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Abstract 
Cognitive impairments, including deficits in attention processing, represent 

major and central elements of schizophrenic symptoms. First- and second-

generation antipsychotic drugs can effectively mitigate the florid symptoms of 

psychosis. However, treating schizophrenia’s cognitive deficits remains 

problematic and has met with limited success. Evidence indicates that the basal 

forebrain cholinergic system (BFCS) is an essential component of the neuronal 

circuitry involved in mediating attention processing attention processing- an 

important aspect of cognition. The present thesis is based on the core hypothesis 

that cholinergic dysregulation contributes to the cognitive impairments associated 

with schizophrenic symptoms. Using a repeated-amphetamine (AMPH) rat model 

of schizophrenia, the following main hypotheses are tested:  

1) Repeated, escalating AMPH administration, followed by ‘AMPH-
challenges’ at previously innocuous doses, results in performance 
impairments on a task that measures sustained attention.  

2) The consequences of repeated-AMPH administration and 
subsequent challenge dosing in task-performing animals include 
dysregulated cortical cholinergic transmission.   

3) In AMPH-pretreated animals performing a sustained attention task; 
sub-chronic, low-dose administration of antipsychotic drugs will 
attenuate performance impairments.  

 
The present findings provide evidence for aberrant regulation of the basal 

forebrain cholinergic system and impaired sustained attention processing in a 

repeated-AMPH model of schizophrenia. Specifically, pretreatment with AMPH 

resulted in markedly attenuated performance associated cortical cholinergic 
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transmission. This effect was evident only under the condition of task 

performance, and was not apparent in passive, non-performing animals. 

Cholinergic abnormalities were found to actually precede task onset, indicating 

that they contributed to rather than resulted from impaired performance. In 

addition, low doses of commonly prescribed first- and second-generation 

antipsychotic drugs were found to attenuate these attentional impairments 

effectively, although the effects on cortical cholinergic transmission in task-

performing animals remain speculative. The present data are consistent with the 

hypothesis that the basal forebrain cholinergic system represents a principle 

component in the neuronal dysregulation mediating schizophrenia’s cognitive 

impairments. Expanding upon this hypothesis, the present data elucidate the 

dynamic nature of this dysregulation in response to different stimulus 

environments. Collectively, these experiments demonstrate the potential 

usefulness of this procedure for modeling aspects of impaired cognition in 

schizophrenia and may serve as a potential starting point for pre-clinical efforts 

aimed at discovering and developing novel, pro-cognitive drugs to improve the 

cognitive deficits of schizophrenia. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Why study impaired cognition in schizophrenia? 

Schizophrenia is a severely debilitating neuropsychiatric disorder whose 

essential characteristics include hallucinations, delusions, paranoia, 

inappropriate affect and cognitive deficits. The term ‘cognitive deficits’ describes 

functional deficiencies or reduced capacities for cognitive operations that span 

multiple domains, including attention, mnemonic processing, and verbal memory. 

Cognitive impairments are persistent, are present in the majority of 

schizophrenics (between 55-85%), and predict functional outcomes more 

accurately that the severity of psychosis (Green 1996; Keefe, Eesley et al. 2005). 

Cognitive deficits are considered to be elemental ‘state-characteristics’ and are 

conceptualized as predisposing factors for disease onset rather than the 

secondary consequence of florid symptoms (Green and Braff 2001; Heaton, 

Gladsjo et al. 2001). Cognitive impairments can be detected in children at risk for 

psychosis; they become more pronounced during the disease prodrome, and 

worsen during first-break psychosis. Thereafter, the severity of impaired 

cognition either remains constant or further deteriorates- even in the face of 

illness phases marked by substantial improvements in the severity of psychosis 

(Heaton, Gladsjo et al. 2001). Presently, the American Psychiatric Association 

defines the primary treatment goals for persons with schizophrenia as the 

reduction of psychotic symptoms and the prevention of injurious behavior (APA 
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2006).  In parallel, the majority of preclinical research efforts geared towards 

antipsychotic drug discovery to date, have focused on the determination 

antipsychotic mechanisms for the alleviation of florid psychotic symptoms. 

Despite Kraepelin’s early emphasis on the cognitive components of 

schizophrenia, efforts directed at determining cognition-enhancing treatment 

strategies for the disease have been initiated only recently (Green and Braff 

2001; Green, Nuechterlein et al. 2004). The pervasiveness of cognitive 

impairments and their impact on multiple functional domains necessitates the 

development and application of novel, pro-cognitive drugs targeted explicitly 

towards improving cognition in schizophrenia.  

Impaired attention processing is evident in schizophrenia and represents a 

prime target of therapeutic intervention for several reasons discussed below. The 

following paragraphs will define attention processing, review the role of impaired 

attention in schizophrenia, and describe the application basic neuroscientific 

techniques, including animal models, towards the problem of schizophrenia. 

Subsequently, the relevant neurobiological components of attention and 

schizophrenia will be addressed. I will then review the currently available 

treatments for schizophrenia and discuss their mechanisms of action. Finally, the 

discussion will describe how this body of knowledge can be applied towards an 

animal model of the cognitive deficits in schizophrenia. 

1.2 What is attention?  

Attention is defined as the ability to detect, select and process relevant 

stimuli while filtering out irrelevant stimuli. Attention is a non-unitary construct that 
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involves multiple processes and capacities comprised of several interrelated 

components, including sustained attention, divided attention, and selective 

attention. Experiments assessing sustained attention in humans typically 

measure a subject’s ability to detect and report the occurrence of rarely and 

unpredictably occurring stimuli over an extended period of time. A subject’s 

capacity to sustain attention is thought to be limited by multiple factors including 

finite attentional resources and limited processing capacities. During testing, 

attentional resources can be taxed or over extended through the manipulation of 

task parameters to increase cognitive demands and produce performance 

decrements. Such manipulations include the successive rather than 

simultaneous presentations of signal or non-signal events to necessitate 

cognitive switching, the variation of stimulus features (i.e. intensity or duration) to 

prevent the establishment of detection criteria, the randomization of signal or 

non-signal event types, the increased rate of stimulus presentations, and the 

variable timing of trial occurrences (Parasuraman 1986; Parasuraman 1987). 

Collectively, these manipulations are thought to extend the cognitive demands of 

task performance beyond those of simple stimulus detection by limiting the 

implementation of routine-based strategies, necessitating additional processing 

(i.e. symbolic or conditioned significance of signals), and imposing the guided 

allocation of cognitive resources (Sarter, Givens et al. 2001).  

1.3 The role of impaired attention in schizophrenia 

Attentional deficits in schizophrenia can be ascertained through clinical 

observation and have been characterized using a variety of attention tasks. 
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Impairments in attention have been reported consistently in patients with 

schizophrenia since the earliest accounts of the illness by Kraeplin and Bleurler 

(Hoenig 1983). Generally, schizophrenics perform approximately ~1-2 standard 

deviations worse than control groups on commonly used tests assessing 

attention, working memory and executive functioning (Heinrichs 2005).  

Attentional impairments can be accentuated during stressful or cognitively 

demanding situations and are indicative of heterogeneous impairments, including 

deficits in stimulus detection, selection and filtering (Cattapan-Ludewig, Hilti et al. 

2005).  

The clinical presentation of attentional deficits can be illustrated with the 

following examples: a 21 year old male diagnosed with schizophrenia noted 

apparent difficulties in stimulus detection and the allocation of attentional 

resources that contributed to academic difficulties: “...it’s like I’m in class and 

trying to pay attention to the prof…my mind goes elsewhere…and then I miss the 

point.” Alternatively a 28 year old female dual-diagnosed with schizophrenia and 

substance abuse disorder described apparent gating deficits that contributed to 

vocational difficulties “...I was working behind the counter and then it was like all 

of a sudden, everything (got real loud) and it felt like it was all coming at me at 

once…I couldn’t handle it and took off…” (unpublished). Preclinical experiments 

have substantiated such anecdotal observations with data describing 

impairments in various aspects attention processing. For example, deficits in 

attention and related cognitive processes have been detected in nearly all 

varieties of the Continuous Performance Task (i.e. CPTX, CPT degraded, and 
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CPT continuous pairs) (van den Bosch, Rombouts et al. 1996; Elvevag, 

Weinberger et al. 2000; Cattapan-Ludewig, Hilti et al. 2005; Braff 1993;Javitt, 

Shelley et al. 2000). Continuous performance tasks require the subject to detect 

and respond to a rarely and unpredictably occurring target stimulus (or set of 

stimuli) while inhibiting responses to distracting, non-target stimuli. CPT 

performance is commonly used to assess sustained attention and its dependent 

measures (i.e. commissions, omissions and reaction time) are used to gauge a 

subject’s ability to rapidly detect and select target stimuli and discriminate non-

target stimuli (Rosvold,  et al. 1956). Depending on the task-version, 

schizophrenics demonstrate impaired stimulus detection, increased incorrect 

responses to non-target stimuli, and delayed reaction times (references above).  

Importantly, and as will be discussed later, valid measures of sustained attention 

can be ascertained in animals through the use of tasks with demands that bear  

some analogy to those of the CPT (McGaughy and Sarter 1995; Robbins 2002; 

Bushnell 1998).  

1.4 Challenges in the development pro-cognitive drugs for schizophrenia 

and alternative research approaches: what to model  

Recent insights into the cognitive deficits of schizophrenia and current 

advancements in basic, preclinical neuroscience have not been paralleled by 

advancements in drug development. Hymen and Fenton have described a 

“translational bottleneck” which exists between clinical- and preclinical-science 

(Hyman and Fenton 2003).  This bottleneck refers to the difficulties in shifting the 

recent advancements in the fundamental pharmacology, neural circuitry, and 
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psychology of schizophrenia into the discovery of novel pro-cognitive drugs for 

schizophrenia (Hyman and Fenton 2003). This is due, at least in part, to a lack of 

well-defined targets as a focus for pre-clinical research, the use of animal models 

incapable of detecting cognitive impairments or improvements, and attempts to 

model disease components that bear little consequence to improved functional 

outcomes in patients. Further contributing to this failure are unsuccessful 

experimental approaches based on ‘holistic animal models’ that attempt to 

reproduce the entire clinical syndrome. Such models target non-specific clinical 

endpoints (i.e. positive symptoms) (Nielsen, Lyon et al. 1983; Castner and 

Goldman-Rakic 2003), that are rooted in traditional psychiatric diagnostic tools 

(i.e. the DSM-IV; Kilts 2001). Alternatively, other models have attempted to 

replicate poorly understood aspects of the disease such as its etiology (Weiss 

and Feldon 2001; Meyer, Feldon et al. 2005). The primary goal of such 

experimentation has been the discovery of comprehensive ‘monotherapies’ for 

what are in fact, very complex and heterogeneous clinical entities. As an 

alternative, more suitable experimental objectives (such as specific cognitive 

components of the disease) can be derived from the domains of cognitive 

impairment set forth by the National Institute of Mental Health Measurement and 

Treatment Research to Improve Cognition in Schizophrenia (MATRICS). 

MATRICS has determined seven separable domains of cognitive impairment that 

are evident in schizophrenia: attention, speed of processing, working memory, 

verbal learning and memory, visual learning and memory, reasoning and problem 

solving (Nuechterlein, Barch et al. 2004). This system is based on the 
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fractionation of schizophrenia’s symptoms into discrete elements that can be 

addressed with a high degree of precision and specificity.  The determination of 

these cognitive factors represents a step towards the identification of appropriate 

targets that can be explored to facilitate the development of new drugs to 

enhance cognition in schizophrenia (Green, Nuechterlein et al. 2004).  

The following experiments will focus on sustained attentional processing in 

an animal model of schizophrenia. Sustained attention processing in 

schizophrenia represents an optimal target of experimentation for several 

reasons. First, sustained attention processing is a well-defined cognitive 

construct that is essential for a variety of other cognitive operations and has been 

well characterized in schizophrenia. Second, sustained attentional processing is 

amenable to study in animals and thus, in animal models of the disease; 

attentional impairments can be reproduced and assessed within animals with 

high fidelity through the application of tasks that bear remarkable analogy to 

those used in humans. Third, sustained attention processing possesses a 

relatively well-defined neurobiology that serves to facilitate experimentation and 

to operate as a discernable target for the development of novel drugs. Lastly, 

measures of attention processing in humans predict ‘real-life’ vocational and 

interpersonal outcomes in patient populations (references above).  

1.5 Measuring attention in rats 

The present experiments utilize an operant sustained attention task that 

requires the animal to report rarely and unpredictably occurring signals of varied 

durations over an extended period of time and to discriminate signal- from non-
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signal events. Although alternative measures of attention in rats are available 

(i.e. divided attention; Turchi and Sarter, 1997), the sustained attention task is 

utilized as a matter of experimental convenience as it requires less time for 

acquisition (~3 months). The focus of this thesis on sustained attetention does 

not imply that only sustained attention is disrupted in schizophrenia, but rather, 

represents an efficient way to study one important aspect of this illness. 

Validation of this task as a measure of sustained attention performance was 

based on experiments conducted by McGaughy and Sarter (1995) and  Bushnell 

et al. (1997). Manipulations of task parameters described above (i.e. signal 

duration, inter-trial interval, background ‘noise’, and randomization of signal and 

non-signal events) are known to affect task performance in a manner analogous 

to human tasks. Complete task methodology, including animal shaping, is 

described in the methods section of each subsequent chapter. Briefly, utilizing an 

operant chamber equipped with two retractable levers, a houselight, a signal light 

and reward port animals are required to indicate the presence or absence of a 

signal by pressing the left lever for signal events and the right lever for non-signal 

events. Correct responses to signal trials (hits) and non-signal trials (correct 

rejections) are followed by the presentation of a water reward. Incorrect 

responses signal trials (misses) and non-signal trials (false alarms) are not 

rewarded. Half of all animals are trained using reverse response rules (e.g. the 

right lever scores hits, the left lever scores misses). Importantly, this task 

provides a direct measure of false alarms, or discrete claims by the subject for 

the presence of a signal, when in fact, no signal was presented. Each session 
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consists of 162 trials divided equally between signal and non-signal events to 

promote trial type unpredictability. Signal and non-signal trials occurred randomly 

with 9±3 s inter-trial intervals to limit the prediction of trial type or trial onset. 

Signals consist of single light flashes of variable duration (500 ms, 50 ms, 25 

ms); durations are varied for the purpose of preventing the establishment of fixed 

detection criteria. As expected, the number of detected trials declines in concert 

with diminishing signal duration reflecting a vigilance decrement. It is important to 

note that chance-level performance of this task is characterized by uniform 

detection rates of 50% for all signal durations accompanied by 50% correct 

rejections. Performance criteria consists of at least 70% correct responses to all 

500 ms signal-trials and to non-signal trials, with fewer than 25 omitted trials per 

session. Overall levels of attention performance are calculated using the 

Vigilance Index (VI = [(h-f)/2*(h+f)-(h+f)2]). VI is derived from the Sensitivity Index 

described by Frey and Colliver (1973), but calculated based on the relative 

number of hits and false alarms rather than the probability of such occurrences. 

Additionally VI is used expressly for describing data from tasks that include 

discrete non-signal events whereas the SI is generally not. VI values range from-

1 to 1, with a score of 1 indicating correct responses to 100% of attempted trials. 

A VI value of 0 indicates a complete inability to dissociate signal- from non-signal 

events, and reflects chance-level task performance.  

1.6 The neurobiology of sustained attention processing in wellness and 

pathology 
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The goal of the following section is to describe the anatomical basis of the 

neurobiological systems involved in attention processing and to discuss 

hypotheses regarding the functions of these systems during normal functioning 

and under conditions of pathology, specifically in the context of schizophrenia. 

Hypotheses regarding the neurobiology of attention processing have been 

informed by data from multiple levels of analysis.  Posner and Peterson 

described the ‘anterior attention system’ as a macro anatomical network 

consisting of frontal-parietal cortical regions that influence attention processing 

(Posner and Petersen 1990). This conceptualization has been supported by 

human data demonstrating that damage to frontal or parietal regions of the cortex 

results in impaired performance (i.e. decreased hits, augmented vigilance 

decrement and slowed reaction times) on tasks that measure sustained attention 

(Rueckert and Grafman 1998, Rueckert and Grafman 1996). Corroborating data 

are provided by neuroimaging studies using intact subjects performing sustained 

attention tasks (Hager, Volz et al. 1998). These data provide evidence for a 

distributed cortical attention network that is comprised of frontal-parietal regions 

and lateralize primarily in the right hemisphere.   

Additional neuroimaging data, as well as neuro-pathological data from 

Alzheimer’s patients, implicates subcortical structures in attention processing. 

These structures include those located in the ventral pallidum (Paus 1997). The 

basal forebrain cholinergic system (BFCS) is thought to be of particular 

importance in this regard (Sarter and Bruno 1997; Sarter, Hasselmo et al. 2005). 

The cholinergic basal forebrain is a crucial component of the neuronal circuitry 
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mediating attentional processing (Chiba, Bucci et al. 1995; Voytko 1996; Everitt 

and Robbins 1997; Sarter and Bruno 1997). The basal forebrain cholinergic 

system is the most anterior of the major ascending neuromodulatory systems 

and it projects to all areas and all layers of the cortex (Woolf 1991, see Figure 

1.1). The neuroanatomical organization of the BFCS reflects its capacity to 

regulate information processing in all cortical areas, including frontal-parietal 

attentional networks, via the release of acetylcholine. In humans cortically 

projecting cholinergic neurons are situated along the medial wall of the globus 

pallidus within the horizontal and vertical limbs of the diagonal band. The BFCS 

and is comprised of cholinergic neurons in the nucleus basalis of Meynert, the 

substantia inominata and the magnocellular preoptic nucleus. Analogously in 

rodents, cortical cholinergic projections originate in the substantia inominata and 

nucleus basalis magnocellularis. These neurons are approximately 20-30μm in 

size and display a multi-polar morphology (Saper 1984).  

Cortical cholinergic projections comprise two major pathways, one medial 

and one lateral (Saper 1984). The medial pathway arises in the medial septal 

nucleus, substantia innominata and the medial diagonal band. It courses dorsally 

along the genu of the corpus callosum and terminates primarily in the prefrontal 

and cingulated cortices and extends to the hippocampal formation via the fornix. 

The lateral pathway consists of those axons arising from neurons in the medial 

septum, diagonal band, and magnocellular preoptic nucleus and terminating 

primarily in the entorhinal and pyriform cortices. Cortically projecting neurons 

terminating in the prefrontal cortex (PFC) demonstrate a rough topographic 
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organization, with the most rostal neurons of the nMB projecting to the medial 

prefrontal regions, and neurons arising from medial and posterior areas 

terminating in lateral prefrontal regions. Collectively, these nuclei comprise the 

main source of cholinergic innervation of the cortex, with particularly dense 

innervation layers 1, 3, and 5. The earliest hypotheses of cholinergic functions 

based on these neuroanatomical data, and those describing the non-uniform 

distribution of cholinergic soma, described the basal forebrain cholinergic 

neurons as the rostral extension of a unitary ‘reticular activating system’ 

comprised also of brainstem nuclei and mediating general states of arousal. 

Notably, current evidence has determined that cholinergic neurons possess a 

modular organization and are arranged in longitudinally oriented, structurally 

distinct bands that have been hypothesized to possess the capacity to influence 

discrete cortical regions independent of one another (Zaborszky 2002).   

1.7 Functions of the basal forebrain cholinergic system 

Evidence indicates that the integrity of the basal forebrain cholinergic 

system is required for normal attentional operations and capacities. Experiments 

have demonstrated that selective depletion of cortical cholinergic inputs 

(produced by infusions of the selective immuno-toxin 192-IgG saporin) results in 

cortical cholinergic deaffrentation and impaired performance in animals 

performing a sustained attention task (McGaughy, Kaiser et al. 1996). These 

deficits manifest specifically with respect to decreased hits on signal trials.  Intact 

performance of non-signal trials indicates that such impairments can not readily 

be described in terms of indiscriminant ‘fundamental executive problems’ 
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because the ability to process basic response contingencies remains intact. 

Instead the detection-specific characteristics of these impairments are indicative 

of impaired attentional capacities. Further evidence implicating cortical 

cholinergic transmission in attention processing has been derived from 

behavioral-dialysis experiments demonstrating augmented increases in cortical 

ACh during performance of tasks with explicit attentional demands, but not tasks 

that control for motor and reward retrieval aspects of performance (Arnold, Burk 

et al. 2002).  

Neurophysiological data indicate that cortical cholinergic transmission 

biases cortical information processing towards sensory, rather than associational 

inputs (Hsieh, Cruikshank et al. 2000) and at the same time selectively inhibits 

responses to weak inputs while enhancing, or at least suppressing to a lesser 

degree, responses to strong inputs (Metherate and Ashe 1995). These actions 

are thought to enhance the ‘signal to noise’ ratio during stimulus processing, thus 

facilitating stimulus detection and discrimination.  

1.8 Schizophrenia and cortical acetylcholine: the mesolimbic link 

Cholinergic neurons in the basal forebrain are thought to be influenced by 

multiple input systems and are known to receive glutamatergic, GABAergic, 

noradrenergic, serotonergic, dopaminergic, and cholinergic innervations. These 

contacts are thought to arise from a variety of structures including the PFC, the 

amygdala (Zaborszky, Leranth et al. 1984), the NAC (Zaborszky and Cullinan 

1992), the locus coeruleus (Zaborszky, Cullinan et al. 1993), the VTA (Gaykema 

and Zaborszky 1996), the dorsal raphe nucleus (Gasbarri, Sulli et al. 1999), and 
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the pedunculo pontine gigantocellular nucleus (Jones and Cuello 1989). To 

explain the individual and interacting contributions of each system in modulating 

the excitability of basal forebrain cholinergic neurons is beyond the scope this 

discussion and beyond the author’s comprehension. Instead, the following 

paragraphs will focus primarily on the role of mesolimbic networks in modulating 

cortical cholinergic transmission. These systems have been selected as the 

focus of this discussion due to their putative role in the pathogenesis of 

schizophrenia, their neuroanatomical relationships to the basal forebrain 

cholinergic system, and their relevance to psychostimulant-based models of 

schizophrenia.   

Dysregulated (i.e. hyperactive) mesolimbic dopamine transmission is 

considered a hallmark of schizophrenia and has been substantiated by 

neuroimaging studies in schizophrenic patients  (including non-medicated, first-

episode populations (Breier, Su et al. 1997; Laruelle, Abi-Dargham et al. 1999), 

and by data demonstrating the efficacy of dopamine antagonists for attenuating 

psychotic symptoms (described below). The precise contributions of abnormal 

mesolimbic dopamine transmission to the attentional impairments in 

schizophrenia remain unsettled. However, abnormal dopamine transmission in 

the nucleus accumbens has been hypothesized to mediate aberrant cortical 

cholinergic transmission and thus, may influence attentional processes and 

capacities.  

Importantly, the mesolimbic dopamine system can influence cortical 

cholinergic transmission via multiple pathways. This modulation is thought to 

 14



 

occur either mono-synaptically via direct, presumably dopaminergic contacts on 

cholinergic neurons (Gaykema and Zaborszky 1996), or trans-synaptically via 

dopaminergic regulation of multiple output structures that synapse in the basal 

forebrain (i.e. the prefrontal cortex and nucleus accumbens). Of particular 

interest are the medium-spiny neurons arising in the accumbens shell and 

terminating in the basal forebrain. These projection neurons represent the 

majority of inputs into the basal forebrain (Zaborszky and Cullinan 1992) and are 

met with a high density of basal forebrain GABA receptors (Gao, Hornung et al. 

1995). Medium-spiny projection neurons are likely GABAergic and are thought to 

influence the excitability of cholinergic neurons both directly via mono-synaptic 

connections (Zaborszky and Cullinan 1992), and trans-synaptically via the 

regulation of basal forebrain interneurons (Zaborszky, Cullinan et al. 1991).   

Hypotheses regarding the contributions of NAC GABAergic transmission 

in regulating basal forebrain excitability have been formulated based on the 

capacity of systemic or intra-basalis administration of benzodiazepine receptor 

agonists or inverse agonists to modulate cortical cholinergic transmission in a bi-

directional manner (Moore, Sarter et al. 1993; Moore, Sarter et al. 1995).  

Furthermore, additional experiments have demonstrated that the ability of 

benzodiazepine receptor partial inverse agonists to augment cortical cholinergic 

transmission is moderated by the administration of dopamine antagonists 

(Moore, Fadel et al. 1999). GABAergic inputs from the NAC are thought to 

converge with glutamatergic inputs from multiple sources, including reciprocal 

inputs from the prefrontal cortex, to regulate the excitability of basal forebrain 
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cholinergic neurons. Likewise, the effects of glutamatergic transmission in the 

basal forebrain have been explored. Intra-basalis infusions of glutamate 

antagonists or agonists have been shown to attenuate or augment cortical 

cholinergic transmission in response to food stimulus (Fadel, Sarter et al. 2001).  

Furthermore, experiments demonstrating that intra-basalis infusions of NMDA or 

APV (an NMDA antagonists) affected sustained attention performance in rats by 

increasing the number of false alarms, and decreased the number of hits, 

respectively (Turchi and Sarter 2001).   

Despite anatomical evidence demonstrating direct dopaminergic 

projections from the VTA to cholinergic basal forebrain neurons, the influence of 

these projections on cortical cholinergic transmission remains poorly understood. 

Acute administration of AMPH increased dopamine transmission in the NAC by 

700%, and augmented cortical cholinergic transmission by 150%. Curiously, 

these effects were unaltered by administration of D1 or D2 antagonists into the 

basal forebrain. However, intrabasalis infusions of glutamatergic antagonists or 

GABA agonists successfully attenuated AMPH-induced augmentations in cortical 

cholinergic transmission (Arnold, Fadel et al. 2001). Additional evidence 

suggests that activation of D2 receptors in the nucleus accumbens attenuates 

cortical cholinergic transmission following intra-accumbens administration of 

NMDA (Brooks and Bruno 2007). Thus dopamine is thought to exert its influence 

on cortical cholinergic transmission primarily via regulation of NAC output 

neurons- particularly on D2 receptors in the high-affinity state. Collectively, these 

data indicate that GABAergic projections from the NAC to the basal forebrain 
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may represent a neural substrate by which abnormal mesolimbic dopamine 

transmission can result in aberrant cortical cholinergic transmission, thus 

contributing to schizophrenic pathology. The ability of repeated-AMPH 

administration to produce psychotic like symptoms (discussed below) is thought 

to be mediated, at least in part, by this neural circuitry. 

