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CHAPTER I

Introduction

Models, implicit or explicit, are used in almost every field of human endeavor.

For example, in baseball, the batter uses an implicit model of the baseball’s physics

to predict where the ball will cross the plate, based on the pitcher’s release point

and arm speed, the spin of the ball, and similar factors. Chip designers predict the

speed of a new processor before the masks are even built, using their models of the

properties of aluminum, copper, silicon, and other materials. Mutual fund managers

use models of financial instruments and markets to predict future returns and the

risk involved.

People use models to make predictions about future outcomes in systems that

change over time, generally to help guide their behavior. In these examples, the

baseball player uses the model’s prediction to decide whether to swing and where to

place the bat; the chip designers use the model to simulate their chip and guide design

decisions (e.g., where to place various components so as to minimize wire lengths on

the critical path); mutual fund managers use their predictions of risk to balance their

funds’ portfolios. Artificial agents can also use models to make predictions and guide

their decisions; these models will be the focus of this dissertation.

The predictions that a model makes are based on its state—that is, its estimate

1



2

of the current situation of the world. At each time step1, the model updates its

state based on the agent’s interaction with the system (i.e. the action taken by the

agent and the information provided by the sensors). In most worlds of interest to

agent designers, the sensor information available to the agent does not convey all

information about the current situation in the world; systems with this property

are called partially observable. Under partial observability, maintaining the system’s

state is necessary to make good predictions about the future (in fully observable

environments, the most recent observation can serve as state).

One important aspect to consider when selecting a model is the availability and

performance of algorithms that learn the parameters of that model from data. An

agent should be able to begin making good decisions after spending time in an

unfamiliar environment. Thus, an agent should be able to learn a model based on

its experience in the world.

Many model classes are used when designing artificial agents, but few models

are suited to deal with partial observability and to be learned from experience. A

new paradigm in models, predictive state, was designed with both these desiderata

in mind. To date, most work on predictive state models has been focused primarily

on linear models of systems with discrete observations. Here, I explore two different

improvements to these models. First, I propose a nonlinear predictive state model

of systems with discrete observations; this nonlinear model may have much smaller

dimension than a linear model of the same system. Second, I propose a linear

predictive state model of systems with continuous, vector-valued observations. This

will allow predictive state models to be applied to an important domain of dynamical

systems that is not served by the previous work.

1This dissertation treats only models in discrete time.
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In Chapter II, I present some existing models of dynamical systems, including pre-

vious predictive state models as well as traditional models. Chapter III is devoted to

the EPSR, a nonlinear predictive state model for deterministic systems with discrete

observations. Chapter IV introduces the predictive linear-Gaussian model (PLG), a

predictive state model for dynamical systems with continuous, vector-valued obser-

vations. Chapter V lays out several parameter estimation algorithms for the PLG

and presents experimental results for one of those algorithms in artificial systems.

Finally, Chapter VI describes a traffic prediction problem and presents experimental

results in modeling vehicles using data taken from a California freeway.



CHAPTER II

Related Models of Dynamical Systems

There are many, many models of dynamical systems in existence. Here I present

some of those models that are of interest because they have similar dynamics or

similar applications to the models I will present in this thesis. The models I discuss in

Chapter III and beyond will all be predictive state models; therefore, I will introduce

the previous work in this field in Section 2.1.

However, these predictive state models almost exclusively model systems with

discrete observations. Since the predictive linear-Gaussian model, which I discuss

from Chapter IV on, deals with continuous observations, I also present two important

(but non-predictive-state) models in that domain in Section 2.2.

2.1 Predictive State Models

An important problem in modeling dynamical systems is that of partial observ-

ability; a partially observable system is one in which the most recent observation

does not include all of the information that is relevant to making predictions about

the system—that is, that the observation is not state. As an example of a partially

observable system, consider riding in a vehicle in which you may observe the odome-

ter (i.e. the distance traveled) once per second but nothing else. If the vehicle does

not move at a constant velocity, just knowing the most recent odometer reading will

4
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not allow you to predict the next reading as accurately as would be possible if you

had access to every odometer reading so far. In order to model partially observable

systems, more information than the most recent observation must be maintained;

this information is called the state of the model.

There are several types of models that deal with partial observability. One of

the simplest types assumes that, if the last observation by itself does not constitute

state, the last k observations (for some finite k) does. In the odometer example,

the modeler might assume that the vehicle’s velocity will not change quickly. The

difference between the last two observations can then be added to the last observation

to estimate the next observation. Alternatively, it may be assumed that the vehicle’s

acceleration will change slowly. In this case, the last three observations would be

necessary. Models of this type are sometimes called “history window” models, and

include autoregressive models (see Section 2.2.1) and k-Markov models.

There are two main downsides to this approach. First, as the number of observa-

tions to remember, k, grows, the size of the state space grows exponentially. This may

not be apparent given the simple dynamics of the odometer example, but consider

observing four LEDs. There are 24 = 16 different patterns that these LEDs can take

on. If the next pattern depends only on the previous pattern, there are 16 states to

consider. However, if the next pattern depends on the previous two patterns, there

are 256 states to consider; when k = 3, there are 4096 states, and so on. The second

drawback is that history window models are not as expressive as the other models I

will address. Suppose that in the LED example, the next pattern depended only on

the previous pattern and on the first pattern. No matter how large k is made, the

model will eventually “forget” what the first pattern was and become inaccurate.

Latent state models address this second drawback, and to a lesser extent, the first
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as well. In a latent state model, random variables are created that represent features

of the world. Probability distributions of these random variables are then maintained;

these distributions are the state of the model. In many cases, the random variables,

if observed, would be the state of a fully observable model; since they cannot be

observed directly, they are called latent state.

Returning to the odometer example, suppose again that the velocity changes only

slowly. If the velocity were observed along with the odometer, the system would

be fully observable. Since the speed is not observed, a random variable may be in-

troduced that represents the current velocity. This variable might have a normal

distribution whose variance depends on how slowly the vehicle’s speed changes and

how accurate the odometer readings are. Likewise, a variable representing the cur-

rent location would also be introduced; if the odometer is perfectly accurate, this

would simply be the most recent odometer reading. Assuming appropriate model

parameters, this model will be at least as accurate as the history window approach,

and will be more accurate if the odometer reading is noisy; I will return to this point

in Section 2.2.2.

There are many positive aspects to this approach, particularly when the identities

of all the relevant hidden features are known to the model designer, along with the

way these features change over time and affect the observations emitted by the sys-

tem. These models are relatively easy to specify, and they can often take advantage

of well-established probabilistic machinery (for example, dynamic Bayes nets).

The latent state approach also has its drawbacks. When the dynamics of the

system are not known a priori, learning the parameters of these models is subject

to difficulties. Moreover, these models are not verifiable by an automatic agent; the

probability distributions over latent variables are in a sense meaningless numbers to
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a computer program, and detecting an inaccurate model may be quite difficult.

An alternative approach to the problem of partial observability that has received

recent focus in the reinforcement learning community is to use predictive state. In a

predictive state model, the state is not probability distributions over latent variables,

it is probabilistic statements about future observable events.

In the odometer example, instead of remembering the last two observations or

keeping probability distributions over location and velocity variables, a predictive

state model might keep a probability distribution over the next two observations. In

Chapter IV, I will describe the Predictive Linear-Gaussian model (PLG). A PLG

would model this system by keeping a probability distribution over the next two

observations. While it has a superficial resemblance to the history window approach

(it deals directly in observations), it also models the system as well as the latent

state approach, even when the odometer reading is noisy.

One reason predictive state models have received attention is that there is some

hope that they may provide better generalization than traditional models; this is

the predictive representations hypothesis (Rafols, Ring, Sutton, & Tanner, 2005). A

model generalizes well in the sense meant here when it is able to make more accurate

predictions in situations that it has not yet been exposed to. Better generalization

also leads to faster convergence of the model during training, as learning about a

given situation also improves the model’s knowledge about similar situations.

The intuition behind the hypothesis is this: Suppose a model makes a set of

predictions about the future. If this set is chosen well, the fact that the predictions

in two situations resemble one another will mean that the optimal action, expected

future rewards, expected outcomes of various courses of action, etc., will also resemble

each other. For example, suppose that a robot has been designed to move around an
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office environment, and that it has been trained using data taken on the second floor

of a particular office building. If this same robot performs nearly as well (in terms of

making predictions or accumulating reward) when placed on the third floor, the robot

has generalized well. We would expect that this generalization is possible, because

office floor layouts are frequently similar on different floors of the same building, and

some aspects of an office are nearly universal (for example, a door is a door—turning

the knob of an unlocked door will open it even in otherwise quite different office

settings).

Rafols et al. (2005) provide some experimental results that suggest that the

predictive representations hypothesis may hold in practice. Their evidence comes

in part from experiments in a grid world that contains multiple rooms with similar

layouts arranged along a hallway. Though I do not explore this hypothesis further in

this thesis, it provides one motivation for developing and extending predictive state

models, as well as an interesting direction for future work.

An advantage of PSRs that I do explore in this thesis is their potential for improved

model learning. Because traditional models make use of hidden state, they are often

learned using Expectation Maximization (EM), which is able to deal with latent

variables but is subject to problems with local optima. Predictive state models, on

the other hand, are made up of probabilistic predictions about the future conditioned

on past interactions with the system. These predictions are grounded in the data;

given enough experience with a system, these probabilities may be estimated. There

has been a flurry of work in algorithms that learn PSRs by doing just that (e.g.,

James & Singh, 2004; Wiewiora, 2005; Bowling, McCracken, James, Neufeld, &

Wilkinson, 2006). In one paper, Wolfe, James, and Singh (2005) compared learning

one type of predictive state model to using EM to estimate the parameters of partially
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observable Markov decision processes (POMDPs) by running experiments on several

small problems, and found that learning predictive state models usually outperformed

EM.

One of the foundational (and most widely studied) predictive state models is the

linear predictive state representation (PSR), presented here.

2.1.1 The Linear PSR

The linear PSR was first introduced by Littman, Sutton, and Singh (2002); this

work focused on the relationship of PSRs to POMDPs. A later report derived the

linear PSR from the perspective of a system dynamics matrix (Singh, James, &

Rudary, 2004). Their approach clarified the relationship between linear PSRs and

other traditional models as well as allowing the PSR to be understood independently

of the POMDP. Thus, to present the linear PSR, I first develop the theory of the

system dynamics matrix.

The System Dynamics Matrix A dynamical system can be viewed abstractly as

a probability distribution over trajectories. In an uncontrolled dynamical system,

each trajectory t = o1o2 · · · ok, where o1, . . . , ok ∈ O are observations, is assigned a

probability

(2.1) p(t) = Pr(o1 = o1, . . . , ok = ok),

where oi is the actual observation generated by the system at time step i. A controlled

dynamical system, on the other hand, takes an input (action) from some set A at

each time step and generates an observation from O. Thus, in a controlled system,

a trajectory is made up of action-observation pairs for each time step. For each
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Figure 2.1: The system dynamics vector. (a) Each entry of the system dynamics vector corresponds
to the unconditional prediction of a test. In this diagram, k = |A||O| is the number
of one-step tests, and l = |A|2|O|2 + k is the number of one- and two-step tests. (b)
Certain structure in the vector is implied by the properties of dynamical systems, as
explained in the text.

trajectory t = a1o1 · · · akok, an action-conditional probability is assigned:

(2.2) p(t) = Pr(o1 = o1, . . . , ok = ok|a1 = a1, . . . , ak = ak).

In controlled systems, it is convenient to think of a trajectory as a test,1 or exper-

iment, that can be performed on the system. The test t is executed by performing

the specified actions; it succeeds if the specified observations are generated by the

system. Then p(t) is the probability of the test succeeding given that it is executed,

and can be thought of as a prediction for the test. To maintain a consistent vocab-

ulary (and in keeping with the established practice in the literature), trajectories in

both controlled and uncontrolled systems will be referred to as tests.

Given an ordering over all possible tests t1, t2, . . ., a dynamical system’s proba-

bilities of these tests define an infinite vector d, called the system dynamics vector

because it specifies the dynamics of the system; the ith element of d is p(ti), the

prediction of the ith test. A convenient ordering of the tests is to arrange them in

order of increasing length, with ties broken by lexicographic ordering. This vector is

illustrated in Figure 2.1(a).

1In particular, this is a sequence test, or s-test, because it consists of a sequence of actions and
observations. For the remainder of this section, I shall use test to mean s-test, but the next section
will introduce a new kind of test.
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In order for d to represent a consistent probability distribution over the tests, it

must satisfy the following constraints:

1. Each element of d must be a probability:

∀i 0 ≤ di ≤ 1.

2. The predictions of the tests with a given action sequence must sum to one: If

T (a) is the set of tests whose action sequences are a, then

∀k ∀a ∈ Ak
∑

t∈T (a)

p(t) = 1.

Note that this applies to uncontrolled systems as well; an uncontrolled sys-

tem may be considered to be a controlled system in which A contains a single

element.

3. If a test t′ has another test t as a prefix, p(t′) must not exceed p(t). In fact, the

sum of the predictions of all tests of the same length that share a prefix t must

equal the prediction of t:

∀t∀a ∈ A p(t) =
∑
o∈O

p(tao).

These properties, illustrated in Figure 2.1(b), guarantee that d contains a lot of

structure. This structure can be exploited by creating a system dynamics matrix,

D, whose columns correspond to tests and whose rows correspond to histories. Each

element of D is a conditional prediction p(t|h), i.e., the probability of t succeeding

given that the history h has already been observed.

More formally, for a test t = a1o1 · · · akok and a history h = a1o1 · · · ajoj, the

history-conditional prediction p(t|h) is given by

(2.3) p(t|h) = Pr(oj+1 = o1, . . . , oj+k = ok|h, aj+1 = a1, . . . , aj+k = ak).
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...

h2

hi

p(t1|h2)

h1 = φ p(t1) p(t2) p(tj)

p(tj|h2)

p(t1|hi) p(t2|hi) p(tj|hi)

t1 t2 tj

.........

...

p(t2|h2) ...
...
... ...

... ......... ...

Figure 2.2: The system dynamics matrix.

Suppose an ordering over the histories is defined so that h1 = φ, where φ is the

zero-length (i.e. initial) history and hi = ti−1 for i = 2, 3, . . . (though the histories

may technically be ordered arbitrarily, it is convenient to order them in the same

way as the tests). Then let the ijth element of D be

(2.4) Dij
∆
= p(tj|hi) =

p(hitj)

p(hi)
.

This matrix is illustrated in Figure 2.2.

There are several things to notice about D. First, the first row of D is the system

dynamics vector d—that is, p(t|φ) = p(t). Second, each row of D has the 3 properties

listed above that d has. Third, even though D has infinitely many rows and columns,

it is uniquely determined by d; that is, it reorganizes the information in d but does

not introduce any new information. That is because both the numerator and the

denominator in the right-hand side of (2.4) are elements of d. Finally, d and D

specify the system, but they are not useful models of the system. They both require

an infinite amount of memory to store, and so are unwieldy.

By contrast, a model of a system can be thought of a set of rules that could be

used to reconstruct (parts of) these data structures. The state of the model “saves”

the place in the structure—essentially, the model can be used to generate the row of

D corresponding to the history observed up to that point.
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...

h2

hi

h1 = φ

t1

...

... q1 ... qn ... tj ...
Q

D(Q) D(tj)

Figure 2.3: The core tests, Q, are selected so that D(Q) spans the column space of D.

The Linear PSR Model The linear PSR model is closely related to the system

dynamics matrix. While all models can be used to generate elements of D, the state

of a linear PSR actually consists of elements of D.

Linear PSRs exploit certain structure of the system dynamics matrix—in partic-

ular, its rank. Even though D is an infinite matrix, it may still have a finite rank. If

rk(D) = n, there must be a set of n linearly independent columns (in fact, there will

be infinitely many such sets). Select a single set of n linearly independent columns

of D and let the tests corresponding to these columns be Q = {q1 q2 · · · qn}. The

tests q1, q2, . . . , qn are the core tests of a linear PSR. Denote by D(Q) the submatrix

of D consisting only of the columns corresponding to the core tests (see Figure 2.3).

The state representation of a linear PSR is a vector of history-conditional predic-

tions for the core tests. That is, for any history h, the state of the PSR is given by

the vector

(2.5) P (Q|h) =



p(q1|h)

p(q2|h)
...

p(qn|h)


.

The initial state of the system is p(Q|φ), the entries of the first row of D(Q).
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Because D(Q) spans D, each column of D is a linear combination of the columns

of D(Q). In particular, for every test t, there is an n-vector mt such that D(t), the

column of D corresponding to t, is given by D(t) = D(Q)mt. This implies that

(2.6) p(t|h) = p(Q|h)>mt

for every history h. The fact that the prediction of every test is a linear function of

the predictions of the core test gives the linear PSR its name.

In particular, this property allows the state to be updated whenever an action a

is taken and an observation o is observed:

(2.7) p(qi|hao) =
p(aoqi|h)
p(ao|h)

=
p(Q|h)>maoqi

p(Q|h)>mao

.

The entire update can be combined into a single matrix equation by defining Mao to

be the matrix whose jth column is maoqj
:

(2.8) p(Q|hao)> =
p(Q|h)>Mao

p(Q|h)>mao

.

It can be shown that the weight vector for any test can be computed by a function

of the matrices Mao and vectors mao; if t = a1o1 · · · akok, then mt is calculated by

(2.9) mt = Ma1o1Ma2o2 · · ·Mak−1ok−1makok .

Thus, the matrices Mao and vectors mao, and initial state p(Q|φ), suffice as model

parameters for a linear PSR.

Using these parameters, the PSR can generate any element of the system dynamics

matrix D by the following operation:

(2.10) Dij = p(tj|hi) =
p(hitj)

p(hi)
=
p(Q|φ)>mhitj

p(Q|φ)>mhi

.

Theorem 2.1. A linear PSR with n core tests can represent a dynamical system if

and only if its system dynamics matrix has rank no more than n.
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The fact that an n-dimensional linear PSR can model a system with rank n follows

from the derivation of PSRs; the fact that it cannot model a system with rank more

than n follows from the fact that D(t) = D(Q)mt for every t; since D(Q) has only n

columns, this limits the rank of D to n.

Theorem 2 of (Singh et al., 2004) states that a POMDP with n nominal states

cannot model a dynamical system whose system dynamics matrix has rank greater

than n. A corollary to this and to Theorem 2.1 is that n-dimensional POMDPs are

subsumed by n-dimensional linear PSRs:

Corollary 2.2. For any dynamical system that can be modeled by a finite POMDP

with n hidden states, there exists a linear PSR with no more than n core tests.

Despite their representational power and theoretical elegance, linear PSRs have

some drawbacks. Most of the parameter learning algorithms for linear PSRs require

data sets whose size is exponential in the system dimension n. And despite their

subsumption of POMDPs, it is rare for a linear PSR to have a smaller dimension

than a given POMDP. Thus linear PSRs provide little hope of solving the curse of

dimensionality. In Chapter III, I will describe a new type of PSR that takes a step

in this direction. This new PSR is related to the diversity representation of Rivest

and Schapire (1994), which is described in the next section.

2.1.2 The Diversity Representation

Rivest and Schapire (1994) describe a model of deterministic dynamical systems

called the diversity representation. Where the linear PSR is built up on s-tests of

the form t = a1o1a2o2 · · · akok, the diversity representation makes use of the e-test,

or end test. An e-test e is made up of a sequence of actions capped off with a single
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terminal observation: e = a1a2 · · · akok. The prediction of an e-test is

(2.11) p(e|h) = Pr(oj+k = ok|length(h) = j, aj+1 = a1, aj+2 = a2, . . . , aj+k = ok).

Define v(e), the outcome vector of the e-test e. v(e) is an infinite vector whose ith

element is vi(e) = p(e|hi).

The diversity representation classifies e-tests according to their equivalence classes;

two tests are in the same equivalence class iff their outcome vectors are identical.

Thus, at any time, all e-tests in an equivalence class have the same prediction. The

number of equivalence classes in a system is the diversity of that system, denoted

D. The state representation of the mode, then, is the set of predictions for the

equivalence classes.

At the heart of the diversity representation is its update graph. This directed

graph contains nodes labeled with each of the equivalence classes. All edges are

labeled with an action, and each node has one outbound edge and one inbound edge

for each action. Whenever action a is taken, predictions flow along the edges labeled

with a. For example, say that e1 is in equivalence class C1 and e2 is in C2, and there

is an edge labeled a from C1’s node to C2’s node. Then p(e2|ha) = p(e1|h).

Suppose a deterministic POMDP with S states is given. Rivest and Schapire

showed that, if there are no redundant states in the automaton, the diversity is

bounded by log2 S ≤ D ≤ 2S, and that these bounds are tight. That is, the diversity

representation may be an exponential compression of the POMDP for a system, but

it may also be an exponential expansion.

The EPSR that I introduce in Chapter III also makes use of e-tests. But instead

of using equivalent outcome vectors and an update graph to model the system, the

EPSR uses linear independence of outcome vectors and state update equations similar

to those of the linear PSR. This allows the EPSR to avoid the risk of exponential
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Table 2.1: A taxonomy of models of dynamical systems.
Discrete Observations Real Observations

History Window Models k-Markov Models Autoregressive Models

Latent State Models Hidden Markov Models /
Partially Observable MDPs

Linear Dynamical Systems

Predictive State Models Linear PSRs PLG Models

expansion while reaping the benefits of exponential compression. This is discussed

in more detail in the chapter on EPSRs.

2.2 Traditional Continuous Models

There are many extant models of discrete-time dynamical systems with real-valued

actions and observations. However, two models in particular are of note. The first is

the autoregressive (AR) model; AR models appear to have similar dynamics to the

predictive linear-Gaussian model (see Chapter IV), though they are less expressive.

Linear dynamical system models, on the other hand, appear to have quite different

dynamics than the PLG, but have similar representative power.

Analogies can be drawn between these models and models of systems with dis-

crete observations (see Table 2.1). Autoregressive models are similar to k-Markov

models in that the dynamics depend on a “history window”; that is, the distribution

of the next observations depends on a set number of previous actions and observa-

tions. Likewise, linear dynamical systems, like hidden Markov models and partially

observable Markov decision processes, are based upon an unobserved state process

that drives the observed process.

2.2.1 Autoregressive Models

In an n-dimensional autoregressive (AR) model, the distribution of the next ob-

servation depends on the previous n observations and actions; the controlled version

is called the autoregressive model with exogenous inputs (ARX model). These are
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yt

t

Yt+1

...

ωt−n+1

yt−n+1yt−n

ωt−n

t− n t− n+ 1 t+ 1

ωt+1ωt

Figure 2.4: The graphical model representation of the autoregressive model. The tth observation
has just been generated; observations that have already been generated are set in low-
ercase, while those that have not yet been observed are in uppercase.

generally formulated as time-series models, i.e. they model systems with scalar ob-

servations, though vector-valued versions exist. This presentation is limited to the

time-series version. For a more detailed treatment of AR models, please refer to

Pandit and Wu (1983).

The core dynamics of the AR model are given by

(2.12) Yt+1 =
n∑

i=1

αiyt+1−i + ωt+1,

where α1, . . . , αn describe the linear trend in the observations and ωt+1 is a random

variable modeling the randomness in the observations (i.e. a noise variable). It is

distributed according to

(2.13) ωt+1 ∼ N (0, σ2
AR).

See Figure 2.4, which illustrates this situation: the observation at time t + 1 is a

function of the n observations leading up to it and a noise term.

These dynamics admit a simple sufficient statistic of history: the last n observa-

tions. By maintaining a record of just the last n observations and discarding the rest

of history, correct history-conditional probability distributions of future observations
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can be computed.

