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CHAPTER I

Introduction

1.1 Review of Phase I Clinical Trial Designs

Conventional Phase I clinical trials are designed to determine the maximum dose

of a new therapeutic agent that leads to toxicity in an “acceptable” proportion of

patients. This dose is identified as the maximum tolerated dose (MTD), based on

the implicit assumption of a monotonically increasing relationship between dose and

probability of toxicity. Historically, Phase I trials have been designed with simple

algorithmic approaches, four (A, B, C and D) of which are compared in Storer (1989).

Design A is a traditional “3+3” design in which a cohort of three subjects is treated

with the same dose. Escalation occurs if no toxicities are observed, and the study

is terminated if at least two subjects in the cohort experience toxicity, with the

next lowest dose identified as the MTD. If one subject in the cohort experiences

toxicity, an additional three subjects are treated at the same dose level. If none of

those additional three patients experiences toxicity, escalation occurs; otherwise, the

trial stops, with the next lowest dose identified as the MTD. A major limitation of

this design is that de-escalation is never an option and the study terminates once

two toxicities are observed in a cohort of three or six subjects. Limitations of the

“3+3” design have been extensively studied in Korn et al. (1994), Ahn (1998) and

1
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Garrett-Mayer (2006).

Designs B, C, and D are referred to as “up-and-down” designs because they allow

for de-escalation. In Design B, a single subject is treated at a dose level dj. The

next subject is treated at dose level dj−1 if the previous subject experiences toxicity

or at dose dj+1 if the previous subject does not experience toxicity. If consecutive

de-escalations happen, then the trial stops, and the dose level at the second de-

escalation of the consecutive de-escalations is taken as the MTD. If a study fails

to stop early and reaches its planned sample size, then the dose given to the final

subject or the next lower dose is usually taken as the estimate of MTD depending

on the actual amount and degree of toxicity observed in the last group of evaluated

subjects.

Design C is a variant of Design B, in which two consecutive nontoxic responses

must be obtained before escalation occurs, whereas de-escalation occurs whenever a

toxic response is seen. The rule of identifying the MTD is the same as that of Design

B. Design D is a modified version of Design A, in which de-escalation occurs if more

than one subject in a cohort has toxicity. If a single patient has toxicity, then the

next cohort of subjects is treated at the same dose level.

Storer also proposed a pair of two-stage designs, BC and BD, that combine single-

stage designs. The first stage follows design B until the first toxic response is ob-

served. From the point at which the next subject is entered at the next lower dose

level, the second stage design is implemented with fixed sample size. Storer demon-

strated via simulation that the two-stage designs perform better than the single-stage

designs by comparing the expected fractions of subjects that would be treated at dose

levels above the prespecified threshold percentage of toxicity. Storer also found that

the designs performed well as long as the MTD is not chosen to be too extreme of a
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percentile (low extreme). However, the designs considered by Storer can have very

poor operating characteristics when starting at a dose far below the MTD. Other

limitations of those designs are that subjects who enroll first in the trial are most

likely assigned to doses with sub-optimal efficacy and the MTD selected at the end of

the study has no general interpretation as an estimate of the dose yielding a specified

toxicity rate.

In order to overcome the limitations of algorithmic Phase I trial designs, O’Quigley

et al. (1990) proposed the Continual Reassessment Method (CRM). CRM is based

upon an assumed model for the association of dose and probability of toxicity and

uses Bayesian methods to adaptively assign a dose to each subject. O’Quigley and

Shen (1996) proposed that maximum-likelihood methods could also be used with

the CRM. However, because maximum-likelihood methods fail to be useful until a

toxicity is observed, the authors suggested a combination of the traditional Bayesian

CRM and their proposed maximum-likelihood CRM. At the beginning of the trial, a

Bayesian framework is useful because it allows prior information to be incorporated

into the study design in the absence of toxicity. However, when the sample size

becomes “large”, eg. greater than 12 (as suggested by O’Quigley and Shen, 1996),

the numerical integrals or Monte Carlo methods necessary in the Bayesian design

become computationally intensive. When at least 12 subjects are enrolled and at

least a toxicity is also observed, it is at this point that maximum likelihood methods

can then replace the Bayesian methods. As the sample size increases, O’Quigley and

Shen (1996) show that the recommended dose level of this hybrid CRM approach

converges to the true MTD. There are other competing designs to the CRM, including

efficient dose escalation with overdose control (EWOC) (Babb et al., 1998), a curve-

free method (CFM) (Gasparini and Eisele, 2000) and the biased coin up-and-down
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design (BCD) (Stylianou and Flournoy, 2002). Rosenberger and Haines (2002) gave

a comprehensive review of the currently available Phase I trial designs.

Even though the proposed CRM approaches are superior to the classical Phase

I design schemes, there are difficulties associated with the use of the CRM. Most

notably, each subject (or small group of subjects) must be followed completely for

toxicity before the next subject or group is enrolled. Although O’Quigley et al.

(1990) proposed a solution to this problem by using the data from fully followed

subjects only, this approach is inefficient because it does not fully utilize the infor-

mation available at the time of evaluation. These difficulties may result in trials of

impractically long duration when a trial is designed to evaluate late-onset effects of

a new therapeutic agent and fully utilize the information available at each time of

evaluation, thereby requiring a long follow-up period for each subject.

Cheung and Chappell (2000) proposed a Time-to-Event Continual Reassessment

Method (TITE-CRM) to overcome the difficulties associated with the use of the

CRM. The CRM assumes a parametric cumulative distribution function (CDF)

F (d, β) to describe the relationship between the dose d and toxicity. The TITE-

CRM extends the CRM by considering a weighted dose-response model G(w, d, β) =

wF (d, β) that monotonically increase in w with constraints G(0, d, β) = 0 and

G(1, d, β) = F (d, β) for all d, β, 0 ≤ w ≤ 1. The weight w is a function of time-to-

event of subjects. Thus the TITE-CRM incorporates the subject’s time in a study

into the model, and fully utilize each subject’s information up to each evaluation time

more efficiently than the CRM. As a result, the TITE-CRM allows subjects to be

enrolled whenever they are available and evaluate the long-term toxicity more natu-

rally, hence significantly shortening a study’s duration without delaying the accrual.

Furthermore, the TITE-CRM approach can be generalized to any Phase I design that
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involves likelihood-based estimation of a MTD and provides an alternative method

to classical design schemes as practitioners desire.

However, the Phase I studies using the TITE-CRM method just like any conven-

tional dose-finding Phase I studies are inadequate for trials in which the agent is

administered repeatedly over time and evaluation of long-term cumulative effects is

important because the TITE-CRM method like any conventional approaches bases

dose-finding on one, initial administration or course of therapy. To overcome this

shortcoming, Braun et al. (2003) presented a modified version of the TITE-CRM

based on a maximum tolerated cumulative dose (MTCD). Their setting was a bone

marrow transplant trial that planned to determine how many weeks of recombinant

human keratinocyte growth factor (KGF) could be administered while keeping toxic-

ity rates below a desired threshold. Each subject was enrolled on the best estimate of

the MTCD; each time a previously enrolled subject completed his follow-up, the es-

timate of the MTCD was updated and assignments for all currently enrolled subjects

were modified based on whether they were assigned the current MTCD. However,

this approach still considered each schedule as a “dose”, as a result, the subjects who

received an incomplete schedule were only evaluated up to the point of their last fully

completed schedule. Furthermore, due to a period of follow-up after a schedule was

completed, the “doses” overlapped, leading to some ambiguity as to which “dose”

contributed to a late-onset toxicity.

To avoid these limitations, Braun et al. (2005) constructed a new paradigm for

Phase I trial designs that allows for the evaluation and comparison of several treat-

ment schedules, each consisting of a sequence of administration times. This method

uses time to toxicity as the outcome instead of a binary indicator of toxicity, with

the total hazard of toxicity modeled as the sum of a sequence of hazards, each associ-
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ated with one administration. The goal of this design is to determine the maximum

tolerated schedule (MTS) instead of a traditional MTD. Subject accrual, Bayesian

estimation and outcome adaptive decision-making are done in a sequential fashion

as in classical Phase I trial designs.

As an alternative to the method of Braun et al. (2005), we first propose a paramet-

ric mixture cure model for determining the MTS using adaptive designs in early-phase

clinical trials in Chapter II. We discuss the rationale on how to choose our sectional

Weibull hazard model to allow for the non-monotonic toxicity change pattern, we

then develop an EM algorithm to obtain maximum likelihood estimators (MLEs) of

parameters of interest in this mixture cure model. Based on a pre-specified max-

imum tolerated toxicity level, we define a decision rule on how to determine the

MTS for the next subject entering a trial. Later on, we also implement the proposed

mixture cure model by a Bayesian approach. Via simulations, we demonstrate the

performance of the proposed mixture cure model by both estimation methods.

1.2 Review of Cure Rate Modeling Techniques

The cure rate models have become a very useful tool in biomedical research areas,

such as cancer research and AIDS clinical trials. Cure rate modeling is also a rapidly

developing research area in statistical modeling techniques, statistical inference and

real data applications. The survival analysis invoking the concept of cure rate en-

hances our ability to interpret models in a more meaningful way with more flexibility

in modeling.

A cure model is applicable when it is believed that the survivor function for a

time-to-event random variable plateaus to a non-zero constant and does not decay

to zero. Such a model is applicable in survival data settings when the empirical
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survival curve tends to plateau at a value c ( 0 < c < 1 ) as time increases. Using a

cure model, we assume the subject population is a mixture of two groups: susceptible

subjects who will eventually experience the event of interest and cured subjects who

will never experience the event of interest. The proportion of cured subjects in the

population is called the cure rate. Currently, there are two different approaches to

cure rate modeling: mixture cure models and non-mixture cure models.

