
RAZOR: A VARIABILITY-TOLERANT DESIGN
METHODOLOGY FOR LOW -POWER AND

ROBUST COMPUTING

by

Shidhartha Das

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2009

Doctoral Committee:

Professor David T. Blaauw, Chair
Professor Trevor N. Mudge
Professor Marios C. Papaefthymiou
Associate Professor Dennis M. Sylvester
Krisztián Flautner, Director of Research, ARM Ltd.

© Shidhartha Das
All Rights Reserved

2009

 ii

 To my family, friends and teachers

 iii

ACKNOWLEDGEMENTS

This thesis has been in making for the last six years or so. While I take immense

pride and joy in being finally able to finish it, this task could not have been accomplished

without the many contributions of the wonderful people that I have had the good fortune

of being associated with, all these years. I want to take this opportunity to express my

sincere and heartfelt gratitude to them.

First and foremost, I would like to thank my advisor, Prof. David Blaauw. His

incredible creativity has been the source of a lot of ideas in this thesis. His capacity for

hard work and single-minded focus is inspirational. In the last six years that I have known

David, he has taught me by example, how to be a better researcher, writer, speaker and,

perhaps more importantly, a better person. I have often turned to him for counsel during

difficult times in this dissertation and his support has helped me sustain my focus. David

is easily one of the best advisors to have.

Secondly, I would like to thank Prof. Mudge, Prof. Sylvester, Prof. Papaefthymiou

and Dr. Flautner to take time from their busy schedules to be a member of my

dissertation committee. Your valuable suggestions and feedback have greatly

strengthened the thesis. In particular, I would like to thank Kris for initiating the Razor

project in ARM and for the opportunity of turning Razor into a “real world” technology.

Special thanks are due to Trevor for the long conversations on politics, history and

theology that we have shared over dinner in the curry houses in Cambridge, U.K. His

sense of humor has been a big help when the going got tough.

I want to express my gratitude to my colleagues at ARM, particularly David Bull,

who I have worked with very closely in the past four years. David is easily one of the

sharpest minds that I have ever interacted with. I have learnt a lot from his vast

experience and his creativity. Long discussions with him have helped spawn a lot of the

ideas in this thesis. I would also like to thank Emre Ozer from ARM R&D for the

 iv

numerous discussions about a broad range of topics, both technical and otherwise. I also

thank David Flynn, John Biggs, Sachin Idgunji, Robert Aitken, Nathan Chong and my

other colleagues at ARM from whom I have learnt a lot about various aspects of

computer engineering.

During my stay at Ann Arbor, I have met incredibly talented people and made great

friends. They have been a very strong source of support for me and made my graduate

career a memorable experience. In particular I will like to mention Sanjay Pant, Visvesh

Sathe, Ashish Srivastava, Rajeev Rao, Sarvesh Kulkarni, Bo Zhai, Carlos Tokunaga,

Kaviraj Chopra, Ajay T.M., Ajay Raghavan, David Roberts, Mark Woh, Ganesh Dasika

and countless others who have always been there to share ideas, jokes and the occasional

laughter. Special thanks are due to the RazorII design team Sudherssen Kalaiselvan,

Kevin Lai and Wei-shiang Ma. Without their hard work and dedication, the RazorII

processor would not have been possible. I will also like to thank Ed Chusid, Amanda

Brown, Denise Duprie, Bertha Wachsman and Dawn Freysinger for helping me with all

sorts of difficulties at various times during my graduate career.

I am forever indebted to my parents for their unconditional love and support. They

have instilled in me an appreciation of hard work and they receive the most credit for

whatever I have accomplished in my life thus far.

Finally, I would like to thank my wife, Kasturee. Ever since she has been in my life,

every day has been special. With her laughter and her loving support, she has made

writing this thesis a very pleasant exercise.

 v

TABLE OF CONTENTS

DEDICATION ... ii

ACKNOWLEDGEMENTS ... iii

LIST OF FIGURES ...ix

LIST OF TABLES ...xii

LIST OF ACRONYMS .. xiii

ABSTRACT ...xiv

CHAPTER 1

Introduction..1

1.1 Categorizing sources of variations ...4

Spatial reach..4

Temporal rate of change ..5

1.2 Adaptive design approaches ..7

1.3 Introduction to Razor...9

1.4 Main contributions and organization of the thesis ..12

CHAPTER 2

Adaptive Design Techniques ..14

2.1 “Always Correct” Techniques ...14

2.1.1 Look-up table based approach..14

2.1.2 Canary-circuits based approach..15

2.1.3 In situ triple-latch monitor ...17

2.1.4 Micro-architectural techniques...18

2.2 “Let fail and correct” approaches...20

 vi

2.2.1 Techniques for communication and signal processing21

2.2.2 Techniques for general-purpose computing..23

2.3 Summary and discussion ...24

CHAPTER 3

RazorI: State Comparison based Error-detection and Circuit-architectural Recovery26

3.1 Concept of Razor error detection and recovery ..27

3.2 Transistor-level design of the RazorI flip-flop ...31

3.2.1 Metastability detection...33

3.3 Pipeline Error Recovery mechanisms ..36

3.3.1 Recovery using clock gating ..37

3.3.2 Recovery using counterflow pipelining ..38

3.4 Supply voltage control...40

3.5 Silicon implementation and evaluation of the scheme....................................41

3.6 Summary and discussion ...42

CHAPTER 4

Self-tuning RazorI Processor: Design and Silicon Measurement Results.......................43

4.1 Processor implementation details...44

4.2 Measurement Results ..45

4.2.1 Energy Savings from Sub-critical Operation47

4.3 Total Energy Savings with RazorI ...50

4.4 RazorI Voltage Control ...53

4.5 Summary and discussion ...56

CHAPTER 5

RazorII: Transition-Detection based Error -Detection and Micro-architectural Recovery
...57

5.1 Issues with the RazorI technique..58

5.1.1 Timing constraint on the pipeline restore signal.................................58

5.1.2 Issues with metastability detection ...59

 vii

5.2 Key concepts of RazorII ..60

5.3 RazorII pipeline micro-architecture ...61

5.4 Transition-detection based error-detection ...64

5.4.1 Fundamental minimum-delay trade-off ..67

5.5 SEU detection using the RazorII flip-flop ..68

5.5.1 Impact of intra-die process-variability..71

5.5.2 SEU Detection using the R2LAT ...73

5.5.3 Comparative Analysis with the RazorI flip-flop76

5.6 Memory design for a Razor processor core..77

5.6.1 Handling speculative read accesses to the memory.............................77

5.6.2 Timing speculation in the sense-amplifier circuit79

5.7 Summary and discussion ...80

CHAPTER 6

Alternative Hold-fixing Schemes for Razor-based Pipelines ...82

6.1 Level-sensitive latch based scheme for hold-fixing..83

6.2 Intel X-pipe ...85

6.3 Logic replication in statically-scheduled machines ..87

6.4 RazorII flip-flop with integrated clock-pulse generator..................................89

6.5 Summary and discussion ...90

CHAPTER 7

Self-tuning RazorII Processor: Using RazorII for PVT and SER Tolerance92

7.1 Pipeline design of the RazorII processor..92

7.2 Setting limits to voltage and frequency scaling in RazorII95

7.2.1 Conservative estimation from static timing analysis96

7.2.2 Worst-case vector based tuning..98

7.3 Silicon measurement results ..100

7.3.1 RazorII clocking scheme..101

 viii

7.3.2 Total energy savings ..104

7.3.3 RazorII sub-critical operation...107

7.4 Soft Error Rate Radiation tests with RazorII ..109

CHAPTER 8

Conclusion and Future Work..111

8.1 Key concept of Razor ..111

8.2 The RazorI approach ...112

8.3 The RazorII approach..113

8.4 Merits and demerits of the Razor approach..114

8.5 Future directions of research into Razor...114

8.5.1 Razor System Design Considerations...115

8.5.2 Micro-architectural research into Razor-based pipelines...................115

8.5.3 Silicon test-and-debug ...116

BIBLIOGRAPHY ..117

 ix

LIST OF FIGURES

Figure 1.1 Timing wall: A consequence of downsizing off-critical paths [40]..................3

Figure 1.2 Qualitative relationship between supply voltage and Error-rate.....................10

Figure 2.1 Uht's TEATime: A canary circuits based approach16

Figure 2.2 Kehl’s triple-latch technique for in situ delay monitoring. Figure a) shows the
mechanism of monitoring delay through temporal redundancy. Figure b) shows the
timing diagrams for a “tuned” system ..17

Figure 2.3 Data-dependent delay variations in adders a) Carry-propagation for SPECInt
2000 vectors b) Carry-propagation for random vectors [25]18

Figure 2.4 Self-calibrating interconnects..21

Figure 2.5 Algorithmic Noise Tolerance [30] ..22

Figure 3.1 Abstract view of the RazorI flip-flop. The speculative data in the master-slave
flip-flop is compared with the correct data in the positive level-sensitive shadow
latch...27

Figure 3.2 Conceptual timing diagrams showing the operation of the RazorI flip-flop. In
Cycle 2, a setup violation causes Error to be flagged whereas in Cycle 4, a hold
violation causes error to be asserted. ..28

Figure 3.3 RazorI flip-flop circuit schematic..31

Figure 3.4 Restore generation circuitry..32

Figure 3.5 Metastability-detector: Principle of Operation. Figure a) shows the DC transfer
characteristics of a P- and a N-skewed inverter compared to an unskewed inverter.
Figure b) shows error detection operation of the metastability-detector..................34

Figure 3.6 Pipeline recovery using global clock-gating. Figure a) shows the pipeline
organization and Figure b) illustrates the pipeline timing for a failure in the EX stage
of the pipeline. The “*” denotes a failed stage computation....................................37

Figure 3.7 Pipeline recovery using counter-flow pipelining. Figure a) shows the pipeline
organization and Figure b) illustrates the pipeline timing for a failure in the EX stage
of the pipeline. The “*” denotes a failed stage computation....................................39

Figure 3.8 Razor supply voltage control ..41

Figure 4.1 Die photograph of the RazorII processor. The 64bit processor executes a sub-
set of the ALPHA instruction set..44

Figure 4.2 Sub-critical operation in chips named "Chip 1" and "Chip 2"........................46

 x

Figure 4.3 Normalized energy savings over point of first failure at the 0.1% error-rate for
33 measured chips at 120 and 140MHz..48

Figure 4.4 Relationship between the Point of First failure and the 0.1% Error-rate point.
Figure a) shows the distribution of the Point of First Failure for 33 different chips.
Figure b) shows that the 0.1% point has a smaller spread than the Point of First
Failure. ..49

Figure 4.5 Temperature margins..50

Figure 4.6 Total Energy Savings with RazorI. ...51

Figure 4.7 Distribution of the total energy savings over the worst-case for 33 measured
chips. ...52

Figure 4.8 RazorI voltage control loop...53

Figure 4.9 Run-time response of the RazorI voltage controller. Shown in the figure is a
two minute snapshot of the error-rate for a program with two error-rate phases......54

Figure 4.10 RazorI voltage controller: Error-rate phase transition response. Figure a)
shows the transition from low to high error-rate. Figure b) shows the transition in the
opposite direction. ...55

Figure 5.1 Timing constraint on the Restore signal. The Restore signal is a high fan-out
net which is generated out of a high fan-in OR gate. It needs to setup before the next
rising edge with sufficient safety margin..58

Figure 5.2 RazorII pipeline organization..62

Figure 5.3 Transition-detection based error detection...64

Figure 5.4 Transition-detecting RazorII flip-flop ...65

Figure 5.5 Timing diagrams showing the principle of operation of the Transition Detector
..66

Figure 5.6 Modified RazorII flip-flop for SEU and timing-error detection69

Figure 5.7 Circuit schematic of the R2LAT ...70

Figure 5.8 Timing constraints with intra-die process variations......................................71

Figure 5.9 Conceptual timing diagrams showing SEU detection when DC is high73

Figure 5.10 SEU Detection when DC pulse is low...75

Figure 5.11 Sense-amplifier Flip-flop augmented with a transition-detector to sample
critical Read signals in a SRAM array ...78

Figure 5.12 Dual Sense-amplifier scheme for faster read timings...................................79

Figure 6.1 Latch-insertion scheme for satisfying the short-path constraint84

Figure 6.2 Error-rate and wasted-time trade-off ...85

Figure 6.3 Intel X-pipe micro-architecture...87

 xi

Figure 6.4 Replicated functional units eliminate the Razor minimum-delay constraint...88

Figure 6.5 Pulsed-latch implementation of the RazorII flip-flop. The transition-detector
monitors the data input rather than the internal node. ...90

Figure 7.1 RazorII Processor: Pipeline Design...93

Figure 7.2 The limit of safe operation in RazorII ...95

Figure 7.3 Worst-case vector based tuning...97

Figure 7.4 Die-photograph of the RazorII processor ..100

Figure 7.5 RazorII processor clocking scheme. Figure a) shows the schematic of the
clock-generator. Figure b) shows the relevant timing diagrams.102

Figure 7.6 Total energy savings through RazorII based supply-voltage control............104

Figure 7.7 Distribution of total energy savings through Razor105

Figure 7.8 Sub-critical operation in RazorII...106

Figure 7.9 Run-time versus replay tradeoff..107

Figure 7.10 Histogram of instructions as a function of replay iterations108

Figure 7.11 SER Test Setup...109

 xii

LIST OF TABLES

Table 1.1 Categorizing sources of variation ...5

Table 2.1 Adaptive techniques landscape...15

Table 3.1 Metastability-detector Corner Analysis ..35

Table 4.1 Processor implementation details ...45

Table 4.2 Error-rate and energy-per-instruction measurement for chips 1 and 2 at the
Point of First Failure and at the Point of 0.1% Error Rate.......................................47

Table 7.1 Chip Implementation details ..101

Table 7.2 SER Tests ..110

 xiii

LIST OF ACRONYMS

SEU……………………………………………………….……………Single Event Upset

SER………………………………………………………………….……...Soft Error Rate

SRAM…………………………………………………….Static Random Access Memory

PoFF………………………………………………………….………Point of First Failure

TMR………………………………………………………….Triple-Modular Redundancy

ECC………………………………………………………………..Error-Correcting Codes

DC……………………………………………………………………...…Detection-Clock

TD……………………………………………………………………...Transition-Detector

BER………………………………………………………………...………..Bit Error Rate

PVT……………………………………………………..Process Voltage and Temperature

FPGA……………………………………………………Field Programmable Gate Arrays

VLSI…………………………………………………………Very Large Scale Integration

CPU………………………………………………………………..Central Processing Unit

FIR………………………………………………………………..Finite Impulse Response

DAC………………………………………………………….Digital-to-Analog Converter

FO4…………………………………………………………….Fan-out of Four (inverters)

 xiv

ABSTRACT

RAZOR: A VARIABILITY-TOLERANT DESIGN METHODOLOGY FO R LOW -
POWER AND ROBUST COMPUTING

by

Shidhartha Das

Chair: David T. Blaauw

Rising PVT variations at advanced process nodes make it increasingly difficult to

meet aggressive performance targets under strict power budgets. Traditional adaptive

techniques that compensate for PVT variations need safety margins and cannot respond

to rapid environmental changes. In this thesis, we present a novel voltage management

technique, called Razor, which eliminates worst-case safety margins through in situ error

detection and correction of variation-induced delay errors. In Razor, we use a delay-error

tolerant flip-flop on critical paths to scale the supply voltage to the point of first failure of

a die for a given frequency. Thus, all margins due to global and local PVT variations are

eliminated, resulting in significant energy savings. In addition, the supply voltage can be

scaled even lower than the first failure point into the sub-critical region, deliberately

tolerating a targeted error rate, thereby providing additional energy savings. Thus, in the

context of Razor, a timing error is not a catastrophic system failure but a trade-off

between the overhead of error-correction and the additional energy savings due to sub-

critical operation. In Razor, the error-rate is monitored and the supply voltage is tuned to

achieve a targeted error-rate.

We developed two techniques, called RazorI and RazorII, for implementation of

Razor-based voltage tuning in microprocessors. The RazorI approach achieves error-

 xv

detection by double-sampling the critical-path output at different points in time and

comparing both samples. A global recovery signal overwrites the earlier, speculative

sample with the later sample and restores the pipeline to its correct state. We

implemented RazorI error-detection and correction in a 64bit processor in 0.18micron

technology and obtained 50% energy savings over the worst-case at 120MHz. However,

the efficacy of the RazorI technique for high-performance processors is undermined by

its reliance on a metastability-detector and potentially, timing-critical pipeline recovery

path.

The RazorII approach addresses this issue by achieving recovery from delay-errors

through a conventional, architectural-replay mechanism. Error-detection in RazorII

occurs by flagging spurious transitions at critical-path endpoints. Furthermore, RazorII

also detects logic and register SER. We implemented a RazorII-enabled 64bit processor

in 0.13µm technology and obtained 33% power savings over the worst-case. SER

tolerance was demonstrated with radiation experiments.

 1

CHAPTER 1

INTRODUCTION

In the last few years, the computational capability of mobile and hand-held devices

has witnessed phenomenal improvements. Heavyweight compute-intensive applications

such as 3-D graphics, audio/video, internet access and gaming which were traditionally

exclusive to the domain of desktop computers are now available for mobile platforms as

well. This is evident in the evolution of the mobile phone: in the last decade and half

mobile phones have shown more than 50X improvement1 in talk-time per gram of

battery. Indeed, the surge in the market for smartphones, Mobile Internet Devices

(MIDs) and Ultra-Mobile Personal Computers (UMPCs) is expected to push the

performance envelope of mobile processors in the coming years.

A key technique that has led to such performance improvements has been technology

scaling at the rate dictated by the Moore’s Law [7]. By shrinking transistor dimensions,

designers can deliver consistent improvements in computational capability of processors

through higher integration levels and faster switching times [5]. Thus, technology scaling

has been the fundamental driver that has fuelled the growth of the semiconductor industry

over the past decades. Traditionally, supply voltage of processors has also reduced with

each process generation. Hence, in addition to performance improvements, technology

scaling delivered power savings as well. However, starting with the 65nm node, higher

transistor integration levels, combined with almost constant supply voltages and

stagnation of energy efficiency, has caused power consumption of processors to actually

worsen at aggressive process nodes. This has created a design paradox: more transistors

can now be fitted on a die; however, they cannot be used due to strict power limits.

1 Comparison of standard configurations of Nokia 232 and Nokia N70 phones

 2

Indeed, rising power dissipation is a fundamental barrier towards sustaining the current

rate of transistor integration [9].

Power consumption is especially relevant for battery-operated mobile processors as

they increasingly handle computationally demanding applications under stringent power

budgets. This is a major concern because battery capability has not kept pace with

performance demands. Power consumption issues are further exacerbated by variations in

transistor performance at aggressive geometries. Due to the inherent lithographic

difficulties in manufacturing millions of transistors with very small feature sizes, some

dies operate much slower than others (up to 2x difference can be commonly observed

between the fastest and slowest chips) [20]. Such manufacturing-process induced

differences in processor speeds across different chips are called inter-die process

variations. Variations in transistor switching delays within the same chip itself are called

intra-die variations.

In addition, transistors vary in performance due to changes in the ambient

environment. For instance, glitches in the power supply and fluctuations in the

temperature conditions are a regular occurrence during the dynamic operation of the

processor [49][50][51]. Temperature and voltage conditions can also vary locally

between different parts of the same chip. In general, under high temperature or low-

voltage conditions, transistor switching speed between logic states is substantially

reduced. Designing robust circuits that can cope with these variations in silicon grade and

ambient conditions requires operation at a higher supply voltage. This ensures that any

unforeseen slow-down because of voltage glitches, high temperature conditions and

process variations does not cause computing errors due to processor timing violations.

While the practice of adding a safety margin or so-called “guardband” to the supply

voltage leads to robust circuit operation in presence of variations, it is also leads to higher

power consumption. At smaller geometries, variations worsen due to inherent limitations

in accurately controlling the manufacturing process and the operational environment of

transistors. This necessitates the use of even wider margins as we scale transistor

technology. However, safety margins are not needed for all chips or for the entire

duration of their operational lifetime. Only a small percentage of the manufactured chips

are inherently slow. Even for these slow chips, it is highly unlikely that they will exhibit

 3

worst-case temperature and voltage conditions for significant periods of time during their

operation. For most chips, safety margins are unnecessary and lead to wasted battery

power. Thus, the fundamental issue with margining is that it seeks to budget for worst-

case conditions that occur extremely rarely in practice. This leads to overly conservative

designs and adversely impacts the power budgets of processors that are already stressed

due to rising performance demands.

A key observation to make from the above discussion is that low-power and robust

operation are fundamentally at odds with each other. Robust designing requires larger

safety margins, such as a higher operating voltage, thicker interconnects and wider

devices, at the expense of increased power consumption. On the other hand, low-power

methodologies typically trade off circuit robustness for improved energy efficiency. For

example, an effective low-power technique is Dynamic Voltage Scaling (DVS) which

enables quadratic savings in energy by scaling supply voltage during low CPU utilization

periods. However, low voltage operation causes signal integrity concerns by reducing the

static noise margins for sensitive circuits. Furthermore, sensitivity to threshold voltage

variation also increases at low voltages [2] which can lead to circuit failure. Another

Path delay

of

 p
at

hs Initial path
distribution

Path distribution
after power
optimization Critical-path

delay

“Timing wall”

Path delay

of

 p
at

hs Initial path
distribution

Path distribution
after power
optimization Critical-path

delay

“Timing wall”

Figure 1.1 Timing wall: A consequence of downsizing off-critical paths [40]

 4

popular technique for low-power relies on downsizing off-critical paths [40]. This

balances path delays in the design leading to the so-called timing wall, as shown in

Figure 1.1. In a delay-balanced design, the likelihood of parametric-yield failure

significantly increases because more paths can now fail setup requirements. This

fundamental conflict between robustness and low-power, exacerbated due to rising

variations, leads to a very complex optimization space wherein achieving design closure

can be exceedingly difficult.

1.1 Categorizing sources of variations

In order to effectively address the issue of design closure in presence of variations, it

is helpful to analyze and categorize the different sources of variations based on their

spatial reach and temporal rate of change [20] , as represented in Table 1.1.

Spatial reach

Based on spatial reach, the source of variations can be global or local in extent.

Those that affect all transistors on the die are global in nature. For example, voltage

fluctuations in the on-board Power Supply Unit (PSU) affects supply to the entire die.

Inter-die process variations and ambient temperature are other such examples of

phenomena that affect all transistors on die and are hence classified as global variations.

Jitter in the Phase Locked Loop (PLL) output adds uncertainty to the system clock at the

root of the clock-tree and this uncertainty propagates to every latch and flip-flop driven

by the clock-tree. Similarly, ageing effects, such as Time Dependent Di-electric

Breakdown [42] (TDDB) and Negative Bias Temperature Instability [41] (NBTI), can

also be categorized as predominantly global since all transistors on the die experience

slow down due to these effects, over the course of its lifetime. Of course, all of the

aforementioned global phenomena affect individual transistors to varying extents

according to differences in their actual locations on die.

Contrary to global sources of variation, local effects are limited to a few transistors

in the immediate vicinity of each other. Voltage variations due to resistive drops in the

power grid and temperature hot-spots in regions of high switching activity have local

effects. Signal integrity issues caused due to inductive and capacitive coupling noise

 5

events are extremely local and are restricted to a few signal nets near the aggressor. Intra-

die process variations cause some transistors on die to operate faster (or slower) leading

to hold (or setup) violations, thereby affecting the overall yield. Similarly, clock-jitter due

to resistive voltage drops in selective drivers in the clock-tree leads to local timing

variations in combinational paths.

Temporal rate of change

In addition to spatial reach, local and global sources of variations can be further

classified as being “static” or “dynamic”, based on their rate of change with time.

Static Effects

 Design uncertainties whose magnitudes do not vary significantly during processor

lifetime can be categorized as static. Thus, they could be:

 a) Invariant with time: Effects such as intra- and inter-die process variations

determine the nominal transistor speed and the overall processor performance. However,

they are fixed after fabrication and remain effectively invariant over the entire lifetime of

the processor.

b) Extremely slow-changing, spread over the lifetime of the die: Wear-out

mechanisms such as NBTI, TDDB and electro-migration are typical examples of such

Table 1.1 Categorizing sources of variation

Intra-die process
variations

Inter-die process
variations

Life-time degradation

(NBTI, TDDB)

Coupling noise
(capacitive and Ldi/dt)

Local Clock-jitter (IR
drop in clock-tree)

IR drop

Temperature hot-spots

PLL jitterPackage/Die VDD
fluctuations

Ambient temperature
variations

Intra-die process
variations

Inter-die process
variations

Life-time degradation

(NBTI, TDDB)

Coupling noise
(capacitive and Ldi/dt)

Local Clock-jitter (IR
drop in clock-tree)

IR drop

Temperature hot-spots

PLL jitterPackage/Die VDD
fluctuations

Ambient temperature
variations

SLOW-CHANGING FAST-CHANGING
G

LO
B

A
L

LO
C

A
L

TEMPORAL RATE OF CHANGE

S
P

A
T

IA
L

R
E

A
C

H
STATIC DYNAMIC

EXTREMELY SLOW

 6

effects that gradually degrade processor performance, albeit slowly during its operational

lifetime.

Dynamic effects

Such effects develop during the course of the dynamic operation of the processor.

Both extremely fast, transient noise events as well as slow-changing ambient temperature

fluctuations fall in this category. Thus, dynamic effects could be:

a) Slow-changing, spread over thousands of processor cycles or more:

Uncertainties attributed to the Voltage Regulation Module or on-board parasitics can

cause supply voltage variations on-die. Such effects develop over a range of few micro-

seconds or thousands of processor cycles. Local temperature hot-spots also fall in this

category and have similar time constants. On the other hand, variations in the ambient

temperature have comparatively slow rate of change.

b) Fast-changing, spread over tens of cycles or less: Inductive overshoots due to

package inductance cause supply voltage fluctuations [52], with time constants of the

order of tens of processor cycles. Similarly resistive drops in the supply voltage network

(IR drop) due to high activity computations manifest themselves over the course of a few

processor cycles.

c) Extremely fast-changing, spread over less than a cycle: Typically the effect of

coupling noise events on victim nets lasts for duration less than a cycle. In addition, PLL

jitter occurs on a cycle-by-cycle basis and is categorized as extremely fast-changing.

