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Abstract 

Combining Geostatistical Analysis and Flow-and-Transport Models to 
Improve Groundwater Contaminant Plume Estimation 

by 

Shahar Shlomi 

Chair: Anna M. Michalak 

 

Groundwater is an important resource, which is often contaminated.  In order to ensure a 

sustainable supply, groundwater has to be monitored, contaminant plumes must be 

estimated accurately, and remediation operations must be carried out effectively. 

However, groundwater monitoring networks often do not have enough monitoring wells, 

and those wells are not always optimally located for the purpose of plume estimation, 

using existing methods. Moreover, budgetary constraints limit the number of available 

samples. 

Existing methods for plume estimation rely either on the spatial correlation of plume 

concentrations, or on the underlying physics of groundwater flow and contaminant 

transport. Often, practitioners who rely on one of these approaches neglect available 

information which can be used in methods belonging to the other approach. For example, 

use of kriging, a geostatistical method relying on spatial correlation, often precludes the 
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use of transport information, which may be readily available. Conversely, flow-and-

transport models do not explicitly consider spatial correlation of contaminant 

concentrations. 

In this work, these two approaches are combined, in order to optimally use all available 

information, to improve the quality of plume estimation. Specifically, two geostatistical 

methods – Inverse/Forward Modeling and Transport-Enhanced Kriging – are developed 

that combine transport models with spatial or temporal correlation. These methods are 

versatile, can apply to a variety of situations, and can work with many kinds of available 

input data and transport models. A method is also developed to estimate flow and 

transport parameters simultaneously with the plume concentration, for cases in which this 

information is unknown or uncertain. Finally, as monitoring network configuration has a 

dramatic effect on estimation results (but is specific to the plume estimation method 

used), a method for choosing optimal monitoring sites is presented. 

All of the methods were tested in a variety of numerical experiments with synthetic 

homogeneous and heterogeneous data.  In addition, several laboratory experiments were 

performed in a large sand tank, to assess the performance of the methods. Overall, the 

new methods yield results that are superior to those obtained by common existing 

methods such as kriging, with a better reproduction of the true plume shapes and lower 

uncertainty.
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Chapter 1  
Introduction 

 

 ;מים באר ותרא, עיניה- את אלוהים ויפקח

 :הנער-את, ותשק, מים, החמת- את ותמלא ותלך

  19בראשית כא 

And God opened her eyes, and she saw a well of water; and 
she went, 

and filled the bottle with water, and gave the lad drink. 

Genesis 21: 19 

1. Groundwater Past and Present 

Making up more than 98% of fresh water resources on Earth, groundwater has been 

tapped as an important water resource for human societies for thousands of years [Fetter, 

2001]. The earliest wells are known from the Neolithic. In the submerged Pre-Pottery 

Neolithic B settlement of Atlit Yam in Israel, dated to 8100-7500 BC, a well has been 

found, which so far is the oldest known [Galili and Nir, 1993]. 

Today, groundwater is the most widespread and highly used resource, supplied to about 

1.5 billion people worldwide [Hetzel et al., 2008]. It is of inestimable value to the 

inhabitants of dry regions, being the only reliable water resource. The yearly 

consumption of groundwater world-wide is assumed to be 1000 cubic kilometers, and the 

global groundwater recharge is estimated at over 12,000 cubic kilometers per year [Döll 
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and Fielder, 2008]. In many countries, the drinking water is mainly tapped from 

groundwater, and in some, groundwater is the only source for public water supply. The 

importance of groundwater will grow considerably in the future, as it is a safe and high-

quality drinking water resource. If it is used reasonably and sustainably, it can provide an 

important contribution in solving regional water crises on Earth. 

2. Groundwater Contamination 

Various sources of contamination affect groundwater, limiting the available supply, and 

necessitating detection and quantification of the contaminant, and remediation of the 

groundwater. Contamination of water supplies may be responsible for more human 

sickness than any other anthropogenic activity [Anderman and Martin, 1986]. 

Contaminants can come from a variety of sources, which can be generally categorized as 

either anthropogenic or natural. 

In the first category, the most common artificial contaminant is trichloroethylene (TCE), 

which is an effective solvent for a variety of organic materials [Rivett et al., 2006]. 

Tetrachloroethylene (PCE), used mainly for dry cleaning, is a related solvent which has 

often become a groundwater contaminant [Schumacher et al., 2004]. Benzene, toluene, 

ethylbenzene, and total xylenes (BTEX), which come from gasoline refining, and methyl-

tert-butyl-ether (MTBE), which is a fuel additive, are common contaminants in urbanized 

areas [Rail, 1989], often as the result of leaking underground storage tanks. Groundwater 

can be contaminated by localized releases from waste disposal sites and landfills. 

Pesticides, fertilizers, and contaminants from other nonpoint source pollutants are also 
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major sources of groundwater pollution [Commission on Geosciences, Environment and 

Resources (CGER), 1993]. 

Common natural contaminants include iron, magnesium and calcium [Rivett et al., 2006]. 

Other natural constituents of concern are nitrates and Coliform bacteria, both of which 

are considered acute contaminants [Palmer, 1996]. 

3. Physics of Groundwater 

In order to monitor contaminants, estimate plumes (i.e. map and/or quantify their spatial 

distribution in the subsurface), or more generally assess the quality of groundwater, it is 

important to understand the underlying physical processes that govern its flow, as well as 

the transport of contaminants. 

3.1 Groundwater flow 

Groundwater hydrology began as a quantitative science when Darcy (1803 - 1858), a 

French hydraulic engineer, described the results of an experiment designed to study the 

flow of water through a porous medium [Darcy, 1856]. The experiment resulted in the 

formulation of Darcy's Law, which states that the rate of fluid flow through a porous 

medium is proportional to the potential energy gradient within that fluid. The constant of 

proportionality is the hydraulic conductivity, which is a property of both the porous 

medium, and the fluid moving through the porous medium.  
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Combined with a water-balance equation for steady state flow, Darcy's Law is the basis 

for the governing groundwater flow equation in a confined aquifer: 

 ( ) 0R Pϕ∇ ∇ + − =Ki  (1) 

where K is the hydraulic conductivity (which can in general be a symmetric tensor), ϕ∇  

is the head gradient vector, and R and P represent recharge and pumping rates, 

respectively [Bear and Verruijt, 1987]. 

3.2 Contaminant transport 

Several processes govern solute transport in groundwater: Advection is chemical 

movement via groundwater flow due to the groundwater hydraulic (i.e. head) gradient.  

Dispersion is the longitudinal (forward and backward) and transverse (normal) spreading 

of the contaminant.  Retardation causes the mean chemical velocity to be slower than the 

groundwater velocity, through sorption processes in which the contaminant is attracted to 

the solid aquifer matrix [Runnells, 1993]. Contaminants may also react with each other or 

with the subsurface matrix in various biological and chemical processes, which ultimately 

affect transport and consequently the concentration of solutes.  

The advection – dispersion equation describes the spatial distribution of a contaminant as 

a function of time, and can be written as follows: 

 
Qc

n

∂
= ∇ ∇ +

∂

2C
D C - v C

t
 (2) 
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where C is the contaminant concentration distribution, D is the dispersion tensor, and v is 

the pore velocity (which the water traveling through the pores is experiencing). n is the 

porosity and Q represents flow rate from a source with concentration c. This too is a 

simplified version of the governing equation, which does not take into account any 

processes other than advection and dispersion. Still, even solving only these equations in 

this form (i.e. assuming no other processes) poses a challenge, because their coefficients, 

as well as boundary conditions, initial conditions, source/sink terms, etc. are not generally 

known, and have to be estimated using sparse data. 

Throughout this work, both the groundwater flow equation and the contaminant transport 

equation are solved using two well-established finite-difference numerical codes, 

MODFLOW-2000 [Hill et al., 2000] and MT3DMS5 [Zheng and Wang, 1999], 

respectively. 

4. Groundwater Management and Monitoring 

The high susceptibility of groundwater to contamination can limit the value of the 

resource to society as a whole. In the United States, hundreds of thousands of sites have 

contaminated groundwater. The estimated cost of remediating all of these sites would 

range from $480 billion to $1 trillion [Reed et al., 2000]. However, The American 

Society of Civil Engineers (ASCE) highlights that projected federal expenditures on long 

term groundwater monitoring for the present decade will only be somewhat more than $5 

billion [ASCE, 2003]. Groundwater pollutants pose a threat to the environment and to 

consumers and therefore must be detected and monitored. Groundwater monitoring is 
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often defined as the testing of groundwater over an extended time period in order to 

document groundwater conditions, including the collection of chemical data, such as 

contaminant concentrations [ASCE, 2003]. In the context of this dissertation, the term 

groundwater monitoring also includes the estimation of contaminant concentrations 

throughout the aquifer, not only at data collection sites. 

4.1 Legal and regulatory aspects 

As the population (in the U.S. and globally) expands, limited water resources are 

increasingly shared by a larger number of competing consumers, and stakeholders 

express a growing concern about the quality of source waters and the health risks 

associated with groundwater contamination. As a result, long-term monitoring of the 

quantity, quality, and susceptibility of groundwater has been and continues to be an issue 

of paramount importance. Broad initiatives mandated by The Federal Safe Drinking 

Water Act [1974, 1986, 1996] require long-term groundwater monitoring records at both 

regional and local scales. An example is the 1996 amendments to Section 1453 of the 

Safe Drinking Water Act, which require states to establish and implement a Source Water 

Assessment Program (SWAP). Source water assessment is intended to provide a strong 

basis for developing, implementing, and improving a state’s source water protection plan. 

This program requires individual states to delineate protection areas for drinking water 

intakes, identify and inventory significant contaminants in the protection areas, and 

determine the susceptibility of public water supply systems to the contaminants released 

within the protection areas [Bice et al., 2000]. Under CERCLA (Comprehensive 
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Environmental Response, Compensation, and Liability Act, 1980) and RCRA (Resource 

Conservation and Recovery Act, 1976), the federal Environmental Protection Agency 

(EPA) and local state agencies are able to implement maximum contaminant levels in 

groundwater through enforcement measures, which can include fines of up to $25,000 per 

day of regulatory noncompliance [Hardisty and Ozdemiroglu, 2005]. 

4.2 Groundwater contaminant plume estimation 

Given that groundwater is the largest store of fresh water within many states, increased 

investment in long-term groundwater monitoring will be required to better understand the 

condition of aquifers, and to sustain their long-term capability to provide safe drinking 

water. The success of future groundwater resource management initiatives will require 

new tools for optimally balancing monitoring costs and uncertainty. This is particularly 

important when monitoring groundwater for pollutants such as volatile organic 

chemicals, pesticides, and other expensive analytes over long time periods. 

One of the most basic and important tools in groundwater management is plume 

interpolation or estimation, which aims to provide the best possible quantitative account 

of the spatial distribution of a contaminant in an aquifer, along with a measure of the 

corresponding uncertainty. This tool plays a vital role in a variety of applications (Table 

1), the overall aims of which are often to (i) avoid (or at least minimize) pumping of 

contaminated water into a water distribution system, (ii) contain the contamination plume 

within a specified area, and/or (iii) treat the contaminated groundwater (remediation) to 

reduce contaminant levels to within an acceptable threshold [Freshley et al., 2002]. 
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 Table 1. Various Uses of Plume Estimation 

Application Requirements: why 

plume estimation 

Typical Available 

Data 

Example Reference 

Monitoring 

well selection 

Which wells should 

be sampled?  

Defined objective: 

minimize global/local 

variance/error? 

Concentrations at 

previous times 

Transport model 

Source location 

Aziz et al. [2000] 

Global mass 

estimation 

 

Estimates of 

concentrations at 

nodes 

Concentrations at 

measured locations 

Reed et al. [2000], 

Nyer et al. [1998] 

Water 

distribution 

systems 

Pumping flowrates at 

wells 

Source location (e.g. 

underground storage 

tank); Flow model 

Weaver et al. [1999] 

Remediation Monitor remediation 

process 

Historical/initial plume, 

transport model 

Boulding and Ginn 

[2004] 

Inverse 

modeling and 

parameter 

estimation 

Estimates of 

parameter(s) at 

different locations, 

times 

Parameterized model, 

discrete measurements 

Sun [1994] 

Network 

design 

Optimal locations for 

future measurements 

Hydrogeological 

structure, flow regime, 

source locations 

McKinney and 

Loucks [1992], 

Meyer et al. [1995] 

These applications are often accompanied by monitoring of the groundwater quality over 

time, which is defined in a variety of ways in the literature [e.g. ASCE 2003; NFESC, 

2000], but always involves sampling wells, sometimes followed by estimating 

concentrations of contaminants elsewhere, and repeating this process after some time 
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interval, often regularly. Monitoring itself has many specific objectives, such as 

demonstrating the effectiveness of corrective action, examining the trend of contaminant 

concentrations [Lindberg, 2006], meeting regulatory requirements, and research [Herzog 

et al., 1991]. In most cases, some form of spatial estimation of groundwater 

contamination is an integral part of the monitoring program. Plume estimation is also 

used for other applications, such as global mass estimation, which often aims to find the 

total contaminant mass emitted to, or present in, an aquifer, for litigation purposes or as 

an indicator of natural attenuation [Nyer et al., 1998], respectively. 

These and many other groundwater quality management activities require knowledge of 

the contaminant’s spatial distribution. However, as in many other environmental 

applications, data is typically extremely limited. Even if wells are sampled frequently, 

they are usually not located close to each other, so the spatial dimension is sparse. 

Moreover, the spatial configuration of the monitoring wells is rarely ideal for the 

purposes of sampling, estimation and monitoring. In addition, contaminant concentration 

fields are highly heterogeneous, anisotropic, and non-stationary phenomena [Reed et al., 

2004]. As a result of these factors, plume distributions estimated through interpolation 

often do not represent the true plume distribution well, and the full spatial distribution of 

the plume is almost never known. 

Interestingly, additional information on the aquifer and its flow regime does often exist – 

but cannot be integrated in standard interpolation methods (such as geostatistical kriging), 

which may accept only concentrations as input data. The additional information, often 
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available in the form of a (perhaps incomplete) flow-and-transport model, can potentially 

constrain the concentration estimates, thus provide a best estimate which is closer to the 

true concentration, with a lower uncertainty, due to the additional information. The 

ability to concurrently use information about both (i) the physical behavior as expressed 

in flow-and-transport models and (ii) the spatial correlation as described in existing 

geostatistical models, would have a dramatic impact of our ability to represent the shape 

and extent of groundwater contaminant plumes. The premise of this dissertation is to 

combine these two types of approaches and to develop methods that would have a 

significant effect on the management of contaminated groundwater resources, by 

improving our ability to avoid pumping contaminated water, improving the design of 

groundwater remediation alternatives, and providing a framework for monitoring 

remediation progress. The high cost associated with groundwater monitoring and the high 

risks posed by these contaminants contribute to the importance of developing robust 

estimation techniques which take into account diverse types of data for plume 

interpolation. 

4.3 National research needs 

The two preceding subsections provide the motivation for developing methods that could 

make better use of existing data, find ways to assimilate different sets of data, and 

optimize data collections schemes for the purpose of plume estimation. It should be noted 

that national science organizations have identified similar needs. For example, the 

National Research Council [CGER, 2000] recommended four research emphases for 
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DOE’s subsurface cleanup mission, which included Location of subsurface contaminants, 

Conceptual Modeling, Containment, and Monitoring. More specifically within the first 

emphasis, the Committee supported development of improved capabilities for 

characterizing heterogeneity, measuring contaminants, integrating data collected at 

different spatial and temporal scales, and integrating such data into conceptual models. 

Within the second emphasis, the Committee recommended focusing on new approaches 

for incorporating heterogeneity into conceptual model formulations and integrating 

process knowledge into model formulations. 

One of the United States Geological Survey’s major water-quality themes (for the current 

cycle II) of NAWQA, its National Water-Quality Assessment Program, is Extrapolation 

and forecasting [NRC, 2002]. Within this theme, answers to the following question are 

sought: 

“How can we best extrapolate (spatial dimension) or forecast (temporal 
dimension) water-quality conditions for unmeasured geographic areas and 
future conditions, based on knowledge of contaminant sources, natural 
characteristics of the land and hydrologic system, and our understanding of 
governing processes?“ 

The work presented hereinafter in this dissertation provides a significant contribution to 

the solution of these problems. 

5. Objectives of This Work: Groundwater Quality 
Monitoring 

Broadly, the goal of this work was to develop a set of tools which would enhance 
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groundwater quality monitoring, defined here more specifically as the aggregate of 

several distinct phases: 

1. Designing a network of monitoring wells for an aquifer, 

2. Selecting a subset of these wells to sample at a particular point in time, 

3. Using the measured concentration, along with other data, to estimate the distribution 

of contaminants in the aquifer. 

Despite this chronological order, most of the work was dedicated to the third element: 

estimating the contaminant plume by combining transport information in geostatistical 

analyses. Only Chapter 5 deals with network design and well selection. More 

specifically, this dissertation addresses the four objectives defined below. 

5.1 Objective 1: Integrate transport information into 
geostatistical analyses 

In Chapter 3, a set of geostatistical tools for estimating groundwater contaminant plumes 

is developed using: 

1. Measured concentrations from samples at monitoring wells, and 

2. A flow-and-transport model of the aquifer. 

The proposed approach proceeds in two steps. First, an initial condition (such as the state 

of the contaminant plume at an earlier time) or boundary condition (such as the 

concentration of the contaminant as a function of time at a point source) of the transport 

model is estimated. This is done using geostatistical inverse modeling, which is a method 
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used here to infer the initial or boundary condition using concentration measurements in 

conjunction with a flow-and-transport model of the affected aquifer. Next, the estimated 

initial or boundary condition is used as input to the transport model (now as a forward-

model), in order to estimate the full extent of the plume, i.e. the concentrations 

throughout the domain. This process is named Inverse/Forward Modeling (IFM). 

In order to also take advantage of the spatial autocorrelation of the contaminant plume, 

one can also integrate the second (forward-modeling) step with a kriging-like constraint. 

We call this process Transport-Enhanced Kriging (TrEK). Thus, both measured 

concentrations and a flow and transport model are be used together to infer the plume 

distribution. 

5.2 Objective 2: Introduce transport model uncertainty 

The methods developed within Objective 1, IFM and TrEK (as well as geostatistical 

inverse modeling upon which they are based), do not explicitly consider transport model 

uncertainty (i.e. they do not separate these errors from measurement errors). However, 

groundwater modeling relies on many parameters, most of which are usually not known 

throughout the aquifer. These parameters often have a considerable impact on modeling 

results. Specifically, uncertainty in the model parameters causes uncertainty in model 

results, and should therefore be accounted for and treated appropriately, to be reflected 

accordingly in the estimation results. 
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The second objective is thus to generalize IFM and TrEK by introducing uncertainty into 

the transport model. One technique for addressing transport model uncertainty is 

demonstrated analytically in Chapter 3 and numerically in Chapter 6. It involves 

generalizing the model-data mismatch error, which is the statistical distribution which the 

model error is expected to follow. This affects only one parameter of the equation system, 

without changing the equations (from Chapter 3) themselves. 

Chapter 4 presents a method for dealing with an unknown flow/transport model-input 

field, with an application to an unknown hydraulic conductivity field. It involves 

simultaneously and iteratively estimating this field along with the initial or boundary 

condition. 

5.3 Objective 3: Optimal sampling well selection for IFM/TrEK 

The third objective is to develop an optimal strategy for IFM/TrEK monitoring network 

design, incorporating measurements of concentrations, the spatial covariance structure of 

their distribution, and flow-and-transport information. Sampling groundwater quality at 

different sets of monitoring wells leads to substantially different plume estimates, but the 

optimal choice of wells depends, among other things, on the specific plume estimation 

method and on the monitoring objective. For that reason it is important to develop a 

network design method for the new estimation techniques from Objectives 1 and 2. 

In Chapter 5, an optimal measurement site selection method for IFM and TrEK is 

developed. This method is based on variance-reduction methods (applied in the past to 



 

 15  

kriging-based estimation), which seek to minimize either the maximum or the average 

estimation variance throughout the domain. 

5.4 Objective 4: Demonstration and validation of methods in 
sandbox experiment 

The last objective is to demonstrate the methods developed in Objective 1 in a controlled 

laboratory experiment. Various controlled pollution events were generated in a sandbox 

with known properties (e.g. hydraulic conductivity), to develop data sets of 

measurements of simulated plumes. Using this data, the performance of the methods 

developed in Objective 1 was evaluated. 

The ultimate goal of the methods developed throughout this dissertation is to improve 

groundwater quality monitoring in real aquifers. Laboratory tests serve as an intermediate 

between computer simulations (with synthetic data sets) and field applications. Computer 

simulations are very convenient and inexpensive to perform, but may not be realistic, as 

many of the obstacles of field work are not apparent. Field applications, on the other 

hand, may be expensive and seldom offer an exhaustive known parameter set, which 

would enable a model of the true contaminant distribution to compare against. 

In Chapter 6, a large sand tank is used to simulate an aquifer, to which a tracer whose 

concentration we can then measure continuously at several locations. This concentration 

data, along with a flow-and-transport model (built using the sand tank’s known 

properties), is used to test the performance of IFM.  
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Chapter 2  
Literature Review 

 

This Chapter presents background information of current methods that are used for 

interpolation of groundwater contaminant plumes, estimation of hydraulic conductivity 

fields, and design of groundwater quality monitoring networks. More specific 

information, as it relates to the methods developed in this work, is presented in the 

following Chapters. 

1. Groundwater Contaminant Plume Estimation 

Plume estimation can be based either on mathematical or statistical manipulation of 

measured contaminant concentrations, or on the physics of the transport process that 

created the plume. When concentration measurements are the only available data, 

interpolation methods such as geostatistical kriging or inverse-distance weighted 

interpolation are typically used. When additional hydrological parameters are available, 

flow-and-transport models are often employed. 

In general, kriging can use measurements at sampled locations, incorporate trends, and 

take advantage of measurements of certain other related variables (e.g. cokriging). Spatial 

analysis can be performed to identify spatial trends and variogram structures to be used in 
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the estimation process. Thus, the variogram or covariance function contains additional 

information, in the form of correlation or variance as a function of distance between 

points. For example, Cooper and Istok [1988] presented the use of geostatistics to map 

contaminant concentrations and estimation errors in a groundwater plume, from a set of 

measured contaminant concentrations. Reed et al. [2004] compared two inverse distance 

weighting techniques and four kriging techniques for plume interpolation. They 

ultimately concluded that quantile kriging [Journel and Deutch, 1997] was the most 

robust method for their specific application. They recommended using deterministic 

methods only as screening tools. Jones et al. [2003] compared three different three-

dimensional plume interpolation techniques (kriging, natural neighbor, and inverse-

distance weighted interpolation) and demonstrated that kriging usually results in the 

lowest error. Geostatistics can also be used to generate stochastic realizations of 

regionalized variables [Delhomme, 1978]. Boeckenhauer et al. [2000] used non-

parametric regression and kriging to produce regional estimates of groundwater 

contamination by modeling their data as a realization of a log-normal stochastic process. 

However, many types of supplementary physical data, such as flow and transport 

information, cannot be directly used in kriging. 

Variants and extensions of kriging can be used to introduce additional information into 

geostatistical analyses. Diggle et al. [1998] defined model-based geostatistics by 

modeling observations as a generalized linear model. Figueira et al. [2001] measured the 

concentration of chloride and sodium in plants, and used three additional factors (the 

distance from the coast, the intensity of rain observed before the sampling date and the 
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dry period before sampling) in the definition of a space-time trend. Kitanidis and Shen 

[1996] added one parameter to linear geostatistics to account for the skewness of 

concentration distributions. Liu [2003] incorporated gradient or sensitivity information 

into existing kriging techniques for various Multidisciplinary Design Optimization 

procedures; the approach treated gradients at the sample points as secondary functions. 

All of these methods analyzed various aspects of the measured distribution, but they did 

not consider the source of the contamination or the process of transport. 

