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institution in charge of sciences in my country Chile.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Complex projective surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Moduli and geography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Fibrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Logarithmic surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Main results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II. Arrangements of curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Line arrangements in P2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 (p, q)-nets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Arrangements of sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 More examples of arrangements of curves. . . . . . . . . . . . . . . . . . . . 40

2.5.1 Plane curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.2 Lines on hypersurfaces. . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.3 Platonic arrangements. . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.4 Modular arrangements. . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.5 Hirzebruch elliptic arrangements. . . . . . . . . . . . . . . . . . . . 45

III. Arrangements as single curves and applications . . . . . . . . . . . . . . . . . 46

3.1 Moduli space of marked rational curves. . . . . . . . . . . . . . . . . . . . . . 46
3.2 Two proofs of the one-to-one correspondence for line arrangements. . . . . . 53
3.3 General one-to-one correspondence. . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Examples applying the one-to-one correspondence. . . . . . . . . . . . . . . . 62
3.5 Applications to (p, q)-nets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.1 (4, q)-nets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.2 (3, q)-nets for 2 ≤ q ≤ 6. . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5.3 The Quaternion nets. . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.5.4 Realizable Latin squares. . . . . . . . . . . . . . . . . . . . . . . . . 79

IV. n-th root covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1 General n-th root covers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

iv



4.2 n-th root covers for curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3 n-th root covers for surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.1 A formula for Dedekind sums. . . . . . . . . . . . . . . . . . . . . . 92
4.3.2 Pull-back of branch divisors. . . . . . . . . . . . . . . . . . . . . . . 93

4.4 (−1)- and (−2)-curves on X. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.1 Along line arrangements. . . . . . . . . . . . . . . . . . . . . . . . . 96

V. Projective surfaces vs. logarithmic surfaces . . . . . . . . . . . . . . . . . . . 99

5.1 Divisible arrangements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1.1 Example: Rational surfaces from p-th root covers. . . . . . . . . . . 103

5.2 The theorem relating Chern and log Chern invariants. . . . . . . . . . . . . . 103
5.3 Simply connected surfaces with large Chern numbers ratio. . . . . . . . . . . 110
5.4 More examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

VI. Deforming p-th root covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.1 Deformations of surfaces of general type. . . . . . . . . . . . . . . . . . . . . 122
6.2 Some general formulas for n-th root covers. . . . . . . . . . . . . . . . . . . . 126
6.3 The case of surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

VII. Further directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.1 Minimality and rigidity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 3-nets and characteristic varieties. . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3 p-th root covers over algebraically closed fields. . . . . . . . . . . . . . . . . . 140
7.4 Coverings and geometric normalizations. . . . . . . . . . . . . . . . . . . . . 145
7.5 Upper bounds for log Chern ratios of divisible arrangements. . . . . . . . . . 148

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

v



LIST OF FIGURES

Figure

2.1 Configuration in example II.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Singular fiber type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Some K(λ) sets for (complete quadrilateral, P ). . . . . . . . . . . . . . . . . . . . . 57

3.3 The five types of m-Veronese (conics) for d = 4. . . . . . . . . . . . . . . . . . . . . 63

4.1 Resolution over a singular point of Di ∩Dj . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Fibration with sections and simply connected fiber. . . . . . . . . . . . . . . . . . . 111

5.2 Some possible singularities for general arrangements. . . . . . . . . . . . . . . . . . 120

vi



CHAPTER I

Introduction

1.1 Complex projective surfaces.

Definition I.1. A variety is an integral separated scheme of finite type over C. We

call it a curve (a surface) if its dimension is one (two). A projective variety is a

variety which has a closed embedding into Pn for some positive integer n.

The main objects of this work are complex smooth projective surfaces. These

objects are studied by means of divisors lying on them. We write D =
∑r

i=1 νiDi for

a divisor D on a smooth projective surface X, where the Di are projective curves on

X and νi ∈ Z. An effective divisor has νi > 0, and it describes a one dimensional

closed subscheme in X. The line bundle defined by a divisor D is denoted by OX(D),

and the corresponding Picard group by Pic(X). If D and D′ are linearly equivalent,

we write D ∼ D′. A divisor D is called nef if for every curve Γ, we have Γ.D ≥ 0.

A distinguished divisor class in a smooth projective variety X is the canonical

class, which is defined by any divisor KX satisfying OX(KX) ' Ω
dim(X)
X . The sheaf

of differential i-forms on a smooth variety X is denoted by Ωi
X . We often use the

notation ωX := Ω
dim(X)
X .

For any two divisors D, D′ in a smooth projective surface X, we write D ≡ D′

if they are numerically equivalent. The Neron-Severi group of X is denoted by

1
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NS(X) = Pic(X)/ ≡. Some numerical invariants of X are: ρ(X) = rank(NS(X))

(Picard number), pg(X) = h2(X,OX) = h0(X,KX) (genus), q(X) = h1(X,OX)

(irregularity), Pm(X) = h0(X, mKX), m > 0 (m-th plurigenus).

Any smooth projective surface X falls in one of the following classes.

−∞) Pm(X) = 0 for all m; X is a ruled surface.

0) Pm(X) are either 0 or 1 for all m; X is birational to either a K3 surface, or an

Enriques surface, or an elliptic surface, or a bi-elliptic surface.

1) Pm(X) grows linearly in m >> 0; then, X has an elliptic fibration.

2) Pm(X) grows quadratically in m >> 0; X is called a surface of general type.

This is Enriques’ classification for algebraic surfaces. The Kodaira dimension

κ(X) of X is the maximum dimension of the image of |mKX | for m > 0, or −∞

if |mKX | = ∅ for all m > 0. This explains the indices of the previous list. We are

mainly interested on surfaces X having κ(X) = 2.

Important are the Chern classes of X, defined as c1(X) := c1(TX) and c2(X) :=

c2(TX), where TX = Ω1
X
∨

is the tangent bundle of X. These classes are related via

the Noether’s formula

12χ(X,OX) = c2
1(X) + c2(X)

which is an instance of the Hirzebruch-Riemann-Roch theorem, so independent of

the characteristic of the ground field [39, p. 433]. The invariant χ(X,OX) = 1 −

q(X) + pg(X) is called the Euler characteristic of X. For any canonical divisor KX ,

we have the equality K2
X = c1(X).c1(X) = c2

1(X).

We now use the complex topology of X to define the Betti numbers

bi(X) = rankHi(X,Z) = dimCH
i(X,C).
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Because of the Poincaré duality, they satisfy bi(X) = b4−i(X). Hence, the topological

Euler characteristic of X can be written as e(X) = 2 − 2b1(X) + b2(X). We also

have the Hodge decomposition H i(X,C) =
∑

p+q=i H
p,q(X), where Hp,q(X) :=

Hq(X, Ωp
X) and hp,q(X) = hq,p(X). Thus we have q(X) = h0(X, Ω1

X), b1(X) =

2q(X), and b2(X) = 2pg(X) + h1,1(X). Finally, it is well-known that c2(X) = e(X)

(Gauss-Bonnet formula [35, p. 435], or Hirzebruch-Riemann-Roch Theorem and

Hodge decomposition).

More subtle topological invariants of X are the intersection form on H2(X,Z) and

the topological fundamental group π1(X). Let b+ and b− be the numbers of positive

and negative entries in the diagonalized version of the intersection form over R (so

b2(X) = b+ + b−). Its signature sign(X) = b+ − b− can be expressed as (see [35])

sign(X) = 2 + 2pg(X)− h1,1(X) =
1

3

(
c2
1(X)− 2c2(X)

)
.

In particular, the Chern numbers of X are topological invariants.

However, contrary to the case of curves, the Chern numbers do not determinate the

topology of X. For example, consider X in P4 defined by
∑4

i=0 x25
i =

∑4
i=0 x50

i = 0.

By the Lefschetz theorem π1(X) = {1}. There are two natural distinct free actions

on X given by the groups Z/25Z and Z/5Z⊕Z/5Z. Therefore, the two corresponding

quotients are smooth projective surfaces with the same Chern numbers but different

fundamental groups 1.

It is known that any simply connected compact Riemann surface is isomorphic

to the complex projective line. In the case of smooth projective surfaces, simply

connectedness occurs for all Kodaira dimensions. There are several effective ways to

compute fundamental groups when κ < 2, but it becomes more difficult for surfaces

of general type. We are going to describe in Section 1.3 one well-known general tool
1This example due to Tankeev.
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for fibrations, which will be used later in this work. We will show how this tool

fits very well in p-th root covers to produce, in particular, several simply connected

surfaces of general type.

1.2 Moduli and geography.

A smooth projective surface is said to be minimal (or a minimal model) if it does

not contain any (−1)-curves (i.e., a curve E with E2 = −1 and E ' P1). It is a

classical fact that any birational class of a non-ruled projective surface has a unique

minimal model. Moreover, any smooth projective surface is obtained by performing a

finite sequence of blow ups from a minimal model in its birational class. Throughout

this section, X is a minimal smooth projective surface of general type.

After Riemann, the parameter spaces which classify objects have been called mod-

uli spaces. For smooth projective curves, we have the famous moduli space of curves

Mg [38], which is represented by a quasi-projective irreducible variety. As in the case

of curves, to talk about moduli of surfaces of general type, we fix some numerical

invariants, which are the ones preserved under flat deformations. Since KX is nef

and big, by the Riemann-Roch theorem and Kodaira vanishing theorem, we have

that Pn(X) = n(n−1)
2

c2
1(X)+χ(X,OX) for n ≥ 2. Hence, Chern numbers are natural

candidates for such invariants.

In 1977, Gieseker [32] proved that the moduli space of minimal surfaces of general

type with fixed Chern numbers (of the canonical model) exists as a quasi-projective

variety. We denote it as Mc21,c2 . This moduli space is much more complicated than

Mg. For example, the complex topology of the surfaces it classifies may be different

(as we saw in the previous section), any singularity of finite type over Z shows up

(Vakil’s Murphy’s law) (for the case of curves, because of dimension, there is no
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obstruction to deform so the only possible singularities in Mg are quotient singular-

ities), and it is highly disconnected (even more, there are diffeomorphic surfaces in

distinct connected components [60, 8]).

For any g ≥ 2, it is easy to exhibit curves of genus g. For example, there are

hyperelliptic curves. The equivalent question for the surface case is harder: for

which integers c2
1, c2 does there exist a minimal smooth projective surface X with

c2
1(X) = c2

1 and c2(X) = c2? This is the so-called “geography problem” [73].

Chern numbers have well-known classical constrains. For example, by Noether’s

formula, c2
1(X) + c2(X) ≡ 0(mod 12). Moreover, we have the following classical

inequalities:

c2
1(X) > 0, c2(X) > 0 (Castelnuovo 1905)

1
5
(c2(X)− 36) ≤ c2

1(X) (Max Noether 1875).

Less classical and more difficult is the so-called Miyaoka-Yau inequality

c2
1(X) ≤ 3c2(X)

which was proved in 1977 independently by Miyaoka [63] (for any surface of general

type) and Yau [94] (in any dimensions, assuming that Ωn
X is ample). Surfaces for

which equality holds are very special. Yau proved that c2
1(X) = 3c2(X) if and only if

X is a quotient of the unit complex ball; in particular, such surfaces are not simply

connected 2. Moreover, older results of Calabi and Vesentini [14] imply that these

surfaces are rigid, that is, they do not deform.

How could we measure the difficulty of finding surfaces of general type with fixed

Chern numbers? A tentative answer is the Chern numbers ratio
c21
c2

. Below we

mention some facts in favor to this statement.
2Yau assumed ampleness for Ω2

X , but Miyaoka proved in [64] that the assumption always holds when c21 = 3c2.
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The so-called Severi conjecture was recently proved by Pardini [72] 3. Let X be a

minimal smooth projective surface. Assume that q(X) > 0. Then, the image of the

Albanese map α : X → Alb(X) is either a smooth projective curve of genus q(X)

or a projective surface [9, pp. 61-65]. When α(X) is a surface, we say that X has

maximal Albanese dimension. Using results about the slope of fibrations, Pardini

proved that if X has maximal Albanese dimension, then 1
2
c2(X) ≤ c2

1(X). In another

words, if c2
1(X) ≤ 1

2
c2(X) and q(X) > 0, then α : X → Alb(X) is a fibration over a

smooth projective curve of genus q(X).

In general, smooth projective surfaces with c2
1(X) ≤ 2c2(X) are easy to find; for

example any complete intersection [73, pp. 203-107] satisfies this inequality. We

actually have the following theorem [73, p. 209].

Theorem I.2. (Persson, Xiao) For any pair of positive integers (c2
1, c2) satisfying

c2
1 + c2 ≡ 0(mod 12) and 1

5

(
c2 − 36

) ≤ c2
1 ≤ 2c2, there exist a minimal smooth

projective surface X of general type with c2
1(X) = c2

1 and c2(X) = c2.

The surfaces Persson and Xiao produced to prove this theorem were all genus two

fibrations, and the technique they used was double covers. Xiao actually proved that

any X admitting a genus two fibration has to satisfy c2
1(X) ≤ 2c2(X) 4.

We now move to the harder case 2c2 ≤ c2
1 ≤ 3c2. These are the surfaces with

non-negative signature. Old Italians suspected that there were no surfaces in this

range [73, p. 213]. The first opposite evidence was given around 1955 by Hirzebruch

[41], followed by concrete examples due to Borel. In [41], Hirzebruch proved that

if G is a subgroup of the automorphisms of a bounded symmetric domain D in C2

(so D is isomorphic to either B2 (the complex 2-ball) or H1 × H1 (product of two

3In [8, pp. 9-12], there is a sketch of the history of this conjecture, including the various attempts towards its
proof.

4Xiao wrote the book [91] about genus two fibrations.
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complex disks)), acting properly discontinuously and freely, then the Chern numbers

of D/G and the Chern numbers of the dual homogeneous complex manifold of D

are proportional 5. The proportionality factor is precisely the arithmetic genus of

D/G. This is the two dimensional case of the Hirzebruch Proportionality Theorem.

In particular, if D = H1 × H1 then c2
1(D/G) = 2c2(D/G); and if D = B2 then

c2
1(D/G) = 3c2(D/G). Notice that any product of two curves satisfies c2

1 = 2c2. As

we pointed out before, Yau [94] proved the converse for ratio 3, that is, any surface

of general type with c2
1(X) = 3c2(X) is a ball quotient.

Which Chern ratios are realizable in the range (2, 3)? There are various examples

of surfaces with Chern ratios in that interval. Very spectacular are the surfaces

constructed from line arrangements in P2 due to Hirzebruch [42]. In that article,

he finds surfaces satisfying c2
1 = 3c2 without the explicit construction of the group

acting on the ball. There is also a density theorem due to Sommese [80].

Theorem I.3. (Sommese) Any rational point in
[

1
5
, 3

]
occurs as a limit of Chern

ratios of smooth projective surfaces of general type.

The surfaces which occur in Sommese’s theorem have all positive irregularity.

They are simple base changes of a Hirzebruch’s example of a ball quotient that has

a fibration over a curves of genus 6. The most general theorem about geography of

surfaces is the following [7, p. 291] 6.

Theorem I.4. (Persson, Xiao, Chen) For any pair of positive integers (c2
1, c2) sat-

isfying c2
1 + c2 ≡ 0 (mod 12), the Noether and Miyaoka-Yau inequalities, there exist a

minimal smooth projective surface X of general type with c2
1(X) = c2

1 and c2(X) = c2,

except for the cases where c2
1 − 3c2 + 4k = 0 with 0 ≤ k ≤ 347. In fact, for at most

5The dual of B2 is P2, and the dual of H1 × H1 is P1 × P1

6Xiao and Chen took care of the harder case of positive signature.
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finitely many exceptions on these lines all admissible pairs occur as Chern pairs.

Hence there are still gaps as we approach 3. Why is it hard to find surfaces of

general type with Chern numbers ratio close to 3? A recent paper of Reider [75]

gives the following conceptual reason.

Theorem I.5. (Reider) Let X be a smooth projective surface with Ω2
X ample. As-

sume 8
3
c2(X) ≤ c2

1(X). Then, h1(X,TX) ≤ 9
(
3c2(X)− c2

1(X)
)
.

The geography problem becomes harder when we impose additional properties on

surfaces. We are interested in simply connected surfaces. In this situation, we have to

exclude the case c2
1 = 3c2 since they are ball quotients, and so π1 is not trivial. Around

25 years ago, Bogomolov conjectured that a simply connected smooth projective

surface of general type has negative signature [73, p. 216]. In 1984 Moishezon and

Teicher [66] presented a construction of a simply connected surface of positive index.

After that, several examples appeared, but no examples in the range

2.703c2 < c2
1 < 3c2

are known. In 1996 Persson, Peters and Xiao gave the best known results in this

direction. In [74], they found simply connected projective surfaces with Chern num-

bers ratio as large as 2.703. If we consider symplectic 4-manifolds instead, there are

simply connected examples with Chern numbers ratio arbitrarily close to 3 [4].

Question I.6. Do there exist simply connected projective surfaces X of general type

having Chern numbers ratio
c21(X)

c2(X)
arbitrarily close to 3?

One of the main purposes of this work is to show a way to encode this kind of

problems in the existence of certain arrangements of curves.
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1.3 Fibrations.

Definition I.7. Let X be a smooth projective surface and let B be a smooth pro-

jective curve. A fibration is a surjective map f : X → B with connected fibers. The

generic (smooth) fiber is denoted by F and its genus by g, which is the genus of the

fibration. A fibration is said to be

• Smooth if all the fibers are smooth.

• Isotrivial if all smooth fibers are mutually isomorphic.

• Locally trivial if it is smooth and isotrivial.

A fibration of genus zero is a ruled surface; a fibration of genus one is an elliptic

fibration, and so they are not of general type. For higher genus, we often have

surfaces with Kodaira dimension two. We notice that any projective surface can be

considered as a fibration over P1 after some blow ups, so the study of fibrations is

important for birational invariants. The proposition below is a good example, and

it is a well-known fact.

Proposition I.8. The topological fundamental group of a smooth projective surface

is a birational invariant.

We notice that any birational class has a simply connected normal projective

surface [37], and so the assumption of smoothness in Proposition I.8 is essential.

At the end of this section, we will see how to compute the fundamental group of a

fibration.

Definition I.9. A fibration is said to be relatively minimal if the fibers contain no

(−1)-curves.
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Proposition I.10. (see [7, p. 112]) Let f : X → B be a fibration of genus g. If g >

0, then f factors through a unique smooth projective surface X ′, f : X → X ′ → B,

such that X ′ → B is relatively minimal.

Proposition I.11. Let f : X → B be a relatively minimal fibration of genus g, and

let E be a (−1)-curve such that E.F > 2g − 2. Then, X is a ruled surface. Hence,

for example, a non-ruled relatively minimal elliptic fibration must have X minimal.

Proof. If g = 0, then X is ruled. So, we assume g > 0. Let σ : X → X ′ be the blow-

down of E, so X ′ is also a smooth projective surface. Let KX and KX′ be canonical

divisors for X and X ′. Let F be a smooth fibre of f and F ′ be an irreducible curve

in X ′ such that σ∗(F ′) = F +nE where n = E.F . Now, F ′.KX′ = σ∗(F ′).σ∗(KX′) =

(F + nE).(KX − E) = 2g − 2 − n < 0. Also, pa(F
′) > 0. Therefore, after finite

blow-downs, we arrive to a minimal model. Since X is non-ruled, the canonical class

is nef. In the process, the images of F cannot be blown down and the intersection

with the canonical class is always negative. So, X has to be ruled.

Let f : X → B be a fibration. Let

sing(f) = {b ∈ B : f ∗(b)is not a smooth reduced curve}.

Since we are working over C, this is a finite set of points in B (maybe empty). Over

the open set f−1(B \ sing(f)), we have the exact sequence 0 → f ∗(Ω1
B) → Ω1

X →

Ω1
X/B → 0, where Ω1

X/B ' ωX ⊗ f ∗(ω∨B).

Definition I.12. The dualizing sheaf of f is the line bundle ωX/B := ωX ⊗ f ∗(ω∨B).

Let F be any fiber of a fibration f : X → B. By Lemma 1.2 in [91, p. 1], we have

that h0(F,OF ) = 1, and so by Grauert’s theorem [39, p. 288], f∗OX = OB. Since

f is a flat map, the arithmetic genus of F is g = 1− h0(F,OF ) + h1(F,OF ), and so
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h1(F,OF ) = g. Let ω0
F be the dualizing sheaf of F . In particular, ωX/B|F ' ω0

F . By

Serre’s duality, h0(F,OF ) = h1(F, ω0
F ) = 1 and h1(F,OF ) = h0(F, ω0

F ) = g. Hence,

by Grauert’s theorem again, the sheaf f∗(ωX/B) is locally free of rank g.

Proposition I.13. (Arakelov) Let f : X → B be a relatively minimal fibration.

Then, ωX/B is nef. Moreover, ωX/B.C = 0 for a curve C iff C is a (−2)-curve (that

is, C ' P1 and C2 = −2).

Proposition I.14. (see [9]) Let f : X → B be a fibration and let F be a general

fiber. Then,

e(X) = e(B)e(F ) +
∑

b∈sign(f)

(
e(f ∗(b))− e(F )

)
.

Moreover, e(f ∗(b))− e(F ) ≥ 0 for any b ∈ sing(f).

From the Leray spectral sequence associated to f and OX (see [7, p. 13]), we have

0 → H1(B, f∗OX) → H1(X,OX) → H0(B,R1f∗OX) → H2(B, f∗OX) = 0

and since f∗OX = OB, we have h0(B,R1f∗OX) = q(X) − b. By duality, f∗ωX/B =

R1f∗OX
∨

and so h1(B,R1f∗OX) = h0(B, f∗ωX) = pg(X). Then, by the Riemann-

Roch theorem,

χ(B, R1f∗OX) = h0(B,R1f∗OX)− h1(B,R1f∗OX) = deg(R1f∗OX) + g(b− 1)

and so deg(f∗ωX/B) = χ(X,OX)− (g − 1)(b− 1).

Proposition I.15. (Fujita) deg(f∗ωX/B) ≥ 0.

Proof. We have ωX/B.ωX/B = K2
X − 8(g − 1)(b− 1) ≥ 0 (by Prop. I.13) and e(X)−

e(F )e(B) ≥ 0 (by Prop. I.14). Also, we know that deg(f∗ωX/B) = χ(X,OX)− (g −

1)(b− 1). So, we apply Noether’s formula to obtain the result.
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This gives us the main invariants of a fibration: χf := χ(X,OX)− (g− 1)(b− 1),

K2
f := K2

X − 8(g − 1)(b − 1), and ef := e(X) − 4(g − 1)(b − 1). The idea now is

to obtain the analog of the geography for smooth projective surfaces for fibrations.

The following is the main ingredient; it was proved by Xiao [92] 7.

Proposition I.16. (Xiao) Let f : X → B a relatively minimal fibration of genus

g ≥ 2. Then, K2
f ≥ 4(g−1)

g
χf .

Therefore, for a relatively minimal fibration of genus g ≥ 2, we have K2
f + ef =

12χf , K2
f ≥ 0, ef ≥ 0, χf ≥ 0, 4(g−1)

g
χf ≤ K2

f ≤ 12χf . The extremal cases are

characterized as follows.

• (Arakelov) K2
f = 0 iff f is isotrivial.

• ef = 0 iff f is smooth (i.e., a Kodaira fibration)

• (Konno [54, Prop. 2.6]) If f is not locally trivial and 4(g−1)
g

χf = K2
f , then all

smooth fibers of f are hyperelliptic curves 8.

For a non-locally trivial relatively minimal fibration f : X → B, Xiao defined the

slope of f as

λf :=
K2

f

χf

.

One of the main problems is to understand how properties of the general fiber affect

the slope. Several results in this direction can be found in [3]; for a recent work

see [20]. Some consequences of the study of fibrations are the proof of the Severi

conjecture [72], and the computation of relevant intersection numbers for M g (see

[19, 83]).

7In [19], Cornalba and Harris proved the inequality for the special case of semi-stable fibrations, mainly oriented
to curves in Mg .

8This was conjectured by Xiao in [92].
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As explained at the beginning of this section, the fundamental group of a fibration

is important in the study of the fundamental group of any surface. Below we show a

well-known basic tool to compute this group for a fibration, following Xiao [93, pp.

600-602].

Let f : X → B be a fibration. Let F = f−1(b) with b ∈ B \ sing(f). Hence, the

inclusion F ↪→ X induces a homomorphism π1(F ) → π1(X). Let Vf be the image of

this homomorphism. We call it the vertical part of π1(X).

Lemma I.17. The vertical part Vf is a normal subgroup of π1(X), and is independent

of the choice of F .

The horizontal part of π1(X) is Hf := π1(X)/Vf , and so we have

1 → Vf → π1(X) → Hf → 1.

Let F be now any fiber of f , we write F = f ∗(b) =
∑n

i=1 µiΓi for some positive

integers µi. The multiplicity of F is m = gcd(µ1, . . . , µn). We say that F is a

multiple fiber of f if m > 1. Let {x1, . . . , xs} be the images of all the multiple

fibers of f (it may be empty), and {m1, . . . , ms} the corresponding multiplicities.

Let B′ = B \ {x1, . . . , xs}, and let γi a be small loop around xi. Then, there are

generators α1, . . . , αb, β1, . . . , βb such that

π1(B
′) ' 〈α1, . . . , αb, β1, . . . , βb, γ1, . . . , γs : α1β1α

−1
1 β−1

1 · · ·αbβbα
−1
b β−1

b γ1 · · · γs = 1〉.

Lemma I.18. The horizontal part Hf is the quotient of π1(B
′) by the normal sub-

group generated by the conjugates of γmi
i for all i.

Lemma I.19. Let F be any fiber of f with multiplicity m. Then the image of π1(F )

in π1(X) contains Vf as a normal subgroup, whose quotient group is cyclic of order

m, which maps isomorphically onto the subgroup of Hf generated by the class of a
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small loop around the image of F in B. In particular, Vf is trivial if f has a simply

connected fiber.

The immediate consequence of these lemmas is the following.

Corollary I.20. If f has a section, then 1 → Vf → π1(X) → π1(B) → 1. Moreover,

if f has a simply connected fiber, then π1(X) ' π1(B).

In [93], one can find general results about the fundamental group of elliptic and

Hyperelliptic fibrations.

1.4 Logarithmic surfaces.

Definition I.21. Let X be a smooth complete variety, and let D be a simple normal

crossings divisor on X (as defined in [55, p. 240], abbreviated SNC). A log variety

is a smooth variety U of the form U = X \D. We refer to U as the pair (X,D). We

call it log curve (surface) if its dimension is one (two).

Any smooth non-complete variety X0 is isomorphic to a log variety (see [48, Ch.

11], the main ingredient is Hironaka’s resolution of singularities). We do not want to

consider X0 as a member of its birational class, but rather as a pair (X, D) such that

X0 ' X \D. We modify the usual invariants of X0 into the logarithmic invariants of

the pair (X, D), which we will describe below. This will take X0 out of its birational

class, creating a whole new world of log varieties, in where the “class” of X0 depends

heavily on the “geometry” of D (what matters here is D or a divisor whose log

resolution is D, and not its linear class). Iitaka, Sakai, Kobayashi, and Miyanishi

among others have systematically studied log varieties, mainly in the case of surfaces

(e.g., see [46], [76], [47], [51] and [62]).

Let (X,D) be a log variety. The analogue of a canonical divisor will be KX + D.
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It comes from the following modification on the sheaf of differentials of X, due to

Deligne [21], which keeps track of D.

Definition I.22. [48, p. 321] Let X be a smooth complete variety, and let D be

a SNC divisor on X. The sheaf of logarithmic differentials along D, denoted by

Ω1
X(log D), is the OX-submodule of Ω1

X ⊗OX(D) satisfying

(i) Ω1
X(log D)|X\D = Ω1

X\D.

(ii) At any closed point P of D,

ωp ∈ Ω1
X(log D)P iff ωp =

∑s
i=1 ai

dzi

zi
+

∑dim(X)
j=s+1 bjdzj,

where (z1, . . . , zdim(X)) is a local system around P for X, and {z1 · · · zs = 0}

defines D around P .

Hence Ω1
X(log D) is a locally free sheaf of X of rank dim(X). We define Ωq

X(log D) :=

∧q Ω1
X(log D) for any 0 ≤ q ≤ dim(X) (being Ω0

X(log D) = OX). Since

dz1

z1

∧ · · · ∧ dzs

zs

∧ dzs+1 ∧ · · · ∧ dzdim(X) =
1

z1 · · · zs

dz1 ∧ · · · ∧ dzdim(X),

we have Ω
dim(X)
X (log D) ' OX(KX + D).

Definition I.23. For any integer m > 0, the m-th logarithmic plurigenus of the

log variety (X, D) is P̄m(X, D) := h0(X, m(KX + D)). When m = 1, we call it

logarithmic genus of (X,D), denoted by p̄g(X,D). The logarithmic Kodaira dimension

of (X, D) is defined as the maximum dimension of the image of |m(KX + D)| for all

m > 0, or −∞ if |m(KX + D)| = ∅ for all m. It is denoted by κ̄(X,D).

The following are two conceptually interesting theorems for log varieties.

Theorem I.24. (see [47], [62, p. 60]) Let X0 be an smooth non-complete variety.

Let (X, D) be any log variety such that X0 ' X \ D. Then, the mth logarithmic
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plurigenus of (X, D) is a well-defined invariant of X0, i.e., for any other such pair

(X ′, D′) we have P̄m(X, D) = P̄m(X ′, D′). In particular, there is a well-defined

logarithmic Kodaira dimension of X0.

Theorem I.25. (Deligne [22]) Let (X,D) be a log variety. Then, we have the

logarithmic Hogde decomposition

H i(X \D,C) ' ⊕
p+q=i H

p(X, Ωq
X(log D)).

Example I.26. (Logarithmic curves) Let (X,D) be a log curve, i.e., X is a smooth

projective curve and D =
∑r

i=1 Pi a finite sum of distinct points. Then, (X, D) is

classified in the following table. We include the complete cases, when D = ∅.

κ(X,D) (X,D) p̄g(X, D)

−∞ P1, A1 0

0 elliptic curve, A1 \ {0} 1

1 ≥ 1

For the case of curves, the log classification tells us about the uniformization of

the corresponding log curve, being D the branch divisor for the uniformizing map.

Important invariants for log varieties are the following.

Definition I.27. The logarithmic Chern classes of the log variety (X, D) are defined

as c̄i(X, D) = ci(Ω
1
X(log D)

∨
) for 1 ≤ i ≤ dim(X).

Let (X, D) be a log surface. In particular, X is a smooth projective variety and

D =
∑r

i=1 Di, where Di are smooth projective curves and D has at most nodes

as singularities. We define the logarithmic irregularity of (X, D) as q̄(X,D) :=

h0(X, Ω1
X(log D)). As in the projective case, we have the log Chern numbers

c̄2
1(X, D) = (KX + D)2 and c̄2(X, D) = e(X)− e(D),
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and the corresponding log Chern numbers ratio
c̄21(X,D)

c̄2(X,D)
, whenever c̄2(X,D) 6= 0. The

second formula is derived from the Hirzebruch-Riemann-Roch theorem [46, p. 6].

Let us consider the corresponding geography problem for log surfaces. In [76],

Sakai studied the logarithmic pluricanonical maps and corresponding logarithmic Ko-

daira dimensions for log surfaces. Moreover, he proved the analogue of the Miyaoka-

Yau inequality when D is a semi-table curve (i.e., D is a SNC divisor and any P1 in

D intersects the other components in more than one point).

Theorem I.28. ([76, Theorem 7.6]) Let (X,D) be a log surface with D semi-stable.

Suppose κ̄(X,D) = 2. Then, c̄2
1(X, D) ≤ 3c̄2(X,D).

This theorem is proved using Miyaoka’s proof of his inequality. The analytic Yau’s

point of view was used by Kobayashi. In [51], he proves the same inequality, under

the assumptions c̄2
1(X, D) > 0 and KX + D nef. The additional point here is that,

in this case, c̄2
1(X, D) = 3c̄2(X, D) if and only if the universal covering of X \ D is

biholomorphic to the complex ball B2 [51, p. 46]. This is quite interesting, because

it classifies divisors that produce open ball quotients. It turns out that they are very

special. For concrete examples for which equality holds, see [76, p. 118].

We also have a density theorem due to Sommese [80, Remark 2.4], whose proof

applies again the base change “trick” in Theorem I.3, considering D as a collection

of fibers.

Theorem I.29. (Sommese) Let Ut be the set of all log surfaces (X, D) such that D

has t connected components and KX + D is ample. Then, the set of limits of the log

Chern ratios
c̄21(X,D)

c̄2(X,D)
, where (X, D) ∈ Ut, contains [1

5
, 3].
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1.5 Main results.

For surfaces, geography and logarithmic geography seem to behave in a similar

way. One of the main results of this thesis is to give a concrete strong relation

between them.

Theorem V.2. Let Z be a smooth projective surface over C, and let A be a

simple crossings divisible arrangement on Z (Definition V.1). Let (Y,A′) be the log

surface associated to (Z,A) (see Section 2.1), and assume e(Y ) 6= e(A′). Then, there

exist smooth projective surfaces X with
c21(X)

c2(X)
arbitrarily close to

c̄21(Y,A′)
c̄2(Y,A′) .

This result can be used to construct smooth projective surfaces with exotic prop-

erties from log surfaces, equivalently, from arrangements of curves. It turns out that

log surfaces with interesting properties are somehow easier to find (e.g. we will see

that line arrangements in P2 give many examples). Our method is based on the p-th

root cover tool introduced by Esnault and Viehweg (see [29]). We first find Chern

numbers in relation to log Chern numbers, Dedekind sums and continued fractions.

Then, we exploit a large scale behavior of the Dedekind sums and continued fractions

to find “good” weighted partitions of large prime numbers. These partitions, which

come from what we call divisible arrangements, produce the surfaces X in Theorem

V.2.

We also show that random choices of these weighted partitions are “good”, with

probability tending to 1 as p becomes arbitrarily large. An interesting phenomena is

that random partitions are necessary for our constructions, if we want to approach

to the log Chern numbers ratio of the corresponding arrangement. We put this in

evidence by examples, using a computer program that calculates the exact values of

the Chern numbers involved (see Section 5.3 for a sample).
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The following corollary is a sort of uniformization for minimal surfaces of general

type via Chern numbers ratio ≈ 2. The proof of this corollary uses indeed random

partitions.

Corollary V.4. Let Z be a smooth minimal projective surface of general type

over C. Then, there exist smooth projective surfaces X, and generically finite maps

f : X → Z of high degree, such that

(i) X is minimal of general type.

(ii) The Chern numbers ratio
c21(X)

c2(X)
is arbitrarily close to 2.

(iii) q(X) = q(Z).

One of the properties of the construction is that the geometry of A controls some

invariants of the new surfaces X, for certain arrangements of curves. For example,

we may control their irregularity (Kawamata-Viehweg vanishing theorem) and their

topological fundamental group. In Section 5.3, we use our method to find simply

connected surfaces X of general type with large
c21(X)

c2(X)
, coming from arbitrary line

arrangements in P2
C (Proposition V.6). In particular, we produce simply connected

surfaces X with
c21(X)

c2(X)
arbitrarily close to 8

3
. They correspond to the dual Hesse

arrangement. Furthermore, we prove in Proposition II.8 that this arrangement gives

the largest possible value for the Chern numbers ratio of X (in Theorem V.2) among

all line arrangements, and it is the only one with that property. The proof relies on

the Hirzebruch’s inequality for complex line arrangements [42, p. 140] 9.

Proposition II.8. Let A be an arrangement of d lines on P2
C, and assume that no

d−1 lines pass through a common point. Then, c̄2
1(Y,A′) ≤ 8

3
c̄2(Y,A′). Moreover, the

9We notice that this was found by Sommese in [80], without mentioning the dual Hesse arrangement as the only
case for equality. He used the point of view of Hirzebruch [42].
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equality holds if and only if A is (projectively equivalent to) the dual Hesse arrange-

ment. In particular, the surfaces X corresponding to the dual Hesse arrangement

have the best possible Chern numbers ratio (i.e. closest to 3) for line arrangements

in P2
C.