The fact that only the last n observations have an effect on the next observation

means that the AR model is somewhat impoverished in its representational power,

though its simplicity means that its parameters can readily be estimated from small

amounts of data.

2.2.2 Linear Dynamical Systems

The linear dynamical system model (LDS) is widely used in many engineering

and scientific fields. Its applications include airplane-wing design (Norlander, Nils-

son, Ring, & Johansson, 2000), control of ore concentrators in the mining industry

(Norlander, 2000), glass tube manufacturing (Overschee & De Moor, 1996), and

many others. They are formulated as continuous-time systems governed by differ-

ential equations as well as discrete-time systems governed by difference equations.

Only the latter is presented here; for a more detailed treatment of the LDS, please

see Bar-Shalom, Li, and Kirubarajan (2001).

The LDS model is based on a pair of stochastic processes. The first is the latent

(unobservable) Xt process, which evolves through a linear function that is perturbed

by the actions and by i.i.d. Gaussian noise. That is,

(2.14) Xt+1 = AXt +But + ωt+1,

where A is the linear trend in the Xt process, B is the linear effect of the action, and

ωt+1 is the noise term. In an n-dimensional LDS, Xt is an n-vector. The action ut is

a vector of dimension l.

The second process is the observations process Yt, which is a linear function of

the first process, again with i.i.d. Gaussian noise added:

(2.15) Yt = HXt + νt.
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The observation Yt is a vector of dimension m. Each noise term is independent of

every other:

(2.16) Cov[ωt, ωs] = δt,sQ, Cov[νt, νs] = δt,sR,

where δt,s, the Kronecker delta, is 1 if t = s and 0 otherwise. Here, Q and R are

the variance of the process noise and measurement noise, respectively. Both noise

processes have mean zero:

(2.17) E[ωt] = 0, E[νt] = 0.

Additionally, the Xt process is initialized with a Gaussian distribution:

(2.18) X1 ∼ N (x−1 , P
−
1 ).

The dynamics of the LDS are completely described by (2.14)–(2.18) (see Fig-

ure 2.5), but these do not explain how the state of the LDS model is maintained.

The Xt process is often referred to as the “state process”; this is because Xt often

represents what is assumed to be the underlying truth of a system. For example, Xt

may be the true location and velocity of an object, the sizes of several populations,

or the flow rates at various points in a series of pipe. However, the value of Xt cannot

serve as the state of the model at time t because it is unobserved. Instead, the state

of the model at time t is the probability distribution of Xt given the history of the

system. This distribution is maintained by the Kalman filter (Kalman, 1960).

Because Xt is Gaussian, its distribution is described by a mean and a variance; in

the context of the Kalman filter, these are sometimes referred to as the state estimate

and uncertainty, respectively. The Kalman filter maintains the state estimate x−t =
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Yt Yt+1

hidden

observed

Xt Xt+1

ωt ωt+1

νt νt+1

ut ut+1

t+ 1t

Figure 2.5: The graphical model representation of the linear dynamical system. The observations
Yt are observed; the latent state process Xt and the noise terms ωt and νt are not. The
process is controlled by the actions ut.

E[Xt|ht−1] and its covariance P−
t = Var[Xt|ht−1] using the state update equations

Kt = P−
t H

>(HP−
t H

> +R)−1,(2.19)

x+
t = x−t +Kt(yt −Hx−t ),(2.20)

P+
t = P−

t −KtHP
−
t ,(2.21)

x−t+1 = Ax+
t +But,(2.22)

P−
t+1 = AP+

t A
> +Q.(2.23)

Kt is known as the Kalman gain at time t, and x+
t and P+

t have the semantics

Xt|ht−1, yt ∼ N (x+
t , P

+
t ); that is, they are the versions of the state variables updated

to take into account the observation at time t, but that have not yet taken the action

or the passage of time into account.

Linear-Quadratic Gaussian Models The linear-quadratic Gaussian model, or LQG,

consists of an LDS and a cost function that is quadratic in the actions taken and the
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latent variables Xt. Formally, the cost function Ψx is given by

(2.24) Ψx =
T∑

τ=1

ψx(Xτ , uτ ) +X>
T+1Wx,TXT+1,

where ψx(X, u) = X>WxX + 2u>Wx,uX + u>Wuu is the per-time-step cost and T is

the planning horizon. The cost matrices are constrained so that both Wx W>
x,u

Wx,u Wu


and Wx,T be symmetric positive semidefinite so that the cost function is bounded

from below and can thus sensibly be minimized, and that Wu be symmetric positive

definite so that a unique minimum of Ψx exists.

The optimal action u∗t at each time step minimizes the expected value of Ψx; it is

a linear function of the Kalman filter state estimate x−t :

(2.25) u∗t = Πx
t x

−
t .

The parameters of this equation are computed through a Riccati recursion that is

initialized by V x
T+1 = Wx,T and iterated by

(2.26) V x
t = Wx+A

>V x
t+1A−(W>

x,u+A>V x
t+1B)(Wu+B>V x

t+1B)−1(Wx,u+B>V x
t+1A).

Πx
t is given by

(2.27) Πx
t

∆
= −(Wu +B>V x

t+1B)−1(Wx,u +B>V x
t+1A).

Because the recursion of (2.26) does not depend on the actions taken or observa-

tions recorded, Πx
t can be precomputed, so that actions can be chosen very quickly

while the system is being controlled.
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Full-Rank LQGs Theorem 4.4 refers to the full-rank property of LQGs. A LQG

with full rank is one whose LDS is observable. An observable LDS is one in which,

in the absence of noise (i.e. when ωs and νs are fixed at 0 for all s), for any possible

starting value of Xt and any sequence of actions, the value of Xt can be determined in

finite time using only the outputs Yt+1, Yt+2, . . .. A necessary and sufficient condition

for observability is that the observability matrix Mn have rank n, where

(2.28) Mn =



H

HA

...

HAn−1


.

If an LDS is not observable, then for some values xt of the latent process Xt,

there are infinitely many x such that Xt = x induces the same distribution over

future observations.

2.2.3 Comparing LDS and AR Models

There are two main differences between LDS and AR models that prevent AR

models from being as expressive as the LDS. The first stems from the finite memory

property of AR models, while the second has to do with process noise vs. measure-

ment noise.

Because the dynamics of the AR model (given by (2.12)) provide that the next

observation is a noisy average of the previous n observations, any event that oc-

curred more than n time steps in the past has no effect on future observations. For

example, in a 2-dimensional AR model, the observation sequences 〈1.0, 1.1, 1.3〉 and

〈2.0, 1.1, 1.3〉 induce an identical probability distribution over the next observation;

it doesn’t matter that one sequence began with 1.0 and the other with 2.0.
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In an n-dimensional LDS, on the other hand, the latent state vector can preserve

information about observations further in the past than n time steps. In fact, it’s

possible for an observation arbitrarily far in the past to affect the distribution of the

next observation in an LDS.

The second difference between LDS and AR models is that the LDS models both

process and measurement noise, as opposed to process noise only, as in the AR model.

As a rough definition, process noise is when a dynamical system behaves differently

than expected, while measurement noise is when sensors measure something other

than the “true” value of the variable they are measuring. For example, consider a

car with a speedometer and a throttle. If the car is normally expected to travel 60

mph with the throttle at 70%, but it actually travels 61 mph (perhaps because the

road is smoother than expected), that is due to process noise. If the car is traveling

at 60 mph but the speedometer reads 61 mph, that is due to measurement noise.

This is in some ways a false distinction, as these “separate sources” are not sep-

arately observable. However, it is sometimes useful to discuss the two noise types

separately as intuitive notions. In addition, the LDS model treats these as separate

random processes; ωt is the process noise at time t, while νt is the measurement

noise. In the AR model, any difference between the expected value of an observation

and its actual value affects the distribution of future observations; that means that

this difference is modeled as process noise.

Because of these two differences, the AR model can represent a subset of the

dynamical systems that the LDS can model.



CHAPTER III

EPSRs: The First Class of Nonlinear PSRs

We have seen that linear PSRs represent the state of the system they model

by predictions of certain tests, where a test is a sequence of future actions and

observations. But other types of predictions may also be interesting. For instance,

consider the probability that an observation occurs k steps in the future after we

execute a particular sequence of k actions, ignoring the observations between now

and then—that is, a test of the form e = a1a2 · · · akok, whose prediction is p(e|ht) =

Pr(ot+k = ok|ht, at+1 = a1, at+2 = a2, . . . at+k = ak). This is a new type of test, the

e-test (end test), which will contrast with the s-tests (sequence tests) of the linear

PSR. These e-tests are the the same tests used by the diversity representation (Rivest

& Schapire, 1994); I will come back to this point later in the chapter.

A relevant question is, “Is there a model class that uses predictions of e-tests as

its state?” In the deterministic case, the answer is yes, and this model will be the

first general nonlinear class of PSRs.1

1The model presented in this chapter was first presented in (Rudary & Singh, 2004); the the-
oretical results presented here are also quite similar to results presented in that work, though in
some cases slightly stronger.

25



26

3.1 The E-test Prediction Matrix

Recall that the system dynamics matrixD is the matrix whose ith row corresponds

to a history hi, jth column to an s-test tj, and (i, j)th entry to the prediction p(tj|hi).

We would like to construct a similar matrix, E , whose jth column corresponds to an

e-test ej rather than an s-test. We will call E the e-test prediction matrix.

Let us first note that rk(E) ≤ rk(D). This is because each column of E is the sum

of several columns of D: Let ej = a1a2 · · · akok; the prediction of ej is given by

(3.1) p(ej|•) =
∑
o1∈O

∑
o2∈O

· · ·
∑

ok−1∈O

p(a1o1a2o2 · · · ak−1ok−1akok|•),

where each summand is the prediction of an s-test.

3.1.1 The Linear EPSR

It is interesting to try to construct an e-test PSR (EPSR) from E analogously to

the way linear PSRs are constructed from D. That is, select a set of columns that

span the column space of E ; call the tests that correspond to these columns the core

e-tests, and treat the predictions of these core e-tests as the state of a model. The

problem is that this EPSR does not appear to be self-sufficient—the update function

includes quantities that are not elements of E .

To elaborate, recall the update function for the linear PSR:

(3.2) p(qi|hao) =
p(aoqi|h)
p(ao|h)

,

where qi is the ith core test; the numerator and denominator on the right-hand side

are both predictions of s-tests. Since the prediction of every s-test is a linear function

of the predictions of the core tests, this can be rewritten as

(3.3) p(qi|hao) =
m>

aoqi
p(Q|h)

m>
aop(Q|h)

.
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However, let us consider the case of a core set of e-tests, R. If ri is the ith core

e-test, its update equation is

(3.4) p(ri|hao) =
p(aori|h)
p(ao|h)

.

Here, the denominator is the prediction of an e-test (and thus a linear function of

p(R|h) by the definition of R), but the numerator is not the prediction of an e-test

(nor, for that matter, of a single s-test). Because it is not an e-test, its prediction

will not generally be a function of the predictions of the core e-tests. However, there

are two interesting special cases in which the update function can be computed: the

case where rk(D) = rk(E) and the case in which the system is deterministic.

When the e-test prediction matrix has the same rank as the system dynamics

matrix, the system dynamics matrix can be written as a linear function of the e-test

prediction matrix. To see this, find Q, a core set of s-tests, and R, a core set of

e-tests. Then D(Q) (the ∞×|Q| matrix made up of the columns of D corresponding

to the s-tests in Q) and E(R) (the ∞ × |R| matrix made up of the columns of E

corresponding to the e-tests in R) will both have rank n = rk(D) = rk(E). Since

every e-test’s prediction at any history is the sum of the predictions of some s-tests

at that history, and every s-test’s prediction is a linear function of the predictions of

the s-tests in Q, we can write E(R) = D(Q)MQ,R, where MQ,R is some n×n matrix.

Because rk(E(R)) = rk(D(Q)) = n, the rank of MQ,R must also be n. This means

that MQ,R is invertible, and we can write

(3.5) D(Q) = E(R)M−1
Q,R.

Since p(Q|h) (resp. p(R|h)) is just the row of D(Q) (resp. E(R)) corresponding to

the particular history h, it also holds that

(3.6) p(Q|h) = (M−1
Q,R)>p(R|h).
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We can then construct any column of D as a linear function of E(R): the jth

column of D corresponds to some s-test tj, whose predictions can be computed by

p(tj|h) = m>
tj
p(Q|h). Therefore this column can be written as

D(tj) = D(Q)mtj(3.7)

= E(R)M−1
Q,Rmtj .(3.8)

This is quite germane to the problem of updating the predictions of R because

p(aori|h) can be written as the sum of the predictions of several s-tests; if ri =

a1a2 · · · akok, then

p(aori|h) =
∑
o1∈O

∑
o2∈O

· · ·
∑

ok−1∈O

p(aoa1o1a2o2 · · · akok|h)(3.9)

=

(∑
o1∈O

∑
o2∈O

· · ·
∑

ok−1∈O

maoa1o1a2o2···akok

)>

(M−1
Q,R)>p(R|h)(3.10)

∆
= w>

aori
p(R|h).(3.11)

Since ao is an e-test (for any a ∈ A and o ∈ O), its prediction is a linear function

of the predictions of the core e-tests; define wao as the vector that satisfies p(ao) =

w>
aop(R|h). The update equation (3.4) can thus be rewritten as

(3.12) p(ri|hao) =
w>

aori
p(R|h)

w>
aop(R|h)

,

and R is a core set of e-tests for a linear EPSR. Thus we have proven the following

theorem:

Theorem 3.1. For any discrete dynamical system with system dynamics matrix

D and e-test prediction matrix E, and any set of e-tests R, if rk(D) = rk(E) =

rk(E(R)) = |R|, then for every history h, p(R|h) is the state (at h) of a linear EPSR

(with core e-tests R) that models the dynamical system.
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Unfortunately, there seems to be little reason to choose a linear EPSR over a

linear PSR based on s-tests. In particular, both models will have the same dimension

because the derivation depends upon E having the same rank as D. A preferable

model would be one in which

(3.13) p(aori|h) = faori
(p(R|h))

holds for some history-independent function faori
without requiring that E has the

same rank as D. In fact, there is an interesting class of systems for which this holds,

and that is the class of deterministic systems.

3.2 The Deterministic EPSR

In deterministic systems, the prediction of every e-test and s-test is binary; all

entries of D and E are ones and zeros. Among other things, this has the effect that,

for any e-test e,

(3.14) p(aoe|h) =


p(ae|h) p(ao|h) = 1

0 p(ao|h) = 0.

This is the key fact that allows an EPSR to be defined for all deterministic systems,

regardless of the relative ranks of the e-test prediction matrix and system dynamics

matrix (which, as I will show, can be quite different).

Theorem 3.2. For any discrete, deterministic dynamical system with e-test predic-

tion matrix E, and any finite set of e-tests R, if rk(E) = rk(E(R)) = |R|, then for

every history h, p(R|h) is the state (at h) of an EPSR (with core e-tests R) that

models the dynamical system.

Proof. All that must be shown is that the predictions p(R|h) can be updated when

a new action a is taken and observation o observed. From (3.14), it follows that
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p(aori|h) = p(ao|h)p(ari|h); substituting into (3.4), the update becomes

p(ri|hao) =
p(ao|h)p(ari|h)

p(ao|h)
(3.15)

= p(ari|h)(3.16)

= w>
ari
p(R|h).(3.17)

Canceling the p(ao|h) factors in going from (3.15) to (3.16) is valid because ao will

never be observed when p(ao|h) = 0, so computing the update will never result in a

division by zero. (3.17) follows from (3.16) because p(e|h) is a history-independent

linear function of p(R|h) for any e-test e by the assumptions of the theorem; without

loss of generality, the weights of that linear combination can be written as wari
.

Even though the update equations for the deterministic EPSR are linear, this is

a nonlinear PSR. This because a nonlinear computation is required to obtain the

prediction of an arbitrary s-test whenever rk(E) < rk(D).

Corollary 3.3. For a deterministic EPSR with core e-tests R, the prediction of any

s-test is a (generally nonlinear) function of p(R|h).

Proof. The prediction of an arbitrary s-test s = a1o1a2o2 · · · akok is computed by

p(s|h) = Pr(ot+1 = o1, . . . , ot+k = ok|h, at+1 = a1, . . . , at+k = ak)(3.18)

= Pr(o1|ha1) Pr(o2|ha1o1a2) · · ·Pr(ok|ha1o1 · · · ak−1ok−1ak)(3.19)

= Pr(o1|ha1) Pr(o2|ha1a2) · · ·Pr(ok|ha1a2 · · · ak−1ak)(3.20)

= (w>
a1o1p(R|h))(w>

a1a2o2p(R|h)) · · · (w>
a1a2···ak−1akokp(R|h))(3.21)

(3.19) is just an application of the chain rule of probability to (3.18). In going from

(3.19) to (3.20), the observations are eliminated from the conditions by noting that

in a deterministic system, the observation emitted depends only on the sequence of
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...

k bits

1 11

Figure 3.1: The k-bit rotate register. The value of the rightmost bit is observed. At each time step,
this bit can be flipped or the register can be rotated either to the right or to the left
with wraparound.

actions executed up to that point. Each probability in (3.20) is the prediction of an

e-test; these can be rewritten as linear functions of the predictions of the core e-tests

as in (3.21).

3.2.1 EPSRS May Be Exponentially Smaller Than Linear PSRs and POMDPs

The advantage of the deterministic EPSR over the linear PSR comes whenever

the rank of the e-test prediction matrix E is smaller than the rank of the system

dynamics matrix D; the size of the state representation for the two models is the

same as those respective ranks. In fact, rk(E) may be exponentially smaller than

rk(D), and is never larger.

Figure 3.1 illustrates a dynamical system in which the EPSR uses exponentially

fewer tests than the linear PSR model of the system.2 It consists of a k-bit shift-

register. There are two observations: O1 is observed if the rightmost bit is 1 and O0 is

observed if that bit is 0. The three actions are AR, which shifts the register one place

to the right (with the rightmost bit wrapping around into the leftmost position), AL,

which does the opposite, and AF , which flips (i.e., inverts) the leftmost bit.

2This example is due to Rivest and Schapire (1994).
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The system dynamics matrix for this system has rank 2k. Start with 2k histories

h1, h2, . . . , h2k , such that observing the history hi means that the numerical value

of the register is i. Take the 2k s-tests s1, s2, . . . , s2k , such that each s-test has an

action sequence of k consecutive AL actions and sj’s (binary) observation sequence

corresponds to the numerical value j. Then

(3.22) p(sj|hi) =


1 j = i

0 j 6= i

and the submatrix of D whose ith row corresponds to hi and whose jth column

corresponds to sj is the 2k × 2k identity matrix. Thus rk(D) must be at least 2k.

By contrast, the rank of E in this system is only k + 1. This can be seen by the

following argument: For a given history, there are 2k equivalence classes of e-tests.

For i = 1, . . . , k, predictions of tests in the ith equivalence class are 1 when the

ith bit is 1 and 0 when it is 0. For i = k + 1, . . . , 2k, predictions of tests in the ith

equivalence class are 0 when (i−k)th bit is 1 and 0 when it is 1. If you create the core

set of e-tests R so that ri is taken from the ith equivalence class for i = 1, . . . , k+ 1,

you can compute the prediction of an e-test ej taken from equivalence class j by the

function

(3.23) p(ej|h) =


p(rj|h) j = 1, . . . , k + 1

p(r1|h) + p(rk+1|h)− p(rj|h) otherwise.

Thus, rk(E) may be no more than k + 1, and the size of the EPSR is exponentially

smaller than the size of the equivalent linear PSR, and by Corollary 2.2, therefore

exponentially smaller than the size of the equivalent POMDP.
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k bits (value bits)

010

hit

Figure 3.2: The k-bit hit register. There are k value bits and 1 special “hit bit.” The behavior of
this system is described in the text.

3.2.2 EPSRs and the Diversity Representation

The diversity representation (Rivest & Schapire, 1994) is closely related to the

deterministic EPSR. Both are models of deterministic systems and both represent

state with predictions of e-tests. They differ, however, in the number of predictions

they require. The diversity automaton uses as many e-tests as there are distinct

columns in the e-test prediction matrix E , while the EPSR uses as many as there

are linearly independent columns in E . Assuming that the system can be modeled

by a POMDP with n (non-redundant) states, there are at least lg(n) and at most 2n

distinct columns in E , and these bounds are tight. Thus the diversity representation

can be exponentially smaller or exponentially bigger than the POMDP model. While

the EPSR uses the same notion of tests as the diversity representation, the use

of linear independence instead of equivalence classes means that while it may be

exponentially smaller than a POMDP or linear PSR representation, it will never be

larger.

Figure 3.2 shows an example of a system whose diversity representation is ex-

ponentially larger than its EPSR model.3 The hit register consists of a k-bit value

3This example is due to Rivest and Schapire (1994).
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register (x) and a special “hit bit.” The POMDP model of this system has 2k + 1

states—one in which the hit bit is 1 (and the value register x is all zeroes) and 2k

states in which the hit bit is 0 and x takes on its 2k possible configurations. There

are k + 1 actions: a flip action Fi for each value bit i that inverts bit i if the hit bit

is not set (and has no effect otherwise) and a set action Sh that sets the hit bit if

all the value bits are 0 (and has no effect otherwise). There are two observations:

Os is observed if the hit bit is set, and Oc is observed otherwise. The diversity

representation of this system requires O(22k
) predictions to model the state:

Using these actions, for any subset X of the [k]-bit vectors, it is possible
to construct a test which is true if and only if the initial state begins with
x ∈ X or [the hit bit is 1] initially. (Selective complementation can bring
x into the all-zero state iff it was originally in some particular [k]-bit state
y; [the hit bit can then be set], otherwise the original state can be restored
by undoing the selective complementation. This can be repeated for each
y ∈ X.) (Rivest & Schapire, 1994, pg. 5)

However, since the POMDP has only 2k + 1 states, the rank of the system dynamics

matrix (and thus the e-test prediction matrix) is no more than 2k +1, and the EPSR

is exponentially smaller than the diversity representation.

These two examples illustrate the following result.

Theorem 3.4. For any deterministic discrete dynamical system, the size of the

EPSR representation is no larger than the smaller of the diversity representation

or the linear PSR that model the system, and it may be exponentially smaller than

either.

3.3 Remarks

In this chapter, I have presented the first nonlinear PSR for any general class of

systems using a different type of test, the e-test. I proved that in some determin-

istic systems, the EPSR model is exponentially smaller than linear PSRs (and thus



35

POMDPs), and is never larger. Similarly, the EPSR may be exponentially smaller

than the diversity representation of a system, and is never larger.

But moving away from linear models is only one departure from the original linear

PSR model. In the remaining chapters, I will explore a predictive state model that

moves away from the setting with discrete actions and observations.



CHAPTER IV

The Predictive Linear Gaussian Model

While the previous chapter focused on a nonlinear PSR model, I now return to

a linear model; however, I will now consider systems with continuous actions and

observations. I present the predictive linear-Gaussian model (PLG), a predictive

state representation that models discrete-time dynamical systems with real-vector-

valued actions and observations. This unifies and extends previous work, in which

PLGs were developed that modeled uncontrolled systems with scalar-valued obser-

vations (Rudary, Singh, & Wingate, 2005) and controlled systems with scalar-valued

observations and vector-valued actions (Rudary & Singh, 2006).

Whereas the predictive state models presented up to this point used probabilities

of selected future trajectories to represent state, the PLG summarizes history with

a joint probability distribution over a set of future trajectories. To explain this dis-

tribution more clearly and build the intuition of the PLG model, I first present the

special case of the uncontrolled, scalar-observation PLG (first described by Rudary

et al. (2005)), then develop the more general version that models controlled systems

with vector-valued actions and observations.

