eiK·R=1. Thus from Bloch's theorem,

it is clear that any information outside the �rst Brillouin zone can be folded into the

�rst Brillouin zone (reduced zone scheme represented as −π/a < k < π/a), and the

full k space can be restricted to a single primitive cell.

Applying Bloch's theorem to the eigenvalue problem for the Schrödinger equation

with k restricted to a primitive cell and applying the boundary condition to eq.2.2,

one can �nd an in�nite family of solutions with discrete eigenvalues labeled by band

index n for continuous k. What follows for the electron wave function and eigenvalues

is [21]

ψn,k+K(r) = ψn,k(r) (2.5)

and

εn,k+K = εn,k, (2.6)

which are in correspondence with the electronic band structure in crystals. Some-

times, Bloch's theorem is represented in the alternative form [21]

εn,k+K = εn,k, (2.7)
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by choosing the eigenstate of the Hamiltonian. One can write down the electron wave

function as a linear combination of plane waves with wave vectors that satisfy eq.2.3,

i.e. ψ(r) =
∑

q cqeiq·r. The same trick applies to the potential with wave vectors

of the reciprocal lattice, i.e. U(r) =
∑

K UKeiK·r. Replacing these wave functions

and potentials into the Schrödinger equation and performing some manipulation, the

eigenvalue problem becomes
(
~2

2m
(k−K)2 − ε

)
ck−K +

∑

K′
UK′−Kck−K′ = 0. (2.8)

The eigenvalue problem can be solved in two cases: non-degenerate and near-

degenerate electrons. For the non-degenerate case, the free electron energy ε0k−K is

far from the value ε0k−Ki
for all reciprocal lattice vectors Ki, i = 1, .....,m in the limit

of weak periodic potential, ck−K is dominated by the second order of U , and the

shift in energy is also second order in U . On the other hand, for the near-degenerate

case, the shift in energy can be liner in U , and the leading order in the weak periodic

potential is linear in U that signi�cantly shifts the energy level. Therefore, the

near-degenerate case is responsible for energy shift in electronic band calculation.

For the near-degenerate electrons, the values of k, K1,..., km, and ε0k−Ki
with

i=1,2,...m have relation:

∣∣ε0k−K − ε0k−Ki

∣∣ >> U, K 6= K1, ....,Km. (2.9)

The coe�cient ck−K can be approximated to the �rst order in U ,

ck−K =
1

ε− ε0k−K

m∑
j=1

UKj−Kck−Kj
+ O(U2),

K 6= K1,K2, ....,Km. (2.10)

Thus the eigenvalue problem from eq.2.8 becomes

(ε− ε0k−Ki
)ck−Ki

=
m∑

j=1

UKj−Ki
ck−Kj

+
∑

K 6=K1,....Km

UK−Ki
ck−K. (2.11)
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Figure 2.3: Band structures in di�erent representations. (a) First-3-band structure
from near-free-electron model in extended zone scheme. When wave vector meets
Bragg condition q=K/2=π/a, the band opens a gap 2|UK|. (b) Band structure
in reduced zone scheme, which folds the band back to the �rst Brillouin zone by
subtraction of nK with integer n to make the new wave vector fall into �rst Brillouin
zone, preserving the same structure.

Substituting eq.2.10 into eq.2.11, we have

(ε− ε0k−Ki
)ck−Ki

=
m∑

j=1

UKj−Ki
ck−Kj

+ O(U2) + O(U3). (2.12)

In the non-degenerate case, there is only K1 in eq.2.12. The summation over index

i vanishes because we are at liberty to change the potential energy by an additive

constant and can take UK=0 = 0.

For the simplest illustration, consider two electrons which have levels within order

U of each other but far compared with U from all other levels. Making use of

q = k−K1 and K = K2 −K1, eq.2.12 for i = 1, 2 becomes

(ε− ε0q)cq = UKcq−K, (2.13)

and

(ε− ε0q−K)cq−K = U−Kcq = U∗
Kcq. (2.14)
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The solution for ε is

ε =
1

2
(ε0q + ε0q−K)±

[(
ε0q − ε0q−K

2

)2

+ |UK|2
]1/2

. (2.15)

When q = 1
2
K, i.e. zone boundary, the two solutions are separated by a gap 2|UK|.

In general, when the wave vector is a multiple of K/2, i.e. jK/2 with integer j, one

solution raises while the other solution lowers the energy of free electrons. This is the

condition for Bragg re�ection to happen. Fig. 2.3(a) and Fig. 2.3(b) show the results

of electronic band in an extended and reduced zone scheme respectively. If the crystal

periodicity a changes, for example to a′=2a, it will open new gaps due to the reduced

reciprocal wave vector. It is clear that near-free electrons in a weak periodic potential

are primarily a�ected if their wave vectors are close to the zone boundary where

the Bragg re�ection happens. The concepts of Bloch's theorem, near-free-electron

model, and the band gap opening near the Bragg plane describe the fundamental

electronic band structure in the crystal. More sophisticated calculation may predict

the electronic band structures in more detail; however, they are simply extended

from these basic concepts and are modi�ed with more complicated approximations

regarding the electron-electron or electron-ion interactions.

For N primitive cells in the crystal, each one contributes one independent wave

vector k to each energy band. Every energy band can accommodate two spin orien-

tations due to Pauli exclusion and there will be 2N orbitals in every energy band.

For even numbers of valence electrons in a primitive cell the band is �lled, and the

crystal is an insulator because electrons are not free to change momentum in the

�lled states. If odd numbers of valence electrons �ll the band, the crystal is a metal

because there are still available states in the band for momentum transfer. When a

�eld is applied, electrons are free to �ow in the metal. If the band is �lled by 2N
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electrons with band gap Eg <kBTr at room temperature, electrons can be excited to

the upper band with thermal energy. This type of crystals are semiconductors, and

they become insulators at T=0 without excess thermal energy to promote electrons

to higher bands. Ordinarily, even numbers of electrons in the crystal would �ll up

a band completely. However, for a band that is slightly overlapping with a higher

band, the electrons which would �ll upper energy levels in the lower band will in-

stead �ll the more energetically favorable bottom of the higher band. This results in

a partially �lled higher band and mostly �lled lower band, and the crystal becomes

conductive when the �eld is applied. This type of crystal is a semimetal, such as

Bismuth.

Bismuth has two atoms in the primitive cell and 5 valence electrons per atom,

yielding 10 valence electrons per primitive cell. For 10N electrons in N primitive

cells, Bi will �ll up to the 5th band. However, due to the 36 meV band overlap be-

tween the �fth and sixth bands, valence electrons are �lled up to the sixth band with

carrier density ∼3×1017 cm−3 at room temperature. The band structure of Bi was

�rst calculated using the tight-binding model including the spin-orbital coupling by

Mase [22], who correctly predicted the location and symmetry of the carriers. Other

common band calculation methods were carried out later by various physicists, Ref.

[19, 23, 24] for example. The common results such as electron e�ective mass, g fac-

tors, pressure e�ects and optical properties were calculated by Golin [17] using a

pseudopotential calculation, with which physicists were able to compare the earlier

experimental results. Golin's results are also extensively used for the explanation of

later experiments [25, 26, 27]. The pseudopotential is an e�ective potential based

on the near-free-electron model with weak crystal potential, taking into account the

core electrons and nucleus. Although the real crystal potential is much larger than
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Table 2.1: Possible critical points of optical transitions in Bi.

Designation Energy a.u. (experiments) Bands Symbols Energy a.u. (calculated)
E1 0.044 5→7 La → Ls 0.042
E2 0.11 4→7 La → Ls 0.11
E3 0.32 4→8 Xs → Xa 0.32

the pseudopotential, it has been proved that they have the same eigenvalues. The

usual approach to constructing a pseudopotential is to choose a reasonable form of

the potential with a few adjustable parameters which are varied until the results

agree with the experiments. Golin's pseudopotential includes three parts: the local

potential Vl, the spin-orbital coupling Vso, and an l (angular momentum) dependent

term that increases the energies of the level with s-atomic character Vs. Three ad-

justable parameters account for the e�ective-mass anisotropies and other properties

of Bi. Golin established a good agreement with earlier experimental results. He

proposed that the holes are located at the T point near fermi level, and chose his

pseudopotential to locate the electron at the L point according to an experiment

on electron-phonon recombination [28]. Thus he predicted the locations of 3 optical

transitions which were observed in experiments as La → Ls (E=0.044 a.u.), La → Ls

(E=0.11 a.u.), and Xs → Xa (E=0.32 a.u.). Table 2.1 lists these corresponding

transitions.

The detailed band structures of Bi from Golin's calculation are shown in Fig.

2.4(a), and �rst Brillouin zone with several symmetry points is shown in Fig. 2.4(b).

Note that due to slight overlap of the L point at 6th band and the T point at

5th band, Bi is a semimetal with low carrier concentration under normal conditions.

Because of the translation of second sublattice of Bi, it has 2 atoms per unit cell.

Were it not for this distortion, Bi would only have 1 atom per unit cell and the

reciprocal wave vector would be twice as the one with translation distortion (Peierls
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(a)

(b)

Figure 2.4: Bi band structures calculated by Golin [17]. The hole packets are located
at T point and electron packets are located at L point. (b) First Brillouin zone of
Bi with several symmetry points from Ref. [17].
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distortion). Therefore, without distortion it would close one gap for every 2 gaps. For

5 valence electrons per atom, Bi without Peierls distortion would �ll up to the 3rd

band. With the translation distortion, there are two atoms per unit cell and electrons

�ll the band up to the 5th one, which corresponds to the lower part of the 3rd band

without distortion. Because of gap opening due to Peierls distortion, the maximum

energy of the 5th band is lower than the maximum energy of the 3rd band in the case

without gap opening. Thus, Peierls distortion reduces the electronic con�guration

energy in one dimension. For systems in more than one dimension, the distortion

is not always energetically favorable because it would raise the con�guration energy

in other dimensions. For Bi, this is a preferred structure because the reduction in

the distorted direction is greater than the increased energy along other dimensions,

leading to an overall reduced con�guration energy.



CHAPTER III

Thermal Transport

As well as being conducted by electrons, heat can be carried by phonons, a form

of vibration mode in crystal. Just as a photon is the quantum of an electromagnetic

wave, a phonon is quantized from crystal vibration. Each phonon carries energy

and its occupation follows the Bose-Einstein distribution when in thermal equilib-

rium. Phonons can interact with phonons or electrons, resulting in di�erent physical

properties for various crystals. Whereas electronic thermal conductivity character-

izes heat transfer by electrons, lattice thermal conductivity characterizes thermal

transport by phonons.

In an idealized perfect harmonic crystal, phonons are stationary and the distri-

bution remains unchanged over time. Therefore, if a phonon distribution in a perfect

harmonic crystal carried thermal current, the current would not change in time. The

thermal conductivity is then close to in�nity. The lattice does not expand and has

constant heat capacity at high temperature (> Debye temperature). However, imper-

fections in real crystals can cause phonon scattering and change the thermal current.

Even for the perfect crystals, the full Hamiltonian including anharmonic terms pro-

duces only an approximately stationary state, and phonon occupation number does

not remain the same at all times. This is the intrinsic limitation of in�nite thermal

23
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Figure 3.1: Dispersion relation for (a) one dimensional Bravais lattice and for (b)
one dimensional lattice with a basis.

conductivity of perfect crystals.

Classically, crystals can be modeled starting from the harmonic approximation.

Solving the equation of motion with the harmonic potential in periodic atoms gives

the allowed normal modes. In the one dimensional monatomic Bravais lattice with N

atoms and atomic separation a, only one acoustic branch is allowed with frequency ω

and wave vector k = 2nπ/(Na). This wave propagates with phase velocity ω/k and

group velocity v = ∂ω/∂k. The relation between ω and k is the dispersion relation

usually drawn from k = −π/a to k = π/a in the reduced zone scheme, i.e. �rst

Brillouin zone. For a linear lattice with two distinct atoms as basis, one acoustic

and one optical branch are allowed. The dispersion relation for these two cases can

be seen as in Fig. 3.1. In general, for three dimensional lattices with a basis there

are 3p normal modes for each k vector, where p is the number of ions in the basis.
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Three of the normal modes are acoustic branches which have frequency close to 0

in long wavelength limit, i.e. k approaching zone center. The other 3(p − 1) are

optical branches and their frequencies do not vanish as k approaches zone center

(long wavelength limit).

One of the physical properties that can be discussed in the harmonic approxima-

tion is the speci�c heat, which is de�ned as the temperature derivative of internal

energy. The internal energy is carried by all phonons, and the speci�c heat cv can

be written as [29]

cv =
1

V

∑

k,s

∂

∂T

~ωs(k)

exp~ωs(k)/kT −1
. (3.1)

where phonon wave vector is k in branch s. If ∆k → 0 and the crystal volume

V →∞, the summation over k can be replaced by an integral
∫
dk/(2π)3 over �rst

Brillouin zone and the sum is over only s. Many approximations exist to express the

speci�c heat analytically [21, 30]; among them Debye's approximation is most widely

used. Debye's approximation replaces all vibrational modes with three branches

having the same dispersion relation ω = ck, and the integral over �rst Brillouin zone

is replaced by an integral over a sphere of radius kD. Using the dispersion relation,

the Debye frequency ωD is the cuto� frequency for integral with Debye temperature

kBΘD=~ωD. When T> ΘD, the classical statistics are valid. For T< ΘD, the speci�c

heat can be approximately calculated analytically and follows the so called Debye

T 3 law where speci�c heat increases as a function of T 3.

However, there are many physical properties that cannot be explained by using

only the harmonic approximation. Higher order terms must be considered in order

to explain the phenomena. The general properties can be grouped into equilibrium

properties like thermal expansion, and transport properties like thermal conductiv-
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ity. Lattice thermal conductivity is perhaps the most important transport property

determined from the anharmonic potential. In this chapter, I introduce the concept

and theory of thermal transport across the bulk material, i.e. thermal conductivity.

I discuss the transport across an interface, in which case temperature may not be

continuous and the discontinuity of temperature is determined by the Kapitza con-

ductance. The discontinuity across an interface is due to the fact that the phonon

transmission is not equal to unity. Phonon transmission across an interface is dis-

cussed based on two models, acoustic mismatch and di�usive mismatch models. Some

reviews about Kapitza conductance and the interface qualities are also presented in

this chapter.

3.1 Lattice thermal conductivity

This section discusses lattice thermal conductivity, where heat is carried by

phonons. The anharmonic approximation and lattice thermal conductivity are pre-

sented by using kinetic theory. Important factors that alter lattice thermal conduc-

tivity are discussed, including normal as well as Umklapp process, alloy scattering,

and reduced reciprocal lattice. Those processes are related to phonon scattering,

which is subtle and complex and can be contributed from the scattering centers, the

presence of an interface or the crystal temperature.

3.1.1 Anharmonic approximation

Usually among the higher order terms of the interatomic potential, cubic and

quartic terms are most important. Assuming that displacement is small and per-

turbation is valid, the transition due to cubic and quadratic term can be illustrated

as in Fig. 3.2. They must follow both crystal momentum conservation and energy
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Figure 3.2: Anharmonic processes in the perturbation theory for cubic term (a) and
(b), and quadratic term (c) (d) and (e).

conservation for the initial and �nal states, i.e. [31]

∑
~ωs(k)nk,s =

∑
~ωs(k)n′k,s (3.2)

and
∑

knk,s =
∑

kn′k,s +K (3.3)

whereK is the reciprocal lattice vector, and nk,s, n′k,s are phonon occupation numbers

before and after transition respectively. The processes of these diagrams are often

called collisions, and they do not need to obey the conservation of number. Phonons

can be created and annihilated during these processes constrained by the conservation

of energy and crystal momentum.

3.1.2 Kinetic theory of lattice thermal conductivity

In this section, the thermal conductivity is expressed in terms of heat �ow and

the temperature gradient. For a small temperature gradient along the x direction,
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the heat �ux (thermal current) is de�ned as the energy transmitted across unit area

and unit time:

j = κ

(
−∂T

∂x

)
, (3.4)

where κ is the thermal conductivity. Because of the dependence on thermal gradient,

the heat �ow is not ballistic, i.e. not propagating along a straight line. It is di�usive,

depending on the varying temperature across the specimen. Collisions happen fre-

quently during di�usion. Energy density is contributed by phonons, where only the

last phonon collision contributes to net thermal current. Thus the thermal current

density along the x axis is the product of energy density and the velocity along x

direction that determines where phonon comes from to make a collision. Using the

Drude model, one has l = vτ where l is the mean free path of a particle between

collisions and τ is the average time between collisions. For a collision with an angle

θ to the x axis,

j =< v cos θ u(x0 − l cos θ) >θ=

∫ 1

−1

v cos θ u(x0 − l cos θ)2πd(cos θ)/4π. (3.5)

Thus, from the �rst order approximation, the temperature gradient is

j = −vl
∂u

∂x

1

2

∫ 1

−1

cos2 θd cos θ =
1

3
vl

∂u

∂T

(
−∂T

∂x

)
. (3.6)

Comparing eq.3.4 and eq.3.6, thermal conductivity is

κ =
1

3
vl

∂u

∂T
=

1

3
vlCv, (3.7)

where Cv is speci�c heat of the phonons, l is the average collision length depending

on the collision rate τ−1=l/v. It is clear that thermal conductivity depends on the
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Figure 3.3: Cartoon for Umklapp and normal processes. (a) Umklapp process with
an involved reciprocal wave vector in the momentum conservation. k′′ is folded back
from k+ k′ into the �rst Brilloin zone by a subtraction of reciprocal wave vector K.
(b) The normal process with strictly crystal momentum conservation. The di�erent
processes are based on the choice of primitive cell in this diagram.

phonon scattering process. If scattering rate increases, the thermal conductivity

decreases. The thermal conductivity is a function of speci�c heat which depends on

temperature following Debye T 3 law when temperature is below Debye temperature.

Therefore, the thermal conductivity increases with increasing temperature. However,

as temperature rises, scattering probability increases and reduces the phonon mean

free path. Thus the increase of temperature corresponding to the increase of thermal

conductivity is limited by the higher scattering rate above the Debye temperature.

3.1.3 Normal and Umklapp process

There are two important scattering processes, normal and Umklapp. When the

scattering happens leaves the crystal momentum unchanged, i.e. no presence of

reciprocal wave vector K, the scattering is called the normal process. On the other

hand, when scattering happens involving the change in a reciprocal wave vector, i.e.
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a phonon created with the wave vector equal to sum of the original phonon wave

vector and reciprocal wave vectorK as in eq.3.3, the scattering is called the Umklapp

process. The di�erence is shown in Fig. 3.3.

These two processes dominate for di�erent temperature ranges. At high temper-

ature, there are more available energy states for phonons excitation, and the proba-

bility of scattering that happens with creation of a phonon outside the �rst Brilloiun

zone increases. On the contrary, for low temperature (T < ΘD) only phonons with

energy comparable to temperature can be excited. For the limited amount of phonons

at low temperature, the scattering that creates a phonon with crystal momentum K

larger than the original one is more unlikely. Thus, at low temperature, the Umklapp

process is frozen. However, it dominates at higher temperature.

3.1.4 Alloy scattering, reduced reciprocal lattice, and reduced size e�ect

Similar to imperfections serving as scattering centers, the structure of an alloy

also produces scattering. For an alloy structure, the atoms are random mixture of

di�erent elements with di�erent masses and volumes. One alloy scattering model

created by Abeles [32] �rst used an ordered virtual crystal with mass density and

elastic constant the same as an alloy crystal. However, the thermal conductivity

of an alloy compound would still be below that of the virtual crystal in the model.

To deal with this issue, Abeles then replaced the atoms in the virtual crystal with

atoms of di�erent mass and size, so-called virtual impurities. The coupling constant

between neighborhoods of these virtual impurities is described by the ′′mis�t′′ strain

�eld. In the case of two mixture atoms A and B in the alloy with radius δ′ and mass

M , the relaxation rate Γ is

Γ = x(1− x)

(
∆M

M

2

+ ε

(
∆δ

δ

)2
)

(3.8)
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with

∆M = MA −MB , ∆δ = δ′A − δ′B (3.9)

and

M = xMA + (1− x)MB, (3.10)

where ε is a phenomenological adjustable parameter. This alloy scattering model cor-

related well to the properties of AlxGa1−xAs measured by Afromowitz [33], assuming

perfect lattice match between GaAs and AlAs.

For the reduced reciprocal lattice case such as superlattice, i.e. the multilayer

of periodic , there have been many experiments [34, 35, 36] studying thermal con-

ductivity, showing that the cross plane thermal conductivity is smaller than that of

their alloy compounds. Because of the new periodicity of superlattice structure, the

arti�cial period (a + b) from A and B compounds reduces the reciprocal wave vector

to be 2π/(a + b). This is less than 2π/d, where the periodicity d of the atoms is on

the order of the atomic radius, and a, b are usually on the order of nanometers. For

this new periodicity, the Umklapp process require less energy to occur.

Generally, the scattering is sensitive to structures on a scale comparable to the

phonon wavelength. If phonon wavelength is shorter than a layer thickness, phonons

can be treated as particles and their motions are governed by the Boltzmann trans-

port equation. However, when layer thickness decreases and is comparable to phonon

mean free path, the size e�ect needs to be taken into account. This also applies to

thin �lms, so long as phonon mean free path is comparable to the length scale of the

medium.
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3.2 Kapitza conductance, interface and interface scattering

Thermal transport across an interface is described by the Kapitza conductance.

This section starts from the de�nition of Kapitza conductance. It discusses the

factors that can change the phonon transmission across an interface, i.e. interface

quality and interface scattering. A few experiments regarding the interface properties

are reviewed in this section.

3.2.1 Kapitza Conductance

Kapitza conductance measures the temperature discontinuity across an interface.

The �rst measurement of temperature discontinuity was by Kapitza in 1941, report-

ing temperature drop across the boundary between helium and solid. This was later

explained in terms of thermal boundary resistance, which causes a temperature drop

in the same way as electrical resistance causes a drop in the voltage. The inverse of

thermal boundary resistance is known as Kapizta conductance or interface conduc-

tance. If ∆T is temperature di�erence across an interface and Q is the heat current

density, the Kapitza conductance σK is de�ned as

Q̇ = σK∆T. (3.11)

The temperature discontinuity is due to the non-unity phonon transmission. If the

phonons in material A cannot transmit through an interface to material B, the

thermal energy stored in A cannot transmit either.

If phonons have frequency ωkj with wave vector k and polarization j, the Kapitza

conductance between A and B for heat transfer from A (B) to B (A) can also be

written as [37]

σK(T ) =
1

V

∂

∂T

A(B)∑

kj

~ωkjn(ωkj, T )|vkjz|Tkj, (3.12)



33

where the summation is over �rst Brilliouin zone, V is the volume, Tk,j is the trans-

mission of phonons, vkjz is phonon group velocity along the normal direction to the

interface, and n(ωkj, T ) is Bose-Einstein distribution function.

To understand the details of temperature jump between two materials, it is nec-

essary to know the details of phonon transmission across the interface. The next two

sections describe two models of phonon transmission. In each model, we can get a

simpli�ed expression for the Kapitza conductance by adding some assumptions.

