
Re-evaluating and Exploring the
Contributions of Constituency

Grammar to Semantic Role Labeling

by

Li Yang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Linguistics)

in The University of Michigan
2009

Doctoral Committee:
Associate Professor Steven P. Abney, Chair
Professor Dragomir R. Radev
Professor Richmond H. Thomason
Associate Professor George Michailidis

© Li Yang

All Rights Reserved
2009

To my grandfathers
and

my father

ii

Acknowledgments

Michigan has left me so much to remember and so much to be grateful to for the rest of my
life.

When I first came to Michigan, I knew little about football. In the past five years,
Michigan not only taught me to be able to enjoy football but also taught me the Michigan
pride. I have been and will continue to be a proud Michigan fan!

I chose to come to Michigan to pursue my doctoral degree because the university
encourages creative work through interdisciplinary studies. I thank the Linguistics De-
partment for backing up the encouragement by supporting my training in other fields such
as computer science and statistics.

I chose to pursue my doctoral training in computational linguistics at Michigan Lin-
guistics because of the strong linguistic theoretical and computational background of the
professors. I am grateful to professors Rusty Barrett, Pam Beddor, San Duanmu, Sam
Epstein, John Lawler, Rick Lewis, Peter Ludlow, and Sally Thomason for my training in
phonetics, phonology, syntax, and semantics. I would like to thank professors Drago Redev
and Steve Abney for my training in computational linguistics. I am grateful to Steve, my
adviser, for shaping my way to do scientific work, for tolerating my mistakes, for giving
me the intellectual freedom to explore research possibilities, and for the long discussions
that shaped my dissertation work. I would like to thank professors Rich Thomason and
George Michailidis for their patience and advice for my dissertation work. I also have spe-
cial thanks to my B adviser, San, for giving me valuable advice on how to survive as an
international student. I am also grateful to Sylvia Suttor for her timely assistance on the
administrative side.

My experience at Michigan Linguistics would be incomplete without my cohort and
fellow students. I will remember how my cohort, Dina Kapetangianni and Gerardo Ger-
ardo Fernández-Salgueiro, encouraged and supported each other in our challenging first
two years in the program. I would like to thank all other fellow students that overlapped
me in the program for the discussions and Happy Hours we had together. I have special
thanks to Rob Felty for providing me with the Latex style file for the current dissertation.

My research experience at Michigan Linguistics would be incomplete without my group
mates, Victoria Fossum, Kevin McGowan, Terrence Szymanski, and Yang Ye. I would like

iii

to thank them for discussing computational work with me.
My life in the past many years while I was pursuing my graduate education would be

incomplete without my wife Zhaohui and son Yankang. I would like to thank my wife for
putting up with me for the long hours working on projects in the lab. I would like to thank
my son for getting used to not having his Dad around at his shows and competitions. My
deepest debt is to Zhaohui and Yankang for their patience and love during my pursuit of
the doctoral degree at Michigan.

iv

Table of Contents

Dedication . ii

Acknowledgments . iii

List of Tables . viii

List of Figures . x

Chapter 1 Introduction . 1

Chapter 2 Definitions, lexical resources, argument structure, base argument
configuration, and argument realization . 6
2.1 Definitions . 6

2.1.1 Traditional semantic roles . 7
2.1.2 Verb semantic arguments, core and non-core semantic arguments . 8
2.1.3 Automatic semantic role labeling task 9

2.2 PropBank . 10
2.2.1 Verb specific roles . 10
2.2.2 General roles . 11
2.2.3 PropBank Statistics . 12

2.3 FrameNet . 12
2.3.1 Frames and Frame Elements . 12
2.3.2 Frame-to-frame Relations . 13
2.3.3 Lexical Units . 15
2.3.4 Current Status . 17

2.4 From base argument configuration to base argument configuration feature . 17
2.4.1 Syntactic argument structure . 17
2.4.2 Base argument configuration . 18
2.4.3 Base argument configuration feature 19
2.4.4 Creating BAC features for moved or displaced arguments 20

2.5 Semantic roles and argument realization 23
2.5.1 The theory of argument realization 24
2.5.2 SRs representing grammatical aspects of verb meaning 25
2.5.3 Argument realization: mapping semantic roles to arguments 29

2.6 Chapter summary . 33

Chapter 3 Review of Semantic Role Labeling Systems 35

v

3.1 Gildea and Jurafsky (2000) . 38
3.1.1 Components of the learning-based system 38
3.1.2 Constituency grammar-based features 39
3.1.3 Linguistic theoretical background 40
3.1.4 Identifying arguments . 40
3.1.5 Labeling the candidates . 41
3.1.6 Modeling argument structure . 43
3.1.7 Performance . 45
3.1.8 Authors’ discussion on feature design 45

3.2 Extensions to the seminal work . 46
3.2.1 Punyakanok et al. (2005) . 47
3.2.2 Toutanova et al. (2005) . 50
3.2.3 Section summary . 55
3.2.4 Two variations to the preceding systems 56

3.3 Exploring dependency grammar: onto CoNLL-2008 59
3.3.1 Motivations for the challenges . 60
3.3.2 Dependency grammar and data representation 61
3.3.3 Results from CoNLL-2008 . 63

3.4 Chapter summary . 64

Chapter 4 Feature Design . 68
4.1 System preview . 70

4.1.1 Argument identification . 72
4.1.2 Identification examples . 73
4.1.3 Argument classification . 75
4.1.4 Classification examples . 77

4.2 Base argument configuration and BAC features 78
4.3 Handling configurations different from BAC 79

4.3.1 Structures involving movements 79
4.3.2 Structures involving displaced arguments and BAC feature 83
4.3.3 Structures involving shared arguments and BAC features 83
4.3.4 Structures involving extra arguments and BAC features 84

4.4 Back-off features for core arguments in two situations 85
4.4.1 Unrealized core arguments . 85
4.4.2 Level-I back-off features . 87
4.4.3 Level-II backoff features for unseen verbs and all realized core ar-

guments . 87
4.5 Features for non-core argument . 88
4.6 Features for argument identification . 93
4.7 Chapter summary . 94

Chapter 5 System Description . 95
5.1 Current SRL system . 95
5.2 Argument identification . 97
5.3 Argument classification . 100

vi

5.4 Statistical models and classifiers . 101
5.4.1 The feature function . 101
5.4.2 Modeling with regularized logistic regression 103
5.4.3 K-nearest neighbor classifier . 103
5.4.4 Naive Bayes classifier . 105

5.5 Classifiers and components . 105

Chapter 6 Experiments, Results, and Discussion 108
6.1 The less-explored areas and novel solutions 109
6.2 Data and experimental designs . 111

6.2.1 The data sets . 112
6.2.2 The experimental plan . 112

6.3 Experiments with the argument identifiers 113
6.4 Experiments with the baseline system . 114
6.5 Experiments with argument classification 114

6.5.1 Results from the logistic regression classifier 115
6.5.2 Results from the nearest-neighbor classifiers 116
6.5.3 Discussion: effectively handling three issues 117
6.5.4 Comparisons with two other SRL systems 118

6.6 Identification and classification with gold parses 119
6.7 Identification and classification with automatic parses 120

6.7.1 Discussion . 121

Chapter 7 Conclusion . 122

Bibliography . 123

vii

List of Tables

Table

2.1 Subtypes of the ArgM roles . 12
2.2 Appeal frame definition . 13
2.3 Employing Frame Definition . 14
2.4 Employing Frame Definition (cont. from table 2.3) 15
2.5 Lexical Entry Report of employ . 16
2.6 Examples of break and hit with their respective core senses 26
2.7 Syntactic structure shown as grammatical relations. 26
2.8 Semantic role assignment for arguments in tables 2.6 and 2.7 27
2.9 Sense, syntactic structures, and roles for finger 28

3.1 Subsets Probabilities . 41
3.2 Sample argument structures of verb blame: 1 44
3.3 Sample subcategorization of verb blame 45
3.4 Sample features from Vickrey and Koller (2008) 58
3.5 Performance of base and combined models 59
3.6 Dependency relations used on CoNLL-2008 63

4.1 Sample data format from CoNLL-2005 71
4.2 Parsed input sentence and derived head indices 74
4.3 Candidate arguments for sow and pollinate 74
4.4 Core and non-core arguments for sow and pollinate 75
4.5 Structures involving movements and examples 80
4.6 Encoded knowledge about each structure 81
4.7 Sample parse from the Charniak parser . 82
4.8 BAC features of moved arguments in examples (58) through (67) 82
4.9 Structures involving displaced arguments and FAC features 83
4.10 Structures involving shared arguments . 83
4.11 Structures involving missing core arguments 85

5.1 Notations . 102
5.2 Procedures for training a K-nearest neighbor classifier 104
5.3 Classification by majority voting . 104
5.4 System components . 106

6.1 Experimental data . 112

viii

6.2 Experimental Plan . 112
6.3 Argument identification results . 113
6.4 Classification results from logistic regression models 115
6.5 Classification results from nearest-neighbor classifiers and the best logistic

regression baseline . 117
6.6 Oracle classification results. LR: logistic regression 118
6.7 Experimental results with the gold parses 119
6.8 Experimental results with the automatically parsed input 121

ix

List of Figures

Figure

2.1 The BAC extraction module . 20

3.1 Backing off from more to less specific features 43
3.2 Sample simplification rules . 57
3.3 Rules applied to derive I ate . 57
3.4 Combination strategies . 59
3.5 Constituent vs. dependency representation of syntactic structure 62

4.1 The Argument Identification module . 72
4.2 The Argument Classification module . 76

5.1 System Architecture . 96
5.2 The Argument Identification module . 97
5.3 The Argument Classification module . 100

x

Chapter 1
Introduction

The task of semantic role labeling identifies the semantic argument(s) of a predicate and
assigns a semantic role label to each semantic argument. Following the tradition of the
Proposition Bank (PropBank), the present work defines a semantic argument as one of the
constituents that participate in the event that the predicate is involved in, including the syn-
tactic arguments, adjuncts, modal verbs, negation adverbs, and discourse markers. Since
the seminal work on semantic role labeling (SRL) by Gildea and Jurafsky (2000), the com-
munity has seen much effort dedicated to the task, which generated dozens of published
SRL systems, including the ones participated in the shared tasks on CoNLL-2004 (Confer-
ence on Computational Natural Language Learning), CoNLL-2005, and CoNLL-2008. In
the past eight years, although researchers approached the SRL problem from different per-
spectives, they all focused on determining the appropriate syntactic/semantic knowledge
and machine learning system in order to tackle the challenges in SRL (Carreras and Mar-
quez, 2005; Surdeanu et al., 2008a). One of the most important challenges is to develop
features that generalize across syntactic configurations a verb appears in, configurations in-
volving moved or displaced, or extra arguments that are observed specifically in PropBank.
PropBank is the main lexical semantic resource for SRL systems since CoNLL-2004 and
provides the training and test data for the current system as well.

In terms of searching for the proper syntactic/semantic knowledge, the SRL researchers
explored features based on two formalisms, namely constituency grammar and dependency
grammar. The SRL systems constructed between the years of 2000 and 2006 investigated
a variety of features that constituency grammar provides for. The lack of improvement
in the performance on the commonly used test data, such as Penn Treebank section 23,
between 2005 and 2007 motivated SRL researchers to seek help from the grammatical re-
lations between a child word and its head within the framework of dependency grammar
(Johansson and Nugues, 2007a,b; Surdeanu et al., 2008a). However, the shift in feature
representations, aiming to show that dependency grammar was more suitable for the fea-
ture design, was not convincingly supported by the results from CoNLL-2008. As a matter
of fact, the researchers suggested, post CoNLL-2008, that determining the right syntac-
tic/semantic knowledge for the SRL task still remained an open question (Surdeanu et al.,
2008a). This conclusion implies that finding the right syntactic/semantic knowledge that

1

generalizes across different syntactic configurations that the same verb may appear in re-
mains a challenge.

The present work continues the research effort to discover and utilize the appropri-
ate syntactic/semantic knowledge for the SRL task. Specifically, while seeking the right
features to solve the SRL problem in general, the present project focuses on tackling the
challenge from syntactic configuration variations by integrating three less thoroughly ex-
plored types of syntactic/semantic knowledge in the context of SRL into the feature and
system designs that enable generalizing across the different syntactic configurations of a
verb, including the knowledge about the context dependence among the semantic roles of
the core semantic arguments of a verb, that about the structures where argument movement
or displacement occurs, and that about the grammatical relations between the arguments
and the predicate. A brief description of each type of knowledge follows.

The current work takes advantage of the context dependency among the semantic roles
of the core semantic arguments of a verb. Previous SRL systems that based their feature
designs on constituency grammar follow the linking theory in assuming that a linking re-
lation exists between a semantic argument and its semantic role (Levin and Hovav, 1996).
Relying on this relation, such systems intend to uncover the semantic role based on the
syntactic features of the semantic argument. However, the revised linking theory, under the
name of theory of argument realization, not only observes the argument-semantic role
link but also states the strong dependency among the semantic roles of the core arguments
of a verb (Levin and Hovav, 2005). Due to this strong dependency, when the core seman-
tic roles are realized, they are associated with a fixed syntactic configuration relevant to the
verb, where the corresponding semantic arguments occupy specific positions in the con-
figuration. Such positional correlation between the semantic roles and the core arguments
is formulated as a strong constraint on the core semantic arguments in the current project.
Although several SRL systems utilized such dependency among the semantic roles, these
systems did not distinguish between core and non-core semantic arguments and listed all
the semantic arguments in relation to the verb. The current work takes into account that the
dependency among semantic arguments referred to by the theory of argument realization
(AR) is only among core semantic arguments. An investigation of the AR theory as well
as the lexical resources of the Proposition Bank and the FrameNet confirms this interpre-
tation. The current work hence imposes the strong dependency constraint on the feature
design only for the core semantic arguments of a verb.

The preceding dependency constraint emphasizes that a core semantic argument of a
given verb occupying a specific syntactic position is assigned a fixed semantic role. This
constraint does not seem to apply to the core semantic arguments in several syntactic struc-

2

tures that have undergone transformations. For example, the semantic role of the semantic
argument occupying the subject position of a verb in active voice does not match that of the
subject of the same verb in passive voice. To resolve the position-role-mismatch between
the active and passive voices, the present system defines a base argument configuration
corresponding to the core semantic arguments’ positions in one of the verb’s argument
structures. Then, the core semantic arguments in the passive voice are brought to conform
with this base argument configuration. The present system handles the core semantic
arguments in other transformed syntactic structures in the same manner. The operation to
align the transformed core semantic arguments with a base argument configuration of a
given verb requires knowledge of the syntactic structures where one or more core argu-
ments have undergone transformations as well as knowledge of their positions in one of
the verb’s syntactic argument structures. Thus, the current system identifies twelve types
of transformed syntactic structures from Penn Treebank/PropBank and makes use of the
knowledge about the transformed structures.

The knowledge of the transformed structures not only entails the concepts depicted in
constituency grammar, such as phrase types, head words, and governing nodes, voices of
the verb, positions of arguments in relation to the predicate, etc., but also entails a variety
of word-to-head relations (see section 3.3.2) described in dependency grammar, including
relations such as subject, object, modifier of nominal, modifier of preposition, modifier of
adjective, etc. For example, to reconstruct the arguments’ positions from a passive sen-
tence, one needs the knowledge of the phrase types, subject relation, and object relation.
In order to correctly handle the transformed structures, instead of siding with a specific
grammar framework, the current work draws upon the concepts from both formalisms.

Combining the context dependency constraint, knowledge about the structures where
argument movement occurs, and the grammatical relations between the arguments and the
predicate, the current project offers a unique solution to the varying syntactic configuration
challenge for three reasons. Firstly, the current system translates the preceding three types
of knowledge into the base argument configuration (BAC) features for the core semantic
arguments of a verb that generalize across different configurations that a verb appears in.
Secondly, the operations that derive the BAC features from the different configurations of
the verb are straight-forward and efficient because the system only needs to encode which
argument(s) has/have moved in twelve syntactic structures and what positions they should
be in regarding their verb. Finally, although not explicitly extracting the grammatical re-
lations defined in dependency grammar as features which previous constituency grammar
based systems did not utilize, the current system relies on these grammatical relations to
reconstruct the base argument configurations of the core arguments.

3

Incorporating the BAC features into the system, the current work presents a new ap-
proach to the SRL task. More specifically, the system starts with identifying the core and
non-core semantic arguments for each verb in an input sentence. The system then classifies
the identified semantic arguments. To classify the core semantic arguments, the system
first checks if there is any transformation among the arguments. If there is, it aligns the
arguments up with those in a base argument configuration of the verb. Then, for each core
argument, the system extracts a contextual feature (the BAC feature) in relation to other
core arguments and the verb form by enforcing the dependency constraint. If the verb has
an unrealized argument/arguments, the system backs off to a more general feature, Level-I
feature. In cases of unknown verbs, the system backs off to the most general set of fea-
tures, Level-II features. For the non-core semantic arguments, the system extracts only
the Level-II features. When the features of all the arguments are extracted, a regularized
logistic regression model assigns corresponding semantic role labels to the arguments. A
nearest-neighbor classifier and a naive Bayes classifier are also applied to the arguments
for the purpose of comparisons with the logistic regression model.

Three sets of experiments were conducted to test the current feature and system designs.
To examine the effectiveness and build the performance upper bound of the current system
independently of the argument identifier, the first set of experiments ran the argument clas-
sifier on section 23 of the Penn Treebank with the semantic arguments pre-annotated. The
system achieved 88.89% of F-measure with the logistic regression model and 89.41% of
F-measure with a nearest neighbor classifier. Both F-measures are above the 82.92% F-
measure by the baseline classifier which relies on a generic set of features found in most
constituency grammar-based SRL systems. The F-measure achieved by the current fea-
ture and system designs is also above the 85.38% of F-measure from a state-of-the-art
re-ranking-based joint modeling system by Surdeanu et al. (2007) on the same data set.
This indicates the current feature and system designs are relatively effective in terms of
handling the varying syntactic configurations challenge. The argument classifiers in this
set of experiments are called the oracle systems.

The second and third sets of experiments showed that the argument classifier performs
consistently in different settings. Both sets of experiments also show that the performance
of the argument identifier affects the argument classifier. Specifically, in the third set of ex-
periments, the argument identifier obtained an F-measure of 79.80% on section 23 parsed
with the Charniak parser. Consequently, the argument classifier gained an F-measure of
70.86%. Since 70.86 is about 89% of 79.80 and is comparable to the F-measure of 89% of
the oracle systems from the first set of experiments, the performance of the argument clas-
sifier remains consistent but is conditioned on that of the argument identifier. Therefore,

4

the immediate future task for the current project is to refine the argument identifier.
The rest of the report proceeds as follows. Chapter 2 lays the foundation of the cur-

rent work in three perspectives. First, chapter 2 defines semantic roles and the semantic
role labeling task. Second, chapter 2 introduces the lexical resources that are commonly
used for training and evaluation in the field of SRL. Third, following the definitions and
introduction, chapter 2 provides for the linguistic theoretical background of the current
project by describing the aspects of the theory of argument realization that are relevant
to the current project. Specifically, the concept of context dependence is defined. In ad-
dition to the preceding definitions, Chapter 2 introduces the definitions of base argument

configuration (BAC) and the BAC feature. Chapter 3 reviews the SRL systems since the
year of 2000, highlighting how the situation where a verb has different syntactic configura-
tions still remain a challenge for the researchers. The differences between the constituency
grammar-based feature design and the dependency grammar-based feature design are also
discussed in the same chapter. Chapter 4 describes the feature design of the current project
for the core and non-core arguments, emphasizing how the current project addresses the
issue with the varying syntactic configurations of a verb. Chapter 5 incorporates the feature
design into a complete statistical learning-based SRL system. Chapter 6 describes the three
sets of experiments conducted to test the current system.

5

Chapter 2
Definitions, lexical resources, argument structure, base argument

configuration, and argument realization

Before the discussion of any semantic role labeling system, it is necessary to present the
definitions of semantic roles, semantic arguments, and the task of automatic semantic role
labeling (SRL), to describe the lexical resources that enable automatic SRL, to describe
argument structure and define base argument configuration of a verb, and to provide for
the linguistic theoretical background of the current SRL project. Thus, this chapter be-
gins with defining traditional semantic roles, semantic arguments, and the automatic SRL
task. Due to the fact that the Proposition Bank (PropBank) and the FameNet database
are the two standard lexical resources for training and evaluating existing SRL systems,
the chapter proceeds with a description of both lexical resources, highlighting that both
resources distinguishing between verb-specific core semantic roles and non-core seman-
tic roles general to all verbs. The chapter follows the description of the lexical resources
with defining the argument structure of a verb and presents the concept of base argument
configuration for this project. The chapter then moves forward to present the linguistic
theoretical background of the current system, the theory of argument realization (AR)
that accounts for the context dependence between the semantic role of a core argument
with those of other core arguments. Having observed the practical handling by the lexical
resources and the theoretical rendering by the AR theory of the core and non-core semantic
roles/arguments, the chapter then concludes that the current system employs verb-specific
context dependence features for core semantic arguments and generic features general to
non-core arguments.

2.1 Definitions

To lay the background for the upcoming discussions in later sections and chapters, this
section presents the definitions for traditional semantic roles, semantic arguments, core
semantic arguments, non-core semantic arguments, semantic argument identification
task, and semantic role labeling task.

6

2.1.1 Traditional semantic roles

Semantic roles are semantic labels assigned to the grammatically relevant aspects of a
verb’s meaning that identifies the role that each of the verb’s semantic arguments plays
in the event it denotes (Levin and Hovav, 2005, p. 35). The grammatically relevant as-
pects of a verb’s meaning are responsible for mapping lexical semantics to syntax in the
framework of argument realization (Levin and Hovav, 2005, p. 9). The list of fixed roles
associated with the semantic arguments of a verb is referred to as a semantic role list, also
known as a case frame (Fillmore, 1968) or a theta-grid (Stowell, 1981). The concepts of
semantic role and list has a long history dated back to the Sanskrit grammarian Pān. ini. The
well-known theories in modern times on semantic roles are found in the work of Fillmore’s
Case Grammar, Gruber and Jackendoff’s thematic relations (Levin and Hovav, 2005,
p. 35). Although there is consensus on the functions of semantic roles among lexical se-
manticists, the actual roles subsumed in the semantic role list of a verb may differ slightly
from one lexical semanticist to another. Regardless of such differences, the list in (1) be-
low from Fillmore (1968, p. 376) gives a good example of the definitions of some of the
common semantic roles.

(1) a Agent, the instigator of the event
b Counter-Agent, the force or resistance against which the action is

carried out
c Object, the entity that moves or changes or whose position or exis-

tence is in consideration 1

d Result, the entity that comes into existence as a result of the action
e Instrument, the stimulus or immediate physical cause of an event
f Source, the place from which something moves
g Goal, the place to which something moves
h Experiencer, the entity which receives or accepts or experiences or

undergoes the effect of an action

The semantic roles defined in this section will be referred to as traditional semantic
roles in later chapters because the recently developed lexical resources that the current
project relies on defines a large number of fine grained semantic roles specific to verb
senses. Such lexical resources include the Proposition Bank (PropBank) (section 2.2) and
FrameNet (section 2.3). Verb-specific semantic roles defined in PropBank instead of the
above traditional semantic roles are the ones that the current system utilizes for training
and testing.

1This is a quote from Fillmore (1968, p. 376) which is equivalent to the Theme role by its definition.

7

The arguments participating in the event that the verb predicate denotes are in fact verb
semantic arguments, as opposed to the syntactic arguments of the verb. The next sec-
tion defines the concept of verb semantic arguments which is critical to the design of the
current project.

2.1.2 Verb semantic arguments, core and non-core semantic argu-
ments

The preceding section brings up the concept of verb semantic arguments, as opposed to the
syntactic arguments of a verb. A precise definition of verb semantic argument is due in
this section. According to Culicover and Jackendoff (2005, p 173), entities that are intrinsi-
cally involved in the event that the predicate verb denotes are called semantic arguments
of the verb. As part of its meaning, the verb stipulates the number of semantic arguments.
The semantic roles defined in the preceding section are then the labels assigned to the se-
mantic arguments of a verb. For example, the verb expect with the meaning of anticipate as
shown in (2) specifies its two semantic arguments with the semantic role labels of expecter

and thing expected shown in (3). (4) shows that the semantic arguments expecter and thing

expected are realized as the syntactic arguments, subject NP and object NP respectively.

(2) Verb: expect; Meaning: anticipate

(3) Number of semantic arguments: 2; Corresponding semantic role labels: expecter,
thing expected

(4) [Sub ject NP expecter Portfolio managers] expect [Ob ject NP thing expected further declines
in interest rates].

The illustration above shows that semantic arguments of a verb are associated with spe-
cific semantic role labels determined by the verb. The rest of the section explains how the
distinction between core and non-core semantic arguments arises.

Computational linguists, such as Palmer et al. (2003) and M‘arquez et al. (2008), incor-
porate into semantic arguments the traditional syntactic arguments, adjuncts, model verbs,
discourse markers, and negation adverbs. In other words, the preceding grammatical units
can all be realized as semantic arguments. An outcome of the integration is the develop-
ment of a lexical semantic resource, the Proposition Bank (PropBank), the main resource
for training and testing semantic role labeling systems. More details on PropBank are given
in section 2.2. PropBank formally names the subset of semantic arguments realized as syn-
tactic arguments core arguments. But the semantic arguments realized as adjuncts, model

8

verbs, discourse markers, and negation adverbs are not given a formal type in PropBank
but are sometimes referred to as non-core arguments (Gildea and Hockenmaier, 2003;
Vickrey and Koller, 2008). The current project also refers to these semantic arguments as
non-core arguments. In recent semantic role labeling literature, researchers tend to use ar-
guments in replace of semantic arguments. The current project follows this trend. Thus,
unless otherwise specified each occurrence of argument refers to a semantic argument in
the rest of the report.

The results that follow from the distinction between core and non-core semantic argu-
ments are that core semantic arguments, realized as syntactic arguments, are specific to a
verb and that non-core semantic arguments, realized as syntactic adjuncts, model verbs,
discourse markers, or negation adverbs, are general to all verbs.

This following example illustrates the core and non-core arguments. (5) lists the core
argument MEETER of the verb meet and some of the non-core arguments, LOCATION,
TEMPORAL, and PURPOSE. In (6), the MEETER argument is realized as the subject NP

syntactic argument. The LOCATION TEMPORAL, and PURPOSE arguments are realized
as the PP locative adjunct, NP temporal adjunct, and infinitival VP adjunct respectively.

(5) Verb: meet; Meaning: get together; Core argument: MEETER; Non-core argu-
ments: LOCATION, TEMPORAL, PURPOSE, etc.

(6) [NP MEET ERThe economic and foreign ministers of 12 Asian and Pacific nations] will
meet [PP LOCAT ION in Australia] [NP T EMPORAL next week] [V P PURPOSE to discuss
global trade as well as regional matters such as transportation and telecommunications].

2.1.3 Automatic semantic role labeling task

Informally, the task of automatic semantic role labeling entails the subtask of identifying
the semantic arguments that are realized as constituents, including arguments, adjuncts,
modal verbs, discourse markers, and negation adverbs, and the subtask of assigning the
correct semantic role label to each argument. The latter task is also known as the argument
classification task. For example, the constituents that are realized semantic arguments in
(7) are identified and shown in (8). Each identified argument/constituent is labeled with the
correct semantic role in (9).

(7) Peter broke the jar with a rock.

(8) [NPPeter] broke [NPthe jar] [PPwith a rock].

9

(9) [AgentPeter] broke [Ob ject the jar] [Instrumentwith a rock].

Formally, the SRL task in current project is defined in (10)

(10) Given sentence S and verbs v1, · · · ,vm in S, for each verb vi, the semantic role labeling
task is to assign a unique semantic role, r j, to the corresponding semantic argument
a j, of vi.

2.2 PropBank

The Proposition Bank provides for the training and evaluation data for a majority of the
published SRL systems. The SRL system in the present work also relies on these data from
training and testing. Therefore, a depiction of the lexical resource is due. The Proposition
Bank (PropBank), developed at the Computer and Information Sciences Department at the
University of Pennsylvania in 2004, is the semantic annotation of the Wall Street Journal
sections of Penn Treebank-2. Specifically, PropBank adds a layer of predicate-argument
information, or semantic role labels, to the syntactic structures of the Penn Treebank. Prop-
Bank defines semantic roles on a verb-by-verb basis, consisting of roles specific to a verb’s
sense and roles general applicable to any verb. In the following, each type of role is de-
scribed.

2.2.1 Verb specific roles

PropBank annotates the senses of each verb. For each verb with a specific sense, PropBank
numbers their semantic arguments or roles, beginning with zero and ending with five, the
notation of which is Argi. These numbered roles specific to a verb sense are called core se-
mantic roles, comparable to FrameNet’s core frame elements. Each semantic role is given
a definition. A set of roles corresponding to a verb with a specific sense is referred to as
roleset. Each roleset may be associated with a set of syntactic frames indicating allowable
syntactic variations in the expression of the roleset. The roleset with its associated syntactic
frames is called a frameset. The collection of frameset entries for a verb is referred to as
the verb’s frames file.

The examples in (11), (12) and (13) correspond to the three framesets in the frame
file for the verb yield. The roleset, semantic roles and their definitions, and an annotated
sentence are given for each of the three senses of yield. Each example shows only one set
of the syntactic frames/variations associated with yield.

10

(11) Frameset of verb: yield |WordNet sense & ID: 01, result in

Roleset: {Arg0, Arg1}

Arg0: thing yielding

Arg1: thing yielded

Ex: [Arg0The top money market funds] are currently yielding [Arg1well over 9%].

(12) Frameset of verb: yield |WordNet sense & ID: 02, give way

Roleset: {Arg0, Arg1, Arg2}

Arg0: thing giving way

Arg1: what’s lost

Arg2: what’s preferred

Ex: [Arg0John] yielded [Arg1the right-of-way] [Arg2to the Mack truck].

