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ABSTRACT 
 

Suicide gene therapy aims to improve selectivity of cancer treatment through 

expression of herpes simplex virus thymidine kinase (HSV-TK) in tumor cells, permitting 

phosphorylation of HSV-TK substrates with subsequent cytotoxic incorporation into 

DNA exclusively within the tumor.  This approach results in significantly greater 

cytotoxicity to cancer cells in a novel delayed manner when applied with the antiviral 

drug GCV as compared to other HSV-TK substrates.  To elucidate the mechanism for the 

unique cytotoxicity, DNA damage and the repair pathways involved in responding to this 

damage induced by GCV compared to related analogs were evaluated.  

Using phosphorylated histone H2AX (γ-H2AX) as a marker of DNA damage, 

GCV induced >7-fold more damage than a different HSV-TK substrate, 1-β-D-

arabinofuranosylthymine (araT), at equitoxic concentrations.  Although the number of γ-

H2AX foci decreased after removal of either drug, suggesting repair of these early 

lesions, only GCV produced a late and persistent increase in DNA damage indicating the 

induction of irreparable DNA damage.  Rad51 foci formed primarily following the late 

increase in γ-H2AX foci, exposure, implicating homologous recombination repair (HRR) 

in responding to GCV-induced lesions.  

A yeast-based screen of DNA damage response mutants was utilized to detect 

pathways nvolved in cytotoxicity with GCV.  Yeast deficient in HRR, cell cycle 

checkpoint, and mismatch repair (MMR) proteins all exhibited increased sensitivity to 



 x 

GCV.  Survival studies in human cells confirmed greater GCV sensitivity in MMR 

deficient cells, primarily at high concentrations, validating the yeast assay.  Thus, MMR 

and HRR may prevent cytotoxicity with ganciclovir.  

Previous reports suggested that GCV is genotoxic.  DNA mutations induced by 

GCV were characterized and compared to those resulting from treatment with two other 

structurally similar HSV-TK substrates, D-carbocyclic 2'-deoxyguanosine (CdG) and 

penciclovir (PCV).   GCV induced a dose-dependent increase in mutation frequency, 

while highly cytotoxic concentrations of CdG and PCV failed to increase mutations.  

GCV predominantly induced GC TA transversions which were significantly less 

frequent in control cells or those treated with PCV or CdG.  Analysis of cell cycle 

progression revealed different mechanisms of cell cycle arrest for each of these drugs.  

Thus, alteration of the deoxyribose structure produced profound differences in DNA 

replication and its fidelity, resulting in striking differences in cytotoxicity.  These data 

demonstrate that GCV induces significantly more DNA damage, which may not be 

repaired effectively by HRR and MMR, leading to multi-log cytotoxicity through 

mechanisms distinct from other structurally related HSV-TK substrates.   
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Chapter I 

 

INTRODUCTION 

 

Ganciclovir (GCV) is an anti-viral agent used clinically for herpesvirus infections 

that is also employed in a suicide gene therapy strategy for cancer.  Compared to other 

structurally related compounds, GCV has a unique ability to induce multi-log cytotoxicity 

in human tumor cells in vitro at submicromolar doses.  Although previous studies have 

contributed to the understanding of the mechanism by which GCV elicits cell killing, the 

mechanism of GCV’s superior cytotoxicity has yet to be determined.  The data presented 

here provide further insights into the mechanism of GCV-mediated cytotoxicity by 

characterizing the induction of DNA damage by GCV and repair pathways involved in 

responding to this damage. 

 

Ganciclovir as an Antiviral Agent 

 The herpesvirus family consists of eight members which infect humans and cause 

a variety of illnesses ranging from cold sores to chickenpox to encephalitis (1-3).  

Herpesvirus infected cells express a virally encoded thymidine kinase which can 

accelerate viral replication by maintaining high levels of phosphorylated thymidine 

metabolites which are necessary for replication (4).  Compared to mammalian 
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thymidine kinase, herpes thymidine kinases have a broader range of substrate specificity, 

and can phosphorylate a variety of nucleoside analogs in addition to thymidine.   

In 1977, vidarabine (9-β-D-ribofuranosyladenine, araA) was the first 

antiherpesvirus agent approved for systemic use, but high toxicities induced by the drug 

limited its use to life-threatening infections (5,6).  Antiviral research seeking to develop 

new anti-herpetic drugs with low toxicity to host cells led to the discovery of a group of 

acyclic nucleoside analogs which are specifically phosphorylated by the viral thymidine 

kinase (7).  An important drug discovered from this study, acyclovir (9-[2-

hydroxyethoxymethyl]guanine; ACV), was the first truly selective drug with clinical 

activity against herpesvirus infections (8) and is currently in use today, where it is the 

drug of choice for a number of herpes infections (9).  ACV is an analogue of 2'-

deoxyguanosine with an acyclic sugar, lacking a 2'- and 3'-carbon and 3'-hydroxyl 

(Figure 1.1).   A compound developed a few years after acyclovir to more closely 

resemble deoxyguanosine, ganciclovir (9-[(1,2-dihydroxy-2-propoxymethyl)-guanine], 

GCV), is similar in structure to ACV with the addition of a hydroxymethyl group at the 

3´ position.  This addition of a 3' carbon allows GCV to be internally incorporated into 

DNA (10,11), unlike ACV which is an obligate chain terminator (12).   

The favorable therapeutic index for ACV and GCV is based on their selective 

activation in herpesvirus-infected cells, as these drugs undergo their requisite 

phosphorylation only in virally-infected cells expressing herpes simplex virus thymidine 

kinase (HSV-TK).  GCV is a better substrate than acyclovir for HSV-TK (Km= 66 µM 

and 426 µM, respectively) (13); however they are poorer substrates than thymidine (Km= 

0.2 µM).   HSV-TK phosphorylates GCV to its 5'-monophosphate (GCVMP) (4,13,14).   
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Figure 1.1 Structure of 2'deoxyguanosine, acyclovir, and ganciclovir. 
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Subsequent phosphorylation by the cellular enzymes guanylate kinase and 

nucleoside diphosphokinase lead to the accumulation of GCV 5'-triphosphate (GCVTP) 

(10,14-17).  GCVTP inhibits viral replication by interfering with viral DNA synthesis but 

unphosphorylated GCV does not interrupt DNA synthesis, thus uninfected cells which do 

not contain GCVTP are not affected (18).  In vitro, GCV exhibits excellent antiviral 

activity against herpes simplex virus type 1 and 2 (13,19), human herpesvirus-6 (20,21), 

varicella-zoster virus (13), and Epstein-Barr virus (13,22) and is more potent than 

acyclovir against these viruses (10,23). 

In 1988, GCV was the first antiviral drug to be approved for the treatment of 

cytomegalovirus (CMV) infections in humans (24).  CMV lacks thymidine kinase, but 

phosphorylation to GCVMP is mediated by a protein kinase encoded by the CMV UL97 

gene (25,26).  Because ACV is poorly phosphorylated by UL97 kinase, CMV is 100-fold 

less sensitive to ACV than herpes simplex virus, and it is not possible to reach sufficient 

plasma concentrations required for therapeutic activity (27).  While CMV is usually an 

innocuous infection in immunocompetent patients, CMV infections can result in vision 

loss or fatality in patients with compromised immune systems, such as transplant 

recipients (reviewed in (28,29)) and those with AIDS (30).  Prophylaxis with anti-viral 

drugs, such as ACV and GCV, is commonly used in solid organ transplant patients to 

prevent CMV infections and the associated clinical syndrome.  Without prophylaxis with 

GCV, evidence of CMV infections occurred in more than 50% of recipients of solid 

organ transplants (31) and 7-32% presented with significant CMV disease (32).  GCV 

prophylaxis has reduced both the relative risk of CMV disease and mortality following 

organ transplant by 60% and 40%, respectively (reviewed in (33,34)). 
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Pharmacokinetics of GCV 

 Oral bioavailablity of GCV is poor, and thus it is usually administered by 

intravenous infusion (35).   GCV has been given orally, although the very high doses 

required to achieve effective plasma concentrations has made this route of administration 

unattractive.   The L-valyl ester prodrug of GCV, valganciclovir is transported into the 

bloodstream through peptide transporters PEPT1 and PEPT2 where it is rapidly and 

completely hydrolyzed to GCV by liver and intestinal esterases (36).  Valganciclovir is 

significantly more bioavailable (60.9% versus 5.6% for oral ganciclovir) (37-39) with no 

new toxicities occurring following treatment with the prodrug.  Clinically, plasma 

concentrations of 10-30 µM GCV have been reported (40-42).  GCV concentrations in 

cerebrospinal fluid were 31 to 67% of plasma concentrations, and intraocular 

concentrations were similar to or higher than plasma levels.  The primary route of 

elimination of GCV is through the kidney where almost 100% is excreted mainly as 

unchanged drug in the urine, with a terminal half-life of 4.5 hours (35).   

  Effective inhibitory concentrations of GCV for the herpes viruses range from 0.2 

to 6.0 µM while much higher concentrations are required to cause toxicity to most normal 

host tissues (41).  The notable exception is bone marrow cells, which are sensitive to 

concentrations of GCV similar to virus-infected cells, resulting in neutropenia in 15 - 

40% of patients and thrombocytopenia in 5 - 20% (41,43).  In addition to 

myelosuppression, CNS side effects ranging from headache to convulsions to coma occur 

in 5-15% of patients.  Conversely, clinically relevant doses of ACV do not produce 

myelosuppression and, unlike GCV, ACV is generally well-tolerated with minimal and 

infrequently reported side effects, such as nausea, diarrhea, headache, or more 
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infrequently renal dysfunction (44).  Because GCV has a much higher risk of causing 

dose-limiting bone marrow toxicity, it is typically reserved for treating life or sight 

threatening CMV infections (35,41).   

 

Cancer Gene Therapy 

 Many traditional chemotherapeutic drugs to treat cancer have limited ability to 

distinguish cancerous cells from normal host cells.  These therapies target cells based on 

their ability to proliferate, which does not allow distinction between neoplastic cells and 

many normal tissues in which cells are actively proliferating (bone marrow, 

gastrointestinal tract).  This results in many deleterious effects associated with such 

treatments, such as bone marrow suppression, gastrointestinal toxicity, and neuropathy, 

which are responsible for significant morbidity and mortality and a very narrow 

therapeutic index.  This limitation has led to the search for new therapies which increase 

the therapeutic index by selectively targeting tumor cells while sparing normal tissue 

from damage.    

 To improve the selectivity of cancer treatment, many cancer gene therapy 

strategies have been developed.  Examples include transduction of drug-resistance genes 

into bone marrow stem cells to protect them from chemotherapy (45-49), immunotherapy 

using recombinant DNA tumor cell vaccines (50-54), tumor suppressor gene replacement 

(55,56), and inactivation of oncogenes (57,58).  In suicide gene therapy, which are the 

most frequently studied strategies, tumor cells are engineered to express a foreign gene 

which encodes an enzyme that can convert a non-toxic pro-drug into a cytotoxic 

metabolite.  Since the drugs used in these therapies have lower toxicity than traditional 
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chemotherapeutics, they are selective for the virally-transduced tumor cells while sparing 

host tissues.  This allows the patient to be treated with higher doses of the agent to 

achieve tumor regression while limiting the side effects which normally occur in patients 

undergoing cancer chemotherapy.  Some examples of enzyme/pro-drug gene therapy 

include cytosine deaminase/5-fluorocytosine (59-61), nitroreductase/CB1954 (59), purine 

nucleoside phosphorylase/6-methyl-purine-2'-deoxynucleoside (62), and herpes simplex 

virus-thymidine kinase/GCV. 

 

Herpes Simplex Virus Type-1 Thymidine Kinase/Ganciclovir Gene Therapy 

 Perhaps the most widely studied suicide gene therapy strategy for cancer 

treatment utilizes the herpes simplex virus type 1 thymidine kinase (HSV-TK) with GCV.   

This strategy was first described by Frederic Moolten in 1986 and 1987 (63,64), and in 

1990 initial studies of this gene therapy approach were reported (65,66).  Studies have 

since progressed from in vitro evaluation to animal models and ultimately to many 

clinical trials.  

GCV is transported into mammalian cells via the nucleoside transporter and 

purine nucleobase transporter in erythrocytes (67-70).  Once inside HSV-TK-expressing 

cells, GCV is phosphorylated to GCVMP by HSV-TK (13).  The subsequent 

phosphorylation events to GCV diphosphate (GCVDP) and GCVTP are performed by 

mammalian guanylate kinase and nucleoside diphosphokinase, respectively (10,14-17).  

GCVTP competes with dGTP for incorporation into DNA, and this incorporation leads to 

cell death (71).   
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An important feature of this therapy is that HSV-TK-expressing cells can induce 

GCV-mediated cytotoxicity in neighboring tumor cells that do not express the transgene.  

This phenomenon, known as the bystander effect, has been observed both in vitro and in 

vivo (72-75).  Because currently it is only possible to transduce less than 1% of cells in 

patient tumors (76), the bystander effect is critical for the effectiveness of this approach.  

 Much research has focused on understanding the mechanism(s) of the bystander 

effect.   Freeman et al performed co-culture experiment in which HSV-TK-expressing 

and non-HSV-TK expressing cells were cultured in a dish with two chambers separated 

by a membrane, so that they shared the same media, but did not have physical contact.  

Following exposure to GCV, the non-transduced cells did not die.  However, when the 

same experiment allowed for contact between the HSV-TK expressing and non-HSV-TK 

expressing cells, it resulted in death of the non-transduced cells (77).  Another study 

demonstrated that exposing non-HSV-TK expressing cells to conditioned media from 

cells expressing HSV-TK and treated with [3H]GCV did not result in transfer of 

radioactivity or cytotoxicity to the non-HSV-TK expressing cells (78).  These studies 

suggest that cell-cell contact and transfer of a GCV metabolic product is required for the 

bystander effect.   

Phosphorylated GCV metabolites cannot freely diffuse through the cell 

membrane, however they can transfer between cells through gap junctions which are 

intercellular channels composed of two transmembrane hemichannels of connexin 

protein.  When these channels from neighboring cells dock together, they form a central 

pore, allowing for the transfer of various molecules ≤1 kDa in molecular weight 

[reviewed in (79)].  The transfer of GCV phosphates between cells allows for 
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neighboring, non-transduced cells to accumulate the active GCV metabolite, GCVTP, 

and ultimately die.  Although it has been reported that cells with good gap junction 

intracellular communication exhibit good bystander cytotoxicity (73,74,80,81), and cell 

lines that reportedly lack gap junctions do not exhibit bystander killing (82-85), bystander 

cytotoxicity has been observed in cells which do not express known connexin proteins, 

such as SW620 colon carcinoma cells (75).     In HeLa cells, which also lack expression 

of known connexin proteins, GCV phosphates were transferred between cells via a 

mechanism that appeared to require cell contact.  It was suggested that cells may express 

a low level of gap junctional intercellular communication that mediates transfer of small 

amounts of GCV phosphates to bystander cells (85).   

The bystander effect also has been explained by other mechanisms.  One 

hypothesis suggests that apoptotic vesicles generated during the death of HSV-TK 

expressing cells contain GCV metabolites and are phagocytosed by non-HSV-TK 

expressing cells (77).  It has also been proposed that multidrug resistance proteins, MRP-

4 and MRP-5, which can efflux phosphorylated nucleotides (86,87), might also efflux 

phosphorylated GCV metabolites (88), however this would require a mechanism able to 

transport phosphorylated compounds into cells.  The wealth of data demonstrating that 

cell-to-cell contact is required for the bystander effect suggest that gap junctions are the 

most likely candidates responsible for the bystander effect. 

 

Strategies to Improve HSV-TK/GCV Suicide Gene Therapy 

Because current gene transfer efficiencies are inadequate for treatment with HSV-

TK/GCV, many laboratories have focused on strategies to improve viral transduction by 
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modifying viral vectors and vector delivery (89-92).  HSV-TK mutants have been 

engineered to increase specificity for GCV, such that tumor growth inhibition or 

regression can be achieved with lower doses of GCV.  HSV-TK has a high affinity for 

thymidine (Km = 0.5µM) (93), while affinity for GCV is significantly lower (Km = 45 

µM) (13,94).  Black et al identified HSV-TK mutants with improved selectivity for GCV 

through random mutagenesis of the cDNA with selection in E. coli.  When expressed in 

mammalian cells, these HSV-TK mutants enhanced sensitivity to GCV by increasing 

GCV phosphorylation and decreasing sensitivity of the enzyme to thymidine (95).  One 

of the mutants (SR39) had an 83-fold higher specificity for GCV compared to  thymidine, 

resulting in a 294-fold decrease in the IC50 for GCV (96).  Subsequent work 

demonstrated that these mutants increased GCV-mediated cell killing in mammalian cells 

and tumor models (97-100).  Mutants with increased specificity for GCV should allow 

for the administration of lower concentrations of GCV to achieve sufficient GCVTP 

levels in HSV-TK expressing tumor cells.    This will not only allow for lower GCV 

concentrations to achieve higher tumor cell-killing but may also decrease GCV-associate 

side effects. 

Since most cancers are typically treated with a combination of drugs and 

therapeutic modalities, other groups have focused on improving GCV cytotoxicity 

through combination therapies.  Findings that demonstrated the existence of an anti-

tumor immune response following HSV-TK/GCV therapy prompted studies combining 

the expression of cytokines, such as interleukin-2, to enhance this immune response with 

the enzyme-prodrug gene therapy resulting in increased tumor cell killing.  Interleukin-2 

has been combined with HSV-TK/GCV alone or with other cytokines and has resulted in 
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a 2- to 3-fold reduction in tumor volume in a variety of tumor models (101-105).  The 

addition of interleukin-12 also enhanced anti-tumor immune response in combination 

with HSV-TK/GCV in animal models for colon and hepatocellular carcinoma (106-108).  

A clinical trial has shown that combining HSV-TK/GCV gene therapy and cytokines is 

safe, but the effectiveness and improvement over HSV-TK/GCV gene therapy alone has 

yet to be determined in humans (109).  

Cell cycle effects of certain agents have been used to enhance GCV cytotoxicity.  

Pre-treatment with polyamine biosynthesis inhibitor 2-difluoromethylornithine resulted in 

accumulation of cells in S phase and addition of GCV when this compound is removed 

allows for increased GCV incorporation into DNA (110,111).  Protein kinase C class 

inhibitor UCN-01 has been shown to abrogate camptothecin-induced S phase block, 

resulting in increased cytotoxicity and has also been shown to increase sensitivity to 

GCV (112).   

Because GCV inhibits DNA polymerase δ (113), which is involved in DNA 

repair, it was hypothesized that the combination of GCV with other DNA damaging 

agents would result in synergistic cytotoxicity.  Alkylating agent temozolomide, 

topoisomerase I inhibitor topotecan, and a dual suicide gene therapy strategy of 

cytochrome P450 2B1/cyclophosphamide have been reported to enhance cytotoxicity 

when combined with HSV-TK/GCV (114-118).  While the data presented in these reports 

are statistically significant, they represent less than a 2-fold increase in cell killing and 

thus may not be clinically significant. 

