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ABSTRACT

This thesis makes some contributions to the study of stationary processes, with a

view towards applications to time series analysis. Ever since the work of Gordin [15],

martingale approximations have been a useful tool to study stationary random walks

(random walks with stationary increments). One highlight of this dissertation is a

useful necessary and sufficient condition for martingale approximations. This condi-

tion provides new insight unifying several recent developments on this topic in the

literature. As an application of martingale approximations, we derive a fairly sharp

sufficient condition for the law of the iterated logarithm, including the functional

form, and an improvement of the conditional central limit theorem of Maxwell and

Woodroofe [30]. For statistical applications, we consider the problem of estimating

a monotone trend nonparametrically for time series data. The asymptotic distribu-

tions of isotonic estimators are analyzed, and the accuracy of the approximations are

studied numerically. Estimation of the end point value is a main focus because of

the practical importance and mathematical difficulty.

vi



CHAPTER I

Introduction

This thesis makes some contributions to the study of stationary processes, with

a view towards applications to time series analysis. The topic has a long history;

but the treatment here is indeed modern, and results are nearly optimal. On the

mathematical side, one novel feature is the consistent interplay between certain parts

of ergodic theory and probability theory from an operator-theoretical point of view.

The techniques employed to achieve this interplay are mostly from harmonic analysis

and functional analysis, but otherwise quite down-to-earth. So I hope readers inter-

ested in ergodic theory and probability theory will find something valuable in this

dissertation. On the more practical side, one nonparametric statistical application is

considered, and the purpose here is to show by example how a theory for time series

analysis might be pursued, based on the development of ergodic dynamical systems.

We divide our treatment into five chapters, with the first chapter as the introduction

here, then the rest addressing four different classes of problems. In this introduction,

we shall briefly preview our main results chapter by chapter.

Let . . . ,W−1,W0,W1, . . . be an ergodic, and (strictly) stationary Markov chain

assuming values in a measurable space (W ,B). The transition kernel and stationary

distribution are denoted by Q and π, so P [Wk ∈ B] = π(B) and Qn(w;B) =

1
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P [Wn+k ∈ B|Wk = w] for all nonnegative integers n, k, and B ∈ B. We shall also

denote the Markov operator by Q,

Qf(w) =

∫

W
f(z)Q(w; dz)

for any f ∈ L1(W , π). Consider now functions defined on the state space, and in

particular, we are interested in g ∈ L2
0(π), the space of square integrable functions

for which
∫
W gdπ = 0. Interest centers on

(1.1) Sn = Sn(g) = g(W1) + · · ·+ g(Wn),

called stationary random walks (partial sums of stationary processes). It turns out

that, to study (1.1), one can often introduce martingale approximations. These are

of the form

(1.2) Sn = Mn +Rn,

where Mn is a centered martingale with square integrable, stationary increments,

and ‖Rn‖ = o(
√
n). Here ‖ · ‖ = 〈·, ·〉 denotes the norm in an L2 space, which may

vary from one usage to another. One prototype of (1.2) was used in Gordin and

Lifsic [17], where they used Poisson’s equation, g = (I−Q)h. The idea is that, given

g and Q, one tries to solve for some h ∈ L2. The consequence is then the following

straightforward decomposition

Sn =
n∑

k=1

[h(Wk)−Qh(Wk−1)] +Qh(W0)−Qh(Wn).

So this assumes the form (1.2), with a negligible remainder term. From this phe-

nomenon, one can easily speculate that more g should admit martingale approxima-

tions, if only ‖Rn‖ = o(
√
n) is required. Apparently, (1.2) is sufficient to deduce the

central limit theorem (CLT); and even more so, one can derive a conditional version
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of the CLT (e.g., [26] and [30]), which is more useful in many real applications; for

example, MCMC. Kipnis and Varadhan [26] made a significant contribution along

this line by showing that, if the underling chain is reversible, then all that be needed

to apply (1.2) is the following variance stability condition

(1.3) σ2 := lim
n→∞

E[S2
n]

n
∈ [0,∞).

It can be shown that, in the case of reversibility, (1.3) is equivalent to the solvability of

a fractional version of Poisson’s equation, g =
√
I −Qh. This is a special case (with

index 1/2) of the so-called Fractional Poisson’s Equation, which was systematically

studied by Derriennic and Lin [11]. Taking advantage of the equivalence, Derriennic

and Lin [10] were able to generalize the Kipnis-Varadhan theorem to Markov chains,

whose transition operators are normal. To state their result, let Q∗ denote the ajoint

operator of Q, acting on the space L2(π). Then the normality of the chain means

QQ∗ = Q∗Q, which is a substantial generalization of the reversibility assumption. In

[10] it is shown that, under the normality assumption, g ∈ √I −QL2(π) is sufficient

to imply the existence of (1.2). As applications, they considered random walks on

compact abelian groups, which give rise to “normal” chains due to the commutativ-

ity of group operations. Motivated by the seminal work of Kipnis and Varadhan,

but unaware of [10], Maxwell and Woodroofe [30] are able to drop the condition of

reversibility, and derived (1.2) under their surprisingly elegant condition

(1.4)
∞∑
n=1

n−
3
2‖E[Sn|W1]‖ <∞.

This growth condition is optimal within logarithmic factors, as proved in [30]. It is

also sufficient for the functional central limit theorem in a best possible way (e.g.,

Peligrad and Utev [32]).

Allowing for general dependence structure of the underlying chain and general
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state space has important implications for general stationary random walks. To

see that, let . . . , X−1, X0, X1, . . . denote a centered, (strictly) stationary process.

Then its partial sums Sn = X1 + X2 + · · · + Xn have the form (1.1), with Wk =

(. . . , Xk−1, Xk), and g just the first coordinate mapping. Representing in this way,

we can work out Q and Q∗, but typically, Q∗Q 6= QQ∗. So normality is not generally

satisfied. It can be shown that (1.4) is stronger than the condition g ∈ √I −QL2(π);

a natural question is then: can one drop the normality assumption in the theorem

of Derriennic and Lin [10]? This question will be answered, along with a much more

ambitious goal to derive a usable necessary and sufficient condition for (1.2). The

important special case of co-isometries, QQ∗ = I, will receive special attentions. For

easy reference, we now state the main result of Chapter III, put

Vng =
n−1∑

k=0

Qkg,

so that E(Sn|W1) = Vng(W1). If a martingale approximation exists, then ‖Vng‖2 =

E[E(Sn|W1)
2] ≤ 2E(M2

1 )+2E(R2
n) = o(n), and limn→∞E(S2

n)/n = E(M2
1 ). So for a

given g, obvious necessary conditions for the existence of martingale approximations

are that

(1.5) ‖Vng‖ = o(
√
n)

and

(1.6) ‖g‖2
+ := lim sup

n→∞

1

n
E[Sn(g)

2] <∞.

Let L denote the set of g ∈ L2
0(π) for which ‖g‖+ <∞. Then L is a linear space, and

‖ · ‖+ defines a pseudo norm on L, called the plus norm in Chapter III. Moreover, Q

maps L into itself. It will be shown that:
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Theorem 1.1. g admits a martingale approximation iff ‖Vng‖ = o(
√
n) , and

lim
m→∞

1

m

m∑

k=1

‖Qkg‖2
+ = 0.

This result extends [26], [30] and [11] in a unified manner. For more details, we

refer interested readers to Chapter III, or [47].

As we have already seen, in the case Poisson’s equation can be solved, the mar-

tingale approximation can be derived with a rather negligible remainder term. This

gives a hope to study the fluctuation behavior of (1.1) using martingale techniques.

Indeed, in Chapter IV, we shall develop a set of techniques to prove a law of the

iterated logarithm for stationary processes by slightly strengthening (1.4). To state

the main result, let `(·) be a positive, nondecreasing, slowly varying function; and

let

`∗(n) =
n∑
j=1

1

j`(j)
.

Theorem 1.2. If ` is a positive, slowly varying, nondecreasing function and

(1.7)
∞∑
n=1

n−
3
2

√
`(n) log(n)‖E(Sn|W0)‖ <∞,

then

(1.8) Sn = Mn +Rn

where Mn is a square integrable martingale with stationary increments and

lim
n→∞

Rn√
n`∗(n)

= 0 w.p.1.

The law of the iterated logarithm can be easily derived as a corollary. For instance,

if (1.7) holds with `(n) = log n, then σ2 = limn→∞E[S2
n]/n exists, and

(1.9) lim sup
n→∞

Sn√
2n log log n

= σ w.p.1
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Other side products of Theorem 1.2 include quenched CLT, and invariance principles

of Strassen’s type. These are presented in Chapter IV, which is based on [48]. The

proof employs a variety of techniques—perturbations of linear operators, Fourier

analysis of renewal equations, and operator-theoretical ergodic theory. Whether the

Maxwell-Woodroofe condition (1.4) be sufficient for (1.9) still remains open.

The study of stationary random walks has important applications to time series

analysis. To illustrate one such usage, we consider a model for a time series which is

thought to consist of a nondecreasing trend observed with stationary errors:

yk = µk + εk, k = 1, 2, · · ·

where −∞ < µ1 < µ2 < · · · and . . . ε−1, ε0, ε1, . . . is a strictly stationary sequence

with mean 0 and finite variance. The global temperature anomalies, in Example 1.3,

provide a particular example. If a segment of the series is observed, say y1, · · · , yn,

then isotonic methods suggest themselves for estimating the µk nonparametrically.

The isotonic estimators may be described as

µ̂k = max
i≤k

min
k≤j

yi + · · ·+ yj
j − i+ 1

.

Example 1.3. Figure 1.1 plots the annual global temperature anomalies from 1850-

2000 with the isotonic estimates of trend superimposed as a step function.

With the global warming data, there is special interest in estimating µn, the cur-

rent temperature anomaly; and there isotonic methods encounter the spiking problem,

described in Section 7.2 of [35] for a closely related problem of estimating monotone

densities. We consider two methods for correcting this problem, the penalized esti-

mators of [43] and the method of [28], both introduced for monotone densities. The

former estimates µn by

µ̂p,n = max
1≤i≤n

yi + · · ·+ yn − βn
n− i+ 1

,
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Figure 1.1: Global Temperature Anomalies

where βn > 0 is a smoothing parameter, and the latter by

µ̃b,n = µ̂mn ,

where mn < n is another smoothing parameter. To analyze the behavior of these

estimators, we shall need an important technical tool as developed in [32]. Stating

it slightly specialized for our purpose, let Sn = ε1 + · · · + εn, Fn = σ(. . . , εn−1, εn);

define

Bn(t) =
Sbntc + (nt− bntc) εbntc+1√

n
,

and let B denote a standard Brownian motion. Both Bn and B are regarded as

random elements in C[0, 1]. It can be shown that if

(1.10)
∞∑
n=1

n−
3
2‖E[Sn|F0]‖ <∞,

then

Γ =
∞∑
j=0

∥∥∥∥
E[S2j |F0]

2j/2

∥∥∥∥ <∞,

and

(1.11) E

[
max
1≤k≤n

S2
k

]
≤ 6

(
E[ε2

1] + Γ
)2
n,
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σ2 = lim
n→∞

1

n
E[S2

n]

exists; moreover, Bn converges in distribution to σB.

The main results of Chapter II obtain the asymptotic distributions of estimation

errors, properly normalized, for the three estimators described above. One of these

results is well known for monotone regression with i.i.d. errors, and analogues of the

others are known for the closely related problem of monotone density estimation.

Interest here is in extending these results to allow for dependence. Other researchers

have been interested in this question recently—notably Anevski and Hössjer [1].

Our results go beyond theirs in several ways: (1) we consider the boundary case—

estimating µn, where the analysis of estimation errors pose particular mathematical

challenges; (2) our results may be valid conditional on the past unobserved history of

the series, this appealing fact is still under investigation, but with good progress; and

(3) our conditions are weaker. Instead of the strong mixing condition, called (A9)

in [1], we use a condition like (1.4) above, for the errors. One objective is to show

by example how recent results on the central limit question for sums of stationary

processes can be used to weaken mixing conditions in statistical applications.

Chapter V describes some problems pertaining to the conditional central limit

theorem.



CHAPTER II

Estimating a Monotone Trend

2.1 Preliminaries

In order to model a monotone trend for a time series, such as the global warming

data presented in the introduction, one may consider the following regression model.

Given a nondecreasing function φ(·) on the unit interval [0, 1], consider observations

y1, . . . , yn from

(2.1) yk = φ

(
k

n

)
+ εk k = 1, · · · , n,

where the errors are assumed to be ergodic, stationary with mean 0, finite second

moments. For convenience we will sometimes be working with its two-sided extension,

. . . ε−1, ε0, ε1, . . .. The problem is to nonparametrically estimate φ(·), with particular

focus on the boundary point φ(1).

To deal with the dependence among errors, we always assume (1.10) holds. This

condition has been central to many recent developments concerning weak depen-

dence, ever since its first appearance in [30]. Taking advantage of the shape assump-

tion about the regression function, isotonic estimates are suggested. To describe

them, let µk = φ(k/n) and choose µ̂1, . . . , µ̂n to minimize

n∑
i=1

(yi − µi)
2,

9
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subject to the monotonicity constraint, −∞ < µ1 ≤ µ2 ≤ · · · ≤ µn < ∞. This is a

well-known optimization problem (e.g., [35]), with unique solutions given by

(2.2) µ̂k = max
i≤k

min
k≤j

yi + · · ·+ yj
j − i+ 1

.

Alternatively, letting Yn denote the cumulative sum diagram, i.e.,

Yn(t) =
y1 + · · ·+ ybntc + (nt− bntc)ybntc+1

n
,

and Ỹn its greatest convex minorant, µ̂k is the left hand derivative of Ỹn evaluated

at t = k/n. See Chapter 1 of [35] for background on isotonic methods.

Next, we define φ̂n(·) to be the left-continuous step function on [0, 1], with values

φ̂n(k/n) = µ̂k at the knots k/n, k = 1, . . . , n. The large sample behavior of φ̂n(t) is

of great interest to us, because it is needed to set confidence intervals for φ(t). This

will be studied for t ∈ (0, 1) in Section 2.2.

For the boundary value φ(1), the standard isotonic estimates suffer from the spik-

ing problem. Here we propose two estimators, which will be shown to be consistent

with convergence rate n−1/3. The first one has its analogue in the context of density

estimation, [28], it has the following form with boundary correction

(2.3) µ̃b,n = φ̂n(1− αn−
1
3 ),

where α > 0 is a smoothing parameter. The other estimator has its prototype in

[43]; it modifies the standard isotonic estimator, µ̂n, by shrinking the size of it,

(2.4) µ̂p,n = max
1≤j≤n

yj + · · ·+ yn − βn
n− j + 1

,

where βn > 0 is another smoothing parameter, depending on the sample size.

The aim of this chapter is to study the behavior of three estimators, (2.2),(2.3),

and (2.4). Their limiting distributions are studied numerically, and the performance

at the end points are compared through simulations.
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2.2 Asymptotic Distributions

Isotonic estimators with boundary corrections. We first study (2.2) and (2.3),

and start by introducing more notations. Define Φn(·) to be the linear interpolation

between its values Φn(k/n) = (µ1 + · · · + µk)/n at knots k/n, and Φn(0) = 0;

these give rise to continuous functions in C[0, 1]. More generally, we shall denote

by C(K) the space of continuous functions on an arbitrary compact set K ⊂ R.

The topology on C(K) will always be induced by the uniform metric ρ. Further let

Sn = ε1 + · · ·+ εn, and define the partial sum process

(2.5) Bn(t) =
1√
n

[
Sbntc + (nt− bntc) εbntc+1

]

on the unit interval. Then from (2.1), it is not difficult to check

(2.6) Yn(t) = Φn(t) +
1√
n
Bn(t)

for 0 ≤ t ≤ 1.

Put λn = n−1/3, and take {tn}∞1 to be a sequence of numbers in (0, 1). We say

{tn} is a regular sequence if tn → t0 ∈ (0, 1], and, in the case tn → 1, n1/3(1−tn) → α

for some α > 0. Next, introduce the process

(2.7) Zn(s) = n2/3
[
Yn(tn + λns)− Yn(tn)− φ(tn)λns

]
,

which is well-defined for s contained in

(2.8) In :=
[−n1/3tn, n

1/3(1− tn)
]
.