Is this bound 8
3

a restriction for general divisible arrangements? In Section 7.5 we

provide a short discussion around this issue. In positive characteristic, as one may

expect, we have different restrictions for log Chern numbers (see Proposition VII.9).

By using some facts about algebraic surfaces, we have found formulas involv-

ing Dedekind sums and continued fractions 10. Relations between them are well-

documented (see for example [5], [96], [45], [34]). These objects, which have ap-

peared repeatedly in geometry (see for example [44]), play a fundamental role in the

construction of the surfaces X. In algebraic geometry, they naturally arise when con-

sidering the Riemann-Roch theorem and resolution of Hirzebruch-Jung singularities.

The proofs of these relations are based on the Noether’s formula, and a rationality

criteria for smooth projective surfaces. Definitions and notations can be found in

the Appendix.

Proposition IV.13 and Subsection 5.1.1. Let p be a prime number and q be

an integer such that 0 < q < p. Let p
q

= [e1, e2, . . . , es]. Then,

12s(q, p)−∑s
i=1 ei + 3s = q+q′

p
and s(q, p) = s(q + 1, p) + s(q′ + 1, p) + p−1

4p
.

Since we are encoding the existence of smooth projective surfaces into the exis-

tence of certain pairs (Z,A), it is important for us to know more about them. We

study arrangements of curves A on a fixed surface Z. We first see that there are

combinatorial restrictions for them to exist. For example, in P2 two lines intersect

10We notice that this formula was found by Holzapfel in [45, Lemma 2.3], using the original definition of Dedekind
sums via Dedekind η-function.
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at one point. I n general, it is often not difficult to satisfy these type of conditions

(i.e., thinking combinatorially about A), but it is hard to decide whether we can

realize A in Z (i.e., to prove or disprove its existence). There are more constrains,

as it was shown by Hirzebruch [42, p. 140]. His inequality is a reformulation of the

Miyaoka-Yau inequality plus some results of Sakai [76]. The extra restrictions for

existence depend on the field of definition of A. For example, the Fano arrangement

(seven lines with only triple points on P2) exists only in char 2, the Hesse arrange-

ment exists over C but not over R, Quaternion (3, 6)-nets (see below) do not exist

in char 2 but they do exist over C.

Our second main result is to show a one-to-one correspondence which translates

the question of existence of certain arrangements of curves into the question of ex-

istence of a single curve in projective space. We first study line arrangements in

P2 via the moduli spaces of genus zero marked curves M0,d+1. These spaces have a

wonderful description due to Kapranov [50] and [49]. Using Kapranov construction,

we prove that an arrangement of d lines in P2 corresponds to one line in Pd−2. The

precise result is the following.

Proposition III.6. There is a one-to-one correspondence between pairs (A, P )

up to isomorphism, where A is an arrangement of d lines in P2 and P is a point

outside of A, and lines in Pd−2 outside of a certain fixed arrangement of hyperplanes

Hd. This correspondence is independent of the field of definition.

We also provide an elementary proof of Proposition III.6 in Section 3.2. Local

properties of this correspondence and the particular construction of Kapranov, allow

us to prove the following more general theorem.

Let d ≥ 3 be an integer. Let C be a smooth projective curve and let L be a
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line bundle on C with deg(L) > 0. Let Ad be the set of all isomorphism classes

of arrangements A(C,L) which are primitive (Definition II.16) and simple crossings

(i.e., any two curves in A(C,L) intersect transversally). On the other hand, let Bd

be the set of irreducible projective curves B in Pd−2 that are birational to C, locally

factor in smooth branches which are transversal to the hyperplanes of Hd, and satisfy

that, if H is a hyperplane in Pd−2 and ν : C → B is the normalization of B, then

L ' OC(ν∗(H ∩B)).

Theorem III.10. There is a one-to-one correspondence between Ad and Bd.

One good thing about this correspondence is that it involves directly the spaces

M0,n, giving a recipe to find lots of curves in M0,n from arrangements A. The con-

struction of curves in these spaces is an important issue around Fulton’s conjecture,

in particular rigid curves. We intend to use it for that purpose in the future.

Coming back to lines in P2, this correspondence gives an effective way to prove or

disprove the existence of line arrangements. Moreover, it allows us to have a concrete

parameter space for line arrangements with fixed combinatorial data (given by the

intersections of the lines) in the corresponding Grassmannian of lines. To eliminate

the “artificial” point P in the pair (A, P ), we take P in A and consider the new pair

(A′, P ) with A′ equal to A minus the the lines through P . Hence, the lines in Pd′−2

(where d′ = |A′|) corresponding to (A′, P ) give us the parameter space for A.

We use this correspondence to find new line arrangements, and in doing so, we

classify (3, q)-nets for 2 ≤ q ≤ 6. In general, (p, q)-nets are particular line arrange-

ments (with long history [23]). They can be thought as the geometric structures of

finite quasigroups. Recently, they have appeared in the work of Yuzvinsky (see [95]),

where they play a special role in the study of the cohomology of local systems on
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the complements of complex line arrangements (see Section 7.2). On the other hand,

some of them are key examples in the construction of extremal surfaces X. These

arrangements are in one-to-one correspondence with certain special pencils in P2. If

we consider them without ordering their lines, (3, q)-nets are in bijection with the

main classes of q × q Latin squares [23]. These main classes are known for q < 11.

Subsection 3.5.2. Only nine of the twelve main classes of 6 × 6 Latin squares

are realized by (3, 6)-nets in P2 over C. There exists an explicit parametrization of

these nine cases, giving the equations of the lines. Among them, we have four three

dimensional and five two dimensional families, some of them define nets only over C,

for others we have nets over R, and even for one of them over Q.

This brings a new phenomena for 3-nets, since for example all main classes are

realizable for 2 ≤ q ≤ 5. It was expected that their parameter spaces have the same

dimension, but we found that this is not true for q = 6. In [81], it is noticed that with

current methods, it is hard to decide which (3, q)-nets can be realized on P2. Our

tool seems to organize much better the information to actually compute them. To

show that our method does indeed work, we take the 8× 8 main class corresponding

to the Quaternion group, and we prove that the corresponding (3, 8)-nets exist and

form a three dimensional family defined over Q (Subsection 3.5.4). The new cases

corresponding to the symmetric and Quaternion groups show that it is also possible

to obtain 3-nets from non-abelian groups (in [95], Yuzvinsky conjectured that 3-nets

only existed for certain abelian groups). In this way, we left the following question

open: find a characterization for the main classes of Latin squares which realize

3-nets on P2
C.

The core of our work is in the articles [87] and [86]. We will not refer to them in
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this thesis. Our purpose is to develop the ideas and proofs of these articles in more

detail. We include in Chapter VI our first steps towards deformations of the surfaces

X of Theorem V.2. Deformations may help to to understand potential restrictions

to obtain surfaces with Chern numbers ratio close to the Miyaoka-Yau bound. In

addition, Deformations may reveal properties for certain surfaces, such as minimality

and rigidity (see Section 7.1).



CHAPTER II

Arrangements of curves

In this Chapter, we define arrangements of curves, and we show various examples

of them. We put emphasis on the realization of an incidence by means of an arrange-

ment, and on formulas and restrictions for logarithmic Chern numbers. Sections 2.2

and 2.4 form the base for the one-to-one correspondence between arrangements and

single curves, which will be developed and proved in Chapter III. In Section 2.3,

we introduce very special line arrangements, which are called nets. We will use our

one-to-one correspondence to classify, in Section 3.5, (3, q)−nets for 2 ≤ q ≤ 6, and

the Quaternion nets. Nets provide good examples for the realization problem, for

non-trivial incidences (via Latin squares) and their corresponding parameter spaces,

and for extreme logarithmic Chern numbers. Nets are also important to under-

stand certain invariants of the fundamental group of the complement of complex line

arrangements (this is explained in Section 7.2).

2.1 Definitions.

Definition II.1. Let Z be a smooth projective surface, and let d ≥ 3 be a positive

integer. An arrangement of curves A in Z is a collection of smooth projective curves

{C1, . . . , Cd} such that
⋂d

i=1 Ci = ∅. An arrangement is said to be defined over a

field K if all Ci are defined over K. Two arrangements A = {C1, . . . , Cd} and A′ =

25
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{C ′
1, . . . , C

′
d} are said to be isomorphic if there exists an automorphism T : Z → Z

such that T (Ci) = C ′
i for all i.

We notice that with this definition of isomorphism, what matters is how the

arrangement lies on Z, and also the order of its curves. We will consider A as the

set {C1, . . . , Cd}, or as the divisor C1 + . . . + Cd, or as the curve
⋃d

i=1 Ci. The most

important arrangements for us are the following.

Definition II.2. An arrangement of curves A in Z is said to be simple crossings if

any two curves of A intersect transversally. For 2 ≤ k ≤ d− 1, a k-point is a point

in A =
⋃d

i=1 Ci which belongs to exactly k curves. The number of k-points of A is

denoted by tk.

Definition II.3. Let e be a positive integer. An incidence of order (d, e) is a pair

of sets (A,X ) of cardinalities d and e respectively, such that for each element of

X (points) we associate k elements of A (curves), for some k ∈ {2, 3, . . . , d}. An

incidence is denoted by I(d, e), or I when the pair (d, e) is understood or not relevant.

Classical examples of incidences are the so-called abstract (aα, bβ)-configurations

(see for example [24] or [36]). In [40], Hilbert encodes the incidence of certain (po-

tential) line arrangements A in P2 by means of a matrix where columns are points

in A and entries are labelled lines, indicating which lines are required to pass trough

a common point. There are several ways to represent an incidence. For example, we

will use Latin squares to encode incidences for nets. Of course, an incidence wants to

model part of the intersections for an arrangement of curves. What happens is that

we can often think of an arrangement abstractly, by only giving an incidence of d

“pseudo” curves, and then we ask if the incidence can be realized as an arrangement
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of curves in Z. We will consider only simple crossings arrangements as answers. In

this way, we keep the incidence information simple enough.

Definition II.4. Let I be an incidence of order (d, e). We say that I is realizable

in Z over K if there exists a simple crossings arrangement of d curves defined over a

field K satisfying I. The set of isomorphism classes of simple crossing arrangements

of d curves over K satisfying I is denoted by M(I,K).

Notice that, according to our definition, an incidence does not determine all the

intersections of the possible arrangement. This will be evident when we consider nets

on P2.

Let A = {C1, . . . , Cd} be a simple crossings arrangement on Z. We now want

to describe the open variety Z \ A from the log point of view. To this end, we

consider the surface Y which is the blow-up at all the k-points of A with k ≥ 3.

Let σ : Y → Z be the corresponding birational map, and let A′ be the reduced

total transform of A under σ. Hence, it includes the exceptional divisors over the

(k ≥ 3)-points. Consider A′ as an arrangement on Y . Then, (Y,A′) is a log surface

(Definition I.21). We refer to it as the associated pair to (Z,A). We can easily

compute the logarithmic Chern numbers of this pair with respect to (Z,A):

c̄2
1(Y,A′) = c2

1(Z)−
d∑

i=1

C2
i +

∑

k≥2

(3k − 4)tk + 4
d∑

i=1

(g(Ci)− 1)

and

c̄2(Y,A′) = c2(Z) +
∑

k≥2

(k − 1)tk + 2
d∑

i=1

(g(Ci)− 1).

We will be interested in extremal arrangements, in the sense that we want the log

Chern numbers ratio of (Y,A′) be as close as possible to 3. Having this in mind, we
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define for every simple crossings arrangement A having c̄2(Y,A′) 6= 0, the error of

(Z,A) as E(Z,A) =
3c̄2(Y,A′)−c̄21(Y,A′)

c̄2(Y,A′) , and so

E(Z,A) =
3c2(Z)− c2

1(Z) +
∑d

i=1 C2
i +

∑
k≥2 tk + 2

∑d
i=1(g(Ci)− 1)

c2(Z) +
∑

k≥2(k − 1)tk + 2
∑d

i=1(g(Ci)− 1)
.

Remark II.5. We want to have this ratio close to 3 from below, in accordance to a log

Miyaoka-Yau inequality. For example, it is well-known that a K3 surface can have at

most 16 disjoint rational smooth curves, with equality if and only if it is a Kummer

surface [69]. Let Z be any Kummer surface, and let A be the arrangement formed

by the 16 disjoint (−2)-curves. Then, c̄2
1 = −32 and c̄2 = −8. Hence

c̄21
c̄2

= 4. In

this way, we see that not any arrangement works for this Miyaoka-Yau point of view.

However, in our constructions of surfaces of general type, we will use arrangements

for which log Miyaoka-Yau inequality holds.

2.2 Line arrangements in P2.

In this section Z = P2, and d ≥ 3. Let A = {L1, . . . , Ld} be an arrangement of

lines in P2. It is a simple crossings arrangement. The study of line arrangements is an

old subject (more than 100 years old) with a huge bibliography. For the importance

it had back then, one can check [40].

An incidence I has a chance to be realized as a line arrangement if it does not

violate the statement: two lines intersect at one point. In general this type of

restriction comes from the Picard group of Z. For line arrangements, we also have

the combinatorial fact

d(d− 1)

2
=

∑

k≥2

k(k − 1)

2
tk,

being the unique linear equation on tk’s that they satisfy. This is of course field

independent.
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More subtle restrictions come from the field of definition. The following is a

non-trivial constraint for line arrangements defined over C due to Hirzebruch [42, p.

140]1. If td−1 = 0 (td = 0 is always assumed), then

t2 +
3

4
t3 ≥ d +

∑

k≥5

(k − 4)tk.

For example, it says that there are no complex line arrangements without 2- and

3- points. This inequality is also used to disprove the realization of certain incidences.

A well-known example is the Fano arrangement which is defined only over fields of

characteristic 2. It has 7 lines, t3 = 7, and tk = 0 otherwise. One easily checks that

the inequality above is violated by the Fano arrangement.

Over the real numbers, any line arrangement must have a 2-point (Gallai 1933).

Moreover, we have the harder lower bound t2 ≥
[

d
2

]
for any real line arrangement

[42, p. 115]. This is no longer true over C, as it is shown by the following examples.

Example II.6. (Fermat arrangements) The Fermat arrangement is defined by (xn−

yn)(yn − zn)(zn − xn) = 0. The name is because this arrangement is exactly the

singular locus of the pencil u(xn − yn) + t(yn − zn) = 0, where all the non-singular

members are isomorphic to Fermat curve xn + yn + zn = 0. For n = 1 we have a

triangle. For n = 2 we have the complete quadrilateral of 6 lines, which has t2 = 3,

t3 = 4 and tk = 0 otherwise. For n = 3, this is the dual Hesse arrangement having

t3 = 12 and tk = 0 otherwise. For n ≥ 4, we have tn = 3, t3 = n2 and tk = 0

otherwise. We see that for n ≥ 3, a Fermat arrangement cannot be defined over R.

Example II.7. (Klein arrangement) The simple group of order 168 acts on P2. It

has 21 involutions, each leaving a line fixed. The arrangement of these 21 lines is

called the Klein arrangement (Klein 1879). A nice description of it can be found in

1This inequality is actually due to Sakai and Hirzebruch. In [42], Hirzebruch found this inequality with 3
4

replaced
by 1. At the end of his paper, by using a result of Sakai, he was able to improve it.
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[13]. It has t3 = 28, t4 = 21 and tk = 0 otherwise.

We also have the following analogue of the Hirzebruch inequality due to Iitaka

[46], which holds for arrangements strictly defined over R, and is much easier to

prove2,

t2 ≥ 3 +
∑

k≥4

(k − 3)tk.

Proof. Let A = {L1, . . . , Ld} be an arrangement of lines in P2
R. We use that P2

R is

a 2- dimensional real manifold, and any A defines a cell structure. Let pk be the

number of 2-cells bounded by k-gons. In this way, p2 = 0, since we never consider

the trivial arrangement. As in [42, p. 115], let f0 be the number of vertices, f1 the

number of edges, and f2 the number of 2-cells defined by the arrangement A. Then,

f0 =
∑

k≥2 tk, f1 = 1
2

∑
k≥2 2ktk = 1

2

∑
k≥2 kpk, and f2 =

∑
k≥2 pk. On the other

hand,

f0 − f1 + f2 = e(P2
R) = 1.

We re-arrange the terms of the previous equation, to obtain

∑

k≥2

(k − 3)pk = −3−
∑

k≥2

(k − 3)tk.

Notice that the right-hand side is positive. The inequality follows. Notice that

equality holds if and only if pk = 0 for k ≥ 4. In that case, the arrangement is called

simplicial.

The log Chern numbers and the error associated to (P2,A) are

c̄2
1(Y,A′) = 9− 5d +

∑
k≥2(3k − 4)tk and c̄2(Y,A′) = 3− 2d +

∑
k≥2(k − 1)tk

and

E(P2,A) =

∑
k≥2 tk − d

3− 2d +
∑

k≥2(k − 1)tk
.

2Iitaka erroneously claimed that the inequality holds for any complex line arrangement. This error was noticed
before [42, p. 136].
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In [46], Iitaka studies various properties of the associated log surfaces. For ex-

ample, he shows that almost all of these varieties are of log general type, that is,

κ̄(Y,A′) = 2.

The following inequality imposes a restriction to the log Chern numbers corre-

sponding to line arrangements, and it shows which are the extremal cases. The

proof relies on the Hirzebruch inequality.

Proposition II.8. Let A be an arrangement of d lines in P2 over C (td = 0 as

always). Then,

∑
k≥2(4− k)tk ≥ 3 + d

with equality if and only if A is isomorphic to the dual Hesse arrangement or td−1 = 1

or d = 3. This inequality is equivalent to
c̄21(Y,A′)
c̄2(Y,A′) ≤ 8

3
for all allowed pairs (P2,A),

and so equality holds if and only if A is isomorphic to the dual Hesse arrangement.

Proof. First notice that when d = 3 or td−1 = 1 (and so t2 = d−1), we have equality.

Therefore, we assume td = td−1 = 0 and d > 3. Then, from [42] we have

t2 +
3

4
t3 ≥ d +

∑

k≥5

(k − 4)tk

and so it is enough to prove t2 + 1
4
t3 ≥ 3. The proof goes case by case. Suppose

t2 + 1
4
t3 < 3. Its possible non-negative integer solutions are (t2, t3) = (0, 0), (1, n)

for n = 0, . . . , 7 and (2, n) for n = 0, . . . , 3. By using the combinatorial equality

d(d−1)
2

=
∑

k≥2
k(k−1)

2
tk and Hirzebruch inequality, we easily check that none of them

are possible.

Assume we have equality, i.e.,
∑

k≥2(4 − k)tk = 3 + d and we do not have d = 3

or td−1 = 1. Then, by Hirzebruch inequality, t2 + 1
4
t3 = 3. Its possible solutions

are (t2, t3) = (3, 0), (2, 4), (1, 8), (0, 12). Easily one checks that the first three are not
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possible. So, t2 = 0, t3 = 12 and, by Hirzebruch inequality again, d ≤ 9. By the

combinatorial equality, d = 9 and tk = 0 for all k 6= 3. Write A = {L1, L2, . . . , L9}

such that L1∩L2∩L3 is one of the twelve 3-points. Since over any line of A there are

exactly four 3-points, there is a 3-point outside of L1 ∪ L2 ∪ L3. Say L4 ∩ L5 ∩ L6 is

this point, then L7∩L8∩L9 gives another 3-point. This gives a (3, 3)-net with three

special members {L1, L2, L3}, {L4, L5, L6} and {L7, L8, L9}. One can prove that

this (3, 3)-net is unique up to projective equivalence (see for example [87]). This is

isomorphic to the dual Hesse arrangement.

In [80, p. 220], Sommese proves almost the same statement in the spirit of the

Hirzebruch’s coverings [42]. Notice that there are several simplicial arrangements

satisfying the Iitaka equality for real arrangements (see [42, pp. 116-118]), but the

previous equality is satisfied by only one nontrivial arrangement, the dual Hesse

arrangement.

Is the previous inequality a topological fact as the Iitaka inequality for real arrange-

ments? In general, the question is: are log Miyaoka-Yau inequalities topological facts

of the underlying surface?

2.3 (p, q)-nets.

We now introduce a special type of line arrangements in P2 which are called nets.

Our references are [23], [81] and [95]. We start with the definition of a net taken

from [81].

Definition II.9. Let p ≥ 3 be an integer. A p-net in P2 is a (p+1)-tuple (A1, ...,Ap,X ),

where each Ai is a nonempty finite set of lines of P2 and X is a finite set of points

of P2, satisfying the following conditions:

(1) The Ai’s are pairwise disjoint.
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(2) The intersection point of any line in Ai with any line in Aj belongs to X for

i 6= j.

(3) Through every point in X there passes exactly one line of each Ai.

One can prove that |Ai| = |Aj| for every i, j and |X | = |A1|2 [81]. Let us denote

|Aj| by q, this is the degree of the net. In classical notation, a p-net of degree q is

an abstract (q2
p, pqq)-configuration. Following [81] and [95], we will use the notation

(p, q)-net for a p-net of degree q. We label the lines of Ai by {Lq(i−1)+j}q
j=1 for all i,

and define the arrangement A = {L1, L2, ..., Lpq}.

Example II.10. Any Fermat arrangement II.6 defines a (3, n)-net. We can take

A1 = {xn−yn = 0}, A2 = {yn− zn = 0} and A3 = {xn− zn = 0}, labelling the lines

in some order. The dual of the dual Hesse arrangement, i.e. the Hesse arrangement,

is a (4, 3)- net. See [1] for a concrete description of its lines. Each of the four sets of

lines is a triangle, and so d = 12, t2 = 12, t4 = 16 and tk = 0 otherwise.

Assume for now that the lines are defined over an algebraically closed field K. A

(p, q)-net A = (A1, ...,Ap,X ) gives a pencil of curves of degree q with p distinguished

members {A1,A2, . . . ,Ap}. Take any two sets of lines Ai and Aj. Consider Ai and

Aj as the equations which define them, that is, the multiplication of its lines. Let P

be the pencil uAi + tAj = 0 in P2, where [u, t] ∈ P1. Let F be any curve of degree

q passing through the q2 points in X . Take a point Q in F \ X . Then, there exists

[u, t] ∈ P1 such that uAi(Q) + tAj(Q) = 0. By Bezout’s theorem, F = auAi + atAj

for some a ∈ K. Therefore, every F of degree q containing X is part of the pencil

P, and in particular any two members of A give the same pencil P. Moreover, if

the characteristic of K is zero, the general member of this pencil is smooth. Hence,

after we blow up the q2 points in X we obtain a fibration of curves of genus (q−1)(q−2)
2
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with p completely reducible fibers.

Nets in P2 defined over C have the following restriction [95]. The proof is a simple

topological argument which uses the topological Euler characteristic of the fibration

over P1 obtained by blowing up the q2 points in X .

Proposition II.11. For an arbitrary (p, q)-net in P2 defined over C, the only possible

values for (p, q) are: (p = 3, q ≥ 2), (p = 4, q ≥ 3) and (p = 5, q ≥ 6).

A Latin square is a q × q table filled with q different symbols (in our case num-

bers from 1 to q) in such a way that each symbol occurs exactly once in each row

and exactly once in each column [23]. They are the multiplication tables of finite

quasigroups 3. Let A = (A1, ...,Ap,X ) be a (p, q)-net. The pair (A,X ) defines an

incidence of degree (pq, q2) (see Definition II.3). The set X and its properties fix the

incidence which defines the net. This incidence is encoded in a collection of q × q

Latin squares. More precisely, the q2 p-points in X are determined by (p− 2) q × q

Latin squares which form an orthogonal set, as explained in [23] or [81].

Although we have defined nets as arrangements of lines already on P2, we first

think “combinatorially” about the (possible) (p, q)-net defined by this set of (p− 2)

Latin squares, that is, we only consider the incidence defined by the orthogonal set of

Latin squares. Then, we try to answer the question of realizability of this incidence

as a (p, q)-net on P2 over some field.

In his Ph.D. thesis [82], Stipins proves that there are no (4, d ≥ 4)-nets and (5, d)-

nets over C 4. His proof does not use the combinatorics given by the corresponding

orthogonal set of Latin squares. In this way, by Proposition II.11, the only cases

left over C are the 3-nets. In [95], it is proved that for every finite subgroup H of a

3A quasigroup is a set Q with a binary operation, such that for each a, b ∈ Q, there exist unique elements x, y ∈ Q
satisfying ax = b and ya = b.

4Recently, I was told that there is a gap in his proof for (4, q)-nets with q ≥ 4. We do not use this result in what
follows.



35

smooth elliptic curve, there exists a 3-net in P2 over C corresponding to the Latin

square of the multiplicative table of H. In the same paper, Yuzvinsky proves that

there are no 3-nets associated to the group Z/2Z ⊕ Z/2Z ⊕ Z/2Z. A classification

of (3, q)-nets for 2 ≤ q ≤ 5 can be found in [81]. The classification of (3, 6)-nets was

unknown. We will classify (3, q)-nets for 2 ≤ q ≤ 6, and the (3, 8)-nets corresponding

to the multiplication table of the Quaternion group. In the next Chapter we will

introduce a new method to deal with these kind of problems. Using this method, we

achieve this classification.

Remark II.12. (Main classes of Latin squares) As we explained before, a q× q Latin

square defines the set X for a (3, q)-net A = {A1,A2,A3}. What if we are interested

only in the realization of A in P2 as a curve, i.e., without labelling the lines? Then,

we divide the set of all q × q Latin squares into main classes.

For a given q×q Latin square M corresponding toA, by rearranging rows, columns

and symbols of M , we obtain a new labelling for the lines in each Ai. If we write

M in its orthogonal array representation, M = {(r, c, s) : r = row number, c =

column number, s = symbol number}, we can perform six operations on M , each

of them a permutation of (r, c, s) which translates into relabelling the members

{A1,A2,A3}, and so we obtain the same arrangement on P2. We can partition

the set of all q× q Latin squares in main classes (also called Species) in the following

way: if M,N belong to the same class, then we can obtain N by applying several of

the above operations to M . In what follows, we will consider one member of each

main class, which is actually the multiplication table of a loop 5. The following is a

table for the number of main classes for small q.

5A loop is a quasigroup which has an identity element
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q 1 2 3 4 5 6 7 8 9

# main classes 1 1 1 2 2 12 147 283,657 19,270,853,541

2.4 Arrangements of sections.

Let C be a smooth projective curve and let E be a normalized locally free sheaf

of rank 2 on C, that is, E is a rank 2 locally free sheaf on C with the property

that H0(E) 6= 0 but for all invertible sheaves L on C with deg(L) < 0, we have

H0(E ⊗L) = 0 [39, p. 372]. We consider the geometrically ruled surface π : PC(E) →

C. As in [39, p. 373], we let e be the divisor on C corresponding to the invertible

sheaf
∧2 E , so that the invariant e is −deg(e). We fix a section C0 of PC(E) with

OPC(E)(C0) ' OPC(E)(1), and so C2
0 = −e.

Let d ≥ 3 be an integer. LetA = {S1, S2, ..., Sd} be a set of d sections (as curves) of

π. We will assume that Si 6= C0 for all i. By performing elementary transformations

6 on the points in C0∩A, we obtain another PC(E ′) and A′ such that S ′i∩C ′
0 = ∅ for

all i. In particular there are two disjoint sections and so E ′ is decomposable. Again

we normalize E ′ so that there is an invertible sheaf L on C with deg(L) ≥ 0 such

that E ′ ' OC ⊕ L−1. Hence, for every section S ′i ∈ A′, we have S ′i ∼ C ′
0 + π∗(L).

Therefore, we can always start with A on a decomposable geometrically ruled surface

such that Si ∈ |C0 + π∗(L)| for every i ∈ {1, 2, ..., d}. Assume this is the case. The

following are two trivial situations we want to eliminate.

(1) (Base points) This means
⋂d

i=1 Si 6= ∅. Then, we perform elementary trans-

formations on the points in
⋂d

i=1 Si, and we consider the new obvious arrangement

A′ on the corresponding new decomposable geometrically ruled surface.

(2) Assume e = deg(L) = 0. In this case Si.Sj = 0 for all i, j. Since d ≥ 3,
6An elementary transformation is the blow-up of a point in PC(E) followed by the blow-down of the proper

transform of the fiber containing that point.
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we consider π : PC(OC ⊕ L−1) → C as a fibration of (d + 1)-pointed smooth stable

curves of genus zero and the corresponding commutative diagram.

PC(OC ⊕ L−1)

π

²²

// M0,d+2

²²

C // M0,d+1

This implies that PC(OC ⊕ L−1) ' C × P1, that is, L ' OC . Hence, A is a

collection of fibers of the projection to P1.

If A ⊆ PC(OC ⊕ L−1) is such that (1) and (2) do not hold, then any elementary

transformation on any point of the surface will give us back one of the above situa-

tions. We now introduce what seems to be the right definition for arrangements of

sections on geometrically ruled surfaces.

Definition II.13. Let d ≥ 3 be an integer. Let C be a smooth projective curve

and L be an invertible sheaf on C of degree e > 0. An arrangement of sections

A = A(C,L) is a set of d sections {S1, S2, ..., Sd} of π : PC(OC ⊕ L−1) → C such

that Si ∼ C0 + π∗(L) for all i ∈ {1, 2, ..., d} and
⋂d

i=1 Si = ∅.

Therefore, A is an arrangement on PC(OC ⊕ L−1). We notice that
⋂d

i=1 Si = ∅

implies that L is base point free. To see this, take a point c ∈ C and consider

the corresponding fiber Fc. Since
⋂d

i=1 Si = ∅, there are two sections Si, Sj such

that Fc ∩ Si ∩ Sj = ∅. Let σj : C → PC(OC ⊕ L−1) be the map defining the

section Sj. Then, L ' σ∗j (π
∗(L) ⊗ OSj

) ' σ∗j (OPC(OC⊕L−1)(C0) ⊗ π∗(L) ⊗ OSj
) '

σ∗j (OPC(OC⊕L−1)(Si) ⊗ OSj
) and σ∗j (OPC(OC⊕L−1)(Si) ⊗ OSj

) is given by an effective

divisor on C not supported at c. This tell us that L ' OC(D) where D is a base

point free effective divisor on C.

Definition II.14. Let A(C,L), A′(C ′,L′) be two arrangements of d sections. A
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morphism between them is a finite map f : C → C ′ and a commutative diagram

PC(OC ⊕ L−1)

π

²²

F // PC′(OC′ ⊕ L′−1)

π′
²²

C
f // C ′

such that F (Si) = S ′i for all i ∈ {1, 2, ..., d}. If F is an isomorphism, then the

arrangements are said to be isomorphic.

Example II.15. An arrangement of d sections A(P1,OP1(1)) is the same as a pair

(A, P ) with A an arrangement of d lines on P2 (as in Section 2.2) and P a point

outside of A. Given A(P1,OP1(1)) on PP1(OP1 ⊕OP1(−1)), we blow down the (−1)-

curve C0, and we obtain a pair (A, P ). Conversely, given (A, P ), we blow up P and

obtain an arrangement A(P1,OP1(1)).

Fix an arrangement of d sections A = A(C,L). Let f : C ′ → C be a finite

morphism between smooth projective curves. Consider the induced base change:

PC′(OC′ ⊕ L′−1)

π′
²²

F // PC(OC ⊕ L−1)

π

²²
C ′ f // C

Then, as already is shown in the diagram, we obtain a decomposable geometrically

ruled surface π′ : PC′(OC′ ⊕ L′−1) → C ′ together with an arrangement of d sections

A′ given by the pull back under F of the sections in A. Notice that C ′2
0 = −e deg(f).

This leads us to the following definition.

Definition II.16. An arrangement of d sections A = A(C,L) is said to be primitive

if whenever we have an arrangement A′ = A′(C ′,L′) and a morphism as in Definition

II.14, F is an isomorphism.

Example II.17. Every A(P1,OP1(1)) is clearly primitive. For another example,

consider the configuration on P2 formed by one conic and three lines as in Figure
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2.1. We blow up the point P (in that figure) and obtain PP1

(OP1 ⊕OP1(−1)
)
. After

that, we perform an elementary transformation on the node of the total transform of

the tangent line at P . It is possible to check that the resulting arrangement of four

sections in PP1(OP1 ⊕OP1(−2)) is primitive.

P

Figure 2.1: Configuration in example II.15.

Remark II.18. (Arrangements of sections in Hirzebruch surfaces) Consider the Hirze-

bruch surfaces Fe := PP1(OP1⊕OP1(−e)), with e ≥ 2. Any arrangement of d sections

can be seen as a collection of d curves in F1 by performing elementary transforma-

tions, so that the negative section C0 goes to the (−1)-curve in F1. Notice there are

several ways to perform these transformations. After doing that, we blow down this

(−1)-curve to obtain an arrangement of d rational curves on P2.

Another way to induce an arrangement on P2 is the following. Let τ : Fe → Pe+1 be

the map defined by the linear system |Sd+1 +π∗(OP1(e))|. Then, it is an isomorphism

outside of C0 and τ(C0) is a point. The image τ(Fe) is a scroll in Pe+1 swept by the

lines passing through the point τ(C0), and the normal rational curve τ(Si) for any

i 6= d+1. The sections {S1, S2, ..., Sd} are all embedded into this scroll, and they are

disjoint from the point τ(C0). We can now choose a suitable point outside of τ(Fe)
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to project this arrangement of d curves in the scroll to an arrangement of d rational

nodal curves on P2. In general, this might also be done when C 6= P1 depending on

what kind of line bundle L we are considering.

Let A = {S1, S2, . . . , Sd} be a simple crossings arrangement of d sections in Z =

PC(OC ⊕L−1). We now compute the log Chern numbers associated to (Y,A′), using

the formulas of Section 2.1. Notice that since Si ∼ C0 + π∗(L), we have S2
i = e.

Also, we easily compute c2
1(Z) = 8(1− g(C)) and c2(Z) = 4(1− g(C)). Then,

c̄2
1(Y,A′) = 4(d− 2)(g(C)− 1)− de +

∑

k≥2

(3k − 4)tk,

and

c̄2(Y,A′) = 2(d− 2)(g − 1) +
∑

k≥2

(k − 1)tk.

Therefore,

E(PC(OC ⊕ L−1),A) =
2(d− 2)(g(C)− 1) + de +

∑
k≥2 tk

2(d− 2)(g(C)− 1) +
∑

k≥2(k − 1)tk
.

2.5 More examples of arrangements of curves.

2.5.1 Plane curves.

Let A = {C1, . . . , Cd} be an arrangement of d nonsingular plane curves in P2, such

that any two intersect transversally and
⋂d

i=1 Ci = ∅. Hence A is a simple crossings

arrangement. Let na be the number of curves of degree a in A. Then,

E(P2,A) =

∑
a≥1 a(2a− 3)na +

∑
k≥2 tk∑

a≥1 a(a− 3)na +
∑

k≥2(k − 1)tk + 3
.

Is it possible to improve E(P2,A) = 1
3

(i.e., make it closer to zero) or

∑
a≥1

a(5a− 6)na +
∑

k≥2

(4− k)tk − 3 ≥ 0
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for any such arrangement? We saw that the last inequality is true for line arrange-

ments. If A is composed by n1 lines and n2 conics, this potential inequality would

read

8n2 − n1 +
∑

k≥2

(4− k)tk − 3 ≥ 0.

2.5.2 Lines on hypersurfaces.

Our main reference here is [11]. Let Z be a smooth hypersurface in P3 of degree

n ≥ 3 (the quadric is treated in the next subsection). A line in Z is a line in P3

which also lives in Z. It is easy to prove that the set of all lines in Z form a finite

set 7. We consider the arrangement A = {L1, . . . , Ld} formed by all the lines in

Z, subject to the condition
⋂d

i=1 Li = ∅. For n = 3, we always have lines, and

the number is 27. For n ≥ 4, we might not have any, so the surfaces we want to

consider are special. Since we actually want extreme cases, with d large, they are

very special. In [11], several examples are explicitly worked out. B. Segre proved in

[78] that the maximum number of lines on a quartic is 64, and he gave the upper

bound (n − 2)(11n − 6) for the number of line on a smooth hypersurface of degree

n. It remains an open question what is exactly the bound for n ≥ 5.

Miyaoka [65] proved the following inequality for A (this is valid over C),

nd− t2 +
∑

k≥3

(k − 4)tk ≤ 2n(n− 1)2.