36
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ht Zt

...... ...Yt+n+1Yt+1 Yt+n

t

ytyt−1

Figure 4.1: A dynamical system with real-valued, scalar observations. The history of observations
through t is denoted ht; Zt indicates the n observations immediately following time t.
Uppercase variable names (e.g. Yt+1) indicate random variables, and lowercase names
(yt, etc.) indicate realizations of random variables.

4.1 The Scalar PLG

The scalar PLG models uncontrolled systems with real-valued observations. The

situation is illustrated in Figure 4.1. The observation at time t is modeled by the ran-

dom variable Yt, which may take on any real value. At time t, the past observations

y1, y2, . . . , yt have been observed; this is called ht, the history up to time t. The model

must predict the distribution of the future observations Yt+1, Yt+2, . . . conditioned on

this history. This illustrates a convention used throughout: a random variable is set

in uppercase, but a realization of that variable is set in lowercase; hence yt for the

observation at time t that has already been observed, but Yt+1 for the observation

at time t+ 1 that must be predicted.

In the setting discussed here, the future observations are jointly distributed ac-

cording to the multivariate Gaussian distribution. When an r-dimensional random

vector X is distributed according to a Gaussian distribution with mean µ and vari-



38

ance Σ (written X ∼ N (µ,Σ)), the probability density at X = x is given by

(4.1) p(X = x;µ,Σ) = (2π)−r/2|Σ|−1/2e(x−µ)>Σ−1(x−µ),

where |·| denotes the determinant of a matrix. The form of the density function

makes it apparent that this distribution is completely characterized by its mean

µ and covariance Σ. Thus, if the mean and variance of the future observations

(conditioned on the observed history) are known, they can serve as state for a model

of the system.

The difficulty is that there are an infinite number of future observations, so µ and

Σ are infinite matrices. The PLG solves this problem by positing that any future

observation can be written as a linear function the next n observations and some

Gaussian random variables whose distributions do not depend on history, where n is

a quantity called the dimension of the system. Since any linear function of Gaussian

random variables results in another Gaussian random variable, this preserves the as-

sumption that the future is normally distributed. It also means that the distribution

of the next n observations, collected together into the random vector

(4.2) Zt =



Yt+1

Yt+2

...

Yt+n


,

is sufficient to construct the entire distribution of the future. Since Zt|ht is normally

distributed, its mean µt and variance Σt are the state variables.

The assumption that future observations are linear functions of Zt and Gaussian

noise terms can be written

(4.3) Yt+n+1 = g>Zt + εt+n+1.
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Table 4.1: Scalar PLG notation.
Variable Description

n The dimension of a model or dynamical system.
Yt The observation at time t.
ht The history of observations through time t, i.e. y1y2 · · · yt. Note the con-

vention that a random variable is set in uppercase (e.g. Yt) but that a
realization of that variable is set in lowercase (yt).

Zt The random vector containing the n observations occurring after t.
µt,Σt The history-conditional mean and variance of Zt. That is, Zt|ht ∼

N (µt,Σt).
g, C, σ2, µ0, Σ0 The parameters of a scalar PLG.

ei The ith column of the n× n identity matrix.
Xi The ith element of a vector X.

Here, g is the linear trend in the observations and εt+n+1 is the Gaussian noise term.

Predictions about observations that are further in the future can be obtained by

repeated application of this formula with increasing values of t. (4.3) describes the

core dynamics of the model: The observations follow a linear trend but are perturbed

by noise.

The distribution of this noise term is a choice that greatly affects the dynamics of

the model. If εt+n+1 is chosen to be i.i.d. Gaussian noise, this becomes the autore-

gressive model (see Section 2.2.1), but viewed from a different perspective; instead

of specifying how the next observation depends on the last n observations (as in the

autoregressive model), the PLG would specify how the (n + 1)st observation in the

future depends on the next n observations. Despite this difference, the models would

be equivalent.

Autoregressive models, however, are somewhat impoverished in terms of repre-

sentational power. In many systems of interest to modelers, there are two sources of

randomness: process noise (the system behaved differently than expected) and mea-

surement noise (the sensors used were imperfect).1 Autoregressive models are able

to model process noise but not measurement noise, because the noise distribution is

1This is discussed in further detail in Section 2.2.3.
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independent of history. Thus, a noise distribution should be considered that allows

for process and measurement noise.

One such form of the noise allows εt+n+1 to covary with Zt; this is the type of

noise used in the PLG. The noise distribution can then be written as

εt+n+1|ht ∼ N (0, σ2)(4.4)

Cov[Zt, εt+n+1|ht] = C.(4.5)

That is, until Yt+1 or a later observation is observed, εt+n+1 is assumed to be mean-

zero Gaussian noise. However, if the next n observations (yt+1, yt+2, . . . , yt+n; col-

lectively zt) differ from our history-conditional expectations (E[Zt|ht] = µt), the

(conditional) mean and variance of εt+n+1 will be adjusted according to the history-

independent covariance vector C.2

The fact that the noise term covaries with Zt means that the distribution of

future observations can depend on observations arbitrarily far in the past; if the noise

were i.i.d., each observation’s distribution would depend only on the n observations

actually preceding it. For example, take two long trajectories, h1
T and h2

T , where

T > n. Further, suppose that they are identical except in their first observation. If

the PLG is parameterized so that C = 0, i.e. so that the noise is i.i.d., the distribution

of Yt+n+1|h1
T will be identical to the distribution of Yt+n+1|h2

T . On the other hand, if

C 6= 0, the two distributions will differ (although possibly by a very small amount).

This dependence on the far past means that just maintaining the values of the last

n observations is insufficient for making predictions about the future. However,

maintaining the distribution of the next n observations is sufficient to make these

predictions.

2C is not an entirely free parameter. In particular, it is constrained with respect to the param-
eters g and σ2; see further discussion following (4.9).
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It is therefore important to be able to update the mean vector µt and covariance

matrix Σt as new observations are seen and time moves forward. That is, in order

for µt and Σt to be feasible as state variables, it must be possible to use the previous

information (µt = E[Zt|ht] and Σt = Var[Zt|ht]) along with the new information (the

observation Yt+1 = yt+1) to compute the new values µt+1 = E[Zt+1|ht, Yt+1 = yt+1]

and Σt+1 = Var[Zt+1|ht, Yt+1 = yt+1]. This update can be achieved by noting that

Yt+1 and Zt+1 are jointly Gaussian random variables, and that

(4.6)

 Zt

Yt+n+1

 =

Yt+1

Zt+1

 .

Thus the joint distribution of Yt+1|ht and Zt+1|ht can be computed from two distri-

butions that are already known: those of Zt|ht and Yt+n+1|ht. There is a standard

result that allows a conditional distribution to be computed from a joint Gaussian

distribution (e.g., Catlin, 1989), and it can be applied here.

The details of the derivation may be found in Appendix A.1.1; to present the

results of the derivation, three new matrices must be introduced. The first two are

e1 and en, two column vectors that are the first and nth columns, respectively, of the

n × n identity matrix. The last, G, is the n × n matrix that satisfies E[Zt+1|ht] =

GE[Zt|ht]. That is, it selects the last n − 1 elements of µt = E[Zt|ht] and moves

them each up by one (because the first n − 1 elements of Zt+1 are the same as the

last n− 1 elements of Zt), and adds a new nth element equal to g>µt. G is given by

(4.7) G =

 0 In−1

g>

 ,

where In−1 is the (n − 1) × (n − 1) identity matrix. G, e1, and en can be seen

mostly as “shifting” matrices; their purpose is to shift elements around, so that the

matrix equations used to produce means and variances of an n-vector and scalar
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value, respectively, can be altered to produce means and variances of a scalar value

and an n-vector, respectively.

Using these shifting matrices, the update equations can now be written as

µt+1 = Gµt +
(GΣt + enC

>)e1
e>1 Σte1

(yt+1 − e>1 µt) and(4.8)

Σt+1 = GΣtG
> +GCe>n + enC

>G> + σ2ene
>
n −

(GΣt + enC
>)e1e

>
1 (ΣtG

> + Ce>n )

e>1 Σte1
.

(4.9)

Intuition About Update Equations The first term of (4.8), Gµt, gives the expected

value of Zt+1|ht; that is, ignoring the information imparted by yt+1. The estimate of

the mean is then adjusted by an amount that is proportional to both the difference

between the observation and its expectation (that is, yt+1−e>1 µt) and the covariance

between each element of Zt+1 and the observation (i.e. (GΣt+enC
>)e1), but inversely

proportional to the variance of the observation (e>1 Σte1). That is, the more we were

wrong about the next observation, the more we change our predictions about the rest

of the future; the more the future is correlated with the next observation is, the more

we change our predictions; and the more unsure we are about the next observation,

the less we change our prediction.

Similarly, the first four terms of (4.9), GΣtG
>+GCe>n +enC

>G>+σ2ene
>
n , give the

marginal variance of Ztt+ 1|ht. This is then adjusted downward by a quantity that

increases as the product of the covariance between Zt+1 and Yt+1 and its transpose

and as the inverse of the variance of Yt+1. Intuitively, the more the value of the next

observation will affect the expected value of future observations, the more actually

observing it reduces our uncertainty about the future.
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Constraints Between Parameters (4.9) introduces a constraint between g, C, and

σ2. Because of the subtraction in the variance update equation, C must be selected

so that the final term of (4.9) is smaller than the sum of the first four terms, in the

sense that Σt+1 must be symmetric positive definite (i.e. a valid covariance matrix)

for all t. This is equivalent to requiring the covariance matrix of the joint distribution

of Yt+n+1 and Zt be symmetric positive definite for all t; this covariance matrix is

given by

(4.10) Var


 Zt

Yt+n+1


∣∣∣∣∣∣∣ht

 =

 Σt Σtg + C

g>Σt + C> g>Σtg + g>C + C>g + σ2

 .

With the update equations in place, the specification of the scalar PLG model is

complete. It is parameterized by the linear trend parameter g, the noise parameters

C and σ2, and the initial state µ0 and Σ0.

The earlier discussion indicated that the PLG can model a richer class of systems

than can autoregressive models. In fact, as a corollary of Theorem 4.1 in the next

section, n-dimensional scalar PLGs have as much modeling power as n-dimensional

linear dynamical system (LDS) models with scalar observations. In particular, given

any n-dimensional LDS with scalar observations, an equivalent scalar PLG can be

found.

4.2 The Vector-Valued PLG

When extending the scalar PLG to deal with vector-valued observations and ac-

tions, there are several challenges to overcome. The most basic, and probably the

most important, is to decide with observations comprise Zt and then to work out the

details of the dynamics based on this decision. The effects of the actions must also

be determined. Finally, I must also show that the vector-valued PLG can represent
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Table 4.2: PLG notation.
Variable Description

n The dimension of a model or dynamical system.
Yt The observation vector at time t.
m The length of an observation vector.
ut The action vector at time t.
l The length of an action vector.
ht The history of interaction through time t, i.e. u1y1u2y2 · · ·utyt.
Zt A random vector containing a set of observations occurring after time t;

this vector contains n elements. These observations are selected so that
the history-conditional distribution of Zt|ht is sufficient to compute the
history-conditional distribution of any future observation.

µt, Σt The history-conditional mean and variance of Zt. That is, Zt|ht ∼
N (µt,Σt).

J , G, Γ1, . . . ,Γτmax
,

Cη , Ση , µ0, Σ0
The parameters of a PLG.

Σadj The variance adjustment; an additional parameter of the variance-
adjusted PLG.

Xi The ith element of a vector X.

any system that an LDS of the same dimension can; as discussed in Section 4.3, this

will require a slight change to the next-observation semantics of the model presented

here.

As in the scalar version, the state of the vector-valued PLG is the mean (µt) and

variance (Σt) of Zt|ht, where Zt is an n-dimensional vector of future observations; n

is called the dimension of the PLG model. As before, Zt|ht is distributed according

to a multivariate Gaussian distribution. The PLG then uses this distribution to

compute the distribution of any desired future observation(s).

4.2.1 Makeup of Zt

The concept at the heart of the vector-valued PLG is how Zt is constructed.

Each element of the vector Zt is an element of an observation vector that will be

observed after time t. In the scalar PLG, Zt is just the concatenation of the next

n observations Yt+1, Yt+2, . . . , Yt+n. It would be possible to use this concatenation of

the next n observations in the vector-valued PLG as well; in the class of systems we
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Figure 4.2: The skyline constraint on Zt. This figure shows one possible makeup of Zt in a system
with dimension n = 6 and observation length m = 4. Zi

t corresponds to the box
containing the number i (so Z4

t = Y 1
t+2, for example). Note that this figure forms a

skyline—that is, no box is used in Zt unless the boxes below it are also used.

consider (n-dimensional LDSs), knowledge of the distribution of this vector would

be sufficient to compute the distribution of any future observation(s). However, this

may be inefficient. When m > 1, Zt would have mn elements when n elements

should suffice for an n-dimensional model. Because the number of parameters of the

PLG is quadratic in the number of elements in Zt, this is unacceptable.

The solution, then, is to pick a subset of those mn elements. Zt consists of n

observational elements—that is, elements of observation vectors—whose joint distri-

bution is sufficient to reconstruct the full joint distribution of all future observations.

It is of course not generally the case that all such subsets are sufficient; the particular

subset chosen depends on the system to be modeled.

For a number of reasons, there are some subsets of the next mn observational ele-

ments that will not be permitted. In particular, if the jth element of the future obser-

vation Yt+k is included as part of Zt,
3 then the jth elements of Yt+1, Yt+2, . . . , Yt+k−1

must be included as well. This may be thought of as the “skyline” requirement for

Zt, because when a diagram is made as in Figure 4.2, it forms a silhouette as of a

city skyline. This restriction does not reduce the representative power of the PLG.

3It will be useful to refer compactly to specific elements of the Yt and Zt vectors; the ith element
of Zt (resp. Yt) shall be denoted Zi

t (resp. Y i
t ).
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One reason for the skyline requirement is the consistency of the noise terms. In

the scalar PLG, only the last term of εt+n+1 was non-zero because we wanted only

one noise variable associated with each observation. If the skyline requirement were

violated, an observation would be in non-consecutive Z vectors. Considering the Zt

layout shown in Figure 4.2, suppose that the fourth element of Zt were removed.

Then Y 1
t+3 would be an element of Zt and Zt+2, but not Zt+1. It is not tracked at

t + 1; when it is reintroduced at t + 2, should another noise term be applied? This

would break the assumption that each observational element has a single noise term

associated with it and would lead to conflicting definitions of its distribution. On

the other hand, the fact that it is not tracked at t+ 1 means that its distributional

information is essentially lost, and so information about the original noise term is

discarded and must be re-introduced, which suggests that another noise term should

be used. This conflict argues in favor of the skyline requirement.

Another reason to introduce the skyline requirement is efficiency in the param-

eters. When an observational element is a member of consecutive Z vectors, one

row of the linear trend G is predetermined to copy that element. The PLG referred

to by Figure 4.2, for example, has a G whose fourth row copies the sixth element

(Y 1
t+3) onto the fourth (Y 1

t+2) when t increases. When an observational element is in

non-consecutive Z vectors, this copying would not be possible, and so an additional

row of G must be made up of free parameters.

The elements that make up Zt must be selected so that the distribution of Zt|ht

is sufficient to compute the history-conditional distributions of any future observa-

tion(s). They must also be selected so that the next observation is a function of

Zt:

(4.11) Yt+1 = JZt,
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where the m×n matrix J is a parameter of the model.4 In many cases when m ≤ n,

this requirement can be satisfied by including every element of Yt+1 as the first m

elements of Zt and setting J to be the first m rows of the n× n identity matrix.

4.2.2 Core Dynamics of the Uncontrolled PLG

The core dynamics of the vector-valued PLG are similar to (4.3), the core dynam-

ics of the scalar PLG. However, in this case it is more natural to define the dynamics

in terms of Zt+1 and Zt, not Yt+n+1 and Zt:

(4.12) Zt+1 = GZt + ηt+1.

Here, G is the linear trend in the predicted observations Zt and ηt+1 is the noise

term, a random vector. As in the scalar case, the noise term covaries with Zt; it is

distributed according to

ηt+1|ht ∼ N (0,Ση)(4.13)

Cov[Zt, ηt+1|ht] = Cη .(4.14)

Note that it is possible (even likely) that a particular observational element Y i
t

may appear in Zs for multiple values of s. For example, in Figure 4.2, the element

Y 1
t+3 appears as Z6

t , Z4
t+1, and Z1

t+2. In general, this will happen whenever n > m

and may happen when n ≤ m. It is undesirable for different noise terms to apply

to the same observational element when (4.12) is evaluated for different values of t,

as this would lead to conflicting distributions for some observations. Therefore, fix

ηi
t+1 = 0 whenever Zi

t is not the first appearance of an observational element. In the

running example of Figure 4.2, the first and fourth elements of ηt+1 will be fixed at

0 for all values of t, but the sixth element may take on nonzero values. The nonzero

elements of ηt+1 correspond to the top shaded box of each “stack” in the figure.
4This requirement will be relaxed in Section 4.3, which will allow PLGs to model systems with

observation dimension m greater than system dimension n.
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4.2.3 Modeling Actions in the PLG

The dynamics of (4.12) don’t quite tell the whole story: They ignore the effect

that actions have on future observations. The PLG models actions so that that

ut, the action at time t, affects the expected value (but not the variance) of future

observations—that is, Yt+1, Yt+2, . . .. Each action’s effect on these means is a linear

function of the action. With these strictures in place, the core dynamics of the

vector-valued PLG can be written:

(4.15) Zt+1 = GZt +
τmax∑
i=1

Γiut+i + ηt+1.

The model parameters Γ1, . . . ,Γτmax are n× l matrices that describe the linear effects

of the actions. The upper limit of the sum, τmax, is the maximum look-ahead horizon

of Zt. That is, Zt contains at least one element of Yt+τmaxbut no elements of Yt+τmax+1.

In the example of Figure 4.2, τmax = 3. This means that Zt+1 contains at least one

element of Yt+τmax+1, which can be affected by the action ut+τmax but not by ut+τmax+1;

hence τmax is the upper limit on the summation.

As with the noise terms, in order for the effects of the actions to be well-defined,

they should only apply to the first appearance of a particular observational element

in a Zt vector. This is accomplished by fixing the ith row of Γk to be 0 when Zi
t is

not the first appearance of an observational element. Thus, as with the noise term,

in the running example, the first and fourth rows of Γ1, Γ2, and Γ3 are fixed at 0,

but the sixth rows may take on any value. In addition, causality must be preserved;

therefore, no action may have an effect on elements of Zt+1 that will be observed

before the action will be taken. In the example, this means that the second row of

Γ1 may be nonzero, but the second rows of Γ2 and Γ3 must be 0, because the actions

ut+2 and ut+3 cannot affect elements of Yt+2.
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In controlled systems, the distribution of Zt|ht is undefined without information

about the actions that will be executed between now (t) and the time that the

elements of Zt will be observed. Because the actions are not modeled as random

variables, it is impossible to marginalize out their effects. This is important because

the PLG’s state is defined in terms of the distribution of Zt. The simplest solution

is to assume that future actions will be 0; because of the actions’ linear effect on

the future, this is the assumption that actions that have not yet been taken will not

affect the values of future observations.

But note that this is just an assumption to make the state well-defined; the

dynamics do not require that the actions actually be zero in order for the model to be

correct. When the actual value of an action is determined, its effects are propagated

onto the state using the state update equations defined in the next section.

4.2.4 State Update

As in the scalar PLG, the state of the system is summarized by the mean and

covariance of the distribution of Zt, conditioned on the history of interaction (and

assuming future actions to be 0):

(4.16) Zt|ht, ut+1 = 0, ut+2 = 0, . . . ∼ N (µt,Σt).

With each new time step, a new observation becomes available and another action

has been taken; the state of the system must be updated to take this information

into account. Again, the update function must compute µt+1 = E[Zt+1|ht, Yt+1 =

yt+1, ut+1, ut+2 = 0, . . .] and Σt+1 = Var[Zt+1|ht, Yt+1 = yt+1, ut+1, ut+2 = 0, . . .] from

µt, Σt, yt+1, and ut+1. The derivation of these update equations is essentially the

same as the derivation of the scalar update equations (4.8) and (4.9), except that

the mean update must take the action into account. The action has a linear effect;
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this effect, L, should describe the cumulative effect that the action has on all the

observations of Zt+1, to wit:

(4.17) Lu = E[Zt+1|ht, ut+1 = u, ut+2 = 0, . . .]− E[Zt+1|ht, ut+1 = 0, ut+2 = 0, . . .].

This is accomplished by defining

(4.18) L
∆
= Γ1 +GΓ2 +G2Γ3 + · · ·+Gτmax−1Γτmax .

Using this definition of L, the state update equations are written as

µt+1 = Gµt + Lut+1 + (GΣt + C>
η )J>(JΣtJ

>)−1(yt+1 − Jµt)(4.19)

Σt+1 = GΣtG
> +GCη + C>

η G
> + Ση − (GΣt + C>

η )J>(JΣtJ
>)−1J(ΣtG

> + Cη).

(4.20)

Comparing these updates to (4.8) and (4.9) helps illustrate the fact that the scalar

PLG is just a special case of the vector-valued PLG, with ηt+1 = εt+n+1en, Ση =

σ2ene
>
n , Cη = Ce>n , and J = e>1 . The derivations of L and the update equations

(4.19) and (4.20) may be found in Appendix A.1.2.

Constraints Between Parameters As in the scalar version of the PLG, the vari-

ance update equation (4.20) introduces some constraints between G, Cη , Ση , and J .

Because the last term of (4.20) is subtracted from the first four terms and covari-

ance matrices are required to be symmetric positive semidefinite, these parameters

are constrained to require that Σ[t+1] is symmetric positive semidefinite for all t.

Equivalently, the following covariance matrix must be symmetric positive semidefi-

nite for all t:

(4.21) Var


Yt+1

Zt+1


∣∣∣∣∣∣∣ht

 =

 JΣtJ
> JΣtG

> + JCη

GΣtJ
> + C>

η J
> GΣtG

> +GCη + C>
η G

> + Ση

 .
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Failure to satisfy these constraints will lead to an invalid state at some time step,

and thus an invalid model.

The predictive linear-Gaussian model can now be defined. It is parameterized by

the linear trend parameters G and Γ1, . . . ,Γτmax
, the “next-observation function” J ,

the noise parameters Ση and Cη , and the initial state µ0 and Σ0. When a new action

and observation become available, the state is updated using (4.19) and (4.20). The

semantics of the model are given by the state semantics in (4.16), the makeup of Zt,

and the next-observation distribution of (4.11). Representationally, the PLG is as

powerful as a large subset of linear dynamical systems.

Theorem 4.1. Every LDS with n-dimensional state and in which the vector space

{E[Yt|Xt = x] : x ∈ Rn}5 is m-dimensional for any t has an equivalent n-dimensional

PLG, where equivalence means that both models compute the same probability distri-

bution over futures given the same history.

This theorem can be proven by construction and is quite similar to the proof of

Theorem 4.2, a stronger result presented in the next section; the proof of Theorem 4.1

is thus omitted.

I would like to give some intuition as to the condition in this theorem—that is, that

the vector space {E[Yt|Xt = x] : x ∈ Rn} has rank m for some t. This essentially

means that (for some t) it is not possible to express the expected value of any

element of Yt as a linear function of the expected values of the other elements. This

is equivalent to requiring that the LDS parameter H have rank m. This condition

can be removed by altering the the relationship between Zt and the next observation

as given by (4.11). The next section presents such an alteration.