1.9 Evidence for abnormal cortical cholinergic transmission in 

schizophrenics 

Converging lines of evidence have implicated abnormal cortical 

cholinergic transmission in the neurobiology of schizophrenia. Alterations in the 

distribution of nicotinic and muscarinic receptors in cortical regions of 

schizophrenic brains have been reliably demonstrated (Breese, Lee et al. 2000; 

Crook, Tomaskovic-Crook et al. 2001; Adams and Stevens 2007). The 

involvement of cholinergic transmission in the pathogenesis of schizophrenia has 

been further substantiated by genetic linkage studies showing abnormalities in 

the region of chromosome 15 coding for the α-7 nicotinic receptor in 

schizophrenics (Freedman, Coon et al. 1997). Abnormal cholinergic transmission 

in schizophrenia is thought to result from dysregulation rather than overt 

pathology. Neuropathological studies comparing post-mortem tissue of 

schizophrenics to that of control or Alzheimer’s groups failed to demonstrate any 

gross pathological abnormalities of the basal forebrain cholinergic neurons of 

schizophrenic patients (el-Mallakh, Kirch et al. 1991). Furthermore, there does 

not appear to be a decreased enzymatic capacity for schizophrenics to 

synthesize acetylcholine (Powchik, Davidson et al. 1998), although data 
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examining the high-affinity choline transporter, known to be the rate limiting step 

in acetylcholine synthesis, is currently unavailable.  

Pharmacological evidence also implicates dysregulated acetylcholine 

transmission in schizophrenia. Second-generation antipsychotic medications, 

including clozapine, have high-affinity antagonistic properties at muscarinic 

receptors and are metabolized into active compounds that affect cortical 

cholinergic transmission. It is thought that the ability of these drugs to modulate 

cortical cholinergic transmission may contribute to their therapeutic actions, 

particularly with regard to their moderate pro-cognitive effects (Li, Huang et al. 

2005; Davies, Compton-Toth et al. 2005; Crook, Tomaskovic-Crook et al. 2001). 

Despite these findings, hard evidence of cortical cholinergic dysregulation in 

schizophrenics remains elusive due to technological limitations prohibiting the 

direct assessment of cholinergic transmission in humans. Multiple groups have 

put forth hypotheses regarding the precise nature of cortical cholinergic 

dysregulation in regards to specific disease states; the following discussion 

serves to describe two separate and opposing theories that address this matter. 

One theory purported by Tandon et al. (1991) suggested that cholinergic 

hyperactivity contributed to the affective and social symptoms in schizophrenia, 

whereas decreased cholinergic transmission resulted in the manifestation of 

florid psychosis. Support for these hypotheses was provided by data 

demonstrating the ability of acute administration of muscarinic antagonist to 

improve scores on a negative symptoms scale. Sarter et al. (2005) separately 

interpreted muscarinic down-regulation in schizophrenics as evidence of 
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cholinergic hyperactivity, but hypothesized that cortical cholinergic hyperactivity 

resulted in a breakdown of sensorimotor gating mechanisms that escalated into 

psychotic symptoms. This ‘hyper-cholinergic’ hypothesis of schizophrenic 

psychosis was corroborated by data indicating that chronic exposure to 

cholinomimetic agents (i.e. cholinesterase inhibitors) can potentially result in 

psychotic symptoms in humans and that these effects can be treated 

successfully with antipsychotic medications (Sarter, Nelson et al. 2005). Despite 

their differences, both of these hypotheses predict that drugs that ‘normalize’ 

cholinergic transmission will improve schizophrenic symptoms. Several studies 

have determined the effects of adjunct treatment with cholinesterase inhibitors 

(which results in increased extra-cellular concentrations of acetylcholine) on 

cognitive and psychotic symptoms in schizophrenics. By and large, the results of 

these studies have been negative, with only a few groups reporting non-

significant trends for cognitive improvement  and generally no improvement on 

the severity of psychosis (Bora, Veznedarolu et al. 2005; Buchanan, Summerfelt 

et al. 2003; Freudenreich, Herz et al. 2005; Mazeh, Zemishlani et al. 2006; 

Sharma, Reed et al. 2006). Importantly, many of these studies were conducted 

as open-label designs, with only a few being double-blind and placebo controlled. 

Moreover, these studies have frequently included heterogeneous subject 

populations including geriatric patients or patients with heterogeneous disease 

durations. Further complicating the interpretation of these data are those studies 

allowing the co-administration of anti-cholinergic agents (i.e. biperdine) or the 

primary administration of antipsychotics with cholinergic antagonist properties 
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(i.e. clozapine or chlorpromazine). Oddly, those studies that did not allow for anti-

cholinergic drugs to be co-administered had primarily negative findings and those 

that permitted the use of anti-cholinergic agents reported the most trends for 

positive improvements. The outcomes of these studies should not be interpreted 

to indicate that cholinergic dysregulation is not involved in the pathogenesis of 

schizophrenia.  Rather, it should be concluded that these data do not support the 

hypothesis that the cognitive impairments of schizophrenia can be treated with 

cholinesterase inhibitors.  

1.10 Current treatments for schizophrenia 

Presently, the available medications for schizophrenia are divided into two 

categories, first-generation drugs (FGAs, sometimes called typical 

antipsychotics) and second-generation drugs (SGAs, also referred to as atypical 

antipsychotics).The primary characteristics distinguishing these two classes of 

drugs are their relative propensities for inducing extrapyramidal side effects (i.e. 

parkinsonism and tardive dyskinesia)  and their relative affinities for D2 and 

serotonin 5-HT2A receptors (Seeman 2002). FGAs possess a higher affinity for 

D2, and SGAs possess a higher affinity for 5-HT2A (Pretorius, Phillips et al. 2001). 

Both classes of drugs are lipophylic, readily cross the blood brain barrier, and are 

metabolized by cytochrome P450 enzymes (Linnet and Olesen 1997; Fang, 

McKay et al. 2001). The individual mechanisms of action for haloperidol and 

clozapine are discussed in more detail below.  

1.11 First-generation drugs: focus on haloperidol 
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Haloperidol is a first-generation antipsychotic drug that is effective for the 

treatment of psychotic symptoms. The antipsychotic effects of haloperidol (and 

all first-generation drugs) are generally attributed to its antagonism of D2 

receptors. Haloperidol is a potent D2 receptor antagonist with a D2 binding 

affinity 50 times greater than that of chlorpromazine (Lieberman 2006). D2 

receptor occupancy produced by haloperidol is known to predict the clinical 

efficacy of first-generation drugs. Utilizing PET imaging in first-episode 

schizophrenic patients, Kapur and colleagues demonstrated that 65-70% of D2 

occupancy is required for an optimal clinical response. Occupancy of ≥72% was 

found to abnormally augment prolactin levels and D2 receptor occupancy beyond 

78% was found to induce extrapyramidal symptoms (Kapur, Zipursky et al. 

2000).  High affinity D2 receptors (D2 High) have garnered a good deal of 

attention recently, and are thought to be the primary target for first-generation 

drugs including haloperidol (Seeman, Schwarz et al. 2006). Haloperidol is known 

to affect other neurotransmitter systems and has been shown to be a low-affinity 

antagonist for all muscarinic receptor subtypes as well as to act as an antagonist 

for several classes of histamine receptors (Bymaster, Calligaro et al. 1996). 

Haloperidol is not known to affect cortical cholinergic transmission in passive, 

non-performing rats (Ichikawa, Dai et al. 2002), and has not been shown to alter 

the distribution of muscarinic or nicotinic receptors in the cortex (Terry, Gearhart 

et al. 2006).  

The effect of first-generation antipsychotic drugs on impaired cognition in 

schizophrenia remains controversial. Only a few studies have shown that first-
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generation drugs exert cognitive benefits schizophrenic patients, with the majority 

of experiments demonstrating no change in cognition or even an exacerbation of 

cognitive impairments (Saeedi, Remington et al. 2006). However, accurate 

interpretation of the available literature is impeded by multiple factors. First, much 

of the available data are confounded by the inclusion of dose-ranges that would, 

by modern standards, be categorized as high (e.g. >15 mg per day). The range 

of dosing represents critical design variable since administration of FGAs is 

thought to produce inverted U-shaped dose response patterns, with low-to-

moderate doses resulting in cognitive improvements and higher doses producing 

impairments (Strauss, Lew et al. 1985). Furthermore, high-dose administration of 

first-generation drugs is known to increase the incidence and severity of 

extrapyramidal symptoms. Extrapyramidal symptoms may contribute to poor 

cognitive performance and are commonly treated with adjunct administration of 

anti-cholinergic agents (i.e. benztropines) that could further impair cognition 

(McGurk, Green et al. 2004). Additional concerns arising from basic design flaws 

(i.e. unequal group sizes, non-randomized drug assignments, lack of placebo 

control groups, lack of drug naïve groups, unequal proportion of male to female 

inclusion, inconsistent dose ranges, and variable illness durations) have severely 

hindered the interpretation of these data and have made accurately assessing 

the pro-cognitive effects of FGAs extremely difficult.   

To address these issues and make a quantitative assessment of the 

available literature, Mishara and Goldberg (2004) conducted a meta-analysis of 

studies spanning almost 50 years to examine clinical studies comparing the 
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effects of FGAs with placebos or non-treatment conditions on various domains of 

cognition (e.g. attention, executive functions, memory, and others).  The group 

determined effect sizes for experiments comparing first-generation drugs 

treatments with placebo, or non-medicated conditions. Based on calculations of 

224 effect sizes from 36 studies, first-generation drugs were shown to improve 

cognition above levels seen in placebo groups. The collective Cohen’s  ‘d-score’ 

of 0.22 was sufficient to surpass the criteria for a small effect size (Mishara and 

Goldberg 2004). The largest positive effects of treatment in these studies were 

observed on measures of attention, automatic processing, memory and 

perceptual processing. Not surprisingly, treatment with neuroleptics impaired 

motor functions on a variety of tasks (i.e. Perdue Pegboard, tapping task). 

Collectively, these results have provided evidence in support of the hypothesis 

that FGAs produce modest improvements across multiple domains of cognition. 

Importantly, these findings are not the result of experimental artifacts and are not 

limited to meta-analytic studies. Recently, several well controlled studies have 

extended these findings.  Harvey, et al. (2005). performed experiments 

controlling for dosing and adjunct treatments found first-generation drugs 

improved multiple domains of cognitive impairment (Harvey, Rabinowitz et al. 

2005) . Similar effects were demonstrated by Rollnik, et al. (2002) who found that 

over the course of 3 months, neurocognitive functioning in schizophrenics is 

moderately responsive both first- and second-generation drugs (Rollnik, 

Borsutzky et al. 2002). These data demonstrate the moderate pro-cognitive 
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effects of low doses of first-generation antipsychotics and indicate that the effects 

of FGAs on cognition warrant further investigation. 

1.12 Second-generation drugs: Focus on clozapine 

Clozapine is considered to be the prototypical second-generation 

antipsychotic drug based on its weaker affinity for D2 receptors and reduced risk 

for causing extrapyramidal symptoms. Clozapine’s mechanisms of action are 

complex and not fully understood. Clozapine is generally considered to be a 

potent antagonist for certain receptor types including those for acetylcholine (all 5 

muscarinic types and α-7nicotinic) and serotonin (5-HT2a, 5-HT 2c,  5-HT 6,), and a 

weaker antagonist for others (D2 and α2). Its low propensity for inducing 

extrapyramidal side effect has been attributed to its lower affinity for D2 receptors 

and the high un-binding rate (K off) of clozapine from dopamine receptors 

(Seeman 2002; Kapur and Seeman 2001). Studies examining clozapine’s actions 

at muscarinic receptors have demonstrated both antagonistic and agonistic 

properties, including antagonism of M2, M3, and M5 receptors, and partial 

agonist actions at M1, M2, and M4 receptors. The degree to which clozapine 

functions as an muscarinic agonist or antagonist is thought to depend on a 

variety of factors such as high- or low- receptor density,  the relative number of 

reserved receptors, and the type of preparation utilized ex vivo (clonal cell lines 

transfected with muscarinic receptors, or rat brain tissue preparations) (Kenakin, 

Bond et al. 1992). Additional factors affecting clozapine’s possible effects include 

its metabolism into active moieties including N-desmethylclozapine (Li, Huang et 

al. 2005). Multiple in vivo microdialysis studies have characterized the effects of 
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clozapine on ACh in cortex, nucleus accumbens and striatum. Using triple-micro 

dialysis in the presence of a cholinesterase inhibitor, Parada, et al. (1997) 

demonstrated that clozapine augmented extra cellular ACh in a dose-response 

fashion in the all three areas of interest. These effects were largest in the PFC 

with the smallest increases shown in the striatum (Parada, Hernandez et al. 

1997). Using cholinesterase free preparations, Ichikawa et al. (2002) 

demonstrated that clozapine increased in cortical ACh without affecting levels in 

the nucleus accumbens or striatum. The precise mechanisms underlying 

clozapine’s ability to preferentially increase cortical ACh remain speculative; 

generally, these effects have been attributed to antagonism of M2 and M4 auto-

receptors in the nucleus basalis magnocellularis, which projects to the cortex but 

not to the striatum or nucleus accumbens. Alternative explanations attribute 

these effects to increased cholinesterase density in accumbens and striatal 

regions relative to the cortex. The heightened density of striatal cholinesterase 

could result in the rapid hydrolysis of ACh, preventing any measurable increases 

from being detected.  Previous hypotheses attributing these effects specifically to 

antagonism of muscarinic autoreceptors have not been supported by 

experiments demonstrating undiminished cholinergic transmission in the 

hippocampi of M2/M4 knock out mice following administration of second-

generation drugs. Although notably, the ability of scopolamine to increase ACh 

via autoreceptor antagonism was markedly attenuated in these animals 

(Tzavara, Bymaster et al. 2006)). These results were taken to indicate that 

muscarinic auto-receptor antagonism is not necessary for second-generation 
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drugs to facilitate cholinergic transmission. Separate experiments utilized a 

variety of receptor antagonists (i.e. 5-HT2a, 5-HT2c, 5-HT6, and D2) to 

determine the contributions of antagonism of individual monoamine receptor 

types on ACh levels in the hippocampus (Shirazi-Southall, Rodriguez et al. 

2002). Administration of several drugs produced only modest increases of ACh 

that did not parallel those of clozapine administration. These data indicate that 

clozapine’s ability to increase ACh cannot be attributed to any singular 

mechanism, but may be the result of complex interactions of multiple receptors or 

some unknown mechanism. (Shirazi-Southall, Rodriguez et al. 2002). Although it 

remains difficult to conceptualize the specific interactions of clozapine on 

acetylcholine receptors, the ability of clozapine to preferentially increase cortical 

ACh while not affecting transmission in the striatum may account for a portion of 

clozapine’s pro-cognitive effects (described below), as well as its low propensity 

to induce extra-pyramidal symptoms.  

1.13 Comparing first- and second-generation drugs 

Compared to the relatively small number of experiments that demonstrate 

improved cognition using first-generation treatments, evidence in support of the 

pro-cognitive effects of second-generation antipsychotics is more abundant.  

Multiple studies have determined that second-generation drugs (i.e. clozapine) 

produce measurable cognitive benefits in schizophrenia, including improved 

attention, verbal fluency and executive functions (for review see: Meltzer and 

McGurk 1999). However, the presumed superiority of second-generation drugs 

over first-generation drugs remains a topic of contention. Many of the studies 
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making direct comparisons between first- and second-generation drugs suffer 

from many of the same methodological weaknesses addressed above. The 

major limitation of these studies remains the use of inappropriately high doses of 

FGAs relative to SGA doses. In addition, such studies are seldom able to 

dissociate the benefits of symptomatic improvement, the reduced occurrence of 

extrapyramidal symptoms, or the avoidance of adjunct anti-Parkinsonian drugs, 

from cognitive improvements, per se. Other experimental confounds arise when 

considering the ‘drug-switching’ design that is commonly employed. 

Schizophrenics are seldom treatment free before entering into a study and as a 

result, no drug-free baseline data are available. Studies frequently change 

treatments from FGAs to SGAs often do so without counterbalancing for order 

effects and use an insufficient washout period. Likewise, these studies often fail 

to consider the effects of repeated practice on task performance.   

A few experiments are notable exceptions that permit a more accurate 

assessment of first- versus second-generation drug effects. Purdon et al (2000) 

compared the effects of haloperidol and second-generation drugs (olanzapine 

and risperidone) on neurocognitive impairment in early-phase schizophrenics 

over the course of 12 months. The results demonstrated superior effects of 

olanzapine over risperidone and haloperidol, with risperidone and haloperidol 

producing the same magnitude of cognitive benefits (Purdon, Jones et al. 2000).  

Similarly, separate experiments have demonstrated that the cognitive 

improvements on measures of attention, verbal fluency and digit span, did not 

differ between groups treated with either first-generation drugs (haloperidol, 
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perazine, etc.) or second-generation drugs (i.e. clozapine, olanzapine, etc.) 

(Rollnik, Borsutzky et al. 2002), however this study was conducted with a small 

number of subjects. A large scale, long term study conducted by Keefe, et al. 

(2004) utilized a randomized, double-blind experimental design to compare low 

dose treatment with haloperidol (~5 mg per day) to treatment with the second-

generation drug olanzapine over the course of two years. This study showed 

significant improvements in neurocognitive function in both haloperidol and 

olanzapine treatment groups on a variety of tasks (i.e. CPT, working memory 

task and verbal learning test). Although olanzapine demonstrated superiority on 

the weighted composite score of all measures, the composite scores assessing 

cognitive improvement indicate that the advantage of olanzapine or haloperidol is 

negligible. Furthermore, the improvements demonstrated by subjects treated with 

low-doses of haloperidol suggest that previous results showing exacerbation of 

cognitive impairments may be ascribed to the excessively high dose ranges 

used. Despite the methodological complications evident in much of the literature, 

the available evidence supports the hypothesis that both first- and second-

generation antipsychotic drugs can improve multiple domains of impaired 

cognition in schizophrenia. As such, animal models attempting to assess 

impaired cognition in schizophrenia should also be sensitive to these 

improvements. 

1.14 Modeling aspects of schizophrenia using repeated amphetamine in 

rats 
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Amphetamine administration can produce psychotic symptoms that 

closely resemble those observed in paranoid schizophrenia; this condition is 

known as amphetamine psychosis (Ellinwood 1969; Ellinwood 1970).  Similar to 

schizophrenia, the psychotic symptoms associated with AMPH include 

hallucinations, delusions, paranoia, flattening of the affect, and avolition. AMPH-

psychosis typically initiates during acute drug intoxication (not withdrawal), is 

generally brief, and spontaneously remits. Hallucinations in AMPH-users usually 

subside in less than two days and the symptoms of paranoia and delusions 

generally desist in approximately 1-2 weeks. Following the remission of AMPH-

psychosis, psychotic symptoms can be readily reinstated through subsequent 

exposure to small doses of AMPH or following exposure to stressful stimuli (Sato 

1992).   

The first reports of psychosis in AMPH-users were initially described in by 

Young and Scoville in 1938. However, due to the rarity of the condition, AMPH-

psychosis was generally dismissed as interesting clinical anomaly. In 1959, 

Connell’s seminal Maudsley monograph reported that that AMPH-psychosis 

occurred with greater frequency than was commonly believed (Connell 1959). 

However, Connell’s conclusion that AMPH-psychosis could not be discriminated 

from schizophrenia was controversial and was contested on the basis that the 

observed psychoses were potentially idiosyncratic (i.e. the result of preexisting 

schizophrenia) or had been produced by other substances that were abused 

concurrently with AMPH. Slater (1959) noted that patients with AMPH-psychosis 

displayed a greater prevalence of visual hallucinations, emotional reactivity, and 
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anxiety than was typically observed with schizophrenia (Slater 1959). 

Additionally, Bell (1965) postulated that the two conditions were 

phenomenologically distinct and that a differential diagnosis could be formulated 

upon the presence of symptoms related to thought disorder (Bell 1965). 

To address these issues in controlled clinical settings, multiple prospective 

studies were undertaken to further characterize the symptoms of AMPH-

psychosis and to determine if the condition could be produced in individuals who 

had been carefully prescreened for the exclusion of preexisting psychotic 

disorders (Angrist and Gershon 1970; Griffith 1968; Bell 1973). Using diagnostic 

methods set forth by the American Psychological Association and by Schneider 

(1957), these studies unequivocally demonstrated that the full spectrum of 

schizophrenic symptoms including paranoid delusions, hallucinations (auditory, 

visual, olfactory, and tactile), and thought disorder occurred in the majority of 

patients administered AMPH or methylated AMPH.  In fact, the symptoms of 

AMPH-psychosis replicate those of schizophrenia with such fidelity that they 

meet the DSM diagnostic criteria for paranoid schizophrenia. In summary, the 

utilization of AMPH-psychosis as a model of schizophrenia was originally based 

upon the ability of amphetamine to produce paranoid schizophrenic-like 

symptoms in healthy individuals, to ‘trigger’ the manifestation of  psychosis in at 

risk individuals, and to exacerbate psychotic symptoms in chronically ill patients 

(Yui, Ikemoto et al. 2000; Lieberman, Kane et al. 1987; Lieberman, Kane et al. 

1987; but see Barch and Carter 2005). Data from multiple human studies were 

summarized in a review by Janowsky (1979), who concluded that the induction of 
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AMPH-psychosis in healthy individuals represents a “pharmacologic parallel” of 

schizophrenia and is therefore suitable for the study of schizophrenia. 

Beyond the identical clinical presentations of AMPH-psychosis and 

schizophrenia, the central hypothesis providing the basis for experimentation with 

this model posits that these two conditions share common neural underpinnings. 

Sensitization of the mesolimbic dopamine system has been studied extensively 

in this regard. Repeated, intermittent, escalating exposure to AMPH results in 

potentiated neurobiological and behavioral responses during administration of 

subsequent smaller challenge doses (Robinson and Becker 1986; Paulson, 

Camp et al. 1991). Importantly, animals exposed to repeated, escalating AMPH 

display sensitized mesolimbic dopamine transmission in response to AMPH 

challenges (Paulson and Robinson 1995) these neuronal changes are thought to 

contribute to altered behavioral profiles (e.g. overt motor stereotypies, 

perseverative responding, impulsivity) seen in AMPH-pretreated animals (Segal 

and Kuczenski 1992; Paulson and Robinson 1995). The contributing role of 

sensitization for humans with AMPH-psychosis is less clear and remains 

controversial. However there is evidence to suggest that AMPH-psychosis is the 

end result of a developing process whereby the severity of anxiety worsens 

during successive drug binges until finally culminating in a full-blown episode of 

paranoid psychosis. In fact, some reports indicate that following the first-break 

episode of AMPH-psychosis, subsequent drug-induced episodes are of 

intensified severity (Gawin and Khalsa, 1996).   
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Historically, primary experimentation utilizing of AMPH-models of 

schizophrenia has focused chiefly on predictive validity. AMPH-models have 

been used extensively to estimate the potency of dopamine antagonists and their 

efficacy for ameliorating florid psychotic symptoms. Critics of psychostimulant-

based models have noted that these models are unable to replicate the entire 

disease entity, specifically with regards to reproducing or even exploring the 

etiological or developmental components of schizophrenia. Additionally, 

Weinberger and Lipska have questioned the future heuristic value of AMPH-

models as well as their utility for developing non-dopaminergic drugs based on 

the incorrect perception that such models rely principally upon ‘dopamine-in, 

dopamine out’ logic (Lipska and Weinberger 2000). Such criticisms are 

unfounded and based upon the assumption that the psychotogenic effects of 

AMPH stem purely from dopaminergic mechanisms. A simple examination of 

AMPH pharmacology reveals that amphetamine’s mechanisms of action are 

diverse and involve multiple neurotransmitters beyond dopaminergic 

mechanisms. Furthermore, these criticisms do not pose limitations to paradigms 

targeting specific disease components while assessing well-defined constructs 

with behavioral measures that do not directly reflect, and are not critically 

dependent upon mesolimbic dopamine transmission (e.g. attention processing). 

In fact, a rudimentary understanding of the functional and neuroanatomical 

substrates of schizophrenia’s cognitive deficits makes it apparent that the utility 

of psychostimulant models can be readily expanded and applied to target 

neurotransmitter systems that bear relevance for schizophrenia’s cognitive 
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deficits, specifically those critical for attentional processing. In fact, repeated 

exposure to AMPH has been shown to augment cortical cholinergic transmission 

in response to AMPH challenges (Nelson, Sarter et al. 2000), and has been 

demonstrated to result in attentional impairments in rats (Fletcher, Tenn et al. 

2007; Dalley, Theobald et al. 2005).   

1.15 Summary of experiments 

The above discussion forms the rationale for experiments exploring the 

role of cortical cholinergic transmission in the attentional deficits observed in a 

repeated-AMPH model of schizophrenia, and furthermore, justifies experiments 

designed to assess the ability of first- and second-generation antipsychotic drugs 

to attenuate these impairments. The main points of these experiments are 

summarized below.  

Experiment 1: 

The purpose of Experiment I was to characterize the effects of a repeated 

escalating dosing regimen of AMPH on sustained attention performance in rats. 

Rats were trained in a sustained attention task and then treated with saline or in 

accordance with an escalating dosing regimen of AMPH (1-10 mg/kg). 

Performance was assessed during the pretreatment and withdrawal periods and 

following the subsequent administration of AMPH "challenges" (0.5, 1.0 mg/kg). 

Compared with the acute effects of AMPH, AMPH "challenges," administered 

over 21 days after the pretreatment was initiated, resulted in significant 

impairments in attentional performance. Fos-like immunoreactivity (Fos-IR) in 

selected regions of these rats' brains was examined to test the hypothesis that 
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AMPH-sensitized attentional impairments are associated with increased 

recruitment of basal forebrain cholinergic neurons. These data provide limited 

evidence of dysregulation of the basal forebrain cholinergic system by showing 

that in AMPH-pretreated and -challenged animals, an increased number of Fos-

IR neurons were observed in the basal forebrain. The majority of these neurons 

were cholinergic. The evidence supports the hypothesis that abnormally 

regulated cortical cholinergic inputs represent an integral component of neuronal 

models of the attentional dysfunctions of schizophrenia. The results from this 

experiment formed the basis for subsequent experiments directly examining the 

role of cortical cholinergic transmission in this animal model of schizophrenia.  