(13) Frameset of verb: yield |WordNet sense & ID: 03, give a dividend

Roleset: {Arg0, Arg1, Arg2}

Arg0: thing providing a dividend

Arg1: dividend, earnings

Arg2: recipient

Ex: [Arg0A new, 12-year Canada Savings Bond issue] will yield [Arg2investors]
[Arg110.5%] · · ·

2.2.2 General roles

While Arg0 to Arg5 are specific to each verb sense, general roles apply to any verb sense.
General roles are adjunct-like arguments (ArgsMs) or adverbial subordinate clauses to the
verb, distinguished by one of the function tags shown in Table 2.1. General roles are
also referred to as non-core roles, comparable to Framenet’s non-core frame elements.
The verb-level negation NEG and modal verbs MOD are also annotated as general roles
although they are not considered as adjuncts.

11

LOC: location CAU: cause
EXT: extent TMP: time
DIS: discourse connectives PNC: purpose
ADV: general purpose MNR: manner
NEG: negation marker DIR: direction
MOD :modal verb

Table 2.1: Subtypes of the ArgM roles

2.2.3 PropBank Statistics

The current PropBank contains frames (frame files) for over 3,300 verbs distributed over
4,500 framesets, indicating that each verb has approximately 1.36 senses. Specifically,
21.6% (7213342) of the frames (frame files) contains more than one frameset, meaning
21.6% or 721 of the verbs have a single sense, while less than 100 verbs have four or
more senses. Each sense of a polysemous is assigned to an appropriate frameset, with an
inter-annotator agreement of 94% (Palmer et al., 2005).

2.3 FrameNet

The FrameNet lexical database provides for the training and test data for a number of SRL
systems, including the seminal work of Gildea and Jurafsky (2000), and for the SRL tasks
on Senseval-2003 and Semeval-2007. The main components of FrameNet are described in
this section because the lexical resource is referred to in the literature review in Chapter 3.
However, the current project does not use FrameNet for training or testing.

The FrameNet lexical database, being developed by the Berkeley FrameNet project
since 1997, provides online lexical semantic resources for English. Built by virtue of
Frame Semantics (Fillmore, 1968), the FrameNet database records the semantic and syn-
tactic combinatory possibilities, i.e. valences, for each word in each of its senses. Frames,
frame elements, lexical units, relationships between frames and frame elements (FE), and
others comprise the FrameNet database (Ruppenhofer et al., 2006). Description of the
current status of the FrameNet project will follow that of the preceding components.

2.3.1 Frames and Frame Elements

Following Frame Semantics, the FrameNet database has frames and their component frame
elements as the basic units. A frame is a script-like conceptual structure that consists of

12

a definition of this frame, a list of frame elements, relationships with other frames, and
lexical items subsumed by this frame.

The frame definition describes the participants and propositions of a specific type of
event. Frame elements (FEs) are the semantic roles specific to a frame. The two main
sub-types of frame elements are the core and peripheral classes. Frame elements that are
not core FEs are referred to as non-core FEs.

Core frame elements uniquely define a frame and are conceptually necessary to this
frame. That is, each frame has a unique list of core frame elements assigned to it. Each
core frame element has a unique definition. No two frames share the same list of core frame
elements. For example, the list of core frame elements for the Appeal frame in table 2.2 are
different from those for the Employing frame in table 2.3. Since the list of frame elements
are unique to a frame, they are conceptually necessary to the frame.

Appeal Frame

Definition A Survivor manages to avoid being negatively affected,
despite encountering a Dangerous situation.

Core Frame Elements
Dangerous situation The Dangerous situation is one in which people are

likely or expected to be negatively affected.
Survivor The Survivor lives through a Dangerous situation.

Table 2.2: Appeal frame definition

Peripheral FEs are the semantic roles representing notions such as TIME, PLACE,
MANNER, MEANS, DEGREE, etc, while not distinctively characterizing a frame. The
FEs that are not core FEs are called non-core FES. Each frame element is associated with a
semantic role and its definition, and a semantic type. Table 2.3 lists the definition, core FEs,
and non-core FEs of the Employing frame. Examples for the core the non-core elements
are also listed.

2.3.2 Frame-to-frame Relations

The FrameNet database resembles all ontologies in that a network of relations are pro-
vided between frames. Eleven inter-frame relations are defined, including Inheritance,
Subframe, Has Subframes, Precedes, Is Preceded by, Using, Is Used by, Perspective
on, Is Perspectivized in, and Is Causative of. The most important relations according
to Ruppenhofer et al. (2006) are Inheritance, Using, Subframe, and Perspective on.

The Inheritance relation is an IS-A relation. The Inheritance relation describes the

13

Employing Frame

Definition An Employer employs an Employee whose Position entails
that the Employee perform certain Tasks in exchange
for Compensation.

Core Frame Elements
Employee The FE Employee denotes the person who is obligated to

perform some Task in order to receive Compensation.
E.g., I was EMPLOYED by an international corporation.

Employer The Employer is the person or institution that gives
Compensation to an Employee.
E.g., I EMPLOYED him as Chief Gardener for ten years.

Field The FE Field identifies the field in which the Employee
is employed.
E.g., He was EMPLOYED in finance fourteen years ago.

Position The FE Position indicates a particular type of employment.
E.g., I’m not EMPLOYED as your waitress!

Task The Task indicates the action/duty that the Employee is
obligated to do for the Employer.
E.g., I am EMPLOYED to collect the trash.

Non-core Frame Elements
... ...
Duration The FE Duration identifies the amount of time for

which the Employee continues in employ.
Semantic Type: Duration
E.g., I EMPLOYED him as Chief Gardener for ten years.

Manner The FE Manner identifies the way in which an Employer
hires an Employee.
Semantic Type: Manner
E.g., The three young men were given medals and
hastily COMMISSIONED.

Place The FE Place identifies the location where the Employer
hires the Employee.
Semantic Type: Locative relation
E.g., Actually, he EMPLOYED me at the downtown office .

Time The FE Time identifies the time at whcih the Employer
hires the Employee.
Semantic Type: Time
E.g., Charles has been an EMPLOYEE of Microsoft since 1998!

... ...

Table 2.3: Employing Frame Definition

14

scenario where the child frame is a subtype of the parent frame, with each FE in the par-
ent frame bound to a corresponding FE in the child. For example, the Absorb heat frame
inherits from the Becoming frame, which in return inherits from the Event frame.

With the Using relation, the child frame presupposes the parent frame as background,
not all parent FEs necessarily bound to child FEs. The Arriving frame presupposes the
Path shape frame.

In the Subframe relation, the child frame is a subevent of a complex event represented
by the parent. The Arriving frame is a subframe of Traversing. The Departing frame is
also a subframe of Traversing.

The Perspective on relation describes the situation where the child frame provides a
particular perspective on an un-perspectivized parent frame. The Containing frame per-
spectivize the Containment frame from the point of view of the Container.

The relevant inter-frame relations of the Employing frame are shown in table 2.4. The
hierarchical semantic relations shown between the frames above also resemble the hierar-
chical relations among the words’ senses in WordNet (Fellbaum, 1998).

Employing Frame (cont.)

Inter-frame Relationships

Relationship Related Frame
Subframe of Employer’s scenario
Precedes Firing
Is Preceded by Hiring
Perspective on Employment continue

Subsumed Lexical Units

Lexical Units commission.v, employ.v, employee.n,
employer.n, employment.n, personnel.n,
staff.n, worker.n

Table 2.4: Employing Frame Definition (cont. from table 2.3)

2.3.3 Lexical Units

Table 2.4 lists the lexical units subsumed by the Employing frame. Each lexical unit is
defined by a specific sense of a word, its part-of-speech, and lexical entry. The sense of
each word, i.e. lexical unit, is either the definition from the Concise Oxford Dictionary,

15

10th Edition or a definition created by a FrameNet staff member. Each sense of a word
is provided with approximately 20 annotated examples, illustrating all syntactic combina-
torial possibilities of the word. Each lexical unit is linked to a frame, and hence to the
other lexical units that subsumed by the same frame. This grouping of semantically similar
words in the same frame makes the FrameNet database similar to a thesaurus.

In the FrameNet database, the information about each lexical unit is shown in two
reports, the lexical entry report and the annotation report. The lexical entry report contains:

• the LU definition
• any support or governing words annotated for the LU
• a table of frame elements and their syntactic realizations
• a table of valence patterns (syntactic patterns for each possible group of semantic

roles).

Table 2.5 displays the lexical entry report for the lexical unit employ. The frequencies
of the lexical unit’s syntactic realizations and valence patterns are recorded, which may
be useful for a statistical learning system that learns from these syntactic realizations and
patterns.

Employ Lexical Unit

Part-of-Speech Verb
Frame Employing
Definition give work to (someone) and pay them for it.

Frame Elements and Their Syntactic Realizations

Frame Element Number Annotated Realizations(s)
Employee (70) NP.Appositive (4)

NP.Ext (8)
NP.Obj (58)

Employer (70) NP.Ext (62)
CNI.– (2)
PP[by].Dep (6)

Position (25) NP.Obj (1)
PP[as].Dep (6)
...

Task (52) 2nd.– (5)
INI.– (23)
vPto.Dep (16)
...

Table 2.5: Lexical Entry Report of employ

The annotation report contains:

16

• a brief guide to the frame elements
• FrameNet semantic annotation of corpus examples of the LU

The annotation report for the lexical unit employ defined in table 2.5 lists the frame
elements of employ, including the core FEs and non-core FEs shown in table 2.3. The
annotation report also provides about 60 annotated sentences with employ in different syn-
tactic structures. For each sentence, the parts-of-speech of the words, the constituents,
and the grammatical relations of the constituents are also annotated. For example, the
annotations of one of these sentences are shown in (14):

(14) Sent: Canal companies EMPLOYED divers to investigate underwater problems.
POS: NN1-NP0 NN2 VVD-VVN AJ0 TO0 VVI AJ0 NN2 PUN

2.3.4 Current Status

The FrameNet database release 1.3 (Ruppenhofer et al., 2006) includes more than 10,000
lexical units, covering about 800 semantic frames. More than 6,000 of the lexical units are
fully annotated. More than 135,000 annotated sentences are provided for the lexical units.
The inter-annotator agreement of the frames is not available.

2.4 From base argument configuration to base argument
configuration feature

2.4.1 Syntactic argument structure

The syntactic arguments of a verb refer to its subject and complement. Subjects are also
known as external arguments, and complements internal arguments (Radford, 1997, p.
325). Syntactic argument structure refers to the number of external and internal arguments
that a particular predicate verb requires in a clause (Carnie, 2002, p. 166). This definition
indicates that the argument structure of a verb not only specifies the number of syntactic
arguments it takes but also determines their positions in the structure. Based on the num-
ber of possible arguments and their positions in the argument structure of a verb in a single
clause, Quirk et al. (1985, p. 53) summarize three main types of argument structures. These
are:

2-element structure: Sub j.+V

17

3-element structure: Sub j.+V +Ob j./Ad jP/In f ./PP/...complement

4-element structure: Sub j.+V +Ob j.+Ob j./Ad jP/In f ./PP/...complement

In the approach of Quirk et al. (1985), the verb is counted as an element of an argument
structure. (The verb in the three structures is also known as the 1-place predicate, 2-place
predicate, and 3-place predicate respectively (Radford, 1997, p. 325).) It is possible that
a verb has more than one argument structure. That is, it may appear in one or more of
the three configurations. For example, the verb want appears in two different argument
structures in (15) and (16).

(15) [sub jectJohn] wants [ob ject complementa Michigan shirt].⇒ Sub j.+V +Ob j.complement

(16) [sub jectJohn] wants [in f initival clause complement to watch a Michigan football game]. ⇒
Sub ject +V + In f initival clausal complement

2.4.2 Base argument configuration

The preceding section shows that Quirk et al. (1985) represent argument structures by se-
quentially listing the argument types, such as Subject + V + Object etc. The current project
represents argument structures in a different format. In this format, instead of listing ar-
gument types, such as the subject and object complement in (15) and (16), an argument
structure of a verb is represented as a sequence consisting of the lemmatized verb with the
syntactic categories of each of its syntactic arguments in the order in which they appear in
the parse tree. Such representation of an argument structure of the verb is called a base
argument configuration (BAC) of the verb. A verb may have one or more base argument
configurations because a base argument configuration corresponds to an argument structure
of a specific verb and the verb may have more than one argument structure, as examples
(15) and (16) show above.

For example, the base argument configurations corresponding to the two argument
structures of want in (15) and (16) are shown in (17) and (18).

(17) [NP John] [V P wants [NP a Michigan shirt]]. ⇒ NP−want−NP

(18) [NPJohn] [V P wants [S to watch a Michigan football game]]. ⇒ NP−want−S

The base argument configuration NP−want−NP in (17) of the predicate want is anal-
ogous to its argument structure in (16) except that the verb lemma is included in the BAC
and the argument types are replaced with the syntactic categories.

18

2.4.3 Base argument configuration feature

The task of argument classification classifies an argument-verb instance and assigns a se-
mantic role label to the instance based on its features. The base argument configuration
(BAC) feature is one of the features for the instance. The BAC feature is essentially a
listing of the arguments in the base argument configuration with respect to a given verb,
while marking the argument in question as the current argument. For example, (19).1 is the
instance created for the argument John in (17). Its BAC feature is shown in (19).2. And its
position is marked by the string cur.

(19) (1) Instance: John want

(2) BAC feature: curNP want NP

While a BAC feature captures the argument structure of a given verb, it serves two other
important functions as well.

First, a BAC feature approximates the context dependence among the semantic roles
of the core arguments of a given verb. As section 2.5.3.1 will show, there exists context
dependence among the semantic roles of core arguments as illustrated in the theory of ar-
gument realization. While the semantic roles of the arguments are unknown and cannot
be used as features, listing the syntactic categories of all core arguments functions as an
approximation of context dependence. Since the syntactic categories of all the core argu-
ments are present in the BAC feature, it serves as an approximation of context dependence
among the arguments.

Second, a BAC feature generalizes across the syntactic structures involving moved or
displaced arguments of a given verb. In real life data, such as that collected in the Penn
Treebank, arguments of predicate verbs have frequently been displaced or moved out of
the positions of their corresponding verb’s argument structure. Creating the BAC features
for the moved or displaced arguments of a given verb helps to generalize across the syn-
tactic structures that the verb appears in because arguments positions in the base argument
configuration overlap with the those in one of the verb’s argument structures.

However, the BAC features cannot be extracted for the displaced arguments by simply
listing the syntactic categories of the verb’s arguments as is because the positions of the
displaced arguments do not overlap with those in one of the verb’s argument structures.
The next section illustrates how base argument configuration features are created for the
displaced arguments in passive voice and subject control.

19

Base Argument Configuration Feature Extraction

Task:
To extract the BAC features for the arguments of a verb from Treebank-style
parse trees where the traces marking moved arguments are deleted.

Input:
Heuristics to determine the 12 types of syntactic structures involving
moved or displaced arguments from Treebank-style parse trees where the
original traces marking the moved arguments are deleted.

Knowledge of the originating position of the moved or displaced
argument in each of the 12 structures.

An ordered list of the pre-identified arguments for a verb with the verb's
position marked.

Output:
A BAC feature for each argument of the verb in the list.

Procedures:

1. Determine if the verb is in one of the 12 structures involving moved or
 displaced arguments, using the heuristics.

2. If not, then go to step 5
3. If yes, then use the knowledge about this structure to insert the moved or

 displaced argument in its originating position in the argument list.
4. If the current structure is also a passive and if the subject NP introduced in

 the by_PP phrase exists, insert the subject before the verb.
5. For each argument in the argument list, do
6. Create a BAC feature for this argument by listing the syntactic category

 of each element in the resulting ordered argument list and marking the
 current argument with cur. For the verb, its lemma is listed instead.

7. Done.

Figure 2.1: The BAC extraction module

2.4.4 Creating BAC features for moved or displaced arguments

The current project observes twelve types of syntactic structures in Treebank/PropBank
where moved or displaced arguments occur, including eight types of moved arguments, one
type of displaced arguments, one type of arguments whose predicates are in co-ordinated
structures, and one type of extra arguments associated with relative clauses (see section 4.3
for the illustration of each type). The module for extracting BAC features is summarized
in figure 2.1. This module requires as input the heuristics to detect the twelve structures,
the knowledge about the originating positions of the moved or displaced argument(s) of the
verb in each structure, and the list of pre-identified arguments of the verb. Such heuristics
and knowledge help with both the argument identification and classification tasks. The rest

20

of this section illustrates the procedures to extract base argument configuration features
for two of the twelve structures, including the passive structure and the subject control
structure.

At this point, the author would like to draw the reader’s attention to the fact that
the forementioned twelve types of syntactic structures are the ones observed in Tree-
Bank/PropBank with noticeably high frequencies. The current system is designed to handle
these structures but does not handle the structures that involve other types of moved or
displaced arguments that either appear in low frequencies in TreeBank or have not been
observed or do not appear in Treebank at all.

2.4.4.1 Extracting BAC features for passive structures

This section illustrates how the BAC features are created for the arguments of a passive
verb in examples (20).2 through (20).8.

(20) (1) [NP The problemsi] [V Pwere uncovered *tracei* ... [PP by [NP the government]]].

(2) [NP The problems] [V P were uncovered ... [PP by [NP the government]]].

(3) Core argument list (NP Sub ject, uncovered passive, PPAdverbial)

(4) Unmoved the subject (uncovered passive, NP Sub ject, PPAdverbial)

(5) Replaced the PP argument (PPAdverbial , uncovered passive, NP Sub ject)

(6) In base argument configuration (NP, uncover, NP Sub ject)

(7) BAC feature for The problems (NP-uncover-curNP)

(8) BAC feature for the PP (curNP-uncover-NP)

(20).1 shows the Penn Treebank version of an annotated passive sentence where the
moved argument the problems is marked with an index along with its trace. The current
project encodes its knowledge about the structures involving moved arguments using such
annotations of traces. In this case, the current system learns from this and other passive
clauses that the subject of the passive verb is a moved argument and it occupies the ob-
ject position when the verb is active voice. At the same time, the PP-argument headed by
by in passive voice occupies the subject position when the verb is in active voice. Such
knowledge helps with extracting the BAC features more than argument identification.

The parsed sentence (20).2 without any trace marked is the actual input to the current
system. The trace of the moved argument the problems is not shown for two reasons. First,
the current system uses the CoNLL-2005 training data which consists of sections 2 to 22 of

21

the Penn Treebank where all traces have been deleted. Second, for testing, the current sys-
tem as well as many others rely on an automatic parser, such as Charniak parser, which does
not output annotations for traces. The current system then relies on the knowledge learned
from the Treebank annotations to identify the structures involving moved arguments, such
as that about passive voice described in the last paragraph.

Following the procedures of the BAC feature extraction module in figure 2.1, a list of
core arguments shown in (20).3 are extracted for the verb uncovered from the parse tree.

Since the verb is in passive voice, the subject The problems is a moved argument, and
the adverbial by the government is a displaced argument, the BAC features cannot be ex-
tracted for the two arguments as is because the arguments in a base argument configuration
are not moved or displaced. To extract the BAC features for the two arguments, the system
first un-moves the subject by inserting it behind the verb as shown in (20).4.

Since uncover is in passive voice, there is an extra operation to resolve the PP-argument.
That is, relying on the knowledge that in passive voice the PP-argument headed by by is
the subject of the verb in active voice, the system inserts the PP-argument in the beginning
of the argument list and rewrites the syntactic category as NP.

Through the above operations, the resulting base argument configuration of uncover

is shown in (20).5. Now, the BAC feature for subject The problems is extracted as NP-

uncover-curNP based on its position in the base argument configuration. And the BAC
feature for the PP argument by is extracted as curNP-uncover-curNP.

2.4.4.2 Extracting BAC features for subject control structures

This section illustrates how the BAC features are extracted for the arguments in the subject
control structure in examples (21).2 through (21).6, specifically for the arguments of the
lower-clause verb pull. This section also shows that the knowledge about the arguments’
positions in the subject control structure contributes to the argument identification task.

(21) (1) [NP Johni] [V Ptried [S [NP*tracei*] [V P to pull [NPthe wool]]]] ...

(2) [NP John] [V Ptried [S [V P to pull [NP the wool]]]] ...

(3) Args. list for pull: (NP John, pull, NP the wool)

(4) Base argument configuration for pull: (NP, pull, NP)

(5) BAC feature for NP John: (curNP-pull-NP)

(6) BAC feature for NP the wool: (NP-pull-curNP)

22

(21).1 shows a Treebank version of a sentence with subject control, where the subject of
the matrix verb is raised from its co-indexed trace. From this and other similar subject con-
trol structures, the system learns that the subject of the matrix verb is also the subject of the
lower-clause verb. This knowledge is encoded in the system and is useful for identifying
the subject of the lower verb.

(21).2, with the trace and co-indices deleted, represents the actual input sentence the
current system sees. While the object of the lower-clause verb pull can be identified easily
because its parent is pull, the system relies on the knowledge described in the preceding
paragraph to identify the subject for the lower-clause verb pull. As a result, both arguments
of pull are identified and shown in (21).3. Now, a base argument configuration correspond-
ing to the predicate verb is derived and shown in (21).4. Extracting the BAC features for
the arguments needs just to list the elements in the configuration. Finally, the two BAC
features corresponding to the two arguments are shown in (21).5 and (21).6.

2.5 Semantic roles and argument realization

The goal of SRL is to identify the semantic roles of the arguments of the verb(s) in an
unseen sentence, where no annotation of any kind is available. To achieve this goal, SRL
systems, especially the early ones such as Gildea and Jurafsky (2000), presuppose that
a verb’s syntactic structures depend on its meaning and that semantic roles, representing
the lexical meaning of the verb, can be uncovered by using the syntactic structures because
semantic roles are mapped onto arguments by linking rules. Both presuppositions are made
on the basis of the linking theory (Levin and Hovav, 1996). In addition to assuming this
linking relationship between syntactic structures and semantic roles, SRL researchers also
assume the dependencies among the arguments and their semantic roles, based on their
knowledge and intuition about the English language. The researchers have done so without
consulting the theory of argument realization (AR), the revised linking theory in Levin
and Hovav (2005) that examines in more detail the relations among arguments and their
semantic realization. An investigation of the main concepts of the AR theory is due for
two reasons. First, the AR theory offer a linguistic theoretical background to the SRL task.
Second, the AR theory meticulously studies the dependency among arguments and their
corresponding semantic roles.

While presenting the AR theory as the linguistic theoretical background for the current
project, this section also serves the purpose of connecting the practice of electronic lexi-
cal resources such as the PropBank and the FrameNet database with the linguistic theory in

23

lexical semantics by showing that these lexical resources provide for a fine-grained solution
to the grain-size problem that lexical semanticists previously had not been able to success-
fully solve using the traditional semantic roles such as those defined in section 2.1.1 . By
bridging the gap between the lexical semantic theory and the unsolved grain-size problem,
the lexical resources provide for useful information for automatic semantic role labeling
systems.

The results from the above investigation of the AR theory and the comparison between
the AR theory and modern lexical semantic resources are two-fold. On the one hand, the
AR theory provides for the lexical semantic basis for the dependencies among the seman-
tic roles of the corresponding co-arguments of a verb. On the other hand, due to the fact
that FrameNet and PropBank lexical resources extend the AR theory, the aspects regarding
non-core semantic roles in FrameNet and PropBank that are not discussed by the AR theory
need to be considered in the current project. The comparison shows that the dependency
among arguments in the AR theory really entails those among core arguments and that the
semantic role of a non-core argument may be independent of that of other core or non-core
arguments.

2.5.1 The theory of argument realization

As expressed in the work of Stowell (1981), Pesetsky (1982), and Chomsky (1986), many
theories of grammar are built on the assumption that syntactic realization of arguments is
largely predictable from the meaning of their verbs. In this line of research, the theory

of argument realization studies the possible syntactic expressions of the arguments of a
verb, comprising their category type and their grammatical function. Attempts to imple-
ment the program of predicting syntactic structures from the meaning of a verb, such as the
Projection Principle, are often focused on generalizations concerning argument realization
without grounding their work in an articulated theory of lexical semantic representations
(Levin and Hovav (1996, 2005)). Aiming to successfully implement the program of pre-
dicting syntactic structures from the verb’s meaning, the theory of argument realization
takes the position of the Universal Alignment Hypothesis and extends it with two specific
goals grounded in articulated theories of lexical representations. The Universal Alignment
Hypothesis (UAH), proposed by Perlmutter and Postal (1984, p. 97), formalizes the above
assumption behind many theories of grammar, such as Stowell (1981) and Pesetsky (1982)
in (22).

(22) Universal Alignment Hypothesis: There exist principles of UG which predict the ini-
tial [grammatical] relation borne by each nominal in a given clause from the meaning

24

of the clause.

To implement the program laid out in the UAH, the AR theory strives to meet two goals:

Goal I For a verb with a specific core meaning/sense, identify the grammatically relevant
aspects of the meaning/sense.

Goal II Explicate the components’ connection to the range of argument realization options
regarding the verb.

Sections 2.5.2 and 2.5.3 elaborate on the two goals respectively.

2.5.2 SRs representing grammatical aspects of verb meaning

Identifying the grammatically relevant components of meaning serves as the foundation
for the theory of argument realization. The identification task entails the task of inves-
tigating the nature of a lexical representation that can encode the grammatically relevant
facets of verb meaning (Levin and Hovav, 2005). Different theories have been proposed
to accomplish this task. Some of these are complex theories such as Talmy’s compo-
nents and conflation patterns, Jackendoff’s conceptual structure (Jackendoff, 1990), and
Pustejovsky’s generative lexicon Pustejovsky (1995). Perhaps the simplest and yet most
commonly adopted forms of lexical representation for the grammatically relevant aspects
of verb meaning are semantic role lists (Levin and Hovav, 2005). This tradition can be
traced back to Fillmore’s work in the early 1970’s. The definitions of some semantic roles
given by Fillmore are introduced in section 2.1.1. The rest of the section reviews the
reason, illustrated in Fillmore 1970 and adopted widely in the field of lexical semantics
(Saeed, 2003; Levin and Hovav, 2005), that semantic roles make good lexical representa-
tion encoding the relevant aspects of verb meaning.

Fillmore (1970) investigates the relation between lexical meaning of the verbs and the
syntactic structure of the sentences with these verbs as the matrix verbs. In his investiga-
tion, Fillmore observes that verbs with different core meanings each appear with a specific
set of syntactic structures. The issue that Fillmore is interested in is what makes the set
of syntactic structures associated with the verb with a given sense different from the set
associated with the verb with another sense.

To illustrate the situation where a core sense of a given verb is associated with a specific
set of syntactic structures, Fillmore gives the widely-quoted examples of the verbs hit and
break. Table 2.6 paraphrases the original examples given in Fillmore (1970, p. 126) and
Levin and Hovav (2005, p. 37):

25

break (changing of state) hit (contacting surface)
Peter broke the jar with a rock. Peter hit the stump with a stick.
A rock broke the jar. A stick hit the stump.
The jar broke. *The stump hit.
The jar was broken. The stump was hit.
John broke Peter’s leg. John hit Peter’s leg.
*John broke him on the leg. John hit him on the leg.

Table 2.6: Examples of break and hit with their respective core senses

The left column in table 2.6 lists the examples corresponding with the core sense of
the verb break, involving changing the state of the relevant argument in bold fonts. The
right column lists the examples corresponding with the core sense of the verb hit, involving
contacting the surface of the relevant argument in bold fonts. The syntactic structures for
each set of examples are shown in table 2.7 as grammatical relations of the noun arguments
of the corresponding matrix verb.

break (changing of state) hit (contacting surface)
Subject broke Object PP instrument Subject hit Object PP instrument
Subject broke Object Subject hit Object
Subject broke. *Subject hit.
Subject was broken. Subject was hit.
Subject broke Object Subject hit Object
*Subject broke Object PP place. Subject hit Object PP place.

Table 2.7: Syntactic structure shown as grammatical relations.

Table 2.7 displays the structural similarities and differences in the data with break and
hit as the matrix verbs. It seems that both verbs license structures including subject-verb-

object, subject-verb-object-PP instrument, and the passive. At the same time, while break

licenses the intransitive structure subject-verb but does not appear with the subject-verb-

object-PP place configuration, hit does not appear with the intransitive configuration but
occurs with subject-verb-object-PP place.

To account for the similarities and differences in the syntactic configurations of the two
verbs, Fillmore starts with assigning semantic roles to the arguments in table 2.7. The re-
sults of the assignment are shown in table 2.8. The OBJECT role in table 2.8 is defined in
section 2.1.1 as the entity moves or changes or whose position or existence is in considera-

tion. It is different from the grammatical role/relation of object. From the role assignments,
Fillmore summarizes two semantic role lists that characterize the role assignments:

List a break: {(AGENT)* (INSTRUMENT)* OBJECT}

26

break (changing of state) hit (contacting surface)
AGENT broke OBJECT INSTRUMENT AGENT hit PLACE INSTRUMENT
AGENT broke OBJECT SUBJECT hit PLACE
OBJECT broke *Subject hit
OBJECT was broken PLACE was hit
AGENT broke OBJECT AGENT hit PLACE
*Subject broke Object PP place. AGENT hit (possessor) PLACE

Table 2.8: Semantic role assignment for arguments in tables 2.6 and 2.7

List b hit: {(AGENT|INSTRUMENT|AGENT INSTRUMENT){1}PLACE}

Each list subsumes three semantic roles. The order of the roles in each list is irrelevant.
Role list a contains three roles, including AGENT, INSTRUMENT, and OBJECT. Role
list b includes three roles, namely, AGENT, INSTRUMENT, and PLACE. Each role list is
more than just listing the roles themselves. It also states the rules about the presence of the
roles in the actual semantic role assignment. Explanation about these rules follows.

In list a, the regular expression (ROLE)* indicates that this ROLE may be present or
not in the final semantic role assignment. Thus, either the AGENT role, or the INSTRU-
MENT role, or both may be absent from the final role assignment. The ROLE without any
parentheses around it must be present in the role assignment. In other words, the OBJECT
role must be present in the final assignment. These rules precisely predict the roles appear-
ing in the final role assignment shown in table 2.8. For example, the role assignment for
the arguments Subject broke of the data The jar broke is OBJECT broke, where only the
OBJECT role is present but the AGENT and INSTRUMENT roles are absent. On the other
hand, there does not exist any valid role assignment for the data John broke him on the leg

because the semantic role, that is, list a, associated with the changing-of-state sense of the
verb break does not permit a PLACE role for the argument on the leg.

Similarly in list b, the regular expression (AGENT|INSTRUMENT|AGENT INSTRU-
MENT){1} indicates that at least one of the AGENT and INSTRUMENT roles must be
present in the final assignment. At the same time, the PLACE role must always be present in
the final assignment. This is in fact the case shown in the role assignment in table 2.8. There
is not any valid role assignment for the data The stump hit because neither the AGENT role
nor the INSTRUMENT role has any argument to assign to.

