
Detection and Control of Individual Trapped Ions and Neutral Atoms

by

Mark Acton

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Physics)

in The University of Michigan
2008

Doctoral Committee:

Professor Christopher R. Monroe, University of Maryland, Co-Chair
Professor Georg A. Raithel, Co-Chair
Professor Dante E. Amidei
Professor Paul R. Berman
Professor Duncan G. Steel



c© Mark Acton
All Rights Reserved

2008



To Sara and Loie

ii



ACKNOWLEDGEMENTS

Experimental physics research is the ultimate group activity where each person’s

effort is just part of a larger project. This could not be any more true for the

work described here and I would like to try to thank everyone involved in making it

possible.

It only makes sense to start by thanking Chris Monroe for serving as my thesis

advisor. When I arrived at Michigan in September 2003 he was open to me starting

work in the group even as my class commitments kept me busy. He allowed us to be

incredibly productive in lab by providing all the financial and logistical support we

needed. He also made it incredibly challenging by always pushing us to go farther

and faster. Chris did it all as a thesis advisor and this would not have been possible

without him.

My thesis committee (Georg Raithel, Dan Amidei, Paul Berman, and Duncan

Steel) have been wonderfully supportive and accomodating throughout moves, delays,

and scheduling. And while he may not be on my official committee, I would like to

thank Jens Zorn for his constant encouragement and support during the inevitable

ups and downs of research.

My immediate research group has evolved over the years, but it has always been

a source of knowledge and enjoyment. Paul Haljan, Ming-Shien Chang, and Winni

Hensinger have served as outstanding mentors and post-docs. Kathy-Anne Brick-

iii



man, Patty Lee, Louis Deslauriers, and Dan Stick have been the best of fellow gradu-

ate students. Dave Hucul, Mark Yeo, Andrew Chew, Rudy Kohn, Liz Otto, and Dan

Cook brought great energy and initiative as undergraduates. And a big thank you

to all those in the group with whom I may not have officially collaborated, but from

whom I certainly benefited: David Moehring, Martin Madsen, Steve Olmschenk,

Boris Blinov, Peter Maunz, Dzimitry Matsukevich, Jon Sterk, Simcha Korenblit,

and Yisa Rumala.

I would like to thank the FOCUS center for fellowship support during my first

year as well as conference assistance throughout my graduate school career and the

University of Michigan Physics Department for its final term dissertation support.

I also thank Deerfield Academy for its financial support and the faculty for their

motivation throughout the writing process.

My surrounding family, from my parents and brother to my wonderful in-laws,

has provided confidence, praise, and motivation from the beginning. Thank you.

I have saved thanking my wife and daughter until the very end, hoping that I

would be less emotional and better able to put into words how much their support

has meant during this odyssey. Of course, I now realize that I will never be able to

adequately thank them. They provided motivation, encouragement, and relaxation.

From late nights to early mornings (and sometimes the spaces in between), Sara was

always ready to bend her schedule to keep us from breaking. She defines generosity

and I hope that this product is at least partially worthy of her investment.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

I. Motivation and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. Multi-Ion Qubit Detection: Theory and Experiment . . . . . . . . . . . . . 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Detection Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Comparison of Theory with Experiment . . . . . . . . . . . . . . . . . . . . . 14
2.4 Theoretical Limit of Detection Fidelity . . . . . . . . . . . . . . . . . . . . . 15
2.5 Individual Ion Detection Using a CCD . . . . . . . . . . . . . . . . . . . . . 21
2.6 Multiple Ion Detection Using a CCD . . . . . . . . . . . . . . . . . . . . . . 24

III. Multi-Zone “T” Ion Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Trap Construction and Usage . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Ion Shuttling Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

IV. Cadmium Magneto-Optical Trap: Computer Simulations and Experimen-
tal Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Experimental Realization of Cadmium MOT . . . . . . . . . . . . . . . . . . 38
4.3 Experimental Determination of Cd Cross-Sections . . . . . . . . . . . . . . . 47
4.4 MOT Computer Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Simulation Results Compared to Experimental Data . . . . . . . . . . . . . . 54

V. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

v



5.2 Future Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vi



LIST OF FIGURES

Figure

2.1 Relevant energy levels used in fluorescence detection of qubits . . . . . . . . . . . . 6

2.2 Theoretical “bright” and “dark” histograms with varying leakage parameters . . . 11

2.3 Relevant energy levels and relative dipole transition strengths for state detection
of 111Cd+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Fit to experimental histograms for 111Cd+ . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Theoretical prediction of detection infidelity (1-F) using the P3/2 detection scheme
for 111Cd+ as a function of total detector collection efficiency (η) . . . . . . . . . . 18

2.6 Schematic diagram of an intensified CCD camera imaging tube . . . . . . . . . . . 22

2.7 Detection histograms for three ion qubits using a CCD . . . . . . . . . . . . . . . . 25

3.1 Top view and cross-section of two-dimensional “T” trap array . . . . . . . . . . . . 30

3.2 Photograph of T-junction trap array . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Voltage pattern for linear shuttling between regions a and b in T-trap . . . . . . . 33

3.4 Voltage pattern for corner shuttling between zones d and i in T-trap . . . . . . . . 35

4.1 Neutral Cd energy level diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Schematic diagram of MOT laser system and vacuum chamber. . . . . . . . . . . . 40

4.3 Histogram of integrated CCD counts for MOT atom detection with varying inten-
sity fluctuations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Histogram of integrated CCD counts for MOT atom detection with varying gain
fluctuations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Scan of MOT trapping radiation frequency . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Observed trapped atom population behavior for different background pressures. . . 49

4.7 Observed MOT loading rate vs. saturation parameter s = I/Isat . . . . . . . . . . 50

vii



4.8 Typical loading curve and CCD image of Cd atoms confined in MOT . . . . . . . . 55

4.9 Steady-state MOT number vs. axial magnetic field gradient. . . . . . . . . . . . . . 56

4.10 MOT cloud rms diameter vs. B′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.11 Observed steady-state atom number vs. detuning (δ). . . . . . . . . . . . . . . . . . 58

4.12 Observed steady-state atom number vs. power. . . . . . . . . . . . . . . . . . . . . 58

4.13 MOT cloud diameter vs. total MOT laser power. . . . . . . . . . . . . . . . . . . . 59

A.1 Generalized diagram showing the orientations of the crytal axes and the ensuing
definitions of ordinary and extraordinary rays. . . . . . . . . . . . . . . . . . . . . . 68

A.2 Doubling efficiency of BBO as a function of fundamental wavelength . . . . . . . . 70

viii



LIST OF APPENDICES

Appendix

A. Frequency Doubling Conversion Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 67

A.1 BBO & Phase-Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.2 SHG Conversion Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B. Laser Beam Pair Intensity Imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

C. MOT Simulation Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ix



ABSTRACT

Significant interest and effort have been devoted to using quantum mechanics

in order to perform quantum computations or model quantum mechanical systems.

Using trapped atomic ions as the building block for a quantum information proces-

sor has found notable success, but important questions remain about methods for

achieving acceptable error rates in qubit measurement and entanglement production

as well as increasing the number of controlled qubits. In this work we present a

detailed discussion of qubit measurement on trapped ions using a charge-coupled

device (CCD) camera. We discuss extending this measurement and control to larger

numbers of qubits through the use of a multi-zone trap array capable of physically

transporting and re-arranging ion qubits. Moreover, we propose a new direction for

quantum information research through the first confinement of neutral Cadmium

atoms and its implications for future work in coherent quantum information transfer

and processing.
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CHAPTER I

Motivation and Introduction

In this thesis we describe experiments united under the theme of detecting and

controlling atomic cadmium, both in its singly-ionized and neutral forms.

Motivation for controlling atomic states comes from both applied and theoretical

rationales.

On the “applied” end, quantum state detection and control are prerequisites

for performing quantum computation and information processing whether via stan-

dard circuit-based approaches [1] or via one-way, measurement-based methods [2, 3].

These applications have drawn interest for their potential to outperform a classical

computer in such tasks as fast number factoring [4] and database searching [5]. More-

over, quantum state control is also necessary for performing quantum simulations to

controllably model systems with Hamiltonians that are far too complex for classical

simulation techniques [6].

However, there is also rich interest in the “fundamental” tests of physical theories

that quantum state control enables. From precision metrology [7] to the completeness

of quantum mechanics [8, 9, 10] and tests of QED [11], quantum state control serves

as a testbed for exploring these basic physical theories.

Atomic cadmium in particular represents a potentially interesting system for im-
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plementing quantum state control. Singly-ionized Cd+ can be trapped and controlled

for long periods of time in rf Paul traps with individual ions able to be stored for up

to several days [12]. Moreover, when controlling the hyperfine states of odd-isotope

ions, the coherence time is long enough to allow for large numbers of coherent oper-

ations [1].

After this introduction, Chapter II [13] gives a detailed theoretical description and

experimental demonstration of our ability to detect the quantum bit (qubit) state

of individual atomic ions. We discuss the important requirement of a multi-qubit

measurement capability and the theoretical and technical challenges this entails.

Next, we discuss a trap architecture for reliably controlling many ions in Chap-

ter III, with the goal of achieving full quantum state control over many ions simulta-

neously. In order to extend our control from individual ions to many qubits requires

the ability to trap and manipulate the physical arrangement of multiple atomic ions.

We discuss the development and usage of a multi-zone “T” trap consisting of an

array of ion traps so that individual ions can be reliably shuttled between physical

locations.

Chapter IV moves in a new direction by discussing the theory and experimental

implementation of trapping neutral Cd atoms. After first describing the necessary

experimental apparatus for confining Cd atoms in a magneto-optical trap (MOT),

we examine a computer-based simulation of atomic behavior in the MOT with a

particular eye towards modeling trap loss mechanisms which can then be compared

with experimental data.

Finally, Chapter V presents conclusions and future work, including possible ex-

tensions of this work and some significant questions remaining in this field.
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CHAPTER II

Multi-Ion Qubit Detection: Theory and Experiment

2.1 Introduction

Trapped atomic ions represent a promising method for implementing universal

quantum computation, but one needs to be able to efficiently and faithfully mea-

sure the quantum state of each individual ion in order to view the results of any

quantum computation. In this chapter, we discuss the important quantum computer

requirement of a multi-qubit measurement capability [13].

State detection is typically accomplished by applying polarized laser light resonant

with a cycling transition for one of the qubit states and off-resonant for the other

state. The two states are then distinguishable as “bright” and “dark” via this state-

dependent fluorescence [14, 15, 16, 17]. Typical schemes collect this fluorescence

using fast lenses and detect photons using a standard photon-counting device such

as a photo-multiplier tube (PMT) or an avalanche photo-diode (APD). The relatively

high detection efficiency of PMTs or APDs aids detection, but for detecting more

than one ion their lack of spatial resolution means that certain qubit states are

indistinguishable, e.g. one bright ion out of two does not determine a particular

ion’s state. Distinguishable individual qubit state detection is particularly crucial

for tomographic density matrix reconstruction [18, 19], quantum algorithms [20,
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21], quantum error correction [22], and cluster state quantum computation [2, 3].

Separating the ions with shuttling [23, 24, 25, 20, 22] or tightly focussing the detection

beam [18] can distinguish the qubits, but the additional time necessary for detection,

possible decoherence associated with shuttling, and technical difficulties make these

schemes less desirable for large numbers of ions.

In this chapter, we discuss the use of an intensified charge-coupled device (CCD)

as a photon-counting imager for simultaneously detecting multiple qubit states with

high efficiency. We first theoretically model the detection fidelity of qubits stored in

S1/2 hyperfine states of alkali-like ions, where one of the qubit states has a closed

transition to the excited electronic P state manifold (applicable to odd isotopes of

Be+, Mg+, Zn+, Cd+, Hg+, and Yb+). We then present data for the detection of

several 111Cd+ ions using a CCD imager, and discuss technical features and limita-

tions of current CCD technology. We finish with a discussion of future improvements

and prospects for integration with scalable quantum computation architectures [13].

2.2 Detection Theory

2.2.1 Basic detection method There are two classes of alkali-like atomic ions that

are amenable to high-fidelity S1/2 hyperfine-state qubit detection. Ions that do not

have a closed transition to the excited electronic P state require shelving of one of

the hyperfine qubit states to a low-lying metastable electronic D state (odd isotopes

of Ca+, Sr+, and Ba+). The detection efficiencies in this case can be very high;

typically this method requires a narrowband laser source for high-fidelity shelving

[26, 27] although recent work using rapid adiabatic passage may relax this laser

requirement [28]. Alternatively, one can obtain moderate detection efficiency by

using coherent population trapping to optically shelve a particular spin state [29].
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In contrast, ions that possess a closed transition to the excited electronic P state

(odd isotopes of Be+, Mg+, Zn+, Cd+, Hg+, and Yb+) can be detected directly, and

will be the focus of this paper. Throughout this paper we assume that the Zeeman

splitting is small compared to the hyperfine splittings.

There are two basic schemes for this direct state detection as outlined in figure 2.1.

For both methods, the qubit is stored in the hyperfine levels of the S1/2 manifold with

hyperfine splitting ωHFS. Discussing the general case first (fig. 2.1a), if we write the

states in the |F,mF 〉 basis with I the nuclear spin, the S1/2 |I + 1/2, I + 1/2〉 ≡ |1〉

state exhibits a closed “cycling” transition to the P3/2 |I + 3/2, I + 3/2〉 state when

resonant σ+-polarized laser light is applied1. If the qubit is in the |1〉 state then

the resonant laser light induces a large amount of fluorescence. When a portion of

these photons are collected and counted on a photon-counting device, a histogram of

their distribution follows a Poissonian distribution with a mean number of collected

photons that is determined by the laser intensity and application time, the upper-

state radiative linewidth γ, and the photon collection efficiency of the detection

system. In contrast, when the qubit is in the S1/2 |I − 1/2, I − 1/2〉 ≡ |0〉 state

the laser radiation is no longer resonant with the transition to any excited state.

The nearest allowed transition is to P3/2 |I + 1/2, I + 1/2〉 which is detuned by ∆ =

ωHFS − ωHFP, where ωHFP is the hyperfine splitting of the P3/2 states, so an ion in

the |0〉 state scatters virtually no photons. Thus, we can determine the qubit’s state

with high fidelity by applying σ+-polarized laser radiation resonant with the cycling

transition and counting the number of photons that arrive at the detector.

