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ABSTRACT

We give necessary and sufficient conditions for a locally semi-algebraic space to be homeomorphic

to a simplicial complex. Our proof does not require the space to be embedded anywhere, and it requires

neither compactness nor projectivity of the space. A corollary is that every real or complex algebraic

variety is triangulable, a result which does not seem to be available in the literature when the variety

is neither projective nor real and compact.
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Chapter 1

Introduction

We will work exclusively over the real numbers. The goal of the present thesis is to prove the

following theorem.

THEOREM. Let X be a locally semi-algebraic space with its strong topology.

(1) X is homeomorphic to a simplicial complex if and only if X is Hausdorff, paracompact, and

locally compact.

(2) When X is homeomorphic to a simplicial complex, X admits a semi-algebraic triangulation

which is unique up to semi-algebraic subdivision.

The new feature of this theorem is that X is not assumed to be embedded anywhere. The theorem

is known when X is a compact semi-algebraic set [27]. If “simplicial complex” is replaced by “union of

open simplices,” then an analogous (non-embedded) theorem is known [10].

The theorem is proved in 3.30, 4.5, and 4.6. A corollary of this is that every real or complex

algebraic variety and every locally compact constructible subset of a real or complex algebraic variety

is triangulable. As far as we are aware, there is no proof in the literature of this fact when the variety

is not either projective or real and compact. In the rest of the introduction, we will explain some of

the prior work on triangulation and the definitions of the terms above, and we will give a sketch of

the proofs of the results above.

The original motivation for triangulation came from Poincaré’s introduction of homology theory

in [35]. Poincaré’s goal was to study period integrals on manifolds, and in his original work on homol-

ogy, he depended on being able to move cycles into general position so that he could intersect them.

However, his proofs had gaps. (Eventually, Hardt [18] proved that there is a homology theory for

real analytic cycles that satisfies the Eilenberg-Steenrod axioms.) After these were pointed out to

1



Poincaré, he introduced in [36] the idea of triangulation. A triangulation is a homeomorphism from a

simplicial complex to a topological space. If a space is triangulable, that is, if it admits a triangulation,

then its homology is the simplicial homology of the simplicial complex, and for simplicial homology,

Poincaré could give correct proofs of his results.

That left two problems. The first problem was to show the triangulability of a large class of

interesting spaces. This was necessary to show that the simplicial techniques applied to interesting

spaces. The second problem was to show that the triangulation was essentially unique. This would

make it possible to define invariants of spaces in terms of invariants of triangulations.

In [36, §XI], Poincaré attempted to triangulate subsets of Euclidean space cut out by analytic

equalities and inequalities. These are now called semi-analytic sets. Suppose that X is such a set.

Poincaré’s method was to choose a hyperplane, project X onto the hyperplane, triangulate the image

Y by induction, and lift the triangulation back to X . There are several difficulties with this approach.

First, it is not clear that the projection of a semi-analytic set is a semi-analytic set. Second, the

projection needs to be chosen well. If the projection map has a positive dimensional fiber, then the

triangulation of Y does not contain enough information to triangulate the positive dimensional fiber.

Third, the triangulation of Y also needs to be chosen well. This is because the lifting is done by

stratifying X so that each stratum projects isomorphically to Y . A simplex of Y that is contained in

the image of a stratum can be lifted to that stratum. To ensure that this happens for every simplex

and every stratum, the triangulation of Y needs to be aware of the structure of X .

Poincaré did not give all the details necessary to turn his ideas into a proof. Despite this,

van der Waerden claimed in a 1930 paper on Schubert calculus [47] that Poincaré’s procedure worked

for compact subsets of Euclidean space cut out by polynomial equalities and inequalities. These are

now called compact semi-algebraic sets. van der Waerden presented the procedure as an appendix

barely longer than a page, and he asserted mostly without proof that the difficulties mentioned above

can be solved. In order to show that this method applies to complex projective varieties, he noted

that complex projective n-space can be embedded in real Euclidean 2n2-space as the set of all trace 1

complex Hermitian matrices:

(0.1) [z0 : · · · : zn] 7→
( zi z j∑

k‖zk‖2

)
1≤i, j≤n

.
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This embedding is originally due to Mannoury [29], whose goal was to attach geometric meaning to

points with imaginary coordinates and points at infinity. It is real algebraic and its image is compact.

Therefore it embeds complex projective varieties as compact real algebraic subsets of Euclidean space,

where Poincaré’s triangulation procedure applies.

The first rigorous proofs of triangulation were given for C1-manifolds in the 1930s and 40s by

Cairns [7] and Whitehead [49], who both used an approximation procedure. This left the triangulation

of more singular spaces open.

An attempt to make Poincaré’s methods rigorous was made in 1930 by Lefschetz [25] and in

1933 by Lefschetz and Whitehead [26]. To solve the third difficulty, they showed that given a set of

real analytic subvarieties, there was around every point of the variety a triangulation in which each

subvariety was a union of simplices. Then, rather than triangulating only Y at the inductive step,

one simultaneously triangulates Y and the family of images of strata of X . The resulting simplices

are each contained in the images of strata, so they can be lifted. Koopman and Brown [24] proved in

1932 that a real analytic variety is locally triangulable. To solve the second difficulty, they showed

that good projections always existed by a Baire category argument.

Solving the first difficulty, that of showing that semi-algebraicity was preserved under projection,

took the longest. The proofs mentioned above tried to prove this by showing that the equations for

the variety could be written in a special form where projection was possible. No rigorous proof existed

until Tarski [45] in 1948 and Seidenberg [40] in 1954 proved using quantifier elimination that the im-

age of a semi-algebraic set under a polynomial map is semi-algebraic. This solved the first difficulty

above in the semi-algebraic case. In 1964, Łojasiewicz [27] and Giesecke [14] both proved that the

same is true for semi-analytic sets and used this to prove triangulability of semi-analytic sets. Ło-

jasiewicz noted that his proof also gave triangulability of semi-algebraic sets. Hironaka [20] in 1975

and Hardt [19] in 1976 triangulated sub-analytic sets, which are a generalization of semi-analytic

sets. Because of Grauert’s theorem [15] on analytic embeddings of analytic manifolds, all of these im-

ply simultaneous triangulation of a real analytic manifold and a locally finite family of semi-analytic

subvarieties.

In 1975, Hironaka [20] adapted Łojasiewicz’s work to the semi-algebraic setting, producing the

best-known proof of triangulation of projective algebraic varieties. Replacing Mannoury’s embedding
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of projective space with a semi-algebraic version of [11, Proposition 8.8] allows one to triangulate any

complete real or complex variety, but this proof does not seem to have been published anywhere. For

non-complete varieties, however, these techniques fail. They need to choose a finite stratification of X

in order to ensure that the intersection of any family of strata is a semi-algebraic set, and therefore

they produce only finite simplicial complexes. Finite simplicial complexes are compact, so the method

cannot not directly apply to non-complete varieties.

The remedy to this is to glue local triangulations to give global triangulations. That this is pos-

sible is not obvious. Siebenmann [42, p. 138] found an example of a compact locally triangulable

topological space which is not triangulable. Kirby and Siebenmann [23] proved in 1969 that there is

an obstruction in H4(M,Z/2Z) to a topological manifold being a piecewise linear manifold, that is, a

manifold whose transition functions are piecewise-linear. In 1980, Galewski and Stern [13] showed

that a topological manifold admits a triangulation if and only if a certain cohomology class related to

the Kirby-Siebenmann obstruction vanishes. Freedman’s E8-manifold [12] is an example of a man-

ifold where this class does not vanish; see [1]. Consequently, topological manifolds have non-trivial

obstructions to triangulability.

Our theorem shows that there is no such obstruction in the semi-algebraic setting. (In particu-

lar, the E8-manifold is not semi-algebraic.) The most natural objects to work with for this question

are locally semi-algebraic spaces, which were introduced by Delfs and Knebusch [10]. Call a locally

ringed space an affine semi-algebraic space if it is isomorphic to a semi-algebraic set with its sheaf of

semi-algebraic morphisms to R.1 Then a locally semi-algebraic space is a locally ringed space locally

isomorphic to an affine semi-algebraic space. These spaces turn up naturally. For example, the univer-

sal covering of an algebraic variety is a locally semi-algebraic space. The existence of triangulations of

semi-algebraic sets implies that a locally compact locally semi-algebraic space is locally triangulable.

We show that such spaces are globally triangulable and that the local compactness hypothesis cannot

be dropped.

Delfs and Knebusch showed that with a more relaxed definition of a simplicial complex, the local

compactness hypothesis can be weakened. Rather than considering complexes made from closed sim-

plices, they considered complexes made from open simplices. Then it becomes possible to triangulate

1In fact, this is not strictly correct because real-valued semi-algebraic morphisms do not form a sheaf. However, there are
standard ways around this problem. See section 2.
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non-compact varieties by letting their missing points at infinity correspond to the missing faces of the

open simplices. This is done in [10, Chapter 2, Theorem 4.4], which triangulates (in this sense) any

Hausdorff paracompact locally semi-algebraic space.2 For algebraic varieties, the same result follows

quickly from Nagata’s compactification theorem. One begins with a variety, chooses a compactification

by Nagata’s theorem, triangulates the compactification in such a way that the boundary corresponds

to a union of simplices of the triangulation, and then removes those simplices. However, Nagata’s

theorem [33, 34] is a difficult result. (For proofs of Nagata’s theorem using modern terminology, see

Conrad [8] or Lütkebohmert [28]. As far as we are aware, this approach to triangulation has never

been written down.)

If one is unwilling to relax the definition of a simplicial complex, then the local compactness

hypothesis cannot be dropped. This is because a locally semi-algebraic space is locally metrizable,

and it is well-known that a simplicial complex is locally metrizable if and only if it is locally compact.

(For completeness, we have included this result in propositions 3.22 and 3.23.) There are other point-

set topological obstructions to triangulability. Simplicial complexes are always Hausdorff, and locally

finite simplicial complexes are paracompact. We summarize these restrictions in theorem 3.30.

In theorem 4.5 we show that being Hausdorff, paracompact, and locally compact are sufficient

conditions for triangulability. Our proof works as follows. First, in proposition 4.4, we show that

an affine semi-algebraic space can be triangulated. If it is compact, this is the usual triangulation

theorem for semi-algebraic sets. Otherwise, we compactify the space and triangulate the compactifi-

cation. To remove the boundary, we perform repeated barycentric subdivisions. These subdivide the

simplicial complex infinitely often at the boundary, but only finitely many times at any other point.

This produces a bijective continuous map from a simplicial complex to the space. After removing the

boundary, the map is a homeomorphism exactly on the set of points where the space is locally compact.

Second, we glue local triangulations to produce a global triangulation. Theorem 2.61 shows that

we can choose a cover of a paracompact locally compact locally semi-algebraic space X by compact

affine subspaces. This cover has the additional property that each of the subspaces in the cover meets

only finitely many other subspaces. To produce a global triangulation, we well-order the subspaces

and proceed recursively. There are two interesting steps to this procedure. The first is to show that

2The theorem is stated for a regular paracompact space, but we can apply a standard result in point-set topology [31, Theorem
41.1] to see that a Hausdorff and paracompact space is regular and even normal.
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given a triangulation of a subspace Y of X and an element K of the cover, there is a way of extending

the triangulation to the union of Y and K . The second is to show that given an ascending chain of

subspaces of X , each having a triangulation, there is a triangulation of the union of the subspaces.

The first step is done using theorem 4. This theorem takes a simplicial complex, a subcomplex,

and a subdivision of the subcomplex, and it produces a subdivision of the larger complex with two

properties. The first is that the subdivision of the larger complex contains an isomorphic copy of the

subdivision of the subcomplex. The second is that the subdivision of the larger complex is the trivial

subdivision on any simplex not meeting the subcomplex. It is the first property that allows us to

extend the triangulation of Y to K . The triangulation of Y determines a triangulation of Y ∩K . We

choose a triangulation of K which refines this triangulation of Y ∩K using the triangulation theorem

for affine semi-algebraic spaces. This determines a subdivision of the triangulation of Y ∩K , which

we can extend to Y using theorem 3.36. Because this subdivision agrees with the triangulation of K

on Y ∩K , we may take the union of the two triangulations to produce a triangulation of Y ∪K .

The second step, of forming an ascending union, is a consequence of the non-subdivision property

of theorem 4 and of the fact that each K meets only finitely many other elements in the cover. Because

of this finiteness, after finitely many steps, every element of the cover that meets K has been adjoined

to Y . After this, Y does not change in a neighborhood of K . The non-subdivision property therefore

implies that the triangulation of Y does not change in a neighborhood of K . Consequently the trian-

gulation stabilizes near K . Taking the ascending union of the stable part of the triangulations is easy

because it is just an ascending union of simplicial complexes, and this constructs a triangulation of X .

Next, we turn to uniqueness. Triangulations are obviously not unique, because whenever the

space is positive dimensional, the triangulation can be subdivided to give a different triangulation.

This is a trivial sort of non-uniqueness, and we wish to ignore it. To be precise, suppose that C and D

are simplicial complexes and that s : D → C is an affine subdivision (or subdivision for short), meaning

that s is a homeomorphism, maps each simplex of D into a simplex of C, and is an affine transfor-

mation on each simplex of D. If τ : C → X is a triangulation, declare τ◦ s to be equivalent to τ. This

generates an equivalence relation whose equivalence classes are called piecewise-linear structures, or,
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to distinguish them from a variant that will occur later, affine piecewise-linear structures. A space

with a choice of PL structure is called a PL space.3

Any positive dimensional PL space admits many PL structures. For example, consider [0,1], the

convex hull of the points 0 and 1. Its standard PL structure is given by the identity map x 7→ x. It has

a second PL structure given by x 7→ x2 and a third given by x 7→ (ex −1)/(e−1). However, up to isotopy

all three structures are identical.

The Hauptvermutung of Steinitz [44] and Tietze [46] predicted that this would always be the

case: Every homeomorphism of PL spaces would be homotopic to a simplicial isomorphism. The first

counterexample was constructed by Milnor [30]. Starting with the lens spaces L(7,1) and L(7,2), he

constructed two homeomorphic finite simplicial complexes X1 and X2. A finite simplicial complex has

an invariant called the torsion which is stable under refinement. If the homeomorphism X1 → X2 was

homotopic to a simplicial isomorphism, X1 and X2 would have the same torsion. Milnor showed that

X1 and X2 had different torsion, and therefore no such homotopy exists.

On PL manifolds, isotopy classes of PL structures are well-understood by results of Kirby and

Siebenmann. In the same paper [23] where they introduced the obstruction in H4 mentioned above,

they also proved that when the obstruction vanishes, the isotopy classes of PL structures which are

PL manifolds are in one-to-one correspondence with H3(M,Z/2Z). A particularly important situation

is the isotopy classification of PL manifolds homeomorphic to the n-torus, n ≥ 5, which was done

independently by Hsiang and Shaneson [21], C. T. C. Wall [48], and A. Casson (unpublished). For

these manifolds, H3(Tn,Z/2Z) is isomorphic to the orbit space (
∧n−3 Zn ⊗Z/2Z)/GLn Z. This is non-

trivial, and hence there are many non-standard PL structures on tori of dimension at least 5. This

is particularly relevant to the algebraic setting because complex abelian varieties are topological tori,

and hence there are algebraic varieties with multiple PL structures, even up to isotopy.

However, it follows from the triangulation of semi-algebraic sets that Tn, and in fact any com-

plete variety, has essentially only one triangulation in which all the simplices are semi-algebraic.