Using (2.6) and letting Φ(t) :=
∫ t

0
φ(s)ds, one can easily verify the following decom-
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position

Zn(s) = n2/3 [Φ(tn + λns)− Φ(tn)− φ(tn)λns]

+n1/6 [Bn(tn + λns)−Bn(tn)]

+n2/3
[
Rn(tn + λns)−Rn(tn)

]

=: Ψn(s) +Wn(s) + ∆n(s),(2.9)

where Rn(·) = Φn(·) − Φ(·); so, by the mean value theorem, supt∈[0,1] |Rn(t)| =

O(1/n).

We will first prove a weak convergence result for Zn(·). In it we suppose

(A1). φ ∈ C1[0, 1], and γ1 = inft∈(0,1] φ
′(t) > 0,

which is slightly stronger than necessity. To state the result, let W (·) denote a

standard two-sided Brownian motion (starting from 0), and for t0 ∈ (0, 1], define

Z(s) = σW (s) +
1

2
φ′(t0)s2.

Theorem 2.1. Suppose (A1) and (1.10) hold; let {tn} be a regular sequence with

tn → t0; further, let K be any compact interval, Kn = K ∩ In, and K∞ = ∪n≥1Kn.

Then for Zn, as defined in (2.7),

Zn(·)|Kn ⇒ Z(·)|K∞ ,

in C(K∞) (note Kn = K∞ for all large n).

Proof. Recall Zn(s) = Ψn(s)+Wn(s)+∆n(s) for s ∈ In = [−n1/3tn, n
1/3(1−

tn)]. By the Taylor series expansion, as n→∞, we have

Ψn(s) → 1

2
φ′(t0)s2

uniformly for s ∈ K∞. It will be easy to observe sups∈Kn
|∆n(s)| = O(n−1/3), so it
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only remains to study the behavior of Wn(s). First

Wn(s) =
1√
nλn

{
Sbntn+nλnsc + 〈ntn + nλns〉 εbntn+nλnsc+1 − Sbntnc − 〈ntn〉εbntnc+1

}
,

where 〈·〉 denotes the fractional part. Letting

Wn,1(s) =
Sbnλns+bntncc − Sbntnc√

nλn
, Wn,2(s) =

Sbntn+nλnsc − Sbnλns+bntncc√
nλn

and

Wn,3(s) =
〈ntn + nλns〉 εbntn+nλnsc+1 − 〈ntn〉 εbntnc+1√

nλn
,

then one can write Wn(s) = Wn,1(s)+Wn,2(s)+Wn,3(s). For brevity, we only consider

the case K∞ = [0, a] with some fixed positive a, more general K∞ can be dealt with

similarly. Starting with Wn,3(s), we can observe

sup
0≤s≤a

εbntn+nλnsc+1√
nλn

≤ max
bntnc+1≤k≤bntnc+bnλnac+3

|εk|√
nλn

,

then by stationarity,

∥∥∥∥ sup
0≤s≤a

εbntn+nλnsc+1√
nλn

∥∥∥∥ ≤
1√
nλn

∥∥∥∥ max
1≤k≤bnλnac+3

|εk|
∥∥∥∥ .

Using the fact that, for arbitrary M > 0,

max
1≤i≤n

ε2
i ≤M +

n∑
i=1

ε2
i1{|εi|>

√
M}.

It follows, in view of the mean ergodic theorem,

∥∥∥∥ sup
0≤s≤a

|Wn,3(s)|
∥∥∥∥ → 0

as n→∞. That sup0≤s≤aWn,2(s) = op(1) follows along the similar line.

For Wn,1(s), first by stationarity,

Sbnλns+bntncc − Sbntnc√
nλn

d
=
Sbnλnsc√
nλn

in D[0, a];
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then by essentially adapting the method in [32], pp.807-809, one can show

Wn,1(·)|Kn ⇒ σW (·)|[0,a]

in D[0, a] with uniform topology. Observing the limiting process is continuous with

probability one, the assertion of the theorem follows. ¤

To introduce more notations, let f be a function defined on an interval J ⊂ R,

and let K be a subinterval contained in J . If f is bounded from below on K, we

shall use f̃ |K to denote the greatest convex minorant (GCM) of the restriction of f

to K. Viewing Zn(·), introduced in (2.7), as a random function in C(In), then for

each fixed n, its GCM is given by

Z̃n(s) = n2/3
[
Ỹn(tn + λns)− Yn(tn)− φ(tn)λns

]
.

By the chain rule, one immediately has the relation

(2.10) n
1
3

[
φ̂n(tn)− φ(tn)

]
= Z̃ ′n(0).

So the behavior of Z̃ ′n(0) will be of major interest, but there are difficulties analyzing

it if we want to apply the continuous mapping theorem. One obvious complication

is that In is expanding, the other concern is the continuity of the functional under

consideration. For these purposes, we need some technical preparations. The first is

simply a restatement of Lemmas 5.1 and 5.2 of [41].

Lemma 2.2. Let f be a bounded continuous function on a closed interval I and let

f̃ denote its greatest convex minorant. If a, b ∈ I, a < b, and

f

(
a+ b

2

)
<
f̃(a) + f̃(b)

2
,

then f(x) = f̃(x) for some a ≤ x ≤ b.

Let a, b ∈ I and let f ∗ denote the greatest convex minorant of the restriction of f

to [a, b]. If a ≤ x0 < x1 ≤ b, and f(xi) = f̃(xi), i = 0, 1, then f̃ = f ∗ on [x0, x1].
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Lemma 2.3. Suppose (1.10) holds and {tn} is regular, then for each fixed ε > 0,

there exists positive M = M(ε), such that

(2.11) lim inf
n→∞

P

{
sup
s∈In

[|Wn(s)| − εs2
] ≤M

}
≥ 1− ε,

where Wn(s) is defined in (2.9), and In in (2.8).

Proof. We only consider αn = n1/3(1 − tn) → ∞, then the case αn → α > 0

is almost trivial. Given ε > 0, and in view of the weak convergence of Wn, one can

choose M1 large enough such that

lim sup
n→∞

P
{|Wn(s)| ≥M1 + εs2, ∃ s ∈ [−1, 1]

}

≤ lim sup
n→∞

P

{
sup

−1≤s≤1
σ|W (s)| ≥M1

}
≤ ε

3
.(2.12)

On the other hand, let κn be the biggest k for which [2k,−2k+1] ⊂ In, then

P
{|Wn(s)| ≥M + εs2, ∃ s ∈ In ∩ [1,+∞)

}

≤
κn∑

k=0

P
{|Wn(s)| ≥M + εs2, ∃ s ∈ [2k, 2k+1]

}

+P
{|Wn(s)| ≥M + εs2, ∃ s ∈ [2κn+1, αn]

}

≤
κn∑

k=0

P

{
sup

2k≤s≤2k+1

|Wn(s)| ≥M + ε22k

}

+P

{
sup

2κn+1≤s≤αn

|Wn(s)| ≥M + ε22κn+2

}

≤
κn+1∑

k=0

c(nλn2
k+1 + 1)

n2/3(M + ε22k)2
,

where c is a universal constant, not depending on M and ε; and the last inequality

in the previous display follows from stationarity and (1.11). Hence, we can find M2

so large that

(2.13) lim sup
n→∞

P
{|Wn(s)| ≥M2 + εs2, ∃ s ∈ In ∩ [1,+∞)

} ≤ ε

3
.
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Similarly one can show an analogue of (2.13) by restricting s ∈ In ∩ (−∞,−1]; thus,

combining (2.12) and (2.13), choosing M large enough, assertion (2.11) follows.

Lemma 2.4. Suppose (A1) holds, and In ↗ R; then for any 0 < ε < γ1/2 and

M > 0, there is a compact interval K ⊂ (0,+∞) such that for all large n,

(2.14)
{|Wn(s)| ≤M + εs2, s ∈ In

} ⊂
{
Zn(s)− Z̃n(s) = 0 for some s ∈ K

}
;

where Z̃n(·) is the GCM of Zn(·) in (2.9). Similarly, (2.14) holds for some K ⊂

(−∞, 0).

Proof. By the assumption on φ′(·) and applying Taylor’s formula with remain-

der term to Ψn(s) in (2.9), we can find γ2 > 0 such that

γ1

2
s2 ≤ Ψn(s) ≤ γ2s

2

for all s ∈ In. For fixed 0 < ε < γ1/2, M > 0, let

An =
{|Wn(s)| ≤M + εs2, s ∈ In

}
;

then on the events An with n sufficiently large,

(2.15)
(γ1

2
− ε

)
s2 −M − δ ≤ Zn(s) ≤ (γ2 + ε) s2 +M + δ

for s ∈ In, where δ ≥ sups∈In |∆n(s)|. It is easy to see (2.15) is also true with Zn

replaced by Z̃n. Taking 0 < a < b <∞ and employing (2.15),

(2.16)

Zn

(
a+ b

2

)
−

[
Z̃n(a) + Z̃n(b)

2

]
≤ (γ2 + ε)

(
a+ b

2

)2

−
(γ1

2
− ε

) a2 + b2

2
+2M +2δ.

Noticing that (
a+ b

2

)2

− a2 + b2

2
=
−(b− a)2

4
,
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and taking δ = 1, say, then one can find a compact interval K containing a pair of

a, b, for which

Zn

(
a+ b

2

)
−

[
Z̃n(a) + Z̃n(b)

2

]
< 0.

Applying Lemma 2.2, one can claim Zn(s) = Z̃n(s) for some s ∈ [a, b], and therefore,

(2.14) holds. It is not difficult to see such a compact interval K ⊂ (−∞, 0) can be

found similarly. ¤

Theorem 2.5. Suppose (1.10) and (A1) hold, and {tn} is regular; let K0 be any

compact interval containing 0 as an interior point, and let Z∗n denote the GCM of

the restriction of Zn(·) to In ∩K0, then

(2.17) lim
K0↗R

lim sup
n→∞

P
{
Z̃ ′n(0) 6= Z∗

′
n (0)

}
= 0.

Proof. Recall Zn(·) in (2.9), and by Lemma 2.2, we first make the observation,

{
Z̃ ′n(0) 6= Z∗

′
n (0)

}
⊂

{
Z̃(s) 6= Zn(s), ∀ s ∈ In ∩K◦

0 ∩ (−∞, 0)
}

(2.18)

∪
{
Z̃n(s) 6= Zn(s), ∀ s ∈ In ∩K◦

0 ∩ (0,∞)
}

;(2.19)

and it suffices to show, given any ε > 0, there exists K0, such that for all K0 ⊃ K0,

(2.20) lim sup
n→∞

P
{
Z̃ ′n(0) 6= Z∗

′
n (0)

}
≤ ε.

Consider the event in (2.19) now, we shall find K+
0 , for which

(2.21) lim inf
n→∞

P
{
Z̃n(s) = Zn(s), ∃ s ∈ In ∩ (K+

0 )◦ ∩ (0,∞)
}
≥ 1− ε

2
.

If αn = n1/3(1− tn) → α > 0, this situation is simple because one can take K+
0 to be

containing α as an interior point; then for all large n, it is not hard to see αn ∈ K+
0

and Z̃n(αn) = Zn(αn).
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Next suppose αn → ∞, which means In is expanding to R. There exists M =

M(ε/2) by Lemma 2.3, such that

lim inf
n→∞

P

{
|Wn(s)| ≤M +

εs2

2
, s ∈ In

}
≥ 1− ε

2
.

In view of Lemma 2.4, such a K+
0 will be easy to find to make (2.21) hold. Similarly,

we can find K−0 for which

lim inf
n→∞

P
{
Zn(s) = Z̃n(s), ∃ s ∈ In ∩ (K−

0 )◦ ∩ (−∞, 0)
}
≥ 1− ε

2
.

Taking K0 ⊃ K0 = K+
0 ∪ K−0 , using relations (2.18) and (2.19), the assertion (2.20)

follows. This completes our proof. ¤

Theorem 2.6. Suppose (1.10) and (A1) hold, then for t ∈ (0, 1),

(2.22) n
1
3

(
φ̂n(t)− φ(t)

κ

)
⇒ arg min

−∞<s<∞
[W (s) + s2],

where W is a two-sided Brownian motion, and κ =
[

1
2
σ2φ′(t)

] 1
3 with σ2 = lim 1

n
E[S2

n];

moreover,

n
1
3

[
µ̃b,n − φ(1)

] ⇒ Z# − αφ′(1),

where

Z# = D

{
T(−∞,α]

(
σW (s) +

1

2
φ′(1)s2

)} |s=0,

with D denoting the left-derivative, and T(−∞,α](·) denoting the GCM of a function

on (−∞, α].

Proof. We first recall the relation n1/3[φ̂n(tn) − φ(tn)] = Z̃ ′n(0). Applying

Theorem 2.5 in conjuction with Theorem 3.2 of [3], it is not hard to see the behavior

of Z̃ ′n(0) is the same as Z∗
′
n (0). It will be easy to study Z∗

′
n (0) by first fixing K0, and

then letting n → ∞. Take tn = t ∈ (0, 1), in this case In ↗ R; let K0 = [−m,m],

then using Marshall’s lemma and properties of convex functions, one can apply the
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continuous mapping theorem to Z∗
′
n (0), with K0 fixed. So, letting n→∞ and then

m→∞, one can show

n
1
3

[
φ̂n(t)− φ(t)

] ⇒ D

{
T(−∞,∞)(σW (s) +

1

2
φ′(t)s2)

}
|s=0

Assertion (2.22) follows by a standard switching argument as in [19].

Similarly, when n1/3(1 − tn) → α > 0, one can take K0 = [−m,α], and establish

the second assertion. ¤

Comparison with Anevski and Hössjer [1]. The behavior of φ̂n(t), t ∈ (0, 1),

has been considered in [1] under mixing conditions. These conditions are stronger

than (1.10), as shown below.

Let Fn = σ(. . . , εn−1, εn) and Gn = σ(εn, εn+1, . . .), define the α-mixing coefficients

α(n) = sup
A∈F0,B∈Gn

|P (A ∩B)− P (A)P (B)|.

Further denote the Lp norm of a random variable X by ‖X‖p = E[|X|p]1/p.

Proposition 2.7. Assume E[ε4
i ] <∞, and

∞∑
n=1

α(n)
1
2
−ε <∞

for some ε > 0, then (1.10) holds.

Proof. Let X ∈ L4 and Y ∈ L2 be two random variables, which are measurable

with respect to Gn and F0, respectively. Applying a mixing inequality (e.g., [21],

Corollary A.2) with p = 2q = 4, we have

(2.23) |E[XY ]| ≤ 8‖X‖4‖Y ‖2 α(n)
1
4 .

Hence using the identity

‖E[Sn|F0]‖ = sup
Y ∈F0,‖Y ‖≤1

∫
Y E[Sn|F0] dP = sup

Y ∈F0,‖Y ‖≤1

n∑

k=1

E[εkY ],
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in conjuction with (2.23), one can show

(2.24)
∞∑
n=1

n−3/2‖E[Sn|F0]‖ ≤ 8‖ε0‖4

∞∑
n=1

n−3/2

n∑

k=1

α(k)
1
4 ≤ 24‖ε0‖4

∞∑

k=1

α(k)
1
4√

k
.

It is not hard to see this series is summable. Since for each given ε > 0, we can take

q′ < 2 for which 1
4
q′ > 1

2
− ε, and p′ > 2 for which 1

p′ + 1
q′ = 1, such that

∞∑

k=1

1√
k
α(k)

1
4 ≤

( ∞∑

k=1

k−
1
2
p′
) 1

p′
( ∞∑

k=1

α(k)
1
4
q′
) 1

q′

;

and this is finite by assumption. ¤

Penalized Least Squares Estimators Let βn = βn1/3 for some fixed positive β;

the penalized least squares estimator is given by

µ̂p,n = max
1≤j≤n

yj + · · ·+ yn − βn
n− j + 1

= max
1≤j≤n

yn+1−j + · · ·+ yn − βn
j

.

