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ABSTRACT 

 

RAZOR: A VARIABILITY-TOLERANT DESIGN METHODOLOGY FO R LOW -
POWER AND ROBUST COMPUTING 

 

by 

Shidhartha Das 

 

Chair: David T. Blaauw 

Rising PVT variations at advanced process nodes make it increasingly difficult to 

meet aggressive performance targets under strict power budgets. Traditional adaptive 

techniques that compensate for PVT variations need safety margins and cannot respond 

to rapid environmental changes. In this thesis, we present a novel voltage management 

technique, called Razor, which eliminates worst-case safety margins through in situ error 

detection and correction of variation-induced delay errors. In Razor, we use a delay-error 

tolerant flip-flop on critical paths to scale the supply voltage to the point of first failure of 

a die for a given frequency.  Thus, all margins due to global and local PVT variations are 

eliminated, resulting in significant energy savings. In addition, the supply voltage can be 

scaled even lower than the first failure point into the sub-critical region, deliberately 

tolerating a targeted error rate, thereby providing additional energy savings. Thus, in the 

context of Razor, a timing error is not a catastrophic system failure but a trade-off 

between the overhead of error-correction and the additional energy savings due to sub-

critical operation. In Razor, the error-rate is monitored and the supply voltage is tuned to 

achieve a targeted error-rate.  

We developed two techniques, called RazorI and RazorII, for implementation of 

Razor-based voltage tuning in microprocessors. The RazorI approach achieves error-



 xv 

 

detection by double-sampling the critical-path output at different points in time and 

comparing both samples. A global recovery signal overwrites the earlier, speculative 

sample with the later sample and restores the pipeline to its correct state. We 

implemented RazorI error-detection and correction in a 64bit processor in 0.18micron 

technology and obtained 50% energy savings over the worst-case at 120MHz. However, 

the efficacy of the RazorI technique for high-performance processors is undermined by 

its reliance on a metastability-detector and potentially, timing-critical pipeline recovery 

path.  

The RazorII approach addresses this issue by achieving recovery from delay-errors 

through a conventional, architectural-replay mechanism. Error-detection in RazorII 

occurs by flagging spurious transitions at critical-path endpoints. Furthermore, RazorII 

also detects logic and register SER. We implemented a RazorII-enabled 64bit processor 

in 0.13µm technology and obtained 33% power savings over the worst-case. SER 

tolerance was demonstrated with radiation experiments. 
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CHAPTER 1 

INTRODUCTION  

In the last few years, the computational capability of mobile and hand-held devices 

has witnessed phenomenal improvements. Heavyweight compute-intensive applications 

such as 3-D graphics, audio/video, internet access and gaming which were traditionally 

exclusive to the domain of desktop computers are now available for mobile platforms as 

well. This is evident in the evolution of the mobile phone: in the last decade and half 

mobile phones have shown more than 50X improvement1  in talk-time per gram of 

battery.  Indeed, the surge in the market for smartphones, Mobile Internet Devices 

(MIDs) and Ultra-Mobile Personal Computers (UMPCs) is expected to push the 

performance envelope of mobile processors in the coming years. 

A key technique that has led to such performance improvements has been technology 

scaling at the rate dictated by the Moore’s Law [7]. By shrinking transistor dimensions, 

designers can deliver consistent improvements in computational capability of processors 

through higher integration levels and faster switching times [5]. Thus, technology scaling 

has been the fundamental driver that has fuelled the growth of the semiconductor industry 

over the past decades. Traditionally, supply voltage of processors has also reduced with 

each process generation. Hence, in addition to performance improvements, technology 

scaling delivered power savings as well. However, starting with the 65nm node, higher 

transistor integration levels, combined with almost constant supply voltages and 

stagnation of energy efficiency, has caused power consumption of processors to actually 

worsen at aggressive process nodes. This has created a design paradox: more transistors 

can now be fitted on a die; however, they cannot be used due to strict power limits. 

                                                
1 Comparison of standard configurations of Nokia 232 and Nokia N70 phones 
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Indeed, rising power dissipation is a fundamental barrier towards sustaining the current 

rate of transistor integration [9].   

Power consumption is especially relevant for battery-operated mobile processors as 

they increasingly handle computationally demanding applications under stringent power 

budgets. This is a major concern because battery capability has not kept pace with 

performance demands. Power consumption issues are further exacerbated by variations in 

transistor performance at aggressive geometries. Due to the inherent lithographic 

difficulties in manufacturing millions of transistors with very small feature sizes, some 

dies operate much slower than others (up to 2x difference can be commonly observed 

between the fastest and slowest chips) [20]. Such manufacturing-process induced 

differences in processor speeds across different chips are called inter-die process 

variations. Variations in transistor switching delays within the same chip itself are called 

intra-die variations.  

In addition, transistors vary in performance due to changes in the ambient 

environment. For instance, glitches in the power supply and fluctuations in the 

temperature conditions are a regular occurrence during the dynamic operation of the 

processor [49][50][51]. Temperature and voltage conditions can also vary locally 

between different parts of the same chip. In general, under high temperature or low-

voltage conditions, transistor switching speed between logic states is substantially 

reduced. Designing robust circuits that can cope with these variations in silicon grade and 

ambient conditions requires operation at a higher supply voltage. This ensures that any 

unforeseen slow-down because of voltage glitches, high temperature conditions and 

process variations does not cause computing errors due to processor timing violations.  

While the practice of adding a safety margin or so-called “guardband” to the supply 

voltage leads to robust circuit operation in presence of variations, it is also leads to higher 

power consumption. At smaller geometries, variations worsen due to inherent limitations 

in accurately controlling the manufacturing process and the operational environment of 

transistors. This necessitates the use of even wider margins as we scale transistor 

technology. However, safety margins are not needed for all chips or for the entire 

duration of their operational lifetime. Only a small percentage of the manufactured chips 

are inherently slow. Even for these slow chips, it is highly unlikely that they will exhibit 
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worst-case temperature and voltage conditions for significant periods of time during their 

operation. For most chips, safety margins are unnecessary and lead to wasted battery 

power. Thus, the fundamental issue with margining is that it seeks to budget for worst-

case conditions that occur extremely rarely in practice. This leads to overly conservative 

designs and adversely impacts the power budgets of processors that are already stressed 

due to rising performance demands. 

A key observation to make from the above discussion is that low-power and robust 

operation are fundamentally at odds with each other. Robust designing requires larger 

safety margins, such as a higher operating voltage, thicker interconnects and wider 

devices, at the expense of increased power consumption. On the other hand, low-power 

methodologies typically trade off circuit robustness for improved energy efficiency. For 

example, an effective low-power technique is Dynamic Voltage Scaling (DVS) which 

enables quadratic savings in energy by scaling supply voltage during low CPU utilization 

periods. However, low voltage operation causes signal integrity concerns by reducing the 

static noise margins for sensitive circuits. Furthermore, sensitivity to threshold voltage 

variation also increases at low voltages [2] which can lead to circuit failure. Another 
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Figure 1.1 Timing wall: A consequence of downsizing off-critical paths [40] 
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popular technique for low-power relies on downsizing off-critical paths [40]. This 

balances path delays in the design leading to the so-called timing wall, as shown in 

Figure 1.1. In a delay-balanced design, the likelihood of parametric-yield failure 

significantly increases because more paths can now fail setup requirements. This 

fundamental conflict between robustness and low-power, exacerbated due to rising 

variations, leads to a very complex optimization space wherein achieving design closure 

can be exceedingly difficult. 

1.1 Categorizing sources of variations 

In order to effectively address the issue of design closure in presence of variations, it 

is helpful to analyze and categorize the different sources of variations based on their 

spatial reach and temporal rate of change [20] , as represented in Table 1.1.  

Spatial reach 

Based on spatial reach, the source of variations can be global or local in extent. 

Those that affect all transistors on the die are global in nature. For example, voltage 

fluctuations in the on-board Power Supply Unit (PSU) affects supply to the entire die. 

Inter-die process variations and ambient temperature are other such examples of 

phenomena that affect all transistors on die and are hence classified as global variations. 

Jitter in the Phase Locked Loop (PLL) output adds uncertainty to the system clock at the 

root of the clock-tree and this uncertainty propagates to every latch and flip-flop driven 

by the clock-tree. Similarly, ageing effects, such as Time Dependent Di-electric 

Breakdown [42] (TDDB) and Negative Bias Temperature Instability [41] (NBTI), can 

also be categorized as predominantly global since all transistors on the die experience 

slow down due to these effects, over the course of its lifetime. Of course, all of the 

aforementioned global phenomena affect individual transistors to varying extents 

according to differences in their actual locations on die.  

Contrary to global sources of variation, local effects are limited to a few transistors 

in the immediate vicinity of each other. Voltage variations due to resistive drops in the 

power grid and temperature hot-spots in regions of high switching activity have local 

effects. Signal integrity issues caused due to inductive and capacitive coupling noise 



 5 

events are extremely local and are restricted to a few signal nets near the aggressor. Intra-

die process variations cause some transistors on die to operate faster (or slower) leading 

to hold (or setup) violations, thereby affecting the overall yield. Similarly, clock-jitter due 

to resistive voltage drops in selective drivers in the clock-tree leads to local timing 

variations in combinational paths.  

Temporal rate of change 

In addition to spatial reach, local and global sources of variations can be further 

classified as being “static” or “dynamic”, based on their rate of change with time.  

Static Effects 

 Design uncertainties whose magnitudes do not vary significantly during processor 

lifetime can be categorized as static. Thus, they could be:  

 a) Invariant with time:  Effects such as intra- and inter-die process variations 

determine the nominal transistor speed and the overall processor performance. However, 

they are fixed after fabrication and remain effectively invariant over the entire lifetime of 

the processor. 

b) Extremely slow-changing, spread over the lifetime of the die: Wear-out 

mechanisms such as NBTI, TDDB and electro-migration are typical examples of such 

Table 1.1 Categorizing sources of variation 

Intra-die process 
variations

Inter-die process 
variations

Life-time degradation

(NBTI, TDDB)

Coupling noise 
(capacitive and Ldi/dt) 

Local Clock-jitter (IR 
drop in clock-tree)

IR drop 

Temperature hot-spots

PLL jitterPackage/Die VDD 
fluctuations

Ambient temperature 
variations
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effects that gradually degrade processor performance, albeit slowly during its operational 

lifetime. 

 

Dynamic effects 

Such effects develop during the course of the dynamic operation of the processor. 

Both extremely fast, transient noise events as well as slow-changing ambient temperature 

fluctuations fall in this category. Thus, dynamic effects could be: 

a) Slow-changing, spread over thousands of processor cycles or more: 

Uncertainties attributed to the Voltage Regulation Module or on-board parasitics can 

cause supply voltage variations on-die. Such effects develop over a range of few micro-

seconds or thousands of processor cycles. Local temperature hot-spots also fall in this 

category and have similar time constants. On the other hand, variations in the ambient 

temperature have comparatively slow rate of change. 

b) Fast-changing, spread over tens of cycles or less: Inductive overshoots due to 

package inductance cause supply voltage fluctuations [52], with time constants of the 

order of tens of processor cycles. Similarly resistive drops in the supply voltage network 

(IR drop) due to high activity computations manifest themselves over the course of a few 

processor cycles.  

c) Extremely fast-changing, spread over less than a cycle: Typically the effect of 

coupling noise events on victim nets lasts for duration less than a cycle. In addition, PLL 

jitter occurs on a cycle-by-cycle basis and is categorized as extremely fast-changing.  

In addition to silicon-grade and ambient conditions, input vector dependence of 

circuit delay is another major source of delay variation in circuits which cannot be easily 

captured in the above categories. Circuits exhibit worst-case delay for very specific 

instruction and data sequences [11]. Most input vectors do not sensitize the critical path 

and, therefore, are not likely to fail even when operating under adverse ambient 

conditions. Hence, for most computations, worst-case safety margins are not required for 

correctness and this further aggravates the energy wastefulness inherent in conservative 

design margining.  
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1.2 Adaptive design approaches 

This growing energy waste has led to significant interest in a new approach to chip 

design called “adaptive design”. The key idea of this approach is to tune system 

parameters (supply voltage and frequency of operation) during the dynamic operation of 

a processor, specific to the native speed of each die and its run-time computational 

workload. By dynamically tuning system parameters, such techniques mitigate the 

performance and power overheads of excessive margining. Thus, if the transistors are 

inherently faster, then the die automatically detects this and adjusts system parameters 

accordingly. Of course, voltage and frequency scaling needs to be within safe limits; 

otherwise, the consequent slow-down of the transistors can result in timing failures.  

The most popular class of adaptive design techniques is called the “always-correct” 

approach. The “always-correct” approach seeks to predict the failure voltage of a chip 

and to tune the system to operate close to this point. The key issue for such approaches is 

to ensure that the operating voltage is not too aggressive. Consequently, safety margins 

are required to be added to the predicted failure point in order to guarantee computational 

correctness. Accurate prediction of the fail ure point requires special circuits to monitor 

circuit speeds in each die. 

One approach for achieving this relies on the use of so-called “canary circuits”. 

Canary circuits are named after the practice of carrying canary birds to the pits, in the 

early days of coal-mining. If the bird died, it warned the miners of the presence of 

methane upon which they could retreat to safety. In a similar fashion, a replica of the 

speed-limiting critical-path of the processor is used as a “canary” to indicate when the 

actual processor is approaching failure. The replica-path is monitored for timing failures 

as the supply voltage is scaled. Scaling is limited to the point where the replica-path just 

begins to experience timing failures.  

For correct operation, it is required that the replica-path fails sufficiently before the 

failure of the processor. In this regard, one complicating issue is that the location of the 

replica-path on die differs from the actual critical-path. Consequently, the replica-path 

experiences different intra-die variations and on-die voltage and frequency fluctuations 

than the actual speed-path. Hence, safety margins required to be added to the supply 

voltage to account for such local variations (Table 1.1). In future technologies, the local 
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component of environmental and process variations is expected to become more 

prominent, thereby increasing the necessary margins and reducing the scope for energy 

savings. 

To address the limited scope for margin elimination in the “always-correct” 

approach, designers have developed an alternative class of techniques which we refer to 

as the “let fail and correct” approach. The key idea of these techniques is to eliminate 

margins altogether by allowing a processor to fail and then recover from failure, to 

achieve correct operation. Typically, such techniques have been used in on-chip 

communication and for signal-processing applications. This is because such applications 

use algorithms that have built-in support for error-correction in order to deal with data 

corruption during transmission across noisy channels. The quality of output for most 

signal processing applications is largely statistical and indeed the data itself possesses 

significant amount of temporal and spatial redundancy that naturally facilitates error 

correction. Consequently, the pre-existing algorithmic detection and recovery capability 

can be easily augmented with additional hardware infrastructure to handle timing errors 

due to insufficient safety margins.  

The elimination of safety margins allows significant improvements in energy 

efficiency. However, deliberately allowing timing errors to occur greatly complicates the 

deployment of such techniques for general-purpose computing, where the execution 

output necessarily has to be always correct before it is committed to storage. In addition, 

the detection and recovery infrastructure should be sufficiently low-overhead so that the 

system can adequately benefit from the energy gains through margin elimination. 

Previous studies on voltage-scaled arithmetic structures on FPGA [26] suggest that 

timing errors can cause multiple bit flips in the execution output. In addition, the bit flips 

could be in either direction i.e. from 0 to 1 or vice versa. Using algorithmic approaches 

such as those based on Error Correcting Codes (ECC) to detect and recover from timing 

errors is likely to add prohibitive area and power overhead. This overhead is perhaps 

higher for random logic, such as instruction decoders, which do not have the regular or 

symmetrical structure that exist in arithmetic logic units. Consequently, the algorithmic 

approach which works well for communication and signal-processing is not amenable for 

general-purpose computing. 
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 An alternative approach to error-detection and correction uses computational 

redundancy. In this approach, multiple copies for the same block are used to obtain 

greater confidence in the final output which is often chosen through majority voting 

between the redundant blocks. In general, this approach is more suited for infrequent 

transient errors such as Soft Error Upsets (SEUs) due to cosmic particle strikes, rather 

than for timing errors. This is because lack of sufficient margins can equally affect the 

multiple blocks in the same way, effectively neutralizing the advantage of redundancy. 

Furthermore, since this approach can lead to a doubling of the area and the power 

consumption, it is restricted to only a few blocks in the data-path or to niche application 

areas where constraints on power consumption are fairly relaxed. Typical examples of 

such applications can be found in the automobile electronics such as Automatic Braking 

Systems (ABS) and in outer-space satellite communications.  

In this thesis, we propose the first application of a low-overhead, “let fail and 

correct” technique to general-purpose computing. This approach, called Razor [11][53], 

addresses the power impact of safety margins by monitoring processor delay through in 

situ timing error detection and correction mechanisms. Allowing the processor to fail and 

then recover safely from timing errors enables operation at a voltage right at the edge of 

failure. We refer to the point of onset of errors as the “Point of First Failure” (PoFF). 

Similar to other techniques in this category, Razor enables significant improvements in 

energy efficiency by eliminating safety margins. However, in contrast with other 

techniques, Razor achieves these through efficient, low-overhead mechanisms. 

Razor represents a fundamental departure from the conventional “worst-case” and 

“always-correct” design paradigm to “average-case” and “usually-correct”. The idea of 

average case design is not new and has been avidly researched in the asynchronous 

design community [16]. Razor, being a completely synchronous design fabric, benefits 

from the average-case operation and yet avoids the pitfalls that have been the bane of 

asynchronous design. 

1.3 Introduction to Razor 

 Razor [11] is a circuit-level timing speculation technique based on dynamic 

detection and correction of speed-path failures in digital designs. In Razor, input vectors 
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are speculatively executed under the assumption that they would meet the setup and hold-

time requirements for a given clock cycle. A timing mis-speculation leads to a delay error 

which is detected by comparing the speculative execution output against worst-case 

assumptions. In such an event, suitable recovery mechanisms are engaged to achieve 

correct state. Thus, computational correctness in Razor is achieved not through worst-

case safety margins but rather through in situ detection and recovery mechanisms in the 

presence of errors. 

The key idea of Razor is to tune the supply voltage by monitoring the error rate 

during operation. Since this technique of error-detection provides in situ monitoring of 

the actual circuit delay, it accounts for both global and local delay variations and does not 

suffer from voltage scaling disparities. It therefore eliminates the need for voltage 

margins that are necessary for “always-correct” circuit operation in traditional designs. 

Thus, with Razor, it is possible to tune the supply voltage to the PoFF. In addition, 

voltage can also be scaled below this first point of failure into the sub-critical regime, 
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Figure 1.2 Qualitative relationship between supply voltage and Error-rate 
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thereby deliberately tolerating a targeted error rate. In the context of Razor, an error does 

not constitute a catastrophic failure, but instead represents a trade-off between the power 

penalty incurred from error correction against additional power savings obtained from 

operating at a lower supply voltage. This is analogous to wireless communication where 

transmit power is often tuned to achieve a targeted Bit Error Rate [30]. We use this 

distinction throughout the remainder of the thesis wherein an “error” refers to a timing 

violation recoverable through Razor error correction and a “system failure” refers to 

unrecoverable pipeline corruption. 

The operational principle of Razor is illustrated in Figure 1.2 which shows the 

qualitative relationship between the supply voltage, energy consumption and pipeline 

throughput of a Razor-enabled processor. The voltage at the PoFF of the processor (Vff) 

and the minimum allowable voltage of traditional techniques (Vmargin) are also labeled in 

the figure. Vmargin is much higher than Vff under typical conditions, since safety margins 

need to be included to accommodate for worst-case operating conditions. Razor relies on 

in situ error detection and correction capability to operate at Vff, rather than at Vmargin. 

The total energy of the processor (Etot) is the sum of the energy required to perform 

standard processor operations (Eproc) and the energy consumed in recovery from timing 

errors (Erecovery). Of course, implementing Razor incurs power overhead due to which the 

nominal processor energy (Enom) without Razor technology is slightly less than Eproc. This 

overhead is attributed to the use of delay-error tolerant flip-flops on the critical paths and 

the additional recovery logic required for Razor. However, since the extra circuitry is 

deployed only for those flip-flops which have critical paths terminating in them, the 

power overhead due to Razor is fairly minimal. In the two Razor prototypes that we 

present subsequently in this thesis, the net power overhead due to Razor was less than 3% 

of the nominal chip power. 

 As the supply voltage is scaled, the processor energy (Eproc) reduces quadratically 

with voltage. However, as voltage is scaled below the first failure point (Vff), a 

significant number of paths fail to meet timing. Hence, the error rate and the recovery 

energy (Erecovery) increase exponentially. The processor throughput also reduces due to the 

increasing error rate because the processor now requires more cycles to complete the 
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instructions. The total processor energy (Etot) shows an optimal point where the rate of 

change of Erecovery and Eproc offset each other.  

It was previously observed that circuit delay is strongly data-dependent, and only 

exhibits its worst-case delay for very specific instruction and data sequences [11]. From 

this, it can be conjectured that for moderately sub-critical supply voltages only a few 

critical instructions will fail, while a majority of instructions will continue to operate 

correctly. Our hardware measurements and circuit simulation studies support this 

conjecture and demonstrate that the circuit operation degrades gracefully for sub-critical 

supply voltages, showing a gradual increase in the error rate. The proposed Razor 

approach automatically exploits this data-dependence of circuit delay by tuning the 

supply voltage to obtain a small, but non-zero error rate. It was found that if the error rate 

is maintained sufficiently low, the power overhead from error correction is minimal, 

while substantial power savings are obtained due to operating the circuit at a lower 

supply voltage. Note that as the processor executes different sets of instructions, the 

supply voltage automatically adjusts to the delay characteristics of the executed 

instruction sequence, lowering the supply voltage for instruction sequences with many 

non-critical instructions, and raising the supply voltage for instruction sequences that are 

more delay intensive. 