For ions with isotopes that have nuclear spin I = 1/2 (Cd+, Hg+, and Yb+), there

is another possible state-dependent fluorescence detection mechanism by coupling to

1Equivalently one could use σ−-polarized radiation with appropriate qubit and excited states.
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Figure 2.1: Relevant energy levels used in fluorescence detection of qubits. This diagram is appli-
cable for qubits stored in the hyperfine levels of the S1/2 ground state of atoms with
a single valence electron, with no relevant low-lying excited states below the excited P
manifold. Energy levels are labeled by the |F,mF 〉 quantum numbers of total angular
momentum and the energy splittings are not to scale. a) Detection through P3/2 level
with qubit stored in the S1/2 |I + 1/2, I + 1/2〉 ≡ |1〉 and S1/2 |I − 1/2, I − 1/2〉 ≡ |0〉
“stretch” hyperfine states, for any nonzero nuclear spin I. By applying σ+-polarized
laser radiation resonant with the |1〉 → P3/2 |I + 3/2, I + 3/2〉 cycling transition, qubit
state |1〉 results in strong fluorescence, while qubit state |0〉 is nearly dark owing to a
detuning of ∆ = ωHFS −ωHFP ≫ γ to the nearest resonance, where ωHFS and ωHFP are
the hyperfine splittings of the S1/2 and P3/2 states and γ is the radiative linewidth of the
P3/2 state. b) Detection through the P1/2 level with qubit stored in the S1/2 |1, 0〉 ≡ |1〉
and S1/2 |0, 0〉 ≡ |0〉 “clock” hyperfine states for the special case of nuclear spin I = 1/2.
Here, applying all polarizations of laser radiation resonant with the |1〉 → P1/2 |0, 0〉
transition results in strong fluorescence, while qubit state |0〉 is nearly dark owing to a
detuning of ∆′ = ωHFS + ω′

HFP ≫ γ′ to the nearest resonance, where ωHFS and ω′
HFP

are the hyperfine splittings of the S1/2 and P1/2 states and γ′ is the radiative linewidth
of the P1/2 state.
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the P1/2 manifold (fig. 2.1b). If we apply all polarizations of laser light (σ+, π,

and σ−) resonant with the S1/2 |F = 1〉 → P1/2 |F = 0〉 transition then the only

allowed decay from the excited state is back to the F = 1 levels of S1/2 [30], forming

a closed cycling transition. If the ion begins in the state |1, 0〉 ≡ |1〉, the ion will

fluoresce many photons under this laser stimulation and we can collect these photons

as above. Conversely, the state |0, 0〉 ≡ |0〉 will scatter virtually no photons under

this laser light because it is off-resonant from its only allowed transition to the

P1/2 |F = 1〉 levels by ∆′ = ωHFS +ω′
HFP, where ω′

HFP is the hyperfine splitting of the

P1/2 levels. Note that to avoid an optically-pumped dark state formed by a coherent

superposition of S1/2 |1,−1〉, |1, 0〉, and |1, 1〉 it is necessary to modulate the laser

polarization or use a magnetic field to induce a well-chosen Zeeman splitting [31].

In the following sections we present a general theory of this state-dependent flu-

orescence by determining the off-resonant coupling between the qubit states. We

quantify these detection errors in order to calculate the fidelity of qubit state detec-

tion for various photon detection efficiencies.

2.2.2 Statistics: dark → bright leakage For both the general and the I = 1/2

specific detection methods, qubits in the dark state can leak onto the bright transition

by off-resonantly coupling to the wrong hyperfine excited level during detection.

Rate equations describing this off-resonant pumping yield an exponential probability

distribution of remaining in the dark state as a function of time. Once in the bright

state, the collected photons from the closed transition obey Poissonian statistics.

Therefore, for a qubit initially in the dark state, we expect the distribution of emitted

photons to be a convolution of Poissonian and exponential distributions [32, 33], as

we now derive.
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The probability of leaving the dark state at a time t is given by:

f(t)dt =
1

τL1

e
− t

τL1 dt (2.1)

where τL1 is the average leak time of the dark state onto the closed transition. Also,

the average number of collected photons for a qubit that starts dark but is pumped

to a bright state at time t is:

λ(t) = (1 − t

τD

)λ0 (2.2)

where τD is the detection time and λ0 is the mean number of counted photons when

starting in the bright state.

We want to transform from a probability distribution f(t)dt to a probability

distribution of Poissonian means g(λ)dλ so we use eqn. 2.2 to get t(λ) and then

substitute into eqn. 2.1. This yields the probability of the dark qubit state producing

a Poissonian distribution of collected photons with mean λ:

g(λ)dλ =











α1

η
e(λ−λ0)α1/ηdλ λ > 0

e−α1λ0/η λ = 0

(2.3)

where η = ηD
dΩ
4π

T is the total photon collection efficiency determined by the detector

efficiency (ηD), the solid angle of collection (dΩ
4π

), and the optical transmission from

the ion to the detector (T ); α1 ≡ τDη
τL1λ0

is the leak probability per emitted photon;

and the λ = 0 discontinuity is necessary to account for the fraction that do not leave

the dark state (and hence are not described by Poissonian statistics).

Therefore, the probability of detecting n photons when starting in the dark state

is the convolution of g(λ) with the Poissonian distribution P (n|λ) = e−λλn

n!
:

pdark(n) = δne
−α1λ0/η +

∫ λ0

ǫ

e−λλn

n!

α1

η
e(λ−λ0)α1/ηdλ (2.4)
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with δn the Kronecker delta function and ǫ → 0. Re-writing in terms of the incom-

plete Gamma function we obtain:

pdark(n) = e−α1λ0/η

[

δn +
α1/η

(1 − α1/η)n+1
P(n + 1, (1 − α1/η)λ0)

]

(2.5)

where P(a, x) ≡ 1
(a−1)!

∫ x

0
e−yya−1dy is the standard definition of the incomplete

Gamma function normalized such that P(a,∞) = 1.

Figure 2.2a shows this probability distribution for various values of the leakage

parameter, α1. In sec. 2.2.4, we will calculate physical values of α1 and λ0 from the

atomic parameters.

2.2.3 Statistics: bright → dark leakage Similarly, the bright state can be optically

pumped into the dark state by off-resonant coupling to the wrong excited hyperfine

level. When using the P3/2 manifold for detection this coupling can only occur

for imperfect laser polarizations, while for the specialized I = 1/2, P1/2 case this

off-resonant coupling is always present (since all laser polarizations are applied). As

before, the overall photon probability distribution will be a convolution of Poissonian

and exponential distributions, but now reversed: after some time scattering photons

on the closed transition the qubit is pumped into the dark state and emits no more

photons (neglecting the 2nd order effect of then re-pumping from the dark state back

to the bright state). If we define the leak probability per emitted photon α2 ≡ τDη
τL2λ0

where τL2 is the average leak time from the cycling transition into the dark state,

then with similar statistics as before, the probability of detecting n photons when

starting in the bright state is:

pbright(n) =
e−(1+α2/η)λ0λn

0

n!
+

α2/η

(1 + α2/η)n+1
P(n + 1, (1 + α2/η)λ0) (2.6)

where the first term is the Poissonian distribution from never leaving the closed

transition and the second term is the smearing of the distribution from pumping to
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the dark state (note that α1 6= α2). This distribution is shown in figure 2.2b for

varying values of α2.

One can further separate the dark and bright distributions by using ancilla qubits

and entangling gates before measurement [34]. For ions with large leak probabilities

α1 or α2 this technique may be useful because it can increase qubit detection fidelity

to as high as the entangling gate fidelity.

2.2.4 Calculating the atomic parameters

General case using P3/2

If we assume a detuning δ of the detection beam from the cycling transition

resonance then for ideal σ+-polarized laser radiation the mean number of photons

detected from a qubit in |1〉 is:

λ0 = τDη
sγ

2

1 + s +
(

2δ
γ

)2 (2.7)

where τD is the detection time; η is the total end-to-end efficiency of photon detection;

γ is the radiative linewidth of the P3/2 state; and s = I/Isat is the laser-ion saturation

parameter.

Next we can calculate α1, the probability per emitted photon of leakage from

the dark state into the bright state. The dark state can off-resonantly couple to

the P3/2 |I + 1/2, I + 1/2〉 level with probability that goes as: ∼ s
(

γ
2∆1

)2

, where

∆1 = ωHFS − ωHFP is the S1/2 hyperfine splitting minus the P3/2 hyperfine splitting

between |I + 3/2, I + 3/2〉 and |I + 1/2, I + 1/2〉. We also need to take into account

the branching ratio, M1, to determine the transition rate between the dark state and

the cycling transition. Thus, we can write the value of α1 as:

α1 = M1

[

1 + s +

(

2δ

γ

)2
]

(

γ

2∆1

)2

. (2.8)
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Figure 2.2: Theoretical “bright” and “dark” histograms with varying leakage parameters. These
photon count histograms are for ions that start in: a) the nominally “dark” |0〉 state;
and b) the nominally “bright” |1〉 state. Both plots use λ0 = 12 with varying values
of: a) α1/η (the leakage probability from the dark state to the bright state per detected

photon) and b) α2/η (the leakage probability from the bright state to the dark state
per detected photon).
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We can calculate the braching ratio, M1, by considering off-resonant coupling

between the dark state (|I − 1/2, I − 1/2〉) and the state P3/2 |I + 1/2, I + 1/2〉. This

state can then decay into the bright manifold ground states |I + 1/2, I ± 1/2〉. The

generalized formula can be written as:

M1 = C(I − 1/2, I + 1/2; I − 1/2, I + 1/2)

I+1/2
∑

i=I−1/2

C(I + 1/2, I + 1/2; I + 1/2, i)

=
4I(3 + 2I)

9(1 + 2I)2
. (2.9)

where we have used that C(F, F ′; f, f ′) is the square of the Clebsch-Gordon coefficient

between two states F → F ′ and mF = f → f ′ given by [35]:

C(F, F ′; f, f ′) = [(2J + 1)(2J ′ + 1)(2F + 1)(2F ′ + 1)]

×


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

F 1 F ′

f q −f ′













2

(2.10)

where {} is the 6-J symbol, () is the 3-J symbol with polarization number q, and

there is an implied normalization constant such that the cycling transition strength

is 1.

Similarly, we can calculate α2, the probability per emitted photon of leakage from

the bright state into the dark state. Note that there are two leakage paths out of

the bright state: via coupling to the P3/2 |I + 1/2, I + 1/2〉 state (due to π-polarized

laser light) or to the P3/2 |I + 1/2, I − 1/2〉 state (due to σ−-polarized radiation).

These two paths yield a leakage probability:

α2 =

[

1 + s +

(

2δ

γ

)2
]

(

γ

2∆2

)2
M2πPπ + M2−P−

1 − (Pπ + P−)
(2.11)

where ∆2 = ωHFP is the hyperfine splitting of the P3/2 levels, Pπ (P−) is the fraction

of π (σ−)-polarized laser power, and M2π (M2−) is the dipole branching ratio for π
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(σ−)-polarized light impurity. These branching ratios are given by:

M2π = C(I + 1/2, I + 1/2; I + 1/2, I + 1/2)

× C(I − 1/2, I + 1/2; I − 1/2, I + 1/2)

=
4I

9 + 18I
(2.12)

and

M2− = C(I + 1/2, I + 1/2; I + 1/2, I − 1/2)

× C(I − 1/2, I + 1/2; I − 1/2, I − 1/2)

=
16I

9(1 + 2I)3
. (2.13)

I = 1/2 case using P1/2

For the special case of detecting the qubit state via the P1/2 manifold, we need

to make some small adjustments to our calculations. Assuming that the laser power

is split roughly equally between the 3 polarizations, the mean number of collected,

scattered photons when starting in one of the bright, F = 1 states is:

λ′
0 = τDη

sγ′

2

1 + s +
(

2δ
γ′

)2 (2.14)

where γ′ is the radiative linewidth of the P1/2 state.

For the dark state leakage per emitted photon, α′
1, we simply have a new relevant

detuning ∆′
1 and branching ratio M′

1
:

α′
1 = M′

1

[

1 + s +

(

2δ

γ′

)2
]

(

γ′

2∆′
1

)2

. (2.15)

where the relevant detuning is now ∆′
1 = ωHFS+ω′

HFP, namely the S1/2 state hyperfine

splitting plus the P1/2 state hyperfine splitting. For the I = 1/2 ions, all allowed

dipole transitions have relative strength of 1/3, so the dark state leakage branching

ratio is: M′
1

= 1/3 × (1/3 + 1/3) = 2/9.
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Also, the bright state can leak into the dark state via off-resonant coupling to one

of the P1/2, F = 1 states with probability per emitted photon of:

α′
2 = M′

2

[

1 + s +

(

2δ

γ′

)2
]

(

γ′

2∆′
2

)2

(2.16)

where ∆′
2 = ω′

HFP, the hyperfine splitting of the P1/2 state, and M′
2

= (1/3 + 1/3)×

1/3 = 2/9.

2.3 Comparison of Theory with Experiment

We now compare the above model to experimental data for 111Cd+ qubits using a

PMT for photon detection. For this calculation and experiment we use the general

detection technique that couples to the P3/2 levels.

In the experiment, individual 111Cd+ ions (I = 1/2) are produced through photo-

ionization of neutral Cd and then confined in a linear RF Paul trap with controllable

axial frequency ωz/2π = 0.5 − 2.5 MHz [36]. The qubit is stored in the first-order

magnetic field-insensitive “clock” states: |0, 0〉 ≡ |0〉 and |1, 0〉 ≡ |1〉.

In 111Cd+, for σ+-polarized laser light the large hyperfine splitting of the P3/2

states ensures that population in the S1/2 |1, 0〉 state is optically pumped to the

S1/2 |1, 1〉 with high probability so the P3/2 detection theory given in sec. 2.2.4 will

apply well to this case (corrections are given in sec. 2.4.1). For 111Cd+, the relevant

energy splittings are: γ/2π = 60.1 MHz, ∆1/2π = 13.904 GHz, ∆2/2π = 626 MHz

[37, 38, 39] and we choose the laser wavelength such that the detuning δ ≈ 0

(figure 2.3). The branching ratios are calculated from eqns. 2.9, 2.12, and 2.13:

M1 = 2/9 and M2π = M2− = 1/9. Because M2π = M2−, the π- and σ−-polarized

components can be treated together and we can define an overall laser power impu-

rity Pimpure ≡ Pπ +P−. Experimentally, we know the detection time, τD, and we can

leave η, Pimpure, and s as free parameters to be determined by the fit to experimen-
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tal data (although in principle one could independently measure these parameters).

Figure 2.4 shows the good agreement between theory and experiment.

