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CHAPTER 1

Introduction

1.1 Introduction

Networks have recently attracted considerable attention from physicists, and a sig-

nificant body of research has established networks as a basis for the mathematical

representation of a wide range of complex systems. Systems of human social interac-

tion, as well as a variety of other informational, biological, and technological systems,

have all been studied as networks. Due to their simple and flexible nature, networks

are capable of serving as a basis for models of an extremely large range of seemingly

unrelated systems.

1.1.1 Origins

In its most basic form a network is a set of objects we term vertices, also known

as “nodes” (in math and computer science) or “actors” (in the social sciences). Pairs

of vertices are connected via edges, also known as “links” or “ties,” which represent

real relationships between the vertex pairs.

The study of networks is rooted in the field of mathematical graph theory, a

fundamental area of study in discrete mathematics. In some networks literature

“graph” is used as a synonym of “network.” The first proof in the field of graph theory

is believed by some people to be the solution to the Königsberg Bridge Problem,

written by Leonhard Euler in 1735. The city of Königsberg, Prussia (now Kaliningrad,

Russia) is divided by a river which splits into two branches around two islands.

1
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(a)

(b)

2
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1
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Figure 1.1. The Königsberg Bridge Problem is considered by some to be the first proof written
in the field of graph theory. A visualization of the problem (a) as a standard map (the river is
highlighted in blue and the bridges are highlighted in pink), (b) as a network where the vertices
represent the land masses and the edges represent the bridges, and (c) as a network where the
vertices represent the land masses and the edges are weighted to represent the number of bridges
connecting the land masses.
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Figure 1.1(a) is a map of the city which spans the four land masses with the river

highlighted in blue and the bridges that connect the four land masses highlighted

in pink. The question arose amongst the residents of the city as to whether it was

possible to walk a route through the city crossing each bridge once, and only once.

We will not provide the details of Euler’s solution to the bridge-crossing problem in

this dissertation, but suffice it to say, he was able to mathematically prove that it

was impossible to find a path that crossed every bridge once and no bridge more than

once.

In Fig. 1.1(b) we represent the Königsberg Bridge Problem as a network. In the

figure, each land mass is represented by a vertex and each bridge, a physical con-

nection between two land masses, as an edge. This example, in fact, also introduces

one type of embellishment for an edge, the multiedge. In a network, edges need

not all represent the same strength of relation between vertices. With the network

of bridges in Königsberg, there are two instances when a pair of land masses are

connected by more than one bridge. Figure 1.1(b) shows the network with these mul-

tiedges present, but another way to visualize the network is to give all edges weights.

Weighted edges replace multiedges in Fig. 1.1(c). Note, unlike multiedges, weighted

edges are not required to have integer values.

While the connection between mathematical graph theory and networks is strong,

the two fields are distinct. Network theory can be viewed as having a different

“flavor” from graph theory. Graph theory has more emphasis on artificial or random

graphs (see Section 1.3.1) while networks research is directed more towards the study

of real networks found in the world. In addition to mathematical graph theory,

networks research also counts among its influences the longstanding work of a number

of sociologists on social networks.

Many credit Jacob Moreno with the first use of networks with points (vertices)

and lines (edges) to model systems of social interaction. An article published in the
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New York Times on April 3, 1933 under the headline “Colored Lines Show Likes and

Dislikes of Individual and of Groups” reported on a presentation given by Moreno

on social interactions among the residents at the New York State Training School

for Girls. This article is often cited as Moreno’s introduction of what he termed

a “sociogram,” but what we clearly recognize today as a visualization of a social

network.

Moreno believed social configurations had observable structure and that by draw-

ing pictures of the social interactions of individuals in a group, a researcher could see

the structure and understand the impact of said structure on the whole collection of

individuals [83]. His book, Who Shall Survive?: A New Approach to the Problems of

Human Interrelations, published in 1934, contains many of his so-called sociograms,

including several illustrating the patterns of friendship among school children. We

highlight one of these networks, a network of friendships between 14 boys and 18 girls

in a seventh-grade class. To gather the data, the children were asked which other

children they would most want seated near them [61]. This method of gathering so-

cial network data allows for another variation on the basic concept of network edges,

directed edges.

In the Königsberg Bridge example the edges are undirected because we assume

the bridges can be crossed in either direction. We call a network with only undirected

edges an undirected network. In contrast, in Moreno’s social network, one child

may pick another child to be seated near them, but the second child may not recip-

rocate. This scenario allows edges to have direction. A directed edge results from a

relationship between two vertices which is somehow unequal. In a network diagram

we represent directed edges as arrows instead of lines using a convention to determine

the direction of the arrow. In this example, the tail of the arrow is at the choosing

child while the head of the arrow is at the chosen child. The directed edges of this

social network are shown in Fig. 1.2.
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Figure 1.2. In this illustration of the social network formed by 14 boys (squares) and 18 girls
(circles) in a seventh-grade class the edges are directed. A directed edge runs from one student
(tail) to a second student (head) if the first student chose the second student as someone whom they
would want seated near them. This figure is adapted from the work published by Moreno [61].
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While a network is basically a collection of vertices and edges, variations and em-

bellishments such as weighted or directed edges are possible. Another edge variation

not depicted in either network example is the concept of self-edges or self-loops. A

self-edge occurs when the two endpoints of an edge are at the same vertex. Self-edges

do not exist in all types of networks, but can be notable when they occur in real

networks.

This dissertation will present many networks representing a variety of systems.

While the networks will represent very disparate systems, they are all built from the

same fundamental building blocks presented in this section.

1.1.2 Interest to physicists

Many other researchers in the social sciences have followed the work of Moreno in

their studies of social networks. Work on networks has also been pursued in other

disciplines, especially in the information sciences where there has been a great deal of

work on networks of academic papers. Such networks are called citation networks;

the vertices are the academic papers themselves and directed edges represent the

citation of one paper by another. We will discuss citation networks at greater length

later in this chapter, as well as in Chapter 5.

However, many suggest that a true paradigm shift regarding research on networks

occurred during the 1990’s. The rise of the Internet, World Wide Web, and online

databases made large network data sets of thousands or millions of vertices easily

available to researchers for the first time. An example of such a large network is

shown in Fig. 1.3, which depicts a map of the Internet on November 22, 2003 created

by the OPTE project. The vertices represent servers and the edges represent physical

optical fiber cable connections between pairs of servers. The colors in the figure were

used to provide a sense the physical locations of servers based on IP address. For

example, the areas colored in light blue are identified as being in Asia/the Pacific
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Figure 1.3. A visualization of the the Internet on November 22, 2003. The vertices represent
servers and the edges represent physical optical fiber cable connections between servers. Some
network edges were not included in this visualization for aesthetic reasons. This image was created
by the OPTE project and was distributed under the Creative Commons License.
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while North America is represented by the sections in yellow and Europe by the

sections in pink.

We immediately notice the comparative difficulty posed by a large network such

as the Internet in Fig. 1.3 as compared with the small social network of Moreno in

Fig. 1.2. In the small network, drawing the vertices and edges on a sheet of paper

was an excellent tool for understanding the structure of the network. In Moreno’s

network it is easy to see the separation of boys and girls or to observe the vertices

representing very popular children. When considering small networks, our eyes are

very well adapted to identifying patterns of connection among vertices that form the

overarching network structure. However, our capacity to detect structure in a network

breaks down when we consider large systems. Yes, we can see some semblance of

structure in the map of the Internet, but not in the way we can for Moreno’s small

social network. Instead, we require mathematical and statistical methods to find

structure.

This shift towards studying large-scale properties of networks was partially re-

sponsible for the increased interest of physicists in the study of networks. When we

discuss social, biological, ecological, or informational networks, one might be curious

as to why physicists participate in such research. An article by Philip Ball insists

that the interest of physicists in networks is actually the completion of a circle begun

in the 19th century when the work on social statistics influenced the development

of statistical physics. The statistical physicists of the time were able to “abandon

a strict Newtonian determinism and instead to trust a ‘law of large numbers’ ” as

they confronted systems with innumerable particles, each of which possessed indi-

vidual behavior that was beyond their understanding [4]. Thus, physicists working

with networks have an interest not in the behavior of individual vertices, but in the

system: the general structure of networks and the laws which govern that structure.

The level of abstraction can be seen to go even further with physicists who are not
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limiting themselves to the study of only one variety of networks, such as social net-

works or information networks. Instead, these physicists are interested in analyzing

the general properties and laws of all networks, dealing in specifics when necessary,

but staying as abstract as possible.

1.1.3 Overview of the chapter

We began this chapter by introducing some basic concepts regarding networks and

the origins of networks research. In the next two sections of the chapter we will

provide a review of existing research concerning network structure. In Section 1.2

we will outline key measures of network structure that have been developed and that

serve as building blocks for our own research. In Section 1.3 we present the concept of

random graphs, the standard null models used to understand the significance of the

structure detected in real networks. Finally, we conclude the chapter with Section 1.4,

where we will outline the content of the remaining chapters of this dissertation.

1.2 Standard measures of network structure

In the previous section, we introduced the most basic concepts regarding networks

and motivated the need for mathematically-based analysis procedures to replace the

human eye in detecting the hidden structure of large networks. We now present some

characteristics of this structure that have been identified in many types of complex

networks. In addition, we introduce a series of methods derived by various authors

to measure these aspects of structure.

1.2.1 Adjacency matrix

We have already established vertices and edges with their various embellishments as

the basic building blocks of networks. Now we can begin to put them in a mathe-

matical framework. We label the number of vertices in a network as n and represent

a network mathematically as an n by n matrix, the adjacency matrix. The entries
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in the adjacency matrix A are,

Aij =















1, if there is an edge from vertex j to vertex i

0, otherwise
(1.1)

assuming a network with unweighted edges. To represent a weighted network we let

the element Aij equal the weight of the edge from vertex j to vertex i. Obviously in

an undirected network the adjacency matrix is symmetric: if there is an edge from j

to i there is also an edge from i to j. In a directed network, the adjacency matrix is

usually not symmetric.

1.2.2 Paths in a network

While edges are one of the basic building block of networks, we are sometimes in-

terested in more than just direct connections between vertices. A path of length

l is an alternating sequence of vertices and edges starting and ending with vertices

and traversing a portion of a network. For example, in a social network where an

edge represents friendship between two individuals, we find the friends of friends of

an individual i by looking for all vertices connected to i via a path of length l = 2.

In terms of the adjacency matrix we find the number of paths of length l = 2

from a vertex j to a vertex i through a vertex k by calculating the value of AikAkj.

To count the number of paths from j to i through any vertex, we sum the previous

expression over all k,

number of paths of length two from j to i =
n
∑

k=1

AikAkj. (1.2)

We recognize this as matrix multiplication and rewrite the equation as

number of paths of length two from j to i =
[

A2
]

ij
. (1.3)

That is, the number of paths from j to i is the ij-th element of the square of the

adjacency matrix.
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We could easily write a proof by induction to prove that the total number of paths

of any length l between two vertices is calculated in a similar manner. Here, we omit

the proof, but give the resultant equation,

number of paths of length l from j to i =
[

Al
]

ij
. (1.4)

We must note that the paths described above differ from the graph theoretical in-

terpretation of paths. In particular, we can only easily calculate self-intersecting paths

using the adjacency matrix multiplication method. Calculating non-self-intersecting

paths is a much more complicated undertaking and one we do not tackle in this dis-

sertation. However, we will return to the concept of self-intersecting paths of various

lengths in Chapter 2.

A variation on calculating paths between two vertices in a network is calculating

loops, that is paths where the starting and ending vertices are identical. Loops of

length l = 2 are really only interesting in directed networks. In that case, the loop

indicates the directed edges between vertices are reciprocated edges. Loops of

length l = 3 are also known as triangles since they form triangular structures in

networks. They play a role in the calculation of network transitivity, a measure we

will address in Section 1.2.4.

1.2.3 Degree, average degree, and degree distribution

In an undirected network, the degree of a vertex is equal to the number of edges

incident upon that vertex. We represent the degree of a vertex i as ki and calculate

it in a network of n vertices as

ki =
n
∑

j=1

Aij . (1.5)

A list of the degree of each vertex in a network is known as the degree sequence of

the network.

In a directed network, both the in-degree and the out-degree of a vertex are

measured. The in-degree of vertex i, kin
i , is equal to the number of directed edges
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pointing from other vertices to vertex i (the sum of directed edge heads at vertex i),

kin
i =

n
∑

j=1

Aij . (1.6)

The out-degree of vertex i, kout
i , equals the number of directed edges from vertex i to

other vertices (the sum of all directed edge tails at vertex i),

kout
i =

n
∑

j=1

Aji. (1.7)

Of course, both an in-degree sequence and an out-degree sequence exist for a

directed network.

The average degree of an undirected network is the sum of the degree of each

vertex in the network,
∑n

i=1 ki, divided by the number of vertices in the network. We

calculate
∑n

i=1 ki by remembering that each edge has two endpoints, and that the

sum over vertex degree equals the total number of edge endpoints. Thus, the sum

over vertex degree equals twice the total number of edges in the network, m, making

the average degree,

〈k〉 =

∑n
i=1 ki

n
=

2m

n
. (1.8)

In a directed network, the total number of edge heads,
∑n

i=1 k
in
i , equals the total

number of tails,
∑n

i=1 k
out
i , and also equals the total number of edges, m. Therefore,

in a directed network average in-degree equals average out-degree, or

〈kin〉 =

∑n
i=1 k

in
i

n
=
m

n
=

∑n
i=1 k

out
i

n
= 〈kout〉. (1.9)

Since measuring the degree of each vertex is straightforward, it is unsurprising that

one basic way to characterize network topology is by the degree distribution, {pk}.

We define pk to be the fraction of vertices with degree k in a particular network. That

is, if nk equals the number of vertices with degree k in a network of size n, pk = nk

n
. In

directed networks, the in-degree distribution and the out-degree distribution

are considered separately.
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A significant body of research has been devoted to measuring the degree distribu-

tions of real networks. In the 1960’s and 1970’s the physicist-turned-science-historian

Derek de Solla Price may have been the first to present one key type of degree dis-

tribution, now widely known as the hallmark of a scale-free network [72, 73]. Price

studied scientific citation networks in which the vertices represent papers published

in scholarly scientific journals and the edges represent the citation of one paper in

the text of another paper.

We can illustrate Price’s work by recreating one of his key plots with our own

citation data. Our citation data comes from papers published to the arXiv in the

high-energy theory (hep-th) section. The arXiv is an electronic archive maintained

by Cornell University Library as a repository for papers in physics, mathematics,

computer science, and others. Papers published to the arXiv may be pre-prints

submitted before an article is published in a scholarly journal or versions of papers

appearing in scholarly journals. The data was made available by the KDD Cup and

we examine the in-degree distribution for all papers published in the hep-th section

of the arXiv in 1994 in Fig. 1.4(a). Just as Price found, the in-degree distribution

is not random or regular, but is highly right skewed with a long tail towards large

in-degree. Price identified the highly skewed degree distribution in his data as a

power-law distribution, where

pk ∝ k−α. (1.10)

Power-law degree distributions are now synonymous with scale-free networks, since

power-laws have the property of possessing the same functional form at all scales.

However, the term is somewhat misleading because the scale-free behavior refers only

to the degree distribution, and does not necessarily hold for any other aspects of the

structure of a network.

Measuring this tail of the degree distribution is tricky. In Fig. 1.4(a) the tail is

very noisy, owing to the fact that there are not enough data for reasonable statistics—
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Figure 1.4. (a) The in-degree distribution and (b) the cumulative in-degree distribution for papers
published in 1994 on the arXiv in the hep-th category. The in-degree for each paper was calculated
using only citations it received within two years of publication.
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a common problem. One method used to circumvent this problem is to plot the

cumulative distribution function,

Pk =
∞
∑

k′=k′

pk′, (1.11)

where Pk is the probability that a vertex has a degree greater than or equal to k. We

then rewrite the power-law distribution as

Pk ∝ k−γ, (1.12)

where γ = α − 1 [11]. A plot of the cumulative degree distribution for the citation

data, with a power-law fit is provided in Fig. 1.4(b).

In his original work, Price estimated the value of α to be 2.5 or 3.0 for citation

networks [72]. The data plotted in Fig. 1.4 clearly do not fit power-law behavior very

well for small k, but do reasonably illustrate a power-law distribution with α = 2.38

for large k.

The preferential attachment model originally proposed by Price in 1976 [73] and

later revisited by Barabási and Albert [5] offers a solution for how power-law degree

distributions emerge in networks. The model simulates network growth by beginning

with an initial configuration of vertices and then introduces a new vertex and a new

edge (or edges) into the network at each time, ti, in a series of time steps. If the

new edge (or edges) connects the new vertex to an existing vertex, where the existing

vertex is chosen with a probability proportional to its degree, the degree distribution is

ultimately a power law with an exponent in line with those observed in real networks.

While power-law or scale-free networks have received considerable attention, other

types of degree distributions are found in real networks. Other distributions observed

in real networks include exponential distributions and power-laws with exponential

cutoffs. In Section 1.3.1 we will discuss the degree distribution of random networks

and how they compare to real degree distributions.
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1.2.4 Transitivity or Clustering

In Section 1.2.2 we introduced the concept of paths that begin and end on the same

vertex, loops, and made special mention of loops with l = 3, which we termed tri-

angles. Triangles are frequently observed in certain kinds of networks, especially in

social networks. The idea of transitivity in networks makes use of this observation

by suggesting that if there is an edge between two vertices i and j and there is also

an edge between vertices j and k, then the probability that there is an edge between

i and k is greater than if the path i− j − k did not exist. In other words, the friend

of your friend is also likely to be your friend [88]. Transitivity is also known in the

literature as clustering, but clustering has also come to have an additional meaning in

the context of network structure. We quantify network clustering with the (global)

clustering coefficient,

C =
3 × number of triangles in the network

1
2
× number of paths of length two

. (1.13)

The clustering coefficient measures the probability that a randomly chosen path

of length two in a network is actually part of a triangle. The factor of three in the

numerator accounts for the contribution each triangle makes to the three different

paths of length two and the factor of one-half in the denominator takes care of the

double counting of paths of length two. Counting all paths of length two in a network

counts both i− j − k and k − j − i as distinct paths.

An alternative to this global measure of clustering is a measure of local cluster-

ing put forward by Watts and Strogatz [89]. They proposed a local clustering

coefficient for every network vertex,

Ci =
number of triangles including vertex i

number of paths of length two centered on vertex i
. (1.14)

In the language of social networks Ci is the probability that a pair of friends of vertex

i are themselves friends. Vertices with degree zero or one cannot be the central vertex
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for a path of length two, making Ci undefined. In those cases we take Ci to be zero.

This local measure is turned into a global measure by averaging Ci over all vertices

in the network,

CWS =
1

n

n
∑

i=1

Ci, (1.15)

where we denote the clustering coefficient with the subscript WS to indicate it is

different from the clustering coefficient in Eq. (1.13).

Both measures of transitivity, or clustering, are excellent examples of how direct

observation of real networks led to the creation of a specialized metric. Many social

networks were observed to have an overabundance of triangles, and the metric simply

defined this observation in a quantifiable way.

1.2.5 Measures of similarity

Interest in the local structure surrounding individual vertices is the basis for measures

of structural equivalence. Structural equivalence is a general concept, but we can

summarize it by saying that two vertices are structurally equivalent if they share many

of the same network neighbors. A number of measures of structural equivalence

originated in other fields and were subsequently applied to networks. All of the

definitions concern vertex network neighbors, so we define Γi to be the neighborhood

of vertex i in a network, i.e., the set of vertices directly connected to i via an edge.

