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CHAPTER 1

INTRODUCTION

In abstract algebra courses, the first way a student learns to prove a

ring is principal is by using the Euclidean algorithm. Usually, this is

taught by using the norm function to prove that Z and Z[i ], both rings

of integers of number fields, are principal ideal domains. What is not

usually covered is that the norm is not the only function that can be

used as a Euclidean algorithm. In fact, there are some rings that are

Euclidean but not norm-Euclidean, like the ring of integers of Q(
√

69)

([1]).

Definition 1.0.1. — Given a ring R and a well ordered set W , a map

φ : R \ 0 −→ W is a Euclidean algorithm as long as, for any elements a

and b in R with b 6= 0, there exist some elements q and r in R such that

a = qb + r , with either φ(r) < φ(b) or r = 0.

Just like the norm function, any function satisfying the conditions

above can be used to find the greatest common divisor of two elements,
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implying principality of all ideals. An integral domain with a Euclidean

algorithm is called a Euclidean domain.

Number fields with norm-Euclidean rings of integers have an interest-

ing property. By definition, if OK is norm-Euclidean, then for any a

and b in OK with b 6= 0, there exists some q and r in OK such that

Nm(a − qb) = Nm(r) < Nm(b). If we divide through by the norm of

b, we can then see that Nm(a
b
− q) < 1. There is therefore an equiva-

lent statement that given a number field K , the ring of integers of K is

norm-Euclidean if and only if for every x in K , there exists some y in OK

such that Nm(x − y) < 1. Note that y is an element of OK and that 1

is the norm of OK . In [8], Lenstra asked what would happen if OK were

replaced by some non-zero ideal C . He then defined the ideal C to be

Euclidean for the norm if, for all x ∈ K , there exists some y ∈ C such

that

Nm(x − y) < Nm(C ).

If C is Euclidean for the norm, then so is every other ideal in its ideal

class, and in this case we will call the class [C ] is a norm-Euclidean ideal

class (see Proposition 3.1.4). Interestingly enough, the ring OK can have

at most one norm-Euclidean ideal class ([8]). As before, the norm is not

the only function that can be a Euclidean algorithm for an ideal. This

inspired Lenstra to come up with Definition 1.0.3 below. In order to state

it, though, we first need the following terminology.
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Definition 1.0.2. — Let R be a Dedekind domain. A fractional ideal

is an element in the set { 1
b
I | b ∈ R \ 0, I is an ideal of R}. Henceforth,

unless otherwise stated, all ideals in this paper are fractional. Ideals that

are properly contained in R are called integral ideals. For the rest of the

paper, given a Dedekind domain R, let E be the set of fractional ideals of

R that contain R itself. For example, if 1
b
I is in E , then b is an element

of I .

Definition 1.0.3. — Let R be a Dedekind domain, let C be a non-zero

ideal, let W be a well-ordered set, and let φ be a function from E to W .

We say that φ is an Euclidean algorithm for C if, given any I in E and

any x in IC , with x /∈ C (i.e. x ∈ IC \C ), there exists some y ∈ C such

that

φ((x + y)−1IC ) < φ(I ).

As before, this condition depends only on the ideal class of C , so if C

has a Euclidean algorithm, then we call [C ] an Euclidean ideal class.

The usual reason that people want to know whether or not a ring

is a Euclidean domain is because Euclidean domains are principal ideal

domains. In particular, Euclidean Dedekind domains have trivial class

group. The importance of Euclidean ideal classes is that a Dedekind

domain with a Euclidean ideal class has cyclic class group. In fact, if R

is a Dedekind domain with Euclidean ideal class [C ], then [C ] generates

the class group (see Proposition 3.1.7).
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Going back to our original motivation, given a number field K with

trivial class group, it makes sense to ask whether OK is Euclidean or

not. In 1973, Weinberger ([11]) proved, modulo the generalized Riemann

hypothesis, that if K is a number field with trivial class group and if OK

has infinitely many units, then the ring OK is a Euclidean domain.

This then suggests the question: when do number fields with cyclic

class group have a Euclidean ideal class? Lenstra proved that if one

assumes the generalized Riemann hypothesis, then for every number field

with infinitely many units and cyclic class group, each generator of the

class group is a Euclidean ideal class. Other than this one theorem,

the author knows of no result in the literature implying that if K has a

Euclidean ideal class, then it has any other Euclidean ideal classes.

Both Weinberger’s and Lenstra’s results assume the generalized Rie-

mann hypothesis, so the next question to ask is whether they can be

proved without assuming the Riemann hypothesis. Malcolm Harper was

able to partially prove Weinberger’s theorem without assuming the Rie-

mann hypothesis by using analytic techniques and a reformulation of the

Euclidean algorithm called Motzkin’s construction.

1.1. Motzkin’s Lemma for Elements

For the rest of this section, assume that all Euclidean algorithms are

N-valued, i.e. that the well-ordered set W in the definitions above is

N. Motzkin’s construction for elements is useful because one can start
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with any ring and the construction will determine whether or not it has

a Euclidean algorithm without one having to find such an algorithm.

Definition 1.1.1. — (Motzin’s Construction for Elements) Given a do-

main R, let A0 := {0} ∪ R×, so it contains zero and all the units. Let

Ai = Ai−1 ∪







a ∈ R

∣

∣

∣

∣

∣

∣

∀ x ∈ R, ∃ y ∈ Ai−1

such that x − y ∈ (a)







for i > 0, and let A := ∪∞
i=0Ai . If A = R, then let us define φ : A −→ N,

where φ(x ) = i if x is an element of Ai \ Ai−1.

Lemma 1.1.2. — (Motzkin’s Lemma for Elements) An integral domain

R has a Euclidean algorithm if and only if every element of R is in A.

Motzkin’s construction for elements does not just determine whether or

not R has a Euclidean algorithm mapping to N; it constructs a canonical

‘least’ algorithm mapping to N, the map φ, defined above. The only

such algorithm explicitly computed in the literature is for the ring Z. No

others have been computed since the publication of Motzkin’s paper in

1929. This paper includes nontrivial upper bounds for the least algorithm

from Z[i ] to N.

Harper ([5]) modified Motzkin’s construction for elements so that the

only elements in the construction are zero, units, and primes. Harper

was then able to use analytic methods to study the growth of these sets.
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Definition 1.1.3. — (Harper’s Construction for Elements) Given a do-

main R, let B0 = {0} ∪ R×, so that B0 is the set containing zero and all

the units. For i greater than zero, let

Bi = Bi−1 ∪







primes p ∈ R

∣

∣

∣

∣

∣

∣

∀ x ∈ R, ∃ y ∈ Bi−1

such that x − y ∈ (p)







and let B = ∪∞
i=0Bi .

He also had to use Dirichlet’s theorem on primes in arithmetic pro-

gressions in order to prove Lemma 1.1.4 below.

Lemma 1.1.4. — (Harper’s Lemma for Elements) Given a number field

K with trivial class group, if B contains every prime element of OK , then

OK is a Euclidean domain.

Note that every set Bi in the construction, for i 6= 0, is a set of primes,

which lends itself to estimating its size via analytic methods and sieving

techniques. Moreover, there is an intelligent way to augment B0 so that

these sets grow more quickly and the lemma still holds. The aim is to

say that if one of the Bi grows quickly enough, then every prime element

is contained in B and therefore the ring R is Euclidean.

Harper used the large sieve for number fields to construct general ma-

chinery that shows that if any of the Bi grows quickly enough then every

prime element is contained in B and therefore R is a Euclidean domain.

In particular, if we define Bi(x ) to be |{p : Nm(p) ≤ x , p ∈ Bi}| and

Bi(x ) >> x

log2 x
for some positive integer i , Harper ([5]) shows that the
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ring R is Euclidean. This machinery is general enough that it can even

be applied to the situation where B0 is augmented in the manner alluded

to above.

Harper then found a way to use the Gupta-Murty bound ([5]) to show

that, in specific instances, he could force B1 to grow quickly. He then

applied the large sieve for elements to show the associated ring was a

Euclidean domain. Using the Gupta-Murty bound followed by his large

sieve machinery, he was able to show that Z[
√

14] is Euclidean, even

though it is not norm-Euclidean.

Analogously, it makes sense to ask if Lenstra’s result on Euclidean

ideal classes can be proved without assuming the generalized Riemann

hypothesis. A natural way to do this would be to try to adapt Harper’s

techniques to Euclidean ideal classes. Unfortunately, the constructions

and tools he used do not apply to Euclidean ideal classes. In order to

use them, they need to be reformulated for ideal classes.

1.2. A Motzkin-type Lemma for C

Motzkin’s construction for ideal classes yields immediate results sup-

porting Lenstra’s theorem modulo the Riemann hypothesis. Everything

in this section is new work.

Definition 1.2.1. — (Motzkin’s Construction for Ideals, Relative to

C ) If R is a Dedekind domain and C is a non-zero ideal, let A0,C := {R},
so that it is a one element set, where the one element is the ideal R. For
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i greater than zero, let

AC ,i = AC ,i−1 ∪



















I−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

I is an ideal contained in R and

∀ x ∈ I−1C \ C , ∃ y ∈ C

such that (x − y)−1I−1C ∈ AC ,i−1



















and let AC := ∪∞
i=0Ai ,C .

Lemma 1.2.2. — (Motzkin’s Lemma for Ideal Classes) Given a Dedekind

domain R and a non-zero ideal C , if every ideal in E is contained in AC ,

then [C ] is a Euclidean ideal class.

Another variation of the construction is needed in order to apply a

general machinery inspired by Harper. The new sets will consist of R

and inverses of prime ideals, which lend themselves more easily to sieving

techniques than generic sets of ideals that contain the entire ring.

Definition 1.2.3. — (Harper’s Construction for Ideals, Relative to C )

If R is a Dedekind domain and C is a non-zero ideal, let B0,C be {R}.
For i > 0, let

BC ,i = BC ,i−1 ∪



















p−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

p ⊆ R is prime, and

∀ x ∈ p−1C \ C , ∃ y ∈ C

such that (x − y)−1p−1C ∈ BC ,i−1



















and let BC = ∪∞
i=0BC ,i .
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Lemma 1.2.4. — (Harper’s Lemma for Ideals, Relative to C ) If K is

a number field and p−1 is an element of BC for all prime ideals p in OK ,

then [C ] is a Euclidean ideal class.

The proof uses the Chebotarev density theorem applied to a well-

chosen ray class field in an analogous fashion to the use of Dirichlet’s

theorem on primes in arithmetic progressions to prove Lemma 1.2.4. The

set BC ,i are more amenable to growth analysis than the sets Ai ,C are. In

order to create general machinery like Harper’s, however, his tools will

have to be adapted to the Euclidean ideal class framework.

1.3. The Large Sieve for Elements and Ideals

The large sieve is the heart of Harper’s general machinery. The usual

large sieve measures how a set of finitely many elements is distributed

among the congruence classes of various primes. Note below how the

elements in the finite set must be non-associate. In other words, no

element in the set is the product of a unit and another element in the

set.

Definition 1.3.1. — Given a prime ideal p , α ∈ OK , and a finite set

of non-associated integers A, let

Z (α, p) := |{x ∈ A | x ≡ α (mod p)}| .

9



Now that we have Definition 1.3.1, we can state the version of the

Large Sieve in [12]. It is sometimes called the “Statistical Version” of

the Large Sieve.

Theorem 1.3.2. — (The Large Sieve)

Let K be a number field, let A a finite set of non-associate algebraic

integers and let P a finite set of prime ideals. If X = maxx∈A |Nm(x )|

and if Q = maxp∈P Nm(p), then

∑

p∈P

Nm(p)
∑

α∈R/p

(

Z (α, p) − | A |
Nm(p)

)2

<< (Q2 + X ) |A|,

where the implied constant depends only on K .

The issue of associate elements comes up again with the adaptation

of the large sieve to ideal classes. In order to reformulate the large sieve

appropriately, we need the following definitions.

Definition 1.3.3. — For a number field K and a prime ideal p, we

define f (p) to be the number of equivalence classes of elements modulo

p that are represented by a unit, i.e.

f (p) := |{α ∈ OK/p | (α− u) ∈ p for some u ∈ O
×
K}| .

The following definition and theorem are new.

Definition 1.3.4. — Let K be a number field and let C be a non-zero

ideal. Suppose A is a finite set of fractional ideals in E such that if I

10



and J are in A, then [I ] = [J ]. Then for any prime ideal p such that

[p−1] = [IC−1] for an ideal I in A and for any α in p−1C , we define

Z (α, p,C ) :=



























∣

∣

∣

∣

∣

{

I ∈ A | ∃ y ∈ C such that

(α + y)−1p−1C = I

}∣

∣

∣

∣

∣

α /∈ C

f (p)

∣

∣

∣

∣

∣

{

I ∈ A | ∃ y ∈ C such that

(α+ y)−1p−1C = I

}∣

∣

∣

∣

∣

α ∈ C
.

Using these definitions, we can now state the large sieve for ideal

classes.

Theorem 1.3.5. — (Large Sieve with Respect to C)

Let K be a number field, C a non-zero ideal in OK , and n an integer.

Suppose A is a finite set of ideals containing OK such that given two

ideals I and J in A , [I ] = [J ]. Suppose P is a finite set of prime ideals

p such that [p−1] = [IC−1] for any ideal I in A. If X = maxI∈A Nm(I−1)

and Q = maxp∈P Nm(p), then

∑

p∈P

Nm(p)
∑

α∈p−1C/C

(

Z (α, p,C )

f (p)
− | A |

Nm(p)

)2

<< (Q2 + X ) |A| .

The implied constant depends only on K and the ideal class of C .

Now that we have a reformulation of the large sieve for ideal classes, we

can then develop general machinery to apply to the variation of Motzkin’s

construction for ideal classes. Using this, we show that if |{I ∈ B2,C |
Nm(I−1) ≤ x} | >> x

log2 x
, then [C ] is a Euclidean ideal class. As in
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the previous case, we can intelligently augment the set B1,C and the

machinery is still robust enough for the result to hold.

The way Harper augmented his sets Bi in a number field K was by

finding a set of ‘admissible’ primes, and then adding the monoid gen-

erated by O
×
K and these primes to his set. He could then still use his

machinery to show that if the appropriate set grows ‘quickly enough,’

then the ring OK is Euclidean. He did this because by augmenting his

set by this monoid, the sets grew more quickly and he could then use the

growth of early sets to show that B itself is sufficiently large.

Our goal is to find a way to apply our ideal class machinery to specific

number fields. Due to technical obstructions, we could not augment

our sets by the monoids Harper used. Instead, we concentrated on the

concept of an ‘admissible’ set of primes. After tweaking that concept, we

found and proved Theorem 1.3.7.

Definition 1.3.6. — Given a number field K , we denote the size of its

classgroup by hK .

Theorem 1.3.7. — (The Gupta-Murty Bound with Respect to

C )

Let K be a number field; let C be a non-zero ideal; let m be an integer;

let p1, . . . , pk be a set of distinct prime ideals, such that each [pi ] = [C m ];

and let M be the set

{

p−a1

1 · · · p−ak

k | (a1, . . . , ak) ∈ Nk , a1 + · · ·+ ak ≡ m (mod hK )
}

.

12



If p is a prime ideal such that [p] = [C m+1], then we define

Γp,M := |{α ∈ p−1C /C , α 6= 0
∣

∣∃ y ∈ C such that (α + y)−1p−1C ∈ M
}

| .

The set of primes p such that [p] = [C m+1] and Γp,M ≤ y is O(y
k+1

k ).

Suppose that there exists some set of primes p1, . . . , pk , each [pi ] =

[C ], such that for every k -tuple (a1, . . . , ak) ∈ Nk with a1 + · · · + ak ≡
1 (mod hK ), the ideal pa1

1 · · ·pak

k is in A1,C . We can then augment the

set B1,C with the set M defined in Theorem 1.3.7 above and we can still

apply our machinery to conclude that if B2,C grows quickly enough, then

C is a Euclidean ideal class.

If the ideal class [C ] generates the class group and we can find at least

two such primes (i.e. k ≥ 2), then we can show that

|{I ∈ B2,C | Nm(I−1) ≤ x}| >> x

log2 x

and therefore [C ] is a Euclidean ideal class.

The one remaining challenge is finding an easy criterion to test whether

two prime ideals p1 and p2, [p1] = [p2] = [C ], indeed satisfy the condition

that for any natural numbers a1 and a2 such that a1 + a2 ≡ 1 (mod hK ),

then the ideal p−a1

1 p−a2

2 is in A1,C . Once that condition is found and

proven, the results stated earlier imply that any number field with in-

finitely many units(1) and two prime ideals satisfying that condition has

a Euclidean ideal class.

(1)This is a condition that will be required.
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CHAPTER 2

THE EUCLIDEAN ALGORITHM AND

MOTZKIN’S LEMMA

Before studying Euclidean algorithms on ideals, we shall first review

traditional N-valued Euclidean algorithms on elements. Recall that the

most common use of the Euclidean algorithm is showing that a ring is a

principal ideal domain.