In addition to silicon-grade and ambient conditions, input vector dependence of

circuit delay is another major source of delay variation in circuits which cannot be easily

captured in the above categories. Circuits exhibit worst-case delay for very specific

instruction and data sequences [11]. Most input vectors do not sensitize the critical path

and, therefore, are not likely to fail even when operating under adverse ambient

conditions. Hence, for most computations, worst-case safety margins are not required for

correctness and this further aggravates the energy wastefulness inherent in conservative

design margining.

 7

1.2 Adaptive design approaches

This growing energy waste has led to significant interest in a new approach to chip

design called “adaptive design”. The key idea of this approach is to tune system

parameters (supply voltage and frequency of operation) during the dynamic operation of

a processor, specific to the native speed of each die and its run-time computational

workload. By dynamically tuning system parameters, such techniques mitigate the

performance and power overheads of excessive margining. Thus, if the transistors are

inherently faster, then the die automatically detects this and adjusts system parameters

accordingly. Of course, voltage and frequency scaling needs to be within safe limits;

otherwise, the consequent slow-down of the transistors can result in timing failures.

The most popular class of adaptive design techniques is called the “always-correct”

approach. The “always-correct” approach seeks to predict the failure voltage of a chip

and to tune the system to operate close to this point. The key issue for such approaches is

to ensure that the operating voltage is not too aggressive. Consequently, safety margins

are required to be added to the predicted failure point in order to guarantee computational

correctness. Accurate prediction of the fail ure point requires special circuits to monitor

circuit speeds in each die.

One approach for achieving this relies on the use of so-called “canary circuits”.

Canary circuits are named after the practice of carrying canary birds to the pits, in the

early days of coal-mining. If the bird died, it warned the miners of the presence of

methane upon which they could retreat to safety. In a similar fashion, a replica of the

speed-limiting critical-path of the processor is used as a “canary” to indicate when the

actual processor is approaching failure. The replica-path is monitored for timing failures

as the supply voltage is scaled. Scaling is limited to the point where the replica-path just

begins to experience timing failures.

For correct operation, it is required that the replica-path fails sufficiently before the

failure of the processor. In this regard, one complicating issue is that the location of the

replica-path on die differs from the actual critical-path. Consequently, the replica-path

experiences different intra-die variations and on-die voltage and frequency fluctuations

than the actual speed-path. Hence, safety margins required to be added to the supply

voltage to account for such local variations (Table 1.1). In future technologies, the local

 8

component of environmental and process variations is expected to become more

prominent, thereby increasing the necessary margins and reducing the scope for energy

savings.

To address the limited scope for margin elimination in the “always-correct”

approach, designers have developed an alternative class of techniques which we refer to

as the “let fail and correct” approach. The key idea of these techniques is to eliminate

margins altogether by allowing a processor to fail and then recover from failure, to

achieve correct operation. Typically, such techniques have been used in on-chip

communication and for signal-processing applications. This is because such applications

use algorithms that have built-in support for error-correction in order to deal with data

corruption during transmission across noisy channels. The quality of output for most

signal processing applications is largely statistical and indeed the data itself possesses

significant amount of temporal and spatial redundancy that naturally facilitates error

correction. Consequently, the pre-existing algorithmic detection and recovery capability

can be easily augmented with additional hardware infrastructure to handle timing errors

due to insufficient safety margins.

The elimination of safety margins allows significant improvements in energy

efficiency. However, deliberately allowing timing errors to occur greatly complicates the

deployment of such techniques for general-purpose computing, where the execution

output necessarily has to be always correct before it is committed to storage. In addition,

the detection and recovery infrastructure should be sufficiently low-overhead so that the

system can adequately benefit from the energy gains through margin elimination.

Previous studies on voltage-scaled arithmetic structures on FPGA [26] suggest that

timing errors can cause multiple bit flips in the execution output. In addition, the bit flips

could be in either direction i.e. from 0 to 1 or vice versa. Using algorithmic approaches

such as those based on Error Correcting Codes (ECC) to detect and recover from timing

errors is likely to add prohibitive area and power overhead. This overhead is perhaps

higher for random logic, such as instruction decoders, which do not have the regular or

symmetrical structure that exist in arithmetic logic units. Consequently, the algorithmic

approach which works well for communication and signal-processing is not amenable for

general-purpose computing.

 9

 An alternative approach to error-detection and correction uses computational

redundancy. In this approach, multiple copies for the same block are used to obtain

greater confidence in the final output which is often chosen through majority voting

between the redundant blocks. In general, this approach is more suited for infrequent

transient errors such as Soft Error Upsets (SEUs) due to cosmic particle strikes, rather

than for timing errors. This is because lack of sufficient margins can equally affect the

multiple blocks in the same way, effectively neutralizing the advantage of redundancy.

Furthermore, since this approach can lead to a doubling of the area and the power

consumption, it is restricted to only a few blocks in the data-path or to niche application

areas where constraints on power consumption are fairly relaxed. Typical examples of

such applications can be found in the automobile electronics such as Automatic Braking

Systems (ABS) and in outer-space satellite communications.

In this thesis, we propose the first application of a low-overhead, “let fail and

correct” technique to general-purpose computing. This approach, called Razor [11][53],

addresses the power impact of safety margins by monitoring processor delay through in

situ timing error detection and correction mechanisms. Allowing the processor to fail and

then recover safely from timing errors enables operation at a voltage right at the edge of

failure. We refer to the point of onset of errors as the “Point of First Failure” (PoFF).

Similar to other techniques in this category, Razor enables significant improvements in

energy efficiency by eliminating safety margins. However, in contrast with other

techniques, Razor achieves these through efficient, low-overhead mechanisms.

Razor represents a fundamental departure from the conventional “worst-case” and

“always-correct” design paradigm to “average-case” and “usually-correct”. The idea of

average case design is not new and has been avidly researched in the asynchronous

design community [16]. Razor, being a completely synchronous design fabric, benefits

from the average-case operation and yet avoids the pitfalls that have been the bane of

asynchronous design.

1.3 Introduction to Razor

 Razor [11] is a circuit-level timing speculation technique based on dynamic

detection and correction of speed-path failures in digital designs. In Razor, input vectors

 10

are speculatively executed under the assumption that they would meet the setup and hold-

time requirements for a given clock cycle. A timing mis-speculation leads to a delay error

which is detected by comparing the speculative execution output against worst-case

assumptions. In such an event, suitable recovery mechanisms are engaged to achieve

correct state. Thus, computational correctness in Razor is achieved not through worst-

case safety margins but rather through in situ detection and recovery mechanisms in the

presence of errors.

The key idea of Razor is to tune the supply voltage by monitoring the error rate

during operation. Since this technique of error-detection provides in situ monitoring of

the actual circuit delay, it accounts for both global and local delay variations and does not

suffer from voltage scaling disparities. It therefore eliminates the need for voltage

margins that are necessary for “always-correct” circuit operation in traditional designs.

Thus, with Razor, it is possible to tune the supply voltage to the PoFF. In addition,

voltage can also be scaled below this first point of failure into the sub-critical regime,

Supply Voltage

Energy w/o
Razor Support,

Enom Lower Limit of Traditional DVS
Total Energy,

Etotal = Eproc + Erecovery

Optimal E total

Energy with
Razor Support

Eproc

Energy of Pipeline
Recovery, E recovery

Sub-critical

VmarginVffPoint of First Failure
Energy

IPC

Pipeline Throughput

Supply Voltage

Energy w/o
Razor Support,

Enom Lower Limit of Traditional DVS
Total Energy,

Etotal = Eproc + Erecovery

Optimal E total

Energy with
Razor Support

Eproc

Energy of Pipeline
Recovery, E recovery

Sub-critical

VmarginVffPoint of First Failure
Energy

IPC

Pipeline Throughput

Figure 1.2 Qualitative relationship between supply voltage and Error-rate

 11

thereby deliberately tolerating a targeted error rate. In the context of Razor, an error does

not constitute a catastrophic failure, but instead represents a trade-off between the power

penalty incurred from error correction against additional power savings obtained from

operating at a lower supply voltage. This is analogous to wireless communication where

transmit power is often tuned to achieve a targeted Bit Error Rate [30]. We use this

distinction throughout the remainder of the thesis wherein an “error” refers to a timing

violation recoverable through Razor error correction and a “system failure” refers to

unrecoverable pipeline corruption.

The operational principle of Razor is illustrated in Figure 1.2 which shows the

qualitative relationship between the supply voltage, energy consumption and pipeline

throughput of a Razor-enabled processor. The voltage at the PoFF of the processor (Vff)

and the minimum allowable voltage of traditional techniques (Vmargin) are also labeled in

the figure. Vmargin is much higher than Vff under typical conditions, since safety margins

need to be included to accommodate for worst-case operating conditions. Razor relies on

in situ error detection and correction capability to operate at Vff, rather than at Vmargin.

The total energy of the processor (Etot) is the sum of the energy required to perform

standard processor operations (Eproc) and the energy consumed in recovery from timing

errors (Erecovery). Of course, implementing Razor incurs power overhead due to which the

nominal processor energy (Enom) without Razor technology is slightly less than Eproc. This

overhead is attributed to the use of delay-error tolerant flip-flops on the critical paths and

the additional recovery logic required for Razor. However, since the extra circuitry is

deployed only for those flip-flops which have critical paths terminating in them, the

power overhead due to Razor is fairly minimal. In the two Razor prototypes that we

present subsequently in this thesis, the net power overhead due to Razor was less than 3%

of the nominal chip power.

 As the supply voltage is scaled, the processor energy (Eproc) reduces quadratically

with voltage. However, as voltage is scaled below the first failure point (Vff), a

significant number of paths fail to meet timing. Hence, the error rate and the recovery

energy (Erecovery) increase exponentially. The processor throughput also reduces due to the

increasing error rate because the processor now requires more cycles to complete the

 12

instructions. The total processor energy (Etot) shows an optimal point where the rate of

change of Erecovery and Eproc offset each other.

It was previously observed that circuit delay is strongly data-dependent, and only

exhibits its worst-case delay for very specific instruction and data sequences [11]. From

this, it can be conjectured that for moderately sub-critical supply voltages only a few

critical instructions will fail, while a majority of instructions will continue to operate

correctly. Our hardware measurements and circuit simulation studies support this

conjecture and demonstrate that the circuit operation degrades gracefully for sub-critical

supply voltages, showing a gradual increase in the error rate. The proposed Razor

approach automatically exploits this data-dependence of circuit delay by tuning the

supply voltage to obtain a small, but non-zero error rate. It was found that if the error rate

is maintained sufficiently low, the power overhead from error correction is minimal,

while substantial power savings are obtained due to operating the circuit at a lower

supply voltage. Note that as the processor executes different sets of instructions, the

supply voltage automatically adjusts to the delay characteristics of the executed

instruction sequence, lowering the supply voltage for instruction sequences with many

non-critical instructions, and raising the supply voltage for instruction sequences that are

more delay intensive.

1.4 Main contributions and organization of the thesis

This thesis develops the idea of Razor through two different implementation

techniques which we refer to as RazorI and RazorII, respectively.

• The RazorI approach relies on a double-sampling Razor flip-flop for error-

detection. In this technique, the critical-path output is sampled at two different

points in time. The earlier, speculative sample is captured at the rising edge of the

clock in the main flip-flop. The latter, always-correct sample is captured at a

delayed clock-edge (we use the falling edge for convenience of implementation) in

a so-called shadow-latch. A metastability-tolerant comparator then flags an error

when both samples disagree. Once an error signal is flagged, a circuit-based

technique to engaged to recover correct state within the flip-flop. Pipeline recovery

is achieved through a micro-architectural technique that restores correctness. We

 13

propose two approaches based on either clock-gating or on counter-flow pipeline

architecture [38] for pipeline recovery. We designed a 64bit microprocessor that

uses RazorI for supply voltage control. We obtained, on an average, 50% energy

savings through eliminating design margins and operating at 0.1% error-rate, at

120MHz.

• The RazorII approach was developed with the need to address the key issues and

weaknesses in the RazorI technique which impairs its applicability to high-

performance micro-processors. RazorII differs significantly from RazorI in that it

moves the responsibility of recovery entirely into the micro-architectural domain.

Error-detection is achieved within the RazorII flip-flop by monitoring the critical

endpoints for spurious transitions. Recovery is achieved by replay from a check-

pointed state. As we show in Chapter 5, the RazorII flip-flop naturally detects

Single Event Upsets (SEU) in combinational logic and inside latches. We

implemented RazorII based voltage control on a 64bit microprocessor and obtained

33% energy savings, on an average. In addition, we demonstrated correct processor

operation in the presence of neutron irradiation, using RazorII for SEU tolerance.

The remainder of this thesis is organized as follows. In Chapter 2, we survey the

different adaptive techniques described in literature and analyze the margins eliminated

by each of them. Chapter 3 introduces the concept of error-detection and recovery in the

RazorI technique. In Chapter 4, we present measurement results on silicon from a 64bit

Alpha processor that uses RazorI for supply voltage control. We discuss the key

weaknesses of RazorI in Chapter 5 and propose RazorII as a low-overhead alternative to

RazorI. Chapter 6 deals with different techniques that address the minimum delay

requirement (explained in Chapter 3) in Razor. In Chapter 7, we present silicon

measurement results on a RazorII prototype and demonstrate correct operation in

presence of neutron irradiation. Finally, we summarize this thesis in Chapter 8 and

conclude with directions on future research.

 14

CHAPTER 2

ADAPTIVE DESIGN TECHNIQUES

Adaptive techniques tune system parameters based on variations in silicon-grade and

ambient conditions. Instead of using a single operating voltage and frequency point for all

dies, adjusting system parameters enables such techniques to deliver better energy-

efficiency through the elimination of a sub-set of worst-case safety margins. As

mentioned in the Introduction, adaptive techniques can be broadly classified into two

main categories, which we refer to as the “always correct” and the “let fail and correct”

approaches. Table 2.1 lists the different adaptive architectures discussed in literature and

the margins eliminated by each of them. In the remainder of this chapter, we discuss each

of these techniques in greater detail. We focus on “always correct” approaches in Section

2.1 and discuss “let fail and correct” approaches in Section 2.2.

2.1 “Always Correct” Techniques

The key idea in the “always correct” techniques is to predict the operational point

where the critical-path fails to meet timing and to guarantee correctness by adding safety

margins to the predicted failure point. The conventional approach of predicting this point

of failure is to use either a look-up table or so-called “canary” circuits.

2.1.1 Look-up table based approach

In the look-up table based approach [14][13][15], the processor is pre-characterized

during design-time to obtain its maximum obtainable frequency for a given supply

voltage. The safe voltage-frequency pairs are obtained by performing conventional

timing analysis on the processor. Typically, the operating frequency is decided based on

the deadline under which a given computational task needs to be completed. Accordingly,

the supply voltage corresponding to the frequency requirement is “dialed in”. The table

 15

look-up approach exploits periods of low CPU utilization by dynamically scaling voltage

and frequency, thereby leading to energy savings. Furthermore, owing to its relative

simplicity, this approach can be easily deployed in the field. However, its reliance on

conventional timing analysis performed at the combination of worst-case process, voltage

and temperature corners implies that none of the safety margins are eliminated at a

particular operating point.

2.1.2 Canary-circuits based approach

An alternative approach relies on the use of the so-called "canary" circuits to predict

the failure point [3][18]-[23][42]. Canary circuits are typically implemented as delay

chains which approximate the critical path of the processor. They are designed to track

the critical path delay across process, voltage and temperature (PVT) corners. Voltage

and frequency are scaled to the extent that this replica-delay path fails to meet timing.

The replica-path tracks the critical-path delay across inter-die process variations and

Table 2.1 Adaptive techniques landscape

YYYYYYYYRazor

NYYYYYYYANT

NYYYYYYYSelf-calibrating
interconnects

Error
Detection

and
correction

YNNNNNNYNon-uniform
cache

architectures

YNNNNNNYTypical-delay
Adder

structures

YYNYNYYNIn-situ triple
latch

monitor

YYNNNYNNCanary circuits

YNNNNNNNTable-lookupAlways-
correct

SlowFastSlowFast

GlobalLocalInterdieIntradie

Ambient (V,T)ProcessDataTechniqueCategory

General
purpose

computing
?

MARGINS ELIMINATED

YYYYYYYYRazor

NYYYYYYYANT

NYYYYYYYSelf-calibrating
interconnects

Error
Detection

and
correction

YNNNNNNYNon-uniform
cache

architectures

YNNNNNNYTypical-delay
Adder

structures

YYNYNYYNIn-situ triple
latch

monitor

YYNNNYNNCanary circuits

YNNNNNNNTable-lookupAlways-
correct

SlowFastSlowFast

GlobalLocalInterdieIntradie

Ambient (V,T)ProcessDataTechniqueCategory

General
purpose

computing
?

MARGINS ELIMINATED

 16

global fluctuations in supply voltage and temperature, thereby eliminating margins due to

global PVT variations (Table 1.1). However, the replica-path does not share the same

ambient environment as the critical-path since their on-die location differs. Consequently,

margins are added to the replica-path in order to budget for delay mismatches due to on-

chip variation and local fluctuations in temperature and supply voltage. Margins are also

required to address fast-changing transient effects, such as coupling noise effects, which

are difficult to respond to in time using this approach. Furthermore, mismatches in the

scaling characteristics of the critical-path and its replica require additional safety margins.

These margins ensure that the processor still operates correctly at the point of failure of

the replica-path.

There are several systems reported in literature based on canary-circuits. One

approach uses the replica path as a delay-reference for a voltage-controlled oscillator

(VCO) unit. The VCO monitors the delay through the chain at a given supply voltage and

scales the operating frequency to the point of failure of the replica-path. An example of

such an approach is Uht’s TEATime [18] which is illustrated in Figure 2.1. A toggle flip-

flop initiates a new transition through the replica path every cycle. The transition is

correctly captured at the receiving flip-flop only if the clock period is greater than the

propagation delay through the replica path. A simple up-down counter is used to control

the VCO frequency output via a Digital-to-Analog Converter (DAC). IBM’s PowerPC

Critical path replicaQ

D

Q

D

Up/DownCounter

DAC

VCO

System clock

Pipeline Combinational LogicPipe
Reg

Pipe
Reg

Critical path replicaQ

D

Q

D

Up/DownCounter

DAC

VCO

System clock

Pipeline Combinational LogicPipe
Reg

Pipe
Reg

Figure 2.1 Uht's TEATime: A canary circuits based approach

 17

System-on-chip design reported in [19] and the Berkeley Wireless Research Center’s [22]

[21] low-power microprocessor are all based on a similar concept. An alternative

approach, developed by Sony and reported in [23], uses a delay-synthesizer unit

consisting of several delay chains which selects a safe frequency depending on the

maximum propagation-delay through the chains. Typically, canary circuits enable better

energy efficiency than the table look-up approach because unlike the latter, they are able

to eliminate margins due to slow-changing, global variations (Table 1.1) such as inter-die

process variations and global fluctuations in voltage and temperature.

2.1.3 In situ triple-latch monitor

Kehl’s Triple-Latch Monitor is similar to the canary-circuits based techniques, but

utilizes in situ monitoring of circuit delay [24]. Using this approach, all monitored system

state is sampled at three different latches with a small delay interval between each

sampling point, as shown in Figure 2.2(a). The value in the latest-clocked latch which is

allowed the most time is assumed correct and is always forwarded to later logic. The

system is considered “tuned” (Figure 2.2b) when the first latch does not match the second

and third latch values, meaning that the logic transition was very near the critical speed,

EQ0 EQ1 EQ2

CK0 CK1 CK2

INCOMING DATA

To System

Td Td

S0 S1 S2

CK0

CK1

CK2

D

EQ0

EQ1

EQ2

CK

a) b)

Figure 2.2 Kehl’s triple-latch technique for in situ delay monitoring. Figure a)
shows the mechanism of monitoring delay through temporal redundancy. Figure b)
shows the timing diagrams for a “tuned” system

 18

but not dangerously close. If all latches see the same value, the system is running too

slowly and frequency should be increased. If the first two latches see different values

than the last, then the system is running dangerously fast and should be slowed down.

Because of the in situ nature of this approach, it can adjust to local variations such as

intra-die process and temperature variations. However, it still cannot track fast-changing

conditions such as cross-coupling and voltage noise events. Hence, the delay between the

successive samples has to be sufficiently separated to allow for margins for such events.

In addition, to avoid overly aggressive clocking, evaluations of the latch values must be

limited to tests using worst-cast latency vectors. Kehl suggests that the system should

periodically stop and test worst-case vectors to determine if the system requires tuning.

This requirement severely limits the general applicability of this approach since vectors

that account for the worst-case delay and coupling noise scenario are difficult to generate,

and exercise, for general-purpose processors.

2.1.4 Micro-architectural techniques

A potential short-coming of all the techniques discussed above is that they seek to

track variations in the critical-path delay and consequently, cannot adapt to input vector

dependent delay variations. The processor voltage and frequency is unnecessarily

constrained by the worst-case critical-path, even if it is rarely sensitized. This observation

b)a)

Figure 2.3 Data-dependent delay variations in adders a) Carry-propagation for
SPECInt 2000 vectors b) Carry-propagation for random vectors [25]

 19

is borne out by studies performed on carry-propagation lengths in adder blocks. Recent

studies [25] have shown that for most input vectors in the SPECInt2000 benchmark suite,

the maximum carry propagation distance rarely exceeds 24bits for 64bit additions, as

shown in Figure 2.3(a)[25]. Similar results are observed for random vectors as well

(Figure 2.3b). Several micro-architectural techniques described in literature exploit the

above observation to design faster arithmetic blocks wherein the block is operated at a

higher frequency than what is dictated by the worst-case carry path.

The stutter adder reported in [8] is one such example. It uses a low-overhead circuit

for a priori determination of the carry chain length. If a latency-intensive add operation is

detected, then the clock-frequency is halved to allow it to complete without errors. If the

carry-chain length in a cycle exceeds a certain number of bits, then, a “stutter” signal is

raised which clock-gates the next cycle. Thus a “long” adder computation is effectively

given two-cycles to execute. However, in [8], the authors report that in 95% of cases, the

adder required only one cycle to compute.

Lu [17] exploits the rare sensitization of critical-paths in a similar technique where

an “approximate” but faster implementation of a functional unit is used in conjunction

with a slow but always-correct checker to clock the system a higher rate. The

“approximate” version achieves its speedup by not implementing the complete

functionality of the adder. For example, the carry propagation path may be terminated

after the least significant 32 bits, thereby reducing the critical-path delay and achieving

single-cycle performance. The output of the “approximate” implementation is validated

against the output of the “always-correct” adder which requires two cycles to compute. In

the event of an error where there is a discrepancy between the outputs of both adders, a

bubble is inserted and the “always-correct” adder output is forwarded to the downstream

pipeline stages. For most computations, both outputs agree, thereby leading to a higher

effective throughput due to faster clock-rates.

Data-dependent delay variations are also exploited by Non-uniform cache

architectures (NUCA) [27][28]. In aggressively scaled technologies, interconnect delay

can become a significant portion of the cache access time. This causes wide variations in

the fetch latencies of data words located near the access port versus those located further

off. In traditional cache designs, the worst-case latency limits the cache access time.

 20

However, NUCA allows early access times for addresses near the access port, thereby

achieving throughput improvement. Additional throughput can be achieved by mapping

frequently accessed data to banks located nearest to the access port. Thus, in the context

of NUCA, data-dependence of delay relates to the frequency with which an address in the

cache is accessed.

While the stutter adder and the NUCA architectures adapt to data-dependent

variations, they still require margins to account for slow silicon grade and worst-case

ambient conditions. On the contrary, “let fail and correct” approaches seek to achieve

both i.e. eliminate worst-case safety margins for all types of uncertainties and adapt to

data-dependent variations as well. However, they are more complex and incur additional

overhead in their implementation. Such approaches are discussed in detail in the next

section.

2.2 “Let fail and correct” approaches

The key concept of these schemes is to scale the system parameters (e.g. voltage and

frequency) till the point where the processor fails to meet timing, thereby leading to an

error. An error-detection block flags the occurrence of the timing error upon which a

recovery infrastructure is engaged to achieve correct state. To ensure that the system does

not deadlock due to persistent errors, an additional controller monitors the error-rate and

tunes voltage and frequency to achieve a targeted error rate.

 Allowing the processor to fail and then recover eliminates worst-case safety

margins. This enables significantly greater performance and energy efficiency over

“always-correct” techniques. Furthermore, such techniques naturally exploit input vector

dependence of delay by relying on the error-rate for voltage and frequency tuning.

Instead of relying on safety margins, computational correctness is achieved through

successful detection and correction of timing errors. The net energy consumption of the

system is essentially a trade-off between the increased efficiency afforded by the

elimination of margins and the additional overhead of recovery. Of course, the overhead

of recovery can make sustaining a high error-rate counterproductive. Hence, these

systems typically rely on restricting operation to low error-rate regimes to maximize

energy efficiency.

 21

Their relative complexity makes the general applicability of such systems difficult.

However, they are naturally amenable for certain applications areas such as

communications and signal processing. Communication systems require error correction

to reliably transfer information across a noisy channel. Therefore, it is relatively easier to

overload the existing error correction infrastructure to enable adaptivity to variable

silicon and ambient conditions. Self-calibrating interconnects by Worm et al. [29] and

Algorithmic Noise Tolerance by Shanbhag et al. [30] are examples of applications of

such techniques to on-chip communication and signal processing architectures.

2.2.1 Techniques for communication and signal processing

Self-calibrating interconnects (Figure 2.4) address the problem of reliable on-chip

communication in aggressively scaled technologies. Signal integrity concerns require on-

chip busses to be strongly buffered which consumes a significant portion of the total chip

power. Hence, it is desirable to transfer bits at the lowest possible operating voltage while

still guaranteeing the required performance and the targeted bit-error-rate (BER). Worm

[29] addresses this issue by encoding the data words with so-called self synchronizing

codes before transmission. The receiver is augmented with a checker unit that decodes

the received code word and flags timing errors. Correction occurs by requesting re-

FIFO

ddV

Controller
E

nc
od

er

D
ec

od
e

r Data

error

Fcomm

Vcomm

ARQ
retransmit

FIFO

ddV

Controller
E

nc
od

er

D
ec

od
e

r Data

error

Fcomm

Vcomm

ARQ
retransmit

Figure 2.4 Self-calibrating interconnects

 22

transmission through an Automatic Repeat Request (ARQ) block, as shown in Figure 2.4.

Furthermore, an additional controller obtains feedback from the checker and accordingly

adjusts the voltage and the frequency of the transmission. By reacting to the error-rates,

the controller is able to adapt to the operating conditions and thus eliminate worst-case

safety margins. This improves the energy efficiency of the on-chip busses with negligible

BER degradation.

