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Abstract 
 

When individuals with post-stroke hemiparesis train with upper or lower 

extremity robotic devices, they increase muscle recruitment and strength specific 

to the joints exercised. Although current robotic devices address muscle 

weakness in individuals post-stroke, they do not address patients’ impaired force 

scaling abilities. In this dissertation I examined foot forces produced during lower 

limb extensions and designed and tested the use of a novel control mode 

(symmetry-based resistance) for improving individuals’ force-scaling abilities. 

With symmetry-based resistance, exercise resistance increases with increasing 

lower limb force asymmetry. Subjects who train with symmetry-based resistance 

perform the least work when they produce symmetric forces. In the first and 

second experiments, I investigated foot reaction forces in neurologically intact 

and post-stroke individuals. When both subject populations were asked to 

produce equal isometric forces in their lower limbs, they generated less force in 

their weaker limb even though they believed their forces were equal. Normalizing 

force by each limbs’ bilateral maximum voluntary contraction force revealed no 

significant differences between limbs. These results suggest that individuals 

relied primarily on sense of effort, rather than proprioceptive feedback, for 

gauging isometric lower limb force production. Results suggest that sense of 

effort is also major factor determining force production during isotonic, or 



 

 xv

dynamic, movements in subjects post-stroke. In the third experiment, I 

demonstrated that neurologically intact individuals can successfully use the 

robotic device with symmetry-based resistance to improve their force scaling 

abilities and increase lower limb force symmetry from ~46% to ~50% (where 50% 

indicates perfect symmetry). In the final experiment, individuals with post-stroke 

hemiparesis were able to improve their lower limb symmetry from an initial 

average value of ~29% to ~36% during exercise with symmetry-based 

resistance. Improvements in lower limb symmetry, however, were not maintained 

during the one day training session when the controller was turned off. Subjects 

who trained for four weeks showed a trend towards retention of improved 

symmetry as initial lower limb symmetry values were improved from Day 1 to Day 

4. Overall these studies provide information about the neural mechanisms for 

lower limb force generation and suggest an innovative controller for stroke 

rehabilitation. 
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Chapter 1 
 

Introduction 
 

Motivation 

 Stroke is the leading cause of long-term disability in the United States with 

5.8 million stroke survivors alive today and over 600,000 new cases emerging 

each year (Rosamond et al. 2008). Over 50% of these post-stroke individuals 

experience moderate to severe impairments that require special care or 

placement in a long-term nursing facility. This neurological injury puts a large 

strain on the US economy. Forecasts for 2008 place expenses over $65.5 billion 

in both direct healthcare costs and indirect costs due to lost productivity 

(Rosamond et al. 2008). Although there are current therapies for stroke 

rehabilitation, such as audio and visual biofeedback that work towards improved 

balance and mobility, studies have shown only small changes in function when 

compared to no feedback controls (Geiger et al. 2001). As a result, there exists a 

strong desire to develop new rehabilitation techniques that have the potential to 

improve individuals’ functional ability while reducing training times.  

A common deficit in stroke survivors is hemiparesis, weakness on one half 

of the body. This strength deficit has origins in both muscle and neural systems 

(Bertrand et al. 2004; Horstman et al. 2008) and leads to decrements in
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functional ability and mobility (Teixeira-Salmela et al. 1999; Weiss et al. 2000). 

The goals of this dissertation were to better understand physiological principles 

governing lower limb strength asymmetry in neurologically intact and post-stroke 

subjects, and to develop and test the learning effects of a robotic exercise 

machine for rehabilitation of lower limb strength asymmetries in stroke patients. 

Results from these tests on individuals with post-stroke hemiparesis will advance 

the field of rehabilitation robotics and rehabilitation therapies. 

 

Background 

 Motor impairments due to stroke often translate to functional disabilities 

and decreased mobility. Stroke patients have an impaired ability to recruit 

affected muscles contralateral to their lesion. If these muscles remain unused, 

patients most likely experience a stiffening of the affected joints that is caused by 

muscle atrophy and muscle fiber shortening. Patients’ muscles also may become 

spastic, reducing their passive range of motion. All these impairments result in 

hemiparesis, reducing individuals’ ability to perform bilateral tasks (Bertrand et al. 

2004). Weakness in the lower extremities affects performance during standing, 

walking, climbing stairs, and standing from a sitting position (De Quervain et al. 

1996; Teixeira-Salmela et al. 1999; Weiss et al. 2000). 

 Stroke-induced hemiparesis affects patients’ ability to approximate force 

production in their limbs. During submaximal upper extremity matching tasks, 

stroke subjects consistently overestimate forces produced in the paretic limb, 

even though maximum voluntary force trials reveal that they have the ability to 
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produce forces of equal magnitude (Bertrand et al. 2004; Mercier et al. 2004). 

This limb force asymmetry has been replicated for neurologically-intact subjects 

with one upper limb in a state of muscle fatigue (Carson et al. 2002). Individuals 

base muscle activation on sense of effort, rather than sense of force (Gandevia 

and McCloskey 1977b). For neurologically intact subjects, sense of effort scales 

with an individual’s maximum force ability for the involved muscles (Carson et al. 

2002). Since a stroke subject has reduced maximum force ability in the paretic 

limb, basing muscle recruitment on proportion of maximum force ability will result 

in less force in the paretic limb. Previous research lacks information on stroke 

subjects’ lower limb force matching capabilities and whether or not this sense of 

effort scaling translates to the paretic and non-paretic lower limb muscles of 

stroke subjects.  

 Strength training is one rehabilitation strategy that counteracts muscle 

weakness and limb force asymmetry. Strength training regimens continue two to 

three days per week and include lower extremity resistance training, circuit 

training and aerobic exercises (Teixeira-Salmela et al. 1999; Weiss et al. 2000; 

Gordon et al. 2004a). This strategy leads to increased motor recruitment of both 

the paretic and non-paretic limbs without increasing spasticity (Badics et al. 

2002). Increasing muscle strength in stroke patients can increase functional 

abilities such as sit-to-stand performance, gait speed, and dynamic balance 

(Mercier et al. 1999; Weiss et al. 2000; Monger et al. 2002). Typical strength 

training therapies, however, do not address improving patients’ impaired force 

scaling abilities. 
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 Constraint-induced movement therapy is another rehabilitation strategy 

that can reduce motor impairments of the paretic limb (Taub et al. 1999). During 

therapy mass practice of the paretic limb of a post-stroke individual can be 

achieved by constraining the non-paretic upper limb for 90% of the waking hours. 

Constraining the non-paretic limb forces patients to rely only on their paretic limb 

for training tasks and activities of daily living. This type of therapy focuses on 

overcoming the learned disuse phenomenon. Decreased use of the paretic limb 

results in further disuse because patients become more skilled using just their 

non-paretic limb and become less skilled at using their paretic limb. Results from 

trials testing constraint-induced movement therapy vs. a time-matched exercise 

program found greater improvements  for constraint-induced therapy in motor 

performance, quality of movements, and functional use of the paretic limb (Taub 

and Morris 2001; Wu et al. 2007; Lin et al. 2008).  

 A recent trend in rehabilitation science is to automate training techniques 

with robotic devices with the intent of improving the efficacy of therapy. Many 

robotic devices have emerged with the ability to mimic therapists’ movements 

during task-specific repetitive exercise (Hesse et al. 2003; Reinkensmeyer et al. 

2004). Stroke patients have shown the ability to adapt to novel force fields when 

training with these devices (Reinkensmeyer et al. 2004; Patton et al. 2006). For 

the upper extremity, subjects training on the MIT-MANUS or MIME robot have 

shown improvements of increased strength of the exercised joints (Lum et al. 

2002; Fasoli et al. 2003). There is initial evidence showing that stroke subjects’ 

motor improvements are increased when the robots are operated in an error-
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amplification mode rather than an error-reducing mode (Patton et al. 2006). Much 

attention on lower extremity robotics is focused on gait training. The mechanized 

gait trainer and the LOKOMAT were developed to lessen the physical exertion of 

therapists during manual assisted treadmill training (Colombo et al. 2000; Werner 

et al. 2002). Chronic stroke subjects who undergo six weeks of gait training on 

the mechanized gait trainer produced similar functional outcomes compared to 

subjects who only underwent manual assisted gait training. The majority of these 

devices use controllers that program a desired kinematic trajectory. Robotic 

devices such as these are promising although to date, the results are very joint 

specific (Hesse et al. 2001; Lum et al. 2002; Krebs et al. 2005). 

 Other types of rehabilitation used in clinics to improve patients’ 

performance are audio and visual biofeedback. Therapists have used audio 

and/or visual feedback about patients’ muscle activation or limb forces to attempt 

to improve limb force symmetry. Post-stroke individuals provided with visual force 

feedback while standing and performing upper limb tasks improve stance 

symmetry and decrease sway compared to subjects receiving similar therapy 

without feedback (Sackley and Lincoln 1997; Wong et al. 1997). Sit-to-stand 

training with audio feedback of paretic lower limb loading shows increased 

improvement toward symmetric body weight distributions over no feedback 

controls (Engardt et al. 1993). Although these results show improvements after 

training with feedback, they occur over relatively long training periods. Training 

sessions range between 45 to 60 minutes a day, 3 to 5 days a week, for 4 to 6 

weeks (Engardt et al. 1993; Bourbonnais et al. 2002). An alternative type of 



 

6 

therapy that reduces training time could speed patients’ motor recovery and 

decrease therapy costs. 

 There is a need for a new rehabilitation strategy that has the potential to 

take into account three specific points. The new technique should focus on post-

stroke individuals’ lower limb function and mobility. It should address these 

patients decreased strength on their paretic lower limb. Finally, it should also 

focus on improving stroke subjects’ impaired force scaling abilities in their lower 

limbs. While addressing these points, the new rehabilitation strategy should 

provide feedback in such a way that training times can be decreased. 

 This dissertation outlines a new control paradigm for robotic devices that 

uses a novel control strategy, symmetry-based resistance, as a means of lower 

limb stroke rehabilitation. Symmetry-based resistance alters the resistance as a 

means of informing subjects of their performance. We have applied our new 

control strategy to a robotic exercise device where subjects perform lower limb 

extensions. The exercise device, shown in Figure 1.1, was modified and built at 

the University of Michigan Human Neuromechanics Laboratory. Subjects lie on a 

sled and place their feet on a vertical force plate. A motor controls resistance in 

real-time through a rack and pinion mechanism. The subjects’ goal is to perform 

bilateral lower limb extensions as symmetrically as possible (i.e. pushing equally 

with both the right and left feet). While exercising, subjects receive symmetry- 

based resistance where a real-time controller increases resistance as subjects’ 

performance declines, or as their lower limb forces become asymmetric. 

Therefore if they perform extensions with perfect symmetry, resistance will be set 
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Figure 1.1 Robotic machine for lower limb exercise. A force platform 
measured lower limb forces while a computer controlled motor controlled 
resistance.  
 

 

to a baseline value and subjects will perform minimal total work. The more 

asymmetric their lower limb forces become, the higher the resistance will be, 

causing subjects to perform more work while completing the same task.  

Exercise with symmetry-based resistance may improve the rate of motor 

learning compared to just strength training alone. Motor neuron activation and 

muscle forces are encoded at the spinal cord level (Bosco and Poppele 2001a; 

Bizzi et al. 2002), resulting in a shorter proprioceptive feedback loop for 

symmetry-based resistance compared to the higher cognitive processing 

required for audio/visual biofeedback. Symmetry-based resistance training also 

has the potential to counteract the learned disuse phenomenon. During 

symmetry-based training, subjects perform minimal mechanical work when they 
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generate equal forces with their two limbs. Although the task at first requires 

more effort, recruitment of the paretic limb should require less effort as use of this 

limb increases. This type of training could be considered within the same 

continuum occupied by constraint-induced movement therapy. The difference 

between constraint-induced movement therapy and symmetry-based resistance 

training is the amount of non-paretic limb involvement. Many lower limb tasks in 

activities of daily living involve both legs. Symmetry-based resistance training 

involves both lower limbs and takes advantage of the ability of the patient to 

compare descending motor commands as a means to recalibrate their effort to 

force relationship. 

  

Dissertation Outline 

 This dissertation contains seven chapters and includes experimental 

analyses pertaining to lower limb force production sense and the learning effects 

of exercise with symmetry-based resistance. Chapter 2 is a technical note 

discussing hardware and software components of the robotic exercise machine 

with symmetry-based resistance. In Chapter 3 I use a contralateral limb matching 

task to investigate how neurologically intact subjects gauge foot reaction forces 

and whether these individuals mainly rely on their sense of effort (i.e. feedforward 

signal of the descending motor command) or sense of force (i.e. feedback signal 

of the ascending sensory information). Results from this chapter indicate that 

neurologically intact subjects rely primarily on their sense of effort to gauge lower 

limb isometric force production. Chapter 4 builds upon the results of Chapter 3 
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and examines how individuals with post-stroke hemiparesis gauge both isometric 

(static) and isotonic (dynamic) foot reaction forces. Results from Chapter 4 show 

that stroke subjects do have impaired force scaling abilities and, like 

neurologically intact subjects, mainly rely on their sense of effort to gauge both 

static and dynamic force production. In Chapter 5 serves as a preliminary trial to 

test the robotic exercise machine with symmetry-based resistance with 

neurologically intact subjects. I present data illustrating that when these subjects 

train with symmetry-based resistance they are able to alter their lower limb force 

production towards a target symmetry or asymmetry. In Chapter 6 I discuss a 

preliminary trial of symmetry-based resistance training with post-stroke 

individuals. In this study, exercise with symmetry-based resistance is used as a 

means to recalibrate their sense of effort. Results from this chapter show that 

during training subjects are able to significantly improve their lower limb 

symmetry. During one day of training these improvements were not maintained 

when the controller was turned off. Subjects who trained for four weeks showed a 

trend towards improved lower limb symmetry retention from the first training 

session to the fourth training session. Chapter 7 includes a general discussion of 

the main accomplishments of this dissertation, experimental limitations, and 

recommendations for future work. 
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Chapter 2 
 

Design and Implementation of a Lower Limb Robotic Exercise Machine with 
Symmetry-Based Resistance 

 

Hardware 

 The core piece of equipment used to implement this device was a 

plyometric exercise machine called the Plyo-Sled (LifeStyle Sports, Dunkirk, New 

York) (Figure 2.1A).  This machine was a high performance glide system in which 

users could perform calf raises, squats, and jumping movements against the 

resistance of elastic bands in order to strengthen muscles and develop leg 

power. The sled rested on low friction rollers for ease of movement throughout 

exercise. To perform lower limb extensions, subjects were supine on the sled 

and placed their feet on the vertical footplate.  

 We choose this leg press exercise machine for several reasons. This 

machine allowed for lower limb extensions with the body positioned in the 

horizontal plane. Subjects did not have to completely stabilize their upper body, 

as the sled provided the majority of this support. Consequently, subjects could 

devote  most  of  their  attention  to  sensing  what  it  feels  like  to  produce more 

symmetric forces rather than focusing their attention on stabilizing their upper 

body. Performing extensions in the horizontal plane also allows weaker subjects 

to exercise at resistance levels lower than body weight. Another advantage to
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this exercise machine was that it could be easily retrofitted with a motor to 

provide programmable resistance.  

 

   

 

              (A) 

                            
 

                   (B) 

                   
 
Figure 2.1. Robotic device design. (A) Plyo-Sled exercise machine 
manufactured by Lifestyle Sports. The device could be used for horizontal lower 
limb extensions. (B) SolidWorks computer renderings of the robotic device. 
Design additions shown in grey include a motor, rack and pinion, and dual force 
platform. 
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Design modifications necessary to integrate computer-controlled 

resistance into the Plyo-Sled exercise machine included a motor, rack and 

pinion, and dual force platform (Figure 2.1B). The attachment of these additions 

was drawn up using the computer-aided-design tool SolidWorks 2003 

(SolidWorks Corporation, Concord, Massachusetts). The motor was attached to 

the Plyo-Sled platform to provide programmable resistance to the sled through a 

rack and pinion transmission.  A horizontal rack affixed to the sled was driven by 

a pinion on the motor to transform rotational motion of the motor to linear motion 

of the sled. A dual force platform attached to the vertical footplate captured 

individual foot forces during movement. These components are below. 

 

Rack and Pinion 

 The mechanism consisted of a helical rack and gear (SRH2-1000R and 

SH3-60R, respectively, Quality Transmission Components, Garden City Park, 

New York). Both the gear and the rack had a helical angle of 15º.  The helical 

gear had a radius of 4.14 cm, resulting in 26 cm linear motion for one revolution 

of the gear. This linkage system decreased the amount of backlash in the system 

as well as decreased the cogging of the motor felt by the subject on the sled.  

 

Servo Motor 

 The motor that provided resistance to the sled is a Kollmorgen Goldline 

XT Servo Motor MT706C1-R1C1 (Kollmorgen, Radford, Virginia) matched with a 

SERVOSTAR 600 Amplifier. This motor was selected because it could provide a 
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continuous torque of 48 Nm. The motor inertia was 0.0126 kgm2 and had a 

weight of 36 kg. The rated speed of the motor was 1300 rpm. The motor was 

controlled by a DC current command signal output from the motor amplifier. 

Through combination of the available motor torque and the gear ratio, a 

maximum of 1200 N (continuous force) could be applied to the sled.  

 

Force Platform 

 A dual force platform (Model Dual Accu-Gait, AMTI, Watertown, MA) 

mounted vertically on the footplate of the exercise machine captured individual 

foot forces during movement. Each individual platform had a vertical capacity of 

2669 N (600 lbs). Analog force data was sampled at 1000 Hz.  

 

Software 

 The robotic exercise machine was designed for increased proprioceptive 

feedback through use of symmetry-based resistance. Feedback in this mode 

included person-in-the-loop, where the subject perceived increases and 

decreases in resistance and adjusted their foot forces accordingly (Figure 2.2). 

As the subject performed bilateral lower limb extensions, his/her individual foot 

forces were recorded from the dual force platform. The analog data was sent to a 

data acquisition board (Model Sensoray 626, Sensoray Co. Inc., Tigard, Oregon) 

within a real-time processor. Computer software used force data to generate and 

output a motor command voltage signal. This signal was sent to the motor drive, 
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converted to a current command signal, and output through the motor as torque. 

The software components involved are discussed in detail below. 

 

 

 
Figure 2.2. Information flow diagram. A force platform recorded individual foot 
forces during bilateral lower limb extensions and sent data to a real-time 
processor. The real-time processor calculated lower limb symmetry and motor 
resistance based on individual foot force data. The motor command signal was 
low-pass filtered (LPF) and output to the motor drive. In real-time the motor drive 
commanded the motor in to produce the appropriate torque and acted on the 
sled. 
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RT-Lab and Simulink 

 Real-time signal processing was performed through a software package, 

RT-LAB 6.2 Solo (Opal-RT Technologies, Quebec, Canada).  RT-LAB 6.2 Solo 

was a single host, single target software-only version of RT-LAB that was 

designed for real-time control applications running custom Simulink models (The 

Mathworks, Inc., Natick, MA).  The software calculated motor resistance or 

velocity by automatically compiling these models into a C based programming 

language. The compiled code was then run under real-time QNX on the target 

machine. Real-time control and visualization of several model parameters was 

available through the RT-LAB user interface.  