From the above, one can see that the semantic role lists and the associated rules about
the presence of the roles relate the semantic roles to the actual role assignment for the ar-
guments shown in table 2.8. Due to this, Fillmore concludes that the structural differences
between break and hit that originated in the lexical differences between the two are cap-

27

tured by the semantic role lists. Hence, the first goal of the theory of argument theory to
identify the relevant components of meaning is met. Semantic roles are such components.

Discovering semantic roles as the lexical representation of the grammatical aspects of
verb meaning has achieved the first goal of the AR theory. The other goal of the AR
theory is to find the regularities that connect the role assignment in table 2.8 to their cor-
responding arguments shown in table 2.7. Fillmore himself is one of the first researchers
who proposes argument selection rules that choose roles from the semantic role list to fill
their corresponding argument positions shown in table 2.7. These rules are dubbed as the
linking/mapping rules and are further developed by later researchers such as Carter (1988)
and Pinker (1989) and will be discussed in section 2.5.3.

2.5.2.1 Additional examples

Section 2.5.2 shows how semantic lists of verbs contribute to the structural differences of
verbs with different meanings. This section provides more evidence to support this point
with three verbs of the same form, finger. The meaning, syntactic structures, and semantic
roles corresponding to the core arguments of the verb, finger, in examples 23, 24, and 25,
are listed in Table 2.9. Non-core arguments are not shown in the table.

(23) ... [NP the big first baseman] fingered [NP the gold bat he wears on a neck chain].

(24) To date, [NP scientists] have fingered [NP two of these cancer-suppressors].

(25) ... [NP Hugo Spadafora] publicly fingered [NP Mr. Noriega] [PP on drug trafficking
charges].

Note that the part of speech of v in Table 2.9 is added to the core arguments only for
the purpose of showing the position of the arguments in relation to the verb, which itself is
not an argument.

Example 23 24 25
Meaning to touch to locate, find to blame
Meaning ID 01 02 03
Core arguments NP-v-NP NP-v-NP NP-v-NP-PP
Arguments w/ Sense NP-v01-NP NP-v02-NP NP-v03-NP-PP
Semantic roles toucher-entity touched agent-entity found assigner-entity-action blamed for

Table 2.9: Sense, syntactic structures, and roles for finger

As Table 2.9 shows, the concatenated phrase types NP-v-NP and NP-v-NP of the core
arguments for verbs finger 01 and finger 02 respectively are identical. It is the seman-
tic role sets toucher-entity touched and agent-entity found help to distinguish between

28

finger 01 and 02. The core arguments NP-v-NP-PP suffices to distinguish finger 03 from
other two senses of finger, while the role set assigner-entity-action blamed for is an extra
help.

2.5.3 Argument realization: mapping semantic roles to arguments

Section 2.5.2 demonstrates that semantic roles make good representation of the grammati-
cal aspects of a verb’s meaning. To achieve the goal of discovering the regularities that map
semantic roles to the verb’s arguments, lexical semanticists start with context dependence

between the semantic roles of the arguments of the verb.

2.5.3.1 Context dependence

Lexical semanticists observe and agree on a dependency relationship between the seman-
tic role of an argument and those of other arguments of the same predicate verb. This
relationship is referred to as context dependence. Context dependence entails that

the options for the syntactic realization of a particular argument are often
not determined solely by its semantic role, but also by the semantic roles borne
by its co-arguments (Levin and Hovav, 2005, p.158).

In other words, a particular semantic role needs not consistently be associated with a spe-
cific syntactic realization, with the exact realization depending on co-occurring roles. (26)
through (30) exemplify context dependence between the semantic role of an argument and
that/those of other co-argument(s).

(26) An instrument can’t be realized as subject in the presence of an agent.

a. *The chisel opened the door by Dana.

(27) A recipient can’t be realized as subject in the presence of an agent.

a. Alex received a package.

b. Sam sent Alex a package.

c. *Alex sent a package by Sam. (Sam being the sender)

d. Alex was sent a package by Sam.

(28) An experiencer can’t be realized as subject in the presence of an agent/causer.

29

a. The toddler (*deliberately) feared the lion.

b. The lion (deliberately) frightened the toddler.

(29) A moving entity (i.e., theme) can’t be realized as subject in the presence of an agent.

a. Kelly moved the cat into the room.

b. The cat was moved into the room by Kelly.

c. *The cat moved into the room by Kelly.

d. The cat entered the room.

(30) A moving entity can’t be an object in the presence of an entity that changes state.

a. Shelly smeared oil on the axle.

b. Shelly smeared the axle with oil.

c. *Shelly smeared oil the axle. (Oil being realized as a direct object.)

d. *Shelly smeared the axle oil. (Oil being realized as an indirect object.)

Example (27).c above is in active voice and is ungrammatical because Alex, the recipi-
ent, is realized as the subject while Sam, the agent, is present. Example (27).d is in passive
voice and is grammatical although Sam, the agent, is present. Similarly, (30).c is in active
voice and is ungrammatical because the moving entity, the cat, is the subject while Kelly,
the agent, is present. At the same time, the passive in (30).b is grammatical although the
moving entity, the cat, is the subject, while the agent Kelly is also present. These exam-
ples illustrate that the original rules in (27) and (30) both need to be constrained with the
condition of in active voice.

The preceding examples demonstrate the dependency relationship among the semantic
roles of the semantic arguments of the same verb. Two important observations one can
make from the discussion above are as follows. First, context dependence applies to the
semantic roles of the core semantic arguments but not to those of the non-core semantic ar-
guments. Second, the semantic roles of the core semantic arguments of a given verb that are
contextually dependent on each other are realized through a specific syntactic configuration
of the semantic arguments of the verb, within which the positions of the arguments assume
fixed positions relevant to the verb and other arguments. For example, (27).b and (27).d
demonstrate how the recipient role is contextually dependent on the agent role. When re-
alized, the same recipient role is associated with a specific syntactic configuration. The
syntactic configuration in (31) corresponds to the realization of the recipient role of the
argument Alex in (27).b. In (31), Alex is realized as the object in the configuration with

30

respect to the verb send. The syntactic configuration in (32) corresponds to the realization
of the recipient role of the argument Alex. In (32), Alex is realized as the subject in the
configuration with respect to the passive verb send.

(31) [NP agentSam]-send-[NP recipientAlex]- [thing senta package]

(32) [NP recipientAlex]-sent passive-[thing senta package]-[by-[NP agentSam]

Due to the strong association between context dependence and syntactic configuration
of the core arguments of a given verb, the current project utilizes the syntactic configu-
ration of the core arguments as a clue to uncover the semantic role label of the semantic
arguments of the verb. The current project refers to the process of doing so as imposing the
context dependence constraint.

At the same time, one can conclude that the positions of the core arguments of a verb
in the syntactic configurations discussed in the current section overlap with the argument
positions in a base argument configuration of the verb (see section 2.4.2). Therefore, the
current project utilizes the BAC feature to impose the context dependence among the core
arguments (see section 4.2 for more detailed discussion).

2.5.3.2 Linking regularities

The second goal of the theory of argument realization is to account for context dependence
using linking regularities. The concept of mapping rules or linking regularities that map se-
mantic roles to the relevant verb arguments is first proposed by Fillmore (1968) and further
developed by a number of researchers such as Carter (1988), Dowty (1987), and Pinker
(1989). A definition of linking/mapping rules proposed by Pinker (1989, p. 74) goes as
follows:

(33) Linking rules are regular ways of mapping ... arguments onto grammatical func-
tions or underlying syntactic configurations by virtue of their thematic roles; they are
the mechanisms that create the syntactic argument structure associated with a given
thematic core.

The linking rules defined in 33 include two mechanisms, as proposed by Fillmore
(1968), the thematic hierarchy (TH) for an argument and the argument selection rule
corresponding to this TH. The thematic hierarchy is the ranking of semantic roles, which
establishes prominence relations among them for a specific argument. An argument selec-
tion rule (SelR) selects a relevant semantic role to be a specific argument for the matrix
verb.

31

For example, (34) a shows a sample Subject TH, and (34) b lists the corresponding
subject SR for this TH. Together, (34) a and (34) b account for the grammatical and un-
grammatical subject selections in (35). Specifically, in (35) b, the semantic roles present for
selection are, AGENT, INSTRUMENT, and THEME. Based on TH (34) a and the corre-
sponding SR (34) b, the argument John is selected as the subject because John the AGENT
has the highest rank. At the same time, (35) f selects the argument the key which bears an
INSTRUMENT role as the subject while the argument John which bears an AGENT role
is available for select. This violates the thematic hierarchy (34) a and subject selection rule
(34) b.

(34) (a) Subject TH: Agent � Instrument � Theme/Patient

(b) Subject SelR: The argument of a verb bearing the highest-ranked semantic role
in the subject TH is its subject. Specifically, if there is an Agent, it becomes the
subject; otherwise, if there is an Instrument, it becomes the subject; otherwise,
the subject is the Theme/Patient.

(35) (a) [AGENT John] opened [T HEME the door].

(b) [AGENT John] opened [T HEME the door] with [INST RUMENT a key].

(c) [INST RUMENT The key] opened [T HEME the door].

(d) [T HEMEThe door] opened.

(e) *[T HEMEThe door] opened by [AGENT John].

(f) *[INST RUMENT The key] opened [T HEME the door] by [AGENT John]. Levin and
Hovav (2005, p. 158)

Researchers, such as Fillmore (1968), Pinker (1989), and Levin and Hovav (2005),
illustrate the concepts of thematic hierarchy, and argument selection rules with the TH
for subject and the corresponding subject selection rule as shown in the examples above.
Interestingly, none of these researchers gives examples of the TH and SRs for an argu-
ment other than the subject, such as the direct object and PP-complements/adjuncts. If one
wishes to explain the mapping between a semantic role and the direct object and the PP-
adjunct in (35), one can propose the THs for the direct object and the PP-adjunct and the
corresponding SelRs in (36) and (37).

(36) (a) Direct Object TH: Theme

(b) Direct Object SelR: The argument of a verb bearing the highest-ranked seman-
tic role in the direct object TH is its direct subject. Specifically, the semantic
role theme becomes the direct object of the verb.

32

(37) (a) Instrument TH: Instrument

(b) Instrument SR: The PP-argument of a verb bearing the highest-ranked seman-
tic role in the instrument TH is its PP-adjunct. Specifically, the semantic role
instrument becomes the PP-adjunct of the verb.

Note that the direct object hierarchy and the instrument hierarchy each contain only one
semantic role. The two hierarchies and their corresponding selection rules seem to cover
the data in 35.

The examples in this section show that the two mechanisms, thematic hierarchy and
selectional rules seem to meet the second goal of mapping semantic roles with the argu-
ments of a verb for the theory of argument realization. However, the concept of thematic
hierarchy faces two challenges. First, there is no agreement among lexical semanticists on
what the ranking of the arguments is derived from (Levin and Hovav, 2005, p.157). Second,
there is lack of agreement among lexical semanticists over the appropriate formulation of

the thematic hierarchy, in terms of both the roles constituting it and the ranking of these

roles (Levin and Hovav, 2005, p.157). These challenges make it difficult to represent the
hierarchy within an automatic semantic role labeling system and to quantify the ranking
among arguments and semantic roles.

The previous sections draw a picture of the theory of argument realization. The next
section illustrates the grain-size problem with the semantic role list approach and focuses
on computational linguists practical find-grained solution to the grain-size problem.

2.6 Chapter summary

While providing for the necessary information on the definitions of semantic roles, the
semantic role labeling task, the lexical resources, and base argument configuration, the
foregoing discussion focuses on the aspects of the theory of argument realization that are
relevant to the SRL task, including the linking regularities on mapping arguments to the
corresponding syntactic configurations through semantic roles, the representation of gram-
matical aspects of verb meaning by semantic roles, and the context dependency among the
semantic roles of the core arguments. Section 2.5.3.1 presents the concept of context depen-
dence between the semantic role of a core semantic argument and those of other semantic
arguments of the same predicate verb and illustrates the strong correlation between context
dependence and syntactic configuration of the core arguments of a given verb. The next
chapter reviews the main trends in SRL and highlights the existing open research questions

33

for the community. One of these is the challenge to be able to generalize across the differ-
ent configurations of the same predicate verb. Chapter 4 presents a solution by utilizing the
strong correlation between syntactic configurations and context dependence to uncover the
semantic roles of the core arguments.

34

Chapter 3
Review of Semantic Role Labeling Systems

To provide a basis for sophisticated semantic interpretation tasks such as text summa-
rization, fact-based question answering, and complex semantic and dialogue structure
recognition, Gildea and Jurafsky (2000) were among the first researchers attempting to
achieve this goal by building a semantic role labeling system, trained and evaluated on the
FrameNet database. Gildea and Palmer (2002) extended the work by training and eval-
uating the earlier system developed in Gildea and Jurafsky (2000) using Propbank. The
seminal work in Gildea and Jurafsky (2000) and Gildea and Palmer (2002) spawned a
series of research work on semantic role labeling using both FrameNet and Propbank. The
main events involving SRL include the Senseval (Evaluation Exercises for the Semantic
Analysis of Text) series in 2004 and 2007, and the CoNLL (Conference on Computational
Natural Language Learning) shared task series in 2004, 2005, 2008, and the upcoming
2009. The Senseval events focused on the use of the FrameNet database, and the CoNLL
shared tasks encouraged using Propbank. In between the events, several systems using
either FrameNet or Propbank were published.

Even the brief depiction of the work on SRL in the past eight years in the preceding
passage reveals the great amount of effort the community has put in and the continuous
interest the community shows in the SRL task. The SRL researchers have trained and
tested the systems using either Propbank or FrameNet and have employed a wide variety
of machine learning algorithms. Despite the differences in training data and in machine
learning mechanisms, the SRL researchers have attempted one or more of the following
four research issues since Gildea and Jurafsky (2000).

First of all, in the years between 2000 and 2008, researchers have investigated how
feature designs based on the grammatical formalisms of constituency grammar and depen-
dency grammar would help with the SRL task. The systems based on the constituency
grammar formalism explored syntactic features local to the arguments as well as the de-
pendencies among all the arguments of a verb. In the framework of constituency grammar,
there are not any explicit labels for the dependencies among the arguments. The depen-
dencies are rather the context dependence relations among the arguments and among their
corresponding semantic roles. On the other hand, the systems based on the dependency
grammar formalism explored explicitly the grammatical relations between words and their

35

head words. However, finding the right syntactic information about the arguments of a
predicate verb and integrating such information into an appropriate feature design remain
an open issue throughout the years and up until now.

Second, in addition to investigating the appropriate feature representation in either the
framework of constituency grammar or dependency grammar, SRL researchers explored a
wide range of features, from the highly generic ones in earlier systems to the highly specific
ones in later systems such as Punyakanok et al. (2005) and Toutanova et al. (2005). The
latter features were designed to represent the syntactic structures that had not been discov-
ered to be helpful for the SRL task by earlier systems. While introducing more features
to cover the newly-discovered syntactic structures, incorporating these structure-specific
features resulted in a larger feature space.

Third, in addition to the work on feature representation and feature expansion, SRL
researchers have looked into how to use an appropriate statistical framework to learn from
a chosen feature design. On top of building local models using different feature represen-
tations and feature expansions, researchers are concerned with how to build joint models
to solve two tasks, how to jointly classify all the arguments of a verb using the context
dependencies among them and how to overcome the parsing errors by jointly inferencing
from the top-n parsing results from an automatic parser.

Finally, while most systems have focused on finding the proper syntactic features and
on applying the right statistical framework accordingly, several systems explored how se-
mantic knowledge, such as verb sense, and lexical semantic resources, such as WordNet,
contributed to the SRL task. Unfortunately, since these systems did not demonstrate that
verb sense or WordNet helped in their experiments, whether and how verb sense and lexical
semantic resources can help remains an open question.

This chapter presents in detail the work on the first three research problems through sev-
eral influential systems that based their feature designs on constituency grammar. At the
same time, instead of showing the details of the systems whose feature designs are based
on dependency grammar, this chapter introduces such systems by summarizing the systems
on CoNLL-2008. Through the presentations, the current chapter achieves four goals.

First, the current chapter discovers the syntactic information that has been shown to be
important to the SRL task but has not been fully explored by existing systems. Specifically,
while illustrating how generic features are employed in the chosen SRL systems, this chap-
ter focuses on examining how context dependencies among arguments are utilized in these
systems built under the framework of constituency grammar. Through the examination, the
current project determines to restrict the context dependency relationship to that between a
core semantic role and other core semantic roles of the core arguments and extract features

36

for the core arguments based on such dependencies. At the same time, the current system
assigns generic features to non-core arguments because core arguments are verb specific
but non-core arguments are not, based on the discussion in chapter 2.

Second, through examining the feature designs in existing SRL systems, the current
chapter shows that the increased number of feature utilized by the systems is caused by the
intentions to design specific features for the arguments in syntactic structures that involving
moved or displaced arguments. These structure-specific features do not generalize the syn-
tactic variations that a given verb appears in. This finding motivates the current project to
create base argument configuration features that generalize across the syntactic variations
that a verb appears in.

Third, through examining how features are integrated into the statistical learning
schemes through local modeling and joint modeling in the CoNLL-2005 and CoNLL-2008
systems, this chapter shows that although joint inferencing from context dependency fea-
tures and from the top-n parsing results helped the top systems on CoNLL-2005 it is not
the case for CoNLL-2008 top systems where local modeling was the dominating design.
This observation motivates the current system to build a local model while incorporating
context dependence among the semantic roles of core arguments in the feature design.

Finally, by describing dependency grammar, this chapter aims to explore the feasibility
of integrating the dependency relations in the framework of dependency grammar into the
current SRL system because detecting and representing the syntactic structures involving
argument movement require the knowledge of the grammatical dependency relations such
as subject-verb, verb-object, modifier-head etc.

The above goals are achieved through a comprehensive description of three selected
SRL systems based on constituency grammar and through a high level summary of the
CoNLL-2008 systems. Due to the fact that the work in Gildea and Jurafsky (2000) and
Gildea and Palmer (2002) laid the foundation for all later SRL systems, section 3.1 gives
a detailed delineation of this fundamental piece of work. In the years since 2002, two
systems, Punyakanok et al. (2005) and Toutanova et al. (2005), stood out for being the
top two CoNLL-2005 systems. The two systems stand out also for extending the work of
Gildea and Jurafsky (2000) by employing more detailed feature designs to cover the syn-
tactic structures that affect the SRL task but have not been looked at before. Punyakanok
et al. (2005) and Toutanova et al. (2005) still remain competitive among the SRL systems
utilizing the constituency grammar formalism until today. A careful study of the feature
designs in these systems and the statistical algorithms that integrate the features motivates
the feature design and statistical framework of the current system. Therefore, section 3.2.1
highlights the system by Punyakanok et al. (2005) who extended Gildea and Jurafsky by

37

applying linguistic constraints capturing several types of dependencies between arguments
and by selecting the optimal SRL predictions from models built from different parsing re-
sults. At the same time, section 3.2.2 focuses on the system of Toutanova et al. (2005) who
Toutanova et al. extended Gildea and Jurafsky by emphasizing the dependency between
arguments using re-ranking-based inferencing and by incorporating new features specific
to the structures such as relative clauses. Section 3.3 briefly introduces the CoNLL-2008
shared task and focuses on illustrating the dependency relations that CoNLL-2008 systems
rely on. Based on the discussion in the earlier sections, section 3.4 summarizes that the
context dependence among the semantic roles of the core arguments, several transformed
syntactic structures, and dependency relations are further explored in the current project.

3.1 Gildea and Jurafsky (2000)

As the seminal work, Gildea and Jurafsky (2000)’s system laid the foundation for au-
tomatic SRL in a number of ways. First, the research problem of automatic SRL is
formalized. Second, automatic SRL is formulated as a machine learning problem, consist-
ing of the argument identification and role labeling subproblems. Third, the set of syntactic
features utilized by Gildea and Jurafsky, in the formalism of constituency grammar, serves
as the standard base features for many future SRL systems. Fourth, the authors build the
system upon a linguistic theory, the Linking Theory, almost followed by all later SRL
systems. Finally, Gildea and Jurafsky model the dependency among the semantic roles of
a verb’s arguments which removes the independence assumption of argument/constituent
level feature design. To model the dependencies among the arguments and among their cor-
responding semantic roles, Gildea and Jurafsky (2002) combined argument identification
and classification into one model so that the semantic roles of a target verb are assigned
jointly and the most likely sequence is chosen. This combined approach is later referred to
as joint inferencing. The rest of the section examines all the foregoing aspects of Gildea
and Jurafsky’s foundational work. Note that the rest of the discussion does not distinguish
between Gildea and Jurafsky (2000), Gildea and Palmer (2002), and Gildea and Jurafsky
(2002) since they are reports on the same system architecture.

3.1.1 Components of the learning-based system

Gildea and Jurafsky tackle the SRL problem with a machine learning approach consisting
of the following two general steps:

38

Step I: Identify the arguments that are constituents that are semantic role recipients in the
input sentences.

Step II: Label the arguments with a corresponding semantic role.

Each step of the system involves a learning and classification process which will be de-
scribed in the following sections. These steps became the standard procedures for all later
SRL systems.

3.1.2 Constituency grammar-based features

The features utilized in Gildea and Jurafsky (2000) and Gildea and Palmer (2002) are syn-
tactic and lexical features based on the formalism of constituency grammar, which are made
use of by the classifiers in both argument identification and labeling steps. The features
have become the standard base features for later SRL systems. The six types of features
that can be assigned to a candidate argument are listed below along with the shorthand for
each feature:

(38) (a) the governing category (gov)

(b) the phrase type (pt)

(c) the head word (h)

(d) the path from the candidate to the predicate (path)

(e) the voice of the clause (voice)

(f) the position with respect to the predicate (position)

The features are for both the identification and classification tasks.
For instance, given input sentence 39,

(39) The San Francisco Examiner issued a special edition around noon yesterday.

the feature vector for its NP the San Francisco Examiner is instantiated as follows:

{ gov:S, pt:NP, h:examiner, path:NP↑S↓VP↓VBD,
voice:active, position:before }

The linguistic theoretical background that motivates the syntactic features is reviewed
in the next section.

39

3.1.3 Linguistic theoretical background

In the extension to the original work in 2000, Gildea and Palmer (2002) discuss the linguis-
tic theoretical background behind their feature design. The following quote describes this
background:

The features used represent various aspects of the syntactic structure of the
sentence as well as lexical information. The relationship between such surface
manifestations and semantic roles is the subject of linking theory - see Levin
and Hovav (1996) for a synthesis of work in this area. In general, linking theory
argues that the syntactic realization of arguments of a predicate is predictable
from semantics... exactly how this relationship works is the subject of much
debate. Regardless of the underlying mechanisms used to generate syntax from
semantics, the relationship between the two suggests that it may be possible to
learn to recognize semantic relationships from syntactic cues, given examples
with both types of information (Gildea and Palmer, 2002, p. 8) .

Relating to the feature design described in the preceding section, one can see that Gildea
and Palmer suggest that the surface syntactic information can be used to recover the se-
mantics beneath it. This is the point of view that has been adopted by almost all later
SRL systems. Since the quote above is the only place where Gildea and Palmer discuss
the linguistic theoretical background, a careful examination of Linking Theory may help to
understand the feature engineering behind Gildea and Jurafsky’s system as well as to shed
light on alternative feature and system designs for SRL. Therefore, section 2.5.3 gives a de-
tailed description of the theory of argument realization, a contemporary version of Linking

Theory.

3.1.4 Identifying arguments

Arguments are the SR receiving constituents for a target verb t in an input sentence S. Iden-
tifying the arguments is itself a training and classification process which follows the steps
below:

Step 1: Parse input sentence S.

Step 2: Identify constituent c from the parse.

Step 3: Calculate the likelihood of a test constituent c being a candidate given path, t, and
h, using the following equation with linear interpolation:

P(c | path,h, t) = λ1P(c | path)+λ2P(c | path, t)+λ3P(c | path, t,h) (3.1)

40

Step 4: Choose c to be a candidate if P(c | path,h, t) passes an arbitrary threshold.

The approach above correctly identifies 66% of the candidate constituents on the
FrameNet test data in Gildea and Palmer (2002).

3.1.5 Labeling the candidates

The components of the labeling step are discussed in this section, including the base model,
combining subset probabilities, and the back-off model.

3.1.5.1 The base model

The base model calculates the probability of a constituent filling each possible role given
the syntactic and lexical features described above and the predicate t. Equation 3.2 performs
this calculation.

P(r|h, pt,gov, position,voice, t) =
#(r,h, pt,gov, position,voice, t)
#(h, pt,gov, position,voice, t)

(3.2)

This equation says to calculate the probability of a candidate c for filling the semantic role
r one can simply divide the number of times r appears with t and with all five types of
features by the total number of times r appears with t and all five types of features. The
predicate itself and the five types of features form a full feature set for the predicate. How-
ever, it is likely that the full feature set for many candidates bearing some specific role
cannot be observed in the training data, and as a result, their counts will be zero. For this
reason, the base model combines probabilities of r conditioned on a variety of subsets of
the full feature set, which have higher chances for being observed. Table 3.1 shows how
the subsets are used in the calculation.

Feature Subset Prob. Involving the Subset
{t} P(r|t)
{pt, t} P(r|pt, t)
{pt,gov, t} P(r|pt,gov, t)
{pt, position,voice} P(r|pt, position,voice)
{pt, position,voice, t} P(r|pt, position,voice, t)
{h} P(r|h)
{h, t} P(r|h, t)
{h, pt, t} P(r|h, pt, t)

Table 3.1: Subsets Probabilities

41

The probabilities are calculated from the empirical distributions in the training data.
Specifically, each role and each conditioning subset and their counts in the above table are
collected in a table. Then the probabilities are calculated by dividing the counts for each
role by the total number of observations for each conditioning subset. For example, the
probability P(r|pt, t) is calculated as follows:

P(r|pt, t) =
#(r, pt, t)
#(pt, t)

(3.3)

3.1.5.2 Combining subset probabilities

The probabilities of the subsets listed in table 3.1 are combined in several different ways to
estimate the probability of a role given the full feature set, P(r|h, pt,gov, position,voice, t),
including equal linear interpolation, geometric mean method, and EM linear interpolation.

The basic combining method is equal linear interpolation, which averages the probabil-
ities given by each of the subset probabilities. That is,

P(r|constituent) = λ1P(r|t)+λ2P(r|pt, t)+

λ3P(r|pt,gov, t)+λ4P(r|pt, position,voice)+

λ5P(r|pt, position,voice, t)+λ6P(r|h)+

λ7P(r|h, t)+λ8P(r|h, pt, t)(3.4)

The equal linear interpolation method uses equal λ values as weights.
The geometric mean method is similar to equal linear interpolation when written in the

log domain as follows:

P(r|constituent) =
1
Z

exp{λ1logP(r|t)+λ2logP(r|pt, t)+

λ3logP(r|pt,gov, t)+λ4logP(r|pt, position,voice)+

λ5logP(r|pt, position,voice, t)+λ6logP(r|h)+

λ7logP(r|h, t)+λ8logP(r|h, pt, t)}(3.5)

The EM linear interpolation method chooses interpolation weights using the Expecta-
tion Maximization algorithm.

42

Figure 3.1: Backing off from more to less specific features

3.1.5.3 The backoff model

The backoff method builds a lattice over the subset probabilities in Table 3.1 from more spe-
cific conditioning features to less specific as shown in figure 3.1 (Gildea and Palmer, 2002,
p. 17). The less specific probabilities are used only when no data are present for any more
specific probabilities. This backoff approach is combined with both linear interpolation
and geometric mean methods.

3.1.6 Modeling argument structure

Gildea and Palmer’s system described in sections 3.1.2 through 3.1.5.3 assumes indepen-
dence among arguments and classifies each argument independently of other arguments.
However, the situation where a predicate with a specific meaning may take multiple argu-
ment structures challenges this assumption because it can be shown that the arguments in
each argument structure are dependent on each other. The following example illustrates the
dependency among a predicate’s arguments. The left column in Table 3.2 lists three sample
argument structures that verb blame, with the meaning of assign responsibility for a fault

or wrong to, can take in FrameNet 1.3. Removing the Cognizer argument from the three
arguments of blame without modifying its voice in Dr. Farmery blames the Department

of Health for causing undue alarm would result in an ungrammatical sentence. Similarly,
switching the positions of Cognizer and Evaluee would not work either.

To capture argument structures such as those shown in Table 3.2, Gildea and Palmer
rely on two types of sentence-level features, Frame Element Group and verb subcatego-

rization. The next two sections illustrate how the two sentence-level features are utilized
in Gildea and Palmer’s system.

43

3.1.6.1 Frame element group

Frame element group is a set of unordered semantic roles corresponding with the set of
arguments a verb takes. The unordered set is used to capture the different roles associated
with a verb’s argument. The right column in Table 3.2 shows three sets of unordered se-
mantic roles the three corresponding arguments of blame takes. The rest of this section
describes how the frame element group feature is built into the system.

Example Sentences Frame Element Group feature
Holman would characterise this as {Evaluee}
BLAMING [Evaluee the poor]
[Cognizer The bank] BLAMES {Cognizer, Evaluee }
[Evaluee problem debts from small
business...in the south of England]
[Cognizer Dr Farmery] BLAMES { Cognizer, Evaluee, Reason}
[Evaluee the Department of Health]
[Reason for causing undue alarm].

Table 3.2: Sample argument structures of verb blame: 1

By combining the sentence-level frame element groups features with the constituent-
level independent features defined in 3.1.2 and 3.1.5.1, the most likely overall semantic
role assignments r∗ for all candidate arguments/constituents of a sentence can be calculated
using Equation 3.6

r∗ = argmax
r1...n

P(r1...n | t)∏
i

P(fi | ri, t)

= argmax
r1...n

P(r1...n | t)∏
i

P(ri | fi, t)
P(ri | t)

(3.6)

P(r1...n | t) is the prior for frame element groups of a predicate v. P(ri | fi, t) gives the
local probability of a candidate argument given the argument’s local feature fi, i.e. the
ones defined in (38), and the predicate t. The final model in Equation 3.7 incorporates the
identification model of Equation 3.1 into the model from Equation 3.6.

r∗ = argmax
r1...n

P(r1...n | t)∏
i

P(ri | fi, f ei, t)P(f ei | fi)
P(ri | t)

(3.7)

where f ei is a binary variable indicating whether a constituent/argument is a candidate.
When f ei is true, the identification model in Equation 3.1 is plugged in for P(f ei | fi);
when f ei is false, role assignment ri for the ith candidate/argument is skipped.