Definition 2.0.8. — Let R be a domain and let W be a well-ordered

set. If ψ is a function, ψ : R \ 0 −→ W , and if for all elements a, b in

R, b 6= 0, there exist some elements q , r in R such that a = bq + r , with

either r = 0 or ψ(r) < ψ(b), then ψ is a Euclidean algorithm on R. If R

is a domain with a Euclidean algorithm, then R is a Euclidean domain.

Theorem 2.0.9. — If R is Euclidean, then it is a principal ideal do-

main.

Proof. — Let φ : R \ 0 −→ W be a Euclidean algorithm on R and let

I be an ideal contained in R. If b is an element of I \ 0 with φ(b) the

smallest element of φ(I \ 0), then given any a ∈ I , there exist q , r ∈ R
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such that

a = bq + r , φ(r) < φ(b),

implying r = 0 and b | a. We therefore conclude I = (b).

The classic example of a Euclidean domain is Z, where the absolute

value is a Euclidean algorithm. The second most commonly taught ex-

ample is Z[i ], where both the norm and the square root of the norm,

i.e. ψ(a + bi) =
√

a2 + b2, are Euclidean algorithms. In fact, Euclidean

originally meant norm-Euclidean.

Definition 2.0.10. — If K is a number field and S is the set of field

embeddings into C, then we define the norm of an element x in K to be

Nm(x ) =
∏

σ∈S

σ(x ).

Definition 2.0.11. — Let K be a number field. If for all elements x

of K , there exists some y in OK such that Nm(x − y) < 1, then OK is

called norm-Euclidean.

We can see that this is equivalent to having the norm be a Euclidean

algorithm for OK . If x is a non-zero element of K , then it can be written

as a quotient a
b
, where a and b are elements of OK , with b 6= 0. If the

norm is a Euclidean algorithm for OK , then there exist some y and r in

OK such that a = yb + r and Nm(r) < Nm(b). This implies that

Nm(x − y) = Nm
(a

b
− y
)

= Nm

(

a − by

b

)

= Nm
(r

b

)

=
Nm(r)

Nm(b)
< 1

15



and we see that two definitions are indeed equivalent.

It was unknown until the work of David A. Clark whether there are

any Euclidean integer rings that are not norm-Euclidean. In 1994 , Clark

proved ([1]) Z[1+
√

69
2

] is Euclidean but not norm-Euclidean. This means

that, given a number field K , we cannot always use the norm to check

whether or not OK is Euclidean. Fortunately, in 1948, Theodore Motzkin

([9]) came up with a new way to look at Euclidean rings.

Definition 2.0.12. — (Motzin’s Construction for Elements) Given a

domain R, let A0 := {0} ∪ R×, so it contains zero and all the units. Let

Ai = Ai−1 ∪







a ∈ R

∣

∣

∣

∣

∣

∣

∀ x ∈ R, ∃ y ∈ Ai−1

such that x − y ∈ (a)







for i > 0 and let A := ∪∞
i=0Ai . We call the sequence of nested sets Ai

Motzkin’s Construction.

If A = R, we define φR to be the function from R \ 0 to N such that

φR(x ) is i if x is an element of Ai \ Ai−1.

Lemma 2.0.13. — Let R be a domain. Given an unit u ∈ R× and an

element β ∈ Ai , the element uβ is also in Ai . In other words, uAi = Ai

for all i .

Proof. — By definition, β is in Ai if every equivalence class modulo (β)

is represented by an element of Ai−1. The ideals (β) and (uβ) are equal

for any unit u, so the result holds.
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Theorem 2.0.14. — (Motzkin’s Lemma) If the domain R is equal to

A, then R is a Euclidean domain.

Proof. — Assume A equals R and let φR be the function in Definition

2.0.12. Given two elements a, b of R, b 6= 0, we know that either b divides

a or there exists some r ∈ AφR(b)−1 such that a − r is an element of the

ideal (b). This means that there exist some r , q ∈ R such that a = qb+r ,

where either r = 0 or φR(r) ≤ φR(b) − 1 < φR(b). We conclude φR is a

Euclidean algorithm and R is a Euclidean domain.

Note that if R is a Euclidean domain, we need not have R = A because

there are Euclidean rings that have algorithms mapping to some well-

ordered set W , but for which there is no N-valued Euclidean algorithm.

Example 1. — By Proposition 6 in [10], the finite product of Euclidean

rings is itself Euclidean, so Z × Z is Euclidean. On page 287 of [10], it

was shown there is no Euclidean algorithm from Z × Z to N.

The real importance of Motzkin’s Lemma is that one no longer needs to

struggle trying to find a Euclidean algorithm in order to prove whether or

not a ring R has a N-valued Euclidean algorithm. Motzkin’s Construction

not only says whether or not there is a Euclidean algorithm mapping to

N, but it constructs the “least” one, if it exists (see Proposition 2.0.16

and Definition 2.0.17).
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Definition 2.0.15. — Given a Euclidean ring R and a well-ordered set

W , we define φW : R −→ W , by φW (α) := infφφ(a), where the infimum

is taken over the set of all Euclidean algorithms from R to W .

Proposition 2.0.16. — The map φW is a Euclidean algorithm from R

to W .

Proof. — Let α, β be elements of R, with β 6= 0. Since W is well-ordered,

we know that in the set of all images of β under a Euclidean algorithm

from R to W , there is a least element. This implies that there is some

Euclidean algorithm ρ from R to W such that ρ(β) is the least element

in this set. By the definition of Euclidean algorithms, there exist some

q , r in R such that

α = βq + r , such that r = 0 or ρ(r) < ρ(b).

By the definition of φW in Definition 2.0.15, we know that

φW (r) ≤ ρ(r) < ρ(β) = φW (β).

We therefore know that given two elements α, β of R, β 6= 0, there exist

some q , r ∈ R such that a = bq +r with either r = 0 or φW (r) < φW (β).

We conclude that φW is a Euclidean algorithm from R to W .

Definition 2.0.17. — Henceforth, we shall call φW the least algorithm

from R to W . Note that it is unique.
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Theorem 2.0.18. — Given a domain R with a N-valued Euclidean al-

gorithm, the algorithm φR constructed in the proof of Motzkin’s Lemma

(Lemma 2.0.14) is the least Euclidean algorithm from R to N. In other

words, the functions φN and φR are equal.

In order to prove the theorem, we first need the following lemma.

Lemma 2.0.19. — Let R be a domain and let φ be a N-valued Eu-

clidean algorithm for R. If φ(b) is minimal in φ(R), then b is a unit.([10])

Proof. — If φ(b) is minimal in φ(R), then there exist some q and r in R

such that 1 = qb + r and r = 0 or φ(r) < φ(b). Our choice of b means

that r = 0 and b divides 1, implying that b is a unit.

Proof. — (Proof of Theorem 2.0.18) Let ρ be a Euclidean algorithm from

R to N, and let Ri be the set {0}∪{β ∈ R : ρ(β) ≤ i}. If β is a non-zero

element of Ri , then for any α in R, there exist some q , r ∈ R such that

α = βq + r , where either r = 0 or ρ(r) < ρ(b), i.e. r ∈ Ri−1. This

implies that Ri−1 →→ R/(β) for all non-zero β in Ri .

We will show by induction that Ri is contained in Ai . By Lemma

2.0.19, we know that R0 is contained in A0. Assume that Ri is contained

in Ai for all i less than k . We know from the paragraph above that

Rk−1 →→ R/(β) for all non-zero β in Rk . Since Rk−1 is contained in Ak−1,

this means that Ak−1 →→ R/(β) for all non-zero β in Rk , implying said β

is in Ak . We conclude tht Rk is contained in Ak .
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In other words, if ρ(β) is i , then φ(β) is less than or equal to i , so that

φR(β) ≤ ρ(β). We conclude that φ is the least Euclidean algorithm from

R to W .

Example 2. — Examples of Motzkin’s Construction

(1) In [9], Motzkin showed that for the ring Z,

A0 = 0,±1

A1 = 0,±1,±2,±3

A2 = 0,±1,±2,±3,±4,±5,±6,±7

...

Ai = 0,±1, . . .± (2n+1 − 1).

(2) For the ring Z[
√
−5], we know that A0 = 0,±1. The norm of any

principal ideal in Z[
√
−5] is of the form a2 + 5b2. From our computation

of A0, we know that any element in A1 \ A0 needs the absolute value of

its norm to be less than or equal to three. The only numbers of the form

a2 + 5b2 that are less than or equal to three are zero and one. Therefore

the set A1 \A0 is empty and A = {0,±1}. We conclude the ring Z[
√
−5]

does not have a Euclidean algorithm mapping to N. This was already

known, however, because the class number of Z[
√
−5] is not one.

Note that while the norm is indeed a Euclidean algorithm for Z and

Z[i ], the least Euclidean algorithms from Z and Z[i ] to N found by

Motzkin’s construction are not the norm.
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2.1. Harper’s Lemma

Malcolm Harper invented a variation of Motzkin’s construction that

uses only units and primes. This is useful because, like the original

Motzkin’s construction, it constructs sets of elements, but Harper’s sets

are more tractable because they consist of units and prime elements.

One can use known results from analytic number theory to study the

asymptotic growth of these sets of units and prime elements in order to

deduce whether or not a ring has a Euclidean algorithm mapping to N.

Definition 2.1.1. — (Harper’s Construction for Elements) Given a do-

main R, let B0 = {0} ∪ R×, so that B0 is the set containing zero and all

the units. For i greater than zero, let

Bi = Bi−1 ∪







primes p ∈ R

∣

∣

∣

∣

∣

∣

∀ x ∈ R, ∃ y ∈ Bi−1

such that x − y ∈ (p)







and let B = ∪∞
i=0Bi .

We defined B0 to be equal to A0. Thus, arguing by induction on i , each

Bi is contained in the Ai from Definition 2.0.12, and so B is contained

in A.

Theorem 2.1.2. — ([5]) If K is a number field with trivial class group

and every prime element p of OK is in B, then OK is Euclidean.

Proof. — We follow [5] in this proof. If p is a prime element, let λ(p) := i

if p ∈ Bi \ Bi−1 and then extend λ to all elements of OK additively, i.e.
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λ(pa1

i · · · pan
n ) = a1 λ(p1) + · · · + an λ(pn). The function λ is completely

additive.

Let ω count the number of divisors, counting multiplicities, so that

ω(pa1

1 · · · pan
n ) = a1 + · · · + an . We shall now construct a new completely

additive function φ : R \ 0 −→ N × N from the two above functions: let

φ(x ) := (ω(x ), λ(x )),

where N × N is ordered lexicographically, with the first coordinate of

higher order, so that (0, 0) < (1, 0) and (1, 11) < (2, 4).

We will now show that φ is a Euclidean algorithm. Let α and β be

elements of OK , with β not equal to zero. Note that if α is zero, then for

any β in R, we know that α = 0 · β + 0, so our conditions are trivially

satisfied.

First, suppose that (α, β) = OK , so that α and β are relatively prime.

If β is a unit, then α = β(β−1α) + 0, where β−1α is an element of OK .

If β is a prime and λ(β) = i then, by the construction of B , there exists

some prime or unit α′ in Bi−1 so that α ≡ α′ (mod β). Note that since α′

is invertible modulo (β) because β is not a unit and (α, β) is the entire

ring. If α′ is an unit, then there exist q , α′ ∈ OK such that α = qβ + α′,

with φ(α′) = (0, 0) < (1, i) = φ(β). If α′ is prime, then there exist some

q , α′ in R such that α = qβ+α′, where φ(α′) ≤ (1, i−1) < (1, i) < φ(β).
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Suppose β is neither prime nor a unit. By Theorem 3.1.22, there

exists some q in R and some prime p such that α = qβ + p, where

φ(p) = (1, λ(p)) < (2, 0) < φ(β).

Second, suppose that α and β, β 6= 0, do not generate the entire

ring. Because K has class number one, we know that (α, β) = (δ),

where δ 6= 1. Then by the above, there exists some q , x ∈ R such that

α
δ

= q β
δ

+ x , where φ(x ) < φ(β
δ
). Recall that φ is completely additive, so

that α = qβ + xδ, where φ(xδ) = φ(x ) + φ(δ) < φ(β
δ
) + φ(δ) = φ(β).

Note that while this proof constructs a Euclidean algorithm for OK ,

it constructs one from OK to N × N rather than N. It turns out that we

can use the above algorithm to show that OK = A, implying that there

is a Euclidean algorithm from OK to N. The following proof shows the

existence of such an algorithm, but does not construct it.

Proposition 2.1.3. — If every prime element of OK is in B, then there

is a Euclidean algorithm from OK to N.

Proof. — We shall prove this by double induction on the size of ω and of

λ, where the functions are constructed as above in the proof of Theorem

2.1.2. We know that B ⊂ A, so that 0, the units, and all the prime

elements are contained in A.

Suppose all x ∈ OK \0 such that ω(x ) < i are contained in A. Because

N is well-ordered, there is a least element in the set {λ(x ) | ω(x ) = i}. Let

λ(y) be equal to this least element, so that ω(y) = i . We know from the

proof of Theorem 2.1.2 that for any α ∈ OK , there exists some q , r ∈ OK
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such that α = qy +r , where φ(r) < φ(y). Since λ(y) is minimal in the set

of all x in OK with ω(x ) = i , this implies ω(r) < i and the element r is

therefore in A. We conclude that y , and every y ′ such that λ(y ′) = λ(y)

and ω(y ′) = i , is in A.

We shall now induce on the size of λ . Suppose all x in OK \ 0 such

that ω < i , or ω = i and λ < k , are in A. Let λ(y) be the least element

in the set {λ(x ) | ω(x ) = i , λ(x ) ≥ k}. Then for any α in OK , there

exists some q , r ∈ OK such that α = qy + r , where φ(r) < φ(y). Since

λ(y) is minimal in our set, either ω(r) < i , implying that r is in A, or

ω(r) = i and λ(r) < k , implying that r is in A. We conclude that every

x such that ω(x ) = i is in A, and therefore that all of R is in A. The

ring therefore has a N-valued Euclidean algorithm.

While the condition in Theorem 2.1.2 and Proposition 2.1.3 is that

every prime in OK is in B , the proofs actually proved the results with

the weaker condition that every prime of OK be in A. The reason why

the results were stated in terms of B is that in the case of number fields,

we can apply analytic techniques to the sets Bi in order to not only find

whether or not the ring of integers is Euclidean but also to find if it has

a Euclidean algorithm mapping to N. The latter is useful since it is an

open question, conjectured to be true, whether or not all Euclidean rings

of integers of number fields have a Euclidean algorithm mapping to N. In

order to use these analytic methods, we must first define the sets Bn(x ).
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Definition 2.1.4. — Let Bn(x ) be the the set of all prime ideals (p),

p in Bn , such that |Nm(p)| ≤ x , i.e.

Bn(x ) := {(p) | p ∈ Bn , |Nm(p)|≤ x}.

Let B c
n(x ) be the set of all primes ideals (p) not in Bn(x ) such that

|Nm(p)|≤ x , i.e.

B c
n(x ) := {(p) | p /∈ Bn , |Nm(p)|≤ x}.

Most of the analytic methods will study the asymptotic growth of

|Bn(x )| as x goes to infinity. The idea is to show that if a given |Bn |
is “large enough,” then all primes are contained in B and there is a

Euclidean algorithm mapping from OK to N. In order to do this, we will

need the following definition and lemma.

Definition 2.1.5. — Given two functions, f (x ) and g(x ), we write

f (x ) ∼ g(x ) if limx→∞
f (x)
g(x)

= 1.

Lemma 2.1.6. — Let K be a number field and let the Bn ’s be as in

Definition 2.1.1. If |Bn(x ) | ∼ x
log x

for some n, then all primes are

contained in Bn+1.

Proof. — Let p be a prime ideal of OK and let α be relatively prime to

p. We will show there is some q ∈ Bn such that α ≡ q (mod p).

By the Landau prime ideal theorem, the number of prime ideals with

norm less than or equal to x is asymptotically equivalent to x
log x

. In other
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words, if π(x ) represents the number of prime ideals with norm less than

or equal to x , then limx−→∞
π(x)

x/ log x
= 1.

One of the most useful density results in number theory is the quanti-

tative version of Dirichlet’s theorem on arithmetic progressions, which

states that density of prime elements congruent to α modulo p in a

number field K with trivial class group is 1
Nm(p)−1

. More precisely, if

πα,p(x ) is the number of prime elements q such that q ≡ α (mod p) with

Nm(q) ≤ x , then limx−→∞
πα,p(x)

π(x)
= 1

Nm(p)−1
([7]).

Since the set of primes q ≡ α (mod p) has positive density and the set

of primes in Bn has density one in the set of all primes in OK , the set of

primes q ≡ α (mod p) has positive density in the set Bn . There therefore

exists some q ≡ α (mod p) in Bn , implying p ∈ Bn+1 and thus all primes

are in Bn+1

We can use Lemma 2.1.6 to prove the following theorem, which is

the first real result using analysis to determine whether or not a ring of

integers has a Euclidean algorithm mapping to N.