 The robotic device was controlled by one of three different custom modes: 

isokinetic, isotonic, or symmetry-based resistance.  

 Isokinetic Mode: In isokinetic mode, the computer controlled resistance so 

that movement velocity was held constant over the entire lower limb extension 

movement. If a subject pushed hard and therefore the sled moved faster, the 

controller increased resistance to maintain the reference velocity. If a subject 

pushed too little and therefore the sled moved slower, the controller decreased 

resistance to maintain the reference velocity. During operation of this mode, 

subjects received visual feedback of movement timing (i.e. when to start and stop 

pushing).  

 Isokinetic model parameter inputs included the movement velocity and 

extension time. Movement velocity was converted to a voltage command, VVelocity, 

according to Equation 2.1. Extension time was calculated using to the linear 
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distance the sled traveled during one extension for each subject, as shown in 

Equation 2.2. 

 ( )
rpm 1000

 volts10
min 1
sec 06

cm 26
rev 1 cm/sin Velocity  DesiredVVelocity ×××=  (2.1) 

   
Velocity

Extension V
cmin  DistanceLinear  Desired T =    (2.2) 

Movement velocity and extension time created the square pulse voltage 

command (Figure 2.3) sent to the motor drive. A positive control signal 

represented an extension movement and a negative control signal represented a 

flexion movement. Movement occurred upon a trigger by the experimenter. 

Setting the voltage command signal to zero volts, or a velocity of zero, locked the 

position of the sled. 

 

 

 
 

Figure 2.3. Isokinetic mode control signal. VVelocity represents movement 
velocity and TExtension indicates the time needed to reach full extension (or flexion) 
at a given velocity. Positive command signal represents extension movement 
and negative signal represents flexion. Extension (or flexion) command signals 
are generated upon a trigger by the experimenter. A signal of zero represents the 
static condition (i.e. no movement). 
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Figure 2.4. Isotonic mode: Lower limb symmetry vs. resistance. In isotonic 
mode, resistance, R, was constant and independent of lower limb symmetry 
values.  
 
 
 
 

Isotonic Mode: Isotonic mode allowed subjects to practice lower limb 

extensions similar to an exercise machine that makes use of weights. In isotonic 

mode, the only parameter input was the level of constant resistance, R. The 

resistance level remained constant between repetitions but could increase or 

decrease between sets or as required by experimental protocol (Figure 2.4).  

 The equation necessary to transform desired resistance to the command 

voltage signal required by the motor amplifier was generated experimentally. 

While a subject was on the robotic device, an experimenter increased the 

command voltage signal, VResistance, at intervals of 0.2 volts and recorded the 

output resistance, R, as force data from the force platform.  From these data, a 

plot of command voltage vs. resistance was generated (Figure 2.5A) and a linear 

regression was performed to define their relationship (Equation 2.3, R2 = 0.9991).  
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   (A) 

 
 

 
   (B) 

 
 
 

Figure 2.5. Command voltage vs. resistance in Analog Torque mode. Plots 
were generated under experimental conditions with a subject on the robotic 
device. Black dots represent individual data points and line represents linear 
regression trend line. (A) Without limiting motor output, a maximum command 
voltage of 10.0 volts resulted in a maximum resistance of 1363 N and a 
resolution of 0.0073 V/N (Linear regression, R2 = 0.9991). (B) Limiting the motor 
output by one-third resulted in a maximum resistance of 897 N for 10.0 volt input 
and an increased resolution of 0.0111 V/N (Linear regression, R2 = 0.9978). 
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   N 14.8-VN/V 8.137R Resistance×=    (2.3) 

A maximum command voltage of 10.0 volts resulted in a maximum resistance of 

1363 N. 

 For studies involving individuals with post-stroke hemiparesis, less total 

resistance was necessary. Therefore, the maximum resistance was limited by 

one-third in the motor drive software. The resulting command voltage vs. 

resistance relationship was generated (Figure 2.5B) and a linear regression was 

performed to define their relationship (Equation 2.4, R2 = 0.9978). 

   N 10.3-VN/V 7.90R Resistance×=     (2.4) 

A maximum command voltage of 10.0 volts now resulted in a maximum 

resistance of 897 N. Reducing the maximum resistance increased the resolution 

of the robotic device from 0.0073 V/N to 0.0111 V/N. 

 Symmetry-Based Resistance Mode: In symmetry-based resistance mode, 

the controller varied resistance in real-time. The resistance was proportional to 

the amount of asymmetry in the subject’s foot forces thereby providing immediate 

information about force symmetry in the subject’s lower limbs. Resistance was 

set to a minimum, or baseline, when equal forces were generated between the 

limbs. Resistance increased to saturation as forces became asymmetric. 

Subjects could perform extensions with minimal total work if they generated 

equal forces at their left and right feet. 

 Symmetry-based resistance parameter inputs included the instantaneous 

foot forces recorded from the force plate (FParetic and FNon-paretic), baseline and 

saturation resistances (B and S, respectively), and the initial root mean squared 
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symmetry (SYMRMS) measured for each subject while performing extensions 

against a constant resistance (isotonic mode). 

 The control algorithm determined resistance levels in real-time based on 

individual’s instantaneous lower limb symmetry. Instantaneous lower limb 

symmetry (SYMi) was calculated in real-time by dividing the paretic limb foot 

force by the sum of the paretic limb and non-paretic limb foot forces (Equation 

2.5). The resulting signal ranged from 0 to 100 with 50% representing perfect 

symmetry in lower limb forces.  

   %100×
+

=
cNon-paretiParetic

Paretic
i FF

FSym     (2.5) 

The controller gain (K) and resistance (R), were calculated according to the 

following equations: 
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After the real-time controller calculated resistance the signal was passed through 

a 2nd order low pass Butterworth filter with a cutoff frequency of 1 Hz (Figure 2.2). 

The resistance signal was then converted to a command voltage signal VResistance, 

according to Equation 2.4. The command signal was then sent to the motor drive 

and converted to physical resistance. The overall result of Equations 2.7 was 

resistance followed the shape of the standard normal distribution curve reflected 

over the horizontal axis (Figure 2.6). Resistance was lowest with perfect lower 

limb force symmetry and increased as lower limb forces become asymmetric. 
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Figure 2.6. Symmetry-based resistance mode: lower limb symmetry vs. 
resistance. In symmetry-based resistance mode, resistance, R, was set to a 
minimum baseline value, B, when foot forces were equal (i.e. symmetry value of 
50%). As foot forces became more asymmetric, the motor resistance increased 
until saturation, S. The shape of the resistance curve was defined by Equation 
2.7. 
 
 

 

Motor Drive 

 The motor amplifier utilized a closed loop servo system configuration. 

Within the motor drive software, there were six options to control the motor. Two 

of these, Analog Speed and Analog Torque, were utilized for operation of the 

robotic device. These modes monitored either motor velocity or torque in a 

closed loop. 

 Analog Speed: When Analog Speed was selected as the feedback 

system, the servo amplifier compared the reference motor velocity (input as a 

voltage signal originating from RT-Lab) with the measured velocity. Measured 

velocity was calculated from position information collected from the optical 
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encoder. The encoder has a resolution of 4096 ticks per revolution. The servo 

amplifier then made the adjustments as needed and generated a new current 

signal to bring the motor closer to the commanded velocity. This option was 

selected when running the robotic device in isokinetic mode. 

 Analog Position: When Analog Torque was selected as the feedback 

system, the servo amplifier compared the reference motor torque (input as a 

voltage signal originating from RT-Lab) with the measured torque. This torque 

loop was called the current loop since the amplitude of the electrical current was 

directly proportional to torque. The servo amplifier then made adjustments as 

needed and generated a new current signal to bring the motor closer to the 

commanded torque. This option was selected when running the robotic device in 

either isotonic or symmetry-based resistance mode. 

 

Safety Measures 

 Three separate safety measures were designed into the system to ensure 

subject safety at all times. First, computer software limited motor command 

voltage and therefore limited device resistance. The limit was dependent upon 

individual subject strength. The motor command voltage limit was coded into 

Simulink software using a saturation icon placed directly prior to outputting the 

voltage command. As the calculated motor resistance command increased, it 

saturated at the voltage limit. Second, mechanical stops were included in the 

hardware setup of the device. These safety stops were adjusted to the range of 

motion of individual subjects and ensured that the sled could not physically 
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exceed set limits. Finally, both the researcher and the subject had an emergency 

stop button within their reach at all times throughout the experiment. Activation of 

one or both of these buttons triggered the motor to stall. During this stall, the 

motor produced no torque output and the sled position was locked. The motor 

remained in this state until a manual reset button was pushed.  

 

Device Performance 

Isokinetic Mode  

  To verify performance in isokinetic mode, we quantified the average 

percent error between the desired and recorded sled velocities and recorded the 

maximum force generated by a subject during a bilateral lower limb extension 

that the device could resist without slipping. A test subject was instructed to push 

as hard as they could during the extension phase and relax during the flexion 

phase. The sled velocity (VVelocity) was set to 15 cm/s and the extension time 

(TExtension) was set to 1.5 seconds. Comparing the desired and recorded sled 

velocities across time showed small deviations during movement initiation and 

termination as well as damped oscillations during constant velocity movement 

(Figure 2.7A).  The difference between these two signals resulted in an average 

percent error of 4.5% ± 9.2% (mean +/ s.d.) and a peak error of 7.9%. The peak 

force recorded from a male subject while performing a bilateral lower limb 

extension at maximal effort was 2310 N (Figure 2.7B). During this trial, the motor 

was able to resist the torque generated by the subject without slipping or stalling.  
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 (A) 

        
 

 
 (B) 

      
 
Figure 2.7. Isokinetic mode performance. (A) Plot represents the desired 
(dashed line) and recorded (solid line) movement velocity of the sled throughout 
time in isokinetic mode. Recorded movement velocity was generated as the 
derivative of position data from the motor encoder. A positive commanded 
velocity indicated extension and a negative velocity indicated flexion. Percent 
error between the desired and recorded movement velocities was 4.5% ± 9.2% 
(mean ± std). (B) Force (solid black) and movement velocity (dashed grey) vs. 
time during a bilateral maximum voluntary contraction trial in isokinetic mode. 
The subject was instructed to only produce maximum forces during the extension 
phase (shown) and relax during the flexion phase (not shown). The healthy 
subject was able to generate a peak force of 2310 N. 
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Although this peak force does not represent the maximum value the motor can 

resist, it was the highest force a subject was able to generate in isokinetic mode. 

 

Isotonic Mode  

 In isotonic mode, we quantified the average percent error between the 

desired and recorded resistance across varying levels of symmetry. A test 

subject on the exercise machine was instructed to first generate force solely on 

her left lower limb and then shift the production of force to her right lower limb. 

Throughout this trial, as force production was shifted between limbs, the level of 

symmetry varied from 0% (left lower limb producing 100% of the force) to 50% 

(equal force production between the lower limbs) to 100% (right lower limb 

producing 100% of the force). The resistance (R) was set to a constant 715 N.  

 

 
 
 

 
 

Figure 2.8. Isotonic mode performance. Plot represents desired (dashed line) 
and recorded (solid line) resistances vs. percent symmetry in isotonic mode. 
Resistance did not significantly vary with percent symmetry.  
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The recorded data (Figure 2.8) demonstrates that resistance remained fairly 

constant throughout the trial with only minor fluxuations. The difference between 

the desired motor resistance and the recorded motor resistance resulted in an 

average percent error of 0.43% ± 1.7%. 

 

Symmetry-Based Resistance Mode  

 In symmetry-based resistance mode, we quantified the average percent 

error between the desired and recorded resistance across varying levels of 

symmetry. Similar to the testing of the isotonic mode, a test subject on the 

machine was instructed to first generate force soley on her left lower limb and 

then shift the production of force to her right lower limb. The baseline resistance 

(B) the relationship of desired and recorded resistance as a function of lower limb 

 

 
 

 
 

Figure 2.9. Symmetry-based resistance mode performance. Plot represents 
desired (dashed line) and recorded (solid line) resistances vs. percent symmetry 
in symmetry-based resistance mode. Resistance was at a minimum when 
individual foot forces were equal (i.e. 50% symmetry value) and increased to 
saturation as forces became more asymmetric.  
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was set to 345 N and the saturation resistance (S) to 715 N. Figure 2.9 shows 

symmetry. Both desired and recorded resistances were at a minimum baseline 

value when lower limb forces were equal (i.e. 50% symmetry) and increased with 

increasing lower limb force asymmetry. The difference between the desired 

resistance and the recorded resistance resulted in an average percent error of 

2.7% ± 2.6% and a peak error of 11.6%. 
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Chapter 3 
 

Lower Limb Force Production and Bilateral Force Asymmetries Are Based 
on Sense of Effort 

 

Abstract 

 Previous research suggests that individuals use a sense of effort, more 

than proprioceptive feedback, to gauge force production in their upper limbs. We 

have adopted an isometric force matching task to determine if force asymmetry 

between lower limbs during bilateral force production results from a neural 

mechanism related to sense of effort. We hypothesized that subjects attempting 

to produce equal foot reaction forces would generate equal percentages of their 

bilateral maximum voluntary strength rather than equal absolute forces. Ten 

subjects performed isometric lower limb extensions on an exercise machine. 

Subjects attempted to match forces in their lower limbs at three different 

submaximal levels (20, 40, and 60% of their weaker limb peak force during 

bilateral maximum voluntary contraction). Subjects received visual feedback of 

only the target and stronger limb force. Results showed that subjects consistently 

produced less force in their weaker limb during all force matching levels when 

normalized to their unilateral maximum voluntary contraction force (ANOVAs 

20% P = 0.0473, 40% P = 0.0012, 60% P = 0.0007). As predicted by our 

hypothesis, normalizing force magnitudes by bilateral maximum voluntary
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contraction forces revealed no significant differences between limbs at all force 

levels (ANOVA P = 0.8490). Regardless of whether humans produce maximal or 

submaximal forces, limb force asymmetry appears to be related to neural factors 

rather than differences in mechanical capabilities between the limbs. Our findings 

have implications for bilateral asymmetries during movement in healthy and 

neurologically impaired populations. 

 

Introduction 

 Humans can control force production in their limbs via two main 

mechanisms. Muscle force sensation generated centrally from feedforward 

neural signals is generally termed sense of effort. It originates from an 

individual’s perception of the descending motor command (McCloskey et al. 

1974; Jones 1995; Proske 2006). This neural information has also been 

described as corollary discharge (Sperry 1950). An alternative mechanism 

generated peripherally from feedback neural signals (ascending sensory 

information) is generally termed sense of force or tension (Roland and 

Ladegaard-Pedersen 1977). The peripheral receptors, such as Golgi tendon 

organs and cutaneous receptors, can provide information about muscle tension 

and pressure in order to gauge the sense of force. Studies eliciting the tonic 

vibration reflex have provided evidence that the sense of force can operate in 

isolation without a sense of effort (McCloskey et al. 1974). Many studies have 

examined various upper limb motor tasks in an attempt to clarify when and how 

humans use these two mechanisms for activating their muscles.  
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 Isometric force production is a simple motor task that has been previously 

used to examine how individuals estimate limb forces. In one variation, subjects 

first produce a target isometric force level in one of their two limbs (the reference 

limb), usually with visual force feedback. They are then asked to match the same 

force in the contralateral limb (the matching limb) without force feedback. Studies 

on healthy subjects have found that humans are able to match absolute forces 

between upper limbs fairly well (Carson et al. 2002). If the force capabilities of 

one limb are altered through unilateral fatigue of either the elbow extensors 

(Carson et al. 2002) or the elbow flexors (Jones and Hunter 1983; Proske et al. 

2004), individuals produce less force in that limb during isometric force matching. 

Regardless of which limb (fatigued or unfatigued) was the reference limb, errors 

are consistently in this direction of the fatigued limb generating less force 

(Weerakkody et al. 2003; Proske et al. 2004). Carson et. al. (2002) demonstrated 

that the end forces produced by each upper limb were equal percentages of each 

limb’s maximum voluntary strength rather than equal absolute force levels. These 

studies suggest that humans use a sense of effort originating from a corollary 

discharge of the motor command to the muscles (Sperry 1950; McCloskey et al. 

1974; Gandevia and McCloskey 1977b), rather than absolute reliance on 

proprioceptive feedback, to gauge force production. Because the task of 

producing equal forces is prevalent in the upper limbs (i.e. holding a box or tray), 

researchers have focused their attention on the way individuals estimate force 

production in their upper limbs. 
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 Symmetric lower limb forces are also necessary for many activities of daily 

living such as quiet standing, sitting and rising from a chair, or lifting a box from 

the floor to a shelf. In healthy individuals, a force asymmetry exists between 

limbs during a two-legged vertical jump (Bobbert et al. 2006; Newton et al. 2006). 

The bilateral asymmetry in vertical jumps is present even when there are no 

lower extremity anthropometric differences between limbs (Lawson et al. 2006). 

The prevalence of this asymmetry in healthy bilateral force production of the 

lower limbs in tasks other than the vertical jump is not reported in the literature. 

Several studies define the existence of a lower limb bilateral deficit, or a 

reduction in maximal voluntary strength during bilateral contractions compared 

with unilateral contractions, during bilateral tasks such as extensions at the knee 

and leg extensions (Schantz et al. 1989; Taniguchi 1997; Janzen et al. 2006). 

These studies do not report individual limb forces during bilateral trials. 

Comparing the individual limb forces between combinations of unilateral, 

bilateral, maximal and submaximal trials will provide insight into whether the 

resulting force asymmetries are more related to sense of effort or sense of force.   

 We have adopted the isometric force matching task used by Carson et al. 

(2002) to study normal force asymmetry in the lower limbs of humans. The goal 

of this study was to determine if force asymmetry during bilateral force production 

results from a neural mechanism related to sense of effort. We hypothesized that 

subjects attempting to produce equal foot forces would generate equal 

percentages of their bilateral maximum voluntary strength rather than equal 
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absolute limb forces. If true, this could provide critical insight into the neural 

origins of lower limb force asymmetry during movement.   

 

Methods 

Subjects 

 Twelve neurologically intact subjects (seven males and five females; age: 

25 ± 3.0 years, mean ± S.D.M.) gave written informed consent and participated in 

this study. The Institutional Review Board for Human Subject Research at the 

University of Michigan Medical School approved the protocol.  

 

Experimental design 

 Subjects performed isometric lower limb extensions on a leg press 

exercise machine (Figure 3.1). Subjects reclined on the exercise machine and 

placed their feet on a vertical dual force platform (Model Dual Accu-Gait, AMTI, 

Watertown, MA, USA) and their shoulders firmly braced. The device was locked 

with a mechanical stop such that each subjects’ lower limbs were positioned in 

the middle of the range of motion used for a full lower limb extension (i.e. half-

way between the sled position of 90° knee flexion and full knee extension). 