Other drugs which enhance GCV cytotoxicity include ribonucleotide reductase 

inhibitors hydroxyurea (75,119,120) and gemcitabine (121) which decrease dGTP pools, 



 12 

resulting in increased GCVMP incorporation into DNA.  Similarly, thymidylate synthase 

inhibition with (E)-5-(2-bromovinyl)-2'-deoxyuridine or 5-fluorouracil (122) decreases 

HSV-TK substrate thymidine and results in increased GCVTP.  Several studies have 

combined cytosine deaminase/5-fluorocytosine, a 5-fluorouracil prodrug, and HSV-

TK/GCV strategies and have shown that this is more effective compared with the use of 

either strategy alone (123-127), with optimal synergy occurring when 5-fluorocytosine 

was sequenced 24 hr prior to GCV (127).  This therapy can be further enhanced by the 

addition of radiation (128,129).   

The effectiveness of HSV-TK/GCV in vitro and in animal models has prompted 

many other clinical trials in the last two decades in a variety of malignancies, including 

glioblastoma (130-133), mesothelioma (134), ovarian (135,136), and prostate cancer 

which exhibited the most promising results (137-143).  The major limiting factor for the 

effectiveness of this therapy is the ability to transduce a sufficient proportion of cells in 

the tumor.  A phase III clinical trial for HSV-TK/GCV gene therapy for glioblastoma 

reported transduction efficiency was below 0.002% in all patients (144).  Another study 

including 51 patients reported a maximum transduction efficiency of 2.6% in two patients 

with a value less than 0.03% in most patients (145).   

One experimental protocol in clinical trials utilizes a three-pronged approach for 

treating prostate cancer which includes (a) an oncolytic, replication competent 

adenovirus, (b) combined cytosine deaminase/5-fluorocytosine and HSV-TK/GCV gene 

therapy, and (c) radiation therapy (125,139,141,142,146).  Results from a preclinical 

model have been published recently extending this approach for the treatment of 

pancreatic cancer, and a Phase I trial in this malignancy is currently being conducted 
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(147). While the results from these studies have been promising, they have not been 

overwhelmingly successful, most likely due to the limitation of viral transduction.   

 A more recent application of the HSV-TK/GCV suicide gene therapy strategy is 

being developed as a means to control graft-versus-host disease (GVHD).   GVHD is a T 

cell-mediated complication in patients with leukemia undergoing allogeneic bone marrow 

transplantation that is a major cause of transplant-related morbidity and mortality (148).  

GVHD is the result of the recognition of host antigens by donor T lymphocytes which 

results in activation of macrophages, secretion of inflammatory cytokines, and apoptosis 

of host cells (149).  In this approach, retroviruses are used to stably transduce the HSV-

TK gene into donor T lymphocytes ex vivo prior to donor lymphocyte infusion or 

transplantation. When GVHD develops, GCV is administered, resulting in the death of 

HSV-TK positive T lymphocytes.  This approach has been shown to be very effective at 

suppressing GVHD in mouse models (150-154).  Several small clinical trials have 

produced promising results, showing reduced GVHD after GCV administration (155-

159) and a phase III clinical trial is scheduled to begin soon (160).  Because it is possible 

to select for HSV-TK-expressing cells by cell sorting prior to transplantation, 100% of 

the transplanted T lymphocytes can be engineered to express HSV-TK, and viral 

transduction is not a limitation as is the case with solid tumors.  If the selective killing of 

transduced T lymphocytes will be able to control GVHD without increasing rate of 

relapse, as has been observed in mouse models, this application of HSV-TK/GCV suicide 

gene therapy has potential to be successful in humans.   
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Mechanisms of HSV-TK/GCV-Mediated Cell Killing 

 Rubsam et al previously reported on the superior cytotoxicity of GCV as 

compared to other HSV-TK substrates (71).  GCV induces >4 logs of cell kill whereas 

most other nucleoside analogues are only able to cause 1-2 logs of cell kill under similar 

conditions.  It was determined that the superior cytotoxicity of GCV as compared with 

other HSV-TK substrates 1-β-D-arabinofuranosylthymine (araT) and acyclovir was not 

due to increased accumulation of active triphosphate metabolite, increased incorporation 

into DNA, or increased apoptosis.  By staining DNA with propidium iodide, it was 

determined that GCV induced a unique manner of cell death where cells were able to 

complete one cell division cycle during and following GCV exposure; however, as they 

attempted to traverse S phase for a second time, they arrested and subsequently died.   

Conversely, cells treated with araT arrested in the first S phase during drug exposure.  

These data suggest that an event occurring during the second S phase following GCV 

exposure is responsible for cytotoxicity. 

 Because GCV elicits cell killing through incorporation into DNA in S phase, it 

was of interest to determine specific types of DNA damage induced by GCV.  Thust et al 

have published reports showing that GCV induces sister chromatid exchanges (SCEs) 

and structural chromosome aberrations while acyclovir and penciclovir did not (161).  

SCEs can arise as a result of homologous recombination (162-164), so these data 

suggested that DNA damage induced by GCV induced homologous recombination repair 

(HRR) to repair this damage.  Interestingly, SCE induction occurred during the second 

cell cycle following GCV treatment, similar timing to the S phase arrest Rubsam et al 

observed (71).  Taken together, these data suggest an event occurring during this second 
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S phase is responsible for GCV’s superior cytotoxicity.  Because GCV elicits its action 

by incorporating into DNA, it is possible that as cells attempt DNA synthesis, the 

presence of GCVMP in template DNA causes irreparable damage which is responsible 

for GCV’s high degree of cytotoxicity.     

There have been a few studies reporting the effects of GCV exposure in vitro, 

aimed at determining the mechanism of GCV-mediated cytotoxicity.  A study in B16 

murine melanoma cells indicated GCV induced a morphological change in cells due to 

the reorganization of components of the cytoskeleton as well as an accumulation of cells 

in G2/M after a 48-72 hr incubation (165).  It has also been reported that GCV treatment 

results in a decline in Bcl-2 levels and activation of caspases, leading to apoptosis (166).  

However, GCV and araT induced apoptosis to a similar extent (71).  Thus, while these 

studies highlight pathways utilized by GCV that lead to cell death, they do not address 

the mechanism(s) by which GCV is significantly more cytotoxic than most other HSV-

TK substrates.   

 

DNA Damage Response Pathways 

In response to numerous DNA-damaging insults, cells have evolved complex 

mechanisms to monitor and repair DNA lesions in order to maintain genomic integrity.  

DNA damage is sensed by highly conserved signaling pathways which involve protein 

kinases such as ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and Rad3-

related (ATR) to recognize DNA lesions and activate cell cycle checkpoints which trigger 

cellular responses including activation of DNA repair machinery and cell-cycle arrest 

(167).   
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Dependent upon the type of damage, different protein repair complexes are 

involved in the overall cellular response (reviewed in (168)).  DNA bases that are altered 

by small chemical modifications, such as oxidations, alkylations, or deaminations, are 

removed by base excision repair (BER), which excises 2-13 nucleotides containing the 

altered nucleotide.  DNA polymerases then replace the removed nucleotides.  In a method 

similar to that of BER, nucleotide excision repair (NER) is responsible for the repair of 

DNA bases containing bulky chemical adducts or cross-links.   The mismatch repair 

(MMR) pathway is involved in the repair of mispaired nucleotides and small 

insertion/deletion loops created by DNA polymerase errors during replication. 

Double-strand breaks (DSBs) are a particularly hazardous type of damage because 

they can lead to genome rearrangements, and two mechanisms exist to repair these 

lesions: non-homologous end joining (NHEJ) and HRR.  A distinguishing feature 

between the DNA DSB pathways is the requirement of HRR for a sister chromatid 

present in the S/G2 phase of replicating cells, implying that the repair of DSBs in non-

replicating cells occurs via NHEJ.  HRR is an error-free process that uses a sister 

chromatid as template DNA to achieve precise repair (169,170).  In contrast to HR, 

NHEJ is an error-prone DSB repair mechanism that facilitates joining of broken DNA 

ends (171). 

Translesion synthesis allows replication machinery to replicate past damaged 

DNA.  This involves the use of specialized polymerases with more flexible base-pairing 

properties which take over for the blocked replicative polymerase, permitting translesion 

synthesis (172).  Some mechanisms of translesion synthesis introduce mutations, but 

others do not.  For example, Pol η mediates error-free bypass of lesions induced by UV 
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irradiation, whereas Pol ζ introduces mutations at these sites (173).  The potential for 

introducing mutations during translesion synthesis may be less dangerous to the cell than 

completely arresting DNA synthesis or continuing the cell cycle with incompletely 

replicated DNA.   The studies presented here investigate the nature of the lesions induced 

by GCV as well as the involvement of DNA repair pathways in responding to this 

damage. 

 

Dissertation Research Rationale 

The overall aim of this dissertation was to (1) investigate and characterize novel 

interactions of GCV with DNA, including the induction of DNA damage and 

mechanisms of DNA repair following GCV exposure, and (2) to provide a molecular 

explanation of the mechanism(s) by which GCV is more cytotoxic than other HSV-TK 

substrates.  Although it had previously been determined that GCV induces cytotoxicity 

by incorporation into DNA and arrests cells in the second S phase following drug 

exposure, the nature of DNA damage induced had not been determined.  It was my 

hypothesis that incorporation of GCVMP into DNA would cause more severe DNA 

damage, such as stalled or collapsed replication forks, DNA breaks, or mutations, than 

other HSV-TK substrates.  Specific differences in DNA damage produced by GCV 

compared to other HSV-TK substrates have not been determined, and these differences 

will add to the understanding of GCV-mediated cell killing and may help to explain the 

superior cytotoxicity of GCV.   

Not only is the nature of the GCV-induced DNA damage poorly understood, little 

is known about DNA repair pathways involved in responding to this damage.  The only 
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report that provided evidence that GCVMP incorporated into DNA is subjected to repair 

implicated base excision repair because inhibition of DNA polymerase β sensitized cells 

to GCV (174).  To date, no other data have been published which propose other 

mechanisms of DNA repair involved in responding to GCV incorporation into DNA. 

Rubsam et al provided a direct comparison of the metabolism, DNA 

incorporation, and cell cycle effects of GCV and araT, but did not characterize the 

mechanism of the differing cell cycle progression induced by these agents (71).  Chapter 

II extends the finding that GCV induces cell death at the second attempt to traverse S-

phase by characterizing the extent and kinetics of DNA damage.  By comparing DNA 

damage induced by GCV to that observed with araT, it was determined that GCV induces 

more DNA damage than araT and this damage is induced in a biphasic pattern, with a 

secondary induction of DNA damage occurring with similar timing to the S phase arrest 

observed following GCV treatment.  The induction of Rad51 foci following GCV 

treatment further supported a role for homologous recombination in repairing GCV-

mediated DNA damage. 

The initial induction of DNA damage during GCV exposure decreased following 

drug removal, suggesting that repair had occurred.  Studies included in Chapter III 

evaluated DNA repair mechanisms involved in responding to GCV-induced DNA 

damage.  First, a role for mismatch repair was investigated.  Second, a yeast-based assay 

was utilized to screen a panel of DNA repair mutants for increased sensitivity to GCV.  

This assay confirmed the MMR repair results and further demonstrated a role for 

homologous recombination and cell cycle checkpoints in responding to GCV-mediated 
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DNA damage.  Similar experiments in mammalian cells would have taken considerably 

longer, and these results provide specific pathways to translate into human cells. 

In order to more thoroughly understand the effects of GCVMP incorporation into 

DNA, in Chapter IV we characterized specific DNA mutations induced following 

treatment with GCV compared to other HSV-TK substrates.  The presence of unique 

mutations in GCV-treated cells compared to control cells or those treated with other 

HSV-TK substrates suggests that the small changes in structures of these drugs results in 

dramatically different effects on the fidelity of DNA polymerases.  This translated into 

different effects on cell cycle progression by the different HSV-TK substrates and 

suggests different mechanisms of cell killing for each substrate.  

The research presented in this dissertation has provided the field with knowledge 

of GCV’s ability to induce DNA damage as well as repair pathways involved in 

responding to this damage, leading to increased understanding of the unique ability of 

GCV to cause multi-log cell killing.  Better understanding of this mechanism may lead to 

improvement of this gene therapy technique or to the development of new anti-cancer 

drugs which can induce similarly high degrees of cytotoxicity. 
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Chapter II 
 
 
 

DELAYED INDUCTION OF CELL DEATH BY GANCICLOVIR IS 
ASSOCIATED WITH γ-H2AX AND RAD51 FOCI 

 
 
Summary 

 Transfer of the herpes simplex virus thymidine kinase (HSV-TK) suicide gene to 

malignant cells followed by treatment with ganciclovir (GCV) is one of the most widely 

used strategies for cancer gene therapy.  Previously we demonstrated that GCV induced 

>3-logs more cell kill than HSV-TK substrates acyclovir and 1-β-D-arabinofuranosyl 

thymine (araT).  GCV exhibited a delayed mode of action, in which cells traversed the 

first S-phase and completed cell division after GCV exposure, but arrested during the 

second S-phase.  We have extended these studies by examining the role of DNA damage 

as a possible mechanism for the superior cytotoxicity of GCV.  Using γ-H2AX foci 

formation as an indicator of DNA damage, GCV induced at least 7-fold more foci than 

that observed with araT at equitoxic concentrations.  Although the number of foci 

decreased after removal of either drug suggesting repair of these early lesions, only GCV 

produced a late and persistent increase in foci indicating the induction of irreparable 

DNA damage.  Furthermore, only the late induction of γ-H2AX was associated with 

formation of Rad51 foci, implicating homologous recombination repair in cytotoxicity 

with GCV. The appearance of these late lesions corresponded to the timing of the second 

S-phase arrest.  These data demonstrate that GCV induces late DNA damage. The 
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inability to repair this damage by HRR may account for the superior cytotoxicity of 

GCV. 

 

Introduction 

Engineering tumor cells to express the herpes simplex virus type 1 thymidine 

kinase (HSV-TK) allows for the selective phosphorylation of ganciclovir (GCV) in 

transgene-expressing cells.  Further phosphorylation by cellular kinases results in the 

accumulation of the toxic metabolite, GCV 5'-triphosphate (GCVTP), which competes 

with dGTP for incorporation into DNA (1).  This approach has been successful in 

producing multi-log cell killing in vitro and strong tumor growth inhibition with some 

complete tumor regressions in animal models (2-6).  These results have prompted clinical 

trials in patients with a variety of malignancies, including brain tumors, and a 

combination therapy approach in prostate cancer.  Studies have demonstrated that HSV-

TK/GCV therapy is well tolerated, with promising antitumor activity in prostate cancer 

(7-9). 

Although the excellent cytotoxicity of HSV-TK/GCV has been documented in 

many different cell types, the mechanism by which cell death is induced is still not well 

understood.  Similar to other nucleoside analogs, the primary mechanism of cytotoxicity 

is due to the incorporation of GCV monophosphate (GCVMP) into DNA, where the 

analog is readily incorporated into internucleotide linkages (10,11).  While GCV shares 

this basic mechanism of cytotoxicity with other HSV-TK substrates, including acyclovir 

(ACV) and 1-β-D-arabinofuranosylthymine (araT), GCV induces multi-log cell killing at 

sub-micromolar concentrations, whereas ACV and araT are weakly cytotoxic at 
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concentrations >100 µM (10).   Furthermore, treatment of cells with 0.1 µM GCV 

produced low GCVTP levels, similar to that of its endogenous competitor dGTP, yet this 

resulted in killing of 75% of the cells; however, accumulation of araT triphosphate was 

approximately 30 times higher and resulted in no significant cytotoxicity (IC10) after 

treatment with 1 µM araT.  At concentrations of 10 or 100 µM, accumulation of ACV 

triphosphate was 7-30 fold lower than GCVTP or araT triphosphate and incorporation of 

ACV monophosphate into DNA, where it acts as an obligate chain terminator (12,13), 

was below the limit of detection (10).  These data suggest that the low cytotoxicity with 

ACV was most likely due to poor incorporation of ACV phosphates into DNA.   

However, there is not a clear explanation for the superior cytotoxicity of GCV compared 

to araT despite its much lower incorporation into DNA. 

A few studies have attempted to address the mechanism by which GCV causes 

cell death.  A study in B16 murine melanoma cells indicated GCV induced a 

morphological change in cells due to the reorganization of components of the 

cytoskeleton as well as an accumulation of cells in G2/M after a 48-72 hr incubation (14).  

It has also been reported that GCV treatment results in a decline in Bcl-2 levels and 

activation of caspases, leading to apoptosis (15).  While these studies highlight pathways 

utilized by GCV that lead to cell death, this does not address the mechanism by which 

GCV is many logs more cytotoxic than other HSV-TK substrates.  However, one study 

demonstrated that GCV induced sister chromatid exchanges and chromosome breaks and 

translocations, whereas ACV did not (16,17).  Since sister chromatid exchanges arise as a 

consequence of homologous recombination repair (HRR) (18), these results suggest that 



 39 

DNA damage and pathways involved in its repair differ significantly between these 

drugs.  

In a comparison of the events that lead to cytotoxicity for GCV and araT, we have 

reported a unique manner of delayed cell death in response to GCV (10).  Cells were able 

to complete one cell division cycle after incubation with GCV.  However, when they 

attempted to progress through the cell cycle for a second time, they were blocked in S 

phase where they remained until they underwent cell death.  In contrast, cells treated with 

araT accumulated in S phase and growth was inhibited for at least two days after drug 

removal, but subsequently cells progressed through the cell cycle and cell number 

increased.  This suggests that an event occurring during the second round of DNA 

replication following GCV treatment caused cells to arrest in S phase, resulting in cell 

death.  We have proposed that, during the second round of DNA replication, the presence 

of GCVMP in the template produces DNA damage that cannot be repaired, resulting in a 

persistent lesion.   

Taken together, these results suggest that GCV induces greater DNA damage with 

unique kinetics that results in multi-log cytotoxicity.  In an effort to understand the 

differences in cytotoxicity between GCV and other HSV-TK substrates, we wished to 

measure the extent and time course of DNA damage induction by GCV.  It has been 

reported previously that DNA damage results in the phosphorylation of histone H2AX on 

serine 139 by kinases such as Ataxia-telangiectasia mutated (ATM), ATM- and Rad3-

related (ATR), and DNA-dependent protein kinase (19-22).  Accumulation of 

phosphorylated H2AX (γ-H2AX) at the sites of DNA damage induced by radiation and 

drugs results in formation of discrete foci which can be visualized using a phospho-
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specific antibody (19,23-26).  γ-H2AX was originally thought to be a marker of DNA 

double strand breaks (DSBs), but has also been shown to be phosphorylated as a result of 

DNA polymerase and ribonucleotide reductase inhibition by aphidicolin and 

hydroxyurea, respectively, suggesting formation of γ-H2AX foci at sites of stalled 

replication (27,28).  Here we have characterized the formation of γ-H2AX foci following 

GCV treatment as a measure of DNA damage. 

Reports of sister chromatid exchanges induced by GCV suggest a role for HRR, a 

process involved in the repair of DSBs and stalled replication forks (29).  In order to 

characterize the involvement of this repair pathway, we measured the formation of foci 

containing Rad51, an essential protein mediating HRR (30).  We have utilized these 

techniques to compare the kinetics and extent of DNA damage with GCV and araT in 

order to elucidate the differences that might result in the superior cytotoxicity observed 

with GCV.   

