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ABSTRACT

Statistical Methods in Surrogate Marker Research for Clinical Trials

by
Yun Li

Chair: Jeremy M.G. Taylor

A surrogate marker (S) is often an intermediate physical or laboratory indicator

in a disease progression process. It can be measured earlier and cost less than the

true endpoint (T ). A surrogate marker may be able to facilitate early prediction of

the treatment (Z) effect on T and thus can be very useful in reducing the duration

and cost of a clinical trial. In practice, it can either serve as a substitute for T or as

an auxiliary variable. One part of my dissertation focuses on its role as an auxiliary

variable. We aim to directly investigate its usage in predicting the treatment effect

and identify the situations when S can be beneficial in improving the precision in

both single- and multiple-trial settings when T is not completely observed. When

the individual-level correlation is relatively high, there is substantial efficiency gain

by using S, particularly in a multiple-trial setting. We also study the extent of effi-

ciency gain with respect to different model assumptions that are used to describe the

relationship among S, T and Z. The results motivate a generalized ridge regression

method which strikes a balance between bias reduction and efficiency gain without

the need to specify correct models. The other part of the dissertation directly models

xii



the relationship of T , S and Z in a causal framework. Previous work on surrogate

markers often requires one to fit models for the distribution of T given S and Z.

It is well known that it usually does not have a causal interpretation because the

models condition on a post randomization variable S. To solve this problem, we

adapt a causal framework using the principal stratification approach introduced by

Frangakis and Rubin (2002). We propose a Bayesian method to estimate the causal

associations between the potential outcomes of S and T . To not only overcome some

non-identifiability problems but also improve the precision of the statistical infer-

ence, we incorporate assumptions that are plausible in the surrogate context into

prior distributions. The method is explored in both single trial and multiple trial

settings.
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CHAPTER I

Introduction

Surrogate markers (S) are often intermediate physical or laboratory indicators

in a disease progression process that can be measured earlier and often easier to

collect than the true endpoint (T ). Examples of surrogate markers include CD4

counts and viral load for HIV infection, blood pressure and serum cholesterol level

for cardiovascular disease and prostate-specific antigen for prostate cancer. A good

surrogate marker has enormous potential benefits if it can reliably facilitate early

prediction of the treatment effect in a clinical trial. When the true endpoints are

rare, late-occurring or costly to obtain, the use of good surrogate markers can sub-

stantially reduce the trial duration and size, lower the expense and lead to earlier

decision making. As more and more biomarkers are being discovered and many of

which are suggested as surrogate markers, there have been continuous interest in

surrogate markers in the clinical research community, particularly in pharmaceutical

companies.

Generally, the research on surrogate markers has focused on their two roles. First,

a surrogate marker could serve as a surrogate endpoint and be used to replace the true

endpoint for early treatment efficacy evaluation. Second, it could serve as an auxiliary

outcome to potentially improve the efficiency of the treatment effect estimate on T

1
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when we observe S on more patients than T . Most previous research has been

devoted to developing surrogacy validation measures to quantify how well S can

replace T . In a landmark paper, Prentice (1989) proposed a formal definition for

perfect surrogacy and provided validation criteria. To measure less than perfect

surrogacy, the proportion of the treatment effect explained by surrogate markers

was proposed by Freedman et al (1992) and further studied and extended by several

other authors (Lin et al, 1997; Bycott and Taylor, 1998; Wang and Taylor, 2002).

Two major drawbacks have emerged in the current literature. First, although these

surrogacy measures are useful to understand to what degree the effect of Z on S

accounts for the effect of Z on T , they are not practically useful for predicting the

effect of treatment on T even when a substitute for T is found. Second, the quest

for a substitute for T often fails. As a result, most existing reports on the use of

surrogate markers have been discouraging.

In this dissertation, the objective in both Chapter II and Chapter III is to explore

the role of a surrogate marker as an auxiliary variable in improving the precision of

the early treatment effect prediction. In Chapter II, we aim to directly identify the

situations when S can be beneficial in increasing the precision in the setting where T

is not completely observed. We examine factors that impact the amount of efficiency

gain, such as the trial-level correlation, individual-level correlation (defined by Buyse

et al (2000)) and the fraction of missing T . We focus on S and T being continuous in

both single trial and multiple trial settings. While the trial-level correlation is identi-

fied as the key factor that impacts the degree of efficiency gain from S in the research

by Buyse et al. (2000) and Gail et al (2000), we find that the individual-level corre-

lation plays an even more important role than the trial-level correlation in obtaining

substantial efficiency gain from S with respect to the estimated treatment effect on
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T when T is partially observed. In Chapter III, we examine the extent of precision

improvement through the use of S with respect to different model assumptions that

are used to describe the relationship among T , S and Z. When S satisfies Prentice’s

definition for perfect surrogacy, there is substantial gain in precision by using S to

estimate the treatment effect. When S is not close to having perfect surrogacy, it

can provide substantial information only under special circumstances. We propose a

generalized ridge regression to avoid the need to make a correct surrogacy assump-

tion. As simulations will show, it can strike a balance between bias and efficiency

gain depending on the surrogacy nature.

Both surrogacy measures and the use of S in predicting the effect of Z on T

often require one to fit models for the distribution of T given S and Z. It is well

known that these measures and predicted treatment effects often do not have causal

interpretations because the models used condition on a post randomization variable

S (Rosenbaum, 1984). An alternative approach is to directly model the relationship

between S and T in a causal framework. Frangakis and Rubin (2002) suggested a

framework to study surrogacy through the association between potential outcomes

of T and potential outcomes of S. In contrast to the Prentice (1989) and Freedman

(1992) criteria, these association measures and quantities derived always have causal

interpretations.

While Frangakis and Rubin (2002) have laid out a causal framework, no methods

are currently available for estimation. In Chapter IV, we propose a Bayesian estima-

tion method to evaluate the causal probabilities associated with the combinations

of different sequence of potential outcomes for S and T for each individual when S

and T are both binary. To overcome non-identifiability and increase the precision

of the statistical inference, we incorporate assumptions that are plausible in the sur-



4

rogate context into prior distributions. We also explore the relationship among the

surrogacy measures based on the traditional models and the counterfactual models.

We use the causal probabilities to predict the treatment effect when T is partially

observed. We then extend the method to the multiple trial setting using hierarchical

modeling.
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CHAPTER II

Predicting Treatment Effects Using Surrogate Markers in
Clinical Trials

Summary. A surrogate marker (S) is a variable that is measured after treatment

in a randomized clinical trial. It is typically easier to measure than the true endpoint

and may be useful to help to shorten the length of the trial or reduce its costs. A

potential use of a surrogate marker is to completely replace the true endpoint and

evaluate whether the treatment is effective. A second potential use of a surrogate

marker is to help to predict the treatment effect on the true endpoint (T ) in situations

where T is not completely observed. Thus the surrogate marker may serve as an

auxiliary outcome to improve the efficiency of the treatment effect estimate. Most

previous research has focused on the first role. The objective of this report is to

focus on the potential use of surrogate markers as auxiliary variables and to identify

situations when surrogate markers can be useful to increase efficiency when the true

outcome is not completely observed. We consider the situations where both S and T

are continuous variables. In a single-trial setting, the efficiency gain is small unless

S and T are very highly correlated and the amount of missingness is substantial.

In a multiple-trial setting, higher efficiency gain is associated with higher trial-level

correlation but not individual-level correlation when only S, but not T is measured in

a new trial; but, the amount of information recovery from S is negligible. However,

6
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when T is partially observed in the new trial and the individual-level correlation is

relatively high, there is substantial efficiency gain by using S and one can extract

most of the information on the treatment effect. For design purposes, our results

suggest that it is important to collect markers that have high adjusted individual-

level correlation with T and at least a small amount of data on T . The results are

illustrated using simulations and an example from a glaucoma clinical trial.

Keywords: Auxiliary variable, randomized trial, Meta analysis, Empirical Bayes.
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2.1 Introduction

A surrogate marker (S) in a clinical trial is a type of biomarker intended to

provide information about the true endpoint (T ) and give valid inference on the effect

of treatment (Z). Surrogate markers are often intermediate physical or laboratory

indicators in a disease progression process, and can be measured earlier and are often

easier to collect than the true endpoint. Examples of candidate surrogate markers

include CD4 counts in AIDS studies, blood pressure and serum cholesterol level in

cardiovascular disease, and prostate-specific antigen in prostate cancer studies. A

surrogate marker could serve as a surrogate endpoint and be used to replace T .

Alternatively it could serve as an auxiliary outcome to enhance the efficiency of the

estimator of the treatment effect on T . When the true endpoints, (e.g. survival

time), are rare, later-occurring or costly to obtain, the proper use of good surrogate

markers can substantially reduce trial size and duration, hence lower the expense

and lead to earlier decision making.

Most previous research on surrogate markers has focused on the potential role of

S as a substitute for T . In a landmark article, Prentice (1989) proposed a formal

definition for perfect surrogacy and provided validation criteria for the single trial

setting. The criteria require that changes in S fully capture the effect of treatment

on T . This paper inspired much research in the field, but the criteria are considered

too restrictive for practical use. To relax the criteria, a surrogacy measure based

on the proportion of the treatment effect explained (PTE) by S was proposed by

Freedman et al (1992) and further studied and extended by several other authors

(e.g., Lin et al, 1997; Bycott and Taylor, 1998; Wang and Taylor, 2002). Freedman

et al (1992) also suggested that the PTE confidence interval’s lower bound be > 0.75
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for a marker to be acceptable as a surrogate marker. However, this requires the

treatment effect on T to be very strong, which is rarely observed in practice (Buyse

et al, 2000; Bycott et al, 1998). The PTE estimator is also highly variable and can

be out of the [0,1] range (Lin et al, 1997; De Gruttola et al 1997); hence, its practical

use is limited.

From a biological aspect, there are often multiple causal pathways leading to dis-

ease and complex mechanisms by which the treatment functions; hence, a biomarker

may or may not mediate the effect of the treatment on T and the surrogacy measures

are often not directly transferable from one study to another. Another problem is

that S may not capture the harmful side effect of the treatment. These associated

uncertainties in the use of S in replacing T to test a new treatment can lead to

incorrect, even harmful conclusions (Fleming, Lin and Coombs, 1996; Fleming and

DeMets, 1996). As a result, very few biomarkers have been accepted as valid substi-

tutes for T and their potential use as the substitutes has been less than optimistic.

Nonetheless, the clinical research community is still extremely interested in sur-

rogate markers. New biomarkers are being developed at a phenomenal rate, with

many being suggested as possible surrogate markers for clinical trials. In this paper,

we focus on the use of S as an auxiliary outcome in helping predicting the treatment

effect on T . As we shall see, this role of a surrogate marker proves to be more promis-

ing. One of the most common scenarios for S to be useful as an auxiliary outcome

is when one has more information on S than that on T for a study population. This

occurs often in practice, since patients are usually recruited into a trial sequentially

in calender time and S is observed more often and early than T , particularly on

those who are enrolled early. Previous surrogacy measures are proposed based on

summary statistics in order to identify a replacement for T , and they are not usually
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suggested explicitly for the purpose of prediction. In the presence of individual-level

data, a surrogate marker may actually be effective as an auxiliary outcome in en-

hancing inference, but not be identified as such using existing surrogacy measures.

When S and T are strongly associated, this does not suffice for S to be a substitute

for T ; as Baker and Kramer (2003) state, “a correlate does not make a surrogate”.

However, when individual data exist, the existence of strong association between S

and T can inform and increase the efficiency of treatment effect estimation, as we

demonstrate.

A number of authors have explored the role of surrogate markers as auxiliary

outcomes. Much of previous work has focused on situations when the true endpoint

is time to failure (Pepe et al (1994), Robins and Rotnitzky (1992), Hsu et al (2006),

Murray and Tsiatis (1996), Fleming et al. (1994) and Kosorok and Fleming (1993)).

When S and T are continuous data, Venkatraman and Begg (1999) proposed fully

nonparametric tests that incorporate the information from S in a single trial setting.

However, the opinions in the previous research on the value of surrogate markers

have been mixed.

In this paper, we aim to directly investigate the role of S in predicting the treat-

ment effect on T when T is not completely observed. The missing mechanism for

T is missing at random (Little and Rubin, 2002). We examine the factors, partic-

ularly, the correlation between S and T and the fraction of missing T , that impact

the extent of increase in the precision of the treatment effect estimate resulted from

utilizing S and identify the situations when S can be beneficial. The results are in-

tended to be of practical value and directly applicable to clinical trials. We consider

both single-trial and multiple-trial settings where S and T are continuous and Z is

binary. In a single trial setting, the goal is to predict the treatment treatment using
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S when T is partially observed. In a multiple-trial setting, we examine the situation

when T is either completely missing or partially missing in a new trial when we have

information on S, T and Z in the previous trials. The objective is to predict the

treatment effect on T in the new trial. In Section 2.2, we examine the efficiency gain

of the treatment effect estimate by using S in a single trial setting. In Section 2.3,

we consider a multiple-trial setting. We first review several methods used to predict

the effect of Z on T in a new trial when T is either completely missing or partially

missing in the new trial. Then we evaluate the extent of information recovery from

S regarding the treatment effect in the new trial and the associated factors through

analytical calculations, simulations and data analysis. In Section 2.4, we present

conclusions.

2.2 Single Trial Setting

Suppose that the total number of patients is m = m0 +m1, with m0 in the placebo

group (Z = 0) and m1 in the treatment group (Z = 1). We have information on

S on all patients, however, T is observed for only r = r0 + r1 patients with r0 in

the placebo group and r1 in the treatment group. For individual j, we assume a

commonly used bivariate normal distribution for Sj and Tj given Zj as follows: Sj

Tj

 ∼MVN


 µ0Sn + δSnZj

µ0Tn + δTnZj

 ,

 σss σst

σtt


 .(2.1)

We want to predict the treatment effect on T , δTn, in this trial with the use of S.

Let R2
indiv denote the treatment adjusted individual-level correlation between S and

T . Under this model assumption, R2
indiv = σ2

st/σssσtt. Using a factored likelihood

method (Little and Rubin, 2002), we can obtain the maximum likelihood estimates

and the corresponding inverse information matrix. Under missing completely at
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random assumption, the large-sample variance of the estimated treatment effect,

δ̂Tn, can be approximated by

var(δ̂Tn) ≈ σtt
r0

{
1−R2

indiv

m0 − r0

m0

}
+
σtt
r1

{
1−R2

indiv

m1 − r1

m1

}
.(2.2)

If we were to observe all T1, ..., Tm, then the variance of the corresponding treat-

ment effect estimator δ̂oTn is given by var(δ̂oTn) = σtt/m0+σtt/m1, while the simple es-

timator based on the observed data that ignores S would have variance σtt/r0+σtt/r1.

The relative efficiency (RE) of δ̂Tn compared with δ̂oTn equals var(δ̂oTn)/var(δ̂Tn).

When σtt and the percentage of missingness are fixed, the single most important fac-

tor in the relative efficiency is R2
indiv. The higher the absolute correlation, the greater

the extent of information recovery from S and the more useful S can be in predicting

the treatment effect. Figure 2.1A plots the efficiency of δ̂Tn relative to δ̂oTn against

different levels of the correlation and missing T when m0 = m1 and r0 = r1. When

the correlation is high, (e.g. R2
indiv > 0.8) and the proportion missing is less than

40%, through the utilization of S, we can obtain the estimate δ̂Tn with precision close

to that based on completely observed T . When the correlation is greater than 0.9,

coupled with even only 10% of available T , we can retrieve much of the information

on the treatment effect from S. However, when S and T are not highly correlated

(e.g., R2
indiv < 0.3), the extent of the information recovery is small. As can be seen

from equation (2.2), there is no gain in efficiency from using S if R2
indiv = 0.

2.3 Multiple Trial Setting

When we can identify a group of trials which have similar treatment groups and

patient populations, it is natural to use a meta-analytic approach to predict the

treatment effect in a new trial. This approach could allow one to account for the

heterogeneity among different trials and borrow information from previous trials to
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improve the efficiency.

2.3.1 The Model

Suppose we have n randomized trials, i = 1, ..., n, where the nth trial is new.

Let (Sij, Tij, Zij) represent S, T , and Z for the individual j in the trial i. We are

interested in predicting the actual treatment effect on T in the new trial (δTn) based

on previous (n−1) existing trials. We adopt a commonly used bivariate mixed model

for the joint distribution of Sij, Tij and Zij:

Sij = α0 + α1Zij + a0i + a1iZij + εSij

Tij = γ0 + γ1Zij + r0i + r1iZij + εT ij(2.3)

where  εSij

εT ij

 ∼MVN


 0

0

 ,Σ =

 σss σst

σtt


 ,(2.4)

and 

a0i

r0i

a1i

r1i


∼MVN





0

0

0

0


, D =



dss dst dsa dsr

dtt dta dtr

daa dar

drr




.(2.5)

With this formulation, the treatment effect in the nth trial is δTn = γ1 + r1n. Let

Y T
i = (Sij, Tij), ε

T
i = (εSij, εT ij), β

T = (α0, γ0, α1, γ1) and ηTi = (a0i, r0i, a1i, r1i). The

model (2.3) can be written in the general mixed model notation as Yi = Xiβ+Uiηi+εi,

where β denotes the fixed effects, ηi denotes the random effects, Xi and Ui are the

corresponding design matrices. The vector Yi follows a bivariate normal distribution

with mean Xiβ and variance Vi = UiDU
t
i + Σi.
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2.3.2 Methods for Predicting the New Treatment Effect δTn

Estimation by Buyse et al. (2000) (BMBRG)

Buyse, Molenberghs, Burzykowski, Renard, and Geys (BMBRG) (2000) assumed

the same model and suggested a method to estimate δTn when T is completely

unobserved in the nth trial. First, they fit a bivariate mixed model to the data from

trial 1 through (n− 1) to obtain the estimates of D and β. Second, they fit a linear

regression Snj = µSn + δSnZnj + εSnj to the surrogate marker in the nth trial. One

then obtains that α̂0n = µ̂Sn − α̂ and α̂1n = δ̂Sn − α̂1. Assuming β, D, a0n and b0n

are known, BMBRG showed that δTn follows a normal distribution with mean

E(δTn) = γ1 +

(
dsr dar

) dss dsa

dsa daa


−1 a0n

a1n

 ,(2.6)

and variance

var(δTn) = drr −
(
dsr dar

) dss dsa

dsa daa


−1 dsr

dar

 .(2.7)

When β, D, a0n and a1n are unknown, their estimates can be used. However, it can

lead to the underestimation of the true variance var(δ̂Tn).

Estimation by Gail et al. (2000) (GPHC)

Gail, Pfeiffer, Houwelingen, and Carroll (GPHC) (2000) proposed to estimate

δTn using an estimating equation approach which does not involve modeling the

joint distribution of (Sij, Tij) at the individual level. The method also addresses

the situation when T is completely missing in the new trial. Let µTT i = (µ0T i, µ1T i)

represent the marginal means of T in the Z = 0 group and the Z = 1 group in the ith

trial, respectively and similarly for µTSi = (µ0Si, µ1Si). GPHC assume that (µ̂TT i, µ̂
T
Si)

T

follows a multivariate normal distribution with the overall mean and covariance φ+ωi,
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where φ is a 4 × 4 matrix representing the between-trial variance and ωi is a 4 × 4

matrix with two block diagonal matrices denoting the within-trial variance for each

treatment group. The elements of µT i, µSi, and φ are connected with the parameters

in the model (2.3) in this way: µ0T i = γ0+r0i, µ1T i = γ0+r0i+γ1+r1i, µ0Si = α0+a0i,

µ1Si = α0+a0i+α1+a1i, φ11 = dtt+dbb+2dtb, φ12 = dts+dab+dta+dsb, φ13 = dtt+dtb,

φ14 = dts + dsb, φ22 = dss + daa + 2dsa, φ23 = dst + dta, φ24 = dss + dsa, φ33 = dtt,

φ34 = dst and φ44 = dss.

GPHC show that µ̂Tn follows a normal distribution with mean

E(µ̂Tn) =

 γ0

γ0 + γ1

+

 φ12 φ14

φ23 φ34


 φ22 + ω22n φ24

φ24 φ44 + ω44n


−1 a0n

a0n + a1n

 ,

and variance

var(µ̂Tn) =

 φ11 φ13

φ13 φ33

−
 φ12 φ14

φ23 φ34


 φ22 + ω22n φ24

φ24 φ44 + ω44n


−1 φ12 φ14

φ23 φ34


T

,

where ω22n denotes the variance corresponding to µ̂0Sn and ω44n for µ̂1Sn.

The treatment effect on T in the new trial, δTn, can be estimated by:

E(δ̂Tn) =

(
−1 1

)
E(µ̂Tn),(2.8)

with variance obtained as

var(δ̂Tn) =

(
−1 1

)
var(µ̂Tn)

 −1

1

 .(2.9)

If we drop the terms w22n and w44n from the GPHC variance formula in (2.9), the

expression becomes idential to the BMBRG variance derivation in (2.7). The GPHC

formula takes into account the uncertainty associated with estimating a0n and a1n

while the BMBRG formula does not. Similar to BMBRG, GPHC also assume that

β and D are known.
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Estimation by Henderson (1984) (HD)

While both BMBRG and GPHC methods only apply to the situation when T is

completely missing in the new trial, the method introduced here can be generalized to

the situations when T is either completely missing, partially missing or completely

observed in the new trial. Using the generalized mixed model notation, we can

obtain the estimates of β and ηn by solving the mixed model equation described by

Henderson (1984) and their sum follow a normal distribution with mean

E(β̂ + η̂n) = β +DUT
n V

−1
n (Yn −Xnβ).(2.10)

and variance

var
(
β̂ + η̂n − β − ηn

)
=

(
n∑
i=1

XT
i V

−1
i Xi

)−1

+D −DUT
n V

−1
n UnD +DUT

n V
−1
n Xn(

n∑
i=1

XT
i V

−1
i Xi

)−1

XT
n V

−1
n UnD − 2DUT

n V
−1
n Xn

(
n∑
i=1

XT
i V

−1
i Xi

)−1

.

The treatment effect for the nth trial has mean

E(δ̂Tn) =

(
0 0 0 1

)
(β + ηn)(2.11)

and variance

var(δ̂Tn) =

(
0 0 0 1

)
var(β̂ + η̂n − β − ηn)

(
0 0 0 1

)T
.(2.12)

Note that η̂n is the best linear unbiased predictor (BLUP) and can be derived as

an empirical Bayes estimator (Laird and Ware, 1982, Robinson, 1991). Different from

GPHC and BMBRG, this variance formula accounts for the uncertainty associated

with estimating β, but it treats D and Σ as known quantities. In an effort to account

for all the uncertainties, GPHC proposed a bootstrap method.
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Bayesian Estimation (denoted by Bayes)

An alternative method to obtain the distributions of the parameters of interest

is a fully Bayesian estimation method which is applicable when T is either partially

missing or completely missing. We assume noninformative priors for the fixed effects,

i.e., p(α0) ∝ 1, p(γ0) ∝ 1, p(α1) ∝ 1, and p(γ1) ∝ 1, and vague priors for the

rest of parameters, specifically, Σ−1 ∼ W (a,E) and D−1 ∼ W (c, F ), where W

refers to the Wishart distribution. We can choose a = 3, c = 5, E = (a + 1)−1I2

and F = (c + 1)−1I4. A data augmentation method can be used to implement

the procedure by iterating the following step 1 and 2 until the parameters reach

convergence:

Step 1: Impute missing Tnj’s from a normal distribution with mean and variance:

E(Tnj|Snj, Znj) = γ0 + r0n − σstσ−1
ss (α0 + a0n)

+ (γ1 + r1n − σstσ−1
ss (α1 + a1n))Znj + σstσ

−1
ss Snj,

V ar(Tnj|Snj, Znj) = σtt − σ2
stσ
−1
ss

Step 2: Treat the data after imputation as complete data, and apply Gibbs sampling

to estimate the parameters of interest:

p(D−1|η) ∝ W (n+ c, (
n∑
i=1

ηiη
T
i + F−1)−1)

p(Σ−1|X, Y, Z, β, η) ∝ W (
n∑
i=1

mi + a, (V S + E−1)−1)

p(ηi|X, Y, Z,Σ, D) ∝ MVN(V E × (

mi∑
j=1

ZT
ijΣ
−1(Yij −Xijβ)), V E)

p(β|X, Y, Z, ηi,Σ) ∝ MVN(V B × (
n∑
i=1

mi∑
j=1

XijΣ
−1(Yij − Uijηi)), V B)
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where,

V S =
n∑
i=1

mi∑
j=1

(Yij −Xijβ − Uijηi)(Yij −Xijβ − Uijηi)T ,

V B = (
n∑
i=1

mi∑
j=1

XT
ijΣ
−1Xij)

−1,

V E = (

mi∑
j=1

UT
ijΣ
−1Uij +D−1)−1.

From the distributions of β and ηi, we can obtain the distribution of δTn. The

Bayesian estimation method naturally takes into consideration of the uncertainty

associated with estimating every parameter (Louis and Zelterman (1994)), but it is

sensitive to the prior specifications. It is computationally challenging to conduct

extensive simulations to evaluate the properties of this method, as such, we do not

present the simulation results in this report; however, it is very feasible to analyze

data using this method.

2.3.3 Efficiency Gain and Correlation

In this section, we study the precision of the predicted treatment effects (δ̂Tn) and

the factors that impact it, particularly, the correlation between S and T .

Correlation

In a multiple trial setting, with a bivariate mixed model assumption, the treatment

adjusted individual-level or within-trial correlation between S and T is R2
indiv, with

the same definition as that in a single trial setting. The trial-level correlation between

S and T is defined by Buyse et al. (2001) as

R2
trial =

(
dsr dar

) dss dsa

dsa daa


−1 dsr

dar


drr

.
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The within-trial correlation R2
indiv captures the relationship between S and T at the

individual level. When R2
indiv = 1, S has the perfect linear association with T . The

between-trial correlation R2
trial assesses how well the treatment effect on T in the

new trial can be predicted by the treatment effects on S. When R2
trial = 1, it implies

that the treatment effect on T in the ith trial can be predicted without error from

the treatment effect on S. While the trial-level correlation is identified as the key

factor that impacts the degree of efficiency gain from S in the research by Buyse et

al. (2000) and Gail et al (2000), as we shall see in the following, we identify that

the individual-level correlation plays an even more important role than the trial-

level correlation in obtaining substantial efficiency gain from S with respect to the

estimated treatment effect on T when T is partially observed.

Prediction Precision and Correlation

Motivated by the fact that the estimate of β + ηi in (2.10) can be obtained as

the posterior mean of its posterior distribution when flat priors are assumed for β

(Harville, 1976; Laird and Ware, 1982), in the following we calculate the posterior

variance of δTn for the purpose of examining the factors that impact the precision

of the estimated treatment effect with the same prior specifications. Let r be the

number of patients in the new trial on whom we have information on both S and T .

Assume β, D and Σ are known quantities, we obtain the posterior variance of δTn as

(details in Appendix):

var(δTn) =

(
0 1

)(
Ψ−1
d + Φ−1

e

)−1

 0

1

 ,(2.13)

where, Ψd is a function only of the between-trial covariances given by Ψ11−Ψ12Ψ−1
22 Ψ21

and Φe is a function only of the within-trial covariances given by Φe =

 φ11 φ12

φ12 φ22

.
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The elements of Ψd and Φe are listed below:

Ψ11 =

 dtt dtr

dtr drr

 , Ψ12 =

 dst dta

dsr dar

 , Ψ21 =

 dst dsr

dsr dar

 ,

Ψ22 =

 dss dsa

dsa daa

 , φ11 =
(σtt(1−R2

indiv))
∑r

j=1 Z
2
nj

r
∑r

j=1 Z
2
nj − (

∑r
j=1 Znj)

2
,

φ12 =
(σtt(1−R2

indiv))
∑r

j=1 Znj

r
∑r

j=1 Z
2
nj − (

∑r
j=1 Znj)

2
, φ22 =

r(σtt(1−R2
indiv))

r
∑r

j=1 Z
2
nj − (

∑r
j=1 Znj)

2
.

When there is equal number of patients per treatment group in the new trial, the

estimates of Φe simplifies to

φ11 =
2σtt(1−R2

indiv)

r
, φ12 =

2σtt(1−R2
indiv)

r
, φ22 =

4σtt(1−R2
indiv)

r
.

When T is completely missing in the nth trial, i.e., r = 0, the conditional variance

simplifies to:

var(δTn) =

(
0 1

)
Ψd

(
0 1

)T
= drr

(
1−R2

trial

)
,(2.14)

an expression equivalent to the variance formula in (2.7). From this, when T is

completely missing in the new trial, the factors that determine the precision of the

predictor of the treatment effect on T areR2
trial and drr. When T is partially observed,

the additional important factors are within-trial level including R2
indiv, σtt and r. We

also find that since the within-trial covariances in Φe are usually significantly smaller

than the between-trial covariances in Ψd, Φe dominates and Ψd has almost negligible

impact on the conditional variance of δ̂Tn in (2.13).

Note that the conditional posterior variance in equations (2.13) and (2.14) under-

estimate the prediction variance because they treat β, D, and Σ as known quantities.

Morris (1983) and Ghosh and Rao (1994) showed that a better estimate of the pre-

diction variance can be obtained by adding to the conditional posterior variance a
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second term that takes into account the uncertainty about all parameters. However,

our simulation studies show that the conditional variance usually accounts for the

majority of the total variance, and a comparison between (2.13) and (2.14) should

suffice to provide algebraic intuition about the prediction variance.

2.3.4 Simulations

The Setup

We conduct simulation studies to evaluate the bias, efficiency and coverage rates

of the confidence intervals for the predicted treatment effect in a new trial using

the above methods. For comparison purposes, we also estimate δTn based on all

of T before any missingness occurs in the new trial using two approaches: 1) the

simple estimate without any distributional assumption, (denoted by ALLSE). That

is, δ̂Tn =
∑

k Tnk1/mn1 −
∑

l Tnl0/mn0, where Tnk1 represents T on patient k in the

Z = 1 group in the nth trial and similarly for Tnl0, mn1 represents the number of

patients in the Z = 1 group in the nth trial and similarly for mn0. 2) the estimate

and its variance obtained using formulae in (2.11) and (2.12) assuming the bivariate

mixed model (denoted by ALLHD). When appropriate, we also estimate δTn solely

based on the observed and incomplete T in the nth trial using the simple estimation

method in the same way as in 1) (denoted by INSE).