Any arrangement of lines in Z has simple crossings. One easily computes L2
i =

2− n, c2
1(Z) = n(n− 4)2, and χ(Z,OZ) = 1

6
n(n2 − 6n + 11). Below we compute log

Chern numbers for some interesting cases.

7Assume it is not finite. Divide the set of lines in Z in connected components. Since the Picard number of Z
is finite, one of this components must have infinitely many lines. Take one line in this component, and consider
the pencil associated to it. It has no fixed points, so it defines a fibration to P1. Infinitely many lines in a fiber
is impossible, so there are infinitely many lines intersecting this fixed line. Then, Z has to be a ruled surface,
contradicting n > 2.
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Example II.19. (Fermat hypersurfaces) Let Z be the Fermat Hypersurface xn +

yn + wn + zn = 0. This surface has exactly 3n2 lines. One can check that t2 = 3n3,

tn = 6n, and tk = 0 otherwise. The log Chern numbers are c̄2
1(n) = 2n(5n2− 4n− 4)

and c̄2(n) = 4n2(n − 1), and the error is E(n) = n2−2n+4
2n(n−1)

. Hence, 13
28
≤ E(n) ≤ 7

12
,

with equality on the left for n = 7 or 8, and on the right for n = 3.

Example II.20. (Cubics) Let Z be any smooth cubic, and let A be the arrangement

formed by its 27 lines. We can only have 2-points, and 3-points (Classically called

Eckardt points). For any cubic, we have t2 + 3t3 = 135 and so c̄2
1 = 192 − t3,

c̄2 = 90 − t3 and E(Z,A) = 2t3−78
t3−90

. Therefore, 7
12
≤ E(Z,A) ≤ 76

89
, with equality on

the left when t3 = 18 (i.e., only for the Fermat cubic) and on the right when t3 = 1.

Example II.21. (Schur quartic) Let Z be the Schur quartic (F. Schur 1882)

x(x3 − y3) = w(w3 − z3).

It was studied by Schur in [77]. It achieves the maximum number of lines for a

smooth quartic equal to 64. Let A be the arrangement formed by all the lines on

Z. We use the general point of view of [11] (which is very helpful) to compute the

numbers t4 = 8, t3 = 64, t2 = 192 and tk = 0 otherwise. Then, we have E(Z,A) = 1
3
,

or equivalently, c̄2
1 = 8

3
c̄2.

2.5.3 Platonic arrangements.

We denote the classes in Pic(P1 × P1) by O(a, b). Let A = A1 ∪ A2 ∪ A3 be an

arrangement of d curves in Z = P1 × P1, such that A1 has d1 curves in |O(1, 1)|, A2

has d2 in |O(1, 0)| and A3 has d3 in |O(0, 1)| (so d = d1 + d2 + d3). Assume it is a

simple crossings arrangement. Then, the error number is

E(P1 × P1,A) =
−2d2 − 2d3 +

∑
k≥2 tk + 4

−2d1 − 2d2 − 2d3 +
∑

k≥2(k − 1)tk + 4
.
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Here we will consider some well-known arrangements coming from finite automor-

phism groups of P1. Let G be such group and g be an element of G. The arrange-

ment A1 is defined by the orbit of the diagonal ∆ of Z under the automorphisms

g : (x, y) 7→ (x, g(y)). Hence A1 is given by
∑

g∈G g(∆). In particular, d1 = |G|. The

arrangement of fibers A2 and A3 will be either empty (d2 = 0 and d3 = 0) or formed

all fibers F and S passing through the 2-points of A1. Hence, the arrangement A

has simple crossings. Let An be the unique normal subgroup of index two in the

symmetric group of n elements Sn. Then, we have

(A4) : d1 = 12, d2 = d3 = 0, t2 = 36, t3 = 32, E(P1 × P1,A) = 9
10

= 1
1.1

.

(A′
4) : d1 = 12, d2 = d3 = 6, t3 = 32, t4 = 36, E(P1 × P1,A) = 3

8
= 1

2.6
.

(S4) : d1 = 24, d2 = d3 = 0, t2 = 144, t3 = 64, t4 = 36, E(P1 × P1,A) = 31
42
≈ 1

1.3548
.

(S ′4) : d1 = 24, d2 = d3 = 12, t3 = 64, t4 = 180, E(P1 × P1,A) = 25
72

= 1
2.88

.

(A5) : d1 = 60, d2 = d3 = 0, t2 = 900, t3 = 400, t5 = 144,

E(P1 × P1,A) = 181
270

≈ 1
1.4917

.

(A′
5) : d1 = 60, d2 = d3 = 30, t3 = 400, t4 = 900, t5 = 144,

E(P1 × P1,A) = 83
240

≈ 1
2.8915

.

We do not consider the finite cyclic groups and Dihedral groups because the

numbers are not higher than the ones above. We notice that these arrangements can

be seen in P2 as simple crossings arrangements of conics and lines. They have large

log Chern numbers ratio, but not higher than 8
3
.

2.5.4 Modular arrangements.

In [79], Shioda studies a very special class of elliptic fibrations, which he called

elliptic modular surfaces. They are defined by certain subgroups of SL(2,Z). We
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will work on the ones defined by the main congruence subgroups of level n ≥ 3. In

[6], there is a explicit description of these surfaces, and in particular the special cases

n = 3, 4, 5. Let X(n) be the elliptic modular surface, and let

π : X(n) → B

be the corresponding elliptic fibration. The number of singular fibers is µ(n) =

1
2
n2

∏
p|n

(
1 − 1

p2

)
, where the product is over all primes dividing n. The images of

these singular fibers are called cusps. All the singular fibers are of Kodaira type In,

which means a cycle of n rational curves. This fibration admits n2 sections, such

that each component of each singular fiber intersects exactly n of them. The self-

intersection of each of this sections is equal to −χ(X(n),OX(n)) = − 1
12

nµ(n). The

irregularity of X(n) is the genus of B, and

g(B) = 1 + n
µ(n)

12
− µ(n)

2
.

In addition, c2
1(X(n)) = 0 and c2(X(n)) = nµ(n).

Following [24, p. 433], we define the modular arrangement A as the set of n2

sections mentioned above, and all the components of the singular fibers. This is a

simple crossing arrangement (actually SNC) of n2 + nµ(n) curves in X(n). Hence,

we have t2 = nµ(n) + n2µ(n) and tk = 0 otherwise. Therefore,

c̄2
1(n) =

5

12
n3µ(n) c̄2(n) =

1

6
n3µ(n) E(n) =

1

2

and so the log Chern numbers ratio does not depends on n, being
c̄21(n)

c̄2(n)
= 2.5.

Let A be the arrangement formed only by the n2 sections. Then, the numbers are

c̄2
1(n) =

1

12
n2µ(n)(5n−24) c̄2(n) =

1

6
nµ(n)(n2−6n+6) E(n) =

(n− 6)2

2(n2 − 6n + 6)

and so for n = 6, we have that E
(
X(6),A)

= 0.
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2.5.5 Hirzebruch elliptic arrangements.

The following example achieves 1
3

as well. It is due to Hirzebruch [43].

Let ζ = e
2πi
3 and T be the elliptic curve

T = C/
(
Z⊕ Zζ

)
.

Consider the abelian surface Z = T × T whose points are denoted by (z, w). Let

T0 : {w = 0}, T∞ : {z = 0}, T1 : {w = z} and Tζ : {w = ζz}. These four curves

only intersect at (0, 0) because of the choice of ζ. Let Un be the group of n-division

points of Z,

Un = {(z, w) : (nz, nw) = (0, 0)}.

It has order n4. The group Un acts on Z by translations. Each of the sets Un(T0),

Un(T∞), Un(T1), Un(Tζ) consists of n2 smooth disjoint elliptic curves. Let A0, A∞,

A1, Aζ be the corresponding arrangements. We define the arrangement A as A0 ∪

A∞ ∪ A1 ∪ Aζ .

This arrangement is formed by d = 4n2 elliptic curves. It can be checked that

t4 = |Un| = n4 and tk = 0 for k 6= 4. The error number associated to this arrangement

does not depend on n and is E(T × T,A) = 1
3
.



CHAPTER III

Arrangements as single curves and applications

In this Chapter, we translate the question of existence of an arrangement into the

question of existence of a single curve in projective space. We construct a one-to-one

correspondence between arrangements of d sections (Definition II.13) and certain

curves in Pd−2. As we already saw in Example II.15, these arrangements include line

arrangements. We will use this correspondence to classify some nets in P2.

3.1 Moduli space of marked rational curves.

We denote the projective space of dimension n by Pn and a point in it by [x1 :

... : xn+1] = [xi]
n+1
i=1 . If P1, . . . , Pr are r distinct points in Pn, then 〈P1, . . . , Pr〉 is the

projective linear space spanned by them. The points P1, . . . , Pn+2 in Pn are said to

be in general position if no n + 1 of them lie in a hyperplane.

We denote by M0,d+1 the moduli space of (d + 1)-pointed stable curves of genus

zero [50]. The boundary ∆ := M0,d+1 \M0,d+1 of M0,d+1 is formed by the following

divisors: for each subset T ⊂ {1, 2, ..., d + 1} with |T | ≥ 2 and |T c| ≥ 2, we let

DT ↪→ M0,d+1 be the divisor whose generic element is a curve with two components:

the points marked by T in one, and the points marked by T c on the other. We will

assume d + 1 ∈ T so that there are no repetitions. These divisors are smooth and

simple normal crossing.

46
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We are interested in arrangements of d sections with simple crossings (Definition

II.13). In this section we will explain how to obtain these arrangements from projec-

tive curves in Pd−2 via moduli spaces of pointed stable curves of genus zero. The key

ingredients are the construction of M0,d+1 via blow-ups of Pd−2 and the description

of M0,d+1 using Veronese curves, both due to Kapranov [50, 49].

Let d ≥ 3 be an integer. It is well-known that M0,d+1 is a fine moduli space which

is represented by a smooth projective variety of dimension d−2. For i ∈ {1, . . . , d+2},

the i-th forgetful map πi : M0,d+2 → M0,d+1, which forgets the i-th marked point,

gives a universal family. The following are definitions and facts about these spaces,

which can be found in [50] and [49].

Definition III.1. A Veronese curve is a rational normal curve of degree n in Pn,

n ≥ 2, i.e., a curve projectively equivalent to P1 in its Veronese embedding.

It is a classical fact that any d+1 points in Pd−2 in general position lie on a unique

Veronese curve. The main theorem in [50] says that the set of Veronese curves in

Pd−2 and its closure are isomorphic to M0,d and M0,d respectively.

Theorem III.2. (Kapranov) Take d points P1, . . . , Pd in projective space Pd−2 which

are in general position. Let V0(P1, . . . , Pd) be the space of all Veronese curves in Pd−2

through Pi. Consider it as a subvariety in the Hilbert scheme H parametrizing all

closed subschemes of Pd−2. Then,

(a) We have V0(P1, . . . , Pd) ∼= M0,d.

(b) Let V (P1, . . . , Pd) be the closure of V0(P1, . . . , Pd) in H . Then V (P1, . . . , Pd) ∼=

M0,d. Moreover, the subschemes representing limit positions of curves from

V0(P1, . . . , Pd) are, considered together with Pi, stable d-pointed curves of genus

0, which represent the corresponding points of M0,d.



48

(c) The analogs of statements (a) and (b) hold also for the Chow variety instead of

the Hilbert scheme.

Theorem III.3. (Kapranov, [49]) Choose d general points P1, . . . , Pd in Pd−2. The

variety M0,d+1 can be obtained from Pd−2 by a series of blowing ups of all the pro-

jective spaces spanned by Pi. The order of these blow-ups can be taken as follows:

1. Points P1, . . . , Pd−1 and all the projective subspaces spanned by them in order of

the increasing dimension;

2. The point Pd, all the lines 〈P1, Pd〉,...,〈Pd−2, Pd〉 and subspaces spanned by them

in order of the increasing dimension;

3. The line 〈Pd−1, Pd〉, the planes 〈Pi, Pd−1, Pd〉, i 6= d−2 and all subspaces spanned

by them in order of the increasing dimension, etc, etc.

Let us fix d points in general position in Pd−2. We take P1 = [1 : 0 : . . . : 0],

P2 = [0 : 1 : 0 : . . . : 0], ..., Pd−1 = [0 : . . . : 0 : 1] and Pd = [1 : 1 : . . . : 1]. Let

Λi1,...,ir = 〈Pj : j /∈ {i1, . . . , ir}〉,

where 1 ≤ r ≤ d − 1 and i1, . . . , ir are distinct numbers, and let Hd be the set of

the hyperplanes Λi,j. Hence, Λi,j = {[x1 : . . . : xd−1] ∈ Pd−2 : xi = xj} for i, j 6= d,

Λi,d = {[x1 : . . . : xd−1] ∈ Pd−2 : xi = 0} and

Hd = {[x1 : . . . : xd−1] ∈ Pd−2 : x1x2 · · · xd−1

∏
i<j

(xj − xi) = 0}.

Our goal is to build a simple crossings arrangement of d sections out of an irre-

ducible projective curve B ⊆ Pd−2. Because of our simple crossing requirement, this

curve must satisfy some special properties.
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Definition III.4. Let B be an irreducible projective curve in Pd−2. The curve B is

said to satisfy (*) if the following condition holds:

(*) For each P ∈ B, there is a local factorization of B formed by smooth branches,

and each branch intersects each hyperplane Λi,j transversally whenever P ∈ B∩Hd.

Hence B is not contained in Hd if it satisfies (∗). Fix a curve B satisfying (∗).

By Theorem III.3, there is a birational map ψd+1 : M0,d+1 → Pd−2 which is a

composition of blow-ups along all linear projective spaces spanned by the points Pi,

in a certain order. We have the following diagram of maps.

M0,d+2

πd+2

²²

M0,d+1

ψd+1// Pd−2 ⊃ B

Let B′ be the strict transform of the curve B under ψd+1. Then, by the property

(∗) for B and the construction of ψd+1 (Theorem III.3), the curve B′ can only have

local transversal intersections with each of the boundary divisors DT , that is, for

every point P of B′, if P ∈ DT ∩ B′, then each local branch at P intersects DT

transversally.

Let B0 be a local branch of B′ at P such that P = ∆ ∩ B0. Then, since we are

working with fine moduli spaces, we have the following unique commutative diagram.

RB0

π

²²

j // M0,d+2

πd+2

²²
B0

i // M0,d+1

In this diagram, RB0 is the unique surface produced by the universal property of

πd+2, and so i and j are inclusions. The map π : RB0 → B0 has one singular fiber

which looks like the bold curve in Figure 3.1.
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RB0

i1
i2

i k

B0

... ...
P

π

d+1

...
...

...
...

...
...

Figure 3.1: Singular fiber type.

Again, this is because B satisfies (*), and so locally intersects transversally each

Λi,j. More precisely, let Q = ψd+1(P ) ∈ B ∩Hd and let ΛQ be the intersection of all

the smallest Λi1,i2,...,ik containing Q. This means, if Λi1,i2,...,ik belongs to the intersec-

tion, then there is no Λi1,...,ik,ik+1,...,ik+l
⊂ Λi1,i2,...,ik such that Q ∈ Λi1,...,ik,ik+1,...,ik+l

.

We write

ΛQ =
⋂

Λi1,i2,...,ik

where the intersection is taken over all these smallest linear spaces. Now, since

B locally intersects every Λi,j transversally, each Λi1,i2,...,ik in the intersection ΛQ

corresponds to a component of the singular fiber of π, which does not intersect the

d + 1 section and intersects exactly the sections labelled by the set {i1, . . . , ik}.

Also, since B0 intersects transversally each component DT of the boundary ∆,

RB0 is a smooth surface, and conversely. This assertion comes from the description

of the versal deformation space of a stable curve [38, pp. 145-147].

In conclusion, for T = {1, 2, . . . , d+1}\{i1, i2, . . . , ik}, the transversal intersection

of B0 with DT is represented in RB0 by the component of the singular fiber which

intersects transversally the k sections of π labelled by the set {i1, . . . , ik}, and the
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intersection of this component with the singular fiber is a smooth point of RB0 . The

other components of the singular fiber give the transversal intersections of B0 with

another boundary divisors DT ′ at P .

Coming back to our curve B′, we globally have the following commutative dia-

gram.

RB′

π

²²

j // M0,d+2

πd+2

²²

B′ i // M0,d+1

where RB′ is a projective surface. We now produce another commutative diagram

by considering the normalization of B′, given by the map ν : B′ → B′.

RB′

π′

²²

// RB′

π

²²

j // M0,d+2

πd+2

²²

B′ ν // B′ i // M0,d+1

Because of our local description for B0 above, we have that RB′ is an smooth

projective surface, in particular it is a ruled surface over B′. Let R := RB′ and

C := B′, so we have a ruled surface π′ : R → C with distinguished (d + 1) sections

{X1, X2, . . . , Xd+1}. Now, we blow down all the (−1)-curves which are components

of singular fibers which do not intersect Xd+1 (it is easy to check that they are (-

1)-curves). In this way, we arrive to a geometrically ruled surface PC(E) over C, for

some rank two locally free sheaf E on C. After applying an isomorphism over C of

geometrically ruled surfaces, we can and do assume that E is normalized (as in Section

2.4). For each i ∈ {1, 2, . . . , d + 1}, let Si be the sections in PC(E) corresponding to

the images of Xi under the composition of the blow-downs of (−1)-curves.

Proposition III.5. Let us denote the previous map by π : PC(E) → C. Then, E

is a decomposable vector bundle of the form OC ⊕ L−1 with L invertible sheaf on
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C of degree e = deg(B) > 0. The section Sd+1 is the unique curve on PC(E) with

negative self-intersection equal to −e. Moreover, for every i ∈ {1, 2, . . . , d} we have

Si ∼ Sd+1 + π∗(L) and, if H is a hyperplane in Pd−2 and ν : C → B′ → B is the

corresponding normalization of B (as we did before), then L ' OC(ν∗(H ∩B)). The

set A = {S1, S2, . . . , Sd} is a simple crossings arrangement of d sections.

Proof. First, since there are two disjoint sections, E is a decomposable vector bundle.

Because we know explicitly the Picard group of PC(E) [39, p. 370], for each i ∈

{1, 2, . . . , d+1} we can find a divisor Di on C such that Si ∼ C0 +π∗(Di), where C0

is the section corresponding to OPC(E)(1) (and so C2
0 = −e).

Now, Si.Sd+1 = 0 for all i 6= d + 1, so deg(Di) = e − deg(Dd+1) when i 6= d + 1.

Then, S2
i = Si.Sj for all i, j 6= d+1; and so deg(Di) = 1

2
(e+Si.Sj) and deg(Dd+1) =

1
2
(e− Si.Sj) for i, j 6= d + 1. But S2

d+1 = −e + 2deg(Dd+1) implies S2
d+1 = −Si.Sj for

i, j 6= d + 1. Notice that Si.Sj > 0 since we always have singular fibers (we always

have B ∩Hd 6= ∅). Hence, S2
d+1 < 0.

We now suppose that Sd+1 6= C0. Then, Sd+1.C0 ≥ 0 and so −e + deg(Dd+1) ≥ 0.

But we have 0 > S2
d+1 = −e + 2deg(Dd+1) and this implies deg(Dd+1) < 0, and so

e < 0. But for a decomposable normalized E we have e ≥ 0 [39, p. 376]. Therefore,

Sd+1 = C0.

The following is a known fact. Let Γ 6= Sd+1 be a curve in PC(E) with Γ2 < 0.

Write Γ ≡ aSd+1 + bF , where F is the class of a fiber. Then, Γ.F = a > 0,

Γ2 = −ea2 + 2ab < 0 and Γ.Sd+1 = −ea + b ≥ 0. Hence, we must have b < 0, and

this contradicts the fact that −e < 0. Therefore, Γ = Sd+1 and so there is only one

curve with negative self intersection.

Take i ∈ {1, 2, . . . , d}. Let σi : C → PC(E) be the morphism defining the section

Si, i.e., σi(C) = Si, and let E → Li → 0 be the corresponding surjection of sheaves
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on C [39, p. 370]. Then, Li = σ∗i (OPC(E)(Sd+1)⊗OSi
), but σ∗i (OPC(E)(Sd+1)⊗OSi

) =

σ∗i (OSi
) = OC because Si.Sd+1 = 0. Therefore, E ' OC ⊕ L−1 with deg(L) = e > 0.

Moreover, Si ∼ Sd+1 + π∗(L) for all i ∈ {1, 2, ..., d}.

Finally, by construction of this ruled surface, for any pair i, j ∈ {1, 2, . . . , d} with

i 6= j, we have that Si.Sj is B.Λi,j, that is, Si.Sj = deg(B). On the other hand, we

proved that Si.Sj = e, so deg(B) = e. Moreover, it is not hard to see that, if H

is a hyperplane in Pd−2 and ν : C → B′ → B is the normalization as before, then

L ' OC(ν∗(H ∩B)).

3.2 Two proofs of the one-to-one correspondence for line arrangements.

We will be considering arrangements of d lines A together with a fixed point

P ∈ P2 \A, denoted by (A, P ). As always, we assume td = 0. If (A, P ) and (A′, P ′)

are two such pairs, we say that they are isomorphic if there exists an automorphism

T of P2 such that T (Li) = L′i for every i and T (P ) = P ′. So, it is our former notion

of isomorphism with the additional requirement that P goes to P ′. Let Ld be the

set of isomorphism classes of pairs (A, P ). For example, the set L3 is clearly formed

by one point, represented by the class of ({xyz = 0}, [1 : 1 : 1]).

We will prove in two different ways that Ld is the set of lines in Pd−2 not contained

in Hd. The first one is elemental, and it is inspired by a particular case of the so-

called Gelfand-MacPherson correspondence [49] (although the idea is quite classical).

The second proof is the way I saw the correspondence, and involves M0,d+1. It is

important to understand how the correspondence works, explaining why we choose

pairs, and to see how we can generalize it for arrangements of sections.

Proposition III.6. There is a one-to-one correspondence between Ld and the set

of lines in Pd−2 not contained in Hd.
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Proof. (I) Let us fix a pair (A, P ) where A is formed by linear polynomials

{Li(x, y, z)}d
i=1.

We consider a closed embedding ι(A,P ) : P2 ↪→ Pd−1 given by

[x : y : z] 7→
[L1(x, y, z)

L1(P )
: . . . :

Ld(x, y, z)

Ld(P )

]

Then, ι(A,P )(P2) is a projective plane, ι(A,P )(P ) = [1 : 1 : . . . : 1] and ι(A,P )(Li) =

ι(A,P )(P2) ∩ {yi = 0} for every i ∈ {1, 2, . . . , d}. Now, we consider the projection

% : Pd−1 \ [1 : 1 : . . . : 1] → Pd−2

defined by

[y1 : y2 : . . . : yd] 7→ [ay1 + b : ay2 + b : . . . : ayd−1 + b],

where [a : b] is the unique point in P1 such that ayd + b = 0. In this way, if

Σi,j = {[y1 : y2 : . . . : yd] : yi = yj},

we clearly see that %(Σi,j) = Λi,j. Therefore, we have that %(ι(A,P )(P2)) is a line in

Pd−2 not contained in Hd. To show the one-to-one correspondence, we need to prove

that (A, P ) 7→ %(ι(A,P )(P2)) gives a well-defined bijection between Ld and the set of

lines in Pd−2 not contained in Hd. Clearly we have a bijection between projective

planes in Pd−1 passing through [1 : 1 : . . . : 1] and not contained in
⋃

i,j Σi,j, and the

set of lines in Pd−2 not contained in Hd.

Let T : P2 → P2 be an automorphism of P2. Suppose the arrangement A is

defined by the linear polynomials Li(x, y, z) = ai,1x + ai,2y + ai,3z. Let B = (bi,j) be

the 3× 3 invertible matrix corresponding to T−1. Consider the pair (A′, P ′) defined

by A′ = {L′i = T (Li)}d
i=1 and P ′ = T (P ). Then, the equations defining the lines L′i
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are (
∑3

j=1 ai,jbj,1)x + (
∑3

j=1 ai,jbj,2)y + (
∑3

j=1 ai,jbj,3)z = 0. Hence, we obtain that

ι(A,P ) = ι(A′,P ′) ◦ T , and so our map (A, P ) 7→ %(ι(A,P )(P2)) is well-defined on Ld.

The map is clearly surjective, so we only need to prove injectivity. Let ι(A,P )

and ι(A′,P ′) be the corresponding maps for the pairs (A, P ) and (A′, P ′) such that

ι(A,P )(P2) = ι(A′,P ′)(P2). Let T = ι−1
(A′,P ′) ◦ ι(A,P ) : P2 → P2. Then, T is an auto-

morphism of P2 such that T (Li) = L′i for every i and T (P ) = P ′. Hence they are

isomorphic, and so we have the one-to-one correspondence.

Proof. (II) Let us fix a pair (A, P ). Consider the genus zero fibration BlP (P2) →

C(= P1) given by the blow-up at P . It has singular fibers exactly at the k-points

of A. Consider the genus zero fibration f : R → C, where R is the blow-up at all

the k-points of A with k ≥ 3. Then f is a family of (d + 1)-marked stable curves

of genus zero. The markings are given by the labelled lines of A, which now are the

sections S1, . . . , Sd of f , and the (−1)-curve (section) Sd+1 coming from the point P .

It is a stable fibration because td = 0 for A.

Therefore, we have the following unique commutative diagram.

R

f

²²

h // M0,d+2

πd+2

²²

C
g // M0,d+1

Let B′ be the image of g in M0,d+1. It is a projective curve, since f has singular

and non-singular (stable) fibers, and so f is not isotrivial. Let us now consider the

Kapranov map ψd+1 : M0,d+1 → Pd−2, and let B = ψd+1(B
′). We saw in the previous

section that B intersects all the hyperplanes Λi,j transversally, and it has to intersect

some of them, since f has singular fibers. Say B intersects Λi,j. This means that the

lines Li and Lj of A intersect in P2. But since they are lines, they can intersect only

once. Therefore, B.Λi,j = 1 and so deg(B) = 1, that is, B is a line in Pd−2.
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In particular, B′ is a smooth rational curve. In Proposition III.5 we saw how to

obtain a pair (A, P ) from a line in Pd−2 outside of Hd. It is easy to check that the

pair we obtain from this proposition is unique up to isomorphism of pairs. In this

way, to finish the proof, we have to show that the map g in the diagram above is an

inclusion.

Consider g : C → B′ and assume deg(g) > 1. We notice that g is totally ramified

at the points corresponding to singular fibers, since again they come from intersec-

tions of lines in P2, and so all the singular fibers go to distinct points. Let sing(f) be

the set of points in C corresponding to singular fibers of f . Then, since td = 0, we

have | sing(f)| ≥ 3 (at least we have a triangle in A). Now, by the Riemann-Hurwitz

formula, we have

−2 = deg(g)(−2) + (deg(g)− 1)| sing(f)|+ ε

where ε ≥ 0 stands for the contribution from ramification of f not in sing(f). But

we re-write the equation as 0 = (deg(g)− 1)(| sing(f)| − 2) + ε, and since deg(g) > 1

and | sing(f)| ≥ 3, this is a contradiction. Therefore, deg(g) = 1 and we have proved

the one-to-one correspondence.

We notice that Proof I is field independent, and so this correspondence is true for

arrangements defined over arbitrary fields. In Proof II we assume characteristic zero

to apply the Riemann-Hurwitz formula.

Let (A, P ) be a pair and L be the corresponding line in Pd−2. Let λ be a line

in P2 passing through P . We notice that λ corresponds to a point in L. Let K(λ)

be the set of k-points of A in λ, for all 1 < k < d; it might be empty or consist of

several points. We write

K(λ) = {[[i1, i2, ..., ik1 ]], [[j1, j2, ..., jk2 ]], ...}.
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Example III.7. In Figure 3.2, we have the complete quadrilateral A, formed by

the set of lines {L1, . . . , L6}, and a point P outside of A. Through P we have

the λ lines. In the figure, we have labelled two such lines: λ and λ′. Therefore,

K(λ) = {[[3, 6]], [[1, 4]]} and K(λ′) = {[[1, 2, 3]]}.

'
L

L

L

L

L

L

3

4

5

6

1

2

P

[[1,4]][[3,6]]

[[1,2,3]]

Figure 3.2: Some K(λ) sets for (complete quadrilateral, P ).

The set K(λ) gives the following restrictions for the the point [a1 : a2 : . . . : ad−1]

in L ⊆ Pd−2 corresponding to λ. For each k-point [[i1, i2, ..., ik]] of A in K(λ),

• If for some j, ij = d, then ail = 0 for all il 6= d.

• Otherwise, ai1 = ai2 = ... = aik 6= 0.

For [[i1, ..., ik1 ]], [[j1, .., jk2 ]] in K(λ), we have that aia 6= ajb
, otherwise we would have

a new (not considered before) k-point on λ. We will work out various examples at

the end of this Chapter for the case of nets.

Example III.8. Let A = {L1, . . . , Ld} be an arrangement of d lines, and consider

the pair (A, P ) with P a general point in P2 \ A. This means that for all lines
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λ passing through P , the corresponding sets K(λ) consist of one or zero elements.

So, there is one line λ for each k-point [[i1, . . . , ik]] of A, corresponding precisely to

the point L ∩ Λi1,...,ik (L being the line in Pd−2 assigned to (A, P )). For example, a

2-point Li ∩ Lj corresponds to a proper intersection of L with the hyperplane Λi,j.

Let a = [ai]
d−1
i=1 and b = [bi]

d−1
i=1 be distinct points in Pd−2 so that the line L is given

by au + bt for [u : t] ∈ P1.

We now substitute L in the equation defining Hd to obtain the polynomial

pL(u, t) = (a1u + b1t)(a2u + b2t) · · · (ad−1u + bd−1t)
∏
i<j

(
(aj − ai)u + (bj − bi)t

)
.

This polynomial is not identically zero since L is outside of Hd. We can and do

assume that bi 6= 0 for all i. Then, the number of simple roots of pL(1, t) is t2, the

number of double roots is t3, and so on. The numbers tk depend on the position of

the complex numbers ai

bi
and

aj−ai

bj−bi
on C. The Hirzebruch inequality for tk’s gives a

relation among the roots of pL(1, t).

Let (A, P ) be a pair. The existence of this pair is equivalent to the existence

of L in Pd−2. If we are only interested in the line arrangement A, the point P

introduces unnecessary dimensions to realize A. Instead, consider the pair (A′, P ′)

where P ′ ∈ A and the lines of A′ are the lines in A not containing P ′. Now, the line

L′ corresponding to this new pair (A′, P ′) lies in Pd′−2 (and d′ < d). So we decrease

dimensions, and L′ still represents our arrangement A, by keeping track of P ′.

By taking P ′ as a k-point with k large, the previous observation will be important

to simplify computations to prove or disprove the existence of A. In addition, we

find a moduli space for the combinatorial type of A, forgetting the artificial point P .

By combinatorial type we mean the information given by the intersection of its lines,

that is, the “complete” incidence I which defines A. This moduli space is what we
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called M(I,K) (Definition II.4, K being the field of definition). We will show this

parameter space through several examples.

Example III.9. Let A = {L1, L2, . . . , L7} be the Fano arrangement. The set of 7

triple points can be taken as L3 ∩ L4 ∩ L5, L2 ∩ L5 ∩ L7, L1 ∩ L5 ∩ L6, L1 ∩ L2 ∩ L3,

L1 ∩L4 ∩L7, L3 ∩L6 ∩L7, and L2 ∩L4 ∩L6. Take any point out of A, and form the

pair (A, P ). Then, we have that the corresponding L lives in P7−2=5. In practices,

it takes several computations to try to realize L.

Instead, consider (A′, P ′) where P ′ = L1 ∩ L2 ∩ L3 and A′ = {L4, L5, L6, L7}.

Now, the lines L1, L2 and L3 are points λ’s on the line L′, corresponding to (A′, P ′).

Rename the lines as L4 = L′1, L5 = L′2, L6 = L′3, and L7 = L′4. By our definition

of K(λ), we have K(L1) = {[[1, 4]], [[2, 3]]}, K(L2) = {[[1, 3]], [[2, 4]]}, and K(L3) =

{[[1, 2]], [[3, 4]]}. Therefore, according to our observation above, the corresponding

points on L′ are [0 : 1 : 1], [1 : 0 : 1], and [1 : 1 : 0] respectively. However, this is

possible if and only if the characteristic of the field is two (determinant = 2).

The only purpose of this example is to show how we easily reduced parameters

by taking “P in A”. In general this strategy will be fruitful.

In the next two sections, we will be computing some special configurations by

means of the line L corresponding to a pair (A, P ). We make the following choices

to write down the equations of the lines in A:

• The point P will be always [0 : 0 : 1].

• The arrangement A will be formed by {L1, ..., Ld} where Li are the lines of A

and also their linear polynomials Li = (aix + biy + z) for every i 6= d, and

Ld = (z).

With these assumptions, it is easy to check that the corresponding line L in Pd−2
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is [ait + biu]d−1
i=1 , where [t : u] ∈ P1.

3.3 General one-to-one correspondence.

In this section we prove the general correspondence for arrangements of sections.

What mattered in Proof II is that we knew about the local intersections of B′ with the

boundary divisors of M0,d+1. Simple crossing arrangements are locally the same as

line arrangements. We will also replace the “Riemann-Hurwitz argument” at the end

of Proof II by imposing that they satisfy inclusion. This is the concept of primitive

arrangements in Definition II.16, which trivially holds for line arrangements.

Let d ≥ 3 be an integer. Let C be a smooth projective curve and L be a line

bundle on C with deg(L) = e > 0. Let Ad be the set of all isomorphism classes of

arrangements A(C,L) which are primitive and simple crossings.

On the other hand, let Bd be the set of irreducible projective curves B in Pd−2

satisfying: (*) in Definition III.4, B birational to C and, if H is a hyperplane in Pd−2

and ν : C → B is the normalization of B, then L ' OC(ν∗(H ∩B)).

Theorem III.10. There is a one-to-one correspondence between Ad and Bd.

Proof. Let B ∈ Bd. Then, we use Proposition III.5 to obtain A(C,L) ∈ Ad.

Conversely, let A = A(C,L) ∈ Ad. Then, by blowing up all the k-points of A

(1 < k < d), we obtain a stable fibration of (d + 1)-pointed curves of genus zero.

Let us denote this fibration by ρ : R → C. The d + 1 distinguished sections of

π are the strict transforms of the sections {S1, . . . , Sd} = A and the section C0 in

PC(OC ⊕ L−1). Hence, there is a unique commutative diagram

R

ρ

²²

// RB′

²²

Â Ä // M0,d+2

πd+2

²²

C // B′ Â Ä // M0,d+1
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where B′ and RB′ are the images of C and R respectively under the unique maps to

these fine moduli spaces. We notice that B′ is a projective curve, RB′ is a projective

surface, and B = ψd+1(B
′) satisfies (*) by the local description given in Section 3.1

(we recall that ψd+1 : M0,d+1 → Pd−2 is the composition of the blow-ups in Theorem

III.3).

Let ν : B′ → B′ be the normalization of B′. Then again, by the local description

of the family RB′ → B′ and the universal property of these moduli spaces, we have

the following commutative diagram

RB′

²²

ν′ // RB′

²²

Â Ä // M0,d+2

πd+2

²²

B′ ν // B′ Â Ä // M0,d+1

where ν ′ is the normalization map for RB′ . We notice that RB′ is a projective smooth

surface. Then, this induces a unique commutative diagram.

R

ρ

²²

F // RB′

²²
C

f // B′

where f is a finite map, and F restricted to any fiber of ρ is an isomorphism sending

the d + 1 distinguished sections to d + 1 sections. Therefore, we can blow down the

(−1)-curves not intersecting the section d+1 on both surfaces, and so we arrive to a

commutative diagram as in Definition II.14. But A(C,L) is a primitive arrangement,

so F has to be an isomorphism. In particular, f is an isomorphism. Hence, this

gives the construction in Section 3.1 starting with B ⊆ Pd−2 satisfying (*); and

so, by Proposition III.5, we finally obtain what we want for B. The one-to-one

correspondence follows.

Corollary III.11. (Proposition III.6) There is a one-to-one correspondence between
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Ld and the set of lines in Pd−2 not contained in Hd.