Given any two triangulations, one can triangulate the variety and the family of all simplices occuring

in either of the two triangulations. This produces a third triangulation which is finer than both of the

3This definition of a PL space is similar to the definition of a triangulation given in [38, p. 17], but it uses general homeomor-
phisms instead of PL homeomorphisms. Another approach to general piecewise-linear topology is that of Zeeman [50, Exposé
2], who introduced a notion he called a polyspace. Hudson [22, III.2] called the same object a PL space. All our PL spaces are
polyspaces. By [22, p. 82], every Hausdorff second countable locally compact polyspace is one of our PL spaces.
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original triangulations. The map from the third triangulation to either of the original triangulations

satisfies all the conditions to be a subdivision except that it need only be semi-algebraic on simplices,

not affine. We call such a map is a semi-algebraic subdivision, and we call the equivalence classes

of triangulations with respect to semi-algebraic subdivision semi-algebraic PL structures. The trian-

gulation theorem says that there is a unique semi-algebraic PL structure all of whose simplices are

semi-algebraic.

It is natural to ask how semi-algebraic PL structures are related to PL structures. For example,

are their isotopy classes the same? On compact semi-algebraic sets, a theorem of Shiota [41, Proposi-

tion 3.9 and Remark 3.10] implies that a semi-algebraic subdivision is semi-algebraically isotopic to

an affine subdivision. Consequently, on a compact semi-algebraic set, isotopy classes of semi-algebraic

PL structures are the same as isotopy classes of PL structures.

In particular, manifolds such as the torus admit exotic semi-algebraic PL structures. Each of

these is a homeomorphism h : C → Tn from a finite simplicial complex such that the image of at least

one simplex is not semi-algebraic. But because C is a finite simplicial complex, it is itself a semi-

algebraic set, so h is a homeomorphism of semi-algebraic sets which is not isotopic to a semi-algebraic

isomorphism. We conclude that the torus admits exotic semi-algebraic structures, in other words that

there is a sheaf of local rings O on Tn such that (Tn,O) is a locally semi-algebraic space but O is

not isotopic to the usual structure sheaf of locally semi-algebraic functions on Tn. Furthermore, the

isotopy classes of semi-algebraic structures are in one-to-one correspondence with the isotopy classes

of PL structures. It seems reasonable to conjecture that the same is true on non-compact spaces.

CONJECTURE. Let X be a Hausdorff paracompact locally compact topological space. Then the

isotopy classes of semi-algebraic structures on X are in one-to-one correspondence with the isotopy

classes of PL structures on X .

The conjecture would follow if Shiota’s theorem were true on a locally finite simplicial complex,

not just a finite simplicial complex. Our theorem implies that when X is locally semi-algebraic, it

admits at least one isotopy class of PL structures.

It would be interesting to classify the isotopy classes of semi-algebraic structures on a locally

semi-algebraic space.
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The thesis is structured as follows. In section 2, we describe the foundations of semi-algebraic

geometry, that is, we describe semi-algebraic sets, affine semi-algebraic spaces, locally semi-algebraic

spaces, and semi-algebraic spaces. Section 3 is about piecewise linear topology. In particular, sub-

section 2 proves the results in point-set topology that we use in 3 to give restrictions on the kinds

of locally semi-algebraic spaces that are triangulable. Subsection 4 gives the main technical result

we will need about simplicial complexes, a theorem that allows us to extend a subdivision. Section 4

proves the main triangulation theorem.
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Chapter 2

Locally semi-algebraic and semi-algebraic spaces

Over an ordered field such as the real numbers, it is natural to allow sets defined by polynomial

inequalities as well as those defined by polynomial equalities. These are called semi-algebraic sets,

and they are the subject of section 1. A basic reference for them is [4].

Semi-algebraic sets can be globalized in two ways. The first way is through semi-algebraic spaces

[9]. These are spaces which are covered by finitely many semi-algebraic sets. We recall their theory

in section 2. The second way is through locally semi-algebraic spaces [10]. These are spaces which

are covered by semi-algebraic spaces, and we recall their theory in section 3. In section 4, we recall

the theory of dimension for locally semi-algebraic spaces. Finally, in section 5, we give a precise

description of the semi-algebraic structures discussed in the introduction.

1. Semi-algebraic sets

DEFINITION 2.1. A semi-algebraic set is a subset of Rn which is a finite union of sets cut out by

polynomial equalities and inequalities. That is, it is a set X ⊆Rn such that there are natural numbers

r and s1, . . . , sr and polynomials f i j and g i j, where 1≤ i ≤ r and 1≤ j ≤ si, such that:

(1.1) X =
r⋃

i=1

si⋂
j=1

({x | f i j(x)= 0}∪ {x | g i j(x)> 0}).

Semi-algebraic sets were first introduced under that name by Łojasiewicz [27]. They had been

studied earlier by Brakhage [6] and had appeared implicitly in the work of Tarski [45].

Semi-algebraic sets constitute the smallest Boolean algebra of subsets of Rn containing sets de-

fined by polynomial inequalities { f > 0}. That is, they are the smallest family containing sets de-

fined by polynomial inequalities and closed under finite union, finite intersection, and complemen-

tation. It is clear from the definition that semi-algebraic sets are closed under finite unions and
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finite intersections, and to see that they are closed under complementation, notice that Rn \ { f >
0} = {− f ≥ 0} = {− f > 0}∪ { f = 0} and Rn \ { f = 0} = { f > 0}∪ {− f > 0}. For the converse, notice that

{ f = 0} = Rn \ ({ f > 0}∪ {− f > 0}). It is also clear that if X ⊆ Rn and Y ⊆ Rm are semi-algebraic sets,

then X ×Y ⊆ Rn+m is a semi-algebraic set because it is cut out by the equations and inequalities in

the first n variables that define X and the equations and inequalities in the next m variables that

define Y .

We give a semi-algebraic set the Euclidean or strong topology, that is, the subspace topology with

respect to the metric topology on Rn. In subsection 2 we will discuss another topology, the semi-

algebraic topology, but topological properties such as openness, closedness, and compactness will refer

to the Euclidean topology unless we explicitly say otherwise.

LEMMA 2.2. A semi-algebraic set has a basis consisting of open semi-algebraic subsets.

PROOF. If x ∈U ⊆ X ⊆ Rn, where X is a semi-algebraic set and U is open in X , then there is an

open ball B in Rn such that B∩ X ⊆U . B∩ X is an open semi-algebraic set. �

DEFINITION 2.3. Let X ⊆ Rn and Y ⊆ Rm be semi-algebraic sets. A semi-algebraic morphism

f : X →Y is a continuous function such that the graph of f is a semi-algebraic subset of Rn ×Rm.

A semi-algebraic morphism in the above sense is a continuous semi-algebraic map in the sense of

[4, Definition 2.2.5]. It will follow from corollary 2.8 that semi-algebraic sets (considered with their

embeddings) and semi-algebraic morphisms form a category.

Any rational function is a semi-algebraic morphism wherever it is defined, and in particular any

regular morphism of affine algebraic varieties is a semi-algebraic morphism. However, many more

functions are semi-algebraic than are algebraic. For example, the graph of f (x) = p
x is the semi-

algebraic set {(x, y) | y2 = x, y≥ 0}, so f is a semi-algebraic morphism.

The most fundamental theorem on semi-algebraic sets is that they are closed under polynomial

maps:

THEOREM 2.4 (Tarski [45], Seidenberg [40]). If f : Rn → Rm is a polynomial map and X ⊆ Rn is

a semi-algebraic set, then f (X ) is semi-algebraic.
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The Tarski-Seidenberg theorem is effective, meaning that the defining equations for f (X ) can be

computed from those for X . See [3, Algorithm 14.20] for a primitive recursive algorithm.

LEMMA 2.5 ([9, p. 181]). Let X be a semi-algebraic set. Then the diagonal ∆ : X → X × X is a

semi-algebraic morphism.

PROOF. The graph of ∆ is the intersection of X × X × X with the semi-algebraic set {(x, y, z) | x =
y= z}. �

LEMMA 2.6 ([9, Theorem 6.12]). Let X ⊆ Rn, X ′ ⊆ Rn′
, Y ⊆ Rm, and Y ′ ⊆ Rm′

be semi-algebraic

sets, and let f : X → Y and f ′ : X ′ → Y ′ be semi-algebraic morphisms. Then f × f ′ : X × X ′ → Y ×Y ′ is

a semi-algebraic morphism.

PROOF. The graph of f× f ′ is {(x, x′, y, y′) | y= f (x), y′ = f ′(x′)}, which is the intersection of {(x, x′, y, y′) |
y= f (x)}∼=Γ f ×Rn′ ×Rm′

and {(x, x′, y, y′) | y′ = f (x′)}∼=Γ f ′ ×Rn ×Rm. �

LEMMA 2.7 ([4, Proposition 2.2.7]). Let X ⊆Rn and Y ⊆Rm be semi-algebraic sets and f : X →Y

be a semi-algebraic morphism. Then f (X ) is a semi-algebraic set.

PROOF. Γ f , the graph of f , is a semi-algebraic set by assumption, so we apply theorem 2.4 to the

second projection Γ f ⊆Rn ×Rm →Rm. �

COROLLARY 2.8 ([4, Proposition 2.2.6]). If X ⊆ Rn, Y ⊆ Rm and Z ⊆ R` are semi-algebraic sets,

and f : X →Y and g : Y → Z are semi-algebraic morphisms, then g ◦ f is semi-algebraic.

PROOF. Write Γ f and Γg◦ f for the graphs of f and g◦ f , respectively. Γg◦ f = {(x, z) | z = (g◦ f )(x)}=
(1X × g)(Γ f ), and by lemma 2.7 this is semi-algebraic. �

LEMMA 2.9 ([4, Proposition 2.2.7]). The preimage of a semi-algebraic set under a semi-algebraic

morphism is a semi-algebraic set.

PROOF. Let X ⊆ Rn, Y ⊆ Rm, and Z ⊆ Y be semi-algebraic sets, and suppose that f : X → Y

is a semi-algebraic morphism. Write f −1(Z) = πX (Γ f ∩ (Rn × Z)), where Γ f is the graph of f and

πX : Rn×Rm →Rn is the first projection. Apply theorem 2.4 to deduce that f −1(Z) is a semi-algebraic

set. �
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The converse of this lemma is false: Semi-algebraicity of a morphism is much stronger than

requiring that the preimage of a semi-algebraic set is semi-algebraic. Notice that the exponential

function exp: R→R is not semi-algebraic, but it is monotone, so the preimage of a semi-algebraic set

under the exponential map is a semi-algebraic set.

LEMMA 2.10 ([4, Proposition 2.2.6]). If X is a semi-algebraic set, then the semi-algebraic mor-

phisms X → R form a ring under pointwise addition and multiplication. An element of this ring is a

unit if and only if it is non-vanishing.

PROOF. Let f : X →R. The map x 7→ −x is a semi-algebraic morphism because its graph is {(x, y) |
x+ y = 0}, so by corollary 2.8, − f is a semi-algebraic morphism. The map x 7→ 1/x is a semi-algebraic

morphism because its graph is {(x, y) | xy−1= 0}, so by corollary 2.8, 1/ f is a semi-algebraic morphism

if it is defined. If f vanishes at some point, then, because multiplication is defined pointwise, f cannot

have an inverse.

If g : X → R, then we apply lemmas 2.5 and 2.6 and corollary 2.8 to see that ( f , g) : X → R2 is a

semi-algebraic morphism because it is the composite of the diagonal map X → X × X and the product

f × g : X × X → R×R. The addition and multiplication maps R2 → R are semi-algebraic morphisms

because their graphs {(x, y, z) | x+ y = z} and {(x, y, z) | xy = z} are cut out by polynomial equations. By

lemma 2.8, f + g and f · g are semi-algebraic morphisms.

The axioms for addition and multiplication are true because they are true pointwise. �

LEMMA 2.11 ([9, Theorem 7.10]). Let S ⊆Rk, X ⊆Rn, and Y ⊆Rm be semi-algebraic sets, and let

f : X → S and g : Y → S be semi-algebraic morphisms. Then the fibered product of sets X × f ,S,g Y ⊆
Rn ×Rm is a semi-algebraic set and is a fibered product in the category of semi-algebraic sets and

semi-algebraic morphisms.

PROOF. The set-theoretic fibered product X ×S Y is {(y, z) ∈ X ×Y | f (y)− g(z) = 0}. The function

f (y)− g(z) : X ×Y →Rk is semi-algebraic by lemma 2.10, and the preimage of 0 under this map equals

X ×S Y . The preimage of 0 is semi-algebraic by lemma 2.9, so X ×S Y is semi-algebraic.

To see that X ×S Y is a fibered product, suppose that W ⊆ Rn is a semi-algebraic set and that

s : W → X and t : W →Y are two semi-algebraic morphisms such that f s = gt. The morphism (s, t) : W →
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Rn ×Rm is the composite of the diagonal morphism W →W ×W and the product s× t, so it is a semi-

algebraic morphism. �

PROPOSITION 2.12 ([4, Proposition 2.2.2]). Let X be a semi-algebraic subset of Rn. Then the

closure, interior, and boundary of X are semi-algebraic sets.

REMARK 2.13. The closure and the interior are not constructed by relaxing strict inequalities to

weak ones and vice versa. [4, pp. 27–28] gives the following example: The closure of {y2 < x2(x−1)}⊆
R2 is not {y2 ≤ x2(x−1)} because the latter set has an extra point at the origin. The proof that closures

and interiors are semi-algebraic instead relies on the fact that the square of the Euclidean distance

function is semi-algebraic.

PROOF. The closure of X can be written as

X = {x | ∀t ∈R ∃y ∈ X such that (‖y− x‖2 < t2 or t = 0)}

If we write π for the projection Rn×Rn×R→Rn×R that sends (x, y, t) 7→ (x, t) and ρ for the projection

Rn ×R→Rn that sends (x, t) 7→ x, then X is equal to

Rn \ρ
(
(Rn ×R)\π

(
{(x, y, t) | y ∈ X and (‖y− x‖2 < t2 or t = 0)}

))
.

π and ρ are polynomial, so this expression and theorem 2.4 shows that X is semi-algebraic. By taking

complements, we deduce that the interior and boundary of X are also semi-algebraic sets. �

PROPOSITION 2.14 ([9, §7, Example 2]). Let X and Y be semi-algebraic sets, and let {Ui} be a finite

cover of X by open semi-algebraic subsets. Suppose that f i : Ui → Y is a semi-algebraic morphism for

each i and that f i|Ui∩U j = f j|Ui∩U j for all i and j. Then there is a unique semi-algebraic morphism

f : X →Y such that f |Ui = f i for all i.

PROOF. There is a unique continuous function f which restricts to f i for all i. The graph of f

is the union of the graphs of { f i}. Since there are only finitely many f i and since the graph of each

f i is a semi-algebraic set, the graph of f is also a semi-algebraic set. Therefore f is a semi-algebraic

morphism. �
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2. Semi-algebraic spaces

Semi-algebraic spaces were introduced in [9] to provide a notion of semi-algebraicity that is inde-

pendent of an embedding. Like schemes or complex analytic spaces, semi-algebraic spaces come with

a structure sheaf. However, semi-algebraic morphisms from a semi-algebraic set to R do not form a

sheaf with respect to the Euclidean topology. Proposition 2.14 guarantees that they form a sheaf with

respect to finite covers, but they do not form a sheaf with respect to infinite covers.

EXAMPLE 2.15. [4, Remark 7.3.3] Define f : R → R by f (x) = |x− 1
2 −bxc|. The graph of f is a

zigzag, and f −1(0) is the set Z+ 1
2 . By [4, Theorem 2.4.5], f −1(0) is not a semi-algebraic subset of R.

Therefore f does not satisfy the conclusion of lemma 2.9, so it is not a semi-algebraic morphism. But

the restriction of f to any bounded interval is a semi-algebraic morphism because its graph is a finite

union of line segments.