44

3.1.6.2 Verb subcategorization

While the frame element group feature handles the different arguments and roles a pred-
icate with a specific meaning can be associated with, the verb subcategorization feature
is designed to capture the situation where the verb/predicate can assign different semantic
roles to the same argument/syntactic position. The right column in Table 3.3 shows the sub-
categorization feature corresponding to each sentence. The subcategorization feature VP

→ VB NP captures the transitivity of the verb open that assigns the Agent role to its subject
He. At the same time, the subcategorization feature VP→ VB captures the intransitivity of
the verb open that assigns Patient role to its subject The door.

Example Sentences Verb Subcategorization feature
He opened the door. VP→ VB NP
The door opened. VP→ VB

Table 3.3: Sample subcategorization of verb blame

In their experiments, Gildea and Jurafsky combine the subcategorization feature with
the path feature by adding the distributions P(r|subcat, path, t) to the subsets probabilities
for the base model shown in Table 3.1.

3.1.7 Performance

Gildea and Jurafsky (2000) and Gildea and Jurafsky (2002) report 82% accuracy in the task
of labeling roles that are pre-identified by human annotators for the FrameNet database.
They also report 65% precision and 61% recall in the task of simultaneously identifying
role candidates and labeling on the FrameNet data.

3.1.8 Authors’ discussion on feature design

Gildea and Jurafsky (2002) make several comments on feature design based on their ex-
periments. First, they discover that combining the two sentence-level features, frame

element group and verb subcategorization with the constituent-level features shown im-
proves performance. Second, the use of the two sentence-level features makes some of
the independent constituent-level features, such as passive and position, unnecessary. For
example, removing the passive and position features when the two sentence-level features
are used leads to the reported system accuracy of 82%. The authors’ explanation proceeds
as follows:

45

...these features, namely passive and position, overlap with the function of
the frame element group features. Adding unnecessary features to the system
can reduce performance by fragmenting the training data. (Gildea and Jurafsky
(2002, p. 32))

It seems that Gildea and Jurafsky try to point out that a large number of unnecessary
features may hinder performance by fragmenting the training data, the process that causes
sparsity.

3.2 Extensions to the seminal work

Section 3.1 shows that Gildea and Jurafsky (2000) and Gildea and Jurafsky (2002) have
conducted a comprehensive research work that pointed directions for future systems. While
following the feature and system designs laid out in Gildea and Jurafsky (2000) and Gildea
and Jurafsky (2002), later systems continued to investigate syntactic information and ma-
chine learning schemes other than those in the seminal work. The results from this effort
are well represented in the systems on CoNLL-2005 and CoNLL-2008. Section 3.3 sum-
marizes how CoNLL-2008 systems explored the effectiveness of the feature design based
on dependency relations between words in the framework of dependency grammar. The
present section illustrates how CoNLL-2005 systems extended the work of Gildea and
Jurafsky (2002) by incorporating more knowledge about the dependencies between ar-
guments into re-ranking based algorithms, by adding features to represent the syntactic
structures that were not covered by earlier feature designs, and by integrating algorithms to
overcome parsing errors.

Two of the top CoNLL-2005 systems, Punyakanok et al. (2005) and Toutanova et al.
(2005), incorporated dependency constraints into their systems that Gildea and Jurafsky
did not explore, and obtained gain in performance. Punyakanok et al. (2005), Surdeanu
and Turmo (2005), and later systems such as Surdeanu et al. (2007) and Surdeanu et al.
(2008b) experimented inferencing semantic roles by combining and re-ranking the results
from multiple base models. To overcome the parsing errors from the automatic parser, Pun-
yakanok et al. (2005) performed re-ranking and inferencing from the k-best parses from the
automatic parser, the Charniak parser in their case.

The rest of the section gives each ofPunyakanok et al. (2005) and Toutanova et al.
(2005) a detailed description, not only because they were the best performing systems on
CoNLL-2005 but also because they still remains state-of-the-art among the systems uti-
lizing constituency grammar. The main goal in the following discussion is to reveal two

46

areas that have not been fully explored and are explored in the current project. First of
all, the systems do not explicitly exclude non-core arguments from the context dependency
features, although the discussion in chapter 2 shows that context dependency exists among
core-arguments and is verb dependent and that non-core arguments are verb independent.
Secondly, both systems designed features to cover the syntactic structures that were not
covered by previous feature designs. As a result, more and more structure-specific features
were created so that the feature space have been largely increased since Gildea and Juraf-
sky (2000). The following discussion also reveals that although Punyakanok et al. (2005)
found joint inferencing from k-best parses could greatly improve the system performance
Haghighi et al. (2005) dit not find that was the case.

3.2.1 Punyakanok et al. (2005)

Punyakanok et al. (2005) constructed a joint inferencing model that was the top-performing
system and the only system integrating hard linguistic constraints on CoNLL-2005. Their
system can be summarized in four stages: pruning, argument identification, argument clas-

sification, and inference. The readers are invited to read about the expanded feature sets
in sections 3.2.1.2 and 3.2.1.3, the constraint-based features for several syntactic structures
and context dependencies in section 3.2.1.4, and the joint inferencing from the k-best parses
generated by Charniak parser in section 3.2.1.5.

3.2.1.1 Pruning

Following Xue and Palmer (2004), Punyakanok et al. proceed with a pruning stage that
filters out the unlikely constituents of a predicate from the parse tree. The pruning stage
consists of two heuristics. During initialization, the current node is set to be the predicate
node. First, start the current node and collect its siblings as constituents unless the siblings
are coordinated with the current node. If a sibling is a PP, also collect its immediate chil-
dren. Siblings are constituents attached at the same level as the predicate. Second, move to
the parent node and set it as the current node. Repeat the first heuristic until the top level
node is reached.

The heuristics work effectively with correct parse trees. To handle the cases of incorrect
PP attachment from automatic parsers, Punyakanok et al. consider any consecutive NP

and PP as constituents, as well as the split of NP and PP inside the NP returned by the two
heuristics.

47

3.2.1.2 Argument identification

Argument identification relies on a sparse network of linear binary classifiers, the weights
of which are updated by a regularized variation of the Winnow multiplicative update rule.
The activation score from a linear classifier can be converted to a conditional probability
using the soft function in equation 3.8.

Prob(i) =
eacti

∑1≤ j≤n eacti
(3.8)

If there are n classes of role labels and the raw activation score of class i, is acti, then
Prob(i) is the posterior estimation for class i.

The constituents resulted from the pruning stage are classified using the linear binary
classifiers trained on the following features. The conditional probabilities are calculated as
needed.

3.2.1.3 Argument classification

Argument classification relies on a sparse network of linear binary classifiers constructed
like those for argument identification. Conditional probabilities for classification are cal-
culated using equation 3.8. In addition to the features introduced in the previous section,
the features below are also used to built the classifiers:

• syntactic frame, the sequential pattern of the noun phrases and the predicate in the
sentence, introduced by Xue and Palmer (2004).

• propositional phrase head, the head of the first phrase after the preposition inside PP
• NE indicating if the target argument is, embeds, overlaps, or is embedded in a named-

entity along with its type

3.2.1.4 Inference

The inference stage optimizes the classification results for the set of arguments of a sentence
from the argument classification stage by maximizing the objective function in equation 3.9
,

ĉ1:M = argmaxc1:M∈PM

M

∑
i=1

Prob(Si = ci) (3.9)

subject to a series of linguistic and structural constraints as follows
• No overlapping or embedding arguments;

48

• No duplicate argument classes for A0-A5;
• Exactly one V argument per predicate;
• If there is a C-V, there must be V-A1-C-V pattern;
• If there is an R-arg, there must be arg somewhere;
• If there is a C-arg, there must be arg somewhere before it;
• Each predicate can take only core arguments that appear in its frame file.

The conditional probabilities Prob(Si = ci) are output from the argument classifica-

tion stage. The objective function performs sentence-level global optimization with respect
to the constraints. The next section describes the joint inference model that implements
equation 3.9.

3.2.1.5 Joint inference with Multiple SRL Systems

The sentence-level global optimization is combined with SRL outputs from several parses
of the same sentence. This section introduces the model that carries out the joint infer-
encing. For each test sentence, its k-best parse outputs by the Charniak parser are used to
build k separate SRL classifiers. A joint inference of the k classifiers on k argument sets,
{S1, · · · ,Sk} is achieved by optimizing the same objective function as 3.9, shown in 3.10 :

ĉ1:M = argmaxc1:M∈PM

M

∑
i=1

Prob(Si = ci) (3.10)

where S1:M =
⋃k

i=1 Si and

Prob(Si = ci) =
1
k

k

∑
j=1

Prob j(Si = ci)

where Prob j is the probability output by system j.

3.2.1.6 System Performance

Punyakanok et al.’s system obtained the highest score in the competition of the CoNLL-
2005 shared task with F-measures of 79.44% over the TreeBank data, 67.75% over the
Brown Corpus, and an overall of 77.92% over both data sets.

49

3.2.2 Toutanova et al. (2005)

Following Gildea and Palmer (2002), Toutanova et al. (2005) not only built a two-phase
system that performs identification and classification separately but also built a joint infer-
encing model that combines identification and classification into one step. The system by
Haghighi et al. (2005) was built on the same framework as Toutanova et al. (2005), but
was augmented with two new features to model dependencies among core arguments and
five new feature to model arguments’ surface syntactic structures . Sections 3.2.2.1 through
3.2.2.3 introduce the system in Toutanova et al. (2005), and section 3.2.2.6 describes the
extensions in Haghighi et al. (2005).

3.2.2.1 Identification

Identification is the task of identifying constituents from parsing as candidate semantic role
bearing arguments. During the identification phase, Toutanova et al. classify a parse tree
(t) node ni as either ARG, an argument (including modifiers), or NONE, a non-argument,
while the computed probability PID for identifying this ni incorporated in both local and
joint classifiers.

3.2.2.2 Local Classifiers

Let L be a set of semantic roles matching the nodes in the parse tree t. Let Id(L) be the
set of identified non-NONE arguments. The goal of a local classifier is to assign a seman-
tic role label to li (li ∈ L) corresponding to the ith non-NONE argument in Id(L), while
satisfying two constraints. The first constraint is the independence constraint. The system
assumes independence between each node ni in the parse tree t , and hence assumes inde-
pendence between the non-NONE arguments in Id(L) and between the semantic roles in
L. The second constraint is the non-overlapping constraint, which says that the arguments
cannot overlap.

The local classifier calculates the probability of the semantic role labeling L given parse
tree t and the predicate v by multiplying an identification model PID and a classification
model PCLS given the same t and v, shown in Equation 3.11.

PSRL(L|t,v) = PID(Id(L) | t,v)×PCLS(L|t,v, Id(L)) (3.11)

Enforcing the independence constraint between the non-NONE arguments and that
between their labels is equivalent to independently maximizing the product of the prob-

50

abilities of the two models in Equation 3.11 as shown in Equation 3.12,

Pl
SRL(L|t,v) = ∏

ni∈t
PID(Id(li) | t,v)×∏

ni∈t
PCLS(li|t,v, Id(li)) (3.12)

where li corresponds to the label for node ni or the ith non-NONE argument in Id(L). The
base features, referred to as local features, utilized by Toutanova et al. (2005) are listed as
follows:

• Standard Features (Gildea and Jurafsky, 2002)
– phrase type: Syntactic Category of node
– predicate lemma: Stemmed Verb
– path: Path from node to predicate
– position: Before or after predicate?
– voice: Active or passive relative to predicate
– head word of phrase
– sub-cat: CFG expansion of predicate’s parent

• Additional Features (Pradhan et al., 2004)
– head POS
– first/last phrase-type/word/POS
– left/right sister phrase-type/POS:
– parent phrase-type/POS
– ordinal tree distance: Phrase Type with appended length of PATH feature
– node-LCA partial path: Path from constituent to Lowest Common Ancestor

with predicate node
• Selected Pairs (Xue and Palmer, 2004)

– predicate lemma & path
– predicate lemma & head word
– predicate lemma & phrase type
– voice & position

A dynamic programming algorithm, resembling the Viterbi algorithm for context-free
grammar, is applied to satisfy the non-overlapping constraint. This algorithm starts from
the leaves of the tree t and finds the best label assignment for the tree, using already com-
puted labeling for its children. Each subtree ti of t stores the most likely assignment up to
ti as well as the log-probability of the labeling of all nodes it dominates. Calculating the
log-probabilities is a modification to Equation 3.12. Hence, the most likely labeling L for t

is the maximum of the following two sums:

• The sum of the log-probabilities of the most likely assignment of the children sub-
trees t1, ..., tk plus the log-probability for assigning the node t to NONE.

• The sum of the log-probabilities for assigning all of ti’s nodes to NONE plus the
log-probability for assigning the node t to ARG.

51

3.2.2.3 Joint classifiers

A discussion of the motivations for joint classifiers precedes the description of the joint
classifiers. The joint classifiers are built for three reasons. First, there are dependencies
between the roles that arguments bear. That is, there exist priorities among a verb’s argu-
ments with respect to the semantic roles they may bear. For example, an instrument cannot
be assigned to subject in the presence of an agent, such as that in (40).

(40) *[Instrument The key] opened the door by [AgentSusan].

Several systems, including Gildea and Palmer (2002), Thompson et al. (2003), and Prad-
han et al. (2004), have modeled such dependencies and have shown performance gain for
the modeling. Toutanova et al. (2005) continues the same tradition by defining two fea-
ture templates, candidate argument sequence and whole label sequence, that maintain the
dependency across arguments. The candidate argument sequence (42) and whole label se-

quence (43) correspond to the dependency relationship between the arguments in example
(41).

(41) [NP1ARG1 Final-hour trading]V BD1 accelerated [PP1ARG4 [TO1 to [N2 108.1 million
shares]] [NP3ARGM−T MP yesterday]]

(42) [NP1-ARG1, VBD1-PRED, PP1-ARG4, NP3-ARGM-TMP]

(43) [voice:active ARG1, PRED, ARG4, ARGM-TMP]

The second reason for building joint classifiers is that Toutanova et al. show that
the joint information about a verb’s argument structure, such as the dative alternation, is
important for the labeling task. Given examples (44) and (45) from Toutanova et al.
(2005):

(44) [ARG0 Shaw Publishing] offered [ARG2Mr. Smith] [ARG1 a reimbursement].

(45) [ARG0Shaw Publishing] offered [ARG1a reimbursement] to [ARG2Mr. Smith].

(44) and (45) display different argument structures in spite of the same verb with the same
meaning. The joint information between the verbs offer and their corresponding argument
structure are captured by the respective feature templates in (46) and (47).

(46) [voice:active ARG0, PRED, ARG2, ARG1].

(47) [voice:active ARG0, PRED, ARG1, ARG2].

52

The elements in the templates are ordered to ensure the order of the arguments in the
original sentence. The type of features are called frame features by the authors.

The third motivation for joint classifiers is that automatic parsers utilized for the iden-
tification phase do not achieve 100% accuracy in parsing, which affects the identification
performance. Collins and Koo (2005) propose joint inference by re-ranking that improves
parsing performance. Toutanova et al.’s follow this tradition and propose a re-ranking
based joint model as follows.

Re-ranking based joint inference algorithm:
Let Φ(t,v, l) be a feature map from a tree t, target verb v, and joint label

assignment L of the nodes of t, to the vector space Rs. Let L1, L2, ... LN denote
top N joint label assignments.

Given: parsed training and test sentences, the corresponding local fea-
tures, candidate argument sequence features, whole label sequence features,
and frame features

Step 1: Generate top N label assignments to nodes in t according to a local
model in Equation 3.12, repeated below:

Pl
SRL(L|t,v) = ∏

ni∈t
PID(Id(li) | t,v)×∏

ni∈t
PCLS(li|t,v, Id(li))

Step 2: Learn a parameter vector W with wi be the weight of the ith dimension
of features in Φ(t,v, l), using a log-likelihood model;

Step 3: Calculate the probability of L using the re-ranking model:

Pr
SRL(l | t,v) =

e〈Φ(t,v,L),W 〉
∑

N
j = 1e〈Φ(t,v,L j),W 〉

(3.13)

Step 4: Calculate the final probability of L by combining the local model from
Step 1 and the joint model from Step 3 as follows:

PSRL(L | t,v) = (Pl
SRL)(L | t,v)αPr

SRL(l | t,v) (3.14)

where α is tunable for the amount of influence of the local model on the
final model.

Step 5: Calculate the probability of test label assignment L using Formula 3.15:

arg max
L∈{L1,...,LN}

αlogPl
SRL(L | t,v)+ logPr

SRL(l | t,v) (3.15)

53

3.2.2.4 Repeated core argument label feature

The preceding section describes the two features intended to capture the dependencies
among arguments, namely the candidate argument sequence feature in (42) and the whole

label sequence feature in (43), (46), and (47). This section introduces the repeated core

argument feature that was used in Toutanova et al. (2005) but was reported in Haghighi
et al. (2005). This feature captures the cases where the WHNP in a relative clause and
the noun phrase it refers to share the same semantic role. In example (ex:rep), the WHNP
which and the NP it refers to core businesses both the arguments of include and both take
the semantic role of A2, meaning group.

(48) The move also would allow the company to concentrate on [A2core businesses],
[A2which] include ceramic tile ...

Although the authors themselves did not give an example for this feature, it indicates
that the authors were aware of the syntactic structure of relative clauses and designed rele-
vant features to the structure.

3.2.2.5 System performance

Toutanova et al. (2005) is ranked the second best in the competition of the CoNLL-2005
shared task, with F-measures of 78.63% over the TreeBank test data, 68.44% over the
Brown Corpus, and an overall of 77.30% over both data sets.

3.2.2.6 Extensions by Haghighi et al. (2005)

The system in Toutanova et al. (2005) preceded that in Haghighi et al. (2005). Since both
systems were built by the same authors, the time between the two systems allowed authors
to perform error analyses and design new features to handle the error cases. Among sev-
eral new features, the authors integrated the projected path local feature to represent the
subject of the verb complement in the control-verb structure.

• Projected path - path from the maximal extended projection of the predicate to the
argument. The maximal projection is the highest VP in the chain of VP’s dominating
the predicate.

In (49), the verb complement widen shares the same subject/argument the trade gap with
the control verb expected. The projected path feature, VP↑S↓NP, from the highest VP is

... widen dominating the predicates expected and widen, to the argument the trade gap,
is shared by both verbs and hence captures the fact that both verbs share the same sub-
ject/argument.

54

(49) [S [NP The trade gap] [V P is [[V P expected [V P to widen]]]].

Together with the features listed below, Haghighi et al. (2005) were able to increase the
overall F-measure of the A0 role from 81.02% to 83.08% for the local classifier.

• Missing subject - binary feature indicating if a predicate’s subject is its left sister
node

• Projected path & Missing subject - combination of the missing subject and the pro-
jected path features

Although Haghighi et al. (2005) tried to improve the system by jointly inferencing from
the k-top parses from an automatic parser, the effort did not bring any gain in performance.

3.2.3 Section summary

The preceding two sections illustrate that Gildea and Jurafsky (2000) initiated the research
work in essentially all the areas that later systems continue to research on, including ex-
perimenting with more syntactic features based on constituency grammar, integrating more
constraints regarding the dependencies among arguments and their corresponding seman-
tic roles, combining identification and classification into a joint inferencing model, and
maximizing from different parsing results to overcome the parsing errors through a joint
inferencing model. Thus, such trends indicate that SRL researchers paid attention to more
detailed information/knowledge about arguments and semantic roles. This suggests that in-
tegrating detailed syntactic information is beneficial. Around 2006/2007 SRL researchers
indeed started to investigate more detailed syntactic information but in an alternative gram-
mar formalism, dependency grammar. Encouraged by the work such as Johansson and
Nugues (2007a) who showed that the rich syntactic dependencies between words and their
head words could improve SRL labeling, SRL researchers intended to investigate whether
dependency grammar-based representation is better that constituency grammar-based rep-
resentation. Before this new research trend displayed in CoNLL-2008 is reviewed, it is
important to realize from the preceding discussion that previous systems have not distin-
guished between the feature representations of core and non-core arguments, that syntactic
structure-specific features do not generalize across the all structures where movements have
occurred, and that joint inferencing from the k-best parses does not necessarily help with
the classification task.

55

3.2.4 Two variations to the preceding systems

As illustrated in the previous sections, the SRL systems that are based on the constituency
grammar-based feature representation more or less follow the two paradigms proposed in
Gildea and Jurafsky (2000), where a SRL system either follows the two-phase argument
identification-classification approach or jointly inferences from identification and classifi-
cation with or without the re-ranking option. This section introduces two systems that do
not exactly follow the two foregoing paradigms. To avoid breaking the continuity in the
previous sections, the systems are presented in this last sub-section of section 3.2.

3.2.4.1 SRL through sentence simplification

Vickrey and Koller (2008) is the first of the two systems that does not follow the two
traditional SRL paradigms. The core components are summarized as follows:

1. For each verb in a sentence, apply 154 hand-written simplification rules to form a
simple sentence corresponding to the verb.

2. Train a maxent SRL system using the simplified sentences upon a set of predefined
features.

3. Given a new simplified sentence, predict the semantic roles of the constituents of
each verb.

Note that the preceding approach differs from the traditional approaches in three as-
pects. First, a complex set of procedures transforms a sentence into simple sentences
corresponding to each verb. A simple sentence is defined as a canonical form that is a
format shared by all sentences. Figure 3.2 shows that such simplified format is close to
the simple active statements the current project uses. As a matter of fact, this is the first
application of transformation to the SRL task in literature. Second, the training and test-
ing processes are conducted on the simplified sentences. Third, there is no procedure to
identify the candidate arguments. Whatever constituents that are preserved through the
simplification process are assigned a semantic role label.

Figure 3.2 lists a subset of the 154 sample simplification rules by category (Vickrey and
Koller, 2008, p. 2). Figure 3.3 shows the rules applied to derive the simple sentence I ate

from the original sentence I was not given a chance to eat.
Vickrey and Koller (2008) utilize three types of features for the simplified sentence.

The first type of features consists of the rules that were used to obtain the simple sentence.
The second type of features correspond to the label patterns of the arguments associated
with a specific verb. The third type of features include common features found in literature,
such as constituent label, head word of the constituent, etc. For example, table 3.4 lists the
features for the simplified sentence John gave me a sandwich from the original passive

56

Figure 3.2: Sample simplification rules

sentence I was given a sandwich by John.
This system obtains an overall of F-measure of 77.4% on WSJ section 23 using the

preceding simplification-based approach.

3.2.4.2 SRL through combination strategies

Surdeanu et al. (2007) benefit from independent SRL systems by combining three base
models into a complex system. The rest of the section starts with a brief description of
each of the three base models and then follows up with a description of the three combina-
tion strategies. The performance of the three independent models and the best combination

Figure 3.3: Rules applied to derive I ate

57

Feature type Examples
Pattern { ARG0 = Subj NP, ARG1 = PV NP2, ARG2 = PV NP1 }
Common Role = ARG0, Head Word = John

Role = ARG1, Head Word = sandwich
Role = ARG2, Head Word = I
Role = ARG0, Category = NP
Role = ARG1, Category = NP
Role = ARG2, Category = NP
Role = ARG0, Position = Subject NP
Role = ARG1, Position = Postverb NP2
Role = ARG2, Position = Postverb NP1

Table 3.4: Sample features from Vickrey and Koller (2008)

strategy is shown in table 3.5.
The first and second base models model the SRL problem as a sequential tagging

task, where each semantic argument is matched to a sequence of non-embedding phrases

(Surdeanu et al., 2007, p.112). The first model utilizes partial syntax (chunks and clause
boundaries). The second model instead uses full syntax instead. The third model follows
the traditional approach, where semantic role labels are assigned to identified semantic ar-
guments. All three models train the one-vs-all AdaBoost classifier. As shown in table 3.5,
the F-measures of the base models are around 76%.

The true power of the system by Surdeanu et al. (2007) comes from the strategies that
combine the base models. An overview of the system is shown in figure 3.4. A brief
description of each combination strategy follows.

Inference with constraint satisfaction The first combination model has no parameters to
estimate; it only makes use of the argument probabilities output by the individual
models and constraints over argument structures to build the overall solution for each
sentence.

Inference with local learning The second approach implements a cascaded inference
model with local learning: first, for each type of argument, a classifier trained offline
decides whether a candidate is or is not a final argument. Next, the candidates that
passed the previous step are combined into a solution consistent with the constraints
over argument structures.

Global learning The third inference model is global: a number of online ranking func-
tions, one for each argument type, are trained to score argument candidates so that
the correct argument structure for the complete sentence is globally ranked at the top.

Among the three strategies, the strategy of inference with local learning yields the high-
est performance, with an F-measure of 80.56% as shown in table 3.5.

58

Figure 3.4: Combination strategies
Model Name Precision Recall F-measure
1 78.76 72.44 75.47
2 79.65 74.92 77.21
3 80.32 72.95 76.46
Local learning 87.47 74.67 80.56
+1+2+3

Table 3.5: Performance of base and combined models

3.3 Exploring dependency grammar: onto CoNLL-2008

The CoNLL-2008 shared task, held between February, 2008 and May, 2008, subsumes two
tasks. The first task is to perform semantic role labeling. The second task is to perform
syntactic parsing for syntactic dependencies. The second task will not be discussed in the
rest of the section because it is an irrelevant task to the current project.

The SRL task consists of two separate challenges. The first challenge is the closed chal-
lenge where participating teams are not allowed to utilize resources other than the training
data and part-of-speech and dependencies between head words are the only syntactic repre-
sentations in the training data. The teams will not have access to constituent-based syntactic
representations. The second challenge is the open challenge where the teams are allowed
to use any kind of external tools and resources, including constituent-based syntactic rep-
resentations. At the same time, the shared task organizers encourage systems to utilize

59

semantic resources, such as WordNet, VerbNet, named entities, or a word sense disam-
biguation system. The rest of this section describes the motivations for the two challenges,
illustrates the dependency grammar-based features, and analyzes the system designs and
results.

The purpose of describing the motivations of CoNLL-2008 systems, illustrating the
dependency grammar-based feature representation, and discussing the systems designs is
three-fold. First of all, the linguistic theoretical background in dependency grammar is
provided, which helps with the feature design in the current system shown in section #.
Secondly, the results from the CoNLL-2008 shared task do not show that dependency
grammar-based representation better suits the SRL task than the constituency grammar-
based representation. This further motivates the current system to investigate the con-
stituency grammar for the SRL task. Finally, unlike the CoNLL-2005 systems, CoNLL-
2008 systems could not verify that the joint modeling of the identification and classification
tasks boost the performance. This observation motivates the current system to stick with a
local modeling architecture.

3.3.1 Motivations for the challenges

Since CoNLL-2005, researchers continue to investigate the options in feature design and
learning algorithms. However, the systems published since CoNLL-2005 until 2007, such
as that by Gordon and Swanson (June 23-30, 2007) on ACL-2007, could not pass the F-
measures achieved by the top performing systems from the CoNLL-2005 competition. This
motivates researchers to investigate the causes.

The common data sets used for training and testing in the SRL systems are the Prop-
Bank and the FrameNet database. The kappa statistics or inter-annotator agreement for the
PropBank over semantic roles is 93% or higher (Palmer et al., 2005). (The kappa statistics
for the FrameNet database is not available. The availability of this statistics may not be
relevant because most systems are built with the PropBank.) Therefore, the data per se
should not be the cause for the lack of improvement in performance, and the SRL task on
the PropBank data is a solvable problem. Realizing this, SRL researchers have turned to
searching for other causes.

While searching for other causes, SRL researchers have raised doubt about the use
of constituency grammar-based features and have shifted their interests to dependency
grammar-based features, which are syntactic features based on dependency relationships
between head words and modifiers in a sentence (see section 3.3.2 for a more detailed de-
scription). The work by Johansson and Nugues (2007a), Johansson and Nugues (2007b)

60

and Surdeanu et al. (2008b) have generated enthusiasm in the field to replace the con-
stituency grammar features with the dependency grammar features. Based on previous
research work, the organizers of the CoNLL-2008 shared task of SRL formalize three re-
search questions for the SRL task. First, due to the fact that the CoNLL-2005 top systems
utilized joint inferencing/modeling to maximize for the best semantic role sequence and to
handle parsing errors in the framework of constituency grammar, CoNLL-2008 encouraged
the community to investigate joint inferencing in the framework of dependency grammar.
The second research question is to show whether dependency grammar is a better repre-
sentation for the SRL task than constituency grammar. The third research question is to
investigate how to incorporate semantic information such as word sense disambiguation,
and semantic resources such as WordNet and named entities. The third research question
has been a heritage question since CoNLL-2005. In order to have a deep understanding
of the CoNLL-2008 systems, it would be necessary to give a description of the linguistic
theory behind the systems in the next section.

3.3.2 Dependency grammar and data representation

The organizers of CoNLL-2008 refer to the Treebank-style representation of language
as constituency grammar-based representation and promote dependency grammar-based
format for the CoNLL-2008 competition because they assume that dependency grammar
provides for the researchers a simpler representation of the data and yet a richer set of
grammatical relations. The following brief account helps to illustrate their rationale.

Dependency grammar, evolved in the work of Tesniere, Hudson, and Sgall (Nivre,
2007, p 46), traditionally accounting for syntactic structures in Classical and Slavic lan-
guages, includes two main components.

Component I Dependency grammar assumes that syntactic structure consists of lexical
items.

Component II The lexical items are linked by binary asymmetrical relations called depen-
dencies.

The preceding two components indicate that the dependency between the grammatical units
is a relation strictly between two lexical items and that there are no intermediate nodes
between two words that are related by some dependency relation. As a result, depen-
dency grammar does not entail the concept of constituency or phrase structure. Figure
3.5 displays the difference between the constituent and dependency representations of the

61

Economic news had little effect on financial markets .

 JJ NN VBD JJ NN IN JJ NNS

 NP NP NP PU

 PP

 NP

 VP

 S

Constituent representation of syntactic structure

Economic news had little effect on financial markets .