Algorithmic Noise Tolerance (ANT) by Shanbhag et al. [30] uses a similar concept

for low-power VLSI signal processing architectures. As conceptually illustrated in Figure

2.5, the main processor block is augmented with an estimator block. The main block is

voltage scaled beyond the point of failure, thereby leading to intermittent timing errors.

The result of the main block is validated against the result of the estimator block which

computes correct result, based on the previous history. The estimator block is

significantly cheaper in terms of area and power as compared to the main block which is

being voltage-scaled. At low error-rates, the benefits of aggressive scaling on the main

block compensates for the overhead of correction, leading to significant energy savings.

Error detection occurs when the difference in results of the main block and the estimator

block exceeds a certain threshold. Error correction occurs by overwriting the result of the

main block with that of the estimator block.

Since the estimator block depends upon past history of correct results to make its

prediction, its accuracy reduces as more errors are experienced. This adversely affects the

BER of the entire block. In addition, the overhead of error correction also increases with

][nx
][nyaMain Block

Estimator

][ˆ ny| | >Th

][nye

Figure 2.5 Algorithmic Noise Tolerance [30]

 23

increase in the error-rate. Hence, it is desirable to keep the rate of timing errors low for

maintaining a low BER and high energy efficiency. The authors built a FIR filter in 0.35

micron technology [30] to demonstrate the efficacy of this technique. They obtained at

least 70% savings over an error-free design for a 1% reduction in the Signal to Noise

(SNR) ratio of the final output.

By reacting to error-rates, both of the above techniques are able to exploit data-

dependent delay variations because even under aggressively scaled voltage and frequency

conditions, it is possible to maintain a low error-rate as long as the critical paths are not

being sensitized.

2.2.2 Techniques for general-purpose computing

“Let fail and correct” approaches are naturally suited for communication applications

which use algorithms that have built-in support for error-correction to deal with data

corruption. The quality of output for most signal processing applications is largely

statistical and the data itself possesses significant amount of temporal and spatial

redundancy that naturally facilitates error correction. Errors do not affect the correct

functionality of the system and lead to a negligible degradation of the Bit Error Rate

(BER), at worst. However, in general-purpose computing the committed architectural

state necessarily has to be always correct. Therefore, all timing errors that can alter the

architectural state need to be flagged and corrected. Unlike in communication and signal

processing applications, corruption of the architectural state in general-purpose

computing leads to system failure and needs to be avoided at all costs.

Razor [11] is the first application of a “let fail and correct” technique to general-

purpose computing. Razor uses temporal redundancy for error-detection as described in

subsequent chapters. In this thesis, we describe two techniques for implementing Razor.

In the RazorI technique (Chapter 3), a critical path signal is speculatively sampled at the

rising edge of the regular clock and is compared against a shadow latch which samples at

a delayed edge. A timing error is flagged when the speculative sample does not agree

with the delayed sampled. State correction involves overwriting the shadow latch data

into the main flip-flop and engaging micro-architectural recovery features to recover

correct state. Unlike the RazorI technique which relies on state comparison, RazorII

 24

(Chapter 5) achieves error-detection by monitoring the critical-path output for spurious

transitions. Recovery is achieved by re-execution from a check-pointed state. We discuss

RazorI and RazorII in greater detail in the next chapter onwards.

The idea of temporal redundancy for error detection has been used previously in the

design and test community for at-speed delay testing. Anghel and Nicolaidis [31] use a

similar concept for detecting SEU failures in combinational logic. A cosmic particle

strike in the combinational logic manifests itself as a pulse which can get captured by

downstream flip-flops. The authors detect such an event by re-sampling the flip-flop

input after the pulse has died down. A discrepancy between the two samples indicates a

SEU event in the combinational logic. This technique is limited to error detection and

does not enable recovery which restricts its applicability to SEU detection only.

2.3 Summary and discussion

In this chapter, we surveyed the different adaptive techniques presented in literature. We

broadly classified such techniques as “always-correct” approaches and “let fail and

correct” approaches. Always-correct techniques use failure prediction techniques such as

pre-characterized look-up tables and canary circuits to approach the PoFF as close as

possible, without risking failure. However, doing so requires safety margins especially

for local variations. As process technology scales, local variations are expected to

worsen, thereby undermining the efficacy of always-correct techniques at aggressive

geometries.

“Let fail and correct” approaches use error-detection and correction mechanisms to

operate around the PoFF while deliberately incurring errors. We surveyed two

representative approaches related to wireless communication (Algorithmic Noise

Tolerance) and on-chip communication (Self-calibrating interconnects) that trade-off

error-rate for increased energy efficiency of operation. Unlike signal-processing

applications, general-purpose computing is not naturally resilient to errors. Consequently,

such techniques have rarely found application in the general-purpose domain.

This thesis describes Razor which is the first low-overhead application of a “let fail

and correct” approach to general-purpose computing. In the subsequent chapters, we

develop the Razor concept and present two implementation techniques, called RazorI and

 25

RazorII, for deployment of Razor in micro-processors. Chapter 3 discusses the key ideas

in Razor and describes the RazorI technique.

26

CHAPTER 3

RAZOR I: STATE COMPARISON BASED ERROR-DETECTION
AND CIRCUIT -ARCHITECTURAL RECOVERY

RazorI relies on a combination of architectural and circuit techniques to achieve

efficient error detection and correction of timing violations. Critical-path endpoints are

monitored using a delay-error tolerant RazorI flip-flop which samples its input at two

different points in time. The main flip-flop samples its input speculatively at the rising

clock-edge. It is augmented with a so-called shadow latch, controlled using a delayed

clock-edge, which samples the correct value of the data input. The operating voltage is

constrained such that the worst-case delay is guaranteed to meet the shadow latch setup

time, even though the main flip-flop could fail. By comparing the values latched by the

flip-flop and the shadow latch through a metastability-tolerant comparator, a delay error

in the main flip-flop is detected. The value in the shadow latch, which is guaranteed to be

correct, is then overwritten into the main flip-flop to achieve recovery. At the same time a

pipeline recovery mechanism is initiated as well.

The rest of the chapter is organized as follows. In Section 3.1, we develop the

concept of RazorI error detection and recovery. Section 3.2 deals with the transistor level

design details of the RazorI flip-flop. In Section 3.3, we present several architectural

solutions for error correction, ranging from simple clock gating to more sophisticated

mechanisms that augment the existing mis-speculation recovery infrastructure. Section

3.4 deals with supply voltage control in RazorI. Section 3.5 briefly mentions the

measurement results that we obtained from a self-tuning processor built to evaluate

RazorI. Finally, we give a succinct summary of this chapter in Section 3.6.

27

3.1 Concept of Razor error detection and recovery

Figure 3.1 shows the conceptual representation of a RazorI flip-flop. The RazorI flip-

flop (henceforth referred to as the R1FF) is constructed out of a standard positive edge-

triggered D Flip-Flop (DFF), augmented with a shadow latch which samples at the

negative clock edge. Thus, the input data is given additional time, equal to the duration of

the positive clock phase, to settle down to its correct state before being sampled by the

shadow latch. In order to ensure that the shadow latch always captures the correct data,

the minimum allowable supply voltage needs to be constrained during design time such

that the setup time at the shadow latch is never violated, even under worst-case

conditions. A comparator flags a timing error when it detects a discrepancy between the

speculative data sampled at the main flip-flop and the correct data sampled at the shadow

latch. Error signals of individual R1FFs are OR-ed together to generate the pipeline

restore signal which overwrites the shadow latch data into the main flip-flop, thereby

restoring correct state in the cycle following the erroneous cycle.

We illustrate the operation of a RazorI flip-flop in Figure 3.2. In clock cycle 0, the

combinational logic L1 meets the setup time by the rising edge of the clock. Thus, both

Error
comparator

RazorI FF

Main
Flip-Flop

clk

clk

Shadow
Latch

Q
Logic Stage

L1

Logic Stage

L2
0

1

D

Restore

Local Meta-
Detector

Error
comparator

RazorI FF

Main
Flip-Flop

clk

clk

Shadow
Latch

Q
Logic Stage

L1

Logic Stage

L2
0

1

D

Restore

Local Meta-
Detector

Figure 3.1 Abstract view of the RazorI flip-flop. The speculative data in the master-
slave flip-flop is compared with the correct data in the positive level-sensitive
shadow latch.

28

the main flip-flop and the shadow latch will latch the correct data. In this case, the error

signal at the output of the comparator remains low and the operation of the pipeline is

unaltered. In cycle 1, we show an example of the operation when the combinational logic

exceeds the intended delay due to sub-critical voltage scaling. In this case, the data is not

latched correctly by the main flip-flop, but since the shadow-latch samples at the negative

edge of the clock, it successfully latches the data half-way through cycle 2. By comparing

the valid data of the shadow latch with the data in the main flip-flop, an error signal is

then generated in cycle 2. Error signals of individual R1FFs are OR-ed together to

generate the pipeline restore signal which overwrites the shadow latch data into the main

flip-flop, thereby restoring correct state at the positive edge of the subsequent cycle, cycle

4.

If an error occurs in pipeline stage L1 in a particular clock cycle, the data in L2 in the

following clock cycle is incorrect and must be flushed from the pipeline using one of the

pipeline control methods described in Section 3.3. However, since the shadow latch

contains the correct output data of pipeline stage L1, the instruction does not need to be

re-executed through this failing stage. Thus, a key feature of RazorI is that if an

Clk

Min Path
D_in

Error

Restore

Q

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Td

Thold

Qshadow

Cycle 0

Clk

Min Path
D_in

Error

Restore

Q

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Td

Thold

Qshadow

Cycle 0

Figure 3.2 Conceptual timing diagrams showing the operation of the RazorI flip-
flop. In Cycle 2, a setup violation causes Error to be flagged whereas in Cycle 4, a
hold violation causes error to be asserted.

29

instruction fails in a particular pipeline stage it is re-executed through the following

pipeline stage, while incurring a one cycle penalty. The proposed approach therefore

guarantees forward progress of a failing instruction, which is essential to avoid the

perpetual failure of an instruction at a particular stage in the pipeline.

Using the negative edge of the clock as the sampling trigger for the shadow latch

precludes the need for an additional clock tree. This simplifies implementation because

only a single clock is required and prevents the excessive overhead of routing a second

clock tree just for the purposes of clocking the shadow latch in the R1FFs. The duration

of the positive clock phase, when the shadow latch is transparent, determines the

sampling delay of the shadow latch. This constrains the minimum propagation delay for a

combinational logic path terminating in a R1FF to be at least greater than the duration of

the positive clock phase and the hold time of the shadow latch. Figure 3.2 conceptually

illustrates this minimum delay constraint. In cycle 4, the R1FF input, D_in, violates this

constraint and changes state before the negative edge of the clock, thereby corrupting the

state of the shadow latch. Delay buffers are required to be inserted in those paths which

fail to meet this minimum path delay constraint imposed by the shadow latch.

The insertion of delay buffers incurs power overhead because of the extra

capacitance added. A large shadow latch sampling delay requires a greater number of

delay buffers to be inserted, thereby increasing the power overhead. However, a small

sampling delay implies that the voltage difference between the point of first failure and

the point where shadow latch fails is less and, thus, reduces the voltage margin available

through Razor timing speculation. Hence, the shadow latch sampling delay represents the

trade-off between power overhead due to delay buffers and the voltage margin available

for Razor sub-critical mode of operation. Using suitable clock chopping techniques, the

duration of the positive phase of the propagated clock can be configured as required so as

to exploit the above trade-off.

A key point to note is the fact that the hold constraint imposed by the shadow latch

only limits the maximum duration of the positive clock phase and has no bearing upon

the clock frequency. Thus, a RazorI pipeline can still be operated at any frequency as

required as long as the positive clock phase is sufficient to meet the minimum path delay

constraint. In the prototype RazorI processor that we present in Chapter 4, for a sampling

30

delay of 3.0ns which is approximately half the cycle time at 140MHz, it was required to

add 2388 delay buffers to satisfy the short path constraint on 207 R1FFs (7.4% of the

total number of flip-flops). The power overhead due to these buffers was less than 3% of

the nominal chip power.

Since setup and hold constraints at the main flip-flop input (D_in) are not respected,

it is possible that the state of the flip-flop becomes metastable. A metastable signal

increases critical path delay which can cause a shadow latch in the succeeding pipeline

stage to capture erroneous data, thereby leading to incorrect execution. In addition, a

metastable flip-flop output can be inconsistently interpreted by the error comparator and

the downstream logic. Hence, an additional detector is required to correctly flag the

occurrence of metastability at the output of the main flip-flop. The outputs of the

metastability-detector and the error comparator are OR-ed to generate the error signal of

the R1FF. Thus, the system reacts to the occurrence of metastability in exactly the same

way as it reacts to a conventional timing failure.

A key point to note is the fact that metastability need not be resolved correctly in the

R1FF and that just the detection of such an occurrence is sufficient to engage the RazorI

recovery mechanism. However, in order to prevent potentially metastable signals from

being committed to memory, at least two successive non-critical pipeline stages are

required immediately before storage. This ensures that every signal is validated by RazorI

and is effectively double-latched in order to have a negligible probability of being

metastable, before being written to memory. In our design, data accesses in the Memory

stage were non-critical and hence we required only one additional pipeline stage to act as

a dummy stabilization stage. The circuit level implementation of the metastability-

detector is discussed in greater detail in Section 3.2.

In addition to invalidating the data in the following pipeline stage, an error must also

stall the preceding pipeline stages while the shadow latch data is restored into the main

flip-flops. A number of different methods, such as clock gating or flushing the instruction

in the preceding stages, were examined to accomplish this and are discussed in Section

3.3. The proposed approach also raises a number of circuit related issues. The RazorI

flip-flop must be constructed such that the power and delay overhead is minimized.

Suitable circuits for detecting and flagging metastability need to be designed. These

31

issues are discussed in more detail in Section 3.2. In the proposed RazorI based supply-

voltage tuning approach, the error signal is used to tune the supply voltage to its optimal

value. In Section 3.4, we discuss different algorithms to control the supply voltage based

on the observed error rate.

3.2 Transistor-level design of the RazorI flip-flop

Figure 3.3 shows the transistor level circuit schematic of the R1FF. In the absence of

a timing error, the R1FF behaves as a standard positive edge triggered flip-flop. The error

comparator is a semi-dynamic XOR gate which evaluates when the data latched by the

slave differs from that of the shadow in the negative clock phase. The error comparator

shares its dynamic node, Err_dyn, with the metastability-detector which evaluates in the

positive phase of the clock when the slave output could become metastable. Thus, the

R1FF error signal is flagged when either the metastability-detector or the error

comparator evaluate. This, in turn, evaluates the dynamic gate to generate the restore

Restore_p

Restore_n

Clk_n

Restore_p

D_in

Q_bar

Q

Clk_p

Clk_n

Clk_n

Clk_n

Clk_p

Restore_p

Clk_n

Rbar_latched

G2 (P-skewed)
Clk_p Clk_p Clk_n

Clk Clk_pClk_n Restore

Restore_n

Restore_p

Master Slave

Shadow
Error
Comparator

QS

Clk_p

Error

Metastability
Detector

Err_dyn

G1

G3
(N-skewed)Restore_p

Restore_n

Clk_n

Restore_p

D_in

Q_bar

Q

Clk_p

Clk_n

Clk_n

Clk_n

Clk_p

Restore_p

Clk_n

Rbar_latched

G2 (P-skewed)
Clk_p Clk_p Clk_n

Clk Clk_pClk_n Restore

Restore_n

Restore_p

Master Slave

Shadow
Error
Comparator

QS

Clk_p

Error

Metastability
Detector

Err_dyn

G1

G3
(N-skewed)

Figure 3.3 RazorI flip-flop circuit schematic

32

signal by “OR”-ing together the error signals of individual R1FFs as shown in Figure 3.4,

in the negative clock phase.

The restore signal incurs significant routing and gate capacitance as it is routed to

every flip-flop in the pipeline stage and needs to be driven by strong drivers. For a R1FF,

the restore serves to overwrite the master with the shadow latch data. Hence, the slave

gets the correct data at the next positive edge. The restore needs to be latched at the out-

put of the dynamic OR gate so that it retains state during the next positive phase

(recovery cycle) during which it disables the shadow latch to protect state. In addition,

the restore also disables all regular, non-“Razor”-ed flip-flops in the pipeline stage to

preserve the state that was latched in the erroneous cycle. This is required to maintain the

temporal consistency of all flip-flops in the pipeline stage. The stack of 3 PMOS

transistors in the shadow latch increases its setup time. However, the shadow latch is

required only for runtime validation of the main flip-flop data and does not form a part of

the critical path of the R1FF.

The rbar_latched signal, shown in the restore generation circuitry in Figure 3.4,

which is the half-cycle delayed and complemented version of the restore signal,

precharges the Err_dyn node for the next erroneous cycle. Thus, unlike standard dynamic

Error 0 Error 63

Clk_n

Clk_n

Clk_n

Clk_p

Q

Latch1

rbar_latched

restore

Qbar

Latch2

Clk Clk_pClk_n

P-skewed FFs

N-skewed FFs

Fail

FFP1 FFP2

FFN1 FFN2Error 0 Error 63

Clk_n

Clk_n

Clk_n

Clk_p

Q

Latch1

rbar_latched

restore

Qbar

Latch2

Clk Clk_pClk_n

P-skewed FFs

N-skewed FFs

Fail

FFP1 FFP2

FFN1 FFN2

Figure 3.4 Restore generation circuitry

33

gates where precharge takes place every cycle, the Err_dyn node is conditionally

precharged in the recovery cycle following a Razor error. Precharge can take place

without contention because in this cycle the slave latch has exactly the same data as the

shadow latch and is guaranteed not to be metastable. Hence, neither the error comparator

nor the metastability-detector evaluates. A weak PMOS half-latch protects Err_dyn from

discharge due to leakage.

The R1FF was compared with a standard DFF for power consumption at 0.18µm

technology. Both are designed for the same delay (clk-q delay + setup time) and drive

strength. The characterization setup consists of the flip-flop under test driving a FO4

capacitive load. The clock and the input data are each driven by signals with a 100ps

transition time and with sufficient delay between transitions on the data and the clock so

as not to violate setup time. The R1FF was found to consume 22% extra (60fJ/ 49fJ)

energy when the sampled data does not change state and 65% extra (205fJ/124fJ) energy

when sampled data switches. However, in our processor only 207 flip-flops out of 2801

flip-flops, or 7.4%, had critical paths terminating in them and needed use of R1FFs. The

measured power of the processor at 120MHz at 25C for a supply voltage of 1.8V was

130mW. A simulation based power analysis was performed to compute the power

overhead of the R1FFs and the delay buffers required to meet the short path constraint.

For a conservative activity factor of 20%, the net power overhead due to R1FFs was

0.31% and that due to delay buffers was 2.6%. Thus, the total power overhead due to

RazorI was computed to be less than 3% of the nominal chip power. Thus, most of the

additional power due to RazorI is attributed to the delay buffers added for meeting the

short path constraint.

3.2.1 Metastability detection

As was mentioned in Section 3.2, metastability can potentially cause incorrect

execution because of inconsistent interpretation and increase in propagation delay. We,

therefore, perform metastability detection at the R1FF node QS (as labeled in Figure 3.3)

because QS fans out to the flip-flop driver G1 and the error comparator and thus, directly

affects the R1FF outputs, namely Q and error.

34

Figure 3.5 illustrates the operating principle and characteristics of the metastability-

detector. The metastability-detector consists of a p-skewed inverter G2 and an n-skewed

inverter G3 (as labeled in Figure 3.3) which switch to opposite power rails under a meta-

stable input voltage such that a dynamic comparator can evaluate and latch the

comparison result. Figure 3.5(a) shows the DC transfer characteristics of the skewed

(a)
VIN(V)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 V
out

=V
in

 N_skewed, G3
 Unskewed, G1
 P_skewed, G2

V
O

U
T
(V

)

0.0 0.4 0.8 1.2 1.6 2.0

0.0

0.4

0.8

1.2

1.6

Voltage of Node QS

V
_O

U
T

Detection Band

Ambiguous Band

Error Comparator

Flip-Flop driver, G1

Metastability
Detector

(b)

(a)
VIN(V)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 V
out

=V
in

 N_skewed, G3
 Unskewed, G1
 P_skewed, G2

V
O

U
T
(V

)

VIN(V)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 V
out

=V
in

 N_skewed, G3
 Unskewed, G1
 P_skewed, G2

V
O

U
T
(V

)

0.0 0.4 0.8 1.2 1.6 2.0

0.0

0.4

0.8

1.2

1.6

Voltage of Node QS

V
_O

U
T

Detection Band

Ambiguous Band

Error Comparator

Flip-Flop driver, G1

Metastability
Detector

0.0 0.4 0.8 1.2 1.6 2.0

0.0

0.4

0.8

1.2

1.6

Voltage of Node QS

V
_O

U
T

Detection Band

Ambiguous Band

Error Comparator

Flip-Flop driver, G1

Metastability
Detector

(b)

Figure 3.5 Metastability-detector: Principle of Operation. Figure a) shows the DC
transfer characteristics of a P- and a N-skewed inverter compared to an unskewed
inverter. Figure b) shows error detection operation of the metastability-detector

35

inverters compared to that of the driver inverter, G1. The switching points are denoted as

the points where the 45 degree line intersects the DC transfer curves. We note that the

switching points for the p-skewed inverter and the n-skewed inverter lie on either side of

that for G1. During normal operation, when the output of the main flip-flop is logically

well defined, the output of G2 and G3 match. Thus, the comparator does not evaluate and

the dynamic node is not discharged. However, when QS is metastable at approximately

VDD/2, the output of the p-skewed inverter G2 is at a voltage level near VDD and the

output of the n-skewed inverter G3 is near ground. This causes the comparator to

evaluate and discharge the dynamic node, Err_dyn, thereby flagging the error signal.

It is imperative that the metastability-detector is guaranteed to evaluate for a voltage

range of the input node QS for which the fan-out of QS, namely the error comparator and

the flip-flop driver G1, have either logically undefined or logically inconsistent outputs.

This “ambiguous” band of voltage is defined as the voltage range for which the outputs

of either G1 or the error comparator are in between 10% to 90% of VDD. The range of

voltage for which the metastability-detector actually evaluates is defined to be the

“detection” band of voltage. Figure 3.5(b) shows the DC transfer curve of inverter G1,

the error comparator and the metastability-detector. As is clearly shown in the figure, the

“ambiguously” interpreted voltage band is contained well within the “detection” band.

Table 3.1 shows that the “detection” band subsumes the “ambiguous” band across

Table 3.1 Metastability-detector Corner Analysis

0.58-0.890.64-0.8127C1.8VFast

0.65-0.900.71-0.8340C1.8VTyp.

0.67-0.930.77-0.8785C1.8VSlow

0.40-0.610.48-0.5627C1.2VFast

0.48-0.610.52-0.5840C1.2VTyp.

0.53-0.640.57-0.6085C1.2VSlow

TEMPVDDProc

Detection
Band

Ambiguous
Band

Corner

0.58-0.890.64-0.8127C1.8VFast

0.65-0.900.71-0.8340C1.8VTyp.

0.67-0.930.77-0.8785C1.8VSlow

0.40-0.610.48-0.5627C1.2VFast

0.48-0.610.52-0.5840C1.2VTyp.

0.53-0.640.57-0.6085C1.2VSlow

TEMPVDDProc

Detection
Band

Ambiguous
Band

Corner

36

different process, voltage and temperature (PVT) corners to ensure correct operation

under all conditions. These characterization results are for a metastability-detector

designed in 0.18µm technology.

There is a certain delay between QS becoming metastable and the detector correctly

flagging such an occurrence. If QS remains metastable for a very small duration of time,

shorter than the evaluation delay through the detector, then the dynamic node Err_dyn is

not discharged completely and hence the error signal can become metastable. A key point

to note in this case is that when the error signal itself becomes metastable, the actual

R1FF output is already resolved and hence is not metastable. Such a situation, therefore,

does not constitute an actual failure. However, a metastable error signal can potentially

propagate through the restore generation logic and cause unpredictable behavior of the

pipeline recovery infrastructure. This can corrupt the processor state. Since the error

signal goes through intermediate logic gates and thus through several stages of gain until

restore generation takes place, it is very unlikely that metastability at the error signal can

propagate to cause metastability at the restore node.

The probability of the restore node becoming metastable was computed to be less

than 2e-30 [3]. Despite this being a sufficiently low probability, the unlikely event of it

happening is detected by means of skewed flip-flops, as shown in Figure 3.4. A p-skewed

flip-flop and an n-skewed flip-flop resolve a metastable input to opposite power rails

such that a XOR comparator can detect the discrepancy by flagging the fail signal. The

outputs of the skewed flip-flops are latched before being compared so that the fail signal

itself has negligible probability of being metastable. In the event of fail being flagged, the

entire pipeline is flushed and the failed instruction is re-executed. Since forward progress

is violated in this case, the supply voltage is immediately increased to ensure that the

failed instruction completes. During the 4 months of chip testing, such an event was

never detected.

3.3 Pipeline Error Recovery mechanisms

The pipeline error recovery mechanism must guarantee that, in the presence of Razor

errors, register and memory state is not corrupted with an incorrect value. In this section,

we highlight two possible approaches to implementing pipeline error recovery. The first

37

is a simple but slow method based on clock gating, while the second method is a much

more scalable technique based on counter-flow pipelining.

3.3.1 Recovery using clock gating

Figure 3.6(a) illustrates a simple approach to pipeline error recovery based on global

clock gating. In the event that any stage detects a Razor error, the entire pipeline is stalled

for one cycle by gating the next global clock edge. The additional clock period allows

every stage to re-compute its result using the RazorI shadow latch as input. Consequently,

any previously forwarded erroneous values will be replaced with the correct value from

the RazorI shadow latch. Since all stages re-evaluate their result with the RazorI shadow

latch input, any number of errors can be tolerated in a single cycle and forward progress

IF

R
az

or
 F

F
R

az
or

 F
F ID

R
az

or
 F

F
R

az
or

 F
F EX

R
az

or
 F

F
R

az
or

 F
F MEM WB

(reg/mem)

error

recover recover recover

R
az

or
 F

F
R

az
or

 F
F

P
C

P
C

recover

errorerror errorclock
Time (in cycles)

IF ID EX* MEM* WB

S
ta

bi
liz

er
 F

F
S

ta
bi

liz
er

 F
F

a)

b)

IF ID EX MEM WB

IF ID EX MEM WBstallIn
st

ru
ct

io
ns

IF ID EX MEMstall

Correct value
provided to MEM

MEM

Razor latch gets
correct EX value

ST

ST

ST

ST

ST

stall

Figure 3.6 Pipeline recovery using global clock-gating. Figure a) shows the pipeline
organization and Figure b) illustrates the pipeline timing for a failure in the EX
stage of the pipeline. The “*” denotes a failed stage computation.