This cannot be fixed by keeping the same underlying topological space and using a different topol-

ogy. The problem is that only finite covers should be allowed. There are two methods for repairing this

defect. The first is to introduce a Grothendieck pretopology in which the covering families are finite.

This is the method pursued by Delfs and Knebusch in [9]. As they mention in [10, Appendix A], there

is a second approach which uses real spectra, an ordered analog of prime spectra. This introduces

new generic points into the space, making it compact. This solves the problem posed by example 2.15

by ensuring that all open covers are, in effect, finite. We will not discuss the latter approach further,

except to say that it has been thoroughly worked out by N. Schwartz [39] and that his real closed

spaces are more general objects than Delfs and Knebusch’s locally semi-algebraic spaces.

Because the theory of locally semi-algebraic spaces has already been fully worked out, we provide

proofs only when Delfs and Knebusch do not provide the exact statement we need. Nevertheless we

do not claim any of these statements as new, since they are all obvious in light of the work already

done in [9], and were surely known to Delfs and Knebusch. For statements that appear in [9], we will

provide precise restatements.

Rather than working directly with sites and Grothendieck topologies, Delfs and Knebusch encode

an equivalent set of data in a new object they call a restricted topological space.
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DEFINITION 2.16 ([9, §7, Definitions 1 and 2]). A restricted topological space is a pair (M,S◦(M)),

where S◦(M) is a family of subsets of M called the open subsets, such that the following axioms hold:

(1) The empty set and M are open.

(2) If U and V are open, then U ∪V and U ∩V are open.

A continuous function from one restricted topological space to another is a function such that the

preimage of an open set is open.

The point of this definition is that only finite unions of open sets are assumed to be open. An

infinite union of open sets may no longer be open.

The usual notion of a sheaf carries over easily to restricted topological spaces. That is, a sheaf is

a presheaf which satisfies the normalization axiom that there are no sections over the empty set and

the gluing axiom that compatible sections on a collection of open sets induce a unique section on the

union of the open sets. However, the gluing axiom is now restricted to those covers {Ui}i∈I such that⋃
i∈I Ui is open. Continuous functions induce pullback and pushforward functors on presheaves and

sheaves in the same way as for classical topological spaces. These have the formulas

f∗F (V )=F ( f −1(V )),

f −1G (U)= lim−−→
V⊇ f (U)

G (V ),

where f : X →Y is a continuous function, U ⊆ X and V ⊆Y are open, and F and G are presheaves on

X and Y , respectively. f∗ sends sheaves to sheaves. f −1 does not, just as in the topological situation,

so if G is a sheaf, f −1G is the sheaf associated to the presheaf defined above.

As Delfs and Knebusch comment, the notion of a restricted topological space can also be seen as a

very special example of the abstract machinery of sites and topoi. We call this site the site associated

to the restricted topological space. The objects of the site are the open sets, and the morphisms are

the inclusions. The covering families of an open set U are finite families of open sets {Ui} such that⋃
Ui =U . A sheaf on a restricted topological space is the same as a sheaf on this site. A continuous

function from one restricted topological space to another determines a functor between the associated

sites by sending an open set to its inverse image. We call this functor the functor associated to the

continuous function.
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Recall that a topos is a category of sheaves on a site [2, IV 1.1]. Therefore the topos of the site

associated to a restricted topological space is just the category of sheaves on that space. A (geometric)

morphism of topoi f : E → F is a triple ( f ∗, f∗,φ), where f ∗ : F → E preserves finite limits, f∗ : E → F

is right adjoint to f ∗, and φ is the natural isomorphism of bifunctors defining the adjunction between

f ∗ and f∗ [2, IV 3.1]. A precise statement of the fact that a continuous function between restricted

topological spaces induces pushforward and pullback morphisms is the fact that a continuous function

induces a morphism of topoi between the topoi of the sites associated to the restricted topological

spaces. Above we did not check that f∗ and f −1 were functors or were adjoint. This can be done easily

by invoking the abstract machinery of sites and topoi. Since Delfs and Knebusch do not check this

detail, we include it.

To do this, we show that a continuous function induces a morphism of sites. To be precise, if C

and C ′ are sites, then a functor f : C →C ′ is continuous if for every sheaf F on C ′, F ◦ f is a sheaf on

C [2, III 1.1]. A continuous functor f extends to a morphism of categories of sheaves f s : C̃ → C̃ ′ [2,

III 1.2]. f is a morphism of sites C ′ → C (not C → C ′) if it is continuous and f s is left exact, and in

this case, f s is the pullback functor for a morphism of topoi C̃ → C̃ ′ [2, IV 4.91].

LEMMA 2.17. The functor associated to a continuous function is a morphism of sites.

PROOF. Let f : M → N be a continuous function between two restricted topological spaces. By [2,

IV 4.9.2], it suffices to check that the functor f −1 associated to the continuous function is a continuous

functor, that the site associated to a restricted topological space admits all finite limits, and that f −1

preserves finite limits. The site associated to a restricted topological space has a terminal object,

namely the whole space, and admits all fibered products, because fibered products are intersections.

Therefore it admits finite limits [5, Proposition 2.8.2]. f −1 preserves products and fibered products

because f −1(U ∩V )= f −1(U)∩ f −1(V ), so f −1 preserves finite limits [2, I 2.4.2].

To see that f −1 is continuous, suppose that we have a sheaf F on M. To see that the presheaf

F ◦ f −1 is a sheaf, suppose that V is an open set of N and that V1, . . . ,Vk is a covering of V . To say that

F ◦ f −1 is a sheaf is to say that the diagram

(F ◦ f −1)(V )→∐
i

(F ◦ f −1)(Vi)â
∐
i, j

(F ◦ f −1)(Vi ∩Vj)

17



is an equalizer. But the diagram is equal to

F( f −1(V ))→∐
i

F( f −1(Vi))â
∐
i, j

F( f −1(Vi)∩ f −1(Vj))),

so it suffices to note that f −1(V1), . . . , f −1(Vk) is a covering of f −1(V ). �

DEFINITION 2.18. [9, §7, Definition 2] A ringed space over R, also called an R-ringed space, is a

pair (M,OM) where M is a restricted topological space and OM is a sheaf of R-algebras. A morphism

of R-ringed spaces (φ,θ) : (M,OM) → (N,ON ) is a continuous function φ : M → N together with an

R-algebra morphism θ : ON →φ∗OM .

EXAMPLE 2.19. [9, §7, Examples 1 and 2] Let M be a semi-algebraic set. M has a restricted

topology whose open sets are the open semi-algebraic subsets of M. With this restricted topology, M

has a sheaf of rings OM which on an open semi-algebraic subset U is the R-algebra of R-valued semi-

algebraic morphisms. This makes (M,OM) a ringed space over R. We call this ringed space the affine

semi-algebraic space associated to M.

DEFINITION 2.20. An affine semi-algebraic space is an R-ringed space (M,OM) which is isomor-

phic to the affine semi-algebraic space associated to a semi-algebraic set, that is, to one of the ringed

spaces arising by the construction of example 2.19. A semi-algebraic space is a ringed space (M,OM)

which admits a finite covering {M1, . . . , Mk} by open sets such that the R-ringed spaces (Mi,OM |Mi ) are

affine semi-algebraic spaces. A morphism between semi-algebraic spaces is a morphism of R-ringed

spaces.

THEOREM 2.21 ([9, Proposition 7.1 and Theorem 7.2]). A semi-algebraic morphism of semi-algebraic

sets determines a morphism of the associated affine semi-algebraic spaces. Furthermore, this de-

termines a full and faithful functor from the category of semi-algebraic sets to the category of semi-

algebraic spaces. �

DEFINITION 2.22 ([9, p. 185]). The strong topology on a restricted topological space is the topology

(in the usual sense) generated by the open sets of the restricted topological space.

That is, the open sets of the strong topology are the unions of the open sets of the restricted

topology. Following [9, p. 185], we will adhere to the convention that topological properties such as
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being open, closed, compact, and so on always refer to the strong topology. The other topology on a

semi-algebraic space will be called the restricted topology. When we wish to refer to an open or closed

set in the restricted topology, we will always refer to it as a semi-algebraic open set or a semi-algebraic

closed set. (This will be consistent with the definition we will make below of a semi-algebraic subset.

It will also be true that semi-algebraic open sets and semi-algebraic closed sets are semi-algebraic

spaces.) A function between two semi-algebraic spaces will be called continuous if it is continuous in

the strong topology and strictly continuous if it is continuous in the restricted topology.

DEFINITION 2.23 ([9, p. 185]). A subset of a semi-algebraic space M is called semi-algebraic if it

is a member of the smallest family of subsets of M which contains the semi-algebraic open sets and is

closed with respect to taking finite unions and complements in M.

PROPOSITION 2.24 ([9, Proposition 7.4]). A subset A of M is a semi-algebraic subset if and only

if there exists an open semi-algebraic subset U of M, natural numbers r and s1, . . . , sr, and R-valued

semi-algebraic morphisms f i j and g i j on U , where 1 ≤ i ≤ r and 1 ≤ j ≤ si, such that equation (1.1) is

satisfied.

THEOREM 2.25 ([9, Theorem 7.6]). Let f : M → N be a function between two semi-algebraic spaces.

The following are equivalent:

(1) f is continuous, and its graph Γ f is a semi-algebraic subset of M×N.

(2) Pullback by f induces a morphism of sheaves f # : ON → f∗OM , and the pair ( f , f #) is a mor-

phism of semi-algebraic spaces.

Moreover, if either of the above conditions hold, then for any semi-algebraic subset A of M, f (A) is

semi-algebraic in N, and for any semi-algebraic subset B of N, f −1(B) is semi-algebraic in M. �

THEOREM 2.26 ([9, Theorem 7.7]). Let A be a semi-algebraic subset of a semi-algebraic space M.

Then the closure, interior, and boundary of A in the strong topology of M are semi-algebraic subsets.

PROOF. Delfs and Knebusch do not prove that the boundary of A is semi-algebraic, but to show

this it suffices to remark that ∂A = A \ A◦. �

DEFINITION 2.27. [9, p. 186] Let A be a non-empty semi-algebraic subset of a semi-algebraic

space M. Give A the restricted topology whose open subsets are semi-algebraic in M and relatively
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open in A with respect to the strong topology on M. For each such subset V , OA(V ) is the set of all

functions f : V →R which are continuous with respect to the strong topologies on M and R and whose

graph is semi-algebraic in M ×R. Then (A,OA) is a semi-algebraic space. The inclusion of A into

M induces a morphism of semi-algebraic spaces, and the resulting morphism (A,OA) → (M,OM) is a

monomorphism. The semi-algebraic space (A,OA) together with the morphism to (M,OM) is called a

semi-algebraic subspace of M.

REMARK 2.28. Delfs and Knebusch refer to all the facts asserted in the above paragraph as

“clear”.

PROPOSITION 2.29. [9, Proposition 7.9] Let f : M → N be a semi-algebraic morphism. If B is a

semi-algebraic subspace of N with f (M)⊆ B, then the map g : M → B obtained by restricting the range

of f is semi-algebraic. In particular, since f (M) is a semi-algebraic subspace of N, f has a canonical

factorization as i ◦ f̃ , where f̃ is the restriction of the range of f to f (M) and i is the inclusion of f (M)

into N.

THEOREM 2.30 ([9, Theorem 7.10]). The category of semi-algebraic spaces and semi-algebraic

morphisms admits fibered products. Moreover, the underlying topological space of a fibered product is

the fibered product of the underlying topological spaces of its factors.

PROPOSITION 2.31. [9, Proposition 7.11] Let A1 and A2 be semi-algebraic subspaces of semi-

algebraic spaces M1 and M2, respectively. Then A1×A2 is a semi-algebraic subset of M1×M2. Further-

more, A1×A2 considered as a semi-algebraic subspace of M1×M2 is isomorphic to A1×A2 considered

as the product of the semi-algebraic subspaces A1 and A2.

3. Locally semi-algebraic spaces

Delfs and Knebusch generalized the notion of a semi-algebraic set even further in [10] to give

the category of locally semi-algebraic spaces. This category includes, for example, all universal covers

of semi-algebraic spaces. Again their definition relies on a special type of site, but this site is not a

restricted topological space.
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DEFINITION 2.32 ([10, I, §1, Definitions 1 and 2]). A generalized topological space is a triple

(M,τ◦(M),CovM), where M is a set, τ◦(M) is a set of subsets of M called the open subsets of M, and

CovM is a set of subsets of τ◦(M) called the admissible coverings, such that the following axioms hold:

(1) The empty set and M are open.

(2) If U and V are open, then U ∪V and U ∩V are open.

(3) Every family {Ui}i∈I with I finite is an admissible covering.

(4) If {Ui}i∈I is an admissible covering, then
⋃

i∈I Ui is open. For any open subset U , the set of

all admissible coverings {Ui}i∈I such that U =⋃
i∈I Ui is called the admissible coverings of U

and is denoted CovM(U).

(5) If {Ui}i∈I is an admissible covering of U , and if V ⊆U is an open set, then {Ui ∩V }i∈I is an

admissible covering of V .

(6) If {Ui}i∈I is an admissible covering of U , and if for every i ∈ I, {Vi j} j∈Ji is an admissible

covering of Ui, then {Vi j}i∈I, j∈Ji is an admissible covering of U .

(7) If {Ui}i∈I is a collection of open sets whose union U is an open set, and if {Vj} j∈J is an

admissible covering of U and a refinement of {Ui}, meaning that for every Vj there is a Ui

such that Vj ⊆Ui, then {Ui}i∈I is an admissible covering of U .

(8) If U is an open subset of M, {Ui}i∈I is an admissible covering of U , and V is a subset of U

with V ∩Ui open for all i ∈ I, then V is open.

A continuous function between two generalized topological spaces M and N is a function f : M → N

such that for every open subset V of N, f −1(V ) is an open subset of M, and for every admissible

covering {Vi}i∈I of V , the family { f −1(Vi)}i∈I is an admissible covering of f −1(V ).

A restricted topological space determines a generalized topological space. The open sets are the

same for both, and the covering families for the generalized topological space are the families of open

sets {Ui}i∈I whose union is open.

Delfs and Knebusch refer to their definition as “ad hoc.” The triple (M,τ◦(M),CovM) is abbreviated

by M. Again, there is a notion of a sheaf on a generalized topological space. It is essentially the same

as the notion of a sheaf on a topological space, but now the gluing axiom is required for all covering

families. Again, continuous functions induce pushforwards and pullbacks of sheaves satisfying the

usual formulas.

21



Delfs and Knebusch remark that a generalized topological space is a type of site. We call this site

the site associated to the generalized topological space. The objects of this site are the open subsets

of M, and the morphisms of this site are the inclusions. The covering families are the admissible

coverings. A sheaf on a generalized topological space is a sheaf on this site. A continuous function

from one generalized topological space to another determines a functor between the associated sites by

sending an open set to its inverse image. We call this functor the functor associated to the continuous

function.

As in the case of restricted topological space, Delfs and Knebusch omit the verification that a

continuous function between two generalized topological spaces induces pullback and pushforward

functions, that is, that it induces a morphism of topoi. We include this detail below. To check it, we

show that a continuous function induces a morphism of sites as in the case of restricted topological

spaces. This proof is very similar to the case of restricted topological spaces.

LEMMA 2.33. The functor associated to a continuous function is a morphism of sites.

PROOF. Let f : M → N be a continuous function between two generalized topological spaces.

Again we apply [2, IV 4.9.2], so it suffices to check that the functor f −1 associated to the continu-

ous function is a continuous functor, that the site associated to a generalized topological space admits

all finite limits, and that f −1 preserves finite limits. The only condition whose proof is not identical to

the proof presented in lemma 2.17 is the proof that f −1 is continuous.