Then clearly

µ̂p,n − φ(1) = max
1≤j≤n

S
(n)
j + Φ

(n)
j − βn

j
,

where Φ
(n)
j = µn+1−j − φ(1) + · · ·+ µn − φ(1) and S

(n)
j = Sn − Sn−j. Next, define

Gn(t) := S
(n)

bn2/3tc + Φ
(n)

bn2/3tc − 〈n2/3t〉
[
εbn2/3tc + φ

(
n+ dn2/3te

n

)
− φ(1)

]
.

and

Λn := sup
t∈Jn

Gn(t)− βn
bn2/3tc ,

where Jn = [n−2/3, n1/3]. It is then not hard to verify µ̂p,n − φ(1) = Λn.

Lemma 2.8. Suppose (1.10) and (A1) hold. Then for any compact interval K ⊂

[0,∞),

n−
1
3Gn(·)|K∩Jn ⇒ G(·)|K

in C(K), where G(t) = σW (t)− 1
2
φ′(1)t2 with W (·) denoting the standard two-sided

Brownian motion.
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Proof. First, by the mean value theorem,

n−
1
3 Φ

(n)

bn2/3tc = n−
1
3

n∑

k=n+1+bn 2
3 tc

[
φ

(
k

n

)
− φ(1)

]
= −n− 1

3

n∑

k=n+1+bn 2
3 tc

φ′(t∗)
(
n− k

n

)

for t∗ = t∗(k, n, t) which is contained in the interval[(n+ 1 + bn2/3tc)/n, 1]; hence,

n−
1
3 Φ

(n)

bn2/3tc → −1

2
φ′(1)t2

uniformly for t ∈ K. Next, utilizing a similar truncation argument as in Theorem

2.1, it is straightforward to show

n−
1
3

∥∥∥∥ sup
t∈K∩Jn

εbn2/3tc

∥∥∥∥ → 0

as n→∞. The assertion of the lemma then follows from Theorem 1 of [32]. ¤

Lemma 2.9. Suppose (1.10) and (A1) hold. Then given any ε > 0 and b > 0, there

exists δ0 such that for all 0 < δ ≤ δ0,

(2.25) lim sup
n→∞

P

{
sup

1/δ≤t≤n1/3

n1/3[Gn(t)− βn]

bn2/3tc > −b
}
< ε.

Proof. For any fixed δ > 0, b > 0 and all large n, by simple calculations,

P

{
sup

1/δ≤t≤n1/3

n1/3[Gn(t)− βn]

bn2/3tc > −b
}

≤ P

{
S

(n)
j + Φ

(n)
j − βn

j
> −n− 1

3 b, ∃ n2/3/δ ≤ j ≤ n

}

= P
{
Sj > −n− 1

3 jb+ βn − Φ
(n)
j , ∃ n2/3/δ ≤ j ≤ n

}
;(2.26)

on the other hand, by the mean value theorem,

−Φ
(n)
j ≥

n∑

k=n+1−j
γ1

(
n− k

n

)
=
γ1(j

2 − j)

2n
.

So, over the range j ≥ n2/3/δ, the leading term in (2.26) is given by j2/n for large

n ( as long as δ is bounded from above). In particular, if δ < γ1/(4b), then the
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probability in (2.26) is majorized by

P

{
Sj >

γ1

8

j2

n
, ∃ j ≥ n2/3/δ

}
,

for all large n. To estimate this probability, take integerm for which 2m−1 < n2/3/δ ≤

2m, then

P

{
Sj > γ∗

j2

n
, ∃ j ≥ n2/3

δ

}

≤ P

{
Sj > γ∗

j2

n
∃ j > 2m−1

}

≤
∞∑

k=m

P

{
Sj >

γ∗

n
(2k−1)2, ∃ 1 ≤ j ≤ 2k

}

≤
∞∑

k=m

n2

γ∗224(k−1)
E

[
max

1≤j≤2k
S2
j

]

≤ cn22−3m

for some positive constant c, after an application of the maximal inequality (1.11).

Since n22−3m ≤ δ3, the probability in the previous display can be made arbitrarily

small by letting δ → 0. ¤

Proposition 2.10. Suppose (1.10) and (A1) hold, then

(2.27) lim
δ→0

lim sup
n→∞

P

{
sup

n−
2
3≤t≤n 1

3

Gn(t)− βn
bn2/3tc 6= sup

δ≤t≤1/δ

Gn(t)− βn
bn2/3tc

}
= 0.

Proof. It will be shown that the supremum of n1/3[Gn(t) − βn]/bn2/3tc is un-

likely to be achieved on [n−2/3, δ] and [1/δ, n1/3] when n is large. In view of Lemma

2.9, it suffices to show given any ε > 0 and b > 0, then for all sufficiently small δ > 0,

(2.28) lim sup
n→∞

P

{
sup

n−
2
3≤t≤δ

n
1
3 [Gn(t)− βn]

bn2/3tc > −b
}
< ε.
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To see that, applying Lemma 2.8 we have

P
{
n

1
3 [Gn(t)− βn] > −bn2/3tcb, ∃ n−2/3 ≤ t ≤ δ

}

≤ P
{
n

1
3 [Gn(t)− βn] > −b(n2/3δ + 1), ∃ n−2/3 ≤ t ≤ δ

}

= P
{
n−

1
3Gn(t) > β − b(δ + n−2/3), ∃ n−2/3 ≤ t ≤ δ

}

≤ P

{
max
0≤t≤δ

n−
1
3Gn(t) > β − b(δ + n−2/3)

}

→ P

{
max
0≤t≤δ

[
σW (t)− 1

2
φ′(1)t2

]
> β − bδ

}

as n→∞. On the other hand, one can choose δ small enough such that β−bδ > β/2,

then

P

{
max
0≤t≤δ

[
σW (t)− 1

2
φ′(1)t2

]
> β − bδ

}
≤ P

{
max
0≤t≤δ

W (t) >
β

2σ

}
= 2

[
1− Φ0,1

(
β

2σ
√
δ

)]
,

where Φ0,1 denotes the standard normal distribution. It is easy to see the probability

in the previous display can be made arbitrarily small if δ is sufficiently close to 0,

establishing (2.28). ¤

Theorem 2.11. Under the hypotheses of Proposition 2.10,

(2.29) n
1
3 [µ̂p,n − φ(1)] ⇒ sup

t>0

σW (t)− β − 1
2
φ′(1)t2

t
,

as n→∞.

Proof. Using the relation µ̂p,n−φ(1) = Λn and Proposition 2.10, assertion (2.29)

follows by an application of Theorem 3.2 of [3]. ¤

2.3 Numerical Studies

In this section, we report simulation studies to compare the performance of µ̂p,n

and µ̃b,n. For simplicity, we choose the errors to be AR(1) with autoregressive pa-

rameter .25, and the regression functions to be either convex or concave near the
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right end point of the unit interval. In order to compute our estimates, there are

issues of choosing smoothing parameters. Recall

µ̂p,n = max
1≤j≤n

yj + · · ·+ yn − βn
1
3

n− j + 1
,

which depends on β; and for each fixed β,

n
1
3 [µ̂p,n − φ(1)] ⇒ Sβ(σ, γ) := sup

t>0

σW (t)− β − γt2

t

where γ = φ′(1)/2. Also we can recall µ̃b,n = φ̂n(1− αn−
1
3 ) , with limiting behavior

n
1
3 [µ̃b,n − φ(1)] ⇒ Zα(σ, φ

′(1)),

where

Zα(σ, φ
′(1)) = D

{
T(−∞,α]

(
σW (s) +

1

2
φ′(1)s2

)} |s=0 − αφ′(1).

So, the choice of α has to be made to implement our estimation procedure. Here we

choose α and β to minimize E[Zα(σ, φ
′(1))2] and E[Sβ(σ, γ)

2] respectively, supposing

other parameters are given.

Moments of both Zα(σ, ·) and Sβ(σ, γ) are apparently hard to get, but we can

replace them by Monte Carlo estimates. To select α, we first generate two-sided

Brownian paths using random walk approximations with step size 0.001, on the in-

terval [−2, α]. Then, based on each realization of discrete observations combining

the drift term, we can compute the isotonic estimate corresponding to knot 0. Av-

eraging over 1000 realizations gives us the Monte Carlo estimates. Similarly, we can

select β, we refer interested readers to [38] for more details. Shown in Figure 2.1 is

a picture suggesting the choice of α and β, when the regression function is chosen

to be φ(x) = (2x − 1)3 + 1. In this case, σ = 4/3, γ = 3 = φ′(1)/2, and the minima

seem to be occuring at α ≈ 0.17, β ≈ 0.68.
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Figure 2.1: Choosing Smoothing Parameters for φ(x) = (2x− 1)3 + 1

To compare the performance of estimators using mean squared error, we simulate

10,000 samples of sizes n = 50, 100, 200. For each sample, µ̂p,n−φ(1) and µ̃b,n−φ(1)

are computed with the suggested choices of α and β. Table 2.1 summarizes the

comparison.

Table 2.1: φ(x) = (2x− 1)3 + 1

n mean var mse
µ̂p,n − φ(1) 50 -0.34928 0.18234 0.30434

100 -0.28044 0.13767 0.21632
200 -0.21823 0.09680 0.14443

µ̃b,n − φ(1) 50 -0.17655 0.23416 0.26533
100 -0.16146 0.16457 0.19064
200 -0.10302 0.11785 0.12847

Note: errors are AR(1) with autoregressive parameter .25

In the previous study, the regression function is convex near the end point. Next,

we shall look at a scenario where the regression function is concave. Take φ(x) =

exp(13x − 9)/(1 + exp(13x − 9)) and the autoregressive parameter still be .25, so

σ = 4/3, and φ(1) = 0.982, φ′(1) = 0.23. Following a similar procedure as above, we

are suggested to choose α ≈ .35 and β ≈ .28 ; reported in Table 2.2 is a comparison of
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the performance. In both scenarios, the boundary corrected isotonic estimator, µ̃b,n,

outperforms the penalized LSE. Overall, both estimators are reasonable by looking

at the total mean squared errors, which are quite small. The Monte Carlo estimates

of the means do not drop down significantly as sample size increases. This is partially

due to the moderate sample sizes that we have chosen; but still, the biases are quite

negligible.

Table 2.2: φ(x) = exp(13x− 9)/(1 + exp(13x− 9))

n mean var mse
µ̂p,n − φ(1) 50 0.21352 0.24516 0.29075

100 0.23784 0.18224 0.23881
200 0.22535 0.13246 0.18324

µ̃b,n − φ(1) 50 0.04325 0.12557 0.12744
100 0.05203 0.10230 0.10501
200 0.05124 0.05285 0.05548

Note: errors are AR(1) with parameter .25

Global temperature anomalies. There are n = 150 annualy observations for this

time series in the period 1850-2000. One major thorny issue is to estimate φ′(1), the

change rate of the underlying regression function at 1. We decided to fit an ordinary

regression model with xi = i/n, i = 1, . . . , n, and yi as the observations, using a

second order polynomial. Based on the estimates, we are suggested φ̂′(1) ≈ 1.75; for

the residuals, we fit an ARMA model, and it seems an AR(1) gives the best fit. A

95% confidence interval for the autoregressive parameter is given by (0.17,0.39), the

midpoint 0.28 is taken to be our estimate, so σ̂ ≈ 1.39. Based on these estimates,

we use the same criteria as before to choose α, β, and they are suggested as α = 0.3,

β = 0.16. Next, we study the distribution of S0.16(1.39, 0.875); Table 2.3 below

presents the Monte Carlo estimates for the distribution function. The study of

Z0.3(1.39, 1.75) is computationally very intensive, and we have not succeeded at this

moment. These results may be used to set confidence intervals for φ(1).
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Table 2.3: Monte Carlo estimates of F (x) = P{S.16(1.39, 0.875) ≤ x}

x F̂ (x) x F̂ (x) x F̂ (x) x F̂ (x)
-2.9 0.0000 -1.4 0.0080 0.1 0.7335 1.6 0.9910
-2.8 0.0000 -1.3 0.0180 0.2 0.7795 1.7 0.9925
-2.7 0.0000 -1.2 0.0300 0.3 0.8215 1.8 0.9945
-2.6 0.0000 -1.1 0.0505 0.4 0.8530 1.9 0.9950
-2.5 0.0000 -1.0 0.0805 0.5 0.8900 2.0 0.9965
-2.4 0.0000 -0.9 0.1185 0.6 0.9155 2.1 0.9975
-2.3 0.0000 -0.8 0.1670 0.7 0.9310 2.2 0.9975
-2.2 0.0000 -0.7 0.2195 0.8 0.9420 2.3 0.9990
-2.1 0.0000 -0.6 0.2855 0.9 0.9525 2.4 0.9995
-2.0 0.0000 -0.5 0.3575 1.0 0.9630 2.5 0.9995
-1.9 0.0000 -0.4 0.4335 1.1 0.9735 2.6 0.9995
-1.8 0.0005 -0.3 0.4960 1.2 0.9790 2.7 0.9995
-1.7 0.0010 -0.2 0.5645 1.3 0.9835 2.8 1.0000
-1.6 0.0020 -0.1 0.6210 1.4 0.9880 2.9 1.0000
-1.5 0.0060 0.0 0.6800 1.5 0.9900 3.0 1.0000

Estimates are based on 2000 simulated data points.



CHAPTER III

Martingale Approximations

3.1 Main Results

Some notation is necessary to describe the results of this chapter. Let . . .W−1,W0,

W1, . . . denote a stationary, ergodic Markov chain with values in a measurable space

W . The marginal distribution and transition function of the chain are denoted by π

and Q; thus, π{B} = P [Wn ∈ B] and Q(w;B) = P [Wn+1 ∈ B|Wn = w] for w ∈ W

and measurable sets B ⊆ W . In addition, Q denotes the operator, defined by

Qf(w) =

∫

W
f(z)Q(w; dz) a.e. (π)

for f ∈ L1(π), and the iterates of Q are denoted by Qk = Q ◦ · · · ◦ Q (k times).

Thus, Qkf(w) = E[f(Wn+k)|Wn = w] a.e. (π) for f ∈ L1(π). The probability

space on which . . . ,W−1,W0,W1, . . . are defined is denoted by (Ω,A, P ), and Fn =

σ{. . . ,Wn−1,Wn}. Finally, ‖ · ‖ and 〈·, ·〉 denote the norm and inner product in an

L2 space, which may vary from one usage to the next.

Observe that no stringent conditions, like Harris recurrence or even irreducibility,

have been placed on the Markov chain. In particular, if . . . ξ−1, ξ0, ξ1, . . . are i.i.d.

with common distribution ρ say, then the shift process Wk = (. . . ξk−1, ξk) satisfies the

conditions placed on the chain with π = ρN, where N = {0, 1, 2, . . .}, and Qg(w) =

∫
g(w, x)ρ{dx} for g ∈ L1(π). Shift processes abound in books on time series–for

28
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example, [6] and [39].

Next let L2
0(π) be the set of g ∈ L2(π) for which

∫
W gdπ = 0; and, for g ∈ L2

0(π),

consider stationary sequences of the form Xk = g(Wk) and their sums Sn = X1 +

· · ·+Xn. Thus,

Sn = Sn(g) = g(W1) + · · ·+ g(Wn).

The question addressed here is the existence of a martingale M1,M2, . . . with respect

to F0,F1,F2, . . . having stationary increments and a sequence of remainder terms

R1, R2, . . . for which ‖Rn‖ = o(
√
n) and

(3.1) Sn = Mn +Rn.

If (3.1) holds, we say that g admits a martingale approximation. Ever since the work

of Gordin [15], martingale approximations have been an effective tool for studying

the (conditional) central limit question and law of the iterated logarithm for sta-

tionary processes; see, for example, [7], [45], [8], [47], and their references for recent

developments. The terminology here differs slightly from that of [45].

The sequence Xk = g(Wk) is said to admit a co-boundary if there is a stationary

sequence of martingale differences dk and another stationary process Zk for which

Xk = dk + Zk − Zk−1,

for all k, in which case Sn = M̃n + R̃n with M̃n = d1 + · · · + dn and R̃n = Zn − Z0.

Here M̃n is a martingale and R̃n is stochastically bounded, but does not necessarily

satisfy ‖R̃n‖ = o(
√
n). Conversely, a martingale approximation does not require Rn

to be stochastically bounded. The relation between co-boundaries and martingale

approximations is further clarified by the examples of [13].

