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CHAPTER I

Introduction

The hybrid bootstrap, introduced in Chuang and Lai [7], uses resampling ideas to

extend the duality approach to interval estimation for a parameter of interest when

there are nuisance parameters. It is called hybrid resamping because it “hybridizes”

the exact method, which uses test inversion, with the bootstrap method that uses

the observed data to determine the resampling distribution.

There are several interesting examples in which the data provide substantial infor-

mation about the nuisance parameter, but limited information about the parameter

of interest. In these cases, the confidence region constructed by the hybrid bootstrap

may perform much better than the ordinary bootstrap region.

In this chapter we first give a brief explanation of the hybrid bootstrap approach.

We then introduce three application examples where the hybrid bootstrap confidence

region for a parameter of interest seems to be appealing.

1.1 Hybrid Bootstrap Resampling

A standard approach used to find a confidence set S for an unknown parameter θ ∈

Ω based on data X ∼ Pθ is to invert the family of likelihood ratio tests. Specifically,
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if l(·) is the log likelihood function, if θ̂ is the maximum likelihood estimator, if

Λ(θ0) = l(θ̂)− l(θ0)

is the generalized log likelihood ratio test statistic used to test θ = θ0 versus θ 6= θ0,

and if q(θ) is the upper α-th quantile for the Pθ distribution of Λ(θ), then

S = S(X) = {θ : Λ(θ) ≤ q(θ)}

is a 1− α confidence region for θ.

Let θ and η denote the parameter of interest and the nuisance parameter, and let

θ̂ and η̂ be the maximum likelihood estimators for these parameters. If η̂θ maximizes

the log likelihood l(θ, η) over η with θ fixed, then the log likelihood test statistic to

test θ = θ0 versus θ 6= θ0 is now

Λ(θ0) = l(θ̂, η̂)− l(θ0, η̂θ0).

Let q(θ, η) denote the upper α-th quantile for Λ(θ) under Pθ,η. The region

(1.1) {θ : Λ(θ) < q(θ, η), ∀η}

has coverage probability at least 1−α. But to find it, quantiles q(θ, η) are needed for

all θ and η. The region may be too conservative. The ordinary bootstrap confidence

region is

(1.2)
{

θ : Λ(θ) < q(θ̂, η̂)
}

.

The only quantile necessary to compute this region is q(θ̂, η̂). This quantile can be

found, if necessary, by bootstrap simulation generating data X∗ from Pθ̂,η̂. The Pθ,η

coverage of this interval will be approximately 1 − α if q(θ̂, η̂) accurately estimates

q(θ, η). In regular models with large samples this will be the case for two reasons: the

2



maximum likelihood estimators θ̂ and η̂ are consistent, and the null distributions for

Λ(θ) are approximately independent of θ. In practice, the bootstrap region (1.2) often

works well with moderate sample sizes, but with smaller samples its performance is

suspect.

The hybrid bootstrap confidence region is

(1.3) S = S(X) = {θ : Λ(θ) < q(θ, η̂θ)} .

To compute S, quantiles q(θ, η̂θ) are necessary for all θ. These can be found by

bootstrap simulation generating data X∗
θ from Pθ,η̂θ

for values of θ in a reasonably

fine grid. Since multiple simulations are required, the computational burden to

compute the hybrid region S is greater than that for the ordinary bootstrap, but

with modern computing this is often feasible. Note that bootstrap simulations to

find q(θ, η) for all θ and η to compute the first interval (1.1) would need to be done for

a grid of values for θ and η, posing a greater burden than the simulations necessary

for the hybrid region S in (1.3).

The Pθ,η coverage for the hybrid region S will be approximately 1 − α if q(θ, η̂θ)

accurately estimates q(θ, η). As with the bootstrap region, this should be the case in

large samples but may be suspect with small samples. But there are several interest-

ing examples in which the data provide substantial information about the nuisance

parameter η, but limited information about the parameter of interest θ. In these

cases, q(θ, η̂θ) may be a much better estimator of q(θ, η) than q(θ̂, η̂) and the hybrid

region may perform much better than the ordinary bootstrap region.

3



1.2 Application Examples

1.2.1 Mapping Quantitative Trait Loci

Quantitative trait loci (QTL) are of important scientific and economic value in

medical research, and in plant and animal breeding. These are the genes responsible

for variation in quantitative traits. The development of biochemical markers has led

to a proliferation of studies aimed at identifying and characterizing QTL responsible

for variation in quantitative traits such as blood pressure, tumor mass, and survival

time after an infection.

Knowledge of the locations and actions of the QTLs helps us to understand the

biochemical basis of these traits and of their evolution over time. In agricultural

experiments, this knowledge may be used to design crosses leading to improved

products. In biomedical experiments, the enhancement of understanding of the bio-

chemical basis in the traits aids in identifying new drug targets.

Since the seminal paper of Lander and Botstein [19] there has been ongoing in-

terest in experiments and statistical methods to find and locate quantitative trait

loci. Lander and Botstein [19] introduced the concept of interval mapping based on

likelihood functions. Interval mapping is currently the most popular approach for

QTL mapping in experimental crosses. The method makes use of a genetic map of

the typed markers, and assumes the presence of a single QTL. Each location in the

genome is posited, one at a time, as the location of the putative QTL.

The LOD score has been proposed as a test statistic in order to detect QTL

position. It is simply the log likelihood ratio test statistic scaled by the factor 1/4.61.

Interval mapping links the LOD scores of each typed maker loci, and estimates the

QTL position as the location where the LOD curve achieves its maximum. Also,

an interval estimate for QTL location can be determined using thresholds for LOD
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scores. Lander and Botstein [19] performed extensive computer simulations to find an

appropriate LOD threshold for various genome sizes and marker densities, and gave

analytical calculations for the case of a very dense marker map. Dupuis and Siegmund

[11] also have reported approximate thresholds of LOD scores and provided power

calculations for identifying QTL. Churchill and Doerge [8] suggested permutation

testing to obtain empirical distributions for a maximum LOD score for each possible

location of QTL along chromosomes. Visscher et al.[34] used a bootstrap method

to generate the sampling distribution of the maximum likelihood estimate (MLE)

for QTL. These repeated sampling techniques provide thresholds for significant tests

and critical values for interval estimates of the location of QTL. Recently, Chen

and Chen [6] established the consistency of the maximum likelihood estimates and

found the asymptotic distribution of the likelihood ratio test statistic for the mixture

model of the interval mapping when the conditional distribution of phenotypes, given

QTL genotypes, are assumed to be normal. Thresholds of the distribution can be

approximated easily by using a Monte Carlo simulation.

Manichaikul et al.[23] investigated the performance of bootstrap confidence inter-

vals and concluded that they provided very poor performance with respect to the

coverage probability and interval width, compared with LOD support intervals and

Bayes credible regions(Dupuis and Siegmund [11]). It was also pointed out that an

unusual feature of the MLE for QTL is the reason for the failure of the bootstrap.

Since the profile likelihood function of the location of QTL exhibits cusps at each

genetic marker, the MLE is likely to occur at marker loci due to the change in the

direction of the likelihood. After all, the distribution of the MLE depends on the

position of the QTL relative to the markers, and this mainly contributes to the

breakdown of the bootstrap confidence estimation based on the MLE.
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Even though interval mapping models are currently among the most common

methods for finding and locating QTL, different approaches has been suggested by

other researchers, including Haley and Knott [13], Haley et al.[14], and Dupuis and

Siegmund [11]. Most of these papers base their analysis on regression models. Dupuis

and Siegmund [11] pointed out the similarity between estimating the location of

a change-point and estimating the location of a trait locus from data on mapped

markers. Consequently, they expected that a Bayesian credible region for a uniform

prior distribution on the location of the QTL would provide satisfactory confidence

regions. Deng et al.[10] proposed the finite logistic regression mixture models for

binary trait locus. Cui et al.[9] used the generalized Poisson distribution model for

count traits data in order to resolve over or under dispersion problems.

Various approaches for multiple QTLs have also been considered by Jansen [16],

Broman and Speed [3], and Kao et al.[18]. Methods in which only one QTL is

considered at a time can be biased for QTL identification and estimation if indeed

multiple QTL are located in the same linkage group. The composite interval map-

ping model suggested by Jansen [16] incorporates multiple regression analysis into

interval mapping by conditioning on markers outside an interval of interest. Kao

et al.[18] proposed using multiple marker intervals simultaneously to map multiple

QTLs of epistatic interactions throughout a linkage map. Broman and Speed [3]

regarded the QTL mapping problem as one of model selection and provide a modi-

fied Bayes Information Criterion (BIC). Although multiple QTLs models seem to be

more realistic, we expect that our approach based on interval mapping with a single

QTL still provides improved performance and progress in the future for the QTL

locating problem.

In the interval mapping model, the recombination rate between the genetic marker
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and a QTL often represents the location of QTL. But, recombination events are

unlikely to happen and the number of the progenies generated in the experiment is

usually limited, so observations which give information about the location of a QTL

are very few. This might be another reason that the ordinary bootstrap method using

MLE is vulnerable since the quantile estimates of test statistic may vary heavily as

the location of the QTL changes. In chapter II, we propose the hybrid bootstrap

confidence region for QTL as an alternative of the ordinary bootstrap. The quantiles

of test statistic in the hybrid region are estimated for each QTL location, a reasonable

grid of QTL, so the region is less affected by unstable MLEs. As a result, the

hybrid region performs better than the ordinary bootstrap region for mapping QTL

problems.

We describe in details the typical experiments and statistical models used to lo-

cate a QTL in chapter II. It contains the results of some large simulation studies to

demonstrate the performance of hybrid bootstrap in terms of coverage probabilities

and widths. The analysis of a real data set of rice tiller number from Yan et al.[39]

is then presented.

1.2.2 Change Point Problems

Change point problems arise in applications when observation distributions change

at some point in time. For instance, potential observations X1, X2, . . . might be

modeled as independent with Xi ∼ Qη for i = 1, . . . , ν, and Xi ∼ Qθ for i > ν, where

η 6= θ. Here {Qη} and {Qθ} lies in some specified parametric family of distributions,

and the change point ν is viewed as an unknown parameter. η is often known or

simply estimated from historical data, so primary interest in change point problems

is estimation for either ν or θ.
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There is much literature on change point problems. Interval estimation of the

change point ν has been developed by Siegmund [31], Siegmund [32] and Worsley

[36]. Smith [33] has employed Bayesian approach to estimate a change point. Testing

problems of a sequence of change points in Gaussian model have been investigated

by Hawkins [15]. Chen and Gupta [4], and Chen and Gupta [5] estimated variance

change points for normal distributions, and multiple covariance change points for

Gaussian random vectors, respectively. Inference problems for a Poisson process

change point also have been analyzed by Akman and Raftery [1], Raftery and Akman

[26], Loader [21], and West and Ogden [35]. The statistical methods and procedures

discussed in the literatures above are all based on the specified number of observations

where change(s) in distributions takes place in some unknown point(s). This is often

called an off-line experiment. Estimation for a change point is usually of main interest

in this experiment.

In contrast, on-line monitoring problems are involved in detecting the occurrence

of the change as soon as possible. Particularly, in industrial and other applications,

the distributional change may be associated with a problem for the underlying pro-

cess, and data collection is done mainly to detect whether the change has occurred.

In the on-line framework, the detection is based on a stopping rule, which usually

has the form

τ = inf{n : g(x1, . . . , xn) ≥ λ}.

Accordingly, the data are only sampled until the stopping time τ , and the threshold

λ is chosen to keep P (τ ≤ ν) and E(τ − ν)+ as small as possible. Representative

examples include stopping times given by Shewhart, moving average, or cumulative

sum control charts(Montgomery [25]).

One important issue when designing change detection algorithms is the use of
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prior information about the changes. Specifically, the situation that the post change

parameter θ is unknown is obviously the most interesting from a practical point of

view, but is also challenging since there is limited observations about θ due to cur-

tailed data by a stopping procedure. Compared with the off-line estimation problems

of the change point, little research has been done on estimation of the post change

parameter associated with data observed through a detection time τ . In recent de-

velopments, Wu [37] and Wu [38] derived the first-order bias of the post-change mean

estimate and a corrected asymptotic normal pivot based on the estimate, assuming

that the change point is large and the monitoring limit approaches infinity. He also

showed that the estimate for the post change mean is robust even when the variance

is also subject to change.

We propose another approach to estimate the post change parameter θ by using

the hybrid bootstrap. Since detection stopping times are chosen to make E(τ − ν)+

small, the data will provide only limited information about θ. In contrast, unless

τ is small, there should be considerable information about η, so this provides yet

another example in which the hybrid bootstrap approach seems natural. And since

distribution theory in change point problems is generally a challenge, an approach

based in part on simulation seems particularly appealing.

In chapter III, the hybrid confidence region for a post change mean is considered

after a change is detected by a Shewhart control chart in a sequence of indepen-

dent normal variables. The hybrid regions are constructed in two different methods:

likelihood ratio and Bayesian statistics. Their performance are compared in the sim-

ulation study. Poisson process change point problems are then discussed.
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1.2.3 Poisson Example from Physics

Researchers in high energy physics are at times interested in estimating a rate

θ ≥ 0 from a Poisson measurement X with mean θ + η. Here η represents a back-

ground rate, often considered as known from prior or “off-line” experiments. Also, in

many case θ = 0 is a definite possibility, corresponding to the absence of the particle

or phenomena the experiment is trying to detect. This problem is a bit nonstan-

dard since EX is known to be at least η, and there has been some discussion in the

physics literature about the proper way to set a confidence interval for θ. The “unified

method” of Feldman and Cousins [12] amounts to inverting the family of likelihood

ratio tests, and has seen wide interest in physics since its appearance. Bayesian cred-

ible regions for θ were developed in Roe and Woodroofe [27] and Roe and Woodroofe

[28], when the background parameter is known. Zhang and Woodroofe [40] have

shown that the Bayesian approach is robust when the background rate is regarded

as a nuisance parameter.