To see that f −1 is continuous, suppose that we have a sheaf F on M. To see that the presheaf

F ◦ f −1 is a sheaf, suppose that V is an open set of N and that {Vi}i∈I is a covering of V . To say that

F ◦ f −1 is a sheaf is to say that the diagram

(F ◦ f −1)(V )→∐
i

(F ◦ f −1)(Vi)â
∐
i, j

(F ◦ f −1)(Vi ∩Vj)

is an equalizer. But the diagram is equal to

F( f −1(V ))→∐
i

F( f −1(Vi))â
∐
i, j

F( f −1(Vi)∩ f −1(Vj))),

so it suffices to note that applying f −1 to an admissible covering of V produces an admissible covering

of f −1(V ) by assumption. �
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DEFINITION 2.34 ([10, I, §1, Definition 2]). A ringed space over R, also called an R-ringed space,

is a pair (M,OM) where M is a generalized topological space and OM is a sheaf of commutative R-

algebras. A morphism of R-ringed spaces (φ,θ) : (M,OM)→ (N,ON ) is a continuous function φ : M → N

together with an R-algebra morphism θ : ON →φ∗OM .

REMARK 2.35. Delfs and Knebusch refer to ringed spaces on restricted topological spaces and

ringed spaces on generalized topological spaces as just “ringed spaces” with no qualifier. In practice

this does not lead to confusion.

REMARK 2.36. Strangely, Delfs and Knebusch here impose the restriction that the sheaf OM is

commutative, whereas they do not impose this restriction for a ringed space on a restricted topological

space. [16, 4.1.1] does not assume that the structure sheaf of a ringed space is commutative.

EXAMPLE 2.37 ([10, p. 4]). Let M be a semi-algebraic space. The restricted topological space

underlying M determines the structure of a generalized topological space on M as follows. The open

semi-algebraic subsets of M are the open subsets of the generalized topological space. A family {Ui}i∈I

is an admissible covering of U if U =⋃
i∈I Ui and if there is a finite subset i1, . . . , ik of I such that U =

Ui1 ∪·· ·∪Uik . Delfs and Knebusch assert that it is clear that this determines a generalized topological

space and that the sheaves on this generalized topological space are the same as the sheaves on the

restricted topological space underlying M. In particular, OM is a sheaf on the generalized topological

space, so (M,OM) is an R-ringed space called the locally semi-algebraic space associated to the semi-

algebraic space M.

REMARK 2.38 ([10, p. 4]). Given an R-ringed space (M,OM) and an open subset U of M, we define

the a ringed space (U ,OM |U ) as follows. The open subsets of U are the open subsets of M which are

contained in U . The covering families of U are the covering families of M each of whose members are

contained in U . OM |U is the restriction of OM to U . (U ,OM |U ) is said to arise by restriction. These

subspaces are called open subspaces of (M,OM). An open subspace is an open semi-algebraic subset if

it is the locally semi-algebraic space associated to a semi-algebraic space as in example 2.37.

REMARK 2.39. It seems more natural to say that an open semi-algebraic subset is a locally ringed

space isomorphic to the locally semi-algebraic space associated to a semi-algebraic space, but this is

not the definition used by Delfs and Knebusch.
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DEFINITION 2.40 ([10, I, §1, Definitions 3 and 5]). A locally semi-algebraic space is a ringed

space (M,OM) over R which possesses an admissible covering {Mα}α∈A such that all Mα are open

semi-algebraic subsets of M. A locally semi-algebraic morphism is a morphism of R-ringed spaces.

DEFINITION 2.41 ([10, I, §1, Definition 4]). A family {Xλ}λ∈Λ of subsets of a locally semi-algebraic

space M is locally finite if any open semi-algebraic subset W of M meets only finitely many Xλ.

PROPOSITION 2.42 ([10, I, Theorem 1.2]). Let ( f ,φ) : (M,OM)→ (N,ON ) be a locally semi-algebraic

morphism of locally semi-algebraic spaces. Then φ is pullback by f . That is, if V is an open semi-

algebraic subset of N, then for every h ∈ ON (V ), φ(V ) : OM( f −1(V )) → ON (V ) sends h : V → R to h ◦
f : f −1(V )→R.

PROPOSITION 2.43 ([10, I, §1, Proposition 1.3]). Let f : M → N be a function, and let {Mi}i∈I and

{N j} j∈J be admissible coverings of M and N by open semi-algebraic subsets. Assume that for every i,

there exists a j such that f (Mi) ⊆ N j. Then f is locally semi-algebraic if and only if the restriction

f |Mi : Mi → N j is a semi-algebraic morphism for every i.

An immediate corollary of this is that the semi-algebraic morphisms between two semi-algebraic

spaces are locally semi-algebraic morphisms, and that a locally semi-algebraic morphism between two

semi-algebraic spaces is a semi-algebraic morphism. Consequently example 2.37 determines a full and

faithful embedding of the category of semi-algebraic spaces into the category of locally semi-algebraic

spaces.

LEMMA 2.44 ([10, I, Lemma 2.2]). Let M be a set, and let {Mi}i∈I be a family of subsets of M

whose union is M. Suppose that each Mi has a structure sheaf OMi such that (Mi,OMi ) is a locally

semi-algebraic space. Assume that I is a partially ordered set and that if i < j, then Mi is an open

subspace of M j. Then the inductive limit lim−−→i
(Mi,OMi ) exists in the category of R-ringed spaces, has

{Mi}i∈I as an admissible cover, and each (Mi,OMi ) is an open subspace of (M,OM). Furthermore, the

underlying generalized topological space of this inductive limit is M.

DEFINITION 2.45 ([10, I, §3, Definition 1]). A subset X of a locally semi-algebraic space M is

locally semi-algebraic if, for every open semi-algebraic subset W of M, the set X ∩W is semi-algebraic

in W.
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REMARK 2.46 ([10, p. 27]). Every open subset (of the generalized topological space underlying a

locally semi-algebraic space) is a locally semi-algebraic set. Furthermore, locally semi-algebraic sets

are stable under complementation, and the union and intersection of any locally finite family of locally

semi-algebraic sets is locally semi-algebraic.

DEFINITION 2.47 ([10, p. 28]). Let X be a locally semi-algebraic subset of a locally semi-algebraic

space M. Choose an admissible covering {Mi}i∈I of M all of whose members are open semi-algebraic

subsets and which is stable under finite unions. (Any admissible covering can be enlarged so that it

satisfies this condition.) For every i ∈ I, the intersection Mi ∩ X is a semi-algebraic subspace of the

semi-algebraic space Mi, and it has a structure sheaf OMi∩X . Let (X ,OX ) be the inductive limit of the

directed system of semi-algebraic spaces {(Mi ∩ X ,OMi∩X )}. Then (X ,OX ) is a subspace of M.

REMARK 2.48 ([10, p. 28]). Delfs and Knebusch note that a subspace of a locally semi-algebraic

space is a locally semi-algebraic space, and that an open subspace is a subspace. Furthermore, the

inclusion of X into M, together with the restriction map on sheaves, is a locally semi-algebraic mor-

phism.

PROPOSITION 2.49 ([10, I, Proposition 3.2]). Let f : L → M be a locally semi-algebraic map be-

tween two locally semi-algebraic spaces, and assume that f (L)⊆ X , where X is a locally semi-algebraic

subset of M. Then f has a canonical factorization as i ◦ f̃ , where f̃ is f with its range restricted to X

and i is the inclusion of X into M.

A consequence of this proposition is that the space (X ,OX ) does not depend on the choice of ad-

missible covering made in definition 2.47 [10, p. 28]. Another consequence is that if X is a locally

semi-algebraic subset of M and Y is any subset of X , then Y is locally semi-algebraic in X if and

only if it is locally semi-algebraic in M. Furthermore, if Y is locally semi-algebraic, then the locally

semi-algebraic space structure on Y determined by considering Y as a subspace of X is the same as

the locally semi-algebraic space structure on Y determined by considering Y as a subspace of M [10,

I, Proposition 3.4].

LEMMA 2.50 ([10, I, Example 2.5]). Let M and N be locally semi-algebraic spaces. Then M and

N admit a direct product M×N. Furthermore, the underlying point set of M×N is the product of the
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underlying point sets of M and N, and if {Mi}i∈I and {N j} j∈J are admissible coverings of M and N,

then {Mi ×N j}i∈I, j∈J is an admissible covering of M×N.

THEOREM 2.51 ([10, I, Propositions 3.5 and 3.6]). Let M, N, and S be locally semi-algebraic

spaces, and let φ : M → S and ψ : N → S be locally semi-algebraic morphisms. Then there is a fibered

product M×S N whose underlying point set is the fibered product of the underlying point sets of M, N,

and S. Furthermore, M×S N is a subspace of M×N.

DEFINITION 2.52 ([10, I, §3, Definition 2 and I, §5, Definition 1]). A subset X of a locally semi-

algebraic space M is semi-algebraic if it is locally semi-algebraic and if the subspace (X ,OX ) is a

semi-algebraic space. A locally semi-algebraic morphism f : M → N of locally semi-algebraic spaces is

semi-algebraic if the preimage of a semi-algebraic subset of N is a semi-algebraic subset of M.

Delfs and Knebusch say that it is “clear” that an open semi-algebraic subset is also a semi-

algebraic subset in this sense [10, p. 30].

DEFINITION 2.53 ([10, p. 31]). The strong topology on a generalized topological space is the topol-

ogy (in the usual sense) generated by the open sets of the generalized topological space.

Again, just like for a restricted topological space, the open sets of the strong topology are the

arbitrary unions of the open sets of the generalized topological space. The strong topology on a product

is the direct product of the strong topologies, and the strong topology on a subspace is the subspace

topology for the strong topology on the larger space [[10, p. 31]].

Following [10, p. 32], when we refer to topological properties such as openness or closedness, we

will mean that these are true in the strong topology. The open sets of the generalized topological space

underlying a locally semi-algebraic space will be called the open locally semi-algebraic sets. A function

between two semi-algebraic spaces is continuous if it is continuous for the strong topologies on those

spaces and strictly continuous if it is a continuous map of generalized topological spaces.

PROPOSITION 2.54 ([10, I, Proposition 3.14]). The closure, interior, complement, and boundary of

a locally semi-algebraic subset are locally semi-algebraic subsets.

PROOF. Delfs and Knebusch do not prove that the boundary of A is semi-algebraic, but to show

this it suffices to remark that ∂A = A \ A◦. �
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PROPOSITION 2.55 ([10, I, Proposition 3.1]). Let f : M → N be a locally semi-algebraic morphism

of locally semi-algebraic spaces, and let Y ⊆ N be a locally semi-algebraic set. Then f −1(Y ) is a locally

semi-algebraic subset of M.

It is not true that the image of a locally semi-algebraic morphism is a locally semi-algebraic set.

See [[10, I, Counterexample 6.3 (a)]].

DEFINITION 2.56 ([10, I, §5, Defintion 2 and I, §7, Definition 1]). Let f : M → N be a locally semi-

algebraic morphism of locally semi-algebraic spaces. f is proper if, for every locally semi-algebraic

morphism g : N ′ → N, the locally semi-algebraic morphism f ′ : M×N N ′ → N ′ obtained by base change

of f with respect to g maps every closed locally semi-algebraic subset of M ×N N ′ to a closed locally

semi-algebraic subset of N ′. M is complete if the map from M to the one-point space is proper. M is

locally complete if every point has a neighborhood which is a complete semi-algebraic space.

LEMMA 2.57 ([9, pp. 198–199]). A semi-algebraic space is complete if and only if it is compact.

LEMMA 2.58 ([10, I, Lemma 7.5]). A locally complete semi-algebraic space M can be embedded as

a closed subspace of a Euclidean space.

Note that the lemma does not claim that every locally semi-algebraic space is a closed subspace

of a Euclidean space.

LEMMA 2.59. X is locally complete if and only if X is locally compact.

PROOF. If X is locally complete, then every point has a complete semi-algebraic neighborhood

K . K is a closed subspace of a Euclidean space by lemma 2.58, so it is locally compact in its strong

topology.

Conversely, assume that X is locally compact in its strong topology. Every point x of X admits

an open affine neighborhood, and this neighborhood can be embedded as a semi-algebraic set Z in

Euclidean space. Because X is locally compact, there is a compact neighborhood K of x contained

in Z. K contains an open set around x, so there is a ball B in the ambient Euclidean space that

contains x and satisfies B∩Z ⊆ K . Choose a ball B′ containing x whose closure is contained in B, and

let L = B′∩ Z. L is a closed subspace of K and therefore it is compact. L is the intersection of two

semi-algebraic sets, and hence it is a complete semi-algebraic neighborhood of x. �
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LEMMA 2.60. Let X be a locally semi-algebraic space. Then X is locally metrizable.

PROOF. Around every point of X , there is an open affine semi-algebraic subspace U . U can be

embedded as a semi-algebraic set in Euclidean space. The strong topology on U is the subspace

topology for the strong topology on Euclidean space, and the strong topology on Euclidean space is the

metric topology. �

THEOREM 2.61. Let X be a locally compact locally semi-algebraic space. The following are equiv-

alent.

(1) X is paracompact.

(2) Every open cover {Uα} of X admits a refinement {Kβ} by compact affine semi-algebraic sub-

spaces satisfying the following two conditions.

(a) The interiors of the members of {Kβ} cover X .

(b) For each Kβ0 , there are only finitely many β such that Kβ∩Kβ0 is non-empty.

(3) Every open cover {Uα} of X admits a refinement {Uβ} by open affine semi-algebraic subspaces

such that each Uβ0 meets only finitely many other Uβ.

[10, I, Corollary 4.19] proves a related statement: If M is a Hausdorff connected paracompact

locally semi-algebraic space, then M has a locally finite covering by open semi-algebraic sets {Mn}n∈N

such that Mn ∩Mm =; when |n−m| ≥ 2.

PROOF. It is clear that the second statement implies the third by taking interiors and that the

third statement implies the first. We will show that the first statement implies the second.

Let {Uα} be an open cover of X . Each point x of X has a compact affine semi-algebraic neighbor-

hood Ax. By the paracompactness of X , there is a locally finite refinement {Wγ} of {Uα∩ Ax}. Each Wγ

is an open subset of a compact set, but it need not be semi-algebraic and the collection of all Wγ need

not be locally finite. To repair this, we will replace each Wγ by a sequence of semi-algebraic sets.

The first step in constructing this sequence is to fill out Wγ with an ascending chain of semi-

algebraic sets. To construct this chain, fix an embedding Wγ ⊆ Ax ⊆ Rn. Because Ax is compact, ∂Wγ

is compact. (By ∂Wγ we mean ∂AxWγ, not ∂Rn+1Wγ.) The elements of the chain will be semi-algebraic

sets Z1 ⊆ Z2 ⊆ Z3 ⊆ ·· ·, each open in Ax, such that Zk contains all points whose distance to ∂Wγ is at

least 2−k and does not contain any point whose distance to ∂Wγ is less than 2−k−1.
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To be precise, let Wγ,k be the set of all points in Rn whose distance to ∂Wγ is less than or equal

to 2−k−1. Choose a cover of Wγ,k by open balls in Rn of radius 2−k with center on ∂Wγ. Because

Wγ,k is compact, this cover may be taken to be finite. Let Nk be the union of these balls. Nk is

semi-algebraic. Note that Nk+1 ⊆ Wγk ⊆ Nk because the balls were chosen to be centered on ∂Wγ.

The sets Zk = (Rn \ Nk)∩Wγ are open and Zk ⊆ Zk+1. The Zk fill out Wγ, but they are not obviously

semi-algebraic.