The measure cosine similarity was proposed by Salton in 1983 [81]. Originally

a method for measuring the similarity between any two vector quantities, it was

reshaped as a network measure and for undirected networks is written as

σcosine =
|Γi ∩ Γj |
√

|Γi| |Γj|
=

∑n
k=1AikAjk

√

∑n
k=1A

2
ik

√

∑n
j=1A

2
jk

=
[A2]ij
kikj

. (1.16)

A related measure predating cosine similarity by several decades is the Jaccard

index also known as the Jaccard similarity coefficient. It was originally proposed

by Jaccard as a statistic for comparing the similarity and diversity of sample sets [38].
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It is defined as the intersection of two sample sets divided by their union,

σJaccard =
|Γi ∩ Γj |

|Γi ∪ Γj |
(1.17)

where we’ve omitted the expression in terms of the adjacency matrix, as that repre-

sentation is not as compact as cosine similarity.

Euclidean distance is a measure of structural equivalence developed by Burt [15,

88]. For an undirected network, the Euclidean distance between two vertices is written

as

xij =
√

|Γi| + |Γj| − 2(Γi ∪ Γj) =

√

√

√

√

n
∑

k=1,k 6=i,j

(xik − xjk)2. (1.18)

Euclidean distance is actually a measure of dissimilarity, as xij = 0 for vertices that

have a perfectly similar local structure and increases as the local structure becomes

less similar.

For directed networks two specific structural measures, bibliographic coupling

and co-citation, arose from the study of citation networks. Bibliographic coupling

was introduced by M. M. Kessler, who claimed that two papers are bibliographically

coupled if they both cite the same paper [22, 44]. The strength of the coupling is

based on how many papers they cite in common,

Bij =
n
∑

k=1

AkiAkj (1.19)

or

B = ATA. (1.20)

Co-citation is the companion to bibliographic coupling and was independently pro-

posed in 1973 by two information scientists, Irina Marshakova and Henry Small. If

two documents are both cited by a third document, the two documents are said to be

co-cited [22]. As with bibliographic coupling, the strength of the co-citation of two

papers is based on how many total papers cite the two papers in common,

Cij =
n
∑

k=1

AikAjk (1.21)
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or

C = AAT . (1.22)

While the methods in this section may seem very basic, they are network measures

with a long history of use in the literature.

1.2.6 Centrality

Historically there has been great interest in identifying the most influential or cen-

tral vertices in a network. Many measures have been proposed to calculate vertex

centrality and here we give a short review of some of the more well-known of these

measures.

The first and most simple measure is degree centrality where we count the

number of edges incident on a vertex, the degree of the vertex [75]. In an undirected

network, vertices with high degree are considered more central because they are con-

nected to many other vertices. In directed networks such as the World Wide Web or

a citation network, both the in-degree and out-degree are measures of centrality.

A more sophisticated measure is eigenvector centrality [12]. Here the centrality

of a vertex i, xi, is defined to be proportional to the sum of the centrality of each

connected vertex,

xi ∝
n
∑

j=1

Aijxj . (1.23)

This equation is easily rewritten in matrix form and transformed into an eigenvalue

problem,

λx = Ax. (1.24)

The Perron–Frobenius theorem tells us that there is only one eigenvector with only

non-negative entries, which is the unique eigenvector corresponding to the largest

eigenvalue. Thus, vertex centrality is proportional to the corresponding element of

the leading eigenvector of the adjacency matrix. Unfortunately, this method fails for

directed acyclic networks such as citation networks.
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An alternative measure of centrality actually predating eigenvalue centrality was

proposed by Katz, a statistician working with social networks. In 1953 Katz proposed

a measure of vertex centrality which he used to represent the status of individuals

in a social network [42]. In his method, every vertex has some centrality or status

score xi, and the status of an individual is based upon the the status of his friends

(not unlike eigenvalue centrality) as well as some inherent individual status,

xi =
n
∑

j=1

αAijxj + yi, (1.25)

where 0 < α ≤ 1 is a parameter used to control the amount of status transmitted via

a link of friendship between pairs of individuals. The parameter yi is the inherent

status of the individual i. We can think of this as we would an infection process,

where people are infected by the status of their friends with probability α. We

rewrite Eq. (1.25) in matrix form and solve for x,

x = (I − αA)−1 · y (1.26)

where I is the identity matrix. We can expand Eq. (1.26) in a power series in terms

of A,

(I − αA)−1 =
∞
∑

r=0

(αA)r = I + αA + α2A2 + · · · . (1.27)

In order to make this series converge, it can be shown that we must pick α such that

α < λ−1
1 , where λ1 is the largest eigenvalue of the adjacency matrix, A.

Brin and Page [14] also developed an algorithm for measuring vertex centrality,

known as “PageRank.” This measure does not greatly differ from those measures

already presented: centrality is again a quantity xi and the centrality of a vertex

is proportional to the sum of the centrality of each connected vertex. However, the

measure includes a normalization factor for the out-degree of each connected vertex,

xi =
n
∑

j=1

α
Aij

kout
j

xj + yi, (1.28)
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where yi is the inherent centrality of the vertex and is usually defined to be (1−α)
n

.

This normalization by the out-degree of the connected vertices allows less weight in

the centrality score to come from those vertices which point to many other vertices.

An interesting and more sophisticated variant of centrality was proposed by Klein-

berg [45] and works very well for directed networks, especially citation networks. The

method recognizes that vertices with high in-degree are not the only type of vertex

of interest in a network and that vertices with high out-degree are also interesting.

Consequently, in this variant, each vertex has two values of centrality known as its

authority score and its hub score, the first derived from the incoming edges and

the second from the outgoing edges.

In this view, a hub is a vertex that points to many important authorities, for

instance a review paper in a citation network, while an authority is a vertex pointed

to by many important hubs, such as an important or authoritative research arti-

cle. In the most simple version of the method, the authority score xi of vertex i is

proportional to the sum of the hub scores yj of the vertices citing it,

xi =
1

λ

∑

j

Aijyj, (1.29)

for some constant λ, while the hub score is proportional to the sum of the authority

scores of the vertices it cites,

yi =
1

µ

∑

j

Ajixj . (1.30)

In matrix form, these equations are

Ay = λx, ATx = µy. (1.31)

Or, eliminating either x or y,

AATx = λµx, (1.32)

ATAy = λµy. (1.33)
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Thus x and y are eigenvectors of the symmetric matrices AAT and ATA (the co-

citation and bibliographic coupling matrices respectively seen in Section 1.2.5). In

Kleinberg’s formulation of the problem, one focuses on the leading eigenvector of each

of the matrices, although in principle there could be useful information to be gleaned

from other eigenvectors.

1.2.7 Community structure

Until this point we have discussed aspects of network structure that mainly concern

the network as a whole (degree distributions, global clustering, centrality, etc.) or

the very local structure around individual vertices (local clustering, similarity, etc.).

Another active area of networks research proposes that many networks display com-

munity structure, a property where sub-groups of vertices form communities with

their own distinct patterns of edge placement.

As it is natural to think of community structure in terms of social networks, we can

easily form an illustration of this concept by thinking of a group of people in a social

network who have most of their friends within the group and only a few friends outside

the group. In fact, the concept of communities is well established in the literature of

social analysis [83, 88]. However, the idea of having tightly connected communities is

useful beyond the realm of social networks. For example, in information networks such

at the World Wide Web or citation networks of academic publications, communities

of documents (web pages or academic papers) could all pertain to the same topic,

unifying the community in terms of content, and making it an attractive target for

identification.

Spectral methods

The task of community detection, or partitioning, is not unique to the study of

networks. Computer scientists have long been concerned with the problem of graph

partitioning. The need to partition graphs arises in many contexts in computer
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science. One example is found in the development of computer algorithms for parallel

computing where a number of tasks, n, must be divided across two processors. Many

of these n tasks need to communicate with one another, and while communication

within a processor is reasonably fast, communication between processors is relatively

slow. Thus, it is desirable to minimize the number of communications that must

occur between processors.

One well known solution to this problem is spectral bisection which divides a

network into two communities using the network Laplacian. The network Laplacian,

L, for a network with n vertices, is an n× n matrix with elements

Lij = δijki − Aij, (1.34)

where δij is the Kronecker delta while ki and Aij are, of course, a vertex degree

and an adjacency list element respectively. From the definition of matrix elements

given in Eq. (1.34) it is clear that all rows/columns sum to zero, making the vector

v = (1, 1, . . . 1) an eigenvector of L with corresponding eigenvalue λ = 0. Also, it can

be shown that L is always a positive semi-definite, meaning that λ = 0 is the smallest

eigenvalue of L.

If a network can be divided into c communities, where all edges fall only within

communities and no edges connect communities, then we can imagine writing the

Laplacian in block diagonal form,

L =

























� 0 0

0 � 0

. . .

0 0 �

























(1.35)

where the �s represent the sub-Laplacian for one of the c communities and the 0s

represent matrices of zeros. There would then be c eigenvalues equal to zero.

However, when a network is not perfectly divisible into c communities with edges

falling only within communities and not between communities, there is only the single
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Figure 1.5. The symmetrized and undirected version of Moreno’s network of school children divided
into two communities via spectral bisection. Again the girls are represented by circles, this time
shaded black, while the boys are represented by squares, in white. The dashed line separates the
two groups of children.

eigenvalue equal to zero (λ1 = 0) and c − 1 eigenvalues slightly larger than zero.

Thus, for real networks the number of communities can be approximated by finding

the number of eigenvalues close to zero [63].

In the special case of a network having only two communities, the work of Fiedler [28,

29] which was later revisited by Pothen et al. [71] provides a solution for the actual

identification of the vertices in each community. Fielder proposed that the signs of

the elements of the eigenvector v2, corresponding to that second smallest eigenvalue,

λ2, which he called the algebraic connectivity, could be used to approximate the

splitting of a network into two communities. Here we present an application of this

method of spectral bisection to Moreno’s social network of school children, which we

introduced earlier in this chapter. Note we used the symmetrized version of the net-

work, which ignores edge direction, as the spectral bisection requires an undirected
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network. We will revisit the idea of turning directed networks into undirected net-

works in Chapter 3. In Fig. 1.5 we see a reasonable split of the students into two

communities. The split into two groups does not exactly fall along gender lines, as

perhaps would would assume after viewing the first illustration of this network in

Fig. 1.2. However, we see only three girls included with the fourteen boys in one

group and the remaining fifteen girls in the second group.

For division of a network into more than two groups, repeated bisection can be

used. However, the accuracy of the partitions determined by repeated bisection is

usually unknown. In addition, the point at which to stop sub-dividing the network

can be difficult to determine unless the number of communities in the network is

known ahead of time [11, 63].

Hierarchical clustering

Sociologists also have a long standing interesting in the process of community de-

tection in networks. A significant part of their research has been directed towards

finding community structure in real networks. A widely used technique, known as

hierarchical clustering, groups vertices into subsets or communities such that the

vertices within a community are similar to one another in some sense [11, 63, 83, 88].

There are many methods for calculating the similarity of two vertices and several of

these methods were presented in Section 1.2.5. The general technique of hierarchical

clustering proceeds in the same way regardless of the particular similarity measure

chosen. The process starts with calculating the similarity, xij , of all pairs of vertices

in the network. The method then looks to an empty network with the same number

of vertices n as the original real network. Then, starting with the pair of vertices

with the greatest similarity in the network, the vertices are joined via an edge in

the new network. After that the similarity threshold, α, is gradually decreased and

more vertex pairs are joined together. The method can continue until all vertices in

the network are connected in one component. However, network communities can
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be extracted for any intermediate value of similarity α between which the network is

neither empty nor connected as a single component.

More than one system exists for the process of connecting vertices as the new

network is built-up. One common method, known as single linkage, allows any

two vertices i and j to be connected as soon as α = xij , and a third vertex k to be

connected in a community with i and j as soon as α = xik or α = xjk. Thus, for a

given α it is guaranteed that any pair of vertices in the network with xij ≥ α will be

in the same community. However, we are not guaranteed that xij ≥ α for all pairs in

a given community.

An alternative means of conducting hierarchical clustering is the method of com-

plete linkage. This method also begins with an empty network where each vertex

is its own component, and vertices are connected together in order of decreasing

similarity. However, the requirement for the formation of communities is far more

stringent than in the single linkage method. In this case, multiple connected vertices

are in the same component at a given value of α only if all pairs of vertices i and j

in the component have similarity xij ≥ α. There may exist a vertex external to the

community with similarity to a vertex in the community greater than or equal to α,

but the vertex is not included in the community if its similarity with any other vertex

in the community is less than α.

The entire process is frequently represented as a dendrogram, a visualization

of the vertices coalescing into communities. We give an example of this process

and the resulting dendrograms in Figs. 1.6 and 1.7, again we use the data from

Moreno’s social network of school children. As a first example we used the hierarchical

clustering capabilities in the network analysis program Pajek. The method in fact

uses a dissimilarity measure instead of a similarity measure. Two perfectly similar

vertices have a dissimilarity value equal to zero. To create the dendrogram, edges

are added from vertex pairs with the smallest dissimilarity to the largest dissimilarity
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Figure 1.6. The symmetrized and undirected version of Moreno’s network of school children
divided into communities via hierarchical clustering using Pajek. The vertices are depicted at the
bottom of the dendrograms with the boys represented by blue squares and the girls by pink squares.
The dashed lines represent the communities as they exist in the network given a certain similarity
threshold.

using the single linkage technique.

The dendrogram shown in Fig. 1.6 demonstrates how the network analysis pro-

gram Pajek performs hierarchical clustering on this social network. With hierarchical

clustering there is no built-in way to find the correct number of communities, but we

placed a horizontal line in the plot at one given division to show how this hierarchical

clustering technique can find the two gender segregated communities.

However, with hierarchical clustering methods any measure of vertex similarity

or dissimilarity may be used. As a second illustration we use Euclidean distance,

which we presented in Section 1.2.5. The two dendrograms shown in Fig 1.7 show

hierarchical clustering via single linkage and complete linkage. In this case the method

does not perform very well. We place a horizontal line in both of these plots to see

how communities can be identified. We notice here that identified communities are

more mixed in gender then was seen in method from Fig. 1.6.

Interest from physicists

Physicists have, in the past few years, entered into the quest to find a method to divide

networks into communities. At this time numerous methods have been proposed,
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(a)

(b)

Figure 1.7. The symmetrized and undirected version of Moreno’s network of school children divided
into two communities via hierarchical clustering with (a) single linkage and (b) complete linkage.
The vertices are depicted at the bottom of the dendrograms with the boys represented by blue
squares and the girls by pink squares. The dashed lines represent the communities as they exist in
the network given a certain similarity threshold.
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including some of our own work which will be presented in subsequent chapters.

Many view a notable method proposed by Girvan and Newman as the start of current

interest from physicists on the topic.

Girvan and Newman proposed that communities are naturally composed of ver-

tices that are highly connected to each other and less connected to other vertices in

the network. They suggested that the communities could be detected by identifying

the edges running between the highly connected groups of vertices. The idea can be

likened to a problem of information flow on a network. If information were to flow

through the network, the structure of the network would force a great deal of the in-

formation to flow along edges connecting the communities. The implication is that if

the edges with high flow were removed, the network would break up into communities.

The means by which they proposed to identify the edges connecting communities was

by measuring edge betweenness. In short, edge betweenness measures the number

of shortest paths that run along a given edge. A shortest path between two vertices

is exactly what it seems to be, the path that runs from a vertex j to a vertex i with

the fewest number of steps.

The algorithm, which is now known as the Girvan-Newman (GN) algorithm, is

composed of the following steps for a network with n vertices:

1. Calculate the edge betweenness of all edges in the network.

2. Remove the edge with the highest betweenness score.

3. Repeat until all the edges in the network are removed, that is the network has

n components.

The requirement of recalculating the edge betweenness of all edges in the network

after the removal of one edge has been shown to be an important aspect of the

method [67].
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The division of the network can be visualized with the aid of a dendrogram similar

to the one used in the hierarchical clustering method. However, the process for

creating the dendrogram is a reversal of hierarchical clustering. In this case the

dendrogram is read from the top, the connected network of n vertices, to the bottom,

the n components of one vertex each.

As with hierarchical clustering, the method provides no way to determine the cor-

rect number of communities. However, Girvan and Newman additionally proposed

a measure to quantify the the quality of a particular network division. The modu-

larity for the division of a network into c communities is measured by constructing

a c × c symmetric matrix, e, where the element eij is the fraction of all edges in

the original network that connect vertices in group i to vertices in group j. Thus,

the fraction of all edges which connect two vertices in the same community is the

trace of the matrix e. The fraction of all edges connected to a vertex in group i is

∑

j eij , which can be labeled as ai. If edges were to fall between vertices in a network

independent of the communities to which those vertices belong, then it would be the

case that eij = aiaj [67]. Thus, modularity can be measured as,

Q =
∑

i

(eii − a2
i ) = Tr e − ||e2|| (1.36)

where ||x|| is the sum of the elements of the matrix x. Modularity is a measure of the

real number of edges between vertices in the same community minus the expected

number of such edges were the network randomly connected without regard to com-

munity structure. Consequently, values of Q range between zero and one with values

of Q close to zero for networks with little to no community structure and networks

with Q close to one having strong community structure. The spectrum of Q values

can be calculated as the edges are removed using the method of Girvan and New-

man, with local peaks in the value of Q indicating good divisions of the network into

communities.

We give an example of the GN algorithm applied to the social network of Moreno
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Figure 1.8. The symmetrized and undirected version of Moreno’s network of school children divided
into two communities via the GN algorithm. The dashed line shows the division of the network that
maximizes modularity. The vertices are depicted at the bottom of the dendrogram with the boys
represented by blue squares and the girls by pink squares.
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in Fig. 1.8. At the top of the figure we plot the modularity of the network as edges are

removed and at the bottom we show the dendrogram of communities. The vertical

dashed line cuts across the dendrogram at the division achieving maximum modu-

larity. The network is split into five communities, three with only girls and two with

only boys.

The work of Girvan and Newman has been followed by many other proposed

methods for community detection. Radicchi et al.proposed a method also posited

on the removal of edges based on betweenness score, but used a different measure of

betweenness than the one used by Girvan and Newman [74]. The review article by

Danon et al. [20] gives an overview of many of the methods.

1.3 Random graphs

The previous section focused on standard methods for detecting structure in real

networks. An important topic we did not address is the issue of how we know that

the detected structure is significant beyond random chance. In this section we present

two types of random graphs: Poisson random graphs and generalized random graphs.

These random graphs or networks are used in two contexts, to create artificial or

simulated networks and as null models for comparison with real networks. We will

return to these models throughout this dissertation.

1.3.1 Poisson random graph

The Poisson random graph is a classic network model first proposed by Solomonoff

and Rapoport in 1951 [85]. The same model was later and independently proposed

by Erdős and Rényi [23, 24, 25]. This method for constructing a network starts

with n vertices and connects all possible pairs of vertices with a probability p. This

model, known as an Erdős Rényi (ER) random graph, disallows multiedges and

self-edges and is denoted Gnp. An alternative way to specify the random graph is to
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again start with n vertices, but preselect the number of edges m in the network. The

method again starts with n unconnected vertices. Pairs of vertices are then considered

in random order and are connected via an edge. Vertex pairs are connected until the

network has a total of m edges. This method for constructing a random network

again disallows multi-edges and self-edges [11]

We note that a graph created using either of these methods is only one realization

of the many statistically possible graphs in the ensemble of all possible graphs created

using either the Gnm or Gnp framework. In fact, usually the notation Gnm or Gnp

is not used in reference to a single graph, but to the ensemble of all possible graphs

using the model.

