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log scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 Dual-time-to-default: (left) Lexis diagram of sub-sampled simula-
tions; (right) empirical hazard rates in either lifetime or calendar time. 90

4.2 DtBreslow estimator vs one-way nonparametric estimator using the
data of (top) both pre-2005 and post-2005 vintages; (middle) pre-
2005 vintages only; (bottom) post-2005 vintages only. . . . . . . . . 98

4.3 MEV modeling of empirical hazard rates, based on the dual-time-to-
default data of (top) both pre-2005 and post-2005 vintages; (middle)
pre-2005 vintages only; (bottom) post-2005 vintages only. . . . . . . 101

4.4 Nonparametric analysis of credit card risk: (top) one-way empirical
hazards, (middle) DtBrewlow estimation, (bottom) MEV decompo-
sition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

vii



4.5 MEV decomposition of credit card risk for low, medium and high
FICO buckets: Segment 1 (top panel); Segment 2 (bottom panel). . 123

4.6 Home prices and unemployment rate of California state: 2000-2008. 125

4.7 MEV decomposition of mortgage hazards: default vs. prepayment . 125

4.8 Split time-varying covariates into little time segments, illustrated. . 133

viii



LIST OF TABLES

Table

1.1 Moody’s speculative-grade default rates. Data source: Moody’s spe-
cial comment (release: February 2009) on corporate default and re-
covery rates, 1920-2008 (http://www.moodys.com/) and author’s cal-
culations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 AdaSS parameters in Doppler and HeaviSine simulation study. . . . . 41

3.1 Synthetic vintage data analysis: MEV modeling exercise with GCV-
selected structural and smoothing parameters. . . . . . . . . . . . . 77

4.1 Illustrative data format of pooled credit card loans . . . . . . . . . . 120

4.2 Loan-level covariates considered in mortgage credit risk modeling,
where NoteRate could be dynamic and others are static upon origi-
nation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.3 Maximum partial likelihood estimation of mortgage covariate effects
in dual-time Cox regression models. . . . . . . . . . . . . . . . . . . 128

ix



ABSTRACT

This research deals with some statistical modeling problems that are motivated

by credit risk analysis. Credit risk modeling has been the subject of considerable

research interest in finance and has recently drawn the attention of statistical re-

searchers. In the first chapter, we provide an up-to-date review of credit risk models

and demonstrate their close connection to survival analysis.

The first statistical problem considered is the development of adaptive smooth-

ing spline (AdaSS) for heterogeneously smooth function estimation. Two challenging

issues that arise in this context are evaluation of reproducing kernel and determi-

nation of local penalty, for which we derive an explicit solution based on piecewise

type of local adaptation. Our nonparametric AdaSS technique is capable of fitting a

diverse set of ‘smooth’ functions including possible jumps, and it plays a key role in

subsequent work in the thesis.

The second topic is the development of dual-time analytics for observations in-

volving both lifetime and calendar timescale. It includes “vintage data analysis”

(VDA) for continuous type of responses in the third chapter, and “dual-time survival

analysis” (DtSA) in the fourth chapter. We propose a maturation-exogenous-vintage

(MEV) decomposition strategy in order to understand the risk determinants in terms

of self-maturation in lifetime, exogenous influence by macroeconomic conditions, and

heterogeneity induced from vintage originations. The intrinsic identification problem

is discussed for both VDA and DtSA. Specifically, we consider VDA under Gaus-

sian process models, provide an efficient MEV backfitting algorithm and assess its

performance with both simulation and real examples.

x



DtSA on Lexis diagram is of particular importance in credit risk modeling where

the default events could be triggered by both endogenous and exogenous hazards.

We consider nonparametric estimators, first-passage-time parameterization and semi-

parametric Cox regression. These developments extend the family of models for both

credit risk modeling and survival analysis. We demonstrate the application of DtSA

to credit card and mortgage risk analysis in retail banking, and shed some light on

understanding the ongoing credit crisis.

xi



CHAPTER I

An Introduction to Credit Risk Modeling

Credit risk is a critical area in banking and is of concern to a variety of stakehold-

ers: institutions, consumers and regulators. It has been the subject of considerable

research interest in banking and finance communities, and has recently drawn the

attention of statistical researchers. By Wikipedia’s definition,

“Credit risk is the risk of loss due to a debtor’s non-payment of a loan

or other line of credit.” (Wikipedia.org, as of March 2009)

Central to credit risk is the default event, which occurs if the debtor is unable to

meet its legal obligation according to the debt contract. The examples of default

event include the bond default, the corporate bankruptcy, the credit card charge-

off, and the mortgage foreclosure. Other forms of credit risk include the repayment

delinquency in retail loans, the loss severity upon the default event, as well as the

unexpected change of credit rating.

An enormous literature in credit risk has been fostered by both academics in

finance and practitioners in industry. There are two parallel worlds based upon a

simple dichotomous rule of data availability: (a) the direct measurements of credit

performance and (b) the prices observed from credit market. The data availability

leads to two streams of credit risk modeling that have key distinctions.
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1.1 Two Worlds of Credit Risk

The two worlds of credit risk can be simply characterized by the types of default

probability, one being actual and the other being implied. The former corresponds

to the direct observations of defaults, also known as the physical default probability

in finance. The latter refers to the risk-neutral default probability implied from the

credit market data, e.g. corporate bond yields.

The academic literature of corporate credit risk has been inclined to the study of

the implied defaults, which is yet a puzzling world.

1.1.1 Credit Spread Puzzle

The credit spread of a defaultable corporate bond is its excess yield over the

default-free Treasury bond of the same time to maturity. Consider a zero-coupon

corporate bond with unit face value and maturity date T . The yield-to-maturity at

t < T is defined by

Y (t, T ) = − logB(t, T )

T − t
(1.1)

where B(t, T ) is the bond price of the form

B(t, T ) = E
[
exp

{
−
∫ T

t

(r(s) + λ(s))ds

}]
, (1.2)

given the independent term structures of the interest rate r(·) and the default rate

λ(·). Setting λ(t) ≡ 0 gives the benchmark price B0(t, T ) and the yield Y0(t, T ) of

Treasury bond. Then, the credit spread can be calculated as

Spread(t, T ) = Y (t, T )− Y0(t, T ) = − log(B(t, T )/B0(t, T ))

T − t
= − log(1− q(t, T ))

T − t
(1.3)

where q(t, T ) = E
[
e−

R T
t λ(t)ds

]
is the conditional default probability P[τ ≤ T |τ > t] and

τ denotes the time-to-default, to be detailed in the next section.
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The credit spread is supposed to co-move with the default rate. For illustration,

Figure 1.1 (top panel) plots the Moody’s-rated corporate default rates and Baa-

Aaa bond spreads ranging from 1920-2008. The shaded backgrounds correspond to

NBER’s latest announcement of recession dates. Most spikes of the default rates and

the credit spreads coincide with the recessions, but it is clear that the movements of

two time series differ in both level and change. Such a lack of match is the so-called

credit spread puzzle in the latest literature of corporate finance; the actual default

rates could be successfully implied from the market data of credit spreads by none of

the existing structural credit risk models.

The default rates implied from credit spreads mostly overestimate the expected

default rates. One factor that helps explain the gap is the liquidity risk – a secu-

rity cannot be traded quickly enough in the market to prevent the loss. Figure 1.1

(bottom panel) plots, in fine resolution, the Moody’s speculative-grade default rates

versus the high-yield credit spreads: 1994-2008. It illustrates the phenomenon where

the spread changed in response to liquidity-risk events, while the default rates did not

react significantly until quarters later; see the liquidity crises triggered in 1998 (Rus-

sian/LTCM shock) and 2007 (Subprime Mortgage meltdown). Besides the liquidity

risk, there exist other known (e.g. tax treatments of corporate bonds vs. government

bonds) and unknown factors that make incomplete the implied world of credit risk.

As of today, we lack a thorough understanding of the credit spread puzzle; see e.g.

Chen, Lesmond and Wei (2007) and references therein.

The shaky foundation of the default risk implied from market credit spreads with-

out looking at the historical defaults leads to further questions about the credit

derivatives, e.g. Credit Default Swap (CDS) and Collateralized Debt Obligation

(CDO). The 2007-08 collapse of credit market in Wall Street is partly due to over-

complication in “innovating” such complex financial instruments on the one hand,

and over-simplification in quantifying their embedded risks on the other.

3



Figure 1.1: Moody’s-rated corporate default rates, bond spreads and NBER-
dated recessions. Data sources: a) Moody’s Baa & Aaa cor-
porate bond yields (http://research.stlouisfed.org/fred2/categories/119);
b) Moody’s Special Comment on Corporate Default and Recovery
Rates, 1920-2008 (http://www.moodys.com/); c) NBER-dated recessions
(http://www.nber.org/cycles/).
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1.1.2 Actual Defaults

The other world of credit risk is the study of default probability bottom up from

the actual credit performance. It includes the popular industry practices of

a) credit rating in corporate finance, by e.g. the three major U.S. rating agencies:

Moody’s, Standard & Poor’s, and Fitch.

b) credit scoring in consumer lending, by e.g. the three major U.S. credit bureaus:

Equifax, Experian and TransUnion.

Both credit ratings and scores represent the creditworthiness of individual corpora-

tions and consumers. The final evaluations are based on statistical models of the

expected default probability, as well as judgement by rating/scoring specialists. Let

us describe very briefly some rating and scoring basics related to the thesis.

The letters Aaa and Baa in Figure 1.1 are examples of Moody’s rating system,

which use Aaa, Aa, A, Baa, Ba, B, Caa, Ca, C to represent the likelihood of default

from the lowest to the highest. The speculative grade in Figure 1.1 refers to Ba and

the worse ratings. The speculative-grade corporate bonds are sometimes said to be

high-yield or junk.

FICO, developed by Fair Isaac Corporation, is the best-known consumer credit

score and it is the most widely used by U.S. banks and other credit card or mortgage

lenders. It ranges from 300 (very poor) to 850 (best), and intends to represent the

creditworthiness of a borrower such that he or she will repay the debt. For the same

borrower, the three major U.S. credit bureaus often report inconsistent FICO scores

based on their own proprietary models.

Compared to either the industry practices mentioned above or the academics of

the implied default probability, the academic literature based on the actual defaults

is much smaller, which we believe is largely due to the limited access for an academic

researcher to the proprietary internal data of historical defaults. A few academic
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works will be reviewed later in Section 1.3. In this thesis, we make an attempt

to develop statistical methods based on the actual credit performance data. For

demonstration, we shall use the synthetic or tweaked samples of retail credit portfolios,

as well as the public release of corporate default rates by Moody’s.

1.2 Credit Risk Models

This section reviews the finance literature of credit risk models, including both

structural and intensity-based approaches. Our focus is placed on the probability of

default and the hazard rate of time-to-default.

1.2.1 Structural Approach

In credit risk modeling, structural approach is also known as the firm-value ap-

proach since a firm’s inability to meet the contractual debt is assumed to be deter-

mined by its asset value. It was inspired by the 1970s Black-Scholes-Merton method-

ology for financial option pricing. Two classic structural models are the Merton model

(Merton, 1974) and the first-passage-time model (Black and Cox, 1976).

The Merton model assumes that the default event occurs at the maturity date

of debt if the asset value is less than the debt level. Let D be the debt level with

maturity date T , and let V (t) be the latent asset value following a geometric Brownian

motion

dV (t) = µV (t)dt+ σV (t)dW (t), (1.4)

with drift µ, volatility σ and the standard Wiener process W (t). Recall that EW (t) =

0, EW (t)W (s) = min(t, s). Given the initial asset value V (0) > D, by Itó’s lemma,

V (t)

V (0)
= exp

{(
µ− 1

2
σ2
)
t+ σWt

}
∼ Lognormal

((
µ− 1

2
σ2
)
t, σ2t

)
, (1.5)

from which one may evaluate the default probability P(V (T ) ≤ D).

6



The notion of distance-to-default facilitates the computation of conditional default

probability. Given the sample path of asset values up to t, one may first estimate the

unknown parameters in (1.4) by maximum likelihood method. According to Duffie

and Singleton (2003), let us define the distance-to-default X(t) by the number of

standard deviations such that log Vt exceeds logD, i.e.

X(t) = (log V (t)− logD)/σ. (1.6)

Clearly, X(t) is a drifted Wiener process of the form

X(t) = c+ bt+W (t), t ≥ 0 (1.7)

with b = µ−σ2/2
σ

and c = log V (0)−logD
σ

. Then, it is easy to verify that the conditional

probability of default at maturity date T is

P(V (T ) ≤ D|V (t) > D) = P(X(T ) ≤ 0|X(t) > 0) = Φ

(
X(t) + b(T − t)√

T − t

)
, (1.8)

where Φ(·) is the cumulative normal distribution function.

The first-passage-time model by Black and Cox (1976) extends the Merton model

so that the default event could occur as soon as the asset value reaches a pre-specified

debt barrier. Figure 1.2 (left panel) illustrates the first-passage-time of a drifted

Wiener process by simulation, where we set the parameters b = −0.02 and c = 8 (s.t.

a constant debt barrier). The key difference of Merton model and Black-Cox model

lies in the green path (the middle realization viewed at T ), which is treated as default

in one model but not the other.

By (1.7) and (1.8), V (t) hits the debt barrier once the distance-to-default process

X(t) hits zero. Given the initial distance-to-default c ≡ X(0) > 0, consider the

7



Figure 1.2: Simulated drifted Wiener process, first-passage-time and hazard rate.

first-passage-time

τ = inf{t ≥ 0 : X(t) ≤ 0}, (1.9)

where inf ∅ = ∞ as usual. It is well known that τ follows the inverse Gaussian

distribution (Schrödinger, 1915; Tweedie, 1957; Chhikara and Folks, 1989) with the

density

f(t) =
c√
2π
t−3/2 exp

{
−(c+ bt)2

2t

}
, t ≥ 0. (1.10)

See also other types of parametrization in Marshall and Olkin (2007; §13). The

survival function S(t) is defined by P(τ > t) for any t ≥ 0 and is given by

S(t) = Φ

(
c+ bt√

t

)
− e−2bcΦ

(
−c+ bt√

t

)
. (1.11)

The hazard rate, or the conditional default rate, is defined by the instantaneous

rate of default conditional on the survivorship,

λ(t) = lim
∆t↓0

1

∆t
P(t ≤ τ < t+ ∆t|τ ≥ t) =

f(t)

S(t)
. (1.12)

Using the inverse Gaussian density and survival functions, we obtain the form of the

8



first-passage-time hazard rate:

λ(t; c, b) =

c√
2πt3

exp

{
−(c+ bt)2

2t

}
Φ

(
c+ bt√

t

)
− e−2bcΦ

(
−c+ bt√

t

) , c > 0. (1.13)

This is one of the most important forms of hazard function in structural approach

to credit risk modeling. Figure 1.2 (right panel) plots λ(t; c, b) for b = −0.02 and

c = 4, 6, 8, 10, 12, which resemble the default rates from low to high credit qualities

in terms of credit ratings or FICO scores. Both the trend parameter b and the initial

distance-to-default parameter c provide insights to understanding the shape of the

hazard rate; see the details in Chapter IV or Aalen, Borgan and Gjessing (2008; §10).

Modern developments of structural models based on Merton and Black-Cox mod-

els can be referred to Bielecki and Rutkowski (2004; §3). Later in Chapter IV, we

will discuss the dual-time extension of first-passage-time parameterization with both

endogenous and exogenous hazards, as well as non-constant default barrier and in-

complete information about structural parameters.

1.2.2 Intensity-based Approach

The intensity-based approach is also called the reduced-form approach, proposed

independently by Jarrow and Turnbull (1995) and Madan and Unal (1998). Many

follow-up papers can be found in Lando (2004), Bielecki and Rutkowski (2004) and

references therein. Unlike the structural approach that assumes the default to be

completely determined by the asset value subject to a barrier, the default event in the

reduced-form approach is governed by an externally specified intensity process that

may or may not be related to the asset value. The default is treated as an unexpected

event that comes ‘by surprise’. This is a practically appealing feature, since in the

real world the default event (e.g. Year 2001 bankruptcy of Enron Corporation) is
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often all of a sudden happening without announcement.

The default intensity corresponds to the hazard rate λ(t) = f(t)/S(t) defined in

(1.12) and it has roots in statistical reliability and survival analysis of time-to-failure.

When S(t) is absolutely continuous with f(t) = d(1− S(t))/dt, we have that

λ(t) =
−dS(t)

S(t)dt
= −d[logS(t)]

dt
, S(t) = exp

{
−
∫ t

0

λ(s)ds

}
, t ≥ 0.

In survival analysis, λ(t) is usually assumed to be a deterministic function in time.

In credit risk modeling, λ(t) is often treated as stochastic. Thus, the default time

τ is doubly stochastic. Note that Lando (1998) adopted the term “doubly stochastic

Poisson process” (or, Cox process) that refers to a counting process with possibly

recurrent events. What matters in modeling defaults is only the first jump of the

counting process, in which case the default intensity is equivalent to the hazard rate.

In finance, the intensity-based models are mostly the term-structure models bor-

rowed from the literature of interest-rate modeling. Below is an incomplete list:

Vasicek: dλ(t) = κ(θ − λ(t))dt+ σdWt

Cox-Ingersoll-Roll: dλ(t) = κ(θ − λ(t))dt+ σ
√
λ(t)dWt (1.14)

Affine jump: dλ(t) = µ(λ(t))dt+ σ(λ(t))dWt + dJt

with reference to Vasicek (1977), Cox, Ingersoll and Roll (1985) and Duffie, Pan and

Singleton (2000). The last model involves a pure-jump process Jt, and it covers both

the mean-reverting Vasicek and CIR models by setting µ(λ(t)) = κ(θ − λ(t)) and

σ(λ(t)) =
√
σ2

0 + σ2
1λ(t).

The term-structure models provide straightforward ways to simulate the future

default intensity for the purpose of predicting the conditional default probability.

However, they are ad hoc models lacking fundamental interpretation of the default

event. The choices (1.14) are popular because they could yield closed-form pricing
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formulas for (1.2), while the real-world default intensities deserve more flexible and

meaningful forms. For instance, the intensity models in (1.14) cannot be used to

model the endogenous shapes of first-passage-time hazards illustrated in Figure 1.2.

The dependence of default intensity on state variables z(t) (e.g. macroeconomic

covariates) is usually treated through a multivariate term-structure model for the

joint of (λ(t), z(t)). This approach essentially presumes a linear dependence in the

diffusion components, e.g. by correlated Wiener processes. In practice, the effect of

a state variable on the default intensity can be non-linear in many other ways.

The intensity-based approach also includes the duration models for econometric

analysis of actual historical defaults. They correspond to the classical survival analysis

in statistics, which opens another door for approaching credit risk.

1.3 Survival Models

Credit risk modeling in finance is closely related to survival analysis in statis-

tics, including both the first-passage-time structural models and the duration type

of intensity-based models. In a rough sense, default risk models based on the actual

credit performance data exclusively belong to survival analysis, since the latter by

definition is the analysis of time-to-failure data. Here, the failure refers to the default

event in either corporate or retail risk exposures; see e.g. Duffie, Saita and Wang

(2007) and Deng, Quigley and Van Order (2000).

We find that the survival models have at least four-fold advantages in approach

to credit risk modeling:

1. flexibility in parametrizing the default intensity,

2. flexibility in incorporating various types of covariates,

3. effectiveness in modeling the credit portfolios, and
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4. being straightforward to enrich and extend the family of credit risk models.

The following materials are organized in a way to make these points one by one.

1.3.1 Parametrizing Default Intensity

In survival analysis, there are a rich set of lifetime distributions for parametrizing

the default intensity (i.e. hazard rate) λ(t), including

Exponential: λ(t) = α

Weibull: λ(t) = αtβ−1 (1.15)

Lognormal: λ(t) =
1

tα

φ(log t/α)

Φ(− log t/α)

Log-logistic: λ(t) =
(β/α)(t/α)β−1

1 + (t/α)β
, α, β > 0

where φ(x) = Φ′(x) is the density function of normal distribution. Another example

is the inverse Gaussian type of hazard rate function in (1.13). More examples of

parametric models can be found in Lawless (2003) and Marshall and Olkin (2007)

among many other texts. They all correspond to the distributional assumptions of the

default time τ , while the inverse Gaussian distribution has a beautiful first-passage-

time interpretation.

The log-location-scale transform can be used to model the hazard rates. Given a

latent default time τ0 with baseline hazard rate λ0(t) and survival function S0(t) =

exp
{
−
∫ t

0
λ0(s)ds

}
, one may model the firm-specific default time τi by

log τi = µi + σi log τ0, −∞ < µi <∞, σi > 0 (1.16)

with individual risk parameters (µi, σi). Then, the firm-specific survival function

takes the form

Si(t) = S0

([
t

eµi

]1/σi
)

(1.17)
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and the firm-specific hazard rate is

λi(t) = −d logSi(t)

dt
=

1

σit

[
t

eµi

]1/σi

λ0

([
t

eµi

]1/σi
)
. (1.18)

For example, given the Weibull baseline hazard rate λ0(t) = αtβ−1, the log-location-

scale transformed hazard rate is given by

λi(t) =
α

σi
t
β
σi
−1

exp

{
−βµi
σi

}
. (1.19)

1.3.2 Incorporating Covariates

Consider firm-specific (or consumer-specific) covariates zi ∈ Rp that are either

static or time-varying. The dependence of default intensity on zi can be studied by

regression models. In the context of survival analysis, there are two popular classes

of regression models, namely

1. the multiplicative hazards regression models, and

2. the accelerated failure time (AFT) regression models.

The hazard rate is taken as the modeling basis in the first class of regression models:

λi(t) = λ0(t)r(zi(t)) (1.20)

where λ0(t) is a baseline hazard function and r(zi(t)) is a firm-specific relative-risk

multiplier (both must be positive). For example, one may use the inverse Gaussian

hazard rate (1.13) or pick one from (1.15) as the baseline λ0(t). The relative risk term

is often specified by r(zi(t)) = exp{θTzi(t)} with parameter θ ∈ Rp. Then, the hazard

ratio between any two firms, λi(t)/λj(t) = exp{θT ([zi(t) − zj(t)]}, is constant if the

covariates difference zi(t)−zj(t) is constant in time, thus ending up with proportional

hazard rates. Note that the covariates zi(t) are sometimes transformed before entering
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the model. For example, an econometric modeler usually takes difference of Gross

Domestic Product (GDP) index and uses the GDP growth as the entering covariate.

For a survival analyst, the introduction of the multiplicative hazards model (1.20)

is incomplete without introducing the Cox’s proportional hazards (CoxPH) model.

The latter is among the most popular models in modern survival analysis. Rather

than using the parametric form of baseline hazard, Cox (1972, 1975) considered

λi(t) = λ0(t) exp{θTzi(t)} by leaving the baseline hazard λ0(t) unspecified. Such

semiparametric modeling could reduce the estimation bias of the covariate effects due

to baseline misspecification. One may use the partial likelihood to estimate θ, and

the nonparametric likelihood to estimate λ0(t). The estimated baseline λ̂0(t) can be

further smoothed upon parametric, term-structure or data-driven techniques.

The second class of AFT regression models are based on the aforementioned log-

location-scale transform of default time. Suppose that zi is not time-varying. Given

τ0 with baseline hazard rate λ0(t), consider (1.16) with the location µi = θTzi and

the scale σi = 1 (for simplicity), i.e. log τi = θTzi + log τ0. Then, it is straightforward

to get the survival function and hazard rate by (1.17) and (1.18):

Si(t) = S0

(
t exp{−θTzi}

)
, λi(t) = λ0

(
t exp{−θTzi}

)
exp{−θTzi} (1.21)

An interesting phenomenon is when using the Weibull baseline, by (1.19), we have

that λi(t) = λ0(t) exp{−βθTzi}. This is equivalent to use the multiplicative hazards

model (1.20), as a unique property of the Weibull lifetime distribution. For more

details about AFT regression, see e.g. Lawless (2003; §6).

Thus, the covariates zi could induce the firm-specific heterogeneity via either a

relative-risk multiplier λi(t)/λ0(t) = eθT zi(t) or the default time acceleration τi/τ0 =

eθT zi . In situations where certain hidden covariates are not accessible, the unexplained

variation also leads to heterogeneity. The frailty models introduced by Vaupel, et al.
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(1979) are designed to model such unobserved heterogeneity as a random quantity,

say, Z ∼ Gamma(δ−1, δ) with shape δ−1 and scale δ > 0, where a Gamma(k, δ)

distribution has the density

p(z; k, δ) =
zk−1 exp{−z/δ}

Γ(k)δk
, z > 0 (1.22)

with mean kδ and variance kδ2. Then, the proportional frailty model extends (1.20)

to be

λi(t) = Z · λ0(t)r(zi(t)), (1.23)

for each single obligor i subject to the odd effect Z; see Aalen, et al. (2008; §6).

On the other hand, the frailty models can be also used to characterize the default

correlation among multiple obligors, which is the next topic.

1.3.3 Correlating Credit Defaults

The issue of default correlation embedded in credit portfolios has drawn intense

discussions in the recent credit risk literature, in particular along with today’s credit

crisis involving problematic basket CDS or CDO financial instruments; see e.g. Bluhm

and Overbeck (2007). In eyes of a fund manager, the positive correlation of defaults

would increase the level of total volatility given the same level of total expectation (cf.

Markowitz portfolio theory). In academics, among other works, Das, et al. (2007)

performed an empirical analysis of default times for U.S. corporations and provided

evidence for the importance of default correlation.

The default correlation could be effectively characterized by multivariate survival

analysis. In a broad sense, there exists two different approaches:

1. correlating the default intensities through the common covariates,

2. correlating the default times through the copulas.
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The first approach is better known as the conditionally independent intensity-based

approach, in the sense that the default times are independent conditional on the com-

mon covariates. Examples of common covariates include the market-wide variables,

e.g. the GDP growth, the short-term interest rate, and the house-price appreciation

index. Here, the default correlation induced by the common covariates is in contrast

to the aforementioned default heterogeneity induced by the firm-specific covariates.

As announced earlier, the frailty models (1.23) can also be used to capture the

dependence of multi-obligor default intensities in case of hidden common covariates.

They are usually rephrased as shared frailty models, for differentiation from single-

obligor modeling purpose. The frailty effect Z is usually assumed to be time-invariant.

One may refer to Hougaard (2000) for a comprehensive treatment of multivariate

survival analysis from a frailty point of view. See also Aalen et al. (2008; §11) for

some intriguing discussion of dynamic frailty modeled by diffusion and Lévy processes.

In finance, Duffie, et al. (2008) applied the shared frailty effect across firms, as well

as a dynamic frailty effect to represent the unobservable macroeconomic covariates.

The copula approach to default correlation considers the default times as the

modeling basis. A copula C : [0, 1]n 7→ [0, 1] is a function used to formulate the

multivariate joint distribution based on the marginal distributions, e.g.,

Gaussian: CΣ(u1, . . . , un) = ΦΣ(Φ−1(u1), . . . ,Φ−1(un))

Student-t: CΣ,ν(u1, . . . , un) = ΘΣ,ν(Θ
−1
ν (u1), . . . ,Θ−1

ν (un)) (1.24)

Archimedean: CΨ(u1, . . . , un) = Ψ−1

(
n∑
i=1

Ψ(ui)

)

where Σ ∈ Rn×n, ΦΣ denotes the multivariate normal distribution, ΘΣ,ν denotes the

multivariate Student-t distribution with degrees of freedom ν, and Ψ is the generator

of Archimedean copulas; see Nelsen (2006) for details. When Ψ(u) = − log u, the

Archimedean copula reduces to
∏n

i=1 ui (independence copula). By Sklar’s theorem,
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for a multivariate joint distribution, there always exists a copula that can link the

joint distribution to its univariate marginals. Therefore, the joint survival distribution

of (τ1, . . . , τn) can be characterized by Sjoint(t1, . . . , tn) = C(S1(t1), . . . , Sn(tn)), upon

an appropriate selection of copula C.

Interestingly enough, the shared frailty models correspond to the Archimedean

copula, as observed by Hougaard (2000; §13) and recast by Aalen, et al. (2008; §7).

For each τi with underlying hazard rates Z ·λi(t), assume λi(t) to be deterministic and

Z to be random. Then, the marginal survival distributions are found by integrating

over the distribution of Z,

Si(t) = EZ

[
exp

{
−
∫ t

0

λi(s)ds

}]
= L (Λi(t)), i = 1, . . . , n (1.25)

where L (x) = EZ [exp{−xZ}] is the Laplace transform of Z and Λi(t) is the cumula-

tive hazard. Similarly, the joint survival distribution is given by

Sjoint(t1, . . . , tn) = L

(
n∑
i=1

Λi(ti)

)
= L

(
n∑
i=1

L −1(Si(ti))

)
, (1.26)

where the second equality follows (1.25) and leads to an Archimedean copula. For

example, given the Gamma frailty Z ∼ Gamma(δ−1, δ), we have that L (x) = (1 +

δx)−1/δ, so

Sjoint(t1, . . . , tn) =

(
1 + δ

n∑
i=1

∫ ti

0

λi(s)ds

)−1/δ

.