 

Materials and Methods 

Cell Culture.  U251 human glioblastoma cell line was maintained in RPMI 1640 

medium supplemented with 10% calf serum (GIBCO, Grand Island, NY) and L-

glutamine (Fisher Scientific, Pittsburgh, PA).  Cells were maintained in exponential 

growth in a humidified atmosphere at 37ºC and 5% CO2.   U251 cells were transduced 

with a retroviral vector encoding the herpes simplex virus type 1 thymidine kinase along 

with the neomycin resistance gene.  Transgene expressing cells were selected with G418 

and individual colonies were expanded and maintained in medium containing G418.  
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HSV-TK tranduction was confirmed by assaying lysates for phosphorylated GCV 

metabolites.   

 

Analysis of γ-H2AX foci formation by laser scanning confocal microscopy.  

Exponentially growing U251 cells on 8-well coverslips were incubated with drug as 

indicated, washed with PBS and then fixed and permeabilized with acetone/methanol 

(50:50 v/v) for 10 min.  The fixed cells were then washed with PBS, blocked with 10% 

goat serum for 1 h, incubated with γ-H2AX primary antibody (1:400 dilution; Upstate, 

Charlottesville, VA) for 1 h, washed, incubated with AlexaFluor 488 conjugated goat 

anti-rabbit secondary antibody (1:200 dilution; Molecular Probes, Eugene, OR) for 1 h, 

washed and mounted with ProLong antifade kit (Molecular Probes, Eugene, OR).  Slides 

were imaged with a Zeiss LSM510 confocal microscope using a 60x objective lens.  

Images of representative cell populations were captured, and γ-H2AX foci were counted 

visually. 

 

Analysis of Rad51 foci formation by laser scanning confocal microscopy.  Drug was 

added to exponentially growing U251 cells on 8-well coverslips for 24 hours unless 

otherwise noted.  At specified timepoints, cells were washed with PBS and permeabilized 

with Triton-X buffer (0.5% Triton, 20mM Hepes, 50mM NaCl, 3mM KCl, 300mM 

Sucrose) for 5 min.  Permeabilized cells were then fixed with paraformaldehyde solution 

(3% PFA, 2% sucrose, 1X PBS) for 30 min, washed 3 times for 10 minutes in wash 

buffer (0.5% NP40, 0.3% Sodium Azide, 1X PBS), blocked with 10% goat serum for 1 

hour, and incubated with rabbit anti-Rad51 primary antibody (1:1600 dilution; 
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Calbiochem, La Jolla, CA) for 1.5 hours.  Cells were then washed 3 times in wash buffer, 

incubated with AlexaFluor 488 conjugated goat anti-rabbit secondary antibody (1:2000 

dilution; Molecular Probes, Eugene, OR) for 1 hour, washed 3 times in wash buffer then 

washed with DAPI (.1µg/ml DAPI in 1X PBS) and mounted with ProLong antifade kit 

(Molecular Probes, Eugene, OR).  Slides were imaged with an Olympus FV500 confocal 

microscope using a 100x objective lens.  Images of representative cell populations were 

captured, and Rad51 positive cells were scored visually (cells with 10+ foci were 

considered positive). 

 

Analysis of γ-H2AX and BrdUrd immunostaining by laser scanning confocal 

microscopy.  Exponentially growing U251 cells on 8-well coverslips were incubated 

with drug as indicated, followed by addition of 30 µM BrdUrd for 30 minutes at the 

conclusion of drug incubation.  Cells were fixed, permeabilized, and stained for γ-H2AX 

as described above, using AlexaFluor 594 conjugated goat anti-rabbit secondary 

antibody.  After the final wash, antibody complexes were fixed with 3.7% 

paraformaldehyde in PBS for 10 minutes.  Cells were treated with 2.5 N HCl for 30 

minutes at 37°C and stained with AlexaFluor 488 mouse anti-BrdUrd conjugate (1:20 

dilution, BD Pharmingen, San Jose, CA) for 1 hr.  Slides were mounted and imaged as 

described above.    

 

Analysis of γ-H2AX expression by flow cytometry.  After drug incubation, cells were 

harvested by trypsinization and washed with PBS.  The pellets were resuspended in ice-

cold PBS followed by the addition of cold 2% paraformaldehyde.  Samples were then 
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incubated at 4ºC for a minimum of 30 min.  Fixed samples were centrifuged and the 

pellets were resuspended in PBS containing 0.5% Tween 20 and incubated at 3ºC for 15 

min. PBS containing 0.5% Tween 20 and 5% serum (PBT) was added followed by 

centrifugation.  Pellets were then resuspended in PBT.  Anti-γ-H2AX antibody was added 

to each sample and incubated for 45 min at room temperature and then washed with PBT.  

The pellets were then resuspended in anti-rabbit phycoerythrin conjugate antibody 

(Sigma Chemical Co, St. Louis, MO) and incubated for 45 min at room temperature.  

Samples were washed with PBT and resuspended in 7-Amino Actinomycin D (7-AAD) 

(Molecular Probes, Eugene OR) and incubated at room temperature for at least 30 min 

prior to flow cytometric analysis. 

 

Results 

In order to evaluate DNA damage induced by GCV, U251tk cells were incubated 

with GCV for 24 hr and then assayed for γ-H2AX foci formation.   A dose-dependent 

increase in γ-H2AX foci was observed in cells treated with GCV compared to control 

cells (Figure 2.1A and B).  In the absence of drug, control cells contained an average of 

3.6 ± 2.5 γ-H2AX foci per cell.  Treatment with the IC10 (0.03 µM) for GCV resulted in a 

4.4-fold increase in γ-H2AX foci which was not significantly different from control (p = 

0.3).  Treatment with the IC50 (0.05 µM) and IC90 (0.3 µM) for GCV significantly 

increased the number of γ-H2AX foci per cell (14.3 + 6.4 fold and 24.4 ± 6.8 fold, 

respectively; p<0.001). 

 γ-H2AX expression was then assayed by flow cytometry in order to evaluate the 

effect of increasing drug concentrations on total γ-H2AX fluorescence.  In untreated 
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Figure 2.1. GCV induces a dose-dependent increase in γ-H2AX.  U251tk cells were 
incubated with GCV for 24 hr and assayed for γ-H2AX foci formation.  (A) 
representative cells as captured by confocal microscopy; (B) quantitation of the number 
γ-H2AX foci per cell. Columns, average of at least three separate experiments each 
consisting of at least 18 cells per condition; bars, SE. 

Control IC50 IC90 IC10 

(A) 

(B) 



 45 

control cells, only 2% of the cells expressed detectable levels of γ-H2AX.  Treatment 

with 0.2 and 1 µM GCV for 24 hr significantly increased the percentage of cells 

expressing γ-H2AX to 20% (p<0.01) and 59% (p<0.001), respectively (Figures 2.2A and 

B).  Thus, two different independent methods have demonstrated an increase in γ-H2AX 

fluorescence with increasing GCV concentration.  Since we were interested in 

quantifying the number of sites of DNA damage per cell rather than just the percentage of 

cells positive for γ-H2AX, subsequent experiments measured DNA damage using the in 

situ assay. 

Since DNA damage can be induced in cells but may be repaired, we wished to 

determine the kinetics of γ-H2AX foci formation during drug incubation and their 

persistence after drug washout. U251tk cells were treated with either non-toxic (IC10) or 

cytotoxic (IC50, IC90) concentrations of GCV for 24 hr and assayed for γ-H2AX foci 

formation (Figure 2.3).   At each concentration of GCV tested, an increase in foci was 

apparent within 12 hr after drug addition which continued through the end of the 

incubation, but the number of foci decreased by 12 hr after drug washout.  At the IC10 for 

GCV, the number of foci remained similar to control levels throughout the 48 hr post-

washout period.  In contrast, between 24 and 48 hr after washout of GCV at the IC50 or 

IC90, the number of foci increased to greater than 10-fold over control.  

Since cells treated with GCV arrest permanently during the second round of DNA 

replication following drug incubation (10), we have proposed that a lesion or other type 

of damage in DNA is encountered leading to cell death.  Therefore we wished to 

determine if the presence of DNA damage, indicated by γ-H2AX foci, predominated in S 

phase cells. Cells were treated with either no drug (control) or GCV (IC10, IC50 and IC90)  
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Figure 2.2. GCV induces a dose-dependent increase in γ-H2AX expression.  U251tk 
cells were incubated with GCV for 24 hr and assayed for γ-H2AX expression by flow 
cytometry; (A) cytogram illustrating separation of control and GCV-treated cells by γ-
H2AX fluorescence and (B) quantitation of percentage of γ-H2AX expressing cells from 
flow cytometry.  Points, mean of triplicate experiments; bars, standard error.
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Figure 2.3. Time course of γ-H2AX foci formation in response to GCV. U251tk cells 
were incubated with GCV at the indicated concentrations (IC10=0.03 µM, IC50=0.05 µM, 
IC90=0.3µΜ) for 24 h followed by drug washout. Cells were assayed by confocal 
microscopy for γ-H2AX foci formation at the indicated time points.  Black bar indicates 
duration of drug incubation, points represent the mean of at least three experiments each 
consisting of at least 18 cells per time point and drug concentration, bars represent 
standard error. 
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for 24 hr, then incubated with 5-bromo-2'-deoxyuridine (BrdUrd) briefly followed by 

staining for both the thymidine analog in DNA and γ-H2AX. At drug washout, the 

majority of γ-H2AX positive cells were in S phase, as indicated by BrdUrd incorporation, 

with a decrease to approximately one-third of γ-H2AX positive cells in S-phase by 24 hr 

after GCV washout (Table 2.1).  At 48 hr after IC50 washout, more than 80% of γ-H2AX 

labeled cells were in S-phase.  At 48 hr following washout of the IC90 for GCV, no cells 

stained positive for BrdUrd incorporation.  However, these cells exhibited massive cell 

death, with few intact cells remaining on the plate.  A separate study using dual 

parameter flow cytometry to detect DNA content with propidium iodide and DNA 

replication with BrdUrd incorporation confirmed that, at 48 hr after GCV washout, the 

majority of cells were in S phase but had low levels of BrdUrd incorporation due to 

decreased DNA synthesis (data not shown).   

In order to determine whether the amount of DNA damage could explain 

differences in cytotoxicity between GCV and araT, the induction of γ-H2AX foci by araT 

was evaluated.  After incubation of U251tk cells with the IC10, IC50, and IC80 for araT (1 

µM, 11 µM, and 100 µM, respectively) for 24 hr, a dose-dependent increase in γ-H2AX 

foci was observed (Figure 2.4A and B).  However, the magnitude of the increase in foci 

formation was considerably less with araT (2 - 3.5-fold increase compared to control) 

relative to GCV (15 - 25-fold increase, Figure 2.1B). 

Since γ-H2AX foci formation exhibited a biphasic pattern after GCV treatment, 

we evaluated the kinetics of foci formation with araT.  During a 24 hr incubation with 11 

µM (IC50) araT, there was a small increase in the number of γ-H2AX foci to  
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% BrdU 
Positive 

% γ-H2AX 
Positive 

% of γ-H2AX 
Positive cells that 

were BrdU Positive 
O h C 40 23 34 

 IC10 56 56 63 
 IC50 65 76 80 
 IC90 79 96 80 
      

24 h C 38 15 31 
 IC10 60 12 33 
 IC50 59 21 33 
 IC90 55 73 45 
      

48 h C n.d. n.d. n.d. 
 IC10 37 9 33 
 IC50 64 69 81 

  IC90 0 90 0 
 
 
Table 2.1. γ-H2AX expression and BrdUrd incorporation in response to GCV. 
U251tk cells were incubated with GCV at the indicated concentrations (IC10=0.03 µM, 
IC50=0.05 µM, IC90=0.3 µΜ) for 24 h followed by drug washout.  Cells were assayed for 
γ-H2AX foci formation and bromodeoxyuridine (BrdUrd) staining at the indicated time 
points.  Time = 0 represents the time of drug removal.  Values represent the percentage of 
cells that stained positive for γ-H2AX (contained greater than 5 foci), BrdUrd, or both.  
At least 50 cells were counted at each indicated time point. n.d.=not determined.
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Figure 2.4. araT induces a dose-dependent increase in γ-H2AX.  U251tk cells were 
incubated with araT for 24 hr and assayed for γ-H2AX foci formation.  (A) representative 
cells as captured by confocal microscopy; (B) quantitation of the number γ-H2AX foci 
per cell. Columns, average of at least three separate experiments; bars, SE. 
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approximately 2.25-fold greater than control.  The number of foci decreased by 12 hr 

after drug washout and remained slightly higher (approximately 1.7-fold) compared to 

control cells.  In contrast to the results with GCV, no further increase was observed for up 

to 96 hr after washout (Figure 2.5).      

The kinetics of γ-H2AX foci formation observed with cytotoxic concentrations of 

GCV suggested that the drug-induced DNA damage was initially repaired, but the 

secondary onset of damage was not repaired (Figure 2.3).  Since cytotoxic concentrations 

of GCV induce S-phase accumulation and a slowing of DNA replication, we wished to 

determine whether HRR was induced, since this is the primary repair pathway for DNA 

DSBs during S-phase (31,32).  Cells were treated with IC90 GCV and assayed for 

formation of foci containing Rad51 at the indicated time points.  Rad51 foci have been 

demonstrated to accumulate at sites of HRR and thus can be used as an indicator of this 

repair pathway following DNA damage (33).  At 12 h after drug addition and 0 and 12 h 

after drug washout, there was a small increase (approximately 2-fold) in Rad51 positive 

cells compared to untreated controls.  At 24 h after drug washout, the percentage of cells 

expressing Rad51 foci exhibited a large increase to 6-fold greater than control.  The 

percentage of Rad51 positive cells decreased thereafter, and at 72 h after drug washout 

the percentage of Rad51 positive cells returned to a 2-fold increase over control cells 

(Figure 2.6).  These data indicate that HRR was involved in repair of DNA damage 

primarily after GCV washout.  
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Figure 2.5. Time course of γ-H2AX foci formation in response to araT.  U251tk cells 
were incubated with 11µM araT (IC50) for 24 hr followed by drug washout.  Cells were 
assayed for γ-H2AX foci formation by confocal microscopy at the indicated time points 
and the number of γ-H2AX foci per cell was determined.  Black bar indicates duration of 
drug incubation. Points, mean of at least three experiments; bars, standard error. 
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Figure 2.6 Time course of Rad51 foci formation in response to GCV.  U251tk cells 
were incubated with 0.3 µM GCV (IC90) for 24 h followed by drug washout. Cells were 
assayed by confocal microscopy for Rad51 (>10 Rad51 foci per cell) at the indicated time 
points.  Black bar, duration of drug incubation; points, mean of at least three wells from 
representative experiments; bars, standard error of the mean. 
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Discussion 

Most nucleoside analogues elicit cytotoxicity through incorporation into DNA (34-36).  

However, the extent of cell killing can differ between these drugs even though their 

primary mechanism of cytotoxicity is incorporation of the nucleotide analog into DNA.  

We have demonstrated previously that GCV was more cytotoxic than araT, despite the 

fact that U251 cells incorporated at least 5-fold more araTMP than GCVMP into DNA, 

suggesting that the functional consequences of incorporation induced by these nucleoside 

analogues is different (10).  Here we have measured DNA damage induced by GCV and 

araT using γ-H2AX foci formation, which demonstrated that GCV induced significantly 

more DNA damage than araT at equitoxic concentrations.  The biphasic kinetics of DNA 

damage observed uniquely with GCV likely reflect the role of HRR in a late but failed 

attempt at DNA repair, leading to multi-log cytotoxicity. 

Previous studies have demonstrated that treatment of cells with ionizing radiation 

or cytotoxic drugs induces γ-H2AX foci formation in a dose-dependent fashion (23,37-

39). It has also been reported that γ-H2AX foci are formed at stalled replication forks and 

do not solely represent DNA double strand breaks (40-42).  Additionally, non-cytotoxic 

concentrations of the DNA polymerase inhibitor aphidicolin induced H2AX 

phosphorylation (28).  In the data presented here, we have used two different methods to 

demonstrate that induction of γ-H2AX increased with increasing concentrations of GCV.  

Following drug washout, the number of γ-H2AX foci decreased demonstrating that the 

cells were able to repair a portion of this damage.  The γ-H2AX foci present during drug 

incubation may also indicate replication fork stalling, and γ-H2AX diminishes after drug 

is removed and replication resumes.  Time dependent resolution of foci formation has 
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been demonstrated by others using ionizing radiation (25,37).  However, we also 

observed a subsequent increase in γ-H2AX foci formation more than 24 hr after GCV 

washout, which to our knowledge has not been reported previously with other DNA 

damaging agents.  This late increase in foci occurred only at the two cytotoxic 

concentrations of GCV (IC50 and IC90), suggesting that this represents the lethal insult.  

Although the number of foci did not reach as high a level as observed during drug 

incubation, loss of cells due to cell death at this point interfered with our ability to 

quantify foci.  Co-staining for γ-H2AX and BrdUrd demonstrated that most of the γ-

H2AX foci were in S-phase cells at drug washout.  Furthermore, the late increase in γ-

H2AX foci at 48 hr after drug washout also was also associated primarily with cells in S-

phase, suggesting that the lethal insult occurred during attempted replication or repair of 

DNA. While many studies have focused on determining DNA damage during drug 

incubation, the studies presented here indicate that the critical events leading to cell death 

may occur long after drug washout. 

Following exposure of cells to araT, γ-H2AX foci formation was significantly 

different from that observed with GCV.  While there was a dose-dependent increase in 

foci formation with araT, the maximum number of foci was at least 7-fold lower with 

araT despite the fact  that more araTMP was incorporated into DNA (10).  This indicates 

that it is not simply the absolute amount of nucleotide analog incorporated into DNA but 

the consequences of that incorporation that is important for cytotoxicity.  Furthermore, 

the kinetics of foci formation and resolution was different from that observed with GCV.  

While the number of foci increased during incubation for both drugs, following araT 

washout foci formation decreased, whereas with GCV the number of foci increased by 36 



 56 

hr post washout.  We have reported previously that apoptosis was induced similarly with 

both drugs, thus the increase in γ-H2AX foci following GCV treatment cannot be 

attributed to apoptosis (10).   

Previous reports demonstrate that GCV induces sister chromatid exchanges, 

suggesting a role for HRR in responding to GCV-induced DNA damage (16,43).   We 

further investigated HRR by analyzing Rad51 foci formation following treatment with 

GCV.   Unlike the pattern of γ-H2AX foci formation, only a 2-fold increase in Rad51 was 

observed during drug incubation while a single peak of cells with Rad51 foci was noted 

at 24 hr after drug washout.  This suggests that the DNA damage signaled by the initial 

peak of γ-H2AX during drug incubation did not utilize HRR for repair. As the percentage 

of Rad51 positive cells declined, a second increase in γ-H2AX foci formation was 

evident.  This suggests that, at 24 hr after GCV washout, cells are attempting to repair 

GCV-induced DNA damage through HRR.  However, the subsequent increase in γ-

H2AX suggests that HRR is not successful but rather it creates more DNA damage which 

does not appear to be repaired.  This increase in irreparable DNA damage leads to cell 

cycle arrest in the second S phase post-GCV exposure, resulting in cell death.  

The separable kinetics of γ-H2AX and Rad51 foci formation to our knowledge 

have not been reported before.  Typically cells are stained for γ-H2AX or Rad51 at one or 

two time points after radiation or drug addition, whereas here we performed a time-

dependent study over 96 hr.  At any given time, both γ-H2AX and Rad51 foci could be 

observed, however they achieved their peak of presentation 24 hr apart.  While γ-H2AX 

has been implicated in the formation of Rad51 foci (44), the 24 hr difference between the 

peak of γ-H2AX and Rad51 foci would argue against these events being associated.  