Subjects’ feet were positioned hip width apart on the force platform and stabilized 

with foot straps to minimize movement during the experiment. For all trials, the 

subjects’ lower limbs remained in the same posture (i.e. both feet are in the foot 

straps during unilateral as well as bilateral conditions). Therefore, regardless of 

the condition, all the data were collected with the same body position, same joint  
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Figure 3.1. Leg press exercise machine for isometric contractions. A dual 
force platform measured individual lower limb forces. A mechanical stop 
prevented movement and allowed for isometric lower limb extensions. For the 
force matching conditions, subjects received visual feedback of the target force 
(dashed line) and the force produced by the stronger limb (black line). 
 
 
 
 
angles, and same muscle lengths. 

 All subjects performed a pre-test consisting of three bilateral isometric 

maximum voluntary contraction (MVC) trials. We verbally encouraged subjects to 

push as hard as they could with both feet and allowed them to rest two to three 

minutes between trials. Subjects were excluded from the study if there was less 

than 10% difference between the maximum forces recorded at their left and right 

feet during each trial (2 of 12 subjects, both males). This criterion was chosen 
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because the purpose of the study was to determine if discrepancy between limbs 

during bilateral voluntary contractions could be explained by sense of effort. Ten 

subjects (five male, five female) possessed a greater than 10% force discrepancy 

in bilateral foot forces and completed the remainder of the study. 

 After completing the initial screening of MVC trials, we placed 

electromyography (EMG) electrodes on non-excluded subjects. Approximately 15 

minutes later, subjects returned to the leg press machine for testing. We 

assessed subjects’ isometric strength with three trials each of bilateral, left limb, 

and right limb MVCs. The order of the nine trials was randomized. We verbally 

encouraged subjects to push as hard as possible with either one foot or both feet 

throughout each five second collection. During unilateral trials, subjects’ resting 

limb remained in the same position as during bilateral trials (i.e. foot in the 

footstrap against the vertical force platform). Subjects rested two to three minutes 

between each MVC trial. When all nine trials were completed, we analyzed data 

from the bilateral MVC condition to identify the stronger limb. We determined the 

stronger limb as the limb that produced the higher peak force during the bilateral 

MVC condition.  

 After another ten minute rest period, we assessed subjects’ ability to 

match forces in their lower limbs with nine trials of force matching tasks. Subjects 

exerted a force equal to 20, 40, and 60% of the peak force from the weaker limb 

during the bilateral MVC condition. Subjects received visual feedback of the 

target force level and the amount of force applied by the stronger limb throughout 

each trial. When subjects reached the target force level in the stronger limb, we 
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instructed them to begin applying force with the weaker limb. No feedback was 

given to indicate the force applied by the weaker limb. We instructed subjects to 

verbally signal to the experimenter once they believed they had matched forces 

in both limbs. Upon this verbal cue, subjects held the isometric contractions for 

three seconds and then were told to relax. Subjects performed three trials at 

each of the three force levels in a randomized order with two to three minutes 

rest between each trial. Subjects were not told the study’s purpose or which limb 

produced more force during the bilateral MVC condition. We instructed subjects 

using the identifiers “right limb” and “left limb” rather than “stronger limb” and 

“weaker limb” as described above. 

 

Data acquisition and analysis 

 We recorded individual foot forces at 1,000 Hz from the dual force 

platform mounted to the vertical footplate (Figure 3.1). Each limb’s MVC, both 

unilateral and bilateral, were determined as the maximum force measured within 

the three trials of each condition (Jones and Hunter 1983; Proske et al. 2004). 

For the three different levels of force matching, we calculated the average force 

applied by each limb for three seconds after the verbal cue was signaled. We 

normalized foot forces to each limbs’ unilateral MVC force. In other words, the 

force recorded during each condition was divided by the force recorded during 

that limbs’ unilateral MVC force. This analysis can provide insight into whether or 

not the lower limb force asymmetry might be due to musculoskeletal differences 

(e.g. a fundamental difference in muscle strength between limbs). In a separate 
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analysis, we normalized force to each limbs’ bilateral MVC force to detect any 

bilateral facilitation or deficit in the subjects. 

 We recorded surface electromyography (EMG) at 1,000 Hz (Delsys Inc., 

Boston, MA, USA) from four lower limb muscles on each limb (vastus lateralis: 

VL, vastus medialis: VM, medial hamstrings: MH, and gluteus maximus: GM) 

using bipolar surface electrodes. To examine changes in EMG amplitude 

between trials, we calculated root mean squared (RMS) EMG values for each 

subject during a one second period in the middle of each trial (Tracy and Enoka 

2006). EMG data were high pass filtered (second-order Butterworth filter, cutoff 

frequency 20 Hz) and rectified before RMS EMG values were computed. For 

each muscle, RMS EMG values were normalized to the highest RMS EMG value 

recorded during any of the unilateral MVC trials.  

 From the unilateral and bilateral MVC force values, we calculated a 

bilateral index for each subject using Equation 3.1 (Koh et al. 1993; Taniguchi 

1998; McLean et al. 2006): 

  100    100 −







+
+

=
lateral Right Uniteral Left Unila

BilateralRightBilateralLeftBI (%)   (3.1) 

where left and right bilateral indicate the respective MVC forces during the 

isometric bilateral MVC condition, and left and right unilateral indicate the 

respective MVC forces during the unilateral MVC condition for each limb. A 

bilateral index less than zero indicated that the total bilateral force was less than 

the sum of the unilateral forces (i.e. bilateral deficit), whereas a bilateral index of 

greater than zero indicated that the total bilateral force was greater than the sum 

of the unilateral forces (i.e. bilateral facilitation). 
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 For MVC trials, we used a repeated measures two-way ANOVA (limb by 

condition) to test for differences between peak force measured during the 

bilateral and unilateral MVC conditions, as well for interaction effects (JMP IN 

software, SAS Institute, Inc., Cary, NC, USA). For submaximal force matching 

trials, we used separate repeated measures two-way ANOVAs (limb by force 

level) to test for differences in force normalized to unilateral MVC, force 

normalized to bilateral MVC, and RMS EMG, as well as interaction effects. When 

interaction effects were significant, we ran separate ANOVAs on each limb, 

condition, and force level. When ANOVAs indicated significance (P < 0.05), we 

used Tukey-Kramer Honestly Significant Difference (THSD) post hoc tests to 

determine differences between limbs and force levels (P < 0.05). Post hoc power 

analyses were carried out where appropriate. 

 

Results 

 MVC trials showed significant differences in foot reaction force magnitude 

between limbs and conditions (ANOVA P < 0.0001, limbs P = 0.0043, conditions 

P < 0.0001) (Table 3.1; Figure 3.2). There was also a significant interaction effect 

between limbs and conditions (ANOVA P = 0.0394). During the bilateral MVC 

condition, subjects produced an average peak force of 1143 N ± 130 N (mean ± 

S.E.M.) in the stronger limb and 904 N ± 111 N in the weaker limb. Peak forces 

produced in the weaker limb were significantly lower than in the stronger limb 

(separate ANOVA P < 0.0001). A difference in peak forces between limbs for the 

bilateral MVC condition was expected because this was the criteria for selection 
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Table 3.1. Summary of main and interaction effects of repeated measures 
ANOVA of peak force recorded during unilateral and bilateral MVC trials. 

 df F P 

Two-way ANOVA (Limb by Condition)    

     Effect of Limb (1,27) 9.73 0.0043 

     Effect of Condition (1,27) 164.39 < 0.0001

          Limb * Condition (1,27) 4.69 0.0394 

Separate ANOVAs    

     Effect of Limb    

          Unilateral MVC (1,9) 0.84 0.3832 

          Bilateral MVC (1,9) 72.98 < 0.0001

     Effect of Condition    

          Weaker Limb (1,9) 97.37 < 0.0001

          Stronger Limb (1,9) 43.81 < 0.0001

Limb: weaker/stronger, condition: unilateral/bilateral MVC, df = degrees of freedom 

 

 

 
 

Figure 3.2. Average peak force during bilateral and unilateral MVC 
conditions. White columns represent average peak forces recorded in the 
stronger limb and grey columns represent average peak forces recorded in the 
weaker limb. The stronger limb produced significantly more force than the 
weaker limb during the bilateral MVC condition (ANOVA *: P < 0.0001). Forces 
during the unilateral MVC conditions were significantly higher than the bilateral 
MVC condition for each limb (ANOVA †: P < 0.0001). Error bars are the standard 
error of the mean. 
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into the study. Peak force averages produced during the unilateral MVC trials of 

1625 N ± 180 N and 1582 N ± 157 N, respectively for the stronger and weaker 

limb, showed no significant differences (separate ANOVA P = 0.3832). All 

subjects demonstrated less peak force during the bilateral MVC condition when 

compared to the unilateral MVC condition for each limb (separate ANOVA P < 

0.0001). These data resulted in a bilateral index of -35.3 ± 7.1%, indicating a 

bilateral deficit.  

Example data from one subject attempting to produce equal forces in her 

lower limbs show the general trend for all subjects during the submaximal force 

matching task (Figure 3.3). During this trial the target force equaled 60% of the 

 

 

 

  
 

Figure 3.3. Example plot of foot forces vs. time during a 60% force 
matching trial for one subject. The dashed line represents force level target. 
The black trace represents stronger limb force and the grey trace represents 
weaker limb force. Weaker limb force profiles were not displayed to subjects at 
any time. Grey shading indicates the period over which data was recorded and 
analyzed. The start of recording was determined by a verbal cue from the subject 
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indicating that they believed the forces in both limbs were equal.  
maximum force recorded on the weaker limb during the bilateral MVC condition. 

The subject was able to match the force of her stronger limb to the target force 

with  visual  feedback  but  was  not  able  to  accurately  produce  equal  forces 

between limbs. The subject produced significantly less force in her weaker limb. 

When normalizing average force magnitude by unilateral MVC force, there were 

significant differences between limbs and force level (ANOVA P < 0.0001, limbs 

P < 0.0001, force level P < 0.0001). There was also a significant interaction effect 

between limbs and force level (ANOVA P = 0.0059). When normalizing average 

 

 

Table 3.2. Summary of main and interaction effects of repeated measures 
ANOVA of normalized average force during three submaximal force matching 
conditions. 

 
 

Force as %  
Unilateral MVC 

Force as % 
Bilateral MVC 

 df F P F P 

Two-way ANOVA  
(Limb by Force Level)  

 

     Effect of Limb (1,45) 35.04 < 0.0001 0.037 0.8490

     Effect of Force Level (2,45) 214.71 < 0.0001 476.33 < 0.0001

          Limb * Force Level (2,45) 5.78 0.0059 1.53 0.2263

Separate ANOVA   

     Effect of Limb   

          20% Force Level (1,9) 5.27 0.0473  

          40% Force Level (1,9) 21.58 0.0012  

          60% Force Level (1,9) 25.65 0.0007  

Limb: weaker/stronger, force level: 20/40/60% force matching level, df = degrees of 

freedom 
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force magnitude by unilateral MVC force, subjects consistently produced less 

force in their weaker limb at all force levels (separate ANOVAs 20% P = 0.0473, 

40% P = 0.0012, 60% P = 0.0007) (Table 3.2; Figure 3.4A). When normalizing 

average force magnitude by bilateral MVC force, there were significant  

 
 

 

 

     (A) 

     (B) 

 
Figure 3.4. Average forces for all subjects during all force matching levels. 
Target forces were equal to 20%, 40%, and 60% of the weaker limb peak force 
during the bilateral MVC condition. White columns represent forces recorded in 
the stronger limb and grey columns represent forces recorded in the weaker limb. 
A) Forces normalized to unilateral MVC for each limb show significant differences 
between limbs (ANOVAs *: 20% P = 0.0473, 40% P = 0.0012, 60% P = 0.0007). 
B) Forces normalized to bilateral MVC shows no differences between limbs 
(ANOVA P = 0.8490). Error bars are standard error of the mean. 
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differences between force levels but not between limbs at any of the three force 

levels (ANOVA P < 0.0001, force levels P < 0.0001, limbs P = 0.8490). There 

was no significant interaction effect when average force magnitude was 

normalized to bilateral MVC force (P = 0.2263) (Figure 3.4B).   

 Lower limb EMG analysis during MVC trials revealed significant 

differences in normalized RMS EMG between conditions and limbs for vastus 

medialis (ANOVA P < 0.0001, conditions P < 0.0001, limbs P = 0.0455) (Table 

3.3). EMG analysis showed significant differences between conditions but not 

limbs for vastus lateralis (ANOVA P = 0.0013, conditions P < 0.0001, limbs P = 

0.2468), medial hamstrings (ANOVA P < 0.0001, conditions P < 0.0001, limbs P  

= 0.1649), and gluteus maximus (ANOVA P < 0.0001, conditions P < 0.0001, 

limbs P = 0.1129) (Figure 3.5). There was a significant interaction effect for 

vastus medialis (P = 0.0269) and gluteus maximus (P = 0.0251) but not for 

vastus lateralis (P = 0.1136) or medial hamstrings (P = 0.3166). Comparing 

muscle activation of the stronger limb between the unilateral and bilateral MVC 

conditions showed significantly lower normalized RMS EMG in the bilateral 

condition for vastus lateralis (THSD P < 0.05), vastus medialis (separate ANOVA 

P = 0.0135), and medial hamstrings (THSD P < 0.05). Comparing muscle 

activation of the weaker limb during the unilateral MVC condition to the bilateral 

MVC condition showed significantly lower normalized RMS EMG in the bilateral 

condition for vastus lateralis (THSD P < 0.05), vastus medialis (separate ANOVA  

P < 0.0001) medial hamstrings (THSD P < 0.05), and gluteus maximus  

(separate ANOVA P < 0.0001). When comparing RMS EMG of the stronger leg 
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Figure 3.5. Average normalized RMS EMG for all subjects. Force conditions 
included unilateral MVCs on each limb, bilateral MVC, and three submaximal 
force matching levels. Force matching target levels were 20%, 40%, and 60% 
of the weaker limb peak force during the bilateral MVC condition. White 
columns represent forces recorded in the stronger limb and grey columns 
represent forces recorded in the weaker limb. Reported muscle data is for the 
vastus lateralis (VL), vastus medialis (VM), medial hamstrings (MH), and 
gluteus maximus (GM) on each side. For each muscle, RMS EMG values were 
normalized to the highest RMS EMG value recorded during any of the 
unilateral MVC trials. † indicates significant difference between EMG during 
unilateral and bilateral MVC conditions within each limb. * indicates significant 
difference between stronger and weaker limb EMG during the bilateral MVC 
condition. § indicates significant difference between stronger and weaker limb 
EMG across force levels. Error bars are standard error of the mean. 
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to the weaker leg during the bilateral MVC condition, there was a 

significant decrease in RMS EMG of the weaker leg in the vastus medialis 

(separate ANOVA P = 0.0111). Power analyses indicated power was less 

than 0.62 for RMS EMG data across all these tests. 

 When comparing RMS EMG during the force matching trials, there 

were significant differences between limbs and force levels for vastus 

lateralis (ANOVA P < 0.0001, limbs P = 0.0145, force levels P\0.0001) 

(Table 3.4). There were significant differences between force levels but 

not limbs for vastus medialis (ANOVA P < 0.0001, force levels P < 0.0001, 

limbs P = 0.0809) and medial hamstrings (ANOVA P < 0.0001, force 

levels P = 0.0302, limbs P = 0.0611). There were no significant differences 

between limbs or force levels for gluteus maximus (ANOVA P < 0.0001, 

force levels P = 0.0914, limbs P = 0.3932). No significant interaction 

effects were found (VM: P = 0.6973, VL: P = 0.6057, MH: P = 0.2274, GM: 

P = 0.6307). 

 

Discussion 

 Our results clearly demonstrated that force imbalance persisted at 

both maximal and submaximal force levels. This suggests that the 

mechanisms involved in the deficit are likely the same for maximal and 

submaximal contractions. Interpreting these results in light of past studies 

on sense of effort (Gandevia and McCloskey 1977b; Carson et al. 2002; 

Proske et al. 2004) suggests that force production in the lower limbs is  
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based on sense of effort during submaximal contractions. Results of the current 

study should have been different if subjects were relying on their sense of force 

or tension rather than their sense of effort in lower limbs during the submaximal 

force matching tasks. If this were the case, subjects should have been able to 

match absolute forces between limbs because their unilateral MVC forces (and 

therefore individual limb strengths) were not significantly different from each 

other. Their lower limbs had the capacity to produce equal forces but during the 

submaximal force matching trials they did not generate equal forces.  

 Although the peak force produced by subjects during bilateral isometric 

maximum voluntary contractions was significantly different between limbs, the 

peak force during unilateral isometric maximum voluntary contractions was not. 

Biomechanical factors that determine muscle force include muscle length, 

shortening velocity, activation history and current activation (Huijing 2000). 

During both unilateral and bilateral maximum contraction trials, we have 

controlled for three of the four factors. Subjects are lying down in the same 

position with the shoulders firmly braced. With the same posture and joint angles, 

muscle lengths remain the same. Shortening velocity remains the same at ~0 

cm/s as this is a maximum isometric contraction and before both trials subjects 

have rested and therefore have the same activation history. The only variable 

influencing a change in muscle force therefore is current activation neural drive 

(i.e. unilateral or bilateral maximum contraction).  Similar peak forces between 

limbs during unilateral isometric maximum voluntary contractions demonstrate 

that the mechanical capabilities of each limb are equal. It is activating the legs at 
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the same time (i.e. bilateral movement) that results in asymmetric limb forces. 

Regardless of whether humans produce maximal or submaximal forces, limb 

force asymmetry appears to be related to neural factors rather than differences in 

mechanical capabilities between the limbs. 

 Lower limb EMG results from the vastus medialis, vastus lateralis, medial 

hamstrings and gluteus maximus muscles did not explain this force asymmetry. 

This is likely a result of the inherent high variability in EMG amplitudes compared 

to force measures. Muscles act as low pass filters so that relatively large 

variations in EMG are not seen in muscle force (Winter 2004). As a result, our 

EMG measures provided low statistical power (power < 0.62). On average, more 

than 40 subjects would have been required to achieve statistical power greater 

than 0.8 for the EMG data. As a result, determining a correlating change in EMG 

activity is beyond the scope of our study. 

 The bilateral index of -35.3 ± 7.1% measured during isometric lower limb 

extensions reveals large bilateral deficits in our subjects. Comparisons of 

bilateral index to previous studies measurements are difficult due to a shortage in 

reported values for isometric whole lower limb extensions. Many more studies 

have reported bilateral indices for isometric knee extension, ranging from -24% 

(bilateral deficit) to +4% (bilateral facilitation) (Schantz et al. 1989; Koh et al. 

1993; Jakobi and Cafarelli 1998). The large bilateral deficit demonstrated in our 

subjects results from several factors. First, isometric lower limb extensions 

involve contractions across multiple joints compared to knee extensions that only 

involve contractions across a single joint. When individuals have performed both 
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isometric MVC trials of lower limb extensions (i.e. multi-joint) and isolated knee 

extensions (single-joint) their bilateral index changes from a bilateral deficit to a 

bilateral facilitation, respectively (Schantz et al. 1989).  Another reason for an 

increase in bilateral deficit may be due to the fast rate of lower limb force 

development. Subjects possess a larger bilateral deficit when they are instructed 

to generate force as quickly as possible (BI = -24.6%) rather than generate force 

gradually (BI = -17.0%) (Koh et al. 1993). The bilateral index also depends upon 

training, such that with bilateral training the bilateral deficit is reduced (Taniguchi 

1997; Taniguchi 1998; Janzen et al. 2006). Our subjects were typical university 

students and not specifically trained in bilateral movements.  