Letting Q∗ denote the adjoint of the restriction of Q to L2(π), so that 〈Qf, g〉 =

〈f,Q∗g〉 for f, g ∈ L2(π), Q is said to be a co-isometry if QQ∗ = I, in which case Q∗
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is an isometry. Importantly, this condition is satisfied by shift processes. In Section

3.3, a convenient orthonormal basis for L2
0(π) is identified when Q is a co-isometry,

and a simple necessary and sufficient condition for the existence of a martingale

approximation is given in terms of the coefficients in the expansion of g with respect

to this basis.

Returning to the main question, define

Vng =
n−1∑

k=0

Qkg,

so that E(Sn|F1) = Vng(W1). If (3.1) holds, then ‖Vng‖2 = E[E(Sn|F1)
2] ≤

2E(M2
1 ) + 2E(R2

n) = o(n), and limn→∞E(S2
n)/n = E(M2

1 ). So, obvious necessary

conditions for (3.1) are that

(3.2) ‖Vng‖ = o(
√
n)

and

(3.3) ‖g‖2
+ := lim sup

n→∞

1

n
E[Sn(g)

2] <∞.

Let L denote the set of g ∈ L2
0(π) for which ‖g‖+ < ∞. Then L is a linear space,

and ‖ · ‖+ is a pseudo norm on L, called the plus norm below. Moreover, Q maps L

into itself, since

(3.4) Sn(g) = Sn(Qg) +
n∑

k=1

[g(Wk)−Qg(Wk−1)] +Qg(W0)−Qg(Wn);

and, therefore, ‖Qg‖+ ≤ ‖g‖++
√
E{[g(W1)−Qg(W0)]2}. In Section 3.4 it is shown

that g admits a martingale approximation iff (3.2) holds and

lim
m→∞

1

m

m∑

k=1

‖Qkg‖2
+ = 0.

These results are used in Section 3.5 to study the relationship between martingale

approximations and solutions to the fractional Poisson equation, g =
√

(I −Q)h.
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The relation between martingale approximations and the conditional central limit

theorem is explored in Section 3.6 with special attention to superpositions of linear

processes. Section 3.2 contains some preliminaries.

3.2 Preliminaries

In this section, upon exhibiting some preliminary facts, we establish a useful

criterion for martingale approximations; and in particular, we show martingale ap-

proximations are unique. Let

V̄n =
V1 + · · ·+ Vn

n
=

n−1∑

k=0

(
1− k

n

)
Qk.

Then

(3.5) E[Sn(g)
2] = 2n〈g, V̄ng〉 − n‖g‖2,

from [6], p. 219, and

(3.6) V̄n = V̄nQ
i + Vi − 1

n
QVnVi

for all n ≥ 1, i ≥ 1 by simple algebra and induction. Next, let π1 denote the joint

distribution of W0 and W1, define

(3.7) Hn(w0, w1) = Vng(w1)−QVng(w0)

and

(3.8) H̄n(w0, w1) = V̄ng(w1)−QV̄ng(w0)

for w0, w1 ∈ W . Then Hn and H̄n are in L2(π1).

Lemma 3.1. If (3.2) holds, then Sk = Mnk +Rnk where Mnk = H̄n(W0,W1) + · · ·+

H̄n(Wk−1,Wk) and maxk≤n ‖Rnk‖ = o(
√
n).
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Proof. The lemma is almost a special case of Theorem 1 of [45]. Using

Equation (3.6) with i = 1,

Rnk = Sk −Mnk = QV̄ng(W0)−QV̄ng(Wk) +
1

n
Sk(QVng),

from which it follows that maxk≤n ‖Rnk‖ ≤ 3 maxk≤n ‖Vkg‖, which is o(
√
n) by (3.2).

¤

Of course, Mnk is a martingale in k for each n. The following proposition is closely

related to Theorem 1 of [40].

Proposition 3.2. g ∈ L2
0(π) admits a martingale approximation iff (3.2) holds and

H̄n converges to a limit H in L2(π1), in which case

(3.9) Mn = Mn(g) :=
n∑

k=1

H(Wk−1,Wk).

Consequently, martingale approximations are unique.

Proof. Suppose first that g admits a martingale approximation, Sn = Mn+Rn.

Then (3.2) holds and Sn = Mnn +Rnn, where ‖Rnn‖ = o(
√
n), by Lemma 3.1. So,

nE{[H̄n(W0,W1)−M1]
2} = E[(Mnn −Mn)

2] = E[(Rnn −Rn)
2] = o(n),

implying the convergence of H̄n(W0,W1) in L2(P ); and this is equivalent to the

convergence of H̄n in L2(π1).

Conversely, if (3.2) holds and H̄n converges to a limit H, say; we can let Mn =

H(W0,W1) + · · · + H(Wn−1,Wn) and Rn = Sn − Mn. Then (3.1) holds, Rn =

Mnn−Mn+Rnn, and ‖Rn‖ ≤
√
n‖H̄n−H‖+‖Rnn‖ = o(

√
n), establishing both the

sufficiency and (3.9). That martingale approximations are unique is then clear. ¤

As a first use of Proposition 3.2, we shall recover Theorem 1 of [30]. To begin, let

gn = Vng and ḡn = V̄ng, recall the Maxwell-Woodroofe condition

(3.10)
∞∑
n=1

n−
3
2‖Vng‖ <∞.
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Proposition 3.3. Suppose (3.10) holds, then the conditions of Proposition 3.2 are

verified, and therefore, g has a martingale approximation.

To prove Proposition 3.3, we need two lemmas.

Lemma 3.4. Let H̄n be as defined in (3.8), then

(3.11) ‖H̄n − H̄m‖ ≤ 1√
n

(
‖ḡm‖+ ‖ḡn‖+ 2‖gn‖+

2n

m
‖gm‖

)
.

proof By simple algebra, one has

‖H̄n − H̄m‖2 = ‖H̄n‖2 + ‖H̄m‖2 − 2〈H̄n, H̄m〉

and

〈H̄n, H̄m〉 = 〈ḡn, ḡm〉 − 〈Qḡn, Qḡm〉.

Using the identity QV̄n = V̄n− I+ 1
n
QVn to expand 〈Qḡn, Qḡm〉 out, and by Cauchy-

Schwarz inequality, we have

‖H̄n − H̄m‖2 ≤
[‖gn‖

n
+
‖gm‖
m

]2

+ 2

[‖gn‖
n

+
‖gm‖
m

]
(‖ḡn‖+ ‖ḡm‖).

It is then easy to see

‖H̄n − H̄m‖2 ≤
(

1

n2
+

1

n

) (
‖gn‖+

n

m
‖gm‖

)2

+
1

n
(‖ḡn‖+ ‖ḡm‖)2 ,

establishing (3.11). ¤

Lemma 3.5. Fix p > 1, let `(·) be any nonnegative, slowly-varing function (at ∞);

and let νn be a nonnegave, subadditive sequence. The following two conditions are

equivalent:

(i)

(3.12)
∞∑
n=1

n−p`(n)νn <∞;
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(ii)

(3.13)
∞∑

k=0

`(2k)ν̄2k

2k(p−1)
<∞,

where ν̄n = (ν1 + ν2 + · · ·+ νn)/n.

proof. We first show (i)⇒ (ii) . Making a change of summation yields

∞∑

k=0

`(2k)ν̄2k

2k(p−1)
=

∞∑

k=0

`(2k)

2kp




2k∑
n=1

νn


 =

∞∑
n=1

( ∞∑

k=mn

`(2k)

2kp

)
νn,

where mn = dlog2 ne. Since `(·) is slowly-varing, one can find a positive integer k0

for which, `(2k)/2kp is nonincreasing in k ≥ k0. So, when mn ≥ k0 + 1,

∞∑

k=mn

`(2k)

2kp
≤

∫ ∞

mn−1

`(2x)

2xp
dx ≤ 1

log 2

∫ ∞

1
2
n

`(y)

yp+1
dy ∼ 2p

p log 2

`(n)

np
,

as n→∞, using Karamata’s theorem [4, p. 27]. Hence, it follows that

∞∑
n=1

( ∞∑

k=mn

`(2k)2−kp
)
νn <∞,

establishing (i) ⇒ (ii).

To see (ii) ⇒ (i), fix any integer k ≥ 0, by subadditivity νn ≤ νk + νn−k, k =

1, . . . , n, it is not hard to check

νn ≤
k∑
j=0

ν2j

for any integer n ∈ [2k, 2k+1 − 1]. It then follows that

∞∑
n=1

`(n)νn
np

=
∞∑

k=0

2k+1−1∑

n=2k

n−p`(n)νn ≤
∞∑

k=0

2k+1−1∑

n=2k

n−p`(n)

(
k∑
j=0

ν2j

)

Choose n0 large enough such that n−p`(n) is nonincreasing in n ≥ n0, then one can

find K0, such that for all k ≥ K0,

2k+1−1∑

n=2k

n−p`(n)

(
k∑
j=0

ν2j

)
≤ 2−k(p−1)`(2k)

(
k∑
j=0

ν2j

)
.
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Thus,
∞∑

k=0

2k+1−1∑

n=2k

n−p`(n)

(
k∑
j=0

ν2j

)
¿

∞∑
j=0

ν2j

∞∑

k=j

2−k(p−1)`(2k),

where ¿ is used in place of big O notation. Further by an integral test and Fatou’s

lemma,

∞∑

k=j

2−k(p−1)`(2k) = 2−j(p−1)

∞∑

k=0

2−k(p−1)`(2k+j) ¿ 2−j(p−1)`(2j).

So (3.12) holds in view of νn ≤ 2ν̄n−1 ≤ 4ν̄n, n = 2, . . .. ¤

Proof of Proposition 3.3. Let νn = ‖gn‖, and ν̄n its Cesàro average. By

Lemma 3.4, and using Lemma 3.5 with p = 3/2, `(·) =constant, we have

∞∑

k=1

‖H̄2k − H̄2k−1‖ ≤
∞∑

k=1

4√
2k

(ν̄2k−1 + ν̄2k + ν2k + ν2k−1) <∞.

On the other hand, by the subadditivity of νn, νn ≤ 2ν̄n−1 ≤ 4ν̄n for n ≥ 2; and also,

ν̄m ≤ 2ν̄2k for all 2k−1 < m ≤ 2k, k = 1, 2, . . .. It follows that

max
2k−1<m≤2k

‖H̄m − H̄2k‖ ≤ max
2k−1<m≤2k

1√
2k

[
‖ḡm‖+ ‖ḡ2k‖+ 2‖g2k‖+

2k+1

m
‖gm‖

]

≤ 1√
2k

[39ν̄2k + 2ν2k ] → 0

as k →∞. Hence by Cauchy’s rule, {H̄n} is convergent in L2(π1). That g admits a

martingale approximation follows from Proposition 3.2. ¤

Proposition 3.2 is useful, but not so convenient to be used in concrete problems.

Next, we will consider more specialized examples. The following corollary can be

easily deduced and will be important later.

Corollary 3.6. If g admits a martingale approximation, then so does Qkg, and

M1(Q
kg) = H(W0,W1)−Hk(W0,W1) with Hk as defined in (3.7).

Proof. For k = 1, this follows directly from (3.4); and for k = 2, 3, . . ., it follows

by induction. ¤
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As a second corollary, we may obtain necessary and sufficient conditions for linear

processes; the following decomposition for a linear process has its roots in [24] and

[45]. Let . . . , ξ−1, ξ0, ξ1, . . . be i.i.d. random variables with mean 0 and unit variance;

let a0, a1, a2, . . . be a square summable sequence; and consider a causal linear process

(3.14) Xj =
∞∑
i=0

aiξj−i =
∑
i≤j

aj−iξi.

Such a process is of the form Xk = g(Wk), where Wk = (. . . , ξk−1, ξk). Letting

b−1 = 0, bn = a0 + · · ·+ an for n ≥ 0, and using (3.14),

Sn =
∑
i≤1

(bn−i − b−i)ξi +
n−2∑
i=0

biξn−i,

where the first term on the right is E(Sn|W1). It follows that

‖Vng‖2 = ‖E(Sn|W1)‖2 =
∞∑

i=−1

(bi+n − bi)
2,

also, Vng(W1)−QVng(W0) = bnξ1, and H̄n(W0,W1) = b̄nξ1 with b̄n = (b1+· · ·+bn)/n.

Thus, for a linear process, (3.2) specializes to

(3.15) lim
n→∞

1

n

∞∑
i=−1

(bi+n − bi)
2 = 0.

Corollary 3.7. For the linear process defined in (3.14), the following are equivalent:

(a) There is a martingale approximation.

(b) (3.15) holds and b̄n converges.

(c) (3.15) holds and b̄2n converges.

Proof. In this case ‖H̄n−H̄m‖2 = (b̄n−b̄m)2. Hence, (a) and (b) are equivalent

by Proposition 3.2. It is clear that (b) implies (c) and remains only to show that (c)

imples (b). If b̄2n converges, but b̄n does not, then b̄n would have to oscillate between

two values, there would be a positive ε for which |b̄n+1 − b̄n| ≥ ε infinitely often; but
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this is impossible, since b̄n+1− b̄n = (bn+1− b̄n)/(n+1) and bn = O(
√
n), as a0, a1, . . .

are square summable. ¤

In the next section, we show how to extend this example from linear functions of

shift processes to measurable ones with mean 0 and finite variance.

3.3 Co-Isometries

We suppose throughout this section that the chain has a trivial left tail field and

that Q is a co-isometry; that is,

(3.16) lim
n→∞

‖Qnf‖ = 0 and QQ∗ = I.

for all f ∈ L2
0(π). We also suppose L2

0(π) is separable. These conditions are satisfied,

for example, by (one-sided) shift processes.

With a view towards later examples, we work with L 2
0 (π), the space of complex

valued, square integrable functions with mean 0 under π. Then (3.16) is still valid

for this space if we extend the definition of Q to the imaginary part.

Let H denote a closed linear subspace of L 2
0 (π) that is invariant under both Q

and Q∗; restrict Q and Q∗ to H; and let K = Q∗H. Then Q∗ is an isometry from H

onto K, since 〈Q∗f,Q∗g〉 = 〈f,QQ∗g〉 = 〈f, g〉 for f, g ∈ H. This is the origin of the

term “co-isometry.” Moreover,

(3.17) Q∗h(W1) = h(W0) w.p.1

for any h ∈ L2
0(π), since E[Q∗h(W1)h(W0)] = 〈QQ∗h, h〉 = ‖h‖2 by conditioning on

W0, and therefore, E {[Q∗h(W1)− h(W0)]
2} = ‖Q∗h‖2 − 2〈QQ∗h, h〉 +‖h‖2 = 0. It

then can be easily checked (3.17) also holds for h ∈ L 2
0 (π).

Lemma 3.8. K is a closed, proper linear subspace of H; and ∩∞j=0Q
∗jH = {0}.
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Proof. That K is closed is clear, since Q∗ is an isometry; and that K is

proper follows from ∩∞j=0Q
∗jH = {0}. So, it suffices to establish the latter. If

f ∈ ∩∞j=0Q
∗jH, then there are h0, h1, . . . ∈ H for which f = Q∗jhj with each j.

In this case, ‖hj‖ = ‖f‖, since Q∗ is an isometry, hj = QjQ∗jhj = Qjf , and

limj→∞ ‖Qjf‖ = 0. So, ‖f‖ = 0, establishing the lemma. ¤

Next, let K⊥ = {f ∈ H : 〈f, h〉 = 0 for all h ∈ K}. Then K⊥ = {g ∈ H : Qg = 0},

since 〈Q∗f, g〉 = 〈f,Qg〉 = 0 for all f ∈ H iff Qg = 0; and Q∗Q is the projection

operator onto K, since (Q∗Q)2 = Q∗Q and Q(I − Q∗Q) = 0. Let E0 = {ej : j ∈ J}

be an orthonormal basis for K⊥, let Ei = Q∗iE0 and E = ∪i≥0Ei.

Lemma 3.9. E is an orthonormal basis for H.