Experiment 2: 

Experiment II provided evidence in support of the hypothesis that 

pretreatment with AMPH results in cortical cholinergic dysregulation.  This 

dysregulation contributes to, rather than results from, the impaired attentional 

performance observed in an animal model of the cognitive deficits of 

schizophrenia. Using in vivo microdialysis methods, cholinergic transmission 

during AMPH-challenges was assessed in the prefrontal cortices of attentional 

task-performing and non-performing rats pretreated with an escalating dosing 

regimen of AMPH or saline. In non-performing rats, pretreatment with AMPH did 

not affect the increases in ACh release produced by AMPH-challenges. In 

contrast, the increases in ACh release that are normally associated with attention 

task performance in rats were attenuated following AMPH-pretreatment and 

AMPH-challenges. This was already apparent before task-onset, suggesting that 

 34



 

the observed performance impairments were a result of cholinergic 

dysregulation. These findings indicate that the demonstration of repeated AMPH-

induced dysregulation of the prefrontal cholinergic input system depends on 

interactions between the effects of repeated AMPH exposure and performance-

associated recruitment of this neuronal system. Experiment II expands current 

paradigms used to investigate the neuronal mechanisms contributing to the 

cognitive impairments of schizophrenia by demonstrating that in order to show 

dysregulation in a neuronal system of interest, it is sometimes necessary to 

actively recruit that system using tasks known to be mediated by, or critically 

dependent on that system.  

Experiment 3: 

There are currently no bench-mark drugs available for the use in validating 

an animal model of schizophrenia’s cognitive deficits. As a result, present efforts 

geared towards the development of pro-cognitive drugs for schizophrenia 

requires the use of paradigms sensitive to the moderate pro-cognitive effects of 

currently available antipsychotic drugs. Experiment III tests the hypothesis that 

moderate pro-cognitive effects of low dose sub-chronic treatment with haloperidol 

(HAL; 0.025 mg/kg 0.2% acetic acid, s.c.) or clozapine (CLOZ; 2.5 mg/kg in 0.2% 

acetic acid, s.c.) can be detected by a paradigm assessing sustained attention 

performance in a repeated-AMPH model of schizophrenia. Using the same 

paradigm as the first two studies, this experiment first replicated the findings 

shown in Experiment I indicating that in response to AMPH-challenges; the hit 

rate of AMPH-pretreated rats was robustly impaired. In contrast, in AMPH-
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pretreated animals receiving haloperidol or clozapine, the attentional impairment 

produced by the challenges were attenuated. Collectively, these data lend 

predictive-validity to this model of impaired cognition in schizophrenia and 

demonstrate the potential usefulness of this paradigm for the development and 

screening of novel, pro-cognitive drugs for the treatment of schizophrenia’s 

cognitive deficits. 
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1.16 Figures 

 

 
 

 
Figure 1.1: Diagrammatic representation of the basal forebrain cholinergic 
system. The cholinergic basal forebrain (BF) receives multiple sources of input 
including GABAergic (blue) inputs from the nucleus accumbens (NAC), 
dopaminergic input (purple) from the ventral tegmental area (VTA), noradrenergic 
(orange) input from the locus coeruleus (LC), cholinergic input (red) from the 
pedunculo pontine gigantocellular nucleus (PPG). The basal forebrain sends 
cholinergic projections to all areas and all layers of the cortex. The sources of 
input and targets of output depicted in this diagram are not exhaustive, but rather 
represent the major neurotransmitter systems system relevant to the present 
experiments. Figure modified from Woolf (1991).
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CHAPTER 2 
 
 

SENSITIZED ATTENTIONAL PERFORMANCE AND FOS-IMMUNOREACTIVE 
CHOLINERGIC NEURONS IN THE BASAL FOREBRAIN OF AMPHETAMINE-

PRETREATED RATS 

 
2.1 Summary 

The consequences of repeated exposure to psychostimulants have been 

hypothesized to model aspects of schizophrenia. This experiment assessed the 

consequences of the administration of an escalating dosing regimen of 

amphetamine (AMPH) on attentional performance. Fos-like immunoreactivity 

(Fos-IR) in selected regions of these rats’ brains was examined to test the 

hypothesis that AMPH-sensitized attentional impairments are associated with 

abnormal recruitment of basal forebrain cholinergic neurons. Rats were trained in 

a sustained attention task and then treated with saline or in accordance with an 

escalating dosing regimen of AMPH (1–10 mg/kg). Performance was assessed 

during the pretreatment and withdrawal periods and following the subsequent 

administration of AMPH “challenges” (0.5, 1.0 mg/kg). Brain sections were 

double-immunostained to visualize Fos-IR and cholinergic neurons. Compared 

with the acute effects of AMPH, AMPH “challenges”, administered over 2 months 

after the pretreatment was initiated, resulted in significant impairments in 

attentional performance. In AMPH-pretreated and -challenged animals, an 

increased number of Fos-IR neurons was observed in the basal forebrain. The 

majority of these neurons were cholinergic. The evidence supports the 

hypothesis that abnormally regulated cortical cholinergic inputs represent an 
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integral component of neuronal models of the attentional dysfunctions of 

schizophrenia.  

2.2 Introduction 

Sensitization of mesolimbic dopamine systems is considered to be a 

neuropathologic hallmark of schizophrenia (Lieberman, Sheitman et al. 1997; 

Laruelle 2000) and thus of animal models of this disease (Robinson and Becker 

1986). Schizophrenic patients exhibit increased AMPH-induced displacement of 

dopamine D2 receptor ligands during periods when positive symptoms manifest 

and intensify, but not during remission (Abi-Dargham, Gil et al. 1998; Laruelle, 

Abi-Dargham et al. 1996; Laruelle, Abi-Dargham et al. 1999). Moreover, the 

dopaminergic system of first-episode psychotic patients may already be 

maximally up-regulated (Strakowski, Sax et al. 1997). The effects of repeated 

AMPH exposure, particularly the sensitized effects of subsequent AMPH-

challenges, have served as a model in research on the role of sensitized 

dopamine systems in the mediation of psychosis. Furthermore, AMPH-sensitized 

animals exhibit behavioral and cognitive abnormalities that model aspects of 

psychosis (Castner, al-Tikriti et al. 2000; Seeman, Tallerico et al. 2002; Tenn, 

Fletcher et al. 2003). 

Attempts to reduce the complex symptoms of psychosis to dysfunctions in 

elementary cognitive operations have focused on the disruption of attentional 

processes and capacities and related executive functions (McGhie and Chapman 

1961; Braff 1993; Andreasen, Paradiso et al. 1998; Gray 1998; Kapur 2003; 
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Venables 1964). Moreover, lasting cognitive, particularly attentional, impairments 

in schizophrenia patients have emerged as a new and distinct treatment target 

(Braff and Light 2004). Little is known, however, about the long-term 

consequences of AMPH-sensitization on attentional performance. Likewise, the 

neuronal systems underlying the cognitive consequences of AMPH-sensitization 

are poorly understood. Based on extensive evidence on the role of the cortical 

cholinergic input system in attentional functions (Sarter, Hasselmo et al. 2005),on 

the regulation of cortical cholinergic transmission by dopaminergic systems 

(Moore, Fadel et al. 1999), and on the available evidence suggesting 

abnormalities in the regulation of cortical cholinergic inputs in schizophrenia 

(Crook, Tomaskovic-Crook et al. 2001; Tandon 1999), the attentional 

impairments of schizophrenia have been hypothesized to be mediated 

specifically via abnormally reactive cortical cholinergic inputs (Sarter, Hasselmo 

et al. 2005). The finding that repeated AMPH administration sensitizes cortical 

acetylcholine (ACh) release corresponds with this hypothesis (Nelson, Sarter et 

al. 2000). 

The experiment described here was designed to determine the 

consequences of repeated AMPH administration on attention performance. 

Performance in this task reflects the status of cortical cholinergic transmission 

(Arnold, Burk et al. 2002; McGaughy, Decker et al. 1999; McGaughy and Sarter 

1995; McGaughy, Kaiser et al. 1996;  Turchi and Sarter 2001). Once animals 

achieved criterion performance, they were treated with saline or AMPH in 

accordance with a 40-day escalating dosing treatment regimen that included 
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days without AMPH administration to model aspects of “runs” and “crashes” 

observed in AMPH abusers (Paulson, Camp et al. 1991). The administration of 

escalating doses of AMPH did not produce neurotoxic effects but was 

demonstrated by Paulson, et al.(1991) to yield lasting (> 1 year) behavioral 

sensitization. Such lasting, sensitized effects of AMPH pretreatment are thought 

to model the ability of low doses of AMPH to trigger psychotic periods following 

long withdrawal periods in AMPH abusers (Robinson and Becker 1986; 

Nuechterlein, Dawson et al. 1994; Moghaddam 2002; Muller 2004). Furthermore, 

selected brain regions, particularly the region of the cortically projecting 

cholinergic neurons in the nucleus basalis of Meynert and substantia innominata 

(nbM/SI) of the basal forebrain, were inspected for Fos-immunoreactivity (IR) to 

test the hypothesis that the effects of ‘AMPH ‘challenges’ on attentional 

performance are associated with increased activity of cortical cholinergic inputs. 

2.3 Methods 

Animals: Sixteen male Fischer/Brown Norway hybrid rats (aged 3 months and 

weighing 229±19 g (Mean±SEM) at the beginning of the experiment; Harlan, 

Indianapolis, Indiana) were housed individually in single-standard cages in a 

humidity and temperature-controlled environment accredited by the American 

Association of Laboratory Animal Care (Ohio State University, Townshend Hall). 

All animal care and experimental procedures were approved and supervised by 

the Ohio State University Institutional Laboratory Animal Care and Use 

Committee. Lighting followed a 12-hour light-dark cycle (lights on at 6 am). 
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Testing occurred between 8:00 am and 5:30 pm. Animals were handled 

extensively before testing and were water deprived by limiting access to water to 

an 8-min period that followed the completion of the daily behavioral test session. 

Food was provided ad libitum. 

Apparatus: Behavioral training and testing were conducted using 12 operant 

chambers (MedAssociates, East Fairfield, Vermont). Each chamber was outfitted 

with two retractable levers, three panel lights (2.8 W), one house light (2.8 W), 

and a 2900-Hz sonalert tone generator with the water dispenser located on the 

same wall as the panel lights and levers. Operant chambers were housed within 

sound-attenuating compartments. 

Behavioral Training: Training took place 7 days per week. After being trained to 

lever press for water in accordance with a fixed-ratio (FR) 1 schedule of 

reinforcement, subjects were placed in darkened (houselights off) operant 

chambers for 20 minutes before task onset. Rats were first trained to discriminate 

between signal (illumination of the central panel light for 1 sec) and non-signal 

(non-illumination) events. Two seconds following an event, both levers were 

extended and remained available for 4 sec or until a lever press occurred. If no 

lever press occurred after 4 sec, an omission was scored and the intertrial 

interval (ITI; 12±3 sec) was reinstated. On signal trials, a left lever press was 

scored as a hit, and 0.25-mL water was delivered as reward; depression of the 

right lever was considered an incorrect response and scored as a miss. During 

non-signal trials, a right lever press was scored as a correct rejection, and 
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animals again received water reward. During non-signal trials, a left lever press 

was considered an incorrect response and scored as a false alarm. Animals were 

not rewarded for incorrect responses. If a rat failed to respond correctly for three 

consecutive trials, up to three correction trials were presented during this stage of 

training. During a correction trial the ITI was reinstated and the trial was repeated 

up to three times. If a rat failed to respond correctly during these trials, a forced-

choice trial was initiated that was designed to block the development of side 

biases. A forced-choice trial consisted of a signal or non-signal event, followed by 

the extension of only the correct response lever into the chamber. During a 

forced-choice trial the extended lever remained active for 90 sec or until a press 

occurred. In the event that the forced-choice trial was a signal event, the central 

panel light remained lit for as long as the lever was active. The presentation of 

signal and non-signal trials was pseudo-randomized (162 trials/session, plus 

correction and forced-choice trials). After 3 consecutive days of 70% correct 

responses to signal and non-signal trials and less than 25 omissions, animals 

progressed to the second phase of training. During this phase, the duration of 

signals was decreased to 25, 50, or 500 msec and correction and forced choice 

trials were eliminated. Sessions consisted of 27 trials of each of the three signal 

lengths and 81 trials of the non-signal events, yielding a total of 162 trials per 

session. Each session was divided into three blocks of 27 signal and 27 non-

signal trials. Each signal type was presented nine times per block. After reaching 

a criterion of 59% correct responses to signal and non-signal trials and less than 

25 omissions for three consecutive sessions, houselights were illuminated 
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throughout the session and the ITI was decreased to 9±3 sec (see Figure 2.1). 

Illumination of the houselights requires the animals to focus on the stimulus panel 

and thus represents a crucial step in the acquisition of this sustained attention 

task. The drug treatment regimen was initiated after animals reached the final 

criterion of greater than 70% correct responses for 500 msec signals, greater 

than 70% correct responses during non-signal trials, and fewer than 25 

omissions per session, for at least 3 consecutive sessions.  

Pretreatment Regimen and Challenges: After reaching performance criterion, 

animals were randomly divided into two groups. Animals were given either d-

amphetamine sulfate (AMPH; 1–10 mg/kg intraperitoneally i.p.); drug 

concentrations include salt weight; dissolved in 1 mL/kg of 0.9% saline; Sigma, 

St. Louis, Missouri) or vehicle (0.9% saline; 1 mL/kg) twice daily, with 

approximately 8 hours separating the two injections. Animals received the first of 

the two daily injections at approximately 8:00 am in the testing room and were 

immediately placed in their operant chambers for 20 min before task onset. 

Following the completion of operant testing, animals were promptly returned to 

their home cages. The second dose of drug or vehicle was given in the home 

cage at approximately 4:00 pm. The AMPH doses were administered in elevating 

increments over the course of 40 days in accordance to the regimen described in 

(Paulson, Camp et al. 1991; Figure 2.2); AMPH was administered every day of 

the week excluding weekends to mimic purposely the pattern of abuse seen in 

AMPH-abusers (Paulson, Camp et al. 1991). Animals were given injections of 

saline on weekends. Animals treated with AMPH exhibited high levels of 

 44



 

omissions (> 90% of all trials) following doses ≥2.0 mg/kg, but they completed 

significantly more trials during the drug-free weekends (< 20% omissions). To 

control for the potentially confounding consequences of substantial differences in 

the amount of behavioral practice between the two groups of animals, saline-

treated animals were placed into the chambers for 1 hour on weekdays without 

being allowed to perform; however, similar to animals undergoing AMPH 

pretreatment, saline-treated animals performed the task on weekends. 

Following completion of the pretreatment regimen, animals underwent a 

20-day drug-free period consisting of twice-daily saline injections and continued 

operant testing. Saline was administered to avoid potential performance changes 

due to termination of the injection procedure. The length of the withdrawal period 

was based on the observations by Paulson and Camp et al. (1991) that the 

symptoms of behavioral depression were most pronounced within the first couple 

of days of withdrawal, and that behavioral sensitization was fully developed 2 

weeks following completion of the pretreatment regimen. As detailed later, the 

performance of AMPH-pretreated rats was almost completely recovered by the 

end of this period. 

Subsequently, the effects of AMPH were assessed in AMPH and saline-

pretreated animals. Animals received 0.5 mg/kg AMPH on days 61 and 81 (with 

day 1 being the first day of the pretreatment regimen) and 1 mg/kg AMPH on 

days 71 and 86 (see Figure 2.2). The selection of these “challenge” doses was 

based on the observation that an acute dose of 1.0 mg/kg (which was the first 
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dose given as part of the pretreatment regimen) did not significantly alter the 

animals’ performance and on the hypothesis that AMPH-sensitized performance 

should be sensitive to the detrimental effects of even smaller doses. Subsequent 

to the administration of these AMPH doses, animals were placed in their operant 

chambers for a 20-min acclimation period followed by a standard behavioral test 

session. 

Immunohistological Analysis: At the conclusion of the test session on day 86, 

animals were immediately anesthetized with pentobarbital (100 mg/kg IP) and 

transcardially perfused with 100 mL of ice-cold heparinised saline followed by 

300 mL of 4% paraformaldehyde in 0.1 mmol/mL phosphate-buffered saline 

(PBS; pH 7.4). The brains were removed and postfixed in paraformaldehyde 

solution for 4 hours (with shaking) at 4°C and stored in 30% sucrose in PBS (pH 

7.4) for 72 hours. The brains from six animals per group were processed for 

immunohistochemical analyses. 

Coronal sections (50 μm) were cut using a cryostat microtome (Leica CM 

3050 S; Leica Microsystems, Chantilly, Virginia) and stored in cryoprotectant 

solution (15% glucose, 30% ethylene glycol, and 0.04% sodium azide in 0.05 

mmol/mL PBS, pH 7.4) at -20°C until further processing. Sections were thawed, 

washed twice in 0.1 mmol/mL PBS for 5 min, and incubated with 0.3% H2O2 for 

10 min to block endogenous peroxidase. After washing with PBS, the sections 

were incubated with blocking solution (10% goat serum in 0.1 mmol/mL PBS) 

with constant shaking for 30 min followed by overnight incubation with rabbit anti-
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Fos antibody (H-125:sc-7202; Santa Cruz Biotechnology, Santa Cruz, California) 

diluted 1:1000 in 0.1 mmol/mL PBS containing 1% goat serum and 0.3% triton X-

100 at 4°C. The following day, sections were washed in PBS three times for 5 

min and incubated with 1:2000 diluted biotinylated goat antirabbit 

immunoglobulin G (IgG; Vector Labs, Burlingame, California) for 2 hours at room 

temperature. After washing in PBS, the sections were incubated with avidin-

horseradish peroxidase complex (Vectastain ABC Kit, Vector Labs, Burlingame, 

California) for 1 hour at room temperature. Sections were washed again in PBS 

and staining was developed with 3-3’-diaminobenzidine (DAB) and in the 

presence of 0.01% nickel chloride. Stained sections were mounted onto gelatin 

coated slides; after air drying, the slides were dehydrated and coverslipped with 

Permount (Biomedia, Foster City, California). Omission of the primary antibody 

from this procedure eliminated Fos-like immunoreactivity (Fos-IR). 

To assess whether basal forebrain cholinergic neurons express Fos-IR, 

nBM sections were double-immunostained to reveal choline acetyltransferase 

(ChAT) and Fos-IR. The sequential immunostaining procedure revealed first 

ChAT-IR with DAB and second Fos-IR with DAB/Ni. Briefly, sections were 

blocked with 10% donkey serum (Chemicon International, Temecula, California) 

and sequentially incubated with goat-anti-ChAT antibody (1:2000; Chemicon 

International) for ChAT staining and rabbit anti-Fos antibody (1:1000) for c-Fos. 

Appropriate secondary antibodies (1:3000 diluted biotinylated donkey anti-goat 

IgG or 1:2000 diluted biotinylated donkey anti-rabbit IgG; Jackson 

Immunoreseach Laboratories, Westgrove, Pennsylvania) were used after the 
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respective primary antisera. Overnight incubations at 4°C were carried out for 

primary antibodies, and incubations were made for 2 hours at room temperature 

for secondary antibodies. Dilutions of all antibodies were made in 0.1 mmol/mL 

PBS containing 1% donkey serum and 0.3% triton X-10. The avidin-biotin 

peroxidase method using the Vectastain ABC kit was employed to stain and 

visualize the brown reaction product for ChAT with DAB and the grayish-black 

reaction product for Fos with DAB/Ni. No cross-reactivity was observed between 

the antibodies, and adequate controls were included by reversing the order of 

primary antibodies or omitting the primary or secondary antibodies. 

Sections were analyzed using an Olympus AX 70 microscope (Olympus 

America, Melville, New York) equipped with an Olympus Magnafire digital 

camera; digital photographs were captured and processed using Olympus 

Magnafire software (Olympus America, Melville, New York). Microscopical 

examinations were performed by an experimenter (VP) who remained blind to 

the animals’ pretreatment condition. Three sections per region of interest were 

selected for analysis: dorsal striatum (DS; between 1.60 and 1.30 mm anterior to 

bregma), nucleus basalis of Meynert and substantia innominata (nbM/SI, SI; 1.20 

mm posterior to Bregma), frontoparietal cortex (PC, 1.40–1.70 mm posterior to 

bregma), and ventral tegmental area (VTA; 4.8–5.2 mm posterior to bregma; 

(Paxinos 1998). Fos-IR neurons in these areas were counted in the right 

hemispheres of three brain sections per brain at 10× magnification. Counts were 

made inside predefined areas per region; DS: 0.80 mm2; nBM/SI: 0.36 mm2; PC: 

0.64 mm2; VTA: 0.16 mm2 (see Figure 2.7 for an illustration of sampling areas). 
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The average count from 3 sections per region per animal was used for statistical 

analysis.  

Data Analysis: The total number of hits (h), correct rejections (cr), misses (m), 

false alarms (fa), and omissions were calculated for the entire behavioral session 

and for each block of 54 trials. Based on these values, the relative number of hits 

(h = h/(h + m) and correct rejections (cr = cr/(cr + fa) were calculated. In addition, 

the vigilance index (VI), an overall measure of sustained attention performance, 

was calculated based on the relative number of hits and false alarms using the 

formula: VI = (h-fa) / (2(h fa) - (h+fa)2)). This index is similar to the sensitivity 

index (Frey 1973) except that omitted trials are excluded from the calculation. 

Values for VI can vary from +1.0 to -1.0, with +1.0 indicating that all responses 

were scored as hits or correct rejections, 0 indicating an inability to discriminate 

between signal and non-signal events, and -1 indicating that all responses to 

signals were misses and all responses to non-signals were false alarms. The 

index was calculated for each signal duration (VI500,50,25). Hits and correct 

rejections were analyzed using angularly transformed values (Zar 1999). 

Performance data from the last 3 days before the start of the pretreatment 

regimen were used for baseline comparisons. Performance during the 

pretreatment period was not analyzed except for data from the 2-day off- drug 

sessions. Data from the first and second off-drug days were collapsed over 2 

weeks, resulting in 3 blocks of data. The 20-day drug-free period following 

pretreatment was divided into two time periods (days 1–10 (W1) and days 11–20 

(W2)) and analyzed to assess the time course of effects of AMPH withdrawal. 
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Because the subsequent administration of AMPH was expected to produce 

augmented performance effects when compared with the first exposure to 

AMPH, the effects of both doses of AMPH, collapsed over the two tests of the 

individual doses, were compared with the effects of the first administration of 

AMPH (1.0 mg/kg). Data depicting the number of Fos-IR neurons are expressed 

as Mean±SEM per group and the four anatomic regions of interest. Group-based 

comparisons of the average number of Fos-positive cells were conducted using 

planned, two-tailed, unpaired Student t tests. Mixed factor analysis of variance 

(ANOVAs) were used to assess the effects of pretreatment, block, signal duration 

and AMPH on hits, misses, false alarms, correct rejections, omissions and 

response latencies (time from lever extension to lever press). Post hoc 

comparisons were made using the Least Significant Difference (LSD) for within-

subject comparisons. The reported statistical results reflect Huyn-Feldt-corrected 

degrees of freedom. Exact p values are reported as recommended by 

(Greenwald 1996). Statistical analyses were performed using the SPSS/PC+ 

11.5 Version (SPSS, Chicago, Illinois). 

2.4 Results 

Baseline performance before the pretreatment phase: The baseline performance 

of the animals designated for pretreatment with AMPH or saline, respectively, did 

not differ during the last three sessions before the pretreatment phase (hits, 

correct rejections, omissions; all main effects and interactions involving the factor 

“Group”; p >0.05). The animals’ performance was signal duration-dependent 
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(F(2,56) = 176.81; p < 0.001; see Figure 2.3). Animals omitted a relatively small 

proportion of trials (6.56±0.72/session), and the number of omissions increased 

over blocks of trials (F(1.42,19.85) = 9.07; p =0.004).  

Drug-free weekend performance during the pretreatment period: As described 

earlier, animals undergoing the AMPH-pretreatment regimen were given saline 

on weekends, and saline-treated animals were placed into the operant chambers 

on weekdays without being allowed to perform the task. During drug-free 

weekends, the omission rate in AMPH-treated animals was sufficiently low to 

permit a meaningful analysis of their performance on those days (averaged per 

animal over 2 weekends, yielding 3 blocks of data). 

In terms of overall performance (VI), the animals undergoing AMPH-

pretreatment were impaired compared with saline-treated control animals 

(F(1,14) = 18.84; p =0.001). This effect interacted with signal duration (F(2,28) = 

19.94; p < 0.001; Figure 2.3). Multiple comparisons indicated that VI500 and VI50 

values differed between the groups (VI500: F(1,15) = 53.06; p < .005; VI50: F(1,15) 

= 89.79; p < 0.01; VI25: F(1,15) = .227; p =0.607). All animals performed better on 

the second drug-free day (F(1,14) = 18.52; p =0.001; day 1: 0.18±0.15; day 2: 

0.22±0.13); however, the difference in performance between the two groups was 

consistent across the three blocks of weekend data (all interactions involving 

group and week, p >0.14). The significant interaction between group and signal 

duration on VI was based on similar effects revealed in the analysis of hits 

(F(1.92,26.93) = 32.06; p < 0.001). The animals’ non-signal performance 
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remained unaffected by ongoing treatment (all effects and interactions involving 

group: p >0.12).  

Animals undergoing AMPH-pretreatment exhibited an increased number 

of omissions that interacted with day (first vs. second drug-off day) and week 

(F(2,280) = 5.76; p =0.008). As illustrated in Figure 2.4, this interaction was due 

to a relatively high number of omissions in AMPH-treated animals on the first off-

day during the last two weekends of the pretreatment period when compared 

with their omission rate on the first off-day during weeks 3–4 (LSD = 14.22; p 

=0.015), and with the omissions generated by AMPH-treated animals on the 2nd 

off-day during weeks 5–6 (LSD = 16.09; p < 0.001) and by saline-treated animals 

on both days during this late pretreatment phase (t(14) < 0.001). 

Attentional performance during the withdrawal period: The performance of the 

two groups during the 20-day withdrawal period differed significantly (F(1,14) = 

12.51; p =0.003; VI for saline animals: 0.26±0.02; AMPH: .15±.02). Furthermore, 

all animals improved their performance from W1 to W2 (F(1,14) = 11.65; p 

=0.004), but post hoc analyses indicated that this improvement was primarily due 

to the recovery in AMPH-pretreated rats (F(1,8) = 16.69; p =0.004; saline-

pretreated: LSD = 0.01; p =0.44; AMPH-pretreated: LSD = 0.06; p =0.04; Figure 

2.5). Although all animals maintained signal duration-dependent performance 

(F(2,28) = 372.07; p < 0.001), the effects of group and signal duration interacted 

(F(2,28) = 24.57; p < 0.001). Multiple comparisons failed to locate this interaction, 

however (Figure 2.5).  
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Although the overall rate of omissions remained small in both groups of 

animals (F(1,14) = 1.01; p =0.33; saline-pretreated: 6.63±0.89 

omissions/session; AMPH-pretreated: 5.43±0.79), significant interactions 

between group and W1/W2 and group and block and among group, block, and 

W1/W2 were found (all p< 0.03). Collectively, these complex interactions 

reflected an increase in omissions in AMPH-pretreated animals during W2 when 

compared with W1, a less pronounced increase in omissions across trial blocks 

in these animals when compared with saline-pretreated animals, and a 

normalization of the block-related increase in omissions in W2 when compared 

with W1 in AMPH-pretreated animals. 

