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CHAPTER I

Introduction

The objective of many physical networks, like computer, road and supply chain

networks is to carry flows of different objects; i.e. packets, vehicles and goods in

these three types of networks, respectively. Estimating traffic volumes is important

for monitoring and provisioning such networks. In this work we look at statisti-

cal problems related to estimation of flow volumes, focusing primarily on computer

networks.

A computer network, such as the one depicted in Figure 1.1, is comprised of nodes

corresponding to network elements such as workstations, routers and switches and

links that connect those elements. A network flow contains all the traffic originating

at a node and destined for some other node in the network. Each flow can in principle

traverse a set of paths connecting its origin and destination, which is determined by

the routing policy. In computer networks, the flow traffic is carried on packets, whose

Figure 1.1: Abilene Network Topology
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payload is expressed in bytes. The volume of traffic refers to either the number of

packets and/or the number of bytes in a flow (or on a link) in a given time-interval.

An increasing variety of network data is available from modern computer networks.

These data differ in their granularity, accuracy, volume and delay [32]. We will

primarily be concerned with two kinds of network data. The number of packets

and bytes traversing a particular link in a particular measurement interval -typically

of the order of a couple of minutes- are available through queries using the Simple

Network Management Protocol (SNMP) [37] protocol. The volume of traffic on a

link is the sum of volumes of all flows traversing that link. This produces highly

aggregate data and the question of interest is to estimate various statistics of the

underlying flows. A second kind of measurement is sampled data. Packets of network

traffic can be observed (and sampled) at router interfaces. However, during the

measurement process sampling is employed due to high flow volumes and resource

constraints at routers. It is increasingly common for such measurement infrastructure

to be deployed in computer networks [14]. Each packet from the aggregate flow at

an observation point is sampled independently with a certain probability (sampling

rate) [12]. Typical sampling rates range between .001-.01. Obviously low sampling

rates result in large sampling noise. An important issue is how to select (design) the

sampling rates across the network subject to resource constraints, in order to collect

the maximum amount of information on the underlying source-destination flows.

We address several conceptual and practical aspects of the use of such data for

flow volume estimation in this work. The insights and results presented are often

of general statistical interest in addition to their application in computer networks

context.
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1.1 Literature Review

We provide a broad review of the literature in this section. Many more references

are provided in the following chapters when relevant.

An area of long standing and active interest is modeling of statistical properties

of data collected on a single link. Such data has been shown to have interesting

structure like long range dependence and heavy tailed distribution [48]. A relatively

new area of interest has been estimation of network wide traffic volumes. This has

applications for capacity planning and forecasting, routing protocol configuration,

provisioning and fault-diagnosis [42].

The term network tomography was introduced in [47] for the problem of estimat-

ing source-destination flow volumes from aggregate link measurements. The flow

volumes were modeled as Poisson random variables, the difficulties of estimation

based on maximum likelihood demonstrated and as an alternative a low complex-

ity method of moments estimator was proposed. Estimability (identifiability) of flow

volume distribution was proved using the parametric form of the density of a Poisson

random variable. In [6] flow volumes were modeled as being normally distributed

with flow variances proportional to their means. The proportionality assumption

leads to identifiability of the mean parameters through identifiability of variances.

An estimator based on the EM algorithm was proposed. There is some evidence

that this method may not estimate accurately enough the distribution of flow vol-

umes in large high speed computer networks [35]. In [31] a computationally efficient

pseudo-likelihood method for network tomography was proposed. Recently, a suffi-

cient condition for identifiability of the entire distribution up to mean of flow volumes

was established in [7]. Further, an estimator based on the characteristic function of
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the aggregate data was proposed. An overview of tomography techniques can be

found in [28].

Another class of models imposes other types of constraints for obtaining identifi-

able (estimable) solutions. For example, gravity models [51] assume that the source

and destination of any given packet in the network are independent of each other.

Again there is evidence that this assumption is not strictly valid in backbone net-

works [28]. However, the assumption introduces enough constraints to regularize the

problem for a unique solution. A Kalman filter based approach suggested in [41] pro-

vides best linear estimates of flow volumes assuming a specific temporal dependence

structure with known parameters. The ideas developed in some of the above papers

have been employed in [42] and [30] to develop practical traffic volume estimators

for continuous monitoring of real networks. A graph-wavelets based approach was

developed in [39].

The use of sampled data in networking has become an active area of research.

There has been a fair amount of work on ways to augment SNMP data with small

amount of sampled data when necessary [30]. The focus of some of the current

research is on simultaneously controlling volume and accuracy of such data [12].

For example, [9] discusses some of the considerations regarding sampling error and

measurement overhead for some simple sampling schemes. In [15] this issue is in-

vestigated for different sampling schemes including threshold sampling, uniform flow

sampling, uniform packet sampling and sample and hold. In addition they provide

algorithms for dynamic control of sample volume. Another interesting area is the op-

timal combination of sampled data from across the network [15, 13]. Others [49, 50]

study estimation of individual flow distributions through non-parametric techniques

based on sampled data. In [53], the problem of combining (possibly dirty) SNMP
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and sampled data is investigated.

1.2 Contributions and Organization

In Chapter 2 we study the problem of identifiability of joint distribution of flow

volumes in a computer network from (lower dimensional) aggregate measurements

collected on its edges. Conceptually, this is a canonical example of a linear statistical

inverse problem. In a departure from previous approaches we investigate situations

where flow volumes have dependence. We introduce a number of models that cap-

ture spatial, temporal and inter-modal (i.e. between packets and bytes) dependence

between flow-volumes. These models are fairly general but specific instances that

incorporate structural features of network traffic are also investigated. We provide

sufficient, sometimes necessary, conditions for the identifiability of the flow volumes

distribution (up to mean) under these models. Further, we investigate conditions on

network routing that are sufficient for identifiability of flow volumes distribution.

In Chapter 3 we use the results and models developed in Chapter 2 to perform

computer network tomography using joint modeling for packet and byte volumes.

As usual the goal is to estimate characteristics of source-destination flows based on

aggregate link measurements. Specifically, we use two generative models for the re-

lation between packet and byte volumes, establish identifiability of their parameters

using results from Chapter 2 and discuss different estimating procedures. The pro-

posed estimators of the flow characteristics are evaluated using both simulated and

emulated data. Further, the proposed models allow us to estimate parameters of the

packet size distribution, thus providing additional insights into the composition of

network traffic.

In Chapter 4 we examine the problem of optimal design in the context of filtering
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multiple random walks. Specifically, we define the steady state E-optimal design

criterion and show that the underlying optimization problem leads to a second order

cone program. The developed methodology is applied to tracking network flow vol-

umes using sampled data, where the design variable corresponds to controlling the

sampling rate. The optimal design is numerically compared to a myopic and a naive

strategy. Next, we extend the myopic strategy to state space models and numerically

investigate several instances of interest for flow volume tracking. Finally, we pose

the general problem of steady state optimal design for state space models.



CHAPTER II

Identifiability Results for Network Tomography

2.1 Introduction

Consider a network described by a (directed) graph G = (V,E) with vertex (node)

set V and edge (link) set E. Each edge e ∈ E is an ordered pair of vertices e =

(n1, n2) ∈ E that connects vertex n1 to n2, n1, n2 ∈ V . Flows fj, j = 1, · · · , J ,

correspond to ordered pair of vertices and a volume measurement variable Xj is

associated with each flow j, with J ≤ |V |2. Each flow may traverse several paths.

A path P of length LP is a sequence of nodes connected by edges, i.e. for P =

(n1, · · · , nLP +1), (ni, ni+1) ∈ E, for i = 1, · · · , LP . We say ei = (ni, ni+1) ∈ P, i =

1, · · · , LP , and n1 and nLP +1 are the origin and destination vertices of the path P .

Let P(j) denote the set of paths traversed by flow j and wj(P ) the proportion of flow

j carried on path P . Note that all paths in P(j) have the same origin-destination

node pair. Hence

P(j) = {P : wj(P ) > 0},
∑

P∈P(j)

wj(P ) = 1.

The set of functions {P(j), wj(P )} determine the routing policy of the network.

Observations are made on edges which are a linear combination of the volume

measurement variables corresponding to the flows passing through respective links.

7
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The traffic volume on edge e is given by

Ye =
∑

j

∑

P∈P(j)

e∈P

wj(P )Xj.

This can be written in vector notation as:

Y = AX,

where Y is a L × 1 vector of observations on L edges, X is a J × 1 vector of

measurement variables associated with J flows and A is a L × J routing matrix

where [A]ij indicates the fraction of the jth flow that traverses the ith link. In

certain cases, it will be assumed that A is a binary matrix corresponding to each

origin-destination flow traversing through exactly one path; i.e. wj(P ) = 1 for a

single P ∈ P(j). The matrix A is typically not full rank as there are many more

flows (O(n2), where n is the number of nodes in the graph) than links (O(n), since the

corresponding graphs are sparse). Our objective is to state assumptions and derive

conditions on the routing matrix A under which certain distributional parameters of

X are uniquely determined by the distribution of Y which is observed.

For example, consider the network in Figure 2.1 that has 6 nodes and 5 bi-

directional links. Let Ye be the total number of bytes that traverse link e in a time

interval. Further, let X(n1,n2) be the number of bytes in the flow from node n1 to

node n2 during the same time interval. Then each Ye is a sum of X(·,·)s corresponding

to the flows passing through link e. For example, for e1 = (3, 4) and e2 = (4, 3) we

have:

Ye1 = X(1,5) +X(1,6) +X(2,5) +X(2,6) +X(3,4)

and

Ye2 = X(5,1) +X(6,1) +X(5,2) +X(6,2) +X(4,3).
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Thus, each Ye is a linear combination of the X(·,·)s. Here the number of links L = 10

and the number of flows J = 30.

Figure 2.1: Example Topology

Now consider the setup in Figure 2.2, where the network is comprised of 3 nodes

and two links. Observations on links 1 and 2 are respectively given by

Y1 = X1 +X2,

Y2 = X2 +X3.

As a preview of the basic idea on identifiability, note that if the flow volumes Xi are

independent random variables, then their variances are “identifiable” from the joint

distribution of observed edge volumes Y1 and Y2 as follows:

vy ≡




Var(Y1)

Var(Y2)

Cov(Y1, Y2)




=




1 1 0

0 1 1

0 1 0







Var(X1)

Var(X2)

Var(X3)



≡ Bvx.

X

X

1

X 2

3

Y
Y

1

2

Figure 2.2: Aggregate Volume Measurements
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Thus, vy that contains the variances and the covariance of (Y1, Y2), uniquely deter-

mines vx that contains the variances of X1, X2 and X3, since B is a matrix of full

rank. For the purpose of this chapter, a matrix C will be called full rank if Cx = 0

for a vector x, implies x = 0. Now, the matrix B is clearly a function of the routing

matrix A given by

A =




1 1 0

0 1 1


 .

It can therefore be seen that “identifiability” of variances of the Xi’s is related to a

matrix function of A being full rank when the Xi’s are uncorrelated.

More generally, let Y (t) denote the vector of observations on the links during

measurement interval t. These observations may be byte count or packet count as

obtained from SNMP data. Further, let X(t) be the (unobserved) vector of flow

measurements (packet count or byte count) in the same measurement interval. We

will view X(t) (and hence Y (t)) as random vectors satisfying some stochastic model.

Thus, we can posit the following model:

(2.1) Y (t) = AX(t), t = 1, · · · .

In this formulation the routing matrix A does not change over time. In some cases

the dependence on t may be dropped for the sake of notational convenience.

As mentioned earlier, the matrix A is typically not full rank. Thus, ( 2.1) cannot

be solved for X(t). However, under certain distributional assumptions on X(t),

the observations Y (t) are sufficient to estimate parameters of the distribution of

X(t). The distribution of X(t) can be modeled at different levels of complexity from

independent and identically (i.i.d.) Gaussian to long range dependent with cycles

induced due to diurnal or weekly patterns. The true structure of network data is

quite complex and one needs to balance the need for faithful representation with
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analytic tractability and computational feasibility.

In this chapter, we present models for the distribution of X and the routing

policy or network structure that result in identifiability of the distribution of X (up

to uncertainty in the mean). These conditions are quite often satisfied in computer

networks. Notice that in general, means (i.e. E(X)) are not identifiable, since adding

a constant vector c from the null space of the routing matrix A to X, leaves Y (= AX)

unchanged. Let L(X) denote the distribution of X and M be a set of possible

distributions, i.e. L(X) ∈ M. Further, let θ(L(X)) be a well-defined parameter of

the distribution of X. Then, identifiability is formally defined as follows.

Definition II.1. The distribution of a random vector X ∈ RJ is identifiable up to

mean under model M, from observations of the form Y = AX, if for Y1 = AX1 and

Y2 = AX2, L(X1),L(X2) ∈M, Y1
d
= Y2 (i.e. L(Y1) = L(Y2)) implies thatX1

d
= X2+c

(i.e. L(X1) = L(X2 + c)) for some constant c ∈ RJ . Similarly, a parameter, θ(L(X))

is said to be identifiable under model M if Y1
d
= Y2 (i.e. L(Y1) = L(Y2)) implies that

θ(L(X1)) = θ(L(X2)).

For the case of independent flow volumes three kinds of identifiability results are

known (see Section 2.8.1). These are conditions on routing matrix under which flow

volume variances are identifiable, conditions on routing matrix under which entire

flow volume distributions are identifiable up to mean and conditions on routing policy

or network structure that imply that the routing matrix satisfies the required prop-

erties for identifiability. In the following sections, we prove similar results when flow

volumes are not independent. The techniques are naturally more involved and the

independence case can be elegantly recovered as a special case. These results seek

to address the question of “how complex can the dependence structure of a linear

inverse problem be and still be identifiable”. In Section 2.2 we do an empirical inves-
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tigation into the nature of dependence observed in computer network flow volumes

and propose the independent connections model, which we use as an illustration of

subsequent more general models. In sections 2.4, 2.5 and 2.6 we prove results about

sufficient (some times necessary) conditions on the routing matrix for identifiability.

In Section 2.7 we show that several reasonable instances of routing policy or network

structure are sufficient for routing matrices to satisfy the required property for iden-

tifiability results. We end with a discussion and possible future directions in Section

2.8.

2.2 Some Empirical Observations and Independent Connections Model

We illustrate some important features of traffic volume data using a publicly

available data-set (obtained from http://www-dirt.cs.unc.edu/ts/). The data is

essentially a 4-variate time series where the 4 variables are packet and byte volumes of

forward direction and reverse direction traffic on a link. Each observation represents

the traffic traversing that link in a 10 second interval. We limit ourselves to the first

700 observations. The 4 time series are plotted in Figure 2.3.

The temporal dependence is visible in the time series and can be more clearly

seen through their auto-correlation functions in Figure 2.4. The auto-correlation

function of a time-series x(t), at a given lag l, is the observed correlation between

x(t) and x(t − l) over all values of t. For each of the four time-series the auto-

correlation functions are significantly greater than zero and decay with increasing

lag. The simplest possible model for such time-series is an auto-regressive model.

We fit auto-regressive models to each of the 4 time series. The orders of the models

chosen through AIC were 4 for forward byte volume, 8 for reverse byte volume and 5

for both forward and reverse packet volumes. The residuals from these models have
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Figure 2.3: Byte (top) and Packet (bottom) time-series

the following correlation matrix (FB = forward byte, FP = forward packet, RB =

reverse byte, RB = reverse packet)

FB FP RB RP

FB 1.00 0.83 0.04 0.22

FP 0.83 1.00 0.24 0.44

RB 0.04 0.24 1.00 0.89

RP 0.22 0.44 0.89 1.00

Thus we clearly see the strong dependence between packet and byte volumes and

between forward and reverse flows. Finally we compare the quantiles of the residuals

from the AR models to that of a standard normal distribution. Figure 2.5 clearly

shows that the quantiles of the observed error distribution are more extreme than

that of a normal distribution indicating heavier tails.
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Figure 2.4: Auto-correlation functions: forward byte (top left), forward packet (top right), reverse
byte (bottom left) and reverse packet (bottom right)

Next we look at spatial correlation between network-wide flow volumes. The

data-set used for this analysis [46] gives byte volumes of all flows in the network for

each 15 minute interval over a period of 4 months. As seen in the previous example,

we expect correlations between forward and reverse byte volumes to be weaker than

for packet volumes. The following analysis shows that these correlations are still

substantially stronger than other spatial correlations.

We restrict ourselves to the first 1500 observations and 76 flows with no miss-

ing value and comprising the top quarter of flows in terms of average traffic. The

time-series for each flow was spline-smoothed to estimate non-stationarities like the

well-known diurnal patterns [16, 27]. The residuals from the above step were used

to fit an auto-regressive model, with AIC-based order selection, to account for tem-



15

Figure 2.5: QQ plots: forward byte (top left), forward packet (top right), reverse byte (bottom left)
and reverse packet (bottom right)

poral dependencies. The pair-wise correlations between residual time-series from the

above analysis represent the spatial correlations. These pair-wise correlations can be

divided into two sets, the forward-reverse kind and all the others. Figure 2.6 plots

the observed densities of these two sets of correlations. Clearly the forward-reverse

correlations are stronger than the rest. While, there is a bi modality in both dis-

tributions, it is significantly more pronounced for the forward-reverse correlations.

Ideally one would like to model all significant spatial correlations. However, in order

to have a systematic and parsimonious model we focus on the forward reverse cor-

relations. As mentioned earlier, we believe that such dependence would be stronger

and of greater practical interest for packet volumes, as opposed to byte volumes.

Based on these observations and previous studies [16], we outline a useful model
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Figure 2.6: Densities of observed correlations: Forward-reverse (dashed) and the rest (solid)

Figure 2.7: Example Topology

for computer networks, which we will refer to as Independent Connections Model.

The most significant spatial correlation is the one between the packet counts of a flow

and its reverse flow, i.e. for nodes n1, n2, the volume of flow from n1 to n2 and the

volume of flow from n2 to n1. Partition the set of flows into two groups F(forward)

and R(reverse). Thus, for a particular type of measurement -say packet counts- we

have:

(2.2) Y (p) = AFX
(p)
F + ARX

(p)
R .

If the number of edges is L and the number of flows is J , then both AF and AR are

L × J/2 matrices. For example, consider the network in Figure 2.7 comprised of 4
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nodes and 4 links, and where all flows follow a clock-wise path. Let e1 = (1, 2), e2 =

(2, 3), e3 = (3, 4) and e4 = (4, 1). The above equation becomes:




Ye1

Ye2

Ye3

Ye4




=




1 1 1 0 0 0

0 1 1 1 1 0

0 0 1 0 1 1

0 0 0 0 0 0







X(1,2)

X(1,3)

X(1,4)

X(2,3)

X(2,4)

X(3,4)




+




0 0 0 1 1 1

1 0 0 0 0 1

1 1 0 1 0 0

1 1 1 1 1 1







X(2,1)

X(3,1)

X(4,1)

X(3,2)

X(4,2)

X(4,3)




.

Equation (2.2) can be rewritten as:

Y (p) = AX(p),

where A = (AF , AR) and X(p) = (X
(p)
F

′
, X

(p)
R

′
)′. In real computer networks, a large

part of the traffic is connection oriented. For example, traffic flows transported using

the TCP protocol [37], or connections involving Internet (Voice over IP) telephony,

lead to packets being exchanged between the two endpoints. In the former case, due

to the built-in acknowledgment mechanism of packets in the TCP protocol, while in

the latter case due to the bidirectional nature of the connection. Therefore, volumes

of flow from node n1 to node n2 and vice-versa, are correlated [16]. One of these

flows is labeled as a forward flow and the other as a reverse flow and form a flow pair.

It is reasonable to assume that flow pairs are independent with possible dependence

between forward and reverse flows of a flow pair. In particular, if second moments

exist, then the covariance matrix of X(p) is of the form

(2.3) ΣX =




Diag(δFF ) Diag(δFR)

Diag(δFR) Diag(δRR)


 ,
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where each of δFF , δFR, δRR is a vector of length J/2 and component wise they cor-

respond to the variances of X
(p)
F , covariances of X

(p)
F and X

(p)
R and variances of X

(p)
R ,

respectively. Thus, ΣX is a matrix of dimension J × J .

IfX(p) is further assumed to be multivariate Normally distributed the above model

corresponds to the following latent variable model:

X
(p)
Fj = c1jZ1j,

X
(p)
Rj = c2jZ1j + c3jZ2j.

with Zij independent Normal with (possibly) different means and unit variances for

all i,j. Notice that two independent latent variables, Z1j and Z2j, are associated with

flow pair j. The reverse flow in flow pair j is the sum of a component proportional

to the forward flow of j and a unique component. This can also be written as




X
(p)
F

X
(p)
R


 =




Diag(c1) 0

Diag(c2) Diag(c3)







Z1

Z2


 ≡ CZ.

The above model corresponds to having exactly one type of measurement. Dif-

ferent types of measurements on each flow can be observed in practice as follows:

1. Bi-modal measurements on each flow. As mentioned earlier, there are two mea-

surements of interest associated with each flow in computer networks; namely,

packet counts and byte counts. We will denote the type of measurement by

the superscript, (p) and (b) for packets and bytes, respectively. Since the byte

count is the sum of bytes in each packet, there is a strong dependence between

these two types of measurements, as seen in the empirical analysis at the be-

ginning of section. Now consider another model, with dependence within flows
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and between packet counts and byte counts of the same flow:




Y (p)

Y (b)


 =




AF AR 0 0

0 0 AR AF







X
(p)
F

X
(p)
R

X
(b)
F

X
(b)
R




≡ AX.

Again we assume independence between flow pairs, but not within the forward

and reverse flow and packet and byte measurements of the same flow pair.