In practice of modeling credit portfolios, one must first of all check the appropri-

ateness of the assumption behind either the frailty approach or the copula approach.

An obvious counter example is the recent collapse of the basket CDS and CDO market

for which the rating agencies have once abused the use of the over-simplified Gaus-

sian copula. Besides, the correlation risk in these complex financial instruments is

highly contingent upon the macroeconomic conditions and black-swan events, which
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are rather dynamic, volatile and unpredictable.

Generalization

The above survey of survival models is too brief to cover the vast literature of

survival analysis that deserves potential applications in credit risk modeling. To be

selective, we have only cited Hougaard (2000), Lawless (2003) and Aalen, et al. (2008),

but there are numerous texts and monographs on survival analysis and reliability.

It is straightforward to enrich and extend the family of credit risk models, by

either the existing devices in survival analysis, or the new developments that would

benefit both fields. The latter is one of our objectives in this thesis, and we will focus

on the dual-time generalization.

1.4 Scope of the Thesis

Both old and new challenges arising in the context of credit risk modeling call

for developments of statistical methodologies. Let us fist preview the complex data

structures in real-world credit risk problems before defining the scope of the thesis.

The vintage time series are among the most popular versions of economic and

risk management data; see e.g. ALFRED digital archive1 hosted by U.S. Federal

Reserve Bank of St. Louis. For risk management in retail banking, consider for in-

stance the revolving exposures of credit cards. Subject to the market share of the

card-issuing bank, thousands to hundred thousands of new cards are issued monthly,

ranging from product types (e.g. speciality, reward, co-brand and secured cards),

acquisition channels (e.g. banking center, direct mail, telephone and internet), and

other distinguishable characteristics (e.g. geographic region where the card holder

resides). By convention, the accounts originated from the same month constitute a

monthly vintage (quarterly and yearly vintages can be defined in the same fashion),

1http://alfred.stlouisfed.org/
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Figure 1.3: Illustration of retail credit portfolios and vintage diagram.

where “vintage” is a borrowed term from wine-making industry to account for the

sharing origination. Then, a vintage time series refers to the longitudinal observa-

tions and performance measurements for the cohort of accounts that share the same

origination date and therefore the same age.

Figure 1.3 provides an illustration of retail credit portfolios and the scheme of

vintage data collection, where we use only the geographic MSA (U.S. Metropolitan

Statistical Area) as a representative of segmentation variables. Each segment consists

of multiple vintages that have different origination dates, and each vintage consists of

varying numbers of accounts. The most important feature of the vintage data is its

dual-time coordinates. Let the calendar time be denoted by t, each vintage be denoted

by its origination time v, then the lifetime (i.e. age, or called the “month-on-book”

for a monthly vintage) is calculated by m = t − v for t ≥ v. Such (m, t; v) tuples

lie in the dual-time domain, called the vintage diagram, with x-axes representing the

calendar time t and y-axis representing the lifetime m. Unlike a usual 2D space, the

vintage diagram consists of unit-slope trajectories each representing the evolvement of

a different vintage. On a vintage diagram, all kinds of data can be collected including

the continuous, binary or count observations. In particular, when the dual-time
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observations are the individual lives together with birth and death time points, and

when these observations are subject to truncation and censoring, one may draw a line

segment for each individual to represent the vintage data graphically. Such a graph

is known as the Lexis diagram in demography and survival analysis; see Figure 4.1

based on a dual-time-to-default simulation.

For corporate bond and loan issuers, the observations of default events or default

rates share the same vintage data structure. Table 1.1 shows the Moody’s speculative-

grade default rates for annual cohorts 1970-2008, which are calculated from the cu-

mulative rates released recently by Moody’s Global Credit Policy (February 2009).

Each cohort is observed by year end of 2008, and truncated by 20 years maximum in

lifetime. Thus, the performance window for the cohorts originated in the latest years

becomes shorter and shorter. The default rates in Table 1.1 are aligned in lifetime,

while they can be also aligned in calendar time. To compare the cohort performances

in dual-time coordinates, the marginal plots in both lifetime and calendar time are

given Figure 1.4, together with the side-by-side box-plots for checking the vintage (i.e.

cohort) heterogeneity. It is clear that the average default rates gradually decrease in

lifetime, but very volatile in calendar time. Note that the calendar dynamics follow

closely the NBER-dated recessions shown in Figure 1.1. Besides, there seems to be

heterogeneity among vintages. These projection views are only an initial exploration.

Further analysis of this vintage data will be performed in Chapter III.

The main purpose of the thesis is to develop a dual-time modeling framework

based on observations on the vintage diagram, or “dual-time analytics”. First of all,

it is worth mentioning that the vintage data structure is by no means an exclusive

feature of economic and financial data. It also appears in clinical trials with staggered

entry, demography, epidemiology, dendrochronology, etc. As an interesting example

in dendrochronology, Esper, Cook and Schweingruber (Science, 2002) analyzed the

long historical tree-ring records in a dual-time manner in order to reconstruct the
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Figure 1.4: Moody’s speculative-grade default rates for annual cohorts 1970-2008:
projection views in lifetime, calendar and vintage origination time.

past temperature variability. We believe that the dual-time analytics developed in

the thesis can be also applied to non-financial fields.

The road map in Figure 1.5 outlines the scope of the thesis. In Chapter II, we

discuss the adaptive smoothing spline (AdaSS) for heterogeneously smooth function

estimation. Two challenging issues are evaluation of reproducing kernel and determi-

nation of local penalty, for which we derive an explicit solution based upon piecewise

type of local adaptation. Four different examples, each having a specific feature of

heterogeneous smoothness, are used to demonstrate the new AdaSS technique. Note

that the AdaSS may estimate ‘smooth’ functions including possible jumps, and it

plays a key role in the subsequent work in the thesis.

In Chapter III, we develop the vintage data analysis (VDA) for continuos type

of dual-time responses (e.g. loss rates). We propose an MEV decomposition frame-

work based on Gaussian process models, where M stands for the maturation curve,

E for the exogenous influence and V for the vintage heterogeneity. The intrinsic

identification problem is discussed. Also discussed is the semiparametric extension

of MEV models in the presence of dual-time covariates. Such models are motivated

from the practical needs in financial risk management. An efficient MEV Backfitting

algorithm is provided for model estimation, and its performance is assessed by a sim-
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Figure 1.5: A road map of thesis developments of statistical methods in credit risk
modeling.

ulation study. Then, we apply the MEV risk decomposition strategy to analyze both

corporate default rates and retail loan loss rates.

In Chapter IV, we study the dual-time survival analysis (DtSA) for time-to-default

data observed on Lexis diagram. It is of particular importance in credit risk mod-

eling where the default events could be triggered by both endogenous and exoge-

nous hazards. We consider (a) nonparametric estimators under one-way, two-way

and three-way underlying hazards models, (b) structural parameterization via the

first-passage-time triggering system with an endogenous distance-to-default process

associated with exogenous time-transformation, and (c) dual-time semiparametric

Cox regression with both endogenous and exogenous baseline hazards and covari-

ate effects, for which the method of partial likelihood estimation is discussed. Also

discussed is the random-effect vintage heterogeneity modeled by the shared frailty.

Finally, we demonstrate the application of DtSA to credit card and mortgage risk

analysis in retail banking, and shed some light on understanding the ongoing credit

crisis from a new dual-time analytic perspective.

22



T
ab

le
1.

1:
M

o
o
d
y
’s

sp
ec

u
la

ti
ve

-g
ra

d
e

d
ef

au
lt

ra
te

s.
D

at
a

so
u
rc

e:
M

o
o
d
y
’s

sp
ec

ia
l

co
m

m
en

t
(r

el
ea

se
:

F
eb

ru
ar

y
20

09
)

on
co

rp
o-

ra
te

d
ef

au
lt

an
d

re
co

ve
ry

ra
te

s,
19

20
-2

00
8

(h
tt

p:
//

w
w

w
.m

o
o

dy
s.

co
m

/)
an

d
au

th
or

’s
ca

lc
u
la

ti
on

s.
C

o
h

o
rt

Y
ea

r1
Y

ea
r2

Y
ea

r3
Y

ea
r4

Y
ea

r5
Y

ea
r6

Y
ea

r7
Y

ea
r8

Y
ea

r9
Y

ea
r1

0
Y

ea
r1

1
Y

ea
r1

2
Y

ea
r1

3
Y

ea
r1

4
Y

ea
r1

5
Y

ea
r1

6
Y

ea
r1

7
Y

ea
r1

8
Y

ea
r1

9
Y

ea
r2

0
1
9
7
0

8
.7

7
2

1
.0

8
2

1
.8

6
6

0
.7

7
8

0
.8

0
4

0
.8

4
0

0
.4

4
3

0
.9

4
1

1
.0

0
0

0
.0

0
0

0
.0

0
0

1
.2

5
0

3
.3

2
9

0
.7

1
1

0
.0

0
0

1
.6

1
2

3
.5

0
0

1
.9

7
5

0
.0

0
0

1
.2

0
5

1
9
7
1

1
.1

5
2

1
.9

8
9

0
.8

2
9

0
.8

5
9

0
.8

9
8

0
.4

7
4

1
.0

0
9

1
.0

7
2

0
.0

0
0

0
.0

0
0

1
.3

3
9

3
.5

7
3

0
.7

6
1

0
.0

0
0

1
.7

2
1

4
.6

5
9

2
.1

1
0

0
.0

0
0

1
.2

9
3

0
.0

0
0

1
9
7
2

1
.9

5
7

0
.8

1
2

0
.8

4
0

0
.8

7
8

0
.4

6
3

0
.9

7
7

1
.0

3
4

0
.0

0
0

0
.0

0
0

1
.2

6
6

4
.0

4
9

0
.7

1
9

0
.0

0
0

2
.4

3
9

4
.3

8
2

1
.9

6
7

0
.0

0
0

1
.1

8
5

1
.2

6
3

6
.6

4
7

1
9
7
3

1
.2

7
1

0
.8

7
6

0
.9

1
6

0
.4

8
4

1
.0

1
8

1
.0

6
9

0
.0

0
0

0
.0

0
0

1
.2

8
9

4
.7

5
5

0
.7

1
8

0
.0

0
0

1
.6

0
8

4
.3

4
3

2
.9

3
4

0
.0

0
0

1
.1

5
7

1
.2

3
1

7
.6

9
8

1
.3

7
2

1
9
7
4

1
.3

3
0

0
.9

3
1

0
.4

9
3

1
.0

3
7

1
.0

9
0

0
.0

0
0

0
.0

0
0

1
.3

0
3

4
.7

9
4

0
.7

2
6

0
.0

0
0

1
.6

2
0

6
.0

9
8

2
.9

3
0

0
.0

0
0

1
.1

7
7

2
.5

0
7

7
.8

5
5

1
.4

0
6

1
.5

7
8

1
9
7
5

1
.7

3
5

0
.9

1
2

1
.4

3
9

1
.0

0
7

0
.0

0
0

0
.0

0
0

1
.2

0
5

4
.4

6
2

0
.6

7
6

0
.0

0
0

1
.5

2
1

5
.7

2
1

2
.7

4
1

1
.0

0
1

1
.0

7
8

2
.2

8
3

7
.1

2
5

1
.2

6
6

1
.3

8
6

0
.0

0
0

1
9
7
6

0
.8

6
4

1
.3

6
1

1
.4

2
4

0
.0

0
0

0
.5

3
1

1
.1

3
4

3
.6

0
7

0
.6

3
9

0
.0

0
0

1
.4

3
0

5
.3

4
8

2
.5

6
1

0
.9

4
3

1
.0

0
9

2
.1

2
4

7
.8

1
4

1
.2

0
4

1
.3

0
8

0
.0

0
0

0
.0

0
0

1
9
7
7

1
.3

3
9

1
.4

0
6

0
.0

0
0

1
.0

5
2

1
.1

2
8

3
.5

9
9

0
.6

3
8

0
.0

0
0

1
.4

1
9

5
.3

0
5

2
.5

3
6

0
.9

2
7

0
.9

8
3

2
.0

7
0

7
.6

5
0

1
.1

8
6

1
.2

9
7

0
.0

0
0

0
.0

0
0

0
.0

0
0

1
9
7
8

1
.7

9
8

0
.0

0
0

1
.0

1
2

1
.0

8
6

3
.4

6
3

1
.2

2
3

0
.6

5
1

2
.7

0
9

6
.4

9
6

2
.4

1
1

0
.8

8
4

0
.9

4
3

2
.9

9
4

7
.4

8
6

1
.1

7
3

2
.5

7
5

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

1
9
7
9

0
.4

2
0

0
.8

9
7

0
.9

5
8

3
.0

3
1

2
.1

2
8

3
.3

9
6

2
.9

6
3

7
.5

7
9

2
.0

8
7

0
.7

6
5

0
.8

2
4

3
.5

0
7

6
.6

6
8

1
.0

4
5

2
.2

7
6

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

1
9
8
0

1
.6

1
3

0
.8

5
9

4
.0

4
5

1
.8

8
4

3
.9

9
3

3
.1

3
8

7
.2

7
2

2
.4

5
1

0
.6

8
0

2
.2

2
2

3
.9

2
5

6
.9

6
6

1
.9

6
7

2
.1

2
5

0
.0

0
0

0
.0

0
0

0
.0

0
0

1
.2

2
3

0
.0

0
0

0
.0

0
0

1
9
8
1

0
.7

0
1

4
.0

5
3

1
.9

3
2

3
.6

7
5

3
.4

2
3

7
.7

9
6

2
.5

1
4

0
.5

6
0

2
.4

7
0

4
.7

0
2

6
.8

5
5

1
.7

5
2

1
.9

0
6

0
.0

0
0

0
.0

0
0

0
.0

0
0

1
.1

2
0

1
.1

5
4

0
.0

0
0

0
.0

0
0

1
9
8
2

3
.5

7
1

4
.1

0
4

2
.9

0
2

3
.4

0
3

7
.6

7
3

2
.2

1
3

0
.4

9
5

2
.2

0
8

4
.2

6
6

6
.2

5
6

1
.6

0
3

1
.7

3
9

0
.0

0
0

0
.0

0
0

0
.0

0
0

1
.1

0
3

1
.1

6
9

0
.0

0
0

0
.0

0
0

2
.5

7
5

1
9
8
3

3
.8

2
4

3
.1

5
3

3
.6

8
1

7
.3

0
8

2
.8

7
1

2
.3

1
5

3
.1

8
0

6
.0

1
3

6
.9

0
4

1
.6

3
1

1
.8

3
3

0
.0

0
0

0
.0

0
0

0
.0

0
0

1
.1

8
1

1
.2

6
1

1
.3

0
6

1
.3

5
5

2
.7

8
3

2
.8

6
4

1
9
8
4

3
.3

3
3

3
.7

9
7

8
.1

9
9

2
.7

9
3

3
.5

3
5

4
.0

5
2

7
.1

4
8

5
.7

8
8

1
.3

4
9

2
.2

7
8

0
.0

0
0

0
.0

0
0

0
.0

0
0

1
.0

5
0

1
.1

5
7

1
.1

9
4

1
.2

3
4

1
.2

8
0

2
.6

2
3

0
.0

0
0

1
9
8
5

3
.4

4
8

6
.6

6
8

3
.8

6
0

3
.7

5
3

5
.0

4
1

7
.4

5
4

5
.6

9
6

1
.6

5
7

1
.8

7
3

0
.0

0
0

1
.4

7
7

0
.0

0
0

0
.8

5
6

0
.9

5
4

1
.0

1
4

1
.0

7
1

2
.2

7
5

2
.3

2
6

0
.0

0
0

0
.0

0
0

1
9
8
6

5
.6

4
4

4
.5

6
3

3
.2

8
2

4
.6

0
3

7
.4

6
0

6
.4

5
8

2
.9

6
6

2
.4

3
5

1
.0

8
4

1
.1

9
4

0
.0

0
0

1
.4

1
9

0
.8

1
3

1
.7

7
3

1
.8

6
1

3
.9

6
0

1
.0

3
0

0
.0

0
0

0
.0

0
0

1
.1

5
0

1
9
8
7

4
.2

2
2

3
.8

9
4

5
.4

4
1

8
.2

6
1

7
.5

4
7

3
.6

4
4

2
.6

5
3

1
.1

3
2

1
.2

6
4

0
.4

7
1

1
.0

6
5

1
.2

3
9

1
.3

7
6

2
.8

8
9

3
.0

7
2

4
.1

1
3

0
.0

0
0

0
.0

0
0

1
.0

1
6

0
.0

0
0

1
9
8
8

3
.5

8
0

5
.8

9
0

8
.3

3
5

8
.0

3
2

3
.6

1
8

3
.0

7
8

1
.1

9
1

1
.6

7
8

0
.7

5
4

1
.2

6
8

2
.4

3
5

1
.6

4
0

2
.3

6
4

3
.8

7
1

4
.2

1
0

0
.0

0
0

0
.0

0
0

0
.8

9
0

0
.0

0
0

2
.1

1
9

1
9
8
9

5
.7

9
4

9
.9

8
0

8
.1

7
6

3
.9

5
5

3
.2

3
8

1
.2

8
0

1
.7

5
9

0
.9

9
7

1
.8

9
0

2
.6

3
1

1
.4

7
7

2
.6

7
4

3
.5

2
7

5
.1

3
4

0
.0

0
0

0
.0

0
0

0
.7

9
8

0
.0

0
0

1
.8

8
7

3
.0

2
0

1
9
9
0

9
.9

7
6

8
.7

3
2

4
.6

5
4

3
.2

3
7

1
.3

4
9

1
.8

1
1

0
.8

7
6

1
.9

8
2

2
.3

1
0

1
.7

3
0

2
.8

1
5

4
.1

3
9

4
.5

3
4

0
.0

0
0

0
.0

0
0

0
.7

3
5

0
.0

0
0

1
.6

6
3

3
.5

0
1

1
9
9
1

9
.3

7
0

5
.0

5
9

3
.3

7
1

1
.4

0
1

2
.1

5
5

0
.9

1
4

2
.0

7
8

2
.4

4
0

1
.8

5
9

3
.0

6
9

4
.5

3
4

4
.9

5
1

0
.0

0
0

0
.7

5
9

0
.8

2
9

0
.0

0
0

0
.9

2
3

3
.8

4
9

1
9
9
2

5
.1

5
4

3
.4

9
5

1
.5

9
6

2
.3

6
2

1
.1

8
5

2
.0

1
7

2
.3

3
8

2
.2

2
5

2
.9

4
9

4
.2

9
0

5
.1

7
0

0
.0

0
0

0
.7

1
2

0
.7

9
1

0
.0

0
0

0
.9

2
6

4
.0

4
9

1
9
9
3

3
.0

7
2

1
.8

4
8

3
.3

4
0

1
.3

9
9

1
.6

0
8

1
.8

7
1

3
.1

4
6

3
.1

0
1

4
.2

1
0

4
.0

5
6

0
.5

0
1

0
.5

5
9

0
.6

0
7

1
.3

0
3

0
.7

1
5

3
.1

9
4

1
9
9
4

2
.0

7
3

2
.8

6
9

1
.9

0
1

1
.2

6
5

2
.3

2
7

3
.8

8
3

3
.5

5
3

4
.1

9
7

3
.8

9
6

1
.4

7
4

1
.2

6
9

0
.4

7
1

1
.5

6
8

0
.5

8
6

3
.2

5
5

1
9
9
5

2
.9

2
0

1
.7

8
5

1
.8

7
4

2
.7

6
3

3
.8

6
2

3
.9

6
3

6
.2

9
7

4
.9

6
0

2
.6

9
6

1
.2

4
7

0
.6

9
5

1
.1

6
5

0
.8

7
7

2
.4

4
8

1
9
9
6

1
.6

3
7

2
.1

4
5

3
.5

4
4

4
.1

8
7

4
.1

1
9

6
.1

5
2

4
.8

9
4

2
.7

8
0

1
.3

6
2

0
.6

1
7

1
.0

5
7

1
.2

1
3

2
.7

1
5

1
9
9
7

2
.0

2
8

3
.5

7
0

4
.5

9
7

4
.7

2
7

6
.9

2
1

4
.6

9
7

2
.6

1
7

1
.4

4
4

0
.4

6
8

1
.3

5
1

1
.2

6
1

2
.8

2
9

1
9
9
8

3
.1

5
2

5
.6

4
2

5
.9

3
3

8
.3

2
4

5
.0

6
8

3
.7

9
2

2
.4

1
5

0
.6

2
0

1
.4

6
6

1
.5

2
2

2
.4

6
8

1
9
9
9

5
.3

8
4

6
.6

6
7

8
.7

4
3

6
.2

9
9

3
.7

2
3

2
.4

4
9

0
.8

3
2

1
.3

9
8

1
.4

9
4

2
.4

8
2

2
0
0
0

6
.3

3
9

9
.4

4
0

7
.0

4
8

4
.1

0
5

2
.5

6
2

1
.3

6
5

1
.7

4
4

1
.3

4
8

2
.6

0
7

2
0
0
1

1
0
.1

2
4

7
.7

1
3

4
.9

4
7

2
.7

3
0

1
.5

4
2

1
.8

5
1

1
.3

4
1

2
.7

8
0

2
0
0
2

7
.9

2
1

5
.3

7
5

2
.9

2
7

1
.6

9
1

2
.2

4
7

1
.2

8
1

3
.1

5
9

2
0
0
3

5
.1

2
3

2
.9

5
5

1
.6

5
4

2
.0

5
0

1
.2

2
4

3
.3

9
2

2
0
0
4

2
.3

4
6

1
.6

5
2

1
.9

4
3

1
.0

1
3

3
.0

7
0

2
0
0
5

1
.7

3
2

1
.8

9
5

1
.1

4
1

3
.8

8
0

2
0
0
6

1
.6

8
8

1
.1

6
9

4
.7

1
7

2
0
0
7

0
.9

1
8

4
.7

9
2

2
0
0
8

4
.1

2
9

23



CHAPTER II

Adaptive Smoothing Spline

2.1 Introduction

For observational data, statisticians are generally interested in smoothing rather

than interpolation. Let the observations be generated by the signal plus noise model

yi = f(ti) + ε(ti), i = 1, . . . , n (2.1)

where f is an unknown smooth function with unit interval support [0, 1], and ε(ti) is

the random error. Function estimation from noisy data is a central problem in mod-

ern nonparametric statistics, and includes the methods of kernel smoothing [Wand

and Jones (1995)], local polynomial smoothing [Fan and Gijbels (1996)] and wavelet

shrinkage [Vidakovic (1999)]. In this thesis, we concentrate on the method of smooth-

ing spline that has an elegant formulation through the mathematical device of repro-

ducing kernel Hilbert space (RKHS). There is a rich body of literature on smoothing

spline since the pioneering work of Kimeldorf and Wahba (1970); see the mono-

graphs by Wahba (1990), Green and Silverman (1994) and Gu (2002). Ordinarily,

the smoothing spline is formulated by the following variation problem

min
f∈Wm

{
1

n

n∑
i=1

w(ti)[yi − f(ti)]
2 + λ

∫ 1

0

[f (m)(t)]2dt

}
, λ > 0 (2.2)
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where the target function is an element of the m-order Sobolev space

Wm = {f : f, f ′, . . . , f (m−1) absolutely continuous, f (m) ∈ L2[0, 1]}. (2.3)

The objective in (2.2) is a sum of two functionals, the mean squared error MSE =

1
n

∑n
i=1 w(ti)[yi − f(ti)]

2 and the roughness penalty PEN =
∫ 1

0
[f (m)(t)]2dt; hence the

tuning parameter λ controls the trade-off between fidelity to the data and the smooth-

ness of the estimate. Let us call the ordinary smoothing spline (2.2) OrdSS in short.

The weights w(ti) in MSE come from the non-stationary error assumption of (2.1)

where ε(t) ∼ N(0, σ2/w(t)). They can be also used for aggregating data with repli-

cates. Suppose the data are generated by (2.1) with stationary error but time-varying

sampling frequency rk for k = 1, . . . , K distinct points, then

MSE =
1

n

K∑
k=1

rk∑
j=1

[ykj − f(tk)]
2 =

1

K

K∑
k=1

w(tk)
[
ȳk − f(tk)

]2
+ Const. (2.4)

where ȳk ∼ N(f(tk), σ
2/rk) for k = 1, . . . , K are the pointwise averages. To train

OrdSS, the raw data can be replaced by ȳ′ks together with the weights w(tk) ∝ rk.

The OrdSS assumes that f(t) is homogeneously smooth (or rough), then performs

regularization based on the simple integral of squared derivatives [f (m)(t)]2. It ex-

cludes the target functions with spatially varying degrees of smoothness, as noted

by Wahba (1985) and Nycha (1988). In practice, there are various types of func-

tions of non-homogeneous smoothness, and four such scenarios are illustrated in Fig-

ure 2.1. The first two are the simulation examples following exactly the same setting

as Donoho and Johnstone (1994), by adding the N(0, 1) noise to n = 2048 equally

spaced signal responses that are re-scaled to attain signal-to-noise ratio 7. The last

two are the sampled data from automotive engineering and financial engineering.

1. Doppler function: f(t) =
√
t(1− t) sin(2π(1 + a)/(t+ a)), a = 0.05, t ∈ [0, 1]. It
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Figure 2.1: Heterogeneous smooth functions: (1) Doppler function simulated with
noise, (2) HeaviSine function simulated with noise, (3) Motorcycle-Accident
experimental data, and (4) Credit-Risk tweaked sample.

has both time-varying magnitudes and time-varying frequencies.

2. HeaviSine function: f(t) = 3 sin 4πt − sgn(t − 0.3) − sgn(0.72 − t), t ∈ [0, 1]. It

has a downward jump at t = 0.3 and an upward jump at 0.72.

3. Motorcycle-Accident experiment: a classic data from Silverman (1985). It con-

sists of accelerometer readings taken through time from a simulated motorcycle

crash experiment, in which the time points are irregularly spaced and the noises

vary over time. In Figure 2.1, a hypothesized smooth shape is overlaid on the

observations, and it illustrates the fact that the acceleration stays relatively

constant until the crash impact.

4. Credit-Risk tweaked sample: retail loan loss rates for the revolving credit expo-

sures in retail banking. For academic use, business background is removed and
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the sample is tweaked. The tweaked sample includes monthly vintages booked

in 7 years (2000-2006), where a vintage refers to a group of credit accounts

originated from the same month. They are all observed up to the end of 2006,

so a vintage booked earlier has a longer observation length. In Figure 2.1, the

x-axis represents the months-on-book, and the circles are the vintage loss rates.

The point-wise averages are plotted as solid dots, which are wiggly on large

months-on-book due to decreasing sample sizes. Our purpose is to estimate an

underlying shape (illustrated by the solid line), whose degree of smoothness, by

assumption, increases upon growth.

The first three examples have often been discussed in the nonparametric analysis

literature, where function estimation with non-homogeneous smoothness has been

of interest for decades. A variety of adaptive methods has been proposed, such as

variable-bandwidth kernel smoothing (Müller and Stadtmüller, 1987), multivariate

adaptive regression splines (Friedman, 1991), adaptive wavelet shrinkage (Donoho

and Johnstone, 1994), local-penalty regression spline (Ruppert and Carroll, 2000), as

well as the treed Gaussian process modeling (Gramacy and Lee, 2008). In the context

of smoothing spline, Luo and Wahba (1997) proposed a hybrid adaptive spline with

knot selection, rather than using every sampling point as a knot. More naturally,

Wahba (1995), in a discussion, suggested to use the local penalty

PEN =

∫ 1

0

ρ(t)[f (m)(t)]2dt, s.t. ρ(t) > 0 and

∫ 1

0

ρ(t)dt = 1 (2.5)

where the add-on function ρ(t) is adaptive in response to the local behavior of f(t) so

that heavier penalty is imposed to the regions of lower curvature. This local penalty

functional is the foundation of the whole chapter. Relevant works include Abramovich

and Steinberg (1996) and Pintore, Speckman and Holmes (2006).

This chapter is organized as follows. In Section 2.2 we formulate the AdaSS (adap-
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tive smoothing spline) through the local penalty (2.5), derive its solution via RKHS

and generalized ridge regression, then discuss how to determine both the smoothing

parameter and the local penalty adaptation by the method of cross validation. Sec-

tion 2.3 covers some basic properties of the AdaSS. The experimental results for the

aforementioned examples are presented in Section 2.4. We summarize the chapter

with Section 2.5 and give technical proofs in the last section.

2.2 AdaSS: Adaptive Smoothing Spline

The AdaSS extends the OrdSS (2.2) based on the local penalty (2.5). It is formu-

lated as

min
f∈Wm

{
1

n

n∑
i=1

w(ti)
[
yi − f(ti)

]2
+ λ

∫ 1

0

ρ(t)
[
f (m)(t)

]2
dt

}
, λ > 0. (2.6)

The following proposition has its root in Kimeldorf and Wahba (1971); or see Wahba

(1990; §1).

Proposition 2.1 (AdaSS). Given a bounded integrable positive function ρ(t), define

the r.k.

