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CHAPTER I

Introduction

In the last twenty years, Hochster and Huneke’s theory of tight closure has

emerged as the state of the art in characteristic p methods. It has unified many

deep results from commutative algebra that were not previously thought to be re-

lated while simultaneously providing vastly simplified proofs of far more general

theorems. It has produced a wealth of entirely novel results, many of which are very

powerful and seem to be unobtainable through other means. Moreover, in recent

years the influences of tight closure theory have expanded beyond the borders of

pure commutative algebra into neighboring fields such as algebraic geometry.

In its primary form, tight closure is a closure operation performed on a submod-

ule of a module over reduced ring of characteristic p. For a reduced ring R of prime

characteristic and an inclusion of R-modules N ⊆ M , the tight closure of N in M ,

denoted N∗
M , is a potentially larger submodule of M containing the original module

N . When N∗
M = N we say N is tightly closed (in M). The definition of tight closure

can be extended to rings containing a field of characteristic zero by reduction to char-

acteristic p. In this way, one is often able to prove theorems about rings containing

the rational numbers using tight closure.
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2

A very important property of tight closure is that over a regular ring all ideals

are tightly closed. This relatively easy fact is the key ingredient in the proof that

direct summands of regular rings are Cohen-Macaulay, as well as many other im-

portant results. Observing that they share many of the nice properties of regular

rings, Hochster and Huneke defined a ring to be weakly F-regular if all of its ideals

are tightly closed. The class of weakly F -regular rings includes the class of regular

rings, but it is much larger.

One of the most important open problems in tight closure theory concerns its

interaction with localization. In general, if I ⊆ R is an ideal and W ⊆ R a mul-

tiplicative system, then one easily verifies that I∗(W−1R) ⊆ (IW−1R)∗, but under-

standing exactly when equality holds is formidable. For many years, experts believed

that equality may always hold, and over the years some special cases in this direc-

tion were obtained. However, due to very recent work of Brenner and Monsky it

is now known that there exist rings, in fact three-dimensional normal hypersurface

domains, in which tight closure does not commute with localization. Despite the

troubling examples of Brenner and Monsky, it is still entirely possible that if R

is weakly F -regular then W−1R is weakly F -regular for all multiplicative systems

W ⊆ R. A ring such that W−1R is weakly F -regular for all multiplicative systems

W ⊆ R is called F -regular. The question of whether every weakly F -regular ring

is F -regular remains one of the most important open questions in tight closure theory.

There is yet another kind of F -regularity known as strong F -regularity. One very

natural but slightly non-standard characterization of these rings is that all submod-
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ules of all modules M are tightly closed, not just when M is finitely generated. It is

well known that if R is strongly F -regular then W−1R is strongly F -regular for every

multiplicative system W ⊆ R. Hochster and Huneke conjectured the equivalence of

strong and weak F -regularity for excellent local rings and proved this in the case

where the ring is Gorenstein. Since then, Lyubeznik and Smith have established the

conjecture in the case of an N-graded ring over a field and the case of a ring with an

isolated non-Gorenstein point. Since every strongly F -regular ring is F -regular, we

know that weak F -regularity is equivalent to F -regularity in these cases. It is inter-

esting to note that in all cases where we know that weak F -regularity is equivalent

to F -regularity, we actually know that it is equivalent to strong F -regularity.

This thesis addresses a related question involving Artinian modules. To describe

it, let N ⊆ M be an inclusion of R-modules which may not be finitely generated,

and let z ∈ M . We say that z is in the finitistic tight closure of N in M , denoted

N∗fg
M , if z ∈ (N ′ ∩ N)∗N ′ for some finitely generated R-module N ′ ⊆ M . Clearly

N∗fg
M ⊆ N∗

M , but the containment may be strict. The case N = 0 is central since,

quite generally, z ∈ N∗
M if and only if z̄ + N ∈ 0∗M/N . Motivated by the fact that

strong and weak F -regularity are equivalent if tight closure equals finitistic tight clo-

sure for the zero submodule of the injective hull of the residue class field, Lyubeznik

and Smith conjectured that tight closure equals finitistic tight closure in all Artinian

modules over an excellent local ring. In fact, their proofs that strong and weak F -

regularity are equivalent in the cases described above work by establishing that tight

closure is the same as finitistic tight closure in certain Artinian modules. Indeed,

in article [LS99] they show that tight closure equals finitistic tight closure in every

graded Artinian module over an N-graded ring over a field. In [LS01] they show that
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tight closure equals finitistic tight closure for the zero submodule of the injective hull

of the residue class field of a local ring with an isolated non-Gorenstein point, and

in every Artinian module over a local ring with an isolated singularity. In [Abe02]

using an argument of B. MacCrimmon, it is shown that tight closure is the same

as finitsitic tight closure for the zero submodule of the injective hull of the residue

class field when R has an isolated non Q-Gorenstein point. At the time of this writ-

ing, there are no known examples where tight closure and finitistic tight closure differ.

In this thesis we develop the theory of potent ideals, a new method for studying

the question of whether tight closure equals finitistic tight closure for in arbitrary

Artinian module. Briefly, an ideal I ⊆ R is called potent for an Artinian module M

if 0∗M =
⋃
n 0∗AnnM (In). One easily verifies that over a local ring R, tight closure is the

same as finitistic tight closure in every Artinian R-module if and only if the maximal

ideal of R is potent for every Artinian R-module. As a consequence of the theory

of potent elements we prove results which simultaneously unify and generalize the

results of Lyubeznik and Smith in [LS01], and which are strong enough to establish

Lyubeznik and Smith’s conjecture in several new cases. See, for example, V.7, VI.10,

VI.11.

An Overview of the Thesis

In Chapter 2 we establish the basic notation and definitions used throughout the

rest of the thesis, including the definition of a potent element and a potent ideal. We

also record standard results about tight closure, Matlis duality, and other theories

which we make frequent use of.
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In Chapter 3 we introduce and develop the technique of u-split complexes. Using

this technique we give our first proof that the defining ideal of the singular locus

is potent (for the formal definition of potent ideal, see II.12). The proof we give

is inspired by Lyubeznik and Smith’s original proof that tight closure and finitistic

tight closure agree in every Artinian module over an isolated singularity. The theory

of potent elements allows us to simplify some arguments. It should be noted that

the results of Chapter 3 are indeed special cases of the main results of Chapter 4.

However, the arguments in Chapter 4 are much more difficult, and the results of

Chapter 3 already provide substantially more information than the original results

of Lyubeznik and Smith. We also expect the theory of u-split complexes to have

other applications, and there is reason to believe that the arguments of Chapter 3

may be generalized in a different direction from those of Chapter 4.

The most significant results of this thesis are contained in Chapter 4 where we

ultimately prove that, over a local ring, the defining ideal of the non-finite injective

dimension locus of a finitely generated R-module W is potent for the Matlis dual

of W . This result unifies and extends the results of Lyubeznik and Smith in [LS01]

as well as the results of Chapter 3 of this thesis, but the techniques we employ in

Chapter 4 are quite different from those in the other treatments. The first goal of

the chapter is a uniform annihilator theorem for certain Ext modules (see IV.5 and

IV.41), a result interesting in and of itself. The setup is that for all q, the modules

ExtiR(R1/q,W ) vanish when we localize at a fixed element c ∈ R and we want to

show that a fixed power of c annihilates all of the modules. The basic idea is to show

that the Ext modules in question are related to certain local cohomology modules

“up to a bounded power of c”. This enables us to prove the result since uniform ah-
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hihilators of the local cohomology modules are known to exist by results of Hochster

and Huneke. The transition from Ext modules to local cohomology modules is a

lengthy process involving several new ideas. The arguments are most natural and

transparent in the case where the ring is assumed to be equidimensional, and that

case is presented in its entirety before the more general result is proved.

After obtaining the uniform annihilator result for Ext modules, Chapter 4 con-

cludes by applying the theorem to the theory of potent elements. The main result

obtained is strong enough to imply that the defining ideal of the singular locus is

potent for every Artinian module, that the defining ideal of the non-Gorenstein locus

is potent for the injective hull of the residue class field, and that the defining ideal of

the non-Cohen-Macaulay locus is potent for the top local cohomology module of the

ring with support in the maximal ideal. The main result therefore unifies several re-

sults in the literature while simultaneously imparting substantially more information.

In Chapter 5 we study potent elements for local cohomology modules. We estab-

lish that the Cohen-Macaulay locus and the finite projective dimension locus behave

well with respect to completion. Given a finitely generated module W over a local

ring R, let I ⊆ R be the radical ideal such that c ∈ I if and only if Wc is Cohen-

Macaulay and has finite projective dimension over Rc. Using our work in Chapter 4

we prove that I is potent for the local cohomology modules Hj
m(W ). See Theorem

V.1. This result enables us to establish Lyubeznik and Smith’s conjecture for certain

local cohomology modules in Corollary V.7.

In Chapter 6 we develop the theory of potent elements for graded rings. We
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observe that the methods of [LS99] show that the ideal generated by elements of

positive degree in any N-graded ring is potent for any graded Artinian module. For

completeness, a proof of this fact is included. We then combine this result with our

earlier work to obtain new cases in which tight closure agrees with finitsitc tight

closure for graded Artinain modules over N-graded rings. For example, we show

that if R = A[x1, . . . , xd] is a polynomial ring over an isolated singularity A, then

tight closure equals finitistic tight closure in every graded Artinian R-module. We

mention that in [Eli03], it is shown that for formal power series rings R over a local

ring (A,m) with isolated singularity, mR is potent, though the “potent” terminology

does not appear there. The results contained in this thesis constitute a substantial

generalization of this result.



CHAPTER II

Background and Notation

In this chapter we adopt notation to be used throughout the rest of this work as

well as review the standard notions of tight closure theory and other theories neces-

sary for reading this thesis. We begin with a review of tight closure theory. While

it is possible to define tight closure over any ring containing a field, we shall only

be concerned with the characteristic p > 0 theory here. Some preliminary remarks

about the characteristic of a ring are in order.

If R is a ring with multiplicative identity element 1, then we say R has (fi-

nite) characteristic p if p is the smallest positive integer such that p · 1 = 0 where

p · 1 = (1 + 1 + · · · + 1) (p times). If no such integer p exists we define the char-

acteristic of the ring to be 0. It is clear that if R is an integral domain, then the

characteristic is either 0 or a prime p. With few exceptions, the rings we consider

in this thesis will have prime characteristic p > 0. While many “natural” rings such

as the ring of polynomials over the real or complex numbers have characteristic 0,

powerful techniques developed over the last thirty to forty years have shown that

many theorems can be proven about rings of containing a field of characteristic 0 by

first proving the corresponding theorem about rings of prime characteristic p > 0.

8
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As is standard when working with tight closure, we shall make the following

conventions when dealing with rings of positive characteristic: When R has positive

prime characteristic, we will always denote the characteristic by p, and then q = pe

will always denote a positive power of p for some e ∈ N. Thus, the statement “for

all q � 0” is synonymous with “for all q = pe � 0”. When R is reduced, we define

the R-algebra

R1/q := R[r1/q : r ∈ R]

for every q = pe. Note that given any map N → M is of R-modules there is an

induced map R1/q ⊗R N → R1/q ⊗RM .

Definition II.1. Let R be a reduced ring of characteristic p > 0. Let N ⊆ M be

an arbitrary inclusion of R-modules, and let z ∈ M . We say that z ∈ N∗
M , the tight

closure of N in M , if there exists an element c ∈ R, not in any minimal prime of R,

such that

c1/q ⊗ z ∈ Im(R1/q ⊗R N) ⊆ R1/q ⊗RM

for all q � 0.

As is evident from the definition, the modules R1/q are of fundamental importance

to tight closure. We often wish to impose a finiteness condition:

Definition II.2. Let R be a ring of characteristic p > 0. We say that R is F -finite

if R1/p is finitely generated as an R-module.

If R is F -finite, then it is immediate that R1/q is a finitely generated R-module

for all q = pe. Moreover, it is easy to see that if R is F -finite, then so is every

homomorphic image, localization, finitely generated algebra and formal power series

ring over R. In the complete local case it follows that (R,m,K) is F -finite if and
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only if K is F -finite. More generally, if (R,m,K) is excellent then R is F -finite if

and only if K is F -finite by a theorem of Kunz (see [Kun76], Theorem 2.5). This

happens, for example, when K is perfect, so the F -finiteness condition is not very

restrictive.

There is an alternative description of tight closure involving the Peskine-Szpiro

functor (also called the Frobenius functor).

Definition II.3. Let R be a ring of characteristic p. The Frobenius endomorphism

F : R→ R is the map F (r) = rp for all r ∈ R. The eth iteration of this map, denoted

F e, is such that F e(r) = rq.

For all e ∈ N, we let R(e) denote the ring R considered as a module over itself via

F e. That is, for x ∈ R(e) and r ∈ R we define the action r · x := rqx.

Definition II.4. The Peskine-Szpiro functor (or Frobenius functor) is the covariant

functor from R-modules to R-modules which on an R-moduleM is given by F(M) :=

R(1) ⊗R M . We let F e denote the Frobenius functor iterated e times. Clearly,

F e(M) = R(e) ⊗RM .

If N ⊆ M are R-modules then there is a natural map F e(N) → F e(M). Note

that this map need not be injective. We let N
[q]
M denote the image of F e(N) in

F e(M) under this natural map. It should be kept in mind that N
[q]
M is a submodule

of F e(M), not of M itself. For x ∈ M we let xq denote the image of x in F e(M).

These notations are suggestive of the case of ideals: if I ⊆ R is an ideal then the

reader will easily verify that I [q] is the ideal generated by all qth powers of elements

in I.

Proposition II.5. (Alternative description of Tight closure). Let R be a
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reduced ring. If N ⊆ M is any inclusion of R-modules, then N∗
M may be identified

with the set of elements x ∈ M such that there exists an element c ∈ R, not in any

minimal prime, such that for all q � 0, cxq ∈ N [q]
M .

Proof: There is a commutative diagram:

R ↪→ R1/q

‖ F−e ↑

R
F e

−→ R

where F−e(r) = r1/q. Both vertical arrows are isomorphisms and so for any R-module

M we may readily identify R(e)⊗RM and R1/q ⊗RM . Under this identification, cxq

is identified with c1/q ⊗ x. This result now follows. 2

Test elements are, roughly speaking, elements of R which may be used for all tight

closure tests. The theory of test elements plays an important role in tight closure,

in both computational and theoretical applications.

Definition II.6. Suppose that c ∈ R is not in any minimal prime of R. We say that

c is a test element if for all finitely generated R-modules N ⊆M , if z ∈ N∗
M , then

c1/q ⊗ z ∈ Im(R1/q ⊗R N) ⊆ R1/q ⊗RM

for all q.

We say that c is a locally (respectively, completely) stable test element if its image

in (respectively, in the completion of) every local ring of R is a test element.
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Note the finiteness conditions on N ⊆M . Because of the emerging importance of

tight closure in modules that are not finitely generated, we introduce the following

terminology suggested by Mel Hochster.

Definition II.7. Suppose that c ∈ R is not in any minimal prime of R. We say that

c is a big test element if for all R-modules N ⊆M , if z ∈ N∗
M , then

c1/q ⊗ z ∈ Im(R1/q ⊗R N) ⊆ R1/q ⊗RM

for all q.

We say that c is a locally (respectively, completely) stable big test element if its

image in (respectively, in the completion of) every local ring of R is a big test element.

The existence theorems currently available in the literature talk about test ele-

ments instead of big test elements; however, the assumption that the modulesN ⊆M

are finitely generated is usually not needed, and the proofs typically produce big test

elements (or completely stable big test elements). For example, we make substantial

use of the following theorem.

Theorem II.8. Let (R,m,K) be an excellent, reduced local ring. Then R has a

completely stable big test element. More precisely, if c ∈ R is not in any minimal

prime of R and is such that Rc is weakly F -regular and Gorenstein (for example, if

Rc is regular), then c has a power, cn, which is a completely stable big test element.

In particular, the element cn is a test element for R and its completion, R̂.

Remark. This result is known to the experts, but since a proof in this generality

is lacking from the literature we include a short sketch.
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Sketch of Proof: By standard results we may assume that R is complete. The idea is

then to use the gamma construction to reduce to the case where R is F -finite. This

construction can be found in Section 6 of [HH94] and is reviewed briefly in Chapter

4 of this thesis. When we pass to the gamma construction, we may loose complete-

ness, but we may then complete again. Without loss of generality we may assume

R is F -finite and complete. The result then follows by arguing precisely as in the

proof of Theorem 5.10 of [HH94], noting that the proof produces big test elements. 2

When the modules N ⊆M are not finitely generated, there is another important

notion of tight closure, the finitistic tight closure of N in M .

Definition II.9. If N ⊆M is an inclusion of R-modules and z ∈M , then we say z is

in the finitistic tight closure of N in M , denoted N∗fg
M if there is a finitely generated

R-module N ′ ⊆M such that z ∈ (N ′ ∩N)∗N ′ .

It is clear from the definition that N∗fg
M ⊆ N∗

M . The Lyubeznik-Smith conjecture

discussed in the introduction is the following

Conjecture II.10. If (R,m,K) is an excellent local ring and N ⊆M is an inclusion

of Artinian R-modules then N∗
M = N∗fg

M .

The conjecture is easily reduced to the case N = 0. The main contribution of this

thesis is the notion of a potent element and its consequences. First we set up some

convenient notation.

Notation II.11. For any ideal I ⊆ R, for every integer v ∈ N and every R-module

M , let M(−v,I) = AnnM(Iv). We sometimes write M−v for M(−v,I) when I is clear

from the context.
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For v′ > v, we note the following easy identities:

( M

M−v

)
−v′ =

M−v′

M−v
=

( M

M−v

)
−(v′−v).

We now give the definition of a potent element.

Definition II.12. If x ∈ R is any element, and M is an Artinian R-module, we say

that x is potent for M if we have

0∗M =
⋃
n∈N

0∗M(−n,x)
.

Similarly, we say that an ideal I ⊆ R is potent for M if we have

0∗M =
⋃
n∈N

0∗M(−n,I)
.

If x (respectively, I) is potent for every Artinian R-module we simply say x (respec-

tively, I) is potent.

The next proposition collects some basic results about potent elements and potent

ideals.

Proposition II.13. Let (R,m,K) be a local ring and let M be an Artinian R-

module.

(a) If I ⊆ R is an ideal, then I is potent (respectively, potent for M) if and only if

Rad(I) is potent (respectively, potent for M).

(b) Let R̂ be the completion of R at m. If I ⊆ R and if R and R̂ have a common

test element for Artinian modules, then I is potent for M if and only if IR̂ is

potent for M . For example, if R is reduced and excellent, then I is potent for

M if and only if IR̂ is potent for M .

(c) If I, J ⊆ R are potent ideals then I + J is potent. It follows that the set of all

potent elements forms an ideal called the potent ideal, and it is a radical ideal.
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Proof: (a). Since Rad(I)t ⊆ I for t >> 0, it follows that Rad(I)tn ⊆ In for all n

and all t >> 0. Therefore,
⋃
n∈N 0∗M(−n,Rad(I))

⊆
⋃
n∈N 0∗M(−n,I)

which proves the result.

(b). The second statement follows from the first since every reduced excellent

local ring has a completely stable test element by Theorem II.8. We prove the first

statement. Since M has DCC, M ∼= M ⊗R R̂, and is thus an R̂-module. The same

is true for F e
R(M) since it also has DCC. Also, for any map R → S of algebras,

F e
R(M) ⊗R S ∼= F e

S(M ⊗R S). It follows that F e
R(M) ∼= F e

R(M) ⊗R R̂ ∼= F ebR(M̂) =

F ebR(M). Similarly, for any submodule N ⊆M , F e
R(N) = F ebR(N).

Let c ∈ R be a test element for R and R̂. Then for z ∈ N ⊆ M , czq = 0 in

F e
R(N) if and only if czq = 0 in F ebR(N) by our comments above. So for a submodule

N ⊆ M , 0∗N is the same whether computed over R or R̂. Therefore, the result will

follow if we show that AnnM(In) = AnnM(IR̂n).

Let In = (f1, . . . , fh). Then there is an exact sequence 0 → AnnM(In) → M →

M⊕h. Since R̂ is faithfully flat, 0→ AnnM(In)⊗R R̂→ M̂ → M̂⊕h is still exact and

we find that

AnnM(In) = AnnM(In)⊗R R̂ = AnncM(IR̂n) = AnnM(IR̂n).

This proves (b).

(c). LetM be any ArtinianR-module. We have a decomposition 0∗M =
⋃
n∈N 0∗M(−n,I)

.

For each n ∈ N, to simplify notation let Wn := M(−n,I). Then Wn is an Artinian
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R-module, so using the potent property for J , we get

0∗Wn
=

⋃
v∈N

0∗(Wn)(−v,J)
.

Notice that (Wn)(−v,J) = AnnM(In + Jv). It follows that

0∗M =
⋃
n∈N

⋃
v∈N

0∗AnnM (In+Jv)

and so it suffices to show⋃
n∈N

⋃
v∈N

0∗AnnM (In+Jv) ⊆
⋃
t

0∗M(−t,I+J)
.

Therefore, we will be done if we can prove that for all n, v ∈ N, AnnM(In + Jv) ⊆

AnnM((I + J)t) for some t. But for this it is enough to show that In + Jv ⊇ (I + J)t

for some t. This follows, for example, for t = 2nv. 2

Note that the modules AnnM(mt) are finitely generated for all t. Moreover, since

M is Artinian, if N ⊆ M is any finitely generated module then N ⊆ AnnM(mt) for

all t � 0. Therefore, the conjecture of Lyubeznik and Smith has a nice translation

into the language of potent ideals:

Conjecture II.14. If (R,m,K) is an excellent local ring then m, the maximal ideal

of R, is a potent ideal.

In Chapter 5 we study potent elements for local cohomology modules. Recall that

if R is a Noetherian ring, I ⊆ R is an ideal and M an R-module, then for each j ∈ N,

the jth local cohomology module of M with support in I is defined to be

Hj
I (M) := lim

→t
ExtjR(R/I t,M).

For an introduction to the theory of local cohomology we refer the reader to section

3.5 of [BH93].
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If (R,m,K) is a local ring we will let ER(K) denote the injective hull of the

residue class field. The functor HomR(−, ER(K)) is exact since ER(K) is injective.

The following result, known as Matlis Duality, will be used throughout the thesis:

Theorem II.15. Let (R,m,K) be a complete local ring, let M be an Artinian R-

module and let W be a finitely generated R-module. Let ER(K) denote the injective

hull of the residue class field and let (−)∨ denote the functor HomR(−, ER(K)).

(a) R∨ ∼= ER(K) while ER(K)∨ ∼= R.

(b) W∨ is Artinian while M∨ is finitely generated.

(c) There are natural isomorphisms (W∨)∨ ∼= W and (M∨)∨ ∼= M .

(d) The functor (−)∨ establishes an anti-equivalence between categories of modules

with ACC and modules with DCC.

Proof: See 3.2.13 in [BH93]. 2

In the following chapters we will make frequent use of canonical modules. We

review the notion and some standard results.

Definition II.16. Let (R,m,K) be a local ring of dimension d. We say that a finitely

generated R-module ω is a canonical module for R if HomR(ω,ER(K)) ∼= Hd
m(R)

where ER(K) is the injective hull of the residue class field, and Hd
m(R) is the dth

local cohomology module with supports in m.

When R is locally equidimensional, we define ω to be a canonical module if ωm is

a canonical module for Rm for every maximal ideal m ⊆ R.
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The next theorem contains the standard results about canonical modules which

we will need.

Theorem II.17. Let (R,m,K) be a local ring of dimension d. Let ER(K) be the in-

jective hull of the residue class field, and let (−)∨ denote the functor HomR(−, ER(K)).

(a) If R is complete then R has a canonical module, and any canonical module is

isomorphic with Hd
m(R)∨.

(b) Any two canonical modules for R are (non-canonically) isomorphic.

(c) If R is a homomorphic image of a Gorenstein ring S, then R has a canonical

module. If R = S/J then ExthS(R,S) is a canonical module for R where h =

dim(S)− dim(R).

(d) If R is equidimensional and a homorphic image of a Gorenstein ring then let ω

denote a canonical module for R. For every prime P of R, ωP is a canonical

module for RP .