1.2.1 Mixture Cure Models

Mixture cure models have been a popular method in parametric analyzing sur-

vival data with cured subjects for decades, starting with the two-component mixture

parametric model of Boag (1949). In this mixture model, one component represents

the survival time distribution for the subjects who experienced the event and the

other component is a degenerate distribution allowing for infinite survival times of

cured subjects. Let T denote a random survival time with population survival func-

tion Sp(t), B denote a binary random variable taking values 1 and 0 with probability

p (event rate) and 1−p (cure rate), respectively, where 1−p = Pr(T = ∞). If we let

S(t) = Pr(T ≥ t|T < ∞) denote the latent survival distribution for the susceptible

group, the population survival function Sp(t) can be represented as

Sp(t | θ) = E[S(t | θ)B] = 1− p+ pS(t | θ), (1.1)

which is a mixture of the survival function of susceptibles S(t) and cure rate p.

Different parametric distributions have been used to model the conditional survival

function S(t), including exponential and Weibull distributions (Berkson and Gage,

1952; Farewell, 1977a) . Nonparametric choices for S(t) have also been considered

in the literature (Taylor, 1995; Kuk and Chen, 1992; Sy and Taylor, 2000 and Peng

and Dear, 2000).
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The effects of time independent covariates on the event rate p and the survival

distribution S(t) can be modeled seperately. Let (Ti, Ci, Zi) be a vector of obser-

vations in which Zi is a vector of time independent covariates, Ti is the length of

follow-up time and Ci is a censoring indicator. Let Bi indicate the cure status for

each subject such that Bi = 1 for susceptible subjects who will eventually have a

event and Bi = 0 for cured subjects. Note that if Ci = 1, then Bi = 1 ; however, if

Ci = 0, then Bi is unknown (latent). The effects of time independent covariates on

the event rate p is usually modeled by a logistic regression where

P (Bi = 1 | β, Zi) =
exp(β′Zi)

1 + exp(β′Zi)
(1.2)

and β is vector of parameters.

Regarding the survival function for susceptibles, Boag (1949) assumed a lognor-

mal distribution and used maximum likelihood methods to estimate the proportion

of cured subjects and regression coefficients. Berkson and Gage (1952) used a sim-

ilar two-component mixture model of an exponential distribution and a degenerate

distribution to allow for cure rate. Using the method of least squares, they fit their

mixture model to a data set on stomach cancer from the Mayo Clinic. Various

mixture-based cure models have been considered, specifically in the area of mixture

parametric cure models; see also Farewell (1977b), Farewell (1977a). Maller and

Zhou (1996) provided a comprehensive treatment to the topic of cure models, es-

pecially on various parametric failure time regression models, and they also studied

extensively one-sample nonparametric failure time models. Tsodikov et al. (2003)

provided a useful summary on nonparametric work for a homogenous sample by

Maller and Zhou (1996).

Recently, more research work has been focused on the nonparametric or semi-

parametric failure time cure models. Taylor (1995) assumed a model with a logistic
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probability model for the cure rate and a unspecified failure time process for the

failure times of the susceptibles, which was estimated using Kaplan-Meier method.

Kuk and Chen (1992), Sy and Taylor (2000) and Peng and Dear (2000) considered

semi-parametric Cox proportional hazards models for the failure time process. Li

and Taylor (2002) used a semi-parametric accelerated failure time model for the

failure times. However, because the sample sizes in Phase I trials are relatively small

and insufficient for nonparametric methods performing well, we will not consider

nonparametric methods in our work.

Despite its popularity and advantage, a number of problems are associated with

the mixture cure model approach. One of the problems is identifiability of parameters

in the proposed models, first discussed by Farewell (1986). This problem arises when

there is little information in the data about the tail of the survival distribution, so

that a long-tailed survival curve could mimic the effect of a nonzero probability of

cured subjects. We would have great difficulty in distinguishing the models with high

event rates and long tails of survival functions from low event rates and short tails of

survival functions. Li et al. (2001) showed that the mixture cure model with a general

model for the failure time process is identifiable if a parametric model such as (1.2)

for the event rate is assumed. They also considered other important special cases

of mixture cure models and non-mixture cure models, establishing conditions for

identifiability. Our proposed mixture sectional Weibull hazard model is identifiable

according to their results.

A second problem is that a test for the presence of cured subjects or not is a

nonstandard inference problem in the sense that it is testing at the boundary of the

parameter space. Maller and Zhou (1992) proposed a nonparametric test for the null

hypothesis no cured subject present in the population while Ghitany et al. (1994)
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proposed a likelihood ratio test for the presence of cured subjects when assuming an

exponential distribution for the failure times of susceptibles, which is a parametric

test for the null hypothesis. Vu et al. (1998) extended the likelihood ratio test to a

generalized exponential family. However, the limiting distribution of the likelihood

ratio test under mild regularity conditions is not a standard chi-square distribution,

but instead is a 50-50 mixture of a point mass at 0 and a chi-square distribution with

1 degree of freedom.

1.2.2 Non-mixture Cure Models

Non-mixture cure models are an alternative approach in survival analysis to

account for the cured subjects. In these models (Yakovlev and Tsodikov, 1996;

Tsodikov, 1998; Chen et al., 1999), the probability of cure is incorporated into the

model by assuming a bounded cumulative hazard (BCH), Hp(t). In this model,

Hp(t) ≤ C, where C is the finite limit of Hp(t) as t → ∞. As a result, Sp(t) =

exp(−Hp(t)) is approaching exp(−C) and does not decay to zero as t→∞. Tsodikov

et al. (2003) provided a comprehensive review of these BCH modeling techniques in

cure rate estimation and associated statistical problems. We summarize the main

ideas here.

Let T be the survival time with corresponding population survival function Sp(t).

The bounded cumulative hazard model is given by

Sp(t) = exp(−θF (t)), θ > 0 (1.3)

where F (t) is a CDF of some nonnegative random variable such that F (0) = 0. The

cure rate is Sp(∞) = exp(−θ). Tsodikov et al. (2003) used a series of formulas

demonstrating the relationship between a mixture cure model and a non-mixture

cure model. They also showed that when using nonparametric estimation meth-
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ods, both models can be used equivalently to estimate the cure fraction. However,

this equivalence of estimating cure fractions will vanish if the survival function for

the susceptible is parametrically specified because of the confounding effects by the

parameter θ on both the cure fraction and the survival function for the susceptibles.

Tsodikov et al. (2003) has summarized the three distinct advantages of a non-

mixture cure model over a mixture cure model from their thorough review of modeling

techniques and estimation methods associated with both models: First, a compre-

hensive class of nonlinear transformation models (NTM) can be constructed under

the non-mixture cure model framework to incorporate complex covariate effects in

the regression. The traditional proportional hazards model (PH) is a special case

of this rich class of NTM models. However, the mixture cure model does not have

the PH property for the population hazard function. Therefore, the non-mixture

cure model can be a great tool for studying and testing departures from the PH

assumption. Second, in some biomedical applications, a much more biologically

meaningful interpretation of the results for the data analysis can be presented by the

non-mixture cure model. Third, when developing maximum likelihood or Bayesian

estimation procedures, a naturally technical structure is provided by the non-mixture

cure model.

Regarding the parametric mixture cure models, existing research has used haz-

ard functions that are either monotonically increasing or decreasing or piecewise

constants. These hazard-based parametric models are too restrictive in our setting

because they are not flexible enough to entertain situations where the hazard is non-

monotonic. Therefore, it is desirable to obtain hazard-based models that allow for a

hazard function with changing trends (increase-decrease or decrease-increase) while

retain the simple structure of a parametric model. Shao and Zhou (2004) developed
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a new parametric mixture cure model using a three-parameter Burr XII distribution

for the analysis of survival data with cured subjects. The Weibull distribution is a

special case of the Burr XII distribution; thus, the proposed mixture cure model by

Shao and Zhou (2004) includes the Weibull and exponential mixture cure models as

special cases. Shao and Zhou (2004) demonstrated the proposed mixture cure model

fit the given data substantially better than the existing parametric models. Contrary

to using the Burr XII hazard in our setting, we consider a triangular hazard model

in Chapter III. In summary, a triangular hazard model consists of two piecewise

linear functions as a hazard function for susceptibles. Refer readers to Chapter III

for details. The estimation of the triangular parameters involves the estimation of a

change-point and a boundary point. We develop an algorithm to derive the MLEs

of the parameters and demonstrate the consistency and limiting distributions of the

MLEs.

1.3 Review of Methodology for Change-Point Problems and Boundary
Parameter Problems

The problem of testing for, detecting, and locating a change in the distribution

in a sequence of random variables has been examined by both parametric and non-

parametric methods. Using a parametric approach, Hinkley (1970) was the first to

study the maximum likelihood estimator (MLE) of a unknown change-point in a

sequence of time-ordered observations and recognized the key role of the extremum

of a two-sided random walk in the limiting distribution of the MLE of a change-

point. Hinkley also pioneered the work on inference for change-point parameters

including the bias of parameter estimates and confidence regions for change-points.

Hinkley (1972) later demonstrated that the asymptotic distribution of the MLE of a

change-point is unaffected by the estimation of nuisance parameters.
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Jandhyala and Fotopoulos (1999) extended the work by Hinkley and provided a

more accurate approximation to the asymptotic distribution of the MLE of a change-

point in a sequence of time-ordered observations. They also presented a computa-

tionally more efficient and easier algorithm than that of Hinkley for deriving the

bounds of the asymptotic distribution of the MLE that could be used to derive the

confidence interval for a change-point. Although there are published nonparametric

methods for estimation of and inference for change-point problems (Dumbgen, 1994;

Yao and Huang, 1994; Eubank and Speckman, 1994), we will not consider nonpara-

metric approaches in our research due to the fact that the sample sizes in Phase

I trials are relatively small and insufficient for nonparametric methods performing

well.

