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ABSTRACT 
 

A SCALING METHODOLOGY FOR DYNAMIC SYSTEMS: QUANTIFICATION OF 
APPROXIMATE SIMILITUDE AND USE IN MULTIOBJECTIVE DESIGN 

 
by 

Burit Kittirungsi 

 

Co-Chairs: Jeffrey L. Stein and Hosam K. Fathy 

 

 A design technique that adapts or scales a system design to meet new 

requirements is developed. This scaling technique is potentially useful because it focuses 

on retaining existing desirable characteristics (e.g., efficiency, stability) of the original 

design through minimal modifications. Previous work in the literature explored this 

notion by developing scaling techniques based on the dynamic similitude principle.  

However, such similitude-based scaling is often found too restrictive because it may not 

be feasible to satisfy all of the scaling laws designated by the similitude principle exactly. 

Moreover, the literature only defines such similitude discretely in terms of whether the 

scaled design satisfies these scaling laws. This definition then makes it impossible to 

assess the degree to which two designs are close to satisfy similitude. The work in this 

dissertation mitigates these difficulties as follows:  

 First, it uses a novel combination of activity-based model reduction and 

dimensional analysis to assess the relative importance of each scaling law and permit 



 xv

neglecting the least important ones, thereby providing more freedom than strict 

similitude-based scaling.  Next, a metric is developed to cope with the situation in which 

the most important scaling law(s) cannot be followed due to other conflicting 

requirements and constraints. This metric allows one to quantify approximate similitude, 

that is, the degree to which the scaled design is close to satisfying the discrete definition 

of exact similitude. Then, this quantification is utilized in a multiobjective scaling 

framework that trades off approximate similitude versus the conflicting requirements and 

constraints.  

 The applicability of the methodology is demonstrated through three case studies. 

The first study applies the methodology to a linear quarter-car system to scale the chassis 

vibrations. The second study scales a fuel cell’s nonlinear air supply system subject to 

different power requirements. The last case study represents a scaling design study of a 

complex multi-body dynamic vehicle design to maintain rollover safety properties when 

subject to extra roof-top loads.  These examples demonstrate that the proposed method 

does provide a systematic, computationally efficient approach to redesign as compared 

with casting the redesign as an optimization problem. 
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CHAPTER I 

INTRODUCTION 
 

1.1 MOTIVATION 

Modeling and simulation techniques have widely become instrumental in the 

design and development stage of many advanced technology programs. They play an 

essential part in allowing a great variety of design concepts to be generated and tested 

without having to rely on physical prototypes. Therefore, they help companies maintain 

their competitiveness by expediting the design and redesign processes of their engineered 

products to efficiently keep up with the frequently changing, and stringent needs in the 

market [1].  

In the initial design process, engineers often make use of modeling and simulation 

techniques along with their hands-on experience to evolve their product into its optimum, 

subject to possibly many specifications. Some of these specifications inevitably have to 

be later modified according to such stringent market needs. While these modifications 

render the optimal original design no longer optimal for the new application, some 

desirable properties of the original design may still have to be sustained and then 

migrated to the new design. For instance, a vehicle powertrain engineer might wish to 

redesign an existing automatic transmission optimized for one engine to use in 

conjunction with a more powerful engine [2], while still maintaining the original design’s 
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desirable characteristics (e.g., gear-shift response time). As another example, a vehicle 

designer may wish to scale a fuel cell optimally designed for one vehicle to propel a more 

or less power-demanding vehicle, while retaining its operational efficiency and dynamic 

responses [3].  These cases demonstrate the fact that engineers often seek new product 

designs which require scaling the magnitudes of existing proven designs’ outputs (e.g., 

torque, power, displacement, etc.) while also maintaining their salient design properties 

(e.g., efficiency, stability). It is this context that the word “scaling” will be used in this 

dissertation.  

As contemporary engineering systems are generally multidisciplinary, redesigning 

such systems typically requires the solution of a large-scale complex problem involving 

multiple domains with complex couplings among them [4]. Therefore, it is advantageous 

to have an efficient design scaling technique which can provide a shortcut by carefully 

evolving existing design solutions instead of seeking completely new ones. Such a 

scaling paradigm can be quite attractive because it would allow the engineers to optimize 

a scalable system design once, then resize it for different application needs [5, 6] . This 

also implies that one can take a design that has been tuned to perform well, through trial-

and-error, and scale it to perform as well under new circumstances, without having to 

repeatedly go through the complex and expensive trial-and-error process.  

Scaling differs from traditional engineering system design optimization in its 

strong emphasis on minimal modifications. In scaling an internal combustion engine to 

meet higher power demands, for instance, one typically seeks to change only a few 

engine parameters (e.g., number of cylinders or displacement per cylinder) to meet the 

new power demands while retaining the remaining desirable engine characteristics. This 
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can only be possible if such desirable characteristics are invariant with respect to the 

parameter or combination of parameters used for scaling. From a conceptual standpoint, 

therefore, scaling is essentially a search for invariance, and every scaling algorithm 

should be based on a principle of invariance (a.k.a.,  a similarity principle).  

Many different similarity principles exist in the literature, each of which can be 

interpreted as a metric quantifying whether or not two systems are similar. First, 

geometric similarity [7, 8] defines the conditions under which two objects are similar in 

shape. Further, kinematic and dynamic similarities [7-9] define the conditions under 

which the two objects undergo similar motions, and experience similar forces during 

those motions, respectively. In particular, these similarity conditions designate the values 

at which the properties (e.g., length, density, pressure, etc.) associated with one object has 

to be with respect to the other object. This notion of dynamic similarity or dynamic 

similitude (these two terms will be used interchangeably in this dissertation) is applicable 

to any energetic system in any domain (e.g., mechanical, thermofluidic, electromagnetic, 

etc.) because the notions of force and motion are equivalent to those of the power 

variables (i.e., effort and flow) in system dynamics [10]. In spite of the long history of 

these similarity principles, they still remain very useful especially when the basic laws of 

governing systems are known, but their solutions are difficult to obtain [11].  

Due to the wide applicability mentioned above, several scaling approaches appear 

in the literature have utilized these similitude principles, especially dynamic similitude 

(e.g., [8, 9, 12-14]). Nevertheless, such similitude-based scaling approaches still have the 

following shortcomings. First, similitude-based scaling often turns out to be too 

restrictive because it may be infeasible to follow all of the conditions designated by a 
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given similitude principle exactly (e.g., [9, 14-17]). This infeasibility can be, for instance, 

due to some physical constraints present in the scaling problem (e.g., material constraints 

in structural testing). Second of all, dynamic similitude is a discrete principle of 

invariance, that is, two system designs either satisfy the conditions of similitude or not at 

all (this will be explained in more detail in Chapters 2 and 4). As a result, whenever 

similitude is not feasible, one cannot assess the degree to which the two designs are 

“close” to satisfying the discrete definition of exact dynamic similitude. Toward this end, 

the work in this dissertation is intended to provide a methodology which can help 

mitigate the effects of these shortcomings.  

 

1.2  RESEARCH OBJECTIVE 

The objective of this research is to develop a method to scale the outputs of an 

existing proven system to meet new desired specifications, while retaining its desirable 

properties. Whenever it is feasible, the developed technique should ensure dynamic 

similitude between the original and scaled designs, thereby propagating the desirable 

dynamic properties from the original design to the scaled one. For this methodology to be 

efficient, it should also provide a technique to assess the relative importance of different 

similitude conditions. This should allow engineers to neglect the least important 

conditions, thereby gaining more flexibility in scaling.  

It is further proposed that, when the similitude conditions deemed important 

cannot be followed exactly due to other conflicting requirements, the developed 

technique should be equipped with a metric to quantify the degree of deviation from 

similitude on a continuous basis. This then makes it possible to assess the degree to 
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which two systems are “close” in the sense of dynamic similarity. Finally, the technique 

should enable multiobjective system scaling, where this degree of dynamic similitude can 

be traded off against competing scaling requirements which allows one to explore and 

benchmark the performance of possible scaled designs.  

 

1.3  THESIS SUMMARY 

Chapter 1 presents the motivation as well as objectives of this thesis. Then, 

previous work by other researchers along with its advantages and limitations are given 

and discussed in Chapter 2.  

Chapter 3 presents a novel combination of dimensional analysis and the activity-

based model reduction technique. Dimensional analysis permits the derivation of a set of 

conditions which, if strictly followed in scaling, assures dynamic similarity between any 

two systems. Activity is an energy-based metric which was originally developed for the 

purpose of model reduction. It is however employed in this research to find the relative 

importance of each scaling condition derived from dimensional analysis; thereby helping 

the system designers select to follow only the important ones. The viability of this 

innovative combination is highlighted by two examples. The first example represents the 

scaling of a simple two-degree-of-freedom mass-spring-damper system and the second 

example considers the scaling of a fuel cell stack’s air supply system design for a new set 

of fuel cell system power requirements. 

Chapter 4 then extends the findings in Chapter 3 by considering the situation in 

which the most important scaling condition(s) cannot be followed or, in other words, 

dynamic similitude is not entirely feasible to achieve. This brings forward the discussion 
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of approximate similitude and the development of a metric which quantifies the degree of 

approximate similitude. As a result, this metric permits the construction of a design 

scaling tool whose solutions represent design trade-offs reconciling design requirement 

satisfaction and dynamic similitude achievement. The viability of this tool is shown 

through the same two systems introduced in Chapter 3.  

Chapter 5 shows the applicability of the scaling methodology developed in this 

research to a complex multi-body dynamic vehicle system. Finally, the thesis concludes 

with Chapter 6 summarizing the research, discusses the major contributions as well as 

limitations. Some directions for future research pertaining to this area are also given in 

this final chapter.    
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CHAPTER II 

BACKGROUND 
 

As previously described in Chapter 1, a motivation of this research stemmed from 

the need to redesign or scale the output(s) of existing designs (e.g., fuel cell air supply 

system) to accommodate new requirements (e.g., power output) while maintaining its 

desirable properties (e.g., efficiency). This chapter reviews relevant scaling techniques 

that have been developed previously and concurrently by other researchers. These scaling 

techniques from the literature can be broadly classified into two groups: application-

specific and generalized scaling techniques.  

 

2.1  APPLICATION-SPECIFIC SCALING TECHNIQUES 

This first family of scaling techniques described below relies upon the use of 

some specialized tools or theories existing within their problem domains. These 

techniques, therefore, by their nature cannot be readily extended to other domains.  Some 

of these existing techniques which are closely related to the application areas of this 

dissertation are summarized as follows:  

Cuddy and Wipke [18] investigated an engine scaling problem in a vehicle 

performance simulator. A linear scaling strategy with respect to the engine’s maximum 
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torque curve and operating speed range was used to determine proper engine sizing based 

on existing baseline models. They observed that this type of scaling is, however, valid 

only within relatively small departures from the baseline models. Delagrammatikas [19, 

20] then described that a number of limitations that exist when engine maps are scaled by 

such a linear method. To alleviate these limitations, he coupled a high-fidelity engine 

simulation tool (which is capable of producing engine maps on the fly) with the vehicle 

simulator. However, this approach has a drawback in that it depends upon the use of such 

specialized simulation tools and using such high-fidelity tools to produce engine maps 

usually incurs a high computational cost.  

Wei and Rizzoni [6, 21] proposed a scaling approach for ICE engines using the 

Willians line approximation method [22] which is used to determine the scaling of swept 

volume and piston stroke of the engines when more/less power is required. This approach 

is validated through an example which shows that it gives a good estimation when 

compared with the actual data. This powerful concept unfortunately turns out to be 

restricted to only ICE engines. An extension of this approach to another energy-converter 

system (e.g., battery, fuel cell) requires validations through experimentation [6]. Further, 

the technique does not indicate how other physical parameters (e.g., bore diameter, 

connecting-rod length) should be scaled (or kept the same).  

Aside from the engine scaling techniques above, attempts to develop efficient 

scaling approaches have appeared in other applications as well. Cho and Rajamani [5] for 

example, derived a physics-based dynamic model of an elevator’s vertical motion and 

used it for scaling. In order to utilize this model in predicting the high-rise elevator 

systems, they started by constructing a low-rise elevator model which is more conducive 



 9

to validation. Then, this model was scaled based on the scaling laws of rope and damping 

stiffness to predict the responses of the high-rise system. The scaling laws in this case 

were, however, derived from the specific understanding in rope physics which are not 

readily applicable to other physical systems.      

Power sizing of the fuel cell and battery in a hybrid-vehicle configuration was 

studied by Boettner et al. [23]. Power management strategies were developed in these 

studies to determine optimal load sharing among the battery and fuel cell units. The 

sizing of fuel cell power was, however, achieved only by increasing/decreasing the 

number of cells and the work focuses only on steady-state operation. More recently, Han 

et al. [24] also utilized an optimization technique to find optimal sizing and achieve 

maximum power output of a quasi-steady state fuel cell model whose scaled design 

variables are the number of the stack’s cells and compressor size. Again, these studies do 

not determine how other parameters in the system should be scaled; neither does it 

address how the fuel cell power changes during the transient operation. In analogous 

research, Ohl et al. [25] considered a fuel cell’s reformer scaling problem by developing 

a model of sufficient detail to be useful in identifying the design parameters that 

dominate the dynamic behavior. This specific model allows one to select or scale 

appropriate design parameters in order to minimize the response time and satisfy the 

specified output hydrogen flow rate.  

 

2.2 GENERALIZED SCALING TECHNIQUES 

The techniques in this category are developed using the invariance principles 

(previously explained in Chapter 1) which are widely applicable to different system 
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domains. As a result, in contrast to those in the previous section, these techniques are not 

application-dependant and, therefore, have been used across many different application 

areas.  Specifically, the notion of dynamic invariance or dynamic similitude has gained 

tremendous popularity as a definition of similarity in engineering, where it is often 

formally expressed in terms of “The Method of Dimensions”, more commonly known as 

“Buckingham’s Pi Theorem” [9, 12]. 

2.2.1 BUCKINGHAM’S PI THEOREM AND ITS USE IN SYSTEM SCALING  

The notion of similitude first entered into the field of engineering mechanics 

probably by Euler and then it is extended into the field of heat transfer in the early 1800s 

by Fourier [11]. It is not until fifty years afterwards that a generalized framework of the 

study of similitude was developed by Lord Rayleigh and named as “The Method of 

Dimensions” [8, 11]. Shortly after that, Carvallo and Vaschy independently formulated 

the method of dimensions as a formal mathematical theorem [11]. The theorem was 

believed to be forgotten until Buckingham wrote a series of papers on the subject starting 

in 1914 which made this theorem significantly more well-known to the scientific 

community [11]. This explains why the theorem is nowadays recognized as 

“Buckingham’s Pi Theorem”.  

Buckingham’s Pi Theorem1 states that for every system completely described by 

N variables and parameters in M fundamental dimensions, there exist N-M independent 

dimensionless “Pi” parameters that must be kept invariant during scaling in order to 

maintain dynamic similitude [9, 12]. In other words, Buckingham’s Pi Theorem provides 

a systematic method for determining the minimum set of dimensionless Pi parameters 

                                                 
1 See Appendix A for a formal statement of Buckingham’s Pi Theorem 
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which characterize the dynamics of a system. The selection of these Pi parameters is not 

unique, but keeping them constant guarantees that all other dimensionless combinations 

of the original N system variables and parameters will also remain constant. This type of 

analysis is oftentimes referred to as Dimensional Analysis. This definition of dynamic 

invariance is interesting not only from a physical perspective, but also from a 

mathematical one. Specifically, it is well recognized that dynamic invariance is a special 

case of group invariance. In particular, one can deem two systems of equations similar if 

their solution manifolds are related through a group transformation applied to their input 

parameters. This powerful observation has spawned several generalizations on 

Buckingham’s Pi Theorem based on mathematical group theory [26, 27].  

In the context of system scaling, Buckingham’s Pi Theorem permits the derivation 

of design scaling laws, i.e., mathematical relationships that relate design variables of the 

original and scaled systems. These scaling laws, then, designate a set of conditions which, 

if followed exactly, assure complete similarity between the two systems. For this reason, 

similitude-based scaling has long been utilized in testing of engineering scaled physical 

prototypes. These prototypes usually consist of pieces of hardware scaled after certain 

physical systems to preserve and represent their original phenomena. This allows 

engineers to test one component, at one particular size, and then generalize the results to 

a broad range of sizes without a need for re-experimentation. Initial work in this regard 

dates back to the 1880’s. As summarized in [13], A.L. Cauchy, a French mathematician, 

investigated small scale prototype models of vibrating rods and plates in 1829. Next, W. 

Froude made the first water-basin model for designing watercraft in 1869. Then, O. 

Reynolds published his classic model experiments on fluid motion in pipes in 1883. And 
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not many years after that, the famous Wright brothers built a wind tunnel to test wing 

models.  

 More recent work using similitude-based scaling is also ubiquitous in the 

literature, some of which are summarized as follows: Wu et al. [28] utilize a 1/10 scaled 

laboratory model to predict the three-dimensional structural vibrations of a full-size 

gantry crane. Wu [29] presented scaling laws for vibration characteristics of a plate-typed 

structure subjected to moving loads. Vassalos [14] studied the modeling and similitude of 

marine structures. Goldfarb [30] defined a set of necessary and sufficient conditions to 

preserve dynamic similarity in a bilateral manipulation problem. Poiley and Alleyne [31] 

demonstrated that certain non-linear tire characteristics can be expressed in a non-

dimensional framework and shown to be dynamically similar to full-sized tires.  

It is also interesting to note an implication of the dynamic invariance principle in 

linear systems theory. That is, it has been shown that dynamic similitude guarantees that 

the pole and zero locations of the original and scaled systems are identical [32, 33]. As a 

result, this implies that any control scheme that is compatible with the original model also 

remain so with the scaled model. For this reason, dimensional analysis can also be 

employed to help design a controller that remains valid among systems that are 

dynamically similar. For example, Ghanekar et al. [32, 34-36] designed controllers for a 

robotic manipulator system based on its dimensionless groups. Brennan and Alleyne [37] 

developed a framework based on dimensional analysis that allows parameter-based 

comparisons between different vehicles. Then, a state-feedback controller was designed 

based on this information to robustly stabilize all vehicles encompassed by the normal 
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distribution of vehicle parameters. This framework also allows them to utilize a scale 

vehicle testbed to emulate full-sized vehicles on a highway [37]. 

2.2.2 LIMITATIONS OF INVRIANCE PRINCIPLES AND NEED FOR APPOXIMATE 

SIMILITUDE  

In spite of its popularity and various important strengths, the notion of dynamic 

invariance suffers from one key limitation. Specifically, dynamic similitude is a discrete 

principle of invariance, in the sense that either the set of scaling laws derived from 

Buckingham’s Pi Theorem is exactly satisfied or not at all. Consider, for example, two 

simple linear and time-invariant mass-spring-damper systems (as will be shown in 

Chapter 3). In this case, dynamic similitude deems these two systems similar if and only 

if the scaling laws are completely satisfied. That is, the ratios of their masses and 

dampers have to equal the ratio of their stiffnesses exactly. Any failure to comply with 

any of the scaling laws, regardless of which scaling law and no matter how minor the 

failure is, violates the discrete definition of dynamic similitude. In practice, such discrete 

definition of dynamic similitude can clearly be quite restrictive: a fact recognized in both 

the biological and engineering sciences.  

In the life sciences, species are known to retain significant similarities to their 

ancestry during the course of evolution, but these similarities often disobey strict 

dynamic invariance. This creates a need for alternative definitions of similitude that 

capture the fact that two species can be approximately similar, despite differing in 

potentially important ways. Allometry is a biological principle of invariance that deems 

two species similar if their characteristics are related through any monomial scaling law 

(see Appendix A for a definition of monomial functions), even if this scaling law does 
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not comply with Buckingham’s Pi Theorem. In addition, many mathematical models and 

laws have been proposed to explain the intriguing emergences of the biological quantities 

that remain invariant for all living organisms (e.g., the number of heart-beats, total energy 

to support an organism per unit mass) [38, 39].  Similarly, morphometry is a biological 

principle of invariance that examines the similarities in shape between different animal 

species (especially in skull structure) while allowing for important and significant 

localized differences [40]. Both allometry and morphometry are quite useful for 

understanding the evolution of species [38-41], but are limited in their applicability to 

engineering system scaling.  