We generate 800 data sets based on the bivariate mixed model in (2.3). The

parameter specifications are: βT = (1, 2, 1, 1), dss = 0.5, dtt = 0.2, daa = 3.5 and

drr = 1.6, σss = 1 and σtt = 0.3. To examine the impact of the trial-level correlation,

we vary the correlation matrices for the random effects:



1 0.57 0.37 0.22

0.57 1 0.24 0.21

0.37 0.24 1 0.3

0.22 0.21 0.3 1


,
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

1 0.57 0.37 0.22

0.57 1 0.24 0.21

0.37 0.24 1 0.7

0.22 0.21 0.7 1


, and



1 0.57 0.37 0.22

0.57 1 0.24 0.21

0.37 0.24 1 0.9

0.22 0.21 0.9 1


, which correspond to

the trial-level correlations of R2
trial = 0.1, 0.5 and 0.8, respectively. To examine the

impact of the individual-level correlation, we vary R2
indiv from 0.1, 0.5, to 0.9. We

vary n, m, and the percentage of missingness in the new trial (denoted by p). For

each data set, we have a true treatment effect δTn and its average across 800 data

sets is δ̄Tn. For each data set and each method used, we obtain the estimate of δ̂Tn,

its standard error and an indicator variable for whether the 95% confidence interval

contains δTn or not. We examine the method’s performance by its average bias

(Bias =
¯̂
δTn − δ̄Tn), the average standard error (SE), the rooted mean squared error

(RMSE =

√∑
(δ̂Tn − δTn)2/800), and the coverage rate (CR) over all simulated data

sets. The relative efficiency (RE) of two estimators is approximated as the inverse

of the ratio of the two corresponding RMSE2s, because we will see all estimates are

unbiased.

Information Recovery from S When T is Completely Missing in the New Trial

In Tables 2.1, 2.2, and 2.3, we present Bias, RMSE, SE and CR of the estimates

of δTn using all five methods: ALLSE, ALLHD, BMBRG, GPHC, and HD from

simulations with various combinations of n, m, R2
indiv, and R2

trial. We vary m and

R2
indiv in Table 2.1, n and R2

indiv in Table 2.2, R2
indiv and R2

trial in Table 2.3. All five

methods produce unbiased estimates. When T is completely missing in the new trial,

BMBRG, GPHC and HD all underestimate the variances of δ̂Tn which lead to lower

than the 95% nominal level of coverage rates. HD appears to give slightly higher CRs

than GPHC; GPHC generates slightly higher CRs than BMBRG. When the number
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of trials n is relatively small, the extent of underestimation can be more severe, with

less than 90% coverage rate. Comparing ALLSE with ALLHD, we have a slightly

more precise estimate from ALLHD than that from ALLSE, and the efficiency gain

from the bivariate normal assumption is small. There is a minor gain in the precision

when the patient size per trial and the number of trials increase. Figure 2.1B shows

the relatively efficiency of δ̂Tn when T is completely missing in the new trial compared

to the estimate before any deletion in T occurs using the HD method as we vary

R2
indiv and R2

trial. We find that while the increases in R2
indiv have negligible impact on

the precision, the increase in R2
trial can improve the precision more than any other

factor. These findings agree with the algebraic intuition from the variance formula

in (2.14). Relative to the estimate based on completely observed data, the relative

efficiency varies from 0.7%, 1.2% to 3.4% as we increase R2
trial from 0.1, 0.5 to 0.8.

As a result, when we completely rely on S and summary statistics from previous

trials to predict the treatment effect on T in the new trial, the extent of information

recovery is very limited and the precision of δ̂Tn is often insufficient to be clinically

useful.

Information Recovery from S when T is Partially Observed in the New Trial

We consider the situation when 50% of T in the new trial are observed. The

HD method still applies although GPHC and BMBRG are not applicable anymore.

Tables 2.4, 2.5 and 2.6 list Bias, RMSE, SE and CR of δ̂Tn from simulations under

various combinations of n, m, R2
indiv and R2

trial. We vary m and R2
indiv in Table 2.4,

n and R2
indiv in Table 2.5, R2

indiv and R2
trial in Table 2.6. Different from before, when

T is 50% observed, the underestimation of the variance of δ̂Tn using HD is negligible

and the CR is close to or at the 95% nominal level, even when the number of trials

is relatively small, such as n = 10. While a greater number of trials does not lead to
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higher precision of the estimate, the increase in the number of patients per trial can

improve the precision when R2
indiv is high. Figure 2.1C presents the relative efficiency

of δ̂Tn when T is 50% missing compared with the estimate before any deletion of T

using the HD method. We find that higher R2
indiv can lead to a large gain of efficiency

from the use of S. When R2
indiv is large (e.g., 0.7 or 0.9), most of the information

on δTn is recovered from S and the precision of the estimate is close to the estimate

when T is completely observed. On the other hand, the magnitude of R2
trial does not

have any impact on the amount of efficiency gain from S. The observations here are

in agreement with the variance formula in (2.13).

Information Recovery and Percentage of Missingness

We examine further the relationship between the extent of information recovery

by incorporating S and the percentage of observed T using the HD method. Let

R2
trial = 0.5, n = 40, m = 100 and the percentage of observed T varies from 0%, 10%,

30%, 50%, 80%, to 100%. Table 2.7 presents Bias, RMSE, SE and CR of δ̂Tn. Figure

2.1D lists the relative efficiency of δ̂Tn when T is partially missing compared with the

estimate before any deletion of T . Naturally, the higher the proportion of available

T , the smaller the RMSE, and thus the greater the precision for the treatment effect

prediction. Interestingly, we find that there is a substantial efficiency gain from

the information on S with even a small fraction of observed T , particularly when

R2
indiv is high. For example, when 30% T are observed, the lost information due to

missingness is almost completely recovered from S when R2
indiv = 0.9.

2.3.5 Data Analysis: a Glaucoma Study

The evaluation of the extent of information recovery from S in predicting the

treatment effect on T in a new trial is illustrated using the Collaborative Initial
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Glaucoma Treatment Study (CIGTS) (Musch et al, 1999). Glaucoma is a group of

diseases that cause vision loss and is a leading cause of blindness. High pressure in

the eyes, i.e. intraocular pressure (IOP), is a major risk factor of glaucoma. The

CIGTS is a randomized multicenter clinical trial to compare the effects of two types

of treatments, surgery and medicine, on reducing IOP among glaucoma patients.

Patients are enrolled between 1993 and 1997. A total of 607 patients are included

in the study and among them, 307 are randomly assigned into the medicine group.

IOP (recorded in mmHg) has been measured at different time points following the

treatment. For the purpose of this paper, we take the true endpoint to be the IOP

measurement at month 96 and the surrogate marker to be the IOP measurement at

the 12th month. We assume that the IOP measurements are normally distributed.

To evaluate the situation of a meta-analysis where data are from different trials;

we treat the different centers in the CIGTS study as independent trials testing a

similar group of treatments. A preliminary analysis of these data shows that the

estimate of the between-trial variances, D̂, is non-positive definite. Mimicking the

approach of Gail et. al. (2000), we rescale up the data size by simulating Sij and

Tij from bivariate normal distributions for each trial and treatment group with the

trial-specific and treatment-specific means and variance-covariances from the real

data. The CIGTS study includes 14 centers and from which we delete five centers

(i.e., 5, 7, 12, 13, 14) either because they had too few observations or because of

non-positive definite covariance matrices within center. We also deleted two outliers

that are greater than 35mmHg. For the n = 9 centers included, we increase the

sample sizes to 335, 176, 385, 264, 539, 368, 286, 528, and 319. The trial-specific

and treatment-specific means and correlations for S and T are listed in Table 2.8.

The HD method is used to fit the rescaled data with D̂ as being positive definite,
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R̂2
trial = 0.25 and R̂2

indiv = 0.15. We randomly select Center 8 as the new trial and

randomly delete some proportion of T in Center 8 to examine the extent of efficiency

gain through the use of S. The missing mechanism is missing completely at random

(Little and Rubin, 2002). The results are listed in Table 2.9. Without missing T , δ̂Tn

is −2.45 with the standard error of 0.29. When T is completely missing, δ̂Tn is −1.58

with the standard error of 0.79. When 20% or 50% of T are missing, the precision

of δ̂Tn using S is comparable to that based on completely observed T . Even with

80% missing, the SE is substantially smaller than that when 100% T is missing. For

further illustration, when Center 9 is treated as a new trial and we obtain similar

results.

2.4 Discussion

In this report, we examine the role of surrogate markers as auxiliary variables in

predicting the treatment effect and identify situations when surrogate markers can

be beneficial when S and T are continuous in either a single-trial or multiple-trial

setting. While previous literature on the use of surrogate markers as substitutes for

the true endpoints has been mostly negative and the proposed surrogate measures

are often not useful in practice, we show that it is possible for surrogate markers

to be useful as auxiliary variables in enhancing the inference on the true endpoint.

Although high correlation between S and T does not qualify S as a good surrogate

(Baker and Kramer, 2003), we show that the correlation is a critical measure in

determining the extent of information recovery from S.

In a single trial, the amount of efficiency gain through S is small except in rare

occasions when the correlation between S and T is extremely high. In a multiple

trial setting, when T is completely unobserved, R2
indiv plays little role in the amount
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of information recovered from S; on the other hand, the higher the R2
trial, the higher

the efficiency gain from S. However, even with a high R2
trial, the predicted treatment

effect based on data from other trials and surrogate markers in the new trial solely

can be too imprecise to be clinically useful. On the contrary, when T is partially

observed in the new trial, we find that a high R2
indiv is a very important determinant

in increasing the precision of the predicted treatment effect from S but the impact of

R2
trial is negligible. With even a small fraction of T and a high R2

indiv, the information

on the treatment effect is mostly recovered and the prediction precision is close to

that when T is completely observed. It appears that some data on T are essential to

provide the basis for individual-level predictions of T from S using the distributional

assumption, and hence to give a much more efficient treatment estimate. The impor-

tance of R2
indiv in prediction differs from that in a single trial setting. In a single trial

setting, in general the amount of information that can be recovered from S when T is

partially observed is limited, and only noteworthy if the correlation between S and T

is much higher than that in a multiple trial setting. When T is completely missing,

we compare the BMBRG, GPHC and HD methods. Each method gave unbiased

estimates; but the variances were underestimated, particularly when the number of

the trials was small. Either a bootstrap or fully Bayesian methods could remedy this

problem. When T is partially observed, the underestimation from the HD method

becomes negligible.

The data example used for illustration purposes could be more ideal as we treat

the multi-center glaucoma data as a multi-trial data and rescale up the real data.

While the sharing of the clinical trial data is currently limited, our results can be

generalizable. When it becomes more common for pharmaceutical companies or

universities to share clinical trial data publicly, further exploration of the use of
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surrogate markers would be of great interest and importance. Acknowledging the

limitations associated with finite number of simulations, we do provide evidence that

the use of the surrogate markers can be promising in terms of early treatment effect

predictions.

In our study, we consider continuous S and T . It is likely that our findings can

apply to cases when S and T are other types of data such as binary, categorical and

time-to-event. Efficiency gains from S are also possibly substantial with parametric

models that assume a very close and structural relationship between a surrogate

marker and a true endpoint. For example, with a three-stage model specification

for a time-to-event surrogate marker and a true endpoint, Cook and Lawless (2001)

showed that one can achieve significant efficiency gains by using a surrogate marker.

In conclusion, surrogate markers would seem to have a more useful role as auxiliary

variables than as replacements of the true endpoint. Future research should focus

on the role of surrogate markers as auxiliary variables, to identify scenarios when

the surrogate marker can increase the precision of the treatment effect. For design

purposes, our results suggest that it is important to collect at least some data on the

true endpoint and more information on the surrogate marker which has high adjusted

individual-level correlation with the true endpoint. With appropriate utilization of

high quality surrogate markers in estimating the treatment effect when the true

endpoint is not completely observed, one can reach a desired level of precision earlier,

hence shortening the study period and reducing the cost of a study.
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2.5 Appendix: Conditional Posterior Variance of δTn

The HD estimate of δTn in (2.10) can be interpreted as a posterior mode estimate

when we assume flat priors for the fixed effects and multivariate normal priors for the

random effects. When β, D and Σ are known, the conditional posterior variance of

δTn can approximate the variance of δ̂Tn (Ghosh and Rao, 1994). Let α0 +a0i = µ0Si,

γ0 + r0i = µ0Ti, α1 + a1i = δSi and γ1 + r1i = δT i, we can rewrite the model (2.3) as

Sij = µ0Si + δSiZij + εSij

Tij = µ0T i + δT iZij + εT ij.
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Assume there are r observations with both S and T observed and mn−r observations

with just S observed in the nth trial. The likelihood can be written as:

L(φ|S, T, Z)

=

{
n−1∏
i=1

[
mi∏
j=1

N(Yij|β, ηi,Σ, D, Zij)

]}
{

r∏
j=1

N(Yij|ηi, β, Zij,Σ, D)
mn−r∏
j=1

N(Snj|µ0sn, δsn, Znj, σss)

}

=
n−1∏
i=1

 mi∏
j=1

1√
2π|Σ|1/2

exp

−
1

2

 Sij − µ0Si − δSiZij

Tij − µ0T i − δT iZij


T

Σ−1

 Sij − µ0Si − δSiZij

Tij − µ0T i − δT iZij





r∏
j=1

1√
2π|Σ|1/2

exp

−
1

2

 Snj − µ0Sn − δSnZnj

Tnj − µ0Tn − δTnZnj


T

Σ−1

 Snj − µ0Sn − δSnZnj

Tnj − µ0Tn − δTnZnj




mn−r∏
j=1

1
√

2πσ
1/2
ss

exp

{
−1

2
(Snj − µ0Sn − δSnZnj)2

}

n∏
i=1

1√
2π|D|1/2

exp


−1

2



µ0Si − α0

µ0T i − γ0

δSi − α1

δT i − γ1



T

D−1



µ0Si − α0

µ0T i − γ0

δSi − α1

δT i − γ1




,

which is equivalent to the expression of likelihood× prior when assuming flat priors

for the fixed effects and multivariate normal distributions for the random effects.

The conditional posterior distributions of µ0Tn and δTn given the data and all other
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parameters are proportional to:

µ0Tn

δTn

|· ∝
r∏
j=1

1√
2π|Σ|1/2

exp

{
−1

2
MET × Σ−1 ×ME

}

1√
2π|D|1/2

exp


−1

2



µ0Sn − α0

µ0Tn − γ0

δSn − α1

δTn − γ1



T

D−1



µ0Sn − α0

µ0Tn − γ0

δSn − α1

δTn − γ1




∝ exp

{
−1

2

r∑
j=1

[
Tnj − µ0Tn − δTnZnj − σstσ−1

ss (Snj − µ0Sn − αnZnj)
]2 × q−1

}

× exp

{
−1

2
MDT × (Ψ11 −Ψ12Ψ−1

22 Ψ21)−1 ×MD

}
= A×B.(2.15)

where

Ψ11 =

 dtt dtr

dtr drr

 ,Ψ12 =

 dst dta

dsr dar

 ,Ψ21 =

 dst dsr

dta dar

 ,Ψ22 =

 dss dsa

dsa daa

 ,

ME =

 Snj − µ0Sn − δSnZnj

Tnj − µ0Tn − δTnZnj

 ,MD =

 µ0Tn − γ0

δTn − γ1

−Ψ12Ψ−1
22

 µ0Sn − α0

δSn − α1

 .

and q = σtt − σ2
stσ
−1
ss .

The covariance contribution for µ0Tn and δTn from term B is Ψd = Ψ11−Ψ12Ψ−1
22 Ψ21.

We define Qnj = Tnj − σstσ−1
ss (Snj − µ0Sn − αnZnj). From (2.15),

A = exp

{
−1

2

∑
(Qnj − µ0Tn − δTnZnj)2q−1

}
= exp

{
−1

2

[∑
Z2
nj

q
δ2
Tn +

r

q
µ2

0Tn +

∑
Q2
nj

q
− 2

µ0Tn

∑
Qnj

q

−2
δTn
∑
ZnjQnj

q
+ 2

µ0TnδTn
∑
Znj

q

]}
.



32

A is proportional to a bivariate normal density. The covariance contribution from

term A is defined as Φe =

 φ11 φ12

φ12 φ22

, where

φ11 =
(σtt − σ2

stσ
−1
ss )
∑r

j=1 Z
2
nj

r
∑r

j=1 Z
2
nj − (

∑r
j=1 Znj)

2
,

φ12 =
(σtt − σ2

stσ
−1
ss )
∑r

j=1 Znj

r
∑r

j=1 Z
2
nj − (

∑r
j=1 Znj)

2
,

φ22 =
a(σtt − σ2

stσ
−1
ss )

r
∑r

j=1 Z
2
nj − (

∑r
j=1 Znj)

2
.

Combining the variance contributions from terms A and B, we can obtain the poste-

rior conditional covariance for µ0Tn and δTn as:
(
Φ−1
e + Ψ−1

d

)−1
. The corresponding

conditional posterior variance for δ̂Tn − δTn is ( 0 1 )
(
Φ−1
e + Ψ−1

d

)−1
( 0 1 )T .
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R2
trial R2

indiv n m True Methods Bias RMSE SE CR

0.5 0.1 40 100 1.007 ALLSE -0.002 0.111 0.109 94.9
1.007 ALLHD -0.002 0.109 0.107 94.1
1.007 HD 0.005 0.958 0.886 92.8
1.007 GPHC 0.005 0.957 0.880 92.4
1.007 BMBRG 0.005 0.961 0.868 92.5

0.5 0.5 40 100 1.007 ALLSE -0.004 0.109 0.109 95.8
1.007 ALLHD -0.004 0.108 0.108 95.3
1.007 HD 0.005 0.957 0.886 92.6
1.007 GPHC 0.006 0.957 0.876 92.4
1.007 BMBRG 0.006 0.961 0.868 92.3

0.5 0.9 40 100 1.007 ALLSE -0.006 0.109 0.109 94.8
1.007 ALLHD -0.005 0.107 0.107 94.8
1.007 HD 0.006 0.957 0.886 92.4
1.007 GPHC 0.006 0.957 0.871 92.3
1.007 BMBRG 0.006 0.960 0.868 92.0

0.5 0.1 40 300 1.007 ALLSE 0.002 0.064 0.063 95.4
1.007 ALLHD 0.002 0.063 0.063 95.5
1.007 HD 0.008 0.922 0.881 93.5
1.007 GPHC 0.008 0.922 0.872 93.5
1.007 BMBRG 0.008 0.923 0.868 93.3

0.5 0.5 40 300 1.007 ALLSE 0.003 0.063 0.063 94.4
1.007 ALLHD 0.003 0.062 0.063 94.8
1.007 HD 0.008 0.922 0.881 93.5
1.007 GPHC 0.008 0.922 0.871 93.4
1.007 BMBRG 0.008 0.923 0.868 93.3

0.5 0.9 40 300 1.007 ALLSE 0.002 0.061 0.063 95.6
1.007 ALLHD 0.002 0.061 0.063 95.6
1.007 HD 0.008 0.922 0.881 93.5
1.007 GPHC 0.008 0.922 0.869 93.3
1.007 BMBRG 0.008 0.923 0.868 93.0

Table 2.1: Impact of R2
indiv and m on δ̂Tn when T is Completely Missing in a Meta-Analytic Setting.

Results are from 800 simulation data. βT = (1, 2, 1, 1), dss = 0.5, dtt = 0.2, daa = 3.5
and drr = 1.6, σss = 1 and σtt = 0.3.
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R2
trial R2

indiv n m True Methods Bias RMSE SE CR

0.5 0.1 15 100 1.007 ALLSE -0.002 0.111 0.109 94.9
1.007 ALLHD -0.002 0.111 0.107 93.8
1.007 HD 0.015 1.014 0.840 88
1.007 GPHC 0.015 1.014 0.818 87.1
1.007 BMBRG 0.016 1.028 0.800 86.1

0.5 0.5 15 100 1.007 ALLSE -0.004 0.109 0.109 95.8
1.007 ALLHD -0.004 0.109 0.107 94.9
1.007 HD 0.016 1.013 0.841 88.1
1.007 GPHC 0.016 1.012 0.814 86.6
1.007 BMBRG 0.017 1.025 0.802 86

0.5 0.9 15 100 1.007 ALLSE -0.006 0.109 0.109 94.8
1.007 ALLHD -0.005 0.108 0.106 93.4
1.007 HD 0.016 1.010 0.843 88.5
1.007 GPHC 0.016 1.010 0.810 86.3
1.007 BMBRG 0.017 1.023 0.804 86.1

0.5 0.1 55 100 1.007 ALLSE -0.002 0.111 0.109 94.9
1.007 ALLHD -0.002 0.109 0.108 93.6
1.007 HD -0.013 0.943 0.894 93.6
1.007 GPHC -0.012 0.943 0.891 93.6
1.007 BMBRG -0.012 0.945 0.879 93.3

0.5 0.5 55 100 1.007 ALLSE -0.004 0.109 0.109 95.8
1.007 ALLHD -0.004 0.108 0.108 95.4
1.007 HD -0.013 0.943 0.894 93.6
1.007 GPHC -0.013 0.943 0.887 93.5
1.007 BMBRG -0.012 0.945 0.879 93.3

0.5 0.9 55 100 1.007 ALLSE -0.006 0.109 0.109 94.8
1.007 ALLHD -0.005 0.107 0.107 94.5
1.007 HD -0.013 0.943 0.894 93.6
1.007 GPHC -0.013 0.944 0.882 93.3
1.007 BMBRG -0.012 0.946 0.880 93.3

Table 2.2: Impact of R2
indiv and n on δ̂Tn when T is Completely Missing in a Meta-Analytic Setting.

Results are from 800 simulation data. βT = (1, 2, 1, 1), dss = 0.5, dtt = 0.2, daa = 3.5
and drr = 1.6, σss = 1 and σtt = 0.3.
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R2
trial R2

indiv n m True Methods Bias RMSE SE CR

0.1 0.1 40 100 1.002 ALLSE -0.002 0.111 0.109 94.9
1.002 ALLHD -0.002 0.110 0.108 94
1.002 HD 0.014 1.260 1.168 93
1.002 GPHC 0.014 1.260 1.156 92.9
1.002 BMBRG 0.014 1.263 1.152 92.6

0.1 0.5 40 100 1.002 ALLSE -0.004 0.109 0.109 95.8
1.002 ALLHD -0.004 0.108 0.108 95.4
1.002 HD 0.014 1.260 1.168 92.9
1.002 GPHC 0.014 1.260 1.156 92.9
1.002 BMBRG 0.015 1.263 1.152 92.9

0.1 0.9 40 100 1.002 ALLSE -0.006 0.109 0.109 94.8
1.002 ALLHD -0.005 0.107 0.107 94.1
1.002 HD 0.014 1.260 1.168 92.8
1.002 GPHC 0.014 1.260 1.156 92.8
1.002 BMBRG 0.015 1.263 1.152 92.6

0.8 0.1 40 100 1.010 ALLSE -0.002 0.111 0.109 94.9
1.010 ALLHD -0.002 0.108 0.106 94.1
1.010 HD -0.001 0.585 0.538 93.1
1.010 GPHC -0.001 0.584 0.541 93.1
1.010 BMBRG -0.002 0.588 0.509 91.3

0.8 0.5 40 100 1.010 ALLSE -0.004 0.109 0.109 95.8
1.010 ALLHD -0.004 0.108 0.108 95.4
1.010 HD -0.001 0.584 0.538 93.1
1.010 GPHC -0.001 0.584 0.531 92.9
1.010 BMBRG -0.001 0.587 0.510 91.5

0.8 0.9 40 100 1.010 ALLSE -0.006 0.109 0.109 94.8
1.010 ALLHD -0.005 0.107 0.107 94.8
1.010 HD -0.001 0.583 0.539 92.9
1.010 GPHC -0.001 0.583 0.519 92.4
1.010 BMBRG -0.001 0.586 0.511 91.6

Table 2.3: Impact of R2
indiv and R2

trial on δ̂Tn when T is Completely Missing in a Meta-Analytic
Setting. Results are from 800 simulation data. βT = (1, 2, 1, 1), dss = 0.5, dtt = 0.2,
daa = 3.5 and drr = 1.6, σss = 1 and σtt = 0.3.
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R2
trial R2

indiv n m True Methods Bias RMSE SE CR

0.5 0.1 40 100 1.007 ALLSE 0.002 0.111 0.109 94.9
1.007 ALLHD 0.002 0.109 0.107 95.4
1.007 INSE 0.007 0.158 0.154 94.6
1.007 HD 0.007 0.153 0.149 94.5

0.5 0.5 40 100 1.007 ALLSE 0.004 0.109 0.109 95.8
1.007 ALLHD 0.004 0.108 0.108 95.3
1.007 INSE 0.008 0.157 0.154 93.4
1.007 HD 0.008 0.144 0.141 94.1

0.5 0.9 40 100 1.007 ALLSE 0.006 0.109 0.109 94.8
1.007 ALLHD 0.005 0.107 0.107 95.1
1.007 INSE 0.006 0.155 0.154 94.6
1.007 HD 0.008 0.118 0.117 94.6

0.5 0.1 40 300 1.064 ALLSE -0.005 0.066 0.063 93.5
1.064 ALLHD -0.005 0.066 0.063 93.1
1.064 INSE -0.003 0.091 0.089 95.1
1.064 HD -0.003 0.090 0.088 94.4

0.5 0.5 40 300 1.064 ALLSE -0.005 0.064 0.063 93.1
1.064 ALLHD -0.005 0.064 0.063 92.5
1.064 INSE -0.004 0.089 0.089 94.1
1.064 HD -0.003 0.083 0.083 95.1

0.5 0.9 40 300 1.064 ALLSE -0.003 0.061 0.063 96.7
1.064 ALLHD -0.003 0.061 0.063 96.4
1.064 INSE -0.003 0.088 0.089 95.4
1.064 HD -0.002 0.066 0.069 96.4

Table 2.4: Impact of R2
indiv and m on δ̂Tn when 50% of T is Missing in a Meta-Analytic Setting.

Results are from 800 simulation data. βT = (1, 2, 1, 1), dss = 0.5, dtt = 0.2, daa = 3.5
and drr = 1.6, σss = 1 and σtt = 0.3.
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R2
trial R2

indiv n m True Methods Bias RMSE SE CR

0.5 0.1 10 100 1.007 ALLSE 0.002 0.111 0.109 94.9
1.007 ALLHD 0.002 0.111 0.106 94.5
1.007 INSE 0.007 0.158 0.154 94.6
1.007 HD 0.006 0.158 0.144 92.1

0.5 0.5 10 100 1.007 ALLSE 0.004 0.109 0.109 95.8
1.007 ALLHD 0.003 0.109 0.106 95.1
1.007 INSE 0.008 0.157 0.154 93.4
1.007 HD 0.007 0.148 0.138 92.8

0.5 0.9 10 100 1.007 ALLSE 0.006 0.109 0.109 94.8
1.007 ALLHD 0.004 0.109 0.104 93.4
1.007 INSE 0.006 0.155 0.154 94.6
1.007 HD 0.006 0.121 0.114 93

0.5 0.1 55 100 1.007 ALLSE 0.002 0.111 0.109 94.9
1.007 ALLHD 0.002 0.110 0.108 95.3
1.007 INSE 0.007 0.158 0.154 94.6
1.007 HD 0.007 0.153 0.149 94

0.5 0.5 55 100 1.007 ALLSE 0.004 0.109 0.109 95.8
1.007 ALLHD 0.004 0.108 0.108 95.1
1.007 INSE 0.008 0.157 0.154 93.4
1.007 HD 0.008 0.144 0.141 94.6

0.5 0.9 55 100 1.007 ALLSE 0.006 0.109 0.109 94.8
1.007 ALLHD 0.005 0.107 0.107 94.9
1.007 INSE 0.006 0.155 0.154 94.6
1.007 HD 0.008 0.118 0.117 94.6

Table 2.5: Impact of R2
indiv and n on δ̂Tn when 50% of T is Missing in a Meta-Analytic Setting.

Results are from 800 simulation data. βT = (1, 2, 1, 1), dss = 0.5, dtt = 0.2, daa = 3.5
and drr = 1.6, σss = 1 and σtt = 0.3.
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R2
trial R2

indiv n m True Methods Bias RMSE SE CR

0.1 0.1 40 100 1.007 ALLSE -0.003 0.111 0.109 94.9
1.007 ALLHD -0.003 0.110 0.108 95.3
1.007 INSE 0.002 0.158 0.154 94.6
1.007 HD 0.002 0.153 0.149 94

0.1 0.5 40 100 1.007 ALLSE -0.001 0.109 0.109 95.8
1.007 ALLHD -0.001 0.108 0.108 95.4
1.007 INSE 0.002 0.157 0.154 93.4
1.007 HD 0.003 0.144 0.141 94.4

0.1 0.9 40 100 1.007 ALLSE 0.001 0.109 0.109 94.8
1.007 ALLHD 0.000 0.107 0.107 95.3
1.007 INSE 0.001 0.155 0.154 94.6
1.007 HD 0.002 0.118 0.116 94.6

0.8 0.1 40 100 1.007 ALLSE 0.005 0.111 0.109 94.9
1.007 ALLHD 0.005 0.108 0.106 95.5
1.007 INSE 0.010 0.158 0.154 94.6
1.007 HD 0.010 0.150 0.145 94.1

0.8 0.5 40 100 1.007 ALLSE 0.007 0.109 0.109 95.8
1.007 ALLHD 0.007 0.108 0.108 95.1
1.007 INSE 0.010 0.157 0.154 93.4
1.007 HD 0.011 0.143 0.140 94.1

0.8 0.9 40 100 1.007 ALLSE 0.008 0.109 0.109 94.8
1.007 ALLHD 0.008 0.107 0.107 95.1
1.007 INSE 0.008 0.155 0.154 94.6
1.007 HD 0.010 0.118 0.117 94.8

Table 2.6: Impact of R2
indiv and R2

trial on δ̂Tn when 50% of T is Missing in a Meta-Analytic Setting.
Results are from 800 simulation data. βT = (1, 2, 1, 1), dss = 0.5, dtt = 0.2, daa = 3.5
and drr = 1.6, σss = 1 and σtt = 0.3.
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p R2
trial R2

indiv n m True Methods Bias RMSE SE CR

100% 0.5 0.1 40 100 1.007 ALLSE 0.002 0.111 0.109 94.9
1.007 HD 0.002 0.109 0.107 95.4

0.5 0.5 40 100 1.007 ALLSE 0.004 0.109 0.109 95.8
1.007 HD 0.004 0.108 0.108 95.3

0.5 0.9 40 100 1.007 ALLSE 0.006 0.109 0.109 94.8
1.007 HD 0.005 0.107 0.107 95.1

80% 0.5 0.1 40 100 1.007 INSE 0.005 0.123 0.122 94.5
1.007 HD 0.005 0.121 0.119 95.4

0.5 0.5 40 100 1.007 INSE 0.006 0.121 0.122 95
1.007 HD 0.007 0.116 0.117 95.5

0.5 0.9 40 100 1.007 INSE 0.005 0.121 0.122 95.4
1.007 HD 0.007 0.109 0.110 95.4

50% 0.5 0.1 40 100 1.007 INSE 0.007 0.158 0.154 94.6
1.007 HD 0.007 0.153 0.149 94.5

0.5 0.5 40 100 1.007 INSE 0.008 0.157 0.154 93.4
1.007 HD 0.008 0.144 0.141 94.1

0.5 0.9 40 100 1.007 INSE 0.006 0.155 0.154 94.6
1.007 HD 0.008 0.118 0.117 94.6

30% 0.5 0.1 40 100 1.007 INSE 0.013 0.202 0.199 94.5
1.007 HD 0.012 0.190 0.187 94.9

0.5 0.5 40 100 1.007 INSE 0.012 0.202 0.198 94.6
1.007 HD 0.013 0.175 0.174 95.3

0.5 0.9 40 100 1.007 INSE 0.007 0.198 0.198 94.3
1.007 HD 0.010 0.128 0.129 95.9

10% 0.5 0.1 40 100 1.007 INSE -0.016 0.351 0.336 91.6
1.007 HD -0.013 0.308 0.294 92.5

0.5 0.5 40 100 1.007 INSE -0.017 0.350 0.337 92.3
1.007 HD -0.010 0.279 0.269 92.8

0.5 0.9 40 100 1.007 INSE -0.013 0.347 0.339 92.3
1.007 HD -0.002 0.174 0.173 94.5

0% 0.5 0.1 40 100 1.007 INSE - - - -
1.007 HD 0.014 0.961 0.886 92.8

0.5 0.5 40 100 1.007 INSE - - - -
1.007 HD 0.014 0.961 0.886 92.5

0.5 0.9 40 100 1.007 INSE - - - -
1.007 HD 0.014 0.960 0.886 92.5

Table 2.7: Impact of R2
indiv and Percentage of Observed T (p) on δ̂Tn in a Meta-Analytic Setting.