5Xt is the value of the latent state process of an LDS; see Section 2.2.2.
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4.3 The Variance-Adjusted PLG

When the observation vector space is underranked in expectation—that is, when

{E[Yt+1|ht] : ht a length-t history} has dimension less than m for every t—the

PLG is unable to model the system. That is because the variance need not be

underranked even when the means are linearly dependent—yet this relationship is

forced by Yt = JZt. words, while E[Yt|ht] = Jµt, it is not necessarily the case that

Var[Yt|ht] = JΣtJ
>, thus violating the next-observation semantics of (4.11). If the

variance relationship did hold, it would imply that the space of all possible observa-

tions were underranked, not just the space of the expected values of the observations.

For example, suppose we wish to control an oven in an industrial process. The

oven has two temperature sensors that are unbiased but whose readings differ from

the actual temperature inside the oven by i.i.d. Gaussian noise;6 these sensors are

the only observations (i.e. m = 2). In this case, E[Y 1
t+1|ht] = E[Y 2

t+1|ht], so the mean

vector has a trivial linear dependency. However, because the noise experienced by

the two sensors is independent, it is not the case that Y 1
t+1|ht = Y 2

t+1|ht. The linear

dependence in the means does not carry over to the variance of the two elements of

the observation vector. Thus, there is no J that satisfies Yt+1 = JZt.

To eliminate this problem, I propose a variant of the PLG: the variance-adjusted

PLG. In this variant, the distribution of the next observation is given by

(4.22) Yt+1|ht, ut+1 = 0, . . . ∼ N (Jµt, JΣtJ
> + Σadj),

where Σadj is a symmetric matrix. It need not be a valid covariance matrix, but the

sum JΣtJ
> + Σadj must be symmetric positive semidefinite for all t. In all other

respects, the variance-adjusted PLG has the same semantics as the standard model.

6While each sensor may differ from the temperature by an i.i.d. Gaussian random variable, the
process as a whole may still have non-i.i.d. noise.
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This new formulation requires that the state update equations be altered slightly:

(4.23) µt+1 = Gµt + Lut+1 + (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1(yt+1 − Jµt)

(4.24) Σt+1 = GΣtG
> +GCη + C>

η G
> + Ση −

(GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J(ΣtG

> + Cη)

Adjusting the variance of the next observation with the additional parameter Σadj

adds enough representational power to the PLG to allow it to represent any LDS.

Theorem 4.2. Every LDS with n-dimensional state has an equivalent n-dimensional

variance-adjusted PLG, where equivalence means that both models compute the same

probability distribution over futures given the same history.

This theorem is proven by construction: Given an n-dimensional LDS, the pa-

rameters of an equivalent n-dimensional variance-adjusted PLG can be computed.

This construction can be found in Appendix A.2.

4.4 Optimal Control of the PLG

One of the most important purposes of modeling a controlled dynamical system

is to use the model to plan. In planning, the model is used to (attempt to) select

actions that minimize some cost function in expectation.

To use the PLG to plan, the first step is to select a class of cost functions. There

are two important criteria to consider: First, the cost function must be able to model

realistic or important applications. Second, choosing actions that minimize (or at

least perform well with respect to) this function must be a tractable problem. Here,

the LDS literature provides inspiration—quadratic cost functions are widely used in

conjunction with the LDS for control applications; this combination is known as a
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linear-quadratic Gaussian model. Minimizing a quadratic function of the state and

actions can model minimizing the energy input into a system, getting as close to a

target state as possible, and other reasonably interesting tasks. In addition, optimal

control under such a cost function is quite tractable. This is also true when the

underlying model is a PLG rather than an LDS.

Here I will describe the PLG with quadratic cost (PLGQ), which applies to a

PLG model a cost function that is quadratic in the actions ut and state variables µt.

I will show that the optimal action in this framework is a linear function of the mean

vector µt and that, under reasonable conditions, a cost function can be selected that

yields the same optimal controls for an LDS and its equivalent PLG.

4.4.1 Form of the Cost Function

The cost function has the following form: At each time step t (up to a finite

horizon, T ), the PLGQ assesses a cost that is quadratic in the mean vector µt−1 and

the control ut.
7 When the time horizon is reached, a terminal cost is incurred that

is quadratic in just the mean vector µT . In symbolic terms, the cost function Ψµ can

be written as

(4.25) Ψµ =
T∑

τ=1

ψµ(µτ−1, uτ ) + µ>TWµ,TµT ,

where ψµ(µ, u) = µ>Wµµ + 2u>Wµ,uµ + u>Wuu is the per-time-step cost. So that

there is a well-defined, unique minimum, the combined cost matrix Wµ W>
µ,u

Wµ,u Wu


and the terminal cost matrix Wµ,T must both be symmetric positive semidefinite,

and the action cost matrix Wu must be symmetric positive definite.

7The time indices of µt−1 and ut differ by one because the initial mean vector is µ0 but the
initial action is u1.
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To minimize this function, at each given time step t, after observing a sequence

ht−1 of actions and observations through time t− 1, a sequence of actions u∗t (ht−1),

. . . , u∗T (ht−1) must be selected that minimizes E[Ψµ|ht−1]. However, this can be

cast as a dynamic programming problem, so that u∗t (ht−1) can be selected without

explicitly computing actions further in the future. In fact, the optimal action can be

computed as a linear function of the mean vector µt−1.

Lemma 4.3. The optimal action u∗t (ht−1) to be taken at time t after observing history

ht−1 is the certainty-equivalent optimal action and a linear function of the mean

vector µt−1.

The certainty-equivalent optimal action is the action that would be optimal if the

system were deterministic (i.e. ηt+1 ≡ 0 ∀t). Lemma 4.3 is proven in Appendix A.3.

As can be seen in the proof, the coefficients of this linear function are computed recur-

sively, but without needing to refer to previous actions and observations. Therefore,

the linear function for each time step can be determined a priori, allowing very fast

action selection while controlling the system.

Theorem 4.2 states that any LDS has an equivalent PLG of the same dimension.

It is also the case that for any full-rank linear-quadratic Gaussian model,8 there is an

equivalent PLGQ. The linear-quadratic Gaussian model is based on the LDS model

and a quadratic cost function, and is used in a wide variety of control applications,

including chemical plant control, aircraft autopilot control, and vibration cancella-

tion. A PLGQ and linear-quadratic Gaussian model are equivalent if each model

selects the same optimal action as the other after any sequence of actions and obser-

vations is observed. The optimal expected cost-to-go computed by the two models
8A full-rank linear-quadratic Gaussian model is one whose underlying LDS is full rank. This

is discussed in further detail in Section 2.2.2, but it essentially means that there is a one-to-one
correspondence between values of the LDS state and values of the state of the equivalent PLG, or
in other words, that no two states induce an identical distribution over future observations.
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will differ only by a constant that is independent of the history.

Theorem 4.4. For any n-dimensional, full-rank linear-quadratic Gaussian model,

an equivalent n-dimensional PLGQ exists that, given any history of interaction with

the system, computes the same optimal action.

In other words, the PLGQ can be used to specify and solve the same control

problems as full-rank linear-quadratic Gaussian models. The proof of this theorem

is given in Appendix A.4.



CHAPTER V

Estimating the Parameters of the PLG

Having introduced the PLG in the previous chapter, there is a natural question

of how to build PLGs from data. In this chapter, I present a consistent parameter

estimation algorithm; that is, it produces estimates that tend toward the true values

of the parameters as the amount of data increases. I then compare this algorithm

to existing parameter estimation algorithms for LDS models, both theoretically and

experimentally. The experimental results presented here result from running the

algorithms on data sets generated by random LDS models.

5.1 The Consistent Estimation Algorithm

The CE algorithm is based in large part on the direct connection of the PLG

parameters with statistical patterns in the data. For instance, G is the linear trend

in the mean of the observations. This is in contrast to the LDS, whose parameters

have a less direct connection because of its latent variables. In the LDS, the same

linear trend is a function of two model parameters: H, the mapping from hidden state

to observations, and A, the next-state matrix.1 Because of the direct connection PLG

parameters have to the observations, CE is a non-iterative algorithm that consists of

simple operations like linear regression and taking sample means and covariances.

1See Section 2.2.2 for an introduction to linear dynamical systems

57
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CE estimates PLG parameters given a data set with K trajectories generated by

a dynamical system; as K grows, the estimates converge to the true values of the

parameters. This discussion will assume that a data set with K trajectories is given,

each of which is a sequence of N actions and N observations. Each trajectory is

started from the same (unknown) initial state µ0,Σ0.
2 The tth observation from the

kth trajectory is denoted yk
t ; similarly, zk

t is the observed value of Zt from the kth

trajectory.3 In addition, the notation yt will denote the average of yk
t taken over all

the trajectories (similarly zt, ηt+1, etc.), and Ĝ refers to an estimate of G (similarly

Ĉη , η̂
k
t+1, etc.). The presentation of the algorithm assumes that n is given and that

Zt is prepopulated (i.e. that it is known which observational element corresponds to

each element of Zt).

The algorithm will be presented in three parts: estimating the linear trend pa-

rameters, estimating the initial state, and estimating the noise parameters.

5.1.1 Linear Trends

Three PLG parameters represent linear trends present in the data. G is the linear

trend of the observations (specifically Zt) in the absence of actions, Γ1, . . . ,Γτmax
are

the linear effects of the actions, and J is the linear function from Zt to Yt+1. CE

estimates each of these parameters using linear regression.

G and Γ1, . . . ,Γτmax
are estimated together. Because of the construction of the

model, some of the rows of these matrices are known a priori. Some rows of G copy

an observation element from i+1 steps in the future onto the same element i steps in

the future. For instance, if Z1
t = Y 1

t+1 and Z4
t = Y 1

t+2 (as in Figure 4.2), the first row

2In LDS terms, this is equivalent to requiring that the initial latent state X1 is drawn from a
Gaussian distribution, not that it is set to a particular initial value. In other words, this puts a
prior on the initial observations.

3Though this is the same notation used to indicate a specific element of yt or zt, the superscript
k will always denote the entire vector, taken from the kth trajectory.
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of G simply copies the fourth element of Zt into the first—that is, it is the same as

the fourth row of the n×n identity matrix. Additionally, as discussed in Section 4.2,

the ith row of Γj (for each j) is fixed to be 0 when Zi
t is not the first appearance of

an observational element. Note that all of the rows that are predetermined in G are

also predetermined in Γ1, . . . ,Γτmax
. We refer to the rows that are not predetermined

in this way as Gunk, Γunk
1 , . . . ,Γunk

τmax
. Likewise, let zunk,k

t be the sub-vector of zk
t that

corresponds to these rows.

However, not all the elements of Γunk
1 , . . . ,Γunk

τmax
are free parameters. Recall from

the discussion after (4.15) that, in order to preserve causality, actions should not

affect observations that will occur before the action is taken. So if Z2
t = Y 2

t+1 (and no

other entry of Zt refers to Y 2
t+2), the second row of Γ1 is unrestricted, but the second

row of Γ2,Γ3, . . . must be 0, because actions taken after Yt+1 should not affect its

probability distribution.

From the PLG’s core dynamics (4.15), it follows that

(5.1) zunk,k
t+1 = Gunkzk

t +
τmax∑
i=1

Γunk
i uk

t+i + ηk,unk
t+1

for all t and k. This equality holds when averaging across all trajectories in the data

set:

(5.2) zunk
t+1 = Gunkzt +

τmax∑
i=1

Γunk
i ut+i + ηunk

t+1

for all t. As K grows large, the Weak Law of Large Numbers applies and it can be

shown that ηunk
t+1

−→p 0 as K → ∞, where −→p denotes convergence in probability.4

This implies that

(5.3) zunk
t+1

−→p γξt

4Please refer to Appendix B.1 for a short discussion on large sample theory and convergence in
probability.
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for all t, where

(5.4) γ =

(
Gunk Γunk

1 · · · Γunk
τmax

)
, ξt =



zt

ut+1

ut+2

...

ut+τmax


.

(5.3) can be rewritten in matrix form as Zunk = γΞ, where the tth column of Ξ

is ξt−1 and the tth column of Zunk is zunk
t ; both of these matrices have N − τmax

columns. This is a straightforward linear regression problem; an estimate for these

linear trends results from right-multiplying both sides by Ξ>(ΞΞ>)−1.

The estimates of Γunk
1 , . . . ,Γunk

τmax
and Gunk provided by γ̂ can be combined with the

rows that were predetermined by the structure of the model to obtain Γ̂1, . . . , Γ̂τmax

and Ĝ, the CE algorithm’s estimates of Γ1, . . . ,Γτmax
and G.

Note that (5.34) is a slight simplification of the actual regression. In fact, each

Γi has different predetermined rows. For instance, the ith row of Γ2, · · · ,Γτmax is 0

whenever Zi
t is an element of Yt+1, while the ith row of Γ1 need not be. Therefore,

each row (or block of rows) of γ̂ must be estimated separately, with the columns of

Ξ containing a different number of actions for each regression.

It should be noted that γ̂ is generally a biased estimate; while it is true that

ηt+1
−→p 0 as K grows, it is also true that when K is small ηt is not only non-zero,

but it will in general be correlated with ηr when r 6= t. However, it is a consistent

estimate, and so it should be expected that this bias disappears as the data set grows.

The next-observation function J can be estimated in much the same way. As with

Ĝ, Γ̂1, . . . , Γ̂τmax , some elements of Ĵ are predetermined by the structure of the model.

First, if the jth element of Zt is not an element of Yt+1, the jth column of J is fixed at
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0 (because each element of the next observation is taken as a linear function only of

elements of the next observation that are part of Zt). Additionally, if Zj
t = Y i

t+1, then

the ith row of J is e>j (i.e. the jth row of the n× n identity matrix). If all elements

of Yt+1 are found in Zt, then Ĵ = J is completely predetermined. Otherwise, the

submatrix Junk that is not predetermined must be estimated, again through linear

regression. Let Znext
t be the sub-vector of Zt whose elements correspond to elements

of Yt+1. Then

(5.5) yk
t+1 = Jznext,k

t

for all t and k.5 Again, both sides of these equations can be averaged over all K

trajectories to obtain

(5.6) yt+1 = Jznext
t

and then collected together into a single matrix equation

(5.7) Υ = JZnext,

where the tth column of Υ is yt and the tth column of Znext is znext
t−1 . As in the

previous regression, both of these matrices have N − τmax columns. An estimate of

J is then obtained by

(5.8) Ĵunk = Υ(Znext)
>(Znext(Znext)

>)−1.

This submatrix can be combined with those elements of J that are predetermined

by the structure to obtain Ĵ , the CE estimate of J .

While (5.5) only holds in the case of the standard PLG, Ĵ is also a consistent

estimate for J in the variance-adjusted PLG. In the variance-adjusted PLG, E[Yt+1] =

5This is true for the standard PLG. In the variance-adjusted PLG, this equation is true in
expectation.
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J E[Znext
t ]. As K →∞, the left side of (5.6) converges in probability on E[Yt+1] and

the right side converges to J E[Znext
t ]. Thus Ĵ −→p J as K →∞.

5.1.2 Initial State

At first blush, it may seem that µ0 and Σ0 could be estimated through a simple

sample mean and covariance of zk
0 . However, this fails to account for the actions;

the initial state is the distribution of Z0 given that u1 = 0, u2 = 0, etc. This can be

remedied by noting that effect of each action u1, u2, . . . , uτmax on Z0 is additive and a

function of only G,Γ1, . . . ,Γτmax
and the action itself (and that the effect of actions

further in the future is zero). By using the estimates Ĝ, Γ̂1, . . . , Γ̂τmax , to compute

this effect, an estimate of Z0|u1 = 0, · · · can be obtained for each trajectory, and the

sample mean and covariance of these estimates can be taken to estimate µ0 and Σ0.

The issue, then, is determining the effect of the actions on Z0. To derive this

effect, consider two trajectories, k1 and k2. Suppose that ηk
1 = ηk

2 and uk1
t = uk2

t = 0

at every time step t. Recall the core PLG dynamics from (4.15):

(5.9) Zt+1 = GZt +
τmax∑
i=1

Γiut+i + ηt+1

Then Zk1
t+1 − Zk2

t+1 = 0 at every t. That is, with identical noise terms and identical

actions, both trajectories are identical. To determine the effects of actions of Z0, it

is only necessary to see how trajectory k1 becomes different from k2 when its actions

are changed.

To that end, fix a particular t, and change uk1
t+τmax

to uτmax . Inspection of (5.9)

reveals that the change in Zk1
t can be quantified by

(5.10) Zk1
t+1 − Zk2

t+1 = Γτmaxuτmax .

Now change another action; this time, set uk1
t+τmax−1 to uτmax−1. This changes two

terms in (5.9). As before, it affects Zt+1 through the summation. But it also changes
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Zt through its summation over Γiut−1+i. So now, with the changes in bold,

(5.11) Zk1
t+1 − Zk2

t+1 = Γτmaxuτmax + (Γτmax−1 + GΓτmax)uτmax−1.

Performing similar substitutions for uk1
t+1, etc., the resulting difference is

(5.12) Zk1
t+1 − Zk2

t+1 =
τmax∑
i=1

τmax∑
j=i

(Gj−iΓj)ui.

If it is assumed that Z0 behaves as Zt for any other t (or equivalently, that (5.9)

holds for t < 0), then for each trajectory, a sample of Z0|u1 = 0, u2 = 0, . . . can be

derived from the sample of Z0 given the actions actually taken in trajectory k:

(5.13) ẑk
0|0 = zk

0 −
τmax−1∑

i=0

τmax−1∑
j=i

(Ĝj−iΓ̂j)u
k
i ,

where it can be assumed that uk
0

∆
= 0.

Given these estimates, the initial state can be estimated through a sample mean,

(5.14) µ̂0 =
1

K

K∑
k=1

ẑk
0|0,

and a sample covariance,

(5.15) Σ̂0 =
1

K − 1

K∑
k=1

(ẑk
0|0 − µ̂0)(ẑ

k
0|0 − µ̂0)

>.

These are consistent estimates of the initial state, though the proof is deferred for

the moment.

5.1.3 Noise Parameters

The only parameters left to estimate are those that govern the stochastic element

of the system—that is, the variance of ηt+1|ht (Ση) and its covariance with Zt (Cη),

and, in the case of variance-adjusted PLGs, the variance adjustment (Σadj).

The estimation of Cη and Ση is in a way analogous to the estimation of µ0 and

Σ0. The latter pair are the parameters of the distribution of Z0|u1 = 0, u2 = 0, . . .,
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samples of which can be derived from the data as in (5.13). Similarly, Cη and Ση are

parameters of the distribution of ηt+1|ht, samples of which can likewise be computed

from the data.

Solving the dynamics equation (5.9) for the noise term and substituting estimated

parameters yields an estimate for ηt+1:

(5.16) η̂k
t+1 = zk

t+1 − Ĝzk
t −

τmax∑
i=1

Γ̂iu
k
t+i

for all t and k. ηt+1 and ηt+1|ht have the same mean, variance, and covariance with Zt

(which is shown in the proof of Theorem 5.1; see Appendix A.5). Notice that zk
t , zk

t+1,

and uk
t+i come directly from (averages over) the data set, and not (for example) state

estimates derived from the parameters. CE is non-iterative, and does not contain

recursions of that type.

A sample variance and sample covariance of these noise estimates provide con-

sistent estimates for Ση and Cη . The CE estimate for Ση is given by the sample

variance of η̂k
t+1:

(5.17) Σ̂η =
1

N − τmax

N−τmax∑
t=1

1

K − 1

K∑
k=1

η̂k
t η̂

k>
t .

Similarly, the estimate for Cη is given by the sample covariance of η̂k
t+1 with zk

t :

(5.18) Ĉη =
1

N − τmax

N−τmax−1∑
t=0

1

K − 1

K∑
k=1

(zk
t − Z̃k

t )η̂k>
t+1,

where

(5.19) Z̃k
t =


µ̂0 +

∑τmax−1
t=0

∑τmax−1
j=t (Ĝj−tΓ̂j)u

k
t t = 0

ĜZ̃k
t−1 +

∑τmax

i=1 Γ̂iu
k
t+i t > 0

is an estimate of E[Zk
t |uk

1, u
k
2, . . .] (setting Γ0 = 0 and uk

0 = 0).
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There remains only one parameter to estimate—the variance adjustment param-

eter, Σadj. In the standard PLG, this is fixed at Σadj ≡ 0; in the variance-adjusted

PLG, it affects the variance of the next observation according to the equation

(5.20) Var[Yt+1|ht, ut+1 = 0, . . .] = JΣtJ
> + Σadj.

Var[Yt+1|ht, ut+1 = 0, . . .] is difficult to estimate from the data because each his-

tory occurs only once. However, Var[Yt+1|ut+1 = 0, . . .] (the variance not conditioned

on history) can be estimated readily by a sample variance. To find the relationship

between this quantity and Σadj, the Law of Total Variance6 may be applied:

Var[Yt+1|ut+1 = 0, . . .] = Eht [Var[Yt+1|ht, ut+1 = 0, . . .]](5.21)

+ Varht [E[Yt+1|ht, ut+1 = 0, . . .]](5.22)

= JΣtJ
> + Σadj + Varht [Jµt|ut+1 = 0, . . .](5.23)

= J(Σt + Varht [µt|ut+1 = 0, . . .])J> + Σadj,(5.24)

where Eht and Varht denote expectation and variance, respectively, taken over the

distribution of histories of length t.

Another application of the Law of Total Variance, this time to the variance of Zt,

obtains

Var[Zt|ut+1 = 0, . . .] = Eht [Var[Zt|ht, ut+1 = 0, . . .]](5.25)

+ Varht [E[Zt|ht, ut+1 = 0, . . .]](5.26)

= Σt + Varht [µt|ut+1 = 0, . . .](5.27)

∴ Σt = Var[Zt|ut+1 = 0, . . .]− Varht [µt|ut+1 = 0, . . .].(5.28)

Substituting (5.28) into (5.24) and solving for Σadj results in

(5.29) Σadj = Var[Yt+1|ut+1 = 0, . . .]− Var[JZt|ut+1 = 0, . . .].

6See Appendix B.2.
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Both terms on the right-hand side of (5.29) can be estimated through sample vari-

ances, resulting in an estimate of Σadj for each t:

(5.30) Σ̂t
adj =

1

K − 1

K∑
k=1

(
(yk

t+1 − yt+1)(y
k
t+1 − yt+1)

> − (Ĵ ẑk
t|0 − Ĵ zt|0)(Ĵ ẑ

k
t|0 − Ĵ zt|0)

>
)
,

where ẑk
t|0 follows from the logic of (5.13):

(5.31) ẑk
t|0 = zk

t −
τmax∑
i=1

τmax∑
j=i

(Ĝj−iΓ̂j)u
k
t+i.

In theory, for each t, Σ̂t
adj is a consistent estimator for Σadj, and so Σ̂adj =

1
N−τmax

∑N−τmax

t=1 Σ̂t
adj may seem like a reasonable estimator. However, in practice,

the behavior of Σ̂t
adj for t > 0 is not good, and so the estimator for Σadj in my

experiments is given by

(5.32) Σ̂adj = Σ̂0
adj.

5.2 Theoretical Results

The main theoretical result of this section is that CE produces consistent estimates

for the parameters of a PLG as the number of trajectories in the data set grows.

However, there are some technical requirements on the system and the policy used

to generate the data set that must be satisfied in order for the consistency result to

hold.