K(t, s) =

∫ 1

0

ρ−1(u)Gm(t, u)Gm(s, u)du, t, s ∈ [0, 1] (2.7)

where Gm(t, u) =
(t−u)m−1

+

(m−1)!
. Then, the solution of (2.6) can be expressed as

f(t) =
m−1∑
j=0

αjφj(t) +
n∑
i=1

ciK(t, ti) ≡ αTφ(t) + cTξn(t) (2.8)

where φj(t) = tj/j! for j = 0, . . . ,m− 1, α ∈ Rm, c ∈ Rn.

Since the AdaSS has a finite-dimensional linear expression (2.8), it can be solved

by generalized linear regression. Write y = (y1, . . . , yn)T , B = (φ(t1), · · · ,φ(tn))T ,

W = diag(w(t1), . . . , w(tn)) and Σ = [K(ti, tj)]n×n. Substituting (2.8) into (2.6), we
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have the regularized least squares problem

min
α,c

{
1

n

∥∥y −Bα−Σc
∥∥2

W
+ λ
∥∥c∥∥2

Σ

}
, (2.9)

where ‖x‖2
A = xTAx for A ≥ 0. By setting partial derivatives w.r.t. α and c to be

zero, we obtain the equations

BTW
(
Bα+ Σc

)
= BTWy, ΣW

(
Bα+ (Σ + nλW−1)c

)
= ΣWy,

or

Bα+ (Σ + nλW−1)c = y, BTc = 0. (2.10)

Consider the QR-decomposition B = (Q1
...Q2)(RT ...0T )T = Q1R with orthogonal

(Q1
...Q2)n×n and upper-triangular Rm×m, where Q1 is n×m and Q2 is n× (n−m).

Multiplying both sides of y = Bα + (Σ + nλW−1)c by QT
2 and using the fact

that c = Q2Q
T
2 c (since BTc = 0), we have that QT

2 y = QT
2 (Σ + nλW−1)c =

QT
2 (Σ + nλW−1)Q2Q

T
2 c. Then, simple algebra yields

ĉ = Q2

(
QT

2 (Σ + nλW−1)Q2

)−1
QT

2 y, α̂ = R−1QT
1

(
y − (Σ + nλW−1)ĉ

)
. (2.11)

The fitted values at the design points are given by ŷ = Bα̂ + Σĉ. By (2.10),

y = Bα̂+ (Σ + nλW−1)ĉ, so the residuals are given by

e = y − ŷ = nλW−1ĉ ≡
(
I− Sλ,ρ

)
y (2.12)

where Sλ,ρ = I−nλW−1Q2

(
QT

2 (Σ +nλW−1)QT
2

)−1
QT

2 is often called the smoothing

matrix in the sense that

ŷ = Sλ,ρy = nλW−1Q2

(
QT

2 (Σ + nλW−1)QT
2

)−1
QT

2 y. (2.13)
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We use the notation Sλ,ρ to denote its explicit dependence on both the smoothing

parameter λ and the local adaptation ρ(·), where ρ is needed for the evaluation of

the matrix Σ = [K(ti, tj)] based on the r.k. (2.7).

The AdaSS is analogous to OrdSS in constructing the confidence interval under a

Bayesian interpretation by Wahba (1983). For the sampling time points in particular,

we may construct the 95% interval pointwise by

f̂(ti)± z0.025

√
σ̂2w−1(ti)Sλ,ρ[i, i], i = 1, . . . , n (2.14)

where Sλ,ρ[i, i] represents the i-th diagonal element of the smoothing matrix. The

estimate of noise variance is given by σ̂2 =
∥∥(I − Sλ,ρ)y

∥∥2

W

/
(n − p), where p =

trace(Sλ,ρ) can be interpreted as the equivalent degrees of freedom.

2.2.1 Reproducing Kernels

The AdaSS depends on the evaluation of the r.k. of the integral form (2.7). For

general ρ(t), we must resort to numerical integration techniques. In what follows we

present a closed-form expression of K(t, s) when ρ−1(t) is piecewise linear.

Proposition 2.2 (Reproducing Kernel). Let ρ−1(t) = ak+bkt, t ∈ [τk−1, τk) for some

fixed (ak, bk) and the knots {0 ≡ τ0 < τ1 < · · · < τK ≡ 1}. Then, the AdaSS kernel

(2.7) can be explicitly evaluated by

K(t, s) =
κt∧s∑
k=1

m−1∑
j=0

(−1)j

{
(ak + bku)

(u− t)m−1−j(u− s)m+j

(m− 1− j)!(m+ j)!

−bk
m−1−j∑
l=0

(−1)l
(u− t)m−1−j−l(u− s)m+1+j+l

(m− 1− j − l)!(m+ 1 + j + l)!

}∣∣∣∣∣
t∧s∧τ−k

τk−1

(2.15)

where κt∧s = min{k : τk > t ∧ s}, κ1∧1 = K, and {F (u)}|τ ′τ = F (τ ′)− F (τ).

Proposition 2.2 is general enough to cover many types of r.k.’s. For example,
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setting bk ≡ 0 gives the piecewise-constant results for ρ−1(t) obtained by Pintore,

et al. (2006). For another example, set m = 2, K = 1 and ρ−1(t) = a + bt for

t ∈ [0, 1]. (By (2.5), a = b/(eb − 1) and b ∈ R.) Then,

K(t, s) =


a
6
(3t2s− t3) + b

12
(2t3s− t4), if t ≤ s,

a
6
(3ts2 − s3) + b

12
(2ts3 − s4), otherwise.

(2.16)

When b = 0, (2.16) reduces to the OrdSS kernel for fitting cubic smoothing splines.

The derivatives of the r.k. are also of interest. In solving boundary value dif-

ferential equations, the Green’s function Gm(t, u) has the property that f(t) =∫ 1

0
Gm(t, u)f (m)(u)du for f ∈ Wm with zero f (j)(0), j = 0, . . . ,m − 1. The equa-

tion (2.7) is such an example of applying Gm(t, ·) to K(t, s) (s fixed), implying that

∂mK(t, s)

∂tm
= ρ−1(t)Gm(s, t) =

 (aκt + bκtt)
(s−t)m−1

(m−1)!
, if t ≤ s

0, otherwise.
(2.17)

The well-defined higher-order derivatives of the kernel can be derived from (2.17),

and they should be treated from knot to knot if ρ−1(t) is piecewise.

Lower-order l-th derivatives (l < m) of (2.15) can be obtained by straightforward

but tedious calculations. Here, we present only the OrdSS kernels (by setting ρ(t) ≡ 1

in Proposition 2.2) and their derivatives to be used in next section:

K(t, s) =
m−1∑
j=0

(−1)jtm−1−jsm+j

(m− 1− j)!(m+ j)!
+

(−1)m(s− t)2m−1

(2m− 1)!
I(t ≤ s), (2.18)

∂lK(t, s)

∂tl
=

m−1−l∑
j=0

(−1)jtm−1−j−lsm+j

(m− 1− j − l)!(m+ j)!
+

(−1)m+l(s− t)2m−1−l

(2m− 1− l)!
I(t ≤ s).(2.19)

Note that the kernel derivative coincides with (2.17) when l = m.

Remarks: Numerical methods are inevitable for approximating (2.7) when ρ−1(t)
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takes general forms. Rather than directly approximating (2.7), one may approximate

ρ−1(t) first by a piecewise function with knot selection, then use the closed-form

results derived in Proposition 2.2.

2.2.2 Local Penalty Adaptation

One of the most challenging problems for the AdaSS is selection of smoothing

parameter λ and local penalty adaptation function ρ(t). We use the method of cross-

validation based on the leave-one-out scheme.

Conditional on (λ, ρ(·)), let f̂(t) denote the AdaSS trained on the complete sample

of size n, and f̂ [k](t) denote the AdaSS trained on the leave-one-out sample {(ti, yi)}i 6=k

for k = 1, . . . , n. Define the score of cross-validation by

CV(λ, ρ) =
1

n

n∑
i=1

w(ti)
(
yi − f̂ [i](ti)

)2
. (2.20)

For the linear predictor (2.13) with smoothing matrix Sλ,ρ, Craven and Wahba (1979)

justified that f̂(ti)− f̂ [i](ti) = Sλ,ρ(yi − f̂ [i](ti)) for i = 1, . . . , n. It follows that

CV(λ, ρ) =
1

n

n∑
i=1

w(ti)(yi − f̂(ti))
2

(1− Sλ,ρ[i, i])2
=

1

n
yTW(I− diag(Sλ,ρ))

−2(I− Sλ,ρ)
2y, (2.21)

where diag(Sλ,ρ) is the diagonal part of the smoothing matrix. Replacing the elements

of diag(Sλ) by their average n−1trace(Sλ,ρ), we obtain the so-called generalized cross-

validation score

GCV(λ, ρ) =
1

n

n∑
i=1

w(ti)(yi − f̂λ(ti))2

(1− n−1trace(Sλ,ρ))2
. (2.22)

For fixed ρ(·), the best tuning parameter λ is usually found by minimizing (2.21) or

(2.22) on its log scale, i.e. by varying log λ on the real line.

To select ρ(·), consider the rules: (1) choose a smaller value of ρ(t) if f(·) is less

smooth at t; and (2) the local roughness of f(·) is quantified by the squared m-th
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derivative
[
f (m)(t)

]2
. If the true f (m)(t) were known, it is reasonable to determine

the shape of ρ(t) by

ρ−1(t) ∝
[
f (m)(t)

]2
, (2.23)

Since the true function f(t) is unknown a priori, so are its derivatives. Let us consider

the estimation of the derivatives. In the context of smoothing splines, nonparametric

derivative estimation is usually obtained by taking derivatives of the spline estimate.

Using that as an initial estimate of local roughness, we may adopt a two-step proce-

dure for selection of ρ(t), as follows.

Step 1: run the OrdSS with m̃ = m + a (a = 0, 1, 2) and cross-validated λ to

obtain the initial function estimate: f̃(t) =
∑m+l−1

j=0 α̃jφj(t) +
∑n

i=1 c̃iK̃(t, ti),

where K̃(t, s) =
∫ 1

0
Gm+a(t, u)Gm+a(s, u)du.

Step 2: calculate f̃ (m)(t) and use it to determine the shape of ρ−1(t).

In Step 1, with no prior knowledge, we start with OrdSS upon the improper

adaptation ρ̃(t) ≡ 1. The extra order a = 0, 1, 2 imposed on penalization of derivatives∫ 1

0
[f (m+a)(t)]2dt is to control the smoothness of the m-th derivative estimate. So, the

choice of a depends on how smooth the estimated f̃ (m)(t) is desired to be.

In Step 2, the m-th derivative of f̃(t) can be obtained by differentiating the bases,

f̃ (m)(t) =
a−1∑
j=0

α̃m+jφj(t) +
n∑
i=1

c̃i
∂m

∂tm
K̃(t, ti) (2.24)

where ∂m

∂tm
K̃(t, ti) is calculated according to (2.19) after replacing m by m + a. The

goodness of the spline derivative depends largely on the spline estimate itself. Rice

and Rosenblatt (1983) studied the large-sample properties of spline derivatives (2.24)

that have slower convergence rates than the spline itself. Given the finite sample, we

find by simulation study that (2.24) tends to under-smooth, but it may capture the

rough shape of the derivatives upon standardization. Figure 2.2 demonstrates the
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Figure 2.2: OrdSS function estimate and its 2nd-order derivative (upon standardiza-
tion): scaled signal from f(t) = sin(ωt) (upper panel) and f(t) = sin(ωt4)
(lower panel), ω = 10π, n = 100 and snr = 7. The sin(ωt4) signal resem-
bles the Doppler function in Figure 2.1; both have time-varying frequency.

estimation of the 2nd-order derivative for f(t) = sin(ωt) and f(t) = sin(ωt4) using

the OrdSS with m = 2, 3. In both sine-wave examples, the order-2 OrdSS could yield

rough estimates of derivative, and the order-3 OrdSS could give smooth estimates but

large bias on the boundary. Despite these downside effects, the shape of the derivative

can be more or less captured, meeting our needs for estimating ρ(t) below.

In determining the shape of ρ−1(t) from f̃ (m)(t), we restrict ourselves to the piece-

wise class of functions, as in Proposition 2.2. By (2.23), we suggest to estimate ρ−1(t)

piecewise by the method of constrained least squares:

∣∣f̃ (m)(t)
∣∣2γ + ε = a0ρ

−1(t) = aκt + bκtt, κt = min{k : τk ≥ t} (2.25)

subject to the constraints (1) positivity: ρ−1(t) > 0 for t ∈ [0, 1], (2) continuity: ak +
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bkτk = ak+1 + bk+1τk for k = 1, . . . , K − 1 and (3) normalization: a0 = a0

∫ 1

0
ρ(t)dt =∑K

k=1

∫ τ−k
τk−1

dt
ak+bkt

> 0, for given γ ≥ 1 and pre-specified knots {0 ≡ τ0 < τ1 < . . . <

τK−1 < 1} and τ−K = 1. Clearly, ρ−1(t) is an example of linear regression spline. If the

continuity condition is relaxed and bk ≡ 0, we obtain the piecewise-constant ρ−1(t).

The power transform
∣∣f̃ (m)(t)

∣∣2γ, γ ≥ 1 is used to stretch [f̃ (m)(t)]2, in order to

make up for (a) overestimation of [f (m)(t)]2 in slightly oscillating regions and (b)

underestimation of [f (m)(t)]2 in highly oscillating regions, since the initial OrdSS is

trained under the improper adaptation ρ̃(t) ≡ 1. The lower-right panel of Figure 2.2

is such an example of overestimating the roughness by the OrdSS.

The knots {τk}Kk=1 ∈ [0, 1] can be specified either regularly or irregularly. In most

situations, we may choose equally spaced knots with K to be determined. For the

third example in Figure 2.1 that shows flat vs. rugged heterogeneity, one may choose

sparse knots for the flat region and dense knots for the rugged region, and may also

choose regular knots such that ρ−1(t) is nearly constant in the flat region. However,

for the second example in Figure 2.1 that shows jump-type heterogeneity, one should

shrink the size of the interval containing the jump.

Given the knots, the parameters (λ, γ) can be jointly determined by the cross-

validation criteria (2.21) or (2.22).

Remarks: The selection of the local adaptation ρ−1(t) is a non-trivial problem, for

which we suggest to use ρ−1(t) ∝
∣∣f̃ (m)(t)

∣∣2γ together with piecewise approximation.

This can be viewed as a joint force of Abramovich and Steinberg (1996) and Pintore,

et al. (2006), where the former directly executed (2.23) on each sampled ti, and the

latter directly impose the piecewise constant ρ−1(t) without utilizing the fact (2.23).

Note that the approach of Abramovich and Steinberg (1996) may have the estimation

bias of
∣∣f̃ (m)(t)

∣∣2 as discussed above, and the r.k. evaluation by approximation based

on a discrete set of ρ−1(ti) remains another issue. As for Pintore, et al. (2006),

the high-dimensional parametrization of ρ−1(t) requires nonlinear optimization whose
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stability is usually of concern. All these issues can be resolved by our approach, which

therefore has both analytical and computational advantages.

2.3 AdaSS Properties

Recall that the OrdSS (2.2) has many interesting statistical properties, e.g.

(a) it is a natural polynomial spline of degree (2m− 1) with knots placed t1, . . . , tn

(hence, the OrdSS with m = 2 is usually referred to the cubic smoothing spline);

(b) it has a Bayesian interpretation through the duality between RKHS and Gaus-

sian stochastic processes (Wahba, 1990, §1.4-1.5);

(c) its large sample properties of consistency and rate of convergence depends on

the smoothing parameter (Wahba, 1990, §4 and references therein);

(d) it has an equivalent kernel smoother with variable bandwidth (Silverman, 1984).

Similar properties are desired to be established for the AdaSS. We leave (c) and (d) to

future investigation. For (a), the AdaSS properties depend on the r.k. (2.7) and the

structure of local adaptation ρ−1(t). Pintore, et al. (2006) investigated the piecewise-

constant case of ρ−1(t) and argued that the AdaSS is also a piecewise polynomial

spline of degree (2m − 1) with knots on t1, . . . , tn, while it allows for more flexible

lower-order derivatives than the OrdSS. The piecewise-linear case of ρ−1(t) can be

analyzed in a similar manner. For the AdaSS (2.8) with the r.k. (2.15),

f(t) =
m−1∑
j=0

αjφj(t) +
∑
i:ti≤t

ciK(t, ti) +
∑
i:ti>t

ciK(t, ti)

with degree (m − 1) in the first two terms, and degree 2m in the third term (after

one degree increase due to the trend of ρ−1(t)).
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For (b), the AdaSS based on the r.k. (2.7) corresponds to the following zero-mean

Gaussian process

Z(t) =

∫ 1

0

ρ−1/2(u)Gm(t, u)dW (u), t ∈ [0, 1] (2.26)

where W (t) denotes the standard Wiener process. The covariance kernel is given by

E[Z(t)Z(s)] = K(t, s). When ρ(t) ≡ 1, the Gaussian process (2.26) is the (m − 1)-

fold integrated Wiener process studied by Shepp (1966). Following Wahba (1990;

§1.5), consider a random effect model F (t) = αTφ(t) + b1/2Z(t), then the best linear

unbiased estimate of F (t) from noisy data Y (t) = F (t) + ε corresponds to the AdaSS

solution (2.8), provided that the smoothing parameter λ = σ2/nb. Moreover, one

may set an improper prior on the coefficients α, derive the posterior of F (t), then

obtain a Bayesian type of confidence interval estimate; see Wahba (1990; §5). Such

confidence intervals on the sampling points are given in (2.14).

The inverse function ρ−1(t) in (2.26) can be viewed as the measurement of non-

stationary volatility (or, variance) of the m-th derivative process such that

dmZ(t)

dtm
= ρ−1/2(t)

dW (t)

dt
. (2.27)

By the duality between Gaussian processes and RKHS, dmZ(t)/dtm corresponds to

f (m)(t) in (2.6). This provides an alternative reasoning for (2.23) in the sense that

ρ−1(t) can be determined locally by the second-order moments of dmZ(t)/dtm.

To illustrate the connection between the AdaSS and the Gaussian process with

nonstationary volatility, consider the case m = 1 and piecewise-constant ρ−1(t) =

ak, t ∈ [τk−1, τk) for some ak > 0 and pre-specified knots 0 ≡ τ0 < τ1 < · · · < τK ≡ 1.

By (2.15), the r.k. is given by

K(t, s) =
κt∧s∑
k=1

ak

(
t ∧ s− τk−1

)
, t, s ∈ [0, 1]. (2.28)
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By (2.26) and (2.27), the corresponding Gaussian process satisfies that

dZ(t) =
√
akdW (t), for t ∈ [τk−1, τk), k = 1, . . . , K (2.29)

where ak is the local volatility from knot to knot. Clearly, Z(t) reduces to the standard

Wiener process W (t) when ak ≡ 1. As one of the most appealing features, the

construction (2.29) takes into account the jump diffusion, which occurs in [τk−1, τk)

when the interval shrinks and the volatility ak blows up.

2.4 Experimental Results

The implementation of OrdSS and AdaSS differs only in the formation of Σ

through the r.k. K(t, s). It is most crucial for the AdaSS to select the local adaptation

ρ−1(t). Consider the four examples in Figure 2.1 with various scenarios of heteroge-

neous smoothness. The curve fitting results by the OrdSS with m = 2 (i.e. cubic

smoothing spline) are shown in Figure 2.3, as well as the 95% confidence intervals for

the last two cases. In what follows, we discuss the need of local adaptation in each

case, and compare the performance of OrdSS and AdaSS.

Simulation Study.

The Doppler and HeaviSine functions are often taken as the benchmark examples

for testing adaptive smoothing methods. The global smoothing by the OrdSS (2.2)

may fail to capture the heterogeneous smoothness, and as a consequence, over-smooth

the region where the signal is relatively smooth and under-smooth where the signal is

highly oscillating. For the Doppler case in Figure 2.3, the underlying signal increases

its smoothness with time, but the OrdSS estimate shows lots of wiggles for t > 0.5.

In the HeaviSine case, both jumps at t = 0.3 and t = 0.72 could be captured by the

OrdSS, but the smoothness elsewhere is sacrificed as a compromise.

The AdaSS fitting results with piecewise-constant ρ−1(t) are shown in Figure 2.4.
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Figure 2.3: OrdSS curve fitting with m = 2 (shown by solid lines). The dashed lines
represent 95% confidence intervals. In the credit-risk case, the log loss
rates are considered as the responses, and the time-dependent weights are
specified proportional to the number of replicates.

Initially, we fitted the OrdSS with cross-validated tuning parameter λ, then estimated

the 2nd-order derivatives by (2.24). To estimate the piecewise-constant local adapta-

tion ρ−1(t), we pre-specified 6 equally spaced knots (including 0 and 1) for the Doppler

function, and pre-specified the knots (0, 0.295, 0.305, 0.5, 0.715, 0.725, 1) for the Heavi-

Sine function. (Note that such knots can be determined graphically based on the plots

of the squared derivative estimates.) Given the knots, the function ρ−1(t) is estimated

by constrained least squares (2.25) conditional on the power transform parameter γ,

where the best γ∗ is found jointly with λ by minimizing the score of cross-validation

(2.21). In our implementation, we assumed that both tuning parameters are bounded

such that log λ ∈ [−40, 10] and γ ∈ [1, 5], then performed the bounded nonlinear op-

timization. Table 2.1 gives the numerical results in both simulation cases, including

the cross-validated (λ, γ), the estimated variance of noise (cf. true σ2 = 1), and the
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Figure 2.4: Simulation study of Doppler and HeaviSine functions: OrdSS (blue),
AdaSS (red) and the heterogeneous truth (light background).
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Table 2.1: AdaSS parameters in Doppler and HeaviSine simulation study.
Simulation n snr λ γ σ̂2 dof CV

Doppler 2048 7 1.21e-012 2.13 0.9662 164.19 2180.6
HeaviSine 2048 7 1.86e-010 4.95 1.0175 35.07 2123.9

equivalent degrees of freedom.

Figure 2.4 (bottom panel) shows the improvement of AdaSS over OrdSS after

zooming in. The middle panel shows the data-driven estimates of the adaptation

function ρ(t) plotted at log scale. For the Doppler function, the imposed penalty

ρ(t) in the first interval [0, 0.2) is much less than that in the other four intervals,

resulting in heterogenous curve fitting. For the HeaviSine function, low penalty is

assigned to where the jump occurs, while the relatively same high level of penalty is

assigned to other regions. Both simulation examples demonstrate the advantage of

using the AdaSS. A similar simulation study of the Doppler function can be found in

Pintore, et al.(2006) who used a small sample size (n = 128) and high-dimensional

optimization techniques.

Motorcycle-Accident Data.

Silverman (1985) originally used the motorcycle-accident experimental data to

test the non-stationary OrdSS curve fitting; see the confidence intervals in Figure 2.3.

Besides error non-stationarity, smoothness non-homogeneity is another important fea-

ture of this data set. To fit such data, the treatment from a heterogenous smoothness

point of view is more appropriate than using only the non-stationary error treatment.

Recall that the data consists of acceleration measurements (subject to noise) of the

head of a motorcycle rider during the course of a simulated crash experiment. Upon

the crash occurrence, it decelerates to about negative 120 gal (a unit gal is 1 centimeter

per second squared). The data indicates clearly that the acceleration rebounds well

above its original level before setting back. Let us focus on the period prior to the

crash happening at t ≈ 0.24 (after time re-scaling), for which it is reasonable to
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Figure 2.5: Non-stationary OrdSS and AdaSS for Motorcycle-Accident Data.

Figure 2.6: OrdSS, non-stationary OrdSS and AdaSS: performance in comparison.
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assume the acceleration stays constant. However, the OrdSS estimate in Figure 2.3

shows a slight bump around t = 0.2, a false discovery.

In presence of non-stationary errors N(0, σ2/w(ti)) with unknown weights w(ti),

a common approach is to begin with an unweighted OrdSS and estimate w−1(ti) from

the local residual sums of squares; see Silverman (1985). The local moving averaging

(e.g. loess) is usually performed; see the upper-left panel in Figure 2.5. Then, the

smoothed weight estimates are plugged into (2.2) to run the non-stationary OrdSS. To

perform AdaSS (2.6) with the same weights, we estimated the local adaptation ρ−1(t)

from the derivatives of non-stationary OrdSS. Both results are shown in Figure 2.5.

Compared to Figure 2.3, both non-stationary spline models result in tighter estimates

of 95% confidence intervals than the unweighted OrdSS.

Figure 2.6 compares the performances of stationary OrdSS, non-stationary OrdSS

and non-stationary AdaSS. After zooming in around t ∈ [0.1, 0.28], it is clear that

AdaSS performs better than both versions of OrdSS in modeling the constant accel-

eration before the crash happening. For the setting-back process after attaining the

maximum acceleration at t ≈ 0.55, AdaSS gives a more smooth estimate than OrdSS.

Besides, they differ in estimating the minimum of the acceleration curve at t ≈ 0.36,

where the non-stationary OrdSS seems to have underestimated the magnitude of

deceleration, while the estimate by the non-stationary AdaSS looks reasonable.

Credit-Risk Data.

The last plot in Figure 2.1 represents a tweaked sample in retail credit risk man-

agement. It is of our interest to model the growth or the maturation curve of the log

of loss rates in lifetime (month-on-book). Consider the sequence of vintages booked in

order from 2000 to 2006. Their monthly loss rates are observed up to December 2006

(right truncation). Aligning them to the same origin, we have the observations accu-

mulated more in smaller month-on-book and less in larger month-on-book, i.e., the

sample size decreases in lifetime. As a consequence, the simple pointwise or moving
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Figure 2.7: AdaSS estimate of maturation curve for Credit-Risk sample: piecewise-
constant ρ−1(t) (upper panel) and piecewise-linear ρ−1(t) (lower panel).

averages have increasing variability. Nevertheless, our experiences tell that the mat-

uration curve is expected to have increasing degrees of smoothness once the lifetime

exceeds certain month-on-book. This is also a desired property of the maturation

curve for the purpose of extrapolation.

By (2.4), spline smoothing may work on the pointwise averages subject to non-

stationary errors N(0, σ2/w(ti)) with weights determined by the number of replicates.

The non-stationary OrdSS estimate is shown in Figure 2.3, which however does not

smooth out the maturation curve for large month-on-book. The reasons of the unsta-

bility in the rightmost region could be (a) OrdSS has the intrinsic boundary bias for

especially small w(ti), and (b) the raw inputs for training purpose are contaminated

and have abnormal behavior. The exogenous cause of contamination in (b) will be

explained in Chapter III.

Alternatively, we applied the AdaSS with judgemental prior on heterogeneous

smoothness of the target function. For demonstration, we purposefully specified
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ρ−1(t) to take the forms of Figure 2.7, including (a) piecewise-constant and (b)

piecewise-linear. Both specifications are non-decreasing in lifetime and they span

about the same range. The curve fitting results for both ρ−1(t) are nearly identical

upon visual inspection. Compared with the OrdSS performance in the large month-

on-book region, the AdaSS yields smoother estimate of maturation curve, as well

as tighter confidence intervals based on judgemental prior. The AdaSS estimate of

maturation curve, transformed to the original scale, is plotted by the red solid line in

Figure 2.1.

This credit-risk sample will appear again in Chapter III of vintage data analysis.

The really interesting story is yet to unfold.

2.5 Summary

In this chapter we have studied the adaptive smoothing spline for modeling het-

erogeneously ‘smooth’ functions including possible jumps. In particular, we studied

the AdaSS with piecewise adaptation of local penalty and derived the closed-form re-

producing kernels. To determine the local adaptation function, we proposed a shape

estimation procedure based the function derivatives, together with the method of

cross-validation for parameter tuning. Four different examples, each having a specific

feature of heterogeneous smoothness, were used to demonstrate the improvement of

AdaSS over OrdSS.

Future works include the AdaSS properties w.r.t. (c) and (d) listed in Section 2.3.

Its connection with a time-warping smoothing spline is also under our investigation.

However, it is not clear how the AdaSS can be extended to multivariate smoothing

in a tensor-product space, as an analogy of the smoothing spline ANOVA models in

Gu (2002). In next chapter, we will consider the application of AdaSS in a dual-time

domain, where the notion of smoothing spline will be generalized via other Gaussian

processes.
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2.6 Technical Proofs

Proof to Proposition 2.1: by minor modification on Wahba (1990; §1.2-1.3).