The degree distribution for an ER random graph is a binomial distribution,

pk =









n− 1

k









pk(1 − p)n−1−k (1.37)

where pk is the probability that network vertex has degree k. In the equation pk is

the probability of the existence of k edges while (1 − p)n−1−k is the probability of

the absence of the remaining n− 1− k possible edges. The number of possible edges

connected to one vertex is n− 1 because self-edges are disallowed. The leading term,








n− 1

k









, is a combinatorial factor that accounts for the number of ways there are

to choose the k endpoints. Now, we also note that in the limit of large system size

(large n) if the mean degree is held fixed (〈k〉 = p(n − 1) = constant) the degree

distribution is nicely approximated by a Poisson degree distribution,

pk =
〈k〉ke−〈k〉

k!
, (1.38)

which has led to these networks also being called Poisson random networks [11]. Fig-

ure 1.9 is a histogram of the degree distribution for a single realization of a Gnp model

where n = 1000 and p = 0.1. We also plot the corresponding Poisson distribution

and observe the excellent correspondence.



34

0 5 10 15 20 25 30
Degree

0

0.05

0.1

0.15

Fr
ac

tio
n 

of
 v

er
tic

es

Figure 1.9. The degree distribution for an ER random network where n = 1000 and p = 0.1, with
the real distribution plotted as a bar graph and the Poisson approximation plotted as the dashed
line.

Clearly, the degree distribution of such a random network does not reflect the

previously described degree distributions detected in real networks, such as power-

law degree distributions. We will describe a method of creating random networks with

a given degree distribution in the next section. The ER network model does function

as a null model for comparison with real networks, and the model can be altered

to include some types of networks structure, such as communities (see Chapters 3

and 4).

1.3.2 Generalized random graphs

We noted in the previous section that while ER model can be used to create random

networks, the networks produced lack a realistic degree distribution. In Section 1.2.3

we discussed the degree distributions of real networks. Clearly, an improvement to

the ER model is to allow for a more realistic degree distribution. The following type

of random network has been studied by many authors since the 1970’s [9, 58, 59].



35

However, the description we give stems from the work of Molloy and Reed [58].

The configuration model is a method where we sample a random network

with a specific degree sequence (see Section 1.2.3) constructed with a prescribed

degree distribution, {pk}. The prescribed degree distribution is used to construct a

degree sequence for the network where the degrees of the vertices, the ki’s (where

i = 1 . . . n) are independent, identically-distributed random integers drawn from the

degree distribution pk. This is equivalent to giving each vertex ki stubs, half-edges, or

edge endpoints. We then choose two stubs at random and connect them via an edge.

We repeat this process until all the stubs have been used to form edges. Again, the

configuration model is really defined as the ensemble of all possible graphs produced

from a given degree distribution.

1.4 Outline of dissertation

In this chapter we have introduced many concepts regarding network structure. We

have motivated the idea that for small networks we can use our eye to peruse a

visualization of the network for interesting structural features, but we cannot do so

for the largest networks of interest today. Instead we must use specialized methods

to measure network structure, some of which have been reviewed in this chapter.

However, we note that not all network examples found in this paper are networks

of thousands or millions of vertices. On the contrary, we frequently rely on smaller

networks of tens or hundreds of vertices to support our claims about the mathematical

techniques we use to detect network structure. With these smaller networks the reader

can compare our mathematically-rooted results with the conclusions of the eye.

That said, we set forth in this dissertation new research regarding the detection

of structure in real networks. The remainder of this dissertation is divided into two

parts which approach the detection of network structure through different means.

The first part, Chapters 2 and 3, follows the pattern set-forth by many of the
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methods described in this introductory chapter. That is, we propose to detect a

given type of network structure and we present an implementation of a method to

complete the task. In Chapter 2 we derive a measure of vertex similarity based upon

network structure. The method builds on existing ideas concerning the calculation

of vertex similarity, but generalizes and extends the scope to large networks. We

then address, in Chapter 3, the detection of communities or modules in the specific

class of networks, known as directed networks. The method extends an existing

technique for the directed network subset. These two chapters are based on the

author’s publications [50] and [51] respectively.

In the second part, Chapters 4 and 5, we move away from the specialized methods

that have dominated the field of networks research. Instead we propose two meth-

ods for network structure detection based on probabilistic techniques. In Chapter 4

we propose a method for detecting network structure that does not require a priori

knowledge of the type of structure for which we are searching. We base this method

on the well known statistical method of the expectation-maximization algorithm.

This chapter is based on the author’s publication [68]. The work presented in Chap-

ter 5 also uses the framework of the expectation-maximization algorithm, but focuses

on detecting changes in networks evolving with time and is based on the author’s

publication [49].



CHAPTER 2

Vertex similarity in networks

2.1 Introduction

There are many situations concerning real networks in which it would be useful to

be able to answer questions such as “How similar are these two vertices?” or “Which

other vertices are most similar to this vertex?” Of course, there are many senses

in which two vertices can be similar. In the network of the World Wide Web, for

instance, in which vertices represent Web pages, two pages might be considered similar

if the text appearing on them contains many of the same words. In a social network

representing friendships between individuals, two people might be considered similar if

they have similar professions, interests, or backgrounds. This chapter considers ways

of determining vertex similarity based solely on the structure of a network. Given only

the pattern of edge placement in a network, we ask, can we define useful measures

that tell us when two vertices are similar? Similarity of this type is sometimes called

structural similarity, to distinguish it from social similarity, textual similarity, or

other similarity types. It is a basic premise of networks research that the structure

of a network reflects real information about the involved vertices. Thus, it seems

reasonable that meaningful structural similarity measures might exist.

The problem of quantifying the similarity of two vertices in a network is not

new. The most common approach taken in previous work has been to focus on

so-called structural equivalence (see Section 1.2.5). To briefly review the idea, two

vertices are considered structurally equivalent if they share many of the same network

37
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neighbors. For instance, it may be reasonable to conclude that two individuals in a

social network have something in common if they share many of the same friends.

Let Γi be the neighborhood of vertex i in a network, i.e., the set of vertices that are

directly connected to i via an edge. We can then represent the number of friends i

and j have in common as

σunnorm = |Γi ∩ Γj |, (2.1)

where |x| indicates the cardinality (i.e., number of elements in) of the set x. This count

of common friends can represent an unnormalized measure of similarity between two

vertices. Section 1.2.5 introduced some ways to normalize this rudimentary measure

of similarity. Cosine similarity is an example of such a measure,

σcosine =
|Γi ∩ Γj|
√

|Γi| |Γj|
. (2.2)

There are, however, many cases in which vertices occupy similar structural posi-

tions in networks without having common neighbors. For instance, two store clerks

in different towns occupy similar social positions by virtue of their numerous profes-

sional interactions with customers. However, it is quite unlikely that they have any

customers in common. Considerations of this kind lead us to an extended definition

of network similarity known as regular equivalence. In this case, vertices are said

to be similar if they are connected to other vertices that are themselves similar. It is

upon this idea that the measures we will develop in this chapter are based.

Regular equivalence is clearly a self-referential concept: one needs to know the

similarity of the neighbors of two vertices before one can compute the similarity of the

two vertices themselves. It comes as no surprise to learn, therefore, that traditional

algorithms for computing regular equivalence have an iterative or recursive nature.

Two of the best known such algorithms, REGE and CATREGE [13], proceed by

searching for optimal matching between the neighbors of the two vertices. In addition,

other authors have also formulated the calculation of regular equivalence in networks
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v

i j

Figure 2.1. A vertex j is similar to vertex i (dashed line) if i has a network neighbor v (solid line)
that is itself similar to j.

as a optimization problem [6].

In this chapter we propose a method implemented using different tactics. Our

measure of similarity uses a linear algebra framework. The fundamental statement

of our approach is that vertices i and j are similar if either of them has a neighbor

v that is similar to the other—see Fig. 2.1. Coupled with the additional assumption

that vertices are trivially similar to themselves, this gives, as we will see, a sensible

and straightforward formulation of the concept of regular equivalence for undirected

networks. The method has substantial advantages over other similarity measures:

it is global, unlike cosine similarity and related measures, it depends on the whole

graph and allows vertices to be similar without sharing neighbors; it has a transpar-

ent theoretical rationale, which more complex methods like REGE and CATREGE

lack [13]; it avoids the convergence problems that have plagued optimization methods;

and it is comparatively fast, since its implementation can take advantage of standard,

hardware optimized, linear algebra software.

Some previous authors have also considered similarity measures based on matrix

methods [40, 10]. We discuss the differences between our measure and other measures

in Section 2.2.3.

The content of this chapter is organized in several sections. We derive our struc-



40

tural similarity measure in Section 2.2. In Section 2.3, we test the measure on sim-

ulated and real-world networks. Finally, in Section 2.4 we give a discussion of our

results.

2.2 A measure of similarity

The starting point for our measure of similarity is the assumption that the edges in

a network are themselves indicators of similarity between the vertices they connect.

Thus, for instance, we assume that two people in a social network are more likely to

be connected if they are similar, in some social sense, than if they are dissimilar. The

edges of the network provide the raw data from which we will deduce more subtle

similarity values, including values for pairs of vertices that are not directly connected.

It is worth noting that it is not always the case that the edges in a network fall

between similar vertices. Some networks are said to be disassortative [62], meaning

that edges preferentially connect vertices that are different in some way. Although

the measures derived in this chapter may convey useful information even in those

cases, we will for the purposes of argument assume that the networks at which we are

looking are not disassortative; rather they are assortative and edges tend to connect

vertices that are fundamentally similar.

This then leads us immediately to the idea of regular equivalence: a pair of vertices

i, j are similar to one another if any pair u, v of their neighbors are similar. In fact,

an even simpler one-step expression of the principle is possible: vertex i is similar to

j if i has any network neighbor v that is itself similar to j. This idea, illustrated in

Fig. 2.1, forms the basis for the measure of similarity developed here. At first glance

this definition might appear less satisfactory than the two-step version, having an

asymmetry between i and j that the two-step definition lacks. As we will see, however,

it makes no difference to the results if we swap vertices i and j: the mathematical

expression for the similarity turns out to be the same and hence the definition is in
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fact symmetric.

This definition of similarity is clearly recursive and hence we need to provide some

starting point for the recursion in order to make the results converge to a useful limit.

The starting point we choose is to make each vertex similar to itself, which is natural

in most situations. Our definition of similarity will thus have two components: the

neighbor term of the previous paragraph and the self-similarity.

Thus, our first guess at the form of the similarity (we will improve it later) is to

write the similarity Sij of vertex i to vertex j as

Sij = φ
∑

v

AivSvj + ψδij, (2.3)

where δij is the Kronecker delta function and Aiv is an element of the adjacency

matrix of a symmetric network as defined in Section 1.2.1. Additionally, φ and ψ are

free parameters whose values control the balance between the two components of the

similarity.

Considering Sij to be the ij element of a similarity matrix S, we can write Eq. (2.3)

in matrix form as

S = φAS + ψI, (2.4)

where I is the identity matrix. If rearranged, this equation can also be written as S =

ψ[I−φA]−1. As we see, the parameter ψ merely contributes an overall multiplicative

factor to our similarity. Since in essentially all cases we will be concerned not with the

absolute magnitude of the similarity, but only with the relative similarity of different

pairs of vertices, we can safely set ψ = 1, eliminating one of our free parameters, and

giving

S = [I − φA]−1. (2.5)

This expression for similarity bears a close relation to the matrix-based centrality

measure of Katz [42] (see Section 1.2.6). In fact, the Katz centrality of a vertex is

equal to the sum of that vertex’s similarities to every other vertex. This is a natural
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concept: a vertex is prominent in a network if it is closely allied with many other

vertices.

We can also consider the similarity of i and j when j has a neighbor v that is

similar to i. In that case,

Sij = φ
∑

v

SivAvj + ψδij. (2.6)

It is trivial to show that this leads to precisely the same expression for similarity as in

Eq. (2.5) and we can set ψ = 1 as before. Thus, as we claimed above, our definition

provides only one similarity value for any pair of vertices, given by the symmetric

matrix S of Eq. (2.5).

The remaining parameter φ in Eq. (2.5) is still free. To shed light on the appro-

priate value for this parameter, let us expand the similarity as a power series,

S = I + φA + φ2A2 + . . . . (2.7)

Noting that the element
[

Al
]

ij
is equal to the number of (possibly self-intersecting)

network paths of length l from i to j, this equation gives us an alternative, term-by-

term interpretation of our similarity measure. The first term says that a vertex is

identically similar to itself. The second term says that vertices that are immediate

neighbors of one another have similarity φ. The third term says that vertices that

are distance two apart on the network have similarity φ2 and so forth.

However, also notice that vertex pairs having many paths of a given length are

considered more similar than those pairs that have few. The similarity of vertices

i and j acquires a contribution φ2 for every path of length two from i to j. We

note, however, that some pairs of vertices are expected to have one or even many

such paths between them: vertices with very high degree, for instance, will almost

certainly have one or several paths of length two connecting them, even if connections

between vertices are made at random. Thus, simple counts of number of paths are
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not enough to establish similarity. We need to know when a pair of vertices has more

paths of a given length between them than we would expect by chance.

This suggests a strategy for choosing φ. We will normalize each term in our series

by dividing the number of paths of length l (given by the power of the adjacency ma-

trix) by the expected number of such paths, were vertices in the network connected

at random. Then each term will be greater or less than unity by a factor representing

the extent to which the corresponding vertices have more or fewer paths of the appro-

priate length than would be expected by chance. In fact, there is no single choice of

the parameter φ that will simultaneously achieve this normalization for every term in

the series. Yet, if we allow a slight modification of Eq. (2.5), then there is a choice for

φ that approximately achieves normalization for every term and achieves it exactly

in the asymptotic limit of high terms in the series.

2.2.1 Expected number of paths

Let us generalize the series, Eq. (2.7), to allow an independent coefficient for each

term and for each vertex pair i, j:

Sij =
∞
∑

l=0

Cij
l

[

Al
]

ij
. (2.8)

Let us also choose (for the moment) each coefficient to equal one over the expected

number of paths of the corresponding length between the same pair of vertices on

a network with the same degree sequence as the network under consideration, but

in which the vertices are otherwise randomly connected. Such a network is called a

configuration model and was previously introduced in Section 1.3.2.

The zeroth-order coefficient Cij
0 is trivial: there are no paths of length zero between

vertices i and j unless i = j. So Cij
0 = δij . The first-order coefficient Cij

1 is more

interesting. If vertices i and j have degrees ki and kj respectively, then we can

calculate the expected number of paths of length one between them as follows. For any

of the ki edges emerging from vertex i, there are 2m places where it could terminate.
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Figure 2.2. There is only one possible topology for paths of length one between distinct vertices,
and only one for paths of length two, but there are four possible topologies for paths of length three.

(The total number of edges in the network is m.) Of these, kj end at vertex j and

result in a direct path of length one from i to j. Thus, for each edge emerging from i

there is a probability kj/2m of a length-one path to j. Overall, the expected number

of such paths is kikj/2m and the first-order coefficient is

Cij
1 =

2m

kikj

. (2.9)

Now consider the second-order term in the series. A path of length two between

i and j must go through a single intermediate vertex v, whose degree we denote kv.

Using the argument of the preceding paragraph, the expected number of paths of

length one from i to v is kikv/2m. This step uses up one of the edges emerging from

v, leaving kv − 1 remaining edges. The expected number of paths of length one from

v to j, given that there is already a path from i to v, is then (kv − 1)kj/2m. The

expected number of paths of length two from i to j via v is just the product of the

two terms, kikv(kv − 1)kj/(2m)2. Summing over all v, the total expected number of

paths of length two is

kikj

(2m)2

∑

v

kv(kv − 1) =
kikj

2m

(

〈k2〉 − 〈k〉

〈k〉

)

, (2.10)

where 〈k〉 and 〈k2〉 are the mean degree and mean-square degree of the network

respectively. Note, we have made use of the result 2m = n〈k〉, where n is the total

number of vertices in the network. Cij
2 is then the reciprocal of this quantity.

For paths of length three and greater, the calculations become more complicated.

Since paths can be self-intersecting, we have to consider topologies for those paths
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that include loops or that traverse the same edge more than once. There exists

only one topology for paths of length one or two between a specified pair of vertices.

However, there are four distinct topologies for paths of length three (Fig. 2.2). To

find the expected number of all paths of a given length between two vertices we must

sum over all possible path topologies. The end result for the number of paths of

length three between two vertices is

kikj

2m





(

〈k2〉 − 〈k〉

〈k〉

)2

+ ki + kj − 1



 . (2.11)

As a check on our calculations, in Fig. 2.3, we compare our analytic expressions

for the numbers of paths of length two and three to actual path counts for randomly

generated networks. We find the actual path counts by calculating the average num-

ber of paths (of length two and three respectively) between two vertices of given

degree over multiple realizations of a network using the configuration model. In the

figures, there is increased scatter in the numerical data at longer path lengths due

to finite size effects in the network, but overall the agreement between analytic and

numerical calculations is good.

The expected number of paths of length l from i to j can be written as the jth

element of the vector pl given by

pl = Alv, (2.12)

where the vector v has all elements zero except for vi = 1. In the limit of large l,

the vector pl tends toward (a multiple of) the leading eigenvector of the adjacency

matrix. Consequently, in this limit we have pl+1 = λ1pl, where λ1 is the largest

eigenvalue of A. Thus, the number of paths from i to j increases by a factor of λ1

each time we add one extra step to the path length. The first step of the path violates

this rule: we know the number of paths increases by exactly a factor of ki on the first

step. Furthermore, since our paths are constrained to end at vertex j, the last step

must end at one of the kj edges emanating from j, out of a total of 2m possible places
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Figure 2.3. The actual number of paths of length two (a) and three (b) between vertex pairs in a
configuration model versus the expected number of paths given by Eq. (2.10) for (a) and Eq. (2.11)
for (b).
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that it could end. This introduces a factor of kj/2m into the expected number of

paths. Hence, to within a multiplicative constant, the number of paths of length l

from i to j, for large l, should be (kikj/2m)λl−1
1 .

This expression is not in general correct for small l. It is, however, correct for

the particular case l = 1 (paths of length one see Eq. (2.9)) and we expect it to be

approximately correct for other intermediate values of l > 1. Guided by these results,

we therefore choose the constants Cij
l appearing in Eq. (2.8) to take the values:

Cij
l =

2m

kikj

λ−l+1
1 , (2.13)

for l ≥ 1, with Cij
0 = δij. These values approximate the desired values based on

expected numbers of paths and are asymptotically correct in the limit of large l.

2.2.2 Derivation of the similarity

There is one more issue we need to deal with with before we arrive at a final expression

for our similarity. If we simply substitute Cij
l from Eq. (2.13) into Eq. (2.8) we produce

a series that unfortunately does not converge. To see this, note that in the limit of

very long path lengths most networks will have roughly the same number of paths

between vertices as would be expected by chance. (The local structure around the

vertices in question is unimportant in this case, because the long length of the path

means that correlation with its start and end points is weak.) This means that the

terms in the series (2.8) will tend to unity for large l and, since there are an infinite

number of them, the sum will diverge. On the other hand, if, rather than being

constant, consecutive terms were to decrease by even the tiniest factor at each order,

the sum would converge, as do all series with exponentially decreasing terms. Thus,

we can ensure convergence by introducing an extra numerical factor α, giving the
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series

Sij = δij +
2m

kikj

∞
∑

l=1

αlλ−l+1
1

[

Al
]

ij

=

[

1 −
2mλ1

kikj

]

δij +
2mλ1

kikj

[(

I −
α

λ1
A

)−1]

ij

. (2.14)

In physical terms, the effect of the parameter α is to reduce the contribution of long

paths relative to short ones. That is, for 0 < α < 1, our similarity measure considers

vertices to be more similar if they have a greater than expected number of short

paths between them, rather than if they have a greater than expected number of long

ones. While this is a natural route to take, it does mean we have introduced a new

free parameter into our calculations. This seems a fair exchange: we have traded the

infinite number of free parameters in the expansion of Eq. (2.8) for a single parameter.