P3/2

S1/2

F=2

F=1

626 MHz

14.530 GHz

γ/2π = 60.1 MHz

0,0

1,0
1,1

2/3

1/6

1/6 1

1/6

2/3

Figure 2.3: Relevant energy levels and relative dipole transition strengths for state detection of
111Cd+. Note that the Zeeman splitting (< 10 MHz) is small compared to the hyperfine
splittings.

2.4 Theoretical Limit of Detection Fidelity

2.4.1 Detection with P3/2 levels To determine the theoretical limit of detection

fidelity for 111Cd+ using the P3/2 levels we choose the most ideal conditions: small

laser detuning from resonance (δ → 0) and perfect detection beam polarization so

the bright state histogram is a true Poissonian (Pimpure = 0 which means α2 =

0). Moreover, with perfect polarization we can lower the laser intensity (s ≪ 1)

to eliminate power-broadening while increasing τD to maintain a sufficiently bright
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Figure 2.4: Fit to experimental histograms for 111Cd+. Detection histograms using a PMT and the
P3/2 detection scheme for a single 111Cd+ ion prepared in: a) |0, 0〉 ≡ |0〉 dark state;
and b) |1, 0〉 ≡ |1〉 bright state. For the data shown, each state is prepared and then
measured 20,000 times. Fit is to theory from text (eqn. 2.5 and eqn. 2.6, respectively)
with parameters: τD = 150µs, η = 1.4×10−3, Pimpure = 1.5×10−3, and s = 0.25. Note
that for the experimental data in a), the n = 1 bin includes background light scatter
that the model does not include.
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“bright” state.

Using a discriminator at photon level d, detection fidelity of the bright state is

the probability that the ion scatters more than d photons while for the dark state

it is the probability that it scatters d or fewer photons. The overall qubit detection

efficiency is the average of these two numbers and it is typically maximized for the

two fidelities being equal. Thus, the optimal qubit detection fidelity, F , is:

F =
d

∑

n=0

pdark(n) = 1 −
d

∑

n=0

pbright(n) (2.17)

with λ0 = sτDη γ
2

and α1 = M1(
γ

2∆1
)2 given our assumptions mentioned above.

To calculate the detection fidelity, we find α1 = 1.0 × 10−6 for 111Cd+. Then we

can choose the optimal λ0 for discrimination by controlling the effective light level on

the ion (adjusting the product sτD). For our current experimental value of η ≈ 0.001

the optimum light level yields λ0 = 5.6 and, using the discriminator level d = 0, we

obtain a qubit detection fidelity of F = 99.5%. In practice, the optimal light level is

slightly higher to aid in discriminating the background laser scatter from the bright

qubit fluorescence.

We can obtain a useful approximate analytic result for the theoretical qubit fidelity

as a function of detector collection efficiency by assuming a discriminator level d = 0.

The optimal situation is when the fidelity of bright state detection and dark state

detection are equal: F = e−α1λ0/η = 1 − e−λ0 (eqn. 2.17). The term α1λ0/η is

typically small so we Taylor expand and then take the natural logarithm of both

sides to find:

λ0 + ln λ0 ≈ − ln(α1/η) (2.18)

We wish to obtain a closed form solution for λ0 as a function of α1 and η since

α1 depends only on atomic parameters. Therefore, for the typical case of optimal
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λ0 ∼ 5− 15 it is reasonable to further assume that lnλ0 ≪ λ0 so that the ideal light

level is approximately λ0 ≈ − ln(α1/η) = ln(η/α1) and the approximate fidelity is:

Fapprox ≈ 1 − α1

η
ln(

η

α1

). (2.19)

This result gives an accurate scaling of the fidelity as a function of detector collection

efficiency (figure 2.5).
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Figure 2.5: Theoretical prediction of detection infidelity (1-F) using the P3/2 detection scheme
for 111Cd+ as a function of total detector collection efficiency (η). Filled circles are
numerically calculated using eqn. 2.17 with iterations to find the optimal light level and
detection time for each η; solid curve uses the approximate analytic result of eqn. 2.19.

In an ideal case, we could use a cavity to surround the ion [40] to increase the

solid angle of light collected and a detector with very high quantum efficiency. This

might produce a photon collection efficiency as high as ∼ 30% which, using eqn. 2.17,

would yield a fidelity: Fideal = 99.997%.

At this point we hit a fundamental limitation of fluorescence state detection when

using the P3/2 levels and a qubit stored in the clock states: even with perfect polar-

ization the |1, 0〉 ≡ |1〉 state can off-resonantly couple to the |0, 0〉 ≡ |0〉 dark state
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before ever reaching the cycling transition. This coupling is unaffected by any exter-

nal parameters and is a property of the atomic structure only. Given this inherent

error, the maximum fidelity of direct clock state qubit detection is given by:

Fmax = 1 − P|1,0〉→dark = 1 − 4

9

(

γ

2ωHFP

)2

. (2.20)

Here, the pre-factor of 4/9 comes from the Clebsch-Gordon coeffecients and the

ensuing probability ratio of never reaching the cycling transition even when starting

in the “bright” |1, 0〉 state. To work this out for Cd+, consider that for starting in

the |1, 0〉 state the path to reach the |1, 1〉 state involves a transition up and down

through the |2, 1〉 upper state which involves two transitions each of probability 1/2.

But the electron can also reach the cycling transition even if from the upper |2, 1〉

state it decays back to the starting |1, 0〉 state and then undertakes the up/down

transition we described before. Therefore, the total probability of reaching the cy-

cling transition from the initial |1, 0〉 state is given by the converging infinite series:

1

2
· 1

2
+

1

2
· 1

2
· 1

2
· 1

2
+ . . . =

1

4

∞
∑

k=0

(

1

4

)k

=
1

3
. (2.21)

Similarly, if we examine the path for starting in the |1, 0〉 state and reaching the

dark |0, 0〉 state we see that it involves a transition through the upper |1, 1〉 state

with probabilities up/down of 1/6 and 2/3, respectively. Again, it is possible for

the electron to initially decay back to the starting state and yet be excited back

through the upper |1, 1〉 state into dark state. The dominant probability is for the

initial excitation to be through the |2, 1〉 upper state and then back which leads to

the inifinite probability series:

1

6
· 2

3
+

1

2
· 1

2
· 1

6
· 2

3
+ . . . =

1

9

∞
∑

k=0

(

1

4

)k

=
4

27
. (2.22)

We then take the ratio of eqns. 2.22 and 2.21 and incorporate the atomic detuning

factor to reach the result of eqn. 2.20.
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For ions where the P3/2 hyperfine splitting is not much larger than the linewidth,

the “bright” clock state is not actually very bright because it couples to the dark

manifold so easily. Direct fluorescence state detection of clock states is basically

impractical for these ions, but there are a number of schemes to improve detection

fidelity including using Raman transitions to shelve one of the qubit states in a more

off-resonant state (with the detection fidelity now possibly limited by the Raman

π-pulse fidelity) and using large magnetic fields to make 1st-order insensitive states

with mF 6= 0 [41]. For 111Cd+, ωHFP ≫ γ/2, so direct clock state detection yields

Fmax = 99.90%. Reaching this limit requires a high quantum efficiency detector (see

eqn. 2.19), a subject we address in sec. 5.2.1.

2.4.2 Detection with P1/2 levels The theoretical limit on detection fidelity when

coupling to the P1/2 levels is the leakage from one of the bright states into the dark

state. With no laser detuning (δ → 0) and low light level (s ≪ 1), the relevant

parameters become: λ′
0 = sτDη γ′

2
, α′

1 = 2
9

(

γ′

2∆′

1

)2

, and α′
2 = 2

9

(

γ′

2∆′

2

)2

. Note that

the factors of 2/9 that appear in α′
1 and α′

2 are calculated from M′
1

and M′
2

from

sec. 2.2.4. It is always true that ∆′
1 > ∆′

2, so α′
2 > α′

1 which means that there

is always more leakage from the bright state into the dark state than vice versa.

Table 2.1 provides the relevant energy splittings for 111Cd+, 171Yb+, and 199Hg+ and

the calculated detection fidelity for given values of η, the detector collection efficiency.

From the table we can see that for 111Cd+ the advantage of using the P1/2 detection

scheme instead of the P3/2 scheme is only realized for large values of η. Also, note

that the fidelity for detecting the qubit state in 171Yb+ is slightly more complicated

because there is an allowed decay from the excited P1/2 state to a low-lying D3/2

state which can be re-pumped to the S1/2 level via the [3/2]1/2 level [42]. This

repumping step is identical to the standard detection step, but its infidelity can be
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ignored because the off-resonant coupling is much smaller than for the P1/2 detection

step due to the energy splittings: γ[3/2]/2π = 9.5 MHz, ∆HFD/2π = 0.86 GHz,

∆HF[3/2]/2π = 2.5 GHz, and λ = 935.2 nm. A more important modification is

that the repumping step takes additional time (∼ 1/γ[3/2]) so that the number of

detectable scattered photons on the S1/2 → P1/2 is reduced by a factor of ∼ 1/3

while the error probabilities remain the same [43].

Table 2.1: Energy splitting parameters and detection fidelities for I = 1/2, P1/2 detection scheme.
Here we show splittings for 111Cd+ [37, 38], 171Yb+ [44], and 199Hg+ [45] with detection
fidelities calculated using eqn. 2.6 for varying detector collection efficiency η.

111Cd+ 171Yb+ 199Hg+

λ(S1/2 → P1/2) (nm) 226.5 369.5 194
γ′/2π (MHz) 50.5 23 70

∆HFS/2π (GHz) 14.530 12.6 40.5
∆′

HFP/2π (GHz) 2 2.1 6.9
η = 0.001 F = 96.7% F = 99.33% F = 99.43%
η = 0.01 F = 99.65% F = 99.93% F = 99.943%
η = 0.3 F = 99.988% F = 99.998% F = 99.998%

2.5 Individual Ion Detection Using a CCD

2.5.1 CCD technical overview To benefit from the spatial resolution of a CCD one

must typically use an intensified CCD to obtain a signal that is much larger than

the CCD readout noise (eqn. 2.23)2. In an intensified CCD, single photons incident

on the front-screen photocathode produce electrons that are accelerated across a

multichannel plate to start a localized electron avalanche that impacts a phosphor

screen (figure 2.6). Negative (positive) biasing of the photocathode relative to the

multichannel plate produces significant (no) electron acceleration; this differential

effect allows for rapid gating of the intensifier and reduces background counts. Visible

wavelength photons emitted from the phosphor are then coupled (via lenses or fiber

optics) to a standard CCD that converts the photons to charge for readout. The

2Recent advances in electron-multiplying CCD (EMCCD) architectures allow for single-photon detection at high
readout speeds with low noise (although with no gating capability) [46]. The following discussion, in particular
eqn. 2.23, is equally valid for EMCCDs by using the appropriate gain and quantum efficiency.
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charge on each pixel of the CCD is then measured with the value proportional to the

incident light intensity. A computer PCI board converts the analog voltage signal

for each pixel to a digital integer for computer processing.

Electrical Connection Rings

Intensified Image

Fluorescent Screen

Photocathode

Incident Light

-200 V

0 V
600 V – 900 V

8 kV

Microchannel Plate

Figure 2.6: Schematic diagram of an intensified CCD camera imaging tube. Incident photons im-
pact the photocathode where they are converted to electrons and accelerated across the
multichannel plate. These accelerated electrons strike the phosphor screen and produce
visible photons that are coupled into fiber optics and fed onto a standard CCD for
readout. Diagram used with permission of Princeton Instruments / Acton.

Technical noise considerations dictate the important CCD characteristic of read-

out speed. For a qubit in the bright state, the average number of electrons pro-

duced at the photocathode by photons incident on the detector during detection is:

λ0 = nionηDTdΩ/4π where nion is the number of photons emitted by the ion, ηD is

the quantum efficiency of photon to electron conversion, T is the optical transmis-

sion between the ion and the detector, and dΩ
4π

is the solid angle of light collection.

The remaining stages of electron intensification, conversion to photons, and then

photon-induced charge production can be summarized by a gain factor g so that the

CCD rms shot noise will be: g
√

λ0. To readout the charge on a pixel, the CCD

controller must first clear the charge accumulated during the previous pixel read-

out. The imperfect repeatability of this process will induce some noise on the signal,
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with faster readout speeds leading to less perfect charge cleaning and therefore more

noise. This rms noise per readout, r, is uncorrelated to the shot noise so the two

noise sources add in quadrature to produce a total noise:
√

g2λ0 + (kr)2 where k is

the total number of pixels readout. Therefore, the total signal-to-noise ratio (SNR)

becomes:

SNR =
gλ0

√

g2λ0 + (kr)2
=

λ0
√

λ0 + (kr
g
)2

. (2.23)

Many CCDs allow on-chip binning of multiple pixel charges together before read-

out. This on-chip binning increases readout speed and decreases readout noise (be-

cause less pixels are readout) at the expense of decreasing spatial resolution (although

in principle resolutions above one pixel per ion are unnecessary for distinguishing be-

tween the bright and dark states). If
√

λ0 ≪ kr/g then the signal is readout noise

limited and SNR ≈ gλ0

kr
, so the SNR will improve linearly with the number of pix-

els binned. For timescales typical of an ion fluorescence experiment, kr ≈ 10 and

so using an intensifier with g ≫ 1 allows one to use the gain to overwhelm the

readout noise. In this shot noise limited regime, the signal-to-noise ratio becomes

SNR ≈
√

λ0.

2.5.2 CCD experimental usage For efficient experimental detection we use a 28×28

pixel box on-chip binned 4×4 such that there is an effective box size of 7×7 “super”-

pixels. This box size was chosen to match the imager-magnified ion-ion spacing in a

trap with ωz/2π = 2.0 MHz so that each ion would be centered in its box with no

overlap of boxes; the 4 × 4 binning improves readout speed yet still offers enough

imaging resolution to provide real-time monitoring of ion/imaging system drifts.

The detection signal is formed from the integrated electron counts of these 49 pixels

minus the constant offset due to the non-zero readout charge maintained on each

CCD pixel. Note that this offset is not the same as the negligible CCD dark counts
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that are caused by inadvertent electron transfer to the back-screen due to thermal

effects. We are able to significantly suppress this thermal effect by cooling the CCD.

