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ABSTRACT

The computation of economic equilibria is a central problem in algorithmic game

theory. In this dissertation, we investigate the existence of economic equilibria in

several markets and games, the complexity of computing economic equilibria, and

its application to rankings.

It is well known that a competitive economy always has an equilibrium under

mild conditions. In this dissertation, we study the complexity of computing com-

petitive equilibria. We show that given a competitive economy that fully respects

all the conditions of Arrow-Debreu’s existence theorem, it is PPAD-hard to compute

an approximate competitive equilibrium. Furthermore, it is still PPAD-Complete to

compute an approximate equilibrium for economies with additively separable piece-

wise linear concave utility functions.

Degeneracy is an important concept in game theory. We study the complexity of

deciding degeneracy in games. We show that it is NP-Complete to decide whether a

bimatrix game is degenerate.

With the advent of the Internet, an agent can easily have access to multiple

accounts. In this dissertation we study the path auction game, which is a model for

QoS routing, supply chain management, and so on, with multiple edge ownership.

We show that the condition of multiple edge ownership eliminates the possibility of

reasonable solution concepts, such as a strategyproof or false-name-proof mechanism

or Pareto efficient Nash equilibria.

vii



The stationary distribution (an equilibrium point) of a Markov chain is widely

used for ranking purposes. One of the most important applications is PageRank,

part of the ranking algorithm of Google. By making use of perturbation theories

of Markov chains, we show the optimal manipulation strategies of a Web spammer

against PageRank under a few natural constraints. Finally, we make a connection

between the ranking vector of PageRank or the Invariant method and the equilibrium

of a Cobb-Douglas market. Furthermore, we propose the CES ranking method based

on the Constant Elasticity of Substitution (CES) utility functions.
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CHAPTER I

Introduction

1.1 History and Motivations

An equilibrium point, generally referred to as a balanced situation, is a central solu-

tion concept for complex systems. In particular, the economic equilibrium is exten-

sively studied in microeconomic theory. There are two major equilibrium concepts

in microeconomics: Nash equilibrium [62] and competitive equilibrium [7]. It is well

known that under mild conditions, either a Nash equilibrium or a competitive equi-

librium always exists, which lays the foundations for the game theory and general

equilibrium theory respectively.

A more general concept than economic equilibria is the Kakutani’s fixed point

x∗ such that x∗ ∈ Ψ(x∗), where Ψ is a correspondence. The existence of Nash

equilibria, proved by Nobel laureate John Nash [62], and the existence of competitive

equilibrium, proved by Nobel laureates Kenneth Arrow and Gerard Debreu [7], were

shown via Kakutani’s fixed point theorem. However, both proofs are nonconstructive.

In general, the power of economic equilibrium theories depends on their analytical

and predictive power on economic policies. Shoven and Whalley [74] investigated the

applications of general equilibrium theory to analyze tax, trading, and price-control

policies. As argued by Kamal Jain [48], “If a Turing machine cannot compute [an

1
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equilibrium] then an economic system cannot compute [it] either. Hence, a lack of

computational result decreases the applicability of equilibrium concept itself.” The

computation of equilibria is essential to make the theories meet practice.

With respect to the computational aspects of fixed points, people ask questions

related to the computability, computational complexity, and polynomial time com-

putability of economic equilibria. Unfortunately, Wong and Richter [81] showed that

Brouwer’s fixed points are uncomputable in the strong real computing model. Hence,

a competitive equilibrium is not computable in that sense. On the other hand, Nash

equilibria of a finite matrix game can be computed to any arbitrary precision we like

[56]. However, for a three-player game, even if the payoff matrices are all rational,

an equilibrium of the game can be irrational. Blum, Cucker, Shub, and Smale [9]

studied the real computational complexity, which allows a solution of a problem to

be irrational. On the other hand, irrationality is not proper for the standard Turing

machine model, which permits only computational problems with finite size input

and output. Moreover, even if an economic equilibrium is computable, a decision-

maker may lack the resources to reach an optimal solution. This results in the

decision-maker seeking for a satisfactory solution rather than an optimal one, and

is referred to as bounded rationality. Hence, certain approximation concepts must

be introduced. Usually, two possible approximate solution concepts are used in eco-

nomic analysis: weak approximation, which approximates certain function value of

an exact solution, and strong approximation, which approximates an exact solution

itself geometrically.

Since the introduction of these approximate solution concepts, a few great results

have been achieved regarding the computation of economic equilibria. In his semi-

nal paper [68], Papadimitriou introduced a new complexity class: Polynomial Parity
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Argument Directed case (PPAD). It is unlikely that there is a polynomial time algo-

rithm for the PPAD-Complete problems [65]. On the complexity side, Etessami and

Yannakakis showed [35] that it is FIXP-Complete to compute a strong approximation

of Nash equilibrium. Daskalakis, Goldberg, and Papadimitriou [23] showed that it is

PPAD-Complete to compute a weak approximate equilibrium of four-player games.

Chen and Deng later extended the PPAD-Completeness result to two-player games

[14] and 1
nΘ(1) -approximate Nash equilibrium [15]. Moreover, Codenotti et al. [21]

showed that the computation of competitive equilibrium for a special class of pairing

Leontief economy is PPAD-hard. On the algorithmic side, Lemke and Howson [55]

developed an algorithm to compute Nash equilibria of bimatrix games. Scarf [71]

further designed a more general, discrete algorithm to compute economic equilibria.

In addition, Eaves [31] and Eaves & Saigal [32] proposed homotopy methods to com-

pute fixed points. Moreover, based on the proof of Brouwer’s fixed point given by

Hirsch [44], Kellogg, Li, and Yorke [51] designed a method of continuation to com-

pute Brouwer’s fixed points. Unfortunately, none of those algorithms can guarantee

to find a fixed point in polynomial time. The state-of-art about the computation of

economic equilibria is: for Nash equilibria of bimatrix games, a 0.3393-approximate

Nash equilibrium can be computed in polynomial time [78]; for competitive equilib-

ria, polynomial time algorithms are only available for those economics with convex

equilibria sets [48, 19, 20].

On the other hand, although Nash equilibrium is an important solution concept

in game theory, it has several shortcomings. In particular, a game may have multiple

Nash equilibria points. Moreover, a Nash equilibrium may be difficult to reach and

may not be Pareto efficient. However, as argued by Nobel laureate Eric Maskin [58],

these drawbacks are less severe if a Nash equilibrium is the outcome of a specifically
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designed mechanism. This is the “engineering” part of economic theories. A mech-

anism designer starts with a specific objective and designs an economic mechanism

such that the outcome of it indeed meets the objective when rational agents play by

its rules.

In general, a mechanism has two elements: an allocation rule, which maps strate-

gies of players in the economic system to an outcome, and a pricing rule, which either

charges or pays a certain price to each player. A widely studied solution concept of

a mechanism is called the dominant strategy, where each player makes his decision

without respect to the strategies of the other players. By definition, a dominant

strategy is a stronger economic equilibrium than a Nash equilibrium. A desirable

property in mechanism design is strategyproofness, under which the best strategy of

each player is to reveal its true information. A well known strategyproof mechanism

is the VCG mechanism [49, 65]. With the advent of the Internet and e-commerce

applications such as eBay, an agent can easily have access to multiple accounts. He

may further improve his own payoff by manipulating his multiple identities. Thus,

it is important to study whether strategyproof mechanisms or Nash equilibria are

reasonable solution concepts under the constraint that each agent can have multiple

identities.

On the application side, ranking, which aggregates the preferences of individual

agents over a set of alternatives, is an important ingredient of a reputation system.

The stationary distribution – an equilibrium point – of a Markov chain is widely

used for ranking purposes, such as PageRank [12] and the Invariant Method [77].

PageRank is part of the Web ranking algorithm used by Google. In Web ranking,

Web pages with high rankings probably have great economic values. Thus, Web

users may have incentives to manipulate the ranking algorithms in order to boost
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the rankings of certain pages. Those Web users are called Web spammers. From the

perspective of game theory, it is worthwhile to study the best manipulation strategies

of Web spammers. In addition, on the theoretical aspects, a few works [66, 3, 77, 11, 4]

provide mathematical characterizations for those ranking methods. It would be of

great interest to further investigate the economic foundations of ranking methods.

This dissertation is devoted to studying the computation of economic equilibria

and its applications. Specifically, we will investigate the existence of economic equi-

libria in several markets and games, the complexity of computing economic equilibria,

and its application to rankings.

1.2 Contributions of this Dissertation

The computation of a competitive equilibrium is one of the most important prob-

lems in algorithmic game theory. Codenotti et al. [21] showed that the competitive

equilibria of a special class of pairing Leontief economy has a one-to-one correspon-

dence with the Nash equilibria of a bimatrix game. However, this special class of

paring Leontief economy violates one specific condition of Arrow-Debreu’s existence

theorem [7], which requires that the initial endowment of each good for each indi-

vidual is strictly positive. Together with Xiaotie Deng [24], we proved that given

a competitive economy that fully respects all the conditions of Arrow-Debreu’s ex-

istence theorem, for any positive constant h > 0, it is PPAD-hard to compute a

1
nh -approximate competitive equilibrium. This is the first complexity result about

the economies that strictly satisfy the conditions of Arrow-Debreu’s existence theo-

rem.

The complexity result for economies with the Leontief utility function, which

is nonseparable piecewise linear concave, is rather limited. The computation of
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equilibria for economies with additively separable concave utility functions is an

important open problem [65]. In working with Xi Chen, Decheng Dai, and Shanghua

Teng [13], we reduced Nash equilibria of bimatrix games to competitive equilibria of

economies with additively separable piecewise linear concave (PLC) utility functions.

Hence, it is PPAD-Complete to compute an equilibrium for economies with additively

separable PLC utility functions. The result also implies that it is PPAD-hard to

compute a quasi-equilibrium of an economy.

Degeneracy is an important concept in game theory. As we know, a nondegenerate

bimatrix game has an odd number of equilibria [65]. However, a degenerate bimatrix

game may contain an infinite number of Nash equilibria points. In [27], we showed

that it is NP-Complete to decide whether a bimatrix game is degenerate while it is

Co-NP-hard to decide whether it is nondegenerate. However, for a win-lose bimatrix

game, it is in polynomial time to decide whether it is degenerate.

We studied a specific mechanism design problem: the path auction game. In the

path auction game, there is a network G = (V, E), in which each edge e ∈ E is

owned by an agent. The true cost of e is private information and known only to the

owner. Given two vertices, source s and destination t, the auctioneer’s task is to buy

a path from s to t. The path auction game can be used to model problems in supply

chain management, transportation management, QoS routing, and other domains.

With the emergence of e-commerce, a bidder can easily have access to multiple

accounts. Hence, we studied the path auction games with multiple edge ownership.

Together with Rahul Sami and Yaoyun Shi [29], we showed that, assuming that edges

not on the winning path always get 0 payment, there is no individually rational,

strategyproof mechanism in which only edge costs are reported. If the agents are

asked to report costs as well as identity information, we showed that there is no
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Pareto efficient mechanism that is false-name-proof. We then studied a first-price

path auction in this model. We showed that, in the special case of parallel-path

graphs, there is always a Pareto efficient pure strategy ε-Nash equilibrium in bids.

However, this result does not extend to general graphs—we constructed a graph in

which there is no Pareto efficient pure strategy ε-Nash equilibrium.

In Web ranking, highly ranked Web pages potentially have great economic ad-

vantages. Thus, Web spamming, which manipulates the ranking of a search engine,

becomes a great challenge for ranking algorithms. Web spamming threatens the

fairness and accuracy of search engines. In the joint work with Yaoyun Shi and Xin

Zhao [30], we studied manipulation strategies under PageRank in the single target

spam farm model. By making use of perturbation theories of Markov chains, we an-

alyzed the optimal manipulation strategies of a Web spammer under a few natural

constraints.

Both the existence of the ranking vector of the PageRank or Invariant method and

the existence of competitive equilibrium can be shown via the Brower’s fixed point

theorem. In [28], we make a connection between the ranking theory and the general

equilibrium theory. We show that the ranking vector of PageRank or Invariant is

indeed the equilibrium of a Cobb-Douglas economy. Furthermore, we interpret a

link in a reference graph as a “demand.” Based on that, we propose a new ranking

method, the CES ranking, which is minimally fair, strictly monotone and invariant

to reference intensity, but not uniform or weakly additive.

1.3 Organization

The organization of this dissertation is as follows: Chapter II introduces some

important definitions and theorems. Chapter III studies the computation of com-
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petitive equilibria. Chapter IV investigates the degeneracy in games. Chapter V

studies the path auction games with multiple edges ownership. Chapter VI analyzes

the manipulation strategies of Web spammers. Chapter VII establishes a connec-

tion between ranking theory and general equilibrium theory. Finally, we conclude in

Chapter VIII.



CHAPTER II

Background and Preliminaries

2.1 Some Basic Topology and Fixed Point Theorems

In this section, we review several versions of fixed point theorems, but omit proofs.

Those who are interested can refer to [37, 49] for details. First of all, we introduce

some basic definitions in topology.

Definition 2.1. [49] Let (X, d) be a metric space. The open ε-ball with center x0

and radius ε > 0 is a subset of points in X :Bε(x) ≡ {x ∈ Rn|d(x0, x) < ε)}.

Definition 2.2. [37] Let (X, d) be a metric space. A set S in X is open if for

every x ∈ S, there exists an open ball centered at x that is contained in S, that is,

∀x ∈ S, ∃ε > 0, such that Bε(x) ⊆ S. A set C in X is closed if its complement is

open.

Definition 2.3. [49] Let (X, d) be a metric space. A set S in X is bounded if there

exists some ε > 0 such that S ⊆ Bε(x) for some x ∈ X.

Definition 2.4. [49] [(Heine-Borel) Compact Sets] A set S in Rn is called compact

if it is closed and bounded.

Definition 2.5. [37] A set S in Rn is convex if given any two points x1 and x2 in S,

for every λ ∈ [0, 1], the point xλ = (1− λ)x1 + λx2 is also in S.

9
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Definition 2.6. [37] The function f : S ⊆ Rn → R is convex if given any two points

x1 and x2 in S, for every λ ∈ [0, 1], we have f(xλ) ≤ (1− λ)f(x1) + λf(x2).

There is a nice characterization of convex functions if f is twice differentiable and

the domain S of f is an open set. Let us define the Hessian matrix ∇2f of f to be

(∇2f)ij = ∂2f
∂xi∂xj

. Then,

Theorem 2.7. [10] The function f is convex iff S is convex and its Hessian is

positive semidefinite for all x ∈ S.

A function f is concave if −f is convex. Next, we introduce a weaker concept

than concavity.

Definition 2.8. [37] The function f : S ⊆ Rn → R is quasiconcave if given any two

points x1 and x2 in S, we have ∀λ ∈ [0, 1], f(xλ) ≥ min{f(x1), f(x2)}.

Now we are ready to present the Brouwer’s fixed point theorem.

Theorem 2.9. [37] [Brouwer’s fixed point theorem] Let f : S → S be a continuous

function mapping a compact and convex set into itself. Then there exists at least one

point x∗ ∈ S such that f(x∗) = x∗, where x∗ is called a Brouwer’s fixed point of f .

In the next theorem, the fixed point theorem is extended to correspondences

(set valued functions). Let us extend the definitions of function and continuity to

correspondences first.

Definition 2.10. [37] A correspondence from S to Y is a function that maps each

element x of the set S to a subset of Y .

Definition 2.11. [37] Let S and Y be finite dimensional Euclidean spaces, and let

Ψ : S →→ Y be a correspondence. Then:
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(1). Ψ is upper-hemicontinuous(uhc) at a point x ∈ S if for every open set V con-

taining Ψ(x), there exists a neighborhood U of x such that Ψ(x1) ⊆ V for every

x1 ∈ U .

(2). Ψ is lower-hemicontinuous(lhc) at a point x ∈ S if for every open set V in Y

with Ψ(x)
⋂

V 6= ∅, there exists a neighborhood U of x such that Ψ(x1)
⋂

V 6= ∅

for every x1 ∈ U .

(3). Ψ is continuous at x if it is both uhc and lhc at this point.

Now we are ready to present Kakutani’s fixed point theorem.

Theorem 2.12. [37] [Kakutani’s fixed point theorem] Let Ψ be a correspondence

from a set S ⊆ Rn to itself. Assume that S is compact and convex, and Ψ is upper-

hemicontinuous, nonempty, compact, and convex-valued for all x ∈ S. Then ∃x∗ ∈ S

such that x∗ ∈ Ψ(x∗), where x∗ is called a Kakutani’s fixed point of Ψ.

2.2 Nash Equilibrium

In this section, we review the definitions and some elementary results of the non-

cooperative game theory by following the textbook [49].

Definition 2.13. [49] A strategic form game is a triple G = (I, Si, ui)
N
i=1, where

I = {1, ..., N} is the set of players, Si is the set of strategies available to player i ∈ I,

and ui : S =
∏N

j=1 Sj → R describes player i’s payoff as a function of the strategies

chosen by all players. A strategic form game is finite if each player’s strategy set

contains a finite number of elements.

A pure strategy profile s = {s1, ..., sN} is an element of S, which specifies the

strategy chosen by each player. Moreover, following standard notation in game

theory, let s−i be the vector {s1, ...si−1, si+1, ..., sN}, which specifies the strategies
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chosen by all players except player i. Similarly, we can define S−i =
∏N

j=1,j 6=i Sj. In

general, a player can play the strategies available to him randomly. Hence, a mixed

strategy for player i is a probability distribution over Si. Let Mi denote the set

of mixed strategies of player i and M =
∏N

j=1 Mi denote the set of mixed strategy

profiles. We extend the utility function over pure strategies to mixed strategies.

Given a mixed strategy m ∈ M that is a distribution over pure strategy space S,

ui(m) =
∑
s∈S

ui(s)m(s), where m(s) is the probability of playing pure strategy s under

m. Given a strategic form game, we define two types of solution concepts—dominant

strategy and Nash equilibrium—below.

Definition 2.14. [49] A strategy mi for player i is (weakly) dominant if ui(mi,m−i) ≥

ui(m
′
i,m−i) for all m

′
i ∈ Mi and for all m−i ∈ M−i. A strategy profile m is a dominant

strategy profile if for each player i, mi is a dominant strategy.