Specifically, if second moments exist, then the covariance of X takes the form:

ΣX =




Diag(δFp,Fp) Diag(δFp,Rp) Diag(δFp,Fb) Diag(δFp,Rb)

Diag(δFp,Rp) Diag(δRp,Rb) Diag(δRp,Fb) Diag(δRp,Rb)

Diag(δFp,Fb) Diag(δRp,Fb) Diag(δFb,Fb) Diag(δFb,Rb)

Diag(δFp,Rb) Diag(δRp,Rb) Diag(δFb,Rb) Diag(δRb,Rb)




.

In the above, δAa,Bb denotes the covariance of X
(a)
A and X

(b)
B for a, b ∈ {p, b} and

A,B ∈ {F,B}, each of them a vector of length J/2. Thus, ΣX is a matrix of

dimension 2J × 2J .

2. Temporal dependence. As the empirical analysis shows, network data when

viewed over moderate time-scales exhibit not just spatial dependence of the

nature captured by previous models but also temporal dependence. This de-

pendence can be modeled as follows:

Y (p)(t) = AX(p)(t),

Y (b)(t) = AX(b)(t),

X(p)(t) = Φp,1X
(p)(t− 1) + · · ·+ Φp,mX

(p)(t−m) + ε(p)(t),

X(b)(t) = Φb,1X
(b)(t− 1) + · · ·+ Φb,mX

(b)(t−m) + ε(b)(t),
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where the various Φ·,· matrices contain the lag coefficients and ε(p)(t), t = 1, · · · ,

are i.i.d. mean 0 random vectors and so are ε(b)(t), t = 1, · · · . For the purpose

of illustration, assume Φp,1 = Φp, Φb,1 = Φb and Φp,k = Φb,k = 0 for k > 1.

Assuming stationarity of the above auto-regressive models, it is easy to verify

the following:

(2.4) ΣX,pp = ΦpΣX,ppΦ
′
p + Σpp,

(2.5) ΣX,pb = ΦpΣX,ppΦ
′
b + Σpb,

(2.6) ΣX,bp = ΦbΣX,bpΦ
′
p + Σbp,

(2.7) ΣX,bb = ΦbΣX,bbΦ
′
b + Σbb,

Cov(Xp(t), X(p)(t− l)) = Φl
pΣX,pp ≡ Σl

X,pp,

Cov(X(p)(t), X(b)(t− l)) = Φl
pΣX,pb ≡ Σl

X,pb,

Cov(X(b)(t), X(p)(t− l)) = Φl
bΣX,bp ≡ Σl

X,bp,

Cov(X(b)(t), X(b)(t− l)) = Φl
bΣX,bb ≡ Σl

X,bb,

where Σpp, Σpb, Σbp and Σbb are covariances and cross-covariances of the random

noise variables ε(p)(t) and ε(b)(t).

Now assume that each of Σpp, Σpb, Σbp and Σbb are block diagonal matrices of

the form (2.3), that captures the spatial correlations between the flows. Further

assume that Φp and Φb are diagonal with each entry less than 1. Thus (2.4- 2.7)

imply that ΣXpp, ΣXpb, ΣXbp and ΣXbb have the same block diagonal form given

in (2.3). This in turn implies that the covariances Σl
X,pp, Σl

X,pb , Σl
X,bp and Σl

X,bb

also have the form (2.3).
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2.3 Notation and Preliminary Results

Definition II.2. For a L × J matrix A = [a1, · · · , aJ ] and M × J matrix B =

[b1, · · · , bJ ] the LM×J Khatri Rao product A¯B is defined as [a1⊗ b1, · · · , aJ ⊗ bJ ]

where ⊗ denotes the Kronecker Product.

Note that rows in A¯B are element-wise product of a row in A and a row in B.

Specifically, row g(i, j) ≡ (i − 1)L + j in A ¯ B is the element-wise product of the

ith row in A and the jthe row in B.

Lemma II.3. [26] If M × J matrix A has rank J and B has no null columns then

A¯B has rank J .

Definition II.4. The characteristic function of a J dimensional random vector X

is defined as ψ(t) = E[eιt′X ], for t ∈ RJ .

A characteristic function is called analytic if it can be represented by a convergent

power series in a vicinity of 0 [10]. For identifiability results we will usually assume

that relevant characteristic functions are either analytic or have no roots in RJ (with

appropriate J). This allows us to work with log of the characteristic function in the

vicinity of 0 or over entire RJ respectively. In the former case, due to analyticity,

the value around 0 uniquely determines the corresponding distribution [10, 26]. A

lot of well known distributions, e.g. Gaussian, Exponential, Gamma, have analytic

characteristic functions. Some heavy-tailed distribution have characteristic function

with no real roots, e.g. α-stable distributions [24, 7].

Definition II.5. For a L× J matrix A = [a1, · · · , aJ ], vec(A) ≡ (a′1, · · · , a′J)′.

We will use the same notation, vec, for matrices of different dimensions since the

meaning is clear from the context.
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Lemma II.6. If V (θ) = θ1V1 + · · · + θrVr for θ ∈ S, where S is an open subset of

Rr and Vi is J × J real matrix, for i = 1, · · · , r, then θ is identifiable from V (θ) (i.e

θ1 6= θ2 implies V (θ1) 6= V (θ2)) iff Ṽ = [vec(V1), · · · , vec(Vr)] has rank r.

Proof: Note that if V (θ1) = V (θ2) then vec(V (θ1)−V (θ2)) = vec(V (θ1−θ2)) = 0.

Substituting λ = θ1 − θ2

0 = vec(
r∑

i=1

λiVi) =
r∑

i=1

λivec(Vi)

Thus if Ṽ has rank r then λ = 0. To prove necessity note that if Ṽ λ = 0 for λ 6= 0,

there exists θ ∈ S and ε > 0 such that θ+ ελ ∈ S. However, then V (θ) = V (θ+ ελ).

¤

Corollary II.7. If U = [u1, · · · , ur] for ui ∈ RJ , i = 1, · · · , r, andV (θ) = θ1u1u
′
1 +

· · · + θruru
′
r, for θ ∈ Rr such that V (θ) ≥ 0 then θ is identifiable from V (θ) (i.e

θ1 6= θ2 implies V (θ1) 6= V (θ2)) iff U ¯ U has rank r.

Proof: Follows from the above lemma by noting vec(uiu
′
i) = ui ⊗ ui and that for

θ ∈ Rr
+, V (θ) ≥ 0.

¤

Lemma II.8. (Lemma 1.5.1 [26]) Consider the functional equation

(2.8) φ1(u+ b1v) + · · ·+ φr(u+ brv) = A(u) +B(v)

for u, v ∈ R, |u| < δ and |v| < δ. Also assume that the numbers bj are all dis-

tinct (without loss of generality) and non-zero and that complex valued functions

A,B, φ1, · · · , φr are continuous. Then, in some neighborhood of the origin, the func-

tions A,B, φ1, · · · , φr are all polynomials of degree ≤ r.

Lemma II.9. (Lemma 1.5.2 [26]) Consider the functional equation

(2.9) φ1(α
′
1t) + · · ·+ φJ(α′Jt) = ξ1(t1) + · · ·+ ξL(tL)
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defined for |ti| < δ, i = 1, · · · , L, where t ∈ RL is a column vector of variables

t1, · · · , tL and α1, · · · , αJ are the column vectors of a given L × J matrix A. Also

assume that functions φ1, · · · , φJ and ξ1, · · · , ξL are continuous. If no column of A

is proportional to another column of A or to a column of IL×L, then φ1, · · · , φJ are

necessarily polynomials of degree ≤ J .

Lemma II.10. Consider the functional equation

(2.10) φ1(α
′
1t) + · · ·+ φJ(α′Jt) = 0

defined for |ti| < δ, i = 1, · · · , L, where t ∈ RL is a column vector of variables

t1, · · · , tL and α1, · · · , αJ are the column vectors of a given L × J matrix A, with

L ≤ J . Also assume that functions φ1, · · · , φJ are continuous. If A¯A has rank J ,

then φ1, · · · , φJ are all linear functions.

Proof: A ¯ A has rank J implies that no two columns of A are proportional. If

J > L then there is at least one column in A not proportional to a column in IL×L.

Without loss of generality, let α1, · · · , αK be columns not proportional to any column

in IL×L. Then

φ1(α
′
1t) + · · ·+ φK(α′Kt) = ξ1(t1) + · · ·+ ξL(tL)

where if there exists i such that αi = ciek, for ek the kth column of IL×L, then ξk(t) =

−φk(cit) and ξk(t) = 0 otherwise. Now using Lemma II.9, φ1, · · · , φK , ξ1, · · · , ξL are

all polynomial of degree K(≤ J) at most.

Now, let

φi(u) = λiJu
J + · · ·+ λi1 + λi0

for i = 1, · · · , J . Thus

φ1(α
′
1t) + · · ·+ φJ(α′Jt) = 0
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implies that
J∑

i=1

J∑

k=0

λik(α
′
it)

k = 0

In the above expression, coefficient of t2k is
∑J

i=1 λi2α
2
ik and coefficient of tktk′ for

k 6= k′ is
∑J

i=1 λi22αikαik′ . Note that since αik is the kth element of the ith column

in A, αik = Aki. Putting all such equations together (with proper normalization and

making copies of certain equations) we get

(A¯ A)λ2 = 0

Therefore λ2 = 0. Similarly, coefficient of tk1 , tk2 , · · · , tkp is

c(k1, · · · , kp)
J∑

i=1

λipαik1 · · ·αikp

where c(k1, · · · , kp) is a positive combinatorial factor depending on which of k1, · · · , kp

are distinct. Thus

(A¯)pλp = 0

where (A¯)p = (A¯)p−1 ¯ A and (A¯)1 = A. Now from Lemma II.3, (A¯)p has

rank J for p > 1. Thus λp = 0 for p > 1.

The case of J = L is handled by noting that if there is a column in A not

proportional to a column in IL×L then the above argument is applicable. Otherwise

the only way A ¯ A can be rank J is if columns in A are proportional to distinct

columns in IL×L. Then using t = t0ek in (2.10) with ek the kth column of IL×L for

k = 1, · · · , L one gets φk(t0) = 0 for k = 1, · · · , J .

¤

Corollary II.11. If Y = AX and Xj are distributed independently for j = 1, · · · , J

and the characteristic functions of all Xj are either analytic or have no real roots,

then the distribution X is identifiable up to mean, from Y , if A¯ A has rank J .
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Proof: Suppose X
(1)
i , i = 1, · · · , J distributed independently and X

(2)
i , i =

1, · · · , J distributed independently are such that

AX(1) d
= AX(2)

Thus

logE[eιt′AX(1)

] = logE[eιt′AX(2)

]

The above expression is meaningful for ti ∈ R, i = 1, · · · , J , if the characteristic

functions of all Xi have no real roots or for ti in a vicinity of 0, i = 1, · · · , J , when

the characteristic functions of Xi are analytic. Define

φi(t) = logE[eιtX
(1)
i ]− logE[eιtX

(2)
i ]

for values of t in appropriate range. Thus

(2.11) φ1(t
′α1) + · · ·+ φJ(t′αJ) = 0

Using Lemma II.10, φ1, · · · , φJ are linear functions. Hence the distribution of X

is identifiable from distribution of Y up to a mean ambiguity for either of the two

conditions on characteristic functions of Xi, i = 1, · · · , J .

¤

Lemma II.12. (Theorem 10.3.5 [26]) Let X1 and X2 be J dimensional random

vectors whose elements are independent non-normal random variables. Further let

A1 and A2 be L× J real matrices. If A1X1
d
= A2X2 + c, for some constant c ∈ RL,

then every column in A1 is proportional to some column in A2 and vice-versa.

2.4 Spatial Dependence

Intuitively, it seems reasonable that identifiability in the presence of dependence

would rely on some notion of sparsity in the dependence structure. In this section we
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introduce three distinct but related models such that it is possible to derive conditions

under which they are respectively identifiable. The first model is the following:

Covariance Model: Assume Cov(X) = V (θ) where

(2.12) V (θ) = θ1u1u
′
1 + · · ·+ θruru

′
r

with U = [u1, · · · , ur] assumed known.

Note that a completely arbitrary covariance matrix can be modeled as above.

Specifically, an arbitrary J × J covariance matrix can be modeled by using

U = UJ ≡ [IJ×J , PJ ]

where PJ is a binary J × J(J − 1)/2 matrix with distinct columns, each of which

has exactly 2 non-zero entries. It is easy to see that for i 6= j, [V (θ)]ij = θJ+k(i,j),

where k(i, j) is the index of column in PJ with non-zero ith and j element. Further,

[V (θ)]ii = θi +
∑

j 6=i θJ+k(i,j).

In practice one would not use UJ when observations, Y = AX, are lower dimen-

sional than X, which is the case of interest. One possibility in such situations is to

assume that Cov(X) is block diagonal with J1 diagonal blocks of size J2×J2 and all

off diagonal blocks are 0. This can be easily modeled through using

(2.13) U = IJ1×J1 ⊗ UJ2

Thus the covariance model (2.12) is quite flexible and, while we do not pursue

that direction, one could construct an increasing family of such models to capture

hierarchical notions of spatial dependence. Using the identifiability results one could

ascertain which of these models are identifiable.

Modeling of covariance alone may not be sufficient in some applications. One may

be interested in modeling higher order properties of flow volumes. In fact, for certain
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networks flow volumes are known to have a heavy tailed distribution. In this case

second-order moments of flow volumes distribution would not exist. Thus we present

two separate extensions of the covariance model. Both of these are in the spirit of

factor analytic models, and are related to the covariance model through the matrix

U . They have “essentially the same sparseness pattern” in spatial dependence as the

corresponding covariance model.

Independent Component Model: We assume X = UZ where Z1, · · · , Zr are

independent random variables with U assumed known as above. Use of arbitrary

distributions for Z1, · · · , Zr allows us to model entire distribution and not just co-

variances. To prove identifiability results we will make some assumptions on the

characteristic functions of Z1, · · · , Zr as indicated in Section 2.3. When second mo-

ments of Z1, · · · , Zr exist the covariance of X is given by equation (2.12). However

the coefficients θ1, · · · , θr are restricted to be positive and equal to the variances of

Z1, · · · , Zr.

Latent Variable Model: Latent variable model corresponding to a covariance

model (defined by matrix U) is given as X = CZ where Z1, · · · , ZJ are independent

random variables and C ∈ C(U), where C(U) is a set of J × J real matrices defined

as follows. If C ∈ C(U), then C is a lower triangular matrix with all diagonal entries

equal to 1, such that for every vector d ∈ RJ
+ there is a vector θ ∈ Rr satisfying

CDiag(d)C ′ = V (θ) ≥ 0.

The set C(U) has two important properties. First, if C ∈ C(U) then CDiag(d) ∈

C(U) for all d ∈ RJ . In other words, C(U), is closed under column scaling, a fact

which is used crucially in Proposition II.13. Second, when Z1, · · · , ZJ have variances,

say d1, · · · , dJ respectively, then the covariance matrix of X = CZ, for C ∈ C(U),

is equal to CDiag(d)C ′, and hence equal to V (θ) for some θ ∈ Rr. Thus, we get



28

the correspondence between the covariance model and the latent variable model.

Note that when V (θ) is positive definite then the Cholesky decomposition gives the

corresponding unique coefficient matrix C. A necessary condition for C(U) to be

non-trivial is if U has rank J . (If not then there exists x 6= 0 such that x′ui = 0 for

all i = 1, · · · , r. Thus x′V (θ)x = 0 for all θ. Thus V (θ) cannot be positive definite

whereas CDiag(d)C ′ is positive definite whenever all elements of d are positive.)

However, this may not be sufficient for C(U) to be non-trivial. When U corresponds

to a block diagonal covariance matrix (e.g. equation (2.13)) then C(U) contains every

matrix obtained from the Cholesky decomposition of V (θ) (for all V (θ) > 0).

We will refer to C as the coefficient matrix and Z1, · · · , ZJ as the latent variables.

We will make certain assumptions, of a nature similar to those in Section 2.3, on the

characteristic function of the latent variables.

Example: Independent Connections Model Using equation (2.13), the indepen-

dent connections model of equation (2.3) is obtained using

U =




IJ/2×J/2 0 IJ/2×J/2

0 IJ/2×J/2 IJ/2×J/2




Proposition II.13. Given Y = AX, if AU ¯ AU has rank r then

1. If Cov(X) exists and is equal to V (θ) given by (2.12) then θ is identifiable from

Cov(Y ).

2. If X satisfies the Independent Component Model with Z1, · · · , Zr such that either

their characteristic functions are all analytic or all have no real roots, then the

distributions of Z1, · · · , Zr are identifiable up to mean from the distribution of

Y .

3. If U has rank J and X satisfies the latent variable model with Z1, · · · , ZJ all
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non-normal random variables such that either their characteristic functions are

all analytic or all have no real roots, then the matrix C and distributions of

Z1, · · · , ZJ are identifiable up to mean from the distribution of Y .

Proof: Identifiability of covariance model follows from a direct application of

Corollary II.7. Identifiability of independent component model follows from Corollary

II.11.

For the latent variable model proceed as follows. Suppose AC1Z1
d
= AC2Z2 + µ

such that C1, C2 ∈ C(U) and random vectors Z1, Z2 satisfy the said assumptions.

Using Lemma II.12, every column in AC1 is proportional to a column in AC2 (and

vice versa). Suppose C1 6= C2. Now consider the following two cases:

1. If columns in AC1 are proportional to distinct columns in AC2 and the propor-

tionality constants are all non-zero then

AC1 = AC2Diag(d)P

where elements of vector d are nonzero and P is a permutation matrix. Since

P ′P = I,

AC1C
′
1A

′ = AC2Diag(d
2)C ′2A

′

interpreting the square of a vector as element-wise second power. From the

definition of latent variable model there is θ1 and θ2 such that V (θ1) = C1C
′
1

and V (θ2) = C2Diag(d
2)C ′2. Since C1 6= C2, from the uniqueness of Cholesky

decomposition V (θ1) 6= V (θ2) and hence θ1 6= θ2.

2. If two columns in AC1 are proportional to each other or if there are any 0

columns in AC1 then clearly there exist vectors d1, d2 with positive elements

such that d1 6= d2 but

AC1Diag(d1)C
′
1A

′ = AC1Diag(d2)C
′
1A

′
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Again from the definition of latent variable model and uniqueness of Cholesky

decomposition there is θ1 6= θ2 such that V (θ1) = C1Diag(d1)C
′
1 and V (θ2) =

C1Diag(d2)C
′
1.

In both cases we have θ1 6= θ2 such that AV (θ1)A
′ = AV (θ2)A

′. However, this is

not a possible from the already established identifiability of covariance model. Thus

C1 = C2 and hence the coefficient matrix is identifiable. For identifiability of the dis-

tribution of latent variable vector Z up to mean we only need that AC¯AC have rank

J from Corollary II.11. If AC ¯ AC has rank less than J , then from Corollary II.7,

there exist d1, d2 ∈ RJ such that d1 6= d2 and ACDiag(d1)C
′A′ = ACDiag(d2)C

′A′.

In fact it is easy to see that d1, d2 can be chosen to have positive elements. However,

due to the uniqueness of Cholesky decomposition this implies that there exist θ1 6= θ2

such that AV (θ1)A
′ = AV (θ2)A

′, which is again not possible from the (already es-

tablished) identifiability of the corresponding covariance model.

¤

Remark: In the case of Independent Connections Model AU ¯ AU having rank

r = 3J/2 is equivalent to Bc ≡ [AF ¯AF , AF ¯AR +AR¯AF , AR¯AR] having rank

r = 3J/2. This can be shown to be the case under reasonable conditions on routing

and network structure in Section 2.7.

2.5 Spatio-Temporal Dependence

At a high level, spatio-temporal dependence can be handled using the models

developed in Section 2.4 as explained in the following. Suppose, Yt = AXt, for
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time-interval t = 1, · · · , T . Define Y = (Y ′
1 , · · · , Y ′

T )′, X = (X ′
1, · · · , X ′

T )′ and

A =




A 0 · · · 0

0 A · · · 0

...
...

. . .
...

0 0 · · · A




= IT×T ⊗ A

Then Y = AX. Suppose Cov(X) is modeled as V (θ) as given in equation (2.12)

for some U , then from Proposition II.13, θ is identifiable from Cov(Y ) if and only

if AU ¯ AU has rank r. However, one would like to explore conditions when the

identifiability conditions can be stated in terms of objects simpler than AU ¯ AU .

One such condition is as described in the following. Suppose vector θ of length r is

partitioned as θ = (θ′11, · · · , θ′TT )′ such that θij is a vector of length rij for i = 1, · · · , T

and j = 1, · · · , i and
∑T

i=1

∑i
j=1 rij = r. Further, assume Cov(Xi, Xj) = Vij(θij) for

j ≤ i i.e.

V (θ) =




V11(θ11) · · · V ′
T1(θT1)

...
. . .

...

VT1(θT1) · · · VTT (θTT )




Clearly Vii(·) should map into symmetric matrices while there is no such restriction

for Vij(·) for j < i. We can rewrite V (θ) as

(2.14) V (θ) =
T∑

i=2

i−1∑
j=1

Uij ⊗ Vij(θij) + U ′ij ⊗ V ′
ij(θij) +

T∑
i=1

Uii ⊗ Vii(θii)

where Uij is a T × T matrix with (i, j)th element equal to 1 and all other elements

equal to 0. The following Proposition holds for such V (θ).