The discrete nature and resulting limitations of dynamic similitude as a principle 

of invariance are well recognized not just in the biological literature, but in several 

engineering literatures as well. It is widely recognized in experimental fluid mechanics, 

for example, that building a scaled prototype of a marine vessel (where the inertial and 

viscous fluid forces are deemed dominant) such that both Reynold’s and Froude’s 

dimensionless numbers remain invariant may be difficult [9, 12, 13]. Instead, 

experimental fluid mechanicists often judiciously choose to keep only one of these two 

dimensionless parameters constant and allow the other to vary based on the relative 

dominance of skin friction versus body drag. Similarly, it is well-known that exact 

similitude analysis of fluid flow problems (e.g. flow through pipes) is physically 

impossible because of the complex paths followed by the fluid [9]. Further, researchers in 

the thin shell vibrations literature have long recognized that scaling the thicknesses of 

thin shells in accordance with exact similitude may be physically impossible, and that a 

notion of approximate similitude may be necessary instead [17]. In the structural testing 
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discipline, researchers [15, 16] have also recognized that, due to material constraints 

preventing absolute similitude, the experimental results obtained from scaled prototypes 

often do not perfectly translate to those of the actual-sized counterparts. This then 

necessitates the use of correction factors as part of scaling the experimental results and 

applying them to the full structures [9]. Finally, the difficulty inherent in scaling intensive 

properties (those that do not depend on system size, e.g., density, color, etc.) in 

accordance with exact dynamic similitude is also evident from the bilateral manipulator 

design problem [30]. To sum up, the engineering literature has long recognized that 

scaling a dynamic system exactly may be difficult or impossible to achieve, and there is, 

therefore, a strong need from approximate scaling.  

In an attempt to address the above need for approximate scaling, Rezaeepazhand 

and Simtses [42] proposed to use sensitivity analysis for evaluating the relative 

importance of the design scaling laws of shell vibration models. Such relative importance 

becomes useful in allowing engineers to neglect the least important scaling laws and, 

therefore, helping to make the discrete definition of dynamic similitude less restrictive. 

However, this technique has a drawback in the computational cost incurred as a result of 

using sensitivity analysis. Such a cost becomes more severely expensive especially when 

more variables have to enter into the analysis. In addition, sensitivity analysis sometimes 

entails evaluating function derivatives which can become problematic if the function of 

interest does not lend it itself to differentiability.  

Despite the flexibility which can be gained from quantifying the relative 

importance of scaling laws, difficulties can still arise when the scaling law(s) deemed 

important cannot be followed exactly due to other, conflicting scaling requirements and 
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constraints. Such requirements may include, for instance, maximizing system efficiency, 

minimizing packaging needs, or minimizing cost, and may be as critical to achieve in the 

scaling problem at hand as similitude. As a result, dynamic similitude cannot be attained 

in scaling and, therefore, needs to be compromised. Under this scenario, the existing 

techniques in the literature do not yet present a formal way to determine the extent to 

which dynamic similitude can be achieved. More importantly, whenever dynamic 

similitude cannot be satisfied, it is not clear how and which parameters one should 

change to allow the scaled design to be closer to satisfying similitude.  

 Given the above assessment, the proposed research in this dissertation strives to 

verify the following hypotheses:  

1) The relative importance of scaling laws can be captured by a more 

computationally efficient metric.  

2) The degree to which two designs are close to satisfying similitude can be 

quantified or approximated. It is also important that this quantification 

take advantage of the relative importance found in 1).  

3) Given the quantification in 2), the degree of similitude can then be traded 

off versus other conflicting design requirements and constraints.  

 

2.3 CHAPTER SUMMARY 

 This chapter summarizes the existing design scaling methodologies appearing in 

the literature. One group of these methodologies is developed specifically based on the 

problems at hand and cannot be easily generalized to systems in other domains. On the 

other hand, there exists another group of scaling techniques which relies on the similitude 
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principle. These similitude-based techniques not only prove to be applicable to a wide 

variety of system domains, but also allow engineers to resize some or all of the system’s 

parameters while maintaining its desirable properties. Nevertheless, these similitude-

based scaling strategies are often found inefficient because of the discrete nature of the 

similitude principle, that is, the resulting scaling laws have to be either satisfied exactly 

or not at all.  

 
 

 

 

 

 

 

 

 

 

 



 18

 

CHAPTER III 

EFFICIENT SCALING METHODOLOGY USING DIMENSIONAL AND 
ACTIVITY ANALYSES 

 

As described in Chapter 2, previous work in the literature developed similitude-

based design scaling techniques that make it possible to take a proven system design and 

scale it to meet new desired dynamic characteristics. However, such similitude-based 

scaling is often too restrictive because it may not be feasible to satisfy all of the resulting 

scaling laws exactly. The work in this chapter proposes, for the first time, to use a novel 

combination of an energy-based model reduction technique [43] and dimensional analysis 

to mitigate this restriction. This results in a computationally efficient method to assess the 

relative importance of scaling laws. As a result, this allows us to scale only the important 

components of a given dynamic system, thereby providing more freedom than pure 

similitude-based scaling.  

The viability of this proposed method is highlighted in this chapter by two 

examples. The first example demonstrates the proposed efficient scaling technique on a 

two-degree-of-freedom mass spring damper system. The second example uses the 

developed methodology to scale a fuel cell stack’s air supply system design for a new set 

of fuel cell power requirements and compares the resulting design with that obtained 

from traditional design optimization.  
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3.1  OVERVIEW OF THE USE OF BUCKINGHAM’S PI THEOREM TO 

DERIVE SYSTEM SCALING LAWS 

This section gives an overview of Buckingham’s Pi theorem (or dimensional 

analysis) focusing on its use in scaling a dynamical system to attain similarity as well as 

deriving the system’s scaling laws as follows:  

(i) Identify the governing physical laws of the system of interest: As 

explained in Chapter 1, the scaling techniques developed in this dissertation are 

considered as a re-design tool to evolve an existing design to satisfy new requirements. 

Therefore, the work herein assumes that the governing physical laws (or equations) of 

these existing system designs are previously derived and given. This assumption assures 

that scaling laws obtained from dimensional analysis are complete and sufficient for 

scaling [13].   

(ii) Identify variables and parameters that appear in the governing equations 

and identify their fundamental units:  A system of units is classified as a set of 

fundamental units when it is both necessary and sufficient for measuring the quantities 

(i.e., variables and parameters) of a certain phenomena. The determination of the number 

of fundamental units needed for any problem was also investigated in [44] based on 

mathematical group theory (its connections to Buckingham’s Pi theorem are given in 

Appendix A). In Newtonian mechanics, for example, there are three fundamental units 

and the units of other physical quantities are called derived units. These three 

fundamental units are usually taken as mass, length, and time [8], although there also 

exist other possibilities (e.g., force/length/time).  
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(iii) Identify the dimensional formula associated with each variable (or 

parameter): Dimensional formula is the relation that shows the fundamental units for any 

quantity raised to appropriate powers and enclosed in square brackets. For instance, the 

dimensional formula of a force in a Newtonian mechanical system based on the 

mass/length/time fundamental unit system is [MLT-2]. 

(iv) Determine the number of dimensionless Pi parameters: Buckingham’s Pi 

theorem determines the number of Pi parameters as follows (see Appendix A for a 

complete formal statement of the theorem):  

“If there are M physical quantities defined in terms of N independent fundamental 

units, there are M – N independent dimensionless parameters.” 

Each of the resulting M – N dimensionless parameter is always a monomial 

function2 of the original M variables [12] (a formal definition of a monomial function is 

also given in Appendix A).  

(v) Derive Pi parameters: This is done by, first, selecting a core group of N 

variables which must contain, among them, all of the fundamental units of the system. 

Then, we form a set of M – N product groups with each product group consisting of all of 

the core variables and one of those M – N variables which were excluded from the core 

group. Next, we assume arbitrary exponents for each of the variables in each product 

group.  By requiring each product group to be dimensionless, it is then possible to solve 

for these arbitrary exponents and, therefore, the Pi parameters.  

                                                 
2 A monomial function is a special kind of polynomial which has only one term and each of the variables in 
this term is raised to a certain power. In addition, the power has to be a rational number. For instance, given 
several variables (e.g., x, y, and z) and rational numbers (e.g., a, b, and c), a monomial function based on 
these variables and numbers can be f(x) = xaybzc. 
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(vi) Derive scaling laws: Define ߣொ ൌ
ொೞ೎ೌ೗೐೏
ொ೚ೝ೔೒೔೙ೌ೗

  as a scaling factor 

corresponding to any arbitrary system variable or parameter Q. Then, by similitude 

principle, dynamic characteristics of the original design is maintained by keeping the 

dimensionless Pi parameters of the original and scaled systems invariant [9, 29]. Using 

this principle as well as the definition of the scaling factor above results in the system’s 

scaling laws.  

The remaining of this section presents how the procedure described above can be 

applied to derive scaling laws of the following two-degree-of-freedom (2-DOF) mass-

spring-damper system:  

 

 

 

 

 

 

 

 

 

Figure 3.1: Quarter-car Model  

This is the well-known quarter-car suspension model, where Ms and Mus are the 

sprung and unsprung masses,   Ks and Kt are the suspension and tire stiffnesses, Bs and Bt 

are the suspension’s shock absorber and the tire’s damping coefficients, and x1 and x2 are 

the vertical displacements of the sprung and unsprung masses. The input of the system is 
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the vertical force, F(t), applied to the sprung mass and the outputs of interest are 

displacements of the masses. The quarter-car model is widely used to study the ride 

quality of ground vehicles. Physically, the sprung mass (Ms) represents the mass of the 

body of a vehicle while the unsprung mass (Mus) includes the masses associated with the 

wheels and suspension components. The tire stiffness (Kt) is used to represent the visco-

elastic nature of the tire and its inherent damping is represented by the tire damping 

coefficient (Bt). This setup allows us to investigate, for example, the effect of engine 

vibration forces when the vehicle is idling. The governing equations of motion in this 

case are as follows:  

ሷଵݔ௦ܯ  ൅ ሶଵݔ௦ሺܤ െ ሶଶሻݔ ൅ ଵݔ௦ሺܭ െ ଶሻݔ  ൌ  ሻݐሺܨ  

ሷଶݔ௨௦ܯ  ൅ ሶଶݔ௦ሺܤ െ ሶଵሻݔ ൅ ଶݔ௦ሺܭ െ ଵሻݔ ൅ ሶଶݔ௧ܤ ൅ ଶݔ௧ܭ  ൌ   0 

For simplicity, it is assumed that both of the springs and dampers in this system 

have linear characteristics.  Now, dimensional analysis starts by identifying the set of 

relevant variables which can be extracted from Equation 3.1 and shown below:   

{ }1 2, , , , , , , , ,s us s s t tM M K B K B F x x t , Number of relevant quantities = 10 

The next step is to find dimensional formulae of the listed variables based on the 

fundamental units. Given the set of quantities at hand, the dimensional formula for each 

quantity is:  

][][,][

][,][,][,

21
2

12

TtLxxMLTF

MTBBMTKKMMM tstsuss

===

===
−

−−

 

It follows that the number of fundamental units being used in this problem = 3. Next, by 

Buckingham’s Pi theorem, we have the following result:  

Number of dimensionless (π ) groups = 10 – 3 = 7  

(3.1) 

(3.2) 
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These Pi groups are derived and shown below. The details of the derivation these groups 

are omitted here but explained in detail in Appendix B. Note that these groups are not 

unique [28] but one potential selection is as follows:  
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Substituting the definition of a scale factor into Equation 3.3 and complying with 

the similitude principle yields the following scaling laws for the system’s various scale 

factors as follows. It is important to note that even though the Pi groups given in 

Equation 3.3 are not unique, any other choices will result in the same set of scaling laws 

[28] as indicated in Equations 3.4 and 3.5 below:  
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 The first group of scaling laws (Equation 3.4) is associated with the system’s 

parameters, while the second group (Equation 3.5) is pertinent to the input and outputs of 

the quarter-car system.  

(3.3) 

(3.5) 

(3.4) 
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 At this point, to determine how the parameters should be adjusted to satisfy new 

design requirements, it is assumed that the following requirements are to be satisfied in 

the re-design stage of this quarter-car system:  

1) The time scale is to remain invariant (i.e., λt = 1).   

2) The input force also remains the same (i.e., λF = 1).   

3) The response of the sprung mass displacement is to be reduced by half (i.e., 

λx1 = 0.5) 

These requirements simplify the scaling laws in Equations 3.4 and 3.5 and result 

in the following scaling factor:  

2
us s t t s sM K K B B Mλ λ λ λ λ λ= = = = = =  

 The scaling factor above indicates that if every parameter in this system is scaled 

up by a factor of two, then not only the requirements given above are satisfied but also 

dynamic similitude between the original and scaled systems is achieved. The latter 

achievement implies (as will be seen shortly) that properties of the original design are 

propagated to the scaled design.   To demonstrate the interesting implications of this 

result, suppose that the every scaling law in Equation 3.6 is followed and the input force, 

F(t), is an impulse-like function. Then, the time responses of the original and similitude 

scaled systems are as shown in Figure 3.2. The values of the system’s parameters are 

given in Table 3.1. Interestingly, the figure below shows that dynamic characteristics of 

the original design (e.g., stability, settling time, peak time) are successfully maintained 

and carried over to the scaled design. This result clearly demonstrates and attests to the 

practicability of Buckingham’s Pi Theorem and dimensional analysis as a tool in system 

scaling.  

(3.6) 
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Figure 3.2: Perfect similitude responses 

 

3.2 QUANTIFYING THE RELATIVE IMPORTANCE OF SCALING LAWS  

As described in Chapter 2, while pure similitude-based scaling approaches appear 

to be a very tractable tool in system scaling, it is unfortunately often found to be too 

restrictive. This restriction is usually a result of the fact that some other physical 

constraints have to also be taken into consideration. For instance, the suspension design 

team might be less reluctant to modify the suspension spring rate (Ks) in this quarter-car 

system design problem because doing so might interfere with other packaging 

constraints. Then, a critical question arises, that is, can one still achieve adequate 
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similitude and simultaneously reduce the displacements by half without changing the 

suspension stiffness (Ks)?  

In an attempt to answer this type of question, researchers proposed to conduct 

physical experiments [13] (or use sensitivity analyses [42]) to determine the influence of 

each scaling law of a physical system (or simulation model), thereby achieving more 

flexibility in scaling. However, such approaches can inevitably become time consuming 

(or computationally expensive), when the complexity of the model becomes more 

burdensome which entails more variables to be involved in the analysis.   

To alleviate this drawback, using an energy-based metric, named “activity” [43] is 

proposed as an innovative and computationally efficient tool to determine the relative 

importance of each scaling law. Activity was originally developed as a metric for 

automated model-reduction and justified as an efficient assessment of elements’ relative 

importance [43, 45]. This metric is applicable to both linear and non-linear systems. In 

particular, the activity of a particular energetic element is defined as the L1 norm of the 

power flow into and out of the element over the course of a particular system state and 

input trajectory, multiplied by the length of the time window used for computing the 

norm. For example, if the effort of a generalized scalar energetic element is e(t) and the 

flow through it is f(t), the its activity is mathematically defined as:  

Activity  =  ∫
aT

dttfte
0

)()(  

where Ta is the duration over which this activity is calculated.  

 In the context of this research, we conjecture that scaling laws associated with 

low-activity elements are less important to system dynamics than ones associated with 

high-activity elements, and demonstrate this conjecture numerically. A clear advantage 

(3.7)   
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gained by using activity analysis is the fact that, for a given input, activities of elements 

in a dynamic model can be calculated from only one run of the simulation.  

 The following figure explains how dimensional and activity analyses are 

incorporated into the scaling technique developed in this chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Scaling Methodology Using Dimensional and Activity Analyses 
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The scheme above indicates that activity analysis is used to quantify the relative 

importance of scaling laws. This information allows us to choose to scale only the more 

important parameters (denoted by the first k scaling laws in Figure 3.3) and neglect the 

less important ones without significantly compromising similitude. To illustrate the use 

of this notion on the quarter-car system, we first calculate the activities of all energetic 

and dissipative elements of the original 2-DOF system during the time window over 

which the simulation in Figure 3.2 was run and they are shown in Table 3.1 below. The 

values in the right-most column represent the activity index of each element which is the 

ratio of each element’s activity over the sum of all activities. The mathematical definition 

of Activity Index (AI) is given below:  

௜ܫܣ ൌ
׬ |௘೔ሺ௧ሻ௙೔ሺ௧ሻ|ௗ௧
೅ೌ
బ

∑ ׬ |௘೔ሺ௧ሻ௙೔ሺ௧ሻ|ௗ௧
೅ೌ
బ

ೖ
೔సభ

            

where k denotes the number of elements in the model under consideration. This 

index can be thought of as the portion of the total system energy flowing through a 

specific element in the system [43]. 

Element Value Activity [Joules] Activity Index [%] 
Ks 187620 N/m 226.762 50.49 
Ms 267 kg 139.566 31.08 
Bs 700 N.s/m 58.504 13.02 
Kt 193950 N/m 23.887 5.31 

Mus 36.6 kg 0.1968 0.044 
Bt 200 N.s/m 0.1776 0.040 

Table 3.1: Element activities of quarter-car system 

According to our conjecture, the activity values in Table 3.1 suggest that the 

scaling laws associated with Mus and Bt should be the least important to the scaling of the 

system, so they can be discarded in scaling. In addition, this implies that if other 

(3.8) 
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parameters (Ks, Ms, Bs, and Kt) are still scaled according to Equation 3.6, the dynamic 

similarity between the two systems should still be reasonably maintained. This is clearly 

justified by the result shown in Figure 3.4 in which the two responses match very well. In 

fact, the summed squares of residuals between the two responses over the entire 

trajectories, with the time step of 0.001 seconds, are only 1.69E-06 m2 and 4.63E-07 m2 

for x1 and x2 respectively.  

 

Figure 3.4: Responses when Mus and Bt are not scaled  

    On the other hand, if the most active element, Ks, is discarded from the scaling, 

our conjecture predicts that dynamic similarity should no longer be well maintained, and 

this turns out to be the case as shown in Figure 3.5 below:    
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Figure 3.5: Responses when Ks is not scaled 

It is possible to rationalize the above results as follows. First, if dynamic 

similarity is maintained in scaling, then activities will scale in proportion to each other.3 

Accordingly, the ranking of activities will remain the same. It follows that in both the 

original and perfectly scaled models, the least active elements remain unchanged. Next, 

based on this premise, if the less important scaling laws which are associated with low-

activity elements cannot be scaled, one can infer that the activities of these elements will 

remain the smallest over some range of scaling of other elements. Therefore, over this 

range, discarding the scaling laws of these lower-activity elements will most likely not 

significantly penalize dynamic similarity. While this is not a rigorous proof, it does 

provide an initial and appealing justification for the approach taken in this section. 

                                                 

3 Recall that activity is defined as ∫
aT

dttfte
0

)()( . Because the effort and flow of every element in a 

system have (or can be converted to) the same units, whatever scaling factors that are imposed to the pair 
will be applicable to other elements’ efforts and flows. As a result, all activities are scaled with the same 
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At this point, one can answer the question raised in the beginning of this section 

as follows: It is not feasible to retain the same suspension spring design and, at the same 

time, achieve dynamic similarity as well as reduce the displacements by half. Instead, the 

results above attest to the possibility of keeping the same tire stiffness (Kt) and damping 

and (Bt) still closely achieving such requirements. 

3.3  FUEL CELL AIR SUPPLY SYSTEM SCALING 

In this section, the air supply system of the Polymer Electrolyte Membrane (PEM) 

fuel cell dynamic model developed in [3] is investigated. The goal of the scaling is to 

increase/decrease the air mass flow rate going through this air supply system, while 

maintaining desirable characteristics of the original system (e.g., minimum power 

consumption, rise time, etc.). This section demonstrates that the scaling technique 

developed so far in this section has the potential to become a great aid in designing the air 

supply system to satisfy different air flow rates while still maintaining such desirable 

characteristics. More specifically, a traditional optimization-based design approach is 

implemented to scale the system and its results are compared with those obtained from 

the scaling approach proposed in this dissertation.  

First, details of the air supply system’s models employed in this study are given in 

the following sub-section.   

3.3.1 Air Supply System Modeling 

The system considered herein is a simplified model of the fuel cell stack’s air 

supply system. The simplifications consist of (i) removing chemical reactions in the 

cathode and (ii) using a blower as the flow device, instead of a compressor [46] (which 

renders this system a low-pressure system). To facilitate the calculation of element 
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activities, the system is modeled using bond graphs [10] as shown in the Figure 3.6.  The 

main function of this air supply system is to regulate the amount of air flow going 

through the fuel cell stack system subject to the stack’s power output demand.   

Blower 

The blower model represents a centrifugal blower modeled as a four-port 

transformer defined by two static maps. One of the maps represents flow rate ሺ ሶ݉ ஻ௐሻ as a 

function of pressure ratio and rotational speed (ω) and the other designates the blower 

operational efficiency ሺߟ஻ௐ,ை௣௥ሻ as a function of its flow rate and rotational speed (the 

associated map and data are given in Appendix C) The air-compressing process is 

assumed to be isentropic and the ideal gas assumptions also hold. The model’s main 

inputs include the supply manifold’s pressure (Psm) and the motor’s rotational speed (ωm) 

and the main outputs are motor torque (τm) and mass flow rate out of the blower ( BWm& ). 

The power consumed and temperature rise in the blower can be derived using basic 

thermodynamic principles [47] and given by:  
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It is important to note here that the entire air supply system has to be carefully 

designed (or sized) in such a way that the pressure ratio across the blower and the 

rotational speed (required to achieve a desired flow rate) allow the system to operate at its 

maximum possible blower operational efficiencies. This, then, implies that the power 

needed to achieve such a desired flow rate is at its minimum.  