Definition 2.15. [49] Given a finite strategic form game G = (I, Si, ui)
N
i=1, a strategy

profile m ∈ M is a Nash equilibrium if for every player i, ui(mi,m−i) ≥ ui(m
′
i,m−i)

for any m
′
i ∈ Mi.

It is obvious that a dominant strategy profile is indeed a Nash equilibrium. The

concept of Nash equilibrium was introduced by Nash in his seminal paper [62]. More-

over, he showed that:

Theorem 2.16. [62, 49] Every finite strategic form game has at least one Nash

equilibrium.

Note that if players have infinite strategy space, a strategic form game may not

have an equilibrium [70]. Furthermore, even if a game has an equilibrium, it may

not be a pure strategy Nash equilibrium. The famous rock-scissor-paper game is an

example of a game that only has a mixed strategy Nash equilibrium. Furthermore,
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in a Nash equilibrium, players may not achieve optimal utilities. Actually, a Nash

equilibrium can make players achieve the worst possible utilities, which is shown

in the famous prisoners’ dilemma [49]. Therefore, Nash equilibrium may not be a

perfect solution concept in game theory. In the section that follows, we will introduce

some weaker solution concepts than Nash equilibrium.

First of all, we introduce the concept of approximate Nash equilibrium.

Definition 2.17. Given a finite strategic form game G = (I, Si, ui)
N
i=1, a strat-

egy profile m ∈ M is an ε-approximate Nash equilibrium if for each player i,

ui(mi,m−i) ≥ ui(m
′
i,m−i)− ε for any m

′
i ∈ Mi.

In a Nash equilibrium, each player plays his strategy independently according

to the mixed strategy chosen by himself. We can generalize the concept of Nash

equilibrium by allowing players to play correlated mixed strategies.

Definition 2.18. [67] Let x be a distribution over S. The probability distribu-

tion x is a correlated equilibrium if for any player i and any strategies p, q ∈ Si,

∑
s−i∈S−i

[ui(p, s−i) − ui(q, s−i)]xps−i
≥ 0, where xps−i

is the probability that player i

plays strategy p while other players play s−i.

It is obvious that a mixed strategy Nash equilibrium is also a correlated equilib-

rium.

At last, we introduce a special case of noncooperative strategic games: the Bi-

matrix Games. Bimatrix games are the simplest types of normal form games. In a

bimatrix game there are two players. One is called the row player and the other is

called the column player with pure strategy spaces R and C respectively. We can use

two matrices, A and B, to represent the payoff matrices to the row player and the

column player when they play different combinations of pure strategies. Specifically,
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Aij is the payoff to the row player when he plays its ith pure strategy while the

column player plays its jth pure strategy; vice versa for matrix B. A mixed strategy

is a probability distribution on the strategy space. Let ∆m = {(x1, ..., xm)|∑i xi = 1

and ∀i, xi ≥ 0} and ∆n = {(y1, ..., yn)|∑j xj = 1 and ∀j, yj ≥ 0} be the mixed

strategy spaces of the row and the column player.

Definition 2.19. [14] Given the payoff matrices (A,B) of the row and the column

players, a strategy profile (x∗, y∗) is a Nash equilibrium iff ∀x ∈ ∆m, (x∗)T Ay∗ ≥

xT Ay∗ and ∀y ∈ ∆n, (x∗)T By∗ ≥ (x∗)T By.

2.3 Competitive Equilibrium

In this section, we will define the competitive economy in a general sense according

to Arrow-Debreu [7] and review the existence theorem of competitive equilibrium [7].

A competitive economy can be represented as E = {(i)i∈I , (wi)i∈I , (Xi)i∈I , (ui)i∈I ,

(j)j∈J , (Yj)j∈J , (αij)i∈I,j∈J }, where I is the set of consumers, wi is the initial endow-

ment for individual i, Xi is consumption set for i, ui is the utility function of i, J is

the set of production units, Yj is the set of possible production plans for production

unit j ∈ J while αij is the share of profit owned by consumer i for production unit j.

Moreover, let l be the number of commodities in the economy. Given a competitive

economy, a competitive equilibrium is defined below.

Definition 2.20. [7] A set of vectors (x∗1, ..., x
∗
m, y∗1, ..., y∗n, p

∗) is a competitive equi-

librium if it satisfies: 1

(1). for each j ∈ J , y∗j maximizes p∗ · yj over the set Yj

(2). x∗i maximizes ui(xi) over the set {xi|xi ∈ Xi, p
∗ · xi ≤ p∗ · wi +

|J |∑
j=1

αijp
∗ · y∗j}

1A competitive equilibrium is also referred as Arrow-Debreu equilibrium or market equilibrium as well.
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(3). p∗ ∈ P = {p|p ∈ Rl, p ≥ 0,
l∑

h=1

ph = 1}

(4). Let x =
∑
i∈I

xi, y =
∑
j∈J

yj, w =
∑
i∈I

wi and z = x − y − w. Then z∗ ≤ 0 and

p∗ · z∗ = 0.

Under a competitive equilibrium, each production unit maximizes its profit and

each consumer maximizes his own utility under the budget constraint while demands

are satisfied by supplies. In particular, the condition p∗ ·z∗ = 0 in (4) is called Walras’

Law. It implies that for any commodity, if its price is strictly positive, its demand

is equal to its supply; if its price is 0, its demand is no more than its supply. This

captures the essence of the equilibrium concept. Arrow and Debreu [7] showed that

a competitive economy always has an equilibrium under some mild assumptions.

Theorem 2.21. [7] Suppose the competitive economy satisfies the following condi-

tions:

(1). (a) Yj is a closed convex subset of Rl containing 0 for each j ∈ J .

(b) Let Y =
|J |∑
j=1

Yj = {y|y =
|J |∑
j=1

yj, where yj ∈ Yj}, and Ω = {x|x ∈ Rl, x ≥ 0}.

Then Y
⋂

Ω = 0.

(c) Y
⋂

(−Y ) = 0.

(2). The set of consumption vectors Xi available to individual i ∈ I is a closed

convex subset of Rl which is bounded from below.

(3). (a) ui(xi) is a continuous function on Xi.

(b) For each xi ∈ Xi, there is an x
′
i ∈ Xi such that ui(x

′
i) > ui(xi).

(c) If ui(xi) > ui(x
′
i) and 0 < t < 1, then ui[txi + (1− t)x

′
i] > ui(x

′
i).

(4). (a) wi ∈ Rl; for some xi ∈ Xi, xih < wih for each h.
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(b) For all i, j, αij ≥ 0; for all j,
|I|∑
i=1

αij = 1.

then there is a competitive equilibrium.

2.4 Discrete Markov Chain

In this section, we review discrete Markov chain. Given an N -state discrete

Markov chain, let S = {1, ..., N} be the set of states and Xm be the state of the ran-

dom process at time m. The basic property of Markov chain is that, P (Xm|Xm−1, ...,

X0) = P (Xm|Xm−1). This is called the memoryless property or Markov property, that

is, the probability that the random process reaches a specific state at time m depends

only on its state at time m− 1. Let pij be the probability that the random process

goes to state j given that its previous state is i, where for every i,
N∑

j=1

pij = 1. Then, a

transition probability matrix P = (pij)N×N can completely define a discrete Markov

chain. We define a simplex ∆ = {π|π ≥ 0 and
∑N

i=1 πi = 1}. Furthermore, we

define a function f : ∆ → ∆ where f = P T π. It is easy to check that ∆ is convex

and compact; meanwhile f is a continuous function. Therefore, Brouwer’s fixed point

theorem guarantees that there is at least one π ∈ ∆ such that π = P T π, which is

called stationary distribution. However, there might be multiple stationary distribu-

tions. Actually, we can go further than the existence result. Given the transition

probability matrix P , we can define a graph G = (V, E), where V = {1, 2, ..., N}

and (i, j) ∈ E iff pij > 0. If G is strongly connected and aperiodic, then the Markov

chain defined by P is called ergodic. It is well known that an ergodic Markov chain

has a unique stationary distribution [52].
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2.5 PPAD

In this section, we briefly review the PPAD complexity class by following [23, 14,

15].

Let R ⊂ {0, 1}∗ × {0, 1}∗ be a binary relation over {0, 1}∗. If for every string

x ∈ {0, 1}∗, there exists a y ∈ {0, 1}∗ such that (x, y) ∈ R, R is a total relation.

TFNP is the complexity class that contains all the NP search problems defined by

total functions. Different from the way to define most of the complexity classes, in

the next, we first define a complete problem of PPAD, which is called LEAFD, and

then we give a formal definition of PPAD.

Definition 2.22. [68, 15] The input of LEAFD is a pair (C, 0n), where C is a

circuit with polynomial size. The input of C is {0, 1}n
⋃{“end”}. For every u0 ∈

{0, 1}n
⋃{“end”}, the output C(u0) is an ordered pair (u−1, u1), where u−1, u1 ∈

{0, 1}n
⋃{“end”}. The first element of C(0n) is “end.” Actually, a pair (C, 0n)

implicitly defines a graph G = (V, E) where V ⊆ {0, 1}n, and (u, v) ∈ E iff u is the

first element of C(v) while v is the second element of u. For every input u, if the first

element of C(u) is “end, ” u is a source; if the second element of C(u) is “end, ” u is

a sink. A node is called a directed leaf if it is either a source or a sink. The output

of the LEAFD problem is a directed leaf other than 0n.

Now we are ready to define PPAD.

Definition 2.23. If a search problem is polynomial time reducible [76] to the LEAFD

problem, it is in PPAD.

The G defined by the input instance of LEAFD is a directed graph in which the

outdegree and the indegree of every vertex are at most 1. The string 0n corresponds

to a source vertex, which has indegree 0 and outdegree 1. Since the sum of degrees



18

of all vertices in any graph is even, there must be at least one other leaf except 0n in

G. Therefore, a PPAD instance is a total relation, and the complexity class PPAD

is a subclass of TFNP.

The definition of PPAD is motivated from the proof of the famous Sperner’s lemma

[68]. In a properly colored subdivided simplex, there always exists a panchromatic

subdivision by Sperner’s lemma. Actually, it is PPAD-complete [68] to find it. Hence,

a more intuitive way to think about PPAD could be: it captures the computation

power of finding a panchromatic subdivision in Sperner’s lemma. The key difficulty

in proving that a problem belongs to PPAD is showing that the orientation of u−1

and u1 can be determined in polynomial time. It was shown that computing a

Nash equilibrium is in PPAD by extending Shapley’s index method [73, 79]. Most

significantly, in 2005, it was proved that it is indeed PPAD-hard [23, 14] to compute

a Nash equilibrium. This settled down one of the most important open problems

in complexity theory. Furthermore, a computational version of the Brouwer’s fixed

point is also PPAD-complete [68].



CHAPTER III

The Computational Complexity of Competitive Equilibrium

It is not from the benevolence of the butcher, the brewer, or the baker, that we expect our dinner,

but from their regard to their own self-interest. We address ourselves, not to their humanity

but to their self-love, and never talk to them of our own necessities but of their advantages.

Adam Smith, The Wealth of Nations

3.1 Approximate Competitive Equilibrium

3.1.1 Motivations

Theoretical computer scientists have studied the complexity of computational eco-

nomic problems for decades. In 2005, there were some breakthroughs in this area.

Daskalakis, Goldberg, and Papadimitriou [23] showed that computing an approxi-

mate Nash equilibrium for a four-player game is PPAD-Complete. A few months

later, the PPAD-hardness result was extended to two-player games by Chen and

Deng [14]. It turns out that the class of PPAD is powerful enough to characterize

the computation of Nash equilibria. However, we do not know whether PPAD class

is the right class to characterize the computation of competitive equilibria. Building

upon a link from Nash equilibrium to a special class of pairing Leontief economy

established by Ye [83], Codenotti et al. [21] showed that the computation of com-

petitive equilibria for a special class of pairing Leontief economy is PPAD-hard.

19
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However, this special class of pairing Leontief economy violates one specific condi-

tion of Arrow-Debreu’s existence theorem [7]. The theorem requires that the initial

endowment of each commodity for each individual is strictly positive. Note that, al-

though that is the case, the existence of competitive equilibria for that special class

of pairing Leontief economy is still guaranteed by the existence of Nash equilibria.

This is not surprising because Arrow-Debreu’s theorem gives only a set of sufficient

(not necessary) conditions for the existence of competitive equilibria. Furthermore,

a Leontief economy (even a pairing one) does not always have a competitive equi-

librium. Actually, it is NP-Complete to decide whether a Leontief economy has an

equilibrium [21]. This implies that Leontief economies do not satisfy all the con-

ditions of Arrow-Debreu’s existence theorem [7], either. Thus, for those economies

that do fully satisfy the conditions of Arrow-Debreu’s existence theorem, the compu-

tational complexity of its equilibrium is still open. In this section, we will study the

complexity of computing an approximate competitive equilibrium for the economy

that exactly satisfies the conditions of Arrow-Debreu’s existence theorem.

3.1.2 The Main Theorem

The pairing Leontief economy introduced in [21] does not always have an equilib-

rium, and it is NP-Complete to decide whether a pairing Leontief economy has an

equilibrium. This implies that the pairing Leontief economy violates some conditions

of Arrow-Debreu’s existence theorem. In particular, the condition (4)a in theorem

2.21 is violated by the pairing Leontief economy. Recall that the initial endowment

for each individual i is wi = (0, ..., 1, ..., 0) while the consumption set for each indi-

vidual i is Xi = {x|x ∈ Rl, x ≥ 0}. We cannot find a consumption bundle xi ∈ Xi

such that for each h, xih < wih.

In this section, we will show that the computation of an ε-approximate compet-
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itive equilibrium is PPAD-hard. This result is achieved by reducing the problem

of computing a 1
nΘ(1) -approximate Nash equilibrium, which is known to be PPAD-

Complete [15], to an ε-approximate competitive equilibrium. We define approximate

competitive equilibrium as follows:

Definition 3.1. A price vector p = (p1, p2, ..., pl) is an ε-approximate competitive

equilibrium if given conditions (1), (2), (3) of definition 2.20 are satisfied and for any

1 ≤ h ≤ l, when ph > 0, −ε
∑
i∈I

wih ≤ zh(p) ≤ ε
∑
i∈I

wih; when ph = 0, zh(p) ≤ ε
∑
i∈I

wih.

We will make use of the idea in [21]. Let (A,B) be the payoff matrices of the row

and column players in the bimatrix game. W.L.O.G., we assume that A ∈ [1, 2]n×n

and B ∈ [1, 2]n×n.

Definition 3.2. We define a competitive economy L as follows: I = {1, ..., 2n}; for

each i, wi = {γ, ..., γ, 1 + γ, γ, ..., γ}, where each element of wi is γ > 0 except for

the ith element that is 1 + γ; Xi = {x|x ∈ Rl, x ≥ 0}; ui(xi) = min
k:fki 6=0

{xik

fki
}, where

fki is an element of F , and there is only one production unit such that Y1 = Y = 0

and αi1 = 1
2n

. The matrix F is defined to be

(3.1) F =




−→
1 n×n

−→
1 n×n + A

−→
1 n×n + BT −→

1 n×n




Lemma 3.3. The economy L fully respects all the conditions of theorem 2.21. Thus

it is guaranteed to have a competitive equilibrium.

Proof. Since Y = {0}, it is closed and convex. It is obvious that condition (1) is

trivially satisfied. The consumption set Xi = {x|x ∈ Rl, x ≥ 0} is closed and convex,

−→
0 is its lower bound. Thus, condition (2) is satisfied. ui(xi) is continuous since for

any i, j, 1 ≤ fij ≤ 3, thus for any ε > 0, if ‖x′i − xi‖∞ ≤ ε, |ui(x
′
i) − ui(xi)| ≤ ε.

Therefor, condition (3)a is satisfied. Moreover, for any xi ∈ Xi, xi +
−→
1 ∈ Xi,
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thus ui(xi +
−→
1 ) > ui(xi). Hence, condition (3)b is satisfied. Furthermore, suppose

ui(xi) > ui(x
′
i) and 0 < t < 1, ui[txi +(1− t)x

′
i] = min

i:fki 6=0
{ txik+(1−t)x

′
ik

fki
}. W.L.O.G., we

assume that ui[txi +(1− t)x
′
i] =

txih+(1−t)x
′
ih

fgi
> tui(x

′
i)+ (1− t)ui(x

′
i) = ui(x

′
i). Thus,

condition (3)c is satisfied. Finally, γ > 0, condition (4)a is satisfied. According to

the definition of L economy, condition (4)b is automatically satisfied. The lemma is

proved. ut

Theorem 3.4. Given a competitive economy that fully respects all the conditions

of Arrow-Debreu’s existence theorem, for any positive constant h > 0, it is PPAD-

hard to compute a 1
nh -approximate competitive equilibrium, i.e., it is PPAD-hard to

compute a 1
nΘ(1) -approximate competitive equilibrium.

Proof. Suppose price vector p = (p1, ..., p2n) is an ε-approximate competitive equi-

librium. Given this price vector, each individual should maximize its utility. For

the utility functions of L, we know that for individual i, the optimal consumption

bundle xi should satisfy that for any 1 ≤ k ≤ 2n, xik

fki
= βi, where βi is the maximum

utility for i under p. Moreover, we know that when the utility of individual i is

maximized,
2n∑

k=1

pkxik =
2n∑

k=1

pkfkiβi = γ + pi. Thus βi = γ+pi
2n∑

k=1
pkfki

. In particular, if

pi = 0, βi = γ
2n∑

k=1
pkfki

≤ γ. According to the definition of approximate competitive

equilibrium, we know that for any k, if pk > 0, (1−ε)(1+2nγ) ≤
2n∑
i=1

xik =
2n∑
i=1

fkiβi ≤

(1 + ε)(1 + 2nγ); if pk = 0,
2n∑
i=1

xik =
2n∑
i=1

fkiβi ≤ (1 + ε)(1 + 2nγ). The parameters γ

and ε will be determined later.