Several studies have also used a combination of kriging/interpolation and groundwater 

transport models in hydrology. Some have used stochastic [e.g. Wagner and Gorelick, 

1987] and geostatistical [e.g. Vyas et al., 2004] methods to estimate parameters for flow-

and-transport models, or to interpolate input data to these models [e.g. Feehly et al., 

2000]. In these studies, the parameter estimation and the flow-and-transport model 

constitute distinct sequential phases: the second phase (which incorporates the flow-and-

transport model) does not provide information to the first phase (interpolation), and in 

some cases the total uncertainty is not accounted for properly, because it only considers 

one phase. Saito and Goovaerts [2001] presented a variant of kriging-with-a-trend for 

incorporating source location and wind speed in the interpolation of soil contaminant 

concentrations. While these factors were identified as likely to control pollution spread, 

none of the actual physics (e.g. in the form of equations) was incorporated into the 

estimation process. Rather, only the parameters were allowed to affect the trend.  
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More generally, several researchers have developed various frameworks for the purpose 

of integrating data from diverse sources into an estimation methodology. For example, 

Christakos [2005] presented several approaches to geophysical assimilation research, e.g. 

the ontologic assimilation (OA) approach, which can be used to solve inverse problems. 

Certain forms of OA may also be used to assess the uncertainty due to model structure 

error (conceptual uncertainty). He promotes using epistemic cognition assimilation 

concepts. More specifically, the spatiotemporal Bayesian Maximum Entropy (BME) 

mapping approach introduced by Christakos [1990, 2000] provides a conceptual 

framework for processing hard and soft data in the presence of physical laws. Serre et al. 

[2003] used BME to solve the inverse problem by first assimilating various physical 

knowledge bases (hydrologic laws, water table elevation data, uncertain hydraulic 

resistivity measurements, etc.) and then producing robust estimates of the subsurface 

variables across space. However, this approach has not been used for the specific purpose 

of recovering the history of contaminants or estimating contaminant plumes. Porter et al. 

[2000] and Porter [2002] introduce Data Fusion Modeling (DFM), a spatial state 

estimation and system identification methodology that uses measured data, physical laws, 

and statistical models for uncertainty in spatial heterogeneities. DFM integrates data, 

calibrates models, and quantifies uncertainties by solving the causality problem in a 

generalized Kalman filter. While the presented application is a groundwater flow model, 

this methodology might also work for contaminant plume estimation. This method may 

be more suited for real-time updates of models. The multitude of ideas, models, theories, 
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and approaches, and the large number of discrete steps, make DFM somewhat complex, 

and this approach, too, has never been applied to the problem of plume estimation. 

Many challenges accompany the use of flow-and-transport models for the purpose of 

estimating the current distribution of existing groundwater contaminant plumes. This type 

of use would require knowledge of the boundary conditions, including all contaminant 

sources and their behavior in space and time. Excluding controlled tracer experiments 

[e.g. Mackay et al., 1986], this information is generally not available. To sum, many 

investigators have combined elements of both transport models and geostatistics into 

their analyses; however, it is unknown of any plume estimation method that specifically 

takes advantage of both a flow-and-transport model (which embodies the laws of physics) 

and the geostatistical covariance structure of the plume (which embodies the analysis of 

observations). 

Thus, the advantage that transport models have to offer, such as information about the 

physics controlling advection, dispersion, retardation, and chemical behavior, cannot be 

fully utilized by methods currently available for estimating the distribution of 

contaminant plumes. 

2. Estimation of Hydraulic Conductivity Within a 
Geostatistical Framework 

The preceding section focused on contaminant plume estimation using mostly 

mathematical methods, which for the most part interpolate input concentration data 
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measured at various nodes. In order to take advantage of physical properties of the 

subsurface, and the transport processes of contaminants, flow-and-transport models are 

developed. These models typically have many parameters, which must be estimated, 

generally before using the model. “There is a vast body of literature on the development 

and application of estimation approaches for these models’ parameters, the majority of 

which has focused on the physical properties of the subsurface, such as, for example, 

hydraulic conductivity distributions” [Michalak and Shlomi, 2007], which affect 

groundwater flow models more than anything else [Ricciardi et al., 2007]. 

As the subject of “estimation approaches for subsurface applications” is too broad to 

effectively review here, this section focuses primarily on geostatistical methods for 

estimating the hydraulic conductivity field of an aquifer, which will be carried out in this 

dissertation. “The geostatistical techniques are attractive because of the simplicity of the 

procedure and the possibility of easily adapting the assumptions (stationarity, type of 

covariance, etc.) to the local conditions” [Ahmed and De Marsily, 1987]. Equally 

important, the plume estimation methodologies from Objective 1 (in the Introduction) 

were developed within a geostatistical framework. In order to have the ability to 

generalize these methods and integrate the estimation of hydraulic conductivity into the 

contaminant concentration estimation framework (Objective 2), it is natural to adapt or 

develop geostatistical methods for hydraulic conductivity estimation, too. 

Use of geostatistics in hydrology can be traced back to Delhomme [1976, 1978]. Neuman 

and Yakowitz [1979], Neuman et al. [1980], and Neuman [1980] all used kriging to 
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estimate the transmissivity distribution in aquifers. Many early works [e.g. Dagan, 1979; 

Gutjahr et al., 1978] only used relatively simple approaches such as simple or ordinary 

kriging. Other variants of kriging were compared by Ahmed and De Marsily [1987], who 

demonstrated the improvement in estimating transmissivity obtained by integrating more 

than one type of data (in their case, pump test data and specific capacity). Their 

comparison included a method that combines kriging with linear regression [Delhomme, 

1974, 1976], cokriging [Matheron, 1971], kriging with a trend [Delhomme, 1979], and 

kriging with a guess field [Delhomme, 1979]. Ahmed and De Marsily [1987] concluded 

that cokriging and kriging with a trend are generally the more advantageous methods, 

when additional data is available. Similar methods use either theoretical developments or 

empirical derivations to find the covariances and cross-covariances for cokriging 

applications. Ahmed and De Marsily [1993] used a simple relation between 

transmissivity and head to calculate coherent head covariance and head-transmissivity 

cross-covariance, based on a chosen transmissivity covariance. They demonstrated the 

improved estimation (of transmissivities) obtained when piezometric head data was 

combined with transmissivity data, relative to the use of transmissivity data alone. Many 

others are still using cokriging approaches to resolve the conductivity field, including for 

example El Idrysy and De Smedt [2007], who used electrical resistivity data and the 

slope of the water table as secondary variables. While these methods use parameters 

which would also be found in transport models, they do not use integrate the knowledge 

of the actual physical processes of flow and transport into the estimation framework. 
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To address this issue, in the 1980s, geostatistical tools for inverse modeling began 

appearing. Kitanidis and Vomvoris [1983] presented a two-step geostatistical solution to 

the inverse problem, with one-dimensional simulations for recovering permeability. They 

first used all available information to select geostatistical structure and estimate its 

parameters; next they found the minimum variance and unbiased linear estimates of the 

permeability and its estimation variance. Hoeksema and Kitanidis [1984] improved on 

this work, by using numerical methods for the calculation of the first two joint moments 

of hydraulic head and the log-transmissivity. They applied their versatile and 

computationally-efficient method to two-dimensional steady-state flow fields. Dagan 

[1985] reduced a similar problem to determining the unconditional head-log-

transmissivity covariance and head variogram (for a selected log-transmissivity 

covariance, which depends on a few unknown parameters). He then solved it using a 

first-order approximation of the flow equations. Dagan et al. [1996] proposed to represent 

random trajectories of particles in a Lagrangian framework, by relating concentration 

measurements to trajectories through measurement points and times. While cokriging 

concentration measurements with flow/transport parameters leads to correct conditioned 

means of those parameters, the corresponding conditional variance (based on cokriging) 

depends on the concentration, and the authors concede that it is erroneous. 

The geostatistical approach to inverse modeling of Kitanidis and Vomvoris [1983] was 

generalized by Kitanidis [1995], specifically for problems that may involve nonlinear 

relations between data and (unknown) parameters. This author noted that the crux of the 

parameter estimation problem is how to parameterize the distributed parameter system, 
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and accordingly, the principal conceptual differences among available methods are in the 

parameterization. He then explained that the random-field parameterization of the 

geostatistical approach eliminates the need for zoning or other arbitrary and inflexible 

assumptions. Kitanidis [1996] further emphasized the significance of structural analysis, 

and compared the geostatistical approach to the inverse problem with a straightforward 

maximum a posteriori probability estimation method [Carrera and Neuman, 1986]. He 

showed that they use different principles to separate the estimation of covariance 

parameters from estimation of the spatial variable, and that the maximum a posteriori 

method produces biased estimates of the parameters, as opposed to the geostatistical 

approach. The quasi-linear inversing approach was chosen for the estimation of hydraulic 

conductivity in this dissertation, because of its accuracy, effectiveness, relative 

simplicity, and flexibility, as described in the next paragraph. Another reason for this 

choice was the similarity to the linear inverse-modeling, used within the methods 

developed as part of Objective 1. 

The quasi-linear geostatistical theory [Kitanidis, 1995] was generalized by Nowak and 

Cirpka [2004] to handle uncertain trend coefficients (which were usually considered 

unknown but deterministic), a generalization that could also hold for other kriging and 

cokriging applications. Nowak and Cirpka [2006a] presented a Bayesian framework for 

linear cokriging and extended the quasi-linear geostatistical approach [Kitanidis, 1995] to 

include the generalized cases of uncertain prior knowledge about structural parameters 

(i.e. covariance and generalized covariance function parameters). Specifically, they 

incorporated a modified Levenberg-Marquardt algorithm into the framework, for 
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improving the identification of unknown autocovariance parameters and increasing its 

stability. Nowak and Cirpka [2006b] presented a geostatistical method for the joint 

estimation of log-conductivity and log-dispersivities from measurements of hydraulic 

heads and temporal moments of local breakthrough curves. These or similar extensions 

may prove useful in generalizing applications based on the quasi-linear inversing 

approach, and constitute one of the reasons for selecting this approach. 

Several other geostatistical inverse methods were described by Zimmerman et al. [1998], 

who compared their performance in estimating transmissivities, for the ultimate purpose 

of solute transport predictions, using four test problems. The Fast Fourier Transform 

(FFT) method and the Fractal Simulation method both used generated multiple 

realizations of parameter fields using FFT. The Linearized Semianalytical method, 

Linearized Cokriging method, and the Maximum-Likelihood method used the maximum 

likelihood theory to estimate structural aquifer parameters, and may thus be biased 

[Kitanidis, 1995, 1996]. Finally, the Pilot Point method and Sequential Self-Calibration 

method combined kriging and optimization methods. Four of the methods performed 

comparably well; however, they seem overly complex (relative to the quasi-linear 

approach, for example) for the purpose needed here. Moreover, the authors of this study 

showed that all of the methods had not adequately assessed the prediction uncertainty and 

asserted that “there is much room for improvement in the inverse methodology.” They 

presented many conclusions regarding the importance of variogram selection, proper 

parameterization, grid discretization, and the time and experience devoted by the user of 

the method. Finally, Zimmerman et al. [1998] recommended allowing simultaneous 
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calibration of transmissivity and boundary conditions while imposing physically-

plausible constraints. The approach presented in this dissertation (Chapter 4) takes on this 

recommendation. 

An important source of prediction uncertainty is model error, caused by oversimplified 

model structure, inexact model parameters, and numerical error [Sun et al., 2006]. 

Geostatistical applications often lump these together with measurement error as an 

aggregate model-data mismatch error, or evaluate them through sensitivity studies 

[Butera and Tanda, 2003], but for the most part do not treat each and every one of these 

sources of uncertainty. Hernandez et al. [2002, 2003, 2006] formulated a nonlinear 

inverse problem on the basis of ensemble moment equations on a computational grid. 

Their approach provided estimates of unknown hydraulic conductivity along with 

geostatistical (variogram) parameters, and also of second head and flux moments, which 

constitute measure of predictive uncertainty. 

A more comprehensive strategy (which can potentially consider multiple types of data 

and account for various uncertainties) involves model selection [see review in Burnham 

and Anderson, 2002] or developing methods for combining several models. For example, 

Neuman and Wierenga [2003] described a strategy that embodies hydrogeologic 

conceptualization, model development and predictive uncertainty analysis. Specifically, 

they used Bayesian Model Averaging to integrate different variogram models for 

estimating permeability. These approaches, however, are more suitable for larger-scale 

problems which are beyond the scope of the types of examples presented here. The plume 
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concentration uncertainty caused by unknown model parameters in this work (Chapter 4) 

is considered by combining quasi-linear inversing for model parameters with the methods 

developed in Chapter 3. 

3. Groundwater Monitoring Network Design 

An important part of virtually any plume estimation method are the solute concentrations 

measured at specific locations in the aquifer. The locations of these monitoring wells 

have a significant effect on the estimated distribution of solutes. Thus, one component of 

improving groundwater quality monitoring is optimizing the selection process of these 

measurement sites. Moreover, the data collection phase of groundwater monitoring is 

very expensive. For example, Johnson et al. [1996] estimated that in 1993, some 10,000 

samples were taken from more than 1500 groundwater monitoring wells at the Savannah 

River site at a yearly cost of $10,000,000 in laboratory fees alone. Despite these high 

costs, systematic sampling methods often give way to inefficient sampling; Johnson et al. 

[1996] reported that the sampling schedule for a given monitoring well was selected 

largely by applying rules-of-thumb relating its location to the margins of the contaminant 

plume. Monitoring costs can grow exponentially as a result of monitoring-dependent 

operations, such as various remediation schemes. This provides further motivation to 

optimize the selection of sampling locations for plume estimation. 

Many studies have addressed the technical problems of monitoring network design in 

groundwater hydrology. The design criteria and constraints are generally dictated by the 

specificities of the addressed problem as well as the objectives of the monitoring 
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program. Showalter [1985] discussed how the objectives of a groundwater quality 

monitoring network are developed and how they are implemented in the design process. 

For example, Hsueh and Rajagopal [1988] developed a model for groundwater quality 

sampling design with an emphasis on prevention of population exposure to contaminants. 

The objectives in two examples that Herrera and Pinder [2005] presented were to design 

a contaminant sampling program to estimate the contaminant concentrations of a moving 

plume (during a 2-year period), and to estimate the contaminant concentration at the 

nodes of a mesh for six different dates. The objective of Reed et al. [2000] and Wu et al. 

[2005] was to minimize long term monitoring costs. Bogaert and Russo [1999] and 

Chang et al. [2005] presented methodologies for parameter structure identification. The 

objective of Nunes et al. [2007] was to optimize a monitoring network for plume 

detection and delineation. Some network design studies have focused on intermediate 

objectives such as parameter identification, both for geostatistical applications, e.g. 

variograms [Bogaert and Russo, 1999] and for groundwater modeling [Chang et al., 

2005]. However, it is more common to integrate the solution of this kind of a problem in 

a larger context (such as that of plume estimation), as parameter estimation is not usually 

the ultimate objective [Müller, 2001]. Other objectives may include background 

sampling, release detection, flow containment verification, and plume stability (or 

shrinkage) verification [ASCE, 2003].  In addition to defined objectives, many 

monitoring programs are subject to legal or regulatory constraints, and must consider 

these in designing their monitoring plans.  
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Loaiciga et al. [1992] reported a comprehensive literature review on groundwater quality 

monitoring network design, in which two main approaches were identified. The first was 

dubbed the hydrogeological approach, and relied on qualitative and quantitative 

hydrogeologic information and practitioner judgment, without resorting to advanced 

statistical and/or probabilistic techniques [Herrera and Pinder, 2005]. In practice, the 

hydrologic approach has been used extensively in the past. The EPA is supportive of 

efficient, effective, and innovative tools, but “the regulated community has been reluctant 

to adopt those approaches readily due to concern over regulatory acceptance. [S]tate and 

federal regulators are generally risk-averse when approving new characterization, 

monitoring, and modeling technologies” [Pinder et al., 2003]. The hydrologic approach is 

not considered further here and not used as a basis for a well-selection methodology, 

because by nature it does not consider the spatial correlation often observed in 

concentration measurements. This correlation constitutes meaningful information and 

forms an important part of the estimation methods at the basis of this dissertation, IFM 

and TrEK. 

The second approach defined by Loaiciga et al. [1992] involves statistical methods, 

which include statistical comparisons, trend detection, and geostatistical methods. Many 

optimization techniques under this category either maximize or minimize a given 

objective function while accounting for some other constraints. Among the proposed 

methodologies, a number of them consider the minimization of the estimation variance of 

the monitored parameter estimates. Carrera et al. [1984] applied a method derived from 

kriging to determine the optimal locations of sampling sites for the estimation of fluoride 
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concentrations in groundwater. Rouhani [1985] proceeded by minimizing a weighted sum 

of variance of estimation using a variance-reduction algorithm; sampling sites which 

provide the maximum reduction in the variance of estimation are added to the monitoring 

network each at a time. Woldt and Bogardi [1992] used a modified variance-reduction 

algorithm combined with a multicriteria decision making using composite programming 

for designing groundwater quality monitoring networks. 

These methods are relatively simple and are advantageous in that they are formulated 

within a geostatistical framework. This makes their modification, to integrate with the 

plume estimation methods developed in this work, relatively straightforward. The 

variance-reduction methodology, which forms the basis of many of these works, can 

preserve its simplicity and advantages while working with the geostatistical plume 

estimation methods developed in this work, rather than with kriging. However, these 

methods do not usually consider knowledge of flow and transport processes. 

The Task Committee on the State of the Art in Long-Term Groundwater Monitoring 

Design [ASCE, 2003] built on the categorization of Loaiciga et al. [1992] and added to 

the second approach probabilistic methods (including Kalman filters, probabilistic 

simulation, and hierarchical monitoring) and mathematical optimization methods 

(including integer programming, simulated annealing, and genetic algorithms). Given the 

multiobjective and uncertain nature of sampling network design problems, various 

methods within this approach are usually coupled and used together [Zhang et al., 2005]. 

McKinney and Loucks [1992] presented an optimization algorithm for selecting new 
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monitoring locations so as to minimize a simulation model’s estimation variance. 

Gorelick [1983], Yeh [1992], Ahlfeld and Heidari [1994], Wagner [1995] and Ahlfeld 

and Mulligan [2000] provided extensive reviews on coupling simulation models with 

optimization models. Herrera and Pinder [2005] included some of these within a third 

approach to groundwater sampling network design, the modeling framework, which 

“combines the knowledge of physics of groundwater physics and contaminant transport, 

summarized in a mathematical model, with data.” Within this framework, many 

researchers combined mathematical plume interpolators, such as kriging, with fate and 

transport models, to estimate contaminant mass. Reed et al. [2000] presented a 

methodology to reduce an existing monitoring network (without significant loss of 

accuracy in contaminant mass estimation), using such an approach. The total mass was 

estimated via three plume interpolation methods: inverse-distance weighting, ordinary 

kriging, and a hybrid method that combines the two approaches. A genetic algorithm was 

used to search all potential subsets of wells for the optimal ones for the interpolation. 

Reed et al. [2001] built on this approach and examined the tradeoffs between sampling 

cost reduction and local concentration estimation errors. Wu et al. [2005] took a similar 

approach but added and emphasized the plume moment constraints on the optimization 

procedure, leading to more accurate sampling designs. Several recent studies have 

focused on the development and refinement of optimization algorithms for these types of 

methods designs. Comparisons of such methods have been carried out by Reed and 

Minsker [2000], Kollat and Reed [2006], and Wu et al. [2006]. 

Wu et al. [2006] compared two methods that may be more related to the work presented 
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here, as they consider uncertainty in the hydraulic conductivity field. These methods, 

Monte Carlo simple genetic algorithm and noisy genetic algorithm, couple a genetic 

algorithm with a numerical flow-and-transport simulator and a global plume interpolator 

to identify the optimal sampling network for contaminant plume monitoring. Zhang et al. 

[2005] also considered the uncertainty caused by the lack of knowledge in the hydraulic 

conductivity field. They solved the optimization problem using a genetic algorithm 

combined with a Kalman filter. However, most of these methods include separate 

components for transport modeling simulation and for contaminant plume estimation. 

Thus, the transport information available to the numerical model does not explicitly assist 

the plume interpolator, or directly reduce its uncertainty. 

The plume estimation methods developed in this dissertation integrate these two 

components (flow-and-transport model and plume interpolator), and present an 

estimation variance that accounts for transport information and uncertainty. The well-

selection method, like the plume-estimation methods, is developed within a geostatistical 

framework similar to the variance-reduction methods described above. The biggest 

difference from these earlier well-selection methods is the underlying plume-estimation 

method. 
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Chapter 3  
Integration of Transport Information into Geostatistical 

Analyses1 

 

1. Introduction 

The goal of groundwater contaminant plume interpolation is to provide an accurate 

representation of the spatial distribution of a plume given the data limitations associated 

with sparse monitoring networks with irregular geometries. The extent of a contaminant 

plume has to be known in order to avoid, or at least minimize, pumping of polluted 

groundwater into drinking-water wells and water distribution systems. Because samples 

can typically only be taken at a few discrete points of a plume (i.e. at wells), they have to 

be interpolated in order to depict the span of the whole plume. Groundwater contaminant 

plume interpolation is a difficult task, as contaminant concentration fields are highly 

heterogeneous, anisotropic, and non-stationary phenomena [Reed et al., 2004]. 

                                                 

1 Adapted from Shlomi, S. and A.M. Michalak (2007) "A Geostatistical Framework for Incorporating 
Transport Information in Estimating the Distribution of a Groundwater Contaminant Plume," Water 

Resources Research, 43, W03412, doi:10.20/2006WR005121. Copyright 2007, American Geophysical 
Union 
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Several forms of information, in addition to concentration measurements, are available in 

some cases to the practitioner and can potentially improve interpolation. Often, these 

secondary data (e.g. transmissivity) can be spatially and/or temporally correlated with the 

measured concentrations. These data can enhance the estimation results if used, for 

example, in a cokriging setup [e.g. Cassiani and Medina, 1997]. However, many types of 

data cannot easily be assimilated into a geostatistical analysis. This category may include 

information about the physical processes that created the contaminant plume, or a 

groundwater model that quantitatively describes the flow and transport in the aquifer. 

In many environmental applications, data are extremely limited. Therefore, the ability to 

incorporate different forms of data (e.g. physical behavior as expressed in fate-and-

transport models and spatial correlation as quantified by geostatistical analyses) would 

improve the ability to describe the shape and extent of groundwater contaminant plumes. 

The high cost associated with groundwater monitoring and the high risks posed by these 

contaminants contribute to the importance of developing a robust plume distribution 

estimation technique that takes into account diverse types of data for plume interpolation. 

2. Objective 

As described in Chapter 2, currently available methods for plume estimation cannot fully 

take advantage of prior knowledge of flow and transport information or the location of a 

contaminant source. In this Chapter, we present two new methods for estimating the 

distribution of groundwater contaminant plumes.  Unlike existing tools, these methods 

take into account both the spatial covariance structure of the concentration field, and 
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available flow and transport information.  The concentration data are directly coupled 

with the transport model to estimate concentrations at unsampled locations.  Thus, both 

data pertaining to the autocorrelation of concentrations, and results of a physical flow-

and-transport model are assimilated into a common framework. 

The first method is referred to as Inverse/Forward Modeling (IFM).  It uses an existing 

transport model for the aquifer and knowledge of the contaminant source location to 

estimate the time series of the contaminant release into the aquifer and its associated 

uncertainty.  Together with the transport model, this release history is then used to 

estimate the current plume distribution and its uncertainty. 

The second proposed method, Transport-Enhanced Kriging (TrEK), combines the merits 

of IFM with geostatistical kriging, in order to also take advantage of the spatial 

covariance structure of the available concentration measurements. Thus, the resulting 

predictions are both physically feasible, and exhibit the expected spatial autocorrelation 

characteristics. 

3. Methodology 

3.1 Geostatistical inverse modeling 

The following section outlines the geostatistical approach to inverse modeling, which we 

implement in this work to estimate the time series of the contaminant release into the 

aquifer in both of the proposed methods. No derivations are provided, and the reader is 



 

 36  

referred to, for example, Kitanidis and Vomvoris [1983], Snodgrass and Kitanidis [1997] 

and Michalak and Kitanidis [2004a] for additional details. 