Proof. A pair (A, P ) (up to isomorphism) corresponds exactly to an arrangement

A(P1,OP1(1)) (up to isomorphism) by blowing up the point P . By Theorem III.10,

these pairs are in one-to-one correspondence with curves B of degree one satisfying

some properties. But then B is a line in Pd−2, and the properties are reduced to: B

is not contained in Hd.

3.4 Examples applying the one-to-one correspondence.

How do we construct arrangements using this correspondence? Let us consider

Veronese curves in Pd−2 (Definition III.1). The associated arrangements of d sections

lie in Hirzebruch surfaces Fd−2.

Let d ≥ 4 and 0 ≤ m ≤ d be integers. A m-Veronese curve will be a Veronese

curve in Pd−2 passing through the points P1, P2, . . . , Pm (as we fixed in Section 3.1).

A m-Veronese curve is said to be general if, apart from the intersections at the points

P1, P2, . . . , Pm, it intersects Hd transversally (proper points of Λi,j’s).

Proposition III.12. There are general m-Veronese curves in Pd−2.

Proof. Consider the map v : P1 → Pd−2 given by

[u : t] 7→
[
aibi

m−1∏

j=0,j 6=i

(u− bjt)
d−2∏

j=m,j 6=i

(ci,ju− bjt)
]d−2

i=0
.

For a general choice of the numbers ai, bi and ci,j, this defines a m-Veronese curve

in Pd−2. We have v([0 : 1]) = [ai]
d−2
i=0 and v

([
1 : 1

bi

])
= Pi+1 for i ∈ {0, 1, ...,m − 1}.

In order to have only transversal intersections out of {P1, P2, . . . , Pm}, we choose a

point outside of the locus described by a certain finite set of nonzero polynomials with

variables ai, bi and ci,j. These polynomials are the conditions to pass by specified

points in Hd and with specified tangency.
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Let B ⊂ Pd−2 be a general m-Veronese curve. Then, we have the following

intersections in M0,d+1 of the corresponding B′ (strict transform of B under ψd+1)

and DT ’s:

• If T = {i, d + 1} and 1 ≤ i ≤ m, B′.DT = 1.

• If T c = {i, j} and i, j ∈ {1, 2, ...,m}, B′.DT = d−m.

• If T c = {i, j} and i, j ∈ {m + 1,m + 2, ..., d}, B′.DT = d− 2.

• If T c = {i, j}, i ∈ {1, 2, ..., m} and j ∈ {m+1,m+2, ..., d}, B′.DT = d−m−1.

• B′.DT = 0 otherwise.

Hence, B′.∆ = m + (d−m)
2

(
m(m− 1) + (d−m− 1)(d + 2m− 2)

)
.

P1

P2

P3

P4

Figure 3.3: The five types of m-Veronese (conics) for d = 4.

A d-Veronese curve corresponds to a fiber of the map πd+1 : M0,d+1 → M0,d. The

corresponding arrangement of d sections in Fd−2 has td−1 = d and tk = 0 for k 6= d.

It can be seen in P1 × P1 as d fibers, explaining its isotrivial nature.
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In Figure 3.3, we show all the possible m-Veronese curves which satisfy the con-

dition (*) in Definition III.4. The corresponding arrangements lie on F2 and can be

seen as arrangements of conics in P2. For d higher, the possibilities for m-Veronese

curves are richer, but it is hard to prove the existence. Although, we will show in the

following sections an effective method to compute the arrangements corresponding

to lines in Pd−2.

3.5 Applications to (p, q)-nets.

In this section we use the correspondence for pairs (A, P ), considering the “trick”

of forming a new pair (A′, P ′) where P ′ belongs to A, to find facts about 4-nets, to

classify (3, q)-nets for 2 ≤ q ≤ 6, and to find the Quaternion nets.

3.5.1 (4, q)-nets.

Example III.13. (Hesse arrangement) In this example we will use our method to re-

prove the existence of the Hesse configuration. This (4, 3)-net has nice applications in

Algebraic geometry (see for example [42, 1]). We will obtain two Hesse configurations

according to our definition of isomorphism, which keeps record of the labelling of the

lines. Let us denote this net by A = A1∪A2∪A3∪A4, with Ai = {L3i−2, L3i−1, L3i}.

Without loss of generality, we assume that the combinatorics is given by the following

set of orthogonal Latin squares.

1 2 3
2 3 1
3 1 2

1 2 3
3 1 2
2 3 1

These Latin squares give the intersections of A3 and A4 respectively with A1

(columns) and A2 (rows). For example, the left one tell us that L2, L6 and L7

(values) have a common point of incidence. The right one says L2, L6 and L12 have
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also non-empty intersection. Hence, [[2, 6, 7, 12]] ∈ X . In this way, we find X , which

is completely described in the following table.

L1 L2 L3

L4 L7 L8 L9

L5 L8 L9 L7

L6 L9 L7 L8

L1 L2 L3

L4 L10 L11 L12

L5 L12 L10 L11

L6 L11 L12 L10

We now consider a new arrangement of lines A′ = A \ {L3, L4, L9, L12} together

with the point P = [[3, 4, 9, 12]]. We rename the twelve lines in the following way:

A′ = {L′1 = L1, L
′
2 = L2, L

′
3 = L5, L

′
4 = L6, L

′
5 = L7, L

′
6 = L8, L

′
7 = L10, L

′
8 = L11}

and the lines passing through P , α = L3, β = L4, γ = L9 and δ = L12. Our

one-to-one correspondence tells us that the pair (A′, P ) corresponds to a unique line

L′ in P6, and it passes through these distinguished four points α, β, γ and δ (we

abuse the notation, as we saw these lines correspond to points on L′). Then, K(α) =

{[[4, 6, 7]], [[3, 5, 8]]}, K(β) = {[[1, 6, 8]], [[2, 5, 7]]}, K(γ) = {[[1, 3, 7]], [[2, 4, 8]]} and

K(δ) = {[[1, 4, 5]], [[2, 3, 6]]}. Hence, we write:

α = [a1 : a2 : 0 : 1 : 0 : 1 : 1], β = [0 : 1 : a3 : a4 : 1 : 0 : 1]

γ = [1 : 0 : 1 : 0 : a5 : a6 : 1], δ = [1 : a7 : a7 : 1 : 1 : a7 : a8]

for some numbers ai (which have restrictions) and we take L′ : αt + βu, [t : u] ∈ P1.

For some [t : u], we have the equation αt + βu = γ, and from this we obtain:

a2 = 1− a1 a3 =
a1

a1 − 1
a4 =

1

1− a1

a5 =
a1 − 1

a1

a6 =
1

a1

.

For another [t : u], we have αt + βu = δ, and this gives a2
7 − a7 + 1 = 0 and

a1 = 1
a7

. Therefore, our field will need to have roots for the equation x2− x + 1. For

instance, over C, they are w = e
π
√−1
3 and its complex conjugate w. The two lines for
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the corresponding two Hesse configurations are: [1−w : w : 0 : 1 : 0 : 1 : 1]t+[0 : w :

w− 1 : 1 : w : 0 : w]u and [w− 1 : 1 : 0 : w : 0 : w : w]t+ [0 : 1 : 1−w : w : 1 : 0 : 1]u.

By our choices at the end of Section 3.2, we have that the lines α, β, γ and δ are

given by ux − ty = 0, where [t : u] are the corresponding points in P1 for each of

them, as points of L′. We now evaluate to obtain:

{L1 = (x+rz), L2 = (x+ry+z), L3 = (y)} {L4 = (x), L5 = (y+rz), L6 = (x+ry+z)}

{L7 = (y+z), L8 = (x+z), L9 = (x−y)} {L10 = (x+y+z), L11 = (z), L12 = (x−ry)}

where r = w or w.

Example III.14. (There are no (4, 4)-nets in characteristic 6= 2) We again start by

supposing their existence, let A = {Ai}4
i=1 be such a net. Without loss of generality,

we can assume that the orthogonal set of Latin squares is:

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

Now we consider (A′, P ) given by the arrangement of twelve lines A′ = A \

{L4, L5, L12, L16} and the point P = [[4, 5, 12, 16]]. The lines of A′ are L′1 = L1,

L′2 = L2, L′3 = L3, L′4 = L6, L′5 = L7, L′6 = L8, L′7 = L9, L′8 = L10, L′9 = L11,

L′10 = L13, L′11 = L14 and L′12 = L15. The special lines are α = L4, β = L5, γ = L12

and δ = L16. Hence, we have that

α = [a1 : a2 : a3 : 1 : a4 : 0 : 0 : a4 : 1 : a4 : 1], β = [1 : b4 : 0 : b1 : b2 : b3 : 1 : b4 : 0 : 1 : b4]

γ = [1 : 0 : c4 : c4 : 0 : 1 : c1 : c2 : c3 : c4 : 1], δ = [d1 : 1 : d4 : 1 : d1 : d4, 1 : d4 : d1 : d2 : d3]

as points in L′, where this is again the corresponding line for (A′, P ). Let L′ be

αt + βu, where [t : u] ∈ P1. When we impose L′ to pass through γ, we obtain:

a1 =
1− c1

c3

a2 =
c3 − 1

c3

a3 =
c1 + c2 + c3 − 1

c3

a4 =
c2 + c3 − 1

c3

c4 = c1+c2+c3−1
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b1 =
c1 + c2 − 1

c1

b2 =
1− c2 − c3

c1

b3 =
1

c1

b4 =
1− c3

c1

.

Let c1 = a, c2 = b and c3 = c. When we impose to L′ to pass through δ, we get

ad4 = 1 and ad1 + b = 1 plus the following equations:

(1) d1(1− c) = 1− b− c, (2) d1(1− b)(c− 1) + d1c(1− c) = (1− b)c,

(3) (1− b)(1 + d4(b + c− 1)) = d4c, (4) c2 = (1− b)(b + c− 1)

among others. These equations will be enough to obtain a contradiction. By isolating

d1 in (1), replacing it in (2) and using (4), we get c3 = (1 − b)3 which requires a

3-rd primitive root of 1. Say w is such, so b = 1 − wc. Then, by using (3), we get

w2(1+2c) = w− 1. We now suppose that the characteristic of our field is not 2, and

so c = 1
w
. Then, b = 0 which is a contradiction. Notice that there is no contradiction

if the characteristic is equal to 2.

3.5.2 (3, q)-nets for 2 ≤ q ≤ 6.

In this subsection we will be using again the trick of eliminating some lines passing

by a k-point P of the arrangement, to consider a new arrangement A′ together

with this point P . First we will be working with (3, q)-nets, so P will be a 3-

point of X (and so we eliminate three lines from A). If the (3, q)-net is given by

A = {A1,A2,A3} such that Ai = {Lq(i−1)+j}q
j=1, then the new pair (A′, P ) will

be given by {L′1 = L2, L
′
2 = L3, ..., L

′
q−1 = Lq, L

′
q = Lq+2, L

′
q+1 = Lq+3, ..., L

′
2q−2 =

L2q, L
′
2q−1 = L2q+2, L

′
2q = L2q+3, ..., L

′
3q−3 = L3q}, P = L1∩Lq+1∩L2q+1 and α = L1,

β = Lq+1, γ = L2q+1. The corresponding line for (A′, P ) will be L′ : αt + βu,

[t : u] ∈ P1. We obtain X from a Latin square. Then, we fix a point P in X , so

the locus of the line L′ is the moduli space of the (3, d)-nets (keeping the labelling)

corresponding to that Latin square (or better its main class). We will give in each

case equations for the lines of the nets depending on parameters coming from L′.
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(3, 2)-nets

Here we have one main class given by the multiplication table of Z/2Z: 1 2
2 1

.

According to our set up, (A′, P ) is formed by an arrangement A′ of three lines and

P = [[1, 3, 5]] ∈ X . The corresponding line L′ is actually the whole space P1. This

tells us that there is only one (3, 2)-net up to isomorphism. The special points are

α = [1 : 0], β = [0 : 1] and γ = [1 : 1]. This (3, 2)-net is represented by the singular

members of the pencil λz(x− y) + µy(z − x) = 0 on P2.

(3, 3)-nets

Again, there is one main class given by the multiplication table of Z/3Z.

1 2 3
3 1 2
2 3 1

For (A′, P ) we have an arrangement of six lines A′ and P = [[1, 4, 7]] ∈ X , our

line L′ is in P4. The special points can be taken as α = [a1 : a2 : 1 : 0 : 1],

β = [1 : 0 : b1 : b2 : 1] and γ = [1 : c1 : c1 : 1 : c2]. Then, for some [t : u] ∈ P1, we have

αt+βu = γ. Thus, if a2 = a, b2 = b and c1 = c, we have that α =
[

a(b−1)
bc

: a : 1 : 0 : 1
]

and β =
[
1 : 0 : bc(a−1)

a
: b : 1

]
. The rest of the points in X ′ (again, although A′ is not

a net, we think of X ′ as the set of 3-points inA′ coming from X ) [[1, 3, 6]] and [[2, 4, 5]]

give the same restriction (a− 1)(b− 1) = 1, i.e., a = b
b−1

. Therefore, the line L′ has

two parameters of freedom and is given by
[

1
c

: b
b−1

: 1 : 0 : 1
]
t + [1 : 0 : c : b : 1]u

where c, b are numbers with some restrictions (for example, c, b 6= 0 or 1). Hence, we

find that this family of (3, 3)-nets can be represented by: L1 = (y), L2 = (1
c
x+y+z),

L3 = ( b
b−1

x + z), L4 = (x), L5 = (x + cy + z), L6 = (by + z), L7 = (x + c(1 − b)y),

L8 = (x + y + z) and L9 = (z).

(3, 4)-nets

Here we have two main classes. We represent them by the following Latin squares.
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M1 =

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

M2 =

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

They correspond to Z/4Z and Z/2Z⊕ Z/2Z respectively. We deal first with M1.

Then we have α = [a1 : a2 : a3 : 1 : a4 : 0 : 1 : a4], β = [1 : b1 : 0 : b2 : b3 : b4 : 1 : b1]

and γ = [1 : c1 : c2 : c2 : c1 : 1 : c3 : c4]. Let a3 = a, b4 = b and c2 = c.

By imposing γ to L′, we can find a1 = (−1+b)a
bc

, a2 = (−b1+c1b)a
bc

, a4 = (−b1+c4b)a
bc

,

b2 = −(c−c2a)b
a

, b3 = b1 − c4b + c1b and c3 = 1
b

+ c
a
. When we impose L′ to pass

through [[1, 5, 9]], [[2, 4, 9]] and [[1, 4, 8]], we obtain equations to solve for c4, c1 and b1

respectively. After that, the restrictions [[2, 6, 7]], [[3, 5, 7]] and [[3, 6, 8]] are trivially

satisfied. The line L′ is parametrized by (a, b, c) in a open set of A3 and is given by:

a1 = a(b−1)
bc

, a2 = ab
abc+ab−a−bc

, a3 = a, a4 = a2(b−1)
abc+ab−a−bc

, b1 = b2(a−1)c
abc+ab−a−bc

, b2 = bc(a−1)
a

,

b3 = abc
abc+ab−a−bc

and b4 = b.

Similarly, for M2 we have α = [a1 : a2 : a3 : 1 : a4 : 0 : 1 : a4], β = [1 : b1 : 0 : b2 :

b3 : b4 : 1 : b1] and γ = [1 : c1 : c2 : 1 : c1 : c2 : c3 : c4]. Of course, the only change is γ.

By doing similar computations, we have that L′ is parametrized by (a, b, c) in a open

set of A3 and is given by: a1 = (b−c)a
bc

, a2 = abc
abc+ab−bc−ac

, a3 = a, a4 = a2(b−c)
abc+ab−bc−ac

,

b1 = b2(a−c)
abc+ab−bc−ac

, b2 = b(a−c)
ac

, b3 = abc
abc+ab−bc−ac

and b4 = b.

Hence, the lines for the corresponding (3, 4)-nets for Mr can be represented by:

L1 = (y), L2 = (a1x + y + z), L3 = (a2x + b1y + z), L4 = (a3x + z), L5 = (x),

L6 = (x + b2y + z), L7 = (a4x + b3y + z), L8 = (b4y + z), L9 = (ax − bc2−ry),

L10 = (x + y + z), L11 = (a4x + b1y + z) and L12 = (z). For example, if we

evaluate the equations for the cyclic type M1 at a = 1+i
2

, b = 1−i
2

and c = −i (where

i =
√−1), we obtain the very well known net: A1 = {y, (1+ i)x+2y +2z, (1+ i)x+

y + 2z, (1 + i)x + 2z}, A2 = {x, 2x + (1− i)y + 2z, x + (1− i)y + 2z, (1− i)y + 2z}

and A3 = {x + y, x + y + z, x + y + 2z, z}.
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(3, 5)-nets

Here we again have two main classes, we represent them by the following Latin

squares.

M1 =

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

M2 =

1 2 3 4 5
2 1 4 5 3
3 5 1 2 4
4 3 5 1 2
5 4 2 3 1

The Latin square M1 corresponds to Z/5Z. As before, for M1 and M2 we have

that α = [a1 : a2 : a3 : a4 : 1 : a5 : a6 : 0 : 1 : a5 : a6] and β = [1 : b1 : b2 : 0 : b3 : b4 :

b5 : b6 : 1 : b1 : b2], but for M1, γ = [1 : c1 : c2 : c3 : c3 : c2 : c1 : 1 : c4 : c5 : c6], and for

M2, γ = [1 : c1 : c2 : c3 : 1 : c1 : c2 : c3 : c4 : c5 : c6].

In the case of M1, after we impose γ to L′, we use the conditions [[2, 3, 5]],

[[4, 8, 11]], [[2, 6, 12]], [[2, 8, 9]] and [[3, 8, 10]] to solve for b2, c6, c5, b1 and c2 re-

spectively. After that we have four parameters left: a4 = a, b6 = b, c3 = c and

c1 = d, and we obtain the following constrain for them:

b2(a−1)(d−c)(c−ad)+b(−d2a+dc+2d2a2−2da2c−da+ca−dc2 +c2da)

+ad(ca− da + 1− c) = 0.

Hence, the (3, 5)-nets for M1 are parametrized by an open set of the hypersurface

in A4 defined by this equation. The values for the variables are:

a1 =
a(b− 1)

bc
, a2 =

ab(d− 1)

a− ba + bc
, a3 =

a(d− db + bc)

c2(a− 1)b
, a4 = a,

a5 =
a2(d− 1)(d− db + bc)

(a− ba + bc)(a− 1)cd
, a6 =

ad(b− 1)

bc
, b1 =

b(da− adb + bc)

a− ba + bc
,

b2 =
d− db + bc

c
, b3 =

bc(a− 1)

a
, b4 =

(da− adb + bc)(d− db + bc)a

(a− ba + bc)(a− 1)cd
,

b5 = d, b6 = b.
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In the case of M2, we obtain a three dimensional moduli space of (3, 5)-nets as

well. It is parametrized by (a, b, c) in an open set of A3 such that a4 = a, b6 = b and

c1 = c, and:

a1 =
a2(1− b)

b(ab− a− b)
, a2 = c, a3 =

(−a2 + a2b + cba− ab− cb)b

(ab + cb− a− b)(ab− a− b)
, a4 = a,

a5 =
(a2 − a2b− cba + ab + cb)a

(ab− a− b)2
, a6 =

c(b− 1)a

−a + ab + cb− b
,

b1 =
cb2(1− a)

a(ab− a− b)
, b2 =

(a− ab + b− c)b2

(−a + ab + cb− b)(ab− a− b)
,

b3 =
b2(1− a)

a(ab− a− b)
, b4 =

ab(ab− a− b + c)

(ab− a− b)2
, b5 =

cb(a + b− ab)

a(ab− a + bc− b)
, b6 = b.

To obtain the lines for the nets corresponding to Mr, we just evaluate and obtain:

L1 = (y), L2 = (a1x+y+z), L3 = (a2x+b1y+z), L4 = (a3x+b2y+z), L5 = (a4x+z),

L6 = (x), L7 = (x+b3y+z), L8 = (a5x+b4y+z), L9 = (a6x+b5y+z), L10 = (b6y+z),

L11 = (ax− bc2−ry), L12 = (x + y + z), L13 = (a5x + b1y + z), L14 = (a6x + b2y + z)

and L15 = (z). These two 3 dimensional families of (3, 5)-nets appear in [81]. We

notice that both families of (3, 5)-nets have members defined over Q. For the case

M1, we can make b2 disappear from the equation by declaring c = ad (the relations

a = 1 and d = c are not allowed). Then, b = 2da−1−da2

2da−2da2−1+a−d2a+d2a2 and it can be

checked that for suitable a, d ∈ Z the conditions for being (3, 5)-net are satisfied.

(3, 6)-nets

We have twelve main classes of Latin squares to check. The following is a list

showing one member of each class. It was taken from [23, pp. 129-137].

M1 =

1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3
5 6 1 2 3 4
6 1 2 3 4 5

M2 =

1 2 3 4 5 6
2 1 5 6 3 4
3 6 1 5 4 2
4 5 6 1 2 3
5 4 2 3 6 1
6 3 4 2 1 5

M3 =

1 2 3 4 5 6
2 3 1 5 6 4
3 1 2 6 4 5
4 6 5 2 1 3
5 4 6 3 2 1
6 5 4 1 3 2
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M4 =

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
5 6 1 2 4 3
6 5 2 1 3 4

M5 =

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
5 6 2 1 4 3
6 5 1 2 3 4

M6 =

1 2 3 4 5 6
2 1 4 5 6 3
3 6 2 1 4 5
4 5 6 2 3 1
5 3 1 6 2 4
6 4 5 3 1 2

M7 =

1 2 3 4 5 6
2 1 4 3 6 5
3 5 1 6 4 2
4 6 5 1 2 3
5 3 6 2 1 4
6 4 2 5 3 1

M8 =

1 2 3 4 5 6
2 1 6 5 3 4
3 6 1 2 4 5
4 5 2 1 6 3
5 3 4 6 1 2
6 4 5 3 2 1

M9 =

1 2 3 4 5 6
2 3 1 6 4 5
3 1 2 5 6 4
4 6 5 1 2 3
5 4 6 2 3 1
6 5 4 3 1 2

M10 =

1 2 3 4 5 6
2 1 6 5 4 3
3 5 1 2 6 4
4 6 2 1 3 5
5 3 4 6 2 1
6 4 5 3 1 2

M11 =

1 2 3 4 5 6
2 1 4 5 6 3
3 4 2 6 1 5
4 5 6 2 3 1
5 6 1 3 2 4
6 3 5 1 4 2

M12 =

1 2 3 4 5 6
2 1 5 6 4 3
3 5 4 2 6 1
4 6 2 3 1 5
5 4 6 1 3 2
6 3 1 5 2 4

The Latin squares M1 and M2 correspond to the multiplication table of Z/6Z

and S3 respectively. The following will be the set up for the analysis of (3, 6)-nets.

We first fix one Latin square M from the list above. Let A = {A1,A2,A3} be the

corresponding (possible) (3, 6)-net, where A1 = {L1, ..., L6}, A2 = {L7, ..., L12} and

A3 = {L13, ..., L18}. In analogy to what we did before, we consider a new arrangement

A′ together with a point P such that A′ = A\{L1, L7, L13} and P = [[1, 7, 13]] ∈ X .

We label the lines of A′ from 1 to 15 following the order of A, that is, L′1 = L2,...,

L′5 = L6, L′6 = L8, etc, eliminating L1, L7 and L13. Let L′ be the line in P13 given

by (A′, P ). The special lines (or points of L′) α = L1, β = L7 and γ = L13 can

be taken as α = [a1 : a2 : a3 : a4 : a5 : 1 : a6 : a7 : a8 : 0 : 1 : a6 : a7 : a8],

β = [1 : b1 : b2 : b3 : 0 : b4 : b5 : b6 : b7 : b8 : 1 : b1 : b2 : b3] and γ = γ(c1, c2, ..., c8)

depending on M . Since there is [t, u] ∈ P1 satisfying αt + βu = γ, we can and do

write a1, a2, a3, a4, a6, a7, a8, b4, b5, b6 and c5 depending on the resting variables.

After that, we start to impose the points in X ′ which translates, as before, into

2 × 2 determinants equal to zero. At this stage we have 20 equations given by

these determinants, and 12 variables. We choose appropriately from them to isolate
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variables so that they appear linearly, i.e., with exponent equals to 1. In the way

of solving these equations, we prove or disprove the existence of A. In the case

that this (3, 6)-net exists, i.e. A is realizable on P2 over some field, the equations

for its lines can be taken as: L1 = (y), L2 = (a1x + y + z), L3 = (a2x + b1y + z),

L4 = (a3x+b2y+z), L5 = (a4x+b3y+z), L6 = (a5x+z), L7 = (x), L8 = (x+b4y+z),

L9 = (a6x + b5y + z), L10 = (a7x + b6y + z), L11 = (a8x + b7y + z), L12 = (b8y + z),

L13 = (ux − ty), L14 = (x + y + z), L15 = (a6x + b1y + z), L16 = (a7x + b2y + z),

L17 = (a8x + b3y + z) and L18 = (z), where [t, u] satisfies αt + βu = γ.

Now we apply this procedure case by case. We first give the result, after that

we indicate the order we solve for the points in X ′, and then we give a moduli

parametrization whenever the net exits. For simplicity, we will work always over the

complex numbers C. Sometimes we will omit the final expressions for the variables,

although they all can explicitly be given.

M1: (Z/6Z) This gives a three dimensional moduli space. We also have that

some of these nets can be defined over R. We solve the determinants in the following

order: [[4, 6, 15]] solve for c3, [[5, 10, 14]] solve for c8, [[1, 9, 15]] solve for c1, [[5, 9, 13]]

solve for c7, [[3, 10, 12]] solve for c6, [[2, 10, 11]] solve for b3, [[3, 9, 11]] solve for c2 and

[[2, 8, 15]] solve for b2. If a5 = a, b1 = d, b8 = b and c4 = c, then they must satisfy:

c2(−1 + a)b4(a2 − a2b + cab + ab− 2a + ca− bc)− b2c(2c2b2 + 5cab + 4a2b2c−

4ca2b− 2b2a3 − a2c + 3a2 − 2a3 − 5a2b + ca3 + 2a2b2 − bc2a + 4ba3 − 4ac2b2 −

3ab2c− a3b2c + c2ba2 + 2a2b2c2)d + (bc + a− ab)(a2b2c2 + c2b2 − 2ac2b2 + a2b2c−

ab2c + 2cab− ca2b + a2b2 − 2a2b + a2)d2 = 0.

So, the moduli space for these nets is an open set of this hypersurface.

M2: (S3) This gives a three dimensional moduli space parametrized by an open
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set of A3. It does not contains (3, 6)-nets defined over R. The reason is that we

need the square root of −1 to define the nets. Moreover, all of them have extra

3-points, apart from the ones coming from X . The order we take is: [[5, 10, 14]] solve

for c8, [[2, 6, 15]] solve for c1, [[1, 10, 13]] solve for c7, [[1, 9, 12]] solve for c6, [[2, 10, 11]]

solve for b1, [[5, 6, 12]] solve for c3, [[1, 8, 15]] solve for b2, [[1, 7, 14]] solve for b8 and

[[2, 8, 14]] solve for c2. If i =
√−1, a5 = a, b3 = e and c4 = c, then the expressions

for the variables are:

a1 = (1+i
√

3)(2c+e−i
√

3e)a
4ce

, a2 = 2ace
2aec−ac−ce−ice

√
3+ae+iae

√
3+ica

√
3
,

a3 = (−1+i
√

3)(ae−iae
√

3−2ce+2ac)a

2(2ae−2ce+2aec+ac+ica
√

3)
, a4 = a, a5 = a,

a6 = (−1+i
√

3)(ae−iae
√

3−2ce+2ac)a

2(2aec−ac−ce−ice
√

3+ae+iae
√

3+ica
√

3)
, a7 = (1+i

√
3)(e−i

√
3e+2c)a2

2(2ae−2ce+2aec+ac+ica
√

3)
, a8 = (1+i

√
3)a

2
,

b1 = (−1+i
√

3)e2(a−c)

2aec−ac−ce−ice
√

3+ae+iae
√

3+ica
√

3
, b2 = (1+i

√
3)(−ce+ae+ac)e

2ae−2ce+2aec+ac+ica
√

3
, b3 = e,

b4 = (−1+i
√

3)(a−c)e
2ac

, b5 = (1+i
√

3)(−ce+ae+ac)e

2aec−ac−ce−ice
√

3+ae+iae
√

3+ica
√

3
, b6 = 2aec

2ae−2ce+2aec+ac+ica
√

3
,

b7 = (1+i
√

3)e
2

, b8 = (1+i
√

3)e
2

.

For instance, if we substitute a = c+ic
√

3
1+i

√
3−2c

and e = c(1+i
√

3)
2(c−1)

, we produce a one

dimensional family of arrangements of 18 lines with t2 = 18, t3 = 39, t4 = 3, tk = 0

otherwise.

M3: This gives a three dimensional moduli space which does not contains (3, 6)-

nets defined over R. The reason again is that we need to have the square root of

−1 to realize the nets. The order we take is: [[5, 10, 11]] solve for b8, [[1, 9, 15]] solve

for c8, [[5, 9, 12]] solve for c6, [[3, 6, 15]] solve for c1, [[1, 10, 13]] solve for c7, [[4, 9, 11]]

solve for b3, [[1, 6, 12]] solve for b1 and [[3, 10, 12]] solve for b2. If a5 = a, c3 = d,

c2 = e and c4 = c, then they must satisfy:

(e2a2 + e2− e2a−2a2de−de+d2 +3dea+d2a2−2d2a)+(−ea− e+ad−d)c+ c2 = 0

and so its moduli space is an open set of this hypersurface. Moreover, by solving for
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c, we have that: c = 1
2
(ea + e− ad + d±√−3(a− 1)(d− e)). But, we cannot have

a = 1 or d = e, so the square root of −1 is necessary.

M4: This case is not possible over C. To achieve contradiction, we proceed as:

[[5, 10, 13]] solve for c7, [[3, 7, 15]] solve for c6, [[2, 8, 15]] solve for b2, [[4, 6, 15]] solve

for c3, [[5, 6, 14]] solve for a5, [[1, 9, 15]] solve for c8, [[1, 10, 14]] solve for c1, [[3, 8, 14]]

solve for c2, [[2, 10, 11]] solve for c4 and [[2, 6, 13]] solve for b1. At this stage, we obtain

several possibilities from the equation given by [[2, 6, 13]], none of them possible (for

example, a2 = a6).

M5: This case is not possible over C. By solving [[5, 10, 13]] for c7 and then

[[3, 7, 15]] for c6, we obtain a6 = a7 which is a contradiction.

M6: This gives a two dimensional moduli space, and so it is not always three

dimensional. Some of these nets can be defined over R. The order we take is:

[[5, 10, 11]] solve for a5, [[1, 9, 15]] solve for c8, [[3, 7, 15]] solve for c6, [[2, 6, 15]] solve

for b1, [[5, 6, 13]] solve for c7, [[4, 9, 11]] solve for b3, [[2, 9, 13]] solve for c1, [[1, 10, 12]]

solve for c3 and [[3, 9, 12]] solve for b2. If b8 = b, c2 = d and c4 = c, then they must

satisfy:

bc(1−c)(bc−c−b)+(bc3+b2−5bc2+3bc−2b2c+b2c2−c3+2c2)d+(−b+2bc−2c+c2)d2 = 0.

Thus, its moduli space is an open set of this hypersurface.

M7: This gives a two dimensional moduli space parametrized by an open set of

A2. These nets can be defined over Q. The order we solve is the following: [[5, 6, 13]]

solve for c7, [[3, 6, 15]] solve for b2, [[1, 9, 15]] solve for c8, [[5, 9, 12]] solve for c6,

[[1, 10, 14]] solve for b3, [[3, 9, 11]] solve for b8, [[4, 8, 11]] solve for c3, [[4, 10, 13]] solve

for c2, [[4, 7, 15]] solve for b1 and [[5, 7, 11]] solve for c1. If a5 = a and c4 = c, then

the expressions for the variables are:
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a1 = (c2−4c+2ac+4−2a)a
c(a−2)(c−2)

, a2 = (c−1)(c−2)(a−2)a
a2c2+a2−2a2c−2c2a+5ac−2a+c2−2c

, a3 = ac(a+c−2)
−c2−ac+c2a+2c−2a+a2 ,

a4 = (a−2)(a−ac+c−2)a
−c2+c2a−3ac+2c+a2c+2a−a2 , a5 = a, a6 = (a+c−2)(−a+ac−c+2)a

a2c2+a2−2a2c−2c2a+5ac−2a+c2−2c
,

a7 = (a−2)a2(c−1)
c2+ac−c2a−2c+2a−a2 , a8 = a(c2−4c+2ac+4−2a)

−c2+c2a−3ac+2c+a2c+2a−a2 ,

b1 = (a−1)(a−2)(c−2)2c
(a+c−2)(a2c2+a2−2a2c−2c2a+5ac−2a+c2−2c)

, b2 = (c−a)(a−2)(c−2)
−c2−ac+c2a+2c−2a+a2 ,

b3 = (a−2)2(c−1)a(c−2)
(a+c−2)(c2−c2a+3ac−2c−a2c−2a+a2)

, b4 = (c−a)(a−2)(c−2)
ac(a+c−2)

,

b5 = (c−1)(c−2)(a−2)a
a2c2+a2−2a2c−2c2a+5ac−2a+c2−2c

, b6 = c(a−2)(c−2)a(a−1)
(c2+ac−c2a−2c+2a−a2)(a+c−2)

,

b7 = c(a−2)(c−2)
−c2+c2a−3ac+2c+a2c+2a−a2 , b8 = (a−2)(c−2)

2−a−c
.

M8: This gives a two dimensional moduli space. Some of these nets can be defined

over R. The order we solve is the following: [[2, 6, 15]] solve for b1, [[1, 10, 13]] solve

for c7, [[1, 7, 15]] solve for c6, [[5, 7, 14]] solve for c8, [[4, 10, 11]] solve for c3, [[5, 6, 13]]

solve for b2, [[2, 10, 14]] solve for b3, [[5, 9, 11]] solve for a5 and [[3, 7, 11]] solve for c1.

If b8 = b, c4 = c and c2 = e, then they have to satisfy:

c2(c−b)(4c2−6cb−b3+3b2)+c(cb−2c+b)(6c2−9cb−b3+4b2)e+(bc−b+c)(cb−2c+b)2e2 = 0.

Thus, its moduli space is an open set of this hypersurface. This family of nets is

not possible in characteristic 2 because, for example, we have that c5 = 2c
b
.

M9: This gives a three dimensional moduli space. Some of these nets can be

defined over R. The order we solve is the following: [[5, 10, 11]] solve for a5, [[1, 10, 14]]

solve for c8, [[4, 7, 15]] solve for c6, [[4, 9, 12]] solve for b3, [[1, 8, 15]] solve for c7,

[[5, 8, 12]] solve for c2, [[5, 6, 14]] solve for c1 and [[3, 6, 15]] solve for b2. If b1 = e,

b8 = b, c4 = c and c3 = d, then they have to satisfy:

(b2c2 + c2 + bc− b2c− 2bc2) + (−2c + 2bc + ce− bec + e2b− eb)d + (−e + 1)d2 = 0.

Thus, its moduli space is an open set of this hypersurface.

M10: This gives a two dimensional moduli space. Some of these nets can be defined

over R. The order we solve is the following: [[5, 10, 11]] solve for a5, [[1, 7, 15]] solve
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for b1, [[1, 10, 12]] solve for c6, [[3, 6, 15]] solve for b2, [[5, 6, 13]] solve for c7, [[5, 7, 14]]

solve for c8, [[4, 8, 15]] solve for b3, [[3, 7, 11]] solve for c3 and [[2, 8, 11]] solve for c2.

If b8 = b, c4 = c and c1 = e, then they have to satisfy:

ce(c− 2e) + (2ce− c− e)(e− c)b + c(1− e)(e− c)b2 = 0.

Thus, its moduli space is an open set of this hypersurface.