 JJ NN VBD JJ NN IN JJ NNS PU

 NOMD SBJ NMOD NMOD NMOD

 OBJ PMOD

 P

Dependency representation of syntactic structure

Figure 3.5: Constituent vs. dependency representation of syntactic structure

syntactic structure of the same English sentence (Nivre, 2007, p 11). In the lower panel of
figure 3.5, a directed edge points to the head of a word. And the label on the edge represents
a particular dependency relation between the child and the head. A dependency relation is
in fact a grammatical relation between a head word and the child.

CoNLL-2008 systems in the closed challenge make extensive use of the dependency
relations in their feature engineering. Table 3.6 lists all the dependency relations appear-
ing in the CoNLL-2008 data, which are converted from the constituent representation in
the Treebank (Surdeanu et al., 2008b) .

The next section summarizes the system designs and explains whether the research
goals have been met.

62

Label Description
NMOD Modifier of nominal
P Punctuation
PMOD Modifier of preposition
SBJ Subject
OBJ Object
ROOT Root
ADV General adverbial
NAME Name-internal link
VC Verb chain
COORD Coordination
DEP Unclassified
TMP Temporal adverbial or nominal modifier
CONJ Second conjunct (dependent on conjunction)
LOC Locative adverbial or nominal modifier
AMOD Modifier of adjective or adverbial
PRD Predicative complement
APPO Apposition
IM Infinitive verb (dependent on infinitive marker to)
HYPH Token part of a hyphenated word
HMOD Token inside a hyphenated word
SUB Subordinated clause
OPRD Predicative complement of raising/control verb
SUFFIX Possessive suffix
DIR Adverbial of direction
TITLE Title (dependent on name)
MNR Adverbial of manner
POSTHON Posthonorific modifier of nominal
PRP Adverbial of purpose or reason
PRT Particle (dependent on verb)
LGS Logical subject of a passive verb
EXT Adverbial of extent
PRN Parenthetical
EXTR Extraposed element in cleft
DTV Dative complement (to) in dative shift
PUT Complement of the verb put
BNF Benefactor complement (for) in dative shift
VOC Vocative

Table 3.6: Dependency relations used on CoNLL-2008

3.3.3 Results from CoNLL-2008

This section summarizes how CoNLL-2008 systems answered the research questions on
integrating WSD, joint inferencing, and incorporating the dependency grammar-based fea-
ture design into different machine learning schemes.

Twenty-four systems submitted results to CoNLL-2008. Five of the twenty-four sys-
tems participated in the open challenge, while the remaining nineteen in the closed chal-
lenge. Although systems in the open challenge were encouraged to utilize word sense
disambiguation techniques and/or semantic lexical resources, such as WordNet, none of
the systems did so. Thus, how word sense disambiguation can help the SRL task remains
an open question.

During CoNLL-2005, the top four systems relied on joint inferencing/modeling to
select the most likely semantic role sequence for a given predicate from multiple role se-
quences corresponding to one parse tree, e.g. Toutanova et al. (2005), or from k-best parse

63

trees, e.g. Punyakanok et al. (2005), while combing argument identification and classifi-
cation (see sections 3.1, 3.1.6, 3.2.1.5 and 3.2.2.3). In the CoNLL-2008 closed challenge,
although nine out of the nineteen systems performed joint inferencing by combining ar-
gument identification and classification, only one out of the top five systems built a joint
model (Johansson and Nugues, 2008; Surdeanu et al., 2008a). However, the improvement
from the joint modeling is very small in Johansson and Nugues (2008). The other top four
models built pipeline models that separate argument identification and classification steps.
This shows that joint modeling is not a trivial task.

In terms of the choice of machine learning techniques, the systems choose from one of
three approaches, namely, maximum entropy, support vector machines, and the perceptron
algorithm as the base classifier.

The average F-measure of the top five CoNLL-2008 systems is 79.86% on the verb
arguments, whereas that of the top five CoNLL-2005 systems is 77.47%. However, the re-
sults from the two events are not comparable because the CoNLL-2008 evaluation method
only requires the systems to identify the head word of the arguments, but the CoNLL-2005
evaluation scheme requires argument boundary detection. The differences in the evaluation
make it difficult to directly compare the results. In fact, the CoNLL-2008 research ques-
tion on whether the dependency-based representation is better for SRL remains an open
question.

3.4 Chapter summary

The preceding sections demonstrate SRL researchers’ effort to discover the appropriate
syntactic knowledge for the feature design and to develop the proper machine learning
schemes for the chosen feature design. Along the line of discovering the right feature de-
sign for the SRL task, the researchers have explored features based on the constituency
grammar formalism and the dependency grammar formalism respectively. In terms of the
feature engineering based on constituency grammar, the researchers experimented with sur-
face syntactic features as well as the context dependency features among the arguments of
a verb, and concluded that the context dependencies and structure-specific features, such
as projected path were helpful. In terms of the feature engineering based on dependency
grammar, results from CoNLL-2008 indicate that the grammatical relations between words
and their heads are helpful. But the researchers participated in CoNLL-2008 could not
conclude that features based on dependency grammar are better than those based on con-
stituency grammar.

64

Based on the above review of the SRL systems in the past eight years and on one’s
intuition of the English language, one can make several observations that reveal the areas
that the current project looks into.

First, before SRL researchers shifted their interests to dependency grammar, they had
to design new features to cover the syntactic structures that previous feature designs did not
handle. They discovered these syntactic structures through error analyses. Section 3.2.1.4
shows how Punyakanok et al. (2005) imposed seven constraints on seven types of sur-
face syntactic structures. Discovering that the previous systems had not properly handled
the cases where two consecutive arguments could take the same semantic role in relative
clauses and the noun phrase it modifies, Toutanova et al. (2005) created the Repeated core

argument label feature (see section 3.2.2.4). Moreover, Haghighi et al. (2005) came up
with the projected path feature to handle the moved subject in the control-verb structures
(see 3.2.2.6). It seems to be the case that the features are more and more engineered to-
wards specific syntactic structures. As a result, the feature space keeps expanding. In the
original work of Gildea and Jurafsky (2002), fewer than 10 feature types were used. Pun-
yakanok et al. (2005) used about 18 features for classification, in addition to 7 constraints.
Haghighi et al. (2005) employed about 23 feature types. The increasing feature types in-
dicate the discovering of more syntactic structures that researchers did not realize before.
It is necessary to discover the syntactic structures that have not been explored before and
design the appropriate features to cover accordingly. While designing structure-specific
feature may improve the performance, it may also increase the feature space and fragment
the training data. It is then necessary to be able to generalize from the different syntactic
structures/configurations.

Second, as more syntactic structures that need specific feature engineering are discov-
ered, it is important to know what other syntactic structures are out there that cannot be
handled by the existing feature designs in literature.

Third, the above survey raises one’s awareness of the important role context dependency
plays in the SRL task. Gildea and Jurafsky (2000) first utilized this type of knowledge,
without including the relative positions between the arguments and the verb. Example
(51) shows the dependency feature that Gildea and Jurafsky (2000) would have had for the
same verb accelerated in (50). This dependency feature is referred to as the frame element

group feature by the authors in section 3.1.6.1. Toutanova et al. (2005) extended the depen-
dency representation by including the relative positions and verb’s voice in the whole label

sequence feature. Example (53) lists all the arguments’ labels for the verb accelerated,
including the ARGM-TMP for the non-core argument yesterday. The candidate argument

sequence feature also includes the verb’s position in the sequence. Examples (52) lists

65

all the arguments and their corresponding semantic role labels for the verb accelerated.
According to the authors, the sequences (52) and (53) capture the dependency among the
arguments. However, it is not clear that whether the authors implied that the non-core ar-
gument yesterday was also dependent on the core arguments. This may not be the case
because in (54) yesterday is moved to the sentence initial position and its ARGM-TMP role
has not been changed. Although the authors later reported in Haghighi et al. (2005) that
the whole sequence of core arguments feature which only lists the core arguments of a verb
were used in Toutanova et al. (2005), it is not clear how this feature had interacted with
the candidate argument sequence and whole label sequence features where non-core argu-
ments are listed. Therefore, if the dependencies among arguments are used as features to
constrain the number of arguments the verb can take as well as the semantic role each ar-
gument position takes, then it may be necessary to handle the core and non-core arguments
differently because some non-core arguments, such as the temporal argument yesterday

above, are independent of other arguments’ positions and semantic roles.

(50) [NP1ARG1 Final-hour trading]V BD1 accelerated [PP1ARG4 [TO1 to [N2 108.1 million
shares]] [NP3ARGM−T MP yesterday]]

(51) [ARG1, ARG4, ARGM-TMP]

(52) [NP1-ARG1, VBD1-PRED, PP1-ARG4, NP3-ARGM-TMP]

(53) [voice:active ARG1, PRED, ARG4, ARGM-TMP]

(54) [NP3ARGM−T MP yesterday] [NP1ARG1 Final-hour trading]V BD1 accelerated [PP1ARG4

[TO1 to [N2 108.1 million shares]]]

As summarized in the three observations above, the current project investigates how
the dependency among arguments can be appropriately represented, what syntactic struc-
tures need to be further explored and what features need to be designed accordingly, and
how one can generalize from different syntactic structures. Previous systems discovered
new syntactic structures through data and error analyses and relied on the intuition of the
English language for context dependencies among arguments. Drawing upon the theory
of argument realization, the current project splits the feature design for core and non-core
arguments, defines a base argument configuration corresponding with the argument posi-
tions of the core arguments in an argument structure of the verb, identifies the syntactic
structures whose core arguments’ positions vary from the base argument configuration, re-
constructs the base argument configurations for these variations to generalize across the
structures of the same verb, and integrates the features into a machine learning framework.

66

The next chapter discusses the feature design that addresses the issues raised in the above
observations.

67

Chapter 4
Feature Design

As discussed in chapter 3, although existing SRL systems differ in many ways, two tasks
are common to all SRL systems. One of the tasks is to conceive a set of features to rep-
resent the training and test data in hand. The other is to select an appropriate machine
learning model to integrate these features. In terms of feature engineering, the designs
have evolved in three directions in the past eight years. First, in the years elapsed between
2000 and 2007, with the feature representation in the framework of constituency gram-
mar, researchers focused on exploring how context dependencies among arguments could
be utilized to help the SRL task (section 3.2). Second, in the same framework, SRL re-
searchers headed down the direction of integrating structure-specific features as opposed to
the structure-general features (section 3.2). Along the third direction, the community has
witnessed the shift from the use of constituency grammar for feature representation to that
of dependency grammar representation around 2006/2007 (section 3.3).

The work in all three directions was fruitful and yet can be further explored. The initial
interests in trying to replace the constituency grammar representation with the dependency
grammar representation culminated in the work of CoNLL-2008 systems. However, since
the researchers could not conclude from the CoNLL-2008 results that the dependency
grammar representation provides for a better solution (Surdeanu et al., 2008a), they are
determined to further explore this direction on CoNLL-2009 (Hajič, 2009).

The work in the direction of utilizing context dependencies among arguments showed
that such dependencies were helpful but did not distinguish between core and non-core
arguments. While at the same time the theory of argument realization states that there
exist context dependencies between the semantic role of a core argument and those of other
core arguments, it does not mention any context dependency between a non-core semantic
role and other core or non-core semantic roles. Similarly, the lexical resources, whether it
be PropBank or FrameNet that all existing SRL systems rely on for training, define core
semantic roles to be specific to the core arguments of a verb, while stating that the non-core
semantic roles are not specific to any verb but general to all verbs. Separating the non-core
arguments from the context dependencies among arguments seems to be necessary.

In the direction of choosing between more general or more specific features, in order to
handle the syntactic structures that generic features failed to represent, instead of finding

68

the common features shared by different syntactic structures, SRL researchers designed
features specific to these structures which not only led to larger feature spaces but also did
not necessarily generalize across different syntactic structures that the verb appears in.

The feature design of the current project investigates the areas that have not been much
explored in these three directions. The three main areas the current project investigates are
summarized as follows.

First, the current project employs the base argument configuration feature(s) of a given
verb to generalize across twelve different syntactic structures involving moved or displaced
arguments that the verb may appear in. The argument positions in a base argument config-
uration of a given verb correspond to those in one of the verb’s argument structures. In the
syntactic structures where arguments of a given verb are moved or displaced arguments,
the argument positions are different from those in any of the verb’s base argument con-
figurations. In these cases, relying on the knowledge about these structures and about the
arguments’ originating positions, procedures are applied to create the base argument con-
figuration features for these arguments. When the BAC features are successfully created
for the moved or displaced arguments, they generalize across these syntactic structures. As
a matter fact, the current project observes twelve types of syntactic structures involving
moved and displaced arguments from the Penn Treebank data. The knowledge about the-
ses structures and about the originating positions of the moved or displaced arguments are
encoded in the system for the purposes of either identifying a verb’s arguments or creating
the BAC features for the argument classification task.

Second, through base argument configuration features, the current project imposes the
context dependency constraint explicitly on the core arguments of a verb but not on the non-
core arguments. A base argument configuration feature lists the full set of core arguments
of a given verb. The presence of all core arguments helps to enforce the context dependence
constraints which states that the semantic roles of core arguments are dependent on each
other.

Finally, when deriving base argument configuration features, the current project uti-
lizes both dependency grammar and constituency grammar, instead of siding with one of
the two grammars. The procedures to identify the twelve types of syntactic structures
involving moved or displaced arguments as well as the operations to reconstruct base ar-
gument configurations regarding these syntactic structures necessarily cross the boundaries
between constituency grammar representation and dependency grammar. Although the
BAC features for the core arguments do not directly include grammatical relations defined
in dependency grammar, the procedures to derive the base argument configuration features
do rely on grammatical relations such as subject-verb, verb-object, and modifier-head rela-

69

tions that constituency grammar-based SRL systems do not use. At the same time, syntactic
categories, i.e. phrase types of the arguments, that do not appear in dependency grammar-
based SRL systems, are listed in BAC features. Therefore, the feature design for the core
arguments in the current project does not take sides in the debate on the effectiveness of the
two grammatical formalisms, but instead draws upon both formalisms simultaneously.

The preceding passages outline the three areas in feature engineering in which the
current project differs from existing systems. At the same time, the current project does
recognize that although the BAC features generalize across different syntactic structures
that a verb appears in they do not generalize across different verbs because the verb is
built in base argument configurations and the core arguments are constrained on the verb
itself. To reinforce the base argument configuration features, the current project also uti-
lizes two levels of backoff features. The Level-I features are intended to handle unrealized
arguments. The Level-II backoff features correspond with the commonly-used contextual
features in literature that do not have to be dependent on the predicate verb.

For the non-core arguments, the current project employs the Level-II features.
The rest of the chapter proceeds as follows. Section 4.1 previews the architecture of the

current SRL system through the semantic role labeling/testing phase, aiming to illustrate
how the feature extraction for the core and non-core arguments defined in the current chap-
ter fits into the complete system. Section 4.2 describes base argument configurations and
the feature design for the core-arguments. Section 4.3 describes the twelve syntactic struc-
tures whose core arguments have either moved or displaced and discusses the approaches
to constructing the base argument configuration features in each case. Section 4.4 describes
the Level-I back-off features to handle unrealized arguments and the Level-II back-off fea-
tures to handle the unseen verbs in the training data. Section 4.4 also points out that the
Level-II features are general enough for any realized core arguments. Section 4.5 analyzes
the non-core arguments and presents the corresponding features as a subset of the Level-II
features.

4.1 System preview

Following the common approach in SRL, the current system starts with the argument iden-
tification module to identify the core and non-core semantic arguments for each verb in
a given input sentence. The argument identification module selects a list of candidate ar-
guments for each verb from all the constituents in the sentence. Then it runs a three-way
classifier to classify each candidate argument as core, non-core, or non-argument. When

70

the arguments are identified, the system runs the argument classification module to classify
each argument and assigns it a semantic label. For both training and testing, the system
uses the PropBank data (section 2.2) formatted for the CoNLL-2005 shared task of SRL.

Table 4.1 shows the data format from CoNLL-2005. Column 1 lists the words in the in-
put sentence. Column 2 gives the predicates’ lemmas. Column 3 corresponds to the parse
tree. The parent’s index of each constituent is shown in column 4, where −1 indicates
the root of the parse tree. Column 5 lists the semantic arguments and their role label for
the first predicate sow. Column 6 corresponds with the semantic arguments and their role
label for the second predicate pollinate. During training, the system is allowed to access
the full table. During testing, the system does not have access to the content in columns 5
and 6. Instead, the system is supposed to identify the semantic arguments and predict their
semantic role labels in columns 5 and 6.

0 1 2 3 4 5 6
idx. word predicate parse parent idx. sow cand. pollinate cand.
1 They - (S(NP-SBJ*) 2 (A0*) *
2 sow sow (VP* -1 (V*) *
3 a - (NP(NP(NP* - (A1* *
4 row - *) 2 * *
5 of - (PP* - * *
6 male-fertile - (NP* - * (A0*
7 plants - *)))) 5 *) *)
8 nearby - (ADVP-LOC*) 2 (AM-LOC*) *
9 , - * 2 * *
10 which - (SBAR-1(WHNP-2*) 2 (C-A1* (R-A0*)
11 then - (S(ADVP-TMP*) 12 * (Non-core*)
12 pollinate pollinate (VP* 10 * (V*)
13 the - (NP* - * (A1*
14 male-sterile - * - * *
15 plants - *))))) 12 *) *)
16 . - *) - * *

Table 4.1: Sample data format from CoNLL-2005

The rest of the section provides a brief summary of the training phase and a preview
of the current novel system architecture through the semantic role labeling/testing phase,
highlighting the feature extraction procedures for the candidate arguments during argu-
ment identification and for the core and non-core arguments/instances during semantic role
labeling. The formal presentation of the system architecture can be found in chapter 5.

The training phase trains three classifiers, the three-way argument identifier, an argu-
ment classifier based on the BAC and Level-I features of the annotated instances in the
training data, and a second argument classifier based on Level-II features only. The in-
stances for the argument identifier and that for the argument classifier will be separately
introduced in the rest of this section.

71

Argument Identification Module

Top level procedures:

Input: Output:
 A parsed sentence An ordered list of core arguments for each verb
 All predicate verbs in the sentence A list of non-core arguments for each verb
 A list of all the constituents in the sentence

1. For each verb, do
2. For each constituent, do
3. Determine if this constituent is a candidate argument of the verb.

 3.1 if yes, then go to step 4
 3.2 if no, then go to step 2

4. Create an instance for the candidate argument-verb pair.
5. Extract the Level-II features for this instance.
6. Classify the instance based on the features.
7. Assign a core, non-core, or non-argument label to the candidate argument.
8. If core argument is assigned, then add this argument to the core-argument list

 of the current verb.
9. If non-core argument, then assign the argument to the non-core argument list

 of the current verb.
10. Done.
11. Done.

Procedures to determine candidate arguments:

Input:
 A constituent
 Current verb

1 If the parent of the current constituent is the verb, then return yes
2 Otherwise,check if the constituent is a moved argument, displaced argument,
 antecedent of relative clause, or in a co-ordinated structure
2.1 If yes, then use heuristics to determine if the constituent is an argument of
 the verb. If yes, then return yes.
3. Return no.

Figure 4.1: The Argument Identification module

4.1.1 Argument identification

During the testing/semantic role labeling phase, the complete system performs semantic
role labeling through three steps, including parsing, argument identification (see section
5.2), and argument classification (see section 5.3).

Given an unannotated sentence as the input, the system starts with parsing the sentence
with the Charniak parser.

Then, the system hands all the constituents in the parsed sentence down to the argu-
ment identifier. The argument identifier (shown in figure 4.1) proceeds with identifying

72

the core and non-core semantic arguments for each predicate verb in the sentence from the
constituents in three sub-steps.

First, the identifier selects the constituents whose parent is a predicate, including the
syntactic arguments, adjuncts, modal verbs, discourse markers, and negation adverbs, as
the candidate semantic arguments for the predicate. However, there are four situations
where the predicate is not the parent of its argument on the parse tree. In these cases the
identifier has to rely on heuristics to locate these arguments. These situations include the
syntactic structures involving moved arguments, displaced arguments, shared arguments of
the verbs in co-ordinated structures, and the extra arguments as the antecedents in relative
clauses.(see section 4.3 for examples).

Next, the identifier extracts for each candidate/instance a set of generic features com-
monly used in literature for argument identification. This set of features are the Level-II
features defined in section 4.4.3. In other words, this step prepares the instances and their
features for the next step. Here, an instance is a candidate argument and verb pair. And the
corresponding feature vector contains the Level-II features.

Finally, the identifier classifies the candidate semantic arguments as core, non-core, or
non arguments, using the three-way classifier. The core arguments correspond to the syn-
tactic arguments as discussed in section 2.1.2. And the non-core arguments correspond to
the adjuncts, modal verbs, discourse markers, and negation adverbs (see section 2.1.2).

At this point, the argument identifier stops and outputs a list of core arguments and a list
of non-core arguments for each verb in the input sentence. The procedures of the argument
identifier are illustrated below. Figure 4.1 displays the main procedures of the argument
identifier.

4.1.2 Identification examples

Table 4.2 shows an input sentence to the argument identifier. There are two predicates in
the input sentence, sow and pollinate. The POS tags are shown in the third column. Col-
umn four shows the parse tree. Column five lists the parent head indices derived from the
parse tree for the constituents. The negative index −1 indicates the root of the parse tree.

When receiving the parsed sentence shown in table 4.2, the argument identifier selects
the constituents shown in table 4.3 for each of the two verbs. The candidate arguments of
sow are listed in column 5. Those of pollinate are in column 6.

Next, the identifier selects the candidate arguments for each verb, which are shown in
table 4.3. The identifier easily reads the candidate arguments off the parse tree for verb sow

because their parent head indices all point to the index of sow, which is 2. Now, sow is

73

idx word POS parse parent idx
1 They PRP (S(NP-SBJ*) 2
2 sow VBP (VP* -1
3 a DT (NP(NP(NP* -
4 row NN *) 2
5 of IN (PP* -
6 male-fertile JJ (NP* -
7 plants NNS *)))) 5
8 nearby RB (ADVP-LOC*) 2
9 , , * 2
10 which WDT (SBAR-1(WHNP-2*) 2
11 then RB (S(ADVP-TMP*) 12
12 pollinate VBP (VP* 10
13 the DT (NP* -
14 male-sterile JJ * -
15 plants NNS *))))) 12
16 . . *) -

Table 4.2: Parsed input sentence and derived head indices
idx. word parse head idx. sow cand. pollinate cand.
1 They (S(NP-SBJ*) 2 (Arg*) *
2 sow (VP* -1 (V*) *
3 a (NP(NP(NP* - (Arg* *
4 row *) 2 * *
5 of (PP* - * *
6 male-fertile (NP* - * (Arg*
7 plants *)))) 5 *) *)
8 nearby (ADVP-LOC*) 2 (Arg*) *
9 , * 2 * *
10 which (SBAR-1(WHNP-2*) 2 (Arg* (Arg*)
11 then (S(ADVP-TMP*) 12 * (Arg*)
12 pollinate (VP* 10 * (V*)
13 the (NP* - * (Arg*
14 male-sterile * - * *
15 plants *))))) 12 *) *)
16 . *) - * *

Table 4.3: Candidate arguments for sow and pollinate

associated with the list of candidate arguments, (they, a row ... plants, nearby, which then

... plants). However, while the candidate arguments, (which, then, the male-sterile plants)
for pollinate can be easily collected from the parse tree because their parent head indices
point to pollinate, the candidate argument male-fertile plants, spanning words 6 and 7, can
only be selected with heuristics. In this case, the heuristics says that

the antecedent of a relative clause needs to be collect as a candidate argu-
ment of the predicate in the relative clause.

Once the argument identifier chooses the candidate arguments for sow and pollinate,
it creates instance for each candidate-verb pair, extracts the Level-II features for each in-
stance, and classifies the candidate arguments as core, non-core, or non arguments. For ex-
ample, for the candidate argument a row of male-fertile plants, the argument identifier cre-
ates an instance a row ... plants: SOW, extracts the features {head plants, predicate SOW,
etc. }, and classifies it as a core argument.

74

The resulting core and non-core arguments for sow are shown in column 5 of table 4.4,
and those of pollinate are shown in column 6.

idx. word parse head idx. sow cand. pollinate cand.
1 They (S(NP-SBJ*) 2 (Core*) *
2 sow (VP* -1 (V*) *
3 a (NP(NP(NP* - (Core* *
4 row *) 2 * *
5 of (PP* - * *
6 male-fertile (NP* - * (Core*
7 plants *)))) 5 *) *)
8 nearby (ADVP-LOC*) 2 (Non-core*) *
9 , * 2 * *
10 which (SBAR-1(WHNP-2*) 2 (Core* (Core*)
11 then (S(ADVP-TMP*) 12 * (Non-core*)
12 pollinate (VP* 10 * (V*)
13 the (NP* - * (Core*
14 male-sterile * - * *
15 plants *))))) 12 *) *)
16 . *) - * *

Table 4.4: Core and non-core arguments for sow and pollinate

4.1.3 Argument classification

The argument identifier (see figure 4.2) assigns a list of core arguments and a list of non-
core arguments for each predicate verb in an input sentence. Then, the argument classifier
proceeds as follows.

For each of the non-core arguments of a verb, the argument classifier creates a non-core
argument-verb instance and extracts the Level-II features for the instance.

Before the argument classifier creates instances and extracts features for the core argu-
ments, it normalizes the positions of the arguments in the core-argument list for each verb
as follows.

Given the ordered list of core arguments of a verb, the argument classifier checks if
any of the arguments is a moved argument, a displaced argument, a shared argument in a
co-ordinated structure, or the referent of a relative clause (see section 4.3). If the argument
is involved in one of these structures, the argument classifier reconstructs its originating
position based on the coded knowledge of these structures and inserts the argument to the
relevant position in the core argument list. If none of the arguments is involved in any of
the above four situations, the core argument list is kept as is.

Once the core argument list of the verb is normalized. The argument classifier cre-
ates a core argument-verb instance for each core argument and extracts the base argument
configuration feature for the instance. Recall that a base argument configuration (BAC)
represents an argument structure of the verb. When the arguments are normalized, the cur-

75

Argument Classification Module

Main Procedures:

Input:
✔ A sentence
✔ lists of core arguments, one for each verb, ordered by
 their current positions in the sentence
✔ lists of non-core arguments, one for each verb

1. For each verb, do
2. Normalize the order of the core arguments in its core-argument list.

3. For each verb in the current sentence, do:
1. For each argument of the verb, do:
2. Create an instance for the argument-verb pair.
6. If the current argument is a core argument, then do

 6.1. Extract the BAC feature for the current instance.
 6.2 If there is unrealized argument(s), extract the Level-I feature
 6.3. If the verb is new verb, extract the Level-II features.
 6.4 Go to step 8.

7. If the current argument is a non-core argument, then extract the
 Level-II features for the current instance.

8. Classify the current instance using the extracted feature(s) and
 assign the semantic role to the argument.

9. Done.
10. Done.

Procedures to normalize argument positions:

Input: an ordered list of core arguments of a predicate verb
Output: an ordered list with the positions normalized

1. If the current clause is one of the nine types of syntactic configuration
 involving moved arguments, then
 1.1 Identify its originating position using the knowledge about the
 syntactic configuration.
 1.2 Move the argument to the originating position by rearranging its
 position in the list.

Figure 4.2: The Argument Classification module

rent project considers the resulting argument list and the verb’s position correspond to one
of the argument structures of the verb. Hence, the resulting feature that lists the arguments
and the verb positions is called the base argument configuration feature. The next section
gives some examples of BAC features. While the BAC feature represents an argument
structure of a verb, it also represents the context dependence among the semantic roles of
the arguments in the list.

After the argument classifier extracts the BAC feature for an instance, it also extracts
the Level-I feature for the instance. If the verb has not been seen before in training, Level-II
features will be extracted for the instance.

When the argument classifier finishes extracting features for all the instances, it classi-
fies the instances and assigns each a semantic role label.

The above procedures followed by the argument classifier is summarized in figure 4.2.

76

4.1.4 Classification examples

The preceding section depicts the procedures of the argument classifier. This section illus-
trates the procedures with a sentence without any moved or displaced core argument and
with a passive sentence with a moved argument.

(55) is a sentence where no moved or displaced argument occurs. (55).1 shows the
core argument list that has been identified by the argument identifier. When the argument
classifier gets the core argument list, it checks if any of the argument has been moved or
displaced. If this case, none has. So, the argument classifier keeps the order of the argu-
ments as is. Next, it creates an instance for each argument, as shown in (55).2 and (55).3.
Since there is no moved or displaced argument, when the argument classifier extracts the
BAC feature for Dana, it reads the phrase type of the argument list, marks the position of
the argument in question, and inserts the verb in the correct position. So, Data gets the
BAC feature of {curNP-open-NP}.

(55) [CoreDana] opened [Core the door].

(1) Core argument list: {NP Dana, NP the door}

(2) Instance and BAC feature: Dana open - {curNP-open-NP}

(3) Instance and BAC feature: the door open {NP-open-curNP}

On the other hand, (56) is a passive sentence. According the Treebank annotation, the
subject is a moved argument. And the final NP is in fact a displaced core argument. Both
arguments are correctly identified as core arguments by the argument identifier. Then,
in (56).4, the argument classifier normalizes the positions of the core arguments by re-
constructing their positions according to base argument configuration of the verb. The
argument classifier encodes the knowledge about the passive structures so that is able to
reconstruct the moved and displaced arguments. Then in (56).5 and in (56).6 the BAC
features are extract for each argument.

(56) [NP thing−discovered The problemsi] were uncovered *tracei* ... by [NP discoverer the
government].

(1) Core argument list: { NP the problems, NP the government}

(2) Moved argument: { NP the problems }

(3) Displaced argument: { NP the government}

(4) Normalized core argument list: { NP the government, NP the problems}

77

(5) Instance and BAC feature: { The government uncover - curNP uncover NP}

(6) Instance and BAC feature: { the problems uncover - NP uncover curNP}

4.2 Base argument configuration and BAC features

As section 2.4.1 illustrates, an argument structure of a given verb specifies the positions of
its subject, object, and other types of complements of with respect to the verb. A predicate
verb may appear in one or more argument structures while there is no argument in each
argument structure has moved or been displaced. Then, section 2.4.2 presents the defini-
tion of base argument configuration. A base argument configuration with respect to a
given verb consists of the arguments in an argument structure of the same verb except that
the argument types of subject, object, etc are replaced with their corresponding syntactic
categories and the lemma of the verb is also included. A base argument configuration fea-
ture then is just a listing of the elements in a base argument configuration with its current
position marked by the string cur.