1.4 Main contributions and organization of the thesis 

This thesis develops the idea of Razor through two different implementation 

techniques which we refer to as RazorI and RazorII, respectively.  

• The RazorI approach relies on a double-sampling Razor flip-flop for error-

detection. In this technique, the critical-path output is sampled at two different 

points in time. The earlier, speculative sample is captured at the rising edge of the 

clock in the main flip-flop. The latter, always-correct sample is captured at a 

delayed clock-edge (we use the falling edge for convenience of implementation) in 

a so-called shadow-latch. A metastability-tolerant comparator then flags an error 

when both samples disagree. Once an error signal is flagged, a circuit-based 

technique to engaged to recover correct state within the flip-flop. Pipeline recovery 

is achieved through a micro-architectural technique that restores correctness. We 
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propose two approaches based on either clock-gating or on counter-flow pipeline 

architecture [38] for pipeline recovery. We designed a 64bit microprocessor that 

uses RazorI for supply voltage control. We obtained, on an average, 50% energy 

savings through eliminating design margins and operating at 0.1% error-rate, at 

120MHz.  

• The RazorII approach was developed with the need to address the key issues and 

weaknesses in the RazorI technique which impairs its applicability to high-

performance micro-processors. RazorII differs significantly from RazorI in that it 

moves the responsibility of recovery entirely into the micro-architectural domain. 

Error-detection is achieved within the RazorII flip-flop by monitoring the critical 

endpoints for spurious transitions. Recovery is achieved by replay from a check-

pointed state. As we show in Chapter 5, the RazorII flip-flop naturally detects 

Single Event Upsets (SEU) in combinational logic and inside latches. We 

implemented RazorII based voltage control on a 64bit microprocessor and obtained 

33% energy savings, on an average. In addition, we demonstrated correct processor 

operation in the presence of neutron irradiation, using RazorII for SEU tolerance.  

 

The remainder of this thesis is organized as follows. In Chapter 2, we survey the 

different adaptive techniques described in literature and analyze the margins eliminated 

by each of them. Chapter 3 introduces the concept of error-detection and recovery in the 

RazorI technique. In Chapter 4, we present measurement results on silicon from a 64bit 

Alpha processor that uses RazorI for supply voltage control. We discuss the key 

weaknesses of RazorI in Chapter 5 and propose RazorII as a low-overhead alternative to 

RazorI. Chapter 6 deals with different techniques that address the minimum delay 

requirement (explained in Chapter 3) in Razor. In Chapter 7, we present silicon 

measurement results on a RazorII prototype and demonstrate correct operation in 

presence of neutron irradiation. Finally, we summarize this thesis in Chapter 8 and 

conclude with directions on future research. 
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CHAPTER 2 

ADAPTIVE DESIGN TECHNIQUES 

Adaptive techniques tune system parameters based on variations in silicon-grade and 

ambient conditions. Instead of using a single operating voltage and frequency point for all 

dies, adjusting system parameters enables such techniques to deliver better energy-

efficiency through the elimination of a sub-set of worst-case safety margins. As 

mentioned in the Introduction, adaptive techniques can be broadly classified into two 

main categories, which we refer to as the “always correct” and the “let fail and correct” 

approaches. Table 2.1 lists the different adaptive architectures discussed in literature and 

the margins eliminated by each of them. In the remainder of this chapter, we discuss each 

of these techniques in greater detail. We focus on “always correct” approaches in Section 

2.1 and discuss “let fail and correct” approaches in Section 2.2.  

2.1 “Always Correct” Techniques 

The key idea in the “always correct” techniques is to predict the operational point 

where the critical-path fails to meet timing and to guarantee correctness by adding safety 

margins to the predicted failure point. The conventional approach of predicting this point 

of failure is to use either a look-up table or so-called “canary” circuits. 

2.1.1 Look-up table based approach 

In the look-up table based approach [14][13][15], the processor is pre-characterized 

during design-time to obtain its maximum obtainable frequency for a given supply 

voltage. The safe voltage-frequency pairs are obtained by performing conventional 

timing analysis on the processor. Typically, the operating frequency is decided based on 

the deadline under which a given computational task needs to be completed. Accordingly, 

the supply voltage corresponding to the frequency requirement is “dialed in”. The table 
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look-up approach exploits periods of low CPU utilization by dynamically scaling voltage 

and frequency, thereby leading to energy savings. Furthermore, owing to its relative 

simplicity, this approach can be easily deployed in the field. However, its reliance on 

conventional timing analysis performed at the combination of worst-case process, voltage 

and temperature corners implies that none of the safety margins are eliminated at a 

particular operating point.   

2.1.2 Canary-circuits based approach 

An alternative approach relies on the use of the so-called "canary" circuits to predict 

the failure point [3][18]-[23][42]. Canary circuits are typically implemented as delay 

chains which approximate the critical path of the processor. They are designed to track 

the critical path delay across process, voltage and temperature (PVT) corners. Voltage 

and frequency are scaled to the extent that this replica-delay path fails to meet timing. 

The replica-path tracks the critical-path delay across inter-die process variations and 

Table 2.1 Adaptive techniques landscape 
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global fluctuations in supply voltage and temperature, thereby eliminating margins due to 

global PVT variations (Table 1.1). However, the replica-path does not share the same 

ambient environment as the critical-path since their on-die location differs. Consequently, 

margins are added to the replica-path in order to budget for delay mismatches due to on-

chip variation and local fluctuations in temperature and supply voltage. Margins are also 

required to address fast-changing transient effects, such as coupling noise effects, which 

are difficult to respond to in time using this approach. Furthermore, mismatches in the 

scaling characteristics of the critical-path and its replica require additional safety margins. 

These margins ensure that the processor still operates correctly at the point of failure of 

the replica-path. 

There are several systems reported in literature based on canary-circuits. One 

approach uses the replica path as a delay-reference for a voltage-controlled oscillator 

(VCO) unit. The VCO monitors the delay through the chain at a given supply voltage and 

scales the operating frequency to the point of failure of the replica-path. An example of 

such an approach is Uht’s TEATime [18] which is illustrated in Figure 2.1. A toggle flip-

flop initiates a new transition through the replica path every cycle. The transition is 

correctly captured at the receiving flip-flop only if the clock period is greater than the 

propagation delay through the replica path. A simple up-down counter is used to control 

the VCO frequency output via a Digital-to-Analog Converter (DAC). IBM’s PowerPC 
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Figure 2.1 Uht's TEATime: A canary circuits based approach 
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System-on-chip design reported in [19] and the Berkeley Wireless Research Center’s [22] 

[21] low-power microprocessor are all based on a similar concept. An alternative 

approach, developed by Sony and reported in [23], uses a delay-synthesizer unit 

consisting of several delay chains which selects a safe frequency depending on the 

maximum propagation-delay through the chains. Typically, canary circuits enable better 

energy efficiency than the table look-up approach because unlike the latter, they are able 

to eliminate margins due to slow-changing, global variations (Table 1.1) such as inter-die 

process variations and global fluctuations in voltage and temperature.  

2.1.3 In situ triple-latch monitor  

Kehl’s Triple-Latch Monitor is similar to the canary-circuits based techniques, but 

utilizes in situ monitoring of circuit delay [24]. Using this approach, all monitored system 

state is sampled at three different latches with a small delay interval between each 

sampling point, as shown in Figure 2.2(a). The value in the latest-clocked latch which is 

allowed the most time is assumed correct and is always forwarded to later logic. The 

system is considered “tuned” (Figure 2.2b) when the first latch does not match the second 

and third latch values, meaning that the logic transition was very near the critical speed, 
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Figure 2.2 Kehl’s triple-latch technique for in situ delay monitoring. Figure a) 
shows the mechanism of monitoring delay through temporal redundancy. Figure b) 
shows the timing diagrams for a “tuned” system   
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but not dangerously close. If all latches see the same value, the system is running too 

slowly and frequency should be increased. If the first two latches see different values 

than the last, then the system is running dangerously fast and should be slowed down. 

Because of the in situ nature of this approach, it can adjust to local variations such as 

intra-die process and temperature variations. However, it still cannot track fast-changing 

conditions such as cross-coupling and voltage noise events. Hence, the delay between the 

successive samples has to be sufficiently separated to allow for margins for such events. 

In addition, to avoid overly aggressive clocking, evaluations of the latch values must be 

limited to tests using worst-cast latency vectors. Kehl suggests that the system should 

periodically stop and test worst-case vectors to determine if the system requires tuning. 

This requirement severely limits the general applicability of this approach since vectors 

that account for the worst-case delay and coupling noise scenario are difficult to generate, 

and exercise, for general-purpose processors. 

2.1.4 Micro-architectural techniques 

A potential short-coming of all the techniques discussed above is that they seek to 

track variations in the critical-path delay and consequently, cannot adapt to input vector 

dependent delay variations. The processor voltage and frequency is unnecessarily 

constrained by the worst-case critical-path, even if it is rarely sensitized. This observation 

b)a)
 

Figure 2.3 Data-dependent delay variations in adders a) Carry-propagation for 
SPECInt 2000 vectors b) Carry-propagation for random vectors [25] 
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is borne out by studies performed on carry-propagation lengths in adder blocks. Recent 

studies [25] have shown that for most input vectors in the SPECInt2000 benchmark suite, 

the maximum carry propagation distance rarely exceeds 24bits for 64bit additions, as 

shown in Figure 2.3(a)[25]. Similar results are observed for random vectors as well 

(Figure 2.3b). Several micro-architectural techniques described in literature exploit the 

above observation to design faster arithmetic blocks wherein the block is operated at a 

higher frequency than what is dictated by the worst-case carry path.  

The stutter adder reported in [8] is one such example. It uses a low-overhead circuit 

for a priori determination of the carry chain length. If a latency-intensive add operation is 

detected, then the clock-frequency is halved to allow it to complete without errors. If the 

carry-chain length in a cycle exceeds a certain number of bits, then, a “stutter” signal is 

raised which clock-gates the next cycle. Thus a “long” adder computation is effectively 

given two-cycles to execute. However, in [8], the authors report that in 95% of cases, the 

adder required only one cycle to compute.  

Lu [17] exploits the rare sensitization of critical-paths in a similar technique where 

an “approximate” but faster implementation of a functional unit is used in conjunction 

with a slow but always-correct checker to clock the system a higher rate. The 

“approximate” version achieves its speedup by not implementing the complete 

functionality of the adder. For example, the carry propagation path may be terminated 

after the least significant 32 bits, thereby reducing the critical-path delay and achieving 

single-cycle performance. The output of the “approximate” implementation is validated 

against the output of the “always-correct” adder which requires two cycles to compute. In 

the event of an error where there is a discrepancy between the outputs of both adders, a 

bubble is inserted and the “always-correct” adder output is forwarded to the downstream 

pipeline stages. For most computations, both outputs agree, thereby leading to a higher 

effective throughput due to faster clock-rates.  

Data-dependent delay variations are also exploited by Non-uniform cache 

architectures (NUCA) [27][28]. In aggressively scaled technologies, interconnect delay 

can become a significant portion of the cache access time. This causes wide variations in 

the fetch latencies of data words located near the access port versus those located further 

off. In traditional cache designs, the worst-case latency limits the cache access time. 
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However, NUCA allows early access times for addresses near the access port, thereby 

achieving throughput improvement. Additional throughput can be achieved by mapping 

frequently accessed data to banks located nearest to the access port. Thus, in the context 

of NUCA, data-dependence of delay relates to the frequency with which an address in the 

cache is accessed. 

While the stutter adder and the NUCA architectures adapt to data-dependent 

variations, they still require margins to account for slow silicon grade and worst-case 

ambient conditions. On the contrary, “let fail and correct” approaches seek to achieve 

both i.e. eliminate worst-case safety margins for all types of uncertainties and adapt to 

data-dependent variations as well. However, they are more complex and incur additional 

overhead in their implementation. Such approaches are discussed in detail in the next 

section.   

2.2 “Let fail and correct” approaches 

The key concept of these schemes is to scale the system parameters (e.g. voltage and 

frequency) till the point where the processor fails to meet timing, thereby leading to an 

error. An error-detection block flags the occurrence of the timing error upon which a 

recovery infrastructure is engaged to achieve correct state. To ensure that the system does 

not deadlock due to persistent errors, an additional controller monitors the error-rate and 

tunes voltage and frequency to achieve a targeted error rate.  

 Allowing the processor to fail and then recover eliminates worst-case safety 

margins. This enables significantly greater performance and energy efficiency over 

“always-correct” techniques. Furthermore, such techniques naturally exploit input vector 

dependence of delay by relying on the error-rate for voltage and frequency tuning. 

Instead of relying on safety margins, computational correctness is achieved through 

successful detection and correction of timing errors. The net energy consumption of the 

system is essentially a trade-off between the increased efficiency afforded by the 

elimination of margins and the additional overhead of recovery. Of course, the overhead 

of recovery can make sustaining a high error-rate counterproductive. Hence, these 

systems typically rely on restricting operation to low error-rate regimes to maximize 

energy efficiency.  
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Their relative complexity makes the general applicability of such systems difficult. 

However, they are naturally amenable for certain applications areas such as 

communications and signal processing. Communication systems require error correction 

to reliably transfer information across a noisy channel. Therefore, it is relatively easier to 

overload the existing error correction infrastructure to enable adaptivity to variable 

silicon and ambient conditions. Self-calibrating interconnects by Worm et al. [29] and 

Algorithmic Noise Tolerance by Shanbhag et al. [30] are examples of applications of 

such techniques to on-chip communication and signal processing architectures.   

2.2.1 Techniques for communication and signal processing 

Self-calibrating interconnects (Figure 2.4) address the problem of reliable on-chip 

communication in aggressively scaled technologies. Signal integrity concerns require on-

chip busses to be strongly buffered which consumes a significant portion of the total chip 

power. Hence, it is desirable to transfer bits at the lowest possible operating voltage while 

still guaranteeing the required performance and the targeted bit-error-rate (BER). Worm 

[29] addresses this issue by encoding the data words with so-called self synchronizing 

codes before transmission. The receiver is augmented with a checker unit that decodes 

the received code word and flags timing errors. Correction occurs by requesting re-
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Figure 2.4 Self-calibrating interconnects 



 22 

transmission through an Automatic Repeat Request (ARQ) block, as shown in Figure 2.4. 

Furthermore, an additional controller obtains feedback from the checker and accordingly 

adjusts the voltage and the frequency of the transmission. By reacting to the error-rates, 

the controller is able to adapt to the operating conditions and thus eliminate worst-case 

safety margins. This improves the energy efficiency of the on-chip busses with negligible 

BER degradation.  

Algorithmic Noise Tolerance (ANT) by Shanbhag et al. [30] uses a similar concept 

for low-power VLSI signal processing architectures. As conceptually illustrated in Figure 

2.5, the main processor block is augmented with an estimator block.  The main block is 

voltage scaled beyond the point of failure, thereby leading to intermittent timing errors. 

The result of the main block is validated against the result of the estimator block which 

computes correct result, based on the previous history. The estimator block is 

significantly cheaper in terms of area and power as compared to the main block which is 

being voltage-scaled. At low error-rates, the benefits of aggressive scaling on the main 

block compensates for the overhead of correction, leading to significant energy savings. 

Error detection occurs when the difference in results of the main block and the estimator 

block exceeds a certain threshold. Error correction occurs by overwriting the result of the 

main block with that of the estimator block.  

Since the estimator block depends upon past history of correct results to make its 

prediction, its accuracy reduces as more errors are experienced. This adversely affects the 

BER of the entire block. In addition, the overhead of error correction also increases with 
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Figure 2.5 Algorithmic Noise Tolerance [30] 
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increase in the error-rate. Hence, it is desirable to keep the rate of timing errors low for 

maintaining a low BER and high energy efficiency. The authors built a FIR filter in 0.35 

micron technology [30] to demonstrate the efficacy of this technique. They obtained at 

least 70% savings over an error-free design for a 1% reduction in the Signal to Noise 

(SNR) ratio of the final output.    

By reacting to error-rates, both of the above techniques are able to exploit data-

dependent delay variations because even under aggressively scaled voltage and frequency 

conditions, it is possible to maintain a low error-rate as long as the critical paths are not 

being sensitized.  

2.2.2 Techniques for general-purpose computing 

“Let fail and correct” approaches are naturally suited for communication applications 

which use algorithms that have built-in support for error-correction to deal with data 

corruption. The quality of output for most signal processing applications is largely 

statistical and the data itself possesses significant amount of temporal and spatial 

redundancy that naturally facilitates error correction. Errors do not affect the correct 

functionality of the system and lead to a negligible degradation of the Bit Error Rate 

(BER), at worst. However, in general-purpose computing the committed architectural 

state necessarily has to be always correct. Therefore, all timing errors that can alter the 

architectural state need to be flagged and corrected. Unlike in communication and signal 

processing applications, corruption of the architectural state in general-purpose 

computing leads to system failure and needs to be avoided at all costs.  

Razor [11] is the first application of a “let fail and correct” technique to general-

purpose computing. Razor uses temporal redundancy for error-detection as described in 

subsequent chapters. In this thesis, we describe two techniques for implementing Razor. 

In the RazorI technique (Chapter 3), a critical path signal is speculatively sampled at the 

rising edge of the regular clock and is compared against a shadow latch which samples at 

a delayed edge. A timing error is flagged when the speculative sample does not agree 

with the delayed sampled. State correction involves overwriting the shadow latch data 

into the main flip-flop and engaging micro-architectural recovery features to recover 

correct state. Unlike the RazorI technique which relies on state comparison, RazorII 
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(Chapter 5) achieves error-detection by monitoring the critical-path output for spurious 

transitions. Recovery is achieved by re-execution from a check-pointed state. We discuss 

RazorI and RazorII in greater detail in the next chapter onwards.  

The idea of temporal redundancy for error detection has been used previously in the 

design and test community for at-speed delay testing. Anghel and Nicolaidis [31] use a 

similar concept for detecting SEU failures in combinational logic. A cosmic particle 

strike in the combinational logic manifests itself as a pulse which can get captured by 

downstream flip-flops. The authors detect such an event by re-sampling the flip-flop 

input after the pulse has died down. A discrepancy between the two samples indicates a 

SEU event in the combinational logic. This technique is limited to error detection and 

does not enable recovery which restricts its applicability to SEU detection only.  

2.3 Summary and discussion 

In this chapter, we surveyed the different adaptive techniques presented in literature. We 

broadly classified such techniques as “always-correct” approaches and “let fail and 

correct” approaches. Always-correct techniques use failure prediction techniques such as 

pre-characterized look-up tables and canary circuits to approach the PoFF as close as 

possible, without risking failure. However, doing so requires safety margins especially 

for local variations. As process technology scales, local variations are expected to 

worsen, thereby undermining the efficacy of always-correct techniques at aggressive 

geometries.  

“Let fail and correct” approaches use error-detection and correction mechanisms to 

operate around the PoFF while deliberately incurring errors. We surveyed two 

representative approaches related to wireless communication (Algorithmic Noise 

Tolerance) and on-chip communication (Self-calibrating interconnects) that trade-off 

error-rate for increased energy efficiency of operation. Unlike signal-processing 

applications, general-purpose computing is not naturally resilient to errors. Consequently, 

such techniques have rarely found application in the general-purpose domain.  

This thesis describes Razor which is the first low-overhead application of a “let fail 

and correct” approach to general-purpose computing. In the subsequent chapters, we 

develop the Razor concept and present two implementation techniques, called RazorI and 
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RazorII, for deployment of Razor in micro-processors. Chapter 3 discusses the key ideas 

in Razor and describes the RazorI technique.  
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CHAPTER 3 

RAZOR I:  STATE COMPARISON BASED ERROR-DETECTION 
AND CIRCUIT -ARCHITECTURAL RECOVERY  

RazorI relies on a combination of architectural and circuit techniques to achieve 

efficient error detection and correction of timing violations. Critical-path endpoints are 

monitored using a delay-error tolerant RazorI flip-flop which samples its input at two 

different points in time. The main flip-flop samples its input speculatively at the rising 

clock-edge. It is augmented with a so-called shadow latch, controlled using a delayed 

clock-edge, which samples the correct value of the data input. The operating voltage is 

constrained such that the worst-case delay is guaranteed to meet the shadow latch setup 

time, even though the main flip-flop could fail. By comparing the values latched by the 

flip-flop and the shadow latch through a metastability-tolerant comparator, a delay error 

in the main flip-flop is detected. The value in the shadow latch, which is guaranteed to be 

correct, is then overwritten into the main flip-flop to achieve recovery. At the same time a 

pipeline recovery mechanism is initiated as well.  