In the section that follows, we claim that when γ and ε are small enough, both
n∑

i=1

βi and
2n∑
i=n

βi should be sufficient large positive numbers. First we would like to

show that there exists at least one commodity 1 ≤ k1 ≤ n and another commodity

n + 1 ≤ k2 ≤ 2n with positive prices. Otherwise, suppose, for every n + 1 ≤ k ≤ 2n,



23

pk = 0, then for every n + 1 ≤ i ≤ 2n, βi = γ+pi
2n∑

k=1
pkfki

≤ γ. By the definition of

approximate competitive equilibrium, for a commodity k1 with positive price, we

can get the following inequality,

(3.2) (1− ε)(1 + 2nγ) ≤
2n∑
i=1

fk1iβi ≤
n∑

i=1

βi + 3nγ

For every commodity n + 1 ≤ k2 ≤ 2n,

(3.3)
2n∑
i=1

fk2iβi ≥ 2
n∑

i=1

βi +
2n∑

i=n+1

βi

Moreover, for each i, βi ≥ pi

3
. Thus

n∑
i=1

βi ≥ 1
3

in the above situation. When

1−3ε
1+ε

> 9nγ, we can get

2n∑
i=1

fk2iβi ≥ 2
n∑

i=1

βi +
2n∑

i=n+1

βi(3.4)

≥ 1 + ε

1− ε
(

n∑
i=1

βi + 3nγ)(3.5)

≥ (1 + ε)(1 + 2nγ)(3.6)

This contradicts the definition of approximate equilibrium. Similarly, we can get

a contradiction when for every 1 ≤ k ≤ n, pk = 0. Therefore, when γ and ε are

small enough, there must be a commodity 1 ≤ k1 ≤ n and another commodity

n + 1 ≤ k2 ≤ 2n with positive prices. By the definition of approximate competitive

equilibrium, we can get

(3.7)
n∑

i=1

βi + 2
2n∑
i=n

βi ≤
2n∑
i=1

fk1iβi ≤ (1 + ε)(1 + 2nγ)

and

(3.8) 3
n∑

i=1

βi +
2n∑
i=n

βi ≥
2n∑
i=1

fk2iβi ≥ (1− ε)(1 + 2nγ)

Thus we can get
n∑

i=1

βi ≥ (1−3ε)(1+2nγ)
5

> 1
6

when ε < 1
18

. Symmetrically, we can get

2n∑
i=n+1

βi ≥ (1−3ε)(1+2nγ)
5

> 1
6

when ε < 1
18

. Hence, the claim is proved.
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For 1 ≤ k ≤ n, let xk = βk
n∑

i=1
βi

while for n + 1 ≤ k ≤ 2n, let yk−n = βk
2n∑

i=n+1
βi

.

We would like to show that when when γ and ε are small enough, (x, y) is a good

approximate Nash equilibrium of bimatrix game (A,B). According to the definition

of approximate competitive equilibrium, if pk > 0, Ak∗y ≥
(1−ε)(1+2nγ)−

2n∑
i=1

βi

2n∑
i=n+1

βi

, where

Ak∗ stands for the kth row of matrix A; if pk = 0, xk = βk
n∑

i=1
βi

≤ 6γ. Let

(3.9) P =

(1 + ε)(1 + 2nγ)−
2n∑
i=1

βi

2n∑
i=n+1

βi

and

(3.10) Q =

(1− 6nγ)[(1− ε)(1 + 2nγ)−
2n∑
i=1

βi]

2n∑
i=n+1

βi

Thus, we know that

max(Ay)− xT Ay ≤ P −Q

≤ (2ε + 6nγ(1− ε))(1 + 2nγ)
2n∑

i=n+1

βi

≤ (12ε + 36nγ(1− ε))(1 + 2nγ)

So, for any positive constants t, h > 0, when γ = 1
n1+t and ε = 1

nh , max(Ay)−xT Ay =

O( 1
nh ). Similarly, we can get max(BT y)−xT By = O( 1

nh ). It has been shown that, for

any h > 0, the problem of computing a 1
nh -approximate Nash equilibrium is PPAD-

Complete [15]. Therefore, computing of an ε-approximate competitive equilibrium

when ε = 1
nh is PPAD-hard. ut

Remark: Actually lemma 4.3 of [45] implies that it is PPAD-hard to compute O( 1
n2 )-

approximate Arrow-Debreu equilibrium when γ = O( 1
n3 ). Our result extends the

hardness result in [45] by allowing larger approximation error and perturbations.
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In this section we have shown that, given a competitive economy that fully respects

all the conditions of Arrow-Debreu’s existence theorem, for any positive constant

h > 0, it is PPAD-hard to compute a 1
nh -approximate competitive equilibrium. To

the best of our knowledge, this is the first complexity result about the economy that

strictly satisfies the conditions of Arrow-Debreu’s existence theorem. Moreover, since

our result allows larger approximation error(smaller h), it improves the main result

in [45].

3.2 Equilibria in Markets with Additively Separable Utility Functions

3.2.1 Motivations

In this section, we will study the computational complexity of Arrow-Debreu

equilibria in markets with additively separable utility functions. In particular, we

focus on the exchange markets, which do not have production units as do competitive

markets. Despite the progress both on algorithms for and on the complexity-theoretic

understanding of market equilibria, several fundamental questions concerning market

equilibria, including some seemingly simple ones, remain unsettled. In particular,

Jain [48] designed a polynomial time algorithm to compute Arrow-Debreu equilibria

for an exchange market with linear utility function. Additively separable piecewise

linear concave (PLC) utility functions are probably the simplest function besides the

linear utility function. Thus, Vijay Vazirani [65] wrote:

“Concave utility functions, even if they are additively separable over the

goods, are not easy to deal with algorithmically. In fact, obtaining a poly-

nomial time algorithm for such functions is a premier open question today.”

A function u(x1, ..., xn) is an additively separable and concave function if there exist

n real-valued concave functions f1, ..., fn such that u(x1, ..., xn) =
∑n

j=1 fj(xj). Not-



26

ing that every concave function can be approximated by a PLC function, Vazirani

[65] further asked whether one can find an equilibrium in a market with additively

separable PLC utility functions in polynomial time or if the problem is PPAD-hard.

3.2.2 The Main Theorem

Given an additively separable PLC utility function u(x1, ..., xn) =
∑n

j=1 fj(xj),

we call it k-linear if for every j, the PLC function fj(.) has at most k linear segments.

Together with Xi Chen, Decheng Dai, and Shanghua Teng [13], we show that:

Theorem 3.5 (Main). It is PPAD-Complete to compute an n−13 approximate

Arrow-Debreu equilibrium in an exchange market with 2-linear additively separable

PLC utility functions, where each trader only owns and wants O(1) goods.

In order to prove the above theorem, we introduce the definition of well-supported

Nash equilibria.

Definition 3.6 (Well-Supported Nash Equilibria). For ε > 0, (x,y) is an ε-

well-supported Nash equilibrium of a bimatrix game (A,B), if x,y ∈ ∆n and for all

i, j ∈ [1...n],

(3.11) Aiy
T + ε < Ajy

T =⇒ xi = 0, and xBi + ε < xBj =⇒ yi = 0.

The basic idea to prove the above theorem is to reduce the well-supported Nash

equilibria of a bimatrix game to the equilibria of a market with additively separable

PLC utility functions. It is well known that it is PPAD-Complete to compute an

approximate well-supported Nash equilibrium [15]. Note that, the existence theorem

in [7] is rather limited, since it requires that the initial endowment of every good of

every trader is strictly positive. In order to make our result more general and the

reduction cleaner, we will prove a general theorem for the existence of Arrow-Debreu

equilibria for additively separable PLC markets.
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Figure 3.1: The reduction idea

To this end, we introduce the definition of economy graphs.

Definition 3.7 (Economy Graph). Given an exchange market, we define a di-

rected graph G = (T , E) as follows. The vertex set of G is exactly T , the set of

traders in the market. For every two traders Ti 6= Tj ∈ T , we have an edge from Ti to

Tj if Tj possesses a good for which Ti has a demand. G is called the economy graph

of the market. We say the market is strongly connected if G is strongly connected.1

Theorem 3.8. Let M be a market with additively separable PLC utilities. If it

is strongly connected, then a market equilibrium p exists. Moreover, every quasi-

equilibrium of M is indeed an Arrow-Debreu equilibrium.2

Theorem 3.8 is actually a corollary of Theorem 2 in [59]. A quasi-equilibrium is

an Arrow-Debreu equilibrium except that it does not require any trader with zero

income to maximize his utility.

Now we can describe the idea of our reduction from the well-supported equilibria

of a bimatrix game to the equilibria of markets with additively separable PLC utility

functions. The reduction consists of two major components as shown in Figure

3.1. One component is the price-regulating market, which enforces the equilibrium

price of each good to remain between 1 and 2. The other component is deliberately

constructed to encode the well-supported Nash equilibria. Interested audience can

1The direction of the edge in the economy graph here is different from the definitions of economy graphs in [19, 59].
2In [19], it has a similar theorem about the existence of equilibria for markets with CES utility functions. However,

it does not cover linear or piecewise linear utility functions.
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refer to [13] for the details.

First, we introduce a simple linear market {M2n+2} with 2n + 2 goods, which we

refer to as the price-regulating market. Among the 2n+2 goods, there are two blocks

of n goods corresponding to the row player and the column player respectively, while

the other two goods are for cleanup purposes. There are O(n2) traders in {M2n+2}.

Each trader is only interested in two goods. The marginal utility per unit of one

good is twice as much as the other. M2n+2 has the following nice price-regulating

property: If p is a normalized 3 approximate equilibrium price vector of M2n+2, then

pk ∈ [1, 2] for all k ∈ [1...2n + 2]. This price-regulating property allows us to encode

2n free variables x1, ..., xn and y1, ..., yn between 0 and 1.

As a key feature in our analysis, the price-regulation property is stable with respect

to “small perturbations” to M2n+2. That is, when new traders are added to M2n+2

(without introducing new goods), this property remains hold as long as the total

amount of goods these new traders initially have is small compared to those of the

traders inM2n+2. Using the stability of the price-regulating markets {M2n+2}, given

an n×n bimatrix game (A,B), we can construct an additively separable PLC market

by adding new traders — whose initial endowments are relatively small — to M2n+2,

the price-regulating market with 2n + 2 goods.

Remember that we have two blocks of goods in the market, which correspond

to the row player and the column player respectively. We use the prices of the 2n

goods to encode a pair of probability vectors (x,y) (after normalization): xk = pk−1

and yk = pn+k − 1, k ∈ [1...n]. There are 2n(n − 1) traders to add (besides some

cleanup traders). Each trader corresponds to a pair of pure strategies of the row (or

the column) player. We will deliberately set up the initial endowments and utility

3In this section, we say a price vector p is normalized if the smallest nonzero entry of p is equal to 1.
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functions of each trader such that the trader can encode the inequality (Ai−Aj)
Ty

(or x(Bi−Bj)). For a trader (i, j) corresponding to the row player, he has small initial

endowment of the second block of goods, the amount of each good is proportional to

max{Aik−Ajk, 0}, and a relatively large endowment of good i, which belongs to the

first block of goods. However, trader (i, j) has no initial endowment of other goods

(except the two cleanup goods).

The additively separable utility functions of trader (i, j) with respect to the second

block of goods as well as good i are PLC with 2 segments. The amount of each good,

which corresponds to the turning point of each 2-segment PLC utility function of

the second block of goods, is proportional to max{Ajk − Aik, 0}, and that value

corresponding to good i is trader (i, j)’s initial endowment of good i. Moreover, the

marginal utility per unit of each good, which corresponds to the first segment of each

PLC utility function of the second block of goods, is three times that of good i.

Now suppose (Ai−Aj)
Ty < ε. In trading, trader (i, j) will sell his initial endow-

ments to generate revenue. Note that the equilibrium price of each good is between

1 and 2. Thus, whatever the equilibrium price is, the marginal utility per unit cost

of each good, which corresponds to the first segment of each PLC utility function of

the second block of goods, is always greater than that of good i. Therefore, trader

(i, j) will first buy the second block of goods proportionally up to max{Ajk−Aik, 0}

for each good, and can only buy good i with the revenue left. We can further show

that: the difference between trader (i, j)’s initial endowment and consumption of

good i is proportional to (Ai − Aj)
Ty divided by pi. Thus, given y, if the payoff

of strategy i of the row player is less than that of strategy j by more than ε, then

trader (i, j) does not have enough money to buy much of good i (besides his initial

endowment). Instead, the amount of good i left is bought by the traders in the
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linear market M2n+2, who have large incomes. Intuitively, this can happen only if

the price of good i is very low. Actually, we show that (Ai −Aj)
Ty < ε indicates

that pi = 1. Thus, by definition, xi = pi − 1 = 0. This encodes the condition of the

approximate well-supported Nash equilibria. Therefore, we get a market M with the

property that from every approximate market equilibrium p of M, the pair (x,y)

obtained above (after normalization) is an approximate Nash equilibrium of (A,B).

Moreover, if (A,B) is a sparse game, each trader in M initially has O(1) goods and

is only interested in O(1) goods. Thus, the main theorem is proved.

Combined with Theorem 3.8, an important corollary of the main theorem is that:

Theorem 3.9. It is PPAD-hard to compute a quasi-equilibrium of a competitive

economy.

3.3 Related Works

In the past decade, people have designed a few algorithms to compute compet-

itive equilibrium and its variants. Devanur et al. [26] gave the first algorithm for

linear utility functions in Fisher market based on convex programming. Later, Jain

[48] gave the first algorithm to compute Arrow-Debreu equilibrium for linear utility

functions also based on convex programming. Codenotti et al. [20] developed an al-

gorithm to compute approximated competitive equilibria for economies that satisfy

weak gross substitutability. They [19] further gave an algorithm for economies of

CES utility functions with elasticity no less than 1/2. Ye [84] designed an interior-

point algorithm for solving Fisher and Arrow-Debreu market equilibrium with linear

utility functions. Ye [83] also designed an algorithm to compute equilibrium for

Leontief utility functions in Fisher market. All those algorithms are polynomial

time. However, they only work for rather restricted classes of utility functions.
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On the complexity side, Papadimitriou [68] showed that the computation of ex-

change equilibrium given aggregated excess demand functions is PPAD-Complete.

However, the complexity question is unclear for the computation of competitive

equilibrium, which concerns a set of utility-maximizing individuals, but the excess

demand functions are not given explicitly. Deng et al. [25] studied the complexity,

approximability, and inapproximability of competitive equilibrium for linear utility

functions and indivisible commodities. Codenotti et al. [21] showed that the com-

putation of competitive equilibrium for a special class of pairing Leontief economy is

PPAD-hard. Recently, based on [21], Huang and Teng [45] showed that the compu-

tation of approximate equilibrium for the Leontief economy is PPAD-hard while its

smooth complexity cannot be in polynomial time unless PPAD ⊂ RP . In particular,

they showed that if the utility matrix and initial endowments matrix of the Leontief

economy are perturbed by a magnitude of σ, given an ε-approximate equilibrium of

the Leontief economy, an O(n
√

ε + n1.5
√

σ)-approximate Nash equilibrium can be

constructed in polynomial time. Thus, according to Chen, Deng, and Teng [15], it

is PPAD-hard to compute a 1
nh -approximate competitive equilibrium for any h > 2.

Note that the definition of the approximate equilibrium in [45] for Leontief economy

is weak in the sense that it does not guarantee that the demand for any commodity

with positive price is not much less than its supply.



CHAPTER IV

On the Complexity of Deciding Degeneracy in Games

4.1 Motivations

Game theory is a subject of studying and predicting the behavior of rational decision

makers. In 1950, Nash [62] showed that under mild conditions, a noncooperative

game always has a Nash equilibrium. However, Nash’s proof of the existence of

Nash equilibrium is nonconstructive. Researchers have become devoted to studying

the computation of Nash equilibria since then. On the complexity side, it has been

shown that it is PPAD-Complete to compute a Nash equilibrium, even for bimatrix

games [14, 23]. On the algorithmic side, a nice property of bimatrix games is that

as long as the payoff matrices are rational, the equilibria must be rational, too.

Lemke and Howson [55] designed a combinatorial algorithm, which can not only

compute equilibria of a bimatrix game, but also shows the existence of equilibria

constructively.

Nevertheless, just like the Simplex algorithm for linear programming, Lemke and

Howson’s algorithm can fail on degenerate games. In order to deal with degeneracy

in the computation of Nash equilibrium, certain perturbation techniques, such as

lexicographical perturbation, should be deployed [65]. Besides that, a nondegenerate

bimatrix game has a nice property in that the number of its equilibria is odd [65].

32
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However, for a degenerate bimatrix game, its equilibria are the union of the connected

union of maximal Nash subsets [65], which contains an infinite number of Nash

equilibria points. In all, there are significant differences between degenerate and

nondegenerate games.

In this chapter, we will investigate the computational complexity of deciding de-

generacy in bimatrix games. We will show that it is NP-Complete to decide whether

a bimatrix game is degenerate while it is Co-NP-Complete to decide whether it is

nondegenerate. However, we show that, for a win-lose bimatrix game, it is in P to

decide whether it is degenerate.

4.2 Degeneracy in Linear Programming and in Bimatrix Games

A closely related concept to Nash equilibrium is the best response condition.

Definition 4.1. [65] (Best Response condition) Let x and y be the strategies of the

row player and column player, respectively. x is the best response to y if

xi > 0 ⇒ (Ay)i = u = max{(Ay)k|k ∈ [1..m]}

Now we are ready to define degeneracy in games.

Definition 4.2. [65] (Nondegenerate) A bimatrix game is nondenegerate if there is

no mixed strategy of support size k has more than k pure best responses.

Otherwise, if the above condition is violated, the game is called degenerate.

In a linear system, 



Ax = b

x ≥ 0

where A is a matrix of dimension m×n and rank m. This system is said to be degen-

erate, if there exists a basis B such that at least one component in the vector B−1b
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is zero. It is well known that if the linear system is degenerate, b can be expressed as

a linear combination of at most m− 1 columns of A. It has been shown [61] that de-

ciding whether a linear programming is degenerate is NP-Complete. However, their

proof cannot work for the degenerate problem of bimatrix games. This is because

the matrix they constructed [61] is a 0-1 matrix, which is simply degenerate if used

as a payoff matrix.

In the next section, we study the relationship between degeneracy in linear pro-

gramming and degeneracy in games. Let A =




1 2

0 1


 and b = (2, 1)T . It is easy

to see that this linear system is degenerate. However, if A is the payoff matrix of the

row (the column) player, the game is nondegenerate. Conversely, let A =




1 1

0 1




and b = (2, 1)T . If A is the payoff matrix in a bimatrix game, the game is degener-

ate. However, the linear system is nondegenerate. Therefore, degeneracy in linear

programming does not imply degeneracy in games, and vice versa.

4.3 The Main Theorem

Theorem 4.3. It is NP-Complete to decide whether a bimatrix game is degenerate.