38

is guaranteed. If all stages produce an error each cycle, the pipeline will continue to run,

but at half the normal speed.

It is imperative that erroneous pipeline results not be written to architected state

before it has been validated by RazorI. Since validation of RazorI values takes two

additional cycles (i.e., one for error detection and one for fail detection), there must be

two non-speculative stages between the last RazorI latch and the writeback (WB) stage.

In our design, memory accesses to the data cache are non-speculative, hence, only one

additional stage labeled ST for stabilize is required before writeback (WB). The ST stage

introduces an additional level of register bypass. Since store instructions must execute

non-speculatively, they are performed in the WB stage of the pipeline.

Figure 3.6(b) gives a pipeline timing diagram of a pipeline recovery for an

instruction that fails in the EX stage of the pipeline. The first failed stage computation

occurs in the 4th cycle, when the second instruction computes an incorrect result in the

EX stage of the pipeline. This error is detected in the 5th cycle, but only after the MEM

stage has computed an incorrect result using the erroneous value forward from the EX

stage. After the error is detected, a global clock stall occurs in the 6th cycle, permitting

the correct EX result in the RazorI shadow latch to be evaluated by the MEM stage. In

the 7th cycle, normal pipeline operation resumes.

3.3.2 Recovery using counterflow pipelining

In aggressively clocked designs, it may not be possible to implement global clock-

gating without significantly impacting processor cycle time. Consequently, we have

designed and implemented a fully pipelined error recovery mechanism based on

counterflow pipelining techniques [16]. The approach, illustrated in Figure 3.7(a), places

negligible timing constraints on the baseline pipeline design at the expense of extending

pipeline recovery over a few cycles. When a Razor error is detected, two specific actions

must be taken. First, the erroneous stage computation following the failing RazorI latch

must be nullified. This action is accomplished using the bubble signal, which indicates to

the next and subsequent stages that the pipeline slot is empty. Second, the flush train is

triggered by asserting the stage ID of failing stage. In the following cycle, the correct

value from the RazorI shadow latch data is injected back into the pipeline, allowing the

39

erroneous instruction to continue with its correct inputs. Additionally, the flush train

begins propagating the ID of the failing stage in the opposite direction of instructions. At

each stage visited by the active flush train, the corresponding pipeline stage and the one

immediately preceding are replaced with a bubble. (Two stages must be nullified to

account for the twice relative speed of the main pipeline.) When the flush ID reaches the

start of the pipeline, the flush control logic restarts the pipeline at the instruction

following the erroneous instruction. In the event that multiple stages experience errors in

the same cycle, all will initiate recovery but only the Razor error closest to writeback

(WB) will complete. Earlier recoveries are flushed by later ones.

Figure 3.7(b) shows a pipeline timing diagram of a pipelined recovery for an

instruction that fails in the EX stage. As in the previous example, the first failed stage

computation occurs in the 4th cycle, when the second instruction computes an incorrect

recover

IF

R
az

or
 F

F
R

az
or

 F
F ID

R
az

or
 F

F
R

az
or

 F
F EX

R
az

or
 F

F
R

az
or

 F
F MEM

(read-only)

WB
(reg/mem)

error bubble

recover recover

R
az

or
 F

F
R

az
or

 F
F

S
ta

bi
liz

er
 F

F
S

ta
bi

liz
er

 F
F

P
C

P
C

recover

flushID

bubble
error bubble

flushID

error bubble

flushIDFlush
Control

flushID

error

IF ID EX* MEM WB

a)

b)

IF ID EX MEM WB

IF ID flushEX

Time (in cycles)

In
st

ru
ct

io
ns

bubble

ST

ST

ST

flushID flushIFEX IF ID

Razor detects fault,
forwards bubble toward WB,

initiates flush toward IF
Pipeline flush

completes

IF ID IF

Figure 3.7 Pipeline recovery using counter-flow pipelining. Figure a) shows the
pipeline organization and Figure b) illustrates the pipeline timing for a failure in
the EX stage of the pipeline. The “*” denotes a failed stage computation.

40

result in the EX stage of the pipeline. This error is detected in the 5th cycle, causing a

bubble to be propagated out of the MEM stage and initiation of the flush train. The

instructions in the EX, ID and IF stages are flushed in the 6th, 7th and 8th cycles,

respectively. Finally, the pipeline is restarted after the erroneous instruction in cycle 9,

after which normal pipeline operation resumes.

A key requirement of the pipeline recovery control is that it does not fail under even

the worst operating conditions (e.g., low voltage, high temperature and high process

variation). This requirement is met through a conservative design approach that validates

the timing of the error recovery circuits at the worst-case sub-critical voltage.

3.4 Supply voltage control

Many of the parameters that affect voltage margin vary over time. Temperature

margins will track ambient temperatures and can vary on-die with processing demands.

Consequently, to optimize energy conservation it is desirable to introduce a voltage

control system into the design. The voltage control system adjusts the supply voltage

based on monitored error rates. If the error rate is very low, it could indicate circuit

computation is finishing too quickly and voltage should be lowered. Similarly, a low

error rate could indicate changes in the ambient environment (e.g., decreasing

temperature), giving additional opportunity to lower voltage. Increasing error rates, on

the other hand, indicate circuits are not meeting clock period constraints and voltage

should be increased. The optimal error rate depends on a number of factors including the

energy cost of error recovery and overall performance requirements, but in general it is a

small non-zero error rate.

Figure 3.8 illustrates the RazorI voltage control system. The control system works to

maintain a constant error rate of Eref. At regular intervals the error rate of the system is

measured by resetting an error counter which is sampled after a fixed period of time. The

computed error rate of the sample Esample is then subtracted from the reference error rate

to produce the error rate differential Ediff. Ediff is the input to the voltage control function,

which sets the target voltage of the voltage regulator. If Ediff is negative the system is

experience too many errors, and voltage should be increased. If Ediff is positive the error

41

rate is too low and voltage should be lowered. The magnitude of Ediff indicates the degree

to which the system is “out of tune”.

While control of this system may seem simple on the surface, it is complicated by

the slow response time of the voltage regulator. Typical commercial voltage regulators

can take 10’s of microseconds to adjust supply voltage by 100 mV. Consequently, if the

controller reacts too fast or too abruptly, the system could become unstable or go into

oscillation. Moreover, an overly conservative control function that is slow to react to

changing system environments will reduce the overall efficiency of the design. We

implemented a proportional control system [32] which adjusts supply voltage in

proportion to the sampled Ediff in the RazorI prototype processor. To prevent the control

system from over-reacting and potentially placing the system in an unstable state, the

error sample rate is roughly equivalent to the minimum voltage step period.

3.5 Silicon implementation and evaluation of the scheme

In order to evaluate the concept of RazorI, we designed and fabricated a 64bit

processor which implements a subset of the Alpha instruction set in an industrial

0.18micron technology. This processor was fabricated under the MOSIS [33] university

research program. This is the first silicon implementation of a Razor design [35] using

the RazorI methodology. We present implementation details and measurement results for

this design in Chapter 4. Voltage control is based on the observed error rate and power

savings are achieved by 1) eliminating the safety margins under nominal operating and

silicon conditions and 2) scaling voltage 120mV below the first failure point to achieve a

0.1% targeted error rate. We tested and measured savings due to RazorI based voltage

Eref

Voltage
Control

Function
Σ.

.

.
Pipeline

reset

Vdd

Ediff = Eref - Esample

-

Esample

panic

Voltage
Regulator

Ediff error
signalsEref

Voltage
Control

Function
ΣΣ.

.

.
Pipeline

reset

Vdd

Ediff = Eref - Esample

-

Esample

panic

Voltage
Regulator

Ediff error
signals

Figure 3.8 Razor supply voltage control

42

control for 33 different dies and obtained an average energy savings of 50% over the

worst-case operating conditions by operating at the 0.1% error rate voltage, at a fixed

frequency of 120MHz.

3.6 Summary and discussion

In this chapter, we developed the concept of error-detection and recovery through the

RazorI technique. We presented transistor-level schematic of the RazorI flip-flop which

flags timing errors by detecting discrepancies between the speculative data captured at

the main flip-flop and the always-correct data captured at the shadow latch. A

metastability-detector flags the occurrence of metastability at the output of the main flip-

flop.

We discussed two different schemes for micro-architectural recovery. The clock-

gating based approach stalls the pipeline for an entire cycle in the event of an error.

While its performance impact in the event of an error is small, however, it incurs

significant routing overhead on the global clock-gating signal. The counter-flow

architecture based approach trades-off higher performance impact of recovery for more

relaxed timing constraints. Consequently, this approach is more suited to large

microprocessors compared to the clock-gating approach.

We presented the Razor voltage controller which monitors the error-rate during

dynamic operation of the processor and adjusts the supply voltage to achieve a targeted

error-rate. We implemented Razor-based voltage control in a 64bit processor in 0.18µm

TSMC technology. In the next chapter, we present silicon measurement results from this

chip in greater detail.

43

CHAPTER 4

SELF-TUNING RAZOR I PROCESSOR: DESIGN AND SILICON
M EASUREMENT RESULTS

We designed a 64-bit microprocessor with RazorI based dynamic voltage

management [10]. The processor core is a five stage in-order pipeline which implements

a subset of the Alpha instruction set. The timing critical stages of the processor are the

Instruction Decode (ID) and the Execute (EX) stages. The output registers of these

pipeline stages required R1FFs for validating computation results. We implemented the

distributed pipeline recovery scheme as has been outlined in Chapter 3 and illustrated in

Figure 3.7. Since the write-back stage was not critical, we needed just one extra

stabilization stage before data was committed to memory. The extra stage of pipelining

meant that all the memory store operations and register write operations were guaranteed

not to be metastable. In addition to the write accesses, the memory read accesses were

also non-critical and did not require RazorI validation. The processor was fabricated in a

0.18micron industrial technology. The die photograph of the processor is shown in Figure

4.1 and the relevant implementation details are provided in Table 4.1.

The remainder of this chapter is organized as follows. In Section 4.1 0, we discuss

the clocking scheme and relevant implementation details of the RazorI processor. Section

4.2 discusses silicon measurement results on 33 tested dies where we demonstrate sub-

critical operation with RazorI error correction. We quantify the total energy savings due

to RazorI in Section 4.3 and discuss RazorI based supply voltage control in Section 4.4.

Finally, we summarize the chapter in Section 4.5.

44

4.1 Processor implementation details

For testability purposes, the architectural state of the processor is observable and

controllable by three separate scan chains for each of the Instruction Cache (ICache),

Data Cache (DCache) and the Register File. The chip was tested by scanning in

instructions into the Icache and comparing the execution output scanned out of the

Dcache and the Register File with a Personal Computer emulating the same code. A 64-

Figure 4.1 Die photograph of the RazorII processor. The 64bit processor executes a
sub-set of the ALPHA instruction set.

45

bit special purpose register keeps a record of the total number of errant cycles and is

sampled to compute the error rate for a particular run.

The core frequency is controlled by an internal Clock Generation Unit (CGU). The

CGU generates an asymmetric clock in a range between 60 MHz to 400 MHz in steps of

20MHz. The shadow latch sampling delay, defined by the duration of the positive clock

phase, is configurable from 0ps to 3.5ns in steps of 500ps. The CGU has a separate

voltage domain that is not voltage scaled. Hence, the core frequency and the shadow latch

sampling delay remains constant even when the core voltage is dynamically scaled.

4.2 Measurement Results

We measured energy savings obtainable from RazorI based Dynamic Voltage

Scaling (DVS) at 140 MHz and 120MHz for 33 chips from two different fabrication runs.

Table 4.1 Processor implementation details

2.9%% Total Chip Power Overhead due to
Razor Flip-Flops and Delay Buffers

2388Number of Delay Buffers Added

207Total Number of Razor Flip-Flops

2801Total Number of Flip-Flops

8KBDcache Size

8KBIcache Size

130mWMeasured Chip Power at 1.8V

3.3mm*3.6mmDie Size

1.58millionTotal Number of Transistors

1.2-1.8VDVS Supply Voltage Range

140MHzMax. Clock Frequency

0.18µmTechnology Node

2.9%% Total Chip Power Overhead due to
Razor Flip-Flops and Delay Buffers

2388Number of Delay Buffers Added

207Total Number of Razor Flip-Flops

2801Total Number of Flip-Flops

8KBDcache Size

8KBIcache Size

130mWMeasured Chip Power at 1.8V

3.3mm*3.6mmDie Size

1.58millionTotal Number of Transistors

1.2-1.8VDVS Supply Voltage Range

140MHzMax. Clock Frequency

0.18µmTechnology Node

260fJEnergy of RFF per error event

Error Detection and Recovery Overhead

60fJ/205fJRFF Energy (static/switching)

49fJ/125fJStandard Flip-Flop Energy
(static/switching)

Error Free Operation

260fJEnergy of RFF per error event

Error Detection and Recovery Overhead

60fJ/205fJRFF Energy (static/switching)

49fJ/125fJStandard Flip-Flop Energy
(static/switching)

Error Free Operation

46

As mentioned, RazorI energy savings are due to both elimination of voltage safety

margins and operation below the point of first failure in the sub-critical voltage regime.

For every chip, we quantified the safety margin due to inter-die process variations by

measuring the difference between the first failure point of the slowest (worst-case process

corner) chip and the chip under test. Temperature margins were computed by the shift in

the first failure point for a chip when operating at 105C as opposed to operating at 25C.

1.52 1.56 1.60 1.64 1.68 1.72 1.76
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

 120MHz

N
or

m
al

iz
ed

 E
ne

rg
y

P
er

ce
nt

ag
e

E
rr

or
 R

at
e

140MHz

Voltage (in Volts)

Chip 2

b)

1.52 1.56 1.60 1.64 1.68 1.72 1.76
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

 120MHz

N
or

m
al

iz
ed

 E
ne

rg
y

P
er

ce
nt

ag
e

E
rr

or
 R

at
e

140MHz

Voltage (in Volts)

Chip 2

1.52 1.56 1.60 1.64 1.68 1.72 1.76
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

 120MHz

N
or

m
al

iz
ed

 E
ne

rg
y

P
er

ce
nt

ag
e

E
rr

or
 R

at
e

140MHz

Voltage (in Volts)

Chip 2

b)

1.48 1.52 1.56 1.60 1.64
1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

P

er
ce

nt
ag

e
E

rr
or

 R
at

e

N
or

m
al

iz
ed

 E
ne

rg
y

120MHz

140MHz

Voltage (in Volts)

Chip 1

Point of First Failure at 120MHz

Sub-critical

a)

1.48 1.52 1.56 1.60 1.64
1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

P

er
ce

nt
ag

e
E

rr
or

 R
at

e

N
or

m
al

iz
ed

 E
ne

rg
y

120MHz

140MHz

Voltage (in Volts)

Chip 1

Point of First Failure at 120MHz

Sub-critical

1.48 1.52 1.56 1.60 1.64
1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

P

er
ce

nt
ag

e
E

rr
or

 R
at

e

N
or

m
al

iz
ed

 E
ne

rg
y

120MHz

140MHz

Voltage (in Volts)

Chip 1

1.48 1.52 1.56 1.60 1.64
1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

P

er
ce

nt
ag

e
E

rr
or

 R
at

e

N
or

m
al

iz
ed

 E
ne

rg
y

120MHz

140MHz

Voltage (in Volts)

Chip 1

Point of First Failure at 120MHz

Sub-critical

a)

Figure 4.2 Sub-critical operation in chips named "Chip 1" and "Chip 2"

47

In addition, by scaling the supply voltage below the first failure point, we measured the

minimum voltage for which error correction is achievable with RazorI and the voltage

where a 0.1% error rate is attained.

4.2.1 Energy Savings from Sub-critical Operation

Figure 4.2 shows the error rates and normalized energy savings versus supply

voltage at 120 and 140MHz for two different chips. Energy at a particular voltage is

normalized with respect to the energy at the point of first failure. For all plotted points,

correct program execution with RazorI error correction was verified.

From the figure, we note that the error rate at the point of first failure is very low,

and is on the order of 1.0e-8, because only a few critical paths that are rarely sensitized

fail to meet setup requirements and are flagged as timing errors. As voltage is scaled

further into the sub-critical regime the error rate increases exponentially. The IPC penalty

due to the error recovery cycles is negligible for error rates below 0.1%. Under such low

error rates, the recovery overhead energy is also negligible and the total processor energy

shows a quadratic reduction with the supply voltage. At error rates exceeding 0.1%, the

recovery energy rapidly starts to dominate, offsetting the quadratic savings due to voltage

scaling. For the measured chips, the energy optimal error rate fell at approximately 0.1%.

Table 4.2 shows the measured power at the point of first failure and the energy per

instruction for both the chips at the point of first failure and at the point of 0.1% error rate.

At 120MHz, chip 1 consumes 104.5mW at the first failure point and 89.7mW at an

optimal 0.1% error rate, leading to 14% energy savings with negligible IPC hit. The

Table 4.2 Error-rate and energy-per-instruction measurement for chips 1 and 2 at
the Point of First Failure and at the Point of 0.1% Error Rate

1.58V

1.52V

Voltage

Point of 0.1% Error RatePoint of First Failure

Chip2

Chip1

1.74V

1.63V

Voltage

99.6mW

89.7mW

Power

830pJ

740pJ

Energy per
Instruction
(Power/IPC

/Freq)

119.4mW

104.5mW

Power

990pJ

870pJ

Energy per
Instruction
(Power/IPC

/Freq)

1.58V

1.52V

Voltage

Point of 0.1% Error RatePoint of First Failure

Chip2

Chip1

1.74V

1.63V

Voltage

99.6mW

89.7mW

Power

830pJ

740pJ

Energy per
Instruction
(Power/IPC

/Freq)

119.4mW

104.5mW

Power

990pJ

870pJ

Energy per
Instruction
(Power/IPC

/Freq)

48

energy saving for chip 2 is 17%. These savings are in addition to the energy saved just by

eliminating voltage margins. Figure 4.3 shows the distribution of the percentage

normalized energy savings obtained over the first failure point while operating at the

0.1% error rate voltage for all the chips tested. At 120MHz, the range extends from 5% to

23% while at 140MHz the range extends from 5% to 19%.

Figure 4.4(a) shows the distribution of the first failure voltage for the 33 measured

chips. At 120MHz, the measured range of variation of the first failure point is from 1.46V

to 1.76V. The correlation between the first failure voltage and the 0.1% error rate voltage

is shown in the scatter plot of Figure 4.4(b). The 0.1% error rate voltage shows a net

variation of 0.24V from 1.38V to 1.62V which is approximately 20% less than the

variation observed for the voltage at the point of first failure.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16 L o t0
 L o t1

120MHz
T=27C

Percentage Savings

N
um

be
r

of
 C

hi
ps

5 9 13 17 21
0

2

4

6

8

10

12

14 Lot0
 Lot1

Percentage Savings

N
um

be
r

of
 C

hi
ps

140MHz
T=27C

(a) (b)

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16 Lo t0
 Lo t1

120MHz
T=27C

Percentage Savings

N
um

be
r

of
 C

hi
ps

5 9 13 17 21
0

2

4

6

8

10

12

14 Lot0
 Lot1

Percentage Savings

N
um

be
r

of
 C

hi
ps

140MHz
T=27C

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16 Lo t0
 Lo t1

120MHz
T=27C

Percentage Savings

N
um

be
r

of
 C

hi
ps

5 9 13 17 21
0

2

4

6

8

10

12

14 Lot0
 Lot1

Percentage Savings

N
um

be
r

of
 C

hi
ps

140MHz
T=27C

(a) (b)

Figure 4.3 Normalized energy savings over point of first failure at the 0.1% error-
rate for 33 measured chips at 120 and 140MHz.

49

The relative “flatness” of the linear fit indicates less sensitivity to process variation

when running at a 0.1% error rate than at the point of first failure. This implies that a

RazorI enabled processor, designed to operate at the energy optimal point, is likely to

show greater predictability in terms of performance than a conventional worst-case

optimized design. The energy optimal point requires a significant number of paths to fail

1.48 1.56 1.64 1.72 1.80
0
1
2
3
4
5
6
7
8
9

10
11
12

 Lot 0
 Lot 1

Distribution of Point of First Failure

Voltage

N
um

be
r

of
 C

hi
ps

(a)

1.4 1.5 1.6 1.7 1.8

1.4

1.5

1.6

1.7

1.8 Chips
 Linear Fit
 y=0.8x + 0.2

Point of 0.1% Error Rate Vs Point of First Failure

(b)

1.48 1.56 1.64 1.72 1.80
0
1
2
3
4
5
6
7
8
9

10
11
12

 Lot 0
 Lot 1

Distribution of Point of First Failure

Voltage

N
um

be
r

of
 C

hi
ps

(a)

1.48 1.56 1.64 1.72 1.80
0
1
2
3
4
5
6
7
8
9

10
11
12

 Lot 0
 Lot 1

Distribution of Point of First Failure

Voltage

N
um

be
r

of
 C

hi
ps

(a)

1.4 1.5 1.6 1.7 1.8

1.4

1.5

1.6

1.7

1.8 Chips
 Linear Fit
 y=0.8x + 0.2

Point of 0.1% Error Rate Vs Point of First Failure

(b)

Figure 4.4 Relationship between the Point of First failure and the 0.1% Error-rate
point. Figure a) shows the distribution of the Point of First Failure for 33 different
chips. Figure b) shows that the 0.1% point has a smaller spread than the Point of
First Failure.

50

and statistically averages out the variations in path delay due to process variation, as

opposed to the first failure point which, being determined by the single longest critical

path, shows higher process variation dependence.

Figure 4.5 shows the effect of temperature on the point of first failure for a typical

chip. As expected, the first failure point increases and shifts by 100mV from 1.45V to

1.55V for a temperature change from 25C to 105C.

4.3 Total Energy Savings with RazorI

The bar graph in Figure 4.6 shows the energy for chips 1 and 2 when operating at

120MHz. The first failure voltage for chips 1 and 2, as shown in Figure 4.2, are 1.63V

and 1.74V respectively, and hence represent typical and worst-case process conditions.

The first set of bars shows the energy when RazorI is turned off and the chip under

test is operated at the worst-case operating voltage at 120MHz, as determined for all the

chips tested. This is the minimum voltage which guarantees error-free operation for the

slowest process corner silicon at the worst-case temperature of 105C and a power supply

drop equal to 10% of the nominal voltage of 1.8V. The point of first failure for the

-35 -15 5 25 45 65 85 105

1.40

1.44

1.48

1.52

1.56

P
oi

nt
 o

f F
irs

t F
ai

lu
re

(V
)

Temperature(oC)

Figure 4.5 Temperature margins

51

slowest chip, among the 33 tested dies, is 1.76V at 25C which increases to 1.86V at 105C,

a change of 100mV. To this, we add an extra 0.18V (10% of 1.8V) as safety margin for

supply voltage drop, thus obtaining the worst-case operating voltage of 2.04V. Without

RazorI being enabled, all the chips would need to operate at the worst-case voltage in

order to ensure correct operation across all dies and operating conditions.

We measure the power consumption of chips 1 and 2 at this voltage and quantify

how much of the worst-case power is due to process, temperature and voltage safety

margins. We measure the power due to process margins of a chip by measuring the

difference in power consumption when operating at its own point of first failure versus

that when operating at the first failure voltage of the worst case chip. For example, chip 1

consumes 17.3mW extra when operating at 1.76V (the point of first failure of worst-case

chip) as opposed to operating at its own first failure point of 1.63V. The power due to

temperature margins is measured by the difference in power consumption when operating

at a voltage of 1.86V (first failure point of worst-case chip at 105C) versus operating at

80

100

120

140

160

27.3mW
180mV

Power
Supply

Integrity

11.3mW
100mV
Temp

17.3mW
130mV

Process

104.5mW
1.63V

4.2mW
20mV

Process

89.7mW
1.52V

99.6mW
1.58V

104.5mW

119.4mW

89.7mW

119.4mW
1.74V

11.5mW
100mV
Temp

27.7mW
180mV

Power
Supply

Integrity

119.4mW
1.74V

99.6mW

chip1 chip2 chip1 chip2 chip1 chip2
Measured Power

with supply, temperature
and process margins

Power with Razor DVS
when Operating at Point

of First Failure

Power with Razor DVS
when Operating at Point

of 0.1% Error Rate

M
ea

su
re

d
P

ow
er

 (
in

 m
W

)

160.5mW 162.8mW

104.5mW
1.63V

 Figure 4.6 Total Energy Savings with RazorI.

52

1.76V. Similarly, the power due to power supply margins is measured by operating the

chip at the worst-case voltage of 2.04V versus operating it at 1.86V. At 2.04V, chip 1

consumes 160.5mW of which 27.3mW is due to safety margin for supply voltage drop,

11.2mW is due to temperature margin and 17.3mW is due to process margin. Chip 2

consumes 162.8mW at the worst-case voltage, as shown in the Figure.

The second set of bars shows the energy when operating with Razor enabled at the

point of first failure with all the safety margins eliminated. At the point of first failure,

chip 1 consumes 104.5mW while chip 2 consumes 119.4mW of power. Thus for chip 1,

operating at the first failure point leads to a saving of 55.9mW which translates to 35%

saving over the worst-case. The corresponding saving for chip 2 is 43.4mW (27% saving

over the worst-case).

The third set of bar shows the additional energy savings due to sub-critical mode of

operation of RazorI. With RazorI enabled, both chips are operated at the 0.1% error rate

voltage and power measurements are taken. Since the operating frequency is kept

constant at 120MHz and the IPC degradation is minimal at 0.1% error rate, the

percentage savings in power is an accurate estimate of the percentage savings in energy.

At the 0.1% error rate, chip 1 consumes 89.7mW of power which translates to 44%

39 44 49 54 59 64
0
1
2
3
4
5
6
7
8
9

10
11 Lot0

 Lot1

Percentage Savings

N
um

be
r

of
 C

hi
ps

120MHz

41 46 51 56 61
0

2

4

6

8

10

12

14

16 Lot0
 Lot1

Percentage Savings

N
um

be
r

of
 C

hi
ps

140MHz

(a) (b)

39 44 49 54 59 64
0
1
2
3
4
5
6
7
8
9

10
11 Lot0

 Lot1

Percentage Savings

N
um

be
r

of
 C

hi
ps

120MHz

41 46 51 56 61
0

2

4

6

8

10

12

14

16 Lot0
 Lot1

Percentage Savings

N
um

be
r

of
 C

hi
ps

140MHz

(a) (b)

Figure 4.7 Distribution of the total energy savings over the worst-case for 33
measured chips.