Results are from 800 simulation data. βT = (1, 2, 1, 1), dss = 0.5, dtt = 0.2, daa = 3.5
and drr = 1.6, σss = 1 and σtt = 0.3.
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Center Sample Size Medicine Surgery Individual-level Correlation
(Means of S, T ) (Means of S, T ) Medicine Surgery

1 670 (17.63, 16.52) (13.76, 14.59) 0.367 0.608
2 352 (17.22, 16.42) (14.63, 12.98) -0.455 0.467
3 770 (19.27, 17.58) (15.81, 16.17) 0.589 0.548
4 528 (17.17, 15.51) (10.93, 12.88) 0.176 0.540
5 1078 (18.52, 18.67) (14.99, 15.32) 0.435 0.407
6 736 (18.62, 18.89) (15.13, 17.11) -0.16 -0.0056
7 572 (18.35, 15.34) (14.59, 14.53) 0.177 0.396
8 1056 (18.59, 16.16) (13.60, 13.72) 0.31 0.95
9 638 (17.56, 16.82) (14.19, 14.61) 0.042 0.756

Table 2.8: Description of Pseudodata in Glaucoma study: Treatment-Specific Means and
Individual-Level Correlations for Each Center

p Estimate Standard Error p-value
center = 8

ALLSE -2.45 0.29 < .0001
No missing1 -2.33 0.22 < .0001

100% missing1 -1.58 0.79 0.063
90% missing1 -1.50 0.47 0.0059
80% missing1 -2.37 0.39 < .0001
50% missing1 -2.61 0.29 < .0001
20% missing1 -2.19 0.23 < .0001
center = 9

ALLSE -2.21 0.30 < .0001
No missing1 -2.32 0.27 < .0001

100% missing1 -2.68 0.82 0.0053
90% missing1 -2.19 0.61 0.0023
80% missing1 -2.30 0.49 < .0002
50% missing1 -2.04 0.36 < .0001
20% missing1 -2.15 0.30 < .0001

Table 2.9: Estimate treatment effect on IOP at the 96th month utilizing information from early
IOP measures at the 12th month in the glaucoma study. 1: HD method was used.
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CHAPTER III

A Shrinkage Approach for Estimating a Treatment Effect
Using Surrogate Marker Data in Clinical Trials

Summary. Surrogate markers (S) are often intermediate physical or laboratory

indicators in a disease process in randomized clinical trials. They can be measured

earlier and often cost much less than the true endpoint (T ). A surrogate marker that

is strongly associated with the true endpoint can provide information on the true

endpoint. We examine the information recovery from S in estimating the difference

between two treatment groups when S is completely observed and T is partially

observed. Both S and T are continuous. When S satisfies Prentice’s definition for

perfect surrogacy, there is substantial gain in precision by using S to estimate the

treatment effect. When S is not close to having perfect surrogacy, it can provide

substantial information only under special circumstances. We propose a generalized

ridge regression to avoid the need to make a correct surrogacy assumption. Simula-

tions show that it can strike a balance between bias and efficiency gain depending on

the nature of the relationship between S and T . Compared with competing meth-

ods, it has better mean squared error properties and can achieve substantial efficiency

gain, particularly in small samples when S is close to being a perfect surrogate. We

apply the proposed method to a glaucoma data example.

Keywords: Surrogate Marker, Auxiliary Variable, Ridge Regression, and Ran-
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domized Trials.
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3.1 Introduction

In clinical trials where the true endpoint (T ) is rare or late-occurring, it is often

very costly and takes too long to observe T for all the subjects. A surrogate marker

(S) is an intermediate physical or laboratory indicator in a disease process, which

can be measured earlier and easier than the true endpoint. A surrogate marker that

is highly associated with the true endpoint can provide information on the effect of

treatment on T when T is not completely observed. There are two potential roles

of S: one as a direct substitute for T and the other as an auxiliary variable. In

this article, we focus on its latter role in improving the efficiency of the estimated

treatment effect on T . In practice, it often happens that S is available on all patients

before T is available. Intuitively, incorporating the information from S in estimating

the actual effect of Z on T should lead to narrower confidence intervals and more

powerful tests. In this article, we use the terms, primary endpoint and true endpoint

exchangeably.

A number of authors have explored the role of surrogate markers as auxiliary

variables, mostly focusing on situations where the primary endpoint is time to fail-

ure. Many articles focus on parametric or semiparameteric modeling of the joint

distribution of S and T (Pepe et al, 1992, Pepe et al., 1994, Malani, 1995, Murray

and Tsiatis, 1996). When the subsample of patients for whom both S and T are

observed represents the whole population, Fleming et al (1994) and Kosorok and

Fleming (1993) proposed fully nonparametric tests that incorporate the information

from S to enhance the inference. In the absence of censoring, Venkatraman and Begg

(1999) proposed a fully nonparametric test to make use of the intermediate surrogate

markers. The extent of efficiency gain has been the topic of the previous research,
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and opinions have been mixed on the value of a surrogate marker in increasing the

precision of the estimate (Murray and Tsiatis, 1996; Venkatraman and Begg, 1999;

Fleming and DeMets, 1996). In many simulations, there has been little or no gain

from the use of the surrogate marker; however, in rare cases when S and T have an

extremely high correlation, S can provide significant additional information for the

quantity of interest.

In this article, we focus on the single trial setting where T is partially observed, S

and Z are measured on everyone. Both S and T are continuous and Z is binary. We

assume a parametric model for the joint distribution of S and T given Z, through

modeling f(T |S,Z) and f(S|Z) jointly, which allows more flexibility than the com-

monly used multivariate normal distribution for f(S, T |Z). The full model for the

distribution of T |S,Z is T = β0 +β1S+β2Z+β3SZ+ε, where ε is the error term. In

a landmark study, Prentice (1989) proposed a formal definition for perfect surrogacy

(PES) and provided validation criteria. The key criterion requires that the changes

in S fully capture the effect of Z on T . In other words, β2 = β3 = 0 assuming β1 6= 0.

When β3 6= 0 or β2 6= 0, S explains some, but not all, of the association between T

and Z; and S is a partial surrogate. Specifically, when β2 6= 0 and β3 = 0, S is an

additive partial surrogate (APAS); when β3 6= 0, S is an interactive partial surrogate

(IPAS). We can estimate the effect of Z on T under different surrogacy assumptions

and different forms of the joint distribution f(S, T |Z).

Our numerical studies show that different surrogacy assumptions can lead to very

different degree of efficiency gain. When the assumptions are incorrect, substantial

bias can occur in the estimated treatment effect. In practice, when one is unsure

whether S satisfies PES, APAS or IPAS assumption, model selection methods are

often used to choose the correct assumption. However, it is difficult to formally
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account for the model uncertainty in the inference. The common practice of ignoring

such uncertainty can lead to high type I errors (Albert et al, 2001). In addition,

different sample sizes may lead to different conclusions on the nature of the surrogacy.

Moreover, for any given study the power for testing the assumption is limited. In fact,

even when the data do not contradict the assumption that S is a perfect surrogate,

we still cannot conclude that the assumption is true.

From a biological point of view, there are often multiple pathways through which

the treatment can affect T and it is seldom that a marker can capture all the ef-

fect on T . In the past two decades, the quest for perfect surrogates has been less

than successful. An incorrect perfect surrogacy assumption can lead to erroneous

conclusions (Fleming and DeMets, 1996). For example, the inappropriate use of

arrhythmia as a surrogate for cardiac death led to the drug approval by FDA in

the 1980s and caused much harm and even death among patients. However, it is

very plausible for a partial surrogate to capture most but not all of the treatment

effect. Examples include time to disease progression as a surrogate marker for the

survival time in early stage cancer; prostate-specific antigen for prostate cancer; and

the intraocular pressure for the long-term visual acuity. A model selection approach

that either retains or discards a variable may be inappropriate and, as we shall see

through simulations, can lead to substantial prediction error.

In Sections 3.2 and 3.3, we conduct analytic and numerical studies under these

three surrogacy assumptions to explore the efficiency gain from S under the various

surrogacy assumptions. In section 3.4, we propose a generalized ridge regression

model to utilize the information in S. Ridge regression models have been commonly

used in high-dimensional data to reduce collinearity, but their application in incor-

porating the auxiliary variable S in treatment prediction is novel. This shrinkage
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approach can allow for the uncertainty associated with the surrogacy nature and

avoid the need to make a correct surrogacy assumption. It compromises between

the perfect surrogacy and partial surrogacy models and strikes a data-driven bal-

ance between bias and variance. We first introduce a hierarchical Bayes version of

the generalized ridge regression model and then an empirical Bayes version as an

alternative. In Section 3.5, we conduct simulation studies to examine the properties

of this approach in terms of bias, efficiency gain, mean squared errors and coverage

rates of confidence intervals. We compare this method with competing methods such

as the model selection method and an inverse probability weighted method. In Sec-

tion 3.6, we apply the proposed methods to a glaucoma data set. In Section 3.7, we

summarize our findings and present a discussion.

3.2 Treatment Effect Estimation and Surrogacy Assumptions

Our goal is to estimate the treatment effect (denoted by Q) on T in the setting

where T is partially available and S is completely observed. In this section, we

investigate the estimates of the treatment effect using S under three different models

that describe a perfect surrogate, an additive partial surrogate and an interactive

partial surrogate, respectively.

Suppose that the total number of patients is n = n0+n1 with n0 in the Z = 0 group

and n1 in the Z = 1 group. To simplify the following calculations, we assume that

the clinical trial is a balanced trial; i.e., E(Z) = 0.5. Nonetheless, the conclusions

are generalizable without this assumption. The surrogate, S, is measured on all n

patients; T is available for a subset of r = r0 +r1 patients, with r0 in the Z = 0 group

and r1 in the Z = 1 group. The fraction of the subjects for whom T is not observed

is p. We assume the missingness mechanism to be missing at random (MAR) (Little
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and Rubin, 2002), meaning that the missingness probability may depend on observed

data.

3.2.1 Interactive Partial Surrogate

We call S is an interactive partial surrogate (IPAS), when the joint distribution

f(Ti, Si|Zi) for individual i can be expressed using two models:

Ti = β0 + β1Si + β2Zi + β3SiZi + εti

Si = α0 + α1Zi + εsi(3.1)

where εti ∼ N(0, σ2
t ) and εsi ∼ N(0, σ2

ss). Under this surrogacy assumption, the

marginal treatment effect has mean

E(Q̂IPAS) = E(T |Z = 1)− E(T |Z = 0) = EE(T |S,Z = 1)− EE(T |S,Z = 0)

= β0 + β1(α0 + α1) + β2 + β3(α0 + α1)− (β0 + β1α0)

= β1α1 + β2 + β3α0 + β3α1.

The likelihood of θ = (β0, β1, β2, β3, α0, α1) based on the observed data is given by:

L(θ|S, T, Z) =
r∏
i=1

f(Ti|Si, Zi, θ)
n∏
i=1

f(Si|Zi, θ)

=
r∏
i=1

1√
2πσt

exp(Ti−β0−β1Si−β2Zi−β3SiZi)
2/2σ2

t

n∏
i=1

1√
2πσs

exp−(Si−α0−α1Zi)
2/2σ2

ss ,(3.2)

from which, we can obtain the large-sample covariance matrix of θ̂ by calculat-

ing the inverse of the expected information matrix IIPAS(θ) (see Appendix A). Let

DIPAS(Q) = ( ∂Q
∂β0
, ∂Q
∂β1
, ∂Q
∂β2
, ∂Q
∂β3
, ∂Q
∂α0

, ∂Q
∂α1

) = (0, α1, 1, α0 +α1, β3, β1 +β3). The asymp-

totic variance of Q̂IPAS can be calculated using the delta method as

V (Q̂IPAS) = DIPAS(Q)T IIPAS(θ)−1DIPAS(Q).
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Its estimate V̂ (Q̂IPAS) can be obtained by replacing θ with the maximum likelihood

estimates θ̂ and replacing IIPAS(θ) with the observed information matrix.

To gain intuition on the factors that impact the variance, we use a different

form of this variance formula. We denote the correlation between S and T in the

Z = 0 group as ρ0 and that in the Z = 1 group as ρ1. After some calculation,

we obtain ρ2
0 =

β2
1σ

2
ss

σ2
t +β2

1σ
2
ss

and ρ2
1 = (β1+β3)2σ2

ss

σ2
t +(β1+β3)2σ2

ss
. Denote V(T |Z = 0) = σ2

tt0 and

V(T |Z = 1) = σ2
tt1. We have σ2

tt0 = σ2
t /(1 − ρ2

0) and σ2
tt1 = σ2

t /(1 − ρ2
1). Under the

missing completely at random assumption, the large-sample variance of Q̂IPAS can

also be approximated by

σ2
tt0

r0

(1− ρ2
0

n0 − r0

n0

) +
σ2
tt1

r1

(1− ρ2
1

n1 − r1

n1

).(3.3)

Suppose we observe all of T , or the data before any missingness occurs. Without

any distributional assumption, the estimated treatment effect Q̂ALL =
∑n1

i=1 Ti/n1−∑n0

i=1 Ti/n0 with variance V (Q̂ALL) = σ2
tt0/n0 +σ2

tt1/n1. When T is partially observed

and the fraction of missingness is p, the treatment effect estimated solely based on the

observed T is Q̂CC =
∑r1

i=1 Ti/r1−
∑r0

i=1 Ti/r0 and its variance V (Q̂cc) = σ2
tt0/(n0(1−

p)) +σ2
tt1/(n1(1− p)). Comparing V (Q̂cc) with the variance formula in (3.3), we find

that when the percentage of missingness and the variance of T |Z are known, the single

most important factor that impacts the precision of the estimate and the extent of

the information recovery from S is the treatment-adjusted correlation between S and

T .

3.2.2 Additive Partial Surrogate

When S is an additive partial surrogate (APAS), the association between S and

T is the same regardless of Z, (i.e., β3 = 0). The joint distribution f(Ti, Si|Zi) is
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expressed as:

Ti = β0 + β1Si + β2Zi + εti

Si = α0 + α1Zi + εsi

where εti ∼ N(0, σ2
t ) and εsi ∼ N(0, σ2

ss). This model is equivalent to the commonly

used bivariate normal distribution of Si and Ti: Ti

Si

 ∼MVN


 γ0 + γ1Zi

α0 + α1Zi

 ,

 σ2
tt σ2

st

σ2
st σ2

ss


 .

With this model assumption, ρ0 = ρ1 = ρ, ρ2 =
σ2

st

σ2
ssσ

2
tt

=
β2
1σ

2
ss

σ2
t +β2

1σ
2
ss

, while V(T |Z) =

σ2
tt = σ2

t /(1− ρ2).

The estimated treatment effect on T has mean

E(Q̂APAS) = β2 + β1α1.

The expected information matrix IAPAS(θ) under this assumption is computed as in

Appendix A. We can use the delta method to compute the asymptotic variance of

Q̂APAS. Denote DAPAS(Q) = ( ∂Q
∂β0
, ∂Q
∂β1
, ∂Q
∂β2
, ∂Q
∂α0

, ∂Q
∂α1

) = (0, α1, 1, 0, β1). The large-

sample variance is given by V (Q̂APAS) = DAPAS(Q)T IAPAS(θ)−1DAPAS(Q). Its

estimate V̂ (Q̂APAS) can be obtained by replacing θ with the maximum likelihood

estimates and IAPAS(θ) with the observed information matrix. The large-sample

variance can also approximated by

σ2
tt

r0

(1− ρ2n0 − r0

n0

) +
σ2
tt

r1

(1− ρ2n1 − r1

n1

).(3.4)

As under the interactive partial surrogacy assumption, when σ2
tt and the percentage

of missingness are fixed, ρ2 is the single most important factor that determines the

precision of the treatment effect estimate and the extent of efficiency gain from S.
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3.2.3 Perfect Surrogate

When S is a perfect surrogate (PES), S captures all of the treatment effect on T

(Prentice, 1989). Under the PES assumption, the treatment effect on T disappears

after one adjusts for S, i.e., β2 = β3 = 0 in model (3.1). In this case, the marginal

treatment effect on T has mean

E(Q̂PES) = β1α1.

The details of the expected information matrix, IPES(θ), are described in Appendix

A. Denote DPES(Q) = ( ∂Q
∂β0
, ∂Q
∂β1
, ∂Q
∂α0

, ∂Q
∂α1

) = (0, α1, 0, β1). The variance of Q̂PES is

V (Q̂PES) = DPES(Q)T IPES(θ)−1DPES(Q). Under this assumption, the correlation

between S and T is ρ2 =
β2
1σ

2
ss

σ2
t +β2

1σ
2
ss

, while V(Ti|Zi) = σ2
tt = σ2

t /(1− ρ2). The variance

can be approximated by

α1σ
2
tt(1− ρ2)

rσ2
ss

+
4σ2

st

n
.(3.5)

Under the perfect surrogacy assumption, when σ2
tt and the percentage of missingness

are fixed, the factors that impact the variance of the treatment effect estimate and

the extent of efficiency gain from S include not only the correlation and the factors

associated with the correlation, but also α1.

3.3 Numerical Study on Information Recovery and Surrogacy Assump-
tions

We conduct numerical studies based on the asymptotic variances to examine the

efficiency gain from S under different surrogacy assumptions. In the studies, the

variances of the treatment effect on T are calculated in five scenarios:

1. V (Q̂ALL) which uses all data or the original data on T before any missingness

occurs.
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2. V (Q̂CC) which uses data of only complete cases, or observed T only.

3. V (Q̂IPAS) when the fitted model is the IPAS model, i.e., the saturated model.

4. V (Q̂APAS) when the fitted model assumes the APAS model, i.e., β3 = 0.

5. V (Q̂PES) when the fitted model assumes PES, i.e., β2 = β3 = 0.

We calculate the asymptotic variances in the scenarios when the true model is either

PES, APAS or IPAS model. The results in the scenario when the true model is the

PES model and the fitted models assume either IPAS, APAS or PES are presented

in Tables 1 and 2 and Figure 1. To illustrate the extent of efficiency gain from S, we

list the relative efficiency defined by the ratios of the variance of V (Q̂ALL) to those

from 2 through 5.

Based on the numerical calculations, we find that generally there is some im-

provement in the efficiency of the estimate of Q by incorporating S. The factors that

impact the efficiency gain depend on which fitted model is used and are consistent

with the variance formulae in (3.3), (3.4) or (3.5). When we assume IPAS or APAS,

the higher the correlation between S and T , the higher the extent of efficiency gain

from S. When we assume PES, the higher the correlation and the bigger the value

of α1, the higher the amount of information recovery from S.

The extent of efficiency gain from S also highly depends on which surrogacy

assumption holds. In large samples, the amount of information recovery is almost

the same whether the fitted model assumes IPAS or APAS, i.e., assuming β3 = 0

does not result in any obvious efficiency gain over β3 6= 0. Under either IPAS or

APAS assumption, the extent of efficiency gain is only modest except for the cases

when the correlation is unusually high. However, when we assume PES in the fitted

model, we can uniformly improve the efficiency gain to a much greater extent and

can even result in smaller variances than V (Q̂ALL) in some cases (see Tables 3.1, 3.2
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and Figure 3.1). This happens because our estimate utilizes the information that S

completely captures the effect on T while the estimate obtained based on T solely

does not take advantage of such an assumption. In other words, if Prentice’s criteria

hold, we can achieve substantial efficiency gain by using the information in S. This

phenomenon was also observed by Day and Duffy (1996), Begg and Leung (2000)

and Baker et al. (2000). When the PES assumption is incorrectly assumed, the

estimates of the treatment effects can be substantially biased.

Thus, the surrogacy assumption plays a central role in the extent of efficiency gain

that we could obtain from S. As mentioned in Section 3.1, a possible approach is to

use a model selection method to choose which assumption to make. However, as we

shall see in simulations, the method is subject to the restriction of sample size, power

and difficulty in accounting for model uncertainty. In the next section, we propose a

shrinkage approach that avoids the need to make a correct surrogacy assumption.

3.4 Generalized Ridge Regression

In this section, we propose a generalized ridge regression model (denoted by Ridge)

to utilize S to estimate the treatment effect. The general idea is that, although S is

rarely a perfect surrogate, in reality, it is common that S can capture a large portion

of the treatment effect on T when S is considered as a good surrogate marker. We

first consider the situation when β3 = 0 in model 3.1. A reasonable assumption is

that β2 is close to but not necessarily be exactly equal to 0. We impose a prior distri-

bution on β2 such that β2 ∼ N(0, σ2
b2

), where σ2
b2

is used to capture the uncertainty

about the departure from the perfect surrogacy assumption. By assuming this prior

distribution, the generalized ridge regression model induces a shrinkage effect on β̂2,

which will data-adaptively shrink β̂2 towards 0 when S is close to being perfect.
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Next, we introduce two versions of the generalized ridge regression method. The

first is the full Bayes version, where we treat σ2
b2

as a hyper-parameter with its own

prior distribution; the second is the empirical Bayes version, where σ2
b2

is estimated

directly from the data.

3.4.1 Fully Bayes Estimator

When β3 = 0, the Bayes version of the generalized ridge regression model is

expressed as follows:

Ti = β0 + β1Si + β2Zi + εti

Si = α0 + α1Zi + εsi

where

εti ∼ N(0, σ2
t ), εsi ∼ N(0, σ2

ss), β0 ∼ N(0, a = 1002), β1 ∼ N(0, a = 1002),

β2 ∼ N(0, σ2
b2), σ−2

t ∼ Gamma(c, d), σ−2
b2 ∼ Gamma(c, d),

α0 ∼ N(0, a = 1002), α1 ∼ N(0, a = 1002), σ−2
ss ∼ Gamma(c, d).

Note that the parametrization of Gamma(c, d) is defined such that the expected

value equals cd and the variance is cd2. We choose nearly noninformative values

of c = 0.001 and d = 1000. The posterior distributions of the parameters are

proportional to Likelihood× Prior given by[
r∏
i=1

N(Ti|β0, β1, β2, σ
2
t )

]
N(β0|a)N(β1|a)N(β2|σ2

b2)Inv-Gamma(σ2
b2|c, d)

Inv-Gamma(σ2
t |c, d)

[
n∏
i=1

N(Si|α0, α1, σ
2
ss)

]
N(α0|a)N(α1|a)Inv-Gamma(σ2

ss|c, d)

We can use Gibbs sampling to make draws from the following conditional posterior
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distributions

σ−2
t |· ∼ gamma

(
r

2
+ c,

∑r
i=1(ti − β0 − β1si − β2zi)

2 + 2d

2

)
σ−2
b2
|· ∼ gamma

(
0.5 + c,

β2
2 + 2d

2

)
,

β0|· ∼ normal

((
r

σ2
t

+
1

a2

)−1 ∑r
i=1(ti − β1si − β2zi)

σ2
t

,

(
r

σ2
t

+
1

a2

)−1
)
,

β1|· ∼ normal

((∑r
i=1 s

2
i

σ2
t

+
1

a2

)−1 ∑r
i=1 si(ti − β0 − β2zi)

σ2
t

,

(∑r
i=1 s

2
i

σ2
t

+
1

a2

)−1
)
,

β2|· ∼ normal

((∑r
i=1 z

2
i

σ2
t

+
1

σ2
b2

)−1 ∑r
i=1 zi(ti − β0 − β1si)

σ2
t

,

(∑r
i=1 z

2
i

σ2
t

+
1

σ2
b2

)−1
)
,

σ−2
ss |· ∼ gamma

(
n

2
+ c,

∑n
i=1(si − α0 − α1zi)

2 + 2d

2

)
,

α0|· ∼ normal

((
n

σ2
ss

+
1

a2

)−1(∑n
i=1(si − α1zi)

σ2
ss

)
,

(
n

σ2
ss

+
1

a2

)−1
)
,

α1|· ∼ normal

((∑n
i=1 z

2
i

σ2
ss

+
1

a2

)−1(∑n
i=1(si − α0)zi

σ2
ss

)
,

(∑n
i=1 z

2
i

σ2
ss

+
1

a2

)−1
)
,

where · represents the rest of the parameters and observed data. Based on the poste-

rior distributions of these parameters, we can easily obtain the posterior distribution

of the treatment effect estimate, Q̂Ridge−FB = β̂1α̂1 + β̂2.

We can extend the ridge regression model to the situation when β3 6= 0. We

assume the prior distribution for β2 is N(0, σ2
b2

) and that for β3 is N(0, σ2
b3

), with

which σ2
b2

captures the uncertainty of the departure from β2 = 0 and σ2
b3

captures

the departure from β3 = 0. The rest of the computation procedures follows very

similarly to those just described.

3.4.2 Empirical Bayes Estimator

The advantage of fully Bayes estimation is that it accounts for all the uncertainty

associated with estimating any parameter (Louis and Zelterman (1994)). However,

it is computationally intensive, particularly when the sample size is large. In this
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section, we consider an empirical Bayes version of the generalized ridge regression as

an alternative which is computationally faster.

First, we consider the situation when β3 = 0, and the model T |S,Z is given by:

Ti = β0 + β1Si + β2Zi + εti,

where εti ∼ N(0, σ2
t ) and β2 ∼ N(0, σ2

b2). Let βT = (β0, β1, β2), Xt = (1, S, Z), K =

diag(0, 0, k2) where k2 = σ2
t /σ

2
b2

. Suppose σ2
b2 and σ2

t are known and noninformative

prior distributions are assumed for β0 and β1. The posterior distribution of β follows

a normal distribution with mean and variance expressed by:

E(β̂|Xt, T ) = (XT
t Xt +K)−1XT

t T,

V(β̂|Xt, T ) = (XT
t Xt +K)−1σ2

t .

The idea of the empirical Bayes approach is to use the data to estimate σ2
b2 and

σ2
t . First, we want to find an estimate of σ2

b2. Given β2, β̂2 ∼ N(β2, σ
2
β2

). We can

obtain the joint distribution of (β̂2, β2) by multiplying the densities of β̂2|β2 and β2

together, then obtaining the marginal density of β̂2 as N(0, σ2
β2

+ σ2
b2). The quantity

σ2
β2

can be estimated from the maximum likelihood fit to Ti = β0 + β1Si + β2Zi + εti.

Since E(β̂2) = 0, E((β̂2)2) = σ2
β2

+ σ2
b2

. This suggests an estimate of σ2
b2

is given by

max(0, (β̂2)2− σ̂2
β2

); hence, β̂2
2 can be considered a conservative estimate of σ2

b2 which

we used in our simulations. Second, we can use the maximum likelihood fit to the

model T |S, Z to find an estimate of σ2
t . We can replace the parameters in E(β) and

V(β) with their estimates to obtain the estimated mean and variance for β.

As before, the model S|Z is given by Si = α0 + α1Zi + εsi, where εsi ∼ N(0, σ2
ss).

Let αT = (α0, α1) and Xs = (1, Z), then α̂ follows a normal distribution with its
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mean and variance:

E(α̂|Xs, S) = (XT
s Xs)

−1XT
s S,

V(α̂|Xs, S) = (XT
s Xs)

−1σ2
ss.

Let DRidge−EB(Q) = ( ∂Q
∂β0
, ∂Q
∂β1
, ∂Q
∂β2
, ∂Q
∂α0

, ∂Q
∂α1

) = (0, α1, 1, 0, β1). We can obtain that

the treatment effect Q̂Ridge−EB follows a normal distribution with mean and variance

estimated by:

Ê(Q̂Ridge−EB) = β̂1α̂1 + β̂2,

V̂(Q̂Ridge−EB) = D(Q̂Ridge−EB)T

 V̂(β̂) 0

0 V̂(α̂)

D(Q̂Ridge−EB),

where the parameter estimates are obtained from the empirical Bayes estimation.

The estimation method can be easily extended to the situation where β3 6= 0. We

use β̂2
2 as an estimate of σ2

b2
, β̂2

3 for σ2
b3

and σ̂2
t for σ2

t , where β̂2, β̂3 and σ̂2
t can be

obtained from the maximum likelihood fit to the saturated model Ti = β0 + β1Si +

β2Zi + β3SiZi + εti. The rest of the argument follows closely to that above.

3.5 Simulation Studies

3.5.1 The Setup

We conducted extensive simulations to examine the properties of the proposed

methods and compare them with those of competing methods. We generated 400

data sets with the following parameter specifications: β0 = 0.5, β1 = 1, α0 = 1 and

α1 = 2. We varied β2, β3, σ2
ss and σ2

t . For each combination of the parameters, we

examine three scenarios: 1) σ2
ss = 0.5 and σ2

t = 1, 2) σ2
ss = 0.5 and σ2

t = 0.1 and

3) σ2
ss = 5 and σ2

t = 1. Since the results show very similar patterns across all three

scenarios, we only present the results when σ2
ss = 0.5 and σ2

t = 1. Each data set
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contains the observations from either 60, 120 or 480 subjects per treatment group.