In order to prove this theorem, we first show our construction in below.

The construction: We will reduce the 3-SAT to our problem. Let f be a 3-SAT

formula f = c1 ∧ c2 ∧ ... ∧ cn, where n is the number of clauses and each clause

ci = li1 ∨ li2 ∨ li3 contains three literals. Each literal liw is either a positive variable

xh or its negation xh. Let ck
i denote the assignment of the true values of the three

literals in ci as the binary representation of the integer k, where k ∈ [1..7]. For

example, the binary representation of 5 is 101. Thus, c5
i represents the assignment

such that li1 = 1, li2 = 0 and li3 = 1.
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The strategy space of the column player is C = {ck
i |i ∈ [1..n] and k ∈ [1..7]}. And

the strategy space R of the row player is C⋃{f}⋃{cp
i c

q
j | cp

i and cq
j are conflicting},

where f is a special strategy. Two clause assignments cp
i and cq

j are conflicting iff

there are two literals liw in ci and ljs in cj corresponding to the same variable xh but

cp
i and cq

j make conflicting assignments to xh. For example, let c1 = x1 ∨ x2 ∨ x3 and

c2 = x2∨x4∨x5. c5
1 will make x2 = 0, which assigns x2 = 1 and c3

2 will assign x2 = 0.

Thus, c5
1 and c3

2 are conflicting clause assignments. Note that the order of cp
i and cq

j

does not matter, i.e., the pure strategy cp
i c

q
j implicitly equals the pure strategy cq

jc
p
i .

We call cp
i c

q
j conflicting-clause-assignments strategy.

Given the strategy spaces of the row and column players, the payoff function r

for the row player is:

(1). r(cp
i , c

k
h) = 1 if i = h and p = k; otherwise r(cp

i , c
k
h) = 0.

(2). ∀h ∈ [1..n] and k ∈ [1..7], r(f, ck
h) = 1/n.

(3). Suppose we have D conflicting-clause-assignments strategy cp
i c

q
j and let O be

an arbitrary ordering of the elements in {cp
i c

q
j | cp

i and cq
j are conflicting} from

0 to D − 1. Thus, for the dth conflicting-clause-assignments strategy cp
i c

q
j ,

r(cp
i c

q
j , c

k
h) = 1

2
+ 4dε if i = h and p = k or j = h and q = k; otherwise

r(cp
i c

q
j , c

k
h) = 0. Here ε is a small positive number whose value will be fixed

later. Note that D ∈ O(n2).

The following matrix illustrates the payoff function of the row player.
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c11 c21 ... c71 c12 c22 ... c72 ......... c1n c2n ... c7n
c11 1
c21 1
. .
.

c71 1
c12 1
. .
. .

c72 1
. .
.

c1n 1
. .
. .

c7n 1
f 1

n
1
n

1
n

1
n

1
n

1
n

1
n

1
n

1
n

1
n

1
n

1
n

1
n

c11c21
1
2

+ ε 1
2

+ ε
.
.

cp
i cq

j
1
2

+ 4dε 1
2

+ 4dε

.

.
c6nc7n

1
2

+ 4D−1ε 1
2

+ 4D−1ε

Proof. Given the mixed strategy y of the column player with support k, we can

multiply y with the payoff matrix of the row player. Then, if the number of pure

strategy best responses of the row player is more than k, the game is degenerate.

Thus, deciding degeneracy is in NP. We will reduce the 3-SAT problem to the problem

of deciding degeneracy in bimatrix games as shown in above. It is obvious that the

size of the payoff matrix is in a polynomial of n, and each entry of the matrix can

be represented by a polynomial number of bits. Therefore, the construction can be

done in polynomial time.

If there is a satisfying assignment for f , the assignment of each clause ck
i must be

in the form of ci, where k ∈ [1..7]. We call such a corresponding strategy ck
i active

pure strategy. We will set the mixed strategy y of the column player to be 1
n

on those

active pure strategies and 0 anywhere else. Thus, the support of y is n. Given y, for

each conflicting-clause-assignments strategy cp
i c

q
j , at most one of cp

i and cq
j could be

active. So, when ε is small enough, cp
i c

q
j cannot be a best response. Hence, given the

mixed strategy y, for the row player, the set of pure best responses to y are all the

active pure strategies and f . In other words, the number of best responses is n + 1.



37

Therefore, if the formula f is satisfiable, the game is degenerate.

In the next section, we prove the reverse direction, i.e., if the game is degenerate,

the formula f is satisfiable. Suppose the game is degenerate, which can be shown

with the mixed strategy y of the column player. (Note that y cannot be a pure

strategy, since each column of the payoff matrix only has one element equal to 1.)

Again, let u be the maximum payoff of the row player given y and S be the support

set of y. Assume that the support set S can be represented as the union of two

subsets M = {ck
i |y[ck

i ] = u} and N = {ck
i |y[ck

i ] < u}. We will show that the set N is

empty by contradiction in the next section. Thus, we assume N is not empty now.

We will count the number of pure best responses of the row player with respect to

y. First, for strategy ck
i ∈M, its corresponding pure strategy ck

i of the row player is

one of the best responses since the maximum payoff of the row player is u. Second,

the payoff of the strategy f is always 1
n

whatever y is. For any conflicting-clause-

assignments strategy cp
i c

q
j , if both cp

i ∈ M and cq
j ∈ M, its payoff will exceed u,

which contradicts the assumption that u is the maximum payoff. Thus, at least one

of cp
i and cq

j must belong to N . Now we will show that for any pure strategy cp
i c

q
j , if

it is a best response strategy respect to y, then at least one of cp
i and cq

j will be in N

and that strategy cannot appear in any best-response conflicting-clause-assignments

strategy cp′
i′ c

q′
j′ , which has a smaller index than cp

i c
q
j in O. We will prove this by cases.

(1). D = 1. It naturally follows.

(2). D = 2. Assume the two best response strategies are cp1

i1
cq1

j1
and cp2

i2
cq2

j2
. If both

cp2

i2
and cq2

j2
either belong to M or appear in cp1

i1
cq1

j1
, the payoff value of cp2

i2
cq2

j2
is

greater than that of cp1

i1
cq1

j1
. Contradiction occurs. Thus, either cp2

i2
or cq2

j2
belongs

to N and does not appear in cp1

i1
cq1

j1
.
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(3). D ≥ 3. Assume that cp1

i1
, cq2

j2
∈ N and the corresponding conflicting-clause-

assignments strategies cp1

i1
cq1

j1
and cp2

i2
cq2

j2
of the row player are the best responses.

Moreover, let cp1

i1
cq2

j2
be another conflicting-clause-assignments strategy (if they

are not conflicting, cp1

i1
cq2

j2
will not belong to the strategy space of the row player;

so, it cannot be a best response). Assume the indices of cp1

i1
cq1

j1
, cp2

i2
cq2

j2
, and cp1

i1
cq2

j2

in O are d1, d2, and d respectively, where d1 < d2 < d. Then, we claim that the

payoff to cp1

i1
cq2

j2
will be more than u when ε is small enough. Note that, by the

assumption of best-response condition,

(
1

2
+ 4d1ε)(y[cp1

i1
] + y[cq1

j1
]) = u,

we know that y[cq1

j1
] ≤ u, thus

y[cp1

i1
] ≥ 1− 2 · 4d1ε

1 + 2 · 4d1ε
u.

Similarly, we can get y[cq2

j2
] ≥ 1−2·4d2ε

1+2·4d2ε
u. Set

ε =
1

4 · 42D
,

the payoff of cp1

i1
cq2

j2
would be

(
1

2
+ 4dε)(

1− 2 · 4d1ε

1 + 2 · 4d1ε
+

1− 2 · 4d2ε

1 + 2 · 4d2ε
)u > (1 + 2 · 4dε)

1− 2 · 4d2ε

1 + 2 · 4d2ε
u

≥ (1 + 8 · 4d2ε)
1− 2 · 4d2ε

1 + 2 · 4d2ε
u

=
1 + 6 · 4d2−2D−1 − 42(d2−2D)

1 + 2 · 4d2−2D−1
u

> u

This contradicts the assumption that u is the maximum payoff to the row player.

Thus, for any conflicting-clause-assignments strategy cp
i c

q
j , if it is a best response

respect to y, then at least one of cp
i and cq

j will be in N and that strategy cannot
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appear in any best-response conflicting-clause-assignments strategy cp′
i′ c

q′
j′ , which has

a smaller index than cp
i c

q
j in O. In other words, if there are l best-response conflicting-

clause-assignments strategies respect to y, then the number of corresponding active

pure strategies in N is at least l.

Now, we can count the number of pure best responses with respect to y. First of

all, we know that u ≥ 1
n
, since the payoff to the strategy f is always 1

n
. If u > 1

n
,

the number of pure best responses is at most |M| + |N | = |S|. Thus, the game is

nondegenerate. Contradiction occurs. If u = 1
n
, let n′ be the number of best-response

conflicting-clause-assignments strategies. We will show that n′ < |N |. Otherwise,

assume n′ = |N |. (n′ cannot be greater than |N | by the above argument.) Since for

each best-response conflicting-clause-assignments strategy cp
i c

q
j , either cp

i or cq
j will

be in N . W.L.O.G., we assume cp
i ∈ N . We also know that 1−2·4Dε

1+2·4Dε
1
n
≤ y[cp

i ] < 1
n
.

Thus, there must be a strategy ck
h ∈ N such that

0 < y[ck
h] ≤ 1− |M|

n
− 1− 2 · 4Dε

1 + 2 · 4Dε

|N | − 1

n

≤ |M|+ |N | − 1

n
− |M|

n
− 1− 2 · 4Dε

1 + 2 · 4Dε

|N | − 1

n

≤ |N | − 1

n

4 · 4Dε

1 + 2 · 4Dε

We know that when ε = 1
4·42D ,

|N | − 1

n

4 · 4Dε

1 + 2 · 4Dε
<

1− 2 · 4Dε

1 + 2 · 4Dε

1

n

This implies that the strategy ck
h cannot appear in any best-response conflicting-

clause-assignments strategy. Thus n′ < |N |. Moreover, f is a best response when

u = 1
n
. In all, when u = 1

n
, the number of best responses for the row player (with

respect to y) cannot exceed |N | + |M| = |S|. Thus, the game in nondegenerate.
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Since we assume that the game is degenerate, contradiction still occurs. Therefore,

N is empty. In other words, S = M.

We further claim that u = 1
n

when S = M. Otherwise, if u > 1
n
, f cannot be a

best response, nor can any conflicting-clause-assignments strategy. The game is still

nondegenerate. Contradiction occurs. Thus, u = 1
n
. Moreover, we know that for any

pure strategy cp
i and cq

i , since they are conflicting, both y[cp
i ] and y[cq

i ] cannot equal

to 1
n

simultaneously. Otherwise, the payoff to the conflicting-clause-assignments

strategy cp
i c

q
i is more than 1

n
. Similarly, two conflicting clause assignments cp

i and

cq
j cannot be in the support set S of y simultaneously. Reversely, for every clauses

ci, there must be some k ∈ [1..7] such that ck
i ∈ S by the pigeon hole principle.

Thus, each clause is satisfied. Therefore, the clause assignments (ck1
1 , ck2

2 , ..., ckn
n )

corresponding to S give a satisfying assignment to the formula f .

Finally, we have shown that the formula f is satisfiable iff the game is degenerate.

Thus, deciding degeneracy is NP-Complete. ut

A straightforward corollary of Theorem 4.3 is that:

Corollary 4.4. It is Co-NP-Complete to decide whether a game is nondegenerate.

In the following section, we want to study a special class of bimatrix games:

win-lose games. In win-lose bimatrix games, the payoff value is either 0 or 1. The

following is a necessary and sufficient condition for a win-lose bimatrix game to be

nondegenerate.

Theorem 4.5. For a win-lose bimatrix game, it is nondegenerate iff for the row

player, every column of its payoff matrix A has exactly one nonzero element while

for the column player, every row of its payoff matrix B has one nonzero element,

too.
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Proof. We prove our claim only for the row player; the proof for the column player

follows symmetrically. Suppose a win-lose game is nondegenerate, each column of

matrix A cannot have more than one nonzero item and cannot have all zeros. Oth-

erwise, if the column player plays a pure strategy of that column, the row player has

more than one best responses. Thus, the game is degenerate. Contradiction occurs.

On the other hand, if each column of matrix A has exactly one nonzero element, for

each strategy y of the column player, the number of nonzero elements in the vector

Ay cannot be more than the size of support in y. Thus, the game is nondegenerate.

ut

Therefore, it is in P to decide whether a win-lose bimatrix game is degenerate.



CHAPTER V

Path Auctions with Multiple Edge Ownership

5.1 Motivations

In the path auction game, there is a network G = (V, E) in which each edge e ∈ E is

owned by an agent. The true cost of e is private information and known only to the

owner. Given two vertices, source s and destination t, the auctioneer’s task is to buy

a path from s to t. The path auction game can be used to model problems in supply

chain management, transportation management, QoS routing, and other domains.

Recently, path auctions have been extensively studied [64, 50, 6, 46, 34]; most of

the literature has focused on the Vickrey-Clarke-Groves (VCG) class of mechanisms

[80, 18, 38]. In the most natural VCG mechanism, the auctioneer pays each agent

on the winning path an amount equal to the highest bid with which the agent would

still be on the winning path. This mechanism is attractive because it is efficient and

strategyproof—the dominant strategy for each agent is to report his true cost.

In the traditional path auction model, each agent only owns one edge in the

graph and there is no cooperation between agents. Here, we study a variant of the

path auction game in which each agent may own multiple edges. In this extended

model, if ownership information is publicly available (i.e., the auctioneer knows which

agent owns which edge), then the VCG mechanism design approach still yields a

42
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strategyproof mechanism.

In practice, however, ownership information is often private – it could be costly

for the auctioneer to find out the true ownership information, or an agent may have

incentive to hide the true ownership information in order to get a better payoff. For

example, in Figure 5.1, there are two agents: a and b. Agent a owns edges (s, i)

and (i, t) with true cost 1 each; agent b owns edges (s, j) and (j, t) with true cost 2

each. If the true ownership information was known to the auctioneer, then the most

natural VCG mechanism would reduce to a second price auction: it would choose

path (s, i), (i, t) as the winning path and pay agent a an amount equal to 4. However,

if agent a hides his ownership information, the mechanism will treat edges (s, i) and

(i, t) as if they were owned by different agents. When the agents bid their true costs,

the winning path stays the same, but the payment to agent a would be 2 × 3 = 6.

Moreover, when ownership information is not available to the auctioneer, agent a

can increase his utility by bidding lower than his true cost. For example, he could

bid 0.5 for both edges (s, i) and (i, t). This does not change the winning path, but

the payment to agent a would increase to 2 × 3.5 = 7. Hence, the straightforward

VCG mechanism, which assumes that each edge is owned by a distinct agent, is not

strategyproof in this extended model.

In this chapter, we model situations in which each agent can own multiple edges

at the same time, but ownership information is private. Thus, the traditional path

auction model is a special case of our extended model. The possibility of one agent

having multiple identities is inherent in online communities. In an online auction

system, each seller/buyer may have multiple accounts in the system. Now, if a buyer

wants some combination of goods that can be expressed in path auction form, it will

be hard for him to find the true identity of each seller account, so he will be faced
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Figure 5.1: VCG mechanism is not strategyproof for this game

with the unknown-ownership scenario.

5.2 Definitions and Problem Statement

We now introduce formal definitions of the path auction game based on set systems

defined in [50]. We begin by defining simple path auctions, in which ownership of

each edge is known to be distinct. We then define an extended path auction model

that incorporates multiple edge ownership.

5.2.1 Simple path auctions

Given a graph G = (V, E), let each edge e ∈ E be owned by a distinct agent and

have a cost ce, the true cost incurred by the owner if the edge is selected. This value

is private (known only to agent who owns e). We define the feasible set F = {P | P

is a path from the source s to the destination t}. Note that a path is represented

by the set of its edges. The task of the auctioneer is to buy a path from s to t by

auction. It consists of the following two steps:

(1). Each agent submits a sealed bid be to the auctioneer. The bidding vector b is

(be1 , be2 , ..., bem), where bei
is the bidding price for the edge ei ∈ E. Moreover,

let B denote the bidding space, which is the set of all possible bidding vectors.

(2). Given the bidding vector b, the auctioneer selects a path P from the feasible set

F as the winning path, and computes a payment pe for each edge e ∈ P . An

agent wins if he owns an edge e on the winning path P j; otherwise he loses.
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In order to implement the auction, we need to design a mechanism (f, p1, p2, ..., pm)

where f : B → F selects one element in the feasible set as the winning path and

pi : B → R computes the payment to agent i. Moreover, we assume that:

(1). (G,F ) is common knowledge to the auctioneer and all the agents.

(2). The game is monopoly free, which means no edge is in all the feasible sets, i.e.,

⋂
P j∈F P j = ∅.

(3). The agents are rational and have quasilinear utilities. The utility is defined to

be the payment minus the incurred true cost, i.e., ue = pe − ce if e is on the

winning path; otherwise, ue = pe. The agents want to maximize their utilities.

5.2.2 Extended path auctions

We extend the simple path auctions model to allow for the possibility that each

agent owns multiple edges. The edge set E can be partitioned as E =
⋃

i Ei, where

Ei is the set of edges owned by agent i. We also assume that an agent i that owns

ki edges, i.e., |Ei| = ki, can have up to ki identities IDi = {IDi1, IDi2..., IDiki
}

to use in an auction (one for each edge). We assume that Ei and IDi are private

information, which is only known to agent i. Moreover, for two different agents

i and j, IDi

⋂
IDj = ∅, meaning that an agent cannot claim an identity that

belongs to another agent for one of his own edges. In the extended model, a game

is monopoly free if, for any agent i, there is at least one path between s and t in

graph (V, E \ Ei). Furthermore, given the winning path P , the utility for agent i is

ui =
∑

ei∈Ei

pei
− ∑

ei∈P

cei
. According to different formats of bidding languages, we can

define two formats of extended path auctions.

• Format I: in this type of auction, each agent is only asked to submit the bidding

price for each edge he owns, while keeping the identity information private.
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• Format II: in this type of auction, the agent is asked to submit identity infor-

mation (possibly false) about the set of edges he owns as well as the bidding

price for each edge he claims to own.