Proof: Part (a) follows at once from (c) and Matlis duality. Part (b) is immediate

from part (c), and part (d) follows from (c) and standard facts about equidimensional

rings. Part (c) is easily deduced from local duality. 2

We shall also need the following celebrated result in characteristic p > 0:

Theorem II.18. Let (R,m,K) be a local ring and let W be a finitely generated

R-module. If W has finite injective dimension then R is a Cohen-Macaulay ring.

This theorem was first raised as a question by Bass in the seminal work [Bas63].

It is now a theorem in all characteristics. The original proof in characteristic p > 0

(which is the only case we shall use) is due to Peskine and Szpiro ([PS72]). In equal



19

characteristic the result is due to Hochster (see [Hoc75]) while the general case fol-

lows from the new intersection theorem proved by Roberts in [Rob87].



CHAPTER III

u-Split Complexes and the Defining Ideal of the Singular
Locus

In this chapter we introduce the notion of a u-split complex, see Definition III.3.

This technique will allow us to prove Theorem III.1 just below. The idea is to first

use Matlis duality to translate the problem to a question about Ext modules which

are finitely generated. Then using the technique of u-split complexes, we are able, in

effect, to bound the relevant Artin-Rees numbers. See the proof of Proposition III.8

where the case of a principal ideal is obtained.

After proving Theorem III.1, we give a corollary which generalizes a result of

Lyubeznik and Smith in [LS01]. Section 2 is devoted to using Theorem III.1 to

give a proof that the defining ideal of the singular locus is potent for every Artinian

module.

3.1 u-Split Complexes

The main goal of this section is the following result.

Theorem III.1. Let R be a Noetherian ring and let J ⊆ R be an ideal. Let M be

an Artinian R-module. There exists an integer k = k(J,M) ∈ N depending only on

J and M , such that for all i ≥ 0 and for all R-modules N such that JN = 0, the

20
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natural map

TorRi (N,M(−k,J))→ TorRi (N,M)

is surjective.

Before giving the proof we need several preliminary results. In this first lemma,

we do not require any finiteness conditions on the ring.

Lemma III.2. Let R be a commutative ring, let E be an injective module, and let

M,N,W be arbitrary R-modules.

(a) If ∨ is the functor HomR(−, E) then ExtiR(N,M∨) ∼= TorRi (N,M)∨ for every

i ∈ N.

(b) If I ⊆ R is a finitely generated ideal, then AnnW (I)∨ ∼=
W∨

IW∨ .

(c) If the natural map ExtiR(N,M∨) → ExtiR(N,M∨/IkM∨) is injective then the

natural map TorRi (N,M(−k,I))→ TorRi (N,M) is surjective.

Proof: (a). Let P• be a projective resolution of N . Then

TorRi (N,M) := Hi(P• ⊗RM).

Applying HomR(−, E) shows that

TorRi (N,M)∨ ∼= HomR(Hi(P• ⊗M), E) ∼= H i(HomR(P• ⊗M,E)).

By the adjointness of tensor and Hom this is

H i(Hom(P•,Hom(M,E))) ∼= H i(Hom(P•,M∨)) =: ExtiR(N,M∨).

This proves (a).
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(b). Suppose I = (u1, . . . , uh)R. There is an exact sequence

0→ AnnW (I)→ W
f→ W⊕h

where the map f is given by the matrix [u1, . . . , uh]. That is, for x ∈ W , f(x) =

(u1x, . . . , uhx). When we apply HomR(−, E) we get an exact sequence

(W⊕h)∨
f∨→ W∨ → (AnnW (I))∨ → 0

where f∨ is given by the matrix [u1, . . . , uh] as well. Since (AnnW (I))∨ is the cokernel

of f∨, it follows that (AnnW (I))∨ = W∨/ Im(f∨) = W∨/IW∨.

(c). Let TorRi (N,M(−k,I))→ TorRi (N,M)→ C → 0 be exact so that the relevant

map is surjective if and only if C = 0. Then, applying ∨, we get an exact sequence

TorRi (N,M)∨ ← TorRi (N,M(−k,I))
∨ ← C∨ ← 0

and by parts (a) and (b) this is

ExtiR(N,M∨)← ExtiR(N,M∨/IkM∨)← C∨ ← 0.

The result now follows. 2

The next several results deal with u-split complexes, a notion we introduce here.

This notion generalizes the notion of a split-exact complex.

Definition III.3. If F• : · · · → Fi+1
αi+1→ Fi

αi→ Fi−1 → · · · is any complex of

R-modules, and if u ∈ R is any element, then we say that F• is u-split at the ith spot

if there exist R-linear maps βi : Fi → Fi+1 and βi−1 : Fi−1 → Fi such that

(∗) u · 1Fi
= βi−1 ◦ αi + αi+1 ◦ βi.
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If F• is u-split at every i then we say that F• is u-split.

Similarly, if F• : · · · → Fi−1
αi→ Fi

αi+1→ Fi+1 → · · · is any cohomological complex

of R-modules, and if u ∈ R is any element, then we say that F• is u-split at the ith

spot if there exist R-linear maps βi : Fi → Fi−1 and βi+1 : Fi+1 → Fi such that

(∗∗) u · 1Fi
= αi ◦ βi + βi+1 ◦ αi+1.

If F• is u-split at every i then we say that F• is u-split.

The following result justifies the use of the terminology u-split.

Proposition III.4. Let

F• : · · · → Fk+1
αk+1→ Fk

αk→ Fk−1 → · · · → F1
α1→ F0

0→ 0

be any (left) u-split complex. Then for all k ≥ 0:

(a) uFk = Im(αk+1) + Im(βk−1|Im(αk)).

(b) αkβk−1|Im(αk) = u · 1Im(αk).

(c) Im(αk+1) ∩ Im(βk−1|Im(αk)) is killed by u.

Proof: Property (a) follows immediately from Definition III.3.

We establish property (b). Suppose f ∈ Fk is any element. Then equation (∗) in

(III.3) for i = k − 1 gives:

αkβk−1 = u1Fk−1
− βk−2αk−1

Hence,

αkβk−1αk(f) = (u1Fk−1
− βk−2αk−1)αk(f) = uαk(f)− βk−2αk−1αk(f).
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As αk−1αk = 0, we conclude αkβk−1αk(f) = uαk(f), and since αk(f) ∈ Im(αk) was

arbitrary, this proves part (b).

Finally, to prove (c), let y = αk+1(g) = βk−1(f) for some f ∈ Im(αk). We want

to show uy = 0. Applying αk we find αk(y) = αkαk+1(g) = 0 = αkβk−1(f). By what

we have just shown in (b),

αkβk−1(f) = uf

since f ∈ Im(αk). Hence, uf = 0 and so

uy = uβk−1(f) = βk−1(uf) = 0

as required. 2

We have an analogous statement for right cohomological complexes. The proof is

very similar.

Proposition III.5. Let

F• : 0→ F0
α1→ F1

α2→ · · · → Fi−1
αi→ Fi

αi+1→ Fi+1 → · · ·

be any (right) u-split cohomological complex. Then for all i ≥ 0:

(a) uFi = Im(αi) + Im(βi+1|Im(αi+1)).

(b) αiβi|Im(αi) = u · 1Im(αi).

(c) Im(αi) ∩ Im(βi+1|Im(αi+1)) is killed by u.

Proof: Property (a) follows immediately from Definition (III.3).
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We establish property (b). Suppose f ∈ Fi−1 is any element. Then equation (∗∗)

in (III.3) gives:

αiβi = u1Fi
− βi+1αi+1

Hence,

αiβiαi(f) = (u1Fi
− βi+1αi+1)αi(f) = uαi(f)− βi+1αi+1αi(f).

As αi+1αi = 0, we conclude αiβiαi(f) = uαi(f), and since αi(f) ∈ Im(αi) was arbi-

trary, this proves part (b).

Finally, to prove (c), let y = αi(g) = βi+1(f) for some f ∈ Im(αi+1). We want

to show uy = 0. Applying αi+1 we find αi+1(y) = αi+1αi(g) = 0 = αi+1βi+1(f). By

what we have just shown in (b),

αi+1βk+1(f) = uf

since f ∈ Im(αi+1). Hence, uf = 0 and so

uy = uβi+1(f) = βi+1(uf) = 0

as required. 2

The u-split property is preserved by additive functors:

Proposition III.6. Let u ∈ R and suppose Γ is any additive functor from R-modules

to R-modules (covariant or contravariant). If

F• : · · · → Fk+1
αk+1→ Fk

αk→ Fk−1 → · · ·

is any complex of R-modules that is u-split at the kth spot then Γ(F•) is u-split at

the kth spot as well. Moreover, if F• is u-split then Γ(F•) is u-split.
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Proof: The second statement follows immediately from the first. For the first state-

ment, the point is that additive functors preserve the addition, composition and

scalar multiplication of morphisms, and they take the identity morphism to the iden-

tity morphism. For example, suppose Γ is contravariant (the covariant case being

similar) and look at the kth spot of the complex F•:

Fk+1
αk+1→ Fk

αk→ Fk−1.

If F• is u-split at k, then we have maps βk : Fk → Fk+1 and βk−1 : Fk−1 → Fk

satisfying (∗) of (III.3). When we apply Γ we get a complex

Γ(Fk+1)
Γ(αk+1)← Γ(Fk)

Γ(αk)← Γ(Fk−1)

and maps Γ(βk) : Γ(Fk+1) → Γ(Fk) and Γ(βk−1) : Γ(Fk) → Γ(Fk−1). Furthermore

we have the identity:

Γ(u · 1Fk
) = Γ(αk+1βk + βk−1αk)

By our introductory remarks, we can write

u · 1Γ(Fk) = Γ(αk+1βk) + Γ(βk−1αk)

and therefore,

u · 1Γ(Fk) = Γ(βk) ◦ Γ(αk+1) + Γ(αk) ◦ Γ(βk−1).

Hence, Γ(βk),Γ(βk−1) have the right property. This completes the proof. 2

The next result provides us with examples of u-split complexes. It will be of great

utility in proving Theorem III.1.

Proposition III.7. Let N be any R-module and let u ∈ AnnR(N). Let

F• : · · · → Fk
αk→ Fk−1 → · · · → F1

α1→ F0 → 0

be a free resolution of N . Then F• is u-split.
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Proof: For simplicity, we isolate and prove the following two statements: for all i ≥ 0,

there exist R-linear maps βi : Fi → Fi+1 such that:

(1) αi+1 ◦ βi + βi−1 ◦ αi = u · 1Fi

(2) αi+1 ◦ βi = u · 1Im(αi+1)

where F−1 = 0 and α0, β−1 = 0. Of course, the result follows from (1).

We use induction on i. If i = 0 then β−1 ◦ α0 = 0 so the left side of equation (1)

is just α1 ◦β0. To define β0 we only have to specify the values on a set of generators.

Moreover, for each element e in a set of free generators for F0, we can choose β0(e)

to be any element of F1. Since u ∈ J , uF0 ⊆ Im(α1), so suppose α1(y) = ue. We

define β0(e) := y and then clearly α1 ◦β0 = u1(F0) since this is true on a set of (free)

generators. Note that when i = 0, equation (2) just says α1 ◦ β0 = u1Imα1 which we

have already verified.

Now assume βn−1 has been defined and we want to define βn, n ≥ 1. We will

define βn on a set of free generators for Fn and then extend linearly. Let e be a free

generator of Fn. We first prove:

Claim: ue− βn−1αn(e) ∈ Im(αn+1).

To see this, note that since n ≥ 1, Im(αn+1) = Ker(αn) so we only must see

that αn(ue − βn−1αn(e)) = 0. Equivalently, αn(ue) = αn(βn−1αn(e)). By the in-

duction hypothesis, equation (2), we know αnβn−1 = u1Im(αn) so it follows that

αn(βn−1αn(e)) = uαn(e). Therefore, the statement is equivalent to αn(ue) = uαn(e)
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which is true by the R-linearity of αn. This proves the claim.

Now, by the claim, choose y ∈ Fn+1 such that αn+1(y) = ue − βn−1αn(e) and

define βn(e) := y. Then

αn+1βn(e) + βn−1αn(e) = ue− βn−1αn(e) + βn−1αn(e) = ue

establishing equation (1). Notice that equation (2) now follows immediately: if

y ∈ Im(αi+1) then αi(y) = 0 since αiαi+1 is the zero map. Equation (1) then simpli-

fies to equation (2). 2

Proposition III.8. Let u ∈ R be any element, and let W be a finitely generated

R-module. Then there exists an integer k ∈ N depending only on u and W such that

for all finitely generated R-modules N such that uN = 0, and for every i ≥ 0, the

natural map

φi,k : ExtiR(N,W )→ ExtiR(N,
W

ukW
)

is injective.

Proof: By the Artin-Rees Lemma there exists c ∈ N such that for all N > c,

AnnW (u) ∩ uNW = uN−c(ucW ∩ AnnW (u)) = 0.

Set k := c+ 2 (so that k − 1 > c).

Suppose N is any finitely generated R-module with uN = 0 and let F• be a free

resolution of N with boundary maps αi : Fi → Fi−1. Let W• := HomR(F•,W ) with

induced maps α∨i : Wi−1 → Wi. Notice that if Fi = R⊕bi then Wi = HomR(Fi,W ) ∼=
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W⊕bi . It follows that for c as above,

AnnWi
(u) ∩ uNWi = 0

for all N > c and for all i ≥ 0. Furthermore, it is easy to see that φi,k is injective

⇐⇒ ukWi ∩Ker(α∨i+1) ⊆ Im(α∨i ).

Suppose z ∈ ukWi ∩ Ker(α∨i+1). We will show z ∈ Im(α∨i ). Since uN = 0, F• is

u-split by Proposition III.7. Therefore, since HomR(−,W ) is an additive functor, it

follows from Proposition III.6 that W• is u-split as well. For each i, let β∨i : Wi →

Wi−1 be the R-linear map guaranteed by the u-split property. If z = ukw, then by

definition of u-split,

(∗∗) z = α∨i β
∨
i (uk−1w) + β∨i+1α

∨
i+1(u

k−1w).

Since z ∈ Ker(α∨i+1) we see that

0 = α∨i+1α
∨
i β

∨
i (uk−1w) + α∨i+1β

∨
i+1α

∨
i+1(u

k−1w) = α∨i+1β
∨
i+1α

∨
i+1(u

k−1w).

By III.5(b), α∨i+1β
∨
i+1 = u1Im(α∨i+1) and so we find that uα∨i+1(u

k−1w) = 0. In

other words, α∨i+1(u
k−1w) ∈ AnnWi+1

(u). But on the other hand, α∨i+1(u
k−1w) =

uk−1α∨i+1(w) so we conclude that α∨i+1(u
k−1w) ∈ uk−1Wi+1. Hence, α∨i+1(u

k−1w) ∈

uk−1Wi+1 ∩ AnnWi+1
(u) = 0 since k − 1 > c. By (∗∗) above we conclude z =

α∨i β
∨
i (ucw) ∈ Im(α∨i ) as desired. 2

Now are now ready to prove Theorem III.1.

Proof of Theorem III.1: We can immediately reduce to proving the result for all

finitely generated R-modules N such that JN = 0: any R-module N is a direct limit
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of its finitely generated submodules, and a direct limit of surjective maps is surjective.

We next reduce to the local case and then the complete local case. By standard

results, a map of R-modules θ : A → B is surjective if and only if θm : Am → Bm

is surjective for every (maximal) ideal m ∈ Spec(R). Furthermore, TorRi (N,M)m ∼=

TorRm
i (Nm,Mm) for all R-modules N,M . Next we claim that AnnM(I t) ⊗R Rm =

AnnM⊗Rm(IRt
m). To see this, suppose I t = (f1, . . . , fh)R. Then we have an exact

sequence

0→ AnnM(I t)→M
[f1,...,fh]→ M⊕h

and applying −⊗R Rm we obtain an exact sequence:

0→ AnnM(I t)⊗R Rm →M ⊗R Rm
[f1,...,fh]→ (M ⊗R Rm)⊕h.

This justifies the claim. Finally, the hypotheses that IN = 0 and M has DCC are

preserved when we pass to Rm. Therefore, without loss of generality we may assume

R is local. Then R → R̂ is faithfully flat and since the module M has DCC, it is

already a module over R̂. It follows that we may replace R,N,M with R̂, N ⊗ R̂,

and M ⊗ R̂ ∼= M and assume that R is complete.

Let W := HomR(M,E) where E = ER(K) is the injective hull of the residue

class field. Since M has DCC, W has ACC by Matlis duality. Therefore, by Lemma

III.2 (c), it suffices to show that for a finitely generated R-module W , there exists

k = k(J,W ) ∈ N (depending on J and W ) such that for all finitely generated

R-modules N such that JN = 0, the natural map

ExtiR(N,W )→ ExtiR(N,
W

JkW
)
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is injective.

Let J = (u1, . . . , uh)R. By Proposition III.8, there exists k1 such that for all

finitely generated R-modules N such that JN = 0, the natural map

ExtiR(N,W )→ ExtiR(N,W/uk11 W )

is injective. Let W1 = W/uk11 W . Then by Proposition III.8 again, there exists k2

such that for all finitely generated R-modules N such that JN = 0, the map

ExtiR(N,W1)→ ExtiR(N,W1/u
k2
2 W1)

is injective. It follows that for all finitely generated R-modules N such that JN = 0,

the composition map

ExtiR(N,W )→ Exti(N,W1/u
k2
2 W1) ∼= ExtiR(N,W/(uk11 , u

k2
2 )W )

is injective as well. Proceeding in this way, for each 1 ≤ i ≤ h we get ki ∈ N such

that for all finitely generated R-modules N such that JN = 0, the natural map

ExtiR(N,W )→ ExtiR(N,
W

(uk11 , . . . , u
kh
h )W

)

is injective. Now pick k so large that Jk ⊆ (uk11 , . . . , u
kh
h )R (for example, take k :=

k1 + · · · + kh − h + 1). Since the map ExtiR(N,W ) → ExtiR(N,W/(uk11 , . . . , u
kh
h )W )

factors as

ExtiR(N,W )→ ExtiR(N,
W

JkW
)→ ExtiR(N,W/(uk11 , . . . , u

kh
h )W )

it follows that the natural map

ExtiR(N,W )→ ExtiR(N,
W

JkW
)
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is injective for all finitely generated R-modules N such that JN = 0. This completes

the proof. 2

Theorem III.1 allows us to give a simplified proof of the following result, an

improvement of [LS01], Proposition 8.4:

Corollary III.9. Let I ⊆ R be an ideal. For every Artinian R-module M and

integers t, v, i ≥ 0 there exist integers ψ(M, t) and φ(M, t, v) > v such that:

(a) For all R-modules N annihilated by I t and all v′ > ψ(M, t), the natural map

TorRi (N,M(−v′,I))→ TorRi (N,M)

is surjective.

(b) For all R-modules N annihilated by I t and all v′ > φ(M, t, v), the map

TorRi (N,M(−v′,I))→ TorRi (N,M)

induced by the inclusion M(−v′,I) → M induces an isomorphism on the images

of TorRi (N,M(−v,I)) in both modules.

Proof: By Theorem III.1, with J = I t, there exists k ∈ N such that for all R-modules

N annihilated by I t and for all i ≥ 0, the map TorRi (N,M(−k,It)) → TorRi (N,M)

is surjective. Let ψ(M, t) := kt. Then since M(−k,It) = M(−kt,I) we see that

TorRi (N,M(−kt,I)) → TorRi (N,M) is surjective. Now, for all v′ > kt = ψ(M, t),

the map TorRi (N,M(−kt,M))→ TorRi (N,M) factors as

TorRi (R,M(−kt,I))→ TorRi (N,M(−v′,I))→ TorRi (N,M).

It follows that for all v′ > ψ(M, t), the map TorRi (N,M(−v′,I)) → TorRi (N,M) is

surjective as well. This proves part (a).
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To prove part (b), we follow [LS01], Proposition 8.4. It is enough to prove the

following statement:

Claim: For a fixed t, if ψ(M, t) exists for all M and i, then φ(M, t, v) also exists

for all M, v and i.

Proof of Claim: Set φ(M, t, v) := v+ψ(M/M−v, t). The commutative diagram with

short exact rows:

0 → M−v → M → M/M−v → 0

↑ ↑ ↑

0 → M−v → M−v′ →
(

M
M−v

)
−(v′−v) → 0

produces, for each i, the following commutative diagram with exact rows

TorRi+1(N,M/M−v) −→ TorRi (N,M−v) −→ TorRi (N,M)

f ↑ 1 ↑ g ↑

TorRi+1(N, (M/M−v)−(v′−v)) −→ TorRi (N,M−v) −→ TorRi (N,M−v′)

By our choice of φ(M, t, v), when v′ > φ(M, t, v) it follows that v′−v > ψ(M/M−v, t).

Therefore, when v′ > φ(M, t, v), f is surjective. An easy diagram chase then shows

that g restricts to an isomorphism between Im
(
TorRi (N,M−v) → TorRi (N,M−v′)

)
and Im

(
TorRi (N,M−v) → TorRi (N,M)

)
. This proves the claim and completes the

proof of the theorem. 2
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3.2 The Defining Ideal of the Singular Locus is Potent

Our goal for the rest of this chapter is to prove that the defining ideal of the

singular locus is potent for every Artinian R-module.

Theorem III.10. Let (R,m,K) be a reduced, excellent local ring, let J ⊆ R be a

defining ideal of the singular locus, and let M be an Artinian R-module. Then J is

potent for M . That is,

0∗M =
⋃
v′∈N

0∗M(−v′,J)
.

First we need to know that a defining ideal of the the singular locus is generated

by nonzerodivisors in the reduced case.

Lemma III.11. Let R be a Noetherian ring.

(a) If J ⊆ R is any ideal of depth at least one then J is generated by nonzerodivisors.

(b) If R is reduced and if there is a radical ideal J ⊆ R defining the singular locus

(for example, if R is excellent there will exist such a J) then J is generated by

nonzerodivisors.

Proof: (a). Let I ⊆ J be the ideal generated by the nonzerodivisors of J . Then

J ⊆ I ∪
⋃
P∈Ass(R) P . By prime avoidance J is contained in one of them, and since

the depth of J is at least one, J ⊆ I.

(b). By part (a), it is enough to show that if R is reduced and contains a radical

ideal J ⊆ R defining the singular locus then the depth of J is at least one. If not

then J is contained in an associated prime, say P , of R. Since R is reduced, the

associated primes of R are all minimal primes, so that J ⊆ P a minimal prime. But

then RP is zero-dimensional and singular which means that RP is not reduced (the
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only zero-dimensional regular rings are fields). This contradicts the fact that R is

reduced. 2

Before giving the proof of Theorem III.10 we need to generalize several results of

section 8 of [LS01]. This first lemma generalizes [LS01], Lemma 8.3. The proof we

give is identical to the original.

Lemma III.12. Let M be an Artinian R-module, let I ⊆ R be a proper ideal, and

write M−v for M(−v,I). Assume for every v there exists v′ such that for all q = pe, the

natural map TorR1 (R1/q, (M/M−v)−(v′−v))→ TorR1 (R1/q,M/M−v) is surjective. Then

0∗M =
⋃
v′∈N

0∗M−v′

Proof: The short exact sequences 0→ M−v → M → M/M−v → 0 and 0→ M−v →

M−v′ → (M/M−v)−(v′−v) → 0 induce the following commutative diagram with exact

rows:

TorR1 (R1/q, (M/M−v)−(v′−v)) −→ R1/q ⊗RM−v
a−→ R1/q ⊗RM−v′

f ↓ 1 ↓ g ↓

TorR1 (R1/q, (M/M−v)) −→ R1/q ⊗RM−v
b−→ R1/q ⊗RM

The surjectivity of f guarantees that g restricts to an isomorphism between Im(a)

and Im(b). Therefore, if x ∈ 0∗M and x ∈M−v then x ∈ 0∗M−v′
. 2

We recall the following discussion from [LS01].