Detection and location of a change-point in a hazard function under random cen-

soring has been addressed by parametric, nonparametric and semiparametric meth-

ods. But existing parametric methods focus on a piecewise constant hazard function

for a sample without censoring i.e. the hazard function λ(t) of a failure time variable

T can be written as

λ(t|θ) =
m∑

l=1

λlI(τl−1 ≤ t < τl),

where I() denotes the set indicator function. The change-points 0 = τ0 < τ1 < .... <

τm and the constant hazard rates λl > 0, l = 1, ...,m are unknown. Estimation of the

change-points is a nonregular problem in the sense that the probability density func-

tion (PDF) is discontinuous at the unknown change-points. The published results

for the limiting distributions of the change-point estimates exist only for m = 2 i.e.

one change-point. For one change-point (τ) case, Nguyen et al. (1984) constructed

a stochastic process Xn(t), t ≥ 0 for which Xn(τ) converges to 0, and derived a con-

sistent estimator τ̂ that satisfies Xn(τ) = 0. However, no asymptotic distribution
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was derived. Nguyen et al. (1984) called this estimator a pseudo-maximum likeli-

hood estimator because exact maximum likelihood method was not applicable due

to the unboundedness of the likelihood function. Yao (1986) found a constrained

MLE τ̂ that is consistent, and showed that n(τ̂ − τ) converges in distribution to two

independent random walks that are functions of the unknown parameters τ, λ1 and

λ2.

The one-change-point exponential survival model can be embedded in a much

broader family of densities with an unknown discontinuity point considered by Cher-

noff and Rubin (1956). In Chapter III, we use their results to prove the limiting

distribution of the MLE for the unknown change-point in our triangular hazard

model (See Chapter II for definition of triangular hazard function).

In our triangular hazard model, we also encounter the problem of estimating a

boundary parameter, in which the upper bound on the support of the hazard func-

tion is an unknown parameter. To our knowledge, estimation methods in literature

exist only for the setting in which a parameter θ places a lower bound on the sup-

port of a PDF and defines a family of PDFs with one unknown location parameter

f(t; θ) = f0(t− θ) (θ < t < +∞) under the restriction that f0(t) → αctα−1 as t ↓ 0.

Woodroofe (1972) stated results on asymptotic normality of the MLE when a PDF

is differentiable and the MLE is consistent, and stated that for α > 2, the Fisher

information is finite and the MLE has the same asymptotic properties as regular

MLEs under regularity conditions as stated in Cam (1970). For α = 2, the MLE is

also asymptotically normal (Woodroofe, 1972) and efficient (Weiss and Wolfowitz,

1973), but the convergence rate is O{(n log(n))
1
2} instead of the usual O(n

1
2 ). For

1 < α < 2, the MLE has a non-normal limiting distribution with the convergence

rate O(n
1
α ) (Woodroofe, 1974). Smith (1985) extended these results to distributions
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with nuisance parameters φ. The MLEs of φ and θ are not only consistent and

asymptotically normally distributed but also asymptotically independent. We use

the results of Smith (1985) to prove the limiting distribution of the MLE for the

boundary parameter in our triangular hazard model.

1.4 The Purpose of This Paper and Its Structure

This dissertation develops several classes of parametric models in optimal treat-

ment schedule finding for Phase I clinical trials using sequential designs. Our goal

is to compare the performance of different models by same estimation methods and

the performance of different estimation methods under the same model assumptions.

The discussion is based on multiple nested treatment schedules, each schedule con-

tains multiple administrations. It is organized as follows. In Chapter I, Introduction,

we review the literature pertaining to the research in this dissertation.

In Chapter II, we propose a mixture cure model with sectional Weibull hazard

to evaluate a fixed number of nested treatment schedules to determine the MTS. In

this mixture cure model, we model the event rate using a logistic regression model

and model the conditional hazard function for the susceptible using a combination

of two Weibull distributions to account for the non-monotonic nature of the hazard

of toxicity. We use both maximum likelihood and Bayesian methods to estimate the

parameters of interest. We then compare the performance of the modified maximum

likelihood method to that of the Bayesian approach via simulation studies.

In Chapter III, we develop a maximum likelihood procedure to derive the MLEs

of unknown parameters in a triangular hazard model for a single administration and

prove the asymptotic properties of the MLEs. Then, we extend the results from the

single administration setting to the multiple administration (treatment schedule)
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setting. We develop an additive triangular hazard model to determine the MTS via

maximum likelihood method. We also compare the performance of the triangular

model by the maximum likelihood method to the results by the Bayesian approach

via simulations.

In Chapter IV, we propose a non-mixture cure model for optimal treatment

schedule finding in early-phase clinical trials. We use both maximum likelihood

and Bayesian approaches to estimate the unknown parameters and determine MTS.

In the simulation studies of Chapters II-IV, subject accrual, data monitoring and

outcome-adaptive decision-making are done sequentially through the study.

In Chapter V, we compare the performance of different models by same estimation

methods and the performance of different estimation methods under the same model

assumptions. We also provide practical recommendations based on pros and cons of

the proposed models. We conclude Chapter V with a list of selected future research

areas.



CHAPTER II

A Mixture Cure Model for Optimal Treatment Schedule
Finding

2.1 Motivation

Our motivating example is that described in Braun et al. (2005). Specifically, in a

Phase I trial of allogeneic bone marrow transplant (BMT) recipents, the investigators

were interested in how long recombinant human keratinocyte growth factor (KGF)

could be administered as prophylaxis for graft-versus-host disease (GVHD). During

the study, each patient received 60mg/kg of KGF on each of the 2 days prior to

BMT, and on the day of BMT. After 4 days of rest with no KGF, the patient received

KGF for 3 more days. Therefore, KGF was administered using the 10-day schedule

(3-days-on/4-days-off/3-days-on), which is denoted by (3+, 4-, 3+). Toxicity was

monitored for 28 days, motivated by the assumption that any adverse effect due to

a single adminstration of KGF is certain to occur within 18 days. Although one

course of KGF using the (3+, 4-, 3+) schedule is proved to be safe, the investigators

believed that this may not be sufficient prophylaxis for GVHD, which may take up

to roughly 100 days after BMT to develop. For safety concerns, the investigators

wished to evaluate multiple courses of KGF with 4 days of rest between consecutive

courses, and follow up subjects for 100 days.

17
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Braun et al. (2005) proposed a new method for the motivating example that took

an existing MTD and sought to determine how long that dose could be administered

to subjects without causing unacceptable cumulative toxicity. This method used the

subject’s time to toxicity as the outcome, with the hazard of toxicity modeled as

the sum of a sequence of hazards, each associated with one administration. The

hazard of toxicity attributed to a single administration was modeled by a triangular

function.(See Figure 2.1)

Figure 2.1. A triangular hazard function for a single administration of an agent
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However, the underlying survival distribution specified in this model was improper

in the sense that the cumulative distribution function (CDF) F (t) 9 1 as t→ +∞.

As a result, the survival function S(t) → c > 0 as t → +∞, in which this survival

fraction c is referred to as the cure rate. As an alternative, we propose to model the
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cure fraction explicitly and adopt a mixture cure model for the latent survival time.

Furthermore, the survival function S0(t) for susceptible subjects should approach

0 as t→ +∞. So we propose to model the hazard of toxicity as a combination of two

Weibull distributions to account for the changing pattern of the hazard (increase to

maximum then decrease) during a trial. (See Figure 2.2)

Figure 2.2. A sectional Weibull hazard function for a single administration of an agent
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In this chapter, we first consider a mixture cure model for the single administration

setting. We then extend the mixture cure model to the setting of multiple schedules

with the goal of estimating the probability of toxicity occurring within a pre-specified

follow-up period in a trial, allowing for administrative censoring of partially followed

subjects. We use both maximum likelihood and Bayesian approaches to estimate

parameters of interest in maximum tolerated schedule (MTS) finding in this chapter.

Then we compare the simulation results using the maximum likelihood method to
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those using the Bayesian approach.

2.2 Single Administration Setting

2.2.1 Notation and Model Specification

Let tcur denote any given time from the beginning of a trial when the evaluation

of the data is conducted and ncur be the number of subjects enrolled in the trial

at time tcur. Let T ∗i , i = 1, 2, . . . , n, denote the true, possibly unobserved toxicity

time for subject i and tari
i be the entry time for subject i. Since the evaluation is

administrative, the assumption of the independence between T ∗ and tcur − tari
i are

valid. At evaluation time tcur, the amount of time that subject i has been observed

is denoted by Ti where Ti = min(T ∗i , t
cur − tari

i ) and the indicator of whether or not

a subject is observed with a toxicity prior to time tcur is denoted by Ci where

Ci =

 1 ; T ∗i ≤ tcur − tari
i ,

0 ; T ∗i > tcur − tari
i .

Let Bi indicate whether or not a subject i would eventually have a toxicity in a trial

with infinite follow-up i.e.

Bi =

 1 ; subjects who will have a toxicity

0 ; subjects who will not have a toxicity

Thus, Bi = 1 for subjects for whom Ci = 1 as well as a portion of subjects for

whom Ci = 0. In other words, the value of Bi is latent for censored subjects. We say

subjects are susceptible for having a toxicity if Bi = 1 and denote p as the probability

that Bi = 1. We call p the event rate and (1− p) the cure rate.

Assume the conditional CDF for susceptible i is P (Ti ≤ t|Bi = 1) = F0(t) and

for subjects who are non susceptible at time t is P (Ti ≤ t|Bi = 0) = 0. Then, the

marginal CDF of the time to toxicity Ti for subject i is F (t) = P (Ti ≤ t) = pF0(t).
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Note that this marginal CDF F (t) never reaches 1 and has an asymptote at the event

rate p.

Let h0(t) denote the hazard function at time t attributed to a single administration

for susceptibles. In our setting, we feel it is plausible that as the body metabolizes

the study drug, the hazard of toxicity of the agent increases, reaches a maximum, and

then diminishes as the study drug is cleared from the body. There are few parametric

hazard functions satisfying this pattern, as most parametric hazard functions assume

a monotonic pattern. There exist a class of parametric lifetime hazard functions that

allow for non-monotonicity, known as a Burr XII distribution (Shao and Zhou, 2004).

However, the functional form of Burr XII is quite complicated, making estimation of

its parameters difficult.

As a simpler approach, we assume the hazard of a susceptible is a combination

of two Weibull distributions, one with an increasing hazard and the other with a

decreasing hazard, with a change-point at time t = τ . A natural choice would be the

shift hazard model as follows

h1(t) =

 α1λ
α1
1 t

α1−1 ; 0 ≤ t < τ, α1 ≥ 1, λ1 > 0

α2λ
α2
2 (t− τ)α2−1 ; t ≥ τ, 0 < α2 ≤ 1, λ2 > 0.