Next, we will introduce some basic game theory definitions in the extended path

auction model. Since an agent can own multiple edges in the extended model, the

agent needs to submit a bidding price for each edge that belongs to him. Thus,

let bi be the bidding vector of agent i while ci is the true cost vector of agent i.

Furthermore, let b−i denote the bidding vector of all agents except agent i.

Definition 5.1. A strategy profile b is an ε-Nash equilibrium if for any agent i

and any bidding vector b
′
i of agent i, given the bidding vector b−i of other agents,

ui(bi, b−i) ≥ ui(b
′
i, b−i)− ε.

Definition 5.2. A bidding strategy bi of agent i is a dominant strategy, if for any

bidding vector b−i of other agents and any bidding vector b
′
i of agent i, ui(bi, b−i) ≥

ui(b
′
i, b−i).

In auctions of format I, we introduce the concept of strategyproofness.

Definition 5.3. A format I auction mechanism is strategyproof if it is a dominant

strategy for each agent i to bid his true value, i.e., bi = ci.

The VCG mechanism is strategyproof in the simple path auction, that is, the

dominant strategy of each agent is to bid his true cost in VCG mechanism. Besides

strategyproofness, individual rationality, which requires that no agent should be

paid less than the cost he incurs, is another important concept studied in mechanism

design.

Definition 5.4. A mechanism is individually rational iff for any agent i, the pay-

ment to agent i is at least his bidding price if he wins ( so every agent should have
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nonnegative utility in the mechanism if they bid truthfully).

In auctions of format II, we introduce the solution concept of false-name-proofness.

Definition 5.5. A format II auction mechanism is false-name-proof if for any agent,

it is a dominant strategy to report the true identity information of each edge as well

as the true cost of each edge he owns.

In both formats of extended path auctions, a mechanism will choose a winning

path from feasible paths and make payments to the agents. The definition of Pareto

efficiency is:

Definition 5.6. A winning path selection rule is Pareto efficient if the mechanism

chooses P i as the winning path such that ∀k,
∑

e∈P i

ce ≤
∑

e∈P k

ce.

In economic literature, Pareto efficiency is defined as an allocation in which there

is no agent can be better off without making another agent worse off. The definition

of Pareto efficiency in this chapter follows from the definition in [85], which is different

from the standard definition. However, in the quasilinear utility setting we assume

that the two definitions are equivalent.

5.3 The Nonexistence of Individually Rational Strategyproof Mecha-
nisms

In the extended path auction model, one natural question is whether it is possible

to design an auction mechanism that asks agents to report only edge costs (format

I), such that it is in every agent’s best interest to bid the true cost for each edge he

owns. In this section, we show that no reasonable mechanism can meet this require-

ment. Note that the strategyproofness condition defined in this chapter is essentially

equivalent to the bribe-proof condition in [72]. However, since path auction games do
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not satisfy the monotonically closed condition, the results in [72] cannot be applied

here.

We begin with a characterization of strategyproof auction mechanisms that is well

known from the literature on auctions. We state the theorem in the following, as we

will rely on it in our proofs.

Theorem 5.7. [50, 5, 53] The set of individually rational strategyproof auction mech-

anisms, in which all the losing agents are paid 0, can be characterized as follows:

(1). A mechanism is strategyproof only if the selection rule is monotone: No losing

agent can become a winner by raising his bid, given fixed bids by all other agents.

(2). Given a monotone selection rule, there is a unique strategyproof mechanism with

this selection rule. This mechanism pays each agent his threshold bid, i.e., the

supremum of all values he could have bid and won.

Actually, we can construct a trivial strategyproof mechanism, which always selects

a fixed path as the winning path and pays a fixed amount of money to the edges on

the path. We call such a mechanism the dictator mechanism. It is not hard to verify

that the dictator mechanism is strategyproof. However, it does not satisfy individual

rationality.

Our impossibility proof builds on the characterization of strategyproof mecha-

nisms. We begin with the following lemma, which shows that for any individually

rational strategyproof mechanism, any bid vector can be perturbed slightly to ensure

that all winners have strictly positive net utilities.

Lemma 5.8. Consider individually rational strategyproof mechanisms for the ex-

tended path auction model in which edges not on the winning path are always paid

0. For any such mechanism (f, pe1 , ..., pem), any ε > 0, and any strictly positive cost
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vector b1 = (b1
e1

, ..., b1
em

), there exists another cost vector b
′
= (b

′
e1

, ..., b
′
em

) such that:

(1) When the agents have true costs given by b
′
and bid truthfully, every edge on the

winning path has strictly positive utility; (2) for all j, |b1
ej
− b

′
ej
| ≤ ε.

Proof. Suppose that b1 is a given cost vector, and that when the agents bid according

to b1, the winning path is P 1, i.e., f(b1) = P 1. By assumption, the edges not on the

winning path have utility 0 since they are paid 0 and have 0 incurred cost. If every

edge on the winning path is paid strictly more than its bid, we are done. Otherwise,

some of the edges on the winning path have utility exactly 0; in this case, we will

modify the cost (and bid) vector according to the following procedure.

In the first modification step, for an edge e1 ∈ P 1, we decrease the costs of e1

from b1
e1

to b1
e1
− ε, and keep the cost of all other edges unchanged. Let T = {e1}.

Thus we get a new true cost vector b2; let P 2 = f(b2). According to Theorem 5.7, e1

must be on the new winning path P 2. Moreover, we claim that the payment to the

edge e1 should not change, that is, pe1(b
1) = pe1(b

2). Otherwise, if pe1(b
1) > pe1(b

2),

an edge with true cost b1
e1
− ε could improve its utility by increasing its bidding price

to b1
e1

. If pe1(b
1) < pe1(b

2), an edge with true cost b1
e1

could improve its utility by

decreasing its bidding price to b1
e1
− ε. Both cases contradict the strategyproofness of

the mechanism. Since pe1(b
1) = pe1(b

2), when the true cost of the edge e1 decreases

from b1
e1

to b1
e1
− ε, its utility will increase by ε; thus, e1 will have strictly positive

utility under cost vector b2.

In the kth step, where k ≥ 2, we choose an edge ek ∈ P k \T . We decrease the cost

of ek from bk
ek

to bk
ek
− ε

2k−1 and keep the bidding prices of all other edges unchanged.

Hence, we get a new bidding vector bk+1 and f(bk+1) = P k+1. Let T = T ⋃{ek}.

Similar to the argument above, the edge ek must be on the new winning path P k+1,

and its utility must have increased by ε
2k−1 because the payment to it does not change.
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Moreover, we claim that any edge ej ∈ T is still on the new winning path P k+1 and

its utility cannot decrease by more than ε
2k−1 , i.e., pej

(bk+1) − pej
(bk) ≥ − ε

2k−1 .

Otherwise, suppose pej
(bk+1) − pej

(bk) < − ε
2k−1 . It can happen that both edges ej

and ek are owned by the same agent i, and the true cost of the edge ek is bk
ek
− ε

2k−1 .

Thus, agent i can increase his utility by increasing the bidding price of the edge ek

to bk
ek

. This contradicts strategyproofness. Furthermore, since the utility of the edge

ej ∈ T cannot decrease by more than ε
2k−1 at the kth step and ε

2j−1 >
N∑

i=j+1

ε
2i−1 for

any finite number N > j, the edge ej always has positive utility. Therefore, given

the assumption that the edges not on the winning path are always paid 0, the edge

ej is always on the new winning path P k for k ≥ j. So, all the edges in T are on the

winning path and have positive utilities.

Since the number of edges is finite, the above procedure must stop. When the

process is terminated, suppose the winning path P = T and the final cost vector is

b
′
. According to the argument above, every winning agent must have positive utility

when the agents have true costs b
′
and bid truthfully. ut

We now prove the main result. The intuition behind this result is that for strate-

gyproofness to hold in the extended model, the payments made to the set of winning

edges must increase if all costs increase; however, this implies that agents can profit

by inflating their bids.

Theorem 5.9. There is no individually rational strategyproof format I mechanism

in which all the edges not on the winning path are always paid 0.

Proof. Suppose there is a strategyproof mechanism. By Lemma 1, consider a bidding

vector b such that losing agents have zero utilities while winning agents have positive

utilities. For an edge ej that is not on the winning path P , increasing bej
to b

′
ej
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cannot change the winning path. We prove this by contradiction.

Suppose the winning path changes from P to P
′
, then there exists an edge e ∈ P

but e /∈ P
′
. According to Theorem 5.7, ej cannot be on P

′
. Thus its utility is still

0. Now, suppose an agent i owns both ej and e. If the true cost of ej is b
′
ej

, agent

i can increase his utility by understating ej’s true cost as bej
, since e has positive

utility when it is on winning path P . This contradicts strategyproofness. Moreover,

increasing bej
does not change the payment to any edge. For any edge e /∈ P , the

payment to it is always 0. Suppose increasing bej
to b

′
ej

could increase the payment

to the edge e ∈ P from pe to p
′
e, i.e., pe < p

′
e. It could happen that an agent i owns

both ej and e, and the true cost of the edge ej is bej
. Thus, agent i can increase

his utility by overstating ej’s cost as b
′
ej

. This contradicts strategyproofness too.

Similarly, we can show that increasing bej
to b

′
ej

cannot decrease the payment to an

edge e ∈ P . Therefore, for an edge ej that is not on the winning path, increasing its

bid cannot change either the winning path or the payment to any agent. Similarly,

we can prove that for an edge ej that is on the winning path, decreasing bej
cannot

change either the winning path or the payment to any edge.

Now we can construct a suitable pair of bid vectors that result in the same path

being selected. According to Lemma 5.8, for any individually rational strategyproof

mechanism (f, pe1 , ..., pem) and any strictly positive bidding vector b, we can construct

a sequence of bidding vectors b(r) = (r × be1 − ε(e1, r), ..., r × bem − ε(em, r)) such

that the winning agents always have positive utilities, where r ∈ N and ∀j, ε(ej, r)

is a small positive number. Let B = {b(r)|r ∈ N} denote the set of all such bidding

vectors. For each b(r) ∈ B, f(b(r)) will select a winning path. Since the size of B is

infinite, but there are only a finite number of possible winning paths, there must be

an infinite subsequence B′ = {b(r1), b(r2)......} such that ∀b(ri) ∈ B′ , f(b(ri)) = P .
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According to the assumption of individual rationality, and given that the payment

to each edge is finite, we can find two bidding vectors b(p), b(q) ∈ B′ such that for

any edge ej on the winning path P , bej
(p) ≤ pej

(b(p)) < bej
(q) ≤ pej

(b(q)).

Given bidding vectors b(p) and b(q), we can construct a new bidding vector b∗

such that b∗ej
= min{bej

(p), bej
(q)} if ej is on the winning path P while b∗ej

=

max{bej
(p), bej

(q)} if ej is not on the wining path. According to the construction and

the above arguments, we can get ∀ej, pej
(b(p)) = pej

(b∗) = pej
(b(q)). This contradicts

the fact that for any edge ej on the winning path P , pej
(b(p)) < bej

(q) ≤ pej
(b(q)).

Therefore, given the condition that the edges not on the winning path always get

0 payment, there is no strategyproof mechanism that satisfies individual rationality.

ut

Remark: In the proofs of Lemma 5.8 and Theorem 5.9, the contradictions occur

even if each agent owns only two edges. Therefore, in the extended path auction

game, there is no individually rational strategyproof mechanism in which the edges

not on the winning path are paid 0, even if each agent can only have two edges. We

believe that if we remove the assumption that the edges not on the winning path

always get 0 payment, Theorem 5.9 still holds. It would be interesting to find a

simple proof for such an extension of Theorem 5.9.

Given Theorem 5.9, the next natural question to ask is: if the auctioneer asks

the agents to submit ownership information as well as the bidding price information

(format II), is it possible to get a false-name-proof [85] mechanism? In [85], Yokoo

et al. showed that:

Proposition 5.10. [85] In combinatorial auctions, there is no false-name-proof auc-

tion protocol that satisfies Pareto efficiency.
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Figure 5.2: No false-name-proof mechanism that satisfies Pareto efficiency

Proposition 5.10 is shown by constructing a generic combinatorial auction exam-

ple, which does not have a false-name-proof auction protocol that satisfies Pareto

efficiency. That example has two items to sell and three bidders, where bidder 1 is

interested in packages {1},{2} and the whole package {1,2}, bidder 2 is only inter-

ested in the whole package {1,2} and bidder 3 is only interested in {2}. In particular,

bidder 1 has two identities to use. Furthermore, the bidders are given an option to

quit this game by bidding 0.

We now observe that this counterexample can be viewed as an instance of a path

auction (which is a special class of combinatorial auctions). Each single item in the

combinatorial auction corresponds to an edge in the path auction while the whole

package {1,2} corresponds to a path between s and t. The path auction game is

shown in Figure 5.2. The true identity of the agent that each edge belongs to is

represented as an integer in the parentheses. Upon the transformation, the proof of

Proposition 5.10 still works for the path auction setting. Thus, the following result

is immediate.

Corollary 5.11. In the extended path auction model, there is no false-name-proof

mechanism that satisfies Pareto efficiency.

Proof. In order to prove this corollary, we first transform the generic combinatorial

auction example of Yokoo et al. [85] to a path auction case as described above. Note

that in the combinatorial auction example, the feasible set with the highest bidding

price will be the winner. However, path auctions, as a type of procurement auction,
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will choose the feasible set with the lowest bidding price as the winning path. To

accommodate this difference, we change the directions of all the inequalities in the

proof of Proposition 5.10 in [85]. Moreover, if a bidding price is perturbed by +ε in

[85], it is perturbed by −ε in the path auction case instead. Thus, the modified proof

of Proposition 5.10 in [85] works exactly for the path auction case and the corollary

is proved. ut

5.4 Existence of a Pareto Efficient Pure Strategy ε-Nash Equilibrium

Since strategyproofness is not feasible in the extended path auction model, we can

consider weakening the solution concept. The concept of ε-Nash equilibrium, which

has been applied to path auctions in [46], is a natural candidate. In this section, we

study the existence of ε-Nash equilibria in the extended path auction model under

the first-price auction mechanism [46], which elicits the bids from the agents, chooses

the cheapest path with respect to the bidding vector as the winning path, and pays

each winning agent exactly the bidding price.

Immorlica et al. [46] showed that there is always an ε-Nash equilibrium in the

simple path auction model. One drawback of the concept of Nash equilibria is that

an arbitrary ε-Nash equilibrium may have low social walfare. Hence, we require that

the Nash equilibria studied below satisfies Pareto efficiency. Another drawback of

the concept of ε-Nash equilibrium is that there exist equilibria in which losing agents

bid below their true costs. To eliminate such unnatural equilibria, we assume that

the bidding price of each edge is at least its true cost, that is, ∀e, be ≥ ce. With

those natural constraints, we will show that, because of the multiple edge ownership,

a Pareto efficient ε-Nash equilibrium only exists for a limited class of graphs in

extended path auctions.
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First, we show the existence of a Pareto efficient ε-Nash equilibrium in the parallel-

path graph [33], which can be defined as:

Definition 5.12. A parallel-path graph is a graph that can be represented as
⋃
k

P k,

where P k is the kth path from s to t and ∀i 6= j, P i
⋂

P j = ∅.

Let C(P k) =
∑

e∈P k

ce denote the cost of path P k with respect to true cost vector

c. Consider a sorted list of paths from low to high according to these true costs,

that is, the path with lower cost has smaller index. For any agent Ai, let L(Ai)

be the smallest path index such that path PL(Ai) does not have an edge owned by

agent Ai, but all paths with smaller path indices than L(Ai) have at least one edge

owned by agent Ai. We compute L(Ai) for each agent that has at least one edge

on P 1. Note that L(Ai) must exist under the monopoly-free assumption on the set

system. We constructively find a Pareto efficient pure strategy ε-Nash equilibrium

for parallel-path graph in the following theorem. The proof is motivated by [46].

Theorem 5.13. If the underlying network is a parallel-path graph, the first-price

path auction has a Pareto efficient pure strategy ε-Nash equilibrium.

Proof. The ε-Nash equilibrium bidding vector is constructed as follows. Initially,

suppose that each agent bid his true cost, i.e., b = c. Let Wb(P
k) =

∑
e∈P k

be denote

the cost of path P k with respect to the bidding vector b. Pick an agent Ak who has

at least one edge on P 1, and who has the highest value of L(Ak) of all agents that

have edges on P 1. In order to find an ε-Nash equilibrium bidding vector, we first

pick one edge in EAk

⋂
P 1, and increase its bidding price by Wb(P

L(Ak))−Wb(P
1)−

ε if Wb(P
L(Ak)) − Wb(P

1) > ε; otherwise, the bidding price of the edge remains

unchanged. For any path j ∈ [2, ..., L(Ak) − 1], we pick one edge in EAk

⋂
P j and

increase its bidding price until Wb′ (P
j) = Wb(P

L(Ak)), where b
′
is the new bidding
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vector. We call the final bidding vector bf . Note that the bidding price for each

edge in bf , except those belonging to agent Ak, is exactly its true cost. Since the

first-price auction mechanism always selects the path with the minimum cost, P 1 is

the winning path under bf and Ak has at least one edge on it.

We claim that bf is an ε-Nash equilibrium bidding vector. This is proved by

analyzing the strategies of all the agents in three cases:

Case I: If an agent Ai is a losing agent, he will bid the true costs for all of the

edges in EAi
. Consider the following two subcases: (i) For any path j, if the sum of

the bidding prices for the edges in EAi

⋂
P j increases, it cannot change the winning

path; therefore, the utility of agent Ai cannot be improved; (ii) If the sum of the

bidding prices for the edges in EAi

⋂
P j decreases such that P j becomes the winning

path, the utility of Ai would be negative. Thus, agent Ai cannot improve his utility

through a unilateral deviation.

Case II: For an agent Ai 6= Ak who owns edges on the winning path, according to

the definition of bf , the edges in EAi
would bid their true costs, too. Similar to the

above analysis, agent Ai cannot improve his utility by decreasing the bidding prices.

On the other hand, for any index j ∈ [1, ..., L(Ak)], suppose agent Ai increases the

sum of the bidding prices for the edges in EAi

⋂
P j. Again, let b

′
be the new bidding

vector. Note that there always exists an index r ∈ [1, ..., L(Ak)] such that EAi

⋂
P r =

∅ and Wb′ (P
r) = Wbf (PL(Ak)) remains unchanged. Thus, for any path P j, the sum

of the bidding prices for the edges in EAi

⋂
P j cannot increase by more than ε;

otherwise, P r will be the winning path and agent Ai has zero utility. Therefore, agent

Ai cannot increase his own utility by more than ε through a unilateral deviation.