Effects of AMPH challenges on attentional performance: The administration of 

1.0 mg/kg AMPH as a challenge produced impairments in performance in AMPH-

pretreated animals when compared with the acute effects of this dose. The first 

administration of this dose (which was the first dose given during the 

pretreatment regimen) did not affect their performance when compared with their 

baseline performance before the pretreatment regimen (all p >0.41; Figure 2.6). 

Likewise, in animals pretreated with saline, administration of AMPH as a 

“challenge” (which was their first AMPH-exposure) did not affect their 

performance when compared with the effects of the very first AMPH exposure in 

the other group of animals (all p >0.05; Figure 2.6). 

The main effect of the 1.0 mg/kg AMPH-challenge on the animals’ overall 

performance (VI; F(1,8) = 14.46; p =0.005) was due to a lower hit rate following 
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the AMPH-challenge (F(1,8) = 26.31; p =0.001; first administration of 1.0 mg/kg 

(averaged over all signal durations): 57.56±4.86% hits; 1.0 mg/kg challenge: 

36.97±5.47% hits). The decrease in hits following the AMPH-challenge occurred 

across all signal durations (F(2,16) = 1.05; p =0.37; Figure 2.6) and blocks 

(F(3.51, 28.10) = 0.18; p =0.93). The relative number of correct rejections (Figure 

2.6 and the number of omissions did not differ between the first and the 

challenge administration of AMPH (all p >0.12). Omissions remained generally 

low (7.98±1.73 omissions/session). 

Moreover, the administration of a smaller dose of AMPH (0.5 mg/kg) as a 

challenge produced impairments in performance when compared with the 

innocuous effects of the very first exposure to 1.0 mg/kg AMPH. This effect 

interacted with the blocks of trials and reached significance in the analysis of the 

overall performance (VI: F(1.71,13.69) = 7.33; p =0.009; Figure 2.7), but not hits 

(F(2,16) = 2.84; p =0.09; not shown). This significant interaction was due to a 

significantly lower performance following AMPH-challenge during the middle 

block of trials (block 2: t(8) = 3.44; p =0.009; p >0.25 for blocks 1 and 3; Figure 

2.7). No other performance measure was affected as a result of the challenges 

with 0.5 mg/kg AMPH.  

The impairment in attentional performance produced by AMPH-challenges 

in AMPH-pretreated animals may have been confounded by a lower baseline 

performance at the end of the withdrawal period. The performance during the last 

three sessions before the administration of the challenges differed only in one 
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respect from the animals’ baseline performance before the first AMPH exposure. 

There was a significant interaction between signal duration and the two baselines 

on hits (F(2,16) = 3.68; p =0.048), but multiple comparisons failed to reveal 

significant differences for individual signal durations. 

Finally, to substantiate hypotheses about the nature of the effects of 

AMPH-sensitization (see Discussion), response latencies (time period from lever 

extension to lever press) were analyzed. Compared with the latencies observed 

before the pretreatment period, neither the very first administration of AMPH (1.0 

mg/kg) nor the administration of this dose as a challenge altered response 

latencies (F(1.60,12.81) = .27; p =0.72). Latencies did not differ by trial type 

(signal vs. non-signal trials) or response type (hits, misses, false alarms, correct 

rejections), and there were no interactions between treatment and trial 

type/response type (all p >0.43). Animals required 909.35±44.13 ms to press a 

lever. 

Fos-immunoreactivity (IR): In saline-pretreated animals, considerable Fos-IR was 

found in the frontoparietal cortex, caudate/putamen, and VTA (Figure 2.8). In the 

nbM/SI region, Fos-IR cells were only found sporadically in saline-pretreated 

rats, and they were primarily situated in the SI portion of the basal forebrain 

(Figure 2.8 and Figure 2.9). In AMPH-pretreated animals, significant increases in 

the number of Fos-IR cells were found in the nbM/SI (t(1,10) = 7.30; p < .0001), 

frontoparietal cortex (t(1,10) = 4.40; p =0.002), and VTA (t(1,10) = 5.99; p < .001) 

but not the caudate-putamen (t(1,10) = 1.15; p =0.27; see Figure 2.8). Double-
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immunolabeling indicated that approximately 80% of Fos-positive cells in the 

nbM/SI region were also ChAT-positive (Figure 2.9). Fos-IR cells that were not 

also ChAT-positive were intermingled with double-labeled cells and also primarily 

located in the SI region.  

2.5 Discussion 

The main findings of our study indicate that as a result of AMPH-

pretreatment with an escalating dosing regimen, the administration of doses of 

AMPH that did not produce significant effects on attentional performance when 

given acutely resulted in substantial impairments in attentional performance 

when administered as challenges. We also recorded the performance of animals 

at drug-off days during the pretreatment period and during the withdrawal period; 

these data assist in interpreting the effects of AMPH challenges. Furthermore, in 

AMPH-pretreated and AMPH-challenged rats, the number of Fos-positive 

neurons was found to be increased in the basal forebrain, and the majority of 

these neurons were cholinergic. The discussion will focus on the nature of the 

behavioral and attentional effects of AMPH challenges, the significance of the 

Fos-data, and the relevance of these findings for models of the cognitive 

impairments of schizophrenia. 

This experiment utilized a more extensive pretreatment regimen and a 

longer withdrawal period than previous studies addressing cognitive 

consequences of repeated AMPH exposure (Kondrad and Burk 2004). As 

discussed in the literature, short pretreatment periods, consisting of the 
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intermittent administration of relatively low doses of AMPH, have been fruitful in 

psychostimulant-sensitization research (Robinson and Becker 1986), but they do 

not adequately model the escalation of AMPH doses in AMPH abusers and the 

“runs and crashes” that are associated with the emergence of psychotic 

symptoms in humans and analogous symptoms in animal models (Angrist 1994; 

Kuczenski and Segal 1997; Castner and Goldman-Rakic 2003). Furthermore, the 

administration of escalating doses and longer withdrawal periods produces 

lasting neurochemical changes, without generating neurotoxic effects, that differ 

qualitatively from those achieved by shorter pretreatment regimens (Paulson, 

Camp et al. 1991; Paulson and Robinson 1995). 

Our demonstration of AMPH-sensitized attentional impairments cannot be 

readily attributed to overt behavioral effects. Given the overwhelming evidence 

on AMPH-sensitized locomotor activity and stereotypies, the possibility that such 

effects confounded the present impairments in attentional performance needs to 

be carefully considered. AMPH-challenges did not affect the animals’ 

performance in non-signal trials and, although suppressing the hit rate, AMPH-

challenges did not abolish the effects of signal duration on this measure. Putative 

consequences of sensitized locomotion or stereotypies would be expected to 

manifest primarily as side- or lever biases, or randomized lever selection, and to 

result in a high number of omissions. As indicated by the relatively short 

response latencies, and as confirmed by observations, animals positioned 

themselves in front of the correct rejection lever (while withdrawn) and, upon 

signal detection, switched to the hit lever, awaiting its extension into the 
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chamber, therefore producing similar latencies for all responses. AMPH-

challenges did not affect response latencies and thus may not have altered this 

behavior. Thus, sensitized locomotor activity or stereotypies, increased switching 

behavior (Evenden and Robbins 1983) or complex changes in lever-choice 

behavior (Evenden and Robbins 1983) appear highly unlikely to have occurred 

as a result of AMPH challenges. Likewise, it is noteworthy that such doses of 

AMPH do not affect visual discrimination performance per se (Andrews and 

Holtzman 1988). Collectively, it is difficult to envision how the selective 

impairments in performance observed following AMPH challenges could have 

been due to fundamental changes in the animals’ behavior. 

Our findings and the discussion presented here also suggest that 

sensitized locomotor activity or increased stereotypies, and possibly the 

associated increases in striatal dopamine release (Paulson and Robinson 1995), 

do not represent necessary consequences of AMPH-pretreatment but that their 

manifestation may depend on the absence of behavioral or operant constraints. 

As demonstrated by Wolgin and colleagues, repeated AMPH-induced 

stereotypies and appetitive behaviors, if interfering continuously with goal-

directed behaviors or operant performance, are increasingly suppressed, in part 

as a result of the acquisition of counteracting operant contingencies (Hughes, 

Popi et al. 1998; Wolgin 2000; Wolgin 2002). Our data indicate that during the 

pretreatment period, omissions increased substantially in AMPH-treated animals, 

as seen during the first of the two drug-off days and during the final 2 weeks of 

pretreatment. These omissions may have reflected in part the transient 
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manifestation of overt behavioral effects of higher doses of AMPH, rather than 

the effects of acute withdrawal, because increased omissions were not observed 

during the withdrawal period. 

The decrease and eventual disappearance of AMPH-induced overt 

behavioral effects in continuously performing subjects contrasts with the 

demonstration of persistent AMPH-sensitized impairments and may be of 

significance for the usefulness of AMPH-sensitization as a model for 

schizophrenia-associated cognitive dysfunction. The focus on the cognitive 

consequences of AMPH-sensitization not only enhances the face validity of the 

animal model, but the sensitized attentional effects may be mediated via 

abnormally regulated neuronal systems that overlap only partly with the 

sensitized striatal systems that have been traditionally in the focus of research on 

AMPH-sensitized locomotor activity. 

The exact mechanisms that mediated the AMPH-challenge-induced 

decrease in the animals’ ability to detect signals remain speculative. In terms of 

signal-detection theory, a parallel downward shift of the signal duration-hit curve 

may indicate a conservative shift in the animals’ decision criterion. Such a shift 

could result from increased costs for false alarms, decreased costs for misses, or 

both, or from decreased benefits for hits (Swets 1982). The costs for misses and 

false alarms were identical (no reward), however, and the absence of changes 

on omissions do not support the speculation that the rewarding effect of hits was 
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diminished after AMPH-challenges. Likewise, the number of correct rejections, 

which resulted in identical reward, remained unchanged. 

An alternative source of an increasingly conservative criterion is a 

decreasing expectation of signal occurrence (Swets 1970). Because of the 

absence of factual changes in signal probability in this experiment, multiple 

mechanisms—including impairments in monitoring perceptual (particularly visual 

channels) and, more generally, source monitoring, or general fragmentation of cognitive 

operations—may have contributed to the manifestation of a more conservative 

criterion. Impairments in the ability to monitor the frequency and distribution of 

signal events could result in the underestimation of signal probability, and thus in 

changes in performance indicative of a shift toward a more conservative criterion. 

It is intriguing that signal detection impairments observed in schizophrenic 

patients tested in sustained attention tasks have been attributed to similar 

impairments in cognitive operations (Braff 1993; Keefe, Arnold et al. 1999; Li 

2002; Braff and Light 2004; van den Bosch, Rombouts et al. 1996) and that such 

impairments may also contribute to the attentional and executive symptoms 

observed in chronic amphetamine abusers (Rogers, Everitt et al. 1999; Ornstein, 

Iddon et al. 2000). 

This experiment was not designed to assess comprehensively the 

increases in Fos-expression following repeated AMPH exposure (Ostrander, 

Badiani et al. 2003; Uslaner, Norton et al. 2003) but to determine Fos-IR primarily 

in the cholinergic basal forebrain of AMPH-pretreated, AMPH-challenged, and 

task-performing animals. In saline-pretreated rats, Fos-positive cells were rarely 
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seen in the nbM section of the cholinergic basal forebrain. In contrast, Fos-

positive cells were distributed more evenly in the nbM/SI area in AMPH-

pretreated animals. There is little evidence in support of discrete differences 

between the topographic organization of these two structures (Zaborszky 2002), 

although the projections from the nucleus accumbens (Mogenson, Swanson et 

al. 1983) and amygdala (Jolkkonen, Miettinen et al. 2002) appear to contact SI 

neurons preferentially. Thus, the increase in the number of Fos-positive cells in 

the ventral section of the cholinergic basal forebrain may reflect the transsynaptic 

consequences of a sensitized mesolimbic system on basal forebrain cholinergic 

neurons. 

Our data, together with prior findings indicating mesolimbic influences over 

cortical cholinergic transmission (Moore, Fadel et al. 1999; Neigh-McCandless, Kravitz 

et al. 2002; Neigh, Arnold et al. 2004), AMPH-sensitized cortical ACh release (Nelson, 

Sarter et al. 2000), and the role of cortical cholinergic inputs in attention (see 

Introduction), correspond with the hypothesis that the cortical cholinergic input system is 

an integral branch of neuronal circuitry involved in the mediation of the attentional effects 

of psychostimulant sensitization. These data indicate that the attentional consequences 

of repeated AMPH exposure in rats may serve as a model to investigate further the role 

of the cortical cholinergic input system in the cognitive symptoms of schizophrenia and 

for the test of the potential therapeutic significance of cholinergic modulators (Tzavara, 

Bymaster et al. 2004; Tzavara, Bymaster et al. 2006).  
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2.6 Figures 

Figure 2.1 Schematic illustration of the sustained attention task. A session 
consisted of 162 signal or non-signal trials. Two seconds following a signal or 
non-signal event levers extended into the operant chamber. Correct responses in 
signal trials (left lever presses: hits) and non-signal trials (right lever presses: 
correct rejections) were rewarded, and incorrect responses (misses and false 
alarms, respectively) were not. The intertrial interval (ITI) was variable to limit the 
animals’ ability to time an event. 
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Figure 2.2 Experimental time line of escalated AMPH or saline pretreatment and 
challenge doses.  Animals received AMPH or saline twice a day during the 
pretreatment phase, once before the daily training session and again 8 hours 
later (the ordinate depicts the dose that was given twice daily; each dot depicts 
one day and dose; see Methods and Materials for details). Control animals 
received vehicle throughout the pretreatment regimen and, similar to AMPH-
pretreated rats, AMPH-“challenges” following the drug free period.  
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Figure 2.3: Drug-off day performance of rats during the pretreatment phase 
(M±SEM). amphetamine (AMPH)-treatment resulted in an impairment of the 
overall performance (indicated by the “vigilance index” (VI)) during drug-off days 
when compared with the performance of saline-treated animals. The effect on VI 
was largely due to a decrease in hits that was most pronounced in trials 
presenting the longest (500 msec) signals, possibly because of “floor”—effects 
with respect to the relative number of hits to shorter signals.  
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Figure 2.4 Omission data from the final two drug-free periods during 
pretreatment. During the last two, 2-day drug-off periods, the omissions in 
AMPH-treated animals were relatively high on the first when compared with the 
second drug-off day, possibly reflecting the acute effects of, or immediate 
withdrawal from, relatively high doses of AMPH administered during the later part 
of the pretreatment phase. 
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Figure 2.5: Average overall performance (vigilance index; (VI)) of amphetamine 
(AMPH)- and saline-pretreated animals during the the 20-day withdrawal period. 
Pretreatment with AMPH resulted in an impaired performance as indicated by VI. 
The performance of AMPH-pretreated rats improved from W1 to W2.  
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Figure 2.6. Effects of 1.0 mg/kg AMPH-challenges on the relative number of hits 
and correct rejections. The figure depicts the relative number of hits (at left) and 
correct rejections (at right) of animals at baseline (before any drug administration; 
“baseline”), following the first administration of amphetamine (AMPH; 1.0 mg/kg) 
at the beginning of the pretreatment regimen (“first AMPH”), and following the 
administration of this dose as a challenge (“AMPH-AMPH”). Furthermore, the 
effects of this dose given as a “challenge” to vehicle-pretreated rats are shown 
(“VEH-AMPH”). The effects of first AMPH and VEH-AMPH did not differ from 
baseline performance. In contrast, the administration of AMPH-challenges in 
AMPH-pretreated rats produced a significant decrease in hits but did not affect 
the animals’ ability to respond correctly in non-signal trials.  
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Figure 2.7 Comparison between the effects of the administration of 0.5 mg/kg 
following the drug-free period (“challenge”) and the first administration of 1 mg/kg 
of AMPH. In the analysis of effects on overall performance (VI), the smaller dose 
of AMPH given as a challenge resulted in a significant impairment in 
performance when compared with the acute effects of twice the amount of drug. 
The reason for a significant difference specifically during the second block of 
trials is unclear. 
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Figure 2.8. Number of Fos-immunoreactive (IR) neurons in the four regions of 
interest (see Methods for counting and averaging procedures). In animals 
pretreated and challenged with amphetamine (AMPH), compared with saline-
pretreated and AMPH-‘challenged’ animals, significant increases in Fos-IR were 
found in all regions except the caudate/putamen. The increase in Fos-IR neurons 
in the nucleus basalis of Meynert/substantia innominata (NbM/SI) region was 
particularly robust. The majority of Fos-IR neurons in the latter region were also 
cholinergic (Figure 2.7). 
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Figure 2.9 Schematic illustration of the sampling area and photomicrographs of 
Fos-immunoreactivity in the basal forebrain of a saline- (A) and an amphetamine 
(AMPH)-pretreated (C) animal. (B)The region in the basal forebrain shown in (D) 
which includes the dorsal substantia innominata and the medioventral part of the 
nucleus basalis of Meynert. A section, from an AMPH-pretreated rat, that was 
double-immunostained for Fos (see the blackish nuclei) and choline 
acetyltransferase (ChAT; see the reddish-brown cytoplasm) (E). Approximately 
80% of all Fos-positive cells in this area were also ChAT-positive (see arrows). 
Bars in A, C, E: 50 μm.  
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CHAPTER 3 

TOWARD A NEURO-COGNITIVE ANIMAL MODEL OF THE COGNITIVE 
SYMPTOMS OF SCHIZOPHRENIA: DISRUPTION OF CORTICAL 

CHOLINERGIC NEUROTRANSMISSION FOLLOWING REPEATED 
AMPHETAMINE EXPOSURE IN ATTENTIONAL TASK-PERFORMING, BUT 

NOT NON-PERFORMING, RATS 

 

3.1 Summary 

Impairments in attentional functions and capacities represent core aspects 

of the cognitive symptoms of schizophrenia. Attentional performance has been 

demonstrated to depend on the integrity and activity of cortical cholinergic inputs. 

The neurobiological, behavioral, and cognitive effects of repeated exposure to 

psychostimulants model important aspects of schizophrenia. In the present 

experiment, prefrontal acetylcholine (ACh) release was measured in attentional 

task-performing and non-performing rats pretreated with an escalating dosing 

regimen of amphetamine (AMPH) and following challenges with AMPH. In non-

performing rats, pretreatment with AMPH did not affect the increases in ACh 

release produced by AMPH-challenges. In contrast, attentional task 

performance-associated increases in ACh release were attenuated in AMPH-

pretreated and AMPH-challenged rats. This effect of repeated AMPH exposure 

on ACh release was already present before task-onset, suggesting that the loss 

of cognitive control that characterized these animals' performance was a result of 

cholinergic dysregulation. The findings indicate that the demonstration of 

repeated AMPH-induced dysregulation of the prefrontal cholinergic input system 
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depends on interactions between the effects of repeated AMPH exposure and 

cognitive performance-associated recruitment of this neuronal system. Repeated 

AMPH-induced disruption of prefrontal cholinergic activity and attentional 

performance represents a useful model to investigate the cholinergic 

mechanisms contributing to the cognitive impairments of schizophrenia. 

3.2 Introduction 

As reflected by the NIMH Initiative 'Measurement and Treatment Research 

to Improve Cognition in Schizophrenia' (MATRICS), the determination of the 

neuronal abnormalities that underlie the cognitive impairments of schizophrenia 

and the development of novel pro-cognitive treatments are pressing research 

objectives. Based on the fundamental role of attentional processes for learning 

and general cognitive control, attentional dysfunctions have been considered a 

central and even essential characteristic of schizophrenia (McGhie and Chapman 

1961; Braff 1993; Braver, Barch et al. 1999; Braff and Light 2004; Keefe, Bilder et 

al. 2006; Nuechterlein, Dawson et al. 1994; Venables 1964). 

Attention describes the cognitive states and operations that govern the 

readiness for the detection of changes in the stimulus situation, the selection of 

such changes over irrelevant 'noise' for further processing, and the management 

of attentional resources for the detection and processing of competing stimuli. 

Substantial evidence supports a crucial role of the cortical cholinergic input 

system in the mediation of attentional functions and capacities (Everitt and 

Robbins 1997; Sarter, Givens et al. 2001; Sarter, Hasselmo et al. 2005). 
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Removal of cortical cholinergic inputs produces persistent impairments in 

attentional performance. Furthermore, attentional performance is associated with 

increases in cortical acetylcholine (ACh) release that are not observed in animals 

performing tasks controlling for the non-attentional aspects of performance 

(McGaughy, Kaiser et al. 1996; Himmelheber, Sarter et al. 1997; Turchi and 

Sarter 1997; Himmelheber, Sarter et al. 2000; McGaughy, Everitt et al. 2000; 

Passetti, Dalley et al. 2000; Turchi and Sarter 2000; Dalley, McGaughy et al. 

2001; Kozak, Bruno et al. 2006).The available evidence indicates that the cortical 

cholinergic input system mediates not one particular aspect of attention but 

supports a range of attentional abilities, including sustained, selective, and 

divided attention. 

Although reduced muscarinic receptor densities in the cortex of 

schizophrenics have been reported (Crook, Tomaskovic-Crook et al. 2000; 

Crook, Tomaskovic-Crook et al. 2001; Hyde and Crook 2001; Raedler, Knable et 

al. 2003; Newell, Zavitsanou et al. 2007), the status of cortical cholinergic 

neurotransmission in schizophrenia remains poorly understood. Owing in part to 

the lack of methods capable of assessing dynamic aspects of cholinergic 

dysregulation in humans, the potential contribution of cholinergic dysregulation to 

the cognitive symptoms of patients is unknown. 

Repeated exposure to psychostimulants has long been known to produce 

psychotogenic effects in humans (Bell 1965; Bell 1973; Kokkinidis and Anisman 

1981; Kokkinidis and Anisman 1981; Snyder, Aghajanian et al. 1972; Snyder 
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1973; Wallis, Mc et al. 1949; Caton 2000). Furthermore, the effects of repeated 

psychostimulant exposure in healthy humans and animals model important 

neurobiological, behavioral, and cognitive aspects of schizophrenia (Robinson 

and Becker 1986; Lieberman, Sheitman et al. 1997; Castner and Goldman-Rakic 

1999; Laruelle 2000; Castner and Goldman-Rakic 2003; Kapur 2003; Segel 

1978; Strakowski, Sax et al. 1997; Yui, Goto et al. 1999), including the deficits in 

sensorimotor gating and attentional processing (Crider, Solomon et al. 1982; 

Tenn, Fletcher et al. 2003; Martinez, Parikh et al. 2005; Sarter, Nelson et al. 

2005). Furthermore, repeated psychostimulant exposure models the sensitization 

of the mesolimbic dopamine system that has been demonstrated in never-

medicated patients and during psychotic periods (Abi-Dargham, Gil et al. 1998; 

Laruelle, Abi-Dargham et al. 1996; Strakowski, Sax et al. 1997; Laruelle, Abi-

Dargham et al. 1999; Laruelle 2000). Based on evidence suggesting close links 

between the mesolimbic dopamine system and basal forebrain cholinergic 

neurons (Moore, Fadel et al. 1999; Neigh-McCandless, Kravitz et al. 2002; 

Neigh, Arnold et al. 2004; Zmarowski, Sarter et al. 2005), abnormal regulation of 

the cortical cholinergic input system has been hypothesized to represent an 

integral component of the dysregulated forebrain systems responsible for the 

cognitive symptoms of schizophrenia (Sarter, Hasselmo et al. 2005). Previous 

findings indicating psychostimulant exposure-induced alterations in the regulation 

of basal forebrain cholinergic neurons are consistent with this hypothesis 

(Nelson, Sarter et al. 2000; Martinez, Parikh et al. 2005). However, this evidence 

does not form the basis for hypotheses describing unidirectional, causal 
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relationships between dysregulated dopaminergic and cholinergic systems. 

Escalating bidirectional interactions between abnormally regulated mesolimbic 

projections to the basal forebrain and prefrontal cortex, and aberrant cholinergic 

recruitment of prefrontal neurons projecting to mesolimbic regions may ultimately 

be responsible for the disruption of prefrontal-mesolimbic information processing 

that is widely hypothesized to underlie the cognitive symptoms of schizophrenia. 

The present focus on the regulation of the prefrontal cholinergic input system is 

based on the extensive evidence linking this system to fundamental attentional 

processes. 

The current experiment utilized an escalating dosing pretreatment regimen 

of amphetamine (AMPH) that is known to generate neurobiological and 

behavioral characteristics resembling psychostimulant psychosis (Paulson, 

Camp et al. 1991). This regimen produces lasting psychomotor sensitization 

without yielding neurotoxicity (Robinson and Camp 1987; Paulson, Camp et al. 

1991; Paulson and Robinson 1995; Robinson, Jurson et al. 1988). Importantly, 

psychomotor sensitization, locomotor hyperactivity, or stereotypies are not 

observed in attentional task-performing rats following the repeated administration 

of AMPH, perhaps as a result of the constraining of the animals' behavior by the 

operant and attentional requirements of the task (Martinez, Parikh et al. 2005). 

Furthermore, it is important to note that the administration of AMPH-challenges is 

thought to model the role of stressors in eliciting psychotic episodes, and/or in 

revealing a sensitized mesolimbic system (Moghaddam 2002; Robinson and 

Becker 1986) that can trigger active disease periods (Ventura, Nuechterlein et al. 

 75



 

1989; Lieberman, Sheitman et al. 1997; Yui, Goto et al. 1999, Ujike and Sato 

2004; Sato 1992; Sato, Numachi et al. 1992). 

The present study was designed to determine the effects of pretreatment 

and challenge with AMPH on ACh release in the medial prefrontal cortex (mPFC) 

in animals performing a task taxing attentional capacities and in animals that did 

not perform a task. This experiment was guided by the general hypothesis that in 

order to demonstrate the abnormal regulation of a neurotransmitter system, 

recruitment of that system, by behavioral and cognitive operations relevant to 

that system, is required. The results support this hypothesis and indicate that 

repeated exposure to AMPH disrupts the regulation of cholinergic projections to 

the prefrontal cortex and thereby cognitive task control. Furthermore, these 

findings indicate the usefulness of experiments designed to measure the effects 

of repeated AMPH exposure on cognitive performance and, simultaneously, 

performance-associated increases in ACh release, as a model for research on 

the neuronal mechanisms underlying the cognitive symptoms of schizophrenia as 

well as on the development of novel treatments for the cognitive symptoms of 

this disorder. 