Theorem 2.1.7. — If K is a number field, if we construct B from OK

as in Definition 2.1.1, and if |Bn(x ) | ∼ x
log x

for some n, then OK is

Euclidean and has a Euclidean algorithm mapping to N.
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Proof. — By Lemma 2.1.6, if |Bn(x ) | ∼ x
log x

, then all primes are in

Bn+1 and therefore all primes of OK are in B . We conclude OK is Eu-

clidean by Theorem 2.1.2 and has a Euclidean algorithm mapping to N

by Proposition 2.1.3.

We can use the above theorem to prove an even stronger result, the

main result of Harper’s thesis. As we have seen in Theorem 2.1.7, it is

useful to have sets of primes relating to B that we can use asymptotic

results on. To prove Lemma 2.1.8, we will want to look at the asymptotics

of |Bn(x )|.

Lemma 2.1.8. — If K is an algebraic number field of class number

one, |O×
K | = ∞, and |Bn(x )| >> x

log2 x
, then |Bn+1(x )| ∼ x

log x
.

Proof. — The proof will be given in Section 2.4.

In order to prove Lemma 2.1.8, we will need to use both the large sieve

inequality and the Gupta-Murty bound, so the proof will be in section

2.4. Once we prove Lemma 2.1.8, we can then prove the main theoretical

result of Harper’s thesis, Theorem 2.1.9 below.

Theorem 2.1.9. — If K is a number field with class number one such

that |O×
K | = ∞ and if |Bn(x ) | >> x

log2 x
for some n, then OK is

Euclidean and has a Euclidean algorithm mapping to N.

Proof. — If |Bn(x ) | >> x

log2 x
, then we know that |Bn+1(x ) | ∼ x

log x

by Lemma 2.1.8. We then apply Lemma 2.1.6, which says that since

|Bn+1(x )| ∼ x
log x

, there is a Euclidean algorithm from OK to N.
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Theorem 2.1.9 is a very powerful result, if we are lucky enough to

be dealing with a ring of integers OK such that there is some n where

|Bn(x )| >> x

log2 x
. Theorems 2.1.7 and 2.1.9 concern rings such that O

×
K is

infinite. The cases where O
×
K is finite are very different, as the following

examples demonstrate.

Example 3. — (1) As we know from example 2 in section 2 , if R =

Z[
√
−5], then B0 = Bi = 0,±1 for all i .

(2) Let R = Z. We can easily compute the construction in Definition

2.1.1:

B0 = 0,±1

B1 = 0,±1,±2,±3

B2 = 0,±1,±2,±3,±5,±7

B3 = 0,±1,±2,±3,±5,±7,±11.

After B3, the sets Bi stabilize and stop growing. This is because we can

see the class of 4 in Z/13Z cannot be represented by 0,±1,±2,±3,±5,

or ±7. Since 4 + 9 = 13, there is no prime p with Nm(p) > 11 such

that the class of 4 can be represented by one the primes in B3, so the sets

stabilize.

The examples above have such small B ’s because Z and Z[
√
−5] have

finitely many units. These examples show us that Theorems 2.1.7 and
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2.1.9 do indeed require that the unit group O
×
K be infinite. This is further

demonstrated in the following proposition.

Proposition 2.1.10. — In every quadratic imaginary number field K ,

the set B does not contain every prime ideal of OK .

In order to prove the proposition, we need the following definition.

Definition 2.1.11. — We define π(x ) to be the number of prime ideals

in Z with norm less than x .

Proof. — (Of Lemma 2.1.10) It is well known that Z[i ] and Z[1+
√
−3

2
]

are norm-Euclidean. For simplicity of exposition, we assume that K is

neither Q(i) or Q(
√
−3), so that |O×

K| = 2. By definition, the size of B0 is

three, so every prime in B1 must have norm less than or equal to three.

There are only two such primes in Z—2 and 3—so there are at most four

such primes in OK . Each ideal has two generators, so we know that

|B0| = 3

|B1| ≤ 3 + 4π(3) = 11.
.

The primes in B2 have norm less than or equal to eleven, so lie above the

primes 2, 3, 5, 7 or 11, i.e.

|B2|≤ 3 + 4π(11) = 23.
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Continuing as before, the primes in B3 must lie above 2, 3, 5, 7,11, 13,

17, or 23, so

|B3|≤ 3 + 4π(23) = 39.

By iterating this process via hand computation, we get the following

sizes:

|B4| ≤ 3 + 4π(39) = 51

|B5| ≤ 3 + 4π(51) = 63

|B6| ≤ 3 + 4π(63) = 75

|B7| ≤ 3 + 4π(75) = 87

|B8| ≤ 3 + 4π(87) = 95

|B9| ≤ 3 + 4π(95) = 99

|B10| ≤ 3 + 4π(99) = 103

|B11| ≤ 3 + 4π(103) = 111

|B12| ≤ 3 + 4π(111) = 119

|B13| ≤ 3 + 4π(119) = 123.

The numbers π(123) and π(119) are equal so the sets stabilize and the

size of B is less than or equal to 123.

We can see that the heart of the above proof was seeing whether the

sequence hk = 3 + 2(3 − 1)π(hk−1), h0 = 3, converges. To prove that |B |

is finite for an imaginary quadratic number field such that |OK |= n, it

suffices to prove the sequence hk = n +1+2nπ(hk−1), h0 = n, converges.

It is possible to see that |B| is finite for all quadratic imaginary fields via
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hand computation in the the two remaining fields. The methods can be

generalized to the Euclidean ideal class situation.

By Dirichlet’s unit theorem, the only number fields that have rings

of integers with finitely many units are Q and the quadratic imaginary

fields, so it makes sense to apply Theorem 2.1.7 only to the other fields.

2.2. The Large Sieve

The large sieve is one of the most important results in analytic num-

ber theory. Several conditional results in number theory, relying on the

generalized Riemann hypothesis, were later proven using the large sieve,

so it makes sense to try to strengthen Weinberger’s result ([11] by prov-

ing it without using the Riemann hypothesis via some application of the

large sieve. The sieve looks at the distribution of integers into congruence

classes modulo primes inside a number field K . Since every class has the

same density in the integers, a randomly chosen set of primes should be

more or less evenly distributed among the classes.

Definition 2.2.1. — Given a prime ideal p , α ∈ OK , and a finite set

of non-associated integers A, let

Z (α, p) := |{x ∈ A | x ≡ α (mod p)}|

Definition 2.2.2. — Given a prime ideal p and a finite set of non-

associated integers A, we define ω(p) := |{[α] | Z (α, p) = 0}| .
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Definition 2.2.3. — Given two functions f (x ) and g(x ) defined on

some subset of R, we say that f (x ) = O(g(x )), or f (x ) << g(x ), if

there exists some positive C and some δ in the domain of f and g such

that f (x ) ≤ Cg(x ) for x > δ.

Using this notation, given a random set A, one would expect Z (α, p) to

be close to |A|
Nm(p)

. The large sieve considers the difference between these

two numbers over many p.

Theorem 2.2.4. — ([12]) (The Large Sieve) In a number field

K , given a finite set A of non-associated integers and a finite set P

of non-ramifying prime ideals, with X = maxx∈A |Nm(x ) | and Q =

maxp∈P Nm(p), then

∑

p∈P

Nm(p)
∑

α (mod p)

(

Z (α, p) − | A |
Nmp

)2

<< (Q2 + X ) | A | .

The associated constant depends only on K and is independent of the

choices of A and P.

Corollary 2.2.5. — In a number field K , given a finite set A of non-

associated integers and a finite set P of non-ramifying prime ideals, with

X = maxx∈A |Nm(x )| and A = maxp∈P Nm(p), then

∑

p∈P

ω(p)

Nm(p)
<<

Q2 + X

| A | .
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Proof. —

We know that
∑

α(mod p)

(

Z (α, p) − | A |
Nm(p)

)2

is bounded below by

∑

α(mod p),

Z (α, p) = 0

(

Z (α, p) − | A |
Nm(p)

)2

, which can be rewritten as
∑

α(mod p),

Z (α, p) = 0

( | A |
Nm(p)

)2

.

This can be rewritten again as ω(p)
(

|A|
Nm(p)

)2

, so that

∑

p∈P

Nm(p)ω(p)
| A |2

Nm(p)2
=
∑

p∈P

ω(p)
| A |2
Nm(p)

<< (Q2 + X )| A |

and then lastly rewritten as

∑

p∈P

ω(p)

Nm(p)
<<

Q2 + X

| A | .

2.3. The Gupta-Murty Bound

We need the Gupta-Murty bound in order to prove Lemma 2.1.8. In

order to state the bound, we need some definitions.

Given a prime ideal p, let qp : OK −→ OK/p be the quotient map

where p is the kernel. Using our new notation for the quotient map, we

can now define an important constant for OK and p.
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Definition 2.3.1. — Given a prime ideal p, we define f (p) := |qp(O
×
K )| .

The constant f (p) is the size of the image of the units under the quo-

tient group, which is not necessarily the size of the units of OK/p. In

fact, it is bounded above by, and is frequently less than, the size of the

units of OK/p. The constant f (p) is a special case of the following.

Definition 2.3.2. — Let K be a number field and p a prime ideal. If

M is a monoid in OK such that M ∩ p = ∅, then fM(p) is |qp(M) | .

The quantity f (p) is therefore the same as f
O

×

K
(p). The type of monoid

that Harper was interested in was generated by an admissible set of

primes, defined below.

Definition 2.3.3. — Let pi , . . . , pk be a set of distint, non-associate

prime elements. If, given any k -tuple (a1, . . . , ak) ∈ Nk \ (0, . . . , 0), the

set of units O
×
K surjects onto (OK/p

a1 · · · pak )×, then we say pi , . . . , pk is

an admissible set of primes.

Example 4. — If K = Q, then f (p) =







1 if p = (2)

2 otherwise







.

Definition 2.3.4. — A set of elements x1, . . . , xn of K is multiplica-

tively independent if the only integer n-tuple (a1, . . . , an) satisfying

x a1

1 · · · x an
n = 1 is (0, . . . , 0).
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Example 5. — The integers 2, 3, and 5 are multiplicatively independent

in Z. So are 5 and 10, but the set 5, 10, and 2 is not multiplicatively

independent because 101 · 5−1 · 2−1 = 1.

The bound below is the version published in [5] and the proof given

follows the proof of Lemma 6 in [2].

Theorem 2.3.5. — ([4]) If M is a finitely-generated monoid in OK

containing t multiplicatively independent elements, then

|{p | fM(p) ≤ y}| << y
t+1

t ,

where the implied constant depends on K , t, and the generators of M.

Before we can prove the bound, we need the following lemmas.

Lemma 2.3.6. — The number of primes dividing a natural number x ,

counting multiplicities, is bounded above by log x

log 2
.

Proof. — If x is greater than 1, then there exists some y such that

2y−1 ≤ x < 2y . The smallest integer with y prime divisors (counting

multiplicities), is the 2y since 2 is the smallest primes. Therefore, the

number of prime elements dividing x is less than the number of primes

dividing 2y , which is y , so y − 1 is an upper bound for the number of

primes dividing x . Since log z

log 2
is an increasing function in z , we know that

log x

log 2
is greater than or equal to y − 1.
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Lemma 2.3.7. — The number of k-tuples in Nk such that a1+· · ·+ak ≤
Y is Y k

k !
+ O(Y k−1) and is greater than Y k

k !
.

Proof. — We will prove this by induction. The number of a ∈ N such

that a ≤ Y is Y + 1, which is greater than Y .

Suppose the number of k -tuples (a1, . . . , ak) ∈ Nk such that a1 + · · ·+

ak ≤ Y is bounded above by Y k

k !
+ Ck−1Y

k−1, where Ck−1 is positive

and depends on k − 1. The (k + 1)-tuples (a1, . . .ak+1) in Nk+1 such

that a1 + · · · + ak+1 ≤ Y can be sorted by the initial value of a1 as

Y − 0,Y − 1, . . . ,Y − Y . In order to find the number of such (k + 1)-

tuples, we need to sum the number of k -tuples that add up to or less than

or equal to 0, 1, . . . ,Y . The number of such k -tuples is thus bounded

above by
∑Y

n=0

(

nk

k !
+ Ck−1n

k−1)
)

= 1
k !

∑Y

n=0 nk +
∑Y

n=0 Ck−1n
k−1. This

is bounded above by 1
k !

(

Y k+1

k+1
+ CY k

)

+ C ′Y k−1 for some positive con-

stants C and C ′. We can conclude that the number of such k -tuples is

bounded above by Y k+1

(k+1)!
+ O(Y k).

Repeat the above proof, but this time assume that the number of k -

tuples (a1, . . . , ak) ∈ Nk such that a1 + · · · + ak ≤ Y is bounded below

by Y k

k !
+ Ck−1Y

k−1, where Ck−1 is positive and depends on k − 1. By

repeating the above argument, we see that the number of such k -tuples is

bounded below by 1
k !

(

Y k+1

k+1
+ CY k

)

+ C ′Y k−1 for positive constants C

and C ′, so the number of such k -tuples is bounded below by Y k+1

(k+1)!
.
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Corollary 2.3.8. — The number of integer k-tuples such that

|a1| + · · ·+ |ak| ≤ Y

is 2kY k

k !
+ O(Y k−1).

Lemma 2.3.9. — Let K be a number field and let x1, . . . , xn be distinct

elements in K×. For each xi , there exists a positive constant Mi such that

for any n -tuples (ai , . . . , an), (b1, . . . , bn) in Nn,

|NmK/Q(x a1

1 · · · x an

n − x b1

1 · · · x bn

n ) |≤ CM a1+b1

1 · · ·M an+bn

n ,

where C is a constant depending only on K .

Proof. — (Proof due to Nick Ramsey) Suppose i is an injection, i : Q ↪→
C and S is is the set of field embeddings from K into Q. If (ai , . . . , an)

and (b1, . . . , bn) are in Nn , then

|Nm(x a1

1 · · · x ak

k − x b1

1 · · · x bk

k )|=|i(Nm(x a1

1 · · · x ak

k − x b1

1 · · · x bk

k ))| .

The quantity inside the absolute value is

∏

σ∈S

i(σ(x a1

1 · · · x ak

k − x b1

1 · · · x bk

k )).

Since these σ are field injections, we know that

∏

σ∈S

i(σ(x a1

1 · · · x ak

k −x b1

1 · · · x bk

k )) =
∏

σ∈S

(i(σ(x1)
a1 · · ·σ(xk)

ak )−i(σ(x1)
b1 · · ·σ(xk)

bk )).
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We can rewrite this as

∑

S ′⊂S

(−1)|S\S ′|
∏

σ∈S ′

i(σ(x1)
a1 · · ·σ(xk)

ak )
∏

σ/∈S ′

i(σ(x1)
b1 · · ·σ(xk)

bk ).

For each xi , there exists some positive Mi such that

∏

S ′

|i(σ(xi))|≤ Mi

for all subsets S ′ of S and therefore if ai is a natural number,

∣

∣

∣

∣

∣

∏

S ′

i(σ(xi)
ai )

∣

∣

∣

∣

∣

≤ M ai

i .

This implies that

∣

∣

∣

∣

∣

∑

S ′⊂S

(−1)|S\S ′|
∏

σ∈S ′

i(σ(x1)
a1 · · ·σ(xk)

ak )
∏

σ/∈S ′

i(σ(x1)
b1 · · ·σ(xk)

bk )

∣

∣

∣

∣

∣

is less than or equal to

∑

S ′⊂S

M a1

1 · · ·M ak

k M b1

1 · · ·M bk

k =
∑

S ′⊂S

M a1+b1

1 · · ·M ak+bk

k

= 2|S|M a1+b1

1 · · ·M ak+bk

k .

We can now prove Theorem 2.3.5. The proof follows the proof in [2].

Proof. — (Proof of Theorem 2.3.5) Suppose that M contains k multi-

plicatively independent elements, x1, . . . , xk of OK ; suppose p is a prime

ideal, xi /∈ p for any i , such that fM(p) < y ; and that Y = (y)
1

k . By
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Lemma 2.3.7, there are more than y k -tuples (a1, . . . , ak) in Nk such that
∑

ai ≤ Y , so there is some pair of distinct k -tuples (a1, . . . , ak) and

(b1, . . . , bk) in Nk such that x a1

1 · · · x ak

k ≡ x b1

1 · · · x bk

k (mod p). Therefore,

|{p : fM(p) < y}| is less than or equal to

∣

∣

∣

∣

∣

∣







p

∣

∣

∣

∣

∣

∣

∃ pair of distinct (a1, . . . , ak), (b1, . . . , bk) ∈ Nk

∑

ai ,
∑

bi ≤ Y , vp(x
a1

1 · · · x ak

k − x b1

1 · · · x bk

k ) > 0







∣

∣

∣

∣

∣

∣

,

where vp is the p-adic valuation. Since vp(x
a1

1 · · · x ak

k − x b1

1 · · · x bk

k ) > 0,

we know that

vp(x
a1−b1

1 · · · x ak−bk

k − 1) > 0

and the above quantity is less than or equal to

∣

∣

∣

∣

∣

∣







p

∣

∣

∣

∣

∣

∣

∃ (c1, . . . , ck) ∈ Zk such that
∑ |ci |≤ 2Y , vp(x

c1

1 · · · x ck

k − 1) > 0







∣

∣

∣

∣

∣

∣

.