By Taylor’s theorem with remainder, any function in Wm (2.3) can be expressed by

f(t) =
m−1∑
j=0

tj

j!
f (j)(0) +

∫ 1

0

Gm(t, u)f (m)(u)du (2.30)

where Gm(t, u) =
(t−u)

(m−1)
+

(m−1)!
is the Green’s function for solving the boundary value

problem: if f
(m)
1 = g with f1 ∈ Bm = {f : f (k)(0) = 0, for k = 0, 1, . . . ,m− 1}, then

f1(t) =
∫ 1

0
Gm(t, u)g(u)du. The remainder functions f1(t) =

∫ 1

0
Gm(t, u)f (m)(u)du lie

in the subspace H = Wm ∩ Bm. Given the bounded integrable function ρ(t) > 0 on

t ∈ [0, 1], associate H with the inner product

〈f1, g1〉H =

∫ 1

0

f
(m)
1 (u)g

(m)
1 (u)λ(u)du, (2.31)

and the induced square norm ‖f1‖2
H =

∫ 1

0
λ(u)[f

(m)
1 (u)]2du. By similar arguments to

Wahba (1990; §1.2), one may verify that H is an RKHS with r.k. (2.7), where the

reproducing property

〈f1(·),K(t, ·)〉H = f1(t), ∀f1 ∈ H (2.32)

follows that ∂m

∂tm
K(t, s) = ρ(t)−1Gm(s, t).

Then, using the arguments of Wahba (1990; §1.3) would prove the finite-dimensional

expression (2.8) that minimizes the AdaSS objective functional (2.6).

Proof to Proposition 2.2: The r.k. with piecewise ρ−1(t) equals

K(t, s) =
κt∧s∑
k=1

∫ t∧s∧τ−k

τk−1

(ak + bku)
(u− t)m−1

(m− 1)!

(u− s)m−1

(m− 1)!
du.
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For any τk−1 ≤ t1 ≤ t2 < τk, using the successive integration by parts,

∫ t2

t1

(ak + bku)
(u− t)m−1

(m− 1)!

(u− s)m−1

(m− 1)!
du =

∫ t2

t1

(ak + bku)
(u− t)m−1

(m− 1)!
d

(u− s)m

m!

= (ak + bku)
(u− t)m−1

(m− 1)!

(u− s)m

m!

∣∣∣t2
t1
−
∫ t2

t1

(ak + bku)
(u− t)m−2

(m− 2)!

(u− s)m

m!
du

−bk
∫ t2

t1

(u− t)m−1

(m− 1)!

(u− s)m

m!
du = · · · ,

it is straightforward (but tedious) to derive that

∫ t2

t1

(ak + bku)
(u− t)m−1

(m− 1)!

(u− s)m−1

(m− 1)!
du

=
m−1∑
j=0

(−1)j(ak + bku)
(u− t)m−1−j

(m− 1− j)!
(u− s)m+j

(m+ j)!

∣∣∣t2
t1
− bk

m−1∑
j=0

(−1)jTj

in which Tj denotes the integral evaluations for j = 0, 1, . . . ,m− 1

Tj ≡
∫ t2

t1

(u− t)m−1−j

(m− 1− j)!
(u− s)m+j

(m+ j)!
du =

m−1−j∑
l=0

(−1)l
(u− t)m−1−j−l(u− s)m+1+j+l

(m− 1− j − l)!(m+ 1 + j + l)!

∣∣∣t2
t1
.

Choosing τ1 = τk−1, τ2 = t ∧ s ∧ τ−k for k = 1, . . . , κt∧s and adding them all gives the

final r.k. evaluation by

K(t, s) =
κt∧s∑
k=1

m−1∑
j=0

(−1)j

{
(ak + bku)

(u− t)m−1−j(u− s)m+j

(m− 1− j)!(m+ j)!

−bk
m−1−j∑
l=0

(−1)l
(u− t)m−1−j−l(u− s)m+1+j+l

(m− 1− j − l)!(m+ 1 + j + l)!

}∣∣∣∣∣
t∧s∧τ−k

τk−1

.
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CHAPTER III

Vintage Data Analysis

3.1 Introduction

The vintage data represents a special class of functional, longitudinal or panel data

with dual-time characteristics. It shares the cross-sectional time series feature such

that there are J subjects each observed at calendar time points {tjl, l = 1, . . . , Lj},

where Lj is the total number of observations on the j-th subject. Unlike purely

longitudinal setup, each subject j we consider corresponds to a vintage originated at

time vj such that v1 < v2 < . . . < vJ and the elapsed time mjl = tjl − vj measures

the lifetime or age of the subject. To this end, we denote the vintage data by

{
y(mjl, tjl; vj), l = 1, . . . , Lj, j = 1, . . . , J

}
, (3.1)

where the dual-time points are usually sampled from the regular grids such that for

each vintage j, mjl = 0, 1, 2, . . . and tjl = vj, vj + 1, vj + 2, . . .. We call the grids of

such (mjl, tjl; vj) a vintage diagram. Also observed on the vintage diagram could be

the covariate vectors x(mjl, tjl; vj) ∈ Rp. In situations where more than one segment

of dual-time observations are available, we may denote the (static) segmentation vari-

ables by zk ∈ Rq, and denote the vintage data by {y(mkjl, tkjl; vkj),x(mkjl, tkjl; vkj)}

for segment k = 1, . . . , K. See Figure 1.3 for an illustration of vintage diagram and
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dual-time collection of observations, as well as the hierarchical structure of multi-

segment credit portfolios.

The vintage diagram could be truncated in either age or time, and several in-

teresting prototypes are illustrated in Figure 3.1. The triangular prototype on the

top-left panel is the most typical as the time series data are often subject to the

systematic truncation from right (say, observations up to today). Each vintage series

evolves in the 45◦ direction such that for the same vintage vj, the calendar time tj

and the lifetime mj move at the same speed along the diagonal — therefore, the

vintage diagram corresponds to the hyperplane {(t,m, v) : v = t − m} in the 3D

space. In practice, there exist other prototypes of vintage data truncation. The rect-

angular diagram is obtained after truncation in both lifetime and calendar time. The

corporate default rates released by Moody’s, shown in Table 1.1, are truncated in

lifetime to be 20 years maximum. The other trapezoidal prototype corresponds to

the time-snapshot selection common to credit risk modeling exercises. Besides, the

U.S. Treasury rates released for multiple maturity dates serve as an example of the

parallelogram prototype.

The age, time and vintage dimensions are all of potential interest in financial risk

management. The empirical evidences tell that the age effects of self-maturation na-

ture are often subject to smoothness in variation. The time effects are often dynamic

and volatile due to macroeconomic environment. Meanwhile, the vintage effects are

conceived as the forward-looking measure of performance since origination, and they

could be treated as random effects upon appropriate structural assumption. Bearing

in mind these practical considerations, we aim to develop a formal statistical frame-

work for vintage data analysis (VDA), by integrating ideas from functional data

analysis (FDA), longitudinal data analysis (LDA)1 and time series analysis (TSA).

To achieve this, we will take a Gaussian process modeling approach, which is flexible

1Despite the overlap between FDA and LDA, we try to differentiate them methodologically by
tagging FDA with nonparametric smoothing and tagging LDA with random-effect modeling.
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Figure 3.1: Vintage diagram upon truncation and exemplified prototypes.
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enough to cover a diversity of scenarios.

This chapter develops the VDA framework for continuous type of responses (usu-

ally, rates). It is organized as follows. In Section 3.2, we discuss the maturation-

exogenous-vintage (MEV) decomposition in general. The MEV models based on

Gaussian processes are presented in Section 3.3, where we discuss Kriging, smoothing

spline and kernel methods. An efficient backfitting algorithm is provided for model

estimation. Section 3.4 covers the semiparametric regression given the dual-time

covariates and segmentation variables. Computational results are presented in Sec-

tion 3.5, including a simulation study for assessing the MEV decomposition technique,

and real applications in both corporate and retail credit risk cases. We conclude the

chapter in Section 3.6 and give technical proofs in the last section.

3.2 MEV Decomposition Framework

Let V = {vj : 0 ≡ v1 < v2 < . . . < vJ <∞} be a discrete set of origination times

of J vintages, and define the dual-time domain

Ω =
{

(m, t; v) : m ≥ 0, t = v +m, v ∈ V
}
,

where m denotes the lifetime and t denotes the calendar time. Unlike a usual 2D

(m, t) space, the dual-time domain Ω consists of isolated 45◦ lines {(m, t) : t −m =

vj,m ≥ 0} for each fixed vintage vj ∈ V . The triangular vintage diagram in Figure 3.1

is the discrete counterpart of Ω upon right truncation in calendar time.

Let Ω be the support of the vintage data (3.1), for which we propose the MEV

(maturation-exogenous-vintage) decomposition modeling framework

η(y(m, t; v)) = f(m) + g(t) + h(v) + ε, (3.2)

51



where η is a pre-specified transform function, ε is the random error, and the three

MEV components have the following practical interpretations:

a) f(m) represents the maturation curve characterizing the endogenous growth,

b) g(t) represents the exogenous influence by macroeconomic conditions,

c) h(v) represents the vintage heterogeneity measuring the origination quality.

For the time being, let f, g, h be open to flexible choices of parametric, nonparametric

or stochastic process models. We begin with some general remarks about model

identification.

Suppose the maturation curve f(m) in (3.2) absorbs the intercept effect, and the

constraints Eg = Eh = 0 are set as usual:

E
∫ tmax

tmin

g(t)dt = E
∫
V
h(v)dv = 0. (3.3)

The question is, do these constraints suffice to ensure the model identifiability? It

turns out for the dual-time domain Ω, all the MEV decomposition models are subject

to the linear dependency, as stated formally in the following lemma.

Lemma 3.1 (Identification). For the MEV models (3.2) defined on the dual-time

domain Ω, write f = f0 + f1 with the linear part f0 and the nonlinear part f1 and

similarly write g = g0 + g1, h = h0 + h1. Then, one of f0, g0, h0 is not identifiable.

The identification (or collinearity) problem in Lemma 3.1 is incurred by the hy-

perplane nature of the dual-time domain Ω in the 3D space: {(t,m, v) : v = t −m}

(see Figure 3.1 top right panel). We need to break up such linear dependency in order

to make the MEV models estimable. A practical way is to perform binning in age,

time or vintage direction. For example, given the vintage data of triangular proto-

type, one may group the large m region, the small t region and the large v region, as
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these regions have few observations. A commonly used binning procedure for h(v) is

to assume the piecewise-constant vintage effects by grouping monthly vintages every

quarter or every year.

An alternative strategy for breaking up the linear dependency is to directly remove

the trend for one of f, g, h functions. Indeed, this strategy is simple to implement,

provided that f, g, h all could be expanded by certain basis functions. Then, one only

needs to fix the linear bases for any two of f, g, h. By default, we remove the trend

of h and let it measure only the nonlinear heterogeneity. A word of caution is in

order in situations where there does exist an underlying trend h0(v), then it would be

absorbed by f(m) and g(t). One may retrieve h0(v) = γv by simultaneously adjusting

f(m) → f(m) + γm and g(t) → g(t) − γt. To determine the slope γ requires extra

knowledge about the trend of at least one of f, g, h. The trend removal for h(v) is

needed only when there is no such extra knowledge. The MEV decomposition with

zero-trend vintage effects may be referred to as the ad hoc approach.

In what follows we review several existing approaches that are related to MEV

decomposition. The first example is a conventional age-period-cohort (APC) model

in social sciences of demography and epidemiology. The second example is the gener-

alized additive model (GAM) in nonparametric statistics, where the smoothing spline

is used as the scatterplot smoother. The third example is an industry GAMEED ap-

proach that may reduce to a sequential type of MEV decomposition. The last example

is another industrial DtD technique involving the interactions of MEV components.

They all can be viewed as one or another type of vintage data analysis.

The APC Model.

Suppose there are I distinct m-values and L distinct t-values in the vintage data.

By (3.2), setting f(m) = µ+
∑I

i=1 αiI(m = mi), g(t) =
∑L

l=1 βlI(t = tl) and h(v) =
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∑J
j=1 γjI(v = vj) gives us the the APC (age-period-cohort) model

η(y(mi, tl; vj)) = µ+ αi + βl + γj + ε, (3.4)

where the vintage effects {γ′js} used to be called the cohort effects; see Mason, et al.

(1973) and Mason and Wolfinger (2002). Assume
∑

i αi =
∑

l βl =
∑

j vj = 0, as

usual; then one may reformulate the APC model as y = Xθ + ε, where y is the the

vector consisting of η(y(mi, tl; vj)) and

X =
[
1,x

(α)
1 , . . . ,x

(α)
I−1,x

(β)
1 , . . . ,x

(β)
L−1,x

(γ)
1 , . . . ,x

(γ)
J−1

]

with dummy variables. For example, x
(α)
i is defined by x

(α)
i (m) = I(m = mi)−I(m =

mI) for i = 1, . . . , I − 1. Without loss of generality, let us select the factorial levels

(mI , tL, vJ) to satisfy mI − tL + vJ = 0 (after reshuffling the indices of v).

The identification problem of the APC model (3.4) follows Lemma 3.1, since the

regression matrix is linearly dependent through

I−1∑
i=1

(mi − m̄)x
(α)
i −

L−1∑
l=1

(tl − t̄ )x
(β)
l +

J−1∑
j=1

(vj − v̄)x
(γ)
j = m̄− t̄+ v̄, (3.5)

where m̄ =
∑I

i=1mi/I, t̄ =
∑L

l=1 tl/L and v̄ =
∑J

j=1 vj/J . So, the ordinary least

squares (OLS) cannot be used for fitting y = Xθ + ε. This is a key observation by

Kupper (1985) that generated long-term discussions and debates on the estimability

of the APC model. Among others, Fu (2000) suggested to estimate the APC model

by ridge regression, whose limiting case leads to a so-called intrinsic estimator θ̂ =

(XTX)+XTy, where A+ is the Moore-Penrose generalized inverse of A satisfying that

AA+A = A.

The discrete APC model tends to massively identify the effects at the grid level and

often ends up with unstable estimates. Since the vintage data are always unbalanced
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in m, t or v projection, there would be very limited observations for estimating

certain factorial effects in (3.4). The APC model is formulated over-flexibly in the

sense that it does not regularize the grid effect by neighbors. Fu (2008) suggested to

use the spline model for h(v); however, such spline regularization would not bypass

the identification problem unless it does not involve a linear basis.

The Additive Splines.

If f, g, h are all assumed to be unspecified smooth functions, the MEV models

would become the generalized additive models (GAM); see Hastie and Tibshirani

(1990). For example, using the cubic smoothing spline as the scatterplot smoother,

we have the additive splines model formulated by

arg min
f,g,h

{
J∑
j=1

Lj∑
l=1

[
η(yjl)− f(mjl)− g(tjl)− h(vj)

]2

+ λf

∫ [
f (2)(m)

]2

dm

+λg

∫ [
g(2)(t)

]2

dt+ λh

∫ [
h(2)(v)

]2

dv

}
, (3.6)

where λf , λg, λh > 0 are the tuning parameters separately controlling the smoothness

of each target function; see (2.2).

Usually, the optimization (3.6) is solved by the backfitting algorithm that iterates

f̂ ← Sf

[{
η(yjl)− ĝ(tjl)− ĥ(vj)

}
j,l

]
ĝ ← Sg

[{
η(yjl)− f̂(mjl)− ĥ(vj)

}
j,l

]
(centered) (3.7)

ĥ ← Sh

[{
η(yjl)− f̂(mjl)− ĝ(tjl)

}
j,l

]
(centered)

after initializing ĝ = ĥ = 0. See Chapter II about the formation of smoothing matrices

Sf ,Sg,Sh, for which the corresponding smoothing parameters can be selected by the

method of generalized cross-validation. However, the linear parts of f, g, h are not

identifiable, by Lemma 3.1. To get around the identification problem, we may take
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the ad hoc approach to remove the trend of h(v). The trend-removal can be achieved

by appending to every iteration of (3.7):

ĥ(v)← ĥ(v)− v
( J∑
j=1

v2
j

)−1
J∑
j=1

vjĥ(vj).

We provide more details on (3.6) to shed light on its further development in the

next section. By Proposition 2.1 in Chapter II, each of f, g, h can be expressed by

the basis expansion of the form (2.8). Taking into account the identifiability of both

the intercept and the trend, we may express f, g, h by

f(m) = µ0 + µ1m+
∑I

i=1
αiK(m,mi)

g(t) = µ2t+
∑L

l=1
βlK(t, tl) (3.8)

h(v) =
∑J

j=1
γjK(v, vj).

Denote µ = (µ0, µ1, µ2)T , α = (α1, . . . , αI)
T , β = (β1, . . . , βL)T , and γ = (γ1, . . . , γJ)T .

We may equivalently write (3.6) as the regularized least squares problem

min

{
1

n

∥∥y −Bµ− Σ̃fα− Σ̃gβ − Σ̃hγ
∥∥2

+ λf
∥∥α∥∥2

Σf
+ λg

∥∥β∥∥2

Σg
+ λh

∥∥γ∥∥2

Σh

}
,

(3.9)

where y is the vector of n =
∑J

j=1 Lj observations {η(yjl)}, B, Σ̃f ,Σf are formed by

B =
[{

(1,mjl, tjl)
}
j,l

]
n×3

, Σ̃f =
[
K(mjl,mi)

]
n×I , Σf =

[
K(mi,mi)

]
I×I

and Σ̃g,Σg, Σ̃h,Σh are formed similarly.

The GAMEED Approach.

The GAMEED refers to an industry approach, namely the generalized additive

maturation and exogenous effects decomposition, adopted by Enterprise Quantitative

Risk Management, Bank of America, N.A. (Sudjianto, et al., 2006). It has also been
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documented as part of the patented work “Risk and Reward Assessment Mechanism”

(USPTO: 20090063361). Essentially, it has two practical steps:

1. Estimate the maturation curve f̂(m) and the exogenous effect ĝ(t) from

η(y(m, t; v)) = f(m;α) + g(t;β) + ε, Eg = 0

where f(m;α) can either follow a spline model or take a parametric form sup-

ported by prior knowledge, and g(t;β) can be specified like in (3.4) upon neces-

sary time binding while retaining the flexibility in modeling the macroeconomic

influence. If necessary, one may further model ĝ(t;β) by a time-series model in

order to capture the autocorrelation and possible jumps.

2. Estimate the vintage-specific sensitivities to f̂(m) and ĝ(t) by performing the

regression fitting

η(y(mjl, tjl; vj)) = γj + γ
(f)
j f̂(mjl) + γ

(g)
j ĝ(tjl) + ε

for each vintage j (upon necessary bucketing).

The first step of GAMEED is a reduced type of MEV decomposition without

suffering theidentification problem. The estimates of f(m) and g(t) can be viewed

as the common factors to all vintages. In the second step, the vintage effects are

measured through not only the main (intercept) effects, but also the interactions

with f̂(m) and ĝ(t). Clearly, when the interaction sensitivities γ
(f)
j = γ

(g)
j = 1, the

industry GAMEED approach becomes a sequential type of MEV decomposition.

The DtD Technique.

The DtD refers to the dual-time dynamics, adopted by Strategic Analytics Inc.,

for consumer behavior modeling and delinquency forecasting. It was brought to the
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public domain by Breeden (2007). Using our notations, the DtD model takes the

form

η(y(mjl, tjl; vj)) = γ
(f)
j f(mjl) + γ

(g)
j g(tjl) + ε (3.10)

and η−1(·) corresponds to the so-called superposition function in Breeden (2007).

Clearly, the DtD model involves the interactions between the vintage effects and

(f(m), g(t)). Unlike the sequential GAMEED above, Breeden (2007) suggested to

iteratively fit f(m), g(t) and γ
(f)
j , γ

(g)
j in a simultaneous manner.

However, the identification problem could as well happen to the DtD technique,

unless it imposes structural assumptions that could break up the trend dependency.

To see this, one may use Taylor expansion for each nonparametric function in (3.10)

then apply Lemma 3.1 to the linear terms. Unfortunately, such identification problem

was not addressed by Breeden (2007), and the stability of the iterative estimation

algorithm might be an issue.

3.3 Gaussian Process Models

In MEV decomposition framework (3.2), the maturation curve f(m), the exoge-

nous influence g(t) and the vintage heterogeneity h(v) are postulated to capture the

endogenous, exogenous and origination effects on the dual-time responses. In this

section, we propose a general approach to MEV decomposition modeling based on

Gaussian processes and provide an efficient algorithm for model estimation.

3.3.1 Covariance Kernels

Gaussian processes are rather flexible in modeling a function Z(x) through a mean

function µ(·) and a covariance kernel K(·, ·),

EZ(x) = µ(x), E[Z(x)− µ(x)][Z(x′)− µ(x′)] = σ2K(x, x′) (3.11)
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where σ2 is the variance scale. For ease of discussion, we will write µ(x) separately

and only consider the zero-mean Gaussian process Z(x). Then, any finite-dimensional

collection of random variables Z = (Z(x1), . . . , Z(xn)) follows a multivariate normal

distribution Z ∼ Nn(0, σ2Σ) with Σ = [K(xi, xj)]n×n.

The covariance kernel K(·, ·) plays a key role in constructing Gaussian processes. It

is symmetric K(x, x′) = K(x′, x) and positive definite:
∫
x,x′

K(x, x′)f(x)f(x′)dxdx′ >

0 for any non-zero f ∈ L2. The kernel is said to be stationary if K(x, x′) depends only

on |xi−x′i|, i = 1, . . . , d for x ∈ Rd. It is further said to be isotropic or radial if K(x, x′)

depends only on the distance ‖x−x′‖. For x ∈ R, a stationary kernel is also isotropic.

There is a parsimonious approach to using stationary kernels K(·, ·) to model certain

nonstationary Gaussian processes such that Cov[Z(x), Z(x′)] = σ(x)σ(x′)K(x, x′),

where the variance scale σ2(x) requires a separate model of either parametric or non-

parametric type. For example, Fan, Huang and Li (2007) used the local polynomial

approach to smoothing σ2(x).

Several popular classes of covariance kernels are listed below, including the adap-

tive smoothing spline (AdaSS) kernels discussed in Chapter II.

Exponential family: K(x, x′) = exp

{
−
(
|x− x′|
φ

)κ}
, 0 < κ ≤ 2, φ > 0

Matérn family: K(x, x′) =
21−κ

Γ(κ)

( |x− x′|
φ

)κ
Kκ

( |x− x′|
φ

)
, κ, φ > 0 (3.12)

AdaSS r.k. family: K(x, x′) =

∫
X
φ−1(u)Gκ(x, u)Gκ(x

′, u)du, φ(x) > 0.

More examples of covariance kernels can be referred to Stein (1999) and Rasmussen

and Williams (2006).

Both the exponential and Matérn families consist of stationary kernels, for which

φ is the scale parameter and κ can be viewed as the shape parameter. In the Matérn

family, Kκ(·) denotes the modified Bessel function of order κ; see Abramowitz and

Stegun (1972). Often used are the half-integer order κ = 1/2, 3/2, 5/2 and the corre-
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sponding Matérn covariance kernels take the following forms

K(x, x′) = e−
|x−x′|
φ , κ = 1/2

K(x, x′) = e−
|x−x′|
φ

(
1 +
|x− x′|
φ

)
, κ = 3/2 (3.13)

K(x, x′) = e−
|x−x′|
φ

(
1 +
|x− x′|
φ

+
|x− x′|2

3φ2

)
, κ = 5/2.

It is interesting that these half-integer Matérn kernels correspond to autocorrelated

Gaussian processes of order κ + 1/2; see Stein (1999; p. 31). In particular, the

κ = 1/2 Matérn kernel, which is equivalent to the exponential kernel with κ = 1, is

the covariance function of the Ornstein-Uhlenbeck (OU) process.

The AdaSS family of reproducing kernels (r.k.’s) are based on the Green’s function

Gκ(x, u) = (x− u)κ−1
+ /(κ− 1)! with order κ and local adaptation function φ(x) > 0.

In Chapter 2.2.1, we have derived the explicit r.k. expressions with piecewise φ−1(x).

They are nonstationary covariance kernels with the corresponding Gaussian processes

discussed in Chapter 2.3. In this chapter, we concentrate on a particular class of

AdaSS kernels

K(x, x′) =

min{k:τk>x∧x′}∑
k=1

φk

(
x ∧ x′ − τk−1

)
(3.14)

with piecewise-constant adaptation φ−1(x) = φk for x ∈ [τk − 1, τk) and knots x−min ≡

τ0 < τ1 < · · · < τK ≡ x+
max. By (2.29), the Gaussian process with kernel (3.14)

generalizes the standard Wiener process with nonstationary volatility, which is useful

for modeling the heterogeneous behavior of an MEV component, e.g. g(t).

3.3.2 Kriging, Spline and Kernel Methods

Using Gaussian processes to model the component functions in (3.2) would give

us a class of Gaussian process MEV models. Among others, we consider

η(y(m, t; v)) = µ(m, t; v) + Zf (m) + Zg(t) + Zh(v) + ε (3.15)
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where ε ∼ N(0, σ2) is the random error, Zf (m), Zg(t), Zh(v) are three zero-mean

Gaussian processes with covariance kernels σ2
fKf , σ

2
gKg, σ

2
hKh, respectively. To bypass

the identification problem in Lemma 3.1, the overall mean function is postulated to

be µ(m, t; v) ∈ H0 on the hyperplane of the vintage diagram, where

H0 ⊆ span{1,m, t} ∩ null{Zf (m), Zg(t), Zh(v)}, (3.16)

among other choices. For example, choosing cubic spline kernels for all f, g, h al-

lows for H0 = span{0,m, t}, then µ(m, t; v) = µ0 + µ1m + µ2t. In other situations,

the functional space H0 might shrink to be span{1} in order to satisfy (3.16), then

µ(m, t; v) = µ0. In general, let us denote µ(m, t; v) = µTb(m, t; v), for µ ∈ Rd.

For simplicity, let us assume that Zf (m), Zg(t), Zh(v) are mutually independent

for x ≡ (m, t, v) ∈ R3. Consider the sum of univariate Gaussian processes

Z(x) = Zf (m) + Zg(t) + Zh(v), (3.17)

with mean zero and covariance Cov[Z(x), Z(x′)] = σ2K(x,x′). By the independence

assumption,

K(x,x′) = λ−1
f Kf (m,m

′) + λ−1
g Kg(t, t

′) + λ−1
h Kh(v, v

′). (3.18)

with λf = σ2/σ2
f , λg = σ2/σ2

g and λh = σ2/σ2
h. Then, given the vintage data (3.1)

with n =
∑J

j=1 Lj observations, we may write (3.15) in the vector-matrix form

y = Bµ+ z̃, Cov[z̃] = σ2
[
Σ + I

]
(3.19)

where y =
[
η(yjl)

]
n×1

, B =
[
bTjl
]
n×d, z̃ =

[
Z(xjl) + ε

]
n×1

and Σ =
[
K(xjl,xj′l′)

]
n×n.

By either GLS (generalized least squares) or MLE (maximum likelihood estimation),
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µ is estimated to be

µ̂ =
(
BT
[
Σ + I

]−1
B
)−1

BT
[
Σ + I

]−1
y. (3.20)

where the invertibility of Σ + I is guaranteed by large values of λf , λg, λh as in the

context of ridge regression.

In the Gaussian process models there are additional unknown parameters for defin-

ing the covariance kernel (3.18), namely (λ,θ) = (λf , λg, λh, θf , θg, θh), as well as the

unknown variance parameter σ2 (a.k.a. the nugget effect). The λf , λg, λh, as the ra-

tios of σ2 to the variance scales of Zf , Zg, Zh, are usually referred to as the smoothing

parameters. The θf , θg, θh denote the structural parameters, e.g scale parameter φ

and shape parameter κ in exponential or Matérn family of kernels, or local adap-

tation φ(·) in AdaSS kernel. By (3.19) and after dropping the constant term, the

log-likelihood function is given by

`(µ,λ,θ, σ2) = −n
2

log(σ2)− 1

2
log
∣∣Σ + I

∣∣− 1

2σ2
(y −Bµ)T (Σ + I)−1(y −Bµ)

in which Σ depends on (λ,θ). Whenever (λ,θ) are fixed, the µ estimate is given by

(3.20), then one may estimate the variance parameter to be

σ̂2 =
1

n− p
(y −Bµ̂)Σ−1(y −Bµ̂), (3.21)

where p = rank(B) is plugged in order to make σ̂2 an unbiased estimator.

Usually, numerical procedures like Newton-Raphson algorithm are needed to itera-

tively estimate (λ,θ) that admit no closed-form solutions; see Fang, Li and Sudjianto

(2006, §5). Such a standard maximum likelihood estimation method is computation-

ally intensive. In the next subsection, we will discuss how to iteratively estimate the

parameters by an efficient backfitting algorithm.
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MEV Kriging means the prediction based on the Gaussian process MEV model

(3.15), where the naming of ‘Kriging’ follows the geostatistical convention; see Cressie

(1993) in spatial statistics. See also Fang, Li and Sudjianto (2006) for the use of Krig-

ing in the context of computer experiments. Kriging can be equally treated by either

multivariate normal distribution theory or Bayesian approach, since the conditional

expectation of multivariate normal distribution equals the Bayesian posterior mean.

The former approach is taken here for making prediction from the noisy observations,

for which the Kriging behaves as a smoother rather than an interpolator.