3.3 Methods 

Animals: Twenty-four male Fischer-344/Brown–Norway F1 hybrid rats (Harlan 

Sprague–Dawley, Indianapolis, IN), weighing between 300 and 350 g at the 

beginning of behavioral training, were housed individually in a temperature 

(23°C)- and humidity (45%)-controlled environment with a 12:12 light/dark cycle 

 76



 

(lights on at 0700 hours). Animals were handled extensively before the beginning 

of training. Food (Rodent Chow, Harlan Teklad, Madison, WI) was available ad 

libitum, whereas water was available only during behavioral training as reward 

(below) as well as for 8 min in the home cage following daily operant training. 

Animal care and experimentation were performed in accordance with protocols 

approved by the University Committee On Use and Care of Animals of the 

University of Michigan (UCUCA). 

Apparatus: Behavioral training was conducted using 12 operant chambers (Med-

Associates, St Albans, VT), each enclosed within a sound-attenuating 

compartment and equipped with three panel lights (2.8 W), two retractable levers 

and a water dispenser delivering 30 l water per reward into a cup located 

between the two levers. A house light (2.8 W) was located on the rear wall. 

Signal presentation, lever operation, water delivery, and data collection were 

controlled by a PC running Med-PC for Windows software (V 4.1.3; Med-

Associates). 

Behavioral Training: Training methods and evidence in support of the validity of 

performance measures in terms of reflecting sustained attention performance 

have been previously described (McGaughy and Sarter 1995; McGaughy and 

Sarter 1998). It should be noted that the use of this particular task in this 

experiment does not necessarily imply that performance of specifically this task 

would uniquely activate the cortical cholinergic input system; rather, this form of 

attention can be more readily trained and tested in rats when compared with 
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more complicated tasks designed to assess other aspects of attention, such as 

divided attention (Turchi and Sarter 1997; Turchi and Sarter 2000). 

Training occurred between 08:00 and 18:30 hours 7 days a week. Animals 

were initially trained to lever press for water in accordance with a modified FR-1 

schedule. Following at least three consecutive sessions of over 120 reinforced 

lever presses, animals advanced to the second stage of task acquisition. Animals 

were first trained to discriminate between signal (1 s illumination of the central 

panel light) and non-signal (no illumination) events. Two seconds following the 

occurrence of a signal or non-signal, both levers were extended into the operant 

chamber and remained active for 4 s or until a lever press occurred. During 

signal trials, a left lever press was scored as a hit, whereas a right lever press 

was scored as miss. Conversely, during non-signal trials, a right lever press was 

scored as a correct rejection and a left lever press was scored as a false alarm. 

Half of all animals were trained to acquire the task using reversed response 

rules. Hits and correct rejections were rewarded, whereas false alarms and 

misses were not. During this stage of training, incorrect responses resulted in the 

initiation of correction trials. During correction trials, the previous trial was 

repeated up to three times. If an animal continued to respond incorrectly, a 

forced-choice trial was initiated by presenting the correct lever only following a 

signal or non-signal event. Correction and forced-choice trials served to facilitate 

the acquisition of response rules and prevent the development of a side bias. 

Once animals achieved at least three consecutive days of stable 

performance defined as ≥59% correct responses to both signal- and non-signal 
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events, they advanced to the third stage of task acquisition. Signal duration was 

shortened and signals were presented for 25, 50, or 500 ms. The sequence of 

signal duration and the occurrence of signal and non-signal trials were pseudo-

randomized to yield 27 trials per signal duration and 81 non-signal trials. 

Correction trials and forced trials were discontinued, and the intertrial interval 

(ITI) was shortened from 12±3 to 9±3 s. As will be further detailed below, 

measures of performance included the relative number of hits (hits/hits+misses), 

calculated for each signal length, and the relative number of correct rejections 

(correct rejections/correct rejections+false alarms). Once animals achieved at 

least 3 days of stable performance, defined as ±70% hits to 500 ms signals, 

±70% correct rejections, and ≤50% omissions to 25 ms signal), they began 

training in the final task (see Figure 3.1a). House lights were illuminated 

throughout the session. This important final modification requires that animals 

constrain their behavior to maintain persistent orientation toward the intelligence 

panel. Each session lasted approximately 40 min. The pretreatment regimen was 

initiated after animals maintained criterion performance (≥70% hits to 500 ms 

signals, ≥70% correct rejections, and ≤20% omissions) for 3 consecutive days. 

Measures of performance included hits, misses, correct rejections, false 

alarms, and omissions. The relative number of hits and correct rejections was 

calculated as described above. To obtain an overall index of performance that 

reflects the performance in trials involving signals as well as non-signal events, 

the vigilance index (VI) was calculated based on the relative number of hits (h) 

and false alarms (fa) using the formula: VI=(h-fa)/[2(h+fa)-(h+fa)2]). This index is 

 79



 

comparable to the sensitivity index (SI) (Frey 1973)except that VI is based on the 

relative number of hits and false alarms, whereas SI is calculated using the 

probabilities for hits and false alarms. Thus, VI values are not confounded by 

errors of omission. Values for VI can vary from +1.0 to -1.0, with +1.0 indicating 

that all responses were scored as hits or correct rejections, 0 indicating an 

inability to discriminate between signal and non-signal events, and -1 indicating 

that all responses to signals were misses and all responses to non-signals were 

false alarms. The index was calculated for each signal duration (VI: 500, 50, 25 

ms). Finally, errors of omission were recorded. Performance measures were 

calculated collectively for the entire session as well as separately for each of four 

task blocks (10 min each; see Figure 3.2). 

Pretreatment Regimen and Challenges: After reaching performance criterion, 

animals were randomly divided into two groups (n=7 each) designated to be 

pretreated with AMPH or vehicle (saline; SAL). Animals were administered either 

d-AMPH sulfate (1–10 mg/kg; i.p.; concentrations included salt weight; dissolved 

in 1.0 ml/kg of 0.9% saline; Sigma, St Louis, MO) or saline (1.0 ml/kg i.p.) twice 

per day, with approximately 8 h separating the two injections (Figure 3.1b). 

Animals received the first injection at approximately 08:00 hours and were placed 

immediately into the test chambers. Task onset was 20 min post-injection. 

Following the completion of the test session, animals were promptly returned to 

their home cages. The second dose of drug or vehicle was given in the home 

cage at approximately 16:00 hours. AMPH doses were administered in elevating 

increments over the course of 40 days (Paulson, Camp et al. 1991). All animals 
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were given injections of saline on weekends to mimic the 'runs and crashes' 

known to foster psychostimulant-induced psychoses (see Figure 3.1b; for 

references see Introduction). Following AMPH doses of 2 mg/kg or higher, task 

performance was disrupted and animals omitted all trials. In order to control for 

the potentially confounding effects of substantially lower amounts of task practice 

in AMPH-treated animals, animals treated with vehicle were placed in the testing 

chambers but not allowed to perform for an equivalent number of sessions during 

weekdays, whereas AMPH-treated animals received doses >2 mg/kg (Martinez, 

Parikh et al. 2005). Both saline- and AMPH-treated animals performed the task 

on weekends. 

In our previous experiment employing this AMPH regimen in task-

performing animals (Martinez, Parikh et al. 2005), we found that following 

termination of the pretreatment regimen, AMPH-treated animals' performance 

required about 2 weeks of continued training to return to baseline, reflecting the 

general behavioral depression observed during this period of withdrawal 

(Paulson, Camp et al. 1991). As this experiment was not designed to study 

aspects of withdrawal, and in order to implant guide cannula (for the later 

insertion of microdialysis probes) relatively close to the actual microdialysis test 

sessions, surgery was conducted 7 days into this withdrawal period. The daily 

testing continued until surgery (below) and resumed following 5 days of post-

surgery recovery during which food and water were available ad libitum. All 

subsequent testing was conducted in operant chambers modified to 

accommodate the procedures for microdialysis (see below). 
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The effects of AMPH-challenges were determined following the 

administration of 1.0 mg/kg of AMPH. This dose is the first dose given during the 

pretreatment regimen and was observed earlier not to produce acute effects on 

attentional performance (Martinez, Parikh et al. 2005). Likewise, this dose did not 

affect the performance of saline-pretreated animals when given as a 'challenge' 

(Martinez, Parikh et al. 2005). Therefore, significant differences between the 

effects of 1.0 mg/kg when given as a challenge to animals pretreated with AMPH 

or vehicle can be attributed to the differential pretreatment history. Thus, final 

comparisons were based on data from animals pretreated with SAL or AMPH 

and challenged with either SAL or AMPH, resulting in four treatment conditions 

and groups (SAL/SAL; AMPH/SAL; SAL/AMPH; AMPH/AMPH). 

Non-Performing Rats: Non-performing animals (n=10) were handled extensively 

using procedures identical to task-performing rats, including the daily transport 

between home cages and operant chambers and the number and the timing of 

injections of AMPH (n=6) or SAL (n=4). However, the task was never activated 

for these animals and, as water reward was not delivered, they were not water 

deprived. Similar to task-performing animals, non-performing animals underwent 

stereotaxic surgery 7 days following the cessation of pretreatment. Animals were 

allowed to recover for 5 days and then resumed the handling procedures for the 

remainder of the withdrawal period. The effects of AMPH- or saline-challenges 

on ACh release were determined 33.6±6.4 days (M±SEM) after completion of the 

pretreatment period (in order to match the interval that was required for 

performing rats; see below). 
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Surgical Methods: Surgery was performed under aseptic conditions. Initial 

anesthesia was induced with 4–5% isoflurane by placing the animal in an 

anesthetic chamber (Anesco/Surgivet, Waukesha, WI). Gas was carried via 

oxygen at a flow rate of 0.6 ml/min. Animals were also given a preoperative 

injection of an antibiotic (Amikacin, 100 mg/kg; s.c.). Heads were shaved using 

electric clippers and cleaned with 70% ethanol and iodine tincture. Ophthalmic 

ointment was applied to lubricate the eyes. Animals were then mounted into a 

stereotaxic instrument (David Kopf, Tujunga, CA). Isoflurane was administered 

via a face mask at 1.5–2% for the duration of surgery. Microdialysis guide 

cannula (0.38 mm o.d.; Sci Pro, Sanborn, NY, USA) were implanted dorsal to the 

prelimbic region of the right hemisphere at the following coordinates: AP (from 

Bregma: 2.9 mm, ML: 0.6 mm, DV: 0.6 mm (from dura). After surgery, rats were 

returned to their home cages and allowed to recover for 5 days with free access 

to food and water. Thereafter, the water deprivation schedule resumed and 

animals were returned to behavioral training until they regained performance 

criterion (if applicable). Before daily test sessions, the dummy stylets were 

removed and polyethylene tubing was attached in order to habituate the animals 

to performing while being dialyzed. 

Microdialysis Methods: Following recovery, animals resumed operant training in 

chambers modified to accommodate microdialysis procedures. The modified 

operant chambers used to measure ACh release in task-performing rats featured 

a taller recessed water delivery area (9.0 X 5.0 cm, height X width) to allow 

access for animals with a probe inserted and inlets and outlets attached, and to 
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accommodate the liquid swivels, syringes and pumps outside the chambers. This 

was performed in order to allow collection of dialysates outside of the chambers 

without interfering with the animals' ongoing performance. 

Furthermore, the length of the test sessions was set to 40 min to 

correspond exactly with the timing of four dialysate collections (10 min each). 

Procedures designed to foster habituation to microdialysis procedures, 

particularly the tethering during task performance, were initiated at this point. 

Because of the subsequent requirement for extended pretask microdialysis 

discard periods (3 h), the collection of four baseline dialysates, and an additional 

two dialysates following drug treatment and before task onset (see Figure 3.2), 

rats were placed in the operant chambers 240 min before task onset. The 

houselight was illuminated for the entire time the animals were in the operant 

chambers. 

After being transferred to the modified operant chambers, animals were 

retrained to a performance criterion (≥60% hits to 500 ms signals, ≥65% correct 

rejections, and ≤20% omissions for three consecutive sessions). This criterion 

was more lenient than for the original acquisition (above), because the 

performance of tethered animals was more variable and slightly impaired relative 

to the performance of non-tethered animals. As these animals required a 

relatively large number of sessions to meet performance criterion, on average 

34.7±3.7 days elapsed between completion of the pretreatment period and the 

first microdialysis session. Animals were dialyzed at least twice, first following the 
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administration of saline and 6±1 days later following the administration of AMPH. 

Considering evidence suggesting that even a single dose of AMPH produces 

sensitizing effects (Vanderschuren, Schmidt et al. 1999), the effects of saline-

'challenges' were always tested first. In the event that dialysis sessions preceded 

by saline administration did not result in detectable levels of ACh as a result of 

probe failure or severed tubing, a maximum of two additional sessions were 

conducted in order to generate a complete data set for each animal. Repeated 

insertion of probes over a period of weeks, up to four insertions, was repeatedly 

demonstrated to generate similar basal ACh release levels (see Results) 

sensitive to the blocking of voltage-regulated sodium channels with tetrodotoxin 

(Moore, Sarter et al. 1993; Moore, Sarter et al. 1995; Moore, Stuckman et al. 

1995; Moore, Stuckman et al. 1996; Moore, Fadel et al. 1999). 

Before insertion of a concentric microdialysis probe into the brain (Model 

MAB4; membrane o.d.: 0.24 mm; membrane length: 3.0 mm; Sci Pro), probe 

recovery was determined in vitro by placing the probe into a 1.0 pmol ACh 

solution and collecting for 10 min. Probes that were used exhibited recoveries of 

≥9%. Probes were perfused at a rate of 2.0 μl/min with artificial cerebrospinal 

fluid, pH 6.9±0.1, containing the following (in mM): 126.5 NaCl, 27.5 NaHCO3, 

2.4 KCL, 0.5 NA2SO4, 0.5 KH2PO4, 1.2 CaCl2, 0.8 MgCl2, and 5.0 glucose. Note 

that the perfusion medium did not contain an acetylcholinesterase inhibitor. 

Dialysate collections were frozen at -80°C until ACh contents were 

determined using high performance liquid chromatography coupled with 

 85



 

electrochemical detection (ESA, Chelmsford, MA), using a mobile phase 

containing 50 mM sodium phosphate. ACh was separated from choline on UniJet 

microbore analytical column (Bioanalytical Systems Inc. (BASi), West Lafayette, 

IN) and catalyzed on a post-column solid-phase reactor containing 

acetylcholinesterase and choline oxidase. ACh was hydrolyzed to acetate and 

choline, and choline oxidized to hydrogen peroxide and betaine. The amount of 

hydrogen peroxide corresponding to ACh was then detected using a 'peroxidase-

wired' glassy carbon electrode with an applied potential of -200 mV (Huang, 

Yang et al. 1995). The concentration of ACh was calculated by integrating the 

area under the peak and fitting this value to a regression line containing values of 

ACh that were in the expected range of the in vivo dialysates. The detection limit 

of this system averaged 2 fmol/15 μl. 

Histological Verification of Probe Placements: Within 1 week following the last 

microdialysis session, animals were given an overdose of sodium pentobarbital 

and underwent cardiac perfusion with 0.1 M of phosphate buffer followed by 4% 

buffered formalin. The brains were post-fixed in formalin overnight, and 

transferred to a 30% sucrose phosphate buffer solution. Sections (40 μm thick) 

surrounding the probe and cannula sites were mounted, stained with cresyl 

violet, and examined for probe placements. 

Statistical Methods: Statistical analyses for performance and dialysis data were 

conducted using mixed model analysis of variance (ANOVAs). As basal ACh 

release data did not differ between groups (see Results), the effects of the 
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challenges on ACh release in performing and non-performing rats were 

conducted based on values expressed as the percent change values from mean 

basal ACh release (average of the last three collections before the administration 

of AMPH or saline). ACh release values were not corrected for probe recovery. 

To determine drug-induced changes in ACh release in performing rats, a mixed 

ANOVA on the effects of task (e.g. two post-drug/pre-task collections vs. four 

task-associated collections), pretreatment (AMPH or saline), and session 

(AMPH- or saline-challenge) was conducted and followed, where appropriate by 

two- and one-way ANOVAs and multiple comparisons. Task performance was 

analyzed on the basis of overall performance as indicated by VI (see above for 

calculation). In addition, the numbers of errors of omission were analyzed. The 

ANOVAs determined the effects of pretreatment (AMPH vs. saline), session 

(AMPH- or saline-challenge), and signal duration (500–25 ms) on VI and 

omissions. Significant main effects and interactions were followed by two- and 

one-way ANOVAs and Fisher's least significant difference test (LSD) for multiple 

comparisons. Exact p-values are reported for significant results, as was 

recommended earlier (Greenwald 1996). Statistical analyses were performed 

using SPSS Version 14.0 for Windows (SPSS Inc., Chicago, IL). 

3.4 Results 

Histological Findings: As illustrated in the inset in Figure 3.2, dialysis probes 

were placed into the middle layers of the pre-limbic region. In most cases, the 

active membrane extended either dorsally into the anterior cingulate cortex or 
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ventrally into the infralimbic region. Neither baseline release values nor 

performance- and/or AMPH-induced changes in ACh release systematically 

differed between these minor variations in placement, and thus evidence 

obtained from all these placements was used for final analysis. 

Effects of Repeated AMPH on ACh Release in Non-performing Rats: Basal ACh 

release did not differ between non-performing animals pretreated with AMPH and 

vehicle (F(1,8)=0.085; p>0.05; Figure 3.3), nor did basal values differ between 

session (before vehicle-'challenge' or AMPH-challenge; F(1,8)=0.006; p>0.05), 

and the two variables did not interact significantly (F(1,8)=0.09; p>0.05). Basal 

ACh release was 7.26±1.09 fmol/15 μl. Because of the absence of pretreatment 

effects on basal ACh release, the effects of vehicle- or AMPH-challenge on ACh 

release were expressed as percent change from baseline. 

Compared with the administration of vehicle, the AMPH-challenge resulted 

in a significant increase in ACh release in both saline and AMPH-pretreated rats 

(main effect of session: F(1,8)=28.28; p=0.001). The increase in ACh release that 

resulted from AMPH-challenge did not differ between animals pretreated with 

vehicle or AMPH (pretreatment: F(1,8)=0.07; p>0.05; ‘pretreatment’ X ‘session’: 

F(1,8)=0.11; p>0.05). Furthermore, ACh release did not vary over the four 

collections (T1–T4 in Figure 3.3), and this variable did not interact with 

pretreatment or session (all p>0.05). As illustrated in Figure 3.3, following saline-

'challenges', ACh release was 18.06±15.22% over baseline (averaged over T1–

T4); these values did not differ significantly from baseline values (F(1,8)=0.42; 
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p>0.05). The AMPH-challenges resulted in an increase of 210.66±35.44% over 

baseline (F(1,8)=35.13; p<0.001). Post hoc analyses indicated that AMPH 

significantly increased ACh release in both groups of animals when compared to 

the effects of saline-'challenges' (both p<0.02), and that neither the effects of 

saline- nor AMPH-challenges differed between animals pretreated with saline vs. 

AMPH (both p>0.05). Thus, the pretreatment history of non-performing animals 

did not influence the AMPH-challenge-induced increases in ACh release. 

Effects of Repeated AMPH on ACh Release in Performing Rats: Basal ACh 

release did not differ between animals pretreated with vehicle or AMPH 

(F(1,12)=2.23; p>0.05; Figure 3.4). Likewise, basal release did not differ before 

the administration of an AMPH-challenge or vehicle (F(1,12)=1.63; p>0.05) and 

the two factors (group, session) did not interact significantly (F(1,12)=1.62; 

p>0.05). Basal ACh release was 7.53±1.58 fmol/15 μl. Basal release did not 

differ between non-performing (above) and attentional task-performing rats 

(F(1,22)=0.00; p>0.05). 

Effects of AMPH-Challenges on Performance-associated ACh Release: As 

illustrated in Figure 3.2, following the administration of drug or vehicle as 

challenges, two dialysates were collected before task onset. An overall ANOVA 

on the effects of task-stage (pre-task vs. task), pretreatment, and challenge 

revealed a significant interaction between the effects of pretreatment and 

challenge (F(1,12)=31.63; p<0.001). However, there was no effect of task-stage 

and no interactions between task-stage, pretreatment or challenge (all p>0.05). 
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Thus, the effects of repeated AMPH exposure and AMPH-challenge on ACh 

release did not differ between the two collections taken before task onset and the 

four collections taken during task performance (see Figure 3.4). 

Similar to the results from previous experiments (Arnold, Nelson et al. 

2003) (Himmelheber, Sarter et al. 2000) (Kozak, Bruno et al. 2006), performance 

of the attention task increased ACh release in the mPFC over baseline. In 

SAL/SAL animals, ACh release increased by 158.28 18.49% over basal ACh 

levels during the performance of the task (F(1,6)=66.98; p<0.001; see Figure 

3.4). The performance-associated increase in mPFC ACh release is comparable 

to the increase observed previously in animals performing this task and using 

similar microdialysis conditions, including the absence of an acetylcholinesterase 

inhibitor (Kozak, Bruno et al. 2006). 

The effects of the AMPH-challenges differed significantly between groups 

of rats pretreated with SAL vs. AMPH (pretreatment challenge: F(1,12)=30.74; 

p<0.0001; main effect of challenge: F(1,12)=6.14; p=0.03; main effect of 

pretreatment: F(1,12)=3.00; p>0.05; the factor time (T1–T4) did not produce a 

main effect and did not interact with group and session; all p>0.05). Figure 3.4 

illustrates that AMPH-challenges in animals pretreated with AMPH 

(AMPH/AMPH) resulted in the attenuation of performance-associated increases 

in ACh release. Several post hoc comparisons further substantiated this result. 

The acute administration of AMPH in SAL-pretreated rats did not affect the 

elevated levels of ACh release observed in animals performing this task 
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(SAL/SAL vs. SAL/AMPH; F(1,6)=3.88; p>0.05). In contrast, the acute 

administration of, or the challenge with, AMPH in animals that were pretreated 

also with AMPH resulted in a significant attenuation of ACh release levels when 

compared with animals pretreated with SAL (SAL/AMPH vs. AMPH/AMPH 

(F(1,12)=29.62; p<0.0001). Multiple comparisons indicated that all data points 

(T1–T4) differed significantly by pretreatment (all p<0.004; Figure 3.4, lower 

graph). Averaged over all time points, performance-associated ACh release in 

SAL/AMPH animals was 235.93±27.47% over pretask baseline and 

47.89±24.42% in AMPH/AMPH rats. The attenuation of ACh release levels in 

AMPH/AMPH animals was also revealed by the within-subject comparison 

(AMPH/SAL vs. AMPH/AMPH; F(1,6)=40.83; p=0.001). 

The attenuated levels of ACh release observed in performing 

AMPH/AMPH rats did not differ significantly from release levels measured at 

baseline (before task onset and before drug treatment (F(1,6)=2.65; p>0.05). 

Moreover, a post hoc comparison between ACh release levels in AMPH/AMPH 

animals over all three phases (baseline, post-drug/pre-task, during performance) 

indicated that ACh release levels in these animals never changed from baseline 

(F(2,12)=0.79; p>0.05). 

Finally, in animals pretreated with AMPH and dialyzed following vehicle-

'challenge' (AMPH/SAL; Figure 3.4), performance-associated ACh release was 

significantly higher than in animals pretreated and 'challenged' with vehicle 

(SAL/SAL; F(1,12)=5.34; p=0.04; averaged over all time points: saline-
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pretreated: 158.28±18.49% over baseline; AMPH-pretreated: 250.92±18.44%). 

Multiple comparisons indicated that release during T3 was significantly higher in 

animals pretreated with AMPH (F(1,12)=5.20; p=0.042; the effect neared 

significance during T1; F(1,12)=4.10, p=0.06; Figure 3.4, top graph). 

Baseline performance before the administration of challenges: During the 

pretreatment period, administration of escalating doses of AMPH (Figure 3.1b) 

increasingly disrupted the animals' performance. During drug-free weekends, 

performance partially recovered. The pattern of the performance during the 40-

day AMPH-pretreatment period and during the subsequent 2-week withdrawal 

period corresponded with the evidence described previously (Martinez, Parikh et 

al. 2005). Before the challenge with AMPH or vehicle, the performance of all 

animals as measured by VI remained impaired relative to the pretreatment 

baseline (F(1,12)=5.05; p=0.04; pretreatment baseline, VI averaged over all 

signal durations: 0.24 0.03; pre-challenge baseline: 0.12 0.03; see Figure 3.1 for 

timeline and Methods for additional details). Importantly, the performance of 

AMPH-pretreated rats did not differ from saline-pretreated rats before the 

administration of the challenges (F(1,12)=0.01; p>0.05), confirming that the 

relatively low level of performance at this point was not a result of AMPH-

pretreatment but of the testing conditions, particularly the tethering procedures 

required to conduct microdialysis in task-performing animals. The number of 

trials omitted remained low and did not differ from pretreatment baseline levels 

(F(1,12)=0.02; p>0.05; pretreatment baseline: 12.1±6.0% trials omitted/session; 

pre-challenge baseline: 9.0 1.8%). 
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Performance during challenge doses: The analysis of the effects of AMPH-

challenges on performance (VI) indicated a significant interaction between the 

effects of pretreatment, session and signal duration (F(2,24)=5.27; p=0.01). 

Figure 3.5 depicts VI scores individually for the four treatment conditions and 

each signal duration. Post hoc analyses were conducted to identify the nature of 

this interaction. First, as was expected, the administration of AMPH as a 

challenge in SAL-pretreated rats (SAL/AMPH) did not affect VI (SAL/SAL vs. 

SAL/AMPH; F(1,6)=0.39; p>0.05). Likewise, pretreatment with AMPH alone did 

not affect performance (SAL/SAL vs. AMPH/SAL; F(1,12)=0.28; p>0.05). In 

contrast, the AMPH-challenge in AMPH-pretreated rats resulted in a significant 

decrease in performance compared with the administration of SAL in AMPH-

pretreated rats (AMPH/SAL vs. AMPH/AMPH; F(1,6)=7.50; p=0.03). Thus, 

interactions between the effects of pretreatment and challenge with AMPH were 

responsible for the disruption of performance. 

Figure 3.5 also illustrates the role of signal duration as a factor in the 

significant overall interaction. One-way ANOVAs indicated significant effects of 

signal duration on performance in SAL/SAL (F(2,12)=16.51; p=0.003) and 

AMPH/SAL rats (F(2,12)=9.33; p=0.004; see Figure 3.5 for multiple 

comparisons). As indicated in Figure 3.5, in SAL/AMPH animals, data variability 

prevent the demonstration of a significant effect of signal duration on VI 

(F(2,12)=3.48; p=0.07), whereas the performance of AMPH/AMPH rats was 

depressed and varied between +0.1 and -0.1 for all signal durations 

(F(2,12)=2.92; p>0.05). Thus, pretreatment and challenge with AMPH abolished 
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signal duration-dependent performance; this effect is reflected in the overall 

significant interaction between the effects of pretreatment, challenge, and signal 

duration reported above. 