However, when α2 < 1, this hazard would approach infinity as t approaches τ from

the right. Such a result is unappealing in our setting as we would like our hazard

to be bounded. Furthermore, the corresponding PDF of this shift hazard model

would also be unbounded. As we plan to use maximum likelihood to estimate the

parameters of interest, the unboundness of the PDF at τ would cause problems for

estimation. Therefore, the shift hazard model is not considered further.

In order for our approach to create a bounded hazard function, we instead try

a combination of two truncated Weibull hazards. This truncated Weibull hazard
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model has the following form

h2(t) =

 α1λ
α1
1 t

α1−1 ; 0 ≤ t < τ, α1 ≥ 1, λ1 > 0

α2λ
α2
2 t

α2−1 ; t ≥ τ, 0 < α2 ≤ 1, λ2 > 0.

However, the CDFs and PDFs corresponding to the two functional forms of h2(t)

are equal at the change-point τ if and only if α1 = α2, λ1 = λ2, which violates our

model requirement of a non-monotonic hazard function, i.e. α1 6= α2.

Therefore, we have chosen to use a sectional model involving two Weibull distribu-

tions, where the first part before change-point τ is a two-parameter (α1, λ1) Weibull

distribution and the second part after τ is a three-parameter (α2, λ2, tτ ) Weibull

distribution where tτ is a shift parameter.

This leads to a hazard function (HF) attributed to one administration as

h0(t) =

 α1λ
α1
1 t

α1−1 ; 0 ≤ t < τ, α1 ≥ 1, λ1 > 0

α2λ
α2
2 (t− tτ )

α2−1 ; t ≥ τ, 0 < α2 ≤ 1, λ2 > 0

(2.1)

the corresponding survival function as

S0(t) =

 exp[−(λ1t)
α1 ] ; 0 ≤ t < τ, α1 ≥ 1, λ1 > 0

exp{−[λ2(t− tτ )]
α2} ; t ≥ τ, 0 < α2 ≤ 1, λ2 > 0

(2.2)

and the corresponding probability density function (PDF) as

f0(t) =

 α1λ
α1
1 t

α1−1 exp[−λα1
1 t

α1 ] ; 0 ≤ t < τ, α1 ≥ 1, λ1 > 0

α2λ
α2
2 (t− tτ )

α2−1 exp[−λα2
2 (t− tτ )

α2 ] ; t ≥ τ, 0 < α2 ≤ 1, λ2 > 0.

Therefore, the proposed sectional hazard model is characterized by six parameters

(α1, λ1, α2, λ2, τ, tτ ). In order to reduce number of unknown parameters and simplify

the likelihood function for the part when t > τ , we place constraints on both CDFs

and PDFs that they take a single value at τ . This requirement implies that the two

functional forms of both hazard function h0(t) and corresponding survival function
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S0(t) are equal at τ , thus, the six parameters ( α1, λ1, α2, λ2, τ, tτ ) are constrained

to satisfy the following equations:

exp[−(λ1τ)
α1 ] = exp[−(λ2(τ − tτ ))

α2 ] (2.3)

α1(λ1)
α1(τ)α1−1 = α2(λ2)

α2(τ − tτ )
α2−1. (2.4)

Simplifying the two constraint equalities, we can write τ and tτ as functions of

α1, λ1, α2, λ2

τ = [λα2
2 /λ

α1
1 (α2/α1)

α2 ]1/(α1−α2), (2.5)

tτ = [(α1 − α2)τ ]/α1. (2.6)

Thus, the two parameters τ and tτ are not directly estimated.

2.2.2 Likelihood Function and Estimation

If we denote φ = (θ, p) where θ = (λ1, λ2, α1, α2), then the likelihood function

for φ is given by

Ln(φ | T , C) =
n∏

i=1

(f(ti))
ci(1− F (ti))

1−ci

=
n∏

i=1

[pf0(ti)]
ci [1− p+ pS0(ti)]

(1−ci), (2.7)

in which (T , C) = {(ti, ci), i = 1, ..., n}.

We first use maximum likelihood to estimate the parameters of interest. During

the estimation process, the component 1−p+pS0(ti) will appear in the denominator

of the score equations whenever ci = 0. Therefore, censored observations complicate

computation of the MLEs.

To simplify the computation, we rewrite the likelihood using partially complete

censored observations. Each censored subject who will eventually have an event

contributes P (Bi = 1)P (Ti > ti|Bi = 1) = pS0(ti) to the overall likelihood while
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the censored subject who will not have an event contributes P (Bi = 0) = 1 − p to

the overall likelihood. Therefore, the likelihood function is changed to the modified

likelihood function (MLF)

Lc(φ | T ,C,B) =
n∏

i=1

(pf0(ti))
ci [(1− p)(1−Bi)(pS0(ti))

Bi ](1−ci) (2.8)

where Bi is the latent variable for cure status of each censored subject and (T , C, B)

= {(ti, ci, Bi), i = 1, ..., n}.

Table 2.1. Contingency table showing distribution of subjects.
Censoring Indicator
ci = 1 ci = 0

Observed ti ≤ τ n11 n12 n1.

Times

ti > τ n21 n22 n2.

n.1 n.2 n

Table 2.1 displays the distribution of subjects based on whether they are censored

and whether their follow-up is before the change-point, thus dividing the total sample

of n subjects into 4 groups. The cells contain the frequency counts of subjects in

each group. Let T1 ≤ T2 ≤ ... ≤ Tn1. ≤ τ < Tn1.+1 ≤ ... ≤ Tn be the ordered

observed times in a study from a set of n subjects. We assume the change point τ

lies in [Tn1., Tn1.+1). Let the subscript i index the ordered observed times where i = 1

indexes the earliest observed time and i = n indexes the latest observed time.

The log MLF is written as

`c(θ) = `p(p) + `s(λ1, λ2, α1, α2), (2.9)

where `p stands for the part related to the event rate p and `s stands for the part
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related to the survival function of a susceptible and

`p = log(p)
n∑

i=1

[ci +Bi(1− ci)] + log(1− p)
n∑

i=1

(1−Bi)(1− ci), (2.10)

`s =

n1.∑
i=1

[log(α1) + α1 log(λ1) + (α1 − 1) log(ti)]ci + (2.11)

n1.∑
i=1

{[ci +Bi(1− ci)][−(λ1ti)
α1 ]}+

n∑
i=n1.+1

[log(α2) + α2 log(λ2) + (α2 − 1) log(ti − tτ )]ci +

n∑
i=n1.+1

{[ci +Bi(1− ci)][−(λ2(ti − tτ ))
α2 ]}.

The expectation (E) step of the algorithm (Larson and Dinse, 1985) involves cre-

ating a set of ”pseudo-data” in which the uncensored observations are left intact and

the unit mass associated with each fully censored observation is fractionated and as-

signed to the group of susceptible with a partially complete pseudo-observation. The

fractional mass assigned to each pseudo-observation gi is the conditional probability

that the subject will eventually have a toxicity given that no toxicity has occurred

by time t:

P (Bi = 1|Ti > t) = pS0(ti)/(1− p+ pS0(ti)).

The gi, which will be used in the maximization step, is calculated as the expectation

of Bi given the current estimates of α1, λ1, α2, λ2, τ, tτ :

gi = E(Bi|p̂, α̂1, λ̂1, α̂2, λ̂2, τ̂ , t̂τ , ti, ci),

The maximization (M) step of the algorithm involves calculating the parameter

values that maximize the log MLF of the pseudo-data, i.e. replacing Bi by gi in log

MLF (2.10) and (2.11). Separate optimization procedures are used to find the values

of (α1, λ1, α2, λ2) that maximize ls under constraints (2.5) and (2.6) and the value of

p that maximizes lp.
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The EM algorithm is an iterative procedure that begins by choosing initial es-

timates of (α1, λ1, α2, λ2, p), such as those obtained by ignoring the censored ob-

servations. At each subsequent iteration, the algorithm’s E-step treats the current

estimates of (α1, λ1, α2, λ2, p) as known in order to update each estimate of gi, and

then the M -step treats the current gi values as known and updates the estimates of

(α1, λ1, α2, λ2, p). The convergence criteria can be based on relative changes in the

parameter estimates or the log likelihood values over successive iterations.

We use the following method to select initial values for the iteration procedure.

Let X = log(T ), u = −log(λ1), and b = α1
−1. Then X has an extreme-value

distribution, i.e. the p.d.f. before change-point τ is

f0(x;u, b) =
1

b
e

x−u
b exp(−e

x−u
b );−∞ < x < log(τ), 0 < b ≤ 1,−∞ < u <∞.

We can derive initial guess estimates of u and b by plotting the product-limit survivor

function Ŝ(x) against x based on observed data. If log[− log Ŝ(x)] is plotted against

x for x < log(τ) (τ can be chosen as the median observed time point) , then u and b

can be estimated from the intercept and slope of a straight line that the plot should

approximate if the extreme value model is appropriate. Denote these estimates as

u1 for the intercept and b1 for the slope, leading to the initial values for (α̂1, λ̂1)

as (b1
−1, exp(−u1)). The initial values for (α̂2, λ̂2) could be estimated in a similar

fashion since the constraints are placed on the survival function S0(t). Since the

threshold of the probability of toxicity which is defined in next section is known, we

use that as the initial estimate for p̂.
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2.3 Multiple Schedule Setting

2.3.1 Notation and Model Specification

We assume that k treatment schedules, s(1), ..., s(k), are investigated in a trial

where s(j)=(s1, s2, ..., smj
) and that the jth schedule has a total of mj administra-

tions. Furthermore, s(j) is nested in s(j+1) for each j = 1, ..., k − 1, so that the

duration of a treatment schedule increases with j and m1 < m2 < ... < mk. In our

motivating example, one course of the (3+, 4-, 3+) schedule corresponds to s(1) =

(1, 2, 3, 8, 9, 10), two courses corresponds to s(2) = (1, 2, 3, 8, 9, 10, 15, 16, 17, 22, 23, 24) =

(s(1), s(1) + 14), and so on, with BMT at day 3 in any case.