(3.9) 
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The dynamics associated with the blower inertia (IBW) is governed by the 

following equation, where Pin represents power input to the blower.  

஻ௐܫ
ௗఠ
ௗ௧
ൌ ଵ

ఠ
ሺ ௜ܲ௡ െ ஻ܲௐሻ 

Supply Manifold 

According to the observation made in [3], it is expected that the air temperature 

can vary somewhat inside the supply manifold. The supply manifold is, therefore, 

modeled by a 2-port capacitor which represents changes in mass flow and associated 

enthalpy. In addition, it is assumed that the manifold is adiabatic with respect to its 

surroundings. The governing equations are:   
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Furthermore, if we assume that the air can be modeled as perfect gases, the 

constitutive laws of the capacitor become:  
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vsm
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The inputs of this model are its mass flow rate ሺ ሶ݉ ௦௠ሻ and the rate of change in 

energy ሺܧሶ௦௠ሻ and the outputs are its pressure ሺ݌௦௠ሻ and temperatureሺ ௦ܶ௠ሻ. 

Return Manifold 

Due to the fact that the air temperature leaving the fuel stack is relatively low 

when compared to the air leaving the flow device, the return manifold is assumed to be 

isothermal. The manifold is hence modeled as a 1-port capacitor. The governing equation 

and constitutive law are as follows: 

 

(3.11) 

(3.10) 

(3.12) 
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The input of this model is the mass flow rate ሺ ሶ݉ ௥௠ሻ and the output is represented 

by the pressure (prm).  

Nonlinear Nozzle 

The air flow passing through these nozzles is assumed to behave isentropically. In 

bond-graphs, each of the nozzles can hence be represented as a multi-port resistor where 

all bonds have “effort-in” causality [10]. As a result, the mass flow rate across the nozzle 

is described by:  
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 The energy associated with this mass flow is given by:  

ሶ஺೟ܧ ൌ ܿ௣ ௜ܶ௡,஺೟ ሶ݉ ஺೟ 

 The inputs of the model are pressures and temperatures of the incoming and 

outgoing flows. The outputs are denoted by mass flow rates and rates of change in energy 

of the flows.  

 

 

 

 

 

(3.13) 

(3.14) 

(3.15) 
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3.3.2 Traditional Approach: Optimization Problem Formulation 

The scaling objective in the context of fuel cell stack systems is to scale the air 

flow rates going through this air supply system which ultimately controls the overall fuel 

cell stack power output levels. It has been shown in [3] that adjusting these air flow rates 

directly relate to changing the levels of the fuel cell stack’s power output. As described in 

Section 3.3.1, the air supply system utilizes power supplied to the blower (Pin) in order to 

compress the atmospheric air to satisfy certain desirable flow rates. For this reason, it is 

beneficial, from an energy savings standpoint, to design the air supply system in such a 

way that it consumes the least possible amount of power in the blower while still 

satisfying designated desired flow rates. Such power consumption is determined by the 

locations of operational points on the blower’s efficiency map. This gives an explanation 

why the system’s parameters (e.g., manifold sizes, blower size, etc.) have to be carefully 

designed to achieve the operational points that result in optimal efficiencies which 

translate into minimum power consumed by the blower to satisfy such desired flow rates. 

Due to the design requirements realized above, the following list summarizes the 

goals and assumptions which are accounted for in the scaling study of this air supply 

system:  

1) Scaling the levels of air flow rates in order to increase/decrease the fuel cell 

power output levels. It is assumed that each air supply system design has to 

operate at two different desired flow rates. For example, the original design is 

assumed to operate at flow rates of 0.01 and 0.02 kg/s. Changing the flow rate 

from 0.01 kg/s to 0.02 kg/s is done by supplying a step input in power 

supplied to the blower (Pin).  
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2)  Maintaining the optimality in operational efficiency (ߟ஻ௐ,ை௣௥) at the blower. 

This means that, for instance, if the original design is designed to operate at 

the point where the blower efficiency reaches its optimum (say, 

஻ௐ,ை௣௥,ை௥௜௚௜௡௔௟ߟ ൌ 40%), the scaled design’s operational efficiency should be 

the same as (or close to) 40%. This assures that the power consumed by the 

blower of the scaled system is minimal while still satisfying the increased (or 

decreased) desirable flow rates.  

3) Maintaining reasonable dynamic characteristics of the original system (e.g., 

good response time, and no back flow). A reasonable response time is 

required so that the scaled design also has reasonable open-loop dynamic 

characteristics. The back-flow requirement is imposed because control 

authority will be lost if back flow occurs and the fuel cell will be damaged.   

Given the goals above, an optimization problem can be formulated and described 

mathematically as follows:  

Maximize  ݂ሺ࢞ሻ ൌ   ௜ܲ௡ 

with respect to4  ࢞ ൌ ൛  ௦ܸ௠, ௥ܸ௠, ,௧,ଵܣ ,௧,ଶܣ ൟܦ  

subject to  ଵ݃ ؔ 0.08 ݉ଷ ൑ ௦ܸ௠ ൑ 0.03 ݉ଷ 

      ݃ଶ ؔ 0.002 ݉ଷ ൑ ௥ܸ௠ ൑ 0.02 ݉ଷ 

                                    ݃ଷ ؔ 0.01 ݉ଶ ൑ ௧,ଵܣ ൑ 0.06 ݉ଶ 

   ݃ସ ؔ 0.02 ݉ଶ ൑ ௧,ଶܣ ൑ 0.12 ݉ଶ 

   ݃ହ ؔ 0.5  ൑ ܦ ൑ 3.0  

   ݃଺ ؔ ߬௦,௢௥௜௚௜௡௔௟ െ 1 sec  ൑ ߬௦ ൑ ߬௦,௢௥௜௚௜௡௔௟ ൅  5ܿ݁ݏ 1

                                                 
4 The significance of the design variable D will be explained in Section 3.3.3. 

(3.16) 
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   ݃଻ ؔ ௦௠,௜௡݌ െ ௦௠,௢௨௧݌ ൒ 0 

   ଼݃ ؔ ௥௠,௜௡݌ െ ௥௠,௢௨௧݌ ൒ 0 

              ݃ଽ ؔ ௦௠,௢௨௧݌ െ ௥௠,௜௡݌ ൒ 0 

   ଵ݃଴ ؔ ሶ݉ ௦௧௘௔ௗ௬ ൌ ሶ݉ ௗ௘௦௜௥௘ௗ 

   ଵ݃ଵ ؔ ஻ௐܫ ൌ ஻ௐ,௢௥௜௚௜௡௔௟ܫ ൬
஽

஽೚ೝ೔೒೔೙ೌ೗
൰
ହ
 

where the first five constraints (g1, g2, g3, g4, and g5) denote bounds on the design 

variables. Constraint g6  represents the bounds on the response time (τs) to a step input in 

power supplied to the blower (Pin). Moreover, Constraints g7, g8, and g9 prevent the 

design from having back flow. Constraint g10  then reflects the requirement in which the 

air mass flow rate of the scaled design needs to satisfy the given desired flow rates. 

Moreover, the last constraint (g11) represents the physical coupling between the changes 

in the blower size (D) and its rotational inertia (IBW). In the optimization problem, the 

system is assumed to operate in the same environment; thereby making the atmospheric 

pressure (Patm) and temperature (Tatm) as well as the return manifold temperature remain 

at the original values. The parameter values corresponding to the original design of this 

air supply system are given in Appendix C.  

To demonstrate the applicability of the scaling technique developed in this 

dissertation to this air supply system, the original design (which was originally designed 

for ሶ݉ ௦௧௘௔ௗ௬  = 0.01 to 0.02 kg/s) is re-optimized using the optimization formulation 

described above in Equation 3.16 to satisfy the new and increased desirable flow rates. 

Then, the scaled design obtained from this optimization formulation is compared to that 

obtained from the scaling technique explained in the next section (the underlying 
                                                                                                                                                 
5 The response time is defined as the time until the response reaches 99% of its steady state value 
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motivation and justification for us to attempt to use the scaling technique will become 

more obvious in the next section). This comparison scheme can also be described by the 

following diagram:  

 

 

Figure 3.7: Optimization and Scaling 

Note that the design scaling problem of the air supply system in this chapter is set 

up in such a way that some physical constraints that one may encounter in practice are 

omitted. These constraints can be, for example, a packaging constraint placing bounds on 

the sizing of some of the variables. The effect of these practical constraints will be taken 

into consideration in Chapter 4 in this dissertation.  
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3.3.3 Scaling Approach: Scaling Problem Formulation 

 Upon using the scaling notion developed thus far in this dissertation, scaling laws 

of the air supply system are first derived as follows: The following represents a set of 

variables sufficient for describing the physics of the air supply system indicated by 

Equations 3.9 - 3.15:  

⎭
⎬
⎫

⎩
⎨
⎧

OprBWBWinBWPDDtt

atmrmsmBWrmsmatmrmsmBWrmsm

IPPCCCRAA
TTTTVVpppmmmt

,2,1,2,1, ,,,,,,,,,,
,,,,,,,,,,,,

ηγ  

which indicates that the number of variables = 24. The meanings of these symbols in the 

above set are given in nomenclature section of this dissertation. Care should be taken to 

distinguish that a lowercase letter “p” denotes a pressure, while an uppercase letter “P” 

represents a power. Next, the dimensional formulae of these variables are:  
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where M,L,T, and θ denotes the fundamental units of mass, length, time, and temperature 

respectively. By Buckingham’s Pi theorem, the number of dimensionless (π) groups is = 

24 – 4 = 20. These groups were derived and shown below.  
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(3.17) 

(3.18) 

(3.19) 
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The scaling laws can then be derived using these dimensionless parameters as 

well as the definition of a scaling factor indicated previously in Section 3.1. The 

derivation assumes that the gas constants (R), specific heat capacity (CP), discharge 

coefficients of the nozzles (CD,1,CD,2), and time remain (t) invariant:   

1)(

)(

)(

)(

,

2/1

=

==

==

==

OprBW

atmBWinBW

atm

BW
rmsm

BWrmsm

iv

iii

ii

i

TmPP

T

m
pp

mmm

ηλ

λλλλ

λ
λ

λλ

λλλ

 

2/1

2/32/32/3

)(

)(

)(

)(
2,1,

atm

BW
atm

atmBWBW

atmBWrmsm

rmttrmsm

T

m
p

TmI

TTTT

TAAVV

viii

vii

vi

v

λ
λ

λ

λλλ

λλλλ

λλλλλ

=

=

===

====

 

The first four scaling laws in Equation 3.20 above indicate how system inputs/outputs are 

scaled, while the rest designate how the parameters in the system should be scaled to 

achieve similitude scaling. 

 To vary the size of the blower to accommodate larger flow rates, Wright [48] 

describes that the performance of an incompressible flow device (e.g., blower) in relation 

to its size can be represented by the following dimensionless groups:   

3222221 ND
Qand

DN
p

=
Δ

= π
ρ

π  

(3.20) 

(3.21) 
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where pΔ denote the pressure rise in the blower, Q represents the volume flow rate, N is 

the rotational speed of the blower, and ρ is the fluid density. The variable D can be 

considered as the size (or diameter) ratio of the impellers of any two blower designs. 

These relationships result in the scaling laws below which can be used to scale the blower 

maps with respect to its size (D):   

NDQNDp and λλλλλλ 322 ==Δ  

Then, to account for the effect of changing the blower size on its inertia, the 

rotational inertia of the blower (IBW) is assumed to be related to the size of the blower (D) 

through the following relationship:  

5
DI BWBW

λλλ ρ=  

where BWρ  represents a density factor that converts the blower size into its associated 

rotational inertia.  

 At this point, it is rather interesting to note that the fourth scaling law in Equation 

3.20 has the following implication: If the scaling laws associated with the parameters of 

the air supply system (as shown in Equations 3.20, 3.22, and 3.23) are followed exactly, 

then operating points of the scaled design on the blower’s efficiency map should result in 

the same operational efficiencies as those of the original design. In other words, if the 

original design operates at the points where the least possible amount of power is 

consumed to satisfy the original desired flow rates (i.e., ሶ݉ ௗ௘௦௜௥௘ௗ,௢௥௜௚௜௡௔௟ = 0.01 to 0.02 

kg/s), then any scaled design that achieves similitude will also consume the least possible 

amount of power to satisfy the increased desired flow rates (e.g., ሶ݉ ௗ௘௦௜௥௘ௗ,௡௘௪ = 0.02 to 

0.04 kg/s). This provides an initial justification of why our scaling technique can 

(3.22) 

(3.23) 
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potentially be used as a design tool to achieve the same goals as those of the optimization 

formulation described in the Section 3.3.2.  

3.3.4  Comparison of Results 

 Based on the optimization formulation in Equation 3.16, the re-optimized air 

supply system design is assumed to be subject to desired flow rates of 0.02 to 0.04 kg/s 

(doubled of the original designated flow rates). The resulting optimal design is given in 

Table 3.3. It should be noted here that the objective function value (i.e., maximizing the 

blower operational efficiency) is insensitive to the ranges of values within the lower and 

upper bounds where the supply (Vsm) and return manifold (Vrm) volumes are varied (this 

is confirmed by the plots in Figure 3.8 below). For this reason, these two design variables, 

as shown in Table 3.3, can be set any values within their lower and upper bounds.  

 

 

Figure 3.8: Objective function value with respect to variations in Vsm and Vrm
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To compare with the optimization results, the scaling technique is implemented 

and explained in detail as follows: The procedure starts by assessing the importance of 

scaling laws which were already derived in Section 3.3.3. In doing so, the activity of each 

bond-graph element (as shown in Figure 3.6) is calculated. Unlike the quarter-car 

problem, the resulting activity values, however, cannot all be directly associated with the 

parameters of the system since some of these activities do not hold a one-to-one 

relationship with any of the parameters. For instance, the atmospheric temperature (Tatm) 

and pressure (Patm) each shows up in two bond-graph elements. This then raises the 

following question: which bond-graph element should one associate the importance of 

the atmospheric temperature’s scaling law with? To address this question, an ad-hoc, but 

rather intuitive, approach is employed to associate these activities with the parameters. 

This approach is explained in detail in Appendix D. The resulting relative importance 

indices are given in Table 3.2 below.   

Parameter Activity Index [%] 
First Nozzle: At,2 26.46 

Second Nozzle: At,1 26.64 

Blower: D 16.66 

Atmospheric Temperature: Tatm 9.92 

Power Input: Pin 8.60 

Blower Inertia: IBW 8.35 

Atmospheric Pressure: patm 3.28 

Return Manifold Temperature: Trm 0.047 

Supply Manifold Volume: Vsm 0.011 

Return Manifold Volume: Vrm 0.0006 

Table 3.2: Element activities of original optimized design 
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Next, the scaling laws in Equation 3.20, 3.22, and 3.23 are used in the following 

steps in order to adjust the parameters (as listed in Table 3.2) so that the resulting scaled 

design satisfies the new desired flow rates (0.02 to 0.04 kg/s):  

(i) According to Table 3.2, our conjecture (stated in Section 3.2) suggests that 

the scaling laws associated with the supply and return manifolds are not 

important since their activities are the least in the ranking. Interestingly, 

this is also in agreement with the information found from the sensitivity 

analysis previously shown in Figure 3.8 which accentuates the use of 

activity to gain more flexibility in scaling. For this reason, the supply and 

return manifolds (Vsm and Vrm) do not need to be scaled, hence ߣ௏ೞ೘ ൌ 1, 

and ߣ௏ೝ೘ ൌ 1. 

(ii) Since it is judicious to assume that the atmospheric condition remains 

invariant, the atmospheric temperature (Tatm) and pressure (Patm) as well as 

the return manifold temperature (Trm) are kept constant. Therefore, this 

results in ೌ்ߣ ೟೘ ൌ 1, ௣ೌ೟೘ߣ ൌ 1, and  ߣ ೝ்೘ ൌ 1.  

(iii) Doubling the desired mass flow rates results in ߣ௠ಳೈ ൌ 2. This scaling 

factor together with those obtained from (ii) allow us to use the third 

scaling law in Equation 3.19 to scale the levels of power input supplied to 

the blower (Pin), this gives ߣ௉೔೙ ൌ 2.  

(iv) The scaling of the cross-sectional area of the first and second nozzles (At,1 

and At,2) relies on the concept of Monotonicity Principle [49]. That is, the 

objective function value (represented by blower power consumption) is 

found to be decreasing monotonically with respect to At,1 and At,2 (see Fig 
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C.2 in Appendix C), and the upper bounds on At,1 and At,2 turn out to be 

the only increasing constraints with respect to these two parameters. 

Therefore, these upper bounds are said to be critical [49]. As a result, to 

maintain the operational points at which the least possible amount of 

power is consumed in the blower while still satisfying new desirable flow 

rates, At,1 and At,2 need to be set at their corresponding upper bounds. As 

indicated in Constraints g3 and g4 of Equation 3.16, the upper bounds in 

this problem are set at two times larger than the original design’s 

parameter values, therefore the associated scaling factors of these two 

parameters become  ߣ஺೟,భ ൌ 2, and ߣ஺೟,మ ൌ 2 

(v) Finally, by designating that ߣ୼௣ ൌ 1 (as a result of ߣ௣ೌ೟೘ ൌ 1) and ߣQ ൌ 2 

(as a result of ߣ௠ಳೈ ൌ 2 and assuming that air density does not vary), the 

blower size (D) of the scaled designs can be determined using the first two 

scaling laws in Equation 3.22. Then, the rotational inertia (IBW) can be 

calculated according to Equation 3.23.  

Using these steps above gives the scaled design shown in the right-most column 

of Table 3.3:  
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 Original Design 
Re-optimized 

Design 
Scaled Design 

Desired Flow Rates:  
ሶ࢓  0.01 to 0.02 0.02 to 0.04 0.02 to 0.04 [kg/s] ࢊࢋ࢘࢏࢛ࢗࢋ࢘

Supply Manifold 
Volume: Vsm [m3] 

0.02 
Any value  

(within bounds) 
0.02 

Return Manifold 
Volume: Vsm [m3] 

0.05 
Any value  

(within bounds) 
0.05 

First Nozzle’s Area:  
At,1 [m2] 

0.03 0.06 0.06 

Second Nozzle’s Area:  
At,2 [m2] 

0.06 0.12 0.12 

Blower Size: D 
(Multiple of original) 

1 1.30 1.41 

Blower Power 
Consumption: Pin [Watt] 

444 to 1709 886 to 3419 888 to 3418 

Table 3.3: Optimization and scaling results 

At this point, it is important to realize that even though the parameters in the 

system are scaled according to the five steps just described above, it is inevitable that 

some of the scaling laws associated with the system’s parameters (the last four scaling 

laws in Equation 3.20) are still violated. This is due to, for example, the coupling 

between the blower’s inertia (IBW) and its size (D) which causes the seventh scaling law 

in Equation 3.20 to fail. In addition, the eight scaling law in Equation 3.20 also fails as a 

result of the invariance in both the return manifold temperature (Trm) and atmospheric 

pressure (Patm). This failure  to comply with the scaling laws (hence violation of 

similitude) is then expected to produce some deviation in the resulting scaled designs 

from similitude because the activity of the elements associated with the atmospheric 

pressure (Patm) and blower inertia (IBW) are deemed somewhat important as shown in 

Table 3.2.  As a consequence, this should mean that some (or all) of the scaled design’s 

properties (or outputs) do not perfectly meet the scaling factors designated by the first 
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four scaling laws in Equation 3.20. This speculation, in fact, turns out to be true. Figure 

3.9 below clearly shows, for instance, that the scaled design’s mass flow rates at steady 

state deviate slightly from 0.02 and 0.04 kg/s, while the re-optimized design does meet 

this requirement exactly (because satisfaction in mass flow rate is incorporated as a hard 

constraint in the formulation). Despite this deviation, the time responses shown in Figure 

3.9 still attest to the fact that the design obtained from the scaling technique is somewhat 

comparable to that from optimization. Moreover, it should be worth noting that the 

scaling technique implemented herein does not entail intensive computation while this 

does not hold true when the optimization is employed. In particular, it takes 

approximately 10 minutes6 to obtain an optimal solution. On the other hand, the scaling 

solution requires only algebraic manipulations once the scaling laws are derived.  

 

Figure 3.9: Time responses of the original, re-optimized, and scaled designs 

It is also very important to note here that the scaled design presented in Table 3.3 

and Figure 3.9 is a result of only one of the many ways to scale the parameters using the 
                                                 
6 This number is based on a dual core 2.0 GHz machine with a 2 GB ram memory.  
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scaling laws in Equations 3.20, 3.22 and 3.23. It is possible to argue that, for example, 

even though the size of the blower (D) is determined based on the assumption that the 

scaling factor associated with the mass flow rate is ߣQ ൌ 2, it is clearly shown in Figure 

3.9 that the resulting scaled design’s mass flow rates are not exactly at 0.02 and 0.04 kg/s 

and therefore do not meet this scaling factor exactly. This possibly makes that scaled 

value of D previously calculated not legitimate. Then, the following interesting question 

arises: Is there a better (or more quantitative) way to change D (and other parameters) to 

better achieve the design requirement (i.e., desired mass flow rates) as well as similitude? 