We discuss the appropriate choice of value for α in Section 2.3.2.

The first term in Eq. (2.14) is diagonal and only impacts the similarity of vertices

to themselves. Generally we are not interested in this similarity, so we will henceforth

drop the term. Thus, our final expression for the similarity is

Sij =
2mλ1

kikj

[(

I −
α

λ1

A

)−1]

ij

. (2.15)

Equivalently, we could write this in matrix form as

S = 2mλ1D
−1

(

I −
α

λ1

A

)−1

D−1, (2.16)

where D is the diagonal matrix having the degrees of the vertices as its diagonal

elements: Dij = kiδij.

This similarity measure takes exactly the form we postulated in Eq. (2.5) with

φ = α/λ1, except for an overall multiplier, which is trivial, and the leading factor of

1/kikj, which is not. This factor compensates for the fact that we expect there to

be more paths between pairs of vertices with high degree simply because there are

more ways of entering and leaving such vertices. Its presence is crucial if we wish to

compare the similarities of vertex pairs having very different degrees.
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In practical terms, the calculation of the similarity matrix is most simply achieved

by direct multiplication. Dropping the constant factor 2mλ1 for convenience, we can

rewrite Eq. (2.16) in the form of Eq. (2.3) thus:

DSD =
α

λ1

A(DSD) + I. (2.17)

Making any guess we like for an initial value of DSD, such as DSD = 0, we iterate

this equation repeatedly until it converges. In practice, for the networks studied here,

we have found good convergence after 100 iterations or less.

2.2.3 Comparison with previous similarity measures

Several other authors have proposed vertex similarity measures based on matrix meth-

ods similar to ours [40, 10]. Jeh and Widom [40] have proposed a method that they

call “SimRank,” predicated, as ours is, on the idea that vertices are similar if their

neighbors are similar. In our notation, their measure is

Sij =
C

kikj

∑

u,v

AiuAvjSuv, (2.18)

where C is a constant. While this expression bears some similarity to ours, Eq. (2.3), it

also has an important difference. Starting from an initial guess for Sij , one can iterate

to converge on a complete expression for the similarity. The final expression contains

terms representing path counts between vertex pairs, as in our case. However, since

the adjacency matrix appears twice on the right-hand side of Eq. (2.18), the expression

includes only paths of even length. This can make a substantial difference to the

resulting figures for similarity. An extreme example would be a tree or a square

lattice, in which vertices are separated either only by paths of even length or only by

paths of odd length. In such cases, those vertices that are separated only by paths of

odd length will have similarity zero. Even vertices that are directly connected to one

another by an edge will have similarity zero. Most people would consider this result

counterintuitive, and our measure, which counts paths of all lengths, seems clearly

preferable.
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Blondel et al. [10] considered similarity measures for directed networks, i.e., based

on asymmetric adjacency matrices, which is a more complex situation than the one

we consider. However, for the special case of a symmetric matrix, the measure of

Blondel et al.can be written as

Sij = C
∑

u,v

AiuAvjSuv, (2.19)

where C is again a constant. This is very similar to the measure of Jeh and Widom,

differing only in the omission of the factor 1/kikj. Like the measure of Jeh and

Widom, it can be written in terms of paths between vertices, but counts only paths

of even length, so that again vertices separated only by paths of odd length have

similarity zero.

Work related to vertex similarity has been termed vertex proximity by Ko-

ren et al. [47]. Their idea of vertex proximity is focused towards measuring the

potential of information exchange or the speed of information exchange between two

vertices that are not directly connected in a network. It is easy to see the relation of

this topic to our work on vertex similarity. Specifically, we propose that more similar

vertices possess a greater number of paths between them than less similar vertices,

and the number of paths between two vertices is also a factor in determining flow

of information between those vertices. The work on vertex proximity begins with

calculating the “weight of a path” between two vertices, an idea that is related to our

idea of calculating the expected number of paths between vertices. Koren et al. rec-

ognized, as we did, that the paths of interest between vertex pairs in real networks

are really just the non-self-intersecting paths, but that counts of those paths cannot

easily be calculated. At this point their method greatly diverges from ours a they

proposed a novel way of estimating the number of non-self-intersecting paths, which

they term simple paths, based on calculating only the most probable edges.
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2.2.4 A measure of structural equivalence

An interesting corollary of the theory developed in the previous sections is an alterna-

tive measure of structural equivalence. The structural equivalence measures derived

from Eq. (2.1) can be viewed as similarity measures that count only the paths of length

two between vertex pairs; the number of common neighbors of a pair of vertices is

exactly equal to the number of paths of length two. Thus, structural equivalence can

be thought of as just one term—the second-order term—in the infinite series that

defines our measure of regular equivalence.

The specific measures (cosine similarity, the Jaccard index, etc.) differ from one

another in their normalization. The developments outlined in this chapter suggest

another possible normalization, one in which we divide the number of paths of length

two by its expected value in the configuration model. We derived an exact expression

in Eq. (2.10). The normalized regular equivalence measure is then

σ =
2m

kikj

(

〈k〉

〈k2〉 − 〈k〉

)

|Γi ∩ Γj|. (2.20)

If we are concerned only with the comparative similarities of different pairs of vertices

within a given graph, then we can neglect multiplicative constants and write

σ =
|Γi ∩ Γj |

kikj

=
|Γi ∩ Γj |

|Γi| |Γj|
. (2.21)

This is, we feel, the appropriate way to normalize Eq. (2.1). It gives high similarity

to vertex pairs that have many common neighbors as compared not to the maximum

number possible but to the expected number of such neighbors. The normalization,

therefore, highlights vertices that have a statistically improbable coincidence of neigh-

borhoods. Of course, one could define similar measures for paths of length one or

three or any other length. One could also combine all such lengths, which is precisely

what our overall similarity measure does.
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2.3 Tests of the method

In this section we test our method on a number of different networks. Our first

example is a set of computer-generated networks designed to have known similarities

between vertices. In the following sections we also test the method against some

real-world examples.

2.3.1 Stratified model network

In many social networks, individuals make connections with others preferentially

according to some perceived similarity, such as age or income. Such networks are said

to be stratified, and stratified networks present a perfect opportunity to test our

similarity measure: ideally we would like to see that given only the network structure

our measure can correctly identify vertices that are similar in age (or whatever the

corresponding variable is) even when the vertices are not directly connected to one

another.

As a first test of our measure, we have created artificial stratified networks on a

computer. Such networks offer a controlled structure for which we believe we know

the “correct” answers for vertex similarity. In our model networks, each of n = 1000

vertices was given one of ten integer “ages.” Then edges were created between vertices

with probability

P (∆t) = p0e
−a∆t, (2.22)

where ∆t is the difference in ages of the vertices and p0 and a are constants, whose

values in our calculations were chosen to be p0 = 0.12 and a = 2.0. Thus, the

probability of “acquaintance” between two individuals drops by a factor of e2 for

every additional year separating their ages.

In order to calculate our similarity measure for this or any network we need first to

choose a value for the parameter α appearing in Eq. (2.15). In the present calculations

we used a value of α = 0.97, which, as we will see, is fairly typical. Since α must
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Figure 2.4. Density plots of vertex similarity in our stratified network model using (a) the method
of this chapter and (b) cosine similarity. The points in plot (a) give the average similarity as a
function of age difference and the line is a least-squares fit to a straight line.
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be strictly less than one if Eq. (2.15) is to converge, α = 0.97 is quite close to the

maximum possible value. We discuss in the following section why values close to the

maximum are usually desirable.

Figure 2.4(a) shows a density plot of the similarity values for all vertex pairs in the

model network not directly connected by an edge, on a semi-log scale as a function

of the age difference between the vertices. The average similarity as a function of age

difference is also plotted, along with a fit to the data. We exclude directly connected

pairs in the figure because it is trivial that such pairs will have high similarity and

most of the interest in our method is in its ability to detect similarity in nontrivial

cases.

For comparison, we also show in Fig. 2.4(b) a density plot of the cosine similarity,

Eq. (2.2), for the same network. As the plots show, cosine similarity is in this case a

much less revealing measure of similarity. It is only possible for cosine similarity to

be nonzero for a pair of vertices if there exists a path of length two between them.

Vertices with an age difference of three or more rarely have such a path in this network

and, as Fig. 2.4(b) shows, such vertices therefore nearly all have a cosine similarity

of zero. Thus cosine similarity finds only highly similar vertices in this case and

entirely fails to distinguish between vertices with age differences between 3 and 9.

Our similarity measure by contrast distinguishes these cases comfortably.

2.3.2 Choice of α

Our similarity measure, Eq. (2.15), contains one free parameter α, which controls the

relative weight placed on short and long paths. This parameter lies strictly in the

range 0 < α < 1, with low values placing most weight on short paths between vertices

and high values placing weight more equally both on short and long paths. (Values

α > 1 would place more weight on long paths than on short, but for such values the

series defining our similarity does not converge.)
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Figure 2.5. The correlation coefficient r(σ, σage) for correlation between our similarity measure
and the probability of connection, Eq. (2.22), in our stratified model, for a range of values of α. The
values given are averaged over an ensemble of graphs generated from the model. The maximum
value is found to occur for α ≃ 0.97.

There is, in general, no single value of α that works perfectly for every network,

but experience suggests some reliable rules of thumb. Our stratified network model,

for instance, provides a good guide. Consider Fig. 2.5, here we have calculated the

correlation coefficient of the similarity values for vertex pairs determined using our

method, against the probabilities, Eq. (2.22), of connections between the vertices,

which, following the ideas outlined at the beginning of Section 2.2, we consider to

be a fundamental measure of vertices’ a priori similarity. As the figure shows, the

correlation is quite low for small values of α, but becomes strong as α approaches

unity. Only as α gets very close to unity does the correlation fall off again. This

appears to imply that a value of α = 0.9 or greater should give the best results in this

case. Furthermore, it appears that, for values of α in this range, the precise value

does not matter greatly, all values around the maximum in the correlation coefficient

giving roughly comparable performance.
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This we have found to be a good general rule: values of α close to the maximum

value of 1 perform the best, with values in the range 0.90 to 0.99 being typical. Within

this range the results are not highly sensitive to the exact value. We give another

example to reinforce this conclusion below.

The large typical values of α mean that paths of different lengths are weighted

almost equally in our similarity measure. In other words, it appears that our measure

works best when long paths are accorded almost as much consideration as short ones.

This contrasts strongly with structural equivalence measures like the Jaccard index

and the cosine similarity, which are based exclusively on short paths—those of length

two. Indeed, these measures can be considered analogous to measures such as ours

in the limit of small α, where all the weight is placed on the shortest paths, which

effectively means paths of length two when we are considering vertex pairs that are

not directly connected. Thus, in a sense, our measure, with its near-maximal value

of α, can be considered at the farthest possible extreme from the traditional structural

equivalence measures.

2.3.3 Thesaurus network

We now consider two applications of our method to real-world networks. The first is

to a network of words extracted from a supplemented version of the 1911 U.S. edition

of Roget’s Thesaurus [54]. The thesaurus consists of a five-level hierarchical catego-

rization of English words. For example, the word “paradise” (level five) is cataloged

under “heaven” (level four), “superhuman beings and regions” (level three), “religious

affections” (level two), and “words relating to the sentient and moral powers” (level

one). Here we study the network composed of the 1000 level-four words, in which

two such words are linked if one or more of the level-five words cataloged below them

are common to both. For instance, the level-four words “book” and “knowledge” are

connected because the entries for both in the thesaurus contain the level-five terms
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word our measure cosine similarity
warning 32.014 omen 0.51640

alarm danger 25.769 threat 0.47141
omen 18.806 prediction 0.34816
heaven 63.382 pleasure 0.40825

hell pain 28.927 discontent 0.28868
discontent 7.034 weariness 0.26726
compromise 20.027 gravity 0.23570

mean generality 19.811 inferiority 0.22222
middle 17.084 littleness 0.20101
plunge 33.593 dryness 0.44721

water air 25.267 wind 0.31623
moisture 25.267 ocean 0.31623

Table 2.1. The words most similar to “alarm,” “heaven,” “mean,” and “water,” in the word
network of the 1911 edition of Roget’s Thesaurus, as quantified by our similarity measure and by
the more rudimentary cosine similarity of Eq. (2.2). We used a value of 0.98 for the parameter α.

“book learning” and “encyclopedia.”

In Table 2.1 we show the words most similar to the words “alarm,” “hell,” “mean,”

and “water,” as ranked first by our similarity measure and second by cosine similarity.

We used a value of α = 0.98 in this case, on the grounds that this value gave the best

performance in other test cases (see below).

Since cosine similarity can be regarded as a measure of the number of paths of

length two between vertices, it tends in this example to give high similarity scores

for words at distance two in the thesaurus—synonyms of synonyms, antonyms of

synonyms, and so forth. For example, cosine similarity ranks “pleasure” as the word

most similar to “hell,” probably because it is closely associated with hell’s antonym

“heaven.” By contrast, our measure ranks “heaven” itself first, which appears to be

a more sensible association. Similarly, cosine similarity links “water” with “dryness”,

whereas our measure links “water” with “plunge.”

2.3.4 Friendship network of high school students

As a second real-world test of our similarity measure, we apply it to a set of networks

of friendships between school children. The network data were collected as part of
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the National Longitudinal Study of Adolescent Health (AddHealth) [8], and describe

90 118 students at 168 schools, including their school grade (i.e., year), race, and

gender, as well as their recent patterns of friendship. It is well known that people

with similar social traits tend to associate with one another [56], so we expect there

to be a correlation between similarity in terms of personal traits and similarity based

on network position. This gives us another method for checking the efficacy of our

similarity measure.

The AddHealth data were gathered through questionnaires handed out to students

at 84 pairs of American schools, a school pair typically consisting of one junior high

school (grades 7 and 8, ages 12–14) and one high school (grades 9–12, ages 14–18).

Here we consider the data as a set of networks in which each network contains students

from one pair of schools, with students in all six grades.

The questionnaires asked respondents, among other things, to “List your clos-

est (male/female) friends. List your best (male/female) friend first, then your next

best friend, and so on. (Girls/Boys) may include (boys/girls) who are friends and

(boy/girl) friends.” For each of the friends listed, the student was asked to state

in which of five particular activities they had participated recently with that friend,

such as “you spent time with (him/her) last weekend.” From these answers a weight

w(i, j) was assigned to every ordered pair of students (i, j) such that w(i, j) is 0 if i

has not listed j as a friend, or 1 plus the number of activities conducted otherwise.

(The additional 1 is necessary because some students list another as a friend but

have not participated in any of the listed activities with them recently.) From these

weights we construct an unweighted, undirected friendship network by adding a link

between vertices i and j if w(i, j) and w(j, i) are both greater than or equal to a

specified threshold value W . As it turns out, our conclusions are not very sensitive

to the choice of W ; the results described here use W = 2.

The networks derived in this way are not necessarily connected; they may, and
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Figure 2.6. The correlation coefficient for correlation between our similarity measure and the age
difference of all vertex pairs in a single network, as a function of α. This plot is typical for the school
networks studied.

often do, consist of more than one component for each school studied. To simplify

matters we consider only the largest component of each network. The largest compo-

nent in some of the networks is quite small, however, so to avoid finite size effects we

have focused on networks whose largest component contains more than 1000 students.

We first test our similarity measure using the method we used for the stratified

network of Section 2.3.1: we determine the linear correlation coefficient between age

difference (measured as difference in grade) and our network similarity measure, for

all vertex pairs in a network. We have calculated this correlation coefficient for

a range of values of α, the free parameter in our measure, and for a selection of

different networks. The results for one particular network are shown in Fig. 2.6. In

this case the correlation coefficient is maximized for α ≃ 0.99, which is again close to

the maximum possible value of 1. For other networks we find maxima in the range

from 0.96 to 0.99, which is in accord with the results of Section 2.3.2. (We also

calculated correlation coefficients for the similarity measures of Jeh and Widom [40]
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similarity ratios
school n SG:DG SG:DG* SR:DR SR:DR*

A 1090 8.0 6.1 1.1 1.1
B 1302 6.2 4.4 2.6 2.6
C 1996 2.2 1.9 5.0 5.0
D 1530 3.3 2.6 4.0 3.6

Table 2.2. Network size n and ratios of average similarity values for school networks in the Ad-
dHealth data set. The column labeled SG:DG gives the ratio of average similarity for students in
the same grade (SG) to average similarity for students in different grades (DG). The column labeled
SR:DR gives the ratio of average similarity for students of the same race (SR) to average similarity
for students of different races (DR). Columns marked with asterisks (*) give values of the same
ratios but omitting vertex pairs connected directly by an edge.

and Blondel et al. [10] discussed in Section 2.2.3. These values were routinely lower

than ones found with our measure.)

These correlations between age difference and network similarity appear to indi-

cate that our similarity measure is able to detect some aspects of the social structure

of these networks. To investigate this further, we have also calculated the average sim-

ilarity of vertex pairs that have a known common characteristic, either grade or race,

comparing that average with the average similarity for vertex pairs that differ with

respect to the same characteristic. The values of α used were those corresponding to

the peak in the correlation, as above. The results are given in Table 2.2.

For school A, for example, the average similarity for pairs of students in the same

grade is a factor of eight greater than that for pairs in different grades. It is possible,

however, that this impressive difference could result purely from the contribution to

the similarity from vertex pairs that are directly connected by an edge. It would come

as no surprise that such pairs tend to be in the same grade. To guard against this,

we give in the fourth column of Table 2.2 results for calculations in which all directly

connected vertex pairs did not contribute to the calculation of average similarity.

Even with these pairs removed we see that same-grade vertex pairs are on average

significantly more similar than pairs from different grades.

We have also made similar calculations with respect to the race of students. Stu-
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dents in school A did not appear to have any significant division along racial lines

(columns five and six of Table 2.2), but this school was almost entirely composed

of students of a single race anyway, so this result is not very surprising; it seems

likely that the numbers were just too small to show a significant effect. School B

was similar. Schools C and D, however, show a marked contrast. In school C, the

average similarity for students of the same race is a factor of five greater than the

average similarity for students of different races. School C had a population split 2:1

between two racial groups, in marked contrast with schools A and B. School D simi-

larly appears to be divided by race, although a little less strongly. In this case there

is a three-way split within the population between different racial groups. Possibly

this more even split with no majority group was a factor in allowing more friendships

between students from different racial groups.

These results indicate that our measure of similarity is able to identify real social

similarity between vertices in these networks. That is, using only the structure of

the network, our similarity measure identifies students of the same race and in the

same grade to be more similar to each other than students of different grades or

different races. For comparison, we performed similar calculations using the similarity

measures proposed by Jeh and Widom [40] and Blondel et al. [10], finding again that

the average similarity of pairs of vertices sharing characteristics was higher than for

pairs of vertices that differed by the same characteristic. However, the factors by

which these methods differentiated between vertices with similar characteristics and

vertices with different characteristics was consistently less than with our measure.

2.4 Discussion

In this chapter we have proposed a measure of structural similarity for pairs of vertices

in networks. The method is fundamentally iterative, with the similarity of a vertex

pair being given in terms of the similarity of the vertices’ neighbors. Alternatively,
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our measure can be viewed as a weighted count of the number of paths of all lengths

between the vertices in question. We expect the measure to be applicable to any

network where the vertices do not have a tendency to attach to dissimilar vertices.