Inverse methods use modeling and statistical tools to determine the historical distribution 

of observed contamination, the location of contaminant sources, or the release history 

from a known source. The inverse problem is often underdetermined and an infinite 

number of parameters that are consistent with the data may be obtained [Woodbury and 

Ulrych, 1996]. Kabala and Skaggs [1998] stress that this nonuniqueness of the solution is 

caused by the ill-posed nature of the physical problem and is not associated with any 

particular solution methodology, nor can nonuniqueness be eliminated with any particular 

procedure. Indeed, there are numerous inverse modeling methods; see, for example, 

reviews in Michalak and Kitanidis [2004a] and in Atmadja and Bagtzoglou [2001]. Of 

the available methods, only those that provide a stochastic solution to the problem of 

source estimation can potentially be applied to improve plume estimation, because the 

uncertainty of the loading history needs to be quantified in order to, in turn, determine the 

precision with which the plume distribution can be estimated. Backward tracking 

[Bagtzoglou et al. 1991; Bagtzoglou et al. 1992] and adjoint-derived source distribution 

probabilities [Neupauer and Wilson, 2001] are two available stochastic approaches, but 

these methods are only applicable to identifying the location or release time of a single 

instantaneous point source. 

The geostatistical approach to inverse modeling [Snodgrass and Kitanidis 1997; Michalak 

and Kitanidis, 2003, 2004a,b, 2005; Butera and Tanda, 2003] and the minimum relative 
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entropy method [Woodbury and Ulrych, 1996, 1998], conversely, are stochastic methods 

that provide a function estimate to characterize the historical contaminant distribution, 

source location, or release history. For these methods, the contaminant distribution or 

source description is not limited to a small set number of fixed parameters but can instead 

vary in space and/or in time. The applicability of the geostatistical method has already 

been demonstrated for multidimensional heterogeneous media [Michalak and Kitanidis, 

2004a] and is similar in form to geostatistical kriging. The stochastic nature of the 

geostatistical approach to inverse modeling, which allows the uncertainty of the estimate 

to be quantified, and its affinity to kriging, which allows for a convenient setup of a 

familiar equation system, make it an appropriate basis for the proposed plume estimation 

methods. 

The geostatistical approach to inverse modeling is based on the dual criterion of 

reproducing available concentration data z∗  and preserving spatial or temporal 

autocorrelation in some unknown function s [ 1]m× , such as the release history of 

contaminants into the aquifer. The method begins by calculating the sensitivity of 

available concentration measurements to the unknown function, and assigning this 

information to a Jacobian matrix H∗  (i.e., /ij i jH z s∗ ∗= ∂ ∂ ). This sensitivity information 

is then used in combination with the available data and their associated uncertainty to 

estimate a discretized version of the unknown function. This unknown function is 

assumed to be spatially- and/or temporally-autocorrelated. 
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This form of inverse-modeling relies on the existence of a groundwater flow and a 

contaminant transport model. This usually implies knowledge of parameters such as the 

hydraulic conductivity field, the dispersivity tensor, the boundary conditions, etc. In 

addition, the transport model must either be linear or meet certain conditions which 

would enable a quasi-linear approximation [see Kitanidis, 1996, for details].  In this 

Chapter, as in past applications of the geostatistical approach to inverse modeling for 

contaminant source identification [e.g. Snodgrass and Kitanidis, 1997; Michalak and 

Kitanidis, 2002, 2003, 2004a, b], the transport model itself is assumed to be 

deterministically known.  The concentrations of the source and of the measurements, on 

the other hand, are treated as random functions in a geostatistical framework. 

The transport model is sampled at measurement locations and times to yield a sensitivity 

matrix. If we are estimating the source release history on the basis of concentrations 

measured in the plume at a single time but at different locations, each element ijH
∗   of 

this sensitivity matrix represents the sensitivity of the concentration at location ix
∗    

[ 1.. ]i n=  to the source intensity at time jt   [ 1.. ]j m= . The product of this sensitivity 

matrix and a temporal source function s reproduces the measured concentrations z∗  at all 

locations  ix
∗ , to within a model-data mismatch error ε : 

 z H s∗ ∗= += += += + ε  (3) 

where ε  is assumed to be a zero-mean model-data mismatch error with covariance 

matrix R. Because measurement errors are usually not correlated in space and typically 
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have a uniform variance 2
Rσσσσ , the covariance structure is modeled as 2

R=R Iσσσσ , where I  

is an [n × n] identity matrix. 2
Rσσσσ  can either be known a priori, or estimated from available 

data (see below). Note that the model-data mismatch can also include transport error or 

microvariability not explained by the model. Thus, even though the model is 

deterministic, some forms of transport model uncertainties can be taken into account. 

The expected value of s is modeled as  s X[ ] s sE = β= β= β= β  , where Xs  is a known sm p ×   

matrix of basis functions and 
sββββ  are 

sp  unknown drift coefficients. The prior covariance 

function of s is a known function ( )( )Q s X s X( )
T

s s s s sE
 
 
 

θ = − β − βθ = − β − βθ = − β − βθ = − β − β  of unknown 

parameters θ, which can be estimated, for example, using a Restricted Maximum 

Likelihood (RML) approach [Kitanidis, 1995]. This approach minimizes the negative 

log-likelihood of the probability of the measurements with respect to the covariance 

parameters θ: 

 X H H X z z11 1 1
ln | | ln | |
2 2 2

T T T
s sL ∗ − ∗ ∗ ∗= + +θθθθ Σ Σ ΞΣ Σ ΞΣ Σ ΞΣ Σ Ξ  (4) 

where  H Q H RT
s

∗ ∗= +ΣΣΣΣ   and 

 ( )HX X H HX X H
11 1 1 1T T T T

s s s s

−− − − −− � � � �Ξ = Σ Σ Σ ΣΞ = Σ Σ Σ ΣΞ = Σ Σ Σ ΣΞ = Σ Σ Σ Σ  (5) 

Once the covariance parameters θ have been found, the source is estimated by 

minimizing: 
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 ( ) ( ) ( ) ( )s s sz Hs R z Hs s X Q s X1 1
,

1 1

2 2s

T T
s s sL − −= − − +� �� �ββββ − β − β− β − β− β − β− β − β  (6) 

which leads to the following system of  sn p+   equations 

 
( )

HQ H R HX HQ

M XHX 0

T T
s s ss

T T
s ss

   +       =            

� � � �

�

ΛΛΛΛ
 (7) 

which can be solved for the m n×  matrix sΛΛΛΛ  and the sp m×  matrix Ms , from which 

the best estimate and posterior covariance of the source function can be found: 

 s zˆ s�= Λ= Λ= Λ= Λ  (8) 

 s s sV X M Q Q Hˆ
T T

s s s= − �+ − Λ+ − Λ+ − Λ+ − Λ  (9) 

3.2 Proposed methods 

Inverse/Forward Modeling (IFM) 

In the IFM approach, the contaminant release history estimated using geostatistical 

inverse modeling is used to obtain an estimate of the distribution of the plume at the time 

of sampling, and its associated uncertainty. The contaminant plume is reconstructed by 

simulating transport of the estimated release history up to the measurement time(s). This 

step involves calculating an expanded sensitivity matrix H [ ]N m×  which defines the 

sensitivity of  N locations in the aquifer at the time when the measurements were taken to 

the m discretized times of the contaminant release history. The elements of H can be 

obtained numerically by running the groundwater transport model with unit releases of 
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contaminant for each time jt   [ 1.. ]j m=  and recording the resulting concentration at 

each of the  N   locations where the plume concentration is to be estimated. Typically, 

these N points would be laid out on a regular grid, to allow for easy contouring of the 

estimated plume distribution. The best estimate of the concentrations is estimated using 

the resulting linear model 

 z Hŝ� ====  (10) 

where z�  are the [ 1]N ×  estimates of the concentrations z.  Note that we use z∗  to 

designate concentration at measurement locations, and z  to designate the concentrations 

that we are interested in estimating. The same sensitivity matrix H can also be used to 

define the uncertainty and covariance of the estimated plume distribution, which is a 

function of the uncertainty associated with the recovered contaminant release history:  

 z sV HV HT=� �  (11) 

The diagonal elements of this  [ ]N N×   matrix represent the uncertainty of the estimated 

concentration spatial distribution. 

Transport-enhanced kriging (TrEK) 

The second plume estimation method also relies on the estimated release history (eq. (8)) 

but also takes into account the spatial covariance Qz of the plume concentration 

distribution, where Q z X z X( ) [( )( ) ]Tz z z z zEθ = − β − βθ = − β − βθ = − β − βθ = − β − β , and z Xz zE   =  ββββ . This 

covariance can also be estimated using the subset of available concentration values  z∗   

using an RML approach, with the objective function simplifying to: 
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( )( )

Q X Q X

z Q Q X X Q X X Q z

1

1 1 1 11

1 1
ln | | ln | |
2 2
1

2

T
z z zz

T T T
z z z zz z z z

L ∗ ∗−
∗ ∗

∗− ∗− ∗− ∗−
∗ ∗ ∗ ∗

∗ ∗

−∗ ∗ ∗ ∗ ∗ ∗

= +

+ −

θθθθ

 (12) 

where the basis functions Xz
∗   [ ]zn p×  and covariance model  Qz

∗
∗  [ ]n n×   are the same 

as Xz  and Qz , but are only evaluated at the measurement locations.  This correlation in 

deviations of the concentration distribution from its underlying trend  Xz zββββ   may provide 

information not available through the transport model alone. In assimilating the 

covariance information Qz , we simultaneously require that the covariance structure 

imposed by the physical transport model and that implied by the spatial autocorrelation of 

the measurements are honored. Explicitly, the residuals between the model predictions  

Hs�  and the TrEK estimates z�  should be consistent with the covariance structure implied 

by the uncertainty of the release history and by the transport model, i.e. sHV HT�  . In 

addition, the residuals from the measurement-space trend Xz zββββ  should have the spatial 

structure Qz . These requirements are assimilated in a second Bayesian step, minimizing: 

 ( ) ( ) ( ) ( )z sHs z HV H Hs z z X Q z X1 1
,

1 1
( )

2 2z

T TT
z z z z zL − −= +�� �ββββ − − − β − β− − − β − β− − − β − β− − − β − β  (13)  

with respect to the unknown concentrations z  [ 1]N ×  and the zp  spatial drift parameters  

zββββ .  The first term in this objective function makes use of the inverse modeling best 

estimate s�  and its posterior covariance, whereas the second term requires the estimates to 

follow the kriging trend  Xz zββββ  and covariance Qz .  Note that the measured concentration 

values z∗  do not reappear in this second objective function.  



 

 43  

The second system of equations to be solved becomes:  

 
s QQ HV H X

M XX 0

T T
zz z z

TT
z zz

    +     =    
        

� ΛΛΛΛ
 (14)  

Note that these (N + pz) equations can be set up only after the inverse modeling system 

has been solved for s�  and for sV� . The solutions of this system, zΛΛΛΛ  [N × N] and Mz [pz × 

N], are used to compute the plume concentration distribution and its covariance: 

 z Hsz� �= Λ= Λ= Λ= Λ  (15) 

 zV Q Q X MT
z z z z z= −� − Λ− Λ− Λ− Λ  (16) 

Here z�  is the TrEK best estimate of the plume distribution, and zV�   is the corresponding 

covariance structure. 

Uncertainties modeled in IFM and TrEK 

For geostatistical inverse modeling, the matrix sV�   represents the covariance of the a 

posteriori source function residuals  s ŝ( )−−−− , and its diagonal elements correspond to the 

uncertainty of the best estimate ŝ  . For IFM,  sV�   is used to define the covariance of the 

full plume concentration distribution, using the model matrix H to yield  sHV HT� . Thus, 

for a given model H, the uncertainty of an estimate at a given point depends on its 

sensitivity to the source function. For example, the sensitivity will be greater for regions 

immediately downgradient from the source, while areas further downgradient or away 

from the principal flow direction are much less sensitive to the release intensity. The 
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result is that the uncertainty will decrease, in general, with growing distance from the 

contamination source. The uncertainty also depends on sV�  such that plume areas 

corresponding to times at which the release was highly uncertain will have higher 

variance than those corresponding to more certain elements of s. 

Similar considerations determine the uncertainty associated with TrEK estimates, because 

this method also relies on the estimated release history. However, TrEK may be more 

directly affected by measurement locations, since it also considers the spatial covariance 

structure of the plume distribution, Qz . This additional information further constrains the 

estimate for each point, with the result that the TrEK uncertainty is always smaller than 

that of IFM. 

3.3 Kriging with a trend (KT) 

The new methods presented in the previous subsections are compared to kriging in the 

applications below (Section 4 of this Chapter). This familiar and relatively simple method 

was chosen in order to keep the focus on IFM and TrEK, without being distracted too 

much by a particular method’s extraneous details, limitations, etc. Therefore, a brief 

overview of kriging is presented here for reference. In kriging with a trend, we model  z   

as a random vector with expected value  Xz zββββ  , where  Xz   is a known  [ ]zN p×   

matrix and  zββββ   are  zp   unknown drift coefficients, representing the mean and the trend 

of the unknown concentration distribution. The prior covariance of z is Qz , a known 

function of unknown parameter(s) θ, which can be optimized using RML as presented in 
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Section 4.2. Once these parameters have been estimated, the best estimate  z�   is obtained 

using a linear combination of known measurements z∗ . The coefficients z∗ΛΛΛΛ  [ ]N n×   

and  zM ∗ [ ]zp N×  of this linear system are calculated by solving a kriging system of the 

form 

 
QQ X

M XX 0

T
zz z z

TT
z zz

∗
∗∗ ∗

∗

∗

∗

    
     =    

        

ΛΛΛΛ
 (17) 

Note that Qz
∗
∗  [ ]n n×  is the covariance matrix of measurements, whereas  Qz∗    [ ]n N×   

is the covariance between concentrations at the n measurements locations and the N 

estimation locations. Similarly,  Xz
∗   are the basis functions evaluated at the measurement 

locations, and Xz  are those evaluated at the estimation locations. The kriging estimator is 

 z zz∗
∗=� ΛΛΛΛ  (18) 

and the a posteriori kriging covariance is 

 zV Q Q X MT T

z z zz z
∗∗ ∗= − −� ΛΛΛΛ  (19) 

To account for measurement errors and preserve continuity, continuous part kriging 

[Kitanidis, 1997], also referred to as kriging with known measurement error variance 

[Wackernagel, 2003], can be applied by adding  2
Rσσσσ   to the terms on the diagonal of  Qz

∗
∗   

in Equation (17). 
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4. Test Cases 

The following section presents sample applications of the two methods developed in this 

Chapter. These examples involve the estimation of a contaminant plume distribution in a 

confined aquifer. In all examples, an aquifer is assumed to have been contaminated by a 

single point source with known location but unknown loading history as a function of 

time, s. Measurements z∗  taken at time T and knowledge of the hydrogeological 

conditions, H and H∗ , are used in implementing IFM, TrEK, and KT, to estimate the full 

plume distributions z. Hypothetical examples were chosen to illustrate and verify the 

capabilities of the methods in a setup where the true concentration distributions are 

known. 

The two cases considered are a plume in a one-dimensional homogeneous aquifer, and a 

plume in a two-dimensional heterogeneous aquifer.  In addition, sensitivity analyses are 

performed to evaluate the effects of monitoring network configurations, measurement 

errors, the time elapsed prior to sampling, and spatially-correlated model-mismatch 

errors. 
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Figure  3.1: Example 1 - Source release history. 

4.1 Example 1: One-dimensional homogeneous aquifer 

In the first example we use the setup previously implemented by Skaggs and Kabala 

[1994, 1995] and Snodgrass and Kitanidis [1997], among others. This example involves 

the release of a conservative solute into a one-dimensional homogeneous aquifer with a 

steady-state flow field. The solute is released only at the origin ( 0 0x = ) and the 

concentration is measured at various points in the aquifer at some later time T. The 

advective and dispersive transport of this solute can be expressed analytically as:   

 1
0

( , ) ( ) ( , )
T

DC x T s t g x T t dt= −∫  (20) 

where  ( , )C x T   is the concentration at distance x from the source and time T.  The source 

is a function of time and is expressed by ( )s t .  The one-dimensional transfer function 

1 ( , )Dg x T t−  relates the source concentration at time t to the concentration measured at 

point x and time T  [Skaggs and Kabala, 1994]:  
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2

1 3

( ( ))
( , ) exp

4 ( )2 ( )
D

LL

x x v T t
g x T t

D T tD T tπ

 − − − = −
 −−  

 (21) 

where  LD   is the longitudinal dispersion coefficient and  v   is the seepage velocity. 

Note that  ( , )i iz C x T=   is the concentration at location xi. 

The synthetic pollution event is obtained through the numerical integration of eq. (20) at  

330T =   time units, with longitudinal dispersivity  1LD =  , flow velocity  1v =   and 

true release history 

 
2 2 2( 130) ( 150) ( 190)

( ) exp 0.3 exp 0.5 exp
50 200 98

t t t
s t

     − − −     = − + − + −
          

 (22) 

This release history is illustrated in Figure 3.1.  Note that this release history is used only 

for the purposes of simulating the plume, but is then considered unknown in subsequent 

steps. This one-dimensional plume is sampled at n = 11 locations x*. Negligible 

measurement error with a variance of 10-12 is added to these concentrations to yield the 

observations  z∗ . We use these observations  z∗   and the transport information (eq. (21)) 

to estimate the plume concentrations z at m = 301 locations (x = 0, 1, 2, ..., 300) using 

KT, IFM and TrEK. 

Kriging with a trend 

For kriging with a trend we use a cubic Generalized Covariance Function (GCF): 

 Q 3( )z zh hθ=  (23) 
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and optimize the parameter zθ  using RML. In order to obtain better structural 

information, we use more plume samples for this optimization step than for the 

estimation below. For this example, the estimated parameter is  85.9 10zθ
−= ×  . 

The plume is modeled using a linear trend in x, yielding  [ ]X 1 xz
∗  
  

∗∗∗∗====  , where  [ ]1   is 

an [n × 1] vector of ones. The coefficients z∗ΛΛΛΛ  and zM ∗ , calculated with eq. (17), are 

used to obtain the best estimate z�  (eq. (18)) of the plume distribution and the kriging 

covariance zV�  (eq. (19)). The best estimate and associated uncertainty are plotted in 

Figure 3.2. 

Inverse/Forward Modeling 

We use the transfer function (eq. (21)) to define the sensitivity matrix H∗  according to 

[Snodgrass and Kitanidis, 1997]: 

 
2

3

( ( ))
exp

4 ( )2 ( )

i ji
ij

L jL j

x v T tx
H t

D T tD T tπ

∗∗
∗  − − = − ∆ −−  

 (24) 
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where  1t∆ =   is the discretization of the source function in time. The covariance 

structure Qs  of the source function is also modeled using a cubic GCF. For the presented 

example, the best estimate for its single parameter (optimized using RML) is  

51.3 10sθ
−= × .  This information is used to estimate the source release history (eq. (7) - 

(9)). Its basis functions are  [ ]X 1 ts
 
  ====  , where  [ ]1   is an [ 1]m×  vector of ones and 

the elements of t 0,1,..., 300=  correspond to the discretized times of the release history. 

We then form a second sensitivity matrix H for the estimation points x, by replacing the 

measurement locations ix
∗  with estimation locations xi in equation (24). The resulting 

estimated plume distribution z�  and its covariance sHV HT�  are illustrated in Figure 3.2. 

Figure  3.2: Example 1 - Homogeneous one-dimensional plume. Lines represent best 

estimates; shaded areas represent 95% confidence intervals. 
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The IFM best estimate fluctuates around the actual plume while reproducing all of the 

measurements to within the prescribed measurement error. The plume samples were all 

taken 30 time units after the modeled contamination event ceased; however, the constant 

flow remained as before. Consequently, uncontaminated water flowed in from the left 

side of the aquifer. Thus, a significant concentration around x ≈ 0 is physically nearly 

impossible according to the transport model. For this reason, IFM's confidence intervals 

vanish there. 

Transport-enhanced kriging 

In this third approach, we estimate the release history of the point source as described in 

Section 4.3.  We then use the concentration covariance structure Qz  together with the 

inverse modeling results to estimate the plume distribution according to eqs. (14) - (16).  

Results are presented in Figure 3.2. 

With 11 available measurements, and no significant measurement error ( 610Rσ
−= ), all 

three methods do reasonably well in reproducing the true (unknown) concentration 

distribution throughout the domain. At several points, the KT and IFM curves deviate 

noticeably from the actual plume, whereas the TrEK estimates remain closest to the 

actual distribution. The confidence intervals show that uncertainty decreases close to 

measurement locations for all methods. For any given point, the transport-enhanced 

kriging (TrEK) has the lowest uncertainty because it combines the information used in 

KT and IFM.  All methods yield reasonable estimates of uncertainty, in the sense that the 
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real plume falls within the 95% confidence intervals in most areas. However, the TrEK 

estimate yields the most accurate representation of the true plume distribution. 

4.2 Example 2: Two-dimensional heterogeneous aquifer 

In this example, a contaminant is released into a deterministically heterogeneous confined 

aquifer (Figure 3.3a). The concentration of the point source located at  

( )1 10,  260x y= =   is variable in time and is described by: 

 
2 2( 850) ( 1700)

( ) 1.4 exp 1.1exp
56000 13333

t t
s t

   − −   = − + −
      

 (25) 

The resulting plume is measured at n = 12 locations (Figure 3.3b), to yield the 

observations z∗ . A normally-distributed random error, with a variance of  2 610Rσ
−=  , 

was added to these measurements. 

 

Figure  3.3: Example 2 - Heterogeneous two-dimensional aquifer. (a) Hydraulic conductivity field, (b) 

Simulated plume and measurement locations. All quantities are dimensionless. 

The conductivity field for this aquifer is taken from Michalak and Kitanidis [2004a]. A 

constant head difference was imposed between the left and right boundaries of the 
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aquifer, inducing flow from left to right. On the top and bottom are zero-flux (no flow) 

boundaries. MODFLOW-2000 [Hill et al., 2000] is used to calculate the corresponding 

flow field. 

The numerical transport model MT3DMS [Zheng and Wang, 1999] is used in 

implementing IFM and TrEK to determine the effect of a unit concentration pulse on 

field concentrations. A short pulse is released, and the resultant concentrations are 

sampled repeatedly on a grid of 16 × 62 locations, at 188 consecutive times, 

corresponding to the discretization of the source release history s . Thus, although the 

transport model is run only once, it effectively yields the required sensitivities for all 

times of the release history. The concentrations measured at each time step are used to fill 

one column of the sensitivity matrix H . 

We use a typical 10:1 anisotropy [e.g. Delleur, 1998] for the kriging estimation, 

corresponding to the modeled ratio of longitudinal (0.347) to transverse dispersivity 

(0.0347). Note that only the ratio of the dispersivity values is needed to define the kriging 

anisotropy [Chilès and Delfiner, 1999]. Using the measurements z∗ , covariance 

parameters are optimized both for the source function and for the measurement space 

using cubic GCFs, yielding 81.3 10sθ
−= ×  and 91.4 10zθ

−= × , respectively. Note 

that zθ  is estimated in a transformed coordinate system, in which the y-coordinate was 

stretched to account for anisotropy. 
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Figure  3.4: Example 2 - Results. (a) Kriging with a trend best estimate, (b) Inverse/forward modeling 

best estimate, (c) Transport-enhanced kriging best estimate, (d) Kriging with a trend uncertainty, (e) 

Inverse/forward modeling uncertainty, (f) Transport-enhanced kriging uncertainty. All quantities 

are dimensionless; uncertainties represented by standard deviation. 

As in the previous example, KT, IFM and TrEK are used to estimate the simulated 

plume. The KT interpolation (Figure 3.4a) reproduces the measurements, but is unable to 

represent the true shape of the plume, and its uncertainty (Figure 3.4d) grows quickly 

away from measurement locations. The IFM method reproduces the plume much more 

precisely (Figure 3.4b), and yields a substantially lower uncertainty (Figure 3.4e). 

Contrary to KT, the uncertainty decreases with increasing distance from the center of the 

plume. Finally, the TrEK solution (Figure 3.4c) is very similar to the IFM solution, but 

slightly better. The uncertainty is always lowest relative to KT and IFM. 
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Figure  3.5: Example 2 - Actual and estimated source release history. 