M11: This also gives a two dimensional moduli space. Some of these nets can

be defined over R. The order we solve is the following: [[5, 10, 11]] solve for a5,

[[1, 9, 15]] solve for c8, [[3, 8, 11]] solve for c7, [[3, 7, 15]] solve for c6, [[4, 6, 15]] solve for

b3, [[2, 8, 15]] solve for b1, [[4, 9, 11]] solve for c2, [[5, 7, 14]] solve for c3 and [[1, 8, 14]]

solve for c1. For example, we have that c7 has to be zero and so L13, L16 and L18

have always a common point of incidence. If b2 = e, b8 = b and c4 = c, then they

must satisfy:

c(b− 1)(bc− b− c) + (b2c− 2bc + c− b2 + 2b)e− e2 = 0.

Thus, its moduli space is an open set of this hypersurface.

M12: This case is not possible over C. To achieve contradiction, we take: [[2, 9, 15]]

solve for c8, [[5, 10, 13]] solve for c7, [[3, 6, 15]] solve for b2, [[1, 8, 15]] solve for c3,

[[1, 10, 12]] solve for c6, [[5, 9, 11]] solve for c2 and [[5, 6, 12]] solve for b1. Then,

the equation induced by [[1, 9, 13]] gives six possibilities, all of them producing a

contradiction.

3.5.3 The Quaternion nets.

We now do the analysis of (3, 8)-nets corresponding to the multiplication table of

the Quaternion group.
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M =

1 2 3 4 5 6 7 8
2 1 6 7 8 3 4 5
3 6 2 5 7 1 8 4
4 7 8 2 3 5 1 6
5 8 7 6 2 4 3 1
6 3 1 8 4 2 5 7
7 4 5 1 6 8 2 3
8 5 4 3 1 7 6 2

In this case, we have that there is a three dimensional moduli space for them,

given by an open set of A3. Also, these 3-nets can be defined over Q. This example

shows again that a non-abelian group can also realize a 3-net on P2. The set up is

analogous to what we have done before. In this case, A′ = A \ {L1, L9, L17} and

P = [[1, 9, 17]]. Our distinguished points on L′ ⊆ P19 are: α = [a1 : a2 : a3 : a4 :

a5 : a6 : a7 : 1 : a8 : a9 : a10 : a11 : a12 : 0 : 1 : a8 : a9 : a10 : a11 : a12], β = [1 :

b1 : b2 : b3 : b4 : b5 : 0 : b6 : b7 : b8 : b9 : b10 : b11 : b12 : 1 : b1 : b2 : b3 : b4 : b5] and

γ = [1 : c1 : c2 : c3 : c4 : c5 : c6 : 1 : c4 : c5 : c6 : c1 : c2 : c3 : c7 : c8 : c9 : c10 : c11 : c12].

Let [t : u] ∈ P1 such that αt + βu = γ. We isolate first a1, a2, a3, a4, a5, a6, a8,

a9, a10, a11, b6, b7, b8, b9, b10, b11 and c7 with respect to the other variables. The

following is the order we solve some of the 2×2 determinants given by the 3-points in

X ′: [[1, 11, 21]] solve for c10, [[2, 10, 21]] solve for c9, [[3, 12, 21]] solve for c11, [[4, 8, 21]]

solve for b3, [[5, 13, 21]] solve for c8, [[7, 14, 15]] solve for b12, [[5, 14, 20]] solve for c4,

[[2, 14, 17]] solve for c1, [[4, 9, 20]] solve for c2, [[6, 13, 15]] solve for c5, [[3, 8, 20]] solve

for b5, [[3, 10, 15]] solve for b4, [[3, 9, 18]] solve for c6 and [[3, 11, 19]] solve for b1. Then,

if we let a7 = a, b2 = e and c3 = d, the expressions for all the variables are:

a1 = ad−a−d
a−2

, a2 = 2e2d−2ed+ed2−e2d2+(−2ed2+e2d2+2e+6ed−3e2d−4)a+(−4ed−e+4+ed2+e2d)a2

(ae−2a−2e+2)(ade−ed+d−a−da)
,

a3 = e(ade−ed+d−a−da)
ae−2a−2e+2

, a4 = d,

a5 = 4d+2e2d−6ed+e2d2−ed2+(−2e2d2+2ed2−8d−e2d+10ed−2e)a+(4d+e+e2d2−ed2−4ed)a2

(ae−2a−2e+2)(a+d−ad−de)
,

a6 = (a+d−ad−de)(ae+dae−4a−2e−ed+4)
(ae−2a−2e+2)(ade−a−da−2ed+2+d)

, a7 = a, a8 = (a+d−da−2)e
ae−2a−2e+2

,

a9 = 2e2d−2ed+ed2−e2d2+(−2ed2+e2d2+2e+6ed−3e2d−4)a+(−4ed−e+4+ed2+e2d)a2

(a+d−ad−2)(ae−2a−2e+2)
,
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a10 = a + d− ad, a11 = ade+ae−4a−2e−ed+4
ae−2a−2e+2

,

a12 = 2e2d+4d−6ed+e2d2−ed2+(−2e2d2+2ed2−8d−e2d+10ed−2e)a+(4d+e+e2d2−ed2−4ed)a2

(ade−a−da−2ed+d+2)(ae−2a−2e+2)
,

b1 = −2e+ed+ae−2a
−ed+dae+d−a−da

, b2 = e, b3 = 2, b4 = ae−2a−2e−ed+4
a+d−ad−de

, b5 =

ade+ae−4a−2e−ed+4
ade−a−da−2ed+d+2

, b6 = 2
d
,

b7 = e(ad−d+2−a)
ad+de−a−d

, b8 = −−2e+ed+ae−2a
a+d−ad−2

, b9 = 2− a, b10 = ae+dae−4a−ed−2e+4
ade−ed+d−a−da

,

b11 = ae−2a−2e+4−ed
ade−a−da−2ed+d+2

, b12 = a
a−1

,

and [t : u] = [2 − a : d(a − 1)] ∈ P1. Since b3 = 2, these (3, 8)-nets are not possible

in characteristic 2. The lines for these (3, 8)-nets can be written as: L1 = (y),

L2 = (a1x + y + z), L3 = (a2x + b1y + z), L4 = (a3x + b2y + z), L5 = (a4x + b3y + z),

L6 = (a5x + b4y + z), L7 = (a6x + b5y + z), L8 = (a7x + z), L9 = (x), L10 =

(x + b6y + z), L11 = (a8x + b7y + z), L12 = (a9x + b8y + z), L13 = (a10x + b9y + z),

L14 = (a11x + b10y + z), L15 = (a12x + b11y + z), L16 = (b12y + z), L17 = (ux− ty),

L18 = (x+y+z), L19 = (a8x+ b1y+z), L20 = (a9x+ b2y+z), L21 = (a10x+ b3y+z),

L22 = (a11x + b4y + z), L23 = (a12x + b5y + z) and L24 = (z).

3.5.4 Realizable Latin squares.

We have seen that in order to answer the realization question of the incidence of a

(3, q)-net, we have to solve the equations modelled by q×q Latin squares representing

main classes (Remark II.12). We have solved this for 2 ≤ q ≤ 6 over C, and for the

quaternion nets. This give us an extra row in the following table.

q 1 2 3 4 5 6 7 8 9

# main classes 1 1 1 2 2 12 147 283,657 19,270,853,541

realizable over C 1 1 1 2 2 9 ≥ 1 ≥ 2 ≥ 1

We see that the case q = 7 has too many main classes to apply the proposed

method. We may easily fill a little more this table, but our analysis for the case



80

q = 6 shows that the realization of a general q × q Latin square is quite subtle. We

have different dimensions for parameter spaces, some of them defined strictly over

C, others with equations over Q, and some of them do not even exist. The natural

question to find a characterization for the main classes of Latin squares which realize

3-nets on P2 over C is very interesting, and may reveal some unknown combinatorial

invariants of Latin squares.



CHAPTER IV

n-th root covers

Let us introduce some notation for this and the next chapters. If q is an integer

with 0 < q < p, we denote by q′ the unique integer satisfying 0 < q′ < p and

qq′ ≡ 1(mod p). For positive integers {a1, . . . , ar}, we denote by (a1, . . . , ar) their

greatest common divisor. If (a1, . . . , ar) = 1, we call them coprime. For a real

number b, let [b] be the integral part of b, i.e., [b] ∈ Z and [b] ≤ b < [b] + 1. We use

the notation Ln := L⊗n for a line bundle L.

4.1 General n-th root covers.

The n-th root cover tool, which we are going to describe in this section, was

introduced by H. Esnault and E. Viehweg in [88] and [27]. Much more can be

found in their paper [28] and in their book [29], where this tool is used for varieties

over fields of arbitrary characteristic. For us, the ground field is always the field of

complex numbers C.

Let Y be a smooth projective variety. Let D 6= 0 be an effective divisor on Y with

simple normal crossings (Definition I.21), and let D =
∑r

i=1 νiDi be its decomposition

into prime divisors. In particular, all the varieties Di are non-singular. Assume that

there exist a positive integer n and a line bundle L on Y satisfying

Ln ' OY (D).

81
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Remark IV.1. We are not considering D = 0. This would correspond to étale cover-

ings, and we are not interested in them.

We construct from the data (Y, D, n,L) a new smooth variety X = X(Y, D, n,L)

which represents a “n-th root of D”. Let s be a section of OY (D) with the divisor

of zeros equal to D. The section s defines a structure of OY -algebra on
⊕n−1

i=0 L−i

by means of the the induced injection 0 → L−n ' OY (−D) → OY (i.e., the multi-

plication L−i ⊗ L−j → L−i−j is well defined). If we write

Y ′ := SpecY

( n−1⊕
i=0

L−i
)

(as in [39, p. 128]), the first step in this construction is given by the induced map

f1 : Y ′ → Y .

If some νi > 1, the variety Y ′ might not be normal. The second step is the

normalization Y of Y ′. Let

f2 : Y → Y

be the composition of f1 with the normalization of Y ′. Notice that Y is a projective

variety as well.

Definition IV.2. As it is done in [88], we define the following line bundles on Y

L(i) := Li ⊗OY

(
−

r∑
j=1

[νj i

n

]
Dj

)

for i ∈ {0, 1, ..., n− 1}.

Proposition IV.3. (see [88]) The variety Y has only rational singularities, f2 is

flat and

f2∗OY =
n−1⊕
i=0

L(i)−1
.

Moreover, this is the decomposition of f2∗OY into eigenspaces with respect to the

action of Z/nZ.
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The key point in the proof of Proposition IV.3 is the following lemma.

Proposition IV.4. (see [88, p. 3]) Let C be a regular local ring, x a regular parame-

ter and u a unit. Let A = C[t]/(tn−xνu) (local first step) and B be the normalization

of A (local second step). Then, B is generated as a C-module by tix−[ νi
n

] for 0 ≤ i < n.

The map f2 : Y → Y is finite, Y is normal and Y is smooth. Hence, the

ramification locus R of f2 is a divisor on Y . This divisor is defined by the zero

section of the Jacobian of f2. The branch divisor of f2 is defined as f2(R) with the

reduced scheme structure. It is contained in D.

The variety Y has an action of Z/nZ such that the map f2 : Y → Y is the quotient

map. The local picture of the action is the following. Take a point P ∈ Dj such

that it is smooth for Dred and νj is not congruent to zero module n. Let d = (n, νj),

and write n = dn′ and νj = dν ′j. Then, the fiber (f2)
−1(P ) consists of d distinct

smooth points of Y . The action of Z/nZ around any of these points looks like a

linear action A : Cdim(Y ) → Cdim(Y ) having as eigenvalues (dim(Y )− 1) 1’s and e
2πiqj

n′

where 0 < qj < n′ is a uniquely determined number. It is sometimes called the

rotation number. It can be checked that qjν
′
j ≡ 1(mod n′). Therefore, ν ′j can be

thought as the inverse mod n′ of a rotation number of the local action of Z/nZ.

The following proposition tell us how to modify the multiplicities νi of D to produce

isomorphic varieties over Y .

Our multiplicities νi can always be taken in the range 0 ≤ νi < n. If we change

the multiplicities νi to µi such that µi ≡ νi(mod n) and 0 ≤ µi < n for all i, then

the corresponding varieties Y will be isomorphic over Y .

Proof. Let D′ =
∑r

i=1 µiDi where 0 ≤ µi < n and µi ≡ νi(mod n). So, νi = µi + cin
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for some integer ci ≥ 0. We define the line bundle L′ = L ⊗ OY (
∑r

i=1−ciDi).

Then, L′n ' OY (D′). Moreover, the definition of L′ induces isomorphisms between

the algebras
⊕n−1

i=0 L(i)−1
and

⊕n−1
i=0 L′(i)

−1
, and so it gives an isomorphism of the

corresponding varieties Y and Y
′
over Y .

More generally, let b be a positive integer such that (b, n) = 1. Consider the

effective simple normal crossings divisors on Y , D =
∑r

i=1 νiDi and D′ =
∑r

i=1 µiDi,

such that bνi = µi + cin and 0 ≤ µi < n. Then again the corresponding varieties Y

and Y
′
are isomorphic over Y . In this case, one takes L′ = Lb ⊗OY (

∑r
i=1−ciDi).

The third and the last step is to choose a minimal desingularization f3 : X → Y

of Y . Hence, our projective variety X depends not only on (Y,D, n,L) but also

on the chosen desingularization. However, we will be only working with curves and

surfaces, and for that case X is uniquely determined by (Y,D, n,L). Let

f : X → Y

be the composition map, i.e., f = f2 ◦ f3. We call it n-th root cover over Y along

D (although it depends on L 1, this line bundle will be irrelevant for our numerical

purposes).

In any case, we have the following general facts about X.

(1) Since the singularities of Y are rational (i.e., Rbf3∗OX = 0 for all b > 0) and

f2 is affine, we have by Proposition IV.3

Hj(X,OX) ' ⊕n−1
i=0 Hj(Y,L(i)−1

)

for every non negative integer j. In particular, χ(X,OX) =
∑n−1

i=0 χ(Y,L(i)−1
). A

simple consequence is the following.

1Du Val discusses the significance of L in [25] for double covers.



85

Proposition IV.5. X is connected if and only if (ν1, ..., νr, n) = 1.

Proof. We have that h0(X,OX) =
∑n−1

i=0 h0(Y,L(i)−1
) = 1+

∑n−1
i=1 h0(Y,L(i)−1

). If X

is not connected, then h0(X,OX) ≥ 2 and so there is i such that h0(Y,L(i)−1
) > 0.

In particular, L(i)−1 ' OY (E) where E is an effective divisor. Then, by intersecting

E with curves Γj such that Dj.Γj > 0, we have that
[νji

n

]− νji

n
= 0 for all j, and so

iνj ≡ 0(mod n) for all j. This happens if and only if (ν1, ..., νr, n) 6= 1.

Assume X is connected. Since it is smooth, it must be irreducible. We notice that,

by the proof of the previous proposition, if (ν1, ..., νr, n) = d > 1, then f : X → Y is

equal to d copies of the n
d
-th root cover given by the data (Y, 1

d
D, n

d
,L). Notice that

for D = 0, the variety X is connected if and only if for each integer 0 < r < n, Lr is

not isomorphic to OY .

(2) If KX and KY are canonical divisors for X and Y respectively, local compu-

tations give us the Q-numerical equivalence

KX ≡ f ∗
(
KY +

r∑
i=1

(
1− (n, νi)

n

)
Di

)
+ ∆

where ∆ is a Q-divisor supported on the exceptional locus of the chosen desingular-

ization.

4.2 n-th root covers for curves.

Let Y be a smooth projective curve of genus g(Y ) and D =
∑r

i=1 νiDi be an

effective divisor on Y . Here the Di are closed points of Y . We assume that 0 < νi < n

for all i, and (ν1, . . . , νr, n) = 1. Notice that an invertible sheaf L on Y such that

Ln ' OY (
∑r

i=1 νiDi) exists if and only if
∑r

i=1 νi ≡ 0(mod n).

In this way, we assume
∑r

i=1 νi ≡ 0(mod n) and we fix L satisfying our condi-

tion. Then, the resulting X = Y is a smooth curve with a Z/nZ action, having
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f : X → Y as quotient map. By our previous facts, we have that H1(X,OX) '

⊕n−1
i=0 H1(Y,L(i)−1

) and χ(X,OX) = χ(Y, f∗OX). Then, by the Riemann-Roch theo-

rem, 1− g(X) = deg(f∗OX) + n(1− g(Y )). According to the formula for f∗OX , we

have

deg(f∗OX) = −
n−1∑
i=1

deg(Li) +
r∑

j=1

n−1∑
i=1

[νji

n

]
.

Also, deg(L) = deg(D)
n

. It is easy to check that
∑n−1

i=1 [νi
n
] = ν(n−1)−n+(n,ν)

2
(although,

a similar formula for
∑n−1

i=1 [νi
n
]2 seems hard to find). Hence, we have

deg(f∗OX) = −∑n−1
i=1

i
n
deg(D) +

∑r
j=1

νj(n−1)−n+(n,νj)

2

and so we recover the Riemann-Hurwitz formula

2g(X)− 2 = n(2g(Y )− 2) +
∑r

j=1(n− (n, νj)).

Let n be a prime number. We want to point out that the multiplicities νi play

a role in the determination of the isomorphism class of X (in [85] we worked out

these isomorphism classes for certain curves), but they do not play any role in the

determination of its genus. This is highly not the case for algebraic surfaces, mainly

because the Di may intersect among each other. We will see that their numerical

invariants are indeed affected by these multiplicities.

4.3 n-th root covers for surfaces.

Let Y be a smooth projective surface. Let D be an effective divisor on Y with

simple normal crossings whose decomposition into prime divisors is D =
∑r

i=1 νiDi.

In this way, Di’s are smooth projective curves of genus g(Di), and the singularities

of Dred are at most nodes. Let n be a positive integer and L a line bundle on Y such

that Ln ' OY (D). We will assume that 0 < νi < n for all i and (ν1, . . . , νr, n) = 1.
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Let f : X → Y be the n-th root cover over Y along D. We remark that the smooth

complex projective surface X is uniquely determined by (Y, D, n,L).

By the facts in Section 4.2, the Riemann-Roch theorem and Serre’s duality, we

have

q(X) = q(Y ) +
n−1∑
i=1

h1(Y,L(i)−1
) pg(X) = pg(Y ) +

n−1∑
i=1

h0(Y, ωY ⊗ L(i))

χ(X,OX) = nχ(Y,OY ) +
1

2

n−1∑
i=1

L(i).(L(i) ⊗ ωY ).

We now develop a little more the formula for χ(X,OX). We have

n−1∑
i=1

L(i)2 =
n−1∑
i=1

i2

n2
D2 −

n−1∑
i=1

2i

n

( r∑
j=1

[νji

n

]
Dj.D

)
+

n−1∑
i=1

( r∑
j=1

[νji

n

]
Dj

)2

and so
n−1∑
i=1

L(i)2 =
r∑

j=1

(n− (n, νj))(2n− (n, νj))

6n
D2

j+

∑

j<k

( νj

6nνk

(n− (n, νk))(2n− (n, νk)) +
νk

6nνj

(n− (n, νj))(2n− (n, νj))

−
n−1∑
i=1

[νji

n

]2νk

νj

−
n−1∑
i=1

[νki

n

]2 νj

νk

+ 2
n−1∑
i=1

[νji

n

][νki

n

])
Dj.Dk

and
n−1∑
i=1

L(i).ωY =
r∑

j=1

n−1∑
i=1

(νji

n
−

[νji

n

])
Dj.KY =

r∑
j=1

n− (n, νj)

2
Dj.KY .

For instance, when Di.Dj = 0 for all i, j we have the following simple formulas

for the main numerical invariants of X (resolution of singularities is not needed).

χ(X,OX) = nχ(Y,OY )−
r∑

i=1

n2 − (n, νj)
2

12n
D2

j +
r∑

j=1

(n− (n, νj))(g(Dj)− 1)

2

K2
X = nK2

Y −
r∑

i=1

n2 − (n, νj)
2

n
D2

j + 4
r∑

j=1

(n− (n, νj))(g(Dj)− 1)

e(X) = ne(Y ) + 2
r∑

j=1

(n− (n, νj))(g(Dj)− 1).

From now on, the number n will be a prime number, denoted by p.
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Definition IV.6. Let p be a prime number and q an integer such that 0 < q < p.

As usual, the Dedekind sum associated to q, p is defined as

s(q, p) =

p−1∑
i=1

(( i

p

))(( iq

p

))

where ((x)) = x− [x]− 1
2

for any rational number x.

Connections between Dedekind sums and algebraic geometry appear in [44]. These

sums naturally show up when considering the Riemann-Roch theorem. They will

show the significance of the multiplicities νi.

Proposition IV.7. Let p be a prime number. Let (Y, D, p,L) be the data to construct

the p-th root cover f : X → Y . Assume 0 < νi < p for all i. Then,

χ(X,OX) = pχ(Y,OY )− p2 − 1

12p

r∑
i=1

D2
i −

p− 1

4
e(D) +

∑
i<j

s(ν ′iνj, p)Di.Dj

where e(D) is the topological Euler characteristic of the underlying complex topolog-

ical space of D.

Proof. We temporarily define S(a, b; p) =
∑p−1

i=1

[
ai
p

][
bi
p

]
for any integers a, b satisfying

0 < a, b < p. Then, since
∑p−1

i=1

(
ai−

[
ai
p

]
p
)2

=
∑p−1

i=1 i2 = p(p−1)(2p−1)
6

, one can check

that
∑p−1

i=1 i
[

ai
p

]
= 1

12a
(a2 − 1)(p− 1)(2p− 1)− p

2a
S(a, a; p).

Also, one can easily verify (see [44, p. 94]) that s(a, p) = p−1
6p

(2ap − a − 3
2
p) −

1
p

∑p−1
i=1 i

[
ai
p

]
and so

s(a, p) =
1

12ap
(p− 1)(2pa2 − a2 − 3ap + 2p− 1)− 1

2a
S(a, a; p).

On the other hand, we have

S(a, b; p) = s(a′b, p)− as(b, p)− bs(a, p) +
p− 1

12p

(
3p− 3pa− 3pb + 2ab(2p− 1)

)
.

Putting all together,

−a

b
S(b, b; p)− b

a
S(a, a; p)+2S(a, b; p) =

1− p

6abp

(
a2(2p−1)+b2(2p−1)−3abp

)
+2s(a′b; p).
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We now replace these sums in the formula for
∑p−1

i=1 L(i)2. Finally, we use again

that (νi, p) = 1 for all i and the adjunction formula to write down the wanted formula

for χ(X,OX). The computation of the Euler characteristic e(D) can be done using

Lemma IV.9 below.

We now work out the resolution of singularities f3 : X → Y . Since we are as-

suming that Dred has only nodes as singularities, the singular points of Y are of

Hirzebruch-Jung type, that is, locally isomorphic to the singularity of the normal-

ization of Spec(C[x, y, z]/(zp − xνiyνj)). These type of singularities have an explicit

resolution (see for example [7]), which we explain now.

Let p be a prime number and q be a positive integer with 0 < q < p. Let U be the

normalization of Spec(C[x, y, z]/(zp − xyp−q)) and Q its singular point (a common

notation for this singularity is 1
p
(1, q)). Let ρ : V → U be a minimal resolution of U .

Then, ρ−1(Q) is composed of a chain of smooth rational curves {E1, E2, . . . , Es} such

that Ej.Ej+1 = 1 for j ∈ {1, . . . , s− 1} and no further intersections. The numbers s

and E2
j = −ej are encoded in the negative-regular continued fraction

p

q
= e1 − 1

e2 − 1

...− 1
es

which comes from a recursion formula explained in the Appendix. We abbreviate

this continued fraction by p
q

= [e1, ..., es].

...
E

E E

E

D
D~
~

s

j

i

s-12

1

Figure 4.1: Resolution over a singular point of Di ∩Dj .
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Let 0 < νi, νj < p be the two multiplicities corresponding to Di and Dj in D.

Assume that these curves do intersect, and consider one of the points of intersection.

Then, over this point (on Y ), we have an open neighborhood isomorphic to the

normalization of Spec(C[x, y, z]/(zp − xνiyνj)) (see [7, pp. 99-105]). Denote this

open set by U ′. The resolution f3 : X → Y looks locally like the resolution of

U ′. To resolve this open set, one proves that the normalization of the singularity

in C[x, y, z]/(zp − xνiyνj) is isomorphic to the normalization of the singularity in

C[x, y, z]/(zp − xyp−q), where 0 < q < p is the unique integer satisfying νiq + νj ≡

0(mod p). Then, we apply what we did previously.

Definition IV.8. For 0 < a, b < p (p prime as always), we define the length of a, b

with respect to p, denoted by l(a, b; p), as the number s in the continued fraction of

p
q

= [e1, . . . , es], where 0 < q < p is the unique integer satisfying aq + b ≡ 0(mod p).

This number is symmetric with respect to (a, b), i.e., l(a, b; p) = l(b, a; p) (see

Appendix). Also, l(a, b; p) = l(1, a′b; p). The different lengths we obtain in the p-

th root cover f : X → Y appear in the Euler characteristic of X as we will see

below. The following is a well-known topological lemma which will be used to prove

Proposition IV.10.

Lemma IV.9. Let B be a complex projective variety and A ⊆ B a subvariety such

that B \ A is non-singular. Then, e(B) = e(A) + e(B \ A).

Proposition IV.10. Let p be a prime number and f : X → Y be the p-th root cover

with data (Y, D =
∑r

i=1 νiDi, p,L). Assume 0 < νi < p for all i. Then,

e(X) = p
(
e(Y )− e(D)

)
+ e(D) +

∑
i<j l(νi, νj; p)Di.Dj.

Proof. We consider X, Y , D and R = f−1(D) as topological spaces with the induced

complex topology, and f as a continuous map. By Lemma IV.9, e(X) = e(X \R) +
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e(R). Since f |X\R is an étale cover of Y \ D, we have that e(X \ R) = pe(Y \ D),

and so e(X \ R) = pe(Y ) − pe(D). Let {Rα}α be the connected components of R.

Since our minimal resolution gives us connected fibers, the Rα’s are in one to one

correspondence with the connected components of f−1
2 (D), where f2 : Y → Y . Let

{f−1
2 (D)α}α be the connected components of f−1

2 (D) such that Rα corresponds to

f−1
2 (D)α. Then, e(Rα) − e(f−1

2 (D)α) is the number of P1’s over the singular points

of f−1
2 (D)α, that is, the corresponding lengths at the singular points. Therefore,

e(R) =
∑

α

Rα =
∑

α

e(f−1
2 (D)α)+

∑
i<j

l(νi, νj; p)Di.Dj = e(f−1
2 (D))+

∑
i<j

l(νi, νj; p)Di.Dj.

We now use (νi, p) = 1 to say that f−1
2 (D) is homeomorphic to D, in particular

e(f−1
2 (D)) = e(D).

Example IV.11. When νi = 1 for all i (i.e., D reduced divisor), the surface X has

K2
X = pK2

Y + (p−1)2

p
D2 + 2(p− 1)D.KY e(X) = pe(Y ) + (p− 1)(D2 + D.KY )

χ(X,OX) = pχ(Y,OY ) + (p−1)(2p−1)
12p

D2 + (p−1)
4

D.KY

Remark IV.12. (Irregularity) Assume the hypothesis in Proposition IV.7. More-

over, assume that there is i such that D2
i > 0. Then, q(X) = q(Y ). This is a direct ap-

plication of the Viehweg vanishing theorem in [88]. For simplicity, assume i = 1. We

repeat the argument of multiplying by a unit as in Section 4.1. Let us multiply all the

numbers νj by ν ′1, and consider the new divisor D′ =
∑r

i=1 υjDj where ν ′1νj = cjp+υj,

0 < υj < p. Let Y and Y
′
be the normal varieties constructed in Section 4.1 from

(Y, D, p,L) and (Y,D′, p,L′) respectively, where L′ = Lν′1⊗OY (−∑r
i=1 cjDj). Then,

Y and Y
′
are isomorphic over Y . Since the corresponding resolutions X and X ′ are

minimal, and so unique, they are isomorphic as well. In particular, q(X) = q(X ′).

Notice that by construction υ1 = 1. Then, by the Viehweg vanishing theorem,
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H1(Y,L′(i)−1
) = 0 for all i > 0. But, q(X ′) = q(Y ) +

∑p−1
i=1 h1(Y,L′(i)−1

). Therefore,

q(X) = q(Y ).

4.3.1 A formula for Dedekind sums.

As an application and to exemplify the p-th root method, we will now use the

Noether formula to relate Dedekind sums and continued fractions. Relations between

them are well-known for regular continued fractions [5] and for negative-regular con-

tinued fractions [96].

Let p be a prime number and q an integer with 0 < q < p. Let Y = P2 and

consider r = q+1 lines in P2 in general position. We denote this line arrangement as

A = {L1, . . . , Lr}. Then, D = L1 + . . . + Lr−1 + (p− q)Lr satisfies our requirements,

and OY (D) ' OY (p). Fix any such isomorphism and consider the p-th root cover

f : X → Y along D. Then, we apply Propositions IV.7 and IV.10 (and s(1, p) =

(p−1)(p−2)
12p

) to compute

χ(X,OX) = p−(p2 − 1)r

12p
−1

8
(p−1)r(5−r)+

1

24p
(r−1)(r−2)(p−1)(p−2)+(r−1)s(p−q, p)

and

e(X) = 3p + (1− p)
r(5− r)

2
+

(r − 1)(r − 2)

2
(p− 1) + (r − 1)l(1, p− q; p).

The canonical divisor KX is numerically equivalent to f ∗(−3L + p−1
p

∑r
i=1 Li) +

∑
∆j where ∆j are effective divisors on X supported on the exceptional locus coming

from each node of Dred. Hence, ∆j is zero whenever the node comes from Li ∩ Lk

with i, k 6= r. Otherwise, we write ∆j =
∑l(1,q;p)

i=1 αiEi with E2
i = −ei, coming from

p
q

= [e1, . . . , el(1,p−q;p)]. Let s = l(1, p − q; p). Then, ∆2
j =

∑s
i=1 αi(ei − 2) (use

adjunction formula for Ei) and

K2
X =

1

p

(
(p− 1)r − 3p

)2
+ (r − 1)

s∑
i=1

αi(ei − 2).
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The numbers αi can be found as follows. As always, let q′ be the inverse of

q module p, i.e., the unique integer 0 < q′ < p such that qq′ ≡ 1(mod p). We

know that p
q

= [e1, . . . , es] implies p
q′ = [es, . . . , e1] (see Appendix). Let {bi}s

i=−1 and

{b′i}s
i=−1 be the associated sequences for q and q′ respectively (definition of bi’s in the

Appendix). Then, by using the adjunction formula for Ei and Cramer’s rule (using

the determinant formulas for bi’s and b′i’s in the Appendix), we have

αi = −1 +
bi−1

p
+

b′s−i

p

for all i ∈ {1, 2, . . . , s}. In Lemma .15, we compute
∑s

i=1 αi(ei − 2). Then, we

substitute all the numbers in the Noether formula 12χ(X,OX) = K2
X + e(X) to

obtain

Proposition IV.13. Let p be a prime number and q be an integer such that 0 < q <

p. Let p
q

= [e1, e2, . . . , es]. Then,

12s(q, p)−∑s
i=1 ei + 3s = q+q′

p
.

We notice that this formula was found by Holzapfel in [45, Lemma 2.3], using the

original definition of Dedekind sums via Dedekind η-function.

4.3.2 Pull-back of branch divisors.

Let f : X → Y be a p-th root cover, as in Theorem IV.7. We want to know

the decomposition into prime divisors of f ∗(Di), where the Di’s are the irreducible

components of D.

To this end, we first do it locally. Let q be an integer with 0 < q < p. Let

Y = Spec
(
C[x, y]

)
and D = D1 +(p− q)D2, where D1 = {x = 0} and D2 = {y = 0}.

Then, we have a p-th root cover as before f : X → Y . This could be seen as a local

picture of the p-th root cover over P2 along the divisor defined by {xyp−qzq−1 = 0}.
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Let p
q

= [e1, . . . , es]. The resolution of the corresponding singularity is shown in

Figure 4.1 (we take i = 1 and j = 2), where D̃i are the reduced strict transforms of

Di under f . We remark that the self-intersection of Ei is −ei.

We have f ∗(D1) = pD̃1 +
∑s

i=1 aiEi and f ∗(D2) = pD̃2 +
∑s

i=1 diEi, for some

positive integers ai, di. As it is done in [27, p. 481], these integers satisfy:

• a1 = q, and if p
q

= e1 − 1
e2− 1

...− 1

ei−1− 1
ci

, then ciai = ai−1.

• d0 = 0, d1 = 1, and di+1 = eidi − di−1.

Hence, it is easy to check that ai = bi−1 and di = Pi−1, as in the Appendix .1.

We now consider the global situation, where f : X → Y is a p-th root cover as

in Theorem IV.7. As before, this p-th root cover is along D =
∑r

i=1 νiDi. Assume

that Di intersects only Dj1 , . . . , Djt in D. For each intersection, we have the above

situation with Di = D1, up to multiplication by νi
′, and Djk

= D2. Using the

previous notation, we take q = p− νjk
ν ′i. Let Ek,b be the corresponding exceptional

divisors from the Hirzebruch-Jung resolution at these points of intersection. Then,

f ∗(Di) = pD̃i +
t∑

b=1

( sb∑

k=1

ak,bEk,b

)
Djb

.Di.

We have f ∗(Di).
( ∑sb

k=1 ak,bEk,b

)
= 0, and so

0 = p(p− νjb
ν ′i) +

( sb∑

k=1

ak,bEk,b

)2
Djb

.Di.

Then, pD2
i = f ∗(Di)

2 = p2D̃2
i + 2p

∑t
b=1(p− νjb

ν ′i)Djb
.Di − p

∑t
b=1(p− νjb

ν ′i)Djb
.Di.

Therefore, the formula for the self-intersection is

D̃2
i =

1

p

(
D2

i −
t∑

b=1

(p− νjb
ν ′i)Djb

.Di

)
.

We always take νjb
ν ′i in the interval (0, p).
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For us, it will be important to know the behavior of D̃2
i when p is large. Assume

that p tends to infinity and that the multiplicities are randomly chosen. Then, it is

expected that the following inequality

−∑t
b=1 Djb

.Di ≤ D̃2
i ≤ −1

will hold with values tending to concentrate in the center of the interval

[
−

t∑

b=1

Djb
.Di,−1

]
,

that is, around −1+
Pt

b=1 Djb
.Di

2
.

4.4 (−1)- and (−2)-curves on X.

Let f : X → Y be the p-th root cover over Y along D =
∑r

i=1 νiDi in Theorem

IV.7. By the fact (2) in Section 4.1, we have the Q-numerical equivalence

KX ≡ f ∗
(
KY +

(p− 1)

p

r∑
i=1

Di

)
+ ∆

where ∆ is a Q-divisor supported on the exceptional locus of the minimal desin-

gularization of Y . Let {P1, . . . , Pδ} be the set of nodes of Dred. Over each Pi, we

have the exceptional divisor
∑si

j=1 Ej,i given by the corresponding Hirzebruch-Jung

resolution. Hence, there are αj,i ∈ Q such that

∆ =
δ∑

i=1

( si∑
j=1

αj,iEj,i

)
.

The numbers αj,i are known. They were computed in Subsection 4.3.1 over the

point L1 ∩ Lr. If Pi is a point in Da ∩ Db, then q in Subsection 4.3.1 is taken as

p− νaν
′
b. In the Appendix, after Lemma .14, we give a formula for αi,j as a function

of p and q. As in the previous subsection, D̃i denotes the strict transform of Di.

Proposition IV.14. The Q-divisor f ∗
(

(p−1)
p

∑r
i=1 Di

)
+∆ is an effective Z-divisor.
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Proof. Let P be a node of Dred. Assume P is a point in Di∩Dj, where q in Subsection

4.3.1 is taken as p−νjν
′
i. Assume that over P , the exceptional divisor has components

{E1, . . . , Es}, with E1 ∩ D̃1 6= ∅. Then, locally over P , we have

f ∗(Di + Dj) = pD̃i +
s∑

k=1

akEk + pD̃j +
s∑

k=1

dkEk

by Subsection 4.3.2. In the same subsection, we have ak = bk−1 and dk = Pk−1 (using

the notation in the Appendix). On the other hand, we know that ∆ =
∑s

k=1 αkEk

over P . But in the Appendix we compute αk = −1 + bk−1

p
+ Pk−1

p
. Therefore, over P ,

f ∗
(p− 1

p
Di +

p− 1

p
Dj

)
+∆ = (p− 1)D̃i +(p− 1)D̃j +

s∑

k=1

(
(p− 1)(1+αk)+αk

)
Ek

and (p− 1)(1 + αk) + αk ≥ 0 by Lemma .16. Also, pαk + (p− 1) ∈ Z.