Proposition II.14. If V (θ) satisfies (2.14) then V (θ(1)) = V (θ(2)) implies θ(1) = θ(2)

iff Vij(φ
(1)) = Vij(φ

(2)) implies φ(1) = φ(2) for all i = 1, · · · , T and all j = 1, · · · , i.
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Proof: Straightforward since θij represents a partition of θ and Vij represents the

corresponding partition of V .

¤

The advantage of such models is as follows. Suppose Cov(X) = V (θ) specified by

equation (2.14). Then Cov(Y ) = AV (θ)A
′
. However,

A(Uij ⊗ Vij(θij))A
′

= (I ⊗ A)(Uij ⊗ Vij(θij))A
′

= (Uij ⊗ AVij(θij))A
′

= (Uij ⊗ AVij(θij))(I ⊗ A′)

= Uij ⊗ AVij(θij)A
′

Thus Cov(Y ) = AV (θ)A
′
= VY (θ) where

VY (θ) =
T∑

i=2

i−1∑
j=1

Uij ⊗ (AVij(θij)A
′) + U ′ij ⊗ (AV ′

ij(θij)A
′) +

T∑
i=1

Uii ⊗ (AVii(θii)A
′)

Now using Proposition II.14, the necessary and sufficient condition for identifiabil-

ity of θ from Cov(Y ) is that AVij(φ
(1))A′ = AVij(φ

(2))A′ implies φ(1) = φ(2) for all

i = 1, · · · , T and all j = 1, · · · , i.

Example Continued:

To extend the independent connections model to multiple time intervals, we assume

that non-zero covariances are possible only between flow volumes belonging to the

same flow pair but possibly different time intervals. This implies that for j < i,

Cov(Xi, Xj) is of the form

(2.15) Vij(φ) =
J∑

k=1

φkDk +
J∑

k=1

φJ+kEk
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for φ ∈ R2J , Dk a J × J matrix such that

[Dk]lm =





1 k = l = m

0 otherwise

and Ek a J × J matrix such that

[Ek]lm =





1 k = l = m mod J/2 and l > m

0 otherwise

Here Dk, k = 1, · · · , J , serve as a basis for diagonal elements and Ek, k = 1, · · · , J ,

serve as a basis for the acceptable off diagonal elements. Further, Cov(Xi, Xi) is of

the form

Vii(φ) =
J∑

k=1

φkDk +

J/2∑

k=1

φJ+k(Ek + E ′
k)

for φ ∈ R3J/2.

With the above representation of Vij(·), using lemma II.6 and Proposition II.14,

θ is identifiable from Cov(Y ) for T > 1 if and only if

B = [vec(AD1A
′), · · · , vec(ADJA

′), vec(AE1A
′), · · · , vec(AEJA

′)]

has rank 2J and

Bc = [vec(AD1A
′), · · · , vec(ADJA

′), vec(A(E1 +E ′
1)A

′), · · · , vec(A(EJ/2 +E ′
J/2)A

′)]

has rank 3J/2. Clearly, the latter follows from the former.

Note that ADkA
′ = aka

′
k and AEkA

′ = aka{k} where ak is the kth column of A

and {k} = (k + J/2− 1 mod J/2) + 1. Thus

B = [vec(a1a
′
1), · · · , vec(aJa

′
J), vec(a1a

′
{1}), · · · , vec(aJa

′
{J})]

and

Bc = [vec(a1a
′
1), · · · , vec(aJa

′
J), vec(a1a

′
{1}+a{1}a

′
1), · · · , vec(aJ/2a

′
{J/2}+a{J/2}a

′
J/2)]
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Finally, if A is partitioned as [AF , AR] then

(2.16) B = [AF ¯ AF , AR ¯ AR, AF ¯ AR, AR ¯ AF ]

and

(2.17) Bc = [AF ¯ AF , AR ¯ AR, AF ¯ AR + AR ¯ AF ]

2.6 Multimodal Tomography and Temporal Dependence

Proposition II.15. Suppose YP = AXP and YB = AXB with (XPi, XBi)
′, dis-

tributed independently for i = 1, · · · , J and

(2.18) B = A¯ A

has rank J and the joint characteristic functions of (XPi, XBi)
′ are either analytic

for all i = 1, · · · , J or have no roots in R2 for all i = 1, · · · , J . Then the distribution

of (X ′
P , X

′
B)′ is identifiable from (Y ′

P , Y
′
B) up to a mean ambiguity.

Proof: Suppose (X
(1)
Pi , X

(1)
Bi )

′, i = 1, · · · , J distributed independently and (X
(2)
Pi , X

(2)
Bi )

′,

i = 1, · · · , J distributed independently are such that



AX
(1)
P

AX
(1)
B


 d

=




AX
(2)
P

AX
(2)
B




Thus

logE[eι(t′P AX
(1)
P +t′BAX

(1)
B )] = logE[eι(t′P AX

(2)
P +t′BAX

(2)
B )]

for appropriate range of values of tP and tB (as in Corollary II.11) Define

φi(t, s) = logE[eι(tX
(1)
Pi +tX

(1)
Bi )]− logE[eι(tX

(2)
Pi +tX

(2)
Bi )]

Thus

(2.19) φ1(t
′
Pα1, t

′
Bα1) + · · ·+ φJ(t′PαJ , t

′
BαJ) = 0
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For a fixed tP , using Lemma II.10, φ1, · · · , φJ are linear functions in their second

argument. Similarly, they are linear in their first argument. Thus φ1, · · · , φJ are

bi linear. However, with tP = tB and using Lemma II.10, φ1(u, u), · · · , φJ(u, u) are

linear in u. Thus φ1, · · · , φJ are linear functions. Hence (X ′
P , X

′
B)′ is identifiable

from (Y ′
P , Y

′
B) up to a mean ambiguity through an argument similar to Corollary

II.11.

¤

Remark: The above argument can be easily extended to multimodal tomography

and time dependence.

Corollary II.16. Independent Sub-Flow Model

Suppose




XPi

XBi


 =




1 · · · 1

s1 · · · sS







Z1i

...

ZSi




where 0 < s1 < · · · < sS and Zki are distributed independently for k = 1, · · · , S

and i = 1, · · · , J . Then under the conditions of the above Proposition the log of

characteristic functions of Z1i, · · · , ZSi; i = 1, · · · , J are uniquely defined up to a

polynomial of degree max(S − 2, 1) in a neighborhood of the origin. Consequently,

if the nth order cumulants of Z1i, · · · , ZSi; i = 1, · · · , J are assumed to exist for

n > max(S − 2, 1), then these cumulants are identifiable.

Remark: More discussion on this model is provided in Section 3.2.2 and Section

3.7. Note that the above model makes the problem even more “under-constrained”

since the model now involves S × J unobserved random variables but only a 2L
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dimensional observed random vector. Thus, even this “weaker identifiability result”

is interesting.

Proof: We have shown that the joint distributions (XPi, XBi); i = 1, · · · , J are

uniquely identified up to mean. Suppose Z
(1)
ki distributed independently for k =

1, · · · , S and i = 1, · · · , J and Z
(2)
ki distributed independently for k = 1, · · · , S and

i = 1, · · · , J be such that the distributions of




X
(1)
Pi

X
(1)
Bi


 =




1 · · · 1

s1 · · · sS







Z
(1)
1i

...

Z
(1)
Si




and




X
(2)
Pi

X
(2)
Bi


 =




1 · · · 1

s1 · · · sS







Z
(2)
1i

...

Z
(2)
Si




differ only in mean.

Thus

φi(t, s) = logE[eι(tX
(1)
Pi +tX

(1)
Bi )]− logE[eι(tX

(2)
Pi +tX

(2)
Bi )] = ait+ bis

Define φki(t) = logE exp ιtZ
(1)
ki − logE exp ιtZ

(2)
ki . Then

φi(t1, t2) =
S∑

k=1

φki(t1 + t2sk)

Therefore
S∑

k=1

φki(t1 + t2sk) = ait1 + bit2

Using Lemma II.8 φki are polynomials of degree less than or equal to S.

Now suppose S ≥ 3. If λjki is the jth order term in φki then using the same
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argument as in Lemma II.10

(A¯)j




λj1i

...

λjSi




= 0

for

A =




1 · · · 1

s1 · · · sS




and j > 1.

We will show that (A¯)S−1 is full rank and thus λjki are 0 for j = S − 1, S and

i = 1, · · · , J and k = 1, · · · , S. Note that (A¯)S−1 contains the matrix



1 · · · 1

s1 · · · sS

...
. . .

...

sS−1
1 · · · sS−1

S




which is a Vandermonde matrix and hence full rank. Further, (A¯)S is full rank

from Lemma II.3.

¤

Remark: A constructive proof of the above is given in Section 2.8.3.

Corollary II.17. Compound Model

Suppose

1. Prob(XP ∈ N) = 1 and

2. The distribution of XP is non-trivial i.e. there is no n ∈ N such that Prob(XP =

n) = 1 and
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3. XB =
∑XP

i=1 Si where XP , S1, S2, · · · are distributed independently and S1, S2, · · ·

are distributed identically and

4. The distribution of S1 is non-trivial i.e. there is no s ∈ R such that Prob(S1 =

s) = 1.

Under the conditions of the above Proposition and additionally the above assump-

tions of a compound model on each (XPi, XBi)
′ for i = 1, · · · , J , the distribution of

(X ′
P , X

′
B)′ is fully identifiable.

Remark: More discussion on this model is provided in Section 3.2.1. Note that

this is the only model in this chapter where the mean is also identifiable.

Proof: We have already shown that the distributions of (XPi, XBi)
′ are identifi-

able up to mean. We will show that two distributions of (XPi, XBi)
′ satisfying the

compound model cannot differ in mean.

Suppose

(2.20)




X
(1)
P

X
(1)
B


 d

=




X
(2)
P

X
(2)
B


 +




nP

cB




for nP ≥ 0 (without loss of generality) and the joint distributions of (X
(1)
P , X

(1)
B )′ and

(X
(2)
P , X

(2)
B )′ satisfying the assumptions of the compound model, specifically

X
(1)
B =

X
(1)
P∑

i=1

S
(1)
i

and

X
(2)
B =

X
(2)
P∑

i=1

S
(2)
i

From (2.20)

X
(1)
B |X(1)

P = n
d
= X

(2)
B + cB|X(2)

P = n− nP
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Since the distributions of X
(1)
P and X

(2)
P are assumed to be non-trivial from the

definition of the compound model, there exist n1, n2 with n1 < n2 such that

(2.21) S
(1)
1 + · · ·+ S(1)

ni

d
= S

(2)
1 + · · ·+ S

(2)
ni−nP

+ cB

for ni = n1, n2.

Now, clearly n1 ≥ nP . If n1 = nP then n1 = 0 since the right hand side of (2.21)

is deterministic and the distribution of S
(1)
1 is non-trivial. This in turn implies that

cB = 0 and we are done. Now assume 0 ≤ nP < n1 < n2 and define

φk(t) = logE[eιtS
(k)
1 ]

in a neighborhood of 0 and for k = 1, 2. Now (2.21) can be written as

niφ1(t) = (ni − nP )φ2(t) + ιtcB

for ni = n1, n2. Since 0 < n1 < n2 we can eliminate φ1(t) from the two equations to

get (
n1 − nP

n1

)
φ2(t) +

ιtcB
n1

=

(
n2 − nP

n2

)
φ2(t) +

ιtcB
n2

and thus

nP (n1 − n2)

n1n2

φ2(t) =
ιtcB(n1 − n2)

n1n2

If nP = 0 then cB = 0 and we are done. Otherwise, φ2(t) is given as linear function in

t in a vicinity of 0. If the characteristic function is analytic at 0 then the distribution

is determined by the characteristic function in the vicinity of 0. Further, if the log of

characteristic function is linear then the corresponding distribution is trivial in the

sense not allowed for distribution of XP in the definition of compound model. Thus

we get a contradiction.

¤
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2.7 Sufficient Conditions on Routing for Identifiability

In this Section, we derive sufficient conditions on the network routing that guar-

antee full rankness of the matrices appearing in previous identifiability theorems.

2.7.1 Independent Connections Model and Minimum Weight Routing

Recall from Section 2.5 that for K = 1, the second order cumulants, ΣX , of the

independent connections model ( 2.15), are identifiable if and only if Bc is full rank.

For K > 1, the second order cumulants of the independent connections model are

identifiable if and only if B is full rank.

In the following, assume that the routing matrix, A, is binary and that each flow

traverses exactly one path (deterministic routing), i.e. |P(j)| = 1 for j = 1, · · · , J .

Define the operator R(·) on paths such that if path P = (m1,m2, · · · ,mk−1,mk)

then

R(P ) = (mk,mk−1, · · · ,m2,m1).

Also, if P is a set of paths then R(P) = {R(P ) : P ∈ P}. A weighted graph

has positive weights associated with each edge, W(e) > 0 for all e ∈ E, the edge

set. The weight of a path P is defined as the sum of weights of all edges in it, i.e.

W(P ) =
∑

e∈P W(e). We call a (directed) graph symmetric, if the weight on edge

(n1, n2) is the same as the weight on edge (n2, n1), for all edges (n1, n2). A path P

from node n1 to node n2 is called a minimum weight path, if there is no path P ′

from n1 to n2 with W(P ′) < W(P ). Also, we will call a (minimum weight) routing

scheme balanced if the path of the flow from node n1 to node n2 is the reverse of

the flow from n2 to n1. In other words, if the traffic from a node n1 to a node n2 is

carried on path P , then the traffic from node n2 to n1 is carried on R(P ).

Lemma II.18. Given a symmetric directed graph the following are true:
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1. Given any non-empty set P of minimum weight paths, there exist (possibly iden-

tical) edges (f1, f2) and (l1, l2) such that (f1, l2) is the unique pair of nodes

(k1, k2), for which there exists a minimum weight path P1 ∈ P from k1 to k2

containing edges (f1, f2) and (l1, l2). These edges are the first and last edges of

a path with maximum weight in the set P.

2. Given non-empty disjoint sets P1,P2 of minimum weight paths such thatR(P1) =

P2, there exist edges (f1, f2) and (l2, l1) such that (f1, l2) is the unique pair

of nodes (k1, k2) for which there exist minimum weight paths P1 ∈ P1 and

P2 = R(P1) from k1 to k2 and from k2 to k1, respectively, containing edges

(f1, f2) and (l2, l1) respectively. These edges are the first edges of paths PM and

R(PM) respectively where PM is a path with maximum weight in the set P1.

3. Let (f1, f2) and (l1, l2) be the (possibly identical) first and last edges of a mini-

mum weight path P . Then, there is no node pair, k1 and k2, such that (f1, f2)

lies in a minimum weight path P1 from k1 to k2 and (l1, l2) lies in R(P1). Also,

there is no node pair k1 and k2 such that (f1, f2) and (l2, l1) belong to a minimum

weight path from k1 to k2.

Proof. To prove the first two claims note that if P1 = (f1, f2, · · · , l1, l2) is a

minimum weight path then any path P2 that contains edges (f1, f2) and (l1, l2) will

have weight greater than P1 unless it is also a (minimum weight) path from f1 to

l2. This becomes clear when one considers the two possible cases, i.e. if edge (f1, f2)

precedes edge (l1, l2) in P2 or if edge (l1, l2) precedes edge (f1, f2) in P2. In both cases

P2 would have a larger weight than P1. The first two claims now follow easily.

The third claim can be proved by contradiction. Suppose there exist nodes k1, k2,

minimum weight path P1 from k1 to k2 and path P2 = R(P1) such that edge (f1, f2)
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lies in P1 and edge (l1, l2) lies in P2. This implies that (l2, l1) lies in P1. We will show

that P and P1 cannot both be minimum weight and this proves both assertions of

the third claim. In the following “+” represents the concatenation operation where

appropriate and W(P ) is the weight of the path P . Clearly (f1, f2) = (l1, l2) is not

possible as that would mean the P1 contains both (f1, f2) and (f2, f1) = (l2, l1). Let

S be the (minimum weight) path from f2 to l1 in P . Now P1 can have 2 possible

structures:

f l lf1 2 1 2S

2S

Figure 2.8: Lemma II.18, Case 1

f l lf1 2 1 2S

2S

Figure 2.9: Lemma II.18, Case 2

• Case 1. P1 = S1 + (f1, f2) + S2 + (l2, l1) + S3 (figure 2.8)

Since both P and P1 are minimum weight paths, we have that

W(S2) = W(S) +W(l1, l2)

This implies that

W(S2) +W((l2, l1)) >W(S)

which gives that P1 is not a minimum weight path.
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• Case 2. P1 = S1 + (l2, l1) + S2 + (f1, f2) + S3 (Figure 2.9)

Since both P and P1 are minimum weight paths, we get that

W(S2) = W(S) +W(f1, f2)

This implies that

W(S2) +W((f1, f2)) >W(S)

Assuming symmetric weights, the weight of R(S) is also W(S). This in turn

implies that P1 is not a minimum weight path.

This proves the third claim and hence the Lemma.

¤

One can now establish the following:

Proposition II.19. Under balanced minimum weight routing on a symmetric graph

the matrix B (equation (2.16)) is full rank.

Proof. Trivially re-define B as

(2.22) B = [AF ¯ AF , AF ¯ AR, AR ¯ AF , AR ¯ AR]

Let

v ≡ B




vFF

vFR

vRF

vRR




= 0,

where vFF , vFR, vRF , vRR ∈ RJ/2. We need to show that vFF = vFR = vRF = vRR = 0.

Let F(i, F ) be the forward flow path for node pair i and F(i, R) the reverse flow path

for the same node pair i, i = 1, · · · , J/2. Here the ordering of node-pairs corresponds



44

to the ordering of flows assumed in XF and XR in equation (2.2). Define operators

PF and PR which map a set of indices to sets of paths as follows:

PF (I) = {P : P = F(i, F ) for some i ∈ I},

PR(I) = {P : P = F(i, R) for some i ∈ I}.

Now, define

A = {F(i, F ) : vFF (i) 6= 0} ∪ {F(i, R) : vRR(i) 6= 0}

and

I = {i : vFR(i) 6= 0} ∪ {i : vRF (i) 6= 0}.

We will show that when A is non empty, there exists an element in v which is non-

zero and when I is non empty there exists another element in v which is non-zero.

Use A as the set of paths in the first part of Lemma II.18 to identify edges (f1, f2)

and (l1, l2) which are traversed by exactly one flow (say) FM ∈ A. Now, recall that

each ordered pair of link indices (r1, r2), corresponds to a row g(r1, r2) in B. Consider

the row of B corresponding to (f1, f2) and (l1, l2):

r1 = (r
(1)
FF , r

(1)
FR, r

(1)
RF , r

(1)
RR).

Note that elements of r
(1)
FF and r

(1)
RR indicate the forward and reverse flows common

to links (f1, f2) and (l1, l2), elements of r
(1)
FR indicate node-pairs for which forward

flow traverses (f1, f2) while reverse flow traverses (l1, l2) and elements of r
(1)
RF indicate

node-pairs for which reverse flow traverses (f1, f2) while forward flow traverses (l1, l2)

. We then claim the following:

1. r
(1)
FF (i) 6= 0 and vFF (i) 6= 0 if and only if F(i, F ) = FM .

2. r
(1)
RR(i) 6= 0 and vRR(i) 6= 0 if and only if F(i, R) = FM .
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3. r
(1)
FR(i) = r

(1)
RF (i) = 0 for all i.

The first two claims follow directly from the first part of Lemma II.18. The third

claim follows from the third part of Lemma II.18. Therefore,

r1




vFF

vFR

vRF

vRR




6= 0

and we obtain a contradiction.

Now use PF (I) and PR(I) as the sets of paths in the second part of Lemma

II.18 to identify edges (n1,m1) and (n2,m2) which are traversed by the forward and

reverse flows (or vice versa) of exactly one node pair, say the iM -th node pair, iM ∈ I.

Consider the row of B corresponding to (n1,m1) and (n2,m2):

r2 = (r
(2)
FF , r

(2)
FR, r

(2)
RF , r

(2)
RR).

Note that r
(2)
FR(i)r

(2)
RF (i) = 0 for all i. Now we claim the following:

1. |r(2)
FR(i)vFR(i)|+ |r(2)

RF (i)vRF (i)| 6= 0 if and only if i = iM .

2. r2
FF (i) = r2

RR(i) = 0 for all i.

The first claim follows directly from the second part of Lemma II.18. The second

claim follows from the third part of Lemma II.18. Therefore,

r2




vFF

vFR

vRF

vRR




6= 0.
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Thus at least one of the rows of v will be non-zero for A and/or I non-empty. This

completes the proof of the result. ¤

Corollary II.20. The matrix Bc (equation (2.17)) and B (equation (2.18)) are full

rank under balanced minimum weight routing on a symmetric graph.

2.7.2 Independent Connections Model and Hierarchical Graphs

The conditions of minimum cost routing and deterministic routing are not re-

quired for proving identifiability in special classes of networks. In one of the early

papers on network tomography, Cao et.al [6] proved that under independence, flow

volume variances are identifiable if the network has a hierarchical structure. In such

a structure, there exists a set of “internal” nodes that neither generate nor sink traf-

fic. Flows exist only between pairs of non-internal (terminal) nodes, which are only

connected to internal nodes and not to other non-internal nodes directly. This is a

reasonable model if the network under consideration corresponds to a combination

of a backbone network and sub networks, with the latter being connected amongst

themselves through the backbone network. Hence, the nodes of the backbone net-

work are considered internal nodes.

When there is no dependence between forward and reverse flows and only one type

of measurement is considered, identifiability depends on full rankness of B = A¯A.