When histogrammed, the integrated counts for n incident photons show a distri-

bution because multiple electrons and photons are produced for each incident photon

with a mean number of integrated counts for this box size of ∼ 100 integrated counts

per incident photon. Experimentally, the optimal discrimination level is chosen by

equalizing the fraction of misidentified states, i.e. choosing a discrimination level

such that an equal fraction of |1, 0〉 ≡ |1〉 is misidentified as “dark” and |0, 0〉 ≡ |0〉

is mislabeled as “bright”. Using this optimal discriminator, the efficiency of detecting

a single ion’s quantum state is > 99.4% with the lower detection fidelity attributable

to the CCD’s smaller effective light collection angle (the PMT counts all the incident

light while the CCD only uses counts inside the ion pixel box).

2.6 Multiple Ion Detection Using a CCD

2.6.1 Experimental Implementation Of more practical interest than single-ion de-

tection is the ability to detect multiple ion quantum states simultaneously using the

CCD’s spatial resolution. For each ion we select a box or region of interest (ROI) that

determines the pixels over which the CCD will integrate to determine the ion’s state.

Ion ROI box edges are positioned on adjacent pixels with no overlap to maximize

detection fidelity and on-chip binning is used to enhance readout speed.

Figure 2.7a and b shows detection histograms and the actual CCD “pictures” for

three ions prepared in the |000〉 dark state and the |111〉 bright state. In fig. 2.7c we

show the detection histograms and post-selected examples of all possible pictures for

an equal superposition state achieved by preparing the state |000〉 and then applying

a microwave π/2-pulse at the hyperfine splitting ωHFS/2π = 14.530 GHz equally on
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the three ions to produce the state (|0〉 + |1〉)⊗3.
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Figure 2.7: Detection histograms for three ion qubits using a CCD. The qubits are in the states:
a) |0, 0〉 ≡ |0〉; b) |1, 0〉 ≡ |1〉; and c) an equal superposition state prepared by starting
in |000〉 and applying a microwave π/2-pulse equally on all three qubits to produce the
state (|0〉 + |1〉)⊗3. Each graph contains 4000 trials. Note that middle ion #2 has the
most integrated counts due to unequal illumination by the detection beam. Adjacent
to each histogram are examples of the post-selected single-shot images acquired by the
CCD for each case: a) all “dark” (|000〉); b) all “bright” (|111〉); and c) all combinations
of “dark” and “bright”. The dashed white lines indicate the boundaries of the regions
of interest used to determine the qubit state via integrated CCD counts.

2.6.2 Possible additional errors In addition to the single-ion detection errors due to

off-resonant coupling (sec. 2.2), simultaneous multiple ion detection on a CCD can

produce some additional errors. One possible error is that the detection beam has

a waist of ∼ 10 µm, compared to an ion-ion spacing of ∼ 4 µm for this experiment,

leading to unequal illumination of the ions (visible in the histograms of fig. 2.7 where

the middle ion (#2) is brighter than the outer two ions). In general, this unequal

illumination results in different constant offsets for each ion’s light level that are easy

to correct.
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The more significant error source is the potential for adjacent ion effects (par-

ticularly optical pumping from adjacent ions) or box-to-box overlap on the CCD.

Pumping an ion into the “bright” state from the fluorescence of the adjacent state is

completely neglible compared to the effect of the laser. The light intensity due an ad-

jacent bright ion is: h̄ωγ/2
4πx2 where ω is the frequency of the radiated light and x is the

inter-ion spacing. In comparison, the laser intensity is typically: Ilaser ≈ Isat = πh̄cγ
3λ3

where λ is the wavelength of the radiated light. Thus, the light intensity effect of

the adjacent ion relative to the laser is:

Iion

Ilaser

=
3λ2

4πx2
. (2.24)

For 111Cd+, λ = 214.5 nm and with three ions in a trap with ωz/2π ≈ 850 kHz,

x ≈ 4 µm. Thus, the ratio of illumination intensities due to the adjacent ion and the

laser is: Iion/Ilaser ≈ 7 × 10−4.

Overlap or spreading of one ion’s light into the ROI of adjacent ions can be most

clearly seen by examining the conditional probabilities of the ions dependent on the

state of the other ions. By independently rotating the qubits with microwave pulses,

there should be no correlation between qubit states, but light overlap between boxes

would produce such correlations. Using the data of figure 2.7 we find that adjacent

ion pairs (left/center and center/right) exhibit conditional probability correlations of

∼ 1.2%. With this overlap, the detection fidelity for individual qubits in the presence

of other qubits is ∼ 98%. This fidelity is fully consistent with a small amount of

spreading of the light from one ion into the ROI of the adjacent ion, an effect most

likely caused by ion/imaging system drifts over a few minutes. Further mechanical

stabilization of the imaging system should eliminate this drift.

In summary, we have developed a general theory for ionic qubit state detection

and applied that theory to the specific examples of 111Cd+ and 171Yb+. We have also

26



experimentally demonstrated simultaneous multi-ion detection using an intensified

CCD. Future improvements are discussed in sec. 5.2.1.
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CHAPTER III

Multi-Zone “T” Ion Trap

3.1 Introduction

In chapter II we discussed and demonstrated qubit state detection of multiple

qubits stored in a single trapping region. Extending this measurement ability to

large numbers of qubits requires not only a high-fidelity entangling gate [47], but

also the ability to trap and manipulate the physical arrangement of multiple atomic

ions. In this chapter we explore a multi-zone “T” trap consisting of an array of ion

traps so that individual ions can be reliably shuttled between physical locations.

Shuttling of trapped ions along a line between adjacent trapping zones and sep-

aration of two or more ions has been previously demonstrated [23, 24, 25, 20, 22].

Note, however, that current entanglement techniques are most effective (produce

the highest fidelity) when acting on only two ions in a particular ion trap. Using

this pair-wise entanglement build-up requires the ability to physically co-locate any

two ions in a trapping region to perform the entangling operation. Thus, “linear”

separation and shuttling is not enough to bring together arbitrary pairs of ions. In

this chapter, we discuss the necessary general requirement of shuttling ions in two

dimensions.
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3.2 Trap Construction and Usage

The main ion trap geometry used for multi-qubit quantum information processing

is the linear rf-quadrupole trap, where ions are transversely confined to the nodal

axis of an rf quadrupole potential supplied from nearby linear electrodes. Axial con-

finement is then accomplished by segmenting the linear electrodes and applying dif-

ferential static potentials along the axis. This technique allows for quasi-independent

control of the ions in the transverse and axial directions.

In order to fabricate complex ion trap arrays, the electrodes can be constructed

from multi-layer planar substrates. To design a trapping geometry capable of sup-

porting a two-dimensional junction, the electric field topology near the junction

must be considered carefully. While two-layer substrate geometries provide strong

confinement in both transverse dimensions inside a linear chain of trapping regions,

it is difficult to have sufficient transverse confinement in the junction region where

the intrisic two-dimensionality of the trap must manifest itself [48, 49]. Instead, we

use a symmetric three-layer substrate geometry (fig. 3.1) that allows confinement

throughout the junction region. The middle-layer carries the rf potential and seg-

mented outer-layers (each identical) carry control voltages that are used to confine

the ion along the axial dimensions of the trap sections.

The trap electrodes consist of gold-patterned alumina substrates which are laser-

machined and polished to a thickness of 125 µm for the middle (rf) layer and 250

µm for the outer (control) layers. The laser-machining produces substrates with a T-

shaped channel that will provide the “track” along which the ions will move. Gold is

deposited on the rf electrode using an electron beam evaporator while the necessary

segmenting of the outer control electrodes requires using dry-film photolithography
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Figure 3.1: Top view and cross-section of two-dimensional “T” trap array. Dots depict the location
of trapping zones, labelled a-k. The outer control electrodes are labelled 0-27, with
bottom layer electrodes in parentheses. Electrodes labeled by G are internally grounded.

and wet-chemical etching to deposit 400 nm of gold on top of a 15 nm titanium layer.

The substrates are assembled by hand using spacer rings to separate the electrodes

by 125 µm and alumina mount bars at the edges to hold the three layers together.

The control electrodes need to be isolated from external noise and from induced rf

caused by the nearby rf electrodes. This shielding is accomplished via a “pi-filter

network” where each electrode is connected to a C = 1 nF capacitor shunted to

ground and then connected in series to a R = 1 kΩ resistor leading to the vacuum

feedthrough (ω3dB/2π = 1 MHz). These chip capacitors and resistors are ribbon-

bonded onto a gold coated quartz plate that is mounted adjacent to the alumina

substrates. The quartz plate proved very successful at holding the circuit elements,

but extreme care must be taken when drilling and handling the quartz plate and

particularly when strain-relieving the wires leading to the vacuum feedthrough.

During usage, ions can be confined in any of the 11 trapping zones labeled by let-
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Figure 3.2: Photograph of T-junction trap array. The magnified inset shows the trapping array
near the junction.

ters a-k in figure 3.1. Due to the trap’s relatively large size and symmetric geometry,

successful trapping parameters are reasonably flexible. For the results discussed be-

low, we applied rf voltage to the central layer electrode at frequency Ω/2π = 48 MHz

and amplitude V0 ≈ 360 V (successful range: 100 V-500 V). This results in a trans-

verse ponderomotive secular frequency of ωrf/2π = 5.0 MHz for the trapping zones

a, b, c, j, k, g, and h.

Voltages applied to the 28 control electrodes to produce axial confinement are

computer-controlled using NI 114 PCI cards hooked up to NI BNC-2110 interface

boxes. The coaxial BNC output from these interface boxes (maximum range: -10

V to +10 V) is then directed to a home-built amplifier system consisting of Apex

PA85A amplifier chips powered by Acopian B125GT40 power supplies. The resulting

BNC output is wired to a vacuum interface box where a pi-filter network (C = 1 nF,
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R = 1 kΩ, and ω3dB/2π ≈ 1 MHz) reduces noise. Wires are then directly attached to

a 35-pin vacuum feedthrough before continuing to the quartz filter plate arrangement.

Note that control voltages of ∼ 100 V result in axial secular frequencies of ∼ 2.5 MHz

for traps whose central segment is 400 µm wide.

The ion is imaged with a CCD camera to a nearly diffraction-limited spot with

f/2.1 optics. The imaging system was optimized to view an area of approximately

550× 550 µm which allows for the simultaneous observation of trapping zones d and

i, or d and f (fig. 3.1), permitting real-time observation of a corner-turning shuttling

protocol. At this magnification, a diffraction-limited image of the ion encompasses

a few pixels which is visible above the background fluctuations of the image.

3.3 Ion Shuttling Control

With the ability to observe the ion’s movement between trapping regions, we have

implemented various key composite trapped-ion shuttling protocols: linear shuttling,

corner turning, and separation/combination of two ions. Using these building blocks,

high level shuttling procedures can be implemented.

3.3.1 Linear shuttling As a straightforward example that illustrates the rationale

behind shuttling protocol design, consider linear shuttling between trapping regions a

and b. As illustrated in figure 3.3, we start with the ion in zone a by placing positive

voltage on electrodes 0, 1, 4, and 5 while applying negative voltage on electrodes 2

and 3. Qualitatively we then need to set a “wall” for the ion by applying positive

voltage to electrodes 6 and 7. We then “elongate” the trap by lowering the voltage

on electrodes 4 and 5 to produce a trap with an effective width of ∼ 800 µm (regions

a and b combined). During this time the axial trap frequency will necessarily be at

its lowest since the control electrodes are twice as far away. We then bring up the
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voltage on electrodes 2 and 3 to reconstitute a tighter trap in zone b.
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Figure 3.3: Voltage pattern for linear shuttling between regions a and b in T-trap.

Finding a protocol that optimizes the speed of this process while minimizing the

heating of the ion is an involved problem that is discussed extensively in [50]. Here,

we simply note that a smooth voltage change on a time scale slower than the ion’s

periodic motion in the trap results in adiabatic shuttling that does not appreciably

heat the ion. Precise timing of the voltage can allow for low heating even with

changes faster than the ion’s motion in the trap, but the level of control necessary

makes this type of protocol technically challenging.

3.3.2 Corner turning The shuttling of ions through the T-junction merits special

attention. Due to the geometry of the junction, there is complete transverse confine-

ment throughout the T-junction. However, there are linear rf nodes leading towards

the junction from all three directions that give way to small humps in the pondero-

motive potential as the junction is approached, leading to a point node in the rf

potential near the center of the T-junction (trapping zone e). These rf humps are

small compared to the overall transverse ponderomotive potential walls, so time-

varying voltages on the control electrodes can be used to push the ion over the rf
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humps.

Thus, shuttling a single atom around a corner requires a tradeoff: the time-varying

pushing potentials must be strong enough to overcome the rf humps, but not so strong

as to de-stabilize the trap in the transverse directions. Moreover, stronger pushing

potentials will result in faster ion transport but also in more ion heating. Therefore,

the control voltage sequence must be carefully synchronized with the motion of the

ion. Fast, non-adiabatic voltage changes inside the trapping region may be required

to minimize the kinetic energy acquired by the ion and to overcome the second hump

upon emerging from the junction.

Figure 3.4 shows voltages applied to the electrodes carrying control voltages in

order to shuttle the ion around the corner from trapping zone d to i. The success

rate of the corner-turning protocol was measured to be 99.9% (881 out of 882 at-

tempts). Simulations predict that the ion acquires about 1.0 eV of kinetic energy

during the corner-turning protocol. This energy is dissipated via Doppler cooling,

but sympathetic cooling can also remove this energy in order to preserve the internal

state of the ion. It should be noted that, in principle, the gain in kinetic energy can

be reversed with fast phase-sensitive switching of the trapping potentials without

using any dissipative force.

In order to shuttle the ion back from the top of the T into the stem, a voltage

sequence is used that corresponds approximately to the above corner-turning protocol

but spatially reflected about the axis connecting electrodes 8 and 16. The success

rate for this protocol was measured to be in excess of 98% (118 attempts). This

sequence is conducted at slower speeds (20ms for the whole sequence) but refining

the control voltage protocol may allow shuttling times on the order of microseconds.
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Figure 3.4: Voltage pattern for corner shuttling between zones d and i in T-trap.

3.3.3 Separation/combination A separation protocol is implemented inside the stem

of the T array starting from zone b. Trapping zone b is weakened to Ωy/2π ≈ 20 kHz

to allow for more physical separation of the ions (due to their Coulomb repulsion).

Then a potential wedge separating the two ions is slowly brought up using electrodes

4 and 5, with electrodes 0, 1, 8 and 17 being used to confine the ions along the

y-axis. Separation typically takes ∼ 10 ms and is carried out with a success rate of

only ∼ 58% (64 attempts), possibly limited by the very weak trap during separation

and the large (400 µm) axial extent of the control electrodes.