Let si = {si,1, ..., si,m} denote the consecutive times at which the ith subject re-

ceives an administration, where si,1 coincides with subject’s study start time. Let

mi denote the number of administrations received by subject i at interim study time

t. Although mj administrations are planned for schedule s(j), at time t it may be

the case that mi < mj either due to administrative censoring or because subject i

had toxicity at time si,mi
≤ t and thus received no further administrations. Let ω

denote the fixed maximum length of follow-up for a trial. ω should be chosen by

the medical investigators for clinical reasons, but must be large enough to accom-

modate the longest schedule, sk. In our motivating example, ω = 100 days. A fixed

target probability pω is elicited from the physicians and is defined as the threshold

probability of toxicity at the given follow-up time ω.

Conditional Hazard Model

Let h0(t|θ) be the hazard function attributed to a single administration for the

subjects in susceptible group, where θ is the parameter vector (α1, λ1, α2, λ2). See

equation (2.1). We define the total hazard of toxicity at time t for a subject treated
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with schedule s(k) to be

λk(t|θ, s(k)) =

mk∑
l=1

h0(t− sl|θ),

with h0(u|θ) = 0 if u < 0 and h0(t|θ) defined in equation (2.1). We assume that

the form of h0(.) does not change with successive administrations, although this

assumption can be relaxed. The cumulative hazard function (CHF) up to t for a

subject treated with schedule s(k) is

Λk(t|θ, s(k)) =

mk∑
l=1

H0(t− sl|θ),

where

H0(t− sl|θ) =

∫ t

0

h0(u− sl|θ)du.

The PDF at t for a subject treated with schedule s(k) is

fk(t|θ, s(k)) = λk(t|θ, s(k)) exp[−Λk(t|θ, s(k))]

and the survival function up to t is

Sk(t|θ, s(k)) = exp[−Λk(t|θ, s(k))] = exp[−
mk∑
l=1

H0(t− sl|θ)].

Event Rate Model

Let (Tik, Cik, Bik) denote the follow-up time, censoring indicator and cure status

of the ith subject assigned to schedule s(k), respectively, i = 1, ..., nk where nk is the

number of observations in schedule s(k). Let pk denote the event rate for subjects

assigned to schedule s(k).

Assume the probability of an individual Bik in a susceptible group is modeled by

a logistic regression such that

logit(pk) = β0 + β1k (2.12)
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for k = 1, ..., K where k indexes the administration schedules. We can also model

the event rate as a function of the number of administrations in a given treatment

schedule. In this chapter, we have modeled the event rate as the function of the

number of treatment schedule in the simulation studies.

2.3.2 Likelihood Function and Estimation

Following the similar discussion as in subsection 2.2.2, let θ = (λ1, λ2, α1, α2),

β = (β0, β1), and φ = (θ,β), then the modified likelihood function (MLF) for φ

under multiple schedules is given by

Ln(φ | T ,C,B) (2.13)

=
K∏

k=1

nk∏
i=1

(pkfk(tik))
cik [(1− pk)

(1−Bik)(pkSk(tik))
Bik ](1−cik)

where (T ,C,B) = {(tik, cik, Bik), i = 1, ..., nk; k = 1, ..., K}, and the log MLF is

given in (2.9) with the exception that `p and `s are changed to

`p =
K∑

k=1

{log(pk)

nk∑
i=1

[cik +Bik(1− cik)] (2.14)

+ log(1− pk)

nk∑
i=1

(1−Bik)(1− cik)},

`s =
K∑

k=1

nk∑
i=1

[cik log(λk(tik))] (2.15)

−
K∑

k=1

nk∑
i=1

[ci +Bi(1− ci)]Λk(tik).

The EM estimation procedure for φ is similar to that in subsection 2.2.2, with

some modifications as follows: The fractional mass assigned to each pseudo-observation

gik changes to

P (Bik = 1|Tik > t) =
pkSk(tik)

1− pk + pkSk(tik)
.

and the formula for gik changes from definition of gi accordingly.
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2.4 Trial Conduct

We assume N be the maximum number of subjects enrolled in a trial with each

subject assigned a treatment schedule upon arrival. The first subject is assigned the

shortest schedule, s(1). Each subject is followed for up to ω days, with treatment

terminated if a toxicity is observed. Given a threshold pω for the cumulative proba-

bility of toxicity F (ω|φ, s(k)) by time ω for schedule s(k), we compute the estimated

probability of toxicity by time ω, F̂ = F (ω|φ̂, s(k)) for each schedule k, k = 1, ..., K.

The best schedule is defined as that having F̂ closest to pω and i.e. that minimizing

|F̂ − pω|. This criterion, as a function of treatment schedule, is analogous to the

CRM criterion (O’Quigley et al., 1990) as a function of dose. Using this criterion,

the best schedule is identified using the currently available trial data and is assigned

to the next accrued subject. At the end of the trial, the MTS is defined as the best

schedule based upon the complete data of all N subjects.

To get the trial underway using maximum likelihood approach, we must have

heterogeneity among the responses. In order to ensure the existence of meaningful

MLEs, we will not consider using the likelihood approach until we see toxicities

occur. Furthermore, because we enroll subjects sequentially, very little information

is available at the beginning of a trial. In order to use the maximum likelihood in a

trial, we not only need to observe a toxicity occurs but also need to have a sufficient

sample size. We could use a Bayesian approach coupled with proposed sectional

Weibull model or any forms of standard Up-and-Down scheme (Storer, 1989) to

obtain a sufficient sample of subjects with at least one toxicity response. A simple

and reasonable way is to enroll subjects in cohort of size m ≥ 1 at a time, starting

at the shortest schedule. We escalate to the next schedule if no toxicity is observed
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in the previously accrued cohort of subjects and switch to the likelihood approach

once a toxicity occurs and enough number of subjects are enrolled in the study. In

our application, we found via trial-and-error, 15− 20 subjects is a sufficient number

for using a maximum likelihood method. Regarding the cohort size m, it is set to

1 − 3 in most applications although the larger values of m are possible. However,

an important practical consideration is that larger values of m will slow the speed

of schedule escalation so that the trial will take longer before enrolling subjects on

longer schedules.

In contrast, a Bayesian approach does not require a toxicity to occur and a trial

can start right away with first available subject enrolling the shortest schedule. The

proposed model coupled with a Bayesian estimation method can be used to deter-

mine the schedule assignment for next available subject. Such evaluation/enrollment

procedures continue until all N subjects are enrolled in the trial. The safety precau-

tions described in next few paragraphs are applicable to any trials no matter which

estimation method is used.

Some practical constraints are implemented in our design to minimize the risk of

giving a subject an overly toxic schedule. First, our algorithm determines an updated

MTS each time a new subject enrolls in the trial and assigns the newest subject

to that updated MTS with the constraint of only incremental schedule escalation

allowed. For example, if our algorithm recommends to escalate the schedule, we

escalate only to the next longest schedule, regardless of the actual schedule selected

by our algorithm. We do not put any constraint on schedule deescalation.

Our trial design also implement the constraint to retroactively modify the schedule

of a currently enrolled subject if: (1) the currently estimated MTS is different from

the schedule assigned to the currently enrolled subject and (2) the subject has not
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yet received all of the initially assigned schedule. For example, suppose five subjects

have been enrolled: two on the first schedule, two on the second schedule, and one on

the third schedule. If the sixth subject is enrolled and assigned to the third schedule

and a week later the fifth subject experiences toxicity, the algorithm can reduce the

sixth subject’s assignment to the second schedule if the proposed method determines

such a modification is necessary. The number of subjects impacted by such potential

reassignments depends upon the rate of accrual. During rapid accrual, a potentially

larger number of subjects may be reassigned to a different schedule because they will

have been enrolled before full observation of previously enrolled subjects is completed.

During slow accrual, however, the number of reassignments will be minimal because

previously enrolled subjects will have been monitored for the full observation period.

The TITEr-CRM design in Braun et al. (2003) is the first study design to allow

for dose reassignment, regardless of how many subjects actually have their dose reas-

signed. Our approach is an extension of their method in multiple schedule scenario.

In our case, each new schedule of the experimental agent is given over weeks rather

than hours or days, this approach can incorporate new information regarding the

safety profile of the agent in time to modify a schedule assignment during the treat-

ment of an individual patient. This practical consideration is not discussed in other

Phase I trials ( e.g. Cheung and Chappell, 2000; Braun et al., 2005).

Note that all future planned treatment for a subject is stopped once a toxicity

occurs. Thus, a toxicity is assigned to the schedule last administered when the tox-

icity occurred. For example, if a subject is assigned to schedule 3, but experiences

toxicity while receiving schedule 2, the toxicity is assigned to schedule 2. Further-

more, a toxicity is prescribed to the originally assigned schedule if a subject has fully

received his or her originally assigned schedule and then experiences toxicity during
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the posttreatment follow-up period.

2.5 Estimation and Schedule Finding by Bayesian Approach

As a competing alternative to the maximum likelihood method in optimal sched-

ule finding using the proposed mixture cure model, we use a Bayesian approach in

this section. Our schedule-finding algorithm begins with independent informative

priors for αs, λs and βs. The informative priors may be obtained either based

on historical data from previous single administration studies or by elicitation from

the investigators. Since the posterior distributions can not be solved analytically

under the assumed model, Markov chain Monte Carlo (MCMC) technique is used

to compute the posterior quantities. Specifically, a Metropolis-Hastings algorithm

((Robert and Casella, 1999; Gelman et al., 2004) is used. We experimented with

different starting values and were convinced that the chains converged and covered

the entire posterior distribution using multiple sequences and plots. We eliminated

a total of 1000 iterations as burn-in and then generated additional 3000 samples for

summarization.