To see that they are semi-algebraic, recall that Wγ is an open subset of Ax, so it is the intersection

of Ax with an open set T in Rn. Let Zk be the closure of Zk in Wγ. Because Nk+1 is an open neigh-

borhood of ∂Wγ, this closure is the same as the closure of Zk in Ax, and hence it is compact. Therefore

it is covered by finitely many balls, say B1, . . . ,B`. Then Zk = (B1 ∪·· ·∪B`)∩ Ax ∩ (Rn \ Nk) because

Bi ∩ Ax ⊆Wγ for all Bi. Consequently Zk is semi-algebraic.

{Z1, Z2, Z3, . . . } is an open cover of Wγ by semi-algebraic sets. We set Lk = Zk \ Zk−2. Each Lk is

compact, and because Lk ∩L` = ; unless ` is k−1, k, or k+1, {Lk} is locally finite. We claim that⋃
k L◦

k = Wγ, where L◦
k denotes the interior of Lk as a subspace of Wγ. This follows immediately from

the claim that L◦
k ⊇ Zk \ Zk−2. This is a consequence of the fact that Nk and Nk−2 are finite unions of

balls: One has Lk = (Rn \ Nk)∩Nk−2 ∩Wγ, so

L◦
k = (Rn \ Nk)◦∩ (Nk−2)◦∩Wγ = (Rn \ Nk)∩Nk−2 ∩Wγ = Zk \ Zk−2.

Therefore {Lk} is a cover of Wγ with the desired properties. For notational convenience in the following,

we rename these sets Lγ,k.

To conclude, we let {Kβ} be the collection of all the compact sets Lγ,k as γ and k vary. To see that

each Kβ0 meets only finitely many other Kβ, notice that around each point x of X , there is an open

neighborhood Vx which meets only finitely many Wγ. For each such Wγ, we may shrink Vx so that it

meets only finitely many members of {Lγ,k}. Therefore we may choose Vx so that it meets only finitely

many members of {Kβ}. The collection {Vx}x∈Kβ0
is an open cover of Kβ0 , so it admits a finite subcover.

Each of the finitely many elements in this subcover meets only finitely many members of {Kβ}, so we

conclude that Kβ0 meets only finitely many members of {Kβ}. The remaining conditions on {Kβ} are

clear. �
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PROPOSITION 2.62. Let k be R or C. There is a functor S from locally finite type k-schemes to

locally semi-algebraic spaces with the following properties.

(1) S sends the variety { f1 = ·· · = fk = 0}⊆An to the locally semi-algebraic space corresponding to

the semi-algebraic set cut out by the same equations.

(2) S sends a scheme to a locally compact locally semi-algebraic space.

(3) S sends quasi-compact schemes to paracompact semi-algebraic spaces and quasi-compact

morphisms to semi-algebraic morphisms.

(4) S sends a separated scheme to a Hausdorff locally semi-algebraic space.

Furthermore, the first of the above properties characterizes S uniquely.

[9, §7, Example 2] states the weaker fact that the real points of an algebraic variety determine a

semi-algebraic space.

PROOF. For a finite type k-scheme X and an open affine subscheme U of X , fix an embedding

U ⊆AN , where N depends on U . U is cut out by polynomial equations, and these polynomial equations

also cut out the semi-algebraic subset U(k) of AN (k). (AN (k) is RN if k =R and R2N if k =C.) U(k) has

a corresponding affine semi-algebraic space, and hence a corresponding locally semi-algebraic space.

We can glue these by proposition 2.44 to give a locally semi-algebraic space S(X ). The underlying

point set of S(X ) is the gluing of the U(k) and hence is equal to X (k).

Suppose that f : X → Y . If U and V are open affine subschemes of X and Y , respectively, and

f (U)⊆V , then the graph of f |U is a subvariety of U ×V and hence, after taking k-points, determines

a morphism of semi-algebraic sets from U to V . This determines a morphism of affine semi-algebraic

spaces S( f |U ) : S(U) → S(V ). Furthermore, if U1 ⊆U , then S( f |U1 ) : S(U1) → S(V ) is the restriction of

S( f |U ). Therefore the morphisms S( f |U ) can be glued to produce the desired S( f ). S( f ) is functorial

in f because taking k-points is a functor.

S(X ) has a canonical representation as the inductive limit of all open affine subspaces, and con-

sequently the value of the functor S is determined by its value on affine semi-algebraic spaces. By

the assumption that S sends a variety cut out by equations into the semi-algebraic set cut out by the

same equations, it follows that any two choices of S(X ) are isomorphic, and this gives the uniqueness

of S on objects.
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For an affine scheme U , S(U) is locally compact because U can be written as a closed subspace of

affine space, which is locally compact. Therefore S(X ) is locally compact for any X .

If X is quasi-compact, then X can be covered by only finitely many open affine subschemes, so

S(X ) admits a finite cover by affine semi-algebraic spaces and is therefore a semi-algebraic space.

Furthermore, each open affine subscheme determines a paracompact semi-algebraic space because it

is a closed subvariety of an affine space and closed subspaces of paracompact spaces are paracompact.

Therefore S(X ) is covered by finitely many paracompact open subspaces and hence is paracompact.

If f is quasi-compact and V is an open affine subscheme of Y , then f −1(V ) is quasi-compact, so it

is covered by finitely many open affines Ui. S( f ) : S(Ui)→ S(V ) is a morphism of affine semi-algebraic

spaces, so it is semi-algebraic. Since semi-algebraicity is local on the base and local on the source with

respect to finite covers, we deduce that S( f ) is semi-algebraic.

If X is separated, then the diagonal morphism X (k)→ X (k)×X (k) is a closed immersion, and this

implies that S(X ) is Hausdorff. �

4. Dimension of locally semi-algebraic spaces

DEFINITION 2.63 ([4, Proposition 2.8.2]). If X ⊆ Rn is a semi-algebraic set, then dim X is the

dimension of the Zariski closure of X . If X is an affine semi-algebraic space and i : X ,→ Rn is any

semi-algebraic embedding, then dim X is dim i(X ).

THEOREM 2.64 ([9, p. 189]). The dimension of an affine semi-algebraic space is well-defined. That

is, if X is an affine semi-algebraic space and i : X ,→ Rn and j : X ,→ Rm are two semi-algebraic em-

beddings, then the dimensions of i(X ) and j(X ) are the same.

PROOF. This follows from [9, Theorem 8.1]. �

DEFINITION 2.65 ([10, I, §3, Definition 4]). Let X be a locally semi-algebraic space. dim X is the

supremum of dimU as U varies over the open affine semi-algebraic subsets of X .

PROPOSITION 2.66 ([10, I, Proposition 3.21 (d)]). Let Z be a non-empty finite dimensional locally

semi-algebraic subspace of a locally semi-algebraic space X . Then dim(Z \ Z)< dim Z.
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5. Semi-algebraic structures on topological space

DEFINITION 2.67. Let X be a topological space. A semi-algebraic structure on X is a locally semi-

algebraic space (Y ,OY ) and a homeomorphism θ from X to Y considered with its strong topology.

A morphism of semi-algebraic structures (Y1,OY1 ,θ1) → (Y2,OY2 ,θ2) is a morphism of locally semi-

algebraic spaces f : Y1 →Y2 such that θ2 = f ◦θ1.

DEFINITION 2.68. Let X be a topological space, and let Y1 = (Y1,OY1 ,θ1) and Y2 = (Y2,OY2 ,θ2) be

semi-algebraic structures on X . Y1 and Y2 are homotopic if there exists a homotopy H : X × [0,1]→ X

such that H0 = 1X , θ2 ◦H1 = θ1, and θ2 ◦H1 ◦θ−1
1 is an isomorphism of locally semi-algebraic spaces.

They are isotopic if H is an isotopy, that is, if each Ht is a homeomorphism.
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Chapter 3

Piecewise linear topology

In this section, we recall the foundations of piecewise linear (PL) topology. We will need very few

facts from PL topology, mostly basic definitions. All of this material is standard and can be found in

sources such as [22], [32], [37], [43], and [50].

Section 1 recalls the basic definitions of simplicial topology, and section 2 recalls some basic facts

about the topology of simplicial complexes. In section 4, we prove a refined version of a well-known

theorem that a subdivision of a subcomplex can be extended to a subdivision of the entire complex. In

section 5, we prove that differences of simplicial complexes are almost simplicial complexes.

1. Simplicial complexes

DEFINITION 3.1 ([17, 1.1, 2.3, 4.1] and [32, §1]). Let p1, . . . , pk be a finite set of points in RN .

{p1, . . . , pk} is called affinely independent if, for each j, the set {pi − p j | i 6= j} is linearly independent.

The convex hull of p1, . . . , pk is

(1.1) Conv(p1, . . . , pk)= {α1 p1 +·· ·+αk pk |α1 +·· ·+αk = 1, α1, . . . ,αk ≥ 0}.

The convex hull of n+1 affinely independent points is called a (closed) n-simplex. n is the dimension

of the simplex. The numbers α1, . . . ,αk are are barycentric coordinates on the simplex.

According to this definition, the empty set is a simplex of dimension −1.

DEFINITION 3.2 ([38, p. 1]). Let S and T be two simplices in RN . The join of S and T, denoted

S ·T, is the convex hull of S and T.

If S = Conv(s1, . . . , sk+1), T = Conv(t1, . . . , t`+1), and if {s1, . . . , sk+1, t1, . . . , t`+1} is an affinely inde-

pendent set, then S ·T is a k+`+1-simplex.
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DEFINITION 3.3 ([17, 4.1]). A face of a simplex S = Conv(s1, . . . , sk+1) is the simplex formed as

the convex hull of a subset of {s1, . . . , sk+1}. The dimension of a face is its dimension as a simplex. A

zero-dimensional face is called a vertex.

The empty set is a face of every simplex. Every n-simplex has a unique n-dimensional face,

namely the simplex itself.

DEFINITION 3.4 ([32, §1]). The interior of S is the set S◦ of all points not contained in a proper

face of S. A set which is the interior of a simplex is an open simplex.

Note that the interior of a simplex is not necessarily the same as its interior in the sense of

point-set topology.

A simplex is a semi-algebraic set, so as above there is a notion of a semi-algebraic morphism on a

simplex. Semi-algebraic morphisms are not very natural for convex geometry, where the right notion

is an affine transformation. If p ∈RN , we denote the translation x 7→ x+ p by tp : RN →RN .

DEFINITION 3.5. An affine transformation f : Rn →Rm is a composite tp ◦T, where T : Rn →Rm

is a linear transformation and tp : Rm → Rm is a translation. An affine isomorphism is an affine

transformation which admits an inverse which is also an affine transformation.

LEMMA 3.6. The composite of any two affine transformations is an affine transformation.

PROOF. (tq ◦U)◦ (tp ◦T)= tq+U(p) ◦U ◦T. �

LEMMA 3.7. An affine transformation is an affine isomorphism if and only if it is bijective.

PROOF. Let f : Rn →Rm be the affine transformation. f = tp ◦ g for some translation tp and some

linear transformation g. tp is always both an isomorphism and bijective, so f is an isomorphism or is

bijective if and only if g = t−1
p ◦ f is. Finally, g is an isomorphism if and only if it is bijective because it

is a linear transformation. �

LEMMA 3.8. Let p1, . . . , pn+1 be a set of affinely independent points in Rn, and let q1, . . . , qn+1 be

any set of points in Rm. Then there is a unique affine transformation f : Rn → Rm that sends pi to qi

for all i.
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PROOF. The set p1− pn+1, . . . , pn− pn+1 is linearly independent, so there is a unique linear trans-

formation g : Rn →Rm that sends pi− pn+1 7→ qi−qn+1 for all 1≤ i ≤ n. We define f (p)= g(p)+qn+1−
g(pn+1). Then

f (pi)= g(pi − pn+1)+ g(pn+1)+ qn+1 − g(pn+1)= qi − qn+1 + qn+1 = qi

for 1≤ i ≤ n, and

f (pn+1)= g(pn+1)+ qn+1 − g(pn+1)= qn+1.

If f ′ is a second affine transformation sending pi 7→ qi, then f ′(pi)− f ′(pn+1) = qi − qn+1, so, by the

uniqueness of g, f ′ is also a translate of g. It follows that f ′ = f . �

DEFINITION 3.9. If S ⊆ Rn is a simplex, an affine morphism S → Rm is the restriction of an

affine transformation Rn → Rm. If T ⊆ Rm is a simplex, then an affine morphism S → T is an affine

transformation S → Rm whose image is in T. The affine morphism is simplicial if the image of every

face of S is a face of T.

By lemma 3.8, the affine morphisms on S are independent of the ambient space containing S.

They depend only on the images of the vertices of S. Notice that a morphism is simplicial if and only

if the image of each vertex is a vertex.

DEFINITION 3.10 ([32, §2]). Let J be a set, and let EJ ⊆RJ be the set of all J-tuples having only

finitely many non-zero entries. That is, EJ has a basis whose members are the J-tuples having a 1 in

a single position and zeroes in all other positions. Give EJ the topology induced by the ‖·‖∞ norm. A

simplicial complex C in EJ is a set of simplices such that every face of a simplex of C is in C and the

intersection of any two simplices of C is a face of each of them. A face is maximal if it is not contained

in any strictly larger face. The dimension of C is the supremum of the dimensions of its simplices.

The k-skeleton of C is the subcomplex Ck of all simplices of dimension at most k. C is finite if its set of

faces is finite. If x ∈ C, then C is locally finite at x if x is contained in at most finitely faces. C is locally

finite if it is locally finite at every point. A subcomplex of C is a simplicial complex D such that D is a

subset of C.

We will usually write C for both the simplicial complex C and the union of the simplices of C.
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DEFINITION 3.11. An affine morphism (resp. locally semi-algebraic morphism) from a simplicial

complex C to a simplicial complex D is a continuous function φ : C → D whose restriction to every sim-

plex of C is an affine morphism (resp. locally semi-algebraic morphism). An affine or semi-algebraic

morphism is simplicial if the image of every simplex of C is simplex of D, that is, if its restriction to

each simplex of C is simplicial.

All our simplicial complexes will be finite dimensional. We will assume this without further

comment.

The empty set is a face of every simplicial complex. If S is a simplex in RN , then S is a simplicial

complex with simplex set equal to the set of all faces of S. Any union of simplices in RN which meet

along faces determines a simplicial complex.

DEFINITION 3.12. Let C be a simplicial complex. The star of a subset X of C is the subcomplex

Star X generated by the simplices containing X . Equivalently, it is the subcomplex of simplices con-

tained in a simplex meeting X . The open star of X is the topological space Star◦X formed by the

union of all open simplices whose closures meet X . The link of a subset X is the subcomplex Link X

of Star X whose simplices do not meet X . The boundary of a simplex S is the subcomplex ∂S of all

proper faces of S. (Note that this is not the same as the boundary in the sense of homological algebra

because the faces of ∂S are not oriented.)

Before continuing, we prove some elementary lemmas.

LEMMA 3.13. Let C be a simplicial complex. Let SC be the subcategory of the category of simplicial

complexes and simplicial morphisms whose objects are the simplices of C and whose morphisms are

the inclusions among the simplices of C. Then C is a colimit of SC .

PROOF. Let D be a simplicial complex, and suppose that we have a morphism C → D. By re-

striction we get a morphism S → D for every simplex S of C, and these morphisms commute with

inclusions. Conversely, given morphisms S → D which commute with inclusions, we define f : C → D

to equal S → D on the simplex S. This is well-defined by the commutativity assumption, and it is

affine because it is affine on each simplex by assumption. Clearly these two processes are inverse, so

if we can check that f is continuous, then C = lim−−→SC .
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To see that f is continuous, note that C is contained in some EJ , and EJ has the colimit topology

with respect to its finite-dimensional subspaces. Consequently, to check that a function is continuous,

it suffices to check that it is continuous on each finite dimensional subspace. The intersection of C with

a finite dimensional subspace is a finite subcomplex, so checking that the function to D is continuous

amounts to checking that a function on a finite complex is continuous if and only if it is continuous on

each simplex. Therefore we may assume that C is a finite complex. Let F ⊆ D be closed. Simplices are

compact Hausdorff spaces, so f −1(F) is a finite union of compact Hausdorff spaces because it meets

each simplex in a closed subset. In particular, it is compact, and hence closed in C. Therefore f is

continuous. �

COROLLARY 3.14. Let C be a simplicial complex. A subset of C is open (resp. closed) if and only if

its intersection with each simplex S of C is open (resp. closed) in S.