Figure 3.5 shows the recovered source function (eq. (8)) for this example and its 

confidence intervals (eq. (9)). With only 12 concentration measurements, the best 

estimate of the release history differs from the true loading substantially, and the 

uncertainty associated with the estimate is large. This demonstrates the strongly 

underdetermined nature of this inverse problem (12 data points are used to estimate the 

188 points of the source function). Note that the estimated source release history is still 

accurate because the true function lies within the uncertainty bounds of the estimate.  

Most interestingly, however, even with a poor estimate for the source function, the IFM 

and TrEK methods reproduce the true plume very well (Figures 3.4b, c).  This is due both 

to the fact that (i) the nature of the flow and transport in the aquifer provides a strong 

constraint on the possible plume distributions, and that (ii) the forward problem of 

contaminant transport is a well-posed problem, such that the resulting plume distribution 
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is unique for a given release history and relatively insensitive to small uncertainties in 

this release [Sun, 1994]. Therefore, even in cases where the measurement network is not 

sufficient to constrain the source release history, incorporating information on the flow 

and transport field leads to significant improvements in the ability to estimate the spatial 

distribution of the contaminant plume. 

4.3 Sensitivity analyses 

Sensitivity analyses were performed to investigate the effects of increased measurement 

errors, correlated model-data mismatch errors, and sparse sampling networks on the 

performance of the proposed methods.  The sparse network example is also repeated for 

multiple times after the release, to draw conclusions about how the methods behave for 

plumes that have undergone different degrees of transport and mixing. 

Measurement errors 

In the first sensitivity test (Figure 3.6), we use a similar setup to that of Example 1, but 

introduce a measurement error of σR = 0.01. The cubic GCF parameters become  

68.9 10sθ
−= ×  and 86.5 10zθ

−= × . The best estimates are now conditioned to 

imperfect measurements, rather than to the actual plume, where this error can represent 

instrument error and/or uncorrelated errors associated with the transport model.  For this 

case, as expected, the confidence intervals are wider relative to the case with negligible 

measurement error, especially near the measurement locations. TrEK again provides the 

most precise plume estimates. 
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Figure  3.6: First sensitivity analysis - Example 1 with normally distributed measurement errors with 

standard deviation of 0.01. 
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Figure  3.7: Second sensitivity analysis - Example 1 with sparse sampling network of 8 equally-spaced 

measurements, at three different times.  Note that the range of the abscissa is different in different 

subplots. 

Repeated sampling in a sparse sampling network 

We again use the setup described in Example 1, but take measurements at only eight 

locations, to aggravate the ill-posedness of the problem (now only 8 measurements are 

used to estimate 301 points). We sample this plume as it evolves over time.  For T = 330 

(Figure 3.7a), this sparse network results in poorer best estimates and wider confidence 
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bounds for all methods. Note that the actual plume is still contained within the confidence 

bounds. At later times, T = 500 (Figure 3.7b) and T = 1500 (Figure 3.7c), the estimated 

plumes are closer to the actual plume, because the plume becomes smoother with time. 

This makes any kind of sparse-network interpolation easier, because these methods tend 

by their nature to yield smooth estimates. For T = 500, the KT confidence intervals are 

similar to those for T = 330, but for IFM and TrEK they decrease considerably. This 

occurs because the transport information yields more precise estimates as time lapses, 

because the effects of additional mixing mitigate the effects of the uncertain release 

history. At T = 1500, the plume is longer and the measurement network spans a larger 

area. Therefore, the distance between adjacent measurement locations is larger, which 

increases the KT uncertainty.  The IFM and TrEK confidence intervals, on the other 

hand, are narrower owing to the degree of mixing implied by the flow and transport 

model. After a long time, the actual plume becomes very smooth as a result of prolonged 

dispersion, and the three best estimates reproduce it very well and are almost 

indistinguishable (Figure 3.7c). At this large time, the accuracy of the kriging estimate is 

improved due to the smoothness of the plume, whereas the IFM and TrEK estimates take 

advantage of this feature as well as the diffusive nature of the transport process. 

Correlated model-data mismatch error 

If transport errors are present, then measurements cannot be reproduced perfectly, and 

this error is often parameterized as an additional measurement error. Recall that the first 

component of the inverse model objective function (eq. (6)) requires the forward model  

H s∗   to reproduce the measurements z∗  to within an error with covariance R. Previously, 
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this covariance matrix was modeled as a diagonal matrix, representing only independent 

measurement errors, with no cross-correlated errors. Non-zero off-diagonal terms in R 

imply that errors at certain points affect the values at other points. These effects can be 

interpreted as spatially-correlated transport errors; hence we repeat Example 2, replacing 

the uncorrelated R matrix with a cubic GCF with  1010θ
−= , to investigate the effect of 

spatially-correlated transport errors on the performance of IFM and TrEK. 

Figure 3.8 shows the results of this sensitivity analysis. As expected, the best estimates 

are less precise than in Experiment 2, yielding a smoother estimated plume distribution 

with higher uncertainty. The estimates remain accurate, however, providing a realistic 

estimate of the uncertainty associated with the plume distribution. 
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Figure  3.8: Third sensitivity analysis - Example 2 with spatially-correlated model-mismatch error 

matrix R. (a) Inverse/forward modeling best estimate, (b) Transport-enhanced kriging best estimate, 

(c) Inverse/forward modeling uncertainty, (d) Transport-enhanced kriging uncertainty. All 

quantities are dimensionless; uncertainties represented by standard deviation. 

5. Discussion 

In the presented examples, the IFM and TrEK methods are shown to be robust, providing 

good estimates under a variety of conditions. Kriging with a trend, in contrast, is strongly 

dependent on measurement locations. The main reason behind this is that the new 

methods take advantage of transport information within the aquifer. IFM and TrEK only 

allow solutions which are feasible in terms of the physical transport process. This is 

especially advantageous in heterogeneous formations (Example 2), in which the 

measurement-based covariance function cannot capture small-scale variability. In KT, the 

estimate reverts to an estimated trend away from measurement locations. It is intuitive 
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and well-known that for KT and other direct interpolation methods, the uncertainty is 

lowest at the measurement locations, and increases with distance from them. In contrast, 

for IFM the highest uncertainties can sometimes be found directly downgradient from the 

source location (see Example 2), because that is where any uncertainty in the recovered 

source release history has the most dramatic effect on concentrations. In the transverse 

direction, the contaminant concentration approaches zero with increasing distance, with 

little sensitivity to the source magnitude. The consequence is that if monitoring wells 

were to be drilled around the expected "hot spots" of the contamination, KT and IFM 

would complement each other: under certain circumstances, the former would have more 

precise predictions in areas of high concentrations, while the latter would more accurately 

predict the concentrations farther away. Thus, careful implementation of the TrEK 

method takes advantage of the best features of the other two approaches. 

Interestingly, although a sparse measurement network can lead to high uncertainty in the 

recovered contaminant release history, the process of forward-modeling often mitigates 

this problem (Figure 3.5). This indicates that, although the sparse measurements are not 

sufficient to recover the source in some cases, the information provided by the flow and 

transport model provides an additional constraint that results in precise estimates of the 

current contaminant distribution. The flow regime in an aquifer and the contaminant 

source location provide a strong constraint on the possible distributions of plumes 

emanating from the source. In addition, groundwater contaminant transport is a 

dispersive process and consequently there are limits to what can be learned about the 

history of contamination from measurements of a plume's present spatial distribution 
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[Skaggs and Kabala, 1998]. However, this dispersion is also the reason that the results of 

the forward model are relatively insensitive to the details of the release history, i.e. for a 

given transport model, large variations in the release would cause relatively smaller 

variations in the plume. Thus, the additional constraint on the plume comes not only from 

the estimated release history, but also from the transport information itself. As a result, 

plumes can be estimated accurately even when the measurement network is not sufficient 

to strongly constrain the contaminant release history. 

These examples used deterministic transport models, with no inherent uncertainty. Other 

sources of uncertainty, such as the sparseness of the observation network, measurement 

errors, small-scale variations in concentrations, and model-data mismatch contributed to 

the uncertainty associated with the recovered source release history and plume 

distribution (Figures 3.2, 3.6, 3.7a).  In field situations, incomplete characterization of the 

subsurface would lead to additional uncertainty in the flow and transport model.  This 

uncertainty would need to be quantified and included in the IFM and TrEK plume 

distribution estimates, such that the estimated plume reflected the information content of 

the available model and measurements.  In this Chapter, the uncertainty associated with 

the flow-and-transport model is included in the variance (or covariance in the third 

sensitivity analysis) specified in the model-data mismatch matrix R. 

6. Conclusions 

The methods presented in this Chapter combine geostatistical kriging and inverse 

modeling approaches in developing improved tools for estimating the spatial distribution 
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of contaminant plumes. The methods reconstruct the plume accurately with low 

uncertainty. In addition, IFM and TrEK can often alleviate the effects of measurement 

errors by using transport information to eliminate values that are not physically feasible. 

The TrEK method is most robust because it assimilates information about the transport as 

well as the spatial covariance structure of the measured concentrations. In cases where 

such a covariance structure is not available or not credible (e.g. measurements were taken 

in different hydrogeological zones), IFM would be the preferred choice. 

Several assumptions which were made in this Chapter to more easily focus on developing 

the new plume estimation methods, can be relaxed under certain conditions. First, while 

the presented sample applications all assumed a single time-varying point source of 

contamination, the methods can easily be adapted to multiple point sources [e.g. Butera 

and Tanda, 2003], or to historical plume distributions [e.g. Michalak and Kitanidis, 

2004a], as is done in Chapter 4. Second, it was assumed that advection and dispersion are 

the only active processes in the transport model z Hŝ� ==== , making it linear with respect to 

the release s. This formulation could also accommodate first-order reactions. For higher-

order/nonlinear reactions, a quasi-linear approximation could be used under certain 

conditions, detailed by Kitanidis [1995]. 

It is interesting to note that, although we do not enforce nonnegativity in the estimated 

plume distribution, the IFM and TrEK methods seldom yield estimates with negative 

concentrations, even though the estimated source function does sometimes exhibit 

negative concentrations. Nonnegativity-enforcing constraints could be explicitly imposed 
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[e.g. Snodgrass and Kitanidis, 1997; Michalak and Kitanidis, 2003, 2005] to further 

improve plume interpolation using these methods. Such a modification would be 

expected to have a modest effect on the best estimates, but could have a more significant 

impact on the estimated uncertainty. 

We presented this work in a geostatistical framework, but the developed principles could 

potentially also be applied to other inversion methods.  For example, the inversion of the 

release history could theoretically be performed using the Minimum Relative Entropy 

approach [Woodbury and Ulrych, 1996], with the rest of the method unchanged, as long 

as the full covariance of the source release history were calculated. 

Finally, in the examples presented here, a deterministic transport field was used, and the 

location of the source was known.  In field situations, these parameters may be uncertain, 

which would result in higher uncertainty in the estimated plume distribution, as 

demonstrated in the third sensitivity analysis. Moreover, some parameters may be 

unknown, which would require estimating them before, or while, estimating the plume. 

The next Chapter focuses on incorporating these additional sources of uncertainty within 

the IFM framework to further enhance the applicability of this method in field situations. 
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Chapter 4  
Simultaneous Estimation of Hydraulic Conductivity and 

Contaminant Concentration Using Geostatistical 
Inverse/Forward Modeling 

 

1. Introduction 

In the preceding Chapter, two plume estimation methods were developed that integrate 

flow and transport information into the process of plume interpolation in a geostatistical 

framework. While these methods possess many advantages, one limitation mentioned is 

the requirement to have a full flow-and-transport model, which is not realistic in a field 

setting, because many parameters cannot be directly measured throughout the aquifer. 

These parameters must somehow be estimated, a process which introduces uncertainty 

into the flow-and-transport model. 

In this Chapter, Inverse/Forward Modeling, which was developed in Chapter 3, is 

generalized to simultaneously estimate some of those missing parameters. The objective 

is thus to explore and develop a method of incorporating transport model uncertainty into 

IFM. More specifically, the method proposed in this Chapter extends the approaches 

presented in Chapter 3 to the case where flow and transport information is not perfectly 

known, which is the case most of interest for field applications. While the forthcoming 

analysis could be applied to a variety of flow and transport parameters, the examples in 
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this Chapter focus on estimating the hydraulic conductivity distribution K. Regarding the 

transport model, this Chapter will demonstrate the ability of IFM and TrEK to use a 

historical plume as an inverse model (instead of a known point source). This capability 

has an important practical implications, because very often the source(s) of a plume 

cannot be located, or cannot be modeled because lack of geostatistical structure. 

There are many sources of uncertainty in kriging interpolation and in other plume 

estimation methods. First, the input data (e.g. concentrations) often have measurement 

error. Second, the sparsity of data often encountered in subsurface hydrology leads to 

many possible solutions, which are all consistent with the data. Since there is only one 

true solution among these, this contributes to the uncertainty. Finally, there may be errors 

in the physical or statistical model used to represent the problem, or in its parameters. In 

its basic forms, kriging accounts for both the first and second sources of uncertainty 

through the estimation variance. However, model parameter errors are not routinely 

considered (they do not form a part of the commonly-used estimation variance).  

Similarly, in geostatistical inverse modeling of solute concentrations [e.g. Snodgrass and 

Kitanidis, 1997], these two sources of uncertainty are considered, but model uncertainties 

are not always directly taken into account. In fact, in IFM and in TrEK, as well as in 

other geostatistical inverse-modeling applications, the transport model h(s) and the 

associated sensitivity matrix H are often assumed to be fully known. While this 

assumption aids in solving theoretical problems, it is not very realistic for field 

applications. The model-data mismatch covariance, often denoted R, encompasses both 
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the measurement error associated with collecting the data and any random numerical or 

conceptual inaccuracies associated with the evaluation of the response function h(s). The 

zero-bias error term ε  (whose variance-covariance matrix is R) is routinely used to 

represent the aggregate effect of all errors and uncertainties: 

 ( )= +z h s ε  (26) 

and can represent errors from both z (i.e. measurement errors) and h(s) (model errors). 

The covariance function R is most commonly modeled as a diagonal matrix, i.e. 

 2
Rσ=R I  (27) 

where 2
Rσ  is the variance of the data-model mismatch error and I is an n × n identity 

matrix (n is the number of data, or observations). This implies that errors are not spatially 

correlated, which is not always an optimal assumption for errors or uncertainties in the 

model h(s). Alternative methods which more directly address uncertainty associated with 

model parameters may be more efficient. Kitanidis [1995] mentions two such 

alternatives, but does not carry out the algebra into full detail. The first (restricted 

likelihood) is to average the conditional probability of the observations over all possible 

values of the parameters, as is done with the drift coefficients β. The second (maximum 

likelihood) is to minimize the objective function with respect to the parameters, along 

with the covariance parameters θ. However, Kitanidis [1995] advises the use of only few 

such parameters (“far fewer than the observations”), so the treatment he suggests for 
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them is not applicable to a full hydraulic conductivity field distribution, as in the 

applications presented later in this Chapter. 

Butera and Tanda [2003] assess the sensitivity of the geostatistical inverse modeling 

approach to erroneous flow and transport parameters, and conclude that this uncertainty 

has a significant impact on the contaminant source estimates. However, they do not 

suggest a way to incorporate uncertain transport parameters in their analysis. Nowak and 

Cirpka [2004] generalize the geostatistical inverse modeling approach to handle uncertain 

trend coefficients (β in their notation and in the notation of this work), a generalization 

that could also hold for other kriging and cokriging applications. Nowak and Cirpka 

[2006a] extend the approach to include the generalized cases of uncertain prior 

knowledge about structural parameters (i.e. covariance and generalized covariance 

function parameters). Sun et al. [2006] present a generic framework for inverse modeling, 

using a Constrained Robust Least Squares estimator. While their method provides near- 

optimal solutions to source identification problems under model uncertainty, it is 

deterministic and thus does not yield estimates of the uncertainty associated with inferred 

sources. This poses several difficulties, mainly the inability to quantify the precision of 

the obtained solution, and thus assess its quality. Moreover, such inverse-modeling 

approaches cannot be used with IFM and TrEK, which require a variance-covariance 

matrix for the forward-modeling step. 

To the best of our knowledge, uncertainty in the transfer function h(s) has not been 

previously modeled in geostatistical inverse modeling applications to solute transport. 
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For the contaminant source identification problem, model errors can be caused by 

oversimplified model structure, inexact model parameters, and numerical errors (e.g., the 

errors caused by numerical dispersion or numerical discretization). Sun et al. [2006] 

observe that in many studies, the effect of model error was only evaluated through ad hoc 

sensitivity analyses.  

The objective of the work reported in this Chapter is to enable the application of IFM and 

TrEK in cases where the transport model is not fully known, and has parameters that still 

require estimation. A method is presented that can integrate several sources of data as 

input, and estimate more than one unknown quantity simultaneously. The method 

combines quasi-linear geostatistical inversing [Kitanidis, 1995] for recovering a set of 

parameters (hydraulic conductivity in the examples below), linear inversing [Snodgrass 

and Kitanidis, 1997] for recovering the history of contamination, and Inverse/Forward 

Modeling (IFM) [Shlomi and Michalak, 2007] for estimating the spatial distribution of a 

contaminant plume. Specifically, measurements and expected correlations of 

concentration, hydraulic head, and hydraulic conductivity are used along with a flow-

and-transport model to infer both hydraulic conductivity, K, and the extent of the present-

day contaminant plume throughout the study area, s. 
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2. Methodology 

The plume estimation method developed in this Chapter could be seen as a generalized 

nonlinear variant of IFM, which was described in the previous Chapter. IFM consists of 

several steps: 

1. A transport model is used to construct a Jacobian matrix H  whose elements 

correspond to the sensitivities of n × 1 measurements z (typically, 

concentration measurements at the current or previous times) to an earlier 

state of the system s (ms × 1).The state of the system could be, for example, a 

temporal release history of a contaminant from a point source [Shlomi and 

Michalak, 2007], or the spatial distribution of a contaminant plume [Michalak 

and Shlomi, 2007].  

2. Geostatistical inverse-modeling is performed to estimate/infer s, using the 

Jacobian matrix H  and plume concentration measurements z. 

3. A second Jacobian matrix H�  is constructed and used to forward-model the 

earlier state s to the estimation space eC , resulting in a plume estimate Ĉ . The 

elements of H�  correspond to the sensitivities of the estimation space eC  to 

the earlier state s. The uncertainty 
ŝ
V  associated with ŝ  is also propagated to 

the plume space, defining a corresponding plume uncertainty. 

Shlomi and Michalak [2007] assumed that the transport model was fully known, and only 

solved for the states of the system, i.e. the historical and present concentration 

distribution of the contaminant. In this Chapter, the method is generalized to 
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accommodate missing or incomplete transport parameters r (mr × 1), which are estimated 

simultaneously.  Here parameters, as opposed to state, pertain to quantities which can be 

assumed not to change over time as the transport model is used, such as hydraulic 

conductivity, porosity, or dispersivity. More specifically in the applications below, the 

hydraulic conductivity K is estimated along with contaminant plume concentration. The 

changes in each of the steps of IFM mentioned above, from the previous Chapter to this, 

can be summarized as follows: 

1. The Jacobian matrix H  now contains additional components with elements that 

correspond to the sensitivities of observations to the missing parameters r. Since r 

is estimated simultaneously with s, a new H  (which is a function of r) has to be 

created at each iteration. 

2. Inverse-modeling is carried out iteratively (due to the nonlinearity of the function 

relating the estimated parameters to the available observations) to estimate both 

the earlier state s and the missing parameters r, rather than in one step to estimate 

only s.  

3. The forward-modeling step is performed only after the iterations above have 

converged. A new Jacobian matrix H�  can only be formed at this point (using the 

final estimate r̂  of the missing parameter from the previous step), prior to 

forward-modeling of the earlier state s. 
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2.1 Step 1: Construction of Jacobian matrices 

Shlomi and Michalak [2007] and Michalak and Shlomi [2007] were able to construct 

both of their Jacobian matrices ( H  and H� ) before performing the next steps, because the 

transport model was fully known. However, this cannot be done when one or more 

parameters r are unknown. Because the relationship between flow and transport 

parameters r to available observations is typically nonlinear, the system must be solved 

iteratively, with a new Jacobian being defined at each iteration, using the most recent 

estimate of r.  

Note that the Jacobian matrices can be composed of several parts, corresponding to the 

various types or times of measurements, e.g. 
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 (28) 

corresponds to the case in which there are measurements of concentrations C (at two 

different times t = 1 and t = 2), log-conductivity log[ ]K , and head Φ. 
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2.2 Step 2: Simultaneous quasi-linear inverse modeling 

After the Jacobian matrix H  is constructed at the previous step, inverse modeling is 

performed to simultaneously estimate the previous state of the system s and the missing 

parameters r. As opposed to Shlomi and Michalak [2007] and Michalak and Shlomi 

[2007], this study uses a quasi-linear variant of geostatistical inverse modeling [Kitanidis, 

1995] described below. 

Geostatistical inverse modeling is based on Bayes’ Theorem, which, for the case 

examined here, can be written as: 

 ( )
( ) ( )

( )
| , ' ,

" , |
p p

p
p

=
z s r s r

s r z
z

 (29) 

where z is a vector of available measurements or observations, such as contaminant 

concentrations, hydraulic head, and hydraulic conductivity. The right-hand-side has three 

components: 

1. p(z|s, r) is the likelihood of the observations for given state and parameter vectors, 

represented by a multivariate normal distribution with mean h(s,r) and covariance 

matrix R: 

 11
( | , ) exp ( ) ( )

2
Tp − 

∝ − − −  
z s r z h(s,r) R z h(s,r)  (30) 

The model function h(s,r), or “response” [Kitanidis, 1995] maps the state vector s 

using parameter vector r onto the observation space z, through the use of a 

numerical or analytical contaminant transport model: 



 

 75  

 = +z h(s,r) ε  (31) 

where ε  represents an unbiased model-data mismatch error with covariance R. 

For parameters such as hydraulic conductivity, which are not generally linearly 

proportional to observations z, this is an iterative process which requires a first-

order approximation about a known point ( , )i ih s r  (namely the previous iteration 

i):  

 ( , ) ( , ) ( ) ( )
i i

i i i i

∂ ∂
+ − + −

∂ ∂r s

h h
h s r h s r r r s s

r s
�  (32)  

Defining the blocks of the Jacobian matrix  

 
i i

s r

∂ ∂

∂ ∂s r

h h
H H

s r
� �  (33) 

 the model-data mismatch −z h(s,r)  at the ith iteration can be expressed as  

 r i s i− −z H r H s�  (34) 

where ( , )i i r i s i− + +z z h s r H r H s� � , and the likelihood of the measurements z can now be 

written as:  

 ( ) ( )11
( | , ) exp

2

T

s r s r
p − 

∝ − − − − −  
z s r z H s H r R z H s H r� �  (35)  

2. p’(s) is the prior probability density function of the state s, with E[s]=Xsββββs  as the 

geostatistical model of the mean, and ( )sQ θ  as its ms × ms geostatistical 

covariance matrix, with parameters θθθθ. This distribution is also modeled as 
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multivariate Gaussian:  

 ( ) ( ) ( )11
' exp

2

T

s
p β β− 

∝ − − −  
s s X Q s X  (36)  

Similarly, ( )'p r  is the prior probability density function of the parameter vector, 

with [ ] r rE β=r X  as the geostatistical model of the mean, and rQ  (mr × mr) as the 

covariance matrix. The full joint distribution ( )' ,p s r  is thus proportional to: 

 
1

1
exp

2

T

s s s s s

r r r r r

β β

β β

−            
 − − −           
             

X 0 Q 0 X 0s s

0 X 0 Q 0 Xr r
 (37)  

Note that this setup assumed no a priori covariance between the state s and the 

parameters r. 

3. The distribution ( ) ( ) ( )| 'p p p d d= ∫∫
s,r

z z s,r s,r s r  of the observations is not 

dependent on the state function s or parameters r and therefore can be omitted 

from the minimization of the objective function in the next step. 