Proof. Ei consists of orthonormal elements for each i ≥ 0, since Q∗ is an

isometry; for any f ∈ Ei and f ′ ∈ Ei′ , where i < i′, there are e, e′ ∈ E0 for which

f = Q∗ie and f ′ = Q∗i
′
e′, in which case 〈f, f ′〉 = 〈Q∗ie,Q∗i′e′〉 = 〈Qi′−ie, e′〉 = 0,

since Qe = 0. Finally, if f ⊥ E0, then f ∈ K and f = Q∗h1 for some h1 ∈ H. If also,

f ⊥ Q∗E0, then Qf ⊥ E0, Qf = Q∗h2 for some h2 ∈ H, and f = Q∗Qf = Q∗2h2.

Continuing, we find that if f ⊥ E , then f ∈ Q∗jH for all j, and completeness follows

from Lemma 3.8. ¤

Now write ei,j = Q∗iej, so that Ei = {ei,j : j ∈ J}, and let Hj = span(ei,j : i ≥ 0),

the closed linear span of {ei,j : i ≥ 0}. Then QHj = Hj for each j, and H = ⊕j∈JHj.

In the language of [9, 16], the Hj, j ∈ J , are an orthogonal invariant splitting of

H. Then, any g ∈ H may be written as g =
∑

j∈J
∑∞

i=0 ci,jei,j, where ci,j are square

summable. Let bn,j = c0,j + · · · + cn−1,j , b̄n,j = (b1,j + · · · + bn,j)/n and regard

bn = (bn,j : j ∈ J) and b̄n = (b̄n,j : j ∈ J) as elements of `2(J).

Theorem 3.10. g ∈ L2
0(π) admits a martingale approximation iff b̄n converges in
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`2(J), and

(3.18) lim
n→∞

1

n

∞∑
i=0

‖bi+n − bi‖2 = 0.

Proof. We take H = L 2
0 (π). Since Qei,j = QQ∗iej = 0 if i = 0 and ei−1,j if

i ≥ 1, Qg =
∑

j∈J
∑∞

i=1 ci,jei−1,j ,

Qkg =
∞∑

i=k

∑
j∈J

ci,jei−k,j =
∞∑
i=0

∑
j∈J

ci+k,jei,j ,

Vng =
∞∑
i=0

∑
j∈J

(bi+n,j − bi,j)ei,j

and

‖Vng‖2 =
∞∑
i=0

∑
j∈J

|bi+n,j − bi,j|2 =
∞∑
i=0

‖bi+n − bi‖2.

So (3.18) is just (3.2), specialized to the present context.

Next Q∗Qg =
∑

j∈J
∑∞

i=1 ci,jei,j, so that from (3.17),

g(W1)−Qg(W0) = [g −Q∗Qg](W1) =
∑
j∈J

c0,je0,j(W1),

H̄n(W0,W1) =
n−1∑

k=0

(
1− k

n

) [
Qkg(W1)−Qk+1g(W0)

]
=

∑
j∈J

b̄n,je0,j(W1)

and

‖H̄n − H̄m‖ = ‖b̄n − b̄m‖.

The theorem now follows directly from Proposition 3.2. ¤

Example 3.11 (Bernoulli Shifts). The one-sided Bernoulli shift process is defined

by

Wk =
∞∑
j=0

(
1

2

)j+1

ξk−j,

where . . . ξ−1, ξ0, ξ1, . . . are i.i.d. random variables taking the values 0 and 1 with

probability 1/2 each. The state spaceW is the unit interval, the marginal distribution
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π is the uniform distribution, Qg(w) = 1
2
[g(1

2
w) + g(1

2
w + 1

2
)], and Q∗g(w) = g(2w)

for a.e. w ∈ W and g ∈ L1(π) with the convention that g is continued periodically.

For this example, any g ∈ L 2
0 (π) has a Fourier expansion

(3.19) g =
∑

r 6=0

crer,

where er(w) = e2πırw and cr, r ∈ Z, are square summable. Then Qer = 0 or e 1
2
r

accordingly as r is odd or even, and Q∗er = e2r for all r. With H = L 2
0 (π), it

follows that K, respectively K⊥, consists of all functions g for which cr = 0 for odd,

respectively even, r. Thus, E0 = span(er : r ∈ Odd), and Ei = span(er2i : r ∈ Odd),

and there is an invariant splitting with ei,j = ej2i . Necessary and sufficient conditions

for the existence of a martingale approximation can be read from Theorem 3.10. See

[42] for more on the Fourier analysis of Bernoulli shifts.

Example 3.12 (Lebesgue Shifts). By a (one-sided) Lebesgue shift, we mean the

Markov chain Wk = (. . . Uk−1, Uk) where . . . U−1, U0, U1, . . . are independent uni-

formly distributed random variables over [0, 1), in which case W = [0, 1)N and

π = λN, where λ is the uniform distribution. Lebesgue shifts are similar to Bernoulli

shifts. Let Γ denote the set of sequences j = (j0, j1, . . .) ∈ ZN for which ji = 0 for all

but finite number of i. Then, letting j · w = j0w0 + j1w−1 + · · · and ej(w) = e2πıj·w

for w = (. . . w−1, w0) ∈ [0, 1)N and j ∈ Γ, any g ∈ L 2
0 (π) has a Fourier expansion,

g(w) =
∑
j∈Γ

cjej

where cj are square summable. Next, let J = {j ∈ Γ : j0 6= 0}. Then, since

Qej(w) =

[∫ 1

0

e2πıj0udu

] ∞∏
i=1

exp(2πıjiw−i+1),

E0 = {ek : k ∈ J} is an orthonormal basis for K⊥ (with H = L 2
0 (π) and K = Q∗H).

Define ψ : Γ → Γ by ψ(j) = (0, j0, j1, . . .), then it is not difficult to check Q∗ek =
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eψ(k), Q
∗iek = eψi(k), where ψi is the composition of ψ with itself i times. Necessary

and sufficient conditions can be read from Theorem 3.10.

Example 3.13 (Superlinear Processes). Let ξi,j, i ∈ Z, j ∈ N, be independent ran-

dom variables, all having mean 0 and bounded variances, for which . . . ξ−1,j, ξ0,j, ξ1,j, . . .

are identically distributed for each j, and let cij, i ∈ Z, j ∈ N, be a square summable

array. Then

(3.20) Xk =
∞∑
j=0

∞∑
i=0

ci,jξk−i,j

converges w.p.1 and in mean square for each k and defines a stationary process.

Letting ξi = (ξi,0, ξi,1, . . .), Xk is of the form Xk = g(Wk), where Wk = (. . . , ξk−1, ξk)

is a shift process. Next, letting H = span(ξi,j : i ≤ 0, j ≥ 0), one finds easily that

there is an invariant splitting with ei,j = ξ−i,j for i, j ≥ 0. Necessary and sufficient

conditions for the existence of a martingale approximation can again be read from

Theorem 3.10.

3.4 The Plus Norm

To study the plus norm, we first recall the definition ‖g‖2
+ = lim supn→∞E[Sn(g)

2]/n.

The following example serves as a simple illustration.

Example 3.14. If Q is a co-isometry and the chain has a trivial left tail field, we may

write g =
∑

j∈J
∑∞

i=0 ci,jei,j, as in Section 3.3, and H̄n(W0,W1) =
∑

j∈J b̄n,je0,j(W1),

as in the proof of Theorem 3.10. So, if (3.2) holds, E(S2
n) = nE[H̄2

n(W0,W1)]+o(n) =

n‖b̄n‖2 + o(n), and ‖g‖2
+ = lim supn→∞ ‖b̄n‖2.

The main result of this section is that g admits a martingale approximation iff

‖Vng‖ = o(
√
n) and

∑m
k=1 ‖Qkg‖2

+ = o(m). The following two lemmas are needed;

their proofs are given after the proof of Theorem 3.17.
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Lemma 3.15. If g ∈ L2
0(π) and (3.2) holds, then

lim
n→∞

[
‖H̄n − H̄m‖2 − 2

m
〈V̄ng,QVmg〉

]
= − 2

m
〈V̄mg,QVmg〉 −

∥∥∥∥
QVmg

m

∥∥∥∥
2

.

Lemma 3.16. If g ∈ L2
0(π) and ‖g‖+ <∞, then

lim sup
n→∞

〈V̄ng,QVmg〉 ≤ 1

2

m∑

k=1

‖Qkg‖2
+ +

1

2
‖QVmg‖2 + 〈g, VmQg〉;

and if g admits a martingale approximation, then the limit exists and there is equality.

Theorem 3.17. g admits a martingale approximation iff (3.2) holds and

(3.21) lim
m→∞

1

m

m∑

k=1

‖Qkg‖2
+ = 0.

Proof of Theorem 3.17. Suppose first that g admits a martingale approxi-

mation. Then ‖Vng‖ = o(
√
n) and limm→∞[limn→∞ ‖H̄n− H̄m‖2] = 0 by Proposition

3.2. Next, by Lemmas 3.15 and 3.16,

lim
n→∞

‖H̄n − H̄m‖2 = lim
n→∞

2

m
〈V̄ng,QVmg〉 −

[
2

m
〈V̄mg,QVmg〉+

∥∥∥∥
QVmg

m

∥∥∥∥
2
]

=
1

m

m∑

k=1

‖Qkg‖2
+ +

1

m
‖QVmg‖2 +

2

m
〈g,QVmg〉

− 2

m
〈V̄mg,QVmg〉 −

∥∥∥∥
QVmg

m

∥∥∥∥
2

.

Since ‖Vmg‖ = o(
√
m), the last four terms on the right approach 0 as m→∞, and,

therefore, so does the first. This establishes the necessity of (3.21).

Next suppose that (3.2) and (3.21) hold, then limm→∞[lim supn→∞ ‖H̄n−H̄m‖2] =

0, by Lemmas 3.15 and 3.16. It follows easily that, supn≥1 ‖H̄n‖ <∞, which implies

H̄1, H̄2, . . . is weakly compact in L2(π1). Let H∗ denote any weak limit point of

H̄1, H̄2, , . . .. Then ‖H∗− H̄m‖ ≤ lim supn→∞ ‖H̄n− H̄m‖ for each m (cf. [12], p. 68).

Thus, limm→∞ ‖H̄m−H∗‖ = 0 from which the converse follows from Proposition 3.2.

¤
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Proof of Lemma 3.15. To begin, write

‖H̄n − H̄m‖2 = ‖(V̄n − V̄m)g‖2 − ‖Q(V̄n − V̄m)g‖2

= 〈(I +Q)(V̄n − V̄m)g, (I −Q)(V̄n − V̄m)g〉

= 2

〈
(V̄n − V̄m)g,

(
QVmg

m
− QVng

n

)〉
−

∥∥∥∥
QVmg

m
− QVng

n

∥∥∥∥
2

;

and when the first term in the last line is expanded, it becomes

2

m
〈V̄ng,QVmg〉 − 2

n
〈V̄ng,QVng〉 − 2

m
〈V̄mg,QVmg〉+

2

n
〈V̄mg,QVng〉.

The lemma now follows directly from (3.2) and the mean ergodic theorem, which

implies that all those terms multiplied by 1/n approach 0 as n→∞. ¤

Proof of Lemma 3.16. Writing

〈V̄ng,QVmg〉 =
m∑

k=1

〈V̄ng,Qkg〉,

and using (3.6), then

〈V̄ng,QVmg〉 =
m∑

k=1

[
〈V̄nQkg,Qkg〉+ 〈Vkg,Qkg〉 − 1

n
〈QVnVkg,Qkg〉

]
.

Here

m∑

k=1

〈Vkg,Qkg〉 =
m∑

k=1

k∑
j=1

〈Qj−1g,Qkg〉

=
1

2

m∑

k=1

m∑
j=1

〈Qjg,Qkg〉 − 1

2

m∑
j=1

‖Qjg‖2 + 〈g, VmQg〉

=
1

2
‖VmQg‖2 − 1

2

m∑
j=1

‖Qjg‖2 + 〈g, VmQg〉.

Combining terms together,

〈V̄ng,QVmg〉 =
1

2

m∑

k=1

[
2〈V̄nQkg,Qkg〉 − ‖Qkg‖2

]

+
1

2
‖QVmg‖2 + 〈g, VmQg〉 −

m∑

k=1

1

n
〈QVnVkg,Qkg〉.
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The first assertion follows directly from (3.2) and (3.5). So does the second; for if g

admits a martingale approximation, then the limit exists in the definition of ‖Qkg‖+ .

¤

3.5 The Fractional Poisson Equation

It is possible to attach a meaning to the symbol
√
I −Q by replacing t with Q in

the series expansion of
√

1− t. The definition may be written

√
I −Q = I −

∞∑

k=1

βkQ
k,

where βk = (−1)k−1
(
1/2
k

)
and the series converges in the operator norm, since βk ∼

1/(2
√
πk3/2) as k →∞. A function h ∈ L2

0(π) is said to solve the fractional Poisson

equation (for g) if g =
√

(I −Q)h. The relation between the existence of a solution

to the fractional Poisson equation and the existence of a martingale approximation

is considered in this section for co-isometries and normal operators (QQ∗ = Q∗Q).

Lemma 3.18. If g ∈
√

(I −Q)L2
0(π), then ‖Vng‖ = o(

√
n); and if g =

√
(I −Q)h =

√
(I −Q∗)h∗, then ‖g‖2

+ = 〈(I +Q)h, h∗〉.

Proof. Observe that (I − Qk)Vn = (I − Qn)Vk. So, if g =
√

(I −Q)h, then

Vng =
∑∞

k=0 βk(I −Qk∨n)Vk∧nh, where ∧ (∨) denotes minimum (maximum). Using

the mean ergodic theorem, ‖Vnh‖ = o(n), then

‖Vng‖ ≤ 2
∞∑

k=0

βk‖Vk∧nh‖ = 2
∞∑

k=0

βko(k ∧ n) = o(
√
n),

establishing the first assertion. If, in addition, g =
√

(I −Q∗)h∗, then ‖g‖2 =

〈(I −Q)h, h∗〉, and

〈V̄ng, g〉 = 〈(I −Q)V̄nh, h
∗〉 = 〈h, h∗〉 − 1

n
〈QVnh, h∗〉 → 〈h, h∗〉,
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using the mean ergodic theorem again in the final step. Thus, in view of (3.5),

‖g‖2
+ = limn→∞[2〈V̄ng, g〉 − ‖g‖2] = 〈(I + Q)h, h∗〉; similar calculations also appear

in [11]. ¤

Normal Operators. As an interesting generalization of [26] in the reversible

case, it is known, [5, 10, 18], that if Q is a normal operator and there is a solution

to the fractional Poisson equation, then g admits a martingale approximation. This

result can be easily deduced from our Theorem 3.17. Recall that if R is any bounded

normal operator on a Hilbert Space H, then
√
I −R and

√
I −R∗ have the same

range (cf. [10], Lemma 2).

Proposition 3.19. Suppose that Q is normal, then any g ∈
√

(I −Q)L2
0(π) admits

a martingale approximation.

Proof. If g ∈
√

(I −Q)L2
0(π), then (3.2) follows from Lemma 3.18, and it

suffices to establish (3.21). Since the ranges of
√

(I −Q) and
√

(I −Q∗) are the

same, there are h, h∗ ∈ L2
0(π) for which g =

√
(I −Q)h =

√
(I −Q∗)h∗. Then

Qkg =
√

(I −Q)Qkh =
√

(I −Q∗)Qkh∗, so that ‖Qkg‖2
+ = 〈(I + Q)Qkh,Qkh∗〉.

Thus, letting R = Q∗Q, ‖Qkg‖2
+ = 〈(I +Q)h,Rkh∗〉, and it is necessary to show

(3.22) lim
m→∞

1

m

m∑

k=1

〈(I +Q)h,Rkh∗〉 = 0.