Let us denote the prediction of η(ŷ(x)) at x = (m, t, v) by ζ(x) = µ̂Tb(x) +

E
[
Zf (m) +Zg(t) +Zh(v) + ε

∣∣z̃], where E[Z|z̃] denotes the conditional expectation of

Z given z̃ = y −Bµ̂. By the property of multivariate normal distribution,

ζ̂(x) = µ̂Tb(x) + ξTn (x)
[
Σ + I

]−1
(
y −Bµ̂

)
(3.22)

where ξn(x) denotes the vector of
[
K(x,xjl)

]
n×1

evaluated between x and each sam-

pling point.

The Kriging (3.22) is known to be a best linear unbiased predictor. It has also

a smoothing spline reformulation that covers the additive cubic smoothing splines

model (3.6) as a special case. Formally, we have the following proposition.

Proposition 3.2 (MEV Kriging as Spline Estimator). The MEV Kriging (3.22) can

be formulated as a smoothing spline estimator

arg min
ζ∈H

{
J∑
j=1

Lj∑
l=1

[
η(yjl)− ζ(xjl)

]2

+
∥∥ζ∥∥2

H1

}
(3.23)

where H = H0⊕H1 with H0 ⊆ span{1,m, t} and H1 is the reproducing kernel Hilbert

space induced by (3.18) such that H0 ⊥ H1.
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The spline solution to (3.23) can be written as a finite-dimensional expression

ζ(x) = µTb(x) +
J∑
j=1

Lj∑
l=1

cjlK(x,xjl) (3.24)

with coefficients determined by the regularized least squares,

min
{∥∥y −Bµ−Σc

∥∥2
+
∥∥c∥∥

Σ

}
. (3.25)

Furthermore, we have the following simplification.

Proposition 3.3 (Additive Separability). The MEV Kriging (3.22) can be expressed

additively as

ζ(x) = µTb(x) +
I∑
i=1

αiKf (m,mi) +
L∑
l=1

βlKg(t, tl) +
J∑
j=1

γjKg(v, vj) (3.26)

based on I distinct m-values, L distinct t-values and J distinct v-values in (3.1). The

coefficients can be estimated by

min
{∥∥y −Bµ− Σ̃fα− Σ̃gβ − Σ̃hγ

∥∥2
+ λf

∥∥α∥∥2

Σf
+ λg

∥∥β∥∥2

Σg
+ λh

∥∥γ∥∥2

Σh

}
,

(3.27)

where the matrix notations are the same as in (3.9) up to mild modifications.

Proposition 3.3 converts the MEV Kriging (3.22) to a kernelized additive model

of the form (3.26). It connects the kernel methods in machine learning that advocates

the use of covariance kernels for mapping the original inputs to some high-dimensional

feature space. Based on our previous discussions, such kernelized feature space cor-

responds to the family of Gaussian processes, or the RKHS; see e.g. Rasmussen and

Williams (2006) for more details.

Proposition 3.3 breaks down the high-dimensional parameter estimation and it

makes possible the development of a backfitting algorithm to deal with three uni-
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variate Gaussian processes separately. Such backfitting procedure provides a more

efficient procedure than the standard method of maximum likelihood estimation.

Besides, it can easily deal with the collinearity problem among Zf (m), Zg(t), Zh(v)

caused by the hyperplane dependency of vintage diagram.

3.3.3 MEV Backfitting Algorithm

For given (λ,θ), the covariance kernels in (3.18) are defined explicitly, so one

may find the optimal solution to (3.27) by setting partial derivatives to zero and

solving the linear system of algebraic equations. There are however complications for

determining (λ,θ). In this section we propose a backfitting algorithm to minimize the

regularized least squares criterion (3.27), together with a generalized cross-validation

(GCV) procedure for selecting the smoothing parameters λf , λg, λh, as well as the

structural parameters θf , θg, θh used for defining the covariance kernels. Here, the

GCV criterion follows our discussion in Chapter 2.2.2; see also Golub, Heath and

Wahba (1979) in the context of ridge regression.

Denote the complete set of parameters by Ξ = {µ; α, λf , θf ; β, λg, θg; γ, λh, θh; σ
2}

where λ’s are smoothing parameter and θ’s are structural parameters for defining the

covariance kernels. Given the vintage data (3.1) with notations y,B in (3.6):

Step 1: Set the initial value of µ to be the ordinary least squares (OLS) estimate

(BTB)−1BTy; Set the initial values of β,γ to be zero.

Step 2a: Given Ξ with (α, λf , θf ) unknown, get the pseudo data ỹ = y−Bµ−

Σ̃gβ − Σ̃hγ. For each input (λf , θf ), estimate α by ridge regression

α̂ =
(
Σ̃
T

f Σ̃f + λfΣf

)−1

Σ̃
T

f ỹ (3.28)

where Σ̃f =
[
Kf (mjl,mi; θf )

]
n×I and Σf =

[
Kf (mi,mj; θf )

]
I×I . Determine the
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best choice of (λf , θf ) by minimizing

GCV(λf , θf ) =
1

n

∥∥∥(I− S̃(λf , θf ))ỹ
∥∥∥2/[

1− 1

n
Trace

(
S̃(λf , θf )

)]2

, (3.29)

where S̃(λf , θf ) = Σ̃f

(
Σ̃
T

f Σ̃f + λfΣf

)−1

Σ̃
T

f .

Step 2b: Run Step 2a with the unknown parameters replaced by (β, λg, θg) and

ỹ = y−Bµ− Σ̃fα− Σ̃hγ. Form Σ̃g,Σg and S̃(λg, θg). Select (λg, θg) by GCV,

then estimate β by ridge regression.

Step 2c: Run Step 2a with the unknown parameters replaced by (γ, λh, θh) and

ỹ = y − Bµ − Σ̃fα − Σ̃gβ. (For the ad hoc approach, remove the trend of ỹ

in the vintage direction.) Form Σ̃h,Σh and S̃(λh, θh). Select (λh, θh) by GCV.

Estimate γ by ridge regression.

Step 2d: re-estimate the µ by GLS (3.20) for given (λf , λg, λh, θf , θg, θh).

Step 3: Repeat steps 2a–2d until convergence, say, when the estimates of

µ,α,β,γ change less than a pre-specified tolerance. Obtain σ̂2 by (3.21).

For future reference, the above iterative procedures are named as the MEV Back-

fitting algorithm. It is efficient and can automatically take into account selection of

both smoothing and structural parameters. After obtaining the parameter estimates,

we may reconstruct the vintage data by ŷ = Bµ̂+ Σ̃f α̂+ Σ̃gβ̂+ Σ̃hγ̂. The following

are several remarks for practical implementation:

1. In order to capture a diversity of important features, a combination of different

covariance kernels can be included in the same MEV model. The exponential,

Matérn and AdaSS r.k. families listed in (3.12), (3.13), (3.14) are of our primary

interest here, whereas other types of kernels can be readily employed. When

the underlying function is heterogeneously smooth, e.g. involving jumps, one

may choose the AdaSS kernel (3.14).
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2. For the ridge regression (3.28), the matrix Σ̃f contains row-wise replicates and

can be reduced by weighted least squares, in which case the response vector

ỹ is reduced to the pointwise averages; see (2.4). The evaluation of the GCV

criterion (3.29) can be modified accordingly; see (2.22).

3. When the mean function µ(m, t; v) is specified to be the intercept effect, i.e.

µ(m, t; v) = µ0, one may replace µ0 by the mean of y in step 1 and step 2d. In

this case, we may write the MEV Kriging as ζ(x) = f̂(m) + ĝ(t) + ĥ(v) with

f̂(m) = µ̂0 +
I∑
i=1

α̂iKf (m,mi), ĝ(t) =
L∑
l=1

β̂lKg(t, tl), ĥ(v) =
J∑
j=1

γ̂jKh(v, vj).

4. In principal, both ĝ(t) and ĥ(v) in step 2b and step 2c have mean zero, but in

practice, they may need the centering adjustment due to machine rounding.

3.4 Semiparametric Regression

Having discussed the MEV decomposition models based on Gaussian processes,

we consider in this section the inclusion of covariates in the following two scenarios:

1. x(mjl, tjl; vj) ∈ Rp (or xjl in short) for a fixed segment, where xjl denotes the

covariates of j-th vintage at time tjl and age mjl = tjl − vj;

2. x(mkjl, tkjl; vkj) ∈ Rp and zk ∈ Rq for multiple segments that share the same

vintage diagram, where zk represents the static segmentation variables.

Of our interest are the the semiparametric MEV regression models with both non-

parametric f(m), g(t), h(v) and parametric covariate effects.

After a brief discussion of the first situation with a single segment, we will spend

more time in the second situation with multiple segments. For simplicity, the covari-

ates xjl or xkjl are assumed to be deterministic, i.e. no error in variables.
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3.4.1 Single Segment

Given a single segment with dual-time observations {y(mjl, tjl; vj),x(mjl, tjl; vj)}

for j = 1, . . . , J and l = 1, . . . , Lj, we consider the partial linear model that adds the

linear covariate effects to the MEV decomposition (3.2),

η(yjl) = f(mjl) + g(tjl) + h(vj) + πTxjl + ε (3.30)

= µTbjl + πTxjl + Zf (mjl) + Zg(tjl) + Zh(vj) + ε

where xjl ≡ x(mjl, tjl; vj), (µ,π) are the parameters for the mean function, and f, g, h

are nonparametric and modeled by Gaussian processes.

The semiparametric regression model (3.30) corresponds to the linear mixed-effect

modeling, and the covariate effects π can be simply estimated in the same way we

estimated µ in (3.20). That is, conditional on Σ,

(µ̂; π̂) =
(
B̃T
[
Σ + I

]−1
B̃
)−1

B̃T
[
Σ + I

]−1
y. (3.31)

where B̃ = [B
...X] with X = [xjl]n×p. This GLS estimator can be incorporated with

the established MEV Backfitting algorithm discussed in Section 3.3.3. Only step 1

and step 2d need modified to be:

Step 1: Set (µ,π) initially to be the OLS estimate, i.e. (3.31) with zero Σ.

Step 2d: re-estimate (µ;π) by (3.31) for given (λf , λg, λh, θf , θg, θh).

Then, the whole set of parameters in (3.30) can be iteratively estimated by the mod-

ified backfitting algorithm. There is a word of caution about multicollinearity, since

the orthogonality condition in Proposition 3.2 may be not satisfied between the co-

variate space span{x} and the Gaussian processes. In this case, instead of starting

from the fully nonparametric approach, we may assume the f, g, h components in

(3.30) can be approximated by the kernel basis expansion through (3.26), then run
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backfitting. Fortunately, the smoothing parameters λf , λg, λh may guard against pos-

sible multicollinearity and give the shrinkage estimate of the covariate effects π. As

a trade-off, part of Gaussian process components might be over-smoothed.

3.4.2 Multiple Segments

Suppose we are given K segments of data that share the same vintage diagram,

{
y(mkjl, tkjl; vkj),x(mkjl, tkjl; vkj), zk

}
, (3.32)

for k = 1, . . . , K, j = 1, . . . , J and l = 1, . . . , Lj, where xkjl ∈ Rp and z ∈ Rq.

Denote by N the total number of observations across K segments. There are various

approaches to modeling cross-segment responses, e.g.

a. η(ykjl) = f(mkjl) + g(tkjl) + h(vkj) + πTxkjl + ωTzk + ε

b. η(ykjl) = fk(mkjl) + gk(tkjl) + hk(vkj) + πTk xkjl + ε (3.33)

c. η(ykjl) = u
(k)
f f(mkjl) + u(k)

g g(tkjl) + u
(k)
h h(vkj) + πTk xkjl +W (zk) + ε.

Here, the first approach assumes that the segments all perform the same MEV com-

ponents and covariate effect π, and differ only through ωTzk. The second approach

takes the other extreme assumption such that each segment performs marginally

differently in terms of f, g, h and covariate effects, therefore equivalent to K sepa-

rate single-segment models. Clearly, both of these approaches can be treated by the

single-segment modeling technique discussed in the last section.

Of our interest of study is the third approach that allows for multiple segments to

have different sensitivities u
(k)
f , u

(k)
g , u

(k)
h ∈ R to the same underlying f(m), g(t), h(v).

In another word, the functions f(m), g(t), h(v) represent the common factors across

segments, while the coefficients u
(k)
f , u

(k)
g , u

(k)
h represent the idiosyncratic multipliers.

Besides, it allows for the segment-specific add-on effects W (zk) and segment-specific
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covariate effect πk. Thus, the model (c) is postulated as a balance between the

over-stringent model (a) and the over-flexible model (b).

Different strategies can be applied to model the segment-specific effects W (zk).

Among others, we consider (c1) the linear modeling W (zk) = ωTzk with parameter

ω ∈ Rq and (c2) the Gaussian process modeling

EW (zk) = 0, EW (zk)W (zk′) = λWKW (zk, zk′) (3.34)

for the smoothing parameter λW > 0 and some pre-specificed family of covariance

kernels KW . For example, we may use the squared exponential covariance kernel in

(3.12). The estimation of these two types of segment effects are detailed as follows.

Linear Segment Effects.

Given the multi-segment vintage data (3.32), consider

η(ykjl) = u
(k)
f f(mkjl) + u(k)

g g(tkjl) + u
(k)
h h(vkj) + πTk xkjl + ωTzk + ε (3.35)

with basis approximation

f(m) = µ0 +
I∑
i=1

αiKf (m,mi), g(t) =
L∑
l=1

βlKg(t, tl), h(v) =
J∑
j=1

γjKg(v, vj)

through the exponential or Matérn kernels. (The smoothing spline kernels can be

also used after appropriate modification of the mean function.) Using the matrix

notations, the model takes the form

〈
uf , Bµ+ Σ̃fα

〉
+
〈
ug, Σ̃gβ

〉
+
〈
uh, Σ̃hγ

〉
+ Xπ + Zω

where the underscored vectors and matrices are formed based on multi-segment ob-

servations, (uf ,ug,uh) are the extended vector of segment-wise multipliers, X has
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K × p columns corresponding to the vectorized coefficients π = (π1; . . . ;πK), and

Z is as usual. When both the kernel parameters (λ,θ) for Kf ,Kg,Kh and the (con-

densed K-vector) multipliers uf ,ug,uh are fixed, the regularized least squares can be

used for parameter estimation, using the same penalty terms as in (3.27).

Iterative procedures can be used to estimate all the parameters simultaneously,

including {µ,α,β,γ,λ,θ} for the underlying f, g, h functions and uf ,ug,uh,π,ω

across segments. The following algorithm is constructed by utilizing the MEV Back-

fitting algorithm as an intermediate routine.

Step 1: Set the initial values of (π,ω) to be the OLS estimates for fitting

y = Xπ + Zω + ε based on all N observations across K segments.

Step 2: Run the MEV Backfitting algorithm for the pseudo data y−Xπ̂−Zω̂

for obtaining the estimates of f̂(m), ĝ(t), ĥ(v)

Step 3: Update (uf ,ug,uh) and (π,ω) by OLS estimates for fitting

y = Fuf + Gug + Huh + Xπ + Zω + ε

where F,G,H are all N × K regression sub-matrices constructed based on

f̂(mkjl), ĝ(tkjl), ĥ(vkj), respectively.

Step 4: Repeat step 2 and step 3 until convergence.

Note that in Step 2, the common factors f̂(m), ĝ(t) and ĥ(v) are estimated first

by assuming uk = Euk = 1 for each of f, g, h. In Step 3, the segment-wise multipliers

uk’s are updated by regressing over f̂ , ĝ and ĥ. In so doing, the concern of stability

is one reason. Disregarding the segment variability in Step 2 is also reasonable, since

f(m), g(t), h(v) are by definition the common factors in the overall sense. Then,

including the segment variability in Step 3 improves both the estimation of (π,ω)
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and the estimation of f, g, h in the next iteration of Step 2. Such fitting procedure is

practically interesting and computationally tractable.

Spatial Segment Heterogeneity.

We move to consider the segment effect modeling by a Gaussian process

η(ykjl) = u
(k)
f f(mkjl) + u(k)

g g(tkjl) + u
(k)
h h(vkj) +W (zk) + πTk xkjl + ε (3.36)

where f, g, h are approximated in the same way as in (3.35) and W (zk) is assumed to

follow (3.34). The orthogonality constraint between W (z) and {f(m), g(t), h(v)}

can be justified from a tensor-product space point of view, but the orthogonal-

ity is not guaranteed between W (zk) and the span of xkjl. Despite of the or-

thogonality constraint, let us directly approximate W (z) by the basis expansion

W (z) =
∑K

k=1 ωkKW (z, zk) associated with the unknown scale parameter (denoted

by θW ). Then, we have the following two iterative stages of model estimation.

Stage 1: for given πk and uk ≡ 1, k = 1, . . . , K, estimate the common-factor

functions f(m), g(t), h(v) and the spatial segment effect W (zk) in

η(ykjl)− πTk xkjl = µ0 +
I∑
i=1

αiKf (mkjl,mi) +
L∑
i=1

βiKg(tkjl, ti)

+
J∑
i=1

γiKg(vkj, vi) +
K∑
i=1

ωiKW (zk, zi) + ε

by the regularized least squares

min

{∥∥ỹ −Bµ− Σ̃fα− Σ̃gβ − Σ̃hγ − Σ̃Wω
∥∥2

+λf
∥∥α∥∥2

Σf
+ λg

∥∥β∥∥2

Σg
+ λh

∥∥γ∥∥2

Σh
+ λW

∥∥ω∥∥2

ΣW

}
, (3.37)

where ỹ is the pseudo response vector of η(ykjl) − πTk xkjl for all (k, j, l). The

regression sub-matrices B, Σ̃f , Σ̃g, Σ̃h, Σ̃W are constructed accordingly, all hav-
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ing N rows. The matrices used for regularization are of size I × I, L×L, J ×J

and K × K, respectively. Both the smoothing parameters λf , λg, λh, λW > 0

and the structural parameters θf , θg, θh, θW need to be determined.

Stage 2: for given f, g, h, estimate the parameters (uf ,ug,uh) and π based on

y = Fuf + Gug + Huh + Xπ + w̃, Cov[w̃] = σ2
[
λWΣW + I

]
where ΣW =

[
KW (zk, zk′)

]
N×N is obtained by evaluating every pair of obser-

vations either within or between segments. The parameter estimation can be

obtained by the generalized least squares.

Obviously, the regularized least squares in Stage 1 extends the MEV Backfitting

algorithm to entertain a fourth kernel component KW . Let us call the extended

algorithm MEVS Backfitting, where the added letter “S” means the segment effect.

Iterate Stage 1 and Stage 2 until convergence, then we obtain the following list of

effect estimates (as a summary):

1. Common-factor maturation curve: f̂(m) = µ̂0 +
∑I

i=1 α̂iKf (m,mi)

2. Common-factor exogenous influence: ĝ(t) =
∑L

l=1 β̂lKg(t, tl)

3. Common-factor vintage heterogeneity: ĥ(v) =
∑J

j=1 γ̂jKh(v, vj)

4. Idiosyncratic multipliers to (f̂ , ĝ, ĥ): u
(k)
f , u

(k)
g , u

(k)
h for k = 1, . . . , K

5. Segment-specific covariate effects: πk, for k = 1, . . . , K

6. Spatial segment heterogeneity: Ŵ (z) =
∑K

k=1 ω̂kKW (z, zk).

3.5 Applications in Credit Risk Modeling

This section presents the applications of MEV decomposition methodology to

the real data of (a) Moody’s speculative-grade corporate default rates shown in Ta-
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ble 1.1, and (b) the tweaked sample of retail loan loss rates discussed in Chapter II.

Both examples demonstrate the rising challenges for analysis of the credit risk data

with dual-time coordinates, to which we make only an initial attempt based on the

MEV Backfitting algorithm. Our focus is on understanding (or reconstruction) of the

marginal effects first, then perform data smoothing on the dual-time domain. To test

the MEV decomposition modeling, we begin with a simulation study based on the

synthetic vintage data.

3.5.1 Simulation Study

Let us synthetize the year 2000 to 2008 monthly vintages according to the diagram

shown in Figure 1.3. Assume each vintage is originated at the very beginning of

the month, and its follow-up performance is observed at each month end. Let the

horizontal observation window be left truncated from the beginning of 2005 (time

0) and right truncated by the end of 2008 (time 48). Vertically, all the vintages

are observed up to 60 months-on-book. It thus ends with the rectangular diagram

shown in Figure 3.1, consisting of vintages j = −60, . . . ,−1 originated before 2005

and j = 0, 1, . . . , 47 originated after 2005. For each vintage j with origination time

vj, the dual-time responses are simulated by

log(yjl) = f0(mjl) + g0(tjl) + h0(vj) + ε, ε ∼ N(0, σ2) (3.38)

where tjl runs through max{vj, 0} to 48 and mjl = tjl − vj. Regardless of the noise,

the responses yjl is the product of three marginal effects, exp(f0(m)) · exp(g0(t)) ·

exp(h0(v)). In our simulation setting, the underlying truth exp(f0(m)) takes the

smooth form of inverse Gaussian hazard rate function (1.13) with parameter c = 6

and b = −0.02, the underlying exp(g0(t)) is volatile with exponential growth and

a jump at t = 23, and the underlying h0(v) is assumed to be a dominating sine
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wave within [0, 40] and relatively flat elsewhere. See their plots in Figure 3.2 (top

panel). Adding the noise with σ = 0.1, we obtain the synthetic vintage data, whose

projection views in lifetime, calendar and vintage origination time are shown in the

second panel of Figure 3.2. One may check the pointwise averages (or medians in the

vintage box-plots) in each projection view, compare them with the underlying truths

in order to see the contamination effects by other marginals.

This synthetic data can be used to demonstrate the flexibility of MEV decompo-

sition technique such that a combination of different kernels can be employed. We

manually choose the order-3/2 Matérn kernel (3.13) for f(m), the AdaSS r.k. (3.14)

for g(t), and the squared exponential kernel (3.12) for h(v), then run the MEV Back-

fitting algorithm based on the log-transformed data. Since our data has very few

observations in both ends of the vintage direction, we performed binning for v ≥ 40,

as well as binning for v ≤ 0 based on the prior knowledge that pre-2005 vintages

can be treated as a single bucket. Then, the MEV Backtting algorithm outputs the

estimated marginal effects plotted in Figure 3.2 (bottom panel). They match the

underlying truth except for slight boundary bias.

The GCV-selected structural and smoothing parameters are tabulated in Ta-

ble 3.1. In fitting g(t) with AdaSS, we have specified the knots τk to handle the

jump by diagnostic from the raw marginal plots; for simplicity we have enforced φk

to be the same for regions without jump. It is interesting to check the ordering of

cross-validated smoothing parameters. By (3.18), the smoothing parameters corre-

spond to the reciprocal ratios of their variance scales to the nugget effect σ2, therefore,

the smaller the smoothing parameter is, the larger variation the corresponding Gaus-

sian process holds. Thus, the ordering of cross-validated λf > λh > λg confirms with

the smoothness assumption for f0, g0, h0 in our simulation setting.

Combining the three marginal estimates, and taking the inverse transform gives

the fitted rates; see Figure 3.3 for the projection views. The noise-removed recon-
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Figure 3.2: Synthetic vintage data analysis: (top) underlying true marginal effects;
(2nd) simulation with noise; (3nd) MEV Backfitting algorithm upon con-
vergence; (bottom) Estimation compared to the underlying truth.
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Table 3.1: Synthetic vintage data analysis: MEV modeling exercise with GCV-
selected structural and smoothing parameters.

MEV Kernel choice Structural parameter Smoothing parameter
f(m) Matérn (κ = 3/2) φ = 2.872 20.086
g(t) AdaSS r.k. Eq.(3.14) τk = 21, 25, 47 1.182

φk = 0.288, 8.650, 0.288
h(v) Squared exponential φ = 3.000 7.389

Figure 3.3: Synthetic vintage data analysis: (top) projection views of fitted values;
(bottom) data smoothing on vintage diagram.
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struction can reveal the prominent marginal features. It is clear that the MEV decom-

position modeling performs like a smoother on the dual-time domain. One may also

compare the level plots of the raw data versus the reconstructed data in Figure 3.3

to see the dual-time smoothing effect on the vintage diagram.

3.5.2 Corporate Default Rates

In the Figure 1.4 of Chapter 1 we have previewed the annual corporate default

rates (in percentage) of Moody’s speculative-grade cohorts: 1970-2008. Each yearly

cohort is regarded as a vintage. For vintages originated earlier than 1988, the default

rates are observed up to 20 years maximum in lifetime; for vintages originated after

1988, the default rates are observed up to the end of year 2008. Such truncation in

both lifetime and calendar time corresponds to the trapezoidal prototype of vintage

diagram illustrated in Figure 3.1.

Figure 1.4 gives the projection views of the empirical default rates in lifetime,

calendar and vintage origination time. By checking the marginal averages or medians

plotted on top of each view, it is evident that exogenous influence by macroeconomic

environment is more fluctuating than both the maturation and vintage effects. How-

ever, such marginal plots are contaminated by each other; see e.g. the many spikes

shown in the lifetime projection actually correspond to the exogenous effects. It is

our purpose to separate these marginal effects.

We made slight data preprocessing. First, the transform function is pre-specified

to be η(y) = log(y/100) where y is the raw percentage measurements and zero re-

sponses are treated as missing values (one may also match them to a small positive

value). Second, since there are very limited number of observations for small calendar

time, the exogenous effects g(t) for t = 2, 3 are merged to t = 4, and the leftmost

observation at t = 1 is removed because of its jumpy behavior. Besides, the vintage

effects are merged for large v = 30, . . . , 39.
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Figure 3.4: Results of MEV Backfitting algorithm upon convergence (right panel)
based on the squared exponential kernels. Shown in the left panel is the
GCV selection of smoothing and structural parameters.

Figure 3.5: MEV fitted values: Moody’s-rated Corporate Default Rates
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To run the MEV Backfitting algorithm, Kf ,Kg,Kh are all chosen to be the squared

exponential covariance kernels, for which the mean function is fixed to be the intercept

effect. For each univariate Gaussian process fitting, say Zf (m), the GCV criterion

selects the smoothing parameter λf , as well as the structural parameter θf (i.e. the

scale parameter φ in (3.12)). For demonstration, we used the grid search on the

log scale of λ with only 3 different choices of φ = 1, 2, 3 (φ = 3 is set to be the

largest scale for stability, otherwise the reciprocal conditional number of the ridged

regression matrix would vanish). The backfitting results upon convergence are shown

in Figure 3.4, where GCV selects the largest scale parameter in each iteration. An

interesting result is the GCV-selected smoothing parameter λ, which turns out to

be 9.025, 0.368, 6.050 for Zf , Zg, Zh, respectively. By (3.18), it is implied that the

exogenous influence shares the largest variation, followed by the vintage heterogeneity,

while the maturation curve has the least variation. Furthermore, the changes of

estimated exogenous effects in Figure 3.4 follow the NBER recession dates shown in

Figure 1.1.

The inverse transform η−1(·) maps the fitted values to the original percentage scale.

Figure 3.5 plots the fitted values in both lifetime and calendar views. Compared to

the raw plots in Figure 1.4, the MEV modeling could retain some of most interesting

features, while smoothing out others.

3.5.3 Retail Loan Loss Rates

Recall the tweaked credit-risk sample discussed in Chapter II. It was used as a

motivating example for the development of adaptive smoothing spline in fitting the

pointwise averages that suppose to smooth out in lifetime (month-on-book, in this

case). However, the raw responses behave rather abnormally in large month-on-book,

partly because of the small size of replicates, and partly because of the contamination

by the exogenous macroeconomic influence. In this section, the same tweaked sample
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is analyzed on the dual-time domain, for which we model not only the maturation

curve, but also the exogenous influence and the vintage heterogeneity effects.

The tweaked sample of dual-time observations are supported on the triangular

vintage diagram illustrated in Figure 3.1, which is mostly typical in retail risk man-

agement. They measure the loss rates in retail revolving exposures from January 2000

to December 2006. Figure 3.6 (top panel) shows the projection views in lifetime, cal-

endar and vintage origination time, where the new vintages originated in 2006 are

excluded since they have too short window of performance measurements. Some of

the interesting features for such vintage data are listed below:

1. The rates are fixed to be zero for small month-on-book m ≤ 4.

2. There are less and less observations when the month-on-book m increases.

3. There are less and less observations when the calendar month t decreases.

4. The rates behave relatively smooth in m, from the lifetime view.

5. The rates behave rather dynamic and volatile in t, from the calendar view.

6. The rates show heterogeneity across vintages, from the vintage view.

To model the loss rates, timescale binding was performed first for large month-

on-book m ≥ 72 and small calendar time t ≤ 12. We pre-specified the log transform

for the positive responses (upon removal of zero responses). The MEV decomposition

model takes the form of log(yjl) = f(mjl)+g(tjl)+h(vj)+ε, subject to Eg = Eh = 0.

In this way, the original responses are decomposed multiplicatively to be ef(m), eg(t)

and eh(v), where the exponentiated maturation curve could be regarded as the baseline,

together with the exponentiated exogenous and vintage heterogeneity multipliers.