Maximizing the joint conditional probability ( )" , |p s r z  is equivalent to minimizing its 

negative log, and the objective function can therefore be expressed as  

 

[ ] [ ]1
, , ,

1

T

s r s r

T

s s s s s

r r r r r

L β β

β β

β β

−

−

      
= − −      

      

           
+ − −           

           

s rs r

s s
z H H R z H H

r r

X 0 Q 0 X 0s s

0 X 0 Q 0 Xr r

� �

 (38) 
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The system of linear equations representing the solution of this minimization is a 

cokriging system with the state vector, parameter vector, and available measurements all 

being treated as correlated random fields:  

 
( )

T T

T T

 +  Λ  
=     

     

HQH R HX HQ

XMHX 0
 (39)  

where 

 

[ ]s r

s

r

s

r

s

r
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 
=  
 

 
=  
 

Λ 
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Q 0
Q
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 (40)  

This system is solved at each iteration for all coefficients ΛΛΛΛ and Lagrange multipliers M, 

yielding the following best estimates, which are used as input to the next iteration:  

 1 1ˆ ˆ
i s i r+ += Λ = Λs z r z� �  (41) 

The variance-covariance matrix of the estimated errors of s and r is 

 1
T T

i i+ = − Λ −V Q QH XM  (42) 

2.3 Step 3: Estimating the plume 

When these iterations have converged, the plume at the required time can be estimated 
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using the last step of IFM, i.e. the forward model, which simply maps the estimate of the 

state at the last iteration ˆ
ends  forward in time to the plume, using the model matrix 

eC e
s

∂
=

∂

C
H

s
� , which is the sensitivity of the plume at the required estimation time eC to the 

contaminant history s. The resulting best estimate is  

 ˆ ˆeC

s end=C H s�  (43) 

Note that while the 
ic sn m×

 
model matrix iC

sH  maps s to the 
tcn  concentration 

measurements at time t, the (N × ms) matrix eC

sH�  maps s to the entire domain, i.e. to all of 

the N points at which we wish to estimate the concentration of the contaminant. 

Similarly, the uncertainty associated with the estimated plume is mapped from the (ms + 

mr) × (ms + mr) inversion uncertainty 

 ss sr

end

rs rr

 
=  
 

V V
V

V V
 (44) 

as obtained in the last iteration using Equation (42) to the current plume concentration 

space. Since we are generally interested in mapping the overall variance of the estimated 

plume distribution, i.e. the uncertainty originating from the inversion of the 

concentration, as well as the uncertainty originating from the inversion for the hydraulic 

conductivity, we use the N × (ms + mr) forward model  

 e e eC C C

s r
 =  H H H� � �  (45) 
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for projecting the uncertainty forward in time, resulting in the N × N variance-covariance 

matrix:  

 
T

e e eC C C

end=V H V H� �  (46)  

To inspect the separate individual contributions to the plume uncertainty of the 

uncertainty in s and that in r, we can compare the diagonal elements in 

 
T

e e eC C C

s s ss s=V H V H� �  (47)  

and 

 
T

e e eC C C

r r rr r=V H V H� �  (48) 

respectively. Note that while the diagonal elements of both of these expressions should be 

smaller than those of eC
V , their sum does not generally add up to eC

V , because of the 

cross-correlations between the s- and r-uncertainties. This analysis may not be entirely 

accurate, as this linearized model does not completely represent the uncertainty. 

However, we can use it as a qualitative tool to assess the sources of uncertainty.  

2.4 Sequential estimation of hydraulic conductivity and plume 
concentration 

One alternative to this new method would be a more conventional three-step process. 

First, kriging or inverse-modeling could be performed to estimate the hydraulic 

conductivity [e.g. Feehley et al., 2000]; then, one might treat the results of this first step 

as given, and proceed as in Shlomi and Michalak [2007] or Michalak and Shlomi [2007], 
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with linear inverse-modeling for finding the historical plume; finally, the present-day 

plume could be found using forward modeling. However, such an approach might not 

account for the uncertainty resulting from estimating the hydraulic conductivity, when 

calculating and presenting the overall uncertainty, because IFM and TrEK, and more 

generally geostatistical inverse modeling, do not account for transport model errors. This 

approach is used in the examples below for comparison to the proposed approach. 

3. Applications 

Two sample applications of the method to a synthetic aquifer are presented. Both 

represent the estimation of the hydraulic conductivity along with the spatial distribution 

of a plume using several types of measurements. In the first application, the geostatistical 

inverse modeling approach presented above is used to find the state of the plume at an 

earlier time, along with the aquifer's hydraulic conductivity. In the second application, the 

same types of measurements are used to characterize the temporal release history of a 

contaminant from a known point source, along with the conductivity. In both cases, after 

the simultaneous inverse modeling is performed, the forward model (which includes the 

estimated hydraulic conductivity) is used to project the plume to the present time. For 

each case, both the best estimate and the estimated uncertainty are presented. 

Two hypothetical examples were chosen to illustrate and verify the capabilities of the 

methods in a setup where the true conductivity and concentration distributions are 

known. For both examples, we adopt the synthetic two-dimensional confined aquifer 

previously designed and used by Michalak and Shlomi [2007]. The conductivity field in 
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this aquifer (Figure 4.1a) was generated by Michalak and Kitanidis [2004a]. The 

hydraulic head distribution (Figure 4.1b) was obtained using the numerical package 

MODFLOW-2000 [Hill et al., 2000] on a 20 × 43 cell grid. All four boundary conditions 

of the flow model's rectangular domain were defined as constant head, inducing an 

average net flow from northwest to southeast. 

 

Figure  4.1.  a) True hydraulic log-conductivity field used for all examples in Chapter 4 [m/s] 

b) Resulting hydraulic head throughout the aquifer[m] 
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The groundwater flow in these examples was assumed steady, and not affected by the 

contaminant transport. It was assumed that no additional sources of contamination 

existed, other than the historical plume (in Example 1) and point-source (in Example 2). 

As opposed to Shlomi and Michalak [2007] and Michalak and Shlomi [2007], the 

conductivity and head field were assumed to be unknown, except in some cases at several 

measurement locations. Rather than using the hydraulic conductivity K itself, the natural 

logarithm of the hydraulic conductivity r = log[K] is generally used for geostatistical 

estimation because of the empirical evidence that K is log-normally distributed [e.g. 

Freeze, 1975]. r was thus treated as a regionalized variable representing the log-hydraulic 

conductivity distribution in the aquifer. The true log-hydraulic conductivity distribution 

was numerically generated using a Gaussian covariance model 

 
2

2( ) exp
h

C h
l

σ
  

= −     
 (49) 

with sill σ² and correlation length l parameters 

 2 1, 100l mσ = = . (50) 

with an anisotropy ratio of 5, such that the length parameter along the y-axis was 20 m.  

The other unknown for which inverse modeling is performed is s, the historical 

contaminant concentration. More specifically, in the first example, s represents the spatial 

distribution of the plume at an earlier point in time, T = 0. This could correspond, for 

example, to the earliest time at which the existence of the plume was known. In the 
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second example, s represents the concentration of a contaminant release from a known 

point source as a function of time. 

In both applications, we analyze four distinct cases, with measurements of, respectively: 

i. plume concentration C ( 1cn × ), hydraulic conductivity K ( 1rn × ), and head Φ (

1nφ × ) 

ii. plume concentration C ( 1cn × ) and head Φ ( 1nφ × ) 

iii. plume concentration C ( 1cn × ) and hydraulic conductivity K ( 1rn × ) 

iv. C ( 1cn × ) only, with exhaustive knowledge of the hydraulic conductivity, 

corresponding to a case where IFM is applied as in Chapter 3, and only the plume 

concentration is estimated. 

3.1 Example 1: Estimation of historical plume and present plume 
from repeated observations on a fixed grid 

The first example involves the estimation of a contaminant plume distribution in a 

confined aquifer at the most recent of several sampling events, occurring at 600 day 

intervals (Figure 4.2). At each time, 21 concentration samples were taken on a regular 

grid of 3 × 7 measurements. Hydraulic head and conductivity (Figure 4.1) were measured 

at the same locations. 
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The actual contaminant plume at T = 0 (Figure 4.3), which developed to the plume we are 

estimating at T = 2400, was previously used by Michalak and Shlomi [2007]. Its 

covariance structure was assumed to follow an exponential covariance function 

 2( ) exp
h

C h
l

σ
 

= − 
 

 (51) 

with coefficients which were calculated using the full plume distribution and found to be: 

Figure  4.2 Example 1: Spatial and temporal evolution of plume used in sample applications.  The 

black x's indicate sampling locations.  Samples were taken at (a) T = 1200, (b) T = 1800, and (c) T = 

2400.  Concentrations are expressed in ppm. 
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 2 21.49 , 84ppm l mσ = = . (52) 

In this example, measurements of all types were assumed to have small independent and 

identically distributed (i.i.d.) errors drawn from normal distributions with mean zero and 

variance 10-5 ppm2  for concentration, variance 10-2 m2 for head, and variance 10-5 for log-

conductivity. 

The sensitivity matrix sH  is generally composed of three distinct components in this 

example, which are the sensitivities of the various measurement types to the unknown 

historical concentration s (throughout the domain), i.e. the plume distribution at T = 0. 

The first of these is  

 C

s

∂
=

∂

C
H

s
 (53) 

the sensitivity of measured concentration to historical concentration. This Jacobian 

matrix is calculated by repeatedly running the transport model MT3DMS [Zheng and 

Wang, 1999] and calculating the concentrations resulting from a unit concentration at 

only one model cell. For C

sH , concentrations are only calculated at nc concentration 

measurement sites; for C

sH� , concentrations are calculated at all N required estimation 

locations. This step is identical to the implementation of IFM in Chapter 3. The two other 

components of sH , 

 r

s

∂
=

∂

r
H

s
 (54) 
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and 

 s

Φ ∂
=

∂

Φ
H

s
 (55) 

are zero, because the solute was assumed not to affect flow, such that changes in the 

historical plume s would not affect log-conductivity r or head Φ.  

Similarly, the second sensitivity matrix rH also has three components. The trivial 

component pertaining to the measurements of log-conductivity 

 r

r

∂
=

∂

r
H

r
 (56) 

has zeros everywhere except at i
th column only of rows i, which correspond to a 

measurement location. This implies that any change in input log-conductivity in a 

specific model cell would result in an identical change in the apparent log-conductivity 

there, and no change at all in other cells. 

Figure  4.3. Example 1: True contaminant plume at T = 0, as simulated by MT3DMS [ppm]. 
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Figure  4.4. Example 1: Recovered plume at T = 2400 days. The left column shows the best estimates, 

and the right column shows the uncertainties, both in ppm. Concentration measurements taken at 

three times (T = 1200 days, T = 1800 days, T = 2400 days) were used in all examples. In addition, for 

the first row (a, b) head and conductivity measurements were taken (case i); for the second (c, d), 

only head (case ii); for the third (e, f), only conductivity (case iii); for the forth (g, h), the flow field 

was assumed completely known (inversion was only performed for historical concentration in this 

case, not conductivity) (case iv). The figures on the right-hand side also display the percentage of 

estimates which fall within 2σ of the true plume. 

The other two components of rH , 

 r

Φ ∂
=

∂

Φ
H

r
 (57) 

and 

 C

r

∂
=

∂

C
H

r
, (58) 
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correspond to the sensitivities of the measured head and concentration, respectively, to 

the log-conductivity. They are calculated numerically, using multiple simulations of the 

flow and transport models, respectively. 

Figure 4.4 shows the results of estimating the contaminant plume for the four cases 

outlined above. The resulting best estimate resembles the true plume (Figure 4.2c), both 

in terms of the location of the “hot spot” (where the maximum concentration occurs), and 

in terms of the plume boundary. The uncertainty tends to be higher where concentrations 

are higher, as was also described in Shlomi and Michalak [2007] and Chapter 3, due to 

the relatively high sensitivity of those areas to the historical plume. As opposed to more 

traditional geostatistical estimation methods, such as the various sorts of kriging, the 

spatial distribution of the estimation uncertainty does not depend exclusively on the 

configuration of measurement locations. Equation (46) indicates that the uncertainty of 

the plume estimate is determined by both the forward model eC
H�  and by the uncertainty 

V of the inversion (which is itself affected by H). Thus, the primary factor in determining 

the uncertainty at a location is that specific location's sensitivity to variations in the 

historical plume s, and in the log-conductivity field r, all of which are inherent in the 

sensitivity matrix H. The flow in the aquifer was such that the probability of the plume 

reaching the upper and lower boundaries of the domain was very small. For that reason, 

the uncertainty was high only in the area of the plume itself – not in the domain 

boundaries. Conversely, the sensitivities were very high directly downgradient from the 

plume's previous locations, and variations in the historical plume's estimates have a high 

impact on the current plume's estimate. 
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The next two panels (Figure 4.4c and 4.4d) were created by applying the method without 

measurements of hydraulic conductivity (case ii). The best estimate is still close to the 

true plume, but not as close as for the case where measurements of K are also available 

(Figure 4.4a and 4.4b). Since less information is available, the uncertainty is also higher. 

Several concentration measurements in Figure 4.4b are not reproduced to within the 

expected model-data mismatch error (expressed by R). A possible explanation is set forth 

in the discussion of Figure 4.5. 

In Figure 4.4e and 4.4f, the plume was estimated using measurements of hydraulic 

conductivity, but not head (case iii). Here too, the best estimate is not as good as the one 

using all measurements (Figure 4.4a), but it is still a reasonable estimate of the true 

plume (Figure 4.2c). The uncertainty seems to be less spread out here, with less high-

uncertainty areas on the boundaries than in the previous cases. Since hydraulic head 

measurements were not available here, only concentration measurements and log-

conductivity measurements were used to estimate log-conductivity, with the latter type of 

measurement being dominant in this process, making the hydraulic conductivity estimate 

similar to that which would have been obtained using ordinary kriging. To make sure that 

the best estimate and confidence intervals are realistic, we test how often the best 

estimate is within 2σ of the true plume concentration, where σ is the standard estimation 

error (the diagonal of Vend). This happens for 97 – 99% of the estimates, which is very 

close to the ideal 95%. 
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Figure  4.5. Example 1: Individual contributions of uncertainties from the s- and r- components of the 

inversion to the total plume uncertainties. (a, b) case i, (c, d) case ii, (e, f) case iii. The left column (a, 

c, e) represents forward projections of the s-component of the inversions and the right column (b, d, 

f) represents forward projections of the s-component of the inversions. The colorbar in panel e 

applies also to panels a and c; the colorbar in panel f applies also to panels b and d. 

For the sake of comparison to previous methods, we have implemented a linear 

geostatistical inversion for the concentration only, using the true conductivity field, as in 

Michalak and Shlomi [2007]. Figures 4.4g and 4.4h (case iv) show the results, which 

indicate a very good fit of the best estimate, and very low uncertainty. These are due to 

the abundance of information available in this case: exhaustive conductivity and thus 

head data are available, and the flow-and-transport models are only missing the initial 
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condition, which is retrieved using the concentration measurements at three points in 

time. All of this information contributes to constrain the result and reduce the uncertainty. 

The uncertainty in this case is not only smaller, it is also spatially distributed differently 

than in the previous cases. When the flow field was unknown, the estimation variance at 

the plume itself was very high, as was explained before. In this case, while the overall 

uncertainty is lower, it tends to be higher at the southern and eastern domain boundaries. 

This shows the large contribution of uncertainty in flow and transport parameters, 

specifically hydraulic conductivity, to the overall uncertainty. 

As mentioned above, we can also analyze the individual contributions of Vs and Vr to the 

total uncertainty (Equations (47) and (48), respectively). Figure 4.5 shows the 

contribution of uncertainty in s (first column) and uncertainty in r (second column) to the 

overall plume uncertainty. The rows in this figure correspond to cases i - iii. The first 

general impression from this figure is that the uncertainty associated with historical 

plume concentration is smoother and more evenly distributed than the uncertainty 

associated with hydraulic conductivity. The latter appears to be concentrated at the 

plume, with some peaks of uncertainty occurring occasionally. Elsewhere, the 

uncertainties from this component seem to be close to zero. The second important 

observation is that the contributions to the overall uncertainty from the s component of 

the inversion (left column) are much lower than the contributions from the r component 

of the inversion. This probably has to do with the fact that the flow field serves as a 

strong constraint on the plume, as seen in Chapter 3. This reinforces the conclusions from 

Figure 4.4h, which displayed much lower uncertainty as the flow field was completely 
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known.  The contribution of the r inversion to the plume uncertainty is the source of 

some large errors at the measurement locations. These errors might be caused by the first-

order approximation (Eq. 7) to the model h(s, r). While this approximation is usually a 

very good one locally (close to the last estimate ri), it deteriorates as ||r-ri|| increases, 

which may happen at some iterations. This issue will be further investigated in future 

work. Finally, note that as these figures represent forward-projections of the uncertainties 

into the plume space, all contributions to the total uncertainty from the s component of 

the inversion are still lowest at the west boundary, through which it is implicitly assumed 

that no contaminant originates.  

The next set of figures (Figure 4.6) depicts a simpler alternative to this new method, in 

which the inversions are performed sequentially rather than simultaneously. First, kriging 

or inverse-modeling is performed to evaluate the hydraulic conductivity; then, the results 

of this step are used in linear inverse-modeling for finding the historical plume; finally, 

the present-day plume is found using forward modeling. The elements of the Jacobian 

matrices used here for the inversion (as two block-column matrices) are the same as those 

used for the simultaneous estimation (as on matrix with two block-columns), Equations 

(53) - (58). 

The three rows of panels here correspond to cases i – iii, i.e. to the first three rows in 

Figure 4.4 and to Figure 4.5. These estimates are poorer than the equivalent ones in 

Figure 4.4, which used simultaneous estimation; while the overall input was identical, in 

these cases, the log-conductivity was estimated with less data than in the previous cases, 
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because concentration measurements was not used for the first part, i.e. estimating the 

log-conductivity. The uncertainties associated with the current plume distribution 

(column 3) may be lower than those in Figure 4.4, but they represent the projection of the 

uncertainty in s only, and ignore the impact of the uncertainty in the hydraulic 

conductivity, in effect assuming that the log-conductivity is known. This method does not 

offer a straightforward way of accounting for the total plume uncertainty, from not 

knowing the log-conductivity and from not knowing the historical concentration. 

Thus, although the method used in Figure 4.6 apparently achieved lower estimation 

variances, they do not realistically represent the estimation variance associated with this 

method. Moreover, quantitative analysis (detailed results not shown) confirms that the 

plume best estimates here are inferior to those shown in Figure 4.4, both in terms of the 

root-mean-square residuals, and in terms of the maximum residual across the domain. 

This holds true for all three cases i – iii.  Overall, this comparison confirms that the 

proposed simultaneously estimation approach outperforms sequential estimation, which 

is more akin to existing methods, for this application. 
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Figure  4.6. Example 1: Sequential estimation. (a - c) case i, (d - f) case ii, (g - i) case iii. The left 

column (a, d, g) represents the best estimates [ppm], the middle column (b, e, h) represents the log[K] 

uncertainties [log[m/s]], and the right column (c, f, i) represents the plume concentration 

uncertainties (not considering log[K] uncertainty) [ppm]. 

3.2 Example 2: Estimation of temporal release history and 
present plume from observations on a fixed grid 

The Inverse/Forward Modeling approach offers flexibility in terms of the types of 

measurements that can be used, and state vectors that can be estimated.  In Example 1, 

concentration measurements at three different times were used to recover an earlier 
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distribution of a plume as part of the estimation process; in Example 2, measurements are 

only taken at the time at which the plume is to be estimated, and the estimated state 

represents a temporal release history of contaminant from a single point source with a 

known location. 

 

Figure  4.7. Example 2: True contaminant plume distribution, as simulated by MT3DMS. 

In this example we use the same aquifer and flow model as above. However, we assume 

that the plume results from a single point source located at the center of the western 

boundary, and that this point source was active over some time interval in the past. We 

use this information to modify the inverse model for s, which now represents the 

temporal release history from the point source. We combine this inverse model with the 

inverse model for log-conductivity. 

The actual release history was assumed to be 
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which previously used by Shlomi and Michalak [2007]. We also use the same covariance 

structure, a cubic Generalized Covariance Function 

 ( ) 3
s h hθ=Q  (60) 

with 
81.3 10θ −= × , optimized using the actual release history. Its geostatistical temporal 

trend Xsββββs is modeled using a constant component and a linear component. 

The equations for this case are identical to those of Example 1. However, the sensitivity 

matrix Hs has a different meaning and is constructed differently. In this case, the Jacobian 

matrix C

s

∂
=

∂

C
H

s
 is calculated by running the transport model (MT3DMS) and observing 

the concentrations resulting from a unit release at the point source, at all model cells at 

time intervals corresponding to the discretization of the release history. Columns in Hs 

correspond to successive points in the temporal release history; rows correspond to 

measurement sites (or to estimation locations, in the case of the full eC

sH� ). 

Since the first step in this example involves recovering the temporal release history, 

Figure 4.8 shows the various release histories corresponding to the four examined cases, 

and their 95% confidence intervals based on the estimated uncertainty ssV . These cases, 

as in Example 1 above, correspond to the use of different sets of measurements (cases i – 

iv). The best estimates ŝ , for the most part, are qualitatively similar to the true release 

history s. However, due to the relatively large measurement errors, they do not replicate 

its features (e.g. its two maxima) well. Only the last case, in which the conductivity field 
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K was fully known, captures the variations in s; but even in this case they appear much 

smoothed out. 

Figure 4.8 thus demonstrates the impact of a known conductivity field in a heterogeneous 

field, and indicates that for inverse modeling, the available measurements may not be 

sufficient to recover a reasonable representation of the release history of a contaminant 

for cases where the flow model has high uncertainties. As described below, however, the 

plume estimates are significantly better than the release estimates. 

 

Figure  4.8. Example 2: Temporal release histories, or concentrations at point source, in ppm, as 

function of time, in days. The thick line of each color represents the best estimate, and the upper and 

lower thinner lines represent the 95% confidence bounds. 
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It is instructive to see that the width of the confidence intervals for a specific case, which 

corresponds to the uncertainty, is inversely proportional to the amount of information 

present. For the linear inversion, where the full conductivity field (and hence flow field) 

is available, the uncertainty is smallest everywhere. Next is the confidence interval for 

the case where both Φ and K measurements are available in addition to C. The 

confidence intervals here at all locations are much wider, because the flow field is only 

estimated using conductivity and head measurements. Finally, the confidence intervals 

for the cases in which there is only one type of measurement (Φ or K) in addition to 

concentration C, are widest, because there is even less information available for 

estimating the flow-and-transport model, and consequently the release history.  

All confidence intervals are very wide at the beginning of the release history (T = 1500), 

which implies that the available measurements cannot provide adequate information 

regarding the contaminant release at this early time. Also, the confidence intervals 

become wider at the end of the modeled release history for a similar reason. Specifically, 

because there are no measurements very close to the source (x = 0), no information can 

be obtained regarding the release intensity near the end of the estimated period, as this 

information has not yet reached the measurement locations. 

Note that while all of the best estimates of the release history are mostly positive, the 

lower confidence bounds are mostly below zero. Technically, this means that at each 

point in the release history, the probability that the release intensity is negative is greater 

than 2.5%. To relieve this issue, we could constrain the release history to be nonnegative, 
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for example by using the Gibbs Sampler [e.g. Michalak and Kitanidis, 2003; Michalak, 

2008]. However, for the purposes of plume estimation using IFM, there may be no need 

to constrain nonnegativity in the inverse modeling step: as explained in Chapter 3, this 

situation is somewhat mitigated after the next step of applying the forward model, as will 

be shown in the next figures. 

Figure 4.9 shows the results of reconstructing the contaminant plume using different 

combinations of measurements, as in Example 1 (Figure 4.4). Although in this example 

measurements were taken only at one point in time (the present time), all plume 

reconstructions are similar to the true plume (Figure 4.7), due to the constraints imposed 

by the estimated flow and transport models. The most important of these may be the 

known location of the contaminant release. The pattern of the release history itself had 

relatively little effect on the plume in this example, as is evident by the variety of release 

histories (Figure 4.8), corresponding to similar present-day plume (Figure 4.9). 

The uncertainties in this example follow a similar pattern to those of the previous 

example: as more data is available, uncertainties become smaller. Thus, when two types 

of measurements are available (case i, Figure 4.9b) in additional to concentration 

measurements, the uncertainty is lower than when only Φ (case ii) or K (case iii) 

measurements are available (Figures 4.9d and 4.9f, respectively). When the full transport 

model is known (case Figure 4.9h), the uncertainty is dramatically lower than in the other 

cases, as the main source of uncertainty in the other cases – the hydraulic conductivity 
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field – is  completely known in this case. This illustrates again the strong impact that 

uncertainty in flow and transport parameters has on the overall plume uncertainty. 