 Subjects’ posture during the experiment may also contribute to the large 

bilateral deficit. Subjects were supine with their feet on a vertical force platform. 

As described in the Methods section, the lower limbs were positioned in the 

middle of the range of motion used for a full lower limb extension, leading to knee 

angles ranging from 110° to 120° (180° defined as full knee extension). 

Therefore, subjects had increased knee and hip extension compared to previous 

studies that reported knee and hip angles of 90° for knee extension trials.  

 Regardless of the reasons for the difference in magnitude of the bilateral 

defict, an important comparison in the current study was to determine if force 

matching experiments in the lower limbs show similar results to upper limb force 

matching studies. Our results relate to a multi-joint lower limb bilateral task, 

whereas other studies have involved single joints of the upper limb including 

either the finger (distal interphalangeal joint) (Li and Leonard 2006; Park et al. 
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2007) or the elbow (Gandevia and McCloskey 1977b; Carson et al. 2002; 

Weerakkody et al. 2003; Proske et al. 2004). In several elbow joint studies, force 

asymmetry was induced by weakening agonist muscles through unilateral fatigue 

of the elbow extensors (Carson et al. 2002) or the flexors (Weerakkody et al. 

2003; Proske et al. 2004). Similar to the results of the current study, subjects 

attempting to produce equal forces between limbs actually produced equal 

relative forces when individual limb forces were scaled to the instantaneous 

maximum strength of the muscle groups (i.e. the post-fatigued maximum 

strength). Different results, however, were seen in experiments involving force 

matching between ipsilateral fingers. When reference and matching finger forces 

were normalized to individual finger strength, the weaker finger produced a 

higher relative force (Li and Leonard 2006). Absolute forces were not significantly 

different when total force (instructed and uninstructed) was considered. 

Uninstructed fingers may produce force resulting from enslaving effects, or 

involuntary force production of one or more fingers when another finger is 

activated (Zatsiorsky et al. 1998). These findings led to conclusions that the 

central nervous system perceives absolute force from all fingers (Li and Leonard 

2006) rather than a relative force as concluded in the current study. The 

contrasting results also may be due to the function of the muscles involved. 

Lower limb muscles are typically involved in gross motor function, whether it is 

producing large forces or in controlling posture, whereas smaller muscles are 

involved in fine motor control in order to perform accurate movements. The 

central nervous system may perceive absolute force when the muscles involved 
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are used for fine motor control, such as in the finger, and relative force when the 

muscles involved are for gross motor function, such as in the lower limbs. 

 There are several neural mechanisms that could account for the changes 

in force observed during bilateral activation. Mechanisms proposed for causing 

the bilateral deficit include reduced motor neuron excitability (Vandervoort et al. 

1984; Kawakami et al. 1998), interhemispheric inhibition (Gazzaniga and Sperry 

1966) , and limitation of the central neural drive (i.e. ceiling effect) (Li et al. 1998; 

Li et al. 2001). Although these mechanisms could account for the drop in total 

maximum strength when a task is performed bilaterally as compared with 

unilaterally, they could not explain the bilateral force asymmetry described in this 

study.  

 There is another neural mechanism called common drive that may 

account for the neural origin of force asymmetry during bilateral activation (De 

Luca et al. 1982a; De Luca et al. 1982b; De Luca 1985). Common drive 

describes the unison behavior of the firing rates of motor units and might indicate 

that when homologous muscle groups are bilaterally activated, the nervous 

system treats them as one unit. This mechanism has been proposed to exist for 

both maximal and submaximal contractions (Oda and Moritani 1996). 

Alternatively, there could be a chronic asymmetric neural drive to the dominant 

and non-dominant lower limbs. Long-term potentiation could have created the 

asymmetry because of greater use by the dominant lower limb. Future studies 

relying on functional magnetic resonance or other types of brain imaging may 

provide more insight into the mechanisms. 
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 The current results may have implications for other tasks and/or other 

populations. We examined static lower limb extensions in healthy individuals 

attempting to match forces between their lower limbs. Subjects with neurological 

disabilities typically have a mismatch between their sense of effort and force 

production (Bertrand et al. 2004; Mercier et al. 2004). Individuals with post-stroke 

hemiparesis have increased limb force asymmetry partially due to reduced 

strength capacity in the involved muscles of one side of the body. During upper 

limb submaximal matching tasks, these subjects consistently overestimate forces 

produced in the paretic upper limb, even though maximum voluntary force trials 

reveal that they have the ability to produce forces of equal magnitude (Bertrand 

et al. 2004; Mercier et al. 2004). These results suggest that subjects rely on their 

sense of effort to predict upper limb forces. More recently, Milot et al. (Milot et al. 

2006) found that normalizing joint moments during gait to the maximum joint 

moment capabilities led to similar effort levels in the paretic and non-paretic 

limbs. Thus, it seems that sense of effort is an important factor in determining 

lower limb muscle activation in hemiparetic individuals.  

 The field of rehabilitation can benefit from knowing that post-stroke 

individuals use sense of effort in predicting force output. Current rehabilitation 

therapies focus on strengthening the paretic limb of these individuals. Although 

this is a necessary component, force matching studies would suggest that 

therapy also needs to address improving patients’ impaired force scaling abilities. 

Improved results may occur with designing training techniques to address both of 

these components. One new strategy, symmetry-based resistance (Simon et al. 
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2007), has the potential to improve both the patients’ force scaling abilities and 

limb strength. With symmetry-based resistance, task resistance increases with 

increasing limb force asymmetry. Lower limb extension training with symmetry-

based resistance is a potential means for training subjects to recalibrate their 

effort to force relationship. Subjects can learn to scale muscle activation more 

appropriately to achieve a desired force outcome. This would enable stroke 

subjects to better match paretic limb forces to task requirements during activities 

of daily living. The results from this study demonstrate that there is a lower limb 

asymmetry existing even in healthy neurologically intact subjects. Therefore, 

future studies using symmetry-based resistance for patient populations need to 

consider this asymmetry as a potential factor in the study design and results.  
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Chapter 4 
 

Sense of Effort Determines Lower Limb Force Production During Supine 
Lower Limb Extensions in Individuals with Post-Stroke Hemiparesis 

 

Abstract 

The study’s purpose was to determine if individuals who have had a stroke 

primarily use sense of effort to gauge force production during static and dynamic 

lower limb contractions. If relying on sense of effort while attempting to generate 

equal foot forces, subjects should produce equal percentages of their maximum 

voluntary strength rather than equal absolute forces in their limbs. Ten stroke 

subjects performed isometric and isotonic lower limb extensions on an exercise 

machine. When subjects attempted to produce equal bilateral isometric forces, 

there was a significant difference in absolute force between limbs (ANOVA, P < 

0.0001) but no significant difference when force was normalized to each limbs’ 

maximum voluntary contraction force (P = 0.5129). During bilateral isotonic 

contractions, subjects produced less absolute force in their paretic limb (P = 

0.0005) and less relative force in their paretic limb (normalized to maximum 

voluntary contraction force) when subjects were given no force instructions on 

how to perform the extension (P = 0.0002). When subjects were instructed to 

produce equal forces, there was no significant difference between relative forces 

in the two limbs (P = 0.2111). For both isometric and isotonic conditions
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hemiparetic subjects relied primarily on sense of effort, rather than proprioceptive 

feedback, for gauging foot reaction forces. This outcome indicates that sense of 

effort is the major factor determining force production during movements. Lower 

limb rehabilitation therapies should not only train strength in the paretic limb but 

should also train patients to recalibrate force scaling abilities to improve function. 

 

Introduction 

Humans control force production in their limbs by using an internal model 

of musculoskeletal mechanics to calculate appropriate neural signals (Wolpert et 

al. 1995; Wolpert and Ghahramani 2000; Cothros et al. 2006). The model allows 

the nervous system to generate predicted sensory information from the neural 

command and compare it to the sensory information from the actual movement. 

As a result, motor commands depend on the nervous system’s understanding of 

system mechanics and comparisons of predicted and actual afferent sensory 

feedback. As individuals learn a task, they update their internal model in order to 

generate a better prediction of the actual motion (Shadmehr and Mussa-Ivaldi 

1994).  

Fine control of upper limb force production is a motor task that likely uses 

an internal model to set efferent commands. Humans use a neural representation 

of their musculoskeletal system to help them determine the correct efferent 

commands to produce a desired motion. Individuals need to have a good internal 

model if they are to produce a desired force level. The internal model not only 

allows humans to produce accurate efferent commands but helps in interpreting 



 

63 
 

proprioceptive feedback. In generating muscle force, humans can use both the 

scaling of the descending motor command, generally termed sense of effort 

(McCloskey et al. 1974), and the ascending sensory information, termed sense of 

force or tension (Roland and Ladegaard-Pedersen 1977). 

Studies involving contralateral limb-matching paradigms have been used 

to determine how humans perceive muscle force and whether or not they depend 

more on sense of effort or sense of force. In a contralateral limb-matching 

protocol, subjects develop force in one limb (the reference limb) and through use 

of visual force feedback they are asked reach a target force level. Once they 

reach the target force level with the reference limb they begin producing force 

with their contralateral limb (the matching limb). Subjects do not receive any 

visual feedback regarding force in the matching limb.  

If the mechanical output of an upper limb muscle is altered through fatigue 

(Gandevia and McCloskey 1978; Jones and Hunter 1983; Carson et al. 2002), 

partial curarization (Gandevia and McCloskey 1977a), or through changes in 

muscle length (Cafarelli and Bigland-Ritchie 1979) individuals often overestimate 

the force produced in that limb. Results from upper limb studies of isometric 

elbow flexion/extension on neurologically intact subjects with one limb in a state 

of fatigue showed that subjects did not produce forces of equal magnitude in their 

limbs (Jones and Hunter 1983; Carson et al. 2002; Weerakkody et al. 2003; 

Proske et al. 2004). Subjects consistently produced less force in the fatigued 

limb, indicating they were overestimating force in the limb. When individual limb 

forces were normalized to the post-fatigue maximum strength of each limb 
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directly before testing, these normalized forces did not show any significant 

differences between limbs (Carson et al. 2002). These results led Carson et al. 

(Carson et al. 2002) to conclude that when subjects attempt to produce equal 

forces in their limbs they produce equal percentages of each limb’s maximal 

voluntary strength rather than equal absolute forces.  

Results from a lower limb study on the force asymmetry of neurologically 

intact individuals showed similar results. Subjects included in this study 

possessed a greater than 10% force discrepancy in bilateral foot forces during 

maximum voluntary contraction trials. Subjects attempting to produce equal foot 

forces during an isometric lower limb extension did not produce equal 

magnitudes of force (Simon and Ferris 2008). Instead, subjects produced equal 

percentages of their bilateral (not unilateral) maximum voluntary strength in each 

lower limb. These studies suggest that neurologically intact subjects primarily use 

a sense of effort originating from a corollary discharge of the motor command to 

the muscles (Sperry 1950; McCloskey et al. 1974; Gandevia and McCloskey 

1977b; Simon and Ferris 2008), rather than relying on proprioceptive feedback to 

gauge force production in their limbs. 

In neurological populations, such as individuals who have had a stroke, 

hemiparesis affects patients’ abilities to approximate force production in their 

limbs. Proprioception is affected post-stroke, suggesting that these individuals 

may also rely more on their sense of effort compared with sense of force. 

Previous studies have demonstrated that individuals with complete loss of 

proprioceptive sensory abilities still have a good sense of effort and use sense of 
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effort to gauge force production (Rothwell et al. 1982; Lafargue et al. 2003). 

During isometric submaximal upper extremity matching tasks, stroke subjects 

consistently overestimate forces produced in the paretic limb, even though 

maximum voluntary force trials reveal that they have the ability to produce forces 

of equal magnitude (Bertrand et al. 2004; Mercier et al. 2004). Because a stroke 

subject has reduced maximum force ability in the paretic limb, determining 

muscle activation based on a fixed proportion of maximum force capability will 

result in less force in the paretic limb. It is possible that individuals may not 

update their internal model of musculoskeletal mechanics to account for their 

post-stroke weakness (Takahashi and Reinkensmeyer 2003). 

Individuals’ inability to account for post-stroke hemiparesis and produce 

appropriate force levels with their paretic limb affects their ability to stand from a 

seated position, perform transfers and ambulate which may predispose a patient 

to falls. A mismatch between expected force production and actual force 

production in these situations can have serious implications for movement. 

Previous studies have examined force production and perception in simplified 

tasks of upper extremity isometric contractions (Bertrand et al. 2004; Mercier et 

al. 2004). Mobility tasks, however, involve force production in the lower limbs 

during dynamic movements.  

In this study, we have investigated foot reaction forces of individuals with 

post-stroke hemiparesis both during isometric and isotonic movements. Results 

from these two experiments will provide insight into whether or not control of 

force in stroke subjects is the same for static and dynamic movements. The goal 
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of this study was to determine if force asymmetry during isometric and isotonic 

bilateral force production of individuals with post-stroke hemiparesis both result 

from neural mechanisms related to sense of effort. We hypothesized that 

hemiparetic subjects attempting to produce equal foot forces would generate 

equal percentages of their bilateral maximum voluntary strength rather than 

equal absolute limb forces during both isometric and isotonic movement. 

 

Methods 

Subjects 

We recruited 10 individuals with stroke-induced hemiparesis (5 males and 

5 females; age: 56 ± 7.3 years, mean ± S.D.M.) (Table 4.1). Inclusion criteria 

consisted of 1) at least six months post-onset of a single neurologic insults that 

included ischemic or hemorrhagic type strokes (verified through MRI or CT scan 

data from patients’ medical records), 2) between the ages of 18 and 85, 3) free of 

any musculoskeletal injuries or deformities, 4) presented with no spastic 

hypertonia in the lower limbs, and 5) adequately able to comprehend our 

instructions. A physiatrist at the University of Michigan evaluated and cleared 

each subject for participation in the study. All subjects gave written informed 

consent approved by the Institutional Review Board for Human Subject Research 

at the University of Michigan Medical School. One subject (Subject 6) 

participated in the study but his data were excluded from the analysis because 

he had great difficulty remembering and following the instructions. A physical 

therapist evaluated subjects’ lower extremity physical performance with the lower 
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limb and balance portions of the Fugl-Meyer Clinical Assessment (Table 4.1). 

The authors noted various sensory deficits based on comments from the subjects 

including reduced cutaneous sensation and impaired force perception. No 

subjects reported impaired sense of limb motion and position. 

 

Experimental Design 

We performed two experiments to investigate the ability of individuals with 

post-stroke hemiparesis to match foot reaction forces between limbs during static 

and dynamic force matching tasks. We performed maximum strength testing and 

two force matching experiments within one single testing session. Subjects 

received extended breaks of at least fifteen minutes between all sections of the 

data collection. 

For the entire study, subjects exercised on a robotic exercise machine 

built in the University of Michigan’s Human Neuromechanics Laboratory (Simon 

et al. 2007) (Figure 4.1). Subjects were supine on the exercise machine and 

placed their feet on a vertical dual force platform (Model Dual Accu-Gait, AMTI, 

Watertown, MA). We used foot straps to stabilize their feet. 

 

Maximum Strength Testing 

We recorded subjects’ isometric (static) and isokinetic (dynamic) strength 

on the exercise machine. We assessed subjects’ isometric strength with the 

machine in isometric mode. In isometric mode, the motor was turned off and the 

sled was locked into position such that the subject was halfway between the sled
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Figure 4.1. Individual with post-stroke hemiparesis using the leg press 
exercise machine. Subjects reclined on the machine and placed their feet in foot 
straps onto a dual force platform. In Experiment 1, a visual display allowed 
subjects to receive force feedback of the target force (dashed line) and non-
paretic limb force (solid line). In Experiment 2 we removed the visual display and 
controlled motor resistance. 
 
 
 
 
 

position of 90 degree knee and hip flexion and complete extension of the lower 

limbs.  We assessed subjects’ isokinetic strength with the robotic exercise 

machine in isokinetic mode. In isokinetic mode, the computer controlled 

resistance so that movement velocity remained constant at 15 cm/s during lower 

limb extensions. If a subject pushed hard and therefore the sled moved faster, 

the controller increased resistance to maintain the reference velocity. During 
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operation of this mode, subjects received visual feedback only of movement 

timing (i.e. when to start and stop pushing).  We instructed subjects to only push 

during the extension phase and relax during the flexion phase. Subjects began in 

a flexed position with their knee and hip angles at approximately 90 degrees and 

then extended their lower limbs completely being careful to not lock out their 

knees.  

For both static and dynamic strength testing, we quantified subjects’ 

maximum force ability with two trials each of bilateral, non-paretic limb only, and 

paretic limb only maximum voluntary contractions (MVC). We randomized the 

trial order and verbally encouraged subjects to push as hard as they could with 

either one foot or both feet throughout each movement. We allowed subjects to 

rest as long as necessary between each MVC trial (no less than three minutes). 

 

Experiment 1: Isometric  

The protocol for Experiment 1 was previously used to investigate 

neurologically-intact subjects’ lower limb force matching ability (Simon and Ferris 

2008). Subjects performed two trials of isometric lower limb force matching in 

isometric mode. Subjects exerted a force equal to 35% of the paretic limb 

isometric bilateral MVC force. This level was chosen because it represented a 

force level that was achievable by each subject. Subjects received visual 

feedback of only the target force level and the amount of force applied by the 

non-paretic limb. When subjects reached the target force level in the non-paretic 

limb, we instructed them to begin applying force with the paretic limb. No 
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feedback was given regarding the paretic limb force. Subjects verbally signaled 

to the experimenter once they believed they had matched forces in both lower 

limbs. Upon this verbal cue, subjects held the isometric contraction for two 

seconds and then relaxed. Subjects rested two to three minutes between trials.  

 

Experiment 2: Isotonic 

Subjects performed two sets of six lower limb extensions in isotonic mode. 

In isotonic mode, the resistance for continuous lower limb extensions remained 

constant. We instructed subjects to extend their lower limbs completely (not 

locking out their knees), flex to a knee and angle of approximately 90 degrees, 

and match their movement speed to a metronome set at 0.33 Hz. Subjects 

performed both sets against a total constant resistance equal to 80% of the peak 

force produced by the paretic limb during the isokinetic bilateral MVC (i.e. with 

symmetric forces, a total resistance level of 80% would be equivalent to the 

paretic limb producing 40% of its MVC force). This resistance value was chosen 

such that it ensured that subjects had the capacity for equivalent forces 

throughout the extensions even if the resultant forces were not equal. In set one, 

no force instructions were given to subjects on how to perform these extensions 

(No Force Instruction). In set two, we instructed subjects attempt to produce 

equal forces throughout the entire movement and verbally reminded them 

throughout the trials (Produce Equal Forces).  
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Data Acquisition and Analysis 

For both experiments, we recorded individual lower limb forces from dual 

force plate data (Figure 4.1) sampled at 1000 Hz. Each limb’s MVC force, both 

isometric/isokinetic and unilateral/bilateral, was determined as the maximum 

force measured during the two trials (Jones and Hunter 1983; Proske et al. 