Or, more generally stated, when similitude is not possible to achieve, how should the 

parameters be adjusted so that the resulting scaled design stays close to similitude while 

still closely satisfying other design requirements?  

To this end, it is obvious that, while one can readily quantify the extent to which 

the design requirement is achieved (e.g., the mass flow rate is X percent off the desired 

value), it is more difficult to quantify the extent to which a scaled design satisfies 

similitude. Therefore, in order to answer the above questions as well as to make the 

scaling technique developed herein more efficient, a metric which can quantify the 

degree to which a scaled design is “close” to satisfying similitude should be developed. 

Once this metric is developed and justified, it should help us tradeoff the ability to 

achieve similitude against the ability to satisfy design requirements. In the context of the 

air supply system scaling, this tradeoff can be interpreted as the ability to maintain the 

blower operational efficiency versus the ability to satisfy the desired flow rates. This 

gives us the motivation to investigate into a way to quantify such closeness which will be 

addressed in the succeeding chapters in this dissertation.   
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3.4 CHAPTER SUMMARY 

This chapter presents a unique combination of an element activity metric and 

dimensional analysis to assess the relative importance of scaling laws and selectively 

scale only the important components. This method is shown to provide more freedom 

than the pure similitude-based scaling and attain more computational efficiency than 

sensitivity analysis.  The examples in the chapter demonstrate that the developed 

technique is applicable to both linear and nonlinear systems, and also prove that it can be 

implemented to multi-domain problems.  Furthermore, the findings in this chapter can 

assist engineers to modify only the influential components, thereby avoid any needless 

adjustments to the system that could happen otherwise.  

The air supply system case study also carries an interesting idea, that is, the 

presented technique can become a powerful aid to optimization in scaling system designs. 

However, for more complicated systems with more stringent constraints or requirements, 

one can expect that the current technique can become rather limited because it might not 

even be feasible to scale those important components, thereby heavily jeopardizing the 

similarity between the original and scaled systems. Due to this limitation, the succeeding 

chapter focuses on trying to create a metric are capable of assessing the degree to which 

two systems are “close” to satisfy similitude. This metric will also help us build a tool 

that enables multiobjective system scaling where the degree of similitude can be traded 

off against other competing design requirements.  
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CHAPTER IV 

APPROXIMATE SIMILITUDE: QUANTIFICATION AND USE IN 
MULTIOBJECTIVE SCALING 

 

As demonstrated in Chapter 3, when scaling laws deemed important cannot be 

followed exactly, not only the design requirement is not met perfectly, but also the 

resulting scaled designs’ characteristics deviate from those of the original design. With 

this in mind, this chapter aims at formulating a metric quantifying such a degree of 

deviation in similitude. In particular, this chapter addresses two limitations of the 

dynamic similitude literature through two original fundamental contributions. It presents 

the first quantification of approximate similitude on a continuous – rather that discrete – 

basis. It also incorporates this quantification within a multiobjective system scaling 

framework for the first time. The chapter is organized as follows. The first section 

presents a simple motivating example that highlights the definition of exact dynamic 

similitude as well as its key limitations. The second section then defines a new 

continuous metric that quantifies the degree to which two systems are approximately 

similar. This section also presents a multiobjective optimization framework to trade the 

resulting approximate similitude metric off against other system scaling requirements and 

constraints. Finally, the third and fourth sections demonstrate the resulting flexible 

multiobjective scaling algorithm using two case studies. The first case study examines the 
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scaling of the quarter-car system, while the second examines the scaling of a fuel cell air 

supply system, both of which were previously introduced in Chapter 3. The results of 

these studies and contributions of this work are discussed in Section 4.5. 

 

4.1 MOTIVATING EXAMPLE: LIMITATIONS OF EXACT SIMILITUDE 

 Consider the quarter-car system previously introduced in Chapter 3. It has been 

shown that any system scaling that obeys the scaling laws given in Equations 3.4 and 3.5 

exactly satisfies Buckingham’s Pi Theorem, and its outputs will be dynamically similar to 

the original system design. For instance, suppose again that one seeks a new system 

design complying with the following specifications: (i) 1=tλ , i.e., the time scale is not 

changed; (ii) 1=Fλ , i.e., the input force remains the same; (iii) 5.0
1
=xλ , i.e., we wish to 

reduce the magnitude of the sprung mass displacement by half. Then, the scaling laws of 

this system reduce to the following: 

2
us s t t s sM K K B B Mλ λ λ λ λ λ= = = = = =

 

 To visualize these scaling laws, consider the relationship between only two scale 

factors, namely, 
usMλ  and 

sKλ . This relationship is plotted below, ignoring all other scale 

factors for simplicity:  

 

 

 

 

 

(4.1) 
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Figure 4.1: Scaling law coordinate system: (a) unconstrained, (b) constrained 

Figure 4.1a above shows the relationship between 
usMλ  and 

sKλ  if the quarter-car 

system is scaled in exact compliance with dynamic similitude. In this case, the original 

and scaled system designs are represented by the points (1,1) and (2,2), respectively. The 

line segment in the first quadrant that contains these two points enumerates the pairs of 

all unsprung mass and suspension stiffness values complying with dynamic similitude. 

We refer to this line segment as a similitude line, and alternatively refer to it as a 

similitude hyperplane in more than two dimensions. In general, this hyperplane may be a 

nonlinear similitude hypersurface, and according to Buckingham’s Pi Theorem, this 

hypersurface will always be monomial [12]. Any design lying on this monomial 

similitude hypersurface satisfies dynamic similitude exactly, and any design not lying on 

it does not satisfy dynamic similitude. This highlights the discrete nature of dynamic 

similitude: it is either satisfied exactly or not at all.  

Consider the problem of scaling the above quarter-car suspension system to meet 

the above scaling requirements (namely, 1=tλ , 1=Fλ , 5.0
1
=xλ ) and retain as many 

desirable suspension characteristics as possible, subject to the constraint that the 

usMλ

sKλ
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Design 
constraint 



 54

unsprung mass cannot be changed (i.e., 1
usMλ = ). This scenario is depicted in Figure 

4.1b, where the additional constraint is represented by a line plus dashes. Perfect dynamic 

similitude is impossible in such a constrained scenario, but one may still choose to satisfy 

the scaling laws for all system design variables except the unsprung mass. This gives the 

point (2,1) in Figure 4.1b. In other words, point (2,1) denotes the design whose all 

parameters (also including those four parameters omitted from the figure, i.e., Ms, Kt, Bs, 

Bt)  are increased by a factor of two except the unsprung mass which is constrained at the 

original value. Given this point, one may legitimately ask: to what extent is it 

approximately similar to the original design? Furthermore, if this new scaled design is, 

indeed, approximately similar to the original, can one devise a new scaling algorithm that 

attempts to retain dynamic similarity as much as possible, but allows for some deviations 

from the similitude hypersurface? These questions are impossible to answer with a 

discrete definition of dynamic similitude. To address them, the next section presents the 

first continuous quantification of dynamic similitude in the literature. Furthermore, 

Sections 4.3 and 4.4 utilize this quantification as part of a multiobjective scaling 

formulation that trades similitude off against other scaling requirements, for the first time. 

The contributions in Sections 4.2 to 4.4 also leverage the findings discovered in the 

previous chapter, that is, different scale parameters and scaling laws do not affect a given 

system’s behavior equally. Therefore, any quantification of approximate similitude must 

not only account for the deviation of a scaled design from the corresponding similitude 

hypersurface, but also weigh this deviation by the importance of the parameters in which 

it occurs.  
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4.2 APPROXIMATE SIMILITUDE METRIC AND MULTIOBJECTIVE 

SCALING METHOD 

To quantify approximate similitude, consider the similitude hyperplane 

corresponding to the scale factors 
usMλ  and 

sKλ  of the quarter-car system. Furthermore, 

consider four points on this similitude hyperplane: a point P1 (1,1) corresponding to the 

original design, a point P2 (2,2) corresponding to a perfectly scaled design, and two 

points P3 (2,1) and P4 (1,2) corresponding to non-similitude designs7. Noting that P3 and 

P4 are equidistant from the similitude hyperplane, one may argue that they deviate 

equally from similitude, but this is not confirmed by Figure 4.2 as follows.   

 

Figure 4.2: Time responses of designs P1, P2, P3, and P4 

Figure 4.2 plots the sprung mass displacements corresponding to the points P1-

P4. As asserted by Buckingham’s Pi Theorem, the sprung mass displacement 

                                                 
7 Note that, at Point P2 (2,2), the other four parameters absent from the scaling law coordinates (i.e., Ms, Kt, 
Bs, Bt) are also scaled by a factor of two according to similitude. Similarly, at Point P3 (2,1), since these 
four parameters are not constrained, they are still scaled by a factor of two.   
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corresponding to P2 is exactly half that corresponding to P1. Interestingly, the sprung 

mass displacement corresponding to P3 is almost identical to the displacement 

corresponding to P2. Intuitively, this implies that P3 is approximately similar to P2, and 

therefore also approximately similar to P1. This is not true for P4, whose sprung mass 

displacement deviates significantly from P2, thereby indicating poor approximate 

similitude between P4 on the one hand and P1 and P2 on the other. An important 

conclusion of this simple example is that distance from the similitude hypersurface alone 

does not constitute a satisfactory quantification of approximate similitude. Points that are 

equidistant from the similitude hypersurface may, in fact, differ significantly in their 

compliance with approximate similitude. To quantify approximate similitude, one must 

therefore capture not only a design’s deviation from the corresponding similitude 

hyperplane, but also the degree to which this deviation penalizes approximate similitude.  

To capture such a degree, we consider the activities corresponding to the different 

quarter-car system parameters for the original system design, P1 (as listed in Table 3.1 in 

the previous chapter). It shows that the most active suspension element is the spring (Ks), 

and that the unsprung mass (Mus) is orders of magnitude lower in activity. It has been 

previously shown in Chapter 3 that scaling the suspension stiffness correctly is 

significantly more important than scaling the unsprung mass correctly if one seeks 

dynamic similitude. This explains the significant differences between points P3 and P4 in 

terms of similitude, despite their equal distance from P2. In one case, namely, P3, the 

deviation occurs in a less important parameter, and similitude is not affected 

significantly. In the other case, namely, P4, the deviation occurs in a more important 

parameter, and similitude is affected much more. In summary, we observe that deviations 
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from scaling laws corresponding to more active parameters penalize similitude 

significantly more than deviations from scaling laws corresponding to less active 

parameters. 

The above discussion lays the foundations for the approximate similitude metric 

proposed herein. In particular, we propose to quantify approximate similitude in terms of 

the activity-weighted distance between a non-similitude design and a corresponding 

design on the similitude hypersurface. Consider, for instance, a non-similitude quarter-car 

suspension design given by scale factors 
sMλ , 

usMλ , 
sKλ , 

tKλ , 
sBλ  and 

tBλ . Furthermore, 

let (S,S,S,S,S,S) be an arbitrary point on the six-dimensional similitude hypersurface 

corresponding to these scale factors. This arbitrary point satisfies the scaling laws for the 

given system as indicated by Equation 4.1, and is therefore a perfectly scaled design. 

Denote the activities corresponding to the above scale factors by 
sMA , 

usMA , 
sKA , 

tKA , 

sBA  and 
tBA , respectively. Then we propose to use the following metric to quantify 

approximate similitude in the quarter-car system case:  

2 2

2 2

2 2

( ) ( )

( ) ( )

( ) ( )

s s us us

s s t t

s s t t
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K K K K

B B B B
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λ λ

λ λ

= − + − +

− + − +

− + −
 

The above metric captures not only a given design’s deviation from the similitude 

hypersurface, but also the degree to which this deviation corresponds to highly active 

parameters. It also has an interesting graphical interpretation, as shown in Figure 4.3 

below. 

(4.2) 
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Figure 4.3: Modified scaling law coordinate system 

Figure 4.3 plots the similitude hypersurface for the quarter-car example, again 

focusing only on the scale factors 
usMλ  and 

sKλ  for simplicity. Unlike previous 

similitude hypersurface plots, however, it multiplies the axis corresponding to each scale 

factor by the square root of the activity corresponding to that scale factor. This tilts the 

similitude hypersurface to the right significantly, since the suspension stiffness is much 

more active than the unsprung mass8. Points P3 and P4 are no longer equidistant from P2. 

In fact, point P3 is much closer to P2 than P4 is. Furthermore, denoting point P2 by (S,S) 

rather than (2,2), we note that the distance between an arbitrary point on this new plot and 

point P2 is given by (a two-parameter version of) the approximate similitude objective in 

Equation 4.2. In other words, the proposed approximate similitude objective still equals 

the distance between a scaled design and a chosen point on the similitude hypersurface, 

but on a plot where each axis is scaled by the square root of the corresponding activity.  

The above continuous quantification of approximate similitude allows designers 

to trade similitude off against other requirements in a multiobjective scaling framework, 

                                                 
8 Note that, solely for the sake of effective illustration, Figure 4 is not drawn exactly to scale.  
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for the first time. Designs furnished by such a framework represent compromises 

between one’s ability to attain similitude and one’s need to satisfy other important scaling 

objectives and constraints. In this dissertation, we formulate the multiobjective scaling 

problem as follows:  

)()()(min xFxFxF dsx +=  

subject to:   bb UxL ≤≤  

where x,  F, Lb, and Ub denote the design variables, overall objective function, and design 

variable lower and upper bounds, respectively. The vector of design variables x  includes 

both the scale factors (i.e., the λ’s) and the corresponding ideal scale factors (i.e., the S’s) 

from Equation 4.2. Furthermore, the overall objective function contains two terms: a 

“design objective” Fd representing scaling specifications (e.g., desired steady state 

response, peak response, etc.), and an “approximate similitude objective” Fs capturing 

deviation from exact similitude. Case studies in the succeeding sections use this 

multiobjective formulation to scale a quarter-car system and a fuel cell air supply system 

approximately.  

 

4.3 APPROXIMATE SIMILITUDE DESIGN OF A QUARTER-CAR SYSTEM 

To illustrate the above approximate similitude scaling approach, consider the 

quarter-car scaling example considered in the previous chapter. Table 4.1 presents typical 

parameter values for this problem. It also presents some hypothetical upper and lower 

bounds on each parameter. Consider the problem of scaling this suspension to minimize 

the following design objective: 

(4.3) 
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In this design objective, W is a preference parameter weighing the importance of 

the design objective compared to the similitude objective (Fs). Furthermore, the intent of 

the design objective is to achieve a certain desired maximum suspension travel, defined as 

the maximum difference between the displacements of the sprung and unsprung masses, 

i.e.,   (x1-x2)max. Minimizing such travel reduces the likelihood of “bottoming”, and is thus 

a common suspension design objective [50, 51]. Suppose we seek to cut suspension 

travel exactly in half, while maintaining exact dynamic similitude. Table 4.1 lists the 

resulting scaled suspension parameter values, based on the scaling laws from Equation 

4.1. These scaled parameters violate the upper bounds on both the sprung mass and the 

suspension stiffness. Furthermore, since these two particular parameters correspond to the 

highest activities in Table 3.1 (in the previous chapter), we conclude that scaling based on 

exact similitude is infeasible under this scenario. Instead, we combine the design scaling 

objective in Equation 4.4, the similitude objective in Equation 4.2, the parameter bounds 

from Table 2, and the multi-objective scaling formulation in Equation 4.3 to scale the 

suspension approximately. The resulting scaled designs are presented in Table 4.2 for 

different values of the weight W.  

 

 

 

 

(4.4) 
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Parameter Original 
Exact Similitude 

Scaling 
Lower Bound  

(LB) 
Upper Bound  

(UB) 

Ms [kg] 267 534 200 400 
Mus [kg] 36.6 73.2 30 80 

Ks [N/m] 18760 37520 15000 35500 
Kt [N/m] 193950 387900 150000 500000 

Bs [N.s/m] 700 1400 200 1500 

Bt [N.s/m] 200 400 50 600 

Table 4.1: Quarter-car system parameters and bounds 

 

Preference 
Weight 

(W) 

Pareto Optimal Design 

Ms 
[kg] 

Mus 
[kg] 

Ks 
[N/m] 

Kt 
[N/m] 

Bs 
[N.s/m] 

Bt 

[N.s/m] 
S 
[-] 

Fs
* 

[-] 
Fd

* 
[-] 

0.1 400 54.8 28144 290910 1050 300 1.499 0.00007 0.111 

1 400 55.1 28467 293750 1063 304 1.513 0.0058 0.100 

10 400 63.4 0362 310450 1144 324 1.595 0.2276 0.0507 

100 400 67.5 34102 344030 1306 362 1.758 1.611 0.0058 

500 400 68.0 34979 352000 1344 375 1.796 2.119 0.0021 

Table 4.2: Quarter-car Pareto optimal designs  

 

Figure 4.4 presents the various optima listed in Table 4.2 for different values of 

the weight W as a Pareto frontier. As this frontier shows, increasing the value of W 

furnishes suspensions that come closer to meeting the design goal of cutting suspension 

travel in half. This comes at the expense of similitude, which is increasingly sacrificed as 

W increases. To gain physical insight into this loss of similitude, recall that the perfectly 

scaled design in Table 4.1 assumes that the time scale is fixed. It follows, based on 
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Buckingham’s Pi Theorem, that perfect similitude also implies that the frequency scale is 

fixed. In other words, the perfectly scaled suspension must have the same natural 

frequencies as the original design. Furthermore, note that perfect similitude must also 

preserve the system’s suspension damping ratios, since they are dimensionless (see 

Appendix D for a derivation showing natural frequency and damping ratio expressed in 

terms of dimensionless parameters). These facts are evident in Figure 4.4b and Figure 

4.4c, which show that the system’s first natural frequency (sprung mass natural 

frequency) and damping ratio remain unaltered when similitude is perfectly attained (see 

Appendix D for plots showing correlations of Fs vs. damping ratio and natural 

frequency). As the weight W increases, however, similitude is gradually sacrificed, and 

this causes a shift in system natural frequencies and damping ratios. 
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Figure 4.4: Quarter-car design trade-offs 

The above results highlight two main strengths of the proposed approximate 

similitude metric and scaling method. First, the metric and scaling method extend 

similitude beyond its traditional discrete definition, hence enabling inexact system 

scaling. Secondly, tradeoffs between similitude and competing scaling requirements can 

be addressed explicitly.  
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4.4 APPROXIMATE SIMILITUDE DESIGN OF A FUEL CELL AIR SUPPLY 

SYSTEM 

 This section examines the scaling of a Polymer Electrolyte Membrane (PEM) fuel 

cell’s air supply system (as introduced earlier in Chapter 3) to meet new power 

requirements. The governing equations describing this system are already given in 

Chapter 3 by Equations 3.9 – 3.15. The primary function of this air supply system is to 

regulate the amount of oxygen in the fuel cell’s cathode during power generation. Such 

regulation is important, because the fuel cell’s power output depends directly on the air 

flow rate through the air supply system, as shown in [3]. The goal of this case study is to 

investigate the scaling of the air supply system to provide different air flow rates, thereby 

meeting new fuel cell power demands.  

Upon approximate scaling, we begin by deriving ideal scaling laws for the air 

supply system. We then compute the activity associated with each scaling law, and 

combine the resulting activities with the scaling laws to furnish an approximate similitude 

metric (these activities were calculated and previously given in Table 3.2 in the previous 

chapter). Finally, we formulate a design metric, and explicitly trade it off against the 

similitude metric to achieve approximate scaling. Scaling laws for the above air supply 

system are explained in Chapter 3 and replicated again below: 
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It is also worth mentioning again that the very last scaling law in Equation 4.5 

suggests that perfect similitude scaling results in the ability to maintain the same 

operating points on the blower’s efficiency map. This implies that if the original design’s 

operating points are optimized (which means that the blower consumes the least amount 

of power possible to satisfy some certain desired flow rates), the optimality will also exist 

in the perfect similitude design. This clearly represents a desirable feature in the scaling 

of a fuel cell system, especially from an energy savings standpoint.     

The design scaling problem for this air supply system is set up to reflect the 

situation in which the system engineer wishes to, firstly, scale the air flow rates to twice 

their original values and, secondly, maintain the original design’s desirable properties 

(e.g., blower efficiency, rise time, etc.). Towards these broad goals, we consider the 

following two scenarios:  

(i) The first scenario assumes the blower to be fixed  

(ii) The second scenario allows the blower size parameter D to vary. 

