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ABSTRACT

Stabilizing Monopedal Robot Running:
Reduction-by-Feedback and Compliant Hybrid Zero Dynamics

by

Ioannis Poulakakis

Chair: Jessy W. Grizzle

As an alternative to traditional wheeled and tracked ground vehicles, biologically-inspired

legged systems are becoming increasingly common. On a macroscopic level, locomotion

on land can be understood through the introduction of archetypical reductive models, ca-

pable of capturing the salient characteristics of the task-level behavior, e.g., walking or

running. Unfortunately, these reductive models provide no information of the control

mechanisms, through which the multiple joints and limbs of the high-degree-of-freedom-

plant are coordinated to produce the observed behavior. The coordinated recruitment of

the plant into a low-degree-of-freedom target model constitutes the central problem ad-

dressed in this dissertation, which aims at offering a mathematically precise feedback

control solution to this problem for the particular setting of monopedal robot running.

The robotic monopod Thumper, recently constructed in a collaborative effort between the

University of Michigan and Carnegie Mellon University, offers a unique platform for ex-

ploring advanced feedback control strategies for running on compliant monopedal robots.

The control law proposed for Thumper grows out of rigorous nonlinear controller synthe-

sis ideas, and it coordinates the actuated degrees of freedom of the robot so that a lower-

dimensional hybrid subsystem, i.e., a reductive model that encodes running, emerges from

the closed-loop dynamics. This subsystem effectively governs the behavior of the robot.

xiv



CHAPTER I

Introduction

At its most fundamental level, locomotion appears to be deceptively simple: an organ-

ism (or a robot) exerts a force to its environment and through Newton’s laws it accelerates

in the opposite direction. Yet, studies of the basic locomotion mechanisms indicate that

force application is not as simple as it might first appear.

In a strict engineering sense, animals appear to be “over-designed” for the task of lo-

comotion alone. Complexity is a direct consequence of the multitude of joints, muscles,

sensors, neurons, and the numerous neuronal connections that are engaged in order to

produce the observed locomotion behavior, [29]. In fact, animals exhibit kinematic, ac-

tuator, and neuronal redundancy. They exhibit kinematic redundancy, for they have far

more joint degrees of freedom than those required for placing their body in the three-

dimensional task space. They exhibit actuator redundancy, for often at least two muscles

are employed to actuate each joint degree of freedom. Finally, they exhibit neuronal redun-

dancy, because more interneurons than necessary participate in generating the required

motor neuron signals. The fundamental intractability of any elaborate model attempting

to capture the details of the mechanisms by which limbs, joints, muscles and neurons co-

ordinate to produce locomotion in animals could hardly be more apparent.

Fortunately, despite the complexity of the spatiotemporal mechanics associated with

the coordination of the mechanical and neural systems, legged locomotion may be un-

derstood on a macroscopic level based on a few common principles, including common

mechanisms of energy exchange, stability, maneuverability, and in general the use of force

for propulsion. Central to this approach is the introduction of archetypical reductive mod-

1



els, whose purpose is to capture the salient characteristics of the task-level behavior by

resolving redundancy through the use of symmetries and synergies1, [33]. Such models

not only provide a description of the motion of the body in pursuit of a task, but, more

importantly, they advance hypotheses regarding the high-level control strategy underly-

ing the achievement of this task without delving into the morphological details of body

structure.

This modeling hierarchy inspired by the biologically motivated “collapse of dimen-

sion” hypothesis, produced a variety of models suitable for studying the mechanics of

body movement in walking and running gaits, [49]. Notwithstanding their apparent sim-

plicity, these models have been invaluable in uncovering basic principles of running in

animals, and in synthesizing empirical control laws for running robots. Among them,

the Spring Loaded Inverted Pendulum (SLIP) has been proposed as a canonical model (a

template) of the center-of-mass dynamics of running animals and robots. In the relevant

literature, the SLIP is not perceived merely as a model that encodes running. It is construed

as a model that implies specific high-level control hypotheses underlying the achievement

of the task.

Such an approach, namely the introduction of reductive models, has the advantage of

capturing the dynamics of the behavior, walking or running, without explicitly relying on

the morphological details of the mechanisms by which this behavior is achieved. However,

by their very purpose, reductive models of the sort of the SLIP have just enough complex-

ity to encode the task of moving the body center of mass and no more. They provide no

information on the control mechanisms governing the coordination of the multiple joints and

limbs of the high-degree-of-freedom plant in producing the observed behavior. The coor-

dinated recruitment of the plant into a low-degree-of-freedom target model constitutes the

central problem addressed in this dissertation, which aims at offering a rigorous feedback

control solution to this problem for the particular setting of robotic monopedal running.

1By “synergies” it is meant parts working together in combined action or operation.
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1.1 Thumper and MABEL

The monopedal robot Thumper and the bipedal robot MABEL, shown in Fig. 1.1, are

two novel robots that have been designed and constructed in a collaborative effort between

The University of Michigan and Carnegie Mellon University2; see [47] for an overview

and [52], [53], and [51] for details relevant to the underlying design philosophy. One of the

purposes of the robots is to explore a novel powertrain design that incorporates compli-

ance, with the objective of improving power efficiency, both in steady-state operation and

in responding to disturbances. A second purpose of Thumper and MABEL is to inspire

the development of advanced feedback control algorithms for running on level surfaces

and walking on rough terrain and to provide reliable platforms for their experimental val-

idation. In that respect, they represent the outgrowth of RABBIT, the French biped studied

extensively by Grizzle, Westervelt, Chevallereau, and their collaborators; see [24] and [109]

for an integrative view.

In this work, the focus will be on the feedback control of monopedal running; hence,

Thumper will be at the center of the development. In order to motivate the develop-

ments of the following chapters, this section presents some of the challenges introduced

by the design of Thumper and highlights important differences with respect to existing

legged robots and the corresponding feedback solutions. It is anticipated that the rigorous

understanding of feedback structures suitable for stabilizing running on the one-legged

Thumper will shed light on the control of machines composed of more than one leg, and,

in particular, MABEL.

Roughly speaking, Thumper has been designed so that its dynamic behavior resem-

bles, in part, that of a SLIP; see [52], [53], and [51]. This requirement has given rise to

non-traditional mechanical design solutions, which, in turn, pose new challenges in devel-

oping control laws that are suitable for inducing stable hopping motions to Thumper.

In particular, Thumper features a novel powertrain that incorporates compliance, and

is capable of transmitting motor torques to the linkage in a way that the developed forces

are applied to directions that do not correspond directly to isolated physical joints. A

2J. W. Hurst, then at The Robotics Institute, Carnegie Mellon University.
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(a) (b)

Figure 1.1: (a) Thumper (courtesy of J. W. Hurst), and (b) MABEL. The leg consists of two
links –the thigh and the shin– connected together with a knee joint. The torso
contains the transmission mechanism and is attached to the leg via the hip joint.
Note that the hip joint does not coincide with the torso’s center of mass.

collection of differentials is used to connect two motors to the leg so that one motor controls

the angle of a virtual leg, consisting of the line connecting the hip to the toe, and the second

motor is connected—in series with a spring—to control the length of the virtual leg. In

essence, this transmission ensures—mechanically, not by software—that the thigh and shin

are coordinated, so that the leg behaves as if it were prismatic, despite the existence of a

revolute knee. As a result, the spring embedded in the transmission acts along the “virtual

leg” direction in much the same way as the springy leg of the SLIP: it stores energy in

the compression part of the stance phase, when the support leg decelerates the downward

motion of the center of mass; the energy stored in the spring can then be used to redirect

the center of mass upwards in anticipation of the ensuing flight phase.

On the other hand, the design of the transmission mechanism introduces dynamic ef-

fects that have significant implications to controller synthesis in at least two ways.

First, an immediate consequence of the presence of compliance in series with the leg

motor is the increase of the degree of underactuation of the system, i.e., the difference be-
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tween the number of degrees of freedom the system possesses and the number of actuators

available for control. In fact, during the stance phase, Thumper has two degrees of under-

actuation —one more than the previously studied biped RABBIT, [24]— because it has four

degrees of freedom and only two actuators. A less apparent, but equally important, issue

related to the compliant nature of the transmission is that feedback control should work

in concert with the spring. Stated simply, in the pursuit of achieving closed-loop stability,

the actuators should not be trying to “cancel” the spring. In the closed-loop system, com-

pliance should still be a dominant feature. This issue calls for nontrivial modification of

existent feedback structures, such as those proposed in [109].

Second, Thumper exhibits significant torso dynamics that cannot be captured by any

point-mass approximations, such as the SLIP. Moreover, contrary to most of the existing

monopedal robots, Thumper’s leg is attached to the torso so that the hip joint does not

coincide with the torso’s center of mass, resulting in nontrivial coupling between the torso

and leg dynamics. This particular morphology is not addressed by the vast majority of the

control laws available in the relevant literature for one-legged robot models; most of these

controllers are derived based on the assumption that the torso center of mass coincides

with the hip joint. As a final remark, note that the torso houses the transmission system,

which includes the pulleys that are associated with the differentials imposing the geo-

metric relations constraining the revolute knee leg to act like a virtual prismatic leg. The

dynamic effect of these rotating pulleys is significant—especially during the flight phase,

where the robot’s angular momentum is conserved in the absence of external forcing—

and should be included in the model which will be used for controlling Thumper.

Compounding these challenges, common features of legged locomotion systems, namely

the highly-nonlinear, hybrid structure of the system combined with a multitude of con-

straints —e.g., actuator limitations, friction cone limitations, unilateral ground reaction

forces, to name a few— significantly complicate the feedback design problem. It is the

subject of this work to identify these challenges and to propose efficient control algorithms

with provable stability properties that work together with compliance to induce stable,

periodic, natural, dynamic running motions on Thumper.
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1.2 Towards the Control of Thumper:

The Asymmetric Spring Loaded Inverted Pendulum

While the resort to simple physical models, such as the SLIP, may be quite revealing for

the properties of running, the morphology of Thumper and its unique design characteris-

tics make such an approach seem unrealistic. The development of more elaborate models

that enjoy a more faithful correspondence to the structure and morphology of Thumper,

and possess prescriptive —as opposed to just descriptive— power is necessary for the con-

struction of feedback control strategies suitable for stabilizing Thumper.

Up to this point, much of the research relevant to running has been concentrated on

the SLIP itself. However, in a locomotion modeling hierarchy, the distance separating the

SLIP from Thumper is large; see Fig. 1.2. In particular, it still remains unclear how stability

conclusions obtained in the context of the SLIP can predict the behavior of more complete

models, such as those required to capture the dynamics of Thumper.

The first step toward the control of Thumper is the introduction of an intermediate

model intended to bridge the gap between Thumper and the SLIP. This model is termed

SLIP

SLIP+Torso

ASLIP

Thumper

Figure 1.2: Modeling and control hierarchy. Bridging the gap between the Spring Loaded
Inverted Pendulum (SLIP) and Thumper calls for a new model: the Asymmet-
ric Spring Loaded Inverted Pendulum (ASLIP).
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the Asymmetric Spring Loaded Inverted Pendulum (ASLIP)3; see Figs. 1.2 and 1.3. Aiming to

reflect a broader purpose, the ASLIP includes torso pitch dynamics nontrivially coupled to

the leg motion, an issue not addressed in the widely studied SLIP or in its straightforward

extensions, in which the torso COM coincides with the hip joint; see Fig. 1.2. The ASLIP

can be envisioned as a “building block” toward the design of controllers for more elaborate

models that constitute more accurate representations of legged robots such as Thumper.

Part of this thesis deals with the development of a method that combines established

nonlinear control synthesis tools, such as the Hybrid Zero Dynamics (HZD) originally pro-

posed in [110], with controllers obtained in the context of the SLIP, e.g., those proposed by

Raibert in [91], to induce exponentially stable running motions on the ASLIP. A second

aspect addressed in this work regards the performance benefits of embedding the SLIP as

the hybrid zero dynamics of the ASLIP. A SLIP embedding control law is compared with

a controller that achieves a one degree-of-freedom (DOF), non-compliant hybrid zero dy-

3The ASLIP corresponds to a Spring Loaded Double Inverted Pendulum. Thanks to Harris McClamroch
for pointing this out as an alternative term for the model.

Toe

Knee

Hip

Torso’s COM

Virtual prismatic leg

Figure 1.3: Left: The morphology of Thumper’s leg (courtesy of J. W. Hurst). The spring
in the transmission acts along the leg direction (the virtual line connecting the
toe with the hip). Right: The Asymmetric Spring Loaded Inverted Pendulum
(ASLIP). The leg force will be modeled as a spring in parallel with a prismatic
force source. The ASLIP is a more faithful representation of the robot on the left
than a SLIP model.

7



namics. The two controllers induce identical steady-state behaviors. Under transient con-

ditions, however, the underlying compliant nature of the SLIP allows significantly larger

disturbances to be rejected, with less actuator effort, and without violation of the unilateral

constraints between the toe and the ground.

These results lay the foundation for the development of a general framework for the

design of control laws that induce elegant, provably stable, running motions in legged

robots, by combining the practical advantages of compliance with the analytical tractabil-

ity offered by the hybrid zero dynamics method. In fact, this approach will be used to

derive feedback control laws that are successful in simulation in inducing efficient, natural

running motions in Thumper. Proposing and formally analyzing such control laws for the

stabilization of Thumper constitute the primary goal of this work.

1.3 The Control of Thumper

The capstone result of the research efforts in this thesis is the development of a hybrid

controller that induces, in simulation, provably stable running gaits on the monopedal

robot Thumper. Preliminary experiments at Carnegie Mellon University conducted by J.

W. Hurst used extensions of Raibert’s basic control procedure; see [91]. After extensive

trial and error, with the robot failing over a hundred times, a non-falling4 running gait

was implemented. In fact, this running gait was the result of a drift motion of a controller

designed for hopping in place.

During a short visit at Carnegie Mellon University, the author was given the oppor-

tunity to participate in the final part of the experiments, in which the structure of robot

had to be modified to make Thumper similar to a typical Raibert hopper5 so that Raibert’s

controller could be applied more successfully. In particular, a large bar had to be added to

Thumper’s torso with the purpose of increasing the rotational inertia of the body, thereby

making it relatively insensitive to leg motions during the flight phase; see [51, Chapter

4The term “non-falling” is used to emphasize that the resulting motion does not correspond to a stable
periodic orbit, at least in the rigorous sense.

5In Raibert’s planar hopper, the prismatic (light-weight) leg is mounted on the torso so that the hip joint
coincides with the torso’s center of mass. Thumper’s anthropomorphic morphology deviates significantly from
this design.
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6]. Furthermore, the distribution of the torso mass had to be modified6, so that its center

of mass became closer to the hip joint. Even after these modifications, a stable gait—in

the rigorous sense of the term—was not achieved as a result of the commanded control

action. This fact, in the opinion of the author, confirms the importance of developing rig-

orous control-theoretic feedback solutions for compliant robots with nontrivial torso pitch

dynamics.

The final chapter of this thesis, Chapter VI, undertakes the task of developing such

a feedback solution for Thumper. The feedback law proposed there builds upon control

ideas developed for the ASLIP. Nevertheless, extending these ideas to an elaborate model

that constitutes an accurate representation of Thumper’s dynamics is far from trivial. In-

deed, the ASLIP differs from Thumper in at least two important ways. First, the presence

of leg mass in Thumper leads to energy loss at touchdown and, through conservation

of angular momentum during flight, in torso rotation when the leg is positioned to its

desired touchdown position. Second, in transmitting the actuator torques to the robot’s

joints, Thumper’s powertrain introduces dynamic effects not present in the ASLIP. To be

successful in producing stable natural running motions on Thumper, the controller must

confront these challenges, and, in addition, it must guarantee that the compliance present

in the open-loop Thumper dominates the behavior of the closed-loop system.

The proposed feedback control law is developed within the hybrid zero dynamics

framework, and it acts on two levels. On the first level, continuous within-stride con-

trol asymptotically imposes (virtual) holonomic constraints that respect the compliance

present in the open-loop system and reduce the dynamics of the robot to a low-degree-of-

freedom hybrid subsystem. On the second level, event-based control stabilizes the result-

ing hybrid subsystem. Viewed from the standpoint of the modeling and control hierarchy

described at the beginning of this chapter, this low-degree-of-freedom hybrid subsystem

corresponds to the target dynamics for the desired behavior, namely, running, and it gov-

erns the high-level control underlying the achievement of this task. The coordination of

the joints and limbs of the high-degree-of-freedom plant, i.e., Thumper, in order to realize

the target dynamics, is achieved through enforcing via feedback a set of suitable virtual

6This was achieved by mounting Thumper’s computer below its torso.
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constraints, which restrict the system’s motion to a low-dimensional subset of its state

space. This reduction-by-feedback procedure can be interpreted as an instantiation of the

reductionist approach described at the beginning of this chapter.

The control law development for Thumper is systematic and the resulting controller

achieves the dual objectives of working harmoniously with the system’s natural dynamics

and inducing provably exponentially stable running motions, while all relevant physical

constraints are respected. It is anticipated that these properties will render this controller

an attractive alternative to traditional heuristic approaches by avoiding laborious trial-

and-error procedures during experimental implementation.

1.4 Organization of the Thesis

The remainder of this dissertation is organized into six chapters.

Chapter II provides a brief description of the related literature, and puts the work pre-

sented in this thesis into perspective by highlighting the main contributions of this re-

search.

Chapter III introduces the Asymmetric Spring Loaded Inverted Pendulum and devel-

ops a model that describes its dynamics in running. The ASLIP is modeled as a hybrid

dynamic system with two charts. The dynamic equations for the in-phase motion of flight

and stance are generated using the method of Lagrange. Finally, in preparation for control

law design, the model is brought into a convenient mathematical form, which affords the

direct application of tools from the theory of systems with impulse effects, in particular,

from the hybrid zero dynamics control synthesis framework.

Chapter IV, proposes a controller for stabilizing the ASLIP and rigorously proves its

stability properties. The proposed control law acts on two levels. On the first level, con-

tinuous in-stride control asymptotically stabilizes the torso pitch, and creates an invariant

surface on which the closed-loop ASLIP dynamics is diffeomorphic to the target SLIP dy-

namics. On the second level, an event-based SLIP controller is used to stabilize the system

about a desired periodic orbit. An immediate practical consequence of this method is

that it affords the direct use of a large body of controller results that are available in the
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literature for the SLIP. Furthermore, it is deduced through comparisons of the SLIP em-

bedding controller with a rigid target model controller creating a one-degree-of-freedom

non-compliant subsystem, that the underlying compliant nature of the SLIP enhances per-

formance in terms of significantly improving the transient response and reducing actuator

effort.

Chapter V introduces Thumper, and provides details on the geometry of the mech-

anism and on the transmission system. These details are crucial for understanding the

behavior of the robot and the challenges associated with its control. Moreover, they are

used to develop a model of the dynamics of Thumper, which is more complete than the

ASLIP in that it captures the dynamics of the transmission and of the segmented leg, which

is no longer considered to be massless. The development of the equations of motion for

the in-phase dynamics of flight and stance is based on the method of Lagrange. Transi-

tions between phases are assumed to be instantaneous and are modeled using standard

techniques. The procedure results in a nonlinear hybrid dynamic model of Thumper in

running, which will be used for control.

Chapter VI focuses on control law design. As was mentioned above, the majority of

control laws suitable for monopods with non-trivial torsos are derived under the assump-

tion that the torso COM coincides with the hip joint. However, the COM of Thumper’s torso

is located high above the hip, as in a human, thereby requiring novel control solutions. The

feedback law presented in Chapter VI builds upon control ideas developed in Chapter IV

for the Asymmetric Spring Loaded Inverted Pendulum (ASLIP). Thumper’s controller is

developed within the framework of hybrid zero dynamics and it works in concert with

compliance in inducing provably exponentially stable running motions, while all relevant

physical constraints are respected.

Finally, conclusions and remarks on future directions relevant to this work are pro-

vided in Chapter VII.
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CHAPTER II

Literature Survey

In this chapter, results in the relevant literature that motivate and support the work

presented in this thesis are provided. Section 2.1 briefly describes the differences between

walking and running, and adopts a criterion for distinguishing the two gaits based on the

location—highest in walking, lowest in running—of the body center of mass at midstance.

This criterion, which is based on experimental evidence and reflects the underlying energy

transformations that occur in walking and running, was adopted in order to highlight the

fact that, in running, elastic energy storage in compliant elements is a dominant charac-

teristic. This observation suggests that including compliant elements in legged machines

designed to run may not just be a luxury; it is a necessity, without which running may be

hard, or even impossible, to realize.

In an effort to explain the remarkable similarity in the ground reaction force profiles

measured in experiments with diverse animals, which in turn suggests common under-

lying energy-saving mechanisms despite the apparent diversity, biologists and engineers

proposed simple pendulum-based models. These models are briefly described in Section

2.2, with the purpose of illustrating the meaning of “natural,” or “passive” dynamics in

walking and running. Effective use of the natural dynamics is crucial to the develop-

ment of dynamic walking and running robots, as the literature presented in Section 2.3

suggests. As illustrated in the short survey of Section 2.4, where controller results for

monopedal running are discussed, the majority of control laws suitable for dynamic run-

ning robots are largely based on empirical observations. Analytical results are obtained

mostly through simplified models, which, in general, do not correspond to faithful repre-
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sentations of the robots under consideration. On the other hand, formal control methods,

e.g. passivity-based or feedback linearization controllers, which could be used in the con-

text of more realistic models, primarily focus on obtaining analytically tractable stability

criteria, without incorporating conditions for the effective use of the passive dynamics.

These results show that there is space for the development of a methodology that com-

bines analytically tractable stability statements with realistic models to design control laws

that work in concert with the natural dynamics of the system in inducing agile running

motions on monopedal machines, such as Thumper.

2.1 Walking versus Running and the Role of Compliance

Two of the most common patterns of locomotion are walking and running. At first

glance, the difference between walking and running would appear obvious. Generally, in

running there is a period of the gait cycle where all feet are in the air, whereas in walking

there is always one foot on the ground. This distinction is appropriate for most animals;

however, there are cases where it fails. For instance, it has been observed that, when hu-

mans run along a circular path, the aerial phase of the motion decreases and eventually dis-

appears if the turn has a sufficiently small radius, [73, pp. 217-219]. This is similar to what

would have been observed in running under conditions of enhanced gravity1. Further-

more, other perturbations to running, including running on very compliant surfaces, [73,

pp. 219-228], and running with increased knee flexion —or, “Groucho running”— [76],

may result in the reduction, or even elimination, of the aerial phase. However, in all these

cases, the assertion that running has been converted in walking is not entirely correct. We

will need to be clear about the differences between walking and running.

As mentioned in [4], in walking, while a foot is in contact with the ground, the corre-

sponding leg is kept fairly straight, so that the torso appears to be traveling (more or less)

along a series of arcs of circles. As a result, in walking, the torso is at its highest point at

midstance. On the other hand, in running, the supporting leg is flexed during the contact

1The equivalence between running on a circular path and running under enhanced gravity can be under-
stood by the effective “gravity enhancement” offered by the centripetal acceleration developed when running
in circles, which adds vectorially to the gravitational acceleration to produce higher ground reaction forces at
the foot, see [73, pp. 217-219].
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phase, so that the torso is at its lowest point at midstance. It was suggested by Cavagna

et al. in [21] and by McMahon in [74], that this criterion for distinguishing walking from

running is more suitable, for it is not merely based on the phenomenology of the gait, but,

most importantly, it reflects more profound interactions between the body and the ground,

responsible for the energy changes accompanying walking and running.

More specifically, force-plate records have been used to estimate the mechanical energy

of the center of mass during walking and running of a diverse assortment of animals,

including bipeds and quadrupeds, at various “constant” speeds; see for example [21], [68,

pp. 84–87], [22], and [73, p. 192]. These data reveal that, in walking, changes in the

gravitational potential and forward kinetic energies are substantially out of phase, so that

the net mechanical energy change of the body appears to be relatively small. In particular,

the increase in the gravitational potential energy in the first phase of the step, where the

body is lifted, takes place at the expense of the forward kinetic energy, and the body is

decelerated. The increased potential energy the body acquires this way may in turn be

utilized in the second phase of the step to increase the kinetic energy, and thus directly

contribute to the forward displacement as the body is falling forward. This energy transfer

mechanism is dominant at slow and moderate walking speeds, and can account for up to

65% of the total energy changes during each stride in humans, leaving only 35% to be

supplied through the work performed by the muscles2; see [21] and [22].

On the other hand, similar estimates of the mechanical energy show that running is

substantially different from moderate walking; [21], [68, pp. 89–92], and [73, p. 192]. Run-

ning is characterized by changes in the gravitational potential energy which appear to be

substantially in phase with changes in the kinetic energy; both energies reach a minimum

at midstance and both go through a maximum at liftoff, thus resulting in very large fluc-

tuations of their sum during the contact phase. Intuitively, during the first half of the

stance phase, the body’s center of mass decelerates and falls, and the leg, which is short-

ening, acts like a brake. During the second half of the stance phase, however, the center of

2Note that the phase relationship between the kinetic and gravitational potential energies is only one of the
factors determining energy economy in walking. The relative magnitude of the two forms of energy, as well
as how closely they approximate mirror images of each other also affect the work performed by the muscles
to maintain walking. The energy recovery, computed as a percentage of the total power required to maintain
walking without the energy transfer mechanism, e.g. 65% in humans, captures the effect of all these factors.
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mass accelerates and rises because the leg, which is extending, performs work on the body.

Therefore, it seems that in running kinetic energy cannot be exchanged with gravitational

potential energy and vice versa, as in walking, yielding the energy saving mechanism of

walking largely irrelevant.

Nevertheless, as mentioned in [4], human running uses much less energy than what

might be expected. Suppose for a moment that the mechanical energy removed during the

first half of the stance phase, where the body falls and decelerates, were degraded into heat.

Then, the work required to replace it would have to be supplied by metabolic activity in the

muscles. The corresponding metabolic energy has been estimated in humans, including

the known efficiency of the muscle, and was found to be approximately twice the actual

energy consumption in slow running, and three times the actual energy consumption in

fast running; see [20]. Furthermore, it was observed in [22], that, in hopping kangaroos,

the ratio of the rate of external work3, i.e. the power required to move the center of mass of

the body, over the chemical power input to the muscles is much larger than the efficiency

of the muscles, even in the optimal conditions of contraction: it reaches 76% at hopping

speeds about 30 km · h−1 while the maximum efficiency with which the muscles convert

chemical energy to positive work is approximately 25%. Similar conclusions have been

obtained in other animals as well, such as turkeys, dogs, and monkeys, to name a few.

The inexplicably large efficiency of running, together with the observation that the

mechanism for minimizing energy expenditure in walking, i.e. transforming kinetic to

gravitational potential energy and vice versa, is not plausible in running, has led phys-

iologists to put forward the hypothesis that part of the mechanical energy absorbed in

decelerating and lowering the body in the first half of the step is stored in the muscles

and tendons in the form of elastic energy, which is then released to lift and accelerate the

body in the second half of the step; see [4] and for a brief overview and [68, pp. 96–

100], [20], [22], [73, pp. 204–208], [5], for details. Perhaps, it would be interesting to note

that, despite the fact that physiologists have observed the large efficiency of running as

3The term external work is used to refer to work performed to move the center of mass of the body through
the application of forces on the ground, as opposed to the term internal work, which corresponds to work that
does not cause any displacement of the center of mass of the body, e.g. work performed to change the kinetic
energy of the limbs relative to the center of mass; [68, p. 83].
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early as the 1930’s, it was not until recently that elastic energy storage has been proposed

as the mechanism responsible for it; this seems to be primarily due to the fact that direct

measurements of the elastic energy are hard to obtain.

From this discussion, it becomes apparent that the role of the elastic energy stored in

compliant elements, such as tendons, is of central importance in explaining the mechanics

of running. In fact, it may be argued that compliance is not merely a dominant character-

istic of running; it is a defining feature of running, without which running would be hard,

or even impossible, to realize. It should be clarified here though that elastic energy storage

may also be present in walking, despite the fact that the forces developed in walking seem

to be too small to cause sufficient stretching of the tendons. Indeed, as mentioned in [65],

in human walking, the ankle push-off phase amounts for approximately 15% of a stride,

while the calf muscles are active for almost double that time, allowing the Achilles tendon

to store energy prior to push-off4. Nevertheless, in walking, elastic energy storage seems

to be not as dominant as it is in running.

2.2 Simple Mechanisms for Studying Walking and Running

In the previous section, two basic mechanisms for minimizing energy expenditure in

walking and running have been briefly discussed. It was described that, in walking, for-

ward kinetic energy is transformed into gravitational potential energy and vice versa, sav-

ing energy that would otherwise have to be supplied by muscles. On the other hand,

in running, energy is stored prior to midstance in compliant elements, such as muscles

and tendons, and is then released after midstance to lift and accelerate the body forward.

What is also remarkable about these studies is the fact that these basic energy transforma-

tion mechanisms are present in diverse species that differ in skeletal type, leg number and

posture; see [22], [34], [33], [29], and references therein. For instance, in [22] the subjects

included bipedal birds (turkey and rhea) that walk and run, quadrupedal mammals that

walk, trot, and gallop (dog, monkey, and ram), and bipedal mammals which hop (kanga-

roo and springhare). In an effort to explain the underlying similarity in spite of the appar-

4In fact, this observation has been effectively used in the Cornel biped, a biped specifically designed for
minimal energy use; [27].

16



ent diversity, simple reductive models, whose purpose is to capture the basic mechanics of

walking and running without depending on the details of body structure and morphology,

have been proposed. In this section, two families of such mechanisms will be discussed,

the objective being to clarify the term “passive dynamics” in walking and running, which

will be important in motivating the control structures proposed in this work.

2.2.1 Walking and the Inverted Pendulum

As suggested in [21] and [22], in walking the center of mass of the body “vaults” over

a rigid stance leg in a way analogous to an inverted pendulum, consisting of a point mass

atop a stiff rod; see Fig. 2.1. In accordance to the experimental evidence described in

the previous section, the kinetic and gravitational potential energies of the pendulum are

exchanged cyclically, and the center of mass reaches its highest point at midstance. Fur-

thermore, a simple exercise based on the inverted pendulum model seems to predict rea-

sonably well the speeds at which transition to running occurs. As noted in [4], walking

is restricted to speeds somewhat less than
√
gl, where g is the gravitational acceleration

and l is the leg length. The centrifugal effect “lightens” the contact force at the foot, and

as the speed approaches
√
gl, the total force goes to zero. Breaking the “

√
gl-barrier” calls

for a different type of gait, namely running. Note that the inverted pendulum model was

shown to be general enough to qualitatively describe walking not only in vertebrates, as

in [21], [22], but also in arthropods with sprawled posture; [12], [34], [29].

Single Support Double

Heel strike

Figure 2.1: The inverted pendulum analogy of walking (adapted from [67]). The figure
shows the single support phase, in which no active force is necessary to hold
the weight, and the double support phase, in which the velocity of the center
of mass is reoriented. Note that the hip is at its highest point at midstance.
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The experimental fact that fluctuations in the total mechanical energy of the center of

mass are relatively small during the single support phase in walking is captured by the

inverted pendulum model adequately well. Furthermore, this observation suggests that,

in bipedal walking, nearly zero muscular activity is required to move the swing leg for-

ward in anticipation of touchdown. In fact, electromyographic records indicate very little

activity in the swing leg at normal walking speeds, except at the beginning and at the end

of the swing phase; [73, p. 198]. The muscles are active only during the double support pe-

riod. These observations led Mochon and McMahon to introduce a more complete model

for walking, comprising a second leg represented as a two-link pendulum; the two links

correspond to the thigh and shank of the swing leg. This double pendulum is attached at

the center of mass of the inverted pendulum representing the stiff stance leg, as shown in

Fig. 2.1; see [78], [79] and [73, pp. 198–203]. This model, termed the ballistic walking model,

shows that coupling between the swing leg (acting as a compound pendulum) and the

stance leg (acting as an inverted pendulum) is important; the swing leg alone cannot pre-

dict the swing duration observed in walking experiments. Moreover, the ballistic walking

model illustrates that gravity is a dominant factor in determining the dynamics of walk-

ing: despite the absence of any equivalent of muscle activity during the swing phase, the

model can reproduce walking adequately well.

Other models based on the pendulum analogy of walking have been proposed; see

[70], [40], and [39], for example. These models usually assume that the mass of the body

is concentrated at the hip, and exhibit various assumptions concerning the distribution

of inertia along the limbs, the shape of the foot, the actuation pattern etc. A multitude

of interesting questions regarding walking can be addressed using these models, which,

other than efficiency, [39], [30], [64], [67], they can be used to study stability [70], [40],

speed/step-length relationship, [63], and to make comparisons of the pendulum analogy

with other theories of human walking, [66].

The pendulum analogy is certainly very useful for explaining the energy saving mech-

anisms present in walking, but, as mentioned in [67], it leads to a paradox, for it does

not explain why walking is so much more costly than other modes of transport such as

wheeled locomotion. This paradox may be resolved by considering the double support
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phase as the transition from one energy-conservative, single-support phase to the next;

see [30], [64], [67]. In particular, at the end of each single-support phase, the velocity of

the center of mass is directed downwards, and it needs to be redirected upwards in or-

der to maintain forward progression; see Fig. 2.1. Changing the direction of the velocity

of the center of mass requires the leading leg to perform negative work, which must be

counteracted by positive work that can be supplied anytime throughout the step. The per-

formance of negative and positive work entails a metabolic cost, which is inevitable in the

pendulum representation of walking. The walking models used in [64] and [30] suggest

that it is advantageous to perform positive work by applying ankle push-off at the trailing

leg at the same time with, or immediately before, heel-strike, instead of employing torque

on the stance leg.

As may be expected, the basic inverted pendulum model has limitations in describ-

ing walking. These are attributed mostly to the phenomena associated with the double

support phase. In fact, the work in [30], [64], and [67] suggests that the degree to which

potential and kinetic energy are exchanged according to the pendulum analogy should

be reevaluated, mainly due to the fact that traditional methods for estimating external

work —i.e., the “combined limbs method” used in [21], [22], [34] for example— tend to

overestimate the energy savings in walking. This is associated with the positive and neg-

ative work performed during the double stance phase. Moreover, as pointed in [33], the

assumption of a rigid stance leg does not explain the relatively small vertical excursions

of the center of mass measured in experiments, and, as a result, the model cannot faith-

fully reproduce the observed ground reaction force profiles. To address these (and other)

shortcomings, Alexander first proposed a model for walking, which includes compliance

in the legs in [6]. More recently, a similar walking model with massless compliant legs

has been proposed in [41], and it was found to capture the ground reaction force profiles

in walking, which are characteristically “M-shaped”. The authors of this work argued

that walking efficiency primarily depends on how much of the stride energy can be stored

in elastic elements when redirecting the velocity of the center of mass during the double

stance phase.
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2.2.2 Running and the Spring Loaded Inverted Pendulum

While there is some ambiguity in quantifying the role of elastic energy storage in walk-

ing, its dominance in running admits no doubt. In running, the leg acts as a spring, storing

energy by compressing during the braking phase, and then returning this energy in the

propulsive phase as it decompresses. This energy saving mechanism seems to be present

in a variety of animals, leading biologists to conjecture that diverse species run in a stable

manner by tuning their musculoskeletal system so that their center of mass appears to be

moving as if it were riding on a pogo-stick; [33], [29].

In one of the earliest works, McMahon introduced a somewhat non-physical spring-

mass system for the purpose of investigating gait transitions in bipeds and quadrupeds;

see [74]. The associated analysis was not based on the dynamical equations of the model,

but the importance of using such a simple spring-mass system to study the properties of

the gait has been clearly illustrated. A more detailed investigation of the dynamics of a

spring-mass system as a canonical model for hopping and running has been undertaken

by Blickhan in [11]. In this work, Blickhan introduced a model comprised of a point-mass

body attached to a massless, undamped, prismatic spring, representing the action of a

leg. This model, depicted in Fig. 2.2, corresponds to the most common configuration of

the Spring Loaded Inverted Pendulum (SLIP), which has appeared widely in the locomotion

literature; see [33], [49] and references therein. In [11] Blickhan imposed physiological

constraints on the parameters of the model, and, notwithstanding its apparent simplicity,

found it to be remarkably accurate in predicting the contact times, peak ground reaction

forces and energetics of the center of mass observed in experiments of running in humans.