To see this let R be the closure of (I − R)L2
0(π). Then R⊥ consists of all f for

which Rf = f , and Q, Q∗, and R map both R and R⊥ into themselves. Write

h = h1 + h2 with h1 ∈ R, h2 ∈ R⊥, and let gi =
√

(I −Q)hi. Then g1 ∈ R

and g2 ∈ R⊥, since Q maps R and R⊥ into themselves. Next, write h∗ = h∗1 + h∗2

with h∗1 ∈ R, h∗2 ∈ R⊥, then gi =
√

(I −Q∗)h∗i by the uniqueness of direct sum
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decomposition of g. Returning to (3.22), we have

〈(I +Q)h,Rkh∗〉 = 〈(I +Q)h1, R
kh∗1〉+ 〈(I +Q)h2, h

∗
2〉

= 〈(I +Q)h1, R
kh∗1〉+ ‖g2‖2

+

by orthogonality and Lemma 3.18. It will be first shown that ‖g2‖+ = 0; to see it,

note Rg2 = g2, then

‖Vng2‖2 = 2
n−1∑
j=0

n−1∑

k=j

〈Qjg2, Q
kg2〉 −

n−1∑
j=0

‖Qjg2‖2

= 2
n−1∑
j=0

〈g2, Vn−jg2〉 − n‖g2‖2 = n
[
2〈g2, V̄ng2〉 − ‖g2‖2

]
,

thus, ‖g2‖+ = 0 follows from (3.5) and Lemma 3.18. That (3.22) holds when h∗1 ∈

(I − R)L2
0(π) is clear by forming a telescoping sum, and the boundary case then

follows by approximation. ¤

Co-isometries. The existence of a solution to the fractional Poisson equation

does not imply the existence of a martingale approximation for co-isometries. Here

is a simple example.

Example 3.20. Let . . . , ξ−1, ξ0, ξ1, . . . be i.i.d. with mean 0 and unit variance;

consider the shift processWk = (. . . , ξk−1, ξk). For j ≥ 0, let aj = 1/[
√

(j + 1) log(j+

2)] and define h by

h(W0) =
∞∑
j=0

ajξ−j,

so that h(Wk) is a linear process. Then g =
√

(I −Q)h admits a solution to the

fractional Poisson equation, and

g(W0) =
∞∑

k=1

βk(I −Qk)h(W0) =
∞∑
j=0

cjξ−j

with

cj =
∞∑

k=1

βk(aj − aj+k),
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after some straightforward calculation. Observe that aj − aj+k ≥ 0 for all j ≥ 0 and

k ≥ 1, and that aj+k ≤ 3aj/4 for all k ≥ j + 1 and all j ≥ 0. So,

cj ≥ 1

4
aj

∞∑

k=j+1

βk ≥
(

aj
9
√
j

)

for all sufficiently large j. Therefore, bn = c0 + · · · + cn → ∞, and also, its Cesàro

average b̄n →∞ as n→∞. No martingale approximation can exist.

However, the existence of solutions to both the forward and backward fractional

Poisson equations, does imply the existence of a martingale approximation.

Proposition 3.21. Suppose Q is a co-isometry and the chain has a trivial left tail

field, and if g ∈
√

(I −Q)L2
0(π) ∩

√
(I −Q∗)L2

0(π), then g admits a martingale

approximation.

Proof. As in Section 3.3, we can take H = L 2
0 (π), and there is an orthogonal

invariant splitting, H = ⊕j∈JHj. Let g =
√

(I −Q)h for some h ∈ H, g =
∑

j∈J gj,

and h =
∑

j∈J hj with gj, hj ∈ Hj for all j. Clearly g =
∑

j∈J
√

(I −Q)hj and,

therefore, gj =
√

(I −Q)hj, by taking the projection on each Hj. Similarly, g =

√
(I −Q∗)h∗, where h∗ =

∑
j∈J h

∗
j with h∗j ∈ Hj, and gj =

√
(I −Q∗)h∗j for each

j. It then follows easily from Lemma 3.18 and Example 3.14 that limn→∞ |b̄n,j|2 =

‖gj‖2
+ = 〈(I + Q)hj, h

∗
j〉 exists for each j and that limn→∞ ‖b̄n‖2 = ‖g‖2

+ = 〈(I +

Q)h, h∗〉 exist. It then follows from (the proof of) Corollary 3.7 that bj = limn→∞ b̄n,j

exists for each j, so that b̄n converges weakly to b = (bj : j ∈ J). So, to show

convergence of b̄n in the norm of `2(J) and, therefore, the existence of a martingale

aproximation, it suffices to show that limn→∞ ‖b̄n‖2 = ‖b̄‖2; and this follows easily

from Lemma 3.18 which implies

lim
n→∞

‖b̄n‖2 = 〈(I +Q)h, h∗〉 =
∑
j∈J
〈(I +Q)hj, h

∗
j〉 =

∑
j∈J

|bj|2 = ‖b‖2. ¤
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3.6 The CCLT for Superlinear Processes

Let Fn denote the conditional distribution function of Sn/
√
n given W0,

Fn(w; z) = P

[
Sn√
n
≤ z|W0 = w

]
.

We will say that the conditional central limit theorem (CCLT) holds (with a
√
n

normalization) iff

lim
n→∞

E[S2
n]

n
= κ2 ∈ [0,∞)

and

lim
n→∞

∫

W
d[Φκ, Fn(w; ·)]π{dw} = 0,

where Φκ denotes the normal distribution function with mean 0 and standard devi-

ation κ, and d is the Lévy metric or any other bounded metric that metrizes weak

convergence of distribution functions.

It is clear that the existence of a martingale approximation implies the CCLT;

see, for example, [30]. It is also clear, for simple linear process as defined in (3.14),

CCLT necessarily requires the existence of martingale approximation. However, in

general, the converse is not true as shown in the example below. To proceed as in

Example 3.13, let Fj be the common distribution function of ξi,j, i = . . .− 1, 0, 1, . . .

and suppose that the Fj have mean 0 and bounded variances. Recall the notation

bn,j = c0,j + · · · + cn−1,j and b̄n,j = (b1,j + · · · + bn,j)/n and that bn = (bn,1, bn,2, . . .)

and b̄n may be regarded as elements of `2(N).

Example 3.22 (superlinear process revisited). Consider a superlinear process, de-

fined in (3.20), with ci,j = 0 for all j ≥ 2, bn,0 = cos(
√

log n), bn,1 = sin(
√

log n) , and

c0,j = c1,j = 0 for j = 0, 1. Then cn,j = bn,j − bn−1,j = O(1/(n
√

log n)) for j = 0, 1.

So, the process is well-defined. If F0 and F1 both have mean 0 and unit variance,



49

then the CCLT holds, but martingale approximation does not exist. To see this, first

observe that for any δ > 0,

∞∑

k=0

(bk+n,0 − bk,0)
2 ≤

(∑

k≤nδ
+

∑

k>nδ

)
[cos(

√
log(n+ k))− cos(

√
log k)]2

≤ 4nδ +
∑

k>nδ

(
n

2k
√

log k

)2

,

so that
∑∞

k=0(bk+n,0 − bk,0)
2 = o(n), and similarly,

∑∞
k=0(bk+n,1 − bk,1)

2 = o(n). So,

‖Vng‖2 = o(n). Next, for any ε > 0,

b̄n,0 − bn,0 =
1

n

n∑

k=1

[cos(
√

log k)− cos(
√

log n)]

≤ 1

n

∑

k≤nε
[cos(

√
log k)− cos(

√
log n)] +

1

n

∑

nε<k≤n
[
√

log n−
√

log k]

≤ 2ε+
1

n

∑

nε<k≤n

n− k

2k
√

log k
≤ 2ε+

1

n
(n− nε)

1

2ε
√

log(nε)

for all large n. It follows that b̄n,0 − bn,0 = o(1). Similarly b̄n,1 − bn,1 = o(1), and

therefore, b̄2n,0+b̄
2
n,1 → 1. So, applying Theorem 2 of [45], CCLT holds; but martingale

approximation does not exist since b̄n,j does not converge for j = 0, 1. ¤

Next, we investigate some partial converses for superlinear processes.

Theorem 3.23. If the CCLT holds for all choices F1, F2, . . . with means 0 and unit

variances, then b̄n is pre-compact in `2(N); and if the CCLT holds for all F1, F2, . . .

with means 0 and bounded variances, then b̄n converges in `2(N).

Proof. If the CCLT holds, then (3.2) holds by Corollary 1 of [30]. So, by

Lemma 3.1, Sn = Mnn +Rnn, where ‖Rnn‖ = o(
√
n) and

Mnn =
∞∑
j=1

b̄n,jζn,j,

where ζn,j = ξ1,j + . . .+ ξn,j. So, if the CCLT holds for any choice of F1, F2, . . . with

means 0 and unit variances, then limn→∞ ‖b̄n‖2 = κ2. In particular, b̄n, n ≥ 1, are
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bounded and, therefore, weakly pre-compact. To show pre-compactness, it therefore

suffices to show that any weak limit point is a strong limit point. Let b ∈ `2(N) be

an arbitrary weak limit point and let N0 be a subsequence for which limn∈N0 b̄n = b.

Then limn∈N0 b̄n,j = bj for all j, and

lim
n∈N0

jn∑
j=1

[b̄n,j − bj]
2 = 0

for some subsequence jn → ∞. By thining the subsequence N0, if necessary, we

may suppose that jn, n ∈ N0 are strictly increasing. There is a strictly decreasing

sequence 1 > q1 > q2, . . . for which limn∈N0 nqjn = 0. Let pj = qj − qj+1 and let Fj

be the distribution which assigns mass 1
2
pj to ±1/

√
pj and mass 1 − pj to 0. With

this choice of F1, F2, . . ., let

M̃n,n =

jn∑
j=1

b̄n,jζn,j.

Then P [ζn,j 6= 0] ≤ npj, and

P [Mn,n 6= M̃n,n] ≤ nqjn → 0

as n→∞ in N0. So, M̃n,n/
√
n has a limiting normal distribution with mean 0 and

variance κ2 and, therefore,

lim inf
n∈N0

jn∑
j=1

b̄2n,j = lim inf
n∈N0

1

n
E(M̃2

n,n) ≥ κ2,

and

lim
n∈N0

∞∑
j=jn+1

b̄2n,j = 0.

It follows easily that limn∈N0 b̄n = b in `2(N), and since b was an arbitrary weak limit

point, this establishes the first assertion.

The second assertion is now immediate. Setting all of the variances but one to

zero, shows that limn→∞ b̄2n,j exists for a fixed j, in which case limn→∞ b̄n,j exists,
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since |bn+1,j − b̄n,j| = O(
√
n), as in the proof of Corollary 3.7. It then follows that b̄n

converges weakly, from which the assertion follows since b̄n, n ≥ 1, are pre-compact.

¤



CHAPTER IV

Law of the Iterated Logarithm

4.1 Introduction

Let . . . X−1, X0, X1, . . . denote a centered, square integrable, (strictly) stationary

and ergodic process, defined on a probability space (Ω,A, P ), with partial sums

denoted by Sn = X1 + · · · + Xn. The main question addressed is the Law of the

Iterated Logarithm: under what conditions is

(4.1) lim sup
n→∞

Sn√
2n log2 n

= σ w.p.1

for some 0 ≤ σ < ∞, where log2 n = log log n. Of course, (4.1) holds if the Xi are

independent, by the classic work of Hartman and Wintner [22], and more generally–

for example, [37], [23], and [34]. Here we employ an approach which has been used

recently in the study of the central limit question for stationary processes, martingale

approximations.

As in Maxwell and Woodroofe [30], it is convenient to suppose that Xk is of

the form Xk = g(Wk), where . . .W−1,W0, W1, . . . is a stationary, ergodic Markov

chain. The state space, transition function, and (common) marginal distribution are

denoted by W , Q, and π; thus, π(B) = P [Wn ∈ B], and

Qf(w) = E[f(Wn+1)|Wn = w]

52
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for a.e. w ∈ W , measurable B ⊆ W , and f ∈ L1(π). The iterates of Q are denoted

by Qk. It is also convenient to suppose that the probability space Ω is endowed with

an ergodic, measure preserving transformation θ for which Wk ◦ θ = Wk+1 for all k.

Neither convenience entails any loss of generality, since we may let the probability

space be RZ, Xk be the coordinate functions, Wk = (. . . Xk−1, Xk), and θ be the shift

transformation. Some other choices of Wk are considered in the examples.

Let ‖ · ‖ denote the norm in L2(P ), Fk = σ(. . . ,Wk−1,Wk), and recall the main

result of [30]; if

(4.2)
∞∑
n=1

n−3/2‖E(Sn|F0)‖ <∞,

then

(4.3) σ2 := lim
n→∞

1

n
E(S2

n)

exists and is finite, and

(4.4) Sn = Mn +Rn,

where Mn is a square integrable martingale with ergodic, stationary increments,

and ||Rn|| = o(
√
n). It is shown in [30] that if (4.2) holds, then the conditional

distributions of Sn/
√
n, given F0 converge in probability to the normal distribution

with mean 0 and variance σ2 (See their Corollary 1). It can also be shown that (4.2)

is best possible through Peligrad and Utev [32].

To state the main result of this chapter, let ` be a positive, nondecreasing and

slowly varying (at ∞) function and let

`∗(n) =
n∑
j=1

1

j`(j)
.
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Theorem 4.1. If ` is a positive, slowly varying, nondecreasing function and

(4.5)
∞∑
n=1

n−
3
2

√
`(n) log(n)‖E(Sn|F0)‖ <∞,

then

lim
n→∞

Rn√
n`∗(n)

= 0 w.p.1.

Corollary 4.2. If (4.5) holds with `(n) = 1 ∨ log(n), then (4.1) holds.

Proof. In this case `∗(n) ∼ log2 n, so that Rn/
√
n log2 n→ 0 as n→∞, and

lim sup
n→∞

Sn√
2n log2 n

= lim sup
n→∞

Mn√
2n log2 n

both w.p.1. The corollary now follows from the Law of the Iterated Logarithm of

martingales–for example, Stout [37]. ¤

The next corollary strengthens the conclusion of [30] from convergence in probabil-

ity to convergence w.p.1, under a slightly stronger hypothesis. Kipnis and Varadhan

[26] call this an important question in a closely related context (see their Remark

1.7). Let Fn denote a regular conditional distribution function for Sn/
√
n given F0,

so that

Fn(ω; z) = P [
Sn√
n
≤ z|F0](ω)

for ω ∈ Ω and −∞ < z < ∞; and Φσ denote the normal distribution with mean 0

and variance σ2.

Corollary 4.3. If (4.5) holds with some ` for which 1/[n`(n)] is summable, then

Fn(ω; ·) converges weakly to Φσ for a.e. ω.

Proof. Let Gn be a regular conditional distribution for Mn/
√
n given F0. Then

Gn(ω; ·) converges weakly to Φσ for a.e. ω, essentially by the Martingale Central
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Limit Theorem, applied conditionally given F0. See [30] for the details. Moreover,

P [limn→∞Rn/
√
n = 0|F0] = 1 w.p.1, since P [limn→∞Rn/

√
n = 0] = 1, by Theorem

4.1. The corollary follows easily. ¤

A major contribution of this chapter is to obtain a simple, general sufficient con-

dition (4.5) for the LIL. Our results differ from those of Arcones [2], for example,

by not requiring normality, and those of Rio [34] by not requiring strong mixing.

In [29] Lai and Stout have a quite general result for strongly dependent variables.

Their results require a condition on the moment generating function of the delayed

partial sums, and only cover the upper half of LIL. Yokoyama [46] also uses mar-

tingale approximation in a similar setting to ours. His results require a martingale

approximation, as in (4.4) and bounds on higher moments of the remainder term.

The rest of this chapter is organized as follows. The proof of Theorem 4.1 is

outlined in Section 4.2, with supporting details in Sections 4.3 and 4.4. Invariance

principles are considered in Section 4.5, and examples in Section 4.6.

4.2 Outline of the Proof

In this section we give an outline of the proof for the main result. Let

(4.6) hε =
∞∑

k=1

Qk−1g

(1 + ε)k

and Hε(w0, w1) = hε(w1) − Qhε(w0). Thus Hε ∈ L2(π1), where π1 denotes the joint

distribution of W0 and W1. In [30] it is shown that if (4.2) holds, then H := limε↓0Hε

exists in L2(π1) and that (4.4) holds with Mn = H(W0,W1) + · · · + H(Wn−1,Wn).

Letting ξk = g(Wk)−H(Wk−1,Wk) leaves

(4.7) Rn =
n∑

k=1

ξk =
n∑

k=1

ξ0 ◦ θk
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in (4.4).