In both scenarios, the following parameters in Table 3.2 (i.e., At,1, At,2, Pin, Vsm, 

and Vrm) still remain design variables and, therefore, are allowed to vary. Again, we 

assume that the scaled air supply systems operate in the same environment as the original 

(4.5) 
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system, i.e., 1,1 ==
atmatm TP λλ , and 1=

rmTλ . As explained in Chapter 3, combining these 

requirements with the assumptions that the gas constant, time, and blower density factor 

do not change (i.e., ,1,1 == tR λλ and 1=
BWρλ ) makes it difficult to scale this air supply 

system in accordance with the exact similitude scaling laws in Equation 4.5 while 

doubling its air flow. Therefore, we pursue an approximate similitude solution instead.  

We begin the approximate similitude scaling problem formulation by formulating 

the following approximate similitude objective function: 

௦ܨ  ൌ    ௏ೞ೘ߣ௏ೞ೘ሺܣ െ ܵଶ
ଷ ଶ⁄ ሻଶ ൅ ௏ೝ೘ߣ௏ೝ೘ሺܣ െ ܵଶ

ଷ ଶ⁄ ሻଶ ൅ ܣ஺೟,భሺߣ஺೟,భ െ ܵଶ ሻଶ ൅ 

஺೟,మߣ஺೟,మሺܣ           െ ܵଶ ሻଶ ൅ ܣ ೝ்೘ሺߣ ೝ்೘ െ ܵଶ ሻଶ ൅ ೌ்ܣ ೟೘ሺೌ்ߣ ೟೘ െ ܵଶ ሻଶ ൅ 

௣ೌ೟೘ߣ௣ೌ೟೘ሺܣ            െ
ଵܵ

ܵଶ
ଵ ଶ⁄ ሻ

ଶ ൅ ஽ߣ஽ሺܣ െ ଵܵ
ଵ ସ⁄

ଵܵ
ଵ ଼⁄ ሻଶ ൅ 

௉೔೙ߣ௉೔೙ሺܣ            െ ଵܵܵଶሻଶ ൅ ூಳೈߣூಳೈሺܣ െ ௌమ
ௌభ
ሻଶ 

Substituting the assumptions and requirements described earlier as well as the 

blower inertia-size relationship in Equation 3.23 into the above objective function gives 

us the following:  

௦ᇱܨ ൌ ௏ೞ೘ߣ௏ೞ೘ሺܣ   െ ܵଶ
ଷ ଶ⁄ ሻଶ ൅ ௏ೝ೘ߣ௏ೝ೘ሺܣ െ ܵଶ

ଷ ଶ⁄ ሻଶ ൅ ܣ஺೟,భሺߣ஺೟,భ െ ܵଶ ሻଶ ൅ 

஺೟,మߣ஺೟,మሺܣ           െ ܵଶ ሻଶ ൅ ܣ ೝ்೘ሺ1 െ ܵଶ ሻଶ ൅ ೌ்ܣ ೟೘ሺ1 െ ܵଶ ሻଶ ൅ 
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ଵ ଼⁄ ሻଶ ൅ 
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(4.6) 

(4.7) 
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A clear distinction between this similitude objective and the quarter car similitude 

objective is that the present similitude objective contains two ideal scaling variables, S1 

and S2. This reflects the fact that the similitude hypersurface for the fuel cell air supply 

system is two-dimensional, while the similitude hypersurface for the quarter-car system is 

one-dimensional (i.e., a line). The dimension of the similitude hypersurface depends on 

(i) the number of physical variables and parameters used in scaling, Nv, (ii) the number of 

scaling laws, Ns, and (iii) the number of assumed requirements on scaling, Na.  

To determine the dimension of the similitude hypersurface for the quarter-car 

system, note that the system is described by 10 variables given in Equation 3.1. 

Therefore, Nv=10. Furthermore, note that for these variables to satisfy exact similitude, 

they must satisfy 7 scaling laws listed in Equations 3.4 and 3.5. Therefore, Ns=7. Finally, 

note that we scale the quarter-car system subject to the requirements that neither time nor 

the input force are variant. This introduces two additional scaling requirements (which 

are independent of one another), i.e., Na=2. Taking all of these facts into account, we 

conclude that for the quarter-car scaling problem, one can freely vary Nv – Ns – Na 

variables without sacrificing exact similitude. In other words, the dimension of the exact 

similitude surface is 10-7-2=1.  

In a similar fashion, the fuel cell air supply system’s governing equations which 

are described in Section 3.3.1 consist of a total of 24 variables, i.e., Nv = 24. Next, to 

satisfy similitude, 20 scaling laws in Equation 3.20 have to be followed, therefore, Ns = 

20. Note that although there are 3 requirements assumed in the scaling of this system 

௧ߣ) ൌ 1, ஼ುߣ ൌ 1, ோߣ ൌ 1ሻ, and the last two requirements are dependent of one another. 

As a result, Na = 2. Therefore, we conclude that the dimension of the exact similitude 
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surface is 24-20-2 = 2, hence the need for 2 perfect scaling variables, S1 and S2.  

Returning to the air supply system scaling problem, given the approximate 

similitude objective in Equation 4.7, we now formulate the design objective as follows: 

ௗܨ ൌ ܹ ሺ ሶ݉ ௦௧௘௔ௗ௬
ሶ݉ ௗ௘௦௜௥௘ௗ

൘ െ 1ሻଶ 

This design objective above represents the requirement of doubling the flow rate 

of supplied air. In other words, ሶ݉ ௗ௘௦௜௥௘ௗ is chosen to be twice the air flow rate of the 

original air supply system. Recall from the previous chapter that the original system was 

designed for ሶ݉ ௗ௘௦௜௥௘ௗ at 0.01 to 0.02 kg/s and the scaled design wants to achieve 0.02 to 

0.04 kg/s. The original system design parameter values and upper and lower bounds are 

identical to those in Equation 3.16 and Appendix C.  

The similitude objective (Equation 4.7) and design objective (Equation 4.8) are 

then incorporated into the multiobjective formulation (as indicated in Equation 4.3). The 

results of approximate similitude-based scaling are presented below. Specifically, Figure 

4.5 shows the different air flow rates corresponding to a step change in power consumed 

by the blower (Pin) for different Pareto-optimal scaled system designs, assuming a fixed 

blower (D is fixed). These responses demonstrate how the mass flow rates of the scaled 

designs gradually approaches the design specifications as preference parameter W 

increases. 

 Increasing the preference parameter W may result in better attainment of the 

design goal of doubling the fuel cell air supply system’s flow capacity, but this comes at 

a penalty in similitude. One way to visualize this penalty is to plot deviations from the 

desired air flow rates versus decline in operational blower efficiency (ߟ஻ௐ,ை௣௥ ) for 

(4.8) 
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different optimal scaled design9, as shown in Figure 4.6. Operational blower efficiency is 

not explicitly incorporated in the air supply system scaling problem. However, as noted 

earlier, perfect similitude-based scaling of the air supply system guarantees constant 

blower efficiency. More specifically, the ability to maintain similitude results in the same 

operation points on the blower’s efficiency map. As a result, the corresponding amount of 

power (Pin) consumed by the blower will be at its minimum (while still satisfying the 

increased desired flow rates).  A decline in blower efficiency, therefore, can be used as 

one heuristic and intuitive measure of deviation from similitude. The results in Figure 4.6 

show that blower efficiency does decline significantly as the preference parameter W is 

increased. This is particularly pronounced in the scenario where the blower is fixed, 

rather than resized.  

 

Figure 4.5: Mass flow rates of optimal scaled designs (fixed blower size) 

                                                 
9 Because there are two levels of desired flow rates (i.e., 0.02 to 0.04 kg/s) which then give two values of 
blower operational efficiencies, the tradeoffs shown in Figure 4.6 are averages of the two efficiencies.   
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Figure 4.6: Design tradeoffs in air supply system scaling 

The above results can be quite useful in determining the extent to which 

competing scaling criteria, such as the need for efficiency versus the need for increased 

air flow, can be accommodated. This is particularly true when other physical constraints 

are present, such as packaging constraints. Such constraints can render the scaling of a 

low-pressure system infeasible, and necessitate a high-pressure system instead. For 

instance, because the air supply system used in this work is based on the Ford P2000 fuel 

cell prototype vehicle [3] and low-pressure systems are commonly composed of 

components whose sizes are larger than those of the high-pressure systems [46] , the 

packaging constraint becomes the most critical one for this application. In particular, the 

size of the first nozzle’s cross-sectional area (At,1) determines the diameter of the supply 

pipe installed underneath the vehicle. The size of this pipe must be carefully designed to 
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approximately. In both cases of the scaling problem considered herein (i.e., fixed blower 

and variable blower size), this packaging constraint places a limit which in turn causes 

the designs corresponding to 50≥W  to be no longer feasible.  This is shown in Figure 

4.7 below which plots the first nozzle’s cross sectional area (At,1) as a function of 

preference parameter (W).  

    

Figure 4.7: Influence of packaging constraints on scaling feasibility 

With this finding, the following important conclusion can then be drawn from this 

scaling study: the low pressure system can only be scaled (as can be seen from Figure 4.6) 

to reach nearly a twenty percent deviation from the desired flow rates. This then implies 

that if larger flow rates (i.e., larger fuel cell power levels) are necessary, we might need to 

resort to the high-pressure system instead. Insights like this are difficult to obtain using a 

discrete definition of similitude: a fact which underscores the viability of the method 

proposed herein. 
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4.5 CHAPTER SUMMARY 

This chapter extends the scaling technique developed in the previous chapters. In 

particular, it has been described that the literature proposes similitude as a technique for 

solving the problem of scaling a proven dynamic system to meet new design 

requirements. However, difficulties arise when some of the important scaling laws 

identified via similitude cannot be satisfied exactly. This often results from constraints on 

design properties such as space and packaging, and prevents the attainment of exact 

similitude. Difficulties also arise when one seeks to achieve multiple competing 

objectives, rather than just similitude, in scaling: a scenario not explicitly addressed by 

dynamic similitude-based scaling. To address these problems, this chapter develops the 

first continuous metric that can quantify the proximity of a given system to exact 

similitude. The metric combines dimensional and activity analyses to determine not only 

which scaling laws are violated by a given design, but also to what degree this violation 

may be important. The metric also has interesting graphical interpretations presented 

earlier in this paper. Using this approximate similitude metric, one can explicitly trade off 

the attainment of similitude versus the satisfaction of other scaling requirements and 

constraints. Thus, this chapter adds two key contributions to the literature. It quantifies 

approximate similitude for the first time, and it presents a multiobjective formulation of 

the approximate scaling problem, also for the first time. The viability of these 

contributions is demonstrated using two case studies, one focusing on quarter-car 

suspension system scaling and the other focusing on fuel cell air supply system scaling.  
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CHAPTER V 

APPROXIMATE SIMILITUDE SCALING OF HMMWV 
 

This chapter demonstrates the applicability of the scaling techniques developed in 

this dissertation to a complex nonlinear multibody dynamic model of the High Mobility 

Multipurpose Wheeled Vehicle (HMMWV or “Humvee”). In particular, the problem of 

scaling the HMMWV to enable it to carry additional rooftop loads will be investigated. 

Even though the HMMWV was originally designed to have exceptional maneuverability 

[53], the rollover propensity of the vehicle can significantly deteriorate due to these extra 

loads which increase the vehicle’s C.G. height.  It is shown that the approximate 

similitude scaling technique can used to determine how different components of the 

system should be redesigned in order to satisfy the load specification while 

simultaneously maintaining the critical dynamic performance of the vehicle.  More 

specifically, the scaling study in this chapter focuses on making minimal design 

modifications to the vehicle to improve its rollover stability without involving major 

design changes, e.g., suspension mechanism redesign. The chapter’s first section gives a 

brief introduction to the HMMWV dynamic model used in the study. Then, the scaling 

laws are summarized in Section 2. The chapter concludes by presenting the design trade-

offs established from the scaling study as well as discussing insights that can be gained 

from these results.  
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5.1 MULTIBODY DYNAMIC HMMWV MODEL 

 The HMMWV is a four-wheel dual-use vehicle designed to provide combat, and 

service support roles. There are many different variants of this vehicle which are capable 

of accepting various body configurations to accommodate, for example, weapon systems 

and ambulance roles. Therefore, a high degree of mobility is necessary in both off-road 

and on-road situations [53]. The HMMWV model developed in this study utilizes bond-

graphs as the modeling technique of choice [54]. This modeling paradigm (which can 

generally be categorized as a physical component-based technique) not only facilitates 

the use of our scaling technique, but is also known to promote commonality, reusability, 

hierarchical modeling as well as offer better physical insight into our system of interest 

[10, 55].  

 

Figure 5.1: HMMWV model’s main components 
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The main components included in the model are the chassis, front and rear A-arm 

suspensions, front and rear tires, steering system, and anti-roll bar effects. These sub-

systems are shown in the top-level part of the model as illustrated in Figure 5.1 above 

(pictures showing implementation details of these sub-systems are given in Appendix C). 

The chassis body and suspension arms are represented by rigid bodies. These rigid bodies 

are assumed to be constrained through different types of joints and forces/moments. 

These connections also rely on the use of coordinate transformations and generation of 

position and orientation variables [10, 54]. The vehicle model, however, does not include 

the engine and powertrain systems.  The inputs of the model are the steering angle input 

applied to the steering system’s Pitman arm and rotational velocity inputs applied to the 

front wheels of the vehicle. A picture describing the configuration of the steering system 

in the model is also given in Appendix C.  

 The suspension stiffnesses and damping coefficients are assumed to be constant 

over the range of simulation, and so are the rollbar stiffnesses. The tire models 

implemented replicate a simple tire model used in the simulation software DADS [52] 

(see Appendix E for details of the tire slip models). The entire HMMWV model has 360 

states and 605 parameters. The nonlinearities in the model come from the nonlinear 

constraining forces, the three-dimensional rigid body kinematics, etc.  The key 

parameters of the original model are given in Table 5.1.  

 The vehicle-fixed coordinate frame of the HMMWV model is defined with 

reference to a right-hand orthogonal coordinate system as follows:  

• The positive x-axis points forward on the longitudinal plane of symmetry 

• The positive y-axis goes out the left side of the vehicle 
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• The positive z-axis goes out upward with respect to the vehicle  

• Roll, pitch, and yaw constitute rotations around x, y, and z axis respectively.  

Parameter Value 

Chassis Mass 3514 kg 

Chassis Inertia [Ixx,Iyy,Izz] [1504, 5950, 6357] kg.m2 

CG Height 1.16 m 

Wheelbase 3.20 m 

Track Width 1.80 m 

Front Spring Rate 250 kN/m 

Rear Spring Rate 300 kN/m 

Wheel Radius 0.461 m 

Vertical Tire Stiffness 1.3 x 105 N/m 

Cornering Tire Stiffness 1.0 x 105 N/rad 

Table 5.1: Default HMMWV key parameters 

 The driving scenario characterized by the two inputs, i.e., steering and wheel 

rotational velocity inputs, is shown in Figure 5.2 and Figure 5.3 below. The steering 

profiles are chosen such that the driving aggressiveness continuously increases over the 

maneuver. This driving pattern has been extracted from statistical data and deemed 

sufficiently realistic to represent a human driver’s aggressiveness [56].  This renders 

these profiles suitable for a rollover type of study.  
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Figure 5.2: Wheel Rotational Velocity Input Profile 

 

Figure 5.3: Pitman Arm Steering Angle Input 
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model, that these variable categories are either in the mechanical domain (force-velocity) 

or rotational domain (torque-rotational velocity). 

In this chapter, the symbols in the first column of Table 5.2 are used to represent 

the corresponding sets of variables. For instance, the Mass category (M) contains all of 

the variables whose fundamental unit is [M]. This variable classification allows us to 

readily apply dimensional analysis and derive scaling laws of this rather complex system.  

Variable Category Categorical Name Fundamental Units 

M Mass [M] 

x Displacement [L] 

v Linear Velocity [LT-1] 

a Acceleration [LT-2] 

I Inertia [ML2] 

θ Angle [-] 

ω Angular Velocity [T-1] 

K Stiffness [MT-2] 

B Damping [MT-1] 

t Time [T] 

Ca Tire Lateral Stiffness [MLT-2] 

Table 5.2: Categories of variables in HMMWV model 

All of the 11 variable categories in Table 5.2 can be measured in terms of 3 

fundamental units. Therefore, by Buckingham’s Pi Theorem, the corresponding number 

of dimensionless (Pi) parameter categories is 11-3 = 8. The choice of these Pi parameters 

is not unique, but one possible selection is given below:  

 

 



 79

ଵߨ ൌ
ூ

ெ௫మ
ଶߨ   ,   ൌ

௔ெ
௫௄
ଷߨ    ,    ൌ

஻
௠భ/మ௄భ/మ

ସߨ   ,   ൌ
ఠெభ/మ

௄భ/మ
 

ହߨ ൌ
ଵ/ଶܭݐ

ଵ/ଶܯ ଺ߨ   ,   ൌ
ଵ/ଶܯݒ

ଵ/ଶܭݔ ଻ߨ    ,    ൌ
௔ܥ
ݔܭ

଼ߨ    ,    ൌ   ߠ

Next, as previously illustrated in Chapter 3, these dimensionless parameters result in the 

following scaling laws:  

ூߣ ൌ ெߣ௔ߣ   ,  ௫ଶߣெߣ ൌ ஻ߣ   ,  ௄ߣ௫ߣ ൌ ெߣ
ଵ/ଶߣ௄

ଵ/ଶ , ௄ߣ ൌ ெߣ
ଵ/ଶߣఠ  

௧ߣ  ൌ
ெߣ
ଵ/ଶ

௄ߣ
ଵ/ଶ൘ ௩ߣ   ,   ൌ

௄ߣ௫ߣ
ଵ/ଶ

ெߣ
ଵ/ଶ൘  , ஼ೌߣ ൌ ఏߣ   ,  ௄ߣ௫ߣ ൌ 1  

For the design scaling study of the HMMWV, it is assumed that we need to comply with 

the following specifications:  

1) The vehicle follows the same speed profile and steering maneuver. This 

results in λv = 1 and λθ = 1.   

2) The time scale of the simulation does not change, i.e., λt = 1.  

These assumptions simplify the scaling laws in Equation 5.2 into the following:  

஼ೌߣ ൌ ெߣ ൌ ஻ߣ ൌ ௄ߣ ൌ ூߣ ൌ ܵ      

௔ߣ  ൌ ௩ߣ ൌ ௫ߣ ൌ ఏߣ ൌ 1 

where S denotes the scaling factor variable needed in the scaling. It is worth noting the 

scaling laws above imply, in similitude scaling, that all of the physical dimensions of the 

vehicle should remain the same. That is, for instance, the track width, wheel base, and 

suspension arm lengths can be left identical to those of the original design. It is 

interesting to see that the first set of the “categorical” scaling laws in Equation 5.3 is 

(5.1) 

(5.2) 

(5.3) 
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quite similar to those obtained for the 2-DOF quarter-car system with the only difference 

being the presence of the lateral stiffness categorical scaling factor.  

 One can see from the scaling laws in Equation 5.3 that the possibility of scaling 

this vehicle design, while maintaining absolute dynamic similitude is very difficult to 

achieve practically. First of all, it is almost impractical to presume that the designer has 

the luxury of freely changing all inertial, compliance, and damping parameters. More 

specifically, our design specification requires an extra load added to the vehicle. This 

added load, in turn, changes the CG height of the vehicle, thereby making a violation of 

the last scaling law in Equation 5.3 inevitable.  These observations clearly attest to the 

need to resort to the approximate similitude scaling technique developed in this 

dissertation. To this end, the components necessary to construct the approximate 

similitude formulation of this HMMWV study are described in the subsequent sections.   

 

5.3 USING ACTIVITY ANALYSIS TO ASSESS RELATIVE IMPORTANCE 

OF SCALING LAWS 

 The researchers in [43] show that the selection of the time window over which 

activities are  calculated depends on which behavior of the system is of our interest. As a 

result, because our design scaling study of the HMMWV focuses on the rollover aspect 

of the vehicle, the time window over which activities in the model are calculated is 

chosen to include only the period where the steering input is in use. This corresponds to 

the 12-28 second time interval in Figure 5.3.  
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It is also important to note that some of the parameters appearing in the system 

scaling laws do not hold a one-to-one relationship with the bond-graph elements in the 

model. The chassis mass parameter, for instance, is considered as part of the three inertial 

elements in the translational dynamics block of the chassis sub-model, while, the x-

component chassis inertia appears in only one inertial element in the rotational dynamics 

block. Similar to the fuel cell air supply system considered in the previous chapters, to 

evaluate the importance of scaling laws, the values of elements’ activities need to be 

“post processed” in order to associate them with the existing parameters. The methods 

employed for such post-processing are explained in Appendix D.  The methods also 

assume that the right and left vehicle components are symmetric, e.g., the right and left 

spring rates are constrained to be identical. The ranking of the parameters whose activity 

indices collectively contribute to approximately 99 percent of the overall activity index is 

given in Table 5.3.   
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Parameter Activity Index [%] 
Body Mass (MBody)  37.896 
CG Height (XCG) 19.087 

Rear Tire Lateral Stiffness (Ca,R) 10.481 
Front Tire Lateral Stiffness (Ca,F) 7.675 

Rear Spring Rate (KSusp,R) 5.103 
Front Spring Rate (KSusp,F) 3.322 

Front Wheel Hub Mass (MHub,F) 0.871 
Rear Wheel Hub Mass (MHub,R) 0.815 

Front Wheel Mass (MWheel,F) 0.811 
Front Lower Arm Mass (MLA,F) 0.804 

Rear Wheel Mass (MWheel,R) 0.77 
Rear Lower Arm Mass (MLA,R) 0.738 

Rear Rollbar Stiffness (KRollbar,R) 0.598 
Rear Tire Stiffness (KTire,R) 0.589 

Front Rollbar Stiffness (KRollbar,F) 0.373 
Z-axis Body Principal Moment of Inertia (Izz) 0.346 

Y-axis Tire Principal Moment of Inertia (ITire,YY) 0.343 
Front Tire Stiffness (KTire,F) 0.322 

Front Upper Arm Mass (MUA,F) 0.114 
Rear Suspension Damping (BSusp,R) 0.112 

Rear Upper Arm Mass (MUA,R) 0.105 
Front Suspension Damping (BSusp,F) 0.089 

Rear Tire Damping (BTire,R) 0.018 
Front Tire Damping (BTire,F) 0.0127 

X-axis Body Principal Moment of Inertia (Ixx) 0.012 
Table 5.3: HMMWV parameter importance ranking 

Since the last scaling law in Equation 5.3 suggests that the parameters associated 

with physical length dimensions (e.g., suspension arm lengths, wheel base) be kept at 

their original values to satisfy similitude. Then, it makes sense that in our scaling study 

that these parameters are not part of the design parameter set and, therefore, can be 

neglected from the similitude objective as well as the relative importance analysis.  