The weights appearing in this count are asymptotically equal to the expected numbers

of network paths between the vertices, which we express in terms of the leading

eigenvalue of the adjacency matrix of the network and the degrees of the vertices of

interest. The resulting expression for our similarity measure is given in Eq. (2.16).

We have tested our measure against computer-generated and real-world networks,

with promising results. In tests on computer-generated networks the measure is

particularly good at discerning similarity between vertices connected by relatively

long paths, an area in which more traditional similarity measures such as cosine

similarity perform poorly. In tests on real-world networks the method was able to

extract sensible synonyms to words from a network representing the structure of

Roget’s Thesaurus, and showed strong correlations with similarity of age and race

in a number of networks of friendship among school children. Taken together, these

results seem to indicate that the measure is capable of extracting useful information

about vertex similarity based on network topology.

The strength of similarity measures such as ours is their generality—in any net-

work where the function or role of a vertex is related in some way to its structural

surroundings, structural similarity measures can be used to find vertices with simi-

lar functions. For instance, similarity measures can be used to divide vertices into

functional categories [53, 76, 92] or for functional prediction in cases where the func-

tionality of vertices is partly known ahead of time [36]. Additionally, our method

may be applied to “link prediction” [52]. We believe that the application of similar-

ity measures to problems such as these will prove a fruitful topic for future work.
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Community structure in directed networks

3.1 Introduction

Many networks are found to display community structure dividing naturally into

communities or modules with dense connections within communities, but sparser

connections between them. Communities are of interest both in their own right as

functional building blocks within networks and for the insights they offer into the

dynamics or modes of formation of networks. A large volume of research has been

devoted to the development of algorithmic methods for discovering communities. An

introduction to the topic is found in Section 1.2.7.

Nearly all of these methods, however, have one thing in common: they are in-

tended for the analysis of undirected network data. Many of the networks that we

would like to study are directed, including the World Wide Web, food webs, many

biological networks, and even some social networks. A common approach to detecting

communities in directed networks has been simply to ignore the direction of edges

and apply algorithms designed for undirected networks. This works reasonably well

in some cases, although in others it does not, as we will illustrate in this chapter.

Even in the cases where it works, however, it is clear that in discarding the direction

of edges we are throwing away a good deal of information about the structure of

our network, information that, at least in principle, could allow us to make a more

accurate determination of the communities.

Several previous studies, including our own, have touched on this problem [3, 34,

63
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68, 80], but they have typically not tackled the community structure question directly.

In this chapter, we propose a method for finding communities in directed networks

that makes explicit use of the information contained in edge direction. The method is

an extension of the well established modularity optimization approach for undirected

networks [65], an approach that has been shown to be both computationally efficient

and highly effective in practical applications [20]. We outline our technique for de-

tecting communities in directed networks in Section 3.2. In Section 3.3, we apply

our method to both real and simulated networks. Finally, we conclude with a brief

discussion of the results in Section 3.4.

3.2 The method

Recall from Section 1.2.7 that the premise of the modularity optimization method is

that a good division of a network into communities will give high values of the benefit

function Q,

Q = (fraction of edges within communities)

− (expected fraction of such edges). (3.1)

Large positive values of the modularity indicate when a statistically surprising fraction

of the edges in a network fall within the chosen communities; it tells us when there

are more edges within communities than we would expect on the basis of chance.

Given a division of a network into communities, it is easy to calculate the first term

in Eq. (3.1), but the second term requires some additional information about the

expected number of edges within a community. In effect, we are requiring ourselves

to compare the real network data to some null model of network data where edges

are placed a random.

In recent work on complexity reduction in networks, Arenas et al. [3] have pro-

posed a generalization of the modularity to directed networks, which can be under-
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stood in the following way. The expected positions of edges in a directed network

depend on their direction. Consider two vertices, A and B. Vertex A has high out-

degree but low in-degree while vertex B has the reverse situation. This means that a

given edge is more likely to run from A to B than vice versa, simply because there are

more ways it can fall in the first direction than in the second. Hence if we observe in

our real network that there is an edge from B to A, it should be considered a bigger

surprise than an edge from A to B and thus should make a bigger contribution to the

modularity, since modularity should be high for statistically surprising configurations.

In practice, exact optimization of the modularity is computationally hard, so

practical methods based on modularity optimization make use of approximate opti-

mization schemes such as greedy algorithms, simulated annealing, spectral methods,

and others [33, 57, 64, 66, 79].

We put these insights to work adapting a method for community detection, pre-

viously only known for undirected networks [64], for directed networks. Like the

method for undirected networks, our starting constraint for the null model is to fix

the total number of vertices, n, to be the same as in the real network of interest.

Apart from that basic constraint, for the moment, we leave the null model flexible.

We represent the real number of edges from a vertex j to a vertex i as the ijth el-

ement of the adjacency matrix, Aij (see Section 1.2.1), but we need a way to write

the expected number of such edges.

Let us propose another matrix, P, where the element Pij is the expected number

of edges from vertex j to vertex i. We can now write the real number of edges minus

the expected number of edges from vertex j to vertex i as Aij − Pij. This expression

can be used to rewrite Eq. (3.1) with more mathematical formalism. Modularity, Q,

equals the real minus expected number of edges between all vertex pairs when both

vertices are in the same community. Note, we must count pairs j to i and i to j

separately since the direction of the edges is important. If we define the community
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of a vertex i to be ci, we can write modularity as,

Q =
1

m

∑

ij

[

Aij − Pij

]

δci,cj
, (3.2)

where δci,cj
is the Kronecker delta function and is equal to 1 if i and j are in the same

group ci = cj and 0 otherwise. The factor of 1
m

in Eq. (3.2) is merely a convention

which makes this equation compatible with previous definitions of modularity. The

term does not impact the maximization of Q as it is an overall multiplying factor. We

note that this equation is similar to the ones given independently by Newman [65]

and White and Smyth [91] regarding the calculation of modularity for undirected

networks.

Let us now impose an additional constraint on Q. Let Q = 0 if all network

vertices are placed in the same group. This constraint follows directly from Eq. (3.1);

if all vertices are in one community then all edges fall within the community and

all expected edges fall within the community making the two quantities equal and

forcing Q = 0. We can rewrite Eq. (3.2) assuming ci = cj for all i and j,

Q =
∑

ij

[

Aij − Pij

]

= 0 (3.3)

or
∑

ij

Pij =
∑

ij

Aij = m. (3.4)

Thus, imposing Q = 0 when all network vertices fall into one community forces us to

choose a null model that not only has the same number of vertices, n, as our original

network data, but also has the same number of edges, m. However, we still do not

know how those edges are distributed among the n2 pairs of vertices in the network.

In order to determine edge placement in the null model, we take inspiration from

the method for undirected networks. In that case, the degree of each vertex in the

null model is required to be equal to the degree of a corresponding vertex in the real

network. For directed networks, we must keep both the in-degree and out-degree of
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each vertex fixed between the real network and the null model. Consequently, we

impose the following constraints on our null model,

∑

i

Pij = kout
j , (3.5)

and
∑

j

Pij = kin
i . (3.6)

By making these choices we automatically satisfy Eq. (3.4) since
∑

i k
in
i =

∑

i k
out
i =

m.

One simple null model satisfying both Eqs. (3.5) and (3.6) is related to the config-

uration model, which was introduced in Section 1.3.2. In this model edges are placed

randomly between network vertices, subject only to the allowed in- and out-degree of

each vertex. Thus, if we consider a directed edge from vertex j to vertex i the proba-

bility that the tail of a directed edge falls at vertex j depends only on the out-degree

of j, kout
j . Likewise, the probability that the head of a directed edge falls at vertex i

depends only on the in-degree of i, kin
i . These two probabilities are independent;

consequently, we can write the expected number of edges from j to i as

Pij = f(kin
i )g(kout

j ) (3.7)

where f and g are both functions. We know from Eqs. (3.5) and (3.6) that

∑

i

Pij = g(kout
j )

∑

i

f(kin
i ) = kout

j (3.8)

and
∑

j

Pij = f(kin
i )
∑

j

g(kout
j ) = kin

i . (3.9)

Thus, f(kin
i ) = Fkin

i and G = g(kout
j ) where F and G are constants. We also know

from Eq. (3.4) that

m =
∑

ij

Pij = FG
∑

ij

kin
i k

out
j = FGm2. (3.10)
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Therefore, FG = m−1 and we must have,

Pij =
kin

i k
out
j

m
. (3.11)

We can now return to Eq. (3.2), and substitute Eq. (3.11) in for Pij ,

Q =
1

m

∑

ij

[

Aij −
kin

i k
out
j

m

]

δci,cj
, (3.12)

which is a special case of the formula given in [3]. Note that edges j → i do indeed

make larger contributions to this expression if kin
i and/or kout

j is small.

As in the undirected case we can make use of the modularity to find network

communities by searching for the division of the network that maximizes Q. One

can in principle make use of any of the methods previously applied to modularity

maximization, such as simulated annealing or greedy algorithms. Here we derive the

appropriate generalization of the spectral optimization method of Newman [66], which

is both computationally efficient and appears to give excellent results in practice.

We consider first the simplified problem of dividing a directed network into just

two communities. We define si to be +1 if vertex i is assigned to community 1 and

−1 if it is assigned to community 2. Note that this implies that
∑

i s
2
i = n. Then,

δci,cj
= 1

2
(sisj + 1) and

Q =
1

2m

∑

ij

[

Aij −
kin

i k
out
j

m

]

(sisj + 1) =
1

2m
sTBs, (3.13)

where s is the vector whose elements are the si, B is the so-called modularity matrix

with elements

Bij = Aij −
kin

i k
out
j

m
. (3.14)

Our goal is now to find the s that maximizes Q for a given B.

In the undirected case the modularity matrix is symmetric, but in general is

not in the directed case. The lack of symmetry in the modularity matrix will cause

technical problems if we blindly attempt to duplicate the eigenvector-based machinery
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presented for undirected networks in [66]. We can, however, restore symmetry to the

problem by the following trick. Noting that Q is a scalar and therefore equal to its

own transpose, we take the transpose of Eq. (3.13) to give Q = (2m)−1sTBT s and

then take the average of this expression and Eq. (3.13) to give

Q =
1

4m
sT (B + BT )s. (3.15)

The matrix B + BT is manifestly symmetric and it is on this matrix that we focus

forthwith. Notice that B + BT is not the same as the modularity matrix for a

symmetrized version of the network in which edge direction is ignored. Consequently,

we expect methods based on the true directed modularity to give different results, in

general, from methods based on the undirected version.

The leading constant 1/4m in Eq. (3.15) is conventional, but makes no difference

to the position of the maximum of Q, so for the sake of clarity we neglect it in defining

our optimization procedure.

Following [66], we now write s as a linear combination of the eigenvectors vi of

B + BT thus: s =
∑

i aivi with ai = vT
i · s. As a result, we can write

Q =
∑

i

aiv
T
i (B + BT )

∑

j

ajvj =
∑

i

βi(v
T
i · s)2, (3.16)

where βi is the eigenvalue of B + BT corresponding to eigenvector vi. Let us assume

the eigenvalues to be labeled in decreasing order β1 ≥ β2 ≥ . . . ≥ βn. Under the

normalization constraint sT · s = n the maximum of Q is achieved when s is chosen

parallel to the leading eigenvector v1, but normally this solution is forbidden by the

additional condition that si = ±1. We do the best we can, however, and make s as

close as possible to parallel with v1, meaning we choose the value of s that maximizes

|vT
1 · s|. Note,

|vT
1 · s| =

∣

∣

∣

∣

∣

∑

i

v
(1)
i si

∣

∣

∣

∣

∣

≤
∑

i

|v
(1)
i | (3.17)

where v
(1)
i is the ith element of the eigenvector v1. The triangle inequality allows us

to put an upper bound on the maximum possible value of |vT
1 · s|. The inequality
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becomes an equality when all of the elements si are chosen to force the terms in

the sum on the left-hand side to be all positive (or all negative). We then find the

maximum of |vT
1 · s| when v

(1)
i si ≥ 0, which occurs if si has the same sign as v

(1)
i for

all i. Consequently, modularity is maximized when we choose,

si =















+1, if v
(1)
i > 0

−1, if v
(1)
i < 0

. (3.18)

If v
(1)
i = 0 then si = ±1 are equally good solutions to the maximization problem.

Thus, we arrive at a simple algorithm for splitting a network into two communities:

we calculate the eigenvector corresponding to the largest positive eigenvalue of the

symmetric matrix B+BT and then assign vertices to communities based on the signs

of the elements of this eigenvector.

As in the undirected case, the spectral method typically provides an excellent

guide to the broad outlines of the optimal partition, but may err in the case of

individual vertices, a situation that can be remedied by adding a “fine-tuning” stage

to the algorithm in which vertices are moved back and forth between communities in

an effort to increase the modularity, until no further improvements can be made [66].

We have incorporated such a fine-tuning in all the calculations presented here.

We can illustrate the splitting of a directed network into two communities by

looking at Moreno’s network of seventh-grade students. We applied several com-

munity structure detection methods to the symmetrized version of this network in

Section 1.2.7. With the algorithm introduced in this chapter we need not ignore edge

direction. In Fig. 3.1, we see that the network does split into communities exactly

along gender lines.

So far, we have discussed the division of a network into two communities. There

are a number of ways of generalizing the approach to more than two communities,

but the simplest, which we adopt here, is repeated bisection. That is, we first divide

the network into two groups, then subdivide those groups and so on. The process
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Figure 3.1. The original directed version of Moreno’s network of school children divided into two
communities by the algorithm of this chapter. Again the girls are represented by black circles and
the boys are represented by white squares. The two shaded regions represent the two communities
detected by our method.

stops when we reach a point at which further division does not increase the total

modularity of the network.

The subdivision of a community contained within a larger network requires a

slight generalization of the method above. Consider the change in modularity ∆Q of

an entire network when a community g within it is subdivided. Defining si as before

for vertices in g, we find

∆Q =
1

2m





∑

i,j∈g

(Bij +Bji)
sisj + 1

2
−
∑

i,j∈g

(Bij +Bji)





=
1

4m

∑

i,j∈g

[

(Bij +Bji) − δij
∑

k∈g

(Bik +Bki)

]

sisj

=
1

4m
sT

(

B(g) + B(g)T
)

s, (3.19)

where we have made use of s2
i = 1 for all i and

B
(g)
ij = Bij −

1
2
δij
∑

k∈g

(Bik +Bki). (3.20)

In other words, B(g) is the sub-matrix of B for the subgraph g with the average of the

appropriate row and column sums subtracted from each diagonal element. Although

B(g), like B, is in general asymmetric, the sum B(g) + B(g)T is symmetric and hence
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Eq. (3.19) has the same functional form as Eq. (3.15) and we can apply the same

method to maximize ∆Q.

Our complete algorithm for discovering communities or groups in a directed net-

work is thus as follows. We construct the modularity matrix, Eq. (3.14), for the

network and find the most positive eigenvalue of the symmetric matrix B + BT and

the corresponding eigenvector. Each vertex is assigned to one of two groups depend-

ing on the sign of the appropriate element of the eigenvector and then we fine-tune the

assignments as described above to maximize the modularity. We then further subdi-

vide the communities using the same method, but with the generalized modularity

matrix, Eq. (3.20), fine tuning after each division. If the algorithm finds no division

giving a positive value of ∆Q for a particular community, then we can increase the

modularity no further by subdividing this community and we leave it alone. When

all communities reach this state the algorithm ends.

3.3 Applications

We now give a number of examples of the application of the method. For illustra-

tive purposes, we first consider an artificial computer-generated network, designed

specifically to test the performance of the algorithm. In this network of 32 vertices,

vertex pairs are connected by edges independently and uniformly at random with

some probability p. The edges are initially undirected. The network is then divided

into two groups of 16 vertices each and edges that fall within groups are assigned

directions at random, but edges between groups are biased so that they are more

likely to point from group 1 to group 2 than vice versa.

By construction, there is no community structure to be found in this network if

we ignore edge directions—the positions of the edges are entirely random—and this is

confirmed in Fig. 3.2(a), which shows the results of the application of the undirected

modularity maximization algorithm. If we take the directions into account, however,
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(a) (b)

Figure 3.2. Community assignments for the two-community random network described in the text
using (a) a standard modularity maximization that ignores edge direction and (b) the algorithm of
this chapter. The shaded regions represent the communities discovered by the algorithms; the true
community assignments are denoted by vertex shape and color.

using the algorithm presented in this chapter, the two communities are detected

almost perfectly: just one vertex out of 32 is misclassified—see Fig. 3.2(b).

Even in networks where there is clear community structure contained in the posi-

tions of the edges, it is still possible for the directions to contribute additional useful

information. As an example of this type of behavior, consider the network shown in

Fig. 3.3, which has 32 vertices and three communities. For two of the communities,

containing 14 vertices each, there is a high probability of connection between pairs of

vertices that fall in the same community, but a lower probability if the vertices are in

different communities. Structure of this kind, in which edge direction does not play a

role, can in principle be found by algorithms designed for undirected networks. The

third community, however, is different. It has four vertices, each of which has a high

probability of connection to every other vertex. The only feature that distinguishes

this third community as separate is the direction of its edges—two of the four ver-
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(a) (b)

Figure 3.3. Community assignments for the three-community random network described in the
text as generated by (a) standard undirected modularity maximization and (b) the algorithm of this
chapter.

tices have high probability of in-going edges, the other two have high probability of

outgoing edges, and there are also a small number of additional edges running from

the former to the latter.

Applied to this network, the standard undirected community detection algorithm

finds the two large communities with ease, but the remaining community is not

found and its vertices are dispersed by the algorithm among the other communities

(Fig. 3.3(a)). Our directed algorithm, on the other hand, finds all three communi-

ties without difficulty (Fig. 3.3(b)). Again the algorithm has made use of information

contained in the edge directions to identify structures not accessible to other methods.

Turning now to real-world networks, consider Fig. 3.4, which shows a network

representation of a sporting competition. Networks of this kind have received some

attention in the recent literature for their clear, but nontrivial community structure.

The vertices in the network represent the teams in one of the regional competitions or



75

Minnesota

Indiana

Michigan

Iowa Wisconsin

Michigan State

Northwestern Ohio State

Pennsylvania State

Purdue

Illinois

(a)
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(b)

Figure 3.4. Community assignments for the network of American football teams competing in the
“Big Ten” conference in 2005 as generated by (a) the algorithm of this chapter and (b) a standard
undirected modularity maximization. The shaded regions represent the communities discovered by
the algorithms while vertex shapes and colors indicate whether teams won or lost a majority of their
games during the season.



76

“conferences” of U.S. universities in the game of American football. Edges join pairs

of teams that played one another during the 2005 football season. Most previous

studies have represented such networks as undirected, but useful information can be

extracted from a directed version in which the edges point from the winner to the

loser of each game [70].

Figure 3.4(a) shows the two communities found in this network when edge direc-

tion is taken into account. The teams are shaded according to whether they won or

lost a majority of their (within-conference) games and, as the figure shows, the two

communities correspond precisely to these two groups in this case—the algorithm has

divided the more successful and less successful teams into different communities using

the information contained in the edge directions of the network. (Similar results are

seen in the networks for other years.) If, however, we ignore the edge directions of the

network and apply the undirected modularity algorithm, the method entirely fails to

identify the two groups, as shown in Fig. 3.4(b), indicating that in this case a crucial

part of the community information is contained in the edge directions.