Discussion. Let T ⊆ R be a free R1/p-module. We use T to construct, for all q = pe,

a free R1/q-module, Te ⊆ R recursively as follows. First, set T1 := T . Now suppose
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T1, . . . , Te−1 have been constructed and we want to construct Te. Let {te,i} be a free

R1/pe−1
-basis of Te−1. By identifying R with R1/pe−1

, R1/p with R1/q, we can view

T1 as a free R1/q-submodule of R1/pe−1
. That is, T1 = ⊕iR1/qt1,i ⊆ R1/pe−1

. Now,

identify R1/pe−1
with R1/pe−1

te,j ⊆ R and let T1,e,i,j be the submodule of R1/pe−1
te,j

corresponding to R1/qt1,i. Let Te be the sum of the T1,e,i,j over all i and j. It follows

that Te is a free R1/q-submodule of R.

Hence, if T ⊆ R1/p is a free R-submodule, then the construction above produces,

for each q = pe, a free R-submodule Te ⊆ R1/q.

Lemma III.13. If r ∈ R annihilates R1/p/T1 then r2 annihilates R1/q/Te for all e.

Proof: This is [LS01], Lemma 8.9. 2

Proposition III.14. Let J ⊆ R be the defining ideal of the singular locus. Then

there exists t ∈ N such that for all i, e > 0 and all R-modules M , J t annihilates the

R-modules ToriR(R1/q,M) = 0.

Proof: Using Lemma III.11 we may assume J is generated by nonzerodivisors. The

rest of the proof is the same as in [LS01], Proposition 8.10. 2

We now come to the proof of the main theorem:

Proof of Theorem III.10: By Lemma III.11 we may assume J = (x1, . . . , xh) is

generated by nonzerodivisors. Since the potent elements form an ideal, it suffices to

show that

0∗M =
⋃
v∈N

0∗M(−v,xi)

for 1 ≤ i ≤ h. To simplify notation, let x = xi. Let v ∈ N be given, and set



37

M ′ := M/M(−v,x). By Lemma III.12 it is enough to show that there exists v′ ∈ N

such that for all q, the natural map TorR1 (R1/q,M ′
−v′)→ TorR1 (R1/q,M ′) is surjective.

For this, we first prove the following claim:

Claim: There exists an integer T ∈ N such that for all q = pe, for all R-

modules N ′, and for all i ≥ 1, xT annihilates the R-modules TorRi (R1/q, N ′) and

TorRi (R1/q/xTR1/q, N ′).

Proof of Claim: Since x ∈ J , by Proposition III.14 there exists a T ∈ N such that

xT annihilates TorRi (R1/q, N ′) for all i ≥ 1 and all q. Obviously xT annihilates all of

the modules TorRi (R1/q/xTR1/q, N ′) since it annihilates R1/q/xTR1/q. 2

The second part of the following statement will complete the proof:

Claim: There exists v′ ∈ N such that:

(1) For all i ≥ 1 and for all q, the map TorRi (R1/q/xTR1/q,M ′
−v′)→ TorRi (R1/q/xTR1/q,M ′)

is surjective.

(2) For all i ≥ 1 and for all q, the map TorRi (R1/q,M ′
−v′) → TorRi (R1/q,M ′) is

surjective.

Proof: For (1), R1/q/xTR1/q is killed by xT so there exists such a v′ by Corollary 3.9,

part (a). We claim this v′ works for (2) as well. Since x is a nonzerodivisor we have

the following exact sequence

(∗) 0→ R1/q ·xT

→ R1/q → R1/q/xTR1/q → 0

Since xT annihilates TorRi (R1/q,−), by exact sequence (∗) there is a commutative
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diagram with exact rows:

TorRi+1(R
1/q/xTR1/q,M ′

−v′) −→ TorRi (R1/q,M ′
−v′)

·0−→ TorRi (R1/q,M ′
−v′)

f ↓ g ↓

TorRi+1(R
1/q/xTR1/q,M ′) −→ TorRi (R1/q,M ′)

·0−→ TorRi (R1/q,M ′)

Therefore, we actually have the following commutative diagram with exact rows

TorRi+1(R
1/q/xTR1/q,M ′

−v′) −→ TorRi (R1/q,M ′
−v′) −→ 0

f ↓ g ↓

TorRi+1(R
1/q/xTR1/q,M ′) −→ TorRi (R1/q,M ′) −→ 0

We have already proven that the map f is surjective. It follows that the map g is

surjective as well. This completes the proof. 2



CHAPTER IV

The Defining Ideal for the Non-finite Injective Dimension
Locus is Potent for the Matlis Dual

In this chapter we obtain a result on potent elements that substantially generalizes

the result of the previous chapter. The main result may be stated as follows:

Theorem IV.1. Let (R,m,K) be a reduced, excellent local ring. Let W be a finitely

generated R-module, let ER(K) be the injective hull of the residue class field, and

put M := HomR(W,ER(K)) so that M is an Artinian R-module. Let I ⊆ R be the

defining ideal of the non-finite injective dimension locus of W (that is, c ∈ I if and

only if the injective dimension of Wc over Rc is finite). If z ∈ 0∗M , then z is in the

tight closure of 0 in AnnM(I t) for some t ∈ N.

This theorem is given in Corollary IV.58 in Section 3. As first corollaries we get:

Corollary IV.2. Let (R,m,K) be a reduced excellent local ring, let W be a finitely

generated R-module, and let ER(K) be the injective hull of the residue class field.

Set M := HomR(W,ER(K)), the Matlis dual of W .

(a) Assume that W has finite injective dimension on the punctured spectrum of R.

Then 0∗M = 0∗fgM .

(b) Let J ⊆ R be the defining ideal of the singular locus of R. If z ∈ 0∗M then there

exists t ∈ N such that z is in the tight closure of 0 in AnnM(J t).

39



40

Part (b) of the above is the main result of the previous chapter. As additional

consequences we immediately recover three important results already in the litera-

ture:

Corollary IV.3. Let (R,m,K) be a reduced, excellent local ring.

(a) If R is an isolated singularity, then tight closure equals finitistic tight closure in

every Artinian R-module.

(b) If R is has an isolated non-Gorenstein point then tight closure equals finitstic

tight closure in the injective hull of the residue class field.

(c) If (R,m,K) is local ring of dimension d which is Cohen-Macaulay on the punc-

tured spectrum, then tight closure equals finitisitic tight closure in Hd
m(R), the

top local cohomology module with supports in the maximal ideal.

Parts (a) and (b) are due to Lyubeznik and Smith and are proved in [LS01]. It

should be noted that their techniques require the ring to be equidimensional so that

parts (a) and (b) are already an improvement. Part (c) is due to Smith, originally

proved in [Smi94], where she obtains the result for all equidimensional local rings.

The theory of potent elements also allows one to combine these results with the

main result of [LS99] to get results for graded Artinian modules over polynomial

rings (and slightly more generally). We shall deduce these consequences in Chapter

6 after developing the theory of potent elements for graded rings.

We prove the main theorem of this chapter by first proving a uniform annihilator

result for certain Ext modules which is interesting in its own right. The idea of

the proof is to make a transition from Ext modules to local cohomology modules
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where we know the uniform annihilator result. This transition requires a substantial

effort and is most transparent in the case where the ring is equidimensional. The

remainder of the chapter is organized as follows: in Section 1 we prove our uniform

annihilator result when the ring is equidimensional (see Theorem IV.5 for the pre-

cise statement) and in Section 2 we obtain our uniform annihilator result without

the equidimensional hypothesis (see Theorem IV.41). In Section 3 we develop the

notions of potent elements and potent ideals. Using Theorem IV.41 we then prove

Theorem IV.1.
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4.1 Uniform Annihilators When R is Equidimensional

In this section, we prove an existence theorem on uniform annihilators of certain

Ext modules under the assumption that our ring is equidimensional. To state our

main result we first make a definition.

Definition IV.4. Suppose W is any R-module and c ∈ R. We say that W is

(c, F )-injective (as a module) if there exists k = k(c,W ) ∈ N such that

ck · ExtjR(R1/q,W ) = 0

for all q > 0 and all j > 0.

Our main theorem on uniform annihilators of Ext modules may be stated as

follows.

Theorem IV.5. Let (R,m,K) be a reduced, F -finite, equidimensional, excellent

local ring of characteristic p > 0. Let c ∈ R and let W be a finitely generated

R-module such that Wc has finite injective dimension. Then W is (c, F )-injective.

In Section 2 we obtain this result without the assumption that R is equidimen-

sional (see Theorem IV.41), but the proof in the equidimensional case is substantially

more transparent. As a consequence we obtain results on our theory of potent el-

ements in Section 3. The reader may wish to consult Theorems IV.47, IV.53, and

Corollary IV.58 at this time.

We would like to give an overview of the proof of Theorem IV.5. We begin with

some basic statements about (c, F )-injective modules. Next, the theorem reduces

to the complete case where we may assume that R is a homomorphic image of a

Gorenstein ring. Then R has a canonical module which we denote by ω. Note that
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Rc is forced to be Cohen-Macaulay since it has a finitely generated module of finite

injective dimension, and the first major step is to reduce to proving the theorem in

the case W = ω. This reduction requires the use of (c, ω)-resolutions, defined below.

Once we are in the case W = ω, we make use of the dualizing complex as well

as results on colon-killers from [HH92] to prove the theorem. We point out that if

R itself is assumed to be Cohen-Macaulay the proof may be simplified considerably

(for example, the theorem is quite easy in the case W = ω, and so the use of du-

alizing complexes and results on colon-killers can be avoided), and we can obtain a

uniform annihilator result for Ext’s against all R-modules, not just the modules R1/q.

To begin, we collect some basic results about (c, F )-injective modules.

Proposition IV.6. Let (R,m,K) be a local ring of dimension d, and let

0→ A→ B → C → 0

be a short exact sequence.

(a) If M is any R-module such that c ∈ Rad(AnnR(M)) then M is (c, F )-injective.

(b) If A and C are (c, F )-injective then so is B.

(c) If A and B are (c, F )-injective then so is C.

(d) If the exact sequence above splits, then B is (c, F )-injective ⇐⇒ A and C are

both (c, F )-injective.

Proof: Part (a) follows from the fact that ct ∈ AnnR(M) =⇒ ct ∈ AnnR(ExtiR(−,M))

for all i.
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From the long exact sequence for Ext we have an exact sequence

ExtjR(N,A)→ ExtjR(N,B)→ ExtjR(N,C).

If j ≥ 1 then ct1 kills the first term and ct2 kills the third term for some t1, t2 ∈ N.

It follows that ct1+t2 kills the middles term. This proves part (b).

For part (c) one uses the exact sequence

ExtjR(N,B)→ ExtjR(N,C)→ Extj+1
R (N,A)

and proceeds as in (b).

To prove (d), if B ∼= A⊕ C, then

ExtjR(N,B) ∼= ExtjR(N,A)⊕ ExtjR(N,C).

Therefore, ct annihilates ExtjR(N,B)⇐⇒ ct annihilates ExtjR(N,A) and ExtjR(N,C).

2

Before proceeding further we introduce the following:

Definition IV.7. Assume R has a canonical module ω and let c ∈ R. We say that

a module W has a finite (c, ω)-resolution (of length s) if there is a complex

0→ ω⊕bs
φp→ · · · → ω⊕b0

φ0→ W
φ−1→ 0

and an integer t ∈ N such that

(a) For all −1 ≤ j ≤ s− 1, ct kills Ker(φj)/ Im(φj+1).

(b) If Z := Ker(φp), then Zc is a direct summand of ω⊕nc for some n ∈ N.
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We shall eventually see that the finitely generated modules W such that Wc

has finite injective dimension over Rc are exactly the finitely generated modules

possessing a (c, ω)-resolution (see Proposition IV.11 for the precise statement; when

R is Cohen-Macaulay the case c = 1 is a classical result recorded in Lemma IV.9).

But first we want to point out that the module Z in the above definition will be forced

to be (c, F )-injective once we know ω is. We prove this in the next proposition by

making use of ideas from Chapter 3.

Proposition IV.8. Suppose A,B are finitely generated R-modules, assume B is

(c, F )-injective, and assume that Ac is a direct summand of Bc. Then A is (c, F )-

injective as well.

Proof: There is a complex A
α→ B

γ→ C and a split exact sequence 0 → Ac →

Bc → Cc → 0. Since the modules are finitely generated, it follows that the original

complex is ct-split for some t ∈ N; i.e., there exist R-linear maps β : B → A and

ψ : C → B such that for some t ∈ N,

ct · 1B = αβ + ψγ.

Note that since γ ◦ α = 0,

(∗) α ◦ β = ct · 1Im(α).

By enlarging t if necessary we may assume

(∗∗) ct ·Ker(α) = 0.

Since B is (c, F )-injective, there exists h ∈ N such that, for all q, for all j ≥ 1

ch · ExtjR(R1/q, B) = 0.
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Let F• be a free resolution of R1/q. We have a diagram

Aj+1

δA
j← Aj

δA
j−1← Aj−1

β ↑↓ α β ↑↓ α β ↑↓ α

Bj+1

δB
j← Bj

δB
j−1← Bj−1

with the following commutativity properties:

(1) δAi ◦ β = β ◦ δBi , for i = j, j − 1 and

(2) δBi ◦ α = α ◦ δAi , for i = j, j − 1.

Here, Ai = HomR(Fi, A) ∼= Ami , Bi = HomR(Fi, B) ∼= Bmi , and we have written

α and β for the maps they induce on the Hom modules. It is easy to verify that

equations (∗) and (∗∗) hold for the induced maps. Note that the homology of the

top row (respectively, the bottom row) is ExtjR(R1/q, A) (respectively ExtjR(R1/q, B)).

We have

(∗ ∗ ∗) ch Ker(δBj ) ⊆ Im(δBj−1)

and we claim ch+2t Ker(δAj ) ⊆ Im(δAj−1). This will complete the proof, since h, t did

not depend on q or j.

To see this, suppose z ∈ Ker(δAj ). By commutativity property (2), α(z) ∈ Ker(δBj )

so by (∗ ∗ ∗) there exists y such that δBj−1(y) = chα(z) = α(chz). It follows that

δBj−1(y) ∈ Im(α), so by equation (∗), we have

αβδBj−1(y) = ctδBj−1(y) = α(ct+hz).

Now, let z′ := δAj−1(β(y)) which is β(δBj−1(y)) by commutativity property (1). By

what we have just shown, α(z′) = α(ct+hz), and it follows that α(ct+hz − z′) = 0.

Therefore, ct+hz − z′ ∈ Ker(α), so by (∗∗),

ch+2tz − ctz′ = 0 =⇒ ch+2tz = ctz′.



47

Since z′ ∈ Im(δAj−1) it follows that ctz′ ∈ Im(δAj−1) and hence ch+2tz ∈ Im(δAj−1). This

proves the claim and completes the proof of the proposition. 2

We prepare two lemmas before clarifying which finitely generated modules posses

finite (c, ω)- resolutions.

Lemma IV.9. Let S be a (not necessarily local) Cohen-Macaulay ring of finite Krull

dimension with canonical module ω, and let W be a finitely generated S-module.

(a) The natural map

S → HomS(ω, ω)

is an isomorphism.

(b) If W has finite injective dimension, then HomS(ω,W ) has finite projective di-

mension.

(c) If 0 → Mn → Mn−1 → · · · → M0 → 0 is an exact sequence of S-modules

such that each Mi is finitely generated and has finite injective dimension, then

0→ HomS(ω,Mn)→ · · · → HomS(ω,M0)→ 0 is exact also.

(d) If S is a local ring, then W has finite injective dimension if and only if there is

an exact sequence

(∗) 0→ ω⊕bd → · · · → ω⊕b0 → W → 0,

where d = dimS − depthm(W ) and where bj := dimL(ExtdimS−j
S (L,W )). In

particular, if S is a local ring and W is a finitely generated, maximal Cohen-

Macaulay S-module of finite injective dimension, then W ∼= ω⊕h for some h.

Proof: Part (a) reduces to the local case where the result is given in 3.3.4(d) of
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[BH93] while part (b) follows from 3.11(i) of [Sha72].

We prove (c). Since Hom commutes with localization when the first variable is

finitely generated, the statement reduces at once to the local case so we may assume

that (S,m) is Cohen-Macaulay, local. We use induction on n. We first consider the

case of a short exact sequence 0 → M2 → M1 → M0 → 0. The key point is that

when a finitely generated module M has finite injective dimension, for any finitely

generated module N , ExtjS(N,M) = 0 for all j > dim(S) − depth(N): one proves

this by induction on depth(N). When depth(N) = 0 this follows at once from the

fact that id(M) = dim(S). If depth(N) > 0 then for some x ∈ R we have a short

exact sequence

0→ N
·x→ N → N/xN

which produces

Exti(N,M)
·x→ ExtiR(N,M)→ 0

since, by the induction hypothesis, Exti+1
R (N/xN,M) = 0. The result then follows

from Nakayama’s Lemma. Now, returning to the short exact sequence

0→M2 →M1 →M0 → 0,

since ω is a maximal Cohen-Macaulay module, by the result just proved, Ext1
R(ω,M2) =

0, so it follows that

0→ HomR(ω,M2)→ HomR(ω,M1)→ HomR(ω,M0)→ 0

is exact.

Finally, given 0 → Mn → · · · → M0 → 0, we may from two shorter exact

sequences:

(1) 0→Mn →Mn−1 → ImMn−1 → 0
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and

(2) 0→ ImMn−1 →Mn−2 → · · · →M0 → 0.

Note that by (1), it follows that id(ImMn−1) <∞. Applying the induction hypoth-

esis we find that

0→ HomR(ω,Mn)→ HomR(ω,Mn−1)→ HomR(ω, ImMn−1)→ 0

and

0→ HomR(ω, ImMn−1)→ HomR(ω,Mn−2)→ · · · → HomR(ω,M0)→ 0

are both exact. The result then follows easily.

Part (d) is contained in 3.3.28 of [BH93]. 2

Lemma IV.10. Let (R,m,K) be an equidimensional local ring with a canonical

module, ω and let c ∈ R. Suppose W is a finitely generated R-module and that Wc

has finite injective dimension over Rc. Then, for some b ∈ N, there exists an exact

sequence

ω⊕b → W → C → 0

such that ct · C = 0 for some t ∈ N.

Remark: By Theorem II.18, since W is finitely generated, if Wc has finite injective

dimension then Rc must be a Cohen-Macaulay ring.

Proof: Consider the family F of submodules of W defined as follows: a submodule

U ⊆ W is in F if there exists an R-linear map f : ω⊕b → W with Im(f) = U . If

U, V ⊆ W are in F then we claim U + V is in F as well. To see this, suppose there

are R-linear maps f : ω⊕b1 → W and g : ω⊕b2 → W with Im(f) = U and Im(g) = V .

Then the direct sum map f⊕g : ω⊕b1+b2 → W has image Im(f⊕g) = U+V and the
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claim is proved. Since W is Noetherian, it follows that there is a submodule B ∈ F

such that if U ∈ F then U ⊆ B.

We first prove that (W/B)c = 0. If not, then since W/B is finitely generated there

is a prime P ∈ Supp(W/B), with c 6∈ P . Since Wc has finite injective dimension

over Rc, WP has finite injective dimension over RP . Therefore, by the proceed-

ing lemma (since Rc and hence RP are Cohen-Macaulay), there is a surjective map

ω⊕nRP
� WP . Now, ωRP

∼= ωP , and since Hom commutes with localization, we find

an R-linear map θ : ω⊕n → W such that Coker(θ)P = 0. But Im(θ) ⊆ B and so

Coker(θ) � W/B. Since Coker(θ)P = 0 it follows that (W/B)P = 0, a contradiction.

We have shown that (W/B)c = 0 and since W/B is finitely generated, there exists

t ∈ N such that ct · (W/B) = 0. With C := W/B, it follows that there is an exact

sequence

ω⊕b → W → C → 0

such that ct · C = 0. 2

Proposition IV.11. Let (R,m,K) be an equidimensional local ring with canonical

module ω and let c ∈ R. Let W be a finitely generated R-module. Then Wc has finite

injective dimension over Rc if and only if W has a finite (c, ω)-resolution.

Proof: Let W be a finitely generated R-module. Since R is local it has finite

Krull dimension. We first prove the implication (=⇒). Assume Wc has finite in-

jective dimension. Then Rc must be Cohen-Macaulay and also Rc has finite Krull

dimension since R does. By the proceeding lemma, there is an exact sequence

0 → Z0 → ω⊕b0 → W → C−1 → 0 and an integer t−1 such that ct−1C−1 = 0. Since

localization is flat, there is a short exact sequence 0 → (Z0)c → ω⊕b0c → Wc → 0.
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It follows that (Z0)c has finite injective dimension. Moreover, since ωc is a maximal

Cohen-Macaulay module, it follows that either (Z0)c is a maximal Cohen-Macaulay

module or depthn(Z0)c ≥ depthnWc + 1 for all maximal ideals n ⊆ Rc.

Applying the proceeding lemma to Z0, we obtain an exact sequence

0→ Z1 → ω⊕b1 → Z0 → C0 → 0

and an integer t0 such that ct0C0 = 0. Again, we have an exact sequence

0→ (Z1)c → ω⊕b1c → (Z0)c → 0

and it follows that the injective dimension of (Z1)c is finite and either (Z1)c is a max-

imal Cohen-Macaulay module, or depthn(Z1)c ≥ depthn(Z0)c + 1 ≥ depthn(Wc) + 2

for all maximal ideals n ⊆ Rc.

Proceeding in this way, for each 0 ≤ j ≤ d = dim(R), we obtain modules Zj, Cj,

integers bj, tj and exact sequences 0 → Zj+1 → w⊕bj → Zj → Cj → 0 such that

ctj · Cj = 0. Putting all of this together, we obtain a complex:

(∗) 0→ ω⊕bd → ω⊕bd−1 → · · · → ω⊕b0 → W → 0

with the following properties:

(a) the homology at ω⊕bd is Zd+1 (i.e., Ker(ω⊕bd → ω⊕bd−1) = Zd+1), and (Zd+1)c is

a maximal Cohen-Macaulay module,

(b) for 0 ≤ j ≤ d − 1, the homology at ω⊕bj is Cj and is therefore annihilated by

ctj , and

(c) the homology at W is C−1 and is therefore annihilated by ct−1 .
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Letting t := max{t−1, . . . , td} we see that this complex satisfies property (a) of Defi-

nition IV.7. Therefore, the proof will be complete as soon as we know that (Zd+1)c

is a direct summand of ω⊕nc for some n.

To simplify notation, let Z := Zd+1. Notice that since Zc is a maximal Cohen-

Macaulay module, we have that for all maximal ideals n ∈ Spec(Rc), Zn is a maximal

Cohen-Macaulay module over Rn. Therefore, Zn ∼= ω⊕hn for some h where the h may

depend on n. This is just the second statement of (IV.9d). Since the canonical mod-

ule localizes, it follows that for all P ∈ Spec(Rc) there exists h such that ZP ∼= ω⊕hP .

Now, localizing the complex (∗) at c produces the following exact sequence

0→ Zc → ω⊕bdc → · · · → ω⊕b0c → Wc → 0.

SetN := HomRc(ωc,Wc). SinceWc has finite injective dimension, N has finite projec-

tive dimension by (IV.9b). Further, by (IV.9a) and (IV.9c), applying HomRc(ωc,−)

to the above exact sequence produces the exact sequence

0→ HomRc(ωc, Zc)→ R⊕bd
c → · · · → R⊕b0

c → N → 0.

Since dim(R) = d, it follows at once that HomRc(ωc, Zc) is projective as it is a (d+1)st

module of syzygies of N which has finite projective dimension. Therefore, there is an

Rc-module Q such that HomRc(ωc, Zc) ⊕ Q = R⊕n
c for some n. Applying − ⊗Rc ωc,

we find that

(HomRc(ωc, Zc)⊗Rc ωc)⊕ (Q⊗Rc ωc)
∼= R⊕n

c ⊗Rc ωc
∼= ω⊕nc .

Hence, HomRc(ωc, Zc) ⊗Rc ωc is a direct summand of ω⊕nc . We claim we have an

isomorphism

HomRc(ωc, Zc)⊗Rc ωc
∼= Zc
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and it is enough to check this locally. Indeed, if P ∈ Spec(Rc), then since Hom

commutes with localization, the left hand side is HomRP
(ωP , ZP ) ⊗RP

ωP . Since

ZP ∼= ω⊕hP , this is

HomRP
(ωP , ω

⊕h
P )⊗RP

ωP ∼= (RP )⊕h ⊗RP
ωP ∼= ω⊕hP

∼= ZP

yielding the isomorphism. Therefore Zc is a direct summand of ω⊕nc , as required.