A similar interaction between these three factors was found in the analysis 

of hits (F(2,24)=4.41; p=0.02), but not correction rejections (F(1,12)=1.11; 

p=0.31), indicating that the effects on VI were largely due to effects of the 

animals' ability to detect signals. This finding is consistent with the selective 

impairment in signal trial performance observed following removal of the cortical 

cholinergic input system (McGaughy, Kaiser et al. 1996).Finally, AMPH-

challenges did not affect the animals' errors of omission (F(1,12)=1.57; p=0.24). 

Omission rates remained generally low (5.54±0.76 omissions/session, averaged 

over all four groups and both test sessions). 

3.5 Discussion 

The present results indicate that in animals habituated to testing and 

microdialysis conditions but that did not perform the attentional task, 

pretreatment with an escalating dosing regimen of AMPH did not alter the effects 

of AMPH-challenges on prefrontal ACh release. In contrast, in rats performing 

the attentional task, such a challenge profoundly attenuated the increases in ACh 

release normally observed in animals performing this task- but only in animals 

that were pretreated with AMPH. Furthermore, task performance was disrupted 

in AMPH/AMPH animals. Based on post-drug and pretask ACh release values, 

the disruption of performance in AMPH/AMPH animals is concluded to represent 
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a result of the attenuation of prefrontal cholinergic activity. These results suggest 

that the effects of repeated AMPH exposure on the regulation of cholinergic 

neurotransmission in the mPFC depend on the level of recruitment of the 

cholinergic system. Below, empirical limitations and interpretational complexities 

will be discussed, followed by an evaluation of the significance of these findings 

for research on the neurobiology of sensitized cognitive impairments and animal 

models of schizophrenia. 

The present results have implications for the understanding of the 

relationships between ACh release and levels of attentional performance. 

Previous experiments indicated that increases in the demands on attentional 

performance, resulting from long-task periods or pharmacological challenges on 

performance, as opposed to increases in performance levels, correlate with 

increases in cortical ACh release in task-performing animals (Kozak, Bruno et al. 

2006; Passetti, Dalley et al. 2000). This evidence corresponds with the 

hypothesis that increases in mPFC ACh release above normal performance-

associated levels mediate the recruitment of the 'anterior attention system' and 

the resulting implementation of top-down mechanisms that counteract the 

performance decrements triggered by challenging conditions (Sarter, Gehring et 

al. 2006). Based on this hypothesis, the augmented increases in ACh release 

observed in AMPH/SAL rats, when compared with SAL/SAL animals, may reflect 

the greater demands on attentional effort required to maintain normal attentional 

performance. Thus, AMPH/SAL animals were able to perform at control levels 
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but required abnormally high levels of mPFC cholinergic activity to maintain 

performance. 

The present evidence suggests that AMPH-pretreatment and AMPH-

challenge disrupts attentional performance-associated increases in mPFC ACh 

release and therefore impaired the animals' ability to employ information 

concerning the presence or absence of a signal to guide the selection and 

execution of a response. The finding that following saline or AMPH-challenges, 

pretask ACh release levels did not differ significantly from ACh release levels 

during task performance suggests that continuous task performance, the 

expectation of performance and task onset, and/or being placed in the 

performance context, are sufficient to reveal the consequences of AMPH-

pretreatment. Moreover, this finding supports the view that following repeated 

AMPH exposure in task-performing rats, AMPH-challenges disrupt the normal 

recruitment of cholinergic inputs to the PFC and therefore results in the loss of 

cognitive control. In contrast, the results do not support the alternative view that 

repeated AMPH, via unknown mechanisms, abolished cognitive task control and 

that the low levels of ACh release were merely secondary to the 

behavioral/cognitive effects of repeated AMPH exposure. 

Previous studies demonstrated that the performance of operant schedules 

not involving explicit demands on attention do not produce significant increases 

in cortical ACh release, or produce increases that are substantially lower than 

those associated with attentional performance. For example, cortical ACh release 
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in rats performing a fixed interval 9 s schedule of reinforcement increased only by 

about 50% over baseline, despite a lever-pressing rate that was almost 10-fold 

the rate observed in sustained attention task-performing rats (Arnold, Burk et al. 

2002). Likewise, operant procedures controlling for the effects of reward rate and 

the sensory effects of stimuli indicated that these variables do not account for the 

increases in ACh release observed in attentional task-performing rats (Dalley, 

McGaughy et al. 2001; Himmelheber, Sarter et al. 1997). As the performance in 

non-cognitive procedures does not yield the levels of cholinergic activity 

observed in attentional task-performing animals, the interactions between 

recruitment of the cholinergic system and repeated psychostimulant exposure 

demonstrated in the present experiment would not be expected in animals 

performing tasks that do not tax cognitive functions. 

In AMPH/AMPH animals, VI scores varied around zero across all signal 

durations (Figure 3.5). A VI score of zero indicates a loss of the ability to 

discriminate between signal and non-signal trails. That is, responses in signal 

and non-signal trials reached chance level and the animals' performance was no 

longer controlled by the presence or absence of a signal. Therefore, the 

performance of these animals no longer involved attentional processes and the 

processing of stimulus-response rules. Levels of ACh release in AMPH/AMPH 

animals performing the attention task (present experiment) were similar to ACh 

release levels observed in rats performing simple operant procedures not 

involving cognitive operations (references above). This observation is consistent 

with the conclusion that in AMPH/AMPH rats, cognitive task control was 
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abolished. Indeed, ACh release in AMPH/AMPH rats did not increase 

significantly beyond pre-task baseline. Thus, both the behavioral data and the 

ACh release levels support the conclusion that as a result of the pretreatment 

and challenge with AMPH, the animals' ability to utilize the presence or absence 

of signals to guide the responses was drastically impaired or, in other words, 

cognitive task control was disrupted. 

As the pretreatment history of the animals did not modulate the effects of 

AMPH-challenges in non-performing animals, the present evidence provides a 

rather stark illustration of the view that the effective demonstration of abnormal 

regulation of a neuronal system requires recruitment of this system by, for 

example, demands on relevant behavioral or cognitive functions. This view 

contrasts with the widespread practice of assessing drug effects on 

neurotransmitter release, or with the status of neurotransmitter systems in animal 

models, in animals that remain passive or even anesthetized, and in the absence 

of recruitment of the neuronal system of interest (Sarter, Bruno et al. 2007). 

The mechanisms underlying such drastically different modulation of the 

cortical cholinergic input system in response to repeated AMPH exposure remain 

a subject of speculation. In non-performing but extensively habituated animals, 

repeated AMPH-induced increases in ACh release could reflect a purely 

pharmacological effect, due primarily to the release of norepinephrine (Rothman, 

Baumann et al. 2001; Vanderschuren, Schmidt et al. 1999) and dopamine 

(Robinson, Jurson et al. 1988), both of which are capable of stimulating 
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cholinergic neurons in the basal forebrain (Arnold, Fadel et al. 2001; Momiyama 

and Sim 1996; Berntson, Shafi et al. 2003; Napier, Simson et al. 1991). 

In contrast, the recruitment of prefrontal cholinergic inputs in task-

performing animals is thought to be mediated via direct prefrontal projections to 

the basal forebrain as well as via multi-synaptic circuits involving the nucleus 

accumbens and perhaps also the amygdala (Holland, Han et al. 2000; Neigh-

McCandless, Kravitz et al. 2002; Sarter, Givens et al. 2001; Sarter, Hasselmo et 

al. 2005; Zaborszky, Gaykema et al. 1997; Zaborszky 2002; Zahm 2000). 

Together with evidence demonstrating the disruption of the prefrontal modulation 

of accumbens neurons following repeated psychostimulant exposure (Goto and 

Grace 2005), the present findings suggest that repeated AMPH-exposure 

disrupts such telencephalic innervation of basal forebrain cholinergic neurons 

and thus, prefrontal ACh release. A range of neuronal mechanisms could be 

responsible for such a disruption, including abnormalities in glutamatergic and 

dopaminergic neurotransmission in prefrontal and mesolimbic regions (Giorgetti, 

Hotsenpiller et al. 2001; Lu and Wolf 1999; Peterson, Wolf et al. 2006; Prasad, 

Sorg et al. 1995) as well as structural reorganization of prefrontal and mesolimbic 

neurons (Crombag, Gorny et al. 2005; Robinson and Kolb 2004). 

As the administration of AMPH as a challenge was necessary to reveal 

the cholinergic and cognitive consequences of the pretreatment with AMPH, it 

can be speculated that these consequences were a result of interactions 

between increases in noradrenergic and dopaminergic neurotransmission and 

 99



 

the recruitment of the cholinergic system by cognitive task performance. 

Importantly, this conclusion does not imply that the dysregulatory consequences 

of repeated psychostimulant exposure remain restricted to monoaminergic 

systems; rather, the current results indicate that increases in 

noradrenergic/dopaminergic systems are necessary to reveal the cholinergic and 

cognitive consequences of prior psychostimulant exposure. In addition, the 

results indicate that AMPH-pretreatment alone (AMPH/SAL) affects performance-

related regulation of ACh release, as higher levels of ACh release were required 

to maintain normal performance levels in these animals. 

As pointed out in the Introduction, the effects of repeated AMPH exposure 

model essential neurobiological and behavioral/cognitive aspects of 

schizophrenia. The present results indicate that repeated AMPH exposure 

causes a fundamental loss of cognitive task control. Such failure of cognitive 

control has been proposed to form a general basis for the diverse cognitive 

symptoms of schizophrenia (Braver, Barch et al. 1999). Therefore, the effects of 

repeated AMPH exposure on attentional performance and performance-

associated ACh release appear to form a useful model for further investigations 

on the cholinergic mechanisms underlying the cognitive impairments of 

schizophrenia. Furthermore, as ongoing experiments indicate the sensitivity of 

this animal model in terms of detecting the pro-cognitive effects of drug 

treatments (Martinez 2006), this model may serve as a tool for research on the 

role of cholinergic mechanisms mediating the beneficial cognitive effects of 

treatments, and also for the detection of such treatments. 
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3.6 Figures 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1(a): Schematic illustration of the sequences of events and the two trial 
types of the sustained attention task (a). A session consisted of 162 signal or 
non-signal trials. Correct responses in signal trials (hits) and non-signal trials 
(correct rejections) were rewarded (see arrows), whereas incorrect responses 
(misses and false alarms, respectively) were not. The ITI was variable to limit the 
animals' ability to time an event. Figure 3.1(b): Illustration of the AMPH-
pretreatment regimen and the overall timeline of main events including 
pretreatment, withdrawal period, surgery and the assessment of AMPH-
challenges on attentional performance and performance-associated ACh release 
in the prefrontal cortex. Animals were treated twice a day during the pretreatment 
phase, before the daily training session and 8 h later (the ordinate depicts the 
dose that was given twice daily; each dot depicts one day and dose; see 
Methods for details). Control animals received vehicle throughout the 
pretreatment regimen (not shown) and, similar to AMPH-pretreated rats, AMPH-
'challenges' following the 'withdrawal' period. Non-performing animals were 
treated likewise, except that the task was n0ever activated. 
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Figure 3.2: Main sequence of events following surgery (top) and detailed 
illustration of events during an individual dialysis session (lower line). As detailed 
in the Methods section, animals were implanted with a guide cannula for the later 
insertion of a microdialysis probe 7 days following the completion of the 
pretreatment regimen (see also Figure 3.1b). Following a period of subsequent 
recovery and daily behavioral training under mock-dialysis conditions, animals 
underwent two sessions during which probes were inserted into the prefrontal 
cortex and perfused. Vehicle or AMPH-challenges were administered during 
these sessions. During an individual dialysis session, the probe was inserted 
early in the morning, the animal was placed into the operant chamber, and the 
probe was connected to syringes and pumps. During the next 3 h, the probe was 
perfused and dialysates were discarded. The three collections before drug 
administration were used to determine the stability of ACh efflux and basal ACh 
efflux. Following two collections after the administration of drug or vehicle, the 
task was activated and four 10-min samples were collected. The inset shows a 
representative placement of a microdialysis probe in the prelimbic region (Prl), 
superimposed over a schematic section (left) and an actual coronal section 
(probe length reflects approximately the 1 mm scales inserted in both the 
schematic and the photomicrograph). 
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Figure 3.3: Effects of AMPH-pretreatment and AMPH-challenge on mPFC ACh 
release in non-performing rats (M±SEM). The bar graphs indicate absolute 
release levels (in fmol/15 μl) before the administration of saline (SAL) or AMPH. 
Following saline-'challenges', ACh release levels did not differ between saline- 
and AMPH-pretreated animals (a; see Results for statistical findings). AMPH-
challenges resulted in comparable increases in ACh release in animals 
pretreated with SAL or AMPH (b). Thus, in non-performing animals, the type of 
pretreatment did not modify the effects of the acute challenges on ACh release. 
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Figure 3.4: Effects of AMPH-pretreatment and AMPH-challenge on mPFC ACh 
release in task performing rats. In attentional task-performing rats, the type of 
pretreatment (saline vs. AMPH) determined the effects of the challenge (saline 
vs. AMPH) on ACh release (M±SEM). The bar graphs indicate absolute release 
levels (in fmol/15 μl) before the administration of saline (SAL) (a) or AMPH (b). 
Absolute levels of ACh release did not differ significantly between the groups or 
session, and they did not differ from animals that did not perform the task (Figure 
3.3; see Results for statistical findings). AMPH-pretreatment and AMPH-
challenge (AMPH/AMPH) resulted in a highly robust attenuation of performance-
associated increase in ACh release (b). This effect was already present during 
the two collections taken before task onset, suggesting that continuous 
expectation of task onset and performance and/or the context of performance are 
sufficient to reveal the interactions between pretreatment and challenge. This 
observation also rejects the possibility that the attenuation of performance-
associated increases in ACh release in AMPH-pretreated and -challenged 
animals represented merely secondary effects of the disruption of performance 
(*p<0.05; **p<0.005, significant differences between animals pretreated with 
saline vs. AMPH; see Results for ANOVAs). 
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Figure 3.5: Effects of AMPH-pretreatment and AMPH-challenge on overall 
attentional performance as indicated by VI (M±SEM). As a result of performing 
under dialysis conditions, including the tethering of the animals, performance was 
variable and levels of performance were relatively low when compared with the 
performance before surgery. However, AMPH-challenges resulted in significantly 
lower levels of performance in AMPH-pretreated animals when compared to the 
effects of AMPH in saline-pretreated rats. Furthermore, in contrast to SAL/SAL 
and AMPH/SAL rats (*p<0.05; multiple comparisons using LSD tests and 
conducted on the basis of significant ANOVAs), the depressed levels of 
performance of AMPH/AMPH animals did not depend on signal duration. The 
performance in SAL/AMPH animals appeared to remain dependent on signal 
duration; however, data variability prevented statistical significance (p=0.07). 
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CHAPTER 4 
 

DETECTION OF THE MODERATE BENEFICIAL EFFECTS OF LOW-DOSE 
TREATMENT WITH HALOPERIDOL OR CLOZAPINE IN AN AMPHETAMINE 

MODEL OF THE ATTENTIONAL IMPAIRMENTS OF SCHIZOPHRENIA 
 

4.1 Summary 

Schizophrenic patients display attentional impairments. Low- to- moderate 

dose treatments of both first- and second-generation antipsychotic drugs have 

been demonstrated to produce moderate pro-cognitive effects in patients (Keefe, 

Seidman et al. 2004; Mishara and Goldberg 2004). The effects of repeated 

exposure to amphetamine (AMPH) model certain aspects of impaired attention 

processing in schizophrenia. Previous work has demonstrated that the 

consequences of repeated AMPH and subsequent challenge dosing include 

impaired attentional performance and attenuation of task-associated cortical 

cholinergic activity. The goal of the present experiment was to define an animal 

model capable of detecting the moderate beneficial effects of low dose treatment 

with haloperidol or clozapine on attention. To this end, the present experiment 

employed a repeated-AMPH model that has been shown to produce 

performance impairments in rats performing a sustained attention task. 

Specifically, AMPH-challenges produced robustly impaired hit rates in AMPH-

pretreated rats, but not in rats pretreated with saline. Treatments with HAL or 

CLOZ attenuated these impairments. Collectively, these results indicate that the 

first-and second-generation drugs produce performance improvements 

sufficiently robust to be detected by this model. Therefore, the effects of this 
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particular AMPH pretreatment regimen on attentional performance may serve as 

a useful model for the preclinical detection and characterization of putative pro-

cognitive treatments for schizophrenia. 

4.2 Introduction 

Cognitive impairments, including deficits in attention processing, represent 

central and enduring features of schizophrenia (Elvevag and Goldberg 2000). 

They are evident in the majority of schizophrenic patients (~65-85%) and are 

known to predict vocational and interpersonal outcomes in patients (Green 1996; 

Keefe, Eesley et al. 2005). Preclinical strategies for assessing drugs to improve 

attentional impairments in schizophrenics remain unavailable. Attention refers to 

a set of cognitive processes that facilitate the detection and processing of 

relevant stimuli, and filtering of irrelevant stimuli. Impairments in attentional 

functions are thought to represent a core aspect of the cognitive symptoms of 

schizophrenia (Sarter, Hasselmo et al. 2005) and represent a target of 

intervention to improve cognition in schizophrenia. This evidence highlights the 

need for the development and application of novel treatments targeted explicitly 

towards minimizing the attentional impairments associated with the 

schizophrenia. 

The traditional views that first-generation drugs do not produce cognitive 

benefits, or that second-generation drugs produce superior cognitive benefits are 

not entirely substantiated. Meta-analyses and several well controlled experiments 

have determined that treatment with both first- and second-generation 

antipsychotics produce limited improvements on multiple domains of impaired 
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cognition in schizophrenia, particularly when administered at low doses (Mishara 

and Goldberg 2004; Harvey, Rabinowitz et al. 2005; Purdon, Jones et al. 2000; 

Rollnik, Borsutzky et al. 2002), and that the superior efficacy of second- over 

first-generation drugs may be negligible, or drug-specific in this regard (Keefe, 

Seidman et al. 2004; Keefe, Bilder et al. 2006). Because attentional impairments 

are central to impaired cognition in schizophrenia and represent a prime target of 

intervention, the present experiment employed 

Exposure to psychostimulants including amphetamine (AMPH) produces 

paranoid schizophrenic-like symptoms in healthy individuals, to ‘trigger’ the 

manifestation of latent psychosis in at risk individuals, and to exacerbate 

psychotic symptoms in chronically ill patients (Yui, Ikemoto et al. 2000; 

Lieberman, Kane et al. 1987; Lieberman, Kane et al. 1987; but see Barch and 

Carter 2005). These effects are thought to be based on the capacity of 

psychostimulant drugs to induce sensitization of the mesolimbic dopamine 

system (Robinson and Becker 1986). Abnormal regulation the mesolimbic 

dopamine system is considered to be a central characteristic of the neurobiology 

of schizophrenia, and has been evidenced by neuro-imaging data from 

schizophrenic patients (Laruelle, Abi-Dargham et al. 1996; Breier, Su et al. 1997; 

Laruelle, Abi-Dargham et al. 1999). 

Because attention processing represents a preclinical target for the 

development of pro-cognitive drugs, the present experiment assesses attention 

performance in rats using an AMPH-model of schizophrenia. Repeated, 

escalating administration of AMPH has been used to model various aspects of 
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schizophrenia in rats including mesolimbic dopamine dysregulation and 

attentional impairments (Paulson, Camp et al. 1991; Paulson and Robinson 

1995) (Martinez, Parikh et al. 2005) (Kozak 2007). This dosing regimen is meant 

to simulate the ‘runs and crashes’ pattern of abuse frequently associated with 

AMPH-induced psychosis, and is considered a putative animal model of 

schizophrenia (Robinson and Becker 1986; Segal and Kuczenski 1997). 

Furthermore, this dosing regimen has been shown to produce robust and 

persistent neurochemical and behavioral sensitization in rats without the result of 

neurotoxicity (Paulson, Camp et al. 1991; Paulson and Robinson 1995). 

Repeated, escalating AMPH-treatment followed by a drug-free period and 

subsequent administration of AMPH-challenges results in cortical deficits in 

sustained attention performance as well as dysregulation of the cortical 

cholinergic input system that is necessary for attention processing (Martinez, 

Parikh et al. 2005; Kozak 2007). It should be noted that the subsequent 

administration of AMPH-challenges used in this paradigm are thought to model 

the precipitous events (i.e. a psychological, social, or chemical stressor) known 

to elicit psychotic relapse in humans (Robinson and Becker 1986; Nuechterlein, 

Dawson et al. 1994; Moghaddam 2002; Muller 2004). 

The present experiment tests the hypothesis that moderate, sub-chronic 

administration of first- and second-generation drugs (haloperidol and clozapine) 

can attenuate the attentional impairments demonstrated in a repeated-AMPH 

model of schizophrenia. Specifically, that antipsychotic administration will 

mitigate the attenuated hit rates observed in animals pretreated and challenged 
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with AMPH. Rats were trained to perform a sustained attention task and then 

pretreated with either escalating AMPH or saline. Following a drug-free period, 

animals were administered a 10-day regimen of haloperidol, clozapine, or 

vehicle. All animals then received AMPH-challenge doses on days 1, 5, and 10 of 

antipsychotic treatment. Sustained attention performance was assessed 7 days 

per week during all points of the experiment. The present findings support the 

hypothesis that the present paradigm is sensitive to the beneficial effects of low 

doses of antipsychotic drugs. The present paradigm may prove useful for the 

development of novel drugs to treat attentional impairments in schizophrenia.  

4.3 Methods 

Animals: Forty-two male Sprague-Dawley rats (Harlan, Indianapolis, Indiana; 

aged 3 months and weighing 422±17 g (M±SEM) at the beginning of the 

experiment) were housed in single-standard cages with corn cob bedding in a 

humidity-(~45%) and temperature-(23°C) controlled environment. Testing 

occurred between the hours of 8:00 am and 5:30 pm.  Animals were handling 

extensively prior to the initiation of behavioral training. All rats were water 

deprived to approximately 95% of free-access weight.  Access to water was 

limited to a 30-minute period in the home cage following daily behavioral testing 

and approximately five additional milliliters of water reward could be earned 

during each daily session of operant testing. Food (Rodent Chow, Harlan Teklad, 

Madison, WI) was provided ad libitum in the home cage. All animal care, 

facilities, and experimental procedures were approved and supervised by the 

University Committee On Use and Care of Animals at the University of Michigan. 
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Lighting followed a 12-hour light-dark cycle (lights on at 6 am). 

Apparatus: Behavioral training and testing took place in 12 operant chambers 

(Med-Associates, St Albans, VT). Each operant chamber was enclosed within a 

sound-attenuating compartment and equipped with two retractable levers, one 

house light (2.8 W), a central panel light, and a water dispenser located in 

between the levers. Ventilation and white noise were provided by a fan mounted 

on the wall of the sound-attenuating compartment.  

Behavioral Training: Operant training took place 7 days per week. Rats were 

placed in unlit chambers for 20 minutes prior to task onset to acclimate. Animals 

were first trained to press a lever for a water reward in accordance with a 

modified fixed-ratio 1 schedule of reinforcement. During phase two of shaping, 

animals were trained to detect signals and discriminate between the presentation 

of signal events (illumination of the central panel light for 1 s) and non-signal 

events (non-illumination of light). Presentation of signal or non-signal events was 

randomized. Two seconds following the occurrence of a signal or non-signal 

event, both levers extended into the operant chamber and remained active for 

four seconds or until a response occurred. If the animal failed to respond within 4 

s the levers were retracted and an omission was scored. Immediately following a 

response (either correct or incorrect), both levers were retracted and the variable 

ITI (12±3 s) was reset (Figure 4.1).  During signal trials, depression of the left 

lever indicated a correct response and was scored as a hit whereas depression 

of the right lever indicated an incorrect response was scored as a miss. 
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Conversely, during non-signal trials depression of the left lever indicated an 

incorrect response and was scored as a false-alarm and depression of the right 

lever indicated a correct response and was scored as a correct rejection. Animals 

received water rewards only for correct responses (30 μl for each hit and correct 

rejection); incorrect responses (misses and false alarms) were not rewarded.  

During this phase of shaping incorrect responses resulted in the trial being 

repeated up to three times in the form of correction trials. If the animals continued 

to respond incorrectly following three correction trials, a forced-choice trial was 

initiated. A forced-choice trial consisted of a signal or non-signal event followed 

by extension of only the correct lever into the operant chamber for 90 s or until a 

lever press occurs. In the event that the forced-choice trial was a signal trial, the 

signal light remained illuminated for as long as the lever was extended. The 

house light was off during this shaping phase. Behavioral sessions consisted of 

162 trials per session. After 3 consecutive days of responding correctly to ≥59% 

of both signal- and non-signal trials animals progressed to the subsequent step 

of shaping.  

During the third phase of shaping, signal durations were shortened to 500, 

50, or 25 ms (27 trials per duration) and the ITI was reduced to 9±3 s. Correction 

and forced-choice trials were also eliminated. Sessions were divided into three 

blocks of 54 trials each with all signal durations occurring randomly 9 times per 

block. Animals were advanced to the final stage of shaping when their 

performance met or exceeded a performance criterion of 70% hits to the 500 ms 

signal trials, 70% correct rejections and fewer than 20 omitted trials per session. 
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During the final stage of shaping the house-light was illuminated throughout the 

entire testing session. The addition of the illuminated house-light represents a 

crucial element of testing sustained attention as it requires the animal to 

constrain its behavior and focus on the central panel light during task 

performance. Upon reaching the final criterion of ≥70% correct responses to the 

500 ms signal trials, ≥70% correct responses to non-signal trials and fewer than 

that 20 omissions per sessions for a minimum of 3 consecutive sessions drug 

treatment was initiated (described below).  

Pretreatment Regimen and Challenges: Animals were separated into two groups 

designated to receive pretreatment with either escalating AMPH (1-10 mg/kg, 

n=21) or saline (1 ml/kg, n=21). Intraperitoneal injections were administered 

twice daily, once at 9 a.m. in the operant chamber (20 minutes prior to task 

onset) and again eight hours later in the home cage environment. AMPH 

pretreatment spanned 40 days, with doses ranging from 1-10 mg/kg bodyweight 

(Figure 4.2, represents salt weight, dissolved in 0.9 % saline). AMPH was 

administered 5 days per week and with saline (0.9%, 1 ml/kg) administered on 

the weekends. The intermittency and escalation of and this dosing regimen 

purposefully mimics the “runs and crashes” pattern of abuse that is typically 

displayed by amphetamine addicts and has been shown to result in psychosis 

(Segal and Kuczenski 1997). Following the cessation of AMPH or saline 

pretreatment, all animals received saline injections for a period of 10 days. This 

10 day period of withdrawal was designed precede the administration of a 10 day 

sub-chronic antipsychotic dosing schedule. The timing of these events was 
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arranged such that the final challenge dose approximated the timing of 

challenges shown to disrupt attentional performance in Martinez et al. 2005. 