This last quantity is less than or equal to

∑

(c1, . . . , ck ) ∈ Zk

∑ |ci |≤ 2Y

|{p | vp(x
c1

1 · · · x ck

k − 1) > 0}| .

There are 4kY k

k !
+ O(Y k−1) integer k -tuples (c1, . . . , ck) such that

∑ |

ci |≤ 2Y . For each of these k -tuples (c1, . . . , ck) such that
∑ |ci |≤ 2Y ,

there exists a component-wise minimal k -tuple (d1, . . . , dk) in Nk such

that ci + di ≥ 0 for all i . As a consequence,
∑

di < 2Y . Since

vp(x
c1

1 · · · x ck

k −1) > 0 and vp(x
d1

1 · · · x dk

k −1) = 0, we know that vp(x
c1+d1

1 · · · x ck+dk

k −
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x d1

1 · · · x dk

k ) > 0. The element x c1+d1

1 · · · x ck+dk

k − x d1

1 · · · x dk

k is an element

of OK , so the fact that

vp(x
c1+d1

1 · · · x ck+dk

k − x d1

1 · · · x dk

k ) > 0,

implies that vp(Nm(x c1+d1

1 · · · x ck+dk

k −x d1

1 · · · x dk

k )) > 0, where p lies above

p. Suppose that M := max{Mi}. Lemma 2.3.9 implies that

|Nm((x c1+d1

1 · · · x ck+dk

k − x d1

1 · · · x dk

k )|≤ CM c1+···+ck+2d1+···+2dk ≤ CM 6Y .

The number of primes p in Z such that

vp(|Nm(x c1+d1

1 · · · x ck+dk

k − x d1

1 · · · x dk

k )|) > 0

is bounded above by log(CM 6Y )
log 2

= 6Y log M+log C

log 2
by Lemma 2.3.6.

In light of the above paragraph, we know that

∑

(c1, . . . , ck ) ∈ Zk

∑

|ci |≤ 2Y

|{p | vp(x
c1

1 · · · x ck

k − 1) > 0}|

is less than or equal to

∑

(c1, . . . , ck ) ∈ Zk

∑

|ci |≤ 2Y

∣

∣

∣

{

p | vp(x
c1+d1

1 · · · x ck+dk

k − x d1

1 · · · x dk

k ) > 0
}∣

∣

∣
,
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which is bounded above by

[K : Q]
∑

(c1, . . . , ck ) ∈ Zk

∑ |ci |≤ 2Y

6 log M

log 2
Y +

log C

log 2
.

As there are 4kY
k !

+ O(Y k−1) integer k -tuples (c1, . . . , ck) such that
∑ |ci|≤ 2Y , the last expression is bounded above by

[K : Q]

(

22kY k

k !
+ O

(

Y k−1
)

)(

6 log M

log 2
Y +

log C

log 2

)

=
3 · 22k+1 log M

k ! log 2
Y k+1 + O(Y k),

which equals

[K : Q]3 · 22k+1 log M

log 2
y

k+1

k + O(y).

We conclude that |{p | fM(p) < y}|<< y
k+1

k .

Corollary 2.3.10. — If OK has infinitely many units, then

|{p | Nm(p) ≤ x , f (p) ≤ Nm(p)
1

2
−ε}| << x 1−2ε.

Proof. — We know if f (p) ≤ Nm(p)
1

2
−ε and if Nm(p) ≤ x , then f (p) ≤

x
1

2
−ε. If OK has infinitely many units, we know that it contains a unit

of infinite order and therefore at least one multiplicatively independent

unit. Apply the above theorem, we know that

|{p | Nm(p) ≤ x , f (p) ≤ Nm(p)
1

2
−ε}| << (x

1

2
−ε)2 = x 1−2ε.
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2.4. The Large Sieve Applied to a Variation of Harper’s Lemma

In this section, we will finally prove Lemma 2.1.8. We will start by

applying the large sieve. For each ideal p in Bn(x 2), choose a generator

π. Let A be the union of zero and the set of all of these representatives,

so that |A|=|Bn(x 2)| +1 and X ≤ x 2. The set P will be B c
n+1(x ), so that

Q = x .

Lemma 2.4.1. — If p ∈ B c
n+1(x ), then f (p)|ω(p) and ω(p) > 0, so that

ω(p) ≥ f (p).

Proof. — If p ∈ B c
n+1(x ), then there is some α such that there is no

prime q in Bn such that α ≡ q (mod p). This implies Z (α, p) = 0 and

therefore ω(p) ≥ 1. Note that since 0 is contained in every Bi , the α’s

such that Z (α, p) = 0 are not in p.

Let p be generated by p. Recall that if p is in Bn , then {up | u ∈
O

×
K} ⊂ Bn . Therefore if Z (α, p) = 0, then Z (uα, p) = 0 for all u ∈ O

×
K .

As α /∈ p, there are f (p) classes [uα], where u ∈ O
×
K .

We will now prove Lemma 2.1.8.

Proof. — Putting together Corollary 2.2.5 and Lemma 2.4.1, we see that

∑

(p)|p∈Bc
n+1

(x)

f (p)

|Nm(p) | <<
Q2 + X

|A | =
2x 2

|Bn(x 2) + 1 | <<
x 2

x 2/ log2(x 2)
.
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This means that

∑

(p)|p∈Bc
n+1

(x)

f (p)

|Nm(p) | << log2 x ,

and therefore

log2 x >>
∑

(p) | p ∈ Bc
n+1

(x)

f (p) > |Nm(p) |1/2−ε

f (p)

|Nm(p) |

≥
∑

(p) | p ∈ Bc
n+1(x)

f (p) > |Nm(p) |1/2−ε

1

|Nm(p) | 12+ε

≥ 1

x
1

2
+ε

|{p ∈ B c
n+1(x ) | f (p) > Nm(p)

1

2
−ε}| .

Multiplying both sides by x
1

2
+ε yields

x
1

2
+ε log2 x >> |{p ∈ B c

n+1(x ) | f (p) > Nm(p)
1

2
−ε}| .

Our goal is to bound |B c
n+1(x )|, so since we already have bounded

|{p ∈ B c
n+1(x ) | f (p) > Nm(p)

1

2
−ε}|, we now need to bound

|{p ∈ B c
n+1(x ) | f (p) ≤ Nm(p)

1

2
−ε}| . This is easily done, however, by

Corollary 2.3.10.

We therefore know that |Bn+1(x ) |<< x 1−2ε + x
1

2
+ε log2 x . The limit

as x goes to infinity of (x 1−2ε)/(x/ log x ) plus (x 1/2+ε log2 x )/(x/ log x ) is

the same as

lim
x−→∞

log x

x 2ε
+ lim

x−→∞

log3 x

x
1

2
−ε
,
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which is clearly zero for ε less than 1
2
. We conclude that limx−→∞

|Bc
n+1

(x)|
x/ log x

=

0 and that |Bn+1(x )|∼ x
log x

.
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CHAPTER 3

EUCLIDEAN IDEAL CLASSES

3.1. Euclidean ideal classes

In 1977, H.W. Lenstra, Jr. ([8]) generalized the idea of the Euclidean

algorithm to ideals via the concept of the Euclidean ideal. In his paper,

he defined an algorithm on ideals rather than on elements and showed

that if such an algorithm exists for some ideal, then such an algorithm

exists for every ideal in its ideal class, giving rise to the notion of a

Euclidean ideal class.

Before starting, let us recall the following definitions.

Definition 3.1.1. — Let R be a Dedekind domain. A fractional ideal

is an element in the set { 1
b
I | b ∈ R \ 0, I is an ideal of R}. Henceforth,

unless otherwise stated, all ideals in this paper are fractional. Ideals that

are contained in R are called integral ideals. For the rest of the paper,

given a Dedekind domain R, let E be the set of fractional ideals of R

that contain R itself. For example, if 1
b
I is in E , then b is an element of

I .
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Definition 3.1.2. — If C is an ideal of R, it is called Euclidean if there

exists a function ψ : E −→ W , W a well-ordered set, such that for all

I ∈ E and all x ∈ IC \ C , there exists some y ∈ C such that

ψ((x + y)−1IC ) < ψ(I ).

We say ψ is a Euclidean algorithm for C and C is an Euclidean ideal.

One can easily check that if R is the ring of integers of a number field, if

I = C = R, and if ψ is the inverse of the norm, then this is equivalent to

the norm-Euclidean statement in Definition 2.0.11. In fact, this version

of the definition was the motivation given in Lenstra’s paper introducing

the definition of Euclidean ideal classes. Further motivation is given in

the introduction.

3.1.1. Properties of Euclidean algorithms with respect to C . —

Lemma 3.1.3. — If R is a Dedekind domain, C is a non-zero ideal,

and ψ is a Euclidean algorithm with respect to C , then ψ(R) is the small-

est value in the image of ψ and R is the only ideal in the preimage of

ψ(R).

Proof. — In order to show that ψ(R) is the smallest value in the image

of ψ, we will show that if I is an ideal in E such that I 6= R, then ψ(I ) is

not minimal. Since ψ maps to a well-ordered set, there is a least element

in the image of ψ. This will imply that ψ(R) must be the minimal value

in the set and that R is the only element in the preimage of ψ(R).
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If I is an ideal in E , then for any element x in IC \C , there exists some

y in C such that ψ((x + y)−1IC ) < ψ(I ). Therefore, as long as the set

IC \ C is non-empty, there exists some ideal J such that ψ(J ) < ψ(I ).

The only ideal I in E such that IC \C is empty is the ideal R. Therefore,

not only is ψ(R) the least element in the image of ψ, but the preimage

of ψ(R) only has one element, the ideal R.

After defining Euclidean algorithm on ideals, Lenstra investigated how

a Euclidean algorithm for some ideal C related to the other ideals in C ’s

ideal class.

Proposition 3.1.4. — If φ is a Euclidean algorithm for C , C 6= (0),

then φ is a Euclidean algorithm for every ideal in [C ].

Proof. — Let J be an ideal in [C ] with J = δC , where δ ∈ Frac(R) \ 0.

Given any I in E and x in IJ \ J , we know that there exists some x ′ in

IC \ C such that x = δx ′. As φ is a Euclidean algorithm for C , there

exists some y ′ such that φ((x ′ + y ′)−1IC ) < φ(I ). Let y = δy ′. Then

φ((x + y)−1IJ ) = φ(δ−1(x ′ + y ′)−1I δC ) = φ((x ′ + y ′)−1IC ) < φ(I ).

Thus for every x ∈ IJ \ J , there exists some y ∈ J such that

φ((x + y)−1IJ ) < φ(IJ ).

We conclude that φ is a Euclidean algorithm for all J in [C ].

Due to Proposition 3.1.4, we can now define the following.
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Definition 3.1.5. — If there exists some Euclidean algorithm for C ,

then [C ] is called a Euclidean ideal class.

Lenstra’s concept of the Euclidean ideal class is a generalization of

traditional Euclidean algorithms. Euclidean domains are rings with [R]

as a Euclidean ideal class and every traditional Euclidean algorithm is a

Euclidean algorithm for R, as the next proposition shows.

Proposition 3.1.6. — A Dedekind domain R has an N-valued Euclidean

algorithm if and only if [R] is a Euclidean ideal class.

Proof. — Let R be a domain with a N-valued Euclidean algorithm and

let φR be the Euclidean algorithm in Definition 2.0.12. Recall that this

is the least Euclidean algorithm mapping to N. Since R is a Euclidean

domain, it is a principal ideal domain and every integral ideal can be

expressed as (a) for some a ∈ R. We will define ρ : E −→ W by

ρ(( 1
a
)) := φR(a), where a is a non-zero element of R. Let I = (1

i
), with

i 6= 0. Every element of I \ R can be written as a
i
, with a ∈ R \ (i).

Given any a ∈ R \ (i), there exists some q , r ∈ R such that a = qi + r

with r 6= 0, φR(r) < φR(i). Therefore, for any x = a
i
∈ I \C , there exists

some q in R such that

ρ

(

(a

i
− q
)−1

IR

)

= ρ

(

(

a − qi

i

)−1(
1

i

)

)

= ρ

(

i

r

1

i

)

= φR(r) < φR(i) = ρ(I ).

We conclude that ρ is a Euclidean algorithm for R and [R] is a Euclidean

ideal class.
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Suppose that [R] be a Euclidean ideal class, so there exists some map

ρ : E −→ W such that for all I ∈ E and all x ∈ I \R, there exists some

y ∈ R such that ρ((x +y)−1IC ) < ρ(I ). We shall define φ : R \0 −→ W ,

by φ(a) := ρ(( 1
a
)). Therefore, given some a, b ∈ R, b 6= 0, either b divides

a or a
b
∈ ( 1

b
) \ R. In the latter, there exists some q ∈ R such that

ρ

(

(a

b
− q
)−1
(

1

b

))

= ρ

((

b

a − qb

1

b

))

= ρ

((

1

a − qb

))

< ρ

((

1

b

))

.

We rename a−qb as r and see that for all a, b ∈ R, b 6= 0, there exist some

q , r ∈ R such that a = qb+r and either r = 0 or φ(r) = φ(a−qb) < φ(b).

We conclude that ρ is a Euclidean algorithm for R and that R is a

Euclidean domain.

Proposition 3.1.7. — ([8]) If R is a Dedekind domain and [C ] is a

Euclidean ideal class, then the class group is 〈[C ]〉.

Proof. — If for every ideal class [I ] in Cl(R), there exists some positive

integer n such that [I ][C n ] = [R], then the class group is cyclic and every

fractional ideal has an inverse. It sufices to show that for every ideal class

[I ] in Cl(R), there exists some positive integer n such that [I ][C n ] = [R].

Given an ideal class [J ], the intersection E ∩ [J ] is non-empty. Let

J be an integral ideal in [J ]. Since Nm(J ) is an element of J , the ideal

J
Nm(J )

contains R and is an element of E .

Let I be an ideal in E , I 6= R, implying the set IC \ C is non-empty.

Suppose that φ is a N-valued Euclidean algorithm for [C ], so that for all
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x in IC \ C , there exists some y in C such that φ((x + y)−1IC ) < φ(I ).

If (x + y)−1IC = R, then [I ][C ] = [I ][C 1] = [R] and n = 1.

For the following, assume that if φ(R) < φ(I ) ≤ m, then there exists

some n > 0 such that [IC n ] = R. Let φ(J ) = m + 1, so that JC \ C is

non-empty. For every x in JC \ C , there exists some y ∈ C such that

φ((x + y)−1JC ) < φ(J ) = m + 1 so that either (x + y)−1JC = R or

φ((x +y)−1JC ≤ m. In the first situation, [I ][C ] = [R] and n = 1. In the

second case, there exists some k ∈ Z+ such that [(x +y)−1JC ][C k ] = [R],

so that [J ][C k+1] = R and n = k + 1. We conclude that every ideal class

[J ] can be written as [C ]n for some n ∈ Z+, so the class group is generated

by [C ].

In particular, if [J ] = [R] and J 6= R, the above implies that there

exists some n > 0 such that [JC n ] = [R] and thus [C ]n = [R]. We

conclude that Cl(R) is finite.

Returning to the section’s introduction, recall that Lenstra’s motiva-

tion was the statement of norm-Euclidean domains in Definition 2.0.11.

It is natural to ask what happens when the inverse of the norm is a

Euclidean algorithm for C .

Definition 3.1.8. — An ideal C is Euclidean for the norm, or norm-

Euclidean, if the inverse of the norm acts as a Euclidean algorithm for the

ideal class. In other words, if C is norm-Euclidean, then for all x ∈ IC \C ,

there exists some y ∈ C so that Nm((x + y)−1IC )−1 < Nm(I )−1, i.e.

Nm((x + y)−1IC ) > Nm(I ). This implies that if C is Euclidean for the
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norm, then for all x ∈ IC \ C , there exists some y ∈ C such that

Nm(x − y) < Nm(C ).

In order to look at the following examples, we need the next definition.

Definition 3.1.9. — Given any element x in C, we denote the open

ball in C of radius δ centered at x by Bδ(x ) and the closed ball in C of

radius δ centered at x by B δ(x ). The metric used is the Euclidean metric.

Example 6. — The ideal (2, 1 +
√
−5) is norm-Euclidean in the ring

Z[
√
−5].

Proof. — Since Nm(2, 1 +
√
−5) = 2, we must show that for every x in

Q(
√
−5), there exists some y in (2, 1 +

√
−5) such that Nm(x − y) < 2.

In other words, if we fix an embedding of Q(
√
−5) into C, the distance

in the complex plane between the images of x and y is less than
√

2.

The ideal (2, 1 +
√
−5) in Z[

√
−5] can be viewed as a lattice in C with

{2, 1 +
√
−5} as a basis of the ideal as a Z-module, so every point z in

C is contained in a fundamental domain of the lattice.

We can then view every point z in C as a point in the square

a
√

5 ≤ Im(z ) ≤ (a + 2)
√

5,

b ≤ Re(z ) ≤ b + 2
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Figure 1. The Lattice (2, 1 +
√
−5)

for some (b + a
√
−5) in the ideal (2, 1 +

√
−5), since any fundamental

domain of the lattice (2, 1 +
√
−5) is contained in two adjacent such

squares. All four corners of the box are in the ideal.