The matrix B can easily be shown to be full rank for hierarchical networks. The

proof (see [6]) rests on the fact that for all flows, there exist rows in B which have

exactly one non-zero entry occurring at the corresponding indices. For any flow,

consider the edge that connects the source node to the first internal node and the

edge that connects the last internal node to the destination node. The only flow

common to these two edges is the flow under consideration. Thus, the row in B
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corresponding to this pair of edges has exactly one non-zero entry occurring at the

index corresponding to the flow under consideration. Notice that neither minimum

cost routing, nor deterministic routing is required for the argument. In fact, the

matrix B (equation (2.16)), and hence Bc (equation (2.17)), can be shown to be

full rank, which implies identifiability, as previously argued, under the independent

connections model.

Proposition II.21. The matrix B (equation (2.22)) is full rank for hierarchical

networks.

Proof. We will prove that given i ∈ {1, · · · , 2J} there exists a row r in B such

that r is the ith row of a 2J × 2J identity matrix. Index i corresponds to flow pair

i′ = ((i− 1) mod J/2)+1. For i ∈ {1, · · · , J/2} (i ∈ {3J/2, · · · , 2J}) choose ordered

pair (i1, i2) to be the indices of the first and last edges respectively of the forward

(reverse) flow of flow-pair i′. For i ∈ {J/2+1, · · · , J} (i ∈ {J+1, · · · , 3J/2}) choose

ordered pair (i1, i2) to be the indices of the first edges respectively of the forward

and reverse (reverse and forward) flows of flow-pair i′. Now, choosing r to be the

g(i1, i2)-th row of B gives the required result. ¤

In the following, we use a similar idea to prove full rankness of B = A¯ A.

2.7.3 Directed Acyclic Graphs

A directed graph with no cycles is called a Directed Acyclic Graph (DAG). An

important example of a DAG is a tree. Clearly there are no reverse (say) flows and

A = AF . Thus, identifiability depends on the full rankness of B = A¯ A.

Proposition II.22. For a directed acyclic graph, the matrix B is full rank.

Proof. Note that all finite DAG have at least one root node. Define d(n) for a

node n to be the maximum of length of paths from any root node to n. Also define
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d(n) = 0 for n being a root node. Note that if there is a path from node n1 to node

n2 of length l, then d(n1) ≤ l+ d(n2). For flow f , define d̃(f) = d(n2)− d(n1), where

n2 and n1 are the destination and origin nodes of flow f , respectively.

Now suppose Bx = 0 for x 6= 0. Consider the set Px of paths traversed by flows

corresponding to non-zero entries in x. Let P be defined as follows:

P =
argmax

P ′ ∈ Px

d̃(P ′).

Let e1, e2 be the first and last edges of P , and n1, n2 its origin and destination

node, respectively. It can be shown that the flow f from n1 to n2 is the only flow

for which the corresponding entry is non-zero in x and that traverses both e1 and e2.

If not, let f ′ be another flow corresponding to a non-zero entry in x that traverses

both e1 and e2. Let n′1 and n′2 be the origin and destination nodes of flow f ′. Since

e1 is traversed by f ′, there exists a path from n′1 to n1 and thus d(n′1) ≤ d(n1), with

equality if and only if n′1 = n1. Similarly, d(n′2) ≥ d(n2), with equality if and only

if n′2 = n2. Thus, for any path P ′ of f ′, d̃(P ′) ≥ d̃(P ), with equality if and only if

n′1 = n1 and n′2 = n2. But P ′ ∈ P , since f ′ corresponds to a non-zero entry in x.

Thus f ′ = f .

Now, consider the row r in B corresponding to edges e1 and e2. There is exactly

one index i for which xi 6= 0 and ri 6= 0. Thus, Bx 6= 0 which is a contradiction. ¤

Remark: Note that the above proof does not require deterministic routing. Further, it

seems that it does not require minimum cost routing. However, it is easy to construct

weights, such that any routing scheme in a DAG is a minimum cost routing scheme.

Simply use d(n2)− d(n1) as the weight of the edge from n1 to n2. A telescoping sum

argument implies that any path from a node n1 to node n2 has weight d(n2)− d(n1)
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and therefore all paths are minimum cost ones.

Remark: Also note that in general, first moments of flows would not be identifiable in

a DAG based on link measurements alone as the matrix A would have more columns

than rows. However, A can be shown to be full rank for DAGs under the following

conditions:

1. Only flows originating at a root node are present.

2. Only flows terminating at a leaf node are present.

The proof is straightforward. Assume that the first condition is true (the argument

for the second condition is analogous). Suppose Ax = 0 for a non-zero x. Let P

be the set of paths traversed by flows corresponding to non-zero entries in x. Select

P ∈ P with maximum weight under the weighting scheme described above. Let r be

the row in A corresponding to the last edge in P . Then, rixi 6= 0 if and only if flow

i corresponds to P . Hence, rx 6= 0 and we obtain a contradiction.

2.8 Discussion and Future Work

2.8.1 Connections with Prior Results

Some of the results presented in this chapter are closely related to previous results

in literature. Lemma II.10 is a slightly stronger version of Lemma 1.5.4 in [26] under

stronger conditions. Corollary II.11 is a slightly stronger version of Theorem 1 in

[7]. A somewhat incomplete outline of the equivalent of Proposition II.19 for the

independence case appears in [42]. As already noted the equivalent of Proposition

II.21 for the independence case is shown in [6]. Finally, the equivalent of Propositions

II.19 and II.21 for the independence case for delay/loss tomography are well known

[7]. The remaining results do not have a close analogue in existing literature.
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2.8.2 Spatial Block Independence

While the spatial dependence models in Section 2.4 are fairly general, there still

remains the question of whether it is possible to prove results approaching the gen-

erality of those in Section 2.6. Note that spatial dependence is naturally harder to

handle than inter-modality dependence or temporal dependence, since it is the spa-

tial domain where the problem is under-constrained. Nevertheless, it is tempting to

attempt to use the techniques from Section 2.6 to prove general identifiability results

when the flows can be partitioned into blocks, each independent of the other. We

refer to this as spatial block independence and the independent connections model

of equation (2.3) is a special case. However, in trying to use the technique of Propo-

sition II.15 one quickly realizes that Lemma II.10 is no longer useful. It appears

that, what is called for is a version of Lemma II.10 that deals with multivariable

functions. Note that in the proof of Proposition II.15 we were able to handle mul-

tivariable functions through repeated use of Lemma II.10. However, spatial block

independence does not appear amenable to a similar technique.

2.8.3 A Constructive Proof of Corollary II.16

It is straightforward to give a constructive proof of Corollary II.16 in that it

naturally suggests a method of moments estimator for the identifiable cumulants.

Assume that for some n > 1 the n-th order cumulants of Zki (defined in Corollary

II.16) exist for k = 1, · · · , S and i = 1, · · · , J . We additionally assume that the

routing matrix A is binary.

Proof: Let

φki(t) = logE exp tZki
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for random variables Zki, k = 1, · · · , S and i = 1, · · · , J . Then

(2.23) logE[et1YPj1
+t2YPj2 ] =

S∑

k=1

J∑
i=1

φki(t1aj1i + t2aj2i)

for t1, t2 in a vicinity of 0 and aji = [A]ji for j = 1, · · · , L and i = 1, · · · , J . Also

recall that row g(j1, j2) ≡ (j1 − 1)L+ j2 in B ≡ A¯ A is equal to the element-wise

product of row j1 and j2 in A. Define vector φ
(n−k,k)
PP of length L2 as

[φ
(n−k,k)
PP ]g(j1,j2) =

∂n logE[et1YPj1
+t2YPj2 ]

∂tn−k
1 ∂tk2

|(t1,t2)=(0,0)

This is the vector of observed cumulants. Further, define S × J matrix of nth order

(unobserved) cumulants Φn as

[Φn]ki =
∂nφki(t)

∂tn
|t=0

Using equation (2.23) and after some algebra, it is easy to see that

(2.24) φ
(n−k,k)
PP = BΦ′

n1

where 1 is a vector of length S with all entries equal to 1.

Now, define φ
(n−k,k)
PB and φ

(n−k,k)
BB ,both of length L2 as

[φ
(n−k,k)
PB ]g(j1,j2) =

∂n logE[et1YPj1
+t2YBj2 ]

∂tn−k
1 ∂tk2

|(t1,t2)=(0,0)

and

[φ
(n−k,k)
BB ]g(j1,j2) =

∂n logE[et1YBj1
+t2YBj2 ]

∂tn−k
1 ∂tk2

|(t1,t2)=(0,0)

Similar to equation (2.24) it is easy to show

(2.25) φ
(n−k,k)
PB = BΦ′

ns
(k)

and

(2.26) φ
(n−k,k)
BB = BΦ′

ns
(n)
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where s(k) is a vector of length S with m-th entry equal to sk
m, and s1, · · · , sS as

defined in Corollary II.16. Thus

Φ
(n)
Y ≡ [φ

(1,n−1)
PP , φ

(n−1,1)
PB , · · · , φ(1,n−1)

PB , φ
(1,n−1)
BB ] = BΦ′

n[1, s(1), · · · , s(n−1), s(n)]

This implies

vec(Φ
(n)
Y ) =

([
1, s(1), · · · , s(n)

]′ ⊗B
)
vec(Φ′

n) ≡ Bnvec(Φ
′
n)

Since B is assumed to be full rank, from the property of Kronecker product, Bn is

full rank if

[
1, s(1), · · · , s(n)

]

is full rank. The above is a Vandermonde matrix and is full rank for n > S−2. Thus

unobserved cumulants vec(Φ′
n) are identifiable from observed cumulants vec(Φ

(n)
Y ) if

n > max(S − 2, 1).

¤

2.8.4 State Space Models

One common way to describe spatio-temporal dependence is through state space

models and one would like to study identifiability under such models. A state space

model corresponding to the current context can be defined as follows. Suppose

X0, X1, · · · , be J dimensional random vectors each with mean 0. We assume and

(2.27) Xt = CXt−1 + εt

where C ∈ C and Cov(εt) = Σ ∈ S. Further, we assume

(2.28) Yt = AXt
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We would like to investigate conditions on A with respect to C and S under which

C and Σ are identifiable from Cov(Yt, Yt+h) for t = 1, · · · , T and h = 0, · · · , T − t.

Note that if C only includes matrices with spectral radius less than 1, then there

exists a Φ, such that for Cov(X0) = Φ the above state space model is stationary. In

fact,

Φ = CΦC ′ + Σ

which can be solved as

vec(Φ) = (I − C ⊗ C)−1vec(Σ)

Further, Cov(Xt+h, Xt) = ChΦ. Thus Cov(Yt+h, Yt) = AChΦA′ and

vec(Cov(Yt+h, Yt)) = vec(AChΦA′)

= (A⊗ (ACh))vec(Φ)

= (A⊗ (ACh))(I − C ⊗ C)−1vec(Σ)(2.29)

However, the above expression is highly non-linear in the quantities of interest, i.e.

C and Σ. Thus the question of identifiability of C and Σ from Cov(Yt+h, Yt), for

t = 1, · · · , T and h = 0, · · · , T − t, cannot be straightforwardly addressed using

techniques of Section 2.4.

2.8.5 Network routing and a counter-example.

In Section 2.7.1, it was shown that minimum cost routing and symmetric weights

was sufficient to ensure the full rankness of the B, and hence B, matrices. The

following example shows that absence of these conditions renders the result invalid.
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Consider the network shown in Figure 2.7. Here




Y(1,2)

Y(2,3)

Y(3,4)

Y(4,1)




=




1 1 1 0 0 0 0 0 0 1 1 1

0 1 1 1 1 0 1 0 0 0 0 1

0 0 1 0 1 1 1 1 0 1 0 0

0 0 0 0 0 0 1 1 1 1 1 1







X(1,2)

X(1,3)

X(1,4)

X(2,3)

X(2,4)

X(3,4)

X(2,1)

X(3,1)

X(4,1)

X(3,2)

X(4,2)

X(4,3)




.

Denote by A the matrix above. Thus, neglecting the repetitions in B = A ¯ A we

get

B =




1 1 1 0 0 0 0 0 0 1 1 1

0 1 1 0 0 0 0 0 0 0 0 1

0 1 1 1 1 0 1 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0 0

0 0 1 0 1 0 1 0 0 0 0 0

0 0 1 0 1 1 1 1 0 1 0 0

0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 1 1 0 1 0 0

0 0 0 0 0 0 1 1 1 1 1 1




.
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Note that in this case B is a 10 × 12 matrix and thus cannot be full rank. If

symmetric weights are enforced, but not minimum cost routing (or vice-versa) the

example would still hold. This example shows that in the absence of minimum cost

routing or symmetric weights, then the full rankness of B (and hence B) is not

guaranteed.

2.8.6 Weaker conditions on Routing for Identifiability

The above counter-example shows that the only possibility of relaxing the condi-

tions for Proposition II.19 is to prove the result under non-deterministic routing. To

be able to apply the same techniques as in the current proof, given vector x 6= 0 we

should be able to identify a row r in B (or B = A¯A for the independence case) such

that rixi 6= 0 for exactly one i. The row r is identified as the row corresponding to

the terminal edges of a “maximal” flow. For minimum cost, balanced and determin-

istic routing, a maximal flow is just the longest flow of a set. For non-deterministic

routing a maximal flow P , given a set of flows P would need to satisfy the following.

P ∈ P is maximal if there is no pair of node n1 and n2 such that there are paths

P1, P2 ∈ P where Pi is from n1 to n2 or vice-versa for i = {1, 2} and P1 traverses

the first edge of P and P2 traverses the last edge of P . Simply choosing a path with

largest weight in P would not suffice in this case. It is not clear if such a maximal

flow always exists.

In summary, extending Proposition II.19 to the case of non-deterministic routing

remains an open problem.



CHAPTER III

Dual Modality Network Tomography

3.1 Introduction

The classical network tomography [47, 6] setup does not consider packet volumes

and byte volumes simultaneously. In this chapter, we use the fact that these two

measures of flow volume are related through the packet size distribution. Motivated

by empirical evidence, we investigate two models that capture the relationship be-

tween packet and byte volumes. In the first model, we assume a compound structure

for the byte volume with the packet volume as the compounding variable. In the

second model, we assume that each flow is made up of independent sub-flows, each

with a fixed packet size. For both models we make some network wide assumptions

in the spirit of classical network tomography. These assumptions attempt to utilize

the structural relationship between packet volume and byte volume of a flow. They

can be viewed as a type of regularization that enables us to estimate flow volume

means from aggregated data. The models introduced in this study try to capture the

main characteristics of the packets-bytes relationship, although the true one may be

more complex as evidenced by the plots of three flows obtained from real network

traces shown in Figure 3.1. Experience suggests that such complex relationships

tend to be present in not highly aggregated flows. The remainder of the chapter is
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(a) (b) (c)

Figure 3.1: Byte volume versus packet volume for 3 observed flows

organized as follows: in Section 3.2 we introduce the proposed flow volumes, while

in Section 3.3 we address identifiability issues. In Section 3.4 we study estimation

of the models based on a pseudo-likelihood framework and establish consistency and

asymptotic normality of the estimators. The performance of the models on simulated

and emulated data is assessed in Section 3.5. The issue of estimating characteristics

of the packet size distribution is examined in Section 3.6. Finally, some concluding

remarks are drawn in Section 3.7.

3.2 The Flow Models

Suppose there are J flows and L directed links in a network. Let A be the L× J

routing matrix such that Aij = 1 if flow j traverses link i and 0 otherwise. We

assume a deterministic routing policy. Further, let XP
t and XB

t be vectors of length

J whose elements are packet and byte volumes of the flows in time interval t for

t = 1, · · · , T . Define

Xt =




XP
t

XB
t




and aggregate SNMP measurements Yt

Yt =




A 0

0 A


Xt ≡ AXt.
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Further, assume that {Xt}T
t=1 is a stationary sequence.

3.2.1 Compound Model

We assume

(3.1) XB
t,j =

XP
t,j∑

k=1

Skj

where {Skj : k = 1, 2, · · · } is the size (in bytes) of the kth packet of the jth flow in

time interval t (we suppress the time interval indexing for notational convenience).

It is assumed that {Skj : k = 1, 2, · · · } are independent and identically distributed

(i.i.d.) from some distribution Fj, corresponding to flow j, and independent of the

packet count XP
t,j, for j = 1, · · · , J . Further it is assumed that the packet counts

XP
t,j, j = 1, · · · , J , are independent across flows. Additionally define the following

parameters:

1. Mean packet volume vector (J × 1), µ = E[XP
t ].

2. Packet volume variance vector (J × 1), sP , i.e. [sP ]j = var(XP
t,j). Further from

our assumption of independence of packet counts, Cov(XP
t ) = Diag(sP ) (this

assumption can be relaxed to include the most significant empirically observed

spatial correlations in flow volumes, i.e. the ones between forward and reverse

flows due to the connection oriented nature of Internet traffic [40]).

3. Mean packet size vector (J × 1), ψ, i.e. ψj is the mean of Fj.

4. Packet size variance vector (J × 1), v, i.e. vj is the variance of Fj.

From (3.1), we have E[XB
t,j|XP

t,j] = ψjX
P
t,j and V ar[XB

t,j|XP
t,j] = vjX

P
t,j. Now

Cov(XB
t,j, X

P
t,j) = Cov(E[XB

t,j|XP
t,j], X

P
t,j) = ψjsPj

and

V ar(XB
t,j) = V ar(E[XB

t,j|XP
t,j]) + E[V ar(XB

t,j|XP
t,j)] = ψ2

j sPj + µjvj
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Thus

ΣX ≡ Cov(Xt) =




Diag(sP ) Diag(sP )Diag(ψ)

Diag(ψ)Diag(sP ) Diag(ψ)Diag(sP )Diag(ψ) +Diag(s)




where

(3.2) sj = µjvj

is the excess variance in byte distribution “not explained by the variance in packet

distribution”. Collecting the parameters, if θ = (sP , ψ, s), then ΣX is parametrized

by θ, i.e. ΣX(θ) = ΣX and thus

ΣY (θ) ≡ Cov(Yt) = AΣX(θ)A
′
.

In the usual setup for traffic demand tomography one assumes a functional relation-

ship between flow volume means and variances for all flows of the type [sP ]j = φµc
j.

This is a way to get identifiability of mean flow volumes from identifiability of flow

volume variance (see for example [6]). In [6], c = 1 has been assumed and we will

refer to this as classical tomography. For comparison purposes, the true relationship

between the means and variances of flow volumes in the data examined (see Section

3.5) is shown in Figure 3.2 (a). Joint modeling of packet and byte volume allows us

to estimate mean flow volumes under a different assumption on all flows. We will

assume (except in Section 3.6) ψj = ψ0 and vj = v0 for all flows j. In this case the

mean packet volume µ is identifiable (as shown in section 3.3).

3.2.2 Independent Sub-Flow Model

Another way to jointly model packet and byte flow volumes is to assume that each

flow is comprised of independent sub-flows, each with a characteristic packet size.

Empirical evidence suggests that just a few packet sizes account for most of the traffic
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(a) (b)

Figure 3.2: Variance versus mean of flow volumes (a) and Observed packet size distribution (b)

in a network. The histogram of the observed packet sizes recovered from header trace

of the data described in Section 3.5 is shown in Figure 3.2 (b). These packet sizes

are determined by the dominant protocols in the flows. These are typically TCP

for web browsing and file transfers and UDP for streaming traffic (e.g. audio and

video applications). Other empirical studies have found dominant packet sizes at 40,

576 and 1500 [23]. Thus, we assume that each class of traffic, such as bulk transfers

versus streaming traffic, results in one or more sub-flows each with a fixed packet

length.

Assume each origin destination flow is made up of S sub-flows each of different

“type”. Further, all packets of sub-flow of type k have size sk, for k = 1, · · · , S. Also

let Xik(t) be the number of packets in sub-flow k of flow i in a time interval. Let 1

be a vector of length S with each element equal to 1 and s(1) be a vector of length

S with kth element equal to sk. Finally, let X t be a J × S matrix whose (i, k)th

element is [X t]ik = Xik(t). Now, the packet volumes vector XP can be written as

XP
t = X t1,

while the byte volume vector XB as

XB
t = X ts

(1).
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We will assume that Xik(·) are independent for all i and k.

Now let Γ and Φ be J × S matrices with (i, k)th elements, [Γ]ik = E[Xik(t)] and

[Φ]ik = V ar(Xik(t)), respectively. Under this model we have

V ar(XP
t,j) =

S∑

k=1

V ar(Xjk(t))

Cov(XP
t,j, X

B
t,j) =

S∑

k=1

skV ar(Xjk(t))

and

V ar(XB
t,j) =

S∑

k=1

s2
kV ar(Xjk(t)).

Then,

ΣX ≡ Cov(Xt) =




Diag(Φ1) Diag(Φs(1))

Diag(Φs(1)) Diag(Φs(2))




where s(2) is a vector formed of element-wise squares of s(1) and

E




XP
t

XB
t


 =




Γ1

Γs(1)


 .

We set θ = vec(Φ) and parametrize ΣX by θ; i.e. ΣX(θ) = Σ and ΣY (θ) =

AΣX(θ)A
′
. As a regularizing constraint for tomography we will assume S = 2 and

Γ = ΦDiag(α), as elaborated in Section 3.3. Some comments on the case of S ≥ 3

are given in Section 3.5.

3.2.3 Equivalence Under Poisson Model

If the packet volumesXP
t,j are distributed as independent Poisson random variables

with parameter λj for all j and t and all packet size distributions Fj have finite

support such that Prob({Skj = s1}
⋃ · · ·⋃{Skj = sS})=1, then the distribution of

Xt is identical to one under independent sub-flow model with Poisson sub-flows. Note
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that in this case equation (3.1) can be re-written as

XB
t,j =

S∑
i=1

si

XP
t,j∑

k=1

I(Skj = si) ≡
S∑

i=1

siXji(t)

The independence of Xji(·) for all j and i follows from the independence property of

thinned Poisson processes.