 

 



 83

5.4  FORMULATION OF SIMILITUDE AND DESIGN OBJECTIVES  

In this HMMWV design scaling study, the design requirement is set up to reflect 

the situation in which an extra weight is added to the vehicle’s roof. This specification 

yields the following design objective (Fd):  

ௗܨ ൌ ܹሺߣெಳ೚೏೤ െ ெಳ೚೏೤,೏೐ೞ೔ೝ೐೏ሻߣ
ଶ 

where ܹ represents the importance weighting placed on the design objective to vary its 

importance with respect to the similitude objective, and ߣெಳ೚೏೤,೏೐ೞ೔ೝ೐೏  denotes the ratio 

of the desired chassis mass (including the weight of the added roof-top mass) over the 

nominal chassis mass. This desired added mass is assumed in our problem to be 15 

percent (or approximately 530 kg) of the original chassis mass.  

The categorical notion introduced earlier in Section 5.2, again, enables us to 

represent the similitude metric by using different summations of the activity-weighted 

deviations of the scaling laws as shown below:  

 ௦ܨ ൌ  ∑ ெ೔ߣெ೔ሺܣ െ ܵሻଶ௞ಾ
௜ୀଵ  ൅ ∑ ஻ೕߣ஻ೕሺܣ െ ܵሻଶ௞ಳ

௝ୀଵ  ൅ ∑ ௄೗ߣ௄೗ሺܣ െ ܵሻଶ௞಼
௟ୀଵ ൅

            ∑ ஼ೌ,೘ߣ஼ೌ,೘ሺܣ െ ܵሻଶ௞೘
௠ୀଵ  ൅ ∑ ௔೙ߣ௔೙ሺܣ െ 1ሻଶ௞೙

௡ୀଵ ൅

            ∑ ௩೛ߣ௩೛ሺܣ െ 1ሻଶ  ௞೛
௣ୀଵ ൅ ∑ ௑೜ߣ௑೜ሺܣ െ 1ሻଶ௞೜

௤ୀଵ  

where, for instance, ܣெ೔and ߣெ೔denote the activity relative importance and scaling law 

associated with the ith mass parameter respectively.  

Note that, based on the findings in the previous chapters; an exclusion from the 

similitude metric of the unimportant scaling laws should not significantly penalizing 

(5.4) 

(5.5) 
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dynamic similitude and, therefore, will not affect much the accuracy of the similitude 

metric in Equation 5.5.  It is for this reason that the similitude objective of this problem 

can be greatly simplified to account for only the important parameters and preclude those 

less important ones not appearing in Table 5.3.   

Furthermore, the change in CG height of the vehicle and the amount of added 

roof-top load are coupled and constrained via the following relationship:  

஼ீܺ߂ ൌ
ܺ௥௢௢௙ܯ௔ௗௗ௘ௗ

஻௢ௗ௬,௡௢௠ܯ ൅ܯ௔ௗௗ௘ௗ
 

where Xroof is the height at which the added load is placed with respect to the nominal CG 

and MBody,nom is the nominal mass of the vehicle. It is then assumed that the added load 

(Madded) does not significantly affect the value of z-axis principal inertia of the chassis (Izz) 

and can be neglected, while its effect on the x-axis principal moment-of-inertia is 

constrained through the parallel-axis theorem [57] expressed as follows:  

௫௫,௡௘௪ܫ ൌ ௫௫,௡௢௠ܫ ൅ܯ஻௢ௗ௬,௡௢௠ܺ߂஼ீଶ ൅ ௔ௗௗ௘ௗሺܺ௥௢௢௙ܯ െ  ஼ீሻଶܺ߂

 Note that the change in Iyy is not accounted for because the activity associated 

with Iyy does not make the ranking as shown in Table 5.3. These two coupling constraints 

in Equations 5.6 and 5.7 again highlight the fact that similitude scaling of this vehicle 

system is not possible and, therefore, the approximate similitude framework should be of 

use in this study.  

 

 

 

(5.6) 

(5.7) 
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5.5 APPROXIMATE SIMILITUDE SCALING RESULTS 

 The formulations of the design and similitude objective functions allow us to 

utilize the multiobjective scaling tool previously developed in Chapter 4 to determine the 

trade-offs between approximate similitude and the competing design requirement. In 

particular, the four scaling design runs illustrated in Table 5.4 are considered where 

different components in the model are allowed to be modified to accommodate the 

scaling:  

Components Run 1 Run 2 Run 3 Run 4 

Tires Scalable Fixed at 
original 

Scalable Scalable 

Suspension spring rates 
and suspension dampers 

Fixed at 
original 

Scalable Scalable Scalable 

Rollbar stiffnesses 
Fixed at 
original 

Scalable Scalable Scalable 

Masses of suspension 
arms and wheels 

Fixed at 
original 

Fixed at 
original 

Fixed at 
original 

Scalable 

 

Table 5.4: Scaling study scenarios 

 Further, one can see from  Equations 5.2 and 5.3 that exact similitude scaling in 

this problem allows the designer to be able to preserve the quantities of which dimensions 

are angle, velocity, as well as acceleration.  This ability becomes very valuable in this 

context because it maintains the time responses in roll angle, yaw rate and lateral 

acceleration of the original vehicle design. These responses are commonly known to be 

important factors in defining a vehicle’s rollover stability [50, 58]. However, as explained 

earlier in Section 5.2, exact similitude scaling of this problem is not always feasible from 

a practical design point of view. To this end, the approximate similitude framework 
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(described by Equations 5.4 to 5.7 and Equation 4.3) is employed and the results are 

discussed as follows. By varying the importance weighting (W) in Equation 5.4, different 

Pareto optimal solutions [49] are obtained and the trade-offs between satisfying the 

design requirement and deviation from similitude are unveiled in Figures 5.4 – 5.6 below. 

As suggested by Equation 5.3, similitude in this context can be heuristically measured by 

the increases of the maximum roll angle, yaw rate, and lateral acceleration from their 

original values.  

 

Figure 5.4: Trade-off between maximum roll angle and added mass 
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Figure 5.5: Trade-off between maximum yaw rate and added mass 

 

 

Figure 5.6: Trade-off between maximum lateral acceleration and added mass 
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 In addition to the four design runs described in Table 5.4, the trade-offs of the 

nominal design where no component is allowed to scale are also appended to the above 

figures (denoted by “Nominal”). According to the concept of Pareto optima [49, 59], the 

design space on the right of each curve denotes the corresponding feasible design 

solutions which are dominated by the  design solutions represented by the curve. Further, 

based on the notation used to present these trade-off curves above, one can see that any 

right-to-left shifting of the curves implies a smaller deviation of maximum roll angle (or 

yaw rate, or lateral acceleration) from the original value. This means that the vehicle’s 

rollover safety is improved. With this in mind, some very interesting remarks which can 

be made from Figures 5.4 – 5.6 are:  

1) Comparing Runs 3 and 4 indicates that the scaling of suspensions springs, 

dampers and anti-rollbars seems to offer us greater gains in terms of our 

ability to add the roof-top mass when compared to the scaling of unsprung 

masses.  

2) The trade-off curves in these figures cannot “penetrate” further to the right 

because of the rollover constraint. That is, the right end point of every trade-

off curve represents the vehicle design which is on the verge of rolling over 

and adding any more mass to the vehicle will cause it to rollover.  

3) The setup in Run 2 can reflect the situation where the vehicle is equipped with 

active suspension and anti-rollbar equipment. The installation of such 

equipment enables the vehicle to operate along the Pareto curves when subject 

to different added weights.  
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4) An addition of more scaling components does not necessarily guarantee that 

the deviations in the critical rollover factors (as shown in Figures 5.4 – 5.6) 

are kept closer to the original values. This can be observed through the fact 

that all of the trade-off curves in Figures 5.4 – 5.6 shift only minimally from 

right to left when the nominal case is compared to Scenario 1. On the other 

hand, the curves seem to shift to a greater extent, when the suspension 

components are added to the scaling list.  

These remarks are discussed as follows: The first remark can be explained by 

considering the importance ranking in Table 5.3 which indicates that the influence of the 

suspension springs, dampers, and rollbars are collectively greater than the unsprung 

masses. For this reason, one can expect to benefit more from the ability to scale these 

suspension components. The second remark highlights the fact that if one needs to better 

satisfy the design specification (i.e., adding a heavier mass to the roof) and avoid rolling-

over, some extra components in the vehicle have to be made scalable. For example, the 

track width of the vehicle might have to be lengthened. The third remark features the 

advantage which one can gain from implementing active-safety equipments (i.e., active 

anti-rollbars and suspensions). Such information should become very useful when the 

designer needs to decide whether or not he/she should install these advanced and costly 

equipments.  

The fourth remark highlights the fact that the change in the tire properties does 

not seem to have much of an effect on the rollover properties of the vehicle. This can be 

explained by first noting that the rollovers which are presented in Figures 5.4 -5.6 above 

are the type of rollover induced by an excessive chassis roll angle and lateral force which 



 90

normally happens with the vehicles with high CG heights (e.g., HMMWV, sport-utility 

vehicles) [50]. Since the tire characteristics do not directly affect the movement of the 

vehicle body and, therefore, any changes in its parameters can be considered secondary 

for this type of rollover. In addition, this finding also demonstrates that, under some 

circumstances, activity cannot be used to quantify the relative importance of scaling laws 

accurately. Recall that activity, by its nature, is a metric that quantifies the importance of 

each component toward the overall dynamics of the system. It does not, however, capture 

the dependence of each component on any particular behavior or output of the system. 

For these reasons, the tire lateral stiffnesses which can be regarded as an important factor 

in other types of instability studies (e.g., sideway skid) still appear very high in activity 

ranking of this HMMWV model but does not contribute to the rollover responses 

considered in this chapter.  

Lastly, it is very interesting to note that the evaluation of the design and similitude 

objectives to obtain Pareto optimal solutions does not rely on the use of the simulation 

model. The simulation is run “offline” only to eventually check the rollover stability of 

each optimal design. On the other hand, if one were to set up a traditional design 

optimization problem to minimize, for example, the maximum roll angle; he/she would 

need to include the simulation model during each optimization iteration. This inclusion 

definitely renders the design problem at hand more computationally expensive. Therefore, 

the luxury of being able to run the simulation model offline should allow the designer to 

be able to use the similitude objective, in particular, as a very computationally efficient 

method to estimate the extent to which the redesigned vehicle’s characteristics deviate 

from those of the original model.  This again attests to the fact that our scaling 
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methodology, in many circumstances, has the potential to be a great aid to traditional 

design optimization techniques which are generally more computationally intensive.  

 

5.6  CHAPTER SUMMARY 

 This chapter demonstrates the applicability of the scaling techniques developed in 

this dissertation to a complex nonlinear dynamic model. Despite the complexity, the 

application of the Pi theorem to derive scaling laws is made rather easy by systematically 

classifying the variables into different categories. The presence of the physical constraints 

due to the added mass highlights the need for us to resort to the approximate scaling 

framework. The use of the activity metric to identify the less important parameter proves 

to be very beneficial in reducing the number of parameters needed to be accounted for in 

the similitude metric.  

 The results of this case study also reveal limitations of the activity metric, when 

dealing with complex systems, in determining which components are more important 

under some specific circumstances. In particular, activity fails to recognize that the tires 

become less important when the scenario of interest is rollovers induced by excessive 

body roll movements. Nevertheless, this finding does not break down the framework that 

has been developed in this dissertation. Instead, this should be considered as a warning 

signal that a more sophisticated metric to quantify the relative importance of scaling laws 

may be needed which can more accurately capture such importance, but this new metric 

is very likely to be less computationally efficient compared to activity – yet another 

trade-off to be decided.  
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CHAPTER VI 

SUMMARY, CONTRIBUTIONS, AND FUTURE WORK  
 

6.1 SUMMARY 

 A new design scaling methodology is developed in this dissertation. This 

methodology takes a design and adapts it to meet new requirements or operate in a new 

environment. This scaling notion is potentially useful because it focuses mainly on 

retaining existing desirable characteristics of the original “tested” design as closely as 

possible through minimal design modifications. More specifically, the methodology is 

more efficient than the ones existing in the literature for the following reasons.  

First, it furnishes the similitude-based scaling method with the activity metric to 

identify the importance of each system scaling law. Activity, a monotonically-increasing 

aggregate measure of power flows, was chosen because of its computational advantage 

and justification as a tractable importance metric. This innovative combination of the 

similitude and activity notions adds more flexibility in scaling by allowing the designer to 

neglect the scaling of the least important parameters.  

Second, the next step is taken to consider the situation in which the components 

that have been identified to be more important by activity cannot be scaled as per the 

scaling laws. This situation creates a need for us to build a metric that continuously 
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quantifies the degree to which the scaled design is close to satisfying the discrete 

definition of exact similitude. In order to capture the relative importance of scaling laws, 

this metric, named the “approximate similitude” metric, also incorporates the information 

identified previously by activity in the first part of this work.  The notion of similitude 

hypersurface is also introduced to facilitate in the development of the metric as well as to 

offer better mathematical insight.  The validity of the approximate similitude metric is 

justified through the results obtained in various case studies. It has been observed through 

these studies that the similitude metric seems to correlate well with the deviations of 

invariant properties from their original values.  

Third, the inability to scale the more important components according to the 

scaling laws implies that one cannot completely retain the desirable characteristics of the 

original design. With this in mind, one can take the approximate similitude metric and 

incorporate it into a multiobjective scaling framework which also accounts for other 

competing design requirements. This framework ultimately allows the designer to see the 

trade-offs between the ability to keep the desirable characteristics close to those of the 

original system versus the ability to satisfy the imposed design requirements.   

 Three different case studies are conducted to demonstrate how to use the 

methodology and framework developed as well as the important perspectives the results 

provide. The first case study is a simple single-domain two-degree-of-freedom quarter car 

system. The benefits gained from being able to neglect the least important scaling laws 

are clearly demonstrated through this case study. Additionally, despite its simplicity, this 

system plays an important role in illustrating the idea of approximate similitude metric as 

explained earlier in Chapter 4.  
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The second case study represents a simplified version of a fuel cell’s air supply 

system which is a nonlinear multi-domain problem. The design goal of this case study is 

to increase the air flow rates going through the system. The physical constraints 

encountered in this problem motivate the need for developing the approximate similitude 

metric. Upon applying the approximate similitude framework, the corresponding 

similitude objective has an interesting aspect different from the quarter car system. That 

is, the similitude hypersurface in this case is two-dimensional. The results obtained in this 

problem show that the approximate similitude framework can help one trade off the 

ability to maintain a desirable characteristic demonstrated by blower operational 

efficiency against the ability to satisfy the desired flow rates.   

 The final case study represents a complex nonlinear multibody dynamic vehicle 

model. The objective of the scaling in this case is (i) to maintain the rollover behavior of 

the vehicle, while (ii) adding some extra load to the roof. The first part of the objective is 

captured by the similitude metric, while the second part is captured by the design 

objective. The formulation of this scaling study shows the usefulness of activity to reduce 

the number of parameter needed to be accounted for in the similitude metric. Furthermore, 

the use of the similitude objective in this problem offers an advantage over the traditional 

optimization approach in that it does not require the vehicle model to be simulated to 

obtain the trade-off solutions. This essentially alleviates the heavy computational cost 

that usually incurs from optimizing a very complex system.  
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6.2 LIMITATIONS AND ASSUMPTIONS 

 The method developed in this work, when applied to the model of a system, 

presumes that that model stays valid within the ranges of scaled parameters. In other 

words, the changes in the scaled parameters cannot violate any of the assumptions 

originally accounted for in the model. For instance, one can manipulate geometric 

parameters in a fuel cell stack system such that a flooding phenomenon occurs. The 

scaling technique will fail, in this case, if such a phenomenon is not captured originally 

by the model. One way to prevent this from happening is to assure that the scaled 

parameters are changed within the bounds over which our model does not lose its validity.  

 It is important to note that term “original” design which was used very often in 

the context of this dissertation is assumed to imply that this design has been developed 

until it possess the characteristics which are worthwhile to retain in scaling. However, the 

methodology in this work does not fail if this assumption does not hold. It only means 

that the scaled design that we obtain will probably not be of great value.   

The continuous quantification of approximate similitude in this work is developed 

based on the premise that this quantity can be assessed using an activity-weighted 

distance from a design point to the similitude-hypersurface. Due to the characteristic of 

such a distance, an implicit assumption made here is that the degree of approximate 

similitude does not change dramatically in the vicinity of the similitude-hypersurface and, 

therefore, can be well approximated by such a distance.  

 Since the activity metric was limited to systems which can be modeled as discrete 

elements, our scaling methodology at its current stage is applicable only to such a model 
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classification. Nevertheless, the potential of adapting the method and making it 

applicable to systems described by partial differential equations definitely exists.  

 Even though the results from the HMMWV case study show that activity does not 

succeed in quantifying the influence of some components under the rollover scenario of 

interest, the formulation of the similitude metric as well as the multiobjective scaling 

framework are still valid and can, therefore, be readily improved if a more efficient 

metric is implemented to more accurately capture the influence of scaling laws.  

 

6.3 CONTRIBUTIONS 

 The significant contributions to which this dissertation has made are summarized 

as follows:  

More Efficient Method to Asses Importance of Scaling Laws 

 In contrast to sensitivity analysis, the use of activity to quantify the relative 

importance of scaling laws allows the designer to obtain such information from only one 

run of simulation. This advantage clearly helps mitigate the computational burden 

resulting from sensitivity analysis.  

Quantitative Continuous Definition of Approximate Similitude  

 The definition of approximate similitude developed in this work makes it possible 

to evaluate the degree to which two designs are close to satisfying the existing discrete 

definition of exact dynamic similitude. This quantification can also be presented using a 

graphical notation, thereby facilitating the visualization of this similitude metric itself.  
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  Multiobjective Scaling Framework 

 The development of the approximate similitude quantification consequently helps 

equip the designer with a tool to scale a system design whose desirable characteristics 

cannot be perfectly maintained via similitude alone.  This also allows the designer to see 

the trade-off between the deviations of the desirable characteristics from their original 

values and the extent to which the design requirement is achieved. This trade-off 

information reveals the limitation of the system that one can achieve from scaling and 

therefore can be during the system redesign process.  In addition, it is worthwhile to note 

that the evaluation of the approximate similitude metric does not entail the use of 

simulation model since the metric is expressed only in terms of the system parameters. 

As a result, the metric can become, in and of itself, an easy-to-evaluate method to get a 

quick estimate of how a scaled design candidate would perform in comparison to the 

original design. Alternatively stated, our approximate similitude metric allows for quick 

efficient benchmarking of different potential scaled designs.  

  

6.4 FUTURE WORK 

 This work has not only developed new research ideas but also leveraged many 

tools which are either existing in the literature or commonly used in engineering. For this 

reason, it is hoped that this work can lead to many different exciting avenues briefly 

summarized as follows:  
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 Applicability of the Approximate Similitude Metric in Physical Testing 

Paradigm 

 The principle of similitude has been a mainstay in helping the engineer to scale 

the test results of a scaled prototype back to its actual-sized counterpart. Such scaling is 

often subject to the same type of dilemma as considered in this work. That is, physical 

constraints can prevent perfect similitude to be achieved. For this reason, it would be 

interesting to see if the approximate similitude metric developed herein can help improve 

the results obtained from the non-similitude prototypes so that they better represent the 

actual-sized system.  