In practice, an assumption that the background rate η is known may be too

optimistic. More realistically, information about η may come from count data Y

modeled as Poisson with mean γη. Here the scale factor γ, represents the ratio of

the observation times for Y and X. With large γ there is considerable information

about the background η, exactly the setting in which the hybrid bootstrap approach

seems most promising. Sen and Woodroofe [30] have investigated the performance

of the hybrid bootstrap confidence interval in this example, and in their numerical

work it seems to perform well.

Despite the positive accounts of the hybrid bootstrap interval’s performance, our

investigation shows that the hybrid region S in (1.3) is not consistent—as γ → ∞,

Pθ,η(θ ∈ S) 9 1 − α. This surprising problem has to do with discreteness. If Λ0(θ)
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denotes the log likelihood ratio test statistic when the background η is known, then

Taylor expansion gives

Λ(θ) = Λ0(θ) + γ−1/2Zγ + op(γ
−1/2)

as γ → ∞ with Zγ asymptotically normal. Since Λ0(θ) is discrete, Zγ typically

remains relevant in testing at one of the atoms for Λ0(θ), even if γ is large. Unfortu-

nately, it does not do so in a fashion that preserves consistency for S. In chapter IV,

we show that the coverage probability of hybrid confidence regions does not converge

to the desired nominal value as information about the nuisance parameter increases.
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CHAPTER II

Mapping Quantitative Trait Loci

In this section we consider the problem of estimating the location of quantita-

tive trait loci (QTL) in genetics. QTL are the genes responsible for variation in

quantitative traits such as blood pressure, tumor mass, and survival time after an

infection. Background on experimental crosses and interval mapping mixture mod-

els are first described, and a likelihood based approach to estimation is introduced.

Hybrid confidence regions are then proposed for mapping a QTL. In an extensive

simulation study, these regions are compared with other approaches including per-

mutation, nonparametric, and ordinary parametric bootstrap. The hybrid method

is then employed to analyze a real data set of rice tiller number.

2.1 Experimental Crosses

Most experiments aimed at identifying quantitative trait loci (QTL) begin with

two pure-breeding lines which differ in the trait of interest. We will call these the low

(L) and high (H) parental lines. The lines are the result of intensive inbreeding, so

that each is essentially homozygous at all loci (meaning that, at each locus, offspring

receive the same allele from each of their two parents). Crossing these two parental

lines gives the first filial (or F1) generation. The F1 individuals receive a copy of
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each chromosome from each of two parental lines, and so, whenever the parental

lines differ, they are heterozygous. All F1 individuals will be genetically identical,

just as the individuals in each of the parental lines were.

In a backcross (See Figure 2.1), the F1 individuals are crossed to one of the two

parental lines, for example, the low line. The backcross progeny, which may number

from 100 to over 1000, receive one chromosome from the low parental line, and one

from the F1. Thus, at each locus, they have genotype LL or HL. As a result

of crossing over during meiosis1, the chromosome received from the F1 parent is a

mosaic of the two parental chromosomes. At each locus, there is a half a chance of

receiving the allele from the low parental line (L) and a half a chance of receiving

the allele from the high parental line (H). The chromosome received will alternate

between stretches of L’s and H’s.

Another common experiment is an intercross (See Figure 2.2). Here, the F1

individuals are either selfed or crossed to each other. The individuals in the resulting

F2 generation each receive two chromosomes from the F1 generation, each of which

will be a combination of the two parental chromosomes. Thus, at each locus, the F2

individuals will have genotypes LL, HL or HH.

Investigators produce a number of backcross progeny, generally around 100 in-

dividuals, and determine the phenotype trait value for each individual. This value

could be quantitative, such as blood pressure or tumor mass, or binary data, like

the presence or absence of some disease. Each individual is genotyped at a number

of genetic markers, generally spread 10-20 centiMorgans(cM) apart, chosen to cover

the genome uniformly2. For each marker and each individual, it is observed whether

F1 parent transmitted the L or the H allele. A genetic map specifying the order

1The process during which gametes or sex cells are formed.
2The cM is the unit of genetic distance, and is equivalent to 1% recombination
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of the markers and the intermarker distances will be known or estimated based on

data. The objective is to identify genome regions for which there is an association

between the phenotype of a backcross individuals and whether it received the L or

H allele from the F1 parent.

Figure 2.3 contains histograms of the phenotype distributions for the paternal

strains, the F1 generation, and the backcross generation, for an imaginary backcross

experiment. The paternal strains were chosen to have markedly different phenotype

distributions; the L and H strains have average phenotypes of 80 and 20, respectively.

While individuals within each strain are genetically identical, there is some variation

in the phenotypes due to environmental differences and measurement error. Here, the

phenotype distribution for F1 generation is intermediate between the two parental

strains, but shows approximately the same degree of variation, with a standard

deviation of about 5.3

It is often assumed, though not always observed, that the degree of environmental

variation will be independent of genotypes, as is seen in Figure 2.3—The standard

deviation in the parental strains and in the F1 generation are all about 5. The back-

cross generation, however, shows greater variation in phenotype because of genetic

variation.

The aim of QTL mapping is to identify regions of the genome that are contributing

to variation in the trait of interest. In agricultural experiments, this knowledge may

be used to design crosses leading to improved products. In biomedical experiments,

the goal is to enhance understanding of the biochemical basis of the trait and to

identify new drug targets.

Our method will be applied initially to statistical models for the backcross exper-

3The standard deviation may be interpreted as the typical difference from the average. Individuals in the F1

generation have an average phenotype of about 40, but they typically deviate from that by 5, having a phenotype
between 35 and 45.

14



iment, because of its simplicity. At each locus in the genome, the backcross progeny

have one of only two possible genotypes. The intercross is more commonly used in

practice, but the analysis of the two types of experiments is similar. The strate-

gies developed for analyzing backcross experiments will generally work for intercross

experiments as well.

2.2 Interval Mapping Mixture Model

Lander and Botstein [19] introduced a new approach for mapping a QTL by

considering flanked markers. Their method has been called “interval mapping”, and

is currently the most popular method for identifying a QTL in experimental crosses.

The method makes use of a genetic map of the typed markers, and assumes the

presence of a single QTL. Each location in the genome is posited, one at a time, as

the location of the putative QTL.

Let us consider a backcross population to the progeny of P1 and F1 so that the

individuals in the backcross population have four different genotypes at marker 1

and marker 2: H1H2/H1H2, H1H2/H1L2, H1H2/L1H2, and H1H2/L1L2. Since the

paternal genotype of this generation is fixed, we can code genotype pairs at markers

by zero and ones, with a zero representing a maternal gene from one of the pure lines

(Lj), and a one representing a gene from the other line (Hj).

Next, consider the case of k+1 consecutive markers along a strand of DNA. Mj = 0

for the j-th marker genotype of Lj and Mj = 1 for the j-th marker genotype of Hj.

Then M = (M0, . . . , Mk) codes genotypes at k + 1 consecutive markers. Note that

without recombination, M with either be (0, . . . , 0) or (1, . . . , 1). If recombination

events along this strand of DNA are modeled as a Poisson process with an assumption
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of no crossover interference, then

(2.1) γj = P (Mj−1 6= Mj) =
1

2
(1− e−2dj/100),

where dj denotes the distance between the two markers, measured in cM .

Let Y denote the quantitative trait of phenotype measured, and assume that its

conditional distribution given the QTL comes from some parametric family {Qη}.

Although there are various possibilities, mixture models, such as those in Chen and

Chen [6], seem most natural for the conditional distribution of Y given M . The

genotype of the putative QTL cannot be observed but can be inferred from the

genotypes of the flanking markers.

Let us begin considering the two marker case, so k = 1. If the QTL lies between

the two markers, then the distribution of Y given the genotype of the QTL will be

Qη0 if Q = 0, and Qη1 if Q = 1, i.e., Y |Q = 0 ∼ Qη0 and Y |Q = 1 ∼ Qη1 . If

d = d1 = a + b with a the distance from the first marker to the QTL, and b the

distance from the QTL to the second flanked marker, then, with the Poisson model

for recombinations in (2.1), the conditional probability for the putative QTL to take

genotype Q = 1 is

P (Q = 1|M = m) =





1
4(1−γ1)

(1 + e−2a/100)(1 + e−2b/100), m = (1, 1);

1
4γ1

(1 + e−2a/100)(1− e−2b/100), m = (1, 0);

1
4γ1

(1− e−2a/100)(1 + e−2b/100), m = (0, 1);

1
4(1−γ1)

(1− e−2a/100)(1− e−2b/100), m = (0, 0),

where γ1 = 0.5(1 − e−2d1/100) with d1 the distance between the first two markers,

which is considered known from prior experiments. Generally, γ1 lies substantially

below 0.5. Since d1 is known and a + b = d1, these conditional probabilities can all
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be considered as a known function of a. Letting

pm(a) = P (Q = 1|M = m),

the conditional distribution of Y given M is then mixture

Y |M = m ∼ [1− pm(a)]Qη0 + pm(a)Qη1

Along with the marginal probabilities for M given above, this formula specifies a

family of joint distribution for M and Y , parameterized by nuisance parameters η0

and η1 and the mixture probabilities pm(a).

Since d is typically quite small, recombinations are fairly rare and most obser-

vations of M will be either (0, 0) or (1, 1). Also, given M = (0, 0), the conditional

distribution of Y is approximately Qη0 and given M = (1, 1), the conditional distri-

bution of Y is approximately Qη1 , i.e., p(0,0)(a) ≈ 0 and p(1,1)(a) ≈ 1. By symmetry,

p(0,1)(a) = P (Q = 1|M = (0, 1)) = 1− P (Q = 1|M = (1, 0)) = 1− p(1,0)(a),

and the mixture probabilities p(0,1)(a) and p(1,0)(a) can be parameterized by a single

value θ
def
= p(0,1)(a) and 1 − θ

def
= p(1,0)(a), respectively. Then θ ≈ a/d ∈ [0, 1] is a

proportional distance between the left flanking marker and the QTL.

So, in this model the only observations that provide information about θ, our

surrogate for QTL location, are those with M = (0, 1) or M = (1, 0), i.e., the obser-

vations in which there is a recombination between two markers. If recombinations

are unlikely, we will have much less information about the location θ of the QTL

than the nuisance parameters η0 and η1. This makes a hybrid bootstrap approach to

interval estimation of θ appealing, especially since the distribution theory necessary,

which is often a challenge for mixture models, can be handled by bootstrap simula-

tions.
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2.3 Estimation and Likelihood Ratio Test

In our model, the effect of the putative QTL is represented by the difference

|η0 − η1| and its position is indicated by θ, if it exists. In real interval mapping, the

whole genome, or the whole of several chromosomes, is searched for the detection of

a QTL. This involves a collection of marker intervals on each of which a likelihood

ratio test is conducted. Suppose a total of k intervals, or k + 1 consecutive markers

along a strand of DNA are considered. We assume that there is at most one QTL

in this strand. With multiple intervals, two parameters are needed to specify QTL

location, the mixture probability θ defined before and the index J for the marker

interval containing the QTL.4 Thus, the location (θ, J) means that a QTL is located

θ · dJ cM to the right of marker (J − 1), where dJ is the known distance of the J-th

marker interval.

Let (Yi,Mi0, . . . , Mik), i = 1, . . . , n be the observed quantitative trait value and the

marker genotypes of individual i from a random sample of sized n from a backcross

population. Let us define two genotypes of the J-th marker interval of individual

i as M̃i = (MiJ ,Mi(J+1)). Since Y |Q = 0 ∼ Qη0 and Y |Q = 1 ∼ Qη1 , the joint

probability density function (pdf) of (Yi, M̃i) is

n∏
i=1

q(mi)f(yi|mi, θ, J, η0, η1),

where q(mi) is the probability mass function of marker genotypes. Since the q(mi)

do not involve any unknown parameters, they can be dropped from the likelihood

function. Then the joint pdf of (Yi, M̃i) is proportional to the conditional distribution

4Some of authors do not separate these location parameters for QTL because they define the location of QTL as
the distance from the very first genetic marker on a chromosome or a whole genome.
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of Yi given M̃i, which can be written as

Yi|M̃i = (mj,mj+1) ∼





Qη0 , (mj,mj+1) = (0, 0)

(1− θ)Qη0 + θQη1 , (mj,mj+1) = (0, 1)

θQη0 + (1− θ)Qη1 , (mj,mj+1) = (1, 0)

Qη1 , (mj,mj+1) = (1, 1).

Notice that a QTL is assumed to be located exactly at a marker loci if θ = 0 or 1.

If we let fη0(fη1) denote the pdf of Qη0(Qη1), the log likelihood function of θ, η0 and

η1 for the J-th marker interval is

l(θ, J, η0, η1) =
∑

i∈{i:M̃i=(0,0)}
log fη0(Yi) +

∑

i∈{i:M̃i=(0,1)}
log{(1− θ)fη0(Yi) + θfη1(Yi)}

+
∑

i∈{i:M̃i=(1,0)}
log{θfη0(Yi) + (1− θ)fη1(Yi)}+

∑

i∈{i:M̃i=(1,1)}
log fη1(Yi).

With a fixed J , the maximum likelihood estimates (MLE) of θ̂ = θ̂(J), η̂0 = η̂0(J)

and η̂1 = η̂1(J) solve

(2.2)
∂

∂θ̂
l(θ̂, J, η̂0, η̂1) = 0,

∂

∂η̂0

l(θ̂, J, η̂0, η̂1) = 0

and

∂

∂η̂1

l(θ̂, J, η̂0, η̂1) = 0.

Since the estimates above are rarely explicitly available, some computational algo-

rithm such as the Newton-Raphson method will generally be employed to find these

estimates. Then, the maximum likelihood estimator for J is determined as:

(2.3) Ĵ = arg max
J∈{1,...,k}

l(θ̂(J), J, η̂0(J), η̂1(J)).

Note that the phenotype values of Yi will be re-used for the MLE profiled with various

values for J , but the estimates give different values for each J since the corresponding

flanked marker genotypes are different. In the similar manner, the constrained MLE
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for η0 and η1 can be calculated for a fixed (θ, J). Let them be denoted by η̂0(θ, J)

and η̂1(θ, J), respectively.