It remains to prove the (⇐=) implication. Assume that W has a finite (c, ω)-

resolution

0→ ω⊕bd → · · · → ω⊕b0 → W → 0.

We must show that Wc has finite injective dimension. Localizing at c produces the

exact sequence

0→ Zc → ω⊕bdc → · · · → ω⊕b0c → Wc → 0.

If d = 0 then we have an exact sequence 0 → Zc → ω⊕b0c → Wc → 0. Since ωc has

finite injective dimension so does Zc being a direct summand. But then Zc and ωc

have finite injective dimension, so Wc does as well. This handles the case d = 0. The

result now follows from a straightforward induction on d. 2

Proposition IV.12. (Reduction to the case W = ω.) Suppose that (R,m,K)

is an equidimensional, reduced, excellent local ring with canonical module ω. Suppose

that W is a finitely generated R-module such that the injective dimension of Wc is

finite. If ω is (c, F )-injective then W is (c, F )-injective.

Proof: By Proposition IV.11, there exists a complex

0→ ω⊕bd → · · · → ω⊕b0 → W → 0
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where Z = Ker(φd) is such that Zc is a direct summand of ω⊕nc for some n. By

Proposition IV.8, Z is (c, F )-injective since ω is (c, F )-injective. Furthermore, there

exists t ∈ N such that the other homology modules are killed by ct. We use induction

on d.

If d = 0, then for some modules N,C we have two short exact sequences:

(1) 0→ Z → ω⊕b0 → N → 0

and

(2) 0→ N → W → C → 0.

By hypothesis, ω is (c, F )-injective and so by Proposition IV.6(d), ω⊕b0 is (c, F )-

injective. Therefore, by exact sequence (1) and Proposition IV.6(c), N is (c, F )-

injective as well. Now, C is the homology of the complex at W and thus is killed by

ct. Therefore, C is (c, F )-injective by Proposition IV.6(a), so using exact sequence

(2) and Proposition IV.6(b), we conclude W is (c, F )-injective.

For the inductive step, let T := Ker(ω⊕b0 → W ). The complex

0→ ω⊕bd → · · · → ω⊕b1 → T → 0

is a (c, ω)-resolution for T of length d − 1 < d, as is easily verified. Therefore

by the induction hypothesis, T is (c, F )-injective. We have an exact sequence

0→ T → ω⊕b0 → W → C → 0 which breaks up into two short exact sequences. As

before, since T, ω, and C are (c, F )-injective so is W . 2

In handling the caseW = ω we will require the technique of the dualizing complex.

The next two results are well known but are included for the convenience of the reader
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and to allow us to set up some notation that will be used throughout the rest of this

section. See [Har66].

Lemma IV.13. Let (R,m,K) be an equidimensional local ring of dimension d and

let (T, n, L) be a Gorenstein local ring of dimension d + h such that T � R. Write

R = T/I. Then:

(i) The injective dimension of T (as a T -module) is d+ h, and T has an injective

resolution:

0→
⊕

ht(P )=0

E(T/P )→
⊕

ht(P )=1

E(T/P )→ · · · → E(L)→ 0

where E(T/P ) is the injective hull of T/P .

(ii) HomT (R,E(T/P )) = 0 if I 6⊆ P while HomT (R,E(T/P )) ∼= E(R/P ) if I ⊆ P .

In particular, HomT (R,E(T/P )) = 0 if height(P ) < h.

(iii) The module ExthT (R, T ), thought of as an R-module, is a canonical module for

R.

Proof: Part (i) is Theorem 3.3.10(b) of [BH93], since T is a canonical module

for itself. The first statement of (ii) is obvious, and the second is proved by simply

noting that HomT (R,E(T/P )) = AnnE(T/P )(I) = E(T/P ) = E(R/P ). Part (iii)

follows from local duality. 2

Proposition IV.14. (The Dualizing Complex) Assume all of the notations and

conventions of the previous lemma; let c ∈ R and assume Rc is Cohen-Macaulay.

Let ω be a canonical module for R. Then there is a complex:

0→ ω → D0 → · · · → Dd → 0

and an integer k1 ∈ N such that
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(i) Dj is an injective R-module for all 0 ≤ j ≤ d.

(ii) The map ω → D0 is injective (i.e., the homology at ω is 0).

(iii) ck1 annihilates the homology at Dj for all 0 ≤ j ≤ d.

Proof: Applying HomT (R,−) to the injective resolution of T described in the

previous lemma produces

0→ 0→ · · · → 0→
⊕

ht(P )=h,I⊆P

HomT (R,E(T/P ))→ · · · → HomT (R,E(T/n))→ 0.

Notice that the homology of this complex is finitely generated since it is Ext•T (R, T ).

By part (iii) of the lemma,

Ker
( ⊕
ht(P )=h,I⊆P

HomT (R,E(T/P ))→
⊕

ht(P )=h+1,I⊆P

HomT (R,E(T/P ))
)

∼= ExthT (R, T ) ∼= ωR.

By part (ii) we may rewrite the complex as:

D• : 0→
⊕

ht(P )=0,I⊆P

E(R/P )→ · · · → E(R/m)→ 0,

and so, with these notations, Dj is an injective R-module for 0 ≤ j ≤ d and,

H0(D•) = ωR. We have already seen that Hj(D•) is finitely generated. We claim

that Hj(D•)c = 0 for all j ≥ 1. To see this, first note that ωc is the canonical

module for Rc since R is equidimensional. Now, since Rc is Cohen-Macaulay, ωc has

finite injective dimension and (D•)c is the injective resolution of ωc. In particular,

Hj(D•)c = 0 for all j ≥ 1. Since each Hj(D•) is finitely generated, it follows that

there exists k1 ∈ N such that ck1 ·Hj(D•) = 0 for all j ≥ 1. 2

Remark. It is often convenient in applications to replace T with T/J where J =

(x1, . . . , xk) is generated by a maximal regular sequence in I = Ker(T → R). Then
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T/J is still Gorenstein, and one has dim(T ) = dim(R).

Using the dualizing complex, we are already able to produce uniform annihilators

of the higher Ext modules.

Proposition IV.15. Let (R,m,K) be a local ring of dimension d, let c ∈ R, and

let W be any R-module. Suppose there is a complex

(∗) 0→ W → D0 → · · · → Dd → 0

and an integer k1 ∈ N such that:

(1) The complex is exact at W , and

(2) Dj is injective and the homology at Dj is killed by ck1 for all 0 ≤ j ≤ d.

Then, with k := (d+ 1)k1,

ck · Extd+lR (N,W ) = 0

for all R-modules N and all integers l > 0.

Proof: We use induction on d. If d = 0 then we have a short exact sequence

0→ W → D0 → C → 0

and ck1 · C = 0 since C is the homology of the complex (∗) at D0. The long exact

sequence for Ext produces the exact sequences

ExtjR(N,C)→ Extj+1
R (N,W )→ 0

for all j ≥ 0 since Extj+1
R (−, D0) = 0. Now, ck1 ·ExtjR(N,C) = 0, and it follows from

the surjectivity of the above map that ck1 · Extj+1
R (N,W ) = 0. This proves the case

d = 0.
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For the induction step, assume d ≥ 1, let Z := Ker(D1 → D2), and let C :=

Im(D0 → D1). Then we have a short exact sequences

(∗∗) 0→ W → D0 → C → 0

and

(∗ ∗ ∗) 0→ C → Z →M → 0

and ck1 ·M = 0 since M is the homology of the original complex (∗) at the D1 spot.

Notice also that

0→ Z → D1 → · · · → Dd → 0

is a complex of shorter length satisfying conditions (1) and (2) of the proposition.

Therefore, by the induction hypothesis, cdk1 · Extd+l−1
R (N,Z) = 0 for all l > 0. The

long exact sequence for Ext induced by (∗∗∗) produces the following exact sequence:

Extd+l−2
R (N,M)→ Extd+l−1

R (N,C)→ Extd+l−1
R (N,Z).

Since ck1 kills Extd+l−2
R (N,M) and cdk1 kills Extd+l−1

R (N,Z), it follows from exactness

that the product, c(d+1)k1 kills Extd+l−1
R (N,C). But by (∗∗) the long exact sequence

for Ext produces an isomorphism Extd+l−1
R (N,C) ∼= Extd+lR (N,W ). This completes

the proof. 2

Corollary IV.16. Let (R,m,K) be an equidimensional local ring of dimension d

with canonical module ω, and let c ∈ R such that Rc is Cohen-Macaulay. Let k1 be

as in IV.14. Then, with k := (d+ 1)k1,

ck · Extd+lR (N,ω) = 0

for all l > 0 and all R-modules N .
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Proof: This follows at once from (IV.14) and (IV.15). 2

We focus on proving the existence of uniform annihilators for the modules ExtjR(N,ω)

for 1 ≤ j ≤ d. We will use the dualizing complex to relate these modules to local

cohomology modules. The first step is Proposition IV.18 below; however, it is con-

venient notationally to first prove the following lemma.

Lemma IV.17. Let (R,m,K) be a local ring of dimension d with canonical module

ω, and let c ∈ R. Let D• be the dualizing complex, and let

I• : 0→ I0 → · · · → Id → Id+1 → · · ·

be an injective resolution of ω. Let k1 be as in (IV.14). Then, with h := k1 · d, there

exist maps ψj : Dj → Ij such that the following diagram commutes:

0 → ω → D0 ∆0→ D1 ∆1→ · · · ∆d−1→ Dd

↓ ·ch ↓ ψ0 ↓ ψ1 ↓ ψd

0 → ω → I0 δ0→ I1 δ1→ · · · δd−1→ Id → Id+1

Proof: We will construct the ψj inductively. If d = 0, then h = 0 and we are

considering the identity mapping 1 : ω → ω. So by part (ii) of (IV.14), we have an

injective map ω ↪→ D0, and a map ω → I0. Since I0 is injective, by the universal

mapping property of injective modules, there exists ψ0 : D0 → I0 making the dia-

gram commute.

If d = 1, then let C := D0/ω. The composite map δ0 ◦ ψ0 : D0 → I1 kills ω and

so induces a map γ : C → I1. Notice that Im(∆0) ∼= C/H, where H = Ker(∆0)/ω.

By part (iii) of (IV.14), ch ·H = 0, and it follows that ch · γ : Im(∆0) → I1. Since

Im(∆0) ↪→ D1 and I1 is injective, the universal mapping property of injectives gives
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a map ψ1 : D1 → I1. After replacing ψ0 with ch · ψ0, the diagram commutes.

For the induction step, we may assume that the maps ψj : Dj → Ij have been

constructed for 0 ≤ j ≤ n− 1 making the following diagram commute:

0 → ω → D0 ∆0→ · · · ∆n−3→ Dn−2 ∆n−2→ Dn−1 ∆n−1→ Dn

↓ ·c(n−1)k1 ↓ ψ0 ↓ ψn−2 ↓ ψn−1

0 → ω → I0 δ0→ · · · δn−3→ In−2 δn−2→ In−1 δn−1→ In

We must construct ψn : Dn → In. Let C := Dn−1/ Im(∆n−2). Notice that

δn−1 ◦ψn−1 ◦∆n−2 is the zero map since the diagram commutes, and δn−2 ◦δn−1 is the

zero map. It follows that the map δn−1◦ψn−1 : Dn−1 → In induces a map γ : C → In.

Now put H := Ker(∆n−1)/ Im(∆n−2). Then Im(∆n−1) ∼= Dn−1/Ker(∆n−1) ∼= C/H,

and ck1 ·H = 0. Therefore, ck1 · γ : Im(∆n−1)→ In is well defined. By the universal

mapping property of injective modules, there exists ψn : Dn → In. Finally, if we re-

place the original maps ·c(n−1)k1 , ψ0, . . . , ψn−1 with the maps ·cnk1 , ck1ψ0, . . . , c
k1ψn−1,

respectively, then the new diagram (with ψn included) commutes. This proves the

lemma. 2

Proposition IV.18. Assume all the notations and conventions of the previous result.

Then there exist maps ψj : Dj → Ij and ψ : 0→ Id+1 such that the following diagram

commutes:

0 → ω → D0 ∆0→ D1 ∆1→ · · · ∆d−1→ Dd → 0

↓ ·ch ↓ ψ0 ↓ ψ1 ↓ ψd ↓ ψ

0 → ω → I0 δ0→ I1 δ1→ · · · δd−1→ Id → Id+1

Proof: Given the previous lemma, all we have to do is construct the map ψ and

show that the diagram commutes. We have the following commutative diagram:
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X
∆d−1→ Dd → 0

↓ f ↓ ψd

Y
δd−1→ Id

δd→ Id+1

where X = Dd−1 and Y = Id−1 if d > 0 and X = Y = ω if d = 0. Now, define C :=

Dd/∆d−1(X). By the commutativity of the diagram, the map δd ◦ ψd : Dd → Id+1

kills ∆d−1(X) and therefore induces a map γ : C → Id+1. But C is the homology

of the complex at Dd, so ck1 · C = 0. It follows that ck1 · γ : 0 → Id+1, so we let

ψ := ck1 · γ. Replacing the previous ψj with ck1ψj ensures that the new diagram

commutes. 2

Proposition IV.19. Let (R,m,K) be a local ring of dimension d with canonical

module ω, and let c ∈ R. Let D• be the dualizing complex and let {Nλ} be a family

of R-modules. Suppose there exists an integer t ∈ N such that, for all R-modules Nλ

in the family,

ct ·H i(HomR(Nλ,D•)) = 0

for all 0 < i ≤ d. Then, with h as in the previous proposition,

ch+t · ExtiR(Nλ, ω) = 0

for all 0 < i ≤ d and all R-modules Nλ in the family.

Proof: We first construct two endomorphisms of the complex

0→ ω → I0 → · · · → Id+1

and show that they are homotopic. The map ω
·ch→ ω given by multiplication by

ch induces an endomorphism f • : I• → I•. On the other hand, since I• is exact

and D• is injective, the identity mapping, 1 : ω → ω can be lifted to a map of
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complexes γ• : I• → D•. Recall the map ψ• : D• → I• constructed in (IV.18). The

composition,

g• := ψ• ◦ γ•

produces a second enodmorphism of I• lifting the map ω
·ch→ ω.

Since both f • and g• lift the map ·ch, by standard results these two maps of com-

plexes are homotopic. Further, the homotopy is preserved after applying HomR(N,−).

Therefore, the two maps induce the same map on homology. Obviously, f • simply

induces the map Ext•(N,W )
·ch→ Ext•(N,W ). Therefore, the composition:

Ext•(N,W )
γ•−→ H•(Hom(N,D•)) ψ•−→ Ext•(N,W )

is simply ·ch. Here, we have written γ• and ψ• for the maps they induce. Suppose

z ∈ Ext•R(N,W ) and we would like to show that ch+tz = 0. Then (ψ• ◦ γ•)(ctz) =

ch+tz, and yet,

(ψ• ◦ γ•)(ctz) = ψ•(ctγ•(z)) = 0

since ct kills the middle module. 2

The dualizing complex derives its power in part from the fact that its homology

is dual to local cohomology: this is well known (see [Har66]), but we include a short

proof for completeness.

Proposition IV.20. Let (R,m,K) be a local ring of dimension d such that R = T/I

for a Gorenstein ring T of dimension d + h. Let D• be the dualizing complex. Let

∨R be the functor HomR(−, ER(K)) where ER(K) is the injective hull of the residue

class field, and similarly for ∨T . Let N be a finitely generated R-module. Then there
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is a natural isomorphism:

Hj
m(N) ∼= (Hd−j(HomR(N,D•)))∨R

for all 0 ≤ j ≤ d.

Proof: By local duality over the Gorenstein ring T (see Corollary 3.5.9 of [BH93]),

we have an isomorphism

Hj
n(N) ∼= Extd+h−jT (N, T )∨T .

However, as N is an R-module, Hj
n(N) ∼= Hj

m(N), and

Extd+h−jT (N, T )∨T ∼= Extd+h−jT (N, T )∨R ,

so we conclude

Hj
m(N) ∼= Extd+h−jT (N, T )∨R .

Now,

Extd+h−jT (N, T ) ∼= Hd+h−j(HomT (N,E•)) ∼= Hd+h−j(HomT (N,HomT (R,E•))),

the last isomorphism holding because N is an R-module; Proof: N is killed by I, so

HomT (N,E) = HomT (N,AnnE(I)) for any T -module E. But,

HomT (R,E) = HomT (T/I, E) = AnnE(I)

and so

HomT (N,E) = HomT (N,AnnE(I)) = HomT (N,HomT (R,E))

for any T -module E.

But HomT (R,E•) = D• with a shift by h in degree, and so

Hd+h−j(HomT (N,HomT (R,E•))) ∼= Hd−j(HomT (N,D•))
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∼= Hd−j(HomR(N,D•))).

In conclusion,

Hj
m(N) ∼= Extd+h−jT (N, T )∨R ∼= (Hd−j(HomR(N,D•)))∨R

as desired. 2

Corollary IV.21. Let (R,m,K) be a local ring of dimension d with canonical module

ω, and let c ∈ R. Let D• be a dualizing complex. Suppose there exists an integer

t ∈ N such that, for a family of R-modules {Nλ},

ct ·Hd−i
m (Nλ) = 0

for all R-modules Nλ in the family and all 1 ≤ i ≤ d. Then, with h as in (IV.19),

ch+t · ExtiR(Nλ, ω) = 0

for all R-modules Nλ in the family and all 1 ≤ i ≤ d.

Proof: This is immediate from (IV.19) and the isomorphism of (IV.20). 2

Remark: Of course, the corollary is also valid with i = 0 included, but we have

stated precisely the result we will need below.

To complete the proof of Theorem IV.5, we need results on colon-killers from

[HH92].

Proposition IV.22. Assume R is a reduced, equidimensional local ring that is a

homomorphic image of a Gorenstein ring. Let c ∈ R such that Rc is Cohen-Macaulay.

There exists t ∈ N such that for all systems of parameters x1, . . . , xd, c
t annihilates

(x1, . . . , xk) : xk+1

(x1, . . . , xk)
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for all 1 ≤ k ≤ d− 1.

Proof: See Lemma 3.2 of [HH92]. 2

Corollary IV.23. Let R, c be as above. There exists an integer t ∈ N such that, for

all systems of parameters x1, . . . , xd, for all q = pe and for all 1 ≤ k ≤ d− 1,

ct · (x1, . . . , xk)R
1/q : xk+1

(x1, . . . , xk)R1/q
= 0.

Proof: By the previous result, there exists t such that ct kills

(xq1, . . . , x
q
k) : xqk+1/(x

q
1, . . . , x

q
k)

for all k, q. Taking qth roots we find that ct/q kills

(x1, . . . , xk)R
1/q : xk+1/(x1, . . . , xk)R

1/q

for all k, q. Since ct is an R1/q multiple of ct/q, it follows that ct has this property as

well. This proves the result. 2

Corollary IV.24. Let R, c be as above. There exists an integer t ∈ N such that

ct ·Hj
m(R1/q) = 0

for all j < d. Consequently if R is F -finite, then with h as in Proposition IV.19,

ch+t · Exti(R1/q, ω) = 0

for all 1 ≤ i ≤ d and for all q.

Proof: The second statement follows from the first and Corollary IV.21. It suffices

to prove the first statement. By the previous corollary, there exits t ∈ N annihilating

all Koszul homology on R1/q. If (x) = x1, . . . , xd is a system of parameters, then
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Hj
m(R1/q) = Hj

(x)(R
1/q) which can be computed as a direct limit of Koszul cohomol-

ogy, which is Koszul homology with the numbering reversed. 2

We need one last lemma before we can complete the proof of Theorem IV.5.

Lemma IV.25. Let R→ S be a flat map of (not necessarily local) Noetherian rings,

let W be a finitely generated R-module, and let c ∈ R.

(a) The injective dimension of W (whether finite or not) is the same as

sup{i(m) : Ext
i(m)
Rm

(Rm/mRm,Wm) 6= 0,m ∈ MaxSpec(R)}.

In particular, if (R,m,K) is local, then the injective dimension of W is

sup{i : ExtiR(K,W ) 6= 0}.

(b) If idS(W ⊗R S) <∞ then idR(W ) <∞.

(c) If additionally, S has finite Krull dimension and the map R→ S has Gorenstein

fibers then

idS(W ⊗R S) <∞⇐⇒ idR(W ) <∞

(d) Assume (R,m) is an excellent local ring. If R is equidimensional (repectively,

reduced) then R̂, the completion of R with respect to the maximal ideal, is equidi-

mensional (respectively, reduced).

Proof: (a). By definition, the ith Bass number of W with respect to m is the

number µi(m,W ) := dimκ(m)

(
ExtiRm

(κ(m),Wm)
)

where κ(m) = Rm/mRm. Since

the minimal injective resolution of W over R has µi(m,W ) copies of ER(R/m) in

the ith spot, the result follows. The second statement is a special case of the first.
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We establish part (b). Set b := idS(W ⊗R S). Let P ∈ Spec(R) and let Q be a

prime of S lying over P . Since injective resolutions localize, idSQ
(W ⊗R SQ) ≤ b for

all Q ∈ Spec(S). It follows that for all i > b,

ExtiSQ
(κR(P )⊗R SQ,W ⊗R SQ) = 0

where κR(P ) = RP/PRP . Since RP → SQ is faithfully flat, we therefore have

SQ ⊗RP
ExtiRP

(κR(P ),WP ) = 0,

for all i > b. But since RP → SQ is faithfully flat we must have ExtiRP
(κR(P ),WP ) =

0 for all i > b. By [BH93], 3.1.14, it follows that idRP
(WP ) ≤ b. We claim

idR(W ) ≤ b: if the minimal injective resolution of W over R has length greater

than b, we may localize at some prime and preserve this, a contradiction since the

minimal injective resolution of WP has length less than or equal to b.

For part (c), it suffices to prove the (⇐=) implication. Assume idRW < ∞. We

need to show that idS(W ⊗ S) < ∞. Let d be the Krull dimension of S. We first

claim that this issue is local on the maximal ideals of S. Note first that for any max-

imal ideal n ⊆ S, dim(Sn) ≤ d and therefore any finitely generated module of finite

injective dimension over Sn has injective dimension ≤ d. Therefore, if we prove that

idSn(W ⊗Sn) <∞ for all maximal ideals n, then we will have that idSn(W ⊗Sn) ≤ d

for all n, and then idS(W ⊗ S) ≤ d (if not, we could preserve this by localizing the

minimal injective resolution of W ⊗R S at a maximal ideal of S). Therefore, we are

free to replace S by Sn, and then we can replace R by Rm where m = n ∩ R: we

still have that Rm → Sn is faithfully flat with Gorenstein fibers. Thus, without loss

of generality we may assume that R and S are local.
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We next want to replace R,S by their completions R̂, Ŝ. We begin with R.

If k = R/m is the injective hull of the residue filed of R, then by 3.1.14 of [BH93],

ExtiR(k,W ) = 0 for all i > idR(W ). Since R→ R̂ is faithfully flat, ExtibR(k,W⊗R̂) =

0 for all i > id(W ) from which is follows that Ŵ = W ⊗R R̂ has finite injective

dimension over R̂. Observe that

W ⊗R R̂⊗ bR Ŝ ∼= W ⊗R S ⊗S Ŝ.

If we show that idbS(Ŵ ⊗ bR Ŝ) is finite, then by part (b) just proved, it will follow

that idS(W ⊗R S) is finite, since S → Ŝ is faithfully flat. So, we may replace R→ S

by R̂ → Ŝ: the map is still faithfully flat by the local criterion for flatness and

the closed fiber is Ŝ/mŜ which is still Gorenstein since it is just the completion of

the Gorestein ring S/mS. Hence, without loss of generality we may assume that

R and S are complete. R therefore has a canonical module which we denote by

ω, and by [BH93], Theorem 3.3.14(a), ω ⊗R S is a canonical module for S. Now,

the result is trivial if W = 0, so we may assume that W 6= 0. It follows that R

is a Cohen-Macaulay ring, since it possesses a finitely generated, non-zero module

of finite injective dimension, and it follows that S is Cohen-Macaulay as well, since

R → S is a flat local map with Gorenstein fibers (in fact, only a Cohen-Macaulay

closed fiber is needed; cf., 2.1.7 of [BH93]). In this case, W has a finite ω-resolution

0→ ω⊕bh → · · · → ω⊕b0 → W → 0

and applying −⊗R S yields the exact sequence

0→ ω⊕bh ⊗ S → · · · → ω⊕b0 ⊗ S → W ⊗ S → 0.