 57 

Furthermore, cells progressed through the cell cycle and divided following drug washout, 

providing additional evidence that the initial γ-H2AX increase was not the signal for 

Rad51 foci formation. 

 In a previous report we demonstrated that, after treatment with GCV, cells were 

able to progress through one cell division cycle following drug removal and return to a 

normal cell cycle distribution.  However, as cells attempted to progress through S-phase 

for a second time at approximately 48 hr after GCV washout, they arrested permanently 

followed by cell death.  The results presented here support the cell cycle data.  The 

decrease in number of γ-H2AX foci to control levels and increase in Rad51 foci at 12-24 

hr following GCV washout occurred with similar timing to the return to a normal cell 

cycle distribution after drug treatment previously reported (10).  Indeed our BrdUrd data 

confirm that control levels of S-phase cells are present at 24 hr post-washout for the IC10 

and IC50 GCV.  The subsequent increase in γ-H2AX foci occurred with similar timing to 

the cells’ fatal attempt to progress through S-phase for the second time, as indicated by 

the increase in γ-H2AX/BrdUrd positive cells at 48 hr.  This suggests that late-occurring 

DNA damage that the cell cannot repair is important for GCV cytotoxicity.   

 We suggest that this damage may be the result of GCVMP in the template strand 

during DNA synthesis.  When DNA replication machinery encounters GCVMP in the 

template strand, the DNA polymerase may stall. This stalled replication fork may be 

sufficient for γ-H2AX induction and Rad51 foci may indicate HRR involvement in 

restarting the stalled replication fork.  Alternatively, it has been proposed that a stalled 

replication fork may result in recognition of a specific endonuclease which generates a 
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nick in the template, resulting in the formation of a DSB, thus resulting in H2AX 

phosphorylation and induction of HRR for DSB repair (Figure 2.7 and (29,45)).    

In summary, the patterns of γ-H2AX and Rad51 foci formation indicate that late-

occurring DNA damage, unable to be repaired by HRR, resulted in cell death with GCV.   

Furthermore, at equitoxic concentrations DNA damage was less severe with araT and did 

not persist, whereas GCV induced greater DNA damage and it occurred in biphasic 

fashion.  Although we do not know the nature of the persistent lesion with GCV, we 

suggest that DNA damage, possibly induced by attempted replication with GCVMP in 

the template, was unable to be repaired leading to cell death.  In contrast, we suggest that 

most of the DNA damage induced by araT was repaired, and cell effects other than direct 

DNA damage, such as signaling to cell death pathways (15,43,46,47), may account for its 

cytotoxicity. 
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Figure 2.7. Proposed mechanism(s) of γ-H2AX and Rad51 foci formation in 
response to GCV.  When DNA replication machinery encounters GCVMP (▲)in the 
template strand during DNA synthesis, the DNA polymerase is stalled (1).  This stalled 
replication fork may be sufficient for γ-H2AX induction and Rad51 foci may indicate 
HRR involvement in restarting the stalled replication fork.  Alternatively, the stalled 
replication fork may result in recognition of a specific endonuclease which generates a 
nick in the template (2), resulting in the formation of a DSB, thus resulting in H2AX 
phosphorylation and induction of HRR for DSB repair.    
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Chapter III 
 
 
 

EVALUATION OF DNA DAMAGE RESPONSE PATHWAYS IN SENSITIVITY 
TO GANCICLOVIR: MLH1 DEFICIENCY ENHANCES TUMOR CELL 

SENSITIVITY TO GCV 
 
 
Summary 
 

Suicide gene therapy with herpes simplex virus thymidine kinase and ganciclovir 

is notable for producing multi-log cytotoxicity in a unique pattern of delayed cytotoxicity 

in S-phase.  Because hydroxyurea, a ribonucleotide reductase inhibitor that activates 

mismatch repair, can increase sensitivity to ganciclovir, we evaluated the role of MLH1, 

an essential mismatch repair protein, in ganciclovir cytotoxicity.  Using isogenic 

HCT116TK (HSV-TK-expressing) colon carcinoma cells that express or lack MLH1, cell 

survival studies demonstrated greater ganciclovir sensitivity in the MLH1 deficient cells, 

primarily at high concentrations.   This could not be explained by differences in 

ganciclovir metabolism, as the less sensitive MLH1-expresssing cells accumulated more 

ganciclovir triphosphate and incorporated more into DNA.  Suppression of MLH1 in 

U251 glioblastoma or SW480 colon carcinoma cells also enhanced sensitivity to high 

concentrations of ganciclovir.  Studies in yeast confirmed the results with MLH1, and 

further suggested a role for homologous recombination repair and several cell cycle 

checkpoint proteins in ganciclovir cytotoxicity.   These data suggest that MLH1 can 

prevent cytotoxicity with ganciclovir, and enhancement of ganciclovir sensitivity with 
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hydroxyurea is likely due to increased incorporation of ganciclovir triphosphate into 

DNA and not activation of MLH1.   

 

Introduction 

In an effort to improve the selectivity of cancer chemotherapy, several suicide 

gene therapy strategies have been developed in which expression of a foreign gene in 

tumor cells activates a normally innocuous substrate to a cytotoxic metabolite (1).  One 

of the most widely investigated strategies employs transfer of the cDNA for the herpes 

simplex virus thymidine kinase (HSV-TK), and expression of the enzyme facilitates 

phosphorylation of the antiviral drug ganciclovir (GCV) to its 5'-monophosphate, 

GCVMP.  After subsequent phosphorylation by endogenous kinases to its 5'-triphosphate 

(GCVTP), this metabolite competes with dGTP for incorporation into DNA which leads 

to cell death (1).  This approach has been successful in producing multi-log cell killing in 

vitro and strong tumor growth inhibition with some complete tumor regressions in animal 

models (2-5).  These results have prompted clinical trials in patients with a variety of 

malignancies, and a combination therapy approach in prostate cancer.  Clinical studies 

have demonstrated that HSV-TK/GCV therapy is well tolerated (6-8), with promising 

antitumor activity as part of a multimodality approach in prostate cancer (9).    

HSV-TK/GCV is notable for its ability to cause high cytotoxicity through a 

unique manner of delayed cell death distinct from other antimetabolites.  Previously we 

demonstrated that GCV induced >3-logs more cell kill than other HSV-TK substrates, 

such as 1-β-D-arabinofuranosyl thymine (araT), despite the fact that more araT was 

incorporated into DNA than GCV (10).  U251 glioblastoma cells were able to complete 
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one cell division cycle after incubation with GCV for 24 hr.  However, when they 

attempted to progress through the cell cycle for a second time, they were blocked in S 

phase where they remained until they died.  In contrast, cells treated with araT 

accumulated in S phase and growth was inhibited for at least two days after drug 

removal, but subsequently surviving cells progressed through the cell cycle and cell 

number increased.  This suggests that, with GCV treatment, an event occurring during 

this second round of DNA replication caused cells to arrest in S phase, resulting in cell 

death.  Other reports demonstrated that, during a 48 – 72 hr continuous incubation in B16 

murine melanoma cells, GCV induced a morphological change in cells due to the 

reorganization of components of the cytoskeleton (11) and an accumulation of cells in S 

or G2/M (12).  In addition, GCV commonly induces an apoptotic cell death due to either 

a decline in Bcl-2 levels and activation of caspases (13,14),  or through a CD95-

dependent pathway (15).  

While these studies have documented changes in cell cycle progression and 

induction of apoptosis induced by GCV, the mechanism by which drug incorporation into 

DNA leads to these consequences is not known.  Based on our previous data 

demonstrating that treatment with GCV arrested cells in S phase, we hypothesized that 

attempted repair of GCV in the template leads to cell death.  Tomicic et al have 

implicated base excision repair in removal of GCVMP from DNA in CHO cells (16). 

Previously we reported that GCV cytotoxicity can be enhanced by the addition of 

hydroxyurea (HU), a ribonucleotide reductase inhibitor that produces an imbalance in 

dNTP pools, resulting in additive cytotoxicity in HSV-TK-expressing cells and 

synergistic cytotoxicity in non-HSV-TK-expressing bystander cells across a wide variety 
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of solid tumor cell lines (17-19).  Because HU causes an imbalance in dNTP pools which 

would lead to misincorporations and activation of the mismatch repair pathway (MMR) 

(20-22), this study aimed first to determine if MMR affects sensitivity to GCV.  Further 

experiments in a yeast-based system investigated the role of MMR and other DNA repair 

pathways in GCV cytotoxicity, highlighting additional pathways which may be involved 

in sensing or repairing GCV-mediated DNA damage. 

 

Materials and Methods 

Cell Culture.  HCT116 and SW480 human colon carcinoma and U251 human 

glioblastoma cell lines were maintained in Dulbecco’s Modified Eagle medium, 

McCoy’s, and RPMI (Invitrogen Life Technologies, Grand Island, NY); respectively.  

Media was supplemented with 2 mM L-glutamine (Fisher Scientific, Pittsburgh, PA) for 

all cell lines and 10% fetal bovine serum (Invitrogen) for HCT116 and SW480 and 10% 

bovine serum for U251 cells. All cells were maintained in exponential growth and kept in 

an atmosphere of 37°C and 5%CO2. 

 

Stable Gene-Expressing Cell Lines.  HCT116 0-1, HCT116 1-2, SW480, and U251 cell 

lines were transduced with a retroviral vector encoding the herpes simplex virus type 1 

thymidine kinase along with the neomycin resistance gene (4).  Transgene expressing 

cells were selected with G418 and individual colonies were expanded and maintained in 

media containing G418 (Invitrogen).  HSV-TK expression was confirmed by assaying 

lysates for phosphorylated GCV metabolites and immunoblotting for HSV-TK protein. 
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Clonogenic Cell Survival Assays.  Exponentially growing cells were treated with GCV 

(Cytovene, Syntex, Palo Alto, CA) for 24 hr, trypsinized and diluted to approximately 

100 viable cells per well in 6-well culture dishes.  After 10-14 days, the cell colonies 

were fixed in methanol:acetic acid (3:1), stained with 0.4% crystal violet (Fisher 

Scientific), and visually counted.  Cell survival is expressed as a fraction of the plating 

efficiency of control, non-drug treated cells.  Each data point was plated in triplicate, and 

all assays were performed at least twice.   

 

Cellular Nucleotide Analysis.  After incubation with [8-3H]GCV (Moravek 

Biochemicals, Inc., Brea, CA), cells were harvested by trypsinization and extracted with 

0.4 N perchloric acid and neutralized following drug exposure.   The acid-insoluble 

pellets containing radiolabled DNA were washed with 0.4 N perchloric acid and 

solubilized overnight in 1 N KOH.  Incorporation of [8-3H]GCV into DNA was 

quantitated by liquid scintillation spectrometry.  For analysis of cellular GCV 

triphosphate, fractions containing [8-3H]GCV triphosphate were collected and quantitated 

by liquid scintillation spectrometry based on the known specific activity of [8-3H]GCV. 

 

Depletion of MLH1 with small interfering RNA.  Cells were plated on 6 well plates at 

a density of 1.0 x 105 cells/ml and incubated for 24 hours.   Cells were transfected with 

100 nM siRNA directed to MLH1 or non-specific siRNA (Dharmacon, Lafayette, CO) 

and Lipofectamine 2000 (Invitrogen, Grand Island, NY).  At 24 hours post-transfection, 

media was replaced.  Cells were expanded at 48 hours post-transfection and incubated for 

an additional 48 hours.  Drug was added for 24 hours, and clonogenic cell survival assays 
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were performed.  Cell lysates were collected at time of drug addition for Western Blot 

analysis of hMLH1 levels.   

 

Immunoblot analysis.  Whole-cell lysates were prepared in buffer [0.5 M Tris-HCl, 1.5 

M NaCl, 2.5% deoxycholic acid, 10% NP40, 10 mM EDTA (pH 7.4)], with the addition 

of protease inhibitors (Complete Mini Protease Inhibitor Cocktail tablet, Roche, 

Indianapolis, IN).  Proteins were separated by SDS-PAGE on 10% acrylamide gels and 

transferred onto Immobilon-P  membrane (Millipore Corp., Bedford, MA). Blots were 

probed with hMLH1 polyclonal rabbit (Santa Cruz Biotechnology, Santa Cruz, CA) or 

HSV-TK polyclonal rabbit antibodies and anti-rabbit horseradish peroxidase–linked 

antibodies. Proteins were visualized using an enhanced chemiluminescence detection 

system (Pierce, Rockford, IL). 

 

Saccharomyces cerevisiae strains and expression constructs.  The base yeast strain 

used in these experiments, YW929 (MATα, ade2::STE3-MET15, his3∆1, leu2∆0, 

met15∆0, ura3∆0), was derived from the previously described suicide deletion strain 

YW798 by allowing the latter to undergo chromosome breakage and repair and selecting 

an ade2 mutant product clone (23).  HSV-TK and deoxycytidine kinase (dCK) expression 

constructs were created by amplifying the corresponding coding sequences with tailed 

primers so that the products could be ligated as a Bam HI-Sal I fragment into the 

previously described expression vector pTW300 (24).  The product plasmids pTW382 

and pTW383 express dCK and HSV-TK, respectively, from the strong constitutive ADH1 

promoter with a Myc epitope and His6 tag fused to the amino terminus. Chromosomal 
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expression constructs were then made by amplifying the ADH1-Myc-His6-dCK/HSV-TK 

cassettes by PCR using primers with tails homologous to the yeast CAN1 gene.  The 

fragments were transformed into YW929, canavanine-resistant can1 colonies identified, 

and correct integration verified by PCR, α-Myc Western blot, and demonstration of drug-

specific toxicity.  The resulting yeast strains were YW967 (YW929 can1∆::ADH1-dCK) 

and YW968 (YW929 can1∆::ADH1-TK).  Primer sequences are available on request.   

 Introduction of yeast gene deletion mutations was accomplished by a previously 

described mating strategy (25).  Briefly, YW968 was mated in array format to a 

previously described single-plate array of 96 DNA damage response gene deletion 

mutants (25).  Following selection of diploids and sporulation, recombinant haploids of 

the genotype MATα, ade2::STE3-MET15, can1∆::ADH1-TK, his3∆1, leu2∆0, met15∆0, 

ura3∆0, xxx∆::kanMX4 (where xxx refers to the various deleted genes) were identified 

by their growth as red (i.e. ade2) colonies on plates selective for methionine and 

containing canavanine and G418.   

 

Measurement of GCV sensitivity in Saccharomyces cerevisiae.  Overnight cultures 

were diluted 50-fold in synthetically defined media with glucose as the carbon source 

(24) and allowed to grow for 5 hr shaking at 280 rpm at 30° C. Cultures were then diluted 

to a calculated OD600 = 0.0005 in the same media containing varying concentrations of 

GCV.  Growth was continued until the OD600 of the untreated control reached 0.5 ± 0.15 

(~10 doublings).  The OD600 of all cultures was then determined.  Values are expressed as 

a fraction of the optical density of the corresponding untreated control sample.  
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Complementation of mutant Saccharomyces cerevisiae strains.  PCR primers were 

designed to amplify the gene of interest (coding sequence plus 1000 bp upstream of the 

start codon) from wild-type yeast genomic DNA.  Primers included tail regions (forward:  

5'-TGGCGGCCGCTCTAGAACTAGTGGATCCCC, reverse: 5'-GATAAGCTTGATAT 

CGAATTCCTGCAGCCC) to allow gap repair of Sma I-digested vector pRS316 (URA3, 

CEN/ARS).  Digested plasmid and PCR products were co-transformed into yeast strains 

containing the corresponding gene deletions to generate recombinant plasmids.  Colonies 

were picked and tested for sensitivity to GCV as described above.  

  

Results 

These studies utilized the HCT116 0-1 cells, which are MMR deficient due to a 

truncated essential protein for MMR (MLH1) (26), and HCT116 1-2 cells which stably 

express MLH1 from its full length cDNA and are MMR proficient.  Stably expressing 

HSV-TK clonal sublines were generated for both the MMR-deficient HCT116 0-1 and 

the MMR-proficient HCT116 1-2 cell lines.   As illustrated in Figure 3.1, both of the 

HCT116 0-1tk clones (MMR deficient) were more sensitive to GCV than any of the 

HCT116 1-2tk clones (MMR proficient), especially at high GCV concentrations.  One 

clonal subline from each cell line was chosen based on similar growth rates and 

sensitivity to GCV.   Cytotoxicity of GCV in these two clonal sublines was similar at 

concentrations of 1 µM or less (% control survival at 1 µM = 3 ± 0.5% and 5.2 ± 1.4%, 

respectively); however, at 10 µM GCV, greater than one log more cell kill was observed 

in the MMR-deficient 0-1tk cells compared to the MMR-proficient 1-2tk cells (percent 

survival = 0.05 ± 0.03% & 0.72 ± 0.2 %, respectively; p = 0.0046).   
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Figure 3.1. Sensitivity of HSV-TK-expressing HCT116 cells to GCV.  Exponentially 
growing HCT116 0-1 (dashed line) and 1-2 cells (solid line) stably expressing HSV-TK 
were exposed to increasing concentrations of GCV for 24 hours. Clonogenic cell survival 
was determined and expressed as a fraction of plating efficiency for untreated cells. 
Points represent a mean of triplicate samples, bars represent standard error.  Cell lines 
were chosen for use in subsequent experiments: HCT116 1-2tk (▲) and HCT116 0-1tk 
(∆). 

 

 

HCT116 1-2tk 

HCT116 0-1tk 

0.01 0.1 1 100.01

0.1

1

10

100

µM GCV

%
 C

on
tro

l S
ur

viv
al

 

 



 73 

To determine whether the difference in cytotoxicity could be explained by 

differential metabolism of GCV in the two cell lines, we measured accumulation of 

GCVTP and its incorporation into DNA.  In both cell lines, there was an increase in 

GCVTP during drug incubation, and a subsequent decrease in GCVTP levels following 

drug washout (Figure 3.2A).  The HCT116 1-2tk clone accumulated approximately 3 

times more GCVTP than the HCT116 0-1tk clone following treatment with 1 µM GCV 

(55.9 ± 3.9 pmol GCVTP/106 cells and 17.8 ± 1.4 pmol GCVTP/106 cells, respectively).  

There was an increase in the amount of GCVTP incorporated into DNA during drug 

incubation and for 6 to 8 hours following drug removal.  The HCT116 1-2tk cells 

incorporated approximately two-fold more GCVMP into DNA than the 0-1tk cells (5.3 ± 

0.3 pmol GCVMP/106 cells, 2.4 ± 0.01 pmol GCVMP/106 cells, respectively), consistent 

with the higher pool of GCVTP (Figure 3.2B). GCVMP was well-retained in DNA in 

both sublines for at least 48 hr after drug washout.  The slight decrease detected in 

HCT116 0-1tk cells was accounted for by an increase in cell number (data not shown).  