Finally, the log likelihood ratio test statistic for testing H0 : J = j0, θ = θ0 is

written as

(2.4) Λ(θ0, j0) = l(θ̂, Ĵ , η̂0(θ̂, Ĵ), η̂1(θ̂, Ĵ))− l(θ0, j0, η̂0(θ0, j0), η̂1(θ0, j0)).

If q(θ, J, η0, η1) denotes the upper α-th quantile for the distribution of Λ(θ, J)

under true value of (θ, J), then the region

(2.5) {(θ, J) : Λ(θ, J) < q(θ, J, η0, η1)},

has coverage 1 − α. Of course, (2.5) is not a confidence region since it depends on

the unknown nuisance parameters, but natural confidence intervals arise estimating

the quantile or quantile function.

2.4 Determination of Thresholds

A confidence region in (2.5) can be used to identify a chromosomal region in which

to concentrate the search for the exact location of a QTL. Since the likelihood ratio

test statistic is based on a mixture distribution, the normal asymptotic chi-square

distribution theory may fail, and there has been a fair bit of effort estimating the

quantiles in (2.5). These quantiles for the test statistic should depend on the size of

the genome, the number and spacing of genetic markers, the amount and pattern of

missing genotype information, and the true phenotype distribution. Various simu-

lation studies have been conducted to examine distributions of the test statistic to

determine threshold values.

Churchill and Doerge [8] suggested permutation testing to obtain empirical distri-

butions for test statistics. Visscher et al.[34] used bootstrap resampling procedures
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for a threshold value. Recently, Chen and Chen [6] establish the consistency of the

maximum likelihood estimates and found the asymptotic distribution of the likeli-

hood ratio test statistic for the mixture models of the interval mapping when the

conditional distribution of phenotypes, given QTL genotypes, are normal. Here, we

first introduce the LOD scores and its relation to the likelihood ratio because many

approaches geneticists have designed and used are based on the LOD scores. Sec-

ondly, the permutation method and the non-parametric bootstrap are discussed to

determine the thresholds of the LOD scores. In the next section the hybrid bootstrap

approach for the likelihood ratio test statistics of interval mapping is described and

compared with these methods.

2.4.1 LOD Scores and Likelihood Ratio Test

In the genetics community the LOD score statistic is more popular for inference

than the log likelihood ratio test statistic Λ(θ, J) used here. The LOD statistic

is essentially the log likelihood ratio test statistic testing whether a QTL exists at

(θ, J) against a null hypothesis that there is no QTL, meaning that the individuals’

phenotypes follow a single distribution, Yi ∼ Qη, i = 1, . . . , n, where η = η0 = η1.

Specifically,

(2.6) LOD(θ, J) =
l(θ, J, η̂0(θ, J), η̂1(θ, J))− l0(η̂)

log 10
,

where l0(η) =
∑n

i=1 log fη(yi), the log likelihood when there is no QTL, and η̂ maxi-

mizes l0.

The LOD score measures the strength of the evidence for the presence of a QTL

at the location (θ, J), compared to there being no segregating QTL in the backcross.

It would aim to test if a QTL exists at a specific location rather than to estimate
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the location of the QTL. But, both LOD sore and the likelihood ratio test statistic

have functional relation each other,

(2.7) Λ(θ, J) = log 10
{

LOD(θ̂, Ĵ)− LOD(θ, J)
}

.

Let us define LOD(θ̂, Ĵ)− LOD(θ, J) as the re-centered LOD score with its mini-

mum of 0 indicates the most likely location of a QTL. Then, it can be easily shown

that the re-centered LOD score multiplied by log 10 is equivalent to the likelihood

ratio test statistic in (2.4).

2.4.2 The Permutation Test

One of the most common methods to find the thresholds for LOD scores is using of

the permutation distribution for likelihood ratio. This approach has the advantage

that it makes no assumptions on the distribution of the phenotype. However, it

requires substantial computation for each study since the thresholds depend on the

observed data.

Suppose we permute (Y1, . . . , Yn) with marker genotypes fixed. Repeating this

gives a simulation approximation to the no QTL permutation distribution of the

maximum LOD score. If q is the α-th quantile for this distribution, the LOD confi-

dence region contains all locations with an LOD score above q,

{(θ, J) : LOD(θ, J) > q}.

By (2.7), this region is the same as

{(θ, J) : Λ(θ, J) < [LOD(θ̂, Ĵ)− q] log 10},

so [LOD(θ̂, Ĵ)− q] log 10 should estimate the upper α-th quantile for the distribution
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Λ(θ, J). This estimate is reported later in the simulation study.

2.4.3 Nonparametric bootstrap

In bootstrap simulation, (Y ∗
i ,M∗

i0, . . . , M
∗
ik), i = 1, . . . , n, are i.i.d from the em-

pirical distribution of (Yi,Mi0, . . . ,Mik), i = 1, . . . , n. The log likelihood ratio test

statistic is then computed from each bootstrap sample. It is

Λ∗(θ, J) = l(θ̂∗, Ĵ∗, η̂0(θ̂
∗, Ĵ∗), η̂1(θ̂

∗, Ĵ∗))− l(θ, J, η̂0(θ, J), η̂1(θ, J)),

where θ̂∗ and Ĵ∗ are the maximum likelihood estimates of θ and J based on the

resampled data, respectively.

If q̂ is the upper α-th quantile for Λ∗(θ̂, Ĵ), the confidence region will be

{(θ, J) : Λ(θ, J) < q̂},

so the bootstrap quantile q̂ should also estimate the upper α-th quantile for the dis-

tribution Λ(θ, J). Notice that unlike permutation testing, the observed combinations

of the phenotypes and markers remain together in the bootstrap method.

2.5 Hybrid Confidence Regions

The hybrid bootstrap finds the estimate for the quantile in (2.5) by simulation

from a reasonable parametric distribution. The conditional distribution of pheno-

types given a QTL genotype are often assumed to follow some parametric distri-

bution. Many quantitative traits observed, such as body mass index and insulin

concentration, are regarded as normally distributed. Another type of data arise

when the phenotype of interest is measured in counts. The number of roots gener-

ated in a plant, and the number of doubled haploid rice tiller [39] are examples of
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phenotypes measured in counts. In this case a Poisson model for quantitative traits

counts seems appropriate. Finally, some traits are observed as binary data, such as

the presence or absence of some disease, and the genes for these traits are known

as binary trait loci. A logistic regression model is the most common method for

identifying a QTL for these binary data.

In situations where we can reasonably assume that quantitative traits come from

some parametric family, the parametric bootstrap should be more powerful than

a nonparametric bootstrap. If we define η̂0(θ, J) and η̂1(θ, J) as the constrained

maximum likelihood estimates for each (θ, J), and the genotypes on the J-th marker

interval for i-th individual is M̃i = (miJ ,mi(J+1)), then the phenotype values Y ∗
i , i =

1, . . . , n, are randomly generated from the following resampling distribution:

Y ∗
i |M̃i = (mj,mj+1) ∼





Qη̂0(θ,J), (mj,mj+1) = (0, 0);

(1− θ)Qη̂0(θ,J) + θQη̂1(θ,J), (mj,mj+1) = (0, 1);

θQη̂0(θ,j) + (1− θ)Qη̂1(θ,J), (mj,mj+1) = (1, 0);

Qη̂1(θ,J), (mj,mj+1) = (1, 1).

If the likelihood ratios Λ∗(θ, J) are computed based on (Y ∗
i ,Mi0, . . . , Mik) for fixed

(θ, J), and the upper α-th quantile of the distribution Λ∗(θ, J) is q̂(θ, J, η̂0(θ, J), η̂1(θ, J)),

then the (1− α) hybrid confidence regions are defined as

(2.8) SH = {(θ, J) : Λ(θ, J) < q̂(θ, J, η̂0(θ, J), η̂1(θ, J))}.

The hybrid bootstrap is also a generalization of the parametric bootstrap, which

uses the unconstrained maximum likelihood estimates (θ̂, Ĵ) instead. So, in the

parametric bootstrap simulation the pseudo samples are generated from Qη̂0(θ̂,Ĵ) and

Qη̂1(θ̂,Ĵ), regardless of the values of (θ, J). The quantile estimate of parametric boot-

strap is then a single value for all (θ, J), so the computation time is drastically
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reduced, compared with the hybrid bootstrap. If the maximum likelihood estimates

of (θ̂, Ĵ) are very near the true values of (θ, J), the ordinary (parametric) bootstrap

gives almost the same quantile estimate as the hybrid bootstrap does, but with much

less computation time.

Interval mapping, however, is based on the recombination fraction between two

genes, and information about the QTL location parameters (θ, J) is only available

if the recombination events occur. In a real experimental cross the sample size is

limited, and recombinations observed are extremely rare. In particular, dense genetic

markers are usually spaced between 1 to 5cM , so the recombination rate observed

on these marker intervals is approximately 1%− 4.7%. The hybrid approach should

be appealing in the interval mapping model with the rare recombination, because it

considers the LRT for all θ and J . Although it requires more computation than the

ordinary bootstrap, the burden can be reduced by aiming to find only the end points

of the confidence interval.

As an illustration, Figure 2.4 and 2.5 display the log LRT and 95% hybrid quantile

estimates for a grid of (θ, J). The results are based on 6 equally spaced genetic

markers with an intermarker separation of 20cM and sample of 500 obtained from the

backcross design. Two models were considered each with a single QTL but at different

positions: the first locates the QTL exactly at the first marker loci (2.4), and the other

locates the QTL 8cM away from the third marker loci to the right (2.5), so that the

QTL true location parameters are (θ0, J0) = (0, 1) and (θ0, J0) = (0.4, 3), respectively.

Also, the phenotype values are assumed to follow the Poisson distribution with η0 = 5

and η1 = 4 so the ratio of two phenotype parameters is just 1.25.

In Figure 2.4 and 2.5 the solid line indicates the log LRT Λ(θ, J) in (2.8) over

(θ, J) of the whole chromosome. The dotted line is the 95% quantiles of the log
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LRT Λ∗(θ, J) based on resampled data, estimating q(θ, J, η̂0(θ, J), η̂1(θ, J)) in (2.8).

The corresponding region of (θ, J) in (2.8) is then the hybrid bootstrap confidence

interval. It is given by the range of θ in J-th marker interval, where the quantiles

(the dotted line) are higher than the test statistics (the solid line). It seems that the

hybrid confidence regions for QTL give a reasonable range and both include the true

QTL location parameter, even with the small shift in the phenotype values. In the

next simulation study, we investigate the performance of hybrid confidence regions

in terms of coverage probability and distribution of quantile estimates with different

marker distance, samples size, and location of QTL.

2.6 Simulation Study

Computer simulation studies are crucial for understanding the relative perfor-

mance of different methods for locating a QTL. The simulation study reported here

includes the comparison of the distribution of quantile estimates and coverage prob-

abilities of the confidence regions, constructed by the permutation, nonparametric

bootstrap, ordinary bootstrap and hybrid bootstrap. Also, more extensive simu-

lations for coverage probabilities of hybrid confidence regions under the different

sample size and location of a QTL were conducted. First, we describe the procedure

of the hybrid bootstrap method used in the simulation study. The extensive simula-

tion results are then reported.

2.6.1 Hybrid Bootstrapping Procedures

Suppose that we have a total of k marker intervals and n progeny samples from a

backcross population. Each sample includes k + 1 marker genotypes and the pheno-
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type values.5 The pre-specified values are dj for all j = 1, . . . , k +1, i.e., the distance

between (j − 1)-st and j-th markers. Also, the true QTL location (θ0, J0), the QTL

phenotype parameters η0 and η1, and the family of phenotype distributions are given

in the simulation study. The procedure begins with generating a marker interval

matrix.

(a) First, we generate n × (k + 1) marker interval matrix with a specified re-

combination rate. Let Mij, i = 1, . . . , n, j = 0, . . . , k be elements of the

matrix. Take a random sample of Xi0 from the uniform distribution with 0

and 1. If Xi0 ≤ 0.5 then put 0 into Mi0; otherwise, put 1 into Mi0. Let

γj = (1 − e−2dj)/2, where dj is the specified value. Then take Xij from the

uniform distribution with 0 and 1 again. If Mi(j−1) = 0 and Xij ≤ 1 − γj, or

Mi(j−1) = 1 and Xij ≤ γj, then put 0 into Mij; otherwise put 1 into Mij.

We proceed this until the marker interval matrix is complete. Notice that

the Mij for each chromosome forms a Markov chain, with transition proba-

bilities P (Mij = 1|Mi(j−1) = 0) = P (Mij = 0|Mi(j−1) = 1) = γj and with

P (Mij = 1) = P (Mij = 0) = 0.5.

(b) Next, phenotype values are simulated based on the QTL location (θ0, J0). With

the specified Qη0 and Qη1 , the phenotype Y = (Y1, . . . , Yn) can be generated

from

Yi|(Mi(J0−1)MiJ0 = m) ∼





Qη0 , m = (0, 0)

(1− θ0)Qη0 + θ0Qη1 , m = (0, 1)

θ0Qη0 + (1− θ0)Qη1 , m = (1, 0)

Qη1 , m = (1, 1)

5For the simplicity it is often assumed that the markers are equally spaced on a chromosome.
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Then, complete k +1 marker genotypes and a phenotype value are obtained for

each individual.

(c) Set a grid of θ, e.g., from 0 to 1 with increments of 0.02. The maximum

likelihood estimates for θ, J , η0, and η1 are numerically computed by (2.2)

and (2.3). Two dimensional Newton-Raphson algorithm might be necessary for

some parametric distributions of the QTL. Then, the log likelihood ratio test

statistics for each (θ, J) are computed by (2.4). Here, the constrained maximum

likelihood estimates for η0(θ, J) and η1(θ, J) should be reserved for all (θ, J).

(d) For each (θ, J), pseudo samples of phenotype values Y ∗ = (Y ∗
1 , . . . , Y ∗

n ) are now

generated based on η0(θ, J) and η1(θ, J).