Case III: For agent Ak, his utility is at least Wbf (PL(Ak))−Wc(P
1)− ε. Similar to

the analysis in case II, agent Ak cannot improve his utility more than ε by increasing
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Figure 5.3: Auction with no Pareto efficient pure-strategy ε-Nash equilibrium

the bidding prices of the edges he owns. Otherwise, PL(Ak) would be the winning

path and the utility of agent Ak would be 0. On the other hand, for any path P j

with an index j < L(Ak), if the sum of the bidding prices for the edges in EAk

⋂
P j

decreases such that the path P j is the winning path, then the utility of agent Ak

must be less than Wbf (PL(Ak))−Wc(P
1). Thus, agent Ak cannot improve his utility

by more than ε through a unilateral deviation.

It is clear that bf is Pareto efficient since the winning path P 1 has the minimum

true cost. Therefore, any parallel-path graph can have a Pareto efficient pure strategy

ε-Nash equilibrium when the agents bid according to bf . ut

Although there exists a Pareto efficient pure strategy ε-Nash equilibrium for path

auctions with parallel-path graphs, we can find a non-parallel-path graph that does

not have any Pareto efficient pure strategy ε-Nash equilibrium. We show this counter

example in Figure 5.3; for each edge label, the integer in parentheses denotes the

identity of the agent who owns that edge.

Proposition 5.14. The graph shown in Figure 5.3 cannot have any Pareto efficient

pure strategy ε-Nash equilibrium in the first-price path auction mechanism.

Proof. There are 5 agents in this game and 5 paths from s to t:

Path 1: (s, p1, p2, p3, t)

Path 2: (s, p4, p5, p6, p7, p8, p9, p10, t)
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Path 3: (s, p4, p5, p6, p12, t)

Path 4: (s, p11, p8, p9, p10, t)

Path 5: (s, p11, p8, p7, p6, p12, t)

Let b be a Pareto efficient ε-Nash equilibrium bidding vector. We assume that

the edges on P 1 have small true costs while all other edges have significantly large

true costs. By Pareto efficiency, P 1 will be the winning path. Furthermore, we claim

that the cost of each path with respect to b can differ at most by ε. We prove this by

contradiction. Suppose ∃j ∈ [2...4],Wb(P
j) > Wb(P

1) + ε. For any agent i ∈ [1...4]

in Figure 5.3, there is only one path that does not have edges owned by him. We

can assume that the path P j does not have edges owned by agent i, but for four

other paths, agent i owns edges on each of them. Note that agent i owns only one

edge on the winning path P 1. Thus, agent i can increase the bidding prices of his

edges (but still keep P 1 as the winning path) such that his utility is increased by at

least ε, which leads to a contradiction. Therefore, if b is a Pareto efficient ε-Nash

equilibrium bidding vector, then the cost of each path with respect to b can differ at

most by ε. Let

A = bp6,p7 + bp7,p8

B = bp8,p9 + bp9,p10 + bp10,t

C = bp6,p12 + bp12,t

Based on the above reasoning, we can get the following two inequalities:

|A + C −B| ≤ ε and |A + B − C| ≤ ε

Therefore, the following inequality holds:

2A ≤ 2ε
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Moreover, according to our assumption that the bidding price of each edge is at least

its true cost, that is, ∀e, ce ≤ be, the following inequality holds:

cp6,p7 + cp7,p8 ≤ ε

When ε is small enough and the true cost of each edge is large enough, contradiction

occurs. So, there is no Pareto efficient pure strategy ε-Nash equilibrium for the graph

in Figure 5.3 using the first-price path auction mechanism. ut

Remark : In the proof of Proposition 5.14, we implicitly assume that cp6,p7 = cp7,p6

as well as cp7,p8 = cp8,p7 , that is, edges (p6, p7) and (p7, p8) are undirected. However,

the proof still works for directed graphs. To see this, suppose (p6, p7, p8) is a directed

path from p6 to p8 while there is another directed path P
′

from p8 back to p6 in

Figure 5.3. Moreover, assume that the edges on the path P
′

are owned by agents

2 and 3. Then, we can get |bP ′ + C − B| ≤ ε, where bP ′ is the sum of the bidding

prices of all the edges on P
′
, and |A + B − C| ≤ ε. Thus, the final inequality of the

above proof is changed to cp6,p7 + cp7,p8 + cP ′ ≤ 2ε, where cP ′ is the true cost of the

new directed path from p8 back to p6. Contradiction still occurs.

5.5 Related works

Path auction games have been extensively studied in recent years. Nisan and

Ronen introduced the shortest-path game in their paper on algorithmic mechanism

design [64], and showed that the VCG mechanism for this problem is computationally

tractable. However, several authors have noted that the VCG mechanism may pay

much more than the true cost of the winning path. This has led to the study of the

frugality [6] of the VCG mechanism. Archer and Tardos [6] as well as Elkind et al. [34]

studied frugality in path auctions and showed that payments can be arbitrarily high.
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Karlin et al. [50] extended the path model to a more general set system model

and introduced a new frugality ratio definition. They designed a mechanism that

performs better than the VCG in path auctions. The problem of an agent owning

multiple edges was mentioned as future work in [50]. Immorlica et al. [46] studied

first-price path auctions in the traditional single-ownership setting. They showed

the existence of a strong ε-Nash equilibrium in bids, and bounded the payments in

equilibria. J. Schummer [72] studied the bribe-proof auction, in which no agent can

pay another one to lie so that both of them are better off. Schummer showed that if

the domain is rich, the only bribe-proof mechanism is a constant function. However,

path auction games do not satisfy the monotonically closed condition (“richness”

condition) in [72]. Yokoo et al. [85] introduced the concept of false-name-proof

mechanisms, in which the (weakly) dominant strategy for each agent is to report

his true values as well as true identities, and showed that in combinatorial auctions

there is no false-name-proof mechanism that satisfies Pareto efficiency. The problem

of unknown ownership [60] has also been studied in the context of job scheduling by

Moulin.

The results we report here were presented in preliminary form at the NetEcon06

Workshop [29]. Following our work, Iwasaki et al. [47] recently designed two mecha-

nisms MP and AP for path auction games. The MP mechanism is false-name-proof

(can’t self-split) when each agent owns only one edge. Moreover, a nice property of

the MP mechanism is that its frugality ratio nearly matches a lower bound of any

false-name-proof mechanism. The AP mechanism is false-name-proof when an agent

can own multiple edges. However, one drawback of the AP mechanism is that it does

not always buy a feasible solution.



CHAPTER VI

Using Spam Farms to Boost PageRank

6.1 Motivations

In the past decade, search engines such as Google, Yahoo, and MSN have played

a more and more important role in our everyday lives. Therefore, Web sites that

show up on the top of query results lists have had an ever increasing economic

advantage. This has given people incentives to manipulate the search results by

carefully designing the content or link structure of a Web page. This is called Web

spamming [41]. The emergence of Web spamming would undermine the reputation of

a trusted information resource. A study in 2002 indicated that around 6 to 8 percent

of the Web pages in a search engine index were spam [36]. This number increased to

around 15 to 18 percent from 2003 to 2004 [42, 1]. This increasing tendency made

many researchers believed that Web spamming would become a major challenge to

preserving the integrity of Web searches [43].

There are two major categories of Web spamming techniques: term spamming

and link spamming. Term spamming boosts the ranking of a target page by editing a

page’s textual content. For example, one can add thousands of irrelevant keywords as

hidden fields to the target page. A search engine will index those keywords and return

the target page as answers to queries that contain those keywords. Link spamming,

61
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on the other hand, manipulates the interconnected link structure of controlled pages,

called a link spam farm, to boost the connectivity based ranking of the target page

to be higher than it deserves [40]. PageRank [12], the well-known connectivity based

ranking algorithm used by the leading search engine Google, is the most-popular

manipulating target for a spammer 1. Compared to term spamming, link spamming

is harder to detect as it can boost the ranking of a target page without changing the

content.

6.2 Single-Target Spam Farm Model

In order to boost the ranking of some Web pages in the web graph, a spammer

often sets up groups of Web pages with a carefully devised structure. The group

of pages fully controlled by a spammer is called a spam farm while non-spam-farm

pages are called normal pages. The simplest spam farm model is the single-target

spam farm model [39], which has the following characteristics:

(1). Each spam farm has a single target page and a fixed number of boosting pages.

(2). The spammer wants to boost the target page by adding or deleting the outgoing

links of the boosting pages and the target page.

(3). It is possible for the spammer to accumulate links from Web pages, such as

public bulletins and blogs, outside the spam farm. These links and exter-

nal pages are called hijacked links and hijacked pages, respectively. The total

PageRank score that reaches the spam farm from the hijacked links is refer to

as the leakage.

1Nowadays, what Google actually uses is a much more sophisticated ranking method, in which PageRank only
takes a relatively small factor.
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6.3 Our Results

In this chapter, we first characterize the optimal spam farm by using the sensitivity

analysis of Markov chains. Under realistic assumptions, the optimal spam farm (ref.

Figure 6.1) should have the following features: 1) The boosting pages point to and

only to the target page; 2) The target page points to and only to some of the generous

pages, which are the Web pages that only point to the target page; 3) the spammer

accumulates as many hijacked links as possible.

In an optimal spam farm, the boosting pages, as well as all the hijacked links that

the spammer is able to accumulate, must point to the target page. This structure is

easy to detect. In order to disguise the spam farm, the spammer may deviate from

the optimal one. Thus, we also characterize optimal spam farms under some realistic

constraints. We show that in the optimal spam farm, if the target page must point

to some non-spam-farm pages, then the target page should point to all the generous

pages (ref. Figure 6.2); if some of the boosting pages cannot directly point to the

target page, then they should point to some of the generous pages (ref. Figure 6.3); if

the hijacked links cannot directly point to the target page, then the spammer should

accumulate as many hijacked links pointing to the boosting pages as possible (ref.

Figure 6.4).

6.4 The PageRank Algorithm

We follow [54, 12] to define PageRank. Let G = (V, E) 2 be a directed graph

with vertex set V and edge set E. We assume that there is no self-loop in G. Let

N = |V |, and for a vertex i ∈ V , denote by out(i) the out-degree of i. The transition

2We assume that there is no self-loop in the web graph. All our results can be easily extended by following the
same proof ideas in this chapter if self-loops are allowed.
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matrix of G is T = [Tij]1≤i,j≤N :

Tij =





1
out(i)

if (i, j) ∈ E

0, otherwise

Denote by e ∈ RN the all 1 row vector (1, 1, · · · , 1), and by E ∈ RN×N the all 1

matrix. Let T̄ be identical to T except that if a row in P is all 0, it should be replaced

by e/N . A page without outgoing links is called a dangling page. For some constant

c, 0 < c < 1, the transition matrix for the PageRank Markov chain is

P = cT̄ + (1− c)E/N.

The PageRank π is the stationary distribution, that is, πP = π, of the above Markov

chain P . Our definition of PageRank score is different from the definition in [39],

where the PageRank score π̄ is defined as π̄ = cπ̄T + (1−c)
N

e. However, the two

definitions yield the same relative PageRank scores [54, 39]. This relation can be

represented as π = απ̄, where α is a constant. When the constraints
∑
i

πi = 1 and

∑
i

π̄i = 1 are enforced, the two definitions will induce exactly the same PageRank

score for each page.

6.5 Sensitivity Analysis of Markov chain

Our theoretical foundation consists of one theorem addressing the mean first pas-

sage time of Markov chain [52], two theorems about the fundamental matrix of

Markov chain [52] and one theorem relating to the monotone property of Markov

chain [17] . Due to the space constraint, we only present the theorem statements.

Interested readers can refer to the standard references such as [52, 17, 2] for details.

We fix a Markov chain of N states, of which the transition matrix is P .
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Definition 6.1. The mean first passage time from i to j, denoted by mij, is the

expected number of steps entering State j starting from State i.

Theorem 6.2. [52] Let P be the transition matrix of a regular Markov chain. We

have the following facts:

(1). For any two states i and j, mij = 1 +
∑
k 6=j

pikmkj;

(2). For any state i, the stationary distribution πi = 1
mii

;

(3). For any two states i 6= j, changing the transition probabilities of j to any other

states does not change mij.

Definition 6.3. [52] The fundamental matrix Z of the transition matrix P of a

Markov chain is defined as:

Z
def
= (I − (P −B))−1.

Here B
def
= lim

k→∞
P k.

Two fundamental results about the fundamental matrix are:

Theorem 6.4. [52] The fundamental matrix of a regular Markov chain with transi-

tion matrix P always exists, and further more,

Z = I +
∞∑

k=1

(P −B)k.

Theorem 6.5. [17] Let P and P̃ be the transition matrices of two Markov chains

and P̃ = P +∆. Suppose π̃ and π are the stationary distributions of P̃ and P , while

Z is the fundamental matrix of P . We have the following facts:

(1). π̃=π̃∆Z+π;

(2). Z is diagonally dominant over columns, that is, zjj ≥ zij for all i and j. Fur-

thermore, for all i and j, j 6= i, zjj − zij = mijπj.
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Chien et al. [17] proves the following useful monotone property of Markov chain.

Theorem 6.6. [17] Let P be the transition matrix of a finite state regular Markov

chain, and let i and j be arbitrary states of P . Let ∆ be a matrix that is zero

everywhere except in row i, the (i, j) entry is the only positive entry, and P̃ = P +∆

is also the transition matrix of a regular Markov chain. Let π̃ denote the stationary

distribution of P̃ . Then π̃j > πj.

6.6 Characterization of an Optimal Spam Farm

In this section, we shall give the characterization of an optimal spam farm under

some realistic assumptions. First, we introduce two definitions.

Definition 6.7. A web graph is called a realistic web graph if

(1). The number of Web pages N is large enough such that 2cN−1
N

> 1;

(2). The number of dangling pages is at least 2.

In practice, c takes value from 0.8 to 0.9 [63, 12] while Google indexes around 6

billion Web pages, many of which are dangling pages. Therefore, the definition of a

realistic web graph is very natural.

Definition 6.8. If a Web page only points to the target page, we call it a generous

page.

Then we characterize the optimal spam farm as shown in Figure 6.1 in the fol-

lowing theorem.

Theorem 6.9. In a realistic web graph, we assume that each hijacked page already

points to a set of nongenerous pages such that at least two of them are not hijacked

pages and do not point to any generous page. Then a spam farm is optimal iff
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Figure 6.1: Optimal spam farm

(1). The boosting pages point to and only to the target page;

(2). The target page points to and only to some of the generous pages;

(3). The hijacked pages point to the target page and all the boosting pages.

In Theorem 6.9, the assumptions about the hijacked pages are realistic, because

in the real world, the hijacked pages are most likely to be online bulletins or blogs.

Those pages probably point to a number of normal Web pages that are neither

generous pages nor hijacked pages. Moreover, the contents of the hijacked pages are

not likely to be relevant to spam farm pages. Based on the belief that one page

points to another if they are relevant, it is reasonable to assume that at least two of

the Web pages, which the hijacked pages point to, do not point to generous pages.

Although we give the optimal spam farm in the above theorem, a spammer may

not achieve the maximum PageRank score for the target page in practice. The

reasons are two fold. First, there are enormous bulletin pages and blogs that can

be used as hijacked pages and it is impossible for a spammer to add hijacked links

to all of them. But, according to the proof of Theorem 6.9, in order to maximize

the PageRank score of the target page, a spammer should hijack as many pages that

satisfy our assumption as possible. Second, adding a link from a hijacked page to a

normal page may boost the target page, too. However, according to the definition
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of a single-target spam farm model, the hijacked links should point to spam farm

pages. Thus, we do not consider such case in our theorem.

In our proof of Theorem 6.9, we find the optimal structure by optimizing outgoing

links of the target page and the boosting pages, as well as the hijacked links, step

by step. This proof is totally different from the proof in [39], which solves the opti-

mization problem as a whole. Consequently, our method will provide more insights

about the effect of adding or deleting links compared to the method of Gyöngyi and

Garcia-Molina. In the following proof, let t be the target page, g be a generous page,

d be a dangling page, b be a boosting page and h be a hijacked page. First, we study

the outgoing links of the boosting pages in the optimal spam farm.

Lemma 6.10. In the optimal spam farm, the boosting pages should point to and only

to the target page.

Proof. First, we claim that the boosting pages should point to the target page in the

optimal spam farm. We will prove this claim in two cases. The first case is that the

boosting page b has nonzero out degree. When adding (b, t) to E, ∀k 6= t, if edge

(b, k) ∈ E, pbk decreases from c1
l
+ (1 − c) 1

N
to c 1

l+1
+ (1 − c) 1

N
, where l is the out

degree of page b before adding the link (b, t); if edge (b, k) /∈ E, pbk does not change.

At the same time, pbt increases from (1 − c) 1
N

to c 1
l+1

+ (1 − c) 1
N

. The second case

is that b has zero out degree. Adding the edge (b, t) to E can increase pbt from 1
N

to

c+(1− c) 1
N

. ∀k 6= t, pbk decreases from 1
N

to 1−c
N

. According to theorem 6.6, adding

the edge (b, t) can increase the PageRank score of the target page t. Therefore, the

boosting pages should point to the target page in the optimal spam farm.

Next, we claim that the boosting pages cannot point to any other pages besides

the target page in the optimal spam farm. We will prove this claim by contradiction.

If b points to t and some other pages k1, k2, ..., kl other than t, we will delete all the
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links from b to k1, k2, ..., kl and see what happens. Before the deletion, pbk1 , ..., pbkl

and pbt should be c 1
l+1

+ (1− c) 1
N

; after deletion, pbk1 , ..., pbkl
would be (1− c) 1

N
and

pbt would be c + (1− c) 1
N

. It is obvious that pbt increases and pbk1 , ..., pbkl
decreases.

According to theorem 6.6, the deletion operations can increase the PageRank score

of the target page t. Therefore, the boosting pages cannot point to any other pages

besides the target page. Finally, putting the two claims together proves the lemma.

ut

Lemma 6.10 implies that in the optimal spam farm, the boosting page should be a

generous page. However, note that not every generous page is a boosting page since

a normal page in the web graph may only point to the target page.

Next, we study the outgoing links of the target page in the optimal spam farm.