3.4 Discussion

In summary, we have presented a method for detecting community structure in di-

rected networks that makes explicit use of information contained in edge directions,

information that most other algorithms discard. Our method is an extension of the

established modularity maximization method widely used to determine community

structure in undirected networks. We have applied the method to a variety of net-

works, both real and simulated, showing that it is able to recover known community

structure and extract additional and revealing information not available to algorithms

that ignore edge direction. The computational efficiency of the algorithm is essen-

tially identical to that of the corresponding algorithm for undirected networks and

hence we see no reason to use the undirected algorithm on directed graphs; we rec-
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ommend the use of the full directed algorithm in all cases where researchers wish to

analyze both edge placement and edge direction.



CHAPTER 4

Mixture models and exploratory analysis in

networks

4.1 Introduction

In Chapter 1 we outlined the history of networks research and indicated that recent

studies of networks are fundamentally different from earlier work due to the sheer scale

of networks being analyzed. We showed that these large networks cannot be easily

visualized in a way that allows for “analysis to be conducted by eye.” Instead, we have

been obliged to turn to topological measures, computer algorithms, and statistics to

understand the structure of modern networks. In fact, much of the current research

on networks is, in effect, aimed at answering the question “How can we tell what a

network looks like, when we can’t actually look at it?”

The typical approach to this problem involves defining measures or statistics

to quantify network features of interest: centrality indices [88, 83], degree distri-

butions [2, 27, 46], clustering coefficients [89], and community structure measure-

ments [32, 20] are all invaluable tools for shedding light on the topology of networks.

The first two chapters of this dissertation followed the traditional approach of iden-

tifying a structural feature of interest and then constructing a specialized method to

detect this structure. Our reliance on measures like these, however, has a downside:

they require us to know what we are looking for in advance, before we can decide

what to measure. People measure clustering coefficients, for instance, because (pre-

sumably) they think there may be interesting clustering in a network; they measure

78
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degree distributions because they believe the degree distribution may show interest-

ing features. This approach has certainly worked well—many illuminating discoveries

have been made this way. However, it raises an uncomfortable question: could there

be interesting and relevant structural features of networks that we have failed to find

simply because we haven’t thought to measure the right thing?

To some extent this is an issue with the whole of scientific endeavor. In any

field, thinking of the right question can demand as much insight as thinking of the

answer. However, there are also things we can do to help ourselves. In this chapter we

describe a technique that allows us to detect structure in network data while making

only rather general assumptions about what that structure is. Methods of this type

are referred to by statisticians as “exploratory” data analysis techniques, and we will

make use of a number of ideas from the statistical literature in the developments that

follow.

We focus on the problem of classifying or clustering the vertices of a network into

groups such that the members of each group are similar in some sense. This already

narrows the types of structure we consider substantially, but leaves a large and useful

selection of types still in play. Some of these types of structure have been considered

in the past, but the range of possibilities considered here is far larger than that of

previous work. For instance, many researchers have examined community structure in

networks—also called “homophily” or “assortative mixing”—in which vertices divide

into groups such that the members of each are mostly connected to other members of

the same group [32, 20]. “Disassortative mixing,” in which vertices have most of their

connections outside their group, has also been discussed to a lesser extent [37, 65, 26].

Effective techniques have been developed that can detect structure of both of these

types. But, what should we do if we do not know in advance which type to expect,

or if our network has some other type of structure entirely whose existence we are

not even aware of? One can imagine an arbitrary number of other types of division
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among the vertices of a network, most of which have probably never been considered

explicitly in the past. One possibility, for instance, is a network in which, although

there is no conventional assortative mixing, there are certain “keystone” vertices and

group membership is defined by which particular keystone or set of keystones a vertex

is connected to. Another possibility is a network in which there is both assortative and

disassortative mixing between members of the same groups, the groups themselves

being defined by the fact that their vertices have the same pattern of preferences

and aversions, rather than by any overall assortative or disassortative behavior at

the group level. And there are certainly many other possibilities. Such complex

structures cannot be detected by the standard methods available to us at present,

and moreover it seems unlikely in many cases that appropriate specialized detection

methods will be developed because of the chicken-and-egg nature of the problem: we

would have to know the form of the structure in question to develop such a method,

but without a detection method, we cannot discover that form in the first place.

This chapter proposes a new approach to the analysis of structure network data

that employs a broad and flexible definition of vertex classes, parameterized by an

extensive number of variables and hence encompassing an essentially infinite variety

of structural types in the limit of large network size. Certainly this definition in-

cludes the standard assortative and disassortative structures and, as we will see, the

method we propose will detect those structures when they are present. However, it is

also able to detect a wide variety of other structural types, including those described

above as well as many others. Furthermore, it does so without requiring that we

specify which particular structure we are looking for: the algorithm simultaneously

finds the appropriate assignment of vertices to groups and the parameters defining

the meaning of those groups, so that upon completion the calculation tells us not only

the best way of grouping the vertices, but also the definitions of the groups them-

selves. Our method, which is based on the established numerical technique known as
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the expectation-maximization algorithm, is also fast and simple to implement. We

demonstrate the algorithm with applications to a selection of real-world networks and

computer-generated test networks.

4.2 The method

The method we describe is based on a mixture model, a standard construct in statis-

tics, although one that has not yet found wide use in studies of networks. The method

works well for both directed and undirected networks, but is somewhat simpler in the

directed case, so let us start there.

Suppose we have a network of n vertices connected by directed edges, such as a

Web graph or a food web. We represent the network using our standard mathematical

formulation in terms of an adjacency matrix with elements Aij = 1 if there is an edge

from j to i and 0 otherwise.

Suppose also that the vertices fall into some number c of classes or groups and

let us denote by gi the group to which vertex i belongs. We will assume that these

group memberships are unknown to us and that we cannot measure them directly.

In the language of statistical inference they are hidden or missing data. Our goal

is to infer them from the observed network structure. (The number of groups c can

also be inferred from the data using standard methods [1, 82], but for the moment we

will treat it as given.) To infer the group memberships we adopt a standard approach

for such problems: we propose a flexible (mixture) model for the groups and their

properties, then vary the parameters of the model in order to find the best fit to the

observed network.

The model we use is a stochastic one that parameterizes the probability of each

possible configuration of group assignments and edges. We define θri to be the prob-

ability that a (directed) link from a particular vertex in group r connects to vertex i.

In the World Wide Web, for instance, θri would represent the probability that a hy-
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perlink from a Web page in group r links to Web page i. In effect θri represents the

“preferences” of vertices in group r about which other vertices they link to. In our

approach, it is these preferences that define the groups: a “group” is a set of vertices

that all have similar patterns of connection to others. 1 The idea is similar in phi-

losophy to the block models proposed by White and others for the analysis of social

networks [90], although the realization and the mathematical techniques employed

are different.

We also define πr be the (currently unknown) fraction of vertices in group or

class r, or equivalently the probability that a randomly chosen vertex falls in r. The

parameters πr, θri satisfy the normalization conditions

c
∑

r=1

πr = 1,
n
∑

i=1

θri = 1. (4.1)

These quantities specify a network model flexible enough to describe many differ-

ent types of structure. For instance, if θri is larger than average for vertices i that are

themselves members of group r, the model displays assortative mixing, with vertices

being connected primarily within their own groups. Conversely, if θri is large for

vertices not in r we have disassortative or k-partite structure. And many other more

complex types of structure are possible for other parameter choices.

The quantities in our theory thus fall into three classes: measured data {Aij},

missing data {gi}, and model parameters {πr, θri}. To simplify the notation we will

henceforth denote by A the entire set {Aij} and similarly for {gi}, {πr}, and {θri}.

The standard framework for fitting models like the one above to a given data set

is likelihood maximization, in which one maximizes with respect to the model param-

eters the probability that the data were generated by the given model. Maximum

likelihood methods have occasionally been employed in network calculations in the

1We could alternatively base our calculation on the patterns of ingoing rather than
outgoing links and for some networks this may be a useful approach. The mathematical
developments are entirely analogous to the case presented here.
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past [41, 17, 35], as well as in many other problems in the study of complex sys-

tems. In the present case, our fitting problem requires us to maximize the likelihood

Pr(A, g|π, θ) with respect to π and θ, which can be done by writing

Pr(A, g|π, θ) = Pr(A|g, π, θ) Pr(g|π, θ), (4.2)

where

Pr(A|g, π, θ) =
∏

ij

θ
Aij

gj ,i, Pr(g|π, θ) =
∏

j

πgj
, (4.3)

so that the likelihood is

Pr(A, g|π, θ) =
∏

j

[

πgj

∏

i

θ
Aij

gj ,i

]

. (4.4)

In fact, one commonly works not with the likelihood itself but with its logarithm:

L = ln Pr(A, g|π, θ) =
∑

j

[

lnπgj
+
∑

i

Aij ln θgj ,i

]

. (4.5)

The maximum of the two functions is in the same place, since the logarithm is a

monotonically increasing function.

Unfortunately, g is unknown in our case, which means the value of the log-

likelihood is also unknown. We can, however, usually make a good guess at the

value of g given the network structure A and the model parameters π, θ. More specif-

ically, we can, as shown below, calculate the probability distribution Pr(g|A, π, θ) and

from it calculate an expected value L for the log-likelihood by averaging over g, thus:

L =
c
∑

g1=1

. . .
c
∑

gn=1

Pr(g|A, π, θ)
∑

j

[

ln πgj
+
∑

i

Aij ln θgj ,i

]

=
∑

jr

Pr(gj = r|A, π, θ)
[

lnπr +
∑

i

Aij ln θri

]

=
∑

jr

qjr

[

lnπr +
∑

i

Aij ln θri

]

, (4.6)

where to simplify the notation we have defined qjr = Pr(gj = r|A, π, θ), which is

the probability that vertex j is a member of group r. (In fact, it is precisely these

probabilities that will be the principal output of our calculation.)
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This expected log-likelihood represents our best estimate of the value of L and

the position of its maximum represents our best estimate of the most likely values

of the model parameters. Finding this maximum still presents a problem, however,

since the calculation of q requires the values of π and θ, while the calculation of

π and θ requires q. The solution is to adopt an iterative, self-consistent approach

that evaluates both simultaneously. This type of approach, known as an expectation-

maximization or EM algorithm, is common in the literature on missing data problems.

In its modern form it is usually attributed to Dempster et al. [21], who built on

theoretical foundations laid previously by a number of other authors [55].

Following the conventional development of the method, we calculate the expected

probabilities q of the group memberships given π, θ, and A thus:

qir = Pr(gi = r|A, π, θ) =
Pr(A, gi = r|π, θ)

Pr(A|π, θ)
. (4.7)

The factors on the right are given by summing over the possible values of g in Eq. (4.4),

Pr(A, gj = r|π, θ) =
c
∑

g1=1

. . .
c
∑

gn=1

δgj ,r Pr(A, g|π, θ)

=
c
∑

g1=1

. . .
c
∑

gn=1

δgj ,r

∏

k

[

πgk

∏

i

θAik

gk,i

]

=

[

πr

∏

i

θ
Aij

ri

][

∏

k 6=j

c
∑

s=1

πs

∏

i

θAik

si

]

,

(4.8)

and

Pr(A|π, θ) =
c
∑

g1=1

. . .
c
∑

gn=1

Pr(A, g|π, θ)

=
∏

k

c
∑

s=1

πs

∏

i

θAik

si , (4.9)

where δij is the Kronecker δ symbol. Substituting into Eq. (4.7), we then find

qjr =
πr

∏

i θ
Aij

ri
∑

s πs

∏

i θ
Aij

si

. (4.10)
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Note that qjr correctly satisfies the normalization condition
∑

r qjr = 1.

Once we have the values of the qjr, we can use them to evaluate the expected log-

likelihood, Eq. (4.6), and to find the values of π, θ that maximize it. One advantage

of the current approach now becomes clear: because the qjr are known, fixed quan-

tities, the maximization can be carried out purely analytically, obviating the need

for numerical techniques such as Markov chain Monte Carlo. Introducing Lagrange

multipliers to enforce the normalization conditions, Eq. (4.1), and differentiating, we

find that the maximum of the likelihood occurs when

πr =
1

n

∑

j

qjr, θri =

∑

j Aijqjr
∑

j kjqjr
, (4.11)

where kj =
∑

iAij is the out-degree of vertex j and we have explicitly evaluated the

Lagrange multipliers using the normalization conditions. The application of Lagrange

multipliers is covered more fully in Section 5.2 of the next chapter.

Equations (4.10) and (4.11) define our expectation-maximization algorithm. Im-

plementation of the algorithm consists merely of iterating these equations to conver-

gence and the output is the probability qir for each vertex to belong to each group,

plus the probabilities θri of links from vertices in each group to every other vertex,

the latter effectively giving the definitions of the groups. The calculation converges

rapidly in practice: typical runtimes for the networks studied were fractions of a sec-

ond. (Some theoretical results are known for convergence of algorithms in this class,

see Dempster et al. [21] and Wu [93].)

The obvious choice of starting values for the iteration is the symmetric choice

πr = 1/c, θri = 1/n, but unfortunately these values are a trivial (unstable) fixed point

of Eqs. (4.10) and (4.11). In our calculations we have instead used starting conditions

that are perturbed randomly a small distance from this fixed point. A random starting

condition also gives us an opportunity to assess the robustness of our results. Except

in special cases (such as the trivial fixed point above), EM algorithms are known to

converge to local maxima of the likelihood [55] but not always to global maxima,
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and hence it is possible to get different solutions from different starting points. The

method works well in cases where it frequently converges to the global maximum or

where it converges to local maxima that are close to the global maximum, giving good

if not perfect solutions on most runs. In practice, we find for some networks that the

method almost always converges to the same solution or a very similar one, whereas

for others it is necessary to perform several runs with different initial conditions to

find a good maximum of the likelihood. In the calculations presented in this chapter,

we have in each case taken the division of the network giving the highest likelihood

over the runs performed.

The developments so far apply to the case of a directed network. Most of the

networks studied in the recent literature, however, are undirected. The model used

above is inappropriate for the undirected case because its edges represent an inher-

ently asymmetric, directed relationship between vertices in which one vertex chooses

unilaterally to link to another, the receiving vertex having no say in the matter. The

edges in an undirected network, by contrast, usually represent symmetric relation-

ships. In a social networks of friendships, for instance, the edges would typically be

drawn as undirected because two people can become friends only if both choose to be

friendly towards the other. To extend our method to undirected networks we need to

incorporate this symmetry into our model, which we do as follows. Once again, we

define θri to be the probability that a vertex in group r “chooses” to link to vertex i,

but we now specify that a link will be formed only if two vertices both choose each

other. Thus, the probability that an edge falls between vertices i and j, given that i

is in group s and j is in group r, is θriθsj , which is now symmetric. This probability

satisfies the normalization condition
∑

ij θriθsj = 1 for all r, s and setting r = s we

find
∑

ij

θriθrj =
[

∑

i

θri

]2

= 1, (4.12)

and hence
∑

i θri = 1 as before.
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Now the probability Pr(A|g, π, θ) in Eq. (4.4) is given by

Pr(A|g, π, θ) =
∏

i>j

[

θgi,jθgj ,i

]Aij

=
∏

ij

θ
Aij

gj ,i, (4.13)

exactly as in the directed case, where we have made use of the fact that Aji = Aij for

an undirected network. (We have also assumed there are no self-edges in the network,

edges that connect a vertex to itself, so that Aii = 0 for all i.)

The remainder of the derivation now follows as before and results in precisely the

same Eqs. (4.10) and (4.11), for the final algorithm.

4.3 Example applications

We now apply our method to a series of example networks. We use both real network

data and simulated network data to highlight the strengths of our algorithm.

4.3.1 Karate club network

The first example is the much-discussed “karate club” network of friendships between

34 members of a karate club at a U.S. university, assembled by Zachary [94] by direct

observation of the club’s members. This network is of particular interest because the

club split in two during the study as a result of an internal dispute, and Zachary

recorded the membership of the two factions after the split.

Figure 4.1 shows the best division of this network into two groups found using the

EM method with c = 2. The shades of the vertices in the figure represent the values

of the variables qi1 for each vertex on the scale shown (or equivalently the values of

qi2, since qi1 + qi2 = 1 for all i). As we can see, the algorithm assigns most of the

vertices strongly to one group or the other; in fact, all but 13 vertices are assigned

100% to one of the groups. Thus, the algorithm finds a strong split into two clusters

in this case, and indeed if one simply divides the vertices according to the cluster to

which each is most strongly assigned, the result corresponds perfectly to the division

observed in real life (denoted by the shaded regions in the figure).
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Figure 4.1. Application of the method described here to the “karate club” network of Ref. [94].
The two shaded regions indicate the division of the network in the real world, while the shades of
the individual vertices indicate the decomposition chosen by the algorithm. The sizes of the vertices
indicate the probabilities θ1i, for each vertex to be connected to vertices in the left group, with the
probabilities ranging from 0 for the smallest vertices to 0.19 for the largest.

However, the algorithm reveals much more about the network than this. First,

where appropriate, it can return probabilities for assignment to the two groups that

are not 0 or 1 but lie somewhere between these limits, and for 13 of the vertices in this

network it does so. For some of these 13 vertices the values of qir are still very close

to 0 or 1, but for some they are not. Inspection of the figure reveals in particular a

small number of vertices with intermediate shades of gray along the border between

the groups. There has been some discussion in the recent literature of methods for

divining “fuzzy” or overlapping groups in networks; rather than dividing a network

sharply into groups, it is sometimes desirable to assign vertices to more than one group

and a number of authors have proposed possible ways of doing this [78, 69, 7, 65]. The

present algorithm offers an alternative method that is particularly attractive because

of the clear definition of the overlap: the values of the qir give the precise probability

that a vertex belongs to a specified group, given the observed network structure.

The algorithm also returns the distributions or preferences θri for connections
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from vertices in group r to each other vertex i. For instance, in Fig. 4.1 we indicate

by the sizes of vertices the distribution θ1i of connections from vertices in group 1,

which is the left-hand group in the figure, to each other vertex. As we can see, two

vertices central to the group have high connection probabilities, while some of the

more peripheral vertices have smaller probabilities. Thus, the values of θri behave

as a kind of centrality measure, indicating how important a particular vertex is to a

particular group. This could form the basis for a practical measure of within-group

influence or attraction in social or other networks. Note that, in this case this measure

is not high for vertices that are central to the other group, group 2; the measure is

sensitive to the particular preferences of the vertices in just a single group.

4.3.2 Network of English words

In Fig. 4.2 we show the results of its application to an adjacency network of English

words taken from Ref. [65]. In this network the vertices represent 112 commonly

occurring adjectives and nouns in a particular body of text (the novel David Cop-

perfield by Charles Dickens), with edges connecting any pair of words that appear

adjacent to each other at any point in the text. Because adjectives typically occur

next to nouns in English, most edges connect an adjective to a noun and the network

is thus approximately bipartite or disassortative. This can be seen clearly in Fig. 4.2,

where the two shaded groups represent the adjectives and nouns and most edges are

observed to run between groups.

Analyzing this network using our algorithm we find the classification shown by

the shades of the vertices. Once again, most vertices are assigned 100% to one class

or the other, although there are a few ambiguous cases, visible as the intermediate

shades of gray. As Fig. 4.2 makes clear, the algorithm’s classification corresponds

closely to the adjective/noun division of the words—almost all the black vertices are

in one group and the white ones in the other. In fact, 89% of the vertices are correctly
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Figure 4.2. The network taken from [65] in which the vertices represent 112 commonly occurring
adjectives and nouns in the novel David Copperfield by Charles Dickens. The edges connect any
pair of words that appear adjacent to each other at any point in the text. Since adjectives typically
occur next to nouns in English, most edges connect an adjective to a noun and thus run between
groups making the network approximately bipartite. The two shaded regions represent the real
groups of adjectives and nouns respectively and the shades of the individual vertices represent the
classification found by the algorithm.

classified by our algorithm in this case.