It follows that W ⊗ S has finite injective dimension as well, completing the proof.
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Part (d) follows from the fact that R is excellent. 2

Proof of Theorem IV.5: By the previous lemma, the hypothesis are preserved after

we complete: Rc → R̂c is faithfully flat and the fibers are regular since R is excellent,

so by part (c) of the previous lemma, Ŵc has finite injective dimension over R̂c. We

may therefore assume R is a homomorphic image of a Gorenstein ring with canonical

module ω. By Proposition IV.12 it is enough to show ω is (c, F )-injective. This

follows from Corollaries IV.16 and IV.24. 2
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4.2 When R is Not Equidimensional

In this section we obtain Theorem IV.5 without assuming the ring R is equidi-

mensional. See Theorem IV.41. The proof in the equidimensional case involves most

of the ideas; however, when the ring is not assumed to be equidimensional, there is

a technical difficulty that must be resolved. What we are going to know is that Rc is

a product of Cohen-Macaulay, equidimensional rings of potentially different dimen-

sions. Roughly speaking, we are able work on each component separately using the

ideas from the previous section.

Definition IV.26. Let R be any Noetherian ring and let c ∈ R. Then an R-module

W is called a c-canonical module if W is a finitely generated R-module, and for all

primes P ∈ Spec(R) such that c 6∈ P , WP is a canonical module for RP .

The following construction ensures that c-canonical modules exist in our situation.

Proposition IV.27. Let (R,m,K) be a local ring and let c ∈ R such that Rc is

Cohen-Macaulay. Assume R is a homomorphic image of a Gorenstein ring, T . Then

R has a c-canonical module, W . Moreover, in this case, Rc = R1×· · ·×Rk where each

Ri is a Cohen-Macaulay, equidimensional ring and W is such that Wc = ω1×· · ·×ωk

where ωi is a canonical module for Ri.

Proof: It suffices to construct a module W (c) over Rc with the right properties: if

W (c) has been constructed over Rc, say with presentation R⊕m
c → R⊕n

c → W (c)→ 0,

then we may clear denominators in the presentation by multiplying by a high power

of c to get R⊕m θ→ R⊕n → Coker(θ) → 0. Letting W = Coker(θ) we have that

Wc
∼= W (c) and so W will have the desired properties. We work over the Cohen-

Macaulay (though not local) ring Rc.
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The surjection π : T � R induces a surjection Tπ−1(c) � Rc. It suffices to prove

the statement that Rc = R1×· · ·×Rk where each Ri is Cohen-Macaulay and equidi-

mensional. For then, each Ri is still a homomorphic image of a Gorenstein ring (each

is a homomorphic image of Rc), and so by standard results, each Ri has a canon-

ical module ωi. The fact that each Ri is equidimensional ensures that ωi localizes

properly. We may then set W (c) := ω1 × · · · × ωk and it follows that W (c) localizes

properly.

It remains to prove the statement that if Rc is Cohen-Macaulay and a homomor-

phic image of a Gorenstein ring, then Rc is a product of equidimensional rings. If

Spec(Rc) is not connected, then Rc = R1×· · ·×Rk with Spec(Ri) connected. There-

fore, replacing Rc with S = Ri, it suffices to prove that if a Cohen-Macaulay ring

S is a homomorphic image or a Gorenstein ring T , and Spec(S) is connected then

S is equidimensional. Write S = T/J . We claim that all minimal primes of J have

the same height which will prove that S is equidimensional. This is clear if the two

minimal primes are contained in the same maximal ideal m of T : replacing T with

Tm is harmless, and then S is Cohen-Macaulay local and therefore equidimensional,

so the primes have the same height. Finally, given two primes P,Q not contained

in the same maximal ideal, since Spec(S) is connected we can construct a sequence

P = P1,m1, P2,m2, . . . , Ph−1,mh, Ph = Q such that all Pj are minimal, all mj are

maximal, and each mj contains both Pj−1 and Pj. The result now follows. 2

There is a sort of uniqueness that c-canonical modules enjoy when Rc is Cohen-

Macaulay.

Proposition IV.28. Let c ∈ R such that Rc is Cohen-Macaulay and let V,W be



72

two c-canonical modules. Then Vc is a direct summand of W⊕n
c for some n.

Proof: For any P ∈ Spec(Rc) we have VP ∼= RP since RP is Cohen-Macaulay and

local. Therefore, HomRP
(VP ,WP ) ∼= HomRP

(VP , VP ) ∼= RP since VP is a canonical

module for RP . It follows that HomRc(Vc,Wc) is projective as it is locally free and

finitely generated. Say HomRc(Vc,Wc)⊕Q = R⊕n
c . Applying −⊗Rc Wc we find

(
HomRc(Vc,Wc)⊗Wc

)
⊕ (Q⊗Wc) = W⊕n

c .

So, the result will be proved if we can show that HomRc(Vc,Wc) ⊗Wc
∼= Vc. But

it suffices to prove the isomorphism locally, and, for each P ∈ Spec(Rc), we have

HomRP
(VP ,WP ) ∼= RP . Hence,

HomRP
(VP ,WP )⊗WP

∼= RP ⊗WP
∼= WP

∼= VP .

This completes the proof. 2

Corollary IV.29. Let c ∈ R such that Rc is Cohen-Macaulay. Suppose there exists a

c-canonical module W for R such that W is (c, F )-injective. Then every c-canonical

module is (c, F )-injective.

Proof: This is immediate from the previous result and Proposition IV.8. 2

When R is not equidimensional, the dualizing complex does not suffice for all of

our purposes, but a modification of a certain subcomplex does. We begin with a few

observations about the dualizing complex.

Lemma IV.30. Let R be a homomorphic image of a Gorenstein ring T � R.

Assume that Rc is Cohen-Macaulay for some c ∈ R so that, as we have seen above,

Rc = R1 × · · · × Rn where each Ri is Cohen-Macaulay and equidimensional. Let
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d = dim(R). Then there is a complex:

D• : 0→ D0 → · · · → Dd → 0

such that:

(a) Each module Dj is an injective R-module.

(b) For some H•(c), there is a short exact sequence of complexes

0→ H(c)• → D• → D•c → 0

where D•c is the complex obtained by localizing D• at c. Moreover, this exact

sequence splits so that D• = H(c)• ⊕D•c .

(c) The complex D•c splits (even over R) as

D•c = D•(c,1) ⊕ · · · ⊕ D•(c,k).

We therefore have

D• = H(c)• ⊕D•(c,1) ⊕ · · · ⊕ D•(c,k).

Proof: By replacing T with T/(x1, . . . , xh) where x1, . . . , xh is a maximal regular

sequence in Ker(T → R) we may assume that dim(T ) = dim(R) = d. We start with

a minimal injective resolution E• of T over itself. We set D• := HomT (R, E•) and it

follows that

D• = 0→ D0 → · · · → Dd → 0

where Dj is injective over R just as in the equidimensional case. Now, each Dj =

⊕E(R/P ) is a direct sum of injective hulls of R/P for certain primes P . The key

point is that if c ∈ P then ER(R/P )c = 0 since every element of ER(R/P ) is
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annihilated by a power of P and hence by a power of c. On the other hand, if c 6∈ P ,

then ER(R/P )c ∼= ERc(Rc/PRc). We therefore define

[H(c)]j :=
⊕

E(R/P )⊆Dj , c∈P

ER(R/P ),

and it follows that (∗) 0 → H(c)• → D• → D•c → 0 is exact. The complex D•c is

such that

[Dc]j :=
⊕

E(R/P )⊆Dj , c 6∈P

ER(R/P ),

and it is clear that the exact sequence (∗) splits.

Since every ER(R/P ) occurring in D•c is such that c 6∈ P , the prime P corresponds

to a prime of Rc. But Rc = R1× · · · ×Rn, so each such P corresponds to a prime of

some Rj. Thus, we may divide the ER(R/P ) occurring in D•
c into n different sub-

complexes corresponding to the Ri. This establishes the decomposition in part (c). 2

We will make extensive use of a complex closely related to D•c . Before we can give

the construction we need to prove a lemma.

Lemma IV.31. Let T � R where T is Gorenstein of the same dimension as R,

and let c ∈ R such that Rc is Cohen-Macaulay. Write Rc = R1 × · · · × Rn and let

dj = dim(Rj). After renumbering if necessary we may assume that d1 ≥ d2 ≥ · · · ≥

dn. Then for each 1 ≤ j ≤ n,

(a) [D(c,j)]
i = 0 for all 0 ≤ i < dim(T )− dj.

(b) Hdim(T )−dj(D(c,j))c ∼= ωj where ωj is a canonical module for Rj.

Proof: By construction, D•c consists of all ER(R/P ) in D• such that c 6∈ P , and

D•(c,j) consists of all ER(R/P ) such that P is a prime of Rj. Now by construction,
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[D]i = ⊕htP=i HomT (R,ET (T/P )) and so [D(c,j)]
i = ⊕htP=i HomR(Rj, ET (T/P )).

But these will all be zero for all 0 ≤ i < dim(T )− dj. This proves part (a).

For part (b) the point is that Hj(D•) = ExtjT (R, T ) and also Hj(D•)c ∼= Hj(D•c ),

hence ExtjTc
(Rc, Tc) ∼= Hj(D•c ) follows. Now, ExtjTc

(Rc, Tc) ∼=
∏

i ExtjTc
(Ri, Tc). To

complete the proof, we may localize at an arbitrary prime P such that c 6∈ P , and

then the result follows from (IV.13) part (iii). 2

Construction. Let R, c,D•(c,j) and D•c be as above. We define a new complex, A•,

as the sum of all D•(c,j) shifted by dim(T )− dj. Formally,

A• := D•(c,1)(dim(T )− d1)⊕D•(c,2)(dim(T )− d2)⊕ · · · ⊕ D•(c,n)(dim(T )− dn)

where for an integer m and a complex B•, B•(m) is the complex such that [B(m)]j :=

[B]j+m. We have

Proposition IV.32. Let R, c, and A• be as above. Then the complex A• has the

following properties:

(i) A• : 0→ A0 → · · · → Ad1 → 0 where each Ai is an injective R-module.

(ii) H0(A•)c ∼= ω1×· · ·×ωn where ωj is a canonical module for Rj. Moreover, there

exists a c-canonical module W for R and an integer k′ ∈ N such that

0→ W
∆−1→ A0 ∆0→ · · · → Ad → 0

is a complex and ck
′ ·Ker(∆−1) = 0.

(iii) Hj(A•)c = 0 for j ≥ 0 and Hj(A•) is finitely generated for all j. It follows

that there exists k1 ∈ N such that ck1 annihilates Hj(A•) for all j ≥ 0 and ck1

annihilates Ker(∆−1).
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Proof: Part (i) is obvious from the construction, and the first statement of part

(ii) follows from (b) of the previous lemma. Let W ′ := ω1 × · · · × ωn, a finitely

generated Rc-module. Then W ′ has a presentation, R⊕a
c

θc→ R⊕b
c → W ′ → 0. After

multiplying θc by a high power of c, we clear the denominators of the entries in a

matrix for θc and we obtain R⊕a → R⊕b → W → 0. It follows that Wc
∼= W ′, and

so W is a c-canonical module for R. Also, after clearing denominators appearing in

the isomorphism Wc
∼= W ′ we obtain an R-linear map W1 → H0(A•), hence a map

∆−1 : W1 → A0. Now Ker(∆−1) ⊆ W1, and so Ker(∆−1) is finitely generated. Since

(∆−1)c is injective, it follows that ck
′ · Ker(∆−1) = 0 for k′ sufficiently large. This

proves (ii).

For (iii), first note that Hj(A•) =
⊕n

j=1H
j(D•(c,j)(d− dj)) where d = dim(T ). It

suffices to prove the result about Hj(D•(c,j)). We have

ExtjT (R, T ) ∼= Hj(D•) =
n⊕
i=1

Hj(D•(c,i))⊕Hj(H(c)•)

and so each Hj(D•(c,i)) is finitely generated. It suffices to show that Hj(D•(c,i))c = 0,

for then a fixed power of c, say ck2 , will annihilate Hj(D•(c,i)) for all i ≥ 1, and then

taking k1 := max{k2, k
′} will work. For this purpose, it is enough to show that

the homology vanishes at every P ∈ Spec(R) such that c 6∈ P . But for such a P ,

RP
∼= (Ri)P for some i while (Rj)P = 0 for all other j 6= i. Then (D•(c,i))P is an

injective resolution of (ωi)P over the Cohen-Macaulay local ring (Ri)P , and therefore

the homology is zero while (D•(c,j))P = 0 for all j 6= i. It follows that the homology

vanishes in this case too, and this completes the proof. 2

For the rest of this section, W will denote the specific c-canonical module with

complex 0 → W → A• as in the previous result. The following is an easy corollary



77

of Proposition IV.15.

Proposition IV.33. Let c, R,W, k1 and A• be as above. Then with k = (d+ 2)k1,

ck · Extd+lR (N,W ) = 0

for all R-modules N and all integers l > 0.

Proof: Let H0 = Ker(W → A0). Then ck1 ·H0 = 0, we have a short exact sequence

(∗) 0→ H0 → W → W/H0 → 0, and a complex 0→ W/H0 → A0 → · · · → Ad → 0

such that the map W/H0 → A0 is injective. By the previous result and Proposition

IV.15, c(d+1)k1 · Extd+lR (N,W/H0) = 0 for all l > 0. But (∗) gives rise to exact

sequences:

Extj(N,H0)→ ExtjR(N,W )→ Extj(N,W/H0)

and ck1 · ExtjR(N,H0) = 0 so c(d+2)k1 · Extd+lR (N,W ) = 0. 2

Our next goal is to prove that a fixed power of c annihilates the modules ExtjR(R1/q,W )

for 1 ≤ j ≤ d. Together with (IV.33) this will show that W is (c, F )-injective, and

then by (IV.29) every c-canonical module will be (c, F )-injective. As in Section 1,

the first step it to construct a map ψ• : A• → I• lifting the map W
·ch→ W , where I•

is an injective resolution of W .

Lemma IV.34. Let c, R,W , and A• be as above and let k1 be as in (IV.32)(iii).

Let

I• : 0→ I0 → · · · → Id → Id+1 → · · ·

be an injective resolution of W . Then, with h := k1(d + 1), there exist maps ψj :

Dj → Ij such that the following diagram commutes:
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0 → W → A0 ∆0→ A1 ∆1→ · · · ∆d−1→ Ad

↓ ·ch ↓ ψ0 ↓ ψ1 ↓ ψd

0 → W → I0 δ0→ I1 δ1→ · · · δd−1→ Id → Id+1

Proof: We will construct the ψj inductively. If d = 0, then h = k1 and we are

considering the mapping W
·ck1→ W . Let H = Ker(∆−1). By part (ii) of (IV.32),

ch ·H = 0. Then ∆−1 induces an injective map W/H → A0 and we also have a map

δ−1 ◦ (·ch) : W/H → I0. Since I0 is injective, by the universal mapping property of

injective modules, there exists γ0 : A0 → I0. We claim that the diagram (∗)

0 → W
∆−1→ A0

↓ ·ch ↓ γ0

0 → W
δ−1→ I0

commutes. To see this, first note that the map ∆−1 factors as W → W/H → A0.

Therefore, we have a commutative diagram:

A0 1→ A0 γ0→ I0

∆−1 ↑ ↑ ↑ 1

W → W/H
δ−1◦(·ch)→ I0

(the right square commutes by the universal property). Moreover, since ch ·H = 0,

we also know that

W → W/H

↓ ·ch ↓

W
δ−1→ I0

is commutative. Since the diagram (∗) in question is (contained in) the concatena-

tion of the these two diagrams, it also commutes.
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For the induction step, we may assume that the maps ψj : Aj → Ij have been

constructed for 0 ≤ j ≤ n− 1 making the following diagram commute:

0 → ω → A0 ∆0→ · · · ∆n−3→ An−2 ∆n−2→ An−1 ∆n−1→ An

↓ ·cnk1 ↓ ψ0 ↓ ψn−2 ↓ ψn−1

0 → ω → I0 δ0→ · · · δn−3→ In−2 δn−2→ In−1 δn−1→ In

We must construct ψn : An → In. Let C := An−1/ Im(∆n−2). Notice that δn−1 ◦

ψn−1 ◦∆n−2 is the zero map, since the diagram commutes and since δn−2 ◦ δn−1 is the

zero map. It follows that the map δn−1◦ψn−1 : An−1 → In induces a map γ : C → In.

Now put H := Ker(∆n−1)/ Im(∆n−2). Then Im(∆n−1) ∼= An−1/Ker(∆n−1) ∼= C/H,

and ck1 ·H = 0. Therefore, ck1 · γ : Im(∆n−1)→ In is well defined. By the universal

mapping property of injective modules, there exists ψn : An → In. Finally, if we re-

place the original maps ·cnk1 , ψ0, . . . , ψn−1 with the maps ·c(n+1)k1 , ck1ψ0, . . . , c
k1ψn−1,

respectively, then the new diagram (with ψn included) commutes. The argument is

very similar to that given above. This proves the lemma. 2

Proposition IV.35. Assume all the notations and conventions of the previous result.

Then, with h := k1(d+ 2), there exist maps ψj : Aj → Ij and ψ : 0→ Id+1 such that

the following diagram commutes:

0 → ω → A0 ∆0→ A1 ∆1→ · · · ∆d−1→ Ad → 0

↓ ·ch ↓ ψ0 ↓ ψ1 ↓ ψd ↓ ψ

0 → ω → I0 δ0→ I1 δ1→ · · · δd−1→ Id → Id+1

Proof: Given the previous lemma, all we have to do is construct the map ψ and

show that the diagram commutes. We have the following commutative diagram:
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X
∆d−1→ Ad → 0

↓ f ↓ ψd

Y
δd−1→ Id

δd→ Id+1

where X = Ad−1 and Y = Id−1 if d > 0 and X = Y = W if d = 0. Now, define C :=

Ad/∆d−1(X). By the commutativity of the diagram, the map δd ◦ ψd : Ad → Id+1

kills ∆d−1(X) and therefore induces a map γ : C → Id+1. But C is the homology

of the complex at Ad, so ck1 · C = 0. It follows that ck1 · γ : 0 → Id+1, so we let

ψ := ck1 · γ. Replacing the previous ψj with ck1ψj ensures that the new diagram

commutes. 2

The next result is the same as Proposition IV.19 for the complex A•. The proofs

are identical.

Proposition IV.36. Let c,W, I•,A• be as above. Let {Nλ} be a family of R-

modules, and suppose there exists an integer t ∈ N such that, for all R-modules

Nλ in the family,

ct ·H i(HomR(Nλ,A•)) = 0

for all 0 < i ≤ d. Then, with h as in the previous proposition,

ch+t · ExtiR(Nλ,W ) = 0

for all 0 < i ≤ d and all R-modules Nλ in the family.

Proof: We first construct two endomorphisms of the complex

0→ W → I0 → · · · → Id+1

and show that they are homotopic. The map W
·ch→ W given by multiplication by

ch induces an endomorphism f • : I• → I•. On the other hand, since I• is exact
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and A• is injective, the identity mapping, 1 : W → W can be lifted to a map of

complexes γ• : I• → A•. Recall the map ψ• : A• → I• constructed in (IV.35). The

composition,

g• := ψ• ◦ γ•

produces a second endomorphism of I• lifting the map W
·ch→ W .

Since both f • and g• lift the map ·ch, by standard results these two maps of com-

plexes are homotopic. Further, the homotopy is preserved after applying HomR(N,−).

Therefore, the two maps induce the same map on homology. But f • simply induces

the map Ext•(N,W )
·ch→ Ext•(N,W ). Therefore, the composition:

Ext•(N,W )
γ•−→ H•(Hom(N,D•)) ψ•−→ Ext•(N,W )

is simply ·ch. Here, we have written γ• and ψ• for the maps they induce. Suppose

z ∈ Ext•R(N,W ) and we would like to show that ch+tz = 0. Then (ψ• ◦ γ•)(ctz) =

ch+tz, and yet,

(ψ• ◦ γ•)(ctz) = ψ•(ctγ•(z)) = 0

since ct kills the middle module. 2

To finish off the proof that W is (c, F )-injective, we want to use the fact that the

homology of D• is dual to certain local cohomology modules that are “controlable”

in the sense that there is a uniform bound on the power of c needed to annihilate

them. This was one of the key facts in Section 1. Since A• splits off from D• (up to

a shift in degree), the homology of A• is dual to a submodule of these controllable

local cohomology modules. We need the following generalization of (IV.22) to the

case where R is not necessarily equidimensional.
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Proposition IV.37. Suppose (R,m,K) is a local ring of dimension d and a homo-

morphic image of a Gorenstein ring. Let c ∈ R such that Rc is Cohen-Macaulay.

There exists t ∈ N such that for every system of parameters x1, . . . , xd,

ct · (x1, . . . , xk) : xk+1

(x1, . . . , xk)
= 0

for all 1 ≤ j ≤ d− 1.

Proof: This follows from Proposition 2.16 and Theorem 2.13 of [HH93]. 2

Corollary IV.38. Let (R,m,K) be a reduced, local ring of dimension d and a ho-

momorphic image of a Gorenstein ring. Suppose c ∈ R is such that Rc is Cohen-

Macaulay. Then there exists t ∈ N such that for all q = pe,

ct ·Hj
m(R1/q) = 0

for all j < d.

Proof: This follows from the previous result in the exact same way that (IV.24)

followed from (IV.22). 2

We can now complete the proof that W is (c, F )-injective.

Proposition IV.39. Suppose (R,m,K) is local, F -finite, reduced, and a homomor-

phic image of a Gorenstein ring T . Let c ∈ R such that Rc is Cohen-Macaulay. Let

D• and A• be the complexes constructed above and let W be the c-canonical module

as in (IV.32)(ii). Then W is (c, F )-injective, i.e., there exists t ∈ N such that for

all q = pe and all i > 0,

ct · ExtiR(R1/q,W ) = 0.

Proof: Let d = dim(R). We have seen in Proposition IV.33 that there exists

k ∈ N such that ck annihilates Extd+lR (R1/q,W ) for all l > 0 and all q. It suffices to
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find a fixed power of c annihilating ExtjR(R1/q,W ) for all 1 ≤ j ≤ d and all q. By

Proposition IV.36, it suffices to find t ∈ N such that ct ·Hj(HomR(R1/q,A•)) = 0 for

all q.

Recall the notations of results (IV.31) and (IV.32). In particular, recall that

Hj(A•) =
⊕n

j=1H
j(D•(c,j)(d − dj)) where d = dim(T ) = dim(R). Since Hom com-

mutes with direct sum, it follows that

Hj(HomR(R1/q,A•)) =
n⊕
j=1

Hj(HomR(R1/q,D•(c,j)(d− dj)).

Now, D•(c,j)(d − dj) splits off from D•(d − dj), and therefore, HomR(R1/q,D•(c,j)(d −

dj)) splits off from HomR(R1/q,D•(d− dj)). So, Hj(HomR(R1/q,D•(c,j)(d− dj))) is a

submodule of Hj(HomR(R1/q,D•(d− dj))). But

Hj(HomR(R1/q,D•(d− dj)))∨ ∼= Hd−dj−j
m (R1/q)

by (IV.20). By the previous result, there exists t ∈ N such that ct annihilates

Hj
m(R1/q) for all q and for all j < d. For this t, it follows that

ct ·
n⊕
j=1

Hj(HomR(R1/q,D•(c,j)(d− dj)) = 0,

and this completes the proof since

Hj(HomR(R1/q,A•)) =
n⊕
j=1

Hj(HomR(R1/q,D•(c,j)(d− dj)).

2

Corollary IV.40. Suppose (R,m,K) is local, reduced, F -finite, and a homomorphic

image of a Gorenstein ring. If c ∈ R such that Rc is Cohen-Macaulay, then every

c-canonical module is (c, F )-injective.