The basic idea is that according to Theorem 6.2, if we want to maximize the PageR-

ank score of target page t, we need to minimize the mean first passage time mtt.

Since the mean first passage time will play an important role in our proofs, the fol-

lowing two lemmas will address the mean first passage times of generous pages and

dangling pages to the target page. Recall that mij stands for the mean first passage

time from page i to page j, while g and t stand for the generous page and the target

page, respectively.

Lemma 6.11. For any page k, mgt ≤ mkt. Moreover, mgt = mkt iff k is a generous

page.

Proof. According to Theorem 6.2,

(6.1) mgt = 1 +
∑

i6=t

pgimit

(6.2) mkt = 1 +
∑

i6=t

pkimit
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According to the PageRank algorithm, for any page i 6= t, pgi = 1−c
N
≤ pki. It is

obvious that mgt ≤ mkt. Moreover, mgt = mkt iff for any page i 6= t, pgi = pki, which

implies that k is a generous page too. ut

Lemma 6.12. mdt −mgt ≥ cN−1
N

mgt.

Proof. According to equations 6.1 and 6.2, we can get

(6.3) mdt −mgt =
c

N

∑

k 6=t

mkt

Since for any k, mkt ≥ mgt, we can get

mdt −mgt ≥ c
N − 1

N
mgt

ut

Based on the above two lemmas, we can characterize the outgoing links of the

target page in the optimal spam farm.

Lemma 6.13. In a realistic web graph, the target page should point to and only to

some of the generous pages in the optimal spam farm. 3

Proof. According to Theorem 6.2, if we want to maximize the PageRank score of the

target page t, we need to minimize the mean first passage time mtt. We will prove

this lemma by proving the following three claims.

First, we claim that in the optimal spam farm, t has a nonzero out degree. This

is because if t has zero out degree,

mtt = 1 +
1

N

∑

i6=t

mit

3If self-loops are allowed, the target page should only point to itself in the optimal spam farm.
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However, if t points to a generous page g,

m̃tt = 1 + c ·mgt +
1− c

N

∑

i6=t

mit

= 1 + c(mgt − 1

N

∑

i6=t

mit) +
1

N

∑

i6=t

mit

According to the assumption of a realistic web graph, there are at least two dangling

pages d1 and d2. Therefore,

N ·mgt −
∑

i6=t

mit =
∑

i6=t,d1,d2

(mgt −mit) + (3mgt −md1t −md2t)

According to Lemma 6.11, mgt ≤ mit; furthermore, according to Lemma 6.12 and

the assumption that 2cN−1
N

> 1, then 3mgt < md1t +md2t. Therefore, N ·mgt−
∑
i6=t

mit

is negative. Consequently, m̃tt < mtt. This implies that in the optimal spam farm, t

cannot have zero out degree.

Next we claim that in the optimal spam, the target page cannot point to a non-

generous page. Suppose the set of pages t points to is K. Then,

mtt = 1 + c

∑
i∈K

mit

|K| +
1− c

N

∑

i6=t

mit

If t only points to generous pages,

m̃tt = 1 + c ·mgt +
1− c

N

∑

i6=t

mit

According to Lemma 6.11, when K contains nongenerous pages, m̃tt < mtt. This

implies that in the optimal spam farm, the target page can only point to a generous

page.

Finally, we claim that in the optimal spam farm, when the target page only points

to a generous page, the number of generous pages the target page points to does not

matter. If t points to q ∈ N generous pages,

mtt = 1 +
c · q
q

mgt +
1− c

N

∑

i6=t

mit
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If t points to q + 1 generous pages,

m̃tt = 1 +
c · (q + 1)

q + 1
mgt +

1− c

N

∑

i6=t

mit

It is obvious that m̃tt = mtt. Therefore, when the target page only points to generous

page, the number of generous pages the target page points to does not matter.

Finally, putting the three claims together proves the lemma. ut

The last step to prove Theorem 6.9 is studying the hijacked links. The proof of

Lemma 6.10 implies that in the optimal spam farm, the hijacked pages should point

to the target page. The key question is whether the hijacked pages should point to

the boosting pages besides the target page. In order to answer this question, we first

prove the following lemma.

Lemma 6.14. Suppose a hijacked page h already points to the target page t and a

set of nongenerous pages K, adding the link (h, g) where g is a generous page can

boost the target page iff
∑
k∈K

mkt > (|K|+ 1)mgt.

Proof. Let πt and π̃t be the PageRank score of the target page before and after adding

the link (h, g). According to Theorem 6.5, we can get

π̃t − πt = π̃h∆h∗Z∗t

When adding the link (h, g), δhg = −∑
i6=g

δhi and ∀i 6= g, δhi ≤ 0, then

∆h∗Z∗t =
∑

i6=g,(h,i)∈E

δhi(zit − zgt)

=
∑

i6=g,t,(h,i)∈E

δhi((ztt − zgt)− (ztt − zit)) + δht(ztt − zgt)

Since ztt − zit = mitπt, we can get

∆h∗Z∗t = πtδht(
∑

i6=b,t,(h,i)∈E

(mgt −mit) + mgt)

= πtδht((|K|+ 1)mgt −
∑

k∈K
mkt)
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Because δht < 0 and πt > 0, we know that π̃t > πt iff
∑
k∈K

mkt > (|K|+ 1)mgt. ut

Lemma 6.10 and 6.14 give a necessary and sufficient condition for the optimal link

structure of the hijacked pages. However, a spammer may not have any knowledge

of the mean first passage time. Therefore, in the following lemma, we will address

the link structure for those hijacked pages that satisfy some realistic assumptions.

The statement of this lemma has nothing to do with mean first passage time.

Lemma 6.15. In a realistic web graph, suppose a hijacked page h already points to

a set of nongenerous pages K; moreover, at least two Web pages in K do not point

to any generous page. In the optimal spam farm, h should point to the target page

and all of the boosting pages.

Proof. Suppose k1, k2 ∈ K do not point to any generous page. We claim that mk1t−

mgt ≥ cN−1
N

mgt(the same inequality holds for k2). We prove this claim by considering

two cases. If k1 has zero out degree, Lemma 6.12 proves that mk1t−mgt ≥ cN−1
N

mgt.

If k1 has nonzero out degree, based on equation 6.1 and 6.2, we can get

mk1t −mgt =
∑

i6=t

(pk1i − 1− c

N
)mit

≥ c ·mgt

Therefore, mk1t −mgt ≥ cN−1
N

mgt.

The proof of Lemma 6.10 implies that in the optimal spam farm, all the boosting

pages are generous pages and h should point to the target page. When h already

points to the target page, Lemma 6.14 tells us that adding a hijacked link from h

to a generous page g can further boost the target page iff
∑
k∈K

mkt > (|K| + 1)mgt.

Based on our assumption, we know that

∑

k∈K
mkt ≥ |K|mgt + 2c

N − 1

N
mgt

> (|K|+ 1)mgt
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Therefore, h should point to all of the boosting pages. The lemma is proved. ut

Finally, if we summarize Lemma 6.10, 6.13 and 6.15, it would give us a unique

configuration of the optimal spam farm. This will complete the proof of Theorem

6.9.

6.7 Optimal Spam Farm Under Constraints

As shown in Theorem 6.9, in the optimal spam farm, the target page only points

to generous pages while the boosting pages only point to the target page. This

structure is easy to detect. In order to disguise the spam farm, a spammer may

require that the target page should point to some nongenerous pages, the boosting

pages should not directly point to the target page, or the hijacked pages should not

directly point to the target page. Hence, this question arises: what are the optimal

spam farm structures under those constraints?

First, we characterize the optimal spam farm when the target page is required to

point to some nongenerous pages in the following theorem.

Theorem 6.16. If the target page t is required to point to a set of pages K, a spam

farm is optimal only if

(1). The boosting pages point to and only to the target page;

(2). The target page points to a set of pages K⋃L such that (
∑
k∈K

mkt +
∑
l∈L

mlt)/(|K|+ |L|)

is minimized, where L ⊆ V .

Proof. The proof of this theorem directly follows from the proof of Theorem 6.9. ut

In order to design the optimal spam farm under the above constraint, a spammer

needs to find out the set of Web pages L such that the average mean first passage

time of Web pages in K⋃L to the target page is minimized. This requires that a
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Figure 6.2: Optimal spam farm when the target page points to non generous pages

spammer has knowledge of the mean first passage time of the web graph. Given the

limited computing resources of a spammer, it is a nontrivial task for him to find out

the set L. However, Theorem 6.16 implies that in the optimal spam farm, the target

page should point to all the generous pages, shown in Figure 6.2.

Next, we characterize the optimal spam farm, as shown in Figure 6.3, when some of

the boosting pages cannot directly point to the target page in the following theorem.

Theorem 6.17. In a realistic web graph, suppose B is the set of boosting pages and

a subset of it B ⊂ B cannot directly point to the target page, then a spam farm is

optimal only if

(1). For any page in B \ B, it points to and only to the target page;

(2). For any page in B, it points to some of the generous pages;

(3). The target page points to and only to some of the generous pages.

Proof. For the pages in B \ B, Lemma 6.10 implies that they should point to and

only to the target page.

For the pages in B, we first claim that it cannot have zero out degree in the

optimal spam farm. This is because if b ∈ B has zero degree, adding the link (b, g)
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Figure 6.3: Optimal spam farm when some boosting page cannot point to the target page

where g is a generous page can boost the target page t iff

∑

k 6=t

mkt −N ·mgt > 0

Given the assumption of a realistic web graph, similar to the proof of the first claim

in Lemma 6.13, we know that b should have nonzero out degree in the optimal spam

farm.

Next, we claim that b cannot point to nongenerous pages in the optimal spam

farm. This is because when b has nonzero out degree, deleting a link from b to

another page j (but still keeping that b has non zero out degree) can boost the

target page iff
∑

k 6=j,(b,k)∈E

(mkt −mjt) < 0

According to Lemma 6.11, for a generous page g, mgt is minimum. Combined with

the previous necessary and sufficient condition, this implies that b cannot point to

nongenerous pages and the number of generous pages that b points to does not

matter if b only points to generous pages. Consequently, b should point to some of

the generous pages in the optimal spam farm.

For the target page, Lemma 6.13 implies that it should point to and only to some

of the generous pages. ut

Note that in the above two characterizations, we ignore the hijacked links to avoid
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Figure 6.4: Optimal spam farm when the hijacked pages cannot point to the target page

repeatedness. This is because, according to the proof of Theorem 6.9, the structure

of the hijacked links in the optimal spam is quite independent of the structure of

outgoing links of the target page and the boosting pages. Therefore, when the

hijacked links need to be taken into consideration, we can follow almost the same

analysis as Theorem 6.9 to find out the structure of the hijacked links in the optimal

spam farm.

Finally, we characterize the optimal spam farm, as shown in Figure 6.4, when the

hijacked pages cannot directly point to the target page, as we see in the following

theorem.

Theorem 6.18. In a realistic web graph, suppose the hijacked pages already point

to some nongenerous pages and the hijacked pages cannot directly point to the target

page, then a spam farm is optimal iff

(1). The boosting pages point to and only to the target page;

(2). The target page points to and only to some of the generous pages;

(3). The hijacked pages point to all of the generous pages.

A similar analysis as the proof of Theorem 6.17 can show correctness of Theorem

6.18. We omit the proof here.
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6.8 Related Works

As a first step to detect Web spam, researchers need to identify various spamming

techniques. Langville et al. introduced the problem of link spam analysis as future

work in their comprehensive survey [54]. Bianchini et al. [8] studied how to design the

structure of a web graph that contains exactly N pages such that a page’s PageRank

score is maximized. However, in practice, a spammer cannot control all Web pages.

When a spammer only controls a small fraction of the web graph, the optimal link

structure of the spam pages, especially links from external pages to the spam, is not

addressed in [8].

Gyöngyi and Garcia-Molina [39] first introduced the single-target spam farm

model. In this model, a spammer wants to boost the PageRank score of the tar-

get page by manipulating the outgoing links of the target page and a set of boosting

pages. They claimed to have identified a link structure that was optimal in maximiz-

ing the PageRank score of a single-target page. However, we find that the proof of

their paper is flawed by assuming that the PageRank score flowed into the spam farm

was constant. Those who are interested can refer to [30] for a counterexample. Nev-

ertheless, given the extremal nature of the optimal link structure, it is not surprising

that their conclusion is very close to the correct answer. Moreover, the optimal spam

farm structures are easy to detect [82]. The spammer can deviate from the optimal

spam farm structure to disguise the spam farm. Unfortunately, this problem was not

well addressed in [8, 39].

Adali et al. [75] studied the optimal link structure under the assumption that a

spammer only has control of the boosting pages, but not the target page. Moreover,

the optimality of the disguised attack depends on the forwarding value, which has a
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flavor of PageRank score. In order to compute forwarding value, a spammer has to

solve a system of linear equations like PageRank. Considering the size of the Web,

this would require the spammer to have huge computation resources. Thus, such

attack strategies are not very practical. Cheng and Friedman [16] quantitatively

analyzed PageRank score increase of the target page under optimal sybil attacks [8].

Although the definition of PageRank in [16] is significantly different from the stan-

dard definition by Page et al. [12], the result in [16] can be easily modified to match

the standard case by following exactly the same proof ideas.



CHAPTER VII

Ranking via Arrow-Debreu Equilibrium

7.1 Motivations

Ranking, which aggregates the preferences of individual agents over a set of alterna-

tives, is not only a fundamental problem in social choice theory but also has many

applications in real life. For instance, the well-known PageRank algorithm [12] is de-

signed to rank Web pages while the Invariant Method [77, 66] is proposed to evaluate

the intellectual influence of academic journals and papers.

Intuitively, the PageRank and the Invariant method share a common property

in that the more “vote” an agent gets, the higher ranking he has. Although they

work very well in practice, the economic interpretations of their effectiveness are

not obvious. Slutzki and Volji [77], as well as Palacios-Huerta and Volji [66], gave

the first set of axioms that characterize the Invariant method. Later, Altman and

Tennenholtz [3] gave a set of combinatorial axioms to characterize the PageRank

algorithm, while Brandt and Fischer [11] interpreted PageRank as a solution of a

weak tournament.

General equilibrium theory [57] is one of the most prominent theories in mathe-

matical economics. It studies how a market system, known as the “invisible hand”,

makes the demands of a market’s participants equal to its supplies. Arrow and De-

80
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breu [7] showed that under mild conditions, a market always has an equilibrium.

The result of this research became known as the Arrow-Debreu equilibrium.

In this chapter, we will establish a connection between ranking methods and

the Arrow-Debreu equilibrium. Naturally, the preference of one agent for another,

which is usually represented as a directed edge in a graph, can be viewed as the

demand between agents. Intuitively, the more demands a good gets, the higher price

it should have. Therefore, an equilibrium price could be a good candidate for a

ranking vector. On the other hand, the PageRank and the Invariant method are the

stationary distributions of ergordic Markov chains. Both the existence of a PageRank

or an Invariant ranking vector and the existence of Arrow-Debreu equilibrium can

be shown via the Brouwer’s fixed point theories [7, 57]. We will interpret one form of

a fixed point as the other. More specifically, we will show that the ranking vector of

the PageRank or the Invariant method is indeed the equilibrium of a Cobb-Douglas

market. To the best of our knowledge, this is the first connection between ranking

methods and the general equilibrium theory. Based on our observations, we propose

a new ranking method, the CES ranking, which is minimally fair, strictly monotone,

and invariant to reference intensity, but not uniform or weakly additive.

7.2 Preliminaries

7.2.1 The Ranking Problem

In this subsection, we will follow [3] to define ranking problems. Let A be a finite

set, representing the set of agents, and M be a |A| × |A| matrix, representing the

preference relationships among the agents. A ranking problem is represented as

〈A,M〉. For any n ∈ N, let ∆n = {(x1, ..., xn)|∀i, xi ≥ 0 and
∑

i xi = 1}.

Definition 7.1. A ranking function maps a ranking problem 〈A,M〉 to a vector
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π ∈ ∆|A|.

Invariant Method [77] In the definition of PageRank [12], if the transition matrix T

is irreducible (the corresponding graph is strongly connected), its unique stationary

distribution is the ranking vector. Thus, the PageRank and the Invariant method

are essentially equivalent in mathematics.

7.2.2 Arrow-Debreu equilibrium of exchange markets

In an exchange market, there are m traders and n divisible goods. Let T =

{T1, .., Tm} be the set of traders and G = {G1, ..., Gn} be the set of goods. Each trader

i has an initial endowment of wi,j ≥ 0 of good j and a utility function ui : Rn
+ → R.

The individual goal of trader Ti is to obtain a new bundle of goods that maximizes

his utility. Let xi ∈ Rn
+ be the bundle of goods of Ti after the exchange, where

xi,j is the amount of good j. Naturally, the demand cannot exceed the supply:

∑
i xi,j ≤

∑
i wi,j, for every good j.

We use p ∈ ∆n to denote a price vector, where pj is the price of Gj. For any

trader Ti, given p, we let x∗i (p) denote the bundle of goods that maximize his utility

under the budget constraint:

x∗i (p) = argmax x∈Rn
+, x·p≤wi·p ui(x).

Definition 7.2 (Arrow-Debreu equilibrium). A market equilibrium is a price

vector p ∈ ∆n such that the market clears:

For every good Gj ∈ G,
∑

i∈[m] x
∗
i,j(p) ≤ ∑

i∈[m] wi,j; If pj > 0, then

∑
i∈[m] x

∗
i,j(p) =

∑
i∈[m] wi,j.

7.2.3 CES Utility Functions

CES utility functions: [19, 57] The CES (Constant Elasticity of Substitu-
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tion) function over a bundle of goods (xi1, ..., xin) is the family of utility functions

ui(xi1, ..., xin) = (
∑n

j=1 αijx
ρi

ij )
1/ρi , where −∞ < ρi < 1, ρi 6= 0 and αij ≥ 0. The

parameter 1/(1− ρi) is called the elasticity of substitution. The CES utility function

has a very nice property: its demand functions have explicit forms. That is, given a

strictly positive price vector π ∈ Rn
++, the demand xij is

xij =
α

1/(1−ρi)
ij

π
1/(1−ρi)
j

×
∑

k πkwik∑
k α

1/(1−ρi)
ik π

−ρi/(1−ρi)
k

There are three important utility functions within the CES category.

(1). ρi → 1 corresponds to linear utility functions, where ui(xi1, ..., xin) =
∑

j αijxij.