The potential prescriptive power of the SLIP was recognized by McMahon and Chen

in [75]. McMahon and Chen focused on identifying the rules that couple leg-spring stiff-

ness, gravity, and forward speed in running, and, among other things, they showed that,

with appropriately chosen parameters and initial conditions, the model could accurately

predict the relation between vertical acceleration and vertical displacement observed in ex-

periments that included a running dog, a running man, and a hopping kangaroo. Through

simulations on the SLIP, McMahon and Chen in [75] suggested two different strategies for
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Aerial phase Stance phase

Figure 2.2: The Spring Loaded Inverted Pendulum analogy of running. In the first part
of the stance phase the leg is compressing and energy is stored in the spring,
which is returned in the second part of the stance when the body is lifted and
accelerated. Note that the hip is at its lowest point at midstance.

maintaining periodicity in running at various forward speeds. The first strategy requires

stiffening the legs in order to accommodate higher forward velocities, when the landing

configuration is kept constant. The second strategy suggested that, with the spring stiff-

ness kept constant, higher forward speeds can be accommodated by landing at less verti-

cal configurations. This last principle was already at work in legged robotics. Raibert had

already devised a foot placement feedback strategy, acting during the flight phase, to reg-

ulate forward speed in his monopedal, bipedal, and quadrupedal robots; see [90] and [92].

In fact, even though Raibert used models that were more complete than the conservative

SLIP —they included actuation, energy losses, non-trivial torso etc.— simple spring-mass

systems were central to the development of his control laws.

The remarkable success of the SLIP in describing and predicting the mechanics of

running in a large variety of animals, ranging from humans to lizards and cockroaches,

see [13], [36] and references therein, and in robots with different numbers of legs and pos-

tures as described in [91], led to the conjecture that the SLIP was not merely a descriptive

model; it represents a model that could be used to advance hypotheses concerning the

high-level control strategy underlying the achievement of the task; [33], [49]. For instance,

Full and his collaborators observed in experiments that the cockroach Blaberous discoidalis

runs explosively in a stable manner over rough terrain at speeds high enough to challenge

the ability of proprioceptive sensing and neural reflexes to respond to perturbations within
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a stride; [35]. They proposed and numerically analyzed a simple conservative model, and

they argued that “mechanical feedback”5 (preflexes) may replace detailed neural feedback

(reflexes) in rapid disturbance rejection; [62].

Such hypotheses can be made mathematically precise and tested in the context of sim-

ple mechanical models like the SLIP. In fact, Schmitt and Holmes proposed a model similar

to the SLIP, termed the Lateral Leg Spring (LLS), suitable for studying the horizontal dynam-

ics of sprawled insects; [98]. In agreement with [62], they arrived at the conclusion that

the model exhibits asymptotically stable motions (within a constant energy level) when

provided with appropriate initial conditions, and without any neural-equivalent feed-

back. Recently, it was discovered in [104], and, independently, in [42], that, not only the

horizontal-plane LLS, but also the sagittal-plane SLIP possesses a similar behavior; namely

“self-stable” running gaits. Similar results were also found in the context of quadrupedal

running with a bounding gait in [87], and simple control laws operating mostly in the feed-

forward regime have been proposed that enlarge the basin of attraction of “self-stable”

gaits in [105]. Three-dimensional extensions of the SLIP with relevant stability analyses

are also available in the literature; [103].

The inherent stability of SLIP and LLS models is a very interesting property since, as is

known from mechanics, systems described by autonomous, conservative, holonomically

constrained flows cannot be asymptotically stable6. However, Altendorfer et al. in [8]

showed that the stable behavior of piecewise holonomic conservative systems is a conse-

quence of their hybrid nature. The work in [8] offers a theoretical framework suitable for

analyzing various leg placement control policies for the SLIP, by obtaining conditions that

are necessary for asymptotic stability and sufficient for instability, and can be checked an-

alytically. Analytical methods for studying the dynamics of the SLIP have been proposed

in the literature before. For instance, Schwind and Koditschek introduced an iterative pro-

cedure that combined Picard-style iterates with the Mean Value Theorem for Integrals to

construct closed-form approximants of the Poincaré return map associated with the run-

5From a rigorous control perspective, the term is somewhat vague. It refers to feedforward stabilization of
an open-loop plant. More details and clarifications can be found in [37], [59] and [49].

6By Liouville’s theorem (see [97, p. 122]), the incompressibility of the phase fluid precludes the existence of
asymptotically stable equilibria in Hamiltonian systems, for if such points existed, they would reduce a finite
volume in the phase space to a single point.
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ning SLIP; see [99] and [100]. Based on this approach, the authors studied conditions for

existence and stability of periodic running motions in the SLIP in [101] and [102].

2.3 Walking and Running Robots

The field of legged robots has grown to the point where one can identify several schools

of thought on the subject. Most visible to the general public is the part of the field focused

on building humanoids, that is, robots that are inspired by human morphology. The most

well known of these robots is undoubtedly Honda’s ASIMO. Other robots in this vein

include HRP-2 (Kawada Industries, Japan) and Johnnie (Technical University of Munich,

Germany). These machines are very complicated, high-degree-of-freedom prototypes built

as part of an effort to develop robots that will be able to serve humans or even directly re-

place humans in the operation or service of other machines. These robots involve a very

broad ranging development effort that includes machine vision, portable power sources,

artificial intelligence, force sensing, durability, packaging, etc. As such, upright, stable

bipedal locomotion is only one piece of the overall effort, and, largely for reasons of ex-

pediency, the designers of these robots have adopted one of the simpler notions of gait

stability. For the robots cited, the stabilization algorithm boils down to maintaining the

center of pressure of the ground reaction forces of the stance foot strictly within the convex

hull of the foot. The resulting motions are flat footed and distinctly not human like.

2.3.1 Passive Dynamic Walking Robots

At the opposite end of the complexity spectrum in terms of technology are the “min-

imalist” bipeds, whose designers seek the minimal assembly of links, joints, sensors and

actuators to accomplish a given locomotion task. This area of bipedal locomotion was

inspired by the pathbreaking work of Tad McGeer7, who in the late 80’s and early 90’s,

analyzed and built planar bipedal robots which could walk stably8 down a slight incline

with no sensing or actuation whatsoever; [69], [70], [71]. McGeer’s robots are “passive”

7Prior to McGeer, Miura and Shimoyama demonstrated dynamic walking on a robotic biped in [77]. In
contrast to McGeer’s robots, however, the gait was generated by feedforward commands and was stabilized
by event-based feedback.

8In the sense of possessing an exponentially stable periodic orbit.
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because they employ no active power source; walking is purely the outcome of the inter-

play between gravity and the geometric and inertia properties of the robot. In accordance

with biological observations, most notably the ballistic walking model proposed by Mo-

chon and McMahon in [78], [79] and [73, pp. 198–203], the legs move freely as pendulums

under the influence of gravity and, if their masses and lengths are tuned just right, they

can produce stable periodic motions without any feedback control.

Further impetus to this area was provided by Collins, Wisse, and Ruina who built

3D (spatial) actively powered walkers that were able to walk on level ground through

the judicious placement of actuators; [27] and [112]. In these research efforts, two dif-

ferent strategies for powering walking robots were employed. The Cornell team used

electric motors with springs to implement ankle push-off in the trailing leg, during and

after the collision of the leading leg with the ground; [27]. On the other hand, the Delft

team introduced actuation at the hip by alternating the states of antagonistic pairs of McK-

ibben’s muscles based on feedback from foot contact sensors responsible for detecting heel

strike; [112]. The policy employed by the Cornel biped complies with the one suggested

by Kuo in [64] and [67], and it results in a very low cost of transport—lower than that

of the Delft biped, Denise, [112, Chapter 6]. This was expected based on Kuo’s analysis

in [64], which suggests that employing ankle push-off is energetically advantageous, com-

pared to employing hip torque on the stance leg. Note, however, that hip actuation offers

advantages too, mainly in terms of control, by improving the robustness against falling

forward, as suggested in [111]. In any case, despite the presence of actuators, the resulting

motions are still dominated by passive leg dynamics; actuation is intended only to tune

and shape these dynamics and not, as is commonly done in robotics, to impose prescribed

motions; [65].

Dynamic walkers, passive or active, use far less —in the fully passive extreme, none—

control compared to humanoid robots; yet, they exhibit remarkably human-like motions. It

is at first sight surprising that an activity so apparently complex as walking can be achieved

simply, without employing any feedback action. Moreover, with parsimonious actuation

and minimal control action that exploit the natural dynamics of the system by accentuat-

ing the passive leg motion, energy efficiency, a critical requirement for every autonomous
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legged robot, is dramatically increased. Dynamic walkers, such as the the Cornell Biped,

walk at an energetic cost of transport almost identical to that of human walking. This ev-

idence leaves no doubt of the fundamental value of dynamic walkers in uncovering the

basic principles of walking, and attracted the attention of biologists and sport scientists.

As noted by Alexander in [7], the message that biologists received from the success of dy-

namic walkers is that “walking could be generated with much less nervous control than

what was originally supposed”.

Unfortunately though, it is a fact that the remarkable elegance and economy of dy-

namic walkers comes at the cost of poor ability in achieving tasks other than walking,

e.g. climbing stairs, standing or turning. On the other hand, the impressive versatility,

demonstrated by robots like ASIMO comes at the cost of increased power consumption

requirements, making these robots nonviable in environments with a limited power sup-

ply. It is therefore natural to ask how feedback control methodologies can be developed to

synthesize control laws that combine the efficiency and elegance of dynamic walkers with

the versatility of robots like ASIMO. Currently, there are not many results on these issues,

but suggestions toward this direction are outlined in [65].

2.3.2 Dynamically Stable Running Robots

In the early 80’s Raibert was the first to successfully build an actively balanced legged

machine, [90], [89], [91]. He and his team built a pneumatically actuated monopod that

was able to run with speed of 1 m/s; [89]. The controller’s task was decomposed into

three subtasks dedicated to (a) forward propulsion of the robot at the desired speed, (b)

regulation of the vertical rebounding motion of the body, and (c) keeping the body at a

desired posture; [90], [91, Chapter 2]. To control the forward speed of the monopod, the

controller places the toe at a desired position with respect to the center of mass during

flight. To regulate the hopping height, the length of the leg at the bottom of the stance

phase is adjusted by giving a fixed amount of thrust. Finally, to control the pitch attitude

of the body, the controller employs hip torque during stance. Based on the same principles,

Raibert and his team built a 3D hopper that was able to run without being constrained on
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the sagittal plane; [91, Chapter 3].

The success of these simple algorithms in the control of an apparently complex task

such as running, led Raibert to build bipedal and quadrupedal extensions of his monopod

and to apply the same basic ideas. In [92], [91, Chapter 4] and [88], Raibert extended the

control algorithms developed for monopods to bipeds and quadrupeds. He investigated

quadrupedal running gaits that use the legs in pairs: the trot (diagonal legs in pairs), the

pace (lateral legs in pair) and the bound (front and rear pairs). In order to simplify the

control problem, he proposed a virtual leg approach, according to which legs that operate

in pairs can be substituted by an equivalent virtual leg. Raibert’s approach separates the

control problem into two parts. The first part is a high-level controller based on the three-

part algorithm developed for the monopod, which produces the commands needed to

control the body motions in achieving the desired behavior. The second part is a low-level

controller that ensures the conditions for the virtual leg approach are met.

Motivated by Raibert’s work, Buehler and his students developed dynamically stable

running robots that employ low degree-of-freedom electrical actuation combined with a

“minimalist” mechanical system; see [17] for an overview. Like Raibert, Buehler focused

on dynamic mobility, but emphasized mostly energy efficiency and autonomy replacing

the high-power pneumatic and hydraulic actuators in Raibert’s robots with electrical mo-

tors. Monopod I consisted of a body connected to a compliant prismatic leg at the hip and

it was able to run in the sagittal plane at a speed of 1.2 m/s with an average mechanical

power of 125 W; [1]. The control algorithms for the pitch and forward speed were based

on Raibert’s decoupled controllers, while a “thrusting” control law based on the model of

the transmission system was proposed to inject sufficient energy during the short stance

phase; [44]. Energetic analysis of the experimental results showed that, at top speed, 40%

of the energy goes to sweeping the leg forward. To reduce this energy, Monopod II was

constructed; [44]. Monopod II inherited most of the features of Monopod I; however, com-

pliance in series with the hip actuator was introduced, resulting in a sustained body-leg

counter-oscillation, which dramatically decreased the total energy requirement: Monopod

II was capable of achieving stable running at a speed of 1.25 m/s with total mechanical
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power expenditure9 reduced to 70% of that required for Monopod I.

In the same vein, several other monopedal robots were built, including Ringrose’s self-

stabilizing one-legged robot, [93], and Zeglin’s bow-leg hopper, [16]. For a comprehensive

survey of monopedal robots and related control strategies, the reader is referred to [96].

2.4 On the Control of Hopping and Running

The complexity of the dynamics of one-legged hoppers precluded analytically tractable

stability studies on realistic models of monopedal robots, and led to introducing various

simplifications: point-mass body, massless leg, zero gravity in stance, to name a few. In

one of the earliest analytical works, Koditschek and Buehler explain the robust behavior of

Raibert’s vertical hopping controller by concentrating on the vertical oscillation of a sim-

plified hopper; see [60]. This analysis is extended in [108] by considering the bifurcation

diagram of the system’s return map. Forward dynamics is added to the vertical hopper

in [72] with the purpose of investigating its effect on the vertical motion. The problem of

controlling forward velocity alone is examined in [31] and [101], where no control input is

available at the leg.

On the other hand, the combined difficulties of hybrid dynamics and underactuation

inherent in dynamically stable legged systems stymied the direct application of nonlin-

ear controller synthesis tools, such as those in [57], to induce provably stable motions to

realistic models of running robots. Instead, many empirical control procedures have been

employed over the past twenty years to control hopping and running robots or robot mod-

els; see [91], [2], [43], [32], [80], [56], [23], [3] for examples of one-legged robots.

In many cases, these control procedures are inspired by Raibert’s original three-part

controller, [91]. In [2], the authors present a strategy, termed the controlled passive dy-

namic running (CPDR), for the control of a one-legged running robot featuring compliant

elements in series with the hip and leg actuators. The proposed control law exploits the

system’s passive dynamics, i.e. its unforced response, through imposing proper desired

9The total mechanical power expenditure is measured by the “specific resistance” introduced by Gabrieli
and von Kármán in [38], and is defined as the ratio of the output power (mechanical or electrical) P over the
product of the total weight of the vehicle mg with the maximum speed vmax.
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trajectories via inverse dynamics control on the actuated joints, while a modification of

Raibert’s foot-placement controller is used for adapting the motion to varying forward

velocity commands. This approach has been expanded and successfully implemented in

experiments in [3]. A different class of controllers for monopedal running was introduced

in [32]. These controllers apply impulsive (or, equivalently piecewise constant) feedback

inputs at discrete time instants throughout a stride to stabilize unforced periodic solutions

of a simplified model, and were found to perform well on an exact model of the hopper.

The reliance of the control laws in [32] on a simplified model is removed in [56]. From a

minimalist perspective, a realistic one-legged hopper is controlled using only a hip actua-

tor in [23]. All the control laws mentioned so far incorporate sensory feedback to stabilize

periodic running motions. However, as indicated in [80], stable running can be achieved

using purely feed-forward periodic commands to the hip and leg motors.

A quite different paradigm for control law design combining analytical tractability with

realistic models has been followed in [46], [110], and [24]; see also [109] for an integrative

perspective. There, geometric nonlinear control methods have been developed that deal

directly with the underactuation and hybrid dynamics present in legged robots, and in-

duce provably asymptotically stable dynamic walking and running motions in bipedal

robots. In particular, it has been shown that planar walking and running gaits can be

“embedded” in the dynamics of a biped by defining a set of holonomic output functions

with the control objective being to drive these outputs to zero; [46], [110]. In essence, this

method asymptotically restricts the dynamics of the closed-loop hybrid model to a lower-

dimensional attractive and invariant subset of the state space. The stable periodic solutions

of the dynamics restricted on this subset, called the Hybrid Zero Dynamics (HZD), encode

the desired task (walking or running).

The general idea of task encoding through the enforcement of a lower-dimensional

target dynamics10, rather than through the prescription of a set of reference trajectories,

has been employed in the control of dynamically dexterous machines, including juggling,

10Specifying the desired behavior of a plant through the definition of target dynamics is not a new concept in
control theory; see for instance model reference adaptive controllers, [61], or model matching control designs,
[28]. In the vast majority of these controllers, however, the target dynamics is usually a very simple system; in
many cases a double integrator. In the work mentioned above, the target dynamics is a complex system —in
legged locomotion, a hybrid dynamical system— that captures the task-level behavior.
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brachiating and running robots, by Koditschek and his collaborators; [18], [86] and [94].

The same general idea, albeit in a fully actuated setting, has been employed in [10] and [9],

where the method of controlled symmetries introduced in [107] together with a general-

ization of Routhian reduction for hybrid systems were combined to extend passive dy-

namic walking gaits, such as those obtained by McGeer’s passive walker [70], in three-

dimensions.

Task encoding through imposing pre-specified target dynamics leaves one with the

question of selecting a suitable candidate dynamical system for the targeted running be-

havior. On one hand, as was described in Section 2.2.2, a growing body of evidence in

biomechanics indicates that diverse species, when they run, they tune their neural and

musculoskeletal systems so that their COM bounces along as if it was following the dy-

namics of a SLIP; [11], [13], [33]. On the other hand, careful consideration of the SLIP gave

insight into synthesizing empirical control laws capable of stabilizing running robots with

one, two and four legs, as was demonstrated in [91]. In the light of this evidence, the SLIP

is construed as a dynamic model of the observed running behavior, and thus can be used

as the target dynamics for legged robots; see [33], and [49].

Up to this point, however, much of this research has been concentrated on the SLIP it-

self, and, as was indicated in [23], controllers specifically derived for the SLIP will have to

be modified in order to be successful in inducing stable running in more complete models

that include pitch dynamics or energy losses. Only preliminary results in this direction are

available, including [95] and [94], in which controllers for running exploit results known

for the SLIP. Furthermore, the majority of control laws suitable for one-legged robot mod-

els exhibiting pitch dynamics are derived based on the assumption that the torso COM

coincides with the hip joint; for example, see [2], [32], [80], [56], [23], [3]. The purpose of

this assumption, which is crucial for the success of the control laws, is that it results in triv-

ial coupling between the torso and leg dynamics. To the best of the author’s knowledge,

only [54] and [55] addressed the asymmetric case, but stability conclusions were drawn

from numerical studies only.

These observations set the stage for this thesis. Chapters III and IV aim at establishing

a more rigorous connection between the SLIP as a control target for running and more
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complete plant models of legged robots, such as the ASLIP that includes nontrivial pitch

dynamics. Then, in Chapters V and VI, the feedback ideas developed for the ASLIP are

extended to derive control laws with provable stability properties that work harmoniously

with the natural compliant dynamics of Thumper to induce elegant running motions on

the robot.
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CHAPTER III

Approximating Thumper:

The Asymmetric Spring Loaded Inverted Pendulum

As was mentioned in the introduction, the first step toward the construction of con-

trollers for running in Thumper is the introduction of an intermediate model, termed the

Asymmetric Spring Loaded Inverted Pendulum (ASLIP). This model is intended to bridge the

gap between Thumper and point-mass hoppers that describe the center of mass dynam-

ics of running, such as the Spring Loaded Inverted Pendulum (SLIP). Aiming to reflect a

broader purpose, the ASLIP includes torso pitch dynamics nontrivially coupled to the leg

motion, an issue not addressed in the widely studied SLIP or in its straightforward ex-

tensions, in which the torso COM coincides with the hip joint. Despite its importance, to

the best of the author’s knowledge, no rigorous studies of the ASLIP exist in the relevant

literature.

In this chapter, a mathematical model that governs the evolution of the hybrid dynam-

ics of the ASLIP in running is developed. Section 3.1 provides the modeling hypotheses,

based on which the equations of motion in the stance and flight phases will be derived.

This is accomplished in Sections 3.2 and 3.3 through the use of the method of Lagrange.

Transitions between phases are modeled in Sections 3.4 and 3.5, and the system is brought

to the form of a system with “impulse” effects in Section 3.6. This form enables the use of

results from the theory of systems with impulse effects —in particular, the hybrid zero dy-

namics method— to design controllers that induce provably exponentially stable periodic

running motions in the ASLIP. This task is undertaken in Chapter IV.
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3.1 Terminology, modeling hypotheses, and notation

A schematic for the Asymmetric Spring Loaded Inverted Pendulum (ASLIP) is pre-

sented in Fig. 3.1. During running, the ASLIP alternates between stance and flight phases.

In the stance phase the leg-end is in contact with the ground, while in flight the ASLIP

follows a ballistic trajectory under the influence of gravity. In what follows, the subscripts

“f” and “s” denote “flight” and “stance,” respectively.
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Figure 3.1: Left: The morphology of Thumper’s leg; see [52], [51] for design principles and
hardware details. The knee has a revolute series compliant actuator. Right: The
Asymmetric Spring Loaded Inverted Pendulum (ASLIP). The leg force u1 will
be modeled as a spring in parallel with a prismatic force source. The ASLIP is
a more faithful representation of the robot on the left than a SLIP model.

As shown in Fig. 3.1, the ASLIP is composed by a torso and a single leg attached to

the torso via a revolute joint, termed the hip joint. The hip joint does not coincide with the

center of mass (COM) of the torso, which is modeled as a rigid body with mass m and

moment of inertia J about the COM. The leg is composed by two links, the lower and

the upper leg, which are connected via a prismatic joint, and are assumed to be massless.

The contact of the leg with the ground, usually referred to as the toe, is modeled as an

unactuated pin joint. The ASLIP is controlled by two inputs: a force u1 acting along the

leg, and a torque u2 applied at the hip. In Section 4.6, the leg force u1 will be modeled as a
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spring in parallel with an ideal prismatic force source.

In the following list, the hypotheses underlying the derivation of the model of the

ASLIP presented in this chapter are enumerated. The significance of these modeling hy-

potheses will become apparent in subsequent sections, where details on the model deriva-

tion are presented. Here, all hypotheses are collected for reference purposes.

Model Hypotheses: ASLIP

HMA1) The motion is planar, i.e., running is constrained in the sagittal plane;

HMA2) The torso is modeled as a rigid body with nonzero mass and distributed inertia.

The leg is assumed to be massless. The hip and knee joints are assumed to be ideal

(frictionless) revolute and prismatic joints, respectively;

HMA3) The point of contact between the leg-end and the ground is unactuated; it is mod-

eled as a frictionless pin joint; and

HMA4) The leg force u1 will be modeled as a spring in parallel with an ideal prismatic

force source.

Gait Hypotheses for Running: ASLIP

HGA1) Running is from left to right and takes place on a level surface;

HGA2) There are alternating phases of stance and flight separated by touchdown and

liftoff events;

HGA3) During the single support phase the stance leg acts as an ideal pivot joint; in par-

ticular, throughout the stance phase it can be guaranteed that the vertical component

of the ground reaction force is non-negative and that the ratio of the horizontal com-

ponent over the vertical component does not exceed the coefficient of friction (the leg

does not “pull” the ground and the toe does not slip);

HGA4) The COM of the robot travels a nonzero horizontal distance during the flight

phase;
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HGA5) The flight phase is terminated when the toe touches the ground. No impact occurs

at this instant (the leg is assumed to be massless and there is a prismatic spring along

its direction); and

HGA6) In the open-loop system, the stance phase is terminated when, in the absence of

vertical ground reaction force component, the acceleration of the toe is positive, i.e.,

directed upwards. In the closed-loop system, switching from stance to flight is as-

sumed to be control decision.

3.2 ASLIP Flight Dynamics

In accordance with hypotheses HMA1) and HMA2), the flight phase dynamics corre-

sponds to a planar rigid body undergoing ballistic motion in a gravitational field. The

configuration space Qf of the flight phase is a simply-connected open subset of R
2 × S

1

corresponding to physically reasonable configurations of the ASLIP, and it can be parame-

terized by the Cartesian coordinates xcm and ycm of the COM together with the pitch angle

θ, i.e., qf := (xcm, ycm, θ)
′ ∈ Qf ; see Fig. 3.1.

The equations of motion of the ASLIP during the flight phase are obtained through the

method of Lagrange; see [106, p. 255]. If Kf : TQf → R and Vf : Qf → R denote the

kinetic and potential energies of the ASLIP in flight, respectively, then the corresponding

Lagrangian Lf : TQf → R is

Lf(qf , q̇f) := Kf(qf , q̇f) − Vf(qf)

=
1

2
m(ẋ2

cm + ẏ2
cm) +

1

2
Jθ̇2 −mgycm,

(3.1)

where g is the gravitational acceleration. The flight dynamics of the ASLIP can then be

described by the second-order system

Df q̈f +Gf = 0, (3.2)

where Df = diag(m,m, J) and Gf = (0,mg, 0)′ . The system (3.2) can easily be written in
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state-space form as

ẋf :=
d

dt







qf

q̇f






=







q̇f

−D−1
f Gf






=: ff(xf), (3.3)

evolving in TQf :=
{

xf = (q′f , q̇f
′)′ | qf ∈ Qf , q̇f ∈ Tqf

Qf
∼= R

3
}

.

As mentioned in Hypothesis HGA5), the flight phase terminates when the vertical dis-

tance of the toe from the ground becomes zero. To realize this condition, the flight state

vector is augmented with αf := (ltd, ϕtd)′ ∈ Af an open subset of R× S
1, where ltd and ϕtd

are the leg length and angle at touchdown, respectively, and α̇f = 0. This means that, dur-

ing flight, the leg is assumed to obtain the desired length and orientation instantaneously1,

without affecting the motion of the torso. The threshold function Hf→s : TQf × Af → R

given by

Hf→s(xf , αf) := ycm − ltd cos(ϕtd + θ) − L sin θ, (3.4)

signifies the touchdown event at its zero crossing, and defines a smooth switching mani-

fold Sf→s in the augmented state space Xf := TQf ×Af , given by

Sf→s :=
{

(xf , αf) ∈ Xf | Hf→s (xf , αf) = 0
}

. (3.5)

Note that in (3.4) and (3.5), the parameter αf is an input available for discrete-time control,

and will eventually be chosen according to an event-based feedback law.

3.3 ASLIP Stance Dynamics

During the stance phase the toe is in contact with the ground. By Hypothesis HMA3),the

toe-ground interaction will be modeled as a frictionless pin joint; in particular the Carte-

sian velocity of the toe during the stance phase is assumed to be zero throughout stance.

Attaching the frame of reference at the (motionless) toe, i.e.,
(

ph
toe, p

v
toe

)

= (0, 0) results in

1Instantaneous positioning of the leg during flight is only one possible foot placement strategy. Other
possibilities include the case where appropriately selected functions govern the evolution of the leg variables
(length and angle) in time. Such alternatives do not have any effect on the analysis of the following sections,
because the motion of the leg does not affect the second-order dynamics of the body in the flight phase.
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the (holonomic) constraint







ph
toe

pv
toe






=







0

0






⇔







xcm

ycm






=







L cos θ − l sin(θ + ϕ)

L sin θ + l cos(θ + ϕ)






. (3.6)

In view of this constraint, the configuration spaceQs of the stance phase can be parameter-

ized by the joint coordinates: leg length l, leg angle with respect to the torso ϕ, and torso

orientation θ, i.e. qs := (l, ϕ, θ)′ ∈ Qs; see Fig. 3.1. Hence, Qs is a a simply-connected open

subset of R × S
2 corresponding to physically reasonable configurations of the ASLIP.

Through the use of the method of Lagrange [106, p. 255], the equations of motion of the

ASLIP during the stance phase can be computed by substituting the constraint equations

to the unconstrained flight-phase Lagrangian (3.1). This procedure results in the second-

order system

Ds(qs)q̈s + Cs(qs, q̇s)q̇s +Gs(qs) = Bsu, (3.7)

where u := (u1, u2)
′ ∈ U an open subset of R

2, is the input vector during stance, and the

matrices in (3.7) are given by

Ds(qs)=















m 0 mL cosϕ

0 ml2 ml(l − L sinϕ)

mL cosϕ ml(l − L sinϕ) J +mL2 +ml(l − 2L sinϕ)















Cs(qs, q̇s)q̇s =















mL sinϕ θ̇2 −ml (ϕ̇+ θ̇)2

mLl cosϕ θ̇2 + 2ml l̇(ϕ̇+ θ̇)

2m(l − L sinϕ) l̇(ϕ̇+ θ̇) −mLl cosϕ ϕ̇(ϕ̇+ 2θ̇)















Gs(qs) =















mg cos(ϕ+ θ)

−mgl sin(ϕ+ θ)

mgL cos θ −mgl sin(ϕ+ θ)















, Bs =















1 0

0 1

0 0















.
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The model (3.7) can be brought into standard state-space form by defining

ẋs :=
d

dt







qs

q̇s






=







q̇s

D−1
s (qs)(−Cs(qs, q̇s)q̇s −Gs(qs) +Bsu)







=: fs(xs) + gs(xs)u,

(3.8)

where xs ∈ TQs :=
{

(q′s, q̇
′
s)

′ | qs ∈ Qs, q̇s ∈ TqsQs
∼= R

3
}

=: Xs is the state vector.

Remark 3.1. The resulting equations of motion (3.7) for the stance phase include only the

gravitational potential energy. This is a consequence of the definition of the unconstrained

Lagrangian (3.1), which does not include an elastic energy term. The leg spring will be

introduced in Section 4.6 as part of the total leg force u1; see (4.79) there. ⊳

Remark 3.2. The ground reaction forces Ftoe = (FT
toe, F

N
toe)

′, where FT
toe is the tangential

and FN
toe the normal component, respectively, can be computed provided that the input

forces u = (u1, u2)
′ are known through







FT
toe

FN
toe






=







sin(ϕ+ θ) 1
l
cos(ϕ+ θ)

− cos(ϕ+ θ) 1
l
sin(ϕ+ θ)













u1

u2






. (3.9)

For the stance model (3.7) to be physically meaningful, i.e., consistent with the hypotheses

that were used to derive it —in particular, Hypothesis HGA3)— it must be verified that

FN
toe > 0 (3.10)

and

|FT
toe| ≤ µsF

N
toe, (3.11)

where µs is the coefficient of static friction. In words, (3.10) means that the toe is not

“pulling” the ground, while (3.11) corresponds to the toe not slipping on the ground. ⊳

In agreement with Hypothesis HGA6), transition from stance into flight can be initiated

by causing the acceleration of the stance leg end to be positive, i.e., directed upwards, when

the ground force becomes zero. As explained in [26, Section 4], if torque discontinuities
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are allowed2—as they are assumed to be in this model—when to transition into the flight

phase becomes a control decision. Therefore, liftoff is assumed to occur at predetermined

configurations in the stance state space that correspond to the distance between the leg

end and the torso COM be equal to a constant r0, which will be fixed in the control system

design; see Remark 4.6 in Section 4.3. Consequently, the threshold function Hs→f : TQs →

R is defined by

Hs→f(xs) := r0 −
√

L2 + l2 − 2Ll sinϕ, (3.12)

and its zeroing defines the stance-to-flight switching surface

Ss→f :=
{

xs ∈ Xs | Hs→f(xs) = 0
}

. (3.13)

Remark 3.3. Equation (3.12) is physically meaningful sinceL2+l2−2Ll sinϕ ≥ (L−l)2 ≥ 0.

Moreover, if l 6= L so that L2 + l2 − 2Ll sinϕ 6= 0, and if r0 is selected so that Ss→f is

nonempty, then Ss→f is a five-dimensional C1 embedded submanifold of TQs. This is

a result of the regular value theorem, see Theorem (5.8) [15, p. 78], since Hs→f is C1 and

∂Hs→f/∂xs 6= 0 onH−1
s→f({0}) = Ss→f . These conditions are easily met on a physical model;

see for example Table 4.1. ⊳

Remark 3.4. It is apparent from (3.12) that the stance-to-flight switching surface Ss→f de-

pends only on the stance states, and not on the parameters αf . This fact will be important

for proving exponential stability by using the theorems developed in [83] for systems with

impulse effects in the presence of parameters. ⊳

3.4 ASLIP Flight-to-stance Transition Map

The ASLIP flight-to-stance transition map ∆f→s : Sf→s → TQs corresponds to the co-

ordinate transformation taking the exit (final) conditions of the flight phase to the entry

(initial) conditions of the ensuing stance phase. Since, according to Hypothesis HGA5),

no impact occurs at the transition from flight to stance, the total energy is conserved and

∆f→s is a volume preserving mapping. Furthermore, it is independent of the parameters

2This is a modeling issue. In practice, the torque is continuous due to actuator dynamics. It is assumed
here that the actuator time constant is small enough that it need not be modeled.
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αf , despite the fact that it is defined on the surface Sf→s, which, as can be seen from (3.5),

depends on αf . The map ∆f→s is given by

∆f→s(xf) =







































√

(L cos θ − xcm)2 + (L sin θ − ycm)2

arctan
(

L cos θ−xcm
ycm−L sin θ

)

− θ

θ














j−1
11 j−1

12 j−1
13

j−1
21 j−1

22 j−1
23

j−1
31 j−1

32 j−1
33





























ẋcm

ẏcm

θ̇





















































(3.14)

where

j−1
11 =

xcm − L cos θ

A(xcm, ycm, θ)
, j−1

12 =
ycm − L sin θ

A(xcm, ycm, θ)
,

j−1
13 =

Lxcm sin θ − Lycm cos θ

A(xcm, ycm, θ)
,

j−1
21 =

L sin θ − ycm

A2(xcm, ycm, θ)
, j−1

22 =
xcm − L cos θ

A2(xcm, ycm, θ)
,

j−1
23 =

xcm(L cos θ − xcm) + ycm(L sin θ − ycm)

A2(xcm, ycm, θ)
,

j−1
31 = 0, j−1

32 = 0, j−1
33 = 1,

with

A(xcm, ycm, θ) =
√

(L cos θ − xcm)2 + (L sin θ − ycm)2.

3.5 ASLIP Stance-to-flight Transition Map

The ASLIP stance-to-flight transition map ∆s→f : Ss→f → TQf corresponds to the co-

ordinate transformation taking the exit (final) conditions of the stance phase to the entry

(initial) conditions of the ensuing flight phase. In the absence of any (internal) impacts, the
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total energy is conserved so that ∆s→f is a volume preserving map, and is given by

∆s→f(xs) =







































L cos θ − l sin(ϕ+ θ)

L sin θ + l cos(ϕ+ θ)

θ














j11 j12 j13

j21 j22 j23

j31 j32 j33





























l̇

ϕ̇

θ̇





















































, (3.15)

where

j11 = − sin(ϕ+ θ), j12 = −l cos(ϕ+ θ),

j13 = −l cos(ϕ+ θ) − L sin θ,

j21 = cos(ϕ+ θ), j22 = −l sin(ϕ+ θ),

j23 = −l sin(ϕ+ θ) + L cos θ, ,

j31 = 0, j32 = 0, j33 = 1.

3.6 ASLIP Hybrid Dynamics of Running

The open-loop hybrid model of the ASLIP can be written as

Σf :











































Xf = TQf ×Af

(

ẋ′f , α̇
′
f

)′
=
(

f ′f (xf), 0
)′

Sf→s = {(xf , αf) ∈ Xf | Hf→s (xf , αf) = 0}

x+
s = ∆f→s

(

x−f
)

(3.16)

40



Σs :











































Xs = TQs

ẋs = fs(xs) + gs(xs)u

Ss→f = {xs ∈ Xs | Hs→f(xs) = 0}

x+
f = ∆s→f(x

−
s ),

where x−i = limτրt xi(τ) and x+
i = limτցt xi(τ), i ∈ {f, s}, are the left and right limits of

the stance and flight solutions. The structure of the system is depicted in Fig. 3.2.

ẋs = fs(xs) + gs(xs)u ẋf = ff(xs)

Ss→f

x+
f = ∆s→f(x

−
s )

Sf→s

x+
s = ∆f→s(x

−
f )

Figure 3.2: Representation of ASLIP’s model in running as a hybrid system.

The subsystems Σf and Σs can be combined into a single system with “impulse” effects

ΣASLIP describing the open-loop hybrid dynamics of the ASLIP; see [109, pp. 252-254],

for a discussion of the related geometry. Let φf : [0,+∞) × TQf → TQf denote the flow

generated by the flight phase vector field ff of (3.3). Note that the simplicity of ff allows

for explicit calculation of the flow φf . When the “augmented” flight flow (φf , αf) intersects

Sf→s, transition from flight to stance occurs. Define the time-to-touchdown function Tf :

Xf → R ∪ {∞}, as

Tf(xf,0, αf) :=



























inf {t ∈ [0,+∞)| (φf(t, xf,0), αf) ∈ Sf→s} ,

if ∃t such that (φf(t, xf,0), αf) ∈ Sf→s

∞, otherwise.

(3.17)

The flow map3 Ff : Xf → Sf→s for the (augmented) flight phase can then be given by the

3The definition of the flight flow map presupposes the existence of a time instant t such that
(φf(t, xf,0), αf) ∈ Sf→s. The case where no such time instant exists does not correspond to periodic running
motions.
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rule (xf,0, αf) 7→ (φf(Tf(xf,0, αf), xf,0), αf) ∈ Sf→s. Let ∆ : Ss→f ×Af → Xs be the map

∆(x−s , αf) := ∆f→s

[

Ff

(

∆s→f(x
−
s ), αf

)]

. (3.18)

The map ∆ “compresses” the flight phase into an “event,” and can be thought of as a

(generalized) “impact map” [26], or a “reset map” [10]. It should be emphasized here that

the overall reset map ∆ defined by (3.18) depends explicitly on the parameters αf despite

the fact that both transition maps ∆f→s and ∆s→f are independent of αf ; this dependence

arises from the flight flow map Ff defined above. In this setting, the hybrid dynamics of

the ASLIP becomes

ΣASLIP :















ẋs = fs(xs) + gs(xs)u, x−s /∈ Ss→f

x+
s = ∆ (x−s , αf) , x−s ∈ Ss→f , αf ∈ Af .