The crucial point to notice, however, is that the algorithm is not merely able to

detect the bipartite structure in this network, but it is able to do so without being

told that it is to look for bipartite structure. The exact same algorithm, unmodified,

finds both the assortative structure of Fig. 4.1 and the disassortative structure of

Fig. 4.2. This is the strength of the present method: it is able to detect a wide range

of structure types without knowing in advance what type is expected. Other methods

are able to detect particular kinds of structure, and in many cases do a good job, but

they tend to be narrowly tailored to that job. Typically a new method or algorithm

has to be devised for each new structural type.

4.3.3 Simulated assortative and disassortative networks

We emphasize the ability of the algorithm to detect both assortative and disassorta-

tive community structure with Fig. 4.3, in which we show the results of the application
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Figure 4.3. Results of the application of three algorithms to a set of computer generated networks
with two groups each. The horizontal axis varies the structure of the networks from assortative to
disassortative, while the vertical axis indicates the success of the algorithms at detecting the groups,
as measured by the mutual information index of Danon et al. [20]. Each point is averaged over 100
network realizations.

of our method to a set of computer generated networks. In this test, we generated

networks of fixed size n = 128, divided into two groups of 64 vertices each. Edges

were placed between pairs of vertices in the same group with probability pin and be-

tween pairs in different groups with probability pout. We then varied the ratio pout/pin

of the two probabilities, while keeping the mean degree of all vertices fixed, in this

case at 16. When pout/pin takes values below 1, we thus produce a network with

assortative mixing, while for values above 1 the network is disassortative.

Figure 4.3 shows how successful (or unsuccessful) our algorithm is in detecting the

known groups in these networks, as quantified using the mutual information index

of Danon et al. [20], which is 1 when the groups are identified perfectly and 0 when

there is no correlation between the true groups and those found by the algorithm.
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The circles (•) in the figure show the results for our algorithm and as we can see

the algorithm successfully detects the known groups for values of pout/pin both above

and below 1, i.e., for both assortative and disassortative cases. When the ratio is

close to 1, meaning that edges are placed without regard for the group structure,

then, unsurprisingly, the algorithm is unable to detect the groups, since the network

contains no signature of their presence.

The two other curves in the figure show the performance of the spectral modular-

ity maximization (squares �) and minimization (triangles N) algorithms of Ref. [65],

which are designed specifically to detect assortative and disassortative structure re-

spectively. Two interesting features deserve comment. (1) The specialized spectral

algorithms slightly out-perform our maximum likelihood method on the tasks for

which they were designed—they are able to detect structure for values of pout/pin

closer to 1. This is not surprising: the spectral algorithms are, in a sense, given more

information to start with, since we tell them what type of structure to look for. The

EM algorithm, on the other hand, is told very little about what to look for and has

to work out more for itself. (2) The modularity-based algorithms, however, fail to

detect any structure outside their domains of validity. The modularity maximization

method is incapable of detecting the disassortative structure present for pout/pin > 1,

and the minimization method is similarly incapable of detecting assortative structure.

This illustrates the advantages of the present method as a flexible technique that de-

tects whatever type of structure is present, rather than being focused on answering

one specific question.

4.3.4 A directed social network

As we have seen, our method is applicable to both directed and undirected networks.

In Fig. 4.4, we show an example application to a directed network, a social network

of high school students taken from from the U.S. National Longitudinal Study of
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Figure 4.4. A directed social network of U.S. high school students and the division into two groups
found by the directed version of our method. Vertex shapes show the (self-identified) ethnicity of
the students.

Adolescent Health (the “AddHealth” study). Students were asked to identify their

friends within the school and a response in which student A identifies B as a friend is

represented as a directed edge from A to B. In contrast to the common view, discussed

earlier, of friendship as a symmetric relationship running in both directions between

the individuals it connects, a remarkable number of the friendships identified in this

study, more than half, are found to run in only one direction, so that a directed

representation of the network is indispensable for capturing the structure of the data.

Applying the directed version of our method to this network with c = 2 produces

the division shown in Fig. 4.4. This example is striking because, like many of the

networks in the AddHealth data set, the groupings are found to correlate strongly

with student ethnicity as shown by the shapes of the vertices [60]. In this case, one of

the two groups contains most of the black students in the school and the other most

of the white students, with the few members of other ethnic groups distributed more

evenly.
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Figure 4.5. The four-group network described in the text, in which connections between vertices
are entirely random, except for connections to the eight keystone vertices in the center. Each of
the four groups (dashed boxes) is distinguished solely by the unique pattern of its connections to
the keystone vertices. Vertex shapes represent the groups to which vertices are assigned by our
analyses using (a) standard modularity maximization and (b) the maximum likelihood method of
this chapter.

4.3.5 “Keystone” network

Finally, lest we give the impression that our method is suitable for detecting only

assortative and disassortative mixing in networks, let us give one more example of

a completely different kind. In Fig. 4.5 we show a four-group computer-generated

network of a form mentioned in the introduction: there are a small number of “key-

stone” vertices in the network, and group membership affects only the propensity to

link to these vertices. All other connections are purely random.

The network is again a directed one, with a total of 108 vertices. Of the 108

vertices, 100 are divided into four groups of 25 each, and directed edges are placed

uniformly at random between them such that the mean degree (both in and out) is 10.

The remaining 8 vertices are denoted keystone vertices and the other vertices link to

them depending on their group membership. Specifically, the vertices in groups A, B,

C, and D link to keystone vertices {1, 2, 3, 4}, {3, 4, 5, 6}, {5, 6, 7, 8}, and {7, 8, 1, 2}

respectively. Thus, no keystone vertex is uniquely identified with any group, but each

group has a unique signature set of keystones. It is only the pattern of the keystone

links that distinguishes the groups and nothing else. The network is not assortative
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by the standard definition: the randomly placed edges fall within or between groups

purely by chance, and the links to the keystones, although not random, are equally

likely to fall within or between groups.

Figure 4.5(a) shows what happens when we analyze this network using a standard

modularity maximization technique. The dashed boxes in the figure outline the four

groups of vertices and the shapes show the group assignments found by the analysis.

While the modularity maximization does find four groups, the groups found do not

correspond to the known division of the network—each box contains a substantial

number of vertices of at least two shapes and in some cases more. The maximum

likelihood analysis, by contrast, has no difficulty in discerning the structure of the

network. Figure 4.5(b) shows the results of applying our expectation-maximization

algorithm with c = 4, and as we can see, the algorithm has, without any prior infor-

mation on the type of structure contained in the network, discovered the structure

and correctly assigned almost all of the vertices to their four groups. The 8 keystone

vertices, which are shown in the center of Fig. 4.5(b), are not assigned to any group

by the algorithm, but are instead divided (almost) equally between all four (meaning

that qir is close to 0.25 for all r). Thus, the algorithm has, in effect, accurately de-

duced the five classes of vertices present in the network. Moreover, an examination of

the final values of the model parameters θ will tell us exactly what type of structure

the algorithm has discovered. In principle, considerably more complex structures

than this can be detected as well.

4.4 Discussion

In this chapter, we have described a method for exploratory analysis of network

data in which vertices are classified or clustered into groups based on the observed

patterns of connections between them. The method is more general than previous

clustering methods, making use of maximum likelihood techniques to classify vertices
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and simultaneously determine the definitive properties of each class. The result is

a simple algorithm that is capable of detecting a broad range of structural signa-

tures in networks, including conventional community structure, bipartite or k-partite

structure, fuzzy, or overlapping classifications, and many mixed or hybrid structural

forms that have not been considered explicitly in the past. We have demonstrated

the method with applications to a variety of examples, including real-world networks

and computer-generated networks. The method’s strength is its flexibility, which will

allow researchers to probe observed networks for general types of structure without

having to specify in advance what type they expect to find.



CHAPTER 5

Large-scale structure of time evolving citation

networks

5.1 Introduction

Citation networks, the principal focus of this chapter, have been studied quanti-

tatively almost from the moment citation databases first became available. The

physicist-turned-science-historian Derek de Solla Price authored two celebrated pa-

pers in the 1960s and 1970s highlighting the power-law degree distributions in net-

works of scientific papers and developing models to explain their origin [72, 73]. A

discussion of Price’s work can be found in Section 1.2.3.

A citation network is an information network in which a vertex represents a doc-

ument of some kind and an edge between two vertices represents the citation of one

document by another. Citation networks differ from other networks in a number of

important ways. First, they are directed: citations go from one document to another

and hence constitute an inherently asymmetric relationship between the vertices in-

volved. Mathematically, the network can be represented by an adjacency matrix of

the kind described in Section 1.2.1. In a directed network the adjacency matrix is, in

general, asymmetric.

A second feature of citation networks is that they evolve over time as new docu-

ments are created. The evolution of the network takes a special form, in that vertices

and edges are added to the network at a specific time and cannot be removed later.

This permanence of vertices and edges means that the structure of the network is

97
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Figure 5.1. Citations run from vertices created at later times to those created at earlier times—in
the opposite direction to the arrow of time.

mostly static: it changes only at the leading edge of the network, the time at which

new documents are added. Citation networks differ in this respect from other infor-

mation networks such as the World Wide Web, in which vertices and edges can be

removed as well as added, and edges can be repositioned after they are added. This

limited form of time evolution found in citation networks makes them, in some ways,

a simpler and cleaner laboratory for the study of network growth than the Web.

The combination of the two features of citation networks described above leads to

a third: citation networks are acyclic, meaning there are no closed loops of citations

of the form A cites B cites C cites A, or longer. When a new vertex is added to a

citation network it can cite any of the previously existing vertices, but it cannot cite

vertices that have not yet been created. This gives the network a clear arrow of

time, with all edges pointing backwards in time as shown in Fig. 5.1. As a result it is

typically possible, starting from a given vertex, to find a path of citations that takes

us back in time through the network, but it is not possible to find one that takes us

forward again, so no closed loops exist. (Real citation networks are often not perfectly

acyclic. For example, a scientific paper can sometimes cite work that is forthcoming

but not yet published, resulting in a closed loop in the network. However, such loops
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are rare and necessarily short, being limited by the narrow span of time over which it

is possible to predict future publications. In practice, therefore, it is usually a good

approximation to assume the network to be acyclic.)

Citation networks arise in a variety of different areas. We have mentioned networks

of scientific citations, which have been studied by many authors since the classic work

of Price mentioned above. (See, for instance, the book by Egghe and Rousseau [22] or

any volume of the journal Scientometrics, which is entirely devoted to the quantitative

analysis of scholarly authorship and citation patterns.) Citation networks of patents

have, to a lesser extent, also been studied. Patents cite other patents for a variety

of reasons, but most often to establish their originality and distinction from previous

work. Extensive data on patent citations have become available in recent years,

allowing the construction of very large citation networks [16, 39]. For example, the

time evolution of the United States patent citation network has been studied recently

by Csárdi et al. [19], although their approach to the analysis of temporal patterns,

while both interesting and useful, is quite different from the one adopted in this

chapter. Very recently, there has also been some interest in legal citation networks,

networks of legal opinions written by judges and others, which cite one another to

establish precedent [18, 30, 31]. We make extensive use of one particular legal citation

network, the network of opinions of the United States Supreme Court, as an example

in this chapter, although the techniques we will be considering are certainly applicable

to other networks as well.

Given the wide interest in and unique structure of citation networks, it is instruc-

tive to investigate what can be learned from an analysis of the statistical patterns

present in these networks. A variety of previous studies focused on relatively stan-

dard network measures such as degree distributions [72, 77, 84]. To investigate the

time-dependent structure that is the special property of citation networks, however,

other methods are needed. In this chapter we present several techniques that, as we
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will show, are—both individually and collectively—capable of revealing interesting

new structure in these networks.

5.2 A mixture model of citation patterns

The first analysis we describe makes use of a stochastic mixture model of the citation

process, which is fitted to the observed network data using the likelihood optimization

technique known as the expectation-maximization algorithm.

A crucial property affecting the structure of citation networks is the temporal

pattern of citation to documents following their publication. It is interesting, for

instance, to ask if there are typical patterns that documents follow. Are there more

citations immediately after publication than later, or do they grow in frequency over

time? Are documents more likely to cite recent precedents or older, better-established

ones? Do documents tend to cite others published during a particular time period?

There could also be more than one common pattern, with different documents follow-

ing different patterns. If so, how can we determine those patterns, and how can we

tell which pattern particular documents follow, given that citation data are inherently

noisy?

As an example, we consider the network of legal citations between cases handed

down by the Supreme Court of the United States, from its inception in 1789 until the

present day. We will use this example throughout this chapter; it is well documented,

shows clear and interesting structural signatures, and has been studied much less

than other types of citation networks in the past. While we are using the network

primarily as an illustrative device, the results we derive are, in many cases, of interest

in their own right and not just as a demonstration of our methods.

Consider Table 5.1, which gives the dates of the citations received so far by a

single example opinion handed down by the Supreme Court in the year 1900. We

will take citation profiles such as this as the basic inputs in our analysis.
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year cites year cites year cites

1900 1 1907 2 1925 1
1901 4 1910 1 1936 1
1902 3 1912 2 1947 1
1904 1 1920 1

Table 5.1. The number of citations per year received by a single opinion handed down by the
Supreme Court in the year 1900.

One interesting question is whether there are distinct eras of citation in the history

of this (or any) citation network. Are there, for instance, eras in which a certain set

of documents are well cited, followed perhaps by another era or eras in which that

set falls out of favor to be replaced by a different one? Many readers can probably

think of anecdotal cases of behavior like this in scientific citation networks. Here we

place these observations on a firm analytic foundation.

We will attempt to divide the vertices in a citation network into groups by iden-

tifying similarities in their citation profiles. Other methods have been proposed for

identifying times of significant change in the structure of networks. Sun et al. [86] pro-

posed a method for identifying change-points in time evolving networks (not only

in citation networks). Their method utilizes information theoretic principles such as

lossless compression schemes to identify change-points or times at which significant

change in the structure of a network occur.

However, our method takes a very different approach. We define a set of citation

profiles and then self-consistently assign each case to the profile it best fits while at

the same time adjusting the shape of the profiles to best fit the cases assigned to

them. The means by which we accomplish this task is the expectation–maximization

(EM) algorithm [21, 55].

In Chapter 4 we described the application of this method to the classification of

vertices in static networks, both directed and undirected. Here we describe a different

application to the analysis of the temporal profiles of citations.
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Suppose we have a network of n vertices representing our documents and we

believe that they can be divided into c groups, each of which is characterized by a

particular probability distribution of citations over time. This is a different method

from the one presented in Chapter 4. Here we we are interested in the “time” at

which a vertex is cited, and not which other vertex cited it. In Chapter 4 our interest

was in which vertex pairs were connected by edges. Our approach to finding the

groups will be to fit the network to a model consisting of two parts: (1) a set of

time profiles {θr(t)}, one for each group, such that θr(t) is the probability that a

particular citation received by a document in group r is made during year t; (2) a set

of probabilities πr, such that πr is the probability that a randomly chosen document

belongs to group r. (Here the πr’s represent the same thing as they did in Chapter 4).

Just as in Chapter 4 we fit this model to the observed data. However, in this case

the observed data are the citations over time.

Suppose that document i belongs to group gi and let zi(t) be the number of

citations that the document receives in year t. Then the probability that document i

received the particular citations it did and is in group gi, given the model parameters,

is

Pr(zi, gi|π, θ) = Pr(zi|gi, π, θ) Pr(gi|π, θ). (5.1)

Again, we use π, θ to denote the entire set {πr, θr}. Assuming random and uncorre-

lated citations drawn from the time profile θgi
(t), the terms on the right-hand side

are given by

Pr(zi|gi, π, θ) = ki!
t2
∏

t=t1

[θgi
(t)]zi(t)

zi(t)!
, (5.2)

Pr(gi|π, θ) = πgi
, (5.3)

where ki =
∑

t zi(t) is the in-degree of document i, i.e., the total number of citations

it receives, and t1 and t2 are the first and last years of data in our dataset.

Now taking the product over all vertices, the likelihood of the entire data set is
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L =
∏n

i=1 Pr(zi, gi|π, θ). Of course, we will again work with the logarithm L of the

likelihood,

L = lnL =
n
∑

i=1

[

ln Pr(gi|π, θ) + ln Pr(zi|gi, π, θ)
]

. (5.4)

Just as in the previous EM based method, if we write the probability of a particular

assignment of vertices to groups as Pr({gi}|z, π, θ), we can then calculate the expected

value of the log-likelihood as the average of Eq. (5.4) over all possible assignments

thus:

L =
c
∑

g1=1

. . .
c
∑

gn=1

Pr({gi}|z, π, θ)L

=
c
∑

g1=1

. . .
c
∑

gn=1

Pr({gi}|z, π, θ)

×
n
∑

i=1

[

ln Pr(gi|π, θ) + ln Pr(zi|gi, π, θ)
]

=
n
∑

i=1

c
∑

r=1

Pr(gi = r|zi, π, θ)

×
[

ln Pr(gi = r|π, θ) + lnPr(zi|gi = r, π, θ)
]

=
n
∑

i=1

c
∑

r=1

qir

{

ln πr + ln ki! +

t2
∑

t=t1

[

zi(t) ln θr(t) − ln zi(t)!
]

}

, (5.5)

where we have introduced the shorthand notation

qir = Pr(gi = r|zi, π, θ) (5.6)

for the probability that vertex i belongs to group r, given the model and the observed

citation pattern.

Again, this expected log-likelihood represents our best estimate of the value of the

log-likelihood given what we know about the system. By maximizing it, we can now

calculate a best estimate of the most likely values of the model parameters a process

that involves two steps almost identical to those in Chapter 4: first, we estimate
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the group membership probabilities qir; second, we use those probabilities in the

maximization of L. We take these steps in turn.

To calculate the qir we observe that

qir = Pr(gi = r|zi, π, θ) =
Pr(zi, gi = r|π, θ)

Pr(zi|π, θ)
. (5.7)

The two factors on the right can be determined by summing Eq. (5.1) over the

appropriate sets of variables and making use of Eqs. (5.2) and (5.3) to give

qir =
πr

∏

t [θr(t)]
zi(t)

∑

k πk

∏

t [θk(t)]
zi(t)

. (5.8)

Once we have this expression, we can use it to evaluate the log-likelihood, Eq. (5.5),

and hence to find the values of the model parameters that maximize the likelihood.

The maximization is again helped by the fact that πr and θr enter Eq. (5.5) in inde-

pendent terms. Considering πr first and noting that it must satisfy the normalization

condition
∑

r πr = 1, we introduce a Lagrange multiplier α and then differentiate,

holding qir constant, to get

0 =
∂

∂πr

{

∑

ir

qir lnπr + α

[

1 −
∑

r

πr

]}

=
1

πr

n
∑

i=1

qir − α. (5.9)

Rearranging this expression gives

πr =
1

α

n
∑

i=1

qir. (5.10)

The Lagrange multiplier α is then fixed by the condition
∑

r πr = 1, and so

c
∑

r=1

πr = 1 =
1

α

∑

ir

qir =
n

α
, (5.11)

where we have made use of
∑

r qir = 1. Thus πr is given by

πr =
1

n

∑

i

qir. (5.12)
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In other words, the prior probability of a vertex belonging to group r is just the

average over all vertices of the conditional probability of belonging to group r. This

equation for πr is identical to Eq. (4.11).