 Achieving a Better Degree of Similitude through Controls 

 It has been shown by other researchers that attainment of similitude, in linear 

systems theory, is equivalent to having the same open-loop pole and zero locations [32, 

33, 37]. Based on this line of thoughts, there should be a possibility for one to implement 

a control strategy to help move the poles and zeros of the scaled design closer to those of 

the original design, thus achieving a better degree of similitude. In addition, the 

HMMWV scaling case study implies that if we have at our disposal an adaptive spring- 

damper-antirollbar system, then the scaled adaptive vehicle’s behavior can trace along the 

trade-off curves (Figures 5.4 – 5.6), thereby minimizing the rollover propensity when the 

vehicle has to be subject to different values of roof-top loads. This motivates the idea that 

having an adaptive control system can potentially be very beneficial from a similitude-

scaling standpoint.  
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 Improving the Scaling Laws Relative Importance Metric  

 Even though activity is very computational efficient, it was not originally 

developed especially as a metric to quantify the overall importance of system components. 

Its limitations in pointing out the correct important components are clearly present in 

Chapter 5. To this very end, there has recently been work done in improving the ability of 

this metric to better quantify such importance [60]. Additionally, there also are other 

techniques in the literature that can also become candidates suitable for this task [61, 62]. 

Replacing activity with a better importance metric will certainly improve the accuracy of 

the methodology in identifying which components can be judiciously neglected in scaling. 

In addition, this replacement should also help one discover the designs which achieve 

better trade-offs than those obtained from the activity-based formulation.  
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APPENDIX A 

FORMAL STATEMENT OF BUCKINGHAM’S PI THEOREM AND A 
GENERLIZATION OF SIMILITUDE PRINCIPLE 

 

A.1  FORMAL STATEMENT OF BUCKINGHAM’S PI THEOREM 

Let a1, a2, a3, …, an be physical quantities such that the p first ones are expressed 

in terms of different fundamental units, and the last (n-p) quantities are referred to units 

derived from the p fundamental units. If among these n quantities there exists a relation 

0)...,,,( 21 =naaaF  

that holds for any choice of the fundamental units, this relation can be transformed into 

another with no more than (n-p) parameters that are of zero dimensions, i.e. 

0)...,,,( 21 =− pnxxxf  

The parameters x1, x2, …, xn-p are monomial functions of a1, a2, a3, …, an (for example,

n
naaAax ααα ...21

211 = ).  The proof of this theorem can be found in Bridgman [12].  

 

A.2 A GENERALIZATION OF SIMILITUDE PRINCIPLE 

 It is obvious from the above statement of Buckingham’s Pi theorem that the 

notions of fundamental dimensions and fundamental units are central to the theorem. The 

theorem, however, does not designate how the fundamental units of a problem should be 

selected; neither does it indicate how many of them are needed. To answer these 

questions, Moran [44] has generalized the similarity concept into mathematical forms that 

do not require the a priori selection of fundamental dimensions. The forms were 

(A.1) 

(A.2) 
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developed based on element group theory, and this generalization’s connections to 

traditional Buckingham’s Pi theorem can be summarized as follows:  

 Suppose that a system by the following equation:  

௝ݑ ൌ ,ଵݔ௝ሺܫ … ,  ௠ሻݔ

where x1,…,xm denote the inputs or design parameters of the system, and u1,…,un denote 

its outputs. Furthermore, consider the r-parameter groups of scale changes, Sr, Gr, defined 

as follows:  

:௥ܩ ቊ
ܵ௥: పഥݔ ൌ ܽଵ

௕೔భ … ܽ௥௕௜௥ݔ௜   ሺ݅ ൌ 1,… ,݉,݉ ൒ 1ሻ
ఫഥݑ ൌ ܽଵ

௖೔భ … ܽ௥
௖೔ೝݑ௝           ሺ݆ ൌ 1, … , ݊, ݊ ൒ 1ሻ  

ቋ 

Next, suppose that the systems’ governing equation remains invariant under this group 

transformation, i.e., ݑఫഥ ൌ ,ଵതതതݔ௝ሺܫ … ,  .௠തതതതሻ, and suppose that the matrix [biα] has rank r < mݔ

Then r becomes the minimal number of “fundamental dimensions” needed to describe 

this system. Futhermore, one can derive m – r “dimensionless” parameter which remain 

invariant with similitude-based scaling. In other words, fixing these dimensionless 

parameters allows one to scale this system without altering its desirable characteristics.  
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APPENDIX B 

DERIVATION OF 2-DOF MASS-SPRING-DAMPER SYSTEM                
SCALING LAWS 

 

This section provides a detailed procedure of how to derive the scaling laws of the 

quarter car system introduced in Chapter 3:  

1) Identify the variables associated with the system:  

{ }1 2, , , , , , , , ,s us s s t tM M K B K B F x x t  

2) Identify the dimensional formula of each variable above by using as many 

fundamental units as necessary, where 

• A dimensional formula is the relation that shows the fundamental 

units for a physical quantity raised to appropriate powers and enclosed 

in square brackets, e.g., Velocity = [LT-1].  By Buckingham Pi’s 

theorem, dimensional formulae are always in the form of the products 

of powers of the fundamental units 

Dimensional formulae of the quarter system are given as follows:  

][][,][

][,][,][,

21
2

12

TtLxxMLTF

MTBBMTKKMMM tstsuss

===

===
−

−−

 

3) By Buckingham’s Pi theorem, the number of dimensionless Pi parameter is 

the number of variables (M = 10) subtracted the number of fundamental units 

needed (N = 3). This gives the number of pi parameters = M – N = 7.  

4) Select a “core” group which consists of N = 3 variables, then form a set of 

product groups, assuming arbitrary exponents for each variable. By requiring 

each product group to be dimensionless, it is possible to solve for those 

(B.1) 

(B.2) 
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arbitrary exponents. In this case, we select x1, Ms, Ks as the variables in the 

core group. This results in the following product groups:  

ଵߨ ൌ ଵݔ
ఈభܯ௦

ఈమܭ௦
ఈయܯ௨௦ 

ଶߨ ൌ ଵݔ
ఈరܯ௦

ఈఱܭ௦
ఈలݔଶ 

ଷߨ ൌ ଵݔ
ఈళܯ௦

ఈఴܭ௦
ఈవܭ௧ 

ସߨ ൌ ଵݔ
ఈభబܯ௦

ఈభభܭ௦
ఈభమܤ௦ 

ହߨ ൌ ଵݔ
ఈభయܯ௦

ఈభరܭ௦
ఈభఱܤ௧ 

଺ߨ ൌ ଵݔ
ఈభలܯ௦

ఈభళܭ௦
ఈభఴܨ 

଻ߨ ൌ ଵݔ
ఈభవܯ௦

ఈమబܭ௦
ఈమభݐ 

 For example, consider the first Pi group and substitute each variable’s 

dimensional formula given in Equation B.2 into the product group:  

଴ܶ଴ܮ଴ܯ ൌ ሺܮሻఈభሺܯሻఈమሺ
ܯ
ܶଶሻ

ఈయሺܯሻଵ 

 Equating the exponents on both sides gives the following set of equations:  

0 ൌ ଶߙ  ൅ ଷߙ ൅ 1 

0 ൌ  ଵߙ 

0 ൌ  െ2ߙଷ 

 Solving the above equations simultaneously gives, α1 = -1, α2 = 0, and α3 = 0. 

Therefore, the first Pi group becomes:  

s

us

M
M

=1π  

 Repeating the same procedure for the remaining dimensionless parameters gives:  

(B.3) 

(B.4) 

(B.5) 

(B.6) 
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5) Similitude requires that the Pi parameter value of the original and scaled 

designs have to be identical. Based on the definition of scale factor (λi) 

defined in Chapter 3,  this requirement results in the following scaling laws:  

21

1
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 It is worth noting that the set of Pi parameters in Equation B.7 is not unique since 

it depends on the selection of the core variables. On the other hand, the resulting set of 

scaling laws in Equation B.8 is unique regardless of which set of Pi parameters is used in 

the derivation.  

 

 

 

(B.7) 

(B.8) 



 106

APPENDIX C 

AIR SUPPLY SYSTEM’S BLOWER DATA AND ORIGINAL DESIGN’S 
PARAMETERS 

  

The following figures show the data corresponding to the blower which was 

selected to be used as the original baseline model in this dissertation. This represents a 

D1G133-DC13-52 centrifugal blower obtained from EBM industries [63].    

 

 

Figure C.1: Blower map and associated data 

 

 The values of the other parameters in the system corresponding to the original 

design which consumes the least amount of power in the blower to satisfy  ሶ݉ ௦௧௘௔ௗ௬ = 

0.01 to 0.02 kg/s are given below. These values are obtained from [3, 46]. 
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Parameter Value 

Supply Manifold Volume: Vsm 0.02 m3 

Return Manifold Volume: Vrm 0.005 m3 

First Nozzle Cross-sectional Area: At,1 0.03 m2 

Second Nozzle Cross-sectional Area: At,2 0.06 m2 

Multiple of Blower Size: D 1  

Atmospheric Temperature: Tatm 298 K 

Atmospheric Pressure: Patm 101325 Pa 

Return Manifold Temperature: Trm 303 K 

Original Blower Inertia: IBW,original 0.05 kg.m2 

Table C.1: Air Supply System Original Design 

 The following plots show that the blower power consumption is monotonic with 

respect to the cross sectional areas of the first and second non-linear nozzles (At,1 and 

At,2).  

 

Figure C.2: Monotonicity in blower power consumption with respect to At,1 and At,2 
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APPENDIX D 

DERIVATION OF QUARTER CAR’S NATURAL FREQUENCY AND 
DAMPING RATIO USING DIMENSIONLESS PARAMETERS AND THEIR 

CORRELATIONS WITH SIMILITUDE METRIC 
  

The definitions of the sprung mass natural frequency (ωn-sprung) and damping ratio 

(ξs) of the quarter car system are given as:  

߱௡ି௦௣௥௨௡௚ ൌ ට ௄ೞ௄೟
ெೞሺ௄ೞା௄೟ሻ

 

௦ߦ ൌ
௦ܤ

ඥ4ܭ௦ܯ௦
 

Using the Pi parameters derived in Equation 3.3, the two expressions above can 

be simply arranged in terms of those Pi parameters as follows:  

߱௡ି௦௣௥௨௡௚ ൌ
గళ
௧ ට

గయ
ሺగయାଵሻ

 

௦ߦ ൌ
ସߨ
√4

 

 It follows now that, if similitude is achieved (i.e., all of the Pi parameters retain 

their original values), then the damping ratio (ξs) has to remain invariant Further, since 

the time scale of the quarter system in scaling is assumed to be unchanged, the sprung 

mass natural frequency (ωn-sprung) remains invariant when similitude is achieved as well.  

 The following plots show the correlations between the quarter car problem’s 

similitude metric (described by Equation 4.2) and the suspension damping ratio as well as 

first natural frequency. In this case, the most important parameter (i.e., Ks) is fixed at its 

original value and the scale variable (S) is fixed at one, then the rest of the variables by 

the same scaling factor (λ) with an increment of 0.05 ranging from 1 up to 2. These plots 

(D.1) 

(D.2) 
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attest to the validity of the similitude metric developed in this dissertation as a tool to 

quantify (or measure) the extent to which a design is “close” to satisfy similitude.  

 

Figure D.1: Correlations between Fs vs. Damping Ratio and  

Fs vs. First Natural Frequency 
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APPENDIX E 

MULTIBODY DYNAMIC HMMWV MODEL 
 

The bond-graph multi-body dynamic HMMWV model is mainly comprised of the 

chassis, front suspension, rear suspension, tire, and steering sub-systems. The details of 

each of these sub-systems are explained below:  

E.1  CHASSIS SUB-SYSTEM 

The chassis sub-system as shown in Figure E.1 represents the body of the 

HMMWV vehicle which is modeled as a rigid body. The dynamics of this rigid body are 

described by Euler’s equation and also rely on the use of coordinate transformations [10, 

54]. The body has a total of ten attachment points connecting the chassis to the 

suspension and steering systems. The parameters describing properties of the chassis sub-

system are given in Table E.1 below. Note that the distances of the attachment points 

shown in Table E.1 are calculated with respect to the CG of the body.  
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Parameters Values Units 
Chassis\RotationalDynamics\H\Ixx 1695.6701 kg.m^2 
Chassis\RotationalDynamics\H\Iyy 5950.4 kg.m^2 
Chassis\RotationalDynamics\H\Izz 6357 kg.m^2 
Chassis\TranslationalDynamics\Chassis_Mass 3840.3598 kg 
Chassis\UpperArm_FR\X_AttachPoint 2.032 m 
Chassis\UpperArm_FR\Y_AttachPoint -0.4455 m 
Chassis\UpperArm_FR\Z_AttachPoint -0.69499 m 
Chassis\UpperArm_RL\X_AttachPoint -1.27 m 
Chassis\UpperArm_RL\Y_AttachPoint 0.4455 m 
Chassis\UpperArm_RL\Z_AttachPoint -0.69499 m 
Chassis\UpperArm_FL\X_AttachPoint 2.032 m 
Chassis\UpperArm_FL\Y_AttachPoint 0.4455 m 
Chassis\UpperArm_FL\Z_AttachPoint -0.69499 m 
Chassis\LowerArm_FL\X_AttachPoint 2.032 m 
Chassis\LowerArm_FL\Y_AttachPoint 0.2275 m 
Chassis\LowerArm_FL\Z_AttachPoint -0.96499 m 
Chassis\LowerArm_FR\X_AttachPoint 2.032 m 
Chassis\LowerArm_FR\Y_AttachPoint -0.2275 m 
Chassis\LowerArm_FR\Z_AttachPoint -0.96499 m 
Chassis\LowerArm_RL\X_AttachPoint -1.27 m 
Chassis\LowerArm_RL\Y_AttachPoint 0.2275 m 
Chassis\LowerArm_RL\Z_AttachPoint -0.96499 m 
Chassis\UpperArm_RR\X_AttachPoint -1.27 m 
Chassis\UpperArm_RR\Y_AttachPoint -0.4455 m 
Chassis\UpperArm_RR\Z_AttachPoint -0.69499 m 
Chassis\LowerArm_RR\X_AttachPoint -1.27 m 
Chassis\LowerArm_RR\Y_AttachPoint -0.2275 m 
Chassis\LowerArm_RR\Z_AttachPoint -0.96499 m 
Chassis\IdlerArm\X_AttachPoint 1.647 m 
Chassis\IdlerArm\Y_AttachPoint -0.28 m 
Chassis\IdlerArm\Z_AttachPoint -0.762 m 
Chassis\PitmanArm\X_AttachPoint 1.647 m 
Chassis\PitmanArm\Y_AttachPoint 0.25 m 
Chassis\PitmanArm\Z_AttachPoint -0.762 m 

Table E.1: Chassis sub-system’s parameters 
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E2.  SUSPENSION SUB-SYSTEM 

 The suspension model is described by three rigid bodies representing the upper A-

arm, lower A-arm and wheel hub. Each of these bodies is connected to one other body or 

the chassis through either a rotational joint or a spherical joint [10, 64]. These 

connections are illustrated in the figure showing the front suspension model below. The 

configuration of the front suspension only differs from the rear suspension in that both of 

the spherical joints (in Figure E.2) are replaced with rotational joints. The associated 

parameter values of are also given in Tables E.2 and E.3. Note the, due to symmetry of 

the left and right sides of the vehicle, only the parameters of the left sides of the front and 

rear suspensions are given in this appendix.  

 

 

 

Figure E.2: Front suspension sub-model 
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Parameters Values Units 
FrontLeft\UpperArm\RotationalDynamics\H\Ixx 0.0114 kg.m^2 
FrontLeft\UpperArm\RotationalDynamics\H\Iyy 0.0104 kg.m^2 
FrontLeft\UpperArm\RotationalDynamics\H\Izz 0.0205 kg.m^2 
FrontLeft\UpperArm\TranslationalDynamics\Mass 4.704 kg 
FrontLeft\UpperArm\ToChassis\X_AttachPoint 0 m 
FrontLeft\UpperArm\ToChassis\Y_AttachPoint -0.0777778 m 
FrontLeft\UpperArm\ToChassis\Z_AttachPoint 0 m 
FrontLeft\UpperArm\ToWheelHub\X_AttachPoint 0 m 
FrontLeft\UpperArm\ToWheelHub\Y_AttachPoint 0.1222222 m 
FrontLeft\UpperArm\ToWheelHub\Z_AttachPoint -0.02 m 
FrontLeft\LowerArm\RotationalDynamics\H\Ixx 0.1976 kg.m^2 
FrontLeft\LowerArm\RotationalDynamics\H\Iyy 0.2158 kg.m^2 
FrontLeft\LowerArm\RotationalDynamics\H\Izz 0.1106 kg.m^2 
FrontLeft\LowerArm\TranslationalDynamics\Mass 34.351 kg 
FrontLeft\LowerArm\ToWheelHub\X_AttachPoint 0 m 
FrontLeft\LowerArm\ToWheelHub\Y_AttachPoint 0.2846305 m 
FrontLeft\LowerArm\ToWheelHub\Z_AttachPoint 0.02 m 
FrontLeft\LowerArm\ToStrut\X_AttachPoint 0 m 
FrontLeft\LowerArm\ToStrut\Y_AttachPoint 0.0846305 m 
FrontLeft\LowerArm\ToStrut\Z_AttachPoint 0 m 
FrontLeft\LowerArm\ToChassis\X_AttachPoint 0 m 
FrontLeft\LowerArm\ToChassis\Y_AttachPoint -0.1703695 m 
FrontLeft\LowerArm\ToChassis\Z_AttachPoint 0 m 
FrontLeft\WheelHub\RotationalDynamics\H\Ixx 0.1976 kg.m^2 
FrontLeft\WheelHub\RotationalDynamics\H\Iyy 0.2158 kg.m^2 
FrontLeft\WheelHub\RotationalDynamics\H\Izz 0.1106 kg.m^2 
FrontLeft\WheelHub\TranslationalDynamics\Mass 34.351 kg 
FrontLeft\WheelHub\ToUpperArm\X_AttachPoint 0 m 
FrontLeft\WheelHub\ToUpperArm\Y_AttachPoint -0.0505 m 
FrontLeft\WheelHub\ToUpperArm\Z_AttachPoint 0.115 m 
FrontLeft\WheelHub\ToLowerArm\X_AttachPoint 0 m 
FrontLeft\WheelHub\ToLowerArm\Y_AttachPoint -0.0135 m 
FrontLeft\WheelHub\ToLowerArm\Z_AttachPoint -0.115 m 
FrontLeft\WheelHub\ToWheel\X_AttachPoint 0 m 
FrontLeft\WheelHub\ToWheel\Y_AttachPoint 0.0635 m 
FrontLeft\WheelHub\ToWheel\Z_AttachPoint 0 m 
FrontLeft\WheelHub\TieRod_position\X_AttachPoint -0.1354 m 
FrontLeft\WheelHub\TieRod_position\Y_AttachPoint -0.0251 m 



 115

FrontLeft\WheelHub\TieRod_position\Z_AttachPoint 0 m 
FrontLeft\SpringConstant 268726.8227 N/m 
FrontLeft\SpringInitialLength 0.272523 m 
FrontLeft\Damping 24142.3716 N.s/m 

Table E.2: Front left suspension sub-system’s parameters 

 

Parameters Values Units 
RearLeft\UpperArm\RotationalDynamics\H\Ixx 0.0114 kg.m^2 
RearLeft\UpperArm\RotationalDynamics\H\Iyy 0.0104 kg.m^2 
RearLeft\UpperArm\RotationalDynamics\H\Izz 0.0205 kg.m^2 
RearLeft\UpperArm\TranslationalDynamics\mass 4.704 kg 
RearLeft\UpperArm\ToChassis\X_AttachPoint 0 m 
RearLeft\UpperArm\ToChassis\Y_AttachPoint -0.0777778 m 
RearLeft\UpperArm\ToChassis\Z_AttachPoint 0 m 
RearLeft\UpperArm\ToWheelHub\X_AttachPoint 0 m 
RearLeft\UpperArm\ToWheelHub\Y_AttachPoint 0.1222222 m 
RearLeft\UpperArm\ToWheelHub\Z_AttachPoint -0.02 m 
RearLeft\LowerArm\RotationalDynamics\H\Ixx 0.1976 kg.m^2 
RearLeft\LowerArm\RotationalDynamics\H\Iyy 0.2158 kg.m^2 
RearLeft\LowerArm\RotationalDynamics\H\Izz 0.1106 kg.m^2 
RearLeft\LowerArm\TranslationalDynamics\mass 34.351 kg 
RearLeft\LowerArm\ToWheelHub\X_AttachPoint 0 m 
RearLeft\LowerArm\ToWheelHub\Y_AttachPoint 0.2846305 m 
RearLeft\LowerArm\ToWheelHub\Z_AttachPoint 0.02 m 
RearLeft\LowerArm\ToStrut\X_AttachPoint 0 m 
RearLeft\LowerArm\ToStrut\Y_AttachPoint 0.0846305 m 
RearLeft\LowerArm\ToStrut\Z_AttachPoint 0 m 
RearLeft\LowerArm\ToChassis\X_AttachPoint 0 m 
RearLeft\LowerArm\ToChassis\Y_AttachPoint -0.1703695 m 
RearLeft\LowerArm\ToChassis\Z_AttachPoint 0 m 
RearLeft\WheelHub\RotationalDynamics\H\Ixx 0.1976 kg.m^2 
RearLeft\WheelHub\RotationalDynamics\H\Iyy 0.2158 kg.m^2 
RearLeft\WheelHub\RotationalDynamics\H\Izz 0.1106 kg.m^2 
RearLeft\WheelHub\TranslationalDynamics\mass 34.351 kg 
RearLeft\WheelHub\ToUpperArm\X_AttachPoint 0 m 
RearLeft\WheelHub\ToUpperArm\Y_AttachPoint -0.0505 m 
RearLeft\WheelHub\ToUpperArm\Z_AttachPoint 0.115 m 
RearLeft\WheelHub\ToLowerArm\X_AttachPoint 0 m 
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RearLeft\WheelHub\ToLowerArm\Y_AttachPoint -0.0135 m 
RearLeft\WheelHub\ToLowerArm\Z_AttachPoint -0.115 m 
RearLeft\WheelHub\ToWheel\X_AttachPoint 0 m 
RearLeft\WheelHub\ToWheel\Y_AttachPoint 0.0635 m 
RearLeft\WheelHub\ToWheel\Z_AttachPoint 0 m 
RearLeft\C2\SpringConstant 322470.9309 N/m 
RearLeft\C2\SpringInitialLength 0.272523 m 
RearLeft\R2\Damping 37648.4211 N.s/m 

Table E.3: Rear left suspension sub-system’s parameters 

E.3  TIRE SUB-SYSTEM 

 The tire model is mainly composed of a rigid body representing the wheel and 

two slip models, one for the longitudinal slip and the other for the lateral slip. The 

governing equations in these slip models are obtained from the simulation software 

DADS [52] and shown in the Figures 4 and 5 below. The same configuration and 

parameters (given in Table E.4) are used for all the four tires.   