We observe all of S, but only 20% of T . For each method and each data set, we

obtain the point estimate of Q and the corresponding estimated standard error (SE),

and an indicator variable for whether or not the 95% confidence interval contains the

true value. We examine the method’s performance by its average bias (Bias), the

average standard error (SE), the empirical standard deviation (ESD), the empirical

mean squared error (MSE = ESD2 + Bias2) and the coverage rate (CR). For the

fully Bayesian method, the standard error is given by the standard deviation of the

posterior distribution.

3.5.2 Methods Compared

We examine the estimators of Q and their variances in the following scenarios:

1. Q̂ALL and V̂ (Q̂ALL) from the simple estimation before any deletion on T ;

2. Q̂CC and V̂ (Q̂CC) from the simple estimation based on complete cases;

3. Q̂PES and V̂ (Q̂PES) under the perfect surrogacy assumption;

4. Q̂APAS and V̂ (Q̂APAS) under the additive partial surrogacy assumption;

5. Q̂IPAS and V̂ (Q̂IPAS) under the interactive partially surrogacy assumption;

6. Q̂Ridge−FB and V̂ (Q̂Ridge−FB) using fully Bayes ridge regression where V̂ (Q̂Ridge−FB)

is given by the variance of the posterior distribution;

7. Q̂Ridge−EB and V̂ (Q̂Ridge−EB) using empirical Bayse ridge regression;

8. Q̂IPW using the inverse probability weighted method which is a competing

method that can also be applied to utilize the information from auxiliary vari-

ables (Horvitz and Thompson, 1952; Zhao and Lipsitz, 1992; Zhao, Lipsitz and

Lew, 1996). Let ∆i be the indicator for whether Ti is observed or not (1 being

observed and 0 for not being observed). Denote πi = Pr(∆i = 1). We obtain
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the estimated πi (π̂i) by fitting the saturated model:

logit(Pr(∆i = 1)) = δ0 + δ1Si + δ2Zi + δ3SiZi.

The treatment effect can be estimated by:

Q̂IPW =

∑n
i

∆i

π̂i
TiI(Zi = 1)∑n

i
∆i

π̂i
I(Zi = 1)

−
∑n

i
∆i

π̂i
TiI(Zi = 0)∑n

i
∆i

π̂i
I(Zi = 0)

.

9. Q̂MdlSel and V̂ (Q̂MdlSel) using a commonly used two-stage model selection method.

At the first stage, one would decide on which model is not contradicted by the

data. A common model selection method is backward elimination. We first fit

the saturated model, Ti = β0 + β1Si + β2Zi + β3SiZi + εti, and then delete the

variables one at a time by examining the p-values associated with β̂3 and then

β̂2. At the second stage, we use the selected model as the correct model to

obtain the estimate of Q and its inference. For example, if the interactive par-

tial surrogacy assumption holds for the selected model, we obtain the estimate

of Q as Q̂IPAS and its variance as V̂ (Q̂IPAS); if the additive partial surrogacy

assumption holds, we use Q̂APAS and its variance and so forth.

3.5.3 Simulation Results

We assumed β3 = 0 in the first set of simulations. The results are presented in

Tables 3.3 and 3.4 and Figures 3.2, 3.3 and 3.4. First, we compare the properties

of Ridge-FB and Ridge-EB methods with PES, APAS and IPAS methods. When

β2 = 0, fitting an APAS or IPAS model can result in much smaller efficiency gain and

larger MSE relatively to fitting the PES model. When β2 becomes much different

from 0, fitting the PES model can lead to increasingly larger bias, larger MSE and

lower coverage rates compared to fitting the APAS and IPAS models. When β2 is

0 or close to 0, both Ridge-FB and Ridge-EB can retain most of the efficiency gain
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achieved by fitting the PES model without introducing appreciable bias. When β2

is much different from 0, the Ridge methods give estimates with MSEs comparable

(larger sample) or close (smaller sample) to those obtained by fitting an APAS or

IPAS model without the bias resulted from fitting an incorrect PES model. Hence,

the Ridge methods can strike a balance between efficiency gain and bias depending

on the nature of the relationship between S and T . This is due to the variance-

bias tradeoff and data-adaptive capability of the Ridge methods. Similar findings

are observed across different sizes, although more pronounced in small samples than

these in large samples.

Second, we compare Ridge-FB with Ridge-EB. Both Ridge-FB and Ridge-EB are

data-adaptive and have comparable performance in terms of bias, MSE, and coverage

rate. When the sample size is large, Ridge-FB and Ridge-EB have very similar, if

not identical, performance. However, there are some subtle differences, which stand

out more in small samples. Except for very large samples, Ridge-EB gives below

nominal-level coverage rates. Ridge-FB gives uniformly higher and closer-to-nominal

coverage rates than Ridge-EB and any of the other methods. Unlike its competitors,

Ridge-FB accounts for all the uncertainty associated with estimating the variance

parameters. Generally, there is higher extent of shrinkage towards 0 using Ridge-FB

than using Ridge-EB. Ridge-FB is usually more sensitive to the prior assumptions,

particularly in smaller samples; on the other hand, Ridge-EB is more robust and less

biased when there is a large departure in the prior distribution from the true value.

Third, we compare Ridge with inverse probability weighted (IPW) estimator. The

IPW method is robust, but it cannot take direct advantage of the various plausible

surrogacy assumptions. Regardless of the magnitude of β2, the amount of efficiency

gain from utilizing S to estimate Q stays the same, and similarly for bias and MSE.
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When β2 is close to 0, Ridge has a clear advantage over IPW and gives considerably

smaller MSE than IPW. When β2 is much larger than 0, the efficiency gain from Ridge

and IPW are more or less comparable in larger samples, although IPW gives smaller

MSEs than Ridge-FB but comparable MSEs with Ridge-EB when the sample size

is 60 per group. In our setting, IPW is comparable to the performance from fitting

the APAS or IPAS models in terms of efficiency gain, particularly in large samples.

However, IPW gives estimates with bigger MSE and less precision in small samples.

Fourth, we compare Ridge with model selection (MdlSel). Similar to Ridge,

MdlSel is also a data-adaptive method; but, different from Ridge, its performance

heavily relies on the available power from the data in choosing the correct model and

making correct surrogacy assumptions. When the power is small, (e.g. when β2 is

somewhere in the middle between being too small and being too large, or when the

sample size is small), Ridge can achieve smaller MSE and more efficiency gain than

MdlSel. On the other hand, when there is more statistical power, (e.g. when the

size is 120 or 480 per group and when β2 is either ≈ 0 or very large), MdlSel and

Ridge have similar performance in terms of MSE and efficiency gain. For the MdlSel

method, the common practice of computing V̂ (Q̂) based on the selected model fails

to account for the variation in the model selection process. Hence, MdlSel generally

underestimates the variance (i.e., ESD > SE in all simulations), more so in smaller

samples. The extent of underestimation depends on the power to detect the correct

model. The underestimation of V (Q̂) results in lower-than-nominal-level CRs, which

are close to being adequate in most situations, but more variable and are the lowest

in a few cases among all methods.

In the next set of simulations, we assume β3 6= 0. The results are presented in

Tables 3.5 − 3.10 and Figure 3.5 − 3.7. We have similar findings as those from the
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first set of simulations. When both β2 and β3 are relatively small or the sample size

is fairly small, Ridge retains some of the efficiency gain from PES and offers smaller

MSEs than either APAS or IPAS. The extent of the efficiency gain is generally smaller

than when β3 = 0, since there is a cost in efficiency associated with the increased

number of estimated parameters. When β2 or β3 is very different from 0 and the

sample size is relatively large, Ridge gives estimates with comparable MSEs and CRs

as APAS or IPAS and can minimize the huge bias and very low CR from fitting PES.

Even when IPAS is the correct surrogacy assumption, IPAS sometimes gives bigger

MSEs than APAS in small samples, while at other times gives smaller MSEs in large

samples. It is the result from the compromise between two tradeoffs: one between

the number of parameters and variance, and the other between bias and variance.

Relative to IPW, we find that Ridge has consistently smaller MSEs, except when

both β2 and β3 differ significantly from 0 and the sample size is very large, where

MSEs from Ridge and IPW are similar.

Next we compare Ridge with MdlSel. Generally, the performance of MdlSel ap-

pears to be even more variable than that in the previous simulations in terms of MSE,

bias and CR. When there is low power from the data to detect the difference of β2

or β3 from 0, MdlSel gives estimates with larger MSEs than Ridge and ignoring the

uncertainty in the model selection process results in consistently less-than-acceptable

coverage rates.

3.6 Application to a Glaucoma Study

We apply these methods to data from the Collaborative Initial Glaucoma Treat-

ment Study (CIGTS) (Musch et al., 1999). Glaucoma is a group of diseases that

cause vision loss and is a leading cause for blindness. Elevated pressure in the eyes
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(i.e., intraocular pressure, IOP), is a major risk factor of glaucoma. The CIGTS is a

randomized trial to compare the effects of two types of treatments, surgery (Z = 1)

and medicine (Z = 0), on reducing IOP among glaucoma patients. Patients were

enrolled between 1993 and 1997. The IOP level (recorded in mmHg) has been mea-

sured at different time points following randomization. For the purpose of this paper

we take the true endpoint to be the IOP measurements at the 102nd month and the

surrogate marker to be the IOP level at the 12th month. Due to drop out, there are

many fewer patients at later periods than at earlier periods. A total of 160 patients

have IOP measured at months 12 and 102, and 413 patients measured only at month

12. The missingness is not significantly associated with S or Z and seems to satisfy

the missing completely at random assumption. The correlation between S and T is

0.456 (p-value < .0001). Summary statistics are presented in Table 3.11.

For the S|Z model, based on all 413 patients, we obtain the ordinary least

squared (OLS) estimates of the parameters and their 95% confidence intervals (CI):

α0 = 21.90 (20.75, 23.04) and α1 = −3.83 (−4.55,−3.10). For the T |S,Z model, we

obtain the OLS estimates by fitting three regression models to the data from 160

patients. By assuming IPAS, we obtain the parameters and their 95% CIs: β̂1 = 0.61

(0.012, 1.20), β̂2 = 0.87 (−4.99, 6.74) and β̂3 = −0.094 (−0.44, 0.25). By assuming

APAS, we have: β̂1 = 0.45 (0.29, 0.61), β̂2 = −0.69 (−2.16, 0.78). By assuming PES,

we have β̂1 = 0.48 (0.33, 0.63). While the two-stage model selection method would

choose the perfect surrogacy model, there is much uncertainty about whether this

assumption could hold because the number of complete cases is relatively small and

one single study has limited power for detecting real differences. However, the pre-

liminary analysis does indicate that S can capture most of the treatment effect on

T , implying that S is a good surrogate marker. Table 3.12 shows the estimates of
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the treatment difference between two groups and their 95% CIs. The Ridge method

assume β3 = 0. Fitting either the IPAS or APAS model results in CIs with widths

slightly narrower than that from the CC method, showing that there is a very limited

efficiency gain by utilizing S. Fitting the PES model leads to substantial efficiency

gain; however, the estimate is quite different from other estimates, perhaps due to

the fact that a potentially incorrect PES assumption could lead to substantial bias.

Results from fitting Ridge-FB and Ridge-EB are comparable, resulting in estimates

with more precision and possibly more bias than those by fitting IPAS or APAS, but

less than that by fitting PES. The results reflect the data-adaptive and bias-variance

tradeoffs feature of the Ridge methods.

3.7 Discussion

In this article, we propose a shrinkage approach to utilize the information from

S to estimate the treatment effect on T . Without the need to make correct sur-

rogacy assumptions, ridge regression can directly take advantage of the relationship

between S and T , increase the information recovery from S and, hence, estimate pre-

cision. When S captures most of the treatment effect, the generalized ridge regression

method can retain most of the considerable efficiency gain achieved under the perfect

surrogacy assumption. When S only captures modest amount of the treatment effect,

using S can lead to efficiency comparable to that under partial surrogacy assump-

tions, while limiting the bias by making an incorrect perfect surrogacy assumption.

The proposed ridge-based methods is a robust estimation approach, have the bias-

variance tradeoff and data-adaptive property and can strike a balance between bias

and efficiency gain depending on the evidence from the data regarding the validity of

a surrogacy assumption. We propose both full Bayes and empirical Bayes versions of
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the generalized ridge regression. When the sample size is small to modest, the Bayes

version gives smaller MSEs and better coverage rates than the EB version. On the

other hand, EB is much faster than FB particularly when the sample size is very

large. It is also more robust and less biased when there is a very large departure

from the perfect surrogate assumption.

From a statistical point of view, we have touched upon two important areas of

research: model selection and missing data. First, let us consider model selection

methods in our setting. A common statistical practice is to select a parsimonious

model for T |S,Z and then use the selected model to predict the effect on T from

S. In situations when the power to detect the correct assumption is relatively small,

the uncertainty of model selection procedure is very large and ignoring such uncer-

tainty can result in very low coverage and large bias. The ridge regression methods

outperforms the model selection methods in terms of MSE, bias and CRs in such

situations. In practice, when a good marker S is observed on more subjects than

T , we would suggest to use S to enhance the inference of the treatment effect. We

could use a model selection method as a screening tool. When there is less certainty

about which surrogacy assumption holds, we would recommend to use a generalized

ridge regression method. A feature of the ridge regression method is that it does not

drop any variable and conducts model selection. As a result, it cannot achieve full

efficiency when the true parameter β2 is actually equal to 0, as our simulations have

shown. This does not pose a problem in the surrogate marker setting as previous

empirical studies have shown that it is more likely for a good surrogate marker to

capture most of the treatment effect but unlikely for S to be a perfect surrogate

(Fleming and DeMets, 1996). For such situations, a ridge regression method could

have a very good performance and have a clear advantage over model selection meth-
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ods in terms of MSE, efficiency gain and bias. In some practical settings when it is

a reasonable option to drop a variable and choose a more parsimonious model, dif-

ferent prior distributions (such as a mixture prior with point mass at β2 = 0) can be

used instead of the normal prior. Or a hybrid method that can perform both model

selection and shrinkage such as the least absolute shrinkage and selection operator

method (LASSO) (Tibshirani, 1996) can be considered.

Second, let us consider our methods in the missing-data research context, since uti-

lizing S in predicting treatment effect is essentially a missing data problem. We com-

pared the generalized ridge regression with the inverse probability weighted method.

Although the inverse probability weighted method is a robust method, it requires us

to model the probability of missingness and does not have the data-adaptive feature

of the generalized ridge regression and take direct advantage of the nature of the re-

lationship between S and T . Hence, when S is close to being perfect, our method can

give smaller MSEs and achieve much more substantial efficiency gain than IPW. On

the other hand, a more data-adaptive solution such as multiple imputation method

that uses the T |S,Z model to impute missing T would likely achieve similar efficiency

gain and robustness if we use the generalized ridge regression to model T |S,Z. A

comparison with the improved IPW methods (Robins, Rotnitzky and Zhao, 1994;

Scharfstein, Rotnitzky and Robins, 1999) is also worthy of investigation.

Many extensions to the generalized ridge regression method can be made in the

surrogate marker context. When multiple biomarkers are considered, there could be

even a stronger motivation for the use of a ridge regression method, since a greater

percentage of the treatment effect may be captured by the biomarkers. Besides the

data-adaptive and robust features of ridge regression, we can also take advantage

of its ability to reduce the collinearity problem in the multiple biomarkers setting.
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The idea can also be extended to the cases when S and T are different data types;

such as time-to-event, which can be more challenging, particularly when we need to

consider censoring for both S and T . In summary, ridge regression is a rich research

area worthy of further study and implementation.
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Relative Efficiency
Q p β0 β1 α0 α1 σ2

t σ2
ss ρ2 V (QAll) CC IPAS APAS PES

2 0.7 0.5 1 0.005 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551
2 0.7 0.5 1 0.5 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551
2 0.7 0.5 1 1 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551
2 0.7 0.5 1 5 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551
2 0.7 0.5 1 10 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551
2 0.7 0.5 1 20 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551
2 0.7 0.5 1 50 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551

0.05 0.7 0.5 1 1 0.05 1 0.5 0.333 0.006 0.3 0.391 0.391 2.975
0.5 0.7 0.5 1 1 0.5 1 0.5 0.333 0.006 0.3 0.391 0.391 1.723
1 0.7 0.5 1 1 1 1 0.5 0.333 0.006 0.3 0.391 0.391 0.931
2 0.7 0.5 1 1 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551
5 0.7 0.5 1 1 5 1 0.5 0.333 0.006 0.3 0.391 0.391 0.418
10 0.7 0.5 1 1 10 1 0.5 0.333 0.006 0.3 0.391 0.391 0.398
20 0.7 0.5 1 1 20 1 0.5 0.333 0.006 0.3 0.391 0.391 0.393

2 0.7 0.05 1 1 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551
2 0.7 0.5 1 1 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551
2 0.7 1 1 1 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551
2 0.7 5 1 1 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551
2 0.7 10 1 1 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551
2 0.7 20 1 1 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551
2 0.7 40 1 1 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551

0.1 0.7 0.5 0.05 1 2 1 0.5 0.001 0.004 0.3 0.300 0.300 0.450
1 0.7 0.5 0.5 1 2 1 0.5 0.111 0.005 0.3 0.325 0.325 0.479
2 0.7 0.5 1 1 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551
4 0.7 0.5 2 1 2 1 0.5 0.667 0.012 0.3 0.563 0.563 0.711
10 0.7 0.5 5 1 2 1 0.5 0.926 0.054 0.3 0.853 0.853 0.917
20 0.7 0.5 10 1 2 1 0.5 0.980 0.204 0.3 0.956 0.956 0.977
40 0.7 0.5 20 1 2 1 0.5 0.995 0.804 0.3 0.989 0.989 0.994
200 0.7 0.5 100 1 2 1 0.5 1.000 20.004 0.3 1.000 1.000 1.000

2 0.7 0.5 1 1 2 0.01 0.5 0.980 0.002 0.3 0.956 0.956 0.977
2 0.7 0.5 1 1 2 0.1 0.5 0.833 0.002 0.3 0.720 0.720 0.831
2 0.7 0.5 1 1 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551
2 0.7 0.5 1 1 2 5 0.5 0.091 0.022 0.3 0.320 0.320 0.474
2 0.7 0.5 1 1 2 10 0.5 0.048 0.042 0.3 0.310 0.310 0.462
2 0.7 0.5 1 1 2 20 0.5 0.024 0.082 0.3 0.305 0.305 0.456
2 0.7 0.5 1 1 2 40 0.5 0.012 0.162 0.3 0.303 0.303 0.453

Table 3.1: Asymptotic Variance Calculations. Relative Efficiency (RE) Compared with that Ob-
tained from Original Data (ALL). True Model: Perfect Surrogacy (n = 1000)
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Relative Efficiency
Q p β0 β1 α0 α1 σ2

t σ2
ss ρ2 V (QAll) CC IPAS APAS PES

2 0.7 0.5 1 1 2 1 0.01 0.010 0.004 0.3 0.302 0.302 0.305
2 0.7 0.5 1 1 2 1 0.05 0.048 0.004 0.3 0.310 0.310 0.326
2 0.7 0.5 1 1 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551
2 0.7 0.5 1 1 2 1 1 0.500 0.008 0.3 0.462 0.462 0.750
2 0.7 0.5 1 1 2 1 5 0.833 0.024 0.3 0.720 0.720 1.080
2 0.7 0.5 1 1 2 1 10 0.909 0.044 0.3 0.825 0.825 1.068
2 0.7 0.5 1 1 2 1 20 0.952 0.084 0.3 0.900 0.900 1.042
2 0.7 0.5 1 1 2 1 40 0.976 0.164 0.3 0.946 0.946 1.023
2 0.7 0.5 1 1 2 1 100 0.990 0.404 0.3 0.977 0.977 1.010

2 0.1 0.5 1 1 2 1 0.5 0.333 0.006 0.9 0.931 0.931 1.209
2 0.2 0.5 1 1 2 1 0.5 0.333 0.006 0.8 0.857 0.857 1.125
2 0.3 0.5 1 1 2 1 0.5 0.333 0.006 0.7 0.778 0.778 1.033
2 0.4 0.5 1 1 2 1 0.5 0.333 0.006 0.6 0.692 0.692 0.931
2 0.5 0.5 1 1 2 1 0.5 0.333 0.006 0.5 0.600 0.600 0.818
2 0.6 0.5 1 1 2 1 0.5 0.333 0.006 0.4 0.500 0.500 0.692
2 0.7 0.5 1 1 2 1 0.5 0.333 0.006 0.3 0.391 0.391 0.551
2 0.8 0.5 1 1 2 1 0.5 0.333 0.006 0.2 0.273 0.273 0.391
2 0.9 0.5 1 1 2 1 0.5 0.333 0.006 0.1 0.143 0.143 0.209
2 0.95 0.5 1 1 2 1 0.5 0.333 0.006 0.05 0.073 0.073 0.108

2 0.1 0.5 1 1 2 1 20 0.952 0.084 0.9 0.995 0.995 1.047
2 0.2 0.5 1 1 2 1 20 0.952 0.084 0.8 0.988 0.988 1.047
2 0.3 0.5 1 1 2 1 20 0.952 0.084 0.7 0.980 0.980 1.046
2 0.4 0.5 1 1 2 1 20 0.952 0.084 0.6 0.969 0.969 1.046
2 0.5 0.5 1 1 2 1 20 0.952 0.084 0.5 0.955 0.955 1.045
2 0.6 0.5 1 1 2 1 20 0.952 0.084 0.4 0.933 0.933 1.044
2 0.7 0.5 1 1 2 1 20 0.952 0.084 0.3 0.900 0.900 1.042
2 0.8 0.5 1 1 2 1 20 0.952 0.084 0.2 0.840 0.840 1.038
2 0.9 0.5 1 1 2 1 20 0.952 0.084 0.1 0.700 0.700 1.026
2 0.95 0.5 1 1 2 1 20 0.952 0.084 0.05 0.525 0.525 1.002

Table 3.2: Asymptotic Variance Calculations. Relative Efficiency (RE) Compared with that Ob-
tained from Original Data (ALL). True Model: Perfect Surrogacy (n = 1000)
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Figure 3.1: Asymptotic Relative Efficiency (RE) Compared with that Obtained from Original Data
(ALL). Left: β0 = 0.5, β1 = 1, α0 = 1, α1 = 2, σ2

t = 1, p = 0.7, and ρ2 varies. Right:
β0 = 0.5, β1 = 1, α0 = 1, σ2
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ss = 0.5, ρ2 = 0.333 and α1 varies.

(n = 1000)
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Ridge Ridge Mdl-
n1, n2 β2 Q ALL CC PES APAS IPAS FB EB IPW Sel
60, 60 0 2 Bias 5 36 29 42 50 37 40 43 40

MSE 51 259 133 207 216 156 172 224 167
ESD 226 508 364 453 462 393 413 471 406
SE 222 511 376 450 466 429 403 - 381
CR 94.3 92.5 95.8 93.0 94.0 96.3 93.8 - 95.3

0.2 2.2 Bias 5 36 -34 42 50 4 20 43 -6
MSE 51 259 135 207 216 157 173 224 170
ESD 226 508 366 453 462 396 416 471 412
SE 222 511 376 450 466 433 405 - 385
CR 94.3 92.5 95.5 93.0 94.0 96.3 93.3 - 94.3

0.6 2.6 Bias 5 36 -159 42 50 -54 -15 43 -75
MSE 51 259 163 207 216 169 183 224 194
ESD 226 508 371 453 462 401 427 471 434
SE 222 511 391 450 466 444 412 - 395
CR 94.3 92.5 92.3 93.0 94.0 95.5 92.8 - 91.3

2 4 Bias 5 36 -598 42 50 -115 -37 43 -40
MSE 51 259 527 207 216 236 217 224 275
ESD 226 508 412 453 462 408 464 471 523
SE 222 511 464 450 466 493 440 - 436
CR 94.3 92.5 73.3 93.0 94.0 93.5 91.8 - 89.0

120, 120 0 2 Bias 6 16 24 14 14 19 18 14 21
MSE 26 131 73 107 109 83 90 111 85
ESD 161 361 269 327 330 287 299 334 291
SE 158 358 257 310 314 290 278 - 261
CR 94.3 94.3 92.3 92.3 91.8 93.5 90.8 - 90.3

0.2 2.2 Bias 6 16 -41 14 14 -12 -3 14 -23
MSE 26 131 75 107 109 84 88 111 87
ESD 161 361 272 327 330 290 302 334 294
SE 158 358 258 310 314 292 279 - 264
CR 94.3 94.3 92.3 92.3 91.8 93.5 90.5 - 89.3

0.6 2.6 Bias 6 16 -170 14 14 -65 -35 14 -82
MSE 26 131 106 107 109 97 101 111 115
ESD 161 361 277 327 330 305 315 334 329
SE 158 358 268 310 314 302 286 - 274
CR 94.3 94.3 89.0 92.3 91.8 94.5 91.3 - 89.0

2 4 Bias 6 16 -621 14 14 -62 -31 14 -3
MSE 26 131 481 107 109 124 112 111 119
ESD 161 361 309 327 330 347 334 334 345
SE 158 358 317 310 314 329 307 - 307
CR 94.3 94.3 45.8 92.3 91.8 91.8 91.5 - 90.5

Table 3.3: Results from 400 simulated data. Bias, MSE, ESD and SE are Reported by Multiplica-
tion of 1000. β0 = 0.5, β1 = 1, β3 = 0, α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ2 = 0.333

and p = 0.8.
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Ridge Ridge Mdl-
n1, n2 β2 Q ALL CC PES APAS IPAS FB EB IPW Sel

480, 480 0 2 Bias -5 10 -3 -2 -2 -2 -2 -2 -5
MSE 6 33 15 24 24 18 19 24 17
ESD 80 181 120 155 155 134 139 155 131
SE 79 177 127 153 153 142 136 - 130
CR 95 93.8 95.8 94.5 94.5 96 95.0 - 94.5

0.2 2.2 Bias -5 10 -69 -2 -2 -29 -22 -2 -43
MSE 6 33 19 24 24 20 21 24 23
ESD 80 181 121 155 155 138 145 155 145
SE 79 177 128 153 153 145 139 - 132
CR 95 93.8 93.0 94.5 94.5 95.0 93.8 - 91.5

0.6 2.6 Bias -5 10 -200 -2 -2 -49 -31 -2 -41
MSE 6 33 55 24 24 27 26 24 35
ESD 80 181 122 155 155 158 158 155 183
SE 79 177 132 153 153 155 148 - 145
CR 95 93.8 67.5 94.5 94.5 92.8 92.3 - 83.5

2 4 Bias -5 10 -661 -2 -2 -13 -13 -2 -2
MSE 6 33 455 24 24 24 24 24 24
ESD 80 181 134 155 155 155 156 155 155
SE 79 177 156 153 153 154 152 - 152
CR 95 93.8 0.8 94.5 95 94.8 95 - 94.5

Table 3.4: Results from 400 simulated data. Bias, MSE, ESD and SE are Reported by Multiplica-
tion of 1000. β0 = 0.5, β1 = 1, β3 = 0, α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ2 = 0.333

and p = 0.8.
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Figure 3.2: MSE by Sample Size and β2 from 400 simulated data sets. β0 = 0.5, β1 = 1, β3 = 0,
α0 = 1, α1 = 2, σ2
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t = 1, ρ2 = 0.333 and p = 0.8.
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Figure 3.3: Bias by Sample Size and β2 from 400 simulated data sets. β0 = 0.5, β1 = 1, β3 = 0,
α0 = 1, α1 = 2, σ2
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Figure 3.4: Coverage Rate by Sample Size and β2 from 400 simulated data sets. β0 = 0.5, β1 = 1,
β3 = 0, α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ2 = 0.333 and p = 0.8.
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Ridge Ridge Mdl-
n1, n2 β3 β2 Q ALL CC PES APAS IPAS FB EB IPW Sel
60, 60 0.2 0 2.6 Bias 5 33 -97 40 49 2 23 42 -48

MSE 54 276 149 211 220 172 190 230 179
ESD 233 525 374 458 466 415 435 478 420
SE 230 530 390 455 470 470 436 - 395
CR 94.5 92.8 93.5 92.5 94.0 95.3 94.0 - 91.3

0.2 0.2 2.8 Bias 5 33 -159 40 49 -19 12 42 -71
MSE 54 276 167 211 220 177 193 230 199
ESD 233 525 377 458 466 420 439 478 441
SE 230 530 397 455 470 475 438 - 401
CR 94.5 92.8 92.3 92.5 94.0 95.0 93.5 - 90.8

0.2 0.6 3.2 Bias 5 33 -285 40 49 -54 -5 42 -114
MSE 54 276 230 211 220 190 200 230 248
ESD 233 525 386 458 466 432 448 478 484
SE 230 530 414 455 470 486 442 - 413
CR 94.5 92.8 87.3 92.5 94.0 95.3 92.3 - 86.3

0.2 2 4.6 Bias 5 33 -723 40 49 -86 -19 42 -17
MSE 54 276 714 211 220 226 216 230 274
ESD 233 525 436 458 466 468 465 478 523
SE 230 530 498 455 470 519 453 - 446
CR 94.5 92.8 66.8 92.5 94.0 94.5 92.3 - 88.8

120, 120 0.2 0 2.6 Bias 6 15 -105 12 14 -12 -0.2 14 -53
MSE 28 140 89 110 111 95 103 114 108
ESD 167 373 280 332 333 308 321 338 324
SE 164 372 268 313 317 319 299 - 274
CR 95.0 94.5 90.3 92.0 91.8 95.0 91.8 - 88.5

0.2 0.2 2.8 Bias 6 15 -170 12 14 -31 -11 14 -72
MSE 28 140 109 110 111 99 105 114 118
ESD 167 373 283 332 333 313 324 338 336
SE 164 372 273 313 317 323 300 - 279
CR 95.0 94.5 88.8 92.0 91.8 95.5 91.8 - 88.5

0.2 0.6 3.2 Bias 6 15 -299 12 14 -57 -27 14 -91
MSE 28 140 174 110 111 109 108 114 144
ESD 167 373 291 332 333 325 328 338 368
SE 164 372 284 313 317 331 302 - 291
CR 95.0 94.5 79.0 92.0 91.8 95.3 92.5 - 85

0.2 2 4.6 Bias 6 15 -750 12 14 -54 -32 14 6
MSE 28 140 669 110 111 121 114 114 120
ESD 167 373 327 332 333 344 336 338 346
SE 164 372 341 313 317 348 311 - 312
CR 95.0 94.5 36.3 92 91.8 95.3 91.3 - 90.5

Table 3.5: Results from 400 simulated data. Bias, MSE, ESD and SE are Reported by Multipli-
cation of 1000. β0 = 0.5, β1 = 1, α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ0