Figure 2. Boxes and the Lattice’s Fundamental Domains

The sets B√
2(b + a

√
−5) and B√

2(b + 2 + a
√
−5) intersect inside the

box at the point b + 1 + a
√
−5 + i . Everything that is in the box that

is not inside B√
2(b + a

√
−5) or B√

2(b + 2 + a
√
−5) is inside the convex

hull of b +a
√
−5, b +2+a

√
−5, b +a

√
−5+

√
−2, b +2+a

√
−5+

√
−2,
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and b + 1 + a
√
−5 + i . If every point in their convex hull is within

√
2

of the lattice (2, 1 +
√

5), then our condition is satisfied (See Figure 3).

Figure 3. A Set within
√

2 of the Lattice

The points b + a
√
−5 +

√
−2, b + a

√
−5 + 2i , and b + 1 + a

√
−5 + 2i

are all in B√
2(b + a

√
−5 + 2i), so are all within

√
2 of our lattice. It

remains to show that the elements of the convex hull of b + 1 + a
√
−5 +

i ,b + 1 + a
√
−5 + 2i , b + 2 + a

√
−5, and b + 2 + a

√
−5 +

√
−2 satisfy

the condition (See Figure 4).

By symmetry, every point except b + 1 + a
√
−5 + i is contained in

B√
2(b + 2 + a

√
−5 + 2i).

We know that b + 1 + (a + 1)
√
−5 is an element of (2, 1 +

√
−5) and

that

|(b + 1 + (a + 1)
√
−5) − (b + 1 + a

√
−5 + i)|=|

√
−5 − i|<

√
2.
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Figure 4. A Larger Set within
√

2 of the Lattice

Figure 5. An Even Larger Set within
√

2 of the Lattice

Since the ideal (2, 1 +
√
−5) is norm-Euclidean, it is a Euclidean ideal

class and generates the class group. The ideal has order 2 so the class

group has size 2.

Proposition 3.1.10. — If φ is a Euclidean algorithm for C , then not

only is it a Euclidean algorithm for every ideal J in [C ]∩E, but it is not

a Euclidean algorithm for any ideal not in [C ] ∩ E .

54



Proof. — Let φ : E −→ W , W a well-ordered set, be a Euclidean algo-

rithm for some ideal C . We know by 3.1.4 that φ is a Euclidean algorithm

for every ideal J in E ∩ [C ]. Since W is well-ordered, there is a least ele-

ment in the set {φ(I ) | I ∈ E , I 6= R}, say φ(I ). Since I is not R, the set

IC \C is non-empty and there is some element x in IC \C . There exists

some y ∈ C such that φ((x + y)−1IC ) < φ(I ), implying (x + y)−1IC

is equal to R. From this we deduce that [C ] = [I−1], so every ideal for

which φ is a Euclidean algorithm belongs to [I−1].

Theorem 3.1.11. — Given a Dedekind domain R, there is at most one

ideal class [C ] that is Euclidean for any particular algorithm. If such an

ideal class exists, it generates the class group Cl(R).

Proof. — We know by 3.1.10 that if φ is a Euclidean algorithm, it is a

Euclidean algorithm for only one ideal class. We also know by 3.1.7 that

any Euclidean ideal class generates the class group.

3.1.2. Properties of IC /C . — Understanding the definition of a Eu-

clidean algorithm with respect to C depends on understanding the ideal

(x + y)−1IC for every I in E , every x in IC \ C , and every y in C .

What is unusual about the definition of a Euclidean algorithm for C is

that it associates an ideal (not necessarily principal) with an element,

motivating the following definition.

Definition 3.1.12. — Let C be a non-zero ideal, let I and J be ideals

in E , and let α be an element of IC \C . The ideal J is similar to α modulo
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IC and C , or J ∼ α (mod IC ,C ), if J can be written as (α + y)−1IC

for some y in C .

This creates two different types of similarity classes. There are simi-

larity classes in (a subset of) E ∩ [IC ] associated to an element of IC \C

and there are similarity classes in IC \ C associated to an element of

E ∩ [C ]. Given an ideal I in E , it makes sense to ask how these similarity

classes relate to one another. One powerful tool is the group action of

(R/I−1)× on the set IC /C .

Note that not every ideal J in E∩[IC ] is in a similarity class associated

to an element of IC \ C . Some are associated to an element in C . We

can see that the only ideals J in E ∩ [IC ] that are not associated to an

element in IC \ C are the ideals J such that J−1I is integral.

Lemma 3.1.13. — Let I and J be relatively prime ideals in E, I 6= R,

such that [J ] = [I ][C ]. There exists some x in IC \ C such that J =

x−1IC .

Proof. — We know that J−1 = xI−1C−1 for some x in Frac(R). Since

(x ) = J−1IC , x is an element of IC . The ideals I and J are relatively

prime and I 6= R, so J−1I is not an integral ideal, implying x is not an

element of C . We conclude that x is in IC \ C .

Lemma 3.1.14. — Let R be a Dedekind domain such that, let C be a

non-zero ideal, and let I be an ideal in E, I 6= R. The quotient IC /C

is a free module of rank one over R/I−1 and the group (R/I−1)× acts
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freely on (IC /C ) \ 0. It acts freely transitively on the set of generators

of IC /C as an R/I−1-module.

Proof. — Let q be the quotient map from R to R/I−1; let a and b be

elements of R, with q(a) and q(b) in (R/I−1)×; and let x be in IC \C , so

that both ax and bx are in IC and ax − bx = (a − b)x is in IC . Suppose

that a and b are congruent modulo I−1 and thus a−b is in I−1, implying

that (a−b)x is in C . We conclude that ax = bx in IC /C and the action

is well-defined.

The identity element of R/I−1 acts trivially on IC /C , so that [1]x =

1x = x . Since the associative and distributive laws hold in both (R/I−1)

and IC /C and the group action is well-defined, the quotient IC /C is

indeed an R/I−1 module. The quotient IC /C is isomorphic to R/I−1

as an R/I−1-module because R is a Dedekind domain, so IC /C is a

free R/I−1 module. The rest follows from the structure as an R/I−1

module.

If I−1 is not prime then not every class x in IC /C , x 6= 0, is a generator

of IC /C . It behooves us to find a condition on x that implies x is a

generator of IC /C as an R/I−1 module.

Lemma 3.1.15. — Let R be a Dedekind domain , let C be a non-zero

ideal, and let I be an ideal in E. If x is an element of IC , then x generates

IC /C as an R/I module if and only if (x ,C ) = IC . Furthermore, if

(x ,C ) = IC and φ is any R-isomorphism from (IC /C )−1 to R/I−1,

then [φ(x )] is a unit in R/I−1.
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Proof. — It is clear that the ideal C is contained in the ideal (x ,C ),

which is itself contained in IC . Let x generate IC /C as an R/I−1 module.

Therefore, for any z in IC \C , there exists some a ∈ R such that z = [a]x .

This implies that there exists some y in C such that z = ax + y and so

IC is contained in (x ,C ). We conclude that (x ,C ) is equal to IC .

Let the ideal (x ,C ) = IC , so that x is not inC , and let z be any non-

zero element of IC /C . There exists some a in R and some y in C such

that z = ax + y , implying that z = [a]x . We conclude that x generates

IC /C as an R/I module.

Let the function φ : IC /C −→ R/I−1 be an isomorphism of R/I−1

modules. If x generates IC /C as an R/I−1 module, then φ(x ) generates

R/I−1 as an R/I−1 module. In other words, [φ(x )] is a unit in R/I−1.

Lemma 3.1.16. — Let R be a Dedekind domain, let I be an ideal in

E, and let x be an element of IC such that (x ,C ) = IC . If p is a prime

ideal such that vp(I
−1) 6= 0, then p and xI−1C−1 are relatively prime.

Proof. — Let p be a prime ideal and let I−1 be contained in p, implying

the ring R is contained in pI and C is contained in pIC . Suppose that the

integral ideal xI−1C−1 is also contained in p. Then the element x would

be contained in pIC , so the ideal (x ,C ) would be contained in pIC .

This is a contradiction, so the ideals xI−1C−1 and p must be relatively

prime.
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3.1.3. An Analogue Dirichlet’s Theorem on Prime Ideals for

Euclidean Ideal Classes. — Dirichlet’s theorem on primes in arith-

metic progressions is fundamental to number theory and its proof is con-

sidered by many to be the birth of analytic number theory. It was nec-

essary for Harper’s work on Euclidean rings. It will be useful to have a

version of it in the Euclidean ideal class framework.

Theorem 3.1.17. — (Dirichlet’s Theorem on Primes in Arith-

metic Progressions)

Let a and b be relatively prime elements of Z. There are infinitely many

primes p such that p ≡ a (mod b) and the density of such primes in the

set of all primes is 1
φ(b)

, where φ is the Euler φ function.

The condition that a and b be relatively prime is equivalent to the

condition that a is a unit in R/(b), or a is in (R/(b))×. Recall from

Lemma 3.1.16 that for any x in IC , the equivalence class x generates

IC as an R/I−1 module if and only if (x ,C ) = IC . This motivates the

following theorem.

Theorem 3.1.18. — Let K be a number field and let I be an ideal in

E, I 6= R. If x is an element of IC and (x ,C ) = IC , then the set of

prime ideals p such that p−1 ∼ x (mod IC ,C ) is of positive denisty in

the set of all prime ideals. In other words, there is a positive density of

prime ideals p such that p−1 = (x + y)−1IC for some y in C .
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In order to prove this, we will need the Chebotarev density theorem.

The Chebotarev denisty theorem is a generalization of Dirichlet’s the-

orem on primes in arithmetic progressions. Instead of looking at the

number of primes mapping to some α, with (α, p) = 1, via the quotient

map with kernel (p), it is concerned with prime ideals mapping to an ele-

ment in Gal(K ab/K ) via the Artin map. In order to state the Chebotarev

density theorem, we need the following definitions.

Definition 3.1.19. — Let K be a number field and let L be a finite

extension of K . The set of all primes p such that p ramifies in L is S (L),

or the modulus of L. The set of all fractional ideals that are relatively

prime to the primes in S (L) is IS(L).

Given an integral ideal J of K , the set of all primes p such that vp(J ) 6=
0 is S (J ) and the set of all fractional ideals that are relatively prime to

the primes in S (J ) is IS(J ).

With the above notation, we can now define the Artin map.

Definition 3.1.20. — Let K be a number field and let L be a finite

abelian extension of K . The map ψL : IS(L) −→ Gal(L/K ) that sends

every prime ideal p that is unramified in OL to its associated Frobenius

automorphism (p,L/K ) is called the Artin map . The map extends to

the rest of IS(L) by multiplicativity and is surjective.

We can now state the Chebotarev density theorem.
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Theorem 3.1.21. — (Chebotarev Density Theorem)

Let K be a number field, let L be a finite abelian extension of K , and let

σ be any element of Gal(L/K ). There are infinitely many prime ideals

that map to σ under the Artin map, and the density of the primes that

map to σ under the Artin map in the set of all primes is 1
|Gal(L/K )| .

As a consequence, we get the result we needed in section 2.

Theorem 3.1.22. — (Dirichlet’s Theorem on Prime Elements

in Arithmetic Progressions in Number Fields with Trivial Class

Group)

Let K be a number field with class number one and let α and β be rela-

tively prime elements of OK . There is a positive density of prime elements

p such that p ≡ α (mod β).

Proof. — Since α and β are relatively prime, the ideal (α) is an element

of IS ((β)). The ray class field (see following definition) K S(β) is a finite

abelian extension of K , so there is a positive density of prime ideals (p)

that map to ψ((α)) and each ideal (p) can be written as (1 + zβ)(α), for

some algebraic integer z in OK . There therefore exists some unit u in O
×
K

such that up ≡ α (mod β). The product up is still a prime element, so

the result holds.

In order to prove Theorem 3.1.18, we shall apply the Chebotarev den-

sity theorem to a well-chosen ray class field.
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Definition 3.1.23. — Given an integral ideal J , the ray class field of

modulus J, denoted by K J is the unique abelian extension of K such that

if ψK J is the Artin map for K J , ψK J : IS(J ) −→ Gal(K J/Q), then the

kernel of ψK J is the set of principal ideals (a) such that vp(a−1) ≥ vp(J )

for all p in S (J ). Given such a J , the ray class field always exists.

We now have all the definitions and results necessary to prove Theorem

3.1.18.

Proof. — (Proof of Theorem 3.1.18) Let K I−1

be the ray class field de-

fined above and let x be an element of IC such that (x ,C ) = IC . We

know by Lemma 3.1.16 that (x ,C ) is relatively prime to any prime ideal

p such that p divides I−1. The integral ideal xI−1C−1 is an element of

IS(I−1) by Lemma 3.1.16.

The Chebotarev density theorem implies there is a positive density in

the set of all prime ideals of prime ideals q in the preimage of ψ
K I−1 (xI−1C−1)

under the Artin map. Since the kernel of the Artin map to a ray class

field is as described in Definition 3.1.23, each of these ideals q can be

written as (1 + q)xI−1C−1 for some q , where vp(q) ≥ vp(I
−1) for all

primes p in S (I−1). Note that (x + xq) = (1+ q)x = qIC , so that x + xq

is an element of IC . We chose x to be an element of IC , so xq is also

an element of IC . As such, we know that vp(xq) ≥ vp(IC ) for all primes

p. Note that this implies that vp(xq) ≥ vp(C ) for p /∈ S (I−1) because

vp(I ) = 0. Since x is an element of IC , we know that vp(x ) ≥ vp(IC ) for

all primes p. We know that vp(q) ≥ vp(I
−1) for all primes p in S (I−1), so
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that vp(xq) = vp(q) + vp(x ) ≥ vp(I
−1) + vp(IC ) = vp(C ) for primes p in

S (I−1). We conclude that, because vp(xq) ≥ vp(C ) for all primes p, xq is

an element of C , so that q = (x + qx )I−1C−1, where qx is an element of

C . We conclude that q−1 ∼ x (mod IC ,C ).

We can use this to look at the more complicated situation where (x ,C )

is not necessarily equal to IC .

Theorem 3.1.24. — Let OK be the ring of integers of a number field

K , let C be a non-zero ideal, let I be an ideal in E(I 6= R), let x be an

element of IC \ C , and Let L be the integral ideal (I−1, xI−1C ). There

are infinitely many prime ideals p such that p−1 ∼ x (mod ILC ,C ).

Proof. — The ideals xI−1L−1C−1 and I−1L−1 are relatively prime and

xI−1L−1C−1 is an element of IS(I−1L−1). Applying Chebotarev’s den-

sity theorem, there is a positive density of prime ideals p such that

ψ
K I−1L−1 (p) = ψ

K I−1L−1 (xI−1L−1C−1). By similar arguments as the last

proof, p = (1 + q)xI−1L−1C−1, where q is an element of I−1L−1, so that

p = (x + y)I−1L−1C−1 for some y in C . We conclude there is a positive

density of prime ideals p such that p−1 ∼ x (mod ILC ,C ).

3.2. A Motzkin-type Lemma for C

We will now prove a new criterion that determines whether a given

ideal class is Euclidean or not. The criterion is a reformulation of Motzkin’s

construction and lemma for the Euclidean ideal class framework. Motzkin’s
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construction for C will not only determine whether or not an ideal class

[C ] has a Euclidean algorithm mapping to N. If [C ] does have such an

algorithm, then Motzkin’s construction constructs one. This algorithm

is the “least” Euclidean algorithm for [C ] that maps to N.

Definition 3.2.1. — Motzkin’s Construction for C

Given a Dedekind domain R and some non-zero ideal C , we define A0,C

to be the set {R}. For i > 0, we define

AC ,i = AC ,i−1 ∪







I

∣

∣

∣

∣

∣

∣

I ∈ E and ∀ x ∈ IC \ C , ∃ y ∈ C

such that (x + y)−1IC ∈ AC ,i−1







The union ∪∞
i=0Ai ,C is called AC . The sets {Ai ,C} and AC are Motzkin’s

Construction for C . We define φC to be the function mapping from AC

to N, with φC (I ) = i if I is an element of Ai ,C \ Ai−1,C .

Note that, according to this definition, the Ai ,C ’s are nested and the

function φC is canonical.

Theorem 3.2.2. — (Motzkin’s Lemma for C )

Let R be a Dedekind domain and let C be a non-zero ideal. If the sets

AC and E are equal, then [C ] is a Euclidean ideal class and φC is a

Euclidean algorithm for [C ].

Proof. — Let I be an ideal in E and let x be an element in IC \C . Since

the ideal I is in AC , there exists some y in C such that (x +y)−1IC is an

element of AφC (I )−1,C . We conclude that there exists some y in C such
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that

φC ((x + y)−1IC ) ≤ φC (I ) − 1 < φC (I ).

The function φC is thus a Euclidean algorithm for C and [C ] is a Eu-

clidean ideal class.

What is interesting about this is that we do not need to initially know

whether or not the class group of R is cyclic. We can start with any

non-zero ideal C , and if AC = E , then not only is the class group of R

cyclic, but we know that [C ] generates the class group.