(3.19)

The left and right limits x−s and x+
s correspond to the states “just prior to liftoff” and “just

after touchdown,” respectively. Note also that in (3.19), only the argument x−s ∈ Ss→f

triggers liftoff; the surface Ss→f does not depend on the parameters αf , which affect the

initial conditions of the continuous part of (3.19). The system ΣASLIP has the typical form

of a system with impulse effects, i.e., it is defined on a single chart Xs, where the states

evolve, together with the map ∆, which reinitializes the differential equation at liftoff;

see [113], [48] and [109] for general treatments of impulsive and hybrid dynamical systems.

ẋs = fs(xs) + gs(xs)u

x+
s = ∆(x−s , αf)

Ss→f

Figure 3.3: Representation of ASLIP’s model as a system with “impulse” effects.
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CHAPTER IV

Controlling the ASLIP:

SLIP-embedding and Rigid Target Model Controllers

This chapter is devoted to the development of control laws for running motions in

the ASLIP, whose model was derived in Chapter III. A framework is proposed that com-

bines established nonlinear controller synthesis tools, such as the Hybrid Zero Dynamics

(HZD), with control laws obtained in the context of the SLIP to induce exponentially sta-

ble running motions on the ASLIP. A second aspect addressed in this chapter regards the

performance benefits of designing the HZD to be a compliant system. These observations

motivate the development of Thumper’s compliant hybrid zero dynamics controllers, which

will be detailed in Chapter VI.

The structure of this chapter is as follows. In Section 4.1, the general framework within

which the controllers are developed is outlined. Following these general guidelines, two

feedback controllers are proposed in Sections 4.3 and 4.4, and Section 4.5. In each case,

feedback is used to create a lower-dimensional hybrid subsystem that determines the

closed-loop behavior of the ASLIP. The first controller developed in Sections 4.3 and 4.4

creates a two-degree-of-freedom subsystem that is rendered diffeomorphic to an energy-

stabilized variant of the standard SLIP, which is described in Section 4.2; this controller

is referred to as the SLIP-embedding controller. Section 4.5 discusses the second controller,

which creates a one degree-of-freedom non-compliant subsystem; this controller is referred

to as the rigid target model controller. Finally, Section 4.6 highlights the fundamental differ-

ences in the two control designs, illustrating the benefits of designing the HZD so that it

43



accommodates compliance, such as in the SLIP embedding controller.

4.1 Overview of the Control Law

Generally speaking, the purpose of the feedback law is to coordinate the actuated de-

grees of freedom of the ASLIP so that a lower-dimensional hybrid subsystem “emerges”

from the closed-loop ASLIP dynamics; this lower-dimensional dynamical subsystem serves

as a target for the control of the ASLIP and governs its asymptotic behavior. This statement

will be made mathematically precise in the following sections. In this section, only the gen-

eral guidelines of the controller design are briefly described.

The feedback law exploits the hybrid nature of the system by introducing control ac-

tion on two levels; see Fig. 4.1. On the first level, a continuous-time feedback law Γc is

employed in the stance phase with the purpose of creating an invariant and attractive sub-

manifold Z embedded in the stance state space, on which the closed-loop dynamics have

desired properties. On the second level, event-based updates of controller parameters are

performed at transitions from stance to flight. Generally, the event-based parameter up-

date law is organized in an inner/outer-loop architecture, with the inner-loop controller Γs

intended to render the surface Z invariant under the reset map. This condition is referred

to as hybrid invariance, and it leads to the creation of a reduced-order hybrid subsystem

called the Hybrid Zero Dynamics (HZD), which governs the stability properties of the full-

order ASLIP; see [110] for details. In cases where the in-stride controller Γc achieves hybrid

invariance, Γs is not needed and may be excluded from the controller design; Section 4.3

presents one such example. Finally, the outer-loop controller Γf completes the control de-

sign by ensuring that the resulting HZD is exponentially stable.

In Sections 4.3 and 4.4, and in Section 4.5 we particularize these ideas through explicit

constructions of two sets of feedback laws Γc, Γs and Γf that achieve the control objectives.

In Sections 4.3 and 4.4 the objective is to coordinate the actuated DOFs of the ASLIP so that

the compliant SLIP emerges as the HZD; this controller is referred to as the SLIP embedding

controller. In Section 4.5, the objective is to impose suitably parameterized virtual holo-

nomic constraints on the ASLIP so that an one-DOF mechanical system arises as its HZD;
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Γf Γs

Γc

Event-based control

Continuous-time control

Figure 4.1: Feedback diagram presenting the basic structure of the ASLIP controllers.

because, in this case, the resulting HZD cannot be compliant, we refer to this controller

as the rigid target model controller. Fundamental differences in the two control laws are

highlighted in Section 4.6, illustrating the benefits of designing the HZD to accommodate

compliance, such as in the SLIP embedding controller.

4.1.1 In-stride Continuous Control

To the continuous part of (3.19), associate the output

y = h(qs, αs), (4.1)

which depends on the configuration variables qs, and on a set of parameters αs ∈ As,

which remain constant during the stance phase, i.e. α̇s = 0. These parameters can be the

coefficients of polynomials representing a set of virtual constraints as in the rigid target

model controller, or the mechanical properties of a target model as in the SLIP embedding

controller.

Given a set of values for the parameters αs, differentiating (4.1) twice with respect to

time results in

d2y

dt2
= L2

fs
h(xs, αs) + LgsLfsh(qs, αs)u, (4.2)

where LgsLfsh(qs, αs) is the decoupling matrix. Under the condition that LgsLfsh(qs, αs) is
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invertible,

u∗(xs, αs) := − (LgsLfsh(qs, αs))
−1 L2

fs
h(xs, αs) (4.3)

is the unique control input that renders the surface

Zαs :=
{

xs ∈ TQs | h(qs, αs) = 0, Lfsh(xs, αs) = 0
}

(4.4)

invariant under the flow of the continuous part of the ASLIP dynamics (3.19), that is, for

every x ∈ Zαs ,

f∗(x, αs) = fs(x) + gs(x)u
∗(xs, αs) ∈ TxZαs . (4.5)

Following standard terminology, the surface Zαs is the stance phase zero dynamics mani-

fold, and

ż = f∗|Zαs
(z, αs) (4.6)

is the stance phase zero dynamics.

To establish attractivity of Zαs , the input (4.3) is modified as

u = Γǫ
c(xs, αs)

:= (LgsLfsh(qs, αs))
−1 [υǫ(y, ẏ) − L2

fs
h(xs, αs)

]

,

(4.7)

where

υǫ(y, ẏ) := − 1

ǫ2
Ky

P y −
1

ǫ
Ky

V ẏ, (4.8)

and Ky
P and Ky

V are appropriately chosen gain matrices, and ǫ > 0. Under the feedback

law Γǫ
c, the hybrid system (3.19) takes the form

ΣASLIP
cl :











ẋs = f ǫ
s,cl (xs, αs) , x−s ∈ Ss→f , αs ∈ As

x+
s = ∆

(

x−s , αf

)

, x−s ∈ Ss→f , αf ∈ Af

, (4.9)

where the stance-to-flight switching surface has been defined in (3.13), and

f ǫ
s,cl(xs, αs) := fs(xs) + gs(xs)Γ

ǫ
c(xs, αs). (4.10)
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4.1.2 Event-based Discrete Control

A key implication of the hybrid nature of (4.9) combined with the (trivial) dynamics

α̇s = 0 and α̇f = 0 governing the parameters in (4.9), is the possibility of updating αs and

αf in an event-based manner. More specifically, at each crossing of the surface Ss→f , αs

and αf can be updated based on feedback of the liftoff state x−s ∈ Ss→f , i.e.,

αf = Γf(x
−
s ), (4.11)

α+
s = Γs

(

x−s ,Γf(x
−
s )
)

, (4.12)

with the purpose of the feedback laws Γs and Γf being to extend the notion of invariance

in the hybrid setting, and to ensure stability of the resulting HZD. Loosely speaking, (4.11)

introduces control authority over the initial conditions of the continuous part of (4.9). On

the other hand, (4.12) allows for “real-time” motion planning in stance via updating αs.

To ensure hybrid invariance, the inner-loop controller Γs is designed to provide up-

dated values α+
s of the stance parameters so that the following conditions are satisfied, [83]:

(i) the surface Ss→f ∩ Zαs is the same as Ss→f ∩ Zα+
s

; denote Ss→f ∩ Zαs by Ss→f ∩ Z⋄,

(ii) Ss→f ∩ Z⋄ is invariant under the reset map ∆, i.e., ∆
(

(Ss→f ∩ Z⋄) ×Af

)

⊂ Zα+
s

.

In words, (i) means that liftoff occurs where it would have occurred without updating

αs. Enforcing (i) and (ii) through the parameter update law Γs results in the creation of a

well-defined lower-dimensional hybrid subsystem, the HZD, which has the form

ΣHZD :



























































ż

α̇s









=









f∗|Zαs
(z, αs)

0









, z− /∈ Ss→f ∩ Z⋄









z+

α+
s









=









∆|Ss→f∩Z⋄
(z−, αf)

Γs|Ss→f∩Z⋄
(z−, αf)









, z− ∈ Ss→f ∩ Z⋄

, (4.13)

A critical aspect of the resulting HZD is the dependence of the (extended) reset map on

αf , which can be selected according to the outer-loop feedback law Γf of Fig. 4.1, intended
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to achieve exponential stability. It is mentioned here that one way of designing Γf is by

using discrete LQR techniques. An alternative is to use a modification of Raibert’s forward

speed controller. Both methods are explored in the following sections.

4.2 Target Model: The Energy-Stabilized SLIP

In this section, the target model for the SLIP embedding controller is introduced. The

standard SLIP consists of a point mass attached to a massless prismatic spring, and it is

passive and conservative1, thus precluding the existence of exponentially stable periodic

orbits; see [8], [42]. In this thesis, we consider a variant of the SLIP, where the leg force is

allowed to be non-conservative. The purpose of this modification is to introduce control

authority over the total energy, which is no more conserved as in the standard SLIP, thus

leading to the existence of exponentially stable periodic orbits. This system, called the

Energy-Stabilized SLIP (ES-SLIP), is presented in Fig. 4.2.

Nominal Symmetric Stance Phase
m(xcm, ycm)

k, r0uM

ψ

Figure 4.2: The Energy-Stabilized SLIP (ES-SLIP), with a prismatic actuator (force source)
in parallel with the spring.

The derivation of the hybrid model for the ES-SLIP is similar to that of the ASLIP, thus

the exposition in this section will be terse. Moreover, only the closed-loop hybrid dynamics

of the ES-SLIP will be presented. In what follows, the superscript “M” denotes the ES-

SLIP target model. The flight and stance configuration spaces QM
f and QM

s , respectively,

will both be parameterized by the Cartesian coordinates of the COM (xcm, ycm) ∈ QM
f =

QM
s =: QM a simply-connected open subset of

{

(xcm, ycm) ∈ R
2\{(0, 0)} | ycm > 0

}

. Hence,

1The SLIP has no actuator inputs and experiences no energy losses.
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the system dynamics evolves in the state space

XM := TQM =
{

xM = col(qM, q̇M) | qM ∈ QM, q̇M ∈ R
2
}

.

In order to accommodate perturbations away from the nominal energy, the conserva-

tive force Fel developed by the springy leg of the standard SLIP is modified to include a

nonconservative feedback component uM = ΓM
c (xM). The purpose of uM is to stabilize the

total energy of the system at a desired nominal level Ē, and is achieved by

ΓM
c (xM) := −KE

P

xcmẋcm + ycmẏcm
√

x2
cm + y2

cm

[

E(xM) − Ē
]

, (4.14)

where E(xM) is the total energy, and KE
P is a positive gain.

To regulate the forward speed, the following event-based control law is employed

ψ = ΓM
f

(

(xM)−
)

:= ψ̄ +Kẋ

(

ẋ−cm − ˙̄xcm

)

; (4.15)

ψ̄ and ˙̄xcm specify the nominal touchdown angle and forward speed, respectively, ẋ−cm is

the actual forward speed just prior to liftoff, andKẋ is a positive gain. It can be recognized

that (4.15) corresponds to a variation of Raibert’s speed controller; see [91, pp. 44–47].

Under the influence of the feedback laws (4.14) and (4.15), the closed-loop ES-SLIP

hybrid dynamics can be obtained as

ΣM
cl :











ẋM = fM
s,cl

(

xM
)

, (xM)− /∈ SM
s→f

(xM)+ = ∆M
cl

(

(xM)−
)

, (xM)− ∈ SM
s→f

, (4.16)

where fM
s,cl(x

M) is the closed-loop stance vector field, which is given below for future use,

fM
s,cl(x

M) =























ẋcm

ẏcm

1
m

xcm√
x2
cm+y2

cm

(

Fel + ΓM
c (xM)

)

1
m

ycm√
x2
cm+y2

cm

(

Fel + ΓM
c (xM)

)

− g























; (4.17)
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Fel is the elastic force developed by the prismatic spring of the leg, which is assumed to be

generated by a radial potential VM
el (r(xcm, ycm)) with r(xcm, ycm) =

√

x2
cm + y2

cm as

Fel =
dVM

el (r)

dr

∣

∣

∣

∣

r=
√

x2
cm+y2

cm

. (4.18)

Assuming, for definiteness, that the spring is linear gives

Fel = k
(

r0 + ∆r −
√

x2
cm + y2

cm

)

; (4.19)

k is the spring constant, r0 the nominal leg length (determining touchdown), and ∆r a

(constant) pretention; see Fig. 4.2.

In (4.16), the switching surface

SM
s→f :=

{

xM ∈ XM | HM
s→f

(

xM
)

= 0
}

, (4.20)

where

HM
s→f

(

xM
)

:= r0 −
√

x2
cm + y2

cm, (4.21)

is a three-dimensional C1 embedded submanifold of XM, for reasons similar to those men-

tioned in Remark 3.3. Finally, the closed-loop reset map ∆M
cl : SM

s→f → XM in (4.16) is

defined by2

∆M
cl := ∆M

f→s ◦ FM
f ◦

(

∆M
s→f × ΓM

f

)

, (4.22)

where ∆M
s→f : SM

s→f → XM and ∆M
f→s : SM

f→s → XM are the ES-SLIP stance-to-flight

and flight-to-stance transition maps, respectively. Due to the fact that both the flight

and stance state spaces are parameterized by the same coordinates, the transition maps

simply correspond to the identity map on XM, i.e. ∆M
s→f = ∆M

f→s = idXM . In (4.22),

FM
f : XM × AM

f → SM
s→f is the ES-SLIP flight flow map, defined analogously with the

ASLIP flight flow map; AM
f is an open subset of S

1, containing physically reasonable val-

ues for the touchdown angle ψ.

2Notation: Let f1 : X → Y1 and f2 : X → Y2, and define f1 × f2 : X → Y1 × Y2 by (f1 × f2)(x) =
(f1(x), f2(x)), x ∈ X .
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Remark 4.1. To explain (4.20) and (4.21), the liftoff condition is assumed to occur when the

leg length obtains a particular value, namely r0, as is the case for the conservative SLIP. ⊳

In order to study the stability properties of periodic orbits of ΣM
cl , the method of Poincaré

is used. The Poincaré section is selected to be the surface SM
s→f defined by (4.20). Let

φM
s,cl : [0,+∞) × XM → XM be the flow generated by fM

s,cl, and define the time-to-liftoff

function TM
s : XM → R ∪ {∞}, in a similar fashion as (3.17), by

TM
s (xM

0 ) :=



























inf
{

t ∈ [0,+∞) | φM
s,cl

(

t, xM
0

)

∈ SM
s→f

}

,

if ∃t such that φM
s,cl(t, x

M
0 ),∈ SM

s→f

∞, otherwise.

(4.23)

Then, the Poincaré map PM : SM
s→f → SM

s→f is defined by

PM := φM
s,cl ◦

[(

TM
s ◦ ∆M

cl

)

× ∆M
cl

]

. (4.24)

Remark 4.2. Feedback control laws similar to (4.14) and (4.15) exist in the literature; the

particular ones used here are for illustrative purposes only. It is emphasized that many

other in-stride or event-based controllers could have been used to stabilize the SLIP. For in-

stance, energy stabilization in nonconservative monopedal models has been demonstrated

using linear (leg) and rotational (hip) actuation in [3] and [23], respectively. On the other

hand, a large variety of event-based controllers exist for the SLIP, e.g., [8], [91], [100], [105],

which are known to have very appealing properties. In the following section, we develop

rigorously a controller for the ASLIP that affords the direct use of control laws available

for the SLIP. ⊳

4.3 Main Result: The SLIP Embedding Controller

As was mentioned in Section 4.1, the control action takes place on two hierarchical

levels. On the first level, continuous in-stride control is exerted during the stance phase to

stabilize the torso at a desired posture, and to create an invariant manifold on which the

ES-SLIP dynamics can be imposed. On the second level, an event-based SLIP controller
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is used to stabilize a periodic orbit of the system. These results are summarized in the

following theorem and corollary.

Theorem 4.3 (SLIP embedding controller). Let Q̂s := {qs ∈ Qs | l 6= L sinϕ}. Then, for

every ǫ > 0, there exists a C1 in-stride (continuous) control law u = Γǫ
c(xs), and a C1 event-based

(discrete) control law αf = Γf(x
−
s ) such that the following hold:

A. In-stride Continuous Control

There exists a map Φ : TQ̂s → R
6 that is a diffeomorphism onto its image, and such that, in

coordinates x = (η′, z′)′ := Φ(xs) ∈ R
6, the closed-loop model

f ǫ
s,cl(xs) := fs(xs) + gs(xs)Γ

ǫ
c(xs) (4.25)

satisfies:

A.1) the vector field

f̃ ǫ
s,cl(x) :=

(

∂Φ

∂xs
f ǫ
s,cl(xs)

)∣

∣

∣

∣

xs=Φ−1(x)

(4.26)

has the form

f̃ ǫ
s,cl(x) =







f̃ ǫ
s,cl,1:2(η)

f̃s,cl,3:6 (η, z)






; (4.27)

A.2) the set Z := {x ∈ R
6 | η = 0} is a smooth four-dimensional C1 embedded submanifold of R

6

that is invariant under the stance flow, i.e. x ∈ Z implies f̃ ǫ
s,cl(x) ∈ TxZ , and the set Ss→f ∩ Z ,

where Ss→f is given by (3.13), is a co-dimension one C1 submanifold of Z ;

A.3) the transverse dynamics f̃ ǫ
s,cl,1:2(η) takes the form

f̃ ǫ
s,cl,1:2(η) = A (ǫ) η, (4.28)

and it exponentially contracts as ǫ→ 0, i.e. limǫց0 e
A(ǫ) = 0;

A.4) the restriction dynamics

f̃ ǫ
s,cl(x)|Z = f̃s,cl,3:6(0, z) (4.29)

is diffeomorphic to the ES-SLIP stance phase closed-loop dynamics fM
s,cl given by (4.17).

B. Event-based Discrete Control
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The closed-loop reset map ∆cl : Ss→f → TQ̂s defined by

∆cl = ∆f→s ◦ Ff ◦ (∆s→f × Γf) , (4.30)

where the maps ∆f→s, ∆s→f and Ff have been defined in Sections 3.4, 3.5 and 3.6, satisfies

B.1) ∆cl(Ss→f ∩ Z) ⊂ Z , i.e. Ss→f ∩ Z is hybrid invariant;

B.2) the restricted reset map ∆cl|Z is diffeomorphic to the ES-SLIP closed-loop reset map ∆M
cl de-

fined by (4.22).

For ǫ > 0 a given constant, the closed-loop hybrid dynamics of the ASLIP under the

continuous and event-based feedback control laws of Theorem 4.3 takes the form

ΣASLIP
cl :











ẋ = f̃ ǫ
s,cl(x), x− /∈ Ss→f

x+ = ∆̃cl

(

x−
)

, x− ∈ Ss→f

, (4.31)

where Ss→f was defined in (3.13), and ∆̃cl := Φ◦∆cl◦Φ−1 is the representation of the closed-

loop reset map in the x-coordinates. The stability properties of ΣASLIP
cl will be studied via

the corresponding Poincaré return map Pǫ : Ss→f → Ss→f , which is defined analogously to

PM of Section 4.2; see (4.24). As is described in detail in [82], the structure imposed on the

ASLIP by the feedback laws of Theorem 4.3 results in the map Pǫ|Z : Ss→f ∩Z → Ss→f ∩Z

being independent of ǫ and Pǫ|Z ∼= PM, i.e. the restricted Poincaré map is well defined and

is diffeomorphic to the ES-SLIP Poincaré map. The following corollary is an immediate

consequence of Theorem 4.3 in view of the results in [82].

Corollary 4.4 (Exponential Stability of ΣASLIP
cl ). Let (xM)∗ be a fixed point of PM and x∗ a

fixed point of Pǫ. There exist ǭ > 0 such that, for all ǫ ∈ (0, ǭ), x∗ is exponentially stable, if, and

only if, (xM)∗ is exponentially stable.

Before continuing with the proof of Theorem 4.3, which will be given in Section 4.4, a

few remarks are in order.

Remark 4.5. The conditions l 6= L of Remark 3.3 and l 6= L sinϕ of Theorem 4.3 are both

satisfied whenever l > L, which is the case of most upright runners. ⊳
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Remark 4.6. Intuitively, the definition of Ss→f as in Theorem 4.3, that is, by (3.13), means

that liftoff occurs when the distance between the foot and the COM becomes equal to the

nominal length of the ES-SLIP leg, r0; see also Remark 4.1. ⊳

Remark 4.7. To help develop some intuition on Theorem 4.3, it is noted that the two-

dimensional state vector η corresponds to the output dynamics; in particular, it corre-

sponds to the pitch error dynamics. The four-dimensional state vector z is suitable for

describing the associated zero dynamics. The theorem provides conditions under which,

for sufficiently fast exponentially contracting pitch error dynamics, an exponentially stable

periodic orbit of the restriction dynamics is also an exponentially stable orbit of the ASLIP.

Furthermore, the restriction dynamics, which corresponds to the translational dynamics of

the COM of the ASLIP, is rendered diffeomorphic to the ES-SLIP dynamics. Intuitively, the

feedback laws of Theorem 4.3 “coordinate” the actuated degrees of freedom of the ASLIP

so that a lower-dimensional subsystem, more specifically the ES-SLIP, “emerges” from the

closed-loop dynamics, and it governs the behavior —i.e. the existence and stability prop-

erties of periodic orbits of interest— of the full-order ASLIP. ⊳

Remark 4.8. The importance of Corollary 4.4 is that, for given controllers that create an

exponentially stable periodic orbit of the ES-SLIP, the feedback laws u = Γǫ
c(xs) and αf =

Γf(x
−
s ) of Theorem 4.3 render this orbit exponentially stable in the ASLIP. ⊳

4.4 Proof of the SLIP Embedding Theorem

In this section, Theorem 4.3 is proved through a sequence of lemmas. The procedure

is constructive, and results in a control law satisfying the requirements of Theorem 4.3.

Figure 4.3 summarizes the continuous-time control action during the ASLIP stance phase,

whose objective is to render the translational dynamics of the ASLIP COM diffeomorphic

to the ES-SLIP dynamics.

4.4.1 In-stride Continuous Control

The purpose of the in-stride control action during the stance phase is twofold. First, it

ensures that the torso remains at a desired (constant and upright) pitch angle, and second,
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Open-loop ASLIP stance dynamics

ẋs = fs(xs) + gs,1(xs)u1 + gs,2(xs)u2

Eq. (4.32)

u2 = Γǫ
c,2(xs)

Eq. (4.42)

Pitch controlled ASLIP

ẋs = f̂
ǫ
s (xs)+ĝs(xs)u1

Eq. (4.44), (4.45), (4.46)

x=Φ(xs)

Eq. (4.38)

x-coordinates

η̇=A(ǫ)η

ż=fz(η, z)+gz(z)u1

Eq. (4.47), (4.48)

u1 =Γ̃c,1(z)

Eq. (4.59)
η = 0

Closed-loop Restr. dyn.

ż=fz,cl(z)

Eq. (4.62)

xM =Φz(z)

Eq. (4.63)

Closed-loop ES-SLIP

ẋM =fM
s,cl

(

xM
)

Eq. (4.16), (4.17)

Figure 4.3: A diagram summarizing the control procedure through which the ASLIP re-
striction dynamics is rendered diffeomorphic to the ES-SLIP closed-loop dy-
namics. Vertical arrows correspond to control actions; horizontal arrows relate
diffeomorphic dynamics. The dashed box includes the ES-SLIP closed-loop tar-
get dynamics. Equation numbers refer to the text.

it renders the translational stance dynamics of the ASLIP diffeomorphic to the ES-SLIP

closed-loop stance dynamics. In view of the underactuated nature of the stance phase, the

two control objectives will be achieved in different time scales. Since the requirement for

the torso being upright throughout the motion is more stringent, high-gain control will be

imposed on the pitch rotational motion. Hence, the system will be decomposed into fast

and slow dynamics governing the rotational and the translational dynamics of the torso,

respectively.

The continuous part of ΣASLIP in (3.19), can be written as

ẋs = fs(xs) + gs,1(xs)u1 + gs,2(xs)u2. (4.32)

Define the output h : Q̂s → R by

y := h(qs) := θ − θ̄, (4.33)
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where θ̄ is a desired pitch angle, taken to be a constant3. The output defined by (4.33)

results in the second-order input-output dynamics

d2y

dt2
=
[

L2
fs
h(xs) + Lgs,1Lfsh(qs)u1

]

+ Lgs,2Lfsh(qs)u2, (4.34)

where

L2
fs
h(xs) = 0,

Lgs,1Lfsh(qs) =
−L cosϕ

J
, Lgs,2Lfsh(qs) =

L sinϕ− l

Jl
. (4.35)

Equation (4.34) shows that two inputs are available for zeroing the (single) output

(4.33). In what follows, the hip torque u2 is solely devoted to pitch control, while the

leg input u1 is reserved for controlling the zero dynamics.

Lemma 4.9 (Stance Phase Zero Dynamics). Under the output function h defined by (4.33),

and for qs ∈ Q̂s := {qs ∈ Qs | l 6= L sinϕ},

1) the set Z := {xs ∈ TQ̂s | h(xs) = 0, Lfsh(xs) = 0} is a smooth four-dimensional embedded

submanifold of TQ̂s;

2) the feedback control law

u∗2 = −Lgs,1Lfsh(qs)

Lgs,2Lfsh(qs)
u1 (4.36)

renders Z invariant under the stance dynamics; that is, for xs ∈ Z , u1 ∈ R,

fs(xs) + gs,1(xs)u1 + gs,2(xs)u
∗
2 ∈ TxsZ;

3) there exist smooth functions γ1(xs) and γ2(xs) so that the map Φ : TQ̂s → R
6,

Φ(xs) =: (η1, η2, z1, z2, z3, z4)
′ =: x, (4.37)

where

η1 := h(qs), η2 := Lfsh(xs), (4.38)

3It can rigorously be shown using arguments from model matching, e.g. [28], that θ̄ being constant is a
necessary condition for the existence of an embedding control law for realistic hopping motions. Due to limited
space, the proof of this statement will not be presented here.
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(z1, z2)
′ := (l, ϕ)′, (z3, z4)

′ := (γ1(xs), γ2(xs))
′ , (4.39)

is a valid coordinate transformation, i.e. Φ is a diffeomorphism onto its image, and

Lgs,2γ1(xs) = 0, Lgs,2γ2(xs) = 0;

4) the set Ss→f ∩ Z with Ss→f defined by (3.13) is a co-dimension one C1-submanifold of Z .

Proof. Parts 1) and 2) of Lemma 4.9 follow from general results in [57, pp. 169-170]. For

part 3), consider the distribution G := span{gs,2}, which has constant dimension d = 1

on TQ̂s. Since G is one dimensional, it is involutive, and thus, by the Frobenius theorem

(Theorem 1.4.1, [57, p. 23]), integrable. As a result there exist n− d = 6− 1 = 5 real-valued

functions defined on TQ̂s such that the annihilator of G is G⊥ = span{dl, dϕ, dθ, dγ1, dγ2}.

A straightforward application of the constructive proof of the sufficiency part of Frobenius

theorem [57, pp. 24-28] results in

γ1(xs) = l̇ + (L cosϕ)θ̇, (4.40)

γ2(xs) = ϕ̇+

[

−1 +
L sinϕ

l
+

J

ml(L sinϕ− l)

]

θ̇. (4.41)

It is straightforward to check that Φ is a diffeomorphism onto its image in R
6. Finally, for

part 4), note that, in x-coordinates, H̃s→f(x) := (Hs→f◦Φ−1)(x) = r0−
√

L2 + z2
1 − 2Lz1 sin z2,

i.e. H̃s→f is a function of z only. In particular, it does not depend on θ and θ̇. The result

now follows from the regular value theorem (Theorem (5.8) [15, p. 78]), in view of Remark

3.3 and of the fact that rank{(h,Lfsh,Hs→f)
′} = 2 + rank{Hs→f} = 3.

It should be noted that, contrary to the HZD designed in [110] and [26], the zero dy-

namics manifold Z is a four-dimensional embedded submanifold of the six-dimensional

stance state space TQ̂s. This significantly complicates stability analysis of the resulting

HZD, which no longer is a one-DOF system as in [110] and [26]. However, the presence of

u1 in the zero dynamics allows for further control action. A feedback law can be devised

for u1 so that the zero dynamics associated with the output (4.33) matches exactly the dif-

ferential equations of the ES-SLIP stance phase dynamics. To do this, let ǫ > 0 and define
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the feedback

u2 = Γǫ
c,2(xs)

:=
1

Lgs,2Lfsh(qs)

[

υǫ(θ, θ̇) − Lgs,1Lfsh(qs)u1

]

,
(4.42)

where

υǫ(θ, θ̇) := − 1

ǫ2
Kθ

P (θ − θ̄) − 1

ǫ
Kθ

V θ̇, (4.43)

and Kθ
P , Kθ

V are positive constants. Under this feedback law, the model (4.32) becomes

ẋs = f̂ ǫ
s (xs) + ĝs(xs)u1, (4.44)

where

f̂ ǫ
s (xs) := fs(xs) +

[

1

Lgs,2Lfsh(qs)
υǫ(θ, θ̇)

]

gs,2(xs), (4.45)

ĝs(xs) := gs,1(xs) −
Lgs,1Lfsh(qs)

Lgs,2Lfsh(qs)
gs,2(xs). (4.46)

Under the coordinates of Lemma 4.9, (4.44) has the form

η̇ = A(ǫ)η, (4.47)

ż = fz(η, z) + gz(z)u1, (4.48)

where

A(ǫ) =







0 1

−Kθ
P /ǫ

2 −Kθ
V /ǫ






. (4.49)

With the additional change of coordinates η = Π(ǫ)η̃, defined by η1 = ǫη̃1 and η2 = η̃2, the

model (4.47)-(4.48) takes the form

ǫ ˙̃η = Ãη̃, (4.50)

ż = fz(Π(ǫ)η̃, z) + gz(z)u1, (4.51)

and

1

ǫ
Ã = Π−1(ǫ)A(ǫ)Π(ǫ) ⇒ Ã =







0 1

−Kθ
P −Kθ

V






. (4.52)
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Since the gains {Kθ
P ,K

θ
V } in (4.52) are strictly positive, the matrix Ã is Hurwitz and e

1
ǫ
Ã

converges to zero exponentially fast as ǫ→ 0. Hence, limǫց0 e
A(ǫ) = 0. This verifies condi-

tion A.3) of Theorem 4.3. Moreover, setting ǫ = 0, (4.50) reduces to the algebraic equation

Ãη̃ = 0, which has the origin as its unique solution. Hence, (4.50)-(4.51) is in standard sin-

gular perturbation form, see [58, p. 424], and the corresponding reduced model is obtained

by substituting ǫ = 0 and η̃ = 0 in the slow part of the dynamics (4.51), i.e.

ż = fz(0, z) + gz(z)u1, (4.53)

where direct calculation leads to

fz(z) =























z3

z4

z1z
2
4 − g cos(θ̄ + z2)

−2z3z4+g sin(θ̄+z2)
z1























, (4.54)

gz(z) =























0

0

1/m

L cos z2
mz1(L cos z2−z1)























. (4.55)

The following lemma completes the continuous stance controller design by providing

a procedure for constructing u1.

Lemma 4.10 (Restriction dynamics). If θ̄ is the desired pitch angle in (4.33), define

r(z) :=
√

L2 + z2
1 − 2Lz1 sin z2, (4.56)

ṙ(z) :=
z1 − L sin z2

r(z)
z3 −

Lz1 cos z2
r(z)

z4, (4.57)

yz(z) := z1 cos(z2 + θ̄) + L sin θ̄. (4.58)
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Then, if Ē is the desired energy level, the feedback law

u1 = Γ̃c,1(z) :=
z1 − L sin z2

r(z)
FES−SLIP(z), (4.59)

with

FES−SLIP(z) := k[r0 + ∆r − r(z)] −KE
P ṙ(z)[E(z) − Ē], (4.60)

E(z) :=
1

2
m(z2

3 + z2
1z

2
4) +mgyz(z) +

1

2
k[r0 + ∆r − r(z)]2, (4.61)

and KE
P > 0, renders the restriction dynamics (4.53) diffeomorphic to the ES-SLIP closed-loop

dynamics fM
s,cl(x

M) defined by (4.17).

Proof. Substitution of (4.59) into (4.53) gives

ż = fz(z) + gz(z)Γ̃c,1(z) =: fz,cl(z). (4.62)

Define the map Φz : Z → R
4 by

Φz(z) :=























−z1 sin(z2 + θ̄) + L cos θ̄

z1 cos(z2 + θ̄) + L sin θ̄

−z3 sin(z2 + θ̄) − z1z4 cos(z2 + θ̄)

z3 cos(z2 + θ̄) − z1z4 sin(z2 + θ̄)























. (4.63)

It is straightforward to check that Φz is a diffeomorphism onto its image, thus it describes

a valid coordinate transformation on Z . Observe that Φz(z) = xM. The result

(

∂Φz

∂z
fz,cl(z)

)∣

∣

∣

∣

z=Φ−1
z (xM)

= fM
s,cl(x

M) (4.64)

is obtained after straightforward algebraic manipulations.

Remark 4.11. Careful inspection of (4.59) reveals that under the proposed feedback law the

total ASLIP leg force, u1, becomes equal to the projection of the ES-SLIP force, FES−SLIP,

along the direction of the actual (ASLIP) leg; see Fig. 4.4. Indeed, in the coordinates x
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defined by (4.37) and (4.39), the control law (4.59) takes the form

u1 =
l − L sinϕ

r
FES−SLIP ⇔ u1 = (cosχ)FES−SLIP, (4.65)

where the angle χ is shown in Fig. 4.4. As will be explained in Section 4.6.4, this property

can be used to provide a qualitative explanation of the superiority of the SLIP-embedding

controller against controllers that create non-compliant HZD. ⊳

ϕ

ϕ

L

l

r

H (hip)

G (COM)

Gp
FES−SLIP

u1

χ

T (toe)

Figure 4.4: The controller (4.59) makes the actual total leg force u1 equal to the projection
of the virtual leg force FES−SLIP along the direction of the ASLIP (actual) leg.

Remark 4.12. Combining (4.42)-(4.59), a feedback controller of the form u = Γǫ
c(xs, αs) is

obtained. The vector αs :=
(

θ̄, k, r0,∆r
)′

corresponds to parameters introduced by the con-

trol law, and includes the mechanical properties of the target model. The nominal values of

these parameters will be selected via an optimization procedure, which will be presented

in Section 4.6. As was mentioned in Section 4.1, αs can be updated in an event-based

manner through the inner-loop feedback law Γs of Fig. 4.1 to achieve hybrid invariance.

However, Lemma 4.13 below shows that this is not necessary for the SLIP embedding

controller, and thus αs need not be updated. This is the reason why αs did not explicitly

appear as one of the arguments of the continuous-time controller Γǫ
c. ⊳

4.4.2 Event-Based Discrete Control

The purpose of the stride-to-stride controller is twofold. First, it ensures that the man-

ifold Ss→f ∩ Z is invariant under the reset map ∆cl. Second, it arranges the configuration
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of the ASLIP at liftoff so that the restriction of the ASLIP reset map on Ss→f ∩Z is equal to

the SLIP closed-loop reset map. Both requirements can be satisfied through the outer-loop

event-based controller Γf of Fig. 4.1, whose design is the subject of the following lemma.