3.2.2 Acoustic mismatch model (AMM)

If phonons propagate in a medium with lattice spacing shorter than phonon

wavelength, they can be approximately treated as continuum acoustic. Assuming

phonons are incident to a plane interface, they can partially specularly re�ect and

partially refract with or without mode conversion. The acoustic mismatch model

(AMM) treats the displacement and stress of the crystal with appropriate boundary

conditions, i.e. both normal and tangential components are continuous. The results

of phonon transmission are analogous to that of light transmission, and Snell's law is

applicable. For phonons with incident angle θ to the plane normal, the transmission

coe�cient TAB (from A to B medium) is expressed in terms of acoustic impedance

Z = ρv as

tAB(cos θA) =
4ZA cos θAZB cos θB

(ZA cos θA + ZB cos θB)2
, (3.13)

where ρ is mass density of the material and v is phonon velocity. The re�ection

coe�cient is

RAB(cos θA) =

∣∣∣∣
ZA cos θA − ZB cos θB

ZA cos θA + ZB cos θB

∣∣∣∣
2

(3.14)

Similar to light incident onto a plane surface, only phonons incident within a critical

angle sin θc = vA/vB × sin θB can transmit. From the boundary conditions in AMM,
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only elastic scattering is taken into account, and the transmitted phonons have the

same frequency as incident phonons. No mode conversion happens in AMM. There-

fore, TAB = TBA and RAB = RBA. In the real case of interfaces between di�erent

materials, the phonon spectrums are not the same for both sides. High frequency

phonons in medium A cannot transmit to medium B if B does not have the same

frequency in the spectrum. It follows that high frequency phonons will be con�ned

in medium A, so TAB is no longer equal to TBA. The correction to the transmission

coe�cient can be made as [38]

TBA =
TABIA,eq cos θA(d cos θA)

IB,eq cos θB(d cos θB)
, (3.15)

where Ieq is the equilibrium phonon intensity and in material A the intensity IA is

IA =
1

2π

∑
j

∫ ωmax

0

|vA,j|~ωn(ωkj, T )DA,j(ω)dω. (3.16)

Using Debye's approximation at low temperature, the phonon group velocity

can be taken out from the integration of eq.3.12. From the transmission coe�cient

calculated by AMM, the integral over all frequencies is equal to speci�c heat. Kapitza

conductance for heat current from A to B is approximately [38]

σK =
vACA

∫
2π

TAB(cos θA)(d cos θA)

2
. (3.17)

3.2.3 Di�usive mismatch model (DMM)

By contrast, di�usive mismatch model (DMM) treats the transmission in terms of

the phonon density of state on either side of an interface. The scattering completely

destroys the correlation between the incident and the transmitted phonons. For

phonons incident onto an interface, the possibility of scattering forward or backward

from an interface depends on the relative density of states on both sides. All struc-

tures of the scatters are also ignored. Incoming phonons lose memory of where they
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come from, and the probability of re�ection from one side is equal to the probability

of the transmission from the other side, i.e.

TAB = RBA = 1− TBA (3.18)

From Debye's approximation at low temperature, the transmission can be written as

[38, 39]

TAB =

∑
j v−2

B,j∑
j v−2

A,j +
∑

j v−2
B,j

. (3.19)

At higher temperature, the phonon dispersion relation has to be taken into account

due to phonon excitation from the zone boundary. The frequency integral from

eq.3.16 of the product of the phonon density of state and velocity has to be done

numerically. However, Chen [38] gave a simple approximation at high temperature

by di�erentiating eq.3.16 with respect to the temperature at equilibrium, which is

dI0

dT
=

vC

4π
. (3.20)

This assumes that the temperature variation is small and speci�c heat is constant

over the medium. The integration over temperature for the above equation results

in

I0 =
vC(T − Tref )

4π
, (3.21)

where Tref is the reference temperature. Assuming that scattering processes are

all di�usive and allowing scattering to be elastic or inelastic for phonons with all

frequencies, the transmission coe�cient at high temperature is

TAB =
vBCB

vACA + vBCB

. (3.22)

In the di�usive limit, phonons are isotropically distributed. Therefore, we apply

Debye's approximation at low temperature, obtaining the approximate Kapitza con-
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ductance [38]

σK =
vACATAB

4
. (3.23)

3.2.4 Interface quality

Generally at low enough temperature, phonon mean free path is very long. If no

other scattering occurs and the interface is smooth, AMM can explain the Kapitza

conductance of a solid-solid interface. When temperature increases, phonon mean

free path decreases and the interface becomes relatively less smooth. In this case,

we would expect DMM to be closer to the experimental results. However, at higher

temperatures, most experiments cannot be explained by either AMM or DMM. In-

deed, the di�erence between AMM and DMM is usually within 30% [3], which is not

enough to explain the deviation for many experiments at high temperature.

Swartz and Pohl have systematically tested the in�uence of interface quality on

the Kapitza conductance [40]. They used Rh:Fe on sapphire with H2 annealed/polished,

synton, diamond, and aluminum polished sapphire as substrates. For H2 annealed

sapphire, the product of Kapitza resistance and T 3 (RthT
3) at low temperature is

close to the AMM prediction, while for 10-20 K it is close to the DMM prediction.

For both diamond and syton polished sapphires, the measurements of RthT
3 are

close to the DMM with higher Kapitza resistance even at low temperature. The

sapphire treated with aluminum does not di�usely scatter phonons any more than

the sapphire annealed by H2 (thermal resistance is smaller than the prediction from

AMM). Swartz and Pohl also measured the e�ect of thermal boundary resistance for

a series of interfaces sandwiched with oxide interlayers of various thickness between

Rh:Fe and sapphire. The results show that even the thinnest interlayer causes more

signi�cant phonon scattering than sapphire treated with diamond.
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Swartz and Pohl's experiments strongly indicate that the quality of an interface

a�ects the measurement of thermal boundary resistance even below 1 K, and the

results dramatically deviate from either AMM or DMM at higher temperature.

3.2.5 Inelastic scattering

The discussion so far has only focused on elastic scattering without phonon mode

conversion. If mode conversion is allowed, i.e. one high frequency phonon can become

two low frequency phonons or vice versa, the transmission probability should increase

due to down conversion (from higher frequency to lower frequencies). This e�ect

becomes more apparent when two mediums have very di�erent Debye temperatures.

When one Debye temperature is much lower than the other and a high frequency

phonon is excited, the high frequency phonon should be re�ected back because this

frequency is disallowed on the other side. However, inelastic scattering can occur if

the high frequency phonon down converts to lower frequencies. Through inelastic

scattering, a high frequency phonon can transmit through the interface and increase

the Kapitza conductance at higher temperatures.

Generally, phonon collision is similar to that of the classical gas in a cylindrical

tube with two walls. However, inelastic scattering does not conserve the number of

phonons, and the non-exactly conserved crystal momentum at higher temperatures

makes phonon scattering more complex, as do impurities and surface scattering.

Many e�ects could result in deviation from the theoretical model. In such cases, sam-

ple preparation as well as extremely careful measurements are required for studying

thermal transport in crystals.



CHAPTER IV

Ultrafast excitation and dynamics in solids

Light can promote electrons in materials to an excited state that may then relax

through multiple processes. As electrons leave their original states, holes are created

in the original band. The transition may be direct with the same wave vector or

indirect with the change in wave vector compared to the original state. Indirect

transition involves the absorption or emission of phonons, and a wave vector changes

in a manner obeying momentum conservation. Electrons at higher bands are not

stable, tending to go back to their original electronic con�guration which gives the

lowest free energy and annihilate holes. The process whereby excited electrons return

to their original states is called recombination. Electronic transition is not limited

to that from upper valence band to lower conduction band (across the band gap), as

indicated from discussion of Bi band structure in Chap. II.

The transition of electrons by absorbing light determines the transparency of

materials. If the energy of the light is smaller than the band gap, the material

is transparent to this wavelength. Otherwise, the material is opaque with strong

absorption when the energy of the light is greater than the band gap.

Before recombination, excited electrons may undergo scattering including electron-

electron and electron-phonon scattering. Scattering can be elastic with conservation

38



39

of both energy and momentum, or inelastic with creation or annihilation of phonons

that conserves total energy. Nowadays, due to the improvement of laser technology,

ultrafast lasers with high power in a short pulse are useful tools to study materials at

highly excited states. In addition, the progress of ultra-short pulse makes it possible

to probe the dynamics of excited states as a function of time, although the time

resolution is limited by the laser pulse width.

Because the excitation volume is restricted to the laser penetration depth, the

generation of excited electrons is near the surface of excitation in opaque materials.

The term "excited carriers" or "excited electrons" are used to denote those electrons

promoted from their original states. Either free carriers or valence electrons can ab-

sorb photons and leave to excited states. Highly energetic carriers have the potential

to di�use deep into material. Many types of dynamics can take place before carrier

relaxation or recombination. After carrier relaxation, the energy of the carriers is

transferred to the lattice, heating it. The corresponding lattice expansion generates

the coherent acoustic strains which propagate into the bulk [11]. If the structure

of materials includes an interface, acoustic strain can partially re�ect and partially

transmit across the interface. Acoustic propagation is useful for the measurement of

either �lm thickness or speed of sound, if one of the properties is known. In addi-

tion to the acoustic strain generation, the heated volume gives rise to a temperature

gradient which is homogenized by thermal di�usion.

The dynamics and the responses of ultrafast-excited materials are complex and

subtle. Each process can be an independent topic of study. However, they are of-

ten correlated to each other, which makes analysis challenging. In this chapter, I

describe the basic and common physics of these types of dynamics, starting from

coherent phonon generation including impulsive stimulated Raman scattering and
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progressing to displacive excitation of coherent phonons. Following that, I overview

general carrier dynamics upon excitation. The acoustic generation as well as strain

propagation are discussed thereafter. Slower dynamics such as the thermal di�usion

process have already been discussed in Chap. III. Note that the generation mech-

anisms discussed here are for above bandgap excitation in opaque materials, except

the impulsive excitation of coherent phonons.

4.1 Impulsive and Displacive Excitation of Coherent Phonons

In optical pump-probe experiments, an ultrafast laser is usually split into a strong

pump and a weak probe. The pump beam excites materials by altering the carrier

system over a very short time, and the probe beam detects the change in the system

by measuring the change in optical properties such as transmission or re�ection. The

idea of the weak probe is to detect the system without a second disturbance. Because

the system is in a di�erent electronic con�guration, the corresponding dielectric

function is changed. The highly excited system is not stable and will gradually

recover its original state.

Since the development of femtosecond laser technology, many pump-probe experi-

ments have discovered oscillations with frequencies corresponding to optical phonons

in semiconductors, metals and semimetals. These phonons generated by ultrafast

lasers are coherent phonons. Many theories attempt to explain the mechanisms of

coherent phonon generation. There are two mechanisms that are now commonly ac-

cepted to explain the phenomenon: impulsive stimulated Raman scattering (ISRS)

[7, 41] and displacive excitation of coherent phonons (DECP) [4].

For the ISRS mechanism, a laser �eld serves as an external driving force to

suddenly change the equilibrium positions of ions. As a results, the ions is that they
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start to oscillate if the driving duration is less than half the cycle of their allowed

vibration period. The equation of motion can be written as

d2Q

dt
+ Ω2Q =

1

2

(
∂χ

∂Q

)
|E0(r, t)|2 = F (r, t), (4.1)

where Q is the phonon �eld, χ is electronic susceptibility, Ω is the phonon frequency,

E is the pump electric �eld, and F is driving force.

For more general systems of transparent materials with excitation energy below

the band gap and with the inclusion of phonon dissipation, the equation of motion

is [7, 41]

Q̈(r, t) + ΓQ̇(r, t) +
1

8π3

∫
Ω2

qe
−iq(r−r′)Q(r′, t)d3r′d3q

=
1

2

(∑

kl

∂χkl

∂Q
EkE

+
l

)
, (4.2)

and the equation for the interaction of the probe �eld is [7, 41]

∇2ek =
1

c2
× ∂2

∂t2

(
n2ek + 4π

∑

kl

∂χkl

∂Q(r, t)el

)
. (4.3)

Here, the equation is written in terms of the susceptibility as a tensor χkl , where

q is phonon wave vector, k or l are band index, e is probe �eld and n is index of

refraction. When phonon modulation starts with time delay δ to the pump excitation

in the bulk material, the solution for the probe intensity change with respect to the

unperturbed probe intensity is a cosine form [7]

∑
k
∫ |ek|2du∫ |e0|2du

≈ 1− Lσ

c
e−Γδ/2 cos(Ωδ), (4.4)

where the modulation is proportional to the slab thickness L, u = t − zn/c , pulse

width τ0 ¿ u, damping Γ ¿ Ω, and σ is
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σ =
π3/2

2n
|E0|2e−Ω2/τ2

0 ×
∑

kl,mp

(
∂χmp

∂Q
cos(αm) cos(αp)

)

×
(

∂χkl

∂Q
cos(βk) cos(βl)

)
, (4.5)

with cos(αm)=Em/E0.

If the contribution from the interface is considered, there is an additional term

to both transmission and re�ection including the boundary condition at z = 0 and

z = L, which is proportional to sin(Ωδ) and has π/2 phase di�erence from the bulk

contribution [42].

DECP was �rst used only to explain coherent phonon generation in opaque ma-

terials, such as Bi, Sb and Te [4], whereas the assumption of a strongly absorbing

material is not required in ISRS. For opaque materials with more than one Raman

active mode, early pump-probe experiments show that only the A1g mode appears.

Not all the materials have A1 mode vibration. A structure with A1 mode is derived

from a "virtual crystal" of higher symmetry by unclear displacements (Peierls dis-

tortion for example) which increase the size of unit cell. These displacements, which

preserve the symmetry of actual crystal, are A1 symmetry displacements [4]. Mate-

rials with A1 vibration mode such as Bi and Sb are opaque to the pump laser, and

resonant transition happens when laser light is applied. Due to the disturbance of

the electronic distribution by absorption, the equilibrium positions of ions in a unit

cell are changed by a displacement of A1 symmetry. In DECP, usually the measure-

ment is set up to detect the change in optical re�ectivity, because laser penetration

depth for strongly absorbing materials is short and transmission geometry is more

challenging unless the sample is thin enough to have a detectable transmitted signal.

The oscillation observed in pump-probe experiments is proportional to sin(Ωδ) in
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the ISRS mechanism and is proportional to cos(Ωδ) in the DECP mechanism. If the

excitation by ISRS is resonant, the oscillation also has cosine behavior but all the

Raman active mode will appear [4].

The phenomenologically interpreted DECP mechanism was later explained within

the framework of ISRS modulated with two distinct tensors [7, 43], χR
kl and πR

kl. The

tensor χR
kl is the standard Raman susceptibility, and πR

kl is a new tensor describing the

electrostrictive force acting on the ions. The real parts of the tensor are identical,

but their imaginary parts greatly di�er, leading to the oscillation observed in the

DECP model. In the limit t →∞, the phonon �eld in eq.4.1 becomes

lim
t→∞

< Q(t) >=
−i√
8πΩ

[eiΩtF (−Ω)− e−iΩtF (Ω)], (4.6)

where F (Ω) is the Fourier transform of F (t) so that a real F (Ω) results in Q(t) ∝

sin(Ωt) for excitation below bandgap, and pure imaginary F (Ω) gives Q(t) ∝ cos(Ωt)

for excitation above bandgap. If the Raman tensor is written in terms of linear

dielectric tensors εij(ω) and the decay rate of the nth state is near zero as well as

|Ω/ω| ¿ 1, the two tensors can be approximately expressed as [43]

χR(ω, ω + Ω) ≈ Ξ0

4π~Ω
[ε(ω + Ω)− ε(ω)]

≈ Ξ0

4π~

[
dRe(ε)

dω
+ i

dIm(ε)

dω

]
, (4.7)

and

πR(ω + Ω, ω) ≈ Ξ0

4π~Ω
[ε(ω + Ω)− ε∗(ω)]

≈ Ξ0

4π~

[
dRe(ε)

dω
+ 2i

Im(ε)

Ω

]
, (4.8)

where Ξ is dipole moment so that the electron-phonon and electron-radiation inter-

action are given by −Ξ̂Q̂. In addition, the driving force is [43]
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F (t) =
Nvc

4π

∑

kl

∫ +∞

−∞

∫ +∞

−∞
e−iΩtEl(ω)πR

kl(ω, ω − Ω)E∗
k(ω − Ω)dωdΩ. (4.9)

Inserting eq.4.8 into eq.4.9 and Fourier transforming we get

F (Ω) ∝
[
dRe(ε)

dω
+ 2i

Im(ε)

Ω

] ∫ +∞

−∞
eiΩt|E(t)|2dt. (4.10)

The real part of ε leads to F (t) ∝ |E(t)|2 which is a characteristic of impulsive

excitation, while the imaginary part of ε gives F (t) ∝ ∫ t

−∞ |E(t′)|2dt′ which is a

characteristic of displacive excitation. Because phonons couple to a carrier density

that decays after a few oscillation cycles in the strongly absorbing case, the driving

force is steplike rather than impulsive.

Early experiments suggested that only A1g is excited in opaque materials like Sb,

Bi, Te [4], leading to the original construction of the DECP model. The discovery

of Eg phonons in Bi, Sb in later experiments [5, 6, 44] supports the hypothesis that

DECP can in fact be explained within the framework of ISRS.

4.2 Carrier Dynamics

When electrons absorb energy from light, the dynamics become very complex.

The transition depends on the wavelength of light as well as the electronic band

structure. In this section, the details of transition is not included. After carrier

excitation, the lattice can gain energy from carrier relaxation. The energy of carrier

and lattice system can be expressed in terms of the one- or two-temperature model,

depending on the duration of interaction between the laser pulse and the system.

Two mechanisms, the one- and two-chemical potential models, that are normally

used for the description of excited carriers in theoretical calculations [12, 45] are

introduced in this section.
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4.2.1 One- and Two- Temperature Models

Upon laser excitation, electrons are promoted away from the fermi level. For

a short laser pulse with duration less than the time required for carrier and lat-

tice to reach equilibrium, once electrons thermalize with themselves carriers can be

represented by their Fermi-Dirac distribution with an e�ective temperature Te after

absorption of photons. Before equilibrium, the lattice stay at it original temperature

Tl and can be represented by a Bose-Einstein distribution. This is the well-known

two-temperature model of the photoexcited carriers and lattice systems. On the other

hand, if the pulse duration is long compared to the carrier-lattice equilibrium time,

the carrier and lattice can be simply described as the same temperature, and carrier

concentration is determined by the Fermi-Dirac distribution at a lattice temperature

higher than the original temperature of lattice before photoexcitation.

In the case of a long pulse (teq À tpulse, equilibrium time less than pulse dura-

tion), when phtoexcited electrons thermalize themselves within pulse duration, the

temperature of carrier system can be expressed as [46],

Cl
∂T

∂t
= κl

∂2T

∂z2
+ A(z, t), (4.11)

where Cl is lattice speci�c heat, κl is lattice thermal conductivity, z is along the

sample normal, and A(z, t) is the heat contributed by the laser pulse. The system

temperature is the equilibrium temperature of both lattice and photoexcited carriers.

This is the thermal di�usion equation modi�ed with a heat source for adding energy

continuously to the system until the end of the laser pulse.

For short laser pulse (teq À tpulse), the system is described by a coupled equations

in terms of the separate temperatures of the carriers (Te) and the lattice (Tl) [46, 47,
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48]

Ce(Te)
∂Te

∂t
= κe

∂2Te

∂z2
− g(Te − Tl) + A(x, t), (4.12)

Cl
∂Tl

∂t
= g(Te − Tl), (4.13)

where Ce is electronic speci�c heat, κe is electronic conductivity, and g is electron-

phonon coupling parameter. Before equilibrium is reached between lattice and car-

riers, electrons thermalize themselves quickly by electron-electron scattering. Mean-

while, the inhomogeneous spatial distribution leads to di�usion along the sample nor-

mal. The equilibrium between carrier and lattice is achieved by the electron-phonon

coupling constant g. In a metallic system it is usually expressed as g ' π2mnv2
s/6τeq

[46] where m is electron mass, n is electron density, vs is sound velocity, and τep is

electron-phonon collision time. Through electron-phonon interaction, carriers trans-

fer energy to the lattice, and g is temperature-independent. Note that the electron

speci�c heat (Ce) is temperature-dependent. Since the temperature of electrons can

be normally heated to a few thousand Kelvin by using an ultrafast laser, the speci�c

heat cannot be approximated as a constant as in the lattice system. Lattice speci�c

heat Cl is usually treated as a constant for experiments at room temperature, due

to small increase of temperature and smooth variation of speci�c heat above room

temperature.

In the two-temperature model, the di�usion of carriers can be ignored if sample

thickness is comparable to or less than the optical penetration depth. In some cases,

the di�usion equation requires some modi�cation in order to account for the possible

ballistic transport of carriers. Additionally, depending on the character or quality of

samples the electron-imperfection scattering needs to be considered in the equation.
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Based on di�erent cases, these equations could become complicated; however, the

distinct feature of having two separate temperature system for carriers and lattice

before equilibrium is straightforward.

In metallic systems measured by short laser pulses and described by the two-

temperature model, if laser energy is lower than the interband transition, the d band

electrons will not be excited and only free carrier absorption occurs. With a short and

intense laser pulse below transition energy, broad non-Fermi distributed carriers are

created, carrying energy up to photon energy by assuming one photon absorption per

electron. Through electron-electron scattering, non-thermalized carriers redistribute

energy to follow the Fermi-Dirac distribution. During or after this process, they

can also exchange energy with the lattice by electron-phonon scattering. In a phe-

nomenological explanation, carriers can be separated into two groups, thermalized

and non-thermalized. Thermalized carriers can be expressed by the carrier temper-

ature, while the total energy N is required for the description of non-thermalized

carriers. The thermalized carriers can be expressed as in the two-temperature sys-

tem with a source adding carrier numbers from the nonthermalized carriers at carrier

heating rate α. In addition to thermalized electrons, non-thermalized carriers can

also exchange energy to the lattice with energy transfer rate β. Thus, the total

energy of non-thermalized carriers decays into two parts, thermalized carriers and

thermal energy in the lattice. The coupled and modi�ed two-temperature equation

become [49],
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Figure 4.1: Illustration of one and two chemical potential.

dN

dt
= −αN − βN, (4.14)

Ce
dTe

dt
= −g(Te − Tl) + αN, (4.15)

Cl
dTl

dt
= g(Te − Tl) + βN. (4.16)

4.2.2 Carrier Transport in Two-Chemical Potential

Two models have been used for the photoexcited carriers in Bi, one- and two-

chemical potential models [12, 45], in order to account for the in�uence of photoex-

cited carriers on the A1g phonon generation in density fuctional theory calculations.

Both these two models assume that short laser pulses are used, and that the pho-

toexcited carriers do not reach thermal equilibrium with the lattice at the end of

pulse. Fig. 4.1 illustrates the physical di�erence between these two models.

In the one-chemical potential model, it is assumed that there is no heat exchange

between ions and electrons upon laser excitation, so that the entropy of the electrons

is a constant of motion which is the only constraint in the model. In addition,
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electron-electron scattering leads to thermalized carriers at all times, and carriers

follow the Fermi-Dirac distribution with a single chemical potential µ [12].

In the two-chemical potential model, on the other hand, the numbers of pho-

toexcited electrons and of holes are constrained to be equal. Electrons and holes are

assumed to be instantaneously thermalized to and to follow Fermi-Dirac distribution

with the same temperature Te and separate chemical potentials µe and µh respec-

tively. The electron concentration in the conduction band is the integration over the

entire band of the product of density of state and Fermi distribution

ne =

∫ ∞

Ec

De(ε)fe(ε)dε = 2

(
mekbT

2π~

)3/2

exp[(µe − Ec)/kbT ]

= n0 exp[(µe − Ec)/kbT ], (4.17)

where Fermi distribution for electrons with conduction band edge Ec is

fe(ε) =
1

eEc−µe/kBTe + 1
, (4.18)

and density of state De(ε) is

De(ε) =
1

2π2

(
2me

~

)3/2

(ε− Ec)
1/2. (4.19)

Similarly to the electron concentration, the hole concentration is calculated with

Fermi distribution replaced by fh=1−fe. Therefore, with valence band edge Ev, the

hole concentration in the two-chemical potential model is

nh = n0 exp[(Ev − µe)/kbT ]. (4.20)

From eq.4.17 and 4.18, it is clear that when temperature changes or carriers

cool, electrons and holes can maintain equal density by varying their own chemical
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potential separately.