53

saving over the worst-case (14% saving over operating at the point of first failure). Chip

2 consumes 99.6mW of power at 0.1% error rate which is a saving of 39% over the

worst-case (17% saving over the point of first failure). The total energy gains for chip 1

(71mW, 44%) and chip 2 (63mW, 39%) are comparable because greater process margin

in chip 1 (13mW greater) is compensated by increased savings for chip 2 (4mW extra)

due to scaling below the first failure point.

The distribution of the percentage energy savings over the worst case for all 33 chips

at 120MHz and 140MHz operating frequencies is shown in Figure 4.7. On an average,

we obtain approximately 50% savings over the worst case at 120MHz and 45% savings at

140MHz when operating at the 0.1% error rate voltage.

4.4 RazorI Voltage Control

Figure 4.8 shows the basic structure of the hardware control loop that was

implemented for real-time RazorI voltage control. The controller reacts to the error rate

that is monitored by sampling the error register and regulates the supply voltage to

achieve a targeted error rate. The difference between the sampled error rate and the

targeted error rate is the error rate differential, Ediff. A positive value of Ediff implies that

the CPU is experiencing too few errors and hence the supply voltage may be reduced. If

Ediff is negative, then the system is exhibiting too many errors and hence the supply

voltage needs to be increased.

The control algorithm is implemented on a Xilinx XC2V250 FPGA [34], which

computes the error rate from the sampled register. The controller on the FPGA reacts to

the error-rate by adjusting the supply voltage to the chip through a DAC and DC-DC

CPU
Error
Count

Σ
Eref

Esample

Ediff = Eref - Esample

Ediff

Vdd

12 bit
DAC DC-DC

Voltage
Control

Function

Voltage Regulator
FPGAreset

CPU
Error
Count

ΣΣ
Eref

Esample

Ediff = Eref - Esample

Ediff

Vdd

12 bit
DAC DC-DC

Voltage
Control

Function

Voltage Regulator
FPGAreset

Figure 4.8 RazorI voltage control loop

54

switching regulator. The DAC outputs an analog reference voltage to the regulator based

on the 12-bit control output from the FPGA. The DC-DC regulator has a voltage gain of

1.76 and can source a maximum current of 600mA. It can easily supply sufficient current

to the chip which consumes less than 80mA at 1.8V. We tested the controller using a

program which has alternating high and low error rate phases. At the high error rate phase,

the processor is executing high latency instructions and hence the critical paths of the

circuit are being exercised frequently. Therefore, a higher supply voltage is required to

sustain the targeted error rate and vice versa.

The on-chip error counter is sampled at a frequency of 750KHz and is accumulated

within the FPGA. The algorithm updates the control output at a conservative frequency of

1 KHz. If error rates are too high, voltage is increased at a rate of 1 bit per millisecond.

Conversely, a low error rate caused a 1-bit decrease. This corresponds to a voltage

change of 2.15 mV at the output of the DC-DC regulator feeding into the chip.

Figure 4.9 shows a 2 minute portion of the voltage controller response for the 2-

phase program execution. The targeted error rate for the given trace is set to 0.1% relative

to CPU clock cycle count. The controller maintains an average of 0.1% error rate during

Figure 4.9 Run-time response of the RazorI voltage controller. Shown in the figure
is a two minute snapshot of the error-rate for a program with two error-rate
phases.

55

the low error rate phase. In the high error rate phase, the controller maintains an average

of 0.2% error rate although the median for the samples is still at 0.1% error rate. The

control target is not achieved in the high error rate phase due to the occasional bursts in

the error rate which increase the average error rate beyond that of the target. The error

rate is bursty in this phase because a significantly greater number of critical paths are

exercised and hence there is a greater sensitivity to noise in the supply voltage which

causes the observed bursts. In the low error rate phase, a much smaller number of paths

are critical and hence the sensitivity of the error rate to power supply noise is also

reduced significantly.

The controller response during a transition from the low-error rate phase to the high-

error rate phase is shown in Figure 4.10(a). Error rates increase to about 15% at the onset

of the high-error phase. The error rate falls until the controller reaches a high enough

voltage to meet the desired error rate in each millisecond sample period. During a

transition from the high error rate phase to the low error rate phase, shown in Figure

29.4 29.5 29.6 29.7
0.0

0.5

1.0

1.5

2.0

1.56

1.58

1.60

1.62

1.64

1.66

1.68

1.70

1.72

25.2 25.3 25.4 25.5
0

2

4

6

8

10

12

14

16

1.58

1.60

1.62

1.64

1.66

1.68

1.70

1.72

(a) (b)

P
er

ce
nt

ag
e

E
rr

or
 R

at
e

C
on

tr
ol

le
r

O
ut

pu
t V

ol
ta

ge
(V

)

P
er

ce
nt

ag
e

E
rr

or
 R

at
e

C
on

tr
ol

le
r

O
ut

pu
t V

ol
ta

ge
(V

)
Time (s) Time (s)

Figure 4.10 RazorI voltage controller: Error-rate phase transition response. Figure
a) shows the transition from low to high error-rate. Figure b) shows the transition
in the opposite direction.

56

4.10(b), the error rate drops to zero because the supply voltage is higher than required.

The controller responds by gradually reducing the voltage until the target error rate is

achieved. The average voltage maintained during the low error rate phase is 1.59V and

the average voltage maintained at the high error rate phase is 1.72V, a difference of

130mV. More efficient and complex control and error prediction strategies are an area of

ongoing research, including automatic optimal error-rate selection.

4.5 Summary and discussion

In this chapter, we presented a self-tuning processor with RazorI based supply

voltage control. RazorI incorporates in situ error detection and correction mechanisms to

eliminate voltage margins and to operate below the point of first failure. We presented

the design of a novel delay-error tolerant flip-flop that detects and recovers from timing

errors on the processor critical paths. With RazorI based voltage management, we

obtained 50% energy savings over the worst-case, on an average across 33 tested dies, by

operating at the 0.1% error rate voltage at a constant frequency of 120MHz. Since the

energy-optimal voltage for RazorI occurs at moderately low error rates, it motivates

design optimization targeted at improving the delay of typically exercised logic paths as

opposed to the worst case critical path.

However, RazorI makes certain assumptions about the timing properties of the

underlying architecture which may not hold true in the general case. For example, the

propagation delay of the pipeline restore signal, which is a high fan-out net, can become

critical for high-performance pipelines, especially at aggressive technologies. This can

have the undesirable consequence of RazorI voltage scaling being limited by the restore

signal rather than by the critical-paths in the pipeline. This and similar concerns were the

primary motivation for us to develop an alternative technique for implementing Razor in

processors, which we call RazorII. We discuss, in detail, the various issues and

weaknesses in RazorI in the next chapter and develop the key concepts of RazorII which

address these.

 57

CHAPTER 5

RAZOR II: TRANSITION -DETECTION BASED ERROR -
DETECTION AND M ICRO-ARCHITECTURAL RECOVERY

In Chapter 3, we introduced the concept of RazorI which uses a double-sampling

RazorI flip-flop (R1FF) for in situ error-detection. In RazorI speculative data captured at

the positive edge of the clock is compared against the correct sample stored in a shadow

latch. Recovery is achieved through a pipeline restore signal which a) overwrites the

main flip-flop with the correct data in the shadow latch, thereby restoring correct state in

the main flip-flop with a single cycle penalty and b) engages additional infrastructure

embedded within the micro-architecture which reverts the pipeline back to its correct

state. Thus, the recovery process has both circuits as well as micro-architectural aspects

to it.

This technique of error-detection and the circuit-architectural recovery has

fundamental design constraints which make it significantly less amenable to high-

performance microprocessors at advanced process nodes. In this chapter, we propose a

new technique, called RazorII, which addresses the issues in the RazorI approach. The

remainder of the chapter is organized as follows. In Section 5.1, we discuss the

weaknesses of the RazorI technique which complicates its deployment in high-

performance pipelines. Section 5.2 describes the key concepts of the RazorII technique.

Section 5.3 deals with the pipeline modifications necessary to support recovery in a

RazorII pipeline when a timing error is detected. The transistor-level schematic of the

error-detecting RazorII flip-flop is described in Section 5.4. Section 5.5 deals with an

alternative design of the RazorII flip-flop which uses a transparent latch, instead of a flip-

flop. We show how this design simultaneously achieves timing-error detection and SEU

tolerance in logic and inside registers. Memory design for the RazorII pipeline is

discussed in Section 5.6. Finally, we summarize this chapter in Section 5.7.

 58

5.1 Issues with the RazorI technique

5.1.1 Timing constraint on the pipeline restore signal

The restore signal is generated by “OR”-ing the error pins of individual R1FFs in the

pipeline stage, as described in Section 3.1. The output of this OR gate is suitably latched

and routed to every flip-flop in the stage. Thus, the restore generation and propagation

circuitry is a high fan-in and high fan-out structure. A suitable buffer tree is required in

order to route the restore signal in time before the next clock rising edge such that the

shadow latch data can be written into the main flip-flop.

The timing requirement on the restore signal is conceptually illustrated in Figure 5.1.

The latency of the restore buffer tree (Tbuffer) should be such that it has sufficient slack

(Tmargin) to be able to meet the setup requirement at the restore pin (Tsetup) for every flip-

flop in the pipeline stage, even under the worst-case combination of PVT variations.

Margin is required to ensure that as supply voltage is scaled, the error-recovery path does

not become critical and that voltage-scaling is still limited by timing errors in the pipeline

instead of the restore generation circuitry. The error signal at a R1FF is asserted at the

negative edge of the clock, as shown in Figure 5.1. This makes the timing constraint on

Clk

Error

Restore

TsetupTmargin
Tbuffer

Clk

Error

Restore

TsetupTmargin
Tbuffer

Figure 5.1 Timing constraint on the Restore signal. The Restore signal is a high fan-
out net which is generated out of a high fan-in OR gate. It needs to setup before the
next rising edge with sufficient safety margin.

 59

the restore signal even more stringent since its generation and propagation has to occur

strictly within the negative clock-phase with sufficient margin to spare.

For larger designs with many critical flip-flops, meeting this design constraint is

naturally expected to be difficult. Consequently, at future technologies, the efficacy of the

RazorI technique will be undermined by the voltage headroom being limited by the

criticality of the restore signal rather than by the speculation time available.

5.1.2 Issues with metastability detection

Metastability at the main flip-flop output can cause the downstream pipeline stage

and the restore generation circuitry to interpret the metastable signal differently, thereby

leading to system failure. In addition, metastability can cause the delay of the succeeding

pipestage to exceed the error-detection window. Hence, it is imperative that the

metastability-detector is very carefully designed to flag all occurrences of metastability at

the main flip-flop for the entire range of operation.

As mentioned in Section 3.2, the metastability-detector relies on skewed inverters

and, hence, is susceptible to process variation. It needs to be designed for correct

operation at the skewed process corners such as SF (slow NMOS, fast PMOS) and FS

(fast NMOS, slow PMOS). This requires the use of wider transistors inside the skewed

inverters which, unfortunately, increases the capacitive load driven by the flip-flop node

where metastability is being monitored. This not only worsens the intrinsic CLK-Q delay

of the flip-flop, but also exponentially increases the likelihood of metastability occurring

at that node [12].

Thus, the design of the metastability-detector presents conflicting constraints. On

one hand, it requires wider transistors to ensure functional correctness across process

corners. On the other hand, wider transistors increase the likelihood of metastability at

the flip-flop sampling node driving the metastability-detector. Rise in intra-die process

variability at future technology nodes further exacerbate the difficulties in ensuring

robust operation of the metastability-detector.

In addition to the complications involved in the metastability-detector and the

stringent timing constraint on the restore signal, critical control signals greatly

complicate the RazorI technique. Control signals determine the state of the data-path.

 60

Therefore, timing violations in such signals can corrupt the shadow latch data, thereby

leading to system failure.

In order to effectively address these issues, we introduce an alternative technique for

error detection and correction, henceforth referred to as RazorII. RazorII exploits a key

observation from our measurements performed on the RazorI processor that the error rate

at the Point of First Failure (PoFF) is extremely low, ~1 error in 10 million cycles. An

extremely low error-rate makes the recovery energy negligible at this operating point. In

addition, we also found that beyond the PoFF, the error rate increases exponentially at

one decade per 10mV supply voltage increase. Hence the energy gain from operating

substantially below the PoFF was small (~10%) compared to the energy gain from

eliminating the PVT margins (~35 to 45%) [10]. We take advantage of these findings in

RazorII wherein a processor is intended to operate at the PoFF and recovery from a

timing error occurs by a conventional architectural replay mechanism.

Replaying an erroneous instruction incurs greater Instructions Per Cycle (IPC)

overhead than the counter-flow pipeline recovery technique used in [10]. However, as

error-rates are extremely low at the PoFF, the increased IPC overhead from using

architectural replay has a negligible impact on the overall energy efficiency. Architectural

replay greatly simplifies the error recovery path, thereby making RazorII significantly

more amenable to high-performance microprocessors compared to RazorI. We introduce

a novel timing-error detecting flip-flop (RazorII flip-flop or the R2FF) based on flagging

spurious transitions at the critical-path endpoint. We present a design of the RazorII flip-

flop which naturally detects Single Event Upsets (SEU) within combinational logic and

in latches. In order to validate RazorII, we designed and fabricated a 64bit prototype

processor which uses RazorII for SEU tolerance and low-energy operation through

dynamic supply adaptation. We present silicon measurement results from this processor

in Chapter 7 of this thesis.

5.2 Key concepts of RazorII

The RazorII approach introduces two novel components which are as follows:

1. Instead of performing both error detection and correction in the flip-flop, RazorII

performs only detection in the flip-flop, while correction is performed through

 61

architectural replay. This allows significant reduction in the complexity and size of the

RazorII flip-flop, although at the cost of increased IPC penalty during recovery.

Architectural replay is a conventional technique which often already exists in high-

performance microprocessors to support speculative operation such as out-of-order

execution and branch prediction. Hence, it is possible to overload the existing framework

to support replay in the event of timing errors. In addition, this technique precludes the

need for a pipeline restore signal, thereby significantly relaxing the timing constraints on

the error-recovery path. This feature makes RazorII highly amenable to deployment in

high-performance processors.

2. The design of the RazorII flip-flop detects timing errors by flagging any transition

at the critical-path endpoint in the positive phase of the clock. Using a transition-detector

for flagging timing errors allows the elimination of the metastability-detector and the

shadow-latch. This significantly reduces the clock-pin capacitance of the flip-flop

bringing down its power and area overhead. In addition, the basic design of the RazorII

flip-flop can be easily modified to use a level-sensitive transparent latch instead of a flip-

flop. This simplification allows it to naturally detect Single Event Upsets (SEU) in the

logic and registers without additional overhead. We describe the design of this modified

RazorII flip-flop in Section 5.5.

In the following sections, we develop the RazorII error-detection and recovery

concept in greater detail.

5.3 RazorII pipeline micro-architecture

The key idea in RazorII is to use the RazorII flip-flop only for error-detection. State

recovery after a timing error occurs by a conventional replay mechanism from a check-

pointed state. Relying on the roll-back mechanism eliminates the requirement for a

timing-critical restore signal and greatly simplifies recovery in the event of a timing

error.

Figure 5.2 conceptually illustrates all the major micro-architectural modifications to

the basic pipeline in order to support roll-back. The pipeline shown in the figure is a

conventional in-order, five-stage pipeline. The critical flip-flops in each pipeline stage are

RazorII flip-flops which monitor their respective data inputs for timing-error violations.

 62

The composite error signal for the entire design is generated by OR-ing together the

individual error pins of each flip-flop. Since the error pin of a RazorII flip-flop can

become metastable, we employ the conventional practice of double-latching the output of

the error-tree using synchronization flip-flops. Double-latching a potentially metastable

signal effectively reduces the probability of metastability, at that signal, to negligible

levels.

The pipeline can be broadly divided into two domains. The speculative domain

consists of error-detecting critical flip-flops. These consist of the pipeline registers, the

speculative register bank and critical architectural-state buffers. The speculative register

bank forms the working set of registers for pipeline execution. It can get written with

incorrect and potentially metastable data from the pipeline. When pipeline roll-back is

initiated, correct state is restored in the speculative register bank from the non-speculative,

golden register bank.

Non-
speculative
Register

Bank,
PC,
PSR

Run-time
state

(Reg, PC,
PSR)

Razor Error
Control

Error

recover

IF ID EX ME WB

Stabilization

freq

Vdd

Clock
and

Voltage
Control

Check-pointed
State

Timing-critical pipeline stages

PC

R
F

F

R
F

F

R
F

F

R
F

F

Error
Detection

Error
Detection

Error
Detection

Error
Detection

Error
Detection

Synchronization
flops

flush

R
F

F Non-
speculative
Register

Bank,
PC,
PSR

Run-time
state

(Reg, PC,
PSR)

Razor Error
Control

Error

recover

IF ID EX ME WB

Stabilization

freq

Vdd

Clock
and

Voltage
Control

Check-pointed
State

Timing-critical pipeline stages

PC

R
F

F

R
F

F

R
F

F

R
F

F

Error
Detection

Error
Detection

Error
Detection

Error
Detection

Error
Detection

Synchronization
flops

flush

R
F

F

Figure 5.2 RazorII pipeline organization

 63

The golden register bank along with the data cache and the architectural state

registers such as the program counter (PC) and the program status register (PSR) form the

non-speculative domain of the pipeline. It is required to guarantee that the non-

speculative domain is non-critical and always-correct. The pipeline output is check-

pointed within the non-speculative domain once it has been validated by Razor to be

error-free. Thus, it is effectively a snapshot of the processor state to which the pipeline

can revert to, without losing correctness. The speculative domain is prevented from

updating the state of the non-speculative domain with incorrect data by means a

stabilization pipeline. The first stage of the stabilization pipeline requires error detection

since it interfaces directly with a critical processor core. The subsequent stages are

required to be non-critical which is easily guaranteed since no computation occurs in the

stabilization pipeline. The depth of the stabilization pipeline is equal to the latency

through the error detection tree.

The primary objective of the stabilization pipeline is to ensure that speculative data is

not committed before it has been validated to be correct. When an instruction at the

output of the stabilization stage is qualified to be error-free by the Razor error controller,

it is safely allowed to update the processor architectural state. These updates include

register writes to the golden register file, the data cache and the program status register.

In addition, the instruction program counter is also check-pointed.

When the error controller block detects incorrect execution in the pipeline, it initiates

the roll-back mechanism to revert the pipeline back to the last check-pointed state. First,

the stabilization pipeline and the speculative architectural state buffers are flushed. Then,

rest of the pipeline registers are “reset”-ed. The state in the speculative register file and

the speculative state buffers is restored by overwriting them with the contents of the

golden register file and the golden architectural-state registers, respectively. Thus, the

entire pipeline is reset to the state of the last committed instruction and normal pipeline

operation is resumed.

 As was mentioned earlier, re-executing from the last committed instruction does not

guarantee forward progress since the pipeline may effectively stall due to a repeatedly

failing instruction. The RazorII error controller detects such a deadlock and responds to it

by gating every alternate clock cycle during recovery. Thus, running the pipeline at half

 64

frequency ensures that the pipeline completes without incurring timing errors. However,

it is expected that a major proportion of errors will be due to transient noise events which

disappear when the pipeline state is changed during the flush and re-execution process.

This observation is borne out from silicon measurement results on the RazorII prototype

processor which we present in Chapter 7 of this thesis.

The RazorII error controller also maintains a running count of the error-rate and

implements the voltage controller algorithm. Accordingly, it interfaces with an external

voltage regulator to adjust the supply voltage of the processor so as to achieve a targeted

error rate.

5.4 Transition-detection based error-detection

The concept of error detection through transition-detection is illustrated in Figure 5.3.

An error is flagged when the data input changes in the setup window of the flip-flop in

front of the positive clock-edge. The time before the positive edge when the transition-

detector actually begins to monitor for spurious state changes at the data input is required

to subsume the setup time for the flip-flop. Therefore, an additional safety margin (Tmar-

gin) is added to the transition-detector such that it is guaranteed to flag timing errors

before actual setup violations begin occurring, even in the worst-case scenario. This

margin is statically built within the transition detector using conventional worst-case

design practices.

Tsetup Tpos

Clock
Data
Error

Tmargin Detection Window

Figure 5.3 Transition-detection based error detection

 65

Figure 5.4 illustrates the circuit schematic of a scannable, RazorII flip-flop

augmented with a transition-detector for error-detection. The main flip-flop is a

conventional, positive edge-triggered, master-slave flip-flop. The input pin of the main

flip-flop, D, is monitored for spurious transitions in the high clock-phase by the

transition-detector. The clock input to the main flip-flop is delayed with respect to the

transition-detector by time equal to the statically characterized setup time of the flip-flop

and added margin (Tsetup + Tmargin), as shown in Figure 5.4. Thus, the transition-detector

begins monitoring for timing errors before the onset of the actual setup window of the

main flip-flop.

Figure 5.4 Transition-detecting RazorII flip-flop

 66

Adding the delay-chain to the clock-path increases the power overhead of the flip-

flop. Alternatively, this delay can also be added to the input data of the transition-detector

at the expense of reducing its sensitivity to glitches. Doing this reduces the power

overhead of the flip-flop, however, it also increases the potential risk of a narrow glitch

getting filtered through the delay-chain. This can cause the transition-detector to miss the

glitch even when it causes a state upset inside the main flip-flop, thereby leading to

system failure. Consequently, adding the delay chain to the clock-path as opposed to the

data is a safer design trade-off even though it incurs additional power overhead.

Timing diagrams in Figure 5.5 explain the working of the pulse generators. The

transition-detector consists of two conventional pulse-generators (0to1_PG and 1to0_PG)

which generate a pulse out of a transition at the monitored node. This pulse is then

captured by a dynamic OR gate in the high phase of the clock by discharging the dynamic

node, Err_dyn, as shown in Figure 5.4. The pulse-generators consist of an inverter and an

AND gate. When the input to the pulse-generator (D_in), 0to1_PG, transitions from low

to high, the output of the inverter, I1, transitions low after a delay equal to the

propagation delay through the inverter. This causes a pulse to occur at the output of the

pulse-generator (p0to1). The width of the pulse is dependent upon the delay through the

Tsetup Tpos

Clock

Din

Err_dyn

Error

p0to1

Tmargin Tsetup Tpos

Clock

Din

Err_dyn

Error

p1to0

Tmargin

inv

0 to 1 transition 1 to 0 transition

Tsetup Tpos

Clock

Din

Err_dyn

Error

p0to1

Tmargin Tsetup Tpos

Clock

Din

Err_dyn

Error

p1to0

Tmargin

inv

0 to 1 transition 1 to 0 transition

Figure 5.5 Timing diagrams showing the principle of operation of the Transition
Detector

 67

inverter. An additional pulse generator is required to sense a transition in the opposite

direction i.e. from logic high to low.

The Err_reset signal, generated by the pipeline recovery mechanism in the event of

an error, precharges the dynamic node, Err_dyn and readies it for the detection of the

next timing error. Thus, unlike conventional semi-dynamic circuits, the Err_dyn node is

conditionally precharged in the event of an error. This is similar to error-resetting scheme

used in the RazorI technique (Section 3.2). However, in the RazorII scheme, the global

Err_reset signal can be a multicycle signal and thus has relaxed timing constraint.

A key observation is that when the flip-flop is likely to be metastable, the transition

detector outputs a logically defined signal. On the other hand, if the data transitions right

at the beginning of the error detection window, then the transition detector itself can get

metastable. However, due to the safety margin (Tmargin), when such an event occurs, it is

guaranteed that the main flip-flop data is correct. Hence, such an event is benign from the

perspective of the data path. To avoid the metastable error signal from propagating

through the error recovery logic, it is double-latched before being forwarded to the

architectural replay unit. Depending on how the metastable signal resolves, the replay

unit can potentially interpret the event as a valid error. In this case, the pipeline is flushed

and a replay event occurs. This is a “false positive” wherein replay occurs even though

the pipeline data is still correct. Thus, the occurrence of metastability at the error output

of the transition-detector is essentially a “don’t-care” condition.

5.4.1 Fundamental minimum-delay trade-off

The RazorII error detection window is defined by the high phase of the clock and can

be controlled by adjusting the duty cycle. This constrains the minimum propagation delay

for a combinational logic path terminating in a RazorII flip-flop to be at least greater than

the duration of the high clock phase. Delay buffers are required to be inserted in those

paths which fail to meet this minimum path delay constraint. The insertion of delay

buffers incurs power overhead because of the extra capacitance added. A longer clock

high-phase requires a greater number of delay buffers to be inserted, thereby increasing

the power overhead. However, a smaller high-phase implies that the voltage difference

 68

between the PoFF and the point where error-detection fails is less and, thus, reduces

Razor timing speculation.

The duration of the positive phase of the propagated clock can be configured as

required so as to exploit the above trade-off. As in the case of RazorI, the hold constraint

only limits the maximum duration of the positive clock phase and does not affect the

clock frequency. Thus, the pipeline can still be operated at any frequency as required as

long as the positive clock phase is sufficient to meet the minimum delay constraint. In the

RazorII prototype that we present in Chapter 7, timing critical flip-flops had a clock with

a 40% duty cycle resulting in a 25 FO4 detection window while non-critical flip-flops

had a 13% clock duty cycle to minimize buffer insertion. A total of 1924 buffers were

added to meet hold time constraints which added a 1.3% power overhead. In Chapter 6,

we present alternative techniques to satisfy this minimum-delay constraint.

5.5 SEU detection using the RazorII flip-flop

The basic design of the RazorII flip-flop outlined in the previous section can be

further simplified which, as we show in this section, enables it to detect both timing

errors as well as Single Event Upsets (SEU) in combinational logic and inside registers.

The modified RazorII flip-flop uses a positive level-sensitive latch instead of a master-

slave flip-flop. This exploits the observation that satisfying the fundamental minimum-

delay constraint ensures that no legal transitions can occur in the high-phase of the clock.

This precludes the requirement of a master-latch to maintain its edge-triggered property.

Indeed, flip-flop operation is enforced by flagging any transition on the input data in the

positive clock-phase as a timing error. Elimination of the master latch significantly

reduces the clock-pin capacitance of the flip-flop bringing down its power and area

overhead. As we shown subsequently in this section, by monitoring the internal latch

node for transitions, instead of the data input, the RazorII flip-flop can naturally detect

SEU in the logic and registers without additional overhead.