For appropriately chosen βk ∼ c/
√
k3`(k) (see (4.12), below), the series

(4.8) B(z) =
∞∑

k=1

βkz
k

converges for all complex |z| ≤ 1, is analytic in |z| < 1, B(1) = 1, and |1−B(z)| > 0

for z 6= 1. Letting T be the operator on L2(P ) defined by Tη = η ◦ θ, it is also true

that B(T ) converges in the operator norm. Thus,

(4.9) B(T )η =
∞∑

k=1

βkT
kη =

∞∑

k=1

βkη ◦ θk.

With this notation, there are two main steps to the proof. It is first shown that in

(4.7), ξ0 ∈ [I−B(T )]L2(P ), the range of I−B(T ), so that ξ0 = η0−B(T )η0 for some

η0 ∈ L2(P ). It is then shown that for any ξ ∈ [I−B(T )]L2(P ), with probability one,

lim
n→∞

1√
n`∗(n)

n∑

k=1

T kξ = 0.

The broad brush strokes follow Derriennic and Lin [11], but with complications.

Formally, the solution to the equation ξ0 = η0 −B(T )η0 is η0 = A(T )ξ0, where

(4.10) A(z) =
1

1−B(z)
=

∞∑

k=0

αkz
k,

but there are technicalities in attaching a meaning to A(T )ξ0.

4.3 Fourier Analysis

The Size of Rn. The first item of business is to estimate the size of ‖Rn‖. Here

and below, the symbol ‖·‖ is used more generally to denote the norm in an L2 space,

which may vary from one usage to the next.

Lemma 4.4. Let δj = 2−j. If (4.5) holds, then

∞∑
j=1

j
√
`(2j)

√
δj‖hδj‖ <∞,

where (now) ‖ · ‖ denotes the norm in L2(π).
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Proof. Let Vng = g +Qg + · · ·+Qn−1g, so that Vng(w) = E[Sn|W1 = w] and

‖Vng‖ ≤ 2||X0||+ ||E(Sn|F0)||. Then, rearranging terms in (4.6),

‖hδj‖ ≤ δj

∞∑
n=1

‖Vng‖
(1 + δj)n

,

and
∞∑
j=1

j
√
`(2j)

√
δj‖hδj‖ ≤

∞∑
n=1

[ ∞∑
j=1

j
√
`(2j)δ3

j

(1 + δj)n

]
‖Vng‖.

Comparing the inner sum to an integral for any fixed integer n ≥ 0, then

∞∑
j=1

j
√
`(2j)δ3

j

(1 + δj)n
≤ log2(e)

∫ 1

0

√
t`(2/t) log(2/t)

(1 + 1
2
t)n

dt.

By a change of variables and the dominated convergence theorem, using Potter’s

bound (cf. [4], page 25) to supply a dominating function, the integral on the right

hand side of last inequality is just

1√
n3

∫ n

0

√
t`(

2n

t
) log

(
2n

t

) (
1 +

t

2n

)−n
dt ∼

√
`(n) log(n)√

n3

∫ ∞

0

√
te−

1
2
tdt,

from which the lemma follows. ¤

Proposition 4.5. If (4.5) holds, then

(4.11) lim
n→∞

√
`(n)

‖Rn‖√
n

= 0 and
∞∑
n=1

√
`(n)

n3
‖Rn‖ <∞.

Proof. Let Hε(w0, w1) = hε(w1) − Qhε(w0), and Mn(ε) = Hε(W0,W1) + · · · +

Hε(Wn−1,Wn). Then, it is shown in [30] that Sn = Mn(ε) + Rn(ε) for each ε > 0

with Rn(ε) = εSn(hε) + Qhε(W0) − Qhε(Wn) and Sn(hε) = hε(W1) + · · · + hε(Wn).

So,

Rn = Mn(ε)−Mn + εSn(hε) +Qhε(W0)−Qhε(Wn)

and

‖Rn‖ ≤ ‖Mn(ε)−Mn‖+ (nε+ 2)‖hε‖ ≤
√
n‖Hε −H‖+ (nε+ 2)‖hε‖.
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Now let εn = 2−kn , where 2kn−1 ≤ n < 2kn . Then 1/(2n) ≤ εn = δkn ≤ 1/n, and

‖Hδj+1
−Hδj‖ ≤ 4

√
δj‖hδj‖, by Lemma 2 of [30],

‖Rn‖ ≤
√
n

∞∑

j=kn

‖Hδj+1
−Hδj‖+ 3‖hδkn

‖ ≤ 10
√
n

∞∑

j=kn

√
δj‖hδj‖.

Since kn ≤ j implies n < 2j, and so

∑

kn≤j

√
`(n)

n
≤

√
`(2j)

∑

n<2j

1

n
≤ 2j

√
`(2j),

then we derive

∞∑
n=1

√
`(n)

n3
‖Rn‖ ≤ 10

∞∑
j=1

[ ∑

kn≤j

√
`(n)

n

]√
δj‖hδj‖

≤ 20
∞∑
j=1

√
`(2j)j

√
δj‖hδj‖,

which is finite by the previous lemma. Thus, the series in (4.11) converges. That

√
`(n)‖Rn‖/

√
n → 0 then follows from the sub-additivity of ‖Rn‖; ‖Rm+n‖ ≤

‖Rm‖ + ‖Rn‖. Since ‖Rn‖ ≤ ‖Rk‖ + ‖Rn−k‖ for all k = 1, · · ·n − 1, and there-

fore, √
`(n)

n
‖Rn‖ ≤ 6

√
`(n)

n3

∑
1
4
n≤k≤ 3

4
n

‖Rk‖ ≤ 6
∑

1
4
n≤k≤ 3

4
n

√
`(k)

k3
‖Rk‖

for all sufficiently large n, and this approaches 0 as already shown. ¤

The Size of αn. Let

(4.12) βk =
c

k

∞∑

n=k

1√
n3`(n)

where c is chosen so that β1 + β2 + · · · = 1. Then, B(z) =
∑∞

k=1 βkz
k converges for

all |z| ≤ 1 in (4.8) and RB(z) < 1 for all z 6= 1, so that A(z) is well-defined in (4.10)

for all |z| ≤ 1, except z = 1. Observe that A(z)[1−B(z)] = 1 and, therefore,

(4.13) αn =
n∑

k=1

βkαn−k
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for n ≥ 1 and α0 = 1. Let

(4.14) b(t) = B(eit) =
∞∑

k=1

βke
ikt

for −π < t ≤ π.

Proposition 4.6. b is twice differentiable on −π < t 6= 0 < π, |1 − b(t)| ∼

κ0

√
|t|/

√
`(1/|t|), and

(4.15) |b′(t)| ∼ 2c
√
π√

|t|`(1/|t|) , |b′′(t)| ∼ κ2√
|t|3`(1/|t|)

as t→ 0, where κ0 6= 0 and κ2 are constants (identified) in the proof.

Proof. Clearly (4.14) is absolutely convergent, b is continuous, and b(0) = 1.

By Theorem 2.6 of Zygmund [49, p. 4], the formal expression for the derivative

(4.16) b′(t) = i

∞∑

k=1

[ ∞∑

n=k

c√
n3`(n)

]
eikt

converges uniformly on ε ≤ |t| ≤ π for any ε > 0, and therefore, is the derivative of

b. By Theorem 4.3.2 of [4, p. 207],

|b′(t)| ∼ 2c
√
π√

|t|`(1/|t|)

as t → 0. So, |1 − b(t)| ∼ 4c
√
π|t|/

√
`(1/|t|). Reversing the order of summation in

(4.16) (which can be justified by truncating the outer sum at K and letting K →∞)

gives us,

b′(t) = i

∞∑
n=1

[ n∑

k=1

eikt
] c√

n3`(n)
=

eit

1− eit

∞∑
n=1

(1− eint)
ic√
n3`(n)

= f(t)g(t),

where f(t) = eit/(1− eit) is continuously differentiable on −π < t 6= 0 < π, and g is

continuous. As above,

g′(t) =
∞∑
n=1

eint
c√
n`(n)
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converges uniformly on ε ≤ |t| ≤ π and

|g′(t)| ∼ c
√
π

1√
|t|`(1/|t|)

as t → 0. Hence, b is twice continuously differentiable on −π < t 6= 0 < π,

and the second relationship in (4.15) follows from b′′(t) = f ′(t)g(t) + f(t)g′(t) =

f(t)g′(t) + [ib′(t)/(1− eit)] and symmetry. ¤

In (4.10), A(z) is defined for all |z| ≤ 1, except z = 1. Let a(t) = A(eit) for

−π < t 6= 0 < π, then one can derive the following properties.

Corollary 4.7. a is twice differentiable on 0 < |t| < π, and

|a′(t)| ∼ 1

8c
√
π

√
`(1/|t|)√
|t|3 , and |a′′(t)| = O

(√
`(1/|t|)√
|t|5

)

as t→ 0.

Proof. This follows directly from (4.10) and Proposition 4.6. ¤

Proposition 4.8. Let αn be the coefficients of A(z), then 0 < αn ≤ 1 for all n ≥ 0

and

αn − αn+1 = O

(√
`(n)√
n3

)

as n→∞.

Proof. The first assertion follows easily from (4.13) and induction. By Proposi-

tion 4.6, a is absolutely integrable, so that 2παn =
∫ π

−π e
−inta(t)dt, and then

αn − αn+1 =
1

2π

∫ π

−π
e−inta∗(t)dt,

where a∗(t) = [1−e−it]a(t). Both a′∗(s) and sa′′∗(s) are integrable over (−π, π]. Hence,

integration by parts (twice) is justified and yields

αn − αn+1 =
1

2πin

∫ π

−π
e−inta′∗(t)dt =

1

2πn2

∫ π

−π
[1− e−int]a′′∗(t)dt.
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By Corollary 4.7, there is a C for which |a′′∗(t)| ≤ C
√
`(1/|t|)/|t|3 for all 0 < |t| ≤ π.

So

|αn − αn+1| = 1

2πn3

∣∣∣∣
∫ πn

−πn
[1− e−it]a′′∗(

t

n
) dt

∣∣∣∣

≤ C

2πn3

∫ πn

−πn
|1− e−it|

√
n3

|t|3 `(
n

|t|) dt

∼ C

2π

√
`(n)

n3

∫ ∞

−∞
|1− e−it| dt√

|t|3 ,

using Potter’s theorem again and monotonicity of `. This establishes the proposition.

¤

Existence of η0. We need the following fact which is easily deduced from Lemma

1.3 of Krengel [27, p. 4]: Let L2
0(P ) be the set of η ∈ L2(P ) with mean 0; if θ is

ergodic, then [I − T ]L2
0(P ) is dense in L2

0(P ). Recall the defintion of ξ0 in (4.7) and

expression for B(T ) in (4.9); observe that ξ0 ∈ L2
0(P ); and let AN(T ) =

∑N
n=0 αnT

n

and Un = T + · · ·+ T n.

Proposition 4.9. If (4.5) is satisfied, then η0 = limN→∞AN(T )ξ0 exists in L2(P ),

and ξ0 = [I −B(T )]η0.

Proof. From (4.7), we have Unξ0 = Rn. Then, summing by parts,

AN(T )ξ0 = ξ0 + αNRN +
N−1∑
n=1

(αn − αn+1)Rn.

In view of Propositions 4.5 and 4.8 and Karamata’s theorem, the sum converges in

L2(P ) and αNRN → 0.

For the second assertion, let ηN = AN(T )ξ0. Then, rearranging terms and using
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(4.13),

B(T )ηN =
∞∑

k=1

βk

N∑
j=0

αjT
j+kξ0

=
N∑
m=1

αmT
mξ0 +

∞∑
m=N+1

[ N∑
j=0

αjβm−j
]
Tmξ0

= ηN − ξ0 + CN(T )ξ0

where CN(T ) := I − [I − B(T )]AN(T ). So, it suffices to show that ‖CN(T )ξ0‖ → 0.

For this, first observe that, replacing T by z in the definition of CN(T ), 1−CN(z) =

[1 − B(z)]AN(z). Then CN(1) = 1 and the coefficients of CN(z) are all positive, so

that ‖CN(T )‖op ≤ 1, where ‖ · ‖op stands for operator norm. So, it suffices to show

that ‖CN(T )ξ‖ → 0 for all ξ ∈ [I − T ]L2
0(P ), a dense subset of L2

0(P ). This is easy:

for if ξ = ψ − Tψ, then

CN(T )ξ =
N∑
j=0

αj
[
βN+1−jTN+1ψ +

∞∑
m=N+1

(βm+1−j − βm−j)Tmψ
]

and

‖CN(T )ξ‖ ≤ 2‖ψ‖
N∑
j=0

αjβN+1−j → 0

as N →∞ by (4.13) and Proposition 4.8. ¤

4.4 Ergodic Theory

Some preparation is necessary for the second step. First, for any η ∈ L2(P ), η∗ :=

supn≥1 Un|η|/n ∈ L2(P ) by the Dominated Ergodic Theorem (see, for example, Kren-

gel [27, p. 52]). We will also use the following fact:

(4.17) E
(√

(η2)∗
)
≤ 2||η||,

whose proof is essentially an application of the Maximal Ergodic Theorem [33, Corol-

lary 2.2] to (η2)∗.

The proof of Theorem 4.1 will be completed by proving:
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Theorem 4.10. If ξ ∈ [I −B(T )]L2(P ), then

lim
n→∞

Unξ√
n`∗(n)

= 0 w.p.1.

Proof. By assumption, there is an η ∈ L2(P ) for which, ξ = η − B(T )η =

∑∞
k=1 βk[η − T kη], and there is no loss of generality in supposing that η ∈ L2

0(P ).

Observe that |T kη|p = T k(|η|p) for any integer k ≥ 0 and real p > 0, and write

Unξ = Inη + IInη,

where

Inη =
n∑

k=1

βkUn[η − T kη],

and

IInη =
∞∑

k=n+1

βkUn[η − T kη].

If k > n, then |Un(η − T kη)| ≤ |Unη|+ |UnT kη| ≤ [η∗ + T kη∗]n. So,

|IInη| ≤ n

∞∑

k=n+1

βk[η
∗ + T kη∗].

Here
∞∑

k=n+1

βkT
kη∗ ≤

∞∑

k=n+1

∆βkUkη
∗ ≤

∞∑

k=n+1

k∆βkη
∗∗,

where ∆βk = βk − βk+1 and η∗∗ = supk≥1 Ukη
∗/k. Observing that

∞∑

k=n+1

(βk + k∆βk) = nβn+1 + 2
∞∑

k=n+1

βk,

Thus,

|IInη| ≤ n(η∗ ∨ η∗∗)[
∞∑

k=n+1

βk +
∞∑

k=n+1

k∆βk
]

= (η∗ ∨ η∗∗)×O

(√
n

`(n)

)
,

and

(4.18) lim
n→∞

IInη√
n`∗(n)

= 0 w.p.1.
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Similarly, for k ≤ n, Unη − UnT
kη = Ukη − UkT

nη, then

Inη =
n∑

k=1

βkUkη −
n∑

k=1

βkUkT
nη.

Letting γj =
∑∞

k=j βk and recalling (4.12), we have

n∑
j=1

γ2
j ∼ (4c)2

(
n∑
j=1

1

j`(j)

)
= (4c)2`∗(n),

and

|Inη| ≤
n∑

k=1

βk

k∑
j=1

[
T j|η|+ T j+n|η|] ≤

n∑
j=1

γj
[
T j|η|+ T j+n|η|]

≤
√√√√

n∑
j=1

γ2
j ×

√√√√2×
2n∑
j=1

T jη2.

Using (4.17), there exists a constant C > 0, such that

E

(
sup
n

|Inη|√
n`∗(n)

)
≤ C||η||,

where C doesn’t depend on η. Hence, to show

(4.19) lim
n→∞

Inη√
n`∗(n)

= 0 w.p.1

for each η ∈ L2
0(P ), one only needs to consider η ∈ (I − T )L2

0(P ), a dense subset

in L2
0(P ), and this is easy. If η = φ − Tφ for some φ ∈ L2

0(P ), then UkT
nη =

T n+1φ− T k+n+1φ for 1 ≤ k ≤ n, so that

|Inη| ≤ |T
n∑

k=1

βk(φ− T kφ)|+ |T n+1

n∑

k=1

βk(φ− T kφ)| ≤ T φ̃+ T n+1φ̃,

where

φ̃ =
∞∑

k=1

βk|φ− T kφ| ∈ L2(P ).