Lemma 4.13 (Event-based controller). Let ˙̄xcm and ψ̄ be the forward running speed at liftoff and

the touchdown angle, respectively, corresponding to a (desired) fixed point of the ES-SLIP. Define

ψ(x−s ) := ψ̄ +Kẋ

[

ẋ−cm(x−s ) − ˙̄xcm

]

, (4.66)

where ẋ−cm is the forward running speed of the ASLIP prior to liftoff. Then, the controller αf =

Γf(x
−
s ) := (ltd(x−s ), ϕtd(x−s ))′,

ltd(x−s ) =
√

L2 + r20 + 2Lr0 sin
(

ψ(x−s ) − θ̄
)

, (4.67)

ϕtd(x−s ) = arcsin

[

(ltd(x−s ))2 + L2 − r20
2Lltd(x−s )

]

, (4.68)

where θ̄ is the desired pitch angle in (4.33), achieves B.1) and B.2) of Theorem 4.3.

Proof. Suppose x−s ∈ Ss→f ∩ Z . To show B.1), notice that this implies θ̇− = 0 and θ− = θ̄

just prior to liftoff. Since during the flight phase θ̈ = 0, i.e. θ(t) ≡ θ̄, at touchdown we

have θ̇+ = 0 and θ+ = θ̄, which means that x+
s ∈ Z . This establishes hybrid invariance, i.e.

∆cl(Ss→f ∩ Z) ⊂ Z . To show B.2), observe that, in coordinates (4.63), the surface Ss→f ∩ Z

with Ss→f defined by (3.13), is equal to SM
s→f , given by (4.20), i.e. the domains of definition

of the maps ∆cl|Z and ∆M
cl are equal. The rest of the proof is a consequence of the fact that

the flight flow of the ES-SLIP is the same as the translational part of the flight flow of the

ASLIP. Equations (4.66)-(4.68) ensure that, not only the flight flows are identical, but also

the corresponding closed-loop reset maps ∆cl|Z and ∆M
cl , are diffeomorphic.

Remark 4.14. The proof of Lemma 4.13 depends only upon the restriction of the functions

ltd and ϕtd on Ss→f ∩ Z . Hence, ltd and ϕtd can be replaced with any smooth functions

whose restrictions on Ss→f ∩ Z are equal to (4.67) and (4.68), respectively. This property

will be brought into use in Section 4.6.1 to modify (4.67) and (4.68) in order to enlarge the

basin of attraction of the nominal orbit; see (4.75) and (4.76) there. ⊳
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4.4.3 Proof of Theorem 4.3

The proof of Theorem 4.3 is an immediate consequence of Lemmas 4.9, 4.10 and 4.13.

4.5 One DOF Hybrid Zero Dynamics: The Rigid Target Model

This section describes the second of the controllers presented in this paper. The de-

sign procedure provides the feedback laws Γc, Γs and Γf , whose function was described

in Section 4.1. This controller, whose stability proof follows from previous results in [26]

and [83], is included here because its comparison with the SLIP embedding controller will

reveal some beneficial aspects of designing the HZD to accommodate compliance. Thus,

the presentation will be terse leaving the details of the design for Appendix A; the inter-

ested reader is referred to supplemental material in [45] for further implementation details

and in [83] for the general framework. It is important to emphasize that this controller is

fundamentally different from the SLIP embedding controller of Sections 4.3 and 4.4 in that

it results in a one-DOF HZD, a fact that greatly simplifies stability analysis, but leaves no

room for compliance. Hence, we refer to this controller as the rigid target model controller.

4.5.1 In-stride Continuous Control

During the stance phase, the ASLIP exhibits one degree of underactuation. The two in-

puts u = (u1, u2)
′ will be used to asymptotically impose two virtual holonomic constraints

on two of the models’ three DOF, which are chosen to be the leg length and the pitch an-

gle, i.e. qa := (l, θ)′. Other choices are possible; however, this particular one allows for the

direct comparison with the SLIP embedding controller of Sections 4.3 and 4.4. Here, the

virtual constraints are chosen to be polynomials parameterized by the monotonic quantity

qu = π/2−ϕ− θ, representing the angle of the leg with respect to the ground, as shown in

Fig. 3.1. The virtual constraints are imposed through zeroing the output

y = h(qs, αs) = qa − hd(qu, αs), (4.69)
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where hd are the polynomial functions of qu describing the desired evolution of qa, and αs

includes the corresponding polynomial coefficients; see Appendix A.

Following the procedure that was outlined in Section 4.1.1, the continuous feedback

controller Γc is designed to render the surface

Zαs :=
{

xs ∈ TQs | h(qs, αs) = 0, Lfsh(xs, αs) = 0
}

(4.70)

invariant under the flow of the continuous part of the ASLIP dynamics and attractive. It is

emphasized here that two virtual constraints are imposed by zeroing (4.69), thus resulting

in a one-DOF HZD evolving on a two-dimensional surface Zαs .

4.5.2 Event-Based Discrete Control

The development of the event-based control law closely follows the structure outlined

in Section 4.1. In this case, to achieve hybrid invariance, it is necessary to include the inner-

loop controller Γs of Fig. 4.1 in the feedback design. Details on how to construct Γs can be

found in Appendix A.

The outer-loop control law Γf updates αf = (ltd, ϕtd)′ in order to exponentially stabilize

the HZD. In the rigid target model controller, we do not explore the possibility of updating

the leg length ltd at touchdown; ltd is assumed to be always equal to its nominal value l0.

This leaves the touchdown angle ϕtd as the only parameter available for control. The

Poincaré map P associated with the hybrid system under the feedback laws Γc and Γs

gives rise to the discrete-time control system,

x−s [k + 1] = P
(

x−s [k], ϕtd[k]
)

, (4.71)

defined on the surface

S ′
s→f :=

{

xs ∈ Xs | l − l0 = 0, l̇ > 0
}

. (4.72)

where x−s (k) is the state just prior to the k-th liftoff. Linearizing (4.71) about a fixed point

x̄−s and ϕ̄td corresponding to the nominal values of the state just prior liftoff and the touch-

64



down angle, respectively, results in a discrete-time linear-time-invariant control system

δx−s [k + 1] =

(

∂P
∂x−s

)∣

∣

∣

∣

(x−
s =x̄−

s , ϕtd=ϕ̄td)

δx−s [k] +

(

∂P
∂ϕtd

)∣

∣

∣

∣

(x−
s =x̄−

s , ϕtd=ϕ̄td)

δϕtd[k], (4.73)

where δx−s = x−s − x̄−s and δϕtd = ϕtd − ϕ̄td. Implementing a discrete LQR controller using

the linearization (4.73) gives

ϕtd[k] = Γf

(

x−s [k]
)

:= ϕ̄td +K
(

x−s [k] − x̄−s
)

. (4.74)

The feedback controller (4.74) guarantees that the eigenvalues of the linearization of (4.71)

are all within the unit circle, and completes the control design. Note that instead of the full

model Poincaré map (4.71), the one-dimensional Poincaré map associated with the HZD

could have been used, affording a reduced-order stability test; see [110], [26], [83].

4.6 Controller Evaluation via Simulation

This section presents simulation results that compare the performance of the SLIP em-

bedding controller presented in Sections 4.3 and 4.4, with that of the rigid target model

controller of Section 4.5. Both the steady-state and the transient behavior of the controllers

are discussed.

4.6.1 Implementation Issues and Nominal Orbit Design

The mechanical properties of the ASLIP used in the simulations of this section roughly

correspond to Thumper, and are presented in Table 4.1 (see also Fig. 3.1).

Table 4.1: ASLIP Mechanical Parameters

Parameter Value Units

Torso Mass (m) 27 kg

Torso Inertia (J) 1 kg m2

Hip-to-COM spacing (L) 0.25 m

Nominal Leg Length (l0) 0.9 m

Uncompressed Spring Length (lnat) 0.91 m

ASLIP Spring Constant (kA) 7578 N/m

65



In implementing the SLIP embedding controller, simulation shows that, while the event-

based controller developed in Lemma 4.13 of Section 4.4.2 achieves exponential stability of

the ASLIP, letting the pitch angle in (4.67)-(4.68) off the zero dynamics be equal to its actual

value, instead of its nominal value θ̄, enlarges the domain of attraction of the controller, i.e.

ltd(xf , x
−
s ) =

√

L2 + r20 + 2Lr0 sin
(

ψ(x−s ) − θ
)

, (4.75)

ϕtd(xf , x
−
s ) = arcsin

[

(

ltd(xf , x
−
s )
)2

+ L2 − r20
2Lltd(xf , x

−
s )

]

, (4.76)

whose restrictions on Ss→f ∩ Z are equal to (4.67) and (4.68), respectively. By Remark

4.14, the stability conclusion of Theorem 4.3 remains valid. This modification is similar to

what was done in [26], and it will be included in the simulations of the SLIP embedding

controller without further comment.

To implement the rigid target model controller, a sixth order polynomial was used

for the desired leg length, and a constant polynomial for the desired pitch angle; refer to

Appendix A for details. Generally, the rigid target model controller allows for the desired

pitch angle θ being any suitably parameterized function of the unactuated variable qu,

thus allowing for nontrivial motions of the torso. However, this is not possible in the SLIP

embedding controller, due to the fact that constant pitch angle throughout the nominal

(steady-state) motion is a necessary condition for its implementation.

Both controllers introduce a set of parameters αs, whose values along the nominal orbit

can be selected using the optimization technique developed in [110]. Consider the hybrid

dynamics of the ASLIP in closed-loop with the feedback controllers developed in Sections

4.3, and 4.4, and in Section 4.5 with cost function

Ĵ(αs) =
1

Ts

∫ Ts

0
u2

2(t) dt + max
t∈[0,Ts]

{

[u1(t) − kA (lnat − l(t))]2
}

, (4.77)

where Ts is the duration of the stance phase, kA is the stiffness of the ASLIP leg, and lnat

its natural length; see Table 4.1. Append to (4.77) the constraint

x−s − P(x−s , αs, αf) = 0, (4.78)
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so that the nominal orbit is periodic. One can also include constraints that correspond

to requirements such as the desired nominal forward speed, or the normal ground force

component be non-negative etc. Then, the problem of finding the nominal values of the

coefficients αs and αf reduces to a constrained minimization problem, which can be (nu-

merically) solved using MATLAB’s fmincon. It worth mentioning here, that the specific

choice of performance index (4.77) reflects our desire to find a nominal orbit for the ASLIP,

on which the amount of work produced by the hip actuator and the peak force developed

by the leg actuator given by

ua
1 = u1 − kA(lnat − l), (4.79)

are minimized.

4.6.2 Steady-State Behavior

In order to compare the behavior of the two controllers under perturbations, it would

be ideal to have identical nominal orbits. Despite the fact that relatively low degree poly-

nomials have been used in the rigid target model controller, an almost exact match in the

resulting nominal orbits was obtained, as Fig. 4.5 presents. Figure 4.5 also shows that both

controllers take advantage of the leg spring on the nominal (steady-state) motion, since the

leg actuator force ua
1 is below 6 N while the total leg forces are on the order of 900 N in both

cases.

4.6.3 Transient Behavior and Performance Evaluation

The gains used in the SLIP embedding controller are

Kθ
P = 300,Kθ

V = 2
√

Kθ
P , ǫ = 1.2,KE

P = 2, and Kẋ = 0.2,

while the gains for the rigid target model controller are

Ky
P = diag{100, 100}, Ky

V = 2
√

Ky
P , ǫ = 1, and

K = (0.1839, 0.4555,−0.0048, 0.0887, 0.1902).
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Figure 4.5: Nominal orbits in physical space (a), and corresponding hip torques (b), total
leg forces (c), and leg actuator forces (d) computed by (4.79), for the rigid target
model controller (dashed lines) and the SLIP embedding controller (solid lines).

Note that K has been selected using MATLAB’s dlqr on the linear time invariant discrete

system (4.73) evolving on the Poincaré section (4.72).

Using these data, both controllers have been simulated in MATLAB. It was observed

that the rigid target model controller tends to violate the unilateral constraint between the

ground and the toe by developing control forces which “pull” against the ground (i.e. the

normal force becomes negative). To enlarge the domain of attraction, it was necessary

to include saturation on the control forces so that the ground constraints are respected;

details on the saturation procedure [45]. The SLIP embedding controller did not violate

these constraints, except at very large perturbations.

Figure 4.6 presents pitch angle and forward velocity as the ASLIP recovers from a per-

turbation δθ = −6 deg using both controllers. The perturbation occurs at the liftoff of the

second stride. Notice that in both cases, the response of the pitch angle is similar; however,
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larger excursions from the nominal forward speed are observed in the rigid target model

controller.
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Figure 4.6: Ten strides showing convergence from δθ = −6 deg, for the the SLIP embed-
ding controller (a), (c), and the rigid target model controller (b),(d). Dashed
lines show desired values; the circles correspond to the instant when the per-
turbation occurs (liftoff of the second stride).

Figure 4.7 presents the total leg forces and the leg actuator forces corresponding to Fig.

4.6. It is seen that, in the SLIP embedding controller, the profile of the leg actuator forces ua
1

computed by (4.79) remains close to that of a spring force, even during transients. On the

contrary, in the rigid target model controller, the profile of the total leg force u1 significantly

differs from that of the spring force, resulting in large actuator forces ua
1. This means that

the rigid target model controller in closed loop with the ASLIP effectively “cancels” the

compliance of the leg in the open-loop ASLIP. It is emphasized that, on the nominal orbit,

both controllers exploit the leg spring equally well, since as shown in Fig. 4.5, the leg

actuator force never exceeds 6 N, while the total forces are on the order of 900 N.

These features have significant implications for the domain of attraction of the two con-

69



0 0.5 1 1.5 2
0

500

1000

1500

Time (s)

Le
g 

fo
rc

e 
(N

)

(a)

0 0.5 1 1.5 2
0

500

1000

1500

Time (s)

Le
g 

fo
rc

e 
(N

)

(b)

0 0.5 1 1.5 2
−400

−200

0

200

400

600

800

Time (s)

Le
g 

ac
tu

at
or

 fo
rc

e 
(N

)

(c)

0 0.5 1 1.5 2
−400

−200

0

200

400

600

800

Time (s)

Le
g 

ac
tu

at
or

 fo
rc

e 
(N

)

(d)

Figure 4.7: Leg forces for the SLIP embedding controller (left), and the rigid target model
controller (right), and for the first four steps of Fig. 4.6. Upper plots show
total leg forces; bottom plots show leg actuator forces computed by (4.79). The
dashed lines in the upper plots show spring forces.

trollers. This is demonstrated in Table 4.2, which presents the number of strides until con-

vergence within 5% of the steady-state value (strides), the peak actuator forces (ua
1, u2)

max

in N, and the total work (W1,W2)
total in J, required to reject perturbations δθ in the pitch

angle and δẋcm in the forward velocity using the SLIP embedding controller (SLIP) and the

Rigid Target Model controller (RTM). The perturbations reported in Table 4.2 correspond

to the maximum values that can be rejected with the RTM controller, while the leg actuator

force satisfies ua
1 ≤ 500 N (almost double the weight of the robot). As is shown in Table

4.2, significantly lower peak leg actuator forces and total work are required from the SLIP

embedding controller. As a result, larger perturbations than those in Table 4.2 can be re-

jected by the SLIP embedding controller respecting the constraint ua
1 ≤ 500 N. This is due

to the fact that the SLIP embedding controller acts in concert with the spring. These results

demonstrate the significance of designing the HZD of running to respect the compliance
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available in the open-loop system. Otherwise, the beneficial effects of the actual leg spring

may be canceled by the control inputs during transients.

Table 4.2: Control Effort: SLIP Embedding and RTM Controllers

Perturbation Control Stride (ua
1, u2)

max (W1,W2)
total

δθ = +4deg SLIP 4 (54, 28) (24, 18)

RTM 6 (442, 15) (71, 24)

δθ = −3deg SLIP 4 (50, 26) (16, 19)

RTM 4 (382, 21) (55, 19)

δẋcm = +0.9m
s SLIP 6 (418, 64) (110, 40)

RTM 12 (448, 37) (242, 76)

δẋcm = −1.4m
s SLIP Such a large perturbation

could not be rejected without
input saturation.

RTM 15 (486, 15) (236, 47)

4.6.4 Qualitative Discussion

The significantly lower leg actuator forces reported for the SLIP-embedding controller

in Table 4.2 are due to the fact that, in this case, the control input acts in concert with

the spring. To be precise, as was mentioned in Remark 4.11, the intuitive meaning of the

feedback law given by (4.59) is that the ASLIP (actual) leg force, u1, is rendered equal to

the projection of the SLIP (virtual) leg force, FES−SLIP, along the direction of the actual

leg. In view of (4.79), to achieve this prescription the leg actuator ua
1 is only required

to “shape” the actual spring force kA(lnat − l), so that the required central spring force,

FES−SLIP, along the virtual (SLIP) leg direction is developed. As can be seen in Fig. 3.1, for

physically reasonable torso pitch angles, the angle between the actual leg and the virtual

leg direction is small. Consequently, small actuator effort suffices to “shape” the spring

force of the actual leg to achieve this projection.

Concerning the lower power required by the SLIP-embedding controller, this is at-

tributed to the fact that much of the work done on the leg is provided by the spring.

Hence, in decelerating the COM during the compression part of the stance phase, only

a small amount of energy is dissipated in the leg actuator. Finally, another particularly
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important advantage of the SLIP-embedding controller is that, under reasonable condi-

tions, it does not violate the ground contact constraints. In contrast, the rigid target model

controller frequently commands leg forces that violate the unilateral constraints charac-

terizing the toe/ground interaction. For instance, this occurs when the current leg length

exceeds the commanded value. On such occasions, the controller attempts to shorten the

leg by “pulling” the ground, often resulting in forces that violate the unilateral ground

constraint.

These results demonstrate the significance of designing the HZD of running to respect

the compliance available in the open-loop system. Otherwise, the beneficial effects of the

actual leg spring may be canceled by the control inputs during transients. These ideas

will be exploited in Chapter VI, where a feedback control law that induces stable running

motions on Thumper is designed.
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CHAPTER V

The Monopedal Robot Thumper

In this section, the mathematical equations governing the behavior of Thumper in run-

ning are derived. As was mentioned in the introduction, Thumper can be thought of as a

rigid open kinematic chain composed of three links, which is driven by a compliant trans-

mission system. To derive the equations of motion of Thumper, the transmission dynamics

will be included as part of the model. This is necessary because of the way the compliance

enters the system. In particular, the spring is part of the transmission system and it does

not act directly on any of the physical joints of the linkage representing the robot. This is

one of the main differences with the ASLIP model of Chapter III, where the spring was

directly associated with the prismatic leg joint and the control inputs were assumed to act

on the leg angle and leg length joints without dynamics involved.

The structure of this chapter is as follows. Section 5.1 clarifies the notation used in

subsequent sections and contains the modeling hypotheses used to derive a mathematical

model for Thumper’s dynamics in running. Section 5.2 contains a model of the transmis-

sion along with some design details that are important for understanding its role as part

of the system. Finally, in Section 5.3, a mathematical model of Thumper in running is

derived, including the flight and stance dynamics, and the corresponding flight-to-stance

and stance-to-flight transition maps.
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5.1 Terminology, modeling hypotheses, and notation

Similarly to the ASLIP, during running, Thumper alternates between stance and flight

phases. In the stance phase, which sometimes is called the (single) support phase, the

leg-end, referred to as the toe, is in contact with the ground, while in flight the robot fol-

lows a ballistic trajectory under the influence of gravity. Thumper is composed of a torso

and a single leg attached to the torso via a revolute joint, which is termed the hip joint.

The leg is composed by two links, called the thigh and the shin, which are connected with

another revolute joint, called the knee. The torso, thigh and shin form a rigid open kine-

matic chain, which is driven by two actuators —the leg angle and the leg shape actuators—

via a compliant transmission system contained inside the torso. The transmission deliv-

ers actuator torques to the thigh and shin through a system of differentials implemented

by cable-driven pulleys in such a way that the compliance acts in the direction of the line

connecting the toe with the hip joint.

In the following list, the hypotheses used to derive the mathematical model of Thumper

in running are enumerated. The significance of each of these modeling hypotheses will

become apparent in subsequent sections, where details on the model derivation are pre-

sented. Here, all the hypotheses are collected for reference purposes.

Model Hypotheses: Thumper

HMT1) The motion is planar, i.e., running is constrained in the sagittal plane;

HMT2) The torso, thigh and shin are modeled as rigid bodies with nonzero mass and

distributed inertia. The hip and knee joints are assumed to be ideal (frictionless)

revolute joints;

HMT3) The point of contact between the leg-end and the ground is unactuated and it is

modeled as a frictionless pin joint;

HMT4) The pulleys of the differentials in the transmission are modeled as cylindrical rigid

bodies with distributed inertia about their COM. Their mass is included in the torso

total mass. The cables connecting the pulleys are assumed to be massless;
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HMT5) The spring is assumed to be linear and unilateral; it can be deformed in one direc-

tion only. The deformation of the spring in flight is assumed to be negligible; and

HMT6) The transmission system contributes to the gravitational potential energy of the

mechanism only through increasing the torso mass.

Gait Hypotheses for Running: Thumper

The following properties consistent with the notion of monopedal running will be satisfied

by the robot’s motion as a result of the control action:

HGT1) Running is from left to right and takes place on a level surface;

HGT2) There are alternating phases of stance and flight separated by touchdown and

liftoff events;

HGT3) During the single support phase the stance leg acts as an ideal pivot joint; in par-

ticular, throughout the stance phase it can be guaranteed that the vertical component

of the ground reaction force is non-negative and that the ratio of the horizontal com-

ponent over the vertical component does not exceed the coefficient of friction (the leg

does not “pull” the ground and the toe does not slip);

HGT4) The COM of the robot travels a nonzero horizontal distance during the flight

phase;

HGT5) The flight phase is terminated when the toe touches the ground. At this point an

impact occurs;

HGT6) The stance phase is terminated when the vertical component of the ground reac-

tion force becomes zero. At this point, the spring reaches its natural length and an

(internal) impact occurs between the pulley attached to the spring in the transmission

system and a mechanical (hard) stop, not allowing the spring to extend.

Rigid Impact Model Hypothesis: Thumper

By Hypotheses HGT5) and HGT6), impacts occur during the motion of the robot on two

occasions. First, at touchdown, when the toe collides with the ground signifying the end
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of the flight phase. Second, at liftoff, when a mechanical stop in the transmission system is

hit by one of the pulleys associated with the spring, not allowing the spring to extend. This

is a result of the specific design of the transmission system, which introduces a unilateral

spring action as was mentioned in hypothesis HMT5). The impacts are modeled as con-

tacts between two rigid bodies according to the model in [50]. In particular, the following

hypotheses are used to model impacts:

HIT1) Impacts are instantaneous;

HIT2) The impact associated with the collision of the toe with the ground results in no

rebound and no slipping; the internal impact associated with hitting the mechanical

stop results in no rebound of the colliding pulley;

HIT3) The externally applied forces during an impact can be represented by impulses;

HIT4) The actuators do not generate impulses; hence, they can be ignored during impact;

and

HIT5) The impulsive forces may result in instantaneous change in the robot’s velocities,

but there is no instantaneous change in configuration.

Finally, before continuing with the derivation of the model of Thumper in running, a

few remarks on notation are in order. As in the ASLIP, the subscripts “f” and “s” will be

used to denote the “flight” and “stance” phases, respectively. Moreover, the subscript “e”

will be used to denote quantities associated with the “extended,” i.e., unconstrained, dy-

namics of Thumper. The symbol “q” will be used to denote both a point in the configuration

manifold Q and its coordinate representation with respect to a coordinate chart of Q. Sim-

ilarly, “q̇” will be used to denote both a tangent vector, i.e., an element of the vector space

TqQ, and its coordinate representation, i.e., a column array in R
n. In general, there will be

no distinction between a map relating two manifolds and its coordinate representation. On

some occasions, a distinction is made between maps between tangent spaces and their cor-

responding representations. For instance, let Υ : Q1 → Q2 be a smooth map between two

manifolds Q1 and Q2. The differential of Υ will be denoted by (DΥ)q : TqQ1 → TΥ(q)Q2,

q ∈ Q1, while its coordinate representation is denoted by the Jacobian matrix J(q).
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In general, a point on the robot will be denoted by its Cartesian coordinates p = (ph; pv)

with respect to the inertia frame. An exception to this general rule corresponds to the

Cartesian coordinates of the COM, which will be denoted as (xcm, ycm). The purpose of

this exemption is to emphasize the use of the Cartesian coordinates of the COM (xcm, ycm)

as part of the configuration variables during the flight phase. Note that augmenting the

stance configuration variables with the Cartesian coordinates of the COM is a common,

but not unique, choice of generalized coordinates for the flight phase.

5.2 Transmission Dynamics

The novel aspects of Thumper, and there are many, appear in the transmission or pow-

ertrain; see [52], [53] and [51]. First of all, all of the actuators (two DC–brushless motors)

are located in the torso1, so that the legs are as light as possible. Secondly, the actuated de-

grees of freedom of each leg do not correspond to the knee and hip angles –the hip angle

being the relative angle between the torso and the thigh. Instead, a collection of differen-

tials is used to connect the two motors to the hip and knee joints in such a way that one

motor actuates the angle of the virtual leg consisting on the line connecting the hip to the

toe, and the second motor is connected in series with a spring to control the length or shape

of the virtual leg; see Fig. 5.1.

Roughly speaking, the rationale for this design is that, despite the presence of a rev-

olute knee joint, Thumper’s leg resembles kinematically the prismatic leg of a Spring

Loaded Inverted Pendulum (SLIP). In fact, the powertrain ensures that compliance is

present along the virtual leg direction shown in Fig. 5.1(a), in much the same way as

the prismatic spring acts in the SLIP. The transmission system introduces dynamic effects

not present in other robot designs, and it needs to be included in the model of the system.

The purpose of this section is to provide the essential features characterizing the behavior

of the transmission system leaving the corresponding details for Appendix B.

As was mentioned above, there are two actuators, namely, the leg-angle and the leg-

shape actuators, providing torque inputs uLA and uLS, respectively; see Fig. 5.1(b). The

1This is different from RABBIT and most other robots, in which the knee actuators are mounted on the
thigh; see for instance [24].
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Figure 5.1: Left: Basic robot configuration. The dashed line connecting the toe with the hip
corresponds to the “leg direction;” its length l and angle qLA are the virtual “leg
length” and “leg angle,” respectively. The leg length l is uniquely determined
by the “leg shape” angle, qLS. Right: Thumper’s powertrain system (courtesy
of Hae-Won Park). The motors and spring are connected to the hip and knee
joints via three differentials connected so that the actuated variables are the leg
and leg-shape angles, qLA and qLS, respectively; see Fig. 5.1(a). The spring is
in series with the leg-shape motor: one end is connected to the torso and the
other to the Bspring pulley via a cable, which makes the spring unilateral. When
the spring reaches its rest position, the Bspring pulley hits a hard stop, as shown
in the detail. When this happens, the leg-shape motor is, for all intents and
purposes, rigidly connected to leg shape through a gear ratio. Design details of
the transmission can be found in [51].

transmission consists of three cable-driven differentials, whose placement is according to

the conceptual diagram shown in Fig. 5.1(b); a more detailed figure, Fig. B.1, is given in

Appendix B. The kinematics of the transmission involves eighteen variables correspond-

ing to the angular positions of the pulleys, among which there exist fifteen constraints

imposed by their interconnections. To improve readability, these constraints are provided

in Appendix B. Here, only their implications for the kinematics and dynamics of the robot

are discussed.

First, special attention is given to two of the constraints imposed by the transmission,
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namely, those constraints that relate the “internal” variables of the transmission with the

external linkage kinematics. Let qThigh and qShin be the angles of the thigh and the shin

relative to the torso2, respectively, see Fig. 5.1(a). Then, the placement of the differentials

in the transmission and the geometry of the associated pulleys ensure that the leg angle

qLA and the leg shape qLS are constrained according to

qLA =
qThigh + qShin

2
(5.1)

qLS =
qThigh − qShin

2
(5.2)

Notice that the angles qLA and qLS given by (5.1) and (5.2), respectively, uniquely determine

the orientation with respect to the torso of the line segment connecting the hip and the toe,

and its length through the relation

l = 2d cos(qLS), (5.3)

respectively. In (5.3), d refers to the length of the thigh and shin; see Fig. 5.1(a). Conse-

quently, from a kinematics perspective, the transmission system can be viewed as a sys-

tem with leg length and leg angle as inputs, and thigh angle and shin angle as outputs.

In other words, given some desired values of qLA and l (or, equivalently qLS), the trans-

mission guarantees mechanically that the hip and knee joints are placed appropriately so

that these desired values are achieved. Intuitively, (5.1), (5.2) and the constraints listed in

Appendix B ensure that the toe is mechanically constrained to move along the virtual leg

length line shown in Fig. 5.1(a).

The second point that will be addressed in this section, and is related to the constraints

imposed by the differentials and their interconnections, regards the degrees of freedom of

the transmission system. Since the transmission involves eighteen variables and fifteen

constraints among them —see Appendix B— there will be three independent variables,

which completely determine the configuration of all the pulleys in the transmission. In

2By design, these are the angles of the “C” pulleys of the thigh and shin differentials θCThigh
and θCShin

,
respectively; see Table B.1 and Fig. B.1 in Appendix B.
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what follows, the triplet (qLA, qLS, qmLS) —qLA, qLS have been described above and qmLS

is the position of the motorshaft of the leg-shape motor; see Fig. 5.1— is selected as the

set of configuration variables for the transmission system. It should be emphasized here

that, since only two actuator torques uLA and uLS act as inputs, the transmission is an

underactuated system with one degree of underactuation.

The source of underactuation of the transmission is the existence of the spring depicted

in Fig. 5.1(b). If θBSpring
denotes the deformation of the spring, then

θBSpring
= µ1qLS − µ2qmLS, (5.4)

where µ1 = 5.196 and µ2 = 0.1646 are constants whose values depend on the geometric

characteristics of the pulleys. Equation (5.4) is quite revealing for the role of the spring. It

shows that compliance acts between the leg shape angle, qLS, and the motorshaft angular

position, qmLS, in roughly the same way as in the case of a motor connected in series with

a spring moving a load. In fact, this would have been exactly the case if µ1 = µ2 = 1.

Note also that the spring does not affect the relation between the leg angle qLA and the

corresponding motorshaft position qmLA; thus, the torque uLA is rigidly transmitted to the

linkage. Only the torque uLS developed at the leg shape motor is transmitted to the linkage

through the compliant element.

Remark 5.1. Equation (5.4) highlights that holding the motorshaft at a constant angle qmLS,

and given the one-to-one relation between the virtual leg length l and qLS imposed by (5.3),

equation (5.4) shows that the spring action is “visible” only when l changes, in much the

same way the prismatic spring acts in the SLIP. Indeed, as the knee flexes during the com-

pression part of the stance phase, holding the leg-shape motorshaft at a constant position

ensures that elastic energy is stored in the spring; this energy can be returned in the system

during the decompression part of the stance phase. This fact will be used in Section 6.2 to

design a controller for Thumper that takes advantage of the spring. ⊳

The third novelty in Thumper’s powertrain is that the spring in series with the leg-

shape motor is unilateral in the sense that it compresses, but does not extend beyond its

nominal rest length; instead, once the spring reaches its rest length, the position of the leg-
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shape motor and the shape of the virtual leg are rigidly connected, i.e., directly, through

a gear ratio, and no longer through a compliant element; see Fig. 5.1(b) for how this is

achieved. This is a big advantage in initiating take-off in running since when the leg is

lifted from the ground its motion does not have to “fight” a spring that is trying to extend

due to the non-zero mass of the shin. Roughly speaking, the spring is present when it is

useful for shock attenuation and energy storage, and absent when it would be a hinderance

for lifting the leg from the ground.

It is apparent from the above discussion that the presence of the spring and the iner-

tias of the rotating pulleys inside the transmission system introduce dynamic effects that

need to be included in a full model of the robot in order to accurately describe its dy-

namics. This can be done easily by computing the kinetic and potential energies of the

transmission, which can then be added (in a scalar fashion) to the kinetic and potential

energies of the linkage. Let Qtr be the configuration space of the transmission system,

considered to be a simply-connected open subset of S
3 parameterized by the coordinates3

qtr = (qLA; qLS; qmLS). The kinetic energy Ktr : TQtr → R of the transmission can be com-

puted based on Hypothesis HMT4) and its expression in coordinates is given in Appendix

B. Consistent with Hypothesis HMT6), the potential energy Vtr : Qtr → R associated with

the transmission system corresponds only to the elastic energy of the spring, and in the

given coordinates it is obtained by

Vtr(qtr) =
1

2
kθ2

BSpring
=

1

2
kT(µ1qLS − µ2qmLS)

2, (5.5)

where kT is the stiffness of the spring. Given the kinetic and potential energies, a model

of the dynamics in the transmission can be found using the Lagrangian framework. Such

a model for the transmission alone will not be presented here. Instead, the kinetic and

potential energies, given by (B.3) of Appendix B and (5.5) above, respectively, will be used

in the following section to include the transmission dynamics in the model of Thumper,

which will be used for control.

3Notation: semicolons are used to form columns vectors in line, for instance (qs; xcm; ycm) will be used
instead of (q′s, xcm, ycm)′
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5.3 Dynamics of Thumper in Running

The mathematical model of the dynamics of Thumper in running will be derived in

this section according to the hypotheses enumerated in Section 5.1. Figure 5.2 shows a

schematic of three links representing Thumper’s torso, thigh, and shin. The figure includes

the generalized coordinates describing the configuration of the mechanism and also the

mechanical properties of the links.
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Shin
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Figure 5.2: A schematic of Thumper used to model running. The transmission system is
not shown. Left: “Official” generalized coordinates (qLA; qLS; qTor;xcm; ycm) de-
scribing linkage configuration, and other important quantities. Right: Mechan-
ical properties of Thumper. The COM of each link is placed outside from the
corresponding link to emphasize asymmetry. The moment of inertia of each
link is with respect to its COM.

As was mentioned in Section 5.2, the model will include the transmission dynamics,

because its role in determining the dynamics of the robot is important. This is one of

the main differences with the ASLIP model of Chapter III, where actuation was assumed

to be directly available at the leg-angle and leg-length joints without any dynamics in-

volved. Other differences with the model of the ASLIP dynamics include the fact that, as

noted in Hypothesis HMT2), Thumper’s model incorporates leg mass and inertia, while
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the ASLIP’s leg was assumed to be massless. These differences between Thumper and the

ASLIP will have significant implications to control design as will be shown in Chapter VI.

5.3.1 Thumper’s Unconstrained Dynamics

The configuration space Qe of the unconstrained dynamics of Thumper is a simply-

connected open subset of S
4 × R

2 corresponding to physically reasonable configurations

of the robot when no constraints act on it, i.e., when the robot does not touch the ground

and the spring in the transmission system is allowed to act in both directions, extension

and compression. As suggested by Fig. 5.2, a set of coordinates suitable for parameter-

izing the configuration of the robot’s linkage composed by the torso, thigh and shin, is

(qLA; qLS; qTor;xcm; ycm). On the other hand, based on the discussion of Section 5.2, the

triplet (qLA; qLS; qmLS) completely describes the configuration of the transmission system.

As a result, the configuration space Qe of the unconstrained dynamics of Thumper can be

parameterized by qe := (qLA; qLS; qmLS; qTor;xcm; ycm) ∈ Qe, describing both the dynamics

of the linkage and the transmission system.

The corresponding equations of motion will be obtained using the method of Lagrange.

The total kinetic energy Ke : TQe → R of the mechanism can be computed by adding the

corresponding kinetic energies Ktr and Klink
e of the transmission system and the linkage

composed by the the torso, thigh and shin, respectively, i.e.,

Ke(qe, q̇e) = Ktr(qe, q̇e) + Klink
e (qe, q̇e), (5.6)

where Ktr(qe, q̇e) is given by (B.3) of Appendix B and

Klink
e (qe, q̇e) =

1

2
mTor(ẋ

2
cmTor

+ ẏ2
cmTor

) +
1

2
JTorq̇

2
Tor

+
1

2
mThigh(ẋ

2
cmThigh

+ ẏ2
cmThigh

) +
1

2
JThighq̇

2
Thigh

+
1

2
mShin(ẋ

2
cmShin

+ ẏ2
cmShin

) +
1

2
JShinq̇

2
Shin.

(5.7)

In (5.7), (ẋcmi , ẏcmi), i ∈ {Tor,Thigh,Shin} correspond to the Cartesian velocities of the

COM of the torso, thigh, and shin, respectively, and q̇Tor, q̇Thigh, and q̇Shin are the rates of
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the absolute angles of the torso, thigh, and shin, respectively, relative to the vertical; see

Fig. 5.2. In terms of the generalized coordinates qe and the corresponding velocities q̇e, the

total kinetic energy Ke can be written in the quadratic form

Ke(qe, q̇e) =
1

2
q̇′eDe(qs)q̇e, (5.8)

where

De(qs) =







A(qs) 04×2

02×4 mI2×2






(5.9)

is the unconstrained inertia matrix. In (5.9), m := mTor +mThigh +mShin is the total mass

of the robot, and A ∈ R
4×4 is a matrix that depends only on the angular coordinates qs :=

(qLA; qLS; qmLS; qTor), i.e., it is independent of the Cartesian coordinates (xcm, ycm) of the

robot’s COM. The block diagonal structure of the inertia matrix De reflects the fact that the

total kinetic energy is invariant under translations of the body, and it will be put to use

in Sections 5.3.4 and 5.3.5 below, where the flight-to-stance and stance-to-flight transition

maps representing the impacts that occur at touchdown and liftoff are derived.