Interestingly, 1 µM GCV was equitoxic in these two clones, despite the fact that there 

was twice as much GCVMP in the DNA of the 1-2tk clone.  Similar results were 

obtained at 10 µM GCV in which the HCT116 1-2tk cells accumulated up to 4 times 

more GCVTP and up to 2 times more GCVMP in DNA compared to the HCT116 0-1tk 

cells (data not shown). Western blot analysis demonstrated that HCT116 1-2tk clone 

expressed substantially more HSV-TK than the HCT116 0-1tk clone, which accounts for 

the higher GCVTP accumulation and GCVMP incorporation into DNA observed in the 

HCT116 1-2tk clone (Figure 3.2C).  Thus, reduced metabolism does not appear to 

account for the lower sensitivity to GCV of the HCT116 1-2tk cells.   
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Figure 3.2 Metabolism of GCV in HCT116tk cell lines. (A) Accumulation of 
[3H]GCVTP and (B) incorporation of [3H]GCVMP into DNA were determined in 
HCT116 0-1tk (dashed line) and HCT116 1-2tk (solid line) treated with GCV for 24 
hours.  Points represent the mean of at least triplicate samples, bars represent SEM. (C) 
Whole cell lysates were analyzed by Western blotting for HSV-TK expression.  
Expression of actin was used as a loading control.   
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Because differential expression of HSV-TK in the two clones resulted in different 

levels of GCVTP, the cytotoxicity of GCV was tested in the parental (non-HSV-TK 

expressing) HCT116 cell lines.  If cells that do not express HSV-TK are treated with high 

concentrations of GCV, the drug can be phosphorylated by cellular enzymes (27), and we 

assumed that this phosphorylation would be equivalent in the parental cell lines.  Similar 

to the results in the HSV-TK-expressing cells, the MMR-deficient HCT116 0-1 cell line 

was more sensitive to GCV than the MMR-proficient HCT116 1-2 cell line (IC50 = 120 ± 

5.8 µM and 477 ± 23.3 µM, respectively; p=0.0001) (Figure 3.3), with >1-log difference 

in survival at GCV concentrations >300 µM, suggesting that the higher sensitivity of the 

HSV-TK-expressing HCT116 0-1 cells was due to MMR deficiency.   

Because MMR deficiency produces a mutator phenotype which may have 

affected sensitivity to GCV in the HCT116 0-1 cells,  siRNA was used to suppress MLH1 

expression in two other cell lines, U251tk human glioblastoma and SW480tk human 

colon carcinoma, both of which stably expressed HSV-TK and are considered MMR 

proficient (28).  MLH1 decreased substantially by 72 hr post-siRNA transfection and 

remained suppressed for at least another 48 hr in both cell lines (Figures 3.4A and 3.5A).    

Suppression of MLH1 expression by siRNA increased the sensitivity of both cell lines to 

GCV, primarily at highly cytotoxic drug concentrations (>90% cell killing) (Figures 3.4B 

and 3.5B).  Although there was not a complete deficiency of MLH1 in these studies, 

sensitivity to GCV was increased significantly, observed by a decrease in the IC99 for 

GCV from 6.25 ± 0.92 µM to 1.66 ± 0.11 µM in SW480tk (p = 0.02) and from 1.59 ± 

0.09 µM to 0.44 ± 0.07 µM in U251tk (p = 0.0008).  
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Figure 3.3. Sensitivity of non-HSV HCT116 cells to GCV.  Exponentially growing 
HCT116 0-1 (dashed line) and 1-2 cells (solid line) non-HSV-TK expressing cells were 
exposed to increasing concentrations of GCV for 24 hours.  Clonogenic cell survival was 
determined and expressed as a fraction of plating efficiency for untreated cells. Points 
represent a mean of triplicate samples, bars represent standard error. 
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Figure 3.4.  Depletion of MLH1 results in increased sensitivity to GCV in SW480tk 
cells. (A)Whole cell lysates were analyzed by Western blotting for MLH1 expression 
following no treatment (C), transfection with non-specific siRNA (NS) or MLH1 siRNA.  
Expression of actin was used as a loading control.   (B) Sensitivity of cells treated with 
siRNA directed to MLH1 (dashed line), non-specific (NS) siRNA (solid line with 
triangles), or no siRNA (solid line with squares) was determined following exposure to 
increasing concentrations of GCV.  Points represent the mean of triplicate experiments, 
bars represent SEM. 
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Figure 3.5.  Depletion of MLH1 results in increased sensitivity to GCV in U251tk 
cells.  (A) Whole cell lysates were analyzed by Western blotting for MLH1 expression 
following siRNA transfection.  Expression of actin was used as a loading control.   (B) 
Sensitivity of cells treated with siRNA directed to MLH1 (dashed line), non-specific 
siRNA (solid line with triangles), or no siRNA (solid line with squares) was determined 
following exposure to increasing concentrations of GCV.  Points represent the mean of 
triplicate experiments, bars represent SEM. 
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In order to evaluate other DNA repair pathways that participate in repair of GCV-

induced lesions, a Saccharomyces cerevisiae-based genetic screen was utilized to 

discover DNA damage response mutants with increased sensitivity to GCV.  HSV-TK 

was placed under control of the strong constitutive yeast ADH1 promoter and integrated 

into yeast chromosome V to stably express the gene.  GCV conferred dose-dependent 

toxicity only in HSV-TK-expressing yeast and not in control yeast or those expressing 

deoxycytidine kinase (dCK) (Figure 3.6).  Note that higher concentrations of GCV were 

required to affect growth of HSV-TK-expressing yeast compared to mammalian cells, 

which is typical in yeast likely due to poor transport properties for many drugs (29) and 

the high capacity of yeast for DNA repair, especially homologous recombination repair 

(30).  

 HSV-TK expression was next introduced into a panel of 96 DNA damage 

response yeast deletion mutants and the resulting strains screened for sensitivity to GCV.  

Table 3.1 indicates that MMR mutants exhibited a low to moderate increase in sensitivity 

to GCV at the concentrations tested.  Mutants deficient in the MMR genes MLH1 or 

MSH2 were as sensitive as controls at a moderate concentration of GCV (0.3 mM) but 

exhibited significantly increased sensitivity at 5 mM (% control density = 62.4 ± 1.9 for 

the WT-HSV-TK strain and 46.2 ± 1.1 (p<0.01) and  50.1 ± 4.0  (p<0.05) for mlh1 and 

msh2 yeast, respectively).  Yeast with deletions in homologous recombination repair or 

cell cycle checkpoint genes exhibited high sensitivity to GCV.  Deletion mutants for the 

endonucleases MUS81 or MMS4 also showed high sensitivity to GCV, which may be 

due to their putative role in HRR (31).  In addition, the increased sensitivity of the asf1 

mutant may be due to its role as a histone chaperone protein which may implicate it 
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Figure 3.6.  HSV-TK expression sensitizes S. cerevisiae to GCV.  Exponentially 
growing liquid cultures of S. cerevisiae strains expressing HSV-TK, dCK, or no 
exogenous enzyme were treated with increasing concentrations of GCV.  Cell density 
was determined and expressed as a fraction of the density of untreated control cultures.  
Points represent the mean of triplicate experiments, bars represent SEM.   
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Function GeneName GCV
RecQ/Topo III TOP3 ++

SGS1 +++
helicase HPR5 ++

MRX complex RAD50 +++
homologous recombination RAD51 +++

RAD55 +++
RAD57 +++
RAD54 +
RAD52 ++
RAD59 +++
RDH54 -

checkpoint DUN1 +++
RAD24 ++
DDC1 ++
MEC3 +++
RAD9 +
RAD17 ++
TEL1 -

endonuclease MUS81 +++
MMS4 +++

chromatin CHD1 -
ASF1 +++

mismatch repair MLH1 +
MSH1 ++
MSH2 +
PMS1 +

post-replication repair RAD6 -
RAD18 -
RAD5 +

replication CTF4 -
POL32 +
RAD27 -
DPB3 -

base excision repair APN1 -

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3.1. Sensitivity of yeast strains to ganciclovir: +++, increase in sensitivity to 0.3 
mM GCV (≤50% control density); ++, increase in sensitivity to 5 mM GCV (≤25% 
control density); +, modest increase in sensitivity to 5 mM GCV (≤50% control density); 
and - indicates no difference from control.  The results were first determined by analysis 
of the array in 96 well plates and validated in triplicate in 2 ml liquid cultures. 
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in HRR or other DNA repair pathways (32).   

In order to verify that the deleted genes were in fact responsible for the increased 

sensitivity to GCV, representative mutant strains (RecQ helicase, sgs1; MRX subunit 

involved in double strand break repair, rad50; homologous recombination protein, rad52; 

checkpoint protein, dun1; and 9-1-1 complex member, rad17) with moderate to high 

GCV sensitivity were complemented with the corresponding wild-type gene in a plasmid.  

In all cases, complementation resulted in decreased sensitivity to GCV, similar to wild-

type levels (Figure 3.7A-E) as expected, thus verifying that the gene deletion was 

responsible for the increased drug sensitivity.   

 

Discussion 

Previously we have demonstrated a strong S-phase block associated with GCV 

cytotoxicity, suggesting that GCV produced irreparable DNA damage (10).  However, 

the type of damage and the repair pathways that may be involved in repairing GCV-

induced DNA damage have not been identified.  Here we have evaluated the role of 

MLH1, a protein required for MMR, in the cytotoxicity of GCV using several human cell 

lines of varying sensitivity to GCV.  Additional pathways that may be involved in GCV 

cytotoxicity were identified using a yeast deletion mutant assay.  The results demonstrate 

that, at high concentrations of GCV, human or yeast cells that express MLH1 are less 

sensitive to GCV induced cytotoxicity.  The yeast assay also implicated HRR in GCV 

cytotoxicity.  These results suggest that GCV induces specific lesions that can be repaired 

by MMR or HRR, and impairment of these pathways leads to increased cytotoxicity. 
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Figure 3.7. Complementation of S. cerevisiae mutants restores resistance to GCV.  
Exponentially growing liquid cultures of S. cerevisiae strains expressing HSV-TK and 
bearing specific gene deletion mutations [(a) sgs2, (b) rad50, (c) rad52, (d) dun1, (e) 
rad17] and their complemented counterparts were treated with increasing concentrations 
of GCV and cell density determined as in Figure 3.6. Solid lines and squares indicate 
wild-type yeast, dotted lines with open triangles indicate specific deletion mutants, and 
dashed and dotted lines with closed triangles indicate complemented strains.  Points 
represent the mean of triplicate experiments, bars represent SEM. 
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The increase in cytotoxicity in HCT116 0-1 cells (deficient in MLH1) compared 

to HCT116 1-2 cells (expressing MLH1) was not due to an increase in GCVTP or its 

incorporation into DNA, since the HCT116 1-2 cells actually accumulated more GCVMP 

in the DNA than those deficient in MLH1.  Further evidence for a direct role of MLH1 in 

cytotoxicity of GCV was demonstrated by the results in the U251 and SW480 cells using 

MLH1-specific siRNA, as well as the yeast assay which all demonstrated increased 

cytotoxicity of GCV in cells deficient in MLH1, primarily at high drug 

concentrations. Using siRNA to suppress MLH1 was important because it controlled for 

any differences the matched HCT116 cell lines may have accumulated, after many years 

of being cultured separately, that could affect GCV sensitivity.  While the siRNA did not 

result in a complete reduction of MLH1, these cells still displayed an increase in 

sensitivity to GCV.  Furthermore, the siRNA studies demonstrated that two different cell 

lines which differed in inherent sensitivity to GCV both exhibited increased sensitivity at 

>IC90 for GCV when MLH1 expression was decreased.   

There are several possibilities for the mechanism by which MLH1 deficiency 

enhances GCV cytotoxicity.  Differential incorporation into DNA did not explain the 

decreased sensitivity of MMR proficient (MLH1 expressing) cells to GCV, raising the 

possibility that MLH1 is not recognizing or responding to the presence of GCVMP but 

rather other lesions in the DNA.  MLH1 is a required protein for MMR, and therefore if 

high concentrations of GCV induce errors during DNA replication, such as mismatched 

nucleotides, deficiency of MLH1 would lead to more errors which may enhance 

cytotoxicity.  Currently we are evaluating the possibility that GCV induces replication 

errors either during incorporation or as a result of GCVMP in the template during DNA 
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synthesis.  Alternatively, MLH1 may protect cells from GCV-induced damage through 

downstream signaling, since MLH1 is known to participate in a variety of other pathways 

such as base excision repair, cell cycle checkpoints, and apoptosis (33-35).      

Previously we have demonstrated that HU enhances cell killing with GCV (17-

19), and we suggested that this occurred through the increased incorporation of GCVTP 

into DNA due to the HU-mediated decrease in dGTP.  Alternatively, since HU-mediated 

dNTP pool imbalances activate MMR, it was also possible that HU enhanced cytotoxicity 

of GCV through activation of MMR which might increase incorporation of GCVMP into 

DNA as HU-induced mismatches were repaired, as suggested previously for the 

increased sensitivity of gemcitabine in MMR-proficient cells (36).  However, direct 

evaluation in MMR-proficient and deficient cell lines here demonstrated that deletion or 

suppression of the required MMR protein, MLH1, actually enhanced cytotoxicity at high 

GCV concentrations.  In contrast, most of the GCV/HU combination studies 

demonstrated strong synergy at concentrations of GCV below an IC90. Taken together, 

these data suggest that the combination of GCV and HU elicit synergy by decreasing 

dGTP and thus increasing GCVMP in DNA rather than through activation of MMR.   

We extended the results with MMR to screen a panel of yeast strains containing 

deletions in various DNA damage and repair genes to evaluate other pathways which 

may play a role at lower concentrations of GCV.  DNA damage repair pathways and 

checkpoints in S. cerevisiae are conserved with those in humans (37).  The yeast system 

allows for a rapid screen of many different mutants, a process which would be very 

difficult to conduct in mammalian cells due to the amount of time required to develop 

and test a large number of deletion mutants.  Results in the yeast with deletions in MMR 
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genes MLH1 or MSH2 were similar to those observed in the human cell lines lacking 

MLH1, in which differences in sensitivity to GCV only occurred at a high concentration 

of GCV.  Experiments in yeast have correctly predicted effects in human cells with other 

drugs as well.  Previous work from the Wilson laboratory and others identified the major 

Tdp1-dependent pathway for resolution of aberrant topoisomerase complexes in yeast 

(25,38,39),  findings which were subsequently confirmed in human cells (40). These data 

support the use of the yeast assay to discover other DNA damage response pathways that 

affect sensitivity to GCV.   

The yeast assay demonstrated that deletion of genes involved in HRR and cell 

cycle checkpoints caused a significant increase in sensitivity to GCV.  There are several 

mechanisms through which HRR could impact GCV cytotoxicity.  Thust et al have 

demonstrated that GCV induces sister chromatid exchanges, which usually arise from 

HRR, during the second S phase after GCV exposure (41-43).  In addition, HRR is 

required to restart a stalled replication fork (44), and we have also shown that, at 

concentrations >IC50, GCV slows replication which likely is due to  stalled replication 

forks (18).  Thus, it will be important to determine the precise role of HRR in GCV 

cytotoxicity.  

Other genes implicated in conferring sensitivity to GCV included ASF1, a histone 

chaperone involved in chromatin assembly (45).  No increase in GCV sensitivity was 

observed in strains lacking CHD1, another chromatin remodeling factor, likely indicating 

differing roles of ASF1 and CHD1 in this process.  Similarly, it has also been reported 

that deletion of CHD1 did not modify sensitivity to HU, UV radiation, or methyl 

methanesulfonate, suggesting that this protein does not play a role in DNA repair (46).     
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Deletion of SGS1, a helicase involved in HRR, and MMS4 or MUS81, which function 

together to cleave sites of stalled replication forks and lead to initiation of HRR also 

resulted in increased sensitivity to GCV.   Together these data further support a role of 

HRR in responding to GCV-induced DNA damage.  Interestingly, deletion of genes 

involved in postreplication repair and base excision repair did not confer sensitivity to 

GCV, suggesting that these pathways are not involved in protecting from GCV-mediated 

cytotoxicity. Although a study in Chinese hamster ovary cells suggested that base 

excision repair is involved in protection of cells to GCV (16),  we have not observed 

excision of GCVMP from DNA in a variety of human cell lines (4,10,27). 

Deletion of the gene for DUN1, a regulator of ribonucleotide reductase (47,48) 

which produces dNTPs for DNA replication and repair, also enhanced the sensitivity of 

yeast significantly to GCV.  The absence of this protein would result in lower dNTP 

pools, impairing DNA replication and repair following GCV-induced DNA damage.  In 

addition, lowered dNTP pools would likely result in an increase in GCVTP incorporation 

into DNA by decreasing the availability of its competitor, dGTP, another mechanism for 

increased cytotoxicity.  Although a human homolog of DUN1 has not been discovered, 

we have previously demonstrated a role for ribonucleotide reductase since its inhibition 

enhanced GCV cytotoxicity (17,18,49).   

Proteins involved in promoting cell cycle checkpoints also appear to be involved 

in recognizing GCV-mediated damage, as deletion of Ddc1, Mec3, and Rad17, yeast 

homologs of the 9-1-1 complex that responds to DNA damage in mammalian cells, and 

Rad24, the clamp loader that loads the complex onto damaged DNA, rendered the yeast 

more sensitive to GCV (50).  This complex is involved in facilitating activation of Chk1, 
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resulting in checkpoint activation and cell cycle arrest.   This arrest allows time for cells 

to repair DNA damage and can lead to activation of signaling pathways ultimately 

leading to cell death if the damage is irreparable.  These data suggest a role for this 

complex in responding to GCV-induced DNA damage, and will need to be confirmed in 

human cells. 

These results suggest a variety of mechanisms to improve therapy with HSV-

TK/GCV.  The increased sensitivity of MLH1 deficient cells to high concentrations of 

GCV (0.5-10 µM) is within a clinically relevant range, as GCV typically achieves plasma 

concentrations of 10-30 µM in patients (51-53).  Many human tumors are deficient in 

DNA damage response pathways, such as MMR (54,55).  Perhaps the most successful 

clinical trials of this therapy have been in prostate cancer (56), a tumor type in which a 

significant percentage show loss of at least one MMR protein and reduced MMR capacity 

(55).  The data presented here suggest that MMR deficient tumors would respond better 

to HSV-TK/GCV treatment than MMR proficient tumors since MMR appears to protect 

cells from GCV-mediated cytotoxicity.  Based on the data from the yeast screen, tumors 

defective in certain checkpoint pathways would also be expected to respond better to 

GCV.  Since normal tissues are generally proficient in these pathways, targeting MMR 

and checkpoint defective tumors would improve selectivity of this therapy.  Furthermore, 

these studies suggest other pathways, such as HRR, which could be targeted in 

conjunction with GCV treatment to optimize therapeutic efficacy of this approach. 
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Chapter IV 

 

COMPARISON OF DNA MUTATIONS AND CELL CYCLE PROGRESSION 
INDUCED BY STRUCTURALLY RELATED DEOXYGUANOSINE ANALOGS 

 
 

Summary 

 Ganciclovir (GCV) is an antiviral drug commonly used for cytomegaloviral 

infections in immunocompromised patients and is also in clinical trials in combination 

with herpes simplex virus thymidine kinase (HSV-TK) in a suicide gene therapy 

approach for cancer.  Previous reports have suggested that GCV is genotoxic, but the 

exact nature of the induced DNA damage is not known.  In this study, we examined the 

effects of GCV incorporation into DNA by characterizing the resulting DNA mutations 

and comparing the nature of these mutations to two other structurally related HSV-TK 

substrates, D-carbocyclic 2'-deoxyguanosine (CdG) and penciclovir (PCV).  GCV and 

CdG are similarly toxic, and PCV is 1-2 logs less cytotoxic.  GCV induced a dose-

dependent increase in mutation frequency, while concentrations of CdG and PCV >IC90 

failed to induce a significant increase in mutations.  Interestingly, GCV predominantly 

induced specific GC TA transversions which were not observed to as great an extent in 

control cells or those treated with PCV or CdG.  This specific transversion occurred in 

both mismatch repair proficient and deficient cells, and was not affected by activation of 

mismatch repair with hydroxyurea.  Analysis of cell cycle progression demonstrated that 
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GCV slowed progression through S-phase whereas CdG induced a greater G2/M block, 

but both GCV and CdG allowed cells to complete one cell cycle after drug treatment and 

divide followed by cell death in the second cell cycle.  In contrast, cells treated with PCV 

exhibited a lengthy S-phase block due to profound depression of DNA synthesis, and 

some cell death occurred in the first cell cycle after drug treatment.  These data suggest 

the inability to halt cell division after GCV or CdG treatment results in high cytotoxicity 

compared to the profound cell cycle inhibition observed with the less toxic PCV.  