84

Proof: This is immediate from (IV.29) and the previous result. 2

We now turn our attention to an arbitrary finitely generated module V such that

idRc(Vc) < ∞. The idea is to replace the theory of (c, ω)-resolutions developed in

Section 1 with a theory of (c,W )-resolutions where W is c-canonical. Our main

results are, just as in the equidimensional case, that for a finitely generated module

V , Vc has finite injective dimension if and only if V has a (c,W )-resolution for

one (equivalently every) c-canonical module W , and that, in this case, V is (c, F )-

injective if and only if W is (c, F )-injective. Together with (IV.40), these results will

ultimately complete a proof of:

Theorem IV.41. Let (R,mK) be a reduced, F -finite, excellent local ring. Let c ∈ R

and let V be a finitely generated R-module such that Vc has finite injective dimension.

Then there exists k = k(c, V ) such that

ck · ExtjR(R1/q, V ) = 0

for all j > 0 and all q.

We begin with a result analogous to (IV.10).

Lemma IV.42. Let (R,m,K) be a local ring, let c ∈ R. Suppose V is a finitely

generated R-module and that Vc has finite injective dimension over Rc, and let W be

any c-canonical module. Then, for some b ∈ N, there exists an exact sequence

W⊕b → V → C → 0

such that ct · C = 0 for some t ∈ N.

Proof: Consider the family F of submodules of V defined as follows: a submodule

U ⊆ V is in F if for some b ∈ N, there exists an R-linear map f : W⊕b → V with
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Im(f) = U . If U1, U2 ⊆ V are in F then we claim U1 + U2 is in F as well. To

see this, suppose there are R-linear maps f : W⊕b1 → V and g : W⊕b2 → V with

Im(f) = U1 and Im(g) = U2. Then the direct sum map f ⊕ g : W⊕b1+b2 → V

has image Im(f ⊕ g) = U1 + U2 and the claim is proved. It follows that there is a

submodule B ∈ F such that if U ∈ F then U ⊆ B.

We first prove that (V/B)c = 0. If not, then since V/B is finitely generated there

is a prime P ∈ Supp(V/B) with c 6∈ P . Since Vc has finite injective dimension over

Rc, VP has finite injective dimension over RP . Note that WP is the canonical module

for the Cohen-Macaulay ring RP for all c 6∈ P . Therefore, by Lemma IV.9 (since Rc

and hence RP are Cohen-Macaulay), there is a surjective map W⊕n
P � VP . Since

Hom commutes with localization when the left variable is finitely presented, we find

an R-linear map θ : W⊕n → V such that Coker(θ)P = 0. But Im(θ) ⊆ B and so

Coker(θ) � V/B. Since Coker(θ)P = 0 it follows that (V/B)P = 0, a contradiction.

We have shown that (V/B)c = 0 and since V/B is finitely generated, there exists

t ∈ N such that ct · (V/B) = 0. With C := V/B, it follows that there is an exact

sequence

W⊕b → V → C → 0

such that ct · C = 0. 2

Proposition IV.43. Let (R,m,K) be a local ring, let c ∈ R and let W be a c-

canonical module. Let V be a finitely generated R-module. Then Vc has finite injective

dimension over Rc if and only if V has a finite (c,W )-resolution.

Proof: Let V be a finitely generated R-module. Since R is local it has finite krull

dimension. We first prove the implication (=⇒). Assume Vc has finite injective
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dimension. Then Rc must be Cohen-Macaulay and also Rc has finite krull dimension

since R does. By the proceeding lemma, there is an exact sequence

0→ Z0 → W⊕b0 → W → C−1 → 0

and an integer t−1 such that ct−1C−1 = 0. Since localization is flat, there is a short

exact sequence

0→ (Z0)c → W⊕b0
c → Vc → 0.

It follows that (Z0)c has finite injective dimension. Moreover, since Wc is a maximal

Cohen-Macaulay module, it follows that either (Z0)c is a maximal Cohen-Macaulay

module or depthn(Z0)c ≥ depthn Vc + 1 for all maximal ideals n ⊆ Rc.

Applying the proceeding lemma to Z0, we obtain an exact sequence

0→ Z1 → W⊕b1 → Z0 → C0 → 0

and an integer t0 such that ct0C0 = 0. Again, we have an exact sequence

0→ (Z1)c → W⊕b1
c → (Z0)c → 0

and it follows that the injective dimension of (Z1)c is finite and either (Z1)c is a max-

imal Cohen-Macaulay module, or depthn(Z1)c ≥ depthn(Z0)c + 1 ≥ depthn(Vc) + 2

for all maximal ideals n ⊆ Rc.

Proceeding in this way, for each 0 ≤ j ≤ d = dim(R), we obtain modules Zj, Cj,

integers bj, tj and exact sequences

0→ Zj+1 → W⊕bj → Zj → Cj → 0

such that ctj · Cj = 0. Putting all of this together, we obtain a complex:

(∗) 0→ W⊕bd → W⊕bd−1 → · · · → W⊕b0 → V → 0
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with the following properties:

(a) the homology at W⊕bd is Zd+1 (i.e., Ker(W⊕bd → ω⊕bd−1) = Zd+1), and (Zd+1)c

is a maximal Cohen-Macaulay module,

(b) for 0 ≤ j ≤ d − 1, the homology at W⊕bj is Cj and is therefore annihilated by

ctj , and

(c) the homology at V is C−1 and is therefore annihilated by ct−1 .

Letting t := max{t−1, . . . , td} we see that this complex satisfies property (a) of the

definition of (c,W )-resolution. Therefore, the proof will be complete as soon as we

know that (Zd+1)c is a direct summand of W⊕n
c for some n.

To simplify notation, let Z := Zd+1. Notice that since Zc is a maximal Cohen-

Macaulay module, we have that for all maximal ideals n ∈ Spec(Rc), Zn is a maximal

Cohen-Macaulay module over Rn. Therefore, Zn ∼= W⊕h
n for some h where the h may

depend on n. This is just the second statement of (IV.9d). Since the canonical mod-

ule localizes over the Cohen-Macaulay ring Rc, it follows that for all P ∈ Spec(Rc)

there exists h such that ZP ∼= W⊕h
P .

Now, localizing the complex (∗) at c produces the following exact sequence

0→ Zc → W⊕bd
c → · · · → W⊕b0

c → Vc → 0.

Set N := HomRc(W,Vc). Since Vc has finite injective dimension, N has finite projec-

tive dimension by (IV.9b). Further, by (IV.9a) and (IV.9c), applying HomRc(Wc,−)

to the above exact sequence produces the exact sequence

0→ HomRc(Wc, Zc)→ R⊕bd
c → · · · → R⊕b0

c → N → 0.
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Since dim(R) = d, it follows at once that HomRc(Wc, Zc) is projective as it is a

(d + 1)st module of syzygies of N which has finite projective dimension. Therefore,

there is an Rc-module Q such that HomRc(Wc, Zc)⊕Q = R⊕n
c for some n. Applying

−⊗Rc Wc, we find that

(HomRc(Wc, Zc)⊗Rc Wc)⊕ (Q⊗Rc Wc) ∼= R⊕n
c ⊗Rc Wc

∼= W⊕n
c .

Hence, HomRc(Wc, Zc) ⊗Rc Wc is a direct summand of W⊕n
c . We claim we have an

isomorphism

HomRc(Wc, Zc)⊗Rc Wc
∼= Zc

and it is enough to check this locally. Indeed, if P ∈ Spec(Rc), then since Hom

commutes with localization, the left hand side is HomRP
(WP , ZP ) ⊗RP

WP . Since

ZP ∼= W⊕h
P , this is

HomRP
(WP ,W

⊕h
P )⊗RP

WP
∼= (RP )⊕h ⊗RP

WP
∼= W⊕h

P
∼= ZP

yielding the isomorphism. Therefore Zc is a direct summand of W⊕n
c , as required.

It remains to prove the (⇐=) implication. Assume V has a finite (c,W )-resolution

0→ W⊕bd → · · · → W⊕b0 → V → 0.

We must show Wc has finite injective dimension. Localizing at c produces the exact

sequence

0→ Zc → W⊕bd
c → · · · → W⊕b0

c → Vc → 0.

If d = 0 then we have an exact sequence 0 → Zc → W⊕b0
c → Vc → 0. Since Wc has

finite injective dimension so does Zc being a direct summand. But then Zc and Wc

have finite injective dimension, so Vc does as well. This handles the case d = 0. The
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result now follows from a straightforward induction on d. 2

The next result is analogous to (IV.12). The proof is very similar.

Proposition IV.44. Suppose (R,m,K) is a reduced, excellent local ring, let c ∈ R

and assume W is a c-canonical module. Suppose that V is a finitely generated R-

module such that the injective dimension of Vc is finite. If W is (c, F )-injective then

V is (c, F )-injective.

Proof: By Proposition IV.43, there exists a complex

0→ W⊕bd → · · · → W⊕b0 → V → 0

where Z = ker(φd) is such that Zc is a direct summand of W⊕n
c for some n. By

Proposition IV.8, Z is (c, F )-injective since W is. Furthermore, there exists t ∈ N

such that the other homology modules are killed by ct. We use induction on d.

If d = 0, then for some modules N,C we have two short exact sequences:

(1) 0→ Z → W⊕b0 → N → 0

and

(2) 0→ N → V → C → 0.

By hypothesis, W is (c, F )-injective, and so by Proposition IV.6(d), W⊕b0 is (c, F )-

injective. Therefore, by exact sequence (1) and Proposition IV.6(c), N is (c, F )-

injective as well. Now, C is the homology of the complex at V and thus is killed by

ct. Therefore, C is (c, F )-injective by Proposition IV.6(a), so using exact sequence

(2) and Proposition IV.6(b), we conclude V is (c, F )-injective.
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For the inductive step, let T := Ker(W⊕b0 → V ). The complex

0→ W⊕bd → · · · → W⊕b1 → T → 0

is a (c,W )-resolution for T of length d − 1 < d, as is easily verified. There-

fore by the induction hypothesis, T is (c, F )-injective. We have an exact sequence

0→ T → W⊕b0 → V → C → 0 which breaks up into two short exact sequences. As

before, since T,W, and C are (c, F )-injective so is V . 2

Proof of Theorem IV.41: By Lemma IV.25 we may assume that R is complete

and therefore a homomorphic image of a Gorenstein ring. By Proposition IV.44 and

Corollary IV.29 it is enough to show that the c-canonical module W constructed in

(IV.32) is (c, F )-injective. This is proved in Proposition IV.39. 2
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4.3 Potent Elements

In this section we use our uniform annihilator result for Ext modules to prove that

the defining ideal of the non-finite injective dimension locus of a finitely generated

R-modules W is potent for the Matlis dual of W . See Theorems IV.47 and IV.53 as

well as Corollary IV.58. We recall the following notation from Chapter 2:

Notation IV.45. For any ideal I ⊆ R, for every integer v ∈ N and every R-module

M , let M(−v,I) = AnnM(Iv). We sometimes write M−v for M(−v,I) when I is clear

from the context.

For v′ > v, we note the following easy identities:

( M

M−v

)
−v′ =

M−v′

M−v
=

( M

M−v

)
−(v′−v).

We also recall the definition of potent elements and potent ideals from Chapter

2:

Definition IV.46. If x ∈ R is any element, and M is an (Artinian) R-module, we

say that x is potent for M if we have

0∗M =
⋃
n∈N

0∗M(−n,x)
.

Similarly, we say that an ideal I ⊆ R is potent for M if we have

0∗M =
⋃
n∈N

0∗M(−n,I)
.

If x (respectively, I) is potent for every Artinian R-module we simply say x (respec-

tively, I) is potent.

We now state our first main result on the existence of potent elements.
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Theorem IV.47. Let (R,m,K) be a reduced, F -finite, excellent local ring, and let

W be a finitely generated R-module. Set E := ER(K), the injective hull of the residue

class field, and let M := HomR(W,E). For any c ∈ R, if Wc has finite injective

dimension over Rc, then c is potent for M .

Before giving the proof, we need several preliminary results. The first is well

known.

Lemma IV.48. Let (R,m,K) be a local ring, let E = ER(K) be the injective

hull of the residue class field, let M,N,W be R-modules, and let ∨ be the functor

HomR(−, E).

(a) ExtiR(N,M∨) ∼= TorRi (N,M)∨ for every i ∈ N.

(b) If I ⊆ R is a finitely generated ideal, then AnnM(I)∨ ∼= M∨

IM∨ .

(c) If I ⊆ R is a finitely generated ideal, then (M/M(−b,I))
∨ ∼= IbM∨.

(d) Suppose b′ > b are integers and assume that R is complete. Let W be an R-

module and let M := W∨. The natural map

ExtiR(N, IbW )→ ExtiR(N, IbW/Ib
′
W )

is injective if and only if the natural map

TorRi (N, (M/M(−b,I))(b′−b,I))→ TorRi (N,M/M(−b,I))

is surjective.

Proof: (a). Let P• be a projective resolution of N . Then

TorRi (N,M) := Hi(P• ⊗RM).
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Applying HomR(−, E) shows that

TorRi (N,M)∨ ∼= HomR(Hi(P• ⊗M), E) ∼= H i(HomR(P• ⊗M,E)),

the last isomorphism holding because E is injective. By the adjointness of tensor

and Hom this is

∼= H i(Hom(P•,Hom(M,E))) ∼= H i(Hom(P•,M∨)) =: ExtiR(N,M∨).

This proves (a).

(b). Suppose I = (u1, . . . , uh)R. There is an exact sequence

0→ AnnM(I)→M
f→M⊕h

where the map f is given by the matrix [u1, . . . , uh]. That is, for x ∈ M , f(x) =

(u1x, . . . , uhx). When we apply HomR(−, E) we get an exact sequence

(M⊕h)∨
f∨→M∨ → (AnnM(I))∨ → 0

where f∨ is given by the matrix [u1, . . . , uh] as well. Since (AnnM(I))∨ is the cokernel

of f∨, it follows that (AnnM(I))∨ = M∨/ Im(f∨) = M∨/IM∨.

(c). Consider the short exact sequence

0→M(−b,I) →M → M

M(−b,I)
→ 0.

Applying ∨, we get a short exact sequence

0→ (
M

M(−b,I)
)∨ →M∨ →M∨

(−b,I) → 0,

which, by the previous result we can rewrite as

0→ (
M

M(−b,I)
)∨ → W → W/IbW → 0
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where W = M∨. The result follows.

(d). By Matlis duality, M∨ = W . Let

TorRi (N, (M/M(−b,I))(b′−b,I))→ TorRi (N,M/M(−b,I))→ C → 0

be exact so that the relevant map is surjective if and only if C = 0. Then, applying

∨, we get an exact sequence

TorRi (N, (M/M(−b,I))(b′−b,I))
∨ ← TorRi (N,M/M(−b,I))

∨ ← C∨ ← 0

and by part (a) this is

(∗) ExtiR(N, ((M/M(−b,I))(b′−b,I))
∨)← ExtiR(N, (M/M(−b,I))

∨)← C∨ ← 0.

Now, (M/M(−b,I))
∨ = W/IbW by part (c), so by part (b) applied to M/M(−b,I) we

get that ((M/M(−b,I))(b′−b,I))
∨ = IbW/Ib

′
W . Therefore, (∗) may be rewritten as

ExtiR(N, IbW/Ib
′
W )← ExtiR(N,W/IbW )← C∨ ← 0.

Since C = 0 if and only if C∨ = 0, the result follows. 2

The next result is a dual form of [LS01], Lemma 8.3, in the language of potent

elements.

Lemma IV.49. Let (R,m,K) be a complete, reduced local ring and put E := ER(K),

the injective hull of the residue class field. Let W be a finitely generated R-module,

let M := HomR(W,E), and let c ∈ R. If for all b � 0 there exists b′ > b such that

for all q, the natural map

Ext1
R(R1/q, cbW )→ Ext1

R(R1/q,
cbW

cb′W
)

is injective, then c is potent for M .
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Proof: The short exact sequences

0→M−b →M →M/M−b → 0

and

0→M−b →M−b′ → (M/M−b)−(b′−b) → 0

induce the following commutative diagram with exact rows:

TorR1 (R1/q, (M/M−b)−(b′−b)) −→ R1/q ⊗RM−b
aq−→ R1/q ⊗RM−b′

fq ↓ 1 ↓ gq ↓

TorR1 (R1/q, (M/M−b)) −→ R1/q ⊗RM−b
dq−→ R1/q ⊗RM

If the map fq is surjective for all q, then gq restricts to an isomorphism between

Im(aq) and Im(dq) for all q as the reader will easily verify. Then, if x ∈ 0∗M and

x ∈ M−b then x ∈ 0∗M−b′
. Therefore, it is enough to show that for all b � 0 there

exists b′ such that for all q the maps fq are surjective. But this follows from the

hypothesis and part (d) of the previous lemma. 2

Lemma IV.50. Let c ∈ R and let M,W be two R-modules. If ct · ExtiR(M,W ) = 0

then ct · ExtiR(M, cnW ) = 0 for all n ≥ 1.

Proof: Let F• be a free resolution of M . We can compute the two Ext modules in

question by applying HomR(−,W ) and HomR(−, cnW ). The result (at the ith spot)

is the following commutative diagram:

Wi+1
αi← Wi

αi−1← Wi−1

↑ ↑ ↑

cnWi+1 ← cnWi ← cnWi−1
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If we let Z = ker(αi) and B = Im(αi−1), then ExtiR(M,W ) = Z/B and, by the

commutativity of the diagram, ExtiR(M, cnW ) = cnZ/cnB. The hypothesis therefore

tells us that ctZ ⊆ B. But then ct(cnZ) = cn(ctZ) ⊆ cnB and so ct annihilates

ExtiR(M, cnW ), as desired. 2

Theorem IV.51. Let R be a (not necessarily local) Noetherian ring and let W be a

finitely generated R-module.

(a) Suppose R is equidimensional and a homomorphic image of a regular ring and

let P ∈ Spec(R) such that idRP
(WP ) <∞. Then there exists c ∈ R−P such that

idRc(Wc) < ∞. It follows that the set V := {P ∈ Spec(R) | idRP
(WP ) < ∞}

is an open set in this case. Therefore, there is a radical ideal I ⊆ R such that

c ∈ I if and only if idRc(Wc) <∞.

(b) Let (R,m,K) be an excellent, local ring. The set

U := {P ∈ Spec(R) | idRP
(WP ) <∞}

is an open set and hence, there is a radical ideal J ⊆ R such that c ∈ J if and

only if idRc(Wc) <∞.

(c) If (R,m,K) is an excellent local ring and J ⊆ R is the defining ideal of the

non-finite injective dimension locus of W (as in (b)), then JR̂ is the defining

ideal of the non-finite injective dimension locus of Ŵ = W ⊗R R̂, where R̂ is

the completion of R with respect to the maximal ideal.

Proof: Let ω denote a canonical module for R, and suppose idRP
(WP ) is finite.

If WP = 0 then because W is finitely generated there exists c ∈ R − P such that

Wc = 0 and we are done. We may assume WP 6= 0. Then since R is equidimensional,

ωP is a canonical module for RP which is Cohen-Macaulay since it possess a finitely



97

generated, nonzero module of finite injective dimension. Therefore, there exists an

exact sequence

(∗) 0→ ω⊕bhP

αh→ · · · α1→ ω⊕b0P → WP → 0

The maps αj are given by matrices with entries in RP since HomRP
(ωP , ωP ) ∼= RP .

Let c1 be the product of all elements appearing in denominators of the matrices for

the maps αj, 1 ≤ j ≤ h. Then c1 ∈ R− P and we may form

0→ ω⊕bhc1

αh→ · · · α1→ ω⊕b0c1
→ Wc1 → 0.

The maps αj : ω
⊕bj
c1 → ω

⊕bj−1
c1 are given by the exact same matrices as the original αj

and when we localize at P , we obtain the exact sequence (∗). Because the homology

is finitely generated, it follows that all the homology modules, including the homology

at Wc1 , are all killed by an element c2 ∈ R − P . If we let c := c1c2 it then follows

that

0→ ω⊕bhc

αh→ · · · α1→ ω⊕b0c → Wc → 0

is exact and so Wc has finite injective dimension over Rc. This shows that the set

V is open, and it follows at once that {Q ∈ Spec(R) | id(WQ) = ∞} is a closed set

and therefore defined by a (radical) ideal.

(b). Let P ∈ Spec(R) such that idRP
(WP ) <∞, let R̂ denote the completion of R

at the maximal ideal, and consider the multiplicative system U := R−P ⊆ R̂. Then

R̂ and thus U−1R̂ are homomorphic images of regular rings and the map RP → U−1R̂

is faithfully flat with regular fibers. Furthermore, U−1R̂ has finite Krull dimension,

so from part (c) of Lemma IV.25, idU−1 bR(W ⊗RU−1R̂) <∞. It follows that U−1R̂ is

Cohen-Macaulay and since the Cohen-Macaulay locus is open, there exists c1 ∈ R−P

such that R̂c1 is Cohen-Macaulay. By part (a) of this result applied to R̂c1 , there
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exists c2 ∈ R−P such that, with c = c1c2, id bRc
(W⊗R̂c) <∞. But the map Rc → R̂c

is faithfully flat with regular fibers, so by part (c) of Lemma IV.25, idRc(Wc) < ∞.

Since c ∈ R−P , this proves that U is an open set. The other statements then follow.

(c). If I is defining the non-finite injective dimension locus of Ŵ , then we have

to show that JR̂ = I. First note that for a prime P ∈ Spec(R),

idRP
(WP ) <∞⇐⇒ id bRQ

(ŴQ) <∞

for some (equivalently, all) minimal primes Q of PR̂: this is immediate from Lemma

IV.25(c), since RP → R̂Q is faithfully flat with Gorenstein fibers.

Since J is a radical ideal, J = P1∩ · · · ∩Ph for some primes Pi ∈ Spec(R). By the

fact that R is excellent, PiR̂ is a radical ideal. Let PiR̂ =
⋂
Qij. Then since R→ R̂

is flat, we have that JR̂ =
⋂
Qij. Now, by our remark above, ŴQij

does not have

finite injective dimension and it follows that I ⊆
⋂
Qij = JR̂. On the other hand, if

Q is a minimal prime of I, then ŴQ does not have finite injective dimension. But the

contraction Q ∩ R is a prime of R, and so again by the remark above, the injective

dimension of WQ∩R is infinite. Therefore, J ⊆ Q ∩R, whence JR̂ ⊆ (Q ∩R)R̂ ⊆ Q.

We have just showed that every minimal prime of I contains JR̂. Since I is radical,

it follows that JR̂ ⊆ I, so JR̂ = I. 2

.

Proof of Theorem IV.47: Since R is excellent and reduced, R̂ is also reduced. R̂ is

F -finite since R is (R is F -finite =⇒ R/m = R̂/m̂ is F -finite since it is a homo-

morphic image, and this implies R̂ is F -finite since R̂ is complete). The hypothesis

that Wc has finite injective dimension is preserved when we replace W with Ŵ by
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Proposition IV.51. Therefore all of the hypothesis are preserved when we pass to R̂.

So by (II.13b), we may assume that R is complete.

By Lemma IV.49 it is enough to show that for all b� 0 there exists b′ such that

the natural map

iq : Ext1
R(R1/q, cbW )→ Ext1

R(R1/q,
cbW

cb′W
)

is injective for all q. Notice that since W is finitely generated, there exists b1 ∈ N

such that H0
(c)(W ) = AnnW (cb1). Then c is not a zerodivisor on cbW for all b > b1

since c · cbz = 0 =⇒ z ∈ H0
(c)(W ) =⇒ cbz = 0. Without loss of generality, assume

b > b1.

By Theorem IV.41, there exists k such that for all q,

ck · Ext1
R(R1/q,W ) = 0

and so by Lemma IV.50,

ck · Ext1
R(R1/q, cbW ) = 0

for all q. Set b′ := b + k. Since c is a nonzerodivisor on cbW , there is a short exact

sequence

0→ cbW
·ck→ cbW → cbW

cb′W
→ 0.

The long exact sequence for Ext produces the exact sequence

Ext1
R(R1/q, cbW )

·ck→ Ext1
R(R1/q, cbW )

iq→ Ext1
R(R1/q,

cbW

cb′W
)

for all q. Since ck kills Ext1
R(R1/q, cbW ) for all q, it follows that iq is injective for all

q. 2
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Lemma IV.52. Let I ⊆ R be an ideal and W a finitely generated R-module. Put

W̄ := W/H0
I (W ). Then either W̄ = 0 or there exists c ∈ I not a zerodivisor on W̄ .