Using these key protocols a composite protocol was successfully implemented for

switching the position of two ions. The ions are separated in zone b, the first ion

transferred to j, the second to h. The first ion is shuttled back to b. The second ion is

shuttled back to b, having switched places with the first ion, with the two-ion chain

effectively executing a three-point turn. The protocol was carried out in multiple

successive 10 ms steps. Conditional on successful separation and recombination, we

obtain a success rate of 82% (34 attempts). The success rate for the whole process

including separation and recombination is 24% (51 attempts), mainly limited by
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separation and recombination efficiency.
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CHAPTER IV

Cadmium Magneto-Optical Trap: Computer Simulations

and Experimental Results

4.1 Introduction

The magneto-optical trap (MOT), first realized in 1986 [51, 52], forms the basis

of much of modern experimental atomic physics. The MOT technique can act as the

first step towards BEC/BCS production [53, 54] or optical lattice experiments [55],

or it can be used to confine atoms for direct studies of precision atomic spectroscopy

[56], cold collisions [57], atom interferometry [58], or the generation of quantum-

degenerate gases [59], to name a few examples. Typically, nearly all cold atom

experiments have dealt with the alkali atoms, but there has been some progress in

the trapping of two-electron atomic species such as Ca [60], Mg [61], Sr [62], and

Yb [63].

Our focus in this chapter will be the trapping of neutral Cd atoms, which have two

valence electrons, in a deep-ultraviolet MOT operating on the 1S0 to 1P1 transition

at λ = 229 nm. After first describing the necessary experimental apparatus for

confining Cd atoms in a MOT, we examine a computer-based simulation of atomic

behavior in the MOT with a particular eye towards modeling trap loss mechanisms

which can then be compared with experimental data.
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4.2 Experimental Realization of Cadmium MOT

Confining neutral Cd atoms in a MOT requires some unique experimental con-

siderations compared to previous MOT experiments. Cadmium has eight stable

isotopes, six of which are relatively abundant, but note that due to the large isotope

shift only one isotope can be trapped at a time using a monochromatic incident laser

beam. Figure 4.1 shows the electronic structure of Cd for both bosons (nuclear spin

I=0, even isotopes) and fermions (I=1/2, odd isotopes). Note that the hyperfine

splitting present in the 1P1 states of the fermionic isotopes prevents using standard

MOT techniques to trap 111Cd and 113Cd (see sec. 5.2.3).
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Figure 4.1: Neutral Cd energy level diagram. a) The bosonic (even) isotopes (I=0) of Cd. b) The
fermionic (odd) isotopes (I=1/2) of Cd, where the 1P1 hyperfine splitting arises from
(L · I) coupling. Individual levels are labeled with mF . Note that diagram is not to
scale.

In our experiments with bosonic Cd (I=0, even isotopes), the 1S0 to 1P1 atomic

transition used for the MOT occurs at a wavelength of λ = 228.8 nm with an excited

state lifetime of τ = 1.8 ns (radiative linewidth γ/2π = 91 MHz) and saturation

intensity of Isat = πhcγ/(3λ3) ≈ 1.0 W/cm2. For comparison, the saturated photon
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recoil acceleration on a Cd atom is a0 = hγ/2mλ = 4.4 × 105g, which is 50 times

that of Rb (here g is the acceleration due to gravity and m is the mass of a single

Cd atom). We confine Cd atoms in a vapor-cell so background gas collisions lead

to loss of trapped Cd atoms. However, since the 228.8 nm trapping light can also

excite atoms from the 1P1 state directly to the ionization continuum this introduces

an additional photoionization loss on the trapping process. We can investigate this

loss process to experimentally determine the photoionization cross-section of the 1P1

state (sec. 4.3). Moreover, photoionization loss provides an opportunity to reliably

create cold ions and atoms at the same location [64] for the investigation of ultracold

atom-ion interactions [65, 66] (see sec. 5.2.4).

A schematic of the experimental apparatus is shown in figure 4.2. Due to Cad-

mium’s large linewidth, high magnetic field gradients are required to shift the Zeeman

levels sufficiently for the atoms to feel a substantial trapping force at the edge of the

laser beams (a rough guide is that the optimum Zeeman shift is one linewidth at

the beam waist). Experimentally, we use NdFeB permanent ring magnets with a

2.54 cm outer diameter, 0.64 cm inner diameter, and 0.95 cm thickness that are

mounted coaxially on xyz translational stages. By adjusting the axial separation of

the magnets we can achieve magnetic field gradients of ∼ 150 − 1500 G/cm at the

trap center, which produces the desired Zeeman shift for our beam sizes.

The trapping beams are generated with a frequency quadrupled Ti:Sapphire laser,

yielding 2.5 mW at 228.8 nm (see appendix A). The ultraviolet light is split into six

independent trapping beams in order to better control the intensity balance of the

counter-propagating beams. We observe that the MOT can withstand an intensity

imbalance of 10% between a pair of beams (see appendix B), and we can balance

the intensity between any pair of counter-propagating beams to better than 5%.
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Figure 4.2: Schematic diagram of MOT laser system and vacuum chamber. Left: Schematic dia-
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Typical beam waists range from w0 = 0.5− 1.5 mm and the total power ranges from

P = 0.7− 2.0 mW, resulting in peak intensities ranging from I = 0.03− 0.5 W/cm2.

Approximately 200 µW is split from the main laser beam and directed to a small

cadmium vapor cell to stabilize the laser frequency. We use a dichroic atomic vapor

laser lock (DAVLL) [67, 68] operating on the 1S0 to 1P1 transition in Cd. Using

DAVLL stabilization as opposed to saturated absorption locking techniques has the

advantage of reducing the necessary power while allowing small frequency adjust-

ment. In practice, the cell is heated to 80◦ C to increase optical absorption to ∼ 80%

through the 5 cm cell. A uniform magnetic field, produced by NdFeB permanent

ring magnets placed cylindrically around the cell, is applied along the laser beam

axis to lift the degeneracy of the 1P1 states. When linearly polarized light is sent

through the cell the difference between absorption of the Zeeman-shifted σ+ and

σ− transitions produces a dispersive-shaped signal. We can extract this signal by

using a polarizing beam splitter to be able to independently measure the σ+- and

σ−-polarized beams. With the detectors wired oppositely, directly combining the two

electrical signals allows us to lock the laser to the zero crossing point. The capture

range is determined by the Zeeman splitting between the two transitions, or about

1.5 GHz in a 500 G field. To change exact laser frequency we move the zero crossing

point by attenuating the laser power in one of the polarization paths (a or b) after

the cell (see figure 4.2). This method proves far more stable than using an electronic

offset method where we would be senstive to small voltage drifts. The lock is sta-

ble to within 30 MHz, or 0.3γ, over the 1.5 GHz capture range, and the dominant

sources of fluctuations are beam-steering drifts and birefringence fluctuations of the

cell windows from temperature changes over times greater than 1 second.
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4.2.1 Cd MOT Vapor Cell We produce and confine Cd atoms in a vapor cell where

the radiative forces accumulate atoms following the rate equation:

dN

dt
= L − ΓN − β

N2

V
, (4.1)

where N is the number of trapped atoms, L is the loading rate, Γ is the loss rate

related to single atom effects, β is the loss rate due to binary collisions within the

trap, and V is the effective volume occupied by the trapped atoms [69, 70, 71, 72].

Using simple kinetic gas theory at constant temperature one can show that L ≈

nV
2/3
c v4

c/v
3
th, where Vc is the capture volume, vc is the capture velocity [69], vth is the

thermal velocity, and n is the density of Cd atoms in the background vapor [73, 74].

When the MOT density is low (< 109 cm−3), the atoms are essentially non-

interacting and we expect the density to be limited by the cloud temperature. In

this regime the spatial distribution of trapped atoms is expected to be Gaussian

with a cloud radius that is independent of the trapped atom number. This contrasts

with high density (> 1010 cm−3) MOTs where effects such as reradiation must be

considered [75]. The Cd MOT reported here operates in the low density regime,

so the last term of eqn. 4.1 can be neglected since it describes collisions between

two trapped atoms. But unlike conventional alkali MOTs, where single atom loss

mechanisms primarily involve collisions between trapped atoms and the background

gas, Cd (like Mg) has an additional single atom loss term due to photoionization

[76, 77].

Thus, with these conditions, solving eqn. 4.1 for the steady state number of

trapped atoms yields: Nss = L/Γ. The total loss rate, Γ, is given by the sum

of loss rates due to background collisions and photoionization:

Γ = Γ0 + Γion, (4.2)
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where Γ0 represents the rate at which trapped atoms are ejected due to collisions

with the background vapor (dominated by Cd) and Γion is the photoionization rate.

The photoionization rate can be written as:

Γion =
σPIP (I, δ)I

h̄ω
. (4.3)

Here, σPI is the photoionization cross section, h̄ω is the photon energy, I is the total

MOT laser beam intensity, and P (I, δ) is the fraction of trapped atoms in the excited

state (1P1) defined as:

P (I, δ) =
1

2

s

1 + s + 4δ2
, (4.4)

where δ = ∆/γ is the laser detuning scaled to the natural linewidth and s = I/Isat

is the saturation parameter.

The MOT chamber contains a 1 cm long hollow stainless steel tube of diameter

0.1 cm packed with about 0.02 g of pure Cd wire. We can control the background Cd

vapor pressure throughout the entire chamber by heating this small oven. When we

direct the trapping beams into the chamber we see tracks of fluorescing Cd within

the extent of the laser beams. Based on this atomic fluorescence, we estimate the

background Cd vapor pressure to range between approximately 10−11 torr with the

oven off to about 10−10 torr with the oven at approximately 300◦ C. We speculate

that the Cd atoms sublimated from the oven do not readily stick to the chamber

surface, resulting in good control of the Cd vapor pressure with the small oven. We

note that the vapor pressure of Cd is predicted to be 10−11 torr at room temperature

[78], which is consistent with our observations.

4.2.2 Detecting Neutral Cd Atoms in a MOT The atomic fluorescence from the

trapped atoms is collected with an f/3 lens (solid angle of dΩ/4π = 0.6%) and imaged

onto an intensified charge coupled device (ICCD) camera. Every photon incident on
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the camera yields ηG ≃ 65 counts, where η = 20% is the quantum efficiency of the

camera and G is the ICCD gain factor. Including an optical transmission of T ≈

50% in the imaging system, we expect a total count rate of γP (I, δ)GηT (dΩ/4π) ≈

107 counts/sec from each trapped atom in the MOT. In this way, we relate the

total fluorescence count rate to the number of atoms in the MOT, with an estimated

accuracy of 50%. For various settings of the MOT parameters, we are able to observe

between ∼ 10 − 3000 atoms in the MOT.

Note that CCD count fluctuations in this imaging setup can arise from laser inten-

sity / detuning changes or from CCD intensifier fluctuations (since electron avalance

production is a stochastic process). When attempting to view small numbers of

atoms and determine the exact number of atoms, these fluctuations have noticeably

different effects. In essence, gain fluctuations act as a multiplicative error that af-

fects both background and atomic signal whereas laser fluctuations only affect the

atomic signal since the background is insensitive to laser parameters. Figures 4.3 and

4.4 show simulated histograms for various values of intensity and gain fluctuations,

respectively. Note that experimentally we operate in the regime where intensity

fluctuations are the dominant factor.

4.2.3 First-time MOT Production/Observation With a MOT already in place, op-

timizing its characteristics is typically a relatively easy process. But producing a

small-beam MOT for the first time can be quite challenging, so here we discuss some

strategies for initial alignment.

We have found that with the small beams necessitated by the technical difficulties

of producing UV laser radiation, the importance of laser beam self-overlap and beam

overlap with the magnetic field null cannot be overstated. We have found that making

the entire vacuum chamber moveable greatly facilitates this alignment. First, align
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the imaging system so that its field of view is centered on the area of probable future

MOT production. Then remove the vacuum system and align the six beams in free

space so that they overlap. Next, use the Gauss probe to place the magnetic field

zero on top of the beam crossing. This may suffice for an initial search or one can

further refine the beam alignment by determining if insertion of the vacuum chamber

produces any beam shifts and correcting for them in advance.

When it is time to actively search there are many parameters that need to be

adjusted. We have found that in the absence of a definite knowledge of the laser

trapping frequency, it is most efficient for two people to conduct the search. One

person manually controls the laser frequency while carefully watching and adjusting

the computer search program. The other person adjusts the magnetic field alignment

and spacing while also changing the laser beam alignment. Personal preference seems

to dictate the success of any particular alignment method, but all successful methods

rely on a methodical search of the parameter space that eliminates the need for

backtracking.

Initially the ill-formed MOT may resemble a slightly brighter halo in one area

of the CCD’s visual field and it may form and dissipate rapidly resulting in bright

flashes (most likely due to the laser being near resonance and drifting to the blue of

the cooling transition). The most direct way of testing whether an apparant build

up of atoms is truly a MOT is to block only one of the six cooling beams or to change

the magnetic field. Either change should result in an immediate disappearance if the

candidate is indeed a MOT. Note, unfortunately, that blocking a beam or moving

the magnets can change the scatter and can lead to deceiving tests.

The most conclusive test is to slowly (∼ 1 GHz/minute), controllably scan the

laser cooling frequency. If a MOT is present, dramatic increases in atomic fluoresence
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will be visible at frequencies that correspond to the resonance of each atomic isotope

(figure 4.5). Note that not all isotopes are easily trapped or visualized, so scanning

the laser frequency is a particularly important procedure when searching for a MOT.
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Figure 4.5: Scan of MOT trapping radiation frequency. Top: Scan across frequency showing the
different Cd isotope MOTs. The underlying curve is the Doppler fluorescence profile of
the Cd atoms. At certain frequencies there is a large build up, due to the MOT accu-
mulation as its resonance is crossed. Bottom: Natural abundance of neutral cadmium
isotopes. Out of these eight isotopes, we are only able to clearly observe trapping of
the four most abundant bosonic (even) isotopes.

4.3 Experimental Determination of Cd Cross-Sections

In figure 4.6, the filling of the MOT is shown for Cd vapor pressures of approx-

imately 10−10 torr and 10−11 torr. Note that the filling time for the MOT is deter-

mined by the loss rate of atoms from the MOT (eqn. 4.1). Unlike conventional vapor

cell MOTs, we find that the filling time (loss rate) is independent of the background

pressure, while the steady-state number of atoms in the MOT is strongly dependent
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on pressure. This indicates that collisions with the background gas have very lit-

tle effect on the loss rate and instead we are limited by photoionization loss from

the MOT beams. This is investigated in more detail by measuring the filling time

(loss rate) as the MOT laser intensity is varied, as shown in figure 4.7. We observe

a roughly quadratic dependence of loss rate on intensity, consistent with eqn. 4.3.