In this MEV modeling exercise, the Matérn kernels were chosen to run the MEV

Backfitting algorithm, and the GCV criterion was used to select the smoothing and

structural parameters. The fitting results are presented in Figure 3.6 (bottom panel),
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Figure 3.6: Vintage data analysis of retail loan loss rates: (top) projection views of
emprical loss rates in lifetime m, calendar t and vintage origination time
v; (bottom) MEV decomposition effects f̂(m), ĝ(t) and ĥ(v) (at log scale).

which shows the estimated f̂(m), ĝ(t), ĥ(v) in the log response scale. Each of these es-

timated functions follows the general dynamic pattern of the corresponding marginal

averages in the empirical plots above. The differences in local regions reflect the

improvements in each marginal direction after removing the contamination of other

marginals. Compared to both the exogenous and vintage heterogeneity effects, the

maturation curve is rather smooth. It is also worth pointing out that the exogenous

spike could be captured relatively well by the Matérn kernel.

3.6 Discussion

For the vintage data that emerge in credit risk management, we propose an MEV

decomposition framework to estimate the maturation curve, exogenous influence and
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vintage heterogeneity on the dual-time domain. One difficulty associated with the

vintage data is the intrinsic identification problem due to their hyperplane nature,

which also appears in the conventional cohort analysis under the age-period-cohort

model. To regularize the three-way marginal effects, we have studied nonparametric

smoothing based on Gaussian processes, and demonstrated its flexibility through

choosing covariance kernels, structural and smoothing parameters. An efficient MEV

Backfitting algorithm is provided for model estimation. The new technique is then

tested through a simulation study and applied to analyze both examples of corporate

default rates and retail loss rates, for which some preliminary results are presented.

Beyond our initial attempt made in this chapter, there are other open problems

associated with the vintage data analysis (VDA) worthy of future investigation.

1. The dual-time model assessment and validation remains an issue. In the MEV

Backfitting algorithm we have used the leave-one-out cross-validation for fitting

each marginal component function. It is however not directly performing cross-

validation on the dual-time domain, which would be an interesting subject of

future study.

2. The model forecasting is often a practical need in financial risk management,

as it is concerning about the future uncertainty. To make prediction within the

MEV modeling framework, one needs to extrapolate f(m), g(t), h(v) in each

marginal direction in order to know about their behaviors out of the train-

ing bounds of m, t, v. By Kriging theory, for any x = (m, t; v) on the vintage

diagram, the formula (3.22) provides the conditional expectation given the his-

torical performance. Furthermore, it is straightforward to simulate the random

paths for a sequence of inputs (x1, . . . ,xp) based on the multivariate conditional

normal distribution Np(µ
(c),Σ(c)), where the conditional mean and covariance

83



are given by

 µ(c) = Bµ̂+ Υ
[
Σ + I

]−1(
y −Bµ̂

)
Σ(c) = Σ−Υ

[
Σ + I

]−1
ΥT

with

 Υ =
[
K(xi,xjl)

]
p×n

Σ =
[
K(xi,xj)

]
p×p

(3.39)

using the aggregated kernel given by (3.18) and the notations in (3.19). How-

ever, there is a word of caution about making prediction of the future from

the historical training data. In the MEV modeling framework, extrapolating

the maturation curve f(m) in lifetime is relatively safer than extrapolating the

exogenous and vintage effects g(t) and h(v), since f(m) is of self-maturation

nature, while g(t) can be interfered by future macroeconomic changes and h(v)

is also subject to the future changes of vintage origination policy. Before making

forecasts in terms of calendar time, the out-of-sample test is recommended.

3. For extrapolation of MEV component functions, parametric modeling approach

is sometimes more tractable than using Gaussian processes. For example, if

given the prior knowledge that the maturation curve f(m) follows the shape of

the inverse Gaussian hazard rate (1.13), like our synthetic case in Section 3.5,

one may estimate the parametric f(m) with nonlinear regression technique. As

for the exogenous effect g(t) that is usually dynamic and volatile, one may use

parametric time series models; see e.g. Fan and Yao (2003). Such parametric

approach would benefit the loss forecasting as they become more and more

validated through experiences.

4. The MEV decomposition we have considered so far is simplified to exclude the

interaction effects involving two or all of age m, time t and vintage v arguments.

In formulating the models by Gaussian processes, the mutual independence

among Zf (m), Zg(t), Zh(v) is also postulated. One of the ideas for taking into

account the interaction effects is to cross-correlate Zf (m), Zg(t), Zh(v). Consider
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the combined Gaussian process (3.17) with covariance

Cov[Zf (m) + Zg(t) + Zh(v), Zf (m
′) + Zg(t

′) + Zh(v
′)]

= EZf (m)Zf (m
′) + EZf (m)Zg(t

′) + EZf (m)Zh(v
′)

+ EZg(t)Zf (m′) + EZg(t)Zg(t′) + EZg(t)Zh(v′)

+ EZh(v)Zf (m
′) + EZh(v)Zg(t

′) + EZh(v)Zh(v
′),

which reduces to (3.18) when the cross-correlations between Zf (m), Zg(t) and

Zh(v) are all zero. In general, it is straightforward to incorporate the cross-

correlation structure and follow immediately the MEV Kriging procedure. For

example, one of our works in process is to assume that

EZg(t)Zh(v) =
σ2√
λgλh

Kgh(t, v), where Kgh(t, v) = ρI(t ≥ v), ρ ≥ 0

in order to study the interaction effect between the vintage heterogeneity and

the exogenous influence. Results will be presented by a future report.

Besides the open problems listed above, the scope of VDA can be also general-

ized to study non-continuous types of observations. For examples we considered in

Section 3.5, the Moody’s default rates were actually calculated from some raw binary

indicators (of default or not), while the loss rates in the synthetic retail data can be

viewed as the ratio of loss units over the total units. Thus, if we are given the raw

binary observations or unit counts, one may consider the generalized MEV models

upon the specification of a link function, as an analogy to the generalized linear mod-

els (Mccullagh and Nelder, 1989). The transform η in (3.2) plays a similar role as

such a link function, except for that it is functioning on the rates that are assumed

to be directly observed.

One more extension of VDA is to analyze the time-to-default data on the vintage
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diagram, which is deferred to the next chapter where we will develop the dual-time

survival analysis.

3.7 Technical Proofs

Proof of Lemma 3.1: By that m− t+v = 0 on the vintage diagram Ω, at least

one of the linear parts f0, g0, h0 is not identifiable, since otherwise f0(m)−m, g0(t) +

t, h0(v)− v would always satisfy (3.2).

Proof of Proposition 3.2: By applying the general spline theorem to (3.23), the

target function has a finite-dimensional representation ζ(x) = µ0 +µ1m+µ2t+cTξn,

where cTξn =
∑J

j=1

∑Lj
l=1 cjlK(x,xjl). Substitute it back into (3.23) and use the

reproducing property 〈K(·,xjl),K(·,xj′l′)〉H1
= K(xjl,xj′l′), then we get

min
{∥∥y −Bµ−Σc

∥∥2
+
∥∥c∥∥

Σ

}

using the notations in (3.19). Taking the partial derivatives w.r.t. µ and c and setting

them to zero gives the solution

µ̂ =
(
BT (Σ + I)−1B

)−1

BT (Σ + I)−1y

ĉ =
(
Σ + I

)−1
(y −Bµ̂),

which leads ζ(x) to have the same form as the Kriging predictor (3.22).

Proof of Proposition 3.3: By (3.18) and comparing (3.24) and (3.26), it is

not hard to derive the relationships between two sets of kernel coefficients,

αi = λ−1
f

∑
j,l

cjlI(mjl = mi), βl = λ−1
g

∑
j,l

cjlI(tjl = tl), γj = λ−1
h

Lj∑
l=1

cjl (3.40)

that aggregate cjl for the replicated kernel bases for every mi, tl, vj, respectively.
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Then, using the new vectors of coefficients α = (α1, . . . , αI)
T ,β = (β1, . . . , βL)T and

γ = (γ1, . . . , γJ)T , we have that

Σc = Σ̃fα+ Σ̃gβ + Σ̃hγ

cTΣc = λfα
TΣfα+ λgβ

TΣgβ + λhγ
TΣhγ.

Plugging them into (3.25) leads to (3.27), as asserted.

87



CHAPTER IV

Dual-time Survival Analysis

4.1 Introduction

Consider in this chapter the default events naturally observed on the dual-time

domain, lifetime (or, age) in one dimension and calendar time in the other. Of our

interest is the time-to-default from multiple origins, such that the events happening

at the same calendar time may differ in age. Age could be the lifetime of a person

in a common sense, and it could also refer to the elapsed time since initiation of a

treatment. In credit risk modeling, age refers to the duration of a credit account since

its origination (either a corporate bond or a retail loan). For many accounts having

the same origin, they share the same age at any follow-up calendar time, and group

as a single vintage.

Refer to Chapter I about basics of survival analysis in lifetime scale, where the

notion of hazard rate is also referred to be the default intensity in credit risk con-

text. As introduced in Chapter 1.4, dual-time observations of survival data subject to

truncation and censoring can be graphically represented by the Lexis diagram (Kei-

ding, 1990). To begin with, let us simulate a Lexis diagram of dual-time-to-default

observations:

(Vj, Uji,Mji,∆ji), i = 1, . . . , nj, j = 1, . . . , J (4.1)
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where Vj denotes the origination time of the jth vintage that consists of nj accounts.

For each account, Uji denotes the time of left truncation, Mji denotes the lifetime

of event termination, and ∆ji indicates the status of termination such that ∆ji = 1

if the default event occurs prior to getting censored and 0 otherwise. Let us fix

the rectangular vintage diagram with age m ∈ [0, 60], calendar time t ∈ [0, 48] and

vintage origination Vj = −60, . . . ,−1, 0, 1, . . . , 47, same as the synthetic vintage data

in Chapter 3.5. So, the observations are left truncated at time 0. For the censoring

mechanism, besides the systematic censoring with mmax = 60 and tmax = 48, an

independent random censoring with the constant hazard rate λatt is used to represent

the account attrition (i.e., a memoryless exponential lifetime distribution).

Denote by λv(m, t) or λj(m, t) the underlying dual-time hazard rate of vintage

v = Vj at lifetime m and calendar time t. Then, one may simulate the dual-time-to-

default data (4.1) according to:

τji = inf

{
m :

∫ m

0

λj(s, Vj + s)ds ≥ − logX, X ∼ Unif
[
0, 1
]}

(default)

Cji = inf
{
m : λattm ≥ − logX, X ∼ Unif

[
0, 1]

}
(attrition)

Uji = max{Ūji, Vj} − Vj, with Ūji ≡ 0 (left truncation)

Book (Vj, Uji,Mji,∆ji) if Uji < min{τji, Cji} : (4.2)

Mji = min{τji, Cji, mmax, tmax − Vj} (termination time)

∆ji = I
(
τji ≤ min{Cji,mmax, tmax − Vj}

)
(default indicator)

for each given Vj = −60, . . . ,−1, 0, 1, . . . , 47. For each vintage j, one may book nj

number of origination accounts by repeatedly running (4.2) nj times independently.

Let us begin with nj ≡ 1000 and specify the attrition rate λatt = 50bp (a basis point

is 1%). Among other types of dual-time default intensities, assume the multiplicative

form

λv(m, t) = λf (m)λg(t)λh(v) = exp
{
f(m) + g(t) + h(v)

}
(4.3)
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Figure 4.1: Dual-time-to-default: (left) Lexis diagram of sub-sampled simulations;
(right) empirical hazard rates in either lifetime or calendar time.

where the maturation curve f(m), the exogenous influence g(t) and the unobserved

heterogeneity h(v) are interpreted in the sense of Chapter III and they are assumed

to follow Figure 3.2 (top panel). For simulating the left-truncated survival accounts,

we assume the zero exogenous influence on their historical hazards.

Figure 4.1 (left) is an illustration of the Lexis diagram for one random simulation

per vintage, where each asterisk at the end of a line segment denotes a default event

and the circle denotes the censorship. To see default behavior in dual-time coordi-

nates, we calculated the empirical hazard rates by (4.14) in lifetime and (4.15) in

calendar time, respectively, and the results are plotted in Figure 4.1 (right). Each

marginal view of the hazard rates shows clearly the pattern matching our underlying

assumption, namely

1. The endogenous (or maturation) performance in lifetime is relatively smooth;

2. The exogenous performance in calendar time is relatively dynamic and volatile.
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This is typically the case in credit risk modeling, where the default risk is greatly

affected by macroeconomic conditions. It is our purpose to develop the dual-time

survival analysis in not only lifetime, but also simultaneously in calendar time.

Despite that the Lexis diagram has appeared since Lexis (1875), statistical litera-

ture of survival analysis has dominantly focused on the lifetime only rather than the

dual-time scales; see e.g. Andersen, et al. (1993) with nine to one chapter coverage.

In another word, lifetime has been taken for granted as the basic timescale of sur-

vival, with very few exceptions that take either calendar time as the primary scale

(e.g. Arjas (1986)) or both time scales (see the survey by Keiding (1990)). There

is also discussion on selection of the appropriate timescale in the context of multiple

timescale reduction; see e.g. Farewell and Cox (1979) about a rotation technique

based on a naive Cox proportional hazards (CoxPH) model involving only the lin-

earized time-covariate effect. Such timescale dimension reduction approach can be

also referred to Oakes (1995) and Duchesne and Lawless (2000), given the multiple

dimensions that may include usage scales like mileage of a vehicle.

The literature of regression models based on dual-time-to-default data (a.k.a. sur-

vival data with staggered entry) has also concentrated on the use of lifetime as the

basic timescale together with time-dependent covariates. Mostly used is the CoxPH

regression model with an arbitrary baseline hazard function in lifetime. Some weak

convergence results can be referred to Sellke and Siegmund (1983) by martingale ap-

proximation and Billias, Gu and Ying (1997) by empirical process theory; see also the

related works of Slud (1984) and Gu and Lai (1991) on two-sample tests. However,

such one-way baseline model specification is unable to capture the baseline hazard

in calendar time. Then, it comes to Efron (2002) with symmetric treatment of dual

timescales under a two-way proportional hazards model

λji(m, t) = λf (m)λg(t) exp{θTzji(m)}, i = 1, . . . , nj, j = 1, . . . , J. (4.4)
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Note that Efron (2002) considered only the special case of (4.4) with cubic polynomial

expansion for log λf and log λg, as well as the time-independent covariates. In general,

we may allow for arbitrary (non-negative) λf (m) and λg(t), hence name (4.4) to be

a two-way Cox regression model.

In credit risk, there seems to be no formal literature on dual-time-to-default risk

modeling. It is our objective of this chapter to develop the dual-time survival analysis

(DtSA) for credit risk modeling, including the methods of nonparametric estimation,

structural parameterization, intensity-based semiparametric regression, and frailty

specification accounting for vintage heterogeneity effects. The aforementioned dual-

time Cox model (4.4) will be one of such developments, whereas the Efron’s approach

with polynomial baselines will fail to capture the rather different behaviors of endoge-

nous and exogenous hazards illustrated in Figure 4.1.

This chapter is organized as follows. In Section 4.2 we start with the generic form

of likelihood function based on the dual-time-to-default data (4.1), then consider the

one-way, two-way and three-way nonparametric estimators on Lexis diagram. The

simulation data described above will be used to assess the performance of nonparamet-

ric estimators. In Section 4.3 we discuss the dual-time feasibility of structural models

based on the first-passage-time triggering system, which is defined by an endogenous

distance-to-default process associated with the exogenous time-transformation. Sec-

tion 4.4 is devoted to the development of dual-time semiparametric Cox regression

with both endogenous and exogenous baseline hazards and covariate effects, for which

the method of partial likelihood estimation plays a key role. Also discussed is the

frailty type of vintage heterogeneity by a random-effect formulation. In Section 4.5,

we demonstrate the applications of both nonparametric and semiparametric dual-

time survival analysis to credit card and mortgage risk modeling, based on our real

data-analytic experiences in retail banking. We conclude the chapter in Section 4.6

and provide some supplementary materials at the end.
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4.2 Nonparametric Methods

Denote by λji(m) ≡ λji(m, t) with t ≡ Vj + m the hazard rates of lifetime-to-

default τji on the Lexis diagram. Given the dual-time-to-default data (4.1) with

independent left-truncation and right-censoring, consider the joint likelihood under

either continuous or discrete setting:

J∏
j=1

nj∏
i=1

[
pji(Mji)

Sji(U
+
ji )

]∆ji
[
Sji(M

+
ji )

Sji(U
+
ji )

]1−∆ji

(4.5)

where pji(m) denotes the density and Sji(m) denotes the survival function of τji.

On the continuous domain, m+ = m, Sji(m) = e−Λji(m) with the cumulative hazard

Λji(m) =
∫ m

0
λji(s)ds, then the log-likelihood function has the generic form

` =
J∑
j=1

nj∑
i=1

∆ji log λji(Mji) + logSji(Mji)− logSji(Uji)

=
J∑
j=1

nj∑
i=1

{
∆ji log λji(Mji)−

∫ Mji

Uji

λji(m)dm

}
. (4.6)

On the discrete domain ofm, Sji(m) =
∏

s<m[1−λji(s)] and the likelihood function

(4.5) can be rewritten as

J∏
j=1

nj∏
i=1

[
λji(Mji)

]∆ji [1− λji(Mji)]
1−∆ji

∏
m∈(Uji,Mji)

[1− λji(m)] (4.7)

and the log-likelihood function is given by

` =
J∑
j=1

nj∑
i=1

∆ji log

(
λji(Mji)

1− λji(Mji)

)
+

∑
m∈(Uji,Mji]

log[1− λji(m)]

 . (4.8)

In what follows we discuss one-way, two-way and three-way nonparametric approach

to the maximum likelihood estimation (MLE) of the underlying hazard rates.
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4.2.1 Empirical Hazards

Prior to discussion of one-way nonparametric estimation, let us review the classical

approach to the empirical hazards vintage by vintage. For each fixed Vj, let λj(m)

be the underlying hazard rate in lifetime. Given the data (4.1),


number of defaults: neventj(m) =

nj∑
i=1

I(Mji = m,∆ji = 1)

number of at-risk’s: nriskj(m) =
nj∑
i=1

I(Uji < m ≤Mji)

(4.9)

for a finite number of lifetime points m with neventj(m) ≥ 1. Then, the jth-vintage

contribution to the log-likelihood (4.8) can be rewritten as

`j =
∑
m

neventj(m) log λj(m) +
(
nriskj(m)− neventj(m)

)
log[1− λj(m)] (4.10)

on the discrete domain of m. It is easy to show that the MLE of λj(m) is given by

the following empirical hazard rates

λ̂j(m) =
neventj(m)

nriskj(m)
if neventj(m) ≥ 1 and NaN otherwise. (4.11)

They can be used to express the well-known nonparametric estimators for cumulative

hazard and survival function

(Nelson-Aalen estimator) Λ̂j(m) =
∑
mi≤m

λ̂j(mi); (4.12)

(Kaplan-Meier estimator) Ŝj(m) =
∏

mi≤m−

[
1− λ̂j(mi)

]
(4.13)

for any m ≥ 0 under either continuous or discrete setting. Clearly, the Kaplan-

Meier estimator and the Nelson-Aalen estimator are related empirically by Ŝj(m) =∏
mi≤m−

[
1 − ∆Λ̂(mi)

]
, where the empirical hazard rates λ̂(mi) ≡ ∆Λ̂(mi) are also

called the Nelson-Aalen increments.
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Now, we are ready to present the one-way nonparametric estimation based on the

complete dual-time-to-default data (4.1). In the lifetime dimension (vertical of Lexis

diagram), assume λji(m, t) = λ(m) for all (j, i), then we may immediately extend

(4.11) by simple aggregation to obtain the one-way estimator in lifetime:

λ̂(m) =

∑J
j=1 neventj(m)∑J
j=1 nriskj(m)

, (4.14)

whenever the numerator is positive. Alternatively, in the calendar time (horizontal of

Lexis diagram) assume λji(m, t) = λ(t) for all (j, i), then we may obtain the one-way

nonparametric estimator in calendar time:

λ̂(t) =

∑J
j=1 neventj(t− Vj)∑J
j=1 nriskj(t− Vj)

, (4.15)

whenever the numerator is positive. Accordingly, one may obtain the empirical cu-

mulative hazard and survival function by the Nelson-Aalen estimator (4.12) and the

Kaplan-Meier estimator (4.13) in each marginal dimension.

For example, consider the simulation data introduced in Section 4.1. Both one-

way nonparametric estimates are plotted in the right panel of Figure 4.1 (upon linear

interpolation), which may capture roughly the endogenous and exogenous hazards.

However, they may be biased in other cases we shall discuss next.

4.2.2 DtBreslow Estimator

The two-way nonparametric approach is to estimate the lifetime hazards λf (m)

and the calendar hazards λg(t) simultaneously under the multiplicative model:

λji(m, t) = λf (m)λg(t) = exp{f(m) + g(t)}, for all (j, i). (4.16)

For identifiability, assume that E log λg = Eg = 0.

95



Following the one-way empirical hazards (4.11) above, we may restrict to the

pointwise parametrization

f̂(m) =
Lm∑
l=1

αlI(m = m[l]), ĝ(t) =
Lt∑
l=1

βlI(t = t[l]) (4.17)

based on Lm distinct lifetimes m[1] < · · · < m[Lm] and Lt distinct calendar times t[1] <

· · · < t[Lt] such that there is at least one default event observed at the corresponding

time. One may find the MLE of the coefficients α,β in (4.17) by maximizing (4.6) or

(4.8). Rather than the crude optimization, we give an iterative DtBreslow estimator

based on Breslow (1972), by treating (4.16) as the product of a baseline hazard

function and a relative-risk multiplier.

Given the dual-time-to-default data (4.1) and any fixed λg = λ̂g, the Breslow

estimator of λf (m) is given by

λ̂f (m)←
∑J

j=1 neventj(m)∑J
j=1 λ̂g(Vj +m) · nriskj(m)

, m = m[1], . . . ,m[Lm] (4.18)

and similarly given any fixed λf = λ̂f ,

λ̂g(t)←
∑J

j=1 neventj(t− Vj)∑J
j=1 λ̂f (t− Vj) · nriskj(t− Vj)

, t = t[1], . . . , t[Lt]. (4.19)

Both marginal Breslow estimators are known to be the nonparametric MLE of the

baseline hazards conditional on the relative-risk terms. To take into the identifiability

constraint E logg(t) = 0, we may update λg(t) by

λg(t)← exp
{

log λ̂g(t)−mean
(

log λ̂g
)}
. (4.20)

By iterating (4.18) to (4.20) until convergence, we obtain the DtBreslow estimator.

It could be viewed as a natural extension of the one-way nonparametric estimators
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(4.14) and (4.15). In (4.18), it is usually appropriate to set the initial exogenous

multipliers λ̂g ≡ 1, then the algorithm could converge in a few iterations.

We carry out a simulation study to assess the performance of DtBreslow estimator.

Using the simulation data by (4.2), the two-way estimations of λf (m) and λg(t) are

shown in Figure 4.2 (top). Also plotted are the one-way nonparametric estimation

and the underlying truth. For this rectangular diagram of survival data, the one-way

and DtBreslow estimations have comparable performance. However, if we use the

non-rectangular Lexis diagram (e.g. either pre-2005 vintages or post-2005 vintages),

the DtBreslow estimator would demonstrate the significant improvement over the

one-way estimation; see Figure 4.2 (middle and bottom). It is demonstrated that the

one-way nonparametric methods suffer the potential bias in both cases. By comparing

(4.16) to (4.14) and (4.15), it is clear that the lifting power of DtBreslow estimator

(e.g. in calibrating λf (m)) depends on not only the exogenous scaling factor λ̂g(t),

but also the vintage-specific weights nriskj(m).

4.2.3 MEV Decomposition

Lastly, we consider a three-way nonparametric procedure that is consistent with

the MEV (maturation-exogenous-vintage) decomposition framework we have devel-

oped for vintage data analysis in Chatper III. For each vintage with accounts

(Vj, Uji,Mji,∆ji) for i = 1, . . . , nj, assume the underlying hazards to be

λji(m, t) = λf (m)λg(t)λh(Vj) = exp
{
f(m) + g(t) + h(Vj)

}
. (4.21)

For identifiability, let Eg = Eh = 0. Such MEV hazards model can be viewed as the

extension of dual-time nonparametric model (4.16) with the vintage heterogeneity.

Due to the hyperplane nature of the vintage diagram such that t ≡ Vj + m in

(4.21), the linear trends of f, g, h are not identifiable; see Lemma 3.1. Among other
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Figure 4.2: DtBreslow estimator vs one-way nonparametric estimator using the data
of (top) both pre-2005 and post-2005 vintages; (middle) pre-2005 vintages
only; (bottom) post-2005 vintages only.
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approaches to break up the linear dependency, we consider

1. Binning in vintage, lifetime or calendar time for especially the marginal regions

with sparse observations;

2. Removing the marginal trend in the vintage dimension h(·).

Note that the second strategy assumes the zero trend in vintage heterogeneity, which

is an ad hoc approach when we have no prior knowledge about the trend of f, g, h.

Later in Section 4.4 we discuss also a frailty type of vintage effect.

The nonparametric MLE for the MEV hazard model (4.21) follows the DtBres-

low estimator discussed above. Specifically, we may estimate the three conditional

marginal effects iteratively by:

a) Maturation effect for fixed λ̂g(t) and λ̂h(v)

λ̂f (m)←
∑J

j=1 neventj(m)∑J
j=1 λ̂h(Vj)λ̂g(Vj +m) · nriskj(m)

(4.22)

for m = m[1], . . . ,m[Lm].

b) Exogenous effect for fixed λ̂f (m) and λ̂h(v)


λ̂g(t)←

∑J
j=1 neventj(t− Vj)∑J

j=1 λ̂h(Vj)λ̂f (t− Vj) · nriskj(t− Vj)

λ̂g(·)← exp
{
ĝ −mean

(
ĝ
)}
, with ĝ = log λ̂g

(4.23)

for t = t[1], . . . , t[Lt].

c) Vintage effect for fixed λ̂f (m) and λ̂g(t)


λ̂h(Vj)←

∑nj
i=1 I(∆ji = 1)∑Lm

l=1 λ̂f (m[l])λ̂g(Vj +m[l]) · nriskj(m[l])

λ̂h(·)← exp
{
ĥ−mean

(
ĥ
)}
, with ĥ = log λ̂h

(4.24)
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for j = 1, . . . , J (upon necessary binning). In (4.24), one may also perform the

trend-removal λ̂h(·) ← exp{ĥ − mean⊕trend
(
ĥ
)
} if zero-trend can be assumed

for the vintage heterogeneity.

Setting the initial values λ̂g ≡ 1 and λ̂h ≡ 1, then iterating the above three

steps until convergence would give us the nonparametric estimation of the three-way

marginal effects. Consider again the simulation data with both pre-2005 and post-

2005 vintages observed on the rectangular Lexis diagram Figure 4.1. Since there

are limited sample sizes for very old and very new vintages, the vintages with Vj ≤

−36 are merged and the vintages with Vj ≥ 40 are cut off. Besides, given the

prior knowledge that pre-2005 vintages have relatively flat heterogeneity, binning is

performed in every half year. Then, running the above MEV iterative procedure,

we obtain the estimation of maturation hazard λf (m), exogenous hazard λg(t) and

the vintage heterogeneity λh(v), which are plotted in Figure 4.3 (top). They are

consistent with the underlying true hazard functions we have pre-specified in (4.3).

Furthermore, we have also tested the MEV nonparametric estimation for the dual-

time data with either pre-205 vintages only (trapezoidal diagram) or the post-2005

vintages only (triangular diagram). The fitting results are also presented in Figure 4.3,

which implies that our MEV decomposition is quite robust to the irregularity of the

underlying Lexis diagram.

Remarks: before ending this section, we make several remarks about the nonpara-

metric methods for dual-time survival analysis:

1. First of all, the dual-time-to-default data have essential difference from the

usual bivariate lifetime data that are associated with either two separate failure

modes per subject or a single mode for a pair of subjects. For this reason,

it is questionable whether the nonparametric methods developed for bivariate

survival are applicable to Lexis diagram; see Keiding (1990). Our developments
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Figure 4.3: MEV modeling of empirical hazard rates, based on the dual-time-to-
default data of (top) both pre-2005 and post-2005 vintages; (middle)
pre-2005 vintages only; (bottom) post-2005 vintages only.
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of DtBreslow and MEV nonparametric estimators for default intensities corre-

spond to the age-period or age-period-cohort model in cohort or vintage data

analysis of loss rates; see (3.4) in the previous chapter. For either default inten-

sities or loss rates on Lexis diagram, one needs to be careful about the intrinsic

identification problem, for which we have discussed the practical solutions in

both of these chapters.

2. The nonparametric models (4.16) and (4.21) underlying the DtBreslow and

MEV estimators are special cases of the dual-time Cox models in Section 4.4.