Proof: We claim it is enough to see that if I ⊆
⋃
P∈Ass(W̄ ) P then W̄ = 0. Indeed,

if every element of I is a zerodivisor on W̄ , then I ⊆
⋃
P∈Ass(W̄ ) P , and then by the

claim W̄ = 0.

Assume for contradiction that W̄ 6= 0 but I ⊆
⋃
P∈Ass(W̄ ) P . By Proposition

3.13 of [Eis95], Ass(W̄ ) = Ass(W ) − A where A = {P ∈ Ass(W ) : I ⊆ P}. In

particular, no associated prime of W̄ contains I. Then Ass(W̄ ) is a finite, non-empty

set or primes, none of which contain I. By prime avoidance, I is not contained in

the union, a contradiction. 2

Theorem IV.53. Let (R,m,K) be a reduced, F -finite, excellent local ring, and let

W be a finitely generated R-module. Set E := ER(K), the injective hull of the

residue class field, and let I be an ideal contained in the defining ideal of the non-

finite injective dimension locus of W . Let M := HomR(W,E). Then I is potent for

M .

Proof: By (II.17b), (IV.51c) and the excellence hypothesis on R, we may assume R

is complete. Let z ∈ 0∗M . We will show z ∈ 0∗M(−n,I)
for some n. Let W̄ := W/H0

I (W ).

We use induction on depthI(W̄ ). If depthI(W̄ ) = 0 then W̄ = 0 and then

InW = 0 for some n. It follows that InM = 0 and so I is potent for M . Now

assume depthI(W̄ ) > 0 so that there exists x ∈ I such that x is a nonzerodivisor on

W̄ . Since x ∈ I, Wx has finite injective dimension over Rx, and by Theorem IV.47,

x is potent for M . So z ∈ 0∗M(−n1,x)
for some n1.
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Let P be a prime of R not containing the ideal I. Then WP = W̄P and we see

that both have finite injective dimension over RP . Since x is a nonzerodivisor on W̄ ,

there is a short exact sequence

0→ W̄
·xn1→ W̄ → W̄/xn1W̄ → 0

and hence

0→ W̄P
·xn1→ W̄P → (W̄/xn1W̄ )P → 0.

Therefore, (W̄/xn1W̄ )P has finite injective dimension over RP . Again, since I 6⊆ P ,

WP = W̄P and hence WP/x
n1WP = W̄P/x

n1W̄P . It follows that WP/x
n1WP has

finite injective dimension over RP and so I is contained in a defining ideal of the

non-finite injective dimension locus for W/xn1W . By the induction hypothesis, I is

potent for HomR(W/xn1W,E).

Note that HomR(M,E) = W since R is complete. Therefore by Lemma IV.48(b),

HomR(M(−n1,x), E) = W/xn1W,

and hence, HomR(W/xn1W,E) = M(−n1,x). It follows that I is potent for M(−n1,x).

Therefore:

z ∈ 0∗M(−n1,x)
=

⋃
t∈N

0∗AnnM (xn1+It)

which completes the proof of the theorem. 2

Using the technique of the gamma construction developed in Section 6 of [HH94]

we are able to remove the F -finiteness assumption from Theorem IV.53. Below we

collect some of the salient features of this construction. But first we prove a base

change result for potent ideals. The base change result requires the following lemma:
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Lemma IV.54. Suppose (R,m,K)→ (S, n, L) is a flat map of local rings.

(a) If M is any R-module and I ⊆ R is an ideal, then AnnM⊗RS(IS) = AnnM(I)⊗R

S. (We are tacitly identifying AnnM(I)⊗R S with its image in M ⊗ S).

(b) If in addition mS = n, then ES(L) = ER(K)⊗R S.

Proof: (a). Let I = (f1, . . . , fh) and consider the map M → M⊕h where for

x ∈M , x 7→ (f1x, . . . , fhx). Then we have a short exact sequence

0→ AnnM(I)→M →M⊕h → 0

and since R→ S is flat, tensoring with S produces

0→ AnnM(I)⊗ S →M ⊗ S → (M ⊗ S)⊕h → 0

exact. The result follows.

(b). This is a special case of Lemma 7.10(d) from [HH94]. 2

Proposition IV.55. Let (R,m,K) → (S, n, L) be a flat local map, and assume

R and S have a common test element. Let I ⊆ R be an ideal and let M be any

R-module.

(a) If IS is potent for M ⊗R S, then I is potent for M .

(b) If additionally mS = n, W is a finitely generated R-module, and IS is potent

for HomS(W ⊗R S,ES(L)) then I is potent for HomR(W,ER(K)).

Proof: (a). Suppose z ∈ 0∗M and we want to show z ∈ 0∗AnnM (It) for some t. Let

c be a common test element for R and S. Then czq = 0 in F e(M), so czq = 0

in F e
S(S ⊗R M) = S ⊗R F e(M). (Note that in complete generality, without any
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assumptions on the map R→ S, we have that F e
S(S ⊗RM) ∼= S ⊗R F e

R(M) - this is

just the commutative diagram:

F e(R) → F e(S)

↑ ↑

R → S

together with the associativity of base change.) It follows that z ∈ 0∗M⊗S so,

since IS is potent for M ⊗ S there exists t such that z ∈ 0∗AnnM⊗S(ISt). How-

ever, since I tS ⊆ ISt, it follows that z ∈ 0∗AnnM⊗S(ItS). Therefore, czq = 0 in

F e
S(AnnM⊗S(I

tS)). But R→ S is flat, so AnnM⊗S(I
tS) = AnnM(I t)⊗S, so czq = 0

in F e
S(AnnM(I t) ⊗ S) ∼= S ⊗ F e

R(AnnM(I t)). Finally, since R → S is flat and local,

it is pure, so the map F e
R(AnnM(I t))→ F e

R(AnnM(I t))⊗R S is injective. Therefore,

czq = 0 in F e
R(AnnM(I t)) and so z ∈ 0∗AnnM (It) as required.

(b). By (IV.54b), HomS(W ⊗R S,ES(L)) ∼= HomS(W ⊗R S,ER(K) ⊗R S) and

since R → S is flat and W is finitely presented, this is ∼= S ⊗R HomR(W,ER(K)).

The result now follows from part (a). 2

In the next result we collect some of the important properties of the gamma con-

struction from Section 6 of [HH94]. For simplicity, we assume that R is a complete

local ring. The reader is referred to [HH94] for details and generalizations. First we

adopt some notation from that paper.

Let (R,m,K) be a complete local ring of characteristic p > 0. Fix a coefficient

field K ⊆ R and fix a p-base Λ ⊆ K for K. Then for each cofinite subset Γ ⊆ Λ,

the gamma construction produces a local R-algebra (RΓ,mΓ, KΓ) and we have the
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following:

Proposition IV.56. Let (R,m,K) and (RΓ,mΓ, KΓ) be as above. Then:

(a) For all Γ, RΓ is an F -finite (and therefore, excellent), Henselian ring.

(b) For all Γ, RΓ is faithfully flat and purely inseparable over R (the latter meaning

that every element of RΓ has a qth power in R) with Gorenstein fibers, and

mRΓ = mΓ.

(c) For all Γ, RΓ is a homomorphic image of a regular ring.

(d) For all choices of Γ sufficiently small, if R is reduced (respectively, a domain)

then RΓ is reduced (respectively, a domain). Furthermore, for all Γ sufficiently

small, if R is equidimensional then RΓ is equidimensional.

Proof: Parts (a) through (c) follow from 6.6, 6.8 and the discussion in 6.11 of

[HH94]. Part (d) follows from 6.13(b) of [HH94] (apply 6.13(b) to every minimal

prime of R). 2

Lemma IV.57. Let (R,m,K) → (S, n, L) be a flat map of local rings such that

mS = n. Assume R has a canonical module ω. Then ω ⊗R S is a canonical module

for S.

Proof: This is a special case of [BH93], Theorem 3.3.14(a). 2

Corollary IV.58. Let (R,m,K) be a reduced, excellent local ring, and let W be a

finitely generated R-module. Set E := ER(K), the injective hull of the residue class

field, and let I be an ideal contained in the defining ideal of the non-finite injective

dimension locus of W . Let M := HomR(W,E). Then I is potent for M .

Proof: Without loss of generality we may assume that R is complete. We want

to replace R,W with RΓ,W ⊗R RΓ, and by (IV.55) and (IV.56) we can do this as
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soon as we know that IRΓ is contained in the defining ideal of the non-finite injective

dimension locus for W ⊗RΓ. We show this now.

By (IV.51b) there is a radical ideal defining the non-finite injective dimension

locus for W ⊗ RΓ. Since R is complete, R has a canonical module, say ω, and then

ωRΓ = ωR ⊗R RΓ is a canonical module for RΓ by (IV.57). Since IS is the smallest

ideal of S containing I, it is enough to show that for all c ∈ I, if idRc(Wc) <∞, then

idRΓ
c
(W ⊗RΓ

c ) <∞. But since idRc(Wc) <∞, Wc has a resolution:

0→ ω⊕bdc → · · · → ω⊕b0c → Wc → 0,

and applying −⊗RΓ
c then produces:

0→ ω⊕bd
RΓ

c
→ · · · → ω⊕b0

RΓ
c
→ Wc ⊗RΓ

c → 0.

It follows that idRΓ
c
(Wc⊗RΓ

c ) <∞. Therefore we may replace R,W with RΓ,W⊗RΓ.

Since RΓ is F -finite, the result follows from Theorem IV.53. This completes the proof.

2



CHAPTER V

Potent Elements for Local Cohomology Modules

In this chapter we study potent elements for local cohomology modules. To de-

scribe out main result, let (R,m,K) be an excellent, local ring and let M be a finitely

generated R-module. Then the locus of primes P ∈ Spec(R) such that MP is Cohen-

Macaulay and has finite projective dimension over RP is known to be an open set

(it is the intersection of two open sets; cf., Corollary 9.4.7 of [BS98] and section 24

of [Mat89]). The main result of this chapter is that the defining ideal for the closed

complement of this open set is potent for certain local cohomology modules. More

precisely, we have

Theorem V.1. Let (R,m,K) be a reduced, excellent, equidimensional local ring of

dimension d and let M be a finitely generated R-module. Let I ⊆ R be the radical

ideal such that c ∈ I if and only if Mc is Cohen-Macaulay and has finite projective

dimension over Rc. Then I is potent for Hk
m(M), the kth local cohomology module

with support in m, for every k ∈ N.

One key ingredient is the following well known corollary of the Peskine-Szpiro

intersection theorem.

Proposition V.2. Let R be a Noetherian local ring containing a field and let M 6= 0

be a finitely generated R-module. If M is Cohen-Macaulay and has finite projective

106
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dimension then R is Cohen-Macaulay.

Proof: By [BH93], Corollary 9.4.6, with N := R we have

dim(R) ≤ pd(M) + dim(M).

SinceM is Cohen-Macaulay, by the Auslander-Buchsbaum formula, dim(R) ≤ depth(R).

The other inequality is always satisfied. 2

The proof of Theorem V.1 relies on the main result of Chapter 4, which appears

as Corollary IV.58 there:

Theorem V.3. Let (R,m,K) be a reduced, excellent local ring, and let W be a

finitely generated R-module. Set E := ER(K), the injective hull of the residue class

field, and let I ⊆ R be an ideal contained in the defining ideal of the non-finite

injective dimension locus of W . Let H := HomR(W,E). Then I is potent for H.

We will make use of the dualizing complex. The next proposition recalls some of

its salient features.

Proposition V.4. Let (R,m,K) be an equidimensional local ring of dimension d

and let (T, n, L) be a Gorenstein local ring such that T � R. By killing a maximal

regular sequence in Ker(T → R) we may assume dim(T ) = d. Let P ∈ Spec(R) and

assume RP is Cohen-Macaulay. Let ω be a canonical module for R. Then there is a

complex:

D• : 0→ ω → D0 → · · · → Dd → 0

such that

(i) Dj is an injective R-module for all 0 ≤ j ≤ d.
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(ii) The result of localizing D• at P is the exact sequence

0→ ωP → D0
P → · · · → D

dim(RP )
P → 0,

and this is the minimal injective resolution of the canonical module, ωP , for RP .

(iii) For any finitely generated R-module N , we have an isomorphism

Hj
m(N) ∼= Hd−j(HomR(N,D•)∨

for all 0 ≤ j ≤ d, where −∨ is the functor HomR(−, ER(K)).

Proof: See for example, IV.14 and IV.20. 2

We will require a lemma on the behavior of Ext.

Lemma V.5. Let (R,m,K) be a Cohen-Macaulay local ring of dimension d with

canonical module ω. Let M be a finitely generated Cohen-Macaulay R-module of

dimension k. Then ExtiR(M,ω) = 0 for i 6= d− k while Extd−kR (M,ω) 6= 0.

If in addition M has finite projective dimension, then pd(M) = d − k and so

Ext
pd(M)
R (M,ω) is the unique non-vanshing ExtiR(M,ω). Moreover, Ext

pd(M)
R (M,ω)

has finite injective dimension over R.

Proof: The first statement is given in 3.3.3(b) of [BH93]. We prove the second

statement. By the Auslander-Buchsbaum formula, the projective dimension of M is

d− k. Let

0→ R⊕bd−k → · · · → R⊕b0 →M → 0

give a free resolution of M . Dropping M and applying Hom(−, ω) yields the complex

0← ω⊕bd−k ← · · · ← ω⊕b0 ← 0,
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whose homology at the ith spot is ExtiR(M,ω). However, by the first part of this

lemma, these modules vanish except when i = d− k. It follows that the complex

0← Extd−kR (M,ω)← ω⊕bd−k ← · · · ← ω⊕b0 ← 0

is exact. By 3.11(ii) of [Sha72], Extd−kR (M,ω) has finite injective dimension. 2

To prove (V.1) we first reduce to the complete case to guarantee the existence of

a canonical module. We collect the necessary results in a proposition.

Proposition V.6. Let (R,m,K) be an excellent, local ring and M a finitely gener-

ated R-module. Let R̂ denote the completion of R at the maximal ideal.

(a) If I is the defining ideal of the non-Cohen-Macaulay locus of M then IR̂ is the

defining ideal of the non-Cohen-Macaulay locus of M̂ .

(b) Similarly, if J is the defining ideal of the non-finite projective dimension locus

of M then JR̂ is the defining ideal of the non-finite projective dimension locus

for M̂ .

Proof: Let Q ∈ Spec(R̂) and let P := Q∩R be the contraction of Q to R. Then P

is a prime ideal of R and note that P ∈ V (I)⇐⇒ Q ∈ V (IR̂). The map RP → R̂Q

is flat and local, and since R is excellent, κP ⊗R R̂Q = κ̂Q, where κP = RP/PRP and

κ̂Q = R̂Q/QR̂Q.

By [BH93], 2.1.7, MP is Cohen-Macaulay ⇐⇒ M̂Q is Cohen-Macaulay. Part (a)

then follows since M̂Q is Cohen-Macaulay =⇒MP is Cohen-Macaulay =⇒ P 6∈ V (I)

=⇒ Q 6∈ V (IR̂). Conversely, if M̂Q is not Cohen-Macaulay, then MP is not Cohen-

Macaulay, so P ∈ V (I) and thus Q ∈ V (IR̂).



110

Part (b) follows similarly since pd(MP ) < ∞ ⇐⇒ TorRP
i (MP , κP ) = 0 for all

i� 0 ⇐⇒ ToribRQ
(M̂Q, κ̂Q) = 0 for all i� 0 ⇐⇒ pd(M̂Q) <∞. 2

We can now give the proof of our main result.

Proof of Theorem V.1: By the previous result and (II.13b), we may assume R is

complete and therefore is a homomorphic image of a Gorenstein ring T . Let ω

denote the canonical module of R. Fix k ∈ N. Let D• be the dualizing complex as

in (V.4). Then by (V.4 iii),

Hd−k(HomR(M,D•)∨ ∼= Hk
m(M).

Let I be the radical ideal given by c ∈ I if and only if Mc is Cohen-Macaulay

and has finite projective dimension. Then by (V.3) it suffices to show that I is

contained in the defining ideal of the non-finite injective dimension locus of W :=

Hd−k(HomR(M,D•)). So, it suffices to show that for c ∈ I, idRc(Wc) < ∞. The

issue is local on the maximal ideals of Rc.

Let P be a maximal ideal of Rc. We have to show that WP has finite injective

dimension over RP . Since M is finitely generated,

Hd−k(HomR(M,D•))P ∼= Hd−k(HomRP
(MP ,D•P )) = WP .

If MP = 0 then WP = 0 and we are done. We may assume MP 6= 0. Then MP

is a finitely generated, Cohen-Macaulay RP -module of finite projective dimension.

It follows from (V.2) that RP is Cohen-Macaulay. By (V.4 ii), D•P is the minimal

injective resolution of ωP and so we find that

WP
∼= Hd−k(HomRP

(MP ,D•P )) ∼= Extd−kRP
(MP , ωP ).
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Now, if d − k = pd(MP ), then Extd−kRP
(MP , ωP ) has finite injective dimension by

(V.5). Otherwise, d− k 6= pd(MP ) and then Extd−kRP
(MP , ωP ) = 0 by (V.5). 2

As a consequence we have the following special case of the Lyubeznik-Smith con-

jecture.

Corollary V.7. Let (R,m,K) be a reduced, excellent, equidimensional local ring

and let M be a finitely generated R-module. Suppose that for all P ∈ Spec(R) such

that P 6= m, MP is Cohen-Macaulay and has finite projective dimension over RP .

Then tight closure equals finitistic tight closure for the zero submodule in Hj
m(M) for

all j ∈ N.

Proof: This follows immediately since, by Theorem V.1 the maximal ideal is

potent for Hj
m(M) for all j ∈ N. 2



CHAPTER VI

Potent Elements for Graded Modules Over Graded Rings

In this chapter we develop the notion of a potent element for graded rings. We

recast the main result of [LS99] in the language of potent elements. After developing

the theory of potent elements for graded rings, we then combine this result with

previous work to obtain new cases where we know tight closure agrees with finitistic

tight closure.

Throughout this section we let R =
⊕

j∈NRj denote an N-graded ring and R+ =⊕∞
j=1Rj, the ideal generated by homogeneous elements of positive degree. We extend

the notion of a potent ideal to the graded setting.

Definition VI.1. If R is an N-graded ring and I ⊆ R is a homogeneous ideal, then

we say I is a graded potent ideal if for all Z-graded Artinian modules M ,

0∗M =
⋃
n∈N

0∗M(−n,I)
.

The main result of [LS99] in this terminology is that when R is reduced and

F -finite, R+ is a graded potent ideal:

Theorem VI.2. Let R =
⊕

j∈NRj be an N-graded, Noetherian, F -finite ring, and

let R+ =
⊕∞

j=1Rj, the ideal generated by homogeneous elements of positive degree.

Then R+ is a graded potent ideal.
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Indeed the methods of [LS99] produce Theorem VI.2, but the results appearing

there do not mention potent elements and are stated for N-graded rings over a field.

For completeness we present a proof of Theorem VI.2, the same in spirit as the orig-

inal.

Discussion. When R is any reduced, N-graded ring we can define an N[1/q]-grading

on R1/q by defining deg(r1/q) := deg(r)
q

for homogeneous elements. More generally for

any Z-graded R-module, M , we can give R1/q ⊗RM a Z[1/q]-grading by defining

deg(r1/q ⊗ x) := deg(r1/q) + deg(x).

Note that this grading is compatible with the N-grading from R in the sense that

deg(r′ · (r1/q ⊗ x)) = deg(r′) + deg(r1/q) + deg(x).

As in [LS99], the key point is the following lemma.

Lemma VI.3. (Main Lemma) Let R =
⊕

j∈NRj be an F -finite Noetherian R0-

algebra. There exists an integer t, depending only on R, such that whenever

φ : M → N

is a degree-preserving map of graded R-modules that is bijective in degrees at least s,

then for every q = pe the induced map

φ1/q : R1/q ⊗M → R1/q ⊗N

is bijective in degrees at least s+ t.

Proof of Main Lemma: We can place an N[1/pe]-grading on R by taking the pieces of

non-integer degree to be 0. More formally, we let R′ be the ring R graded as follows:

[R′]a+b/q = 0 if b does not equal 0
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[R′]a+b/q = Ra if b equals 0

where a, b ∈ N and 0 < b < q. Then R1/p is module-finite and graded over R′ and

therefore has a graded finite presentation over R′. The integer t above will eventually

be defined in terms of this presentation.

Let ⊕
j

R′(−aj − bj/p)→
⊕
i

R′(−ci − di/p)→ R1/p → 0

be a finite graded presentation of R1/p, where aj, bj, ci, di ∈ N and 0 ≤ bj, di < p for

all i and j. Here, R′(−m− n/p) denotes the ring R′ which has been graded so that

[R′(−m− n/p)]v+w/p = [R′]v−m+(w−n)/p.

Let t′ := maxi,j{aj + 1, ci + 1}. The first step is the following:

Claim 1. For any q, there is a presentation of R1/q given by

⊕
j

R′(−aj,q − bj,q/q)→
⊕
i

R′(−ci,q − di,q/q)→ R1/q → 0

such that if tq := maxi,j{aj,q + 1, ci,q + 1} then tq < 2t′ + 1. Again, we are assuming

aj,q, bj,q, ci,q, di,q ∈ N and 0 < bj,q, dj,q < q.

Proof of Claim 1: Since R is F -finite, R1/p is finitely generated over R. By taking

the forms of the generators, we may assume the generators are homogeneous. Let

F1, . . . , Fs be a set of such generators. We first show that R1/q is generated over R

by the elements

{Fk0F
1/p
k1
· · ·F 1/pe−1

ke−1
| 1 ≤ k0, . . . , ke−1 ≤ s}.
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Let q = pe. We use induction on e, the case e = 1 being trivial. We assume the

result for e− 1. For any x ∈ R, using the induction hypothesis we can write

xp/q =
∑
i

riFi,1 · · ·F 1/pe−2

i,e−1

We have indexed the Fi somewhat unusually to make the notation work out. Taking

pth roots we get

x1/q =
∑
i

r
1/p
i F

1/p
i,1 · · ·F

1/pe−1

i,e−1 ,

Write r
1/p
i =

∑
j si,jFj. When we plug this in we get

x1/q =
∑
i

∑
j

si,jFjF
1/p
i,1 · · ·F

1/pe−1

i,e−1 .

which after regrouping we can express as

x1/q =
∑
k

skFk,0F
1/p
k,1 · · ·F

1/pe−1

k,e−1 .

This shows that the elements {Fk0F
1/p
k1
· · ·F 1/pe−1

ke−1
} do indeed generate R1/q over R.

Now, by the definition of t′ above, the degrees of the Fj are less than t′. Therefore

each element in the generating set has degree less than

e−1∑
n=0

t′

pn
= t′

e−1∑
n=0

1

pn
≤ t′

p

p− 1
≤ 2t′.

The degree shifts required of the first free module in the presentation are thus less

than 2t′ and so the numbers cj,q + 1 < 2t′ + 1. To complete the proof of Claim 1

it remains to show that the numbers ai,q < 2t′. That is, we must show that every

element in a set of (homogeneous) generators for the kernel has degree less than 2t′.

This is done by showing that if {G1, . . . , Gn} is a set of generators for the kernel of

the map ⊕R′(−cj − dj/p)→ R1/p then the set of elements

{Fk0 · F
1/p
k1
· · ·F 1/pe−2

ke−2
·G1/pe−1

k | 1 ≤ k0, . . . , ke−2 ≤ s; 1 ≤ ke−1 ≤ n}
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generate the kernel of the map ⊕R′(−cjq − dj,q/p) → R1/q. The proof is similar to

the above, by induction on e, and is left to the reader.

Note that deg(gk) < t′ and also deg(Fk) < t′. Then, as before, it is easy to verify

that

deg(Fk0 · F
1/p
k1
· · ·F 1/pe−2

ke−2
· g1/pe−1

k ) < 2t′.

This completes the entire proof of Claim 1.

Claim 2. With a, b ∈ N and 0 < b < q, the mapR′(−a−b/q)⊗M → R′(−a−b/q)⊗N

is bijective in degrees at least s+ a+ 1.