Similarly, the θr satisfy the normalization condition
∑

t θr(t) = 1 for all r, so we

introduce a set of c Lagrange multipliers {βr} and write

∂

∂θr(t)

{

∑

ir

qir

t2
∑

t=t1

zi(t) ln θr(t)

+
∑

r

βr

[

1 −
∑

t

θr(t)

]}

= 0. (5.13)

Again holding qir constant and employing Eq. (5.2), we find

∑

i

qir
zi(t)

θr(t)
− βr = 0, (5.14)

or

θr(t) =

∑

i qirzi(t)
∑

i qirki

, (5.15)

where we have evaluated βr using the normalization condition and the fact that

∑

t zi(t) = ki by definition.

To calculate the optimal values of the model parameters, as well as the group

membership variables qir we again turn to numerical iteration. Starting from an initial

guess about the values of {πr, θr(t)}, we evaluate Eq. (5.8) and then use the results

to make an improved estimate of the model parameters from Eqs. (5.12) and (5.15).

Under reasonable conditions this process is known to converge upon iteration to a

self-consistent solution.

5.2.1 Example

As a demonstration of this EM method, we have applied it to the citation network of

Supreme Court cases described in Section 5.2. Applied to this network, the algorithm

will divide the network into any requested number c of groups, such that each group

is characterized by a distinctive pattern of citations to cases in that group. We have
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Figure 5.2. Results of the application of the EM analysis with c = 2 to the network of citations
between Supreme Court opinions. The two curves show the fraction of cases assigned to each of the
two groups found, as a function of time.

performed the analysis for a variety of different values of c. We begin with the simplest

case, c = 2, of division into two groups. Starting with random initial values for {πr, θr}

and applying the EM iteration, Eqs. (5.8), (5.12), and (5.15), the parameters rapidly

converge to a clear split of the network into two groups. Figure 5.2 shows the fraction

of cases assigned by the algorithm to each of the groups as a function of time. Cases

are assigned in proportion to their probability of membership in each of the groups

so that, for instance, a case belonging to group 1 with probability 0.7 and to group 2

with probability 0.3 contributes 0.7 of a case to the first group and 0.3 of a case to

the second.

Figure 5.2 reveals a dramatic split between the two groups: the best fit, in the

maximum likelihood sense, of the mixture model with two groups to these data pro-

duces one group containing practically all cases before 1937 and another containing

practically all cases after. This breakpoint coincides with a significant constitutional
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Figure 5.3. The citation profiles θr(t) generated by the EM algorithm with c = 2 for the Supreme
Court citation network.

crisis for the Supreme Court. For the interested reader, we provide some further

analysis in Section 5.5.

The EM algorithm tells us, in this case, that the Supreme Court’s rulings split

quite cleanly into groups with distinct citation profiles. That is, the opinions of the

court can be distinguished sharply by the cases that later cited them. The citation

profiles themselves, meaning the temporal citation patterns represented by the pa-

rameters {θr} in the model, are shown in Fig. 5.3. As we can see, each profile covers

a distinct time period. The time period covered by of each profile also correspond

closely to time spanned by the groups depicted in Fig. 5.2. This implies that the

opinions that cite cases in each of our groups were handed down during roughly the

same eras as the cited cases. This is not surprising if one assumes that the group

divisions reflect different legal ideologies, but it is important to bear in mind that

our analysis does not require it: it would be perfectly possible to detect groups that
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Figure 5.4. Results of the application of the EM analysis with c = 4 to the network of citations
between Supreme Court opinions.

were distinguished by citations received during some entirely different era of the court

arbitrarily later in its history, or even in no era at all but scattered widely over time.

We can also ask about best fits to the model for numbers of groups c greater

than two. It is always the case that larger values of c will give better fits to the

data, since larger values give us more parameters to fit with, but we must be wary

of overfitting. In practice, we have been able to extract useful information about

networks by comparing the results for a variety of small values of c. Rigorous methods

for deciding optimal values of c, such as minimum description length, methods based

on approximations to the marginal likelihood, or information theoretic measures, have

been developed for other applications of the EM algorithm [1, 82]. For the moment

we simply describe the results for various values of c.

Figure 5.4 shows results for the Supreme Court network with c = 4. The method

again finds clear groups of cases, and as in the c = 2 case they are strongly delineated
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Figure 5.5. Results of the application of the EM algorithm with c = 4 to data for citations made

(rather than received) by opinions in our Supreme Court dataset. The groups found are quite similar
to those for the analysis based on citations received.

according to the dates of the opinions and thus appear to offer evidence for the

presence of distinct eras in the Court’s history. In particular, the analysis finds a

clear grouping of cases between 1897 and 1937, corresponding approximately to the

so-called Lochner era of Supreme Court jurisprudence, the significance of which is

described in Section 5.5.

In these analyses we have characterized our documents by the pattern of citations

they receive. However, one can just as easily look at the pattern of citations that

documents make and this also, at least in some cases, can be a useful cue for detecting

patterns in the network. The EM algorithm can be applied to this analysis as well.

The developments are identical and the same computer code can be used. Figure 5.5,

for example, shows the results of the application of this method to citations made

by the opinions in our Supreme Court dataset, with c = 4. As the figure shows, the

results are remarkably similar to those for citations received: it appears that, in this
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case at least, there is a high degree of agreement about how cases should be classified

into eras. This could indicate agreement between the opinions’ writers and those

that came after them, about the position staked out by individual opinions within

the larger body of literature represented in our data set.

5.3 Clustering in citation networks

The general problem of the division of networks into groups of related vertices has

been studied extensively in the past. The classic problem of clustering or community

detection, which we introduced in Section 1.2.7, is to find groups of vertices within

networks that have a higher than average density of internal edges and relatively few

connections to these rest of the network. The second analysis technique we investigate

for citation networks is a clustering method of this kind. As we will see, it is instructive

to compare the results with those of our EM analysis in the previous section. The two

methods do not do the same thing: the EM analysis groups together vertices that

have similar time profiles to their citations, while the community analysis groups

together vertices that are specifically linked to one another by edges. Nonetheless,

as we will show, the two approaches can produce similar outcomes. One instance of

this is the example of the Supreme Court data set.

Considerable effort has been devoted to the development of methods to find com-

munity structure within networks. Here we make use a method proposed by New-

man [66]. This is, in fact, the same framework for community structure detection as

we presented in Chapter 3, but for undirected networks. We choose the method for

undirected networks as it seems reasonable to consider edges in a citation network

to be a sign of connection between documents, and that connection exists regardless

of the direction the edge runs in. If we did not make this choice, we would have to

modify the clustering method to account for the time evolution of the network. So

we simply ignore the directions in our analysis and apply the eigenvector calculation
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Figure 5.6. A histogram of the number of decisions versus the year of the decision for cases assigned
to each group in the two-way split produced by the modularity maximization algorithm.

to the undirected network. This approach has been taken before by other authors

and appears to work well—see, for example, Ref. [48].

We should recall that this method involved the repeatedly subdivision of the

network into smaller and smaller groups. This aspect of the method is particularly

attractive for the purposes of our present analysis, because it allows us to observe the

major divisions in the network first, followed by more minor ones, and to stop the

process at any point to compare with our other analyses.

We can visualize the results of our clustering analysis in a manner similar to

our visualizations of the output of the EM algorithm, as a histogram over time.

The results for the leading split of the Supreme Court network into two clusters are

depicted in this way in Fig. 5.6. The results are similar to those for the EM algorithm,

with a significant break around 1937. This appears to bolster the conclusions of

our EM analysis: there have been separate periods in the Court’s history that left
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Figure 5.7. A histogram of the number of decisions versus the year of the decision for cases assigned
to each group in the four-way split produced by the modularity maximization algorithm.

identifiable signatures in the citation record. There are some differences between the

two sets of results, particularly the early “tail” to the second group in the clustering

analysis and an overall difference in the number of cases assigned to each group. A

possible explanation for these differences is that the EM analysis makes use only

of citations received by cases, whereas the clustering analysis, which ignores edge

direction, takes into account both citations received and citations made. This allows

the classification into groups of some vertices that were unclassifiable with the EM

algorithm by virtue of their never receiving any citations. (About 10% of cases were

never cited.) It could also be responsible for the tail in the second group because

citations made, which are necessarily to cases in the past, connect vertices to earlier

times, perhaps pulling them from the second group into the first in the clustering

analysis.

As with the EM analysis, we can go further and look at splits into larger numbers
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of groups. For instance, Fig. 5.7 shows the best split into four groups according to

the modularity-based approach. Again, the split is similar in overall form to the split

found by the EM algorithm with c = 4, although the results are not as clean as those

for the EM algorithm. As before, a new split point appears around 1900, which could

be associated with the start of the Lochner era.

5.4 Vertex authority score and time evolution

For our third analysis, we turn away from studies of groups or clusters and focus on

another class of network measures: centrality scores, which quantify the importance

or influence of individual vertices in a network. As we will see, the pattern of centrality

scores as a function of time in our evolving citation networks can reveal interesting

patterns.

We provided an introduction to the various measures of centrality for network

vertices in Section 1.2.6. For our analysis of the network of United States Supreme

Court decisions we use the method of Kleinberg [45], which works well for acyclic

networks. In this variant each vertex has two centralities, known as the authority

score and the hub score, the first derived from the incoming links and the second from

the outgoing links. In this view a “hub” is a vertex that points to many important

authorities—a review paper in a citation network, for instance—while an authority is

a vertex pointed to by many important hubs—such as an important or authoritative

research article on a particular subject. A more complete discussion of this technique

is found in Section 1.2.6.

Again, taking the Supreme Court network as an example we note that hub and

authority scores have been previously applied to Supreme Court cases by Fowler

and Jeon [30], who showed that it can be revealing to calculate scores not only for a

complete citation network, but also for subsets of the network containing only opinions

handed down on or before a certain date, effectively recreating the citation network
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as it existed at that date. We have adopted a similar approach in our calculations,

calculating authority scores for the network as it existed at some time t. We focus

primarily on the most central cases: those with the highest scores.

Figure 5.8 shows one particularly informative statistic, the average age of the ten

highest-ranked cases in our data set as a function of the year at which the network

is cut off. As the plot shows, there is a marked trend for the average age to increase

with the passage of time. This is precisely the behavior one would expect if the top

authorities in the network are remaining the same as time goes by. Every once in

a while, however, the plot shows a sudden and precipitous drop in the average age,

indicating that a much younger set of vertices have, in a short space of time, taken over

as the new leaders in the authority score rankings. Thus the plot indicates a repeated

pattern in the evolution of the network in which a certain set of vertices—certain cases

considered by the Supreme Court—remain the top authorities for substantial periods

of time before being swiftly replaced by a different set. One example of such a turnover

can be seen in Fig. 5.8 around 1900 and a smaller one around 1940, dates that, as we

have seen, correspond roughly to the beginning and end of the Lochner era. Another

very large dip in the curve occurs around 1970. (Our four-group EM analysis also

found a group division at approximately the same point—see Fig. 5.4.) The large size

of this dip may be due in part to the much larger number of cases decided per year

by the Supreme Court in more recent decades than in its earlier history, which makes

it easier for newly appearing cases to quickly become top authorities. The results of

the centrality analysis are thus compatible with but different from those of previous

sections. Such variations are one reason why a variety of different analytic techniques

are useful in studies of network structure.

The behavior described is clearest in the age of the top ten vertices, but persists

if a different number is used. Figure 5.8 shows the results of the same calculation for

the top 50, 100, and 500 authorities, and in each case a similar pattern of maturation
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Figure 5.8. The average age of the highest-authority cases in the Supreme Court citation network
as a function of time.

followed by swift renewal is visible.

5.5 Implications for legal scholarship

Although the purpose of this chapter is primarily to highlight new methods for the

analysis of network data, the ultimate goal of these methods is, of course, to give

researchers insight into the structure and meaning of their data. Thus, it is interest-

ing to ask whether the analyses described here do indeed shed light on the system

studied—in this case, the network of citations among Supreme Court cases. In fact the

results do appear to offer an interesting perspective on the workings of the Supreme

Court, as we argue briefly in this section.

The United States underwent a transition from an agricultural economy to an

industrial economy in the latter part of the nineteenth century. Federal and state

legislators adapted to the new economic environment by passing laws that regulated

emerging industries. These regulations, however, were not without opposition from
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those who preferred a laissez-faire, or “hands-off,” approach. Among those outspoken

in opposition were several members of the Supreme Court and, beginning in 1897, the

court began invalidating a number of cases that imposed regulations on industry and

business, starting with Allgeyer v. Louisiana. The legal doctrines of substantive

due process and freedom of contract were merged together into a significant

limitation on the police power of the state. After Allgeyer, any statute, ordinance,

or administrative act that imposed any kind of limitation upon the right of private

property or freedom of contract became suspect, even if the regulation was intended

to promote safety and general welfare [43].

The most famous (or infamous) of the cases to use substantive due process to

invalidate state regulation was Lochner v. New York in 1905, a case that became so

notorious that this entire era of jurisprudence, between 1897 and 1937, came to be

known as the Lochner era. During the Lochner era the Supreme Court struck down

nearly 200 regulations [87]. The Lochner era is clearly visible, for example, in our

EM analysis with c = 4 (Fig. 5.4)—the analysis picks out one group of cases with

start and end dates that correspond closely to the accepted dates of the era.

Ultimately, the Supreme Court’s hostility to state and federal regulation began

to interfere with the “New Deal” programs instituted by US President Franklin Roo-

sevelt to combat the Great Depression. Between 1934 and 1936, the court invalidated

more federal statutes than during any other two-year period in its history and by 1936

nearly all of the statutes passed as part of the New Deal had been struck down. In

response, Roosevelt launched, in the early months of 1937, a counteroffensive against

the Supreme Court in which he proposed to appoint to the court up to six additional

justices more receptive to the New Deal. This “court packing” plan was, to say the

least, highly controversial, but Roosevelt had the support of significant majorities in

both houses of Congress, and the nation as a whole, still in the throes of the Great

Depression, was eager for something new.
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Following Roosevelt’s proposal, the court abruptly reversed course and, beginning

in March of 1937, validated a series of state and federal measures. Contemporary

commentators have humorously dubbed this change the “switch in time that saved

nine,” but whether the switch was substantive or illusory has been the subject of

much debate. Some scholars believe that the court responded to political pressure

while others have suggested that the court already contained a majority of justices

who would have been inclined to sustain the New Deal if legislation had been drafted

better or if certain unanswered questions had been appropriately posed to the court.

Our EM analysis shows a clear break around 1937, corresponding closely to the end

of the Lochner era. It is important to appreciate that this analysis takes into account

only citations received by cases. Thus, the opinions of the Supreme Court appear

to have taken a substantial change of direction, not merely in their conclusions, but

also in their arguments. Later cases cited the new opinions rather than those coming

before them because, presumably, their arguments better supported the decisions of

the post-1937 court. Consequently, our analysis appears to indicate not merely a

change in case outcomes that was a natural, if novel, result of positions long held by

the sitting justices, but also a more fundamental change in legal thinking itself—or

at least its expression in the written opinions of the court and the later citation of

those opinions.

5.6 Discussion

In this chapter we have described several methods for the analysis of citation networks,

which are acyclic directed graphs of citations between pairs of documents. Using the

network of citations between opinions handed down by the United States Supreme

Court as an example, we have described and demonstrated three analysis techniques.

The first makes use of a probabilistic mixture model fitted to the observed network

structure using an expectation–maximization algorithm. The second is a network
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clustering method making use of the recently introduced method of modularity max-

imization. The third is an analysis of the patterns of time variation in eigenvector

centrality scores, particularly the “authority” score introduced by Kleinberg [45].

When applied to the Supreme Court network, each of these analyses reveals in-

teresting structure, particularly highlighting qualitative changes in citation patterns

that may be associated with specific eras of legal thought in the Supreme Court.

However, it is in combination that the methods become most effective. Features that

appear clearly in analyses performed using several different techniques possess corre-

spondingly greater persuasive force. In the case of the Supreme Court, there emerges

quite a clear picture of the eras of the court as marked by shifts in citation patterns,

particularly around the time of the so-called Lochner era in the early 20th century.



CHAPTER 6

Conclusions

In this dissertation, we developed several new methods for detecting structure in

complex networks. We also presented the results obtained from applying these new

methods to a variety real and simulated networks.

The visualization of networked systems as two-dimensional drawings dates back,

at least, to Moreno’s work in the 1930’s and much further if we include the field of

graph theory. For a small network, a good deal of information is gleaned from a

simple two-dimensional sketch of the network; indeed, we may easily identify highly

connected vertices, densely connected communities of vertices, or other distinct types

of network structure. However, when we visualize large networks our eyes tend to

lose the ability to identify specific structural aspects. Instead, we see just a jumble

of vertices and edges.

Numerous methods tackle the problem of discovering what a networks looks like

when direct visualization yields poor results. The methods all aim to detect different

types of network structure, but they share a common aspect of their methodology.

Such methods usually begin with an a priori assumption of the form the network

structure will take; then, a means of detecting and measuring the particular type of

network structure is derived and implemented on networks. In the first part of this

dissertation, Chapters 2 and 3, we followed this path and added our own methods for

detecting distinct aspects of network structure.

Specifically, in Chapter 2 we identified the structural similarity of network vertices.
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Using techniques from linear algebra, we derived a new method for measuring the

similarity of any pair of vertices in a network. The application of our method to both

real and simulated networks illustrated its strengths, especially when compared with

existing procedures for detecting vertex similarity.

In Chapter 3, we pursued the idea of community detection in directed networks.

In the past, community detection in directed networks involved transforming a di-

rected network into an undirected network (by throwing away edge direction), and

implementing a method for community detection designed for undirected networks.

However, we showed that one method for detecting community structure in undi-

rected networks could be re-derived for directed ones, while making explicit use of

the information contained in the edge directions. We also highlighted some specific

examples of directed networks where community detection is significantly improved

when edge direction is retained.

In the second part of this dissertation, Chapters 4 and 5, we changed our approach

to the problem of detecting network structure. In these two chapters, we used the

machinery of probabilistic mixture models and the expectation-maximization (EM)

algorithm to probe network structure.

In Chapter 4, we applied the EM algorithm to networks as an exploratory data

analysis technique. Our technique detected general patterns of connection among

vertices and assigned them to groups based on that structure. The patterns of con-

nection being sought among vertices were never pre-specified—a departure from pre-

vious techniques. Nevertheless, our application of the EM algorithm proved able to

detect a wide range of structural signatures in networks.

The EM algorithm was again discussed in Chapter 5, but this time as a tool for

detecting structure in time evolving networks. We proposed that distinct time periods

in the history of an evolving network may be identified using the EM algorithm. As

a particular example, we examined the citation network of United States Supreme
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Court Decisions. Our method did detect changes in the structure of the network over

time. Furthermore, the times at which we identified changes in the network structure

tended to be aligned with eras in the history of the Court that have been the subject

of debate amongst legal scholars.

The content of this dissertation was divided between two different types of method-

ology. The first two chapters used linear algebra based methods to detect specific

types of network structure. The final two chapters turned to probabilistic techniques

for general exploration of network structure. These probabilistic techniques should

not be been seen as replacements for the more traditional liner algebra techniques.

In Chapter 4, we highlighted the fact that our technique based on the EM algo-

rithm identified a variety of types of network structure without being told ahead of

time the type of structure to seek. However, specialized methods outperformed our

measure when we limited the scope of our search to one specific type of structure.

Consequently, probabilistic based techniques are not a replacement, but an additional

tool. We should not abandon measure of specific types of network structure. Instead,

probabilistic techniques are for exploratory data analysis, while specific linear algebra

techniques probe deeper into very specific types of network structure.
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