Electron and hole current are driven in the two-chemical potential model by the

gradient of chemical potential [50]

je = −Re
dµe

dz
ne = Re × kT

dne

dz
, (4.21)

jh = −Rh
dµh

dz
nh = Rh × kT

dnh

dz
, (4.22)

where Re,h × kT corresponds to carrier di�usivity, giving the di�usion contribution

to the spatial density change of electrons and holes by

dNe

dt
= −dje

dz
and dNh

dt
= −djh

dz
. (4.23)

In addition to density change due to spatial di�usion, photoexcited electrons can

recombine with holes in a process driven by the di�erence between their chemical

potentials (µe − µh):

dne

dt
= −K(µe − µh)(ne + nh), (4.24)

dnh

dt
= −K(µe − µh)(ne + nh), (4.25)

and also driven by the change in the carrier temperature Te:

dne

dt
= ne

(
Ec − µe

kBT 2
e

)
dTe

dt
, (4.26)

dnh

dt
= −nh

(
Ev − µh

kBT 2
e

)
dTe

dt
. (4.27)

Thus carrier di�usion, change in carrier temperature, and electron-hole recombina-

tion all can lead to the decay of photoexcited carriers:
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dne

dt
= −Re × kT

d2ne

dz2
−K(µe − µh)(ne + nh) + ne

(Ec − µh)

kT 2

dTe

dt
, (4.28)

dnh

dt
= −Rh × kT

d2nh

dz2
−K(µe − µh)(ne + nh) + nh

(Ev − µh)

kT 2

dTe

dt
. (4.29)

Assuming one photon absorption per electron-hole pair, energy exchange between

the carriers and the lattice is through electron-hole recombination or carrier cooling

via electron-electron scattering. Carrier cooling can be driven by the di�erence of

lattice and carrier temperature as well as electron-hole recombination

dTe

dt
= −g′(Te − Tl)− 2

3k(ne + nh)
(µe − µh)

dne

dt

= −g′(Te − Tl) +
2K

3k
(µe − µh)

2, (4.30)

where 3k(ne + nh)/2 is assumed for the carrier heat capacity and g′ here is electron-

phonon coupling constant divided by the carrier heat capacity. Assuming classical

phonons and Dulong-Petit heat capacity per unit volume, 3nat, the lattice gains

energy from the carriers through

dTl

dt
= g(Te − Tl)

(ne + nh)

nat

. (4.31)

For a short laser pulse, Eq.4.30 and 4.31 are two-temperature equations for photoex-

cited carriers and lattice under the assumption that electrons and holes have separate

chemical potentials µe and µh respectively.

4.3 Acoustic Generation and Propagation

Upon lattice gain energy from photoexcited carriers, thermal expansion can launch

an acoustic strain to propagate in the material. Due to the sudden lattice expansion,
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a stress is generated in the lattice. A corresponding strain forms according to the

boundary conditions, with propagation similar to the string wave. The propagation

of strain is a useful tool for the measure of either sample thickness or speed of sound,

by the relation L = vt where L is sample thickness, v is speed of sound and t is

propagation time.

If an interface is present, the strain can partially re�ect and partially transmit.

The study of transmission and re�ection across an interface contains useful informa-

tion about acoustic impedance as well as the properties of an interface. The details

of the transmission properties of acoustic strains are discussed in Chap. III.

In this section, I start with Thomsen's model [11, 51] for the strain generation and

propagation assuming instantaneous heating. I also discuss how to modify the model

if the heating is not instantaneous but gradual, and I discuss the strain generated

from deformation potential as well as give the general comparison between thermal

and non-thermal strain.

Assume laser energy Q with projection area A is absorbed in the sample, laser

penetration depth is ζ, and lattice speci�c heat is Cl per unit volume of the sample.

If the energy absorbed in the sample has an exponential pro�le as a function of depth

z, then

W (z) =
Q

Aζ
e−z/ζ (4.32)

is the energy per unit volume deposited in the sample. The lattice absorbs energy

from photons and increases in temperature with a pro�le as a function of depth z

∆T (z) =
W (z)

Cl

=
Q

CAζ
e−z/ζ . (4.33)

The increase in lattice temperature will set up a thermal stress
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−3Bα∆T (z), (4.34)

assuming the sample is isotropic, bulk modulus is B, and linear expansion coe�cient

is α. Normally, the laser projection area A (∼ 10 µm− few 100 µm) is much larger

than the sample thickness (∼ nm − few µm), and the probe beam mainly detects

the dynamics parallel to the sample normal or the normal of laser projection. This

is true unless during the time-scale of interest the in-plane dynamics has spread out

of the probe region. Since the stress is along the sample normal, the motion of strain

is also along z according to the relation

σik =
∂F

∂ηik

, (4.35)

ηik =
∂F

∂σik

, (4.36)

with stress σ, strain η, and free energy F [52]. The free energy by de�nition is written

as [52]

F =
3B(1− 2ν)

2(1 + ν)

(
ηik − 1

3
δikηll

)2

+
1

2
Bη2

ll. (4.37)

The indexes i, k, l label the x, y, z coordinates, and ν is Poisson's ratio. Thus the

total stress along z is

σ33 = 3B
1− ν

1 + ν
η33 − 3Bα∆T, (4.38)

and equations of elasticity are

ρ
∂2u3

∂t2
=

∂σ33

∂z
, (4.39)

η33 =
∂u33

∂z
, (4.40)
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where u3 is displacement along z, and ρ is the density. The surface is initially at

rest and free to move, while the strain is zero everywhere when t = 0. With these

boundary conditions, the solution for the strain is [11]

η33(z, t) =
αQ

AζC

1 + ν

1− ν

[
e−z/ζ(1− 1

2
e−vt/ζ)− 1

2
e−|z−vt|/ζsgn(z − vt)

]
, (4.41)

with longitudinal speed sound v expressed as

v2 = 3
1− ν

1 + ν

B

ρ
(4.42)

The solution for strain in eq.4.41 can simply be viewed as a superposition of

thermal expansion ηs (�rst part of solution which is static and not propagating)

and two traveling waves η+, η− (second part of solution). One traveling wave is

along the positive axis determined by the surface normal and the other is along the

negative of the sample normal, propagating at the longitudinal speed of sound. At

t = 0, strain from thermal expansion cancels the sum of the two propagating strains,

owing to the zero stress. Because the static thermal strain is an expansion, the two

propagating strains are compression strains initially from boundary conditions. The

negative-propagating strain η− travels toward the free surface and �ips its phase,

becoming an expansion due to the mismatch of impedance, i.e. Zs > Zair, and then

traveling toward the substrate. The positive propagating strain η+ travels toward

the substrate and re�ects back. When it re�ects, the phase �ips if the acoustic

impedance of the substrate is smaller than that of the �lm (Zs < Zf ). Otherwise,

the re�ected strain retains the same phase and becomes negative propagating as it

re�ects. The propagation of an acoustic pulse in the �lm is simulated as shown in

Fig. 4.2.



55

0 50 100 150 200 250 300 350 400

Thickness (nm)

S
tr

ai
n 

(a
.u

.)

 

 
η

tot

η
s

η
+

η
−

t=0

0 50 100 150 200 250 300 350

Thickness (nm)

S
tr

ai
n 

(a
.u

.)

 

 
η

tot

η
s

η
+

η
−

t=18 ps

0 50 100 150 200 250 300 350

Thickness (nm)

S
tr

ai
n 

(a
.u

.)

 

 
η

tot

η
s

η
+

η
−

t=46.5 ps

0 50 100 150 200 250 300 350

Thickness (nm)

S
tr

ai
n 

(a
.u

.)

 

 
η

tot

η
s

η
+

η
−

t=93 ps

0 50 100 150 200 250 300 350

Thickness (nm)

S
tr

ai
n 

(a
.u

.)

 

 
η

tot

η
s

η
+

η
−

t=186 ps

0 50 100 150 200 250 300 350

Thickness (nm)

S
tr

ai
n 

(a
.u

.)

 

 
η

tot

η
s

η
+

η
−

t=250 ps

Figure 4.2: Simulation of thermal strain pro�le evolving as a function of time delay
including the e�ect of carrier di�usion and recombination but not including thermal
di�usion. The parameters used here are ζ=15 nm, �lm thickness 385 nm, speed of
sound 2150 m/s, carrier di�usivity 22 cm/s, lattice thermalization time 0.8 ps, and
recombination time constant 14 ps. ηtot is the summation of static thermal strain, η+

is positive going strain, and η− is negative going strain. Re�ection coe�cient from
interface of substrate and �lm is 35% without phase change here. At t=186 ps, the
strain is re�ected from the �lm/substrate interface.
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The strain η33, is based on the assumption that heating is instantaneous and

thermal pro�le does not di�use. In a more general case, a thermal gradient leads to

thermal di�usion, and temperature pro�le changes as a function of time, becoming

more homogeneous. Conceptually, the change in thermal pro�le, i.e. ∆T (z) = T (t =

t2, z)− T (t = t1, z) , can be viewed as a new source that generates new propagating

strains η′R, η′L. The instantaneous strain at t2 is the sum of three components:

thermal strain that has di�used between t1 and t2 ), the two strains η+, η− at t1 that

have been propagating for ∆t = t2 − t1, and the two strains η′+, η′− newly generated

by ∆T (z). Therefore, the sharp edge of the positive-propagating strain becomes

more smooth, due to the thermal di�usion that produces expanded η′+ and η′− from

negative ∆T (z). The negative propagating strain �ips as re�ects from free surface,

becoming an expansion, which experiences no smear-out e�ect. This is shown in Fig.

4.3. Thermal di�usion is a relatively slow process, which can be ignored in materials

where thermal di�usivity is much less than the product of speed of sound and laser

penetration depth, i.e. Dth ¿ vζ, as shown in the upper and the middle panels of

Fig. 4.3.

The analytical solution for strain assuming instantaneous heating, including ther-

mal di�usion, is

η33 =
αQ

AζC

1 + ν

1− ν
F (z − vt), (4.43)

where F (z, t) for z > vt is

F (z − vt) = −1

2
e−(z−vt)/ζ − 1

2

∫ ∞

0+

dt′
∫ ∞

0

dz′
∂Θ

∂t′
δ(z′ − z + v(t− t′)), (4.44)

or for z < vt is
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Figure 4.3: Thermal di�usion e�ects on the shape of thermal strain for various
condition. Figure is adapted from Ref. [11].

F (z−vt) = −1

2
e−(z−vt)/ζ−1

2

∫ ∞

0+

dt′
∫ ∞

0

dz′
∂Θ

∂t′
[δ(z′−z+v(t−t′))−δ(z′+z−vt(t−t′))].

(4.45)

Here Θ(z, t) is

Θ(z, t) =

∫ ∞

−∞
dz′

1√
4πDtht

e−(z−z′)2/4Dthte−|z
′|/ζ , (4.46)

which is a function taking thermal di�usion into account such that

∆T (z, t) =
Q

AζC
Θ(z, t). (4.47)
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Figure 4.4: Comparison between thermal strain generated from lattice heating and
non-thermal strain generated from deformation potential at t=93 ps after laser ex-
citation. Parameters are used as in Fig. 4.2. The strain to carrier coupling is
dη33/dne=0.72 for Bi [53].

If, however, heating is not instantaneous and carrier recombination transfers en-

ergy to the lattice after laser excitation at t = 0, the thermal pro�le evolves faster

since carrier recombination is usually faster than thermal di�usion. In this case, the

strain becomes broader than the laser penetration depth ζ. Moreover, if carriers

cool while di�using and before recombination, the width of the acoustic pulse will be

dominated by the carrier cooling which contributes energy to lattice heating. The

strain propagation of Fig. 4.2 includes both carrier cooling and recombination, so

that the width of the acoustic strain is wider than laser penetration depth ζ.

The above discussion concerns strain generation due to thermal expansion. Al-

ternatively, the sudden increase of photoexcited carriers can also launch the acoustic

pulses (non-thermal strain) by changing the deformation potential. The increase in

free carrier density leads to expansion or compression of the lattice depending on

the sign of the coupling constant. The sudden lattice expansion/compression also

sets up the stress and modi�es the corresponding elasticity equations. The main
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di�erence between thermal strain and non-thermal strain is the generation source,

and the corresponding coupling constants between sources and strains are dη/dn and

dη/dT . Generally, the carrier di�usion is much faster than the thermal di�usion ,

i.e. Dth À vζ. The non-thermal strain generated by deformation potential coupling

alters the bi-polar pro�le in a manner similar to, but more pronounced than, the

e�ect of thermal di�usion shown in Fig. 4.3. The non-thermal strain displayed in

Fig. 4.4 is generated from the increase of carrier density using the same parameters

shown in Fig. 4.2. Fig. 4.4 is a comparison between thermal strain generated from

lattice thermal expansion and non-thermal strain due to the change of deformation

potential.

From the above discussion, strain can be generated both from thermal expansion

and from change in deformation potential that couples photoexcited carriers to strain.

These two generation sources can modify the shape by thermal di�usion, carrier

di�usion, carrier cooling and carrier recombination. Therefore, the strain contains

information about early dynamics of carriers.



CHAPTER V

X-ray Techniques

X rays are a type of electromagnetic (EM) radiation waves, similar to optical light

but with much higher energy per photon and much shorter wavelength ∼10 - 0.1Å.

Because of their short wavelength, x rays can penetrate deep in many light materials

and have important applications in medical treatments. In addition, there have been

many technical applications of x rays both in daily life (e.g. airport security scan)

and research studies (e.g. structure studies of solids and proteins).

One of many important techniques is x-ray di�raction. X-ray di�raction has long

been used to study structures of solid state and proteins, resulting in several Nobel

prizes. Any crystalized structure with some periodicity, either single or poly crystal,

can be investigated by X-ray di�ractions. From the di�racted pattern, the crystal-

lography can be reconstructed. Hard x rays (photon energy Eph∼10 keV-100 keV)

have a short wavelength comparable to atomic distance in materials. Deep pene-

tration and high sensitivity to lattice spacing make them an ideal tool for studying

heterostructures, which are a composite of more than two materials. One material

embedded under a second or sandwiched by two other materials usually cannot be

detected directly by most non-x-ray methods. Even for non-contact laser techniques,

the long wavelength and short penetration/skin depth limits the region of material

60
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Figure 5.1: Macroscopic and kinematic Bragg di�raction. The path di�erence be-
tween f1 and f2 is AB+BD-AC. When the path di�erence is equal to an integer
multiple n of incident wavelength, i.e. nλ n=1,2,3..., constructive interference forms.
Simple geometry gives that 2d sin θ = nλ.

that can be studied.

X-ray Bragg di�raction was �rst proposed by William Lawrence Bragg. When

absorption is not taking into account, x-ray di�raction is often referred to as Bragg

di�raction. Bragg's law gives a condition for x rays scattered by atomic lattice planes

to interfere constructively:

2d sin(θ) = nλ, (5.1)

where d is lattice spacing, θ is incident angle with respect to sample surface, and λ is

the wavelength of incident x rays. When x rays hit the atoms, the electronic clouds

move and reradiate EM waves with the same frequency. These waves interfere with

each other constructively or destructively. Bragg's law can be presented as a simple

cartoon in Fig. 5.1.

For a �xed wavelength of x rays hitting certain atomic planes with lattice spacing

d, only certain angles meet the condition of eq.5.1. If lattice spacing changes, the
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Bragg Laue

Figure 5.2: X-ray di�raction in two geometries. Depending on the di�racting plane,
incident x rays may or may not exit on the same side of the sample.

incident angle should also change in order to satisfy Bragg's law. This sensitivity

to lattice spacing o�ers great potential for x rays to study the dynamics of lattice

structure.

There are two geometries for di�raction, Bragg geometry and Laue geometry. If

di�raction happens with incident and exit x rays on the same side of the sample, it is

Bragg geometry. Otherwise, it is Laue geometry. The di�raction in Laue geometry

also follows the Bragg condition. However, it may undergo Bragg re�ection between

the atomic planes many times before it leaves from the other side. Real crystals with

�nite thickness have certain absorption lengths, and the exit x rays in Laue case

may or may not be a strong di�raction. When absorption is strong, the x rays can

be mostly absorbed before they exit the crystal, unless the incident beam meets the

Bragg condition and condition for anomalous transmission (Borrmann e�ect) [13]. If

the absorption or di�raction is strong, the dynamical x-ray di�raction theory should

be applied [13], although in this dissertation, the kinematical di�raction is su�cient

for analysis. The di�erent geometries are shown in Fig. 5.2.
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When ultrafast lasers are used to instantaneously excite a material, the elec-

tronic structure changes and the excited carriers carry energy from the absorption

of photons. When this energy relaxes through complex scattering processes, most

of the energy is transferred to the lattice within a few picoseconds if the processes

are non-radiative. The lattice becomes hot and expands, increasing the lattice con-

stant. Because of their sensitivity to lattice constant, x rays become very useful to

detect lattice dynamics after laser excitation. Many experiments use time-resolved x-

ray di�raction to study lattice dynamics from photo-excited material for time-scales

ranging from sub-femtosecond to nano-second scale [1, 9, 54, 55, 56, 57, 58].

In this chapter, I introduce the application of x-ray di�raction to thermal trans-

port. Starting with the experiment x-ray source, I discuss several methods of x-ray

methods that are applied to my measurements. The �lm thickness is measured by

the x-ray re�ectivity, which is a critical parameter to determine many other param-

eters especially in transport studies. The combination of time- and depth-resolved

di�raction overcomes the disadvantage from limited penetration depth of laser tech-

niques. Since the depth-resolved di�raction requires grazing incident x rays, I discuss

the grazing incident geometry and the related x-ray beam characteristics.

5.1 Synchrotron source of APS

For lab-based x-ray sources, electrons are produced from a heated cathode and

accelerated through a short distance (vacuumed) between cathode and anode. With

high voltage in between, electrons can accelerate to high enough energies to ionize

inner-shell electrons from the anode. If inner-shell electrons are removed, the atom

becomes unstable, and outer-shell electrons fall into the hole left by the removal of

inner-shell electrons. When this happens radiatively, x rays are produced with energy
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equal to the di�erence of inner and outer shell states. However, the e�ciency of

removal of inner-shell electrons is low, and most energy goes to excite the outer-shell

electrons, which return to their normal states accompanied only by heat production.

Compared to lab-based x rays, synchrotron based x rays are more e�cient and

have higher brightness (the source power per unit area and per unit solid angle) for

more applications in research. Advanced Photon Source (APS) [59] in Argonne Na-

tional Laboratory is a third-generation synchrotron based x-ray source. The facility

contains a linear accelerator, booster synchrotron, electron storage ring, insertion

device, and experimental halls. The linear accelerator is composed by alternating

high-voltage electric �elds, and accelerates electrons produced from a heated cath-

ode up to 450 MeV. With this much energy the electrons are traveling at relativistic

velocities. The booster synchrotron accepts electrons injected from the linear accel-

erator and boost them to 7 GeV. The electrons then circulate along the storage ring,

composed by more than a thousand electromagnets. Inside the storage ring, small-

size and low-divergence electron beams are produced. In APS there are 40 straight

sections/sectors arranged around the ring. Electron injection and radio frequency

equipment make up �ve of the sectors. The measurements in this dissertation were

done in Sector 7, one of the insertion devices with an undulator. The undulator has

alternating dipole magnets, which cause electrons to oscillate and radiate, producing

x rays.

There are three common synchrotron radiation forms: bending magnet, undula-

tor, and wiggler radiation [60]. The radiation from bending magnets has a broad

spectrum but relatively low brightness, and the energy range of the photons does

not include much hard x-ray radiation. The radiation from undulator has narrow

spectrum, high brightness and partial coherence. Wiggler radiation has high pho-
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Figure 5.3: Three common radiation forms. The arrows are x rays and the spread of
arrows is a cartoon of spectrum. The brightness is expressed as thickness of arrows.

ton energy, broadband spectrum and high photon �ux. Both bending magnet and

wiggler radiation have broadband spectra, but wiggler has a much higher photon

�ux. For bending magnet there is a high energy cuto�, depending on the electron

beam energy and radius of curvature. In each radiation form, relativistic electrons

undergo di�erent trajectories and radiate as illustrated in a simple cartoon in Fig.

5.3. Radiation wavelength is denoted as λr, and γ=1/
√

1− v2/c2 where v is the

velocity of electrons and c is speed of light.

In undulator radiation for example, the undulator has N alternating magnet

dipoles with period λund. In the electrons' moving frame, they experience λ′=λund/γ

oscillation with bandwidth ∆λ′/λ′=1/N (transform limited). In the observer's frame

with an angle θ from the electrons' direction of motion, due to the Doppler e�ect the

radiation wavelength becomes λ = λ′γ(1 − v/c cos(θ)). With small θ it is approxi-

mately equal to

λ ∼ λund
2γ2

(1 + γ2θ2), (5.2)

so that slightly o�-angle observers will see longer wavelength. When θ is at 0, observer

sees λ = λu/2γ
2. An illustration of an undulator is shown in the upper panel of Fig.
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Figure 5.4: Cartoon of undulator and a pair of monochromators. The upper panel
is the alternating magnet dipoles with period λu. The radiation wavelength at θ=0
is λu/2γ

2. The lower panel is a pair of diamond crystals. Polychromatic incoming
x ray comes in angle θB and di�racts at various angles. The second parallel crystal
only allows the dispersed x rays at θB to di�ract again and exit with the angle θB.
Thus the exit x rays become monochromatic with very small energy spread.

5.4.

Eq.5.2 assumes small magnetic �eld strength, B. When B is increased it a�ects

the orbit of electrons so that the wavelength is increased:

λ ∼ λund
2γ2

(1 + γ2θ2 +
K2

2
), (5.3)

where K = eBλµ/2πmc. Thus the wavelength can be tuned by varying the gap.

In Sector 7 at APS, a pair of diamond monochromator is used to further select

the wavelength. Depending on the application of experiments, polychromatic or

monochromatic beams may be required. Polychromatic beams contain x rays with a

certain energy range while monochromatic beams have a very small energy spread.

In Sector 7, ∆E/E is on the order of 10−4. Monochromators are based on the idea

of Bragg di�raction. As incoming polychromatic x rays hit the crystal with an angle
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θB, di�erent wavelengths di�ract at various angles. A parallel second crystal allows

the di�racted radiation with angle θB to di�ract again, and the beam returns to its

original direction as displayed in the lower panel of Fig. 5.4.

Depending on the requirement of di�erent experiments, Sector 7 is equipped with

a KB (silicon) focusing mirror to focus beams in the vertical, or horizontal direction,

and slits in the upstream or downstream detector arm can either increase the angular

resolution or increase the coming �ux.

5.2 X-ray techniques

This section introduces some useful techniques for structural determination as

well as a basic theorem on x-ray re�ectivity. X-ray re�ectivity can measure �lm

thickness. The time-resolved x-ray di�raction subsection discusses the timing scheme

between x-ray and laser pulses. The asymmetric x-ray di�raction subsection mainly

discusses the grazing incident case. It covers the di�erence in beam pro�le between

incident and exit beams when x rays enter a sample at a very shallow angle. A simple

diagram is introduced for the aid of understanding.

5.2.1 X-ray re�ectivity

X-ray re�ectivity is a useful tool for thin �lm studies and characterizations. The

re�ectivity is usually performed at low incident x-ray angles so that the x rays mainly

detect the upper layer of the sample due to small extinction depth at small incident

angle. Here, I combine Batterman's [13] and Gibaud's [14] approaches to give a

simple overview of x-ray re�ectivity.