The architecture and the principle of operation of the modified RazorII flip-flop,

henceforth referred to as R2LAT, are illustrated in Figure 5.6. It uses a single positive

level-sensitive latch, augmented with a transition-detector controlled by a detection clock

(DC). Timing errors are detected by monitoring the internal latch node for spurious

 69

transitions. A legitimate transition occurs when data is setup to the latch input before the

rising edge of the clock. In this case, the output Q of the latch transitions at the rising

edge after a delay equal to the clock-to-Q (CLK-Q) delay of the latch, to reflect the state

of data being captured.

In order to prevent legitimate transitions being flagged as timing errors, a short

negative pulse on the detection clock is used to disable the transition detector for at least

the duration of the CLK-Q delay after the rising edge, as shown in the figure. However, if

the input data transitions after the rising clock edge, during transparency, the transition of

latch node, N, occurs when the transition detector is enabled and results in assertion of

the error signal. The error signal engages the architectural replay mechanism to restore

correct state within the pipeline.

The circuit schematic of the R2LAT, the detection clock generator and the transition-

detector are shown in Figure 5.7. The transition-detector (Figure 5.7b), uses a delay-chain

to generate an “implicit” pulse out of a rising or a falling transition at the latch node, N.

CLKDNDCERROR
Tcq max Valid data transition Invalid data transitionDelay error detection window

Figure 5.6 Modified RazorII flip-flop for SEU and timing-er ror detection

 70

The pulse is then captured by a dynamic OR gate to generate the error signal. Two pulse-

generators are required to capture transitions in both directions. The AND gates required

for the pulse generation are built as a part of the evaluation tree of the OR-gate and have

as inputs, the monitored node and its delayed version. For example, the pulse-generator

for the rising transition at node N, uses the inverter, I3, and the long-channel transmission

gate, TG2, to create the required delay.

The inputs to the corresponding AND gate are the nodes d1 and the d3, as labeled in

the figure. Similarly, the pulse-generator for the falling transition uses gates I2 and TG1

and the corresponding inputs to the AND gate are d0 and d2. For silicon test-and-debug

purposes, the delay-chain for each pulse-generator can be controlled by tuning the gate

voltage of long-channel transmission gates (TG1 and TG2) in the delay-chains through

the TD-TG Vdd pin. However, it was found that the RazorII prototype chip was fully

functional without the need for tuning.

The error-reset signal pre-charges the dynamic node in the OR-gate enabling it to

capture subsequent transitions on the latch node. Error-reset is generated during

c) Detection Clock generator b) Transition-detector

a) RazorII flip-flop circuit schematic

Figure 5.7 Circuit schematic of the R2LAT

 71

architectural recovery in the event of a timing error. A cross-coupled inverter pair is used

as a latch structure to protect the dynamic node from discharge due to leakage.

5.5.1 Impact of intra-die process-variability

As explained previously, the low-pulse on DC, temporarily disables the transition-

detector to prevent legitimate transitions at the latch node from being flagged as errors.

For correct functionality, it is required that the minimum width of the low pulse at the DC

clock is greater than the maximum CLK-Q delay of the main latch across all PVT corners.

We used conventional worst-case sizing of the transistors in the DC-generator to achieve

this relationship on the test-chip. Guaranteeing this relationship in the face of rising intra-

die process variability at 45nm and below may require the use of Monte-Carlo sampling

techniques. This is illustrated in the timing diagrams shown in Figure 5.8. For a 3-sigma

yield, it is required to ensure that the DC-generator is sized such that the worst-case 3-

sigma increase of the CLK-Q delay of the latch is still covered by the worst-case 3-sigma

decrease in the DC pulse-width.

Nom CLK-Q 3σσσσ CLK-Q

CLK

D

N

DC

ERROR

Nom PW

3σσσσ PW

Nom = Nominal
PW = DC Pulse Width

3σσσσ increase in latch delay is less than 3 σσσσ reduction in DC pulse-width

Figure 5.8 Timing constraints with intra-die process variations

 72

To support post-manufacture tuning, the delay chain is made tunable to account for

process variation mismatches between the latch delay and detection-clock pulse-width by

controlling the gate voltage of the transmission gate through DC-TG Vdd. Again, tuning

was not required for the normal operation of the chip. The DC-TG Vdd pin of individual

R2LATs were routed as conventional signal nets with an input pad serving as a common

driver. The TD-TG Vdd pin was also routed in a similar manner. These pins have relaxed

timing constraints since they are only meant for post-manufacture tuning.

The difference between the CLK-Q delay and the DC pulse-width represents the

duration when a transition on N goes undetected. This allows dynamic time-borrowing in

the R2LAT wherein a critical computation gets extra time from the next cycle to

complete, without flagging a timing error. Of course, this reduces the available time for

the succeeding pipestage. However, if a time-borrowing critical computation is followed

by a non-critical computation in the succeeding pipeline stage, then no timing errors will

be flagged. Thus, the pipeline can potentially operate at a frequency greater than what is

dictated by the critical path of the circuit. A larger value of the DC pulse-width allows

greater scope for dynamic time-borrowing, although at the expense of reducing the

available time for error detection. Thus, the DC pulse-width represents the trade-off

between dynamic time-borrowing versus timing speculation available on the critical path

of the circuit.

The duration of suppression of the transition-detector, denoted by the DC pulse-

width needs to be greater than the CLK-Q delay of the actual latch across all PVT

corners. In the RazorII prototype processor, we ensured this through conservative sizing

during design time. At the slow corner (at 130nm technology node), the DC pulse width

is 350ps and the actual CLK-Q delay of the latch is 200ps leading to a margin of 150ps at

the slow corner. As explained previously, a higher value of the DC pulse-width reduces

the PoFF through dynamic time-borrowing at the expense of reducing the speculation

time available. Thus, reduction in energy savings due to reduced speculation is counter-

balanced by the energy gain due to a lower PoFF. Hence, it is unlikely that the margin in

the DC pulse width has a significant impact on the total energy savings of the processor.

 73

5.5.2 SEU Detection using the R2LAT

The transition detector is always enabled except for the period after the rising edge

of the clock where valid transitions occur. This naturally allows the R2LAT to detect and

flag SEUs on the latch node as well as in the combinational logic that fans in to it. The

voltage pulse due to a SEU event in the combinational logic can possibly propagate to a

R2LAT in the transparent phase of the clock, leading to a glitch in the latch node. If the

glitch is sufficiently wide, the transition detector interprets the glitch as a combination of

two transitions and flags it as a timing error. Of course, in the low-phase of the clock, the

SEU pulse is benign, as it can never propagate to the latch node.

Figure 5.9 Conceptual timing diagrams showing SEU detection when DC is high

 74

A particle strike on the latch node, N, leads to a single transition causing a state flip

to occur when the clock is low, as shown in Figure 5.9(a). A high energy particle strike at

N (Figure 5.9(b)) leads to a pulse when the strike occurs in the transparent phase of the

clock. In both the cases of Figure 5.9(a) and (b), the TD successfully detects the event

and flags an error. A weak pulse due to SEU in the transparent clock phase, shown in

Figure 5.9(c), can go undetected by the TD but it can possibly cause a glitch in the

output, Q. If the glitch is amplified by the downstream logic, it will still be flagged by a

R2LAT in the succeeding stage, leading to an error.

An interesting case to consider is when the SEU pulse occurs while the detection

clock is low. There can be three possible scenarios that follow as illustrated in the timing

diagrams in Figure 5.10:

Case I: The pulse occurs and dies before the detection clock is enabled as shown in

Figure 5.10(a). In such a case, the transition detector does not flag an error since the latch

node, N, is restored to its correct state before the detection clock is enabled. Since no

state corruption occurs, this is essentially benign.

Case II: The pulse on N initiates when the detection clock is low but N recovers

correct state after the rising edge of the detection clock (Figure 5.10(b)). In such a case,

the transition detector responds to the trailing edge of the pulse and flags an error. While

the pulse does revert back to its correct state, it does so after the DC has reengaged and

hence, it is correctly interpreted as a timing error.

Case III: Figure 5.10 (c) illustrates the case when a SEU pulse actually causes state

corruption to occur at the latch node, N, without an error being flagged. This is a special

condition which occurs when the width of the DC pulse is equal to the width of high

phase of clock. As shown in the figure, if the SEU pulse occurs just before the falling

edge of the clock, then the latch node, N, samples the leading edge of the pulse and is

unable to revert back to its correct state.

This is because the main latch enters into its opaque phase just before the trailing

edge of the pulse occurs. In essence, the SEU pulse degenerates into a single transition at

the latch node, N. Since this transition occurs when the detection clock is low, the

transition detector does not flag this as a timing error, leading to system failure.

 75

Case III sets a lower bound on duration of the high phase of the clock in relation to

the pulse-width of the detection clock. In order to prevent system failure from occurring

in case III, it is imperative to allow node N to recover correct state before the falling edge

of the clock. Hence, the clock needs to be high for at least half of the SEU pulse width

Figure 5.10 SEU Detection when DC pulse is low

 76

after the rising edge of the detection clock. This allows N to follow the trailing edge of

the pulse and achieve correct state as shown in Figure 5.10(d).

For the RazorII prototype processor that we present in Chapter 7, we chose this

minimum overlap to be 100ps at the typical corner at the 130nm technology node. The

trailing edge of the pulse occurs after the transition-detector has been enabled and hence

is flagged as an error, thus maintaining correct operation in the pipeline.

5.5.3 Comparative Analysis with the RazorI flip-flop

The RazorI flip-flop detects late-arriving data by comparing the flip-flop state with

that of a “shadow” latch which samples off the negative edge of the clock. In total it

consists of three latches (master, slave and shadow), a comparator and a meta-stability

detector. The implementation requires 76 transistors. Compared to a conventional flip-

flop, the RazorI flip-flop has a worse CLK-Q delay for the same drive strength due to the

extra loading of the metastability-detector and the error comparator. Its setup time is the

same or slightly worse than a library flip-flop. It consumes 25% extra power when data

does not switch (due to transitions on clock) and 70% extra power when data switches.

Thus, for a 10% activity rate, the total power overhead of the RazorI flip-flop is 30%

when compared to a conventional flip-flop. For our implementation of the RazorI

processor in [10], we needed to use the RazorI flip-flop only for timing-error protection

on the critical paths. Hence, the net power overhead of using RazorI flip-flops was less

than 3% of the total chip power.

 The elimination of the master latch and the metastability-detector in the R2LAT are

significant simplifications that lead to improvements in delay, power and area. The

R2LAT uses 47 transistors in total. The elimination of the master latch leads to slightly

improved CLK-Q delay compared to a conventional flip-flop. In addition, it completely

eliminates the setup time constraint at the positive edge of the clock. Thus, the R2LAT

can be effectively modeled as having 0ps setup time. The power overhead compared to a

conventional flip-flop of the same drive strength for a 10% activity factor is 28.5%. The

total power overhead due to insertion of R2LATs in the processor was 1.2%.

Metastability risks at the positive edge of the clock for the latch data-path are completely

eliminated, thereby precluding the need for a metastability-detector.

 77

As mentioned before, the generation of the detection clock could be easily shared

across multiple R2LATs. Such an implementation requires 39 transistors in total as

opposed to 76 transistors used for the RazorI flip-flop. In addition, it requires just a single

additional transistor on clock for error evaluation. In total, it has 5 transistors on a clock

as compared to 14 clock transistors in the RazorI flip-flop. Thus when compared to a

conventional flip-flop, for an activity factor of 10%, it consumes 11% less power based

on a simulation analysis. This is a significant reduction compared to the RazorI flip-flop

which consumes 30% extra power. In the actual implementation of the processor, the

detection clock was generated locally within each R2LAT and was not shared.

5.6 Memory design for a Razor processor core

The pipeline output from the write-back stage of a Razorized processor core is

speculative and hence, potentially incorrect. We address critical Register File read and

write operations by replicating the Register File and using the speculative version as the

working register set for pipeline operations. The speculative Register File is updated from

the guaranteed-correct, golden Register File during recovery. However, replication

cannot be used for on-chip cache memory because it incurs prohibitive power and area

overhead. Therefore, we modify conventional SRAM structures in order to handle

speculative load and store operations without causing state corruption inside the bit-cell

array.

Speculative memory stores can be pipelined in a stabilization queue. The

stabilization queue provides the extra latency required for the Razor error detection

infrastructure to check for timing-errors in the store data. Thus, the store stabilization

queue not only delays data commits to memory to allow for Razor validation, but also

serves the purpose of a store buffer that exists in most high-throughput memory systems.

5.6.1 Handling speculative read accesses to the memory

Memory load operations cannot be pipelined in a non-speculative queue (as in the

case of store operations) because doing this incurs significant Instruction Per Cycle (IPC)

penalty. For most microprocessors, load operations are accompanied by address

calculations and are therefore timing-critical. Consequently, all the signals involved in a

 78

memory read access, such as the Address, the Write Enable (WE) and the Chip Select

(CS) signals, are monitored for possible timing violations using RazorII flip-flops at the

SRAM sampling interface. The system reacts to a timing error in these signals in exactly

the same way as it deals with a timing violation in the rest of the pipeline.

One complicating issue with critical read accesses is the occurrence of metastability

at the address sampling flip-flops inside the SRAM. Metastability at these flip-flops can

potentially propagate to the bit-cell array, thereby leading to state corruption. Such an

occurrence is extremely unlikely and can be mitigated by ensuring that the metastable

flip-flop data does not toggle the row-decoder outputs.

Figure 5.11 shows a possible scheme for achieving the above. In this technique, a

conventional Sense-Amplifier Flip-flop (SAFF) [54], augmented with a transition-

detector is used to sample the critical SRAM read signals. As shown in the figure, the

SAFF outputs both the true (Q) and complemented (QN) versions of the input, D. In the

precharge phase (when the clock signal, CLK, is low), both outputs Q and QN are at

logic 0. During evaluation (when CLK is high), either Q or QN transitions monotonically

`
QQNDCLK

N-skewed Voltage-steering logicTransition Detector` ERRORSM

Figure 5.11 Sense-amplifier Flip-flop augmented with a transition-detector to
sample critical Read signals in a SRAM array

 79

to logic 1, to reflect the state of the sampled input. N-skewed inverters at the output of the

SAFF guarantee that when the flip-flop nodes (M) and (S) are metastable at

approximately the mid-rail voltage, both Q and QN are interpreted to be at logic 0 by the

row-decoder. This ensures that the row-decoder does not enable the word-line drivers,

thus protecting the bit-cell array in the event of metastability.

Using n-skewed inverters to steer metastable flip-flop outputs to benign logic levels,

increases the propagation delay through the SAFF, thereby affecting the read access time

of the SRAM. Thus, in this case, we trade off a slower SRAM read operation for

enhanced robustness against metastability.

5.6.2 Timing speculation in the sense-amplifier circuit

A bit-cell enabled during a memory read operation, gradually discharges either the

precharged bit-line or its complement, depending upon the state of the data stored inside

it. After allowing a bit-line voltage differential to develop, a Sense-Amplifier is enabled

which “senses” this differential and determines whether a state 0 or a state 1 is being read

out. Typically, safety margins are incorporated into the sense-amplifier timing such that it

is enabled after sufficient interval such that the read data is always correct. However, the

+ -

SpecQ

SpecQ

+ -

SafeQ SafeQ

!=

SpecEN SafeEN

Bit Bit

DOUT

ERROR

SpecSA SafeSA

Figure 5.12 Dual Sense-amplifier scheme for faster read timings

 80

safety margins have the undesirable effect of limiting the speed of the read operation by

delaying the point when the Sense-Amplifier is enabled. Using timing-speculation, it is

possible to eliminate these safety margins and achieve faster SRAM read access timing

by enabling the Sense-amplifier early, even when the bit-line differential is inadequate

for correct operation in the worst-case.

This concept of timing speculation in the sense-amplifiers is illustrated in Figure

5.12. The key idea in this technique is to use two sense-amplifiers to sense the bit-line

differential at two different points in time. The speculative sense-amplifier (SpecSA) is

enabled earlier and can therefore read out a potentially incorrect signal when the bit-line

differential is not sufficiently developed. The output of the speculative sense-amplifier is

validated against the data read out by a non-speculative sense-amplifier (SafeSA) enabled

later, the timing of which is generously margined using conventional worst-case

assumptions. An error signal is flagged when the data read out of the speculative sense-

amplifier does not match with the correct data read out from the non-speculative sense-

amplifier. The system responds to this error signal by forwarding the correct output from

the non-speculative sense-amplifier to the downstream pipeline stage.

A separate error controller is used to monitor the error-rate of the speculative

sense-amplifier. The error-controller tunes its enable timing to achieve a targeted error-

rate.

5.7 Summary and discussion

In this chapter, we introduced the RazorII error-detection and recovery scheme.

Timing-error detection occurs within a RazorII flip-flop, using a so-called transition-

detector, which flags spurious transitions in the critical-path output during the speculation

window. Monitoring for timing-errors before the onset of the setup window of the flip-

flop precludes the need for a metastability-detector, thereby greatly reducing the area and

the power overhead of the RazorII flip-flop.

We showed an alternative design of a RazorII flip-flop, called the R2LAT, which

enables both timing-error and SEU detection inside registers and combinational logic.

The R2LAT uses a level-sensitive latch, instead of a flip-flop, as the main state-holding,

sequential element. Positive-edge triggered flip-flop operation is enforced by a transition-

 81

detector, controlled by a detection clock, which flags any transition on the latch node in

the high-phase of the clock as a timing error. SEUs manifest as voltage pulses which can

cause bit-flips in the latch node. The resultant transition can be flagged as an error by the

transition-detector.

We showed the design of a generic, 5-stage, in-order RazorII pipeline based on

check-pointing and replay architecture. After an instruction has been validated to be

correct, it is check-pointed before being committed to storage. Recovery is achieved by

flushing the pipeline and re-executing from the check-pointed state. We discussed the

design of the memory system which interfaces to a timing-critical RazorII pipeline.

We implemented RazorII in a 64bit processor for tolerance against SEU and PVT

variations. We present the measurement results from this processor in Chapter 7. In the

next chapter, we discuss schemes that mitigate the stringent minimum-delay requirement

in Razor-based pipelines.

82

CHAPTER 6

ALTERNATIVE HOLD-FIXING SCHEMES FOR RAZOR-
BASED PIPELINES

Razor timing speculation imposes a fundamental minimum delay constraint which

requires that every combinational path fanning into a Razor flip-flop needs to be at least

greater than the positive clock-phase and the hold time of the shadow latch (in case of

RazorI) or the transition-detector (in case of RazorII). In the traditional approach, this

constraint is met by inserting delay buffers in the short-paths that violate the minimum-

delay constraint. Using suitable clock-chopping techniques, a high phase of the clock is

generated such that there are no short-path violations across all process, voltage and

temperature corners. Typically, clock-choppers rely on delay-chains which gate the

conventional fifty-percent duty cycle clock to obtain an output clock with the same

frequency but an asymmetric duty cycle. The delay through the chain determines the

duration of the high-phase of the output clock. Conventional timing analysis is then

performed to ensure that the minimum-delay constraint is met across all corners for the

high-phase thus determined during design time.

The issue with this approach is that the propagation delay through the delay-chain

used to generate the high-phase of the processor clock can vary with variations in PVT

conditions. In addition, it is likely to have different scaling characteristics compared to

the actual short-paths in the design. This mismatch in scaling characteristics is especially

accentuated for simple gates used in the delay-chain, such as inverters, compared to more

complex gates in actual paths. Due to these reasons, safety margins are incorporated

either through additional buffer insertion on short-paths or by using a narrower high-

phase of the clock. Additional buffer insertion adversely impacts power consumption of

the design. Similarly, using a narrower high-phase limits the available speculation time

for Razor. A possible alternative is to use a tunable delay chain to control the high-phase

83

of the clock on a per die basis. Thus, the high-phase of the clock is adjusted on the tester

to a level wherein no short-path violations are observed. However, this approach is

complicated and requires additional tester-time which adversely impacts yield economics.

For most processors, buffer-insertion based hold-fixing effectively achieves the

minimum-delay constraint without adding significant overhead. For example, the power

overhead of hold-fixing was less than 3% of the total chip power for both the RazorI and

the RazorII prototype processors. However, at aggressive process nodes, increasing

variability in the short-paths can significantly worsen the hold-time constraint through the

requirement of large number of delay buffers. In addition to the area and power overhead,

excessive buffer insertion adversely affects the critical-path timing as well, thereby

impacting performance.

In the following sections, we present alternative techniques to buffer-insertion based

hold-fixing. These techniques address the impact of variability in short-paths to achieve

very high speculation times while using conventional 50percent duty-cycle clocking. We

discuss the relative merits and demerits of each scheme. The remainder of the chapter is

organized as follows. Section 6.1 discusses insertion of level-sensitive latches halfway

through the combinational logic to satisfy the hold requirement at destination Razor flip-

flops. Section 6.2 deals with a Razor-like scheme from Intel, called the X-Pipe micro-

architecture, which staggers the cycles where new data is launched and old computation

is checked for errors, in order to eliminate the hold-requirement. The BLADES technique

for statically-scheduled processor is presented in Section 6.3. Section 6.4 discusses the

design of a pulsed-latch based RazorII flip-flop which uses a narrow pulse to relax the

hold constraint and simplify clocking. Finally, we summarize this chapter in Section 6.5.

6.1 Level-sensitive latch based scheme for hold-fixing

The key idea of this scheme is to divide the combinational logic within a pipeline

stage into two equal portions with critical-path delay equal to half of the critical-path of

the unmodified pipestage. Level-sensitive latches are inserted between the two blocks of

logic thus created. These latches are transparent in the negative phase of the clock and

sample in the positive phase of the clock. Figure 6.1 conceptually illustrates this scheme

of pipeline transformation. The inputs to the Razor flip-flops are prevented from being

84

updated by short-path computations in the positive phase, due to the opaque latches. This

guarantees, by construction, that the transitions which occur at the Razor flip-flop inputs

in the high clock-phase are valid timing errors caused due to setup violations. A point to

note here is that the level-sensitive latches are required only in the logic cones that fan-

out to Razor flip-flops.

This approach guarantees half-cycle speculation time. However, the additional

latches greatly increase the clock load in this scheme, thereby significantly increasing the

pipeline power consumption. Consequently, such a scheme can only be used in

applications where the combinational power is a significant portion of the total power,

such as in graphics processors and hardware accelerators. Due to its significant power

overhead, this scheme is not amenable for general-purpose computing.

Another weakness of this scheme is that it introduces phase-paths which adversely

impact the error-rate. The trade-off between the error-rate and the phase path timings is

shown in Figure 6.2. In the figure, the latency through the positive phase logic is labeled

as Tpos and that through the negative phase logic is labeled, Tneg. Even if the positive

phase logic finishes early, the pipeline has to wait until the negative clock-edge in order

to resume computation. The computational time wasted in the positive phase due to this

is labeled as Twaste. Due to the wasted time, previously non-critical paths can become

critical and contribute to the error-rate.

Conditionally Retimed Razored Pipeline

RFF

Normal FF

T-Latch

Stage 1 Stage 2Tcycle/2 Tcycle/2

CLK

CKN

Combinational

Logic

CLK

Stage 1 Stage 2
Tcycle

Original Non-Razored Pipeline

Combinational

Logic

CLK

Stage 1 Stage 2
Tcycle

Original Non-Razored Pipeline

Figure 6.1 Latch-insertion scheme for satisfying the short-path constraint

85

The key advantage of this scheme is that conventional fifty percent duty cycle

clocking can be used. This greatly simplifies the clock-generation and propagation. In

addition, it is highly resilient to variability on the short-paths of the processor and

eliminates the safety margins required to meet the minimum delay constraint.

The key disadvantage of this scheme, as discussed before, is that it increases clock-

tree loading and contributes significantly to the total power overhead. Several

optimizations can be performed to mitigate the power overhead of this approach. Firstly,

the clock-tree for the hold-fixing latches is not limited by skew constraints unlike in a

conventional clock-tree. Hence, a low-performance clock-tree can be deployed for hold-

fixing latches, thereby bringing down the total power overhead. In addition, the latches

can be clock-gated when either the producer flip-flops in its fan-in or consuming flip-

flops in its fan-out are clock-gated.

6.2 Intel X-pipe

In [48], the authors present a new micro-architecture, called the X-Pipe, where error-

detection is achieved using a Razor-like technique that eliminates the minimum-delay

constraint of Razor. As shown in Chapter 3, the minimum-delay constraint in Razor

arises because the duration after the positive clock-edge when the output of the previous

Tpos Twaste

R_CLK

Tneg

“Error”

RFF

Stage 1 Stage 2Tpos Tneg

CKN

Figure 6.2 Error-rate and wasted-time trade-off

86

computation is being monitored for timing errors, new data can potentially race-through

and overwrite the previous results (Figure 3.2). The key idea in the X-Pipe approach is to

stagger the clock edges when a new computation is initiated and when the output of the

previous computation is checked for correctness. By launching a new computation and

validating a previous computation at different clock edges, the minimum-delay constraint

is eliminated, by construction.

Figure 6.3 shows the pipeline organization in the X-pipe technique. The entire data-

path is divided into positive and negative phase logic. Data launched at the positive edge

is speculatively captured at the negative clock-edge by the next pipeline stage. This

speculative sample is then forwarded onto the consuming negative-phase logic and vice

versa. Each error-detecting flip-flop is augmented with a shadow flip-flop which samples

the always-correct output of the producer logic at the next launching edge. As an example,

when the main flip-flop captures data at the negative clock-edge, the corresponding

shadow flip-flop captures the same input at the next positive edge. Thus, the shadow flip-

flop input gets the entire cycle to achieve correct state whereas the main flip-flop

speculatively samples data midway through the clock-cycle. Error is flagged by

comparing the shadow flip-flop output with the speculative sample. Recovery occurs

through a replay mechanism based on check-pointing.

In the X-pipe approach, launch and capture edges are separated by half of a clock

cycle. This eliminates the minimum-delay constraint by construction. While this is a

major advantage of this approach, however, it imposes formidable design and

implementation challenges that severely limit its applicability to generic pipeline designs.

Firstly, the pipeline needs to be partitioned in such a way that computed results are

forwarded to a stage that launches on the opposite clock-phase. This greatly complicates

pipeline designs with large number of inter-stage forwarding paths.