The rest of the chapter is organized as follows. In Section 3.1, we develop the 

concept of RazorI error detection and recovery. Section 3.2 deals with the transistor level 

design details of the RazorI flip-flop. In Section 3.3, we present several architectural 

solutions for error correction, ranging from simple clock gating to more sophisticated 

mechanisms that augment the existing mis-speculation recovery infrastructure. Section 

3.4 deals with supply voltage control in RazorI. Section 3.5 briefly mentions the 

measurement results that we obtained from a self-tuning processor built to evaluate 

RazorI. Finally, we give a succinct summary of this chapter in Section 3.6. 
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3.1 Concept of Razor error detection and recovery 

Figure 3.1 shows the conceptual representation of a RazorI flip-flop. The RazorI flip-

flop (henceforth referred to as the R1FF) is constructed out of a standard positive edge-

triggered D Flip-Flop (DFF), augmented with a shadow latch which samples at the 

negative clock edge. Thus, the input data is given additional time, equal to the duration of 

the positive clock phase, to settle down to its correct state before being sampled by the 

shadow latch. In order to ensure that the shadow latch always captures the correct data, 

the minimum allowable supply voltage needs to be constrained during design time such 

that the setup time at the shadow latch is never violated, even under worst-case 

conditions. A comparator flags a timing error when it detects a discrepancy between the 

speculative data sampled at the main flip-flop and the correct data sampled at the shadow 

latch. Error signals of individual R1FFs are OR-ed together to generate the pipeline 

restore signal which overwrites the shadow latch data into the main flip-flop, thereby 

restoring correct state in the cycle following the erroneous cycle. 

We illustrate the operation of a RazorI flip-flop in Figure 3.2. In clock cycle 0, the 

combinational logic L1 meets the setup time by the rising edge of the clock. Thus, both 
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Figure 3.1 Abstract view of the RazorI flip-flop. The speculative data in the master-
slave flip-flop is compared with the correct data in the positive level-sensitive 
shadow latch. 
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the main flip-flop and the shadow latch will latch the correct data. In this case, the error 

signal at the output of the comparator remains low and the operation of the pipeline is 

unaltered. In cycle 1, we show an example of the operation when the combinational logic 

exceeds the intended delay due to sub-critical voltage scaling. In this case, the data is not 

latched correctly by the main flip-flop, but since the shadow-latch samples at the negative 

edge of the clock, it successfully latches the data half-way through cycle 2. By comparing 

the valid data of the shadow latch with the data in the main flip-flop, an error signal is 

then generated in cycle 2. Error signals of individual R1FFs are OR-ed together to 

generate the pipeline restore signal which overwrites the shadow latch data into the main 

flip-flop, thereby restoring correct state at the positive edge of the subsequent cycle, cycle 

4.  

If an error occurs in pipeline stage L1 in a particular clock cycle, the data in L2 in the 

following clock cycle is incorrect and must be flushed from the pipeline using one of the 

pipeline control methods described in Section 3.3. However, since the shadow latch 

contains the correct output data of pipeline stage L1, the instruction does not need to be 

re-executed through this failing stage. Thus, a key feature of RazorI is that if an 
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Figure 3.2 Conceptual timing diagrams showing the operation of the RazorI flip-
flop. In Cycle 2, a setup violation causes Error to be flagged whereas in Cycle 4, a 
hold violation causes error to be asserted. 
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instruction fails in a particular pipeline stage it is re-executed through the following 

pipeline stage, while incurring a one cycle penalty. The proposed approach therefore 

guarantees forward progress of a failing instruction, which is essential to avoid the 

perpetual failure of an instruction at a particular stage in the pipeline. 

Using the negative edge of the clock as the sampling trigger for the shadow latch 

precludes the need for an additional clock tree. This simplifies implementation because 

only a single clock is required and prevents the excessive overhead of routing a second 

clock tree just for the purposes of clocking the shadow latch in the R1FFs. The duration 

of the positive clock phase, when the shadow latch is transparent, determines the 

sampling delay of the shadow latch. This constrains the minimum propagation delay for a 

combinational logic path terminating in a R1FF to be at least greater than the duration of 

the positive clock phase and the hold time of the shadow latch. Figure 3.2 conceptually 

illustrates this minimum delay constraint. In cycle 4, the R1FF input, D_in, violates this 

constraint and changes state before the negative edge of the clock, thereby corrupting the 

state of the shadow latch. Delay buffers are required to be inserted in those paths which 

fail to meet this minimum path delay constraint imposed by the shadow latch.  

The insertion of delay buffers incurs power overhead because of the extra 

capacitance added. A large shadow latch sampling delay requires a greater number of 

delay buffers to be inserted, thereby increasing the power overhead. However, a small 

sampling delay implies that the voltage difference between the point of first failure and 

the point where shadow latch fails is less and, thus, reduces the voltage margin available 

through Razor timing speculation. Hence, the shadow latch sampling delay represents the 

trade-off between power overhead due to delay buffers and the voltage margin available 

for Razor sub-critical mode of operation. Using suitable clock chopping techniques, the 

duration of the positive phase of the propagated clock can be configured as required so as 

to exploit the above trade-off.  

A key point to note is the fact that the hold constraint imposed by the shadow latch 

only limits the maximum duration of the positive clock phase and has no bearing upon 

the clock frequency. Thus, a RazorI pipeline can still be operated at any frequency as 

required as long as the positive clock phase is sufficient to meet the minimum path delay 

constraint. In the prototype RazorI processor that we present in Chapter 4, for a sampling 
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delay of 3.0ns which is approximately half the cycle time at 140MHz, it was required to 

add 2388 delay buffers to satisfy the short path constraint on 207 R1FFs (7.4% of the 

total number of flip-flops). The power overhead due to these buffers was less than 3% of 

the nominal chip power. 

Since setup and hold constraints at the main flip-flop input (D_in) are not respected, 

it is possible that the state of the flip-flop becomes metastable. A metastable signal 

increases critical path delay which can cause a shadow latch in the succeeding pipeline 

stage to capture erroneous data, thereby leading to incorrect execution. In addition, a 

metastable flip-flop output can be inconsistently interpreted by the error comparator and 

the downstream logic. Hence, an additional detector is required to correctly flag the 

occurrence of metastability at the output of the main flip-flop. The outputs of the 

metastability-detector and the error comparator are OR-ed to generate the error signal of 

the R1FF. Thus, the system reacts to the occurrence of metastability in exactly the same 

way as it reacts to a conventional timing failure.  

A key point to note is the fact that metastability need not be resolved correctly in the 

R1FF and that just the detection of such an occurrence is sufficient to engage the RazorI 

recovery mechanism. However, in order to prevent potentially metastable signals from 

being committed to memory, at least two successive non-critical pipeline stages are 

required immediately before storage. This ensures that every signal is validated by RazorI 

and is effectively double-latched in order to have a negligible probability of being 

metastable, before being written to memory. In our design, data accesses in the Memory 

stage were non-critical and hence we required only one additional pipeline stage to act as 

a dummy stabilization stage. The circuit level implementation of the metastability-

detector is discussed in greater detail in Section 3.2.  

In addition to invalidating the data in the following pipeline stage, an error must also 

stall the preceding pipeline stages while the shadow latch data is restored into the main 

flip-flops. A number of different methods, such as clock gating or flushing the instruction 

in the preceding stages, were examined to accomplish this and are discussed in Section 

3.3. The proposed approach also raises a number of circuit related issues. The RazorI 

flip-flop must be constructed such that the power and delay overhead is minimized. 

Suitable circuits for detecting and flagging metastability need to be designed. These 
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issues are discussed in more detail in Section 3.2. In the proposed RazorI based supply- 

voltage tuning approach, the error signal is used to tune the supply voltage to its optimal 

value. In Section 3.4, we discuss different algorithms to control the supply voltage based 

on the observed error rate. 

3.2 Transistor-level design of the RazorI flip-flop 

Figure 3.3 shows the transistor level circuit schematic of the R1FF. In the absence of 

a timing error, the R1FF behaves as a standard positive edge triggered flip-flop. The error 

comparator is a semi-dynamic XOR gate which evaluates when the data latched by the 

slave differs from that of the shadow in the negative clock phase. The error comparator 

shares its dynamic node, Err_dyn, with the metastability-detector which evaluates in the 

positive phase of the clock when the slave output could become metastable. Thus, the 

R1FF error signal is flagged when either the metastability-detector or the error 

comparator evaluate. This, in turn, evaluates the dynamic gate to generate the restore 
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Figure 3.3 RazorI flip-flop circuit schematic 
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signal by “OR”-ing together the error signals of individual R1FFs as shown in Figure 3.4, 

in the negative clock phase.  

The restore signal incurs significant routing and gate capacitance as it is routed to 

every flip-flop in the pipeline stage and needs to be driven by strong drivers. For a R1FF, 

the restore serves to overwrite the master with the shadow latch data. Hence, the slave 

gets the correct data at the next positive edge. The restore needs to be latched at the out-

put of the dynamic OR gate so that it retains state during the next positive phase 

(recovery cycle) during which it disables the shadow latch to protect state. In addition, 

the restore also disables all regular, non-“Razor”-ed flip-flops in the pipeline stage to 

preserve the state that was latched in the erroneous cycle. This is required to maintain the 

temporal consistency of all flip-flops in the pipeline stage. The stack of 3 PMOS 

transistors in the shadow latch increases its setup time. However, the shadow latch is 

required only for runtime validation of the main flip-flop data and does not form a part of 

the critical path of the R1FF. 

The rbar_latched signal, shown in the restore generation circuitry in Figure 3.4, 

which is the half-cycle delayed and complemented version of the restore signal, 

precharges the Err_dyn node for the next erroneous cycle. Thus, unlike standard dynamic 
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Figure 3.4 Restore generation circuitry 
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gates where precharge takes place every cycle, the Err_dyn node is conditionally 

precharged in the recovery cycle following a Razor error. Precharge can take place 

without contention because in this cycle the slave latch has exactly the same data as the 

shadow latch and is guaranteed not to be metastable. Hence, neither the error comparator 

nor the metastability-detector evaluates. A weak PMOS half-latch protects Err_dyn from 

discharge due to leakage. 

The R1FF was compared with a standard DFF for power consumption at 0.18µm 

technology. Both are designed for the same delay (clk-q delay + setup time) and drive 

strength. The characterization setup consists of the flip-flop under test driving a FO4 

capacitive load. The clock and the input data are each driven by signals with a 100ps 

transition time and with sufficient delay between transitions on the data and the clock so 

as not to violate setup time. The R1FF was found to consume 22% extra (60fJ/ 49fJ) 

energy when the sampled data does not change state and 65% extra (205fJ/124fJ) energy 

when sampled data switches. However, in our processor only 207 flip-flops out of 2801 

flip-flops, or 7.4%, had critical paths terminating in them and needed use of R1FFs. The 

measured power of the processor at 120MHz at 25C for a supply voltage of 1.8V was 

130mW. A simulation based power analysis was performed to compute the power 

overhead of the R1FFs and the delay buffers required to meet the short path constraint. 

For a conservative activity factor of 20%, the net power overhead due to R1FFs was 

0.31% and that due to delay buffers was 2.6%. Thus, the total power overhead due to 

RazorI was computed to be less than 3% of the nominal chip power. Thus, most of the 

additional power due to RazorI is attributed to the delay buffers added for meeting the 

short path constraint. 

3.2.1 Metastability detection 

As was mentioned in Section 3.2, metastability can potentially cause incorrect 

execution because of inconsistent interpretation and increase in propagation delay. We, 

therefore, perform metastability detection at the R1FF node QS (as labeled in Figure 3.3) 

because QS fans out to the flip-flop driver G1 and the error comparator and thus, directly 

affects the R1FF outputs, namely Q and error.  
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Figure 3.5 illustrates the operating principle and characteristics of the metastability-

detector. The metastability-detector consists of a p-skewed inverter G2 and an n-skewed 

inverter G3 (as labeled in Figure 3.3) which switch to opposite power rails under a meta-

stable input voltage such that a dynamic comparator can evaluate and latch the 

comparison result. Figure 3.5(a) shows the DC transfer characteristics of the skewed 
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Figure 3.5 Metastability-detector: Principle of Operation. Figure a) shows the DC 
transfer characteristics of a P- and a N-skewed inverter compared to an unskewed 
inverter. Figure b) shows error detection operation of the metastability-detector 
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inverters compared to that of the driver inverter, G1. The switching points are denoted as 

the points where the 45 degree line intersects the DC transfer curves. We note that the 

switching points for the p-skewed inverter and the n-skewed inverter lie on either side of 

that for G1. During normal operation, when the output of the main flip-flop is logically 

well defined, the output of G2 and G3 match. Thus, the comparator does not evaluate and 

the dynamic node is not discharged. However, when QS is metastable at approximately 

VDD/2, the output of the p-skewed inverter G2 is at a voltage level near VDD and the 

output of the n-skewed inverter G3 is near ground. This causes the comparator to 

evaluate and discharge the dynamic node, Err_dyn, thereby flagging the error signal. 

It is imperative that the metastability-detector is guaranteed to evaluate for a voltage 

range of the input node QS for which the fan-out of QS, namely the error comparator and 

the flip-flop driver G1, have either logically undefined or logically inconsistent outputs. 

This “ambiguous” band of voltage is defined as the voltage range for which the outputs 

of either G1 or the error comparator are in between 10% to 90% of VDD. The range of 

voltage for which the metastability-detector actually evaluates is defined to be the 

“detection” band of voltage. Figure 3.5(b) shows the DC transfer curve of inverter G1, 

the error comparator and the metastability-detector. As is clearly shown in the figure, the 

“ambiguously” interpreted voltage band is contained well within the “detection” band. 

Table 3.1 shows that the “detection” band subsumes the “ambiguous” band across 

Table 3.1 Metastability-detector Corner Analysis 
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different process, voltage and temperature (PVT) corners to ensure correct operation 

under all conditions. These characterization results are for a metastability-detector 

designed in 0.18µm technology.  

There is a certain delay between QS becoming metastable and the detector correctly 

flagging such an occurrence. If QS remains metastable for a very small duration of time, 

shorter than the evaluation delay through the detector, then the dynamic node Err_dyn is 

not discharged completely and hence the error signal can become metastable. A key point 

to note in this case is that when the error signal itself becomes metastable, the actual 

R1FF output is already resolved and hence is not metastable. Such a situation, therefore, 

does not constitute an actual failure. However, a metastable error signal can potentially 

propagate through the restore generation logic and cause unpredictable behavior of the 

pipeline recovery infrastructure. This can corrupt the processor state. Since the error 

signal goes through intermediate logic gates and thus through several stages of gain until 

restore generation takes place, it is very unlikely that metastability at the error signal can 

propagate to cause metastability at the restore node.  

The probability of the restore node becoming metastable was computed to be less 

than 2e-30 [3]. Despite this being a sufficiently low probability, the unlikely event of it 

happening is detected by means of skewed flip-flops, as shown in Figure 3.4. A p-skewed 

flip-flop and an n-skewed flip-flop resolve a metastable input to opposite power rails 

such that a XOR comparator can detect the discrepancy by flagging the fail signal. The 

outputs of the skewed flip-flops are latched before being compared so that the fail signal 

itself has negligible probability of being metastable. In the event of fail being flagged, the 

entire pipeline is flushed and the failed instruction is re-executed. Since forward progress 

is violated in this case, the supply voltage is immediately increased to ensure that the 

failed instruction completes. During the 4 months of chip testing, such an event was 

never detected. 

3.3 Pipeline Error Recovery mechanisms 

The pipeline error recovery mechanism must guarantee that, in the presence of Razor 

errors, register and memory state is not corrupted with an incorrect value. In this section, 

we highlight two possible approaches to implementing pipeline error recovery. The first 
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is a simple but slow method based on clock gating, while the second method is a much 

more scalable technique based on counter-flow pipelining. 

3.3.1 Recovery using clock gating  

Figure 3.6(a) illustrates a simple approach to pipeline error recovery based on global 

clock gating. In the event that any stage detects a Razor error, the entire pipeline is stalled 

for one cycle by gating the next global clock edge. The additional clock period allows 

every stage to re-compute its result using the RazorI shadow latch as input. Consequently, 

any previously forwarded erroneous values will be replaced with the correct value from 

the RazorI shadow latch. Since all stages re-evaluate their result with the RazorI shadow 

latch input, any number of errors can be tolerated in a single cycle and forward progress 
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Figure 3.6 Pipeline recovery using global clock-gating. Figure a) shows the pipeline 
organization and Figure b) illustrates the pipeline timing for a failure in the EX 
stage of the pipeline. The “*” denotes a failed stage computation.  
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is guaranteed. If all stages produce an error each cycle, the pipeline will continue to run, 

but at half the normal speed. 

It is imperative that erroneous pipeline results not be written to architected state 

before it has been validated by RazorI. Since validation of RazorI values takes two 

additional cycles (i.e., one for error detection and one for fail detection), there must be 

two non-speculative stages between the last RazorI latch and the writeback (WB) stage. 

In our design, memory accesses to the data cache are non-speculative, hence, only one 

additional stage labeled ST for stabilize is required before writeback (WB). The ST stage 

introduces an additional level of register bypass. Since store instructions must execute 

non-speculatively, they are performed in the WB stage of the pipeline. 

Figure 3.6(b) gives a pipeline timing diagram of a pipeline recovery for an 

instruction that fails in the EX stage of the pipeline. The first failed stage computation 

occurs in the 4th cycle, when the second instruction computes an incorrect result in the 

EX stage of the pipeline. This error is detected in the 5th cycle, but only after the MEM 

stage has computed an incorrect result using the erroneous value forward from the EX 

stage. After the error is detected, a global clock stall occurs in the 6th cycle, permitting 

the correct EX result in the RazorI shadow latch to be evaluated by the MEM stage. In 

the 7th cycle, normal pipeline operation resumes. 

3.3.2 Recovery using counterflow pipelining  

In aggressively clocked designs, it may not be possible to implement global clock-

gating without significantly impacting processor cycle time. Consequently, we have 

designed and implemented a fully pipelined error recovery mechanism based on 

counterflow pipelining techniques [16]. The approach, illustrated in Figure 3.7(a), places 

negligible timing constraints on the baseline pipeline design at the expense of extending 

pipeline recovery over a few cycles. When a Razor error is detected, two specific actions 

must be taken. First, the erroneous stage computation following the failing RazorI latch 

must be nullified. This action is accomplished using the bubble signal, which indicates to 

the next and subsequent stages that the pipeline slot is empty. Second, the flush train is 

triggered by asserting the stage ID of failing stage.   In the following cycle, the correct 

value from the RazorI shadow latch data is injected back into the pipeline, allowing the 
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erroneous instruction to continue with its correct inputs. Additionally, the flush train 

begins propagating the ID of the failing stage in the opposite direction of instructions. At 

each stage visited by the active flush train, the corresponding pipeline stage and the one 

immediately preceding are replaced with a bubble. (Two stages must be nullified to 

account for the twice relative speed of the main pipeline.) When the flush ID reaches the 

start of the pipeline, the flush control logic restarts the pipeline at the instruction 

following the erroneous instruction. In the event that multiple stages experience errors in 

the same cycle, all will initiate recovery but only the Razor error closest to writeback 

(WB) will complete. Earlier recoveries are flushed by later ones. 

Figure 3.7(b) shows a pipeline timing diagram of a pipelined recovery for an 

instruction that fails in the EX stage. As in the previous example, the first failed stage 

computation occurs in the 4th cycle, when the second instruction computes an incorrect 
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Figure 3.7 Pipeline recovery using counter-flow pipelining. Figure a) shows the 
pipeline organization and Figure b) illustrates the pipeline timing for a failure in 
the EX stage of the pipeline. The “*” denotes a failed stage computation.  
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result in the EX stage of the pipeline. This error is detected in the 5th cycle, causing a 

bubble to be propagated out of the MEM stage and initiation of the flush train. The 

instructions in the EX, ID and IF stages are flushed in the 6th, 7th and 8th cycles, 

respectively. Finally, the pipeline is restarted after the erroneous instruction in cycle 9, 

after which normal pipeline operation resumes. 

A key requirement of the pipeline recovery control is that it does not fail under even 

the worst operating conditions (e.g., low voltage, high temperature and high process 

variation). This requirement is met through a conservative design approach that validates 

the timing of the error recovery circuits at the worst-case sub-critical voltage. 

3.4 Supply voltage control 

Many of the parameters that affect voltage margin vary over time. Temperature 

margins will track ambient temperatures and can vary on-die with processing demands. 

Consequently, to optimize energy conservation it is desirable to introduce a voltage 

control system into the design. The voltage control system adjusts the supply voltage 

based on monitored error rates. If the error rate is very low, it could indicate circuit 

computation is finishing too quickly and voltage should be lowered. Similarly, a low 

error rate could indicate changes in the ambient environment (e.g., decreasing 

temperature), giving additional opportunity to lower voltage. Increasing error rates, on 

the other hand, indicate circuits are not meeting clock period constraints and voltage 

should be increased. The optimal error rate depends on a number of factors including the 

energy cost of error recovery and overall performance requirements, but in general it is a 

small non-zero error rate. 

Figure 3.8 illustrates the RazorI voltage control system. The control system works to 

maintain a constant error rate of Eref. At regular intervals the error rate of the system is 

measured by resetting an error counter which is sampled after a fixed period of time. The 

computed error rate of the sample Esample is then subtracted from the reference error rate 

to produce the error rate differential Ediff. Ediff is the input to the voltage control function, 

which sets the target voltage of the voltage regulator. If Ediff is negative the system is 

experience too many errors, and voltage should be increased. If Ediff is positive the error 
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rate is too low and voltage should be lowered. The magnitude of Ediff indicates the degree 

to which the system is “out of tune”. 