Treatment with clozapine or haloperidol: Following the ten-day drug free period, 

pretreatment groups were further subdivide into cohorts designated to receive 

haloperidol (HAL: 0.025 mg/kg), clozapine (CLOZ: 2.5 mg/kg), or vehicle 

(described below: 1 ml/kg). In patient populations D2 receptor occupancies 

between ~60-75% are required to produce antipsychotic effects (Kapur, Zipursky 

et al. 2000). The low doses used in this experiment were designated as such 

based on their capacities to produce <50% D2 occupancy (Kapur, VanderSpek et 

al. 2003). To better replicate clinical conditions requiring the repeated 

administration of antipsychotic treatment, dosing lasted 10 days. Administration 

of haloperidol, clozapine or vehicle to AMPH or saline-pretreated rats resulted in 

the following six cohorts of animals: (see Figure 4.3, N=7 per cohort): 1) AMPH-

pretreated: clozapine-treated (AMPH/CLOZ), 2) AMPH-pretreated: haloperidol-

treated (AMPH/HAL), 3) AMPH-pretreated: vehicle-treated (AMPH/VEH), 4) 

saline-pretreated: clozapine-treated (SAL/CLOZ), 5) saline-pretreated: 

haloperidol-treated (SAL/HAL), and 6) saline-pretreated: vehicle-treated 

(SAL/VEH). The timing of antipsychotic dosing relative to task onset was delayed 

to permit escalation in drug/plasma levels prior to the time of testing; clozapine, 

haloperidol, and vehicle were administered 40, 30, and 30 minutes prior to task 

onset (see Figure 4.4), respectively. All animals underwent AMPH challenge 

doses (1 mg/kg) on days 1, 5, and 10 of the antipsychotic treatment schedule 

(days 11, 16 and 21 following cessation of treatment). The timing of these 
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challenges with regard to antipsychotic treatment was originally designed with 

consideration for the commonly held belief that the benefits of acute 

antipsychotic treatment are minimal and that protracted dosing is required to 

produce an optimum therapeutic response (Gelder 2000; Sadock 2000).  

Data Analysis: Sustained attention performance yields measures of hits, misses, 

false alarms and correct rejections. These values are used to calculate the 

relative number of hits for each signal duration for signal trials (hits/hits+misses), 

and the relative number of correct rejections for non-signal trials (correct 

rejections/correct rejections+false alarms). Overall levels of performance are 

calculated using the Vigilance Index (VI = [(h-f)/2*(h+f)-(h+f)2]). VI is derived from 

the Sensitivity Index described by Frey and Colliver, but calculated based on the 

relative number of hits and false alarms rather than the probability of such 

occurrences (Frey 1973). Additionally VI is used expressly for describing data 

from tasks that include discrete non-signal events whereas the SI is generally 

not. VI values range from -1 to 1, with a score of 1 indicating correct responses to 

100% of attempted trials. A VI value of 0 indicates a complete inability to 

dissociate signal- from non-signal events, and reflects chance-level task 

performance. The number of omitted trials is also recorded.  

Antipsychotic administration spanned 10 days. Challenge doses took place on 

days 1, 5 and 10.  The days intermittent to challenge doses were examined by 

collapsing days 2,3,4 (T1) and days 6,7,8, and 9 (T2) into two time points. 

Analyses of clozapine and haloperidol treated animals were carried out using two 
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separate ANOVAs that included the factors group, time (T1 and T2) and signal 

duration.  

Analyses were carried out for each performance measure; all omnibus 

analyses were conducted using mixed designs. Generally the main effects and 

interactions of the factors pretreatment- group (i.e. AMPH- vs. saline-pretreated) 

and treatment-group (CLOZ, HAL, or VEH treatment) were examine with respect 

to the factors signal duration (500, 50, 25 ms, where applicable) and the factor 

‘time’ (described below). Baseline data were determined by averaging the final 

three days of performance prior to the start of pretreatment and conducting a 

mixed ANOVA using the factors group (AMPH- or saline-pretreated) and the 

factor signal duration. Next, the effects of acute administration of AMPH were 

determined by contrasting task performance of groups at baseline and following 

the acute administration of 1 mg/kg AMPH. Performance during the entire course 

of the 40 day escalating AMPH regimen could not be fully assessed due to high 

rates of omissions in AMPH-pretreated rats during higher doses of AMPH. 

Consequently, only data from the drug-free weekend periods were suitable for 

analyses. Saline-pretreated animals were only permitted to perform the task 

twice per week to control for potential practice effects. Data from weekends were 

averaged across the days to yield a total 5 time points. The subsequent analysis 

consisted of a mixed ANOVA that included the factors group (AMPH- vs. saline- 

pretreated), time (weekend) and signal duration. Following the cessation of 

pretreatment, both groups of animals continued to perform the task for 10 days. 

Data from these 10 days were analyzed by first collapsing data into three blocks 
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consisting of days 1-3 (P1), 4-7 (P2), and 8-10 (P3). Mixed ANOVAs for the 

factors group, time (P1, P2, and P3) and signal duration were then carried out. 

Using a similar analysis, data from P3 were contrasted with baseline data to 

determine the recovery of performance in AMPH and saline pretreated animals 

prior to challenge doses.  

The effects of challenge doses on AMPH- and saline-pretreated rats were 

determined by running multiple analyses to contrast the performance of the six 

smaller treatment cohorts across all three challenges. Each analysis was 

conducted as a mixed design comprised of the factors group, time (challenge 1, 

challenge 2, and challenge 3), and signal duration. The primary analysis 

contrasted the effects of AMPH/VEH and SAL/VEH animals. Subsequent 

analyses were conducted separately on AMPH- and saline-pretreated groups 

undergoing treatment with clozapine or haloperidol. These analyses made the 

following comparisons: 1) AMPH/HAL versus AMPH/VEH versus SAL/VEH; and 

2) AMPH/CLOZ versus AMPH/VEH versus SAL/VEH. SAL/VEH animals were 

used as a control group for two reasons (Martinez and Parikh, et al. 2005), first 

acute AMPH administration does not affect performance in drug naïve animals; 

and second, the effects of antipsychotics impair performance in saline-pretreated 

animals (below). A final analysis was then conducted to directly contrast the 

effects of haloperidol and clozapine in AMPH-pretreated animals. Where 

applicable, post hoc analyses were carried out using one-way ANOVAs and 

multiple comparisons (i.e. the Least Significant Difference Test). Post hoc tests 

generally consisted of direct comparisons between treatment groups for each 
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time point of interest, or within subject comparisons across time points. Statistical 

analyses were carried out on SPSS version 14. Prior to statistical analysis, 

percentage data underwent arcsine transformation (2*arcsine(√X)) (Zar 1999). P-

values below 0.05 indicated statistical significance; exact p-values were reported 

where recommended by (Greenwald 1996). 

4.4 Results 

Performance at baseline: Baseline performance values for animals designated to 

receive AMPH- or saline-pretreatment were calculated by averaging the three 

days prior to the initiation of pretreatment. Groups did not differ on any measure 

of performance (VI: (F(1,40)=2.53, p=0.11); percent hits: (F(1,40)=1.475, 

p=0.23); correct rejections (F(1,40)=1.15, p=0.29); omissions (F(1,40)=2.42, 

p=0.12). The performance of signal trials was duration dependent 

(F(2,80)=261,.97, p<0.001, Figure 4.4), as were VI scores (F(2,80)=247.24, 

p<0.001). Animals omitted an average of 4.00±6.02% of trials per session.  

Effects of acute-AMPH administration: AMPH-pretreated animals received 1 

mg/kg AMPH acutely on the first day of pretreatment. A within subjects analysis 

using AMPH-treated animals revealed that a single exposure of drug at this dose 

did not affect any measure of performance relative to baseline (VI: (F(1,40)=0.49, 

p=0.48, hits: (F(1,40)=0.56, p=0.49), correct rejections: (F(1,40)=2.71, p=0.06), 

omissions: (F(1,40)=2.71, p=0.10). Saline pretreated rats received an acute 1 

mg/kg dose of AMPH at the time of the first ‘challenge dose’ and their 

performance remained similarly unaffected (all p’s >0.06). Between group 
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comparisons indicated that performance following acute-AMPH exposure did not 

differ between groups (all p’s>0.48). 

 

Effects of escalating AMPH treatment and performance during drug-free 

weekends. Over the course of AMPH-pretreatment, doses of ≥2 mg/kg produced 

omission rates of ~100%. As described in the methods section, on weekends 

animals were administered saline and were capable of performing the task. Data 

from these drug free periods were analyzed by averaging values over two days, 

to yield 5 time points (1 per weekend, variable ‘week’). Compared to saline-

pretreated animals, the overall performance of animals receiving AMPH 

remained impaired during these drug-free days (VI: F(1,40)=8.84, p=0.005). This 

effect did not vary as a function of week or pretreatment (group x week: 

F(4,160)=2.07, p=0.09). The lower VI scores in AMPH-treated animals appeared 

to result from impaired performance on signal trials (main effect of group on hits: 

F(1,40)=6.29, p=0.02), however performance remained duration-dependent 

(F(2,51)=233.99, p<0.01). Further analysis of hits revealed a group X week 

interaction (F(4,160)=0.047). Post hoc comparisons between groups for each 

time point revealed significant group differences on weekend 3: (F(1,40)=6.73, 

p=0.01), weekend  4: (F(1,40)=8.98, p=0.005 and weekend 5: (F(1,40)=5.94, 

p=0.02) but not weekends 1 or 2 (both p’s >0.52; Figure 4.5).  

The performance of non-signal trials in AMPH-pretreated rats did not differ from 

that observed in saline-pretreated rats during the drug-free weekends (main 

effect of group: (F(1,40)=0.34, p=0.56). The number of trials omitted during drug-
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free weekends did not differ between groups (F(1,40)=0.516, p=0.47) and did not 

change as a function of week (F(4,160)=2.33, p=0.058; week x group: 

F(4,160)=1.59, p=0.18; M±SEM: 9.80±2.00% omissions/session).  

 

Performance during the withdrawal period: Following the stoppage of AMPH or 

saline pretreatment, all animals performed the task for a period of ten days 

(henceforth referred to as the ‘withdrawal’ period). To reiterate, here the term 

withdrawal is used specifically to describe the stoppage of treatment and does 

not refer to the psychological or physiological state of the animal. Analyses of 

these data were carried out by collapsing the first three, middle four, and last 

three days of the drug free period  into a total of three time points (factor ‘time’: 

P1=days 1-3, P2=days 4-7, P3=days 8-10). Vigilance index scores differed 

between groups as a function of time over the course of withdrawal (group X time 

interaction: F(10,72)=2.06, p=0.04). Between groups post hoc analyses at each 

individual time point determined that the overall performance of AMPH-pretreated 

rats was significantly worse than rats pretreated with saline at P1: (F(1,40)=1.88, 

p=0.017), but that the groups did not differ at P2 or P3 (both p>0.15, Figure 4.7). 

The lower VI scores in AMPH-pretreated animals at W1 appeared to result from 

to impaired performance on non-signal trials (main effect of group: F(1,40)=5.18, 

p=0.03). Multiple comparisons performed over separate time points indicated that 

AMPH-pretreated rats performed worse on non-signal trials at P1 and P2, but not 

P3: (P1: (F(1,40)=7.02, p=0.01) ; P2:(F(1,40)=4.37, p=0.04). P3: (F(1,40)=3.29, 

p=0.07)). The performance on signal trials did not differ on the basis of group 
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(percent hits: main effect of group: F(1,40)=0.87, p=0.35), but produced a group 

X block interaction  (F(2,80)=03.93, p=0.02). Post hoc comparisons examining 

each individual time point between groups were unable to reveal the locus of this 

interaction (P1: (F(1,40)=1.88, p=0.17), P2: (F(1,40)=0.01, p=0.97), P3: 

(F(1,40)=0.75, p=0.391). 

Importantly, animals’ overall performance (VI) had recovered to the 

baseline levels observed prior to the initiation of pretreatment (time: 

F(1,40)=0.37, p=0.54). Similarly, this analysis did not reveal a main effect of 

group (F(1,40)=0.02, p=0.96) but did indicate an interaction of time and group 

(F(2,80)=10.42, p=0.002). Post hoc analysis indicated that this interaction was 

non-orthogonal, and appeared to result from the performance of saline-

pretreated animals being slightly better at W3 than at baseline (baseline: 

0.34±0.03, W3: 0.40±0.04), whereas AMPH-pretreated animals showed a trend 

in the opposite direction (baseline: 0.41±0.04, W3: 0.32±0.03). By and large, all 

animals regained baseline performance prior to the initiation of antipsychotic 

treatment and the administration of AMPH-challenges. However, all animals (i.e. 

both pretreatment groups) omitted more trials at W3 than at baseline (main effect 

of time: (F(1,40)=7.4, =0.01), M±SEM: baseline: 4.00±0.92%, W3: 11.73±2.72%). 

Importantly, the number of omitted trials did not differ between groups, and was 

still well below the originally established performance criteria of ≤20% omissions.  

The above analyses reflect comparisons made between the two larger 

pretreatment groups; all subsequent analyses compare data from the 6 smaller 

treatment cohorts (see Methods). To ensure that no group differences existed 
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between the smaller cohorts, secondary between-groups analyses were 

performed for all performance measures. These tests indicated that no between 

group differences existed between the smaller cohorts prior to challenge dosing 

(all main effects of group: p’s>0.25).  

Effects of clozapine or haloperidol in animals pretreated with AMPH or saline.   

Following withdrawal, all groups of animals were administered antipsychotics or 

vehicle for 10 days, with challenge doses occurring on days 1, 5, and 10 of 

treatment. Data from the days in between the challenge doses (henceforth 

termed ‘drug-only days’) were examined to determine the differential effects of 

antipsychotic treatment in AMPH- and saline-pretreated animals. To conduct this 

analysis, drug-only days were collapsed into two time points: T1 was comprised 

of days 2,3 and 4, and T2 was comprised of days 6,7,8, and 9.  Groups were 

compared on all performance measure across the two time points (factor ‘time’). 

Two separate ANOVAs were carried out, the first compared clozapine-treated 

groups (AMPH/CLOZ, SAL/CLOZ and SAL/VEH) and the second compared 

haloperidol-treated groups (AMPH/HAL, SAL/HAL, SAL/VEH). Analysis of 

clozapine-treated groups did not reveal any group effects for overall performance 

(VI: F(2,18)=2.72, p=0.09) and the factor group did not interact with time or signal 

duration (both p’s>0.32). Subsequent analysis revealed a main effect of group on 

signal trials (hits: F(2,18)=15.55, p<0.001; Figure 4.8), with no interactions of 

time or signal duration (both p’s>0.10). Post hoc analyses determined that 

SAL/CLOZ animals performed worse than both AMPH/CLOZ and SAL/VEH 

animals across both time points (AMPH/CLOZ vs. SAL/CLOZ: (LSD=0.59, 
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p<0.001); SAL/VEH vs. SAL/CLOZ: (LSD=0.73, p<0.001)), whereas the 

performance of AMPH/CLOZ and SAL/VEH groups did not differ (LSD=0.14, 

p=0.321). Furthermore, no group effects were observed in AMPH/CLOZ, 

SAL/CLOZ and SAL/VEH on the performance of non-signal trials (correct 

rejections: F(2,18)=1.30, p=0.29; p’s for all interactions >0.35). However, a main 

effect of group arose from the analysis of omission rates (group: (F(2,18)=3.65, 

p=0.009). Post hoc analyses determined that SAL/CLOZ rats omitted significantly 

more trials than both AMPH/CLOZ animals (LSD=0.23, p=0.03) and SAL/VEH 

animals (LSD=0.33, p=0.003), while AMPH/CLOZ and SAL/VEH groups did not 

differ. 

An identical analysis was carried out for animals treated with haloperidol 

(AMPH/HAL, SAL/HAL, SAL/VEH). These analyses did not reveal any main 

group effects or interactions for any performance measure: (VI: (F(2,18)=1.39, 

p=0.27); (hits: (F(2,18)=1.15, P=0.33; Correct rejections: (F(2,18)=2.03, p=0.16); 

omissions: (F(2,18)=2.79, p=0.08). None of these effects varied as a function of 

time and all interactions with the factor group were not significant (all p’s >0.07).  

The effects of AMPH challenges in animals previously exposed to AMPH or 

saline. As described above, acute administration of 1 mg/kg AMPH did not affect 

task performance on the first day of pretreatment; however an identical dose 

produced marked performance impairments in animals exposed to escalating 

AMPH.  The following analyses compare two groups of animals AMPH/VEH and 

SAL/VEH (factor group) across all three challenges doses (factor ‘challenge’: 

Challenge 1, Challenge 2, and Challenge 3). Following the administration of 
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challenge doses, the overall performance of AMPH-pretreated rats was impaired 

relative to the performance of animals pretreated with saline (VI: F(1,12)=5.55, 

p=0.04). These effects did not fluctuate across challenge doses (F(2,24)=0.078, 

p=0.92) or interact with the factor challenge (F(2,24)=0.652, p=0.51). The group 

differences observed on VI resulted primarily from impaired performance of 

signal trials in AMPH-pretreated animals (hits: F(1,12)=5.44, p=1.05, p=0.04; 

Figure 4.6). Despite robust impairments in AMPH-pretreated animals, 

performance of signal trials remained signal duration dependent (F(2,26)=62.17, 

p<0.005), and did not interact with the factor group (F(2,24)=1.04, p=0.36). 

Performance of non-signal trials did not differ between groups (correct rejections: 

F(1,12)=3.70, p=0.08) or across challenge doses (F(2,24)=2.06, p=0.14). The 

number of omitted trials between groups did not differ (F(1,12)=1.19, p=0.66; 

4.85±1.77 omissions per session).  

Effects on haloperidol and clozapine treatment during AMPH-challenges. As 

demonstrated above, the administration of AMPH-challenges results in robust 

performance impairments in AMPH-pretreated animals. The following analysis 

examines the ability of sub-chronic administration of haloperidol or clozapine to 

attenuate these impairments. Antipsychotic administration impaired task 

performance in saline-pretreated animals. As a result, direct comparisons 

between AMPH or saline animals receiving identical antipsychotic treatments 

would be confounded by the performance deficits observed in the saline groups. 

To avoid these confounds, the SAL/VEH animals were used as a control group 

for analyses examining performance in AMPH/CLOZ and AMPH/HAL animals. 
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As described above, acute administration of a 1 mg/kg AMPH-challenge does not 

disrupt performance in drug-naïve animals. This is also the case for SAL/VEH 

animals receiving 1 mg/kg AMPH during challenge doses (all analyses relative to 

baseline: VI: (F(3,18)=0.64, p=0.53), hits: (F(3,18)=0.45, p=0.53), correct 

rejections: (F(3,18)=2.58, p=0.12), omissions (F(3,18)=1.29, p=0.31). These 

effects did not vary across challenge doses, and did not interact with any other 

factor (all p’s>0.14).  

Effects of challenge doses in AMPH/HAL, AMPH/VEH and SAL/VEH rats. The 

consequences of haloperidol administration in AMPH-pretreated rats during 

challenge doses were assessed using three separate analyses. The first 

compares the performance of AMPH/HAL with that of the impaired AMPH/VEH 

rats. The second examines AMPH/HAL animals with respect to SAL/VEH 

animals, and the third examines performance of AMPH/HAL animals during 

challenge doses with respect to their pretreatment baseline. The performance of 

AMPH/HAL rats, although slightly improved, was not significantly better than that 

of AMPH/VEH rats during AMPH-challenges (VI:(F(1,12)=4.39, p=0.056). This 

effect did not vary across the three challenge doses (F(2,24)=1.23, p=0.15) or as 

a function of signal duration (F(2,24)=0.94, p=0.40), and these factors did not 

interact (F(2,24)=0.77, p=0.47). The minor elevation in overall performance 

demonstrated by AMPH/HAL rats could not be attributed to improved 

performance on signal trials (group: F(1,12)=3.70, p=0.078) and no effects were 

seen on the performance of non-signal trials (group: F(1,12)=1.23, p=0.29). 

These effects were not influenced by the factors challenge or signal duration (all 
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p’s>0.09). 

A second analysis was conducted to contrast the performance of 

AMPH/HAL and SAL/VEH groups. Results from this analysis indicated that that 

the performance of AMPH/HAL animals was restored to the levels observed in 

SAL/VEH animals on all measure of performance during AMPH-challenges (VI: 

(F(1,12)=0.82, p=0.38), hits: (F(1,12)=0.25, p=0.624), correct rejections: 

(F(1,12)=0.39, p=0.54), or omissions: (F(1,12)=2.43, p=0.51). These effects did 

not vary across the three challenge doses, or where applicable, on the basis of 

signal duration (all p’s>0.21). 

A third analysis was conducted within the AMPH/HAL group to determine 

if their performance during challenge doses was restored to baseline levels. 

Analysis of overall performance (VI) indicated that AMPH/HAL animals were 

significantly impaired during challenge doses relative to their performance at 

baseline (main effect of time: (F(3,18)=3.42, p=0.04). Post hoc analysis 

determined that AMPH/HAL animals were impaired relative to baseline during 

Challenge 1: (LSD=0.19, p=0.01) and Challenge 3: (LSD=0.189, p=0.040, but not 

Challenge 2: (LSD=0.155, p=0.12). However, separate analysis of signal and 

non-signal trials were unable to reveal specific differences between performance 

at baseline or during challenge doses for signal and non-signal trials (hits: 

F(3,18)=0.99, p=0.39; correct rejections: F(3,18)=1.22, p=0.33). The number of 

omitted trials did not differ between baseline and challenge doses (F(3,18)=0.66, 

p=0.44).  

Effects of challenges in AMPH/CLOZ, AMPH/VEH, and SAL/VEH rats. A similar 
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progression of statistical analyses was applied to determine the effects of 

clozapine in AMPH-pretreated animals. The following analyses first compare 

performance of AMPH/CLOZ with AMPH/VEH rats and then contrast 

AMPH/CLOZ with SAL/VEH animals. In terms of overall performance (VI), 

AMPH/CLOZ animals performed significantly better than AMPH/VEH rats (group: 

F(1,12)=4.79, p=0.049). This effect did not interact with signal duration 

(F(2,24)=1.56, p=0.23) and these improvements did not vary over the course of 

the three challenge doses (F(2,24)=2.89, p=0.08), indicating that acute 

administration of CLOZ was sufficient to counter act the detrimental effects of 

AMPH-challenges in AMPH-pretreated rats. Separate analyses were conducted 

on signal and non-signal trials. Hit rates did not show significant effects on the 

basis of group F(1,12)=3.11, p=0.10) and did not differ across challenge doses 

(F(2,24)=2.51, p=0.10). However, a three way interaction was observed for the 

factors challenge, group, and signal duration (F(4,48)=2.87, p=0.03). Post hoc 

analyses conducted on each signal duration between groups were not able to 

determine the locus of this interaction (all p’s>0.055). The performance of non-

signal trials did not differ on the basis of group for AMPH/CLOZ and AMPH/VEH 

animals (group: F(1,12)=3.77, p=0.08) and this effect did not vary as a function of 

time (F(2,24)=3.75, p=0.06). Likewise the number of omitted trials did not differ 

by group (F(1,12)=0.01, p=0.98), and the factor group did not interact with time 

(F(2,24)=1.51, p=0.24). 

A subsequent analysis was conducted to compare the performance of 

AMPH/CLOZ and SAL/VEH rats during challenge-doses. Administration of 
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clozapine in AMPH-pretreated rats restored performance to levels observed in 

saline-pretreated rats for all measures of performance. There were no significant 

group differences or interactions on any performance measure (all p’s>0.21).   

A final component of this analysis compared the baseline performance of 

AMPH/CLOZ animals to their performance during challenge doses. Treatment 

with clozapine during challenge doses counter-acted the detrimental effects of 

AMPH and allowed AMPH-pretreated animals to perform at levels analogous to 

baseline (VI: F(3,18)=1.63, p=0.21). Similar effects were demonstrated on the 

performance of signal and non-signal trials, as no difference were observed 

between baseline and challenge doses for hits (F(3,18)=1.93, p=0.21) or correct 

rejections (F(1,6)=1.41, p=0.27). 

AMPH/HAL versus AMPH/CLOZ. To directly contrast the effects of haloperidol 

and clozapine treatment in AMPH-pretreated rats during challenge doses an 

additional analysis was carried out. This was done to directly test the hypotheses 

concerning the superior efficacy of clozapine over haloperidol. This analysis 

indicates that groups treated with haloperidol and clozapine did not differ for any 

performance measure, and that these effects were consistent over all signal 

durations and challenge doses (all p’s>0.18).    

4.5 Discussion 

Similar to previous reports, escalating exposure to AMPH resulted in 

impaired performance during AMPH-challenge doses (Figure 4.6), but not during 

acute administration of the same dose (Martinez, Parikh et al. 2005; Kozak 

2007). Importantly, these impairments cannot be attributed to overt stereotypies 
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or the development of side-biases, since animals do not display these behaviors 

when engaged in sustained attention performance (Martinez, Parikh et al. 2005). 

The principle findings of this study demonstrate that low-dose treatments of 

haloperidol and clozapine effectively attenuate the attentional impairments 

observed in this repeated-AMPH model of schizophrenia. The beneficial effects 

of haloperidol were not as statistically robust as those observed with clozapine, 

however the efficacy of both drugs appeared to be largely equivalent. The 

benefits of AMPH and CLOZ treatments on performance were most robust when 

assessed using the comprehensive measure VI. However, these effects 

appeared to result primarily from improved performance on signal trials.  

The effects of clozapine treatment on attention performance were 

beneficial in AMPH-pretreated rats and detrimental in saline-pretreated rats. 