87

Having phase-based paths doubles the number of flip-flops required which

effectively doubles the clocking and power overhead. In addition, the mechanism for

error-detection requires an additional shadow flip-flop and a metastability-detector (not

shown in the figure) which increases the error-detection overhead for each flip-flop. The

prohibitive area and power overhead in this technique and its lack of general applicability

are major weaknesses that the authors fail to adequately address in their approach.

6.3 Logic replication in statically-scheduled machines

In [47], the authors propose a technique, called BLADES (Better-than-worst-case

Loop Accelerator Design), which exploits the similar idea of staggering the launch and

capture clock-edges to address the minimum-delay constraint. This approach has been

applied to statically-scheduled, hardware accelerators that use Razor flip-flops for error-

detection. Razor-based self-tuning enables such accelerators to deliver high performance

under stringent power budgets.

+veLogic Error0
== -veLogic Error1

==

CK CK CK

+ve phase computation -ve phase computation

Launch +ve phase computation

Speculatively capture +ve phase output
Launch –ve phase computation

Capture correct +ve phase output
Flag error

CK CK

Figure 6.3 Intel X-pipe micro-architecture

88

The key idea in BLADES is to combine multiple Functional Units (FUs), such as an

adder and a shifter, into 2-cycle “custom functional units” (CFUs), as shown in Figure

6.4(b). A CFU uses two cycles to execute two or more operations back-to-back. Its inputs

are only changed every other cycle and the values computed, after one cycle, are stored in

a register. This way, the values that fan-in to Razor flip-flops are guaranteed not to

change during the speculation window unless there is a timing error, thereby eliminating

the need to insert extra buffers. Note that in the example shown in Figure 6.4(b), if there

are two successive add instruction, then the adder block has to be replicated so as to

prevent a stall cycle. In statically scheduled machines, code analysis and compiler

optimizations can ensure that a particular Functional Unit is not exercised in successive

cycles, thereby minimizing logic replication.

Figure 6.4 Replicated functional units eliminate the Razor minimum-delay
constraint

89

The CFUs are identified by the compiler after analyzing the dataflow between

different instructions. It is possible to extend this technique to general-purpose processors

wherein each functional unit is replicated and an individual block is sensitized once every

two cycles. However, since this entails significant logic and flip-flop replication, in-depth

analysis is required before such a technique can be applied to general-purpose processors.

6.4 RazorII flip-flop with integrated clock-pulse generator

In the RazorII approach, the system tunes itself for the Point of First Failure (PoFF).

Consequently, in such systems wider speculation windows are not required. This

observation is exploited in the design of the RazorII flip-flop, shown in Figure 6.5. The

design is essentially a pulsed-latch which uses a locally generated clock-pulse to obtain

the speculation window for error-detection. The transition-detector monitors the flip-flop

input instead of the internal latch-node which limits its SEU detection capability. The

clock-pulse generator could be integrated within the RazorII flip-flop (similar to the

design of the R2LAT) or it could be a part of a clock-gating cell which drives a bank of

RazorII flip-flops.

The key advantage of this scheme is that a narrow clock-pulse can be used to drive

the RazorII flip-flop. This significantly reduces the minimum-delay requirement. In

addition, primary clock-tree of the processor is driven by a conventional 50% duty cycle

clock which greatly simplifies the pipeline clock-generation. Furthermore, by integrating

the clock-pulse generator within the RazorII flip-flop the ease of pulse-generation can be

traded off for increased power consumption within each flip-flop. The alternative

technique of using a local clock-gating cell to drive the clock-pulse ensures that the

narrow pulse is driven to very short distances and therefore sees a low interconnect (RC)

load. This mitigates possible “pulse-evaporation” concerns.

The key disadvantage of this scheme is that it increases susceptibility to possible

delay “overshoots” wherein a transient noise or supply-voltage glitch suddenly increases

the critical-path delay to an extent that it entirely misses the error-detection window.

However, the transition-detector can be enabled before the rising edge of the clock,

thereby increasing the effective error-detection window. However, this incurs a

90

performance overhead since the PoFF as seen by the transition-detector, occurs before the

PoFF of the actual processor critical-path.

6.5 Summary and discussion

In this chapter, we discussed several techniques that address the hold-fixing

requirement in the Razor technique. We presented the transparent-latch insertion scheme

which inserts negative-level sensitive latches midway through the data-path such that no

short-path race-through can occur during the high-phase of the clock. This technique

guarantees achieving the minimum-delay constraint by construction, however, suffers

from significant clock-power overhead. Consequently, such a technique may be more

suited towards signal-processing applications where the combination logic power can

dominate over sequential power.

We surveyed the Intel X-pipe technique which is a novel method that divides the

data-path into positive-phase and negative-phase logic. Execution output is speculatively

captured at the opposite clock-edge whereas error-detection occurs at the next launching

edge. By staggering launch and capture cycles, it is possible to avoid the minimum-delay

constraint. However, this technique suffers from its complicated micro-architecture and

Figure 6.5 Pulsed-latch implementation of the RazorII flip-flop. The transition-
detector monitors the data input rather than the internal node.

91

its inability to effectively handle forwarding paths. In addition, it doubles the number of

registers required in the data-path and significantly adds to the power-overhead of

detection. Hence, this technique has limited applicability.

We surveyed another technique for statically-scheduled machines based on

replication of combinational logic blocks. The key idea in this technique is to merge FUs

into so-called CFUs (custom functional units) and to issue operands to a CFU not faster

than once every two cycles. Stall cycles are avoided by replicating a CFU, if it is

exercised in successive cycles. The combinational logic blocks that require replication

can be identified by the compiler.

We presented the design of a pulsed-latch based design of the RazorII flip-flop

which uses a narrow speculation window. Targeting the PoFF rather than aggressive sub-

critical operation presents opportunities for trading-off setup time pessimism for low

buffer-insertion overhead, in this technique. In addition, it is possible to split the clock-

tree and route a wider high-phase clock to critical RazorII flip-flops and to use a narrower

high-phase for the relatively non-critical RazorII flip-flops. We exploit the latter scheme

in the design of the RazorII processor which is presented in the next chapter.

 92

CHAPTER 7

SELF-TUNING RAZOR II PROCESSOR: USING RAZOR II
FOR PVT AND SER TOLERANCE

RazorII was incorporated in a 64bit, 7 stage, in-order Alpha processor in an

industrial 0.13µm technology [44] [45]. We use the modified RazorII flip-flop, called the

R2LAT (Section 5.4), for both timing-error detection and Soft Error Rate (SER)

tolerance. We have described in detail the basic design and the principle of operation of

the R2LAT in Section 5.4. The remainder of this chapter is organized as follows. In

Section 7.1, we present the pipeline details and the modifications required to the basic 5-

stage pipeline to support detection and correction of Single Event Upsets (SEU) in

SRAM arrays and architectural-state registers that are not protected using R2LAT error-

detection capability. We present potential techniques that restrict voltage and frequency

scaling to safe limits in RazorII-based systems in Section 7.2. Section 7.3 discusses the

measured energy savings from RazorII based supply voltage control on 33 tested dies.

We present measurement results from SER tests in Section 7.4.

7.1 Pipeline design of the RazorII processor

The pipeline design for the prototype RazorII processor is based on the architecture

of a generic, in-order RazorII pipeline as illustrated in Figure 5.2. However, it includes

additional features to support detection and recovery in the presence of SEU in memory

arrays and architectural-state registers. The pipeline, shown in Figure 7.1, can be broadly

divided into a speculative domain which is timing-critical and a non-speculative domain

with sufficient timing slack. The speculative domain consists of a two-stage fetch stage

(IF1 and IF2), instruction decode (ID), an integer execution unit (EX) and the memory

access (MEM) stage. All pipeline registers in the speculative domain require RazorII

protection against state corruption due to SEU. The error pins of individual R2LATs in

 93

each pipeline stage are “OR”-ed together and the result is propagated and “OR”-ed with

that of the next stage. This allows the composite error signal for the entire pipeline to be

evaluated on a per-stage basis. This relaxes the timing constraint on the error generation

path. The write-back (WB) stage was designed to be non-critical to stabilize the

speculative pipeline output before it was committed to storage in the non-speculative

domain.

The non-speculative domain stores the architectural state of the processor and

consists of the caches (instruction and data), the Register File and the program status

registers. Read and write combinational paths to these units are non-critical and hence do

not require timing error protection. Error Correcting Codes (ECC) is used to recover from

SEU in the caches and the Register File. The program status registers are protected using

Triple Module Redundancy [35] (TMR). The key concept of TMR is to use three blocks

of logic for the same computation. A majority voting circuit is then used to forward the

final result to the pipeline. A TMR error is flagged when the outputs of the redundant

logic blocks mismatch. Thus, high degree of reliability against SEU can be achieved,

Figure 7.1 RazorII Processor: Pipeline Design

 94

although at the cost of redundant logic and registers. TMR allows SEU errors in the

architectural state registers to be corrected on-the-fly and no extra recovery mechanism is

required.

Data from the speculative pipeline is encoded before the write-back stage. The data

word and the corresponding redundant bits are then written into storage. Thus, the ECC

encoder adds 22 redundant bits to the 64bit data for a Data-Cache (DCache) and Register

File write access and 17 redundant bits for a 32bit Instruction-Cache (ICache) write

access. On a read access, the ECC decoder operates on the obtained code word and

determines if a state flip has occurred, while in storage. In the event of an error, the data

word is corrected and forwarded into the pipeline and the corrected word is recommitted

to storage. The ECC decoder can correct one random bit flip and up to 4 consecutive bit-

flips in the data word. Both ECC and TMR errors are corrected in-place and do not

engage the pipeline recovery mechanism.

Replay is achieved by check-pointing the Program Counter (PC) register in the WB

stage of the pipeline. The Program Counter (PC) register is passed along the Razor

pipeline. When an error is detected, the entire pipeline is flushed and the PC in the fetch

stage is overwritten with the PC in the WB stage. Normal instruction execution resumes

from then on. The PC in the WB stage is protected from SEU through TMR. Since an

erroneous instruction is re-executed through the pipeline during replay, the same

instruction can suffer repeated timing errors. Hence, it is required to monitor the

instruction being replayed to detect a deadlock situation. When the number of replay

iterations for the same instruction reaches a certain threshold, called the “replay limit”,

the clock frequency is halved for 8 cycles to allow guaranteed completion. Thus, for a

replay limit of 1, every timing error is accompanied by recovering at half the clock

frequency. For a replay limit of “n”, an errant instruction is replayed “n-1” times at the

same frequency, if required, before the frequency is halved for the “n”th iteration.

A majority of timing errors at the Point of First Failure (PoFF) are actually caused

due to transient events, such as cross-coupling noise, which disappear during replay.

Hence, it is expected that for most timing errors, replaying the erroneous instruction just

once will be sufficient for completion, without having to reduce the clock frequency. This

observation is borne out from our silicon measurement results, described in Section 7.3,

 95

where 60% of failing instructions are executed to completion in the first replay iteration

without reducing the clock frequency. The replay limit is externally programmable.

7.2 Setting limits to voltage and frequency scaling in RazorII

Voltage scaling in RazorII based systems is limited to the point where the error

detection window is sufficient to detect and flag timing errors. At this safe limit, shown

in Figure 7.2, the critical-path computation finishes before the negative clock-edge of the

next cycle and causes the internal latch-node, N, to transition while meeting the setup

time of the level-sensitive latch at this clock-edge. If the critical path transition occurs

after this setup time, the latch will be opaque and the transition will not be visible to the

transition detection to flag an error.

The Razor error-detection window (Tspec) defined between the rising edge of the

Detection Clock and the falling clock-edge is also shown in the figure. In the RazorII

based processor, the system controller monitors error-rates and tunes itself to the PoFF

Critical-path delay, T crit

Capture Error

Capture N

Tsetup

Launch Clock

Capture Clock

Critical pathD Q

Launch Capture

D Q

RFFRFF
E Error E Error

Tmin TON

Capture DC

TSPEC

Critical-path delay, T crit

Capture Error

Capture N

Tsetup

Launch Clock

Capture Clock

Critical pathD Q

Launch Capture

D Q

RFFRFF
E Error E Error

Tmin TON

Capture DC

TSPEC

Figure 7.2 The limit of safe operation in RazorII

 96

where the error-rates are extremely low. However, the risk with using error-rates for self-

tuning is that for an idle processor, where the observed error-rate is zero, the processor

voltage and frequency can be potentially scaled too aggressively, beyond this safe limit.

Thus, if the idle period is followed by a critical-path operation, the latency of the

computation may exceed the error detection window, leading to system failure. Hence, it

is imperative that the system is able to limit itself to a known, safe operating point even

when the monitored error-rate is actually zero.

The critical-path delay can dynamically vary due to changes in the ambient

conditions (voltage and temperature) or ageing effects. This can cause a shift in the safe

operating limit. Consequently, it may be required to periodically tune the processor to

obtain this limit. In the following, we discuss several ways in which the safe operating

limit can be obtained.

7.2.1 Conservative estimation from static timing analysis

In this scheme, static timing analysis is used to obtain the maximum frequency of

operation. Contrary to conventional practice, timing analysis is performed with respect to

the negative edge of the clock. At the maximum frequency, the critical path delay (Tcrit),

the setup time of the latch at the negative clock-edge (Tsetup), the cycle time (Tmin) and the

high phase of the clock (TON) are related by the following equation (Figure 7.2):

 Tcrit + Tsetup = Tmin + TON

Thus, maximum frequency of operation (Fmax) is obtained as follows:

ONsetupcrit TTTT

F
−+

== 11

min
max (Equation 1)

The duration of the high phase of the clock, TON, is a function of the minimum delay

constraint, as explained in Chapter 5, and is independent of the clock frequency. Tsetup is

obtained by the characterization of the R2LAT latch during design time. Tcrit is obtained

through static timing analysis on the entire design, at a given voltage of operation. Thus,

 97

these parameters can be used in Equation 1 to obtain the Fmax. At Fmax, it is guaranteed

that all timing errors will be detected and flagged by Razor even in the worst-case

condition. Thus, Fmax values at different operating voltages can be stored in a look-up

table.

The key advantage of this technique is its simplicity. The key disadvantage is that its

reliance on static timing analysis incorporates worst-case margins in the estimation of

Fmax. An important observation to make here is that Fmax is measured with respect to the

negative edge of the clock. Thus, in this technique worst-case margins are still eliminated

from the positive edge but are now moved to the negative edge. It is expected that for a

reasonably large value of TON, the PoFF of the processor will be attained before Fmax is

reached. Thus, the conservative margins do not have any performance impact. This is in

contrast with conventional look-up table approaches where margins are added to the

Capture Error

Launch Clock

Capture Clock

Tcrit_L

TON

TMIN

Clock@F max

TON

Capture DC

Capture N

TPoFF

Tspec

TDC

Figure 7.3 Worst-case vector based tuning

 98

positive clock-edge and hence have significant impact on performance and energy

efficiency.

7.2.2 Worst-case vector based tuning

In this technique, the processor has two modes of operation. The normal operating

mode is interrupted to enter the tuning mode wherein worst-case vectors are executed

through the pipeline. In the tuning phase, the frequency of operation is adjusted until the

PoFF for the worst-case vectors is reached. The worst-case vectors exercise the critical

path of the processor and can be used to obtain Fmax as shown in Figure 7.3. At the PoFF

of the worst-case vectors, a critical-path computation causes a transition at the internal

latch node, N, of the capture R2LAT just at the rising edge of the Detection Clock. Thus,

the cycle time (TPoFF) at this point is related to the critical path and the pulse width of the

Detection Clock (TDC) by the following equation.

 DCPoFFLcrit TTT +=_ (Equation 2)

Note that in Equation 2, Tcrit_L refers to the delay required to transition the internal

latch node. Thus, it is the sum of the propagation delay through the critical path and the

internal delay through the latch.

TDC can be expressed as a function of the Razor error detection window (Tspec) and

the high-phase of the clock TON in the following equation.

 specONDC TTT −= (Equation 3)

Thus, from equations 2 and 3, we can obtain Tcrit_L as a function of TPoFF as follows:

 specONPoFFLcrit TTTT −+=_ (Equation 4)

At the maximum frequency of operation (Fmax), the internal latch node transitions

before the negative edge of the clock. Thus, the cycle time at Fmax (Tmin) can be expressed

as a function of Tcrit_L and TON as:

 99

 ONLcrit TTT += min_ (Equation 5)

Thus, from equations 4 and 5, we can obtain Fmax as follows:

specPoFFONLcrit TTTTT

F
−

=
−

== 111

_min
max (Equation 6)

Safety margins can then be empirically added to the Fmax thus obtained. The key

advantage of this scheme is that it uses the pre-existing Razor flip-flops for in situ delay

monitoring. Thus, conservative worst-case margining at the negative edge of the clock is

avoided. The key disadvantage is that the processor needs to be periodically interrupted

for tuning. However, this can be achieved on-the-fly by the Operating System, especially

when the system is waiting on long-latency events such as servicing a cache miss or

waiting for an interrupt.

The complexity of this approach requires further investigation before it can be

qualified on silicon in a functional system. This approach is further complicated by the

difficulty in obtaining worst-case vectors and replaying them deterministically. In

addition, worst-case vectors can change with variations in operating conditions as well.

These difficulties can be addressed by using the Razor flip-flops themselves as diagnostic

monitors and allowing the system to detect and flag the vectors that fail. Thus, we can

detect which vectors are the first to fail as the voltage is lowered or the frequency is

increased. Once such vectors are obtained, they can be stored and rerun during tuning.

However, additional infrastructure is required for capturing the failing vectors, storing

and replaying them during tuning. Future research efforts are focused on addressing these

and related issues.

In the above sub-sections, we have discussed methods for obtaining the maximum

frequency of operation at a constant supply voltage. However, it is also possible to keep

the operating frequency constant and scale the supply voltage to obtain the limits of error-

detection. This can be achieved by means of a voltage control loop. The controller can be

run as a software routine on the “Razor”-ized processor core. The processor can then

 100

sample the error register and instruct a regulator to increase/decrease the supply voltage

according to the observed error-rate. Of course, this requires the voltage control

infrastructure to be a part of the system.

7.3 Silicon measurement results

We designed and built a 64 bit processor executing a sub-set of the Alpha instruction

set in 0.13micron technology which uses RazorII for supply voltage control [45]. The die

photograph of the processor is shown in Figure 7.4 and the relevant implementation

details are provided in Table 7.1. The architectural state of the processor is observable

and controllable by three separate scan chains for each of the Icache, Dcache and the

Register File. The chip was tested by scanning in instructions into the Icache and

comparing the execution output scanned out of the Dcache and the Register File with a

Personal Computer emulating the same code. We achieved fully functional silicon across

a range of voltage from 0.8V to 1.2V. A 32-bit special purpose register keeps a record of

the total number of errant cycles and is sampled to compute the error rate for a particular

run.

Figure 7.4 Die-photograph of the RazorII processor

 101

7.3.1 RazorII clocking scheme

The core frequency of the processor is controlled by an internal Clock Generation

Unit (CGU). The CGU generates clock frequencies in the range between 50MHz to

370MHz. The CGU has a separate voltage domain that is not scaled. Hence, the core

frequency remains constant even when the core voltage is dynamically scaled. The

frequency output of the CGU is externally programmable.

The minimum delay constraint for a R2LAT is defined by the duration of the high

clock phase. Since, all pipeline registers are required to be R2LATs for SEU tolerance,

the excessive buffer insertion required to satisfy this constraint can have prohibitive area

and power impact. We solve this problem by having separate clock trees for timing-

critical flip-flops and those that have sufficient slack, as shown in Figure 7.5(a). We use a

Ring Oscillator (RO) for frequency synthesis. The clock output of the ring oscillator has

approximately 50% duty cycle. Delay chains are then used to tune the high phase of the

clock to create separate asymmetric duty-cycle clocks for the timing-critical and the non-

critical flip-flops. The delay through the chains determines the duration of the high-phase

of the individual clocks. The frequency output of the RO and the high-phase of the

asymmetric clocks are all separately tunable via an external interface.

Table 7.1 Chip Implementation details

Technology CMOS 0.13um

Dimensions 2700um x 1250um

No. critical RazorII FF 121 of 826

RazorII power overhead 1.2%

No. buffers added for hold-time fixing 1924

Buffer insertion power overhead 1.3%

Total no. of transistors 260k

Operating voltage 0.8-1.2V

Frequency 185MHz @ 1.2V

Power @ 185MHz 94.3mW

Technology CMOS 0.13um

Dimensions 2700um x 1250um

No. critical RazorII FF 121 of 826

RazorII power overhead 1.2%

No. buffers added for hold-time fixing 1924

Buffer insertion power overhead 1.3%

Total no. of transistors 260k

Operating voltage 0.8-1.2V

Frequency 185MHz @ 1.2V

Power @ 185MHz 94.3mW

 102

Figure 7.5(b) illustrates the asymmetric clocks used for different flip-flops in the

design, at the slow corner. We use larger speculation windows for timing-critical

R2LATs whereas non-critical flip-flops require much smaller speculation duration.

Critical endpoints were identified through static timing analysis performed on a post-

routed and extracted netlist. We chose to route the clock with the larger speculation

window to the top-15% most-critical R2LATs. These represented 121 out of a total of

876 flip-flops. Thus, in this processor, the timing critical flip-flops had a clock with a

40% duty cycle resulting in a 25 FO4 detection window while non-critical flip-flops had

a 13% clock duty cycle to minimize buffer insertion. The high phase, TON, of the critical

a) Clock Generation Unit

b) Asymmetric clocks

Figure 7.5 RazorII processor clocking scheme. Figure a) shows the schematic of the
clock-generator. Figure b) shows the relevant timing diagrams.

 103

R2LATs was tunable with a range from 850ps to 1500ps while TON for the non-critical

flip-flops was tunable from 450ps to 700ps. A total of 1924 buffers were added to meet

the hold time constraint, which added a 1.3% power overhead.

As explained in Chapter 5, the minimum overlap between the high phase of the clock

and the detection clock (DC) is required to be half of a SEU pulse width. An additional

concern that affects the duration of the high phase is the risk of attenuation during

propagation through the clock-tree. Attenuation can occur due to asymmetric rise or fall

times through the buffers in the clock-tree or power-supply jitter affecting the clock-tree.

This can be an issue for the non-critical clock, which uses a narrower high-phase

compared to the critical clock (450ps versus 1.5ns at the slow corner). In such a case, a

wider high-phase maybe required for the non-critical clock. In our implementation, we

added 100ps as the difference between the DC pulse-width and the high-phase of the non-

critical clock. This was sufficient for the correct operation of the chip. However, we also

provided capability for post-silicon tuning of the high-phase (from 450ps to 750ps) which

was not required to be exercised for the chip to operate. Attenuation is not a concern for

the DC clock pulse since it was locally generated within each R2LAT.

An important observation to make here is that the only restriction imposed by the

RazorII clocking scheme is on the duration of the high phase required to meet the

minimum delay constraint at the destination R2LATs. Hence, all the conventional

clocking techniques such as clock-gating and useful skew insertion can be used as is with

RazorII without any modification to the existing methodology. Of course, such

techniques may worsen the minimum-path constraints. This can be addressed in the

conventional manner through additional buffer insertion on the violating paths.

The impact of clock uncertainties which affect the rising clock-edge, such as cycle-

to-cycle jitter, impacts RazorII technology in the same way as it affects conventional

clocking techniques. However, RazorII is naturally robust against timing uncertainties

caused due to such jitter mechanisms and can tolerate higher level of jitter compared to

conventional techniques. Phenomena that affect both clock edges, such as duty-cycle

jitter, have an impact on the high-phase of the clock at the destination flip-flop and hence,

affect the minimum-path constraint. Additional buffer insertion may be required to

account for minimum-path violations caused due to duty-cycle jitter.

 104

Since the asymmetric clocks were digitally generated, care was taken to reduce the

jitter induced by power-supply noise in the CGU. The CGU had additional metallization

in the power-grid and had sufficient number of decoupling capacitors to reduce supply

voltage ripple to the high-frequency RO. Alternatively, analog techniques can also be

used for jitter compensation within the CGU.

7.3.2 Total energy savings

We measured the energy savings from RazorII based DVS on 33 different dies at

185MHz operating frequency. Figure 7.6 shows the energy savings for three different

chips at the fast, slow and the typical corners respectively. These chips are labeled

according to the corner that they represent.

The first set of bars show the energy consumption when Razor error correction is

disabled and the chips are operated at the worst-case voltage. We obtain the worst-case

operating voltage by adding margins to the PoFF of the slowest chip of the lot (1.21V).

We added an estimated 5% of the nominal operating voltage (1.2V), or 60mV, as margin

Figure 7.6 Total energy savings through RazorII based supply-voltage control

 105

for power supply uncertainties, wear-out effects and safety, respectively. Temperature

margins were measured by the shift in the PoFF of the worst-case chip at 85C versus that

at 25C. The PoFF of the worst-case chip at 25C and 85C was measured to be 1.21V and

1.26V respectively, a shift of 50mV. Thus, by adding these margins to the PoFF of the

slowest chip, we obtained the worst-case operating voltage to be 1.44V. At this operating

voltage, correct operation is guaranteed for all the tested dies, across all operating

conditions. A key observation to make here is that these margins are optimistic since the

actual process spread is significantly worse than what we can obtain with a limited

sample size of 33 dies.

The first set of bar graphs in Figure 7.6 show the Energy Per Instruction (EPI) of the

chips-under-test when operating at 1.44V. For each chip, we measured the contribution of

each category of margins to the overall energy consumption. The energy due to process

variations margin was measured by the difference in energy consumption when operating

at the PoFF of the worst-case chip (1.21V) versus operating at its own PoFF, at 25C. For

the “fast” chip, this was measured to be 44pJ per instruction. This is significantly greater

than the process variations margin for the “slow” chip which was measured to be 5.3pJ.

This is because the PoFF of “slow” chip (1.205V) is very close to the PoFF of the worst-

case chip (1.21V). The energy due to temperature margins was measured by the

difference in energy when operating at the PoFF of the worst-case chip at 85C (1.26V)

versus operating at 1.21V. At the worst-case voltage, the “fast” chip consumes 816pJ per

Figure 7.7 Distribution of total energy savings through Razor

 106

instruction. The “typical” and the “slow” chips consume 805pJ and 810pJ per instruction,

respectively.

For the second set of bar graphs shown in Figure 7.6, we enabled Razor error

correction and operated the chips at their own optimal operating voltages (Figure 1). At

this voltage, the exponential increase of recovery energy compensates for the quadratic

reduction of the pipeline operations energy. The EPI of the “fast” chip was measured to

be 509.5pJ at the optimal voltage. This translated to a net saving of 37.5% when

compared to 816pJ consumed at the worst-case voltage. The energy savings for the

“typical” and the “slow” chips were measured to be 35% and 33%, respectively. The

elimination of higher process variations margin for the “fast” chip compared to the rest,

leads to greater overall energy savings at the optimal point. We obtain, on an average,

33% energy savings over the worst-case for all the chips tested, as shown in the

histogram in Figure 7.7.