3.3 Identifiability and Regularizing Assumptions

In this section, we address the issue of identifiability of the parameters of the

two proposed models; i.e. we show that the parameters of interest are uniquely

determined by the observed data distribution (or statistics thereof). The strategy

for proving identifiability of the parameters in our models has two steps. First,

we establish identifiability of parameters associated with the covariance ΣX and

subsequently prove the identifiability of the remaining parameters. The former is

based on an identifiability result from the previous chapter.

Let S be a set of symmetric positive definite matrices, of the form

ΣX =




Diag(sP ) Diag(sPB)

Diag(sPB) Diag(sB)


 .

where sP , sPB and sB are length J vectors of the variance of packet volumes, co-

variance of packet and byte volumes and variance of byte volumes, respectively. The

following Lemma from proves useful for establishing identifiability.

Lemma III.1. Under balanced minimum weight routing on a symmetric graph and

assuming flow volume covariances ΣX ∈ S, ΣX (alternatively (sP , sPB, sB)) are iden-

tifiable from the covariance of cumulative link measurements, ΣY = AΣXA
′
.

Proof: The result follows easily from Proposition II.15 and Proposition II.19.

While Proposition II.15 is concerned with identifiability of entire distributions (up to
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mean), assuming XP and XB to be distributed jointly as multivariate normal implies

the identifiability of ΣX from ΣY . Viewing this as purely a result on covariance

matrices, one can see that joint normality of XP and XB is not required.

¤

As noted in Section 2.7, the conditions in the above Lemma are usually true in

realistic networks. For the rest of the chapter we assume that the conditions in the

lemma are met. Thus if ΣX1,ΣX2 ∈ S then AΣX1A
′
= AΣX2A

′
implies ΣX1 = ΣX2

. Further given a p dimensional one to one parametrization ΣX(·) : Rp → S, and

θ1, θ2 ∈ Rp, we have AΣX(θ1)A
′
= AΣX(θ2)A

′
implies θ1 = θ2 .

3.3.1 The Compound Model

As mentioned before, in order to establish identifiability of this model we require

the following regularizing assumption. We assume the packet size distribution Fj is

the same for all flows j. As mentioned earlier this implies ψj = ψ0 and vj = v0.

Lemma III.2. Under balanced minimum weight routing on a symmetric graph and

assuming all flows have identical packet size distributions, the parameters of the

compound model are identifiable from cumulative link measurements.

Proof: With θ = (sP , ψ0, s), it is clear that ΣX(θ) is a one-to-one map. Thus,

based on the previous result, θ is identifiable. Identifiability of µ from θ follows from

the fact that s is a non-zero vector with non-negative entries and that no non-trivial

vector with non-negative entries can lie in the null space of A. This is because all

entries in A are non-negative. Thus, As 6= 0 and v0 can be identified from the relation

E[Y P
t ] = As/v0. Finally, we get µ = s/v0.

¤
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3.3.2 Independent Sub-Flows Model

There may be many different regularizing assumptions that lead to identifiability

for tomography under the independent sub-flows model. However, we focus on the

following as it works well in practice. First note that in Figure 3.2 (b) that the

packet size distribution is concentrated on 2 support points roughly corresponding

to streaming traffic (∼ 40 byte payloads) and bulk transfers (1500 byte payloads).

Thus, we assume S = 2 and s1 = 40 and s2 = 1500 (for identifiability purposes, we

only need that s1 6= s2). Further, we assume that Γ = ΦDiag(α) for α = (α1, α2).

This is similar to the assumption of proportionality of means and variances in classical

tomography except that we allow for separate proportionality constants, α1, α2 for

the two sub-flows.

Lemma III.3. Under balanced minimum weight routing on a symmetric graph and

assuming two sub-flows with s1 6= s2 and Γ = ΦDiag(α), the parameters of the

independent sub-flow model, Φ and Γ, are identifiable from cumulative link measure-

ments.

Proof: With θ = vec(Φ), ΣX(θ) can be seen to be one-to-one since (1, s(1)) is full

rank and

Φ(1, s(1)) = (sP , sPB)

Thus, Φ is identifiable.

Now,

E[Y P
t , Y

B
t ] = AΓ(1, s(1))(3.3)

= AΦDiag(α)(1, s(1))(3.4)

Thus,

E[Y P
t , Y

B
t ](1, s(1))−1 = (α1w1, α2w2)
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where w1 = AΦ(·,1) and w2 = AΦ(·,2). As before, we have that w1 6= 0 and w2 6= 0,

since a non-trivial vector with non-negative entries can not be in the null space of

A. Since w1 and w2 are identifiable, so are α1 and α2. Thus, Γ is identifiable.

¤

3.4 Estimation Procedure and its Properties

We adopt a pseudo-likelihood approach [21] for estimation purposes. Specifically,

we will obtain the estimates through maximizing a function which is not the likeli-

hood of the available data, but rather the likelihood of a normal distribution that

has the same mean and covariance as the distribution of the data. There are several

computational advantages to using a normal likelihood and in reality the departures

from regularizing assumptions tend to have a greater impact than other misspecifica-

tions to the likelihood. For a given parametrization of the mean η(θ) and covariance

matrix ΣY (θ) of a random vector Yt the normal likelihood is given by:

(3.5) l(θ) = −1

2
tr

(
ΣY (θ)−1

T∑
t=1

(Yt − η(θ))(Yt − η(θ))′
)
− T

2
log |ΣY (θ)|

However, optimizing the above likelihood to get an estimate of θ was found to have

quite slow convergence for both second order and EM type algorithms. The intuitive

reason for that is that certain parameters appear both in ΣY (θ) and η(θ) and that

makes the likelihood surface ill-conditioned. The condition number of the information

matrix for the normal approximation of the compound model described in Section

3.5 was found to be 7.9× 1021. Hence, we propose the following “hybrid” estimator.

Suppose ΣY is parametrized as a one-to-one function of the parameter vector

θ, ΣY (θ). This is true for both of the proposed models with θ = (sP , ψ0, s) for

the compound model and θ = vec(Φ) for the independent sub-flows model. For

estimation, we follow a two-step strategy. In the first step we obtain a consistent
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estimate of θ. The covariance only pseudo-likelihood for θ is expressed in terms of

the covariance of Yt. Since ΣY (θ) is a one-to-one function, by definition we have that

if θ1 6= θ2, then ΣY (θ1) 6= ΣY (θ2). Further,

Σ̂Y =
1

T

T∑
t=1

(Yt − Y )(Yt − Y )′

is a consistent estimate of ΣY (θ) under fairly general conditions (specifically temporal

independence is not required [43]). Thus,

(3.6) lY (θ) = −T
2
tr(ΣY (θ)−1Σ̂Y )− T

2
log |ΣY (θ)|

defines a pseudo-likelihood function. Maximizing the likelihood function lY (θ) in

equation (3.6) can be accomplished through the EM algorithm presented in Section

3.4.1. Therefore, at the end of the first step, a consistent estimate θ̂ has been

obtained.

The second step proceeds as follows. In both models E[Yt] = Ãµ̃ for some matrix

Ã and vector µ̃. Specifically, for the compound model we have

µ̃ =




µ

ψ0µ




and Ã = A. For the independent sub-flows model we have µ̃ = vec(Γ) and

Ã =




A A

s1A s2A


 =

(
1 s(1)

)′
⊗ A

Further, in both models µ̃ = Θb where Θ is a matrix (or vector) identifiable from

ΣY (θ) or in other words a function of θ estimated in the first step. The form of Θ

and b is given by

Θ =




s

ψ0s



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and b = 1/v0 for the compound model and by

µ̃ =




Γ(·,1)

Γ(·,2)


 =




Φ(·,1) 0

0 Φ(·,2)


α ≡ Θb

for the independent sub-flows model.

Next, let the QR decomposition of Ã′ be given by

Ã′ =
(
Q1 Q2

)



R′

0


 .

Now, µ̃ can be re parametrized as

µ̃ = Q1R
−1µY +Q2µ⊥

where Ãµ̃ = µY . Note that for Ã being a 2L × 2J matrix of rank 2L, then µ⊥ ∈

R2J−2L. Further, it is easy to get a consistent estimate of µY ; e.g. the sample mean

µ̂Y =
PT

t=1 Yt

T
.

Finally, a consistent estimate of µ⊥ is obtained by solving

(3.7) (µ̂⊥, b̂) = arg min
µ⊥,b

||Q1R
−1µ̂Y +Q2µ⊥ − Θ̂b||22

Since µ̃ has non-negative entries, in practice the above optimization would be done

subject to the constraint Q1R
−1µ̂Y +Q2µ⊥ ≥ 0 which is a quadratic program.

For the purpose of deriving the asymptotic distribution of the estimator that

maximizes (3.6) we make explicit the dependence on T :

(3.8) lY,T (θ) = lY (θ) = −T
2
tr(ΣY (θ)−1Σ̂Y )− T

2
log |ΣY (θ)|

We refer to the true value of parameters as θ0 and to the estimate as θ̂T .
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Proposition III.4. For Xt, t = 1, 2, · · · (defined in Section 3.2) being a stationary

sequence and whose fourth moments exist the pseudo-likelihood estimator θ̂T satisfies

√
T (θ̂T − θ0)

D⇒ J(θ0)
−1Zθ0 ∼ N(0, J(θ0)

−1I(θ0)J(θ0)
−1)

where

[I(θ0)]ij = E[tr(Gi(Y − EY )(Y − EY )′)tr(Gj(Y − EY )(Y − EY )′)]

−tr(GiΣY (θ0))tr(GjΣY (θ0))(3.9)

for

(3.10) Gi =
1

2
ΣY (θ0)

−1∂ΣY (θ)

∂θi

|θ=θ0ΣY (θ0)
−1

and [J(θ)]ij = 1
2
tr(ΣY (θ)−1 ∂ΣY (θ)

∂θi
ΣY (θ)−1 ∂ΣY (θ)

∂θj
)

Corollary III.5. Under the conditions of Proposition III.4, the hybrid estimator µ̂T

is also asymptotically normal.

Remarks:

1. The computational complexity of this estimator is determined by the first step,

which involves an EM algorithm. The computational complexity of each EM

step is O(L4) as argued in Section 3.4.1.

2. The pseudo-likelihood (3.6) does not take into account that E[XB
t,j|XP

t,j] = ψjX
P
t,j

and V ar[XB
t,j|XP

t,j] = vjX
P
t,j and hence XB

t given XP
t is heteroskedastic as op-

posed to the case of joint normality. An alternative is to assume that XP
t is

normally distributed and XB
t is normal given XP

t with mean and variance given

by the relation above. In this case the distribution of Yt does not correspond

to any well known distribution and the likelihood of Yt cannot be written ex-

plicitly. In this case the obvious way to obtain estimates would be to use an
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EM algorithm where the “full-data” is Xt. Since, this likelihood more closely

reflects the compound model it can be expected to be statistically more effi-

cient. However, it was found to have several drawbacks. First, the E-step can

no longer be carried out analytically and one has to resort to MCMC meth-

ods. Second, the MCMC E-step has to be carried out individually for each time

interval which makes it computationally quite expensive. Finally, the gains in

statistical efficiency were found to be marginal at best. Thus, we do not pursue

that direction in this work.

3. The computational complexity of the first step in the estimation can be reduced

by using a method of moments estimator for θ instead of maximum (pseudo-)

likelihood estimation. For both models, the elements of the covariance matrix,

ΣY (θ) can be written as a linear combination of elements of θ. For the compound

model this requires an additional estimation step where ψ is estimated and is

treated as a known constant in the method of moments step. Thus we get

vec(Σ̂Y ) = Bθ + ε

Hence a consistent estimate of θ can be obtained by minimizing ||vec(Σ̂Y ) −

Bθ||22 subject to the constraint θ > 0. This corresponds to solving a quadratic

program.

Proof of Proposition: Let ZT , T = 2, 3, · · · be a sequence of random vectors,

defined as

[ZT ]i =
1√
T

∂lY,T (θ)

∂θi

∣∣∣∣
θ=θ0

and JT be a sequence of random matrices, defined as

[JT ]ij = − 1

T

∂2lY,T (θ)

∂θi∂θj

∣∣∣∣
θ=θ0
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We will establish that ZT
D⇒ Zθ0 and JT

p→ J(θ0), for some random vector Zθ0 and

constant matrix J(θ0).

In the following all functions and derivatives are evaluated at θ = θ0. Its easy to

show that

1√
T

∂lY,T (θ)

∂θi

=
1√
T

(
∂lY,T (θ)

∂θi

− E
∂lY,T (θ)

∂θi

)

=
1

2
tr

[
ΣY (θ)−1∂ΣY (θ)

∂θi

ΣY (θ)−1
(√

T (Σ̂Y − ΣY (θ))
)]

= (vec(Gi))
′vec(

√
T (Σ̂Y − ΣY (θ))(3.11)

Define

G =




vec(G1)
′

...

vec(Gp)
′




Thus ZT = Gvec(
√
T (Σ̂Y − ΣY (θ)).

From CLT
√
T (Σ̂Y −ΣY (θ)) converges in distribution to a random matrix with all

entries jointly normal distributed. Thus Zθ0 has a multivariate normal distribution.

The mean of Zθ0 is 0 and the covariance matrix is given by I(θ0).
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On the other hand

− 1

T

∂2lY,T (θ)

∂θi∂θj

=
1

2

∂

∂θj

tr(−ΣY (θ)−1∂ΣY (θ)

∂θi

ΣY (θ)−1Σ̂Y ) +
1

2

∂

∂θj

tr(ΣY (θ)−1∂ΣY (θ)

∂θi

)

= −1

2
tr(−ΣY (θ)−1∂ΣY (θ)

∂θj

ΣY (θ)−1∂ΣY (θ)

∂θi

ΣY (θ)−1Σ̂Y )

−1

2
tr(ΣY (θ)−1∂

2ΣY (θ)

∂θi∂θj

ΣY (θ)−1Σ̂Y )

−1

2
tr(−ΣY (θ)−1∂ΣY (θ)

∂θi

ΣY (θ)−1∂ΣY (θ)

∂θj

ΣY (θ)−1Σ̂Y )

+
1

2
tr(−ΣY (θ)−1∂ΣY (θ)

∂θj

ΣY (θ)−1∂ΣY (θ)

∂θi

) +
1

2
tr(ΣY (θ)−1∂

2ΣY (θ)

∂θi∂θj

)

p→ 1

2
tr(ΣY (θ)−1∂ΣY (θ)

∂θi

ΣY (θ)−1∂ΣY (θ)

∂θj

) = [J(θ)]ij

Thus
√
T (θ̂T − θ0)

D⇒ J(θ0)
−1Zθ0 ∼ N(0, J(θ0)

−1I(θ0)J(θ0)
−1).

¤

Clearly consistent estimates of Gi, i = 1, · · · , p can be obtained by replacing θ0 in

(3.10) by a consistent estimate like θ̂T . Now I(θ0) can be consistently estimated by

replacing Gi and Gj by their consistent estimates and expectations by their empirical

means in (3.9). Also J(θ0) is consistently estimated by J(θ̂T ).

Proof of the Corollary: For the asymptotic distribution of the hybrid estimator,

note that neglecting the positivity constraints, the objective function 3.7 is maxi-

mized for 


µ̂⊥

b̂


 = −(P̂ ′P̂ )−1P̂ ′Q1R

−1µ̂Y
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where P̂ = (Q2,−Θ̂). Now

P̂ ′Q1R
−1 =




Q′2

−Θ̂′


Q1R

−1 =




0

−Θ̂′Q1R
−1




Further,

P̂ ′P̂ =




Q′2Q2 −Q′2Θ̂

−Θ̂′Q2 Θ̂′Θ̂


 =




I −Q′2Θ̂

−Θ̂′Q2 Θ̂′Θ̂




Hence,

[P̂ ′P̂ ]−1
12 = −Q′2Θ̂(Θ̂′Q2Q

′
2Θ̂− Θ̂′Θ̂)−1

Thus

µ̂⊥ = Q′2Θ̂(Θ̂′Q2Q
′
2Θ̂− Θ̂′Θ̂)−1Θ̂′Q1R

−1µ̂Y

So, finally

(3.12) µ̂ =
(
I +Q2Q

′
2Θ̂(Θ̂′Q2Q

′
2Θ̂− Θ̂′Θ̂)−1Θ̂′

)
Q1R

−1µ̂Y

Or making explicit the dependence on T in (3.12):

µ̂T =
(
I +Q2Q

′
2Θ̂T (Θ̂′

TQ2Q
′
2Θ̂T − Θ̂′

T Θ̂T )−1Θ̂′
T

)
Q1R

−1µ̂Y,T ≡M(θ̂T )µ̂Y,T

Now from the proposition
√
T (θ̂T − θ)

D⇒ Zθ, a mean 0 normal random variable.

Similarly,
√
T (µ̂Y,T − µY )

D⇒ ZY , another mean 0 normal random variable. Thus a

simple application of delta method suggests an asymptotic distribution given by

√
T (µ̂T − µ)

D⇒ Ψ(θ, µY )




Zθ

ZY



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where Zθ, ZY are jointly normal distributed with

ΣZ ≡ E







Zθ

ZY


 ( Z ′θ ZY

)




= E







Gvec((Y − EY )(Y − EY )′)

Y


 ( vec((Y − EY )(Y − EY )′)′G′ Y ′ )




−E




Gvec((Y − EY )(Y − EY )′)

Y


E( vec((Y − EY )(Y − EY )′)′G′ Y ′ )

and

Ψ(θ, µY ) =

(
∂M(θ)

∂θ1

µY , · · · , ∂M(θ)

∂θn

µY ,M(θ)

)
.

The partial derivatives in the above expression can be written more explicitly as

∂M(θ)

∂θi

= M1i(θ) +M2i(θ) +M3i(θ)

where for

Θ̃ = (Θ′Q2Q
′
2Θ−Θ′Θ)−1

M1i(θ) = Q2Q
′
2

∂Θ

∂θi

Θ̃Θ′Q1R
−1

M2i(θ) = Q2Q
′
2ΘΘ̃

∂(Θ′Q2Q
′
2Θ−Θ′Θ)

∂θi

Θ̃Θ′Q1R
−1

M3i(θ) = Q2Q
′
2ΘΘ̃

∂Θ′

∂θi

Q1R
−1

¤

3.4.1 EM Algorithm for Covariance Only Pseudo Likelihood

A very simple EM algorithm can be derived to maximize the pseudo-likelihood in

(3.6). Assume Ỹt = Yt − Y . Then

lY (θ) = −T
2
tr(ΣY (θ)−1(

T∑
t=1

ỸtỸ
′
t )−

T

2
log |ΣY (θ)|
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The above would be the true likelihood of Ỹ1, · · · , ỸT if

X̃t =




X̃P
t

X̃B
t




were distributed i.i.d. N(0,ΣX(θ)) and Ỹt = AX̃t. We use this model to derive the

EM algorithm. Let lX̃(θ) be the likelihood function based on X̃1, · · · , X̃T . Thus

lX̃(θ) = −1

2
trΣ−1

P (
T∑

t=1

X̃P
t (X̃P

t )′)− T

2
log |ΣP |

−1

2

∑
j

(
(

T∑
t=1

(X̃B
t,j − ψjX̃

P
t,j)

2

sj

) + T log sj

)

= −1

2
trΣ−1

P (
T∑

t=1

X̃P
t (X̃P

t )′)− T

2
log |ΣP |

−1

2

∑
j

(∑T
t=1(X̃

B
t,j)

2 + ψ2
j

∑T
t=1(X̃

P
t,j)

2 − 2ψj

∑T
t=1 X̃

B
t,jX̃

P
t,j

sj

+ T log sj

)

Assume that at the kth E-step the estimated parameter is θ(k). Let

Cov(X̃t|Ỹt, θ
(k)) ≡




R
(k)
P R

(k)
PB

R
(k)
BP R

(k)
B




= ΣX(θ(k))− ΣX(θ(k))A
′ (
AΣX(θ(k))A

′)−1

AΣX(θ(k))(3.13)

and

(3.14) E[X̃t|Ỹt, θ
(k)] ≡




m
(k)
t

b
(k)
t


 = ΣX(θ(k))A

′ (
AΣX(θ(k))A

′)−1

Ỹt

Now

(3.15) E[
T∑

t=1

X̃P
t (X̃P

t )′|Ỹ1, · · · , ỸT , θ
(k)] = TR

(k)
P +

T∑
t=1

m
(k)
t (m

(t)
t )′

Define

(3.16) a
(k)
B,j ≡ E[

T∑
t=1

(X̃B
t,j)

2|Ỹ1, · · · , ỸT , θ
(k)] = T [R

(k)
B ]jj +

T∑
t=1

(b
(k)
t,j )2
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(3.17) a
(k)
P,j ≡ E[

T∑
t=1

(X̃P
t,j)

2|Ỹ1, · · · , ỸT , θ
(k)] = T [R

(k)
P ]jj +

T∑
t=1

(m
(k)
t,j )2

and

(3.18) a
(k)
PB,j ≡ E[

T∑
t=1

X̃P
t,jX̃

B
t,j|Ỹ1, · · · , ỸT , θ

(k)] = T [R
(k)
PB]jj +

T∑
t=1

m
(k)
t,j b

(k)
t,j

Using the above, we get the expectation step.