2.5.1 Priors Based on Historical Data

If dose-toxicity data for a single administration are available from previous studies,

these data may be used to obtain the priors in the multiple schedule trials. Denote

the time of ith subject in the historical trial and the toxicity indicator of this subject

by (Thi, Chi) and Dh = {(Thi, Chi), i = 1, 2, ...nh}, where nh is the number of subjects

in the historical trial. Then the likelihood function of the available historical data is

Lh(φ | Dh) =

nh∏
i=1

(f(thi))
chi(1− F (thi))

1−chi

=
n∏

i=1

[pf0(thi)]
chi [1− p+ pS0(thi)]

(1−chi),
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If we assume a vague prior on all parameters of interest before the historical data

are observed, then the posterior of φ given the historical data is then f(φ | Dh) ∝

Lh(φ | Dh) and the prior used at the start of the schedule-finding trial is f(φ | Dh).

The informative priors based on historical data in cure model setting have been

studied extensively by Chen et al. (1999). We refer readers to their work for more

details.

An alternative way of using the available historical data to define priors is to

estimate the parameters of interest using either Bayesian or maximum likelihood

methods. With maximum likelihood methods, we can compute estimates of each

parameter, as well as variance estimates of those parameter estimates. We then set

the mean of the prior distribution at the parameter estimate and the variance of the

prior distribution at the variance estimate. With Bayesian methods, we first select a

prior distribution for the parameters and then combine it with the historical data to

derive posterior mean and variance for each parameter. We then set the mean of the

prior distribution at the posterior mean and the variance of the prior distribution at

the posterior variance. We let µ̂∗ and σ̂2
∗ denote the respective mean and variance of

the prior distribution for a parameter of interest derived from the historical data as

described earlier where ∗ stands for each of parameters α1, λ1, λ2, β0, and β1.

We then select specific functional forms for the prior distributions. Because α1 >

1, we assume α1 − 1 has a gamma distribution with parameters (c1, d1) such that

α1 has mean c1/d1 and variance c1/d
2
1. Given the prior mean and variance of α1

that were derived from historical data, We set c1/d1 + 1 = µ̂α c1/d
2
1 = σ̂2

α, then find

c1 = (µ̂α1 − 1)2/σ̂2
α1

and d1 = (µ̂α1 − 1)/σ̂2
α1

. Since 0 < α2 < 1, we assume 1/α2 − 1

follows a gamma distribution with parameters (c2, d2) and we use the same approach

as that used with α1 to solve for the actual values of c2 and d2.
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Since both λ1 and λ2 are positive, to simplify the prior selection, we reparameterize

equation (2.1), letting γi = log(λαi
i ) i = 1, 2. As γi may be any real number, we

assume γi follows a normal distribution N(µγi
, σγi

). We then set µγi
at the parameter

estimates and σγi
at the variance estimates.

Furthermore, if dose-toxicity data for a single course consisting of multiple admin-

istrations are also available from previous studies, then these data can also be used

to obtain the priors on β in addition to the αi, λi, i = 1, 2 in the multiple schedule

trials. Following similar arguments as above, we assume βi, i = 0, 1 follows a normal

distribution with mean as µ̂βi
and variance as σ̂2

βi
that are derived from the historical

data.

When the individual subject data from trials of the single administration are

available but no data available for a single course, the source for the informative

priors on the parameters of interest can be a mixture of historical data and elicitation

from the investigators. For example, in our assumed model, the priors for αi, γi, i =

1, 2 may be from historical data while the priors on βi, i = 0, 1 are elicited from

investigators.

2.5.2 Elicited Priors

When individual subject data from trials of the single administration or a single

course are not available, informative priors must be elicited from the investigators.

This may be done in various ways, with the particular elicitation method tailored to

the clinical setting and investigators’ level of technical expertise. We employed the

following method in our simulation trials.

With regard to the cure fraction parameters β, we ask the investigators to specify

an a priori value, Pk, for the cumulative probability of toxicity for schedule k, k =

1, 2, . . . , K. Based upon the simple linear regression model E{logit(Pk)} = b0 + b1k,
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we use ordinary least squares to find estimates of b0 and b1; we let µβ0 equal the

estimate of b0 and µβ1 equal the estimate of b1.

With regard to the hazard shape parameters θ, we do not have a specific elicitation

strategy. We do rely on the historic data on single dose. For simulation purpose, we

have set mean values of the prior distributions close to true values.

2.5.3 Calibrating the Prior Distribution for Parameters of Interest

In order for the data to dominate the prior distribution, sensitivity analysis of

priors on parameters of interest is essential. As a result, those initially estimated

hyperparameters still need fine tuning for priors to work in conjunction with the data

to allow the schedule-finding algorithm provide a safe and reliable design.

Recall the priors on αi (i = 1, 2) follow the gamma distribution with parameters

(ci, di). We set ci = aĉi and di = ad̂i. The tuning constant a scales the values of

(ci, di) and modulates the variability of f(αi). In addition, the priors on γi (i = 1, 2)

follow the normal distribution N(µγi
, σγi

). We set µγi
= µ̂γi

, σγi
= bσ̂γi

and b is the

tuning constant. Similarly, the priors on βi, i = 0, 1 follow the normal distribution

N(µβi
, σβi

). We set µβi
= β̂i0, σβi

= dσ̂(βi0) and d is a tuning constant used to

modulate the variances of βi, i = 0, 1. By simulating the toxicity times of a small

number of subjects, we can compare the prior means for parameter vector φ to their

respective posterior values and evaluate the effects of a small amount of data on prior

f(φ).

The prior variances can not be made arbitrarily large, as is often done with

Bayesian analysis of large data sets. In any small sample size Phase I trials us-

ing adaptive designs, very few data are available, especially at the beginning of a

trial. If there is substantial prior information over too broad range, then it can not

be overcome by a small amount of data. In our application, undoubtedly, large prior
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variances would severely hinder the algorithm’s ability to assign best schedule during

the trial and select a MTS at the end.

Another consideration of priors’ effect is to examine the predictive probabil-

ity of toxicity F (ω|φ, s(j)) for each schedule s(j) to determine whether the prior

may produce pathological behavior by placing too much of the probability mass of

F (ω|φ, s(j)) near 0 or 1 because the consequent distribution of F (ω|φ, s(j)) determine

which schedule to be identified as MTS.

We have tried different starting values for the Markov chains in the Bayesian

estimation procedures. We also used misspecified priors such that the prior means

are different from the true parameters of interest. The simulation results changed

slightly, but overall, the final conclusions were relatively unchanged. Thus the pro-

posed model is insensitive to the misspecified priors and different starting values as

long as the priors are informative at the beginning of a trial but do not dominate

the data at later points in the trial.

2.6 Application to KGF trial

In this section, we investigate the performance of the proposed mixture cure model

in MTS finding via simulation studies using both Bayesian and maximum likelihood

methods. All results are produced in SAS.

2.6.1 Study Setup

In the motivating example, the investigators wished to study k = 6 treatment

schedules corresponding to 2, 4, 6, 8, 10, 12 weeks of therapy. The maximum period

to monitor toxicity was specified to be ω = 100 days because aGVHD occurs during

the first 100 days after transplant. Per the adaptive design, a schedule is specified for

each subject and the therapy is discontinued if a subject experiences toxicity before
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100 days. The goal is to determine how long a subject can receive the therapy while

controlling the probability of toxicity within a pre-specified follow-up period ω to be

less than or equal to the threshold value pω.

We studied the design with a maximum sample size of 30 patients, which is feasible

in Phase I trials but also sufficient to determine the MTS with reasonable accuracy

demonstrated in our simulations. In each simulation, the subject interarrival times

were assumed to be uniformly distributed from 12 to 16 days. When the maximum

likelihood method was used, at the beginning of the trial, the traditional up-and-

down scheme (Storer, 1989) was implemented. More specifically, three subjects were

assigned to the shortest schedule. If there were no toxicities among the three, then

we escalated to the next longer schedule and assigned additional 3 subjects to this

schedule. As soon as we observed a toxicity and total number of enrolled subjects over

15, we switched to the likelihood approach proposed in this chapter and thereafter

included one subject at a time. We considered 6 therapy schedules, s(1), ..., s(6), in

which s(k) did not have natural units and s(k) = {slk, l = 1, ...,mk} for k = 1, ..., 6.

When the Bayesian approach was used, one subject was assigned to shortest schedule

and the trial started right away.

We examined the design’s performance in nine scenarios using the criterion spec-

ified in trial conduct Section 2.4. In the first six scenarios, schedule s(j) is optimal

under the jth scenario for j = 1, ..., 6. In scenario 7, the MTS was located between

schedule 2 and 3, while in scenario 8, the target schedule (MTS) lay between sched-

ule 3 and 4 but closer to schedule 3. If an existing available schedule is close to the

target schedule, then the proposed method should tend to allocate subjects to that

schedule. If the target schedule lies midway between two available schedules, then

the method tend to allocate subjects to both schedules.
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Furthermore, we examined the design’s performance under model misspecification

case in scenario 9, where schedule 3 was the MTS, but the data was not simulated

from the sectional Weibull model. We assumed the toxicity occurred uniformly over

the interval [10 + 14(j − 1), 10 + 14j] under schedule s(j).

Except in scenario 9, the actual times to toxicity were simulated assuming the

parameter values shown in Table 2.2 under a sectional Weibull model. Table 2.2

also contains the actual probabilities of toxicity by day 100 for each schedule and

the threshold probabilities of toxicity for all scenarios. The convergence criteria for

parameter estimates were based on relative changes in estimated parameter values

and log likelihood values.