Extracting the BAC features for the core arguments of a predicate verb that is not in any
of the structures involving moved or displaced arguments is straight forward. That is, to
extract the BAC feature for a core argument of this verb, one needs only to list the syntactic
categories of the arguments and the lemma of the verb in the order as they appear in the
clause the verb appears in because these core arguments are assumed to overlap with the
arguments in an argument structure of the verb. In addition to the examples in sections 2.4
and 4.1, example (57) helps to illustrate this point. Because there is no moved argument in
(57).1, the current base argument configuration with respect to verb finger, shown in (57).3,
is considered as a sequential listing of the syntactic categories of the two arguments, shown
in (57).2, from the parse tree with the lemma of the verb indicated. Then, the BAC features
for the two arguments can be easily extracted as shown in (57).4 and (57).5.

(57) (1) To date, [NP scientists] have fingered [NP two of these cancer-suppressors].

(2) Core argument list: (subject NP, object NP)

(3) Base argument configuration (NP, finger, NP)

(4) BAC feature for scientists (curNP-finger-NP)

(5) BAC feature for two...cancer-suppressors (NP-finger-curNP)

However, if any of the arguments of the verb has moved or been displaced, the resulting
arguments’ positions do not match with those in any argument structure of the verb. There

78

will be no BAC features for these arguments unless special knowledge and operations are
needed to reconstruct a base argument configuration for the verb. The next section dis-
cusses the knowledge and operations needed to extract the BAC features for the arguments
of the verbs involved in twelve types of structures with moved or displaced arguments.

4.3 Handling configurations different from BAC

Sections 2.4 and 4.1 show that extracting the BAC features for the arguments of the
predicates involved in the structures where moved or displaced arguments occur requires
reconstructing a base argument configuration for the predicate. This section first describes
the twelve types of structures observed in the Penn Treebank where moved or displaced
arguments occur. These structures are grouped into four categories, including nine types of
moved arguments, one type of displaced arguments, one type of shared arguments in co-
ordinated structures, and one type of extra arguments as the antecedents of relative clauses.
At the same time, the procedures to extract the BAC features for these arguments are illus-
trated.

Please note that the twelve types of syntactic structures involving moved or displaced
arguments are observed in the Peen Treebank with noticeably high frequencies. However,
there potentially exist other types syntactic structures involving moved or displaced argu-
ments that have not been included here because that they either have not been observed or
do not occur in Treebank at all.

4.3.1 Structures involving movements

This section starts with illustrating the nine types of moved arguments. Then, the proce-
dures to create the BAC feature for these arguments are described.

4.3.1.1 Structures involving movements

Nine types of syntactic configurations involving movements of the argument(s) that are
found in the training and development data sets, including Treebank sections 2 through 21
and 24 are handled in current project. Table 4.5 lists such configurations. Following the
Treebank notation, the moved arguments and their trace are co-indexed in examples (58)
through (67). Note that the actually Treebank tag for traces is -NONE- and trace is used in
the current presentation only for the sake of illustration.

79

Syntactic structure Example
subject of passive verb subject the problems of uncover in 58
subject of relative clause subject which of widen in 59
object of relative clause object of which of define in 60
subject control subject John of pull through subject

control verb try in 61
object control subject the commission of audit through

object control verb order in 62
subject of raising verb subject of the raising verb seem also the

subject of the verb share in 63
subject of V-ing clause subject Yasser Arafat of ask in 64
subject of what-clause subject what of amount in (66)
object of what-clause object what of hope in (67)

Table 4.5: Structures involving movements and examples

(58) [NP thing−discovered The problemsi] were uncovered *tracei* ... by [NP discoverer the
government].

(59) ... [NP casualagent the U.S. trade deficiti] , [WHNP casualagent whichi] *tracei* widened
[PP extent by 31%]...

(60) ...[NP thing−de f ined its cash flowi], [WHNP thing−de f ined which i] [NP describer the com-
pany] defined *tracei* [PP secondaryattribute as earnings] ...

(61) [NP puller Johni] tried *tracei* to pull [NP thingpulled the wool] over Mary’s eyes...

(62) The Illinois Supreme Court ordered [NP auditor the commissioni] *tracei* to audit
[NP audited Commonwealth Edison’s construction expenses] ...

(63) ...[NP sharernationsi] seem *tracei* to share [NP thing sharedhis views of America]...

(64) [NP asker Yasser Arafati] has written to the chairman..., *tracei* asking [NP hearer him]
[V P f avor to back a Palestinian bid to join]...

(65) [NP institution Belli], based *tracei* in Los Angeles, makes and distributes ...

(66) ... program traders received [WHNP f ocus whati *tracei* amounted [PP ground to an
exemption from the uptick rule in certain situations]...

(67) Sales were well short of [WHNP thinghoped f or whati [NP hoper they] had hoped *tracei*.

80

4.3.1.2 Reconstructing BAC features for moved arguments

To construct the base argument configuration features for each type of configuration in the
preceding section, the project relies on two kinds of knowledge. First, the feature extraction
module of the current project encodes the knowledge about the argument positions of each
syntactic structure and how the positions are related to those in the corresponding positions
in an argument structure of the verb, or an base argument configuration of the verb. Table
4.6 lists the knowledge encoded for the nine types of structures involving movements.

Syntactic structure Encoded grammatical knowledge
subject of passive verb position of the subject in passive voice
subject of relative clause position of the subject in relative clause
object of relative clause position of the object in relative clause
subject control subject control verbs learned from training data

position of subject of controlled predicate
object control subject control verbs learned from training data

position of subject of controlled predicate
subject of raising verb raising verbs learned from training data

position of the subject of the infinitive
subject of present participle clause head noun modified by the V-ing clause
subject of what-clause position of subject in what-clause
object of what-clause position of object in what-clause

Table 4.6: Encoded knowledge about each structure

Second, the feature extractor also relies on the grammatical relations defined in de-
pendency grammar to reconstruct the base argument configurations because the relations
such as subject-verb, verb-object, and modifier-head are essential to identify the nine types
of syntactic structures involving moved arguments as shown in table 4.5. Although the
Penn Treebank provides for some grammatical relations such as the subject relation in the
annotations, they cannot be used because SRL systems cannot assume gold parses are al-
ways available and automatic constituency grammar parses, such as Charniank and Collins
parsers. The current project instead derives the needed grammatical relations, such as
subject-verb, verb-object, and modifier-head relations, using the word-to-head relations
read from the parse tree. The word-to-head relations are provided for by the software in
Yamada (2008) . Table 4.7 lists the parse of the first half of a sentence along with the
head-word index of each word.

The columns in table 4.7 correspond to the index, word form, POS, current phrase
type, and head word index of each word respectively. The head word indices show the
dependencies between a word and its head word. The modal verb would is the highest
node in the dependencies and does not have a head in the tree. The head index for the

81

Index Word Form POS Phrase Type Head Index
1 The DT (NP 3
2 proposed VBN - 3
3 changes NNS) 5
4 also RB (ADVP) 5
5 would MD (VP -1
6 allow VB (VP 5
7 executives NNS (NP) 9
8 to TO (VP 9
...

Table 4.7: Sample parse from the Charniak parser

highest node is −1. Based on the word-to-head information, the feature extractor extracts
the modifier-head relation between proposed and its head changes. Similarly, the NP the

proposed changes is extracted as the subject of allow because the head index of the NP is
would.

With the above two kinds of knowledge, the current systems extracts the BAC features
for each moved argument in examples (58) through (67) in table 4.8.

In Argument Surface structure BAC feature
(58) uncover the problems curNP uncover *trace* NP NP uncover curNP
(59) widen which NP curWHNP *trace* widen PP curWHNP widen PP
(60) define which NP curWHNP NP define *trace* PP NP define curWHNP PP
(61) pull John curNP try *trace* to pull NP curNP pull NP
(62) audit the commission curNP *trace* audit NP curNP audit NP
(63) share nations curNP seem *trace* share NP curNP share NP
(64) ask Yasser curNP write *trace* ask NP toVP curNP ask NP toVP
(65) base Bell curNP, base *trace* base curNP
(66) amount what curWHNP *trace* amount PP curWHNP amount PP
(67) hope what curWHNP NP hope *trace* NP hope curWHNP

Table 4.8: BAC features of moved arguments in examples (58) through (67)

Please note that rather than being used in the procedures to reconstruct base argument
configurations, the grammatical relations themselves are not directly built into the features
in the current project. Therefore, none of the features in table 4.8 includes grammatical re-
lations as part of the feature. Also note that the first NP arguments of verbs widen and define

in their surface argument lists shown in table 4.8 are both dropped from the corresponding
features }curWHNP widen PP }and { NP define curWHNP PP }. Section 4.3.4 discusses
how extra arguments are handled in some relative clauses which include the preceding two
cases.

82

4.3.2 Structures involving displaced arguments and BAC feature

The preceding section illustrates the syntactic configurations where arguments have under-
gone movement so that they do not correspond with the argument positions in any argument
structure of the verb. This section describes one syntactic structure where the NP sub-
ject argument is placed after the predicate verb which grammatically functions as a V-ing
modifier of the NP. Table 4.9 lists the structure and the relevant example shown in (68).

Syntactic structure Example
V-ing modifying a noun members is the subject of the

V-ing modifier remaining in (68)

Table 4.9: Structures involving displaced arguments and FAC features

(68) ... the remaining [NP thing remainingmembers]...
• surface structure of members: remain curNP
• BAC feature for members: curNP remain

In example (68), the subject NP members of the V-ing predicate remaining, which is ac-
tually a modifier of the subject NP, cannot be found at the position preceding the predicate
at the position of its subject.

To derive the BAC feature in the V-ing modified NP structure, one can just move the
argument in front of the verb. So, after moving the phrase of NP ofmembers in front of the
modifying verb remain, one gets the BAC feature NP remain as shown in (68).

4.3.3 Structures involving shared arguments and BAC features

Predicate verbs connected by a conjunction, such as and or or, share a grammatical subject
or a grammatical object, or both. Table 4.10 lists the coordinated verb structure that shares
the arguments shown in (69) and (70).

Syntactic structure Example
coordinated verb Bell shown as the subject of makes in (69)

building products shown as the object of makes in (69)
Bell shown as the subject of distributes in (70)
building products shown as the object of distributes in (70)

Table 4.10: Structures involving shared arguments

Although the verbs make and distribute share the same grammatical subject Bell and ob-
ject building products, (69) and (70) show that the semantic role sets are { creator, created

} and { distributor, thing distributed } respectively.

83

(69) [S [NP creator Bell] [V P [V makes] [CC and] [V distributes] [NP created building products
]]].

• surface structure of Bell: curNP make NP
• BAC feature for building products: NP make curNP

(70) [S [NP distributor Bell] [V P [V makes] [CC and] [V distributes] [NP thing distributedbuilding
products]]].

• surface structure of Bell: curNP distribute NP
• BAC feature for building products: NP distribute curNP

To convert the surface structure of the arguments of the verbs in the conjunction struc-
ture, one can follow the steps as follows:

1. Identify the core arguments of each verb accordingly.
2. Check if any argument of a verb has undergone movement. If so, use the approach

from section 4.3.1.2 to construct the BAC features for the moved argument(s). If not,
construct the BAC feature for each core argument based on their current positions.

Since none of the arguments in (69) and (70) has moved, the BAC features for each
core argument are create based on their current positions as shown in (69) and (70) .

4.3.4 Structures involving extra arguments and BAC features

In relative clauses where the relative pronoun is the subject of the predicate verb in the rel-
ative clause, the predicate takes both the antecedent/referent of the relative clause and the
relative pronoun as its arguments which share an identical semantic role. Thus, the pred-
icate has an extra argument. For example, in (71) the predicate verb widen in the relative
clause has the relative pronoun which and the referent of the relative clause the U.S. trade

deficit as its arguments that take the same semantic role of casual agent. The relative pro-
noun which is the grammatical subject of widen. Similarly, the verb define in the relative
clause in (72) has the relative pronoun which and the referent the cash flow as its arguments,
both of which have the same semantic role of thing defined. The relative pronoun which is
the grammatical subject of define. However, neither widen nor define takes two arguments
of the same role in their argument structures.

To convert the surface argument structure of which to a BAC feature, the feature extrac-
tor simply drops the phrase type of the U.S. trade deficit. If one applies the same approach
the other three forementioned arguments, one gets the BAC features listed in (71) and (72).

(71) ... [NP casualagent the U.S. trade deficiti] , [WHNP casualagent whichi] *tracei* widened
[PP extent by 31%]...

• surface structure of the U.S. trade deficit: curNP WHNP *trace* widen PP
• BAC feature for the U.S. trade deficit: curNP widen PP

84

• surface argument structure of which: NP curWHNP *trace* widen PP
• BAC feature for which: curWHNP widen PP

(72) ...[NP thing−de f ined its cash flowi], [WHNP thing−de f ined which i] [NP describer the com-
pany] defined *tracei* [PP secondaryattribute as earnings] ...

• surface structure of its cash flow: curNP WHNP NP define *trace* PP
• BAC feature for its cash flow: NP define curWHNP PP
• surface structure of which: NP curWHNP NP define *trace* PP
• BAC feature for which: NP define curNP PP

4.4 Back-off features for core arguments in two situations

The previous two sections discuss the BAC feature design that generalizes from different
syntactic structures of a verb. While the BAC features generalize across different syntactic
configurations of the verb, they are also specific to the verb because the verb form is built
into the BAC features. However, there are two situations that call for features more general
than the BAC features because no base argument configuration can be reconstructed for the
predicate in these situations. The first situation includes the cases where a core argument
of the verb is not realized. In the second situation, the predicate verb itself has not been
seen by the statistical model during training. This rest of the section starts with describing
the syntactic structures where some core arguments are not realized. Then the Level-I and
Level-II back-off features are described in turn.

4.4.1 Unrealized core arguments

Unrealized core arguments are the arguments that appear in the base argument configura-
tion but are missing in the surface syntactic structure of a given verb. Table 4.11 lists the
syntactic structures where some core arguments may not be realized. Since the base argu-
ment configuration feature requires all core arguments be present, when there is unrealized
argument the BAC feature cannot be extracted for the realized argument. Examples (73)
through (79) illustrate this case.

Syntactic structure Example
passive voice (74)
past participle modifying a noun (76)
some core PP arguments (78 & (79))

Table 4.11: Structures involving missing core arguments

85

The core argument the government with the semantic role of discover is realized in
(73), and the BAC feature NP uncover curNP for the core argument the problems can
be extracted because there is no argument missing from the base argument configuration.
However in (74) because the core argument the government is not realized the BAC feature
cannot be extracted for the problems. The sequence unrealized NP uncover curNP is not
a valid BAC feature for the problems because the argument the government is not present.

The predicate verb propose is the main verb in (75). The BAC feature NP propose curNP

is extracted for the core argument the changes. However in (76), the predicate verb pro-

pose is a VBN modifier of the core argument changes and the subject NP argument is not
realized. Thus, the sequence unrealized NP propose curNP is not a valid BAC feature for
changes.

Similarly, because the toPP argument to 3.28 billion is not realized in (78) as it is in
(77), the sequence NP rise curNP unrealized toPP fromPP is not a valid BAC feature for
the core argument 4%. And, because the fromPP argument from 3.16 billion is not realized
in (79) as it is in (77), the sequence NP rise curNP toPP unrealized fromPP is not a valid
BAC feature for the core argument 4%.

(73) [NP thing−discovered The problems] were uncovered by [NP discoverer the government].
• BAC feature for the problems: NP uncover curNP

(74) [NP thing−discovered The problems] were uncovered.
• ? BAC feature for the government: unrealized NP uncover curNP

(75) [NP entity proposingThe government] proposed the [NP thing proposedchanges] ...
• BAC feature for changes: NP propose curNP

(76) the proposed [NP thing proposedchanges] ...
• ? BAC feature for changes: unrealized NP entity proposing propose curNP

(77) [NP thing risingSales] rose [NP amount risen 4%] [toPP start point to 3.28 billion] [f romPP end point
from 3.16 billion].

• BAC feature for 4%: NP rise curNP toPP fromPP

(78) [NP thing risingSales] rose [NP amount risen 4%] [f romPP end point from 3.16 billion].
• ? BAC feature for 4%: NP rise curNP unrealized toPP fromPP

(79) [NP thing risingSales] rose [NP amount risen 4%] [toPP start point to 3.28 billion] [f romPP end point .
• ? BAC feature for 4%: NP rise curNP toPP unrealized fromPP

The next section describes the Level-I back-off features to handle the syntactic struc-
tures illustrated in this section.

86

4.4.2 Level-I back-off features

The preceding section illustrates how base argument configuration features cannot be ex-
tracted for the realized arguments in three syntactic structures where there are unrealized
arguments. This section presents the Level-I back-off features based on the fact that the un-
realized core arguments do not change the grammaticality of the syntactic structures from
which they are absent. That is, although there are unrealized core arguments in examples
(74), (76), (78), and (79), they are still grammatical utterances. This fact allows the system
to extract the features for the realized arguments with the unrealized arguments missing
from the features, while the realized arguments are returned to their positions in the base
argument configuration.

(80) through (83) are Level-I back-off features corresponding with (74) through (79).

(80) [NP thing−discovered The problems] were uncovered.
• Level-I back-off feature for the government: uncover curNP

(81) the proposed [NP thing proposedchanges] ...
• Level-I back-off feature for changes: propose curNP

(82) [NP thing risingSales] rose [NP amount risen 4%] [f romPP end point from 3.16 billion].
• Level-I back-off feature for 4%: NP rise curNP fromPP

(83) [NP thing risingSales] rose [NP amount risen 4%] [toPP start point to 3.28 billion] [f romPP end point .
• Level-I back-off feature for 4%: NP rise curNP toPP

When extracting the BAC features and the Level-I back-off features during testing, the
feature extractor assumes that the current verb has been seen before. But if the verb has not
been seen before, it relies the Level-II back-off features which are based on a set of generic
features commonly used in literature.

4.4.3 Level-II backoff features for unseen verbs and all realized core
arguments

Section 4.2 presents the BAC features that generalize across various syntactic configura-
tions that the same verb appears in. Section 4.4.2 illustrates the Level-I backoff features that
handle the syntactic structures where some core argument is not realized. However, neither
the BAC features nor the Level-I features can resolve the unseen verbs during testing be-
cause both types of features are dependent on verbs that exist in the training data. Thus, this
section presents eleven commonly used features in literature as Level-II backoff features
for the current project, which generalize across different verbs (Gildea and Palmer, 2002;

87

Pradhan et al., 2004; Punyakanok et al., 2005; Toutanova et al., 2005). Features listed in
(84) through (93) capture the contextual information surrounding a constituent. Although
the predicate is also listed as a feature in (94), it does not impose a strong constraint on the
rest of the features as the predicate verb does for the BAC and Level-I backoff features be-
cause when in a statistical model the weights from features (84) through (93) may balance
or even cancel out that from the predicate feature. Due to this reason, the Level-II features
can be applied to not only unseen verbs but also any realized core argument.

(84) phrase type - the syntactic category of the constituent

(85) path - the path from the constituent to the predicate

(86) voice - the voice of the clause where the constituent is in

(87) position - position with respect to the predicate

(88) head word POS - POS of the head word of the constituent

(89) first word/POS - the first word/POS of the constituent

(90) last word/POS - the last word/POS of the constituent

(91) parent head word/POS - the head word of the constituent’s parent node and its POS

(92) right sibling phrase type/head/POS - the syntactic category of the constituent’s
right sibling node, its head word, the head’s POS

(93) left sibling phrase type/head/POS - the syntactic category of the constituent’s left
sibling node, its POS and head word

(94) predicate - the predicate verb itself

4.5 Features for non-core argument

Section 2.2.2 defines the eleven types of non-core semantic roles in PropBank. This section
illustrates each non-core semantic role with several examples, summarizes the distinctive
features for each corresponding non-core argument, and associates the distinctive features
with Level-II features defined in section 4.4.3 whenever it can.

(95) Type: LOC - location

88

Example role: Bell, based [PP ArgM−LOCin Los Angeles], makes and distributes
electronic, computer and building products.

Distinctive feature(s): based in (verb + preposition)

Example role: Companies would be compelled to publish [PP ArgM−LOCin annual
proxy statements] the names of insiders who fail to file reports on time.

Distinctive feature(s): publish-in-statement (verb + preposition + embedded NP
head)

Location semantic roles are assigned to PPs modifying a noun or verb. Positions of the
location roles vary as the examples above show. Two feature types are summarized from
the above examples.

• verb+preposition; sample feature value, based in
• verb + preposition+head of embedded NP, e.g., publish in statement

The above distinctive features for the LOC role can be represented as the Level-II fea-
tures as follows:

• verb+preposition→ {parent head word, head word}
• verb + preposition+head of embedded NP → {parent head word, head word, right

sibling head word}

(96) Type: TMP - time

Example role: Revenue edged up 3.4% to $904 million from $874 million [PP ArgM−T MP

in last years third quarter].

Distinctive feature(s): in-quarter (preposition + NP-head)

Example role: The luxury auto maker [NP ArgM−T MPlast year] sold 1,214 cars in the
U.S.

Distinctive feature(s): year (head of NP)

Example role: [ADV P ArgM−T MPCurrently], to report ...

Distinctive feature(s): currently (head of ADVP)

Constituents of types of PP, NP, ADVP, etc., with a verb as their head, can bear the
TMP semantic role. Positions of TMP arguments vary. The TMP role is identified with the
meaning/semantic category of the lexical head of a candidate phrase. In cases of PPs, the
head preposition also contributes to the identification. Two feature types can be concluded
from the examples above.

• preposition+head of the embedded NP, e.g., in quarter

89

• head word of a temporal phrase, e.g., year, currently

The distinctive features for the TMP role can be written as Level-II feature as follows:
• preposition+head of the embedded NP→ { head word, head word of right sibling }
• head word of a temporal phrase→ {head word}

(97) Type: EXT - extent

Example role: Jaguar shares closed [PP ArgM−EXT at 869 pence], up 122 pence, on
hefty turnover of 9.7 million shares.

Distinctive feature(s): close-at-pence (verb + preposition + head of the embedded
NP)

Example role: But the kids with [RB ArgM−EXT highly] educated parents did 68% less
housework than those in less-educated families .

Distinctive feature(s): highly-educated (adverb + adjective)

In the example about the Jaguar shares, the subject shares and the verb close together
select the EXT semantic role of the PP at 869 pence. In this example, the argument bearing
the EXT role is an NP. In the example about children’s homework load in different families,
the adjective educated modified by the adverb highly is gradable. The argument bearing
the EXT role in the latter example is an adverb. The following two feature types can be
used to identify the EXT roles.

• verb + preposition + head of the embedded NP, e.g., share close at
• adverb+adjective, e.g., highly educated

The above features for the EXT role can be summarized as the following Level-II fea-
tures.

• verb + preposition + head of the embedded NP → { parent head word, head word,
head word of right sibling }

• adverb+adjective→ { head word, parent head word }

(98) Type: DIS - discourse connectives

Example role: [PP ArgM−DISIn addition], further packaging ...have reduced the ef-
fects of prepayment risk ...

Distinctive feature(s): in addition-head being main verb (PP+head being the verb
in question)

Example role: [CC ArgM−DISAnd] the Kennedy amendment would invade not only
federal but state sentencings, in two important ways.

90

Distinctive feature(s): and + external head being main verb (lexical item + head
being main verb)

Specific phrases and lexical items whose head is the main verb help to identify the DIS
roles. The following feature type may be used for the DIS role.

• preposition + noun head, e.g., in addition
• conjunction if its external head word is the verb in question, e.g., and

These features can be expressed as a Level-II feature as follows.
• preposition + noun head→ { head word, right sibling of head word }
• conjunction→ { and }

(99) Type: CAU - cause

Example role: All clauses headed by because, because of, in light of, due to, etc.
take the CAU role.

Distinctive feature(s): preceding lexical items and phrases as heads of clauses that
have a causal relationship with the main clause

Head words themselves can be the features indicating a CAU role. The feature type
below can be utilized to identify CAU roles.

• head of a clause, e.g., because
• idiom , e.g., due to

Expressed as Level-II feature, the above features become
• head of a clause→ { head word}, and
• idiom→ { first word of constituent | head word, head of right sibling}.

(100) Type: PNC - purpose

Example role: All clauses headed by in order to, in exchange for, to, in favor of,
etc. bear the PNC role.

Distinctive feature(s): preceding lexical items and phrases as heads of clauses that
are semantically a purpose for the event in the main clause

The distinctive features for the PNC role can be summarized as the Level-II features as
follows:

• { head word } for to
• { head word, right sibling of head word} for in order to, in exchange for , etc.

(101) Type: MNR - manner

91

Example role: Yutaka Kume, who took the helm [PP ArgM−MNRas Nissan’s president]
in June 1985 , added simply ...

Distinctive feature(s): as-president (preposition+head of embedded NP). More sim-
ilar examples: grad-attention-with etc.

Example role: Nissan handled the die-hards [PP ArgM−MNRin a typically Japanese
fashion] ...

Distinctive feature(s): in-fashion (preposition + head of embedded NP). More sim-
ilar examples: with-tactics

In both cases, the preposition and the head of the embedded NP identify the MNR role.
Two feature types can then be used.

• head preposition of PP + head noun of embedded NP, e.g., as president and
in fashion

Expressed as the Level-II features, these are
• head preposition of PP + head noun of embedded NP→ { head word, head of em-

bedded NP }

(102) Type: DIR - direction

Example role: While volatility won’t go [ADV P ArgM−DIRaway], he said ...

Distinctive feature(s): lexical features: adverbs indicating directions such as back,
away, upward, around, aside, etc.

Example role: The energy ... streamed [ADV P ArgM−DIRinto Tokyu Group shares],
pushing prices of its companies up across the board .

Distinctive feature(s): stream + into (verb + head of PP)

Direction adverbs can be used as lexical features. If direction adverbs do not appear in
a sentence, then use verb stem+head of PP as the feature. Some of the sample values are
away and stream into.

These features can be summarized as the Level-II features as follows.
• adverb→ { head word }
• verb stem+head of PP→ { head word of parent, head word}

(103) Type: NEG - negation marker

Example role: All negation adverbs, such as not, never, etc.

Distinctive feature(s): lexical features - negation adverbs

92

The negation adverbs themselves can be used as lexical features for the role of NEG,
for example, not and never. The Level-II feature of head word can be used for the negation
adverbs.

(104) Example role: All modal verbs, such as could, would, etc.

Distinctive feature(s): lexical features - modal verbs

Modal verbs themselves can be used as lexical features for the MOD role, for example,
could and would. The Level-II feature of head word can be used for the modal verbs.

(105) Type: ADV - general purpose

Example role: I [ADV P ADV actually] want to go from Ontario to Chicago

Distinctive feature(s): head word of ADVP

Example role: [SBAR ADV As part of what a Recognition spokeswoman termed an
“amiable agreement”], Prospect Group will wind up with control of top man-
agement posts · · ·

Distinctive feature(s): head word of SBAR

These features can be summarized as one Level-II feature as follows.
• head word of ADVP/SBAR→ { head word }
The above examples show that the features representing the non-core arguments can be

expressed as the Level-II features presented in section 4.4.3. However, no assumption in
these features is made about the dependency of non-core arguments on other arguments,
unlike the base argument configuration or Level-I backoff features that impose the depen-
dencies among core arguments.

4.6 Features for argument identification

Sections 4.2 through 4.5 illustrate the features for classifying the core and non-core argu-
ments with the correct semantic labels. However, the process of identifying the arguments
precedes the classification task, and the process itself requires appropriate features. The
BAC and Level-I backoff features require the feature extractor to be able to distinguish
between core and non-core arguments. Therefore, the current system uses the Level-II fea-
tures to identify the core and non-core arguments for each predicate verb. For comparison
purposes, the current system also uses the Level-II features to identify all arguments and
non-arguments, which all existing practice.

93

4.7 Chapter summary

This chapter lays out the feature extraction plans for identifying and classifying the argu-
ments. The illustrated plans reveal the three areas in which the current system approaches
the SRL task differently from other systems. To sum up, the current system explicitly im-
pose context dependence on core arguments of a predicate verb. Using the base argument
configuration features, the current project generalizes across different syntactic configu-
rations of the predicate. To construct the base argument configuration of a given verb,
the current project utilizes the concepts from both constituency grammar and dependency
grammar. To implement these steps, the current system identifies core and non-core ar-
guments of a given predicate verb while existing systems only identifies arguments and
non-arguments. The next chapter incorporates the feature design into a statistical learning
framework.

94

Chapter 5
System Description

Chapter 4 summarizes the three main directions in feature engineering found in previous
SRL systems based on constituency grammar representation and identifies three less re-
searched areas that the current project focuses on investigating, areas including how to
generalize across different syntactic structures/alternations of the same verb, how to han-
dle the core semantic and non-core semantic arguments separately by imposing the context
dependency constraint on the core arguments, and how to utilize dependency grammar re-
lations while using the constituent grammar representation. Chapter 4 presents three levels
of feature engineering to address these areas and to handle unrealized core arguments and
unseen verbs. The current chapter spells out how the preceding feature engineering for ar-
gument identification and classification is integrated into the statistical learning framework.

To achieve this goal, section 5.1 recapitulates the main areas the current project intends
to address and gives an overview of the system architecture designed to address these is-
sues. The sections that follow presents the main components of the system. Specifically,
section 5.2 describes the argument identification module that builds a 2-way identifier sim-
ulating traditional argument identifiers and builds a 3-way identifier specifically for the
current project. Section 5.3 presents the argument classification module. Section 5.4 il-
lustrates the statistical models/classifiers for the argument identification and classification
tasks. Section 5.5 illustrates how the statistical classifiers are incorporated into the main
components of the current system.