PROOF. By lemma 3.13, C has the colimit topology with respect to its simplices, and by definition

this gives the conclusion of the lemma. �

This implies that subcomplexes are closed, and therefore stars are closed and determine canon-

ical closed neighborhoods. Open stars are open because they are complements of subcomplexes, so

they will determine canonical open neighborhoods. In a locally finite complex, stars will determine

canonical compact neighborhoods by proposition 3.22.

LEMMA 3.15. Let f : C → D be a bijective simplicial locally semi-algebraic morphism. Then f is a

locally semi-algebraic isomorphism.

PROOF. Let S be a simplex of D. f −1(S) is also a simplex because f is bijective. The graph of

the restriction of f to f −1(S) is a semi-algebraic subset of f −1(S)× S. Consequently the graph of

the restriction of f −1 to S is a semi-algebraic subset of S × f −1(S) because it is cut out by the same

equations and inequalities as those defining the graph of f but with the order of the variables changed.

Therefore f −1 is a locally semi-algebraic morphism. f −1 is inverse to f by definition, so f is a locally

semi-algebraic isomorphism. �

LEMMA 3.16. If f : A → B and g : A → C are simplicial affine injections, then there is a pushout

BqA C.
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PROOF. Let M = K qJ L be the pushout of the vertex sets of B and C along A determined by f

and g. In EM there is a simplicial complex X whose vertices are the basis vectors of EM and whose

faces correspond to the faces of K and of L. That is, basis vectors e1, . . . , en span a face if and only

if they correspond to vertices of K spanning a face of K or vertices of L spanning a face of L. It is

clear that X is a simplicial complex. Furthermore, it is a pushout of B and C along A. The natural

morphisms from B and C to X send a vertex to the basis vector corresponding to that vertex. Given

simplicial morphisms from B and C to a simplicial complex D which determine the same simplicial

morphism on A, then there is a corresponding simplicial morphism from X to D which sends a basis

vector of EM corresponding to a vertex of B to the image of that vertex of B and similarly for basis

vectors corresponding to vertices of C. It is clear that a morphism from X to D induces morphisms

from B and C to D which agree on A, so X is a pushout. �

LEMMA 3.17. Direct limits of simplicial affine injections exist. That is, if I is a well-ordered index

set such that for each i ∈ I there is a simplicial complex A i and for each i ≤ j there is a simplicial affine

injection A i → A j, then lim−−→i∈I
A i exists.

PROOF. For each i, let Vi be the set of vertices of A i. The simplicial affine injections A i → A j

determine injections Vi →Vj for all i and j. Let V be the inductive limit of these injections of sets. For

each v ∈ V , denote the corresponding basis vector of EV by ev. We construct a simplicial complex X

in EV by letting ev1 , . . . , evk span a face if and only if v1, . . . ,vk are the image of a collection of vertices

in some Vi0 which span a face in A i0 . It is clear that X is a simplicial complex. Furthermore, it is

the direct limit of the A i. Given compatible simplicial morphisms from the A i to a simplicial complex

B, there is a simplicial morphism from X to B determined by sending a vertex of X to the image

of a vertex of some A i which corresponds to that vertex of X . The images of the other points are

determined by linear interpolation. Each simplex, being contained in a finite dimensional subspace

of EV , has its usual topology, so this map is continuous on each simplex and hence is continuous.

Conversely, it is clear that a morphism from X to B induces compatible morphisms from each A i to B,

so X is the direct limit. �
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2. Topology of simplicial complexes

Recall that a space X is normal if points in X are closed and if for every two closed sets A and B of

X , there exist disjoint open sets U and V such that U is a neighborhood of A and V is a neighborhood

of B.

LEMMA 3.18. Let C be a simplicial complex. Then C is normal. In particular, C is Hausdorff.

PROOF. Every simplex is closed, and points of simplices are closed, so points of C are closed.

We prove an equivalent formulation of normality: If A is a closed set and U is an open neighbor-

hood of A, then there exists an open neighborhood V of A such that V ⊆U . We do this by induction

on dimension. We will construct for each dimension d an open neighborhood Vd of A∩Cd in Cd such

that Vd ⊆U ∩Cd .

If d = 0, then A ∩Cd is a set of points, and we let Vd = A ∩Cd . Assume inductively that we

have constructed Vd−1, and let S be a simplex of dimension d. S is a simplex, so it has a metric.

For each point p of A ∩ S◦, choose εp > 0 such that B(p,2εp), the ball of radius 2εp around p, is

contained in S◦∩U . For each point p of Vd−1 ∩S, choose εp > 0 such that B(p,εp)∩Cd−1 ⊆ Vd−1. Let

Vd ∩S = ⋃
p∈(Vd−1∩S)∪(A∩S◦) B(p,εp). Vd ∩S is open in S. Its closure is contained in U ∩S, and its

intersection with ∂S is Vd−1∩∂S. We let Vd be the union of all Vd ∩S. Vd has the required properties

because it has these properties in each simplex.

Finally, we let V =⋃
Vd . �

PROPOSITION 3.19. Let C be a simplicial complex and x a point of C. The following are equivalent:

(1) C is locally finite at x.

(2) x admits an open neighborhood which meets only finitely many simplices.

(3) The star of x contains at most finitely many simplices.

The following are also equivalent:

(1) C is locally finite.

(2) Every point of C admits an open neighborhood which meets only finitely many simplices.

(3) The star of every point of C contains at most finitely many simplices.

(4) Every vertex of C is contained in at most finitely many simplices.
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(5) Every vertex of C admits an open neighborhood which meets only finitely many simplices.

(6) The star of every vertex of C contains at most finitely many simplices.

PROOF. The star of x is the set of all simplices contained in a simplex containing x. If C is locally

finite at x, then x is contained in at most finitely many simplices, and because each of these simplices

has finitely many faces, the star of x is a finite complex. The open star of x is an open neighborhood of

x contained in the star of x, so if the star of x contains at most finitely many simplices, then x admits

an open neighborhood meeting only finitely many simplices. Finally, if x admits an open neighborhood

meeting only finitely many simplices, then in particular at most finitely many simplices meet x, so C

is locally finite at x.

The open stars of vertices cover C. This, together with the previous paragraph, implies the re-

maining equivalences. �

COROLLARY 3.20. The set of all points at which C is locally finite is open. �

Next, we will describe the relationship between various kinds of finiteness and compactness.

PROPOSITION 3.21 ([32, Chapter 1, 2.5]). Let C be a simplicial complex, and let F ⊂ C be closed.

Then F is compact if and only if F is contained in a finite subcomplex of C.

PROOF. Every simplex S is a compact Hausdorff space, so every F∩S is compact. If F meets only

finitely many simplices of C, then F is a finite union of compact sets and hence is compact.

Conversely, assume that F is compact and not contained in a finite subcomplex of C. For each

simplex S of C, choose a point pS ∈ F ∩S◦ if the intersection is non-empty. Let G = {pS | F ∩S◦ 6= ;}.

Every subset of G is closed because its intersection with every simplex is finite. Consequently G is

discrete. But G is an infinite subset of the compact set F, so this is a contradiction. �

PROPOSITION 3.22 ([32, Chapter 1, 2.5 and 2.6]). Let C be a simplicial complex.

(1) C is finite if and only if C is compact.

(2) C is locally finite at x if and only if C is locally compact at x.

(3) C is locally finite if and only if C is locally compact.

PROOF. For the first statement, apply proposition 3.21 with F = C.
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For the second statement, if C is locally finite at x, then the star of x is compact by proposition

3.21 and contains an open neighborhood of x, the open star of x. Therefore C is locally compact at x.

Conversely, assume that C is not locally finite at x. If C is locally compact, then there is a compact

subset K of C containing an open neighborhood U of x. Because C is not locally finite at v, proposition

3.19 implies that U meets infinitely many simplices of C, and hence K does also. But by compactness

of K and lemma 3.18, K is closed, so by proposition 3.21 with F = K , K meets only finitely many

simplices. This is a contradiction.

The third statement follows immediately from the second. �

We will need to know the relationship between metric topologies on a simplicial complex and

the usual topology. This is useful because locally semi-algebraic spaces are locally metrizable, so the

proposition implies that a triangulable locally semi-algebraic space is locally compact.

PROPOSITION 3.23. [32, Chapter 1, exercise 2.7] Let C be a simplicial complex, and let d be a

metric on C. Suppose that for every simplex S of C, the metric topology on S induced by d is the same

as the subspace topology on S.

(1) If (C,d) denotes C with the metric topology, then the map i : C → (C,d) which is the identity

on points is continuous.

(2) i is a homeomorphism on the open subset U of C consisting of all points at which C is locally

compact.

(3) i is not a homeomorphism on any open subset of C not contained in U .

In particular, if C is metrizable, then C is locally finite.

PROOF. Let B(x,ε) be an open ball with respect to d. For every simplex S, B(x,ε)∩S is open in S

by assumption, and therefore B(x,ε) is open in C. Consequently i is continuous.

Suppose that F ⊆ U is a closed set. For each simplex S, S ∩F is closed in the metric topology.

F =⋃
S S∩F, and since F ⊆U , this union is locally finite. Therefore F is closed in the metric topology,

and consequently i is a homeomorphism on U .

Let V be an open subset of C not contained in U , and let x ∈ V \ U . Let M be the set of all

minimal faces of C meeting x, that is, the set of all faces of C which properly contain x and each

of whose subfaces do not properly contain x. Every face of C containing x contains a face of M . If
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M were finite, then there would be at most finitely many vertices in the star of x, so C would be

locally finite at x. This contradicts our choice of x, so instead we may choose countably many distinct

simplices S1,S2, . . . in M . Let Wi = C \ {y ∈ Si | d(x, y) ≥ 1/i}. Wi is an open neighborhood of x, and

it contains no ball around x of radius greater than 1/i. W = V ∩⋂
i Wi contains no ball around x of

radius greater than 1/i for every i, so W contains no ball and hence is not metrically open. But W is

open in the simplicial complex topology. To see this, let S be a simplex. S meets at most finitely many

members of M , so W ∩S is a finite intersection of open sets and is therefore open. Consequently W is

open in C. Therefore i is not open on V , so it is not a homeomorphism.

The last claim follows from proposition 3.22. �

Using these facts, we can prove that a simplicial complex is a locally semi-algebraic space if and

only if it is locally finite.

DEFINITION 3.24. Let S ⊆ Rn be a simplex. The natural semi-algebraic structure on S is the

semi-algebraic structure determined by S as a semi-algebraic set, that is, it is the semi-algebraic

structure determined by the affine semi-algebraic space associated to S.

Note that the semi-algebraic structure on S is independent of n and the embedding of S.

PROPOSITION 3.25. Let C be a simplicial complex. Then the following are equivalent.

(1) C is locally finite.

(2) C admits a semi-algebraic structure, called the natural semi-algebraic structure on C, which

on each simplex of C restricts to the natural semi-algebraic structure on S, and for which the

collection of all open stars of vertices is an admissible covering.

PROOF. If C is not locally finite at x, then by propositions 3.22 and 3.23, it is not locally metrizable

at x. Lemma 2.60 therefore implies that in any neighborhood of x, C is not a locally semi-algebraic

space.

Conversely, assume that C is locally finite and that v is a vertex of C. Starv is a finite simplicial

complex, so it, and hence Star◦v, can be embedded in Euclidean space as a semi-algebraic set. This

determines a semi-algebraic structure on Star◦v which on each simplex restricts to the natural semi-

algebraic structure. Now we apply lemma 2.44 to the collection of all open stars and their overlaps in

C. �
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Now we have two notions of a locally semi-algebraic morphism on a locally finite simplicial com-

plex, one coming from the semi-algebraic structure and the other coming from definition 3.11. A

locally semi-algebraic morphism in the simplicial complex sense determines a locally semi-algebraic

morphism in the locally semi-algebraic space sense because the morphism restricts to a locally semi-

algebraic morphism on each open star, locally semi-algebraic morphisms can be glued with respect

to admissible covers, and the morphism of sheaves can be given by pullback. Conversely, a locally

semi-algebraic morphism in the locally semi-algebraic space sense determines a locally semi-algebraic

morphism in the simplicial complex sense because its restriction to the open star of a simplex is a

semi-algebraic morphism. These two determinations are inverse because the morphism of sheaves is

always given by pullback. Therefore the two notions agree.

PROPOSITION 3.26. Let C be a locally finite simplicial complex. Then C is paracompact.

PROOF. Let the collection of open stars of vertices of C be denoted {Sv}v∈V . Each Sv is a para-

compact space, so C has a locally finite covering by paracompact spaces. If {Uα}α∈A is an open cover of

C, then {Uα∩Sv}α∈A is an open cover of Sv for each v. Therefore it admits a locally finite refinement

{Vvβ}β∈Bv . The collection {Vvβ}v∈V ,β∈Bv is then a locally finite refinement of {Uα}. Consequently C is

paracompact. �

3. Subdivisions and piecewise linear structures

DEFINITION 3.27. Let s : D → C be a continuous function between two simplicial complexes. As-

sume that s is a homeomorphism and that for every simplex T of D, there is a simplex S of C such

that s(T) ⊆ S. If s is affine on every simplex of C, then s is an affine subdivision or a subdivision

for short. If s is a semi-algebraic morphism of semi-algebraic sets on every simplex of C, then s is a

semi-algebraic subdivision.

All affine subdivisions are also semi-algebraic subdivisions. An affine subdivision is the same as

a homeomorphism which is also an affine morphism. Note that “subdivision” without any qualifier

will always mean affine subdivision.

DEFINITION 3.28. Let X be a topological space. A triangulation of X is a homeomorphism

t : C → X , where C is a simplicial complex. If D is another simplicial complex and r : D → C is an
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affine subdivision, then we say that tr is an affine subdivision of t. Affine subdivision generates an

equivalence relation whose equivalence classes are called affine PL structures on X . A topological

space with a choice of affine PL structure is an affine PL space. If X and Y are affine PL spaces,

then a function f : X → Y is affine PL if it is continuous and if for some representatives t : C → X

and u : D → Y of the affine PL structures on X and Y , there is an affine map φ : C → D such that

f = u ◦φ◦ t−1. The function is affine simplicial if C, D, and φ can be chosen so that φ is simplicial.

The definition of a semi-algebraic PL structure is parallel to the definition of an affine PL struc-

ture.

DEFINITION 3.29. Let t : C → X be a triangulation. If D is another simplicial complex and r : D →
C is a semi-algebraic subdivision, then we say that tr is a semi-algebraic subdivision of t. Semi-

algebraic subdivision generates an equivalence relation whose equivalence classes are called semi-

algebraic PL structures on X . A topological space with a choice of semi-algebraic PL structure is

a semi-algebraic PL space. If X and Y are semi-algebraic PL spaces, then a function f : X → Y is

semi-algebraic PL if it is continuous and if for some representatives t : C → X and u : D → Y of the

semi-algebraic PL structures on X and Y , there is a locally semi-algebraic morphism φ : C → D such

that f = u ◦φ◦ t−1. The function is semi-algebraic simplicial if C, D, and φ can be chosen so that φ is

simplicial.

THEOREM 3.30. Let X be a locally semi-algebraic space that admits a triangulation. Then X is

Hausdorff, paracompact, and locally compact.