The extrapolated loss rate at zero intensity is much smaller than all of the observa-

tions, directly indicating that Γ0 ≪ Γion, or that the loss rate in this experiment is

dominated by photoionization.

From this measurement we can also directly extract the photoionization cross

section from the 1P1 state, given measurements of the intensity, excited state fraction

P(I,δ), and the known wavelength of the light. We find that the photoionization cross

section of the 1P1 state of Cd from the 228.8 nm light is σ = 2(1)× 10−16 cm2, with

the error dominated by uncertainties in the laser intensity and detuning. This result

is within an order of magnitude for the measured cross sections of other two electron

atoms [76, 79].

4.4 MOT Computer Simulation

In this section we describe the development of a 3-dimensional, Monte Carlo

computer simulation to calculate the loading rate for our Cd MOT. Some analytical

models have been developed to determine the loading rate from an atomic beam

[47], but the simplifying assumptions necessary to produce an analytical solution

(particularly neglecting the effect of the magnetic field) make these methods less

reliable for predicting typical MOT loading behavior. For Cd in particular, the large

B-fields necessary to produce the MOT are likely to make any analytical models too

rough to provide any predictive or explanatory power.
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Figure 4.6: Observed trapped atom population behavior for different background pressures. Top:
Observed trapped atom number N(t) for two different Cd background vapor pressures.
The top curve corresponds to a pressure of 10−10 torr and the lower curve corresponds
to 10−11 torr. By fitting the data to a growing exponential, N(t) = Nss(1 − e−Γt),
we find that the filling time, Γ−1, is approximately 1 sec for each case. This is clear
from the lower logarithmic plot of the data. Bottom: Nss-N(t) plotted for both vapor
pressures on a log scale. The filling times are about 1 sec for each curve.
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Figure 4.7: Observed MOT loading rate vs. saturation parameter s = I/Isat. The power is varied
for a constant beam waist of w = 1.25 mm. The photoionization cross section out of
the 1P1 state is determined from a quadratic fit to s given by eqn. 4.3. Extrapolating
the curve to zero intensity (not shown here) gives information on the loss rate due to
collisions with background gas.

Here, by including the effects of the magnetic field as well as the laser spatial

beam profile, we are able to obtain the steady-state number of atoms trapped in an

even-isotope Cd MOT. Previous Monte Carlo simulations of MOT loading rates have

used models that calculate the capture velocity for an individual atom and extract

the loading rate from vc [80, 81, 82, 83] or have included individual photon recoil

events [84].

In contrast, in this work we treat the atoms as non-interacting, point particles

and examine the dynamics of an ensemble of individual atoms under the application

of the laser radiation. The atoms are subjected to a time-averaged force, namely we

do not track individual photon absorption and re-emission events and instead we cal-

culate the averaged momentum kicks over hundreds of scattering events. The atoms’

motional behavior is found by numerically integrating the position- and velocity-

dependent radiation force.

Specifically, taking the x̂-direction as an example, the net acceleration of an in-
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dividual atom is given by the sum of the accelerations due to the +x̂ and −x̂ laser

beams:

ax(~r, vx) =
h̄kγ

2m
sx(~r)

[

∑

q

p+,q(~r)

1 + stot(~r) + (2δ+,q(~r, vx))2

−
∑

q

p−,q(~r)

1 + stot(~r) + (2δ−,q(~r, vx))2

]

(4.5)

where q is the polarization index, and the ± subscripts correspond to the +x̂- and

−x̂-direction beams, respectively.

The individual beam saturation parameter, sx, and the total saturation parameter,

stot, are given by:

sx(~r) =
Ix

Isat

e
−2(y2+z2)

w2
0 , (4.6)

stot(~r) = 2sx(~r) + 2sy(~r) + 2sz(~r), (4.7)

where Ix is the intensity of the ±x̂ laser beams (here assumed to be balanced) and

sy(~r) and sz(~r) are defined analogously to sx(~r).

The magnetic field in space determines the local quantization axis for each atom

which leads to the fraction of the incoming laser radiation that the atom experiences

as σ±- or π-polarized given by:

p±,q(~r) =



























(1
2
[1 ∓ 1

2
xB′

B(~r)
])2, q = −1 (σ−)

(1
2
[1 ± 1

2
xB′

B(~r)
])2, q = +1 (σ+)

1 − (p±,−1 + p±,+1), q = 0 (π)

(4.8)

where B(~r) = B′
√

z2 + 1
4
(x2 + y2) is the magnitude of the magnetic field written in

terms of the magnetic field gradient, B′, along the strong (ẑ) axis.

The effective detuning for the atomic transition is given by:

δ±,q(~r, vx) = (∆ ∓ kvx)/γ + q
µBgF B(~r)

γh̄
(4.9)
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where gF = 1 is the Landé g-factor. Note that for the even isotopes of Cd, there is

no Zeeman shift for π-polarized radiation.

Atoms are initially placed uniformly distributed in position within a simulation

volume with a lateral dimension of 6w0 (3 beam diameters) and the total number of

atoms is chosen to correspond to the background density of the atomic vapor.

For simulating a vapor-cell MOT, the atoms are given initial velocities distributed

according to a Maxwell-Boltzmann velocity distribution centered about 0. In our

Cd experiment (sec. 4.2), we often use the intra-vacuum Cd oven to increase the

background vapor pressure. While the output of the oven is not a true atomic beam,

we have experimentally determined that when using the oven the Cd atoms have a

net velocity of approximately 16 m/s through the trapping region. We are able to

model this “psuedo” atomic beam by giving the atoms initial velocities that obey

a Maxwell-Boltzmann distribution at room temperature but are centered around 16

m/s (instead of 0 m/s).

To generate velocities with a Maxwell-Boltzmann distribution we exploit the fact

that the Maxwell-Boltzmann speed distribution is the composition of three indepen-

dent Gaussian distributions (corresponding to each cardinal direction). We generate

the speed of each particle, vtot:

vtot =
√

v2
1 + v2

2 + v2
3 (4.10)

where each of the vi are chosen from a Gaussian distribution with µ = 0 and

σ =
√

kBT
m

. Then the x̂-component of the atom’s velocity, vx, is chosen uniformly

on the interval [−vtot, vtot]. The ŷ-component velocity, vy, is then also chosen uni-

formly on the interval that will assure that the total speed cannot exceed vtot:

[−
√

v2
tot − v2

x, +
√

v2
tot − v2

x]. Finally, vz is randomly chosen to be the positive or
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negative of the “remaining” speed: ±
√

v2
tot − v2

x − v2
y.

To save computation time, the atoms are discarded if they have an initial total

velocity vtot > 5vc, where vc ≈ 20m/s is the maximum capture velocity for the atoms

calculated from a 1-dimensional analytical model [47]. For select parameter sets, we

have checked this time-saving assumption against a version that simulates all atoms

regardless of velocity and found no difference in the obtained results.

We numerically integrate the net acceleration on each atom (eqn. 4.5) by calcu-

lating the new velocity and position at each time step, dt, according to:

vx = vx + axdt (4.11)

x = x + vxdt +
1

2
ax(dt)2. (4.12)

At each time step, any atoms that have left the simulation volume are discarded.

The number of new atoms added is calculated by considering the average number of

atoms that would leave the volume at each time step assuming no radiation forces

were present:

nadd =
ntotdt

τesc

. (4.13)

Here, ntot is the total initial number of atoms in the simulation and τesc is the average

escape time for atoms given by:

τesc =
wbox

2vrms

(4.14)

where wbox is the linear dimension of the simulation volume and vrms =
√

3kBT/m.

These new atoms are added with uniformly distributed positions along one of the

(randomly) chosen simulation box edges and are given velocities that point inwards

but correspond to a Maxwell-Boltzmann distribution (again discarding velocities

greater than 5vc).
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Every 100 time steps, we count the number of atoms with positions that are within

w0/2 of the origin. As a function of time, this sum produces a linear curve with a

slope that corresponds to the loading rate of atoms being trapped by the MOT, L.

The steady-state number of atoms confined by the MOT can then be calculated by

including isotope abundance and the background collision and photoionization loss

rates:

Nss =
fL

nσcvrms + σionItotP (I, δ)/h̄ω
. (4.15)

Here, f is the relative abundance of the isotope of interest, σc ≈ 2× 10−17 cm2 is the

collision cross section, σion ≈ 2×10−16 cm2 is the photoionization cross section of the

1P1 state, Itot is the total laser intensity, and P (I, δ) = 1
2

s
1+s+4δ2 is the probability of

the atom being in the 1P1 state.

We have implemented this simulation using the Matlab programming language

and we have used both Windows- and Unix-based workstations as well as a Unix-

based cluster to perform the calculations. Full code is given in appendix C.

4.5 Simulation Results Compared to Experimental Data

To validate the accuracy of our computer model, we compare its predictions for

steady-state trapped atom number with our experimental results.

A typical observation of the fluorescence growth from trapped atoms is shown in

figure 4.8, allowing a determination of the steady-state number of atoms and the

net loss rate, Γ, from the trap. An image of the fluorescence distribution from the

trapped atoms is also shown, revealing a Gaussian-shaped atom cloud as expected

from the temperature-limited density. The typical geometric mean rms radius of

the MOT is 200 µm, with some dependence upon the magnetic field gradient, laser

power and detuning. The largest MOT we have observed held approximately 3000
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atoms, with a peak density of about 108 atoms/cm3.
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Figure 4.8: Typical loading curve and CCD image of Cd atoms confined in MOT. Left: Typical
loading curve showing the buildup in the MOT fluorescence as a function of time.
For this data set, the MOT parameters are: laser power P = 1.45 mW, beam waist
w = 1.25 mm, detuning δ = −0.7, and magnetic field gradient B′ = 500 G/cm. The
steady state MOT number is calculated from the fluorescence signal and for this data the
buildup time is 1.5 sec. Right: MOT image taken with the camera for Nss = 1200 atoms.
The MOT parameters for this data set are P = 1.45 mW, w = 2.5 mm, δ = −0.7, and
B′ = 500 G/cm. The integration time for the camera was 5 ms. A 2-D Gaussian fit to
the image yields an rms radius of 200µm and a peak atom density of 108 atoms/cm3.

Figure 4.9 shows the steady state number of atoms, Nss, in the MOT vs. magnetic

field gradient, B′, for w = 1.25 mm, δ = −0.6, and total power P = 1.8 mW.

Under these conditions the maximum steady state number is observed at 500 G/cm.

At this optimal field gradient, the Zeeman shift of the excited state levels at the

edge of the laser beam is approximately one linewidth. Above this optimal value

the steep magnetic field gradient shifts the atoms out of resonance with the laser

beams, reducing the capture volume. At lower field gradients Nss quickly decreases,

presumably due to a lower trap depth resulting from an increased sensitivity to

trapping parameters.

From the equipartition theorem we obtain a relation connecting the cloud ra-

dius and temperature: κr2 = kbT , where r is the atomic cloud rms radius, kb is

Boltzmann’s constant, T is the temperature in Kelvin, and κ is the trap spring
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Figure 4.9: Steady-state MOT number vs. axial magnetic field gradient. Experimental observations
(points) and 3-D model (solid line) are shown for P = 0.8 mW, δ = −0.6, and w =
2.5 mm.

constant κ = 8µbksB′δ/(1 + s + 4δ2) [35]. In this expression, µb is the Bohr magne-

ton, and k = 2π/λ is the wavenumber. Replacing T with the Doppler temperature,

TD = h̄γ(1+s+4δ2)/(8kb|δ|), gives a relation between the temperature-limited cloud

radius and the magnetic field gradient:

r =

√

h̄γ(1 + s + 4δ2)3

64µbδ2ksB′
. (4.16)

Figure 4.10 shows the MOT rms radius vs. magnetic field gradient; as expected

from equation 4.16, the cloud gets smaller as B′ increases. The MOT diameter is

roughly 5 times larger than what Doppler theory predicts. Similar results were found

in Sr, where the MOT temperature exceeded the expected Doppler temperature [62].

The dependence of the steady-state number of trapped atoms on MOT detuning

and laser power is shown in figures 4.11 and 4.12. In both figures, the experimental

data is plotted along with the 1-D and 3-D theoretical predictions. The observed

number of trapped atoms is 1-2 orders of magnitude below predictions, likely due to

alignment imperfections and intensity imbalances not included in the models. Figure
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Figure 4.10: MOT cloud rms diameter vs. B′. Parameters are: P = 0.8 mW, δ = −0.6, and
w = 2.5 mm. A characterization is provided by the longest (circles) and shortest
(squares) rms size of the elliptical MOT. The diameter is about 5 times larger than
what Doppler theory predicts. The solid lines show the (B′)−1/2 dependence expected
from eqn. 4.16.

4.13 shows how the measured atom cloud size decreases as the MOT laser power is

increased (at a fixed beam waist), as expected from equation 4.16.
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Figure 4.11: Observed steady-state atom number vs. detuning (δ). Experimental observations
(points) along with the 1-D (dotted line) and 3-D (solid line) models are shown for
P = 1.8 mW, B′ = 500 G/cm and w = 2.5 mm.
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Figure 4.12: Observed steady-state atom number vs. power. Experimental observations (points)
for δ = −0.7, B′ = 500 G/cm and w = 2.5 mm are shown with the 1-D (solid line)
and 3-D (dotted line) models.
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Figure 4.13: MOT cloud diameter vs. total MOT laser power. Parameters are: δ = −0.6, B′ =
500 G/cm and w = 2.5 mm. The solid lines show the expected dependence of the
MOT diameter on power from eqn. 4.16.
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CHAPTER V

Conclusion

5.1 Summary of Findings

In this thesis we have described a rigorous theory for trapped ion qubit state detec-

tion and experimentally verified this detection mechanism using Cd+ (chapter II).

We have constructed, tested, and utilized a scalable-geometry ion trap capable of

switching the physical arrangement of ion crystals for use with quantum algorithms

and simulations requiring larger numbers of ionic qubits (chapter III). And finally,

we have characterized the first confinement of neutral Cd ions using magneto-optical

trapping techniques to allow for detectable interactions between neutral and ionic

Cd (chapter IV).

While not exhaustive, the following sections outline possible extensions of this

work and some significant questions in this field.