Since φ̃ ∈ L2(P ), limn→∞ T n+1φ̃/
√
n = 0 w.p.1 by an easy application of the Borel-

Cantelli lemmas, and therefore, limn→∞ Inη/
√
n`∗(n) = 0 w.p.1. The theorem now

follows by combining (4.18) and (4.19). ¤
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4.5 Invariance Principles

Let C[0, 1] be the space of all real-valued continuous functions on [0, 1], endowed

with the metric

ρ(x, y) = sup
0≤t≤1

|x(t)− y(t)|,

where x, y ∈ C[0, 1]. For any ν ≥ 0, let Kν denote the set of absolutely continuous

functions x ∈ C[0, 1] such that x(0) = 0 and

∫ 1

0

[x′(t)]2 dt ≤ ν2.

Set S0 = M0 = 0, define sequences of random functions {θn(·)} and {ζn(·)} respec-

tively by

θn(t) =
Sk + (nt− k)Xk+1√

2n log2(n)

ζn(t) =
Mk + (nt− k)(Mk+1 −Mk)√

2n log2(n)

for k ≤ nt ≤ k + 1, k = 0, 1, · · · , n− 1. Then θn, ζn ∈ C[0, 1].

Corollary 4.11. If the hypothesis in Corollary 4.2 holds, then w.p.1, {θn}n≥3 are

relatively compact in C[0, 1], and the set of limit points is Kσ.

Proof. Under the hypothesis, (4.3) and (4.4) hold, then

ρ(θn, ζn) ≤ max
k≤n

|Rk|√
2n log2(n)

→ 0 w.p.1,

which implies that θn and ζn have the same limit points; and the limit points of ζn

are known to be Kσ w.p.1 (see, for example, Heyde and Scott [23], Corollary 2). ¤

Let

Bn(t) =
1√
n
Sbntc
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for 0 ≤ t < 1,Bn(1) = Bn(1−), where b·c denotes the integer part. Then Bn ∈ D[0, 1],

the space of cadlag functions as described in Chapter 3 of Billingsley [3]. Let Fn

denote a regular conditional distribution for Bn given F0, so that Fn(ω;B) = P [Bn ∈

B|F0](ω) for Borel sets B ⊆ D[0, 1]; and let Φσ denote the distribution of σB, where

B is a standard Brownian motion. Let ∆ denote the Prokhorov metric on D[0, 1] (cf.

[3], page 72).

Corollary 4.12. If the hypothesis in Corollary 4.3 holds, then

(4.20) lim
n→∞

∆[Fn(ω; ·),Φσ] = 0 a.e. ω

Proof. For Sn = Mn + Rn, let M∗
n(t) = Mbntc/

√
n, 0 ≤ t < 1 and M∗

n(1) =

M∗
n(1−). Let Gn denote a regular conditional distribution for the random element

M∗
n given F0. Then Gn(ω; ·) converges to Φσ for a.e. ω (P), by verifying Theorem

2.5 of Durrett and Resnick [14] in view of the mean ergodic theorem. Under the

hypothesis of Corollary 4.3, max1≤k≤n |Rk|/
√
n→ 0 w.p.1, and therefore,

ρ(M∗
n,Bn) = sup

0≤t≤1
|M∗

n(t)− Bn(t)| → 0 w.p.1.

(4.20) follows. ¤

4.6 Examples

In this section, we illustrate our conditions by considering linear processes, addi-

tive functionals of a Bernoulli shift, and ρ-mixing processes.

Linear processes. Let . . . ε−1, ε0, ε1, . . . be an ergodic stationary martingale dif-

ference sequence with common mean 0 and variance 1. Define a linear process

Xk =
∞∑
j=0

ajεk−j,

where a0, a1, . . . is a square summable sequence, and observe that Xk is of the form

g(Wk) with Wk = (. . . , εk−1, εk).
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Proposition 4.13. Suppose an = O [1/(nL(n))], where L(·) is a positive, non-

decreasing, slowly varying function. If

(4.21)
∞∑
n=2

logα(n)

nL(n)
<∞

with α = 3/2, then (4.5) holds with `(n) = 1 ∨ log(n) and, thus the conclusions to

Corollaries 4.2 and 4.11; Furthermore, if (4.21) holds with some α > 3/2, then also

the conclusions to Corollaries 4.3 and 4.12.

Proof. Letting sj,n = aj+1 + · · · + aj+n, straight forward calculations yield

that

‖E[Sn|F0]‖2 =
∞∑
j=0

s2
j,n.

If j ≥ 3, then

|sj,n| ≤ C

L(j)

∫ j+n

j

1

x
dx ≤ C

L(j)
log(1 +

n

j
)

for some constant C > 0, and therefore,

∞∑
j=3

s2
j,n ≤ C2

∫ ∞

2

1

L2(x)
log2(1 +

n

x
) dx

= nC2

∫ n/2

0

1

L2(n/t)

log2(1 + t)

t2
dt = O

[
n

L2(n)

]
,

where the last step follows from the dominated convergence theorem, using Potter’s

bound to supply the dominating function, or by Fatou’s lemma. It is then easily

verified that ‖E(Sn|F0)‖ = O[
√
n/L(n)], and the proposition is an immediate con-

sequence. ¤

Remark 1. If L(n) ∼ logβ(n), then (4.21) requires β > 5/2. This is similar to,

but not strictly comparable with, the results of Yokoyama [46], who required finite

moments of order p > 2 and β ≥ 1 + (2/p).
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Additive Functionals of the Bernoulli Shift. Now consider a Bernoulli shift

process, say

Wk =
∞∑
j=1

1

2j
εk−j+1,

where . . . ε−1, ε0, ε1, . . . are i.i.d. random variables that take the values 0 and 1 with

probability 1/2 each. Then W = [0, 1], π is the uniform distribution, and

Qf(w) =
1

2

[
f

(w
2

)
+ f

(
1 + w

2

)]

for f ∈ L1. Next, consider a stationary process of the form Xk = g(Wk), where g

is square integrable with respect to π and has mean 0. In this case, it is possible to

relate (4.5) to a weak regularity condition on g.

Proposition 4.14. If

(4.22)

∫ 1

0

∫ 1

0

[g(x)− g(y)]2

|x− y| log
5
2
+δ

[
log

(
1

|x− y|
) ]

dxdy <∞

for some δ > 0, then the conclusions to Corollaries 4.3 and 4.12 hold, and so also

those of Corollaries 4.2 and 4.11.

Proof (sketched). The proof involves showing that (4.22) implies (4.5), for

which, `(n) can be chosen such that `∗(n) remains bounded. The details are similar

to the proof of Proposition 3 of Maxwell and Woodroofe [30], and will be omitted.

¤

ρ-mixing processes. Our condition (4.5) can be checked when a mixing rate is

available for a ρ-mixing process, see [31, pp. 4-5] for a definition.

Corollary 4.15. Let ρ(n) be the ρ-mixing coefficients of a centered, square integrable,

stationary process (Xk)k∈Z. If ρ(n) = O(logγ n) for some γ > 5/2, as n → ∞, then

(4.1) holds.
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Proof (outline). Let Sn = X1 + · · ·+Xn and h(x) = (1∨ log x)3/2. By a similar

argument as in [31, p. 15], one can easily show that, for some constant C > 0,

∞∑
r=0

h(2r)||E(S2r |F0)||
2r/2

≤ C

∞∑
j=0

h(2j)ρ(2j) <∞.

Since ||E(Sn|F0)|| is sub-additive, it’s then straightforward to argue as in Lemma

2.7 of [32], that
∞∑
n=1

h(n)||E(Sn|F0)||
n3/2

<∞.

Therefore, (4.1) holds by Corollary 4.2. ¤

Remark 2. Shao [36] showed that LIL holds when ρ(n) = O(logγ n) for some

γ > 1, but through a completely different approach.



CHAPTER V

Conditional Central Limit Theorem

5.1 The Problem

This is the only chapter where there is no theorem yet. Following the notations

in Chapters III and IV, let W0,W1, . . . be an ergodic and strictly stationary Markov

chain with measurable state space (W ,B), and let π,Q denote the invariant distri-

bution and transition kernel. Consider g ∈ L2
0(W , π), the space of square-integrable

functions with mean 0 under π; and let

Sn(g) := g(W1) + · · ·+ g(Wn).

The purpose of this chapter is to further pursue a study of conditional central

limit questions with σn normalization, where σn = σn(g) := ‖Sn(g)‖, and ‖ · ‖ stands

for L2 norm. Varying g, the standard deviation, σn(g), may exhibit diffent kinds

of behavior; see an example below. The linear case, σ2
n ∼ nκ for some κ ≥ 0, has

been well understood (e.g., [30, 47]); but the general case, including sublinear and

superlinear, requires further investigations. To state the conditional central limit

theorem (CCLT), let S∗n := Sn/σn, and let Fn denote the conditional distribution

function

Fn(w; z) := P (S∗n ≤ z|W0 = w).

70
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The CCLT asserts that

(5.1) lim
n→∞

∫

W
∆[Φ, Fn(w; ·)]π(dw) = 0,

where Φ is the standard normal distribution, and ∆ denotes the Lévy metric which

metrizes the weak convergence in (R,B(R)).

It is shown in Wu and Woodroofe [45] that, if (5.1) holds, then necessarily νn =

o(σn), which entails σ2
n = n`(n) for some slowly varying `(·). Our aim here is to find a

simple and usable criterion for (5.1). The importance of CCLT has been discussed in

[7] and [45]. We recall here, CCLT will gurantee CLT, but not vice versa (cf. Example

1 of [45]). CCLT also bears relevance to MCMC, since (5.1) implies the asymptotic

normality of S∗n even when the chain starts at certain different distribution other

than π.

5.2 Reversible Markov Chains

In the context of reversible Markov chains, it has been a well-known result, due

to Kipnis and Varadhan [26], that if

lim
n→∞

E[S2
n(g)]

n
→ σ2 ∈ [0,∞),

then (5.1) holds. A natural question is then, to what extent, can the result be

extended to σ2
n = n`(n)? To study this question, we first present a lemma, which

points some direction along the line in [45].

Lemma 5.1. Suppose the chain is reversible, i.e., Q = Q∗, then σ2
n = n`(n) for

some slowly-varying function `(·) iff ‖Vng‖ = o(σn).
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Proof. One direction has been shown in [45]; now let us look at the other

direction, assuming σ2
n = n`(n). The following calculation is straightforward:

‖Vng‖2 =
n−1∑
j=0

n−1∑

k=0

〈g,Qk+jg〉

=
n−1∑
i=0

(i+ 1)〈g,Qig〉+
2n−2∑
i=n

(2n− 1− i)〈g,Qig〉

=
2n−2∑
i=0

(2n− 1− i)〈g,Qig〉 − 2
n−1∑
i=0

(n− 1− i)〈g,Qig〉

=
1

2

[
σ2

2n−1 + (2n− 1)‖g‖2
]− [

σ2
n−1 + (n− 1)‖g‖2

]

=
1

2
σ2

2n−1 − σ2
n−1 +

1

2
‖g‖2.

The assertion of the lemma then follows easily. ¤

Lemma 5.1 assures martingale approximations in triangular array under the single

condition σ2
n = n`(n), but it is still unclear whether (5.1) holds. Dalibor Volný

(personal communications) indicated an example for which, the variances σ2
n = n`(n),

growing nonlinearly, and the CLT fails. So some additional conditions may be needed.

Just to illustrate the approach, as developed in [45], is not as effective as we have

expected, we shall now study Hn/
√
`(n), where Hn = V̄ng(w1)−QV̄ng(w0). One can

show Hn/
√
`(n) is not Cauchy when `(n) →∞. First, by simple algebra,

∥∥∥∥∥
Hn√
`(n)

− Hm√
`(m)

∥∥∥∥∥

2

=
1

`(n)
‖Hn‖2 +

1

`(m)
‖Hm‖2 − 2√

`(m)`(n)
〈Hm, Hn〉,

where

〈Hm, Hn〉 = 〈V̄ng(w1)−QV̄ng(w0), V̄mg(w1)−QV̄mg(w0)〉

= 〈V̄ng, V̄mg〉 − 〈QV̄ng,QV̄mg〉

= 〈V̄ng, V̄mg〉 − 〈Q2V̄ng, V̄mg〉

= 〈(I −Q2)V̄ng, V̄mg〉

= 〈(V2 − 1

n
QVnV2)g, V̄mg〉
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then for any fixed m,

lim
n→∞

∥∥∥∥∥
Hn√
`(n)

− Hm√
`(m)

∥∥∥∥∥

2

= 1 +
1

`(m)
‖Hm‖2,

in view of the mean ergodic theorem. Letting m→∞,

lim
m→∞


lim sup

n→∞

∥∥∥∥∥
Hn√
`(n)

− Hm√
`(m)

∥∥∥∥∥

2

 = 2 6= 0.

So even in the context of reversible chains, more tools will be needed.

The Metropolis-Hastings algorithm. We shall construct Markov chains using the

Metropolis-Hastings algorithm. Let

Wn =





Wn−1 if Un ≤ p(Wn−1)

Yn o.w.

where Un are i.i.d. U(0,1), Yn are i.i.d. with symmetric density f(y), and p(x) is

some symmetric function with range [0, 1). To make the chain stationary, one can

choose the common distribution π for Wn to be with density

π(x) =
c0f(x)

1− p(x)
,

where c0 is a normalizing constant. It is easy to check that the chain is also ergodic.

The transition kernel of the chain is given by

(5.2) Q(x; dy) = p(x)δx{dy}+ (1− p(x))F{dy}

where δx(·) is the Dirac measure putting unit mass at x, and F is the distribution

corresponding to the density f(y). Then for any F -integrable function g : R→ R,

Qg(x) = p(x)g(x) + (1− p(x))κg

where κg =
∫
g(y) dF = E[g(Y1)]. Thus, in particular, when g is odd,

Qg(x) = p(x)g(x).
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Now let us look at the functional g(x) = x which is an odd function, then

Qg(x) = p(x)x, Q2g(x) = (p(x))2x, · · · , Qng(x) = (p(x))nx.

Specializing p(x) = exp(−1/|x|), then obviously p(x) ∈ [0, 1) for any x ∈ R. It is

worth observing here h(x) := x/(1− p(x)) formally solves Poisson’s equation

x = g(x) = (I −Q)h(x),

but h /∈ L2(π). Further, let the density of F be

f(x) =
1− p(x)

κ0(1 + |x|)4
∼ 1

κ0|x|5 ,

then

π(x) =
3

2(1 + |x|)4
.

It follows that

〈g,Qng〉 =

∫

R
[p(x)]nx2π(x) dx =

∫

R
e−

n
|x|

x2 dx

(1 + |x|)4
=

∫

R
e−

1
|y|

n3y2

(1 + n|y|)4
dy.

Using

exp

(
− 1

|y|
)

y2

( 1
n

+ |y|)4
≤ exp

(
− 1

|y|
)

1

y2
,

and applying the dominated convergence theorem, it can be shown that

〈g,Qng〉 ∼ C
1

n

for some constant C > 0. Further, one can show

σ2
n

n
= 2

n−1∑

k=0

(1− k

n
)〈g,Qkg〉 − ‖g‖2 ∼ 2C

n−1∑

k=0

1

k
+ constant ∼ 2C log(n).

Thus, σ2
n = n`(n) with `(n) ∼ γ log n for some constant γ > 0.
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pour les châınes réversibles ou normales. C. R. Acad. Sci. Paris Sér. I Math. 323 1053-1057.

[11] Derriennic, Y. and Lin, M. (2001). The central limit theorem for Markov chains with normal
transition operators, started at a point. Probab. Theory Related Fields 119 508-528.

[12] Dunford, N. and Schwartz, J. (1958). Linear Operators. Vol. I. Interscience, New York.

[13] Durieu, O. and Volný, D. (2007). Comparison between criteria leading to the weak invari-
ance principle. Ann. Inst. H. Poincaré Probab. Statist. 44 324-340.
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