Y ∗
i |(Mi(J−1)MiJ = m) ∼





Qη̂0(θ,J), m = (0, 0)

(1− θ)Qη̂0(θ,J) + θQη̂1(θ,J), m = (0, 1)

θQη̂0(θ,J) + (1− θ)Qη̂1(θ,J), m = (1, 0)

Qη̂1(θ,J), m = (1, 1)

Let Λ∗l (θ, J), l = 1, . . . , N be a log likelihood ratio test statistic based on the

l-th resampled phenotype values of Y ∗
l = (Y ∗

1 , . . . , Y ∗
n )l. Then, we can obtain

a total of N log likelihood ratio test statistics for each (θ, J). If q̂(θ, J) is the

upper α-th quantile of these N test statistics, it is the hybrid bootstrap quantile

estimate.

(e) Finally, the 1− α confidence regions for (θ, J) are obtained from

SH = {(θ, J) : Λ(θ, J) < q̂(θ, J)}.
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2.6.2 Simulation Results

In this study we assume a single QTL is present on a chromosome, the genetic

markers are equally spaced, and the genotype data are complete. We first simulated

9 equally spaced genetic markers with the marker distance of 5cM for a dense set

and 20cM for a sparse set. The corresponding recombination rates are γ = 0.0475

and γ = 0.1648, respectively. The process is assumed to exhibit no crossover inter-

ference so that generated markers form a Markov chain, with transition probabilities

P (Mij = 1|Mi(j−1) = 0) = P (Mij = 0|Mi(j−1) = 1) = γ, j = 1, . . . , 8 and with

P (Mi0 = 1) = P (Mi0 = 0) = 0.5. We then locate a single QTL in the different

position of two models; 2cM in a dense marker set, and 8cM in a sparse marker set

away from the third marker loci to the right. The true location parameter is then

(θ0, J0) = (0.4, 3) in both models. Finally, the phenotype values were generated from

the Poisson distribution with η0 = 6 and η1 = 4. We also fixed the sample sizes

as 100 and 200 for the simulation, and we believe they are reasonable sizes for real

experimental crosses.

The first simulation is based on 1000 replicates from the model just described.

We find four different quantile estimates for q(θ, J, η0, η1) in (2.5) for each replicate.

They are the nonparametric bootstrap(NPB), the permutation(PER), the paramet-

ric bootstrap(PBT), and the hybrid bootstrap(HBT) estimates. These quantile es-

timates are constant in (θ, J) except the hybrid estimate. For the purpose of the

comparison, we use the hybrid quantile estimate under true (θ0, J0), i.e., q̂(θ0, J0)
6.

We now investigate the distribution of these quantile estimates, using box-plots.

Figure 2.6 shows four box plots of the 95% quantile estimates for the log likelihood

ratio test statistics based on four different methods. The box plots in the left show

6If the qunatile estimate q̂(θ, J) varies heavily in (θ, J), the estimate q̂(θ0, J0) is not representative.
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the distributions of the quantile estimates for dense marker sets (5cM), and the box

plots in the right are those for sparse marker sets (20cM). The true 95% quantiles

of Λ(θ0, J0) based on 1000 replicates are estimated by 2.7006 for dense sets, and

2.4505 for sparse sets, respectively. The size of quantiles is related to the width of

confidence interval, because the confidence regions consist of all values of (θ, J) such

that Λ(θ, J) is less than the quantile. The smaller the quantile is, the narrower the

confidence interval is.

The box plots in Figure 2.6 show the variation in quantile estimates in our simu-

lation. Permutation estimates have the greatest variability, including some negative

values, corresponding to cases in which the QTL is not detected. On occasion, this

QTL is even larger than all LOD scores (2.6) across the entire genome. This behavior

arises since the method focuses on detecting, rather than locating a QTL. Quantile

estimates based on nonparametric bootstrapping are less variable than permutation

estimates, but more variable than estimates based on parametric or hybrid boot-

strapping. This is natural since the latter methods are based on correct parametric

assumptions.

The parametric and hybrid bootstrap quantiles do not seem to be much different

and both distributions are quite centered around the true quantiles for both dense

and sparse marker sets, although it seems that both tend to under-estimate the

true quantile for dense marker sets. However, narrow confidence intervals does not

always mean better performance. One prefers intervals to be as small as possible,

while maintaining the appropriate level of coverage. Coverage probability is another

important measure to compare the performance of confidence intervals.

Table 2.1 shows the coverage probabilities of nominal 95% confidence intervals

constructed by the four different methods. We notice that confidence regions by both
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distance NPB PER PBT HBT
5cM 0.8660 0.9610 0.9200 0.9370
20cM 0.9300 0.8800 0.9280 0.9550

Table 2.1: The coverage probabilities of 95% confidence intervals constructed by different meth-
ods; the non-parametric bootstrap(NPB), the permutation(PER), the parametric boot-
strap(PBT), and the hybrid bootstrap(HBT) with the different marker distance.

nonparametric and permutation methods have quite different coverage probabilities

in dense and sparse marker sets. We suspect this is due to variation in the quantile

estimates in the previous simulation. Large quantiles cover more regions, but small

quantiles are likely to miss the true location and lead to poor coverage. In contrast,

the parametric and hybrid bootstrap quantile estimates are less variable than the

other estimates, and their coverage probabilities are near nominal coverage for both

the marker distance of 5cM and 20cM . But, the hybrid regions have closer nominal

coverage than the parametric regions does. In particular, the hybrid regions have

better coverage than the ordinary bootstrap regions in the dense marker sets, where

the recombination events are rare.

The last simulation shows coverage probabilities of hybrid regions in various situ-

ations. In Table 2.2 the coverage probabilities of hybrid regions with different sample

sizes (n=200, 500, and 1000), nominal levels (95% and 90%), and QTL location (the

end of the chromosome, and the middle of the chromosome, (θ, J) = (0, 1), and

(θ, J) = (0.4, 3), respectively) are shown. It seems that the hybrid regions provide

the desired nominal coverage regardless of the sample size, and QTL location.

In the first two simulation, hybrid regions were compared with other confidence

regions. It was seen that quantile estimate of hybrid approach are less variable than

that of any other methods, and coverage probabilities of hybrid regions are the clos-

est to the nominal coverage. The last simulation demonstrates that hybrid regions

are reliable and robust. Real QTL experiments do not have equally spaced markers
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and exhibit complex patterns of missing genotype data. Although the simulation

studies reported are criticized as not being sufficiently realistic, they are among the

most complete and realistic such studies, and the results are of considerable value

for the assessment of the performance of the QTL mapping methods included.

n 1− α (θ, J) = (0, 1) (θ, J) = (0.4, 3)
1000 0.90 0.882 0.897

0.95 0.944 0.943
500 0.90 0.899 0.898

0.95 0.953 0.945
200 0.90 0.906 0.893

0.95 0.956 0.943

Table 2.2: The coverage probabilities of hybrid bootstrap regions under different sample sizes
(n=200, 500, and 1000), nominal levels (95% and 90%), and QTL locations.

2.7 Data Analysis

Data for rice tiller number is originally is given and analyzed by Yan et al.[39]. In

their experiment, two inbred lines, semidwarf IR64 and tall Azucena, were crossed

to generate an F1 progeny population. By doubling haploid chromosomes of the

gametes derived from the heterozygous F1, a double-haploid(DH) population of 123

lines was founded, which is genetically equivalent to a backcross population. A

genetic linkage map was constructed using 175 genetic markers, with a total length

of 2005cM , representing a good coverage of 12 rice chromosomes.

The 123 DH lines were planted in a completely randomized design with two repli-

cations. Each replicate was divided into different plots, each containing eight plants

per line. Tiller numbers were measured for five central plants in each plot 40 days

after transplanting. The tiller numbers were averaged from the two replicates. Given

that tiller number can be only an integer, the averaged tiller number was rounded

to the nearest integer for QTL analysis.
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Our analysis is based on the data including marker distance map, genotype infor-

mation, and rice tiller numbers. The genetic marker distance map along 12 chromo-

somes is present in Figure 2.7. The distances vary from 0.8cM to 43.8cM . Figure

2.8 is a plot grid of genotype data. The genotypes HH and HL are displayed in

the colors red and blue, respectively. The white color means the missing genotype

at that loci. A total of 107 individuals only are analyzed, since the phenotypes of 16

remaining individuals are missing and we left out these cases. 90% of the markers

on the whole chromosomes are genotyped, but still many markers are missing.

Inference for QTL location in interval mapping models is based on flanked marker

genotypes, so we cannot directly apply hybrid bootstrap approach to these data with

missing marker genotypes. So, we first need to derive modified equations for the like-

lihood when some marker information is missing. Then, estimation for QTL location

should be based on this modified likelihood. In the next section an approach for miss-

ing genotypes are described and the data analysis results are followed.

2.7.1 Missing Genotypes

When marker genotypes are missing, it is generally known that information from

other markers in a linkage group can be used to recover some missing information. In

their original paper on linkage map reconstruction, Lander and Green [20] outlined

a Markov chain method to recover missing information. Jiang and Zeng [17] derived

a general algorithm to systematically deal with dominant and missing markers in F2

and other populations derived from two inbred lines. Particularly, they formulated

the algorithm in a way that can efficiently calculate QTL genotype distribution given

observed marker phenotypes. Martinez and Curnow [24] proposed using nearby

markers to recover information for the individuals with missing markers in QTL
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regression mapping model. We apply this approach to our interval mapping model

to recover marker information.

Let us revisit the interval mapping model with unknown parameters. We observe

(Yi,Mi0, . . . , Mik), i = 1, . . . , n, where Yi is a phenotype value and Mij is j-th marker

genotype for i-th individual. Assume that Y |Q = 1 ∼ Poisson(η1) and Y |Q = 0 ∼

Poisson(η0). Let dj be a distance of j-th marker interval, i.e., the distance between

Mi(j−1) and Mij, j = 1, . . . , k for all i. The proportional location of a QTL is

represented by θ = a/dj, if the QTL lies within j-th marker interval and the distance

from Mi(j−1) to the QTL is a. Since we estimate a putative QTL location, a grid of

either θ ∈ [0, 1] or a ∈ [0, dj] should be considered.

We can find the nearest known flanking marker genotypes at any given θ, say u

for one from the left and v from the right. They may or may not be the marker loci

(j− 1) and j when θ is in that interval since some individuals have missing markers.

Here are two possible cases we have to consider when θ lies between (j − 1)-st and

j-th marker.

1. Both nearest flanking marker genotypes are known, i.e., the marker genotypes

at u and v are known.

2. The very first or last marker on a chromosome is missing so one of u and v is

still unknown.

In the first case, the condition probability of Q = 1 given flanking marker geno-

types is
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P (Q = 1|(Miu,Miv) = m) ≈





0, m = (0, 0);

θuv, m = (0, 1);

1− θuv, m = (1, 0);

1, m = (1, 1),

where

θuv =
du+1 + · · ·+ dj−1 + θdj

du+1 + · · ·+ dj + · · ·+ dv

.

Notice that θuv is equal to θ in case u = j − 1 and v = j.

Let

pm(θuv) = P (Q = 1|(Miu,Miv) = m),

and the conditional distribution of Y given (Miu,Miv) is then mixture

Y |(Miu,Miv) = m ∼ [1− pm(θuv)]Qη0 + pm(θuv)Qη1 ,

where Qη is a Poisson distribution with mean η.

In the second case, if the first marker of i-th individual is missing, i.e., Mi0 is

unknown, the conditional distribution of Y given Miv is

(2.9) Y |Miv = m ∼





(1− δv)Qη0 + δvQη1 , m = 0

δvQη0 + (1− δv)Qη1 , m = 1,

where δv is a recombination rate between the known marker Miv and putative QTL

location.

δv =
1

2
[1− exp(−2((1− θ)dj + · · ·+ dj+1 + · · ·+ dv)/100)]

Similarly, if the last marker is missing, i.e., Mik is unknown, the conditional

distribution of Y given Miu is same as the distribution (2.9), but δv should be replaced

by δu, which is

δu =
1

2
[1− exp(−2(du+1 + · · ·+ dj−1 + · · ·+ θdj)/100)] .
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The total likelihood function of (θ, J, η0, η1) is then given by

l(θ, J, η0, η1) =
∑

i

(Yi log η0 − η0) I(i∈{i:(Miu,Miv)=(0,0)})

+
∑

i

(Yi log η1 − η1) I(i∈{i:(Miu,Miv)=(1,1)})

+
∑

i

log[(1− θuv)η
yi
0 e−η0 + θuvη

yi
1 e−η1 ]I(i∈{i:(Miu,Miv)=(0,1)})

+
∑

i

log[θuvη
yi
0 e−η0 + (1− θuv)η

yi
1 e−η1 ]I(i∈{i:(Miu,Miv)=(1,0)})

+
∑

i

log[(1− δv)η
yi
0 e−η0 + δvη

yi
1 e−η1 ]I(i∈{i:(Mi0,Miv)=(c,0)})

+
∑

i

log[δvη
yi
0 e−η0 + (1− δv)η

yi
1 e−η1 ]I(i∈{i:(Mi0,Miv)=(c,1)})

+
∑

i

log[(1− δu)η
yi
0 e−η0 + δuη

yi
1 e−η1 ]I(i∈{i:(Miu,Mik)=(0,c)})

+
∑

i

log[δuη
yi
0 e−η0 + (1− δu)η

yi
1 e−η1 ]I(i∈{i:(Miu,Miv)=(1,c)})

−
n∑

i=1

log Yi!,

where c means a missing genotype, and the marker genotypes (Miu,Miv) are deter-

mined for each J ∈ {1, . . . , k}.

2.7.2 Results

Figure 2.9 shows the log likelihood ratio test statistics for each (θ, J) on the whole

genome, and on 12 separate chromosome, respectively. The genomic positions cor-

responding to the lowest point of the curves are the maximum likelihood estimates

for the QTL. It turns out that (θ̂, Ĵ) = (0.58, 17) on chromosome 3 has the strongest

evidence for a QTL on the genome-wide scan. For each chromosome, we find permu-

tation threshold of the likelihood ratio, and it turns out that chromosome 3 and 12

have a QTL because the test statistics on the other chromosomes are all lower than
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Table 2.3: The quantile estimates for the log likelihood ratio q̂(θ, J) and the widths of the confidence
intervals for the QTL location on the whole genome are shown. 95% confidence regions
were computed by the non-parametric bootstrap(NPB), the permutation(PER), and the
parametric bootstrap(PBT).

method q̂(θ, J) Chromosome width total width
PER 2.2250 3 5.01 5.01
NPB 3.3150 3 6.06 6.34

12 0.28
PBT 3.5001 3 6.2 7.12

12 0.92

the thresholds. Notice that the test statistics are all less than 2, and mostly around

1 except chromosome 3 and 12.