As in the traditional case (see Definition 2.0.11), it makes sense to ask

if, given a well-ordered set W , there exists a least Euclidean algorithm

for C .

Definition 3.2.3. — Given a Dedekind domain R with Euclidean ideal

class [C ], let {φi}d∈D be the set of all Euclidean algorithms for [C ] that

map to W . We define φC ,W to be the function mapping from E to W

such that φC ,W (J ) = mind∈D{φi(J )}.

Lemma 3.2.4. — If [C ] is a Euclidean ideal class, then φC ,W is a Eu-

clidean algorithm for [C ].

Proof. — Let I be an ideal in E , I 6= R, and let x be an element of IC \C .
There exists a Euclidean algorithm for [C ], ρ, such that ρ(I ) = φC ,W (I ).

We know there exists an element y of C such that

φC ,W ((x + y)−1IC ) ≤ ρ((x + y)−1IC ) < ρ(I ) = φC ,W (I ),
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so the function φC ,W is a Euclidean algorithm for C .

Lemma 3.2.5. — If R is a Dedekind domain, C is a non-zero ideal,

and AC = E, then φC ,N equals φC .

Proof. — By Lemma 3.1.3, the least element in the image of φC ,N is

φC ,N(R), so φC ,N(R) = 0 because φC ,N ≤ φC and φC (R) = 0.

Let I be an ideal in E . By the definition of a Euclidean ideal class for

C , for any x in IC \ C , there exists some y in C such that

φC ,N((x + y)−1IC ) < φC ,N(I ).

We will inductively define a chain of ideals as follows. Let I0 := I . Given

any x ∈ IiC \C , there exists a y such that φC ,N((x +y)−1IC ) < φC ,N(I ).

We will define Ii+1 to be (x+y)−1IiC . Note that we can only continue this

process as long as Ii 6= R. We then have a chain of ideals I = I0, I1, I2, . . .

such that φC ,N(Ii) > φC ,N(Ii+1). The set N is well-ordered, so there is a

least element in the set {φC ,N(Ii)}∞i=0. We conclude that there is some n

such that φC ,N(In) is the minimal element, zero and we therefore have a

chain of ideals

I = I0, I1, . . . , In = R

such that

φC ,N(I ) > φC ,N(I1) > · · · > φC ,N(R) = 0.

For any Ik in this chain, k > 0, there exists an x in Ik−1C \ C and an

element y of C such that Ik = (x + y)−1Ik−1C . This implies that if Ij is
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an element of Ai ,C , then Ij−1 is an element of Ai+1,C . Because In is an

element of A0,C , the ideal I is an element of An,C and φC (I ) is less than

or equal to n.

The chain

φC ,N(I ) > φC ,N(I1) > · · · > φC ,N(R)

has n + 1 elements in it, so φC ,N(I ) ≥ φC ,N(R) + n = n. Therefore

φC ,N(I ) ≥ n ≥ φC (I ), and φC ,N(I ) = φC (I ). We conclude that φC and

φC ,N are the same function.

Example 7. — Let R = Z and C = R.

By definition, A0,C = R. While the definitions are slightly different in

Example 2, it still shows us that Ai ,C = {(1
j
) | 0 < j < 2i+1}.

3.2.1. An Application of the Motzkin-type Lemma for C . —

Motzkin’s lemma for C gives us immediate consequences that make it

easier to figure out whether or not [C ] is a Euclidean ideal class.

Lemma 3.2.6. — Let R be a Dedekind domain, let C be a non-zero

ideal, and let I be an ideal in E, I 6= R. If, for all x ∈ IC \ C , there

exists some y in C such that (x + y)−1IC is in AC , then I is itself in

AC .

Proof. — We know from lemma 3.1.14 that IC /C is finite. For each

class α in IC /C , let iα be the minimum element of the set

{φC ((α + y)−1IC ) | y ∈ C }.
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Then I is an element of Aj ,C , where j = maxα∈IC/C{iα} + 1 and I is

therefore an element of AC .

We can use this lemma to prove the following theorem. In our previous

results, we used the existence of a Euclidean ideal class to prove a domain

has cyclic class group. It makes sense, though, to ask when a domain

with cyclic class group has a Euclidean ideal class.

Theorem 3.2.7. — Let R be a Dedekind domain with cyclic class group

generated by [C ] and let m be an integer. If the set of ideals E ∩ [C m ] is

contained in AC , then [C ] is a Euclidean ideal class.

Proof. — Consider an ideal I in E ∩ [C m−1] for some integer m. For

each of the finitely many non-zero equivalence classes in IC /C , choose

some element xj in said class. Note that the ideal x−1
j IC is an element

of E ∩ [C m ] and therefore belongs to AC . Applying Lemma 3.2.6, the

ideal I is an element of AC and thus E ∩ ([C m−1]) is contained in AC .

By repeating this argument, we conclude that every ideal I in E that is

in [C n ] for some integer n is in AC . Since [C ] generates the class group,

this implies that every ideal in E is in AC and [C ] is a Euclidean ideal

class by Theorem 3.2.2 .

3.3. A Harper-type Lemma for C

Recall that what makes Harper’s construction so useful is that is deals

with sets of primes and units. This allows us to use results on densities of
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primes, which are really results on densities of prime ideals. It therefore

makes sense to try to find a variation of Motzkin’s construction with

respect to C that consists of sets of prime ideals.

Definition 3.3.1. — Given a Dedekind domain R and a non-zero ideal

C , let B0,C be the one element set {R}. For i greater than zero, we define

BC ,i = BC ,i−1 ∪



















p−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

p ⊆ R is prime, and

∀ x ∈ p−1C \ C , ∃ y ∈ C

such that (x − y)−1p−1C ∈ BC ,i−1



















and we define BC to be the union
⋃∞

i=0 BC ,i .

Theorem 3.3.2. — Let K be a number field and let C be a non-zero

ideal of OK . If BC contains all ideals p−1 such that p is prime, then [C ]

is a Euclidean ideal class.

Proof. — The techniques of this proof follow those in [5], however we use

Theorem 3.1.18 instead of Dirichlet’s theorem on primes in arithmetic

progressions.

Let ω be the function mapping from E to N such that ω(I ) is the

number of prime divisors of I−1, with multiplicity. If p is a prime ideal,

let λ(p−1) := i if p−1 is an element of Bi \ Bi−1. Extend λ to all of E by

additivity. We then put the two functions together as φ : E −→ N × N,

with φ(I ) = (ω(I ), λ(I )), and order the image φ(E ) lexicographically.
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Because both ω and λ are additive functions, the function φ is additive

as well. Note that φ(I ) = (0, 0) if and only if I = OK .

In order to prove Theorem 3.3.2, we will show that φ is a Euclidean

algorithm with respect to C . We shall prove this by induction. Let p

be a prime ideal and let φ(p−1) = (1, i). For any x in p−1C \ C , there

exists some y such that (x + y)−1p−1C is an element of Bi−1,C , so that

φ((x + y)−1p−1C ) = (0, 0) or φ((x + y)−1p−1C ) = (1, j ), where j < i .

Let I be an element of E with I−1 not a prime ideal. Suppose that for

all J such that φ(J ) < φ(I ) and for all a in JC \C , there exists some y

in C such that φ((x + y)−1JC ) < φ(J ). Let x be an element of IC \ C .

If (x ,C ) = IC , we can apply Theorem 3.1.18. There exists some y ∈ C

such that (x + y)−1IC = p−1, where p is a prime ideal. Since φ(p) is less

than φ(I ), the condition is satisfied.

Suppose that (x ,C ) is not equal to IC and let L be (I−1, xI−1C ).

The integral ideal L contains I−1, so I−1L−1 has fewer prime divisors

(counting multiplicities) than I−1 and φ(IL) is less than φ(I ). There

exists some y in C such that φ((x + y)−1ILC ) < φ(IL). The additivity

of φ implies that given two ideals M and N , φ(MN ) = φ(M ) + φ(N ), so

φ((x + y)IC ) < φ(I ) and the condition holds. We conclude that φ is a

Euclidean algorithm for [C ] and that [C ] is a Euclidean ideal class.

If we already know that R has cyclic class group, we have an even easier

criterion to determine whether or not [C ] is a Euclidean ideal class.
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Proposition 3.3.3. — Let R be a Dedekind domain, let m be an inte-

ger, and suppose that the class group of R is 〈[C ]〉. If, for all prime ideals

p such that [p] = [C m ], the ideal p−1 is an element of BC , then [C ] is a

Euclidean ideal class.

In order to prove Proposition 3.3.3, we need the following lemma.

Lemma 3.3.4. — Let p be a prime ideal. If, for every element x of

p−1C \ C , there exists some element y of C such that (x + y)−1p−1C is

an element of BC , then the ideal p−1 is an element of BC .

Proof. — See Lemma 3.2.6. The proof is the same.

Proof. — (Proof of Proposition 3.3.3) Let p be a prime ideal such that

[p] = [C m+1] and let x be an element of p−1C \ C . We know that for

all such x , the ideal (x ,C ) is p−1C . Therefore, by Theorem 3.1.18, there

exists some y in C such that (x + y)−1p−1C is prime. As the ideal class

of (x +y)−1p−1C is [C−m−1][C ] = [C−m ], we know that (x +y)−1p−1C is

an element of BC and therefore that p−1 is an element of BC by Lemma

3.3.4. This argument shows that every inverse of a prime ideal in [C d ]

for any integer d is in BC . The class group is cyclic and generated by

[C ], so p−1 is in BC for all prime ideals p. Thus by Theorem 3.3.2, [C ] is

a Euclidean ideal class.
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3.4. Admissible Sets of Primes with Respect to C

While our variation of Motzkin’s lemma with respect to C makes it

easier to apply analytic results, it is not useful computationally. We know

from Proposition 3.3.3 that if K is a number field with cyclotomic class

group and all of the ideals in E in a particular ideal class are contained

in BC , then [C ] is a Euclidean ideal class. It then makes sense to wonder

whether we really need every single ideal in an ideal class–maybe we could

just have many ideals from a particular ideal class. This then means it

makes sense to try to determine the size of the sets BC ,i . Unfortunately,

it is still hard to try to compute the sizes of the various BC ,i . In order to

make computing the sizes of the BC ,i possible, we shall try to augment

one of the BC ,i with a special set. In order to define the set, we need the

following terminology.

Definition 3.4.1. — Let K be a number field and let the class group of

K be 〈[C ]〉. Given a set of primes p1, . . . , pk , such that [pi ] = [C ] for all i ,

we say that the set of primes is admissible with respect to C if for any k -

tuple (a1, . . . , ak) of natural numbers such that a1+· · ·+ak ≡ 1 (mod hK ),

the ideal p−a1

1 · · · p−ak

k is in A1,C .

Note that the definition implies that every prime that is in an admis-

sible set of primes with respect to C is an element of B1,C . Any set of

primes that is admissible with respect to OK yields an admissible set of

primes, in the sense that Clark, Murty, and Harper used (see Definition

2.3.3) ([5],[6],[1]), by passing to generators.
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Since the inverses of the primes in an admissible set generate a monoid

in E , we were inspired to formulate a version of the Gupta-Murty bound

that we can apply to any admissible set of primes for C .

3.4.1. The Gupta-Murty Bound for C . — In order to prove the

generalization of the Gupta-Murty bound, we will first need the following

lemmas on k -tuples.

Lemma 3.4.2. — The number of k-tuples (a1, . . . , ak) in Nk such that
∑k

i=1 ai ≤ Y and
∑k

i=0 ai ≡ m (mod h) is Y k

k !h
+ O(Y k−1).

Proof. — We will prove this by induction. Without loss of generality, as-

sume that 0 ≤ m ≤ h−1.We know that |{a ∈ N | a ≤ Y , a ≡ m (mod h)}| =

bY−m
h

c = Y
h

+ C , where C is a constant.

Suppose that
∣

∣

∣

{

(a1, . . . , ak) ∈ Nk |∑k

i=0 ai ≤ Y ,
∑k

i=0 ai ≡ m (mod h)
}∣

∣

∣
=

Y k

k !h
+ O(Y k−1). Then

∣

∣

∣

∣

∣

{

(a1, . . . , ak+1) ∈ Nk+1

∣

∣

∣

∣

∣

k+1
∑

i=0

ai ≤ Y ,

k+1
∑

i=0

ai ≡ m (mod h)

}∣

∣

∣

∣

∣

,

equals

Y
∑

ak+1=0

∣

∣

∣

∣

∣

{

(a1, . . . , ak) ∈ Nk

∣

∣

∣

∣

∣

k
∑

i=0

ai ≤ Y −ak−1,
k
∑

i=0

ai ≡ m − ak+1 (mod h)

}∣

∣

∣

∣

∣

,

which is less than or equal to

Y
∑

ak+1=0

(Y − ak+1)
k

k !h
+ C (Y − ak+1)

k−1
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for some constant C . This last expression can be rewritten as

Y
∑

b=0

bk

k !h
+

Y
∑

b=0

Cbk−1 ≤ Y k+1

(k + 1)!h
+ C ′Y k +

C

k
Y k + C ′′Y k−1

for some constants C ,C ′, and C ′′. We conclude that

∣

∣

∣

∣

∣

{

(a1, . . . , ak+1) ∈ Nk+1

∣

∣

∣

∣

∣

k+1
∑

i=0

ai ≤ Y ,

k+1
∑

i=0

ai ≡ m (mod h)

}∣

∣

∣

∣

∣

=
Y k+1

(k + 1)!h
+ O(Y k).

Corollary 3.4.3. — The number of k-tuples (a1, . . . , ak) in Zk such

that
∑k

i=1 |ai|≤ Y and
∑k

i=0 |ai|≡ m (mod h) is 2kY k

k !h
+ O(Y k−1).

Lemma 3.4.4. — Given a positive integer k , there exist two positive

constants Ck ,h and Mk ,h such that if Y > Mk ,h , then

∣

∣

∣

∣

∣

{

(a1, . . . , ak) ∈ Nk

∣

∣

∣

∣

∣

k
∑

i=0

ai ≤ Y ,
k
∑

i=0

ai ≡ m (mod h)

}∣

∣

∣

∣

∣

≥ Ck ,hY
k .

The constants Ck ,h and Mk ,h depend only on k and h.

Proof. — The case where h = 1 was proved in Lemma 2.3.7. Henceforth,

we will assume that h ≥ 2. Lemma 3.4.4 will be proven by induction on

the size of k .

In order to prove the base case k = 1, we will show that if k = 1, then

|{a ∈ N | a ≤ Y , a ≡ m (mod h)}| ≥ 1

2h
Y
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for Y > 4h. Without loss of generality, assume that 0 ≤ m ≤ h − 1. We

then know that

|{a ∈ N | a ≤ Y , a ≡ m (mod h)}|

is bounded below by bY−m
h

c, which is itself bounded below by Y−m
h

−1 ≥
Y
h
− 2. If Y ≥ 4h, then Y

4h
− 1 ≥ 0 and Y

2h
− 1 ≥ Y

4h
, so that Y

h
− 2 ≥ Y

2h
.

We conclude that if Y ≥ 4h, then

|{a ∈ N | a ≤ Y , a ≡ m (mod h)}| ≥ 1

2h
Y .

By induction, assume that if Y ≥ Mk ,h , then

∣

∣

∣

∣

∣

{

(a1, . . . , ak) ∈ Nk

∣

∣

∣

∣

∣

k
∑

i=0

ai ≤ Y ,
k
∑

i=0

ai ≡ m (mod h)

}∣

∣

∣

∣

∣

≥ Ck ,hY
k .

We know that

∣

∣

∣

∣

∣

{

(a1, . . . , ak+1) ∈ Nk

∣

∣

∣

∣

∣

k+1
∑

i=0

ai ≤ Y ,

k+1
∑

i=0

ai ≡ m (mod h)

}∣

∣

∣

∣

∣

which equals

Y
∑

ak+1=0

∣

∣

∣

∣

∣

{

(a1, . . . , ak) ∈ Nk

∣

∣

∣

∣

∣

k
∑

i=0

ai ≤ Y −ak+1,
k
∑

i=0

ai ≡ m − ak+1 (mod h)

}∣

∣

∣

∣

∣

=

Y
∑

b=0

∣

∣

∣

∣

∣

{

(a1, . . . , ak) ∈ Nk

∣

∣

∣

∣

∣

k
∑

i=0

ai ≤ b,

k
∑

i=0

ai ≡ mY + b (mod h)

}∣

∣

∣

∣

∣

≥
Y
∑

b=Mk,h

Ck ,hb
k
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by our hypothesis. We know that

Y
∑

b=Mk,h

Ck ,hb
k =

Y
∑

b=0

Ck ,hb
k −

Mk,h−1
∑

b=0

Ck ,hb
k >

Ck ,h

k + 1
Y k+1 − Ck ,hC > 0

for some positive constant C . For any 0 < Ck+1,h <
Ck,h

k+1
, there ex-

ists a positive Mk+1,h such that if Y ≥ Mk+1,h , then Ck ,h(
Y k+1

k+1
− C ) >

Ck+1,hY
k+1. We conclude that there exist positive constants Ck+1,h and

Mk+1,h such that if Y ≥ Mk+1,h , then

∣

∣

∣

∣

∣

{

(a1, . . . , ak+1) ∈ Nk

∣

∣

∣

∣

∣

k+1
∑

i=0

ai ≤ Y ,

k+1
∑

i=0

ai ≡ m (mod h)

}∣

∣

∣

∣

∣

≥ Ck+1,hY
k+1.