Similarly, the total potential energy Ve : Qe → R of the mechanism is computed by

adding the corresponding potential energies Vtr
e and V link

e of the transmission and the link-

age, respectively, that is,

Ve(qe) = Vtr(qe) + V link
e (qe), (5.10)

where Vtr is given by (5.5) and

V link
e (qe) = mgycm. (5.11)

Notice that, by Hypothesis HMT6), the transmission system contributes to the potential

energy of the system only via its elastic energy.

The (unconstrained) Lagrangian Le : TQe → R can then be defined as usual by

Le := Ke − Ve, (5.12)

and the model of the unconstrained robot dynamics can be determined through Lagrange’s
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equations

d

dt

∂Le

∂q̇e
− ∂Le

∂qe
= Γe, (5.13)

where Γe is a column array containing the components of the generalized forces4 acting on

the robot. Using the principle of virtual work, Γe is found to be

Γe = Beu, (5.14)

where u = (uLA;uLS) ∈ U ⊂ R
2 contains the actuator torques applied at the robot, and

Be is the corresponding actuation distribution matrix, which, in this particular case, is

independent of qe.

Applying Lagrange’s equations (5.13) with the kinetic and potential energies defined

by (5.6) and (5.10), respectively, results in the second-order model

De(qe)q̈e + Ce(qe, q̇e)q̇e +Ge(qe) = Beu (5.15)

describing the unconstrained dynamics of Thumper. In (5.15), De is the mass matrix given

by (5.9), Ce contains Coriolis and centrifugal terms, and Ge is the vector of the configura-

tion dependent forces, gravitational and elastic.

5.3.2 Thumper Flight Dynamics

In the flight phase, the robot follows a ballistic motion under the influence of gravity,

and hence its dynamics could accurately be represented by the second-order model (5.15).

However, based on the fact that the stiffness and damping associated with the spring in

the transmission system are large compared to the relatively small mass and inertia of

the leg (thigh and shin), it will be assumed that the spring deformation can be neglected

4To be precise, a generalized force F should be viewed as a map F : I × TQ → T ∗Q, I ⊂ [0, +∞), that
depends (at least) continuously on time t ∈ I , for which F (t, q̇) ∈ T ∗

q Q, for each (t, q̇) ∈ I × TqQ, q ∈ Q;
see [19, p. 189] or [14, pp. 128-130]. Note that if γ : I → Q is a smooth curve on Q, the force along γ
is a covector field α : I → TQ∗ with α(t) := F (t, γ′(t)). This level of abstractness in defining the notion of a
generalized force will not be necessary for developing the models, and hence, by (the usual) abuse of notation,
the generalized force is viewed as a column vector.
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during the flight phase5. This assumption was summarized in Hypothesis HMT5), and it

results in a relation constraining the motor position qmLS and the leg shape qLS, obtained

by setting θBSpring
= 0 in (5.4), i.e.

qmLS = µqLS, (5.16)

where µ = µ1

µ2
= 31.57 is a constant that depends on the geometry of the pulleys in the

transmission system. Equation (5.16) results in the constraint

cf(qe) = 0, (5.17)

where cf : Qe → R is a smooth real-valued linear map represented in coordinates by

cf(qe) :=

[

0 −µ 1 0 0 0

]

qe.

Equation (5.17) is an example of a holonomic constraint imposed on the configuration space

Qe; see [85, pp. 265-276] for a detailed treatment of such constraints. This constraint re-

duces the number of degrees of freedom of the unconstrained model by one. To be pre-

cise, (5.17) restricts the motion of the system to a smooth five-dimensional submanifold

Qf := {qe ∈ Qe | cf(qe) = 0} embedded6 in the (unconstrained) configuration space Qe.

Note that by differentiating (5.17) with respect to time, the following relation is imposed

upon the velocities q̇e ∈ TqeQe of the unconstrained system

[

0 −µ 1 0 0 0

]

q̇e = 0 ⇒ Ef q̇e = 0. (5.18)

Geometrically, (5.18) means that the allowable velocities of the system under the (holo-

nomic) constraint (5.17) must be orthogonal to the row matrix Ef . In other words, Ef

represents the direction in Qe along which the system cannot move.

To derive the equations of motion for the flight phase, the constraint (5.17) will be

5The situation is similar to that of an actuator connected in series with a spring/damper system that pushes
a small mass. When the spring stiffness and damping constant are large enough, the spring/damper system
can be approximated with a rigid link (for reasonably small accelerations). Remember that the spring in the
transmission acts only in the direction of the leg shape, that is, in the direction of the virtual leg length.

6This is a consequence of the regular value theorem, see Theorem (5.8), [15, p. 78], in view of the smoothness
of the map cf and the fact that ∂cf/∂xf 6= 0 on c−1

f ({0}).
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“eliminated” by representing the dynamics with respect to a set of coordinates parame-

terizing Qf . In essence, these new coordinates parameterize the “allowable” motions of

the system, and are not subjected to any further constraints. As a result, the generalized

coordinates of the flight phase can be selected to be qf := (qLA; qLS; qTor;xcm; ycm). Then,

qe = Υf(qf), (5.19)

where Υf : Qf → Qe is a smooth linear map, which, in coordinates, can be represented by

the matrix Yf ∈ R
6×5,

Yf :=















I2×2 02×3

[0 µ] 01×3

03×2 I3×3















. (5.20)

Note that, for future use, the flight coordinates qf can be recovered from the extended

model coordinates qe through the map Πf : Qe → Qf ,

qf = Πf(qe), (5.21)

which, in coordinates, is given by the matrix Pf ∈ R
5×6 as

Pf :=







I2×2 02×1 02×3

03×2 03×1 I3×3






, (5.22)

and Πf ◦ Υf = idQf
as suggested by the commutative diagram of Fig. 5.3.

Let (DΥf)qf
: Tqf

Qf → TΥf(qf)Qe denote the differential at a point qf ∈ Qf of the map Υf

defined by (5.19). Then,

q̇e = (DΥf)qf
(q̇f), (5.23)

where q̇f ∈ Tqf
Qf and q̇e ∈ TΥf(qf )Qe are the flight and unconstrained velocity (i.e., tangent)

vectors, respectively. The map (DΥf)qf
can be represented in coordinates by the Jacobian

matrix Jf ∈ R
6×5, which, in view of (5.20), is simply Jf = Yf , i.e., it is independent of the

point qf ∈ Qf , resulting in the following relation between the components of the uncon-
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q̇f ∈ Tqf
Qf

q̇e ∈ TΥf(qf)Qe

q̇f ∈ Tqf
Qf

idTqf
Qf

(DΥf)qf
(DΠf)qf

qf ∈ Qf

qe ∈ Qe

qf ∈ Qf

Υf Πf

idQf

(fiber)

(base)

Figure 5.3: A commutative diagram showing mappings between the flight and uncon-
strained state spaces, TQf and TQe, respectively.

strained and flight velocities

q̇e = Jf q̇f . (5.24)

In a similar fashion, the differential DΠf : TqeQe → TΠf(qe)Qf of the map Πf at a point

qe ∈ Qe,

q̇f = (DΠf)qe(q̇e), (5.25)

can be defined in coordinates by the matrix Pf given by (5.22). Note that (DΠf)Υ(qf ) ◦

(DΥf)qf
= idTqf

Qf
, which, in coordinates, corresponds to PfQf = I , I ∈ R

5×5 is the identity

matrix.

Remark 5.2. To avoid confusion between the (different) meanings of (5.23) and (5.24), it is

clarified that, for reasons of notational convenience, the same symbol q̇ is used to denote

both a tangent vector q̇ ∈ TqQ, and its coordinate representation [q̇](U,φ) ∈ R
n with respect

to a given chart (U, φ) of Q. This is standard practice in the control and classical mechanics

literature. ⊳

Due to the fact that the constraint (5.17) is holonomic, substitution of the constraint

equations in the unconstrained Lagrangian Le defined by (5.12) is permitted, and will re-

sult in the correct equations of motion7. Substituting (5.24) in the kinetic energy of the

7This not true when the constraint is nonholonomic; see [85, p. 274]. In general, for nonholonomic con-
straints, substitution of the constraint equations to the unconstrained Lagrangian will result in wrong equa-
tions of motion.
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unconstrained model (5.8), the kinetic energy Kf : TQf → R in the flight phase is found

Kf(qf , q̇f) =
1

2
q̇′fDf(qs)q̇f , (5.26)

with

Df(qs) = J ′
fDe(qs)Jf , (5.27)

where De has been defined in (5.9). Moreover, the total potential energy Vf : Qf → R of

the mechanism in the flight phase corresponds to the gravitational potential energy of the

rigid linkage composed by the torso, thigh and shin. In particular, since, by Hypothesis

HMT5), the spring deformation is assumed to be zero in flight, the elastic energy of the

spring does not contribute to the total potential energy. Hence,

Vf(qf) = mgycm. (5.28)

The Lagrangian Lf : TQf → R can then be defined by Lf := Kf − Vf , with the kinetic and

potential energies computed by (5.26) and (5.28), respectively8, and the model of the robot

dynamics in flight can be determined through Lagrange’s equations

d

dt

∂Lf

∂q̇f
− ∂Lf

∂qf
= Γf , (5.29)

where Γf is an column array containing the components of the generalized forces applied

to the robot. By the principle of virtual work, Γf is found to be

Γf = Bfu, (5.30)

where u = (uLA;uLS) ∈ U ⊂ R
2 contains the actuator torques applied at the robot, and Bf

is the corresponding actuation distribution matrix. Applying Lagrange’s equations (5.29)

8Note that, in view of the substitutions for computing the constrained kinetic and potential energy in (5.26)
and (5.28), respectively, Lf(qf , q̇f) := Le (Υf(qf), (DΥf)qf (q̇f)), where Le is the unconstrained Lagrangian.
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results in the second-order model

Df(qf)q̈f + Cf(qf , q̇f)q̇f +Gf(qf) = Bfu, (5.31)

describing the dynamics of Thumper in flight. The various matrices participating in (5.31)

have the meaning described in (5.15). Equation (5.31) illustrates the degree of underactua-

tion of the system in the flight phase. Indeed, during flight the system has five degrees of

freedom and only two actuator inputs. As expected, this limited control authority is one of

the sources of complexity in the process of designing controllers capable of inducing stable

running in Thumper.

Finally, introducing the state vector xf := (qf ; q̇f) ∈ TQf , the model (5.31) can be

brought into standard state-space form by defining

ẋf :=
d

dt







qf

q̇f






=







q̇f

D−1
f (qf)(−Cf(qf , q̇f)q̇f −Gf(qf) +Bfu)







=: ff(xf) + gf(xf)u,

(5.32)

where xf ∈ TQf :=
{

(qf ; q̇f) | qf ∈ Qf , q̇f ∈ Tqf
Qf

∼= R
5
}

=: Xf is the state vector.

according to Hypothesis HGT5), the flight phase is terminated when the vertical dis-

tance of the toe from the ground becomes zero. The threshold function Hf→s : Xf → R

given by Hf→s(xf) := pv
toe, with pv

toe denoting the vertical distance between the toe and

the ground, see Fig. 5.2, signifies the touchdown event at its zero crossing, and defines a

smooth switching manifold Sf→s in the flight state space Xf , given by

Sf→s := {xf ∈ Xf | Hf→s (xf) = 0} . (5.33)

Mathematically, transition from flight to stance occurs when the solution of (5.32) pierces

the flight-to-stance switching surface Sf→s.
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5.3.3 Thumper Stance Dynamics

In the unconstrained model of Thumper, the Cartesian position (ph
toe, p

v
toe) of the toe

can be expressed in terms of the Cartesian position (xcm, ycm) of the center of mass and the

robot’s angular coordinates qs := (qLA; qLS; qmLS; qTor) as







ph
toe

pv
toe






=







xcm

ycm






− Υtoe(qs), (5.34)

where Υtoe is a smooth function of qs that depends on the robot’s geometric parameters,

namely, the length, mass, and position of center of mass of each link.

During the stance phase, the toe is in contact with the ground. By Hypothesis HMT3),

the toe-ground interaction will be modeled as a frictionless pin-joint rigidly attached to the

ground; in particular, the Cartesian velocity of the toe is assumed to be zero throughout

the stance phase. Attaching the frame of reference at the (motionless) toe, i.e. (ph
toe, y

v
toe) =

(0, 0), and using (5.34), results in the constraint

cs(qe) = 0, (5.35)

where the map cs : Qe → R
2 is defined in coordinates by

cs(qe) :=







xcm

ycm






− Υs(qs), (5.36)

and it is smooth, a property inherited by the smoothness of Υtoe. The rank9 of cs is equal

to two everywhere in Qe, reflecting the independence of the constraints defined by (5.35).

Equation (5.35) restricts the motion of the system on a smooth four-dimensional sub-

manifold

Qs :=
{

qe ∈ Qe | cs(qe) = 0
}

(5.37)

embedded in the (unconstrained) configuration space Qe, and, similarly to the constraint

9Let c : U → R
m be a C1-mapping of an open set U ⊂ R

n. Then, the rank of c at a point q ∈ U is simply the
rank of the Jacobian ∂c

∂q
(q) of c at q; see [15, p. 46].
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(5.17) imposed in the flight phase, it belongs to the family of holonomic constraints. Intu-

itively, the space Qs contains all the configurations in Qe that are compatible with (5.35).

Therefore, as was done in deriving the flight dynamics, the constraint can be “eliminated”

by choosing to represent the system’s dynamics with respect to a set of coordinates on Qs,

essentially parameterizing the “allowable” motions of the system. These new coordinates

subject to no further constraints.

In what follows, the generalized coordinates for the stance phase are selected to be

qs := (qLA; qLS; qmLS; qTor) so that

qe = Υs(qs), (5.38)

where Υs : Qs → Qe is a (smooth) map whose representation in coordinates is given by

Υs(qs) :=







qs

Υtoe(qs)






. (5.39)

For future use, it is mentioned here that the stance coordinates qs can be recovered from

the extended model coordinates qe through the map Πs : Qe → Qs,

qs = Πs(qe), (5.40)

which, in coordinates, is given by the matrix Ps ∈ R
5×6 as

Ps :=

[

I4×4 04×2

]

, (5.41)

and Πs ◦ Υs = idQs as suggested by the commutative diagram of Fig. 5.4.

Let (DΥs)qs : TqsQs → TΥs(qs)Qe denote the differential at the point qs ∈ Qs of the

map Υs defined by (5.38). Then the unconstrained and the stance velocity vectors, q̇e, q̇s,

respectively, are related via

q̇e = (DΥs)qs(q̇s). (5.42)
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q̇s ∈ TqsQs

q̇e ∈ TΥs(qs)Qe

q̇s ∈ TqsQs

idTqsQs

(DΥs)qs (DΠs)qs

qs ∈ Qs

qe ∈ Qe

qs ∈ Qs

Υs Πs

idQs

(fiber)

(base)

Figure 5.4: A commutative diagram showing mappings between the stance and uncon-
strained model state spaces, TQs and TQe, respectively.

The map (DΥs)qs can be represented in coordinates by the Jacobian matrix Js(qs) ∈ R
6×4

Js(qs) :=







I4×4

∂Υtoe
∂qs

(qs)






, (5.43)

resulting in the following relation between the coordinate arrays of the tangent vectors q̇s

and q̇e,

q̇e = Js(qs)q̇s. (5.44)

In a similar fashion, the differential DΠs : TqeQe → TΠs(qe)Qs, at a point qe ∈ Qe of the map

Πs is defined, so that

q̇s = (DΠs)qe(q̇e), (5.45)

and it can be represented by the matrix Ps ∈ R
4×6, defined by (5.41). Note that (DΠs)Υ(qs) ◦

(DΥs)qs = idTqsQs , which, in coordinates, corresponds to the matrix product PsJs = I ;

I ∈ R
4×4 is the identity matrix. As a reminder, note that, according to Remark 5.2, the same

symbol q is used to denote both a point on a manifold and its coordinate representation.

The same holds for tangent vectors and their coordinate representations, which are both

denoted by q̇. Then, (5.42) refers to relating tangent vectors, while (5.44) refers to relating

their coordinate representations.

Substituting (5.44) in the coordinate representation of the kinetic energy of the uncon-
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strained model (5.8), the stance phase kinetic energy Ks : TQs → R can be computed by

Ks(qs, q̇s) =
1

2
q̇′sDs(qs)q̇s, (5.46)

where

Ds(qs) = J ′
s(qs)De(qs)Js(qs) = A(qs) +m

(

∂Υtoe

∂qs
(qs)

)′(∂Υtoe

∂qs
(qs)

)

, (5.47)

in view of (5.9) for substituting De. On the other hand, the potential energy Vs : Qs → R

during the stance phase can be computed in coordinates as in the case of the unconstrained

system (5.10), i.e.

Vs(qs) = mgycm(qs) +
1

2
kT

(

θBSpring
(qs)
)2
, (5.48)

where kT is the stiffness of the spring and θBSpring
its deformation computed by (5.4) as a

function of the stance configuration variables.

Define the (constrained) Lagrangian Ls : TQs → R in the usual way by Ls := Ks − Vs,

with the kinetic and potential energy computed by (5.46) and (5.48), respectively. Then, the

model of Thumper in the stance phase can be determined through Lagrange’s equations

d

dt

∂Ls

∂q̇s
− ∂Ls

∂qs
= Γs, (5.49)

where Γs is a column array containing the components of the generalized forces applied at

the robot. By the principle of virtual work, Γs is given by

Γs = Bsu. (5.50)

As before, u = (uLA;uLS) ∈ U ⊂ R
2 is the vector of the actuator inputs and Bs is the

corresponding actuation distribution matrix. Applying Lagrange’s equations (5.49) results

in the second-order model

Ds(qs)q̈s + Cs(qs, q̇s)q̇s +Gs(qs) = Bsu, (5.51)
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describing the dynamics of Thumper in stance. The various matrices participating in (5.51)

have the usual interpretations as in (5.15).

By Hypothesis HMT3), one of the key assumptions in deriving (5.51) is that the toe-

ground interaction can be captured by a frictionless unactuated revolute joint. This ap-

proximation, however, would require the development of bilateral constraint forces that

can keep the toe in contact with the ground throughout the stance phase. In reality, this

cannot happen for two reasons. First, the associated friction cone limitations restrict the

magnitude of the developed ground reaction forces. Second, the toe can only push against

the ground, it cannot pull the ground (unilateral vertical component of the ground reac-

tion force). As a result, the validity of the model (5.51) must be checked by computing the

associated constraint forces, that is, the forces required to ensure that the system remains

on the constraint surfaceQs defined by the constraint (5.35). This computation can be done

by incorporating the constraint forces in the unconstrained dynamics using Lagrange mul-

tipliers, and is detailed below.

As was mentioned in the derivation of the constraint (5.35), the Cartesian velocity of

the toe is assumed to be zero throughout the stance phase, i.e., ṗh
toe = ṗv

toe = 0. By dif-

ferentiating (5.35) with respect to time, this assumption results in the following relation

imposed upon the velocities q̇e ∈ TqeQe of the unconstrained system

[

−∂Υtoe
∂qs

(qs) I2×2

]















q̇s






ẋcm

ẏcm





















= 0 ⇔ Es(qs)q̇e = 0, (5.52)

where Es ∈ R
2×6. Geometrically, (5.52) means that the allowable velocities of the system

under the (holonomic) constraint (5.35) must be orthogonal to the rows of the matrixEs. In

other words, the rows of Es represent the directions in Qe along which the system cannot

move. Notice that, by (5.52), q̇e ∈ N (Es), the nullspace of Es. Hence, the unconstrained

velocity q̇e can be written as a linear combination of any set of basis vectors of N (Es),

whose coefficients correspond to the components of the independent velocity. Selecting

the columns of the matrix Js defined in (5.43) as the basis of N (Es) results in q̇s being the
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independent velocities, consistent to the coordinates selected to parameterize Qs.

Let Fext denote the constraint forces10 associated with the constraint (5.52). In words,

these are the forces that are generated during stance to ensure that the system does not

move in the directions given by the rows of Es. Therefore, the constraint forces can be

viewed as acting along the directions of the rows of Es with magnitude chosen so that the

system remains on the constraint hypersurface Qs. As a result, these forces can be written

as linear combinations of the rows of Es —equivalently, of the columns of E′
s— i.e.,

Fext = E′
s(qs)Ftoe, (5.53)

where Ftoe = (FT
toe;F

N
toe) includes the relative magnitudes of the constraint forces, and cor-

responds to the ground reaction forces applied at the toe. Note that the constraint forces,

so defined, do no work on the system since

F ′
extq̇e = F ′

toeEs(qs)Js(qs)q̇s

= F ′
toe

[

−∂Υtoe
∂qs

(qs) I2×2

]







I4×4

∂Υtoe
∂qs

(qs)






q̇s

= 0

Therefore, using the Lagrange-d’Alembert principle, the constraint forces can be incor-

10In precise terms, and for constraints linear in the velocities such as (5.52), the constraint force is formally
defined as a force taking values in the annihilator of the distribution

Dq :=
{

q̇ ∈ TqQ | E(q)q̇ = 0
}

;

see [14, p. 212] and [19, p. 204]. This distribution is the subspace of the tangent space TqQ of Q at q consisting
of the vectors q̇ satisfying the constraints. To understand the physical motivation for this definition note that a
(time-independent) generalized force F should be viewed as a map F : TQ → T ∗Q, for which Fq(q̇) ∈ T ∗

q Q,
for each q̇ ∈ TqQ, q ∈ Q. On the other hand, in the Lagrangian setting, if γ : I ⊂ R → Q is a smooth curve on
Q, the work W done by F along γ is

W (F, γ) =

∫

I

〈Fγ(t)(γ
′(t));γ′(t)〉dt,

where 〈·; ·〉 is the natural pairing between vectors and covectors. With these in mind, the physical motivation
for the definition of the constraint forces becomes apparent: constraint forces do no work along curves that
satisfy the constraint, so that the Lagrange-d’Alembert principle is satisfied. Indeed, if the path γ is such that
γ′(t) ∈ Dγ(t), for all t ∈ I , then the corresponding constraint force Fγ(t)(γ

′(t)) ∈ ann(Dγ(t)), the annihilator
of Dγ(t), so that the work W (F, γ) = 0.
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porated in the dynamics, which now takes the form

d

dt

∂Le

∂q̇e
− ∂Le

∂qe
= Γe + Fext, (5.54)

resulting in the following system of second-order differential equations describing the con-

strained dynamics

De(qe)q̈e +Ce(qe, q̇e)q̇e +Ge(qe) = Beu+ E′
s(qs)Ftoe. (5.55)

Given (5.52) and (5.55), the ground reaction force Ftoe can be computed as follows.

Differentiating (5.52) with respect to time yields

Es(qs)q̈e + Ės(qs)q̇e = 0 (5.56)

and, solving for q̈e from (5.55) and substituting to (5.56) results in the following expression

for Ftoe,

Ftoe =
(

Es(qs)De(qs)E
′
s(qs)

)−1

(

Es(qs)D
−1
e (qs) (−Ce(qe, q̇e)q̇e −Ge(qe) +Beu) + Ės(qs)q̇s

)

,

(5.57)

where the invertibility of the configuration-dependent matrix EsDeE
′
s is a consequence of

the independence of the constraints. Using (5.57), the constraint forces Ftoe can be com-

puted based on knowledge of the input u, the current state (qs; q̇s), and equations (5.38)

and (5.42).

Therefore, for the stance model (5.51) to be valid, i.e., consistent with the hypotheses

that were used to derive it —in particular, with Hypothesis HGT3)— it must be verified

that

FN
toe > 0 (5.58)

and

|FT
toe| ≤ µsF

N
toe, (5.59)
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where µs is the assumed coefficient of static friction. In words, (5.58) means that toe is never

pulling the ground, while (5.59) corresponds to no sliding occurring at the toe-ground

contact.

Finally, introducing the state vector xs := (qs; q̇s) ∈ TQs, the model (5.51) can be

brought into standard state-space form as

ẋs :=
d

dt







qs

q̇s






=







q̇s

D−1
s (qs)(−Cs(qs, q̇s)q̇s −Gs(qs) +Bsu)







=: fs(xs) + gs(xs)u,

(5.60)

where xs ∈ TQs :=
{

(qs; q̇s) | qs ∈ Qs, q̇s ∈ TqsQs
∼= R

4
}

is the state vector.

The stance phase is terminated when the vertical component FN
toe of the ground reac-

tion force becomes zero. Then, the threshold function Hs→f : TQs × U → R given by

Hs→f(xs, u) := FN
toe, signifies the liftoff event at its zero crossing, and defines a smooth

switching manifold Ss→f in the product space11, TQs × U given by

Ss→f :=
{

(xs, u) ∈ TQs × U | Hs→f(xs, u) = 0
}

. (5.61)

Mathematically, transition from flight to stance occurs when the solution of (5.60) pierces

Ss→f .

Remark 5.3. It should be mentioned here that, when the stance feedback controller Γc
s :

TQs → U , u = Γc
s(xs) is introduced, transition from stance to flight is a control decision;

see Remark 6.5 and (6.32) in Chapter VI for details. ⊳

5.3.4 Thumper Flight-to-Stance Transition Model

The purpose of this section is to provide a model that describes the behavior of the

robot in transition from the flight to the stance phase. Mathematically, the flight-to-stance

11Since by (5.57) the value of FN
toe depends on the input u ∈ U , the stance-to-flight threshold function Hs→f

is a real-valued function defined on the fiber bundle (π, B, TQs,U), where π : B → TQs is a surjective
submersion and, for each xs ∈ TQs, the fibers π−1(xs) are (locally) diffeomorphic to {xs} × U . Due to the
fact that the input space U = R

2 is independent of the state, the fiber bundle (π,B, TQs,U) is a trivial bundle,
hence, it (globally) possesses the product structure TQs × U , i.e., B = TQs × U .
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transition can be modeled as a discrete map ∆f→s : Sf→s → Xs taking the (final) states

x−f ∈ Sf→s ⊂ Xf of the flight phase to the (initial) states x+
s ∈ Xs of the stance phase. This

is similar to what was done in the ASLIP, where, though, the flight-to-stance transition

map was merely a coordinate transformation, reflecting the fact that no energy was lost at

impact due to the leg being massless and the spring acting in the leg direction.

Instead, in Thumper, the flight-to-stance transition map ∆f→s should capture the physics

of the impact and, in particular, it should include the effects of the compliance in the trans-

mission system. Indeed, as was mentioned in the introduction, one of the beneficial aspects

of physical series compliance is the effect of isolating the impulsive forces developed dur-

ing impact from the motorshaft. Hence, it is imperative that the impact model includes the

spring of the transmission system, which was, however, excluded from the flight dynamics

model derived in Section 5.3.2. As a result, to develop the impact model, the unconstrained

model of the robot developed in Section 5.3.1 will be used in a way that is detailed below.

Let x−f = (q−f ; q̇−f ) ∈ Sf→s be the final state of the flight phase. The flight-to-stance

transition map ∆f→s : Sf→s → Xs,

x+
s = ∆f→s(x

−
f ), (5.62)

where x+
s ∈ Xs is the initial state in the stance phase, will be derived by constructing

the corresponding base and fiber components ∆q
f→s : Qf → Qs and (∆q̇

f→s)qf
: Tqf

Qf →

T∆q
f→s(qf )

Qs, respectively, i.e.,

∆f→s(x
−
f ) :=







∆q
f→s(q

−
f )

(∆q̇
f→s)q−f

(q̇−f )






, (5.63)

so that the diagram in Fig. 5.5 commutes.

First, the initial configuration q+s ∈ Qs of the upcoming stance phase is computed,

given the final configuration q−f ∈ Qf of the previous flight phase. By (5.19), q−e = Υf(q
−
f ).

Since, by Hypothesis HIT5), the configuration is assumed to be invariant under impact, we

have that q+e = q−e ; in the notation of Fig. 5.5, this corresponds to the action of the identity
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(fiber)

(base)

q̇−f ∈ Tq−f
Qf

q̇−e ∈ TΥf (q
−

f )Qe

q̇+e ∈ TΥf (q
−

f )Qe

q̇+s ∈ T∆q
f→s(q

−

f )Qs

q−f ∈ Qf

q−e ∈ Qe

q+e ∈ Qe

q+s ∈ Qs

(DΥf)q−f (∆q̇
ground)Υf(q

−

f ) (impact)

(∆q̇
f→e)q−f

:= (∆q̇
ground)Υf (q

−

f ) ◦ (DΥf)q−f

(DΠs)Υf(q
−

f )

(∆q̇
f→s)q−f

Υf idQe(impact)

∆q
f→e := idQe ◦ Υf = Υf

Πs∆q
f→s

Figure 5.5: A commutative diagram showing the construction of the flight-to-stance transi-
tion map ∆f→s. The coordinate representations of the various maps appearing
in this figure are provided in the text. The bottom part corresponds to the con-
struction of the base component ∆q

f→s and the upper part to the construction of

the fiber component ∆q̇
f→s, which is not the differential of ∆q

f→s as in the ASLIP.
Note that the “lift” to TQe is necessary for including the effects of compliance
in the impact model.

map idQe on Qe. Then, the initial configuration q+s is computed via (5.40) as q+s = Πs(q
+
e ).

Thus, the map ∆q
f→s can be defined by the composition,

∆q
f→s := Πs ◦ idQe ◦ Υf = Πs ◦ Υf , (5.64)

as suggested by the bottom part of Fig. 5.5. Finally, using the coordinate representation Yf

and Ps of the maps Υf and Πs, defined by (5.20) and (5.41), respectively, the map ∆q
f→s can

be represented in coordinates by the matrix

PsYf =























1 0 0 0 0

0 1 0 0 0

0 µ 0 0 0

0 0 1 0 0























. (5.65)
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The next step is to derive the map (∆q̇
f→s)q−f

: T
q−f
Qf → T∆q

f→s(q
−

f )Qs, which, given

the final configuration q−f ∈ Qf of the flight phase, takes its final velocities q̇−f ∈ Tq−s
Qf

into the initial velocities q̇+s ∈ Tq+
s
Qs of the stance phase. By (5.23), q̇−e = (DΥf)q−f

(q̇−f ).

If (∆q̇
ground)qe : TqeQe → TqeQe denotes the impact map taking pre-impact to post-impact

velocities, then q̇+e = (∆q̇
ground)q+

e
(q̇−e ) is the post-impact unconstrained velocity vector.

From q̇+e the required stance phase initial velocities can be computed by (5.45), i.e., q̇+s =

(DΠs)q+
e
(q̇+e ), so that, consistent with the upper part of Fig. 5.5, the desired map (∆q̇

f→s)q−f
:

Tq−f
Qf → T∆q

f→s(q
−

f )Qs can be defined by the composition

(∆q̇
f→s)q−f

:= (DΠs)Υf (q
−

f ) ◦ (∆q̇
ground)Υf(q

−

f ) ◦ (DΥf)q−f
. (5.66)

Since the coordinate representations of the maps (DΥf)qf
and (DΠs)qe are given by the

matrices Yf and Ps specified by (5.20) and (5.41), respectively, the focus will be on obtaining

the map (∆q̇
ground)

q−e
in coordinates.

In what follows, and according to what mentioned in Remark 5.2, let q+e and q̇+e denote

the coordinates of the post-impact configuration and velocity vector of the unconstrained

model, respectively. As was indicated by Hypothesis HIT2), after impact the toe does not

slip or rebound, i.e., the velocity of the toe after impact is assumed to be zero. Consistent

with the development in Section 5.3.3 for deriving the stance dynamics, this condition can

be described by the holonomic constraint

Es(q
−
e,1:4)q̇

+
e,1:4 = 0, (5.67)

which corresponds to (5.52) evaluated at the post-impact instant, where the stance kinemat-

ics is in effect. In (5.67) and according to hypothesis HIT5), the invariance of configuration

under the impact, i.e., q+e,1:4 = q−e,1:4 was used.

Let δFext be the vector of the constraint forces developed at impact to ensure that the

toe neither slips not rebounds. From Hypothesis HIT3), these forces are impulsive, hence

the notation δFext. In accordance to (5.53) for computing the stance phase constraint forces,
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δFext can be written as

δFext = E′
s(qe,1:4)δFtoe, (5.68)

and, similarly to what was done in Section 5.3.3, it can be incorporated to the dynamics,

which takes the form

De(qe)q̈e + Ce(qe, q̇e)q̇e +Ge(qe) = Beu+ δFext. (5.69)

Under Hypotheses HIT1)-HIT5), (5.69) can be “integrated” over the “duration” of the im-

pact to obtain

De(q
+
e,1:4)q̇

+
e −De(q

−
e,1:4)q̇

−
e = F ↑

ext, (5.70)

where F ↑
ext :=

∫ t+

t−
δFext(τ) dτ is the result of integrating the impulsive constraint forces

over the impact duration. Notice that the notation “F ↑
ext” was used to distinguish external

forces during impact from the external forces “Fext” during the stance phase in (5.54). Due

to the invariance of configuration at impact and using (5.68), we have

F ↑
ext =

∫ t+

t−
δFext(τ) dτ

=

∫ t+

t−
E′

s (qe,1:4(τ)) δFtoe(τ) dτ

= E′
s(q

−
e,1:4)

∫ t+

t−
δFtoe(τ) dτ

= E′
s(q

−
e,1:4)F

↑
toe,

where F ↑
toe :=

∫ t+

t−
δFtoe(τ) dτ is the result of integrating the impulsive ground reaction

forces over the impact duration. Again, the notation “F ↑
toe” was used to distinguish the

ground reaction forces developed at impact from the ground reaction forces “Ftoe” during

the stance phase in (5.55). Then, substitution to (5.70) gives

De(q
+
e,1:4)q̇

+
e −De(q

−
e,1:4)q̇

−
e = E′

s(q
−
e,1:4)F

↑
toe,
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which, combined with (5.67), results in







De(q
−
e,1:4) −E′

s(q
−
e,1:4)

Es(q
−
e,1:4) 02×2













q̇+e

F ↑
toe






=







De(q
−
e,1:4)q̇

−
e

02×1






. (5.71)

Equation (5.71) represents an algebraic system of eight equations with eight unknowns,

namely the six entries of the array q̇+e and the two components—tangential and normal,

(F ↑
toe)

T and (F ↑
toe)

N, respectively—of the ground reaction force F ↑
toe. Equivalently, using

the block-diagonal structure of De presented in (5.9) and the definition of Es by (5.52), the

system (5.71) can be expanded as















A(q−e,1:4) 04×2

(

∂Υtoe
∂qs

(q−e,1:4)
)′

02×4 mI2×2 −I2×2

−∂Υtoe
∂qs

(q−e,1:4) I2×2 02×2



































q̇+e,1:4






ẋ+
cm

ẏ+
cm







F ↑
toe





















=





















A(q−e,1:4)q̇
−
e,1:4

m







ẋ−cm

ẏ−cm







02×1





















. (5.72)

Remark 5.4. The notation “ ∂Υtoe
∂qs

(q−e,1:4) ” is to be understood as “∂Υtoe
∂qs

evaluated at a point

qs ∈ Qs with coordinates equal to q−e,1:4.” This is because, in coordinates q+s = q+e,1:4 = q−e,1:4,

although, as points, q+s and q+e belong to different manifolds. ⊳

Using the last two lines of the matrix equation (5.72), the vector F ↑
toe can be found as

F ↑
toe = m







∂Υtoe

∂qs
(q−e,1:4) q̇

+
e,1:4 −







ẋ−cm

ẏ−cm












. (5.73)

Substituting this into the first and second lines of (5.72) and rearranging yields

q̇+e,1:4 =

[

A(q−e,1:4) +m

(

∂Υtoe

∂qs
(q−e,1:4)

)′(∂Υtoe

∂qs
(q−e,1:4)

)]−1

·
[

A(q−e,1:4)

∣

∣

∣

∣

m

(

∂Υtoe

∂qs
(q−e,1:4)

)′]

q̇−e,1:4,

(5.74)
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and






ẋ+
cm

ẏ+
cm






=
∂Υtoe

∂qs
(q−e,1:4)q̇

+
e,1:4, (5.75)

as was expected from the stance phase geometry, which is in effect at the post-impact

instant. In (5.73), (5.74) and (5.75), the dependence on q−e,1:4 is to be understood in the

meaning explained in Rem. 5.4. Notice that the matrix inverted in (5.74) corresponds to the

inertia matrix Ds of the stance phase as suggested by (5.47), whose inverse always exists.