Confidence regions for the QTL location could be constructed with an appropri-

ate threshold of the test statistics. The regions where the test statistics are less

than the threshold are taken as confidence regions for a QTL. For comparison, we

apply 4 different methods previously described to compute thresholds. They are the

non-parametric bootstrap, the permutation test, the parametric bootstrap, and the

hybrid bootstrap.

Figure 2.10 shows the results of the genome-wide scan. The log likelihood ratio

test statistics for (θ, J) on the whole genome are solid lines, and three thresholds com-

puted by the non-parametric bootstrap(NPB)— dotted line, the permutation(PER)—

dash-dot line, and the parametric bootstrap(PBT)— dashed line are present. Table

2.3 shows the corresponding quantiles and confidence widths for each method. Since

the quantile estimate of the parametric bootstrap is the largest among three meth-

ods, it produces the widest confidence regions. The permutation method has the

narrowest confidence interval and the non-parametric bootstrap is followed.

Both the parametric and non-parametric bootstrap locate a QTL either between

marker 13 and marker 20 on chromosome 3 (marker interval RG179–RG910) or

between marker 9 and marker 11 on chromosome 12 (marker interval CDO345–
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RG181). But, the permutation confidence regions locate a QTL only on chromosome

3 between marker 14 and marker 19 (marker interval CDO337–CDO87). Please refer

to Yan et al.[39] for the molecular linkage map information of the data, including

marker names and distances.

The hybrid bootstrap method was applied to the data, and it turns out that the

hybrid quantile estimates q̂(θ, J) are greater than the log likelihood ratio Λ(θ, J) for

all (θ, J). This means that the entire genome forms the hybrid confidence regions

for a QTL. So, hybrid bootstrap fails to properly estimate for the location of a QTL

on the genome-wide scan. The result is interesting because the other methods give

some thresholds of likelihood ratio test. We investigate the reason that the hybrid

bootstrap fails on the genom-wide scan later in the section.

However, scans on individual chromosomes give different results. Fig 2.11 shows

the log likelihood ratio test statistics for (θ, J) on the chromosomes 3 and 12 with

thresholds computed by the non-parametric bootstrap(NPB)— dotted line, the per-

mutation(PER) — dash-dot line, and the parametric bootstrap(PBT)— dashed line,

respectively. A QTL was not detected on the other chromosomes, i.e., the thresholds

are higher than the likelihood ratio for all (θ, J). Table 2.4 shows the corresponding

quantile estimates and confidence widths for each method.

The non-parametric confidence regions have the narrowest interval on chromosome

3, but the widest interval on chromosome 12. In contrast, the permutation region

is the widest on chromosome 3, but the narrowest on chromosome 12. This may be

due to large variation for the quantile estimates noted in the simulation study. The

parametric bootstrap regions locate a QTL on chromosome 3, but fail to detect a

QTL on chromosome 12 since the quantile estimate is greater than the likelihood

ratio for all (θ, J). The hybrid regions are similar to the parametric bootstrap, but
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Table 2.4: The quantile estimates for the log likelihood ratio q̂(θ, J) and the widths of the confidence
intervals for the QTL location on the chromosome 3 and 12 are shown, respectively. 95%
confidence regions were computed by the non-parametric bootstrap(NPB), the permu-
tation(PER), the parametric bootstrap(PBT), and the hybrid bootstrap(HBT).

Chromosome method q̂(θ, J) width
3 NPB 2.1902 4.94

PER 3.4506 6.16
PBT 2.9625 5.88
HBT (3.406, 2.648) 5.82

12 NPB 1.9968 6.92
PER 0.4964 1.41
PBT 2.4884 —
HBT — —

are a little narrower on chromosome 3. Since the quantile estimates of the hybrid

bootstrap are not constant, the endpoints of the quantiles are reported in the Table

2.4.

The hybrid quantile estimates are based on the resampling distribution of Qη0(θ,J)

and Qη1(θ,J) for each (θ, J). So, if η0(θ, J) and η1(θ, J) do not vary in (θ, J), the hybrid

regions are not much different from the parametric bootstrap regions. Figure 2.12

shows the constrained maximum likelihood estimates η̂0(θ, J) in red and η̂1(θ, J) in

blue on the whole genome for each (θ, J). The two curves are quite symmetric around

a horizontal line at 11. The largest difference between the two estimates occurs near

marker 17 on chromosome 3, corresponding to the location of the maximum likelihood

estimate for (θ, J). The averages of the estimates η̂0(θ, J) and η̂1(θ, J) over (θ, J) are

10.9752 and 11.1607, respectively, and the average difference of η̂0(θ̂, Ĵ) and η̂1(θ̂, Ĵ)

is 2.3052.

All quantile estimates except the hybrid bootstrap are based on the maximum

likelihood estimate (θ̂, Ĵ) for their computation. In these methods the estimate of

the QTL effect, η̂0(θ̂, Ĵ)− η̂1(θ̂, Ĵ) is employed for resampling distribution. However,

the hybrid regions consider the estimate η̂0(θ, J) − η̂1(θ, J) for all (θ, J). It turns

out that they are almost 0 for some (θ, J), and very tiny for most of (θ, J). So the
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phenotype distributions for QTL genotype Q and q are not much different from each

other in the hybrid meehod. This is the reason that the hybrid regions fails to locate

a QTL on the whole genome of the data.

2.8 Future Research for Multiple QTL model

Interval mapping assumes the presence of a single QTL for a chromosome. One

may use interval mapping to identify multiple QTLs, especially when they are on

separate chromosomes. Recent efforts in developing methods to identify QTLs have

focused on multiple QTL methods. When several QTLs are modelled, one can con-

trol for much of the genetic variation in a cross, and thus individual QTLs can be

more clearly seen. In contrast, when one models a single QTL at a time, the genetic

variation due to other segregating QTLs is incorporated into the “environmental”

variation. When two QTLs are linked, the single QTL method of the interval map-

ping often view them as a single QTL. Searches which allow multiple QTLs do a

better job of separating the two loci, and identifying them as distinct. The pres-

ence of the interaction between the multiple QTLs, which is also called epistasis in

genetics, can only be detected and estimated using models which include multiple

QTLs. Incorporating epistatic effects into multiple QTL models will be very diffi-

cult, however. If one were to include all possible pairwise interactions, the number

of parameters in the model would quickly explode. For this reason most of work

actually neglect the possibility of epistasis.

Lander and Botstein [19] briefly mentioned a method for distinguishing linked

loci. If, when performing interval mapping, the LOD curve for a linkage group shows

two peaks, or a single very broad peak, Lander and Botstein recommended to fix the
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position of one QTL at the location of the maximum LOD, and then search for a

second QTL on that linkage group. They fix the location of the first QTL, and vary

the location of the second QTL along the linkage group. At each location for the

second QTL, we calculate a LOD score, comparing the maximum likelihood under

the hypothesis of two QTLs at these locations, to that with a single QTL, located

where the first QTL was placed. Each individual’s contribution to the likelihood has

the form of a mixture of four distributions, the four components corresponding to

the four possible QTL genotypes, such as Q/Q,Q/q, q/Q, and q/q on the first QTL

and the second QTL, respectively.

However, this method has been criticized, pointed out the phenomenon of “ghost

QTLs.” When two or more QTLs are linked in coupling, meaning that their effects

have the same sign, interval mapping often gives a maximum LOD score at a location

in between the two QTLs, even if there does not exist a QTL near that location.

Broman and Speed [3] viewed the problem of the multiple QTLs mapping as one

of model selection. Their method assumes that the genetic markers are sufficiently

dense, and dispense with interval mapping, considering only the marker loci as puta-

tive locations for QTLs. Additionally, with the assumption of additive QTLs and no

epistasis, their method focuses on identifying the number and locations of the QTLs

with a developed selection method. Let yi denote the phenotype of individual i, and

let xij = 1 or xij = 0 according to whether individual i has genotype MM or Mm

respectively, at marker j. Then the linear model

yi = µ +
P∑

j=1

βjxij + εi,

is considered, with the εi independent and identically distributed N(0, σ2). The

selection method seeks to identify the subset of markers for which βj 6= 0.

They assumes that QTLs are located exactly at marker loci but we can relax this
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assumption and bring the interval mapping method back to consider the multiple

QTLs problem.
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Figure 2.1: A backcross experiment, with four progeny. (Typical experiments contain more than
100 progeny.) Only one pair of homologous chromosome is shown.
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Figure 2.2: A intercross experiment, with four progeny. (Typical experiments contain more than
100 progeny.) Only one pair of homologous chromosome is shown.
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Figure 2.3: Histograms of the phenotype distributions in the parental strains, the F1 generation,
and the backcross generation.
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Figure 2.4: The likelihood ratio test statistics (solid line) and the 95% hybrid quantile estimates
(dotted line) for each (θ, J) are shown. The hybrid confidence regions for (θ, J) = (0, 1)
are corresponding to the areas where the quantiles estimates are higher than the test
statistics.

46



0 1 2 3 4 5
0

5

10

15

20

25

30

θ

Λ
(θ

)

Figure 2.5: The likelihood ratio test statistics (solid line) and the 95% hybrid quantile estimates
(dotted line) for each (θ, J) are shown. The hybrid confidence regions for (θ, J) = (0.4, 3)
are corresponding to the areas where the quantiles estimates are higher than the test
statistics.
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Figure 2.6: The box plots of the distribution of the 95% quantile estimates of the log likelihood
ratio test statistics, using the non-parametric bootstrap(NPB), the permutation(PER),
the parametric bootstrap(PBT), and the hybrid bootstrap(HBT) with equally spaced
marker distances of 5cM in the upper panel and 20cM in the lower panel, respectively.
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Figure 2.7: The genetic marker distance map along 12 chromosomes. These chromosome have 18,
15, 21, 14, 12, 17, 15, 17, 13, 9, 13, and 11 markers, respectively.

Figure 2.8: Plot grid of genotype data along a total of 175 markers and 107 individuals. The
genotypes HH, HL, and missing markers are displayed in the colors red, blue, and
white, respectively.
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Figure 2.9: The log likelihood ratio test statistics for (θ, J) on the whole genome are shown on
the upper plot. The following plots are the log likelihood ratio test statistics for each
chromosome.
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Figure 2.10: The log likelihood ratio test statistics for (θ, J) on the whole genome with thresholds
computed by the non-parametric bootstrap(NPB, dotted line), the permutation(PER,
dash-dot line), and the parametric bootstrap(PBT, dashed line) are shown.
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Figure 2.11: The log likelihood ratio test statistics for (θ, J) on the chromosome 3 and 12 with
thresholds computed by the non-parametric bootstrap(NPB, dotted line), the per-
mutation(PER, dash-dot line), and the parametric bootstrap(PBT, dashed line) are
shown, respectively.
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Figure 2.12: The constrained maximum likelihood estimates for η0(θ, J) in red and η1(θ, J) in blue
are shown on the whole genome.
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CHAPTER III

Change Point Problems

In this chapter we first give brief explanation about Shewhart control chart. We

then consider the estimation problem for a post change parameter after a change is

detected by a Shewhart stopping procedure. In particular, we model independent

normal variables with unit variance but shift in mean at some unknown point. Both

likelihood ratio and Bayesian statistics are used to find hybrid confidence regions for

the post change mean. In the simulation study, their coverage probabilities are com-

pared at each mean difference, including the distribution without changes. Change

point Poisson process models are also described.

3.1 Shewhart Control Chart

On-line quality control procedures are used when decisions are to be reached se-

quentially, as measurements are taken. Situation where the process leaves a controled

condition and enters an out of control state are called disorders. For reasons of safety

of the technological process, or quality of production it is necessary to detect disorder

quickly with as few false alarms as possible.

These problems are often investigated using a statistical approach. From the

statistical point of view, measurement sample is a realization of a random process.
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Because of random behavior, large fluctuations can occur in the measurements even

when the process is in control, and many result in false alarms if they go beyond

certain boundaries. If the measurements when the process is in control have a specific

probability distribution, this distribution is assumed to change at some point, once

the process is out of control. In a parametric approach, the change leads to different

values for distributional parameters.

There are many change detection algorithms also known as control charts in in-

dustrial applications. Shewhart charts, the CUSUM charts, and the moving average

control charts are the most well-known algorithms. For more a general setting and

background, we refer interested readers to Basseville and Nikiforov [2], Montgomery

[25], and Lorden [22].

Since Walter A. Shewhart originated the concept of the control chart in the early

1920s, it has become popular in statistical process control. Shewhart-type control

charts consist of a graph with time on the horizontal axis and a characteristic of

interest (individual measurements or statistics such as mean or range) on the vertical

axis. Control limits drawn on the graph provide easy checks on the stability of the

process, with values beyond these limits signalling the presence of special causes.

We consider the usual control charts with a lower control limit (LCL) and an upper

control limit (UCL). If the measurement value x is lower than LCL or higher than

UCL, then the process is called out of control.

If the underlying distribution of the observed process is assumed to be normal,

then the traditional Shewhart individuals control chart has limits defined by

UCL = µ + Φ←(1− α/2)σ

and

LCL = µ− Φ←(α/2)σ,
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where Φ← is the inverse of the standard normal cumulative distribution function

Φ, and µ is the mean and σ is the standard deviation of the normal distribution.

Level α is the false alarm rate. Typically, µ and σ are unknown. However, we

shall assume that they can be estimated from a sample x1, . . . , xn of independently

and identically distributed random variables. Classical estimators or µ and σ are

the sample mean x̄n = n−1
∑n

i=1 xi and the sample standard deviation σ̂ = [(n −

1)−1
∑n

i=1(xi − x̄n)2]−1/2. Thus, typically the alarm is set the first time at which,

|xn − x̄n| ≥ cσ̂

where c is a tuning parameter and set to control the false alarm rate. Shewhart charts

are sensitive to large process shifts but the probability of detecting small shifts fast

is rather small.