If a Fourier series is used to express electron density at any point r in a crystal
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and sum is taken over the reciprocal lattice, the electron density becomes

ρ(r) =
1

V

∑
H

FH e−2iπH·r. (5.4)

The vector H=(hkl) is the reciprocal vector, V is the volume of the unit cell and FH

is the structure factor that can be conversely written as

FH =

∫

V
ρ(r) e2iπH·rdv. (5.5)

If atoms are treated as rigid bodies without thermal vibration, the structure factor

becomes

FH =
∑

n

fn e2iπH·rn , (5.6)

where n is over all atoms in the unit cells. For electric displacement vector D with

electric �eld E, charge e, and amplitude of the induced electron motion x, the dipole

moment P = ρ(r)ex is related to electric displacement as D = kε0E = ε0E + P and

the dielectric constant is k=1 + P/(ε0E). Treating the electric �eld as a sinusoidal

amplitude with frequency ω0 acting on an electron cloud with density ρ(r), the

electric displacement is x = eE0/m(ω2−ω2
0) with ω being frequency of the electrons.

Using eq.5.4 and considering hkl= 0 0 0, the dielectric constant k0 is

k0 = 1− Γ(F′0 + iF′′0) = 1− Γ
∑

n

(f0 + f ′0)n − iΓ
∑

n

(f ′′0 )n, (5.7)

where f0 is the atomic scattering factor with corrections due to resonance f ′0 and

absorption f ′′0 , and Γ = reλ
2/π/V with re = 2.813×10−6 nm being the classical radius

of an electron. Because this is a zeroth order approximation, eq.5.7 is the expression

for the average value of the dielectric constant. In a non-magnetic medium, the x-ray

index of refraction can be written as [14]

n =
√

k0 =

(
1− Γ

∑
n

f0 + f ′0 + if ′′0

)1/2

= 1− δ − iβ (5.8)
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with

δ =
re

2π
λ2

∑
n

f0 + f ′0
V

=
re

2π
λ2ρ (5.9)

and

β =
re

2π
λ2

∑
n

f ′′0
V

=
λ

4π
µ (5.10)

where

µ =
2π

λ
Γf ′′0 (5.11)

is linear absorption coe�cient and is related to the imaginary part of the average

dielectric constant.

From eq.5.8 the index of refraction n is lower than 1, since δ as well as β are both

positive. The incident x rays can undergo total external re�ection with a critical

angle θc relative to the surface, derived from Snell's law

cos θc = n = 1− δ. (5.12)

Since n is slightly smaller than 1 and the critical angle is very small, using Taylor

expansion to the lowest order of θc we can get

θc '
√

reλ2

π
ρ. (5.13)

For specular re�ection of x rays incident onto a �at medium with uniform electron

density, the re�ectivity at various incident angles can be de�ned as R(θ) = I(θ)/I0

with incident intensity I0. As angle increases, the transmission increases, and thus

the re�ectivity only is strong for small incident angles. From the Fresnel relationship,

re�ectivity R(θ) is

R(θ) =

∣∣∣∣∣
θ −√

θ2 − θ2
c − 2iβ

θ +
√

θ2 − θ2
c − 2iβ

∣∣∣∣∣

2

. (5.14)

From eq.5.14, re�ectivity decreases as incident angle increases for a �at medium.

This can be observed in the re�ectivity measurement of Bi grown on sapphire with
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Figure 5.5: Re�ectivity measurement for Bi �lm at 7 keV. The background intensities
decrease as angle increase. The oscillation is due to the interference from the beam
re�ected from Bi surface and interface of Bi/sapphire.

66 nm �lm thickness, shown as the background intensities without oscillations in Fig.

5.5.

For x rays incident onto a multi-layered �at medium, the re�ected beam from

di�erent interfaces can interfere with each others. If kz,j is de�ned as the wave

vector in the z direction (along sample normal) of an electric �eld in the j layer,

the re�ection amplitude of the electric �eld from layers 0 to layer 1 (shown in Fig.

5.6) can be derived by treating electromagnetic waves with appropriate boundary

conditions, yeilding

r0,1 =
kz,0 − kz,1

kz,0 + kz,1

. (5.15)

If there is an interface between layers 1 and 2, the transmitted light can re�ect from

1/2 interface shown as Fig. 5.6, causing interference with the re�ection from the

0/1 interface. By transform matrix calculations [14], the re�ection coe�cient for the

combined re�ection from two interfaces 0/1 and 1/2 is

r =
r0,1 + r1,2 exp−2ikz,1h

1 + r0,1r1,2 exp−2ikz,1h
, (5.16)
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Figure 5.6: Illustration of several interfaces and x-ray interference. ri,j and ri,j are
re�ection and transmission between medium i and j.

with h being the thickness of layer 1. The constructive interference happens when

2kz,1h = 2πp. Since −→k 1,in-
−→
k 1,ref = 2kz,1 = qz,1 = 2π/h, thus

2πp = 2kz,1h = qz,1h (5.17)

for constructive interference.

For �at surface, eq.5.14 gives the re�ectivity of x rays as a function of incident

angle. Re�ectivity at angles higher than the critical angle drops dramatically. For

a thin �lm on a substrate, the re�ections from the surface and from the interface

interfere with each other, and the �lm thickness can be determined by the period of

the interference pattern. For very small angles, ∆θ can be approximated as

∆θ ≈ λ

2h cos θ
. (5.18)

Film thickness h thus can be calculated from the known period of interference using

re�ectivity. As �lm thickness increases, ∆θ becomes smaller, and angle resolution

is hard to achieve for x-ray di�ractometers because the fringes become less and less
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distinct. For thick �lms, other methods are required for determination of thickness,

ultrasonic for example.

5.2.2 Time resolved x-ray di�ractions

In APS there are 1296 buckets in the ring available to �ll with the electrons; not

all the buckets are necessary to be �lled. The mode running for my experiments is 24

bunches which are �lled with equal spacing (∼153 ns apart) around the storage ring

∼1.1 km. The revolution of each bunch inside the ring is 271.5 kHz (P0 frequency);

in another words the radio frequency (RF) is ∼351.9 MHz. in In 24-bunch mode,

the x-ray pulse frequency is ∼6.53×106 Hz, a useful value to determine the total

counts in photon-counting mode when the detector is not gated. The x-ray pulse

duration in APS is about 100 ps. A Ti:sapphire ampli�ed laser used to photoexcite

materials is electronically phase-locked to the RF. It usually runs at a 1 or 5 kHz

repetition rate. My measurements are mostly performed at a 5 kHz laser repetition

rate. The frequencies of x rays and laser are locked by the error signal (352.5 MHz

+ phase), which is a mixed signal from the laser oscillator as well as RF. The error

signal is feedbacked to piezo-stage with a highly re�ective mirror to adjust the cavity

length. The timing between the x rays and laser can be varied continuously by

adding a phase shift in the feedback loop, and selecting the appropriate laser pulse

to be ampli�ed. The timing jitter is a few picoseconds, much smaller than the the

x-ray pulse duration.

To distinguish x ray pulse to pulse, the detector needs to be fast. For 24-bunch

mode, to tell one bunch from another, the detector response should be faster than

153 ns. In Sector 7, avalanche photo diodes (APD) are used in my experiments with

rise time about 10 ns; enough to distinguish x-ray pulse trains. For photon-counting
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Figure 5.7: Diagram of x ray and laser timing scheme. The upper �gure is x-ray
pulse trains in 24 bunch mode. The middle �gure is cartoon of two gates set to
the same x-ray bunch at di�erent times. The lower �gure is laser. When laser is
coincident with bunch 1 in �gure, the time is called time zero.

detection, a threshold is set to the current of the detector to distinguish one or zero

photons. The threshold is set in such a way that for a single x-ray pulse hitting the

APD detector, the output is counted as one photon. For a non-gated APD detector,

photon-counting mode should in principle read all the x-ray pulses, and in 24-bunch

mode it reads ∼ 6.53×106 counts/s, when the probability for detecting at least 1

photon/bunch is ∼1.

For time delay between laser pump and x-ray probe, an electronic logical gate is

used to determine which x-ray pulse to look at. In my measurements, 4 gates are set.

The timing scheme can be understood from a simple cartoon shown in Fig. 5.7. One

gate is set to the x rays nearly coincident with the laser pulse while the second gate

is set on the same x-ray pulse but one revolution earlier. The third gate is set to the

next x-ray bunch, 153 ns later in order to see the dynamics at long time delay. The

fourth gate is set one revolution earlier than the third gate. The 1st and 3rd gates

are used to detect the signal nearly coincident with the laser pulse and ∼153 ns later



74

than laser pulse. The 2nd and 4th gates are simply one revolution before the 1st

and 3rd gates, and detect signals before the laser hits the sample. Because the laser

repetition rate is 5 kHz, laser pulse to pulse separation is 200 µs apart. This is long

enough for most dynamics in solid state initiated by the laser to recover to original

state. Because 2nd and 4th gates are set at the same bunches as 1st and 3rd gates

respectively, they can be used as normalizations factor to see the di�erence between

the data with and without laser e�ects. In addition, any �uctuation from di�erent

bunches due to electron injection can be eliminated.

5.2.3 Asymmetric x-ray di�ractions

Because x rays normally penetrate deep in materials, good sensitivity to surface

layers requires a grazing incident geometry. If incident and exit angles are allowed to

be di�erent, the choice of di�raction peaks is more �exible. This is of great help in

detecting the dynamics just around laser excitation region. In addition, tuning x-ray

incident angle also varies the extinction depth, allowing the dynamics be mapped

out through di�erent depths of the medium.

The grazing incident x rays have large cross section on the sample surface. This

can make the spacial overlap between laser and x-ray problematic when a small laser

spot is required to keep high �uence. If monochromatic x rays are focused, the

di�racted signal can be more divergent on the detector than in other geometries.

Depending on the geometry, monochromatic x rays with various angular widths of

incident beam can be smaller than, larger than or equal to the the angular width

of the exit beam. The details of the divergence for the exit beam depend on the

collimation and the energy spread of incident beams. Understanding these details is

helpful for arranging the experimental geometry between laser and x rays.
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Figure 5.8: Symmetric and asymmetric di�ractions in Bragg and Laue geometries.
Incident and exit angles are θi and θe, Bragg angle is θB, and α is the angle between
surface and atomic plane.

Assuming θi is the incident angle of the x ray and θe is the exit angle, when

θi = θe it is symmetric di�raction. If α is the angle between the di�racting atomic

plane and the sample surface, the di�raction is asymmetric for α 6= 0 in Bragg case

and α 6= π/2 in Laue case. Shown in Fig. 5.8 for α 6= 0, the Bragg angle θB

corresponding to the di�raction plane can be written as θB = α + θi = α − θe. If

the crystal is asymmetrically cut, the asymmetry can be characterized as a b factor

which is de�ned as the ratio between directional cosine of incident and di�racted

beams with respect to the incident surface:

b =
n · s0

n · sH

=
sin(θi)

sin(θe)
=

sin(α + θB)

sin(α− θB)
, (5.19)

where s0, sH are the incident and di�racted beam direction vectors, and n is the

surface normal. Bragg di�raction geometry is the case when b <0, and b > 0 corre-

sponds to Laue di�raction geometry. For symmetric Bragg di�raction, b=1 because

α=0. Similarly, b = −1 is the case of symmetric Laue di�raction. If we de�ne wi
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and we as half-width for incident and exit angle of x rays and ws as half-width for

the symmetric case in which wi = we = ws, we have the relation [61]

we = −bwi = −ws|b| 12 . (5.20)

The general expression for the angular range of an exit beam for polychromatic

x rays with �nite angular divergence Di can be given as

De = 2|wi||1 + b|+ Di, (5.21)

valid for both Bragg and Laue geometry.

DuMond's diagram [61, 62] shown in Fig. 5.9 is very useful for easy understanding

of the relationship between a beam's angular width and divergence schematically.

Using the y-axis as x-ray wavelength λ and x-axis as incident angle range, the diagram

can be plotted with two parallel lines at 45 degrees near the �gure diagonal. The

separation of the parallel lines is determined through eq.5.20. An x-ray beam can be

represented by an arrow between these two parallel lines. The vertical and horizontal

dimensions of an arrow represent, respectively, the wavelength range and the range

in incident angle of the beam. For example, a vertical arrow indicates collimated

x rays, and a horizontal arrow is a representation of a monochromatic beam. This

wavelength versus incident angle plot is referred to as an incidence diagram.

Because x-ray energies are conserved, the same wavelength range should be con-

served in the similar exit diagram with x-axis representing exit angle. In the Bragg

case, the arrow in the exit diagram starts from the same oblique line as in the in-

cident diagram, pointing to the other line. On the other hand, the exit arrow in

the Laue case is oppositely directed between the two lines. Thus from the illustra-

tion of Fig. 5.9(a) and Fig. 5.9(d) it is clear that a monochromatic beam preserves

the range of angles in symmetric Bragg di�raction (|b| = 1). If |b| > 1, shown in
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Figure 5.9: DuMond diagram in Bragg case (b<0) and Laue case (b>0). α is the
angle between surface and di�raction atomic plane.

Fig. 5.9(b) and Fig. 5.9(e), a monochromatic and less collimated beam exits with

increased angular divergence and smaller spatial cross section, to preserve the power

of the beam between incidence and exit. For a collimated polychromatic beam with

|b| > 1, the exit beam disperses. For |b| < 1, shown in Fig. 5.9(c) and Fig. 5.9(f), a

monochromatic and less collimated (respectively, a collimated polychromatic) beam

exits more collimated (more dispersed). For polychromatic but collimated x rays,

only symmetric Bragg di�raction preserves collimation. For all b 6= 1, asymmetric

di�raction results in a dispersed exit beam. A similar method applies to the Laue

geometry, with similar results for the monochromatic incident beam. However, for

polychromatic x rays in Laue di�raction, whether symmetric or not, the angular dis-

persion increases in all three cases as shown in the far left column of Fig. 5.9(j)-Fig.

5.9(l).
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In some of my experiments, asymmetric Bragg geometry is used with a monochro-

matic beam. This results in a broader monochromatic exit beam, which reduces the

sensitivity to change in Bragg angle. For a �xed angular divergence of the incident

beam in Bragg di�raction, the divergence of exit beam can be reduced by using a

small magnitude of b factor or small beam width. One way to minimize the angular

divergence for the exit beam is to minimize the beam width of the incident beam

(this is di�erent from focusing the beam since focused beams always diverges). An-

other way is to use grazing exit geometry, which can increase the sensitivity to the

change in exit angle. In order to probe near surface, a grazing incident or grazing

exit geometry is required. However, the grazing incidence has a broader exit beam

while the grazing exit has a narrower exit beam, making grazing exit geometry more

sensitivity to change in Bragg angle.



CHAPTER VI

Optical Pump-Probe Techniques

Ultrafast lasers are useful tools for studying dynamics of condensed matter. The

mode-locked titanium doped sapphire (Ti:sapphire) laser is one of the most com-

mon lasers used in optical pump-probe experiments. A high-power continuous laser

pumping the Ti:sapphire crystal creates �uorescence with a wide bandwidth ∼ 300

nm centered around 800 nm that travels in an open resonator cavity. Ti:sapphire

crystal has a short inversion lifetime, ∼ 3.2 µs, and high saturation power to give

high intensity of peak power. A high re�ective output coupler allows a very small

amount of light to transmit and leave the cavity. The very broad bandwidth allows

very short pulses to be generated. Normally ∼ 100 fs for Ti:Shippre is easily to

obtained, and some designs can obtain ∼ 5 fs with high stability.

Pump-probe experiments using ultrafast laser detect re�ection or transmission

from a sample. They can study the signal as a function of time by using a controllable

delay stage to delay the probe with respect to the pump or to advance the pump

with respect to the probe. In order to detect the dynamics upon pump excitation,

spatial and temporal overlap of pump and probe are required.

This chapter describes pump-probe technique by the introduction of ultrafast

laser oscillators and ampli�ers used in the chapter of optical experiments. Following

79
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Figure 6.1: The cavity diagram for KM oscillator. OC: output coupler. M1,M4,M5:
Mirror. M2,M3: Focusing mirror. L1: Focusing lens. P1,P2:Prism. Ti:Sapph.:
Titanium doped sapphire crystal.

that I explain the detection method of the probed signal, i.e. ∂R/R, in terms of the

change in the dielectric constant, which is in general a function of carrier density,

and strains in lattice contributed from optical phonons, acoustic phonons and lattice

heating.

6.1 Ti: Sapphire Mode-Locked Oscillator

Displayed in Fig. 6.1, the main cavity or optical resonator of a Ti:sapphire mode-

locked oscillator is composed of a Ti:Sapphire crystal as a gain medium. Two end

mirrors face each other as M4 and OC in Fig. 6.1. One of the end mirrors, OC, is

as output coupler. The light emitted from the crystal travels in the cavity, bouncing

back and forth so that interference forms. The constructive standing wave is known

as the longitudinal mode of the cavity. The separation of two allowed modes is

determined by the cavity length L,
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∆ν =
c

2L
. (6.1)

The bandwidth of the gain medium determines the number of supported modes in

the cavity. If many modes (usually above many thousands) oscillate in the cavity

without a �xed phase-relationship, the average output has a constant intensity in a

continuous wave called c.w. laser. If the modes oscillate in a �xed phase, they will

interfere constructively in a period leading to a burst of pulse. The pulse separation

is

T =
2L

c
. (6.2)

The bandwidth or number of modes determines the pulse duration. The lower

limit of pulse duration is known as the transform limit, and the product of time-

bandwidth is at its minimum without chirp, i.e. the frequency does not change over

times.

When light travels through materials the frequency becomes chirped, i.e. fre-

quency is time dependent. Whether positive or negative chirp depends on the mate-

rial light passing through, and a chirp broadens the pulse duration. To compensate

for the chirp, an optical element with opposite chirp can be added. Normally, a pair

of prisms or grating is added in the cavity for compensation of chirp. Compensation

by using a pair of gratings or prisms is also common outside the cavity for pulse com-

pression if many optics are used in the design of the optical path. Fig. 6.1 displays

the design of the KM Lab Oscillator. Fig. 6.2 shows the scheme of a pair of prisms

as well as gratings.
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Figure 6.2: Simple illustrations for a pair of prisms and for a pair of gratings for
frequency compensation, in upper and lower panel respectively. Center frequency f
with width 2∆f is incident onto the 1st prism. Various frequency components are
subject to di�erent index of refraction (dispersion). Between two prisms, various fre-
quencies have trips of di�erent distances. A second prism recovers the spatial overlap
of all frequencies and a frequency chirp is produced. A positive chirp corresponds to
the increasing instantaneous frequency as a function of time delay. The similar idea
applies to a pair of gratings. The di�erent frequencies have di�erent round trips,
producing a frequency chirp when the spatial overlap is recovered.

6.2 Regenerative Ampli�er

The ampli�er receives an input pulse and can generate higher output signal.

There are many designs for ampli�cation by pumping a gain medium in the cavity.

Experiments at high excitation in this dissertation were performed with a regenera-

tive ampli�er.

Pumping the Ti:sapphire crystal (gain medium) with a high power continuous

wave (c.w.) laser for some time can store energy. Injecting a seed pulse into a

resonator controlled by an electro-optic switch, Pockels cell for example, enables the

pulse to travel many round trips in the resonator and be ampli�ed. Using a second

electro-optic switch can release the pulse after ampli�cation, and the pulse is usually
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ampli�ed to mJ range with one to several hundred kHz repetition rate. An oscillator

can serve as a seed pulse, which usually has high repetition rate up to many tens

of MHz, e.g. Ti:Sapphire oscillator is normally around a few hundred MHz. Not all

seed pulses are injected into the resonator. The selection of seed pulse is controlled

by the electro-optics or acousto-optic switch.

Usually before the seed pulse enters the ampli�er, it needs to be temporally

stretched to avoid damage caused by its high intensity in the ampli�er. This requires

a very highly dispersive optical element, and usually a pair of gratings does the work.

Thus the pulse is stretched with a long time duration to reduce its peak intensity.

After pulse ampli�cation, it requires a compression again to become a short duration

pulse and to increase its peak intensity. A second pair of gratings with the opposite

dispersion from �rst pair can be used to compress the pulse. This scheme is called

chirped-pulse ampli�cation (CPA) [63].

The experiments in this dissertation use Coherent company's ampli�er Rega

which is seeded by ∼ 120 fs pulse from Mira , the Ti:Sapphire oscillator. The pulse

switch is controlled by the acousto-optic modulator (AOM), which can control the

power, frequency or direction of the incoming pulse. The AOM consists of a trans-

parent crystal attached with a piezoelectric transducer that generates acoustic waves

in the crystal using pressure. When a laser pulse propagates through the crystal

with a periodic acoustic wave, it experiences Bragg di�raction and slightly changes

direction and frequency compared to the transmitted beam. Thus AOM in Rega

(cavity dumper) controls the ejection and injection of the pulse in and out of the

resonator. Another acousto-optic switch in Rega's resonator, the Q-switch, holds o�

the spontaneous lasing in the cavity until the seed pulse is injected.

In order to have a stable system of ampli�cation, the seeded pulse needs to have
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Figure 6.3: Diagram of Rega system, from manual of Rega.

a broad bandwidth and speci�c center wavelength, i.e. 800 nm in Rega and ≥10 nm

bandwidth is required from the Mira oscillator. The seed pulse circulates through

many round trips in the cavity, and the Q-switch as well as the optical elements

cause a large dispersion which stretches the seed pulse to a ∼ 40 ps before pulse

extraction. Thus, the pulse does not need to be pre-stretched before injection into

cavity. The output pulse from the cavity is usually compressed by a pair of gratings

which can be tuned to get the various pulse widths. Rega uses a combination of

mirrors and a single grating for the pulse compression. By tuning a compensation

chirp with opposite sign from that caused in the cavity, the pulse can in principle

be made transform-limited. Otherwise, it will have a positive or negative chirp, and

the pulse will not be transform limited. Fig. 6.3 shows the optical design of Rega
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Figure 6.4: Counter-propagating pump-probe geometry which also allows the con-
ventional pump-probe to be performed. BS: beam splitter, RR: retro-re�ector, DS:
delay stage, FM: �ip mirror, f1: focussing lens with 300 mm focal length, f2: focussing
lens with 150 mm focal length.

ampli�er.

6.3 Pump-Probe Setup

In the study of Bi thin �lm, I use four pump-probe geometries resulting from

the combinations of pump and probe with the two surfaces of the �lm. The �rst

is a conventional geometry with pump at the �lm surface and probe at the same

surface. The second is a counter-propagating pump-probe geometry with pump at

the �lm surface and probe at the interface of �lm and substrate. The third is also

a counter-propagating geometry as in the second, but with sample �ipped so that

pump is at the interface and probe is at the �lm surface. The fourth geometry has

pump and probe both at the interface. The geometries of counter-propagating and

conventional pump-probe measurements are shown in the Fig. 6.4. Both surface

pump surface probe and interface pump interface probe excite and measure from the

same site, while surface pump interface probe and interface pump interface probe

use counter-propagating beams on opposite faces.
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The experiments were performed in a modi�ed Sagnac interferometer-type geom-

etry using counter-propagating beams at room temperature as shown in Fig. 6.4.

In the experiments at low excitation range, a KM Lab Ti:Sapphire oscillator is used

with 85 fs pulse duration centered at 830 nm with 3 nJ/pulse at ∼85 MHz repeti-

tion rate. Approximately 5 % of the pulse energy was used for the probe beam. A

mechanical delay stage with retro-re�ector controlled the pump-probe delay. Spatial

overlap was determined by the interference of pump and probe beam recombined to-

gether when the sample was removed. Temporal overlap was determined by second

harmonic signal of a (BBO) crystal in place of the sample. The laser diameter was ∼

1 mm, determined by translating a razor blade along the beam plane before the lens.