The major requirement is that the matrix ΞΞ> from (5.34) be invertible in the

limit as K →∞. This is both a theoretical and a practical requirement. It is a the-

oretical requirement because consistency is a property of the behavior of estimators

in the limit. It is a practical requirement because, when this requirement does not

hold, conditioning problems will lead to poor estimates of G and Γ1, . . . ,Γτmax
on
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large data sets. Since most of the other estimates depend on the estimates for these

parameters, this will lead to a poor model overall.

An equivalent way of stating this requirement is that a) E[Ξ] have full rank and

b) the trajectories have sufficient length to make Ξ at least as wide as it is tall. The

latter requirement means that N must be at least n + (l + 1)τmax. The former is a

joint constraint on the system and the policy used to generate the data set. In an

uncontrolled system, this condition will not be satisfied if, for example, µ0 = 0 or µ0

is an eigenvector of G. This is because in an uncontrolled system,

(5.33) Ξ =

(
µ0 Gµ0 G2µ0 · · ·

)
.

In a controlled system, the actions affect zt, and so a well-chosen policy can

overcome difficulties such as µ0 = 0. However, a new issue is raised: The actions

form part of Ξ, so a random policy where E[u1] = E[u2] = · · · = E[uN ] will lead to an

under-ranked matrix. An exploration policy that satisfies the requirement that E[Ξ]

have full rank for a particular system is called a CE-learnable policy for the system.

One policy that satisfies at least the requirement that the rows of E[Ξ] corre-

sponding to actions be linearly independent is a periodic policy of the following

form. Suppose that each action is drawn from a multivariate Gaussian distribution.

For most actions, the mean of this distribution is 0. But when t = iτmax for integer

i, let a single element of ut have a non-zero mean. The element that has non-zero

mean will depend on i; it will be the first when i ≡ 1 mod l, the second when i ≡ 2

mod l, etc. Thus the sequence of action means will repeat every lτmax time steps.

The reasoning behind this policy can be seen by inspecting the lτmax × N − τmax

submatrix of E[Ξ] corresponding to the actions. Each column of this matrix will

be a unit vector with a single entry equal to 1. Over the course of lτmax columns,

each unit vector of this type will be present, thus guaranteeing that the rows of E[Ξ]
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corresponding to actions will be linearly independent. This policy is used in the

experiments in Section 5.5.

The formal statement of the consistency result is made by the following theorem.

Theorem 5.1. If a dynamical system can be modeled by an n-dimensional PLG, is

controlled by a policy that is jointly CE-learnable with the system, and generates a

training set whose K trajectories are each at least n+(l+1)τmax time steps long, then,

as the number of trajectories K grows, the parameter estimates computed by the CE

algorithm from this training set will converge in probability to the true parameters of

that PLG.

A sketch of the proof of Theorem 5.1 has already been given in the development

of CE. A formal proof is given in Appendix A.5.

5.3 A Weighted Consistent Estimation Algorithm

The CE algorithm described above gives equal importance to data from each time

step in the estimators for G, J , Γ1, . . . ,Γτmax
, Cη , Ση , and Σadj. There are a number

of reasons this may be considered undesirable. For instance, the standard linear

regression for Ĝ may put too much weight on the tail end of the trajectories; the

variance of zt will usually increase as t grows larger, and so an estimate that gives

equal weight to samples with large t will have higher variance than one that places

more weight on earlier samples. Or, as in the next chapter, different trajectories may

have different lengths, and so each time step may have a different number of samples.

Thus, a weighted version of CE may present attractive alternative. In this algo-

rithm, each time step t is given a weight wt. Choosing the weights is a matter of some

importance as it will bear on the variance of the estimator. An example weighting

scheme that places extreme importance on data points early in each trajectory is
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wt = 1
t+1

. A weighting scheme used in the next chapter sets wt to the number of

trajectories with a length of t or more. Exploring different weight schemes is an area

of future work.

Several estimators are changed from their non-weighted versions—in fact, all of

them except for the initial state estimators are.

5.3.1 Linear Trend Parameters

Let W be a diagonal matrix whose (t + 1, t + 1)th element wt+1 is the weight to

be placed on the squared error in (5.3). Then

(5.34) γ̂w = ZunkWΞ>(ΞWΞ>)−1

is a consistent estimate for γ. Recall that

(5.35) γ =

(
Gunk Γunk

1 · · · Γunk
τmax

)
.

Γ̂w
1 , . . . , Γ̂

w
τmax

and Ĝw are computed by combining the appropriate submatrices of γ̂w

with the elements of Γ1, . . . ,Γτmax
and G that are predetermined by the structure of

the model, in the same way that Γ̂1, . . . , Γ̂τmax and Ĝ were computed from γ̂ .

The non-predetermined elements of the next-observation matrix J can be esti-

mated with the following weighted regression:

(5.36) Ĵw,unk = ΥW (Znext)
>(ZnextW (Znext)

>)−1.

When combined with the predetermined elements in the same manner as Ĵunk, this

produces Ĵw, a consistent estimate for J .
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5.3.2 Noise Parameters

The weighted version of each noise parameter’s estimator is a straightforward

weighted average of each time step’s estimator. The estimator for Ση is given by

(5.37) Σ̂w
η =

1∑N−τmax

t=1 wt

N−τmax∑
t=1

wt

K − 1

K∑
k=1

η̂k
t η̂

k>
t .

Similarly, the weighted estimate of the covariance between the noise and Zt is

(5.38) Ĉw
η =

1∑N−τmax

t=1 wt

N−τmax−1∑
t=0

wt+1

K − 1

K∑
k=1

(zk
t − Z̃k

t )η̂k>
t+1.

Finally, the weighted estimate for Σadj, the additional parameter for the variance-

adjusted PLG, is given by

(5.39) Σ̂w,
adj =

1∑N−τmax

t=1 wt

N−τmax∑
t=1

wtΣ̂
t
adj.

Theorem 5.1 holds for the weighted version of CE under the same conditions as

long as all the weights are positive.

5.4 Comparing CE to LDS Methods of Parameter Estimation

Because the PLG subsumes the LDS and there are many well-established methods

to estimate the parameters of an LDS, it is sensible to compare these methods to

the estimation algorithms presented in this chapter. There are two (families of)

LDS methods of particular interest: subspace identification methods and expectation

maximization.

5.4.1 CE vs. Subspace Methods

Subspace-based state-space system identification (4SID) methods are parame-

ter estimation algorithms for LDSs (Overschee & De Moor, 1996; Viberg, 1995).

Like CE, 4SID methods are non-iterative—in particular, they do not perform local

searches in the parameter space, as expectation maximization does.
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Algorithms in the 4SID family can be quite complicated. Here I present a basic

intuition.

The core dynamics of the LDS can be written as

(5.40)

Xt+1

Yt

 =

A
H

Xt +

ωt+1

νt

 .

This is quite similar in form to the PLG dynamics (4.15); if an estimate for Xt were

obtained, A and H could be estimated through least-squares linear regression, much

as G is in the CE algorithm. The main question answered by 4SID is how to estimate

Xt. Define the output block Hankel matrices

(5.41) Yp
∆
=


y1 · · · yj

...
. . .

...

yi · · · yi+j−1


and

(5.42) Yf
∆
=


yi+1 · · · yi+j

...
. . .

...

y2i · · · y2i+j−1

 ,

where f stands for future and p for past, i is at least n, and j is chosen so that the

entire data set is included in Yp and Yf (4SID methods operate on a single trajectory).

Define

(5.43) X̂i+1
∆
=

(
x̂i+1 · · · x̂i+j

)
as the estimates of the latent variables Xi+1 = [Xi+1 · · · Xi+j]. Finally, let

(5.44) Mi
∆
=



H

HA

...

HAi−1


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be the extended observability matrix of the LDS.

From the dynamics of the LDS, E[Yf |Xi+1 = X̂i+1] = MiX̂i+1. But it can

also be shown that Yf/Yp
−→p MiX̂i+1 under certain conditions as j → ∞, where

Yf/Yp = YfY
>
p (YpY

>
p )†Yp is the projection of the row space of Yf onto the row space

of Yp and ·† denotes the Moore-Penrose pseudo-inverse. This means that a consistent

estimate of Mi can be recovered through a singular value decomposition of Yf/Yp

and thus that X̂i+1 can be computed by

(5.45) X̂i+1 = M̂
†
i (Yf/Yp).

4SID methods vary in their details—for instance, X̂i+1 may not be computed

explicitly, and other changes may be made for the sake of efficiency or statistical

guarantees. Some variants of 4SID are consistent under quite general conditions.

One way some 4SID methods differ is by decomposing W1(Yf/Yp)W2, where W1 and

W2 are weight matrices, instead of (Yf/Yp). Different choices of these matrices can

result in different properties of the algorithm; see Overschee and De Moor (1996).

These weight matrices provided the inspiration for the weighted version of CE given

in this chapter.

One fundamental difference between CE and 4SID methods is that 4SID methods

are consistent as the length of a single trajectory grows, while CE is consistent as

the number of trajectories grows; I have been unable to find an example of a 4SID

method that will accept multiple trajectories as input. Some problems are naturally

episodic, and so it is easier to produce a data set with a large number of trajectories

instead of a single trajectory. For example, when trying to model the behavior of

other drivers on the road, it makes more sense to observe many vehicles’ behavior

and treat each vehicle’s trajectory separately, than to observe a single vehicle for a

very long time. Of course, the opposite is also true: In some problems, it is easier or
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more sensible to obtain a single long trajectory than many trajectories.

Smith, Freitas, Robinson, and Niranjan (1999) compare 4SID and EM in a speech

modelling task. They report that

Subspace methods produce a much richer formant structure than EM and
the plot shows how formants change and evolve during speech. This is
despite the fact that EM produces smaller sum squared errors between
true and reconstructed data in the time domain.

They also find that a hybrid method, wherein the initial parameters used in EM are

produced by a 4SID algorithm, captures some of the best of both worlds, reducing

error while capturing the formant structure of 4SID.

5.4.2 CE vs. EM

Expectation maximization and the consistent estimation algorithm are two quite

different ways to approach the parameter estimation problem. Whereas CE uses

linear regression and sample means and covariances to produce a set of parameters

that converges on the correct parameters as the data set increases in size, EM uses an

iterative algorithm to find a local maximum in the expected value of the likelihood.

Recall from Section 2.2.2 that the dynamics of the LDS are described by (2.14)–

(2.18), reprinted here:

Xt+1 = AXt +But + ωt+1(5.46)

Yt = HXt + νt(5.47)

Cov[ωt, ωs] = δt,sQ(5.48)

Cov[νt, νs] = δt,sR(5.49)

E[ωt] = 0(5.50)

E[νt] = 0(5.51)

X1 ∼ N (x−1 , P
−
1 ).(5.52)
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Based on these equations, the following densities hold for all t:

P (yt|xt) = e−
1
2
(yt−Hxt)>R−1(yt−Hxt)(2π)−m/2|R|−1/2(5.53)

P (xt|xt−1) = e−
1
2
(xt−Axt−1−But−1)>Q−1(xt−Axt−1−But−1)(2π)−n/2|Q|−1/2(5.54)

P (x|1) = e−
1
2
(x1−x−1 )>(P−1 )−1(x1−x−1 )(2π)−n/2|P−

1 |−1/2,(5.55)

where n is the length of xt and m is the length of yt. Thus the joint log probability

of a trajectory of length N is given by

(5.56) logP (x1, y1, . . . , xN , yN) =

−
N∑

t=1

(
1

2
(yt −Hxt)

>R−1(yt −Hxt)

)
− N

2
log|R|

−
N∑

t=2

(
1

2
(xt − Axt−1 −But−1)

>Q−1(xt − Axt−1 −But−1)

)
− T − 1

2
log|Q| − 1

2
(x1 − x−1 )>(P−

1 )−1(x1 − x−1 )− 1

2
|P−

1 |

− T (m+ n)

2
log 2π

.

The EM algorithm maximizes the expected log likelihood, which is given by

(5.57) ` = E[logP (x1, y1, . . . , xN , yN)|y1, y2, . . . , yN ].

Unlike CE, EM is iterative. Each iteration has two steps: The E step, which computes

three expectations required to compute `—E[xt|y1, y2, . . . , yN ], E[xtx
>
t |y1, y2, . . . , yN ],

and E[xtx
>
t−1|y1, y2, . . . , yN ]—and the M step, which maximizes ` by setting its deriva-

tive with respect to each of the parameters in turn to 0 and solving for that parameter

(Ghahramani & Hinton, 1996). Each repetition of the E and M step increases `. Typ-

ical terminations conditions cause the algorithm to terminate after a set number of

iterations and/or when the increase of likelihood falls below a certain threshold. For

example, in the experiments in this dissertation, EM terminates after the nth iter-
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ation if n = 1000 or `n − `0 < 1.0001(`n−1 − `0), where `0 is the likelihood of the

initial set of parameters and `n is the likelihood after the nth iteration.

The next section continues the comparison of EM and CE empirically.

5.5 Experimental Results on Random Systems

In my previously published works on PLGs, I have run experiments that compare

the CE and EM algorithms on data sets produced by randomly generated LDSs.

5.5.1 Scalar Uncontrolled Systems

Rudary et al. (2005) generated LDSs with scalar observations according to the

following recipe. For dimensions n = 2, 4, 8, each element of H, A, and x−1 was drawn

from the uniform distribution U(−1, 1). To avoid systems that diverge, A was then

normalized so that its spectral radius would be a random value drawn from U(0, 1).

The covariance matrix Q was computed by Q = ΛQ′Λ, where the random corre-

lation matrix Q′ was generated using the algorithm of Marshall and Olkin (1984),

and the diagonal matrix Λ’s iith element was 2xi , with xi ∼ U(−1, 1). This resulted

in Q having variances between 1
4

and 4 with random correlations. P−
1 was generated

in the same manner as Q, and R = 2xR , with xR ∼ U(−1, 1).

Using each model generated in this way, a data set was produced with 500 000

trajectories; each trajectory contained 10n observations. PLGs and LDSs were then

trained on several subsets of the data set using CE and EM, respectively. The value

reported for each subset was the difference in log-likelihood per trajectory between

the estimated parameters and the generating parameters. The version of CE used in

these experiments was a specialization of that presented in this section that handled

only uncontrolled scalar PLGs.

The results of these experiments are depicted in Figure 5.1, with a detail of Fig-
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Figure 5.1: Comparison of EM and CE on scalar uncontrolled systems. The y-axis shows the
difference in log-likelihood per trajectory between the actual and estimated parameters,
over the data used to train the parameters. The x-axis shows the number of trajectories
in the training set; the x-axis of each curve is slightly offset to improve readability.
Higher values indicate higher likelihood in the learned parameters; at zero, the likelihood
of the learned parameters is identical to that of the generating parameters. The error
bars show the 95% confidence interval.
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Figure 5.2: A zoomed-in look at the results of CE on scalar, uncontrolled systems of dimension 8.

ure 5.1(c) shown in Figure 5.2. The per-trajectory difference in log-likelihood is given

on the y-axis versus the number of trajectories in the training set on the x-axis. An

error measure of 0 indicates that the estimated parameters have the same likelihood

as the parameters used to generate the data set; higher values mean the estimated

parameters have higher likelihood. Each plot shows results averaged over 26 test

systems, with error bars showing the 95% confidence interval.

5.5.2 Scalar Controlled Systems

Rudary and Singh (2006) dealt with models with scalar observations and actions.

They generated random LDSs as in the previous section, with the additional control

matrix B being generated the same way as H. Again, the models had dimensions

(n) of 2, 4, and 8. They were used to create data sets with 100 000 trajectories, each

of length 5n. Again, PLGs and LDSs were trained on several subsets of each data set

using CE and EM, respectively, reporting the difference in log-likelihood per trajec-

tory between the estimated parameters and the generating parameters. The version

of CE used in the experiments of Rudary and Singh (2006) was a specialization of

the version presented here that estimated only controlled scalar PLGs.

The results of these experiments are shown in Figure 5.3. As in Figure 5.1, the
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Figure 5.3: Comparison of EM and CE on scalar controlled systems. The y-axis shows the difference
in log-likelihood per trajectory between the actual and estimated parameters, over over
a test set. The x-axis shows the number of trajectories in the training set; the x-axis
of each curve is slightly offset to improve readability. Higher values indicate higher
likelihood in the learned parameters; at zero, the likelihood of the learned parameters
is identical to that of the generating parameters. The error bars show a 95% confidence
interval.
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y-axis corresponds to the per-trajectory difference in log-likelihood and the x-axis to

the number of trajectories in the training set. As before, increasing along the y-axis

means that the estimated parameters have higher likelihood.

5.5.3 Vector-Valued Uncontrolled Systems

The random LDSs for these experiments on uncontrolled systems with vector-

valued observations were generated in a slightly different manner than in the previous

two sections. The elements of A, H, and x−1 were each drawn from the uniform

distribution U(−1, 1). A was then rescaled so that its spectral radius would be equal

to a number drawn from U(0.4, 0.9). In contrast to the previous experiments, in

these experiments Q is diagonal with variances drawn from U(0, 2). Finally, R and

P−
1 were generated much like P−

1 and Q were in the previous experiments—a random

correlation matrix was obtained using the algorithm described by Marshall and Olkin

(1984), which was then adjusted so that each of the standard deviations was drawn

from U(0, 2).

As before, models of dimensions (n) 2, 4, and 8 were generated; when n = 2,

observations had length m = 2; for the other two model sizes, the observations

had length 3. A training set with 100 000 trajectories of length 75 and a test set

with 10 000 trajectories of length 50 was generated using each random LDS. PLGs

and LDSs were trained on several subsets of each training set using CE and EM,

respectively, reporting the difference in log-likelihood per observation between the

estimated parameters and the generating parameters for both the training sets and

the test sets.

The results of these experiments are given in Figure 5.4, with a detail of Fig-

ure 5.4(c) shown in Figure 5.5. The per-observation difference in log-likelihood is

given on the y-axis versus the number of trajectories in the training set on the x-
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axis. Higher values on the y-axis indicate that the estimated parameters have higher

likelihood. There are four curves on each plot; the dotted lines correspond to LDS

results, while the solid lines show the results of CE. The curves with large solid points

show the results on the test sets; the other two correspond to the training sets.

Results The results on scalar systems show CE outperforming EM on large data

sets. Interestingly, EM appears to exhibit a leveling-off behavior; after a certain

point, more data does not appear to improve the estimates. By contrast, the like-

lihood of CE’s parameters continues to increase as the training data grows. This

despite the fact that CE does not explicitly attempt to maximize likelihood, while

EM does. In the vector-valued experiments, this trend is again followed, though CE

never clearly outperforms, and is sometimes outperformed by, EM. However, even

when CE is outperformed by EM (e.g. Figure 5.4(b)), CE shows a clear improving

trend, while EM’s results are flat.

5.5.4 Vector-Valued Controlled Systems

The random LDSs for these experiments on controlled systems with vector-valued

actions and observations were generated as in the previous section. In addition, each

element of B, the control matrix, was drawn from the uniform distribution U(−1, 1).

Models of dimension (n) 2, 4, and 8 were generated. In each case, observations had

length m = 2 and actions had length l = 3.

For each randomly generated model, a training set with 100 000 trajectories of

length 75 and a test set with 10 000 trajectories of length 50 was generated using

each random LDS. PLGs and LDSs were trained on several subsets of each training

set using CE and EM, respectively, reporting the difference in log-likelihood per

observation between the estimated parameters and the generating parameters for
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both the training sets and the test sets.

The results of these experiments are given in Figure 5.6. The per-observation

difference in log-likelihood is given on the y-axis versus the number of trajectories

in the training set on the x-axis. Higher values on the y-axis indicate that the

estimated parameters have higher likelihood. There are four curves on each plot; the

dotted lines correspond to LDS results, while the solid lines show the results of CE.

The curves with large solid points show the results on the test sets; the other two

correspond to the training sets.

Results The results for this set of experiments were rather disappointing. CE

performs rather poorly compared to EM on the test set for all data set sizes shown.

On the other hand, it performs comparably to EM on all the training sets. I was

unable to discover the reason for this discrepancy. It should be noted that Theo-

rem 5.1 guarantees that with a large enough data set, the likelihood of the test set

will match the likelihood of the generating parameters, but it is disappointing that

100 000 trajectories is not large enough.

5.5.5 Comments on Experimental Results

On small data sets, EM usually outperforms CE by a wide margin. CE occasion-

ally produces invalid parameter settings with small amounts of training data—when

this occurs, Σt becomes non-positive semidefinite at some t, making the likelihood

uncomputable unless this is compensated for. In Figure 5.1(a), no data point is

shown for CE when K = 100; this is because indefinite Σt was not worked around.

Figures 5.3(a) and 5.3(c), on the other hand, show spikes in variance for CE at

K = 10 000; that results from Rudary and Singh (2006) adding 10I to non-definite

Σt, which was necessary for one data set in each of the experiments corresponding
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Model dimension CE for PLGs
Each iteration of

EM for LDSs
4 5.8s (0.10) 7.2s (0.12)
8 17.2s (0.16) 11.7s (0.18)

Table 5.1: Time taken by the CE algorithm and each iteration of EM. Times given are averaged
over 10 samples, with standard deviations in parentheses.

to those figures.

In any case, analysis of the results reveals that learning PLGs with CE may

result in better models than learning LDSs with EM when data sets are very large.

Another trend that is less clear but is suggested by the data is that this effect is

more pronounced with more complex systems.

As a final note, CE tends to be much faster than EM on any given system.

Table 5.1 compares the time required for CE and EM for vector-valued controlled

models; these numbers are taken for data sets with 10 000 trajectories. The per-

iteration times for EM were obtained by timing two runs per sample—one with 1

EM iteration, and one with 6 iterations—then dividing the difference in times by

5. Figure 5.7 shows a histogram of the number of EM iterations executed in the

experiments of Section 5.5.4 for n = 4 and K = 10 000.

The main thing to notice here is that each iteration of the EM algorithm takes

roughly the same amount of time as the entire execution of CE, but that EM requires

dozens or hundreds of iterations to achieve its results. This means that CE requires

much less time to execute than EM.
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Figure 5.4: Comparison of EM and CE on vector-valued uncontrolled systems. The y-axis shows
the difference in log-likelihood per observation between the actual and estimated pa-
rameters, over the data used to train the parameters and over a test set. The x-axis
shows the number of trajectories in the training set; the x-axis of each curve is slightly
offset to improve readability. Higher values indicate higher likelihood in the learned
parameters; at zero, the likelihood of the learned parameters is identical to that of the
generating parameters. Each curve shows the average across 66 runs; error bars show
the 95% confidence interval.
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Figure 5.6: Comparison of EM and CE on vector-valued controlled systems. The y-axis shows the
difference in log-likelihood per observation between the actual and estimated parame-
ters, over the data used to train the parameters and over a test set. The x-axis shows
the number of trajectories in the training set; the x-axis of each curve is slightly offset to
improve readability. Higher values indicate higher likelihood in the learned parameters;
at zero, the likelihood of the learned parameters is identical to that of the generating
parameters. Each curve shows the average across 70 runs; error bars show the 95%
confidence interval.
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Figure 5.7: A histogram of the number of cycles required by the EM algorithm with n = 4.



CHAPTER VI

Applying the PLG to Real Data

Modeling randomly generated problems is fine as far as it goes, but it is far more

interesting to be able to model real world problems. This chapter presents techniques

for doing so, then applies those techniques to a traffic modeling problem using data

collected from a California freeway.

6.1 Techniques for Modeling Applications

There are a number of issues that arise in real applications that are not a problem

when working with randomly generated data. For instance, data sets seldom have

trajectories that are all the same length. Furthermore, it is unlikely that the data

recorded from sensors is all completely relevant to the problem at hand—some data

may be extraneous, while other data may not be in its most useful format. Collecting

data may also be expensive, and so data sets may be limited, necessitating the ability

to deal with relatively small data sets. In this section, I discuss several techniques

for dealing with these issues.