3.2 Estimation for Post-Change Mean in a Normal Shift

To begin our exploration of hybrid bootstrapping in change point problems, we

start with considering the estimation problems of post change parameter θ for the

general model. Next, we will see how this approach can be applied to an example in

which the data are normal with unit variance, with mean η before the change and

mean θ after the change, using the Shewhart detection time

(3.1) τ = inf{n ≥ 2 : |xn − x̄n| ≥ c
√

(n− 1)/n}.

A Bayesian approach is then introduced and compared with one based on likelihood

estimation in a simulation study.
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3.2.1 Model and Estimation

Let x1, x2, . . . be the independent random variables with x1, x2, . . . , xν having

distribution F and xν+1, xν+2, . . . having distribution G 6= F . The change point ν,

where the distribution shifts from F to G, is regarded as an unknown parameter.

In the experiment we observe sequentially x1, x2, . . . , xτ and τ is a stopping time by

some procedure, which depends only on the x observed values. Suppose that the

stopping time is likely to be occurred after the change point. We also assume that

F and G are one-parameter distributions with density fη for i ≤ ν and gθ for i > ν,

respectively.

Then the likelihood function is

L(θ, ν, η) =





ν∏
i=1

fη(xi)
τ∏

i=ν+1

gθ(xi) , τ > ν

τ∏
i=1

fη(xi) , τ ≤ ν,

and the log likelihood function is

l(θ, ν, η) =
ν∧τ∑
i=1

log fη(xi) + I(τ>ν)

τ∑
i=ν+1

log gθ(xi),

where I(·) is an indicator function. The maximum likelihood estimates of η and θ

can be obtained for a fixed ν,

η̂(ν) solves
ν∧τ∑
i=1

∂

∂η
log fη(xi) = 0

and

θ̂(ν) solves
τ∑

i=ν+1

∂

∂θ
log gθ(xi) = 0 for τ > ν.

If observing the date is stopped at the exact change point or before the change

actually occurs, i.e., τ ≤ ν, the post change parameter θ can not be estimated. This

is the case of the false alarm. Since the change point ν is not known in practice, we

cannot distinguish the alarms due to ‘out of control’ process from the false alarm.
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In this problem we consider only the cases that the stopping procedure detects a

change point, i.e., τ < ν.

Let us denote ν̂ as a maximum likelihood estimate for the change point. It max-

imizes the profile likelihood function l(θ̂(ν), ν, η̂(ν)) over ν. So,

ν̂ = arg sup
1<ν<τ

l(θ̂(ν), ν, η̂(ν)),

Similarly, the constrained maximum likelihood estimate of ν is

ν̂θ = arg sup
1<ν<τ

l(θ, ν, η̂(ν)),

for each fixed θ. Notice that ν̂θ = ν̂ if θ = θ̂(ν̂). Since the change point ν is discrete

here, the estimate ν̂θ is an integer, but may vary for different values of θ.

The log likelihood ratio test statistic of H0 : θ = θ0 against H1 : θ 6= θ0 is then

Λ(θ0) = l(θ̂(ν̂), ν̂, η̂(ν̂))− l(θ0, ν̂θ0 , η̂(ν̂θ0)),

and the confidence set for θ is

S = {θ : Λ(θ) < q(θ)},

where q(θ) should be the smallest value of q for which

Pθ,ν,η(Λ(θ) < q) ≥ 1− α.

The quantile q(θ) is estimated, using the hybrid bootstrap. We can start with

simulating the distribution of Λ(θ). Let Λ∗(θ) be a log likelihood ratio test based on

the samples generated from Pθ,ν̂θ,η̂(ν̂θ).

If q̂(θ) be the smallest value of q for which

Pθ,ν̂θ,η̂(ν̂θ)(Λ
∗(θ) < q) ≥ 1− α,

the hybrid confidence regions are

(3.2) SH = {θ : Λ(θ) < q̂(θ)}.
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3.2.2 Normal Example

If the data are normal with unit variance, with mean η before the change and

mean θ after the change, i.e., x1, x2, . . . , xν ∼ N(η, 1) and xν+1, . . . , xτ ∼ N(θ, 1),

then the log likelihood function is

l(θ, ν, η) = −1

2

ν∧τ∑
i=1

(xi − η)2 − 1

2

τ∑
i=ν+1

(xi − θ)2I(τ>ν) − τ log
√

2π.

The maximum likelihood estimators of η and θ for a fixed ν are

η̂(ν) =
sν

ν
, where sν =

ν∑
i=1

xi

θ̂(ν) =
sτ − sν

τ − ν
,

and the maximum likelihood estimate for ν is

ν̂ = arg sup
1<ν<τ

l(θ̂(ν), ν, η̂(ν))

= arg sup
1<ν<τ

{s2
ν

ν
+

(sτ − sν)
2

τ − ν

}
.

The constrained maximum likelihood estimator of ν for each θ is then

ν̂θ = arg sup
1<ν<τ

l(θ, ν, η̂(ν))

= arg sup
1<ν<τ

{
− (τ − ν)

2
θ2 + (sτ − sν)θ +

s2
ν

2ν

}
.

Finally, the log likelihood ratio test for each θ is given by

Λ(θ) = l(θ̂(ν̂), ν̂, η̂(ν̂))− l(θ, ν̂θ, η̂(ν̂θ))

=
1

2

{
(τ − ν̂θ)θ

2 − 2(sτ − sν̂θ
)θ +

(sτ − sν̂)
2

(τ − ν̂)
+

s2
ν̂

ν̂
− s2

ν̂θ

ν̂θ

}
.(3.3)

Now, we can find the quantile estimate for the distribution of Λ(θ), using the

hybrid bootstrap. For each θ, we first generate X∗(θ) = {x∗1, x∗2, . . . , x∗τ} from the

normal distribution with a mean of η̂(ν̂θ) for i ≤ ν̂θ and a mean of θ for i > ν̂θ, i.e.,

x∗1, x
∗
2, . . . , x

∗
ν̂θ

∼ N(η̂(ν̂θ), 1)

x∗ν̂θ+1, . . . , x
∗
τ ∼ N(θ, 1),
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where τ = τ(x∗1, x
∗
2, . . .) is not a fixed stopping time but determined based on the

resampled data each time. If Λ∗(θ) is a log likelihood ratio computed from X∗(θ),

and q̂(θ) is the upper α-th quantile of the distribution of Λ∗(θ), the hybrid confidence

region SH in (3.2) can be easily obtained.

If the difference between θ and η is large, stopping is likely to occur immediately

after the change point ν. In this case we have a few observations associated with

θ, and this makes estimation for θ to be difficult so hybrid bootstrap seems to be

appealing. However, if the difference between θ and η is very small or almost 0,

stopping time could occur much later than the change point does. In this case es-

timation for the change point ν is difficult because the process seems to be from

a single distribution. We investigate the estimation results in the simulation study

when θ approaches η.

3.2.3 Bayesian Test Statistics

A Bayesian approach to change point problems was suggested by Smith [33]. In

his work, inference is based on the posterior probabilities of the possible change

points. He considers the cases where the underlying distributions are normal and

binomial. We use the Bayesian test statistics in the previous normal example, and

compare this approach with one based on the likelihood ratio test statistics in the

simulation study.

Let us start with a general Bayesian framework in change point problems. As-

suming that the distributions have densities f(x|η) and g(x|θ), the joint distribution
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of x1, . . . , xτ conditional on η, θ and the change having taken place at ν is given by

p(x1, . . . , xτ |η, θ, ν) =





ν∏
i=1

f(xi|η)
τ∏

i=ν+1

g(xi|θ), τ > ν

τ∏
i=1

f(xi|η), τ ≤ ν.

We further assume a prior distribution to be specified over the set of possible change

points, given by a mass function p0(ν) such that
∑

ν p0(·) = 1. Independently of the

assignment of p0(ν), we assign a prior density p0(η, θ) over Θ, the range of possible

values of (η, θ). We then obtain the posterior density of ν

p(ν|x1, . . . , xτ ) ∝
∫

Θ

p(x1, . . . , xτ |η, θ, ν)p0(η, θ)p0(ν)dηdθ,

and the marginal posterior density for θ is given by

p(θ|x1, . . . , xτ ) ∝
∑

ν

∫

η

p(x1, . . . , xτ |η, θ, ν)p0(η, θ)p0(ν)dη.

The test statistic of H0 : θ = θ0 against H1 : θ 6= θ0 is

Λ(θ0) = log
∑

ν

p(ν|x1, . . . , xτ )− log p(θ0|x1, . . . , xτ ).

In the normal example with uniform priors for ν, η, and θ, the Bayesian test

statistic is given by

Λ(θ) = log
{ τ−1∑

ν=1

∫ ∞

−∞

∫ ∞

−∞

ν∏
i=1

φ(xi − η)
τ∏

i=ν+1

φ(xi − θ)dηdθ
}

− log
{ τ−1∑

ν=1

∫ ∞

−∞

ν∏
i=1

φ(xi − η)
τ∏

i=ν+1

φ(xi − θ)dη
}

= log
{ τ−1∑

ν=1

1√
ν(τ − ν)

exp
( s2

ν

2ν
+

(sτ − sν)
2

2(τ − ν)

)}
(3.4)

− log
{ τ−1∑

ν=1

1√
ν

exp
( s2

ν

2ν
− (τ − ν)

2
θ2 + (sτ − sν)θ

)}
+ log

√
2π,

where φ(x) is the standard normal density. This is similar to (3.3) except that the

likelihood test statistic takes the ratio of the maximized likelihood functions over ν,
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while the Bayesian test statistic takes the ratio of the summed posterior functions

over ν. The numerical comparison will be shown in the next simulation example.

3.2.4 Simulation Study

In the simulation study we find the confidence interval for the post-change mean

θ, using the hybrid bootstrapping, based on the likelihood ratio test statistic (3.3)

and the Bayesian test statistic (3.4). Besides the comparison of two intervals, the

coverage probabilities of the hybrid confidence regions are computed for each test

statistic and compared with a sequence of θ.

The original data were randomly generated from xi ∼ N(0, 1) for i ≤ 10 and

xi ∼ N(3, 1) for i > 10, with the stopping time

(3.5) τ = inf
{
n > 1 : |xn − x̄n| > 3

√
(n− 1)/n

} ∧ 100.

The largest sample size allowed is 100. For instance, in the first replication the

sampling actually stopped at τ = 12. Based on this sample X = (x1, . . . , x12), the

maximum likelihood estimates of η̂(ν̂), ν̂ and θ̂(ν̂) were computed and then for each θ,

500 independent samples of (x∗1, x
∗
2, . . .) were generated from the normal distribution

with a mean of η̂(ν̂θ) for i ≤ ν̂θ and a mean of θ for i > ν̂θ. Finally, we estimated

quantiles of the distributions for both test statistics of (3.3) and (3.4).

In the Figure 3.1 the solid lines denote the test statistic of the original data over

a grid of θ and the dotted lines indicate the 95% quantiles of the test statistics based

on the resampled values. The plot on the upper panel is for the log likelihood ratio

test statistics and that on the lower panel is for the Bayesian test statistics. Then

the confidence regions are given by the areas of θ at which {Λ(θ) < q(θ)}. It appears

that both confidence intervals for θ are very similar.
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However, we do notice one anomaly in the Figure 3.1. The quantiles of the

likelihood ratio test statistics tend to increase as θ tends to η = 0, i.e., when there

has been a small shift in the mean. This seems to occur because the change point

ν is hard to estimate in this case, and maximization over the tenable values for ν

increases the test statistic more than it would increase if there were more precise

information about ν. Although this rise in quantiles is not a major problem in this

case, the quantiles based on the Bayesian statistics seems more stable for θ near η.

This is because the Bayesian test statistics tend to penalize the flexibility mentioned

in a fairly natural fashion.

In the next simulation we compare the coverage probabilities of the hybrid boot-

strap intervals for θ based on the likelihood ratio test statistics and the Bayesian

test statistics. The data is randomly generated from xi ∼ N(0, 1) for i ≤ 10 and

xi ∼ N(θ, 1) for i > 10, θ ∈ [0, 4] and the stopping time was followed by (3.5). For

each θ, 1000 original data sets of Xi = (x1, x2, . . . , xτ ), i = 1, . . . , 1000 were gener-

ated and 100 resamplings for each set were carried out to find the 95% quantiles of

test statistics. In the Figure 3.2 the coverage probabilities of the confidence intervals

over a grid of θ were shown based on the likelihood test statistics (solid line) and the

Bayesian test statistics (dashed line). It seems that the coverage probabilities based

on the Bayesian test statistics are much more stable than those for the likelihood

test statistics as θ tends to η.

3.3 More Topics and Future Research

In this section we introduce more interesting topics about change point problems.

First, Poisson process with rate change model is described. The basic framework of
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Poisson model is similar to the normal shift model, but the change point in Poisson

process is considered as a continuous time point. Secondly, time series model with

change in variation is introduced. The model plays an important role in calculating

value at risk of a financial position in risk management and in asset allocation. We

are still working on these problems for the future research.

3.3.1 Poisson Process Change Point Problems

The task of detecting a change point in the number of daily defects in an indus-

trial process or in the number of annual cases of a particular genetic disease may

be considered in the context of a Poisson process. Raftery and Akman [26] consider

Bayesian inference for a Poisson process with a single change point at an unknown

time. Akman and Raftery [1] study asymptotic estimation for a Poisson process

change point. West and Ogden [35] suggests a simplified grid search to find maxi-

mum likelihood estimates for the change point. All work above are based on off-line

experiments without optional stopping to estimate the change point in a Poisson

process. In this section, we consider on-line monitoring for a Poisson process with a

possible abrupt change, seeking estimates of the rate of occurrence after the change.

Suppose that the data x1, x2, . . ., over unit time periods are sequentially observed

until a stopping time τ . Here, the observation xi represents the number of events that

occurred in the i-th time period. A natural model for xi is the Poisson distribution.