Pump and probe beams were focused by lenses with 30 cm and 15 cm focal length

respectively. This setup also allows conventional surface pump and surface probe

experiments to be performed. A lockin ampli�er was used for detection at ∼ 1.5 kHz

chopping frequency. Each re�ectivity data set is reproducible better than 10% error

of ∆R/R, and with the 30 ms lockin integration time we are able to measure the

signal with accuracy ∼10−6.

At high excitation range, a Rega ampli�er is used with similar modi�ed Sagnac

interferometer-type geometry for the counter-propagating beams. The output of the

ampli�er is a ∼4 µJ/pulse with 100 fs pulse duration at 250 kHz repetition rate, and

it is focused to about 100×150 µm at half maximum assuming Gaussian pro�le.

6.4 Probing Re�ectivity of Bi

Bi is opaque to the laser wavelength at ∼800 nm with penetration depth ∼ 15

nm estimated from the absorption coe�cient at ~ω ∼ 1.55 eV [64]. The index of

refraction for Bi including imaginary part is n + ik =2.6+4i at 800 nm [65]. The
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complex dielectric function is

ε = εr + iεi = (n + ik)2. (6.3)

The re�ectivity from the interface of Bi and any transparent medium, s, is written

as

R =

∣∣∣∣
√

ε−√εs√
ε +

√
εs

∣∣∣∣
2

=

∣∣∣∣
√

εr + εi −√εs√
εr + εi +

√
εs

∣∣∣∣
2

=
ε + εs −

√
2εs

√
ε + εr

ε + εs +
√

2εs

√
ε + εr

. (6.4)

where ε is dielectric function of Bi, εs is dielectric function of the transparent medium,

εr, εi are real and imaginary parts of Bi dielectric function, and |ε| =
√

ε2
r + ε2

i . The

change in re�ectivity due to change in Bi dielectric function is

∂R

∂εi

=

√
2εsεi(−εs + 2εr +

√
ε2

r + ε2
i )

ε
√

εr + ε(εs + ε +
√

2εs

√
ε + εr)2

(6.5)

and

∂R

∂εr

=

√
2εs(ε

2
r − ε2

i − εrεs − εεs + εεr)

ε
√

εr + ε(εs + ε +
√

2εs

√
ε + εr)2

. (6.6)

If the transparent medium is air, εs=1.

In the photoexcited Bi system, the change in re�ectivity is due to a combination of

change in free carrier density, lattice expansion or compression (acoustic and optical

phonons), and/or change in carrier temperature, so that

∆R(t)

R
=

1

R

[
∂R

∂Q
Q(t) +

∂R

∂n
n(t) +

∂R

∂η
η(t) +

∂R

∂Te

∆Te(t) +
∂R

∂Tl

Tl(t)

]
, (6.7)

where Q is the A1 coordinate, n is photoexcited carrier density, η is strain, and

Te and Tl are photoexcited carrier and lattice temperature respectively. Ideally,
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the coe�cients would be determined by experiments individually. These coe�cients

may not be constant: for example ∂R/∂n may be a function of the carrier density.

Therefore, for a pump-probe measurement which contains all the modulations, the

determination of the coe�cients is not straight forward. To simplify the problem,

the coe�cients are usually assumed constant for analysis, unless dramatic di�erences

between the model and data are observed. Special approaches may sometimes help

for the derivation of these coe�cients, but in general the determination is di�cult.



CHAPTER VII

Depth and time resolved X-ray di�raction study of
thermal transport

X rays can directly probe change in lattice structures. In addition, tunable prob-

ing depth and non-contact nature of x-ray experiments make them a perfect tool

for thermal transport study. In the past, I have used symmetric time-resolved x-ray

di�raction (TRXD) for thermal conductivity measurements of AlGaAs heterostruc-

ture [1]. Highland et al. also combined optical re�ectivity and TRXD measurements

to extract the interface conductance of an buried layer of (GaAs)(1−x)(InAs)x [2]. In

this chapter, I apply and extend TRXD to the studies of thermal transport in Bi

�lms grown on sapphires.

Both my AlGaAs experiment and Highland's experiments use an ultrafast laser

to deposit energy in the form of heat, either to the interface of the heterostructure or

to the surface of the transducer. I used two symmetric Bragg di�ractions, one from

the �lm and one from the substrate, as two thermometers measuring average tem-

perature of �lm and substrate separately by use of the relation ∆θ = −αlT tan(θB)

where αl is the linear expansion coe�cient for the �lm and for the substrate. Fig.

7.1 displays Bragg angle shift as a function of time delay between the x-ray and

laser pulses. Because the �lm is transparent to the laser at 800 nm wavelength, heat

89
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Figure 7.1: Time-resolved Bragg shift for excitation with 0.95 W average power.
Data showing the heating and cooling of the �lm and substrate and comparison with
simulations. The arrows indicate periodic coherent acoustic echoes.

is deposited in the substrate from laser excitation and di�uses in both directions

toward the �lm and the bulk substrate. Initially when the temperature gradient is

large, the inhomogeneous thermal distribution in the substrate leads to heating in

the �lm and cooling in the substrate via heat conduction. When both temperature

distributions of �lm and substrate are close to uniform with very small gradient,

both cool together. With known thermal conductivity of substrate, linear expan-

sion coe�cient, and boundary condition, and assuming no interface conductance, I

numerically solved the one-dimensional di�usion equation incorporating dynamical

x-ray di�raction to derive the di�usion constant of the �lm, Df . I extracted the

thermal conductivity of Al0.3Ga0.7As using the relation between speci�c heat and

thermal conductivity via Df = κf/Cf . I also found that temperature pro�le (from

the �t) is broader than laser penetration depth in the GaAs substrate.

Highland et al. deposited heat to a 100 nm Al transducer on a GaAs substrate.

They assumed the temperature decay signal from time domain thermal re�ectance

(TDTR) was due to the heat conduction of GaAs [2]. To produce a di�erent lattice
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constant, they doped indium (In) on the top layer of GaAs (GaAs:In) and measured

heating and cooling on GaAs:In using TRXD. They established a sensitivity function

and claimed that TDTR is more sensitive to the measurement of thermal conduc-

tivity, while TRXD is more sensitive to the measurement of interface conductance

(Kapitza conductance). They found 20% decrease of interface conductance, suggest-

ing that 20% of the phonons in GaAs:In are ballistic due to a mean free path longer

than the �lm thickness. Those phonons do not carry heat across the interface.

In addition to the above TRXD experiments using symmetric di�raction, in this

chapter I discuss experiments in which various Bi �lms are grown on sapphire sub-

strates, starting with sample characterization. I discuss the characteristic times for

thermal conductivity and Kapitza conductance in the simpli�ed case where one or

the other e�ect dominates. For thermal transport studies in heterostructures of �lms

grown on substrates, TRXD is limited in its sensitivity to the various combinations of

thermal conductivity and Kapitza conductance. In addition, the sensitivity of TRXD

is limited by the x-ray pulse duration. The depth resolved TRXD using asymmetric

di�raction shows a non-negligible temperature gradient in the 284 nm thick �lm but

a near-uniform distribution in 65 nm �lm. I extract the Kapitza conductance in the

284 nm �lm by numerically solving one dimensional di�usion equation, assuming the

literature value for the thermal conductivity. For comparison with the numerical

simulation, I use a simple exponential �t for 65 nm �lm. From grazing incident x-ray

measurements, I con�rm that the decay of Bragg angle shift from 006 symmetric

di�raction is due to the Kapitza conductance. Assuming exponential decay temper-

ature pro�le, we can �nd the maximum temperature change upon laser irradiation

as well as Kapitza conductance.
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Figure 7.2: Re�ectivity measurement for Bi �lm at 7 keV.

7.1 Film thickness and crystal characterization

Three thicknesses of Bi �lms are grown on sapphires along the c-axis (001) by

molecular beam epitaxy (MBE). From symmetric x-ray 006 di�raction of Bi and

sapphire at 9.5 keV energy, it is con�rmed that both sapphire and Bi are high-quality

single crystals. The full width half maximum (FWHM) of sapphire in a θ − 2θ scan

is about 1.34 mdeg. About 100 mdeg is seen in Bi θ− 2θ scan and no obvious grain

boundary is observed. From these measurements, we conclude that both sapphire

and Bi are single crystals.

In order to determine the �lm thickness, we use x-ray re�ectivity measurements

for �lm thicknesses below 185 nm, and optical pump-probe measurements for �lm

thickness above 185 nm. From the separation of interference in x-ray re�ectivity

measurements, the �lm thickness is derived by eq.5.18, ∆θ ≈λ/2h cos θ.

Thus at 7 keV the thickness corresponding to interference with 0.078o period is

65 nm, shown in Fig. 7.2. For thicker �lms (above 185 nm) the oscillations in the

re�ectivity are not resolved, so acoustic measurement by optical re�ectivity is used

instead. The speed of sound ∼2150±100 m/s is measured in 185 nm �lm (known
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Figure 7.3: Optical pump-probe measurement for acoustic strain and its echoes
using dual �ber laser system. Two color set of arrows indicate round trip for two
�lms.

from x-ray re�ectivity) using round trip propagation time in optical pump-probe

measurements via v = 2LBi/∆t (with LBi being �lm thickness). Shown in Fig. 7.3,

round trip propagation time is indicated by the separation between pairs of arrows.

From the measured speed of sound, the thicker �lms are calculated to be 141 ± 13

nm and 284 ± 25 nm. 65, 141 and 284 nm are used in the measurements of this

chapter.

7.2 Reciprocal lattice scan and Gaussian peak approximation

This section discusses the relation between change in lattice constant and change

in reciprocal lattice. Fig. 7.4 displays both static θ− 2θ measurement of 006 di�rac-

tion and reciprocal l scan near 014 di�raction at α=0.4o, shown at two di�erent time

delays between x ray and laser. Any change in the lattice spacing after laser excita-

tion will be mainly due to the change in temperature for the time scale of interest

here. The lattice spacing d along the c axis is related to Miller index ( hkl ) as well

as lattice constants a and c:
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Figure 7.4: X-ray di�raction peaks in symmetric and asymmetric geometries. (a)
Reciprocal l versus di�racted intensity of asymmetric 014 di�raction. (b) Angle
versus di�racted intensity of symmetric 006 di�raction. Line with (×) marker is
conventional x ray measurements without laser e�ect. Line with (*) marker is si-
multaneous measurement with laser and x ray near coincident, which is x ray (a)
coincident with and (b) 2 ns later than laser irradiation.

1

d2 =
4

3
(
h2 + hk + k2

a2
) +

l2

c2
. (7.1)

With some algebra, the change in lattice spacing along the c axis can be expressed

as a function of the change in Miller index along the l direction:

∆d
d =

−d2

c2
× l∆l. (7.2)

Gaussian-like x-ray di�racted intensity I as a function of Miller index l can be

written as

I(l) = exp((l − l0)
2/2β2). (7.3)

The change in di�racted intensity will be approximately linear with the change in

l away from the peak [2]. Thus it can be assumed that the change in di�racted
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intensity is linear with change in average temperature across x-ray probe region.

It is clear from Fig. 7.4(a) that the change in x-ray di�raction intensity is most

e�cient around half maximum of the peak, i.e. l=4.02. From eq.7.2 it can be

assumed that the change in the di�racted intensity is proportional to the change in

average temperature over the probe region. Thus instead of considering the 014 peak

as a function of time for the full range of l, we simply measure the intensity at half

peak as a function of time.

The asymmetric TRXD measures change in l by positioning the detector at half

maximum of the 014 peak at various time delays. The symmetric TRXD measures

the full θ−2θ as a function of time delay, and the angle shift is the di�erence between

average angle with and without laser e�ect, weighted by the di�racted intensity.

7.3 Overview of thermal transport studied by TRXD

Since x-ray di�raction is very sensitive to the lattice constant, TRXD is a power-

ful tool to detect the lattice change as a function of time delay upon laser irradiation.

Following lattice heating, a thermal gradient results in heat transport to reduce the

gradient, evening the heat distribution. In TRXD measurements, a laser pulse inci-

dent on the �lm has a relative large diameter compared to the �lm thickness. Thermal

transport across the �lm is thus assumed to occur along the sample normal and is

reduced to a one-dimensional problem. Assuming substrate thermal conductivity is

known, thermal transport usually involves several distinct parameters: thermal con-

ductivity, Kapitza (boundary/interface) conductance and temperature pro�le. These

parameters are normally correlated in the decay signal. Generally, a sample is de-

signed to measure either thermal conductivity or Kapitza conductance with a known

thermal pro�le [35, 37]. In the case of �lm grown on a substrate with a high thermal
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conductivity, �lm thermal conductivity plays a major role when the �lm thermal

gradient is large, whereas the Kapitza conductance dominates when thermal pro�le

is nearly uniformly distributed in the �lm.

The thermal gradient is largest after irradiation by a laser pulse incident onto the

sample. The sample redistributes its temperature pro�le via thermal conductivity,

and as temperature becomes nearly uniform, the transport is dominated by Kapitza

conductance. Using a thin �lm with large thermal conductivity, for example, the

conditions are optimized for the measurement of Kapitza conductance. However,

if the �lm is thin or has low thermal conductivity, both thermal conductivity and

Kapitza conductance contribute to the signal, �rst by thermal conductivity and later

by Kapitza conductance.

Due to the large penetration depth, x rays are capable of probing heterostruc-

tures. For the heterostructure of �lms grown on substrates, the Bragg peaks from

the �lm and substrate can be separated and thus serve as two thermometers to

monitor the temperature change separately by detecting the change in Bragg angle

via ∆θ = −αlT tan(θB) [1]. However, for a substrate with relative high thermal

conductivity, the bulk conducts heat quickly and the temperature rise is very small

near the interface, so that in practice there is only one thermometer from the �lm.

To measure thermal transport with one thermometer, either thermal conductivity or

Kapitza conductance should be known, in order to derive the other. X-ray di�raction

measures the average temperature of the entire �lm. If both thermal conductivity

and Kapitza conductance are unknown, the �t becomes complex since these two

parameters are correlated. Take the Bi grown on sapphire for example and plot tem-

perature pro�le at various time delays with a given initial temperature rise. The two

extreme cases shown in Fig. 7.5 can result in the same measurement when x rays



97

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05

0

50

100

150

200

250

300

350

400

Depth (µm)

T
em

pe
ra

tu
re

 (
K

)

 

 

(a)  κ=0.8 W/m/K, σ
K
=∞ W/cm2/K

t=     0 ns
t=  0.2 ns
t=  2.5 ns
t=  7.5 ns
t=17.5 ns
t=   25 ns
t= 585 ns

−0.2 −0.1 0

0

20

40

60

80

100

 

 

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05

0

50

100

150

200

250

300

350

400

Depth (µm)

T
em

pe
ra

tu
re

 (
K

)

 

 

(b)  κ=20 W/m/K, σ
K
=490 W/cm2/K

−0.2 −0.1 0

0

20

40

60

80

100

 

 

t=     0 ns
t=  0.2 ns
t=  2.5 ns
t=  7.5 ns
t=17.5 ns
t=   25 ns
t= 585 ns

Figure 7.5: Simulations of temperature pro�les as a function of depth for 284 nm
�lm at various time delays in the limit of (a) high Kapitza conductance and (b) high
thermal conductivity. Initial temperature is an exponential-decay pro�le with 15 nm
penetration depth and maximum temperature rise 380 K. The negative and positive
are �lm and substrate separately with interface located at 0.

probe the entire �lm and average the temperature distribution.

The challenge of this special case can be overcome by tuning the x-ray incident

angles and hence the extinction depths and probe depths. As long as su�cient time

resolution is achieved, the two cases can be be distinguished. Thus, grazing incident

x-ray di�raction is useful when more than one parameter is unknown.

7.4 Characteristic Time

For limited time resolution, both time and length scales are crucial in the study

of thermal transport. For two �lms of the same material but di�erent thickness,

the dominating factor in thermal transport for a given time scale could be di�er-

ent. With the same thermal conductivity, a temperature gradient in thinner �lm

becomes homogeneous more quickly than in thicker �lm. This characteristic time

for homogenization is very important, since if a detector is not fast enough, it misses

early thermal conductivity and only sees dynamics that is dominated by Kapitza

conductance. For a fast detector that is able to catch signals before the characteris-
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tic time, dynamics is �rst dominated by thermal conductivity and later by Kapitza

conductance. The detectors are characterized as fast or slow in comparison to char-

acteristic time of the sample. Since x-ray pulses take snapshots of a dynamic, the

time resolution is limited by the x-ray pulse duration.

The above discussion is based on the assumption that the substrate thermal con-

ductivity is large, so that the temperature rise upon irradiation is negligible. If

substrate thermal conductivity is small and temperature rise is not negligible, the

problem becomes more complex. However, the e�ect of substrate thermal conduc-

tivity is not discussed here since samples can always be grown on a chosen material

known to have high thermal conductivity.

The characteristic time due to thermal conductivity can be estimated from the

di�usion equation with the appropriate boundary condition. The one-dimensional

di�usion equation is

dT (t, x)

dt
=

κ

C

d2T (t)

dz2
, (7.4)

where T (t, x) is temperature pro�le as a function of depth x and time delay t, κ

is thermal conductivity, and C is speci�c heat. For a semi-in�nite crystal with an

initial delta-function temperature distribution, the characteristic time to for heat to

di�use a distance ld away from the surface is

tc =
Cl2d
4κ

. (7.5)

Although this is not the exact solution for the �nite thickness case upon laser ir-

radiation, it is good as a rough approximation of characteristic time when thermal

conductivity is known.

When thermal pro�le is close to homogeneous, it is the Kapitza conductance

rather than the thermal conductivity which plays the main role in reducing the
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thermal energy in the �lm. Kapitza conductance comes with its characteristic time

which can be found using the equation

CL
dT (t)

dt
= −σK(Tf (t)− Ts(t)), (7.6)

where L is �lm thickness, σK is Kapitza conductance, and Tf (t), Ts(t) are �lm and

substrate temperature as a function of time. Normally the substrate has relatively

large thermal conductivity and no obvious temperature rise occurs; thus Ts can be

treated as constant. Therefore, eq.7.6 has decay time constant

τσK
=

CL

σK

. (7.7)

This is the characteristic time for Kapitza conductance.

7.5 Limitation and sample manipulation

Although x-ray di�raction is a powerful tool for measuring thermal transport via

lattice changes, there is some limitation due to the �nite time resolution of x-ray

pulses and due to sample itself when more than one parameter is unknown. When

time resolution is limited due to long x-ray pulses, even with an aid from various

depth probes, some cases are not discriminable. Fig. 7.6 displays temperature pro�les

at various times from computer simulation using the heterostruture of a �lm grown

directly on a substrate. When thermal conductivity is low, i.e. 0.5 W/m/K in Fig.

7.6(a) and Fig. 7.6(b), the characteristic time due to thermal conductivity estimated

from 284 nm �lm is ∼ 50 ns. The time constants due to Kapitza conductance for

cases (a) and (b) are 54 ns and 5.4 ns respectively. The thermal transport dynamics

in cases (a) and (b) are mainly dominated by the slow thermal conductivity. For the

cases (c) and (d), the characteristic times due to thermal conductivity are 1.2 and
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Figure 7.6: Simulations of temperature pro�les as a function of depth for 284 nm
�lm at various time delays in the limit of (a)(b) low thermal conductivity and (c)(d)
low Kapitza conductance. Initial temperature is an exponential-decay pro�le with 15
nm penetration depth and maximum temperature rise 380 K. Negative and positive
are �lm and substrate respectively with interface located at 0.

12 ns respectively. The time constant due to Kapitza conductance is 270 ns which

is much slower than either value of characteristic time for thermal conductivity. For

cases (c) and (d), the processes are dominated by Kapitza conductance. It is di�cult

to distinguish temperature pro�les from (a) to (b) as well as from (c) to (d). However,

cases (c) and (d) are distinguishable if time resolution is not limited by x-ray pulse

duration. With better time resolution, the fast decay in case (c) is measurable and

discrimination between (c) and (d) is possible.

The discrimination between cases (a) and (b) is not limited by time resolution.

For thick �lm with slow thermal conductivity, a negligible temperature jump occurs
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across an interface even with �nite Kapitza conductance. This leads to the same

situation as in the case for an interface with in�nite Kapitza conductance. In such a

case when measuring temperature decay at various depths, x rays are not sensitive

to the Kapitza conductance and any value can �t the data. To elude the problem of

negligible temperature jump across an interface when thermal conductivity is slow, a

thin �lm is a better choice when both parameters are unknown. A thin �lm can limit

di�usion time even with low thermal conductivity, and can increase the temperature

jump across an interface with �nite Kapitza conductance. Therefore, for thermal

transport measurement, a thin �lm is a better design so long as small size e�ect does

not occur.

7.6 Time- and depth-resolved x-ray studies of thermal trans-
port for Bi on sapphire

This section covers asymmetric (grazing incident) and symmetric TRXD exper-

iments. Asymmetric TRXD resolves dynamics at various depths in 65 and 284 nm

�lms. For 65 nm �lm, shown in Fig. 7.7, the thermal decay signal is only due to

Kapitza conductance for all grazing incident angles. For 284 nm, shown in Fig. 7.8,

the decay is due to thermal conductivity at early times for small grazing incident

angle (< 1o), and is dominated by both thermal conductivity and Kapitza conduc-

tance at larger grazing angles. Symmetric TRXD measures the average dynamics of

the entire �lm, detecting a decay only dominated by Kapitza conductance.

7.6.1 Grazing incident X-ray study for 65 nm �lm

The grazing-angle dependence of x-ray di�raction o�ers depth tunability of the

probe in the �lm. Probing the top level of the �lm is sensitive to thermal con-

ductivity at early times with a large thermal gradient. Probing the whole �lm is
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Figure 7.7: Thermal decay curves for 65 nm probing from various x-ray grazing
incident angles. Using single exponential ae(−t/τ), the best �t (a,τ) for various angles
are (1.04±0.16, 3.70±1.03 ns), (0.91±0.08, 6.25±1.36 ns), and (0.88±0.07, 3.70±0.62
ns) respectively. The best �ts are plotted as well.

sensitive to Kapitza conductance (assuming �lm thermal conductivity is not slow)

which dominates heat transport across the interface and reduces the overall thermal

energy stored in the �lm. The comparison among various probe depths also provides

insight into heat distribution in the �lm. For thick �lm, the di�erence in decay signal

at various probing depth is more pronounced.

Fig. 7.7 displays thermal decay curves following laser irradiation. Laser on and

laser o� are de�ned as the x-ray intensities measured after and before laser irradiation

respectively at a selected (hkl). No signi�cant di�erence in thermal decay curves

exists among various probe angles. The characteristic time for thermal conductivity

can be estimated using the literature value of total thermal conductivity (carriers and

lattice) 5.2 W/m/K to get a lower bound, and using lattice thermal conductivity 1.9

W/m/K to get an upper bound [66], via eq.7.5. The characteristic time is thus

estimated to lie between 0.24-0.65 ns, which is fast compared to the decay observed

in 65 nm �lm. This indicates that the heat distribution is close to uniform on this



103

time scale and the observed decay is dominated by Kapitza conductance.

The best single exponential �t for the thermal decay curve in 65 nm �lm at various

grazing angles is shown in Fig. 7.7. The Kapitza conductances extracted from eq.7.7

at α = 0.5o, 0.65o, and 3.0o x-ray grazing angles are 2066±574, 1223±268, and

2066±344 W/cm2/K respectively.

To conclude the discussion on 65 nm �lm, it is found that temperature distribution

is nearly homogeneous at various probe depth. For an uniform heat pro�le, probing

at the surface or more deeply results in similar dynamics. However, it is found from

the simulation that even with a large gradient near the surface in thin �lms such

as 65 nm, the di�erences derived from simulations at various depths are within the

margin of error. Thus, grazing incident TRXD for thin �lms requires much better

statistics in order to tell whether the �lm has a large gradient near the surface.