E-Step

Q(θ, θ(k)) ≡ E[lX̃(θ)|Ỹ1, · · · , ỸT , θ
(k)]

= −1

2
trΣ−1

P (TR
(k)
P +

T∑
t=1

m
(k)
t (m

(t)
t )′)− T

2
log |ΣP |

−1

2

∑
j

(
a

(k)
B,j + ψ2

ja
(k)
P,j − 2ψja

(k)
PB,j

sj

+ T log sj

)
(3.19)

The M-step involves maximization of Q(θ, θ(k)) over θ and is straightforward from the

following observations. The first and second term in the last expression just involve

ΣP . The maximum likelihood estimate of ΣP subject to the diagonal constraint is

given simply by replacing the off-diagonal elements in the unconstrained MLE with

0.

Let B(·) be the function which replaces the off-diagonal elements of a matrix with

zeros. The kth stage M step then gives the following parameter estimates.

M-Step

(3.20) Σ
(k+1)
P = B

(
R

(k)
P +

1

T

T∑
t=1

m
(k)
t (m

(k)
t )′

)

(3.21) ψ
(k+1)
j = ψ

(k+1)
0 =

∑
j a

(k)
PB,j/s

(k)
j∑

j a
(k)
P,j/s

(k)
j

and

(3.22) s
(k+1)
j =

a
(k)
B,j − 2ψ

(k+1)
j a

(k)
PB,j + (ψ

(k+1)
j )2a

(k)
P,j

T
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Computational Complexity

The computational complexity of each EM step can be obtained as follows. Assume

that the number of flows, J , is of order L2, where A is L×J . The matrix inversions in

(3.13-3.14) involve 2L× 2L matrices and hence have complexity O(L3). Computing

AΣX involves multiplying a 2L× 2J matrix with a 2J × 2J matrix and would have

complexity O(LJ2) if done naively. However, if sparsity of ΣX is exploited then the

complexity reduces to O(LJ) = O(L3). On the other hand, computing AΣXA
′
from

AΣX involves multiplying a 2L× 2J matrix with a 2J × 2L matrix, neither of which

is necessarily sparse. The complexity of this operation is O(L2J) = O(L4). Note

that we never need to multiply two L× L matrices. Thus, the overall complexity of

each iteration is O(L4). Note that while (3.14) is expressed in terms of individual

Ỹt, we only need the following “sufficient” statistic

T∑
t=1

ỸtỸ
′
t

for evaluation of (3.15-3.18). This would involve a one-time cost of O(L2T ).

3.5 Performance Assessment

The data set and simulation setups used in our numerical study are described

next.

Data were obtained from a complete packet header trace of a high capacity link

[8]. We split the data into bidirectional flows between sub-networks using the first

8 bytes of the IP-address to identify the corresponding sub-network. We aggregate

flow volumes to bin size of 5 minutes. The total duration under consideration is 12.5

hours. Thus, we have data on packet and byte volumes of 55 flow pairs (110 flows)

in each of 150 time intervals. The mean byte volume of each of these 110 flows is

plotted versus the mean packet volume in Figure 3.3.
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Figure 3.3: Mean byte volume versus mean packet volume for flows in Tokyo network trace data.

To generate data from the compound model we simulate the packet volumes as

independently Gamma distributed with means and variances equal to the corre-

sponding parameters in the Tokyo trace data set described above. For each time-

interval and flow, given the packet volume, the byte volume is generated as normally

distributed with mean and variance proportional to the packet volume. The pro-

portionality constants are the mean packet size and variance in packet size. Mean

packet size is estimated from the Tokyo-trace data set over all flows. Variance of the

packet size distribution is calculated from the mean by assuming that the packet size

distribution is supported entirely on 40 and 1500 bytes.

To simulate from the Independent Sub-Flow model, we generate two sub-flow

(packet) volumes for each flow in each time-interval. The first sub-flow corresponds

to a packet size of 40 bytes and we use Gamma distributions with common scale

parameter across all flows and randomly generated shape parameter. Similarly the

second sub-flow corresponds to a packet size of 1500 bytes and we use Gamma dis-

tributions with common scale parameter across all flows and randomly generated

shape parameters. Finally the packet and byte volumes of the flows are generated

as appropriate linear combinations of the sub-flow volumes.

Finally, we also look at data generated from the Independent Sub-Flow model
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Figure 3.4: Abilene Topology used for Numerical Study

above, with the additional constraint that the scale parameter of all sub-flows is

identical. In this case the means of packet volumes are proportional to variances

of packet volumes over all flows. Thus, estimation based on classical tomography

relation [6] would be consistent. We refer to this as the classical data generation

method.

The Abilene network topology (Figure 3.4) is used in our experimental setup.

It consists of 11 nodes and 16 × 2 = 32 directed edges between pairs of nodes

(bidirectional links). Flows exist between all pairs of nodes resulting in a total of

11 × 10 = 110 flows. We assume that these flows are routed through minimum

distance paths. Further we assume that cumulative flow volumes (SNMP data) are

available from all the edges.

The key findings from the numerical study are discussed next. In the case of

simulated data, 200 replications of each scenario were run to obtain the mean and

standard deviation of estimates.

1. In Figures 3.5, 3.6 and 3.7 the results of estimating the mean packet volumes

are shown using the Compound (top row), Independent Sub-flows (middle row)

and classical tomography (bottom row), when the data generation mechanism

corresponds to the Compound, the Independent Sub-flows and the classical to-

mography model, respectively. It can be seen that when the model is correctly

specified, the resulting estimates exhibit no discernible bias. Further, when data
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are generated from the Independent Sub-flows model, classical tomography per-

forms well (see Figure 3.6), while when the data are generated from the classical

tomography mechanism, both the Compound model and the Independent Sub-

flows model estimate the means well (see Figure 3.7). Finally, as expected, with

increasing T the variance of the estimates reduces.

2. In Figures 3.8 and 3.9 the estimates obtained at the end of the first stage of the

“hybrid” procedure (i.e. θ̂) are shown, when the generative model is specified

as Compound and Independent Sub-flows, respectively. It can be seen that

the results exhibit no discernible bias in the case of correct specification (left

panels in Figure 3.8 and right panels in 3.9). On the other hand, estimates

from the Independent Sub-flows model exhibit a strong systematic bias for data

obtained from the Compound model (right panels in Figure 3.8), while those

obtained from the Independent Sub-flows model do not when estimated by the

Compound model (left panels in Figure 3.9). Figure 3.10 shows θ̂ when data is

generated from classical model and estimation is performed with the Compound

and Independent Sub-flows models. The Independent Sub-flows model performs

well in general, while the Compound model estimates adequately only the sP

parameters. Finally, the variance of the estimates decreases as the sample size

T increases (results not shown).

3. Table 3.1 shows the median (over flows) of relative mean squared error for

various scenarios of data generation and estimation. The median is used in

order to avoid the results from getting overwhelmed by lighter flows, which

have large relative MSE. Relative MSE for a parameter is defined as follows.

Let θ0 be the true value of the parameter and let θ̂i be the estimate from the
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Table 3.1: Median Relative MSE for various estimation and generative models
Estimation Generative Model

T = 150 T = 500
Model Parameter Compound ISF Classical Compound ISF Classical

Compound

µ 0.241 0.253 0.234 0.093 0.144 0.089
sP 0.565 0.329 0.32 0.234 0.109 0.106
sPB 0.565 0.377 0.453 0.234 0.131 0.217
sB 0.565 0.307 0.354 0.234 0.107 0.293

ISF

µ 0.297 0.186 0.165 0.245 0.07 0.059
sP 0.47 0.307 0.235 0.353 0.107 0.07
sPB 0.488 0.425 0.38 0.411 0.134 0.165
sB 0.61 0.429 0.408 0.3 0.136 0.175

Classical µ 0.7 0.293 0.276 0.589 0.105 0.091

ith replication out of a total of r replications. Then, the relative MSE is equal

to
∑r

i=1(θ̂i/θ0 − 1)2.

4. Figures 3.11 and 3.12 display the estimated versus true values for the Tokyo trace

data for the three estimation techniques. For (sP , sPB, sB) the Independent

sub-flows model clearly does better than the Compound model. For the final

estimate, µ̂, both the Compound model and the Independent Sub-flows model

suffer from a single outlier, while the classical tomography estimates have a lot

of estimates equal to 0.

5. The outlier in Figures 3.12 (a) and (b) corresponds to the flow in Figure 3.1 (c).

This is clearly an exceptional flow. We substitute this flow by the flow in Figure

3.14 which is constructed through averaging the packet and byte volumes over

all other flows in each time interval. Figure 3.13 shows the estimated versus

true µ for the three estimation methods with this replacement. In this case

the performance of the estimates based on Compound model and Independent

Sub-flows model clearly outperform those based on classical tomography.



81

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Estimated (with +/- s.d error bars) versus the true parameters for data simulated
from Compound Model and estimation under Compound (Top), Independent Sub-Flow
(Middle) and Classical Tomography (Bottom) model with T = 150 (left) and T = 500
(right).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Estimated (with +/- s.d error bars) versus the true parameters for data simulated from
Independent Sub-Flow Model and estimation under Compound (Top), Independent
Sub-Flow (Middle) and Classical Tomography (Bottom) model with T = 150 (left) and
T = 500 (right).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Estimated (with +/- s.d error bars) versus the true parameters for data simulated from
Classical data generation Model and estimation under Compound (Top), Independent
Sub-Flow (Middle) and Classical Tomography (Bottom) model with T = 150 (left) and
T = 500 (right).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Estimated (with +/- s.d error bars) versus the true parameters for data simulated
from Compound Model and estimation under Compound model (left) and Independent
Sub-Flow model(right) for T = 150.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Estimated (with +/- s.d error bars) versus the true parameters for data simulated
from Independent Sub-Flow model and estimation under Compound Model (left) and
Independent Sub-Flow model (right) with T = 150.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Estimated (with +/- s.d error bars) versus the true parameters for data simulated
from Classical data generation model and estimation under Compound Model (left)
and Independent Sub Flow Model (right) with T = 150.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Estimated versus the true parameters for Tokyo Data (T = 150) assuming compound
model (left) and Independent Sub-Flow model (right).
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(a) (b) (c)

Figure 3.12: Estimated versus the true means for Tokyo Data (T = 150) assuming compound model
(a), Independent Sub-Flow model (b) and Classical Tomography (c).

(a) (b) (c)

Figure 3.13: Estimated versus the true means for Tokyo Data (T = 150) after replacing the outlier
flow, assuming compound model (a), Independent Sub-Flow model (b) and Classical
Tomography (c).

Figure 3.14: Substitute flow volumes for the outlier flow
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3.6 Packet Size Tomography

The packet size distribution of a flow is a useful quantity for network monitoring

purposes and is indicative of the traffic composition [44]. Joint modeling of packet

and byte volumes allow us to estimate parameters of the packet size distribution

from cumulative measurements, as well. This is most easily accomplished through

the compound model and that is the focus on in this section.

We start by removing the constraint of common packet size means; i.e. ψj = ψ0.

The objective here is to estimate ψ, the vector of mean packet sizes of all flows.

Recall that if ΣP is constrained to be diagonal as described in Section 3.3.1, then ΣX

is identifiable from Yt observations. This in turn means that θ = (ΣP , ψ, s) is iden-

tifiable. Mean packet volumes, µ, are not identifiable and are in fact “confounded”

with v. Thus, we use the parametrization (3.2). With this parametrization, lY (θ)

the “covariance only pseudo-likelihood” (3.6), is well-behaved.

As before the pseudo likelihood estimator, θ̂ maximizes lY (θ). An EM algorithm

very similar to that used for the hybrid estimator and given in the Appendix can be

used for the optimization. The only difference is that equation (3.21) is replaced by

(3.23) ψ
(k+1)
j =

a
(k)
PB,j

a
(k)
P,j

Remark: The computational complexity of each EM step is the same as that for

the Hybrid Estimator of Section 3.4

3.6.1 Numerical Study

First, we consider the performance of our estimates under simulated data. The

data are generated as described in Section 3.5 for the Compound model with the

exception that the mean and variance of packet size distribution is calculated sepa-

rately for each flow and data generated correspondingly. A sample size of T = 500
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is considered.

Figure 3.15 shows the estimated versus the true values of sp, spb, sb and ψ. Note

that the “natural” parameters of the covariance matrix, i.e. sp, spb, sb are well esti-

mated. However, certain ψj have large MSE of estimation. The reason for this is

as follows. Estimating ψj is similar to estimating the regression coefficient with spj

being the variance of the corresponding covariate. As in any regression problem, if

the covariate variances span a big range of values, the coefficients corresponding to

small values of spj are not well estimated. This issue is demonstrated more clearly

in Figure 3.16. The plot on the left panel shows the MSE from the above simulation

versus sp (both on a log scale), while the plot on the right panel shows the asymp-

totic variance (as described in the following) versus sp (again on log scales). The

asymptotic variance is calculated from the Fisher Information matrix corresponding

to the covariance only likelihood (3.6) when ψ alone is unknown, evaluated at the

true value of θ. Both figures show that a large variance for estimates of ψj is ob-

served for small values of spj. The differences between the two plots are expected

due to departures from normality in the data. In reality, the interest is primarily

in estimating properties of heavy flows which usually correspond to large values of

packet volume variance, spj. Since, sp is itself well estimated, reliable estimates of

ψj can be provided for the most interesting flows.

Figure 3.17 shows the estimated versus true values of mean packet size, ψj, for

the Tokyo trace data for heavy flows only. Here heavy flows are defined to be the

top 40% flows in terms of estimated packet volume variance, ŝp. Naturally, the

data would have some departures from the compound model that would impact the

performance of estimates. It is likely that more highly aggregated data would follow

the compound model better and would lead to better estimation.
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(a) (b)

(c) (d)

Figure 3.15: Estimated (with +/- s.d error bars) versus the true parameters for data simulated and
estimated under Compound Model with T = 500.

(a) (b)

Figure 3.16: Dependence of (a) MSE (simulation) and (b) asymptotic variance (normal approxima-
tion) on packet volumes variance

Figure 3.17: Estimated versus true ψ for heavy flows in Tokyo trace data
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3.7 Discussion

The use of packet and byte information for traffic volume measurement along with

structural modeling of their joint distribution opens up several options for more de-

tailed network tomography. We have proposed two models, the Compound model and

the Independent Sub-flows model for this task. Further, we made specific network-

wide regularizing assumptions that lead to identifiability of parameters of interest.

These choices and their performance clearly depend on the data at hand and are

also closely tied to the estimation strategy. Estimation, in turn poses significant

challenges. As demonstrated by the simulation studies, mis-specification of the dis-

tribution family is not necessarily the biggest challenge. The heterogeneity observed

in real computer network flows and of course departures from the regularizing as-

sumptions are significant factors. Finally the Independent Sub-flows model and the

Compound model provide a framework for defining, investigating the identifiability

of and estimating several interesting characteristics of the joint distribution of packet

and byte volumes of a flow. In particular the Independent Sub-flows model can in-

corporate a larger number of sub-flows (see Corollary II.16). Indeed, it is easy to

see that variances of up to 3 sub-flows are identifiable from the covariance of packet

and byte volumes of flows ΣX . Using carefully chosen parametric families and the

information from higher cumulants it would be possible to estimate an even larger

number of sub-flows, however, the practical viability of such an approach could be

limited due to the various challenges posed by data from real networks.



CHAPTER IV

Optimal Design for Sampled Data

4.1 Introduction

In this chapter we consider the problem of tracking flow volumes in a computer

network using sampled data. Consider a wide area computer network such as the

one depicted in Figure 4.2. As before a flow is defined as all traffic with common

origin and destination nodes. Flow volumes have been observed to exhibit compli-

cated structure as seen in Figure 4.3. Real time tracking (as opposed to off-line

estimation of distributional properties) of flow volumes plays an important role in

network management tasks, such as identifying failures together with their causes

and impact, detecting malicious activity and configuring routing protocols [2, 41].

Packets of network traffic can be observed (and sampled) at router interfaces, hence-

forth called observation points. However, during the measurement process sampling

is employed due to high flow volumes and resource constraints at routers. It is in-

creasingly common for such measurement infrastructure to be deployed in computer

networks [14]. Each packet from the aggregate flow at an observation point is sam-

pled independently with a certain probability (sampling rate) [12]. Typical sampling

rates range between .001-.01. Obviously low sampling rates result in large sampling

noise. For every packet sampled, its header information is recorded which allows one

93
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Figure 4.1: Sampling noise in estimated value Z for sampling rate ξ = .01

to reconstruct objects of interest, such as volumes of flows with a particular source

and destination traversing the network. An important issue is how to select (design)

the sampling rates across the network subject to resource constraints, in order to

collect the maximum amount of information on the underlying source-destination

flows.

Availability of sampled data on individual flows should clearly improve our ability

to track flow volumes. However, such data can be fairly noisy at low sampling rates.

As an illustrative example, suppose that a flow with volume X in a certain time

interval is sampled at a rate ξ. If the number of sampled packets is N , then the

usual [13] estimate of flow volume is Z ≡ N/ξ. Now if X is distributed as a Poisson

random variable and the conditional distribution of N given X is assumed to be

binomial with parameters X and ξ, then it can easily be shown that correlation

between X and Z is equal to
√
ξ. This can be quite low for realistic sampling rates

in networks. Figure 4.1 shows a scatter plot of 100 independent and identically

distributed (i.i.d) samples of (X,Z) pairs. This example strongly suggests that flow

volumes could be tracked more accurately by combining sampled data from across

the network and (more crucially) across measurement intervals.

One way of achieving lower estimation error with the same sampling rate is
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through filtering; i.e combining the present measurement with past measurements

to track the time-series of flow volumes. In designing a sampling scheme for this

situation one needs to take into account measurement noise and process noise.

While modeling the dynamics of flow volumes is a challenging task in itself [36],

we use a simple random walk model for this purpose. This is a robust enough model

to be useful in a large range of applications and leads to scalable filters. We consider

the problem of minimizing the (running) estimation error through optimal design of

measurement scheme in the filtering context. In this chapter, we take an optimal

experiment design approach to the above problem and demonstrate its application

to computer network monitoring using sampled data.

The related research on optimal design has focused on one of the following sce-

narios. There is a large body of work on optimal input design for dynamical systems

[45, 20]. There the focus is on parameter estimation (system identification) rather

than filtering as in this chapter. Another related area is sequential design for non-

linear systems [18, 19], where the optimal design depends on values of unknown

parameters. While there are some commonalities, the design problem in a filtering

context is unique in that the design at any time affects not just the current estimation

error but also future estimation errors. The problem of optimal sensor placement in

control system literature looks at an equivalent problem [1]. However, the formula-

tion is not in terms of information matrices and the special case of random walks

has not been analyzed to our knowledge.

The remainder of the chapter is organized as follows: in Section 4.2, we formulate

and investigate the idealized problem of optimal design in the context of filtering

for multiple random walks. In Section 4.3, we study its application to tracking flow

volumes using sampled data. In Section 4.4 we look at some generalizations of both
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Figure 4.2: Geant Network (a) Geographic view (www.geant.net) and (b) Logical Topology
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Figure 4.3: Flow volumes: (a) All flows and (b) One of the lighter flows.

the flow volume model and measurement data model. We end with discussion of a

possible generalization of the steady state optimal design problem and comments in

Section 4.5.

4.2 Optimal Design for Multiple Random Walks

Let us first recall the idea of E-optimality from classical experiment design liter-

ature for a simple setting. Assume we have independent observations

(4.1) yi ∼ N(xi, 1/mi),

for i = 1, 2, · · · , nr. The natural estimate for xi is x̂i = yi for all i. It is standard

to assume that the inverse variance of observation noise is roughly proportional to

design variables. The inverse variance, mi can be thought of as the information

collected on parameter xi. Specifically, we assume that the relation between an

nr × 1 information vector m and an no × 1 vector of design variables ξ is

(4.2) m = Jξ



97

ξ
1

ξ 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.4: Contours of objective function for E-optimal design

For example, suppose there is a library of measurements z1, · · · , zno , each of which

is independently distributed as zi ∼ N(x[i], σ
2
i I), where x[i] is a subset of elements of

x. Let ξi be equal to (or proportional to) the number of independent measurement

of type i (replications of zi) collected during the experiment. Then, the weighted

least squares estimate y of x can be shown to have distribution given by (4.1) and

(4.2). The matrix J depends on the the membership of subsets x[i] and variances σ2
i

(assumed known), for i = 1, · · · , no.

We assume that the design variables are constrained to be positive and in addition

satisfy nv linear inequality constraints. These can be written as Rξ ≤ b where R is

an nv × no matrix and b is nv × 1 vector. We think of this type of constraint as a

budgetary one, that specifies upper limits on weighted sums of the design variables.

Now the E-optimal design problem is given by:

arg max
Rξ≤b

min
i
mi

Note that this corresponds to minimizing the maximum mean squared error (MSE)

since 1/mi is the MSE in the estimate of xi.

As an example consider the situation where m1 = 50ξ1 and m2 = 50ξ2. Further
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assume the constraint

ξ1 + ξ2 ≤ 1

Figure 4.4 shows the contours of the objective function and the boundary of the

constraint. It is clear that the optimal design would be ξ1 = ξ2 = .50, which is also

reasonable from the symmetry of the setup.

We extend the above criteria to steady state optimal design for random walks.

Consider a collection of independent random walks

xi(t) = xi(t− 1) + εi(t)

for i = 1, · · · , nr and t = 1, 2, · · · . We assume that V ar(εi(t)) = σ2
i which is referred

to as the innovation variance. Further, suppose we have noisy observations

yi(t) = xi(t) + ηi(t)

Let V ar(ηi(t)) = 1/mi. As before we assume the relation between observed infor-

mation and design variables to be m = Jξ with nr × no matrix J assumed known.

The estimates of interest in this case are the ones obtained through filtering

x̂i(t) = E[xi(t)|yi(t), yi(t− 1), · · · ]

Let si(t) = V ar(xi(t)|yi(t), yi(t − 1), · · · ) = V ar(xi(t) − x̂i(t)|yi(t), yi(t − 1), · · · ).