In this case, the set of goods that the agent wants are perfect substitutes for

each other.

(2). ρi → −∞ corresponds to Leontief utility functions. The Leontief utility func-

tion, in general, has the form of ui(xi1, ..., xin) = min
j:βij>0

xij

βij
, where βij ≥ 0. In

this case, the set of goods that the agent wants are perfect complement of each

other.

(3). ρi → 0 corresponds to Cobb-Douglas utility functions. The Cobb-Douglas util-

ity function, in general, has the form of ui(xi1, ..., xin) =
∏

j x
βij

ij , where βij ≥ 0.

This demand function is a perfect balance of substitution and complementarity

effects [19].

7.3 PageRank/Invariant Method V.S. a Cobb-Douglas Market

In this section, we will establish a connection between PageRank/Invariant Method

and Arrow-Debreu equilibrium. We do this by showing a more general theorem about

Markov chains.
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Theorem 7.3. Given an ergordic Markov chain, there is a mapping from the Markov

chain to a Cobb-Douglas market, such that the stationary distribution of the Markov

chain is precisely the Arrow-Debreu equilibrium of the Cobb-Douglas market.

Proof. The general idea of the proof is to reduce the state transition graph of an

ergordic Markov chain to the economy graph of a Cobb-Douglas market. Given the

state transition graph G = (V, E, W ) and the transition matrix P , we can construct

a Cobb-Douglas economy graph as follows: for i ∈ [1..n], there is a trader Ti corre-

sponding to each state si, and there is a directed link from Ti to Tj iff (si, sj) ∈ E;

for trader Ti, let N(Ti) be the set of outgoing neighbors of Ti. The utility function

of Ti is ui(xi) =
∏

j∈N(Ti)
x

pij

ij , where pij is the transition probability. Initially Ti has

one unit of the good Gi but no other goods. We call such a Cobb-Douglas economy

M . We claim that the market equilibrium of M is also the stationary distribution

of P .

First of all, since G is strongly connected and the Cobb-Douglas utility function

belongs to the CES utility function class, according to Theorem 1 of Codenotti et al.

[19] M has a strictly positive equilibrium. By the demand function of CES utility

function, when ρi → 0,

xij =
pijπi

πj

.

By the definition of Arrow-Debreu equilibrium, for every good with strictly positive

price, its demand must be equal to its supply. Thus,

∑
i

xij =
∑

i

pijπi

πj

= 1.

Equivalently,
∑

i

pijπi = πj.

Thus, π is the stationary distribution of the Markov chain P . ut
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Actually, by the above reduction, we also implicitly show that M has a unique

equilibrium. Most importantly, since the PageRank or Invariant method is a special

Markov chain, the ranking vector of the PageRank or the Invariant method can also

be interpreted as the equilibrium of a Cobb-Douglas market.

Economic Interpretations: It is believed that the validity of PageRank comes

from the fact that the Markov chain is a good model for the Web surfing behavior of

Web users. In web graph, a link from page p to page q means that a Web user at page

p may find the content of page q is useful. Thus, a link in web graph means a vote or

reference. Intuitively, the more votes a page gets, the more important it is. Indeed,

for a Web user, his goal is to maximize his information needs by following outgoing

links of a page to visit other pages. Thus, in our Cobb-Douglas economy graph, each

Web page is corresponding to an agent, the content of the page is corresponding to

the good the agent initially owns, and a link from p to q means that the agent on

page p has a demand for the content of page q. Intuitively, the more “demand” a

page gets, the more important it is.

Theorem 7.3 provides a new perspective to view PageRank. That is the sub-

stitution and complementarity effects of outgoing links. For instance, suppose we

have a directory page of a university, which has outgoing links pointing to the home

pages of each of the unversity’s the departments. If a Web user clicks one of the

outgoing links, it is unlikely that he will click any other. Thus, for this page, its

outgoing links are more likely to be substitutes for each other than complements.

On the other hand, suppose we have a news page, which has outgoing links pointing

to related news pages. A Web user who clicks one of the outgoing links is likely

to click another one. Thus, for this page, its outgoing links are more likely to be



86

complements for each other than substitutes. By Theorem 7.3 and the properties of

the Cobb-Douglas utility function, the set of pages that a Web page points to is a

mix of the substitution and complementarity effects with elasticity of substitution 1

in PageRank.

7.4 Ranking via Arrow-Debreu Equilibrium

The Cobb-Douglas utility function corresponds to the CES utility function with

ρ → 0. Thus, by choosing CES utility functions with different elasticities, we can

naturally extend the idea of PageRank to a new spectrum of ranking algorithms. We

propose the ranking method, which is called CES ranking, below.

Algorithm 1 CES ranking
1. Given the agents set A, choose a CES utility function ui for each agent i ∈ A and set
the initial endowment wi of it as ∀j 6= i, wij = 0 but wii = 1. The new ranking problem is
〈A, {αij}i∈A,j∈A, {ρi}i∈A, {wi|i ∈ A}〉. W.L.O.G., for any i, let

∑
j αij = 1.

2. If for agent i, αij = 0 for all j, set αij = 1/|A| for each j. Hence, ui = (
∑n

j=1(1/|A|)xρi

ij )1/ρi .
3. For each agent i, update αij to be αij ∗ β + (1/|A|) ∗ (1 − β) for every j, where β = 0.85.
Correspondingly, the updated utility function is ui = (

∑n
j=1(αij ∗ β + (1/|A|) ∗ (1− β))xρi

ij )1/ρi

4. Construct the economy graph G with respect to the CES economy defined above. It is easy to
see that G is strongly connected.
5. Compute an equilibrium of G and use it as the ranking vector.

Note that the new CES ranking problem 〈A, {αij}i∈A,j∈A, {ρi}i∈A, {wi|i ∈ A}〉 is

a generalization of the ranking problem 〈A,M〉 defined in the Preliminaries. Now

we discuss the existence, uniqueness, and efficiency of the CES ranking, as well as

some other properties related to ranking.

Existence of a ranking vector: By Theorem 1 in [19], as long as the economy

graph G is strongly connected, there is always a strictly positive equilibrium. By the

definition of the CES ranking, it is obvious that the economy graph of it is strongly

connected. Thus, a ranking vector always exists.

Uniqueness: According to [19], for CES utility functions with −1 ≤ ρ < 1, the set

of equilibria is convex. We further show that:
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claim 7.4. The CES ranking has a unique ranking vector if ∀i, ρi ≥ 0.

In order to prove this claim, we first introduce the definition of gross substitute

(GS).

Definition 7.5. [57] For any j, let zj =
∑

i xij −
∑

i wij be the excess demand

function for Gj. The function z(.) has the gross substitute property if whenever π
′

and π are such that, for some l, π
′
l > πl and π

′
j = πj for j 6= l, we have zj(π

′
) > zj(π)

for j 6= l.

If in the above definition the inequalities are weak, the property is referred to as

weak gross substitute (WGS). It is well known that:

Theorem 7.6. [57] If the aggregate excess demand function of an exchange economy

has the GS property, the economy has at most one equilibrium.

Now we can prove the above claim.

Proof. 1 In the CES ranking, by the Theorem 1 and Lemma 1 in [19], as long as the

economy graph G is strongly connected, an equilibrium exists and every equilibrium

is strictly positive. Suppose we have two equilibria π
′
and π such that for l, π

′
l > πl

and π
′
h = πh for h 6= l. Note that ∀i, j, αij > 0. Thus, for any j 6= l,

∑
i

xij =
∑

i

α
1/(1−ρi)
ij

π
1/(1−ρi)
j

× πi∑
k α

1/(1−ρi)
ik π

−ρi/(1−ρi)
k

=
∑

i

α
1/(1−ρi)
ij × πi/πj∑

k α
1/(1−ρi)
ik (πk/πj)−ρi/(1−ρi)

<
α

1/(1−ρl)
lj × π

′
l/π

′
j∑

k α
1/(1−ρl)
lk (π

′
k/π

′
j)
−ρl/(1−ρl)

+
∑

i6=l

α
1/(1−ρi)
ij × π

′
i/π

′
j∑

k α
1/(1−ρi)
ik (π

′
k/π

′
j)
−ρi/(1−ρi)

=
∑

i

x
′
ij

1It is well known [19] that the CES utility functions satisfy WGS when ρ ≥ 0. However, WGS does not imply the
uniqueness of equilibrium.
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Thus, in the CES ranking, the excess demand function has the GS property. There-

fore, its equilibrium and the ranking vector are unique. ut

However, when ρ < −1, there may be multiple equilibria sets. Actually, for

ranking problems, we do not have to insist on the uniqueness of ranking vectors.

That is because in most cases, there are different ranking criteria for one ranking

problem. It is not surprising that different criteria induce different rankings.

Efficiency of Computation: When −1 ≤ ρ < 1, an equilibrium of a CES market

can be computed via convex programming [19]. Thus, it is in polynomial time.

However, for some special utility functions (such as the Leontief utilty function), it

is PPAD-hard [21] to compute an equilibrium of it. However, for ranking problems

that have relatively small sizes or do not require the real time computation of ranking

vectors, the efficiency may not be a serious concern.

In the next section, we study five natural properties, which are satisfied by the

PageRank and the Invariant method, with respect to the CES ranking. First, we

extend the concept of minimally fair [4] to the CES ranking.

Definition 7.7. A ranking system is minimally fair if when for any i, j, αij = 0, the

ranking score of agent i equals that of j for agent i, j ∈ A.

claim 7.8. The CES ranking is minimally fair.

Proof. Since initially αij = 0 for any i, j, in order to make the economy graph strongly

connected, we set the utility function for each agent as ui = ((
∑

j
1
n
xρ

ij)
1/ρ. With this

setup, by the market clearing condition, we get

∑
i

(1/n)1/(1−ρ)

π
1/(1−ρ)
j

× πi∑
k(1/n)1/(1−ρ)π

−ρ/(1−ρ)
k

= 1



89

Thus, ∀j,

πj = (1/(
∑

k

π
−ρ/(1−ρ)
k ))1−ρ.

Note that the right-hand size of the above equation is independent of j. Thus,

π = (1/n, ..., 1/n) is the only equilibrium for the market. Therefore, the CES ranking

is minimally fair. ut

Next, we extend the strictly monotone definition in [4] to the CES ranking.

Definition 7.9. A ranking system is strictly monotone iff for any two agents i and

j, if for any other agent p, αpi ≤ αpj and there exists h such that αhi < αhj, the

ranking score of agent i is strictly less than that of j.

claim 7.10. The CES ranking is strictly monotone when the utility functions of all

the agents have the same elasticity of substitution.

Proof. By the market clearing condition, for any two agents i and j,

π
1/(1−ρ)
i =

∑
p

α
1/(1−ρ)
pi × πp∑

k α
1/(1−ρ)
pk π

−ρ/(1−ρ)
k

<
∑

p

α
1/(1−ρ)
pj × πp∑

k α
1/(1−ρ)
pk π

−ρ/(1−ρ)
k

= π
1/(1−ρ)
j

Thus, πi < πj. ut

Actually, the property of strictly monotone corresponds to the intuition that the

more demands a good gets, the higher price it is.

Slutzki and Volij showed [77] that,

Theorem 7.11. [77] If a ranking system satisfies uniform, weakly additive and

invariant to reference intensity, the ranking system must be the Invariant method.
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In the next section, we will study the relationship between the CES ranking and

the three properties above.

Definition 7.12. [77] A ranking problem is regular if ∀i, j, ∑k αik =
∑

k αjk while

∀i, j, ∑k αki =
∑

k αkj. A ranking function is uniform if for every regular ranking

problem, the ranking score of each agent is 1
N

where N is the number of agents.

claim 7.13. The CES ranking is not uniform.

Proof. Suppose a system has three agents while the parameters of the agents are

ρ1 = ρ2 = ρ3 = 1
2

and α11 = 1
3
, α12 = 1

3
, α13 = 1

3
, α21 = 5

12
, α22 = 1

6
, α23 = 5

12
,

α31 = 1
4
, α32 = 1

2
, α33 = 1

4
. By the market clearing condition,

π2
1 =

1
3

2 × π1

1
3

2
π−1

1 + 1
3

2
π−1

2 + 1
3

2
π−1

3

+
5
12

2 × π2

5
12

2
π−1

1 + 1
6

2
π−1

2 + 5
12

2
π−1

3

+
1
4

2 × π3

1
4

2
π−1

1 + 1
2

2
π−1

2 + 1
4

2
π−1

3

It is easy to check that π = (1
3
, 1

3
, 1

3
) cannot satisfy the above equation. Thus, the

CES ranking is not uniform. ut

Actually, the uniform property requires that the ranking score of an agent is

linearly proportional to the number of “votes” it gets. This assumption may not be

reasonable universally. For instance, in the citation analysis, suppose both paper A

and B have m citations. In an extreme case, the citations of paper A may only come

from one research group while the citations of B come from different research groups.

Intuitively, paper B should be more important than paper A. However, any ranking

algorithm with the uniform property cannot distinguish those two cases. The CES

ranking, as a nonlinear ranking method, may have the potential to find out new

signals that were missed by the uniform ranking methods.

The weakly additive [77] property says that for a regular ranking problem, the

ranking score is still linearly proportional to the “votes” after a symmetric pertur-
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bation. Since the CES ranking is not uniform, it cannot satisfy the weakly additive

property, either.

Definition 7.14. [77] A ranking system is invariant to reference intensity if for any

agent i, when we multiply αij by a positive constant λ for every j, it cannot change

the ranking score of any agent.

claim 7.15. The CES ranking is invariant to reference intensity.

Proof. Note that

xij =
α

1/(1−ρi)
ij

π
1/(1−ρi)
j

×
∑

k πkwik∑
k α

1/(1−ρi)
ik π

−ρi/(1−ρi)
k

=
(λαij)

1/(1−ρi)

π
1/(1−ρi)
j

×
∑

k πkwik∑
k(λαik)1/(1−ρi)π

−ρi/(1−ρi)
k

=
α

1/(1−ρi)
ij

π
1/(1−ρi)
j

×
∑

k πkwik∑
k α

1/(1−ρi)
ik π

−ρi/(1−ρi)
k

Thus, multiplying αij by a positive constant λ for every j cannot change the demand

function. Therefore, the set of equilibria remains the same. ut

When we summarize the above claims together, we get

Theorem 7.16. The CES ranking is minimally fair, strictly monotone and invariant

to reference intensity, but not uniform or weakly additive.

7.5 Conclusion and Future Works

In this chapter, we have established a connection between the ranking theory

and the general equilibrium theory. First, we showed that the ranking vector of

PageRank or Invariant method is actually the equilibrium of a Cobb-Douglas market.

This gives a natural economic interpretation for the PageRank and Invariant method.

Furthermore, we propose a new ranking method, the CES ranking, which is minimally
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fair, strictly monotone, and invariant to reference intensity, but not uniform or weakly

additive. The new CES ranking, compared to PageRank and the Invariant method,

is nonlinear, and could be potentially used to find signals in a system missed by those

existing ranking methods.

With the observations in this chapter, we have a complete picture of the encoding

power of the three limiting cases of CES utility functions. Pennock and Wellman [69]

showed that economies with almost the linear utility functions can encode Bayesian

networks. Codenotti et al. [21] proved that economies with the Leontief utility

functions can encode bimatrix games. Now we demonstrate that economies with the

Cobb-Douglas utility functions can encode Markov chains.

We believe that this chapter points to a few promising directions that are worth

further exploration.

• Explore more properties that the CES ranking satisfies and make justifications

for the properties it does not satisfy.

• For various applications, what is the “right” utility function for each agent? We

may go beyond the CES utility functions and explore other ones, such as WGS

utility functions [19].

• Design efficient algorithms to compute ranking vectors.

• Further investigate the uniqueness of ranking vectors. If there are multiple equi-

libria points, do they induce the same ranking? If not, interpret their different

economic meanings in the context of ranking.

• Last but not least, design an effective evaluation system for ranking methods

and find an application where the CES ranking can outperform existing ranking

methods.



CHAPTER VIII

Conclusion

In this dissertation, we have shown that even for an approximate solution or for

very simple economies, it is PPAD-Complete to compute a competitive equilibrium.

Furthermore, it is NP-Complete to decide degeneracy in bimatrix games. Combined

with previous results [14, 15, 22], we can conclude that it is generally hard to compute

an economic equilibrium or to decide whether a game or an economy satisfies some

natural properties. Thus, the difficulty of computing economic equilibria is a real

challenge for making economic theories meet practice. In order to encompass this, one

could further investigate other solution concepts or the average case computational

complexity. One of the main open problems is the design of a polynomial time

approximation scheme (PTAS) for both competitive equilibria and Nash equilibria.

In general, the technical challenge to solve this open problem comes from both the

nonconvexity of competitive equilibria of an economy and Nash equilibria of a game.

Therefore, we expect some novel techniques to be developed before this problem is

solved.

With the advent of the Internet and e-commerce applications such as eBay, an

agent can easily have access to multiple accounts. He may further improve his own

payoff by manipulating his multiple identities. We have studied the path auction

93
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games with multiple edge ownership. As we have shown, the condition of multiple

edges ownership eliminates the possibility of reasonable solution concepts, such as

a strategyproof or false-name-proof mechanism or Pareto efficient Nash equilibria.

It would be worthwhile to further investigate the impact of multiple identities on

mechanism design.

We investigated PageRank, part of the ranking algorithm of Google. From the

perspective of game theory, we have analyzed the optimal manipulation strategies of

a Web spammer against PageRank. Our understandings of link spamming techniques

against PageRank aids the development of anti-spamming schemes. Furthermore, we

have made a connection between the stationary distribution of a Markov chain and

the equilibrium of a Cobb-Douglas market. This deepens the understandings of the

economic foundations of ranking algorithms such as PageRank and the Invariant

method. Finally, we propose the CES ranking method based on the Constant Elas-

ticity of Substitution (CES) utility functions. The CES ranking method is actually

a spectrum of ranking algorithms. By violating some linear properties satisfied by

PageRank and the Invariant method, the CES ranking could be a useful complement

of existing ranking algorithms. In the end, we hope that the connection between

Markov chains and Cobb-Douglas markets helps improve the understanding of other

applications of Markov chains besides PageRank.
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[40] Z. Gyöngyi and H. Garcia-Molina. Spam: It’s not just for inboxes anymore. IEEE Computer
Magazine, 38(10):28–34, October 2005.
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