Nonetheless, from the estimate of characteristic time using the literature value for

thermal conductivity, the thermal decay should be mainly dominated by the Kapitza

conductance, which is about 1000-2000 W/m/K here.

7.6.2 Grazing incident x-ray study for 284 nm �lm

Fig. 7.8 displays time and depth resolved measurements for 284 nm �lm with (

hkl ) at half maximum on the peak for various x-ray incident angles as described

in Sec. 7.6.1. The time delay was chosen from ∼10 ns before time zero to ∼ 70 ns

after time zero. Because there is another gate set on the next x-ray bunch, the data

is collected at whatever time delay is chosen, t, and t + 153 ns. 153 ns is the time

separation between two x-ray bunches at 24-bunch modes at APS, as discussed in

Chap. V.

When �lm gets thicker, the di�erence among various probing depths becomes
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Figure 7.8: Various grazing incident x-ray measurements for 284 nm �lm. Di�erent
lines are simulation using best �t of Kapitza conductance 7760 W/cm2/K with liter-
ature lattice thermal conductivity. The initial temperature pro�le is an exponential
function with laser penetration depth 15 nm. The simulation result is convoluted
with x-ray pro�le for various probe depthes.

noticeable if there is a large thermal gradient near the surface. For 284 nm �lm,

the estimated characteristic time due to thermal conductivity is ∼ 4.5�12.5 ns (from

lower and upper bounds using total and lattice thermal conductivity as discussed in

the preceding section), which is slow compared to x-ray resolution. Thus with the

known bulk thermal conductivity of Bi, di�erent dynamics or decay signal is expected

from various depth probes as shown in Fig. 7.8. As grazing angle increases, the decay

becomes slower. Therefore, the inhomogeneity of temperature distribution is clearly

seen here. The x-ray extinction depth corresponding to various incident angles at

energy 7 keV are listed in Table 7.1.

While probing at the surface is sensitive to thermal conductivity in 284 nm �lm at

early times, using larger grazing angles to probe more deeply becomes more sensitive
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Figure 7.9: Various grazing incident x-ray measurements for 284 nm �lm at early
times. (a) Data from Fig. 7.8 at early times. (b) Reduced chi square �t for data
taken at α=6o. The relation between Kzs and Kapitza conductance is 1.95×102+Kzs

W/cm2/K.

α (degree) 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 3 3.5 6 6.5
dex (nm) 3.5 12 21 29 36 41 48 54 60 160 186 320 347

Table 7.1: Various grazing angles and the corresponding extinction depth at 7 keV
x-ray energy interacting with Bi.

to Kapitza conductance. When more material is probed, the decay process depends

on both thermal conductivity and Kapitza conductance. Assuming �lm thermal

conductivity is not low, x-ray measurement is sensitive to Kapitza conductance when

the entire �lm is probed. In this case, the average temperature of the entire �lm stays

the same while the �lm redistributes to a more uniform thermal pro�le.

Since �lm thermal conductivity of Bi is known and probing at the surface is not

very sensitive to Kapitza conductance at early times, the conductance for 284 nm

�lm is extracted by solving the one dimensional di�usion equation numerically,

dT (t, x)

dt
=

κ

C

d2T (t)

dz2
, (7.8)

with boundary and initial conditions,
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CL
dT (t)

dt
= −σK

dT

dz
|z=0, (7.9)

dT

dz
= 0 |z=−L, and (7.10)

∆T (z, t = 0) = T0e
−z/ξ, (7.11)

where T0 is the maximum temperature directly following laser irradiation with pen-

etration depth ξ=15 nm for Bi. The simulation is weighted by convolution with the

x-ray pro�le. With the known bulk thermal conductivity, the least square �t gives

Kapitza conductance above 3000 W/cm2/K for the data with α=6o. There is not

much di�erence among reduced χ2 for conductance above 3000 W/cm2/K for 284

nm �lm, as can be seen in Fig. 7.9(b). The best �t for Kapitza conductance is 7760

W/cm2/K here, with negligible di�erence among χ2 values for conductance above

3000 W/cm2/K. This lack of sensitivity is due to the fact that Bi has relatively

low thermal conductance and 284 nm is relatively thick; therefore, the temperature

jump across the �lm is small, reducing the sensitivity to the Kapitza conductance as

discussed in Sec. 7.5.

7.6.3 Kapitza conductance studied by symmetric TRXD

Using symmetric re�ection, x rays probe the entire �lm and average its temper-

ature pro�le. Fig. 7.10 shows Bragg angle shift as a function of time delay. The

angle shift is derived from the di�erence in Bragg angle with and without the laser

on, weighted by peak intensity at various time delays. The maximum average tem-

perature in the �lm can be estimated via ∆θ = −αlTtan θ. The estimates are about

15, 30, and 60 K for 284, 141 and 65 nm respectively, with the same �uence ∼0.2

mJ/cm2.

Note that the plateau in the logarithm plot of Bragg angle shift in Fig. 7.10
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Figure 7.10: Time-resolve Bragg angle shift and reduced chi square �t. Upper:
Time resolved Bragg angle shift of 006 di�raction for 3 di�erent samples. The lines
are best �t from numerical simulation. Lower: Reduced χ2 �tting for various �lms.
284 nm I and II are measured from two beamtimes. The relation between Kzs and
Kapitza conductance is 1.95×102+Kzs W/cm2/K.
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Figure 7.11: (color online) Time resolved Bragg angle shift from 006 di�raction at
3 di�erent �uence for 65 nm �lm. The lines are numerical simulations using κ=2
W/m/K and σK=1950 W/cm2/K and various T0. T0 is dereived from best �t of
�uence 2F and is changed linearly with respect to the �uence.

is due to thermal conductivity which redistributes temperature to reduce the large

gradient near the surface. From eq. 7.5, the characteristic times are about 12, 3,

and 0.6 ns for 284, 141, and 65 nm respectively using the value of lattice thermal

conductivity in Bi from the literature. The length of plateaus in the upper panel of

Fig. 7.10 is about 10 and 1 ns for 284 and 65 nm �lms. The plateau is not clear

in the data for 141 nm �lm due to lack of data points before 5 ns. However, the

plateaus in the plots for 284 and 65 nm �lm correspond to the characteristic time

using literature value for lattice thermal conductivity in Bi.

Following the plateau a decay in the Bragg angle shift is attributed to Kapitza

conductance, and overall heat of the �lm is reduced. The reduced χ2 �t for Kapitza

conductance using lattice thermal conductivity from the literature is shown in the

lower panel of Fig. 7.10. 284 nm I and II are from two di�erent beamtimes. The

best �t is 1950 W/cm2/K for both 141 and 65 nm, and 3100 and 780 W/cm2/K for

284 nm I and II respectively, giving an average of about 1920 W/cm2/K.
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The test of the �uence-dependent cooling using symmetric 006 re�ection is demon-

strated for 65 nm, shown in Fig. 7.11. The maximum change in Bragg angle is linear

with increasing �uence below 3F, F≈0.2 mJ/cm2. Above that value, the θ−2θ curve

shows a strongly asymmetric lower peak intensity and a broadened tail, indicating a

huge di�use scattering and some sample damage. The time it takes the �lm to cool

through substrate depends on the �lm thickness via eq. 7.7 but not on the �uence.

For samples with the same thickness, tt takes about the same time for most of the

deposited energy to dissipate through the interface, indicating the �uence indepen-

dence of Kapitza conductance. The time it takes for the same amount of energy to

dissipate is roughly proportional to the �lm thickness, which is expected from eq.

7.7.

7.7 Discussion

The expression for Kapitza conductance for heat �ow from medium A (B) to B

(A) is discussed in Chap. III given as [37]

σK(T ) =
1

V

∂

∂T

A(B)∑

kj

~ωkjn(ωkj, T )|vkjz|tkj. (7.12)

The determination of transmission coe�cient is usually based on two models,

acoustic mismatch model (AMM) and di�usive mismatch model (DMM). If phonons

can be treated as elastic waves, AMM is usually used. The transmission coe�cient for

normal incident phonons from material A to B in the AMM model is also discussed

in Chap. III given as [3, 37]

TAB =
4ZAZB

(ZA + ZB)2
. (7.13)
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If phonons are non-normal incident, Snell's law applies. For vA < vB, phonons can

experience total internal re�ection, reducing their transmission probability across an

interface.

On the other hand, if phonons experience strong scattering near the interface,

the di�usive mismatch model (DMM) might be more appropriate [37, 39]. In DMM

phonons lose memory of where they are from and have the same transmission proba-

bility for high and low frequency phonons either from A to B or from B to A. In this

model, the same frequency phonons from all angles have equal transmission proba-

bilities which is mainly dependent on the density of state on each side of material.

The transmission coe�cient making use of the Debye assumption is also discussed

in Chap. III where it is given as [39]

TAB =

∑
j v−2

B,j∑
j v−2

A,j +
∑

j v−2
B,j

. (7.14)

For sapphire, the transverse and longitudinal speeds of sound are 10.8×105 cm/s

and 6.4×105 cm/s. For Bi, they are 1.97×105 cm/s and 1.03×105 cm/s. The densities

of sapphire and Bi are 3.98 and 9.8 g/cm3. AMM and DMM give respectively 86%

and 97% predictions for transmission coe�cient for Bi on sapphire when Debye's

assumption is valid. Since the speed of sound for Bi is much smaller than for sapphire,

in AMM the critical angle is small, ∼11.5o, for phonons incident from Bi, assuming all

scattering is elastic. Phonons with incident angles larger than the critical angle re�ect

toward the Bi surface. Therefore, taking incident angle into account in AMM we

may have less than 86% phonon transmission for Bi/sapphire interface. Our optical

re�ectivity measurement shows that about 30±5% acoustic strain are re�ected from

the interface of Bi and sapphire. From energy conservation , the transmitted phonons

will be about only 70±5% which is less than AMM normal incident prediction.
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Both AMM and DMM treat phonon scattering as elastic. At very low temper-

ature, the dominant phonons have very long wavelengths, close to the continuum

case. Usually AMM predicts well for Kapitza conductance at very low temperature.

At higher temperature, phonon wavelength becomes shorter, specular re�ection from

the interface is rare, and DMM should be a more appropriate mechanism to calculate

the transmission coe�cient. When samples are below their Debye temperature, both

these two models are valid. Room temperature is below Debye temperature only for

sapphire (TD=1024 K) but not for Bi (TD=120 K), meaning that neither AMM nor

DMM is fully applicable. However, within the assumption of elastic scattering, the

maximum transmission can be estimated by the radiation limit [37, 39]. For Debye

temperature of B greater than that of A, phonons incident from either side cannot

have frequency larger than ωcut,A if only elastic scattering is allowed. The maximum

Kapitza conductance occurs when all the phonons from B have transmission prob-

ability 1 across the interface. If Debye temperature of B is much higher than room

temperature, the dominant phonons are long wavelength acoustic phonons. Since

Debye temperature of sapphire is much higher than that of Bi , Kapitza conductance

can be estimated to its upper limit as [37],

σK(T ) =
1

V

∂

∂T

B∑

kj,ω≤ωcut,A

~ωkjn(ωkj, T )|vkjz|. (7.15)

The advantage to using this radiation limit approximation is that we need not take

phonon dispersion into account. Because Bi has a similar phonon spectrum to that of

lead (Pb) at room temperature and a slightly higher Debye temperature, we can use

the literature estimate for radiation limit of Pb (Debye temperature 102 K) grown on

sapphire is around 1000 W/cm2/K at room temperature [37]. It would be reasonable
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to expect that the value of Kapitza conductance for Bi is larger because of higher

cuto� frequency due to higher Debye temperature. The radiation limit in literature

estimates Kapitza conductance across Pb/sapphire interface ∼ 1000 W/cm2/K at

room temperature, whereas the experimental results derive ∼ 5500 W/cm2/K at

room temperature in the same article [37]. The derived Kapitza conductance ∼ 1950

W/cm2/K in our measurement for Bi/sapphire interface is within the range of their

estimate and the extracted value from experiment at room temperature. For similar

phonon spectrum in Pb and in Bi with slightly higher Debye temperature for Bi, our

results is closer to the prediction using radiation limit.

Our optical re�ectivity measurements for Bi not only show ∼30±5% acoustic

re�ection from the interface, but also demonstrate that the acoustic re�ection has no

clear dependence on the �lm thicknesses investigated in this dissertation. If energy

is conserved, the sum of phonon transmission and re�ection should be equal to one

and thus the transmission should also be independent of the thickness. In principle,

Kapitza conductance should have no explicit dependence on the �lm thickness used

here, as they are thick enough to be approximately assumed bulk-like. The di�erent

values of Kapitza conductance obtained for 284 nm by symmetric di�raction could

be due to the systematic error from the two beamtimes since the average signal for

Bragg angle shift is smallest in 284 nm compared to 65 and 141 nm. This is due to

the relatively small thermal conductivity of thick (284 nm) �lm leading to negligible

temperature jump across the interface and increasing the �uctuation over di�erent

measurements.
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7.8 Summary

The use of time- and depth-resolved x-ray di�raction to study the thermal trans-

port across the interface of Bi on sapphire has allow direct measurement of atomic

dynamics through lattice expansion. The depth-resolved measurements demonstrate

that the cooling near the surface for 284 nm �lm is dominated by the thermal con-

ductivity, while sensitivity to Kapitza conductance increases when grazing angle

increases. Although there is a large gradient near the surface, thermal conductivity

of the �lm redistributes heat rapidly over a thickness of 65 nm, taking much less

than 1 ns. Therefore, the depth resolved measurement for 65 nm �lm is dominated

by Kapitza conductance. From the existence of a thermal gradient near the surface

of Bi grown on sapphire averaged out due to a x-ray long penetration depth, Kapitza

conductance can be extracted from the symmetric TRXD. The extracted Kapitza

conductance is 1950 W/cm2/K for 65 as well as 141 nm �lm. This value is also the

average from the two measurements of 284 nm �lm. Thus ∼1950pm1000 W/cm2/K

is averaged over three samples and various beamtimes. Comparing the material (Pb)

with similar phonon spectrum and with slightly lower Debye temperature to Bi, both

grown on sapphire, our derived value for Bi/sapphire interface is between the esti-

mate using radiation limit and the value extracted from experiments for Pb/sapphire

interface. Our deduced value is closer to the estimate for Pb/sapphire interface using

radiation limit in the literature, assuming phonon spectra in Bi and in Pb are similar.



CHAPTER VIII

Optical Pump-Probe Studies of Bi Thin Film at Low
Excitation

Ultrafast laser excitation of solids can dramatically alter the interatomic forces

by depositing substantial amounts of energy into free-carriers on a time scale that is

short compared to energy relaxation. In the group V semimetals, the excitation of

even modest plasma densities leads to large-amplitude atomic motion corresponding

to a coherent zone-center fully symmetric (A1g) optical phonon. The generation of

the coherent phonon can be understood, at least in the low density limit, as a Raman

process [43], or phenomenologically as an electronically driven reduction in the Peierls

distortion in these materials which suddenly alters the equilibrium position of the

ions within the unit cell (displacive excitation) [67].

Recently there has been considerable interest in the dynamics of the A1g mode

in the limit of dense photoexcitation, particularly for bismuth [6, 8, 9, 15, 58, 68,

69, 70, 71]. It was �rst pointed out in Hase et al. [15] that the frequency of the

mode is dramatically chirped. Murray et al. [8] demonstrated both experimentally

using double-pulse excitation and theoretically using constrained density functional

theory (DFT) and frozen phonon calculations, that the chirp is dominated by elec-

tronic softening and the evolution of the dense electron-hole plasma. Later, the

114
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theoretical studies were extended to include softening of the entire phonon spectrum

[45]. The general results for the A1g mode were con�rmed by Fritz et al. [9] using

femtosecond x-ray di�raction to measure the quasi-equilibrium position and curva-

ture of the excited state potential. However, the results of measurement of ultrafast

oscillations in the Debye Waller factor by Johnson et al. [72] suggested that the

coupling of the plasma with low-frequency acoustic phonon modes may not be well

described in current theoretical models. The calculations in [8, 45] assume that a

single electron-hole pair is created by each absorbed photon and that, whereas in-

traband scattering rapidly establishes a Fermi-Dirac distribution of carriers in each

band, the electron-hole recombination time is substantially longer than the period of

the relevant phonon and, as a result, the chemical potential for the conduction bands

di�ers from that of the valence bands (two chemical potential model). In contrast, Zi-

jlstra et al. [12] performed frozen phonon calculations on the zone-center mode, also

assuming rapid scattering and equilibration throughout all conduction and valence

bands, but using a single chemical potential, in which the carrier density is deter-

mined by temperature of the electron-hole plasma. Johnson et al. [58] performed

depth-resolved femtosecond x-ray di�raction to measure the phonon dynamics and

concluded that the two-chemical potential model may be appropriate only on a time-

scale less than a single phonon period, transitioning to a single-chemical potential

model for a longer time scale. Recently Scianini et al. [73] measured a 2�3 ps lattice

thermalization time of the photoexcited carriers in the limit of dense excitation using

ultrafast electron di�raction, indicating a rapid energy transfer from carriers to the

lattice. Still the dynamics of the photoexcited carriers is not well understood.

In this chapter, I show experimental results for the four di�erent pump-probe

geometries introduced in Chap.VI at low excitation region ∼1018 cm−3. Optical
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Figure 8.1: Comparison between 65 nm and 385 nm �lms for A1g phonons in surface-
pump-surface-probe data.

re�ectivity is modulated by carriers, optical as well as acoustic phonons, and lattice

heating. Carrier di�usivity, recombination, and lattice thermalization time will be

deduced by comparison with model simulation.

8.1 Sample

Various thickness Bi �lms were grown on 1 × 1 cm2 sapphire substrates (c-axis

cut ∼ 0.5 cm thick by molecular beam epitaxy (MBE). The �lms are single crystals

with the trigonal axis perpendicular to the �lm as determined by x-ray di�raction.

The determination of �lm thickness is described in Chap.VII, by x-ray and optical

re�ectivity.

8.2 Surface Pump Surface Probe

Fig. 8.1 displays the A1g phonon with frequency ∼ 2.88 THz for 35 nm and 385nm

�lms, measured by conventional surface-pump and surface-probe geometry. The A1g

phonon generation mechanism is discussed in Chap. IV as displacive excitation. The

oscillation frequency strongly depends on the carrier density. The softening of the
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Figure 8.2: Surface-pump-surface-probe data for various �lm thicknesses.

A1g oscillations may be induced by the large amount of photoexcited carriers that

changes the interatomic potential [45]. The density excited here is ∼ 1018 cm−3, and

neither softening nor clear evidence of frequency chirp is observed here. Compared to

the carrier density at room temperature without any excitation, i.e. ∼5×1017 cm−3,

1018 cm−3 corresponds to low excitation density. Less than 10−4% of the valence

electrons are excited.

Fig. 8.2 shows re�ectivity data for conventional surface-pump and surface-probe

geometry, ranging from 35�385 nm. Maximum �uence absorbed was estimated to be

about 0.8 µJ/cm2, and the corresponding excitation carrier density is ∼2×1018 cm−3.

Upon the arrival of the pump pulse, photoexcited carriers are generated on a time-
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scale short compared to the highest frequency phonon oscillation f(A1g) ≈ 2.92THz.

The partial derivatives are in general not known at nonequilibrium state; however,

we can deduce their signs as to be: ∂R/∂Q > 0 (x driven towards the symmetric

non-Peierls distorted structure), ∂R/∂n > 0, ∂R/∂η < 0 for tensile and > 0 for

compressive strain and ∂R/∂T < 0. Assuming small perturbations, the second order

and higher terms are negligible .

In surface-pump surface-probe data as Fig. 8.2, ∆R(t)/R �rst increases rapidly

due to the increase in carrier density and then slowly decreases as the carriers relax

via multiple processes. This increase and then decrease of re�ectivity signal is re-

ferred to as carrier peak in the following discussion. Because of strong absorption,

carriers are generated near the surface (15 nm laser penetration depth), and the

probe beam only detects the change near this region. Clearly from Fig. 8.2 any

di�erences in the data for di�erent �lm thicknesses are subtle. The oscillations are

due to the A1g optical phonons aliased by the sampling rate. Approximately 10 ps

after the arrival of the pump pulse, the relative change in re�ectivity (∆R/R) be-

comes negative due to lattice heating, slowly returning to its unperturbed signal due

to thermal di�usion into the bulk. The overall reduction of the re�ectivity signal

during the �rst few picoseconds is due to a competition of e�ects: carrier relaxation

through ambipolar di�usion into the bulk; recombination; lattice heating; and the

propagation of an acoustic pulse generated through a combination of rapid thermal

expansion and acoustic deformation potential interaction, complicating the analysis.

Although one can also use samples thin compared to optical penetration depth to

avoid di�usion e�ects, strain, lattice heating and optical interference will still a�ect

the measurements. As shown in Fig. 8.2, in 35 nm �lm acoustic strain mixes with

its echoes, making the problem more complex.
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Figure 8.3: Power dependence data for 66 nm �lm measured from surface-pump-
surface-probe geometry.

Except for in 35 nm thin �lm, the carrier peak as shown in Fig. 8.2 looks almost

identical for �lms ranging from 35�385 nm. In the data for 66 nm �lm, the separation

of acoustic strain and its echoes is not as clear as in other thicker �lms, partially

because of overlap in the re�ectivity signal. Apart from this di�erence, all features

including the magnitude of the relative change in re�ectivity, positive and negative,

are similar to those in thicker �lms.

The 35 nm �lm has a major di�erence in the falling edge of its carrier peak: it

takes less time to reach the negative signal, which is attributed to lattice heating. In

addition, both maximum positive and minimum negative signals have magnitudes of

relative change in re�ectivity larger than those of other samples. This is due to more

absorption (less re�ection) for 35 nm when comparing time-independent re�ectivity

measurements to those of thicker samples. From the �gure it is clear that the width

of the carrier peak including rising and falling edges is narrower in 35 nm.

Except in 35 and 66 nm �lms, no clear evidence shows any di�erence among

various �lm thickness ranging from 35�385 nm. The power dependence data is shown
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Figure 8.4: Surface-pump-interface-probe data for various �lm thicknesses.

in Fig. 8.3. The carrier peaks are scaled linearly to the excitation density. The

signals of acoustic and lattice heating are slightly o� at the highest excitation density.

However, the overall behavior of the signals in these excitation regions is close to

linear.

8.3 Surface Pump Interface Probe

Fig. 8.4 shows the re�ectivity signal for Bi �lms using surface-pump and interface-

probe geometry. Clear di�erences can be distinguished from the surface-pump and

interface-probe data. There is no coherent A1g phonon signal present on the surface-

pump and interface-probe data, consistent with a localized excitation of the zero
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group velocity mode in the laser-excited volume of the optically thick �lms [74]. In

addition, there is no clear e�ect on our samples thicker than 65 nm from heating due

to relatively low thermal di�usivity. Thus, to the extent that we can ignore heating

due to recombination at the back surface, both the �rst and last two factors on the

right hand side of equation 6.4 are absent in the backside signal of samples thicker

than 185 nm. The bipolar shape of the plot at late times for �lms ranging from

185�385 nm is attributed to the acoustic strain pulse. The speed of sound derived

from the time the acoustic pulse takes to propagate across a known thickness sample

(185 nm, measured by grazing incident x-ray re�ectivity, see Chap.V), 2150 m/s, is

close to the literature value of 1972 m/s [75]. We use this value to calibrate other

�lm thicknesses, which were too thick to get reliable measurements by interference

fringes in grazing incidence x-ray re�ectivity. Note that the time needed for the early

signal to peak decreases with decreasing �lm thickness. This time is shorter than

the time it takes sound to propagate across the sample, and is attributed to the

carriers di�using across the sample. The whole peak at early times after time zero

is thus interpreted as a carrier peak. It is important to note that the acoustic pulse

is well separated from the carrier peak due to the relatively low speed of sound yet

high carrier di�usivity, allowing the isolation of the e�ects from recombination and

di�usion.