Further, let m̃i = limt→∞ 1/si(t) when it exists. We will refer to this as the steady

state information. When the innovation and measurement noise, εi(t) and ηi(t)

respectively, are Gaussian, the optimal filter is a Kalman filter [25]. If si(t|t − 1) =

V ar(xi(t)|yi(t− 1), yi(t− 2), · · · ) then the Kalman Filter update equations give us

(4.3) si(t|t− 1) = si(t− 1) + σ2
i
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Figure 4.5: Contours of objective function for Steady State E-optimal design

and

si(t)
−1 = si(t|t− 1)−1 +mi(4.4)

=

(
1

si(t− 1)−1
+ σ2

i

)−1

+mi(4.5)

Thus

m̃i =

(
1 + σ2

i m̃i

m̃i

)−1

+mi

or

σ2
i m̃

2
i − σ2

imim̃i −mi = 0

Hence

m̃i =
miσ

2
i +

√
m2

iσ
4
i + 4miσ2

i

2σ2
i

We define the steady state E-optimal design problem as

arg max
Rξ≤b

min
i
m̃i

As an example consider the situation where m1 = 50ξ1 and m2 = 50ξ2. Further,

let the innovation noise be characterized by σ1 = 0.1 and σ2 = 0.2. As before we

assume the design constraint

ξ1 + ξ2 ≤ 1
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From Figure 4.5, notice that even though there is symmetry in the measured in-

formation, the first random walk is smoother than the second one and hence less

measurement resources need to be allocated to it.

4.2.1 Optimization for Steady State E-optimal Design

To solve the steady state E-optimal design problem we have to maximize θ subject

to

(4.6)
miσ

2
i +

√
m2

iσ
4
i + 4miσ2

i

2σ2
i

≥ θ

for i = 1, · · · , nr and

Rξ ≤ b

Equation (4.6) can be equivalently written as

θ2 ≤ mi

(
θ +

1

σ2
i

)

which is a hyperbolic constraint [33]. Thus, this problem can be cast as second order

cone program. Such optimization programs can be solved efficiently through interior

point methods [4].

4.2.2 Myopic Approach

In the following, we present a greedy alternative to steady state optimal design. As

before, assume yi(t) = xi(t) + ηi(t). Further, we assume that V ar(ηi(t)) = 1/mi(t).

i.e. we allow for time varying design variables ξ(t) with m(t) = Jξ(t). As before

si(t) = V ar(x̂i(t)|yi(t), yi(t− 1), · · · ). Define, information at time t, m̃i(t) = 1/si(t).

Note that m̃i(t) is a function of ξ(t), ξ(t− 1), · · · .

The Myopic E-optimal design at time t is defined as

arg max
Rξ(t)≤b

min
i
m̃i(t)
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From 4.5 it follows that this is a linear program. Not surprisingly, the myopic

optimal design is a much easier problem than steady-state optimal design even in

more general settings as noted in Section 4.4. Note that since the sampling rates are

allowed to vary with time, it may have an objective function larger than the steady

state optimal case. However, as the objective of optimization is to maximize present

information with no regard to impact on future information, such a scheme cannot

be guaranteed to perform well in the long run.

4.3 Application to tracking flow volumes

The ideas developed above can be used for sampling rate design for tracking

flow volumes in a computer network. As mentioned in the introduction we will

use the random walk model for flow volumes. Suppose a computer network has nr

origin destination flows. Let xi(t) be the volume of ith flow in time interval t, for

i = 1, · · · , nr. These flow volumes are tracked using sampled data which are noisy.

Recall that flows are sampled at router interfaces which we refer to as observation

points. All flows traversing an observation point (router interface) experience the

same sampling rate. Each incoming edge at a node in Figure 4.2 is an interface of

the corresponding router. Each router typically has multiple interfaces and each flow

may traverse multiple observation points.

Suppose there are no observation points on the network where sampled data on

flows can be collected. Further, assume that sampling rates of ξ = (ξ1, · · · , ξno)
′

are used at observation points 1, · · · , no, respectively. Any given observation point

k ∈ {1, · · · , no} generates estimates for gk elements of x(t); i.e. the number of

flows that go through that node. Thus, a total of ng =
∑no

k=1 gk measurements

are available, which need to be optimally combined to get the required estimates.
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Assume that k(i) is the observation point at which the ith measurement is collected

and l(i) the corresponding flow. Thus k() : {1, · · · , ng} → {1, · · · , no} and l() :

{1, · · · , ng} → {1, · · · , nr}. Further let,

E[zi(t)|xl(i)(t)] = xl(i)(t)

and for now assume

(4.7) Cov(zi(t)|xl(i)(t)) = µl(i)/ξk(i)

where µi = E[xi(t)]. The exact sampling mechanism and approximation involved in

the above relation are described in Section 4.3.2. Thus, in vector notation we get

(4.8) E[z(t)|x(t)] = Lx(t)

where L is a ng × nr matrix with Lij = 1 only if l(i) = j and 0 otherwise and

(4.9) Cov(z(t)|x(t)) = D

where D is a ng × ng diagonal matrix. Using (4.7), the inverse of D is given by

D−1 =
∑

k ξkΨk, where Ψk, k = 1, · · · , no, are ng × ng diagonal matrices with

(4.10) [Ψk]ii =





1/µi if k = k(i)

0 otherwise

Let y(t) be the GLS estimate of x(t) under equation (4.8) and (4.9). Thus

Cov(y(t)|x(t)) = (L′D−1L)−1(4.11)

= (
∑

k

(L′ΨkL)ξk)
−1(4.12)

From definition of L it follows that the columns of L are orthogonal. Thus, the

matrix in (4.11) is diagonal. Further

Diag(Cov(y(t)|x(t))) = m = Jξ



103

where

[J ]ik = L′·,iΨkL·,i

We will refer to the above as the linear model.

Sampling is employed in network flow measurements because measurement re-

sources like CPU time and available storage are limited. Typically, all observation

points (router interfaces) belonging to a particular router share these resources. We

assume that the sampling rates are constrained to lie in a convex polygon Rξt ≤ b.

This includes the case where the sum of sampling rates on the interfaces of a router

is bounded above by the budget for that router. We will focus on this constraint

for this and next section ( Section 4.4 has some other examples). In this case, the

constraints are given as one linear inequality for each router.

For the available data we set up the performance evaluation as follows. We use the

Geant network topology, which has nv = 23 nodes (routers) and 37× 2 bidirectional

edges. The available data [46] correspond to flow volumes over time. Each time

interval is equal to 15 minutes. The original data set spans 4 months, but we focus on

the first 200 time intervals, to avoid severe non-stationarities inherent in an evolving

network. Further, we focus on the top 25% of measured flows by volumes since

one is typically interested in tracking heavy flows. This corresponds to nr = 76

flows. We assume that these flows are routed through minimum distance paths,

which is a common routing mechanism in wide area networks [37]. We assume that

sampled data can be collected at each incoming edges of a router and thus we have

no = 37 × 2 observation points. We assume that the sum of sampling rates on all

interfaces of a router is bounded above by .01, i.e. bi = .01. Finally we estimate the

σ2
i and µi,parameters associated with the flow volume processes, and assume they

are available for filtering purposes and measurement design.
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Figure 4.6: Performance of various sampling schemes (a) and sampling rates at various interfaces
under myopic scheme (b)
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For the purpose of comparison we define a naive sampling scheme as follows. For

any given router, equal sampling rate is allocated to every interface that carries any

of the 76 flows of interest. This allocation is done so as to make the corresponding

budget constraint tight. For example, suppose the ith router has 5 interfaces but

only 4 of them are traversed by one of the 76 flows of interest. In this case each of

the latter 4 interfaces will be allocated a sampling rate of bi/4 while the remaining

interface will be allocated a sampling rate of 0.
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4.3.1 Linear Model: Performance of Various Sampling Schemes

Figure 4.6 (a) shows the value of maximum MSE versus time. Note that as

information accumulates over time we get an improvement in performance under

all three sampling mechanisms. Here performance is measured as the maximum of

si(t) over all flows, calculated using equations (4.3) and (4.5). Surprisingly, both

the myopic and steady state sampling mechanisms perform equally well in steady

state and we achieve a 42% improvement over the naive sampling in the steady state.

Figure 4.6 (b) shows that the myopic optimal sampling rates at all observation points

reach a steady state. Figure 4.7 shows the value of steady state sampling rates at

various router interfaces in the network topology. Even though the myopic scheme

has the flexibility of time varying sampling rates, if the sampling rates do reach a

steady state its performance can clearly be no better than the steady-state optimal

scheme.

4.3.2 Departures from Linear Model: Performance with Geant Data

A more detailed model for flow volumes and sampled measurements would have

to include significant departures from the linear model assumed above. First, the

true flow volumes clearly have more structure than independent random walks, as

seen in Figure 4.3. In applying the above ideas to the Geant data, we will investigate

their robustness to the independent random walk assumption.

A more serious departure is the following. Suppose that a flow with volume X

in a certain time interval is sampled at a rate ξ. If the number of sampled packets

is N , then the usual (approximate ML) estimate of flow volume is Z ≡ N/ξ. The

variance of measurement noise can be shown to be Var(Z|X) ' X/ξ [11]. Thus µi

in (4.10) is actually equal to the unknown xi(t).
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Figure 4.8: Performance of various sampling schemes using batch sequential design with flow vol-
umes from Geant Data

The observation above implies that in application of the presented techniques

to sampled network data, one would have to rely on an approximate model for

measurements zi(t). We will follow an approach similar to batch sequential design

[19]. Assume that the sampling rates are to be held constant for a batch of contiguous

time intervals. At the beginning of each batch we use the most recent estimate

x̂i(t − 1) in place of µi in (4.10) for sampling rate design. For filtering purposes,

we employ a Kalman filter with x̂i(t − 1) in place of µi in equation (4.10) at each

time t. We replace the budget constraint inequalities Rξ ≤ b with the corresponding

equalities Rξ = b to force full utilization of available resources. For routers that

are traversed by at least one of the 76 flows of interest, we introduce additional

equality constraints as follows. Design variable ξk for an interface k not traversed

by one of the 76 flows of interest is constrained to be identically 0. Figure 4.8

shows the performance of different sampling schemes averaged over 200 realizations of

sampled data. The sampled data emulates the exact sampling mechanism described

above (with respective sampling rates) with the Geant data treated as the underlying

(unobserved) flow volumes.

Sampling rates were adjusted only at the beginning of a 40 time period block and
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volumes from Geant Data

were held constant over each block. In the first block the sampling rates were forced to

be the same as the naive scheme irrespective of the sampling mechanism under study.

Notice that for low values of the objective function (maximum mean squared error)

the myopic and steady state allocation perform better than the naive allocation. On

the other hand when the maximum mean squared error spikes, the naive allocation

performs better indicating robustness to model departures. The median (over time

periods 41 to 200) of maximum MSE for myopic, naive and steady-state optimal

sampling is 5.46 × 109, 7.49 × 109 and 6.14 × 109, respectively. Thus, the myopic

scheme performs better than the steady state optimal scheme, which in turn performs

better than the naive scheme.

Finally, we look at the performance of myopic allocation when the above scheme

is employed with a block size of just one time interval; i.e. sampling rates were

adjusted at the beginning of each time period using the myopic scheme. The results

are displayed in Figure 4.9. As before the current estimate of flow volumes is used in

place of µi in equation (4.10) for both filtering and myopic sampling scheme design.

The myopic sampling scheme can be seen to perform better than the naive version

in most time periods. The median (over time periods 1 to 200) of maximum MSE is
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4.50× 109 and 7.44× 109 for myopic and naive sampling respectively.

4.4 Utilizing SNMP Data: State Space Models

As before suppose that there are nr flows in a network. However, in addition to

sampled data now assume that one can obtain accurate measurements (e.g. SNMP)

about the sum of the flows at the nl links. Typically, the number of flows is signifi-

cantly larger than the number of links; i.e. nl << nr.

As before let x(t) = (x1(t), · · · , xnr(t))
′ be the vector of a random realization of

volumes of different flows, in time interval t. Further, assume that nl SNMP mea-

surements y(t) = (y1(t), · · · , ynl
(t))′ for the same time interval t are available. Each

SNMP measurement is an estimate of the sum of all traffic traversing a particular

link in a particular measurement interval. Thus, we can write

y(t) = Ax(t) + u(t)

where A is a nl × nr routing 0/1 matrix that describes the routes of the various

network flows and u(t) is independent noise (to model possible errors in SNMP

data). It is assumed that Cov(u(t)) = σ2I. We assume that the matrix A does

not change over time. However, the case of time varying routing is handled in a

straightforward way.

The observation model can now be written as

(4.13)




Y (t)

Z(t)


 =




A

L


X(t) +




u(t)

ε(t)




with

Cov(ε(t)) = Ψ(t, ξ(t))−1

where Ψ(t, ·) is a linear function and ξ(t) is the value of design variables in time
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interval t. For sampled flow volume measurements Ψ(t, ξ)−1 = D, due to equation

(4.9).

Generalizing the random walk model, the joint distribution of (x(1), x(2), · · · )

can be modeled through a state-space approach. Such an approach has been shown

[30, 41] to perform well for modeling flow volumes. Specifically, we assume the

following transition equation:

(4.14) x(t) = Cx(t− 1) + w(t)

Further, let Cov(w(t)) = W . The state transition equation may suffer from mis-

specification too and we look at this issue numerically in Section 4.4.3. Note that

the above equation corresponds to a vector auto-regressive model of order 1. Higher

order models and model selection issues have been investigated by Zhao et. al. [52].

Flow modeling is an active area of research and one that is beyond the scope of

this work. Equation (4.22) is an extremely simple and robust way of modeling flow

volumes that still captures spatio-temporal dependence which is key to filtering.

As before, we will assume that there are certain budget and positivity constraints

on the sampling rates (ξ(1)′, ξ(2)′, · · · ). For the remainder of this section, it is as-

sumed that the constraints can be simplified as ξ(t) ∈ Ξ(t), where Ξ(t) are convex

sets.

Given the state space model one can use a Kalman-Filter to recursively compute

estimates of x(t) based on information available at time t. Such an approach using

only SNMP data (y(t)′, y(t− 1)′, · · · )′ has been been demonstrated in [41]. Let x̂(t)

be the Kalman-Filter estimate of x(t) based on (y(t)′, z(t)′, y(t − 1)′, z(t − 1)′, · · · )

and let Σ(t) denote the covariance matrix of estimation error i.e. Σ(t) = E[(x(t) −

x̂(t))(x(t)− x̂(t))′|y(t)′, z(t)′, y(t− 1)′, z(t− 1)′, · · · ].

The conditional covariance of x(t) given (y(t−1)′, z(t−1)′, y(t−2)′, z(t−2)′, · · · )
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can be written as [25]:

(4.15) Σ(t|t− 1) = CΣ(t− 1)C ′ +W

Further, we have the following updating equation:

(4.16) Σ(t) = Σ(t|t− 1)− Σ(t|t− 1)J ′F (t)−1JΣ(t|t− 1)

where J ′ = (A′, L′) and

F (t) = JΣ(t|t− 1)J ′ +




σ2I 0

0 Ψ(t, ξ(t))−1




4.4.1 Formulation of the Myopic Optimal Sampling Problem

It is reasonable to seek to minimize some appropriate functional of (Σ(1),Σ(2), · · · ),

since this would lead to maximization of information about the underlying flows.

More generally, if interest is restricted to a subset of flows K ′X(t), selected by a

matrix K, then we seek to minimize a functional of (K ′Σ(1)K,K ′Σ(2)K, · · · ). No-

tice that any joint minimization of (K ′Σ(1)K,K ′Σ(2)K, · · · ) would have very high

complexity. We make some comments on the steady state optimal design problem in

Section 4.5. Here we restrict attention to the myopic design problem, i.e. optimizing

K ′Σ(t)K at every time interval t = 1, 2, · · · .

We will refer to the following problem as the (myopic) optimal design problem for

state space models. At each time interval t, the design objective would be to minimize

f(K ′Σ(t)K) for some functional f . If S is the set of symmetric semi-definite matrices,

then f : S→ R is in general matrix isotonic [38]. The dimension of matrices in S is

usually clear from the context and we will use the same notation f() for all cases.

Common choices of f are the determinant (also known as the D-optimality criterion

in the design of experiments literature), the maximum eigenvalue (E-optimality) and
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the trace (A-optimality). Our exposition will focus on the E- and A- optimality

criteria.

Remark: Although there is nothing special about these criteria conceptually, and

in fact network engineers may find other criteria like relative mean squared error

(MSE) attractive, we focus on these for the following reasons. First, these criteria

result in optimization problems that are simple convex programs and thus intuitive

and computationally easier to handle. Secondly, the purpose of this work is to

demonstrate that it is possible to get better performance with respect to specific

design objectives though a targeted allocation of sampling resources. Generally any

objective function would involve a scalarization of the covariance matrix of estimation

error. Many reasonable scalarizations are well approximated by above criteria or

simple modifications thereof. We discuss the connection between the optimality

criteria and quantities like MSE in Section 4.4.2.

Using the matrix inversion lemma ((A + BDB′)−1 = A−1 − A−1B(B′A−1B +

D−1)−1B′A−1), we can write

(4.17) Σ(t)−1 = Σ(t|t− 1)−1 + σ−2A′A+ L′Ψ(t, ξ(t))L

The above can be interpreted as an information update equation [25]. Here Σ(t)−1,

the information available at time t, is represented as the sum of Σ(t|t − 1)−1, the

information from time t−1, σ−2A′A, information from SNMP data and L′Ψ(t, ξ(t))L

information from sampled data.

Now,

(4.18) K ′Σ(t)K = K ′(Σ(t|t− 1)−1 + σ−2A′A+ L′Ψ(t, ξ(t))L)−1K

Note that both Σ(t) and K ′Σ(t)K are of the general form G′M(ξ(t))−1G where G

is a known matrix and M(·) is a linear function. This will allow us to write the
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resulting optimizations as canonical convex programs.

A value of σ = 0, implies perfect knowledge in a specific subspace; i.e. Ax(t) =

y(t). We proceed by reparameterizing the variable x(t) so that the equality y(t) =

Ax(t) can be solved for a subset of these new variables and the conditional covariance

of the remaining variables is positive definite. Let x̃(t) = Q′x(t), where Q is the

unitary matrix from the eigenvalue decomposition

A′A = QΛQ′

and Λ being the diagonal eigenvalue matrix with first nl diagonal values positive and

the rest zero. The covariance of x̃(t) given (y(t)′, z(t)′, y(t− 1)′, z(t− 1)′, · · · ) can be

written using the following proposition.

Proposition IV.1. Let X and ε be independent normal random vectors with co-

variances Σ and Ψ−1 respectively. Further let Y = AX for A with full row rank,

Z = LX + ε and A′A = QΛQ′ be the eigenvalue decomposition of A′A. Let

Q = (Q1, Q2) such that (w.l.o.g) AQ1 ≡ P , a full rank square matrix and AQ2 = 0.

Define

X̃ ≡




X̃1

X̃2


 ≡




Q′1X

Q′2X


 .

Then, the covariance of X̃1 given Y is 0 and the covariance of X̃2 given Y and Z is

(Q′2Σ
−1Q2 +Q′2L

′ΨLQ2)
−1.

Proof. Note that AX = PX̃1 and thus X̃1 = P−1Y . Hence, clearly the covariance

of X̃1 given Y is 0. Further, the covariance of X̃2 given (Y ′, Z ′)′ is the same as

ΣX̃2|(X̃′
1,Z̃′)′ , the covariance of X̃2 given (X̃ ′

1, Z
′)′. Let ΣX̃2|X̃1

, ΣX̃2,Z|X̃1
and ΣZ|X̃1

be the covariance of X̃2, cross-covariance of X̃2 and Z and the covariance of Z
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respectively given X̃1. Then

ΣX̃2|(X̃′
1,Z̃′)′ = ΣX̃2|X̃1

− ΣX̃2,Z|X̃1
Σ−1

Z|X̃1
Σ′

X̃2,Z|X̃1

= ΣX̃2|X̃1
−

ΣX̃2|X̃1
Q′2L

′(LQ2ΣX̃2|X̃1
Q′2L

′ + Ψ−1)−1LQ2ΣX̃2|X̃1

= (Σ−1

X̃2|X̃1
+Q′2L

′ΨLQ2)
−1(4.19)

The last equality follows from the matrix inversion lemma. Further

ΣX̃2|X̃1
= Q′2ΣQ2 −Q′2ΣQ1(Q

′
1ΣQ1)

−1Q′1ΣQ2

Therefore,

Σ−1

X̃2|X̃1
= [(Q′ΣQ)−1]22

= [Q′Σ−1Q]22 = Q′2Σ
−1Q2

which establishes the desired result.

¤

Hence the covariance of x̃(t) given

(y(t)′, z(t)′, y(t− 1)′, z(t− 1)′, · · · ) is given by

Σ̃(t) =




0 0

0 (Q′2Σ(t|t− 1)−1Q2 +Q′2L
′Ψ(t, ξ(t))LQ2)

−1




Finally,

Σ(t) = Q ˜Σ(t)Q′ = Q2(Q
′
2Σ(t|t− 1)−1Q2

+ Q′2L
′Ψ(t, ξ(t))LQ2)

−1Q′2(4.20)

which shows that both Σ(t) and K ′Σ(t)K are of the form G′M(ξ(t))−1G.
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4.4.2 Optimality Criteria and Convex Programs

For the classical optimality criteria mentioned earlier, the optimization problems

can be written as canonical convex programs [29] that can be solved using any of

the commonly available software packages. The usual class of algorithms used for

solving convex optimization problems, Interior Point Methods, have polynomial time

complexity and have been successfully employed for various large scale optimization

problems. Since we focus on one measurement interval at a time, the general opti-

mization problem is to minimize f(G′M(ξ)−1G) subject to ξ ∈ Ξ.