Now that we have stated the necessary results on k -tuples, we must first

make some preliminary definitions before we can state the theorem. For

the following, assume that K is a number field with cyclic class group.

Let C be an ideal such that [C ] generates the class group of K , and let

C hK = (s).

Definition 3.4.5. — Let m be a non-negative integer less than hK .

Suppose that p1, . . . , pk are all prime ideals with [pi ] = [C ]. We then

define the set M as {p−a1

1 · · · p−ak

k | (a1, · · · , ak) ∈ Nk , a1 + · · · + ak ≡
m (mod hk)}.

Note that for any ideal I in M, the ideal class [I ] is equal to [C−m ].
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Lemma 3.4.6. — For any ideal I in M and any prime ideal p such

that [p] = [C m+1], there exists some α in p−1C such that I = α−1p−1C .

Proof. — Since I and p−1C are in the same ideal class, there exists some

α in K× such that I = α−1p−1C . In other words, (α) = I−1p−1C . We

conclude that α is in p−1C as I−1 is an integral ideal.

Definition 3.4.7. — Given a prime p such that [p] = [C m+1], we define

Γp,M to be the number of equivalence classes α in p−1C /C \ 0 such that

(α + y)−1p−1C is in M for some y ∈ C , i.e.

Γp,M := |{α ∈ p−1C /C | α /∈ C , α ∼ J for some ideal J ∈ M}| .

Now that we have the appropriate terminology, we can now state the

generalized Gupta-Murty bound.

Theorem 3.4.8 (The Gupta-Murty Bound for C )

Let K be a number field and let C be a non-zero ideal. Given a monoid

M as defined in 3.4.5 with m = 1, the size of the set of primes p such

that [p] = [C 2] and Γp,M is less than y is O(y
k+1

k ), for y sufficiently large.

In other words, if y is large, then

|{p
∣

∣ [p] = [C 2] and Γp,M ≤ y}| = O(y
k+1

k ).

Proof. — Suppose that y > Ck ,hM
k
k ,h , where Ck ,h and Mk ,h are as in

Lemma 3.4.4. This proof can be broken into four steps. At different
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points in the proof, finitely many primes will be removed from consider-

ation.

Step 1.

Suppose p is a prime ideal with [p] = [C 2] such that p is not in {p1, . . . , pk}
and Γp,M be less than or equal to y . From Corollary 3.4.4, the number

of k -tuples of natural numbers such that a1 + · · · + ak ≤ ( y

Ck,h
)

1

k and

a1 + · · ·+ ak ≡ 1 (mod hK ) is bounded below by Ck ,h(
y

Ck,h
)k

1

k = y . Note

that since p−1 is not in M, any product p−a1

1 · · ·p−ak

k , with each ai in N,

is similar to some α in p−1C \C by Lemma 3.1.13. Since Γp,M is less than

y , there are at least two distinct k -tuples of natural numbers (a1, . . . , ak)

and (b1, . . . , bk) such that a1 + · · · + ak ≡ 1 ≡ b1 + · · · + bk (mod h),

both of the sums a1 + · · ·+ ak and b1 + · · ·+ bk are less than or equal to

( y

Ck,h
)

1

k , and both ideals p−a1

1 · · ·p−ak

k and p−b1

1 · · · p−bk

k are similar to the

same element of p−1C \ C modulo p−1C and C . In other words, there

exists some α in p−1C \ C such that p−a1

1 · · · p−ak

k = α−1p−1C and there

exists some y in C such that p−b1

1 · · · p−bk

k = (α + y)−1p−1C .

This implies the number of prime ideals p, [p] = [C 2] and p−1 /∈ M,

such that Γp,M < y is less than or equal to the number of prime ideals p,

[p] = [C 2] and p−1 /∈ M, such that there exists a pair of distinct k -tuples

of natural numbers (a1, . . . , ak) and (b1, . . . , bk) such that

a1 + · · ·+ ak ≡ 1 ≡ b1 + · · ·+ bk (mod h),
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both of the sums a1 + · · ·+ ak and b1 + · · ·+ bk are less than or equal to

( y

Ck,h
)

1

k , and both ideals p−a1

1 · · ·p−ak

k and p−b1

1 · · · p−bk

k are similar to the

same element of p−1C \ C modulo p−1C and C .

Step 2.

As each pi is in the same equivalence class as C , there exists some xi

for each i such that pi = xiC . Similarly, there exists some xp such that

p = xpC
2. By rewriting our ideals in terms of these elements, we have

the following two equations:

x−a1

1 · · · x−ak

k C−(a1+···+ak ) = p−a1

1 · · ·p−ak

k = α−1p−1C = α−1x−1
p C−1

and

x−b1

1 · · · x−bk

k C−(b1+···+bk ) = p−b1

1 · · ·p−bk

k = (α+y)−1p−1C = (α+y)−1x−1
p C−1.

Inverting each term above yields

x a1

1 · · · x ak

k C (a1+···+ak ) = αxpC

and

x b1

1 · · · x bk

k C (b1+···+bk ) = (α+ y)xpC .

Since C hK is principal and equal to (s), we can use this to rewrite the

above equations as

x a1

1 · · · x ak

k s
a1+···+ak−1

hK C = αxpC
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and

x b1

1 · · · x bk

k s
b1+···+bk−1

hK C = (α + y)xpC ,

which implies that

(x a1

1 · · · x ak

k s
a1+···+ak−1

hK ) = (αxp)

and

(x b1

1 · · · x bk

k s
b1+···+bk−1

hK ) = ((α + y)xp)

as ideals. Choosing α and w appropriately, w a unit, we can use the

above equations to see that

x a1

1 · · · x ak

k s
a1+···+ak−1

hK = αxp

and

x b1

1 · · · x bk

k s
b1+···+bk−1

hK = w(α+ y)xp

as elements.

Note that the quotient of the right-hand sides is w αxp+yxp

αxp
= w α+y

α
=

w(1 + y

α
). Suppose (y) = CJ and (α) = p−1CI , where J and I are

integral ideals, so that ( y

α
) = CJ

p−1CI
= pJ

I
. We know that I 6⊂ p since α is

not in C , so that vp(
y

α
) is positive. The quotient of the left-hand sides is

x b1−a1

1 · · · x bk−ak

k s

∑

bi−
∑

ai
hK , so that

x b1−a1

1 · · · x bk−ak

k s

∑

bi−
∑

ai
hK = w(1 +

y

α
)
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and

w−1x b1−a1

1 · · · x bk−ak

k s

∑

bi−
∑

ai
hK − 1 =

y

α

This implies that the p-valuation of

w−1x b1−a1

1 · · · x bk−ak

k s

∑

bi−
∑

ai
hK − 1

is positive.

Therefore, the number of prime ideals p, [p] = [C 2] and p−1 /∈ M, such

that there exists a pair of distinct k -tuples of natural numbers (a1, . . . , ak)

and (b1, . . . , bk) such that

a1 + · · · + ak ≡ 1 ≡ b1 + · · ·+ bk (mod hK );

both of the sums a1 + · · · + ak and b1 + · · · + bk are less than or equal

to ( y

Ck,h
)

1

k ; and both ideals p−a1

1 · · · p−ak

k and p−b1

1 · · · p−bk

k are similar to

the same element of p−1C \C modulo p−1C and C is less than or equal

to the number of prime ideals p, [p] = [C 2] and p−1 /∈ M, such that

there exists an integer k -tuple (c1, . . . , ck) such that
∑ |ci| ≤ 2( y

Ck,h
)

1

k ;
∑

ci ≡ 0 (mod hK ), and vp(w
−1x c1

1 · · · x ck

k s

∑

ci
hK − 1) > 0.

Step 3.

Given any k -tuple (c1, . . . , ck) ∈ Zk , there exists a component-wise min-

imal k -tuples (d1, . . . , dk) in Nk such that ci + di ≥ 0 for all i . Note

that
∑

di ≤ 2Y . Let us define d ′ as
⌈

∑

di

hK

⌉

, so that
∑

di + d ′ ≡
∑

ci +
∑

di + d ′ ≡ 0 (mod hK ).

81



If vp(w
−1x c1

1 · · · x ck

k s

∑

ci
hK − 1) > 0, then

vp





w−1x c1+d1

1 · · · x ck+dk

k s
d′+

∑

ci
∑

di
hK − x d1

1 · · · x dk

k s
d′+

∑

di
hK

x d1

1 · · · x dk

k s
d′+

∑

di
hK



 > 0.

Suppose that c is an element of OK such that cC ⊆ OK and cxi is in OK

for all i . This excludes the finitely many primes p such that vp(c) > 0

from our consideration. We can then use this new notation to see that

the p-adic valuation of





w−1x c1+d1

1 cc1+c1 · · · x ck+dk

k cck+ck s
d′+

∑

ci+
∑

di
hK c

d′+
∑

ci+
∑

di+

hK

x d1

1 cc1+d1 · · · x dk

k cck+dk s
d′++

∑

di
hK c

d′+
∑

ci+
∑

di
hK

−x d1

1 cc1+d1 · · · x dk

k cck+dk s
d′++

∑

di
hK c

d′+
∑

ci+
∑

di
hK

x d1

1 cc1+d1 · · · x dk

k cck+dk s
d′++

∑

di
hK c

d′+
∑

ci+
∑

di
hK





is positive. We know that

vp(x
d1

1 cc1+d1 · · · x dk

k cck+dk s
d′++

∑

di
hK c

d′+
∑

ci+
∑

di
hK ) = 0,

so that the p-adic valuation of

(

w−1x c1+d1

1 cc1+c1 · · · x ck+dk

k cck+ck s
d′+

∑

ci+
∑

di
hK c

d′+
∑

ci+
∑

di+

hK

− x d1

1 cc1+d1 · · · x dk

k cck+dk s
d′+

∑

di
hK c

d′+
∑

ci+
∑

di
hK

)

is positive. The above element is in OK , so the p-adic valuation of its

norm is positive, where p lies above p. We know the absolute value of the
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norm is equal to

| Nm(c)| d ′+
(

1+ 1

hK

)

(
∑

ci+
∑

di )

times

∣

∣

∣

∣

Nm

(

w−1x c1+d1

1 · · · x ck+dk

k s
d′+

∑

ci+
∑

di
hK − x d1

1 · · · x dk

k s
d′+

∑

di
hK

)∣

∣

∣

∣

.

Applying Lemma 2.3.9, we know that

∣

∣

∣

∣

Nm

(

w−1x c1+d1

1 · · · x ck+dk

k s
d′+

∑

ci+
∑

di
hK − x d1

1 · · · x dk

k s
d′+

∑

di
hK

)∣

∣

∣

∣

is less than or equal to DM0M
c1+2d1

1 · · ·M ck+2dk

k M
2d′+2

∑

di+
∑

ci
hK

k+1 for some

constants D , M0, . . . ,Mk ,Mk+1. Suppose that M ′ = maxMiMj , so the

last expression is bounded above by D(M ′)
(
∑

ci+2
∑

di+
2d′+2

∑

di+
∑

ci
hK . If

M := Nm(c)M ′, the last expression is less than

DM
(
∑

ci+2
∑

di+
2d′+2

∑

di+
∑

ci
hK

) ≤ D(M )
6(1+ 3

hK
)Y
,

where Y = ( y

Ck,h
)

1

k .

There are at most
log D+6

(

1+ 3

hK

)

(log M )Y

log 2
prime elements p such that the

p-adic valuation of the norm of

(

w−1x c1+d1

1 cc1+c1 · · · x ck+dk

k cck+ck s
d′+

∑

ci+
∑

di
hK c

d′+
∑

ci+
∑

di+

hK

− x d1

1 cc1+d1 · · · x dk

k cck+dk s
d′+

∑

di
hK c

d′+
∑

ci+
∑

di
hK

)
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is positive by Lemma 2.3.6. There are at most

[K : Q]
log D + 6(1 + 3

hK
)(log M )Y

log 2

prime ideals p such that the p-adic valuation of the above expression is

positive.

Step 4.

There are at most 2k

k !hCk,h
y + O(y

k−1

k ) integer k -tuples (c1, . . . , ck) such

that
∑ |ci| ≤ 2( y

Ck,h
)

1

k and
∑

ci ≡ 0 (mod hK ). The number of primes

associated to each such k -tuple is [K : Q]
log D+6(1+ 3

hK
)(log M ) y

Ck,h
)
1
k

log 2
. We

conclude that the number of prime ideals p, [p] = [C 2] and p−1 /∈ M,

such that there exists an integer k -tuple (c1, . . . , ck) such that
∑ |ci| ≤

2( y

Ck,h
)

1

k ;
∑

ci ≡ 0 (mod hK ); and vp(x
c1

1 · · · x ck

k s

∑

ci
hK − 1) > 0 is bounded

above by

(

2k

k !hCk ,h
y + C (y

k−1

k )

)

(

[K : Q]
log D + 6(1 + 3

hK
)(log M )( y

Ck,h
)

1

k

log 2

)

,

which is O(y
k+1

k ). We conclude that the number of prime ideals p such

that [p] = [C 2], p−1 /∈ M, and Γp,M < y is O(y
k+1

k ).

3.5. A Variation of Harper’s Lemma for C

Definition 3.5.1. — (Variation of Harper’s Construction for C ) Let

p1, . . . pk be a set of admissible primes with respect to C and let M :=
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{p−a1

1 . . . p−ak

k | a1 + . . .+ak ≡ 1 (mod hK ), ai ∈ N}. Assuming p is prime,

let B0,C ,M := {OK}, let B1,C ,M := B1,C ∪ M \ OK , and let

Bi ,C ,M :=



















p−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∀α ∈ p−1C \ C , ∃ y ∈ C

such that (α + y)−1p−1C ∈ Bj ,C ,M,

for some j < i , j + 1 ≡ i (mod hK )



















for i > 1.

Let BC ,M = ∪∞
i=0Bi ,C ,M.

Note that for i ≥ 2, Bi ,C ,M consists solely of inverses of prime ideals.

Also, any two ideals in Bi ,C ,M are in the same ideal class, namely [C−i ].

What this variation of Motzkin’s Construction does is expand the first

non-trivial set with extra ideals from A1,C so that the early sets in this

variation are larger. If ClK is cyclic and if one of these early sets is large

enough, then we can show that BC ,M contains all of the inverses of OK ’s

prime ideals.

Theorem 3.5.2. — (A Variation on Harper’s Lemma for C)

If BC ,M contains the inverse of every prime in OK , then C is a Euclidean

ideal class.

Proof. — The techniques in this proof are similar to the techiniques in

[5]. Suppose every prime p−1 is in BC ,M. Let ωM(I ) be the number of

prime divisors of I−1 that are in M−1 and let ω(I ) be the number of

prime divisors of I−1 that are not in M−1. Let λ(p−1) be i if p−1 is in

Bi ,C ,M \ Bj ,C ,M for all j < i and extend λ to E multiplicatively. Each
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of the three functions is additive, so the function φ : E −→ N × N × N,

φ(I ) = (ω(I ), ωM(I ), λ(I )) is also additive. Note that φ(I ) = (0, 0, 0) if

and only if I = OK .

We will prove by induction on the size of φ(I ) that φ is a Euclidean

algorithm for C . If p is prime, than for any α ∈ p−1C \ C , there exists

some y in C such that (α+y)−1p−1C is either OK or the inverse of some

prime q such that λ(q−1) < λ(p−1). In either case, φ((α + y)−1p−1C ) <

φ(p−1).

Let I be an element of E , I−1 not prime, and suppose that for all J

such that φ(J ) < φ(I ) and for all x ∈ JC \ C , there exists some y in

C such that φ((x + y)−1JC ) < φ(J ). Let x be an element of IC \ C .

If (x ,C ) is IC , then there exists some y in C such that (x + y)−1IC is

prime by Theorem 3.1.18 and φ((x + y)−1IC ) < φ(I ).

Let (x ,C ) not be equal to IC and let L be the integral ideal of maximal

norm such that L contains both I−1 and xI−1C−1. The set of prime

divisors of I−1L−1 is properly contained in the set of prime divisors of

I−1, so we know that both ωM(IL) ≤ ωM(I−1) and ω(IL) ≤ ω(I ), but

both cannot be equalities. This implies that φ(IL) < φ(I ). Since x is in

I , it is also in IL. Using the inductive hypothesis, there exists some y

in C such that φ((x + y)−1ILC ) < φ(IL). The function φ is additive, so

φ((x + y)−1IC ) < φ(I ).
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3.6. The Large Sieve for Euclidean Ideal Classes

The large sieve is at the heart of Harper’s work on Euclidean rings. In

order to generalize his work and examine the asymptotic growth of the

sets BC ,i ,M, a generalized large sieve is needed. Before the generalized

version can be stated, however, we need the following definitions.