Furthermore, the data demonstrate that alteration of the deoxyribose structure produced 

profound differences in DNA replication and its fidelity, resulting in striking differences 

in cytotoxicity. 

 

Introduction  

Ganciclovir (GCV) is a potent antiviral drug capable of eliciting multilog 

cytotoxicity at submicromolar concentrations in a variety of mammalian cell lines which 

have been engineered to express the herpes simplex virus thymidine kinase (HSV-TK) 

(1-7).  In comparison, other HSV-TK substrates such as the structurally related acyclovir 

(ACV) and the thymidine analog, 1-β-D-arabinofuranosylthymine (araT), are only 

weakly cytotoxic to human cells expressing HSV-TK (1).  However, D-carbocyclic 2'-

deoxyguanosine (CdG), also induced multi-log cell killing at low concentrations (8).   

HSV-TK facilitates phosphorylation of GCV to its 5'-monophosphate (GCVMP).  

After subsequent phosphorylation by endogenous kinases to its 5'-triphosphate (GCVTP), 

this metabolite competes with dGTP for incorporation into DNA which leads to cell 

death (9).  It was reported previously that the superior cytotoxicity of GCV compared to 
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araT and acyclovir was not due to increased accumulation of active triphosphate 

metabolite, increased incorporation into DNA, or increased apoptosis (1).  GCV induces 

a unique manner of cell death in which cells are able to complete one cell division cycle 

during and following GCV exposure; however, as they attempt to traverse S phase for a 

second time, they arrest and subsequently die.   Conversely, cells treated with araT 

arrested in the first S phase during drug exposure.   

Although these nucleoside analogs elicit their effects by incorporation into DNA, 

the resulting consequences of this incorporation, such as cell survival, differ significantly.  

Few studies have examined the events occurring downstream of GCVMP incorporation 

into DNA or characterized the specific nature of DNA damage induced by GCV.  Thust 

et al have published reports showing that GCV induced sister chromatid exchanges 

(SCEs) and structural chromosome aberrations while acyclovir and the related 

penciclovir (PCV) did not (10-14).    Interestingly, the observed SCE induction occurred 

during the second cell cycle following GCV treatment, with similar timing of the 

observed S phase arrest (1).   

This study aimed to characterize the functional consequences of incorporation of 

these nucleoside analogs into DNA to determine if this can account for the differential 

cell killing with structurally related substrates.  The ability of GCV to induce DNA 

mutations was characterized and compared to two other HSV-TK substrates, CdG and 

penciclovir (PCV).  We present findings that, despite the structural similarities of GCV, 

CdG, and PCV, they have profoundly different effects on the fidelity of DNA replication 

and mechanism of cytotoxicity. 
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Materials and Methods 

Cell Culture. HCT116 human colon carcinoma and U251 human glioblastoma cell lines 

were maintained in Dulbecco’s Modified Eagle medium and RPMI (Invitrogen Life 

Technologies, Grand Island, NY); respectively.  Media was supplemented with 2 mM L-

glutamine (Fisher Scientific, Pittsburgh, PA) for all cell lines and 10% fetal bovine serum 

(Invitrogen) for HCT116 and 10% bovine serum for U251 cells. All cells were 

maintained in exponential growth and kept in an atmosphere of 37°C and 5%CO2.  

 

Stable Gene-Expressing Cell Lines.  HCT116 0-1, HCT116 1-2, and U251 cell lines 

were transduced with a retroviral vector encoding for the Herpes Simplex Virus Type 1 

Thymidine Kinase along with the neomycin resistance gene (1).  Transgene expressing 

cells were selected and maintained with 1000 µg/mL  and 400 µg/mL G418 (Invitrogen), 

respectively.   

 

Clonogenic Cell Survival Assays.  Exponentially growing cells were treated with drug 

for 24 h, trypsinized, counted with a Coulter electronic particle counter, and diluted to 

approximately 100 viable cells per well in 6-well culture dishes.  After 10-14 days, the 

cell colonies were fixed in methanol:acetic acid (3:1), stained with 0.4% crystal violet 

(Fisher Scientific), and visually counted.  Cell survival is expressed as a fraction of the 

plating efficiency of control, non-drug treated cells.  All assays were performed at least 

twice with each data point plated in triplicate.   
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Shuttle Vector-based Mutation Assay. HCT116 and U251 cell lines were transfected 

with the pSP189 plasmid (which encodes the SV40 T antigen and mammalian origin of 

replication as well as the supF gene and an AMP resistance gene to aid in detection of the 

mutations and for growing on Amp plates, respectively (15)) using SuperFect transfection 

reagent (Qiagen).  Medium was replaced after an overnight incubation with transfection 

complexes, and drug was added for 24 h.  Following drug incubation, drug was removed 

and fresh media added.  pSP189 plasmid was harvested 24 h after the conclusion of drug 

incubation and isolated using a Qiagen Miniprep kit, incubated with DpnI (Invitrogen) to 

remove unreplicated plasmid DNA, and further purified by a phenol/chloroform 

extraction followed by precipitation with isopropanol/ethanol and dissolved in 0.5x TE 

(pH 7.5).   

Transformation was accomplished via electroporation with 1 µL of TE containing 

plasmid DNA and 20 µL of electrocompetent MBM7070 E. coli. The transformation 

mixtures were plated onto agar plates containing 100 µg/mL ampicillin (Roche), 50 

mg/mL isopropyl-L-thio-B-D-galactopyranoside (Invitrogen), and 20 mg/mL 5-bromo-4-

chloro-3-indolyl-ß-D-galactopyranoside (Roche).  Colonies were counted, and mutation 

frequencies were calculated as number of white colonies / number of (white + blue) 

colonies. DNA from mutant clones was isolated and sequenced at the University of 

Michigan DNA Sequencing Core using the 20-mer primer (5'-

GGCGACACGGAAATGTTGAA). 

 

Cell cycle progression and DNA synthesis.  Flow cytometric analysis was performed as 

previously described (16).  Briefly, at the conclusion of the drug incubation, cells were 
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pulse labeled with 30 µM BrdUrd for 15 min, and then harvested by trypsinization, 

counted, and fixed in cold 70% ethanol. Fixed cells were resuspended in 0.5 mg/ml 

RNAse A (Boehringer Mannheim, Indianapolis, IN, USA) and incubated for 30 min at 

37°C. Cells were then subjected to 0.1 N HCl containing 0.7% Triton X-100 (10 min on 

ice), followed by a 95°C incubation for 15 min in sterile water. One hundred µl of PBS 

containing 0.5% Tween 20 and 5% calf serum (PBT) was added to each cell pellet 

followed by the addition of 100 µl of anti-BrdUrd mouse IgG1 antibody (1:100 dilution; 

PharMingen, San Diego, CA, USA) and incubation for 30 min at room temperature. After 

centrifugation, 150 µl of FITC conjugated goat anti-mouse IgG antibody (1:20-35 

dilution; Sigma Chemical, St Louis, MO, USA) was added to the pellet, mixed gently, 

and incubated for 30 min at room temperature. Samples were centrifuged and 

resuspended in 0.5 ml of 18 µg/ml propidium iodide containing 40 µg/ml RNAse A.  

Treated cells were placed in the dark for a 1 hr before cell cycle analysis using a Coulter 

EPICS Elite ESP flow cytometer (Coulter, Hialeah, FL, USA). Cell cycle data were 

further analyzed using WinMDI software (ver 2.8.8) provided by Joseph Trotter of The 

Scripps Research Institute (La Jolla, CA, USA). Percent DNA synthesis was determined 

by the change in the mean fluorescence intensity of BrdUrd incorporating cells.  

 
Results 

In order to determine the ability of GCV to induce mutations, a well characterized 

plasmid-based shuttle vector assay was employed (15). The pSP189 plasmid encodes the 

cDNA for supF which corrects an amber mutation in the β-galactosidase gene in E coli, 

and a mutation at nearly any site in the supF sequence prevents expression of β-
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galactosidase.  Replication of the plasmid in human tumor cells during drug incubation 

followed by transfer of the plasmid DNA to E. coli allows blue/white screening of supF 

mutations in bacterial colonies stained with X-gal.  U251TK cells were transfected with 

the pSP189 plasmid, incubated with GCV for 24 hr, plasmid DNA was harvested 24 hr 

afer drug washout (to allow completion of DNA replication) followed by electroporation 

into E. coli.  Using a broad range of GCV concentrations (IC10-IC90), a dose dependent 

increase in plasmid mutation frequency was observed (Figure 4.1).  At concentrations of 

GCV ≥ 0.1 µM (IC75), the increase in mutation frequency was significantly different from 

control, achieving a nearly 4-fold increase at a concentration of 1 µM.  Analysis of the 

nature of the resulting mutations revealed that GCV induced a predominance of GC TA 

transversions (Figure 4.2).  Interestingly, at 0.03 and 0.05 µM GCV there was no 

significant increase in mutation frequency, yet 72% and 56% of the total mutations were 

GC TA compared to 33% in control cells.  At the higher concentrations of GCV, up to 

81% of the mutations were GC TA.  The total increase in mutation frequency can be 

accounted for by the increase in GC TA mutations, as there was no increase in any of 

the other mutations.   

Further analysis of the mutations revealed two hot spots in the supF tRNA 

sequence where the majority of GCV-induced mutations GC TA occurred (Figure 4.3).  

Following GCV exposure, the most frequent mutation was C A at position 20 (C20A), 

accounting for 15-53% of total mutations.  In addition, the prevalence of this mutation 

increased at higher GCV concentrations.  The second most common mutation following 

treatment with GCV was C A at position 48 (C48A).  Although mutations at these sites 

were observed in control cells, they accounted for less than 5% of the total number of 
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Figure 4.1. GCV induces a dose dependent increase in mutation frequency.  pSP189 
plasmid mutation frequency in U251tk cell line following exposure to increasing 
concentrations of GCV. Cells were transfected with the pSP189 plasmid overnight and 
incubated with 0.03 -1 µM GCV for 24 h.  Plasmids were harvested 24 h after drug 
removal, and DNA from replicated plasmids was electroporated into MB7070 E. coli and 
mutations were determined. Mutation frequency was calculated as the number of white 
colonies / total number of colonies counted.  Columns, average of at least three separate 
experiments; bars, SE; asterisks, significantly greater than the corresponding non-drug 
treated control.  

*  * 

 * 
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Figure 4.2. GCV induces a predominance of GC TA transversions.  pSP189 
plasmid mutation frequency in U251tk cell line following exposure to increasing 
concentrations of GCV. Cells were transfected with the pSP189 plasmid overnight and 
incubated with 0.03 -1 µM GCV for 24 h.  Plasmids were extracted 24 h after drug 
removal and mutations were determined.  Plasmids were extracted from mutant colonies 
and submitted for DNA sequencing.  n=total number of mutants sequenced/total number 
of colonies counted.   
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Figure 4.3. Distribution of single base substitutions in the supF cDNA replicated in 
U251tk cells.   U251tk cells were transfected with pSP189 plasmid overnight and 
incubated with 0-1µM GCV for 24 h. Plasmids were extracted 24 h after drug removal 
and electroporated into E. coli.   Plasmids were extracted from mutant colonies and 
submitted for DNA sequencing.  The supF coding sequence is shown with the mutations 
at the individual sites.  The asterisks denote frequently mutated positions with the 
percentage stating percentage of total base substitutions occurring at this point.  n=total 
number of white colonies. 
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mutations.  The pSP189 plasmid contains an 8-bp signature sequence, which provides 

over 65,000 possible signature sequences within the plasmid population.  In order to 

determine that mutations occurring at the same location in supF tRNA were unique, the 

sequence of the 8 bp signature was analyzed and it was determined that each plasmid 

carrying the mutations had different signature sequences, and thus the predominance of 

the GC TA mutations was not due to overrepresentation of a single plasmid.    

Previously we have determined that the absence of a functional MMR pathway 

enhances cytotoxicity at high concentrations (>IC90) of GCV.  We wished to determine 

whether this difference in cytotoxicity was related to the nature or frequency of mutations 

induced.  U251 cells are MMR-proficient, so we investigated the role of MMR status on 

mutations induced by GCV using HCT116TK colon carcinoma cells that are deficient (0-

1TK) or proficient (1-2TK) in MMR.  In addition, hydroxyurea (HU) was used to 

produce an imbalance in dNTP pools resulting in activation of MMR, allowing us to 

study the role of MMR activation on the nature and frequency of mutations.  Cell survival 

studies demonstrated similar GCV sensitivity in the MMR-deficient 0-1TK cells 

compared to the MMR-proficient 1-2TK cells based on IC50 values (0.57 ± 0.04 and 0.39 

± 0.09, respectively; p=0.11) (Table 4.1).  The addition of HU at 1 or 3 mM decreased the 

IC50 for GCV in the MMR-deficient 0-1TK (0.41 ± 0.06 and 0.34 + 0.01 µM, 

respectively).  In contrast, HU increased the IC50 for GCV by >2-fold in the MMR-

proficient 1-2TK cells (0.77 ± 0.19 and >1.0 µM at 1 and 3 mM HU, respectively).     

In order to determine if the enhanced cytotoxicity with GCV + HU in the 

HCT116 0-1TK (MMR-deficient) cells compared to the antagonism of cytotoxicity in the 

MMR-proficient HCT116 cell lines was due to MMR-mediated correction of mismatched 
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mM HU 

IC50 GCV 
(µM) 

   
MMR-deficient 0 0.57 ± 0.04  
HCT116 0-1TK 1 0.41 ± 0.06 

 3 0.34 ± 0.01 
   
   

MMR-proficient 0 0.39 ± 0.09 
HCT116 1-2TK 1 0.77 ± 0.19  

 3 >1.0* 
   

 
 
Table 4.1. The addition hydroxyurea decreases the IC50 for GCV in MMR-deficient 
HCT116 0-1TK cells but increases the IC50 for GCV in the MMR-proficient 
HCT116 1-2TK cells. Exponentially growing U251tk cells were treated with GCV 
and/or HU for 24 hours.   Clonogenic cell survival was determined and expressed as a 
fraction of plating efficiency for untreated cells.  Values represent Mean ± SE       
                           
*Survival =59.2 ± 8.6% control at 1 µM GCV 
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nucleotides in DNA, the mutation frequency was measured following treatment with 

GCV ± HU in both cell lines.  The mutation frequency of untreated cells was 

significantly greater in the MMR-deficient 0-1TK cell line than in the MMR-proficient 1-

2TK cell line (0.11 ± 0.01% and 0.06 ± 0.01%, respectively, p=0.03) (Figure 4.4).  A 24 

hr incubation with 1 µM GCV resulted in similar mutation frequencies in both the MMR-

deficient 0-1TK and MMR-proficient 1-2TK cell lines (0.17 ± 0.02% and 0.14 ± 0.02%, 

respectively) that were significantly different from their corresponding controls (p<0.05). 

Treatment with 2 mM HU resulted in a significant increase in mutation frequency in the 

MMR-deficient 0-1TK cells (0.28 ± 0.03%; p=0.005), but not in the MMR-proficient 1-

2TK cells (0.03 ± 0.01%; p=0.24) compared to untreated controls, as expected.  The 

combined treatment with GCV and HU produced a further increase in mutation frequency 

in the MMR-deficient 0-1TK cell line (0.39 ± 0.06%).  However, in the MMR-proficient 

1-2TK cell line, the combination of GCV and HU resulted in a significant decrease in the 

mutation frequency (0.06 ± 0.01 %, p=0.01) compared to cells treated with GCV alone. 

Further analysis of the nature of the resulting mutations again revealed that GCV 

induced a predominance of GC TA transversions in both the MMR-deficient 0-1TK and 

MMR-proficient 1-2TK cell lines (49% and 88%, respectively) whereas this specific 

mutation accounted for only 29% and 12% of the total mutations in control cells from 

both cell lines.  Furthermore, HU induced single base substitutions in which no single 

type of mutation accounted for more than 35% of the total mutations (Figures 4.5A and 

B).  Interestingly, the combined treatment with GCV and HU in the MMR-deficient 0-

1TK cell line resulted in a pattern of mutations more closely resembling those induced by 

HU than GCV alone.  However, in the MMR-proficient 1-2TK cell line, despite the fact 
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Figure 4.4.   pSP189 plasmid mutation frequency in MMR-deficient and proficient 
HCT116tk cell lines following exposure to GCV and/or HU. Cells were transfected 
with the pSP189 plasmid overnight and incubated with 1µM GCV and/or 2 mM HU for 
24 h.  Plasmids were extracted 24 h after drug removal and mutations were determined.  
Mutation frequency was calculated as the number of white colonies / total number of 
colonies counted.  Columns, average of at least three separate experiments; bars, SE; 
asterisks, significantly greater than the corresponding non-drug treated control.    
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Figure 4.5.   Nature of mutations in supF sequence of pSP189 plasmids replicated in 
MMR-deficient and proficient HCT116tk cell lines following exposure to GCV 
and/or HU. Nature of mutations in the supF sequence in pSP189 plasmids replicated in 
(A) MMR-deficient HCT116 0-1tk and (B) MMR-proficient HCT116 1-2tk. Cells were 
transfected with the pSP189 plasmid overnight and incubated with 1 µM GCV and/or 2 
mM HU for 24 h.  Plasmids were extracted 24 h after drug removal and mutations were 
determined. Plasmids were extracted from mutant colonies and submitted for DNA 
sequencing.  n=total number of mutants sequenced/total number of colonies counted. 
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that the combination resulted in a decrease in the overall mutation frequency, GC TA 

mutations still predominated.  The C20A mutation predominated in the MMR-proficient  

1-2TK cells (55%) (Figure 4.6) and but represented only 7% of total mutations in the 

MMR-deficient cells (Figure 4.7).  The addition of HU resulted in a reduction of the 

C20A mutations in both cell lines; however they still represented 31% of total mutations 

in the MMR-proficient 1-2TK cell line, while they were absent in the MMR-deficient 0-

1TK cell line. 

In order to determine if the pattern of mutations induced by GCV were specific to 

deoxyguanosine analogs, mutations induced by two other structurally related compounds, 

CdG and PCV, were analyzed.  The structures of these three drugs are similar as they all 

have changes to the deoxyribose moiety of deoxyguanosine with no alterations of the 

base (Figure 4.8A).    GCV and CdG are similarly toxic in U251tk cells, as reported 

previously (8), whereas PCV was 1-2 logs less cytotoxic at equimolar concentrations 

(Figure 4.8B).  Neither 1 µM CdG (IC99) nor 10 µM PCV (IC93) produced a significant 

increase in mutation frequencies compared to control (Figure 4.9A).  In addition, there 

was not a predominance of any specific mutation following exposure to these drugs 

(Figure 4.9B) and neither the C20A or C48A mutation occurred with either of these two 

drugs (data not shown). 