Specifically, in saline-pretreated rats clozapine administration impaired 

performance on signal trials and increased omission rates. Conversely, in AMPH-

pretreated animals the same doses of clozapine attenuated the performance 

impairments observed during AMPH-challenges and did not affect performance 

on non-challenge days. Similar impairments have been observed in rats 

performing a five choice serial reaction time task (Amitai 2007) and in humans 

performing a task measuring sustained attention. Treatment with haloperidol at 

doses producing <50% D2 occupancy did not impair performance in saline-

pretreated animals. Experiments demonstrating performance deficits following 

haloperidol administration generally use incomparably high doses, and may be of 

limited relevance to the effects observed here.   
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The present experiment applied a sub-chronic (10-day) schedule of dosing 

that was designed in part, to contrast the effects of acute and prolonged 

treatment with antipsychotics. This experimental design was based partially on 

the hypothesis that the beneficial effects of antipsychotic drugs have a delayed 

onset or lag in therapeutic efficacy. The present data demonstrate that both 

clozapine and haloperidol exert beneficial effects when administered acutely and 

that these effects did not change over the course of treatment. Although these 

results were initially surprising, a more thorough review of the literature indicated 

that the benefits of antipsychotic treatment in humans can appear on a much 

shorter timescale than conventionally expected, and in as little as 24 hours (Agid, 

Kapur et al. 2003; Kapur, Arenovich et al. 2005).  

  The exact mechanisms mediating the effects of clozapine and 

haloperidol in this model remain speculative. The hypothesis that the ability of 

these drugs to attenuate challenge-associated performance impairments results 

from D2 receptor blockade cannot be entirely excluded. That is to say, the 

performance effects observed in AMPH-pretreated animals following 

antipsychotic treatment may be a secondary consequence of D2 antagonism 

rather than pro-cognitive effects, per se. However, if the present results were a 

simple function of D2 antagonism, then the statistically more robust benefits of 

clozapine, with its weaker affinity for D2 receptors, would not be expected.  

Alternative speculations regarding the neurobiological underpinnings of 

these effects focus on the basal forebrain cholinergic system (BFCS). Evidence 

suggests that the functional integrity of the BFCS is crucial for normal attentional 
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processing (McGaughy, Kaiser et al. 1996; Everitt and Robbins 1997). Previous 

work has determined that the challenge-associated performance impairments 

demonstrated by AMPH-pretreated animals coincide with robust attenuations in 

cortical cholinergic transmission (Kozak 2007). Hypotheses regarding the 

mechanisms driving this dysregulation have implicated multiple neuroanatomical 

circuitries associated with schizophrenia and involved in regulating BFCS activity; 

including the prefrontal cortex (Zaborszky, Leranth et al. 1984), the nucleus 

accumbens (Zaborszky and Cullinan 1992), and the ventral tegmental area 

(Gaykema and Zaborszky 1996).   

Haloperidol and clozapine may normalize the aberrant mesolimbic activity 

associated with this model and allow the BFCS to be appropriately recruited to 

produce improved task performance. Despite these speculations, little is known 

regarding the effects of antipsychotic drugs on cortical cholinergic transmission in 

an operant context. Although previous work has demonstrated that clozapine, but 

not haloperidol, preferentially increases cortical cholinergic transmission, these 

experiments were carried out in passive rats and in environments that did not 

actively ‘recruit’ the basal forebrain cholinergic system (Ichikawa, Dai et al. 

2002). As demonstrated in Kozak, et al. such recruitment would be necessary for 

an accurate determination of drug effects, since data taken from passive rats 

may be drastically different from those observed in task-performing animals 

(Kozak 2007). Nonetheless, these findings may provide a basis for, or at least 

provide justification to test the hypothesis that the pro-cognitive effects of 
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antipsychotic drugs are mediated, at least in part, via the normalization of cortical 

cholinergic transmission.  

Despite the limitations of this model, its heuristic value is supported by its 

ability to detect the moderate cognitive benefits of low-dose treatment with both 

first- and second-generation antipsychotic drugs. Accordingly, model may have 

practical value as a screening and drug development tool for novel therapeutic 

interventions to improve cognition in schizophrenia. 
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4.6 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Diagrammatic representation of the drug treatment timeline. Animals 
were pretreated with either AMPH (1-10 mg/kg) or saline (1 ml/kg). Injections 
took place 5 days per week over a period of 40 days. Each dot represents the 
level of dosing that was administered twice daily. Injections took place in the 
morning prior to operant testing and again 8 hours later in the home cage.  Note 
that this regimen was intermittent, with all animals receiving saline on the 
weekends and undergoing operant testing. Following the completion of 
pretreatment, all animals received saline injections for ten days and continued 
operant testing. Pretreatment groups were then divided into smaller cohorts 
(Figure 4.3) designated to receive antipsychotic or vehicle treatment for a period 
of 10 days. AMPH challenges were administered on days 1, 5, and 10 of this 10-
day period 
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Figure 4.2: Timeline of daily events during antipsychotic treatment. During the 

10-day period of antipsychotic treatment, animals were administered 

antipsychotics in the home cage environment. Timing of doses was staggered 

prior to testing to allow drug plasma levels to rise prior to testing. Animals were 

then transferred to the operant chambers, and then on the days of challenge 

dosing, received AMPH 20 minutes prior to task initiation. 
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Figure 4.3: Schematic of treatment groups. Forty-two animals were first divided 
into groups receiving pretreatment with either saline or escalating AMPH (n=21 
per group). Following pretreatment and withdrawal, pretreatment groups were 
further subdivided into cohorts designated to receive treatment with clozapine 
(2.5 mg/kg), haloperidol (0.025 mg/kg) or vehicle (1 ml/kg). This experimental 
design yielded the following 6 groups of animals (n=7 per group): AMPH-
pretreated/vehicle post-treated (AMPH/VEH), AMPH-pretreated/haloperidol post-
treated (AMPH/HAL), AMPH-pretreated/clozapine post-treated (AMPH/CLOZ), 
SAL-pretreated/vehicle post-treated (SAL/VEH), SAL-pretreated/haloperidol post-
treated (SAL/HAL), SAL -pretreated/clozapine post-treated (SAL/CLOZ).     
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Figure 4.4: Performance of AMPH-and saline-pretreated groups at baseline. 
These data represent performance in AMPH- and saline pretreated groups 
averaged over a period of three days prior to AMPH- or saline-pretreatment. 
Groups did not differ on the performance of signal trials, and hit rates were signal 
duration dependent (percent hits; left panel). Similarly, animals’ performance on 
non-signal trials did not differ between groups (percent correct rejections; right 
panel). 
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Figure 4.5: Overall performance (VI) during each of the five weekly-drug-free 
periods. Animals performed the task twice per week. Starting with the second 
drug free period, the overall performance of animals treated with AMPH was 
markedly impaired relative to performance in saline-pretreated animals.  
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Figure 4.6: Performance of AMPH/VEH and SAL/VEH animals averaged over all 
three challenge doses. Compared to SAL/VEH animals, AMPH/VEH animals 
were robustly impaired on the performance of signal trials (left diagram). Notably, 
despite impairments hit-rates remained duration dependent in all animals. The 
performance of non-signal trials did not differ between groups. Acute 
administration of AMPH did not affect any measure of performance in SAL/VEH 
animals.   
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Figure 4.7: Performance following the completion of pretreatment. All animals 
received saline injections and continued task performance for the 10 days 
following the termination of pretreatment. Data was analyzed by dividing the 10 
days into three blocks (P1=days 1,2,3; P2=days 4,5,6,7; P3=days8,9,10). 
Compared to saline-pretreated rats, AMPH-pretreated animals showed 
impairments in overall performance (VI) during P1. Performance then recovered 
markedly throughout the remainder of the drug--free period. Importantly, groups 
did not differ prior to the initiation of antipsychotic treatment and challenge dosing 
(P3). 
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Figure 4.8: Effects of clozapine on performance in the absence of challenge 
doses (i.e. no challenge dose). Clozapine treatment lasted 10 days with 
challenge doses occurring on days 1, 5, and 10.These data reflect performance 
on the days in between challenge doses. Compared to the effects of vehicle, 
clozapine produced robust deficits on the hit rates of saline-pretreated animals. 
Pretreatment with AMPH appeared to protect animals from these deleterious 
effects (left graph). Similarly, clozapine treatment resulted in significantly 
increased rates of omitted trials in saline-pretreated rats while such impairments 
were not evident in animals pretreated with AMPH.  
 
 

 

 

 

 

 

 

 140



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Performance effects of antipsychotic in AMPH-pretreated animals 
averaged over all challenge doses.  Treatment with both clozapine and 
haloperidol attenuated performance impairments in AMPH-pretreated rats, 
however only the effects of clozapine were statistically robust.  The performance 
of AMPH/CLOZ and AMPH/HAL groups did not differ.  
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CHAPTER 5 

General Discussion 

 

5.1 Synopsis 

The experiments included in this dissertation were designed for three 

primary purposes: 1) To characterize nature of attentional impairments in an 

animal model of psychosis, 2) To test hypotheses regarding the nature of cortical 

cholinergic transmission in this model, and 3) to determine if this model of 

impaired attention in schizophrenia was sensitive to the moderate, pro-cognitive 

effects of commonly prescribed first- and second-generation drugs. The following 

section will attempt to summarize the main experimental results and describe 

some interpretational issues faced by the present data. Subsequent paragraphs 

will then delineate the significance of these findings and their relationships to 

hypotheses regarding cortical cholinergic dysregulation and impaired cognition in 

schizophrenia. Future directions will be explored at several points in this 

discussion and several testable hypotheses regarding the effects of antipsychotic 

treatment on cortical cholinergic transmission and attentional impairments are 

outlined. Finally the discussion will conclude with speculation regarding possible 

points of therapeutic relevance for improved cognition in schizophrenia.   

5.2 Summary of findings and theoretical implications 

The consequences of repeated, escalating AMPH exposure and 

subsequent challenge doses were explored in Experiment I. The results from 

Experiment 1 indicate that in AMPH-pretreated animals, administration of AMPH-
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challenges results in marked performance impairments, particularly with regards 

to signal trials. These impairments are not evident following acute AMPH 

exposure, or following administration of AMPH-‘challenges’ in saline-pretreated 

animals. It is worth reiterating that these performance deficits cannot be 

attributed to overt motor stereotypy or side-bias. AMPH-associated impairments 

were restricted to decreased hit rates (i.e. responses to signal trials) and did not 

affect correct rejection rates or the number of omitted trials. Initially, the 

selectivity of these impairments for signal trials was surprising, as the observed 

impairment bore characteristics reminiscent of those seen following the selective 

depletion of cortical cholinergic transmission (McGaughy, Kaiser et al. 1996). 

These findings contrasted with original predictions regarding the nature of 

AMPH-associated performance impairments.  

Using a pretreatment regimen and behavioral paradigm modified for 

operant-dialysis procedures, Experiment 2 aimed first to reproduce the 

behavioral deficits seen in Experiment 1, and second to characterize the effects 

of escalating AMPH on cortical cholinergic transmission during operant testing.  

Although the AMPH-associated attention deficits in Experiment II were somewhat 

obfuscated by micro-dialysis procedures, a similar constellation of impairments 

was evident. Microdialysis data indicated that in task-performing animals, 

repeated treatment with AMPH and subsequent administration of AMPH-

challenges resulted in marked attenuation in cortical cholinergic transmission. 

Similar results were not evident in performing animals pretreated with saline or in 

untrained, non-performing, animals pretreated with AMPH. Reductions in the 
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magnitude of performance associated cortical ACh were shown to actually 

precede task initiation, indicating that the context or expectancy of task 

performance, rather than performance per se, may have been sufficient to 

produce these effects. These results seem to suggest that attenuated cortical 

cholinergic transmission contributed to, rather than resulted from, impaired task 

performance. The possible limitations of these data will be discussed. 

The results of Experiment 3 demonstrate that low doses of haloperidol and 

clozapine can attenuate the AMPH-induced attentional impairments observed in 

a putative animal model of schizophrenia. By and large, both antipsychotic 

treatments displayed equal efficacy in AMPH-pretreated animals. In saline 

pretreated rats, clozapine produced detrimental effects (i.e. decreased hits and 

increased omissions), even in the absence of AMPH-challenge doses; similar 

impairments were not evident in AMPH-pretreated animals. These data lend 

predictive validity to this model as a screening tool for drugs to improve cognition 

in schizophrenia.  

5.3 Experimental limitations and alternative interpretations of data 

The present experiments provide data to support the core hypothesis that 

cortical cholinergic dysregulation represents an integral component of the 

neurobiology underlying schizophrenic symptoms, and that cortical cholinergic 

dysregulation may contribute to cognitive aspects of the disease. However, 

several methodological limitations prohibit the direct testing of hypotheses 

regarding the relationship of cholinergic dysregulation with respect to cognitive 

variables in this model. The following section will outline various limitations of the 
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present experiments and discuss their implications for the main hypotheses of 

these studies. 

In Experiment 2, cortical cholinergic dysregulation is evident in AMPH-

pretreated task performing rats. It is worth noting that the abnormalities in 

cholinergic transmission that are observed prior to task initiation cannot be 

singularly attributed to a specific factor such as general task expectancy, 

operational context, or explicit expectancy for cognitive task demands. The 

original hypothesis that “in order to demonstrate the abnormal regulation of a 

neurotransmitter system, recruitment of that system, by behavioral and cognitive 

operations relevant to that system, is required” has not been fully substantiated 

by these data and interpretations to this end should perhaps, be tempered. The 

main point of contention arises when determining the factors contributing to this 

dysregulation. That is, any claims that these effects result explicitly from 

expected ‘cognitive demands’ are not supported, as the data do not exclude the 

possibility that expectancies for reward or increased locomotion may have similar 

consequences. To substantiate these claims would require the addition of control 

groups to account for operational context as well as the non-attentional elements 

of task performance such locomotive behaviors, reward retrieval and 

consumption, and exposure to task-related stimuli (e.g. flashing lights and 

retracting levers). It has been demonstrated that bar pressing behavior and 

reward consumption are each sufficient to produce increases in cortical 

cholinergic transmission, albeit not to the same degree as sustained attention 

performance (Arnold, Burk et al. 2002). If, in fact, the context of sustained 
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attention performance is the key variable resulting in abnormal cortical 

cholinergic transmission, then trained AMPH-pretreated animals would exhibit 

cholinergic dysregulation only when placed into operant chambers associated 

with task performance, but not when placed in familiar environments with no 

attentional contexts.  Similarly, claims that the expectancy for attentional 

demands (consequent to training history) drives the abnormal recruitment of 

cholinergic neurons could  be substantiated using AMPH-pretreated animals 

trained to perform a simple reaction time task (as described in (Apparsundaram, 

Martinez et al. 2005). This task is thought to possess only minimal attentional 

demands and is designed to control for the motoric, reward, and stimulus 

associated components of task performance. In the absence of these controls, 

‘cognition oriented’ interpretations of these data should be limited to imply that 

the challenge-associated cortical cholinergic dysregulation evident in task-

performing, AMPH-pretreated animals is the result of abnormal recruitment of the 

BFCS by operational contexts and /or expectancy to perform a task with implicit 

attentional, motoric, stimulus, and reward associated components.  

Experiment 3 applied a sub-chronic regimen of relatively low doses of 

clozapine and haloperidol. Although the effects of clozapine were more 

statistically robust, both classes of drugs were equally efficacious in attenuating 

the challenge-associated performance impairments observed in AMPH-

pretreated animals. It remains to be determined if the performance improvements 

observed following antipsychotic treatment were the result of mechanisms other 

than direct D2 antagonism, or if these effects were simply the result of 

 146



 

antipsychotic drugs correcting the dopamine perturbations produced by an 

AMPH-challenge. If D2 antagonism represents the critical variable mediating 

these effects, then task performance should have improved as a function of a 

drug’s affinity for D2 receptors. Although experimental design does not permit a 

formal test of this hypothesis (i.e. a correlation analysis),  the more robust effects 

of clozapine compared to haloperidol, in conjunction with clozapine’s lower 

affinity for D2 receptors, does not appear to support the interpretation that these 

effects were mediated solely by D2 antagonism.  

The effects of clozapine in saline-pretreated animals were distinct from the 

effects of haloperidol. The beneficial effects of clozapine could only be 

demonstrated in AMPH-pretreated rats and its effects on saline-pretreated rats 

were actually detrimental. These mechanisms underlying these deficits are 

unknown, but speculatively, could be the result of clozapine’s actions as a 

muscarinic antagonist. Interestingly, animals treated with haloperidol did not 

show performance deficits. Similar to the effects of acute treatment with AMPH, 

these findings may indicate that sustained attention performance is robust to 

minor manipulations of the dopamine system. Understanding the precise neural 

mechanisms mediating the differential effects of clozapine in saline- and AMPH-

pretreated animals could inform hypotheses regarding beneficial actions of this 

drug on attention performance.  

The 10-day antipsychotic dosing schedule was designed in part, to 

contrast the effects of acute and prolonged antipsychotic treatments, and was 

based partially on the hypothesis that the beneficial effects of antipsychotic drugs 
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have a delayed onset or lag in therapeutic efficacy. The present data 

demonstrate that both clozapine and haloperidol exert beneficial effects when 

administered acutely. Although these results were initially surprising, a more 

thorough review of the literature indicated that the benefits of antipsychotic 

treatment can appear on a much shorter timescale than conventionally expected 

(Kapur, Arenovich et al. 2005; Agid, Kapur et al. 2003).  

5.4 Alternative animal models of schizophrenia 

Alternative models attempting to reproduce aspects of schizophrenia have 

been based on etiological and developmental disease hypotheses; specifically, 

that pre- or peri-natal insults can produce developmental disturbances that confer 

susceptibility for the later development of schizophrenia.  The common goal of 

these models has been to reproduce behavioral and neurobiological 

characteristics relevant to schizophrenia through the manipulation of putative 

‘causal’ factors associated with the disease.  For example, at least some 

epidemiological evidence suggests that obstetrical complications (Takagai, 

Kawai et al. 2006), maternal infection during gestation (Limosin, Rouillon et al. 

2003), and maternal malnutrition (Brown, Susser et al. 1996) predispose the 

development of schizophrenia. These data have guided the development of 

animal models examining the behavioral and neurobiological consequences of 

early environmental and immunological insults, such as maternal deprivation 

(Ellenbroek, van den Kroonenberg et al. 1998), prenatal exposure to MAM 

(methylazoxymethanol-acetate; Featherstone, Rizos et al. 2007), or prenatal 

immunological challenges (Meyer, Feldon et al. 2005). Proponents of such 
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models note their ability to accurately reproduce hypothetical risk factors for 

schizophrenia while replicating many schizophrenia-like phenomena including 

sensorimotor gating deficits, neuroanatomical dysmorphogenesis, and 

irregularities in the dopaminergic and glutamatergic systems. 

 In addition to the etiological models described above, the cortical and 

hippocampal dysmorphogenesis observed in some schizophrenic brains has lead 

to the development of the neonatal ventral-hippocampal lesion (NNHL) model of 

schizophrenia (Lipska, Jaskiw et al. 1993). Ventral-hippocampal lesions 

produced on postnatal day 7 result in a variety of behavioral, neuro-chemical, 

and electrophysiological abnormalities that are manifested in adulthood, but are 

not apparent in pre-pubescent animals or in animals receiving hippocampal 

lesions as adults.  Similar to schizophrenia, the behavioral consequences of 

NNHLs include hyper-responsiveness to stress, novelty, and psychostimulants; 

as well as deficits in latent inhibition and sensorimotor gating (Lipska, Jaskiw et 

al. 1993; Lipska, Swerdlow et al. 1995; O'Donnell, Lewis et al. 2002; Laplante, 

Stevenson et al. 2004). 

 Furthermore, additional pharmacologic models of schizophrenia have 

been based on the psychotogenic actions of NMDA-receptor antagonists, such 

as phencyclidine (PCP). These models are thought to reproduce the 

glutamatergic dysfunction associated with schizophrenia (Tenn, Kapur et al. 

2005; Coyle 1996). Similar to the effects of AMPH, PCP administration in 

humans can exacerbate psychotic symptoms in patients and induce psychosis in 

healthy individuals. PCP treatments in rats and non-human primates have 
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likewise been shown to produce cognitive impairments, and alternations in 

neuronal systems associated with the disease (Flores 2007; Jentsch, Redmond 

et al. 1997).  

As pointed out by critics of psychostimulant-based models, the repeated-

AMPH paradigm used here fails to replicate the inducing factors of schizophrenia 

and is not capable of addressing hypotheses related to the time course of the 

illness. In certain cases any validity inherent to psychostimulant-based models 

can not be attributed to mechanisms beyond the scope of the induced dopamine 

dysregulation that is intrinsic to the model. In the simplest terms: following a 

direct manipulation to the dopamine system (i.e. administration of a dopamine 

agonist) an animal may display an abnormality in some dopamine-related 

behavior (i.e. stereotypy); that abnormality is then rectified by another direct 

manipulation of the dopamine system (i.e. a dopamine antagonist). 

Consequently, psychostimulant models have been criticized as being incapable 

of exploring disease mechanisms beyond those directly related to dopamine 

transmission. As a consequence, critics have indicated that such models could 

be of limited use for discovering novel, non-dopamine based drugs for 

schizophrenia (Geyer 2006; Lipska and Weinberger 2000). 

 Alternatively, developmental paradigms, such as the NNHL model, are 

thought to circumvent these logical constraints by engendering abnormalities in 

systems that are distinct from those they directly manipulate (Lipska and 

Weinberger 2000). Assertions that NMDA-based models share similar 

advantages have been based on data indicating that NMDA-antagonists (i.e. 
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PCP, ketamine), produce schizophrenic like characteristics that can are 

attenuated following treatment with clozapine, but not haloperidol (Geyer 2006; 

Linn, Negi et al. 2003). Because the consequences of PCP administration were 

responsive to second-, but not first-generation drugs, this evidence was taken to 

indicate that the application of NMDA-antagonist models could be applied toward 

the discovery of non- dopamine based drugs for schizophrenia (Geyer 2006). 

However, an alternative interpretation of these results reveals the same 

tautological reasoning that the author points out in psychostimulant-based 

models. Current data indicates that PCP has a high affinity for D2 and 5-HT2A 

receptors, along with affinities for dopamine and serotonin transporters (DAT and 

SRT, respectively). The fact that clozapine also possesses a high affinity for the 

same receptor sub-types once again makes it impossible to distinguish if the 

observed effects are mediated by systems distinct from those being directly 

manipulated or if they simply reflect the competition of drugs for common 

receptors.    

In AMPH-pretreated animals, robust impairments in performance 

impairments are only apparent in the presence of an AMPH-challenge. This 

effect is problematic because, as discussed above, it occludes the mechanisms 

underlying the performance improvements observed following antipsychotic 

treatment, and furthermore is not representative of the persistent impairments 

observed throughout the entire disease course in patient populations. Perhaps 

future experiments will improve upon this model by determining ways to produce 
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persistent performance deficits in AMPH-pretreated animals in the absence of a 

direct dopamine manipulation (i.e. exposure to a stressful stimulus). 

5.5 Future directions  

Recent advances in technologies used to assess cortical ACh have made 

it possible to measure changes cortical ACh on a sub-second time scale. Such 

techniques have facilitated the examination of cortical cholinergic transmission in 

relation to discrete stimuli and specific behaviors (Parikh 2007). Furthermore, use 

of these techniques has revealed that changes in cortical cholinergic 

transmission can occur on multiple time scales. Slow rising ‘tonic’ changes are 

seen in response to general task performance, whereas faster, transient changes 

are seen in response to discrete stimuli. The microdialysis procedures employed 

in Experiment 2 are incapable of making such assessments and are generally 

thought to reflect a combination of both of these components (Parikh 2007). 

Future studies utilizing this model and applying newer technologies to determine 

the precise nature of cortical cholinergic dysregulation could provide data to 

guide attempts to normalize cholinergic transmission in schizophrenia.  These 

techniques, in conjunction with the present paradigm could be employed to test 

hypotheses concerning the mechanisms by which haloperidol and clozapine 

achieved the performance-improving effects described in experiment 3; 

specifically that these drugs normalize both phasic and tonic components of 

cortical cholinergic transmission.  

5.6 Normalizing cortical cholinergic transmission and attentional 

impairments in schizophrenia 
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 It is not known whether the beneficial effects of clozapine and haloperidol 

in the present paradigm result from their antipsychotic actions or actual cognitive 

improvements. However, the more robust effects of clozapine compared to 

haloperidol, regardless of haloperidol’s higher affinity for D2 receptors suggest 

that simple D2 antagonism may not be the single variable mediating these 

benefits. Speculatively, these benefits could stem from these drugs capacity to 

normalize afferent systems regulating the excitability of the basal forebrain, their 

direct actions on various receptor subtypes (i.e. D2, M2), or any combination of 

these effects. Attempts to alleviate the attentional impairments observed in 

schizophrenia via the direct manipulation of cholinergic mechanisms have not 

been successful. This failure is thought to stem from the inability of currently 

available drugs to restore the dynamic regulation of the cholinergic transmission 

with respect to changing stimulus environments and cognitive demands. The 

success of future endeavors to improve cognition in schizophrenia may be 

contingent upon the re-regulation basal forebrain cholinergic system via tran-

synaptic modulatory mechanisms, rather than direct cholinergic agonism or 

antagonism. 

 

5.7 Concluding remarks 

Despite the experimental and interpretational challenges described above, 

the experiments included in this thesis aid in the refinement of current 

hypotheses regarding the neural mechanisms underlying schizophrenia’s 

cognitive deficits. The above experiments provide direct evidence that abnormal 
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cortical cholinergic transmission occurs in association with attentional 

impairments in an animal model of schizophrenia. Importantly, this dysregulation 

was only apparent in task performing animals. As a consequence, the 

contributions of the basal forebrain cholinergic system to schizophrenia should 

no longer be conceptualized as trait characteristics such as excesses or 

deficiencies of cortical acetylcholine, but rather, hypotheses should reflect the 

expectation that the dysregulation of the basal forebrain cholinergic system in 

schizophrenia will vary widely depending on cognitive and contextual factors. In 

order for a drug to successfully improve cognition in schizophrenia its must be 

able to restore the dynamic regulation of this system. Furthermore, because this 

present model is sensitive to the performance improvements produced by 

antipsychotic drugs it may serve as a practical means to screen for such 

medications.  
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	Behavioral Training: Training methods and evidence in support of the validity of performance measures in terms of reflecting sustained attention performance have been previously described (McGaughy and Sarter 1995; McGaughy and Sarter 1998). It should be noted that the use of this particular task in this experiment does not necessarily imply that performance of specifically this task would uniquely activate the cortical cholinergic input system; rather, this form of attention can be more readily trained and tested in rats when compared with more complicated tasks designed to assess other aspects of attention, such as divided attention (Turchi and Sarter 1997; Turchi and Sarter 2000).
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	Apparatus: Behavioral training and testing took place in 12 operant chambers (Med-Associates, St Albans, VT). Each operant chamber was enclosed within a sound-attenuating compartment and equipped with two retractable levers, one house light (2.8 W), a central panel light, and a water dispenser located in between the levers. Ventilation and white noise were provided by a fan mounted on the wall of the sound-attenuating compartment. 