2004). For isometric force matching trials, we calculated average foot forces 

applied during the two seconds following the subjects’ verbal cue. For isotonic 

force matching trials, we identified cycle timing from motor encoder data and 

averaged foot forces across only the extension phase of the cycle. For all force 

matching trials, we normalized the averaged forces to each limbs’ unilateral 

maximum force ability and separately to bilateral maximum force ability to 

determine the amount of effort subjects used in each limb. 

We performed a repeated measures ANOVA (subject by limb by 

condition) to test for significant differences in lower limb MVC forces during 

bilateral and unilateral conditions for both isometric and isokinetic data (JMP IN 

software, SAS Institute, Inc., Cary, NC). For both experiments, we used a 

repeated measures ANOVA (subject by limb) to test for differences in absolute 

lower limb forces, as well as forces normalized to unilateral and bilateral MVC 

force. When the ANOVA showed significant differences (P < 0.05), we used 

Tukey-Kramer Honestly Significant Difference (THSD) post-hoc tests to further 

delineate differences (P < 0.05). Post-hoc power analyses were carried out 

where appropriate. 
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Results 

Maximum Strength Testing 

Bilateral isometric MVC trials showed significant differences between 

limbs (ANOVA P < 0.0001) (Table 4.2). Peak paretic limb forces were 

significantly lower than non-paretic by 30% during bilateral isometric MVC 

conditions (THSD P < 0.05). A significantly lower peak force was recorded within 

the paretic limb during the bilateral compared to the unilateral isometric MVC 

condition (THSD P < 0.05).  

  

 

 

Table 4.2. Peak foot reaction force recorded during isometric and isokinetic 
maximum voluntary contractions. 

Condition 
Non-Paretic Limb 

Peak Force (N) 
Paretic Limb 

Peak Force (N) 
Isometric MVC   

     Unilateral  1107 ± 143 738 ± 132* 

     Bilateral 901 ± 176 629 ± 115*† 

   

Isokinetic MVC   

     Unilateral  604 ± 101 491 ± 94* 

     Bilateral 593 ± 89 379 ± 83*† 

Values are mean ± s.e.m. 

*Post-hoc (THSD) analysis indicates significant decrease in paretic limb 

force compared with non-paretic limb force within a condition (P < 0.05). 
†Post-hoc (THSD) analysis indicates significant decrease in bilateral peak 

force compared with unilateral peak force within a limb (P < 0.05). 
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 During isokinetic lower limb extensions, bilateral MVC trials showed 

significant differences between limbs (ANOVA P < 0.0001) (Table 4.2). Peak 

paretic foot reaction forces were significantly lower than non-paretic by 36% 

during bilateral isokinetic MVC conditions (THSD P < 0.05). A significantly lower 

peak reaction force was recorded within the paretic limb during the bilateral 

compared to the unilateral isokinetic MVC condition (THSD P < 0.05). 

 

 

 

Figure 4.2. Experiment 1: Average forces during isometric force matching 
trials. The target force level was set to 35% of the paretic limb peak force during 
the bilateral isometric MVC condition. White columns represent non-paretic limb 
forces and grey columns represent paretic limb forces. A) Absolute foot reaction 
force shows significant difference between limbs (ANOVA *: P<0.0001). B) Force 
normalized to bilateral MVC shows no significant difference between limbs 
(ANOVA P=0.5129). Error bars are standard error of the mean. 
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Experiment 1: Isometric 

Subjects were able to produce the target force with their non-paretic limb 

through use of visual feedback but did not produce a force equivalent in 

magnitude in their paretic limb. Average foot reaction force data showed that all 

subjects produced less absolute force in the paretic limb when compared with the 

non-paretic limb (ANOVA P < 0.0001) (Figure 4.2A) even though subjects 

believed the forces between their limbs were equal.  

Normalizing force data to each limb’s bilateral isometric MVC peak foot 

reaction force resulted in no significant differences between limbs (ANOVA P = 

0.5129) (Figure 2B). The normalized force data (Figure 4.2B) indicate that the 

paretic limb undershot the target as the 35% force level was not achieved. Since 

the non-paretic limb’s MVC force was greater than the paretic limb’s MVC force, 

achieving the target force in the non-paretic limb equaled less than 35% MVC 

force in this limb. Post-hoc analyses revealed a least significant value of 1.96. 

This indicates that if there was a real difference between limbs that we did not 

have the power to detect, there is a 95% chance that it is no larger than 1.96% of 

the bilateral MVC value (Sall et al. 2001). Even if there is a Type II error the 

magnitude of the difference is small. 

 

Experiment 2: Isotonic  

Example foot reaction force profiles of four subjects with post-stroke 

hemiparesis performing isotonic lower limb extensions are shown in Figure 4.3. 

Compared to the No Force Instruction condition, when subjects were instructed 
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to Produce Equal Forces in their limbs subjects' force production ranged from 

generating even less force in their paretic limb to one subject producing 

extremely large forces in their paretic limb. Overall subjects produced less 

absolute force in the paretic limb than in the non-paretic limb during both the No 

Force Instruction and the Produce Equal Forces conditions (ANOVA P < 0.0001 

and P = 0.0002, respectively) (Figure 4.4A). Inter-subject variability of the  

 

 

Figure 4.3. Experiment 2: Example plots of individual foot forces as a 
function of percentage of the isotonic cycle. From 0 to 50% is the extension 
phase of the cycle. Data shown are typical forces recorded for Subjects 1, 2, 4 
and 10. Subject 2 was the only subject that produced much higher absolute 
forces in the paretic limb than in the non-paretic limb during the Produce Equal 
Forces condition. Black lines represent non-paretic limb forces and grey lines 
represent paretic limb forces. Dashed lines represent data from the No Force 
Instruction condition and solid lines represent data from the Produce Equal 
Forces condition.  
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movement timing was 0.34 Hz ± 0.021 Hz for the No Force Instruction condition 

and 0.33 Hz ± 0.011 Hz for the Produce Equal Forces condition. 

Normalizing force data to each limb’s bilateral isokinetic MVC peak foot 

reaction force resulted in a significant difference between limbs  for the No Force 

Instruction condition (ANOVA, P = 0.0005) and no significant difference for the 

Produce Equal Forces condition (ANOVA P = 0.2111) (Figure 4.4B). Post-hoc 

analyses revealed a least significant value of 2.69. Thus, if there is a real 

difference between limbs, there is a 95% chance it is no larger than 2.69% of the 

bilateral MVC value (Sall et al. 2001). Even if there is a Type II error the 

magnitude of the difference is small. 

  

Discussion 

Our findings indicate that, similar to the upper limbs, control of force 

production in individuals with post-stroke hemiparesis is similarly reliant on sense 

of effort for lower limbs. During the isometric force matching of Experiment 1, 

subjects consistently produced less force in their paretic limb even though the 

target force was set low enough that subjects had the capability for equal forces. 

Normalizing foot reaction forces to each limbs’ bilateral isometric MVC force 

revealed no significant differences between limbs suggesting that subjects are 

basing isometric lower limb forces on their sense of effort. These results for the 

lower limb are comparable to force matching tasks in the upper limbs of stroke 

subjects (Bertrand et al. 2004; Mercier et al. 2004) and in the lower limb of 

neurologically intact subjects (Simon and Ferris 2008).  
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Figure 4.4. Experiment 2: Average forces during isotonic lower limb 
extension trials. The resistance level was set to 80% of the paretic limb peak 
force during the bilateral isokinetic MVC condition. White columns represent non-
paretic limb forces and grey columns represent paretic limb forces. A) Absolute 
force shows significant difference between limbs for the No Force Instruction and 
Produce Equal Forces conditions (ANOVA *: P < 0.0001 and P = 0.0005, 
respectively). B) Force normalized to bilateral isokinetic MVC shows a significant 
difference between limbs for the No Force Instruction condition (ANOVA *: P = 
0.0002) and no significant difference for the Produce Equal Forces condition 
(ANOVA P = 0.2111). Error bars are standard error of the mean. 
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Our study is the first to show that the sense of effort can also explain the 

magnitude of force generation during dynamic movements of the lower limbs in 

subjects post-stroke. Subjects produced asymmetric foot reaction forces even 

though the resistance was set low enough such that the paretic limb had the 

capacity to produce half of the force required. When subjects were given no force 

instructions, normalizing lower limb forces to bilateral isokinetic MVC still 

revealed significant differences between limbs whereas the Produce Equal 

Forces condition did not. During the No Force Instruction condition, subjects 

most likely relied on their non-paretic limb more because they are used to their 

paretic limb being weaker and did not have any incentive to try to use that limb 

more. During the Produce Equal Forces condition, however, we actively 

encouraged subjects to try to use both lower limbs equally. When subjects 

attempted to produce equal forces, subjects’ effort was divided between the two 

lower limbs equally and there were no significant differences between normalized 

forces. Therefore, for the Produce Equal Forces condition, subjects also relied 

more on their sense of effort, rather than proprioceptive feedback.  

These results indicate that sense of effort is not only involved in static 

movements (i.e. isometric force matching tasks) but also during movement. 

Although the task involved in Experiment 2 was isotonic lower limb extensions, 

results likely can be extended to other movements that are functionally relevant 

for activities of daily living, such as standing up from a chair or climbing stairs. 

Indeed, a recent study examining level of muscle activation during human 

walking by subjects with stroke has related findings.  Milot et al. (2006) found that 
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the level of electromyography in lower limb muscles during walking were similar 

percentages of the isokinetic maximum voluntary contraction electromyography 

value for the paretic and non-paretic limbs. This suggests that the magnitude of 

the efferent signal to each individual muscle was similarly scaled to the maximum 

force output of that muscle (Milot et al. 2006). Considering both these previously 

published studies and our current results, it seems that the dominant factor in 

gauging foot reaction forces for static and dynamic movements in individuals with 

post-stroke hemiparesis is sense of effort rather than proprioceptive feedback.  

During normal motor behavior, however, there are a host of sensory 

signals that are integrated to influence muscle activation. The primary sensor 

signals derive from Golgi Tendon Organs, muscle spindles and cutaneous 

receptors. Group Ib afferents within Golgi Tendon Organs are reliable sensors of 

local muscle tension. It was long believed that they only inhibited muscle 

activation as a protective mechanism, but they can monitor muscle tension over 

a wide range of force levels and can also provide autogenic excitation for positive 

force feedback (Pearson 1995; Pearson et al. 1998). Group Ia and II afferents 

within muscle spindles signal changes in muscle length and velocity. Studies 

show that even during static muscle contractions, as in Experiment 1, muscle 

spindles provide the central nervous system with afferent feedback (Gandevia 

1996). Cutaneous mechanoreceptors, specifically those that respond to 

mechanical pressure, can also affect motor commands during movement. We 

are not arguing that these sensory signals are unimportant and irrelevant. On the 

contrary, the kinesthesic information provided by these sensory receptors can be 
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critical to movement dynamics (Gandevia 1996). Our conclusion is that, 

compared to afferent feedback, sense of effort dominates in the determination of 

efferent signal magnitude. 

There have been many studies that have examined how altered sensory 

input affects the level of force production in humans. Chronically deafferented 

subjects have difficulty generating constant level forces for long durations 

(Rothwell et al. 1982). If the individuals are distracted or devote less attention to 

the force generation task (e.g. holding a cup of coffee), the forces decrease 

without concerted effort. However, they can grade their central commands to 

produce different force levels (Rothwell et al. 1982; Sanes et al. 1985). These 

observations are in line with our findings that sense of effort is the dominant 

factor determining force production. Acutely partially deafferented subjects can 

also judge forces accurately and have the ability to grade force production 

(Gandevia and McCloskey 1978; Gandevia et al. 1990). These results also 

support our conclusions.  

There has been data and speculation that does not seem to directly 

support our results. Takarada et al. (Takarada et al. 2006) recently observed an 

overestimation of forces in neurologically intact subjects undergoing a tourniquet-

induced sensory alteration. It may be that the tourniquet methodology was not an 

ideal simulation of deafferentation without affecting efferent signals and/or 

muscle force capabilities. Sanes and Shadmehr (Sanes and Shadmehr 1995) 

studied a position matching protocol in patients with chronic large fiber sensory 

neuropathy and concluded that peripheral afferents contribute partially to 
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determining efferent signal magnitude. The difference in position matching 

protocol versus force matching protocol may be critical to interpreting Sanes and 

Shadmehr results as it is known that motor control can be different during the two 

types of tasks (Mottram et al. 2005). It could be that in certain situations, the 

nervous system re-weights the importance of afferent sensory information versus 

sense of effort in the determination of the descending efferent signal. 

Stroke patients in general have deficits in their sensory perception. It is 

typical for individuals to experience the loss of touch sensation and impaired 

proprioception (Carey et al. 1993; Carey 1995; Hunter and Crome 2002). It 

seems likely that these individuals would rely on all resources available to them 

to accurately control muscle activation. However, our findings that both isometric 

and isotonic force production is equal for both limbs when normalized to the 

bilateral maximum force generating capabilities of the limbs clearly points to 

feedforward central command (sense of effort) as the dominant factor in force 

production. 

Our subjects did not seem to have updated their neural representation of 

their lower limb (i.e. internal model) to account for their weakness even though 

they sustained this weakness anywhere from 7–39 months previously. Subjects 

typically commented that using their paretic limb was harder, that it felt heavier, 

and that they don’t have a good idea of how much force they are producing in the 

limb. Previous studies involving individuals with post-stroke hemiparesis have 

also reported an increase in sensations of heaviness or effort when trying to 

move the paretic limb (Gandevia 1982; Rode et al. 1996). Figure 3 illustrates that 
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subjects do not understand the extent of their weakness. For example, compared 

to the No Instruction condition, when Subject 1 was asked to produce equal 

forces in his lower limbs, he was able to generate more force in the paretic limb 

but not enough to match the force produced in his non-paretic limb. Subject 2 

was more aware of the extent of his weakness and ended up overcompensating 

for his weakness by producing more force in his paretic limb than his non-paretic 

limb. His awareness was confirmed after the study in discussion with the 

experimenter. Without knowing the purpose of the experiment, he explained that 

he felt his paretic limb was so weak that he had to push even harder on that side 

to get what he believed to be an equivalent force output. Regardless of the 

strategy the subjects used, they still had very poor ability to produce a given 

force with their paretic limb.  

The results of the current study have some limitations due to the subject 

population and task. Although we only analyzed data on 9 subjects, statistical 

analysis revealed clear significant differences as predicted by our hypotheses. 

We could not separate out the possibility of a false negative in either experiment, 

but post-hoc analyses indicate that the magnitude of the differences, if there is 

one, is small. In relation to the experimental tasks, during both experiments only 

one force level was tested. Previous force matching studies have included 2-3 

target force levels (Carson et al. 2002; Bertrand et al. 2004; Simon and Ferris 

2008), showing similar results for either all levels or the two highest target force 

levels. We chose to test subjects in a simplified task of lower limb extensions that 

requires no upper body stabilization. This allowed us to investigate foot reaction 
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forces in a controlled manner rather than using a more functional task which 

would make it harder to control for confounding factors. Finally, the current study 

did not include recording and analysis of electromyography. A previous lower 

limb force matching study that did record electromyography in neurologically 

intact subjects did not have enough power to make strong conclusions relating 

muscle activity to lower limb forces (Simon and Ferris 2008). Given the higher 

intersubject variability in EMG in post-stroke subjects it seems doubtful that EMG 

would have provided any new information. 

Regardless of these limitations, it is apparent that weakness is not the 

only problem that stroke rehabilitation should focus on. This study shows that 

post-stroke individuals also have an impaired awareness of their effort to force 

relationship that needs to be addressed. Physical therapists can use the 

information presented in this paper relating to sense of effort and limb force 

asymmetry to design alternative training for these patients. For example, one 

new type of therapy could involve lower limb extensions with symmetry-based 

resistance (Simon et al. 2007). With symmetry-based resistance, exercise 

resistance increases with increasing lower limb force asymmetry. This might 

provide patients with a means for recalibrating their effort to force relationship 

(Simon et al. 2007). Regardless of approach, stroke patients need to better 

understand how to use a stronger effort on their paretic side in order to 

compensate for their weakness. 
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Chapter 5 
 

Symmetry-Based Resistance as a Novel Means of Lower Limb 
Rehabilitation 

 

Abstract 

 Robotic devices hold much promise for use as rehabilitation aids but their 

success depends on identifying effective strategies for controlling human-robot 

interaction forces. We developed a robotic device to test a novel method of 

controlling interaction forces with the intent of improving force symmetry in the 

limbs. Users perform lower limb extensions against a computer controlled 

resistive load. The control software increases resistance above baseline in 

proportion to lower limb force asymmetry (balance between left and right limb 

forces). As a preliminary trial to test the device and controller, we conducted two 

experiments on neurologically intact subjects. In Experiment 1, one group of 

subjects received symmetry-based resistance while performing lower limb 

extensions (n = 10). A control group performed the same movements with 

constant resistance (n = 10). The symmetry-based resistance group improved 

lower limb symmetry during training (ANOVA, P < 0.05), whereas the control 

subjects did not. In Experiment 2, subjects (n = 10) successfully used symmetry-

based resistance to alter their lower limb force production towards a target 

asymmetry (ANOVA, P < 0.05). These studies suggest that symmetry-based
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resistance may hold rehabilitation benefits after orthopedic or neurological injury. 

Specifically, performing strength training therapy with this controller may allow 

hemiparetic individuals to focus better on increasing strength and neuromuscular 

recruitment in their paretic limb while experiencing symmetric limb forces.  

 

Introduction 

 Strength training is beneficial to rehabilitation after neurological or 

orthopaedic injury. This training can increase muscle strength in the affected 

limb(s) by increasing motor neuron recruitment and muscle size (Dodd et al. 

2002; Jacobs and Nash 2004; Jan et al. 2004; Patten et al. 2004). When one 

limb is more affected than the other limb, an imbalance in limb forces can arise 

during functional tasks. One way that therapists have attempted to overcome this 

type of limb asymmetry is to provide patients with audio and/or visual feedback 

about muscle activation or limb force. Neurologically impaired individuals who are 

provided with visual force feedback while standing and performing upper limb 

tasks improve stance symmetry and decrease sway compared to subjects 

receiving similar therapy without feedback (Sackley and Lincoln 1997; Wong et 

al. 1997). Sit-to-stand training with audio feedback of paretic lower limb loading 

shows increased improvement toward symmetric body weight distributions over 

no feedback controls (Engardt et al. 1993). Although these results show 

improvements after training with feedback, they occur over relatively long training 

periods. Training sessions range between 45 to 60 minutes a day, 3 to 5 days a 

week, for 4 to 6 weeks (Engardt et al. 1993; Bourbonnais et al. 2002). An 
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alternative type of therapy that reduces training time could speed patients’ motor 

recovery and decrease therapy costs. 

 Robotic devices can yield functional benefits for patients when training 

task-specific exercises (Reinkensmeyer et al. 2004). The devices can impose 

novel force fields to shape motor output while completing a task. During a 

bilateral steering task, the force-cue mode implemented in the Driver’s Simulation 

Environment for Arm Therapy (Driver’s SEAT) uses resistance torques that allow 

steering motions to be produced only by the paretic upper limb (Johnson et al. 