5.1 Current SRL system

Chapter 4 illustrates the three less explored areas in previous SRL systems and the corre-
sponding solutions by the current project. These areas and solutions are recapitulated as
follows. In the first area, the current project investigates how to generalize across different
syntactic configurations of a verb by assigning the realized core semantic arguments to a
base argument configuration which corresponds to one of the verb’s argument structures.
The investigation in the first area requires distinguishing core arguments from non-core ar-
guments because only core arguments are the participants in a base argument configuration

95

1. Argument identification

 1.1 Training
 1.1.1 Build a statistical classifier to classify candidate arguments into
 core, non­core, or non arguments

 1.2 Identifying arguments in test data
 1.2.1 Parse test data using the Charniak parser
 1.2.2 Identify the candidate argument(s) for each verb
 1.2.3 Classify the candidate(s) as a core, non­core, or non argument

2. Argument classification

 2.1 Training
 2.1.1 Build a statistical classifier to assign a semantic role label to the
 identified arguments in step 1.2

 2.2 Predicting the semantic role labels in test data
 2.2.1 Handling core arguments
 2.2.1.1 Extract the BAC feature for a core argument
 2.2.1.2 Back­off to Level­I feature(s) if necessary
 2.2.1.3 Back­off to Level­II feature(s) if necessary
 2.2.2 Handling non­core arguments
 2.2.2.1 Extract Level­II features for non­core arguments
 2.2.3 Assign semantic role labels to the arguments using the classifier
 Trained in 2.1.1

Figure 5.1: System Architecture

of a given verb. Thus, the second area that the current project investigates is whether or not
imposing context dependence on the core arguments but not on the non-core arguments is
a feasible approach. Since it requires the knowledge of dependency/grammatical relations,
such as subject-verb, verb-object, modifier-head, etc., to form a base argument configu-
ration with respect to the verb but such relations are not used as features explicitly, the
third area investigates whether such implicit usage of the dependency relations is effective.
The investigations in the three areas are unified into the BAC features when all the core
arguments of a predicate verb are present. In addition to handling the three less-researched
areas with the BAC features, the current project extracts the Level-I back-off features to
handle the situation where one or more of the verb’s core arguments are missing. To deal
with the unseen verbs, the most general Level-II features are utilized. Chapter 4 analyzes
the features associated with the non-core semantic arguments and chooses the Level-II fea-
tures for the non-core arguments. The above feature design and solutions are incorporated
into the system illustrated in figure 5.1.

The two main modules of the current systems are the argument identification and the
argument classification modules. The next two sections illustrate the two modules in turn.

96

Argument Identification Module

Top level procedures:

Input: Output:
 A parsed sentence An ordered list of core arguments for each verb
 All predicate verbs in the sentence A list of non-core arguments for each verb
 A list of all the constituents in the sentence

1. For each verb, do
2. For each constituent, do
3. Determine if this constituent is a candidate argument of the verb.

 3.1 if yes, then go to step 4
 3.2 if no, then go to step 2

4. Create an instance for the candidate argument-verb pair.
5. Extract the Level-II features for this instance.
6. Classify the instance based on the features.
7. Assign a core, non-core, or non-argument label to the candidate argument.
8. If core argument is assigned, then add this argument to the core-argument list

 of the current verb.
9. If non-core argument, then assign the argument to the non-core argument list

 of the current verb.
10. Done.
11. Done.

Procedures to determine candidate arguments:

Input:
 A constituent
 Current verb

1 If the parent of the current constituent is the verb, then return yes
2 Otherwise,check if the constituent is a moved argument, displaced argument,
 antecedent of relative clause, or in a co-ordinated structure
2.1 If yes, then use heuristics to determine if the constituent is an argument of
 the verb. If yes, then return yes.
3. Return no.

Figure 5.2: The Argument Identification module

5.2 Argument identification

Like all previous SRL systems, the argument identification module starts with selecting the
appropriate syntactic constituents to be the candidate semantic arguments for a given pred-
icate verb. The current system selects four types of syntactic constituents to be candidate
semantic arguments. The first type of syntactic constituents include the syntactic argu-
ments, adjuncts, and discourse markers whose head is the predicate verb. Modal verbs that
are the head of the predicate verb belong to the second type of grammatical constituents.
The negation adverbs that share the same syntactic head with the predicate verb are the third

97

type of constituents. The fourth type of syntactic constituents are the NPs pre-modified by
a -ing verb or a past participle, that is, the predicate verb itself.

However, when the preceding four types of candidate semantic arguments are selected,
unlike previous systems that classify them as arguments or non-arguments, a 3-way classi-
fication, the current identification module classifies each candidate into a core argument,
non-core argument, or non-argument. This 3-way classification separates the core ar-
guments from the non-core arguments so that the context dependence constraint can be
explicitly imposed on the core arguments but not on the non-core arguments during the
classification phase described in the next section.

The foregoing procedures of the argument identification module are shown in figure 4.1
and are repeated in figure 5.2.

The features used to train the identification classifier are the Level-II features described
in (84) through (94), repeated in (106) through (116) below.

(106) phrase type - the syntactic category of the constituent

(107) path - the path from the constituent to the predicate

(108) voice - the voice of the clause where the constituent is in

(109) position - position with respect to the predicate

(110) head word/POS - the head/POS of the constituent

(111) first word/POS - the first word/POS of the constituent

(112) last word/POS - the last word/POS of the constituent

(113) parent head word/POS - the head word of the constituent’s parent node and its POS

(114) right sibling phrase type/head/POS - the syntactic category of the constituent’s
right sibling node, its head word, the head’s POS

(115) left sibling phrase type/head/POS - the syntactic category of the constituent’s left
sibling node, its POS and head word

(116) predicate - the predicate verb itself

(106) through (93) are the features commonly used for the argument identification task
in literature. Using these features, the current argument identifier trains a regularized lo-
gistic regression classifier for the identification task. The statistical classifier is discussed
in section 5.4.

98

Examples (117) through (119) illustrate the identification process. (117) is an unanno-
tated input sentence. In (118), the bracketed syntactic argument The economic · · · nations,
the modal verb will, and the adjuncts in Australia, next week, and to discuss · · · telecom-

munications are selected as the candidate semantic arguments of verb meet. And finally,
the classifier identifies the candidates as core, non-core, or non argument accordingly, the
result of which is shown in (119).

(117) The economic and foreign ministers of 12 Asian and Pacific nations will meet in
Australia next week to discuss global trade as well as regional matters such as trans-
portation and telecommunications.

(118) [NPThe economic and foreign ministers of 12 Asian and Pacific nations] [Modelwill]
meet [PP in Australia] [NP next week] [To V P to discuss global trade as well as regional
matters such as transportation and telecommunications].

(119) [coreThe economic and foreign ministers of 12 Asian and Pacific nations] [non−corewill]
meet [non−core in Australia] [non−core next week] [non−core to discuss global trade as
well as regional matters such as transportation and telecommunications].

In (119), the syntactic argument NP The economic and foreign ministers of 12 Asian and

Pacific nations is detected as a core argument for the predicate verb meet. The following
features may be used by the argument identifier to identify this NP as a core argument:

phrase type NP

head/POS ministers/NNS

parent head/POS will/MOD

predicate meet

...

The current system implements a 2-way argument identifier and a 3-way argument iden-
tifier. The statistical models will be described in section 5.5 after such models are described
in section 5.4.

99

Argument Classification Module

Main Procedures:

Input:
✔ A sentence
✔ lists of core arguments, one for each verb, ordered by
 their current positions in the sentence
✔ lists of non-core arguments, one for each verb

1. For each verb, do
2. Normalize the order of the core arguments in its core-argument list.

3. For each verb in the current sentence, do:
1. For each argument of the verb, do:
2. Create an instance for the argument-verb pair.
6. If the current argument is a core argument, then do

 6.1. Extract the BAC feature for the current instance.
 6.2 If there is unrealized argument(s), extract the Level-I feature
 6.3. If the verb is new verb, extract the Level-II features.
 6.4 Go to step 8.

7. If the current argument is a non-core argument, then extract the
 Level-II features for the current instance.

8. Classify the current instance using the extracted feature(s) and
 assign the semantic role to the argument.

9. Done.
10. Done.

Procedures to normalize argument positions:

Input: an ordered list of core arguments of a predicate verb
Output: an ordered list with the positions normalized

1. If the current clause is one of the nine types of syntactic configuration
 involving moved arguments, then
 1.1 Identify its originating position using the knowledge about the
 syntactic configuration.
 1.2 Move the argument to the originating position by rearranging its
 position in the list.

Figure 5.3: The Argument Classification module

5.3 Argument classification

The argument classification module runs after the identification module to assign a se-
mantic role label to each identified core or non-core argument. The classifier begins with
extracting feature(s) for each core and non-core argument. As outlined in figure (5.1), for a
core argument, the argument classifier extracts the BAC feature and two levels of back-off
features when necessary. For a non-core argument, the argument classifier extracts only the
Level-II features. Separating the feature representations of the core and non-core arguments
differs the current system from all previous SRL systems.

Specifically, the three levels of feature extraction are intended to achieve three goals.
Firstly, the BAC feature generalizes across different syntactic structures/alternations of the
same predicate verb. This generalization helps when one syntactic structure/alternation has
never been seen in the test data but can still be handled by using the BAC feature generated
from a different syntactic structure of the same predicate verb. The BAC feature for a core
argument imposes the constraint of context dependence on this argument. Section 4.3 illus-
trates the generalization process. Secondly, the Level-I features handle the situation where
some core argument(s) that the current core argument are dependent on is(are) missing.

100

Section 4.4.1 illustrates this case. Thirdly, the Level-II features are extracted because they
generalize across different verbs when the current predicate verb has not been seen before
and BAC and Level-II features are thus not available.

After the feature extractor extracts the corresponding features for the core and non-core
arguments, the argument classifier assigns a semantic role label to the core and non-core
arguments. The procedures of the argument classifier are summarized in figure 4.2 and are
repeated in figure 5.3. For example, the core and non-core arguments identified in (119)
are assigned with the semantic role labels in (120).

(120) [MEET ERThe economic and foreign ministers of 12 Asian and Pacific nations]
[Modelwill] meet [LOCAT ION in Australia] [T EMPORAL next week] [PURPOSE to discuss
global trade as well as regional matters such as transportation and telecommunications].

The current system builds four argument classifiers with four combinations of the BAC,
Level-I, and Level-II features. These classifiers are described in section 5.5 after the statis-
tical models are introduced in section 5.4.

The statistical models are described in the next section.

5.4 Statistical models and classifiers

This section introduces the statistical methods the current project constructs for the argu-
ment identification and classification tasks. Regularized logistic regression models are built
for both the identification and classification tasks (section 5.4.2). KNN classifiers (5.4.3)
and Naive Bayes classifiers (section 5.4.4) are also built to compare against the logistic
regression models. The next section describes how these statistical models are integrated
into various identification and classification components of the current system.

Table 5.1 summarizes the notations used in this project.

5.4.1 The feature function

The current project defines the indicator function in (5.1) to integrate the features for both
argument identification and classification tasks.

fi(y,c) =


1 if some condition(s) is/are satisfied

for the ith feature of c

with respect class label y ;
0 otherwise.

(5.1)

101

a a realized argument corresponding to a syntactic argument
an adjunct, a modal verb, a discourse marker, or a negation adverb

r a semantic role label assigned to a
R a set of all possible semantic role labels {r0, · · ·rl,}
fi(r,a) a feature function for the argument a with role r
f (r,a) a set of feature functions corresponding to the set

of features defined for argument a
t a semantic argument type
T the set of all possible argument types

T = {r | r ∈ {core,non− core,null}}
y a generic class/type label
c a syntactic constituent
C a set of grammatical units defined in PropBank

that are realized semantic arguments
C = {c | c ∈ {syntacticargument,
ad junct,modelverb,discoursemarker,negationadverb}}

T the set of all training instances

Table 5.1: Notations

The following are several example feature functions for both identification and classifi-
cation tasks.

For example, the feature function in (5.3) corresponds to the semantic argument Dana

realized as the subject NP syntactic argument in (122).

(121) [NP coreDana] opened [NP core the door].

(122) [NP AgentDana] opened [NP thing open the door].

fi(t = core,c = Dana) =


1 if heado f parent = open and predicate = open

and t = core

0 otherwise.

(5.2)

fi(r = Agent,a = Dana) =


1 if base argument configuration = curNP open NP

and r = Agent

0 otherwise.
(5.3)

Similarly, the feature function in (5.5) corresponds to the semantic argument last year

102

realized as an NP adjunct in (124).

(123) The luxury auto maker [NP non−core last year] sold 1,214 cars in the U.S.

(124) The luxury auto maker [NP T EMPORAL last year] sold 1,214 cars in the U.S.

fi(t = noncore,c = lastyear) =


1 if last word of constituent = year

and t = non− core

0 otherwise.

(5.4)

fi(r = Temporal,a = lastyear) =


1 if last word of constituent = year

and r = Temporal

0 otherwise.

(5.5)

5.4.2 Modeling with regularized logistic regression

The current project incorporates the feature function defined in (5.1) into the the multi-class
logistic regression model shown in equation 5.6.

p(y | c) =
exp{∑k

i=0 wri fi(y,c)}
∑y′∈Y exp{k

i=0wy′i fi(y′,c)}
(5.6)

The optimal model weights are found through equation (5.7)

ŵ = argmax
w ∑

i
logP(y(i) | c(i))−α

k

∑
j=0

w2
j (5.7)

The current project relies on Java version of the LIBLINEAR package implementation
(Lin, 2008) of regularized logistic regression to construct the models to identify the core
and non-core arguments and to predict their semantic labels.

5.4.3 K-nearest neighbor classifier

Following Aha and Kibler (1991), the K-nearest neighbor classifier used in the current
project consists of three components, a similarity function, a concept description building
module, and a classification function.

103

The similarity between two constituents, ci and c j, is defined as the negation of their
Euclidean distance. Equation (5.8) shows the calculation of the similarity,

Similarity =−

√
n

∑
k=1

s(cik,c jk) (5.8)

where cik is the k-th feature of ci and the indicator function s(cik,c jk) is defined in (5.9).

s((cik,c jk)) =

{
1 if cik = cik

0 otherwise.
(5.9)

The concept description building process is the training process, and the results that
are the correctly classified training instances along with their class labels are saved in the
concept description C . This process is listed in table 5.2.

KNN Training
Input training instances T
Output Concept description C - the set of correctly classified

training instances
Initialize C ← K-instances for each class from T
Loop for each instance x ∈T

1. Find the K-nearest neighbors (n1 · · ·nk) to x in C ,
using Similarity(x, ni)
2. If (n1 · · ·nk) classify x correctly by majority voting
and assign label y to x
then C ← C ∪ (x,y)
else discard x

Done

Table 5.2: Procedures for training a K-nearest neighbor classifier

Given a new instance and the concept description C learned from the training process
in table 5.2, the classification can be performed by the majority voting process shown in
table 5.3

KNN Classification
Input Concept description C , a new instance c
Output a class label y for x
Do

1. Find the K nearest neighbors (n1 · · ·nk) for x
in C , using Similarity(x, ni)
2. Assign a class label y to x by majority voting
among (n1 · · ·nk)

Table 5.3: Classification by majority voting

104

The Weka (Witten and Frank, 2005) implementation of the KNN classifier is integrated
into the current system.

5.4.4 Naive Bayes classifier

Given a grammatical unit c of v and the feature vector ~fc for c, the probability of a class
label y given ~fc is calculated using Equation (5.10).

P(y|~fc) =
P(~fc|y)P(y)

P(~fc)

≈ ∏
n
i=1 P(fi|y)P(y)

P(~fc)
(5.10)

The naive Bayes classifier determines the class label of a grammatical unit c using
Equation (5.11).

ŷ = argy∈Y maxP(y|~fc)

= argy∈Y max
∏

n
i=1 P(fi|y)P(y)

P(~fc)

= argy∈Y max
n

∏
i=1

P(fi|y)P(y)(5.11)

P(fi|y) =
counts(fi,y)+1

counts(y)+ counts(fi)
(5.12)

P(y) =
counts(y)

∑y′∈Y counts(y′)
(5.13)

The Laplace smoothing is used in equation (5.12). The current project integrates the
Weka (Witten and Frank, 2005) implementation of the naive Bayes classifier into the sys-
tem.

5.5 Classifiers and components

In order to implement the system described in the preceding three sections, the current
project builds seven classifiers/components, including a baseline argument identifier, a
baseline argument classifier, a system argument identifier, and four fundamental argument
classifiers. Table 5.4 lists these components.

105

Classifiers & Procedures/Description
Components
Baseline arg. Identify semantic arguments from parse trees;
identifier 2-way classification: argument/non-argument.
Baseline arg. Classify semantic arguments from the argument identifier,
classifier treating all core and non-core arguments detected by

the argument identifier as arguments
using only the Level-II features.

System argument Identify semantic arguments from parse trees;
identifier 3-way classification: core, non-core, and non arguments.
Four A. Classify core args. w/ BAC and non-core args. w/ Level-II features
fundamental B. Classify core args. w/ BAC + Level-I back-off features
argument and non-core args. with Level-II features
classifiers C. Classify core args. w/ BAC + Level-I+ Level-II back-off features,

and non-core args. with Level-II features
D. Classify core args. w/ BAC + Level-I &, and use voting w/
Level-II back-off features if BAC and Level-I features not available,
and non-core args. with Level-II features

Table 5.4: System components

The baseline argument identifier is a logistic regression (LR) 2-way classifier that
classifies the candidate arguments into argument/non arguments. The baseline argument
classifier is an LR or KNN classifier. Both the baseline identifier and classifier are trained
on Level-II features.

The system argument identifier is an LR 3-way classifier that classifies the candidate
arguments into core, non-core, or non arguments.

The four fundamental argument classifiers perform the classification tasks based on
the features designed to address the fore-mentioned less-researched areas. Specifically,
the BAC features are intended to generalize across different syntactic configurations of a
predicate verb. The BAC features are at the same time constraints imposed on the core
arguments of a predicate verb so that their positions in their actual sentences are brought to
conform with those in a base argument configuration of the verb. In order to derive the BAC
features, as shown in section 4.3 the knowledge from both the constituency grammar and
dependency grammar are needed to correctly analyze all involved grammatical relations
between the arguments and the predicate verb.

The first fundamental classifier classifies the core arguments based only on the BAC
features. The performance of this classifier indicates how effectively the BAC features rep-
resent the data and more specifically how well the BAC features generalize across different
syntactic structures/alternations of the predicate verbs. The second fundamental classifier
classifies the core arguments based on the BAC features, and backs off to the Level-I back-
off features in cases where some argument of the verb is not realized. The performance of
this classifier then measures how well the Level-I back-off features handle the situations
where there are missing arguments. The third fundamental classifier tries to classify the
core arguments using only the BAC and Level-I features and backs off to the most general

106

Level-II features when the first two types of features are unavailable. The performance of
this classifier indicates how well the system handles the cases where the predicate verb has
never been seen during training. The fourth fundamental classifier starts with the BAC and
Level-I features. When neither is available, it backs off to the Level-II features. Unlike
the third fundamental classifier, when using the Level-II features, it makes the prediction
based on the majority voting from three different algorithms, including a logistic regres-
sion model, a nearest-neighbor classifier, and a naive Bayes classifier. All four fundamental
classifiers rely on the Level-II features to classify the non-core arguments.

The preceding sections illustrate how the feature design described in chapter 4 is incor-
porated into the current SRL system. The next chapter tests the effectiveness of the current
feature and system design.

107

Chapter 6
Experiments, Results, and Discussion

Chapter 4 proposes the base argument configuration features that unify the current system’s
novel approaches to investigating the three less explored areas in the field of semantic role
labeling, including how to develop features that generalize across the syntactic variations
that a verb appears in, how to utilize the context dependence among the semantic roles
of the core semantic arguments, and how to utilize both the constituency and dependency
grammar concepts in the same system. In addition to inquiring into the preceding areas,
chapter 4 proposes the Level-I back-off features to handle the unrealized arguments and the
Level-II back-off features to deal with the unseen verbs. Chapter 5 incorporates the BAC,
Level-I, and Level-II features into an argument classifier and combines it and an argument
identifier into a complete SRL system. The current chapter evaluates how effectively the
novel approaches to the three areas solve the classification task through the BAC features,
how adequately Level-I and Level-II features handle the unrealized arguments and unseen
verbs respectively, and how the argument identifier affects the argument classifier in the
complete system. The evaluations are mainly conducted through three sets of experiments
and through comparisons with the baseline systems, which are implementations of the stan-
dard approaches to the argument identification and classification tasks. The comparisons
with the baseline systems show that the current feature engineering and system design are
effective for the argument classification task, and are hence effective for solving the three
intended less-explored areas in the field of SRL. At the same, the comparisons with the
state-of-the-art performance demonstrates the necessity to improve the current argument
identifier. A sketch of the plan for the evaluations follows.

Following a brief review of the three less-explored areas, section 6.1 summarizes the
novel approach to each area as well as the the complete system as a new approach to SRL
task. Section 6.2 lists the training and test data and lays out the plan for five sets of ex-
periments. Section 6.3 reports on the experiments with the 2-way and 3-way argument
identifiers. The experiments with the baseline system, including the baseline argument
identifier and classifier, are described in section 6.4.

In section 6.5, the first set of experiments perform the argument classification task on
the pre-annotated arguments with four different settings of the BAC and the two levels
of back-off features. A baseline argument classifier approximating the common argument

108

classification method found in literature is also built and performs the same classifica-
tion task. The results from the current argument classifier and the baseline classifier are
compared. The results from the current argument classifier are also compared with two
state-of-the-art argument classifiers. The comparisons show that the current approaches to
the role labeling task is effective.

In section 6.6, the second set of experiments examine the current SRL system as a com-
plete system. First, the argument identifier identifies the core, non-core, and non arguments
from the gold syntactic parse trees in WSJ section 23. Then, the argument classifier assigns
the semantic role labels to the identified arguments. The results are compared against a
baseline system that simulates a standard basic SRL system. Although the results from the
complete system are above those of the baseline system, the classification results are af-
fected by the identification results. At the same time, the argument classifier itself remains
as effective.

In section 6.7, the same set of experiments are repeated, with the input to the argument
identifier changed to automatically parsed data using the Charniak parser. This set of exper-
iments yield similar results to the last set of experiments. However, the overall F-measure
of 70.9% is below the state-of-the-art on WSJ section 23. This becomes the motivation
to immediately improve the performance of the argument identifier because the argument
classifier itself still remains effective.

6.7.1 summarizes the experiments and discusses the necessity to improve the argument
identification module.

6.1 The less-explored areas and novel solutions

This section reviews the three less-explored areas and summarizes the current new solutions
to each area. Then, the complete SRL system of the current project is summarized.

As illustrated in section 3.2, the research issue of how to generalize across different
syntactic variations of a predicate verb arises in the following situation: new syntactic con-
figurations regarding the verb are encountered in the test data. But the original feature set
tuned for the training and development data is not designed to cover such configurations.
More feature types have to be designed to cover these newly discovered configurations.
As a result, the design of the new configuration-specific features leads to increased feature
space. And yet, other unseen syntactic configurations regarding the same verb showing up
in the test data will still not be handled. Consider verb v. If both active and passive forms
of v are found in the training data, one can design an active feature and a passive feature

109

to cover the two configurations respectively. But, if it is possible to contrive a feature to
cover both cases, one could achieve a smaller feature space. At the same time, if the sys-
tem has only seen the passive configurations of v in the training data, then it would not
be able to generalize over the active configurations in the test data. To be able to general-
ize across different syntactic configurations of the same verb and, as a result, to minimize
the feature space, it is necessary to find the common ground spanning across all syntactic
configurations of the verb.

Section 3.2 also shows that syntactic frame features involving the listing of all the
arguments of a predicate verb have been used by a number of systems, such as Gildea
and Jurafsky (2000), Xue and Palmer (2004), and Toutanova et al. (2005), assuming con-
text dependence among the arguments, without distinguishing between core and non-core
arguments because none of the systems paid close attention to the theory of argument
realization, the updated linking theory, which implies that the context dependence exists
only between the core semantic roles of the core semantic arguments. Therefore, the re-
search issue of how to impose the context dependence constraint on only the core semantic
arguments arises.

Sections 3.1 and 3.2 extensively describe the features employed in the SRL systems
based upon constituency grammar. Section 3.3.2 juxtaposes the features utilized in the
systems based on dependency grammar. Just as the concept of constituency or phrase
structures are not found in dependency grammar, constituents and phrase types are absent
from the dependency grammar-based features, which are only composed of the word-to-
head grammatical relations illustrated in section 3.3.2. On the other hand, the constituency
grammar-based features do not explicitly contain grammatical relations between the heads,
although such relations can be derived from the constituents. Therefore, the two families
of features are mutually exclusive. While the SRL researchers have been investigating
whether the dependency grammar-based features are more effective than the constituency
features and hence can eventually replace the latter ones for the SRL task since CoNL-2008
and continuing on to CoNLL-2009, the third research issue of how one can incorporate both
types of grammars into one system and benefit from the combination arises.

Now that the three open areas that current projects focuses on addressing are summa-
rized. The novel solution for each area is reviewed in the following.

To represent the common ground across different syntactic structures that a verb ap-
pears in, the current system utilizes the positions/positional configurations of the arguments
in one of the verb’s argument structures. Such positional configurations make up the base
argument configuration features in the current system and provide the solution to the first
open research question. The context dependence among the semantic roles of the core ar-

110

guments of the verb specifies that the positional configurations of the core arguments in
relation to the verb are associated with a specific list of semantic roles. Imposing this spec-
ification as a strong constraint, the system requires that only core semantic roles can be
entered in the base argument configurations, which gives the solution to the research issue
of how to impose the context dependence on the core semantic arguments. The solution
to the research issue of how to combine the constituency and dependency grammars un-
folds naturally with the procedures to construct the base argument configurations for the
syntactic structures that involve movements. This is so because, as shown in section 4.3.1,
constructing the base argument positions for the moved arguments requires the knowl-
edge of both the constituency of the arguments and the grammatical relations between
the semantic arguments and the predicate verb. Such grammatical relations overlap with
those defined in dependency grammar. Therefore, the procedures to derive the base ar-
gument configurations from the syntactic structures involving transformations incorporate
both dependency and constituency grammars, although the dependency relations defined in
dependency grammar do not show up in the base argument configuration features.

Together with other components of the system, the solutions above distinguish the cur-
rent system from previous SRL systems in terms of feature design and system architecture.
First, the base argument configuration features unify the solutions to the three open research
issues, generalize across different syntactic configurations that a given verb may appear in,
and lead to a limited feature space. Second, the current system identifies core and non-core
semantic arguments in order to precisely describe the core arguments involved in a base
argument configuration of a given predicate verb as well as to precisely represent the con-
text dependence that exist only among the core semantic arguments. Third, the system is
designed in a way so that the BAC features can be conveniently combined with the Level-I
and Level-II back-off features that handle the missing arguments and the unseen verbs in
the test data.

Now that the open research issues and the solutions have been presented and the result-
ing differences in the current feature and system designs are shown, it is time to demonstrate
how effectively the designs handle the intended scenarios. The next section describes the
data and experiments for this purpose.

6.2 Data and experimental designs

This section starts with a summary of the training, development, and test data for the ex-
periments. And the experimental plan follows.

111

6.2.1 The data sets

Table 6.1 lists training and test data for the current project. All data sets are identical to
those for the shared task of SRL on CoNLL-2005.

Data Description
Training data Penn Treebank sections 2 through 22 with

PropBank annotations
Development data Penn Treebank section 24 with

PropBank annotations
Test data set #1 Penn Treebank section 23 with

PropBank annotations

Table 6.1: Experimental data

6.2.2 The experimental plan

The present section briefly describes the five sets of experiments to evaluate the current
feature and system designs. The plan per se is summarized in table 6.2. Descriptions of the
component classifiers can be found in section 5.5.

Set Experiment Procedures/description
1 Identifying traditional 2-way identification

arguments current 3-way identification
2 Constructing the approximating standard SRL through

baseline system 2-way identification and
baseline classification

3 Classifying Run fundamental classifiers on the data
gold-identified with pre-annotated core and non-core arguments.
arguments Identify the best classifier.

4 Identification + Identify core & non-core args. in gold parses.
classification on Then run the best fundamental arg. classifier.
gold parses

5 Identification + Identify core & non-core args. in automatically parsed trees.
classification on Then run the best fundamental arg. classifier.
automatic parses

Table 6.2: Experimental Plan

In the first set of experiments, a 2-way argument identifier simulating the standard tradi-
tional argument identification is built and evaluated. That is, the 2-way argument identifier
only classifies the candidate grammatical constituents into arguments or non-arguments of
a given verb. A 3-way argument identifier unique to the current project is also built and
evaluated. The 3-way identifier classifies the candidate arguments into core and non-core
arguments, and non-arguments of a given verb.

The second set of experiments build and evaluate the baseline systems, simulating the
standard two-step identification and classification approach.

The third set of experiments run the fundamental argument classifiers over the gold-

112

identified arguments, using the different combinations the BAC, Level-I, and Level-II
features. The fundamental argument classifiers are described in section .

The fourth set of experiments start with identifying the semantic arguments from the
gold parses of the WSJ section 23 using the 3-way argument identifier and classify the
arguments using the fundamental argument classifiers.

In the fifth set of experiments, the 3-way argument identifier first detects the core and
non-core arguments from the automatically parsed WSJ section 23 and then classify the
arguments with the fundamental argument classifiers.

The experiments are discussed in the next five sections.

6.3 Experiments with the argument identifiers

In this set of experiments, a two-way argument identifier and a three-way argument iden-
tifier were built and tested separately. The two-way argument identifier following the
traditional identification method to classify the candidate arguments into arguments or non
arguments was built. The three-way argument identifier classified the candidate arguments
into core, non-core, and non arguments. Both identifiers were trained with the logistic re-
gression model. Both identifiers relied on the Level-II features and were used to detect the
arguments from the gold parses of WSJ section 23 and automatically parsed results of sectin
23 using Charniak parser. The precision, recall, and F-measures from the identification
experiments are shown in table 6.3.

Identifier Data Classifier Precision Recall F-measure
2-way gold parses Logistic regression 92.16 89.47 90.80
2-way Charniak parses Logistic regression 82.51 80.25 81.36
3-way gold parses Logistic regression 90.31 86.42 88.32
3-way Charniak parses Logistic regression 80.88 77.36 79.08

Table 6.3: Argument identification results

Several observations can be made from the identification experiments. First, the F-
measures from the identification by both the 2-way and 3-way identifiers on gold parses
are higher than those from the Charniak parses. This makes sense because there are fewer
constituents in the Charniak parses corresponding to the Propbank argument boundaries
than those in gold parses. Second, the identification results by the 3-way identification
results are lower than those by the 2-way identification results. This is because the 3-way
classification task is slightly more challenging than the 2-way classification task.