Table 2.2. True parameter values of the mixture cure model for simulation studies
True Toxicity Prob of Schedule Threshold Prob

Scenario α1 λ1 α2 λ2 β0 β1 1 2 3 4 5 6 of Toxicity

1 3 0.5 0.3 5 -1.92 0.53 0.20 0.30 0.42 0.55 0.68 0.78 0.2

2 3 0.5 0.3 5 -3.00 0.81 0.10 0.20 0.36 0.56 0.74 0.86 0.2

3 3 0.5 0.3 5 -3.00 0.53 0.07 0.12 0.20 0.30 0.42 0.56 0.2

4 3 0.5 0.3 5 -2.17 0.44 0.15 0.21 0.30 0.40 0.51 0.62 0.4

5 3 0.5 0.3 5 -2.61 0.44 0.10 0.15 0.22 0.30 0.40 0.51 0.4

6 3 0.5 0.3 5 -3.06 0.44 0.07 0.10 0.15 0.22 0.30 0.40 0.4

7 3 0.5 0.3 5 -3.35 0.98 0.09 0.20 0.40 0.64 0.82 0.92 0.3

8 3 0.5 0.3 5 -5.54 1.38 0.02 0.06 0.20 0.50 0.80 0.94 0.3

9 na na na na -3.00 0.53 0.07 0.12 0.20 0.30 0.42 0.56 0.2

We conducted the simulation studies in two different settings. In first setting, the

simulation trials were designed without the constraint of reassigning the treatment

schedule to subjects who have not complete the assigned treatment but are not on

the updated MTS during the course of a trial. We ran the simulations for scenarios

1-8. The results for the first setting are summarized in Tables 2.3 and 2.4. In the
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second setting, the simulation trials were designed with reassigning the treatment

schedule to subjects who satisfied the conditions in the Section 2.4. Simulations

were conducted for all 9 scenarios. The results for this setting are given in Tables

2.5 and 2.6.

Regarding Bayesian approach, the simulation trials were only conducted under the

setting with treatment schedule reassignment. The simulation results are displayed

in Tables 2.7 and 2.8. With regard to the prior distributions for θ and β, we use the

elicited values from the investigators as in Table 2.2. For example, the investigators

supply the values P1 = 0.07, P2 = 0.10, P3 = 0.15, P4 = 0.22, P5 = 0.30, P6 = 0.40,

corresponding to the scenario 6 row in Table 2.2. Thus, they believe the longest

schedule, s(6), is optimal, a belief that leads to a misspecified prior for the first five

scenarios. Similarly, we can use any other row of probabilities of toxicity to specify

the priors for the β as long as the row we choose is the investigators’ belief. From

these elicited values, we used the methods described in Section 2.5.2 to estimate

the mean hyperparameter values µβ0 = −3.0 and µβ1 = 0.45. We set variance

hyperparameter values close to two times of the corresponding mean values so that

σβ0 = 6 and σβ1 = 1. For θ, we set the mean values close to the true values so

that µα1 = 2.9, µα2 = 0.4, µγ1 = −2.0, µγ2 = 0.4 and set the variances close to 1 so

that σα1 = 1, σα2 = 1, σγ1 = 1, σγ2 = 1. After a thorough sensitivity analysis, we

determined that the tuning parameters a = 1.5, b = 0.33 and d = 1/3 to allow the

data to have dominate influence on the posterior of the parameters of interest.

2.6.2 Study Result & Conclusion

Tables 2.3 and 2.4 display the simulation results for the setting without treat-

ment schedule reassignment. Table 2.3 displays the estimated parameter values and

corresponding standard deviations under eight scenarios. Table 2.4 summarizes the
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Table 2.3. Estimated parameter values of the mixture cure model by Maximum Likeli-
hood for setting without treatment schedule reassignment. Each entry is the estimated
parameter value (standard deviation).

Estimated Value of
Scenario α1 λ1 α2 λ2 β0 β1

1 3.48 (1.79) 0.52 (0.125) 0.42 (0.214) 5.98 (1.78) -1.89 (0.97) 0.63 (0.41)

2 3.72 (1.87) 0.49 (0.131) 0.38 (0.189) 5.95 (1.96) -3.47 (1.77) 0.98 (0.54)

3 3.78 (1.96) 0.43 (0.133) 0.37 (0.172) 5.75 (1.78) -3.99 (1.94) 0.73 (0.42)

4 3.96 (1.97) 0.49 (0.146) 0.35 (0.174) 5.89 (1.83) -2.81 (1.74) 0.64 (0.37)

5 3.57 (1.64) 0.48 (0.135) 0.38 (0.183) 5.37 (1.92) -3.13 (1.76) 0.56 (0.31)

6 3.89 (1.76) 0.45 (0.128) 0.36 (0.184) 5.74 (1.94) -3.33 (1.84) 0.63 (0.46)

7 3.51 (1.83) 0.49 (0.142) 0.41 (0.185) 5.68 (2.01) -4.03 (1.92) 1.12 (0.66)

8 3.47 (1.94) 0.43 (0.152) 0.35 (0.186) 6.04 (2.12) -6.03 (1.97) 1.56 (0.97)

frequency of each schedule selected as MTS. The first row of each scenario in Table

2.4 contains the percentages of simulations in which each schedule was identified as

the MTS while the second row of each scenario contains the mean percentages of

subjects assigned to each schedule among the simulations. Note that the percent-

ages in each row may not add up to exactly 100% due to rounding. The parameter

estimates in Table 2.3 are reasonably close to the true values and provide confidence

for us to interpret the results in Table 2.4.

The probabilities of toxicity for neighboring schedules in some of the scenarios

are very close to each other, making it more difficult to identify the target schedule.

Despite this, our maximum likelihood approach recommended the correct schedule

at least 30% of the time in the scenarios we investigated, and within one level above

or below the true MTS 70%− 90% of the time for scenarios 1− 6. Specifically, the

algorithm identified the MTS within one schedule of the true MTS in 96%, 92%,

83%, 80%, 76% and 73% of the simulations in scenarios 1 − 6, respectively. We

also note that the algorithm tends to misidentify the MTS at shorter schedules more
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Table 2.4. Performance of the mixture cure model with 30 patients by Maximum
Likelihood for setting without treatment schedule reassignment. Each entry is the
percentage of schedule selection, with the percentage of patients assigned to that
schedule on 2nd line within each scenario.

Schedule (number of weeks)
Scenario 1 (2) 2 (4) 3 (6) 4 (8) 5 (10) 6 (12)

1 64.9 32.4 2.7 0.0 0 0
51.4 30.6 9.1 6.5 2.4 0

2 35.5 43.7 12.6 8.2 0 0
39.6 40.1 10.3 4.8 2.7 2.5

3 12.9 27.5 35.4 20.5 2.8 0.9
13.5 25.1 31.6 20.4 6.2 3.2

4 2.8 14.1 26.4 34.5 16.7 5.5
7.9 13.7 20.4 29.5 19.3 9.2

5 2.1 8.7 13.8 20.1 34.8 20.5
4.3 14.4 17.1 18.7 26.2 19.3

6 0.5 1.5 7.4 17.7 26.2 46.7
3.4 7.4 11.8 15.2 20.8 41.4

7 15.7 34.8 30.4 13.3 5.8 0.
20.4 31.8 27.2 12.3 7.1 1.2

8 7.5 19.3 33.1 25.2 12.6 2.3
13.3 20.2 29.9 21.8 10.7 4.1

often than at longer schedules, indicating that our constraints in trial conduct were

implemented correctly in the algorithm of selecting the MTS and reflects our desire

to promote patient safety.

Our algorithm performed best in scenarios 1 and 6 when the optimal schedule

existed at either the lowest or highest schedule. Furthermore, 51% and 42% of

subjects were assigned to the true MTS in scenarios 1 and 6, respectively. Although

fewer subjects were assigned to the true MTS in the other scenarios, we still found

that no more than approximately 20% of subjects were assigned to a schedule more

than 1 schedule above the true MTS in scenarios 1-6.

In scenario 7, the target schedule was located between schedules 2 and 3. The
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algorithm still performed well, selecting either schedule 2 or schedule 3 in 65% of

simulations. In scenario 8, the true MTS lay between schedules 3 and 4 but was

closer to schedule 3. Our method picked schedule 3 in 33% of simulations and chose

schedule 4 in 25% of simulations, for a total of 58%. In summary, our algorithm

performed well even in the scenarios the true MTS does not exist among the available

schedules but lies between two given schedules.

Table 2.5. Estimated parameter values of the mixture cure model by Maximum Like-
lihood for setting with treatment schedule reassignment. Each entry is the estimated
parameter value (standard deviation).

Estimated Value of
Scenario α1 λ1 α2 λ2 β0 β1

1 3.97 (1.62) 0.48 (0.121) 0.39 (0.201) 5.70 (1.92) -2.16 (1.02) 0.69 (0.41)

2 3.55 (1.42) 0.45 (0.145) 0.35 (0.193) 6.33 (2.12) -3.32 (1.11) 1.01 (0.52)

3 3.75 (1.45) 0.46 (0.131) 0.35 (0.187) 5.73 (1.87) -3.36 (1.21) 0.76 (0.37)

4 3.86 (1.59) 0.39 (0.136) 0.36 (0.182) 6.01 (2.15) -2.49 (1.36) 0.72 (0.43)

5 3.61 (1.47) 0.43 (0.138) 0.34 (0.191) 5.21 (1.62) -3.25 (1.65) 0.67 (0.41)

6 3.31 (1.45) 0.39 (0.118) 0.39 (0.187) 5.74 (1.85) -3.71 (1.87) 0.71 (0.45)

7 3.58 (1.73) 0.48 (0.147) 0.38 (0.186) 5.85 (1.97) -4.37 (2.23) 1.23 (0.63)

8 4.09 (1.93) 0.47 (0.129) 0.39 (0.193) 5.37 (1.74) -6.35 (2.32) 2.04 (0.92)

We now review the results for the setting with reassignment of treatment schedule.

Table 2.5 displays the estimated parameter values and corresponding standard errors

under eight scenarios. Table 2.6 summaries the frequency of each schedule selected

as MTS and the average percentages of subjects assigned to each schedule among

the simulations. Table 2.5 shows similar results as Table 2.3 while Table 2.6 displays

the results similar to those in Table 2.4. We note that the bias for the estimated

value of α1 is about 20% in scenarios 1 and 8 in Table 2.5. Despite the apparent bias,

our algorithm still recommended the right schedule as MTS over 60% of simulations

in Table 2.6. We suspect that the bias in estimating α1 has little impact on the
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results seen in Table 2.6 because the event rate is captured in p. Furthermore, as the

follow-up time gets longer, the survival function for susceptibles does not contribute

to the overall event rate because F0(t) is close to 1. As a result, as long as the biases

of the estimated β are reasonably small, the estimated probability of toxicity for the

correct treatment schedule should be close to the threshold.