 

Figure E.4: Tire sub-model 
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Parameters Values Units 
tireFL\Wheel\RotationalDynamics\H\Ixx 1 kg.m^2 
tireFL\Wheel\RotationalDynamics\H\Iyy 1 kg.m^2 
tireFL\Wheel\RotationalDynamics\H\Izz 1 kg.m^2 
tireFL\Wheel\TranslationalDynamics\mass 30 kg 
tireFL\Wheel\ToWheelHub\X_AttachPoint 0 m 
tireFL\Wheel\ToWheelHub\Y_AttachPoint -0.15 m 
tireFL\Wheel\ToWheelHub\Z_AttachPoint 0 m 
tireFL\Wheel\R_tire\TireDamping 200000 N.s/m 
tireFL\Wheel\C_tire\TireStiffness 1000000 N/m 
tireFL\Wheel\Rwheel\WheelRadius 0.461 m 
tireFL\Wheel\ToGround\x 0 m 
tireFL\Wheel\ToGround\y 0 m 
tireFL\Longitudinal_Slip\mu 1.8 - 
tireFL\Lateral_Slip\CorneringStiffness 100000 N/rad 
tireFL\Lateral_Slip\mu 1.8 - 

Table E.4: Front left tire sub-system’s parameters 

 

The following codes represent governing equations of the tire longitudinal and 

lateral slip models. These equations are written and implemented in 20-sim’s SIDOPS 

language [65]:    
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Figure E.6: Longitudinal tire slip sub-model 

variables 
       real Fx,Vx_o,Vdiff,F_long; 
       real Kappa,Slip,mu_f, signVx; 
equations 
// First, if Vx is small, it is kept at a small value to aviod singularity 
signVx =        if (Vx ==0) then 
                               1 
                       else 
                               sign(Vx) 
                       end; 
if (abs(Vx) < 0.0001) then 
       Vx_o = signVx * 0.0001; 
else 
       Vx_o = Vx; 
end; 
 
// Calculate Slip (note p.f = Vx - W.R) 
Vdiff = p.f; 
Kappa = (-Vdiff/Vx_o); // that is Kappa = (W.R - Vx)/Vx 
Slip = abs(Kappa); 
 
// Calculate mu_f --> piecewise linear 
mu_f = if Slip < 0.2 then 
                       (mu/0.2)*Slip 
               else 
                       if Slip < 0.25 then 
                               mu*Slip + 0.8*mu 
                       else 
                               if Slip < 0.5 then 
                                       (-0.2*mu)*Slip + 1.1*mu 
                               else 
                                       mu 
                               end 
                       end 
               end; 
F_long = Fz*mu_f; 
 
// Rectify the sign 
if (Vdiff < 0) then 
       Fx = F_long; // Traction 
else 
       Fx = -F_long; // Braking 
end; 
p.e = Fx; 
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Figure E.7: Lateral tire slip sub-model 
 

E.4  STEERING SUB-SYSTEM 

 The steering system is mainly comprised of the components as illustrated in 

Figure E.8 and its bond-graph model is shown in Figure E.9. The associated parameters 

implemented for this steering system model are given in Table E.5.  

 

Figure E.8: HMMWV steering system components 

variables 
       real Fy,Vx_o,Vy; 
       real aph_n, aph,slip,Fmax; 
       real a1, a2, a3, Flat, Flat_check; 
 
equations 
// First, if Vx is small, it is kept at a small value to aviod singularity 
if (abs(Vx) < 0.0001) then 
       Vx_o =  0.0001; 
else 
       Vx_o = abs(Vx); 
end; 
 
// Calculate side slip angle 
Vy = p.f; 
aph = arctan(Vy/Vx_o); 
//aph =         sign(Vy) * pi /2; 
slip = abs(aph); 
aph_n = 2.5*Fz/Ca; 
Fmax =mu*Fz; 
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Figure E.9: Steering sub-model 

  

Parameters Values Units 
Steering\IdlerArm\RotationalDynamics\H\Ixx 0.000566 kg.m^2 
Steering\IdlerArm\RotationalDynamics\H\Iyy 0.00188 kg.m^2 
Steering\IdlerArm\RotationalDynamics\H\Izz 0.00215 kg.m^2 
Steering\IdlerArm\TranslationalDynamics\Constant1\m 2 kg 
Steering\IdlerArm\SteeringLink_Position\X_AttachPoint 0.051 m 
Steering\IdlerArm\SteeringLink_Position\Y_AttachPoint 0 m 
Steering\IdlerArm\SteeringLink_Position\Z_AttachPoint 0 m 
Steering\IdlerArm\Chassis_Position\X_AttachPoint -0.051 m 
Steering\IdlerArm\Chassis_Position\Y_AttachPoint 0 m 
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Steering\IdlerArm\Chassis_Position\Z_AttachPoint 0 m 
Steering\PitmanArm\RotationalDynamics\H\Ixx 0.000566 kg.m^2 
Steering\PitmanArm\RotationalDynamics\H\Iyy 0.00188 kg.m^2 
Steering\PitmanArm\RotationalDynamics\H\Izz 0.00215 kg.m^2 
Steering\PitmanArm\TranslationalDynamics\Constant1\m 2 kg 
Steering\PitmanArm\SteeringLink_Position\X_AttachPoint 0.051 m 
Steering\PitmanArm\SteeringLink_Position\Y_AttachPoint 0 m 
Steering\PitmanArm\SteeringLink_Position\Z_AttachPoint 0 m 
Steering\PitmanArm\Chassis_Position\X_AttachPoint -0.051 m 
Steering\PitmanArm\Chassis_Position\Y_AttachPoint 0 m 
Steering\PitmanArm\Chassis_Position\Z_AttachPoint 0 m 
Steering\SteeringLink\RotationalDynamics\H\Ixx 0.204 kg.m^2 
Steering\SteeringLink\RotationalDynamics\H\Iyy 0.000833 kg.m^2 
Steering\SteeringLink\RotationalDynamics\H\Izz 0.205 kg.m^2 
Steering\SteeringLink\TranslationalDynamics\Constant1\m 5 kg 
Steering\SteeringLink\TieRodRight_Position\X_AttachPoint 0.0629 m 
Steering\SteeringLink\TieRodRight_Position\Y_AttachPoint -0.35 m 
Steering\SteeringLink\TieRodRight_Position\Z_AttachPoint 0 m 
Steering\SteeringLink\PitmanArm_Position\X_AttachPoint -0.011 m 
Steering\SteeringLink\PitmanArm_Position\Y_AttachPoint 0.25 m 
Steering\SteeringLink\PitmanArm_Position\Z_AttachPoint 0 m 
Steering\SteeringLink\IdlerArm_Position\X_AttachPoint -0.011 m 
Steering\SteeringLink\IdlerArm_Position\Y_AttachPoint -0.28 m 
Steering\SteeringLink\IdlerArm_Position\Z_AttachPoint 0 m 
Steering\SteeringLink\TieRodLeft_Position\X_AttachPoint 0.0629 m 
Steering\SteeringLink\TieRodLeft_Position\Y_AttachPoint 0.35 m 
Steering\SteeringLink\TieRodLeft_Position\Z_AttachPoint 0 m 
Steering\TieRodRight\RotationalDynamics\H\Ixx 0.0185 kg.m^2 
Steering\TieRodRight\RotationalDynamics\H\Iyy 0.0008 kg.m^2 
Steering\TieRodRight\RotationalDynamics\H\Izz 0.0185 kg.m^2 
Steering\TieRodRight\TranslationalDynamics\Constant1\m 2 kg 
Steering\TieRodRight\SteeringLink_Position\X_AttachPoint 0 m 
Steering\TieRodRight\SteeringLink_Position\Y_AttachPoint 0.1605 m 
Steering\TieRodRight\SteeringLink_Position\Z_AttachPoint 0 m 
Steering\TieRodRight\WheelHub_Position\X_AttachPoint 0 m 
Steering\TieRodRight\WheelHub_Position\Y_AttachPoint -0.1605 m 
Steering\TieRodRight\WheelHub_Position\Z_AttachPoint 0 m 
Steering\TieRodLeft\RotationalDynamics\H\Ixx 0.0185 kg.m^2 
Steering\TieRodLeft\RotationalDynamics\H\Iyy 0.0008 kg.m^2 
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Steering\TieRodLeft\RotationalDynamics\H\Izz 0.0185 kg.m^2 
Steering\TieRodLeft\TranslationalDynamics\Constant1\m 2 kg 
Steering\TieRodLeft\SteeringLink_Position\X_AttachPoint 0 m 
Steering\TieRodLeft\SteeringLink_Position\Y_AttachPoint -0.1605 m 
Steering\TieRodLeft\SteeringLink_Position\Z_AttachPoint 0 m 
Steering\TieRodLeft\WheelHub_Position\X_AttachPoint 0 m 
Steering\TieRodLeft\WheelHub_Position\Y_AttachPoint 0.1605 m 
Steering\TieRodLeft\WheelHub_Position\Z_AttachPoint 0 m 

Table E.5: Steering sub-system’s parameters 
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APPENDIX F 

METHODS TO ASSOCIATE PARAMETERS WITH ELEMENT ACTIVITES 
 

 As discussed in the dissertation, the energetic elements of the fuel cell’s air supply 

system as well as HMMWV system do not necessarily associate with only one parameter, 

or some parameters can affect more than one energetic element. This makes it less 

straightforward to assess the relative importance of these parameters’ scaling laws. To 

address this issue, we use the following ad-hoc, but rather intuitive, approaches to find 

such relative importance.  

 

F.1  FUEL CELL AIR SUPPLY SYSTEM 

Parameter Method to associate activity 

First Nozzle: At,2 
Sum of the activities of the four bonds of the 

first nozzle 4-port resistor 

Second Nozzle: At,1 
Sum of the activities of the four bonds of the 

second nozzle 4-port resistor 

Blower: D Sum of the activities of the four bonds of the 
blower 4-port transformer 

Atmospheric Temperature: Tatm Sum of the activities of the two Tatm effort 
sources 

Power Input: Pe 
Activity of the modulated blower torque 

effort source 
Blower Inertia: IBW Activity of the blower inertia element 

Atmospheric Pressure: Patm Sum of the activities of the two Patm effort 
sources  

Return Manifold Temperature: Trm Activity of the return manifold effort source 

Supply Manifold Volume: Vsm Sum of the activities of the two bonds of the 
supply manifold 2-port compliance element 

Return Manifold Volume: Vrm Activity of the return manifold volume 
compliance element 

Table F.1: Methods to associate the fuel cell’s air supply system parameter importance 

with element activities  
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F.2 HMMWV SYSTEM 

The parameters that appear in Table D.2 below are only the ones accounted for in 

the similitude objective (Fs). Those not contributing to the objective are omitted:   

Parameter Method to associate activity 
Chassis\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
TireRL\Lateral_Slip\Ca Activity of the lateral slip R-element 
TireRR\Lateral_Slip\Ca Activity of the lateral slip R-element 
TireFR\Lateral_Slip\Ca Activity of the lateral slip R-element 
Chassis\Lower_RL\SuspensionAttachmentPoint-Z Sum of activities associated with corresponding MTF elements 
Chassis\Lower_RR\SuspensionAttachmentPoint-Z Sum of activities associated with corresponding MTF elements 
TireFL\Lateral_Slip\Ca Activity of the lateral slip R-element 
RearRight\SpringRate Activity of the suspension spring C-element 
Chassis\Upper_RR\SuspensionAttachmentPoint-Z Sum of activities associated with corresponding MTF elements 
RearLeft\SpringRate Activity of the suspension spring C-element 
Chassis\Upper_RL\SuspensionAttachmentPoint-Z Sum of activities associated with corresponding MTF elements 
Chassis\Lower_FL\SuspensionAttachmentPoint-Z Sum of activities associated with corresponding MTF elements 
Chassis\Lower_FR\SuspensionAttachmentPoint-Z Sum of activities associated with corresponding MTF elements 
FrontRight\SpringRate Activity of the suspension spring C-element 
FrontLeft\SpringRate Activity of the suspension spring C-element 
Chassis\Upper_FR\SuspensionAttachmentPoint-Z Sum of activities associated with corresponding MTF elements 
Chassis\Upper_FL\SuspensionAttachmentPoint-Z Sum of activities associated with corresponding MTF elements 
Rollbar_Rear\Stiffness Activity of the rollbar stiffness C-element 
FrontRight\WheelHub\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
RearRight\WheelHub\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
TireFR\Wheel\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
FrontRight\LowerArm\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
FrontLeft\WheelHub\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
TireRR\Wheel\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
FrontLeft\LowerArm\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
RearLeft\WheelHub\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
TireFL\Wheel\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
RearRight\LowerArm\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
Rollbar_Front\Stiffness Activity of the rollbar stiffness C-element 
TireRL\Wheel\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
RearLeft\LowerArm\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
Chassis\RotationalDynamics\Izz Activity of the corresponding I-element 
TireRR\Wheel\TireVerticalStiffness Acitivity of the Tire stiffness C-element 
TireRL\Wheel\C_Tire\TireVerticalStiffness Acitivity of the Tire stiffness C-element 
TireRL\Wheel\RotationalDynamics\Iyy Activity of the corresponding I-element 
TireFR\Wheel\C_Tire\TireVerticalStiffness Acitivity of the Tire stiffness C-element 
TireRR\Wheel\RotationalDynamics\Iyy Activity of the corresponding I-element 
TireFL\Wheel\C_Tire\TireVerticalStiffness Activity of the corresponding I-element 
FrontRight\UpperArm\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
RearLeft\R2\SuspensionDamping Activity of the suspension damping R-element 
Steering\SteeringLink\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
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RearRight\UpperArm\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
FrontLeft\UpperArm\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
RearRight\R2\SuspensionDamping Activity of the suspension damping R-element 
RearLeft\UpperArm\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
FrontRight\R2\SuspensionDamping Activity of the suspension damping R-element 
FrontLeft\R2\SuspensionDamping Activity of the suspension damping R-element 
Steering\TieRodRight\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
Steering\IdlerArm\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
Steering\TieRodLeft\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
Steering\PitmanArm\TranslationalDynamics\Mass Sum of activities of x,y and z component I-elements 
Chassis\RotationalDynamics\Ixx Activity of the corresponding I-element 
TireRL\Wheel\TireDamping Activity of the Tire damping R-element 
TireRR\Wheel\TireDamping Activity of the Tire damping R-element 
TireFR\Wheel\TireDamping Activity of the Tire damping R-element 
TireFL\Wheel\TireDamping Activity of the Tire damping R-element 
TireFL\Wheel\RotationalDynamics\Iyy Activity of the corresponding I-element 
TireFR\Wheel\RotationalDynamics\Iyy Activity of the corresponding I-element 
TireFL\Wheel\RotationalDynamics\Ixx Activity of the corresponding I-element 
TireFL\Wheel\RotationalDynamics\Izz Activity of the corresponding I-element 
TireFR\Wheel\RotationalDynamics\Ixx Activity of the corresponding I-element 
TireFR\Wheel\RotationalDynamics\Izz Activity of the corresponding I-element 
TireRL\Wheel\RotationalDynamics\Izz Activity of the corresponding I-element 
TireRL\Wheel\RotationalDynamics\Ixx Activity of the corresponding I-element 
TireRR\Wheel\RotationalDynamics\Ixx Activity of the corresponding I-element 
TireRR\Wheel\RotationalDynamics\Izz Activity of the corresponding I-element 
Chassis\RotationalDynamics\Iyy Activity of the corresponding I-element 
FrontLeft\WheelHub\RotationalDynamics\Ixx Activity of the corresponding I-element 
FrontLeft\LowerArm\RotationalDynamics\Izz Activity of the corresponding I-element 
FrontRight\LowerArm\RotationalDynamics\Izz Activity of the corresponding I-element 
FrontRight\WheelHub\RotationalDynamics\Izz Activity of the corresponding I-element 
RearLeft\LowerArm\RotationalDynamics\Izz Activity of the corresponding I-element 
RearLeft\WheelHub\RotationalDynamics\Izz Activity of the corresponding I-element 
RearRight\LowerArm\RotationalDynamics\Izz Activity of the corresponding I-element 
RearRight\WheelHub\RotationalDynamics\Izz Activity of the corresponding I-element 
FrontLeft\WheelHub\RotationalDynamics\Izz Activity of the corresponding I-element 
FrontRight\WheelHub\RotationalDynamics\Ixx Activity of the corresponding I-element 
RearLeft\WheelHub\RotationalDynamics\Ixx Activity of the corresponding I-element 
RearRight\WheelHub\RotationalDynamics\Ixx Activity of the corresponding I-element 
FrontRight\LowerArm\RotationalDynamics\Ixx Activity of the corresponding I-element 
FrontLeft\LowerArm\RotationalDynamics\Ixx Activity of the corresponding I-element 
FrontLeft\UpperArm\RotationalDynamics\Ixx Activity of the corresponding I-element 
FrontRight\UpperArm\RotationalDynamics\Ixx Activity of the corresponding I-element 
RearLeft\LowerArm\RotationalDynamics\Ixx Activity of the corresponding I-element 
RearRight\LowerArm\RotationalDynamics\Ixx Activity of the corresponding I-element 
RearLeft\UpperArm\RotationalDynamics\Ixx Activity of the corresponding I-element 
RearRight\UpperArm\RotationalDynamics\Ixx Activity of the corresponding I-element 
FrontLeft\UpperArm\RotationalDynamics\Izz Activity of the corresponding I-element 
FrontRight\UpperArm\RotationalDynamics\Izz Activity of the corresponding I-element 
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RearLeft\UpperArm\RotationalDynamics\Izz Activity of the corresponding I-element 
RearRight\UpperArm\RotationalDynamics\Izz Activity of the corresponding I-element 
FrontLeft\WheelHub\RotationalDynamics\Iyy Activity of the corresponding I-element 
FrontLeft\UpperArm\RotationalDynamics\Iyy Activity of the corresponding I-element 
FrontLeft\LowerArm\RotationalDynamics\Iyy Activity of the corresponding I-element 
FrontRight\UpperArm\RotationalDynamics\Iyy Activity of the corresponding I-element 
FrontRight\LowerArm\RotationalDynamics\Iyy Activity of the corresponding I-element 
FrontRight\WheelHub\RotationalDynamics\Iyy Activity of the corresponding I-element 
RearLeft\UpperArm\RotationalDynamics\Iyy Activity of the corresponding I-element 
RearLeft\LowerArm\RotationalDynamics\Iyy Activity of the corresponding I-element 
RearLeft\WheelHub\RotationalDynamics\Iyy Activity of the corresponding I-element 
RearRight\UpperArm\RotationalDynamics\Iyy Activity of the corresponding I-element 
RearRight\LowerArm\RotationalDynamics\Iyy Activity of the corresponding I-element 
RearRight\WheelHub\RotationalDynamics\Iyy Activity of the corresponding I-element 

Table F.2: Methods to associate HMMWV parameter importance with element activities  
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