The SRL systems since CoNLL-2005 do not usually report on the identification per-
formance. Hence, there would be no direct comparison with the identification results by
the state-of-the-art SRL systems on WSJ section 23 since CoNLL-2005. However, sev-

113

eral state-of-the-art systems tested on the CoNLL-2004 version of the WSJ section 23 did
report on the identification performance. For example, Pradhan et al. (2004) obtained an
F-measure around 93% on the gold parses and around 86% on the automatic parses. These
scores are not comparable with the identification results by the 2-way identifier shown
in table 6.3 because there are fewer arguments annotated for the CoNLL-2004 version of
section 23 than for the CoNLOL-2005 version.

6.4 Experiments with the baseline system

The baseline SRL system shown in table 6.2 consists of a baseline argument identifier and
a baseline argument classifier. The identifier is the 2-way identifier described in the preced-
ing section. The baseline argument classifier utilizes the set of features commonly found in
literature, such as Pradhan et al. (2004), Pradhan et al. (2005), Toutanova et al. (2005), and
Surdeanu et al. (2007), which are the Level-II features in the current project. The two-step
approach is the standard approach found in literature. More sophisticated techniques, such
as re-ranking or joint-inferencing, are not used in the baseline argument classifier.

The baseline system was applied to both the gold parses and automatic parses. Section
6.5.1 reports that the argument classifier of this baseline system achieves the performance
close to the re-ranking-based state-of-the-art argument classifier. The results from the base-
line argument classifier and the overall baseline results are compared with several systems
in the next three sections.

6.5 Experiments with argument classification

The argument classification module shown in figure 5.1 takes the core and non-core ar-
guments identified by the identification module and assigns a semantic role label to each
argument. In order to test the design and effectiveness of the classification module indepen-
dently of the identification step, the current project builds an argument classifier to predict
the semantic role labels of the pre-annotated core and non-core arguments from PropBank.
The performance of the argument classifier on the pre-annotated arguments forms the per-
formance upper bound of the current system. Because the argument classifier runs on the
pre-annotated arguments, it provides for the ideal situations for testing the effectiveness of
the current feature engineering and system design. In the next two sections, the results and
findings from running the logistic regression and KNN argument classifiers are reported
respectively.

114

6.5.1 Results from the logistic regression classifier

Section 5.4.2 describes the regularized logistic regression classifier the current project
builds. This set of experiments applied the logistic regression classifier to WSJ section
23 with pre-annotated core and non-core arguments and predicts the semantic roles of the
arguments. The classification results for five experimental settings are shown in table 6.4,
along with those of the baseline argument logistic regression classifier.

Experiments Baseline 1 2 3 4
Features Level-II BAC BAC + BAC + BAC +
for features features Level-1 Level-I + Level-I +
core only features maj. voting w Level-II
arguments Level-II features
Ftrs for Level-II Level-II Level-II Level-II Level-II
non-core
Precision 82.69 91.83 91.54 91.27 88.73
Recall 83.15 84.25 84.94 85.74 89.06
F-measure 82.92 87.88 88.12 88.41 88.89

Table 6.4: Classification results from logistic regression models

Table 6.4 shows that the baseline classifier achieved the precision, recall, and F scores
of 82.69%, 83.15%, and 82.92%. The set of scores come quite close to that of the state-of-
the-art re-ranking argument classifier in Surdeanu et al. (2007) shown in table 6.6 of section
6.5.4, with the precision, recall, and F-measure scores of 88.08%, 82.84%, and 85.38%.
The baseline classifier is then shown to be a quite plausible representation of the standard
classification approach.

Columns numbered 1 through 4 correspond to four settings of the current system. Al-
though all four settings extract Level-II features for non-core arguments, they differ in what
features they extract for the core arguments.

The first setting extracts only the base argument configuration (BAC) features for the
core arguments and achieves the precision, recall, and F-measure of 91.83%, 84.25%, and
87.88% respectively.

If a BAC feature cannot be extracted due to unrealized core-arguments, the second set-
ting adds the Level-I back-off features. This setting slightly increases the recall to 84.94%,
indicating that the Level-I features improve the coverage of the features. At the same time,
the Level-I features also causes the precision to drop from 91.83% to 91.54%. However,
the overall F-measure increases from 87.88% to 88.12%, indicating that the increase in
recall overcomes the drop in precision.

The preceding trends in the changes in precision, recall, and F-measure are preserved in
the fourth experimental setting, where the most general Level-II back-off features are ex-
tracted where the BAC and Level-I features are unavailable. As illustrated in section 4.4.3,
the Level-II back-off features are the most general set of features that generalize across

115

unseen verbs during training. This leads to the increase from 84.94% to 89.06% in recall
and the increase from 88.12% to 88.89%, with the trade-off of the decrease from 91.54%
to 88.73% in precision.

In order to overcome the decrease in precision, when the Level-II features are extracted
for the core arguments for which the BAC and Level-I features cannot be extracted, the
third setting performs a majority voting among three classifiers trained on the Level-II fea-
tures for the core arguments. If two or more classifiers agree on the semantic role label
they assign to a core argument, then the label is assigned to the core argument as its final
semantic role label. The three classifiers include a logistic regression classifier, a naive
Bayes classifier, and a K-nearest neighbor classifier with K set to 3. This approach keeps
the precision above 91% while slightly increases the recall and F-measure from the first
and second experiments.

The systems with the settings in columns 1 through 4 all obtained a recall at least 2%
higher than that of the baseline. The precision and F-measure scores are at least 4% higher
than that of the baseline.

6.5.2 Results from the nearest-neighbor classifiers

The same set of experiments in the preceding section were repeated. But this time the
nearest-neighbor classifiers were used to classify the pre-annotated arguments. The exper-
imental settings and results are shown in table 6.5. In these experiments, one observes the
same trends in the scores as the experiments using the logistic regression models. First of
all, all four experiments based on the current feature and system designs achieved more
than 9% of improvement over the baseline system in terms of F-measure. Second, the fea-
tures that are more general added in each of the settings from settings 1 through 3 increased
the recall and F-measure scores. And at the same time the precision dropped slightly from
each previous setting. Third, the fourth experiment which involved voting among the clas-
sifiers over the Level-II features maintained a similar precision as the first experiment and
yet increased both the recall and F-measure.

In addition to these observations, one can also see that the nearest-neighbor classifier
does a slightly better job than the logistic regression model in the classification task under
the current system design. The F-measures of the first four experiments shown in table 6.5
are all higher than those in table 6.4. But, the nearest-neighbor baseline classifier achieved
a lower performance than the logistic regression (LR) baseline model, which is also shown
in table 6.5.

116

Experiments KNN Baseline Best LR Baseline 1 2 3 4
Features Level-II Level-II BAC BAC + BAC + BAC +
for features features features Level-1 Level-I + Level-I +
core only only features maj. voting w Level-II
arguments Level-II features
Ftrs for Level-II Level-II Level-II Level-II Level-II Level-II
non-core
Precision 78.70 82.69 92.42 92.10 91.82 89.24
Recall 79.28 83.15 84.79 85.45 86.25 89.57
F-measure 78.99 82.92 88.44 88.65 88.95 89.41

Table 6.5: Classification results from nearest-neighbor classifiers and the best logistic re-
gression baseline

6.5.3 Discussion: effectively handling three issues

Table 6.4 shows that the experiment with the logistic regression (LR) model using the
BAC features alone achieved the precision, recall, and F-measure of 91.83%, 84.25%, and
87.88% respectively. And table 6.5 shows that the experiment with the KNN classifier
using the BAC features alone achieved the precision, recall, and F-measure of 92.42%,
84.79%, and 88.44%. The two sets of scores both exceeded the best LR baseline scores
with the precision, recall, and F-measure of 82.69%, 83.15%, and 82.92%.

The fact that the KNN and LR models using the BAC features alone reached a precision
above 90% indicates that the BAC features quite accurately capture an argument structure
of a given verb. At the same time, the fact that both models yielded a recall above 84% in-
dicates that the BAC features have a relatively wide coverage of the data. More specifically,
since the BAC features unify the solutions to the three less-explored issues and have been
shown effective, the solutions themselves must be effective. That is, the argument posi-
tions of a base argument configuration with respect to a specific verb effectively normalize
over different syntactic configurations that the verb appears in. The context dependence
constraint ensures that only core arguments enter this base argument configuration and
that a list of fixed semantic roles are associated with the core arguments in this base ar-
gument configuration. Finally, combining the concepts from constituency and dependency
grammars are helpful for identifying the moved argument(s) and reconstructing the its/their
positions in this base argument configuration.

As the Level-I features were added to the BAC features, the precision scores for both
LR and KNN argument classifiers dropped slightly, but the recall scores rose at the same
time resulting to the overall increase in the F-measures. This indicates that the Level-I
features were able to cover unrealized arguments without sacrificing the overall system
performance. Moreover, as Level-II features were added to the BAC and Level-I features,
although the precision scores for both classifiers dropped slightly, the recall scores again
rose at the same time resulting to the overall increase in the F-measures. This demonstrates

117

that the Level-II features were able to generalize across unseen verbs to a degree without
sacrificing the overall system performance.

6.5.4 Comparisons with two other SRL systems

This section compares the results from the current system against those of two systems
reported in Surdeanu et al. (2007) on the classification task of the pre-annotated arguments
in WSJ section 23. The two systems include a re-implementation of the re-ranking system
from Toutanova et al. (2005) and a system by Surdeanu et al. that performs the sequential
labeling of the arguments. The rest of the section describes that at least the comparisons
with the re-ranking system validate the current feature and system designs centered on the
BAC features and the solutions to the three less explored issues that are incorporated into
the BAC features.

The systems are chosen for comparison purposes for several reasons. First, these two
systems are the only ones for which the performance on the pre-annotated arguments from
the CoNLL-2005 test set is reported. Second, the re-ranking system by Toutanova et al.
(2005) was the state-of-the-art between 2005 and 2007, with an overall F-measure of 78.5%
on on WSJ section 23. Third, Surdeanu et al. (2007) reported the new state-of-the-art per-
formance since 2007, with an overall F-measure of 80% on WSJ section 23, and is the one
of the few latest systems utilizing constituency grammar-based representation in literature
since CoNLL-2005.

Table 6.6 lists two oracle systems with the lowest and highest performance from the
current project. Listed in the table are also the oracle re-ranking-based system and the
oracle system that combines multiple strategies presented in Surdeanu et al. (2007).

System Lowest LR Highest KNN Re-ranking system Combined strategies
Features BAC only BAC+Level-I+ similar to Level-II similar to Level-II

Level-II + additional ftrs +additional ftrs
Precision 91.83 89.24 88.08 99.12
Recall 84.25 89.57 82.84 85.22
F-measure 87.88 89.41 85.38 91.64

Table 6.6: Oracle classification results. LR: logistic regression

Table 6.6 shows that both the logistic regression model which yields the lowest F-
measure and the KNN classifier which yields the highest F-measure in the current project
have some edge over the re-ranking system in terms of precision, recall, and F-measure.
Thus, the comparisons with the re-ranking system further verify the BAC-centered ap-
proach to the argument classification task of the current system.

At the same time, the system by Surdeanu et al. that utilizes combined strategies
achieves an almost perfect precision, while the best precision the current project achieves

118

is 92.42% (see table (6.5)) by the KNN system with the BAC features. However, the best
recall score the current project could reach is 89.57% with the logistic regression model
using BAC, Level-I, and Level-II features, which is about 4% higher than the 85.22% of
the combined strategies by Surdeanu et al. (2007). The highest F-measure that the current
project achieves is 89.41%, which is about 2% lower than the system by Surdeanu et al.
(2007). It is expected that the system the with combined strategies would have a higher
performance because Surdeanu et al. apply sophisticated strategies to three complete SRL
systems to obtain the state-of-the-art performance (see section 3.2.4.2). However, each
of the three SRL systems does not yield the state-of-the-art performance. Surdeanu et al.
(2007) do not report an oracle performance for each of the three systems rather than that for
the combined strategies. But, they do report each system’s performance on the automati-
cally parsed data, each of which is 2−3% lower than the final score of 80.56% in F-measure
(see section 3.2.4.2). Judging by this difference, the individual oracle system’s F-measure
must be lower than the by 91.64% the combined strategies. Therefore, the results of the
current argument classifier are comparable to both state-of-the-art systems.

6.6 Identification and classification with gold parses

In this set of experiments, the baseline system was first run to identify the arguments from
the gold parses using the logistic regression identifier. Then the classified the detected
arguments using the logistic regression baseline argument classifier shown in table 6.4.

With the current system, an argument identifier was first applied on the Penn Treebank
parse trees, the gold parses, to identify the core and non-core arguments. The identifier
itself is built upon a logistic regression classifier. Then, the best argument classifier, which
is the nearest-neighbor classifier, with the BAC, Level-I, and Level-II features, was used to
classify the core and non-core arguments into one of the semantic role labels.

Table 6.7 lists the results from this set of experiments.
Experiment Precision Recall F-measure
Baseline system
Arg. Identification 92.16 89.47 90.80
arg or non-argument
Arg. Id. & Classification 73.22 71.90 72.55
Current system
Arg. Identification 90.31 86.42 88.32
core, non-core, non args.
Arg. Id. & Classification 81.16 78.23 79.67
% of classification correctness 89.87 90.52 90.20
from identification

Table 6.7: Experimental results with the gold parses

119

Table 6.7 shows that the F-measure of the argument identifier for the current system is
88.32%, while that of the argument identifier for the baseline is 90.70%. Since the cur-
rent system is the only system that identifies core and non-core semantic arguments, there
is no direct comparison with any other system in terms of the performance of argument
identification.

Table 6.7 also shows that KNN/IBK classifier with the design of the current project
outperforms the baseline system by 7% in F-measure.

In addition to the above results, one can make two additional observations.
First, the argument classifier performs consistently as it does in the oracle systems.

This is so because the percentage of correctness in precision, recall, and F-measure that
the argument classifier obtains on the identified arguments match with those of oracle sys-
tems. Table 6.7 shows that argument classifier gains the precision, recall, and F-measure
of 81.16%, 78.23%, and 79.67% out of the corresponding precision, recall, and F-measure
of 90.31%, 86.42%, and 88.32% by the argument identifier. This suggests that the ar-
gument classifier maintains the percentage correctness of 89.87%, 90.52% and 90.20%,
which match with the precision, recall, and F-measure of 89.24%, 89.57%, and 89.41% by
the KNN oracle argument classifier shown in table 6.6. Thus, the argument classifier cen-
tered on the BAC features and augmented with the two level of back-off features performs
consistently. As a result, this further confirms the verified Hypotheses I, II, and III.

Second, the final system performance is dependent on the performance of the argument
identifier. Although the argument classifier maintains its performance on getting about 90%
of the correctly identified arguments right, the final system performance was affected by
the result of the argument identifier.

6.7 Identification and classification with automatic parses

In this last set of experiments, the settings were essentially identical to the previous set of
experiments, except that the input to the argument identifier were the automatically parsed
data using the Charnaik parser (McClosky et al., 2006). Table 6.8 lists the results from this
set of experiments.

One can make the following observations from the results.
The overall F-measure from this set of experiments is about 5% above the baseline

F-measure, which is consistent with the results from the experiments on the gold parses.
The argument identification module on the automatically parsed data yields an F-

measure of 79.08%, which is 9.24% lower than the F-measure of 88.32% from the ar-

120

Experiment Precision Recall F-measure
Baseline system
Arg. Identification 82.51 80.25 81.36
arg or non-argument
Arg. Id. & Classification 66.13 65.04 65.58
Current system
Arg. Identification 80.88 77.36 79.08
core, non-core, non args.
Arg. Id. & Classification 72.20 69.57 70.86
% of classification correctness 89.26 89.93 89.60
from identification

Table 6.8: Experimental results with the automatically parsed input

gument identification task on the gold parses. As a result, the argument classifier gives
only an F-measure of 70.86%, which is about an 8% drop from the 79.67% from the clas-
sification results on the gold parses. Both results show that the system is affected by the
parsing results.

However, the performance of the argument classifier still remains consistent in this set
of experiments. The reasoning here is identical to that in the preceding section. That is,
the percentage of correctness in precision, recall, and F-measure that the argument clas-
sifier obtains on the identified arguments match with those of oracle systems, as well as
with those on the gold parses. Table 6.7 shows that argument classifier gains the precision,
recall, and F-measure of 72.20%, 69.57%, and 70.86% out of the corresponding preci-
sion, recall, and F-measure of 80.88%, 77.36%, and 79.08% by the argument identifier.
This suggests that the argument classifier maintains the percentage correctness of 89.26%,
89.93%, and 89.60%, which match with the precision, recall, and F-measure of 89.24%,
89.57%, and 89.41% by the KNN oracle argument classifier shown in table 6.6. Thus,
the argument classifier centered on the BAC features and augmented with the two level of
back-off features performs consistently.

6.7.1 Discussion

The consistency of the argument classifier throughout the three sets of experiments shows
that the design behind the argument classifier is effective. However, at the same time, the
overall system performance is affected by the that of the argument identification module.
As a matter of fact, the overall F-measure of 70.86% on the automatically parsed data is
below state-of-the-art performance, which is around 79%. This is an important motivation
for improving the argument identification module.

121

Chapter 7
Conclusion

While the present dissertation tackles the semantic role labeling task in general, it focuses
on discovering the right syntactic/semantic knowledge to create features that generalize
across the syntactic variations that a verb appears in and involve argument movement or
displacement.

Incorporating the knowledge of context dependence among the semantic roles of the
core arguments, that of the syntactic structures involving argument movement or displace-
ment, that of the relations between constituents defined in dependency grammar, and that
of verb argument structure, the current dissertation designs the base argument configuration
features that effectively generalize across different syntactic structures that a verbs appears
in. Working together with the two levels of features that handle the syntactic structures
involving unrealized core arguments and unknown verbs respectively, the BAC features
effectively deal with the argument classification task. Due to this feature design, the ar-
gument classification module performs consistently regardless of the performance of the
argument identification module.

While the current dissertation discovers the right knowledge and feature design to tackle
the argument classification task, the overall system performance is affected by the argument
identification task. The argument identification module identifies the semantic argument(s)
of a given verb based on a single parse tree of the Charniak parser. The module then classi-
fies the semantic arguments of the verb into core, non-core, and non arguments based on a
set of generic features. The experiments show that this approach does not yield the optimal
identification results and hence affects the overall system performance.

The immediate future task would be to improve argument identification by incorporat-
ing multiple parse trees of the same sentence from the Charniak parser or by combining
multiple parses from different automatic parsers. Integrating multiple parses will allow for
global optimization and alleviates the limitation of single parses.

122

Bibliography

Aha, D. and D. Kibler. 1991. Instance-based learning algorithms, Machine Learning, 6,
37–66.

Carnie, Andrew. 2002. Syntax, A Generative Approach, Blackwell Publishing.

Carreras, Xavier and Lluis Marquez. 2005. Introduction to the conll-2005 shared task: Se-
mantic role labeling, in Proceedings of the 9th Conference on Computational Natural
Language Learning (CoNLL), Ann Arbor, Michigan, 152164.

Carter, R. J. 1988. Some Linking Regularities.

Chen, John and Owen Rambow. 2003. Use of deep linguistic features for the recognition
and labeling of semantic arguments, in Proceedings of EMNLP-2003.

Chomsky, Noam. 1986. Knowledge of Language: Its Nature, Origin and Use, Praeger.

Collins, Michael and Terry Koo. 2005. Discriminative reranking for natural language pars-
ing, Computational Linguistics, 31(1), 25–69.

Culicover, Peter W. and Ray Jackendoff. 2005. Simpler syntax, Oxford University Press.

Dowty, David. 1987. Thematic proto-roles, subject selection, and lexical semantic defaults,
Linguistic Society of America Colloquium.

Fellbaum, Christiane. 1998. WordNet, An Electronic Lexical Database, MIT Press.

Fillmore, Charles J. 1968. Universals in Linguistic Theory, Holt, Rinehart and Winston,
chap. The Case of Case, 1–88.

Fillmore, Charles J. 1970. Readings in English Transformational Grammar, Ginn and
Company, chap. The Grammar of Hitting and Breaking, 120–133.

Gildea, Daniel and Julia Hockenmaier. 2003. Identifying semantic roles using combina-
tory categorial grammar, in Proceedings of the 2003 conference on Empirical methods
in natural language processing.

Gildea, Daniel and Daniel Jurafsky. 2000. Automatic labeling of semantic roles, in Pro-
ceedings of the 38th Annual Conference of the Association for Computational Linguistics
(ACL-00), Hong Kong, 512520.

123

Gildea, Daniel and Daniel Jurafsky. 2002. Automatic labeling of semantic roles, Computa-
tional Linguistics, 28(3), 245–288.

Gildea, Daniel and Martha Palmer. 2002. The necessity of syntactic parsing for predicate
argument recognition, in Proceedings of the 40th Annual Conference of the Association
for Computational Linguistics (ACL-02), Philadelphia, PA, 239246.

Gordon, Andrew and Reid Swanson. June 23-30, 2007. Generalizing semantic role an-
notations across syntactically similar verbs, in Proceedings of the 2007 meeting of the
Association for Computational Linguistic, Prague, Czech Republic.

Haghighi, Aria, Kristina Toutanova, and Christopher Manning. 2005. A joint model for se-
mantic role labeling, in Proceedings of the Ninth Conference on Computational Natural
Language Learning (CoNLL-2005), Ann Arbor, Michigan, 173–176.

Hajič, Jan. 2009. Conll-2009 shared task description, URL http://ufal.mff.cuni.
cz/conll2009-st/task-description.html.

Jackendoff, Ray. 1990. Semantic Structures, MIT Press.

Johansson, Richard and Pierre Nugues. 2007a. Extended constituent-to-dependency con-
version for english, in Proceedings of NODALIDA 2007.

Johansson, Richard and Pierre Nugues. 2007b. Lth: Semantic structure extraction using
nonprojective dependency trees, in Proceedings of the 4th International Workshop on
Semantic Evaluations (SemEval-2007), Prague, 227230.

Johansson, Richard and Pierre Nugues. 2008. Dependency-based semantic role labeling of
propbank and nombank, in Proceedings of the 2008 Conference on Empirical Methods
in Natural Language Processing.

Levin, Beth and Malka Rappaport Hovav. 1996. From lexical semantics to argument real-
ization, Manuscript, 1, 1–8.

Levin, Beth and Malka Rappaport Hovav. 2005. Argument Realization, Cambridge, URL
http://www.mitpressjournals.org/doi/pdfplus/10.1162/coli.
2006.32.3.447?cookieSet=1.

Lin, Rong-En Fan and Kai-Wei Chang and Cho-Jui Hsieh and Xiang-Rui Wan and Chih-
Jen. 2008. Liblinear: A library for large linear classification, Journal of Machine Learn-
ing Research, 9, 1871–1874.

M‘arquez, Llus, Xavier Carreras, Kenneth C. Litkowski, and Suzanne Stevenson. 2008.
Semantic role labeling: An introduction to the special issue, Computational Linguistics,
34(2), 146–159.

McClosky, David, Eugene Charniak, and Mark Johnson. 2006. Effective self-training for
parsing, in Proceedings of the North American Conference on Computational Linguis-
tics.

124

http://ufal.mff.cuni.cz/conll2009-st/task-description.html
http://ufal.mff.cuni.cz/conll2009-st/task-description.html
http://www.mitpressjournals.org/doi/pdfplus/10.1162/coli.2006.32.3.447?cookieSet=1
http://www.mitpressjournals.org/doi/pdfplus/10.1162/coli.2006.32.3.447?cookieSet=1

Nivre, Joakim. 2007. Inductive Dependency Parsing, Springer.

Palmer, Martha, Dan Gildea, and Paul Kingsbury. 2003. The proposition bank: An anno-
tated corpus of semantic roles, Computational Linguistics, 1, 10–12.

Palmer, Martha, Daniel Gildea, and Paul Kingsbury. 2005. The proposition bank: An an-
notated corpus of semantic roles, Computational Linguistics, 31, 71–106.

Perlmutter, David M. and Paul M. Postal. 1984. Studies in relational grammar, Chicago,
IL: University of Chicago Press.

Pesetsky, David Michael. 1982. Paths and Categories, Ph.D. thesis, MIT.

Pinker, Steven. 1989. Learnability and Cognition: The Acqusition of Argument STructure,
MIT Press.

Pradhan, Sameer, Kadri Hacioglu, Valerie Krugler, Wayne Ward, James H. Martin, and
Daniel Jurafsky. 2005. Support vector learning for semantic argument classification, Ma-
chine Learning, 60(1), 11–39.

Pradhan, Sameer, Wayne Ward, Kadri Hacioglu, James H. Martin, and Daniel Jurafsky.
2004. Shallow semantic parsing using support vector machines, in Association for Com-
putational Linguistics annual meeting (HLT/NAACL-2004).

Punyakanok, Vasin, Dan Roth, and Wen tau Yih. 2005. The necessity of syntactic parsing
for semantic role labeling, in Proc. of the International Joint Conference on Artificial
Intelligence (IJCAI).

Pustejovsky, James. 1995. The Generative Lexicon, MIT Press.

Quirk, Randolph, Sidney Greenbaum, Geoffrey Leech, and Jan Svartvik. 1985. A Compre-
hensive Grammar of the English Language, Longman.

Radford, Andrew. 1997. Syntactic theory and the structure of English, Cambridge.

Ruppenhofer, Josef, Michael Ellsworth, Miriam Petruck, Christopher Johnson, and Jan
Scheffzyk. 2006. FrameNet II: Extended Theory and Practice, FrameNet Project. Avail-
able with the FrameNet database data set.

Saeed, John. 2003. Semantics, Blackwell Publishing.

Stowell, Timothy. 1981. Origins of Phrase Structure, Ph.D. thesis, MIT.

Surdeanu, Mihai, Richard Johansson, Lluis Marquez, Adam Meyers, and Joakim Nivre.
2008a. Conll-2008 shared task description, online.

Surdeanu, Mihai, Luis Marquez, Xavier Carreras, and Pere R. Comas. 2007. Combina-
tion strategies for semantic role labeling, Journal of Artificial Intelligence Research, 29,
105–151.

125

Surdeanu, Mihai, Roser Morante, and Lluis Marquez. 2008b. Analysis of joint inference
strategies for the semantic role labeling of spanish and catalan, in Proceedings of the 9th
International Conference on Intelligent Text Processing and Computational Linguistics
(CICLing).

Surdeanu, Mihai and Jordi Turmo. 2005. Semantic role labeling using complete syntactic
analysis, in Proceedings of the Ninth Conference on Computational Natural Language
Learning (CoNLL-2005).

Thompson, Cynthia A., Roger Levy, and Christopher D. Manning. 2003. A generative
model for semantic role labeling, in ECML 2003, pp. 397–408.

Toutanova, Kristina, Aria Haghighi, and Christopher D. Manning. 2005. Joint learning
imrpoves semantic role labeling, in Proceedings of ACL 2005, Ann Arbor, MI.

Vickrey, David and Daphne Koller. 2008. Sentence simplification for semantic role label-
ing, in Proceedings of ACL-08: HLT .

Witten, Ian H. and Eibe Frank. 2005. Data Mining: Practical Machine Learning Tools and
Techniques, Morgan Kaufmann, 2 edn.

Xue, Nianwen and Martha Palmer. 2004. Calibrating features for semantic role labeling, in
Proceedings of EMNLP, Barcelona, Spain.

Yamada, Hiroyasu. 2008. Converter for penn treebank corpus, URL http://www.
jaist.ac.jp/˜h-yamada/.

126

http://www.jaist.ac.jp/~h-yamada/
http://www.jaist.ac.jp/~h-yamada/

	Title
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Chapter Introduction
	Chapter Definitions, lexical resources, argument structure, base argument configuration, and argument realization
	Definitions
	Traditional semantic roles
	Verb semantic arguments, core and non-core semantic arguments
	Automatic semantic role labeling task

	PropBank
	Verb specific roles
	General roles
	PropBank Statistics

	FrameNet
	Frames and Frame Elements
	Frame-to-frame Relations
	Lexical Units
	Current Status

	From base argument configuration to base argument configuration feature
	Syntactic argument structure
	Base argument configuration
	Base argument configuration feature
	Creating BAC features for moved or displaced arguments

	Semantic roles and argument realization
	The theory of argument realization
	SRs representing grammatical aspects of verb meaning
	Argument realization: mapping semantic roles to arguments

	Chapter summary

	Chapter Review of Semantic Role Labeling Systems
	Gildea and Jurafsky (2000)
	Components of the learning-based system
	Constituency grammar-based features
	Linguistic theoretical background
	Identifying arguments
	Labeling the candidates
	Modeling argument structure
	Performance
	Authors' discussion on feature design

	Extensions to the seminal work
	Punyakanok et al. (2005)
	Toutanova et al. (2005)
	Section summary
	Two variations to the preceding systems

	Exploring dependency grammar: onto CoNLL-2008
	Motivations for the challenges
	Dependency grammar and data representation
	Results from CoNLL-2008

	Chapter summary

	Chapter Feature Design
	System preview
	Argument identification
	Identification examples
	Argument classification
	Classification examples

	Base argument configuration and BAC features
	Handling configurations different from BAC
	Structures involving movements
	Structures involving displaced arguments and BAC feature
	Structures involving shared arguments and BAC features
	Structures involving extra arguments and BAC features

	Back-off features for core arguments in two situations
	Unrealized core arguments
	Level-I back-off features
	Level-II backoff features for unseen verbs and all realized core arguments

	Features for non-core argument
	Features for argument identification
	Chapter summary

	Chapter System Description
	Current SRL system
	Argument identification
	Argument classification
	Statistical models and classifiers
	The feature function
	Modeling with regularized logistic regression
	K-nearest neighbor classifier
	Naive Bayes classifier

	Classifiers and components

	Chapter Experiments, Results, and Discussion
	The less-explored areas and novel solutions
	Data and experimental designs
	The data sets
	The experimental plan

	Experiments with the argument identifiers
	Experiments with the baseline system
	Experiments with argument classification
	Results from the logistic regression classifier
	Results from the nearest-neighbor classifiers
	Discussion: effectively handling three issues
	Comparisons with two other SRL systems

	Identification and classification with gold parses
	Identification and classification with automatic parses
	Discussion

	Chapter Conclusion
	Bibliography