An immediate corollary is the following.

Corollary IV.15. Assume that KY is ample. Then, the curves D̃i are the only

possible (−1)-curves on X, and the curves D̃i and Ej,i are the only possible (−2)-

curves on X.

Proof. Let Γ be a smooth rational curve in X with Γ2 = −1 or −2. Suppose Γ is

not a component of f ∗(D). Then, KX .Γ =
(
f ∗

(
KY + (p−1)

p

∑r
i=1 Di

)
+ ∆

)
.Γ > 0 by

Proposition IV.14 and KY ample. But KX .Γ ≤ 0 by adjunction. Therefore, Γ is a

component of f ∗(D).

4.4.1 Along line arrangements.

In this subsection, we detect (−1)- and (−2)-curves for p-th root coverings along

line arrangements. Let A = {L1, . . . , Ld} be an arrangement of d lines in P2 (with

td = 0). We use the notation in Section 2.2.
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Let σ : Y → P2 be the blow up of P2 at all k-points with k ≥ 3. Let p be a prime

number, and let {µi}d
i=1 be a collection of d positive integers satisfying

µ1 + µ2 + . . . + µd = p.

Consider the divisor D = σ∗(
∑d

i=1 µiLi), whose decomposition into prime divisors

is written as D =
∑r

i=1 νiDi. Let the first d Di be the strict transforms of Li, and

the rest the exceptional divisors of σ. Let H = σ∗
(OP2(1)

)
. Then, pH ∼ D, and we

construct the corresponding p-th root cover over Y along D, denoted by f : X → Y .

Theorem IV.16. Assume that d ≥ 6, and that for any k-point of A, 2
3
d > k + 1.

We also exclude the case d = 6 with only nodes. Then, all the (−1)- and (−2)-curves

of X are contained in f ∗(D).

Proof. Let Fi,k be the exceptional divisors of σ over the k-points of A. Then, by

Proposition IV.14,

KX ≡ f ∗
(
− 3H +

∑

k≥3

tk∑
i=1

Fi,k

)
+ (p− 1)

r∑
i=1

D̃i +
∑

nodes of D

∑
i

(
p(αi + 1)− 1

)
Ei.

Now, dH =
∑d

i=1 Di +
∑

k≥3 k
( ∑tk

i=1 Fi,k

)
, and so

KX ≡ −3

d
f ∗

( d∑
i=1

Di +
∑

k≥3

k
( tk∑

i=1

Fi,k

))
+ f ∗

( ∑

k≥3

tk∑
i=1

Fi,k

)

+(p− 1)
r∑

i=1

D̃i +
∑

nodes of D

∑
i

(
p(αi + 1)− 1

)
Ei.

Now we analyze two cases. The first is Di∩Dj for i, j ≤ d (i.e. a node of A), and

the second is Di ∩ Fj,k. We want to prove that KX can be written as an effective

Q- divisor on D̃i’s and Ei’s (with none of the coefficients zero). That would prove

D̃i’s are the only potential (−1)-curves of X. For (−2)-curves, we notice that any

such curve has to intersect f ∗(D), and so it has to be of the form D̃i or Ei (since the

intersection with KX is zero).
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For the first case, we look around Di ∩Dj. Then,

−3

d
f ∗(Di + Dj) + (p− 1)

(
D̃i + D̃j

)
+

s∑
i=1

(
p(αi + 1)− 1

)
Ei

≡ 1

d

(
(d−3)p−d

)
D̃i +

1

d

(
(d−3)p−d

)
D̃j +

s∑
i=1

(
− 3

d
bi−1− 3

d
Pi−1 +bi−1 +Pi−1−1

)
Ei.

But, p ≥ d > d
3
≥ 2 ≥ d

d−3
, and so 1

d

(
(d − 3)p − d

)
> 0. Also, the integers bi−1 and

Pi−1 are greater or equal than one (see Appendix), and so

−3

d
bi−1 − 3

d
Pi−1 + bi−1 + Pi−1 − 1 =

(d− 3)

d
bi−1 +

(d− 3)

d
Pi−1 − 1 ≥ d− 6

d
≥ 0.

This could have been zero for d = 6 with only nodes, but we are excluding that case.

For the second case, we look around Di ∩ Fj,k. Then,

−3

d
f ∗(Di)− 3

d
kf ∗(Fj,k) + f ∗(Fj,k) + (p− 1)D̃i + (p− 1)F̃j,k +

s∑
i=1

(
p(αi + 1)− 1

)
Ei

≡ 1

d

(
(d−3)p−d

)
D̃i+

1

d

(
(2d−3k)p−d

)
F̃j,k+

s∑
i=1

(
−3

d
bi−1−3

d
kPi−1+Pi−1+Pi−1+bi−1−1

)
Ei.

But, p ≥ d > d
3

> d
2d−3k

, and so 1
d

(
(2d− 3k)p− d

)
> 0. Also,

−3

d
bi−1−3

d
kPi−1+Pi−1+Pi−1+bi−1−1 =

d− 3

d
bi−1+

2d− 3k

d
Pi−1−1 ≥ 2d− 3k − 3

d
> 0.

Remark IV.17. Many interesting arrangements satisfy the hypothesis of Theorem

IV.16: any Fermat arrangement (Example II.6), any general arrangement with d > 6,

the Hesse arrangement, the Klein arrangement (Example II.7), any (3, q)-net with

q ≥ 3.

As shown in Subsection 4.3.2 and confirmed in the samples of Section .2, we

cannot expect minimality for X when D contains divisors Di having at most 3

intersections with the rest. For example, any arrangement with 3-points will produce

such situation (being Di the exceptional curve over the 3-point).



CHAPTER V

Projective surfaces vs. logarithmic surfaces

In this section we show a strong relation between Chern and log Chern numbers

for algebraic surfaces. The result is the following.

Let Z be a smooth projective surface. Let A be a simple crossings arrangement

in Z, satisfying the divisible property (to be defined below). Let (Y,A′) be the

associated pair (Section 2.1). Then, there are sequences of smooth projective surfaces

X having

c2
1(X)

c2(X)
arbitrarily close to

c̄2
1(Y,A′)

c̄2(Y,A′)
.

The construction is based on the p-th root cover tool developed in the previous

chapter. The divisible property of A allows us to construct p-th root covers over

Y along A′ for arbitrarily large primes p. If A is divisible, there is a way to assign

multiplicities to its curves so that the p-th root cover is granted. We do this by par-

titioning p in different weighted ways. The precise result is that, for large primes p,

the Chern numbers of the new surfaces X are proportional to the log Chern numbers

of the log surface (Y,A′), with constant of proportionality equals to p. However, this

does not work for any choice of multiplicities. We prove that this works for random

partitions of p with probability tending to one, as p approaches infinity. An interest-

ing phenomena is that random partitions are necessary for our constructions, if we

99
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want to approach to the log Chern numbers ratio of the corresponding arrangement.

We put this in evidence by examples, using a computer program which calculates

the exact values of the Chern numbers involved (see table in Section 5.3).

In Propositions IV.7 and IV.10, we saw that the only, a priori, unmanageable

terms in the formulas for χ(X,OX) and c2(X) are Dedekind sums and lengths of

continued fractions. These arithmetic quantities are evaluated in pairs of the form

(νiν
′
j, p), where νi, νj are multiplicities of curves in A′, coming from multiplicities of

curves in A. So, we have two problems: how these numbers νiν
′
j behave module p

after assigning multiplicities to A, and how Dedekind sums and lengths of continued

fractions behave with respect to them.

Girstmair has recently described some nice properties about the large scale behav-

ior of Dedekind sums and regular continued fractions (see [33] and [34] respectively).

By using these features together with known connections between negative-regular

and regular continued fractions, we can prove similar properties for negative-regular

continued fractions. The key large scale property is: for large values of p, and q

outside of a “bad” subset of {0, 1, 2, . . . , p − 1}, these quantities evaluated at (q, p)

are very small compared to p. Moreover, it can be proved that this “bad” set has

measure tending to zero as p approaches infinity.

In Section 5.1 we explain how to find “good” multiplicities for A, the ones that

make νiν
′
j to stay outside of the bad set for every i, j. We prove they exist for large p,

and that a random choice of them works. In Section 5.2 we put all together to prove

the main theorem which connects Chern and log Chern numbers. A consequence

is that any minimal smooth projective surface of general type Z can be covered by

minimal smooth projective surfaces of general type X such that q(X) = q(Z), and

c21(X)

c2(X)
is arbitrarily close to 2 (Corollary V.4).
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In Section 5.3 we show how to use this theorem to find simply connected surfaces

with large Chern numbers ratio. In that section, we also prove that all surfaces

X coming from line arrangements are simply connected. The surfaces X are not

necessarily minimal, but at least for certain abundant line arrangements we can

control this issue. Finally, in Section 5.4 we give more examples, showing how to

relax the divisible hypothesis on A to still be able to apply our main theorem.

5.1 Divisible arrangements.

Let Z be a smooth projective surface, and let d ≥ 3 be an integer.

Definition V.1. Let A = {C1, C2, . . . , Cd} be a simple crossings arrangement of d

curves in Z (Definition II.2). We call it divisible if A splits into v ≥ 1 arrangements

of di curves Ai (so di ≥ 3) satisfying:

1. A curve in Ai does not belong to Aj for all j 6= i.

2. For each i ∈ {1, . . . , v}, there exists a line bundle Li on Z such that for each C

in Ai, we have OZ(C) ' Lu(C)
i for some positive integer u(C) > 0.

Given a divisible arrangement, we can and do assume that for any fixed i, all the

corresponding u(C)’s are coprime.

Any line arrangement A = {L1, . . . , Ld} in P2 is divisible (Section 2.2). We

consider the data v = 1, L1 = OP2(1) and u(Li) = 1 for all i. In fact, any simple

crossings arrangement of smooth plane curves is divisible, but now the data is v =

1, L1 = OP2

(
(deg(C1), . . . , deg(Cd))

)
and u(Ci) = deg(Ci)

(deg(C1),...,deg(Cd))
. For a v > 1

example, consider Z = P1×P1 and the arrangement formed by finite horizontal and

vertical fibers. Platonic arrangements in Subsection 2.5.3 are also divisible.

Let (Z,A) a pair with A divisible, and let p be a prime number. Let Ai =
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{C1,i, . . . , Cdi,i} be the sub-arrangements of A in Definition V.1. Suppose that the

linear system of Diophantine equations

di∑
j=1

u(Cj,i)xj,i = p

has a positive integer solution (xj,i) in {1, . . . , p − 1}d. This solution produces the

multiplicities µi that we assign to the curves Ci in A. If L′ = L1 ⊗ L2 ⊗ · · · ⊗ Lv,

then

L′p ' OZ

( d∑
i=1

µiCi

)
.

Let σ : Y → Z be the composition of all the blow ups at the k-points of A with

k ≥ 3. Let D = σ∗(
∑d

i=1 µiCi) so that A′ = Dred. Let L = σ∗(L′). Then, we have

Lp ' OY (D), and we can construct the p-th root cover over Y along A′ as in Section

4.3. As before, it is denoted by f : X → Y .

Let D =
∑r

i=1 νiDi be the decomposition into prime divisors of D, such that Di

are the strict transforms of Ci for i ∈ {1, . . . , d}, and for i > d, Di are the exceptional

divisors over the k-points of A with k ≥ 3 (so, r =
∑

k≥3 tk + d). Hence, νi = µi

when i ∈ {1, . . . , d}, and for i > d, νi is the sum of the multiplicities µi assigned to

the k curves passing through the corresponding k-point. When νi ≥ p, we can and

do reduce this multiplicity mod p.

Assume that 0 < νi < p for all i. Then, the formulas in Propositions IV.7 and

IV.10 take the following form

χ(X,OX) = p
12

(
12χ(Z,OZ)−∑d

i=1 C2
i +

∑
k≥2(4k − 5)tk + 6

∑d
i=1(g(Ci)− 1)

)
+

1

4

(∑

k≥3

(2− k)tk − t2 − 2
d∑

i=1

(g(Ci)− 1)
)

+
1

12p

( d∑
i=1

C2
i −

∑

k≥3

(k + 1)tk

)
+ DS
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where DS =
∑

i<j s(ν ′iνj, p)Di.Dj, and

e(X) = p
(
e(Z)+

∑

k≥2

(k−1)tk+2
d∑

i=1

(g(Ci)−1)
)
+

(∑

k≥3

(2−k)tk−t2−2
d∑

i=1

(g(Ci)−1)
)
+LCF

where LCF =
∑

i<j l(νi, νj; p)Di.Dj.

5.1.1 Example: Rational surfaces from p-th root covers.

Let Z = P2 and A = {L1, L2, . . . , Lk+1} be an arrangement of k + 1 lines such

that
⋂k

i=1 Li 6= ∅ (and
⋂k+1

i=1 Li = ∅). Let {µ1, . . . , µk} be an arbitrary collection of

positive integers, and let p be a prime number greater than
∑k

i=1 µi + 1. Then,

OZ(p) ' OZ

(
µ1L1 + µ2L2 + . . . + µkLk +

(
p−

k∑
i=1

µi

)
Lk+1

)

and so we construct the corresponding p-th root cover f : X → Y as above (where

Y is the blow up of Z at the k-point of A). Then, X is a rational surface, because

it has rational curves through every point. Let 0 < q < p, and take k = 2, µ1 = 1

and µ2 = q. Since X is rational, we have χ(X,OX) = 1, and so by our formulas

s(q, p) = s(q + 1, p) + s(q′ + 1, p) +
p− 1

4p
.

1 2
3

k

1 kp - - ...-

...

5.2 The theorem relating Chern and log Chern invariants.

Theorem V.2. Let Z be a smooth projective surface, and let A be a simple crossings

divisible arrangement on Z. Let (Y,A′) be the corresponding associated pair, and
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assume e(Y ) 6= e(A′). Then, there are smooth projective surfaces X having
c21(X)

c2(X)

arbitrarily close to
c̄21(Y,A′)
c̄2(Y,A′) .

Proof. Let Ai = {Cj,i}di
j=1 be the simple crossings sub-arrangements of A as in De-

finition V.1. The multiplicities µi we will assign to the curves in A come from a

positive solution to the Diophantine linear system

(*)

di∑
j=1

u(Cj,i)xj,i = p, i = 1, 2, . . . , v.

We will always assume that for a given i all u(Cj,i) are coprime (Definition V.1).

To ensure the existence of solutions of (*), we need p to be a large enough number.

Then, it is well-known that the number of solutions is equal to (see [10] for example)

v∏
i=1

( pdi−1

(di − 1)!u(C1,i)u(C2,i) · · · u(Cdi,i)
+ O(pdi−2)

)
.

We want to prove that when p approaches infinity, the majority of the solutions

of (*) make the “error” numbers DS
p

and LCF
p

(in Propositions IV.7 and IV.10) tend

to zero. In addition, we will prove that for a random choice of solutions, this is

the case with probability tending to 1 as p approaches infinity. For this to happen,

we use that outside of the bad set F (see Appendix Definition .17), whose size is

≈ log(p)
√

p, Dedekind sums (in DS) and length of continued fractions (in LCF )

behave as
√

p.

We now prove that for a random choice of solutions {µi}d
i=1 of the system (*),

we do stay outside of this bad set. This means that the q’s corresponding to the

summands of the expressions DS and LCF do stay outside of F . These summands

are s(νiν
′
j, p)Di.Dj and l(1, νiν

′
j; p)Di.Dj respectively, and the corresponding common

q is p−νiν
′
j. We re-write them using the multiplicities of A, and so they are p−µiµ

′
j

(i 6= j) and p− (µi1 + . . . + µik)µ
′
j (for any 1 < k < d and j = il for some l).

We first consider v = 1, that is, one equation. Let us write it down as
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Eq : t1x1 + . . . + tdxd = p

where xi are the variables (multiplicities) and (t1, . . . , td) = 1. As we said before, the

number of positive solutions of Eq is pd−1

(d−1)!t1t2···td + O(pd−2). In general, we denote

the number of positive integer solutions of x1t1 + . . . + xmtm = a by αt1,...,tm
m (a). Let

b(xix
′
j) be the set of solutions of Eq having p − xix

′
j in F for fixed i, j (i 6= j); and

similarly b
(
(xi1 +· · ·+xik)x

′
j

)
be the set of solutions of Eq having p−(xi1 +. . .+xik)x

′
j

in F for fixed i1, . . . , ik, j, having 1 < k < d and j = il for some l. Then, we define

the set of bad solutions G of Eq as the union of b(xix
′
j) and b

(
(xi1 + . . . + xik)x

′
j

)

over all allowed indices. We want to bound the size of G. We have the following two

cases.

(1) Assume i = 1 and j = 2. Fix 0 < x2 < p. For each 0 < x1 < p, we have

αt3,...,td
d−2 (p − x1t1 − x2t2) solutions of Eq. To each pair (x1, x2) ∈ Z/pZ × Z/pZ, we

associate the number αt3,...,td
d−2 (p− x1t1− x2t2). The map p−•x′2 : Z/pZ→ Z/pZ is a

bijection. To each new pair (p−x1x
′
2, x2) we associate the number αt3,...,td

d−2 (p−x1t1−

x2t2). Some pairs (p−x1x
′
2, x2) have p−x1x

′
2 ∈ F , giving αt3,...,td

d−2 (p−x1t1−x2t2) bad

solutions to Eq. We know that for every x2, there exists a positive number M such

that αt3,...,td
d−2 (p− x1t1 − x2t2) < Mpd−3. Therefore, we have |b(x1x

′
2)| < p · |F|Mpd−3,

being the right-hand side the worse case scenario.

(2) Assume j = 1 and i1 = 1, . . . , ik = k, 1 < k < d (there are not d-points in our

arrangements by definition). Fix 0 < x1 < p. For each x2t2 + . . . + xktk = p− x1t1,

we have αt2,...,tk
k−1 (p − x1t1) < M(p − x1t1)

k−2 < Mpk−2 solutions for some positive

constant M . Also, for each pair (x1 + . . . + xk, x1) we have α
tk+1,...,td
d−k (p − x1t1 −

. . . − xktk) < Npd−k−1 associated solutions of Eq, for some positive constant N .

Since the map p− •x′1 : Z/pZ→ Z/pZ is a bijection, we associate to each new pair
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(
p − (x1 + . . . + xk)x

′
1, x1

)
the number of associated solutions of Eq, which is less

than Mpk−2Npd−k−1. Hence, we obtain |b((x1+ . . .+xk)x
′
1

)| < p·|F|Mpk−2Npd−k−1,

being the right-hand side the worse case scenario. We now prove that for a random

choice of solutions {µi}d
i=1 of the system (*), we do stay outside of this bad set. This

means that the entries of the expressions DS and LCF do stay outside of F . These

entries have the form νiν
′
j, where νi and νj are the multiplicities corresponding to Di

and Dj in D. We re-write them using the multiplicities of A, and so they are µiµ
′
j

(i 6= j) and (µi1 + . . . + µik)µ
′
j (for any 1 < k < d and j = il for some l).

Therefore, the number of bad solutions satisfies |G| < |F|M0p
d−2, where M0 is

a positive number which depends on ti’s and d, and all possible combinations of

pairs i, j and i1, . . . , ik, j as above. In particular M0 does not depend on p. Now,

by taking p large enough prime, we know that the exact number of solutions of

Eq is pd−1

(d−1)!t1t2···td + O(pd−2). On the other hand, by Theorem .18, we know that

|F| < √
p
(
log(p) + 2 log(2)

)
(we take C = 1). Putting all together, we have proved

the existence of non-bad solutions for large prime numbers p. In addition, we prove

that for a random choice of solutions, the probability to be a bad solution is smaller

than √
p
(
log(p) + 2 log(2)

)
M0p

d−2

pd−1

(d−1)!t1t2···td + O(pd−2)
,

and so it approaches zero as p goes to infinity. In other words, for p large, a random

choice of solutions has a great chance to be non-bad!

To prove the general case v > 1, we go as before and prove that the bad solutions of

(*) are < |F|M0

∑v
i=1(p

di−2
∏

j 6=i p
dj−1), where M0 is a positive constant depending

on ti’s and d, but not on p. Moreover, we know that the total number of solutions of

(*) is
∏v

i=1

(
pdi−1

(di−1)!u(C1,i)u(C2,i)···u(Cdi,i)
+ O(pdi−2)

)
. Therefore, we conclude the same

for our linear system of Diophantine equations (*).
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For each large enough prime number p, consider {µi}d
i=1 a non-bad solution of (*)

(i.e., outside of G). As in Section 4.3, we construct the corresponding p-th root cover

f : X → Y branch along A′. Then, by Propositions IV.7, IV.10, and the Noether’s

formula we have

c2
1(X)

p
=

(
c2
1(Z)−

d∑
i=1

C2
i +

∑

k≥2

(3k − 4)tk + 4
d∑

i=1

(g(Ci)− 1)
)
+

1

p

(
2
∑

k≥3

(2−k)tk−2t2−4
d∑

i=1

(g(Ci)−1)
)

+
1

p2

( d∑
i=1

C2
i −

∑

k≥3

(k+1)tk

)
+12

DS

p
−LCF

p

and

c2(X)

p
=

(
c2(Z) +

∑

k≥2

(k − 1)tk + 2
d∑

i=1

(g(Ci)− 1)
)

+
1

p

(∑

k≥3

(2− k)tk − t2 − 2
d∑

i=1

(g(Ci)− 1)
)

+
LCF

p

where

DS =
∑

i<j s(ν ′iνj, p)Di.Dj = −∑
i<j s(p− ν ′iνj, p)Di.Dj and

LCF =
∑

i<j l(1, ν ′iνj; p)Di.Dj.

We know that the corresponding logarithmic Chern numbers are

c̄2
1(Y,A′) =

(
KY +

r∑
i=1

Di

)2
= c2

1(Z)−
d∑

i=1

C2
i +

∑

k≥2

(3k − 4)tk + 4
d∑

i=1

(g(Ci)− 1)

and

c̄2(Y,A′) = e(Y )− e(A′) = c2(Z) +
∑

k≥2

(k − 1)tk + 2
d∑

i=1

(g(Ci)− 1).

By Theorems .18 and .20 (we take C = 1), we have

∣∣∣DS

p

∣∣∣ <
( ∑

i<j

Di.Dj

)(3
√

p + 5)

p
and

LCF

p
<

( ∑
i<j

Di.Dj

)(3
√

p + 2)

p
.

Since there are good solutions for arbitrary large p, we obtain that the corre-

sponding surfaces X satisfy c2
1(X) ≈ pc̄2

1(Y,A′) and c2(X) ≈ pc̄2(Y,A′). Therefore,
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if e(Y ) 6= e(A′) and p approaches infinity, there are smooth projective surfaces X

having
c21(X)

c2(X)
arbitrarily close to

c̄21(Y,A′)
c̄2(Y,A′) .

Remark V.3. (Logarithmic Miyaoka-Yau inequality for divisible arrangements) Let

Z be a smooth projective surface and A be a divisible arrangement on Z, and let

(Y,A′) be the corresponding associated pair. Theorem V.2 proves the Miyaoka-Yau

inequality for divisible arrangements, provided that c̄2
1(Y,A′) + c̄2(Y,A′) > 0. If this

happens, then for large enough p, χ(X,OX) is a large positive number. In particular,

by Enriques’ classification of surfaces, X is not ruled, and so c2
1(X) ≤ 3c2(X). If in

addition c̄2
1(Y,A′) > 0, then X is of general type, by the Enriques’ classification.

We now substitute in this inequality the expressions for Chern numbers in the

proof of Theorem V.2, and divide by p. Then, by making p tend to infinity, we

obtain the inequality. Notice that this method can be used to disprove the divisibility

property of an arrangement.

Corollary V.4. Let Z be a smooth minimal projective surface of general type. Then,

there exist smooth projective surfaces X, and generically finite maps f : X → Z of

high degree, such that

(i) X is minimal of general type.

(ii) The Chern numbers ratio
c21(X)

c2(X)
is arbitrarily close to 2.

(iii) q(X) = q(Z).

Proof. Since Z is projective, we have Z ↪→ Pn for some n. For any integer d ≥ 4,

we consider a simple normal crossings arrangement A = {H1, . . . , Hd}, where Hi

are smooth hyperplane sections of Z. This is a divisible arrangement. Since Z is

minimal of general type, we have that 5KZ ∼ C, where C is a smooth projective
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curve with C2 > 0. This is because |5KZ | defines a birational map into its image,

which is an isomorphism out of finitely many ADE configurations of (−2)-curves.

We take C such that A ∪ C has only nodes as singularities. Let p be a large prime

number, and let f : X → Z be the p-th root cover associated to “random” partitions

of p, ν1 + . . . + νd = p, as in Theorem V.2.

As in Section 4.1, we have the Q-numerical relation KX ≡ f ∗
(
KZ+ p−1

p

∑d
i=1 Hi

)
+

∆. Let Γ be a (−1)-curve of X. Then, KX .Γ = −1. We know that f ∗(KZ).Γ =

f ∗(1
5
C).Γ ≥ 0. On the other hand, we have by Proposition IV.14 that

f ∗
((p− 1)

p

d∑
i=1

Hi

)
+ ∆

is an effective Z-divisor. Therefore, the (−1)-curve Γ has to be a component of f ∗(D),

where D =
∑d

i=1 νiHi. But all curves occurring on Hirzebruch-Jung resolutions have

self-intersection ≤ −2, and so, for some i, we have Γ = H̃i, where H̃i is the strict

transform of Hi under f . But, as we will see, this is a contradiction because H̃2
i ≤ −2.

In Subsection 4.3.2, we computed the self-intersection of H̃i, which in this case is

H̃2
i =

1

p

(
deg(Z)−

∑

j 6=i

(p− νjν
′
i)deg(Z)

)
.

An evident inequality is
∑

j 6=i νjν
′
i ≤ (d − 2)p − 1, since these numbers νjν

′
i cannot

sum the larger possible value (d−1)p−1. Also, since Z is not rational, we have that

deg(Z) ≥ 3, and so (d− 2)p− 1 ≤
(
d− 1− 2

deg(Z)

)
p− 1. By rearranging the terms,

we obtain the desired inequality.

The logarithmic Chern numbers of (Z,A) are

c̄2
1(Z,A) = deg(Z)d2 +

(
4g(H1)− 4− 2deg(Z)

)
d + c2

1(Z)

and

c̄2(Z,A) = deg(Z)
2

d2 +
(
2g(H1)− 2− deg(Z)

2

)
d + c2(Z).
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We consider d large enough, so that c̄2
1(Z,A) + c̄2(Z,A) > 0. Let X be a surface

produced by Theorem V.2 for p >> 0. Then, X is of general type. Moreover, the

Chern numbers ratio
c21(X)

c2(X)
is arbitrarily close to

c̄21(Z,A)

c̄2(Z,A)
. But when d is large, this log

Chern numbers ratio tends to 2.

Finally, we notice that any curve in A is very ample. In particular, by Remark

IV.12, we have q(X) = q(Z) (this is exactly Viehweg vanishing theorem).

Remark V.5. Corollary V.4 could be thought as a sort of “uniformization” via Chern

numbers ratio ≈ 2. A minimal surface satisfying c2
1(X) = 2c2(X) has signature zero,

because the signature of a surface turns out to be 1
3
(c2

1(X)−2c2(X)). The important

geographical line c2
1 = 2c2 is the boundary between negative and positive signature.

Notice that the surfaces X in Corollary V.4 have negative signature, i.e., their Chern

numbers ratio tends to 2 from below.

One of the main properties of the construction is that the geometry of A can

control π1(X), for certain arrangements of curves. This is developed by examples in

the next section. In particular, as we have said before, our method could be used

to attack the open problem of finding simply connected smooth projective surfaces

over C with Chern numbers ratio in (2.703, 3).

5.3 Simply connected surfaces with large Chern numbers ratio.

In this section we show how to obtain simply connected surfaces with large Chern

numbers ratio. Let n ≥ 2 be an integer. Let A be the Fermat arrangement (Example

II.6) defined by the equation

(xn − yn)(yn − zn)(zn − xn) = 0.

This arrangement is formed by 3n lines, ad it is a divisible arrangement. To assign

multiplicities as in the proof of Theorem V.2, we consider random partitions of
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arbitrarily large prime numbers p:

µ1 + µ2 + . . . + µ3n = p.

..
.

..
.

sections

simply connected fiber

...

...

...

...

...

...

...

Figure 5.1: Fibration with sections and simply connected fiber.

Then, by Theorem V.2, there are smooth projective surfaces X with Chern num-

bers ratio
c21(X)

c2(X)
arbitrarily close to

c̄2
1(Y,A′)

c̄2(Y,A′)
=

5n2 − 6n− 3

2n2 − 3n
.

Its maximum value is 8
3
, for n = 3, this is, the dual Hesse arrangement. Each of these

arrangements corresponds exactly to union of the singular members in the Fermat

pencil u(xn − yn) + t(yn − zn) = 0, [u : t] ∈ P1. If (Y,A′) is the associated pair

corresponding to (P2,A), then Y is the blow up at the k-points of A with k ≥ 3.

In particular, Y resolves all the base points of the Fermat pencil, and so we have a

fibration g : Y → P1. This fibration has some sections and some singular fibers of g

which are curves in A′.
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Then, the surfaces X in Theorem V.2 have an induced fibration h : X → P1.

Since the strict transform of any section of g in A′ is a section of h, the map h does

not have multiple fibers and all of its fibers are connected. The fibration g has three

singular fibers, each of them simply connected. The inverse image of these fibers,

under the p-th root covers, create simply connected singular fibers for the fibration

h. If F is a singular fiber of g and f : X → Y is the p-th root cover, then f−1(F )

is formed by the fixed components of F under f together with chains of P1’s coming

from the Hirzebruch-Jung desingularization at the nodes of A′. Hence, f−1(F ) is

simply connected. Therefore, by Corollary I.20, we have that π(X) = {0}. We can

actually prove the following more general fact.

Proposition V.6. All surfaces X coming from p-th root covers along line arrange-

ments are simply connected.

Proof. Let A = {L1, . . . , Ld} be an arbitrary arrangement of d lines in P2 with td = 0

as always. Let P be a point in L1 which is smooth for A. We consider the pencil

αL1 + βL = 0, where [α : β] ∈ P1, and L is a line in P2 passing through P .

To construct X in Theorem V.2, we considered the blow up g : Y → P2 at the

k-points of A with k ≥ 3, and the divisor D in Y given by D = g∗
( ∑d

i=1 µiLi

) ∼

g∗
(OP2(1)

)p
, where µ1 + . . . + µd = p is a partition of a prime number p. Let

f : X → Y be the corresponding p-th root cover along D.

Let τ : Y ′ → Y be the blow up at P of Y . Let E be the exceptional curve

in Y ′ over P . Consider the divisor D′ = τ ∗(D). Then, we have a p-th root cover

f ′ : X ′ → Y ′ along D′, and so a birational map ς : X ′ → X which is an isomorphism

when restricted to X ′ \f ′−1(E). It is actually a birational morphism sending f ′−1(E)

to the point f−1(P ). In particular, π1(X
′) ' π1(X) (Proposition I.8). The self-

intersection of the strict transform Ẽ of E under f ′ is −1, as computed in Subsection
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4.3.2. Since in D′, the strict transform of the line L1 and E has the same multiplicity

µ1, the divisor f ′∗(E) consists of a chain of (−2)-curves and Ẽ. Hence, ς : X ′ → X

blows down Ẽ, and then each of the (−2)-curves in the chain.

To compute π1(X
′) we look at the fibration induced by the pencil αL1 + βL = 0.

This fibration is over P1, and the exceptional curve E produces a section, mainly Ẽ.

Moreover, if L′1 is the strict transform of L1 in Y ′, then f ′−1(L′1) is simply connected,

formed by L̃′1 ' P1 and chains of P1’s given by the Hirzebruch-Jung resolutions.

Therefore, by Corollary I.20, X ′ is simply connected.

The tables below give the actual values for the numerical invariants of simply

connected surfaces X coming from the dual Hesse arrangement. This table was

obtained by using a computer program, which was written for this purpose in C++.

This program computes several invariants, and also self-intersections of the divisors

involved (see Appendix for some examples).

Partition of p = 61, 169 c2
1(X) c2(X)

c21(X)

c2(X)

1+2+3+4+5+6+7+8+61,133 1,441,949 733,435 1.9660

1+29+89+269+1,019+3,469+7,919+15,859+32,515 1,465,970 552,166 2.6549

6,790+6,791+6,792+6,793+6,794+6,795+6,796+6,797+6,821 1,464,209 633,619 2.3108

1+100+300+600+1,000+3,000+8,000+15,000+33,168 1,466,250 561,546 2.6110

1+30+90+270+1,020+3,470+7,920+15,860+32,508 1,465,778 553,594 2.6477

1+32+94+276+1,028+3,474+7,922+15,868+32,474 1,466,575 552,809 2.6529

1+1+1+1+1+1+1+1+6,1161 1,386,413 1,060,303 1.3075

1+1+89+89+1,019+3,469+7,919+15,859+32,723 1,465,370 553,402 2.6479

Table for the dual Hesse arrangement and p = 61, 169
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Partition of p
c21(X)

χ(X,OX)

c21(X)

c2(X)

1+2+3+5+7+11+13+17+24=83 7.3319 1.5706

1+3+5+7+11+13+17+23+21=101 7.5035 1.6688

1+3+7+13+19+23+47+67+59=239 8.1248 2.0966

1+3+7+13+19+37+79+139+301=599 8.3908 2.3248

1+3+7+17+29+47+109+239+567=1,019 8.4088 2.3415

1+7+17+37+79+149+293+599+1,087=2,269 8.5866 2.5155

1+11+23+53+101+207+569+1,069+2,045=4,079 8.6462 2.5780

1+23+53+101+207+449+859+1,709+3,617=7,019 8.6853 2.6202

1+23+53+101+207+449+1,709+2,617+4,943=10,103 8.6954 2.6313

1+29+89+269+1019+3,469+7,919+15,859+32,515=61,169 8.7167 2.6549

1+101+207+569+1,069+10,037+22,441+44,729+66,623=145,777 8.7239 2.6629

1+619+1,249+2,459+5,009+10,037+32,323+68,209+110,421=230,327 8.7255 2.6647

1+929+1,889+3,769+6,983+15,013+32,323+87,443+163,751=312,101 8.7241 2.6632

1+929+1,889+3,769+6,983+15,013+45,259+90,749+172,397=336,989 8.7257 2.6649

1+929+1,889+3,769+6,983+15,013+45,259+90,749+187,637=352,229 8.7252 2.6644

1+1,709+3,539+7,639+15,629+31,649+62,219+150,559+271,165=544,109 8.7263 2.6656

Table for the dual Hesse arrangement and distinct primes p

By Proposition II.8, we know that our method cannot improve the bound 8
3

when

we use line arrangements. In other words, that proposition tells us (for our purposes):

The best (and unique) complex line arrangement is the dual Hesse arrangement.

Remark V.7. In the first table, we see that non-random looking partitions do not

seem to approach to the corresponding log Chern numbers ratio. To be more precise,

for example, for a general arrangement of d lines (i.e., only nodes as singularities), we
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have log Chern numbers ratio tending to 2 as d approaches infinity. If we randomly

choose the partition, we obtain surfaces with Chern numbers ratio tending to 2.

If instead we choose multiplicities as in Subsection 4.3.1 (i.e., for a given p, all

multiplicities equal to 1 except by one, which is p − d + 1), we obtain surfaces

with Chern numbers ratio tending to 1.5 as d approaches infinity, whenever we take

q (= d − 1) in the good set (we can do it because the bad set has measure over p

tending to 0). If, in the same case, we choose q = p−1, then the limit Chern numbers

ratio is 1. Therefore, we put in evidence, by examples, that random multiplicities

are necessary in our construction, if we want to approach to the log Chern numbers

ratio of the corresponding arrangement.

5.4 More examples.

The following is a list of interesting examples of divisible arrangements, to which

we apply Theorem V.2.

Plane curves.