This is a consequence of the independence of the constraints. Equation (5.74) indicates that

the robot’s velocity vector after impact q̇+e,1:4 is a linear expression of the unconstrained

velocity vector q̇−e before impact.

From (5.74) and (5.75), the coordinate representation Jground(qe) ∈ R
6×6 of the map

(∆q̇
ground)qe used in (5.66) can be written as follows

Jground(q−e ) =







M(q−e ) 04×2

∂Υtoe
∂qs

(q−e )M(q−e ) 02×2






, (5.76)

where

M(q−e ) =

[

A(q−e,1:4) +m

(

∂Υtoe

∂qs
(q−e,1:4)

)′(∂Υtoe

∂qs
(q−e,1:4)

)]−1

[

A(q−e,1:4)

∣

∣

∣

∣

m

(

∂Υtoe

∂qs
(q−e,1:4)

)′]

.

Given (5.76), the fiber component (∆q̇
f→s)qf

of the flight-to-stance transition map ∆f→s can

be computed with respect to the chosen coordinates for Qf and Qs using the correspond-

ing representations of the maps participating in (5.66). Putting all the ingredients together,

namely, the coordinate representations of the maps (5.64) and (5.66) determined in this

section, the flight-to-stance transition map ∆f→s can be specified in a form useful for com-

putations.

Remark 5.5. It is important to note that the validity of the impact model must be checked

at each impact. More specifically, each time (5.62) is evaluated, the corresponding ground

reaction forces F ↑
toe must be computed using (5.73). For the impact model to be valid,

it must be verified that (F ↑
toe)

N > 0 and |(F ↑
toe)

T| ≤ µs(F
↑
toe)

N, where µs is the assumed
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coefficient of static friction. Intuitively, it must be verified that the robot does not slide or

“pull” the ground at impact, as was the case for the validity of the stance model. ⊳

5.3.5 Thumper Stance-to-Flight Transition Model

Consistent with Hypothesis HGT6), transition from stance to flight is assumed to occur

when the vertical component of the ground reaction force becomes zero; this event signifies

the end of stance and is mathematically captured by the definition of the stance-to-flight

switching surface Ss→f according to (5.61).

Ideally, to take full advantage of the spring, it is desirable that by the time the stance-

to-flight transition occurs, the spring has returned the energy stored in it throughout the

stance phase by the compression of the leg. Therefore, it will be assumed that at liftoff—

more precisely, just after12 the vertical component of the ground reaction force becomes

zero—the spring reaches its natural length, that is, θBspring = 0. When this condition is

satisfied, an “internal” impact occurs due to the fact that the pulley “Bspring” of the spring

differential, see Fig. 5.1, hits a mechanical (hard) stop, not allowing the spring to enter

its extension phase: the spring is one directional, it can only compress as the virtual leg

compresses; see Hypothesis HMT5). The stance-to-flight transition model should capture

the impact occurring at the end of the stance phase to compute the initial conditions of

the upcoming flight phase. The impact model is derived similarly to the ground impact

described in Section 5.3.4, hence the exposition in this section will be terse.

Let x−s = (q−s ; q̇−s ) ∈ Ss→f be the final state of the stance phase. As in Section 5.3.4, the

goal is to find a map ∆s→f : Ss→f → Xf ,

x+
f = ∆s→f(x

−
s ), (5.77)

where x+
f ∈ Xf is the initial state in the flight phase. This map will be derived by construct-

ing the corresponding base and fiber components ∆q
s→f : Qs → Qf and (∆q̇

s→f)qs : TqsQs →
12Note that the one could define the stance-to-flight threshold function by Hs→f(xs) = θBspring, so that

the event triggering transition to flight is the spring obtaining its natural length. Although such definition
would result in different nominal orbits than the ones studied here, it is an equally valid choice for a threshold
function. However, what is assumed here by defining Ss→f by (5.61) is that first the vertical component of the
ground reaction force becomes zero and then the spring reaches its natural length. Nominal orbits consistent
with this assumption will be the result of controller action.
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T∆q
s→f(qs)Qf , respectively, i.e.,

∆s→f(x
−
s ) :=







∆q
s→f(q

−
s )

(∆q̇
s→f)q−s (q̇−s )






, (5.78)

so that the diagram in Fig. 5.6 commutes.

(fiber)

(base)

q̇−s ∈ T
q−s
Qs

q̇−e ∈ TΥs(q
−
s )Qe

q̇+e ∈ TΥs(q
−
s )Qe

q̇+f ∈ T∆q
s→f(q

−
s )Qf

q−s ∈ Qs

q−e ∈ Qe

q+e ∈ Qe

q+f ∈ Qf

(DΥs)q−s (∆q̇
stopper)Υs(q

−
s ) (impact)

(∆q̇
s→e)q−s := (∆q̇

stopper)Υs(q
−
s ) ◦ (DΥs)q−s

(DΠf)Υs(q
−
s )

(∆q̇
s→f)q−s

Υs idQe(impact)

∆q
s→e := idQe ◦ Υs = Υs

Πf∆q
s→f

Figure 5.6: A commutative diagram showing the construction of the stance-to-flight transi-
tion map ∆s→f . The bottom part corresponds to the base component ∆q

s→f and

the upper part to the fiber component ∆q̇
s→f . The coordinate representations of

the various maps appearing in this figure are provided in the text. Notice that

the fiber component ∆q̇
s→f of ∆s→f is not the differential of its base component

∆q
s→f as was in the ASLIP.

First, to derive the base component ∆q
f→s, note that by (5.38), q−e = Υs(q

−
s ) and since,

by Hypothesis HIT5), the configuration is assumed to be invariant under impact, we have

that q+e = q−e . Hence, the initial configuration q+f is computed via (5.21) as q+f = Πf(q
+
e )

resulting in the following expression defining the map ∆q
f→s,

∆q
s→f := Πf ◦ idQe ◦ Υs = Πf ◦ Υs, (5.79)

as suggested by the bottom part of Fig. 5.6. More explicitly, using the coordinate represen-

106



tation of the map Υs defined by (5.39), and of the map Πf defined by the matrix Pf given

by (5.22), the map ∆q
s→f can be represented in coordinates by

∆q
s→f(q

−
s ) = Pf







q−s

Υtoe(q
−
s )






.

This completes the construction of ∆q
f→s, which is now known in a coordinate form suitable

for computations.

Next, given the final configuration of the stance phase q−s ∈ Qs, the map (∆q̇
s→f)q−s :

Tq−s
Qs → T∆q

s→f(q
−
s )Qf taking the final velocities q̇−s of the stance phase into the initial ve-

locities q̇+f of the upcoming flight phase is derived. By (5.42), q̇−e = (DΥs)q−s (q̇−s ), and if

(∆q̇
stopper)qe : TqeQe → TqeQe denotes the impact map taking pre-impact to post-impact un-

constrained velocities, then q̇+e = (∆q̇
stopper)q+

e
(q̇−e ). Thus, the required flight phase initial

velocities can be computed by (5.25), i.e., q̇+f = (DΠf)q+
e
(q̇+e ), so that, consistent with the

upper part of Fig. 5.6, the fiber component (∆q̇
s→f)qs can be defined by the composition

(∆q̇
s→f)q−s := (DΠf)Υs(q

−
s ) ◦ (∆q̇

stopper)Υs(q
−
s ) ◦ (DΥs)q−s . (5.80)

Since the coordinate representations of the maps (DΥs)qs and (DΠf)qe are given by the ma-

trices Js and Pf specified by (5.43) and (5.22), respectively, the coordinate representation of

the map (∆q̇
stopper)q−e is the only missing ingredient for computing (∆q̇

s→f)q−s in coordinate

form. Computing the map (∆q̇
stopper)q−e with respect to the selected coordinates for Qe is

the focus of what follows.

According to what was mentioned in Remark 5.2, q+e and q̇+e denote the coordinates

of the post-impact configuration point and velocity vector of the unconstrained system,

respectively. As was indicated by Hypothesis HIT2), after the impact of the pulley with

the mechanical stop, the pulley does not rebound, i.e., the rate of the spring deformation

after impact is assumed to be zero. Consistent to the development in Section 5.3.2 for

deriving the flight dynamics, this condition can be described by the holonomic constraint

Ef q̇
+
e = 0, (5.81)
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which corresponds to (5.18) evaluated at the post-impact instant. Note that Ef does not

depend on the configuration variables.

The impulsive forces developed at impact to ensure that the constraint (5.81) is satisfied

can be included in the dynamics of the unconstrained system, which is then “integrated”

over the infinitesimally small duration of the impact according to Hypotheses HIT1-HIT5)

, precisely as was done in Section 5.3.4 for deriving the flight-to-stance model. If F ↑
stopper

denotes the reaction force from the stopper at impact, the procedure of Section 5.3.4 results

in

De(q
+
e,1:4)q̇

+
e −De(q

−
e,1:4)q̇

−
e = E′

f F
↑
stopper, (5.82)

which, combined with (5.81), gives the following system of equations







De(q
−
e,1:4) −E′

f

Ef 0













q̇+e

F ↑
stopper






=







De(q
−
e,1:4)q̇

−
e

0






. (5.83)

Equation (5.83) represents an algebraic system of seven equations with seven unknowns,

namely the six entries of the vector q̇+e and the constraint force F ↑
stopper. Using the block-

diagonal structure of De presented in (5.9) and the definition of Ef by (5.18), the system

(5.83) can be expanded as















A(q−e,1:4) 04×2 −E′
f,1:4

02×4 mI2×2 02×1

Ef,1:4 02×1 0



































q̇+e,1:4






ẋ+
cm

ẏ+
cm







Fstopper





















=





















A(q−e,1:4)q̇
−
e,1:4

m







ẋ−cm

ẏ−cm







02×1





















. (5.84)

The solution of (5.84) is found to be

q̇+e,1:4 = N1(q
−
e,1:4) q̇

−
e,1:4,







ẋ+
cm

ẏ+
cm






=







ẋ−cm

ẏ−cm






,

(5.85)
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and

F ↑
stopper = N2(q

−
e,1:4) q̇

−
e,1:4, (5.86)

where

N1(q
−
e,1:4) :=

(

I4×4 −
1

ν
A−1(q−e,1:4)E

′
f,1:4Ef,1:4

)

[

A−1(q−e,1:4)A(q−e,1:4)
]

,

N2(q
−
e,1:4) := −1

ν
Ef,1:4

[

A−1(q−e,1:4)A(q−e,1:4)
]

,

and ν = Ef,1:4A
−1(q−e,1:4)E

′
f,1:4 is a 1 × 1 nonzero matrix. From (5.85), the coordinate repre-

sentation Jstopper(qe) ∈ R
6×6 of the fiber component (∆q̇

stopper)qe of the impact map is found

to be

Jstopper(q
−
e ) =







N1(q
−
e,1:4) 04×2

02×4 I2×2






. (5.87)

It is interesting to note that, as indicated by (5.87), the impact model results in no disconti-

nuity of the cartesian velocities of the robot’s COM.

Given (5.87), the fiber component (∆q̇
s→f)qs of the stance-to-flight transition map ∆s→f

can be computed with respect to the chosen coordinates for Qs and Qf through the cor-

responding representations of the maps participating in (5.80). Putting all the ingredients

together, namely, the coordinate representations of the maps (5.79) and (5.80) determined

in this section, the flight-to-stance transition map ∆f→s can be specified in a form useful

for computations.

Remark 5.6. The validity of the (internal) impact model, thus of the transition map, must

be checked at each impact. More specifically, each time (5.77) is evaluated, the correspond-

ing reaction forces F ↑
stopper must be computed using (5.86). For the impact model to be

valid, it must be verified that F ↑
stopper > 0. Furthermore, the use of the unconstrained

model of Thumper to model the impact implies that the leg-end is not constrained to be

in contact with the ground just after impact. In particular, the impact may result in a toe

velocity with negative vertical component, a situation that corresponds to toe-scuffing and

is not acceptable. Hence, it must be checked that, immediately after impact, (ṗv
toe)

+ > 0. ⊳
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5.3.6 Thumper Hybrid Dynamics of Running

Similarly to the ASLIP, see Section 3.6, the overall hybrid dynamics of Thumper in

running can be represented as a hybrid nonlinear system comprising two state manifolds

(charts), where the stance and flight continuous dynamics evolve, and discrete transitions

between them, as is shown in Fig. 5.7, i.e.,

Σf :











































Xf = TQf

ẋf = ff(xf) + gf(xf)u

Sf→s = {xf ∈ Xf | Hf→s(xf) = 0}

x+
s = ∆f→s(x

−
f )

(5.88)

Σs :











































Xs = TQs × U

ẋs = fs(xs) + gs(xs)u

Ss→f = {(xs, u) ∈ Xs | Hs→f(xs, u) = 0}

x+
f = ∆s→f(x

−
s ),

where x−i = limτրt xi(τ) and x+
i = limτցt xi(τ), i ∈ {f, s}, are the left and right limits of the

stance and flight solutions. All the components participating in the definition of stance Σs

and flight Σf components of the hybrid system have been defined in the previous sections.

ẋs = fs(xs) + gs(xs)u ẋf = ff(xs) + gf(xf)u

Ss→f

x+
f = ∆s→f(x

−
s )

Sf→s

x+
s = ∆f→s(x

−
f )

Figure 5.7: Representation of Thumper’s model in running as a hybrid system.

Remark 5.7. Note that for a solution of the hybrid system (5.88) to correspond to running,
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Hypothesis HGT4) requires that during flight ẋcm > 0. This requirement could have been

built into the definition of the flight state manifold, which could have been defined by

Xf :=
{

xf := (qf ; q̇f) | qf ∈ Qf , q̇f ∈ Tqf
Qf ≃ R

6, ẋcm > 0
}

.

Instead, we will seek for solutions of (5.88) respecting ẋcm > 0 during flight. ⊳
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CHAPTER VI

Controlling Thumper:

A Compliant Hybrid Zero Dynamics Controller

In this chapter, a controller for inducing stable running motions on Thumper is pre-

sented. The framework, within which the control law is developed, is similar to that of

the ASLIP. However, as was described in detail in Chapter V, the morphology of Thumper

deviates significantly from that of the ASLIP in at least three ways. First, the spring in

Thumper is connected in series with the actuator; not in parallel as was the case in the

ASLIP. Hence, Thumper has two degrees of underactuation in the stance phase. Sec-

ond, the mass of Thumper’s leg is significant and it cannot be neglected as was done in

the ASLIP. As a result, the torso is affected by the leg’s motion during the flight phase

through the conservation of angular momentum. Third, Thumper’s transmission system

introduces nontrivial dynamics in delivering the actuator inputs to the robot structure.

Consequently, a different coordination strategy is required to realize running in Thumper.

The control laws proposed for the ASLIP should be modified to accommodate these mor-

phological discrepancies. Nevertheless, consistent to the SLIP embedding controller of

Chapter IV, the proposed control laws must guarantee that the compliance present in the

open-loop dynamics of Thumper dominates the behavior of the closed-loop system. In

other words, the feedback action should preserve the compliant nature of the system. This

specification will be met by ensuring that the virtual holonomic constraints imposed by the

control action result in compliant hybrid zero dynamics governing the closed-loop behavior

of Thumper, as was the case with the SLIP embedding controller for the ASLIP.
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The structure of this chapter is as follows. In Section 6.1, the general framework within

which the Thumper’s controller is developed is outlined. In Section 6.2 the control objec-

tives are translated into virtual holonomic constraints, which are imposed on the robot’s

dynamics by following the procedure of Section 6.3. Sections 6.4 and 6.5 provides the gen-

eral strategy and implementation details of the event-based control action that updates

the parameters introduced by the virtual holonomic constraints to achieve invariance in a

hybrid setting and stability. Finally, Sections 6.6 and 6.7 present simulation results of the

proposed control law.

6.1 Overview of the Control Method

This section outlines the general framework for the design of a controller for Thumper.

In accordance to Raibert’s observations for monopedal running, a running gait in Thumper

can be divided into three control objectives, namely, regulate torso angle, hopping height,

and forward velocity.

The control objectives can be encoded in a set of suitably designed constraints that are

imposed on the robot dynamics during the stance and flight phases through its actuators.

These constraints are parameterized with respect to monotonic quantities that are func-

tions of the state –not time– and can be interpreted as (virtual) holonomic constraints, which

restrict Thumper’s dynamics on lower-dimensional surfaces embedded in the stance and

flight state spaces, respectively. Loosely speaking, this reduction-by-feedback1 procedure ef-

fectively reduces the feasible motions of the robot by coordinating the actuated degrees of

freedom of Thumper, so that a lower-dimensional hybrid subsystem “emerges” from the

robot’s closed-loop dynamics. This lower-dimensional hybrid subsystem governs the ex-

istence and stability properties of distinguished periodic orbits that correspond to running

motions of interest on Thumper.

More specifically, to achieve the control objectives, the feedback law exploits the hybrid

nature of the system by introducing control action on two levels; see Fig. 6.1. On the first

1As opposed to reduction-by-design, in which constraints are imposed mechanically on the system resulting
in symmetries and synergies, which reduce the dimensionality of the control problem. An example of this
reduction paradigm is the design of the bipeds Max and Denise, see [112, Chap. 5, 6], in which the torso is
mechanically constrained at an upright posture through a hip bisecting mechanism.
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level, continuous-time feedback laws Γc
µ are employed in each of the continuous phases

indexed by µ ∈ M, a finite index set. This stage introduces a set of parameters αµ and βµ,

and its purpose is to create an invariant and attractive surface Z(αµ,βµ) embedded in the

state space Xµ of the corresponding continuous phase µ ∈ M. The role of the parameters

αµ and βµ will become apparent in Section 6.2.

uαβ

Outer-loop Hybrid Zero Dynamics

Γc
µΓα

µΓβ

Figure 6.1: Feedback diagram presenting the basic structure of the controller. Continuous
lines represent signals in continuous time; dashed lines represent signals in
discrete time.The control laws Γc

µ and Γα
µ are intended to create a well defined

hybrid zero dynamics (HZD), while the controller Γβ ensures that the resulting
HZD is exponentially stable.

On the second level, event-based updates of the parameters αµ and βµ are performed at

transitions between continuous phases. The division of the parameters introduced in the

continuous-time phases into two arrays, namely, αµ and βµ, follows the structure of the

event-based parameter update law, which is organized in an inner/outer-loop architec-

ture. The inner-loop controller Γα
µ properly updates the parameters αµ to ensure that the

initial condition x+
µ of the corresponding continuous phase lies on the surface Z(αµ,βµ), i.e.,

x+
µ ∈ Z(αµ,βµ). Intuitively, updating αµ “deforms” the surface Z(αµ,βµ) so that it includes

the corresponding “entry” conditions. This inner-loop controller leads to the creation of a

reduced-order hybrid subsystem governing the stability properties of the full-order model

of Thumper, i.e., the Hybrid Zero Dynamics (HZD). Finally, the outer-loop controller Γβ

completes the control design by updating the parameters β = {βµ}µ∈M so that the result-

ing HZD is exponentially stable. Intuitively, updating the parameters βµ is equivalent to

locally deforming the surface Z(αµ,βµ) in a manner affecting the “exit” conditions for the
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corresponding continuous phase µ ∈ M.

In the remaining sections of this chapter, the procedure described above will be made

mathematically precise using the results in [81] and [109]. Sections 6.3, 6.4 and 6.5 par-

ticularize these ideas through explicit constructions of a set of feedback laws Γc
µ, Γα

µ and

Γβ that are organized according to Fig. 6.1 and achieve the control objectives resulting in

(locally) exponentially stable running motions on Thumper. Before continuing with the

design of the controllers, Section 6.2 presents a set of virtual holonomic constraints that

encode the desired specifications.

6.2 Feedback Objectives: Designing Virtual Holonomic Constraints

In this section, the feedback objectives are described in detail. A set of virtual holo-

nomic constraints is devised, which, when enforced on the dynamics of Thumper through

zeroing properly selected output functions, guarantees that the objectives are achieved,

resulting in periodic running motions on Thumper.

6.2.1 Stance Phase Virtual Holonomic Constraints

The purpose of the continuous-time control action during the stance phase is twofold.

First, it ensures that the torso remains upright throughout stance and, in addition, that it

enters the flight phase with suitable initial conditions. Second, the controller regulates the

energy stored in the leg spring so that a desired hopping height is maintained.

In more detail, to the dynamics

ẋs = fs(xs) + gs(xs)u (6.1)

of the stance phase associate the output

ys = hs(qs, αs, βs) := qc,s − hd
s (θ(qs), αs, βs) , (6.2)

where qc,s contains the controlled variables, which are selected to be the torso orientation

qTor and the motor position qmLS, i.e. qc,s = (qTor, qmLS)
′. In (6.2), hd

s represents the desired
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evolution qdTor and qdmLS of qTor and qmLS, respectively. It corresponds to a spline that is

parameterized with respect to the strictly monotonic (increasing) quantity θ representing

the angle formed by the line connecting the toe with the hip relative to the ground, i.e.,

θ(qs) := −3π

2
+ qLA + qTor. (6.3)

Roughly speaking, θ is used to replace time in parameterizing the motion of Thumper in

stance. Finally, the parameter arrays αs and βs in (6.2) include polynomial coefficients, and

they will be detailed below.

Figure 6.2 illustrates the general shape of the commanded constraints on qTor and qmLS.

The commanded constraint for qTor is composed by a “transient” part, whose purpose is

to drive —in a smooth way— the torso angle from its initial value2, qs+Tor, to a desired final

one, qs−Tor, in anticipation of liftoff. The transient stage is followed by a part during which

qTor is kept constant and equal to qs−Tor so that switching to flight occurs with favorable

initial conditions. In particular, commanding zero pitch velocity in the late stage of the

stance phase ensures that the angular momentum associated with the torso is small when

the system switches to flight, so that excessive pitching during flight is eliminated.

The transition part will be parameterized using a sixth order Beziér polynomial span-

ning a period from the beginning of the stance phase, θmin
Tor = θmin, until the angle θ reaches

a “settling” value denoted by βs,set, i.e., θ = θmax
Tor = βs,set. Mathematically,

hd
s,1(θ(qs)) :=















6
∑

k=0

bk(sTor)αs,(k,1), 0 ≤ sTor ≤ 1

βs,Tor, sTor > 1,

(6.4)

where the dependence of hd
s,1 on αs and βs was suppressed. The coefficients bk are given

by

bk(s) :=
M !

k! (M − k)!
sk (1 − s)M−k, (6.5)

2Notation: The superscript “s+” denotes a value at the beginning of stance; “s−” denotes a value at the
end of stance. Similar convention is adopted for flight.
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for M = 6, and the normalized independent variable is computed by

sTor :=
θ − θmin

Tor

θmax
Tor − θmin

Tor

=
θ − θmin

Tor

βs,set − θmin
Tor

. (6.6)

θmin
Tor = θmin θmax

Tor θmax θ
βs,Tor = qs−Tor

qs+Tor

hd
s,1 = qdTor

θmin θmin
mLS θmax

mLS θmax θ
βs,mLS = qs−mLS

qs+mLS

hd
s,2 = qdmLS

sc si sd

Figure 6.2: The general shape of the stance phase commanded constraints. Note that
θmax
Tor = θmax

mLS = βs,set to avoid the introduction of an additional stance subphase.

On the other hand, as shown in Fig. 6.2, the desired evolution of the motor position

qmLS is as follows. First, the motorshaft is kept at a constant angle qs+mLS until θ = θmin
mLS, the

point at which the spring is maximally compressed. This ensures that energy is stored in

the spring without the actuator performing unnecessary negative work on the leg. When

maximum compression is reached, the actuator injects (or removes) energy through com-

pressing (or decompressing) the spring by rapidly repositioning the motorshaft at a new

desired position, qs−mLS, which depends on the amount of energy that is required to main-

tain hopping. Then, the motorshaft is kept at this position until liftoff occurs.

Similarly to the torso angle, the transient period from θmin
mLS to θmax

mLS will be parameter-

ized using a sixth order Beziér polynomial. Hence, the mathematical description of the

117



constraint hd,2 for the motorshaft position qmLS is

hd
s,2(θ(qs)) :=































αs,(−1,2), smLS < 0

6
∑

k=0

bk(smLS)αs(k,2), 0 ≤ smLS ≤ 1

βs,mLS, smLS > 1,

(6.7)

where the dependence of hd
s,2 on αs and βs was suppressed, bk is given by (6.5) using

M = 6, and

smLS :=
θ − θmin

mLS

θmax
mLS − θmin

mLS

=
θ − θmin

mLS

βs,set − θmin
mLS

(6.8)

is the corresponding normalized independent variable. Note that in the definition of smLS,

θmax
mLS is taken to be equal to the θmax

Tor , which is equal to the parameter βs,set. This is done to

avoid the introduction of additional subphases in the stance phase.

This procedure introduces a number of parameters, namely, the coefficients of the poly-

nomials used to describe the various regions of (6.4) and (6.7). It should be emphasized

that not all the parameters participating in the definitions of the constraints (6.4) and (6.7)

are available for event-based control. Indeed, to avoid discontinuities in the commanded

torques, the polynomial coefficients must satisfy certain requirements, which guarantee

that the constraints (6.4) and (6.7) are C2 functions of sTor and smLS, respectively, thus, re-

ducing the number of free coefficients. According to the properties of Beziér polynomials

listed in [109, p. 139], imposing the relation

αs,(0,2) = αs,(1,2) = αs,(2,2) = αs,(−1,2), (6.9)

ensures that (6.4) is C2 at smLS = 0, slaving {αs,(0,2), αs,(1,2), αs,(2,2)} and leaving αs,(−1,2)

free for control. Similarly, imposing the relations

αs,(4,1) = αs,(5,1) = αs,(6,1) = βs,Tor,

αs,(4,2) = αs,(5,2) = αs,(6,2) = βs,mLS,

(6.10)

ensures that (6.4) and (6.7) are C2 at sTor = 1 and smLS = 1, respectively. These relations
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slave {αs,(4,1), αs,(5,1), αs,(6,1)} and {αs,(4,2), αs,(5,2), αs,(6,2)} and leave βs,Tor and βs,mLS free

for control. As a result, the parameters that are available for event-based control are

αs := {αs,(0,1), αs,(1,1), αs,(2,1), αs,(3,1), θ
min
Tor , αs,(−1,2), αs,(3,2), θ

min
mLS}, (6.11)

and

βs := {βs,Tor, βs,mLS, βs,set} , (6.12)

respectively. Before continuing with the design of the virtual holonomic constraints for the

flight phase a few remarks are in order.

Remark 6.1. The coefficients βs,Tor and βs,mLS represent the values of the torso pitch angle

and the motorshaft position prior to liftoff, i.e., qs−Tor and qs−mLS, respectively; see Fig. 6.2.

Adjusting βs,Tor determines the posture of the torso as the robot enters the flight phase,

while adjusting βs,mLS determines how much energy is injected or removed from the leg

spring during the stance phase so that the hopping height is regulated at the desired value.

Finally, the coefficient βs,set corresponds to the duration of the “transient” period for the

evolution of the constraints. As shown in Fig. 6.2, adjusting βs,set determines the duration

of the portion of the stance phase over which the momentum associated with the torso

angle is removed and energy is injected in the spring. Updating these parameters provides

a powerful control input for the stabilization of Thumper, as will be detailed in Section

6.4.2. ⊳

Remark 6.2. Enforcing the constraints (6.4) and (6.7) organizes the stance phase into three

subphases, namely, stance-compression, stance-injection, and stance-decompression, which

will be denoted by the indices “sc”, “si” and “sd,” respectively; see Fig. 6.2. These addi-

tional phases, can be utilized to update some of the stance phase parameters αs not only

at the beginning of the stance phase, but also at transitions from one subphase to the next.

This feature will be used in Sections 6.4.1 and 6.5.1 to update certain parameters from the

array αs in order to ensure that the hybrid zero dynamics is well defined. ⊳
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6.2.2 Flight Phase Virtual Holonomic Constraints

The purpose of the continuous-time controller during the flight phase is to place the leg

at a proper configuration in anticipation of touchdown. In more detail, to the continuous

dynamics

ẋf = ff(xf) + gf(xf)u (6.13)

of the flight phase associate the output

yf = hf(qf , αf , βf) := qc,f − hd
f (ℓ(qf), αf , βf), (6.14)

where the vector qc,f contains the controlled variables. In selecting qc,f note that, as was

recognized by Raibert, [91, Chapter 2], and others, e.g., [8], [101], [100], the position of the

foot as it touches the ground at the end of flight has a strong influence on the ensuing

stance phase, thereby providing an effective means for controlling forward speed; see also

Fig. 6.3. Moreover, when placing the leg, toe stubbing and excessive pitching of the torso

should be avoided. These objectives can be achieved through commanding properly de-

signed virtual constraints on the horizontal distance between the toe and the COM and on

the leg-shape angle, (ph
toe − xcm) and qLS, respectively, i.e., qc,f = (ph

toe − xcm, qLS)
′.

In (6.14), hd
f corresponds to the desired evolution of qc,f , which depends on the param-

eters αf and βf , and is parameterized with respect to the strictly monotonic quantity ℓ. The

variable ℓ corresponds to the horizontal distance traveled by the COM during flight,

ℓ(qf) := xcm − xf+
cm, (6.15)

where xf+
cm is the position of the COM at the beginning of the flight phase. The desired evo-

lution of the controlled variables in flight will be parameterized using sixth order Beziér

polynomials, i.e.

hd
f (ℓ(qf)) :=













5
∑

k=0

bk(sf)αf,(k,1) + b6(sf)βf

6
∑

k=0

bk(sf)αf,(k,2)













, (6.16)
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(ph
toe−xcm)

qLS

Figure 6.3: Controlled variables in the flight phase. The horizontal position of the toe rel-
ative to the COM, (ph

toe − xcm), corresponds to Raibert’s touchdown angle con-
troller. The leg-shape angle, qLS determines leg length.

where the coefficients bk are computed by (6.5), and

sf :=
ℓ− ℓmin

ℓmax − ℓmin
(6.17)

is the normalized independent variable; the dependence of hd
f on αf and βf has been sup-

pressed. At the beginning of the flight phase xcm = xf+
cm, which in view of (6.15) implies

that ℓmin = 0; hence, ℓmin is not a parameter available for event-based control.

As in the stance phase, this procedure introduces a number of parameters that are

available for event-based (discrete-time) control, and correspond to the coefficients of the

polynomials defining hd
f , which are grouped in the array

αf := {αf,(0,1), ..., αf,(5,1), αf,(0,2), ..., αf,(6,2), ℓ
max}.

It should be noted here that in Section 6.5.1 the flight parameter array will be refined so

that it includes only those parameters that actually participate in the event-based control

action. Abusing notation, the resulting parameter array will also be denoted by αf ; see

(6.68) of Section 6.5.1.
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Remark 6.3. In order to explain why the coefficient of the highest order monomial of hd
f,1 is

denoted by βf instead of αf,(6,1) in (6.16), note that, by properties of the Beziér polynomials,

see [109, p. 139], hd
f,1(ℓ

max) = βf . Hence, the coefficient βf corresponds to the position of

the toe relative to the COM just prior to touchdown, i.e. (ph
toe − xcm)f−, and it provides a

powerful control input for regulating the forward speed. As a result, following the control

diagram of Fig. 6.1, βf will be updated in the outer-loop discrete controller to achieve

stability of the hybrid zero dynamics, and not in the inner-loop controller like the rest of

the coefficients grouped in αf . ⊳

6.3 Continuous-time Control of Thumper

The purpose of the continuous-time control action is to impose the virtual holonomic

constraints designed in Section 6.2 on the dynamics of Thumper through its actuators.

This is equivalent to zeroing the parameterized outputs (6.2) and (6.14) associated with

the stance and flight phase dynamics. In this section, continuous-time control laws will be

designed within the Isidori-Byrnes zero dynamics framework, [57, Sections 4.3 and 6.1],

which achieve the objective of zeroing the outputs (6.2) and (6.14), thus asymptotically

imposing the virtual holonomic constraints of the previous section.

6.3.1 Continuous-time Phases in the Closed-loop Thumper

As was mentioned in Section 6.2, enforcing the constraints (6.4) and (6.7) organizes the

stance phase into the three subphases stance-compression, stance-injection, and stance-

decompression, denoted by “sc”, “si” and “sd,” respectively. These subphases are present

as separate phases only in the closed-loop system.

As a result of the continuous-time control action, a running gait in Thumper is com-

posed by four phases, the three subphases of stance and the flight phase. Let M =

{sc, si, sd, f} be the finite index set containing the indices of the continuous-time phases.

In this work, we restrict our attention to running gaits, in which the continuous phases

succeed each other according to the pattern shown in Fig. 6.4. As suggested by Fig. 6.4,

a convenient way to capture the evolution of the hybrid dynamics of Thumper in discrete

122



time, i.e., the succession of the various phases, is to consider the set G4 = {0, 1, 2, 3} under

the operation ⊕ : G4 × G4 → G4 defined by the rule

i⊕ j =











i+ j i+ j < 4

i+ j − 4 i+ j ≥ 4

, (6.18)

where + corresponds to standard integer addition. Then, (G4,⊕) is a finite abelian group3,

which is isomorphic to the group of integers under addition modulo 4. Hence, following

standard notation, the symbol Z4 will be adopted instead of G4.

sc

si

sd

f

0

1

2

3

M = {sc, si, sd, f} Z4
∼= {0, 1, 2, 3}

Figure 6.4: Succession of the phases M = {sc, si, sd, f} of the dynamics of Thumper in
closed loop with the continuous-time controllers during running, and the cor-
respondence with the cyclic group Z4

∼= {0, 1, 2, 3}.

As indicated in Fig. 6.4, the group Z4 reflects the cyclicity4 that underlies the composi-

tion of the continuous flows of each subphase to result in the hybrid flow that represents

running in Thumper, and it can be put to bijective correspondence with the index set M

through the enumeration map ν : Z4 → M defined by

ν(κ) :=























































sc, κ = 0

si, κ = 1

sd, κ = 2

f, κ = 3

. (6.19)

The dynamics in each phase ν(κ) ∈ M, κ ∈ Z4, evolves in a state space TQν(κ) param-

3The identity element of G4 is 0 ∈ G4 and the inverse of i ∈ G4 is 4 − i ∈ G4.
4In fact, Z4 is a cyclic group since every element in it can be written as a finite composition of 1 ∈ Z4 and

its inverse; equivalently, the group can be generated by 1.
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eterized by the states xν(κ) ∈ TQν(κ)
5, and is governed by vector fields, which depend on

parameters that correspond to the coefficients of the polynomials used to realize the con-

straints of Section 6.2. In particular, the closed-loop dynamics in the flight phase depends

on (αf , βf), while the closed-loop dynamics in the stance-compression, stance-injection and

stance-decompression phases depend on (αsc, βsc), (αsi, βsi), and (αsd, βsd), respectively.

The arrays αsc, αsi, αsd and αf will be defined in Section 6.5.1 below, where details on the

inner-loop event-based parameter update laws are provided. Finally, the arrays βsc, βsi

and βsd take values in the sets Bsc, Bsi and Bsd, respectively, and they contain parameters

that are entries of βs, namely,

βsc := {βs,Tor, βs,set},

βsi := {βs,mLS, βs,set},

βsd := {βs,Tor, βs,mLS},

(6.20)

and βf ∈ Bf . The meaning of βsc, βsi and βsd has been explained in Remark 6.1, and the

role of βf has been explained in Remark 6.3.

6.3.2 Enforcing the Virtual Holonomic Constraints

In Section 6.2, and for each κ ∈ Z4, an output function

yν(κ) := hν(κ)

(

qν(κ), αν(κ), βν(κ)

)

(6.21)

has been associated with the continuous dynamics

ẋν(κ) = fν(κ)

(

xν(κ)

)

+ gν(κ)

(

xν(κ)

)

u (6.22)

5Note that the dynamics in the stance-compression, stance-injection, and stance-decompression phases
evolve in TQs, i.e., the tangent bundle over the stance phase configuration manifold Qs defined by (5.37).
Hence, TQsc = TQsi = TQsd = TQs, and they can all be parameterized by the same coordinates xs. However,
in order to emphasize the different closed-loop dynamics governing the behavior of Thumper in each of the
stance subphases, the distinction will be made and different indexes will be used to identify them.
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of the phase ν(κ) = µ ∈ M, where ν is the enumeration map defined by (6.19). For given

values of αν(κ) and βν(κ), differentiating (6.21) twice with respect to time results in

d2yν(κ)

dt2
= L2

fν(κ)
hν(κ)

(

xν(κ), αν(κ), βν(κ)

)

+ Lgν(κ)
Lfν(κ)

hν(κ)

(

qν(κ), αν(κ), βν(κ)

)

u, (6.23)

where Lgν(κ)
Lfν(κ)

hν(κ)

(

qν(κ), αν(κ), βν(κ)

)

is the decoupling matrix. Under the condition

that the decoupling matrix is invertible,

u∗
(

xν(κ), αν(κ), βν(κ)

)

:= −
(

Lgν(κ)
Lfν(κ)

hν(κ)

(

qν(κ), αν(κ), βν(κ)

)

)−1

L2
fν(κ)

hν(κ)

(

xν(κ), αν(κ), βν(κ)

)

,

(6.24)

is the unique control input that renders the surface

Z(αν(κ),βν(κ)) =
{

xν(κ) ∈ Xν(κ) | hν(κ)

(

qν(κ), αν(κ), βν(κ)

)

= 0,

Lfν(κ)
hν(κ)

(

xν(κ), αν(κ), βν(κ)

)

= 0
}

(6.25)

invariant under the flow of the closed-loop dynamics; that is, for every z ∈ Z(αν(κ),βν(κ)),

f∗
(

z, αν(κ), βν(κ)

)

:= fν(κ)(z)

+ gν(κ)(z)u
∗
(

z, αν(κ), βν(κ)

)

∈ TzZ(αν(κ),βν(κ)).