2005). With these force cues, hemiplegic subjects increased the productive use 

of their paretic upper limb over trials without force cues. Resistive force fields can 

also strengthen patients’ muscles. Devices such as upper extremity manipulanda 

and lower extremity locomotor devices are showing promise, although to date the 

results are very joint specific (Hesse et al. 2001; Lum et al. 2002; Krebs et al. 

2005). These results suggest that multiple types of robotic exercise machines will 

likely be necessary for rehabilitation (Krebs et al. 2005).  

 We built a lower limb robotic device that uses a novel control strategy for 

increasing force symmetry during bilateral lower limb extensions. The device 

features a motor to provide real-time control of resistance and a force platform to 

measure limb forces. Control software calculates the difference between the 

target and actual center of pressure location. This difference is multiplied by a 

gain and then added to a baseline resistance. In effect, the motor increases 

resistance in proportion to lower limb force asymmetry. Subjects training with the 
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symmetry-based resistance perform the least effort against the device when they 

produce symmetric forces.  

 This study reports initial results from neurologically intact subjects using 

the device. In the first experiment, two groups of ten subjects performed bilateral 

lower limb extensions during a single testing session. One group received 

symmetry-based resistance and the other group received constant resistance. 

Both groups were asked to perform lower limb extensions as symmetrically as 

possible. We hypothesized that the symmetry-based resistance group would 

increase lower limb symmetry within the single testing session more than the 

control group as a result of the variable resistance. In the second experiment ten 

subjects attempted to produce an asymmetry of foot forces using symmetry-

based resistance, again in a single testing session. We hypothesized that these 

subjects would learn the appropriate relative sense of effort in the two limbs to 

produce the target asymmetry. Some neurologically impaired subjects perceive 

symmetric force production as an asymmetry. Thus, testing neurologically-intact 

subjects as they learn to produce a force asymmetry may provide a good 

indication of the learning effects using the symmetry-based resistance controller.  

 

Methods 

Robotic Device  

 We modified a commercially available exercise machine (Plyo-Sled, 

Lifestyle Sports, Dunkirk, NY) (Figure 5.1). Subjects recline on a sled resting on 

low friction rollers and place their feet on a vertical footplate to perform bilateral  
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Figure 5.1 Lower limb robotic device. A force platform measured lower limb 
forces while a computer controlled motor adjusted resistance in real-time.  
 
 
 
lower limb extensions. We added a computer controlled electrical motor 

(MT706C1-R1C1 Goldline XT Servomotor, Kollmorgen, Northampton, MA) to 

control resistance in real-time. A horizontal rack affixed to the sled was driven by 

a pinion on the motor to transform rotational motion of the motor to linear motion 

of the sled. We attached a force platform (Model OR6-7MA, AMTI, Watertown, 

MA) to the footplate to capture center of pressure during movement. From center 

of pressure calculations the controller determined the relative symmetry between 

right and left foot forces.  

 Real-time control of motor resistance was achieved with two desktop PCs 

in a host-target configuration with RT-Lab Solo software (Opal-RT Technologies, 

Quebec, Canada). The symmetry-based resistance controller adjusted resistance 

according to the location of the center of pressure detected by the force platform 
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(Figure 5.2A). The resistance, R, in percent body weight, was calculated 

according to the following equations: 

    BTCOPKR +−=       (5.1) 

    
TCOP

BSK
avg −
−

=
5.1

     (5.2) 

where COP is the instantaneous center of pressure low-pass filtered at 5 Hz, K is 

the controller gain, and T is the target symmetry (i.e. 50% for perfect symmetry). 

The symbol COPavg is the center of pressure location averaged over the entire 

first set of extensions. The symbols B and S are the baseline and saturation 

resistance as a percentage of body weight. Equation 5.1 determines the motor 

resistance by multiplying the difference between the center of pressure and the 

target by a gain and adding a baseline resistance. As the center of pressure 

moves away from the target, motor resistance increases until saturation (Figure 

5.2B). If foot forces were the same (i.e., subject’s center of pressure remained 

directly between his/her feet), motor resistance remained at baseline. If foot 

forces were unequal (i.e., subject’s center of pressure moved away from center 

towards one of the feet), the computer increased motor resistance above 

baseline. The resistance was proportional to the amount of asymmetry in the 

subject’s  foot  forces  thereby  providing  immediate  information  about  force 

symmetry in the subject’s lower limbs. Subjects could perform extensions with 

minimal resistance if they generated equal forces at their left and right feet. 
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(A) 

 

               

 (B) 

 

Figure 5.2 Symmetry-based resistance algorithm. A) Diagram of the 
symmetry-based resistance controller. A force platform recorded foot forces 
during bilateral lower limb extensions and sent data to a real-time processor. The 
real-time processor calculated center of pressure location in percent distance 
from the non-dominant foot (sample asymmetry of center of pressure location at 
60% denoted by the X). The center of pressure excursion was calculated as the 
difference between the center of pressure location and the target. After low pass 
filtering, the signal was multiplied by the gain to produce the motor command. A 
baseline resistance was added to the signal before output to the motor drive. 
Subjects performed extensions with least effort if they generated the necessary 
lower limb forces to move their center of pressure to the target. B) Plot of motor 
resistance as a function of center of pressure location for the symmetry-based 
resistance controller. Motor resistance is at a minimum when the center of 
pressure location is at the target (i.e. 50% for perfect symmetry). As the center of 
pressure moves away from the target, the motor resistance increases until 
saturation at 75% body weight. 
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Subjects  

 Thirty neurologically-intact subjects gave written informed consent and 

participated in this study (14 male and 16 female; age: 26 ± 3.0 years, mean ± 

s.d.). The human subject review board at the University of Michigan Medical 

School approved the protocol. 

  

Experiment 1 

  The purpose of Experiment 1 was to determine if subjects could become 

more symmetric in their lower limb force production with symmetry-based 

resistance. Twenty subjects were randomly placed in two groups. One group 

experienced the symmetry-based resistance and the other was a control group 

with constant resistance. All subjects performed five sets of twenty lower limb 

extensions with rest between sets. Subjects’ foot placement had an inter-foot 

distance equal to their anterior superior iliac spine (ASIS) width. We tracked 

center of pressure location as a percentage of inter-foot distance with 0% being 

at the non-dominant foot center. The non-dominant foot was determined as the 

foot that produced the least amount of force during set one. We set the target for 

symmetry at 50% of inter-foot distance. Subjects extended to full knee extension 

and flexed to a knee angle of approximately 90 degrees, matching movement 

speed to a metronome set at 0.33 Hz.  
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Figure 5.3 Experimental protocols. All sets of extensions included 20 
repetitions. A) The symmetry-based resistance group received constant 
resistance for sets 1 and 5. In sets 2 – 4 they received symmetry-based 
resistance (SBR) where the amount of resistance increased with asymmetric 
foot forces. The control group received constant resistance at varying 
percentages of their body weight (BW) for all sets. Instructions to subjects of 
both groups were to perform all sets of extensions symmetrically. B) Subjects 
received constant resistance for sets 1 and 5. In sets 2 through 4 they received 
symmetry-based resistance (SBR) where the amount of resistance increased as 
their center of pressure location moved away from the target force asymmetry.  
Instructions to subjects were to perform extensions of set 1 symmetrically, in 
sets 2 through 4 they were to learn the asymmetry in force production, and in 
set 5 they were asked to reproduce the asymmetry.  
 
 
 
 The symmetry-based resistance group performed the first set of lower limb 

extensions against a constant baseline resistance equal to 25% of their body 

weight (Figure 5.3A). During the second, third, and fourth sets, the symmetry-

based resistance controller was turned on. Resistance increased in real-time 

above baseline in proportion to lower limb asymmetry. We set the saturation 

resistance equal to 75% body weight. We informed subjects that the resistance 
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would vary based on their force symmetry and their goal was to perform 

extensions with increased symmetry and therefore decreased resistance. In the 

fifth set, we turned the symmetry-based resistance controller off and set the 

resistance to a constant 25% body weight. We included this set to assess subject 

performance without the controller. 

 The control group performed set one against a constant resistance equal 

to 25% body weight (Figure 5.3A). During the second, third, and fourth sets the 

resistance did not change with foot force asymmetry and was equal to the 

average resistances of the symmetry-based resistance group (43%, 42% and 

43% body weight, respectively). We informed subjects of the new constant 

resistance levels. In the fifth set, we set the resistance to a constant 25% body 

weight to assess performance after training. As with the symmetry-based 

resistance group, we frequently verbally reminded subjects to perform extensions 

symmetrically.  

 

Experiment 2 

 The purpose of Experiment 2 was to determine if neurologically intact 

subjects could learn an asymmetry of foot forces using the symmetry-based 

resistance controller. Ten subjects performed five sets of twenty lower limb 

extensions with rest between sets (Figure 5.3B). We changed the target in the 

symmetry-based resistance controller from 50% to 33%. During the second, 

third, and fourth sets when subjects received symmetry-based resistance, we 

informed subjects that they were to learn the asymmetry in force production by 
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attempting to minimize device resistance. We did not explicitly inform subjects 

where the new target was, which foot had to produce more force, or how much 

more force that foot had to produce. We assessed subject performance without 

the controller in the fifth set by asking subjects to reproduce the asymmetry 

against a constant resistance of 25% body weight. 

 

Data Collection and Analysis 

 For both experiments, we collected force and center of pressure readings 

using a force platform (Figure 5.1). We normalized center of pressure data to 

individual stance width to reduce intersubject variability. We identified extension 

cycle timing from motor encoder data. We also calculated the root mean square 

(RMS) center of pressure excursion to capture the variability. We normalized 

RMS center of pressure excursion to the average value of the first set to reduce 

intersubject variability. This resulted in a first set average value of 100% for all 

subjects. A decrease in this value represented a change in foot forces towards 

the target. We averaged center of pressure and RMS center of pressure 

excursion for the entire last ten repetitions within each set to eliminate possible 

high variability of initial repetitions.  

 For Experiment 1, we collected electromyography (EMG) data from all 

subjects in the symmetry-based resistance group to ensure that any changes in 

limb symmetry were not due to muscle fatigue.  We recorded surface EMG 

(Model CP511, Astro-Med Inc., West Warwick, RI) from the left vastus lateralis 

using bipolar surface electrodes. The EMG amplifier had a bandwidth of 30 to 
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1000 Hz. We calculated the mean power frequency of EMG within each set by 

plotting the power spectral density and calculating which frequency corresponded 

to the mean value. As the vastus lateralis muscle fatigues, the power spectrum of 

EMG shifts towards lower frequencies (Arendt-Nielsen and Mills 1988). Due to 

equipment malfunction, we analyzed EMG data for only seven of the ten 

subjects.  

 In Experiment 1, we used a repeated measure ANOVA (subject by group 

by set, with subject nested within group) to test for differences in average center 

of pressure location and normalized RMS center of pressure excursion (JMP IN 

software, SAS Institute, Inc., Cary, NC). We performed a repeated measure 

ANOVA (subject by set) for the symmetry-based resistance group to test for 

differences in EMG mean power frequency. When the ANOVA indicated 

significant differences (P < 0.05), we used a Tukey-Kramer HSD post-hoc test to 

determine differences between sets (P < 0.05). 

 In Experiment 2, we used a repeated measure ANOVA (subject by set) to 

test for differences in average center of pressure location and normalized RMS 

center of pressure excursion. As in Experiment 1, we then used a Tukey-Kramer 

HSD post-hoc test to determine differences between sets (P < 0.05). 

 

Results 

Experiment 1 

 Subjects in the symmetry-based resistance group improved force 

symmetry  as  measured  by  average  center  of  pressure  location while control  
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 (A) 

 
 

      
 
Figure 5.4 Experiment 1: Center of pressure location data for a typical 
subject. A) Plot of center of pressure location as a function of percent of lower 
limb extension for one subject throughout three repetitions. Lower limb flexion is 
the first 50% of the cycle and extension is the last 50% of the cycle. Data 
represents center of pressure location during the last repetition of set 1 against 
25% body weight resistance (dotted line), first repetition of set 2 with the 
symmetry-based controller turned on (thin solid line), and last repetition of set 4 
with the symmetry-based controller (thick solid line). The subject’s center of 
pressure location moved closer to the target of 50% symmetry by the end of set 
4. B) Average center of pressure location data for a typical subject with the 
symmetry-based resistance controller in Experiment 1. The dashed line 
represents the target for symmetry of 50%. This subject was better at producing 
symmetric forces about the target by set four (indicated by reduced scatter of set 
four compared to set one). 
 
 
 

(B) 
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subjects did not (ANOVA, P < 0.001). Figure 5.4 shows example data from one 

subject in the symmetry-based resistance group. On average, the symmetry-

based resistance group had center of pressure locations closer to 50% for sets 

three and four than for set one (THSD, P < 0.05) (Figure 5.5A). The average 

center of pressure location for these subjects was 52.5% ± 0.73% (mean 

± s.e.m.) for set one and decreased to 50.2% ± 0.63% during set four. The control 

group did not improve with training (THSD, P < 0.05), perhaps due to lack of 

concentration. Comparing the symmetry-based resistance and control groups 

showed no significant difference of average center of pressure location between 

groups during set one (THSD, P > 0.05). By sets three and four, the symmetry-

based resistance group was significantly closer to 50% than the control group 

(THSD, P < 0.05) (Figure 5.5A). During the last set, however, there was no 

significant difference between groups (THSD, P > 0.05). 

 Center of pressure excursion demonstrated similar trends as average 

center of pressure (Figure 5.5B). We collected this measure to further describe 

symmetry levels by capturing the variability in the center of pressure. In sets 

three and four, the symmetry-based resistance group significantly reduced their 

center of pressure excursion from set one (THSD, P < 0.05). The control group 

did not improve with training (THSD, P > 0.05). During set five, the center of 

pressure excursion for the control group significantly increased compared to set 

one (THSD, P < 0.05). Overall, there was a significant difference between the 

two groups during sets three, four, and five (THSD, P < 0.05).  
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Figure 5.5 Experiment 1: Averaged center of pressure location and 
excursion for all subjects. Grey columns represent the symmetry-based 
resistance group and white columns represent the control group. Numbers within 
each bar indicate which sets are significantly different from the current set 
(THSD, P < 0.05). Error bars are standard error of the mean. A) Mean center of 
pressure location significantly decreased in the symmetry-based resistance 
group (THSD, P < 0.05). In contrast, the control group did not improve in 
symmetry. In sets 3 and 4, the symmetry-based resistance group was 
significantly better at producing symmetric forces than the control group (THSD, 
*: P < 0.05). B) Normalized RMS center of pressure excursion showed results 
similar to the center of pressure location with one addition. The symmetry-based 
resistance group was significantly better at producing symmetric forces than the 
control group in sets 3-5 (THSD, *: P < 0.05) rather than just sets 3-4. 

(A) 

(B) 



 

104 

 Electromyography results from the vastus lateralis muscle of subjects in 

the symmetry-based resistance group showed no significant change in EMG 

mean frequency (ANOVA, P > 0.05). These results indicate that these subjects 

were not fatigued by the end of training. EMG mean frequencies for sets one to 

five were 80.6 Hz ± 4.0 Hz, 78.3 Hz ± 4.5 Hz, 79.7 Hz ± 3.8 Hz, 81.4 Hz ± 4.0 Hz, 

and 81.1 Hz ± 4.0 Hz, respectively. 

 

Experiment 2 

 With the symmetry-based resistance controller on, subjects shifted their 

average center of pressure location towards the target of 33% (ANOVA, P < 

0.001). Figure 5.6 shows data of one subject learning the asymmetry. The trend  

 

 
 

 
Figure 5.6 Experiment 2: Center of pressure location data for a typical 
subject. The symmetry-based resistance controller was active during sets 2 
through 4. The dashed line represents the target for asymmetry of 33%. With 
training, the subject was able to produce asymmetric forces near the target. 
When asked to reproduce the asymmetry during set five, the subject showed 
carryover of the training. 
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Figure 5.7 Experiment 2: Averaged center of pressure location and 
excursion for all subjects. During sets 2 through 4, all subjects received 
symmetry-based resistance about the targeted asymmetry of 33%. Numbers 
within each bar indicate which sets are significantly different from the current set 
(THSD, P < 0.05). Error bars are standard error of the mean. A) Mean center of 
pressure location shows a significant decrease towards the asymmetry with 
training (THSD, P < 0.05). In set 5, subjects showed carryover of the training and 
were able to reproduce the asymmetry without the symmetry-based resistance 
controller. B) Normalized RMS center of pressure excursion decreased in sets 2, 
3, 4, and 5 from initial values in set 1 (THSD, P < 0.05). 
 
 

(A) 

(B) 
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towards the target is clearly evident. For all subjects, the average center of 

pressure location in the first set was 55.3% ± 0.5% (Figure 5.7A). The second, 

third,  and  fourth  sets  decreased  significantly  from  set  one towards the target 

(THSD, P < 0.05) and by set four the average center of pressure location was 

44.6% ± 0.7%. In set five when the symmetry-based resistance controller was 

turned off and subjects were asked to reproduce the asymmetry, the average 

center of pressure location was 41.1% ± 1.6%. This value was significantly lower 

than that of set one (THSD, P < 0.05), demonstrating a carryover of asymmetry. 

 Center of pressure excursion (as calculated from the target asymmetry) 

also decreased with training (Figure 5.7B). With the symmetry-based resistance 

controller turned on, this value decreased during sets two, three, and four 

(THSD, P < 0.05). The normalized RMS center of pressure excursion for set five 

was significantly less than set one (THSD, P < 0.05), showing a carryover of 

training. 

 

Discussion 

 Our results show that neurologically intact subjects training with the 

symmetry-based resistance controller shifted their center of pressure location 

towards the targets. In Experiment 1, the symmetry-based resistance group 

increased lower limb symmetry within the single testing session. This increase in 

symmetry, however, was not maintained when the symmetry-based resistance 

controller was turned off. In Experiment 2, subjects learned the appropriate 

relative sense of effort in the two limbs to produce the target asymmetry. When 
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subjects were asked to reproduce the asymmetry, they did show carryover of 

training. Subjects altered lower limb force production towards the asymmetry 

without the symmetry-based resistance controller. 

 One explanation for why the symmetry-based resistance controller was 

effective in the neurologically intact subjects is the principle of least effort. The 

principle states that while performing a task, humans prefer movements that 

require the least amount of physical energy to achieve a goal (Almasbakk et al. 

2000). Symmetry-based resistance directs subjects into altering limb symmetry 

towards the target by this principle. Subjects performed extensions against 

minimal resistance and therefore least effort when they increased lower limb 

symmetry. Symmetry-based resistance may have an advantage over audio 

and/or visual feedback because proprioceptive mapping to muscle recruitment is 

much more direct than audio/visual sensory mapping to muscle recruitment. 

Motor neuron activation and muscle forces are encoded at the spinal cord level 

(Bosco and Poppele 2001a; Bizzi et al. 2002), resulting in a more natural 

proprioceptive feedback loop for symmetry-based resistance. The rate of motor 

learning may be faster for symmetry-based resistance than for audio and visual 

feedback techniques.  