Proof of Claim 2: Since R′(−a− b/q) is flat over R′ we have an exact sequence

0→ R′(−a− b/q)⊗ ker(φ)→ R′(−a− b/q)⊗M →

R′(−a− b/q)⊗N → R′(−a− b/q)⊗ coker(φ)→ 0

So, it suffices to check that for K = coker(φ), ker(φ), if K vanishes in degrees at

least s, then K ⊗ R′(−a − b/q) vanishes in degrees at least s + a + 1. Let e be a

degree a + b/q generator of R′(−a − b/q), and note that a + b/q < a + 1. Consider

an element er ⊗ x = e⊗ rx ∈ R′(−a− b/q)⊗K. Suppose deg(e⊗ rx) > s+ a+ 1.

Then since

deg(e⊗ rx) = deg(e) + deg(rx) > s+ a+ 1

we find that deg(rx) > s + a + 1 − deg(e) > s. Hence, rx ∈ K has degree greater

than s, a contradiction. This proves Claim 2.
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Now, take t := 2t′+1. We are finally ready to finish the proof of the main lemma.

We are given a map φ : M → N bijective in degrees at least s and we want to show

that φ1/q : R1/q ⊗M → R1/q ⊗N is bijective in degrees at least s+ t.

By Claim 1, there is a presentation of R1/q of the form⊕
j

R′(−aj,q − bj,q/q)→
⊕
i

R′(−ci,q − di,q/q)→ R1/q → 0

such that maxi,j{aj,q + 1, ci,q + 1} ≤ t. We have the following commutative diagram

with exact rows and degree-preserving maps:

⊕jR′(−aj,q − bj,q/q)⊗M → ⊕iR′(−ci,q − di,q/q)⊗M → R1/q ⊗M → 0

f1 ↓ f2 ↓ φ1/q ↓

⊕jR′(−aj,q − bj,q/q)⊗N → ⊕iR′(−ci,q − di,q/q)⊗N → R1/q ⊗N → 0

By Claim 2, the maps f1 and f2 are bijective in degrees at least s + t. A simple

diagram chase establishes that φ1/q is bijective in degrees at least s+ t. 2

We now use Lemma VI.3 to prove the following result. Theorem VI.2 will then

follow immediately.

Proposition VI.4. Suppose R =
⊕

j∈NRj is an N-graded ring, and suppose N ⊆M

is an inclusion of graded Artinian R-modules. For each d ∈ Z, let M≥d (respectively

N≥d) be the R-submodule of M (respectively, N) spanned by all homogeneous element

of degree greater than or equal to d. Then

N∗
M =

⋃
d∈Z

(N≥d)
∗
M≥d

.
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Proof: Suppose z ∈ N∗
M and we want to show z ∈

⋃
d∈Z(N≥d)

∗
M≥d

. Since N ⊆ M

is graded, N∗
M is graded and we may assume z ∈ M is a homogeneous element, of

degree d say. Suppose c1/q ⊗ z ∈ Im(R1/q ⊗ N → R1/q ⊗M) with c ∈ Ro. Pick t

as in the Main Lemma; we will show z ∈ (N≥d−t)
∗
M≥d−t

which will complete the proof.

To simplify notation, set M ′ := M≥d−t and N ′ := N ∩M ′. Observe that M ′ →M

is bijective in degrees at least d − t, so by the lemma, R1/q ⊗M ′ → R1/q ⊗M is

bijective in degrees at least d. By the same reasoning, R1/q ⊗ N ′ → R1/q ⊗ N is

bijective in degrees at least d. The element c1/q ⊗ z has degree at least d and it

follows that c1/q ⊗ z is in Im(R1/q ⊗ N → R1/q ⊗M) if and only if c1/q ⊗ z is in

Im(R1/q⊗N ′ → R1/q⊗M ′). That says z ∈ N∗
M if and only if z ∈ (N ′)∗M ′ as required.

2

Proof of Theorem VI.2: First note that for any Artinian module M , we have a chain

of submodules M≥d ⊇M≥d+1 ⊇ · · · which must stabilize since M has DCC. It follows

that there exists n ∈ N such that Mt = 0 for all t ≥ n. Therefore, for every w ∈ N,

M≥n−w ⊆ AnnM((R+)w). Hence, by the previous proposition we have

0∗M =
⋃
d∈Z

0∗M≥d
⊆

⋃
d∈Z,n>d

0∗AnnM ((R+)n−d)

as required. 2

Before proceeding we recall some standard notions about graded rings. We follow

[BH93], sections 1.5 and 3.6.

Let M,N be graded modules over the graded ring R. We denote by Homi(M,N)

the homogeneous homomorphisms of degree i and put ∗ HomR(M,N) =
⊕

i∈Z Homi(M,N).
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Note that ∗ HomR(M,N) is a Z-graded module. In general, ∗ HomR(M,N) is a proper

subgroup of HomR(M,N) but equality holds whenM is finitely generated (see 1.5.19,

[BH93]). If W is any finitely generated module over an arbitrary excellent ring, the

locus of primes P such that WP has finite injective dimension over RP is open (see

[Tak06]). It follows that there is a radical ideal I ⊆ R such that c ∈ I if and only if

Wc has finite injective dimension over Rc. We require results on the behavior of the

ideal I.

Lemma VI.5. Let (R,m) be an N-graded ring over an excellent local ring (R0,m0)

where m = m0 + R+ is the unique homogeneous maximal ideal. Let W be a finitely

generated, graded R-module, and let I be the radical ideal defining the non-finite

injective dimension locus for W . Then

(a) We have idR(W ) <∞⇐⇒ ExtiR(R/m,W ) = 0 for all i� 0.

(b) Let (R,m) → (S, n) be a flat local map of graded rings where m,n are the

homogeneous maximal ideals of R,S respectively. Assume that mS = n. Then

idR(W ) <∞ if and only if idS(W ⊗ S) <∞.

(c) I is a homogeneous ideal.

(d) IRm is the defining ideal of the non-finite injective dimension locus of W ⊗Rm.

Proof: (a). The implication (=⇒) is obvious. Now assume ExtiR(R/m,W ) = 0

for all i � 0. By the assumption, ExtiRm
(Rm/mRm,Wm) = 0 for all i � 0, and it

follows from [BH93], Proposition 3.1.14, that Wm has finite injective dimension over

Rm. This means that there exists an integer n ∈ N such that for all graded primes

P ⊆ m, µi(P,W ) = 0 for all i > n where µi(P,W ) is the ith Bass number of W

with respect to P . Now, for an arbitrary prime Q, let Q∗ denote the ideal generated

by homogeneous elements of Q. It is easy to see that Q∗ is a homogeneous prime,
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and we have µ0(Q,W ) = 0 while µi+1(Q,W ) = µi(Q
∗,W ) for all i > 0 (see [BH93],

3.6.6). It follows that for all i > n + 1, µi(Q,W ) = 0 for all primes Q in R. This

means that W has finite injective dimension.

(b). SinceR→ S is faithfully flat, ExtiR(R/m,W ) = 0 if and only if ExtiR(R/m,W )⊗R

S = 0. Furthermore, because W is finitely generated we have

ExtiR(R/m,W )⊗R S ∼= ExtiS(R/m⊗R S,W ⊗R S) ∼= ExtiS(S/mS,W ⊗ S)

∼= ExtiS(S/n,W ⊗ S).

The result follows from (a).

(c). This follows from the standard Van der Monde matrix determinant trick.

Let t be an indeterminate over R and let R(t) denote the homogeneous localization

of the polynomial ring R[t] at mR[t]. By part (a) we may pass to R(t): The ring

R(t) becomes a graded ring by letting deg(t) := 0, and it is clear that R → R(t) is

faithfully flat and the homogeneous maximal ideal of R(t) is mR(t). Without loss of

generality we may assume that R has infinitely many unite ui in degree 0 such that

ui − uj is also a unit.

The units in degree 0 act on R via the grading: if u ∈ R0 is a unit and x ∈ R

is homogeneous of degree d, we define θu : R → R by the rule θu(rd) := udrd for an

element rd ∈ Rd. It is clear that θu gives a ring automorphism of R. By standard

results, an ideal I ⊆ R is homogeneous if and only if for all c ∈ I θu(c) ∈ I for all

units u ∈ R0. If I is the defining ideal of the non-finite injective dimension locus for

W , then c ∈ I if and only if Wc has finite injective dimension over Rc. For simplicity
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we write θ for θu. We must show that idRc(Wc) < ∞ =⇒ idRθ(c)
(Wθ(c)) < ∞. We

write θc for the induced automorphism of rings θc : Rc → Rθ(c).

There is an automorphism of abelian groups ψ : M → M given by ψ(ye) := ueye

for a homogeneous element ye ∈ Me. Note that the linearity of ψ is such that

ψ(ry) = θ(r)ψ(y): indeed, it is enough to check this on homogeneous elements, and

then

ψ(rdye) = ud+erdye = udrdu
eye = θ(rd)ψ(y − e)

as required. Now define a map λ : Mc → Mθ(c) by the rule λ(m/ck) := ψ(m)/θ(ck).

We need to show that λ is well defined. First note that λ satisfies λ(vy) = θc(v)λ(y)

for all v ∈ Rc and all y ∈M . Indeed,

λ(ry/ck) = λ(ry)/θ(ck) = θ(r)ψ(y)/θ(ck) = θ(r/ck)ψ(y).

It is easy to check that λ is well-defined: if m/ck = m′/ck
′

then we must show

that ψ(m)/θ(ck) = ψ(m′)/θ(ck
′
). Equivalently, we need to find n ∈ N such that

θ(c)n
(
ψ(m)θ(ck

′
)− θ(ck)ψ(m′)

)
= 0.

However, there exists n such that cn(mck
′ −m′ck) = 0. Applying ψ we find that

ψ
(
cn(mck

′ −m′ck)
)

= 0

and hence

θ(cn)
(
ψ(mck

′
)− ψ(m′ck)

)
= 0 =⇒ θ(c)n

(
ψ(m)θ(ck

′
)− θ(ck)ψ(m′)

)
= 0

as required. We have established that λ : Mc → Mθ(c) is an isomorphism of abelian

groups compatible with the map θc : Rc → Rθ(c). It follows that Mc has finite injec-

tive dimension over Rc if and only if Mθ(c) has finite injective dimension over Rθ(c).
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Therefore, c ∈ I =⇒ θ(c) ∈ I and so I is homogeneous. This proves (c). Part (d) is

obvious. 2

The main theorem of Chapter 4 is stated for local rings. In order to make use of

it in the graded setting, we need to know that certain properties of graded modules

may be checked after localizing at the homogeneous maximal ideal. We will need the

following lemma.

Lemma VI.6. Let R =
⊕

i≥0Ri be an N-graded ring over a local ring (R0,m0), and

let M be a Z-graded, Artinian R-module. Let I ⊆ R be a homogeneous ideal, and let

m denote the homogeneous maximal ideal of R. Set S = Rm.

(a) For all t ∈ N, AnnM⊗S(I
tS) = AnnM(I t)⊗ S.

(b) The modules AnnM(I t) and F e
R(AnnM(I t)) are graded Artinian R-modules.

(c) The natural map M →M ⊗ S is injective.

Proof: Part (a) follows from the fact that R → S is flat. Let I t = (f1, . . . , fh)R.

There is a short exact sequence

0→ AnnM(I t)→M
θ→M⊕h

where θ(x) = (f1x, . . . , fhx) for all x ∈ M . Applying − ⊗R S, we find an exact

sequence

0→ AnnM(I t)⊗R S →M ⊗ S θ→ (M ⊗ S)⊕h

and the result follows.

(b). Since I is homogeneous, I t is homogeneous, so it suffices to show that

AnnM(J) is homogeneous when J and M are. Since J is homogeneous, J = ⊕Ji
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where Ji ⊆ Ri. First we claim that AnnM(J) = ∩i AnnM(Ji). The containment ⊆

is obvious. Conversely, let x ∈ ∩i AnnM(Ji). If f ∈ J , then f =
∑

i fi with fi ∈ Ji.

It follows that fx =
∑

i fix = 0 since x ∈ ∩i AnnM(Ji). This proves the claim. Now

suppose x =
∑

j xj ∈ AnnM(J) where deg(x1) < deg(x2) < · · · . Then x ∈ AnnM(Ji)

for all i, and it suffices to show that xj ∈ AnnM(Ji) for all i, j. If f ∈ Ji, then

fx =
∑

j fxj = 0. Clearly, deg(fxj) 6= deg(fxi) for i 6= j, so it follows that fxj = 0

for all j. Whence xj ∈ AnnM(Ji) for all i as needed. We have proved that AnnM(J)

is graded when M and J are. The last statement follows from the fact that F e(N)

is graded when N is, as we saw at the beginning of this section. This completes the

proof of (b).

For part (c), we have to show that if u ∈ R−m and ux = 0 for x ∈M then x = 0.

That u ∈ R − m means that u = u0 + · · · + uh with deg(ui) = i and u0 ∈ A − n.

Therefore, u0 is a unit in R and hence a nonzerodivisor. We may write x =
∑n

j=0 xj

with deg(x0) < deg(x1) < · · · < deg(xn) and x0 6= 0. Observe that u0x0 is the unique

term of ux in degree deg(x0) so if ux = 0 it follows that u0x0 = 0. Since u0 is a unit,

we must have x0 = 0, a contradiction. 2

The next result states that the DCC property may be checked after localizing at

m.

Lemma VI.7. Let R be an N-graded ring over a local ring (R0,m0) and let m =

m0 + R+ be the homogeneous maximal ideal. Note that m is a maximal ideal of R

in this case. Suppose M is a graded R-module such that Mm is Artinian over Rm.

Then M is Artinian over R.

Proof: It suffices to see that the submodules of M are already Rm submodules for
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then a chain of submodules violating the descending chain condition over R would

constitute a violation of the descending chain condition over Rm. First note that

M → Mm is injective since M is graded. Therefore, since every element of Mm is

killed by a power of m, every element of M is killed by a power of m. Let N ⊆ M

be a submodule. We need to show that RmN ⊆ N . For this purpose, it suffices to

show that RmxR ⊆ xR for x ∈ N . But xR ∼= R/AnnR(x) and AnnR(x) ⊇ mt for

t � 0. Since m is a maximal ideal of R, it follows that R/AnnR(x) is local, and

that R/AnnR(x)) = (R/AnnR(x))m. Therefore, xR = (xR)m and so Rm(xR) = xR.

This proves the lemma. 2

We also have:

Proposition VI.8. Let R =
⊕

i≥0Ri be a reduced, excellent N-graded ring over a

local ring (R0,m0), and let M be a Z-graded, Artinian R-module. Let I ⊆ R be

a homogeneous ideal, and let m denote the homogeneous maximal ideal of R. Set

S = Rm. If IS is potent for M ⊗ S then I is potent for M .

Proof: We may pick c ∈ R homogeneous such that Rc is regular and then Sc is

regular as well. After replacing c by a power, we have that c is a common big test

element for R and S.

Suppose z ∈ 0∗M and we want to show that z ∈ 0∗AnnM (It) for some t. We have

that czq = 0 in F e
R(M) so czq = 0 in F e

R(M)⊗R S = F e
S(M ⊗ S). Since IS is potent

for M ⊗ S, there exists t such that czq = 0 in F e(AnnM⊗S(I
tS)). By part (a) of the

previous result, czq = 0 in F e
S(AnnM(I t)⊗ S) = F e

R(AnnM(I t))⊗ S. By part (b) of

that lemma, F e
R(AnnM(I t)) is graded since I and M are, so by part (c), the natural

map F e
R(AnnM(I t))→ F e

R(AnnM(I t))⊗R S is injective. It follows that czg = 0 even
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in F e
R(AnnM(I t)). This means z ∈ 0∗AnnM (It) as required. 2

We are now able to combine (VI.2) with the main result of Chapter 4 to obtain

the following

Corollary VI.9. Let R =
⊕∞

i=0Ri be an N-graded ring over a local ring (R0,m0)

and let W be a finitely generated, graded R-module. Let m be the homogeneous

maximal ideal of R and let E = ER(R/m) be the injective hull of the residue field of

R at m. Let M := HomR(W,E). If I is the defining ideal of the non-finite injective

dimension locus for W (that is, c ∈ I if and only if idRc(Wc) <∞), then I + R+ is

potent for M .

Proof: We first prove that I is potent for M . Since W is finitely generated,

Mm = HomR(W,ER(K))m ∼= HomRm(Wm, ER(K)). By Matlis duality over the local

ring Rm, Mm has DCC. It follows from (VI.7) that M has DCC over R. By Lemma

VI.5, I is a homogeneous ideal and IRm is the defining ideal of the non-finite injec-

tive dimension locus for M ⊗Rm. Therefore, by (IV.58) IRm is potent for M ⊗Rm.

But then by (VI.8), I is potent for M .

We have a decomposition 0∗M =
⋃
t 0

∗
AnnM (It). Therefore, the result will be proved

if we can show that R+ is potent for AnnM(I t) for all t. But as M and I are graded,

AnnM(I t) is also graded so by (VI.2), R+ is potent for AnnM(I t). This completes

the proof. 2

We give two important consequences of this result.

Corollary VI.10. Let R be an N-graded ring over a local ring (R0,m0) and let W
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be a finitely generated, graded R-module. Let m be the homogeneous maximal ideal

and set M := HomR(W,ER(R/m)). If m0 is contained in the defining ideal of the

non-finite injective dimension locus for W , then tight closure equals finitistic tight

closure for the 0 submodule in M .

Proof: This follows at once from the previous result since m0 + R+ is potent for

M . 2

Corollary VI.11. Let R = R0[x1, . . . , xd] be a polynomial ring over a complete,

isolated singularity (R0,m0). Then tight closure is the same as finitistic tight closure

for in every graded Artinian R-module.

Proof: If c ∈ m0 then Rc = (R0)c[x1, . . . , xd] is regular. It follows that m0 is con-

tained in the defining ideal of the singular locus for R. Since every finitely generated

module over a regular ring has finite injective dimension, it follows that m0 is con-

tained in the defining ideal of the non-finite injective dimension locus of every finitely

generated R-module W . Therefore, m0 + R+ is potent for every HomR(W,ER(K))

where W is a finitely generated, graded module. Hence, tight closure equals finitistic

tight closure for the zero submodule in every HomR(W,ER(K)). By the graded ver-

sion of Matlis duality (see [BH93], 3.6.17), every graded Artinian module is of this

form. 2



CHAPTER VII

Questions

While the theory of potent elements has obtained new insights about tight clo-

sure in Artinian modules, many questions about the theory remain unsolved. In

this chapter we collect the most important of these open problems and explain their

connection to the question of whether strong and weak F -regularity are equivalent.

Unless stated otherwise, let (R,m,K) denote a reduced, excellent local ring of

prime characteristic p > 0. As we noted in Chapter 2, the issue of whether the

maximal ideal m is potent for an Artinian R-module M is equivalent to whether

tight closure is the same as finitstic tight closure for the zero submodule of M .

Perhaps the most ambitious open question is the following

Question VII.1. If (R,m,K) is a reduced, excellent, local ring, is m potent for

every Artinian R-module? Equivalently, if c ∈ m, is c potent for every Artinian

R-module?

We expect this question to be extraordinarily difficult to settle, even if one re-

stricts to the case where R is a complete weakly F -regular ring (hence, a complete,

Cohen-Macaulay, normal domain). This is because an answer to this question in the

general case would settle the conjecture of Lyubeznik and Smith raised in [LS01],

127
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while even the restricted case an answer would settle the issue of whether every

weakly F -regular ring is strongly F -regular.

Another open question that would have a major impact on the theory of tight

closure is the following

Question VII.2. If c ∈ τ(R), the test ideal of R, is c potent for every Artinian

module M? Is τ(R) potent for ER(K), the injective hull of the residue class field?

An affirmative answer to either of these questions would establish that strong and

weak F -regularity are equivalent for excellent local rings. It would also establish that

the test ideal behaves well with respect to localization and completion under mild

conditions on the ring. See [LS01], section 2. For this reason, settling this question

also seems formidable.

Question VII.3. Suppose c ∈ R is such that Rc is strongly F -regular. Is c potent

for every Artinian module M? Is the defining ideal of the non-strongly F -regular

locus potent for ER(K)?

An affirmative answer to this question would imply that F -regular rings are

strongly F -regular. It would also imply that weakly F -regular rings that are strongly

F -regular on the punctured spectrum are strongly F -regular. Note that we are free

to replace c by a power, cn. Using the gamma construction we will be able to assume

that R is F -finite (or even complete and F -finite). In this case, if c ∈ R is such that

Rc is strongly F -regular, then for some n, cn will be a big test element, hence a test

element for any Artinian module M .

Part of the reason that the theory of test elements has been successful is that the
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set of elements potent for all Artinian modules forms a (radical) ideal. Unfortunately,

we do not know whether the set of potent elements for a fixed Artinian module M

forms an ideal, even if M is taken to be the injective hull of the residue class field.

We do have the following result which was essentially proved in section IV.3, though

it never appeared explicitly in this form:

Proposition VII.4. Let (R,m,K) be a reduced, F -finite, excellent local ring of

characteristic p, let W be a finitely generated R-module and let c ∈ R. Put M :=

HomR(W,ER(K)). If there exists k ∈ N such that for all q � 0

ck · Ext1
R(R1/q,W ) = 0

then c is potent for M . Moreover the set J = {c ∈ R | ∃k,∀q � 0, ck·Ext1
R(R1/q,W ) =

0} forms a radical ideal of R.

Proof: First notice that since W is Noetherian,
⋃
n∈N AnnW (cn) = AnnW (ch) for

some h ∈ N. It then follows that c is a nonzerodivisor on chW . Now, by Lemma

IV.50, the condition that

ck · Ext1
R(R1/q,W ) = 0

implies that, for all k1 ≥ 1,

ck · Ext1
R(R1/q, ck1W ) = 0.

Assume k1 > h. Then we have a short exact sequence

0→ ck1W
·ck→ ck1W → ck1W

ck+k1W
→ 0

which yields the exact sequence

Ext1
R(R1/q, ck1W )

ck→ Ext1
R(R1/q, ck1W )→ Ext1

R(R1/q,
ck1W

ck+k1W
)
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and it follows that for all k1 > h the natural map

Ext1
R(R1/q, ck1W )→ Ext1

R(R1/q,
ck1W

ck+k1W
)

is injective. By Lemma IV.48(a), after applying HomR(−, ER(K)) we find that for

all k1 > h the natural map

TorR1 (R1/q, (
ck1W

ck+k1W
)∨)→ TorR1 (R1/q, ck1W∨)

is surjective. It is routine to verify that ck1W∨ = M/AnnM(ck1) and that

(
ck1W

ck+k1W
)∨ =

AnnM(ck+k1)

AnnM(ck1)
.

As in the proof of Lemma IV.49, we have the following commutative diagram with

exact rows:

TorR1 (R1/q, AnnM (ck+k1 )

AnnM (ck1 )
) −→ R1/q ⊗R AnnM(ck1)

aq−→ R1/q ⊗R AnnM(ck+k1)

fq ↓ 1 ↓ gq ↓

TorR1 (R1/q, M
AnnM (ck1 )

) −→ R1/q ⊗R AnnM(ck1)
dq−→ R1/q ⊗RM

The map fq is surjective for all q, so gq restricts to an isomorphism between Im(aq)

and Im(dq) for all q. Thus, if x ∈ 0∗M and x ∈ AnnM(ck1) then x ∈ 0∗
AnnM (ck+k1 )

.

Finally, we want to see that J forms an ideal. Clearly, if c ∈ J then rc ∈ J for all

r ∈ R. If c1, c2 ∈ J , say ck11 · Ext1
R(R1/q,W ) = 0 and ck22 · Ext1

R(R1/q,W ) = 0, then

(c1 + c2)
k1+k2−1 · Ext1

R(R1/q,W ) = 0 so c1 + c2 ∈ J as well. Therefore, J is an ideal

and it follows at once that J is a radical ideal. 2

This result leads to the following question:
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Question VII.5. Suppose (R,m,K) is a reduced, F -finite, excellent local ring, let

W be a finitely generated R-module and let

M := HomR(W,ER(K)).

Does the set of potent elements for M form an ideal of R?

One could hope for a theorem general enough to include both Theorem IV.1 and

Theorem VI.2.
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