The estimation here is more conservative than in Example 1, in the sense that 100% of 

the estimates fall within 2σ of the true plume distribution, as displayed on the right-hand-

side column in Figure 4.9. 

Figure 

 4.9. Example 2: Recovered contaminant plumes. The left column shows the best estimates, and the 

right column shows the uncertainties, both in ppm. Rows 1 – 4 correspond to cases i – iv, 

respectively. The colorbar in panel a also serves panels c, e, and g; the colorbar in panel b also serves 

panels d and f. Panel h has its own colorbar because the range of uncertainty it represents is much 

smaller. The figures on the right-hand side also display the percentage of estimates which fall within 

2σ of the true plume. 



 

 101  

 

 

Figure  4.10. Example 2: Individual contributions of uncertainties from the s- and r- components of 

the inversion to the total plume uncertainties. (a, b) case i, (c, d) case ii, (e, f) case iii. The left column 

(a, c, e) represents forward projections of the s-component of the inversions and the right column (b, 

d, f) represents forward projections of the s-component of the inversions. The colorbar in panel b 

applies to all panels. 

While the most important measure may be the total uncertainty, which was displayed in 

the right column panels of Figure 4.9, it may be instructive to analyze the separate 

individual contributions of the linear inversion for concentration C0 and of the nonlinear 

inversion for log-conductivity log[K] to the total uncertainty. Figure 4.10 represents the 
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forward projections of these s and r inversion uncertainties. The left panel corresponds to 

the uncertainty in the present-day plume caused by uncertainty in the release history s 

(Equation (47)), while the right panel figures correspond to the uncertainty caused by 

uncertainty in the hydraulic conductivity r, calculated by Equation (48). These “partial 

uncertainties” generally look like the total uncertainties from the right panels of Figure 

4.9, with more data translating to lower uncertainties. This is very clear on the left-hand-

side panel of Figure 4.10, which corresponds to the uncertainty projected from s: the 

uncertainty in Figure 4.10a is lower than in Figure 4.10c and 4.10e, which only use Φ or 

K, respectively (in addition to concentration measurements), but not both. The 

observation that Figures 4.10c and 4.10d (case ii) display higher uncertainty than Figures 

4.10e and 4.10f (case iii), respectively, imply that head observations may provide less 

information for plume estimation than conductivity observations, in this case. In addition 

to their high measurement error, a possible explanation may be that as the model used 

here estimates the hydraulic conductivity, measurements of this field contribute more 

than measurements of hydraulic head, which is in turn used indirectly to estimate the 

hydraulic conductivity field. 

Another interesting observation from Figure 4.10 is the way in which it is different from 

its equivalent in Example 1, Figure 4.5. There, the contribution to uncertainty from not 

knowing K was orders of magnitude larger than from not knowing C0. Here in Example 

2, the contributions of these two components seem to be very similar. One reason may be 

that the previous example had three times as many concentration measurements as this 

example. However, there seems to be a more dramatic reduction in the contribution of K 
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to uncertainty, than increase in the contribution of s. This may be due to the fact that the 

contaminant release location is known here, reducing the sensitivity of the estimation 

variance to not knowing the conductivity field. Note again that these figures do not 

represent the estimation variance of s or r, but rather the projections of uncertainty (in the 

inverse models) onto the plume space, or ultimately, their effect on the estimate of the 

plume. 

4. Conclusions 

We have generalized Inverse/Forward Modeling, a plume estimation methodology 

presented in the previous Chapter, and have made it applicable to cases in which the full 

distribution of flow and transport parameters, such as the hydraulic conductivity field, is 

unknown. Available data of various types are used to constrain the estimates of both the 

contaminant plume distribution and the unknown flow and transport parameters. This 

method allows for the estimation of, for example, concentration and hydraulic 

conductivity distributions simultaneously, using various types of measurements (e.g. 

concentration, head, and conductivity) at various times before, during, and also 

potentially after the time at which the estimate of the plume distribution is required. 

In the presented examples, the method developed in this chapter is shown to be robust, 

providing good estimates using measurements from the concentration, hydraulic head, 

and/or conductivity fields: the estimation reproduces available measurements, and the 

estimation variance and root-mean-square residuals are not larger than that of comparable 



 

 104  

methods, which estimate hydraulic conductivity and concentration sequentially rather 

than simultaneously. 

An interesting point, previously seen in Shlomi and Michalak [2007], is the high 

uncertainty associated with the inverse model itself. The problem of reconstructing an 

earlier plume or a temporal release history, like many other inverse problems, is ill-

posed: the solution is not unique, and many alternatives reproduce available data equally 

well. Hence, the confidence interval on the best estimate is very wide for the inverse 

problem. In contrast, when that estimate is cast forward, the confidence intervals shrink, 

because the mixing inherent to the forward problem yields similar plumes for a wide 

range of historical distributions. Therefore, the uncertainty associated with the estimates 

of the estimated plume is considerably smaller than that of the historical plume or release 

history. 

Comparing the two examples in this Chapter, it is interesting to note that while the 

different cases in Example 1 yielded significantly different results, equivalent cases of 

Example 2 resulted in very similar plumes. Moreover, the uncertainty estimates in 

Example 2 were also very similar to each other, and even within the projections of the 

inversion components to the plume uncertainty space (Equations (47) and (48)), the 

differences were very small (Figure 4.10). This, again, is in contrast to Example 1 (Figure 

4.5), in which substantial differences could be seen between the individual contributions 

of ssV  and rrV  to the total uncertainty. While concentration was measured at three 

different times in Example 1, and only at one time in Example 2, the latter had the 
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advantage of having a known release location, which provided a strong constraint on the 

transport model and the estimate of the plume. 

While there are differences within each example as a function of the specific types of 

data used, all cases confirm that uncertainty in the flow and transport model yields 

increased uncertainty in the plume estimates relative to the case examined in Chapter 3, 

as expected. The quality of the best estimates themselves is also lower than in Chapter 3, 

again reflecting the uncertainty caused by unknown flow and transport parameters.  

Figure 4.5, which depicts the projection of the uncertainty from the two inversion 

components into the plume space, quantifies this and indeed shows that the vast majority 

of the overall uncertainty originates from not knowing the conductivity field. The 

conclusion from this is that the uncertainty associated with the flow model contributes 

more to the uncertainty of the final plume estimates relative to the uncertainty caused by 

the unknown historical plume or release history.  This conclusion has implications for 

groundwater quality monitoring. 

That said, the goal of this method is to incorporate available information about both the 

plume distribution and flow and transport parameters, while accounting for the 

uncertainty associated with each of these fields.  In this way, the approach is a significant 

improvement over the approach presented in Chapter 3, which required the assumption of 

a known conductivity field, and other existing interpolation approaches, which ignore 

available flow and transport information altogether 
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Future applications may deal with even more unknowns and attempt to estimate them in a 

similar manner. For example, the distributions of boundary conditions, porosities, or 

dispersivities could be simultaneously estimated with unknowns such as concentration, to 

enhance the plume estimate at some point in time. The importance of this process lies in 

the fact that the many unknowns in groundwater quality monitoring are often difficult to 

integrate in one consistent estimation framework. Moreover, this type of methodology 

would offer a degree of flexibility in terms of inclusion or exclusion of various unknown 

variables. 

Finally, the geostatistical framework within which this method was developed could 

accommodate a large variety of flow-and-transport models, inverse models, and kriging 

techniques.  These individual components should be selected to be appropriate to the 

application at hand, before merging them into the type of framework presented here. For 

example, a flow-and-transport model may already exist for an aquifer, or some specific 

type of kriging may provide good results for a certain type of situation. In many cases, 

the framework presented in the previous Chapter and in this Chapter can integrate these 

components to improve on their performance as separate entities.  
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Chapter 5  
Optimal Sampling Well Selection and Monitoring 

Network Design for IFM/TrEK 

 

1. Introduction 

Groundwater quality monitoring consists, in simplistic terms, of 

1. designing a monitoring network, 

2. periodically selecting wells from this network to be sampled, and finally 

3. estimating the concentration of contaminant(s) at each point in the domain. 

For any plume estimation technique, measurements of actual contaminant concentrations 

in the aquifer are a very important component in the method. The location of these 

measurements is of prime importance, as measurement locations have a dramatic effect 

on both the best estimates of contaminant concentrations elsewhere in the aquifer, and on 

the associated estimation variance. Usually, budgetary constraints limit the number of 

samples that can be taken from the subsurface, further increasing the impact and 

importance of optimally locating each and every monitoring site. 

Over the years, many geostatistical methods have been developed for optimally locating 

monitoring wells in contaminated aquifers, or in aquifers susceptible to, or suspected of, 



 

 108  

contamination. The primary goal of this Chapter is to develop measurement-site selection 

methods specifically designed for IFM and TrEK. It then serves to demonstrate the ability 

of IFM and TrEK to easily incorporate existing network design methods that work with 

established kriging variants. 

The importance of this part of the research lies in the fact that well-selection methods are 

method-dependent: that is, for the same aquifer, there is not necessarily only one unique 

optimal set of measurement locations, which would work equally well for all estimation 

approaches; rather there is an optimal set for each estimation method. To illustrate this, 

assume that the selection of wells depends on the estimation variance. The estimation 

variance is different for different estimation methods, so the chosen wells may also differ. 

This Chapter presents an adaptation of existing monitoring network design methods to 

IFM and TrEK, by incorporating IFM or TrEK uncertainty estimates into the design 

criteria. 

2. Methodology 

The three components of a network design methodology can be defined as (i) an 

underlying contaminant plume estimation method (the importance of which was 

presented above), (ii) design criteria, and (iii) a search technique. The estimation method 

is considered here a component of the overall network design methodology because it is 

in essence its target, and eventually receives the input of the chosen well selection 

algorithm: the output of the well-selection algorithm is a set of monitoring locations, 

where measurements are eventually taken; these measurements are used as input to a 
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plume estimation method. In this Chapter, the estimation methods we consider are IFM 

and TrEK, including the variant of IFM presented in Chapter 4, where the hydraulic 

conductivity field was not known. We also present Kriging with a Trend (KT), again as 

in Chapter 3, for the sake of comparison. 

The design criteria describe what the practitioner seeks in an optimal design, or in other 

words, what would make such a design better than other candidates. Often, certain 

constraints are built-in to the design criteria, such as budgetary constraints which may put 

a maximum on the number of wells from which samples can be taken for analysis. 

Minimizing the contaminant plume estimation variance is a very common design 

criterion [Zimmerman, 2006]. 

Finally, the search technique is the method by which the space of all sampling designs S 

is systematically examined to find the best design. This must usually be an efficient 

technique, which is suitable for the design criteria and the nature of the space (e.g. 

continuous or discrete). As an illustration to the importance of this component, consider 

for example a domain with 100 potential monitoring wells. In this case, exhaustive 

searches would have to test 2100 designs; even if constrained to select exactly ten wells, 

100 100!

10 10!90!

 
= 

 
 combinations (more than 1.7 × 1013 designs), would have to be tested, a 

number which is probably not feasible. Despite the speed of today’s computers, some 

sophisticated estimation methods may take a relatively long time to evaluate each design 

(this may be the case with IFM and TrEK, which work with numerical flow and transport 
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models). Thus, it is important to choose a proper search algorithm that would reach the 

optimal network design efficiently. 

These three components of the network design methodology are considered in more 

detail in the following subsections.  

2.1 Estimation method and estimation variance 

In this work, we focus exclusively on kriging, IFM, and TrEK for interpolation. These 

geostatistical methods can all produce, in addition to a best estimate, an estimation 

variance (Eq. 14 and 19 in Chapter 2), which is usually used as a measure of uncertainty. 

In network design applications, this is a very important quantity, as it is often the critical 

part of the objective function, which is to be minimized to find the optimal sampling plan 

in a monitoring network. 

In kriging and linear geostatistical inverse-modeling, and therefore also in IFM and 

TrEK, the formulas for the estimation variance at a certain location do not depend on the 

value of the measurement there. Thus (for a given covariance model and fixed 

parameters) the matrices in these equation systems depend only on the distance between 

measurement points, leading to the result that the kriging, IFM, and TrEK estimation 

variances will depend solely on the geometry of the sampling network. Consequently, by 

choosing a given configuration for the sampling sites, the kriging, IFM, and TrEK 

systems can be solved and therefore the variance of estimation can be calculated using 

the appropriate equations from Chapter 3. The magnitude of the variance of estimation is 
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the basis for the criteria to select an optimal monitoring network among a number of 

possible network layouts. 

2.2 Monitoring objectives and design criteria 

The optimal design of the groundwater monitoring network often has the objective of 

finding the distribution of sampling sites which will yield some minimum variance of 

estimation with minimum monitoring costs. This can be seen as a dual criterion problem 

because in general, there is a trade-off between these two objectives: minimizing the 

variance entails taking more measurements, which obviously results in driving up 

monitoring costs. One way to generate efficient points on the trade-off curve is to 

minimize one objective subject to a constraint on the maximum value of the other [e.g. 

Cohon, 2004]. Here, we choose to minimize the variance of estimation subject to an 

available number of monitoring wells (equivalent to a given budgetary constraint). The 

variance of estimation is minimized over the whole domain where the estimation is 

needed. For KT, IFM, and TrEK, the model can therefore be formulated as either 

 { }ˆmax z
p

Minimize
∈S

V  (61) 

or 

 { }ẑ
p

Minimize
∈S

V  (62) 

(corresponding to the minimization of maximum or average variance, respectively) where 

S denotes the set of all possible sampling plans p, and ��� is the estimation variance [cf 
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Equations 14, 19, and 22 in Chapter 3, corresponding to these methods’ variances]. Each 

sampling plan p is a particular set of monitoring wells. Assuming (for simplicity) that 

each plan carries the same cost, it is possible to embody this constraint into the set S, by 

only allowing designs with the same number of samples. This assumption is reasonable, 

as sampling costs often depend on the number of samples, but usually not on which 

locations are chosen. Zimmerman [2006] notes that these are the two most commonly 

used design criteria for this type of spatial estimation, i.e. minimizing the average kriging 

variance and minimizing the maximum kriging variance. We generalize “kriging 

variance” to “estimation variance” in the examples below. 

The optimization scheme then consists of selecting a given number of monitoring 

locations from candidate monitoring sites. The total number of monitoring sites to be 

selected is mainly dictated by the availability of resources. Theoretically, to reach a true 

optimal configuration of the monitoring network, one has to select the monitoring sites 

from a two- or three-dimensional continuous spatial domain. However, there do not exist 

analytical techniques for selecting wells in a two-dimensional continuum, even for 

homogeneous media. Thus, for practical reasons, the monitoring locations are selected 

from a finite number of prespecified candidate sites. Generally, these candidate 

monitoring locations are arranged into a regular grid of nodes, if designing a new 

network, or must be selected from existing monitoring sites, otherwise. As explained 

above, an important practical consideration in obtaining an optimal monitoring network is 

the use of the search method for the selection of the optimal sampling sites from the 

available candidate nodes. 
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2.3 Search Techniques 

For any given configuration of monitoring network layout, the estimation equation 

system can be solved and the variance of the estimation error can be calculated using the 

appropriate formulas (given earlier in Chapter 3). To find the best selection of sampling 

sites, which will yield the lowest values of the estimation variance, a search technique has 

to be carried out. Two approaches are discussed below: sequential search and 

simultaneous search. 

The sequential search approach consists of dropping or adding a new observation site 

at each iteration of the optimization process. For example, the optimization process may 

start by taking into consideration all the candidate nodes, and proceed by sequentially 

eliminating monitoring locations until the allowed number is reached. Several authors 

[e.g. Loaiciga, 1989; Montasa et al., 2000] have discussed heuristic methods to select 

wells for elimination. Another way to employ sequential search is to consider only a few 

nodes initially and then add a new observation node at each stage of the optimization 

process. Unlike the previous case, as a new node is added to the network, a better 

estimate of the contaminant distribution will eventually be obtained, hence a smaller 

estimation variance. Therefore, at a given stage, the new node to be added to the system 

will be that which causes the largest decrease in the estimation variance. This technique 

is also referred to more generally as the variance-reduction approach [Rouhani, 1985]. It 

has been used in many studies, and many variants on it have been developed. However, 

some authors [e.g. Ben-Jemaa et al., 1994] warn that the sequential search method it 

employs may yield suboptimal solutions. Consider a sequential search method in which 
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we add a new monitoring node at each stage, and suppose that at a given stage we have a 

set S0 of n0 nodes previously selected. In the following stage, the sequential method is 

supposed to add a new node while keeping the previously selected set of nodes (S0). The 

outcome of this process is not necessarily optimal for the simple reason that the new set 

of n0 + 1 nodes is selected only from the layout of possibilities which include the set S0. 

However, there may exist other combinations of n0 + 1 nodes that will yield a lower 

variance of estimation but do not necessarily include all the nodes of set S0. Analogously, 

it can be shown that also by using the reverse process (of starting with all potential 

measurement nodes and then sequentially deleting nodes), the sequential search method 

cannot guarantee optimal solutions.  

Unlike the sequential search approach or variance-reduction technique, the so-called 

simultaneous search approach selects all of the sampling nodes of the monitoring 

network simultaneously. A representative of this approach is the branch-and-bound 

algorithm [Carrera et al. 1984; Carrera and Szidarovszky, 1985; Ben-Jemaa et al., 1994], 

which consists of searching in a simultaneous way for the optimal monitoring nodes 

along preconstructed tree branches.  The branch-and-bound algorithm sorts through the 

potential network configurations to find the single combination of measurements that 

minimizes the estimation variance while meeting the cost constraint. This algorithm is 

based on the monotonic properties of the estimation variance: the uncertainty cannot 

increase as data are added to a measurement network and cannot decrease as data are 

removed from a network. These properties are used to systematically search through the 

potential network designs and select the optimal sampling plan. If one has to select a 
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monitoring network of n nodes from a total number of W candidate nodes, there will be 

W

n

 
 
 

 possible combinations of nodes, or network layouts, and each layout possibility 

corresponds to one branch of the search tree. The search algorithm consists of a step-by-

step optimization in which one node is added at a time while moving along the search 

tree branches. On the basis of the calculated estimation variance at each stage, the search 

method proceeds forward along the same branch to add an additional node (if the 

obtained variance of estimation is the lowest found so far), or leaves the current branch 

and moves one step back to proceed along another branch (if the obtained estimation 

variance is larger than the smallest found so far). 

As an example, consider the case where there are 12 potential measurements (Figure 5.1). 

Each of the nodes of the tree represents a potential network design. The first node 

corresponds to the network with all measurements included. Moving along from one 

node to another corresponds to removing one measurement. The branch-and-bound 

algorithm searches the nodes along the tree branches to find the single combination of 

measurements that minimizes the objective, subject to cost and any other constraints 

applicable. 
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Figure  5.1. Schematic branch-and-bound algorithm showing some of the possible branches for a 

network of 12 nodes. 

The branch-and-bound algorithm begins at the first node of the decision tree, with all 

measurements in the network. Initially, the first measurement point is removed from the 

network and this plan’s cost is calculated. This forward process of removing a 
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measurement and updating the network cost continues along each branch until we obtain 

a feasible network design, i.e., a network whose cost and other constraints comply with 

the requirements. At this point, the objective is calculated for this network. The algorithm 

then moves back one step, storing this network design, along with its objective and cost, 

as the current optimal solution. The algorithm then proceeds forward again by removing a 

new measurement and calculating the new objective and network cost. The algorithm 

must now decide whether to proceed forward or to move backward and discard the 

remaining nodes of this branch. Wagner [1995] recommends taking this decision “on the 

basis of the following criteria: 

1. If the objective is less than the smallest found thus far and the network cost is 
feasible, this network design is stored as the current optimal solution. The 
algorithm then moves back one node and proceeds forward by removing a new 
measurement.  

2. If the objective is not less than the smallest found thus far, the algorithm moves 
backward one node, discarding the remaining nodes of this branch. The algorithm 
chooses to move backward at this point because moving forward means removing 
an additional measurement from the network, which could not improve the 
estimation variance. The search then continues forward by removing a new 
measurement.  

3. If a branch contains no feasible solutions, the algorithm moves backward one 
node, discarding the remaining nodes of the infeasible branch. This could 
potentially save evaluating many plans further along that branch. 

4. If the final node of a branch has been reached, the algorithm moves back one node 
and either proceeds forward by removing a new measurement or stops because the 
final node of the tree has been reached.  

5. If the objective is less than the smallest found thus far but the cost is infeasible, 
the algorithm proceeds forward, removing a new measurement from the network 
and recalculating the prediction uncertainty and cost. The forward movement 
proceeds until one of the above criteria is met.”  
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The branch-and-bound algorithm proceeds along each branch according to the above 

criteria until all possible network configurations have been considered. It is important to 

note that the design objective (and constraints, where applicable) are typically calculated 

for only a fraction of the possible network designs. The remaining designs are removed 

from consideration according to the criteria listed above. 

In the next Section, this search technique is used with both of the design criteria [(1) and 

(2)] from Subsection 2.2, to find optimal sampling network configurations for the plume 

estimation methods developed in this work, TrEK and IFM, and for KT as a comparison. 

3. Examples, Results and Discussion 

To illustrate the methodology presented above, the synthetic aquifer from Example 2 in 

Chapter 3 is used here again. For the sake of consistency, the contamination event, 

contaminant plume, and even monitoring well locations (in Examples 1 and 3 here), all 

remain faithfully identical to Example 2 in Chapter 3. Moreover, we use the exact same 

estimation methods used there, with the same parameters. However, we now assume that 

fewer wells are sampled, relative to the 12 we had in Chapter 3. 

We select the optimal designs below according to the criteria described above, in 

Subsection 3.2: for each case, first, the maximum variance is minimized; then the average 

estimation variance across the domain is minimized. This minimization is achieved via 

the branch-and-bound algorithm described in Subsection 3.3. Each well-configuration 

and plume-estimation setup is judged quantitatively by two measures: the root-mean-
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square error (RMSE) and the percentage of the estimated domain which is within two 

standard deviations of the posterior plume distribution. The root-mean-square error can 

be calculated as follows [Kish, 2000]: 

 
( )

2
ˆ

RMSE
N

=
∑ z - z

 (63) 

where z are the true concentrations at the N = 992 points estimated and ẑ  denotes the 

best estimates. This provides a measure of how good the estimate is, and more 

importantly allows us to compare estimates obtained by the different methods and/or 

using different measurement locations. The second quantitative measure is the percentage 

of the estimates which are within two standard deviations of the posterior plume 

distribution: 
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I

N
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×

∑ z z σ
 (64) 

where σ is the standard error of estimation (i.e. the square root of the kriging-, IFM-, or 

TrEK-variance) and the indicator function I counts the number of points estimated which 

fall within the confidence intervals, or in other words fulfill the condition ˆ 2− <z z σ . 

These two measures provide a quantitative assessment, in addition to the uncertainties 

(represented by the estimation standard errors), of the performance of the well-selection 

and plume-estimation methods, which allows to observe potential improvement the 

methods developed herein may demonstrate. 
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As in Chapters 3 and 4, it is assumed that the variogram models and their parameters are 

known. Also, in the first two examples below, the flow and transport models are 

completely known, except for the release history, which can be seen as a boundary 

condition at one point in space. Thus, we optimize a network for collecting only 

concentration data. In the third example, we assume we only have measurements of 

hydraulic conductivity, rather than its entire spatial distribution (as in case iii in Chapter 

4, except that there are no concentration measurements before sampling in this Chapter). 

The hydraulic conductivity field is estimated using kriging and input to the transport 

model. Consequently, the estimation variance (upon which the well selection is based) 

takes into account the uncertainty from this estimation of K, in addition to the uncertainty 

from not knowing the concentrations themselves. 

The figures in this section are organized as follows. Each row represents a specific 

selection of measurement locations corresponding to a specific method, and each column 

represents estimation using a specific method (KT, IFM, or TrEK). Thus, for example, 

the top row represents well-selection using KT: from left to right, the panels represent 

estimates of the KT, IFM, and TrEK methods, respectively, all using measurement 

locations selected by TrEK. Note that in Examples 1 and 2 below, IFM and TrEK 

happened to choose the same wells in all cases. Therefore to avoid redundancy, one of 

the rows was eliminated from the plots, and the row entitled “IFM/TrEK selection” 

represents the common choice of these two methods. As in Chapter 3, all of the quantities 

in the Chapter are unitless, as these Examples are based on synthetic data. 