While control of this system may seem simple on the surface, it is complicated by 

the slow response time of the voltage regulator. Typical commercial voltage regulators 

can take 10’s of microseconds to adjust supply voltage by 100 mV. Consequently, if the 

controller reacts too fast or too abruptly, the system could become unstable or go into 

oscillation. Moreover, an overly conservative control function that is slow to react to 

changing system environments will reduce the overall efficiency of the design. We 

implemented a proportional control system [32] which adjusts supply voltage in 

proportion to the sampled Ediff in the RazorI prototype processor. To prevent the control 

system from over-reacting and potentially placing the system in an unstable state, the 

error sample rate is roughly equivalent to the minimum voltage step period. 

3.5 Silicon implementation and evaluation of the scheme 

In order to evaluate the concept of RazorI, we designed and fabricated a 64bit 

processor which implements a subset of the Alpha instruction set in an industrial 

0.18micron technology. This processor was fabricated under the MOSIS [33] university 

research program. This is the first silicon implementation of a Razor design [35] using 

the RazorI methodology. We present implementation details and measurement results for 

this design in Chapter 4. Voltage control is based on the observed error rate and power 

savings are achieved by 1) eliminating the safety margins under nominal operating and 

silicon conditions and 2) scaling voltage 120mV below the first failure point to achieve a 

0.1% targeted error rate. We tested and measured savings due to RazorI based voltage 
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Figure 3.8 Razor supply voltage control 



 

 

     

 

42 

control for 33 different dies and obtained an average energy savings of 50% over the 

worst-case operating conditions by operating at the 0.1% error rate voltage, at a fixed 

frequency of 120MHz. 

3.6 Summary and discussion 

In this chapter, we developed the concept of error-detection and recovery through the 

RazorI technique. We presented transistor-level schematic of the RazorI flip-flop which 

flags timing errors by detecting discrepancies between the speculative data captured at 

the main flip-flop and the always-correct data captured at the shadow latch. A 

metastability-detector flags the occurrence of metastability at the output of the main flip-

flop.  

We discussed two different schemes for micro-architectural recovery. The clock-

gating based approach stalls the pipeline for an entire cycle in the event of an error. 

While its performance impact in the event of an error is small, however, it incurs 

significant routing overhead on the global clock-gating signal. The counter-flow 

architecture based approach trades-off higher performance impact of recovery for more 

relaxed timing constraints. Consequently, this approach is more suited to large 

microprocessors compared to the clock-gating approach.  

We presented the Razor voltage controller which monitors the error-rate during 

dynamic operation of the processor and adjusts the supply voltage to achieve a targeted 

error-rate. We implemented Razor-based voltage control in a 64bit processor in 0.18µm 

TSMC technology. In the next chapter, we present silicon measurement results from this 

chip in greater detail. 
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CHAPTER 4 

SELF-TUNING RAZOR I  PROCESSOR: DESIGN AND SILICON 
M EASUREMENT RESULTS 

We designed a 64-bit microprocessor with RazorI based dynamic voltage 

management [10]. The processor core is a five stage in-order pipeline which implements 

a subset of the Alpha instruction set. The timing critical stages of the processor are the 

Instruction Decode (ID) and the Execute (EX) stages. The output registers of these 

pipeline stages required R1FFs for validating computation results. We implemented the 

distributed pipeline recovery scheme as has been outlined in Chapter 3 and illustrated in 

Figure 3.7. Since the write-back stage was not critical, we needed just one extra 

stabilization stage before data was committed to memory. The extra stage of pipelining 

meant that all the memory store operations and register write operations were guaranteed 

not to be metastable. In addition to the write accesses, the memory read accesses were 

also non-critical and did not require RazorI validation. The processor was fabricated in a 

0.18micron industrial technology. The die photograph of the processor is shown in Figure 

4.1 and the relevant implementation details are provided in Table 4.1. 

The remainder of this chapter is organized as follows. In Section 4.1 0, we discuss 

the clocking scheme and relevant implementation details of the RazorI processor. Section 

4.2 discusses silicon measurement results on 33 tested dies where we demonstrate sub-

critical operation with RazorI error correction. We quantify the total energy savings due 

to RazorI in Section 4.3 and discuss RazorI based supply voltage control in Section 4.4. 

Finally, we summarize the chapter in Section 4.5. 
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4.1  Processor implementation details 

For testability purposes, the architectural state of the processor is observable and 

controllable by three separate scan chains for each of the Instruction Cache (ICache), 

Data Cache (DCache) and the Register File. The chip was tested by scanning in 

instructions into the Icache and comparing the execution output scanned out of the 

Dcache and the Register File with a Personal Computer emulating the same code. A 64-

 

Figure 4.1 Die photograph of the RazorII processor. The 64bit processor executes a 
sub-set of the ALPHA instruction set. 
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bit special purpose register keeps a record of the total number of errant cycles and is 

sampled to compute the error rate for a particular run.  

The core frequency is controlled by an internal Clock Generation Unit (CGU). The 

CGU generates an asymmetric clock in a range between 60 MHz to 400 MHz in steps of 

20MHz. The shadow latch sampling delay, defined by the duration of the positive clock 

phase, is configurable from 0ps to 3.5ns in steps of 500ps. The CGU has a separate 

voltage domain that is not voltage scaled. Hence, the core frequency and the shadow latch 

sampling delay remains constant even when the core voltage is dynamically scaled. 

4.2  Measurement Results 

We measured energy savings obtainable from RazorI based Dynamic Voltage 

Scaling (DVS) at 140 MHz and 120MHz for 33 chips from two different fabrication runs. 

Table 4.1 Processor implementation details 

2.9%% Total Chip Power Overhead due to 
Razor Flip-Flops and Delay Buffers

2388Number of Delay Buffers Added

207Total Number of Razor Flip-Flops

2801Total Number of Flip-Flops

8KBDcache Size

8KBIcache Size

130mWMeasured Chip Power at 1.8V

3.3mm*3.6mmDie Size

1.58millionTotal Number of Transistors

1.2-1.8VDVS Supply Voltage Range

140MHzMax. Clock Frequency

0.18µmTechnology Node

2.9%% Total Chip Power Overhead due to 
Razor Flip-Flops and Delay Buffers

2388Number of Delay Buffers Added

207Total Number of Razor Flip-Flops

2801Total Number of Flip-Flops

8KBDcache Size

8KBIcache Size

130mWMeasured Chip Power at 1.8V

3.3mm*3.6mmDie Size

1.58millionTotal Number of Transistors

1.2-1.8VDVS Supply Voltage Range

140MHzMax. Clock Frequency

0.18µmTechnology Node

260fJEnergy of RFF per error event

Error Detection and Recovery Overhead

60fJ/205fJRFF Energy (static/switching)

49fJ/125fJStandard Flip-Flop Energy 
(static/switching)

Error Free Operation

260fJEnergy of RFF per error event

Error Detection and Recovery Overhead

60fJ/205fJRFF Energy (static/switching)

49fJ/125fJStandard Flip-Flop Energy 
(static/switching)

Error Free Operation
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As mentioned, RazorI energy savings are due to both elimination of voltage safety 

margins and operation below the point of first failure in the sub-critical voltage regime. 

For every chip, we quantified the safety margin due to inter-die process variations by 

measuring the difference between the first failure point of the slowest (worst-case process 

corner) chip and the chip under test. Temperature margins were computed by the shift in 

the first failure point for a chip when operating at 105C as opposed to operating at 25C. 
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Figure 4.2 Sub-critical operation in chips named "Chip 1" and "Chip 2" 
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In addition, by scaling the supply voltage below the first failure point, we measured the 

minimum voltage for which error correction is achievable with RazorI and the voltage 

where a 0.1% error rate is attained. 

4.2.1 Energy Savings from Sub-critical Operation 

Figure 4.2 shows the error rates and normalized energy savings versus supply 

voltage at 120 and 140MHz for two different chips. Energy at a particular voltage is 

normalized with respect to the energy at the point of first failure. For all plotted points, 

correct program execution with RazorI error correction was verified.  

From the figure, we note that the error rate at the point of first failure is very low, 

and is on the order of 1.0e-8, because only a few critical paths that are rarely sensitized 

fail to meet setup requirements and are flagged as timing errors. As voltage is scaled 

further into the sub-critical regime the error rate increases exponentially. The IPC penalty 

due to the error recovery cycles is negligible for error rates below 0.1%. Under such low 

error rates, the recovery overhead energy is also negligible and the total processor energy 

shows a quadratic reduction with the supply voltage. At error rates exceeding 0.1%, the 

recovery energy rapidly starts to dominate, offsetting the quadratic savings due to voltage 

scaling. For the measured chips, the energy optimal error rate fell at approximately 0.1%. 

Table 4.2 shows the measured power at the point of first failure and the energy per 

instruction for both the chips at the point of first failure and at the point of 0.1% error rate. 

At 120MHz, chip 1 consumes 104.5mW at the first failure point and 89.7mW at an 

optimal 0.1% error rate, leading to 14% energy savings with negligible IPC hit. The 

Table 4.2 Error-rate and energy-per-instruction measurement for chips 1 and 2 at 
the Point of First Failure and at the Point of 0.1% Error Rate 
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Chip2
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Power
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Energy per
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energy saving for chip 2 is 17%. These savings are in addition to the energy saved just by 

eliminating voltage margins. Figure 4.3 shows the distribution of the percentage 

normalized energy savings obtained over the first failure point while operating at the 

0.1% error rate voltage for all the chips tested. At 120MHz, the range extends from 5% to 

23% while at 140MHz the range extends from 5% to 19%. 

Figure 4.4(a) shows the distribution of the first failure voltage for the 33 measured 

chips. At 120MHz, the measured range of variation of the first failure point is from 1.46V 

to 1.76V. The correlation between the first failure voltage and the 0.1% error rate voltage 

is shown in the scatter plot of Figure 4.4(b). The 0.1% error rate voltage shows a net 

variation of 0.24V from 1.38V to 1.62V which is approximately 20% less than the 

variation observed for the voltage at the point of first failure.  
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Figure 4.3 Normalized energy savings over point of first failure at the 0.1% error-
rate for 33 measured chips at 120 and 140MHz. 
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The relative “flatness” of the linear fit indicates less sensitivity to process variation 

when running at a 0.1% error rate than at the point of first failure. This implies that a 

RazorI enabled processor, designed to operate at the energy optimal point, is likely to 

show greater predictability in terms of performance than a conventional worst-case 

optimized design. The energy optimal point requires a significant number of paths to fail 
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Figure 4.4 Relationship between the Point of First failure and the 0.1% Error-rate 
point. Figure a) shows the distribution of the Point of First Failure for 33 different 
chips. Figure b) shows that the 0.1% point has a smaller spread than the Point of 
First Failure.  



 

 

     

 

50 

and statistically averages out the variations in path delay due to process variation, as 

opposed to the first failure point which, being determined by the single longest critical 

path, shows higher process variation dependence.  

Figure 4.5 shows the effect of temperature on the point of first failure for a typical 

chip. As expected, the first failure point increases and shifts by 100mV from 1.45V to 

1.55V for a temperature change from 25C to 105C. 

4.3  Total Energy Savings with RazorI 

The bar graph in Figure 4.6 shows the energy for chips 1 and 2 when operating at 

120MHz. The first failure voltage for chips 1 and 2, as shown in Figure 4.2, are 1.63V 

and 1.74V respectively, and hence represent typical and worst-case process conditions.  

The first set of bars shows the energy when RazorI is turned off and the chip under 

test is operated at the worst-case operating voltage at 120MHz, as determined for all the 

chips tested. This is the minimum voltage which guarantees error-free operation for the 

slowest process corner silicon at the worst-case temperature of 105C and a power supply 

drop equal to 10% of the nominal voltage of 1.8V. The point of first failure for the 
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slowest chip, among the 33 tested dies, is 1.76V at 25C which increases to 1.86V at 105C, 

a change of 100mV. To this, we add an extra 0.18V (10% of 1.8V) as safety margin for 

supply voltage drop, thus obtaining the worst-case operating voltage of 2.04V. Without 

RazorI being enabled, all the chips would need to operate at the worst-case voltage in 

order to ensure correct operation across all dies and operating conditions.  

We measure the power consumption of chips 1 and 2 at this voltage and quantify 

how much of the worst-case power is due to process, temperature and voltage safety 

margins. We measure the power due to process margins of a chip by measuring the 

difference in power consumption when operating at its own point of first failure versus 

that when operating at the first failure voltage of the worst case chip. For example, chip 1 

consumes 17.3mW extra when operating at 1.76V (the point of first failure of worst-case 

chip) as opposed to operating at its own first failure point of 1.63V. The power due to 

temperature margins is measured by the difference in power consumption when operating 

at a voltage of 1.86V (first failure point of worst-case chip at 105C) versus operating at 
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1.76V. Similarly, the power due to power supply margins is measured by operating the 

chip at the worst-case voltage of 2.04V versus operating it at 1.86V. At 2.04V, chip 1 

consumes 160.5mW of which 27.3mW is due to safety margin for supply voltage drop, 

11.2mW is due to temperature margin and 17.3mW is due to process margin. Chip 2 

consumes 162.8mW at the worst-case voltage, as shown in the Figure. 

The second set of bars shows the energy when operating with Razor enabled at the 

point of first failure with all the safety margins eliminated. At the point of first failure, 

chip 1 consumes 104.5mW while chip 2 consumes 119.4mW of power. Thus for chip 1, 

operating at the first failure point leads to a saving of 55.9mW which translates to 35% 

saving over the worst-case. The corresponding saving for chip 2 is 43.4mW (27% saving 

over the worst-case).  

The third set of bar shows the additional energy savings due to sub-critical mode of 

operation of RazorI. With RazorI enabled, both chips are operated at the 0.1% error rate 

voltage and power measurements are taken. Since the operating frequency is kept 

constant at 120MHz and the IPC degradation is minimal at 0.1% error rate, the 

percentage savings in power is an accurate estimate of the percentage savings in energy. 

At the 0.1% error rate, chip 1 consumes 89.7mW of power which translates to 44% 
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Figure 4.7 Distribution of the total energy savings over the worst-case for 33 
measured chips. 
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saving over the worst-case (14% saving over operating at the point of first failure). Chip 

2 consumes 99.6mW of power at 0.1% error rate which is a saving of 39% over the 

worst-case (17% saving over the point of first failure). The total energy gains for chip 1 

(71mW, 44%) and chip 2 (63mW, 39%) are comparable because greater process margin 

in chip 1 (13mW greater) is compensated by increased savings for chip 2 (4mW extra) 

due to scaling below the first failure point.  

The distribution of the percentage energy savings over the worst case for all 33 chips 

at 120MHz and 140MHz operating frequencies is shown in Figure 4.7. On an average, 

we obtain approximately 50% savings over the worst case at 120MHz and 45% savings at 

140MHz when operating at the 0.1% error rate voltage. 

4.4  RazorI Voltage Control 

Figure 4.8 shows the basic structure of the hardware control loop that was 

implemented for real-time RazorI voltage control. The controller reacts to the error rate 

that is monitored by sampling the error register and regulates the supply voltage to 

achieve a targeted error rate. The difference between the sampled error rate and the 

targeted error rate is the error rate differential, Ediff. A positive value of Ediff implies that 

the CPU is experiencing too few errors and hence the supply voltage may be reduced. If 

Ediff is negative, then the system is exhibiting too many errors and hence the supply 

voltage needs to be increased.  

The control algorithm is implemented on a Xilinx XC2V250 FPGA [34], which 

computes the error rate from the sampled register. The controller on the FPGA reacts to 

the error-rate by adjusting the supply voltage to the chip through a DAC and DC-DC 
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switching regulator. The DAC outputs an analog reference voltage to the regulator based 

on the 12-bit control output from the FPGA. The DC-DC regulator has a voltage gain of 

1.76 and can source a maximum current of 600mA. It can easily supply sufficient current 

to the chip which consumes less than 80mA at 1.8V. We tested the controller using a 

program which has alternating high and low error rate phases. At the high error rate phase, 

the processor is executing high latency instructions and hence the critical paths of the 

circuit are being exercised frequently. Therefore, a higher supply voltage is required to 

sustain the targeted error rate and vice versa.  

The on-chip error counter is sampled at a frequency of 750KHz and is accumulated 

within the FPGA. The algorithm updates the control output at a conservative frequency of 

1 KHz. If error rates are too high, voltage is increased at a rate of 1 bit per millisecond. 

Conversely, a low error rate caused a 1-bit decrease. This corresponds to a voltage 

change of 2.15 mV at the output of the DC-DC regulator feeding into the chip. 

Figure 4.9 shows a 2 minute portion of the voltage controller response for the 2-

phase program execution. The targeted error rate for the given trace is set to 0.1% relative 

to CPU clock cycle count. The controller maintains an average of 0.1% error rate during 

 

Figure 4.9 Run-time response of the RazorI voltage controller. Shown in the figure 
is a two minute snapshot of the error-rate for a program with two error-rate 
phases. 
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the low error rate phase. In the high error rate phase, the controller maintains an average 

of 0.2% error rate although the median for the samples is still at 0.1% error rate. The 

control target is not achieved in the high error rate phase due to the occasional bursts in 

the error rate which increase the average error rate beyond that of the target. The error 

rate is bursty in this phase because a significantly greater number of critical paths are 

exercised and hence there is a greater sensitivity to noise in the supply voltage which 

causes the observed bursts. In the low error rate phase, a much smaller number of paths 

are critical and hence the sensitivity of the error rate to power supply noise is also 

reduced significantly.  

The controller response during a transition from the low-error rate phase to the high-

error rate phase is shown in Figure 4.10(a). Error rates increase to about 15% at the onset 

of the high-error phase. The error rate falls until the controller reaches a high enough 

voltage to meet the desired error rate in each millisecond sample period. During a 

transition from the high error rate phase to the low error rate phase, shown in Figure 
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Figure 4.10 RazorI voltage controller: Error-rate phase transition response. Figure 
a) shows the transition from low to high error-rate. Figure b) shows the transition 
in the opposite direction.  
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4.10(b), the error rate drops to zero because the supply voltage is higher than required. 

The controller responds by gradually reducing the voltage until the target error rate is 

achieved. The average voltage maintained during the low error rate phase is 1.59V and 

the average voltage maintained at the high error rate phase is 1.72V, a difference of 

130mV. More efficient and complex control and error prediction strategies are an area of 

ongoing research, including automatic optimal error-rate selection. 

4.5 Summary and discussion 

In this chapter, we presented a self-tuning processor with RazorI based supply 

voltage control. RazorI incorporates in situ error detection and correction mechanisms to 

eliminate voltage margins and to operate below the point of first failure. We presented 

the design of a novel delay-error tolerant flip-flop that detects and recovers from timing 

errors on the processor critical paths. With RazorI based voltage management, we 

obtained 50% energy savings over the worst-case, on an average across 33 tested dies, by 

operating at the 0.1% error rate voltage at a constant frequency of 120MHz. Since the 

energy-optimal voltage for RazorI occurs at moderately low error rates, it motivates 

design optimization targeted at improving the delay of typically exercised logic paths as 

opposed to the worst case critical path.  

However, RazorI makes certain assumptions about the timing properties of the 

underlying architecture which may not hold true in the general case. For example, the 

propagation delay of the pipeline restore signal, which is a high fan-out net, can become 

critical for high-performance pipelines, especially at aggressive technologies. This can 

have the undesirable consequence of RazorI voltage scaling being limited by the restore 

signal rather than by the critical-paths in the pipeline. This and similar concerns were the 

primary motivation for us to develop an alternative technique for implementing Razor in 

processors, which we call RazorII. We discuss, in detail, the various issues and 

weaknesses in RazorI in the next chapter and develop the key concepts of RazorII which 

address these.  
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CHAPTER 5 

RAZOR II:  TRANSITION -DETECTION BASED ERROR -
DETECTION AND M ICRO-ARCHITECTURAL RECOVERY  

In Chapter 3, we introduced the concept of RazorI which uses a double-sampling 

RazorI flip-flop (R1FF) for in situ error-detection. In RazorI speculative data captured at 

the positive edge of the clock is compared against the correct sample stored in a shadow 

latch. Recovery is achieved through a pipeline restore signal which a) overwrites the 

main flip-flop with the correct data in the shadow latch, thereby restoring correct state in 

the main flip-flop with a single cycle penalty and b) engages additional infrastructure 

embedded within the micro-architecture which reverts the pipeline back to its correct 

state. Thus, the recovery process has both circuits as well as micro-architectural aspects 

to it.  

This technique of error-detection and the circuit-architectural recovery has 

fundamental design constraints which make it significantly less amenable to high-

performance microprocessors at advanced process nodes. In this chapter, we propose a 

new technique, called RazorII, which addresses the issues in the RazorI approach. The 

remainder of the chapter is organized as follows. In Section 5.1, we discuss the 

weaknesses of the RazorI technique which complicates its deployment in high-

performance pipelines. Section 5.2 describes the key concepts of the RazorII technique. 

Section 5.3 deals with the pipeline modifications necessary to support recovery in a 

RazorII pipeline when a timing error is detected. The transistor-level schematic of the 

error-detecting RazorII flip-flop is described in Section 5.4. Section 5.5 deals with an 

alternative design of the RazorII flip-flop which uses a transparent latch, instead of a flip-

flop. We show how this design simultaneously achieves timing-error detection and SEU 

tolerance in logic and inside registers. Memory design for the RazorII pipeline is 

discussed in Section 5.6. Finally, we summarize this chapter in Section 5.7.  
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5.1 Issues with the RazorI technique 

5.1.1 Timing constraint on the pipeline restore signal  

The restore signal is generated by “OR”-ing the error pins of individual R1FFs in the 

pipeline stage, as described in Section 3.1. The output of this OR gate is suitably latched 

and routed to every flip-flop in the stage. Thus, the restore generation and propagation 

circuitry is a high fan-in and high fan-out structure. A suitable buffer tree is required in 

order to route the restore signal in time before the next clock rising edge such that the 

shadow latch data can be written into the main flip-flop.  