2 = 0.333,
ρ1

2 = 0.419 and p = 0.8.
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Ridge Ridge Mdl-
n1, n2 β3 β2 Q ALL CC PES APAS IPAS FB EB IPW Sel

480, 480 0.2 0 2.6 Bias -4 11 -134 -2 -2 -23 -17 -1 -48
MSE 7 36 33 25 25 24 24 25 34
ESD 83 188 124 157 157 152 154 157 177
SE 82 183 132 154 153 160 148 - 141
CR 94.3 93.5 83.0 94.5 94.3 96.3 93.5 - 83.3

0.2 0.2 2.8 Bias -4 11 -200 -2 -2 -32 -24 -1 -38
MSE 7 36 55 25 25 25 25 25 36
ESD 83 188 124 157 157 156 156 157 185
SE 82 183 134 154 154 163 149 - 147
CR 94.3 93.5 68.0 94.5 94.3 95.0 93.5 - 83.5

0.2 0.6 3.2 Bias -4 11 -331 -2 -2 -35 -27 -1 -5
MSE 7 36 126 25 25 27 26 25 26
ESD 83 188 127 157 157 161 159 157 163
SE 82 183 140 154 154 167 151 - 153
CR 94.3 93.5 31.0 94.5 94.3 96.3 94 - 92.3

0.2 2 4.6 Bias -4 11 -792 -2 -2 -14 -13 -1 -2
MSE 7 36 648 25 25 25 25 25 25
ESD 83 188 141 157 157 158 158 157 157
SE 82 183 168 154 154 169 154 - 153
CR 94.3 93.5 0 94.5 94.3 96.3 94.5 - 94.5

Table 3.6: Results from 400 simulated data. Bias, MSE, ESD and SE are Reported by Multipli-
cation of 1000. β0 = 0.5, β1 = 1, α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ0

2 = 0.333,
ρ1

2 = 0.419 and p = 0.8.
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Figure 3.5: MSE by Sample Size and β2 from 400 simulated data sets. β0 = 0.5, β1 = 1, β3 = 0.2,
α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
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Ridge Ridge Mdl-
n1, n2 β3 β2 Q ALL CC PES APAS IPAS FB EB IPW Sel
60, 60 0.6 0 3.8 Bias 3 27 -348 35 48 -39 1 40 -94

MSE 63 321 291 227 229 203 210 244 277
ESD 251 566 412 475 476 449 458 493 518
SE 249 574 441 471 480 503 453 - 437
CR 94.3 93.8 86.3 94.0 93.5 96.0 93.3 - 85.3

0.6 0.2 4 Bias 3 27 -411 35 48 -50 -6 40 -92
MSE 63 321 344 227 229 208 213 244 295
ESD 251 566 418 475 476 453 461 493 535
SE 249 574 452 471 480 508 455 - 442
CR 94.3 93.8 83.3 94.0 93.8 95.8 92.5 - 86.8

0.6 0.6 4.4 Bias 3 27 -536 35 48 -64 -16 40 -60
MSE 63 321 474 227 229 220 219 244 295
ESD 251 566 432 475 476 465 468 493 540
SE 249 574 475 471 480 516 458 - 452
CR 94.3 93.8 77.3 94.0 93.8 94.8 91.8 - 87.5

0.6 2 5.8 Bias 3 27 -975 35 48 -67 -20 40 19
MSE 63 321 1197 227 229 241 229 244 262
ESD 251 566 497 475 476 486 478 493 512
SE 249 574 578 471 480 535 466 - 465
CR 94.3 93.8 58.8 94.0 93.8 94.8 92.0 - 91.0

120, 120 0.6 0 3.8 Bias 6 13 -363 10 15 -31 -11 14 -53
MSE 33 162 229 120 117 114 115 121 148
ESD 181 403 312 347 342 337 338 348 381
SE 177 403 303 325 324 341 312 - 310
CR 94.5 95.5 74.0 93.0 91.8 95.0 91.8 - 86.8

0.6 0.2 4 Bias 6 13 -427 10 15 -36 -17 14 -37
MSE 33 162 283 120 117 117 116 121 145
ESD 181 403 316 347 342 340 340 348 379
SE 177 403 310 325 324 343 312 - 314
CR 94.5 95.5 68.3 93.0 91.8 95.3 91.8 - 87.3

0.6 0.6 4.4 Bias 6 13 -556 10 15 -43 -26 14 -11
MSE 33 162 416 120 117 120 118 121 137
ESD 181 403 327 347 342 344 342 348 371
SE 177 403 326 325 324 347 314 - 318
CR 94.5 95.5 56.3 93.0 91.8 95.0 91.0 - 89.3

0.6 2 5.8 Bias 6 13 -1008 10 15 -47 -30 14 13
MSE 33 162 1152 120 117 126 120 121 119
ESD 181 403 370 347 342 352 345 348 345
SE 177 403 395 325 324 355 320 - 322
CR 94.5 95.5 25.5 93.0 91.8 95.5 92.0 - 91.5

Table 3.7: Results from 400 simulated data. Bias, MSE, ESD and SE are Reported by Multipli-
cation of 1000. β0 = 0.5, β1 = 1, α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ0

2 = 0.333,
ρ0

2 = 0.561 and p = 0.8.
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Ridge Ridge Mdl-
n1, n2 β3 β2 Q ALL CC PES APAS IPAS FB EB IPW Sel

480, 480 0.6 0 3.8 Bias -3 14 -396 -1 -0.9 -12 -11 -0.5 -1
MSE 8 42 175 27 26 25 27 26 26
ESD 90 205 136 164 162 159 160 162 162
SE 89 198 149 160 158 166 154 - 158
CR 94.3 93.5 21.0 94.5 94.8 96.0 93.3 - 94.8

0.6 0.2 4 Bias -3 14 -462 -1 -0.9 -20 -16 -0.5 -1
MSE 8 42 232 27 26 26 26 26 26
ESD 90 205 137 164 162 159 160 162 162
SE 89 198 153 160 158 167 154 - 158
CR 94.3 93.5 12.8 94.5 94.8 95.5 93.3 - 94.8

0.6 0.6 4.4 Bias -3 14 -594 -1 -0.9 -30 -21 -0.5 -1
MSE 8 42 372 27 26 27 27 26 26
ESD 90 205 141 164 161 162 162 162 162
SE 89 198 161 160 158 170 155 - 158
CR 94.3 93.5 3.5 94.5 94.8 95.8 93.8 - 94.8

0.6 2 5.8 Bias -3 14 -1054 -1 -0.9 -14 -12 -0.5 -1
MSE 8 42 1137 27 26 27 27 26 26
ESD 90 205 160 164 161 163 163 162 162
SE 89 198 195 160 158 174 158 - 158
CR 94.3 93.5 0 94.5 94.8 96.3 94.3 - 94.8

Table 3.8: Results from 400 simulated data. Bias, MSE, ESD and SE are Reported by Multipli-
cation of 1000. β0 = 0.5, β1 = 1, α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ0

2 = 0.333,
ρ1

2 = 0.561 and p = 0.8.
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Figure 3.6: MSE by Sample Size and β2 from 400 simulated data sets. β0 = 0.5, β1 = 1, β3 = 0.6,
α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ2

0 = 0.333, ρ2
0 = 0.561 and p = 0.8.
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Ridge Ridge Mdl-
n1, n2 β3 β2 Q ALL CC PES APAS IPAS FB EB IPW Sel
60, 60 2 0 8 Bias -0.3 7 -1227 21 44 4 15 33 32

MSE 115 587 1954 369 283 264 269 327 300
ESD 339 766 670 607 530 514 518 571 547
SE 340 776 732 580 534 569 516 - 532
CR 95.0 94.0 59.5 94.5 94.8 96.8 93.0 - 93.5

2 0.2 8.2 Bias -0.3 7 -1290 21 44 -4 10 33 35
MSE 115 587 2126 369 283 264 270 327 299
ESD 339 766 680 607 530 514 520 571 546
SE 340 776 749 580 534 570 517 - 532
CR 95.0 94.0 58.8 94.5 94.8 96.8 93.3 - 93.5

2 0.6 8.6 Bias -0.3 7 -1415 21 44 -19 0.5 33 38
MSE 115 587 2495 369 283 265 274 327 294
ESD 339 766 702 607 530 515 523 571 541
SE 340 776 783 532 534 573 519 - 531
CR 95.0 94.0 53.8 94.5 94.8 96.8 92.8 - 93.8

2 2 10 Bias -0.3 7 -1854 21 44 -55 -11 33 39
MSE 115 587 4054 369 283 287 283 327 294
ESD 339 766 786 607 530 533 532 571 541
SE 340 776 909 580 534 590 526 - 531
CR 95.0 94.0 43.0 94.5 94.8 96.3 93.3 - 93.8

120, 120 2 0 8 Bias 7 5 -1265 0.2 16 -8 8 15 16
MSE 61 299 1840 197 147 141 144 158 148
ESD 246 547 490 443 384 376 379 398 384
SE 241 547 504 405 364 378 355 - 364
CR 95.3 95.8 26.5 92.8 93.5 95.0 93.3 - 93.5

2 0.2 8.2 Bias 7 5 -1329 0.2 16 -1 3 15 16
MSE 61 299 2013 197 147 141 144 158 148
ESD 246 547 496 443 384 376 380 398 384
SE 241 547 515 405 364 379 355 - 364
CR 95.3 95.8 24.0 92.8 93.5 94.8 93.5 - 93.5

2 0.6 8.6 Bias 7 5 -1458 0.2 16 -19 -7 15 16
MSE 61 299 2387 197 147 143 145 158 148
ESD 246 547 510 443 384 377 381 398 384
SE 241 547 538 405 364 381 356 - 364
CR 95.3 95.8 21.8 92.8 93.5 94.5 93.3 - 93.5

2 2 10 Bias 7 5 -1910 0.2 16 -52 -21 15 16
MSE 61 299 3964 197 147 156 149 158 148
ESD 246 547 563 443 384 392 385 398 384
SE 241 547 624 405 364 397 362 - 364
CR 95.3 95.8 13.5 92.8 93.5 96.0 92.5 - 93.5

Table 3.9: Results from 400 simulated data. Bias, MSE, ESD and SE are Reported by Multipli-
cation of 1000. β0 = 0.5, β1 = 1, α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ0

2 = 0.333,
ρ1

2 = 0.818 and p = 0.8.
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Ridge Ridge Mdl-
n1, n2 β3 β2 Q ALL CC PES APAS IPAS FB EB IPW Sel

480, 480 2 0 8 Bias -0.3 24 -1314 0.4 2 -2 -1 3 2
MSE 15 79 1771 43 34 33 33 34 34
ESD 124 280 213 208 184 181 182 185 184
SE 120 269 250 199 178 184 174 - 178
CR 94.3 92.8 0 94.5 93.8 95.0 93.0 - 93.8

2 0.2 8.2 Bias -0.3 24 1379 0.4 2 -13 -7 3 2
MSE 15 79 1950 43 34 33 33 34 34
ESD 124 280 216 208 184 181 183 185 184
SE 120 269 255 199 178 185 175 - 178
CR 94.3 92.8 0 94.5 93.8 94.8 92.8 - 93.8

2 0.6 8.6 Bias -0.3 24 -1511 0.4 2 -28 -15 3 2
MSE 15 79 2333 43 34 35 34 34 34
ESD 124 280 223 208 184 184 184 185 184
SE 120 269 267 199 178 188 176 - 178
CR 94.3 92.8 0 94.5 93.8 94.5 93.0 - 93.8

2 2 10 Bias -0.3 24 1972 0.4 0.2 -12 -8 3 2
MSE 15 79 3951 43 34 35 34 34 34
ESD 124 280 249 208 184 186 185 185 184
SE 120 269 309 199 178 193 178 - 178
CR 94.3 92.8 0 94.5 93.8 94.8 93.3 - 93.8

Table 3.10: Results from 400 simulated data. Bias, MSE, ESD and SE are Reported by Multipli-
cation of 1000. β0 = 0.5, β1 = 1, α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ2

0 = 0.333,
ρ2
1 = 0.818 and p = 0.8.
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Figure 3.7: MSE by Sample Size and β2 from 400 simulated data sets. β0 = 0.5, β1 = 1, β3 = 2, α0 = 1, α1 = 2,
σ2

ss = 0.5, σ2
t = 1, ρ20 = 0.333, ρ21 = 0.818 and p = 0.8.
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Medicine Surgery

IOP Observed at 12th and 102nd Month
Number of Patients 86 74
IOP at 12th Month: Mean (SE) 17.9(3.29) 14.1(4.96)
IOP at 102nd Month: Mean (SE) 17.5(4.67) 15.1(4.61)

IOP Missing at 102nd Month
Number of Patients 206 207
IOP at 12th Month: Mean (SE) 18.2(3.80) 14.3(5.19)

Table 3.11: Summary Statistics from CIGTS data. IOP at the 102th month as True Endpoint and
IOP at the 12th month as Surrogate

Estimation Method Estimate 95% CI CI Width

CC -2.391 (−3.844,−0.937) 2.907
IPAS -2.419 (−3.792,−1.046) 2.746
APAS -2.400 (−3.765,−1.034) 2.731
PES -1.833 (−2.490,−1.176) 1.315
MdlSel -1.833 (−2.490,−1.176) 1.315
Ridge-EB -2.094 (−3.138,−1.049) 2.089
Ridge-FB -2.019 (−3.033,−1.006) 2.027

Table 3.12: Quantity of Interest: Difference in the IOP Reduction at the 102nd Month between
Surgery Treatment and Medicine Treatment. Estimates from Seven Methods are Pre-
sented here. IOP at the 102nd month as True Endpoint and IOP at the 12th month as
Surrogate

3.8 Appendix

3.8.1 Asymptotic Variance

When S is an interactive partial surrogate, the elements of the expected informa-

tion matrix are the second derivatives of the likelihood function in (3.2) and given
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The expected information matrix IIPAS(θ) is equal to
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When S is an additive partial surrogate, i.e., β3 = 0, the expected information

matrix IAPAS(θ) is given by:

−E ∂2logL
∂β2

0
−E ∂2logL

∂β0∂β1
−E ∂2logL

∂β0∂β2
0 0

−E ∂2logL
∂β0∂β1

−E ∂2logL
∂β2

1
−E ∂2logL

∂β1∂β2
0 0

−E ∂2logL
∂β0∂β2

−E ∂2logL
∂β1∂β2

−E ∂2logL
∂β2

2
0 0

0 0 0 −E ∂2logL
∂α2

0
−E ∂2logL

∂α0∂α1

0 0 0 −E ∂2logL
∂α0∂α1

−E ∂2logL
∂α2

1


When S is a perfect surrogate, i.e., β2 = β3 = 0, the information matrix IPES(θ)

is expressed as:
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3.8.2 Additional Simulation Results
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Ridge Ridge Mdl-
n1, n2 β3 β2 Q ALL CC PES APAS IPAS FB EB IPW Sel
60, 60 0.2 0 -3.4 Bias 6 48 -95 41 51 3 25 56 -46

MSE 92 490 183 238 252 204 222 300 216
ESD 303 699 417 487 500 452 471 545 462
SE 306 693 422 497 512 507 478 - 431
CR 94.0 94.5 94.8 96.3 96.5 97.3 97.0 - 93.8

0.2 0.2 -3.2 Bias 6 48 -158 41 51 -18 14 56 -70
MSE 92 490 197 238 252 207 224 300 233
ESD 303 699 414 487 500 455 473 545 478
SE 306 693 420 497 512 508 478 - 433
CR 94.0 94.5 94.3 96.3 96.5 96.8 96.8 - 93.5

0.2 0.6 -2.8 Bias 6 48 -283 41 51 -53 -4 56 -112
MSE 92 490 249 238 252 217 229 300 273
ESD 303 699 411 487 500 463 478 545 510
SE 306 693 419 497 512 514 479 - 439
CR 94.0 94.5 91.3 96.3 96.5 96.5 96.0 - 92.3

0.2 2 -1.4 Bias 6 48 -722 41 51 -84 -17 56 -15
MSE 92 490 697 238 252 254 243 300 301
ESD 303 699 419 487 500 497 492 545 549
SE 306 693 452 497 512 545 488 - 480
CR 94.0 94.5 61.8 96.3 96.5 96.5 94.5 - 90.3

120, 120 0.2 0 -3.4 Bias -4 -8 -115 3 5 -23 -10 4 -63
MSE 48 262 105 137 138 119 128 146 130
ESD 219 512 304 370 371 344 358 382 355
SE 216 482 291 342 346 345 328 - 301
CR 95.5 93.3 90.0 91.8 92.0 94.3 91.5 - 88.3

0.2 0.2 -3.2 Bias -4 -8 -179 3 5 -41 -21 4 -81
MSE 48 262 124 137 138 124 131 146 145
ESD 219 512 303 370 371 349 361 382 372
SE 216 482 290 342 346 347 328 - 304
CR 95.5 93.3 87.0 91.8 92.0 91.8 91.0 - 85.8

0.2 0.6 -2.8 Bias -4 -8 -308 3 5 -67 -36 4 -101
MSE 48 262 186 137 138 135 135 146 177
ESD 219 512 302 370 371 362 365 382 409
SE 216 482 288 342 342 352 329 - 312
CR 95.5 93.3 81.5 91.8 92.0 91.8 89.8 - 85.0

0.2 2 -1.4 Bias -4 -8 -759 3 5 -64 -42 4 -3
MSE 48 262 674 137 138 148 141 146 147
ESD 219 512 313 370 371 379 373 382 384
SE 216 482 308 342 346 369 336 - 341
CR 95.5 93.3 30.0 91.8 92.0 92.0 90.5 - 91.0

Table 3.13: Results from 400 simulated data. Bias, MSE, ESD and SE are Reported by Multipli-
cation of 1000. β0 = 0.5, β1 = −2, α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ0

2 = 0.667,
ρ1

2 = 0.618 and p = 0.8.
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Ridge Ridge Mdl-
n1, n2 β3 β2 Q ALL CC PES APAS IPAS FB EB IPW Sel

480, 480 0.2 0 -3.4 Bias -14 -35 -143 -11 -11 -33 -27 -13 -58
MSE 14 67 43 32 32 31 31 32 40
ESD 118 256 150 178 178 172 174 180 192
SE 108 242 144 170 170 174 163 - 156
CR 92.0 92.5 82.0 94.8 94.5 94.5 93.3 - 86.5

0.2 0.2 -3.2 Bias -14 -35 -209 -11 -11 -42 -33 -13 -48
MSE 14 66 67 32 32 33 32 32 43
ESD 118 256 148 178 178 176 177 180 201
SE 108 242 143 170 170 176 164 - 161
CR 92.0 92.5 69.3 94.8 94.0 93.8 93.0 - 87.0

0.2 0.6 -2.8 Bias -14 -35 -341 -11 -11 -45 -37 -13 -15
MSE 14 67 138 32 32 34 34 32 34
ESD 118 256 147 178 178 180 179 180 183
SE 108 242 143 170 170 180 166 - 169
CR 92.0 92.5 34.5 94.8 94.0 94.3 93.8 - 93.0

0.2 2 -1.4 Bias -14 -35 -802 -11 -11 -24 -23 -13 -11
MSE 14 67 664 32 32 33 32 32 32
ESD 118 256 147 178 178 179 179 180 178
SE 108 242 153 170 170 182 169 - 170
CR 92.0 92.5 0 94.8 94.0 95.3 94.0 - 94.8

Table 3.14: Results from 400 simulated data. Bias, MSE, ESD and SE are Reported by Multipli-
cation of 1000. β0 = 0.5, β1 = −2, α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ0

2 = 0.667,
ρ1

2 = 0.618 and p = 0.8.
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Figure 3.8: MSE by Sample Size and β2 from 400 simulated data sets. β0 = 0.5, β1 = −2, β3 = 0.2,
α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ0

2 = 0.667, ρ1
2 = 0.618 and p = 0.8.
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Ridge Ridge Mdl-
n1, n2 β3 β2 Q ALL CC PES APAS IPAS FB EB IPW Sel
60, 60 0.6 0 -2.2 Bias 5 42 -346 37 50 -39 3 54 -92

MSE 81 439 285 235 242 210 221 286 280
ESD 284 662 407 483 489 457 470 532 521
SE 288 652 415 490 501 512 469 - 441
CR 94.3 94.5 88.3 96.5 96.0 96.8 95.8 - 90.0

0.6 0.2 -2 Bias 5 42 -409 37 50 -50 -4 54 -91
MSE 81 439 333 235 242 215 223 286 290
ESD 284 662 407 483 489 461 473 532 531
SE 288 652 418 491 501 516 470 - 446
CR 94.3 94.5 84.0 96.5 96.0 96.3 95.5 - 89.0

0.6 0.6 -1.6 Bias 5 42 -534 37 50 -63 -14 54 -59
MSE 81 439 453 235 242 227 228 286 290
ESD 284 662 409 483 489 472 478 532 535
SE 288 652 427 491 501 523 472 - 459
CR 94.3 94.5 73.5 96.5 96.0 95.8 94.5 - 89.0

0.6 2 -0.2 Bias 5 42 -973 37 50 -66 -18 54 21
MSE 81 439 1139 235 242 247 237 286 273
ESD 284 662 439 483 489 493 486 532 522
SE 288 652 491 491 501 542 479 - 483
CR 94.3 94.5 46.8 96.5 96.0 96.5 94.8 - 93.5

120, 120 0.6 0 -2.2 Bias -3 -11 -372 0.05 5 -41 -20 5 -63
MSE 43 238 230 137 133 132 132 140 172
ESD 208 488 302 371 365 361 363 375 410
SE 203 454 284 339 338 350 323 - 317
CR 95.8 93.0 74.5 91.0 91.3 92.0 89.5 - 84.0

0.6 0.2 -2 Bias -3 -11 -437 0.05 5 -46 -26 5 -47
MSE 43 238 283 137 133 135 133 140 169
ESD 208 488 303 371 365 364 364 375 408
SE 203 454 286 339 339 352 323 - 323
CR 95.8 93.0 67.0 91.0 91.3 91.8 89.0 - 83.8

0.6 0.6 -1.6 Bias -3 -11 -566 0.05 5 -53 -35 5 -21
MSE 43 23 414 137 133 138 134 140 154
ESD 208 488 306 371 365 368 365 375 392
SE 203 454 292 339 338 355 324 - 330
CR 95.8 93.0 50.3 91.0 91.3 91.8 88.8 - 87.5

0.6 2 -0.2 Bias -3 -11 -1017 0.05 5 -57 -40 5 3
MSE 43 23 1142 137 133 141 137 140 136
ESD 208 488 328 371 365 371 367 375 369
SE 203 454 334 339 338 362 332 - 336
CR 95.8 93.0 13.5 91.0 91.3 92.5 89.8 - 90.0

Table 3.15: Results from 400 simulated data. Bias, MSE, ESD and SE are Reported by Multipli-
cation of 1000. β0 = 0.5, β1 = −2, α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ0

2 = 0.667,
ρ1

2 = 0.495 and p = 0.8.
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Ridge Ridge Mdl-
n1, n2 β3 β2 Q ALL CC PES APAS IPAS FB EB IPW Sel

480, 480 0.6 0 -2.2 Bias -13 -32 -406 -11 -11 -22 -21 -12 -11
MSE 12 60 185 31 30 30 30 31 31
ESD 111 242 144 177 174 171 171 175 175
SE 102 228 141 168 166 173 161 - 166
CR 92.3 92.8 18.3 94.0 94.3 95 93.8 - 94.0

0.6 0.2 -2 Bias -13 -32 -471 -11 -11 -30 -26 -12 -11
MSE 12 60 243 31 30 30 30 31 31
ESD 111 242 144 177 174 171 172 175 175
SE 102 228 142 168 166 174 161 - 166
CR 92.3 92.8 8.5 94.0 94.3 94.5 93.5 - 94.0

0.6 0.6 -1.6 Bias -13 -32 -603 -11 -11 -40 -32 -12 -11
MSE 12 60 384 31 30 32 31 31 31
ESD 111 242 144 177 174 174 174 175 175
SE 102 228 145 168 166 176 163 - 166
CR 92.3 92.8 1.8 94.0 94.3 94.3 93.5 - 94.0

0.6 2 -0.2 Bias -13 -32 -1064 -11 -11 -28 -22 -12 -11
MSE 12 60 1155 31 30 31 31 31 31
ESD 111 242 150 177 174 174 175 175 175
SE 102 228 165 168 166 181 165 - 166
CR 92.3 92.8 0 94.0 94.3 95.0 93.8 - 94.0

Table 3.16: Results from 400 simulated data. Bias, MSE, ESD and SE are Reported by Multipli-
cation of 1000. β0 = 0.5, β1 = −2, α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ0

2 = 0.667,
ρ1

2 = 0.495 and p = 0.8.
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Figure 3.9: MSE by Sample Size and β2 from 400 simulated data sets. β0 = 0.5, β1 = −2, β3 = 0.6,
α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ0

2 = 0.667, ρ1
2 = 0.495 and p = 0.8.
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Ridge Ridge Mdl-
n1, n2 β3 β2 Q ALL CC PES APAS IPAS FB EB IPW Sel
60, 60 2 0 2 Bias 1 22 -1225 22 46 5 17 47 34

MSE 64 370 1808 307 227 209 211 268 249
ESD 253 608 554 553 474 457 459 515 498
SE 259 583 533 533 485 516 460 - 481
CR 94.3 92.3 41.8 93.3 94.5 96.5 94.5 93.0

2 0.2 2.2 Bias 1 22 -1288 22 46 -3 11 47 36
MSE 64 370 1975 307 227 208 212 268 248
ESD 253 608 562 553 474 456 460 515 496
SE 259 583 601 533 485 517 461 - 481
CR 94.3 92.3 39.8 93.3 94.5 96.3 94.5 - 93.3

2 0.6 2.6 Bias 1 22 -1413 22 46 -18 2 47 40
MSE 64 370 2334 307 227 208 214 268 242
ESD 253 608 580 553 474 456 463 515 491
SE 259 583 632 533 485 519 463 - 481
CR 94.3 92.3 35.0 93.3 94.5 96.5 94.5 - 93.8

2 2 4 Bias 1 22 -1852 22 46 -54 10 47 41
MSE 64 370 3856 307 227 225 222 268 242
ESD 253 608 653 553 474 471 471 515 491
SE 259 583 751 533 485 535 469 - 481
CR 94.3 92.3 27.5 93.3 94.5 97.0 93.3 - 93.8

120, 120 2 0 2 Bias -2 -19 -1274 -9 6 -2 -1 6 6
MSE 36 211 1788 179 129 123 126 134 129
ESD 190 459 405 423 359 351 355 365 359
SE 183 407 401 370 326 341 315 326
CR 93.3 92.5 13.0 91.8 88.3 92.3 89.8 - 88.8

2 0.2 2.2 Bias -2 -19 -1339 -9 6 -11 -6 6 6
MSE 36 211 1961 179 129 123 127 134 129
ESD 190 459 410 423 359 350 356 365 359
SE 183 407 411 370 326 341 315 - 326
CR 93.3 92.5 11.5 91.8 88.8 92.3 89.8 - 88.8

2 0.6 2.6 Bias -2 -19 -1468 -9 6 -29 -17 6 6
MSE 36 211 2332 179 129 124 127 134 129
ESD 190 459 422 423 359 351 357 365 359
SE 183 407 432 370 326 343 316 - 326
CR 93.3 92.5 9.3 91.8 88.8 92.8 89.8 - 88.8

2 2 4 Bias -2 -19 -1919 -9 6 -62 -31 6 6
MSE 36 211 3901 179 129 136 130 134 129
ESD 190 459 467 423 359 364 360 365 359
SE 183 407 512 370 326 357 321 - 326
CR 93.3 92.5 4.5 91.8 88.8 92.5 88.8 - 88.8

Table 3.17: Results from 400 simulated data. Bias, MSE, ESD and SE are Reported by Multipli-
cation of 1000. β0 = 0.5, β1 = −2, α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ0

2 = 0.667,
ρ1

2 = 0 and p = 0.8.
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Ridge Ridge Mdl-
n1, n2 β3 β2 Q ALL CC PES APAS IPAS FB EB IPW Sel

480, 480 2 0 2 Bias -10 -22 -1323 -9 -7 -12 -11 -9 -7
MSE 10 48 1782 39 28 27 27 28 28
ESD 98 219 176 196 168 163 165 168 168
SE 91 204 198 183 160 166 155 - 160
CR 93.5 93.5 0 92.3 93.3 94.5 93.8 - 93.3

2 0.2 2.2 Bias -10 -22 -1389 -9 -7 -23 -17 -9 -7
MSE 10 48 1961 39 28 27 28 28 28
ESD 98 219 179 196 168 163 165 168 168
SE 91 204 203 183 160 167 155 - 160
CR 93.5 93.5 0 92.3 93.3 94.8 93.5 - 93.3

2 0.6 2.6 Bias -10 -22 -1521 -9 -7 -42 -24 -9 -7
MSE 10 48 2346 39 28 29 28 28 28
ESD 98 219 184 196 168 165 167 168 168
SE 91 204 214 183 160 170 157 - 160
CR 93.5 93.5 0 92.3 93.3 94.3 93.8 - 93.3

2 2 4 Bias -10 -22 -1982 -9 -7 -22 -18 -9 -7
MSE 10 48 3969 39 28 29 29 28 28
ESD 98 219 205 196 168 169 168 168 168
SE 91 204 253 199 160 176 159 - 160
CR 93.5 93.5 0 92.3 93.3 96.0 93.5 - 93.3

Table 3.18: Results from 400 simulated data. Bias, MSE, ESD and SE are Reported by Multipli-
cation of 1000. β0 = 0.5, β1 = −2, α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ0

2 = 0.667,
ρ1

2 = 0 and p = 0.8.
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Figure 3.10: MSE by Sample Size and β2 from 400 simulated data sets. β0 = 0.5, β1 = −2, β3 = 2,
α0 = 1, α1 = 2, σ2

ss = 0.5, σ2
t = 1, ρ0

2 = 0.667, ρ1
2 = 0 and p = 0.8.
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CHAPTER IV

Assessing Surrogacy in Clinical Trials Using Counterfactual
Models

Summary. A surrogate marker (S) is a variable that can be measured earlier and

often easier than the true endpoint (T ) in a clinical trial. It can be very useful if it

can reliably facilitate early prediction of the effect of the treatment (Z) on T . Most

previous research has been devoted to developing surrogacy measures to quantify how

well S can replace T or examining the use of S in predicting the treatment effect.