The question of interest is whether there has been an abrupt change in the rate

parameter defining the Poisson distribution over the τ periods. Let ν represent such

a continuous time change point, η represent the Poisson rate parameter before the

change, and θ represent the rate parameter after the change. To detect a change we

continue using the Shewhart control chart, a natural monitoring procedure for the
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Poisson Process. So, the stopping time for the Poisson process is

τ = inf{n ≥ 2 : |xn − x̄n| ≥ c
√

x̄}.

The basic scheme of this problem is similar to the normal mean shift model in the

previous section, but differs in the type of the change point, that is, the change point

is regarded as a continuous time point here. So, we have to consider three different

distributions for individual observations.

Denote by bxc the greatest integer function of x such that x ≥ bxc, and 〈x〉 the

fractional part of x, so x = bxc+〈x〉. If a change occurs at ν, then the change occurs

in the (bνc + 1)-st interval. The observation for this period can be thought of as a

sum of two independent Poisson random variables which are not observed directly.

Then,

xi ∼





Poisson(η), i = 1, . . . , bνc

Poisson(〈ν〉η + (1− 〈ν〉)θ), i = bνc+ 1

Poisson(θ), i = bνc+ 2, . . . , τ

If the process generating these observations is Poisson, these observations will be

mutually independent. We also assume that the stopping is likely to occur after the

change point and the change does not occur in either extreme periods, so 1 ≤ ν <

τ − 1. The log likelihood function for η, ν, and θ is then given by

l(θ, ν, η) = −ηbνc − θ(τ − bνc − 1) + sbνc log η + (sτ − sbνc+1) log θ

−{〈ν〉η + (1− 〈ν〉)θ}+ xbνc+1 log{〈ν〉η + (1− 〈ν〉)θ},

where sj =
∑j

i=1 xi. If we assume that ν is known and lies in ν ∈ [j, j + 1), j =

1, . . . , τ −2, the maximum likelihood estimates for η and θ can be solved by differen-

tiating l(θ, ν, η) with respect to η and θ, respectively. They can be found by solving
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the following two quadratic equations:

η̂(ν) =
1

ν

[
sj +

(ν − j)η̂(ν)xj+1

(ν − j)η̂(ν) + (1− ν + j)θ̂(ν)

]

and

θ̂(ν) =
1

τ − ν

[
(sτ − sj+1) +

(1− ν + j)θ̂(ν)xj+1

(ν − j)η̂(ν) + (1− ν + j)θ̂(ν)

]
,

but their explicit forms may not be obtained. The maximum likelihood estimate for

ν is then

ν̂ = arg sup
j≤ν<j+1

j∈{1,...,τ−2}

l(θ̂(ν), ν, η̂(ν)).

Since the profile likelihood function of ν is not differentiable with respect to ν due

to the discontinuities of 〈ν〉, the estimate ν̂ should be searched from l(θ̂(ν), ν, η̂(ν))

over a set of points of ν on the interval [1, τ − 1).

After we obtain ν̂ and plug it into the likelihood function, the log likelihood ratio

test for fixed θ is given by

Λ(θ) = l(θ̂(ν̂), ν̂, η̂(ν̂))− sup
j≤ν<j+1

j∈{1,...,τ−2}

l(θ, ν, η̂(ν)).

To simulate the distribution of Λ(θ), a double grid search is required varying both ν

and θ, and this will increase explosively the burden of computation. Since the profile

likelihood function of ν, l(θ̂(ν), ν, η̂(ν)) is piecewise smooth over each of the time

interval, the problem can be considered one interval at a time. West and Ogden [35]

suggest a search involving only one calculation for each of the τ − 2 intervals.

If it is known if ν̂ ∈ (j∗, j∗ + 1), then the maximum likelihood estimates solve

∂

∂η̂
l(θ̂, ν̂, η̂) = 0,

∂

∂ν̂
l(θ̂, ν̂, η̂) = 0, and

∂

∂θ̂
l(θ̂, ν̂, η̂) = 0,

for η̂ = η̂(ν̂), ν̂, and θ̂ = θ̂(ν̂), respectively. They are given by

η̂ =
sj∗

j∗
, ν̂ = j∗ +

xj∗+1 − θ̂

η̂ − θ̂
, and θ̂ =

sτ − sj∗+1

τ − j∗ − 1
.

65



However, there is no guarantee that ν̂ will in fact fall in the specified interval, so

in that case, the endpoints of the interval should be examined. By approaching the

problem in this manner, computation time to search ν̂ is significantly reduced. Since

each estimate above is a function of j = j∗, j = 1, . . . , τ − 2, and the maximized

likelihood function l(θ̂, ν̂, η̂) over all parameters also becomes a function of j, the

problem concerns now a discrete change time point. Let us denote l̃(j) = l(θ̂, ν̂, η̂),

and ĵ maximizes l̃(j) over j ∈ {1, . . . , τ − 2}.

Similarly, suppose ν̂θ solves

∂

∂η̂
l(θ, ν̂, η̂) = 0 and

∂

∂ν̂
l(θ, ν̂, η̂) = 0

for ν̂, assuming ν̂ ∈ [j, j + 1). Then, l̃θ(j) = l(θ, ν̂θ, η̂) is now a function of both θ

and j, and ĵθ maximizes l̃θ(j) over j for fixed θ. The log-likelihood ratio test for θ is

then

Λ(θ) = l̃(ĵ)− l̃θ(ĵθ).

Finally, the hybrid bootstrapping is applied to find the confidence interval for θ.

For fixed θ we can generate

xi ∼





Poisson(η̂), i = 1, . . . , ĵθ

Poisson(λ(θ)), i = ĵθ + 1

Poisson(θ), i = ĵθ + 2, . . . , τ,

where λ(θ) = (ν̂θ − ĵθ)η̂ + (1 − ν̂θ + ĵθ)θ, and η̂ =
sĵ

ĵ
. The stopping times τ should

depend on the generated samples each time. The confidence region for θ is now easily

constructed as the same way in the normal example.
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3.3.2 Change Detection for Variation in Economic Time Series

Detecting deviations from a supposed process is a problem which appears in many

fields of sciences. Particularly, in finance a broker wants to detect trends in the course

of a stock. Several authors show that control charts for independent variables, such

as the Shewhart, the EWMA (exponentially weighted moving average), and the

CUSUM scheme cannot be directly applied to time series data. It is necessary to

take the structure of the time series into account. In recent years several control

charts for time series has been introduced. One of them is a residual chart and it

makes use of a transformation of the data. The aim is to derive statistics which are

again independent variables since then it is possible to apply well-known methods

to this quantities. Modified control scheme is another alternative for time series

data and it is based on similar statistics as the classical procedures for independent

samples.

One of the main processes is a GARCH (generalized autoregressive conditional

heteroscedasticity) process in economic time series. The main property of this process

is that their conditional variance is not constant. For that reason they are able to

describe some behavior frequently observed in economics, for example, periods of

large fluctuations alternating with relatively quiet phase. The control charts for

GARCH processes were introduced by Schipper and Schmid [29]. They dealt with

detecting changes in the variance. This problem is of great interest in practice since

the variance measures the risk of the asset. For this reason it is a fundamental

quantity for a portfolio manager. As the returns of an asset react very sensibly to

new information, it is not surprising that changes in the variance of stock market

returns can frequently be observed.

They distinguished between the target process, {Yt} and the observed process,
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{Xt}. Suppose that sequentially data x1, x2, . . . are taken from a quantity of interest.

The data are realizations of the observed process {Xt}. Each observation is examined

to determine whether it can reasonably be explained by the distribution law of {Yt} or

not. While the distribution of {Xt} is unknown, the distribution of {Yt} is assumed to

be known. For instance it can be obtained by fitting a suitable process to historical

data for the characteristic. In most cases the target process is assumed to be a

GARCH process.

A stochastic process {Yt} is called a GARCH(p, q) process if

Yt = σtεt,

with σt > 0 and

σ2
t = α0 +

q∑
i=1

αiY
2
t−i +

p∑
j=1

βjσ
2
t−j

for t ∈ Z. It is assumed that α0 > 0, αi ≥ 0, βj ≥ 0 for all i, j. Moreover, the random

variables {εt} are supposed to be independent with E(ε) = 0 and Var(ε) = 1.

First, let {Yt} be an arbitrary process with mean µ0 and variance γ0. The observed

process {Xt} is generated from the target process by a scale transform, more precisely

Xt =





Yt for 1 ≤ t < ν

µ0 + ∆(Yt − µ0) for t ≥ ν

with ∆ ≥ 1 and ν ∈ N. Thus, a change in the scale appears at position ν if ∆ > 1.

In this case the process {Xt} is out-of-control. If ∆ = 1, it is called in-control. For

the observed process, E(Xt) = µ0, Var(Xt) = γ0 for t < ν, but Var(Xt) = ∆2γ0 for

t ≥ ν. When the target process {Yt} is a GARCH process, µ0 = 0 and γ0 = σ2
t .

The conditional variance of the underlying asset return σ2
t is also known as a

volatility. It is an important factor in option trading and has many other financial

applications. The volatility modeling provides a simple approach to calculating value
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at risk of a financial position in risk management. It also plays an important role

in asset allocation under the mean-variance framework. Furthermore, modeling the

volatility of a time series can improve the efficiency in parameter estimation and the

accuracy in interval forecast. However, the volatility is not directly observable from

the return data.

Change detection for the scale ∆ should be meaningful because it is associated

with σ2
t . Since the control scheme stops the process as soon as possible once it detects

deviation from the target process, the limited information about ∆ is obtained. This

should be another interesting example of the estimation of the post change param-

eter based on the hybrid bootstrapping. Since the underlying process is time series

model, the likelihood approach is quite challenging.
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Figure 3.1: The confidence intervals for θ based on the likelihood ratio test statistics on the upper
panel and the Bayesian test statistics on the lower panel.
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Figure 3.2: The coverage probabilities of the confidence interval for θ based on the likelihood ratio
test statistics (solid line) and the Bayesian test statistics (dashed line).
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CHAPTER IV

Inconsistent Hybrid Bootstrap Confidence Region

In this section we investigate whether the coverage probability of hybrid regions

converges to the desired nominal value as the information of nuisance parameters

increases. The problem is based on a signal plus noise model for Poisson data, of

interest in high energy physics. We show that the coverage probability is not consis-

tent in this example.

4.1 Model and Estimation

Suppose that Z = (X, Y ) where X and Y are independent, X has the Poisson

distribution with mean θ + η, and Y has the Poisson distribution with mean γη.

Here θ ≥ 0 and η ≥ 0 are unknown but only θ is of interest. The scale factor γ is

assumed to be known, and large values of γ are considered.

For notation, let

l0(θ, η) = X log(θ + η)− θ − η − log(X!),

the log likelihood from X, and

lγ(η) = Y log(γη)− γη − log(Y !),
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the log likelihood from Y . Then the total log likelihood is

l(θ, η) = l0(θ, η) + lγ(η).

The score functions for θ and η are

∂l(θ, η)

∂θ
=

X

θ + η
− 1, and

∂l(θ, η)

∂η
=

Y

η
+

X

θ + η
− (γ + 1).

Taking η̃ = Y/γ, the maximum likelihood estimator for η based on Y , the maxi-

mum likelihood estimator for θ is

θ̂ = (X − η̃)+,

and the maximum likelihood estimator for η is

η̂ =





η̃, X ≥ η̃;

X+Y
1+γ

, X ≤ η̃.

Finally, let θ̂η = (X−η)+, the maximum likelihood estimator for θ when η is known,

and let η̂θ denote the maximum likelihood estimator for η when θ is known, given

explicitly as

(4.1) η̂θ =
X + Y − θ(1 + γ) +

√[
X + Y − θ(1 + γ)

]2
+ 4θY (1 + γ)

2(1 + γ)

Thus, the log likelihood ratio test statistic for θ

(4.2) Λ(θ) = −X − Y + θ + η̂θ(1 + γ) + X log

(
η̂ + θ̂

η̂θ + θ

)
+ Y log

(
η̂

η̂θ

)

after some simple algebra.

The hybrid bootstrap confidence interval for θ can be computed over a grid of θ

values. The method requires computing (4.2) for a single η = η̂θ over a grid of θ. In

some cases this can be done by numerical integration. But it can always be done by

simulation by following these steps:
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1. Generate independent (X∗
1 , Y

∗
1 ), (X∗

2 , Y
∗
2 ), . . . , (X∗

K , Y ∗
K) (psuedo samples) from

the distribution of Pθ,η̂θ
with X∗

i ∼ Poisson(θ+η̂θ) and Y ∗
i ∼ Poisson(γη̂θ), i =

1, 2, . . . , K.

2. Compute Λi(θ) in (4.2) based on each generated (X∗
i , Y ∗

i ).

3. Let q̂(θ) be the smallest value of q for which

#{i ≤ K : Λi(θ) ≤ q}
K

≥ 1− α,

so q̂(θ) is a Monte Carlo Estimate for the upper α-th quantile of the test statistic

under Pθ,η̂θ
.

4. The hybrid confidence region is given by

(4.3) {θ ≥ 0 : Λ(θ) ≤ q̂(θ)}.

Sen and Woodroofe [30] have shown good performance of the hybrid bootstrap

confidence interval in (4.3) in their simulation work. If the method works reasonably,

we should have

Pθ,η[Λ(θ) ≤ q̂(θ)] ≈ 1− α.

Chuang and Lai [7] argued both theoretically and by example that this should be

true. However, the asymptotic coverage probability may not be 1−α if we let γ →∞.

The next section will show the inconsistent coverage probability of this confidence

region.
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4.2 Inconsistent Coverage Probability

Equation (4.1) can be rewritten in terms of η̃ = Y/γ, as

η̂θ =
1

2
(η̃ − θ) +

X − η̃

2(1 + γ)

+
1

2

√
(η̃ + θ)2 +

2(η̃ − θ)X − 2η̃(η̃ + θ)

1 + γ
+

(X − η̃)2

(1 + γ)2
.

From the second equation here and the equation above for η̂, it is easy to see that

(4.4) η̂θ = η̃ + Op(1/γ) and η̂ = η̃ + Op(1/γ)

as γ → ∞. By Taylor expansion about η̃, with η∗ an intermediate value between η̂

and η̃,

(4.5) lγ(η̂) = lγ(η̃)− γη̃(η̂ − η̃)2

2η2∗
= lγ(η̃) + Op(1/γ).