8.3.1 Comparison between surface and interface probe

It is worth noting that lattice heating is still observed in 66 and 35 nm �lms when

probed from the interface. Additionally, partial overlap between acoustic strain and

its echoes is also observed. Both these e�ects are partially due to thinness of the

�lms; which does not separate well between the pro�les of the pump and probe. The
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Figure 8.5: Comparison between surface-pump-surface-probe and surface-pump-
interface-probe data for (a) 35 nm and (b) 385 nm �lms.

superposition of the re�ected and incoming acoustic strain happens at the interface,

and the acoustic strain has a �nite width in the �lm. When the �lm is not much

thicker than the acoustic width, its echoes are not well separated in time as they

would be in thicker �lms.

The di�erences between surface probe and interface probe are shown in Fig. 8.5.

The carrier peaks in these two geometries are similar for 35 nm �lm, while for 385

nm �lm they are very di�erent. For 35 nm �lm, carrier di�usion is negligible and

carrier recombination dominates carrier dynamic. For 385 nm �lm, both di�usion

and recombination are important, which leads to a smaller and broader carrier peak

for interface probe. In addition, the pump and probe are well separated in 385 nm

�lm but not in 35 nm �lm. Therefore, except for the acoustic echoes, the re�ectivities

measured from either side are similar for 35 nm �lm.

8.3.2 Analytical approach for carrier di�usion and recombination

The carrier peak shown in Fig. 8.4 contains information on both ambipolar di�u-

sion and recombination. The experiments performed for a range of low excitations (

see Fig. 8.6 ) show no signi�cant change in the time of peak signal (tp) and the sub-
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Figure 8.6: Surface-pump-interface-probe data for 185 nm �lm at various excitation
densities.

sequent decay for di�erent thicknesses, indicating that the recombination rate γ and

ambipolar di�usivity D are approximately independent of density at low excitation

region. Since �lm thickness is a few hundred nanometers and therefore much smaller

than the pump diameter ∼150 µm, it can be assumed that carriers are subject to

one-dimensional di�usion along the trigonal axis, z (surface normal),

dn

dt
= D

d2n

dz2
− γn. (8.1)

Before proceeding to �t the data with a detailed model of the carrier dynamics,

it is instructive to consider the limiting case of an in�nitely thick sample with a

delta-function excitation. A rough estimate for both D and τ can be derived from

measurements of tp. In this limiting case the solution to eq. 8.1 is well known,

n(z, t) =
n0√
πDt

e− z2

4Dt e−t/τ . (8.2)

Thus,

tp =
τ

4

(√
1 +

4z2

Dτ
− 1

)
. (8.3)
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Note that deep into the bulk tp is linearly proportional to z,

dtp
dz

≈ 1

2

√
τ

D
, z À

√
Dτ/4. (8.4)

From this analysis we �nd that samples of 185�385 nm reasonably approximate

this condition on the back face. At time tp, the carrier density n is approximately

uniform throughout the �lm, and thus τ can be estimated from the exponential decay

of re�ectivity signal while D is estimated from the slope,
√

τ/4D, of eq.8.4 (see Fig.

8.7). In this manner, τ is ≈ 25± 5 ps and D is ≈ 72.8± 51.8 cm2/s, averaged over

the �lms. Note that dL/dt = 2
√

D/τ ≈ 3.4 × 106 cm/s is more than 10 times the

speed of sound, which leads to the separation of carrier peak and acoustic peak when

pump and probe are at di�erent sides.

8.3.3 Numerical approach�carrier di�usion and recombination

To better model the data for surface pump and interface probe, I solve the �nite

crystal case numerically. Assume the carriers are con�ned at both the air and sap-

phire interfaces, dn/dz|z=0,L = 0, which is valid so long as surface recombination is

slow compared to bulk. The photoexcited carriers are assumed to decay exponen-



125

Bi De τ = 1/γ Bi De τ = 1/γ
�lm (cm2/s) (ps) �lm (cm2/s) (ps)

185 nm 18±5 12±2 275 nm 24±6 26±4
305 nm 28±5 24±3 385 nm 40±14 26±6

Table 8.1: Di�usivity and recombination for various �lm thicknesses at low excita-
tion.

tially as a function of depth,

n(z, t = 0) =
Q

~ωζ
e−z/ζ , (8.5)

where Q, ~ω, and ζ are respectively �uence absorbed in �lms, photon energy (1.5

eV), and laser penetration depth (15 nm). Simulated signal is convolved with the

probe pro�le (exp(-z/ζ)). The initial carrier density n(z=0,t=0) is estimated to be

about 2×1018 at the surface. The simulated amplitude is normalized to the data

signal. The best �ts are summarized in Table 8.1.

The result shows that the di�usion of photoexcited carriers for Bi at low density

is relatively fast. Comparing the surface-pump and interface-probe data with the

surface-pump surface-probe data ( as in Fig. 8.5 (b)), it is clear for the 185 nm

and thicker �lms that lattice heating occurs only near the surface region in the

latter geometry. For the thinnest �lms, a lattice heating signal is still observed

by the interface probe. This is due to a �lm thickness comparable to the laser

penetration depth, making pump and probe overlap partially. While a large negative

relative-change in re�ectivity occurs near the surface, interface probe data shows no

clear evidence of lattice heating for thick �lms with substantial numbers of carriers

di�using to the interface. Comparison with surface-probe data indicates that in the

interface-probe case, the carriers arrive at the interface and become cold, as a carrier

peak without lattice heating is observed.
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Figure 8.8: Surface-pump-interface-probe data and simulations for 275 nm �lm.
Figure shows both data and simulations using two-decay model. Various components
from simulations are also displayed separately. The simulations use parameters of
di�usion constant De=28 cm2/s, recombination time τ1=1/γ1=20 ps, and lattice
thermalization time τ2=1/γ2=0.8 ps.

8.3.4 Numerical approach� acoustic strain and two decay model

Generation of acoustic strain contains information about carrier dynamics. Prop-

agation of acoustic strain can elucidate the interface properties. Fig. 8.8 shows sev-

eral echoes bouncing back and forth in 285 nm �lm. The �rst bipolar feature around

100�150 ps is the incoming strain propagating from the surface corresponding to

t=L/v. The second one at around 400 ps is the echo re�ected from the surface prop-

agating back toward the interface. The phase of the re�ected strain depends on the

acoustic impedance. The acoustic impedance Z of air, Bi and substrate are in the

order Zair<ZBi<Zsapphire. Thus, acoustic strain �ips phase at the air/Bi interface

but remains the same phase at the Bi/sapphire interface. A small peak around 280

ps is attributed to the strain generated from deformation potential coupling. When

the pump is on the surface, this time of propagation is not correlated to any thermal
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strain generated from lattice heating near the Bi surface. The only possibility cor-

responding to the observed strain at t = 2L/v is the non-thermal strain generated

by fast carrier di�usion toward the interface. Thus the small peak is attributed to

the strain generated at the interface by carrier di�usion via deformation potential

coupling.

When modeling the strain generation, I found that it cannot be explained using

the instantaneous heating model. For instantaneous heating, the width of strain

is equal to laser penetration depth. However, from the data it is wider than laser

penetration depth, which indicates that fast carrier di�usion occurs before energy

transfers to the lattice. On the other hand, taking carrier di�usion and recombination

from Table 8.1 and assuming lattice heating is from carrier recombination, I obtain

the modeled strain too wide compared to the data. Therefore, lattice heating is not

mainly from carrier recombination, and lattice thermalization time should be faster

than carrier recombination.

As a result, the total strain is the superposition of the thermal strain generated

from lattice heating and the non-thermal strain generated from the deformation po-

tential. The thermal strain can be modeled by the two-decay model: one decay is

the carrier cooling and the other is the carrier recombination. Assuming one pho-

ton absorption per electron-hole pair, the process includes: one dimensional carrier

di�usion, energy transfer to the lattice by carrier cooling which reduces the average

energy per carrier but maintains carrier density, and energy transferred by electron-

hole recombination which changes the number of carriers but maintains the average

energy per carrier. If ε is the average energy per carrier and n is the carrier number

density, the decay in total energy u is,
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du

dt
= ε

dn

dt
+ n

dε

dt
, (8.6)

where the �rst term on the right hand side is due to carrier recombination. The

average energy decay is assumed to be a single exponential with decay rate ε1,

dε

dt
= −γ2ε(t) (8.7)

with a simple solution

ε(t) = ~ωe−γ2t. (8.8)

The carrier density satis�es

dn(z, t)

dt
= D

d2u

dz2
− γ1n(z, t). (8.9)

Energy transfer from carrier to lattice satis�es

Cl
dT (z, t)

dt
= −du

dt
= ε(γ1 + γ2)n(z, t) (8.10)

= ~ωe−γ2t[(γ1 + γ2)n(z, t)]. (8.11)

Using the di�usion and recombination (τ2=1/γ2) from Table 8.1, the simulated

strain has thermalization time τ1 = 1/γ1 ∼ 0.8 ps. The simulated signal is convolved

with the exponential pro�le of the interface probe. There are several contributions to

the simulated signal: carrier, thermal strain, non-thermal strain, and lattice heating.

The coe�cient of (dR/dT )/R is −8×10−5 1/C0, taken from Ref. [76]. Using the

relation

dR

dT
=

dR

dη

dη

dT
=

dR

dη
α, (8.12)
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where α is the linear expansion coe�cient, the coe�cient of (dR/dη)/R = 5.97 is

thus deduced. In addition, dη/dn is 0.72 along c axis [53]. Therefore, the di�erential

coe�cient of strain is known, but those of the carriers are still not known. The

simulated signal of carrier peak, i.e. (dR/dn)/R , is scaled to peak intensity from

the thickest �lm, i.e. 385 nm, and applied to simulations of other �lm thickness. The

carrier peak is not entirely contributed by the increase in carrier density upon laser

excitation. Partial (∼10%) contribution is from strain generated from carrier-induced

non-thermal lattice expansion. The thicker the �lm, the less contribution from non-

thermal strain. Taking parameters from Table 8.1 as well as 0.8 ps thermalization

time, the comparison between data and simulation for the 275 nm �lm is shown in

Fig. 8.8. The various lines are di�erent contributions from carrier, strain (including

thermal as well as non-thermal), and lattice heating.

Chap. IV contains an overview of several mechanisms of strain generation. I sum-

marize some features based on the comparison between the data and the numerical

simulation in this section. Adding the coupling between photoexcited carriers and

strain, the simulation shows a small feature around t = 2L/v corresponding to the

non-thermal strain. Sudden increase in carrier density produces stress on a lattice,

which launches two compression strains propagating oppositely. The asymmetric

nature of the acoustic strain is clearly seen from the simulation (Fig. 8.8). The

simulation results in a a nearly unipolar non-thermal strain taking parameters from

Table 8.1. In the generation model of non-thermal strain, the spatial distribution of

carriers can a�ect the shape of the propagating strain. The dominating factors that

alter the spatial distribution of carriers are the di�usion and recombination. Carrier

di�usion has a similar e�ect to change the shape of strain as the thermal di�usion

discussed in Chap. IV. However, this e�ect is much more pronounced when caused
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by fast carrier di�usion than slow thermal di�usion. In addition, recombination re-

duces the overall carrier density, and the corresponding stress produces the expansion

strain. The overall e�ect makes the non-thermal strain more unipolar, as shown in

the individual components in Fig. 8.8. Therefore, the superposition of thermal and

non-thermal strain produces the asymmetric overall acoustic strain.

The decay and recombination in the thinnest �lms (35, 66 nm) are faster than in

thick �lms; however, these two parameters have no explicit dependence on the carrier

density at low excitations. The discrepancies of faster di�usion and recombination

observed between thin �lms and thick �lms are not yet clear.

8.4 Interface pump

In the previous section, I have shown the comparison between surface- and

interface-probe data when both are pumped from the surface. One might be in-

terested in the results of experiments that are pumped from the interface. Since

sapphire is transparent to the laser, no excitation will occur in the sapphire. The

boundaries of air/Bi and sapphire/Bi di�er, since sapphire/Bi is not a free surface.

The photoexcited carriers in Bi di�use only toward the surface since there is no

allowed electronic state for them in sapphire. The strain, on the other hand, can

propagate in both directions. Because the impedance of sapphire is slightly higher

than that of Bi, the strain propagating toward the interface partially transmits and

partially re�ects back toward the surface. Since acoustic echoes of the surface-pump

and interface-probe signal have approximately 35% re�ection from the interface, the

acoustic signal from the surface probe is expected to be smaller than the case when

the position of pump and probe are reversed.

In addition, the shape of the acoustic pulse observed from optical re�ectivity is
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Figure 8.9: Comparison between surface-pump (magenta line) and interface-pump
(green line) geometries. (a) Opposite side pump probe for 285 nm �lm. (b) Same side
pump probe for 385 nm �lm. (c) Simulations of opposite side pump probe for 285
nm �lm. (d) Simulations of same side pump probe for 385 nm �lm. The simulation
uses parameters of di�usion constant De=28 cm2/s, recombination time τ1=1/γ1=20
ps, and lattice thermalization time τ2=1/γ2=0.8 ps.

di�erent due to the di�erent boundary conditions between air/Bi and sapphire/Bi

interfaces. Acoustic strain does not �ip its phase at the interface of sapphire/Bi. It is

thus expected that the signal of thermal strain from counter-propagating pump-probe

data (respectively, conventional same side pump-probe data) will be di�erent when

the position of surface and interface are reversed. Fig. 8.9 displays the comparison

between surface-pump and interface-pump signals. Fig. 8.9(a) is the signal probed

on the opposite site of the pump. Thermal strain signal from surface pump is larger

than that from interface pump due to partial transmission of the acoustic strain from
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the interface upon excitation.

Pump and probe from the same side, either surface pump or interface pump, has

similar signal except for the decay rate starting from the peak signal as in Fig. 8.9(b).

Surface-pump-surface-probe data has faster decay while interface-pump-interface-

probe data has slower decay. The decay has been explained in Sec. 8.2 due to

a combination of e�ects including carrier recombination, carrier di�usion, acoustic

strain propagating across the absorption region, and lattice heating which induces

negative re�ectivity change. The main di�erence between surface and interface gen-

eration is due to the di�erent boundary conditions for generation and propagation of

acoustic strain as discussed above. The simulation also qualitatively displays similar

behavior for both sides.

8.5 Conclusion at low excitation

In this chapter, I have compared various �lm thicknesses at extremely low exci-

tation, ∼1017�∼1018 cm−3, using four pump-probe geometries from the combination

of pump or probe at surface or interface of various Bi �lms. For �lm thicknesses

above 185 nm, pump and probe pro�le are well separated for counter-propagating

geometries, and the probe detects the dynamic when carriers are more or less ho-

mogeneous (when t > tp). The decay is attributed to electron-hole recombination,

which is about 12�26 ps for �lms ranging from 185�385 nm. The extracted di�usivity

for these �lm thicknesses is ∼25 cm2/s with slightly deviation from �lm to �lm. Sev-

eral acoustic echoes are observed and can be qualitatively simulated by the proper

modi�cation of Thomsen's model incorporating a two-decay model that I develop

in Sec. 8.3.4. Non-thermal strain due to carrier deformation potential is evident

and is simulated within the framework of the modi�ed model. From strain analysis,
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lattice thermalization time is estimated about 0.8 ps for various �lm thicknesses.

The results of relative fast carrier di�usion, slow carrier recombination, and fast lat-

tice thermalization are in agreement with two-chemical potential model assumption,

where photoexcited carriers can maintain their density by varying chemical potential

and temperature.

At low carrier density, each contribution to the re�ectivity signal is more or less

linear as a function of �uence. Comparison of the data for pump on either surface or

interface shows clear evidence of di�erent boundary conditions for strain generation

and propagation. One problem not solved here is the tendency for faster decay of

the signal in thin �lms, i.e. 35 and 66 nm. The mixture of lattice heating, acoustic

echoes, and carrier decay signals, is another remaining problem for thin �lms. The

observed decay in thin �lms is faster than in thick �lms. From the theoretical point

of view, one may expect this is due to the con�ned carrier density. However, varying

carrier density in experiments at low excitation by changing �uence has no e�ect on

the fast decay, i.e. decay rate is independent of the carrier density. I discuss this

problem further in the next chapter on the high excitation region.



CHAPTER IX

Optical Pump-Probe Studies of Bi Films at High
Excitation

The low excitation region is a key starting point for the understanding of carrier

dynamics of Bi upon laser excitation. It is a bridge between the fundamental phe-

nomenon of carriers near the Fermi surface and the extreme case of carriers far above

the Fermi surface. Investigation of high densities of excited carriers is important for

understanding the ultrafast dynamics of atomic motion [6, 8, 10, 45, 58]. Addition-

ally, in materials like semiconductors a high excitation carrier density can induce

a phase transformation to a metallic state which increases the optical re�ectivity

[77, 78]. If the phase transition happens in a time-scale shorter than the time for

energy transfer from carriers to the lattice, it is usually called non-thermal melting.

During this process, ions are movable like liquid, though not due to increase in the

lattice temperature.

In this chapter, I present similar experiments to those discussed in Chap. VIII

but with higher excitation using an ampli�ed Ti:sapphire laser. Highly nonlinear

behavior is observed for excitation densities above ∼5×1019 cm−3. The carrier peak

shows strong saturation as function of �uence in the counter-propagating pump-

probe data, whereas the re�ectivity signal behaves almost linearly in the conven-

134
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Incident power (mW) 10 40 120 250
Absorbed �uence (µJ/cm2) 11 48 130 285
Excitation density (cm−3) 3×1019 1×1020 4×1020 8×1020

Table 9.1: Corresponding absorbed �uence and excitation density at various incident
power.

tional pump-probe data. The acoustic signal becomes more and more symmetric,

approaching bipolar as excitation increases. The di�usion may become slower and

recombination become faster when a large number of carriers is excited. In addi-

tion, the same side pump-probe data for 35 nm �lm shows overall negative values for

the relative change in re�ectivity (∆R/R) under high excitation, even for the peak

values (referred to at low excitation as a carrier peak). The detailed explanation of

these behaviors is not clear; however, I present the results and a discussion of the

present state of knowledge. Further experiments and simulations are required to gain

a deeper understanding.

For convenience, Table 9.1 lists the absorbed �uence and excitation density cor-

responding to various incident powers.

9.1 Surface pump for thick Bi �lms

The thick �lms in this section range from 185�385 nm. The surface-pump-surface-

probe data shows linear behavior up to excitation density ∼ 1020 cm−3 as in Fig.

9.1(a). Features of carrier peak and lattice heating are similar to the data at low

excitation density. As �uence increases, phonon softening becomes prominent. The

12th oscillation peak in the 50 mW data lines up with the 12th valley in the 5 mW

data, shown in Fig. 9.1(c) . This frequency chirp is attributed to the electronic

contribution that softens the atomic bonding [8]. The A1g frequency derived by fast

Fourier transform is 2.80 THz for 5 mW and 2.54 THz for 50 mW within ∼0�20 ps
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Figure 9.1: Surface-pump-surface-probe data for 185 nm �lm at various excitation
power. (a) Peak intensity versus incident power. Each component is scaled by the
maximum intensity at 10 mW from carrier peak, acoustic strain and lattice heating
signals. (b) Re�ectivity signal of A1g optical phonon oscillation. The inset is scaled
to its maximum peak amplitude, which is the �rst oscillation peak here. The inset
shows that the re�ectivity reaches below zero signal earlier as power increases. (c)
Oscillation of �rst ∼18 cycles. (d) Fast Fourier transform of A1g phonon within
di�erent windows.

window. For the �rst 14 cycles, the softening is more clear as the frequency is 2.63

THz for 5 mW and 2.43 THz for 50 mW. In addition to the phonon softening, another

di�erence from low excitation is the fact that the relative change in re�ectivity falls

below zero faster at higher excitation, as shown in Fig. 9.1(b). However, the distinc-

tion between faster recombination or faster carrier di�usion is not straightforward,

due to the lattice heating signal and the acoustic strain propagating across the laser

absorption depth.
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10 mW 40 mW 120 mW 250 mW
De (cm2/2) 30 22 20 18
τ (=1/γ ps) 16 15 14 13

Table 9.2: Method 1: Di�usivity and recombination �t for 385 nm �lm measured
from surface-pump-interface-probe geometry at various power, derived by the �rst
scaling method discussed in the text.

On the other hand, the surface-pump-interface-probe data is di�erent from the

surface-pump-surface-probe data. Fig. 9.2(a) shows a carrier peak due to a combina-

tion of carrier di�usion and recombination in 385 nm �lm under various excitations,

scaled to the peak amplitude. The peak time, tp, is delayed and the decay (10 ps

< t < 50 ps) becomes faster at higher excitation density. Fig. 9.2(b) displays the

nonlinear behavior of carrier peak at high excitation.

To analyze the data using the simple di�usion decay model of eq.8.1, I use two

scaling methods to obtain (∂R/∂n)/R for various value of �uence. Assume linear

absorption such that the carrier density excited from the surface goes linearly with

excitation power. Since the shape of the carrier peak is determined by the di�usion

and recombination, the �rst method is to �t the shape and force the simulation to

match the height of each peak. For the second method, the strong saturation of the

carrier peak is determined by using a constant scaling factor between the simulation

and the data for di�erent excitation powers. This constant factor can be derived

from the simulation and the data at lowest excitation power.

If the data is modeled by the �rst method using eq.8.1 and the simulated signal

is convoluted with the probe pro�le, the �t for 385 nm �lm with various excitation

powers is summarized in Table 9.2. The di�usion becomes slower and recombination

becomes faster as excitation increases.

The �t in Table 9.2 scales the simulation to match the peak intensity of the data,
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Figure 9.2: (a) Surface-pump-interface-probe data for 385 nm �lm at various exci-
tation densities. The peak time is delayed as density increases. ∆n ∼ 3× 1019 cm−3

is estimated from incident power of 10 mW assuming linear absorption. (b) The peak
intensity versus excitation power for various thickness. (c) Peak intensity of carrier,
bipolar acoustic in negative signal (η−) and positive signal (η+). Each data point is
scaled to the signal at lowest power, 5 mW.
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Bi100 (385 nm) De (cm2/s) τ (ps)
010 mW (∆n ≈ 1.5× 1019cm−3) 30 16
040 mW (∆n ≈ 1.2× 1020cm−3) 18 12
120 mW (∆n ≈ 3.6× 1020cm−3) 12 10
250 mW (∆n ≈ 6.0× 1020cm−3) 10 9

Bi105 (305 nm) De (cm2/s) τ (ps)
010 mW (∆n ≈ 1.5× 1019cm−3) 26 21
040 mW (∆n ≈ 1.2× 1020cm−3) 12 14
120 mW (∆n ≈ 3.6× 1020cm−3) 8 11
250 mW (∆n ≈ 6.0× 1020cm−3) 6 10

Bi90 (275 nm) De (cm2/s) τ (ps)
010 mW (∆n ≈ 1.5× 1019cm−3) 28 20
040 mW (∆n ≈ 1.2× 1020cm−3) 12 15
120 mW (∆n ≈ 3.6× 1020cm−3) 8 11
250 mW (∆n ≈ 6.0× 1020cm−3) 6 10

Bi50 (185 nm) De (cm2/s) τ (ps)
010 mW (∆n ≈ 1.5× 1019cm−3) 18 18
040 mW (∆n ≈ 1.2× 1020cm−3) 10 10
120 mW (∆n ≈ 3.6× 1020cm−3) 6 7
250 mW (∆n ≈ 6.0× 1020cm−3) 4 7

Table 9.3: Method 2: Di�usivity and recombination �t for various �lm thicknesses
measured from surface-pump-interface-probe geometry at various power, derived by
the second scaling method described in the text.

and the best �t is determined by the best match to the shape of carrier peak. If,

however, the second method is used with a constant scaling factor derived from the

ratio between the 10 mW data and the simulation, the �t for various �lms at di�erent

powers is summarized in Table 9.3. In this case, the best �t is determined by the

best match for peak intensity. The second �t results also show that the di�usion

becomes slower while the recombination is faster at higher excitation density.