Because the changes in structure of these nucleoside analogs resulted in a distinct 

difference on induction of mutations, we wished to determine if these drugs differed with 

respect to the mechanism by which they cause cytotoxicity.  Previously we have 

demonstrated a unique pattern of cell cycle progression after treatment with GCV, 

compared to ACV or araT, and we wished to determine whether CdG and PCV elicited 
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Figure 4.6.  Distribution of single base substitutions in the supF cDNA replicated in 
MMR-deficient HCT116 0-1tk cells.  MMR-deficient HCT116 0-1tk cells were 
transfected with pSP189 plasmid overnight and incubated 1 µM GCV and/or 2 mM HU 
for 24 h.  Plasmids were harvested 24 h after drug removal and electroporated into E. 
coli.   Plasmid DNA was extracted from mutant colonies and submitted for DNA 
sequencing.  The supF coding sequence is shown with the mutations at the individual 
sites.  The asterisks denote frequently mutated positions with the percentage indicating 
the percentage of total base substitutions occurring at this position.  n=total number of 
white colonies.    
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Figure 4.7. Distribution of single base substitutions in the supF cDNA replicated in 
MMR-proficient HCT116 1-2tk cells.  MMR-proficient HCT116 1-2tk cells were 
transfected with pSP189 plasmid overnight and incubated with 1 µM GCV and/or 2 mM 
HU for 24 h.  Plasmids were harvested 24 h after drug removal and electroporated into E. 
coli.   Plasmids were extracted from mutant colonies and submitted for DNA sequencing.  
The supF coding sequence is shown with the mutations at the individual sites.  The 
asterisks denote frequently mutated positions with the percentage indicating the 
percentage of total base substitutions occurring at this position.  n=total number of white 
colonies.  
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Figure 4.8 Sensitivity of U251tk cells to GCV, CdG, and PCV (A) Structures of GCV, 
CdG, and PCV.  (B) Sensitivity of U251tk cells to GCV, CdG, and PCV.  Exponentially 
growing U251tk cells were exposed to increasing concentrations of indicated drug for 24 
hours.  Clonogenic cell survival was determined and expressed as a fraction of plating 
efficiency for untreated cells. Points,  mean of triplicate samples; bars, standard error. 
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Figure 4.9. pSP189 plasmid mutation frequency in U251tk cell line following 
exposure to CdG and PCV. (A) pSP189 plasmid mutation frequency in U251tk cells 
following exposure to CdG or PCV. Cells were transfected with the pSP189 plasmid 
overnight and incubated with 1 µM CdG or 10 µM PCV for 24 h.  Plasmids were 
harvested 24 h after drug removal and mutations were determined.  Mutation frequency 
was calculated as the number of white colonies / total number of colonies counted.  
Columns, average of at least three separate experiments; bars, SE; asterisks, significantly 
greater than the corresponding non-drug treated control.   (B) Nature of mutations in the 
supF sequence in pSP189 plasmids replicated in U251tk cells.  Plasmid DNA was 
extracted from mutant colonies and submitted for DNA sequencing.  n=total number of 
mutants sequenced/total number of colonies counted. 
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similar or different effects.  Thus we evaluated the effect of these drugs on cell cycle 

progression by a dual parameter flow cytometry technique able to separate cells based  

both on DNA content (propidium iodide staining) and rate of DNA synthesis (amount of 

BrdUrd incorporated into DNA).  Consistent with a previous report examining DNA 

content alone (1), cells treated with GCV were slowed in S phase during a 24 hour 

incubation with GCV and for 12 hours after drug removal (Figures 4.10 and 4.11 and 

Table 4.2).  At 24 hours after drug removal, cells began to progress through the cell 

cycle, although there was still a high proportion in G1 and early S phase.  These data and 

the 2-fold increase in cell number demonstrated that these cells were completing the cell 

cycle and undergoing division.  At 0 and 12 h after GCV washout, DNA synthesis, as 

measured by mean BrdUrd fluorescence, was similar to control cells.  GCV-treated cells 

continued to accumulate in S phase through 72 hours following drug removal. 

Similar to GCV-treated cells, following exposure to CdG cells were able to 

continue through the cell cycle one time following drug exposure, as indicated by an 

approximately 2-fold increase in cell number at 36 hr after drug washout (Table 4.2).  

However, they accumulated in G2/M during drug incubation and beginning again at 24 

hours after drug washout. In addition, DNA synthesis was lower compared to cells 

treated with GCV.    

PCV-treated cells exhibited a pattern of cell cycle progression distinct from either 

GCV or CdG.  Within 12 hr after drug addition, the cells accumulated in early S phase 

and remained there until at least 12 hr after drug washout, likely due to the strong 

inhibition of DNA synthesis.  After drug washout, cells progressed from early to mid and 

late S phase through 48 hours after drug washout.  There was a continuous decrease in 
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Figure 4.10.  Effects of GCV, CdG, and PCV on the cell cycle distribution of U251tk 
cells during drug incubation.  Cells were incubated with 1 µM GCV, 1 µM CdG, or 50 
µM PCV for 24 h. Cells were analyzed at indicated time points during drug incubation 
Cells were incubated with 30 µM BrdUrd for 15 min before harvest. Cells were then 
prepared for dual parameter flow cytometry to determine BrdUrd and DNA content as 
described in Materials and methods. Control represents a 24 h period without drug 
addition.  Results of a single reproducible experiment are shown. 
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Time after drug removal 
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Figure 4.11.  Effects of GCV, CdG, and PCV on the cell cycle distribution of U251tk 
cells following drug removal.  Cells were incubated with 1 µM GCV, 1 µM CdG, or 50 
µM PCV for 24 h.   Drug containing medium was removed following the 24 h incubation 
and replaced with fresh drug-free medium. Cells were analyzed at indicated time points 
after drug removal. Cells were incubated with 30 µM BrdUrd for 15 min before harvest. 
Cells were then prepared for dual parameter flow cytometry to determine BrdUrd and 
DNA content as described in Materials and methods. Control represents a 24 h period 
without drug addition.  Results of a single reproducible experiment are shown. 
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Treatment Time G1  
Early 

S 
Mid 
 S 

Late  
S  

Total 
S  G2/M 

Cell 
Number 

Mean 
BrdUrd 

Fluorescence 
    (%) (%) (%) (%) (%) (%) (x 106) (% Control) 
              

Control 0 h 73.2 5.9 5.3 5.2 16.4 10.4 1.94 100 
              

GCV -12 h 10.7 55.8 19.0 11.2 86.1 3.2 0.96 39 
  0 h 17.8 16.9 43.8 16.5 77.2 4.9 1.06 104 
  12 h 10.0 23.9 28.8 28.1 80.8 9.2 1.19 103 
  24 h 31.7 34.8 12.2 9.4 56.4 12.0 1.81 68 
  36 h 31.6 40.7 14.0 7.0 61.7 6.7 1.6 35 
  48 h 36.0 28.9 18.3 6.2 53.4 10.6 2.06 18 
  72 h 22.2 47.1 15.7 12.1 74.9 2.9 0.74 12 
              

CdG -12 h 22.2 26.6 14.1 10.7 51.4 26.4 1.18 45 
  0 h 33.6 27.8 13.0 10.8 51.5 14.8 1.49 62 
  12 h 17.3 45.5 16.8 7.1 69.4 13.3 1.83 46 
  24 h 23.3 17.6 21.1 15.5 54.2 22.4 1.84 52 
  36 h 27.7 22.0 17.4 10.0 49.5 22.8 2.02 38 
  48 h 31.1 16.5 15.3 9.9 41.7 27.2 1.78 36 
  72 h 18.0 12.1 12.7 15.5 40.3 41.8 1.42 26 
              

PCV -12 h 27.3 39.9 17.9 10.2 68.0 4.7 0.93 11 
  0 h 8.7 66.8 16.6 6.5 89.9 1.3 0.83 26 
  12 h 2.6 77.2 15.7 3.8 96.7 0.7 0.86 37 
  24 h 6.0 46.2 35.8 10.5 92.5 1.5 0.81 25 
  36 h 2.7 56.8 31.4 8.7 97.0 0.3 0.62 30 
  48 h 6.4 24.3 36.2 27.8 88.3 5.3 0.54 31 
  72 h 40.6 12.7 12.5 11.7 36.9 22.5 0.29 16 

 

Table 4.2. Effect of GCV, PCV, and CdG on the cell cycle distribution of U251tk 
cells. Effects of GCV, CdG, and PCV on the cell cycle distribution of U251tk cells.  Cells 
were incubated with 1 µM GCV, 1 µM CdG, or 50 µM PCV 24 h.   Drug containing 
medium was removed following the 24 h incubation (time=0 h) and replaced with fresh 
drug-free medium. Cells were analyzed at indicated time points during drug incubation (-
12 h) and after drug removal. Cells were incubated with 30 µM BrdUrd for 15 min before 
harvest. Cells were then prepared for dual parameter flow cytometry to determine BrdUrd 
and DNA content as described in Materials and methods. Control represents a 24 h period 
without drug addition. Results of a single reproducible experiment are shown. 
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cell number during and after PCV-exposure, suggesting that the proportion of G1 and 

G2/M cells observed at 72 hours after drug washout was higher because many of the S 

phase cells had died.  

 

Discussion 

 Results presented here demonstrate that GCV induces a dose-dependent increase 

in mutation frequency with a predominance of GC TA mutations.  The unique pattern 

of mutations observed following exposure to GCV did not occur following treatment with 

two structurally similar HSV-TK substrates, CdG or PCV.  Despite the fact that these 

nucleoside analogs all elicit cytotoxicity through incorporation into DNA, the 

consequences of this incorporation differ greatly, as demonstrated by distinct effects on 

DNA replication fidelity and cell cycle progression, resulting in significant differences in 

cytotoxicity. 

We wished to determine whether the high cytotoxicity and delayed induction of 

DNA damage observed with GCV is due to the induction of excessive or unique 

mutations in DNA.  Although GCV did induce a dose-dependent increase in mutation 

frequency, this alone is likely not responsible for the majority of GCV-induced 

cytotoxicity since there was not a significant increase in mutations at concentrations of 

GCV <IC50 where significant cell death was observed.  The induction of GC TA 

mutations did occur at these lower drug concentrations.  Although it may be possible that 

these specific mutations have especially deleterious effects, there are few scenarios in 

which mutations are sole contributors to cytotoxicity.   
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In previous studies characterizing structural effects of GCV incorporation into 

DNA, oligonucleotide duplexes were synthesized with and without GCVMP.  Addition 

of GCVMP resulted in a decrease in melting temperature of 6.5°C decrease per drug 

residue (17), and disruption of the deoxyribose ring resulted in decreased stability of 

DNA.  Determination of the solution structure of these GCVMP-containing duplexes 

demonstrated that the most significant distortions occurred at the site of GCVMP 

incorporation with a distinct kink in the sugar-phosphate backbone that extended two 

bases after GCVMP (Figure 4.12 and (18)).  The authors hypothesized that this distortion 

would result in the pausing of DNA polymerases.  It is intriguing to speculate that, with 

this pausing due to the presence of GCVMP, the DNA polymerases may insert incorrect 

nucleotides which would account for the induction of mutations observed in the studies 

presented here.   

There are two possible explanations for the appearance of the more frequent 

C20A and C48A mutations.  It is possible that insertion of GCVMP in a specific 

sequence prior to a required C residue alters the regional DNA conformation such that 

addition of an A is favored.  This could be due to the acyclic nature of GCV which may 

allow more flexibility of the DNA structure, as suggested by Marshalko et al (17).   Due 

to the small coding sequence of the supF cDNA, it was not possible to evaluate sequence-

specific effects in this study, but would be of interest in future studies.  In translesional 

synthesis in Escherichia coli, dAMP is preferentially incorporated opposite abasic sites in 

a phenomenon known as the “A rule” (19,20).  If the A rule also applies to mammalian 

polymerases, the increased flexibility of GCV could result in the base being flipped out  
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Figure 4.12. Effect of GCVMP incorporation on DNA structure. Structure of (A) 
control and (B) GCV-containing DNA duplexes. Control: 5'-CTGGATCCAG-3'  GCV: 
5'-CTGDATCCAG-3' (D=GCV) Adapted from Foti et al (18). 
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of the active site of the polymerase and an A being inserted by default, thus resulting in 

the predominance of C A mutations. 

The assay utilized in this study involves the replication of plasmid in both human 

cell lines and bacteria, and thus we cannot be certain that these mutations occurred during 

replication in the human cells or as a consequence of GCVMP incorporation in the 

nascent strand with subsequent mutation occurring in the bacteria.  However, the 

likelihood that the mutations occurred during replication of the plasmids in human cells is 

supported by reports that GCV is genotoxic and carcinogenic in animal models which 

suggest a similar ability to induce mutations in replicating genomic DNA of mammalian 

cells. 

The unique GCV-associated mutations were neither detected nor repaired by 

MMR, since the mutations predominated both in MMR-proficient U251TK and HCT116 

1-2TK cell lines.  A higher percentage of GC TA mutations occurred in the MMR-

proficient cell lines than in the MMR-deficient 0-1TK cell line, further demonstrating 

that these specific misincorporations are not repaired by MMR.  The higher frequency of 

GC TA mutations in the MMR-proficient cell lines did not translate into increased cell 

death, further demonstrating that these mutations cannot be solely responsible for the 

cytotoxicity of GCV.  In addition, the data suggest that the enhancement of GCV 

cytotoxicity with HU in the MMR-deficient cells may be due to an increase in errors in 

DNA replication which are induced by HU.  However, in the MMR-proficient HCT116 

1-2TK cell line, the addition of HU activates MMR which decreases replication errors, 

resulting in antagonistic cytotoxicity. 
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We have shown in several different cell lines that GCVMP is well retained in 

DNA (1,4,6), suggesting that MMR is not capable of excising all of the fraudulent 

nucleotide.  However, activation of MMR may result in the repair of other 

misincorporations.  Although the mutation frequency with GCV is similar between MMR 

proficient and deficient cell lines, there is a greater predominance of GC TA mutations 

in MMR proficient HCT116 and U251 cell lines, suggesting that these result from 

specific misincorporations which are not repaired by MMR.  Alternatively, it is possible 

that attempted repair of GCVMP incorporation by MMR results in the production of 

GC TA mutations by polymerase δ during the resynthesis step of the repair process.  In 

addition to depletion of MMR, inhibition of DNA polymerase β, a gap-filling DNA 

repair polymerase, also sensitizes cells to GCV (21).  These data demonstrate that there is 

a cellular repair response initiated by the presence of GCVMP in DNA.  The presence of 

GCVMP in the template strand may cause polymerase δ or ε to pause at the site of 

incorporation, resulting in a stalled replication fork and the observed cell cycle arrest in S 

phase (Figure 4.13).  A similar scenario could occur if the lesion was on the lagging 

strand, with inhibition of the polymerase α/DNA primase complex.  Further research 

characterizing the interaction of GCVTP and GCVMP-containing DNA with DNA repair 

polymerases will increase our knowledge of the mechanism by which GCV induces cell 

death. 

.  Unlike GCV, neither CdG nor PCV induced a significant increase in mutation 

frequency, even at similarly toxic concentrations.  CdG and PCV also did not alter the 

proportion of induced mutations.  We have not observed this predominance of specific 

mutations with other drugs studied in this same system such as HU, 2',2'-difluoro-2'-  
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Figure 4.13. Proposed mechanism of cell cycle arrest in response to GCV.  When 
DNA replication machinery encounters GCVMP ( ) in the template strand during DNA 
synthesis, the DNA polymerase complex stalls.  This stalled replication fork may be 
sufficient for S phase arrest and subsequent cell death.    
.  

Parental DNA 

PCNA 

Helicase 

Pol α 

Pol 
δ/ε 

DNA Primase 

Old RNA 

New RNA primer 

ssDNA binding protein 

GCVMP 

Leading 
strand 

Lagging 
strand 

3'  
5'  

3'  

5'  5'  

5'  

3'  

Stalled Replication 



 125 

deoxycytidine, 1-β-D-arabinofuranosylcytosine, 5-fluoro-2'-deoxyuridine, and araT ((22); 

data not shown).  Although very similar in structure to GCV, CdG and PCV did not 

induce this particular mutation nor did they produce an increase in other mutations under 

the conditions tested here.  

 Previous reports have demonstrated that GCV is more genotoxic than other HSV-

TK substrates.  ACV induced SCEs and chromosomal aberrations immediately after drug 

exposure, but only at very high concentrations, whereas GCV induced more SCEs and 

chromosomal aberrations at concentrations below IC50 and these events occurred during 

the second cell cycle after drug exposure (11,23).  SCEs occur as a result of homologous 

recombination (24).  This pathway may be activated in response to GCV-induced DNA 

damage, resulting in the formation of SCEs.  PCV exposure resulted in significantly less 

plasmid mutations than GCV at both equimolar and equitoxic concentrations (12).  

Although there is no direct evidence that GCV is carcinogenic in humans, data presented 

here and in other reports describing the genotoxic properties of GCV indicate that the 

possible genetic risk of GCV should be considered.  Studies of the long-term effects of 

GCV-induced genotoxic events in humans are warranted.  

In addition to the differences in replication fidelity, the three deoxyguanosine 

analogs differed with respect to cell cycle progression.  As we have reported previously, 

cells treated with GCV are able to complete one round of cell division following drug 

exposure and arrest in the subsequent S phase.  This suggests that the observed S phase 

arrest is due to the presence of GCVMP in the template during DNA synthesis.  Although 

GCV caused an S phase arrest and CdG produced more of a block in G2/M, following 

exposure to either of these drugs cells were able to progress through the cell cycle.  On 
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the other hand, the less cytotoxic PCV caused a more profound decrease in the rate of 

DNA synthesis compared to GCV and CdG with a strong delay in cell cycle progression.  

Similarly, araT, was previously reported to arrest cells in the first S phase during drug 

incubation but resulted in low cytotoxicity.  This suggests that it is the ability of cells to 

divide with GCV or CdG present in their DNA which accounts for their greater cytotoxic 

effects.   

While many nucleoside analogs elicit their effects by incorporating into DNA, the 

mechanism by which cells die and the extent of cytotoxicity is not always the same.  The 

structurally related nucleoside analogs investigated here caused profoundly different 

interactions with DNA and distinct effects on cell cycle progression, resulting in 

differential cell killing.  Further characterization of the consequences of DNA 

incorporation for nucleoside analogs will help in the development of more efficacious 

antitumor drugs.   
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Chapter V 

 

CONCLUSIONS 

 

The major goal of this dissertation was to elucidate the mechanism by which 

GCV induces cell death in order to determine why GCV is more cytotoxic than other 

related drugs.  Although HSV-TK/GCV gene therapy for cancer has been studied for 

nearly two decades, the mechanism of its cytotoxicity is still not completely understood.  

In recent years, the majority of published reports on this therapeutic approach involve 

methods of enhancing GCV cytotoxicity, mostly by the addition of other drugs or 

improvement of vector delivery of the HSV-TK gene, but mechanistic studies have been 

largely absent.   