The timing requirement on the restore signal is conceptually illustrated in Figure 5.1. 

The latency of the restore buffer tree (Tbuffer) should be such that it has sufficient slack 

(Tmargin) to be able to meet the setup requirement at the restore pin (Tsetup) for every flip-

flop in the pipeline stage, even under the worst-case combination of PVT variations. 

Margin is required to ensure that as supply voltage is scaled, the error-recovery path does 

not become critical and that voltage-scaling is still limited by timing errors in the pipeline 

instead of the restore generation circuitry. The error signal at a R1FF is asserted at the 

negative edge of the clock, as shown in Figure 5.1. This makes the timing constraint on 
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Figure 5.1 Timing constraint on the Restore signal. The Restore signal is a high fan-
out net which is generated out of a high fan-in OR gate. It needs to setup before the 
next rising edge with sufficient safety margin. 
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the restore signal even more stringent since its generation and propagation has to occur 

strictly within the negative clock-phase with sufficient margin to spare.  

For larger designs with many critical flip-flops, meeting this design constraint is 

naturally expected to be difficult. Consequently, at future technologies, the efficacy of the 

RazorI technique will be undermined by the voltage headroom being limited by the 

criticality of the restore signal rather than by the speculation time available.  

5.1.2 Issues with metastability detection 

Metastability at the main flip-flop output can cause the downstream pipeline stage 

and the restore generation circuitry to interpret the metastable signal differently, thereby 

leading to system failure. In addition, metastability can cause the delay of the succeeding 

pipestage to exceed the error-detection window. Hence, it is imperative that the 

metastability-detector is very carefully designed to flag all occurrences of metastability at 

the main flip-flop for the entire range of operation.  

As mentioned in Section 3.2, the metastability-detector relies on skewed inverters 

and, hence, is susceptible to process variation. It needs to be designed for correct 

operation at the skewed process corners such as SF (slow NMOS, fast PMOS) and FS 

(fast NMOS, slow PMOS). This requires the use of wider transistors inside the skewed 

inverters which, unfortunately, increases the capacitive load driven by the flip-flop node 

where metastability is being monitored. This not only worsens the intrinsic CLK-Q delay 

of the flip-flop, but also exponentially increases the likelihood of metastability occurring 

at that node [12].  

Thus, the design of the metastability-detector presents conflicting constraints. On 

one hand, it requires wider transistors to ensure functional correctness across process 

corners. On the other hand, wider transistors increase the likelihood of metastability at 

the flip-flop sampling node driving the metastability-detector. Rise in intra-die process 

variability at future technology nodes further exacerbate the difficulties in ensuring 

robust operation of the metastability-detector.  

In addition to the complications involved in the metastability-detector and the 

stringent timing constraint on the restore signal, critical control signals greatly 

complicate the RazorI technique. Control signals determine the state of the data-path. 
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Therefore, timing violations in such signals can corrupt the shadow latch data, thereby 

leading to system failure.  

In order to effectively address these issues, we introduce an alternative technique for 

error detection and correction, henceforth referred to as RazorII. RazorII exploits a key 

observation from our measurements performed on the RazorI processor that the error rate 

at the Point of First Failure (PoFF) is extremely low, ~1 error in 10 million cycles. An 

extremely low error-rate makes the recovery energy negligible at this operating point. In 

addition, we also found that beyond the PoFF, the error rate increases exponentially at 

one decade per 10mV supply voltage increase. Hence the energy gain from operating 

substantially below the PoFF was small (~10%) compared to the energy gain from 

eliminating the PVT margins (~35 to 45%) [10]. We take advantage of these findings in 

RazorII wherein a processor is intended to operate at the PoFF and recovery from a 

timing error occurs by a conventional architectural replay mechanism.  

Replaying an erroneous instruction incurs greater Instructions Per Cycle (IPC) 

overhead than the counter-flow pipeline recovery technique used in [10]. However, as 

error-rates are extremely low at the PoFF, the increased IPC overhead from using 

architectural replay has a negligible impact on the overall energy efficiency. Architectural 

replay greatly simplifies the error recovery path, thereby making RazorII significantly 

more amenable to high-performance microprocessors compared to RazorI. We introduce 

a novel timing-error detecting flip-flop (RazorII flip-flop or the R2FF) based on flagging 

spurious transitions at the critical-path endpoint. We present a design of the RazorII flip-

flop which naturally detects Single Event Upsets (SEU) within combinational logic and 

in latches. In order to validate RazorII, we designed and fabricated a 64bit prototype 

processor which uses RazorII for SEU tolerance and low-energy operation through 

dynamic supply adaptation. We present silicon measurement results from this processor 

in Chapter 7 of this thesis.  

5.2 Key concepts of RazorII 

The RazorII approach introduces two novel components which are as follows:  

1. Instead of performing both error detection and correction in the flip-flop, RazorII 

performs only detection in the flip-flop, while correction is performed through 
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architectural replay. This allows significant reduction in the complexity and size of the 

RazorII flip-flop, although at the cost of increased IPC penalty during recovery. 

Architectural replay is a conventional technique which often already exists in high-

performance microprocessors to support speculative operation such as out-of-order 

execution and branch prediction. Hence, it is possible to overload the existing framework 

to support replay in the event of timing errors. In addition, this technique precludes the 

need for a pipeline restore signal, thereby significantly relaxing the timing constraints on 

the error-recovery path. This feature makes RazorII highly amenable to deployment in 

high-performance processors.  

2. The design of the RazorII flip-flop detects timing errors by flagging any transition 

at the critical-path endpoint in the positive phase of the clock. Using a transition-detector 

for flagging timing errors allows the elimination of the metastability-detector and the 

shadow-latch. This significantly reduces the clock-pin capacitance of the flip-flop 

bringing down its power and area overhead. In addition, the basic design of the RazorII 

flip-flop can be easily modified to use a level-sensitive transparent latch instead of a flip-

flop. This simplification allows it to naturally detect Single Event Upsets (SEU) in the 

logic and registers without additional overhead. We describe the design of this modified 

RazorII flip-flop in Section 5.5. 

In the following sections, we develop the RazorII error-detection and recovery 

concept in greater detail.  

5.3 RazorII pipeline micro-architecture 

The key idea in RazorII is to use the RazorII flip-flop only for error-detection. State 

recovery after a timing error occurs by a conventional replay mechanism from a check-

pointed state. Relying on the roll-back mechanism eliminates the requirement for a 

timing-critical restore signal and greatly simplifies recovery in the event of a timing 

error. 

Figure 5.2 conceptually illustrates all the major micro-architectural modifications to 

the basic pipeline in order to support roll-back. The pipeline shown in the figure is a 

conventional in-order, five-stage pipeline. The critical flip-flops in each pipeline stage are 

RazorII flip-flops which monitor their respective data inputs for timing-error violations. 



 

 

 62 

The composite error signal for the entire design is generated by OR-ing together the 

individual error pins of each flip-flop. Since the error pin of a RazorII flip-flop can 

become metastable, we employ the conventional practice of double-latching the output of 

the error-tree using synchronization flip-flops. Double-latching a potentially metastable 

signal effectively reduces the probability of metastability, at that signal, to negligible 

levels.  

The pipeline can be broadly divided into two domains. The speculative domain 

consists of error-detecting critical flip-flops. These consist of the pipeline registers, the 

speculative register bank and critical architectural-state buffers. The speculative register 

bank forms the working set of registers for pipeline execution. It can get written with 

incorrect and potentially metastable data from the pipeline. When pipeline roll-back is 

initiated, correct state is restored in the speculative register bank from the non-speculative, 

golden register bank.  
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Figure 5.2 RazorII pipeline organization 
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The golden register bank along with the data cache and the architectural state 

registers such as the program counter (PC) and the program status register (PSR) form the 

non-speculative domain of the pipeline. It is required to guarantee that the non-

speculative domain is non-critical and always-correct. The pipeline output is check-

pointed within the non-speculative domain once it has been validated by Razor to be 

error-free. Thus, it is effectively a snapshot of the processor state to which the pipeline 

can revert to, without losing correctness. The speculative domain is prevented from 

updating the state of the non-speculative domain with incorrect data by means a 

stabilization pipeline. The first stage of the stabilization pipeline requires error detection 

since it interfaces directly with a critical processor core. The subsequent stages are 

required to be non-critical which is easily guaranteed since no computation occurs in the 

stabilization pipeline. The depth of the stabilization pipeline is equal to the latency 

through the error detection tree.  

The primary objective of the stabilization pipeline is to ensure that speculative data is 

not committed before it has been validated to be correct. When an instruction at the 

output of the stabilization stage is qualified to be error-free by the Razor error controller, 

it is safely allowed to update the processor architectural state. These updates include 

register writes to the golden register file, the data cache and the program status register. 

In addition, the instruction program counter is also check-pointed.  

When the error controller block detects incorrect execution in the pipeline, it initiates 

the roll-back mechanism to revert the pipeline back to the last check-pointed state. First, 

the stabilization pipeline and the speculative architectural state buffers are flushed. Then, 

rest of the pipeline registers are “reset”-ed. The state in the speculative register file and 

the speculative state buffers is restored by overwriting them with the contents of the 

golden register file and the golden architectural-state registers, respectively. Thus, the 

entire pipeline is reset to the state of the last committed instruction and normal pipeline 

operation is resumed.  

 As was mentioned earlier, re-executing from the last committed instruction does not 

guarantee forward progress since the pipeline may effectively stall due to a repeatedly 

failing instruction. The RazorII error controller detects such a deadlock and responds to it 

by gating every alternate clock cycle during recovery. Thus, running the pipeline at half 
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frequency ensures that the pipeline completes without incurring timing errors. However, 

it is expected that a major proportion of errors will be due to transient noise events which 

disappear when the pipeline state is changed during the flush and re-execution process. 

This observation is borne out from silicon measurement results on the RazorII prototype 

processor which we present in Chapter 7 of this thesis.     

The RazorII error controller also maintains a running count of the error-rate and 

implements the voltage controller algorithm. Accordingly, it interfaces with an external 

voltage regulator to adjust the supply voltage of the processor so as to achieve a targeted 

error rate. 

5.4 Transition-detection based error-detection 

The concept of error detection through transition-detection is illustrated in Figure 5.3. 

An error is flagged when the data input changes in the setup window of the flip-flop in 

front of the positive clock-edge. The time before the positive edge when the transition-

detector actually begins to monitor for spurious state changes at the data input is required 

to subsume the setup time for the flip-flop. Therefore, an additional safety margin (Tmar-

gin) is added to the transition-detector such that it is guaranteed to flag timing errors 

before actual setup violations begin occurring, even in the worst-case scenario. This 

margin is statically built within the transition detector using conventional worst-case 

design practices.   

Tsetup Tpos

Clock
Data
Error

Tmargin Detection Window

 

Figure 5.3 Transition-detection based error detection 
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Figure 5.4 illustrates the circuit schematic of a scannable, RazorII flip-flop 

augmented with a transition-detector for error-detection. The main flip-flop is a 

conventional, positive edge-triggered, master-slave flip-flop. The input pin of the main 

flip-flop, D, is monitored for spurious transitions in the high clock-phase by the 

transition-detector. The clock input to the main flip-flop is delayed with respect to the 

transition-detector by time equal to the statically characterized setup time of the flip-flop 

and added margin (Tsetup + Tmargin), as shown in Figure 5.4. Thus, the transition-detector 

begins monitoring for timing errors before the onset of the actual setup window of the 

main flip-flop.  

 

Figure 5.4 Transition-detecting RazorII flip-flop 



 

 

 66 

Adding the delay-chain to the clock-path increases the power overhead of the flip-

flop. Alternatively, this delay can also be added to the input data of the transition-detector 

at the expense of reducing its sensitivity to glitches. Doing this reduces the power 

overhead of the flip-flop, however, it also increases the potential risk of a narrow glitch 

getting filtered through the delay-chain. This can cause the transition-detector to miss the 

glitch even when it causes a state upset inside the main flip-flop, thereby leading to 

system failure. Consequently, adding the delay chain to the clock-path as opposed to the 

data is a safer design trade-off even though  it incurs additional power overhead.    

Timing diagrams in Figure 5.5 explain the working of the pulse generators. The 

transition-detector consists of two conventional pulse-generators (0to1_PG and 1to0_PG) 

which generate a pulse out of a transition at the monitored node. This pulse is then 

captured by a dynamic OR gate in the high phase of the clock by discharging the dynamic 

node, Err_dyn, as shown in Figure 5.4. The pulse-generators consist of an inverter and an 

AND gate. When the input to the pulse-generator (D_in), 0to1_PG,  transitions from low 

to high, the output of the inverter, I1, transitions low after a delay equal to the 

propagation delay through the inverter. This causes a pulse to occur at the output of the 

pulse-generator (p0to1). The width of the pulse is dependent upon the delay through the 
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Figure 5.5 Timing diagrams showing the principle of operation of the Transition 
Detector 
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inverter. An additional pulse generator is required to sense a transition in the opposite 

direction i.e. from logic high to low.  

The Err_reset signal, generated by the pipeline recovery mechanism in the event of 

an error, precharges the dynamic node, Err_dyn and readies it for the detection of the 

next timing error. Thus, unlike conventional semi-dynamic circuits, the Err_dyn node is 

conditionally precharged in the event of an error. This is similar to error-resetting scheme 

used in the RazorI technique (Section 3.2). However, in the RazorII scheme, the global 

Err_reset signal can be a multicycle signal and thus has relaxed timing constraint. 

A key observation is that when the flip-flop is likely to be metastable, the transition 

detector outputs a logically defined signal. On the other hand, if the data transitions right 

at the beginning of the error detection window, then the transition detector itself can get 

metastable. However, due to the safety margin (Tmargin), when such an event occurs, it is 

guaranteed that the main flip-flop data is correct. Hence, such an event is benign from the 

perspective of the data path. To avoid the metastable error signal from propagating 

through the error recovery logic, it is double-latched before being forwarded to the 

architectural replay unit. Depending on how the metastable signal resolves, the replay 

unit can potentially interpret the event as a valid error. In this case, the pipeline is flushed 

and a replay event occurs. This is a “false positive” wherein replay occurs even though 

the pipeline data is still correct.  Thus, the occurrence of metastability at the error output 

of the transition-detector is essentially a “don’t-care” condition. 

5.4.1 Fundamental minimum-delay trade-off  

The RazorII error detection window is defined by the high phase of the clock and can 

be controlled by adjusting the duty cycle. This constrains the minimum propagation delay 

for a combinational logic path terminating in a RazorII flip-flop to be at least greater than 

the duration of the high clock phase. Delay buffers are required to be inserted in those 

paths which fail to meet this minimum path delay constraint. The insertion of delay 

buffers incurs power overhead because of the extra capacitance added. A longer clock 

high-phase requires a greater number of delay buffers to be inserted, thereby increasing 

the power overhead. However, a smaller high-phase implies that the voltage difference 
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between the PoFF and the point where error-detection fails is less and, thus, reduces 

Razor timing speculation.  

The duration of the positive phase of the propagated clock can be configured as 

required so as to exploit the above trade-off. As in the case of RazorI, the hold constraint 

only limits the maximum duration of the positive clock phase and does not affect the 

clock frequency. Thus, the pipeline can still be operated at any frequency as required as 

long as the positive clock phase is sufficient to meet the minimum delay constraint. In the 

RazorII prototype that we present in Chapter 7, timing critical flip-flops had a clock with 

a 40% duty cycle resulting in a 25 FO4 detection window while non-critical flip-flops 

had a 13% clock duty cycle to minimize buffer insertion. A total of 1924 buffers were 

added to meet hold time constraints which added a 1.3% power overhead. In Chapter 6, 

we present alternative techniques to satisfy this minimum-delay constraint.   

5.5 SEU detection using the RazorII flip-flop 

The basic design of the RazorII flip-flop outlined in the previous section can be 

further simplified which, as we show in this section, enables it to detect both timing 

errors as well as Single Event Upsets (SEU) in combinational logic and inside registers. 

The modified RazorII flip-flop uses a positive level-sensitive latch instead of a master-

slave flip-flop. This exploits the observation that satisfying the fundamental minimum-

delay constraint ensures that no legal transitions can occur in the high-phase of the clock. 

This precludes the requirement of a master-latch to maintain its edge-triggered property. 

Indeed, flip-flop operation is enforced by flagging any transition on the input data in the 

positive clock-phase as a timing error. Elimination of the master latch significantly 

reduces the clock-pin capacitance of the flip-flop bringing down its power and area 

overhead. As we shown subsequently in this section, by monitoring the internal latch 

node for transitions, instead of the data input, the RazorII flip-flop can naturally detect 

SEU in the logic and registers without additional overhead.  

The architecture and the principle of operation of the modified RazorII flip-flop, 

henceforth referred to as R2LAT, are illustrated in Figure 5.6. It uses a single positive 

level-sensitive latch, augmented with a transition-detector controlled by a detection clock 

(DC). Timing errors are detected by monitoring the internal latch node for spurious 
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transitions. A legitimate transition occurs when data is setup to the latch input before the 

rising edge of the clock. In this case, the output Q of the latch transitions at the rising 

edge after a delay equal to the clock-to-Q (CLK-Q) delay of the latch, to reflect the state 

of data being captured.  

In order to prevent legitimate transitions being flagged as timing errors, a short 

negative pulse on the detection clock is used to disable the transition detector for at least 

the duration of the CLK-Q delay after the rising edge, as shown in the figure. However, if 

the input data transitions after the rising clock edge, during transparency, the transition of 

latch node, N, occurs when the transition detector is enabled and results in assertion of 

the error signal. The error signal engages the architectural replay mechanism to restore 

correct state within the pipeline. 

The circuit schematic of the R2LAT, the detection clock generator and the transition-

detector are shown in Figure 5.7. The transition-detector (Figure 5.7b), uses a delay-chain 

to generate an “implicit” pulse out of a rising or a falling transition at the latch node, N. 

CLKDNDCERROR
Tcq max Valid data transition Invalid data transitionDelay error detection window

 

Figure 5.6 Modified RazorII flip-flop for SEU and timing-er ror detection 
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The pulse is then captured by a dynamic OR gate to generate the error signal. Two pulse-

generators are required to capture transitions in both directions. The AND gates required 

for the pulse generation are built as a part of the evaluation tree of the OR-gate and have 

as inputs, the monitored node and its delayed version. For example, the pulse-generator 

for the rising transition at node N, uses the inverter, I3, and the long-channel transmission 

gate, TG2, to create the required delay.  

The inputs to the corresponding AND gate are the nodes d1 and the d3, as labeled in 

the figure. Similarly, the pulse-generator for the falling transition uses gates I2 and TG1 

and the corresponding inputs to the AND gate are d0 and d2. For silicon test-and-debug 

purposes, the delay-chain for each pulse-generator can be controlled by tuning the gate 

voltage of long-channel transmission gates (TG1 and TG2) in the delay-chains through 

the TD-TG Vdd pin. However, it was found that the RazorII prototype chip was fully 

functional without the need for tuning.  

The error-reset signal pre-charges the dynamic node in the OR-gate enabling it to 

capture subsequent transitions on the latch node. Error-reset is generated during 

c) Detection Clock generator b) Transition-detector

a) RazorII flip-flop circuit schematic

 

Figure 5.7 Circuit schematic of the R2LAT 
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architectural recovery in the event of a timing error. A cross-coupled inverter pair is used 

as a latch structure to protect the dynamic node from discharge due to leakage. 

5.5.1 Impact of intra-die process-variability 

As explained previously, the low-pulse on DC, temporarily disables the transition-

detector to prevent legitimate transitions at the latch node from being flagged as errors. 

For correct functionality, it is required that the minimum width of the low pulse at the DC 

clock is greater than the maximum CLK-Q delay of the main latch across all PVT corners. 

We used conventional worst-case sizing of the transistors in the DC-generator to achieve 

this relationship on the test-chip. Guaranteeing this relationship in the face of rising intra-

die process variability at 45nm and below may require the use of Monte-Carlo sampling 

techniques. This is illustrated in the timing diagrams shown in Figure 5.8. For a 3-sigma 

yield, it is required to ensure that the DC-generator is sized such that the worst-case 3-

sigma increase of the CLK-Q delay of the latch is still covered by the worst-case 3-sigma 

decrease in the DC pulse-width.  

Nom CLK-Q 3σσσσ CLK-Q

CLK

D

N

DC

ERROR

Nom PW

3σσσσ PW

Nom = Nominal
PW = DC Pulse Width

3σσσσ increase in latch delay is less than 3 σσσσ reduction in DC pulse-width  

Figure 5.8 Timing constraints with intra-die process variations 
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To support post-manufacture tuning, the delay chain is made tunable to account for 

process variation mismatches between the latch delay and detection-clock pulse-width by 

controlling the gate voltage of the transmission gate through DC-TG Vdd. Again, tuning 

was not required for the normal operation of the chip. The DC-TG Vdd pin of individual 

R2LATs were routed as conventional signal nets with an input pad serving as a common 

driver. The TD-TG Vdd pin was also routed in a similar manner. These pins have relaxed 

timing constraints since they are only meant for post-manufacture tuning.   