 In all likelihood, Experiment 1 did not demonstrate carryover for the 

symmetry-based resistance group because of the relatively small changes in 

symmetry required to match the target. All subjects exhibited symmetry levels 

close to the target in set one. The symmetry-based resistance controller was able 

to increase symmetry slightly, but the resolution of the training effect was not 
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great since the change in center of pressure location was only 2% of the distance 

between the feet. In Experiment 2, the asymmetry target was much further away 

from subjects’ initial symmetry levels. The subjects made a change in center of 

pressure location of 10% of the distance between the feet. The resolution for the 

second experiment was better because of the magnitude of the targeted change.  

 Neurologically impaired individuals may benefit from symmetry-based 

resistance therapy. Subjects in the second experiment demonstrated carryover to 

what they perceived as an asymmetry. Individuals with hemiparesis sense 

symmetry in force development as a perceived asymmetry and the magnitude of 

targeted change would likely be large. Although the principle of least effort may 

not hold for neurologically impaired users, practice with symmetry-based 

resistance may allow them to gain a better sense of relative effort for comparable 

forces in their paretic and non-paretic limbs (Rode et al. 1996). This could enable 

them to produce symmetric forces in other functional movements when they have 

a need (e.g. sit-to-stand transition). In addition, exercise with symmetry-based 

resistance may enhance recruitment of the paretic limb during therapy and lead 

to greater strength gains than traditional strength training with a constant 

resistance. Further testing on neurological populations is warranted to test these 

hypotheses.  
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Chapter 6 
 

Preliminary Trial of Lower Limb Training with Symmetry-Based Resistance 
in Individuals with Post-Stroke Hemiparesis 

 

Abstract 

The purpose of this study was to test a new control strategy for robotic 

rehabilitation of individuals with post-stroke hemiparesis. Symmetry-based 

resistance increases resistance when limb forces become more asymmetric 

during bilateral exercise. The underlying rationales are that it will guide patients 

to use their paretic limb more during therapy and also teach them how to more 

accurately gauge force production in their paretic limb by having an ongoing 

comparison to the non-paretic limb. During a one day training session, seven 

subjects with post-stroke hemiparesis performed lower limb extensions in 

symmetry-based resistance mode on a robotic exercise machine. Subjects 

improved lower limb symmetry from initial values of 28.6% ± 3.9% against a 

constant resistance pre-test to 36.2% ± 4.3% during the last set of symmetry-

based resistance training (ANOVA, P=0.03). Subjects did not maintain the 

improved lower limb symmetry during the post-test against constant resistance 

(symmetry values were 33.2% ± 5.4%, P>0.05 for pre- and post-test 

comparison). Two subjects that showed the greatest improvements in symmetry 

performed longer term training. Those results suggest some patients can 
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demonstrate long lasting benefits with symmetry-based resistance training.  

 

Introduction 

Stroke is the leading cause of serious, long-term disability in the United 

States with 5.8 million patients with stroke (Rosamond et al. 2007). More than 

half of these individuals experience moderate to severe impairments that limit 

their mobility and functionality. These impairments include weakness (Patten et 

al. 2004), impaired coordination (Kautz and Brown 1998) and proprioception 

(Carey 1995).  

Another neurological deficit of patients with post-stroke hemiparesis that is 

less understood is impaired force scaling abilities. When post-stroke patients are 

asked to produce a force in their paretic limbs equal to the force in their non-

paretic limbs, they often overestimate the force produced in their paretic upper 

limbs (Bertrand et al. 2004; Mercier et al. 2004) and paretic lower limbs (Simon et 

al. 2008). A disparity exists between the force level patients think they are 

producing and the force level they are actually producing. Such force 

mismatches in the lower limbs can affect patients’ ability to be mobile, stand from 

a seated position, and recover from falls. For example, if a patient with stroke 

needed to take a step to prevent a fall, sending too low of an efferent command 

to the lower limb muscles would lead to inadequate extension torques about the 

joints and the patient could fall.   

Strength training and aerobic exercise can help post-stroke patients regain 

their strength and (Teixeira-Salmela et al. 1999; Weiss et al. 2000; Gordon et al. 
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2004b). Patients usually exercise two to three days per week and can increase 

motor recruitment of both the paretic and non-paretic limbs without increasing 

spasticity (Badics et al. 2002; Morris et al. 2004). Increasing muscle strength 

leads to concurrent increases in functional abilities such as sit-to-stand 

performance, gait speed, and dynamic balance (Weiss et al. 2000; Monger et al. 

2002; Mercier et al. 2004).  

Therapy may also include audio and/or visual biofeedback training about 

patients’ muscle activation or limb forces to improve functional ability. Visual 

biofeedback can improve stance symmetry and decrease sway during standing 

compared to controls receiving similar therapy without feedback (Sackley and 

Lincoln 1997; Wong et al. 1997). These improvements occur over relatively long 

training periods of up to 60 minutes a day, 3 to 5 days a week, for 4 to 6 weeks 

(Engardt et al. 1993; Bourbonnais et al. 2002). However, recent systematic 

reviews of the literature conclude that audio/visual biofeedback of muscle 

activation and/or limb forces is not very effective for motor recovery after stroke 

(Barclay-Goddard et al. 2004; Woodford and Price 2007). One potential reason 

for this is that audio/visual biofeedback requires increased cognitive involvement 

of cortical brain regions that are not directly involved with the motor task. In 

contrast, proprioceptive feedback is encoded at the spinal cord level along with 

motor neuron activation patterns (Bosco and Poppele 2001; Bizzi et al. 2002). 

Thus, proprioceptive feedback loops are considerably shorter than audio or 

visual feedback loops. Patients may benefit more from an alternative type of 

therapy that acts to influence proprioceptive feedback given its proximity to the 
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basic neural control architecture. 

Symmetry-based resistance has the potential to provide mechanical 

biofeedback to patients without requiring involvement from audio/visual cortical 

centers. With symmetry-based resistance, task resistance increases with the 

magnitude of the limb force asymmetry during bilateral exercise. This control 

mode could benefit the patient by evoking enhanced muscle activation in the 

paretic limb during exercise. In addition, it could help patients calibrate their force 

production in their paretic limb with the force production in their non-paretic limb. 

Applied to lower limb extensions, individuals exercise with the goal of producing 

equal lower limb forces during movement. If they exercise with equal forces, 

resistance is at a baseline value and subjects perform the minimal mechanical 

work. If their lower limb forces become asymmetric, a real-time controller 

increases resistance causing subjects to perform more mechanical work. This 

novel control strategy has previously been tested on neurologically intact 

individuals that demonstrate a slight but typical asymmetry during lower limb 

exercise (Simon et al. 2007). Subjects altered their lower limb forces towards a 

target symmetry within a single training session (Simon et al. 2007). 

The goal of this study was to perform a preliminary trial of lower limb 

exercise with symmetry-based resistance in individuals with post-stroke 

hemiparesis. In the current study, symmetry-based resistance training was tested 

as a means of addressing subjects’ impaired force scaling abilities. Individuals 

post-stroke could use the mechanical feedback received during training to reduce 

the mismatch between the forces they think they are producing and the forces 
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they are actually producing. We hypothesized that lower limb exercise with 

symmetry-based resistance would result in more symmetric lower limb forces 

when subjects performed extensions against a constant resistance. This study 

primarily reports results from individuals with post-stroke hemiparesis after a one 

day training session of lower limb extensions with symmetry-based resistance. 

We also performed some longer term training with two of the subjects that 

demonstrated the largest improvements in symmetry.  

 

Methods 

Subjects 

We recruited 10 individuals (7 females and 3 males) with stroke-induced 

hemiparesis (age: 49 ± 17 years, mean ± S.D.M.). A physiatrist at the University 

of Michigan evaluated each subject for inclusion criteria and participation in the 

study. Inclusion criteria consisted of 1) at least six months post-onset of a single 

neurologic insults that included ischemic or hemorrhagic type strokes (verified 

through MRI or CT scan data from patients’ medical records), 2) between the 

ages of 18 and 85, 3) free of any musculoskeletal injuries or deformities, 4) 

presented with no spastic hypertonia in the lower limbs, and 5) adequately able 

to comprehend our instructions. All subjects gave written informed consent 

approved by the Institutional Review Board for Human Subject Research at the 

University of Michigan Medical School. A physical therapist evaluated subjects’ 

lower extremity physical performance by through use of the lower limb and 

balance portions of the Fugl-Meyer Clinical Assessment (Table 6.1). Based on  
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Figure 6.1. Lower limb robotic exercise machine. A dual force platform measured 
lower limb forces while a computer controlled motor adjusted resistance in real-
time. 
 
 
 
 
comments from subjects, we noted various subject sensory deficits including 

reduced cutaneous sensation and impaired force perception. No subjects 

reported impaired sense of limb motion and position. 

 

Experimental Design 

Subjects exercised on a robotic exercise machine built in the University of 

Michigan’s Human Neuromechanics Laboratory (Figure 6.1) (Simon et al. 2007). 

The machine included a dual force plate (Model Dual Accu-Gait, AMTI, 

Watertown, MA) to capture individual foot forces during exercise.  
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Maximum Strength Testing 

First we assessed subjects’ isokinetic maximum strength during lower limb 

extensions on the exercise machine in isokinetic mode. In this mode, the 

computer controlled resistance so movement velocity remained constant. We 

instructed subjects to push as hard as they could only during the extension 

phase and relax during the flexion phase. Subjects performed two trials each of 

right limb only, left limb only, and bilateral maximum voluntary contraction (MVC) 

trials. We randomized the trial order and verbally encouraged subjects to push as 

hard as they could throughout each contraction. Subjects rested three minutes or 

more between each MVC trial. 

 

Lower Limb Extensions 

Subjects performed one set of ten bilateral lower limb extensions on the 

robotic exercise machine in isotonic mode pre- and post-training. In isotonic 

mode, the resistance for continuous lower limb extensions remained constant 

and was equal to 60% of the paretic limb bilateral MVC force. We instructed and 

frequently verbally reminded subjects to try to produce equal forces throughout 

the movement. Since this was a bilateral task, if subjects were able to produce 

equal forces in their limbs they would have only needed to produce force equal to 

30% of the paretic limb bilateral MVC force in each limb (i.e. a total resistance of 

60% was equal to 30% force in each limb). We instructed subjects to extend their 

lower limbs completely (not locking out their knees), flex to a knee/hip angle of 90 

degrees, and match their movement speed to a metronome set to 0.33 Hz.  
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In between the pre- and post- test, subjects performed lower limb 

extensions on the exercise machine in symmetry-based resistance mode. During 

exercise with symmetry-based resistance, resistance increased when lower limb 

forces became asymmetric. Therefore subjects performed the least amount of 

work when their lower limb forces were symmetric. Movement timing and range 

of motion were the same as the pre- and post-test trials.  

The control algorithm used for symmetry-based resistance determined 

resistance in real-time based on individual’s instantaneous lower limb symmetry  

(Figure 6.2). Lower limb symmetry was calculated according to Equation 6.1.  
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The resulting signal ranged from 0% to 100% with 50% representing perfect 

symmetry in lower limb forces. In symmetry-based resistance mode, resistance 

followed the shape of standard normal distribution curve reflected over the 

horizontal axis (Figure 6.3). The resistance, R, in percent maximum force ability 

of the paretic limb, was calculated according to Equations 6.2 and 6.3.  
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where K was the controller gain. B and S were baseline and saturation 

resistances set to 60% and 100% of the bilateral maximum force ability of the 

paretic limb, respectively. This limit was set to ensure that subjects had the 
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Figure 6.2. Symmetry-based resistance control algorithm. A dual force platform 
recorded individual limb forces during bilateral lower limb extensions and sent 
data to a real-time processor. The processor calculated lower limb symmetry and 
motor resistance based on individual limb force data. The motor command signal 
was low pass filtered and output to the motor drive. In real-time the motor drive 
commanded the motor to produce the appropriate resistance. The subject 
sensed resistance through afferent signals and output motor efferent signals. 
 
 
  

capability to produce equivalent forces in their paretic and non-paretic limb. 

SymRMS was the root mean squared symmetry value measured for each subject 

during the pre-test and Symi was the instantaneous lower limb symmetry 

calculated in real-time from Equation 1. After the real-time controller calculated  
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Figure 6.3. Motor resistance vs. lower limb symmetry for symmetry-based 
resistance mode. In symmetry-based resistance, motor resistance (R) was set to 
a minimum baseline value (B) when lower limb forces were equal (i.e. symmetry 
value of 50%). As limb forces became more asymmetric, the motor resistance 
increased until saturation (S).  
 
 
 
 
load the signal was passed through a 2nd order low pass Butterworth filter (1 Hz 

cutoff). The signal was then sent to the motor drive. The overall result of 

Equations 6.2 and 6.3 was that resistance was at a minimum with perfect lower 

limb force symmetry and increased to saturation as lower limb forces became 

asymmetric (Figure 6.3). 

 We allowed subjects to explore what symmetry-based resistance feels like 

by instructing them to produce more force or less force with their non-paretic and 

paretic limbs and experience the resistance feedback. The exploration lasted for 

two minutes and subjects were not under the constraints of movement timing or 

range of motion described previously. Subjects then performed four sets of ten 

repetitions of lower limb extensions with the symmetry-based resistance 
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controller on. During all trials we frequently verbally reminded subjects to 

produce equal forces and to try to exercise against the lowest resistance. We 

allowed subjects to rest between sets for three minutes or longer if necessary. 

 

4 Week Training Protocol 

In order to investigate the retention affects of exercise with symmetry-

based resistance, subjects who showed greater than a 30% improvement in pre- 

to post-test lower limb symmetry values returned to the laboratory for further 

training. Two of the ten subjects showed this trend and returned to the laboratory 

for one day a week for three additional weeks of training (four weeks total). 

During day one and four the protocol was the same as described above. During 

day two and three subjects only performed the lower limb extension protocol. 

 

Data Acquisition and Analysis 

We recorded dual force plate data sampled at 1000 Hz throughout all trials 

on the exercise device (Figure 6.1). Non-paretic and paretic limb MVC force was 

determined as the maximum force measured during the two trials (Jones and 

Hunter 1983; Proske et al. 2004). We calculated normal force (force vector in the 

direction of movement), total resultant force (sum of the normal force vector 

combined with shear force vectors), and total resultant force direction (0 degrees 

represented the normal direction). During lower limb extensions, we identified 

cycle timing from motor encoder data and averaged individual foot force data 

only across the extension phase of each cycle. We calculated root mean square 
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(RMS) symmetry during the extension phase to capture the variability. As this 

value approached 50%, it represented a change in foot forces towards perfect 

symmetry (i.e. producing equivalent forces in both the non-paretic and paretic 

lower limbs). We averaged individual foot forces and RMS symmetry for the last 

five repetitions within each set to eliminate possible high variability of initial 

repetitions. Subjects were excluded from the study if their lower limb forces 

during the pre-test of the lower limb extensions resulted in greater than 45% 

symmetry as these subjects did not properly represent the stroke population with 

hemiparesis. Three out of the ten subjects were excluded from the analysis for 

this reason. 

For the lower limb extension training with symmetry-based resistance we 

performed a repeated measures ANOVA limb by set to test for significant 

differences in lower limb forces. We performed a repeated measures ANOVA by 

set to test for differences in RMS symmetry values. When the ANOVAs indicated 

significance (P < 0.05), we used Tukey-Kramer Honestly Significant Difference 

(THSD) post-hoc tests (P < 0.05). Post-hoc power analyses were carried out 

where appropriate.  

 

Results 

Lower Limb Extensions  

During the pre-test when individuals with post-stroke hemiparesis 

attempted to generate equal lower limb forces, they produced significantly 

different limb forces (ANOVA P < 0.001) (Figure 6.4). The paretic limb produced 
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significantly less normal force during exercise. When subjects performed lower 

limb extensions with symmetry-based resistance, there was no significant 

increase in normal force produced by the paretic limb (THSD P > 0.05). The 

average amount of resistance subjects exercised against increased from 474 N ± 

102 N (mean ± s.e.m)  during pre- and post-training to 693 N ± 71 N during 

exercise with symmetry-based resistance (Sets 1-4). Comparing the average 

normal limb force pre- to post-training within the one day session, there were no 

significant differences for both non-paretic and paretic limbs (THSD P > 0.05 for  

Figure 6.4. Average forces during lower limb extensions for all subjects during 
the one day training session. White columns represent non-paretic limb forces 
and grey columns represent paretic limb forces. Error bars are standard error of 
the mean. The non-paretic limb generated significantly more force than the 
paretic limb during the pre- and post-test as well as during symmetry-based 
resistance training (ANOVA, P < 0.001). 
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both limbs). Further force analysis revealed that for the normal force in the non-

paretic and paretic limbs accounted for greater than 96% and 95%, respectively, 

of the total resultant force during all lower limb extensions. Results comparing 

total resultant force magnitude during the pre-test, training, and post-test showed 

similar trends as the normal force magnitude reported. 

 

 

Figure 6.5. Symmetry values for subjects during the one day training session. 
The dashed line represents subjects’ goal of 50% symmetry. The pre- and post-
test lower limb extensions were against constant resistance. The symmetry-
based resistance controller was turned on for Sets 1-4. A) Symmetry vs repetition 
for a typical subject. B) Symmetry vs. set for all subjects. Subjects exercised with 
significantly higher lower limb symmetry values during Sets 3 and 4 compared to 
the pre-test values (ANOVA, *: P = 0.0262). 
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Figure 6.5A shows one subject’s lower limb symmetry during the lower 

limb extension pre-test, training with symmetry-based resistance, and post-test. 

Subjects’ goal was to exercise with 50% symmetry or equal lower limb forces. On 

average subjects increased their lower limb symmetry values during exercise 

with symmetry-based resistance for Set 3 and 4 compared to the pre-test against 

constant resistance (ANOVA P = 0.0262) (Figure 6.5B). Lower limb symmetry 

values for the pre-test were 28.6 % ± 3.9 % for the pre-test, 36.2 % ± 4.3 % 

during the last set of symmetry-based resistance training (Set 4), and 33.2 % ± 

5.4 % during the post-test. 

 

4 Week Training Protocol 

The two subjects with stroke-induced hemiparesis that trained for four 

sessions on Day 1 of training had average lower limb symmetry values of 34.2% 

± 4.2%. These subjects showed improvement within Day 1 of training with post- 

test symmetry values equal to 48.3% ± 3.9%. The subjects also demonstrated 

retention of symmetry-based resistance training throughout testing Days 2-4 

(Figure 6.6). During the lower limb extension pre-test against constant resistance 

on Day 4, subjects exercised at lower limb symmetry values of 50.7% ± 3.1%. 

 

Discussion 

During lower limb extensions, individuals with post-stroke hemiparesis did 

not produce equal forces during lower limb extensions even though they believed  
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Figure 6.6. Symmetry values for the two subjects in the four week training 
protocol. The dashed line represents subjects’ goal of 50% symmetry. Data 
represents on the pre- and post-test lower limb extensions against a constant 
resistance. Black columns represent Day 1, dark grey columns represent Day 2, 
light grey columns represent Day 3, and white columns represent Day 4. 
Subjects demonstrated retention of symmetry-based resistance training 
throughout testing Days 2-4. 