Let Z = P2 and let A be a simple crossings arrangement of (smooth) plane curves

{C1, . . . , Cd}. This is a divisible arrangement, and Theorem V.2 works through

weighted random partitions

d∑
i=1

µi
deg(Ci)

(deg(C1), . . . , deg(Cd))
= p.

For line arrangements, we have the bound given in Proposition II.8. However, we

do not know to us what happens for arrangements of plane curves. These are very

interesting, because they may belong to pencils of curves as in the last section. As

in Subsection 2.5.1, let na be the number of curves of degree a in A. Then, as we
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computed before, the error number is

E(P2,A) =

∑
a≥1 a(2a− 3)na +

∑
k≥2 tk∑

a≥1 a(a− 3)na +
∑

k≥2(k − 1)tk + 3
.

This is the approximate distance from the Miyaoka-Yau bound of the surfaces X

in Theorem V.2.

Horizontal and vertical curves in P1 × P1

Let Z = P1 × P1 and let A be formed by two arrangements A1 = {F1, . . . , Fd1}

with Fi = pt × P1, and A2 = {G1, . . . , Gd2} with Gi = P1 × pt. Assume di > 2.

Then, this is a simple normal crossings arrangement and divisible. We partition p in

two ways:
d1∑
i=1

µi = p

d2∑

i=d1+1

µi = p.

The error number associated to this arrangement is E(Z,A) = d1d2−2d1−2d2+4
d1d2−2d1−2d2+4

= 1.

Hence, by Theorem V.2, we have sequences of surfaces X with Chern numbers ratio

arbitrarily close to 2, independent of d1 and d2.

We notice that all the surfaces X have two induced isotrivial fibrations over P1

with general curves C1 and C2 respectively. Since we have some simply connected

fibers in A which are fixed by the p-th root cover (take vertical or horizontal curves),

the surfaces X are simply connected. In this way, the surfaces X may be seen as

simply connected approximations of C1 × C2. The latter surface satisfies c2
1 = 2c2,

and it is not simply connected.

Line arrangements in P1 × P1.

Let A be a line arrangement in P2 having a k1-point P and a k2 point Q. Assume

k1, k2, d−k1−k2 ≥ 3, and that the line L joining P and Q is not in A and intersects

A \ {P, Q} transversally. We now blow up P and Q, and blow down the proper

transform of L, to obtain P1 × P1. Consider the arrangement A given by the lines
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in A. So, it is composed by d − k1 − k2 curves in O(1, 1), k1 curves in O(0, 1) and

k2 curves in O(1, 0). This is a divisible arrangement. If tk’s are the data for A, then

the data for A is t̄k1 = tk1 − 1, t̄k2 = tk2 − 1, t̄d−k1−k2 = td−k1−k2 + 1, and t̄k = tk

otherwise. Then, for A in P1 × P1 we have

c̄2
1(Y,A′

)

c̄2(Y,A′
)

=
−3d− 4k1 − 4k2 +

∑
k≥2(3k − 4)tk + 12

−d− 2k1 − 2k2 +
∑

k≥2(k − 1)tk + 5
.

Notice that A is not a “birational modification” of A. These two arrangements are

different from the log point of view. For example, let A be the Fermat arrangement

of order n > 2 (see Example II.6). We have

c̄2
1(Y,A′)

c̄2(Y,A′)
=

5n2 − 6n− 3

2n2 − 3n
and

c̄2
1(Y,A′

)

c̄2(Y,A′
)

=
n(5n− 8)

2(n2 − 2n + 1)
.

Hence, for example, the Dual Hesse arrangements has log Chern numbers ratio 8
3

=

2.6̄ in P2, but in P1 × P1 is 21
8

= 2.625. On the other hand, for n = 4 we have

53
20

= 2.65 for P2, but it is 8
3

in P1 × P1. This is a new arrangement achieving the

record, and because of that, we name it as 4-Fermat arrangement.

Platonic arrangements.

They were worked out in Subsection 2.5.3. The corresponding arrangements A are

all divisible, with v = 3. By Theorem V.2, we have surfaces X with Chern numbers

ratio arbitrarily close to the log Chern numbers ratio of these arrangements. These

ratios are not greater than 8
3

(they were computed in Subsection 2.5.3), but very

close to it. The surfaces X are all simply connected by Corollary I.20.

Hirzebruch elliptic arrangements.

Hirzebruch elliptic arrangements achieve our bound 8
3

as well, but the correspond-

ing surfaces X are not simply connected. These examples were found by Hirzebruch

in [43]. We worked them out in Subsection 2.5.5. This example shows how one can

relax the hypothesis of being divisible, and still be able to use Theorem V.2.
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Let ζ = e
2πi
3 and T be the elliptic curve

T = C/
(
Z⊕ Zζ

)
.

Consider the abelian surface Z = T × T whose points are denoted by (z, w). Let

T0 : {w = 0}, T∞ : {z = 0}, T1 : {w = z} and Tζ : {w = ζz}. These four

curves only intersect at (0, 0). Let Un be the group of n-division points of Z, Un =

{(z, w) : (nz, nw) = (0, 0)}. This group has order n4. The group Un acts on Z by

translations. Each of the sets Un(T0), Un(T∞), Un(T1), Un(Tζ) consists of n2 smooth

disjoint elliptic curves. Let A0, A∞, A1, Aζ be the corresponding arrangements. We

define the arrangement A by A0 ∪ A∞ ∪ A1 ∪ Aζ . Then, it is formed by d = 4n2

elliptic curves. It can be checked that t4 = |Un| = n4 and tk = 0 for k 6= 4.

Consider A0 = {C1, . . . , Cn2}. Then, by definition, OZ(nCi) ' OZ(nT0) for all i.

Hence, if
∑n2

i=1 µi = p, we have

OZ

( n2∑
i=1

nµiCi

)
' OZ(nT0)

⊗p.

Each Ti is a direct factor of Z, so we have the same situation for all Ti. We now

look at four partitions of p which avoid bad multiplicities (as in Theorem V.2) in the

4-points. If n 6= p, the corresponding numbers module p are of type

n′µ′a(nµa + nµb + nµc + nµd) = µ′a(µa + µb + µc + µd),

so they are exactly as considered in Theorem V.2. Therefore, this theorem can also

be applied for the pair (Z,A). The error number associated to this arrangement

does not depend on n and is our record E(T × T,A) = 1
3

(see Subsection 2.5.5).

Smooth cubic surfaces.

In this example, we show how to apply Theorem V.2 to an arrangement that is

not divisible a priori. Let Z be a cubic surface in P3, and let A be the arrangement
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formed by the 27 lines on Z. In [39, Theorem 4.9], we have a way to write down the

classes in Pic(Z) of these lines. The cubic surface Z is thought as the blow up of P2

at 6 points, say P1, . . . , P6 (not all in a conic). Let Ei be the exceptional divisors of

this blow up, and let H be the class of the pull back of a line in P2. We consider the

lines as follows.

(a) Ei the exceptional divisor, 1 ≤ i ≤ 6 (six of these),

(b) Fi,j ∼ H − Ei − Ej the strict transform of the line in P2 containing Pi and Pj,

1 ≤ i < j ≤ 6 (fifteen of these),

(c) Gi ∼ 2H −∑
j 6=i Ej the strict transform of the conic containing Pj for all j 6= i

(six of these).

We want to assign multiplicities to them such that the corresponding divisor is

divisible by arbitrarily large primes p, and they are outside of the bad set. Let γi,

αi,j and βi be the multiplicities for Ei, Fi,j and Gi respectively. Let p be a prime

number, and assume

∑
αi,j + 2

∑
βi = p γi = p +

6∑
j=1

αi,j +
∑

j 6=i

βj.

Then, the divisor D′ =
∑

αi,jFi,j +
∑

βiGi +
∑

γiEi satisfies

D′ ∼ p
(
H +

∑
Fi,j +

∑
Gi +

∑
Ei

)
.

In order to have the result of Theorem V.2, we need to find solutions to
∑

αi,j +

2
∑

βi = p for arbitrarily large p, such that the corresponding numbers νiν
′
j stay

outside of the bad set F . The multiplicities νi are αi,j, βi, γi or three term sums

of them, since A can have only 2- and 3- points. We can modify the argument in

points (1) and (2) in the proof of Theorem V.2, to prove that for random solutions
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of
∑

αi,j + 2
∑

βi = p the numbers νiν
′
j do stay out of F , so that we have surfaces

X as in the conclusion of that theorem.

We computed in Subsection 2.5.2 the possible log Chern numbers for A. The

best possible one is given by the Fermat cubic surface, having Chern numbers ratio

7
12

= 2.416̄. In any case, if we consider a line in Z having a 3-point, and consider

the corresponding pencil of conics, it can be checked (using the usual fibration’s

argument) that the surfaces X constructed out of (Z,A) are simply connected.

a

a

2a

4aa

a

b

a

b

a+b

2a+2b

a

b

c

c

b

a

a+b+c

2a+2b+c

Figure 5.2: Some possible singularities for general arrangements.

Remark V.8. Some examples illustrate that there is a larger class of simple crossings

arrangements for which Theorem V.2 holds. Our strategy to find surfaces with large

Chern numbers ratio is: first we find a simple crossings arrangement and compute its

log Chern numbers, if the numbers are good, we then prove that the arrangement is

suitable to apply Theorem V.2. Divisible arrangements give us a large class for which

the ideas in the proof go through. Not any arrangement is possible. For example,

a p-th root cover along a divisor D with a disjoint primary component must have

self-intersection divisible by p on that component. Hence, any arrangement which
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has a disjoint component with non-zero self-intersection cannot be divisible.

A second remark is our method will be applicable when considering arrangements

with worse singularities than simple crossings. In Figure 5.2, we illustrate three

singularities, representing a singularity of our arrangement A and its log resolution

(i.e., locally A′). In the two last cases, we have a situation were the multiplicities

cannot be taken randomly, since 4a(2a)′ = 2, 4a(a)′ = 4 and 2(a+b)(a+b)′ = 2, that

is, these numbers do not vary and always belong to the bad set F . Hence the errors

from Dedekind sums and length of continued fractions count in the computation of

the Chern invariants of X, for large prime numbers p. However, in the first case (a

priori) we can assume random multiplicities by just taking a, b, c randomly.



CHAPTER VI

Deforming p-th root covers

In this Chapter, we develop tools to study deformations of the surfaces X coming

from p-th root covers (Section 4.3). Our main goal is to compute the cohomology

groups of TX , the tangent sheaf of X, with respect to the p-th root data (Y,D,L, p).

The study of deformations may help to understand potential restrictions to obtain

surfaces with Chern numbers ratio arbitrarily close to the Miyaoka-Yau bound. Also,

we want to obtain results about minimality and rigidity.

6.1 Deformations of surfaces of general type.

Let X be a normal projective surface over C. An infinitesimal deformation of X

is the existence of a commutative diagram

X

²²

// X ′

²²
Spec(C) // Spec(A)

where A is an Artin local C-algebra, the map X ′ → Spec(A) is flat, and

X ' Spec(C)×Spec(A) X ′.

When A = C[t]/(t2) (= C[C] in Olsson’s notes [70]), we have a first order de-

formation. Let DefX : Alg/C → Sets be the functor of diagrams defined in [70,

122
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p. 4]. The tangent space of the functor DefX is defined as DefX
(
C[t]/(t2)

)
. It

turns out that the tangent space has a structure of C-module. In our case, it is

actually a finite dimensional vector space over C [12, p. 74]. If X is smooth, then

DefX
(
C[t]/(t2)

)
= H1(X, TX) [70, Prop. 2.6].

Assume that X is of general type. Then, X has a finite number of automorphisms,

and so H0(X,TX) = 0 (see for example [16, p. 98]). This fact implies the existence

of a universal deformation π : X → Def(X) of X, where Def(X) is an analytic

set with a distinguished point 0 ∈ Def(X) such that π−1(0) = X [16, p. 97]. Let

S = ODef(X),0, and let hS = Hom(S, •) be the usual functor defined by the ring S.

Then hS ' DefX [61, p. 25]. In particular, the tangent space of Def(X) at 0 is

DefX
(
C[t]/(t2)

)
[61, p. 23]. Again, if X is smooth, this tangent space is H1(X, TX).

In this case, the obstruction for the smoothness of Def(X) lies in H2(X, TX). For

example, if H2(X,TX) vanishes, then Def(X) is smooth at 0. In general, we say that

X has obstructed deformations if ODef(X),0 is not regular.

We saw in Section 1.2 that there exists a quasi-projective variety representing the

coarse moduli space of surfaces of general type. We denoted it by Mc21,c2 , being c2
1

and c2 the fixed Chern numbers of the surfaces it classifies. Since to construct the

moduli space we want ωX to be ample, these surfaces are canonical models. The

canonical model of a minimal smooth projective surface of general type X is the

image of the map given by |nKX |, for sufficiently large n. It turns out that if we

fix n ≥ 5, we can define the canonical model of X as Xcan := |nKX |(X), up to

isomorphism. These are the objects parametrized by Mc21,c2 . The normal projective

surface Xcan can only have rational double points as singularities (ADE singularities).

This happens exactly when KX is not ample, where X is the minimal model of the

birational class of Xcan.
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Let X be a smooth surface of general type, and let Xcan be its canonical model.

Then, we have [61, p. 78]

locally at [X], Mc21,c2 is analytically isomorphic to Def(Xcan)/ Aut(Xcan).

The number of moduli of X is defined as M(X) := dimODef(Xcan),0, i.e., its Krull

dimension.

What is the relation between deformations of X and deformations of Xcan? Let

X be a minimal smooth projective surface, and let ρ : X → Xcan the minimal

resolution of all the the rational double points of Xcan. First, we have dimDef(X) =

dimDef(Xcan) [17, p. 299]. Let E be the exceptional locus of ρ, and let H1
E(X, TX)

be the local first cohomology group with coefficients in TX supported on E (as in

[12]). Then, by using results of Burns-Wahl and Pinkham, we have [17, p. 299] 1

H1(X,TX) = H1(Xcan, TXcan)⊕H1
E(X, TX) H2(X,TX) = H2(Xcan, TXcan).

Moreover, in [12, Prop.(1.10)], Burns and Wahl proved that dimH1
E(X, TX) is

equal to the number of (−2)-curves in E. Hence, each rational curve produces a

first order deformation of X. However, it might be misleading to find actual positive

dimensional deformations. It seems unknown whether a (−2)-curve always produces

a one dimensional deformation. It is known that the deformations coming from (−2)-

curves may not be independent because, for example, we can have H1
E(X, TX) >

M(X). Examples are given in [12]. For the tangent space, we have the inequalities

[90, Cor. (6.4)]

h1(X, TX)− dimH1
E(X, TX) = h1(Xcan, TXcan) ≤ dimDefXcan

(
C[t]/(t2)

) ≤ h1(X,TX).

As explained in [16, p. 84], if X is a minimal smooth projective surface of general

1The tangent sheaf of Xcan is defined as TXcan := H omOXcan
(Ω1

Xcan
,OXcan ).
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type, the number of moduli of X is coarsely bounded by the inequality

10χ(X,OX)− 2c2
1(X) ≤ dimODef(X),0 = M(X) ≤ h1(X, TX).

This is because Def(X) is a germ of analytic subset of H1(X,TX) at 0 defined

by h2(X, TX) equations, plus the fact that h1(X, TX) − h2(X,TX) = χ(X,TX) =

10χ(X,OX)− 2c2
1(X) by the Hirzebruch-Riemann-Roch theorem (and H0(X, TX) =

0). Notice that the left-hand side inequality does not give any information about the

dimension of Def(X) when 5χ(X,OX) < c2
1(X), in particular when we are close to

the Miyaoka-Yau bound. In this case, we have h2(X,TX) 6= 0, and so we cannot use

the usual observation to try to prove smoothness for Def(X).

If we consider a non-minimal smooth projective surface of general type X, and X0

is its minimal model, then h0(X, TX) = 0, h1(X,TX) = h1(X0, TX0)+2m, where m is

the number of blow downs to obtain X0, and h2(X, TX) = h2(X0, TX0). If σ : X̃ → X

is the blow up at a point P of X, then we have the short exact sequence [12, p. 72]

0 → σ∗T eX → TX → NP → 0

where NP is the normal bundle of P in X. We have h0(P, NP ) = 2, and h1(P,NP ) =

h2(P,NP ) = 0, and so the previous observation follows from the associated long exact

sequence. In [7, p. 154], it is shown a way to blow down (−1)-curves in families,

keeping the base fixed.

We finish with the key equation

h1(X, TX) = 10χ(X,OX)− 2c2
1(X) + h0(X, Ω1

X ⊗ Ω2
X)

which is the Hirzebruch-Riemann-Roch theorem applied to TX , and Serre’s duality.
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6.2 Some general formulas for n-th root covers.

Here we present some relevant facts about sheaves associated to n-th root covers.

We will work on any dimension, as we did in Section 4.1. Let Y be a smooth

projective variety, and let D be a SNC effective divisor with primary decomposition

D =
∑r

i=1 νiDi. Assume that there exist a positive integer n and a line bundle L on

Y satisfying

Ln ' OY (D).

Let f : X → Y be a n-th root cover associated to the data (Y,D, n,L). Here

we have chosen a minimal resolution of Y such that the divisor f ∗(D)red has simple

normal crossings. Let D̃ = f ∗(D) =
∑r′

i=1 ηiD̃i. The main sheaves of these covers

are the invertible sheaves

L(i) := Li ⊗OY

(
−

r∑
j=1

[νj i

n

]
Dj

)

for i ∈ {0, 1, ..., n− 1}. We start by rewording Proposition IV.3.

Proposition VI.1. (see [88]) Let f : X → Y be the n-th root cover associated to

(Y, D, n,L). Then,

f∗OX =
n−1⊕
i=0

L(i)−1
and Rif∗OX = 0 for i > 0.

Proposition VI.2. Let f : X → Y be the n-th root cover associated to (Y, D, n,L).

Then,

f∗Ω2
X =

n−1⊕
i=0

(
Ω2

Y ⊗ L(i)
)

and Rif∗Ω2
X = 0 for i > 0.
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Proof. By [89, Lemma 2.3], we have that f∗Ω2
X =

⊕n−1
i=0

(
Ω2

Y ⊗ L(i)
)
. This follows

from Hartshorne’s book [39, Exercises 6.10, 7.2]. By [52, Theorem 2.1], we have

Rbf∗Ω2
X = 0 for b > 0, since the dimension of a general fiber of f is zero.

Let us now consider the logarithmic sheaves of differentials Ωa
X(log D̃) on X and

Ωa
Y (log D) on X, as in Definition I.22. We remark that for these sheaves we are

taking the reduced divisors of D̃ and D. The following proposition is [29, Lemma

3.22].

Proposition VI.3. Let f : X → Y be the n-th root cover associated to (Y, D, n,L).

Let a be an integer satisfying 0 ≤ a ≤ dimX. Then,

f∗Ωa
X(log D̃) =

n−1⊕
i=0

(
Ωa

Y (log D)⊗ L(i)−1)
and Rif∗Ωa

X(log D̃) = 0 for i > 0.

6.3 The case of surfaces.

We will use the same set up of the previous section, with the modifications dimY =

2 and n = p prime number. We also assume 0 < νi < p. The smooth projective

surface X is uniquely determined by (Y,D, p,L). The following result does not

require n to be a prime number.

Proposition VI.4. Let f : X → Y be the n-th root cover associated to (Y, D, n,L).

Let a ∈ {0, 1, 2}. Then,

f∗
(
Ωa

X(log D̃)⊗Ω2
X

)
=

n−1⊕
i=0

(
Ωa

Y (log D)⊗Ω2
Y ⊗L(i)

)
and Rif∗

(
Ωa

X(log D̃)⊗Ω2
X

)
= 0

for all i > 0.

Proof. The case a = 0 is Proposition VI.2. By [27, Corollaire 4.], we have

f ∗Ωa
Y (log D) = Ωa

X(log D̃).
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Therefore, the proposition follows from the projection formula [39, Ch. III Exerc.

8.3] and Proposition VI.2.

We will see that the sheaf f∗(Ω1
X ⊗ Ω2

X) is key to understand deformations of X.

By the Leray spectral sequence, there is an exact sequence

0 → H1(Y, f∗(Ω1
X⊗Ω2

X)) → H1(X, Ω1
X⊗Ω2

X) →

H0(Y,R1f∗(Ω1
X⊗Ω2

X)) → H2(Y, f∗(Ω1
X⊗Ω2

X)) → H2(X, Ω1
X⊗Ω2

X).

Assume that X is of general type (for example, this happens when X comes from

Theorem V.2, and c̄2
1(Y, D)+ c̄2(Y,D) > 0). Then, the last term vanishes because, by

Serre’s duality, h2(X, Ω1
X ⊗Ω2

X) = h0(X,TX) = 0. It would be a great simplification

to have R1f∗(Ω1
X⊗Ω2

X) = 0, but the existence of (−2)-curves in the resolution shows

that this is not true. The following proposition clarifies the behavior of f∗(Ω1
X⊗Ω2

X).

Theorem VI.5. Let f : X → Y be the p-th root cover associated to (Y, D, p,L).

Then,

f∗(Ω1
X ⊗ Ω2

X) =

p−1⊕
i=0

Ω1
Y (log D(i))⊗ Ω2

Y ⊗ L(i), R1f∗(Ω1
X ⊗ Ω2

X) = H1
E(X, TX)

∨

and R2f∗(Ω1
X ⊗Ω2

X) = 0, where D(i) :=
∑

iνj 6=−1 (mod p) Dj (in particular, D(0) = D)

and E is the exceptional divisor in the minimal resolution X → Y . Moreover, the

dimension of H1
E(X, TX) is equal to the number of (−2)-curves in E.

Proof. First, we have R2f∗
(
Ω1

X ⊗ Ω2
X

)
= 0 because the dimension of the fibers of f

is at most one, and so we apply [39, Corollary 11.2]. By [53, Prop. 11.6 (11.6.1)], we

have R1f∗
(
Ω1

X ⊗ Ω2
X

)
= H1

E(X, Ω2
X ⊗

(
Ω1

X ⊗ Ω2
X

)∨
)
∨ ' H1

E(X, TX)
∨
. On the other

hand, it is a theorem of Wahl that dimH1
E(X, TX) is equal to the number of (−2)-

curves in E [90, Theorem (6.1)]. This theorem is valid for any rational singularities

in characteristic zero.
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Now we compute f∗(Ω1
X ⊗ Ω2

X). First, we consider the residual exact sequence

0 → Ω1
X → Ω1

X(log D̃) → ⊕r′
i=1O eDi

→ 0.

Then, by Proposition VI.4, we have

f∗
(
Ω1

X ⊗ Ω2
X

)
↪→ f∗

(
Ω1

X(log D̃)⊗ Ω2
X

)
=

p−1⊕
i=0

(
Ω1

Y (log D)⊗ Ω2
Y ⊗ L(i)

)
.

We now locally compute, on the right-hand side, the sections that lift to sections

of Ω1
X ⊗ Ω2

X . We take a neighborhood of a point P ∈ Y which is a node for D, say

P ∈ D1 ∩ D2. We consider the set up of Sub-section 4.3.2, and so let x, y be local

coordinates around P such that D1 = {x = 0} and D2 = {y = 0}. Let D̃1 and D̃2 be

the strict transforms of D1 and D2 respectively, and let Ei be the components of the

exceptional divisor over P . We will use the numbers ai and di in Sub-section 4.3.2,

taking q = p− ν2ν
′
1. We remark that our notation is D =

∑r
i=1 νiDi.

Let us take local coordinates around Q = Ei ∩Ei+1. For the purpose of having a

notation that applies to all the cases, we define E0 = D̃1 and Es+1 = D̃2. Let x̃ and

ỹ be the local coordinates around Q such that Ei = {x̃ = 0} and Ei+1 = {ỹ = 0}.

Then, we have that under f

x = ux̃ai ỹai+1 and y = vx̃di ỹdi+1 ,

where u, v are units. Therefore,

dx = uỹai+1−1x̃aidỹ + uỹai+1x̃ai−1dx̃ + ỹai+1x̃aidu

and

dy = vỹdi+1−1x̃didỹ + vỹdi+1x̃di−1dx̃ + ỹdi+1x̃didv,

and so

dx

x
= u

dx̃

x̃
+ u

dỹ

ỹ
+ du
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and

dy

y
= v

dx̃

x̃
+ v

dỹ

ỹ
+ dv.

On the other hand, we have that the line bundle L(i) is locally generated by

t−ix

[
iν1
p

]
y

[
iν2
p

]
where t−1 is a local generator for L such that locally satisfies tp =

wxν1yν2 (w a unit). All of this comes from Lp ' OY (D).

We now look at the local sections of Ω1
Y (log D) ⊗ Ω2

Y ⊗ L(i) using the previous

parameters. When we go from x, y to x̃, ỹ, we want these sections to be differential

forms in Ω1
X ⊗ Ω2

X , in particular with no poles. A simple computation shows that

this requirement is equivalent to the inequality

−1 + ai − 1 + di +
ai

p

([ iν1

p

]
p− iν1

)
+

di

p

([ iν2

p

]
p− iν2

)
≥ 0,

and similarly for i + 1. Assume that
[ iνj

p

]
p − iνj ≥ −(p − 2) for j = 1, 2. This is

equivalent to say that iνj is not −1 module p for j = 1, 2. Then, the inequality above

follows from

(p− 2) +
−ai(p− 2)

p
+
−di(p− 2)

p
= (p− 2)

(
1− ai

p
− di

p

)
≥ 0,

which is always true since p ≥ 2 and, by Lemma .16, 1− ai

p
− di

p
≥ 0. In this way, if

we assume iνj is not −1 module p for j = 1, 2, all the sections lift to Ω1
X ⊗ Ω2

X .

If for some j we have iνj ≡ −1(mod p), then it is easy to check that the cor-

responding section will not lift. One can check it around a point P ∈ Dj which is

smooth for Dred.

Remark VI.6. In [12, Corollary (1.3)], Burns and Wahl prove that

H1
E(X, TX) ↪→ H1(X, TX),

using the long exact sequence for local cohomology. In the previous proof, we use

that H0(Y, R1f∗(Ω1
X ⊗ Ω2

X))∨ = H1
E(X,TX). Is the dual of the inclusion map of
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Burns and Wahl the corresponding map in the Leray spectral sequence above? That

would induce a splitting, producing

H1(X, TX) ' H1
E(X, TX)⊕H1(Y, f∗(Ω1

X ⊗ Ω2
X))∨,

and H2(Y, f∗(Ω1
X ⊗ Ω2

X)) ↪→ H0(X, TX).

For each i, consider the residual exact sequence for D(i)

0 → Ω1
Y → Ω1

Y (log D(i)) → ⊕iνj 6=−1(mod p)ODj
→ 0.

We tensor it by Ω2
Y ⊗ L(i), to obtain

(*) 0 → Ω1
Y⊗Ω2

Y⊗L(i) → Ω1
Y (log D(i))⊗Ω2

Y⊗L(i) → ⊕iνj 6=−1(mod p)Ω
2
Y⊗L(i)⊗ODj

→ 0.

The importance of this sequence relies on

• By Proposition VI.2, f∗
(
f ∗(Ω1

Y )⊗ Ω2
X) ' ⊕p−1

i=0 Ω1
Y ⊗ Ω2

Y ⊗ L(i).

• By Theorem VI.5, f∗(Ω1
X ⊗ Ω2

X) =
⊕p−1

i=0 Ω1
Y (log D(i))⊗ Ω2

Y ⊗ L(i).

and so, it allows us to study the key cohomologies H1(X, f∗(Ω1
X⊗Ω2

X)) and H2(X, f∗(Ω1
X⊗

Ω2
X)) through the cohomology of explicit sheaves on Y and on the curves Di’s, via

the corresponding long exact sequence.

Remark VI.7. (The cohomology groups of f∗
(
f ∗(Ω1

Y ) ⊗ Ω2
X)) First, we notice that

by the projection formula and Proposition VI.2, Rif∗
(
f ∗(Ω1

Y ) ⊗ Ω2
X) = 0 for i > 0.

Therefore, by [39, Ch. III Ex. 8.1], Hj(X, f ∗(Ω1
Y )⊗Ω2

X) ' Hj(Y, f∗
(
f ∗(Ω1

Y )⊗Ω2
X)).

In addition, by Serre’s duality, H2−j(X, f ∗(Ω1
Y )⊗ Ω2

X) ' Hj(X, f ∗TY )
∨
. Finally, by

the projection formula and Proposition VI.1, we have

Hj(X, f ∗TY ) '
p−1⊕
i=0

Hj(Y, TY ⊗ L(i)−1
).
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Remark VI.8. (The cohomology groups of Ω2
Y ⊗L(i)⊗ODj

) First, by the adjunction

formula,

Ω2
Y ⊗ L(i) ⊗ODj

' Ω1
Dj
⊗OY (−Dj)⊗ L(i) ⊗ODj

.

The degree of L(i) restricted to Dj is Dj.L(i) =
∑t

b=1

( iνjb

p
− [ iνjb

p

])
+

( iνj

p
− [ iνj

p

])
D2

j ,

where Dj1 , . . . , Djt are exactly the components of D that intersect Dj. Since in any

case 0 < iν
p
− [

iν
p

]
< 1, there are chances for H0(Dj, Ω

2
Y ⊗L(i)⊗ODj

) to be non-zero.

By Serre’s duality, we have h1(Dj, Ω
2
Y ⊗ L(i) ⊗ODj

) = h0(Dj,OY (Dj)⊗ L(i)−1 ⊗

ODj
). If D2

j < 0, we have degDj

(OY (Dj) ⊗ L(i)−1)
< 0, and so it is expected to

vanish in general.

The following long exact sequence was inspired by Catanese’s article [15, p. 497].

We consider the sum of (*) for i ∈ {0, 1, . . . , p − 1}, dual cohomologies, and finally

Serre’s duality to obtain

(**) 0 → H2(Y, f∗(Ω1
X ⊗ Ω2

X))
∨ → H0(X, f ∗TY )

→
p−1⊕
i=0

⊕

iνj 6=−1(mod p)

H0(Dj,OY (Dj)⊗L(i)−1⊗ODj
) → H1(Y, f∗(Ω1

X ⊗ Ω2
X))

∨

→ H1(X, f ∗TY ) →
p−1⊕
i=0

⊕

iνj 6=−1(mod p)

H1(Dj,OY (Dj)⊗L(i)−1⊗ODj
)

→ H2(X, TX) → H2(X, f ∗TY ) → 0.

If the exceptional divisor of f : X → Y does not have (−2)-curves (e.g. when

Dred is smooth), then H2(Y, f∗(Ω1
X ⊗ Ω2

X))
∨ ' H0(TX) and H1(Y, f∗(Ω1

X ⊗ Ω2
X))

∨ '

H1(X, TX) by Theorem VI.5. In this case, the above sequence is exactly a general-

ization of the sequence in [15, p. 497].

Are there p-th root covers over P2 along (non-trivial) line arrangements with no

(−2)-curves in their exceptional locus? Negative-regular continued fractions p
q

=
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[e1, . . . , es] with ei 6= 2 for all i seem to be very scarce compared to p, and so such

covers should be very special.

Example VI.9. (Deformation of a singular K3 surface) This example is to run

the sequences above. Let Y = P1 × P1 and D =
∑6

i=1 Di with Di ∼ OY (1, 0) for

i = 1, 2, 3, and Di ∼ OY (0, 1) for i = 4, 5, 6. We consider L = OY (1, 1) so that

L3 ' OY (D), and the corresponding 3-th root cover f : X → Y along D. By using

the formulas in Example IV.11, we have χ(X,OX) = 2 and K2
X = 0. Moreover, since

X is simply connected, q(X) = 0. Also, by the formula in Section 4.1, KX ∼ 0. All

in all, X is a K3 surface. We have an induced elliptic fibration g : X → P1 which has

3 singular fibers of type IV ∗ (over each node of D, the Hirzebruch-Jung resolution

produces two (−2)-curves). Hence, X is a singular K3 surface, i.e., it achieves the

maximum Picard number 20 for a K3 surface.

We know the following numbers for any K3 surface [7, p. 311]: h0(TX) = h2(TX) =

0 and h1(TX) = 20. we want to see how these numbers fit in our sequences. First, we

know that TY = OY (2, 0)⊕OY (0, 2), and so TY ⊗L(1)−1
= TY ⊗L−1 = OY (1,−1)⊕

OY (−1, 1) and TY ⊗ L(2)−1
= TY ⊗ L−2 = OY (0,−2)⊕OY (−2, 0).

We compute H2(X, TX) via the sequence (**). We have for i = 0, 1 that

H1(Dj,OY (Dj) ⊗ L(i)−1 ⊗ ODj
) = 0 by Serre’s duality and degrees, but for i = 2

the dimension of this cohomology group is 1. However, when i = 2 we have iνj ≡

−1(mod 3), and so this case does not appear in (**). On the other hand, a straight-

forward computation shows H2(Y, TY ⊗ L(i)−1
) = 0, and so H2(X, f ∗(TY )) = 0.

Therefore, H2(X, TX) = 0. Using Hirzebruch-Riemann-Roch and H0(X,TX) = 0,

we obtain H1(X,TX) = 20.

The rest of the sequence gives us information about Ha(Y, f∗(Ω1
X ⊗ Ω2

X)) for
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a = 1, 2. The group H0(Dj,OY (Dj) ⊗ L(i)−1 ⊗ ODj
) vanishes for i = 1, 2, and has

dimension 6 when i = 0. Also, H1(Y, TY⊗L(i)−1
) = 0 for i = 0, 1 and it has dimension

2 for i = 2. We also have H0(Y, TY ⊗ L(i)−1
) = 0 for i = 1, 2 and it has dimension

6 when i = 0. This gives us that h1(Y, f∗(Ω1
X ⊗ Ω2

X)) = h2(Y, f∗(Ω1
X ⊗ Ω2

X)) + 2.

If Remark VI.6 is true, then h2(Y, f∗(Ω1
X ⊗ Ω2

X)) = 0 and h1(Y, f∗(Ω1
X ⊗ Ω2

X)) = 2.

Therefore, since H1
E(X, TX) is the number of (−2)-curves in the exceptional locus

(i.e., 18), we recover H1(X, TX) = 2 + 18 = 20.
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Further directions

7.1 Minimality and rigidity.

We use the notation of the previous Chapter. First, we would like Remark VI.6

to be true. Assume it holds, and that X is of general type. Then,

H1(X, TX) ' H1
E(X, TX)⊕H1(Y, f∗(Ω1

X ⊗ Ω2
X))∨ and H2(Y, f∗(Ω1

X ⊗ Ω2
X)) = 0.

In this way, since H1
E(X,TX) is known [90], we only need to work out H1(Y, f∗(Ω1

X⊗

Ω2
X))∨, and for that we may use the sequence

(**) 0 → H0(X, f ∗TY )

→
p−1⊕
i=0

⊕

iνj 6=−1(mod p)

H0(Dj,OY (Dj)⊗L(i)−1⊗ODj
) → H1(Y, f∗(Ω1

X ⊗ Ω2
X))

∨

→ H1(X, f ∗TY ) →
p−1⊕
i=0

⊕

iνj 6=−1(mod p)

H1(Dj,OY (Dj)⊗L(i)−1⊗ODj
)

→ H2(X, TX) → H2(X, f ∗TY ) → 0.

This would be a complete picture for deformations of p-th root covers for surfaces.

Question VII.1. Let Y be a normal surface over C with only rational singularities,

and let π : X → Y be the minimal resolution of Y . Let E be the exceptional divisor

of π. In [12], Burns and Wahl considered the exact sequence of cohomologies

. . . → H0(X,TX) → H0(X\E, TX) → H1
E(TX)

α→ H1(X, TX) → H1(X\E, TX) → . . .

135
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to show that H1
E(TX)

α
↪→ H1(X, TX). This is proved by showing that the map

H0(X, TX) → H0(X \ E, TX) is surjective.