5.2 Future Improvements

5.2.1 Multi-ion Detection As discussed in sec. 2.6, the current multi-ion detection

fidelity of ∼ 98% is highly efficient, but improvements in light collection and/or

CCD quantum efficiency would be necessary to increase the fidelity to perform fault-

tolerant quantum computing with a reasonable number of qubits. In addition, the

CCD total readout time of ∼ 15 ms is much longer than a typical gate time of
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τgate ≈ 100µs, limiting the CCD’s effectiveness for algorithms with steps conditional

upon state detection (such as quantum error-correction [22] or the quantum Fourier

transform [20]).

Fortunately, both limitations are ultimately technical. Current state-of-the-art

unclassified CCDs operating in the near-IR can produce readout speeds of ∼ 10 MHz

per pixel or ∼ 2.5 µs per ion ROI with quantum efficiencies of ∼ 60%. With these

types of performance characteristics, employing CCDs for simultaneous multiple ion

detection in feedback algorithms will be practical and efficient. Note that the funda-

mental limit on detection speed is given by the lifetime of the excited state: τ = 2π
γ

.

Thus, with high-efficiency light collection, the state detection time for Cd+ could be

as short as ∼ 50 − 200 ns.

Large-scale ion trap arrays have been proposed [23, 85] and small, scalable traps

have been successfully demonstrated using microfabrication techniques [86, 87]. In-

tegrating multiple qubit detection via the CCD with these traps would produce a

highly scalable qubit processing architecture.

5.2.2 Multi-zone Trap While we have successfully performed controlled shuttling of

two ions in our multi-zone trap (including swapping the physical order of those two

ions in a trapping zone), further experiments are possible with this current trap and

with future improvements to the trap design and construction.

Of critical interest is the vibrational heating associated with storage and shuttling

in this trap. Certainly shuttling adds kinetic energy to the ion, but to what extent

and what techniques might minimize this heating remain open questions.

Once the heating rate is addressed, one could imagine using high-fidelity, two-ion

entanglement to successively entangle multiple ions. As a possible idea, we could

serially trap and entangle pairs of ions in a single trapping location before shuttling
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one of these ions to a holding area and entangling a new ion with one of the previous

qubits. Thus, we would build up entanglement to a large number of ions with the

number limited by the combined fidelity of entangling and shuttling coupled with

the need to perform the overall operation in a time that does not allow for significant

heating of each ion’s vibrational state. This multi-particle entanglement would be

equally useful for performing a quantum algorithm or a quantum simulation.

The most important future improvement to trap design would be in trap fabri-

cation and assembly techniques. Using hand-construction and assembly techniques

for a trap with 49 electrodes was at the edge of reasonable technical and logistical

expertise. In the future, using semi-conductor fabrication techniques for pattern-

ing and electrically shielding the trap electrodes would make for a truly scalable

approach to a multi-zone trap structure [86, 87]. One could also explore alternate

junction geometries (such as “X”, “Y”, or “cross”) which may prove more benficial

for particular applications.

5.2.3 Neutral Atom Experiments The realization of a neutral Cd trap represents

a significant technical achievement and already points in many directions for future

study. As examples, consider that the long-lived 3P0 state could be of interest for

optical clocks [56] and the narrow linewidth of the 1S0-
3P1 transition (70 kHz) would

allow for an extremely low cooling limit [62].

Furthermore, producing an odd-isotope, fermionic MOT would be a true stepping-

stone to neutral/ion experiments (sec. 5.2.4).

To understand the difficulty in producing an odd-isotope MOT, note that in

fig. 4.1b, the two excited hyperfine states for both 111Cd and 113Cd are separated

by about 300 MHz, which is comparable to the natural linewidth of Cd. A laser

tuned to the red of the upper hyperfine state (F ′ = 3/2) but to the blue of the lower
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hyperfine state (F ′ = 1/2) may drive excessive transitions to the lower excited state,

which could result in too much heating and prevent trapping. In addition, the optical

transitions between the F = 1/2 ground states and F ′ = 1/2 excited states do not

result in spatially dependent differential optical pumping by σ+ and σ− transitions,

a necessary condition for a standard MOT. Similar results were reported for Yb,

where much smaller or no MOT was observed for fermionic isotopes [63]. In our

experiments it is possible that there is a very small fermionic MOT being formed

but it is not resolvable from the background noise.

To produce a fermionic neutral Cd trap, it may be possible to laser cool and trap

fermionic isotopes with a dichroic MOT [88]. Here, the cooling laser is tuned to the

red of the lower hyperfine transitions (F ′ = 1/2) to provide the major scattering force

for laser cooling and then a small fraction of the laser power is frequency shifted to

the red of the upper hyperfine state (blue of the lower state). When this second laser

beam is collimated with a smaller beam waist, and overlapped with the beam of the

first color, the laser cooled atoms can be trapped in the MOT by driving the upper

transitions (F = 1/2 → F ′ = 3/2). Alternatively, one can work in a much higher

magnetic field gradient to overwhelm the excited state hyperfine structure. In this

Paschen-Bach regime, one will drive J = 0 → J = 1 transitions to produce a MOT.

Given a beam waist of 1.0 mm, the required field gradient for the MOT will be on

the order of 104 G/cm, which can be realized by a pair of needle electromagnets [89].

The capture volume of the MOT will be much smaller, but this scheme may still

be useful for single-atom MOT experiments. Another alternative is to use a higher

laser power allowing one to tune to the red of both hyperfine states. With a larger

detuning (|δ| ≫ δhf ) the optical excitation to the lower and upper manifolds is driven

more evenly and can produce both cooling and trapping forces for the atoms.

63



5.2.4 MOT and Ion Experiment If one can reliably trap neutral Cd, then exploiting

our expertise in controlling cold Cd ions would allow for the possibility of studying

ultra-cold charge exchange collisions. One particularly exciting outcome of these

studies might be the possible transfer of coherent information from an individual

ion to an individual neutral atom. A possible experiment is to prepare the ion

in a coherent superposition of the hyperfine qubit states and then allow the ion to

undergo an ultracold charge exchange with a nearby neutral atom. This results in the

charge neutralization of the ion, but could also leave some of the previously prepared

quantum information intact in the nucleus. This could allow quantum information

to be carried by pure nuclear spins with very little interaction with the environment.

Subsequent coherent charge exchange with another ion would then allow the nuclear

quantum information to be manipulated and processed using conventional ion trap

techniques.

In order to controllably interact ions with neutral atoms we need to be able to

produce a MOT that is co-located near an ion trap. While theoretically manageable,

the technical difficulties of this idea remain formidable. As an example of some of

the difficulties, consider the neutral trapping laser beam size: larger beams allow for

more stability and significantly easier alignment, but ion traps must be relatively

small in order to produce the required electric trapping fields. Scatter of the MOT

beams on the ion trap not only scrambles their polarization and thereby destabilizes

the trap, but the scatter also makes detection of the ions with the CCD extremely

difficult. Furthermore, technical difficulties in producing a strong magnetic field

gradient mean that the ion imaging lens must be placed so far away from the ion that

the ion’s diffraction-limited size is < 1 pixel on the CCD making even background-

free imaging challenging.
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Significant time, energy, and expertise has gone into attempts to produce and

image ions co-located with a MOT, but thus far we have not been successful.

If one could trap neutral and ionic atoms in the same region then some experi-

ments become immediately available. One possible experiment would be to simply

characterize the interaction between neutral and ionic atoms by trapping an ion of

one species and a neutral trap filled with a different species. As an example, we could

produce a 112Cd MOT which via photo-ionization would produce 112Cd+ ions and

we could trap one of these in our ion trap and cool it with an appropriately tuned

doppler-cooling laser. After moving the ion away from the MOT trapping region, we

could then blue-shift the MOT trapping laser to confine 114Cd neutral atoms. Then,

while watching the ion on the CCD, we could controllably move the ion closer to

the MOT and observe when it undergoes a charge-exchange collision with a neutral

atom. At the end of this charge-exchange there will still be one neutral atom and

one ion, but their isotopes will be reversed from the initial situation and thus the

112Cd+-tuned Doppler-cooling laser will be blue of the 114Cd+ resonance so the new

ion will disappear to indicate that it has undergone a charge-exchange. We could

repeat this experiment multiple times to determine the probability of undergoing

charge-exchange as a function of distance between the ion and the MOT center.

We predict that this curve would closely mirror the spatial atom density within the

MOT, but it would be a direct measurement of this charge-exchange.

65



APPENDICES

66



APPENDIX A

Frequency Doubling Conversion Efficiency

Frequency doubling or second-harmonic generation (SHG) exploits the non-linear

susceptibility of a dielectric material (χ(2)) to produce light at frequency 2ω from

input radiation at frequency ω. The key idea behind this SHG is that one needs to

create this doubled light in phase throughout the material such that it adds to the

2nd harmonic light that has already been created. In this appendix we discuss the

efficiency of converting blue radiation to UV light by exploiting the birefringence of

β-BaB2O4 (BBO).

A.1 BBO & Phase-Matching

BBO is a negative uniaxial crystal meaning that is has only one axis along which

light is not doubly refracted (namely there is one optical axis) and its extraordi-

nary refractive index is less than its ordinary refractive index (hence “negative”).

Ordinary rays are defined as those rays with light polarized perpendicular to the

plane containing the propagation vector (k) and the optic axis (z) (see figure A.1).

Extraordinary rays are polarized in the plane containing k and z.

Recall that the idea is to produce light at 2ω that is in phase with the propagating

incoming light at ω, so we need to set up our system such that ∆k = 2k1 − k2 =

2nωω/c − n2ω2ω/c = 0. Since BBO is a negative uniaxial crystal, for SHG we want

67



ω 2ω

extraordinaryordinary

k

z

θ

crystal

Figure A.1: Generalized diagram showing the orientations of the crytal axes and the ensuing defi-
nitions of ordinary and extraordinary rays.

the fundamental to be the ordinary wave and the harmonic to be the extraordinary

ray. Thus, we want ne(2ω) = no(ω) [90]:

sin2 θ =

1
no(ω)2

− 1
no(2ω)2

1
ne(2ω)2

− 1
no(2ω)2

(A.1)

which tells us how to orient the crystal to achieve the phase-matching condition.

Note that this equation also shows why choosing the right crystal is important: if the

normal dispersion (the numerator) is larger than the birefringence (the denominator)

then the fraction is greater than 1 and no orientation will exist to produce phase-

matching.

For BBO, the indices of refraction are approximately given by the Sellmeier equa-

tions:

n2
o(λ) = 2.7359 + 0.01878/(λ2 − 0.01822) − 0.01354λ2

n2
e(λ) = 2.3753 + 0.01224/(λ2 − 0.01667) − 0.01516λ2 (A.2)

where λ is measured in µm. Therefore, if we want to convert 457 nm light to 229 nm

light we would want the crystal angle to be: θ = 61.33◦ (crystal companies quote

θ = 61.4◦ with the difference attributable to the Sellmeier equation approximation).

When θ is different from 0◦ or 90◦ there will be beam walk-off because the prop-

agation vector, k, is not parallel to the Poynting vector, S. This walk-off limits the

crystal length over which one can achieve significant SHG. Periodic-poling of the
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material could solve this walk-off issue, but that discussion is beyond the present

scope.

A.2 SHG Conversion Efficiency

If we ignore walk-off, we can write an efficiency of non-linear conversion given by

[91]:

η ≡ P2ω

Pω

= K
Pω

w2
0

l2 (A.3)

where Pω (P2ω) is the power at the fundamental (harmonic) frequency, w0 is the

beam waist at the center of the crystal, and l is the effective length of the crystal.

The “gain”, K, is given by:

K =
2ω2d2

eff

ǫ0n2
1n2c3π

(A.4)

where deff is the 2nd order polarization coefficient of the crystal, ǫ0 is the permittiv-

ity of free space, n1 (n2) is the index of refraction at the fundamental (harmonic)

frequency, and c is the speed of light. The polarization coefficient (deff) is itself a

function of the wavelength and for type I phase matching we have:

deff = d31 sin θ + d11 cos θ. (A.5)

Here θ is the crystal angle from eqn. A.1 and d31 = 2.55 pm/V and d11 = 0.025 pm/V

are the nonlinear optical susceptibilities of BBO.

Thus, we can combine eqns. A.3 and A.4 to write the 2nd harmonic output power

as a function of input power:

P2ω =
2ω2d2

effP 2
ω l2

ǫ0n2
1n2c3πw2

0

. (A.6)

Experimentally, we focus the incoming beam to a waist of w0 ≈ 200 µm and we

have an effective crystal length of l ≈ 5 mm, but note that if we simply apply our
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∼ 150 mW of cw blue (λ = 457 nm) light to the crystal then eqn. A.6 predicts

Pout = 260 nW. In fact, we must use a confocal build-up cavity around the BBO

crystal such that the circulating power at the fundamental is increased by the cavity

build-up factor (Q = F
π

= FSR
πFWHM

). With Q ≈ 150, we find that our predicted

229 nm output power is Pout = 5.9 mW. In practice, we are typically able to produce

∼ 2.5 mW output power from an input power of ∼ 150 mW, with the difference from

theory being of unknown origin.

As illustrated in figure A.2, the doubling efficiency of BBO depends strongly on the

wavelength of the fundamental radiation. Examining the wavelength dependencies of

eqn. A.6 we can see that output power from BBO exhibits a maximum (rather than

monotonically increasing or decreasing) because while increasing wavelength yields

increasing deff (and similarly decreasing n1 and n2), ω decreases and its inverse decay

eventually outweighs the other effects. Note also that doubling using BBO cuts off

at λ ≈ 410 nm because the necessary angle to produce phase-matching (eqn. A.1)

exceeds 90◦.
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Figure A.2: Doubling efficiency of BBO as a function of fundamental wavelength. Parameters, from
the text, are: Q = 150, w0 = 200 µm, l = 5 mm, and Pin = 150 mW.
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APPENDIX B

Laser Beam Pair Intensity Imbalance

Note that laser intensity imbalance between the counter-propagating beam pairs

does not directly preclude formation of a stable trap, but instead leads to MOT

formation misaligned from the magnetic field null. If we consider the one-dimensional

case (here along ẑ) of two counter-propagating beams then the MOT will be formed

where the net restoring force on the atoms is zero:

h̄kγ

2

s+

1 + s + 4
γ2 (∆ + µBgF B′z

h̄
)2

=
h̄kγ

2

s−

1 + s + 4
γ2 (∆ − µBgF B′z

h̄
)2

. (B.1)

If we define a relative intensity imbalance ǫ ≡ s+

s−
− 1, then we can simplify this

expression to

1 + ǫ

1 + s + 4
γ2 (∆ + µBgF B′z

h̄
)2

=
1

1 + s + 4
γ2 (∆ − µBgF B′z

h̄
)2

. (B.2)

We wish to solve for the position, z = z0, where eqn. B.2 is satisfied. Algebraic

simplification leads to:

4ǫµ2
Bg2

F B′2

h̄2γ2
z2 − 16δµBgF B′(1 + ǫ/2)

h̄γ2
z − ǫ

(

1 + s +
4δ2

γ2

)

= 0. (B.3)

We can then use the quadratic formula to obtain the equilibrium position of the

MOT:

z0 =
4h̄δ(1 + ǫ/2) + h̄γ

√

(1 + s)ǫ2 + 8δ2

γ2 (2 + 2ǫ + ǫ2)

2µBgF B′ǫ
(B.4)

where we have ignored the other (non-physical) root.
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APPENDIX C

MOT Simulation Code

%This version of the program has all the necessary features to look for a

%MOT, including repopulating the simulation region with new particles as

%time goes on. It simulates the magnetic field as a quadrupole and allows for a power imbalance.