In the finite-sample (or discrete) case, we have assumed in (4.17) the endoge-

nous and exogenous hazard rates to be pointwise, or equivalently assumed the

cumulative hazards to be step functions. In this case, statistical properties of

DtBreslow estimates λ̂f (m) and λ̂g(t) can be studied by the standard likelihood

theory for the finite-dimensional parameters α or β. However on the continu-

ous domain, the large-sample properties of DtBreslow estimators are worthy of

future study when the dimensions of both α and β increase to infinity at the

essentially same speed.

3. Smoothing techniques can be applied to one-way, two-way or three-way non-

parametric estimates, where the smoothness assumptions follow our discussion

in the previous chapter; see (3.2). Consider e.g. the DtBreslow estimator with

output of two-way empirical hazard rates λ̂f (m) and λ̂g(t), i.e. Nelson-Aalen

increments on discrete time points; see (4.12). One may post-process them by

kernel smoothing

λf (m) =
1

bf

Lm∑
l=1

Kf

(m−m[l]

bf

)
λ̂f (m[l]), λg(t) =

1

bg

Lt∑
l=1

Kg

(t− t[l]
bg

)
λ̂g(t[l])

for m, t on the continuous domains, where Kf (·) and Kg(·) together with band-

widths bf and bg are the kernel functions that are bounded and vanish outside
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[−1, 1]; see Ramlau-Hansen (1983). Alternatively, one may use the penalized

likelihood formulation via smoothing spline; see Gu (2002; §7). The challenging

issues in these smoothing methods are known to be the selection of bandwidths

or smoothing parameters, as well as the correction of boundary effects. More

details can be referred to Wang (2005) and references therein.

4. An alternative way of dual-time hazard smoothing can be based on the vintage

data analysis (VDA) developed in the previous chapter. For large-sample obser-

vations, one may first calculate the empirical hazard rates λ̂j(m) per vintage by

(4.11), use them as the pseudo-responses of vintage data structure as in (3.1),

then perform Gaussian process modeling discussed in Section 3.3. In this case,

the variance of λ̂j(m) can be estimated by a tie-corrected formula

σ̂2
j (m) =

(
nriskj(m)− neventj(m)

)
· neventj(m)

nrisk3
j(m)

and λ̂j(m) are uncorrelated in m; see e.g. Aalen, et al. (2008; p.85). Then, we

may write λ̂j(m) = λj(m)(1 + εj(m)) with Eεj(m) = 0 and

Eε2
j(m) ≈

σ̂2
j (m)

λ̂2
j(m)

=
1

neventj(m)
− 1

nriskj(m)
→ 0, as nj →∞

on the discrete time domain; by Taylor expansion, log λ̂j(m) ≈ log λj(m) +

εj(m), corresponding to the MEV model (3.15) with non-stationary noise.

5. An important message delivered by Figure 4.2 (middle and bottom) is that

the nonparametric estimation of λf (m) in conventional lifetime-only survival

analysis might be misleading when there exists exogenous hazard λg(t) in the

calendar dimension. Both the DtBreslow and MEV nonparametric methods

may correct the bias of lifetime-only estimation, as demonstrated in Figure 4.2

and Figure 4.3 with either pre-2005 only or post-2005 only vintages.
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4.3 Structural Models

We have introduced in Chapter 1.2.1 the structural approach to credit risk model-

ing, which is popular in the sense that the default events can be triggered by a latent

stochastic process when it hits the default boundary. For a quick review, one may

refer to (1.6) for the latent distance-to-default process w.r.t. zero boundary, (1.9) for

the notion of first-passage-time, and (1.13) for the concrete expression of hazard rate

based on the inverse Gaussian lifetime distribution. In this section, we consider the

extension of structural approach to dual-time-to-default analysis.

4.3.1 First-passage-time Parameterization

Consider the Lexis diagram of dual-time default events for vintages j = 1, . . . , J .

Let Xj(m) be the endogenous distant-to-defalut (DD) process in lifetime and assume

it follows a drifted Wiener process

Xj(m) = cj + bjm+Wj(m), m ≥ 0 (4.25)

where Xj(0) ≡ cj ∈ R+ denotes the parameter of initial distance-to-default, bj ∈

R denotes the parameter of trend of credit deterioration and Wj(t) is the Wiener

process. Without getting complicated, let us assume thatWj andWj′ are uncorrelated

whenever j 6= j′. Recall the hazard rate (or, default intensity) of the first-passage-time

of Xj(m) crossing zero:

λj(m; cj, bj) =

cj√
2πm3

exp

{
−(cj + bjm)2

2m

}
Φ

(
cj + bjm√

m

)
− e−2bjcjΦ

(
−cj + bjm√

m

) , (4.26)

whose numerator and denominator correspond to the density and survival functions;

see (1.10)–(1.13). By (4.6), the MLE of (cj, bj) can be obtained by maximizing the
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log-likelihood of the j-th vintage observations

`j =

nj∑
i=1

∆ji log λj(Mji; cj, bj) + logSj(Mji; cj, bj)− logSj(Uji; cj, bj), (4.27)

where the maximization can be carried out by nonlinear optimization. We supplement

the gradients of the log-likelihood function at the end of the chapter.

As their literal names indicate, both the initial distance-to-default cj and the trend

of credit deterioration bj have interesting structural interpretations. With reference

to Aalen and Gjessing (2001) or Aalen, et al. (2008; §10):

1. The c-parameter represents the initial value of DD process. When c becomes

smaller, a default event tends to happen sooner, hence moving the concentration

of the defaults towards left. In theory, the hazard function (4.26) for m ∈ (0,∞)

is always first-increasing-then-decreasing, with maximum at m∗ such that the

derivative λ′(m∗) = 0. In practice, let us focus on the bounded interval m ∈

[ε,mmax] for some ε > 0. Then, when c gradually approaches zero, the hazard

rate would be shaped from (a) monotonic increasing to (b) first-increasing-

then-decreasing and finally to (c) monotonic decreasing. See Figure 1.2 for the

illustration with fixed b and varying c values.

2. The b-parameter represents the trend of DD process, and it determines the level

of stabilized hazard rate as m → ∞. In Aalen, et al. (2008; §10), let φm(x)

be the conditional density of X(m) given that min
0<s≤m

X(s) > 0 and it is said to

be quasi-stationary if φm(x) is m-invariant. In our case, the quasi-stationary

distribution is φ(x) = b2xe−bx for x ≥ 0 and the limiting hazard rate is given

by

lim
m→∞

λ(m) =
1

2

∂φ(x)

∂x

∣∣∣
x=0

=
b2

2
,

which does not depend on the c-parameter. In Figure 1.2 with b = −0.02, all

the hazard rate curves will converge to the constant 0.0002 after a long run.
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The above first-passage-time parameterization is only on the endogenous or mat-

uration hazard in lifetime. Next, we extend the first-passage-time structure taking

into account the exogenous effect in calendar time. To achieve that, we model the

dual-time DD process for each vintage Vj by a subordinated process

X∗j (m) = Xj(Ψj(m)), with Ψj(m) =

∫ m

0

ψ(Vj + s)ds (4.28)

where Xj(m) is the endogenous DD process (4.25) and Ψj(m) is an increasing time-

transformation function such that all vintages share the same integrand ψ(t) > 0

in calendar time. We set the constraint E logψ = 0 on the exogenous effect, in

the sense of letting the ‘average’ DD process be captured endogenously. Such time-

transformation approach can be viewed as a natural generalization of the log-location-

scale transformation (1.16) with correspondence σi = 1 and ψ(·) = e−µi . It has

been used to extend the accelerated failure time (AFT) models with time-varying

covariates; see e.g. Lawless (2003; §6.4.3).

The exogenous function ψ(t) rescales the original lifetime increment ∆m to be

ψ(Vj +m)∆m, and therefore transforms the diffusion dXj(m) = bjdm+ dWj(m) to

dX∗j (m) = bjψ(Vj +m)dm+
√
ψ(Vj +m)dWj(m) (4.29)

w.r.t. the zero default boundary. Alternatively, one may rewrite it as

dX∗j (m) =
√
ψ(Vj +m)dXj(m)− bj

(√
ψ(Vj +m)− ψ(Vj +m)

)
dm. (4.30)

Let us introduce a new process X̃j(m) such that dX̃j(m) =
√
ψ(Vj +m)dXj(m), and

introduce a time-varying default boundary

D̃j(m) = bj

∫ m

0

(√
ψ(Vj + s)− ψ(Vj + s)

)
ds.
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Then, by (4.30), it is clear that the time-to-default τ ∗j = inf{m ≥ 0 : X∗j (m) ≤ 0} =

inf{m ≥ 0 : X̃(m) ≤ D̃j(m)}.

By time-transformation (4.28), it is straightforward to obtain the survival function

of the first-passage-time τ ∗j by

S∗j (m) = P
(
X∗j (s) > 0 : s ∈ [0,m]

)
= P

(
Xj(s) > 0 : s ∈ [0,Ψj(m)]

)
= Sj(Ψj(m)) = Sj

(∫ m

0

ψ(Vj + s)ds

)
(4.31)

where the benchmark survival Sj(·) is given by the denominator of (4.26). Then, the

hazard rate of τ ∗j is obtained by

λ∗j(m) =
− logS∗j (m)

dm
=
− logSj(Ψj(m))

dΨj(m)

dΨj(m)

dm
= λj(Ψj(m))Ψ′j(m)

= λj

(∫ m

0

ψ(Vj + s)ds

)
ψ(Vj +m) (4.32)

with λj(·) given in (4.26). From (4.32), the exogenous function ψ(t) not only maps

the benchmark hazard rate to the rescaled time Ψj(m), but also scales it by ψ(t).

This is the same as the AFT regression model (1.21).

Now consider the parameter estimation of both vintage-specific structural parame-

ters (cj, bj) and the exogenous time-scaling function ψ(t) from the dual-time-to-default

data (4.1). By (4.6), the joint log-likelihood is given by ` =
∑J

j=1 `j, with `j given

by (4.27) based on λ∗j(m; cj, bj) and S∗j (m; cj, bj). The complication lies in the arbi-

trary formation of ψ(t) involved in the time-transformation function. Nonparametric

techniques can be used if extra properties like the smoothness can be imposed onto

the function ψ(t). In our case the exogenous time-scaling effects are often dynamic

and volatile, for which we recommend a piecewise estimation procedure based on the

discretized Lexis diagram.

1. Discretize the Lexis diagram with ∆m = ∆t such that t = tmin + l∆t for l =
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0, 1, . . . , L, where tmin is set to be the left boundary and tmin +L∆t corresponds

to the right boundary. Specify ψ(t) to be piecewise constant

ψ(t) = ψl, for t− tmin ∈
(
(l − 1)∆t, l∆t

]
, l = 1, 2, . . . , L

and ψ(t) ≡ 1 for t ≤ tmin. Then, the time-transformation for the vintage with

origination time Vj can be expressed as

Ψ̃j(m) =

(Vj+m−tmin)/∆t∑
l=(Vj−tmin)/∆t

ψ(tmin + l∆t)∆t, for Vj +m ≥ tmin

which reduces to tmin− Vj +
∑(Vj+m−tmin)/∆t

l=1 ψl∆t in the case of left truncation.

2. For each of l = 1, 2, . . ., get the corresponding likelihood contribution:

`[l] =
∑

(j,i)∈G[l]

∆ji

[
log λj(Ψ̃j(Mji)) + logψl

]
+ logSj(Ψ̃j(Mji))− logSj(Ψ̃j(Uji))

where G[l] = {(j, i) : Vj +Mji = tmin + l∆t}, and Ψ̃j(Uji) = max{0, tmin − Vj} if

tmin is the systematic left truncation in calendar time.

3. Run nonlinear optimization for estimating (ci, bi) and ψl iteratively:

(a) For fixed ψ and each fixed vintage j = 1, . . . , J , obtain the MLE (ĉj, b̂j)

by maximizing (4.27) with Mji replaced by Ψ̃j(Mji).

(b) For all fixed (cj, bj), obtain the MLE of (ψ1, . . . , ψL) by maximizing
∑L

l=1 `[l]

subject to the constraint
∑L

l=1 logψl = 0.

In Step (3.b), one may perform further binning for (ψ1, . . . , ψL) for the purpose of

reducing the dimension of parameter space in constrained optimization. One may also

apply the multi-resolution wavelet bases to represent {ψ1, . . . , ψL) in a time-frequency

perspective. Such ideas will be investigated in our future work.
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4.3.2 Incorporation of Covariate Effects

It is straightforward to extend the above structural parameterization to incorpo-

rate the subject-specific covariates. For each account i with origination Vj, let z̃ji be

the static covariates observed upon origination (including the intercept and otherwise

centered predictors) and zji(m) for m ∈ (Uji,Mji] be the dynamic covariates observed

since left truncation. Let us specify

cji = exp{ηT z̃ji} (4.33)

Ψji(m) = Uji − Vj +

∫ m

Uji

exp{θTzji(s)}ds, m ≥ Uji (4.34)

subject to the unknown parameters (η, θ), and suppose the subject-specific DD pro-

cess  X∗ji(m) = Xji(Ψji(m)),

Xji(m) = cji + bjm+Wji(m)
(4.35)

with an independent Wiener process Wji(m), the initial value cji and the vintage-

specific trend of credit deterioration bj. Then, the default occurs at τ ∗ji = inf{m >

0 : X∗ji(m) ≤ 0}. Note that when the covariates in (4.34) are not time-varying, we

may specify Ψji(m) = m exp{θTzji} and obtain the AFT regression model log τ ∗ji =

θTzji + log τji with inverse Gaussian distributed τji. In the presence of calendar-time

state variables x(t) such that zji(m) = x(Vj+m) for all (j, i), the time-transformation

(4.34) becomes a parametric version of (4.28).

By the same arguments as in (4.31) and (4.32), we obtain the hazard rate λ∗ji(m) =

λji(Ψji(m))Ψ′ji(m), or

λ∗ji(m) =

cji√
2πΨ3

ji(m)
exp

{
−
(
cji + bjΨji(m)

)2

2Ψji(m)

}
Ψ′ji(m)

Φ

(
cji + bjΨji(m)√

Ψji(m)

)
− e−2bjcjiΦ

(
−cji + bjΨji(m)√

Ψji(m)

) (4.36)
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and the survival function S∗ji(m) = Sji(Ψji(m)) given by the denominator in (4.36).

The parameters of interest include (η, θ) and bj for j = 1, . . . , J , and they can

be estimated by MLE. Given the dual-time-to-default data (4.1), the log-likelihood

function follows the generic form (4.6). Standard nonlinear optimization programs

can be employed, e.g. the “optim” algorithm of R (stats-library) and the “fminunc”

algorithm of MATLAB (Optimization Toolbox).

Remarks:

1. There is no unique way to incorporate the static covariates in the first-passage-

time parameterization. For example, we considered including them by the

initial distance-to-default parameter (4.33), while they may also be incorpo-

rated into other structural parameters; see Lee and Whitmore (2006). How-

ever, there has been limited discussion on incorporation of dynamic covariates

in the first-passage-time approach, for which we make an attempt to use the

time-transformation technique (4.28) under nonparametric setting and (4.34)

under parameter setting.

2. The endogenous hazard rate (4.26) is based on the fixed effects of initial distance-

to-default and trend of deterioration, while these structural parameters can be

random effects due to the incomplete information available (Giesecke, 2006).

One may refer to Aalen, et al. (2008; §10) about the random-effect extension.

For example, when the trend parameter b ∼ N(µ, σ2) and the initial value c is

fixed, the endogenous hazard rate is given by p(m)/S(m) with

p(m) =
c√

2π(m3 + σ2m4)
exp

{
− (c+ µt)2

2(t+ σ2t2)

}
S(m) = Φ

(
c+ µm√
m+ σ2m2

)
− e−2µc+2σ2c2Φ

(
−c+ µm− 2σ2cm√

m+ σ2m2

)
.

3. In the first-passage-time parameterization with inverse Gaussian lifetime distri-
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bution, the log-likelihood functions (4.27) and (4.6) with the plugged-in (4.26)

or (4.36) are rather messy, especially when we attempt to evaluate the deriva-

tives of the log-likelihood function in order to run gradient search; see the

supplementary material. Without gradient provided, one may rely on the crude

nonlinear optimization algorithms, and the parameter estimation follows the

standard MLE procedure. Our discussion in this section mainly illustrates the

feasibility of dual-time structural approach.

4.4 Dual-time Cox Regression

The semiparametric Cox models are popular for their effectiveness of estimating

the covariate effects. Suppose that we are given the dual-time-to-default data (4.1)

together with the covariates zji(m) observed for m ∈ (Uji,Mji], which may include

the static covariates z̃ji(m) ≡ z̃ji. Using the traditional CoxPH modeling approach,

one may either adopt an arbitrary baseline in lifetime

λji(m) = λ0(m) exp{θTzji(m)}, (4.37)

or adopt the stratified Cox model with arbitrary vintage-specific baselines

λji(m) = λj0(m) exp{θTzji(m)} (4.38)

for i = 1, . . . , nj and j = 1, . . . , L. However, these two Cox models may not be

suitable for (4.1) observed on the Lexis diagram in the following sense:

1. (4.37) is too stringent to capture the variation of vitnage-specific baselines;

2. (4.38) is too relaxed to capture the interrelation of vintage-specific baselines.

For example, we have simulated a Lexis diagram in Figure 4.1 whose vintage-specific

hazards are interrelated not only in lifetime m but also in calendar time t.
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4.4.1 Dual-time Cox Models

The dual-time Cox models considered in this section take the following multiplica-

tive hazards form in general,

λji(m, t) = λ0(m, t) exp{θTzji(m)} (4.39)

where λ0(m, t) is a bivariate base hazard function on Lexis diagram. Upon the spec-

ification of λ0(m, t), the traditional models (4.37) and (4.38) can be included as

special cases. In order to balance between (4.37) and (4.38), we assume the MEV

decomposition framework of the base hazard λ0(m, t) = λf (m)λg(t)λh(t− v), i.e. the

nonparametric model (4.21). Thus, we restrict ourselves to the dual-time Cox models

with MEV baselines and relative-risk multipliers

λji(m, t) = λf (m)λg(t)λh(Vj) exp{θTzji(m)} (4.40)

= exp{f(m) + g(t) + h(Vj) + θTzji(m)}

where λf (m) = exp{f(m)} represents the arbitrary maturation/endogenous baseline,

λg(t) = exp{g(t)} and λh(v) = exp{h(v)} represent the exogenous multiplier and the

vintage heterogeneity subject to Eg = Eh = 0. Some necessary binning or trend-

removal need to be imposed on g, h to ensure the model estimability; see Lemma 3.1.

Given the finite-sample observations (4.1) on Lexis diagram, one may always find

Lm distinct lifetime points m[1] < · · · < m[Lm] and L distinct calendar time points

t[1] < · · · < t[Lt] such that there exist at least one default event observed at the

corresponding marginal time. Following the least-information assumption of Breslow

(1972), let us treat the endogenous baseline hazard λf (m) and the exogenous baseline

hazard λg(t) as pointwise functions of the form (4.17) subject to
∑Lt

l=1 βl = 0. For the

discrete set of vintage originations, the vintage heterogeneity effects can be regarded
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as the categorical covariates effects, essentially. We may either assume the pointwise

function of the form h(v) =
∑J

j=1 γjI(v = Vj) subject to constraints on both mean

and trend (i.e. the ad hoc approach), or assume the piecewise-constant functional

form upon appropriate binning in vintage originations

h(Vj) = γκ, if j ∈ Gκ, κ = 1, . . . , K (4.41)

where the vintage buckets Gκ = {j : Vj ∈ (νκ−1, νκ]} are pre-specified based on

V −j ≡ ν0 < · · · < νK ≡ VJ (where K < J). Then, the semiparametric model (4.40) is

parametrized with dummy variables to be

λji(m, t) = exp

{
Lm∑
l=1

αlI(m = m[l]) +
Lt∑
l=2

βlI(t = t[l])

+
K∑
κ=2

γκI(j ∈ Gκ) + θTzji(m)

}
(4.42)

where β1 ≡ 0 and γ1 ≡ 0 are excluded from the model due to the identifiability

constraints. Plugging it into the joint likelihood (4.6), one may then find the MLE of

(α,β,γ,θ). (Note that it is rather straightforward to convert the resulting parameter

estimates α̂, β̂ and γ̂ to satisfy the zero sum constraints for β and γ, so is it for

(4.45) to be studied.)

As the sample size tends to infinity, both endogenous and exogenous baseline

hazards λf (m) and λg(t) defined on the continuous dual-time scales (m, t) tend to be

infinite-dimensional, hence making intractable the above pointwise parameterization.

The semiparametric estimation problem in this case is challenging, as the dual-time

Cox models (4.40) involves two nonparametric components that need to be profiled

out for the purpose of estimating the parametric effects. In what follows, we take

an “intermediate approach” to semiparametric estimation via exogenous timescale

discretization, to which the theory of partial likelihood applies.
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4.4.2 Partial Likelihood Estimation

Consider an intermediate reformulation of the dual-time Cox models (4.40) by

exogenous timescale discretization:

tl = tmin + l∆t, for l = 0, 1, . . . , L (4.43)

for some time increment ∆t bounded away from zero, where tmin corresponds to the

left boundary and tmin + L∆t corresponds to the the right boundary of the calendar

time under consideration. (If the Lexis diagram is discrete itself, ∆t is automatically

defined. The irregular time spacing is feasible, too.) On each sub-interval, assume

the exogenous baseline λg(t) is defined on the L cutting points (and zero otherwise)

g(t) =
L∑
l=1

βlI(t = tmin + l∆t), (4.44)

subject to
∑L

l=1 βl = 0. Then, consider the one-way CoxPH reformulation of (4.40):

λji(m) = λf (m) exp

{
L∑
l=2

βlI(Vj +m ∈ (tl−1, tl])

+
K∑
κ=2

γκI(j ∈ Gκ) + θTzji(m)

}
(4.45)

where λf (m) is an arbitrary baseline hazard, g(t) for any t ∈ (tl−1, tl] in (4.40) is

shifted to g(tl) in (4.44), and the vintage effect is bucketed by (4.41). It is easy to

see that if the underlying Lexis diagram is discrete, the reformulated CoxPH model

(4.45) is equivalent to the fully parametrized version (4.42).

We consider the partial likelihood estimation of the parameters (β,γ,θ) ≡ ξ. For

convenience of discussion, write for each (j, i,m) the (L − 1)-vector of {I(Vj + m ∈

(tl−1, tl])}Ll=2, the (K−1)-vector of {I(Vj ∈ (νκ−1, νκ])}Kκ=2, and zji(m) as a long vector

xji(m). Then, by Cox (1972, 1975), the parameter ξ can be estimated by maximizing
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the partial likelihood

PL(ξ) =
J∏
j=1

nj∏
i=1

[
exp{ξTxji(Mji)}∑

(j′,i′)∈Rji exp
{
ξTxj′i′(Mji)

}]∆ji

(4.46)

where Rji = {(j′, i′) : Uj′i′ < Mji ≤ Mj′i′} is the at-risk set at each observed Mji.

Given the maximum partial likelihood estimator ξ̂, the endogenous cumulative base-

line hazard Λf (m) =
∫ m

0
λf (s)ds can be estimated by the Breslow estimator

Λ̂f (m) =
J∑
j=1

nj∑
i=1

I(m ≥Mji)∆ji∑
(j′,i′)∈Rji exp

{
ξ̂
T
xj′i′(Mji)

} (4.47)

which is a step function with increments at m[1] < · · · < m[Lm]. It is well-known in the

CoxPH context that both estimators ξ̂ and Λ̂f (·) are consistent and asymptotically

normal; see Andersen and Gill (1982) based on counting process martingale theory.

Specifically,
√
N(ξ̂ − ξ) converges to a zero-mean multivariate normal distribution

with covariance matrix that can be consistently estimated by {I(ξ̂)/N}−1, where

I(ξ) = −∂2 log PL(ξ)
/
∂ξξT . For the nonparametric baseline,

√
N
(
Λ̂f (m)− Λf (m)

)
converges to a zero-mean Gaussian process; see also Andersen, et al. (1993).

The DtBreslow and MEV estimators we have discussed in Section 4.2 can be

studied by the theory of partial likelihood above, since the underlying nonparametric

models are special cases of (4.45) with θ ≡ 0. Without the account-level covariates,

the hazard rates λji(m) roll up to λj(m), under which the partial likelihood function

(4.46) can be expressed through the counting notations introduced in (4.9),

PL(g, h) =
J∏
j=1

∏
m

[
exp{g(Vj +m) + h(Vj)}∑J

j′=1 nriskj′(m) exp{g(Vj′ +m) + h(Vj′)}

]neventj(m)

(4.48)

where g(t) is parameterized by (4.44) and h(v) is by (4.41). Let λ̂g(t) = exp{ĝ(t)}

and λ̂h(v) = exp{ĥ(v)} upon maximization of PL(g, h) and centering in the sense of
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Eg = Eh = 0. Then, by (4.47), we have the Breslow estimator of the cumulative

version of endogenous baseline hazards

Λ̂f (m) =

∫ m

0

∑J
j=1 neventj(s)ds∑J

j=1 nriskj(s)λ̂g(Vj + s)λ̂h(Vj)
. (4.49)

It is clear that the increments of Λ̂f (m) correspond to the maturation effect (4.22)

of the MEV estimator. They also reduce to (4.18) of DtBreslow estimator in the

absence of vintage heterogeneity.

The implementation of dual-time Cox modeling based on (4.45) can be carried

out by maximizing the partial likelihood (4.46) to find θ̂ and using (4.47) to estimate

the baseline hazard. Standard softwares with survival package or toolbox can be

used to perform the parameter estimation. In the case when the coxph procedure

in these survival packages (e.g. R:survival) requires the time-indepenent covariates,

we may convert (4.1) to an enlarged counting process format with piecewise-constant

approximation of time-varying covariates xji(m); see the supplementary material in

the last section of the chapter.

For example, we have tested the partial likelihood estimation using the coxph of

R:survival package and the simulation data in Figure 4.1, where the raw data (4.1)

are converted to the counting process format upon the same binning preprocessing

as in Section 4.2.3. The numerical results of λ̂g, λ̂h by maximizing (4.48) and λ̂f by

(4.49) are nearly identical to the plots shown in Figure 4.3.

4.4.3 Frailty-type Vintage Effects

Recall the frailty models introduced in Section 1.3 about their double roles in

charactering both the odd effects of unobserved heterogeneity and the dependence

of correlated defaults. They provide an alternative approach to model the vintage

effects as the random block effects. Let Zκ for κ = 1, . . . , K be a random sample from
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some frailty distribution, where Zκ represents the shared frailty level of the vintage

bucket Gκ according to (4.41). Consider the dual-time Cox frailty models

λji(m, t|Zκ) = λf (m)λg(t)Zκ exp{θTzji(m)}, if j ∈ Gκ (4.50)

for i = 1, . . . , nj and j ∈ Gκ for κ = 1, . . . , K. We also write λji(m, t|Zκ) as λji(m|Zκ)

with t ≡ Vj + m. It is assumed that given the frailty Zκ, the observations for all

vintages in Gκ are independent. In this frailty model setting, the between-bucket

heterogeneity is captured by realizations of the random variate Z, while the within-

bucket dependence is captured by the same realization Zκ.

Similar to the intermediate approach taken by the partial likelihood (4.46) under

exogenously discretized dual-time model (4.45), let us write ξ̃ = (β,θ) and let x̃ji(m)

join the vectors of {I(Vj + m ∈ (tl−1, tl])}Ll=2 and zji(m). Then, we may write (4.50)

as λji(m|Zκ) = λf (m)Zκ exp
{
ξ̃
T
x̃ji(m)

}
. The log-likelihood based on the dual-time-

to-default data (4.1) is given by

` =
J∑
j=1

nj∑
i=1

∆ji

(
log λf (Mji) + ξ̃

T
x̃ji(m)

)
+

K∑
κ=1

log
{

(−1)dκL (dκ)(Aκ)
}
. (4.51)

where L (x) = EZ [exp{−xZ} is the Laplace transform of Z, L (d)(x) is its d-th

derivative, dκ =
∑

j∈Gκ
∑nj

i=1 ∆ji and Aκ =
∑

j∈Gκ
∑nj

i=1

∫Mji

Uji
λf (s) exp

{
ξ̃
T
x̃ji(s)

}
ds;

see the supplementary material at the end of the chapter.

The gamma distribution Gamma(δ−1, δ) with mean 1 and variance δ is the most

frequently used frailty due to its simplicity. It has the Laplace transform L (x) = (1+

δx)−1/δ whose d-th derivative is given by L (d)(x) = (−δ)d(1 + δx)−1/δ−d∏d
i=1(1/δ +

i− 1). For a fixed δ, often used is the EM (expectation-maximization) algorithm for

estimating (λf (·), ξ̃); see Nielsen, et al. (1992) or the supplementary material.