On the other hand, as we pointed out before, there is a Leray spectral sequence

associated to π and Ω1
X ⊗ Ω2

X , which produces the exact sequence

0 → H1(Y, π∗(Ω1
X⊗Ω2

X)) → H1(X, Ω1
X⊗Ω2

X)
β→ H0(Y, R1π∗(Ω1

X⊗Ω2
X)) →

H2(Y, π∗(Ω1
X ⊗Ω2

X)) → H2(X, Ω1
X ⊗Ω2

X)

We know that R1π∗
(
Ω1

X ⊗ Ω2
X

)
= H1

E(X, TX)
∨
, and by Serre’s duality, H1(X, Ω1

X ⊗

Ω2
X) = H1(X,TX)

∨
. Is β the dual map of α?

Another issues we would like to understand are minimality and (possible) rigidity

of the surfaces X coming from rigid line arrangements. Let A be an arrangement of

d lines on P2
C, and let (Y,A′) be the corresponding associated pair (end of Section

2.1). Let g : Y → P2
C be the blow up at k-points of A, with k > 2. We assume the

rigidity condition:

D2
i < 0 for every Di in A′.

Let X be the limit random surfaces constructed in Theorem V.2, i.e., the multiplic-

ities are randomly assigned and p is very large. Assume that these surfaces are of

general type. Let X0 be the minimal models of X. A proof of “quasi-minimality” of

X, and some evidence about their rigidity, would follow from a positive answer to

the question.

Question VII.2. Is H1(Y, Ω1
Y (log D)∨⊗L(i)−1

) = 0 for almost all i ∈ {0, 1, . . . , p−

1}? For almost all i means

1

p
h1(Y, Ω1

Y (log D)∨ ⊗ L(i)−1
) → 0

as p tends to infinity.
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A positive answer to this Question 7.1 would follow from the vanishing of h1(Y, TY⊗

L(i)−1
) for almost all i. However, one can show that this is not true for rigid line

arrangements.

Assuming that Question is true, one can prove that the surfaces X are “quasi-

minimal”. This means the following. Let b(X) be the number of (−1)-curves one

blows down to obtain X0. Then, X is called quasi-minimal if b(X)
p
→ 0 when p →∞.

If the surfaces X are quasi-minimal, then
c21(X0)

c2(X0)
is arbitrarily close to

c̄21(Y,A′)
c̄2(Y,A′) . In

this way, we do not improve our records for Chern ratios by considering the minimal

models of X. A direct proof of quasi-minimality may be possible by using the tools

in Subsection 4.4.1, but so far seems too involved.

Also, the positivity of Question implies that we have a big difference between the

first order deformation space of X and the number of equations defining Def(X), be-

cause 0 < h1(X, TX) <<< h2(X,TX). This may indicate rigidity. However, for gen-

eral arrangements with random multiplicities, one can prove that 0 < h1(X, TX) <<<

h2(X,TX) is true, but of course one can deform a general arrangement, and so ob-

tain several (possible) non-trivial deformations of X. We want to remark that the

existence of (−2)-curves always produce first order deformations [12], but it seems

unknown if they induce one parameter deformations. Moreover, it seems unknown

whether there exists a rigid surface with (−2)-curves.

7.2 3-nets and characteristic varieties.

In Section 3.5.2 we classified (3, q)-nets for 2 ≤ q ≤ 6, being the new case q = 6.

We saw in Chapter III that main classes of q × q Latin squares are in bijection with

“combinatorial” (3, q)-nets [23]. The problem is whether these main classes are real-

izable as (3, q)-nets in P2
C. For q = 6, we obtained that only nine of the twelve main
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classes are realizable, and we found that these nine classes have distinguished prop-

erties among each other. There are (3, q)-nets for abelian and non-abelian groups,

and also for Latin squares not coming from groups. Their moduli have different di-

mensions, and some of them may be defined strictly over C or R. Also, they can be

defined over Q (for an interesting example, see Quaternion nets in Subsection 3.5.4).

Question VII.3. Is there a combinatorial characterization of the main classes of

q × q Latin squares realizing (3, q)-nets in P2
C? (see Subsection 3.5.4)

One motivation to classify nets comes from topological invariants of the comple-

ment of line arrangements. Let A = {L1, . . . , Ld} be a line arrangement in P2
C. An

important and difficult problem is to compute π1 = π1(P2
C \ A). Some of the well-

studied invariants of π1 are the so called n-th characteristic varieties [57, 58], which

we denote by Vn(P2
C \ A). These subvarieties of C∗d−1 =Hom

(
π1/[π1, π1],C∗

)
are

unions of translated subtori. Their definition can be found in [58].

The relation with nets is via positive dimensional connected components of Vn(P2
C\

A), which contain the identity. In connection with Characteristic varieties, we have

the n-th resonance varieties of P2
C \A (for the definition, see for example [95, Section

2]), which we denote by Rn(P2
C \ A). A key fact is the following [59, 95].

Theorem VII.4. For every positive dimensional component V of Vn(P2
C\A) contain-

ing the identity, the tangent space of V at the identity is a component of Rn(P2
C \A).

It is known that every irreducible component of Rn(P2
C \ A) is defined by a sub-

arrangement B ⊆ A and a set of k-points X of B (see [59, 95, 30]). The set X

induces a partition of B into n + 2 subarrangements, and every point in X has mul-

tiplicity ≥ n + 2. It turns out that they are exactly the (n, q)-multinets defined in
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[30], where (n, q)-nets (Section 3.5) are particular cases. More precisely, in [30], it is

proved the following.

Theorem VII.5. There is a one to one correspondence between the components of

R1(P2
C \ A) and multinets contained in A.

Therefore, (n, q)-multinets are important for the classification of the positive di-

mensional Characteristic varieties of complex line arrangements. We notice that

trivial (n, 1)-multinets almost always show up as components in Theorem VII.5, for

every n ≥ 3. However, if q > 1, we have the restriction n ≤ 5 [59, 95, 30]. In [30,

Remark 4.11], it is pointed out that at the combinatorial level, every multinet can

be obtained from a net by gluing some points and lines. But it is not known if the

resulting combinatorial net is indeed realizable in P2
C. Falk and Yuzvinsky conjecture

that every multinet can be obtained by a deformation of a net. If true, we need to

classify nets and their degenerations.

In [82], it is proved that for a (n, q)-net, n must be equal to 3 or 4. The only

4-net known is the Hesse arrangement, and it is believed there are no more 4-nets.

This gives the motivation to classify 3-nets. Here we do not only have a realization

problem, but also a combinatorial one given by the classification of the main classes

of q × q Latin squares when q is large.

The combinatorial (4, q)-nets have to do with pairs of orthogonal q × q Latin

squares. These pairs exist in general, but the realization may not. An illustrative

example is given by (4, 4)-nets. Although this case is combinatorially possible, there

are no (4, 4)-nets over C (see for example Section 3.5.1).

Question VII.6. Are there 4-nets apart from the Hesse arrangement?

In [82], the proof of the non-existence of 5-nets (and the attempt for 4-nets) did



140

not use the strong combinatorial restrictions imposed by Latin squares. For 3-nets,

it is key to know the combinatorics given by the corresponding Latin square.

7.3 p-th root covers over algebraically closed fields.

Let K be an algebraically closed field. Let p be a prime number such that p 6=

Char(K). In this section, We will show how to obtain the analog of Theorem V.2 for

this more general setting.

In [29, p. 23-27], Esnault and Viehweg work out p-root covers for arbitrary alge-

braically closed fields K, under the condition p 6= Char(K). We will use the notation

in Section 4.1, we will restrict to surfaces. Let (Y, p, D =
∑r

j=1 νjDj,L) be the data

for the corresponding p-th root cover. We always assume 0 < νi < p for all i. Then,

we have the chain of maps

Y = SpecY

( p−1⊕
i=0

L(i)−1
)
→ Y ′ = SpecY

( p−1⊕
i=0

L−i
)
→ Y

where the key part is the computation of the normalization [29]. As before, the line

bundles L(i) on Y are defined as

Li ⊗OY

(
−

r∑
j=1

[νj i

n

]
Dj

)

for i ∈ {0, 1, ..., p− 1}.

The construction shows that Y has only singularities of the type

T (p, νi, νj) := Spec
(
K[x, y, z]/(zp − xνiyνj)

)

over all the nodes of D. The varieties T (p, νi, νj) are affine toric surfaces. They

correspond to pointed cones in a two dimensional lattice N . If q is the positive

integer satisfying νiq + νj ≡ 0mod(p) and 0 < q < p, then T (p, νi, νj) is isomorphic

to the affine toric variety defined by (0, 1) and (p,−q) [67, Ch.5]. The singularity
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of T (p, νi, νj) can be resolved by toric methods [67, Ch.5 p.5-8], obtaining the same

situation as in the complex case. That is, the singularity is resolved by a chain of P1’s

whose number and self-intersections are encoded in the negative-regular continued

fraction p
q

= [e1, . . . , es].

The singularities of Y are rational, and the minimal toric resolutions produce

the smooth projective surface X. To see this, let Z be the fundamental cycle of

the singularity of T (p, νi, νj) as defined in [2]. By definition, we have Z =
∑s

i=1 Ei,

where Ei’s are the corresponding exceptional curves. In [2], it is proved that a normal

singularity is rational if and only if pa(Z) = 0 (arithmetic genus of Z is zero). But

pa(Z) = pa(Z) + s− 1 [39, p. 298, Ex. 1.8(a)], and pa(Z) = 1− s, so the singularity

is rational. As before, let us denote the composition of all maps by f : X → Y .

We will now compute all the relevant numerical invariants of X, showing that we

have the same results as for C.

Euler characteristic: Since the singularities are rational, we have

χ(X,OX) = pχ(Y,OY ) +
1

2

p−1∑
i=1

L(i).(L(i) ⊗ ωY ),

and so we can modify this formula as before to obtain the one in Proposition IV.7,

which involves Dedekind sums (we change e(D) by the corresponding combinatorial

number).

First Chern number: As before, if KX and KY are canonical divisors for X

and Y respectively, local computations (which ese the fact p 6= Char(p)) give us the

Q-numerical equivalence

KX ≡ f ∗
(
KY +

(p− 1

p

) r∑
j=1

Dj

)
+ ∆

where ∆ is a Q-divisor supported on the exceptional locus. The number of divisors

and their self-intersections are the same as before, and so c2
1(X) is the number com-
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puted when K was C. Notice that this number includes the sums of ei’s over the

nodes 1.

Second Chern number: For K = C, this was e(X), the topological Euler char-

acteristic of X. In general, c2(X) can be computed using the Hirzebruch-Riemann-

Roch theorem [39, p. 432], in the form of Noether’s formula. Hence, c2(X) can

be expressed as in Proposition IV.10, changing Euler numbers by the corresponding

combinatorial numbers.

Now, we consider divisible arrangements of d curves A on a smooth projective

surface Z over K. Let g : Y → Z be the corresponding SNC resolution of A, and

consider the log surface (Y,A′) as in Section 5.1. The logarithmic Chern classes of

(Y,A′) are defined as c̄i(Y,A′) := ci(Ω
1
Y (log D)∨) for i = 1, 2.

First log Chern number: This is computed as before, being c̄2
1(Y,A′) =

(c1(Y ) + Dred)
2. So, it can be written in combinatorial terms as in Section 2.1,

c̄2
1(Y,A′) = c2

1(Z)−
d∑

i=1

C2
i +

∑

k≥2

(3k − 4)tk + 4
d∑

i=1

(g(Ci)− 1).

Second log Chern number: For K = C, one can prove c̄2(Y,A′) = e(Y ) −

e(A′) by Hirzebruch-Riemann-Roch theorem (and Hodge decomposition to compute

c2(Y ) = e(Y ), for example). We want to show that this is again the number when

transformed to its combinatorial form, i.e.,

c̄2(Y,A′) = c2(Z) +
∑

k≥2

(k − 1)tk + 2
d∑

i=1

(g(Ci)− 1).

As before, the Hirzebruch-Riemann-Roch theorem is valid over K, and for the vector

bundle Ω1
Y (log D)∨ it reads

χ(Y, Ω1
Y (log D)∨) = deg

(
ch(Ω1

Y (log D)∨).td(TY )
)
.

1The formula in Proposition IV.13 shows a correspondence between χ, c21, and c2 and Dedekind sums, sums of
ei’s, and length of continued fractions respectively.
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The left hand side is
∑r

j=1 χ(Dj, Ω
2
Y ⊗ ODj

) + χ(Y, TY ) by the “canonical” log se-

quence. So, by applying Riemann-Roch theorem twice, we can compute χ(Y, Ω1
Y (log D)∨)

in terms of intersection numbers and Chern numbers. Since we have the same par-

ticipants as for C, the result follows.

Theorem VII.7. Let K be an algebraically closed field. Let Z be a smooth pro-

jective surface over K, and A be a divisible arrangement on Z. Let (Y,A′) be the

corresponding associated pair, and assume c̄2(Y,A′) 6= 0. Then, there are smooth

projective surfaces X having
c21(X)

c2(X)
arbitrarily close to

c̄21(Y,A′)
c̄2(Y,A′) .

Proof. We consider primes p >Char(K), and we use the exact same proof as for

Theorem V.2.

Positive characteristic brings more geometric possibilities for arrangements. It is

immediately clear when we consider line arrangements in P2
K.

Example VII.8. (Projective plane arrangements) Let K be an algebraically closed

field of characteristic n > 0. In P2
K, we have n2 + n + 1 Fn-valued points, and there

are n2 + n + 1 lines such that through each of these points passes exactly n + 1 of

these lines, and each of these line contains exactly n + 1 of these points [24, p. 426].

These lines define an arrangement of d = n2 + n + 1 lines A, we call them projective

plane arrangements. When n = 2, this is the Fano arrangement. We have that

tn+1 = n2 + n + 1 and tk = 0 otherwise (by the combinatorial equality), and the log

Chern numbers are

c̄2
1(Y,A′) = 3(n + 1)(n− 1)2 and c̄2(Y,A′) = (n + 1)(n− 1)2,

and so c̄2
1 = 3c̄2 for every n.

By Theorem VII.7, there are smooth projective surfaces X with
c21(X)

c2(X)
→ 3. These

surfaces are of general type because c̄2
1(Y,A′), c̄2(Y,A′) > 0, and there is a classifica-
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tion for surfaces in positive characteristic [9, p. 119-120]. Hence, these are surfaces

arbitrarily close to the Miyaoka-Yau line. However, it is known there are surfaces

with c2
1 > 3c2 (for example, see [26]).

This example leads us to wonder: is there a line arrangement in P2
K with c̄2

1 > 3c̄2?

The answer is no.

Proposition VII.9. Let K be an algebraically closed field, and let A be a line

arrangement in P2
K with td = 0.

1. If Char(K) > 0, then c̄2
1 ≤ 3c̄2. This inequality is sharp because of the projective

plane arrangements.

2. If Char(K) = 0, then c̄2
1 ≤ 8

3
c̄2. Equality holds if and only if A is a triangle, or

td−1 = 1 or A is the dual Hesse arrangement.

Proof. Part 2. follows from Lefschetz’s Principle [56] and Proposition II.8. We re-

mark that this proposition involves Hirzebruch’s inequality which relies on Miyaoka-

Yau inequality. The inequality for positive characteristic is much more simple, as we

now show.

We first notice that c̄2
1 ≤ 3c̄2 is equivalent to

∑
k≥2 tk ≥ d, because of our formulas

in Section 2.2. Let σ : Blk−pts(P2
K) → P2

K be the blow up of P2
K at all the k-points

of A (2-points included). Then, Pic(Blk−pts(P2
K))⊗Q has dimension 1 + Σk≥2tk [39,

Ch. V.3]. Assume
∑

k≥2 tk < d.

Let {L1, . . . , Ld} be the proper transforms of the lines in A, and let H be the class

of the pull-back of a general line. Since td = 0, we have L2
i ≤ −1 for all i. Also, for

i 6= j, Li.Lj = 0. Therefore, they are linearly independent in Pic(Blk−pts(P2
K)) ⊗ Q,

and since
∑

k≥2 tk < d, they form a base (so d = 1+Σk≥2tk). In this way, there exist
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αi ∈ Q such that

H = Σd
i=1αiLi.

We have Li.H = 1 = αiL
2
i and H.H = 1 = Σd

i=1αi, and so 1 = Σd
i=1

1
L2

i
. But L2

i ≤ −1,

producing a contradiction.

I think the projective plane arrangements are exactly the ones for which equality

holds.

7.4 Coverings and geometric normalizations.

The leading idea is how we could modify coverings, so that we can apply similar

large scale techniques, to find simply connected surfaces with large Chern numbers

ratio. Hopefully, we want higher than 2.703. We start with a covering data on a

smooth projective surface Y , construct an algebra representing the covering we want

to perform, and compute normalization and resolution of singularities. That is what

we have for p-th root covers. Below we discuss two situations which are manageable

thanks to some known works.

Abelian covers: In [71], Pardini developed a general theory for abelian covers of

algebraic varieties. Let Y be a smooth complete variety over an algebraically closed

field K, and let G be a finite abelian group. An abelian cover of Y with group G

is a finite map π : X → Y , where X is a normal variety, together with a faithful

action of G on X such that π exhibits Y as the quotient of X via G. The main

theorem in [71] says that abelian covers are determined, up to isomorphisms of G-

covers, by certain building data Lχ (line bundles), DH,ϕ (divisors). Actual explicit

constructions from this building data are a little difficult to carry out, because of

the number of relations required and the general language used. It is possible to

make it simpler by using a direct and more geometric method via p-th root covers,
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following Esnault and Viehweg. This has been worked out in [31], we now explain

that approach.

Let Y be a smooth projective surface over K, and let G ' Z/n1Z⊕ . . .⊕Z/nmZ.

Then, the abelian cover data can be express as

Lni
i ' OY (Di), i ∈ {1, 2, . . . , m}

where Li are line bundles and Di are effective divisors on Y . If π : X → Y is the

corresponding abelian cover, then

π∗OX =
⊕
g∈G

Lg
−1

where

Lg := Lg1

1 ⊗OY

(
−

[ g1

n1

D1

])
⊗ · · · ⊗ Lgm

m ⊗OY

(
−

[ gm

nm

Dm

])
,

g = (g1, . . . , gm) ∈ Z/n1Z ⊕ . . . ⊕ Z/nmZ, and
[

gi

ni
Di

]
is the sum of the integral

parts of each primary divisor summand. Hence, the m = 1 case is the n1-root cover

associated to (Y, D1, n1,L1) in Section 4.1. The key line bundles are the Lg’s.

Let π : X → Y be an abelian cover. Assume that
(
D1 + . . . + Dm

)
red

is a simple

normal crossings divisor. Then, the singularities of X are of Hirzebruch-Jung type

[71, Prop. 3.3], in particular rational singularities. This allows us to easily compute

χ of the resolution of X. Also, it gives hopes on controlling its fundamental group.

However, if G is not cyclic, the cover is not totally branched along any component

of the Di’s, and it usually modifies their genus. This changes the situation we had

before to prove simply connectedness. It seems that with non-cyclic covers, one

almost never obtains simply connected surfaces. This is an example.

Example VII.10. (Hirzebruch’s construction) In [42], Hirzebruch constructed very

interesting surfaces, such as ball quotients, by using abelian covers of a certain kind.
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Given an arrangement of lines A = {L1, . . . , Ld} in P2
C with td = 0, he considered

abelian covers of P2
C with group Z/nZ⊕ . . .⊕Z/nZ (d− 1 times), given by the data

OP2(1)n = OP2(Li + (n− 1)Ld)

for i ∈ {1, 2, . . . , d− 1}. If n > 2 and there is a k-point P in A with k ≥ 3, then the

corresponding new smooth projective surface X has q(X) > 0, and so it is not simply

connected. To see this, we notice that the singularity over P is resolved by a smooth

projective curve C whose topological Euler characteristic is nk−2(n(2 − k) + k) ≤ 0

[42, p. 122], and so g(C) > 0. This curve induces a fibration on X over C via the

trivial pencil of lines through P . In particular, q(X) ≥ g(C) > 0.

In that paper, he produced three surfaces of general type satisfying c2
1 = 3c2.

The corresponding arrangements were the complete quadrilateral (n = 5), Hesse

arrangement (n = 3), and dual Hesse arrangement (n = 5).

Bring-Jerrard covers: Cyclic covers are made out of gluing local data of the

form zn + a = 0, plus normalization. If instead we considered local data of the form

zn +az+b = 0, we obtain the so-called Bring-Jerrad covers. They have been recently

studied by Tan and Zhang in [84]. They described their normalization from the cover

data, generalizing the situation of cyclic covers. A good property of these coverings

is that we often have total ramification along certain divisors. Also, we can consider

extremal cases as n tends to infinity. Non-abelian coverings have been scarcely used

to produce exotic surfaces. We would like to exploit Bring-Jarred covers in the spirit

of p-root covers, to see if they bring something new to our search of simply connected

surfaces with large Chern numbers ratio.
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7.5 Upper bounds for log Chern ratios of divisible arrangements.

In this thesis, we have found the record number 8
3

for log Chern ratios of divisible

arrangements. In principle, we know that c̄2
1 ≤ 3c̄2 holds for divisible arrangements

(see Remark V.3), and so this record could be improved. The Log Chern numbers

ratio 8
3

has been achieved by rather elegant arrangements: dual Hesse arrangement

(Example II.6), 4-Fermat arrangement (Section 5.4), Hirzebruch’s elliptic arrange-

ments (Subsection 2.5.5), and the 64 lines on the Schur quartic (Example II.21). We

saw that for line arrangements in P2
C, this number is actually an upper bound, and

it is only achieved by the dual Hesse arrangement.

Question VII.11. Is 8
3

an upper bound for log Chern ratios of divisible arrange-

ments?

We remark that, for arbitrary arrangements, the set of limits of log Chern ratios

contains [1
5
, 3] (Theorem I.29), and so it seems unlikely a positive answer to Question

VII.112. Curiously, the Chern numbers ratio 8
3

has recently appeared as an upper

bound for double Kodaira fibrations [18], and as a sufficient condition (assuming

ampleness of the canonical class) to have small first order deformation space [75]

(see Theorem I.5).

In any how, the open problem of simply connected surfaces with Chern numbers

ratio higher than 2.703 together with our method gives a good excuse to search for

Chern-beautiful arrangements. A starting point is to explore more plane arrange-

ments, in particular conic-line (simple crossings) arrangements in P2
C. Conic-line

arrangements would produce simply connected surfaces, in resemblance with line

arrangements. We have examples of conic-line arrangements with large log Chern

2Although, the arrangements Sommese used to prove this fact were rather special, collections of fibers of a
fibration.
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numbers ratio, but not higher than 8
3

(see Subsection 2.5.3).

Question VII.12. Consider a simple crossings arrangement of n2 conics and n1

lines in P2
C. Is it true that 8n2 − n1 +

∑
k≥2(4− k)tk − 3 ≥ 0.?

Another interesting issue is the possible topological nature of log Miyaoka-Yau

inequalities for divisible arrangements. In Section 2.2, we saw that for real line

arrangements in P2
R, one easily obtains the log Miyaoka-Yau inequality c̄2

1 ≤ 2.5c̄2

from the induced cell decomposition of P2
R. Equality is achieved by simplicial arrange-

ments, this is, arrangements which produce only triangles in the corresponding cell

decomposition.

Question VII.13. For the case of line arrangements over C, is there a topological

proof for the inequality c̄2
1 ≤ 8

3
c̄2? Are there topological reasons for the dual Hesse

arrangement to be the unique non-trivial arrangement satisfying equality?

Let Z be a smooth projective surface over C. As we said above, for divisible

arrangements on Z we have c̄2
1 ≤ 3c̄2, but this may be too coarse. What are the

sharp log Miyaoka-Yau inequalities for divisible arrangements on Z? This question

is interesting even if we restrict to certain divisible arrangements. For example,

divisible arrangements A whose members belong to the same line bundle L, that is,

for every C ∈ A, OZ(C) ' L. What are the sharp log Miyaoka-Yau inequalities for

these arrangements when we fix L? The example is line arrangements on P2
C, where

L = OP2
C
(1) and the sharp inequality is c̄2

1 ≤ 8
3
c̄2.
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.1 Dedekind sums and continued fractions.

Most of the material in this appendix can be found in several places. Let p be a

prime number and q be an integer satisfying 0 < q < p. As in definition IV.6, we

write the Dedekind sum associated to q, p as

s(q, p) =

p−1∑
i=1

(( i

p

))(( iq

p

))

where ((x)) = x − [x] − 1
2

for any rational number x. On the other hand, we have

the (negative-regular) continued fraction

p

q
= e1 − 1

e2 − 1

...− 1
es

which we abbreviate as p
q

= [e1, ..., es]. We denote its length s by l(1, p − q; p),

following our notation (Definition IV.8). This continued fraction is defined by the

following recursion formula: let b−1 = p and b0 = q, and define ei and bi by means of

the equation bi−2 = bi−1ei − bi with 0 ≤ bi < bi−1 i ∈ {1, 2, . . . , s}. In this way,

bs = 0 < bs−1 = 1 < bs−2 < . . . < b1 < b0 = q < b−1 = p.

In particular, l(1, p − q; p) < p. By induction one can prove that for every i ∈

{1, 2, . . . , s}, bi−2 = (−1)s+1−i det(Mi) where Mi is the matrix



−ei 1 0 0 . . . 0

1 −ei+1 1 0 . . . 0

0 1
. . . . . . . . .

...

...
. . . . . . . . . 1 0

0 . . . 0 1 −es−1 1

0 . . . 0 0 1 −es




Hence, s = p− 1 if and only if ei = 2 for all i.
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Another well-known way to look at this continued fraction is the following. Let

p
q

= [e1, ..., es] and define the matrix

A(e1, e2, ..., es) =




es 1

−1 0







es−1 1

−1 0


 · · ·




e1 1

−1 0




and the recurrences P−1 = 0, P0 = 1, Pi+1 = ei+1Pi − Pi−1; Q−1 = −1, Q0 = 0,

Qi+1 = ei+1Qi−Qi−1. Then, by induction again, one can prove that Pi

Qi
= [e1, e2, ..., ei]

and

A(e1, ..., ei) =




Pi Qi

−Pi−1 −Qi−1




for all i ∈ {1, 2, ..., s}. The following lemma can be proved using that det
(
A(e1, ..., ei)

)
=

1.

Lemma .14. Let p be a prime number and q be an integer such that 0 < q < p. Let

q′ be the integer satisfying 0 < q′ < p and qq′ ≡ 1(mod p). Then, p
q

= [e1, ..., es]

implies p
q′ = [es, ..., e1].

We now express the number αi = −1 + bi−1

p
+

b′s−i

p
in terms of Pi’s and Qi’s, to

finally prove Proposition IV.13. Since

A(e1, ..., es) =




bi−1 bi

x y







ei 1

−1 0







Pi−1 Qi−1

−Pi−2 −Qi−2




we have bi−1 = qPi−1 − pQi−1 and b′s−i = Pi−1.

Lemma .15.
∑s

i=1 αi(2− ei) =
∑s

i=1(ei − 2) + q+q′
p
− 2p−1

p
.

Proof.
∑s

i=1 αi(2 − ei) =
∑s

i=1(ei − 2) + 1
p

∑s
i=1 ((q + 1)Pi−1 − pQi−1) (2 − ei). By

definition, eiPi−1 = Pi + Pi−2 and eiQi−1 = Qi + Qi−2, so

s∑
i=1

((q + 1)Pi−1 − pQi−1) (2−ei) = (q+1)
s∑

i=1

(2Pi−1−Pi−Pi−2)−p

s∑
i=1

(2Qi−1−Qi−Qi−2).
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∑s
i=1(2Pi−1−Pi−Pi−2) = 1+Ps−1−p and

∑s
i=1(2Qi−1−Qi−Qi−2) = −1+Qs−1−q,

so
s∑

i=1

((q + 1)Pi−1 − pQi−1) (2− ei) = q + Ps−1 + 2− 2p

since qPs−1 − pQs−1 = 1.

Lemma .16. 0 ≤ −αi ≤ p−2
p

.

Proof. The statement −αi ≤ p−2
p

is clear. For the left hand side, we need to prove

1 − qPi−1−pQi−1

p
− Pi−1

p
≥ 0. This is equivalent to p

q
− Qi−1

Pi−1
≤ 1

Pi
− 1

p
. For i = s, we

have Ps−1q −Qs−1p = 1, and we know that for every j, Pj+1 ≥ Pj + 1. So, we prove

it by induction on i. Since Qi

Pi
− Qi−1

Pi−1
= 1

PiPi−1
, we have

q

p
− Qi−1

Pi−1

=
q

p
− Qi

Pi

+
1

PiPi−1

≤ 1

Pi

− 1

p
+

1

PiPi−1

≤ 1

Pi−1

− 1

p

by the previous remark.

We are now going to describe the behavior of Dedekind sums and lengths of

continued fractions when p is large and q does not belong to a certain bad set. All

of what follows relies on the work of Girstmair (see [33] and [34]).

Definition .17. (from [33]) A Farey point (F-point) is a rational number of the form

p · c
d
, 1 ≤ d ≤ √

p, 0 ≤ c ≤ d, (c, d) = 1. Fix an arbitrary constant C > 0. The

interval

I c
d

= {x : 0 ≤ x ≤ p,
∣∣∣x− p · c

d

∣∣∣ ≤ C

√
p

d2
}

is called the F-neighbourhood of the point p · c
d
. We write Fd =

⋃
c∈C I c

d
for the union

of all neighbourhoods belonging to F-points of a fixed d, where C = {c : 0 ≤ c ≤

d & (c, d) = 1}. The bad set F is defined as

F =
⋃

1≤d≤√p

Fd.
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The integers q, 0 ≤ q < p, lying in F are called F-neighbours. Otherwise, q is called

an ordinary integer.

The following two theorems are stated and proved in [33].

Theorem .18. Let p ≥ 17 and q be an ordinary integer. Then, |s(q, p)| ≤ (
2 +

1
C

)√
p + 5.

The previous theorem is false for non-ordinary integers. For example, if p+1
m

is an

integer, then s(p+1
m

, p) = 1
12mp

(
p2 + (m2 − 6m + 2)p + m2 + 1

)
.

Theorem .19. For each p ≥ 17 the number of F-neighbours is ≤ C
√

p
(
log(p) +

2 log(2)
)
.

A similar statement is true for the lengths of negative-regular continued fractions.

Theorem .20. Let q be an ordinary integer and p
q

= [e1, e2, . . . , es] be the corre-

sponding continued fraction. Then, s = l(1, p− q; p) ≤ (
2 + 1

C

)√
p + 2.

Proof. For any integers 0 < n < m with (n,m) = 1 consider the regular continued

fraction

n

m
= f1 +

1

f2 + 1

...+ 1
fr

and let us denote
∑r

i=1 fi by t(n,m). Also, we write n
m

= [1, a2, . . . , al′(n,m)] for its

negative-regular continued fraction. Observe that p
q
− [

p
q

]
= x

q
= [1, e2, . . . , es]. By

[68] corollary (iv), we have

t(q, p) =
[p

q

]
+ t(x, q) =

[p

q

]
+ l′(x, q) + l′(q − x, q) > l′(x, q) = s.

Now, by Proposition 3 in [34], we know that t(q, p) ≤ (
2 + 1

C

)√
p + 2 whenever q is

an ordinary integer.
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.2 Samples from the Fermat program.

Below we show some samples taken from the fermat program, which computes

the exact invariants of p-th root covers over P2 along Fermat arrangements (Example

II.6). This program was written using TURBO C++.

(1) pth root covers along q Fermat arrangements.

Enter q (1 < q < 7) : 3

Enter a prime number p : 1019

The multiplicities of the sections are integers 0 < vi < 1019 such

that v1 + ... + v9 = 0 (mod 1019).

Enter the multiplicities for the sections:

v1 = 1

v2 = 3

v3 = 7

v4 = 17

v5 = 29

v6 = 47

v7 = 109

v8 = 239

v9 = 567

χ(X) = 2857 = 2803.746811 + 53.253189

c2
1(X) = 24024
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c2(X) = 10260 = 9177 + 1083

e(D) = 6

The ratio c2
1(X)/χ(X) is 8.40882.

The Chern numbers ratio c2
1(X)/c2(X) is 2.34152.

Self-intersections of pull-backs are:

D̃2
1 = −3 D̃2

2 = −2 D̃2
3 = −2 D̃2

4 = −2

D̃2
5 = −2 D̃2

6 = −2 D̃2
7 = −2 D̃2

8 = −2

D̃2
9 = −3

D̃2
10 = −2 D̃2

11 = −1 D̃2
12 = −1 D̃2

13 = −2

D̃2
14 = −1 D̃2

15 = −2 D̃2
16 = −2 D̃2

17 = −2

D̃2
18 = −1

D̃2
19 = −1 D̃2

20 = −1 D̃2
21 = −1

(2) pth root covers along q Fermat arrangements.

Enter q (1 < q < 7) : 3

Enter a prime number p : 145777

The multiplicities of the sections are integers 0 < vi < 145777 such

that v1 + ... + v9 = 0 (mod 145777).
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Enter the multiplicities for the sections:

v1 = 1

v2 = 101

v3 = 207

v4 = 569

v5 = 1069

v6 = 10037

v7 = 22441

v8 = 44729

v9 = 66623

χ(X) = 400908 = 400888.249978 + 19.750032

c2
1(X) = 3497491

c2(X) = 1313405 = 1311999 + 1406

e(D) = 6

The ratio c2
1(X)/χ(X) is 8.723924.

The Chern numbers ratio c2
1(X)/c2(X) is 2.662919.

Self-intersections of pull-backs are:

D̃2
1 = −3 D̃2

2 = −2 D̃2
3 = −1 D̃2

4 = −1

D̃2
5 = −2 D̃2

6 = −2 D̃2
7 = −2 D̃2

8 = −3

D̃2
9 = −2
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D̃2
10 = −2 D̃2

11 = −2 D̃2
12 = −1 D̃2

13 = −1

D̃2
14 = −2 D̃2

15 = −2 D̃2
16 = −2 D̃2

17 = −3

D̃2
18 = −1

D̃2
19 = −2 D̃2

20 = −1 D̃2
21 = −1

(3) pth root covers along q Fermat arrangements.

Enter q (1 < q < 7) : 6

Enter a prime number p : 11239

The multiplicities of the sections are integers 0 < vi < 11239 such

that v1 + ... + v18 = 0 (mod 11239).

Enter the multiplicities for the sections:

v1 = 1

v2 = 13

v3 = 17

v4 = 23

v5 = 29

v6 = 37

v7 = 53

v8 = 79

v9 = 89

v10 = 139

v11 = 157
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v12 = 317

v13 = 439

v14 = 641

v15 = 919

v16 = 1223

v17 = 2689

v18 = 4374

χ(X) = 182792 = 182630.74891 + 161.25109

c2
1(X) = 1580908

c2(X) = 612596 = 606894 + 5702

e(D) = −12

The ratio c2
1(X)/χ(X) is 8.648672.

The Chern numbers ratio c2
1(X)/c2(X) is 2.58067.

Self-intersections of pull-backs are:

D̃2
1 = −6 D̃2

2 = −3 D̃2
3 = −3 D̃2

4 = −5

D̃2
5 = −2 D̃2

6 = −5 D̃2
7 = −2 D̃2

8 = −3

D̃2
9 = −3 D̃2

10 = −5 D̃2
11 = −4 D̃2

12 = −2

D̃2
13 = −3 D̃2

14 = −5 D̃2
15 = −4 D̃2

16 = −5

D̃2
17 = −4 D̃2

18 = −3

D̃2
19 = −1 D̃2

20 = −2 D̃2
21 = −2 D̃2

22 = −2
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D̃2
23 = −1 D̃2

24 = −1 D̃2
25 = −2 D̃2

26 = −2

D̃2
27 = −2 D̃2

28 = −1 D̃2
29 = −1 D̃2

30 = −2

D̃2
31 = −1 D̃2

32 = −2 D̃2
33 = −1 D̃2

34 = −1

D̃2
35 = −2 D̃2

36 = −2 D̃2
37 = −1 D̃2

38 = −2

D̃2
39 = −1 D̃2

40 = −1 D̃2
41 = −1 D̃2

42 = −2

D̃2
43 = −1 D̃2

44 = −1 D̃2
45 = −2 D̃2

46 = −1

D̃2
47 = −1 D̃2

48 = −1 D̃2
49 = −1 D̃2

50 = −1

D̃2
51 = −2 D̃2

52 = −2 D̃2
53 = −1 D̃2

54 = −2

D̃2
55 = −2 D̃2

56 = −2 D̃2
57 = −3
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