Definition 3.6.1. — For the following, given an ideal p, let f (p) be the

size of the image of O
×
K in (OK/p)×. For each coset in the image of O

×
K

in (OK/p)×, choose one unit that maps to that coset. Let U (p) be the

collection of those units. Note that |U (p)| is f (p).

Recall the following definition.

Definition 3.6.2. — Given A, a finite set of non-associated integers, a

prime ideal p and some α ∈ R, we define the following function

Z (α, p) := |{x ∈ A : x ≡ α (mod p)}| .

For our purposes, we want to apply the large sieve to sets of ideals,

so that we look at how a finite set of ideals are distributed among the

similarity classes of finite set of prime ideals, rather than how finite sets

of elements are distributed among the equivalence classes of prime ideals.

We will therefore look at the function Z (α, p,C ) rather than Z (α, p).

Definition 3.6.3. — Let C be a non-zero integral ideal and let n ∈ Z+.

Let A be a finite set of distinct fractional ideals I in E , such that if I and

J are in A, then [I ] = [J ] . If p is a prime ideal such that [p−1] = [IC−1]
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for I in A, and if β is in p−1C , we define

Z (β, p,C ) :=







































|{I ∈ A | ∃ y ∈ C such that (β + y)−1p−1C = I }|

if β /∈ C

f (p) |{I ∈ A | ∃ y ∈ C such that (β + y)−1p−1C = I }|
if β ∈ C

Definition 3.6.4. — For any I that is equivalent to C n , n > 0, fix

some xI ∈ K× such that I = x−1
I C n .

Henceforth, assume C is an integral ideal. This means (xI ) = I−1C n ,

so that xI is an element of C n and is therefore an integer. Note that since

[p−1C ] = [C n ], there exists some xp such that p−1C = x−1
p C n , so that

p−1 = x−1
p C n−1. Therefore (xp)

−1C n−1 = p−1 and thus xp is an element

of pC n−1. We conclude xp is an integer.

Definition 3.6.5. — Given a finite set A, such that A ⊂ {I | I ∈
E and [I ] = [C n ]}, define A := {xI | I ∈ A}.

Using our notation above, we can prove the following theorem.

Theorem 3.6.6. — For C a non-zero integral ideal, p a prime ideal

that is relatively prime to C , and β ∈ p−1C , we have

Z (β, p,C ) =







∑

u∈U (p) Z (uβxp, p) if β /∈ C

f (p)Z (0, p) if β ∈ C

In order to prove this, however, we will first need the following lemmas.
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Lemma 3.6.7. — Given two elements x and y ∈ C n, n ≥ 0, x ≡
y (mod pC n) if and only if x ≡ y (mod p).

Proof. — Since x ≡ y (mod pC n), then x − y is in pC n and is therefore

in p, so x ≡ y (mod p).

Conversely, suppose x ≡ y (mod p). Then x − y ∈ p, but we also

know that x − y ∈ C n because both x , y ∈ C n . As x − y is in both

p and C n , it is in the intersection of p and C n . We know that p and

C are relatively prime, so p and C n are relatively prime, which means

that their intersection is in fact their product. We conclude that x ≡
y (mod pC m).

Lemma 3.6.8. — Given an element y in K×, the product yxp is in pC n

if and only if y is an element of C .

Proof. — If y is in C , then yxp is an element of (pC )(C n−1) = pC n .

If yxp is an element of pC n , then (yxp) = I pC n, for some non-zero

integral ideal I . Therefore (y) = Ix−1
p C n−1pC = I p−1pC so that (y) =

IC . We conclude y ∈ IC , which implies that y ∈ C .

Lemma 3.6.9. — Multiplication by xp is an isomorphism from p−1C /C

to C n/pC n .

Proof. — Given some β in p−1C , we know that xpβ is in pC n−1p−1C ,

which is equal to C n , so that multiplication by xp is a map from p−1C to

C n . Let b be an element of C n . Then x−1
p b is an element of p−1C 1−nC n =

p−1C , so that multiplication by xp is surjective.
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By Lemma 3.6.8, the product yxp is in pC n if and only if y is in C ,

so that x−1
p pC n is C , so the kernel of the composition of multiplication

by xp and taking quotienting by pC n is the ideal C . The isomorphism

follows.

We can now begin the proof of Theorem 3.6.6.

Proof. — (Proof of Theorem 3.6.6) Using the elements defined above, we

can rewrite the equation

I = (β + y)−1p−1C

as

x−1
I C n = (β + y)−1x−1

p C n−1C .

The above statement on ideals implies that

uxI = βxp + yxp for some u ∈ O
×
K ,

a statement on elements. Note that both uxI and βxp are in C n and that

yxp is in pC n if and only if y is in C by Lemma 3.6.8. Therefore, the

statement that there exists some

y ∈ C such that I = (β + y)−1p−1C

is equivalent to saying

uxI ≡ βxp (mod pC n) for some u ∈ O
×
K .
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We know from Lemma 3.6.8 that this last condition is equivalent to

xI ≡ u ′βxp (mod p) for some u ′ ∈ O
×
K .

Note that β is in C if and only if βxp ≡ 0(mod pC n), which implies that

uxI ≡ 0(mod pC n), which is true if and only if xI ≡ 0(mod p) by Lemma

3.6.7. Since there exists an element y in C such that I = (α+ y)−1p−1C

if and only if xI ≡ 0 (mod p),we conclude that if β is in C , then

Z (β, p,C ) = f (p) |{I ∈ A : ∃ y ∈ C such that (β + y)−1p−1C = I }|

= f (p) |{xI ∈ A : xI ≡ 0 (mod p)}|= f (p)Z (βxp, p).

If β is not in C , this means there exists some y in C such that I =

(β + y)−1p−1C if and only if xI ≡ uβxp (mod p) for some u ∈ O
×
K . We

conclude that if β is not in C , then

Z (β, p,C ) =|{I ∈ A : ∃ y ∈ C such that (α + y)−1p−1C = I }|

=|{xI ∈ A : xI ≡ uβxp for some u ∈ O
×
K}|

=
∑

u∈U (p)

|{xI ∈ A : xI ≡ uβxp (mod p)}|=
∑

u∈U (p)

Z (uβxp, p).

Now that we understand the function Z (β, p,C ) better, we can begin

to get a grip on
∑

β∈p−1C/C

(

Z (β,p,C )
f (p)

− |A|
Nm(p)

)2

.
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Theorem 3.6.10. — Let C be a non-zero integral ideal, and let A be a

finite collection of ideals, A ⊂ E ∩ [C n ]. Let p be a prime ideal and let p

and C be relatively prime. Then

∑

β∈p−1C/C

(

Z (β, p,C )

f (p)
− | A |

Nm(p)

)2

≤
∑

α (mod p)

(

Z (α, p) − | A |
Nm(p)

)2

.

Proof. — From the above, if β is in C , then

(

Z (β, p,C )

f (p)
− | A |

Nm(p)

)2

=

(

f (p)Z (0, p)

f (p)
− | A |

Nm(p)

)2

,

which equals

(

Z (0, p)− | A |
Nm(p)

)2

.

If β is not in C , then

(

Z (β, p,C )

f (p)
− | A |

Nm(p)

)2

=

(
∑

u∈U (p) Z (uβxp)

f (p)
− | A |

Nm(p)

)2

.

We can rewrite the right hand side as





∑

u∈U (p)

(

Z (uβxp, p)

f (p)
− | A |

f (p)Nmp

)





2

,

which equals

1

(f (p))2





∑

u∈U (p)

(

Z (uβxp, p) − | A |
Nm(p)

)





2

.
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If we apply Cauchy-Schwartz, we see that the above is less than or

equal to

1

(f (p))2

∑

u∈U (p)

f (p)

(

Z (uβxp, p) − | A |
Nmp

)2

=
1

f (p)

∑

u∈U (p)

(

Z (uβxp, p) − | A |
Nmp

)2

.

Summing up over all non-zero classes β in p−1C /C , yields

∑

β (mod C )

β 6≡ 0 (mod C )

(

Z (β, p,C )

f (p)
− | A |

Nmp

)2

≤ 1

f (p)

∑

β (mod C )

β 6≡ 0

∑

u∈U (p)

(

Z (uβxp, p) − | A |
Nmp

)2

=
1

f (p)

∑

u∈U (p)

∑

β (mod C )

β 6≡ 0

(

Z (uβxp, p) − | A |
Nmp

)2

.

The inner sum is independent of choice of u so that the above is equal

to

1

f (p)
f (p)

∑

β (mod C )

β 6≡ 0

(

Z (βxp, p) − | A |
Nmp

)2

,

which can be further simplified to

∑

β (mod C )

β 6≡ 0

(

Z (βxp, p) − | A |
Nmp

)2

=
∑

α (mod p),

α 6≡ 0

(

Z (α, p) − | A |
Nm(p)

)2

93



by Lemma 3.6.9. Finally, by considering both cases at once, we get

∑

β∈p−1C (mod C )

(

Z (β, p,C )

f (p)
− | A |

Nm(p)

)2

≤
∑

α (mod p)

(

Z (α, p)− | A |
Nm(p)

)2

.

Theorem 3.6.11. — (Large Sieve with Respect to C)

Let A and P be finite sets of fractional ideals, with A ⊂ E ∩ [C n ] and

P ⊂ {p : p is prime, [p−1] = [C n−1]. If X = maxI∈A Nm(I−1) and Q =

maxp−1∈P Nm(p), then

∑

p∈P

Nm(p)
∑

β∈p−1C/p

(

Z (β, p,C )

f (p)
− | A |

Nm(p)

)2

<< (Q2 + X )|A| .

The implied constant depends only on K , the ideal C , and on n.

Proof. — We know from Theorem 3.6.10 that

∑

β∈p−1C (mod C )

(

Z (β, p,C )

f (p)
− | A |

Nm(p)

)2

≤
∑

α (mod p)

(

Z (α, p)− | A |
Nm(p)

)2

.

This means that

∑

p∈P

Nm(p)
∑

β∈p−1C (mod C )

(

Z (β, p,C )

f (p)
− | A |

Nm(p)

)2

≤
∑

p∈P

Nm(p)
∑

α (mod p)

(

Z (α, p)− | A |
Nm(p)

)2

.

The maximum norm of any element in A is

maxx∈ANm(x ) = maxI∈ANm(xI ) = Nm(C n)X .
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Applying the large sieve, we know that

∑

p∈P

Nm(p)
∑

α (mod p)

(

Z (α, p) − | A |
Nm(p)

)2

<< (Q2 + Nm(C )nX ) |A| .

The sizes of A and A are the same, so that

∑

p∈P

Nm(p)
∑

α (mod p)

(

Z (α, p) − | A |
Nm(p)

)2

<< (Q2 + Nm(C )nX ) |A|,

where the implied constant only depends on the number field K . When

we put this together with the earlier inequality, we see that

∑

p∈P

Nm(p)
∑

β∈p−1C (mod C )

(

Z (β, p,C )

f (p)
− | A |

Nm(p)

)2

<< (Q2 + X ) |A|,

with the implied constant now depending on both the choice of number

field K , C , and n.

Harper did not use the large sieve in his paper, so much as a corollary

of the large sieve. In order to state our version of the corollary, we need

the following definition.

Definition 3.6.12. — Let ω(p) := |{[α] ∈ p−1C /C | Z (α, p,C ) = 0}| .

Corollary 3.6.13. — Let A and P be finite sets of fractional ideals,

with A ⊂ E ∩ [C n ] and P ⊂ {p | p is prime, [p−1] = [C n−1]}. If X =
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maxI∈A Nm(I−1) and Q = maxp−1∈P Nm(p), then

∑

p∈P

ω(p)

Nm(p)
<<

Q2 + X

|A | ,

where the implied constant depends only on K , C , and n.

Proof. — We know from Theorem 3.6.11 that

∑

β∈p−1C/C

(

Z (β, p,C )− |A |
Nm(p)

)2

≥
∑











β ∈ p−1C/C

Z (α, p,C ) = 0











(

Z (α, p,C )− | A |
Nm(p)

)2

=
|A |2 ω(p)

Nm(p)2
.

Since the quantity |A|2ω(p)
Nm(p)2

is less or equal to than

∑

β∈p−1C (mod C )

(

Z (α, p,C )− | A |
Nm(p)

)2

,

we know that

∑

p∈P

Nm(p)
| A |2 ω(p)

Nm(p)2
<< (Q2 + X ) |A|

and therefore
∑

p∈P

| A |2 ω(p)

Nm(p)
<< (Q2 + X ) |A| .

We conclude that
∑

p∈P

ω(p)

Nm(p)
<<

Q2 + X

|A| .
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3.7. Growth results

We need the large sieve in order to look at the growth of the sets

Bi ,C ,M. In order to do so, we need the following definition.

Definition 3.7.1. — Given the set Bi ,C ,M, let

Bi ,C ,M(x ) := {I ∈ Bi ,C ,M | Nm(I−1) ≤ x},

let

B c
i ,C ,M := {I ∈ E \ Bi ,C ,M | [I ] = [J ] for any J ∈ Bi ,C ,M},

and let

B c
i ,C ,M(x ) := {I ∈ E\Bi ,C ,M | Nm(I−1) ≤ x , [I ] = [J ] for any J ∈ Bi ,C ,M}.

We can now state the section’s main result.

Theorem 3.7.2. — If OK has a unit of infinite order, if [C ] generates

ClK , and if

|Bn,C ,M(x )| >> x

log2 x

for some n ∈ Z+, then E = AC and [C ] is a Euclidean ideal class for

the ring.

Proof. — First we shall prove that if

|Bn,C ,M(x )| >> x

log2 x
,
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then |Bn+1,C ,M(x )|∼ x
hK log x

. Let A be the set Bn,C ,M(x 2), let X ≤ x 2,

and let P be the set B c
n+1,C ,M(x ), so that Q ≤ x . By Corollary 3.6.13,

we know that

∑

p∈P

ω(p)

Nm(p)
<<

Q2 + X

| A | <<
2x 2

x2

log2(x2)

=
2x 2

x2

2 log2(x)

<< log2(x ).

Note that if I is in B c
n,C ,M, then there is some x in IC \ C such that

there is no y in C such that (x + y)−1IC is in Bn−1,C ,M. Given any

u ∈ O
×
K , we know that (ux + uy)−1IC = (x + y)−1IC and that uy is in

C . Therefore, if Z (x , p−1,C ) is zero, then so is Z (ux , p−1,C ) for any unit

u. This means that if there is one x in p−1C \ C such that Z (x , p) = 0,

then there are at least f (p) cosets with elements e such that Z (e, p) = 0,

and the function ω(p) is divisible by f (p).

If OK has infinitely many units, then

|{p | Nm(p) ≤ x and f (p) ≤ Nm(p)
1

2
−ε}| << x 1−2ε

by Theorem 2.3 and therefore

|{p | Nm(p) ≤ x and f (p) ≤ Nm(p)
1

2
−ε}| = o

(

x

log x

)

.

The above estimate implies that

∑

p−1 ∈ Pc(x)

f (p) > Nm(p)
1

2
−ε

ω(p)

Nm(p)
≥
∑

p−1 ∈ Pc(x)

f (p) > Nm(p)
1

2
−ε

f(p)

Nm(p)
>

|{p ∈ B c
n+1,C ,M : f (p) > Nm(p)

1

2
−ε}|

x
1

2
+ε

.
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By combining this with the first bound in the proof, we know that

log2(x ) >>
|{p ∈ B c

n+1,C : f (p) > Nm(p)
1

2
−ε}|

x
1

2
+ε

.

Multiplying both sides by x
1

2
+ε yields

|{p ∈ B c
n+1,C ,M : f (p) > Nm(p)

1

2
−ε}| = o

(

x

log(x )

)

.

Since the size of B c
n+1,C ,M(x ) is equal to

|{p ∈ B c
n+1,C (x ) | f (p) > Nm(p)

1

2
−ε}| + |{p ∈ B c

n+1,C ,M(x ) | f (p) ≤ Nm(p)
1

2
−ε}|,

we know the size of B c
n+1,C ,M(x ) is less than or equal to

|{p ∈ B c
n+1,c(x ) | f (p) > Nm(p)

1

2
−ε}| + |{p | Nm(p) ≤ x , f (p) ≤ Nm(p)

1

2
−ε}|

and can thus conclude |B c
n+1,C ,M(x )|= o

(

x
log(x)

)

and

|Bn+1,C ,M(x )|∼ x

hK log x
.

Suppose that p is prime, that [p] = [C n+2], and that x is an element

of p−1C \ C . There is a positive density of prime ideals q such that

q−1 = (x + y)−1p−1C for some y in C by Theorem 3.1.18. The density

of primes in [C n+1] in the set of all primes is 1
hK

, which is the same as

the density of primes q such that q−1 is in Bn+1,C ,M, so there exists some

prime q in Bn+1,C ,M such that q−1 = (x +y)−1p−1C for some y in C . We

conclude that p−1 is in Bn+2,C ,M.
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This implies that Bn+2,C ,M is equal to E ∩ [C−n−2]. We then apply

Theorem 3.3.3 and conclude that [C ] is a Euclidean ideal class.
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