The difference between the CLK-Q delay and the DC pulse-width represents the 

duration when a transition on N goes undetected. This allows dynamic time-borrowing in 

the R2LAT wherein a critical computation gets extra time from the next cycle to 

complete, without flagging a timing error. Of course, this reduces the available time for 

the succeeding pipestage. However, if a time-borrowing critical computation is followed 

by a non-critical computation in the succeeding pipeline stage, then no timing errors will 

be flagged. Thus, the pipeline can potentially operate at a frequency greater than what is 

dictated by the critical path of the circuit. A larger value of the DC pulse-width allows 

greater scope for dynamic time-borrowing, although at the expense of reducing the 

available time for error detection. Thus, the DC pulse-width represents the trade-off 

between dynamic time-borrowing versus timing speculation available on the critical path 

of the circuit.   

The duration of suppression of the transition-detector, denoted by the DC pulse-

width needs to be greater than the CLK-Q delay of the actual latch across all PVT 

corners. In the RazorII prototype processor, we ensured this through conservative sizing 

during design time. At the slow corner (at 130nm technology node), the DC pulse width 

is 350ps and the actual CLK-Q delay of the latch is 200ps leading to a margin of 150ps at 

the slow corner. As explained previously, a higher value of the DC pulse-width reduces 

the PoFF through dynamic time-borrowing at the expense of reducing the speculation 

time available. Thus, reduction in energy savings due to reduced speculation is counter-

balanced by the energy gain due to a lower PoFF. Hence, it is unlikely that the margin in 

the DC pulse width has a significant impact on the total energy savings of the processor. 
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5.5.2 SEU Detection using the R2LAT 

The transition detector is always enabled except for the period after the rising edge 

of the clock where valid transitions occur. This naturally allows the R2LAT to detect and 

flag SEUs on the latch node as well as in the combinational logic that fans in to it. The 

voltage pulse due to a SEU event in the combinational logic can possibly propagate to a 

R2LAT in the transparent phase of the clock, leading to a glitch in the latch node. If the 

glitch is sufficiently wide, the transition detector interprets the glitch as a combination of 

two transitions and flags it as a timing error. Of course, in the low-phase of the clock, the 

SEU pulse is benign, as it can never propagate to the latch node.  

 

Figure 5.9 Conceptual timing diagrams showing SEU detection when DC is high 
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A particle strike on the latch node, N, leads to a single transition causing a state flip 

to occur when the clock is low, as shown in Figure 5.9(a). A high energy particle strike at 

N (Figure 5.9(b)) leads to a pulse when the strike occurs in the transparent phase of the 

clock. In both the cases of Figure 5.9(a) and (b), the TD successfully detects the event 

and flags an error. A weak pulse due to SEU in the transparent clock phase, shown in 

Figure 5.9(c), can go undetected by the TD but it can possibly cause a glitch in the 

output, Q. If the glitch is amplified by the downstream logic, it will still be flagged by a 

R2LAT in the succeeding stage, leading to an error.     

An interesting case to consider is when the SEU pulse occurs while the detection 

clock is low. There can be three possible scenarios that follow as illustrated in the timing 

diagrams in Figure 5.10: 

Case I: The pulse occurs and dies before the detection clock is enabled as shown in 

Figure 5.10(a). In such a case, the transition detector does not flag an error since the latch 

node, N, is restored to its correct state before the detection clock is enabled. Since no 

state corruption occurs, this is essentially benign.  

Case II: The pulse on N initiates when the detection clock is low but N recovers 

correct state after the rising edge of the detection clock (Figure 5.10(b)). In such a case, 

the transition detector responds to the trailing edge of the pulse and flags an error. While 

the pulse does revert back to its correct state, it does so after the DC has reengaged and 

hence, it is correctly interpreted as a timing error.  

Case III:  Figure 5.10 (c) illustrates the case when a SEU pulse actually causes state 

corruption to occur at the latch node, N, without an error being flagged. This is a special 

condition which occurs when the width of the DC pulse is equal to the width of high 

phase of clock. As shown in the figure, if the SEU pulse occurs just before the falling 

edge of the clock, then the latch node, N, samples the leading edge of the pulse and is 

unable to revert back to its correct state.  

This is because the main latch enters into its opaque phase just before the trailing 

edge of the pulse occurs. In essence, the SEU pulse degenerates into a single transition at 

the latch node, N. Since this transition occurs when the detection clock is low, the 

transition detector does not flag this as a timing error, leading to system failure. 
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Case III sets a lower bound on duration of the high phase of the clock in relation to 

the pulse-width of the detection clock. In order to prevent system failure from occurring 

in case III, it is imperative to allow node N to recover correct state before the falling edge 

of the clock. Hence, the clock needs to be high for at least half of the SEU pulse width 

 

Figure 5.10 SEU Detection when DC pulse is low 
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after the rising edge of the detection clock. This allows N to follow the trailing edge of 

the pulse and achieve correct state as shown in Figure 5.10(d).  

For the RazorII prototype processor that we present in Chapter 7, we chose this 

minimum overlap to be 100ps at the typical corner at the 130nm technology node. The 

trailing edge of the pulse occurs after the transition-detector has been enabled and hence 

is flagged as an error, thus maintaining correct operation in the pipeline.  

5.5.3 Comparative Analysis with the RazorI flip-flop 

The RazorI flip-flop detects late-arriving data by comparing the flip-flop state with 

that of a “shadow” latch which samples off the negative edge of the clock. In total it 

consists of three latches (master, slave and shadow), a comparator and a meta-stability 

detector. The implementation requires 76 transistors. Compared to a conventional flip-

flop, the RazorI flip-flop has a worse CLK-Q delay for the same drive strength due to the 

extra loading of the metastability-detector and the error comparator. Its setup time is the 

same or slightly worse than a library flip-flop. It consumes 25% extra power when data 

does not switch (due to transitions on clock) and 70% extra power when data switches. 

Thus, for a 10% activity rate, the total power overhead of the RazorI flip-flop is 30% 

when compared to a conventional flip-flop. For our implementation of the RazorI 

processor in [10], we needed to use the RazorI flip-flop only for timing-error protection 

on the critical paths. Hence, the net power overhead of using RazorI flip-flops was less 

than 3% of the total chip power.  

 The elimination of the master latch and the metastability-detector in the R2LAT are 

significant simplifications that lead to improvements in delay, power and area. The 

R2LAT uses 47 transistors in total. The elimination of the master latch leads to slightly 

improved CLK-Q delay compared to a conventional flip-flop. In addition, it completely 

eliminates the setup time constraint at the positive edge of the clock. Thus, the R2LAT 

can be effectively modeled as having 0ps setup time. The power overhead compared to a 

conventional flip-flop of the same drive strength for a 10% activity factor is 28.5%. The 

total power overhead due to insertion of R2LATs in the processor was 1.2%. 

Metastability risks at the positive edge of the clock for the latch data-path are completely 

eliminated, thereby precluding the need for a metastability-detector. 
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As mentioned before, the generation of the detection clock could be easily shared 

across multiple R2LATs. Such an implementation requires 39 transistors in total as 

opposed to 76 transistors used for the RazorI flip-flop. In addition, it requires just a single 

additional transistor on clock for error evaluation. In total, it has 5 transistors on a clock 

as compared to 14 clock transistors in the RazorI flip-flop. Thus when compared to a 

conventional flip-flop, for an activity factor of 10%, it consumes 11% less power based 

on a simulation analysis. This is a significant reduction compared to the RazorI flip-flop 

which consumes 30% extra power. In the actual implementation of the processor, the 

detection clock was generated locally within each R2LAT and was not shared. 

5.6 Memory design for a Razor processor core 

The pipeline output from the write-back stage of a Razorized processor core is 

speculative and hence, potentially incorrect. We address critical Register File read and 

write operations by replicating the Register File and using the speculative version as the 

working register set for pipeline operations. The speculative Register File is updated from 

the guaranteed-correct, golden Register File during recovery. However, replication 

cannot be used for on-chip cache memory because it incurs prohibitive power and area 

overhead. Therefore, we modify conventional SRAM structures in order to handle 

speculative load and store operations without causing state corruption inside the bit-cell 

array.  

Speculative memory stores can be pipelined in a stabilization queue. The 

stabilization queue provides the extra latency required for the Razor error detection 

infrastructure to check for timing-errors in the store data. Thus, the store stabilization 

queue not only delays data commits to memory to allow for Razor validation, but also 

serves the purpose of a store buffer that exists in most high-throughput memory systems.   

5.6.1 Handling speculative read accesses to the memory 

Memory load operations cannot be pipelined in a non-speculative queue (as in the 

case of store operations) because doing this incurs significant Instruction Per Cycle (IPC) 

penalty. For most microprocessors, load operations are accompanied by address 

calculations and are therefore timing-critical. Consequently, all the signals involved in a 
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memory read access, such as the Address, the Write Enable (WE) and the Chip Select 

(CS) signals, are monitored for possible timing violations using RazorII flip-flops at the 

SRAM sampling interface. The system reacts to a timing error in these signals in exactly 

the same way as it deals with a timing violation in the rest of the pipeline.   

One complicating issue with critical read accesses is the occurrence of metastability 

at the address sampling flip-flops inside the SRAM. Metastability at these flip-flops can 

potentially propagate to the bit-cell array, thereby leading to state corruption. Such an 

occurrence is extremely unlikely and can be mitigated by ensuring that the metastable 

flip-flop data does not toggle the row-decoder outputs. 

Figure 5.11 shows a possible scheme for achieving the above. In this technique, a 

conventional Sense-Amplifier Flip-flop (SAFF) [54], augmented with a transition-

detector is used to sample the critical SRAM read signals. As shown in the figure, the 

SAFF outputs both the true (Q) and complemented (QN) versions of the input, D. In the 

precharge phase (when the clock signal, CLK, is low), both outputs Q and QN are at 

logic 0. During evaluation (when CLK is high), either Q or QN transitions monotonically 

`
QQNDCLK

N-skewed Voltage-steering logicTransition Detector` ERRORSM
 

Figure 5.11 Sense-amplifier Flip-flop augmented with a transition-detector to 
sample critical Read signals in a SRAM array 
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to logic 1, to reflect the state of the sampled input. N-skewed inverters at the output of the 

SAFF guarantee that when the flip-flop nodes (M) and (S) are metastable at 

approximately the mid-rail voltage, both Q and QN are interpreted to be at logic 0 by the 

row-decoder. This ensures that the row-decoder does not enable the word-line drivers, 

thus protecting the bit-cell array in the event of metastability. 

Using n-skewed inverters to steer metastable flip-flop outputs to benign logic levels, 

increases the propagation delay through the SAFF, thereby affecting the read access time 

of the SRAM. Thus, in this case, we trade off a slower SRAM read operation for 

enhanced robustness against metastability.  

5.6.2 Timing speculation in the sense-amplifier circuit 

A bit-cell enabled during a memory read operation, gradually discharges either the 

precharged bit-line or its complement, depending upon the state of the data stored inside 

it. After allowing a bit-line voltage differential to develop, a Sense-Amplifier is enabled 

which “senses” this differential and determines whether a state 0 or a state 1 is being read 

out. Typically, safety margins are incorporated into the sense-amplifier timing such that it 

is enabled after sufficient interval such that the read data is always correct. However, the 
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Figure 5.12 Dual Sense-amplifier scheme for faster read timings 
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safety margins have the undesirable effect of limiting the speed of the read operation by 

delaying the point when the Sense-Amplifier is enabled. Using timing-speculation, it is 

possible to eliminate these safety margins and achieve faster SRAM read access timing 

by enabling the Sense-amplifier early, even when the bit-line differential is inadequate 

for correct operation in the worst-case.  

This concept of timing speculation in the sense-amplifiers is illustrated in Figure 

5.12. The key idea in this technique is to use two sense-amplifiers to sense the bit-line 

differential at two different points in time. The speculative sense-amplifier (SpecSA) is 

enabled earlier and can therefore read out a potentially incorrect signal when the bit-line 

differential is not sufficiently developed. The output of the speculative sense-amplifier is 

validated against the data read out by a non-speculative sense-amplifier (SafeSA) enabled 

later, the timing of which is generously margined using conventional worst-case 

assumptions. An error signal is flagged when the data read out of the speculative sense-

amplifier does not match with the correct data read out from the non-speculative sense-

amplifier. The system responds to this error signal by forwarding the correct output from 

the non-speculative sense-amplifier to the downstream pipeline stage.  

A separate error controller is used to monitor the error-rate of the speculative 

sense-amplifier. The error-controller tunes its enable timing to achieve a targeted error-

rate.  

5.7 Summary and discussion 

In this chapter, we introduced the RazorII error-detection and recovery scheme. 

Timing-error detection occurs within a RazorII flip-flop, using a so-called transition-

detector, which flags spurious transitions in the critical-path output during the speculation 

window. Monitoring for timing-errors before the onset of the setup window of the flip-

flop precludes the need for a metastability-detector, thereby greatly reducing the area and 

the power overhead of the RazorII flip-flop.  

We showed an alternative design of a RazorII flip-flop, called the R2LAT, which 

enables both timing-error and SEU detection inside registers and combinational logic. 

The R2LAT uses a level-sensitive latch, instead of a flip-flop, as the main state-holding, 

sequential element. Positive-edge triggered flip-flop operation is enforced by a transition-



 

 

 81 

detector, controlled by a detection clock, which flags any transition on the latch node in 

the high-phase of the clock as a timing error. SEUs manifest as voltage pulses which can 

cause bit-flips in the latch node. The resultant transition can be flagged as an error by the 

transition-detector. 

We showed the design of a generic, 5-stage, in-order RazorII pipeline based on 

check-pointing and replay architecture. After an instruction has been validated to be 

correct, it is check-pointed before being committed to storage. Recovery is achieved by 

flushing the pipeline and re-executing from the check-pointed state. We discussed the 

design of the memory system which interfaces to a timing-critical RazorII pipeline.  

We implemented RazorII in a 64bit processor for tolerance against SEU and PVT 

variations. We present the measurement results from this processor in Chapter 7. In the 

next chapter, we discuss schemes that mitigate the stringent minimum-delay requirement 

in Razor-based pipelines.  
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CHAPTER 6 

ALTERNATIVE HOLD-FIXING SCHEMES FOR RAZOR-
BASED PIPELINES  

Razor timing speculation imposes a fundamental minimum delay constraint which 

requires that every combinational path fanning into a Razor flip-flop needs to be at least 

greater than the positive clock-phase and the hold time of the shadow latch (in case of 

RazorI) or the transition-detector (in case of RazorII). In the traditional approach, this 

constraint is met by inserting delay buffers in the short-paths that violate the minimum-

delay constraint. Using suitable clock-chopping techniques, a high phase of the clock is 

generated such that there are no short-path violations across all process, voltage and 

temperature corners. Typically, clock-choppers rely on delay-chains which gate the 

conventional fifty-percent duty cycle clock to obtain an output clock with the same 

frequency but an asymmetric duty cycle. The delay through the chain determines the 

duration of the high-phase of the output clock. Conventional timing analysis is then 

performed to ensure that the minimum-delay constraint is met across all corners for the 

high-phase thus determined during design time.  

The issue with this approach is that the propagation delay through the delay-chain 

used to generate the high-phase of the processor clock can vary with variations in PVT 

conditions. In addition, it is likely to have different scaling characteristics compared to 

the actual short-paths in the design. This mismatch in scaling characteristics is especially 

accentuated for simple gates used in the delay-chain, such as inverters, compared to more 

complex gates in actual paths. Due to these reasons, safety margins are incorporated 

either through additional buffer insertion on short-paths or by using a narrower high-

phase of the clock. Additional buffer insertion adversely impacts power consumption of 

the design. Similarly, using a narrower high-phase limits the available speculation time 

for Razor. A possible alternative is to use a tunable delay chain to control the high-phase 



 

 

 

 

83 

of the clock on a per die basis. Thus, the high-phase of the clock is adjusted on the tester 

to a level wherein no short-path violations are observed. However, this approach is 

complicated and requires additional tester-time which adversely impacts yield economics. 

For most processors, buffer-insertion based hold-fixing effectively achieves the 

minimum-delay constraint without adding significant overhead. For example, the power 

overhead of hold-fixing was less than 3% of the total chip power for both the RazorI and 

the RazorII prototype processors. However, at aggressive process nodes, increasing 

variability in the short-paths can significantly worsen the hold-time constraint through the 

requirement of large number of delay buffers. In addition to the area and power overhead, 

excessive buffer insertion adversely affects the critical-path timing as well, thereby 

impacting performance.  

In the following sections, we present alternative techniques to buffer-insertion based 

hold-fixing. These techniques address the impact of variability in short-paths to achieve 

very high speculation times while using conventional 50percent duty-cycle clocking. We 

discuss the relative merits and demerits of each scheme. The remainder of the chapter is 

organized as follows. Section 6.1 discusses insertion of level-sensitive latches halfway 

through the combinational logic to satisfy the hold requirement at destination Razor flip-

flops. Section 6.2 deals with a Razor-like scheme from Intel, called the X-Pipe micro-

architecture, which staggers the cycles where new data is launched and old computation 

is checked for errors, in order to eliminate the hold-requirement. The BLADES technique 

for statically-scheduled processor is presented in Section 6.3. Section 6.4 discusses the 

design of a pulsed-latch based RazorII flip-flop which uses a narrow pulse to relax the 

hold constraint and simplify clocking. Finally, we summarize this chapter in Section 6.5.  

6.1 Level-sensitive latch based scheme for hold-fixing 

The key idea of this scheme is to divide the combinational logic within a pipeline 

stage into two equal portions with critical-path delay equal to half of the critical-path of 

the unmodified pipestage. Level-sensitive latches are inserted between the two blocks of 

logic thus created. These latches are transparent in the negative phase of the clock and 

sample in the positive phase of the clock. Figure 6.1 conceptually illustrates this scheme 

of pipeline transformation. The inputs to the Razor flip-flops are prevented from being 
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updated by short-path computations in the positive phase, due to the opaque latches. This 

guarantees, by construction, that the transitions which occur at the Razor flip-flop inputs 

in the high clock-phase are valid timing errors caused due to setup violations. A point to 

note here is that the level-sensitive latches are required only in the logic cones that fan-

out to Razor flip-flops.  

This approach guarantees half-cycle speculation time. However, the additional 

latches greatly increase the clock load in this scheme, thereby significantly increasing the 

pipeline power consumption. Consequently, such a scheme can only be used in 

applications where the combinational power is a significant portion of the total power, 

such as in graphics processors and hardware accelerators. Due to its significant power 

overhead, this scheme is not amenable for general-purpose computing.  

Another weakness of this scheme is that it introduces phase-paths which adversely 

impact the error-rate. The trade-off between the error-rate and the phase path timings is 

shown in Figure 6.2. In the figure, the latency through the positive phase logic is labeled 

as Tpos and that through the negative phase logic is labeled, Tneg. Even if the positive 

phase logic finishes early, the pipeline has to wait until the negative clock-edge in order 

to resume computation. The computational time wasted in the positive phase due to this 

is labeled as Twaste. Due to the wasted time, previously non-critical paths can become 

critical and contribute to the error-rate.  

Conditionally Retimed Razored Pipeline

RFF
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T-Latch
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Figure 6.1 Latch-insertion scheme for satisfying the short-path constraint 
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The key advantage of this scheme is that conventional fifty percent duty cycle 

clocking can be used. This greatly simplifies the clock-generation and propagation. In 

addition, it is highly resilient to variability on the short-paths of the processor and 

eliminates the safety margins required to meet the minimum delay constraint.  

The key disadvantage of this scheme, as discussed before, is that it increases clock-

tree loading and contributes significantly to the total power overhead. Several 

optimizations can be performed to mitigate the power overhead of this approach. Firstly, 

the clock-tree for the hold-fixing latches is not limited by skew constraints unlike in a 

conventional clock-tree. Hence, a low-performance clock-tree can be deployed for hold-

fixing latches, thereby bringing down the total power overhead. In addition, the latches 

can be clock-gated when either the producer flip-flops in its fan-in or consuming flip-

flops in its fan-out are clock-gated. 

6.2 Intel X-pipe 

In [48], the authors present a new micro-architecture, called the X-Pipe, where error-

detection is achieved using a Razor-like technique that eliminates the minimum-delay 

constraint of Razor. As shown in Chapter 3, the minimum-delay constraint in Razor 

arises because the duration after the positive clock-edge when the output of the previous 
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R_CLK
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“Error”
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Figure 6.2 Error-rate and wasted-time trade-off 
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computation is being monitored for timing errors, new data can potentially race-through 

and overwrite the previous results (Figure 3.2). The key idea in the X-Pipe approach is to 

stagger the clock edges when a new computation is initiated and when the output of the 

previous computation is checked for correctness. By launching a new computation and 

validating a previous computation at different clock edges, the minimum-delay constraint 

is eliminated, by construction.  

Figure 6.3 shows the pipeline organization in the X-pipe technique. The entire data-

path is divided into positive and negative phase logic. Data launched at the positive edge 

is speculatively captured at the negative clock-edge by the next pipeline stage. This 

speculative sample is then forwarded onto the consuming negative-phase logic and vice 

versa. Each error-detecting flip-flop is augmented with a shadow flip-flop which samples 

the always-correct output of the producer logic at the next launching edge. As an example, 

when the main flip-flop captures data at the negative clock-edge, the corresponding 

shadow flip-flop captures the same input at the next positive edge. Thus, the shadow flip-

flop input gets the entire cycle to achieve correct state whereas the main flip-flop 

speculatively samples data midway through the clock-cycle. Error is flagged by 

comparing the shadow flip-flop output with the speculative sample. Recovery occurs 

through a replay mechanism based on check-pointing.  