1. E-optimality. E-optimality corresponds to minimizing the maximum eigenvalue

of a covariance matrix. Equivalently, this minimizes the worst possible variance

of any linear combination of the error vector. Roughly, this would lead to a

small value for the largest of the MSE.

In this case we get the following program:

maximize
θ∈R,ξ∈Ξ

θ

subject to

(4.21) G′M(ξ)−1G ¹ θ−1I

Recall that if A Â 0 and C Â 0 then



A B

B′ C


 º 0

if and only if C º B′A−1B or equivalently if and only if A º BC−1B′. This

follows from taking the Schur complement of C and A respectively.

Thus, the constraint (4.21) is equivalent to

M(ξ) º θGG′
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The above program is a Semi-Definite Program (SDP) if Ξ is a convex polygon

[4].

2. A-optimality. A-optimality corresponds to minimizing the trace of a covariance

matrix and hence minimizing the average MSE. In this case we get the following

program:

minimize
t∈Rn,ξ∈Ξ

n∑
i=1

ti

subject to

ti ≥ e′iG
′M(ξ)−1Gei

for i = 1, · · · , n, where n is the number of columns in G and ei is the ith

unit-vector of Rn. Using Schur complement we can write the given constraints

as: 


M(ξ) Gei

e′iG
′ ti


 º 0

Thus we get a SDP if Ξ is a convex polygon.

3. D-optimality. D-optimality corresponds to minimizing the determinant of a

covariance matrix and hence minimizing the volume of the associated confidence

ellipsoid. In this case we get the following program:

minimize
ξ∈Ξ

log detG′M(ξ)−1G

Note that if G does not have full column rank then the minimization is trivially

unbounded. Although D-optimality has a natural interpretation for polynomial

regression models we will focus on A- and E- optimality due to their simplicity

and interpret-ability in terms of error variances.
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Figure 4.10: Abilene Topology used for Performance Evaluation Purposes

4.4.3 Performance Evaluation

In this Section, the performance of the proposed design scheme for the sampling

rates is evaluated. Specifically, the following issues are addressed: in the first part,

the cumulative effect of the greedy design optimization steps is examined, when the

true model of flow volumes is given by the state-transition equation (4.14) and errors

in the observation equation (4.13) have constant variance. In the second part, the

effects of model misspecification in the state transition equation and approximations

in the supposed variances of errors of the observation equation are investigated.

In the following, we describe the overall setup for the numerical study.

1. Topology, Routing and Observation Points. The Abilene network topology

(Figure 4.10) is used in our experimental setup. It consists of 11 nodes and

16 × 2 = 32 directed edges between pairs of nodes (bidirectional links). Flows

exist between all pairs of nodes resulting in a total of 11× 10 = 110 flows. We

assume that these flows are routed through minimum distance paths. Further

we assume that SNMP data are available from all the edges. Similarly, sampled

data are collected at each edge. All the incoming edges at a node are considered

as the interfaces of the corresponding router.

2. Budget Constraints. The budget constraint represents an effective way of lim-
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iting the number of samples collected at a particular router. For this numerical

study, we use a budget constraint of the form Rξt ≤ b. Here Rij is equal to the

square of the number of flows traversing edge j if edge j is incident on node

i and 0 otherwise. Thus, the weighted sum of sampling rates on the incoming

edges of node i is bounded above by bi. It can be seen that the cost of sampling

on an edge goes up as the square of number of flows traversing that edge. This

is a very reasonable assumption, because not only does sampling on a heavily

used link results in a large number of samples and thus a significant demand

on resources, but also on such a link less resources are available for sampling to

begin with. The elements of b were identically chosen to be some b0 to ensure

realistic sampling rates. The above router level constraint implies the network

level constraint 1′Rξt ≤ 1′b. While most of the following assumes router level

constraints we will also investigate the result of imposing only the network level

budget constraint.

Notice that the above setup has the following symmetry property. Define a short

flow to be a flow that traverses exactly one edge or equivalently exactly one router

interface. Further, each interface is traversed by exactly one short flow. By definition,

any given interface is the only point in the network from where sampled data is

available for the short flow traversing it.

The above symmetry has important consequences for optimal design for the sce-

nario described in the following. An intuitive understanding of its effects can be

described as follows. A low sampling rate on any interface would result in an in-

formation deficit on the corresponding short flow, which in turn will result in a

large measurement error variance due to the inverse relation between variance and

sampling rate. From equation (4.17), the total information at time t is the sum of
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information obtained from the previous time period t−1, from SNMP measurements

and from sampled data. Suppose that the sum of information from time t − 1 and

from SNMP measurements do not ameliorate the problem of information deficit on

short flows. Further, suppose that there is roughly equal information from this sum

on each short flow. In this case, the objective function of A-optimality (i.e. average

estimation error variance) is heavily influenced by the large measurement variances

of short flows. Further, the objective function of E-optimality is determined to an

even larger extent by the largest measurement error variance. Thus, to the extent

possible given the budget constraints, all the short flows must be sampled roughly

equally under the optimal allocation. This in turn implies that all interfaces should

be allocated roughly equal sampling rates, again to the extent possible under the

budget constraints. This was indeed found to be true as described in the following.

On the other hand, when interest focuses on a specific subsystem of flows K ′x(t),

then it is not a priori clear what an optimal or near optimal solution should be. For

most of following, we assume that the interest is restricted to long flows; i.e. flows

that traverse four or more edges in the employed topology. A matrix K was used to

subset x(t) accordingly.

Cumulative Effect of Myopic Optimality

Recall that at each time interval t, the measurement scheme was designed to

better utilize the side information available from past measurements Σ(t|t − 1)−1

and from SNMP measurements σ−2A′A. The gains compared to a homogeneous

allocation may be small in a single step but these gains propagate across time in the

form of prior information according to equation (4.15). The purpose of this section

is to study how the gains from using an optimal design accumulate over time.

When the assumed observation and state transition models (4.134.14) are the true
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model and the true C, W , σ and Ψ(t, ·) matrices are known, then Σ(t) calculated

using (4.15,4.16) is the true covariance of estimation error. Hence, we can calculate

the covariance of estimation error for any sequence of allocations (ξ(1)′, ξ(2)′, · · · ).

For this investigation we assume σ = 0, C = I, W = I and Ψ(t, ξ) = Ψ(ξ) =

∑
k ξkΨk. The important calibration issue here is to choose Ψk to maintain realistic

order of magnitude of measurement error Ψ(ξ)−1 with respect to the innovations

covariance W . Empirical data has shown [30] that the innovations in flow volumes

have a variance of roughly the same magnitude as the flow volume itself. Therefore, it

is expected that [W ]ii is of the same order of magnitude as Xi. Using this observation

and equation (4.10) we choose

[Ψk]ii =





1 if k = k(i)

0 otherwise

For the sake of comparison, a set of naive allocations is defined as follows. If we

are interested in the estimation error for all flows and there is a router level budget

constraint, it is given by ξ for which each interface on a router has equal sampling rate

and Rξ = b. Note that interfaces on different routers can have different sampling

rates. This ξ is also used as the common initial allocation ξ(0) for all allocation

schemes considered in this section. On the other hand, if there is only a network

level budget constraint and we are interested in the estimation error for all flows, the

naive allocation correspond to ξ for which all interfaces in the network have equal

sampling rates and 1′Rξ = 1′b. Finally, when we are interested in the estimation

error in K ′x(t) (the subset of long flows) the naive allocation is given by ξ for which

any interface that is not traversed by any long flow has 0 sampling rate, all other

interfaces have sampling rates determined as above for router level and network level

budget constraints, respectively.
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Figure 4.11: Performance of E-optimal sampling for (a)noisy and (b) noise-free initialization

We consider two sets of initial conditions. The first one, referred to as noise-free

initialization, assumes perfect knowledge at time 0 (Σ(0) = 0). The second, referred

to as noisy initialization, assumes

Σ(0) = Q2(Q
′
2L

′Ψ(ξ(0))LQ2)
−1Q′2

From equation (4.20), the latter corresponds to starting with only one measurement

interval worth of information. All results are for router level budget constraints,

unless otherwise stated.

First consider the case when we are interested in estimation errors of all flows.

Figures 4.11 (a) and (b) show the value of the objective function for E-optimality,

i.e. the largest eigenvalue of Σ(t), over time for 3 Kalman filters. These filters re-

spectively use SNMP data only, SNMP and naively sampled data and SNMP and

optimally sampled data. Clearly inclusion of sampled data gives substantial improve-

ment over SNMP alone. Moreover, as information accumulates over time we get an

improvement in performance. This can be viewed as the gain from using a temporal

model to combine samples from across time intervals. For the E-optimality criterion,

the performance of the naive and optimal allocations is fairly similar. This is not

surprising given the symmetry in our setup, discussed above. Figure 4.12 presents
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Figure 4.12: Evolution of E-optimal sampling rates

the evolution of the allocations ξ(t) over time for noisy initialization. Clearly the

sampling rates achieve a steady state for most of the interfaces after very few time

intervals (3-5) and certainly before t ≈ 15.

The above qualitative assessments hold for both the E- and A- optimality criteria.

As an example, Figure 4.13 shows the value of the objective function for A-optimality,

i.e. the trace of Σ(t) over time starting from noisy initialization based on the three

Kalman filters employed. In this case, the third filter uses A-optimally sampled

data. Notice that the Kalman filter based on optimally sampled data has slightly

better transient behavior than the one based on naively sampled data. The differ-

ence from the E-optimal case (Figure 4.11(a)) is due to the fact that A-optimality,

being determined by the sum of variances, is less sensitive to high variance or low

information on particular flows. Hence, the A-optimal solution is driven by short

flows to a lesser degree than the E-optimal solution, despite the symmetry property

mentioned earlier.

Next, we focus on the case when the interest is on K ′x(t), the subset of long flows.

Figures 4.14 (a), (b), (c) and (d) show the relevant performance metric over time for

E- and A- optimal sampling strategies for the two sets of initial conditions. In this

case, we see a clear advantage in using optimal sampling over naive sampling. In
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Figure 4.13: Performance of A-optimal sampling for noisy initialization

respective performance metrics the improvement over naive sampling is 29.7% and

26.0% for E-optimal design and 18.0% and 15.7% for A-optimal design.

Next, we look more closely at the steady state sampling rates. Figures 4.15(a) and

(b) show the evolution and spatial profile of the final E-optimal sampling rates under

noisy initialization. In Figure 4.15 (c) the ξk values versus k for the above allocation

and the naive allocation are shown. Clearly the optimal allocation has a sparser

support. Intuitively all interfaces that have a high cost but do not provide enough

information on the long flows have zero sampling rate. Figure 4.15 (d) shows for each

flow the cumulative sampling rate over all observation points that the flow traverses

for naive and optimal allocation, respectively. Notice that the minimum allocation to

a long flow is larger under optimal sampling (.0046) than for naive sampling (.0033).

It clearly illustrates the benefits obtained from being able to design the sampling

rates in an optimal manner, which can be responsive to the objective set forth by

network engineers.

Finally, we look at some variations on the above setup. Figure 4.16 shows the per-

formance of A-optimal sampling from a noise-free initialization under a network-level

constraint alone. Here the improvement over naive sampling is 31.8%. Clearly there

is improvement in performance over the corresponding performance under router-
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Figure 4.14: Performance of E-optimal (a)(b) and A- optimal sampling for noisy (a)(c) and noise-
free (b)(d)initialization
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Figure 4.15: Spatio-temporal behavior of E-optimal ξ
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Figure 4.16: Performance of A-optimal sampling under network level constraint
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Figure 4.17: Performance of E-optimal sampling under linear cost.

level constraints (Figure 4.14(d)). Another variation is to replace the matrix R by

its element-wise square-root. Thus, the cost of sampling on an interface goes up

linearly with the number of flows traversing that interface. Notice that from a geo-

metric point of view we have not changed the nature of the constraints. Figure 4.17

shows the performance of E-optimal sampling under such a constraint. Notice that

compared to our usual cost (Figure 4.14(a)) the gain over the corresponding naive

allocation is smaller. This is perhaps not surprising since under linear cost the gains

from sampling on an interface are roughly equal to the cost and hence any shift along

the surface {ξ : Rξ = b} would have small effect on the objective function.

Effects of Misspecification

The state transition equation (4.14) and observation equation (4.13) necessarily

suffer from model misspecification and parameter inaccuracies. Note that if x(t) has
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a constant covariance, then (4.14) can be true only if the spectral radius of C is less

than 1 [34]. However, in this case, the steady state mean of x(t) would be 0. This

model (4.14) works well in practice [41] possibly because the misspecification in the

conditional distribution of x(t) given x(t − 1) is small. The misspecification in the

observation equation (4.13) may potentially be more serious. Firstly, the sampled

data z(t) are not distributed normally given x(t) to begin with. Thus, Kalman

filtering is not optimal. Second, it is clear from the observations in Section 4.3.2 that

the true value of the covariance of the measurement error, Ψ(t, ·), can not be known

with high precision and one would use an approximation for both filtering and design

optimization. We study the effects of such misspecification in the following.

We start by describing the model used for data generation. Assume,

xi(t) = ROUND(aVi(t) + · · ·+ aVi(t+ n))

where Vi(t) are independent Poisson random variables with mean λi. Here ROUND(·)

is the round off function. Variables a and λi are chosen to ensure E[xi(t)] = E[(xi(t)−

xi(t − 1))2] = µi, where µi is the required mean. Thus, we again ensure that the

variance of innovations for a flow are of the same magnitude as the volume of the

flow, as seen in empirical studies [30]. The above can be solved for a = (n + 1)/2

and λi = 2µi/(n+1)2 Further, the above model implies that the corresponding fitted

model for the state transition equation (4.14) would have C = I and W = Diag(µ).

These are the values we use for both design optimization and filtering. For most of

the results presented here it assumed that n = 50, while the µi’s were chosen from a

uniform distribution with support between 9000 and 11000.

The sampled measurements were generated as follows. The SNMP measurements

y(t) were generated from a normal distribution with mean x(t) and covariance σ2I

with σ2 = 100. The i-th sampled measurement, zi(t) was chosen to be 1/ξk(t) times
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a binomial random variable with parameters xj(t) (the corresponding flow volume)

and ξk(t) (the corresponding sampling rate), where j = l(i) and k = k(i).

Finally, for the purpose of design optimization and filtering it is assumed that

Ψ(t, ξ) =
∑

k ξkΨk, where Ψk are diagonal matrices with

(4.22) [Ψk]ii =





1/x̂l(i)(t− 1) if k = k(i)

0 otherwise

where x̂(t − 1) is the Kalman filter estimate of x(t − 1). This choice works well if

x̂(t − 1) is a good estimate of x(t). However, if x̂(t − 1) is based on a few intervals

worth of data, as in the first few time intervals after a noisy initialization, it may

be extremely noisy and this can potentially lead to instabilities. In our simulations

rare instances of explosive growth in estimation error were observed (these instances

were extremely infrequent, occurring at most thrice in 200×2 realizations of sampled

data, corresponding to optimal and naive sampling of the 200 realizations of x(t).

We have dropped such cases from our results and indicated accordingly).

In this setup, two sets of initial conditions were considered as well. The noise-free

initialization assumes x̂(0) = x(0) and Σ(0) = 0, while the noisy one assumes

x̂(0) = (J ′J)−1J ′




Y (0)

Z(0)




where J ′ = (A′, L′) and

Σ(0) = (J ′J)−1J ′




σ2I 0

0 Ψ−1(0, ξ(0))


 J(J ′J)−1

We define x̂(−1) ≡ X̂(0) for the purpose of evaluating Ψ(0, ·). Also, recall that ξ(0)

is the naive allocation, which was used to generate Z(0).

For a given optimization setup we generate µ as described and simulated up to

200 realizations of x(t). We calculate x̂(t) for different versions of the Kalman filter
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Figure 4.18: Sample trajectory of true and estimated flow volume

operating on different data depending on the respective sampling rates. Figure 4.18

depicts one realization of the trajectories of the true flow volume and estimated flow

volumes for a particular flow. Thus, we calculate the MSE for all flows, averaging

over all realizations. Given the discussion in Section 4.4.2, we study the performance

of the maximum MSE among all flows for E-optimality and the mean of MSEs of all

flows for A-optimality.

Figure 4.19 depicts the performance of optimal sampling for different initializa-

tions and different target sets of flows (for (a) and (c) two and one simulation,

respectively, out of 200 were dropped due to numerical instability). Comparing Fig-

ures 4.19(a)(b) to Figures 4.11 (a)(b), and Figures 4.19(c)(d) to Figures 4.14 (a)(b)

we observe that the relative performance of different Kalman filters under misspeci-

fication is very similar to that of the corresponding set of Kalman Filters when there

is no misspecification. Specifically, we again observe that when interest is restricted

to the subset of long flows there is optimal sampling performs considerably better

than naive sampling.

Finally, we look at some variations on the above settings. Recall that Σ = Diag(µ)

and thus one needs knowledge of µ for both filtering and tracking purposes. We study

the effect of incorrectly specified µ on the performance of the Kalman filter. Figure
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Figure 4.19: Performance of E-optimal for noisy (a)(c) and noise-free (b)(d) realizations. Interest
is restricted to long flows in (c)(d).
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Figure 4.20: Performance under misspecification of µ
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Figure 4.21: Performance of E-optimality under linear cost

4.20 shows the performance of respective Kalman filters when the presumed µ is still

chosen as described earlier, but the true µ used for data generation has two arbitrary

entries changed to 20000. Notice that for the above misspecification the relative

improvement from optimal sampling over naive sampling is considerably larger than

the corresponding improvement otherwise (Figure 4.19(d)). Figure 4.21 shows the

performance of E-optimal sampling when R is replaced by its element-wise square-

root. Given our observation from Figure 4.17 it is not surprising that the relative

gain from optimal sampling over naive sampling is reduced.

4.5 Discussion and Future Work

The previous section extends the myopic design problem to state space models.

The specification of steady state optimal design problem can be easily generalized to



130

such systems. Recall that these systems are described by a pair of equations [25].

The State Transition Equation can be written as:

x(t) = Cx(t− 1) + w(t)

where Cov(w(t)) = W . Then Observation Equation can be written as:

y(t) = Lx(t) + ε(t)

Assume Cov(ε(t)) = Ψ(ξ)−1 where Ψ(·) is a linear function and ξ is the value of

design variables.

For the above dynamical system a Kalman Filter can be used to iteratively com-

pute E[x(t)|y(t), y(t − 1), · · · ]. Let the steady state estimation error covariance be

Σ = M̃−1. Then M̃ satisfies the Algebraic Riccatti Equation:

(4.23) M̃ = (CM̃−1C ′ +W )−1 + L′Ψ(ξ)L

Such equations have no analytic solution in general.

The Steady State Optimal Design problem can now be defined as:

arg max
Rξ≤b

f(M̃−1)

where f(·) is an appropriate scalarization of the covariance matrix [17]. An interest-

ing open problem is to solve the above optimization efficiently in the absence of an

analytic solution to (4.23). The sensor placement problem in control system litera-

ture [1] is equivalent though not identical. The newton-type algorithm proposed in

[1] for this problem requires the solution of the Algebraic Riccati Equation at each

time step. It would be desirable to develop more efficient algorithms.

In summary, we have shown that steady state E-optimal design for random walks

is a second order cone program. We have shown numerically that the performance
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of the Kalman filter can be significantly improved by optimal experiment design.

We investigated numerically the extension of myopic design to instances of state

space models. The linear state space model is of general interest and one would

like to investigate the steady state optimal design problem described above. From a

practical point of view it would be useful to extend these ideas to non-linear filtering.



CHAPTER V

Concluding Remarks

The common theme running through most of the present work is utilizing the

dependence structure in flow volumes distribution for estimation purposes. It is

quite likely that these ideas would be useful in the context of other networks like

road networks or supply chain networks. The results on identifiability and steady

state optimal design seem to be of general statistical interest. The work on dual

modality tomography highlights some of the challenges in, and possible solutions

for, estimation of flow volumes in realistic computer networks. Future work has been

indicated at the end of chapters as appropriate. We conclude here with some general

remarks in various related directions.

Recall that most of our identifiability results concern identifiability up to mean.

When interest is in estimating flow volume means, as is often the case, some kind

of mean-variance relationship typically needs to be assumed for regularization. A

possible exception could be assuming a compound model as noted in Section 2.6.

Estimation for compound models is challenging [5] even when there is no aggre-

gation of the kind under consideration. However, this is certainly an interesting

direction for future exploration. On the other hand, often times the interest may be

in estimating variances of flow volumes, e.g. to use as input for anomaly detection

132
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or filtering. Sometimes second moments like temporal auto-correlations or inter-

modality covariances are of independent interest. Even in these cases identifiability

of a certain model may not be enough to recommend the use of such a model for

straightforward estimation when sample size is small. There have been several ex-

citing developments in the field of regularized covariance estimation [3] and it would

be interesting to use some of those ideas for estimating covariances of flow volumes

under identifiable models.

Of course, if sampled data collection infrastructure is widely deployed in a net-

work then questions of identifiability of flow volumes distribution from cumulative

measurements are no longer crucial. In this case sampling rate design and schemes

for merging sampled and SNMP-like data are more important from a practical point

of view. Finally, an area of enduring promise and some controversy is probabilistic

modeling of individual connections in a computer network to explain aggregate traffic

characteristics [22].
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