87
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6.1.1 Discounting the Estimate of Cη

One of the most problematic estimators in the CE algorithm is Ĉη . Recall that

its definition is

(6.1) Ĉη =
1

N − τmax

N−τmax−1∑
t=0

1

K − 1

K∑
k=1

(zk
t − Z̃k

t )η̂k>
t+1.

Recall also that η̂k
t+1 and Z̃k

t both depend on Ĝ and Γ̂1, . . . , Γ̂τmax . That means that

any variance in the estimate of those parameters is magnified in Ĉη . Though this is

also true of Σ̂η , the summand of that estimator is η̂k
t+1η̂

k>
t+1 instead of (zk

t − Z̃k
t )η̂k>

t+1;

since (zk
t − Z̃k

t ) generally has a larger absolute value than η̂k
t+1, any error is magnified

more.

A Ĉη with large error can cause the model to be quite inaccurate. For example, if

some elements of Ĉη have the wrong sign, it may cause the state update to “correct”

in the wrong direction when observations do not match the predictions. Perhaps more

problematic is that errors in Ĉη can cause the Σt update to be unstable, leading to

values of Σt that are not legal variance matrices.

One way to offset this problem is to combine Ĉη with a “known good” value in a

weighted average. Note that when Cη = 0, the state update equation (4.20) reduces

to

(6.2) Σt+1 = GΣtG
> + Ση −GΣtJ

>(JΣtJ
>)−1JΣtG

>.

Recall that this is the conditional variance of X2|X1 = x1 when X1 and X2 are
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Gaussian random variables whose joint variance is given by

Var


X1

X2


 =

GΣtG
> + Ση GΣtJ

>

JΣtG
> JΣtJ

>

(6.3)

=

G
J

Σt

(
G> J>

)
+

Ση 0

0 0

 .(6.4)

Since Σ̂η and Σ̂0 are necessarily symmetric positive semidefinite (they are both of the

form
∑

k wkw
>
k , where wk are vectors), this variance is symmetric positive semidefi-

nite for t = 0; by induction it will remain so for all t as long as JΣtJ
> is invertible.1

Therefore, Cη = 0 can be taken as a “known good” value for the purposes of

maintaining a stable state update equation. A reasonable weight for the weighted

average is one that decays exponentially with the size of the data set, i.e.

(6.5) Ĉη = (1− e−K/T )Ĉ(5.18)
η ,

where Ĉ
(5.18)
η is the estimate for Cη produced by (5.18) and T is a tuning parameter.

The experiments in this chapter use a value of T = 5 × 105; a reasonable value for

this parameter will vary with the application.

6.1.2 Dealing with Trajectories of Different Lengths

Though the CE algorithm is designed for data sets whose trajectories are all of

the same length, it is not uncommon for actual data sets to have trajectories of many

different lengths. This is where the weighted version of the CE algorithm described

in Section 5.3 comes into play.

The problem is this: since most of the estimators in CE are based on average

values across the trajectories, failing to use the weighted version of CE would cause

1This guarantee does not hold in a variance-adjusted PLG if Σ̂adj is not positive semidefinite,
but in practice this is not a problem.
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data points from the later part of the longest trajectories to be given more weight

than data points from the beginning of trajectories. Each data point is given equal

importance by using the weighted version of CE and setting the weights so that wt

is proportional to the number of trajectories with at least t time steps.

6.1.3 Modeling Features as Exogenous Inputs

Data sets frequently contain data from many types of sensors. This data can

be divided into four categories. First, data whose values should be predicted by

the model. When trying to model a sailboat’s motion, this would include compass

bearing and speed. The second category is control inputs. In the sailboat example,

rudder position and information about the sails’ trim would fall into the second

category. A third category is sensor readings whose values are relevant to the first

category but whose values need not be predicted. This might include wind speed and

direction. Finally, the data set may include data that is irrelevant to the question at

hand. For example, the sailboat data set may include water temperature and depth

readings, which may become important at extreme values, but are unlikely to affect

the motion of the sailboat.

Most of the categories are easy for a modeler to deal with—sensor readings in

the first category become entries in the observation vector Yt, those in the second

category are entries in the action vector ut, and those in the fourth category are

omitted from the model. But what of the third category?

The immediate response may be to include data from the third category in the Yt

vector. And in some cases this may be appropriate. If the data set is large enough

to learn an accurate predictive model, distributional information about data in this

category may be useful when making predictions about the first category. But in

many cases, it is more appropriate to treat these as exogenous inputs—that is, an
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input that is not explained by the model, and in particular, an input whose future

probability distribution is not predicted by the model. Note that the actions are

a special case of exogenous inputs: They are inputs that are not explained by the

model, but that are controlled by the agent in order to affect future observations.

Non-control exogenous inputs can be though of as actions taken by the environment;

like control actions, they affect the future values of the observations, but, again like

actions, their own future values are not predicted. Because of this similarity to

actions, exogenous inputs can be integrated into the model by making them part of

the ut action vector, even though semantically they are not control actions.

Returning to the example, when wind speed and direction are treated as observa-

tions, the model may have to have a higher dimension, and even then a data set that

is too small may learn spurious correlations between current behavior of the sailboat

and future behavior of the wind. But when they are treated as exogenous inputs,

the model can properly model the effect that current wind conditions have on the

behavior of the sailboat.

6.2 The NGSIM Traffic Data

To illustrate the utility of the PLG model and CE algorithm, I applied CE to

a real-world traffic domain to learn models of the motion of vehicles on the road.

The Next Generation SIMulation (NGSIM) program (U.S. Federal Highway Admin-

istration, 2008) has collected detailed vehicle trajectory data in support of open

algorithms in traffic simulation.

In particular, I focused on NGSIM’s first data set, which recorded data on vehicles

driving on a half-kilometer of Interstate 80 in northern California on April 13, 2005

(U.S. Federal Highway Administration, 2006). Figure 6.1 shows an aerial view of
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Figure 6.1: An aerial photograph of the section of Interstate 80 covered by the data set. The
numbered areas correspond to the seven cameras mounted for the study. Note that
the freeway has six lanes in the observed area, with an on-ramp merging into the road
approximately one-third of the way in. (U.S. Federal Highway Administration, 2006)

the section of road covered in the experiment. There are three subsets of this data

set; I used the subset covering 5:00–5:15 pm. The I-80 data set has a resolution of

one-tenth of a second. At each time step, the following data is recorded: the position

of the vehicle in both local (i.e. relative to the edge of the road) and global reference

frames, its speed and acceleration, its lane, which vehicle is directly in front of it and

how far in front it is in feet and seconds, and which vehicle is directly behind it. For

each vehicle, the length and width are given, as well as its class (motorcycle, car, or

truck).
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In my experiments using this data set, my goal was to predict the position of the

car in the local reference frame. For this reason, the performance measure I use for

each model is the average squared error in the predicted value of the location starting

with the fifth observation in each vehicle’s trajectory.2 The data set contains 1836

vehicles’ trajectories. I divided these trajectories into training and test sets, with

each trajectory being selected for the test set with probability 0.1; this resulted in a

training set with 1670 trajectories and a test set with 166.
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Figure 6.2: The distribution of trajectory lengths in the training and test sets are shown here with
a bin width of 50 time steps (i.e. 5 seconds).

6.3 Learning Models of the Data

Taking the discussion of Section 6.1.3 into account, I explored models using a

number of different subsets of the features provided by the data set, in addition

to some derived features I computed. Figure 6.3 describes the two types of radar-

style features I computed; these features are essentially occupancy grids for the road

surrounding each vehicle.

The small size of the data set (fewer than 2000 vehicles) combined with the ex-

2With 0.1-second time intervals, this allows for a half-second of “registration” time—that is, it
gives the models a few time steps to transition from their inaccurate initial states and register the
actual state of the vehicles they are tracking.
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Figure 6.3: There are two types of radar-style features. The simple grid on the left is centered on
the front middle of the car. For each rectangle, there is a binary feature that is 1 if there
is a car (other than the central car) in the rectangle; in some cases, there is another
feature with the velocity of the nearest car in each rectangle. The lane-based grid on
the right is centered on the lane that the central car is in. As with the simple grid,
there is a binary feature corresponding to each rectangle (except the central rectangle).
Any car that is at least partly alongside the central car only counts for the rectangle
on the corresponding side, and not the rectangles in front or behind.

perimental results described in the previous chapter caused me to focus on small

models: All the models estimated in this chapter have dimension 2.

There are two a priori models I consider as a baseline. The first is a model that

assumes that each car is stationary. The second assumes a simple kinetic model in

which the x-coordinate of the car (i.e. the distance from the left edge of the road) does

not change from one time step to the next, and the y-coordinate changes according

to y′ = y + vt + 1
2
at2. The performance of these models on the test trajectories is

given in Table 6.1 along with that of the models I am about to describe.

In all the feature sets presented here, the only observations are the x- and y-

coordinates of the vehicle in a road-local coordinate system (measured in feet). Al-
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Feature Set # of features CE (n = 2) EM (n = 2)
D 27 0.003218 3.463
C 20 0.003243 1.729
E 36 0.003245 1.728
F 8 0.003248 12.28
B 11 0.003248 1.729
A 2 0.003261 0.003401

Kinetic 0.0215
Stationary 2.759

Table 6.1: Performance of CE and EM on the test trajectories of the I80 data set using various
feature sets. The performance measure is the mean squared error in the local coordinates
(measured in feet) of each vehicle at each time step, ignoring the first half second (5 time
steps) of each vehicle’s trajectory. The error measure in the EM column gives the lowest
error over each of three random initializations of the EM algorithm.

though I explored a few configurations in which other features (such as velocity and

acceleration) were included in the observations, models learned using these features

performed quite poorly in comparison to those presented here.

The first feature set (Feature Set A) is quite simple: add instantaneous velocity

and acceleration as actions.

Feature Set B adds the binary features of the simple grid radar depicted in Fig-

ure 6.3(a) to the actions.

Feature Set C adds “radar velocity” to B—that is, for each rectangle in the radar

grid, if there is a vehicle in that rectangle, its velocity relative to the target vehicle

is given; if there is no vehicle in the rectangle, a 0 is given.

Feature Set D adds a binary feature vector to the actions of Feature Set C; each

element of this length-7 vector is 1 if the vehicle is in the corresponding lane and 0

otherwise.

Feature Set E starts with Feature Set A (velocity and acceleration as actions) and

adds the binary features of the lane-based grid radar shown in Figure 6.3(b) along

with radar velocity features.

Finally, Feature Set F uses no radar-based features at all. Instead, its actions
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Compared to
Feature Set A (EM) A (CE) B F E C MSE

D < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.003218
C < 0.001 < 0.001 0.033 0.443 0.360 0.003243
E < 0.001 0.002 0.472 0.762 0.003245
F < 0.001 0.006 0.679 0.003248
B < 0.001 0.002 0.003248

A (CE) < 0.001 0.003261

Table 6.2: Statistical significance of the differences in performance between models learned using
different feature sets. The A (EM) column corresponds to the LDS model learned using
EM on Feature Set A; the remaining columns and all rows correspond to PLG models
learned using CE on the various feature sets. The table gives the p-value computed
using a paired Student’s t-test, where the mean-squared errors of two models on a given
vehicle’s trajectory are paired; the null hypothesis is that the errors are equal.

are a number of features directly from the data set: The length and width of the

vehicle, its classification (1 for motorcycle, 2 for car, 3 for truck), its velocity and

acceleration, its lane number, and the distance to the car directly in front of it in

feet and in seconds at its current velocity.

Table 6.1 shows the mean-squared error in vehicle location for the models learned

for each feature set by CE and EM. Table 6.2 shows the statistical significance of the

differences between the PLG models learned by CE on each feature set.

6.4 Conclusions

EM performs very poorly on this data set. With the exception of Feature Set

A, the error on the LDS models learned for these feature sets is about 3 orders of

magnitudes worse than the corresponding error in the PLGs learned with CE. It is

not clear why this should be; perhaps the LDS parameter space for this problem has

an error surface with particularly many local minima. Alternatively, perhaps the

EM algorithm just does not handle large action vectors well. In the case of Feature

Set A, which has only two actions, EM performs nearly as well as CE.

By contrast, CE performs quite well on this problem. Not only does it attain
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smaller average error than EM, but it also performs an order of magnitude better

than the a priori kinetic model. Of the feature sets studied in this chapter, Feature

Set D produces the best model with a mean squared error of 0.003218ft2. The

difference in errors between this model and the others is highly statistically significant

as illustrated in the first row of Table 6.2.

These results suggest that consistent estimation of PLGs is a reasonable approach

to modeling real-world problems, even when there are relatively few trajectories in

a data set. The fact that CE outperformed EM by orders of magnitude on several

of the feature sets illustrates the ability of CE to avoid the local optima that are an

inherent problem in an iterative algorithm like EM.



CHAPTER VII

Conclusion

7.1 Contributions

I have presented two models: the e-test PSR and the predictive linear Gaussian

model. The EPSR was the first nonlinear predictive state model for a general class of

systems. This nonlinearity allows it to represent some deterministic systems with an

exponentially smaller model than the equivalent linear PSR or POMDP. The PLG

extends predictive state models into systems whose actions and observations are

continuous-valued vectors rather than discrete scalar values. The main theoretical

results regarding the PLG are Theorem 4.2, which shows the equivalence between

LDS and PLG models, and Theorem 5.1, which shows that CE is consistent.

The equivalence theorem is important because it shows that the PLG, a predictive

state model, is as expressive as the LDS, a widely-used traditional model. This brings

all the advantages of predictive state models to the continuous system domain. These

advantages, as described in Section 2.1, include verifiability by an automatic agent,

better generalization than traditional models, and, potentially, improved learnability.

This last advantage is corroborated by the research into the CE algorithm. Its

simplicity is notable—each estimator is at its heart a linear regression, a sample

mean, or a sample covariance. Theorem 5.1 provides that CE will produce the correct

98
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parameters given infinite data, but it gives no guarantees about performance with

anything less. However, the experimental results of Chapters V and VI illustrate that

learning PLGs with consistent estimation performs well compared to learning LDSs

with expectation maximization, even in a real-world application with a relatively

small data set.

7.2 Future Work

One important limitation of the PLG is its linearity. Many problems can not

be satisfactorily modeled with linear dynamics. Happily, the problem of extending

the PLG to nonlinear systems has been studied: the kernel-based PLG (Wingate &

Singh, 2006a) and a mixture of PLGs (Wingate & Singh, 2006b) both use predictive

state and Gaussian distributions to model nonlinear systems. These models are

unified, along with the PLG, in the Exponential Family PSR (Wingate & Singh,

2008), which is quite general; these models are explored in depth in David Wingate’s

doctoral dissertation (Wingate, 2008).

Further work in the area of estimation algorithms is also warranted. For exam-

ple, as noted earlier, the consistent estimation algorithm gives no guarantees of its

performance with finite data sets. A maximum-likelihood-style algorithm would be

quite useful to improve learning performance on smaller data sets. Appendix C gives

the gradients of the likelihood with respect to each of the PLG’s parameters, but

they resist analytic maximization, and my experiments with quasi-Newton methods

using these gradients proved fruitless.
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APPENDIX A

Proofs and Derivations

A.1 Derivation of the PLG Update Equations

A.1.1 Derivation of the Scalar PLG Update Equations

The purpose of the state update is to compute the conditional distribution of

Zt+1|htyt+1 from µt and Σt, the mean and covariance of Zt|ht, given that Yt+1 = yt+1.

Since Zt+1 and Yt+1 are jointly Gaussian random variables, the following lemma can

be applied:

Lemma A.1. If the random vectors Y and Z are drawn from the joint Gaussian

distribution Y
Z

 ∼ N


µY

µZ

 ,

ΣY Y Σ>
Y Z

ΣY Z ΣZZ


 ,

then Z|Y = y ∼ N (µZ +ΣY ZΣ−1
Y Y (y−µY ),ΣZZ−ΣY ZΣ−1

Y Y Σ>
Y Z) (e.g., Theorem 3.5.2

of Catlin, 1989).

The problem, then, is to compute the joint distribution of Yt+1 and Zt+1 from the
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distribution of Zt. This can be achieved by noting that

(A.1)

Yt+1

Zt+1

 =



Yt+1

Yt+2

...

Yt+n

Yt+n+1


=

 Zt

Yt+n+1

 .

The two elements of the matrix on the right-hand side can be expressed in terms of

Zt; one element is Zt, and the other can be computed using (4.3), the core dynamics

of the scalar PLG:

(A.2) Yt+n+1 = g>Zt + εt+n+1.

Since E[εt+n+1|ht] = 0, the mean of (A.1) is given by

(A.3) E


 Zt

Yt+n+1


∣∣∣∣∣∣∣ht

 =

 µt

gµt

 .

Its covariance matrix can be computed piecewise. Var[Zt|ht] = Σt is given by the

definition of the state variable. Computing the covariance of Zt and Yt+n+1 makes

use of (A.2):

Cov[Zt, Yt+n+1|ht] = Cov[Zt, g
>Zt + εt+n+1|ht](A.4)

= Cov[Zt, g
>Zt|ht] + Cov[Zt, εt+n+1](A.5)

= Σtg + C.(A.6)

The variance of Yt+n+1 is

Var[Yt+n+1|ht] = Cov[g>Zt + εt+n+1, g
>Zt + εt+n+1|ht](A.7)

= Var[g>Zt|ht] + Cov[g>Zt, εt+n+1|ht](A.8)

+ Cov[εt+n+1, g
>Zt|ht] + Var[εt+n+1|ht]
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= g>Σtg + g>C + C>g + σ2.(A.9)

The variance of the combined vector, then, is

Var


 Zt

Yt+n+1


∣∣∣∣∣∣∣ht

 =

 Σt Σtg + C

g>Σt + C> g>Σtg + g>C + C>g + σ2


(A.10)

=

 e>1 Σte1 e>1 ΣtG
> + e>1 Ce

>
n

GΣte1 + enC
>e1 GΣtG

> +GCe>n + enC
>G> + σ2ene

>
n

(A.11)

= Var


Yt+1

Zt+1


∣∣∣∣∣∣∣ht

 ,(A.12)

where G is given by

(A.13) G =

 0 In−1

g>

 ,

as in (4.7), In is the n×n identity matrix, and ei is the ith column of In. The matrix

G, when multiplied by an n-vector, shifts each of the last n−1 elements of the vector

up by one element, and replaces the final element by the inner product of g with the

vector. This is precisely what is called for when computing Zt+1 from Zt, which is

why it appears in the combined covariance matrix in (A.11), and why it is used to

compute

(A.14) E[Zt+1|ht] = Gµt.

All that remains is to apply Lemma A.1 to compute the conditional distribution

of Zt+1|ht, Yt+1 = yt+1 from the joint distribution of Zt+1|hit and Yt+1|ht:

(A.15) E[Zt+1|ht+1] = µt+1 = Gµt + (GΣt + enC
>)e1(e1Σte1)

−1(yt+1 − e>1 µt),
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(A.16) Var[Zt+1|ht+1] = Σt+1 =

GΣtG
>+GCe>n +enC

>G>+σ2ene
>
n − (GΣt +enC

>)e1(e1Σte
>
1 )−1e>1 (ΣtG

>+Ce>n ).

A.1.2 Derivation of the Full PLG Update Equations

This closely follows the derivation of the scalar state update function; the covari-

ance of Yt+1|ht and Zt+1|ht is computed, and then Lemma A.1 is used to calculate the

conditional distribution of Zt+1|ht, Yt+1 = yt+1, ut+1. But first, L must be computed.

L is the matrix that captures the effect of the action ut+1 on Zt+1; that is, it

satisfies

(A.17) Lu = E[Zt+1|ht, ut+1 = u, ut+2 = 0, . . .]− E[Zt+1|ht, ut+1 = 0, ut+2 = 0, . . .].

The issue, then, is determining this effect. To do this, consider two PLG tra-

jectories, k1 and k2. Suppose that ηk1
t+1 = ηk2

t+1 and uk1
t = uk2

t at every time step

t. Starting after some time step τ , suppose that all actions are zero; that is,

uk1
τ+1 = uk2

τ+1 = uk1
τ+2 = uk2

τ+2 = · · · = 0.

Recall the core PLG dynamics from (4.15):

(A.18) Zt+1 = GZt +
τmax∑
i=1

Γiut+i + ηt+1

Then Zk1
t − Zk2

t = 0 at every t. Now change uk1
τ+1 to u. Now it still holds

(A.19) Zk1
τ−τmax

− Zk2
τ−τmax

= 0,

because none of the terms of (A.18) have been affected for t = τ − τmax. However,

(A.20) Zk1
τ−τmax+1 − Zk1

τ−τmax+1 = Γτmaxuτ+1

because the last summand in the summation differs in the two trajectories.
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Moving one step further forward in time to consider Zτ−τmax+2, two terms in the

dynamics equation differ: the penultimate summand, and the in first term—that is,

GZk1
τ−τmax+1 6= GZk2

τ−τmax+1. This results in a difference of

(A.21) Zk1
τ−τmax+2 − Zk2

τ−τmax+2 = G(Γτmaxuτ+1) + Γτmax−1uτ+1

Continuing in this manner up to Zτ+1 results in

(A.22) Zk1
τ+1 − Zk2

τ+1 =

(
τmax∑
i=1

Gi−1Γi

)
uτ+1.

This difference is also the difference in expectations between Zt+1|ht, ut+1 = uτ+1

and Zt+1|ht, ut+1 = 0; therefore, L may be defined as

(A.23) L =
τmax∑
i=1

Gi−1Γi.

Deriving the state update equations is now simply a matter of computing the

distributions of Yt+1|ht, ut+1 and Zt+1|ht, ut+1 from the distribution of Zt|ht and then

applying Lemma A.1.

The former distribution is straightforward; (4.11) states that Yt+1 = JZt, so

(A.24) Yt+1|ht, ut+1 ∼ N (Jµt, JΣtJ
>).

Computing the distribution of Zt+1 is also straightforward. From (A.18), and

recognizing that the actions do not affect the variance calculations,

Var[Zt+1|ht, ut+1] = Var[Zt+1|ht](A.25)

= Cov[GZt + ηt+1, GZt + ηt+1|ht](A.26)

= Var[GZt|ht] + Cov[GZt, ηt+1|ht](A.27)

+ Cov[ηt+1, GZt|ht] + Var[ηt+1|ht]

= GΣtG
> +GCη + C>

η G
> + Ση .(A.28)
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Next, the covariance of Zt+1 and Yt+1:

Cov[Yt+1, Zt+1|ht, ut+1] = Cov[Yt+1, Zt+1|ht] = Cov[JZt, JZt + ηt+1|ht](A.29)

= JΣtG
> + JCη(A.30)

Finally, the expected values of the random vectors must be computed. Because of

the construction of J (JZt must be a function only of those elements of Zt that are

also elements of Yt+1) and of Γ1, . . . ,Γτmax
(the rows of Γi corresponding to elements

of Zt that belong to Yt+j are 0 when j < i), JΓ2 = JGΓ3 = JG2Γ4 = · · · = 0.

Therefore,

(A.31) E[Yt+1|ht, ut+1] = E[JZt|ht, ut+1] = E[JZt|ht] = Jµt.

On the other hand, the expected value of Zt+1 is affected by the action taken:

(A.32) E[Zt+1|ht, ut+1] = E[Zt+1|ht] + Lut+1 = Gµt + Lut+1.