In the X-pipe approach, launch and capture edges are separated by half of a clock 

cycle. This eliminates the minimum-delay constraint by construction. While this is a 

major advantage of this approach, however, it imposes formidable design and 

implementation challenges that severely limit its applicability to generic pipeline designs. 

Firstly, the pipeline needs to be partitioned in such a way that computed results are 

forwarded to a stage that launches on the opposite clock-phase. This greatly complicates 

pipeline designs with large number of inter-stage forwarding paths.  
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Having phase-based paths doubles the number of flip-flops required which 

effectively doubles the clocking and power overhead. In addition, the mechanism for 

error-detection requires an additional shadow flip-flop and a metastability-detector (not 

shown in the figure) which increases the error-detection overhead for each flip-flop. The 

prohibitive area and power overhead in this technique and its lack of general applicability 

are major weaknesses that the authors fail to adequately address in their approach.  

6.3 Logic replication in statically-scheduled machines 

In [47], the authors propose a technique, called BLADES (Better-than-worst-case 

Loop Accelerator Design), which exploits the similar idea of staggering the launch and 

capture clock-edges to address the minimum-delay constraint. This approach has been 

applied to statically-scheduled, hardware accelerators that use Razor flip-flops for error-

detection. Razor-based self-tuning enables such accelerators to deliver high performance 

under stringent power budgets. 
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Figure 6.3 Intel X-pipe micro-architecture 
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The key idea in BLADES is to combine multiple Functional Units (FUs), such as an 

adder and a shifter, into 2-cycle “custom functional units” (CFUs), as shown in Figure 

6.4(b). A CFU uses two cycles to execute two or more operations back-to-back. Its inputs 

are only changed every other cycle and the values computed, after one cycle, are stored in 

a register. This way, the values that fan-in to Razor flip-flops are guaranteed not to 

change during the speculation window unless there is a timing error, thereby eliminating 

the need to insert extra buffers. Note that in the example shown in Figure 6.4(b), if there 

are two successive add instruction, then the adder block has to be replicated so as to 

prevent a stall cycle. In statically scheduled machines, code analysis and compiler 

optimizations can ensure that a particular Functional Unit is not exercised in successive 

cycles, thereby minimizing logic replication.  

 

Figure 6.4 Replicated functional units eliminate the Razor minimum-delay 
constraint 
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The CFUs are identified by the compiler after analyzing the dataflow between 

different instructions. It is possible to extend this technique to general-purpose processors 

wherein each functional unit is replicated and an individual block is sensitized once every 

two cycles. However, since this entails significant logic and flip-flop replication, in-depth 

analysis is required before such a technique can be applied to general-purpose processors.  

6.4 RazorII flip-flop with integrated clock-pulse generator 

In the RazorII approach, the system tunes itself for the Point of First Failure (PoFF). 

Consequently, in such systems wider speculation windows are not required. This 

observation is exploited in the design of the RazorII flip-flop, shown in Figure 6.5. The 

design is essentially a pulsed-latch which uses a locally generated clock-pulse to obtain 

the speculation window for error-detection. The transition-detector monitors the flip-flop 

input instead of the internal latch-node which limits its SEU detection capability. The 

clock-pulse generator could be integrated within the RazorII flip-flop (similar to the 

design of the R2LAT) or it could be a part of a clock-gating cell which drives a bank of 

RazorII flip-flops.  

The key advantage of this scheme is that a narrow clock-pulse can be used to drive 

the RazorII flip-flop. This significantly reduces the minimum-delay requirement. In 

addition, primary clock-tree of the processor is driven by a conventional 50% duty cycle 

clock which greatly simplifies the pipeline clock-generation. Furthermore, by integrating 

the clock-pulse generator within the RazorII flip-flop the ease of pulse-generation can be 

traded off for increased power consumption within each flip-flop. The alternative 

technique of using a local clock-gating cell to drive the clock-pulse ensures that the 

narrow pulse is driven to very short distances and therefore sees a low interconnect (RC) 

load. This mitigates possible “pulse-evaporation” concerns.  

The key disadvantage of this scheme is that it increases susceptibility to possible 

delay “overshoots” wherein a transient noise or supply-voltage glitch suddenly increases 

the critical-path delay to an extent that it entirely misses the error-detection window. 

However, the transition-detector can be enabled before the rising edge of the clock, 

thereby increasing the effective error-detection window. However, this incurs a 
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performance overhead since the PoFF as seen by the transition-detector, occurs before the 

PoFF of the actual processor critical-path.  

6.5 Summary and discussion 

In this chapter, we discussed several techniques that address the hold-fixing 

requirement in the Razor technique. We presented the transparent-latch insertion scheme 

which inserts negative-level sensitive latches midway through the data-path such that no 

short-path race-through can occur during the high-phase of the clock. This technique 

guarantees achieving the minimum-delay constraint by construction, however, suffers 

from significant clock-power overhead. Consequently, such a technique may be more 

suited towards signal-processing applications where the combination logic power can 

dominate over sequential power.  

We surveyed the Intel X-pipe technique which is a novel method that divides the 

data-path into positive-phase and negative-phase logic. Execution output is speculatively 

captured at the opposite clock-edge whereas error-detection occurs at the next launching 

edge. By staggering launch and capture cycles, it is possible to avoid the minimum-delay 

constraint. However, this technique suffers from its complicated micro-architecture and 

 

Figure 6.5 Pulsed-latch implementation of the RazorII flip-flop. The transition-
detector monitors the data input rather than the internal node.  
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its inability to effectively handle forwarding paths. In addition, it doubles the number of 

registers required in the data-path and significantly adds to the power-overhead of 

detection. Hence, this technique has limited applicability.  

We surveyed another technique for statically-scheduled machines based on 

replication of combinational logic blocks. The key idea in this technique is to merge FUs 

into so-called CFUs (custom functional units) and to issue operands to a CFU not faster 

than once every two cycles. Stall cycles are avoided by replicating a CFU, if it is 

exercised in successive cycles. The combinational logic blocks that require replication 

can be identified by the compiler.  

We presented the design of a pulsed-latch based design of the RazorII flip-flop 

which uses a narrow speculation window. Targeting the PoFF rather than aggressive sub-

critical operation presents opportunities for trading-off setup time pessimism for low 

buffer-insertion overhead, in this technique. In addition, it is possible to split the clock-

tree and route a wider high-phase clock to critical RazorII flip-flops and to use a narrower 

high-phase for the relatively non-critical RazorII flip-flops. We exploit the latter scheme 

in the design of the RazorII processor which is presented in the next chapter. 
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CHAPTER 7 

SELF-TUNING RAZOR II  PROCESSOR: USING RAZOR II  
FOR PVT AND SER TOLERANCE  

RazorII was incorporated in a 64bit, 7 stage, in-order Alpha processor in an 

industrial 0.13µm technology [44] [45]. We use the modified RazorII flip-flop, called the 

R2LAT (Section 5.4), for both timing-error detection and Soft Error Rate (SER) 

tolerance. We have described in detail the basic design and the principle of operation of 

the R2LAT in Section 5.4. The remainder of this chapter is organized as follows. In 

Section 7.1, we present the pipeline details and the modifications required to the basic 5-

stage pipeline to support detection and correction of Single Event Upsets (SEU) in 

SRAM arrays and architectural-state registers that are not protected using R2LAT error-

detection capability. We present potential techniques that restrict voltage and frequency 

scaling to safe limits in RazorII-based systems in Section 7.2. Section 7.3 discusses the 

measured energy savings from RazorII based supply voltage control on 33 tested dies. 

We present measurement results from SER tests in Section 7.4. 

7.1 Pipeline design of the RazorII processor 

The pipeline design for the prototype RazorII processor is based on the architecture 

of a generic, in-order RazorII pipeline as illustrated in Figure 5.2. However, it includes 

additional features to support detection and recovery in the presence of SEU in memory 

arrays and architectural-state registers. The pipeline, shown in Figure 7.1, can be broadly 

divided into a speculative domain which is timing-critical and a non-speculative domain 

with sufficient timing slack. The speculative domain consists of a two-stage fetch stage 

(IF1 and IF2), instruction decode (ID), an integer execution unit (EX) and the memory 

access (MEM) stage. All pipeline registers in the speculative domain require RazorII 

protection against state corruption due to SEU. The error pins of individual R2LATs in 
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each pipeline stage are “OR”-ed together and the result is propagated and “OR”-ed with 

that of the next stage. This allows the composite error signal for the entire pipeline to be 

evaluated on a per-stage basis. This relaxes the timing constraint on the error generation 

path. The write-back (WB) stage was designed to be non-critical to stabilize the 

speculative pipeline output before it was committed to storage in the non-speculative 

domain.  

The non-speculative domain stores the architectural state of the processor and 

consists of the caches (instruction and data), the Register File and the program status 

registers. Read and write combinational paths to these units are non-critical and hence do 

not require timing error protection. Error Correcting Codes (ECC) is used to recover from 

SEU in the caches and the Register File. The program status registers are protected using 

Triple Module Redundancy [35] (TMR). The key concept of TMR is to use three blocks 

of logic for the same computation. A majority voting circuit is then used to forward the 

final result to the pipeline. A TMR error is flagged when the outputs of the redundant 

logic blocks mismatch. Thus, high degree of reliability against SEU can be achieved, 

 

Figure 7.1 RazorII Processor: Pipeline Design 
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although at the cost of redundant logic and registers. TMR allows SEU errors in the 

architectural state registers to be corrected on-the-fly and no extra recovery mechanism is 

required. 

Data from the speculative pipeline is encoded before the write-back stage. The data 

word and the corresponding redundant bits are then written into storage. Thus, the ECC 

encoder adds 22 redundant bits to the 64bit data for a Data-Cache (DCache) and Register 

File write access and 17 redundant bits for a 32bit Instruction-Cache (ICache) write 

access. On a read access, the ECC decoder operates on the obtained code word and 

determines if a state flip has occurred, while in storage. In the event of an error, the data 

word is corrected and forwarded into the pipeline and the corrected word is recommitted 

to storage. The ECC decoder can correct one random bit flip and up to 4 consecutive bit-

flips in the data word. Both ECC and TMR errors are corrected in-place and do not 

engage the pipeline recovery mechanism.  

Replay is achieved by check-pointing the Program Counter (PC) register in the WB 

stage of the pipeline. The Program Counter (PC) register is passed along the Razor 

pipeline. When an error is detected, the entire pipeline is flushed and the PC in the fetch 

stage is overwritten with the PC in the WB stage. Normal instruction execution resumes 

from then on. The PC in the WB stage is protected from SEU through TMR. Since an 

erroneous instruction is re-executed through the pipeline during replay, the same 

instruction can suffer repeated timing errors. Hence, it is required to monitor the 

instruction being replayed to detect a deadlock situation. When the number of replay 

iterations for the same instruction reaches a certain threshold, called the “replay limit”, 

the clock frequency is halved for 8 cycles to allow guaranteed completion. Thus, for a 

replay limit of 1, every timing error is accompanied by recovering at half the clock 

frequency. For a replay limit of “n”, an errant instruction is replayed “n-1” times at the 

same frequency, if required, before the frequency is halved for the “n”th iteration.  

A majority of timing errors at the Point of First Failure (PoFF) are actually caused 

due to transient events, such as cross-coupling noise, which disappear during replay. 

Hence, it is expected that for most timing errors, replaying the erroneous instruction just 

once will be sufficient for completion, without having to reduce the clock frequency. This 

observation is borne out from our silicon measurement results, described in Section 7.3, 
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where 60% of failing instructions are executed to completion in the first replay iteration 

without reducing the clock frequency. The replay limit is externally programmable. 

7.2 Setting limits to voltage and frequency scaling in RazorII 

Voltage scaling in RazorII based systems is limited to the point where the error 

detection window is sufficient to detect and flag timing errors. At this safe limit, shown 

in Figure 7.2, the critical-path computation finishes before the negative clock-edge of the 

next cycle and causes the internal latch-node, N, to transition while meeting the setup 

time of the level-sensitive latch at this clock-edge. If the critical path transition occurs 

after this setup time, the latch will be opaque and the transition will not be visible to the 

transition detection to flag an error.  

The Razor error-detection window (Tspec) defined between the rising edge of the 

Detection Clock and the falling clock-edge is also shown in the figure. In the RazorII 

based processor, the system controller monitors error-rates and tunes itself to the PoFF 
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Figure 7.2 The limit of safe operation in RazorII 
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where the error-rates are extremely low. However, the risk with using error-rates for self-

tuning is that for an idle processor, where the observed error-rate is zero, the processor 

voltage and frequency can be potentially scaled too aggressively, beyond this safe limit. 

Thus, if the idle period is followed by a critical-path operation, the latency of the 

computation may exceed the error detection window, leading to system failure. Hence, it 

is imperative that the system is able to limit itself to a known, safe operating point even 

when the monitored error-rate is actually zero. 

The critical-path delay can dynamically vary due to changes in the ambient 

conditions (voltage and temperature) or ageing effects. This can cause a shift in the safe 

operating limit. Consequently, it may be required to periodically tune the processor to 

obtain this limit. In the following, we discuss several ways in which the safe operating 

limit can be obtained. 

7.2.1 Conservative estimation from static timing analysis 

In this scheme, static timing analysis is used to obtain the maximum frequency of 

operation. Contrary to conventional practice, timing analysis is performed with respect to 

the negative edge of the clock. At the maximum frequency, the critical path delay (Tcrit), 

the setup time of the latch at the negative clock-edge (Tsetup), the cycle time (Tmin) and the 

high phase of the clock (TON) are related by the following equation (Figure 7.2):  

 

                                Tcrit + Tsetup = Tmin + TON  

 

Thus, maximum frequency of operation (Fmax) is obtained as follows:  

 

                           
ONsetupcrit TTTT

F
−+

== 11

min
max  (Equation 1)  

 

The duration of the high phase of the clock, TON, is a function of the minimum delay 

constraint, as explained in Chapter 5, and is independent of the clock frequency. Tsetup is 

obtained by the characterization of the R2LAT latch during design time. Tcrit is obtained 

through static timing analysis on the entire design, at a given voltage of operation. Thus, 
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these parameters can be used in Equation 1 to obtain the Fmax. At Fmax, it is guaranteed 

that all timing errors will be detected and flagged by Razor even in the worst-case 

condition. Thus, Fmax values at different operating voltages can be stored in a look-up 

table.  

The key advantage of this technique is its simplicity. The key disadvantage is that its 

reliance on static timing analysis incorporates worst-case margins in the estimation of 

Fmax. An important observation to make here is that Fmax is measured with respect to the 

negative edge of the clock. Thus, in this technique worst-case margins are still eliminated 

from the positive edge but are now moved to the negative edge. It is expected that for a 

reasonably large value of TON, the PoFF of the processor will be attained before Fmax is 

reached. Thus, the conservative margins do not have any performance impact. This is in 

contrast with conventional look-up table approaches where margins are added to the 
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Figure 7.3 Worst-case vector based tuning 
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positive clock-edge and hence have significant impact on performance and energy 

efficiency.  

7.2.2 Worst-case vector based tuning 

In this technique, the processor has two modes of operation. The normal operating 

mode is interrupted to enter the tuning mode wherein worst-case vectors are executed 

through the pipeline. In the tuning phase, the frequency of operation is adjusted until the 

PoFF for the worst-case vectors is reached. The worst-case vectors exercise the critical 

path of the processor and can be used to obtain Fmax as shown in Figure 7.3. At the PoFF 

of the worst-case vectors, a critical-path computation causes a transition at the internal 

latch node, N, of the capture R2LAT just at the rising edge of the Detection Clock. Thus, 

the cycle time (TPoFF) at this point is related to the critical path and the pulse width of the 

Detection Clock (TDC) by the following equation. 

   

                                          DCPoFFLcrit TTT +=_  (Equation 2) 

 

Note that in Equation 2, Tcrit_L refers to the delay required to transition the internal 

latch node. Thus, it is the sum of the propagation delay through the critical path and the 

internal delay through the latch.  

TDC can be expressed as a function of the Razor error detection window (Tspec) and 

the high-phase of the clock TON in the following equation. 

  

      specONDC TTT −=  (Equation 3) 

 

Thus, from equations 2 and 3, we can obtain Tcrit_L as a function of TPoFF as follows: 

 

                                    specONPoFFLcrit TTTT −+=_  (Equation 4) 

 

At the maximum frequency of operation (Fmax), the internal latch node transitions 

before the negative edge of the clock. Thus, the cycle time at Fmax (Tmin) can be expressed 

as a function of Tcrit_L and TON as: 
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                                 ONLcrit TTT += min_  (Equation 5) 

 

Thus, from equations 4 and 5, we can obtain Fmax as follows:  

 

                       
specPoFFONLcrit TTTTT

F
−

=
−

== 111

_min
max  (Equation 6) 

 

Safety margins can then be empirically added to the Fmax thus obtained. The key 

advantage of this scheme is that it uses the pre-existing Razor flip-flops for in situ delay 

monitoring. Thus, conservative worst-case margining at the negative edge of the clock is 

avoided. The key disadvantage is that the processor needs to be periodically interrupted 

for tuning. However, this can be achieved on-the-fly by the Operating System, especially 

when the system is waiting on long-latency events such as servicing a cache miss or 

waiting for an interrupt. 

The complexity of this approach requires further investigation before it can be 

qualified on silicon in a functional system. This approach is further complicated by the 

difficulty in obtaining worst-case vectors and replaying them deterministically. In 

addition, worst-case vectors can change with variations in operating conditions as well. 

These difficulties can be addressed by using the Razor flip-flops themselves as diagnostic 

monitors and allowing the system to detect and flag the vectors that fail. Thus, we can 

detect which vectors are the first to fail as the voltage is lowered or the frequency is 

increased. Once such vectors are obtained, they can be stored and rerun during tuning. 

However, additional infrastructure is required for capturing the failing vectors, storing 

and replaying them during tuning. Future research efforts are focused on addressing these 

and related issues.  

In the above sub-sections, we have discussed methods for obtaining the maximum 

frequency of operation at a constant supply voltage. However, it is also possible to keep 

the operating frequency constant and scale the supply voltage to obtain the limits of error-

detection.  This can be achieved by means of a voltage control loop. The controller can be 

run as a software routine on the “Razor”-ized processor core. The processor can then 
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sample the error register and instruct a regulator to increase/decrease the supply voltage 

according to the observed error-rate. Of course, this requires the voltage control 

infrastructure to be a part of the system. 

7.3 Silicon measurement results 

We designed and built a 64 bit processor executing a sub-set of the Alpha instruction 

set in 0.13micron technology which uses RazorII for supply voltage control [45]. The die 

photograph of the processor is shown in Figure 7.4 and the relevant implementation 

details are provided in Table 7.1. The architectural state of the processor is observable 

and controllable by three separate scan chains for each of the Icache, Dcache and the 

Register File. The chip was tested by scanning in instructions into the Icache and 

comparing the execution output scanned out of the Dcache and the Register File with a 

Personal Computer emulating the same code. We achieved fully functional silicon across 

a range of voltage from 0.8V to 1.2V. A 32-bit special purpose register keeps a record of 

the total number of errant cycles and is sampled to compute the error rate for a particular 

run.   

 

 

 

Figure 7.4 Die-photograph of the RazorII processor 



 

 

 101 

7.3.1 RazorII clocking scheme 

The core frequency of the processor is controlled by an internal Clock Generation 

Unit (CGU). The CGU generates clock frequencies in the range between 50MHz to 

370MHz. The CGU has a separate voltage domain that is not scaled. Hence, the core 

frequency remains constant even when the core voltage is dynamically scaled. The 

frequency output of the CGU is externally programmable. 

The minimum delay constraint for a R2LAT is defined by the duration of the high 

clock phase. Since, all pipeline registers are required to be R2LATs for SEU tolerance, 

the excessive buffer insertion required to satisfy this constraint can have prohibitive area 

and power impact. We solve this problem by having separate clock trees for timing-

critical flip-flops and those that have sufficient slack, as shown in Figure 7.5(a). We use a 

Ring Oscillator (RO) for frequency synthesis. The clock output of the ring oscillator has 

approximately 50% duty cycle. Delay chains are then used to tune the high phase of the 

clock to create separate asymmetric duty-cycle clocks for the timing-critical and the non-

critical flip-flops. The delay through the chains determines the duration of the high-phase 

of the individual clocks. The frequency output of the RO and the high-phase of the 

asymmetric clocks are all separately tunable via an external interface. 

Table 7.1 Chip Implementation details 

Technology CMOS 0.13um

Dimensions 2700um x 1250um

No. critical RazorII FF 121 of 826

RazorII power overhead 1.2%

No. buffers added for hold-time fixing 1924

Buffer insertion power overhead 1.3%

Total no. of transistors 260k

Operating voltage 0.8-1.2V

Frequency 185MHz @ 1.2V

Power @ 185MHz 94.3mW

Technology CMOS 0.13um

Dimensions 2700um x 1250um

No. critical RazorII FF 121 of 826

RazorII power overhead 1.2%

No. buffers added for hold-time fixing 1924

Buffer insertion power overhead 1.3%

Total no. of transistors 260k

Operating voltage 0.8-1.2V

Frequency 185MHz @ 1.2V

Power @ 185MHz 94.3mW  
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Figure 7.5(b) illustrates the asymmetric clocks used for different flip-flops in the 

design, at the slow corner. We use larger speculation windows for timing-critical 

R2LATs whereas non-critical flip-flops require much smaller speculation duration. 