%It also includes a psuedo-atomic beam of atoms.

function [sum_center] = MOT_simulation(total_power, w0, B_gradient, laser_detuning, imbalance)

%Note that the function variables are in SI units, except for

%laser_detuning which is defined as a fraction of gamma and

%imbalance which is a vector in fractional units.

c = 2.998*10^8; %speed of light

boltzmann = 1.38*10^(-23); %Boltzmann constant

mass_proton = 1.67*10^(-27); %mass in kg

hbar = 1.055*10^(-34);

bohr_magneton = 9.27 * 10^(-24); %Bohr magneton

g_lande = 1; %Lande g-factor

mass = 112*mass_proton;

lambda = 228.8 * 10^(-9); %wavelength in meters

k = 2*pi/lambda; %wavenumber in 1/m

gamma = 2*pi*95*10^6; %radiative linewidth

I_sat = pi*2*pi*hbar*c*gamma/(3*(lambda)^3); %saturation intensity

scatter_const = hbar*k*gamma/(2*mass); %numerical constant in front of scattering eqn

mag_const = bohr_magneton*g_lande/hbar; %numerical constant in front of mag-field shift

%This section gives simulation numerical parameters

dt = 200/(gamma/2);

tfinal = (1*10^5)*dt;

%This section is where you can change the physical parameters

Pressure = 2*10^(-12) * 133.3; %pressure in Pascals

Temp = 293; %temperature in Kelvin

laser_detuning = laser_detuning*gamma; %negative detuning gives cooling

box_width = 3*w0;

Volume = (2*box_width)^3;

num_particles = round(Pressure*Volume/(boltzmann*Temp));

I_beam = (2*total_power/6)/(pi*w0^2); %single-beam intensity

I_x = imbalance(1)*I_beam;

I_y = imbalance(2)*I_beam;

I_z = imbalance(3)*I_beam;

v_sd=sqrt(boltzmann*Temp/mass);

t_escape = box_width / (sqrt(3)*v_sd); %the avg escape time for half the particles

num_add = round(num_particles*dt/(2*t_escape)); %the number of particles to add per time step

vel_cutoff = 100;

velocity_matrix=ones(num_particles,3);
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flag=0;

for j=1:num_particles

vel_total = sqrt(normrnd(0,v_sd)^2 + normrnd(0,v_sd)^2 + normrnd(0,v_sd)^2);

if vel_total <= vel_cutoff

flag=flag+1;

velocity_matrix(flag,1) = unifrnd(-vel_total,vel_total);

temp = sqrt(vel_total^2 - velocity_matrix(flag,1)^2);

velocity_matrix(flag,2) = unifrnd(-temp,temp);

velocity_matrix(flag,3) = (2*randint - 1)*sqrt(vel_total^2 ...

- velocity_matrix(flag,1)^2 - velocity_matrix(flag,2)^2);

velocity_matrix(flag,1) = velocity_matrix(flag,1) + 15;

velocity_matrix(flag,2) = velocity_matrix(flag,2) + 5;

end

end

extra_factor = 0.5; %buffer factor to add on to position and velocity matrices

velocity_matrix = velocity_matrix(1:((1+extra_factor)*flag),:);

position_matrix = unifrnd(-box_width,box_width,size(velocity_matrix));

sum_center = []; %initialize the count of particles in the center of our beams

for t=0:dt:tfinal,

acceleration_matrix = MOT_accel(position_matrix, velocity_matrix);

%calculates the acceleration on each particle

velocity_matrix = velocity_matrix + acceleration_matrix*dt;

%updates the velocities for each atom

position_matrix = position_matrix + dt*(velocity_matrix + 0.5*acceleration_matrix*dt);

%updates the positions for each atom

if mod(t/dt,100)==0 %update number of particles in center every 100th iteration

sum_center = [sum_center; t, sum((abs(position_matrix(:,1)) <= 0.5*w0) &...

(abs(position_matrix(:,2)) <= 0.5*w0) &...

(abs(position_matrix(:,3)) <= 0.5*w0))];

end

%now we want to stop simulating atoms that have left the simulation volume by removing them

j=1;

while j<=flag

if (abs(position_matrix(j,1))>box_width) || (abs(position_matrix(j,2))>box_width) ...

|| (abs(position_matrix(j,3))>box_width)

position_matrix(j,:)=position_matrix(flag,:);

velocity_matrix(j,:)=velocity_matrix(flag,:);

flag=flag-1;

else

j=j+1;

end

end

%now add atoms at the box edges while making sure that they go inwards

for j=1:num_add

vel_total = sqrt(normrnd(0,v_sd)^2 + normrnd(0,v_sd)^2 + normrnd(0,v_sd)^2);

if vel_total <= vel_cutoff

flag=flag+1;

velocity_matrix(flag,1) = unifrnd(-vel_total,vel_total);

temp = sqrt(vel_total^2 - velocity_matrix(flag,1)^2);

velocity_matrix(flag,2) = unifrnd(-temp,temp);

velocity_matrix(flag,3) = (2*randint - 1)*sqrt(vel_total^2 ...

- velocity_matrix(flag,1)^2 - velocity_matrix(flag,2)^2);

velocity_matrix(flag,1) = velocity_matrix(flag,1) + 15;

velocity_matrix(flag,2) = velocity_matrix(flag,2) + 5;

position_matrix(flag,:) = unifrnd(-box_width,box_width,1,3);

edge = randint(1,1,[1,6]);

if edge==1

position_matrix(flag,1) = -box_width;

velocity_matrix(flag,1) = abs(velocity_matrix(flag,1));

elseif edge==2
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position_matrix(flag,1) = box_width;

velocity_matrix(flag,1) = -abs(velocity_matrix(flag,1));

elseif edge==3

position_matrix(flag,2) = -box_width;

velocity_matrix(flag,2) = abs(velocity_matrix(flag,2));

elseif edge==4

position_matrix(flag,2) = box_width;

velocity_matrix(flag,2) = -abs(velocity_matrix(flag,2));

elseif edge==5

position_matrix(flag,3) = -box_width;

velocity_matrix(flag,3) = abs(velocity_matrix(flag,3));

else

position_matrix(flag,3) = box_width;

velocity_matrix(flag,3) = -abs(velocity_matrix(flag,3));

end %if statements for picking new particle edge and velocity

end %if statement for velocity cutoff

end %for loop for adding particles

end %atom position iterations

function accel_mat = MOT_accel(position_matrix, velocity_matrix)

%sub-function to calculate the acceleration on each particle

%returns an n-by-3 matrix corresponding to the 3 different

%directions (x,y,z)

sat_x=sx(position_matrix);

sat_y=sy(position_matrix);

sat_z=sz(position_matrix);

B_mat=B_mag(position_matrix);

sat_tot = [2*sat_x + 2*sat_y + 2*sat_z,...

2*sat_x + 2*sat_y + 2*sat_z, 2*sat_x + 2*sat_y + 2*sat_z];

accel_mat(:,1) = (scatter_const*2*sat_x) .* ...

(imbalance(4)*sum(pol_x_plus(position_matrix)./(1+sat_tot+...

(2*delta_plus(velocity_matrix(:,1))/gamma).^2),2) ...

- (1-imbalance(4))*sum(pol_x_minus(position_matrix)./...

(1+sat_tot+(2*delta_minus(velocity_matrix(:,1))/gamma).^2),2));

accel_mat(:,2) = (scatter_const*2*sat_y) .* ...

(imbalance(5)*sum(pol_y_plus(position_matrix)./(1+sat_tot+...

(2*delta_plus(velocity_matrix(:,2))/gamma).^2),2) ...

- (1-imbalance(5))*sum(pol_y_minus(position_matrix)./...

(1+sat_tot+(2*delta_minus(velocity_matrix(:,2))/gamma).^2),2));

accel_mat(:,3) = (scatter_const*2*sat_z) .* ...

(imbalance(6)*sum(pol_z_plus(position_matrix)./(1+sat_tot+...

(2*delta_plus(velocity_matrix(:,3))/gamma).^2),2) ...

- (1-imbalance(6))*sum(pol_z_minus(position_matrix)./...

(1+sat_tot+(2*delta_minus(velocity_matrix(:,3))/gamma).^2),2));

function sat_x = sx(position)

%returns an n-length column vector

sat_x = (I_x/I_sat) .* exp((-2*(position(:,2).^2 + position(:,3).^2))./(w0^2));

end %sx

function sat_y = sy(position)

%returns an n-length column vector

sat_y = (I_y/I_sat) .* exp((-2*(position(:,1).^2 + position(:,3).^2))./(w0^2));

end %sy

function sat_z = sz(position)

%returns an n-length column vector

sat_z = (I_z/I_sat) .* exp((-2*(position(:,1).^2 + position(:,2).^2))./(w0^2));

end %sz

function d_plus = delta_plus(velocity)

%subfunction to calculate the positive-going detuning for each atom

%note that the function outputs an n-by-3 matrix corresponding to the

%detuning for the 3 polarizations (sig-,pi,sig+)

temp_mat=mag_const*B_gradient*B_mat*[-1,0,1];
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d_plus = laser_detuning + [-k*velocity-temp_mat(:,1),...

-k*velocity-temp_mat(:,2), -k*velocity-temp_mat(:,3)];

end %delta_plus

function d_minus = delta_minus(velocity)

%subfunction to calculate the negative-going detuning for each atom

%note that the function outputs an n-by-3 matrix corresponding to the

%detuning for the 3 polarizations (sig-,pi,sig+)

temp_mat=mag_const*B_gradient*B_mat*[-1,0,1];

d_minus = laser_detuning + [k*velocity-temp_mat(:,1),...

k*velocity-temp_mat(:,2), k*velocity-temp_mat(:,3)];

end %delta_minus

function mag_field = B_mag(position)

%this sub-function calculates the magnetic field strength

%it returns an n-length column vector

mag_field = sqrt(position(:,3).^2 + 0.25*(position(:,1).^2 + position(:,2).^2));

end %B_mag

function pol_prob = pol_x_plus(position)

%this function calculates the probabilities of transitions due to

%each polarization (sig-,pi,sig+) for the positive going x-beam

%it assumes that the x-direction beams are sig- polarized initially

%returns an n-by-3 matrix corresponding to the 3 polarizations

pol_prob(:,1) = (0.5*(1-0.5*position(:,1)./B_mat)).^2;

pol_prob(:,3) = (0.5*(1+0.5*position(:,1)./B_mat)).^2;

pol_prob(:,2) = 1-(pol_prob(:,1)+pol_prob(:,3));

end %pol_x_plus

function pol_prob = pol_x_minus(position)

%this function calculates the probabilities of transitions due to

%each polarization (sig-,pi,sig+) for the minus going x-beam

%it assumes that the x-direction beams are sig- polarized initially

%returns an n-by-3 matrix corresponding to the 3 polarizations

pol_prob(:,1) = (0.5*(1+0.5*position(:,1)./B_mat)).^2;

pol_prob(:,3) = (0.5*(1-0.5*position(:,1)./B_mat)).^2;

pol_prob(:,2) = 1-(pol_prob(:,1)+pol_prob(:,3));

end %pol_x_minus

function pol_prob = pol_y_plus(position)

%this function calculates the probabilities of transitions due to

%each polarization (sig-,pi,sig+) for the positive going y-beam

%it assumes that the y-direction beams are sig- polarized initially

%returns an n-by-3 matrix corresponding to the 3 polarizations

pol_prob(:,1) = (0.5*(1-0.5*position(:,2)./B_mat)).^2;

pol_prob(:,3) = (0.5*(1+0.5*position(:,2)./B_mat)).^2;

pol_prob(:,2) = 1-(pol_prob(:,1)+pol_prob(:,3));

end %pol_y_plus

function pol_prob = pol_y_minus(position)

%this function calculates the probabilities of transitions due to

%each polarization (sig-,pi,sig+) for the minus going y-beam

%it assumes that the y-direction beams are sig- polarized initially

%returns an n-by-3 matrix corresponding to the 3 polarizations

pol_prob(:,1) = (0.5*(1+0.5*position(:,2)./B_mat)).^2;

pol_prob(:,3) = (0.5*(1-0.5*position(:,2)./B_mat)).^2;

pol_prob(:,2) = 1-(pol_prob(:,1)+pol_prob(:,3));

end %pol_y_minus

function pol_prob = pol_z_plus(position)

%this function calculates the probabilities of transitions due to

%each polarization (sig-,pi,sig+) for the positive going z-beam

%it assumes that the z-direction beams are sig+ polarized initially

%returns an n-by-3 matrix corresponding to the 3 polarizations

pol_prob(:,1) = (0.5*(1-position(:,3)./B_mat)).^2;

pol_prob(:,3) = (0.5*(1+position(:,3)./B_mat)).^2;

pol_prob(:,2) = 1-(pol_prob(:,1)+pol_prob(:,3));

end %pol_z_plus
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function pol_prob = pol_z_minus(position)

%this function calculates the probabilities of transitions due to

%each polarization (sig-,pi,sig+) for the minus going z-beam

%it assumes that the z-direction beams are sig+ polarized initially

%returns an n-by-3 matrix corresponding to the 3 polarizations

pol_prob(:,1) = (0.5*(1+position(:,3)./B_mat)).^2;

pol_prob(:,3) = (0.5*(1-position(:,3)./B_mat)).^2;

pol_prob(:,2) = 1-(pol_prob(:,1)+pol_prob(:,3));

end %pol_z_minus

end %MOT_accel

end %MOT_simulation
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