Figure 7.8 Sub-critical operation in RazorII

 107

7.3.3 RazorII sub-critical operation

Figure 7.8 shows the measured error-rate, IPC and energy-per-instruction of the

“fast” chip as a function of the supply voltage in the sub-critical voltage regime at

185MHz. The voltage at the PoFF is 1.197mV. At this voltage, the error-rate is extremely

low of the order of 10-6. As the supply voltage is reduced below the PoFF, the error-rate

increases exponentially. Initially, the error-rate is still extremely low and the pipeline

operations energy dominates over the recovery energy. Consequently, the overall energy-

per-instruction reduces quadratically with the supply voltage. At the optimal operating

voltage of 1.165V, the EPI is measured to be 509.5pJ for an error-rate of 0.04% and an

IPC degradation of 0.2%.

Beyond the optimal energy point, the recovery energy for the exponentially

increasing error-rates dominates the overall processor energy. Hence, both the IPC

degradation and the energy-per-instruction of the processor show an exponential trend.

This greatly complicates the design of a voltage controller which can dynamically tune

the supply voltage for the optimal operating point. In addition, the energy savings at the

optimal point compared to the PoFF is not significant (5%). Hence, it is beneficial to

Figure 7.9 Run-time versus replay tradeoff

 108

operate at the PoFF rather than at the optimal voltage.

Figure 7.9 shows the measured statistics on the number of replay iterations required

to commit an erroneous instruction. An erroneous instruction can suffer repeated timing

errors during replay. A possible deadlock situation can be avoided by recovering at half

the frequency to guarantee completion for a repeatedly failing instruction. As explained

in Section 7.1, the number of replay iterations allowed for a failing instruction before

frequency is halved, is called the “replay limit”. In Figure 7.9, we plot the number of

times the replay limit is reached as a function of the replay limit. The runtime for the

code being executed is also plotted against the replay limit. We see that the runtime for

the replay limit of 1 is much higher than that for the replay limit of 2. This is because for

the replay limit of 1, recovery for every timing error occurs at half the clock frequency.

On the contrary, for a replay limit of 2, most instructions complete when re-executed at

the same frequency.

Those instructions that don’t complete in the first replay keep failing repeatedly for

subsequent replay iterations until the replay limit is reached. Therefore, as the replay

limit is increased beyond 2, the runtime also linearly increases. These observations are

also borne out from the histogram in Figure 7.10. As can be seen, 60% of erroneous

instructions require a limit of 2 to complete. This number drastically reduces as the limit

Figure 7.10 Histogram of instructions as a function of replay iterations

 109

is increased. For higher values of replay limits, the numbers of times the replay limit is

reached is almost constant.

7.4 Soft Error Rate Radiation tests with RazorII

Figure 7.11 shows the setup used for accelerated radiation tests performed on the

processor to quantify the Soft Error Rate (SER) tolerance provided by RazorII. These

tests were performed in the Breazeale Nuclear Reactor at the University of Pennsylvania.

Thermal neutrons with a neutron flux of 3.5x107 neutrons/cm2 were used for irradiating

the chip. SER protection in the SRAM arrays and Register File is provided by ECC.

Other architectural state registers are protected by TMR and all the pipeline registers are

protected using RazorII error correction.

Figure 7.11 SER Test Setup

 110

Table 7.2 lists the radiation tests performed on the processor. In the first test (Test 1),

we completely disable error correction by Razor, ECC and TMR. The test code is

scanned into the Icache, error protection is disabled and the code is executed while the

processor is being simultaneously irradiated. This test is performed at 0.8V with

sufficiently low operational frequency such that timing errors do not occur. Thus, all the

observed errors are due to bit-flips in the state-holding nodes due to particle strikes. As

expected, the final execution output is incorrect. When error detection is enabled (Test 2)

the processor is able to detect and correct the SER induced errors. This was verified for

different operating voltages (0.8 to 1.0V). The soft-error rate was recorded for memory

and pipeline elements. In Test 3, we allow the processor to execute when the frequency

of operation is increased beyond PoFF causing delay errors to occur in addition to SER.

Although the delay errors completely overwhelm errors due to SER, RazorII is able to

detect and correct all of them and the processor continues to operate correctly.

Table 7.2 SER Tests

NoNoNA*NA*0.8Off
1 – No timing errors
and error detection off

YesYes33M **0.8On
3 – Both SER and
timing errors with error
detection

YesNo

540.8On
2 – No timing errors
with error detection

641.0On

460.9On

Correct
program

execution

Delay error
rate > 0

ECC
Errors

Razor
Errors

Vdd (V)
Error Detection

(TD enabled)
Radiation Test

Description

NoNoNA*NA*0.8Off
1 – No timing errors
and error detection off

YesYes33M **0.8On
3 – Both SER and
timing errors with error
detection

YesNo

540.8On
2 – No timing errors
with error detection

641.0On

460.9On

Correct
program

execution

Delay error
rate > 0

ECC
Errors

Razor
Errors

Vdd (V)
Error Detection

(TD enabled)
Radiation Test

Description

* When TD is disabled the counter of errors in the ECC and RazorII FF is disabled

** Beyond PoFF (Delay error rate > 0), timing errors overwhelm SER, but they both are
detected and corrected by the RazorII mechanisms

 111

CHAPTER 8

CONCLUSION AND FUTURE WORK

In this chapter, we summarize our research on Razor and present the key insights

from our work. We analyze the merits and the weaknesses of Razor-based self-tuning

based on our experience with the RazorI and RazorII prototypes. Finally, we discuss the

barriers to the deployment of Razor as a mainstream technology and present avenues of

future research on Razor.

8.1 Key concept of Razor

We developed Razor with the aim of designing low-power yet robust circuits in the

presence of design uncertainties that arise due to large PVT variations at advanced

process nodes. We discussed how traditional adaptive techniques, such as the canary-

circuits approach, fail to adequately address these uncertainties. Traditional techniques

require widening margins to account for the increasing contribution of the local

component of variations. This incurs large performance and power overheads which

undermine the efficacy of such techniques at aggressive geometries.

We showed how Razor is able to mitigate the impact of excessive margining through

circuit-level timing speculation based on dynamic detection and correction of timing

errors. Allowing error-tolerant processor operation enables elimination of worst-case

safety margins, thereby leading to significant improvements in energy efficiency. Error-

detection in Razor occurs through a delay-error tolerant flip-flop which monitors the

critical-path of processors for timing errors. Since Razor error-detection is required only

for the top few critical flip-flops, the total power and area overhead of Razor was

measured to be less than 3% for both prototypes that we fabricated for validating Razor.

The Razor voltage control system monitors the error-rate and tunes the supply

voltage according to the observed error-rate to achieve a targeted rate, given as an input

 112

to the system. We qualitatively illustrated how, by operating in very low error-rate

regimes, Razor favorably trades-off the energy overhead of error-correction for additional

efficiency benefits through margin elimination. We developed two techniques, called

RazorI and RazorII, for implementation of Razor-based voltage tuning in microprocessor

cores. We validated both those techniques from our measurements on fabricated silicon

and demonstrated significant energy savings.

8.2 The RazorI approach

The RazorI flip-flop (R1FF) samples its input at two different points in time. The

earlier, speculative sample is captured in the main flip-flop at the rising edge of the clock.

The latter, always-correct sample is captured at a delayed edge in a shadow latch. A

metastability-tolerant comparator flags an error when the speculative sample differs from

the correct sample. Error-correction is achieved by engaging a recovery mechanism

which overwrites the main flip-flop with correct data in the shadow latch. In addition, the

recovery mechanism restores the pipeline back to its correct state.

 We proposed two techniques by which pipeline recovery can be achieved. The first

technique is based upon clock-gating wherein the entire pipeline stalls for the cycle

immediately following a timing error. The second technique is based on a counter-flow

pipeline architecture in which the pipeline is flushed and execution is resumed from the

instruction following the one that caused the error. We implemented the latter technique

in a 64bit RazorI prototype implementing a sub-set of the Alpha instruction set.

From our measurements on silicon, we demonstrated correct operation in the sub-

critical regimes with RazorI error-correction, whereby the processor is deliberately

operated in the sub-critical voltage regimes below the Point of First Failure (PoFF).

Through margin elimination and sub-critical operation, we obtained 50% energy savings,

on an average, for 33 tested dies. We demonstrated a voltage control loop that tuned

supply voltage to achieve a 0.1% targeted error-rate. While the Razor voltage control

algorithm was implemented in a Xilinx FPGA board, it can also be implemented in

software as well.

 113

8.3 The RazorII approach

A key observation from our experiments with the RazorI prototype was that most of

the energy savings are actually realized through elimination of safety margins and

operating at the PoFF. Furthermore, the error-rate increased exponentially beyond this

point which undermined the efficacy of operating significantly below the PoFF. We

exploited these observations in the RazorII technique wherein the processor is intended to

operate right at the PoFF. Error-detection is achieved by a so-called “transition-detector”

which flags spurious transitions in the monitored critical-path. Recovery occurs through a

replay mechanism from a Razor-validated check-pointed state. This mechanism for

recovery greatly simplifies the design of the error-detecting RazorII flip-flop while

adding very little area and clock-power overhead. However, replaying the same

instruction again can cause a deadlock situation to occur. Such an occurrence is mitigated

by recovering at half the clock frequency.

We developed a design of the RazorII flip-flop, called the R2LAT that uses a level-

sensitive latch instead of a flip-flop. Positive-edge triggered flip-flop operation is

enforced through the transition-detector which flags any transition in the latch-node in the

high-phase of the clock as a timing error. Elimination of the master-latch leads to a faster

and a more energy-efficient implementation. In addition, this design naturally allows

detection of Single Event Upsets (SEU) in logic and inside registers. We used the R2LAT

for timing-error detection and SEU tolerance in a 64bit RazorII prototype. We obtained,

on an average, 35% energy savings through margin elimination on 33 tested dies. In

addition, we demonstrated correct operation of the processor even when exposed to high-

energy neutron irradiation.

The recovery mechanism in the RazorII approach relies on a conventional replay

technique. The lower overhead of error-detection makes this technique highly amenable

to high-performance microprocessors. Consequently, the RazorII approach is much more

suitable for industrial deployment than RazorI.

 114

8.4 Merits and demerits of the Razor approach

The key advantage of Razor, as we have already discussed, is its in situ error-

detection capability. This enables Razor to detect and recover from timing uncertainties

due to local fluctuations in process, voltage and temperature. While most state-of-the-art

microprocessor designs [49][50][51] incorporate mechanisms to adaptively respond to

IR-drops and temperature hotspots, however, in our knowledge, Razor is the only

technique that can effectively respond to highly local and fast-changing variations, such

as coupling noise events. Unlike traditional techniques, Razor tunes the supply voltage

based on the monitored error-rate which enables it to exploit data-dependent delay

variations. Another key advantage of Razor is that it allows reliability in the presence of

SEU with very little additional overhead. The performance and energy-efficiency upside

obtainable from Razor allows faster design closure and parametric yield improvement.

A key demerit of the Razor technique is the minimum-delay requirement. Rising

variations in short-paths can actually exacerbate this constraint. Consequently, additional

buffer insertion may be required to compensate and margin for possible minimum-delay

violations. However, from our experience with industrial designs, it is possible to satisfy

aggressive minimum-delay constraints through buffer insertion, even at the 65nm

technology node. Consequently, we believe that this constraint can be adequately

addressed even at advanced process nodes.

8.5 Future directions of research into Razor

In the recent past, Razor has received considerable traction within the industry. In the

International Solid-state Circuits Conference, 2008, researchers from Intel presented their

measurements from a prototype which uses a frequency-management technique for

performance enhancement, very similar to RazorII [37]. ARM Limited, Cambridge, U.K,

have also initiated research efforts focused at evaluating Razor for low-power micro-

processor cores. However, several challenges remain before Razor can be widely adopted

as mainstream technology. In the following, we discuss some of these challenges and

opportunities for future research into Razor.

 115

8.5.1 Razor System Design Considerations

Designing complete and fully-functional Razor-based systems that can boot

operating systems and execute “real” software requires significant amount of engineering

effort. A complicating issue in this regard is the limitation of common, industrial

peripheral designs which cannot easily interface with a variable frequency processor core.

Using such systems requires the separation of the Razor-based pipeline from the

interfacing peripherals through FIFO buffers.

Designing voltage and frequency tuning algorithms that can tune for the Point of

First Failure needs further investigation. For such algorithms, it is important that when

the error-rate is low due to the critical-path not being sensitized, the system is able to

restrict scaling to safe limits. In Chapter 7, we discussed potential techniques that can

achieve this. The first technique we discussed uses conventional static timing analysis to

obtain the safe limit, but at the expense of safety margins to the negative edge of the

clock. On the other hand, tuning using worst-case vectors can obtain system limits

without adding excessive margins to the negative edge. However, the latter approach

requires additional infrastructure to obtain worst-case vectors and to replay them

deterministically. These and new such approaches need to be developed further and

validated on silicon in functional systems.

8.5.2 Micro-architectural research into Razor-based pipelines

By eliminating design margins, Razor enables better energy-efficiency and higher

performance. High-performance architectures such as out-of-order processors rely on

deep pipelines and complex control structures such as Reservation Stations and Reorder

Buffers to achieve the targeted throughput requirement, often at the expense of increased

power consumption. Incorporating Razor, specifically RazorII, in such pipelines can

achieve the required performance boost within the power budget.

In addition, architecting efficient memory systems that can deal with the variable

latency of the processor core can be explored as a topic for future research. Common

Instruction Set Architectures (ISAs), such as the ARM ISA, have support for multiple

cycle instructions. Efficient check-pointing and replay of such instructions can also be

explored further.

 116

8.5.3 Silicon test-and-debug

The testability aspect of Razor-based designs is another avenue of research into

Razor. The RazorII flip-flop supports the conventional, scan-based testing

methodologies. However, tuning based on the error-rates poses testing issues such as

ensuring that the system is self-limiting i.e. the system restricts itself to known, safe

operating regimes. These issues relate to our discussions regarding setting safe limits to

voltage and frequency scaling in Section 7.2. In addition, the error-detection capability of

Razor flip-flops enables significant observability of failing critical-paths and, hence, can

be exploited extensively during silicon testing.

Razor offers designers the capability of reconciling conflicting constraints and

achieving faster design closure in the presence of rising uncertainties. In this thesis, we

have made several contributions towards developing Razor as a potential mainstream

technology. However, significant barriers to adoption of Razor by industry still remain.

The International Technology Roadmap for Semiconductors [46], 2007 edition, lists

Razor as a key optimization “for reliable computing” that will “extend existing

techniques for robust computation”. Indeed, the difficulties in sustaining the Moore’s

Law into the next decade and beyond makes techniques such as Razor assume ever-

increasing relevance. Future research into Razor needs to focus on building robust and

field-deployable systems that use Razor for supply voltage control.

 117

BIBLIOGRAPHY

 118

[1] S.T. Ma, A. Keshavarzi, V. De, J.R. Brews, “A statistical model for extracting

geometric sources of transistor performance variation”, IEEE Transactions on

Electron Devices, Volume 51, Issue 1, Page(s):36 - 41, Jan. 2004.

[2] R. Gonzalez, B. Gordon, and M. Horowitz, “Supply and Threshold Voltage

Scaling for Low Power CMOS,” IEEE Journal of Solid-State Circuits, 32 (8), August

1997.

[3] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A Dynamic Voltage Scaled

Microprocessor System,” International Solid-State Circuits Conference, Feb. 2000.

[4] International Technology Roadmap for Semiconductors, 2005 edition,

http://www.itrs.net/ Links/2005ITRS/Home2005.htm.

[5] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous and A. R.

LeBlanc, “Design of ion-implanted MOSFETs with very small physical dimensions,”

IEEE J. Solid-State Circuits, vol. SC-9, pp. 256–268, Oct. 1974.

[6] A. Asenov, S. Kaya, A.R. Brown, “Intrinsic parameter fluctuations in

decananometer MOSFETs introduced by gate line edge roughness,”, IEEE

Transactions on Electron Devices, Volume 50, Issue 5, Page(s):1254 - 1260, May

2003.

[7] Gordon Moore, “Cramming more components into Integrated Circuits”,

ftp://download.intel.com/research/silicon/moorespaper.pdf

[8] G. Wolrich, E. McLellan, L. Harada, J. Montanaro, and R. Yodlowski, “A High

Performance Floating Point Coprocessor,” IEEE Journal of Solid-State Circuits, (5),

October 1984.

[9] Dr. Andy Grove, key note speech at the International Electron Devices Meeting,

2002, http://www.intel.com/pressroom/archive/speeches/grove_20021210.pdf

[10] S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, T. Mudge, K. Flautner,

“A Self-Tuning DVS Processor using Delay-Error Detection and Correction,” IEEE

Journal of Solid-State Circuits, pages 792 - 804, April 2006.

[11] D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao, C. Ziesler, D. Blaauw, T.

Austin, T. Mudge, K. Flautner, “RazorI: A low-power pipeline based on circuit-level

 119

timing speculation,” Proceedings of the 36th Annual IEEE/ACM International

Symposium on Microarchitecture, Dec. 2003, pages 7-18.

[12] W. Dally, J. Poulton, Digital System Engineering, Cambridge University Press,

1998

[13] Intel Corporation, “Intel Speedstep Technology”,

http://www.intel.com/support/processors/mobile/pentiumiii/ss.htm

[14] Trasmeta Corporation, “LongRun Power Management”,

http://www.transmeta.com/tech/longrun2.html

[15] ARM Limited, http://www.arm.com/products/esd/iem_home.html

[16] S. Hauck, “Asynchronous Design Methodologies: An Overview,” Proceedings of

the IEEE, 83 (1), January 1995.

[17] S. Lu, “Speeding up Processing with Approximation Circuits”, IEEE Micro Top

Picks, pg. 67-73, 2004

[18] A.K. Uht, “Going beyond worst-case specs with TEATime”, IEEE Micro Top

Picks, pg. 51-56, 2004

[19] K.J. Nowka, G.D. Carpenter, E.W. MacDonald, H.C. Ngo, B.C Brock, K.I. Ishii,

T.Y. Nguyen and J.L. Burns, “A 32-bit PowerPC System-on-a-chip With Support for

Dynamic Voltage Scaling and Dynamic Frequency Scaling”, IEEE Journal of Solid-

State Circuits, Volume 37, Issue 11, pp.1441-1447, Nov. 2002

[20] IBM : Kerry Bernstein et al.

[21] T.D. Burd, T.A. Pering, A.J. Stratakos and R.W. Brodersen, “A Dynamic Voltage

Scaled Microprocessor System”, IEEE Journal of Solid-State Circuits, Volume 35,

Issue 11, pages 1571–1580, Nov. 2000.

[22] Berkeley Wireless Research Center, http://bwrc.eecs.berkeley.edu/

[23] M. Nakai, S. Akui, K. Seno, T. Meguro, T. Seki, T. Kondo, A. Hashiguchi, H.

Kawahara, K. Kumano and M. Shimura, “Dynamic Voltage and Frequency

Management for a Low Power Embedded Microprocessor”, IEEE Journal of Solid-

State Circuits, Volume 40, Issue 1, pages 28-35, Jan. 2005

[24] T. Kehl, “Hardware Self-Tuning and Circuit Performance Monitoring,” 1993 Int’l

Conference on Computer Design (ICCD-93), October 1993.

 120

[25] T. Austin, V. Bertacco, D. Blaauw and T. Mudge, “Opportunities and challenges

in better than worst-case design”, Proceedings of the ASP-DAC 2005, Vol. 1, 18-21,

2005.

[26] D. Roberts, T. Austin, T. Mudge and K.Flautner, “Error analysis for the support

of robust voltage scaling”, Sixth International Symposium on

Quality of Electronic Design, 2005, Page(s):65 – 70, March 2005.

[27] Kim, D. Burger and S.W. Keckler, IEEE Micro, Volume 23, Issue 6, Nov.-Dec.

2003 Pg(s):99 – 107.

[28] Z. Chishti, M.D. Powell, T. N. Vijaykumar, “Distance associativity for high-

performance energy-efficient non-uniform cache architectures”, Proceedings of the

International Symposium on Microarchitecture, 2003, MICRO-36

[29] F. Worm, P. Ienne and P. Thiran, “A Robust Self-Calibrating Transmission

Scheme for On-Chip Networks”, IEEE Transactions on Very Large Scale Integration,

Vol. 13, No. 1, January 2005.

[30] R. Hegde and N. R. Shanbhag, “A Voltage Overscaled Low-Power Digital Filter

IC”, IEEE Journal of Solid-State Circuits, Vol.39, No. 2, February 2004.

[31] L. Anghel and M. Nicolaidis, “Cost Reduction and Evaluation of a Temporary

Faults Detecting Technique”, Proceedings of Design, Automation and Test in Europe

Conference and Exhibition 2000, 27-30 March 2000 Page(s):591 – 598

[32] K. Ogata, “Modern Control Engineering,” 4th edition, Prentice Hall, New Jersey,

2002.

[33] www.mosis.org

[34] www.xilinx.com

[35] W.J. Van Gils, “A Triple Modular Redundancy Technique Providing Multiple-Bit

Error Protection Without Using Extra Redundancy”, IEEE Transactions on

Computers, Volume C-35, Issue 7, pages 623-631, July 1986.

[36] S.J. Piestrak, A. Dandache and F. Monteiro, “Designing fault-secure parallel

encoders for systematic linear error correcting codes,” IEEE Transactions on

Reliability, Volume 52, Issue 4, pages 492-500, Dec. 2003.

[37] K.A. Bowman, J.W. Tschanz, N.S. Kim, J.C. Lee, C.B. Wilkerson, S. Lu, T.

Karnik and V. De, “Energy-Efficient and Metastability-Immune Timing-Error

 121

Detection and Instruction-Replay-Based Recovery Circuits for Dynamic-Variation

Tolerance,” Proceedings of the 2008 International Solid-State Circuits Conference,

pages 402-403, Feb. 2008.

[38] R. Sproull, I. Sutherland, and C. Molnar, “Counterflow Pipeline Processor

Architecture,” Sun Microsystems Laboratories Inc. Technical Report SMLI-TR-94-25,

April 1994.

[39] S. Yokogawa, H. Takizawa, “Electromigration induced incubation, drift and

threshold in single-damascene copper interconnects”, IEEE 2002 International

Interconnect Technology Conference, 2002, Page(s):127 - 129, 3-5 June 2002.

[40] M. Hashimoto, H. Onodera, “Increase in delay uncertainty by performance

optimization”, IEEE International Symposium on Circuits and Systems, 2001,

Volume 5, Page(s):379 - 382 vol. 5, 6-9 May 2001.

[41] S. Rangan, N. Mielke and E. Yeh, "Universal Recovery Behavior of Negative

Bias Temperature Instability," IEEE Intl. Electron Devices Mtg., December 2003, p.

341.

[42] W. Jie and E. Rosenbaum, “Gate oxide reliability under ESD-like pulse stress”,

IEEE Transactions on Electron Devices, Vol. 51, Issue 7, July 2004.

[43] A. Drake, R. Senger, H. Deogun, G. Carpenter, S. Ghiasi, T. Ngyugen, N. James

and M. Floyd, “A Distributed critical-path timing monitor for a 65nm high-

performance microprocessor”, International Solid-State Circuits Conference, 2007,

pages 398-399.

[44] D. Blaauw, S. Kalaiselvan, K. Lai, W. Ma, S.Pant, C. Tokunaga, S. Das and D.

Bull, “RazorII: In Situ Error Detection and Correction for PVT and SER Tolerance”,

Proceedings of the 2008 International Solid-State Circuits Conference, pages 400-

401, Feb. 2008.

[45] S. Das, C. Tokunaga, S. Pant, W. Ma, S. Kalaiselvan, D. Blaauw, K. Lai, D. Bull

and D. Blaauw “RazorII: In Situ Error Detection and Correction for PVT and SER

Tolerance”, Journal of Solid-State Circuits, to appear, Jan. 2009.

[46] International Technology Roadmap for Semiconductors, 2007, Design Chapter,

http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Design.pdf.

 122

[47] G. Dasika, S. Das, K. Fan, S. Mahlke and D. Bull, “DVFS in Loop Accelerators

using BLADES”, Proceedings of the Design Automation Conference, pages 894-897,

June 2008.

[48] X. Vera, O. Unsal, and A. Gonzalez, “X-Pipe: An Adaptive Resilient

Microarchitecture for Parameter Variations”, Proceedings of the Workshop on

Architectural Support for Gigascale Integration, June 2006.

[49] B. Stolt, Y. Mittlefehldt, S. Dubey, G. Mittal, M. Lee, J. Friedrich, E. Fluhr,

“Design and Implementation of the POWER6 Microprocessor”, IEEE Journal of

Solid-State Circuits, pages 21-28, January 2008.

[50] N. Sakran, M. Yuffe, M. Mehalel, J. Doweck, E. Knoll and A. Kovacs, “The

Implementation of the 65nm Dual-Core 64b Merom Processor”,

Digest of Technical Papers, International Solid-State Circuits Conference, 2007,

pages 11-15, February 2007.

[51] S. Naffziger, B. Stackhouse, T. Grutkowski, D. Josephson, J. Desai, E. Alon and

M. Horowitz, “The Implementation of a 2-Core, Multi-Threaded Itanium Family

Processor”, IEEE Journal of Solid-State Circuits, vol. 41, pages 197-209, January

2006.

[52] T. Fisher, J. Desai, B. Doyle, S. Naffziger, B. Patella, “A 90-nm Variable

Frequency Clock System for a Power-Managed Itanium Architecture Processor”,

IEEE Journal of Solid-State Circuits, Vol. 41, pages 218-228, January 2006.

[53] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N.S. Kim and K.

Flautner, “Razor: circuit-level correction of timing errors for low-power operation”

IEEE Micro Top Picks, Vol. 24, Issue 6, pages 10-20, December 2004.

[54] B. Nikolic, V.G. Oklobdzija, V. Stojanovic, Wenyan Jia, James Kar-Shing Chiu,

M. Ming-Tak Leung, “Improved sense-amplifier-based flip-flop: design and

measurements”, IEEE Journal of Solid-State Circuits, Volume 35, Issue 6,

Page(s):876 - 884, June 2000.