Similarly,

(4.6) lγ(η̂θ) = lγ(η̃) + Op(1/γ).

Since η̂θ
p→ η as γ →∞, using (4.5) and (4.6)

Λ(θ)
p→ Λ0(θ, η)

def
= l0(θ̂η, η)− l0(θ, η)

= X log

(
(X − η)+ + η

θ + η

)
+ θ − (X − η)+,

the log likelihood ratio test statistic when the background η is known. Let q0(θ, η)

denote the upper α-th quantile for Λ0(θ, η). Since Λ0(θ, η) is a function of X, it is a

discrete variable, and to be precise and avoid ambiguity we will take1

q0(θ, η) = sup
{
x : Pθ,η

(
Λ0(θ, η) ≤ x

) ≤ 1− α
}

.

1The quantile q(θ, η) for Λ(θ) should also be defined similarly, although this feels less important since probabilities
for the atoms of the distribution of Λ(θ) are all small.

75



Then q0(θ, η) will be an atom for the Pθ,η distribution of Λ0(θ, η), and since cu-

mulative distribution functions are right continuous,

Pθ,η

(
Λ0(θ, η) < q0(θ, η)

) ≤ 1− α

and

Pθ,η

(
Λ0(θ, η) ≤ q0(θ, η)

)
> 1− α.

Define

∆+(θ, η) = Pθ,η

(
Λ0(θ, η) ≤ q0(θ, η)

)− (1− α) > 0,

∆−(θ, η) = 1− α− Pθ,η

(
Λ0(θ, η) < q0(θ, η)

) ≥ 0,

and

∆(θ, η) = ∆+(θ, η) + ∆−(θ, η) = Pθ,η

(
Λ0(θ, η) = q0(θ, η)

)
.

If ∆−(θ, η) 6= 0, it is fairly easy to argue that q(θ, η) will converge to q0(θ, η) as

γ → ∞. But a more careful analysis is necessary to approximate probabilities. For

this, define Zγ =
√

γ(η̃ − η)/
√

η, so that

Zγ ⇒ N(0, 1)

as γ →∞, by normal approximation for the Poisson distribution.

The main results below require two regularity assumptions:

A1 : ∆−(θ, η) > 0.

A2 : There is a unique constant x∗ so that Λ0(θ, η) = q0(θ) if and only if X = x∗.

A1 ensures that q0 is continuous at (θ, η), so that small changes for the values of

these parameters will not have a large effect on this quantile. As a function of X,

Λ0(θ, η) is unimodal, achieving its minimum when X = θ + η, So it is possible for

two integral values for X to give the same value for Λ0(θ, η), but the assertion in A2

should be typical.
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Lemma 4.2.1. Define

σ2(θ, η) = η

[
(η − x∗)+

η
+

(x∗ − θ − η)

θ + η

]2

.

If assumptions A1 and A2 hold and if σ(θ, η) > 0, then for any c ∈ R, as γ →∞,

Pθ,η

[
Λ(θ) ≤ q0(θ, η) + c/

√
γ + o(1/

√
γ)

]

→ 1− α−∆−(θ, η) + ∆(θ, η)Φ
(
c/σ(θ, η)

)

and

q(θ, η) = q0(θ, η) +
σ(θ, η)√

γ
Φ←

(
∆−(θ, η)

∆(θ, η)

)
+ o(1/

√
γ),

where Φ← is the inverse of the standard normal cumulative distribution function Φ.

Also, the results here hold uniformly for η sufficiently close a value satisfying A1 and

A2.

Proof. By (4.4)

l0(θ̂, η̂)− l0(θ, η̂θ) = l0
[
(X − η̃)+, η̃

]− l0(θ, η̃) + Op(1/γ).

Also, note that

(X − η̃)+ = (X − η)+ − (η̃ − η)I{X > η}+ (η̃ − η)−I{X = η}+ Op(1/γ),

which follows because the equation holds exactly unless η < X < η̃ or η̃ < X < η,

and probabilities for these events tend to zero. By (4.5), (4.6) and the delta method

(Taylor expansion),

(4.7) Λ(θ) = l0(θ̂, η̂)− l0(θ, η̂θ) + Op(1/γ)

= Λ0(θ, η)−
√

η√
γ

[
(η −X)+

η
+

X − θ − η

θ + η

]
Zγ + Op(1/γ).

The first assertion in the lemma follows from this representation using the next

lemma, and the second assertion of the lemma follows easily from the first. Unifor-

mity in η is evident from the method of proof.
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Lemma 4.2.2. Suppose Z̃γ ⇒ Z̃ as γ → ∞ and W is a discrete random variable

with W and Z̃γ asymptotically independent. If P
(
g(W ) = q

)
> 0 and g(W ) = q if

and only if W = w∗, then

P
[
g(W ) + h(W )Z̃γ/

√
γ + op(1/

√
γ) ≤ q + c/

√
γ
]

→ P
(
g(W ) < q

)
+ P

(
g(W ) = q

)
P

(
h(w∗)Z̃ ≤ c

)

as γ →∞, whenever c is a continuity point for the distribution of h(w∗)Z̃.

Proof. The op term can be incorporated into Z̃γ, so we can assume it is zero. If

g(w) < q,

P
[
g(W ) + h(W )Z̃γ/

√
γ > q + c/

√
γ,W = w

]

≤ P
[
h(w)Z̃γ − c >

(
q − g(w)

)√
γ
] → 0,

and so

P
[
g(W ) + h(W )Z̃γ/

√
γ ≤ q + c/

√
γ, W = w

] → P (W = w).

Then

P
[
g(W )+h(W )Z̃γ/

√
γ ≤ q + c/

√
γ, g(W ) < q

]

=
∑

w:g(w)<q

P
[
g(W ) + h(W )Z̃γ/

√
γ ≤ q + c/

√
γ,W = w

]

→ P
(
g(W ) < q

)
,

by dominated convergence. Similarly,

P
[
g(W ) + h(W )Z̃γ/

√
γ ≤ q + c/

√
γ, g(W ) > q

] → 0.

Finally, by the asymptotic independence,

lim sup
γ→∞

P
[
g(W )+h(W )Z̃γ/

√
γ ≤ q + c/

√
γ, g(W ) = q

]

= lim sup
γ→∞

P
[
h(w∗)Z̃γ ≤ c,W = w∗]

≤ P
(
h(w∗)Z̃ ≤ c

)
P (W = w∗),
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since the set (Z̃γ,W ) lies in is closed; and for ε > 0

lim inf
γ→∞

P
[
g(W ) + h(W )Z̃γ/

√
γ ≤ q + c/

√
γ, g(W ) = q

]

≥ lim inf
γ→∞

P
[
h(w∗)Z̃γ < ε + c, |W − w∗| < ε

]

≥ P
(
h(w∗)Z̃ < ε + c

)
P

(|W − w∗| < ε
)
,

since the set (Z̃γ,W ) lies in is open. Letting ε ↓ 0,

P
[
g(W ) + h(W )Z̃γ/

√
γ ≤ q + c/

√
γ, g(W ) = q

]

→ P
(
h(w∗)Z̃ ≤ c

)
P (W = w∗),

and the lemma follows.

To study coverage probabilities for hybrid bootstrap intervals, we will need the

following lemma describing how q0(θ, η) varies with η.

Lemma 4.2.3. If A2 holds and ∆−(θ, η) > 0, then

D(θ, η)
def
=

∂q0(θ, η)

∂η
=





θ + η − x∗

θ + η
, x∗ ≥ η;

θx∗

η(θ + η)
, x∗ ≤ η.

Proof. Since ∆−(θ, η) > 0, the equation

q0(θ, η̄) = x∗ log

[
(x∗ − η̄)+ + η̄

θ + η̄

]
+ θ − (x∗ − η̄)+,

which holds automatically when η̄ = η, will also hold for η̄ sufficiently close to η.

If x∗ 6= η, the desired result then follows easily by ordinary calculus. If x∗ = η, by

Taylor expansion as ε → 0,

q0(θ, η + ε) = x∗ log

(
η + ε + ε+

θ + η + ε

)
+ θ − ε+

= q0(θ, η) +
εθ

θ + η
+ o(ε),

and the desired result still holds.
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The following theorem is our main result about coverage probabilities for hybrid

bootstrap confidence regions in this Poisson example.

Theorem 4.2.4. Assume A1 and A2 and define

σ̃2(θ, η) = η

[
(η − x∗)+

η
+

(x∗ − θ − η)

θ + η
+ D(θ, η)

]2

.

If σ̃(θ, η) > 0, then

Pθ,η(θ ∈ S) = Pθ,η

[
Λ(θ) ≤ q(θ, η̂θ)

]

→ 1− α−∆−(θ, η) + ∆(θ, η)Φ

(
σ(θ, η)Φ←(

∆−(θ, η)/∆(θ, η)
)

σ̃(θ, η)

)
.

The limit will only be 1− α if σ̃(θ, η) = σ(θ, η) or ∆−(θ) = ∆(θ, η)/2.

Proof. By Lemma 4.2.3, the equation (4.4), and the approximation in Lemma 4.2.1

for q(θ, η),

q(θ, η̂θ) = q0(θ, η̂θ) +
σ(θ, η)√

γ
Φ←

(
∆−(θ, η)

∆(θ, η)

)
+ op

(
1/
√

γ
)

= q0(θ, η) +
1√
γ

[
D(θ, η)

√
ηZγ + σ(θ, η)Φ←

(
∆−(θ, η)

∆(θ, η)

)]

+ op

(
1/
√

γ
)
.

Using this and the representation for Λ(θ) in (4.7), the coverage probability in the

lemma can be written as

Pθ,η

[
Λ0(θ, η)−

√
η√
γ

(
(η −X)+

η
+

X − θ − η

θ + η
+ D(θ, η)

)
Zγ

≤ q0(θ, η) +
σ(θ, η)√

γ
Φ←

(
∆−(θ, η)

∆(θ, η)

)
+ op

(
1/
√

γ
)
]

The stated result now follows by Lemma 4.2.2.

In this result, the reason consistency fails is related to the fact that quantiles

q0(θ, η) for Λ0(θ, η) vary with η. In essence, the hybrid-bootstrap region estimates
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q(θ, η) by q(θ, η̂θ). If the estimation error could be op

(
1/
√

γ
)
, then coverage proba-

bilities would converge to 1− α. But that is a bit better than what is possible. It is

well known that ordinary bootstrapping can fail if the functionals of interest are not

smooth. This seems similar—the quantiles of interest vary a bit too rapidly to be

estimated with the necessary precision. When X = x∗, the hybrid regions uses η̃ in

a natural way to decide whether to include a value θ. Regions that use η̃ naturally

cannot have coverage probabilities converging properly. However, regions that use η̃

essentially for randomization (perhaps through a variable Uγ defined as the fractional

part of Y/
√

γ) can have coverage probabilities converging to 1− α.
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CHAPTER V

Summary and Conclusion

This thesis surveys results involving hybrid bootstrap method and related statisti-

cal applications. The method is based on the model where the data have substantial

information about the nuisance parameter, but limited information about the pa-

rameter of interest.

The first part was concerned with a genetics application. Particularly, we consid-

ered the mapping problem of quantitative trait loci in an experimental population.

In this example the parameter of interest is the QTL location and the effects of QTL

are regarded as nuisance parameters. We constructed the hybrid confidence region

for the QTL location with phenotype measurements and marker genotypes from a

backcross experiment.

The simulation studies have demonstrated that the hybrid quantile estimates are

less variable than other quantile estimates, and the hybrid regions have almost exact

1− α coverage for each study, regardless of sample size and marker distance.

Even though the performance of hybrid regions is excellent in the simulation stud-

ies, compared with other methods such as permutation, non-parametric bootstrap,

and parametric bootstrap, the method failed to detect a QTL in the data set of rice

tiller numbers.
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We believe that one of the main reasons for this failure is a lack of information

necessary to resolve a small shift in nuisance parameters. The QTL effect of rice

tiller numbers seems to be too weak to locate a QTL. The hybrid method considers

all possible QTL locations of (θ, J), and average of |η̂0(θ, J)− η̂1(θ, J)| over (θ, J) is

almost 0.

However, other methods, which are based only on unconstrained maximum like-

lihood estimates (θ̂, Ĵ), identify a QTL effect and locate a QTL. But, since the

difference |η̂0(θ, J)− η̂1(θ, J)| is maximized when (θ, J) = (θ̂, Ĵ), the estimate of the

magnitude of the QTL effect may well have a positive bias and could be spurious.

So, their detection could be too optimistic with this sample size. This possibility de-

serves further research. Perhaps future simulation, studying detection error fraction

when there are a small shift of or no QTL.

The second part covered change point problems in industrial application. In par-

ticular, we gave interval estimates for a post change parameter θ in sequentially

observed data which is truncated by stopping times. In the experiment the change

point was considered as a nuisance parameter, and we also assumed that the stop-

ping time occurs after the distributional change does. A simulation study shows

reasonable performance for the hybrid regions in a simple normal example. Since

real industrial processes are more complicated patterns, extensions to more realistic

models would be of interest.

The limiting coverage probability of hybrid confidence region was investigated in

the last part. It is based on a signal plus noise Poisson model in high energy physics

problems. Here we theoretically showed that the coverage probability is inconsistent

as information about the nuisance parameter increases. Modification to reserve con-

sistency essentially seems to be impossible due to the natural estimation error. This

83



problem is associated with discreteness of the likelihood ratio test statistic Λ0 when

the nuisance parameters are known. The magnitude of the limiting discrepancy is

at most the size of an atom for the distribution, so in practice this may not be a big

concern if Λ0 takes on many values each with small probability.

Finally, future topics we could study were introduced at the end of each chapter.

They includes application to an intercross population in the QTL mapping problem,

the model with multiple QTLs, Poisson change point problems, and financial time

series with change in variation. Although we cannot directly apply our methods to

these problems, they are all based on the basic models we have investigated through

this thesis. In the future we hope we can resolve these problems.
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