PROOF. Let t : C → X be the triangulation. By lemma 3.18, all simplicial complexes are Haus-

dorff, so if X admits a triangulation then it is also Hausdorff. The pullback of the structure sheaf of

X to C makes C a locally semi-algebraic space, so by proposition 3.25, C is locally finite. Therefore

propositions 3.22 and 3.26 imply that C, and hence X , is locally compact and paracompact. �

Finally, when we are working with locally semi-algebraic spaces, it will be useful to consider only

subdivisions in which all the simplices are semi-algebraic subspaces. By the previous theorem, we

may always assume that C is a locally finite simplicial complex, and so proposition 3.25 implies that

C is naturally a locally semi-algebraic space.
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DEFINITION 3.31. Let X be a locally semi-algebraic space, and let t : C → X be a triangulation.

Give C its natural semi-algebraic structure. If t is a locally semi-algebraic morphism (so that the

pair (t, t#), where t# is pullback by t, is a morphism of locally semi-algebraic spaces), then t is a semi-

algebraic triangulation of X .

4. Extension of subdivisions

In theorem 4, we will prove that, given a subdivision of a subcomplex, we can find a subdivision

of the whole complex which, on the subcomplex, is the given subdivision. Furthermore, this can be

done in a way which does not change the simplices of the larger complex except where they meet the

subcomplex. We are aware of two similar results in the literature. Zeeman [50, Exposé 1, Lemma

3, (ii)] states a version of this theorem without claiming functoriality or non-subdivision of simplices

not meeting the subcomplex. Delfs and Knebusch [10, Chapter II, Lemma 4.3] prove a special case of

the theorem for triangulations of certain locally semi-algebraic spaces. They prove non-subdivision of

simplices, but not functoriality. The primary difference between theorem 4 and these results is that in

our approach, the new simplicial complex is assembled in a canonical way using functoriality, whereas

in the approaches of Zeeman and of Delfs and Knebusch, the new simplicial complex is constructed

inductively and in a non-canonical way.

Before proving the theorem, we first give a characterization of subdivisions, and we use this to

describe a particular way of subdividing a simplex. Note that the preimage of a subcomplex under an

affine morphism is a subcomplex of the domain.

PROPOSITION 3.32. Let s : D → C be a bijective semi-algebraic morphism between two simplicial

complexes. Then s is a semi-algebraic subdivision if and only if for every simplex S of C, the subcomplex

s−1(S) ⊆ D is finite. In particular, if s is a semi-algebraic subdivision, then C is finite (resp. locally

finite) if and only if D is also finite (resp. locally finite).

PROOF. Suppose that s is a semi-algebraic subdivision. Then s−1(S) is a subcomplex of D home-

omorphic to S. S is compact, so s−1(S) is also compact. Therefore by proposition 3.22 it is a finite

complex.

Conversely, if s is bijective and semi-algebraic, it suffices to show that s is homeomorphism. For

this, it suffices to show that each map s−1(S) → S is closed. If F ⊆ s−1(S) is closed and D ⊆ s−1(S) is a
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simplex, then s(D∩F) is closed because D∩F is compact. Since s−1(S) is finite, this implies that s(F)

is closed. �

DEFINITION 3.33. Let C be a simplicial complex in EJ . The abstract cone on C, denoted ConeC,

is the simplicial complex in EJ∪{∗} whose simplices are the simplices of C, the simplex {e∗} whose only

point is the basis vector corresponding to element ∗ of J∪{∗}, and the joins S ·e∗, where S is a simplex

of C. The vertex e∗ is called the apex of the cone.

LEMMA 3.34. Let C be a simplex in Rn, and let s : D → ∂C be a semi-algebraic subdivision. If

p ∈ C◦, then there is a semi-algebraic subdivision ŝ : ConeD → C that sends the apex to p and restricts

to s on D.

PROOF. We construct ŝ as follows. On D, ŝ = s. We set ŝ(e∗) = p. Finally, ŝ linearly interpolates

the remaining points. That is, it sends αx+ (1−α)e∗ to αs(x)+ (1−α)p. We will show that ŝ is a

subdivision using proposition 3.32.

Our first step in showing that ŝ is a subdivision is to show that its image is C. We may assume

that n = dimC. s(D)⊆ C and p ∈ C◦, so the convexity of C implies that ŝ(ConeD)⊆ C. For the reverse

inclusion, first note that C◦ is open and convex, so it is a connected component of Rn \∂C. If q ∈ C\{p},

then the ray starting at p and passing through q meets both C◦ and Rn \ C by boundedness of C, so

the ray must pass through ∂C at some point r. Because the ray is one-dimensional and p ∈ C◦, r is

unique. There is a unique minimal simplex S of ∂C containing r, and q ∈ S ·p. Therefore q ∈ ŝ(ConeD),

so ŝ(ConeD)= C.

Next we will show that ŝ is injective. Suppose that there are two points of ConeD which map to

the same point of C. Write these points as αx+(1−α)e∗ and βy+(1−β)e∗. Construct the rays starting

at p and passing through the images of these two points. These rays meet ∂C at the same point r,

so r is the image under ŝ of both x and of y. Since s is injective, we find that x = y. Since p ∈ C◦ is

not contained in s(D), p is affinely independent of the image of the simplex of D containing x, and

consequently α=β. Therefore ŝ is injective, hence bijective.

It is clear that ŝ is semi-algebraic from the formula given above. Finally, note that ∂C is a finite

complex, so D is a finite complex by proposition 3.32, and hence ConeD is a finite complex. Therefore

another application of proposition 3.32 implies that ŝ is a semi-algebraic subdivision. �
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The previous construction will be most important when p is the barycenter (that is, the center of

gravity) of the simplex.

DEFINITION 3.35. Let S = Conv(v1, . . . ,vr) be a simplex in RN . The barycenter of S is the point

b = 1
r
∑r

i=1 vi.

The barycenter of S is always in S. If f : S →Rn is an affine injection, then f sends the barycenter

of S to the barycenter of f (S). This implies that the process of finding the barycenter is functorial with

respect to affine injections.

THEOREM 3.36. Let C and E be simplicial complexes, and let j : E → C be an injective simplicial

morphism. Assume that we have a semi-algebraic subdivision s : F → E. Then there is a simplicial

complex D, an injective simplicial morphism i : F → D, and a semi-algebraic subdivision t : D → C

such that the diagram

(4.1) F

s
��

i // D

t
��

E
j
// C

commutes. Also, if S is a simplex of C which does not meet j(E), then t−1(S) is a simplex of D. (That is,

t does not subdivide simplices which do not meet j(E).)

Furthermore, injective simplicial affine morphisms of the initial data induce compatible mor-

phisms of the subdivision D. That is, suppose that C′ and E′ are simplicial complexes, j′ : E′ → C′

is an injective simplicial morphism, s′ : F ′ → E′ is a semi-algebraic subdivision, and D′, i′ : F ′ → D′

and t′ : D′ → C′ are the simplicial complex, simplicial morphism, and semi-algebraic subdivision con-

structed by the first part of the theorem for C′, E′, F ′, j′, and s′. If f : C′ → C, g : E′ → E, and h : F ′ → F

are injective simplicial affine morphisms such that f j′ = jg, sh = gs′, and E′ = f −1(E), then there ex-

ists an injective simplicial morphism k : D′ → D such that ki′ = ih and tk = f t′. In other words, if the
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diagram

F

s

��

i // D

t

��

F ′

s′
��

h
``@@@@@@@

i′ // D′

t′
��

k
>>

ä

E′

g��~~
~~

~~
~ j′

// C′

f   @
@@

@@
@@

@

E
j

// C

(4.2)

commutes and the bottom trapezoid is cartesian, then k exists and makes the diagram commute.

Finally, the morphism k is functorial.

PROOF. We work by induction on the dimension of C. We break down the proof in each dimension

into two steps. First, we prove the existence of the diagram (4.1) and functoriality for all simplices.

Second, we use functoriality to extend this to simplicial complexes.

Suppose that C is a simplex of dimension d. If j is an isomorphism, then we take D = F, i = 1F ,

and t = js. If E =;, then we take D = C, i =;, and t = 1C . If d = 0, these are the only cases, so this

completes the d = 0 case.

Otherwise, d > 0 and E is contained in ∂C. Because ∂C is d−1-dimensional, we may apply the

d−1-dimensional case of the theorem to the diagram

F

s
��

∂i // ∂D

∂t
��

E
j
// ∂C

(4.3)

The d−1-dimensional case produces a complex and two morphisms that fit into the upper right-hand

corner of the diagram (4.3). Call the complex ∂D and the two morphisms ∂i : F → ∂D and ∂t : ∂D → ∂C.

By induction, ∂i is an injective simplicial morphism, ∂t is a semi-algebraic subdivision, ∂i and ∂t make

(4.3) commute, and ∂D does not subdivide simplices which do not meet E.
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Let b denote the barycenter of C. Using lemma 3.34 and the semi-algebraic subdivision ∂t of ∂C,

we construct a semi-algebraic subdivision t : D → C. D is Cone∂D, t restricts to ∂t on ∂D, and t sends

the apex of D to b. We let i be the composite of ∂i and the inclusion of ∂D into D. This gives the

diagram (4.1), and D, i, and t have the required properties.

Next we show that there is a functorial and simplicial morphism of the complexes D whenever

there is a simplicial morphism of the initial data. Assume that C′ is a simplicial complex of dimension

e ≤ d, and suppose that we have morphisms f : C′ → C, g : E′ → E, and h : F ′ → F as in the statement.

Because t and t′ are homeomorphisms, we may take k = t−1 f t′. The formula immediately implies that

k is injective and functorial. Furthermore,

ki′ = t−1 f t′ i′ = t−1 f j′s′ = t−1 jgs′ = t−1 jsh = t−1tih = ih.

It remains to check that k is simplicial. Because t, f , and t′ are simplicial morphisms, it suffices to

check that the image of a simplex of D′ in C is the image of a simplex of D. It further suffices to

consider only the case where C′ is a simplex. We do this by induction on e. If e = 0, then C′ is a point,

so k is trivially simplicial. We now assume inductively that k is simplicial whenever C′ has dimension

strictly less than e, and we consider all the possible cases for D and D′.

The first case is when E =;. Then E′ =;, so t and t′ are isomorphisms. Hence k is simplicial.

The second case is when j is an isomorphism. Then D = F, i = 1F , and t = js, so k = s−1 j−1 f t′. j′,

being the pullback of an isomorphism, is also an isomorphism, and since t′ and s′ are semi-algebraic

subdivisions, we deduce that i′ is a bijection. By lemma 3.15, we find that i′ is an isomorphism.

Consequently, we have

k = s−1 g( j′)−1t′ = h(s′)−1( j′)−1t′ = h(i′)−1,

so k is simplicial. This and the previous case together complete the d = 0 case.

The remaining case is when d > 0 and E is a non-empty proper subcomplex of C, so D =Cone∂D.

Again we consider cases. If E′ = ;, then f (C′)∩ j(E) = ;, so t does not subdivide f (C′). Therefore

(t′)−1| f (C′) is a simplicial isomorphism, and hence k is simplicial. If j′ is an isomorphism, then i′ is

an isomorphism, so k = ih(i′)−1 is simplicial. Finally, suppose D′ = Cone∂D′. Because f is an affine

injection, it preserves barycenters, that is, the image of the barycenter b′ of C′ is the barycenter b of

C. Restricting k to ∂D′ gives a simplicial morphism by induction. Consequently, if S′ is a simplex
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of ∂D′ and k(S′) = S for some simplex S of ∂D, then ( f t′)(S′ · b′) = t(S · b), and hence k(S′ · b′) = S · b.

Therefore k is simplicial.

This completes all of the cases in all dimensions. Induction now implies that the statement is true

for any morphism from a simplicial complex of dimension at most d to a simplex of dimension at most

d. This concludes the case of simplices.

Now assume that C is a simplicial complex. Consider the collection of all simplices in C and all

inclusions among these simplices. By lemma 3.13, C is the colimit of this diagram of objects and

morphisms. For each simplex S, we let ES = j−1(S) and FS = s−1(ES). Just as with C, E is the

colimit of the diagram of all ES and their inclusions, and F is the colimit of the diagram of all FS

and their inclusions. We apply the above construction to each FS → ES → S and to each inclusion of

diagrams coming from an inclusion of simplices of C. This produces simplicial complexes DS , maps

iS : FS → DS and tS : DS → S, and morphisms of the corresponding diagrams. Taking the colimit of

these gives a complex D and morphisms i and t which give the desired diagram (4.1). The condition

on not subdividing simplices of C which do not meet j(E) is true because it is true for each simplex

S. Finally, the existence of k is clear from the universal property of the colimit. Because it satisfies

the formula k = t−1 f t′ on each simplex, it satisfies this formula on the entire complex. Functoriality

is clear from the formula, and this completes the proof. �

5. Differences of simplicial complexes

We will show in this section that if C1 ⊇ C2 ⊇ ·· · ⊇ Ck is a decreasing chain of simplicial complexes,

then there is a simplicial complex whose underlying point set is A = C1 \(C2 \ · · · (Ck−1 \Ck) · · · ). There

is a natural morphism from this simplicial complex to A which is a homeomorphism on the set of

points where A is locally compact and not a homeomorphism elsewhere.

The first step in doing this is to describe a special kind of subdivision.

PROPOSITION 3.37. There is a unique functor, denoted Bary and called relative barycentric sub-

division, and a unique natural transformation s having the following properties.

(1) Bary is a functor from the category C whose objects are pairs (C, D), where C is a simplicial

complex and D is a subcomplex of C, and whose morphisms are affine morphisms preserving

the subcomplex to the category of simplicial complexes and affine morphisms
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(2) If U is the forgetful functor from C to the category of simplicial complexes that sends (C, D)

to C, then s is a natural transformation from Bary to U ,

(3) For every pair (C, D), s : BaryD C → C is the identity map on underlying topological spaces

and a subdivision,

(4) BaryC C = C,

(5) If C is zero-dimensional, then BaryD C = C,

(6) If C is zero-dimensional and f : (C, D) → (C′, D′) is a morphism, then Bary f : C → BaryD′ C′

equals f ,

(7) If S is an n-dimensional simplex with barycenter b and T ⊆ ∂S, then BaryT S =Coneb(BaryT ∂S).

PROOF. Bary and s are defined by induction on dimension. For a zero-dimensional simplicial

complex or a morphism whose source is a zero-dimensional complex, Bary and s are determined by

the statement of the proposition. If Bary and s have been defined and are unique up to dimension

n−1, then the statement of the proposition uniquely determines the value of Bary on a simplex of

dimension n. The functoriality assumption then determines Bary uniquely on a complex of dimension

n by lemma 3.13. Because an affine morphism of an n-simplex is determined by its values on its

vertices, an affine morphism from a simplicial complex is determined by its values on its 0-skeleton,

so Bary is determined on an affine morphism from an n-dimensional complex by the assumptions of

the proposition. s is defined for an n-complex by the assumption that it is the identity on underlying

topological spaces. �

LEMMA 3.38. Let C = C1 ⊇ C2 ⊇ ·· · ⊇ Ck be a decreasing chain of simplicial complexes. Let A =
C1 \ (C2 \ · · · (Ck−1 \ Ck) · · · ) and B = ∂∂C A(A∩∂C A). Assume that C is locally finite. Then A is locally

compact at every point of A \ B and is not locally compact at any point of B.

Rather than assuming that A has the specific form given above, it is equivalent to assume that

A is a union of open simplices. However, in our applications, we will use only the specific form given

above.