Comparing Table 9.2 with Table 9.3 for 385 nm �lm, faster decay and slower

di�usion appear in both methods as excitation increases. The derived carrier recom-

bination does not di�er signi�cantly between the two methods. However, the second

scaling method is more sensitive to the �t parameters. Nonlinearities are observed
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in the peak intensity for thick �lms as a function of �uence shown in Fig. 9.2(b) and

9.2(c). Between 5 mW and 200 mW, the intensity of carrier peak grows to a value at

least a factor of 5 less than the value it would have attained assuming linear growth.

Fig. 9.3 displays the comparison between surface-pump-surface-probe data and

surface-pump-interface-probe data for 185 nm �lm at 3 di�erent powers. The ra-

tio between carrier peaks for surface-probe and interface-probe data decreases with

increasing excitation, consistent with the saturation observed in carrier peak for

interface-probe data. The bipolar nature of acoustic strain becomes more distinct as

power increases. Denote the maximum value of the relative change in re�ectivity as

η+ and minimum value as η− for the bipolar acoustic strain in the interface-probe

data. The nonlinearity of η+ and η− as functions of �uence is shown in Fig. 9.2(c).

The η− is slightly saturated while the η+ increases as a function of excitation with

slope greater than 1. It is also evident from Fig. 9.3 that for �lm thicker than 185

nm, there is no indication of lattice heating from the interface.

Using the carrier two-decay model in eq.8.9�eq.8.11 and assuming that di�usivity

as well as recombination are density-independent, the lattice thermalization time is

found to be ∼1.5 ps. Comparing recombination time in Table 9.3 with lattice ther-

malization time, it is not yet clear whether lattice thermalization is due to fast carrier

cooling leading to a cold plasma, or a density-dependent Auger-type recombination

from an increase in phonon-mediated recombination due to lattice heating. Support

for the hypothesis of faster recombination comes from the increasing symmetry of

the acoustic strain. Since the acoustic strain is a superposition of bipolar thermal

strain and unipolar non-thermal strain, its symmetric pro�le indicates that thermal

strain is the dominate component at high excitation. This is consistent with the

carrier saturation observed from the surface-pump-interface-probe data.
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Figure 9.3: Comparison between surface-pump-surface-probe (green) and surface-
pump-interface-probe (magenta) data at various power.

9.2 Interface pump surface probe for thick �lms

Owing to many factors, the interface-pump-surface-probe results are more com-

plex at high excitation. The nonlinearity of the carrier peak as a function of �uence

is quantitatively similar to the surface-pump-interface-probe data. In addition to

the highly nonlinear carrier behavior, the acoustic strain has more features as shown

in Fig. 9.4(a). The decay of the carrier peak is di�erent than in the surface-pump-

surface-probe data, partially due to the di�erent boundary conditions as discussed

in Chap. VIII. The boundary condition also results in a di�erent width of acoustic

signal. Most features are similar to the low excitation region; however, the dip close

to the sharp η− trough makes the high excitation region more complex. Neither

standard Thomsen's model nor the version incorporating a one- or two-decay model

can explain this feature. Fig. 9.4(b) is the signal of interface pump and surface
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Figure 9.4: Comparison between di�erent geometries and among various �uence for
385 nm �lm. (a) Comparison between surface-pump-interface-probe and interface-
pump-surface-probe data at 120 mW. (b) Power-dependence signals from interface-
pump-surface-probe geometry.

probe at various powers. The acoustic strain is nearly unipolar at low excitation and

becomes symmetric bipolar at higher excitation.

The small peak in Fig. 9.4(a) and 9.4(b) around t = 350 ps is attributed to

non-thermal strain. Its nonlinear behavior is similar to the carrier peak. However,

due to its weak signal, the bipolar pro�le is not clearly distinguished. The shape of

peak is more bipolar for 250 mW data in Fig. 9.4(b), but unipolar for 10 and 120

mW data.

9.3 Surface pump surface probe for thin �lms

The re�ectivity of thin �lms at high excitation is more complex than low excita-

tion for all the pump-probe geometries. I focus on the surface-pump-surface-probe

and surface-pump-interface-probe data for the 35 and 66 nm �lms. What was re-

ferred to as a carrier peak for positive values of relative change in re�ectivity now

appears below zero for highly excited 35 nm �lm, shown in Fig. 9.5(a). The peak

itself has lower re�ectivity than the un-perturbed re�ectivity when power exceeds



143

0 50 100 150
−7

−6

−5

−4

−3

−2

−1

0

1
x 10

−3

t (ps)

∆R
/R

 

 (a)

  10 mW
  40 mW
120 mW
250 mW

−2 0 2 4 6 8 10 12 14
−7

−6

−5

−4

−3

−2

−1

0

1
x 10

−3

t (ps)

∆R
/R

 

 (b)

  10 mW
  40 mW
120 mW
250 mW

0 5 10 15 20 25
0

5

10

15

20

25

Power/10 (mW)

∆R
/∆

R
10

 m
W

 

 
(c) lattice heating

acoustic strain

0

0.5

1

 

 

∼0 − 9.6 ps window

0

0.5

1

∼0 − 2.4 ps window

0 1 2 3 4 5 6
0

0.5

1

frequency (THz)

A
.U

.

∼2.4 − 9.6 ps window

(d)
  10 mW
250 mW

Figure 9.5: Surface-pump-surface-probe data at various power for 35 nm �lm. (a)
Signals within long time spans. (b) Signals within short time spans at early times.
Optical phonons are resolved. (c) Peak intensity as a function of incident power from
lattice heating and acoustic signals. (d) Fast Fourier transform for various windows.

40 mW, and becomes indistinguishable when excitation is above 120 mW. At high-

est excitation of 250 mW, a rapid re�ectivity drop is followed by a slower decrease,

which changes in shape and takes longer to reach its minimum compared to the low

excitation below 40 mW.

The overall negative signal after excitation may not be attributable to permanent

damage of sample, since the carrier-like peak signal returns when low power is applied

again. However, a slight di�erence is observed when applying low power again.

Comparing the signal at low excitation without any previous application of high

power to that with high excitation �rst, the main di�erence is the magnitude of
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carrier peak. The overall shape of the carrier peak (rising, falling and so on) is the

same.

With the modeled shape of acoustic strain derived from the thick �lms, the sim-

ulation can roughly model the re�ectivity signal at low �uence. However, it still

cannot explain the abnormal negative re�ectivity for 35 nm �lm with t < 20 ps, and

especially cannot explain the disappearance of carrier peak.

Fig. 9.5(b) is the optical phonon from 35 nm �lm. An A1g oscillation is observed

up to 250 mW. The damping rate of the phonon is fast for high excitation: the

oscillation disappears after 6 cycles for excitation power above 40 mW, whereas

more than 20 cycles are observed below 40 mW. The phonon frequency is 2.93 THz

at 10 mW and 2.77 THz at 250 mW for a window around 0�9.6 ps, derived by fast

Fourier transform and shown in the upper panel of Fig. 9.5(d). The 7th oscillation

peak at 10 mW nearly overlaps with the 6th oscillation valley at 250 mW. The �rst

5-6 cycles soften more if a fast Fourier transform is made around a 0�2.4 ps window,

which gives a weighted frequency ∼2.67 THz at 10 mW and ∼2.46 THz at 250 mW,

shown in the middle panel of Fig. 9.5(d). Because 35 nm �lm is optically thin, the

excited carriers do not di�use but are locally con�ned, which may lead to higher

carrier density near the surface upon excitation than in thick �lms. Thus before the

recombination, the softening e�ect of atomic bonding by a dense plasma is larger in

35 nm �lm than in thick �lms.

Although the carrier peak is indistinguishable under high excitation, the results

for acoustic signal with t < 70 ps and the results for lattice heating are nearly linear

with the increasing excitation, shown in Fig. 9.5(c). This indicates that the energy

transfer to the lattice is nearly linear, as well as that the absorption is not saturated

at least up to 6×1020 cm −3 excitation density.
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Figure 9.6: Surface-pump-surface-probe data at various power for 65 nm �lm. (a)
Signals within long time spans. (b) Signals within short time spans at early times.
Optical phonons are resolved. (c) Maximum signals as a function of incident power,
including carrier peak, acoustic strain and lattice heating. (d) Fast Fourier transform
for various windows.

As �lm approximately doubles in thickness to 66 nm, shown in Fig. 9.6, the

normal positive-valued carrier peak reappears, even at 250 mW high excitation. The

acoustic echoes are also observed at various excitations for 66 nm �lm. The fast

Fourier transform gives A1g (weighted) frequency ∼2.93 THz at 10 mW and ∼2.86

mW at 250 mW for the window near 0 < t < 9.6 ps. For �rst 5�6 cycles, the

(weighted) frequency is ∼2.65 THz at 10 mW and ∼2.53 THz at 250 mW. Frequency

is highly chirped for the �rst few cycles due to a high density of photoexcited carriers

that alters the interatomic potential energy and softens the atomic bonding. As

excitation increases, the carrier peak, acoustic strain and lattice heating are nearly
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linear with a slope slightly smaller than 1. The linearity of acoustic strain and lattice

heating are similar to the 35 nm �lm. Thus it is straightforward to expect linear

absorption for various �lm thicknesses up to 6×1020 cm−3 excitation density.

The re�ectivity drops below zero earlier as excitation increases, indicating a faster

recombination or faster di�usion. However, from analysis of surface-pump-interface-

probe data of thick �lms, the recombination is faster while di�usion could be slower.

In conclusion, surface-pump-surface-probe data for 66 nm �lm at high excitation is

similar to that at low excitation, but with highly chirped A1g phonons and perhaps

faster recombination or di�usion.

9.4 Surface pump interface probe for thin �lms

Similar to surface-pump-surface-probe data, surface pump interface probe data

for 35 nm �lm displays the abnormal negative carrier peak when incident power is

greater than 20 mW, shown in Fig. 9.7(a) for original data and Fig. 9.7(b) for scaled

data. Although signals earlier than 20 ps are referred to as carrier peaks at low

excitation, the abnormal peak might not be a carrier peak from the observation of

high excitation data. The reason for the peak before 20 ps for 35 nm �lm is so far

not clear. From the fact that the surface probe and the interface probe data are out

of phase, show in Fig. 9.8(a) and Fig. 9.8(b), the peak could be due to the acoustic

strain. One possible explanation for the overall negative signal including carrier

peak is a fast carrier recombination at early times. In this scenario a huge amount

of excited electron-hole plasma recombines rapidly and transfers the energy into the

lattice, reducing the re�ectivity upon excitation. This fast recombination could also

caused by the density-dependent Auger recombination. However, the mechanism

is not clear at present due to the unexplained disappearance of the carrier peak (t
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Figure 9.7: Surface-pump-interface-probe data for 35 nm at various power. (a) Data
include carrier, acoustic and thermal components. (b) Data as in (a) is normalized
to the time zero (dip) signal. (c) Optical phonon with data normalized to the time
zero dip signal. (d) Fast Fourier transform within various windows at 10 and 80 mW.

< 20 ps) at high excitation for surface-pump-surface-probe data, and due to the

acoustic-like peak (t < 20 ps) for the surface-pump-interface-probe data.

Due to the partial overlap between pump and probe pro�les, optical phonon

oscillation is also observed in surface-pump-interface-probe for 35 nm �lm, shown

in Fig. 9.7(c). Fig. 9.7(c) is scaled to the initial drop/dip of re�ectivity. The fast

Fourier transform within window 0.87�10 ps gives a weighted frequency ∼2.92 THz

at 10 mW and 2.88 THz at 80 mW. The �rst 10 cycles around window 0.87 < t < 3.35

ps experience more softening, and a fast Fourier transform gives ∼2.83 THz at 10

mW and ∼2.55 THz at 80 mW.
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Figure 9.8: Surface-pump-surface-probe and surface-pump-interface probe data for
35 and 66 nm �lms at low and high excitation. (a) 35 nm at 10 mW. (b) 35 nm
at 250 mW. (c) 66 nm at 10 mW. (d) 66 nm at 250 mW. Power indicated here is
incident power.

Fig. 9.9 shows surface-pump-interface-probe data for 66 nm �lm at various

powers. Similar features for each component are observed in both surface-pump-

surface-probe and surface-pump-interface-probe data, as shown in Fig. 9.8(c) and

Fig. 9.8(d). However, no optical phonon is observed in interface probe data due to

zero group velocity of the A1g phonon as well as to the separated pump and probe

pro�les. The acoustic echoes in interface probe data are out of phase with the echoes

observed in the surface probe data. The acoustic strain and lattice heating signals

vary linearly as a function of incident power. However, the carrier peak intensity at

t = tp is reduced by up to a factor of 5 compared with the linear prediction, an e�ect
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Figure 9.9: Surface-pump-interface-probe data at various power for 66 nm �lm.
(a) Data are normalized to the dip signal at time zero. (b) Maximum signals as a
function of incident power, including carriers, acoustic strains and lattice heating.

also observed in thick �lm for surface-pump-interface-probe data.

9.5 Conclusion of high excitation and comparison with low
excitation

The surface-pump-interface-probe data indicates that cooling of the carriers oc-

curs by heat transfer to the lattice in a time less than 3 ps and that the carriers

reaching the back surface of the �lm are relatively cold, compared to the initial

photo-excited plasma. The surface pump-probe signal drops below zero after about

10-20 ps, with a slow recovery on the nanosecond time-scale. This initial drop is

caused by acoustic strain propagation from the surface through the optical absorp-

tion depth, leaving a thermally expanded lattice in its wake, while the subsequent

very slow decay is attributed to cooling due to heat conduction. It is observed that

the background re�ectivity change due to this thermal expansion is much greater

at the surface of the �lm than the corresponding background at the interface. This

indicates that lattice heating must occur faster than the time (less than 3 ps) taken

for di�usion to produce a uniform plasma in the 185 nm thick �lm. This is consis-
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tent with electron di�raction measurements of thin �lms reported in Ref. [73] that

suggest a lattice heating time of 2− 2.5 ps. Thus, although the plasma cools in less

than 3 ps, its density decays with a much longer time constant (10-30 ps). This

indicates that the decay of the plasma density is determined by the electron-hole

recombination rate, and it is therefore estimated that recombination time is of the

order of 20 ps for incident power less than 40 mW, i.e. ∼1019 cm−3 excitation density.

However, for the carrier density & 1020 cm−3, the dynamics become more com-

plex. The peak intensity of the carrier signal saturates, and the peak time tp becomes

longer and carrier recombination becomes faster. On the other hand, for the surface

pump and probe, the maximum (carrier density) and minimum (thermal) component

of the relative re�ectivity remain linear up to much higher �uence. It is not clear

at what level this signal saturates due to potential artifacts at the highest �uence

for the surface probe. Nonetheless, it appears that at high densities the recombina-

tion and di�usion become nonlinear. The increased plasma decay rate in the initial

dense plasma reduces the amplitude ∆Rn(max)/R of the carrier peak of the counter-

propagating re�ectivity at t = tp by up to a factor of 5 at the highest �uences,

indicating that the plasma density decays at an average rate of 0.3 ps−1 at early

times (t < 5 ps), comparable to the rate of heat transfer to the lattice. At this point,

the nature of the nonlinearity cannot be determined without further experiments and

more sophisticated analysis (for example to distinguish Auger recombination from

an increase in phonon-mediated recombination due to lattice heating).



CHAPTER X

Summary

In this thesis, I present both carrier and thermal transport studies of various

thickness Bi �lms grown on sapphires. Ultrafast lasers are used to photoexcite car-

riers in the near surface region of the �lm. The optical re�ectivity is monitored by a

weak laser probe, in order to investigate the modulation contributed by photoexcited

carriers, acoustic strains, and lattice heating. Lattice changes are also studied using

time-resolved x-ray di�raction. The change in atomic structure due to laser heating

is directly probed by x rays for long time scales (up to a few hundred nanoseconds).

Counter-propagating pump-probe geometry is used in optical measurements to

separate the modulations of the dielectric constant due to carriers, acoustic strain,

and lattice heating, which are di�cult to distinguish in conventional pump-probe

measurements. In counter-propagating pump-probe geometry, optical phonons have

zero group velocity and do not propagate out of the excitation region, making them

unobservable in thick �lms. In addition, the modulation from lattice heating is not

observed for �lms thicker than 185 nm up to a few hundred nanosecond, owing

to rapid heating at the surface and relatively slow thermal di�usion. I also �nd

that the carriers di�use to the back surface several times faster than the speed of

sound. The carrier peak including carrier di�usion and recombination is thus easily
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distinguishable for �lm thicknesses above 185 nm and can be analyzed by a simple

di�usion and decay model at low excitations.

The x-ray measurements using grazing incident geometries are capable of mea-

suring inhomogeneous temperature across �lm. In addition, symmetric di�raction

measures temperature changes averaged over the entire �lms. Therefore, a combina-

tion of the two x-ray geometries is useful for thermal transport studies.

From both optical and x-ray studies, a fast lattice thermalization is con�rmed

from that fact that heat deposit near the surface of �lms results in a large thermal

gradient. Lattice thermalization time is in the range between 0.8�1.5 ps, derived

from comparison between the simulations and the data at high and low excitation

(∼1018 cm−3�1020 cm−3). The thermal pro�le is possibly twice as broad as laser

penetration depth at 800 nm wavelength, analyzed from the modi�ed acoustic strain

generation. This could be attributed to the fast carrier di�usion that spreads the

thermal pro�le before energy of photoexcited carriers transfers to the lattice. The

fast carrier di�usion is about 25 cm2/s at excitations below 5×1019 cm−3, from

counter-propagating pump-probe measurements.

In addition to carrier transport, thermal transport across the Bi/sapphire inter-

face is studied, and the Kapitza conductance is derived to be 2000±1000 W/cm2/s/K

averaged over the various �lm thicknesses. A large thermal gradient is observed im-

mediately after excitation from the grazing incidence data in thick �lm (284 nm). The

observed plateau from symmetric di�raction measurements of Bragg angle changes

is in good agreement with the thermal conductivity being the same as the measured

bulk value. However, for the thinnest �lm (65 nm) the thermal pro�le is found to

be nearly uniform within the 100 ps time resolution of the x-ray probe, whereas one

would expect it to take ∼ 650 ps if the initial heat deposition were limited to the



153

∼ 15 nm laser penetration depth. This apparent inconsistency is resolved given the

relatively large ambipolar di�usivity and �nite lattice thermalization time.

This dissertation provides a broad and general understanding of photoexcited Bi

�lms, as well as detailed studies of carriers, acoustic strains and lattice heating at low

excitation by optical pump-probe experiments. In addition, a clear understanding of

thermal transport across the Bi/sapphire interface by time-resolved x-ray di�raction

under the damage threshold is presented. However, some open questions remain. In

this summary, I point out these questions and some limitations of the optical and

x-ray techniques, as a starting point for further studies.

10.1 Nonlinear carrier and acoustic dynamics

When excitation density increases, the dynamics become complex, and the studies

presented in this dissertation open some questions. As excitation rises above 5×1019

cm−3, carrier dynamics become nonlinear. Carrier peaks observed from the counter-

propagating pump-probe measurements reduce their intensity by a factor of 5 at

the highest excitation, below what would be expected if the dynamics were linear,

whereas signals measured by the conventional pump-probe geometry are nearly linear

with increasing excitation densities. This reduction could be due to the combination

of reduced carrier di�usivity and faster recombination, analyzed from both shape and

intensity of carrier peaks. From the current studies, we cannot distinguish whether

the di�usivity and recombination rates are explicitly dependent on carrier density

or lattice temperature. For example, the recombination rate could increase due to

Auger processes from the increased phonon population with lattice temperature.

As mentioned above the studies does not allow us to allowing to discriminate

the factor resulting in reduced carrier peak intensity, at least given the existing
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model of our data. Three parameters have been used in the simulation, i.e. lattice

thermalization time, decay rate, and carrier di�usivity. For thick �lm, the only way

to better �t the data is to add more parameters. From a mathematical point of view,

this might yield a better result, but we would probably not gain additional insights

into the physics. For thin �lm, localizing the photoexcited carriers could potentially

rule out the contribution from both carrier and thermal di�usion, eliminating one

parameter (carrier di�usivity) from the model. However, modulation from acoustic

strains is large in Bi and cannot be ignored. For thick �lms, acoustic strain can be well

modeled phenomenologically at both low and high excitation, but for thin �lms, we

are not able to model it e�ectively at high excitation. Thus although it might appear

that restricting to thin �lm simpli�es the model by eliminating carrier di�usivity, the

situation is in fact complicated by the incompletely-understood dynamics of acoustic

strain.

While the current model cannot explicitly incorporate the acoustic strain, a qual-

itatively understanding can be gained from the analysis of thermal and non-thermal

contributions in thick �lms. The shape of acoustic strain becomes more symmetric at

higher excitation. The asymmetric nature at low excitation is attributed to the com-

bination of thermal and non-thermal strains generated via lattice heating and defor-

mation potential couplings respectively. The bipolar nature of acoustic strain at high

excitation is indirect evidence of a very fast carrier recombination rate that reduces

the non-thermal strain generation. As a result, the acoustic strain generated at high

excitation is contributed mostly by lattice heating and is nearly symmetric, resulting

from the relatively slow lattice thermal di�usion of Bi. The fast recombination rate

thus reduces the ratio between non-thermal and thermal strain. This is consistent

with the carrier saturation observed from counter-propagating pump-probe data for
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�lm thicknesses above 66 nm. Therefore, a fast carrier recombination rate or a den-

sity dependent Auger recombination is suggested but not numerically implemented,

for the reason discussed in the preceding paragraph. The problem remains unless

we can �nd an alternative measurement (temperature-dependent pump-probe mea-

surements including conventional and counter-propagating geometries) or a di�erent

model (density-dependent di�usion and recombination)

10.2 Improvements of thermal transport studied by Time-
resolved x-ray di�raction

There are several areas where the x-ray measurements would obviously be im-

proved including shorter x-ray pulse duration, higher laser repetition rate allowing

for better statistic, and less intense excitation as well as better �uence control. How-

ever, there are also non-source related improvements that can be made including

appropriate sample design to reduce the free parameters and simplify the problem.

It is in practice di�cult to determine whether the temperature decay is dominated

by the thermal conductivity or by the Kapitza conductance, especially when both

parameters are unknown. Di�erent combinations of both thermal conductivity and

Kapitza conductance can lead to similar temperature evolutions, resulting in similar

time-resolved di�raction signals, even given the depth dependence of the grazing in-

cidence probe and especially given the �nite time-resolution. The ambiguity arising

from those combinations can be eliminated by better time resolution to resolve a fast

temperature decay and using thinner �lm to increase the temperature jump across

an interface.

If time-resolution is not limited and �lm is thin (but not thin enough to incur

small size e�ect), depth- and time-resolved x-ray di�raction can measure temperature
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pro�le for both �lm and substrate separately. Therefore, �lm thermal conductivity

and Kapitza conductance across the interface can be derived numerically.

For structures such as superlattices, time-resolved x-ray di�raction can measure

the e�ective thermal conductivity of the whole superlattice. Therefore, the phonon

population and transmission can be mapped out. The study of reduced thermal

conductivity in superlattices has potential for thermoelectric materials, such as Bi,

its alloys, and their heterostructures.
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