 

 121  

Figure  5.2. Example 1 - Plume best estimate with { }ˆmax z
p

Minimize
∈S

V criterion. The number in the 

white rectangle represents the best estimate’s root-mean-square-error. All quantities are unitless. 

3.1 Example 1 

In the first two Figures (5.2 and 5.3), the design criterion used was minimizing the 

maximum estimation variance in the domain. In this example, TrEK and IFM happened 

to choose the same monitoring locations. The results of estimating the plume using these 

measurements in IFM and in TrEK are almost identical, as are the uncertainties. This 

suggests that the spatial-correlation component in TrEK only had a negligible 

contribution to the estimation; most of the information used to estimate the contaminant 

plume actually comes from the flow-and-transport model. More about the similarity of 
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TrEK and IFM’s performance can be found in Chapter 3, where these methods are 

developed. 

Five of the measurement locations selected by IFM and TrEK were also chosen by KT 

(however note that at least four wells must have been common, as there were only 12 

wells to select from). The most striking feature of this figure is that IFM and TrEK seem 

to perform very well (all RMSEs are very low, 1~2×10-4), regardless of the selection of 

wells, under these conditions. KT, in contrast, does not perform well at all, no matter 

which method selects the wells. The best result for KT seems to be the case when the 

well selection is also performed using the KT variance (RMSE = 0.062) – at least some 

feature of the plume seems to be captured with those measurements, which deliver better 

results than the TrEK/IFM selection for this method (RMSE = 0.136). This demonstrates 

the importance of using a well-selection method that is appropriate for the estimation 

method. 

Figure 5.3, which depicts the estimation variance, also shows the importance of using the 

IFM design criterion or the TrEK design criterion (rather than the KT design criterion) in 

the monitoring site selection for these methods: using these criteria leads to a much lower 

estimation variance than using locations selected by KT. In addition, we see as before 

that the IFM and TrEK uncertainties are generally much lower the KT uncertainties, 

reflecting the fact that kriging cannot give very useful information with only eight 

monitoring wells (except at points which are very close to those wells).  
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Figure  5.3 Example 1 – Plume concentration uncertainty with { }ˆmax z
p

Minimize
∈S

V criterion. The 

number in each graph represents the percentage of points within the 95% confidence intervals. 
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  Figure  5.4. Example 1 - Plume best estimate with { }ẑ
p

Minimize
∈S

V criterion. The number in the 

white rectangle represents the best estimate’s root-mean-square-error. All quantities are unitless. 

In the next two Figures (5.4 and 5.5), the design criterion used was minimizing the 

average estimation variance in the domain. Again, TrEK and IFM happened to choose 

the exact same measurement locations, and demonstrate very similar results. The 

selection of wells by the kriging-with-a-trend method resulted in six wells in common 

with the other two methods. The results of using this design criterion seem to improve the 

performance of kriging, especially when it uses its own selected locations. However, the 

KT estimates are still poor compared to the IFM and TrEK estimates. The uncertainties 

seem to paint a similar picture to the one produced by the “Minimize maximum-
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variance” design criterion: very low uncertainties for IFM and TrEK, and very high 

uncertainties for KT, throughout the domain. More importantly, the measurement 

locations selected by IFM and TrEK lead to lower uncertainties in these methods’ 

estimates. In addition, their RMSEs are lower with their own well-selections. 

The percentages on the uncertainty figures (5.3 and 5.5) express how often the best 

estimates lie within two standard deviations (σ) of the true plume. The KT estimates are 

conservative in this Example, in the sense that the best estimates is always within two 

standard deviations (σ) of the true plume distribution. The IFM estimates fulfill this 

condition for 84 – 100% of the points estimated, but the TrEK estimates only for 70 – 

83% of the points estimated. The TrEK estimates are very similar to the IFM estimates in 

this Example, but their uncertainties are always lower, so less of the truth lies within its 

confidence intervals. 

3.2 Example 2 

In this next example, the same aquifer, contaminant plume, and methodologies are used 

again. However, five candidate measurement locations are selected from a regular grid of 

5 × 5. This scenario is more akin to network design cases (as opposed to well selection), 

where new well locations are often chosen from a larger pool of potential observation 

sites. It enables us to observe the preferred spatial distribution of measurement sites for 

each method. Again, both design criteria are tested with all three selection/estimation 

methods, and the results are presented, as above, in a set of six figure panels. 
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Figure  5.5. Example 1 - Plume concentration uncertainty with { }ẑ
p

Minimize
∈S

V  criterion. The 

number in each graph represents the percentage of points within the 95% confidence intervals. All 

quantities are unitless. 
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Figure  5.6. Example 2 - Plume best estimate with { }ˆmax z
p

Minimize
∈S

V criterion. The number in the 

white rectangle represents the best estimate’s root-mean-square-error. All quantities are unitless. 

While IFM and TrEK again choose the same observation locations, which seem to favor 

the plume “hot spots” (the locations with the highest concentrations), the KT selection of 

wells seems to follow a different pattern, which in general looks to spread out as much as 

possible. This reinforces the differences in the uncertainties, between the methods, as 

seen since Chapter 3. This time, the KT choice of wells was nearly identical for both 

design criteria, differing only in one well. Four of the wells were chosen at the four 

corners of the rectangular domain, and the fifth well was placed at the center of the 

domain in order to minimize the average variance, but at a different location to minimize 
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the maximum variance. Placing that last well in the center of the domain seems more 

symmetrical or even natural, as it reduces the variance it all directions of the domain 

almost equally. But a close look at the first (i.e. top-right) panels in Figures 5.7 and 5.9 

reveals that the seemingly odd location for the fifth well does indeed reduce the 

maximum variance (note the high uncertainty on the right-hand side of the first figure, 

which is smaller in Figure 5.7 than in Figure 5.9). 

Figure  5.7. Example 2 - Plume concentration uncertainty with { }ˆmax z
p

Minimize
∈S

V criterion. The 

number in each graph represents the percentage of points within the 95% confidence intervals. All 

quantities are unitless. 



 

 129  

Figure  5.8. Example 2 - Plume best estimate with { }ẑ
p

Minimize
∈S

V  criterion. The number in the 

white rectangle represents the best estimate’s root-mean-square-error. All quantities are unitless. 

The IFM and TrEK methods chose the same wells: again, close to the point of release on 

the western boundary of the domain, in an area very sensitive to the release. As in 

Example 1, this choice significantly reduces the estimation variance, compared to the 

choice KT makes for these methods. As before, TrEK and IFM perform very well, with 

both design criteria and with all selections. Their best estimates resemble the true plume, 

and their uncertainties are very low. In contrast, the KT selection does not include any 

locations on the plume, or around the center of the domain at all. Accordingly, this 

method demonstrates high uncertainty, due to very little data. Note that in terms of 

RMSE, for all methods and all design criteria within this Example, the RMSE is much 
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lower when each method selects the wells for itself, i.e. the kriging variance is used to 

select wells for KT, IFM variance is used to select wells for IFM, and the TrEK variance 

is used to select wells for TrEK. These differences may be more pronounced (up to two 

order of magnitude for TrEK) here in Example 2, because the wells configurations are 

much more different from case to case than they were in Example 1. 

Quantitatively, KT and IFM are again conservative, and 100% of the true plume lies 

within their 95% confidence intervals. For TrEK, this percentage is as low as 27%, for 

one case in which the five measurement locations are selected by the KT-variance. 

 

Figure  5.9. Example 2 - Plume concentration uncertainty with { }ẑ
p

Minimize
∈S

V  criterion. The 

number in each graph represents the percentage of points within the 95% confidence intervals. All 

quantities are unitless. 
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3.3 Example 3 

In this example, we no longer assume that the numerical flow- and transport-models are 

perfectly known. Rather, the hydraulic conductivity K is only measured at the 12 

measurement locations from Chapter 3, and consequently ordinary kriging is performed 

to estimate the full conductivity field, which is subsequently input to the flow-and-

transport model used in IFM and in TrEK. This scenario is more likely closer to typical 

practical situations, in which there is no way to obtain the true spatial distribution of the 

entire hydraulic conductivity field, and thus a perfectly-known model is not feasible. 

While the plume concentration remains the only variable being measured, its uncertainty 

as represented in this case is more realistic, because it also takes into account the flow-

and-transport model uncertainty, in addition to the other sources considered before. 

The various Jacobian matrices H for IFM and TrEK in this Example, were constructed 

using models based on the best estimate obtained for K. The way in which the plume-

concentration estimation variance ���  (Eq. 19 in Chapter 4) is calculated in this example, 

is similar to the way it is calculated in Chapter 4 (Eq. 17): ��	
��
 and ��


��
 are used to 

project the joint uncertainties both from the unknown contaminant source and from the 

unknown hydraulic conductivity (Eq. 19 in Chapter 4) onto the plume space.  However, 

there are no iterations here, since the hydraulic conductivity is already estimated, and we 

are not seeking to refine this estimate using concentration measurements – only to 

calculate the estimation variance in order to locate the optimal measurement locations. In 

any case, we cannot refine this estimate because we assume that no concentration 

measurements have been taken at this point. 
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Figure  5.10. Example 3 - Unknown K - Plume best estimate with { }ˆmax z
p

Minimize
∈S

V criterion. The 

number in the white rectangle represents the best estimate’s root-mean-square-error. All quantities 

are unitless. 
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Figure  5.11. Example 3 - Unknown K - Plume concentration uncertainty with { }ˆmax z
p

Minimize
∈S

V  

criterion. The number in each graph represents the percentage of points within the 95% confidence 

intervals. All quantities are unitless. 

As we have less data here (than in the first two examples) and the estimation model 

changes, we would expect the estimates to be further removed from the true plume 

distribution. Accordingly, the model-data mismatch error is adjusted, its variance 

increased to ��


� 10

��
.  The estimation of the hydraulic conductivity field with ordinary 

kriging produced much smoother flow fields, than with those obtained by the numerical 
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models using the true conductivity. The effect of this smoother flow field on the 

contaminant plume can be seen in Figures 5.10 and 5.12, which show that the estimated 

contaminant plumes are also smoother. The estimation variances have become much 

larger, reflecting the additional uncertainty that derives from not knowing the hydraulic 

conductivity. Specifically, there is now high uncertainty at the bottom half of the domain 

(Figures 5.11 and 5.13), because very few hydraulic conductivity measurements were 

taken there. It is not surprising that the results in this example are inferior to those of 

Examples 1 and 2 above: The best estimates are further from the true plume than they 

were in the previous examples, and the uncertainties on those estimates are higher. 

Moreover, they do not necessarily reliably reflect the true estimation error, as the low 

percentage points on the uncertainty plots (Figures 5.11 and 5.13) suggest. Likewise, the 

RMSEs are also much higher, as the uncertain hydraulic conductivity handicaps the flow-

and-transport model, relative to the previous examples, resulting in best estimates that are 

further away from the truth. 
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Figure  5.12. Example 3 - Unknown K - Plume best estimate with { }ẑ
p

Minimize
∈S

V  criterion. The 

number in the white rectangle represents the best estimate’s root-mean-square-error. All quantities 

are unitless. 

For both well-selection criteria, IFM and TrEK seem to prefer a more spread-out network 

configuration, instead of the more centrally-located measurement locations encountered 

in Example 1. This is probably due mainly to the smoothing effect of the ���� matrices, 

which produced a more even distribution of the uncertainty over space.  For example, not 
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knowing the hydraulic conductivity K made locations which were previously relatively 

insensitive to the release history (e.g. the bottom half of the domain), much more 

uncertain. The contaminant concentration at these locations may change dramatically as 

K changes; moreover, for some K distributions, these locations may display a much 

larger sensitivity to the release history s, which also increases their uncertainty. 

In terms of the percentages of points that lie within the 95% confidence intervals, the 

pattern is similar to that of the previous Examples: the KT estimates are most 

conservative, next are the IFM estimates (94 – 95%), and finally TrEK (79 – 80%). This 

difference between the TrEK best estimates and the true plume distribution is larger than 

twice the standard error (2σ) more than the ideal case of 5% (corresponding to 95% 

confidence intervals). This may be explained by the specific aquifer setup and well 

configuration used here. The residuals of TrEK may not follow the implicit Gaussian 

assumption required for the correspondence between the standard deviation σ and the 

95% confidence intervals.  

4. Conclusions 

This Chapter has demonstrated one example of adapting a network design methodology 

for use with IFM and TrEK. The first conclusion at this point is that this use of kriging-

based methodologies is indeed relatively simple to carry out. The versatility of IFM 

and TrEK enables the use of other network-design methods that were originally 

developed for kriging: the advantage here is that there are already many such methods, 
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which were developed for a variety of situations. Most of these methods can probably 

easily be updated to work with IFM and TrEK. 

Figure  5.13. Example 3 - Unknown K - Plume concentration uncertainty with { }ẑ
p

Minimize
∈S

V  

criterion. The number in each graph represents the percentage of points within the 95% confidence 

intervals. All quantities are unitless. 

The second important conclusion is that this use of modified kriging-based 

methodologies further improves the results, compared to the original. In all examples, the 
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results of IFM and TrEK selections were more precise (displayed lower estimation 

variances), more accurate (displayed lower RMSEs), and not significantly less realistic, 

in terms of the percentage of the best estimates within the 95% confidence intervals. In 

Chapter 3, the conclusion was to use IFM and TrEK for estimating groundwater 

contaminant plumes, whenever possible. Here, we might extend this conclusion to using 

a TrEK- or IFM- based network design methodology, whenever using these plume 

estimation methods. The improvement IFM and TrEK have to offer (over KT) – both in 

the selection of wells and in plume estimation – can be seen on all Figures in this 

Chapter. As this has to do both with network design and with estimation, it is actually one 

of the overarching themes of this thesis: incorporating transport information into this 

type of analysis improves both the optimization of well selection and the quality of 

plume-estimation. Moreover, the combined effect of both is significant. 

Furthermore, many of the conclusions of Chapter 3 are valid here as well. First, these 

results are not unique to the specific model we are using here; other compatible flow and 

transport models should work as well. Second, although we did not enforce nonnegativity 

on the release history, we would not expect that to significantly affect the best estimates. 

The variances may become smaller, and may change the selection of measurement sites. 

However, many methods of enforcing nonnegativity are iterative, and may not be 

applicable to the method presented in this Chapter. Using a different type of inversion 

may also affect the estimation results, but probably would not change the superiority of 

IFM and TrEK over kriging, also in the selection of wells. While only the Example 

aquifer from Chapter 3 was used to demonstrate the network design method presented 
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here, there is no reason to believe it would not work in other scenarios where IFM and/or 

TrEK are applicable. 

More specifically, we have again seen the effect of kriging’s much larger estimation 

variance on TrEK: as the information provided by this component of TrEK is relatively 

low, the performance of TrEK is very similar to that of IFM. This behavior would 

probably change in cases where the information provided by spatial correlation into TrEK 

would be comparable to that provided by the inverse/forward transport model.  This 

could turn out to be a very valuable feature in such cases, because choosing a TrEK-

based sampling plan may balance between a spatial-correlation-derived tendency to 

spread out the sampling locations (and thus decrease the variance at the periphery), and 

an inverse/forward transport model-tendency to concentrate them around the locations 

which happen to be sensitive to the historical plume or release (and thus decrease the 

variance around the plume itself).  

Even though there are differences in the performance of the methods under different 

design criteria, these would actually be chosen by the practitioner, so it is not possible to 

recommend on using one method versus another.  Minimizing the maximum variance 

may be chosen when there exists some regulatory threshold which must not be violated; 

minimizing the average variance may be better when all of the domain or plume is 

equally important, for example for mapping or for further [post-] processing of the 

results, using other applications. 
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As this Chapter focused on the replacement of kriging (in variance-reduction methods) by 

IFM and TrEK, the search method did not receive much attention, and may not have been 

optimal. Wagner [1995] claims that the branch-and-bound algorithm “can require an 

enormous computational effort, particularly when the number of potential measurements 

is large (the typical case) and the number of measurements in a feasible solution is small 

(also typical). The excessive computational requirements occur because of the need to 

advance farther out on a branch (and perform more objective and cost calculations) 

before an optimal solution is found or the branch is discarded.” 

A small disadvantage of using IFM or TrEK instead of kriging, is that the search may 

take longer to perform.  This may be due to two reasons: first, the evaluation of each 

sampling plan takes longer for IFM or TrEK, as more computations are involved, larger 

matrices are to be inverted, and most importantly, flow-and-transport models must be 

repeatedly run.  Second, some search methods may take advantage of symmetry that may 

exist for kriging, but not for IFM or TrEK in heterogeneous domains.  For efficient 

search techniques run on a modern computer, this would probably not be a significant 

problem. 

When a component of the flow and transport model is uncertain, for example hydraulic 

conductivity, the optimal sampling configuration may differ significantly from the 

known-model case, as demonstrated by Example 3.  Part of the challenge in this case is to 

determine the effect of the uncertain component on the plume concentration uncertainty, 

or more importantly the new total plume concentration uncertainty.  This was achieved 



 

 141  

here by simulating a joint inversion for source release history and hydraulic conductivity, 

as one iteration of the simultaneous-estimation method (Chapter 4).  In this Chapter, this 

was used only to find the new total plume concentration uncertainty, not to estimate 

hydraulic conductivity, so iterations were not needed. Note that they could not be 

performed anyway, since all of this network design is assumed to take place before any 

measurements of contaminant concentration are taken. In Example 1 and 2, IFM 

estimates which have used the IFM-selection achieved lower root-mean-square errors 

than other IFM estimates. TrEK estimates, however, did not achieve a lower RMSE with 

the TrEK selection, but all of their RMSEs in these examples were the same order-of-

magnitude, and lower than the other methods’. Likewise in Example 3, the RMSEs for 

IFM and TrEK were the same order of magnitude. Note that as opposed to the estimation 

variance, which is always accessible (regardless of samples), the root-mean-square error 

is a measure which uses the true underlying distribution, which is not available in 

practice. 

The results of this last example again demonstrate the importance of the hydraulic 

conductivity field, and the effects of its estimates both on network design and on plume 

estimation.  They also reinforce the need to properly estimate this field, and incorporate 

the effects of the uncertainty of this process elsewhere, such as in network design and in 

plume estimation. 

Finally, for the sake of simplicity, only the collection of concentration data was 

considered, and the variogram models and parameters were assumed to be known.  
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Future research may explore more advanced methodologies, which couple parameter-

estimation and model-prediction uncertainty analyses with optimization, to identify the 

mix of hydrogeologic information (e.g., head, concentration, and/or hydraulic 

conductivity measurement locations) that should minimize a model’s estimation variance 

under a variety of constraints. 
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Chapter 6  
Application of Inverse/Forward Modeling 

in a Laboratory Sand Tank2 

1. Introduction 

This Chapter presents work performed at the Colorado School of Mines Center for 

Experimental Study of Subsurface Environmental Processes (CESEP) laboratory, aimed 

at validating the inverse/forward modeling (IFM) method developed in Chapter 3.  While 

this method has been shown to perform well with synthetic cases [Michalak and Shlomi, 

2007; Shlomi and Michalak, 2007], it has not been previously tested using laboratory or 

field data.  

Although field applications present the ultimate goal for the methods developed in this 

dissertation, laboratory experiments are a cost- and time-effective approach for testing 

new methods before moving to the field. Moreover, flow and transport model parameters 

can be controlled (or at least exhaustively sampled) in a laboratory setting, which is 

advantageous in that it enables the development of transport models with true (rather than 

estimated) parameter values. These transport models could in turn be used in IFM and in 

                                                 

2 Adapted from Shlomi, S., T. Sakaki, T. Illangasekare, and A.M. Michalak [2007] “Evaluation of 
Geostatistical Data Assimilation Methodologies for Estimating Groundwater Plume Distributions Using 3D 
Sand-Tank Tracer-Tests,” in Proceedings of the 37

th
 Mid-Atlantic Industrial & Hazardous Waste 

Conference, pp. 86-92, edited by G.A. Sorial and A. Bagtzoglou, Cincinnati, Ohio. 



 

 144  

TrEK, and the estimates obtained using these methods could then be compared to 

laboratory measurements.  

In contrast, in field experiments, the true values of parameters such as the hydraulic 

conductivity are never completely known. Developing or validating methods such as IFM 

or TrEK directly under these conditions would be problematic, because deviations from 

expected results may originate either from erroneous aquifer parameter estimates or from 

a fundamental problem with the estimation method. In field experiments, it is difficult to 

identify the true cause of such discrepancies. Thus, laboratory experiments present an 

attractive opportunity for developing and validating estimation methods. 

As discussed in Chapter 3, IFM and TrEK are based on geostatistical inverse modeling 

[e.g. Snodgrass and Kitanidis, 1997], which takes advantage of existing knowledge about 

groundwater flow and transport at a polluted site. Michalak and Shlomi [2007] extended 

the applicability of the IFM approach to the estimation of plume distributions based on 

multiple monitoring events, including measurements taken after the time at which the 

plume is to be estimated. These studies used synthetic data to demonstrate the benefits of 

the proposed methods. Chapter 4 generalizes IFM and TrEK by accounting for 

uncertainty in the flow and transport model, and presents a methodology for 

simultaneously estimating flow and transport model parameters and the contaminant 

plume.  
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While these studies demonstrate the feasibility of IFM and TrEK for synthetic data, these 

new tools were not validated using data from laboratory or field sites, and the 

applications in Chapter 3 did not account for inherent transport model errors; rather, it 

was assumed that the transport model did not contribute to the uncertainty (except in one 

sensitivity analysis). This Chapter compares the performance of IFM to more traditional 

ordinary kriging (OK), using tracer tests performed in a carefully-controlled laboratory 

setting. Even though the magnitudes of the parameter and measurement errors in the 

laboratory data are low relative to a field setting, the spatial characteristics of the errors 

encountered in this experiment were more analogous to those that would be expected in 

the field. These measurement and transport model errors were analyzed and modeled 

using an empirical error covariance model.   

2. Geostatistical Methodology 

The main tool used to interpolate tracer measurements in this work is IFM, as described 

in detail in Chapter 3. In this Chapter, IFM relies on geostatistical inverse modeling to 

estimate the concentration of a tracer released into a sand tank as a function of time, 

denoted by s. IFM then proceeds to use the transport model, together with an estimate of 

the release �� , to estimate the entire plume distribution at any point in time (for example, 

the times at which concentration measurements were taken), and quantifies the 

uncertainties associated with this estimate. Depending on the structure chosen for s, some 

form of stationarity is implicitly assumed. However, rather than a wide sense stationarity 

assumption, it can be generally assumed that the mean of s is either a constant or a sum of 
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given deterministic functions and that “the assumption of stationary fluctuations from the 

mean can be generalized to the assumption of stationary increments” [Kitanidis and 

Vomvoris, 1983]. 

Empirical error covariance matrix 

IFM makes use of a flow-and-transport model for the aquifer to build a sensitivity matrix 

H*, the elements of which correspond to the sensitivity of measurements z to the state 

vector s. The available measurements are modeled as linear with respect to the state: 

 *z = H s + ε   

where ε is a random error with mean 0 and covariance matrix R. In the previous 

Chapters, as well as in other past studies, R was modeled as a diagonal matrix of 

measurement errors, which implies that errors are not correlated. However, transport 

model inaccuracies are not likely to affect individual points in the aquifer independently, 

but rather whole areas; thus, these errors, which may also be represented by ε, are likely 

to be spatially correlated. By repeatedly measuring concentrations at several points 

concurrently, and comparing these measurements to the corresponding model predictions 

*H s , a covariance matrix R can be derived from model-data residuals. An error 

covariance matrix R derived in this way would represent the observed correlation 

between errors observed at different locations within the aquifer.  

This numerical approach to transport model uncertainty is somewhat similar to the 

sensitivity analysis presented in Chapter 3. However, this earlier work derived a non-
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diagonal R analytically (from a cubic generalized covariance function), implying that the 

covariance between two measurement errors is a decreasing function only of their 

separation distance. In this Chapter, the error covariance is established empirically, based 

on observed mismatch between measured concentrations (resulting from an actual tracer 

release to the sand tank) and the corresponding results of a numerical flow-and-tranpsort 

model.  This approach allows for a more accurate and complex spatial covariance 

structure. 