Having computed the joint distribution, it is now possible to write down the

conditional distribution:

Zt+1|ht, ut+1, Yt+1 = yt+1

(A.33)

∼ N (Gµt + Lut+1 + (GΣt + C>
η )J>(JΣtJ

>)−1(yt+1 − Jµt),

GΣtG
> +GCη + C>

η G
> + Ση − (GΣt + C>

η )J>(JΣtJ
>)−1J(ΣtG

> + Cη)).

This yields the state updates given in (4.19) and (4.20).

A.2 Proof of Theorem 4.2

Theorem. Every LDS with n-dimensional state has an equivalent n-dimensional

variance-adjusted PLG, where equivalence means that both models compute the same

probability distribution over futures given the same history.
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This theorem is proven by constructing an n-dimensional variance-adjusted PLG

that computes the same probability distribution over futures as an arbitrary (given)

n-dimensional LDS with parameters H, A, Q, R, and initial state x−0 and P−
0 .

This construction is accomplished by creating a mapping from Kalman filter state

variables x−t+1 and P−
t+1 to PLG state variables µt and Σt, computing parameters J

and Σadj so that both models compute the same distribution for Yt+1|ht, ut+1 = 0, . . .,

and then computing the remaining PLG parameters so that the state mapping is

preserved by the state update equations. An inductive argument is then used to

show that the new PLG computes the same distribution over all futures as the LDS.

A.2.1 Populating Zt

In order to compute a mapping from Kalman filter state to PLG state, the ob-

servations that will make up Zt must first be selected. As a matter of notation, the

indexing functions τ(·) and ρ(·) will be used to indicate which observational element

is associated with each element of Zt; the ith element of Zt is the ρ(i)th element of

Yt+τ():

(A.34) Zi
t = Y

ρ(i)
t+τ().

To determine which observations will be linearly independent of one another in ex-

pectation (and therefore should be included in Zt), the matrix Mn will be computed,

where

(A.35) Mi =



H

HA

...

HAi−1


.



108

Note that

(A.36) Mix
−
t+1 =



E[Yt+1|ht, ut+1 = 0, . . .]

E[Yt+2|ht, ut+1 = 0, . . .]

...

E[Yt+i|ht, ut+1 = 0, . . .]


.

Now select the first n rows that span Mn (if Mn has rank less than n, this won’t

be a minimal basis). Populate τ(·) and ρ(·) by noting that each row corresponds to

an observation: Hi,·A
jx−t+1 = E[Y i

t+j+1|ht, ut+1 = 0, . . .], where Hi,· refers to the ith

row of H), so the row of Mn that equals Hi,·A
j corresponds to τ(·) and ρ(·) values

of j + 1 and i, respectively. Selecting elements of Zt in this way results in a vector

that follows the “skyline” rule illustrated in Figure 4.2—Y i
t+j+1 will not be a member

of Zt unless Y i
t+j is, for j ≥ 1.

This is because of the following lemma:

Lemma A.2. If the row of Mn corresponding to Y i
t+j is linearly dependent on the

rows above it, then the row corresponding to Y i
t+j+1 is linearly dependent on the rows

above it.

Proof. Since the row corresponding to Y i
t+j is linearly dependent on the rows above

it, it may be written as a linear combination of those rows:

(A.37) Hi,·A
j−1 =

m∑
k=1

∑
l = 0j−1αk,lHk,·A

l

for some weights αk,l, with αk,j−1 = 0 for k ≥ i. Right-multiplying both sides by A,

an expression for the row corresponding to Y i
t+j+1 is obtained:

(A.38) Hi,·A
j =

m∑
k=1

∑
l = 0j−1αk,lHk,·A

l+1.

That is, it is a linear combination of the rows above it.



109

A.2.2 Computing the State Mapping

In order to compute the mapping from Kalman filter state to PLG state, two

identities will be useful. First, as mentioned in the previous section,

(A.39) E[Y i
t+j|ht, ut+1 = 0, . . .] = Hi,·A

j−1x−t+1.

Second, the covariance of two observations in terms of the LDS parameters is given

in the expression

(A.40) Cov[Y a
t+i, Y

b
t+j|ht, ut+1 = 0, . . .] =

Ha,·A
i−1P−

t+1(A
j−1)>H>

b,· +Ha,·A
i−jSj−1H

>
b,· + δi,jRa,b,

where i ≥ j ≥ 1, Ra,b is the (a, b)th element of R, and

(A.41) Si =
i∑

k=1

Ak−1Q(Ak−1)>

is the variance of the difference Xt+i − AiXt.

Now define M to be the matrix made up of the rows of Mn selected while popu-

lating Zt; that is, the ith row of M is given by

(A.42) Mi,· = Hρ(),·A
τ(j)−1.

Then µt = Mx−t+1 is a correct mapping, as by (A.39) it holds that

(A.43) Mx−t+1 = E[Zt|ht, ut+1 = 0, . . .].

Furthermore, each element of Σt is a covariance in the form of (A.40). It therefore

holds that Var[Zt|ht, ut+1 = 0, . . .] = MP−
t+1M

> + Φ, where

(A.44) Φij = Hρ(i),·A
τ(i)−τ(j)Sτ(j)−1H

>
ρ(j),· + δτ(i),τ(j)Rρ(i),ρ(j)

for τ(i) ≥ τ(j); when τ(i) < τ(j), Φij = Φji. This implies that the state mapping

for covariance matrices is Σt = MP−
t+1M

> + Φ. It is important to note that Φ and

M are both independent of history.
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A.2.3 Computing J and Σadj

The next-observation function J can now be computed in a straightforward man-

ner by noting that

(A.45) Jµt = E[Yt+1|ht] = Hx−t+1,

where the equality on the left follows from the PLG model and the one on the right

follows from the LDS. Since µt = Mx−t+1, it follows that JM = H is a sufficient

condition to satisfy (A.45). Because of the other constraints on J (namely, that

JZt must be a function only of elements of Yt+1), the ith column of the solution to

JM = H must be 0 whenever τ(i) > 1. This implies that JM must reconstruct H

from only the rows of H that are included in M . Since all of the linearly independent

rows of H are included in M (Zt was created by selecting the first n spanning rows

of Mn), this is possible, and such a J exists.

The next step is to compute Σadj so that both models compute the same variance

for the next observation. In the LDS model, this is given by HP−
t+1H

> + R; in the

PLG, the same variance is JΣtJ
> + Σadj. Substituting MP−

t+1M
> + Φ for Σt and H

for JM , then setting these quantities equal to each other results in

JΣtJ
> + Σadj = JMP−

t+1M
>J> + JΦJ> + Σadj(A.46)

= HP−
t+1H

> + JΦJ> + Σadj(A.47)

= HP−
t+1H

> +R.(A.48)

Solving for Σadj:

(A.49) Σadj = R− JΦJ>.

Because S0 = 0, whenever τ(i) = τ(j) = 1, Φij = Ri,j. Because JΦJ simply

copies these elements, it follows that in this case, the ijth element of Σadj will be 0.
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In particular, when all elements of Yt+1 are also elements of Zt, Σadj = 0. Since all

elements of Yt+1 will be part of Zt whenever H has rank m (and pending the rest of

the proof), this means that a standard (i.e. non-variance-adjusted) PLG will suffice

when H has rank m, thus proving Theorem 4.1.

The method by which J and Σadj were chosen guarantees that the PLG will

compute the same distribution for Yt+1|ht, ut+1 = 0, . . . as the LDS does whenever

the state mapping holds. Thus the remaining parameters of the PLG must be chosen

so as to preserve this mapping through the state update.

A.2.4 Computing the Remaining PLG Parameters

The linear trend G can be computed in a similar manner to J : In the PLG model,

E[Zt+1|ht, ut+1 = 0, . . .] = Gµt; in the LDS, this expectation is given by MAx−t+1.

Since µt = Mx−t+1, it follows that G is a solution to GM = MA. By the following

argument, such a solution must exists.

All the rows of M are rows of Mn, so the rows of MA are rows in Mn+1. By

Lemma A.3 below, all the rows of Mn+1 are linearly dependent on the rows of Mn.

By construction, all the rows of Mn are linearly dependent on M . Thus, each row

of MA is a linear combination of the rows of M , so G exists.

Lemma A.3. All the rows of Mn+1 are linearly dependent on the rows of Mn.

Proof. By Lemma A.2, if Hi,·A
j−1 is linearly dependent on the rows above it in Mj,

then Hi,·A
j is linearly dependent on the rows above it in Mj+1. This implies that,

if rk(Mj+1) = rk(Mj), then rk(Mk) = rk(Mj) for all k ≥ j.

Since Mj is a submatrix of Mk for k ≥ j, having the same rank means that

all the rows of Mk are linearly dependent on Mj. Since Mn has only n columns,

its rank is bounded from above by n. M1’s rank is bounded from below by 1.



112

Thus, either rk(Mn) = n or rk(Mn−1) = rk(Mn); in either case, it must hold that

rk(Mn+1) = rk(Mn). The result follows directly.

Any G that solves GM = MA is acceptable.

It is now possible to compute the effects of the actions. Recall that L describes

the effect of ut+1 on Zt+1:

(A.50) Lu = E[Zt+1|ht, ut+1 = u, ut+2 = 0, . . .]− E[Zt+1|ht, ut+1 = 0, ut+2 = 0, . . .].

In LDS terms, this difference is written as MBu. Thus L = MB. For many appli-

cations, having L is sufficient. If Γ1, . . . ,Γτmax
are desired, any solution to

(A.51) L = Γ1 +GΓ2 + · · ·+ Γτmax−1Γτmax ,

with the additional constraint that the appropriate rows of Γ1, . . . ,Γτmax
are fixed to

be 0, will suffice.

The only parameters left to compute are the noise parameters Cη and Ση . By the

PLG model,

Cov[Zt, Zt+1|ht, ut+1 = 0, . . .] =

= Cov[Zt, GZt|ht, ut+1 = 0, . . .] + Cov[Zt, ηt+1|ht, ut+1 = 0, . . .](A.52)

= ΣtG
> + Cη .(A.53)

Solving for Cη results in

(A.54) Cη = Cov[Zt, Zt+1|ht, ut+1 = 0, . . .]− ΣtG
>.

The last term on the right-hand side can be rewritten in terms of LDS parameters

as

(A.55) ΣtG
> = MP−

t+1M
>G> + ΦG> = MP−

t+1A
>M> + ΦG>.
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From (A.40), it follows that

(A.56) Cov[Zt, Zt+1|ht, ut+1 = 0, . . .] = MP−
t+1A

>M> + Ω,

where the (i, j)th element of Ω is given by

(A.57) Ωij =


Hρ(i),·A

τ(i)−τ(j)−1Sτ(j)H
>
ρ(j),· + δτ(i),τ(j)+1Rρ(i),ρ(j) τ(i) > τ(j)

Hρ(j),·A
τ(j)−τ(i)+1Sτ(i)−1H

>
ρ(i),· + δτ(i),τ(j)+1Rρ(i),ρ(j) else.

Ω is essentially Φ with all instances of τ(j) replaces with τ(j) + 1; this makes sense,

as Φ was used to compute the covariance of Zt with itself, while Ω is used to compute

the covariance of Zt with Zt+1. Computing Cη is now easy:

(A.58) Cη = Ω− ΦG>.

A similar derivation is used to compute Ση . According to the PLG,

Cov[Zt+1, Zt+1|ht, ut+1 = 0, . . .] =

= GΣtG
> +GCη + C>

η G
> + Ση(A.59)

= GMP−
t+1M

>G> +GΦG> +GCη + C>
η G

> + Ση(A.60)

= MAP−
t+1A

>M> +GΦG> +GCη + C>
η G

> + Ση .(A.61)

In the LDS, this covariance isMAP−
t+1A

>M>+Θ. Θ can be computed by replacing

τ(i) by τ(i+ 1) in Ω:

(A.62) Θij = Hρ(i),·A
τ(i)−τ(j)Sτ(j)H

>
ρ(j),· + δτ(i),τ(j)Rρ(i),ρ(j)

when τ(i) ≥ τ(j) and Θji otherwise. Note that Φ and Θ are symmetric, while Ω is

not.

Ση is thus given by

(A.63) Ση = Θ−GΦG> −GCη − C>
η G

>.
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A.2.5 Preserving the State Mapping Through Updates

Having computed the parameters, I now prove that, given that µt = Mx−t+1 and

Σt = MP−
t+1M

> + Φ, applying the PLG state update to compute µt+1 and Σt+1

and applying the Kalman filter updates to compute x−t+2 and P−
t+2 will result in

µt+1 = Mx−t+2 and Σt+1 = MP−
t+2M

> + Φ.

The PLG mean update is given by

µt+1 = Gµt + (GΣtJ
> + C>

η J
>)(JΣtJ

> + Σadj)
−1(yt+1 − Jµt)(A.64)

= GMx−t+1(A.65)

+ (GMP−
t+1M

>J> + Ω>J>)(HP−
t+1H

> +R)−1(yt+1 − JMx−t+1).

Recall that if τ(j) > 1, the jth column of J is 0. Since Ωij = 0 whenever τ(i) = 1,

JΩ = 0. Making these substitutions as well as substituting MA for GM and H for

JM :

µ[t+ 1] = MAx−t+1 + (MAP−
t+1H

>)(HP−
t+1H

> +R)−1(yt+1 −Hx−t+1)(A.66)

= Mx−t+2.(A.67)

To show that the covariance matrix updates also preserve the mapping will require

the identity Θ = Φ +MQM>. This can be seen by observing that

Θij = Hρ(i),·A
τ(i)−τ(j)Sτ(j)H

>
ρ(j),· + δτ(i),τ(j)Rρ(i),ρ(j)(A.68)

= Hρ(i),·A
τ(i)−τ(j)

(
Sτ(j)−1 + Aτ(j)−1Q(Aτ(j)−1)>

)
H>

ρ(j),·(A.69)

+ δτ(i),τ(j)Rρ(i),ρ(j)

= Φij +Hρ(i),·A
τ(i)−1Q(Aτ(j)−1)>H>

ρ(j),·.(A.70)

Rewriting this in matrix form results in Θ = Φ +MQM>.
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Substituting from (A.55) and (A.63) into the PLG covariance update (4.24) results

in

Σt+1 = GMP−
t+1A

>M> +GΦG> +GCη + C>
η G

>(A.71)

+ (Θ−GΦG> −GCη − C>
η G

>)

−MAP−
t+1H

>(HP−
t+1H

> +R)−1HP−
t+1A

>M>

= MA(P−
t+1 − P−

t+1H
>(HP−

t+1H
> +R)−1HP−

t+1)A
>M> + Θ(A.72)

= M
[
A(P−

t+1 − P−
t+1H

>(HP−
t+1H

> +R)−1HP−
t+1)A

> +Q
]
M> + Φ(A.73)

= MP−
t+2M

> + Φ.(A.74)

Since the distribution of Yt+1 is preserved through the state mapping, and the

mapping is preserved through state updates, the result is proven.

A.3 Proof of Lemma 4.3

Lemma. The optimal action u∗t (ht−1) to be taken at time t after observing history

ht−1 is the certainty-equivalent optimal action and a linear function of the mean

vector µt−1.

Let Ψµ
t (hs) be the optimal expected cost-to-go from time t after observing hs, for

s < t:

Ψµ
t (hs, us+1, . . . , ut−1)

= min
ut,··· ,uT

E

[
T∑

τ=t

ψµ(µτ−1, uτ ) + µ>TWµ,TµT

∣∣∣∣∣hs, us+1, . . . , ut−1

]
(A.75)

= min
ut

{
E[ψµ(µt−1, ut)|hs, us+1, . . . , ut−1] + Ψµ

t+1(hs, us+1, . . . , ut)
}
.(A.76)

This function can be divided into a history-independent constant and a history-

dependent part hat is quadratic in the state:

(A.77) Ψµ
t (hs, us+1, . . . , ut−1) = vµ

t,s + µ>t−1,sV
µ
t µt−1,s,



116

where vµ
t,s and V µ

t are constants and µt,s = E[µt|hs, us+1, . . . , ut]. This is proven by

induction.

In the base case,

Ψµ
T+1(hs, us+1, . . . , uT ) = E[µ>TWµ,TµT |hs, us+1, . . . , uT ](A.78)

= µT,sWµ,TµT,s + tr(Wµ,T Var[µT |hs, us+1, . . . , uT ]).(A.79)

The second equality follows because E[X>WX] = E[X>]W E[X] + tr(W Var[X])

whenever W is a symmetric constant matrix (as Wµ,T is). Thus V µ
T+1 = Wµ,T and

vµ
T+1,s = tr(Wµ,T Var[µT |hs, us+1, . . . , uT ]).

Assuming that Ψµ
t+1(hs, us+1, . . . , ut) = vµ

t+1,s + µ>t,sV
µ
t+1µt,s, it follows that

Ψµ
t (hs, us+1, . . . , ut−1) =

= min
ut

{
E[ψµ(µt−1, ut)|hs, us+1, . . . , ut−1] + Ψµ

t+1(hs, us+1, . . . , ut)
}

(A.80)

= min
ut

{
E[µ>t−1Wµµt−1 + 2u>t Wµ,uµt−1 + u>t Wuut|hs, us+1, . . . , ut−1](A.81)

+vµ
t+1,s + µ>t,sV

µ
t+1µt,s

}
= µ>t−1,sWµµt−1,s + tr(Wµ Var[µt−1|hs, us+1, . . . , ut−1])(A.82)

+ vµ
t+1,s + min

ut

{
2u>t Wµµt−1,s + u>t Wuut

+(Gµt−1,s + Lut)
>V µ

t+1(Gµt−1,s + Lut)
}

= µt−1,s(Wµ +G>V µ
t+1G)µt−1,s + tr(Wµ Var[µt−1|hs, us+1, . . . , ut−1])(A.83)

+ vµ
t+1,s + min

ut

{
u>t (2Wµ,u + L>V µ

t+1G)µt−1,s

+µ>t−1,s(L
>V µ

t+1G)ut + u>t (Wu + L>V µ
t+1L)ut

}
.

Because Wu + L>V µ
t+1L is symmetric positive definite, the minimization in the
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last line can be determined by taking the derivative and setting it to 0:

∂

∂ut

u>t (2Wµ,u + L>V µ
t+1G)µt−1,s + µ>t−1,s(L

>V µ
t+1G)ut + u>t (Wu + L>V µ

t+1L)ut =

= 2(Wµ,u + L>V µ
t+1G)µt−1,s + 2(Wu + L>V µ

t+1L)ut(A.84)

= 0(A.85)

∴ u∗t = −(Wu + L>V µ
t+1L)−1(Wµ,u + L>V µ

t+1G)µt−1,s(A.86)

∆
= Πµ

t µt−1,s.(A.87)

Plugging this result into (A.83) yields

(A.88)

Ψµ
t (hs, us+1, . . . , ut−1) = µ>t−1,s(Wµ+G>V µ

t+1G−(W>
µ,u+G>V µ

t+1L)(Wu+L>V µ
t+1L)−1

· (Wµ,u + L>V µ
t+1G))µt−1,s + tr(Wµ Var[µt−1|hs, us+1, . . . , ut−1]) + vµ

t+1,s.

Thus,

(A.89) Wµ +G>V µ
t+1G− (W>

µ,u +G>V µ
t+1L)(Wu + L>V µ

t+1L)−1(Wµ,u + L>V µ
t+1G)

and

(A.90) vµ
t,s = tr(Wµ Var[µt−1|hs, us+1, . . . , ut−1]) + vµ

t+1,s.

Note that vµ
t,s depends only on the values of t and s, and not on the values of

any observations or actions. By induction, for all t, s such that s < t, Ψµ
t (hs) =

vµ
t,s + µ>t−1,sV

µ
t µt−1,s. Note that µt−1,t−1 = µt−1. Therefore, the optimal action at

time t is given by u∗t (ht−1) = Πµ
t µt−1, i.e. the optimal action at time t is a linear

function of the model’s state at t.

A.4 Proof of Theorem 4.4

Theorem. For any n-dimensional, full-rank linear-quadratic Gaussian model, an

equivalent n-dimensional PLGQ exists that, given any history of interaction with the
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system, computes the same optimal action.

By Theorem 4.2, any n-dimensional LDS has an equivalent PLG. That means

that it only remains to prove that an equivalent cost function exists; this is proven

by construction.

Since the LQG is full-rank, Mn is invertible, and thus so is M (see Appendix A.2

for a definition of these matrices). The following identities thus obtain:

(A.91) x−t+1 = M−1µt−1, B = M−1L, and M−1G = AM−1.

The cost-function parameters of the PLGQ are derived from the LQG’s cost func-

tion parameters as follows:

Wµ,T = M−>Wx,TM
−1, Wµ = M−>WxM

−1,(A.92)

Wµ,u = Wx,uM
−1.(A.93)

The action cost matrix Wu is the same in the PLGQ and LQG.

To prove that both models select the same optimal action, I first show by in-

duction that the Riccati recursion matrices of the two models are related by V µ
t =

M−>V x
t M

−1. In the base case,

V µ
T+1 = Wµ,T(A.94)

= M−>Wx,TM
−1(A.95)

= M−>V x
T+1M

−1,(A.96)

so this property holds. Now, assuming that V µ
t+1 = M−>V x

t+1M
−1, it follows that

V µ
t = Wµ +G>V µ

t+1G

(A.97)

− (W>
µ,u +G>V µ

t+1L)(Wu + L>V µ
t+1L)−1(Wµ,u + L>V µ

t+1G)
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= M−>WxM
−1 +G>M−>V x

t+1M
−1G(A.98)

− (M−>W>
x,u +GM−>V x

t+1M
−1L)(Wu + L>M−>V x

t+1M
−1L)−1

· (Wx,uM
−1 + L>M−>V x

t+1M
−1G)

= M−>[Wx + A>V x
t+1A(A.99)

− (W>
x,u + A>V x

t+1B)(Wu +B>V x
t+1B)−1(Wx,u +B>V x

t+1A)]M−1

= M−>V x
t M

−1.(A.100)

Thus, by induction, V µ
t = M−>V x

t M
−1 for all t. Plugging this into the action

selection equation results in

u∗t (ht−1) = Πµ
t µt−1

(A.101)

= −(Wu + L>V µ
t+1L)−1(Wµ,u + L>V µ

t+1G)µt−1(A.102)

= −(Wu + L>M−>V x
t+1M

−1L)−1(Wx,uM
−1 + L>M−>V x

t+1M
−1G)Mx−t(A.103)

= −(Wu +B>V x
t+1B)−1(Wx,u +B>V x

t+1A)M−1Mx−t(A.104)

= Πx
t x

−
t .(A.105)

That is, both models select the same action, proving the theorem.

A.5 Proof of Theorem 5.1

Theorem. If a dynamical system can be modeled by an n-dimensional PLG, is con-

trolled by a policy that is jointly CE-learnable with the system, and generates a train-

ing set whose K trajectories are each at least n + (l + 1)τmax time steps long, then,

as the number of trajectories K grows, the parameter estimates computed by the

multiple-trajectory CE algorithm from this training set will converge in probability to

the true parameters of that PLG.
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This proof will make use of some of the material in Appendix B.1; in particular,

the definition of convergence in probability (Definition B.1), the Weak Law of Large

Numbers (Theorem B.2), and Theorem B.4.

That the estimates for G, Γ1, . . . ,Γτmax
are consistent was proven in the text

(which assumes that ΞΞ> is invertible), where it was shown that the noise terms

converge in probability to 0 when averaged together, thus leaving an equation in

which all the elements are known except γ. That ΞΞ> is invertible is guaranteed by

the conditions in the theorem, namely that the trajectories are at least n+(l+1)τmax

time steps long, that the policy used to generate the data set is jointly CE-learnable

with the system.