(6.26)

Essentially, imposing the (virtual) holonomic constraints by zeroing the corresponding

outputs reduces the dimension of the system by restricting its dynamics on the surface

Z(αν(κ),βν(κ)) embedded in the corresponding continuous-time state space Xν(κ). Following

standard terminology, the surface Z(αν(κ) ,βν(κ)) is called the zero dynamics manifold, and

ż = f∗|Z(αν(κ),βν(κ))

(

z, αν(κ), βν(κ)

)

(6.27)

125



is the corresponding zero dynamics. To establish attractivity of Z(αν(κ) ,βν(κ)), the input (6.24)

is modified as

u = Γc
ν(κ)

(

xν(κ), αν(κ), βν(κ)

)

:=
(

Lgν(κ)
Lfν(κ)

hν(κ)

(

qν(κ), αν(κ), βν(κ)

)

)−1

[

υ
(

yν(κ), ẏν(κ), ǫ
)

− L2
fν(κ)

hν(κ)

(

xν(κ), αν(κ), βν(κ)

)

]

,

(6.28)

where

υ
(

yν(κ), ẏν(κ), ǫ
)

:= − 1

ǫ2
KPyν(κ) −

1

ǫ
KVẏν(κ), (6.29)

andKP,KV are appropriately chosen gain matrices, and ǫ > 0. Under the continuous-time

feedback laws Γc
ν(κ), constructed for each phase ν(κ) = µ ∈ M, the closed-loop dynamics

becomes

ẋν(κ) = fν(κ),cl

(

xν(κ), αν(κ), βν(κ)

)

, (6.30)

where

fν(κ),cl

(

xν(κ), αν(κ), βν(κ)

)

:= fν(κ)

(

xν(κ)

)

+ gν(κ)

(

xν(κ)

)

Γc
ν(κ)

(

xν(κ), αν(κ), βν(κ)

)

,

(6.31)

whose solutions converge to the invariant surface Z(αν(κ),βν(κ)) exponentially fast at a rate

that depends on ǫ. In other words, the controller ensures that the virtual holonomic con-

straints, which are given by (6.21) in the form of outputs that are zeroed by the control

action, are (asymptotically) imposed on Thumper, thus restricting its dynamics in each

phase on the corresponding lower-dimensional surface Z(αν(κ),βν(κ)).

6.4 Event-based Control of Thumper: General Considerations

As was mentioned in Section 6.3, enforcing the outputs (6.2) and (6.14), introduces a

set of parameters in the resulting closed-loop system. The dependence on these parame-

ters is evident in (6.30), and provides the possibility of a discrete feedback element —the

parameter update law— which, when designed properly, can ensure invariance of the sur-

faces Z(αν(κ) ,βν(κ)) and stability of the system. In this section, some general considerations,

which will enable the synthesis of event-base inner/outer loop control laws according to

the control architecture briefly described in Section 6.1, are discussed. The details of the

126



particular event-based parameter update laws for Thumper are left to Section 6.5 below.

Before continuing with the specifics of the inner/outer loop controller design, the sys-

tem is brought to a form that exposes its hybrid nature. According to Section 6.3.1, each

κ ∈ Z4 corresponds to a continuous-time phase µ ∈ M via the correspondence µ = ν(κ)

given by (6.19). Then, the dynamics of Thumper in closed loop with the continuous con-

trol laws Γc
ν(κ) designed in Section 6.3.2 is captured by concatenating the solutions of the

parameter-dependent hybrid systems

Σ
(α,β)
ν(κ) :











































xν(κ) ∈ TQν(κ), αν(κ) ∈ Aν(κ), βν(κ) ∈ Bν(κ)

ẋν(κ) = fν(κ),cl

(

xν(κ), αν(κ), βν(κ)

)

Sν(κ)→ν(κ⊕1) =
{

(xν(κ), βν(κ)) ∈ TQν(κ) × Bν(κ) | Hν(κ)→ν(κ⊕1)

(

xν(κ), βν(κ)

)

= 0
}

x+
ν(κ⊕1) = ∆ν(κ)→ν(κ⊕1)

(

x−
ν(κ)

)

where the operation “⊕” corresponds to integer addition modulo 4 —see (6.18)— and re-

flects the sequence according to which the systems Σ
(α,β)
ν(κ) are composed to form the hybrid

dynamics of Thumper in running. The various ingredients forming the hybrid systems

Σ
(α,β)
ν(κ) are provided below.

• TQν(κ) is the state-space where the closed-loop dynamics of the phase ν(κ) evolves;

• Aν(κ), Bν(κ) are sets from which the parameters αν(κ) and βν(κ) are drawn;

• fν(κ),cl is the parameter-dependent6 vector field of (6.30) determining the closed-loop

dynamics on TQν(κ);

• Sν(κ)→ν(κ⊕1) denotes the corresponding switching surface (guard), whose crossing

signifies transition from the phase ν(κ) ∈ M to the phase ν(κ ⊕ 1) ∈ M. The

guards are defined as zero level sets of associated threshold functions Hν(κ)→ν(κ⊕1) :

6Note that, in some phases, the vector field fν(κ),cl may not depend on both αν(κ) and βν(κ). For instance,
when ν(κ) = sd, the vector field fsd,cl does not depend on any α parameters.
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TQν(κ) × Bν(κ) → R, which are given below,

Hf→sc(xf) := pv
toe,

Hsc→si(xsc) := θ̇Bspring
,

Hsi→sd(xsi, βsi) := θ − βs,set,

Hsd→f(xsd) := θBspring
,

(6.32)

where pv
toe is the vertical distance of the toe from the ground, θBspring

is the spring

deflection and θ̇Bspring
the corresponding rate, θ is the angle defined by (6.3), and

βs,set is the parameter determining termination of the stance-injection phase;

• ∆ν(κ)→ν(κ⊕1) : Sν(κ)→ν(κ⊕1) → TQν(κ⊕1) is the corresponding reset map, providing

the initial conditions for the ensuing phase ν(κ ⊕ 1) ∈ M. Below are the reset maps

for the various phases

∆f→sc := ∆f→s,

∆sc→si := idTQsc ,

∆si→sd := idTQsi
,

∆sd→f := ∆s→f ,

(6.33)

where the maps ∆f→s and ∆s→f are the flight-to-stance and the stance-to-flight reset

maps defined in Sections 5.3.4 and 5.3.5 of Chapter V by (5.62) and (5.77), respec-

tively, and idTQν(κ)
is the identity map on TQν(κ).

In the remarks that follow, some properties relative to the transitions from one phase

to the next and the associated reset maps specific to Thumper are listed. These properties

are important in developing controllers for Thumper.

Remark 6.4. Careful inspection of (6.32) reveals that only the transition from stance-injection

to stance-decompression governed by Hsi→sd depends explicitly on the βsi parameters7,

namely, βs,set. It should be emphasized that the rest of the switching conditions, and in

particular, the flight-to-stance-compression surface, depend explicitly on the states, and

7This case is similar to the ASLIP, in which the flight-to-stance surface depends explicitly on the touchdown
angle αf , due to the assumption of the massless legs in the ASLIP. Note that in Thumper the β parameters play
a role similar to the touchdown angle αf of the ASLIP.
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only implicitly on the parameters. ⊳

Remark 6.5. According to the definition ofHsd→f , see (6.32), switching from stance to flight

in the closed-loop system is assumed to occur when the spring obtains its natural length.

This assumption is a consequence of Thumper’s powertrain, in which the spring in series

with the leg-shape motor is unilateral in the sense that it compresses, but does not extend

beyond its nominal rest length. Instead, once the spring reaches its rest length, the position

of the leg-shape motor, qmLS, and the leg-shape angle, qLS, are rigidly connected (i.e. no

longer through a compliant element); see Fig. 5.1 and Section 5.2 for details on how this is

achieved. This feature provides an advantage in initiating liftoff during hopping, because

at liftoff the leg-shape motor does not “fight” the spring that is trying to extend due to

the non-zero mass of the shin. Hence, switching from stance to flight becomes a control

decision. The advantage of this assumption is that the introduction of additional phases is

avoided. ⊳

Remark 6.6. It is evident from (6.33) that the reset maps depend only on the states. As a

result, no explicit dependence of the initial conditions of the ensuing phase on the param-

eters is present. This is true for all transitions. ⊳

6.4.1 Inner-loop Event-based Control for Invariance

At the beginning of each continuous phase ν(κ) ∈ M, the parameters αν(κ) can be

updated to achieve invariance in the hybrid setting. The procedure leaves the parameters

βν(κ) unaffected: βν(κ) do not participate in the inner-loop controller design. Hence, for

the purposes of this section, it is sufficient to group the β-parameters in a single array

β := (β′s, βf)
′ ∈ Bs × Bf =: B, whose values will be updated by the outer-loop event-base

controller; details on the outer-loop controller will be provided in Section 6.4.2.

6.4.1.1 Inner-loop Controller Objectives

Suppose that the parameters β ∈ B are given and let x−
ν(κ) ∈ Sν(κ)→ν(κ⊕1) be the exit

conditions of the phase ν(κ) ∈ M. Then, extending invariance in the hybrid setting is

accomplished by updating the parameters αν(κ⊕1) of the ensuing phase ν(κ ⊕ 1) ∈ M to
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a new value α+
ν(κ⊕1) so that the surface Z(α+

ν(κ⊕1)
,β) is locally “deformed” to include the

corresponding initial condition x+
ν(κ⊕1) = ∆ν(κ)→ν(κ⊕1)

(

x−
ν(κ)

)

, i.e. x+
ν(κ⊕1) ∈ Z(α+

ν(κ⊕1)
,β).

As shown in Fig. 6.5, this is achieved through the parameter update law

Γα
ν(κ⊕1) : ∆ν(κ)→ν(κ⊕1)

(

Sν(κ)→ν(κ⊕1)

)

× B → Aν(κ⊕1) (6.34)

given by the rule

α+
ν(κ⊕1) := Γα

ν(κ⊕1)(x
+
ν(κ⊕1), β)

= Γα
ν(κ⊕1)

(

∆ν(κ)→ν(κ⊕1)

(

x−
ν(κ)

)

, β
)

,

(6.35)

where ∆ν(κ)→ν(κ⊕1)

(

Sν(κ)→ν(κ⊕1)

)

⊂ Xν(κ⊕1) is the image of the surface Sν(κ)→ν(κ⊕1) ⊂

Xν(κ) under the reset map ∆ν(κ)→ν(κ⊕1).

Remark 6.7. Essentially, for each ν(κ) ∈ M, αν(κ) is updated so that it affects only the

entry conditions to the continuous phase ν(κ); the updated values leave the exit conditions

unaffected. Note here that the exit conditions depend partly on β, which will be updated

via the outer loop in order to achieve stability, as will be discussed in Section 6.4.2. ⊳

6.4.1.2 Parameterized Hybrid Extensions in Closed-loop with Inner-loop Controllers

To capture the effect of the parameters αν(κ) in the hybrid dynamics of the system, the

tool of parameterized hybrid extensions, which has been introduced in [83] and [81, Chapter

8], will be used. In particular, the hybrid systems Σ
(α,β)
ν(κ) will be reformulated so that the

parameters in the arrays αν(κ) are part of the state vector of the corresponding phase—it

should be emphasized that only the parameters that are updated by the inner-loop con-

troller participate in the extended state vector.

Consider the extended state space X e
ν(κ) := TQν(κ)×Aν(κ) and let xe

ν(κ) := (x′
ν(κ), α

′
ν(κ))

′

∈ X e
ν(κ) be the extended state vector, which includes the corresponding αν(κ) parameters

only. The parameters in β do not contribute to the inner-loop controller design, and hence

they are not part of the extended system; their role will be clarified in Section 6.4.2. Then,

the extended dynamics of the phase ν(κ) ∈ M in closed loop with the corresponding
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stance
compression

stance
injection

stance
decompression

flight

stance phase

α+
sc = Γα

sc(x
+
sc, β)

α+
si = Γα

si(x
+
si , β) α+

sd = Γα
sd(x

+
sd, β)

α+
f = Γα

f (x+
f , β)

Ssc→si

Ssi→sd

Ssd→f

Sf→sc

Figure 6.5: Inner-loop event-based control laws Γα
ν(κ) for achieving invariance of the sur-

faces Z(αν(κ) ,βν(κ)), ν(κ) ∈ M. These controllers, in combination with the
continuous-time control action (6.28), result in a well defined hybrid zero dy-
namics, which will be rendered exponentially stable via the outer-loop con-
troller of Section 6.4.2; see Fig. 6.6. The symbols α+

sc, α+
si , α

+
sd represent updated

values of the parameter arrays αsc, αsi, αsd, respectively, at the beginning of the
corresponding stance subphases.

continuous-time feedback law Γc
ν(κ) becomes

f e
ν(κ),cl

(

xe
ν(κ), β

)

=







fν(κ),cl

(

xν(κ), αν(κ), β
)

0






, (6.36)

in which the trivial dynamics α̇ν(κ) = 0 has been incorporated and β = (β′s, βf)
′ ∈ B. Let

He
ν(κ)→ν(κ⊕1) : X e

ν(κ) × B → R denote the (extended) threshold function whose zeroing

defines the surface

Se
ν(κ)→ν(κ⊕1) :=

{

(xe
ν(κ), β) ∈ X e

ν(κ) × B | He
ν(κ)→ν(κ⊕1)

(

xe
ν(κ), β

)

= 0
}

(6.37)

signifying switching from the phase ν(κ) to the ensuing phase ν(κ ⊕ 1). The functions

He
ν(κ)→ν(κ⊕1) are trivial extensions of the threshold functionsHν(κ)→ν(κ⊕1) defined by (6.32),

since none of these maps depends explicitly on the corresponding parameters αν(κ). In fact,

as was mentioned in Remark 6.4, the switching surfaces not only are independent of αν(κ),
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but also independent of β with the exception of Se
si→sd, which depends explicitly on the

parameters βsi. The extended reset map ∆e
ν(κ)→ν(κ⊕1) : Se

ν(κ)→ν(κ⊕1) × B → X e
ν(κ⊕1) can

then be given by the rule

∆e
ν(κ)→ν(κ⊕1)

(

x−
ν(κ), β

)

:=







∆ν(κ)→ν(κ+1)(x
−
ν(κ))

Γα
ν(κ⊕1)

(

∆ν(κ)→ν(κ+1)(x
−
ν(κ)), β

)






, (6.38)

where the reset maps ∆ν(κ)→ν(κ+1) are defined by (6.33). From (6.38), the dependence of

the extended reset map ∆e
ν(κ)→ν(κ⊕1) on the corresponding inner-loop parameter update

control law Γα
ν(κ⊕1) is explicit.

Remark 6.8. By the right-hand side of (6.38) it is clear that the map ∆e
ν(κ)→ν(κ⊕1) depends

only on the exit states x−
ν(κ) of the previous phase and on β. As a result, the updated value

α+
ν(κ⊕1) is independent of αν(κ). To emphasize this property, the dependence of the map

∆e
ν(κ)→ν(κ⊕1) on the reduced state x−

ν(κ) explicitly appears in (6.38). ⊳

Given these definitions, the deadbeat hybrid extension of Σ
(α,β)
ν(κ) is given by

(

Σβ
ν(κ)

)e
:











































xe
ν(κ) ∈ X e

ν(κ), β ∈ B

ẋe
ν(κ) = f e

ν(κ),cl(x
e
ν(κ), β)

Se
ν(κ)→ν(κ⊕1) :=

{

(xe
ν(κ), β) ∈ X e

ν(κ) × B | He
ν(κ)→ν(κ⊕1)

(

xe
ν(κ), β

)

= 0
}

(xe)+
ν(κ⊕1) = ∆e

ν(κ)→ν(κ⊕1)

(

x−
ν(κ), β

)

which, through the inclusion of the parameters αν(κ) in the state vector xe
ν(κ) of the contin-

uous part of the system, exposes their role in the hybrid dynamics of Thumper.

Next, the concept of a flow map associated with each of the hybrid extensions
(

Σβ
ν(κ)

)e

is discussed. The flow maps will be useful in bringing the system to the form of a system

with impulse effects, which will facilitate the design of the outer-loop control law in the

following section. Roughly, the flow map associated with
(

Σβ
ν(κ)

)e
is a map taking the

entry conditions (xe)+
ν(κ) of phase ν(κ) to the corresponding exit conditions (xe)−

ν(κ) given

the values of the parameters β. More precisely, let φe
ν(κ),cl : [0,+∞) × X e

ν(κ) × B → X e
ν(κ)

denote the flow generated by the closed-loop (extended) vector field f e
ν(κ),cl of the contin-
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uous phase ν(κ) ∈ M. Define the time-to-switching function Tν(κ) : X e
ν(κ) × B → R ∪ {∞}

by the rule

Tν(κ)

(

xe
ν(κ),0, β

)

:=



























inf
{

t ∈ [0,+∞) | φe
ν(κ),cl

(

t, xe
ν(κ),0, β

)

∈ Se
ν(κ)→ν(κ⊕1)

}

,

if ∃ t such that φe
ν(κ),cl

(

t, xe
ν(κ),0, β

)

∈ Se
ν(κ)→ν(κ⊕1)

∞, otherwise.

(6.39)

The flow map8 F e
ν(κ) : X e

ν(κ) × B → Se
ν(κ)→ν(κ⊕1) for the (extended) dynamics of the phase

ν(κ) ∈ M can then be defined by the rule

F e
ν(κ)

(

xe
ν(κ),0, β

)

:= φe
ν(κ),cl

(

Tν(κ)

(

xe
ν(κ),0, β

)

, xe
ν(κ),0, β

)

. (6.40)

The notion of the flow map can be used to define an overall stance flow map, taking the

initial (entry) conditions of the stance-compression phase (xe
sc)

+ ∈ X e
sc, i.e., the touchdown

state, together with β ∈ B, to the final (exit) conditions of the stance-decompression phase

(xe
sd)− ∈ X e

sd, i.e., the liftoff state. Hence, the (extended) stance flow map F e
s : X e

sc ×

B → Se
sd→f can be defined by properly composing the individual flow maps of the three

subphases of the stance phase, and is given by the rule

(xe
sd)− = F e

s

(

(xe
sc)

+, β
)

:= F e
sd

(

∆e
si→sd

(

F e
si

(

∆e
sc→si

(

F e
sc

(

(xe
sc)

+, β
)

, β
)

, β
)

, β
)

, β
)

.

(6.41)

Note that the dependence of F e
s on β corresponds to dependence on βs only, since the in-

dividual stance flow maps do not depend on βf . However, this distinction is not necessary

for the design of the outer-loop controllers and it will be dropped. It is remarked here that

the map F e
s includes the effects of both the continuous-time and the event-based inner-loop

control actions.

8The definition of a flow map presupposes the existence of a time instant t such that φe
ν(κ)(t, x

e
ν(κ),0, β) ∈

Se
ν(κ)→ν(κ⊕1). The case where no such time instant exists does not correspond to periodic running motions.
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6.4.2 Outer-loop Event-based Control for Stability

A critical aspect of the dynamics of Thumper in closed-loop with the continuous-time

and inner-loop event-based controllers, Γc
ν(κ) and Γα

ν(κ), respectively, is its dependence on

the parameter array β := {βs, βf} ∈ B, which can be selected according to an outer-loop

event-based feedback law Γβ , as shown in Fig. 6.1.

6.4.2.1 Outer-loop Controller Objectives

The purpose of Γβ is to (locally) exponentially stabilize a desired periodic orbit rep-

resenting running in Thumper. Let x−f ∈ Sf→sc be the exit conditions of the flight phase.

Then, exponential stability can be ensured by updating the parameters β to a new value β+

based on feedback from x−f so that all the eigenvalues of the linearization of the Poincaré

map associated with the desired running gait are within the unit disc. This will be achieved

through properly designing the outer-loop event-based parameter update law Γβ : Sf→sc →

B, given by the rule

β+ = Γβ
(

x−f
)

. (6.42)

6.4.2.2 A System with Impulse Effects for Designing the Outer-loop Controller

In what follows, the hybrid systems
(

Σβ

ν(κ)

)e
will be brought to a suitable form, which

will facilitate the design of the outer-loop controller Γβ . As a matter of fact, under the

influence of continuous-time and the inner-loop event-based controllers, the system can

be transformed into the form9

Σβ :











ẋe
f = f e

f,cl (x
e
f , β) , x−f /∈ Sf→sc, β ∈ B

(xe
f )

+ = ∆e
cl

(

x−f , β
)

, x−f ∈ Sf→sc, β ∈ B,
(6.43)

9Note that since the system Σβ evolves in the extended flight state space X e
f with its continuous flow

interrupted by the switching surface Se
f→sc, it would be proper to have the discrete part be dependent on the

extended state vector (xe
f )

−, and not on the reduced state vector x−

f , as in (6.43), i.e.,

Σβ :

{

ẋe
f = fe

f,cl (x
e
f , β) , (xe

f )
− /∈ Se

f→sc, β ∈ B

(xe
f )

+ = ∆e
cl

(

(xe
f )

−, β
)

, (xe
f )

− ∈ Se
f→sc, β ∈ B.

The form of (6.43) highlights the fact that switching is triggered by the reduced state vector x−

f , i.e., it does not
depend explicitly on the parameters αf , as was mentioned in Remarks 6.4, 6.6 and 6.8.
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which corresponds to a parameter-dependent system with impulse effects; see Fig. 6.6. To

achieve this transformation, the extended stance flow map defined by (6.41) is important.

β+ = Γβ(x−f )

flight

x+
f = ∆e

cl

(

x−f , β
+
)Sf→sc

Figure 6.6: Thumper’s dynamics represented as a system with impulse effects. The outer-
loop event-based control achieves stability of the system.

The system Σβ given by (6.43) evolves in continuous time in the extended flight state

space X e
f according to the closed-loop extended flight vector field f e

f,cl, defined by

f e
f,cl(x

e
f , β) =







ff,cl(xf , αf , β)

0






, (6.44)

until the associated flow pierces the switching surface Se
f→sc := {xe

f ∈ X e
f | He

f→sc(x
e
f ) = 0},

which, as was mentioned in Remark 6.4, does not depend explicitly on the parameters αf

and β. Subsequently, the extended flight state is reset to a new initial condition according

to the extended reset map ∆e
cl : Se

f→sc × B → X e
f given by the rule

∆e
cl

(

x−f , β
)

:=







∆cl

(

x−f , β
)

Γα
f

(

∆cl

(

x−f , β
)

, β
)






, (6.45)

where Γα
f is the inner-loop parameter update controller for the flight phase defined by

(6.34) for κ = 2, and the map ∆cl : Sf→sc ×B → TQf is defined by the rule

∆cl

(

x−f , β
)

:= ∆sd→f

(

πsd

(

F e
s

(

∆e
f→sc

(

x−f , β
)

, β
)))

, (6.46)

and it provides the initial states x+
f ∈ TQf for the reduced —not the extended— flight

phase. In (6.46), ∆e
f→sc is the extended flight-to-stance-compression map defined by (6.38),
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and the maps F e
s and ∆sd→f correspond to the (extended) stance flow map defined by

(6.41) and the (reduced) stance-decompression-to-flight transition map given by (6.33), re-

spectively. Finally, the map πsd : Xsd = TQsd × Asd → TQsd, given by the rule xe
sd =

(x′sd, α
′
sd)

′ 7→ xsd is the natural projection of the extended state to its first component corre-

sponding to the reduced state vector.

As was mentioned above, the switching surface Se
f→sc ⊂ X e

f = TQf × Af does not

depend on the values of the parameters αf . Neither does it depend on the parameters β; it

corresponds to the ground surface containing all the states compatible with the constraint

pv
toe(xf) = 0, where pv

toe is the vertical distance between the toe and the ground. Selecting

the Poincaré section to be the ground surface Sf→sc, the (parameter-dependent) Poincaré

map P : Sf→sc × B → Sf→sc associated with the system with impulse effects Σβ of (6.43)

can be defined by

P
(

x−f , β
)

:= πf ◦ φe
f, cl

(

∆e
cl

(

x−f , β
)

, Tf

(

∆e
cl

(

x−f , β
)

, β
)

)

, (6.47)

where the map πf : Xf = TQf × Af → TQf , is the natural projection given by the rule

xe
f = (x′f , α

′
f)
′ 7→ xf , φe

f, cl is the flow of the extended flight closed-loop vector field, ∆e
cl

is the (extended) flight reset map defined by (6.45), and Tf is the time-to-touchdown map

defined by (6.39) for κ = 3.

The return map P depends smoothly on x−f and on β and it gives rise to the discrete-

time control system

x−f [k + 1] = P
(

x−f [k], β[k]
)

, (6.48)

where x−f [k] is the state just prior to k-th touchdown and the parameter β is an input

available for event-based control. In Thumper, we are interested in periodic running orbits,

which can be represented by period-one fixed points of the return map P, that is, points

which satisfy

x−f [k + 1] = x−f [k] ⇔ x−f [k] = P
(

x−f [k], β[k]
)

. (6.49)

Such solutions of (6.49) will be denoted by x̄−f and the corresponding input by β̄, and they

represent equilibrium points of the discrete-time time-invariant (6.48).
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Linearizing (6.48) about the equilibrium conditions x̄−f and β̄ gives the discrete-time

linear-time-invariant control system

δx−f [k + 1] =

(

∂P
∂x−f

)∣

∣

∣

∣

(x−

f =x̄−

f , β=β̄)

δx−f [k] +

(

∂P
∂β

)∣

∣

∣

∣

(x−

f =x̄−

f , β=β̄)

δβ[k], (6.50)

where δx−f = x−f − x̄−f and δβ = β − β̄. In Section 6.5.2, a controller will be devised for δβ,

so that the eigenvalues of the Jacobian matrix
(

∂P
∂x−

f

)∣

∣

∣

(x−

f =x̄−

f , β=β̄)
are all within the unit

disc, thus ensuring (local) exponential stability of the system.

6.5 Event-based Control of Thumper: Details

In this section, the general considerations of Section 6.4 are particularized to design in-

ner and outer-loop event-based parameter update laws suitable for stabilizing running in

Thumper. The inner-loop parameter update laws, which will be proposed in Section 6.5.1

below, result in a well-defined hybrid zero dynamics, which is then rendered (locally) ex-

ponentially stable by the outer-loop controller of Section 6.5.2. The control-laws designed

below are tested in simulation in Section 6.7.

6.5.1 Inner-loop Event-based Control for Invariance

In what follows, specific rules for updating the parameters αν(κ) will be devised, so

that, at the beginning of each continuous-time phase, the initial condition lies on the cor-

responding zero dynamics surface Z(αν(κ) ,βν(κ)). In some phases, not all the parameters

participating in the definitions of the corresponding constraints of Section 6.2 are needed

to achieve the objective. In other phases, it may be that there are not enough parameters

to ensure invariance. In this section, the arrays αν(κ) containing the parameters that are

relevant to the control action —that is, the parameters that are necessary to be updated—

are first defined for each phase ν(κ). Then, update laws for these parameters that achieve

the objectives are derived.
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6.5.1.1 Stance-compression phase coefficients

When the surface Sf→sc = Sf→s is crossed, switching from flight to stance occurs and

the stance-compression phase is initiated. At this point, given βsc ∈ Bsc, a number of the

stance parameters αs can be updated so that the initial state lies on the stance-compression

zero dynamics manifold. However, this condition cannot be guaranteed only through

updates of parameters participating in αs as was defined by (6.11). Indeed, if q̇mLS 6= 0

at the beginning of the stance-compression phase, there is no available coefficient in hd
s,2

in (6.7) that can be updated to match the non-zero velocity. To ensure that the condition

x+
sc ∈ Z(α+

sc,βsc)
is satisfied, additional parameters are required. Following the procedure

in [25], to introduce these additional parameters the output for the stance-compression

phase is modified to be

ysc := hsc(qsc, αsc, βsc)

:= hs(qs, αs, βs) − hcorr (θ(qsc), αcorr) ,

(6.51)

where the term hs corresponds to the part of the stance constraint (6.2), which is enforced

during stance-compression. This part depends only on coefficients that are entries of the

αs given by (6.11). The correction term hcorr affects only the evolution of the desired qmLS

and is given by

hcorr (θ(qsc), αcorr) =







0

hmLS
corr (θ(qsc), αcorr)






, (6.52)

where hmLS
corr is selected to be a fourth order correction polynomial

hmLS
corr (θ(qsc), αcorr)=

4
∑

k=0

αcorr,k s
k
corr(θ(qsc)), (6.53)

intended to drive the error between qmLS and its desired value to zero, so that the evolution

of qmLS is smoothly joined to the original constraint shown in Fig. 6.2 by the middle of the

compression phase. In (6.53),

scorr =
θ − θ̄min

θ̄min
mLS − θ̄min

, (6.54)
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where θ̄min and θ̄min
mLS denote the values of θ at the beginning and at the end of the stance-

compression phase of the nominal orbit, respectively.

This procedure introduces a number of additional coefficients αcorr, which, together

with some of the entries of the array αs given by (6.11), define the parameters αsc, namely

αsc := {αs,(0,1), αs,(1,1), θ
min
Tor , αcorr,0, ... , αcorr,4}, (6.55)

that are available in the stance-compression phase and can be used to achieve the feedback

objectives. Note that the array (6.55) does not contain all the parameters that can affect

the stance-compression dynamics; it contains only those parameters that will be updated

through the inner-loop controller.

As a result of the inclusion of the correction polynomial, the input/output dynamics of

(6.23) for the stance-compression phase becomes

d2ysc

dt2
= L2

fsc
hsc(xsc, αsc, βsc) + LgscLfschsc(qsc, αsc, βsc)u, (6.56)

in which,

L2
fsc
hsc := L2

fsc
hs

−
(

∂2hmLS
corr

∂s2corr

[

∂scorr
∂qsc

q̇sc

]2

+
∂hmLS

corr

∂scorr

∂scorr
∂qsc

D−1
s (−Csq̇sc −Gs)

)

,
(6.57)

and

LgscLfschsc := LgscLfschs −
∂hmLS

corr

∂scorr

∂scorr
∂qsc

D−1
s Bs, (6.58)

where the dependence of L2
fsc
hsc and LgscLfschsc on xsc, αsc and βsc has been suppressed.

To formulate the inner-loop parameter-update law Γα
sc, let qsc+LA and qsc+Tor be the values

of the leg angle and torso pitch angle at the beginning of the stance-compression phase,

respectively. Note that these values correspond to touchdown, i.e., they are identical to

qs+LA and qs+Tor. Then, θmin
Tor can be computed using (6.3) resulting in sTor = 0 at the beginning
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of stance-compression phase, i.e.,

θmin
Tor = −3π

2
+ qsc+LA + qsc+Tor . (6.59)

Given βs,set so that θmax
Tor = βs,set and with θmin

Tor specified at touchdown by (6.59), setting

α+
s,(0,1) = qsc+Tor ,

α+
s,(1,1) = qsc+Tor + 1

Mṡsc+Tor

q̇sc+Tor ,
(6.60)

whereM = 6 and q̇sc+Tor is the value of the torso pitch velocity at the beginning of the stance

phase, ensures that the zero dynamics manifold includes the landing conditions on the

pitch.

To complete the design of Γα
sc, the coefficients αcorr of the correction polynomial are

updated based on the initial conditions of stance-compression by solving the system

Acorr α
+
corr = emLS ⇒ α+

corr = A−1
corr emLS, (6.61)

where emLS =
[

qsc+mLS − ᾱs(−1,2) q̇
sc+
mLS 0 0 0

]′
, ᾱs(−1,2) is the nominal value of qmLS at touch-

down, and

Acorr =





























1 sincorr (sincorr)
2 (sincorr)

3 (sincorr)
4

0 1 2sincorr 3(sincorr)
2 4(sincorr)

3

1 sfin
corr (sfin

corr)
2 (sfin

corr)
3 (sfin

corr)
4

0 1 2sfin
corr 3(sfin

corr)
2 4(sfin

corr)
3

0 0 2 6sfin
corr 12(sfin

corr)
2





























, (6.62)

where sincorr and sfin
corr are computed by (6.54) using the values θ = θsc+ and

θ = θsc+ + 0.5
(

θ̄min
mLS − θ̄min

)

, (6.63)

respectively. This procedure for computing the coefficients αcorr of the correction poly-

nomial guarantees that the error is driven to zero in a smooth way by the middle of the
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stance-compression phase. In other words, for any initial error in the qmLS, the virtual

constraint hd
s,2 in (6.7) is exactly satisfied by the end of the compression part of the stance

phase.

The update law (6.61) for the coefficients of the correction polynomial, together with

(6.59) and (6.60) provide explicit formulas for the design of the update law Γα
sc.

6.5.1.2 Stance-injection phase coefficients

When the surface Ssc→si is crossed, transition from stance-compression to stance-injection

occurs. This allows for updating some of the parameters in αs to ensure that the initial

conditions lie on the corresponding zero dynamics manifold. To meet this requirement, no

additional parameters are needed; therefore, no correction polynomials will be used. The

output associated with the stance-injection phase is

ysi := hsi(qsi, αsi, βsi) := hs(qs, αs, βs), (6.64)

where the term hs corresponds to the part of the stance constraint (6.2), which is enforced

during stance-injection. In (6.64), the only parameter participating in αsi is θmin
mLS, i.e.,

αsi := { θmin
mLS }, (6.65)

and will be updated by Γα
si as follows. Let qsi+LA , and qsi+Tor be the values of the leg and

torso angles at the beginning of the stance-injection phase respectively. Then, θmin
mLS can be

computed by

θmin
mLS = −3π

2
+ qsi+LA + qsi+Tor. (6.66)

Remark 6.9. Note that the correction polynomial (6.53), which is part of the modified con-

straint (6.51) enforced in the stance-compression phase, ensures that for any initial error

in qmLS and q̇mLS, the (nominal) virtual constraint hd
s,2 in (6.7) is exactly satisfied by the

end of the compression part of the stance phase. In other words, qsc−mLS = qsi+mLS = ᾱs,(−1,2),

the nominal value of the motorshaft position throughout stance-compression, and q̇si+mLS =

q̈ si+
mLS = 0, so that the requirement for the C2 smoothness of the desired qmLS constraint
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imposed on {αs,(0,2), αs,(1,2), αs,(2,2)} by (6.9) is satisfied without any further updates. ⊳

Remark 6.10. No updates in the coefficients of the polynomial describing the desired evo-

lution of qTor are needed at the beginning of the stance-injection phase. Leaving these

coefficients at their values in the stance-compression phase, not only ensures C2 smooth-

ness in the torso angle constraint, but also ensures that the initial conditions (qsi+Tor, q̇
si,+
Tor )

belong in the surface Z(α+
si ,β). ⊳

6.5.1.3 Stance-decompression phase coefficients

When the surface Ssi→sd is crossed, transition from stance-injection to stance-decompression

occurs. The output associated with the stance-decompression phase is

ysd := hsd(qsd, αsd, βsd) := hs(qs, αs, βs), (6.67)

where the term hs corresponds to the part of the stance constraint (6.2), which is enforced

during stance-decompression. This part of the stance constraints is independent of the

parameters αs; hence, αsd = ∅, and no updates take place during the transition from the

stance-injection to the stance-decompression phase.

6.5.1.4 Flight phase coefficients

When the surface Ssd→f is crossed, transition from stance-decompression to flight oc-

curs. The output associated with the flight phase is given by (6.14), in which the parame-

ters αf , which will be updated by Γα
f are

αf := {αf,(0,1), αf,(1,1), αf,(0,2), αf,(1,2)}. (6.68)

It is emphasized once more that αf does not include all the parameters on which the flight

dynamics depends; it only includes those that will be updated to achieve x+
f ∈ Z(α+

f ,β).