However, the research often requires one to fit models for the distribution of T given S

and Z. It is well known that such models do not have causal interpretations because

the models condition on a post-randomization variable S. In this paper, we directly

model the relationship among T , S and Z in a causal inference framework, specifically

using a potential outcomes framework introduced by Frangakis and Rubin (2002) for

surrogate markers. We propose a Bayesian estimation method to evaluate the causal

probabilities associated with the cross-classification of the potential outcomes of S

and T when S and T are both binary. We use a log-linear model to model the odds

ratios of the potential outcomes. The quantities derived from this approach always

have causal interpretations. This causal model is not identifiable from data without

additional assumptions. To reduce the non-identifiability problem and increase the

precision for statistical inferences, we incorporate assumptions that are plausible in

103



104

the surrogate context by using prior distributions. We also explore the relationship

among the surrogacy measures based on traditional models and this counterfactual

model. We use the causal probabilities to predict the treatment effect when T is

partially observed. Then we extend the method to the multiple trial setting using

hierarchical modeling. The methods are applied to data from a glaucoma treatment

study and a colorectal cancer study.

Keywords: Bayesian Estimation, Counterfactual Model, Randomized Trial, Sur-

rogate Marker.
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4.1 Introduction

Surrogate markers (S) in a randomized clinical trial are intermediate physical or

laboratory indicators of a disease progression process that can be measured earlier

and are often easier to collect than the true endpoint (T ). A good surrogate marker

will have a strong association with T . When T is rare, late-occurring or costly to

obtain, we can use an effective surrogate marker to reliably extract information on

the effect of the treatment (Z) on T before T is completely observed. Thus a surro-

gate marker can have enormous potential benefits in reducing trial duration and size,

lowering the trial expense and leading to earlier decision making. Examples of po-

tential surrogate markers include CD4 counts and viral load for HIV infection, blood

pressure and serum cholesterol level for cardiovascular disease and prostate-specific

antigen for prostate cancer. As more biomarkers are discovered and recommended

as surrogate markers, there is continuing strong interest in surrogate markers in the

clinical research community.

In order to fully realize the potential use of surrogate markers in predicting treat-

ment effects, biological research has been conducted to understand the mechanism

through which the treatment functions. Statistical methods have been proposed to

quantify the value of a particular surrogate marker and complement the biological

research in the hope of understanding the relationship among T , S and Z. Prentice

(1989) proposed a formal definition of perfect surrogacy which requires that S fully

captures the effect of the treatment on T . To measure less than perfect surrogacy,

the proportion of the treatment effect explained by S was proposed by Freedman et

al (1992) and further extended by Wang and Taylor (2002). However, these mea-

sures and the prediction of the treatment effect on T using S often require one to
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utilize models for the distribution of T given S and Z. They often do not have

causal interpretations because the models used condition on the post randomization

variable S (Rosenbaum, 1984). Other surrogacy measures include the trial-level and

individual-level correlations between S and T in a multiple-trial setting (Buyse et al,

2000) and measures based on entropy (Alonso et al., 2003).

An alternative approach is to directly model the relationship among T , S and

Z in a causal framework. The general idea in causal modeling hypothesizes the

setting wherein each individual has two potential outcomes, corresponding to the

two possible treatment regimes (e.g., Z = 1 for treatment and Z = 0 for placebo).

The causal treatment effect would be the comparison between these two potential

outcomes for the same set of individuals. In reality, we only observe one of the

outcomes since either the treatment or placebo (not both) is assigned to a patient.

The framework has been used to model noncompliance (Imbens and Rubin, 1997;

Frangakis et al, 2002; Hirano et al, 2000; Balke and Pearl, 1997). In this article,

we use the terms, counterfactual model, causal model and potential outcomes model

exchangeably.

We adopt a causal framework to study surrogacy through a principal stratifica-

tion approach introduced by Frangakis and Rubin (2002). The idea is to examine the

distribution of the potential outcomes of T with respect to Z within each principal

stratum, which is defined by each pair of possible realizations of the potential out-

comes of S. Since the principal strata cannot be changed by treatment, they can be

adjusted for as a pre-randomization variable. This approach has been investigated

by Taylor et al (2005) to study the causal interpretation of the surrogacy measure

developed by Freedman et al (1992). When both S and T are binary, the potential

outcomes for S and T are denoted by (S(Z) = 0, 1) and (T (Z) = 0, 1) with respect
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to Z. We can study the causal association between S and T through the causal

probabilities associated with the combinations of different sequence of potential out-

comes of S and T for each individual. We can evaluate the surrogate marker based

on the degree to which the causal effect of Z on S is reflected by the causal effect

of Z on T . In contrast to Prentice (1989) and Freedman et al (1992) criteria, these

association measures and the quantities derived always have causal interpretations.

Since we only observe one set of the potential outcomes, these probabilities are not

fully identifiable from the data.

While Frangakis and Rubin (2002) laid out a causal framework for studying sur-

rogate markers, there has been little work on estimation methods for this causal

model. An exception to this is the paper of Gilbert and Hudgens (2007), where their

context of a HIV vaccine trial allowed them to make strong assumptions. In this pa-

per, we propose a Bayesian estimation method to evaluate the causal probabilities.

In practice, data are collected in a scientific context and with a considerable amount

of a priori knowledge. We incorporate our prior knowledge by imposing appropriate

prior distributions and placing some reasonable constraints on the model parameters.

We hope to reduce the non-identifiability problem and increase the precision for the

statistical inference of interest by introducing prior beliefs. For example, we could

explore the assumptions such as that S and T are closely associated and the pair

(S(0), S(1)) more likely than not agrees with the pair (T (0), T (1)). Our contribution

to the counterfactual literature is that we focus on directly modeling the association

of the pairs of potential outcomes of S and T under an underlying ordering constraint

between (S(0), S(1)) and (T (0), T (1)).

In Section 4.2, we introduce a real data example from the Collaborative Initial

Glaucoma Treatment Study (CIGTS) to which we will apply our methods. In Section
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4.3, we first explore the assumptions that are necessary to help identify the param-

eters and then introduce a Bayesian estimation method for the single-trial setting.

In Section 4.4, we apply the proposed method to the glaucoma data and examine

the sensitivity of the priors. In Section 4.5, we evaluate our estimation algorithm

through simulations. In Section 4.6, we explore the connections among the surrogacy

measures based on conventional models and the counterfactual model. In Section

4.7, we use the causal probabilities to predict the treatment effect when T is partially

observed. In Section 4.8, we extend the method to a multiple-trial setting where we

assume the relationship between the counterfactual S and T is the same across trials

conditioning on the trial-specific principal strata. Finally, we summarize our findings

and provide discussion.

4.2 Glaucoma Treatment Study

We begin by considering a single randomized clinical trial setting. We will apply

the proposed method to data from the Collaborative Initial Glaucoma Treatment

Study (CIGTS) (Musch et al., 1999). Glaucoma is a group of diseases that cause

vision loss and is a leading cause for blindness. Elevated pressure in the eyes (i.e.,

intraocular pressure, IOP), is a major risk factor of glaucoma. The CIGTS is a

randomized trial to compare the effects of two types of treatments, surgery (Z = 1)

and medicine (Z = 0), on reducing IOP among glaucoma patients. Patients were

enrolled between 1993 and 1997. IOP (recorded in mmHg) has been measured at

different time points following randomization. For the purpose of this paper we take

the true endpoint to be the IOP measurements at the 96th month and the surrogate

marker to be the IOP at the 12th month. Both S and T are defined as 1 if IOP is

less than 18mmHg and 0 otherwise. Due to drop out, there are fewer patients at the
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96th month than at the 12th month. A total of 228 patients have IOP measured at

both month 12 and 96, and 345 patients measured only at month 12. Table 4.1 lists

the number of patients and the outcomes.

4.3 Methods

4.3.1 Potential Outcomes Model and Quantities of Interest

In the counterfactual framework, for each subject i, we have two potential out-

comes for each of Si and Ti, with one potential outcome observed and the other

unobserved, denoted by Si(Z) and Ti(Z) with respect to the treatment option Z.

The possible realizations of the potential outcomes (Si(0), Si(1)) are (0, 0), (0, 1),

(1, 1) and (1, 0) and similarly for (Ti(0), Ti(1)). The counterfactual probabilities that

are associated with the combinations of different sequences of potential outcomes

for Si and Ti are listed in Table 4.2. Note that the probabilities sum to 1 as the

16 cells are a partition of the population. Each of these probabilities is of interest

because collectively they completely describe the causal relationship among T , S

and Z. Frangakis and Rubin (2002) also proposed the concepts of associative and

dissociative effects to evaluate the strength of the connection between the causal

treatment effect on T and the causal treatment effect on S. If the causal treatment

effect on Ti is reflected on the changes in Si, the effect is associative. Conversely, if

the causal treatment effect on outcome Ti is not in the same direction as the effect on

Si, it is dissociative. To evaluate the degree of surrogacy, Taylor et al (2005) defined

associative proportion (AP) as the ratio of the associative effect relative to the total

causal treatment effect.
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4.3.2 Assumptions

Since one of the potential outcomes is unobserved, the counterfactual model de-

fined above is overparameterized. To assist in the identifiability of the model, we

make the following assumptions.

Ignorability of Treatment Assignment (Rubin, 1978)

This assumption requires that the patients are comparable in both treatment

groups. Due to randomization, the potential outcomes of Si and Ti are independent

of the actual treatment assignment Zi. Thus, the principal stratum each patient

belongs to is not impacted by the treatment assignment, i.e., (Si(0), Si(1)) ⊥ Zi.

Stable Unit Treatment Value Assumption (Rubin, 1980)

This assumption implies that the potential outcomes of each person are indepen-

dent of other individuals’ treatment assignments, i.e., if i 6= i
′
, Si, ..., Ti ⊥ Zi′ .

Monotonicity Assumption

Angrist, Imbens and Rubin (1996) borrowed the monotonicity assumption used

in the instrumental variable approach and applied it to causal inference problems.

In the surrogacy setting, under this assumption, a patient who received Z = 1 does

not become worse off than that patient if he or she received Z = 0. Assume S = 1

and T = 1 represent better outcomes than S = 0 and T = 0, respectively. The

monotonicity assumption requires that Si(1) ≥ Si(0) and Ti(1) ≥ Ti(0) for all i;

hence, we cannot observe (Si(0) = 1, Si(1) = 0) and (Ti(0) = 1, Ti(1) = 0) and the

number of free parameters is reduced from 15 to 8 as shown in Table 4.3. Since our

data can support six parameters, as the probabilities (p(T = t, S = s|Z)) within each

treatment group add up to 1, only some of the parameters in Table 4.3 or certain

parameter combinations are identifiable.



111

Under the monotonicity assumption, the associative effect is p22 and the dissocia-

tive effect is p12 + p32. The overall causal treatment effect is p12 + p22 + p32. The

associative proportion is p22/(p12 + p22 + p32). In a randomized trial, the overall

causal treatment effect is directly estimable from the data but the associative effect

p22 is not.

Ordering Restriction

In clinical trials, we collect information on surrogate markers based on prior sci-

entific knowledge. In many cases that the surrogate marker is closely related to

the true endpoint, possibly because the marker is in the causal pathway leading to

disease. Hence, we assume the potential outcomes (S(0), S(1)) are more likely to

agree with the potential outcomes (T (0), T (1)) than not. We assume there is an

ordering in the sequence of the values of the potential outcomes: (0, 0), (0, 1), and

(1, 1) which we describe as “non-responsive”, “responsive”, and “always responsive”,

respectively. The assumed close relationship between S and T implies that when S

is non-responsive (responsive), T is also more likely to be non-responsive (respon-

sive). Similarly it is unlikely that a person will be non-responsive for S and always

responsive for T . One way of reflecting this positive association between the ordered

potential outcome pairs is to place restriction on the probabilities in Table 4.3 by

imposing appropriate prior distributions. We expect this to not only overcome some

of the identifiability problems but also improve the precision of statistical inferences.

4.3.3 Observed Data, Complete Data and Likelihood

We first consider the situation where we have the information on Z, S and T

on every patient. The observed data include one of the two potential outcomes of

S and T corresponding to the treatment one patient received. Suppose we have
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i = 1, ..., r patients. Let r0 denote the number of patients in the Z = 0 group and r1

the number of patients in the Z = 1 group. Let rzst denote the number of patients

for the combination of Z, S and T . The underlying probabilities associated with

the cross-tabulations of Z, S and T can be expressed in terms of the counterfactual

probabilities as in Table 4.4.

The observed-data likelihood function is given by

Lobs = (p11 + p12 + p21 + p22)r000(p13 + p23)r001(p31 + p32)r010pr01133

pr10011 (p12 + p13)r101(p21 + p31)r110(p22 + p23 + p32 + p33)r111 .

The complete data consists of all potential outcomes for both S and T . Let

njk denote the cell count corresponding to the counterfactual probability in the cell

(j, k) for the jth row and the kth column of Table 4.3 for all patients and nzjk for the

treatment group z. The complete data likelihood is

Lcom = p
n0

11+n1
11

11 p
n0

12+n1
12

12 p
n0

13+n1
13

13 p
n0

21+n1
21

21 p
n0

22+n1
22

22 p
n0

23+n1
23

23 p
n0

31+n1
31

31 p
n0

32+n1
32

32 p
n0

33+n1
33

33

= pn11
11 p

n12
12 p

n13
13 p

n21
21 p

n22
22 p

n23
23 p

n31
31 p

n32
32 p

n33
33 .

There is a one-to-one or many-to-one correspondence between njk’s and rzst’s. For

example, n0
33 = r011, n1

11 = r100, and n0
13 + n1

23 = r001.

Since we only observe one of the potential outcomes, the counterfactual model

contains more parameters than the number of independent observations. We adopt

a Bayesian approach to incorporate sensible priors to reflect our prior beliefs. We

treat the unobserved potential outcomes as missing data and estimate them via

imputation.

4.3.4 The Model

Let S∗ = 1, 2, 3 denote the ordered categories of (S(0), S(1)): (0, 0), (0, 1) and

(1, 1) and T ∗ = 1, 2, 3 denote the categories of (T (0), T (1)). We consider a log-linear
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model to model the cell counts corresponding to the causal probabilities in Table 4.3.

Let E(nzjk) = µjk, j = 1, 2, 3 and k = 1, 2, 3. The model is specified as

logµjk = λ+ λjS + λkT + λjk,(4.1)

where, λjS and λkT denote the row and column variables, respectively. For identifi-

ability of the log-linear model, we require constraints (λ2S = λ2T = λj2 = λ2k = 0)

which give nice and simple expressions for the log odds ratios (OR) in the four 2× 2

subtables in the four corners of Table 4.3:

log(OR1) = log

(
µ11 × µ22

µ12 × µ21

)
= λ11,

log(OR2) = log

(
µ12 × µ23

µ13 × µ22

)
= −λ13,

log(OR3) = log

(
µ21 × µ32

µ22 × µ31

)
= −λ31,

log(OR4) = log

(
µ22 × µ33

µ23 × µ32

)
= λ33.

A positive association between S∗ and T ∗ implies that λ11 and λ33 are positive and

λ13 and λ31 are negative. This parametrization allows us to model the association

between the potential outcomes of S and T directly. There is a close relationship

between the multinomial and Poisson loglinear models (Birch, 1963; Lindley, 1964;

Forster, 1996). Conditional on the total counts, we can express the causal probabil-

ities using the model parameters in (4.1) as:

pjk =
exp(λjS + λkT + λjk)∑

j

∑
k exp(λjS + λkT + λjk)

,

where, j = 1, 2, 3 and k = 1, 2, 3.

4.3.5 Prior Specifications

Since λ1S, λ3S, λ1T , λ3T and λ are identifiable quantities which estimate the

relative row effects and column effects, we choose “vague” priors for these variables.
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Specifically, we let

p(exp (λjS)) = gamma(a, b), j = 1, 3; p(exp (λkT )) = gamma(a, b), k = 1, 3;

p(exp(λ)) = gamma(a, b)

where the parametrization of gamma(a, b) is defined such that the expected value is

ab and the variance is ab2. We chose nearly noninformative values of a = 0.01 and

b = 100.

For λ11, λ13, λ31 and λ33, there is much less information provided from the data,

so for these we use mildly informative priors. To encourage but not force the ordering

restriction, we use the priors to suggest positive associations between the potential

outcomes of S and T :

p(λ11) = normal(u, v2), p(λ13) = normal(−u, v2),

p(λ31) = normal(−u, v2), p(λ33) = normal(u, v2),

where the parameterizations of the normal(u, v2) give the mean of u and the vari-

ance of v2. An example of the prior parameters can be: u = 0.7 and v2 = 1.96.

This induces the relationship that E(OR1) > 1, E(OR2) > 1, E(OR3) > 1 and

E(OR4) > 1 to encourage the positive association between potential outcomes S∗k

and T ∗k . With the prior specification of normal(0.7, 1.96), the median is 2.0 and the

95% probability interval is (0.2, 20) for all four odds ratios, which provides a reason-

ably wide range. We also consider gamma prior distributions on these parameters for

conjugacy reasons but they gave posterior distributions with undesirable properties.

4.3.6 Estimation Procedure

We use a data augmentation method (Little and Rubin, 2002) to estimate the

parameters. This method regards the missing data as parameters. To simplify
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the notation, we use robs = {r000, r001, r010, r011, r100, r101, r110, r111} for the observed

data and θ = (λ, λjS, λkT , λjk) for all parameters. The complete data cell counts

are denoted by ncom = {nz11, n
z
12, n

z
13, n

z
21, n

z
22, n

z
23, n

z
31, n

z
32, n

z
33}. To implement this

procedure, we iterate the following I-step and P-step until convergence:

I-step: This step consists of distributing the observed counts into the cells of the

counterfactual model in Table 4.3. Given θl−1 and robs, we impute n0l
11, n0l

12, n1l
21,

n0l
22, n0l

12, n0l
13, n1l

21, n1l
22, n1l

23, n1l
32, n1l

33 and n0l
31 where, n0l

11, is the draw of the count

that contributes to n11 from r000 from the lth iteration, n1l
12 is the draw of the count

that contributes to n12 from r101 from the lth iteration, and so on. Let ωl−1
1 =

pl−1
11 + pl−1

12 + pl−1
21 + pl−1

22 and ωl−1
2 = pl−1

22 + pl−1
23 + pl−1

32 + pl−1
33 .

1. (n0l
11, n

0l
12, n

0l
21, n

0l
22) ∼ Multi

(
r000,

pl−1
11

ωl−1
1

,
pl−1

12

ωl−1
1

,
pl−1

21

ωl−1
1

,
pl−1

22

ωl−1
1

)
2. n1l

12 ∼ Bin

(
r101,

pl−1
12

pl−1
12 + pl−1

13

)
3. n0l

13 ∼ Bin

(
r001,

pl−1
13

pk−1
13 + pl−1

23

)
4. n1l

21 ∼ Bin

(
r110,

pl−1
21

pk−1
21 + pl−1

31

)
5. (n1l

22, n
1l
23, n

1l
32, n

1l
33) ∼ Multi

(
r111,

pl−1
22

ωl−1
2

,
pl−1

23

ωl−1
2

,
pl−1

32

ωl−1
2

,
pl−1

33

ωl−1
2

)
6. n0l

31 ∼ Bin

(
r010,

pl−1
31

pl−1
31 + pl−1

32

)
7. nl11 = n0l

11 + r100; nl12 = n0l
12 + n1l

12; nl13 = n0l
13 + r101 − n1l

12;

8. nl21 = n0l
21 + n1l

21; nl22 = n0l
22 + n1l

22; nl23 = r001 − n0l
13 + n1l

23;

9. nl31 = n0l
31 + r110 − n1l

21; nl32 = r010 − n0l
31 + n1l

32; nl33 = r011 + n1l
33

P-step: generate θl from the posterior distribution derived based on complete

data, p(θl|nlcom), where nlcom include the counts of the complete data obtained in the
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I-step from the lth iteration.

p(exp(λl)|·) ∼ gamma

(
nl1+ + nl2+ + nl3+ + a,

1∑3
j=1

∑3
k=1(2× V + 1

b

)
,

p(exp(λl1S)|·) ∼ gamma

(
nl1+ + a,

1

2× V 1S + 1
b

)
,

p(exp(λl1T )|·) ∼ gamma

(
nl+1 + a,

1

2× V 1T + 1
b

)
,

p(exp(λl3S)|·) ∼ gamma

(
nl3+ + a,

1

2× V 3S + 1
b

)
,

p(exp(λl3T )|·) ∼ gamma

(
nl+3 + a,

1

2× V 3T + 1
b

)
,

p(λl11|·) ∝ 2 exp(− exp(λl + λl1S + λl1T + λl11)) exp(λl11)n11 exp(−(λl11 − u)2/(2v2)),

p(λl13|·) ∝ 2 exp(− exp(λl + λl1S + λl3T + λl13)) exp(λl13)n13 exp(−(λl13 + u)2/(2v2)),

p(λl31|·) ∝ 2 exp(− exp(λl + λl3S + λl1T + λl31)) exp(λl31)n31 exp(−(λl31 + u)2/(2v2)),

p(λl33|·) ∝ 2 exp(− exp(λl + λl3S + λl3T + λl33)) exp(λl33)n33 exp(−(λl33 − u)2/(2v2)),

pljk =
exp(λljS + λlkT + λljk)∑

j

∑
k exp(λljS + λlkT + λljk)

, j, k = 1, 2, 3,

where,

V = exp(λljS + λlkT + λljk)),

V 1S = exp(λl + λl1T + λl11) + 2 exp(λl) + 2 exp(λl + λl3T + λl13),

V 1T = exp(λl + λl1S + λl11) + 2 exp(λl) + 2 exp(λl + λl3S + λl31),

V 3S = exp(λl + λl1T + λl31) + 2 exp(λl) + 2 exp(λl + λl3T + λl33),

V 3T = exp(λl + λl1S + λl13) + 2 exp(λl) + 2 exp(λl + λl3S + λl33),

· represents all the rest of the parameters, nlj+ denotes
∑3

k=1 n
l
jk, n

l
+k denotes∑3

j=1 n
l
jk and so on. For exp(λ), exp(λ1S), exp(λ3S), exp(λ1T ) and exp(λ3T ), the

conditional draws can be made directly from gamma distributions using the Gibbs

sampler. For λ11, λ13, λ31 and λ33, we could not draw directly from appropriate con-

ditional distributions, instead we use the Metropolis-Hastings algorithm (Gelman et
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al, 2004). The proposal distribution in the Metropolis-Hastings is normal, with vari-

ance adjusted to give an acceptance rate of approximate 25%. We ran Markov Chain

Monte Carlo (MCMC) for 400, 000 iterations and discarded the first 200, 000 itera-

tions for burn-in. We obtained 2000 draws by saving every 100th sample after the

burn-in period. Convergence was assessed graphically. The sensitivity towards the

initial values was evaluated by comparing parameter estimates from five chains. For

the quantities of interest, we obtained the Gelman-Rubin Statistic, (R̂), which is the

squared root of the ratio of the adjusted sum of the between- and within-chain vari-

ances over the within-chain variances (Gelman et al., 2004). At convergence, R̂ = 1.

Generally, R̂ = 1.2 is considered sufficient for convergence. In the application to the

CIGTS data, for all the counterfactual probabilities and ORs, min R̂ = 0.99985 and

max R̂ = 1.00067. The algorithm for estimating the parameters is also validated on

simulated data.

4.4 Application to Glaucoma Data

4.4.1 The Results

We apply the method to estimate the counterfactual probabilities using the data

from 228 patients in the CIGTS with whom S, T and Z are completely observed. In

Table 4.5, we report the medians and their 95% credible intervals (CI) from the pos-

terior distributions of the counterfactual probabilities. We choose a = 0.01, b = 100,

u = 0.7, v2 = 1.42 for the prior distributions to induce weak ordering. The estimated

causal treatment effect for p12 + p22 + p32 is 0.11 with its 95% CI (0.013, 0.23). The

observed treatment effect is 0.13 with its 95% confidence interval being (0.014, 0.25),

which is slightly bigger than that estimated using the counterfactual model. The

difference is resulted from the assumptions we made in the counterfactual model.

The associative effect p22 is estimated as 0.027 with its 95%CI (0.0028, 0.092) and
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the dissociative effect p12 + p32 as 0.079(0.0093, 0.16). The associative proportion

p22/(p12 + p22 + p32) is estimated as 0.27(0.078, 0.54) which indicates that the causal

effect on the true endpoint is only partially reflected on the causal effect on the

surrogate marker. Its credible interval is wide implying the associative proportion

estimate is quite variable. The ratio p22/(p12 + p22 + p32 + p21 + p23) is estimated as

0.08(0.012, 0.22).

4.4.2 Sensitivity of Priors

We consider the impact of the priors on the posterior distributions. If there is

no data available to provide information on the parameters of interest, the posterior

density will exactly match the prior density. If there is a lot of information provided

by the data, the posterior may differ from the prior. We evaluate identifiability by

plotting the prior and posterior distributions against each other (Garrent and Zeger,

2000). Figure 4.1 shows the prior and posterior distributions for selected quantities

of interest when u = 0.7 and v = 1.4. The average overlaps between the prior

and posterior distributions for p11, p33 and the causal effect are small, indicating

that these parameters are likely well identified. On the other hand, we find more

overlap between the prior and posteriors for p12, p21, and p32 which indicate these

parameters are less identifiable. Figure 4.2 shows the prior and posterior distributions

of four odds ratios. There is a substantial overlap between the prior and posterior

distribution for OR1, OR2 and OR3, indicating that much of the information for

these ORs is provided from the prior assumptions. There is less overlap between the

prior and posterior for OR4, indicating that some information is available from the

data.

To further assess the extent of the impact of the priors on the posterior distri-

butions, we vary the variances of the prior distributions for λ11, λ13, λ31 and λ33
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and fix the means. Then, we vary the means of these prior distributions but fix the

variances. The results are listed in Table 4.6. The second column lists the posterior

medians and standard deviations when u = 0.7 and v2 = 1.96. Columns 3, 4, 5, and

6 list the percentage of the changes in the posterior medians and standard deviations

relative to the second column. When we change the prior mean, we observe bigger

changes in the posterior medians than the posterior variances of the counterfactual

probabilities. Relative to the medians when u = 0.7, with u = 0 or u = 1.4, the

extent of the changes in the medians is less than 10%. When we change the prior vari-

ance, we observe more changes in the posterior variances than the posterior means

for the counterfactual probabilities. Compared with the variances when v2 = 1.96,

with v2 = 1 or v2 = 4, the changes in the posterior standard deviations are generally

less than 10% with only one exception. However, the odds ratios are much more

sensitive to the prior assumptions, especially for OR1, OR2 and OR3 (not listed).

4.5 Simulation Study

We conduct a small simulation study to examine the properties of the estimation

method. We simulate 200 data sets under the parameter specification: λ1S = 0.15,

λ1T = −0.3, λ3S = 0.3, λ3T = −0.7, λ11 = 0.5, λ13 = −0.8, λ31 = −0.5, λ33 = 0.8 and

λ = 3.5. We analyze the simulated data assuming the correct model structure with

the prior distributions for λ11 and λ33 being normal(0.7, 1.42) and for λ13 and λ31

being normal(−0.7, 1.42). We use a nearly noninformative prior gamma(0.01, 100)

for exp(λ1S), exp(λ1T ), exp(λ3S), exp(λ3T ) and exp(λ). The simulation results are

listed in Table 4.7. SD(Est) is the standard deviation of the posterior means from

200 data sets. SD is the mean of the posterior standard deviations from 200 data

sets. The estimated parameter values are very close to the true values. Since we used
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informative priors for λ11, λ13, λ31 and λ33, in which the true values are included in

the 95% credible intervals of the priors, we observe over-coverage and SD(Est) less

than SD for the less identifiable quantities.

4.6 Relationship between the Counterfactual Model and Conventional
Models

In this section, we examine the surrogacy measures in both the counterfactual

model setup and the conventional model setup. In a more conventional model setup,

we use logistic regression to model the joint distribution of S, T , and Z:

logit[P (Ti = 1|Si, Zi)] = β0 + β1Si + β2Zi + β3ZiSi,(4.2)

logit[P (Si = 1|Zi)] = α0 + α1Zi,

P (Zi = 1) = 0.5.

The parameters in these models can be expressed as the functions of the counter-

factual probabilities. For example, some of the parameters in model (4.2) are given

by:

exp(β1) =
(p11 + p12 + p21 + p22)p33

(p13 + p23)(p31 + p32)
,

exp(β2) =
(p11 + p12 + p21 + p22)(p12 + p13)

(p13 + p23)p11

,

exp(β3) =
(p13 + p23)(p31 + p32)p11(p22 + p23 + p32 + p33)

(p11 + p12 + p21 + p22)p33(p12 + p13)(p21 + p31)
.

4.6.1 Perfect Surrogacy and Principal Surrogacy

Prentice (1989) proposed a formal definition for perfect surrogacy and provided

validation criteria. The most essential criterion requires that changes in S fully

capture the effect of Z on T , i.e., β1 6= 0, β2 = 0 and β3 = 0. Perfect surrogacy is

also called statistical surrogacy. Frangakis and Rubin (2002) suggested a definition
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for principal surrogacy which requires that causal treatment effect on T may only

exist when the causal treatment effect on S exist; i.e., p12 = p32 = 0. When S and

T are binary, we argue that two more restrictions, p21 = p23 = 0, ensure that the

causal treatment effect on T is completely captured by the causal treatment effect

on S, and that the causal effect on S perfectly reflects the causal effect on T . In

other words, the causal effect on T is equal to that on S. Under this condition, β2

and β3 can be simplified to:

exp(β2) =
p11 + p22

p11

,

exp(β3) =
p11p33 + p22p11

p11p33 + p22p33

.

For S to be meaningful as a surrogate in the counterfactual framework, we require

p22 > 0, which leads to β2 > 0. Therefore, when the causal effect on T equals the

causal effect on S, S does not satisfy the criteria for perfect surrogacy.

4.6.2 Surrogacy Measures

In this section, we explore the connections among a few commonly used surrogacy

measures in the counterfactual framework. When a surrogate marker does not satisfy

perfect surrogacy, Freedman et al. (1992) proposed a measure based on the propor-

tion of the treatment effect explained. One of the drawbacks of this measure is that

it assumes there is no interaction between S and T ; i.e., β3 = 0. A measure which

is free of this assumption was proposed by Wang and Taylor (2002) as FWT = δγa/τ
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where,

δ = P (S = 1|Z = 0)− P (S = 1|Z = 1) = p21 + p22 + p23,

τ = P (T = 1|Z = 0)− P (T = 1|Z = 1) = p12 + p22 + p32,

γa = P (T = 1|Z = 0, S = 1)− P (T = 1|Z = 0, S = 0)

=
p33

p31 + p32 + p33

− p13 + p23

p11 + p12 + p21 + p22 + p13 + p23

.

Odds ratios (OR) are also often used to describe the association between S and T .

The odds ratio in the Z = 0 group is denoted as ORg0 and that in the Z = 1 group

denoted as ORg1. ORg0 = ((p11 + p12 + p21 + p22) × p33)/((p13 + p23) × (p31 + p32))

and ORg1 = (p11 × (p22 + p23 + p32 + p33))/((p12 + p13)× (p21 + p31)).