PROOF. C is locally finite, hence by proposition 3.22 it is locally compact. Therefore A is also

locally compact. To show that A\B is locally compact, therefore, it suffices to show that its complement

in A, which is B∪ (A \ A), is closed. B itself is closed, since it is a boundary, so we need only show

51



that if S is a simplex whose interior is contained in A \ A, then S is contained in B∪ (A \ A). Clearly

such an S is contained in ∂C A, so every point of S not in A \ A must be in ∂∂C A(A \ A)= B. Therefore

S ⊆ B∪ (A \ A), so A \ B is locally compact.

Next, suppose that x ∈ B. We will show that A is not locally compact at x. We claim that there

is a simplex S of C such that x ∈ S, S◦ ⊆ A◦, and S * A. Suppose otherwise. Then if S is a simplex

such that x ∈ S and S◦ ⊆ A◦, we must have S ⊆ A. A is a union of open simplices, so this implies that

A∩StarC x is closed in StarC x. But then we would have B = ∂∂A =;, contradicting the existence of x.

Therefore S exists.

Every open neighborhood U of x in S meets S◦ because x ∈ S. Because B is a boundary, U also

meets points of ∂C A not in A∩∂C A. A∩∂C A is not equal to ∂C A, because that would imply that A is

closed and hence that B is empty, so U it meets points of C not in A. In particular, there is a sequence

{yi} in U ∩S◦ which converges to a point of S \ A. If A∩S were locally compact, then x would admit a

compact neighborhood, but then we could choose a {yi} in this compact neighborhood whose only limit

point would be in S \ A, not in the compact neighborhood. This is impossible, so A∩S is not locally

compact. �

THEOREM 3.39. Let C = C1 ⊇ C2 ⊇ ·· · ⊇ Ck be a decreasing chain of simplicial complexes. Let

A = C1 \ (C2 \ · · · (Ck−1 \ Ck) · · · ) and B = ∂∂C A(A∩∂C A). Then there exists a simplicial complex D and

an affine bijection i : D → A such that

(1) i restricts to a homeomorphism i−1(A \ B)→ A \ B.

(2) i is not a local homeomorphism at any point of B.

PROOF. We perform repeated relative barycentric subdivisions. Let D0 = C1. Assuming that we

have defined Dn, let En be the set of all simplices of Dn which are in A. Set Dn+1 = BaryEn Dn. We

see from this construction that every simplex of Dn is either a simplex in the nth iterated barycentric

subdivision of C or is contained in A.

Say that a subset S of A is a face if there exists an N such that for all n ≥ N, S is a simplex of Dn.

It is clear that a face of a simplex is a face of A and that the intersection of two faces of A is a face of

A. Therefore these faces determine a simplicial complex D and a bijection i : D → A. To see that i is

continuous, choose an open set V ⊆ C. The intersection of V with a simplex of D is an open subset of
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the simplex, and hence i−1(V ) is open. i is an affine morphism on each simplex of D because it is the

identity on underlying point sets.

Choose a point x ∈ A \ B. We will show that i is a local homeomorphism at x. To do this, choose a

simplex S containing x, and choose a metric on S. Let ε be less than half the distance from x to S∩B.

By [32, Chapter 2, Theorem 15.4], there is an n such that every simplex in the nth iterated barycentric

subdivision of S has diameter less than ε. Consequently every simplex S′ of Dn ∩S containing x is

contained in A, because either it is contained in some E i with i < n or it is a simplex of the nth iterated

barycentric subdivision. Therefore each such simplex is not further subdivided in Dn+1,Dn+2, . . ., that

is, the star of x in Dn ∩S is fixed. Consequently i determines a homeomorphism from the preimage

of this star to the star. The star contains the open star, which is an open neighborhood of x, and

consequently i is a local homeomorphism at x.

Let x ∈ B. By the argument of lemma 3.38, there is a simplex S such that x ∈ S, S◦ ⊆ A◦, and

S * A. If i were a local homeomorphism at x, then i|i−1(S) would be a local homeomorphism. Because

S is a simplex, it is metrizable, hence A∩S is also metrizable. Proposition 3.23 would imply that A∩S

is locally compact. But lemma 3.38 to S∩C1 ⊇ S∩C2 ⊇ ·· · implies that A∩S is not locally compact at

x, so i is not a local homeomorphism at x. �
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Chapter 4

Triangulation

1. Triangulation of affine semi-algebraic spaces

The best-known statement of triangulation constructs embedded triangulations of finite collec-

tions of bounded semi-algebraic subsets of Euclidean space.

THEOREM 4.1 ([27], [20]). Let {Xα}α∈A be a finite collection of bounded semi-algebraic subsets of

Rn. Then there exists a locally finite simplicial complex C and a homeomorphism t : C →Rn such that:

(1) The image of every open simplex of C is a semi-algebraic set and a real analytic manifold.

(2) Every Xα is the union of images of open geometric simplices of C.

(3) There is a compact subset K of Rn such that for every simplex S of C, if t(S) is not contained

in K , then t(S) is the convex hull of its vertices. �

Note that for every simplex S of C, t(S) is also a semi-algebraic set because it is the closure of

t(S◦).

An immediate consequence of this theorem is that if the union X of {Xα} is closed, then there is a

simplicial complex which is homeomorphic to X .

COROLLARY 4.2 ([4, Theorem 9.2.1]). Let {Xα}α∈A be a finite collection of bounded semi-algebraic

subsets of Rn, and assume that X =⋃
α∈A Xα is closed. Then there exists a finite simplicial complex C

and a homeomorphism t : C → X such that:

(1) The image of every open simplex of C is a semi-algebraic set and a real analytic manifold.

(2) Every Xα is the union of images of open geometric simplices of C.

PROOF. Apply theorem 4.1 to the collection {Xα}α∈A to produce a locally finite simplicial complex

C̃ and a homeomorphism t̃ as in the theorem. X is closed, so the collection C of all faces which map
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into X is a subcomplex of C̃. X is the union of images of open geometric simplices, so t̃(C) = X . X is

compact, so by lemma 3.22, C is finite. The remaining conditions of the corollary follow immediately

from the theorem. �

We will want to reduce statements about arbitrary subspaces to statements about collections of

closed subspaces. This is done by the following lemma.

LEMMA 4.3. Let X be a locally semi-algebraic space, and let Y ⊆ X be a locally semi-algebraic

subspace. Then there exists closed subspaces Z0 ⊃ Z1 ⊃ ·· · ⊃ Zm such that dim Zi < dim Zi+1 and

Y = Z0 \ (Z1 \ · · · (Zm−1 \ Zm) · · · ).

PROOF. Let Y0 = Y . Assuming that we have defined Yi, set Yi+1 = Yi \ Yi. Since Yi+1 ⊆ ∂Yi, we

have dimYi+1 < dimYi, so eventually the sequence terminates. We have

Y =Y0 \Y1 =Y0 \ (Y1 \Y2)=Y0 \ (Y1 \ (Y2 \Y3))= ·· ·

Therefore we set Zi =Yi. �

PROPOSITION 4.4. Let X be an affine semi-algebraic space, and let Y1, . . . ,Yk be a finite collection

of affine semi-algebraic subspaces. Then there exists a simplicial complex D and a bijective continuous

map t : D → X such that:

(1) The image of every open simplex of D is an affine semi-algebraic space and a real analytic

manifold.

(2) Each of Y1, . . . ,Yk is a union of images of open geometric simplices of D.

(3) t is a homeomorphism on the maximal locally compact subspace of X , and is not a local

homeomorphism at any point outside that subspace.

PROOF. Embed X as a semi-algebraic set in Rn. Stereographic projection makes Rn a semi-

algebraic subset of Sn ⊆ Rn+1, so X embeds in Rn+1 as a bounded semi-algebraic set. Apply lemma

4.3 to X to write it as an iterated difference of the closed and bounded subspaces Z1, . . . , Z`. Apply

corollary 4.2 to Y1, . . . ,Yk, Z1, . . . , Z` to produce a triangulation s : C → Z1 ∪ ·· ·∪ Z` in which each Zi

corresponds to a subcomplex Ci of C and in which each Yi is a union of open geometric simplices of

C. Then apply theorem 3.39 to C1 ⊇ ·· · ⊇ Ck to produce a simplicial complex D and a bijective affine
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morphism i : D → C1. Let t = s ◦ i. Because the image of each open simplex in C1 under s is a semi-

algebraic set and a real analytic manifold, the same is true of the image under t of each open simplex

of D. Furthermore, C is finite, hence compact, so lemma 3.38 implies that t is a homeomorphism on

the points of C where X is locally compact and not a local homeomorphism at any other point. �

2. Triangulation of locally semi-algebraic spaces

THEOREM 4.5. Let X be a locally semi-algebraic space such that X is Hausdorff, paracompact,

and locally compact, and let {Yα}α∈A be a locally finite family of locally semi-algebraic subspaces of X .

Then there exists a simplicial complex C and a triangulation t : C → X such that:

(1) The image of every open simplex of C is a real analytic manifold and an affine semi-algebraic

subspace of X ,

(2) Each Yα is the union of images of open simplices of C.

PROOF. Around every point of X , there is an open neighborhood meeting only finitely many mem-

bers of {Yα}. Within that open neighborhood, there is a smaller open neighborhood whose intersection

with each of those members of {Yα} is an affine semi-algebraic space. These neighborhoods determine

a cover of X . We refine this cover by lemma 2.61 to produce a cover {Kβ}β∈B of X . Every member of

{Kβ} is a compact affine semi-algebraic subspace and meets only finitely many other members of {Kβ}.

Choose a well ordering ≤ of B, and set Lβ = ⋃
β′≤βKβ′ . We will use transfinite recursion to con-

struct, for each β ∈ B, a triangulation of Lβ. Call this triangulation tβ : Cβ → Lβ. tβ will have the

following properties:

(1) tβ is semi-algebraic.

(2) The image of every open simplex of Cβ is a real analytic manifold and an affine semi-

algebraic subspace of X ,

(3) For all α ∈ A, Yα∩Lβ is the union of images of open simplices of Cβ,

(4) For all γ ∈ B, Kγ∩Lβ is the union of images of open simplices of Cβ,

(5) If β′ ≤β, then t−1
β′ ◦ tβ : Cβ→ t−1

β′ (tβ(Cβ)) is a semi-algebraic subdivision,

(6) If β′ ≤ β, then, when t−1
β′ ◦ tβ is restricted to the subcomplex of all simplices of Cβ whose

images in Lβ do not meet any Kγ for β′ ≤ γ≤β, t−1
β′ ◦ tβ becomes an isomorphism of simplicial

complexes.
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To begin the recursion, suppose that 0 ∈ B is the minimal element. Then L0 = K0 is a compact affine

semi-algebraic space, so we would like to apply proposition 4.4 to K0 and to the family of subspaces

{Yα∩K0}∪{Kγ∩K0}, where α and γ are arbitrary. This family is finite by our choice of cover. Therefore

the proposition applies, and it produces a triangulation t0 : C0 → K0 satisfying all the properties listed

above.

Next, suppose that we have constructed the triangulation up to some ordinal β. Let β+ be the

successor of β. We will construct tβ+ by gluing tβ to a triangulation of Kβ+ . Kβ+ is a compact affine

semi-algebraic space, so we apply proposition 4.4 to Kβ+ and the family of subspaces {Yα∩Kβ+ }∪{Kγ∩
Kβ+ }∪ {tβ(S)∩Kβ+ }, where α and γ are arbitrary and where S ranges over the simplices of Cβ. Again,

the proposition applies because our choice of cover implies that the family of subspaces is finite. Call

the resulting triangulation sβ+ : Dβ+ → Kβ+ .

To construct tβ+ , we glue tβ and sβ+ . We do this in two steps. The first step is to refine Cβ so

that it agrees with Dβ+ on their overlap Kβ+ ∩Lβ. The second step is to construct the pushout of Dβ+

and the refinement of Cβ. For the first step, apply theorem 3.36. For the complex C of the theorem

we choose Cβ. For E we choose the subcomplex t−1
β

(Kβ+ ∩Lβ) of Cβ, and for j we choose the canonical

inclusion of this subcomplex into Cβ. E is a subcomplex by our recursive hypotheses on tβ and Lβ. For

the refinement F of E we choose the subcomplex t−1
β+ (Kβ+ ∩Lβ) of Dβ+ , and for s we choose t−1

β
◦ tβ+ . tβ

and tβ+ are semi-algebraic, and Dβ+ was chosen so that t−1
β

◦ tβ+ is a subdivision. Therefore theorem

3.36 applies. It produces a semi-algebraic subdivision C′
β
→ Cβ which is the trivial subdivision on

every simplex of Cβ not meeting Kβ+ and which is identical to Dβ+ on Kβ+ ∩Lβ.

Now we apply lemma 3.16. We construct the pushout of C′
β

and Dβ+ along the subcomplex cor-

responding to Kβ+ ∩ Lβ and call it Cβ+ . Because it is a pushout, it comes with a semi-algebraic

isomorphism tβ+ to Lβ+ . The image of every open simplex of Cβ+ is the image of a simplex of C′
β

or

Dβ+ and hence is a real analytic manifold and an affine semi-algebraic space. Each Yα∩Cβ+ and each

Kγ∩Cβ+ is the union of open simplices because each Yα∩C′
β
, Yα∩Dβ+ , Kγ∩C′

β
, and Kγ∩Dβ+ is. If

β′ ≤ β, then t−1
β′ ◦ tβ is a semi-algebraic subdivision because C′

β
is a semi-algebraic subdivision of Cβ.

Finally, because our application of theorem 3.36 did not subdivide any simplex not meeting Kβ+ , we

find that tβ+ and Cβ+ satisfy the non-subdivision condition, and hence all the recursive hypotheses,

given above. This completes the case of a successor ordinal.
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It remains to consider the case of a limit ordinal β. For all β′ < β, let Eβ′ denote the subcomplex

of Cβ′ formed by all simplices which do not meet any Kγ for β′ ≤ γ≤ β. By the recursive hypotheses,

we have simplicial affine injections Eβ′ → Eβ′′ whenever β′ ≤ β′′ < β. By lemma 3.17, E = lim−−→β′<βEβ′

exists. By the universal property, it has a semi-algebraic morphism u : E → Lβ which restricts on each

Eβ′ to tβ′ . Therefore it is straightforward to verify all of the recursive hypotheses given above for E.

To see that every point of
⋃
β′<βKβ′ is in the image of u, notice that every point lies in some Kβ0 and

that Kβ0 meets only finitely many Kβ′ . Therefore there is a β1 ≥ β0 such that Kβ0 meets no Kβ′ with

β1 ≤ β′ < β. In particular, by the non-subdivision condition, the given point lies in Eβ1 . Consequently

u and E determine a triangulation of
⋃
β′<βKβ′ . However, Kβ need not be empty, so E might not

triangulate Lβ. To repair this, we repeat the argument for the successor ordinal case, replacing Cβ by

E and tβ by u. This produces tβ and Cβ. (Another solution to this deficiency is to replace {Kβ} by a

different collection in which Kβ =; whenever β is a limit ordinal.)

The output of the transfinite recursion is the desired triangulation of X , and it satisfies the con-

clusion of the theorem because of the recursive hypotheses. �

COROLLARY 4.6. Let X be a locally semi-algebraic space such that X is Hausdorff, paracompact,

and locally compact. Then X admits at most one semi-algebraic PL structure.

PROOF. Any two triangulations t1 : C1 → X and t2 : C2 → X determine two locally finite families

of semi-algebraic subspaces of X . Applying theorem 4.5 to these two families produces a common

semi-algebraic subdivision of the two triangulations, and hence they are equivalent. �

COROLLARY 4.7. Let X be a separated finite type k-scheme, where k is R or C. Then X (k) admits

one and only one semi-algebraic PL structure.

PROOF. By proposition 2.62, X (k) is Hausdorff, paracompact, and locally compact. Therefore by

theorem 4.5 and corollary 4.6, X (k) admits a unique semi-algebraic PL structure. �
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