Let xf+
cm be the value of horizontal position of the COM and ẋf+

cm the corresponding

velocity at the beginning of the flight phase. Then, if
(

ph
toe

)f+
and

(

ṗh
toe

)f+
are the horizontal

position and velocity of the toe, and in view of the properties of the Beziér polynomials
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listed in [109, p. 139], the coefficients αf,(0,1) and αf,(1,1) are updated using

αf,(0,1) =
(

ph
toe

)f+ − xf+
cm,

αf,(1,1) =
[

(

ph
toe

)f+ − xf+
cm

]

+ 1
Mṡ+f

[

(

ṗh
toe

)f+ − ẋf+
cm

]

.
(6.69)

Similarly, if qf+LS and q̇f+LS denote the values of the leg-shape angle and its rate, then the

coefficients αf,(0,2) and αf,(1,2) will be updated by

αf,(0,2) = qf+LS,

αf,(1,2) = qf+LS + 1
Mṡ+f

q̇f+LS,
(6.70)

where in both (6.69) and (6.70), M = 6. The update laws (6.69) and (6.70) provide explicit

formulas for the design of the update law Γα
f , completing the inner-loop controller design.

Remark 6.11. Note that (6.15) results in ℓmin = 0, hence, sf = 0 always at the beginning

of the flight phase, so that there is no need to update ℓmin at transitions from stance to

flight. Moreover, the parameter ℓmax is left unchanged from the inner-loop controller, and

is selected to be equal to its nominal value resulting to sf 6= 1 just prior to touchdown when

the system does not evolve on the limit cycle. ⊳

6.5.2 Outer-loop Event-based Control for Stability

The system with impulse effects Σβ defined by (6.43), exposes the dependence of the

dynamics of Thumper in closed loop with the continuous-time and the inner-loop event-

based control laws, Γc
ν(κ) and Γα

ν(κ), respectively, on the parameters β, which can be used

to stabilize periodic running motions, as was explained in Section 6.4.2. Recall here that

such periodic motions can be represented by fixed-points of the return map P defined by

(6.48). As was explained in Section 6.4.2, this procedure gives rise to a discrete-time time-

invariant control system, in which the parameter β corresponds to an input available for

event-based control.

One possibility for the outer-loop event-based parameter update law Γβ is to use Raibert-

style controllers. Indeed, according to Remark 6.1, the parameter βs,mLS determines the
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amount of energy that is injected by the leg actuator to maintain hopping. This parameter

could be updated at transitions from flight to stance based on feedback from the total hop-

ping energy of the system —alternatively, based on feedback from the hopping height—

in a simple PD control fashion as suggested by Raibert in [91, Chapter 6]. Moreover, ac-

cording to Remark 6.3, the parameter βf plays a role analogous to that of the touchdown

angle, which can be updated based on feedback from the horizontal speed, as in Raibert’s

touchdown controller detailed in [91, Chapter 2].

Instead of using Raibert-type control arguments, an LQR controller for updating all

the parameters β except βs,set will be derived in this section. This controller ensures (local)

exponential stability of the running orbit. First, the parameter βs,set will be fixed based

on feedback from the state prior to touchdown, x−f , so that the duration of the “transient”

part of the desired evolution of qTor shown in Fig. 6.2 is 70% of the nominal duration of

the total stance phase. Specifically, if θ̄min and θ̄max denote the nominal, i.e., fixed-point,

values of θ at the beginning and end of the entire –not only the compression part– stance

phase, respectively, then we select

θmax
Tor = θmin

Tor + 0.7
(

θ̄max − θ̄min
)

. (6.71)

By Γα
sc, the parameter θmin

Tor is given by (6.59), which is repeated here for convenience

θmin
Tor = −3π

2
+ qsc+LA + qsc+Tor ,

and since the configuration variables remain invariant under the flight-to-stance impact

map, i.e., qf−LA = qsc+LA and qf−Tor = qsc+Tor , the rule for updating βs,set is

β+
s,set =

[

−3π

2
+ 0.7

(

θ̄max − θ̄min
)

]

+ qf−LA + qf−Tor, (6.72)

The remaining three parameters, namely, βs,Tor, βs,mLS and βf , are grouped to one array,

βLQR, whose value is updated through the use of discrete LQR techniques according to

β+
LQR = β̄LQR +K

(

x−f − x̄−f
)

, (6.73)
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where x̄−f is the nominal value of the state just prior to k-th touchdown, and β̄LQR the

nominal value of the parameters βLQR. The LQR is designed based on the linearization

(6.50) of the return map P about a fixed point (x̄−f , β̄), which is repeated below

δx−f [k + 1] =

(

∂P
∂x−f

)∣

∣

∣

∣

(x−

f =x̄−

f , β=β̄)

δx−f [k] +

(

∂P
∂βLQR

)∣

∣

∣

∣

(x−

f =x̄−

f , β=β̄)

δβLQR[k].

Combining (6.72) and (6.73), the outer-loop event-base parameter update law Γβ is

given by

β+ = Γβ(x−f ) := K1 +K2x
−
f (6.74)

where β := [βs,set, β
′
LQR]′ and

K1 =







−3π
2 + 0.7

(

θ̄max − θ̄min
)

β̄LQR −Kx̄−f






(6.75)

and

K2 =







[

1 0 0 1 0 0 0 0

]

K






(6.76)

The feedback controller (6.74) guarantees that all the eigenvalues of the linearization (6.50)

of the Poincaré map (6.48) are within the unit disc, and completes the control design.

6.6 Nominal Running Orbits through Optimization

Consider the hybrid dynamics of the Thumper in closed-loop with the continuous-time

and event-based feedback controllers Γc
ν(κ) and

(

Γα
ν(κ),Γ

β
)

developed in Section 6.3 and in

Sections 6.4 and 6.5, respectively. The problem of finding a periodic motion for the closed-

loop system can be cast as a constrained minimization problem according to the procedure

of [109, Chapter 6]. This procedure results in a fixed point x̄−f of the Poincaré return map

(6.48), and in the nominal values ᾱ and β̄ of the parameters.

In particular, to the closed-loop hybrid dynamics of Thumper associate the cost func-
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tion

I(α, β) =
1

xf−
cm − xf+

cm

∫ Ts+Tf

0

(

u2
1(t) + u2

2(t)
)

dt, (6.77)

where xf−
cm and xf+

cm represent the horizontal position of the COM at the beginning and end

of the flight phase, and Ts and Tf are the stance and flight duration, respectively10. Append

to (6.77) the equality constraint

x−f − P(x−f , α, β) = 0, (6.78)

so that the nominal orbit is periodic. Then, the problem of finding a fixed point of the

closed-loop Poincaré map (6.48) and the corresponding nominal values ᾱ and β̄ of the co-

efficients α and β, respectively, reduces to a constrained minimization problem, which can

be (numerically) solved using MATLAB’s fmincon. One can also include other constraints

that correspond to additional gait requirements. For instance, the following criteria could

be included in the optimization in the form of equality and inequality constraints:

• the vertical ground reaction force component is nonnegative, so that the unilateral

nature of the toe/ground interaction is respected;

• the ratio of the horizontal over the vertical ground reaction force components does

not exceed the value of the static friction coefficient, which is assumed to be 0.7, i.e.,

the friction cone constraint is respected;

• the required control inputs are within the capabilities of the motors;

• the ground clearance achieved during flight exceeds the minimum value of 4 cm;

• the peak-to-peak amplitude of the torso pitch oscillation is kept small;

• the forward running speed is above 1.2. m/s.

Using this procedure a nominal running orbit is computed. Figure 6.7 shows the virtual

holonomic constraints defined by (6.4) and (6.7) for the stance, and by (6.16) for the flight

phase. Two steps corresponding to a periodic running motion of Thumper are presented

10Note that multiplying the performance index (6.77) by the factor 1/
(

xf−
cm − xf+

cm

)

results in discarding
solutions where no flight phase is present.

146



showing cyclicity. The general shape of the constraints in stance resembles that of Fig.

6.2, and as mentioned in Section 6.2, it reflects our desire to make effective use of the

spring while stabilizing the torso to a desired upright posture and ensuring that excessive

pitching is not present in flight. Figure 6.8 shows the evolution of the variables sTor and

smLS, computed by (6.6), (6.8), respectively, which are used to parameterize the stance

virtual holonomic constraints.
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Figure 6.7: Virtual constraints during nominal motion. Top: Stance phase torso angle, (a),
and leg-shape motor position, (b), constraints given by (6.4) and (6.7), respec-
tively. Compare with Fig. 6.2. Bottom: Flight phase toe horizontal position
relative to the COM, (c), and leg-shape angle uniquely determining virtual leg
length, (d).

Figure 6.9 shows the spring deflection and the associated spring force. As can be seen,

when the maximum deflection is reached during the stance-compression phase, the leg-

shape actuator performs work on the spring by rapidly repositioning the motorshaft, thus,

further increasing the deflection so that additional elastic energy is stored to compensate

for losses. Note that according to Ssd→f , the stance phase is terminated when the spring

147



0 0.2 0.4 0.6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

s T
or

, t
or

so
 c

on
st

ra
in

t

(a)

0 0.2 0.4 0.6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

s m
LS

, l
eg

 m
ot

or
sh

af
t c

on
st

ra
in

t

(b)

Figure 6.8: Evolution of the independent parameters sTor in (a), and smLS in (b), corre-
sponding to the constraints of the stance phase.

deflection becomes zero. At this point, the vertical component of the ground reaction force

also becomes zero; see Fig. 6.10.
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Figure 6.9: Spring deflection, (a), and spring force versus spring deflection, (b).

It should be emphasized that the virtual constraints of Fig. 6.7 induce a nominal run-

ning motion in Thumper, which respects all the constraints as Fig. 6.10 and 6.11 demon-

strate. In particular, the ground reaction forces respect the friction cone constraints and the

unilateral nature of the toe/ground interaction, while, at the same time, the input torques

are within the capabilities of the actuators.

In fact, as Fig. 6.10 shows the vertical ground reaction is always positive indicating

that the actuators do not produce torques that result in the leg “pulling” the ground. Fur-

thermore, the ratio |FT
toe|/FN

toe of the horizontal over the vertical component of the ground

reaction force stays below the value of the average static friction coefficient, which is as-
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sumed to be equal to 0.7; hence, the toe/ground contact can be modeled as a frictionless

pin joint, as Hypothesis HGT3) of Chapter V demands.
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Figure 6.10: Vertical component of the ground reaction force, (a), and minimum required
friction coefficient computed by |FT

toe|/FN
toe, (b).

Finally, Fig. 6.11 illustrates that the actuator torques required to impose the constraints

of Fig. 6.7 on the dynamics of Thumper are within the motor capabilities. Indeed, ac-

cording to data from the manufacturer, the maximum torque for the leg-angle motor is

32.781Nm, and for the leg-shape motor is 62.130Nm, while the required torques according

to Fig. 6.11 never exceed 15Nm for the leg-angle motor and 22Nm for the leg-shape motor.
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Figure 6.11: Actuator inputs corresponding to the nominal gait presented in Fig. 6.7.
Dashed lines correspond to flight phase inputs. Both torques are well within
the capabilities of the actuators.
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6.7 Evaluation of the Controller in Simulation

Given the nominal running orbit computed in Section 6.6, the gain matrix K that par-

ticipates in the design of the outer-loop controller Γβ of Section 6.5.2 can be computed by

MATLAB’s command “dlqr”. Indeed, using the linearization (6.50) of the Poincaré map

P given by (6.47) about the fixed point computed in Section 6.6, the gain matrix K is found

to be

K =















0.47 −0.30 0.58 0.04 0.04 0.08 −0.41 −0.07

7.01 −0.46 7.75 −0.35 −0.54 −0.66 1.07 2.03

0.44 −0.19 0.51 0.01 0.01 0.02 −0.15 0.01















. (6.79)

Then, under the influence of the continuous-time and the event-based control laws of Sec-

tions 6.3 and 6.5, the closed-loop eigenvalues are computed to be

λcl =

[

0.79 −0.09 −0.09 0.01 0 0 0 0

]

. (6.80)

To illustrate the orbit’s local stability, the state prior to touchdown is perturbed away

from the fixed point x̄−f . An initial error of +2 deg is introduced on each angle and an

error of +10deg/s and +0.1m/s on each angular velocity and on the velocity of the COM,

respectively, i.e.,

δx−f =

[

2 π
180 2 π

180 2 π
180 0 0 10 π

180 10 π
180 10 π

180 0.1 0.1

]

. (6.81)

Figure 6.12 shows the evolution of the errors in the torso angle and horizontal velocity

in discrete time demonstrating convergence to zero. Figure 6.13 presents the constraints

imposed on torso angle and leg-shape motorshaft position during the stance phase. It is in-

teresting to note how the event-based controller manipulates the shape of the imposed con-

straints. For instance, observe in Fig. 6.13(b) how the shape of the constraint is deformed

by the correction polynomial, so that the initial conditions of the stance-compression phase

belong in the corresponding zero dynamics surface. Most importantly, note how the outer-

loop controller updates the coefficient βs,mLS, corresponding to the motorshaft position
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prior to liftoff, qs−mLS, in order to manipulate the energy stored at the spring. A similar ac-

tion takes place in updating the torso angle βs,Tor at liftoff, as is evident from Fig. 6.13(a).
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Figure 6.12: Discrete errors in pitch angle and forward speed showing convergence to zero.
The norm of the maximum eigenvalue is 0.79; see (6.80).

0 1 2 3 4 5

−0.05

0

0.05

0.1

Time (s)

T
or

so
 a

ng
le

 (
ra

d)

(a)

0 1 2 3 4 5

7.5

8

8.5

9

9.5

10

10.5

11

Time (s)

Le
g−

sh
ap

e 
m

ot
or

 a
ng

le
 (

ra
d)

(b)

Figure 6.13: Stance phase virtual constraints during recovery from a perturbation: torso
angle, (a), and leg-shape motor position, (b). Dashed line represents nomi-
nal liftoff values: The outer-loop controller adjusts the liftoff values for the
torso angle and the motor position (corresponding to energy input) to ensure
convergence to the nominal orbit.

Figure 6.14 shows the corresponding evolution of the torso pitch angle and spring de-

flection. As can be seen from Fig. 6.14(a) the peak-to-peak amplitude of the pitch oscil-

lation is approximately 10deg demonstrating that the controller is successful in ensuring

that the resulting pitch motion does not exhibit excessive pitching. Careful inspection of

Fig. 6.14(b) reveals that sometimes liftoff occurs when the spring deflection is not zero.

This corresponds to the case where transition from flight to stance is triggered by the ver-
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tical component of the ground reaction force becoming zero, while the spring is still com-

pressed. In the results presented in this section, the stance to flight transition is assumed

to occur when either the spring deflection becomes zero or the vertical component of the

ground reaction force becomes zero. This modification ensures that the vertical component

of the ground reaction forces is positive throughout the gait implying that the commanded

torques do not result in the leg “pulling” the ground, as is demonstrated in Fig. 6.15(a). It

is implicitly assumed that, when liftoff occurs with the spring compressed, the correspond-

ing elastic energy is dissipated into heat in the actuator. Figure 6.15(b) presents the ratio

|FT
toe|/FN

toe, which, excluding the very initial and final part of the stance phase, is bounded

above from 0.7 meaning that no slippage between the toe and the ground occurs.
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Figure 6.14: Torso pitch angle, (a), and spring deflection, (b), during convergence to the
nominal orbit. Note that no excessive pitching is observed.
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Figure 6.15: Vertical component of the ground reaction force, (a), and minimum required
friction coefficient computed by |FT

toe|/FN
toe, (b).
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Finally, Fig. 6.16 shows the corresponding input torques, which are both within the

capabilities of the leg-angle and leg-shape motors.
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Figure 6.16: Actuator torques: Leg-angle, (a), and leg-shape, (b), motors, showing that the
required input torques are within the capabilities of the motors.
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CHAPTER VII

Concluding Remarks and Future Work

The work presented in this thesis bridges the gap between “empirical” control ap-

proaches for dynamically stable compliant running robots and rigorous controller synthe-

sis procedures. The ground-breaking work of Marc Raibert in the 1980’s and early 1990’s

offered a set of intuitive rules for the control of running, and dominated the field of dy-

namically stable legged locomotion. Analytically tractable investigations of the success of

Raibert’s controllers for compliant legged systems are largely limited to simplified mod-

els, such as the Spring Loaded Inverted Pendulum (SLIP). These simplified models do not

constitute faithful representations of legged robots, and thus their value in synthesizing

prescriptive control procedures for these robots is limited. As a result, there was a need

for a methodology that combines realistic models with tractable stability analysis to design

feedback controllers that work in concert with compliance to produce efficient natural-like

running motions. This thesis developed such a methodology for monopedal robots.

7.1 Summary of New Contributions

The terminus a quo of this research was the running experiments performed on the

bipedal robot RABBIT —see [84]— in which running was successfully initiated, but not

sustained. Through these experiments, it became apparent that modifications to the robot

structure to include compliant elements would be necessary for realizing running. This ob-

servation prompted the design and construction of the monopedal robot Thumper, which

is the subject of this work. The existence of compliant elements in the structure of Thumper
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called for nontrivial extensions of the hybrid zero dynamics (HZD) controller design frame-

work, originally proposed in [110] and further detailed in [109]. In particular, the presence

of compliance posed an additional requirement: the control law had to guarantee that the

compliant element in the open-loop dynamics of Thumper would dominate the behavior

of the closed-loop system. In other words, the feedback action should preserve the com-

pliant nature of the system. Achieving this additional requirement was at the core of this

thesis.

To address this issue, a standing hypothesis in the modeling and control of running

was first examined. Namely, it has been conjectured that when animals (and robots) run,

they coordinate their limbs so that a lower-dimensional compliant system, the Spring

Loaded Inverted Pendulum (SLIP), governs the observed behavior; see [100] and refer-

ences therein. Along the same vein, Chapters III and IV “translated” this conjecture into

precise mathematical terms, and developed a rigorous procedure, through which the ac-

tuated degrees of freedom of a model that constitutes a more faithful representation of

Thumper were coordinated so that the SLIP governed its behavior.

In particular, to bridge the gap between the SLIP and Thumper, the Asymmetric Spring

Loaded Inverted Pendulum (ASLIP), an extension of the SLIP that includes nontrivial torso

pitch dynamics — a mode of Thumper’s motion not captured by point-mass hoppers such

as the SLIP — was proposed in Chapter III. The ASLIP is envisioned as a “building block”

toward the construction of controllers for more elaborate models that constitute realistic

representations of legged robots such as Thumper. Chapter IV proposed a control law

for the ASLIP that realized the SLIP as its target dynamics in a rigorous sense. A feedback

control law, termed the SLIP embedding controller, was devised that coordinates the actuated

degrees of freedom of the ASLIP so that the SLIP “emerged” from the closed-loop system

as its hybrid zero dynamics, thereby governing the existence and stability properties of

running orbits in the ASLIP.

An immediate consequence of this result is that the SLIP is rendered directly relevant to

the control of a more elaborate model, such as the ASLIP, thereby allowing for a large body

of controller results available for the SLIP to be applicable in stabilizing the ASLIP. Most

importantly, the control law design is suggestive of how feedback could be used in concert
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with the compliant dynamics of the system to stabilize running motions on Thumper. The

key idea was to design the control law so that the corresponding hybrid zero dynamics

is a two degree-of-freedom compliant dynamical system. Indeed, in Chapter IV, it was

deduced through comparisons of the SLIP embedding controller with a rigid target model

controller creating a one-degree-of-freedom non-compliant subsystem, that the underlying

compliant nature of the SLIP enhances performance through significantly improving the

transient response and reducing actuator effort.

The results in Chapter IV should be viewed as a preliminary step toward the control of

Thumper. This task was undertaken in Chapters V and VI, in which a stabilizing feedback

control law for running was developed. Chapter V provided a mathematical model for the

dynamics of Thumper in running and highlighted the relation with the ASLIP. Similarly

to the structure of the ASLIP, the robot is composed of a heavy torso, on which a relatively

light leg is mounted so that the hip joint is displaced from the torso COM. On the other

hand, the robot’s leg is not prismatic and, despite the fact that it is relatively light with

respect to the torso, its mass cannot be assumed zero as was the case in the ASLIP. Fur-

thermore, Thumper features a novel compliant powertrain, which introduces nontrivial

dynamics in transferring the control inputs from the actuators to the robot’s structure.

Despite these morphological differences between the ASLIP and Thumper, the pro-

posed feedback law for Thumper heavily relied on control ideas developed in the con-

text of the ASLIP. As described in Chapter VI, the control law was developed within the

hybrid zero dynamics framework, and it creates a lower-dimensional hybrid subsystem

determining the stability properties of periodic motions of the full model of Thumper.

This was achieved through the proper design of a set of virtual holonomic constraints that

were asymptotically imposed on Thumper’s dynamics through its actuators. The result-

ing control law achieved the dual objectives of working harmoniously with the system’s

compliant dynamics and inducing provably exponentially stable running motions, while

all relevant physical constraints were respected. It is anticipated that these properties will

render this controller synthesis method an attractive alternative to traditional heuristic

approaches by avoiding laborious trial-and-error procedures during experimental imple-

mentation.
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7.2 Perspectives on Future Work

The most natural next step of the results presented in this thesis is the experimental

implementation of the compliant hybrid zero dynamics controller developed in Chapter

VI on Thumper. A number of issues need to be resolved before this goal can be achieved.

First, extensive parameter identification experiments need to be conducted so that the var-

ious parameters associated with the inertia properties of the transmission system and the

robot’s limbs can be reasonably well approximated. These experiments are currently in

progress. With these parameters in hand, extensive testing of the controller of Chapter VI

in more accurate simulation environments that include modeling aspects such as physi-

cally realistic ground contact models and actuator dynamics, will be required before ex-

perimental implementation. In addition, the development of transition controllers that

initiate and maintain running over a range of forward velocities, including hopping on the

spot, will greatly facilitate the experiments on Thumper.

A major extension of the work in this thesis is the development of controllers for

bipedal running and their implementation on the robotic biped MABEL. The controller for

Thumper developed in Chapter VI suggests how to use splines to effectively control MA-

BEL without “fighting” the spring during the stance phase. However, MABEL is a much

heavier robot than Thumper —as a matter of fact, it weights twice as much as Thumper—

thus placing more stringent requirements on exploiting the natural dynamics of the robot,

and in particular compliance. On the other hand, MABEL exhibits different flight dynam-

ics from Thumper. Indeed, the existence of the second leg can be used to limit the net

effect of leg motion on the pitch dynamics during the flight phase due to conservation of

the total angular momentum about the center of mass —a possibility which is not present

in the monopedal Thumper.

Finally, the development of control laws for running in Thumper —and in the future

in MABEL— requires nontrivial extensions of the theory of hybrid zero dynamics in the

presence of event-based parameter update laws. For instance, including the touchdown

angle as an input available for event-based control, as was done in Thumper, results in

a parameter-dependent switching surface of the system with impulse effects on which
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part of the event-based parameter update law is designed. This situation is not explicitly

addressed in the existing theory of hybrid parameter extensions as was developed in [81].

In this work, the reduced switching surface being invariant under the parameter update

law is a necessary condition for the validity of the reduced-order stability test.

In summary, there is still a long research path to follow until the experimental eval-

uation of our feedback controller synthesis framework for the design of provably stable

control prescriptions that work together with the natural dynamics of the system in in-

ducing running motions on compliant mechanisms such as Thumper and MABEL. It is

anticipated that the results presented in thesis constitute an important step in this direc-

tion.
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APPENDIX A

Details on The Rigid Target Controller

This appendix complements Section 4.5 of Chapter IV, and provides details on how to

design Γc, Γs and Γf . To ease implementation, it is favorable to use Bézier polynomials. Let

qmin
u and qmax

u be the (known) min and max values of the angle qu of the leg with respect to

the ground during the nominal stance motion, and define s = (qu − qmin
u )/(qmax

u − qmin
u ) ∈

[0, 1]. Then, the desired leg length parameterized by a Bézier polynomial is given by

ld(s) =

M
∑

j=0

[

M !

j!(M − j)!
sj(1 − s)M−j

]

αj, (A.1)

where the coefficients αj satisfy the following properties,

ld(0) = α0, ld(1) = αM , (A.2)

∂ld(s)

∂s

∣

∣

∣

∣

s=0

= M(α1 − α0),
∂ld(s)

∂s

∣

∣

∣

∣

s=1

= M(αM − αM−1). (A.3)

In the simulations of Section 4.6, M = 6, while the constant polynomial θd = α7 is selected

for the desired pitch angle.

The properties (A.2) and (A.3) are exactly those required to ensure conditions (i) and

(ii) of Section 4.1.2. Suppose that x−s ∈ Ŝs→f ∩ Zαs and αf = (ltd, ϕtd) is a given set of

flight parameters (specified by the outer-loop feedback law Γf). To ensure that the state at

touchdown belongs in the zero dynamics surface, i.e. x+
s = ∆(x−s , αf) ∈ Zαs , it is sufficient
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to update the two first coefficients α0 and α1 according to

α+
0 = l+ α+

1 = l̇+

Mṡ
+ α+

0 . (A.4)

Leaving the rest of the coefficients unchanged (i.e. equal to their nominal values), ensures

that Ŝs→f ∩Zα+
s

= Ŝs→f ∩Zαs ,which is the surface Ŝs→f ∩Z⋄ in Section 4.1.2. Equation (A.4)

provides a rule for updating αs. The pitch angle polynomial need not be updated due to

the trivial pitch dynamics in flight.
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APPENDIX B

Details on the Transmission Mechanism

Figure B.1 provides a schematic of the cable drive layout of the transmission mecha-

nism actuating the leg of Thumper; see Table B.1 for the meaning of the various symbols.

Before describing the way the differentials are combined to form the transmission mecha-

nism of Thumper, we provide a brief description of how each differential works. As can be

seen in Fig. B.1, each of the differentials of the transmission is composed of three pulleys

A, B and C, and an internal unobserved idler D. Its purpose is to deliver the same amount

of torque to pulleys A and B regardless of the speed at which the A and B rotate. More

specifically, if the positive direction is the same for each pulley, then the torques τA and τB

of A and B respectively are always the same, i.e.

τA = τB. (B.1)

Similarly, based on the kinematics of the mechanism, the angular velocities ωA, ωB, ωC, ωD

at which the pulleys rotate satisfy the following relations

ωArA + ωBrB = (rA + rB)ωC,

ωArA − ωBrB = (rA + rB)ωD,

(B.2)

where rA, rB, rC, rD correspond to the radii of the pulleys.

The kinematics of the transmission involves eighteen variables: twelve describing the
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k
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−1

Figure B.1: Left: Basic robot configuration. Right: Conceptual diagram showing the place-
ment of the three differentials (solid black lines) in the transmission system
with the names of each pulley. The “-1” means that direction is inverted. B

Table B.1: Transmission system nomenclature.

Symbol Meaning

r, θ, ω Radius, angle and angular rate of a pulley

{AThigh,BThigh,CThigh,DThigh} Indices for pulleys of thigh differential

{AShin,BShin,CShin,DShin} Indices for pulleys of shin differential

{ASpring,BSpring,CSpring,DSpring} Indices for pulleys of spring differential

{PmLS,big,PmLS,small} Stepdown pulleys connecting the leg shape motor

{PmLA,big,PmLA,small} Stepdown pulleys connecting the leg angle motor

{qmLS, qmLA} Angular positions for leg shape and leg angle motor

{qLS, qLA} Leg shape and leg angle

positions of each of the pulleys of the three differentials, two for the scaling (stepdown)

pulleys connecting the motorshafts with the differentials, two for the motorshaft positions,

and, finally, two corresponding to the leg angle and the leg shape variables, namely

{θAi
, θBi

, θCi
, θDi

}, i ∈ {Thigh,Shin,Spring},

θPmLA,small
, θPmLS,small

, qmLA, qmLS, qLA, qLS.
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Among those variables there exist fifteen constraint equations: six refer to the constituting

relations of the differentials and nine to their interconnections according to Fig. B.1. These

constraints are given below in terms of velocities so that they can be used to compute the

kinetic energy associated with the transmission.

Thigh differential:

ωAThigh
rAThigh

+ ωBThigh
rBThigh

− (rAThigh
+ rBThigh

)ωCThigh
= 0

ωAThigh
− ωBThigh

+ rDThigh

(

1

rAThigh

+
1

rBThigh

)

ωDThigh
= 0

Shin differential:

ωAShin
rAShin

+ ωBShin
rBShin

− (rAShin
+ rBShin

)ωCShin
= 0

ωAShin
− ωBShin

+ rDShin

(

1

rAShin

+
1

rBShin

)

ωDShin
= 0

Spring differential:

ωASpring
rASpring

+ ωBSpring
rBSpring

− (rASpring
+ rBSpring

)ωCSpring
= 0

ωASpring
− ωBSpring

+ rDSpring

(

1

rASpring

+
1

rBSpring

)

ωDSpring
= 0

Interconnection constraints:

ωBThigh
− ωBShin

= 0

rCSpring
ωCSpring

+ rAShin
ωAShin

= 0

rCSpring
ωCSpring

− rAThigh
ωAThigh

= 0

rPmLA,small
ωPmLA,small

+ rBThigh
ωBThigh

= 0

rmLAqmLA − rPmLA,big
ωPmLA,big

= 0

rPmLS,small
ωPmLS,small

− rASpring
ωASpring

= 0

rmLSqmLS − rPmLS,big
ωPmLS,big

= 0
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qLS +
ωCShin

− ωCThigh

2
= 0

qLA −
ωCShin

+ ωCThigh

2
= 0

The constraints above form a system of fifteen equations with eighteen unknowns. As a

result, there will be three independent variables, which completely determine the config-

uration of all the pulleys in the transmission system. In accordance to the configuration

variables selected to describe the linkage configuration, let qtr := (qLA, qLS, qmLS)
′ ∈ Qtr, a

simply connected subset of S
3, be the configuration variables for the transmission system.

Similarly, the angular rates of each of the pulleys in the transmission system can be deter-

mined as a function of q̇tr := (q̇LA, q̇LS, q̇mLS) by solving the system of constraints given

above.

Next, the kinetic energy associated with the transmission system is calculated. For

convenience, let I := {Thigh, Shin, Spring} be a finite index set containing indices cor-

responding to the thigh, shin and spring differentials, respectively. Then, by Hypothesis

HMT4) of Chapter V, the kinetic energy Ktr : TQtr → R of the transmission computed in

coordinates is given by

Ktr(qtr, q̇tr) =
∑

i∈I

(

1

2
JAi

ω2
Ai

+
1

2
JBi

ω2
Bi

+
1

2
JCi

ω2
Ci

+
1

2
JDi

ω2
Di

)

+
1

2
JPmLS,big

ω2
PmLS,big

+
1

2
JPmLA,big

ω2
PmLA,big

+
1

2
JmLSq̇

2
mLS +

1

2
JmLAq̇

2
mLA.

(B.3)
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tially stable periodic orbits in systems with impulse effects: Application to bipedal
robots,” in Proceedings of the IEEE International Conference on Decision and Control,
Seville, Spain, Dec. 2005, pp. 4199–4206.

[83] ——, “Hybrid invariance in bipedal robots with series compliant actuators,” in Pro-
ceedings of the IEEE International Conference on Decision and Control, San Diego, USA,
Dec. 2006, pp. 4793–4800.

[84] B. Morris, E. R. Westervelt, C. Chevallereau, G. Buche, and J. W. Grizzle, “Achieving
bipedal running with RABBIT: Six steps toward infinity,” in Fast Motions Symposium
on Biomechanics and Robotics, ser. Lecture Notes in Control and Information Sciences,
K. Mombaur and M. Dheil, Eds. Heidelberg, Germany: Springer-Verlag, 2006, pp.
277 – 297.

[85] R. M. Murray, Z. Li, and S. Sastry, A Mathematical Introduction to Robotic Manipulation.
CRC Press, 1994.

[86] J. Nakanishi, T. Fukuda, and D. E. Koditschek, “A brachiating robot controller,” IEEE
Transactions on Robotics and Automation, vol. 16, no. 2, pp. 109–123, Apr. 2000.

[87] I. Poulakakis, E. G. Papadopoulos, and M. Buehler, “On the stability of the pas-
sive dynamics of quadrupedal running with a bounding gait,” International Journal
of Robotics Research, vol. 25, no. 7, pp. 669–687, July 2006.

[88] M. Raibert, “Trotting, pacing and bounding by a quadruped robot,” Journal of Biome-
chanics, vol. 23, Suppl. 1, pp. 79–98, 1990.

[89] M. Raibert and J. Brown, H., “Experiments in balance with a 2d one-legged hopping
machine,” ASME Journal of Dynamic Systems Measurement, and Control, vol. 106, pp.
75–81, 1984.

[90] M. H. Raibert, “Hopping in legged systems—modeling and simulation for the two-
dimensional one-legged case,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 14, no. 3, pp. 451–63, Jun. 1984.

172



[91] ——, Legged Robots that Balance. Cambridge, MA: MIT Press, 1986.

[92] M. H. Raibert, M. Chepponis, and J. Brown, H., “Running on four legs as though
they were one,” IEEE Transactions on Robotics and Automation, vol. RA-2, no. 2, pp.
70–82, Jun. 1986.

[93] R. Ringrose, “Self-stabilizing running,” in Proc. of the 1997 IEEE International Confer-
ence on Robotics and Automation, Albuquerque, NM, 1997, pp. 487–93.

[94] U. Saranli and D. Koditschek, “Template based control of hexapedal running,” in
Proceecings of the IEEE International Conference on Robotics and Automation, vol. 1,
Taipei, Taiwan, Sep. 2003, pp. 1374–1379.

[95] U. Saranli, W. Schwind, and D. E. Koditschek, “Toward the control of a multi-jointed,
monoped runner,” in Proceedings of the IEEE International Conference on Robotics and
Automation, vol. 3, Leuven, Belgium, May 1998, pp. 2676–2682.

[96] A. Sayyad, B. Seth, and P. Seshu, “Single-legged hopping robotics research,” Robotica,
vol. 25, pp. 587–613, 2007.

[97] F. Scheck, Mechanics. From Newton’s Laws to Deterministic Chaos, 3rd ed. Berlin:
Springer-Verlag, 1999.

[98] J. Schmitt and P. Holmes, “Mechanical models for insect locomotion: Dynamics and
stability in the horizontal plane i. theory,” Biological Cybernetics, vol. 83, pp. 501–515,
2000.

[99] W. Schwind and D. Koditschek, “Approximating the stance map of a 2-dof monoped
runner,” Journal of Nonlinear Science, vol. 10, pp. 533–568, 2000.

[100] W. J. Schwind, “Spring loaded inverted pendulum running: A plant model,” Ph.D.
dissertation, University of Michigan, 1998.

[101] W. J. Schwind and D. E. Koditschek, “Control of forward velocity for a simplified
planar hopping robot,” in Proceedings of the IEEE Inernational Conference of Robotics
and Automation, vol. 1, Nagoya, Japan, May 1995, pp. 691–696.

[102] ——, “Characterization of monoped equilibrium gaits,” in IEEE Int. Conf. on Rob. and
Aut., Albuquerque, New Mexico, Apr. 1997.

[103] J. E. Seipel and P. Holmes, “Running in three dimensions: Analysis of a point-mass
sprung-leg model,” International Journal of Robotics Research, vol. 24, no. 8, pp. 657–
674, Aug. 2005.

[104] A. Seyfarth, H. Geyer, M. Gunther, and R. Blickhan, “A movement criterion for run-
ning,” Journal of Biomechanics, vol. 35, no. 5, pp. 649–55, May 2002.

[105] A. Seyfarth, H. Geyer, and H. Herr, “Swing leg retraction: A simple control model
for stable running,” Journal of Experimental Biology, vol. 206, pp. 2547–2555, 2003.

[106] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control. New
York: John Wiley & Sons, 2006.

173



[107] M. Spong and F. Bullo, “Controlled symetries and passive walking,” IEEE Transac-
tions on Automatic Control, vol. 50, no. 7, pp. 1025–1031, July 2003.

[108] A. Vakakis, J. Burdick, and T. Caughey, “An “interesting” strange attractor in the
dynamics of a hopping robot,” International Journal of Robotics Research, vol. 10, no. 6,
pp. 606–618, Dec. 1991.

[109] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and B. Morris, Feedback
Control of Dynamic Bipedal Robot Locomotion. Taylor & Francis/CRC Press, 2007.

[110] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero dynamics of pla-
nar biped walkers,” IEEE Transactions on Automatic Control, vol. 48, no. 1, pp. 42–56,
Jan. 2003.

[111] M. Wisse, A. L. Schwab, R. Q. van der Linde, and F. C. T. van der Helm, “How to keep
from falling forward: Elementary swing leg action for passive dynamic walkers,”
IEEE Transactions on Robotics, vol. 21, no. 3, pp. 393–401, 2005.

[112] M. Wisse and R. Q. van der Linde, Delft Pneumatic Bipeds, ser. Springer Tracts in
Advanced Robotics, B. Siciliano, O. Khatib, and F. Groen, Eds. Berlin Heidelberg:
Springer-Verlag, 2007, vol. 34.

[113] H. Ye, A. N. Michel, and L. Hou, “Stability theory for hybrid dynamical systems,”
IEEE Transactions of Automatic Control, vol. 43, no. 4, pp. 461–474, April 1998.

174