In the counterfactual framework, we propose a new measure, common associative

proportion (CAP), based on the principal surrogacy concept

CAP = p22/(p12 + p21 + p22 + p23 + p32),(4.3)

which quantifies the relationship between the causal effect on S and that on T . When

p12 = p21 = p23 = p32 = 0, FPS = 1; when p22 = 0 then FPS = 0. This measure is

usually smaller than the associative proportion (AP). One of the good properties of

CAP and AP is that they always fall in the range [0, 1].

To better understand these surrogacy measures and the underlying assumptions,

we calculate the measures in several hypothetical scenarios and two examples are

given below. In Example 1 in Table 4.8, when the causal treatment effect on T is

the same across three principal strata, CAP and AP are relatively small indicating

a small causal association between S and T ; however, the large values in FWT , ORg0

and ORg1 show that S is closely related to T in a conventional model setup.

In Example 2 in Table 4.9, all surrogacy measures indicate a close relationship

between S and T in both the traditional model and counterfactual model framework.
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By examining the formulas for these surrogacy measures, we find the connections

among CAP, AP, ORg0, ORg1 and FWT are complex. In general, when p11 and p33

are relatively large compared with the off-diagonal probabilities in the same rows

and columns, S is highly associated with T with respect to Z in a traditional model

setup. When p22 is relative large compared with the off-diagonal probabilities in

the same row and column, S is closely associated with T in a counterfactual model

framework.

4.7 Missing True Endpoints

Previously, we focused on the situation when S, T and Z are completely observed.

In this Section, we extend the method to accommodate partially missing T . A

surrogate marker can serve as an auxiliary variable and could increase the efficiency of

the estimate of the treatment effect on T when S is observed on more subjects than T .

We assume T missing completely at random. In a counterfactual framework, we can

easily incorporate S from the subjects whose T s are not observed by modifying the

I-steps in the data augmentation procedure. Let mzs denote the number of subjects

with Z = z, S = s and T unobserved. Let ω3 = p11 + p12 + p21 + p22 + p13 + p23,

ω4 = p31 + p32 + p33, ω5 = p11 + p12 + p13 and ω6 = p21 + p31 + p22 + p23 + p32 + p33.

The P-step stays the same as before, and in the I-step, we add the contributions

from mzs to n11, n12, ..., and n33 in Steps 7, 8, and 9. Denote nm0l
11 as the draw of

the count that contributes to n11 from m00 from the lth iteration, nm1l
21 as the draw

of the count that contributes to n21 from m11 from the lth iteration and so on. In
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the following, we calculate the contributions in the lth iteration:

(nm0l
11 , nm0l

12 , nm0l
21 , nm0l

22 , nm0l
13 , nm0l

23 ) ∼ Multi(m00,
pl11

ω3l

,
pl12

ω3l

,
pl21

ω3l

,
pl22

ω3l

,
pl13

ω3l

,
pl23

ω3l

)

(nm0l
31 , nm0l

32 , nm0l
33 ) ∼ Multi(m01,

pl31

ω4l

,
pl32

ω4l

,
pl33

ω4l

)

(nm1l
11 , nm1l

12 , nm1l
13 ) ∼ Multi(m10,

pl11

ω5l

,
pl12

ω5l

,
pl13

ω5l

)

(nm1l
21 , nm1l

31 , nm1l
22 , nm1l

23 , nm1l
32 , nm1l

33 ) ∼ Multi(m11,
pl21

ω6l

,
pl31

ω6l

,
pl22

ω6l

,
pl23

ω6l

,
pl32

ω6l

,
pl33

ω6l

)

Steps 7, 8, and 9 in the I-Step in Section 3.6 are modified as:

7. nl11 = n0l
11 + r100 + nm0l

11 + nm1l
11 ; nl12 = n0l

12 + n1l
12 + nm0l

12 + nm1l
12 ;

nl13 = n0l
13 + r101 − n1l

12 + nm0l
13 + nm1l

13 ;

8. nl21 = n0l
21 + n1l

21 + nm0l
21 + nm1l

21 ; nl22 = n0l
22 + n1l

22 + nm0l
22 + nm1l

22 ;

nl23 = r001 − n0l
13 + n1l

23 + nm0l
23 + nm1l

23 ;

9. nl31 = n0l
31 + r110 − n1l

21 + nm0l
31 + nm1l

31 ; nl32 = r010 − n0l
31 + n1l

32 + nm0l
32 + nm1l

32 ;

nl33 = r011 + n1l
33 + nm0l

33 + nm1l
33

We apply the method to the CIGTS data based on a total of 573 patients of

whom we completely observe S but do not observe T among 345 patients. We use

the same prior specifications as before. The summary statistics for the counterfactual

probabilities from the posterior distributions based on data from the patients whose

S and T are observed (complete cases) and the summary statistics based on data

from all 573 patients (all cases) are both listed in Table 4.10. Only modest efficiency

gain is obtained with the use of the surrogate marker in most of the parameters.

Unless there is much higher association, it is likely that the potential gain from S is

limited when S and T are both binary.
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4.8 Extension to Multiple Trials

In this Section, we extend our method to a multiple-trial setting. When multiple

trials are available and when it is valid to consider the trials exchangeable, we may

take advantage of such exchangeability to estimate the degree of association between

(S(0), S(1)) and (T (0), T (1)) by making distributional assumptions to warrant the

sharing of information on the properties of the surrogate across trials. For trial

h = 1, ..., H, the number of patients cross-classified by (S(0), S(1)) and (T (0), T (1))

is presented in Table 4.11. The complete-data likelihood is given by:

Lcom =
∏
z

∏
h

∏
j

∏
k

exp(− exp(λh + λhjS + λhkT + λhjk))(exp(λh + λhjS + λhkT + λhjk))
nz

hjk

nzhjk!

where, (λh2S = λh2T = λhj2 = λh2k = 0).

We assume nearly noninformative priors, gamma(a, b), for λh, λhjS and λhkT in

trial h where a = 0.01, b = 100. We treat λhjk as the trial-specific parameter that

centers around a population parameter u. The relationship between u and λhjk is

specified using a hierarchical structure:

p(λh11) = normal(u, v2), p(λh13) = normal(−u, v2),

p(λh31) = normal(−u, v2), p(λh33) = normal(u, v2).

We assume independent priors for u and v2:

p(u) = normal(δ, σ2), p(v−2) = gamma(τa, τb),

where δ, σ2, τa, and τb are pre-specified hyper-parameters which we can use to reflect

our belief of the ordering restriction. An example of the hyper-parameters can be:

δ = 0.7, σ2 = 10, τa = 0.01 and τb = 100. We reflects our belief that the odds ratios

are more likely to be greater than 1 than not through δ. Note that the information
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that comes from the prior distributions is much weaker than what we have assumed

in a single trial setting because we convey our belief through u and v2 which have

very “vague” hyperprior specifications. Here we assume normal priors with the same

means and variances for λh11, −λh13, −λh31 and λh33. We have also tried normal

priors with different means and variances; however, it appears that the data we

apply this method to do not have enough information to estimate this more flexible

model.

The data augmentation procedure can be readily extended to the multiple-trial

setting where the I-step and the P-step are similar within each trial conditioning on

u and v2 to those in the single trial setting. We can obtain the posterior distributions

of u and v2 in the P-step as follows:

u ∼ normal(
B

A
,

1

2A
),

v−2 ∼ gamma(2H + τa,
1

C
),

where, A = 2H
v2

+ 1
2σ2 , B =

∑
h λh11−

∑
h λh13−

∑
h λh31+

∑
h λh33

2v2
+ δ

2σ2 and C =
∑

h(λh11−u)2

2
+∑

h(λh13+u)2

2
+

∑
h(λh31+u)2

2
+

∑
h(λh33−u)2

2
+ 1

τb
.

4.8.1 Data Analysis 1

The Data

To evaluate the causal surrogacy in a meta-analytic setting, we treat the centers

in the CIGTS study as independent trials for illustration purposes. We use the IOP

measure at month 12 as the surrogate marker for the IOP measure at month 96,

which serves as the true endpoint. A preliminary analysis of these data shows that

the estimate of the between-trial variances is non-positive definite. Borrowing the

idea of Gail et. al. (2000), we rescale up the data size by simulating Sij and Tij

from bivariate normal distributions for each center and treatment group with the
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center-specific and treatment-specific means and variance-covariances from the real

data. The CIGTS study includes 14 centers, from which we delete five centers (i.e.,

5, 7, 12, 13, 14) either because they had too few observations or because of non-

positive definite covariance matrices within center. We also deleted two outliers that

are greater than 35 mmHg. For the centers included (n = 9), we increase the sample

sizes to be 335, 176, 385, 264, 539, 368, 286, 528, and 319. The trial-specific and

treatment-specific means and correlations for S and T are listed in Table 4.12. We

define both S and T as 1 if IOP is less than 18mmHg and 0 if otherwise. Table 4.13

lists the number of patients in each combination of Z, S and T within each center.

Estimation and Results

We run MCMC simulations for 100, 000 iterations with a burn-in period of 50, 000

and save 2, 000 simulations for every 25th iteration to form the posterior distributions.

The convergence is examined in the same way as that in a single trial setting and

is deemed adequate. We notice that the convergence is generally much faster than

that in a single trial setting. Table 4.14 lists the medians and their 95% credible

intervals of the posterior predictive distributions of the probabilities when we choose

δ = 0.7, σ2 = 10, τa = 0.01 and τb = 100. The summary statistics of each probability

are based on the average of the trial-specific probabilities across the nine trials (i.e.,

p11 =
∑H

h=1 ph11/H) at each iteration. We can treat the averages as the estimates

of the population-level probabilities. We report the medians in Table 4.14 because

some posterior distributions are skewed. In a single trial setting, because of the

lack of information on the odds ratios from the data, it is not feasible to take a less

informative Bayesian approach; hence, we adopt rather informative priors to achieve

convergence. However, in a multiple trial setting, more information is provided from

the data on these ORs than that in a single trial setting, since we assume the log
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ORs from different trials are from the same underlying distributions. As such, the

priors do not have as much impact on the posteriors and rather “vague” priors for the

hyper-parameters are sufficient for achieving convergence. The associative proportion

and the causal effect on T explained by causal effect on S are fairly small, indicating

that the surrogate marker only captures a relatively small part of how Z affects T .

For the four odds ratios, OR4 has much less variability than the other odds ratios,

showing that more information about OR4 is provided from the data.

Figure 4.3 presents the histograms of the posterior distributions of u and v2. The

fact that u has the mean of 0.6 and 95% CI being (0.16, 1.12) agrees with what

we believe about the positive associations between (S(0), S(1)) and (T (0), T (1)),

that is, the log odds ratios are more likely to be positive than not. The estimated

v2 (95%CI)is 1.75(0.79, 3.99) and the CI is fairly tight and informative about the

variability of u.

Figure 4.4 plots the posterior medians and standard deviations of the center-

specific treatment effects estimated using our method against the observed center-

specific treatment effects and their standard errors. The observed treatment effect

and its standard error from each center are based on the observable quantity (p(T =

1|Z = 1) − p(T = 1|Z = 0)). The treatment effect estimated using our method

is based on the MCMC simulations of the posterior distribution of p12 + p22 + p32.

We find that our MCMC estimates agree with the observable treatment effects; the

posterior standard deviations are similar to the standard errors of the treatment

effects except for center 1, 7 and 9 in which the posterior standard deviations are

relatively smaller due to the shrinkage effect in the hierarchial model.

Figure 4.5 plots the densities of a few selected quantities of interest from a few

centers and the density of the averages of the center-specific quantities. The model
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allows the densities from one center to be quite different from that from another

center. Since the averages are less variable, their density curves appear sharper than

the center-specific densities.

We also examined the sensitivity to the hyperparameters. Assuming σ2 = 10,

τa = 0.01 and τb = 100, we vary δ from 0, to 0.7, then to 1.4. The posterior

median and SD for u vary from 0.6(0.24), to 0.6(0.24), then to 0.6(0.23), those for v2

vary from 1.69(0.76), to 1.75(0.81), then to 1.67(0.80); and those for p22 vary from

0.051(0.0069), to 0.0486(0.00653), then to 0.05(0.0068). With δ = 0.7, σ2 = 100,

τa = 0.01, and τb = 100, the median and 95% CI for u is 0.61(0.24), those for v2

is 1.72(0.76) and those for p22 is 0.0498(0.0639). With drastic smaller values for τa

and τb, we generally have smaller posterior standard deviations for the quantities of

interest. For example, with the same δ = 0.7, σ2 = 100, τa = 4 and τb = 1/3, we have

0.56(0.17) for u, 0.92(0.35) for v2 and 0.0508(0.00567) for p22. Posterior distributions

of the counterfactual probabilities and those of u and v2, nevertheless, are not overly

sensitive to the values of the hyper-parameters.

4.8.2 Data Analysis 2

The Data

We apply our method to evaluate causal surrogacy in a meta-analytic study for

advanced colorectal cancer trials. There are a total of 28 cancer clinical trials con-

ducted between 1990 and 1996 by the Meta-Analysis Group in Cancer. The objective

is to examine the effect improvement of several experimental treatments over a stan-

dard treatment. The standard treatment is fluoropyrimidines (5FU) given as a bolus

intravenous injection. The experimental treatments are slight modifications of the

standard treatment regimen: either 5FU with leucovorin, 5FU with methotrexate,

5FU given in continuous infusion, or hepatic arterial infusion of 5FU for patients with
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metastasis confined to the liver. The data summaries based on 27 trials are presented

in the book The Evaluation of Surrogate Endpoints (Molenberghs, Burzykowski and

Buyse, 2004) which include a plot of Kaplan-Meier survival curves by treatment

types (Figure 12.1) and two tables that contain the complete statistics on tumor

responses, and the median survival and hazard ratios for each trial by treatment

type (Tables 12.1 and 12.2). For these data the surrogate is the tumor response and

we reconstructed the individual data on time to death from an accelerated failure

time model with square-root-transformed survival time. We select final data sets

from over 1000 simulations which match most closely with Figure 12.1 and Tables

12.1 and 12.2. Further details are given in the appendix. For our analysis, there is

no censoring. The surrogate marker is the tumor response (S = 1 for complete or

partial response and S = 0 for stable or progressive disease) and the true endpoint

is the survival status at 1.75 years after the treatment (e.g., T = 1 for being alive

and T = 0 for being dead). The data tables cross-classified by trial, treatment and

survival status are given in Tables 4.21 and 4.22 in the Appendix section.

Estimation and Results

We run the MCMC simulations for 80, 000 iterations with a burn-in period of

40, 000 and save 2000 simulations for every 25th iteration to form the posterior

distributions. The convergence is examined in the same way as that in a single trial

setting and is deemed adequate. Table 4.15 lists the medians and their 95% credible

intervals of the counterfactual probabilities from their posterior distributions when

we choose δ = 0.7, σ2 = 100, τa = 0.01 and τb = 100. The summary statistics of

each probability are based on the average of the trial-specific probabilities across all

trials (i.e., p11 =
∑H

h=1 ph11/H) at each iteration. We can treat the averages as the

estimates of the population-level probabilities. We report the medians in Table 4.15
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because some posterior distributions are skewed. In a single trial setting, because of

the lack of information on the odds ratios from the data, it is not feasible to take a less

informative Bayesian approach. Hence, we adopt rather informative priors to achieve

convergence. However, in a multiple trial setting, more information is provided from

the data on these ORs than that in a single trial setting since we assume the log ORs

from different trials are from the same underlying distributions. As such, the priors

do not have as much impact on the posteriors and rather “vague” priors for the hyper-

parameters are sufficient for achieving convergence. The associative proportion and

the causal effect on T explained by the causal effect on S are fairly small, indicating

that the surrogate marker only captures a relatively small part of how Z affects T .

Four odds ratios have similar distributions.

Figure 4.6 plots the posterior medians and standard deviations of the trial-specific

treatment effect on T estimated using our method against the observed trial-specific

treatment effects on T and their standard errors. The observed treatment effect

and its standard error from each trial are based on the observable quantity (p(T =

1|Z = 1) − p(T = 1|Z = 0)). The treatment effect estimated using our method

is based on the MCMC simulations of the posterior distribution of p12 + p22 + p32.

Our estimated treatment effects are all positive because our model assumes no nega-

tive individual-level effects and shrinks the negative effects towards 0. The posterior

standard deviations from our hierarchical model are generally smaller than the ob-

served standard errors of the treatment effects because of the shrinkage effects from

the exchangeability assumption. Usually, the smaller the sample size the trial has,

the more the shrinkage occurs; and the outliers on the plots are from trials with very

few patients including the trial conducted in the City of Hope in 1996.

Figure 4.7 plots the densities of the quantities of interest from a few selected trials
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and the averages of these quantities across all trials. The model allows the densities

from one trial to be quite different from that from another trial. Since the averages

are less variable, their density curves appear sharper than the trial-specific densities.

Figure 4.8 presents the histograms of the posterior distributions of u and v2. The

fact that u has the median of 0.588 and 95% CI being (0.499, 0.691) agrees with what

we believe about the positive associations between (S(0), S(1)) and (T (0), T (1)), that

is, the log odds ratios are more likely to be positive than not. The median and 95%

CI of v2 is estimated as 0.052(0.0052, 0.259); the CI is tight and informative about

the variability of u.

We also examined the sensitivity towards the hyperparameters. In Figures 4.8,

4.9 and 4.10, we present a few selected estimates of interest under “vague” priors

(specifically, σ2 = 100, τa = 0.01 and τb = 100) and informative priors (e.g., σ2 =

1.96, τa = 2 and τb = 1/7). The prior mean of the log odds ratios u is not sensitive

towards the change of the prior distributions, although v2 is more sensitive. The

identifiable quantities such as p11 and the causal effect are less variable than the other

quantities. Overall, the posterior distributions of the counterfactual probabilities and

those of u and v2, nevertheless, are not overly sensitive to the hyper-parameters.

4.9 Discussion

This manuscript considers a potential outcomes approach to study the causal

relationship among Z, S and T . It examines the association between the effect of Z on

S and the effect of Z on T , respectively, as if we had observed both outcomes of S and

T corresponding to two treatment options for every patient in the study. Previous

surrogacy measures used to study the treatment-adjusted association between S and

T often do not have causal interpretations because the model used (T |S,Z) adjusts
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for a post-treatment variable S which cuts off the effect of Z on T by conditioning

on S. They quantify the association between (S(0)|Z = 0) and (T (0)|Z = 0) and

that between (S(1)|Z = 1) and (T (1)|Z = 1). On the other hand, with the potential

outcomes framework setup, we consider the association between (S(0), S(1)) and

(T (0), T (1)) which is made on a common set of subjects and their values can not

be changed by the treatment assignment. Hence, the association measures always

have causal interpretations. The causal framework is similar in spirit to that used in

the compliance literature (Holland, 1986; Imbens and Rubin, 1997) where the main

interest is to estimate the causal effect of a treatment within the set of patients who

would comply with their treatment assignment. In our setting, S and T are binary

and we are interested in all the probabilities that completely describe the likelihood

of each possible reaction in T to the two treatment options within different sets of

patients stratified by the possible combinations of potential outcomes of S under two

treatment options.

We compared the surrogacy measures using the conventional models with those

using the counterfactual models. With a traditional model setup, very large surro-

gacy measures indicating the high correlation between S and T do not necessarily

imply that the causal effect of Z on T mostly agrees with that of Z on S, vice versa.

In an extreme situation, when the causal effect on S is equal to the causal effect on

T , that is, S is a perfect surrogate in a causal sense, S is not a perfect surrogate

in a conventional framework and does not satisfy the criteria for perfect surrogacy

defined by Prentice’s criteria. It illustrates the difficulty with drawing the conclusion

on the causal relationship between S and T without the counterfactual framework.

The traditional models ignore the fact that the effect of Z on T may occur to the

patients who are inherently never-responsive or always-responsive in S regardless of
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the treatment received, however, the counterfactual model teases out the effect of Z

on T in each subgroup of subjects defined by their responsiveness to the treatment

received. We find that when the diagonal probabilities, p11, p22 and p33, are all rel-

atively large, S and T is closely associated in both the causal inference framework

and the traditional model framework.

Frangakis and Rubin (2002) laid out a counterfactual framework to make it possi-

ble to discuss the assumptions under which the causal interpretation may or may not

be plausible. We have extended this idea by proposing a Bayesian estimation method

to make it possible to estimate the probabilities that measure the causal associations

between S and T with respect to Z. We use the log-linear model to directly model

the association between the potential outcomes of S and T through the odds ratios

of (S(0), S(1)) and (T (0), T (1)). We believe that there is an ordering in the sequence

of the potential outcomes of (0, 0), (0, 1) and (1, 1). We also believe that (S(0), S(1))

and (T (0), T (1)) are closely associated. We incorporate these scientific assumptions

conveniently through prior distributions for the odds ratios, for which there is lit-

tle information from the observed data, and hence deal with the non-identifiable

problems resulted from the over-parameterization using the counterfactual model.

The proposed estimation method can be readily extended to the settings when T is

partially missing or when there are multiple trials. Besides the log-linear model, we

also fit a multinomial model with the Dirichlet prior distributions. Although it is

easier computationally, the model is less flexible and the impact of the priors on the

estimable quantities such as the treatment effect on T is much larger than the log-

linear model. Although the Poisson log-linear model has one more parameter for the

sample size than the multinomial model, there is a one-to-one relationship between

the two model parameters conditioning on the sample size and independent prior
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specification for the parameter denoting the sample size (Birch, 1963 and Forster,

1996).

It is important to realize that the probabilities in the counterfactual model are

association measures instead of causation measures. If S is in the causal pathway

between Z and T , p22 is very large. On the other hand, a very high p22 only shows

that the causal effect of Z on S is highly associated with the causal effect of Z on

T and it does not necessarily imply that Z affects T by affecting S. It is likely

that there is an unmeasured variable denoted by U which can be a post-treatment

confounder that can affect both S and T . Consequently, adjusting for S may induce

the false association between Z and T . S is defined as “collider” in the economic

literature. This problem can be directly addressed by another causal inference frame-

work proposed by Greenland and Robins (1992) which allows one to manipulate S.

The framework defines additional probabilities to describe the likelihood of how T

changes by intervening S, which can measure the degree to which Z affect T through

affecting S. This model has been used by Chen, Geng and Jia (2007) to study the

surrogacy consistency.

One of the key assumptions in our method is the monotonicity assumption that

requires that if a patient gets better if received Z = 0, she or he would not get

worse if received Z = 1. It is essential to make this assumption to reduce the

number of parameters to have a more identifiable counterfactual model. It is not

usually contradicted by the data where on average patients do not become worse off

when they received Z = 1 compared to those received Z = 0. If this assumption is

correctly specified, we expect our estimates for the quantities of interest will be more

efficient and less biased than the conventional model if the quantities are comparable.

However, this assumption requires that every single patient would have done at least
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as well as that when she or he receives Z = 1 relative to that when she or he receives

Z = 0. It is perhaps true for most of the patients but not usually obviously satisfied

for all patients, for example, in the CIGTS study where we compare the effect of

medicine with that of surgery, it is conceivable that some patients may be better if

they received medicine instead of surgery, even though the average effect of surgery

is consistently better. On the other hand, for the colon cancer study, the assumption

is more likely to hold for every individual because the experimental treatments are

only slight modifications of the standard treatment and are intended to improve its

effectiveness. Assessing the impact of the violations of the monotonicity assumption

is an important extension in the current work.

Here, we assumed that missingness is ignorable, but it would be useful to in-

vestigate what assumption is necessary for the approach to be valid and conduct

sensitivity analysis to examine the impact of different assumptions about missing-

ness. In particular, when we have missingness in T or there is non-compliance in

either a single trial setting or a multiple trial setting, it may be possible to add a

third or fourth pair of potential outcomes to study alternative missingness assump-

tions or the impact of compliance status in the surrogate marker context. In this

area, Frangakis and Rubin (1999) considers a weaker assumption of latent ignorabil-

ity which allows missingness to depend on the principal strata. It will also be useful

to calculate the non-parametric bounds to quantify the range of the counterfactual

probabilities in our context (Balke and Pearl, 1997). Extensions to other data types

are possible. For example, when both S and T are continuous, we can model the

joint distribution of the potential outcomes of S and T using a parametric form. The

association measures can be correlations instead of probability measures used in our

manuscript.
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S and T Observed

S

T 0 1

Z = 0 0 28 14
1 29 55

Z = 1 0 11 10
1 8 83

S Observed and T Missing

Z = 0 69 97
Z = 1 35 144

Table 4.1: Data Summary from the Collaborative Initial Glaucoma Treatment Study

(T (0), T (1))

(s(0), s(1)) (0, 0) (0, 1) (1, 1) (1, 0)

(0, 0) p11 p12 p13 p14

(0, 1) p21 p22 p23 p24

(1, 1) p31 p32 p33 p34

(1, 0) p41 p42 p43 p44

Table 4.2: Causal Probabilities from the Counterfactual Model

(T (0), T (1))

(s(0), s(1)) (0, 0) (0, 1) (1, 1)

(0, 0) p11 p12 p13

(0, 1) p21 p22 p23

(1, 1) p31 p32 p33

Table 4.3: Causal Probabilities from the Counterfactual Model with Monotonicity Assumption

T

S 0 1

Z = 0 0 p11 + p12 + p21 + p22 p13 + p23

1 p31 + p32 p33

Z = 1 0 p11 p12 + p13

1 p21 + p31 p22 + p23 + p32 + p33

Table 4.4: Probabilities Associated with Observed Counts Using Counterfactual Parameters
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(T (0), T (1))

(s(0), s(1)) (0, 0) (0, 1) (1, 1)

Median (95%CI) Median (95%CI) Median (95%CI)

(0, 0) 0.11(0.060, 0.17) 0.022(0.002, 0.072) 0.055(0.012, 0.12)
(0, 1) 0.049(0.011, 0.108) 0.027(0.0028, 0.092) 0.17(0.080, 0.26)
(1, 1) 0.051(0.0078, 0.11) 0.050(0.0036, 0.12) 0.45(0.36, 0.53)

Table 4.5: Medians and 95% Credible Intervals of the Posterior Distributions for the Counterfactual
Probabilities for CIGTS data

Median(SD) % Change in Median (% Change in Posterior SD)

Quantities u = 0.7 u = 0 u = 1.4 u = 0.7 u = 0.7

of Interest v2 = 1.96 v2 = 1.96 v2 = 1.96 v2 = 1 v2 = 4

p11 0.11(0.028) 0%(1%) −2%(2%) −4%(−1%) 0%(3%)
p12 0.022(0.019) −5%(−4%) 10%(2%) 2%(−9%) −2%(20%)
p22 0.027(0.024) −9%(−3%) 14%(6%) 8%(−3%) −7%(6%)
p32 0.050(0.032) −3%(−4%) 10%(1%) 3%(−7%) 0.6%(7%)

Causal Effect 0.111(0.056) −4%(−4%) 10%(3%) 1%(0.5%) 3%(−1%)
OR1 2.99(8.04) 0.6%(−27%) 6%(−37%) −10%(−60%) 12%(125%)
OR2 2.45(10.09) −5%(−6%) 435%(−96%) −3%(−62%) 22%(2057%)
OR4 1.56(1.87) −4%(0%) −3%(−9%) 1%(−41%) −13%(73%)

Table 4.6: Prior Sensitivity on Posterior Distributions

Parameters Truth Bias SD(Est) SD Coverage

p11 0.166 0.00383 0.0214 0.0223 95.5%
p12 0.136 -0.00368 0.0210 0.0276 98.5%
p13 0.0304 0.00453 0.00845 0.0205 100%
p21 0.0869 0.00369 0.0148 0.0331 100%
p22 0.117 -0.00975 0.0223 0.0353 100%
p23 0.0582 -0.00429 0.0117 0.0218 98%
p31 0.071 -0.00358 0.0144 0.0322 100%
p32 0.158 0.00519 0.0221 0.0361 100%
p33 0.175 0.00406 0.0227 0.0227 95%

OR1 1.649 -0.00774 0.564 1.764 100%
OR2 2.226 -0.283 0.555 13.086 100%
OR3 1.649 0.448 0.774 13.554 100%
OR4 2.226 0.0420 0.852 2.559 100%

Causal Effect 0.412 -0.0082 0.0394 0.0384 96%

Table 4.7: Bias, Standard Deviation of Posterior Means, Mean of Posterior Standard Deviations
and Coverage Rates from 200 Simulations
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Potential Outcomes (T (0), T (1))

(S(0), S(1)) (0, 0) (0, 1) (1, 1) Marginal

(0, 0) 0.267 0.066 0.001 0.334
(0, 1) 0.133 0.066 0.133 0.332
(1, 1) 0.001 0.066 0.267 0.334

Marginal 0.401 0.198 0.401 1

Table 4.8: Example 1: AP = 1/3; CAP = 0.142; FWT = 1.003; ORg0 = 16; ORg1 = 16

Potential Outcomes (T (0), T (1))

(S(0), S(1)) (0, 0) (0, 1) (1, 1) Marginal

(0, 0) 0.31 0.03 0.005 0.345
(0, 1) 0.03 0.24 0.04 0.31
(1, 1) 0.005 0.04 0.30 0.345

Marginal 0.345 0.31 0.345 1

Table 4.9: Example 2: AP = 0.77; CAP = 0.63; FWT = 0.80; ORg0 = 90; ORg1 = 157

Parameter Complete Cases All Cases

Median 95% CI Median 95% CI

p11 0.11 (0.060, 0.17) 0.11 (0.067, 0.16)
p12 0.026 (0.002, 0.072) 0.019 (0.0015, 0.072)
p13 0.057 (0.012, 0.12) 0.057 (0.015, 0.11)
p21 0.051 (0.011, 0.11) 0.045 (0.0092, 0.097)
p22 0.033 (0.0028, 0.092) 0.022 (0.0018, 0.0698)
p23 0.17 (0.080, 0.26) 0.16 (0.093, 0.23)
p31 0.053 (0.0078, 0.11) 0.056 (0.011, 0.11)
p32 0.054 (0.0036, 0.12) 0.051 (0.0046, 0.12)
p33 0.46 (0.36, 0.53) 0.46 (0.39, 0.53)

Causal Effect 0.11 (0.013, 0.23) 0.10 (0.013, 0.21)
Associative Proportion 0.27 (0.078, 0.54) 0.23 (0.057, 0.49)

Table 4.10: a = 0.01, b = 100, u = 0.7, and v2 = 1.42

(T (0), T (1))

(s(0), s(1)) (0, 0) (0, 1) (1, 1)

(0, 0) nh11 nh12 nh13 nh1+

(0, 1) nh21 nh22 nh23 nh2+

(1, 1) nh31 nh32 nh33 nh3+

Table 4.11: Number of Patients by Potential Outcomes of S and T in trial h
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Center Sample Size Medicine Surgery Individual-level Correlation

(Means of S, T ) (Means of S, T ) Medicine Surgery

1 670 (17.63, 16.52) (13.76, 14.59) 0.367 0.608
2 352 (17.22, 16.42) (14.63, 12.98) -0.455 0.467
3 770 (19.27, 17.58) (15.81, 16.17) 0.589 0.548
4 528 (17.17, 15.51) (10.93, 12.88) 0.176 0.540
5 1078 (18.52, 18.67) (14.99, 15.32) 0.435 0.407
6 736 (18.62, 18.89) (15.13, 17.11) -0.16 -0.0056
7 572 (18.35, 15.34) (14.59, 14.53) 0.177 0.396
8 1056 (18.59, 16.16) (13.60, 13.72) 0.31 0.95
9 638 (17.56, 16.82) (14.19, 14.61) 0.042 0.756

Table 4.12: Description of Pseudodata: Treatment-Specific Means and Individual-Level Correla-
tions for Each Center.