 

3. Experimental Setup 

The experimental setup for the tracer test consists of a large [208.3 × 116.8 × 57.1 cm] 

three-dimensional test tank at the Center for Experimental Study of Subsurface 

Environmental Processes (www.CESEP.mines.edu). This synthetic aquifer is bounded on 

two opposite ends by constant head reservoirs, and by no-flow boundaries on the two 
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other sides, parallel to the flow. The aquifer was built (for earlier, unrelated experiments) 

by packing many “blocks” of five well-characterized test sands (Figure 6.1a), 

heterogeneously distributed in a horizontal square grid of 41 × 23 cells and 30 vertical 

layers. The hydraulic conductivities of the test sands followed an approximately 

lognormal distribution, comparable to the hydraulic conductivity distribution at a typical 

field site [Sakaki et al., 2006]. 

A series of flow tests performed in the tank prior to the present experiment were used to 

calibrate a numerical (MODFLOW) flow model, and then compared the measured 

drawdown distribution in the tank during a pumping test with simulated values (Figure 

6.1b). The measured and model simulated drawdown agree closely [Sakaki et al., 2006]. 

The experiment was initiated by introducing a tracer into the aquifer through an injection 

well with a screen at layer 22, row 20, column 5. The time-varying injection rate (6.2) 

was designed to replicate the release history used by Skaggs and Kabala [1994] and 

others, which was also used in Chapter 3 (Equation 24). The tracer was injected to the 

aquifer using a computer-controlled syringe pump [Harvard Apparatus PHD2000], 

enabling an accurate simulation of a time-varying release.  During the experiment, tracer 

breakthrough concentrations were measured using a fiber-optical fluorimeter [Hermes 

Messtechnik, Germany] which can continuously measure very low (1 ppb) in situ 

concentrations at 19 predefined locations. The exact plume could only be defined if the 

tracer concentrations were known at all locations in the tank. Unfortunately, this is not 

feasible with the direct use of the fluorimeter. 12 of these measurements, which were 
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close enough to the plume, were subsequently used for inverse modeling, IFM and 

ordinary kriging. The measurements were taken in five different layers (21 – 25), but 

only layer 22 is reconstructed, because that is where most of the measurements are; there 

is not enough data to reconstruct other layers, as the vertical correlation length is very 

short. Due to the direction of flow, the variation of tracer concentration is not isotropic.  

The anisotropy ratio was assumed to be equal to the ratio of longitudinal to transverse 

and vertical dispersivities [Chilès and Delfiner, 1999], in this case 10. 

In order to characterize the variance-covariance structure R of the model-data mismatch 

errors, both calibrated observations and model data were recorded at the measurement 

locations at ten-second intervals over the course of the experiment.  The residuals 

between these two were treated as a large sample from a multivariate distribution, and 

were then accordingly analyzed to produce a variance-covariance matrix R, which was 

consequently used in the plume estimation process. 

Figure  6.2 Source release histories: the actual release was programmed in the syringe pump which 

released the tracer; the recovered release and its 95% confidence bounds were calculated using 

geostatistical inverse modeling. 
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4. Results 

The plume which developed following the tracer injection was modeled numerically 

using the transport code MT3DMS [Zheng and Wang, 1999], which was calibrated using 

the measured tracer concentrations, under the assumption that the peak modeled 

concentrations at each node are indeed the true peak concentrations. A horizontal section 

through the simulated plume 18 hours after the start of the release is presented in Figure 

6.3. Because the flow field was at steady state (at least theoretically) and the aquifer 

properties were exactly known in the synthetic aquifer, it is reasonable to expect this 

transport model to be relatively precise. However, as opposed to the previous Chapters, 

there is no way to depict the actual plume, and Figure 6.3 would be the best 

representation thereof. 

 

Figure 6.4 depicts the R matrix derived from the residuals of model data vs. observations. 

Each element (i, j) represents the covariance of two measurement errors, from node i and 

node j. Note that while there were only 12 measurement locations, the concentrations 

from three different times were used, hence the dimensions of this variance-covariance 

are 36 36× . Most of its elements are close to 0, implying virtually no cross-correlation 

Figure  6.3 Model-simulated plume 18 hours after start of release.  Stars denote actual measurement 

locations in layer 22; Plus signs denote actual measurements in other layers. Concentrations are in ppb. 
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between model-data mismatch at different measurement locations. However, one location 

(the eighth row/column) has a strong negative correlation with the second and third 

measurement locations. The diagonal represents measurement errors, most of which were 

relatively small. Only two measurement locations had very high measurement errors, as 

represented by the black squares corresponding to the first and tenth measurements. 

 

Figure  6.4 Empirical variance-covariance matrix used as model-data mismatch matrix (R) for IFM. 

All values are in ppb
2
. 
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Figure 6.5(a) shows the reconstruction of the plume 18 hours after the start of the release 

using IFM, with measurements taken from the test aquifer 10, 14, and 18 hours after the 

release started. The release history was assumed to have a Gaussian covariance, 
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 with length parameter 13.2 hours, and variance 0.046 hours2. All measurements were 

jointly used to recover the source release history (Figure 6.2), which, in turn, was 

reintroduced into the model to complete the IFM process. Figure 6.4(b) shows the 

reconstructed plume using ordinary kriging (implying a weak form of stationarity) with 

an exponential covariance function 

Figure  6.5 Plume best estimates for T = 18 hours.  (a) best plume estimate obtained using IFM; (b) best 

plume estimate obtained using ordinary kriging. All concentrations are in ppb. 
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and parameters σ2 = 13.4 ppb2 and l = 7.5 cm. These parameters were optimized using the 

full plume distribution, as give by the numerical model (Figure 6.3). Note that only the 12 

measurements taken 18 hours after the release were used in kriging, as measurements at 

other times cannot be used directly in spatial kriging. 

Figure 6.6 shows the uncertainties associated with IFM and kriging estimates. As was 

noted in Chapter 3, IFM (Figure 6.6(a)) has high uncertainty in high concentration areas, 

as these points are typically the most sensitive to the release s. Conversely, kriging 

(Figure 6.6(b)) has low uncertainties at measurement locations, and higher uncertainty at 

the periphery. 

Figure  6.6 Estimation uncertainties. (a) uncertainty using IFM; (b) uncertainty using ordinary 

kriging  (standard deviations in ppb for both). 
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5. Discussion 

In the tracer release experiment described above, a numerical model was used to depict 

the “real” plume, based on the true release history of a tracer, and two geostatistical 

methods, ordinary kriging and IFM, were used to reconstruct that plume using 

measurements taken at 12 locations in the test aquifer, 10, 14, and 18 hours after tracer 

was injected to the aquifer. In the ordinary kriging and IFM applications, the release 

history was assumed unknown but the hydraulic conductivity distribution of the aquifer 

was known.  The performance of these methods was evaluated by their ability to 

reproduce the plume, and to provide estimates with low uncertainty. 

As can be seen in Figure 6.2, the exact shape of the source release history could not be 

recovered using the data, because measurements were sparse and were taken a long time 

after the release. Despite the uncertainty associated with the recovered release history, 

IFM was able to reconstruct the actual plume more accurately than OK. While the 

estimate does not reproduce some of the hot spots observed in the simulated plume based 

on the true release history, the general shape of the plume is similar. The observed 

differences can be attributed to measurement or calibration errors in the laboratory setup 

and to the impact of the inaccuracies in the recovered release history. IFM uses 

measurement data to reconstruct the release history; and subsequently uses the transport 

model to constrain the simulated plume.  However, as was also seen in Chapters 3 and 4, 

the constraint imposed by the transport model is much less effective for recovering the 

release history (Figure 6.2) than for projecting it forward in time (Figures 6.5a and 6.6a).  

As discussed in Chapter 3, groundwater contaminant transport is a dispersive process, 



 

 155  

and, consequently, the degree to which the contamination history can be inferred from 

downgradient measurements is limited [e.g. Skaggs and Kabala, 1994].  Conversely, the 

results of the forward model are relatively insensitive to the details of the release history, 

and the release history need not be reproduced exactly for the plume to be recovered. 

The R covariance matrix used in this experiment (Figure 6.4) jointly represents 

measurement error, calibration error, and transport model error, but cannot distinguish 

among them, for lack of an absolute reference. The diagonal R elements represent the 

discrepancy of model predictions and actual observations. These errors exhibited spatial 

covariance, with adjacent locations often being positively correlated. Conversely, some 

of the off-diagonal Rij (i ≠ j) elements were negative, implying that, assuming an 

unbiased model, a positive residual at location i, would tend to be associated with a 

negative residual at location j. This could occur, for example, in the case of a model error 

(e.g. in flow direction) which would cause the predicted contamination to be shifted from 

a location i to a location j. 

The kriging estimation relies only on the 12 measurements taken at the time of 

estimation, and on the assumed correlation structure of the contaminant field.  The states 

of the plume at earlier times, along with the physics governing groundwater flow and 

contaminant transport, affect the plume distribution at T = 18 hours. However, neither 

transport information nor measurements at earlier times are explicitly considered in the 

kriging estimation model. Thus, with significantly less input data, the kriging estimates 

have two main disadvantages relative to IFM.  First, the kriging model does not explicitly 
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incorporate transport information, relying solely on point measurements. Second, only 

measurements at the time of estimation (18 hours after tracer release) can be used in the 

analysis, while in IFM, measurements taken 10 and 14 hours after the start of the release 

were also used. In addition, the short correlation length (just short of five grid cells in the 

longitudinal direction; much shorter in the transverse direction) precludes adequate 

estimates in many areas throughout the domain. As a result of these factors, contaminant 

concentration estimates in most of the domain are highly uncertain, and could probably 

only be used for making rough assessments of the plume distribution. 

6. Conclusions 

This Chapter presents the first application of IFM to laboratory measurements, 

specifically in assimilating concentration data acquired at several distinct times with 

available flow and transport information to estimate the distribution of a tracer plume. 

The IFM approach was shown to have several advantages relative to ordinary kriging, 

and could have a wide array of applications, such as monitoring network and remediation 

design.  

In past applications of contaminant source identification [e.g. Kitanidis, 1995, Snodgrass 

and Kitanidis, 1997, and Michalak and Kitanidis, 2004a, b] and IFM [Shlomi and 

Michalak, 2007; Michalak and Shlomi, 2007], model uncertainty was not taken into 

account. While a deterministic transport model [MT3DMS] was also applied here, the 

model-data mismatch R did not simply contain measurement error variances; rather, 

covariances between errors were estimated using model-data residuals.  Although this 
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approach still does not fully characterize the errors associated with transport model 

uncertainty, it begins to shed light on the impact of model errors on the uncertainty 

associated with the estimated field.  Note that the approach taken here for estimating the 

error covariance structure required knowledge of the release history, and could therefore 

not be applied in a case where this release is unknown.  Assessing the impact of transport 

model errors on IFM estimates is central to the field-scale applicability of the approach, 

because models of real aquifers have many unknowns. Nonetheless, once there exists a 

deterministic model, using a numerically-derived R matrix, as was done in this work, 

may reflect the resulting uncertainty in model predictions. It should be stressed that it was 

possible to construct such a covariance matrix in this experiment due to the availability of 

repeated concentration measurements at each location. 
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Chapter 7  
Conclusions and Future Directions 

 

1. Summary and Conclusions 

Groundwater contaminant plume interpolation or estimation is essential for numerous 

functions, such as monitoring, global contaminant mass estimation, network design, 

design of water distribution systems, remediation, and contaminant source identification 

and parameter estimation. An accurate representation of groundwater contaminant plume 

distributions is critical to monitoring the safety of water supplies, estimating the extent of 

groundwater contamination and designing effective remediation strategies. 

This work has contributed to improving plume interpolation capabilities by providing 

novel tools that integrate inverse modeling with deterministic flow-and-transport models 

into traditional geostatistical methods. The major methodologies that were developed 

within this research are Inverse/Forward Modeling and Transport-Enhanced Kriging 

(Chapter 3). These methods take advantage of both geostatistical tools, such as kriging, 

and groundwater flow-and-transport models, to better estimate contaminant plumes in 

aquifers. 
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In Chapter 4, these methods were generalized to allow simultaneous estimation of flow 

or transport model parameters. The importance of this step lies in the fact that parameters 

such as the hydraulic conductivity are almost never measured exhaustively, such that in 

practice the usefulness of IFM and TrEK would be limited without the ability to deal with 

these kinds of uncertainties. While there exist many methods for estimating parameters 

such as hydraulic conductivity, the simultaneous estimation method presented in Chapter 

4 has at least one important advantage, namely the ability to use a larger superset of data, 

of several types, to estimate the required unknowns, and to directly account for the 

uncertainty associated with flow and transport parameters in the estimation uncertainty of 

the contaminant plume distribution.  

In Chapter 5, a groundwater monitoring network design methodology compatible with 

IFM and TrEK was presented. The approach taken is based on established methods, but 

was specifically tailored for IFM and TrEK.  This is important because well selection 

methods must be based on the plume estimation methods to be used at a site. As the 

shape of an estimated contaminant plume is highly dependent on the specific 

measurement sites used in the estimation, selecting the optimal wells for this purpose can 

dramatically improve the quality of interpolation. The presented well-selection tool 

indicates which wells should be sampled at any point in time, in order to reconstruct the 

contaminant plume with lower uncertainty relative to other existing methods.  

While IFM and TrEK are yet to be tested in a field setting, they have been evaluated 

using experimental data from a physical sand-tank model. Results from these experiments 
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are presented in Chapter 6, along with an empirical approach for estimating errors in the 

flow-and-transport model. Although only a few experiments were performed, and many 

technical challenges have accompanied the calibration and data acquisition phases, the 

results nevertheless point to a significant advantage of using IFM over kriging, whenever 

a transport model is available. 

Overall, the methodologies developed as part of this dissertation enable better 

interpolation through integrated use of various types of data and information. They are 

expected to allow practitioners and stakeholders within the water resource management 

community to achieve monitoring objectives faster relative to current methods, and using 

sparser monitoring. As a result, remediation costs and various other related expenses may 

also be reduced. Finally, as a byproduct, the research carried out within this work may 

benefit a wider scientific community, by providing generally-applicable estimation tools, 

such as the capability to account for transport model uncertainties in geostatistical inverse 

modeling. 

2. Recommendations for Future Research 

The methods developed within this dissertation provide a firm basis for a new family of 

robust geostatistical tools that could be further developed, evaluated, and implemented in 

various applications. Overall, IFM and TrEK combine kriging with transport information. 

Therefore, obvious extensions could involve altering these two components. Regarding 

the former, there are numerous existing types of kriging that provide solutions to a wide 

variety of situations. Some of these could easily be incorporated into the methods 
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developed here, while others may prove more challenging to integrate into the existing 

framework. Similarly, while relatively simple flow-and-transport models were used 

throughout this work, more sophisticated models could potentially be used in IFM and 

TrEK, if such models exist for the aquifer. The following sections provide several 

specific suggestions regarding the ways in which the methods developed in this work 

could be improved, generalized, and validated. 

2.1 Optimization of variogram (or covariance function) 
parameters 

Throughout this dissertation, optimization of variogram (or covariance function) 

parameters was performed using established geostatistical methods, and was not 

discussed explicitly. While this helped focus attention on the development of the new 

monitoring methods, this type of parameter estimation is an important part of the overall 

monitoring process in geostatistical theory, and should be given proper consideration. 

There exist many proven methods for estimating these parameters, and each carries with 

it a set of advantages and disadvantages, which often depend on the specifics of the 

application at hand. These methods could be used as-is, as has been the case in this work, 

or modified and improved to work with flow-and-transport models, in an IFM-like or 

TrEK-like framework. 

Regarding network design, for example, rather than focusing on designs for minimizing 

the average or the maximum prediction variance over all prediction points, various 

studies concentrate on how to construct sampling designs from which the model 
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parameters can be optimally estimated. Early studies proposed algorithms for finding the 

optimal combination of sampling points in order to estimate the sample semivariogram, 

used in geostatistics for analyzing the second moment structure of a spatial stochastic 

process [Russo, 1984; Russo and Jury, 1988; Warrick and Myers, 1987]. Zimmerman and 

Homer [1991], Muller and Zimmerman [1999], and Bogaert and Russo [1999] extended 

these ideas to consider not only estimation of the sample semivariogram but also 

parametric estimation of the semivariogram model. 

One can therefore identify two groups of design criteria, focusing either on spatial 

prediction or parameter estimation. Lark [2002] illustrated that errors in the model 

parameters result in errors in the estimated prediction variances. This means that if the 

primary goal of a monitoring network is to compute spatial predictions, some 

combination of the two groups of design criteria should be used. This ensures that 

efficient spatial predictions can be computed while taking proper care of the uncertainties 

of the model parameters. Hence in this case an efficient design should consist of some 

sampling points allocated for estimating model parameters and some for computing 

spatial predictions [Muller, 2001; Martin, 2001]. 

A way to combine designs for computing spatial predictions with designs for estimating 

model parameters is to compute spatial predictions and associated prediction variances 

using what is often referred to as a full Bayesian approach [e.g. Diggle et al., 2003; 

Handcock and Stein,  1993; Le and Zidek, 1992]. In this approach, the uncertainty of the 

model parameters, described by the posterior distribution, is automatically incorporated 
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in the predictions. This means that good parameter estimates, i.e. a narrow posterior 

distribution, leads to more efficient spatial predictions. Modifying these types of methods 

to include flow-and-transport information, in a manner analogous to the development of 

IFM and TrEK, would further improve the quality of interpolation, by potentially 

displaying better best estimates and lower uncertainties.  

2.2 Temporal dimension 

Most of the work in this dissertation implicitly assumes that a plume estimate is only 

needed at one point in time. While historical measurements were integrated into the 

estimation model, there was no attempt at long-term optimization (or planning) of 

sampling schedules. Of course, this does not imply that these are less important issues, 

but the focus in this dissertation was on the specifics of plume estimation and well-

selection. 

Michalak and Shlomi [2007] first showed the ability of IFM and TrEK to not only 

seamlessly integrate data from various points in time into the estimation process, but also 

to estimate a plume at any point in time, just as easily. However, of the two components 

of TrEK estimation framework, only one – the flow-and-transport model component – 

related different points on the temporal axis; the second component of TrEK, which takes 

into account the spatial covariance, did not consider any temporal or spatiotemporal 

correlation. This latter component only considered the spatial correlation at the time of 

estimation. 
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Many methods already exist for optimizing long-term monitoring network design, both in 

the spatial and in the temporal dimension. Likewise, spatiotemporal geostatistics (which 

considers the spatial and temporal coordinates of an event, such as a groundwater 

contamination measurement) has been practiced for years [e.g. Christakos, 2000]. 

Both the inverse-modeling component and the spatial-correlation component of the 

methods developed in the preceding Chapters are flexible, and could accommodate 

various types of measurements, variograms, and basis functions (in the case of universal 

kriging). It is thus feasible to integrate some form of the existing spatiotemporal theory 

with IFM and TrEK, wherever this may be appropriate. Depending on the application, 

inverse modeling, for example, could potentially be performed using a spatiotemporal 

variogram (if one exists or could be optimized), instead of the spatial or temporal 

covariance functions that were used here. Similarly, what we have considered the spatial-

correlation component of TrEK, could also use a spatiotemporal covariance function, 

whenever such a correlation is available. This could be the case when a contaminant 

plume is to be estimated at several points in time. This type of modification could 

potentially enhance the performance of the spatial-correlation component of these 

methods (which sometimes proved to be the “weak link,” in the examples shown 

throughout this work, as it did not provide a constraint as strong as the transport model). 

More importantly, it can improve the overall estimation quality of IFM and TrEK, in 

cases where the conditions are right to implement such modifications, e.g. if more than 

one type of measurements existed and cross-variograms could be modeled. 
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2.3 Nonnegativity constraints 

Contaminant concentrations, which are the primary unknown sought throughout this 

research, cannot be negative. However, the methods used here did not impose any 

limitations on the results, and some conditional realizations, confidence intervals, and 

even best estimates reached negative values at certain points. While the examples 

presented in this research did not demonstrate any significant deficiencies originating 

from lack of nonnegativity constraints, other applications of these types of methods could 

potentially suffer from the consequences of letting variables assume negative values. This 

could produce, for example, results which are not physically feasible. 

Restricting variables to the nonnegative domain serves two purposes: primarily, it would 

prevent situations in which the best estimate for a quantity such as concentration is 

negative. In addition, it could more faithfully represent the entire distribution by properly 

shifting all of the probability mass to be nonnegative.  

In the geostatistical literature, there are several published methods that constrain 

nonnegativity [e.g. Michalak, 2008; Michalak and Kitanidis, 2003, 2005]. It is hard to say 

what would be the optimal method to use with IFM or TrEK, because that would depend 

on the specifics of the application. For example, one can constrain either the inverse 

model or the forward model, and arguments could be made for both sides. 

Finally, other constraints, such as upper limits (which might represent, for example, the 

solubilities of contaminants in water), could also be imposed on the methods presented 
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here, for more faithfully representing realistic realizations, and thus improving simulation 

results. 

2.4 Laboratory tests and field demonstrations 

IFM and TrEK have thus far primarily been applied to synthetic data. This has enabled to 

test these methods for several types of data in various conditions. While several sand tank 

experiments have also been performed, the results obtained are somewhat problematic 

because of potential calibration issues. 

Actual field data has never been used in IFM or TrEK, and should provide an interesting 

validation of these methods. This could be done either with existing data (from sampling 

that has already taken place), or in a future field demonstration. Like the synthetic 

demonstrations in this study, comparisons should be planned against existing methods, 

such as kriging or other forms of interpolations. Flow-and-transport models might also 

provide results for comparisons, although one must be careful if using these same models 

within IFM and TrEK, The dependence of these methods on the flow-and-transport 

models may limit the validity of this kind of comparison. Thus, a good comparison has to 

be designed in a way that would differentiate the features of the flow and transport model 

from those of the geostatistical estimation methods which depend on it, IFM and TrEK. 
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2.5 Kriging on a flow net 

Several examples throughout this study, starting with Chapter 3, indicated that the flow 

model may be one of the most important components in IFM and TrEK. Using these 

methods, even with very few measurement data, provided excellent results: the best 

estimate obtained closely resembled the plume in most examples, and the uncertainties 

were very low for the most part, orders of magnitude lower in comparison to kriging. 

These results may suggest that the transport model may not be completely necessary for 

performing these kinds of interpolations, and that the flow model may be sufficient to 

constrain the estimation, especially if a transport model is not available. Shlomi [2007] 

demonstrated that this is indeed possible, by choosing a more natural coordinate system, 

in the form of a curvilinear flow net: a grid of stream and equipotential lines, which are 

everywhere perpendicular to each other. Kriging could be performed on the flow net (e.g. 

the abscissa could run along stream lines, and the ordinate along equipotential lines), by 

replacing the actual distances between points by corresponding distances on the flow net. 

An interesting application could be formed by incorporating the temporal dimension (see 

Section 2.2 above) in this type of model. It might actually be easier to relate it to the 

spatial dimensions on a flow net than it would be on a rectilinear grid (especially under 

steady state conditions, where a particle would cross equipotential lines at equal 

intervals), making spatiotemporal cross-variograms relatively easy to model. One unit of 

space (the distance between equipotential lines along the x-coordinate) would then be 

equivalent to, or perhaps even interchangeable with, a unit of time (the temporal interval 
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between crossing these lines). This may allow inclusion of various points in the 

space/time continuum in one unified correlation structure, making the use of such 

correlation in further analysis (e.g. in an IFM or a TrEK framework) easier to implement. 

2.6 Above ground 

All of the research presented in this dissertation pertains directly to, has been developed 

for, and was demonstrated on, groundwater contamination. However, geostatistical 

methods are being used for a myriad of applications, including mining, geophysics, 

atmospheric science, and even finance. While the groundwater flow-and-transport 

equations (see Chapter 1) are only valid for subsurface contaminants, they belong to more 

general families of equations that also solve problems in various other fields. Potentially, 

then, these methods could impact many other realms, and improve estimation for 

engineers, scientists, and other practitioners from a wide variety of backgrounds. 
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