GCV is important because it is significantly more cytotoxic than other drugs: it 

has the ability to induce more cell death than most other nucleoside analogues under 

similar conditions (1).  This powerful antitumor activity combined with a selective mode 

of delivery has great potential to improve the efficacy of cancer treatment while sparing 

normal tissue toxicity.  The overall goal of this study was to elucidate the mechanism(s) 

for the superior cytotoxicity of GCV by characterizing the amount of DNA damage 

caused by GCV, its rate of repair, and the role of specific repair pathways.  In addition, 

specific mutations in DNA induced by GCV were identified and compared to those 
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induced by other, less cytotoxic drugs.  Understanding the lesions produced and the 

pathways that attempt to repair the GCV-induced lesions will allow us to improve this 

gene therapy approach to cancer treatment, as well as develop new drugs and targets to 

induce multi-log cell killing.   

 The studies presented here characterized DNA damage induced by GCV and 

repair pathways involved in responding to this damage.  In Chapter II, we measured γ-

H2AX foci as an indicator of GCV induced DNA damage.  During GCV exposure, high 

levels of γ-H2AX foci are induced, however the subsequent decrease in this damage after 

drug removal suggests that this is repairable.  Although there is not a complete cell cycle 

arrest during GCV incubation, cells are slowed in S phase (1).  It has been reported that γ-

H2AX foci are formed at stalled replication forks and do not solely represent DNA 

double strand breaks (2-4).  This first increase in DNA damage may indicate slowing or 

stalling of replication machinery caused either by inhibition of DNA polymerases or 

reluctant extension of DNA following GCVMP incorporation, which is overcome after 

drug removal.   

Coincident with the initial increase in γ-H2AX foci, only a small increase in 

Rad51 foci was also detected, suggesting that homologous recombination repair (HRR) is 

involved possibly to a minor degree in the repair of the initial damage.  The second 

increase in DNA damage, measured by γ-H2AX foci, occurs after cells have divided and 

correlates with the timing of cell cycle arrest.  This suggests that cells are not able to 

repair this damage, and this second onset of damage is what leads to cell death.  It is 

possible that, when DNA replication machinery encounters GCVMP in template DNA, it 

causes replication to cease and replication forks to collapse.  The large increase in Rad51 
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foci formed after drug washout and immediately preceding the second increase in γ-

H2AX-detected DNA damage suggests that failed HRR may account for the lesions 

responsible for GCV cytotoxicity.  The increased sensitivity of HRR-deficient yeast to 

GCV demonstrates that HRR is required to survive GCV-induced damage.  Previous 

reports demonstrated that GCV induces sister chromatid exchanges, which also suggests 

a role for HRR in responding to GCV-induced DNA damage (5,6).  HRR may be able to 

repair lesions or stalled replication forks during the first round of cell division during and 

following GCV exposure, thus sparing cells from death at this point.  However, during 

the second cell cycle there is a strong induction of HRR which is unable to repair the 

second increase in DNA damage, resulting in cell cycle arrest and death.  It will be 

interesting to directly measure the effect of inhibiting HRR on the induction of DNA 

damage with GCV to determine whether it is truly involved.  

In contrast, araT, which is incorporated into DNA at >20 fold higher levels than 

GCV at similarly toxic concentrations (1), induces 7-fold less DNA damage than GCV as 

measured by γ-H2AX foci.  These data demonstrate that cells are much more sensitive to 

GCVMP in DNA than araTMP, and the result of incorporation of these nucleoside 

analogs is quite different.  Because it has a complete sugar ring, the presence of araTMP 

in DNA may have less of an effect on DNA stability than GCVMP which is acyclic.  

While both drugs are well retained in DNA after drug washout, surviving cells harboring 

araTMP resume DNA synthesis and cell cycle progression whereas GCVMP causes a 

permanent block in the second S-phase.  This suggests that araTMP may serve as an 

adequate substrate in template DNA, but GCVMP does not.  This could result in the 
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polymerase stalling or dissociating from the replication fork, activating cell signaling 

pathways leading to cell cycle arrest and ultimately death.    

 Because we wanted to focus on the consequences of GCV incorporation into 

DNA, it was logical to investigate repair pathways involved in responding to this 

damage.  It had previously been reported that inhibition of DNA polymerase β sensitized 

cells to GCV (7). This polymerase has been implicated in DNA repair (8), suggesting that 

GCVMP incorporation is subject to repair.  In order to more quickly and easily assay a 

wide variety of DNA repair pathways than would be possible in mammalian cells, in 

Chapter III we utilized a yeast-based screen of 96 DNA damage response mutants for 

increased sensitivity to GCV.  Yeast deficient in genes involved in HRR, cell cycle 

checkpoints and, to a lesser extent, mismatch repair (MMR) exhibited significantly 

increased sensitivity to GCV, suggesting a role for these pathways in protecting from 

GCV-mediated cytotoxicity.  We had already demonstrated a role for HRR in response to 

GCV in mammalian cells by showing that Rad51 foci were induced following exposure 

to GCV, and the results in yeast also implicated HRR in repairing GCV-induced lesions.  

Due to the inherent resistance of the yeast to GCV, we were unable to identify genes 

which conferred resistance to GCV when deleted. While the yeast assay allowed us to 

examine many DNA repair mutants for increased sensitivity to GCV and results in 

human cells have confirmed a role for MMR and HRR, the yeast results implicating cell 

cycle checkpoints in GCV cytotoxicity must be verified in mammalian cells. 

In order to further characterize the role of MMR in responding to GCV-induced 

DNA damage, we characterized the sensitivity of HSV-TK-expressing HCT116 cell lines 

which are matched for MMR proficiency and deficiency and determined that the MMR-
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deficient cell line was more sensitive to GCV, primarily at high concentrations.  

Interestingly, the proficient HCT116 cells actually accumulated more GCVMP in their 

DNA than their MMR-deficient counterparts at similarly toxic concentrations.  Depletion 

of MLH1 by siRNA, a required MMR protein, sensitized two other cell lines, but only at 

high concentrations of GCV.  siRNA resulted in depletion, but not complete elimination 

of MLH1, so basal MMR activity may still have been able to occur.  The fact that the 

sensitization of MMR-deficient cells occurs primarily at high concentrations suggests that 

a threshold of damage exists where other pathways become overwhelmed and cell death 

is initiated.  We must also consider the fact that while cells deficient in MLH1 are MMR 

deficient, MLH1 is known to participate in a variety of other pathways such as base 

excision repair, cell cycle checkpoints, and apoptosis (9-11).  Future studies aimed at 

distinguishing the role of MLH1 in MMR vs. other DNA damage response pathways will 

help to elucidate the exact function of MLH1 in GCV cytotoxicity. In yeast, depletion of 

another required MMR protein, MSH2, conferred the same degree of sensitivity to GCV 

as deletion of MLH1, suggesting that the difference in sensitivity is indeed due to MMR.   

We do not believe that MMR is able to protect cells from GCV cytotoxicity by 

removing GCVMP from DNA.  We have shown that MMR-proficient cells had higher 

levels of GCVMP incorporation than the MMR-deficient cells at equitoxic 

concentrations.  Excision of GCVMP from DNA has not been demonstrated directly, and 

any observed decrease in the amount of GCVMP in DNA of MMR-proficient HCT116 

cells could be accounted for by an increase in cell number.  While it is possible that rapid 

excision of some of the GCVMP residues from DNA by MMR during replication may 

occur, clearly a significant amount of GCVMP remains.  This suggests that MMR 
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decreases GCV cytotoxicity by correcting some other GCV-induced DNA damage.  

MMR is responsible for correcting mismatched nucleotides in DNA which, if left 

unrepaired, could result in mutations.   

In Chapter IV, we present studies of specific DNA lesions resulting from GCV 

treatment by characterizing the ability of GCV to induce mutations in DNA.  GCV 

induced a dose-dependent increase in mutation frequency, with a predominance of 

GC TA mutations.  Because mutation frequency only increased at concentrations of 

GCV >IC50, it appears unlikely that mutations are solely responsible for inducing cell 

death.  Despite the fact that lower concentrations of GCV did not induce an increased 

total number of mutations, they did result in an increased percentage of specific GC TA 

transversions, therefore cytotoxicity may be due to the nature of the induced mutations 

and not the overall number of mutations.  These specific mutations were induced in both 

MMR proficient and deficient cell lines, and the MMR proficient cell lines (HCT116 1-

2tk and U251tk) had a higher proportion of these mutations.  These data suggest that 

these specific mutations are the result of misincorporations which are not readily 

repairable by MMR.  The decrease in proportion of other types of mutations suggests that 

MMR repairs these, leaving a higher percentage of the GC TA mutations.  A study in 

NIH 3T3 cells determined relatively low repair rates for G:A (35%) and C:T (80%) 

mismatches as compared to G:T mismatches (100%) (12), so these misincorporations 

might be more prone to remain unrepaired.   

  A report of the solution structure of GCV in oligonucleotides illustrated that the 

phosphate-sugar backbone of GCV-containing DNA was kinked at the site of GCV 

incorporation (13).  Because GCV is an acyclic deoxyguanosine analog, the open sugar 
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presumably would give GCV-containing DNA more flexibility, which may allow DNA 

to rotate in such a way that it promotes errors in polymerase insertion of nucleotides.  We 

observed a high percentage of two specific C A mutations (C20A and C48A) following 

GCV exposure.  The high incidence of these specific mutations in three different cell 

lines suggests that the structure of these particular sequences of DNA make it more likely 

for the substitution of an adenosine in place of a cytosine.  This could be due to the 

acyclic nature of GCV which may allow more flexibility of the DNA structure.   Due to 

the small coding sequence of the supF cDNA, it was not possible to evaluate sequence-

specific effects in this study, but would be of interest in future studies. 

The oxidized purine 8-oxoguanine (8oxoG), a DNA lesion resulting from reactive 

oxygen species, is able to incorrectly base pair with A.  If this mispair is not repaired, it 

also results in a GC TA transversion.  Oxidation of the guanine at C8 turns N7 into a 

hydrogen bond donor, and this allows a 8oxoG:A base pairing which does not disrupt 

either the polymerase active site or the DNA structure (14,15).  Because there is not a 

major alteration in structure as would occur with a G:A base pair, 8oxoG:A mispairs 

readily evade proofreading.  It is possible that the GC TA mutations observed following 

treatment with GCV are a result of A being incorrectly inserted across from a GCV, as 

the loss of the structural constraint of a cyclic sugar ring may allow GCV to assume a 

different conformation which allows non-canonical basepairing capable of avoiding 

repair as well. This mechanism would require that the GC TA mutations we detected 

were the result of GCVMP present in template DNA.  While we believe the conditions 

favored incorporation of GCVMP into the nascent strand only, the possibility that the 

plasmids were replicated more than once in the human cells cannot be ruled out.   
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Although very similar in structure to GCV, neither CdG nor PCV were able to 

increase mutation frequency or the relative proportion of GC TA or any other type of 

mutations.  The specific C20A and C48A mutations did not occur following exposure to 

either CdG or PCV.  CdG is not acyclic, supporting our hypothesis that it is the flexibility 

of the acyclic sugar which allows GCV to induce these mutations.  PCV is also acyclic, 

however, it did not induce mutations.  The only difference in structure between PCV and 

GCV is that PCV has a carbon instead of an oxygen on the acyclic ring, and it is possible 

that the removal of the oxygen decreases hydrogen bonding necessary for mutations to be 

induced. If increased flexibility is involved in GCV’s formation of mismatches, the lack 

of an oxygen on the sugar ring of PCV may decrease flexibility and retain the structural 

constraint provided by an intact sugar ring and not allow for the interaction to occur.  In 

addition, PCV causes significantly greater inhibition of DNA synthesis than GCV.  In 

primer-template assays, PCVTP has been reported to be incorporated into DNA less 

efficiently than either ACVTP or GCVTP by DNA polymerases α, δ, and ε and, although 

PCV is not a chain terminator, further extension after incorporation of PCV is reluctant 

(16).  PCVTP is a poor inhibitor of polymerases, so it likely inhibits DNA synthesis after 

incorporation into DNA.  Since synthesis of DNA would be required for induction of 

mutations, this inhibition would result in a decreased mutation frequency as observed 

with PCV.   

We must also consider the fact that this mutation assay involves the replication of 

plasmid in both human cell lines and bacteria, and we cannot determine in which 

organism these mutations were created.  This pattern of mutations is unique to GCV and 

not simply an artifact of plasmid replication in bacteria, as we have performed this assay 
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with many other drugs and have never obtained similar results.  Future experiments 

characterizing mutations in chromosomal DNA in human cells will verify these results 

and indicate where these mutations are being generated.  Reports that GCV is genotoxic 

and carcinogenic in animal models support our findings that it can induce mutations in 

replicating plasmid DNA. 

Although the studies presented in this dissertation are in the context of gene 

therapy for cancer, it is also important to note the GCV is widely used to treat 

cytomegaloviral infections in immunocompromised patients.  Animal studies indicated 

that GCV is both mutagenic and carcinogenic, while rats and mice exposed to 2 to 8-fold 

more ACV or PCV than what is administered to humans did not have a significant 

increase in the incidence of tumors [reviewed in (17)].  It will be important to clarify how 

these experimental findings translate to the clinical setting in order to identify when the 

risks outweigh the benefits.  In a small study of 7 AIDS patients who were treated with 

the anti-retroviral nucleoside analog azidothymidine, peripheral lymphocytes were 

examined for chromosomal aberrations and it was determined that 8% of lymphocytes 

had aberrations while the rate of aberrations was only 0.5% in untreated AIDS patients 

(18).  Similar studies monitoring patients treated long-term with GCV for chromosomal 

aberrations, sister chromatid exchanges, gene mutations, and incidence of cancer should 

be conducted.   

Not only do the small changes in structures of these drugs result in different 

effects on fidelity of DNA replication, but they all cause different patterns of cell cycle 

progression.  Due to its strong inhibition of DNA synthesis, PCV arrests cells in S phase 

during drug incubation.  In contrast, cells treated with either GCV or CdG are able to 
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complete one cell division cycle after drug exposure because they do not inhibit DNA 

synthesis, and they subsequently arrest in the second S or G2/M phases, respectively.  

Both GCV and CdG have the ability to induce multilog cytotoxicity, suggesting that it is 

the ability to complete one round of the cell cycle with the analog present in DNA which 

results in increased cell killing as compared to other chemotherapeutic agents.  If cells 

continue to divide without recognizing the presence of nucleotide analogs in their DNA, 

the collision of the replication machinery with the analog may induce damage too severe 

for repair and make cell death inevitable.  DNA repair varies depending upon whether the 

lesion is in the template or occurs during nucleotide insertion in the nascent strand, as 

most repair processes, such as MMR, repair mistakes in the newly synthesized strand and 

few others, such as transcription coupled repair, recognize lesions in the template (19).  

Frequency of misincorporations at modified nucleotides depends upon whether the 

modified nucleotide is in the template or as the incoming triphosphate (20,21).  Because 

GCVMP is present in DNA of cells after they have completed one round of DNA 

replication, it is not completely excised by repair pathways involved in proofreading 

newly synthesized DNA.  This would suggest that any repair which may occur is initiated 

following the recognition of GCVMP in the template strand.  My studies demonstrating a 

second increase in γ-H2AX foci occurring with similar timing to the observed S phase 

arrest and immediately following an increase in Rad51 foci suggest that stalled 

replication forks are induced.  DNA replication machinery may be unable to situate 

properly on DNA with GCVMP incorporated to continue replication past the lesion, 

resulting in a stalled replication fork.  Rad51 is then recruited to re-start the stalled fork 
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but cannot get past the lesion, leading to the accumulation of lethal HRR intermediates 

and ultimately cell death. 

The data presented here suggest a variety of mechanisms to modify clinical 

therapy with GCV.  Perhaps the most successful clinical trials of HSV-TK/GCV gene 

therapy have been in prostate cancer (22), one of many human tumor types which are 

deficient in DNA damage response pathways, such as MMR (23,24).  It has been 

reported that 2 to 50% of prostate cancers are defective in MMR (25).  The data 

presented here suggest that MMR deficient tumors would respond better to HSV-

TK/GCV treatment than MMR proficient tumors since MMR deficient cells are more 

sensitive to GCV.  Although the data presented here demonstrate increased sensitivity in 

MMR deficient cells occurred with high concentrations of GCV, these concentrations 

represent clinically relevant doses.   In addition, the yeast screen suggests that tumors 

defective in certain checkpoint pathways would also respond better to GCV.  Since 

normal tissues are generally proficient in these pathways, targeting MMR and checkpoint 

defective tumors would improve selectivity of this therapy.  These studies also suggest 

other pathways, such as HRR, could be targeted in combination with GCV treatment to 

enhance GCV cytotoxicity.  Cells that lack BRCA1 or BRCA2 function are deficient in 

HRR and exhibit increased sensitivity to DNA damaging agents mytomycin C and 

etoposide and may also be more sensitive to GCV (26-29).  Because overexpression of 

Rad51 is common in malignant cells (30), it will be interesting to explore the effect of 

this overexpression on GCV cytotoxicity in human cells. 

In the future, it will be important to determine the extent and timing of DNA 

damage induced by CdG.  It is my hypothesis that CdG will also induce high amounts of 
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DNA damage, and that this damage will occur similarly to that observed with GCV.  If 

the multilog cytotoxicity is due to the fact that these analogs remain undetected in DNA 

until the second round of DNA replication following exposure, it will be interesting to 

characterize which, if any, repair pathways are initiated immediately preceding cell cycle 

arrest or if this is simply caused by failed DNA synthesis.  Further characterization of the 

mechanism by which GCV and CdG cause multi-log cytotoxicity may provide the basis 

for development of new anti-tumor agents with the same ability which may be superior to 

those in use today. 

Although the research presented here has added significantly to the knowledge of 

GCV’s mechanism of action, there remain questions which will require further research 

to answer.  It will be of interest to determine if GCV produces the same abundance of 

GC TA mutations in mammalian chromosomal DNA, which could be accomplished by 

using an assay for mutations induced in the hypoxanthine-guanine phosphoribosyl 

transferase locus by evaluating resistance to 6-thioguanine.  A much more complex issue 

will be to determine why these specific mutations are induced by GCV.  It will be 

beneficial to more fully understand the consequence of GCV incorporation on DNA 

structure and characterize the interaction of GCV, in the triphosphate form as well as the 

monophosphate incorporated into DNA, with polymerases and other components of DNA 

replication machinery.  This will help determine if these mutations arise from addition of 

the incorrect nucleotide opposite GCV, replication errors caused by changes in structure 

of GCV-containing DNA, or another mechanism.       

In addition to understanding the nature of the lesions produced by GCV, it will 

also be of great interest to further investigate repair pathways involved in responding to 
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and repairing this damage.  My research has generated preliminary data implicating 

several repair pathways, such as HRR, cell cycle checkpoints, and MMR, and future 

work will characterize the exact involvement of these pathways in responding to GCV-

induced damage.  For example, it will be important to determine if depletion of proteins 

essential for HRR in mammalian cells change sensitivity to GCV or induction of DNA 

damage.    

There have been very few published reports of activation of DNA damage 

signaling pathways as a result of GCV exposure.  The involvement of specific pathways 

can be determined by characterizing activation of proteins such as ATR, Chk2, p53, and 

caspases.  Elucidation of these signaling pathways may aid in the determination of what 

recognizes the DNA lesions produced by GCV and the cause of the observed S phase 

arrest and will provide addition insight into the mechanism of action of GCV. 
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