Similarly, Ĵ was shown to be a consistent estimator for J . Since Znext is a sub-

matrix of Ξ, ZnextZ
>
next is invertible whenever ΞΞ> is; in particular, it is invertible

under the conditions of this theorem.

The text showed that ẑk
0|0 was an unbiased estimate of Z0|ut+1 = 0, . . .. A simple

application of the Weak Law proves that µ̂0 is consistent.

The estimate of Σ0 also makes use of the ẑk
0|0 samples:

Σ̂0 =
1

K − 1

K∑
k=1

(ẑk
0|0 − µ̂0)(ẑ

k
0|0 − µ̂0)(A.106)

Applying Theorem B.4:

−→p 1

K − 1

K∑
k=1

(ẑk
0|0 − E[Z0|ut+1 = 0, . . .])(ẑk

0|0 − E[Z0|ut+1 = 0, . . .])>(A.107)

And now the Weak Law of Large Numbers:

−→p E[(Z0 − E[Z0|ut+1 = 0, . . .])(Z0 − E[Z0|ut+1 = 0, . . .])>](A.108)

= Σ0.(A.109)
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Thus Σ̂0 is consistent.

In order to show the the estimates of the noise parameters are consistent, it is

necessary to show that η̂k
t+1 is a consistent estimator for ηt+1 and that ηt+1 has the

same mean, variance, and covariance with Zt as ηt+1|ht has.

The consistency of η̂k
t+1 follows from the consistency of Ĝ, Γ̂1, . . . , Γ̂τmax :

η̂k
t+1 = zk

t+1 − Ĝzk
t −

τmax∑
i=1

Γ̂iu
k
t+i(A.110)

−→p zk
t+1 −Gzk

t −
τmax∑
i=1

Γiu
k
t+i by Theorem B.4(A.111)

= ηk
t+1.(A.112)

As for the distribution of ηt+1 versus ηt+1|ht, recall that Eht and Varht denote

expectation and variance, respectively, taken over the distribution of histories of

length t. Then, by the Law of Total Expectation (Theorem B.5),

(A.113) E[ηt+1] = Eht [E[ηt+1|ht]] = 0 = E[ηt+1|ht].

By the Law of Total Variance (Theorem B.6),

Var[ηt+1] = Eht [Var[ηt+1|ht]] + Varht [E[ηt+1|ht]](A.114)

= Eht [Ση ] + Varht [0](A.115)

= Ση = Var[ηt+1|ht],(A.116)

and by the Law of Total Covariance (Theorem B.7),

Cov[Zt, ηt+1] = Eht [Cov[Zt, ηt+1|ht]] + Cov[E[Zt|ht],E[η>t+1|ht]](A.117)

= Eht [Cη ] + Cov[µt,0](A.118)

= Cη = Cov[Zt, ηt+1|ht].(A.119)
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Thus ηt+1 has the same distribution as ηt+1|ht, and statistics of η̂ will converge in

probability to statistics of ηt+1|ht. In particular, this implies that Ĉη and Σ̂η are

consistent estimated of Cη and Ση , respectively.

Finally, the consistency of Σ̂adj was proven in the text.
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APPENDIX B

Reference Material

B.1 Large Sample Behavior

Large sample theory is a topic in statistics that describes the behavior of esti-

mators as the amount of data they are based on becomes very large. An important

concept here is convergence in probability, which is defined as follows:

Definition B.1 (Convergence in Probability). The sequence x̂1, x̂2, . . . converges to

x in probability if

lim
n→∞

Pr(|x̂n − x| > δ) = 0

for all positive δ. This is denoted x̂n
−→p x as n→∞.

Essentially, this is equivalent to saying that the probability that the error of an

estimator exceeds some bound δ goes to zero as the size of the sample increases.

A very important result regarding convergence in probability is the weak law of

large numbers, which states that the average of independent variables with the same

expected value will converge in probability to that expected value.

Theorem B.2 (Weak Law of Large Numbers). If X1, X2, . . . are independent vari-

ables with mean µ and bounded variance, and

Xn =
1

n

N∑
i=1

Xi,



124

then Xn
−→p µ as n→∞.

The proof of Theorem B.2 is based on Chebyshev’s Inequality:

Lemma B.3. Chebyshev’s Inequality For any random variable X and any con-

stant a > 0,

Pr(|X| ≥ a) ≤ E[X2]

a2
.

Proof. For any value of a > 0 and X,

(B.1) I{|X| ≥ a} ≤ X2

a2
,

where I{A} is the indicator function that is 1 when event A is true, and 0 other-

wise. Since A is a random event, I{A} is a random variable; its expectation is the

probability of A occurring. So, taking the expection of both sides of (B.1),

(B.2) Pr(|X| ≥ a) ≤ E[X2]

a2
,

which is the result.

Theorem B.2 is a direct application of this lemma.

An estimator that converges in probability to the value it is estimating is called

a consistent estimator. An interesting property of consistent estimators is that eval-

uating a function f of a consistent estimator of x results in a consistent estimator of

f(x).

Theorem B.4. If x̂n
−→p x as n→∞, and f is continuous at x, then f(x̂n) −→p f(x)

as n→∞.

Proof. This proof again depends on the Chebyshev inequality. Because f is contin-

uous at x, for any positive ε there is a positive δ that satisfies

(B.3) |x̂n − x| < δ =⇒ |f(x̂n)− f(x)| < ε.
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This implies that

(B.4) Pr(|x̂n − x| < δ) ≤ Pr(|f(x̂n)− f(x)| < ε).

It then follows that

(B.5) Pr(|f(x̂n)− f(x)| ≥ ε) ≤ Pr(|x̂n − x| ≥ δ).

Because x̂n
−→p x, the right-hand side goes to 0 as n→∞; since the left-hand side is

upper-bounded by the right-hand side, f(x̂n) −→p f(x).

Theorem B.4 is used extensively in Chapter V to derive consistent estimators from

consistent estimators of other parameters.

B.2 Changing the Conditions of Expectations and Variances

Theorem B.5 (Law of Total Expectation).

E[X] = EY [E[X|Y ]],

where EY denotes the expectation over the distribution of Y .

Proof.

EY [E[X|Y ]] =
∑

y

E[X|Y = y] Pr(Y = y) (Defn. of Expectation)

=
∑

y

(∑
x

xPr(X = x|Y = y)

)
Pr(Y = y) (Defn. of Expectation)

=
∑

y

∑
x

xPr(X = x|Y = y) Pr(Y = y)

=
∑

y

∑
x

xPr(Y = y|X = x) Pr(X = x) (Bayes’ Law)

=
∑

x

xPr(X = x)

(∑
y

Pr(Y = y|X = x)

)



126

=
∑

x

xPr(X = x)

= E[X].

Theorem B.6 (Law of Total Variance).

Var[X] = EY [Var[X|Y ]] + VarY [E[X|Y ]],

where EY denotes the expectation over the distribution of Y , and VarY denotes the

variance over the same distribution.

Proof.

Var[X]

= E[XX>]− E[X] E[X>]

= EY [E[XX>|Y ]]− EY [E[X|Y ]] EY [E[X>|Y ]] Law of Total Exp.

= EY [E[XX>|Y ]]− EY [E[X|Y ] E[X>|Y ]]

+ EY [E[X|Y ] E[X>|Y ]]− EY [E[X|Y ]] EY [E[X>|Y ]]

= EY [Var[X|Y ]] + VarY [E[X|Y ]].

Theorem B.7 (Law of Total Covariance).

Cov[X, Y ] = EZ [Cov[X, Y |Z]] + Cov[E[X|Z],E[Y |Z]],

where EZ denotes the expectation over the distribution of Z.
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Proof.

Cov[X, Y ]

= E[XY >]− E[X] E[Y >]

= EZ [E[XY >|Z]]− EZ [E[X|Z]] EZ [E[Y >|Z]] Law of Total Exp.

= EZ [E[XY >|Z]]− EZ [E[X|Z] E[Y >|Z]]

+ EZ [E[X|Z] E[Y >|Z]]− EZ [E[X|Z]] EZ [E[Y >|Z]]

= EZ [Cov[X, Y |Z]] + Cov[E[X|Z],E[Y |Z]]
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APPENDIX C

The Gradient of the Log-Likelihood Function

The log likelihood function

`(θ;hK
N ) = logL(θ;hK

N )(C.1)

= −NKm log 2π

2
(C.2)

− 1

2

N−1∑
t=0

(K log|JΣtJ
> + Σadj|)

− 1

2

N−1∑
t=0

K∑
k=1

(yk
t+1 − Jµk

t )
>(JΣtJ

> + Σadj)
−1(yk

t+1 − Jµk
t ).

must be differentiated with respect to the parameters J , G, Cη , Ση , Σadj, µ0, and

Σ0. For each parameter ϑ, the gradient
∂`(hK

N ;θ)

∂ϑ
will be written in terms of the data,

the parameters, and the partial derivatives
∂µk

t

∂ϑ
and ∂Σt

∂ϑ
; these partial derivatives can

be computed recursively, initializing the recursion with
∂µk

0

∂ϑ
and ∂Σ0

∂ϑ
.
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The gradient with respect to J is given by

∂`(hK
N ; θ)

∂J ij
=

(C.3)

− K

2

N−1∑
t=0

tr

[
(JΣtJ

> + Σadj)
−1(em,ie

>
n,jΣtJ

> + J
∂Σt

∂J ij
J> + JΣten,je

>
m,i)

]

− 1

2

N−1∑
t=0

K∑
k=1

{
−(em,ie

>
n,jµ

k
t + J

∂µk
t

∂J ij
)>(JΣtJ

> + Σadj)
−1(yk

t+1 − Jµk
t )

− (yk
t+1 − Jµk

t )
>(JΣtJ

> + Σadj)
−1(em,ie

>
n,jΣtJ

> + J
∂Σt

∂J ij
J> + JΣten,je

>
m,i)

· (JΣtJ
> + Σadj)

−1(yk
t+1 − Jµk

t )

− (yk
t+1 − Jµk

t )
>(JΣtJ

> + Σadj)
−1(em,ie

>
n,jµ

k
t + J

∂µk
t

∂J ij
)

}
,

where en,i is the ith column of the n × n identity matrix. The recursions for the

partials of the state variables are initialized with

(C.4)
∂µk

0

∂J ij
= 0 and

∂Σ0

∂J ij
= 0.

The recursion for
∂µk

t

∂Jij :

∂µk
t+1

∂J ij
=

(C.5)

G
∂µk

t

∂J ij
+G

∂Σt

∂J ij
J>(JΣtJ

> + Σadj)
−1(yk

t+1 − Jµk
t )

+ (GΣt + C>
η )en,je

>
m,i(JΣtJ

> + Σadj)
−1(yk

t+1 − Jµk
t )

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1

· (em,ie
>
n,jΣtJ

> + J
∂Σt

∂J ij
J> + JΣten,je

>
m,i)(JΣtJ

> + Σadj)
−1(yk

t+1 − Jµk
t )

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)(em,ie
>
n,jµ

k
t + J

∂µk
t

∂J ij
).



130

And for ∂Σt

∂Jij :

∂Σt+1

∂J ij

(C.6)

= G
∂Σt

∂J ij
G> −G

∂Σt

∂J ij
J>(JΣtJ

> + Σadj)
−1J(ΣtG

> + Cη)

− (GΣt + C>
η )en,je

>
m,i(JΣtJ

> + Σadj)
−1J(ΣtG

> + Cη)

+ (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1

· (em,ie
>
n,jΣtJ

> + J
∂Σt

∂J ij
J> + JΣten,je

>
m,i)(JΣtJ

> + Σadj)
−1J(ΣtG

> + Cη)

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1em,ie

>
n,j(ΣtG

> + Cη)

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J

∂Σt

∂J ij
G>.

The computation for G is similar:

∂`(hK
N ; θ)

∂Gij
=

(C.7)

− K

2

N−1∑
t=0

tr

[
(JΣtJ

> + Σadj)
−1J

∂Σt

∂Gij
J>
]

− 1

2

N−1∑
t=0

K∑
k=1

{
−(J

∂µk
t

∂Gij
)>(JΣtJ

> + Σadj)
−1(yk

t+1 − Jµk
t )

− (yk
t+1 − Jµk

t )
>(JΣtJ

> + Σadj)
−1(J

∂Σt

∂Gij
J>)(JΣtJ

> + Σadj)
−1(yk

t+1 − Jµk
t )

− (yk
t+1 − Jµk

t )
>(JΣtJ

> + Σadj)
−1J

∂µk
t

∂Gij

}
.

The recursions are initialized by

(C.8)
∂µk

0

∂Gij
= 0 and

∂Σ0

∂Gij
= 0.



131

Recursing on
∂µk

t

∂Gij :

∂µk
t+1

∂Gij
=

(C.9)

en,ie
>
n,jµ

k
t +G

∂µk
t

∂Gij
+ (en,ie

>
n,jΣt +G

∂Σt

∂Gij
)J>(JΣtJ

> + Σadj)
−1(yk

t+1 − Jµk
t )

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J

∂Σt

∂Gij
J>(JΣtJ

> + Σadj)
−1(yk

t+1 − Jµk
t )

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J

∂µk
t

∂Gij
.

Now recursing on ∂Σt

∂Gij :

∂Σt+1

∂Gij
=

(C.10)

en,ie
>
n,jΣtG

> +G
∂Σt

∂Gij
G> +GΣten,je

>
n,i + en,ie

>
n,jCη + C>

η en,je
>
n,i

− (en,ie
>
n,jΣt +G

∂Σt

∂Gij
)J>(JΣtJ

> + Σadj)
−1J(ΣtG

> + Cη)

+ (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J

∂Σt

∂Gij
J>(JΣtJ

> + Σadj)
−1J(ΣtG

> + Cη)

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J(

∂Σt

∂Gij
G> + Σten,je

>
n,i).

Next is the gradient with respect to L. Since L is not involved in the computation

of Σt+1,
∂Σt

∂Lij = 0 for all t.

∂`(hK
N ; θ)

∂Lij
= −1

2

N−1∑
t=0

K∑
k=1

{
−(J

∂µk
t

∂Lij
)>(JΣtJ

> + Σadj)
−1(yk

t+1 − Jµk
t )(C.11)

− (yk
t+1 − Jµk

t )
>(JΣtJ

> + Σadj)
−1(J

∂µk
t

∂Lij
)

}
.

Differentiating µk
t+1 obtains

(C.12)
∂µk

t+1

∂Lij
= G

∂µk
t

∂Lij
+ en,ie

>
l,ju

k
t − (GΣt + C>

η )J>(JΣtJ
> + Σadj)

−1J
∂µk

t

∂Lij
;

the recursion is initialized by

(C.13)
∂µk

0

∂Lij
= 0.
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The gradient with respect to Cη is computed by

∂`(hK
N ; θ)

∂Cij
η

=

(C.14)

− K

2

K∑
k=1

tr

[
(JΣtJ

> + Σadj)
−1J

∂Σt

∂Cij
η

J>
]

− 1

2

N−1∑
t=0

K∑
k=1

{
−(J

∂µk
t

∂Cij
η

)>(JΣtJ
> + Σadj)

−1(yk
t+1 − Jµk

t )

− (yk
t+1 − Jµk

t )
>(JΣtJ

> + Σadj)
−1J

∂Σt

∂Cij
η

J>(JΣtJ
> + Σadj)

−1(yk
t+1 − Jµk

t )

− (yk
t+1 − Jµk

t )
>(JΣtJ

> + Σadj)
−1J

∂µk
t

∂Cij
η

}
,

with the recursions

∂µk
t+1

∂Cij
η

=

(C.15)

G
∂µk

t

∂Cij
η

+ (G
∂Σt

∂Cij
η

+ en,je
>
n,i)J

>(JΣtJ
> + Σadj)

−1(yk
t+1 − Jµk

t )

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J

∂Σt

∂Cij
η

J>(JΣtJ
> + Σadj)

−1(yk
t+1 − Jµk

t )

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J

∂µk
t

∂Cij
η

and

∂Σt+1

∂Cij
η

=

(C.16)

G
∂Σt

∂Cij
η

G> +Gen,ie
>
n,j + en,je

>
n,iG

>

− (G
∂Σt

∂Cij
η

+ en,je
>
n,i)J

>(JΣtJ
> + Σadj)

−1J(ΣtG
> + Cη)

+ (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J

∂Σt

∂Cij
η

J>(JΣtJ
> + Σadj)

−1J(ΣtG
> + Cη)

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J(

∂Σt

∂Cij
η

G> + en,ie
>
n,j).
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These are initialized by

(C.17)
∂µk

0

∂Cij
η

= 0 and
∂Σ0

∂Cij
η

= 0.

Now Ση :

∂`(hK
N ; θ)

∂Σij
η

=

(C.18)

− K

2

N−1∑
t=0

tr

[
(JΣtJ

> + Σadj)
−1J

∂Σt

∂Σij
η

J>
]

− 1

2

K∑
k=1

N−1∑
t=0

{
−(J

∂µk
t

∂Σij
η

)>(JΣtJ
> + Σadj)

−1(yk
t+1 − Jµk

t )

− (yk
t+1 − Jµk

t )
>(JΣtJ

> + Σadj)
−1J

∂Σt

∂Σij
η

J>(JΣtJ
> + Σadj)

−1(yk
t+1 − Jµk

t )

− (yk
t+1 − Jµk

t )
>(JΣtJ

> + Σadj)
−1J

∂µk
t

∂Σij
η

}
.

The recursions are initialized with

(C.19)
∂µk

0

∂Σij
η

= 0 and
∂Σ0

∂Σij
η

= 0.

The recursion on
∂µk

t

∂Σij
η

is computed by

∂µk
t+1

∂Σij
η

=

(C.20)

G
∂µk

t

∂Σij
η

+G
∂Σt

∂Σij
η

J>(JΣtJ
> + Σadj)

−1(yk
t+1 − Jµk

t )

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J

∂Σt

∂Σij
η

J>(JΣtJ
> + Σadj)

−1(yk
t+1 − Jµk

t )

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J

∂µk
t

∂Σij
η

.



134

The recursion of ∂Σt

∂Σij
η

follows

∂Σt+1

∂Σij
η

=

(C.21)

G
∂Σt

∂Σij
η

G> + en,ie
>
n,j + en,je

>
n,i − en,ie

>
n,jen,ie

>
n,j

−G
∂Σt

∂Σij
η

J>(JΣtJ
> + Σadj)

−1J(ΣtG
> + Cη)

+ (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J

∂Σt

∂Σij
η

J>(JΣtJ
> + Σadj)

−1J(ΣtG
> + Cη)

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J

∂Σt

∂Σij
η

G>.

The gradient of the likelihood with respect the the variance adjustment Σadj is

given by

∂`(hK
N ; θ)

∂Σij
adj

=(C.22)

− K

2

N−1∑
t=0

tr
[
(JΣtJ

> + Σadj)
−1

· (J ∂Σt

∂Σij
adj

J> + em,ie
>
m,j + em,je

>
m,i − em,ie

>
m,jem,ie

>
m,j)

]

− 1

2

N−1∑
t=0

K∑
k=1

{
−(J

∂µk
t

∂Σij
adj

)>(JΣtJ
> + Σadj)

−1(yk
t+1 − Jµk

t )

− (yk
t+1 − Jµk

t )
>(JΣtJ

> + Σadj)
−1

· (J ∂Σt

∂Σij
adj

J> + em,ie
>
m,j + em,je

>
m,i − em,ie

>
m,jem,ie

>
m,j)

· (JΣtJ
> + Σadj)

−1(yk
t+1 − Jµk

t )

− (yk
t+1 − Jµk

t )
>(JΣtJ

> + Σadj)
−1J

∂µk
t

∂Σij
adj

}
.

The recursions are initialized by

(C.23)
∂µk

0

∂Σij
adj

= 0 and
∂Σ0

∂Σij
adj

= 0,
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and continued with

∂µk
t+1

∂Σij
adj

=(C.24)

G
∂µk

t

∂Σij
adj

+G
∂Σt

∂Σij
adj

J>(JΣtJ
> + Σadj)

−1(yk
t+1 − Jµk

t )

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1

· (J ∂Σt

∂Σij
adj

J> + em,ie
>
m,j + em,je

>
m,i − em,ie

>
m,jem,ie

>
m,j)

· (JΣtJ
> + Σadj)

−1(yk
t+1 − Jµk

t )

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J

∂µk
t

∂Σij
adj

.

and

∂Σt+1

∂Σij
adj

=(C.25)

G
∂Σt

∂Σij
adj

G> −G
∂Σt

∂Σij
adj

J>(JΣtJ
> + Σadj)

−1J(ΣtG
> + Cη)

+ (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1

· (J ∂Σt

∂Σij
adj

J> + em,ie
>
m,j + em,je

>
m,i − em,ie

>
m,jem,ie

>
m,j)

· (JΣtJ
> + Σadj)

−1J(ΣtG
> + Cη)

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J

∂Σt

∂Σij
adj

G>.

.

All that remains are the gradients with respect to the initial state variables. First,

µ0:

(C.26)
∂`(hK

N ; θ)

∂µi
0

= −1

2

N−1∑
t=0

K∑
k=1

{
−(J

∂µk
t

∂µi
0

)>(JΣtJ
> + Σadj)

−1(yk
t+1 − Jµk

t )

− (yk
t+1 − Jµk

t )
>(JΣtJ

> + Σadj)
−1J

∂µk
t

∂µi
0

}
.
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Of course, ∂Σt

∂µi
0

= 0 for all t; differentiating µk
t gives the recursion

(C.27)
∂µk

0

∂µi
0

= en,i;

(C.28)
∂µk

t+1

∂µi
0

= G
∂µk

t

∂µi
0

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J

∂µk
t

∂µi
0

.

Finally, Σ0:

∂`(hK
N ; θ)

∂Σij
0

=

(C.29)

− K

2

N−1∑
t=0

tr

[
(JΣtJ

> + Σadj)
−1J

∂Σt

∂Σij
0

J>
]

− 1

2

K∑
k=1

N−1∑
t=0

{
−(J

∂µk
t

∂Σij
0

)>(JΣtJ
> + Σadj)

−1(yk
t+1 − Jµk

t )

− (yk
t+1 − Jµk

t )
>(JΣtJ

> + Σadj)
−1J

∂Σt

∂Σij
0

J>(JΣtJ
>)−1(yk

t+1 − Jµk
t )

− (yk
t+1 − Jµk

t )
>(JΣtJ

> + Σadj)J
∂µk

t

∂Σij
0

}
;

(C.30)
∂µk

0

∂Σij
0

= 0;

∂µk
t+1

∂Σij
0

=

(C.31)

G
∂µk

t

∂Σij
0

+G
∂Σt

∂Σij
0

J>(JΣtJ
> + Σadj)

−1(yk
t+1 − Jµk

t )

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J

∂Σt

∂Σij
0

J>(JΣtJ
> + Σadj)

−1(yk
t+1 − Jµk

t )

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J

∂µk
t

∂Σij
0

;

(C.32)
∂Σ0

∂Σij
0

= en,ie
>
n,j + en,je

>
n,i − en,ie

>
n,jen,ie

>
n,j;



137

∂Σt+1

∂Σij
0

=

(C.33)

G
∂Σt

∂Σij
0

G> −G
∂Σt

∂Σij
0

J>(JΣtJ
>)−1J(ΣtG

> + Cη)

+ (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J

∂Σt

∂Σij
0

J>(JΣtJ
> + Σadj)

−1J(ΣtG
> + Cη)

− (GΣt + C>
η )J>(JΣtJ

> + Σadj)
−1J

∂Σt

∂Σij
0

G>.
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