Critical endpoints were identified through static timing analysis performed on a post-

routed and extracted netlist. We chose to route the clock with the larger speculation 

window to the top-15% most-critical R2LATs. These represented 121 out of a total of 

876 flip-flops. Thus, in this processor, the timing critical flip-flops had a clock with a 

40% duty cycle resulting in a 25 FO4 detection window while non-critical flip-flops had 

a 13% clock duty cycle to minimize buffer insertion. The high phase, TON, of the critical 

a) Clock Generation Unit

b) Asymmetric clocks  

Figure 7.5 RazorII processor clocking scheme. Figure a) shows the schematic of the 
clock-generator. Figure b) shows the relevant timing diagrams.  
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R2LATs was tunable with a range from 850ps to 1500ps while TON for the non-critical 

flip-flops was tunable from 450ps to 700ps. A total of 1924 buffers were added to meet 

the hold time constraint, which added a 1.3% power overhead. 

As explained in Chapter 5, the minimum overlap between the high phase of the clock 

and the detection clock (DC) is required to be half of a SEU pulse width. An additional 

concern that affects the duration of the high phase is the risk of attenuation during 

propagation through the clock-tree. Attenuation can occur due to asymmetric rise or fall 

times through the buffers in the clock-tree or power-supply jitter affecting the clock-tree. 

This can be an issue for the non-critical clock, which uses a narrower high-phase 

compared to the critical clock (450ps versus 1.5ns at the slow corner). In such a case, a 

wider high-phase maybe required for the non-critical clock. In our implementation, we 

added 100ps as the difference between the DC pulse-width and the high-phase of the non-

critical clock. This was sufficient for the correct operation of the chip. However, we also 

provided capability for post-silicon tuning of the high-phase (from 450ps to 750ps) which 

was not required to be exercised for the chip to operate. Attenuation is not a concern for 

the DC clock pulse since it was locally generated within each R2LAT.  

An important observation to make here is that the only restriction imposed by the 

RazorII clocking scheme is on the duration of the high phase required to meet the 

minimum delay constraint at the destination R2LATs. Hence, all the conventional 

clocking techniques such as clock-gating and useful skew insertion can be used as is with 

RazorII without any modification to the existing methodology. Of course, such 

techniques may worsen the minimum-path constraints. This can be addressed in the 

conventional manner through additional buffer insertion on the violating paths. 

The impact of clock uncertainties which affect the rising clock-edge, such as cycle-

to-cycle jitter, impacts RazorII technology in the same way as it affects conventional 

clocking techniques. However, RazorII is naturally robust against timing uncertainties 

caused due to such jitter mechanisms and can tolerate higher level of jitter compared to 

conventional techniques. Phenomena that affect both clock edges, such as duty-cycle 

jitter, have an impact on the high-phase of the clock at the destination flip-flop and hence, 

affect the minimum-path constraint. Additional buffer insertion may be required to 

account for minimum-path violations caused due to duty-cycle jitter. 



 

 

 104 

Since the asymmetric clocks were digitally generated, care was taken to reduce the 

jitter induced by power-supply noise in the CGU. The CGU had additional metallization 

in the power-grid and had sufficient number of decoupling capacitors to reduce supply 

voltage ripple to the high-frequency RO. Alternatively, analog techniques can also be 

used for jitter compensation within the CGU.  

7.3.2 Total energy savings 

We measured the energy savings from RazorII based DVS on 33 different dies at 

185MHz operating frequency. Figure 7.6 shows the energy savings for three different 

chips at the fast, slow and the typical corners respectively. These chips are labeled 

according to the corner that they represent.  

The first set of bars show the energy consumption when Razor error correction is 

disabled and the chips are operated at the worst-case voltage. We obtain the worst-case 

operating voltage by adding margins to the PoFF of the slowest chip of the lot (1.21V). 

We added an estimated 5% of the nominal operating voltage (1.2V), or 60mV, as margin 

 

Figure 7.6 Total energy savings through RazorII based supply-voltage control 
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for power supply uncertainties, wear-out effects and safety, respectively. Temperature 

margins were measured by the shift in the PoFF of the worst-case chip at 85C versus that 

at 25C. The PoFF of the worst-case chip at 25C and 85C was measured to be 1.21V and 

1.26V respectively, a shift of 50mV. Thus, by adding these margins to the PoFF of the 

slowest chip, we obtained the worst-case operating voltage to be 1.44V. At this operating 

voltage, correct operation is guaranteed for all the tested dies, across all operating 

conditions. A key observation to make here is that these margins are optimistic since the 

actual process spread is significantly worse than what we can obtain with a limited 

sample size of 33 dies.  

The first set of bar graphs in Figure 7.6 show the Energy Per Instruction (EPI) of the 

chips-under-test when operating at 1.44V. For each chip, we measured the contribution of 

each category of margins to the overall energy consumption. The energy due to process 

variations margin was measured by the difference in energy consumption when operating 

at the PoFF of the worst-case chip (1.21V) versus operating at its own PoFF, at 25C. For 

the “fast” chip, this was measured to be 44pJ per instruction. This is significantly greater 

than the process variations margin for the “slow” chip which was measured to be 5.3pJ. 

This is because the PoFF of “slow” chip (1.205V) is very close to the PoFF of the worst-

case chip (1.21V). The energy due to temperature margins was measured by the 

difference in energy when operating at the PoFF of the worst-case chip at 85C (1.26V) 

versus operating at 1.21V. At the worst-case voltage, the “fast” chip consumes 816pJ per 

 

Figure 7.7 Distribution of total energy savings through Razor 
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instruction. The “typical” and the “slow” chips consume 805pJ and 810pJ per instruction, 

respectively. 

For the second set of bar graphs shown in Figure 7.6, we enabled Razor error 

correction and operated the chips at their own optimal operating voltages (Figure 1). At 

this voltage, the exponential increase of recovery energy compensates for the quadratic 

reduction of the pipeline operations energy. The EPI of the “fast” chip was measured to 

be 509.5pJ at the optimal voltage. This translated to a net saving of 37.5% when 

compared to 816pJ consumed at the worst-case voltage. The energy savings for the 

“typical” and the “slow” chips were measured to be 35% and 33%, respectively. The 

elimination of higher process variations margin for the “fast” chip compared to the rest, 

leads to greater overall energy savings at the optimal point. We obtain, on an average, 

33% energy savings over the worst-case for all the chips tested, as shown in the 

histogram in Figure 7.7. 

 

 

Figure 7.8 Sub-critical operation in RazorII 



 

 

 107 

7.3.3 RazorII sub-critical operation 

Figure 7.8 shows the measured error-rate, IPC and energy-per-instruction of the 

“fast” chip as a function of the supply voltage in the sub-critical voltage regime at 

185MHz. The voltage at the PoFF is 1.197mV. At this voltage, the error-rate is extremely 

low of the order of 10-6. As the supply voltage is reduced below the PoFF, the error-rate 

increases exponentially. Initially, the error-rate is still extremely low and the pipeline 

operations energy dominates over the recovery energy. Consequently, the overall energy-

per-instruction reduces quadratically with the supply voltage. At the optimal operating 

voltage of 1.165V, the EPI is measured to be 509.5pJ for an error-rate of 0.04% and an 

IPC degradation of 0.2%.  

Beyond the optimal energy point, the recovery energy for the exponentially 

increasing error-rates dominates the overall processor energy. Hence, both the IPC 

degradation and the energy-per-instruction of the processor show an exponential trend. 

This greatly complicates the design of a voltage controller which can dynamically tune 

the supply voltage for the optimal operating point. In addition, the energy savings at the 

optimal point compared to the PoFF is not significant (5%). Hence, it is beneficial to 

 

Figure 7.9 Run-time versus replay tradeoff 
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operate at the PoFF rather than at the optimal voltage. 

Figure 7.9 shows the measured statistics on the number of replay iterations required 

to commit an erroneous instruction. An erroneous instruction can suffer repeated timing 

errors during replay. A possible deadlock situation can be avoided by recovering at half 

the frequency to guarantee completion for a repeatedly failing instruction. As explained 

in Section 7.1, the number of replay iterations allowed for a failing instruction before 

frequency is halved, is called the “replay limit”. In Figure 7.9, we plot the number of 

times the replay limit is reached as a function of the replay limit. The runtime for the 

code being executed is also plotted against the replay limit. We see that the runtime for 

the replay limit of 1 is much higher than that for the replay limit of 2. This is because for 

the replay limit of 1, recovery for every timing error occurs at half the clock frequency. 

On the contrary, for a replay limit of 2, most instructions complete when re-executed at 

the same frequency.  

Those instructions that don’t complete in the first replay keep failing repeatedly for 

subsequent replay iterations until the replay limit is reached. Therefore, as the replay 

limit is increased beyond 2, the runtime also linearly increases. These observations are 

also borne out from the histogram in Figure 7.10. As can be seen, 60% of erroneous 

instructions require a limit of 2 to complete. This number drastically reduces as the limit 

 

Figure 7.10 Histogram of instructions as a function of replay iterations 
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is increased. For higher values of replay limits, the numbers of times the replay limit is 

reached is almost constant. 

7.4 Soft Error Rate Radiation tests with RazorII 

Figure 7.11 shows the setup used for accelerated radiation tests performed on the 

processor to quantify the Soft Error Rate (SER) tolerance provided by RazorII. These 

tests were performed in the Breazeale Nuclear Reactor at the University of Pennsylvania. 

Thermal neutrons with a neutron flux of 3.5x107 neutrons/cm2 were used for irradiating 

the chip. SER protection in the SRAM arrays and Register File is provided by ECC. 

Other architectural state registers are protected by TMR and all the pipeline registers are 

protected using RazorII error correction.  

 

Figure 7.11 SER Test Setup 
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Table 7.2 lists the radiation tests performed on the processor. In the first test (Test 1), 

we completely disable error correction by Razor, ECC and TMR. The test code is 

scanned into the Icache, error protection is disabled and the code is executed while the 

processor is being simultaneously irradiated. This test is performed at 0.8V with 

sufficiently low operational frequency such that timing errors do not occur. Thus, all the 

observed errors are due to bit-flips in the state-holding nodes due to particle strikes. As 

expected, the final execution output is incorrect. When error detection is enabled (Test 2) 

the processor is able to detect and correct the SER induced errors. This was verified for 

different operating voltages (0.8 to 1.0V). The soft-error rate was recorded for memory 

and pipeline elements. In Test 3, we allow the processor to execute when the frequency 

of operation is increased beyond PoFF causing delay errors to occur in addition to SER. 

Although the delay errors completely overwhelm errors due to SER, RazorII is able to 

detect and correct all of them and the processor continues to operate correctly. 

Table 7.2 SER Tests 

NoNoNA*NA*0.8Off
1 – No timing errors 
and error detection off

YesYes33M **0.8On
3 – Both SER and 
timing errors with error 
detection

YesNo

540.8On
2 – No timing errors 
with error detection

641.0On

460.9On

Correct 
program 

execution

Delay error 
rate > 0

ECC 
Errors

Razor 
Errors

Vdd (V)
Error Detection 

(TD enabled)
Radiation  Test 

Description

NoNoNA*NA*0.8Off
1 – No timing errors 
and error detection off

YesYes33M **0.8On
3 – Both SER and 
timing errors with error 
detection

YesNo

540.8On
2 – No timing errors 
with error detection

641.0On

460.9On

Correct 
program 

execution

Delay error 
rate > 0

ECC 
Errors

Razor 
Errors

Vdd (V)
Error Detection 

(TD enabled)
Radiation  Test 

Description

* When TD is disabled the counter of errors in the ECC and RazorII FF is disabled

** Beyond PoFF (Delay error rate > 0), timing errors overwhelm SER, but they both are 
detected and corrected by the RazorII mechanisms  
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

In this chapter, we summarize our research on Razor and present the key insights 

from our work. We analyze the merits and the weaknesses of Razor-based self-tuning 

based on our experience with the RazorI and RazorII prototypes. Finally, we discuss the 

barriers to the deployment of Razor as a mainstream technology and present avenues of 

future research on Razor.  

8.1 Key concept of Razor 

We developed Razor with the aim of designing low-power yet robust circuits in the 

presence of design uncertainties that arise due to large PVT variations at advanced 

process nodes. We discussed how traditional adaptive techniques, such as the canary-

circuits approach, fail to adequately address these uncertainties. Traditional techniques 

require widening margins to account for the increasing contribution of the local 

component of variations. This incurs large performance and power overheads which 

undermine the efficacy of such techniques at aggressive geometries.  

We showed how Razor is able to mitigate the impact of excessive margining through 

circuit-level timing speculation based on dynamic detection and correction of timing 

errors. Allowing error-tolerant processor operation enables elimination of worst-case 

safety margins, thereby leading to significant improvements in energy efficiency. Error-

detection in Razor occurs through a delay-error tolerant flip-flop which monitors the 

critical-path of processors for timing errors. Since Razor error-detection is required only 

for the top few critical flip-flops, the total power and area overhead of Razor was 

measured to be less than 3% for both prototypes that we fabricated for validating Razor.  

The Razor voltage control system monitors the error-rate and tunes the supply 

voltage according to the observed error-rate to achieve a targeted rate, given as an input 
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to the system. We qualitatively illustrated how, by operating in very low error-rate 

regimes, Razor favorably trades-off the energy overhead of error-correction for additional 

efficiency benefits through margin elimination. We developed two techniques, called 

RazorI and RazorII, for implementation of Razor-based voltage tuning in microprocessor 

cores. We validated both those techniques from our measurements on fabricated silicon 

and demonstrated significant energy savings.   

8.2 The RazorI approach 

The RazorI flip-flop (R1FF) samples its input at two different points in time. The 

earlier, speculative sample is captured in the main flip-flop at the rising edge of the clock. 

The latter, always-correct sample is captured at a delayed edge in a shadow latch. A 

metastability-tolerant comparator flags an error when the speculative sample differs from 

the correct sample. Error-correction is achieved by engaging a recovery mechanism 

which overwrites the main flip-flop with correct data in the shadow latch. In addition, the 

recovery mechanism restores the pipeline back to its correct state. 

 We proposed two techniques by which pipeline recovery can be achieved. The first 

technique is based upon clock-gating wherein the entire pipeline stalls for the cycle 

immediately following a timing error. The second technique is based on a counter-flow 

pipeline architecture in which the pipeline is flushed and execution is resumed from the 

instruction following the one that caused the error. We implemented the latter technique 

in a 64bit RazorI prototype implementing a sub-set of the Alpha instruction set.  

From our measurements on silicon, we demonstrated correct operation in the sub-

critical regimes with RazorI error-correction, whereby the processor is deliberately 

operated in the sub-critical voltage regimes below the Point of First Failure (PoFF). 

Through margin elimination and sub-critical operation, we obtained 50% energy savings, 

on an average, for 33 tested dies. We demonstrated a voltage control loop that tuned 

supply voltage to achieve a 0.1% targeted error-rate. While the Razor voltage control 

algorithm was implemented in a Xilinx FPGA board, it can also be implemented in 

software as well.  
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8.3 The RazorII approach 

A key observation from our experiments with the RazorI prototype was that most of 

the energy savings are actually realized through elimination of safety margins and 

operating at the PoFF. Furthermore, the error-rate increased exponentially beyond this 

point which undermined the efficacy of operating significantly below the PoFF. We 

exploited these observations in the RazorII technique wherein the processor is intended to 

operate right at the PoFF. Error-detection is achieved by a so-called “transition-detector” 

which flags spurious transitions in the monitored critical-path. Recovery occurs through a 

replay mechanism from a Razor-validated check-pointed state. This mechanism for 

recovery greatly simplifies the design of the error-detecting RazorII flip-flop while 

adding very little area and clock-power overhead. However, replaying the same 

instruction again can cause a deadlock situation to occur. Such an occurrence is mitigated 

by recovering at half the clock frequency. 

We developed a design of the RazorII flip-flop, called the R2LAT that uses a level-

sensitive latch instead of a flip-flop. Positive-edge triggered flip-flop operation is 

enforced through the transition-detector which flags any transition in the latch-node in the 

high-phase of the clock as a timing error. Elimination of the master-latch leads to a faster 

and a more energy-efficient implementation. In addition, this design naturally allows 

detection of Single Event Upsets (SEU) in logic and inside registers. We used the R2LAT 

for timing-error detection and SEU tolerance in a 64bit RazorII prototype. We obtained, 

on an average, 35% energy savings through margin elimination on 33 tested dies. In 

addition, we demonstrated correct operation of the processor even when exposed to high-

energy neutron irradiation. 

The recovery mechanism in the RazorII approach relies on a conventional replay 

technique. The lower overhead of error-detection makes this technique highly amenable 

to high-performance microprocessors. Consequently, the RazorII approach is much more 

suitable for industrial deployment than RazorI. 
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8.4 Merits and demerits of the Razor approach 

The key advantage of Razor, as we have already discussed, is its in situ error-

detection capability. This enables Razor to detect and recover from timing uncertainties 

due to local fluctuations in process, voltage and temperature. While most state-of-the-art 

microprocessor designs [49][50][51] incorporate mechanisms to adaptively respond to 

IR-drops and temperature hotspots, however, in our knowledge, Razor is the only 

technique that can effectively respond to highly local and fast-changing variations, such 

as coupling noise events. Unlike traditional techniques, Razor tunes the supply voltage 

based on the monitored error-rate which enables it to exploit data-dependent delay 

variations. Another key advantage of Razor is that it allows reliability in the presence of 

SEU with very little additional overhead. The performance and energy-efficiency upside 

obtainable from Razor allows faster design closure and parametric yield improvement.  

A key demerit of the Razor technique is the minimum-delay requirement. Rising 

variations in short-paths can actually exacerbate this constraint. Consequently, additional 

buffer insertion may be required to compensate and margin for possible minimum-delay 

violations. However, from our experience with industrial designs, it is possible to satisfy 

aggressive minimum-delay constraints through buffer insertion, even at the 65nm 

technology node. Consequently, we believe that this constraint can be adequately 

addressed even at advanced process nodes.  

8.5 Future directions of research into Razor 

In the recent past, Razor has received considerable traction within the industry. In the 

International Solid-state Circuits Conference, 2008, researchers from Intel presented their 

measurements from a prototype which uses a frequency-management technique for 

performance enhancement, very similar to RazorII [37]. ARM Limited, Cambridge, U.K, 

have also initiated research efforts focused at evaluating Razor for low-power micro-

processor cores. However, several challenges remain before Razor can be widely adopted 

as mainstream technology. In the following, we discuss some of these challenges and 

opportunities for future research into Razor.  
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8.5.1 Razor System Design Considerations  

Designing complete and fully-functional Razor-based systems that can boot 

operating systems and execute “real” software requires significant amount of engineering 

effort. A complicating issue in this regard is the limitation of common, industrial 

peripheral designs which cannot easily interface with a variable frequency processor core. 

Using such systems requires the separation of the Razor-based pipeline from the 

interfacing peripherals through FIFO buffers.  

Designing voltage and frequency tuning algorithms that can tune for the Point of 

First Failure needs further investigation. For such algorithms, it is important that when 

the error-rate is low due to the critical-path not being sensitized, the system is able to 

restrict scaling to safe limits. In Chapter 7, we discussed potential techniques that can 

achieve this. The first technique we discussed uses conventional static timing analysis to 

obtain the safe limit, but at the expense of safety margins to the negative edge of the 

clock. On the other hand, tuning using worst-case vectors can obtain system limits 

without adding excessive margins to the negative edge. However, the latter approach 

requires additional infrastructure to obtain worst-case vectors and to replay them 

deterministically. These and new such approaches need to be developed further and 

validated on silicon in functional systems.  

8.5.2 Micro-architectural research into Razor-based pipelines 

By eliminating design margins, Razor enables better energy-efficiency and higher 

performance. High-performance architectures such as out-of-order processors rely on 

deep pipelines and complex control structures such as Reservation Stations and Reorder 

Buffers to achieve the targeted throughput requirement, often at the expense of increased 

power consumption. Incorporating Razor, specifically RazorII, in such pipelines can 

achieve the required performance boost within the power budget.  

In addition, architecting efficient memory systems that can deal with the variable 

latency of the processor core can be explored as a topic for future research. Common 

Instruction Set Architectures (ISAs), such as the ARM ISA, have support for multiple 

cycle instructions. Efficient check-pointing and replay of such instructions can also be 

explored further.  
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8.5.3 Silicon test-and-debug 

The testability aspect of Razor-based designs is another avenue of research into 

Razor. The RazorII flip-flop supports the conventional, scan-based testing 

methodologies. However, tuning based on the error-rates poses testing issues such as 

ensuring that the system is self-limiting i.e. the system restricts itself to known, safe 

operating regimes. These issues relate to our discussions regarding setting safe limits to 

voltage and frequency scaling in Section 7.2. In addition, the error-detection capability of 

Razor flip-flops enables significant observability of failing critical-paths and, hence, can 

be exploited extensively during silicon testing.  

Razor offers designers the capability of reconciling conflicting constraints and 

achieving faster design closure in the presence of rising uncertainties. In this thesis, we 

have made several contributions towards developing Razor as a potential mainstream 

technology. However, significant barriers to adoption of Razor by industry still remain. 

The International Technology Roadmap for Semiconductors [46], 2007 edition, lists 

Razor as a key optimization “for reliable computing” that will “extend existing 

techniques for robust computation”. Indeed, the difficulties in sustaining the Moore’s 

Law into the next decade and beyond makes techniques such as Razor assume ever-

increasing relevance. Future research into Razor needs to focus on building robust and 

field-deployable systems that use Razor for supply voltage control. 
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