Z = 0 Z = 1
S = 0 S = 1 S = 0 S = 1

Center Sample Size T = 0 T = 1 T = 0 T = 1 T = 0 T = 1 T = 0 T = 1
1 670 53 98 25 159 14 11 47 263
2 352 7 62 43 64 3 52 2 119
3 770 150 112 25 98 67 62 50 206
4 528 27 81 29 127 11 11 13 229
5 1078 231 88 97 123 64 100 74 301
6 736 116 90 105 57 33 61 94 180
7 572 43 105 32 106 28 45 37 176
8 1056 143 162 62 161 49 24 7 448
9 638 56 90 60 113 39 19 31 230

Table 4.13: Number of Subjects with Combinations of Z, S and T for Each Center.

Median 95%CI Median 95%CI Median 95%CI
p11 0.087 (0.078, 0.096) p12 0.038 (0.024, 0.051) p13 0.092 (0.076, 0.11)
p21 0.052 (0.037, 0.067) p22 0.051 (0.037, 0.065) p23 0.19 (0.17, 0.21)
p31 0.056 (0.041, 0.070) p32 0.095 (0.078, 0.11) p33 0.34 (0.32, 0.35)
CE∗ 0.184 (0.163, 0.204) AP∗ 0.286 (0.22, 0.35) CAP∗ 0.11 (0.076, 0.13)
OR1 7.56 (3.92, 29.96) OR2 3.64 (1.43, 14.67) OR3 3.39 (1.44, 16.39)
OR4 1.34 (0.78, 2.54) - - - - - -

Table 4.14: Medians and 95% Credible Intervals for Counterfactual Probabilities. CE∗: Causal
Treatment Effect on T ; AP∗: Associative Proportion: p22

p12+p22+p32
; CAP∗: Common

Associative Proportion: p22
p12+p21+p22+p23+p32

.



141

Median 95%CI Median 95%CI Median 95%CI
p11 0.623 (0.601, 0.645) p12 0.037 (0.026, 0.050) p13 0.076 (0.066, 0.088)
p21 0.088 (0.070, 0.107) p22 0.011 (0.0063, 0.018) p23 0.0367 (0.0264, 0.0499)
p31 0.048 (0.039, 0.060) p32 0.0096 (0.0061, 0.016) p33 0.069 (0.056, 0.083)
CE∗ 0.058 (0.041, 0.079) AP∗ 0.172 (0.136, 0.211) CAP∗ 0.041 (0.030, 0.056)
OR1 1.893 (1.688, 2.350) OR2 1.833 (1.651, 2.184) OR3 1.835 (1.647, 2.178)
OR4 1.833 (1.631, 2.195) - - - - - -

Table 4.15: Medians and 95% Credible Intervals for Counterfactual Probabilities. CE∗: Causal
Treatment Effect on T ; AP∗: Associative Proportion: p22

p12+p22+p32
CAP∗: Common

Associative Proportion: p22
p12+p21+p22+p23+p32
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Figure 4.1: Prior and posterior distributions on selected quantities of interest. Dash lines for the
prior distributions and solid lines for the posterior distributions.
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Figure 4.2: Prior and posterior distributions on four odds ratios. Dash lines for the prior distribu-
tions and solid lines for the posterior distributions.
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Figure 4.3: Histograms of 2000 MCMC Values from Posterior Distributions of u and v2.
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Figure 4.4: Observed Treatment Effect vs. MCMC Estimated Treatment Effect by Centers

4.10 Appendix

4.10.1 Data Reconstruction Description

The reconstructed data are based on an example of a meta-analysis study for ad-

vanced colorectal cancer discussed in The Evaluation of Surrogate Endpoints (Molen-

berghs et al., 2004). The objective was to create data that matched a plot of Kaplan-

Meier survival curves by treatment type (Z = 1 for experimental and Z = 0 for

standard) and tumor response (X = 1 for complete response (CR), X = 2 for partial

response (PR), X = 3 for stable disease (SD), and X = 4 for progressive disease

(PD)) for four combined meta-analyses (Figure 4.5 from the book), provided with

the median survival and HR estimated for each trial by treatment type (Tables 12.2

and 12.2 from the book). Several different survival models were considered, including

proportional-hazards models using survival time simulated for a Weibull distribution
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Figure 4.5: Posterior Distributions of Center-Specific Quantities and Their Averages by Centers
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Figure 4.6: Observed Treatment Effect and its Standard Error vs. MCMC Estimated Treatment
Effect and its Posterior Standard Deviation by Trial

and Accelerated Failure Time (AFT) models with log-transformed and square-root-

transformed survival time. Ultimately, it appeared that simulated data from the

AFT model with square-root-transformed survival time resulted in stratified sur-

vival curves that best resembled those provided in Figure 4.5 from the book. In

particular, the final AFT model is given by:

√
Yhzj = η0 + η0hz + η1I(X = 1) + η2I(X = 2) + η3I(X = 3) + γhZ + εj(4.4)

for trial h = 1, ..., 27 and treatment Z = 0, 1 (experimental, standard), and subject

j = 1, ..., 4010, where εj ∼ N(0, σ2). The values of the parameters in this model were

chosen to correspond to features of the data as summarized in Table 12.1, Table 12.2,

and Figure 4.5 from the book. The initial values for each parameter in the AFT model

are given in Table 4.16. In this table, Ỹhz represents the median survival for trial h

and treatment Z, and pxhz is the proportion of subjects with tumor response level
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Figure 4.7: Posterior Distributions of Trial-Specific Quantities and Their Averages by Trials
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Figure 4.8: Histograms of 2000 MCMC Values from Posterior Distributions of u and v2. Left Panel:
Based on Vague Priors; Right Panel: Based on Informative Priors.
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Figure 4.9: Posterior Medians of Trial-Specific p11, p22, Associative Proportions and Causal Treat-
ment Effect Based on Informative Priors against Those Based on Vague Priors.
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Figure 4.10: Posterior Standard Deviations (SD) of Trial-Specific p11, p22, Associative Proportions
and Causal Treatment Effects Based on Informative Priors against Those Based on
Vague Priors.
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Parameter Chosen Value

η0hz

√
Ỹhz/12− η0 − η1p1hz − η2p2hz − η3p3hz − γhZ

η0
√

2.5

η1
√

1.5−
√

2.5

η2
√

1.1−
√

2.5

η3
√

0.6−
√

2.5

γh − (
√

Ỹh0−
√

Ỹh1/12)−(
√

11.8/12−
√

10.8/12)

4
σ 0.37

Table 4.16: Description of initial parameter values for AFT model

x as provided in Table 12.1 from the book. In the definition of η0, η1, η2 and η3

the values 0.6, 1.1, 1.5,and 2.5 represent the approximate median survival times in

years for CR, PR, SD, and PD based on Figure 4.5 in the book. In the definition of

γh, 11.8 and 10.8 were found to be closer estimates to the “total” estimated median

survival in months for experimental and standard treatment, respectively, than the

values of 9.8 and 8.9 provided in Table 12.1 from the book. Setting σ to be 0.37

appeared to provide survival curves that resembled Figure 4.5 from the book.

Using the AFT model with square-root of survival time, histograms of the HRs

by study from 3000 simulations were produced and the mode of the distribution

was compared to the actual HR provided in Table 12.2 from the book. To ensure

that actual HR was not an extreme observation from the modeled data, the values

of γh were manually adjusted so that the actual HR was close to the center of the

distribution of simulated HRs. All histograms were unimodal and looked nearly

normal. It appeared that only eight of the 27 hazard ratio distributions could use

shifted by a small amount. Table 4.17 summarizes which studies were adjusted

and the value of the γh correction that was applied to center the HR distribution

near the appropriate value. The final aspect of the data reconstruction involved

piecing together subsets of data by trial over 2000 simulations with estimated median

survival, ŷmhz, where m = 1, ..., 1000 for each treatment type closest to the value
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Trial γh Correlation

NCOG +0.10
GOIRC +0.07

GISCAD +0.08
RPCI +0.12
Spain +0.29
NCIC −0.08
France −0.07
MAOP −0.08

Table 4.17: Summary of the trials that needed manual adjustment to ensure that the HR given in
Table 12.2 was near the center of the distribution of simulated HRs

provided in Table 12.1 from the book (ỹmhz), simultaneously, while having HR that

matched the value from Table 12.2 from the book. That is, the quantity ∆mh =

|ŷmh0 − ỹh0| + |ŷmh1 − ỹh1| was calculated for each simulation, and the data for

the trial corresponding to the smallest ∆mh were combined for each h = 1, ..., 27.

Recreated versions of Table 12.1 (median survival only) and Table 12.2 (HRs only)

from the book are provided by Tables 4.18, 4.19 and 4.20 respectively. The recreated

version of Figure 4.5 from the book is pictured in Figure 4.11. The tables and the

figure match extremely well, if not identically.

4.10.2 Summary Statistics Used for Data Analysis in Section 8.2
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Trial Treatment Median Survival

GITSG 5FU+L 11.3
ST 10.9

NCOG 5FU+L 10.6
ST 11.2

GOIRC 5FU+L 12.3
ST 14.6

GISCAD 5FU+L 12.9
ST 13.1

Genova 5FU+L 11
ST 10.9

Toronto 5FU+L 12.1
ST 9.4

City of Hope 5FU+L 14.2
ST 13.1

RPCI 5FU+L 10
ST 10.7

Bologna 5FU+L 10.4
ST 7.4

EORTC 5FU+M 12.1
ST 9

RPCI 5FU+M 10.3
ST 11.2

NGTAG 5FU+M+L 8.1
ST 5.9

AIO 5FU+M+L 10.2
ST 13.4

NCOG 5FU+M+L 12.8
ST 11.5

GOCS 5FU+M+L 11.5
ST 8.9

Mar del Plata 5FU+M+L 0.7
ST 1

Spain 5FU+M+L 13.4
ST 11.2

Table 4.18: Recreation of Table 12.1 in The Evaluation of Surrogate Endpoints by Molenberghs et al.
on Meta-Analyses in Advanced Colorectal Cancer: summary Results for 27 trials from
reconstructed data from AFT model (no censoring).
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Trial Treatment Median Survival

MSKCC HAI 18.3
ST 14.1

NCCTG HAI 12.9
ST 10.7

NCI HAI 16.7
ST 11.1

City of Hope HAI 24.5
ST 23.4

SWOG CII 15
ST 13.8

ECOG CII 13.1
ST 10.5

NCIC CII 10
ST 9

France CII 8.4
ST 9.1

MAOP CII 10.7
ST 11

Jerusalem CII 9.5
ST 12.4

Total EX 11.6
ST 10.8

Table 4.19: Recreation of Table 12.1 in The Evaluation of Surrogate Endpoints by Molenberghs et al.
on Meta-Analyses in Advanced Colorectal Cancer: summary Results for 27 trials from
reconstructed data from AFT model (no censoring).

Trial Hazard Ratio 95% CI

GITSG 0.88 (0.70, 1.10)
NCOG 1.22 (0.88, 1.69)
GOIRC 1.23 (0.92, 1.65)

GISCAD 1.09 (0.81, 1.46)
Genova 0.9 (0.65, 1.25)
Toronto 0.78 (0.55, 1.11)

City of Hope 0.78 (0.49, 1.23)
RPCI 1.13 (0.65, 1.96)

Bologna 0.74 (0.44, 1.23)
EORTC 0.79 (0.63, 0.98)
RPCI 1.28 (0.71, 2.31)

NGTAG 0.76 (0.59, 0.97)
AIO 1.03 (0.75, 1.40)

NCOG 0.89 (0.64, 1.24)
GOCS 0.78 (0.54, 1.11)

Mar del Plata 0.98 (0.59, 1.64)
Spain 1.17 (0.69, 1.97)

MSKCC 0.77 (0.50, 1.17)
NCCTG 0.95 (0.60, 1.51)

NCI 0.81 (0.49, 1.35)
City of Hope 0.91 (0.31, 2.69)

SWOG 0.93 (0.75, 1.14)
ECOG 0.89 (0.71, 1.11)
NCIC 0.8 (0.60, 1.07)
France 0.86 (0.62, 1.19)
MAOP 0.83 (0.61, 1.13)

Jerusalem 1.29 (0.58, 2.86)
Overall 0.91 (0.86, 0.97)

Table 4.20: Recreation of Table 12.2 in The Evaluation of Surrogate Endpoints by Molenberghs et al.
on Meta-Analyses in Advanced Colorectal Cancer: summary Results for binary tumor
response and survival for 27 analyzed trials from reconstructed data from AFT model
(no censoring).
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Figure 4.11: Recreation of Figure 4.5 in The Evaluation of Surrogate Endpoints by Molenberghs et
al. on Meta-analysis in advanced colorectal cancer: overall survival curves by tumor
responses for the four meta-analyses (advanced colorectal cancer meta-analysis project
1992, 1994, Meta-Analysis Group in Cancer 1996, 1998) using reconstructed data from
AFT model.
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Trial Treatment Bad Tumor Response Good Tumor Response
Survival Status Survival Status
Dead Alive Dead Alive

Advanced Colorectal Cancer Meta-Analysis Project (1992)

GITSG 5FU + L 91 10 7 5
ST 187 24 32 26

NCOG 5FU + L 37 8 5 5
ST 78 10 11 8

GOIRC 5FU + L 61 15 7 7
ST 64 15 5 7

GISCAD 5FU + L 62 18 2 7
ST 60 12 9 10

Genova 5FU + L 55 12 4 2
ST 47 12 11 5

Toronto 5FU + L 54 6 2 2
ST 39 6 10 11

City of Hope 5FU + L 28 7 1 4
ST 22 2 5 10

RPCI 5FU + L 16 5 0 2
ST 15 3 8 4

Bologna 5FU + L 28 1 1 0
ST 21 4 9 0

Advanced Colorectal Cancer Meta-Analysis Project (1994)

EROCTC 5FU + M 115 21 12 6
ST 100 25 16 11

RPCI 5FU + M 18 3 0 2
ST 19 3 1 0

NGTAG 5FU + M + L 119 5 1 2
ST 97 5 14 6

AIO 5FU + M + L 56 9 8 5
ST 60 6 9 11

NCOG 5FU + M + L 41 4 6 4
ST 71 13 8 11

GOCS 5FU + M + L 47 7 5 2
ST 42 5 6 11

Mar del Plata 5FU + M + L 33 0 0 0
ST 23 0 5 0

Spain 5FU + M + L 23 5 4 1
ST 18 2 5 1

Table 4.21: The Number of Patients by Treatment, Tumor Response and Survival Status at 1.75
Years after Treatment for 27 analyzed trials in a Meta-analysis in advanced colorectal
cancer. ST - control treatment (bolus 5FU/FUDR); EX - experimental treatment (M -
methotrexate; L - leucovorin; HAI - FUDR by hepatic arterial infusion; CII - 5FU by
continuous intravenous infusion).
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Trial Treatment Bad Tumor Response Good Tumor Response
Survival Status Survival Status
Dead Alive Dead Alive

Meta-Analysis Group in Cancer (1996)

MSKCC HAI 30 10 4 4
ST 14 8 11 10

NCCTG HAI 23 6 2 4
ST 21 2 8 8

NCI HAI 25 2 0 5
ST 16 3 5 8

City of Hope HAI 1 2 1 2
ST 2 0 2 5

Meta-Analysis Group in Cancer (1998)

SWOG CII 121 38 10 13
ST 118 33 3 20

ECOG CII 117 17 13 15
ST 102 15 19 26

NCIC CII 78 6 3 3
ST 70 14 7 4

France CII 65 3 7 3
ST 52 5 15 5

MAOP CII 65 12 5 3
ST 58 4 12 14

Jerusalem CII 13 1 1 0
ST 8 2 1 0

Table 4.22: The Number of Patients by Treatment, Tumor Response and Survival Status at 1.75
Years after Treatment for 27 analyzed trials in a Meta-analysis in advanced colorectal
cancer. ST - control treatment (bolus 5FU/FUDR); EX - experimental treatment (M -
methotrexate; L - leucovorin; HAI - FUDR by hepatic arterial infusion; CII - 5FU by
continuous intravenous infusion).



157

4.11 References

Alonso, A., Molenberghs, G. (2003). Surrogate Marker Evaluation from an Informa-

tion Theory Perspective. Biometrics. 63, 180-186.

Angrist, J., Imbens, G. W., and Rubin, D. B. (1996). Identification of causal effects

using instrumental variables (with discussion). Journal of the American Statistical

Association. 91, 444-472.

Balke, A. and Pearl, J. (1997). Bounds on treatment effects from studies with im-

perfect compliance. Journal of the American Statistical Association. 92, 1171–1176.

Birch, M.W. (1963). Maximum likelihood in three-way contingency tables. Journal

Royal Statistical Society B. 25, 220-233.

Burzykowski, T., Molenberghs, G., and Buyse, M. (2004) The Evaluation of surrogate

endpoints. Chapter 4. Springer.

Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D., and Geys, H. (2000).

The validation of surrogate endpoints in meta-analyses of randomized experiments.

Biostatistics. 1, 49–68.

Chen, H., Geng, Z., and Jia, J. (2007). Criteria for surrogate endpoints. Journal

Royal Statistical Society B. 69, 919-932.

Fleming T.R., DeMets D.L. (1996). Surrogate endpoints in clinical trials: Are we

being misled? Annals of Internal Medicine. 125, 605-613.

Forster, J.J. (2004) Bayesian inference for poisson and multinomial log-linear models.

Working paper..

Frangakis, C.E. and Rubin, D.B. (2002). Principal stratification in casual inference.



158

Biometrics. 58, 21–29.

Frangakis, C.E., Rubin, D.B. and Zhou, X.H. (2002). Clustered encouragement

designs with individual noncompliance: Bayesian inference with randomization, and

application to advanced directive forms. Biostatistics. 3, 147–164.

Freedman, L.S., Graubard, B.I. and Schatzkin, A. (1992). Statistical validation of

intermediate endpoints for chronic disease. Statistics in Medicine. 11, 167–178.

Gail, M., Pfeiffer, R., Houwelingen, H.C.V., and Carrol, R.J (2000). On Meta-

analytic assessment of surrogate outcomes. Biostatistics. 1, 231–246.

Garret, E.S., Zeger, S.L (2000). Latent class model diagnosis. Biometrics. 56,

1055–1067.

Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (2004). Bayesian Data Anal-

ysis. New York: Chapman and Hall.

Gilbert, P.B. and Hudgens, M.G. (2008). Evaluating causal effect predictiveness of

candidate surrogate endpoints. Biometrics, in Press.

Hirano, K., Imbens G.W., Rubin, D.B., and Zhou, X.H. (2000). Assessing the effect

of an influenza vaccine in an encouragement design. Biostatistics. 1, 69–88.

Imbens, G.W. and Rubin, D. B. (1997). Bayesian inference for causal effects in

randomized experiments with noncompliance. The Annals of Statistics. 25, 305–

327.

Lindley, D.V. (1964). The Bayesian analysis of contingency tables. The Annals of

Mathematical Statistics. 35, 1622–1643.

Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data. 2nd

Edition. Wiley: New York.



159

Musch D.C., Lichter P.R., Guire K.E., Standardi C.L., CIGTS Investigators (1999):

The Collaborative Initial Glaucoma Treatment Study (CIGTS): Study design, meth-

ods, and baseline characteristics of enrolled patients. Ophthalmology. 106: 653–62.

Prentice, R.L. (1989). Surrogate endpoints in clinical trials, definition and opera-

tional criteria. Statistics in Medicine. 8, 431–440.

Robins, J.M. and Greenland, S. (1992). Identifiability and exchangeability of direct

and indirect effects. Epidemiology. 3, 143-155.

Rosenbaum, P.R. (1984). The consequences of adjustment for a concomitant variable

that has been affected by the treatment. The Journal of the Royal Statistical Society,

Series A. 147, 656–666.

Rubin, D.B. (1978). Bayesian-inference for causal effects - role of randomization.

Annals of Statistics, 6, 34–58.

Rubin, D.B. (1980). Randomization analysis of experimental-data - the Fisher ran-

domziation test - comment. Journal of American Statistical Association, 75, 591–

593.
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CHAPTER V

Summary and Future Work

In Chapters II and III, we considered the use of a surrogate marker as an auxil-

iary variable in estimating the treatment effect in clinical trials. In Chapter II, we

examined the factors that impact the degree of efficiency gain from S in estimating

the treatment effect in both the single- and multiple-trial settings. While previous

research results have mixed opinions on the value of surrogate markers (Murray and

Tsiatis, 1996; Venkatraman and Begg, 1999; Fleming and DeMets, 1996), we have

identified the scenarios that a surrogate marker can be very useful in increasing the

precision of the treatment effect estimate. In a single-trial setting, the efficiency gain

is small unless S and T are very highly correlated and the amount of missingness

is substantial. In a multiple-trial setting, higher efficiency gain is associated with

higher trial-level correlation but not individual-level correlation when only S, but

not T is measured in a new trial; but, the amount of information recovery from S is

negligible. However, when T is partially observed in the new trial and the individual-

level correlation is relatively high, there is substantial efficiency gain by using S and

one can extract most of the information on the treatment effect. In our study, both S

and T are continuous; in reality, however, it is more common that both S and T are

time to event. For example, time-to-recurrence and time-to-disease-progression as

160
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surrogate markers, and survival time as the primary endpoint in studies with colon

cancer patients or head-and-neck cancer patients. Since it could take too long or

cost much to collect the information on time to death, it would be an important

extension of our current work to investigate the extent of information recovery from

S in terms of the effect of the treatment on improving patients’ longevity.

In Chapter II, we proposed a fully Bayesian estimation method for the setting

where Z and S are completely observed but T is not completely observed in a new

trial; the proposed method was in a meta-analytic framework. The required compu-

tation of the Bayesian estimation is too intensive to permit extensive evaluation of

the properties of the proposed method. However, based on some limited simulations

on a small number of trials, we found that the coverage rates of the credible intervals

tend to be less than the nominal level when we assume noninformative priors for the

fixed effects and diffused inverse Wishart distributions as the prior for the between-

trial and within-trial variances. While the fully Bayesian method incorporates all

uncertainty associated with estimating every single parameter (Louis and Zelterman

(1994)), it seems that in our research setting, the results are sensitive to the diffused

inverse Wishart distributions. It will be a useful extension to find appropriate priors

that lead to estimates with nominal-level coverage rates and unbiasedness.

In Chapter III, we proposed a generalized ridge regression method to incorporate

information from an auxiliary variable, S, to estimate the treatment effect in a

randomized trial setting when S and T are continuous. The method avoids the

need to know the correct surrogacy assumption and allows for the uncertainty in the

models that could describe such an assumption. The proposed method can be seen as

striking a balance between bias reduction and efficiency gain, depending on the nature

of the relationship between S and T . We intend to extend the method in several



162

directions. First, we can adapt the method to different data types. When S and T

are binary data, we have observed the same phenomena that when S satisfies the

perfect surrogacy assumption, we can obtain substantial efficiency gain by utilizing

S in estimating Q (results not shown). A generalized ridge regression method could

be developed a similar fashion to that when S and T are continuous. The setting

where S and T are time-to-event data presents a more complicated challenge, as we

need to consider censoring for both S and T . We consider both S and T are censored

event times and that S always occurs before T . In advanced colorectal cancer, for

example, S could be time to recurrence and T could be survival time. Cook and

Lawless (2001) have shown that great efficiency gains can be obtained by using S

under a three-state model, where an intermediate disease state will be entered prior

to death. For individual i, the models for the hazard functions of S|Z and T −S|S,Z

at time t can be specified as:

λS(S) = λ0S(s) exp(α1z)

λST (T − S) = λ0T (t− s) exp(β1s+ β2z), t > S.

The corresponding probability density functions of S|Z and T −S|S,Z are given by:

g(S|Z) = λ0S exp(α1z) exp(−Λ0S(s) exp(α1z)),

h(T − S|S,Z) = λ0T (t− s) exp(β1s+ β2z) exp(−Λ0T (t− s) exp(β1s+ β2z)),

where Λ0S(s) =
∫ s

0
λ0S(u)du and Λ0T (t − s) =

∫ t−s
0

λ0T (u)du. Then the probability

density function of T |Z is:

f(T |Z) =

∫ t

s=0

h(t− s|s, z)g(s|z)ds.

We define the treatment effect on T , Q(Tν), being the difference in the truncated

life expectancy between the two treatment groups where ν is the maximum observed
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survival time for T . The truncated life expectancy is denoted by E(Tν |Z). Then we

have:

E(Tν |Z) =

∫ ν

t=0

tf(t|z)dt

Q(Tν) = E(Tν |Z = 1)− E(Tν |Z = 0)

We will investigate the shrinkage effect on β2 when S can capture most of the treat-

ment effect on the residual time t − S after S has occurred. The method could be

illustrated on data from clinical trials in advanced colorectal cancer. We could apply

a normal prior in a same fashion as we have done to implement the ridge regression

method. We could also examine different prior distributions (such as a mixture prior

with point mass at β2 = 0 or a Dirichlet process prior) can be used instead of the

normal prior in order to allow for more probabilities for the parameter to be exactly

0.

We could also extend the ridge regression method to a general missing data prob-

lem setting. It is essentially a missing data problem to incorporate S in predicting

the effect of treatment on T when Z and S are completely observed but T is not. We

have found that the ridge regression has the data-adaptive and robust features; it

also has superior properties in terms of MSE, bias and coverage rates when S and T

is closely associated, compared with competing methods. We could adapt the ridge

regression to more general missing data problems and impute draws to fill in the

missing data. We could compare the use of the ridge regression with the commonly

used regression method that assumes multivariate normality (Rubin, 1987), or a se-

quential regression imputation method (Raghunathan et al., 2001). It is likely that

the ridge regression maintains the same advantages we have found in the surrogate

marker setting. It is also possible that a hybrid method that can perform both model
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selection and shrinkage such as the least absolute shrinkage and selection operator

method (LASSO) (Tibshirani, 1996), would have the similar advantages as ridge, in

addition to the features that would go along with its model selection capacity. We

have compared the ridge regression method with the inverse probability weighted

method and have shown that the ridge method is more data-adaptive and has better

MSE property when S and T is closely associated. The IPW method we used for

comparison is proposed by Zhao and Lipsitz (1992). It would also be interesting to

compare ridge with the improved versions of the IPW method which were proposed

and studied by Robins et al. (1994) and Scharfstein et al. (1999) and have the double

robustness features.

The second aspect of my dissertation involves modeling the association between

S and T in a causal inference framework. Previous surrogacy measures require one

to fit models for the distribution of T given S and Z, which does not have a causal

interpretations because S is a post-randomization variable. We proposed a Bayesian

estimation which incorporates assumptions that are plausible in the surrogate context

by using prior distributions to reduce the nonidentifiability problem and possibly

increase precision in both the single- and multiple-trial settings. We can extend

this work in many possible ways. One of the extensions is to go beyond binary S

and binary T . For example, when both S and T are continuous, we can model the

joint distribution of the potential outcomes of S and T using a parametric form.

The association measures can be correlations instead of the probability measures

used in our current work. Another important extension is to incorporate covariates

that are predictive of the potential outcomes of S and T and generalize our work to

observational data. We have noticed that the causal surrogacy measures obtained

using our method in either a single trial or a multiple trial setting have wide credible
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intervals. One would think that the precision of these quantities can be increased

with the incorporation of predictive covariates. While the parametric modeling in

our work allows us to maximize the efficiency, it can also be useful to calculate the

non-parametric bounds to quantify the range of the counterfactual probabilities in

our context (Balke and Pearl, 1997).

One of the key assumptions in our method is the monotonicity assumption that

requires that if a patient gets better if received Z = 0, she or he would not get

worse if received Z = 1. It is essential to make this assumption to reduce the

number of parameters to have a more identifiable counterfactual model. It is not

usually contradicted by the data where on average patients do not become worse off

when they received Z = 1 compared to those received Z = 0. If this assumption is

correctly specified, we expect our estimates for the quantities of interest will be more

efficient and less biased than the conventional model if the quantities are comparable.

However, this assumption requires that every single patient would have done at least

as well as that when she or he receives Z = 1 relative to that when she or he receives

Z = 0. It is perhaps true for most of the patients but not usually obviously satisfied

for all patients, for example, in the CIGTS study where we compare the effect of

medicine with that of surgery, it is conceivable that some patients may be better if

they received medicine instead of surgery, even though the average effect of surgery

is consistently better. On the other hand, for the colon cancer study, the assumption

is more likely to hand for every individual because the experimental treatments are

only slight modifications of the standard treatment and are intended to improve its

effectiveness. Assessing the impact of the violations of the monotonicity assumption

is an important extension in the current work.

It is also important to realize that the probabilities in the counterfactual model
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are association measures instead of causation measures. If S is in the causal pathway

between Z and T , p22 in Table 4.3 is very large. On the other hand, a very high

p22 only shows that the causal effect of Z on S is highly associated with the causal

effect of Z on T and it does not necessarily imply that Z affects T by affecting

S. It is likely that there is an unmeasured variable denoted by U which can be a

post-treatment confounder that can affect both S and T . Consequently, adjusting

for S may induce the false association between Z and T . S is defined as “collider” in

the economic literature. This problem can be directly addressed by another causal

inference framework proposed by Robins and Greenland (1992) which allows one

to manipulate S, which has been used by Chen, Geng and Jia (2007) to study the

surrogacy consistency. The framework defines additional probabilities to describe

the likelihood of how T changes by intervening S, which can measure the degree to

which Z affect T through affecting S. In this framework, the effect of Z affecting T

through S is called indirect effect, while the effect of Z affecting T not through S is

called direct effect. We could use a Bayesian estimation to incorporate appropriate

prior distributions in this framework to reduce the identifiability problem and obtain

the quantities of interest.
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