 

 

their forces were equal. Previous studies have reported similar results in both the 

upper and lower limb of these patients (Bertrand et al. 2004; Mercier et al. 2004; 

Simon et al. 2008). Based on subjects comments, when the symmetry-based 

resistance controller was turned on, all subjects were able to feel the change in 

resistance (i.e. they knew when the resistance increased or decreased). During 

Set 3 and 4 of exercise with symmetry-based resistance, subjects were able to 

improve their lower limb symmetry. These improvements were small in 
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magnitude for the group as a whole. The improvement in lower limb symmetry 

represented a smaller difference between the forces the subjects think they are 

producing and the forces they actually are producing. The increase in lower limb 

symmetry did not demonstrate carryover as subjects showed no one day 

changes in symmetry comparing the pre- to post-test of lower limb extensions 

against a constant resistance.  

Analysis of the total resultant force vectors during lower limb extensions 

revealed that subjects did not seem to have problems with producing force in the 

plane of movement. A previous study has shown that individuals with post-stroke 

hemiparesis have coordination impairments that lead them to produce 

inappropriate paretic limb forces during pedaling (Rogers et al. 2004). These 

subjects had a hard time directing their foot forces to a given direction. The 

subjects in the current study did not have this problem during the task of lower 

limb extensions. One possible explanation is that performing lower limb 

extensions is a simpler task compared to pedaling. Pedaling may require more 

coordination in order to move the legs in different directions and constantly 

change force direction. 

Subjects who returned to the laboratory for a total of four training 

sessions, did show a pre- to post-training trend of improvement in lower limb 

symmetry and of increased paretic limb force. These subjects also showed 

retention of training as their lower limb symmetry values during the pre-test 

improved from Day 1 to Day 4. On Day 4 of training, subjects began exercise 

with symmetry values close to 50%, indicating that after three weeks of training 
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they were able to actually produce the force that they thought they were with no 

feedback. During training sessions Subject 5 often commented that he realized 

that his paretic limb was not producing as much force as he originally thought. 

Our studies of exercise with symmetry-based resistance have some 

limitations. The studies report data for seven and two subjects for the one day 

and four week training protocols, respectively. Testing more subjects might 

reveal a stronger result, however for the one day training protocol we achieved 

power of 0.78. This suggests that longer training may be necessary to see pre- to 

post-training results. Testing more subjects for the longer training protocol seem 

to be warranted based on our preliminary results. Another limitation was that our 

subjects had a large range of functional impairments. Results may have differed 

if we used a stricter inclusion criteria based on functional abilities.  

An advantage of training on the exercise machine, although not tested in 

the current study, is the potential for strength training. Strength training regimens 

in individuals post-stroke previously were thought to increase spasticity and 

decrease functional abilities (Badics et al. 2002), but studies now show that 

strength training has positive benefits such as increasing motor recruitment, 

muscle strength, and functional abilities without increasing spasticity (Mercier et 

al. 1999; Weiss et al. 2000; Badics et al. 2002; Monger et al. 2002). An additional 

benefit of strength training is that it enhances the neural component of motor 

abilities optimizing central motor activation (Patten et al. 2006a; Patten et al. 

2006b). Therefore, one of the goals of the current line of research is to 

investigate whether we can design a better training regimen to enhance the 
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neural component of strength training. A computer controlled exercise machine 

that provides instantaneous feedback to patients may have the potential to 

enhance traditional strength training protocols. Results from subjects who trained 

for four weeks in the current study suggest that improvements made in lower limb 

symmetry were not likely from morphological changes in the muscle but were 

neural related. The trend was that these subjects learned to more closely 

produce the forces they wanted to produce. 

Further investigation of individuals with post-stroke hemiparesis training 

with symmetry-based resistance is necessary. Protocols involving more than a 

one day training session with more total subjects might reveal further benefits of 

symmetry-based resistance. Results of the current study suggest that a 

subpopulation of individuals post-stroke might benefit and that it might be helpful 

to selectively choose subjects based on percent improvement within a one day 

training session. Populations of individuals post-stroke are very diverse in 

functional abilities and impairments and targeting interventions for patients based 

on preliminary test may help tailor therapies to groups of patients. Additionally, 

comparing results from groups of subjects exercising with symmetry-based 

resistance, audio/visual force feedback, or pure strength training would assess 

which type of training, if any, could produce the most benefit in the least amount 

of training time for different groups of patients. 
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Chapter 7 
 

General Discussion 
 

Neural Basis of Sense of Effort 

 A main finding of this dissertation is that both neurologically intact 

individuals and individuals with post-stroke hemiparesis mainly relied on their 

sense of effort more than sense of force during lower limb force production. 

Sense of effort could be neurally based at either the spinal or cortical level. At the 

spinal level Renshaw cells are inhibitory interneurons associated with alpha 

motor neurons. The rate of discharge of these cells therefore is proportional to 

the firing rate of the motor neurons. In the experiments of this dissertation, 

individuals believed their foot reaction forces were equal even though they were 

not. Unequal foot forces were a result of asymmetric muscle force and 

asymmetric motor neuron activation. If the sense of effort signals were originating 

at the spinal level, Renshaw cell output would expose the asymmetric motor 

neuron activation.  

Therefore, it is most likely that the sense of effort is based at the cortical 

level. Several structures within the brain have the potential to maintain an 

individuals’ sense of effort. The cerebellum is associated with an internal model 

of the motor system and may make comparisons between the predicted sensory 

outcome (corollary discharge) and the actual outcome to update the internal 

model. The basal ganglia are a collection of nuclei in the white matter of the 

cerebral cortex that serves as a relay station between peripheral sensory 
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information and cortical sensory/motor areas (Shadmehr and Krakauer 2008). 

Finally the thalamus is a large mass of grey matter in the forebrain that 

processes and relays sensory information to various parts of the cerebral cortex. 

Future studies using functional magnetic resonance imaging or transcranial 

magnetic stimulation would be necessary to provide a better indication of the 

cortical structures involved. 

 

Study limitations 

 The wide range of stroke subject characteristics (Chapters 4 and 6) in time 

since injury, location of stroke, and functional level might have been a limiting 

factor in the findings of the studies. The inclusion criteria for individuals with post-

stroke hemiparesis included 1) at least six months post-onset of a single 

documented cortical insult, 2) between the ages of 18 and 85, 3) free of any 

musculoskeletal injuries or deformities, and 4) adequately able to comprehend 

our instructions. In terms of the time since injury subjects ranged from 7 to 156 

months post-onset. Therefore some individuals have lived with and learned to 

compensate for their hemiparesis whereas others were most likely still adjusting 

and trying to regain more functional abilities. The location of the insult was not 

controlled for, resulting in a pool of subjects with various impairments beyond 

hemiparesis. These impairments included motor and sensory deficits and 

aphasia. Subjects with stroke who participated in these studies had various 

functional levels. Some were able to independently rise from a chair while others 

could not. All subject characteristics were reported within each study. Finally, the 
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number of individuals tested for these experiments was only nine and seven  

subjects, respectively for Chapters 4 and 6. Although results from these 

experiments indicate a power of 0.78, a larger subject number might increase the 

power in our results. 

 A limitation in the design of the exercise machine was that the device 

involves leg extensions with the body positioned in the horizontal plane, whereas 

normal mobility tasks (i.e. standing, sit-to-stand movements, locomotion) are 

performed with upright postures. In these upright postures, the vestibular system 

assesses information about postural steadiness, involving both medial-lateral and 

anterior-posterior body sway. Therefore, vestibular feedback on the robotic 

device was different than that received while in an upright posture. While 

performing leg extensions, subjects did not have to completely stabilize their 

upper body, as the sled provided the majority of this support. The limitation of 

different vestibular feedback was outweighed by the fact that subjects could 

devote most of their attention to sensing what it felt like to produce more 

symmetric forces rather than focusing their attention on stabilizing their upper 

body. During exercise, subjects might have received sensory cues from the 

shoulder pads attached to the sled. If they are pushing asymmetrically, they 

generated a moment that is resisted by the robotic device but, in turn, might have 

produced more pressure on one shoulder than the other. This increase in 

pressure on one side might have provided additional feedback, above that of 

solely increased resistance levels that the subject was not producing the forces 

they believed they were. Pressure on one or more shoulders also may have 
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produced subject discomfort thereby producing a larger bilateral deficit during 

exercise. 

 In regards to the protocol of the experiment involving post-stroke 

individuals exercising with symmetry-based resistance factors that may have 

limited the scope of the findings include the training time and the absence of a 

control group. For the preliminary trial, the training time was limited to a one-day 

session. When subjects showed improvements pre- versus post-exercise they 

then returned to the laboratory and completed a four week training period with 

one session per week. The results from this training period demonstrate that 

exercise with symmetry-based resistance may be beneficial for a subpopulation 

of patients with stroke. These studies, however, did not compare results against 

a control group of subjects that received constant resistance training. The study 

was used as potential pilot data for a future clinical trial. We wanted to uncover 

the improvements of training with symmetry-based resistance. In addition, 

several lower limb symmetry training studies showed only minor improvements in 

task performance for control groups (Engardt et al. 1993; Cheng et al. 2001). 

Likewise these results were observed after long training sessions which range 

between 45 to 60 minutes a day, 3 to 5 days a week, for 3 to 6 weeks (Sackley 

and Lincoln 1997; Teixeira-Salmela et al. 2001; Badics et al. 2002). Therefore, 

the improvements that were seen in these control groups most likely did not 

occur within the first few training sessions. Future training studies involving 

exercise with symmetry-based resistance should address this point and add a 

control group to compare results against. 
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Recommendations for Future Work 

 The experiments in this dissertation laid the foundation for additional 

studies investigating the effects of exercise with symmetry-based resistance. 

Recommendations for future work involve longer training protocols, software 

improvements to the exercise machine, and/or adopting the symmetry-based 

resistance controller for other tasks. Overall, the work in this dissertation opens 

up the possibility of creating a larger class of computer controlled exercise 

machines that use mechanical biofeedback to improve subject performance 

during a task.  

 

Longer training protocols 

 Results from Chapter 4 of individuals with post-stroke hemiparesis training 

with symmetry-based resistance suggest that a subpopulation of these 

individuals might benefit from longer training protocols. Screening patients to 

select those who may benefit most might involve one day of symmetry-based 

resistance training and a calculation of pre- to post-exercise lower limb 

symmetry. Preliminary trials indicate that subjects who improve by greater than 

30% within the one day training session might benefit the most. Alternatively, 

screening patients based on their functional abilities might also be beneficial, 

although this was not tested in the current dissertation. 

 Longer training times have the potential to allow subjects to gain not only 

the neural benefits but also strength benefits. Current rehabilitation techniques 

involve pure strength training and/or audio/visual force feedback. The field of 
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rehabilitation could benefit from a study comparing results from groups of 

individuals with post-stroke hemiparesis participating in one of these training 

regimens. Training protocols would need to be matched for exercise time and for 

easy comparisons to existing literature should involve 45 minutes of exercise, 

three days a week for four weeks. Results from the three groups of subjects plus 

a control group receiving no additional exercise could then report on which 

type(s) of exercise, if any, produces the greatest improvements in strength, 

functional abilities, and in force scaling abilities. Likewise, results might indicate 

that one type of training provides the most benefits in the least amount of training 

time.  

 

Software improvements to exercise machine 

The performance of the hardware could be improved by software 

modifications. The most substantial improvements could be made for the isotonic 

mode. In this mode, the motor produced a constant resistance for subjects to 

exercise against. During continuous lower limb extensions the forces at the 

subject’s feet varied from the nominal value due to the inertia of both the subject 

and the sled. Because movement velocity was slow during the experiments in 

this dissertation, the resulting deviations were small compared to overall 

resistance. However, a relatively simple controller utilizing the forces measured 

by the force platform could be implemented to reduce these deviations. 

Furthermore, this improved controller design would allow for future protocols 

where these deviations may become large in relation to overall resistance. Cases  
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Figure 7.1. Improved isotonic controller. Using the PID controller, the motor 
control signal is updated to minimize error between the reference force signal 
and the actual force signal measured by the force plate. 
 
 
 
 

where this might occur include when the resistance level is low for use with 

extremely weak subjects or when subjects perform faster movements.  

The block diagram presented in Figure 7.1 illustrates the proposed 

controller for generating a more constant resistance isotonic mode. The total 

lower limb force measured at the force plate can be compared to the reference 

force to generate a force error signal. Using a PID controller, the motor torque 

could be adjusted to minimize the deviations between the force felt by the subject 

and the desired reference force.    

 

Adopting the symmetry-based resistance controller for other tasks 

The symmetry-based resistance controller has the potential to be used for 

various other training tasks. Adding the symmetry-based resistance controller to 

a body weight support system during a sit-to-stand task would provide patients 
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with the task-specific feedback necessary to potentially improve lower limb 

symmetry during movement. Implementation of the symmetry-based resistance 

controller during this task would be very similar to its implementation during lower 

limb extensions. Individual lower limb force data recorded simultaneously from 

each limb as a subject rises from a chair could be sent to the body weight 

support computer. As a subject performed the movement with symmetric lower 

limb forces, body weight support would increase thereby allowing the subject to 

perform less work. As lower limb forces became asymmetric, body weight 

support would decrease, requiring the subject to perform more work for the same 

task. Since individuals post-stroke have weaker paretic limbs, body weight 

support should not decrease past twice the maximum force capability of the 

paretic limb. As in the experiments of this dissertation, symmetry-based 

resistance is used as a means to provide subjects with information about the 

forces they are actually producing. Symmetry-based resistance might allow 

patients minimize the disparity between the forces they think they are generating 

and those they are actually producing while at the same time focus on 

maintaining their balance and upright posture during the task of rising from a 

chair. 

Another possible application of the symmetry-based resistance controller 

is during tasks such as walking with body weight support or pedaling. During 

locomotion, much like during the sit-to-stand task, body weight support would 

increase when limbs are symmetric and decrease when asymmetric. For 

pedaling, resistance would increase when limb forces become asymmetric. 
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During these tasks lower limb forces are not produced simultaneously but are out 

of phase with each other.  

Implementation of the controller for these types of tasks would need to 

overcome issues of changing from a continuous to a discrete controller. One 

such issue is how to update the symmetry-based resistance controller. An option 

is to have the controller store the most recent non-paretic limb parameters for 

half a cycle, then in real-time compare them against the paretic limb parameters 

and adjust body weight support or resistance accordingly. This solution involves 

a phase lag and it is currently unclear how much phase lag an individual with 

post-stroke hemiparesis can accept and still alter their lower limb forces in 

response to it. Storing half cycle parameters also encounters the problem that 

during tasks such as walking cycle or stride duration is different between the 

paretic and non-paretic limbs (Chen et al. 2005) and interpolation would be 

necessary. However, a symmetry-based resistance controller for these tasks 

may help to improve individuals’ lower limb symmetry and perception of forces 

generated during both pedaling and walking. 
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Chapter 8 
 

Conclusions 
 

Accomplishments 

The overall goals of this dissertation were to 1) design and build a 

computer controlled lower limb exercise machine that can be operated in a range 

of modes, 2) identify the physiological principles governing lower limb force 

asymmetry, and 3) develop and test the effects of exercise with symmetry-based 

resistance. The dissertation includes results from neurologically intact individuals 

and individuals with post-stroke hemiparesis. The main findings from the series 

of experiments in this dissertation are outlined below. 

 

Computer controlled lower limb exercise machine 

 The robotic exercise machine used a computer controlled electrical motor 

to control exercise resistance in real-time. A horizontal rack affixed to the sled 

was driven by a pinion on the motor. A dual force platform attached to the vertical 

footplate captured individual lower limb forces during movement. The device was 

successfully programmed to be operated in one of several different custom 

modes: isokinetic, isotonic, or symmetry-based resistance (Chapter 2). In 

isokinetic mode, the computer controlled resistance so that movement velocity 

was held constant over the entire lower limb extension movement. This mode
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was used to measure subjects’ isokinetic lower limb strength. During 

performance tests the peak force the motor could resist was 2310 N. Isotonic 

mode allowed subjects to perform lower limb extensions against a constant 

resistance. In symmetry-based resistance mode, the controller varied exercise 

resistance in real-time. The resistance was proportional to the amount of 

asymmetry in the subject’s foot forces thereby providing immediate information 

about force symmetry in the subject’s lower limbs.  

 

Physiological principles governing lower limb force asymmetry 

Neurologically intact subjects who have a greater than 10% force 

discrepancy in bilateral foot forces during isometric maximum voluntary 

contraction trials show similar force discrepancies during submaximal force 

matching tasks. These individuals could use both their sense of effort, or 

descending motor command, and their sense of force, or ascending sensory 

information, to control force production. Results showed that these subjects 

mainly relied on their sense of effort during isometric lower limb force production 

(Chapter 3). Electromyography results from four main lower limb muscles did not 

explain this force asymmetry and is likely a result of the inherent high variability 

in electromyograph amplitudes compared to force measures (Winter 2004).  

Individuals with post-stroke hemiparesis also demonstrated lower limb 

force asymmetries due to their paretic limb being weaker. Although these 

subjects have various degrees of motor and sensory impairments, they also have 

their descending motor command and ascending sensory information available to 
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them during force production. Results indicated that similar to neurologically 

intact subjects, subjects post-stroke mainly rely on their sense of effort during 

isometric lower limb extensions (Chapter 4). Further investigation revealed that 

control of force production in subjects with post-stroke hemiparesis is similar 

during static (isometric) and dynamic (isotonic) lower limb extensions.  

 Overall, both populations of subjects did not produce equal lower limb 

absolute forces even though they believed their forces to be equal. Furthermore, 

all subjects had the capacity to produce equal absolute forces even though they 

did not. This force asymmetry in neurologically intact subjects is much smaller 

than in individuals with post-stroke hemiparesis and likely does not affect their 

activities of daily living. For patients with stroke, however, an inability to account 

for this force asymmetry and produce the appropriate force levels with their 

paretic limb can affect their ability to be mobile and perform transfers. 

 

Effects of exercise with symmetry-based resistance 

 Neurologically intact subjects exercising with symmetry-based resistance 

were able to alter their foot forces towards a target of either 50% symmetry (i.e. 

equal foot forces) or to a target asymmetry of 33% within a one day training 

session (Chapter 5). When the necessary change in foot forces was small (~5%) 

as it was during symmetry training, this change was not maintained during a 

post-test of lower limb extensions against a constant resistance. However, when 

the percent change was large as it was during the asymmetry training (~24%), 

neurologically intact subjects were able to show carryover of training. The lower 
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limb symmetry post-test results against constant resistance demonstrated that 

subjects were able to alter their lower limb force production towards the 

asymmetry without feedback.  

 Individuals with post-stroke hemiparesis were able to slightly improve their 

lower limb symmetry during exercise with symmetry-based resistance (Chapter 

6). However, this improvement of ~15% did not result in a significant 

improvement during the post-test when the symmetry-based resistance controller 

was turned off. Subjects who did show a larger improvement (greater than 30%) 

and participated in four training sessions spread over four weeks, showed a trend 

towards improvement. After four weeks of training these subjects demonstrated 

retention of training and were able to exercise at an average of ~51% symmetry 

during the pre-test of Day 4 of training. Therefore, in a subpopulation of stroke, 

exercise with symmetry-based resistance has the potential to allow individuals to 

learn to produce the forces they think they are.  
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