Alternatively, the gamma frailty models can be estimated by the penalized like-

lihood approach, by treating the second term of (4.51) as a kind of regularization.
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Therneau and Grambsch (2000; §9.6) justified that for each fixed δ, the EM algorith-

mic solution coincides with the maximizer of the following penalized log-likelihood

J∑
j=1

nj∑
i=1

∆ji

(
log λf (Mji) + ξTxji(m)

)
− 1

δ

K∑
κ=1

[
γκ − exp{γκ}

]
(4.52)

where ξ = (β,γ,θ) and xji(m) are the same as in (4.46). They also provide the

programs (in R:survival package) with Newton-Raphson iterative solution as an inner

loop and selection of δ in an outer loop. Fortunately, these programs can be used to

fit the dual-time Cox frailty models (4.50) up to certain modifications.

Remarks:

1. The dual-time Cox regression considered in this section is tricked to the standard

CoxPH problems upon exogenous timescale discretization, such that the existing

theory of partial likelihood and the asymptotic results can be applied. We have

not studied the dual-time asymptotic behavior when both lifetime and calendar

time are considered to be absolutely continuous. In practice with finite-sample

observations, the time-discretization trick works perfectly.

2. The dual-time Cox model (4.40) includes only the endogenous covariates zji(m)

that vary across individuals. In practice, it is also interesting to see the effects

of exogenous covariates z̃(t) that are invariant to all the individuals at the same

calendar time. Such z̃(t) might be entertained by the traditional lifetime Cox

models (4.37) upon the time shift, however, they are not estimable if included as

a log-linear term by (4.40), since exp{θT z̃(t)} would be absorbed by the exoge-

nous baseline λg(t). Therefore, in order to investigate the exogenous covariate

effects of z̃(t), we recommend a two-stage procedure with the first stage fitting

the dual-time Cox models (4.40), and the second stage modeling the correlation

between z̃(t) and the estimated λ̂g(t) based on the time series techniques.
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4.5 Applications in Retail Credit Risk Modeling

The retail credit risk modeling has become of increasing importance in the recent

years; see among others the special issues edited by Berlin and Mester (Journal of

Banking and Finance, 2004) and Wallace (Real Estate Economics, 2005). In quan-

titative understanding of the risk determinants of retail credit portfolios, there have

been large gaps among academic researchers, banks’ practitioners and governmental

regulators. It turns out that many existing models for corporate credit risk (e.g. the

Merton model) are not directly applicable to retail credit.

In this section we demonstrate the application of dual-time survival analysis

to credit card and mortgage portfolios in retail banking. Based on our real data-

analytic experiences, some tweaked samples are considered here, only for the purpose

of methodological illustration. Specifically, we employ the pooled credit card data

for illustrating the dual-time nonparametric methods, and use the mortgage loan-

level data to illustrate the dual-time Cox regression modeling. Before applying these

DtSA techniques, we have assessed them under the simulation mechanism (4.2); see

Figure 4.2 and Figure 4.3.

4.5.1 Credit Card Portfolios

As we have introduced in Section 1.4, the credit card portfolios range from product

types, acquisition channels, geographical regions and the like. These attributes may

be either treated as the endogenous covariates, or used to define the multiple seg-

ments. Here, we demonstrate the credit card risk modeling with both segmentation

and covariates. For simplicity, we consider two generic segments and a categorical

covariate with three levels, where the categorical variable is defined by the credit score

buckets upon loan origination: Low if FICO < 640, Medium if 640 ≤ FICO < 740

and High if FICO ≥ 740. Other variables like the credit line and utilization rate are

not considered here.
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Table 4.1: Illustrative data format of pooled credit card loans
SegID FICO V U M D W

1 Low 200501 0 3 0 988
1 Low 200501 0 3 1 2
1 Low 200501 3 4 0 993
1 Low 200501 3 4 1 5
1 Low 200501 4 5 0 979
1 Low 200501 4 5 1 11

1 Low 200501
...

...
...

...

1 Low 200502
...

...
...

...

1 Medium
...

...
...

...
...

2
...

...
...

...
...

...
...

...
...

...
...

...
...

V: vintage. [U,M]: lifetime interval. D: status. W: counts.

In this simple case, one may aggregate the observations at the vintage level for

each FICO bucket in each segment. See Table 4.1 for an illustration of the counting

format of the input data, where each single vintage at each lifetime interval [U,M ]

has two records of weight W , namely the number of survived loans (D = 0) and

the number of defaulted loans (D = 1). Note that the last column of Table 4.1

also illustrates that in the lifetime interval [3, 4], the 200501 vintage has 3 attrition

accounts (i.e. 993− 979− 11) which are examples of being randomly censored.

Let us consider the card vintages originated from year 2001 to 2008 with obser-

vations (a) left truncated at the beginning of 2005, (b) right censored by the end

of 2008, and (c) up censored by 48 months-on-book maximum. Refer to Figure 1.3

about the vintage diagram of dual-time data collection, which resembles the rectan-

gular Lexis diagram of Figure 4.1. First of all, we explore the empirical hazards of

the two hypothetical segments, regardless of the FICO variable.

We applied the one-way, two-way and three-way nonparametric methods devel-

oped in Section 4.2 for each segment of dual-time-to-default data. Note that given

the pooled data with weights W for D = 0, 1, it is rather straightforward to modify
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Figure 4.4: Nonparametric analysis of credit card risk: (top) one-way empirical haz-
ards, (middle) DtBrewlow estimation, (bottom) MEV decomposition.
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the iterative nonparametric estimators in (4.14) – (4.24), and one may also use the

weighted partial likelihood estimation based on our discussion in Section 4.4. The

numeric results for both segments are shown in Figure 4.4, where we may compare

the performances of two segments as follows.

1. The top panel shows the empirical hazard rates in both lifetime and calendar

time. By such one-way estimates, Segment 1 has shown better lifetime perfor-

mance (i.e. lower hazards) than Segment 2, and it has also better calendar-time

performance than Segment 2 except for the latest couple of months.

2. The middle panel shows the results of DtBreslow estimator that simultaneously

calibrates the endogenous seasoning λf (m) and the exogenous cycle effects λg(t)

under the two-way hazard model (4.16). Compared to the one-way calibration

above, the seasoning effects are similar, but the exogenous cycle effects show

dramatic difference. Conditional on the endogenous baseline, the credit cycle

of Segment 2 grows relatively steady, while Segment 1 has a sharp exogenous

trend since t = 30 (middle 2007) and exceeds Segment 1 since about t = 40.

3. The bottom panel takes into the vintage heterogeneity, where we consider only

the yearly vintages for simplicity. The estimated of λf (m) and λg(t) are both

affected after adding the vintage effects, since the more heterogeneity effects are

explained by the vintage originations, the less variations are attributed to the

endogenous and exogenous baselines. Specifically, the vintage performance in

both segments have deteriorated from pre-2005 to 2007, and made a turn when

entering 2008. Note that Segment 2 has a dramatic improvement of vintage

originations in 2008.

Next, consider the three FICO buckets for each segment, and we still take the

nonparametric approach for each of 2 × 3 segments. The MEV decomposition of

empirical hazards are shown in Figure 4.5. It is found that in lifetime the low, medium
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and high FICO buckets have decreasing levels of endogenous baseline hazard rates,

where for Segment 2 the hazard rates are evidently non-proportional. The exogenous

cycles of low, medium and high FICO buckets co-move (more or less) within each

segment. As for the vintage heterogeneity, it is interesting to note that for Segment

1 the high FICO vintages keep deteriorating from pre-2005 to 2008, which is a risky

signal. The vintage heterogeneity in other FICO buckets are mostly consistent with

the overall pattern in Figure 4.4.

Figure 4.5: MEV decomposition of credit card risk for low, medium and high FICO
buckets: Segment 1 (top panel); Segment 2 (bottom panel).

This example mainly illustrates the effectiveness of dual-time nonparametric meth-

ods when there are limited or no covariates provided. By the next example of mort-

gage loans, we shall demonstrate the dual-time Cox regression modeling with various

covariate effects on competing risks.
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4.5.2 Mortgage Competing Risks

The U.S. residential mortgage market is huge. As of March 2008, the first-lien

mortgage debt is estimated to be about $10 trillion (for 54.7 million loans) with a

distribution of $1.2 trillion subprime mortgages, $8.2 trillion prime and near-prime

combined, and the remaining being government guaranteed; see U.S. Federal Researve

report by Frame, Lehnert and Prescott (2008). In brief, the prime mortgages generally

target the borrowers with good credit histories and normal down payments, while the

subprime mortgages are made to borrowers with poor credit and high leverage.

The rise in mortgage defaults is unprecedented. Mayer, Pence and Sherlund (2009)

described the rising defaults in nonprime mortgages in terms of underwriting stan-

dards and macroeconomic factors. Quantitatively, Sherlund (2008) considered sub-

prime mortgages by proportional hazards models (4.37) with presumed fixed lifetime

baselines (therefore, a parametric setting). One may refer to Gerardi, et al. (2008)

and Goodman, et al. (2008) for some further details of the subprime issue. In

retrospect, the 2007-08 collapse of mortgage market has rather complicated causes,

including the loose underwriting standards, the increased leverage, the originate-then-

securitize incentives (a.k.a. moral hazard), the fall of home prices, and the worsening

unemployment rates.

We make an attempt via dual-time survival analysis to understand the risk deter-

minants of mortgage default and prepayment. Considered here is a tweaked sample of

mortgages loans originated from year 2001 to 2007 with Lexis diagram of observations

(a) left truncated at the beginning of 2005, (b) right censored by October 2008, and

(c) up censored by 60 months-on-book maximum. These loans resemble the noncon-

forming mortgages in California, where the regional macroeconomic conditions have

become worse and worse since middle 2006; see Figure 4.6 for the plots of 2000-08

home price indices and unemployment rate, where we use the up-to-date data sources

from S&P/Case-Shiller and U.S. Bureau of Labor Statistics.
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Figure 4.6: Home prices and unemployment rate of California state: 2000-2008.

Figure 4.7: MEV decomposition of mortgage hazards: default vs. prepayment
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For a mortgage loan with competing risks caused by default and prepayment, the

observed event time corresponds to time to the first event or the censoring time.

One may refer to Lawless (2003; §9) for the modeling issues on survival analysis of

competing risks. One practically simple approach is to reduce the multiple events to

individual survival analysis by treating alternative events as censored. Then, we may

fit two marginal hazard rate models for default and prepayment, respectively. One

may refer to Therneau and Grambsch (2000; §8) about robust variance estimation

for the marginal Cox models of competing risks.

We begin with nonparametric exploration of endogenous and exogenous hazards,

as well as the vintage heterogeneity effects. Similar to the credit card risk modeling

above, the monthly vintages are grouped yearly to be pre-2005, 2005 2006, 2007

originations. The fitting results of MEV hazard decomposition are shown in Figure 4.7

for both default and prepayment. Conditional on the estimated endogenous baseline

hazards of default or prepayment, we find that

1. The exogenous cycle of the default risk has been low (with exogenous multiplier

less than 1) prior to t = 20 (August 2006), then become rising sharply up

to about 50 times more risker at about t = 43 (July 2008). In contrast, the

exogenous cycle of the prepayment risk has shown a modest town-turn trend

during the same calendar time period.

2. The vintage heterogeneity plot implies that the 2005-06 originations have much

higher probability of default than the mortgage originations in other years. In

contrast, the vintage heterogeneity of prepayment keeps decreasing from pre-

2005 to 2007. These findings match the empirical evidences presented lately by

Gerardi, et al. (2008).

Compare the estimated exogenous effects on default hazards to the macroeconomic

conditions in Figure 4.6. It is obvious that the rise in mortgage defaults follows closely
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the fall of home prices (positively correlated) and the worsening unemployment rate

(negatively correlated). However, based on our demonstration data, it is not possible

to quantify what percentage of exogenous effects should be attributed to either house

prices or unemployment, because (a) the house prices and unemployment in California

are themselves highly correlated from 2005 to 2008, and (b) the exogenous effects on

default hazards could be also caused by other macroeconomic indicators. One may

of course perform multivariate time series analysis in order to study the correlation

between exogenous hazards and macroeconomic indicators, which is beyond the scope

of the present thesis.

Next, we try to decode the vintage effect of unobserved heterogeneity by adding the

loan-level covariates. For demonstration purpose, we consider only the few mortgage

covariates listed in Table 4.2, where CLTV stands for the combined loan-to-value

leverage ratio, FICO is the same measurement of credit score as in the credit card risk,

and other underwriting covariates upon loan origination can be referred to Goodman,

et al. (2008; §1) or Wikipedia. We also include the mortgage note rate, either fixed

or floating (i.e., adjustable), to demonstrate the capability of Cox modeling with

time-varying covariates. Note that the categorical variable settings are simplified in

Table 4.2, and they could be way more complicated in real situations. The mean,

standard deviation and range statistics presented for the continuous covariates CLTV,

FICO and NoteRate are calculated from our tweaked sample.

The dual-time Cox regression models considered here take the form of (4.4) with

both endogenous and exogenous baselines. After incorporating the underwriting and

dynamic covariates in Table 4.2, we have

λ
(q)
ji (m, t) = λ

(q)
f (m)λ(q)

g (t) exp

{
θ

(q)
1 CLTVji + θ

(q)
2 FICOji + θ

(q)
3 NoteRateji(m)

+ θ
(q)
4 DocFullji + θ

(q)
5 IOji + θ

(q)
6.pPurpose.purchaseji + θ

(q)
6.rPurpose.refiji

}
, (4.53)
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Table 4.2: Loan-level covariates considered in mortgage credit risk modeling, where
NoteRate could be dynamic and others are static upon origination.

CLTV µ = 78, σ = 13 and range [10, 125]
FICO µ = 706, σ = 35 and range [530, 840]

NoteRate µ = 6.5, σ = 1.1 and range [1, 11]
Documentation full or limited

IO Indicator Interest-Only or not
Loan Purpose purchase, refi or cash-out refi

Table 4.3: Maximum partial likelihood estimation of mortgage covariate effects in
dual-time Cox regression models.

Covariate Default Prepayment
CLTV 2.841 −0.285
FICO −0.500 0.385

NoteRate 1.944 0.2862
DocFull −1.432 −0.091

IO 1.202 0.141
Purpose.p −1.284 0.185
Purpose.r −0.656 −0.307

where the superscript (q) indicates the competing-risk hazards of default or prepay-

ment, the continuous type of covariates FICO, CLTV and NoteRate are all scaled to

have zero mean and unit variance, and the 3-level Purpose covariate is broken into

2 dummy variables (Purpose.p and Purpose.r against the standard level of cash-out

refi). For simplicity, we have assumed the log-linear effects of all 3 continuous covari-

ates on both default and prepayment hazards, while in practice one may need strive

to find the appropriate functional forms or break them into multiple buckets.

By the partial likelihood estimation discussed in Section 4.4, we obtain the numer-

ical results tabulated in Table 4.3, where the coefficient estimates are all statistically

significant based on our demonstration data (some other non-significant covariates

were actually screened out and not considered here). From Table 4.3, we find that

conditional on the nonparametric dual-time baselines,

1. The default risk is driven up by high CLTV, low FICO, high NoteRate, limited

documentation, Interest-Only, and cash-out refi Purpose.
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2. The prepayment risk is driven up by low CLTV, high FICO, high NoteRate,

limited documentation, Interest-Only, and purchase Purpose.

3. The covariates CLTV, FICO and Purpose reveals the competing nature of de-

fault and prepayment risks. It is actually reasonable to claim that a homeowner

with good credit and low leverage would more likely prepay rather than choose

to default.

4.6 Summary

This chapter is devoted completely to the survival analysis on Lexis diagram

with coverage of nonparametric estimators, structural parameterization and semi-

parametric Cox regression. For the structural approach based on inverse Gaussian

first-passage-time distribution, we have discussed the feasibility of its dual-time ex-

tension and the calibration procedure, while its implementation is open to future

investigation. Computational results are provided for other dual-time methods devel-

oped in this chapter, including assessment of the methodology through the simulation

study. Finally, we have demonstrated the application of dual-time survival analysis to

the retail credit risk modeling. Some interesting findings in credit card and mortgage

risk analysis are presented, which may shed some light on understanding the ongoing

credit crisis from a new dual-time perspective.

To end this thesis, we conclude that statistical methods play a key role in credit

risk modeling. Developed in this thesis is mainly the dual-time analytics, including

VDA (vintage data analysis) and DtSA (dual-time survival analysis), which can be

applied to model both corporate and retail credit. We have also remarked throughout

the chapters the possible extensions and other open problems of interest. So, the end

is also a new beginning . . .
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4.7 Supplementary Materials

(A) Calibration of Inverse Gaussian Hazard Function

Consider the calibration of the two-parameter inverse Gaussian hazard rate func-

tion λ(m; c, b) of the form (4.26) from the n observations (Ui,Mi,∆i), i = 1, . . . , n

each subject to left truncation and right censoring. Knowing the parametric likeli-

hood given by (4.27), the MLE requires nonlinear optimization that can be carried

out by gradient search (e.g. Newton-Raphason algorithm). Provided below are some

calculations of the derivatives for the gradient search purpose.

Denote by η = (c, b)T the structural parameters of inverse Gaussian hazard. The

log-likelihood function is given by

` =
n∑
i=1

∆i log λ(Mi;η)−
∫ Mi

Ui

λ(s;η)ds (4.54)

Taking the first and second order derivatives, we have the score and Hessian functions

∂`

∂η
=

n∑
i=1

∆i

λ(Mi;η)
−
∫ Mi

Ui

λ′(s;η)ds

∂2`

∂η∂ηT
=

n∑
i=1

∆i

(
λ′′(Mi;η)

λ(Mi;η)
− (λ′(Mi;η))⊗2

λ2(Mi;η)

)
−
∫ Mi

Ui

λ′′(s;η)ds

where λ′(m;η) = ∂λ(m;η)/∂η, λ′′(m;η) = ∂2λ(t;η)/∂η∂ηT , and a⊗2 = aaT . By

supplying the gradients, the optimization algorithms in most of standard softwares

are faster and more reliable. Note that the evaluation of the integral terms above

can be carried out by numerical integration methods like the composite trapezoidal

or Simpon’s rule; see e.g. Press, et al. (2007). Alternatively, one may replace the

second term of (4.54) by log S(Mi;η)− logS(Ui;η) and take their derivatives based

on the explicit expressions below.

The complications lie in the evaluations of ∂λ(m;η)/∂η and ∂2λ(m;η)/∂η∂ηT
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based on the inverse Gaussian baseline hazard (4.26), which are, messy though, pro-

vided below. Denoting

z1 =
η1 + η2m√

m
, z2 =

−η1 + η2m√
m

, φ(z) =
1√
2π
e−z

2/2,

evaluate first the derivatives of the survival function (i.e. the denominator of (4.26)):

∂S(m;η)

∂η1

= 2η2e
−2η1η2Φ(z2) +

1√
m

[
φ(z1) + e−2η1η2φ(z2)

]
∂S(m;η)

∂η2

= 2η1e
−2η1η2Φ(z2) +

√
m
[
φ(z1)− e−2η1η2φ(z2)

]
∂2S(m;η)

∂η2
1

= −4η2
2e
−2η1η2Φ(z2)− 4η2√

m
e−2η1η2φ(z2)− 1

m

[
φ(z1)z1 − e−2η1η2φ(z2)z2

]
∂2S(m;η)

∂η1∂η2

= (2− 4η1η2)e−2η1η2Φ(z2)−
[
φ(z1)z1 − e−2η1η2φ(z2)z2

]
∂2S(m;η)

∂η2
2

= −4η2
1e
−2η1η2Φ(z2) + 4η1

√
me−2η1η2φ(z2)−m

[
φ(z1)z1 − e−2η1η2φ(z2)z2

]
.

Then, the partial derivatives of λ(m;η) can be evaluated explicitly by

∂λ(m;η)

∂η1

= −λ0(m;η)

(
η1

m
+ η2 −

1

η1

)
− λ0(m;η)

S(m;η)

∂S(m;η)

∂η1

∂λ(m;η)

∂η2

= −λ(m;η) (η1 + η2m)− λ(m;η)

S(m;η)

∂S(m;η)

∂η2

∂2λ(m;η)

∂η2
1

= −∂λ(m;η)

∂η1

(
η1

m
+ η2 −

1

η1

)
− λ(m;η)

(
1

η2
1

+
1

m

)
−λ(m;η)

S(m;η)

∂2S(m;η)

∂η2
1

− 1

S(m;η)

∂λ(m;η)

∂η1

∂S(m;η)

∂η1

+
λ(m;η)

S2(m;η)

(
∂S(m;η)

∂η1

)2

∂2λ(m;η)

∂η2
2

= −∂λ(m;η)

∂η2

(η1 + η2m)− λ(m;η)m

−λ(m;η)

S(m;η)

∂2S(m;η)

∂η2
2

− 1

S(m;η)

∂λ(m;η)

∂η2

∂S(m;η)

∂η2

+
λ(m;η)

S2(m;η)

(
∂S(m;η)

∂η2

)2

∂2λ(m;η)

∂η1∂η2

= −∂λ(m;η)

∂η1

(η1 + η2m)− λ(m;η)

−λ(m;η)

S(m;η)

∂2S(m;η)

∂η1∂η2

− 1

S(m;η)

∂λ(m;η)

∂η1

∂S(m;η)

∂η2

+
λ(m;η)

S2(m;η)

∂S(m;η)

∂η1

∂S(t;η)

∂η2

.
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(B) Implementation of Cox Modeling with Time-varying Covariates

Consider the Cox regression model with time-varying covariates x(m) ∈ Rp:

λ(m; x(m)) = λ0(m) exp{θTx(m)} (4.55)

where λ0(m) is an arbitrary baseline hazard function and θ is the p-vector of regression

coefficients. Provided below is the implementation of maximum likelihood estimation

of θ and λ0(m) by tricking it to be a standard CoxPH modeling with time-indepdent

covariates.

Let τi be the event time for each account i = 1, . . . , n that is subject to left

truncation Ui and right censoring Ci. Given the observations

(Ui,Mi,∆i,xi(m)), m ∈ [Ui,Mi], i = 1, . . . , n, (4.56)

in which Mi = min{τi, Ci}, ∆i = I(τi < Ci), the complete likelihood is given by

L =
n∏
i=1

[
fi(Mi)

Si(Ui)

]∆i
[
Si(Mi+)

Si(Ui)

]1−∆i

=
n∏
i=1

[λi(Mi)]
∆iSi(Mi+)S−1

i (Ui). (4.57)

Under the dynamic Cox model (4.55), the likelihood function is

L(θ, λ0) =
n∏
i=1

[
λ0(Mi) exp{θTxi(Mi)}

]∆i

exp

{
−
∫ Mi

Ui

λ0(s) exp{βTxi(s)}ds
}
.

(4.58)

Taking λ0 as the nuisance parameter, one may estimate β by the partial likelihood;

see Cox (1972, 1975) or Section 4.4.

The model estimation with time-varying covariates can be implemented by the

standard software package that handles only the time-independent covariates by de-

fault. The trick is to construct little time segments such that xi(m) can be viewed

constant within each segment. See Figure 4.8 for an illustration with the construction
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Figure 4.8: Split time-varying covariates into little time segments, illustrated.

of monthly segments. For each account i, let us partition m ∈ [Ui, Ti] to be

Ui ≡ Ui,0 < Ui,1 < · · · < Ui,Li ≡Mi

such that

xi(m) = xi,l, m ∈ (Ui,l−1, Ui,l]. (4.59)

Thus, we have converted the n-sample survival data (4.56) to the following
∑n

i=1 Li

independent observations each with the constant covariates

(Ui,l−1, Ui,l,∆i,l,xi,l), l = 1, . . . , Li, i = 1, . . . , n (4.60)

where ∆i,l = ∆i for l = Li and 0 otherwise.

It is straightforward to show that the likelihood (4.57) can be reformulated by

L =
n∏
i=1

[λi(Mi)]
∆i

Li∏
l=1

Si(Ui,l)S
−1
i (Ui,l−1) =

n∏
i=1

Li∏
l=1

[λi(Ui,l)]
∆i,lSi(Ui,l)S

−1
i (Ui,l−1),

(4.61)

which becomes the likelihood function based on the enlarged data (4.60). Therefore,

133



under the assumption (4.59), the parameter estimation by maximizing (4.58) can be

equivalently handled by maximizing

L(θ, λ0) =
n∏
i=1

Li∏
l=1

[
λ0(Ui,l) exp{θTxi,l}

]∆i,l

exp

{
− exp{θTxi,l}

∫ Ui,l

Ui,l−1

λ0(s)ds

}
.

(4.62)

In R, one may perform the MLE directly by applying the CoxPH procedure (R:

survival package) to the transformed data (4.60); see Therneau and Grambsch (2000)

for computational details.

Furthermore, one may trick the implementation of MLE by logistic regression,

provided that the underlying hazard rate function (4.55) admits the linear approxi-

mation up to the logit link:

logit(λi(m)) ≈ ηTφ(m) + θTxi(m), for i = 1, . . . , n (4.63)

where logit(x) = log(x/1− x) and φ(m) is the vector of pre-specified basis functions

(e.g. splines). Given the survival observations (4.60) with piecewise-constant covari-

ates, it is easy to show that the discrete version of joint likelihood we have formulated

in Section 4.2 can be rewritten as

L =
n∏
i=1

[
λi(Mi)

]∆i [1− λi(Mi)]
1−∆i

∏
m∈(Ui,Mi)

[1− λi(m)]

=
n∏
i=1

Li∏
l=1

[
λi(Mi)

]∆i,l [1− λi(Mi)]
1−∆i,l (4.64)

where ∆i,l are the same as in (4.60). This becomes clearly the likelihood function of

the independent binary data (∆il,xi,l) for l = 1, . . . , Li and i = 1, . . . , n, where xi,l

are constructed by (4.59). Therefore, under the prameterized logistic model (4.63),

one may perform the MLE for the parameters (η,θ) by a standard GLM procedure;

see e.g. Faraway (2006).
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(C) Frailty-type Vintage Effects in Section 4.4.3

The likelihood function. By the independence of Z1, . . . , Zk, it is easy to write down

the likelihood as

L =
K∏
κ=1

EZκ

[∏
j∈Gκ

nj∏
i=1

[
λji(Mji|Zκ)

]∆ji

exp
{
−
∫ Mji

Uji

λji(s|Zκ)ds
}]

. (4.65)

Substituting λji(m|Zκ) = λf (m)Zκ exp
{
ξ̃
T
x̃ji(m)

}
, we obtain for each Gκ the likeli-

hood contribution

Lκ =
∏
j∈Gκ

nj∏
i=1

[
λf (Mji) exp

{
ξ̃
T
x̃ji(m)

}]∆ji

EZ

[
Zdκ exp{−ZAκ}

]
(4.66)

in which dκ =
∑

j∈Gκ
∑nj

i=1 ∆ji and Aκ =
∑

j∈Gκ
∑nj

i=1

∫Mji

Uji
λf (s) exp

{
ξ̃
T
x̃ji(s)

}
ds.

The expectation term in (4.66) can be derived from the dk-th derivative of Laplace

transform of Z which satisfies that EZ

[
Zdκ exp{−ZAκ}

]
= (−1)dκL (dκ)(Aκ); see e.g.

Aalen, et al. (2008; §7). Thus, we obtain the joint likelihood

L =
K∏
κ=1

∏
j∈Gκ

nj∏
i=1

[
λf (Mji) exp

{
ξ̃
T
x̃ji(m)

}]∆ji

(−1)dκL (dκ)(Aκ), (4.67)

or the log-likelihood function of the form (4.51).

EM algorithm for fraitly model estimation.

1. E-step: given the fixed values of (ξ̃, λf ), estimate the individual frailty levels

{Zκ}Kκ=1 by the conditional expectation

Ẑκ = E[Zκ|Gκ] = −L (dκ+1)(Aκ)

L (dκ)(Aκ)
(4.68)

which corresponds to the empirical Bayes estimate; see Aalen, et al. (2008;

§7.2.3). For the gamma frailty Gamma(δ−1, δ) with L (d)(x) = (−δ)d(1 +
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δx)−1/δ−d∏d
i=1(1/δ + i− 1), the frailty level estimates are given by

Ẑκ =
1 + δdκ
1 + δAκ

, κ = 1, . . . , K. (4.69)

2. M-step: given the frailty levels {Zκ}Kκ=1, estimate (ξ̃, λf ) by partial likelihood

maximization and Breslow estimator with appropriate modification based on

the fixed frailty multipliers

PL(ξ̃) =
J∏
j=1

nj∏
i=1

 exp{ξ̃
T
xji(Mji)}∑

(j′,i′)∈Rji Zκ(j′) exp
{
ξ̃
T
xj′i′(Mji)

}
∆ji

(4.70)

Λ̂f (m) =
J∑
j=1

nj∑
i=1

I(m ≥Mji)∆ji∑
(j′,i′)∈Rji Zκ(j′) exp

{
ξ̂
T
xj′i′(Mji)

} , (4.71)

where κ(j) indicates the bucket Gκ to which Vj belongs. In R, the partial

likelihood maximization can be implemented by the standard CoxPH procedure

based on the offset type of log-frailty predictors as provided; details omitted.

To estimate the frailty parameter δ, one may run EM algorithm for δ on a grid to

obtain (ξ̃
∗
(δ), λ∗f (·; δ)), then find the maximizer of the profiled log-likelihood (4.51).
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