Table 2.6. Performance of the mixture cure model with 30 patients by Maximum Like-
lihood for setting with treatment schedule reassignment. Each entry is the percentage
of schedule selection, with the percentage of patients assigned to that schedule on 2nd
line within each scenario.

Schedule (number of weeks)
Scenario 1 (2) 2 (4) 3 (6) 4 (8) 5 (10) 6 (12)

1 65.8 33.0 1.1 0.0 0 0
53.7 32.5 10.2 2.9 0.6 0

2 30.5 49.7 14.6 3.1 1.7 0.3
31.3 36.1 19.2 8.8 3.4 1.2

3 6.6 22.2 38.2 24.3 6.6 2.1
12.3 27.2 29.8 19.2 8.8 2.7

4 4.2 16.4 23.2 36.2 16.1 3.9
5.7 12.2 25.7 31.6 19.4 5.4

5 3.3 10.4 15.1 17.6 37.2 16.4
5.8 8.9 11.9 26.6 30.4 17.0

6 3.6 4.3 7.2 11.9 24.3 48.7
6.4 9.4 12.9 14.0 16.7 40.6

7 14.4 40.7 31.3 13.6 0. 0.
12.9 37.8 30.6 11.9 5.3 1.5

8 4.7 19.6 35.3 24.4 12.3 3.7
7.4 16.8 28.2 29.6 12.8 5.2

9 10.8 29.5 32.4 21.6 5.0 0.7
13.2 27.8 28.7 18.3 8.4 3.6

Scenario 9 of Table 2.6 displays the performance of our algorithm under model

misspecification, where schedule 3 was the true MTS but the actual times to toxicity

did not follow the assumed additive sectional Weibull model. The results follow the

same pattern as that in scenario 3, where the true toxicity distribution matches that
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of the assumed model. In scenario 9, a lower frequency of identifying schedule 3 as

the MTS than that in scenario 3 is found, as is expected.

Our proposed likelihood approach coupled with sectional Weibull model worked

fairly well in the cases where the toxicity of the treatment schedules are moderate.

If the toxicity levels are very small for the shorter schedules or most of the schedules

or too high for the longer schedules, then the likelihood approach may not be a good

choice because the true values of those parameters may be close to the boundary of

the parameter space.

Table 2.7. Estimated parameter values of the mixture cure model by Bayesian ap-
proach for setting with treatment schedule reassignment. Each entry is the estimated
parameter value (standard deviation).

Estimated Value of
Scenario α1 λ1 α2 λ2 β0 β1

1 3.21 (0.534) 0.37 (0.080) 0.39 (0.069) 3.73 (1.539) -2.21 (0.509) 0.58 (0.145)

2 2.87 (0.542) 0.49 (0.112) 0.38 (0.067) 4.80 (1.055) -3.34 (0.413) 0.86 (0.092)

3 2.88 (0.455) 0.44 (0.141) 0.39 (0.077) 4.53 (1.269) -3.44 (0.478) 0.63 (0.126)

4 3.02 (0.305) 0.41 (0.071) 0.39 (0.093) 4.45 (1.596) -2.41 (0.349) 0.58 (0.085)

5 2.79 (0.445) 0.45 (0.143) 0.38 (0.088) 4.62 (1.453) -3.13 (0.365) 0.54 (0.122)

6 2.88 (0.658) 0.48 (0.219) 0.38 (0.059) 4.51 (0.704) -3.56 (0.421) 0.46 (0.123)

7 2.72 (0.632) 0.39 (0.198) 0.37 (0.067) 4.34 (1.233) -3.83 (0.465) 1.05 (0.126)

8 3.07 (0.767) 0.43 (0.286) 0.39 (0.116) 4.45 (1.451) -5.49 (0.896) 1.51 (0.186)

The simulation results by Bayesian approach are displayed in Tables 2.7 and

2.8. The estimated parameter values and corresponding standard deviations for

all scenarios are listed in Table 2.7 while the frequency of each schedule chosen as

MTS are summarized in Table 2.8. Within each scenario, each entry on the first

row in Table 2.8 contains the percentage of simulations in which the given schedule

is identified as the MTS while the entry on the second row contains the average

percentage of subjects assigned to the specified schedule during a trial.
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We note that the parameter estimates in Table 2.7 have smaller biases in most

scenarios compared to those estimates in both Tables 2.3 and 2.5 by the maximum

likelihood method. Furthermore, the standard error estimates in Table 2.7 are smaller

than those in both Tables 2.3 and 2.5 among all scenarios. These results may be

due to the small sample size in our Phase I simulation trials and the informative

priors used in the Bayesian approach. Most importantly, the fact that the parameter

estimates are reasonably close to the true parameter values gives us confidence to

interpret the results in Table 2.8.

Table 2.8. Performance of the mixture cure model with 30 patients by Bayesian ap-
proach for setting with treatment schedule reassignment. Each entry on the 1st row is
the percentage of simulations a schedule chosen as MTS, with the average percentage
of patients assigned to a given schedule on 2nd line within each scenario.

Schedule (number of weeks)
Scenario 1 (2) 2 (4) 3 (6) 4 (8) 5 (10) 6 (12)

1 85.8 11.6 2.6 0 0 0
64.9 18.5 12.6 2.0 1.3 0.7

2 30.6 52.3 11.8 5.2 0.1 0.
25.0 40.1 20.0 12.4 3.3 1.2

3 6.3 19.7 51.8 16.6 5.6 0
11.3 31.1 39.8 10.4 4.1 3.2

4 0 7.3 31.9 41.8 15.3 3.7
5.0 14.4 23.6 39.0 14.7 3.3

5 2.1 10.4 17.4 20.3 40.3 19.5
5.9 8.5 15.3 17.2 34.2 18.9

6 0. 1.8 6.2 13.8 19.8 58.4
4.1 6.3 7.9 14.4 21.5 45.8

7 9.4 41.9 32.7 12.1 3.9 0.
11.6 35.0 31.4 14.1 7.9 0.

8 3.2 11.3 42.8 30.3 9.8 2.6
5.8 17.2 35.9 25.9 10.7 4.5

9 5.8 29.1 41.1 16.1 5.8 2.1
9.8 26.3 32.7 18.9 7.2 5.1

Most important information we can take away from Tables 2.6 and 2.8 is that
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there is no marked difference between the results as final recommendation is con-

cern by two estimation methods. In addition, there is no big difference as far as

final recommendation is concern no matter whether the assumed model is right or

not. However, in scenario 1, the Bayesian approach has a much higher percentage

(15% more) of identifying the optimal schedule 1 as the MTS than the maximum

likelihood method. In scenarios 2-6, the Bayesian approach had a moderately higher

percentage (3% − 10% more) of correctly selecting the optimal schedule (schedule

j for scenario j as true MTS) as the MTS than maximum likelihood method. We

can also say, in scenarios 2-5, both Bayesian and maximum likelihood methods have

similar percentages of choosing the true optimal schedule as MTS. Furthermore, the

pattern of the results in scenario 7 is similar as that in scenarios 2-3. The results in

scenario 8 follow the same pattern as scenarios 3-4.

The results from scenario 9 in both Tables 2.6 and 2.8 demonstrate the effects

of the model misspecification on the MTS identification. We note that the results

in scenario 9 is similar to those in scenario 3, although scenario 3 has a higher

percentage of selecting schedule 3 as the MTS. In summary, both maximum likelihood

and Bayesian approaches work well under model misspecification cases even though

more subjects are assigned to the true optimal schedule when the model is correctly

specified.

Table 2.9. Average number of observed toxicities (out of 30 subjects) in the simulated
trials using the mixture cure model

Estimation Schedule Scenario
Method Reassignment 1 2 3 4 5 6 7 8

MLE No 7.72 6.23 5.65 12.13 10.84 9.32 8.29 7.15

MLE Yes 7.51 6.13 5.57 11.56 10.65 9.67 7.48 6.27

Bayesian Yes 6.80 6.34 5.69 11.83 10.49 9.72 7.85 6.47
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An additional comparison of the safety profiles of the trial implementation with

or without treatment schedule reassignment and by different estimation methods is

found in Table 2.9, which compares the two ways of implementing the trials with

regard to the average number of subjects out of 30 that experienced toxicity in each

scenario. Overall, the rate of toxicities is similar in both implementations (with or

without schedule reassignment), although the rate of toxicities is marginally higher

in the trial without treatment schedule reassignment than the one with it. We also

note that the numbers are very close for both estimation methods. There is no clear

pattern on which method had more observed toxicities among all scenarios. Note

that the average number of observed toxicities were not decreasing from scenario

1 to scenario 6 but were higher in scenarios 4-6 than in scenarios 1-3 because the

probability of toxicity pω = 0.2 for scenarios 1 to 3 while that pω = 0.4 for scenarios

4 to 6.

Table 2.10. Average number of subjects (out of 30 subjects) had treatment schedule
reassignment in the simulated trials using the mixture cure model

Estimation Scenario
Method 1 2 3 4 5 6 7 8 9

MLE 0.89 1.86 3.79 5.05 6.59 7.46 2.17 4.31 4.28

Bayesian 0.43 1.39 4.46 5.73 6.97 7.63 3.08 6.23 3.58

An interesting information regarding the average number of subjects out of 30 who

had treatment schedule reassignment is listed in Table 2.10. Overall, the numbers

of subjects who went through treatment reassignment are higher in the scenarios

where the longer schedules were the true MTS. The numbers are comparable for

both methods with no apparent trend across all scenarios. For example, in scenario

3, four subjects experienced treatment reassignment when maximum likelihood used

while five subjects had schedule reassignment when Bayesian approach used. On
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the contrary, in scenario 9, four subjects experienced treatment reassignment when

maximum likelihood method used but only three subjects had schedule reassignment

when Bayesian approach used.

In this chapter, we proposed a mixture cure model with sectional Weibull distri-

butions to evaluate a fixed number of nested treatment schedules to determine the

MTS, in which we modeled the event rate by a logistic regression and modeled the

conditional hazard function for the susceptible with a combination of two Weibull

distributions to account for the non-monotonic nature of the hazard of toxicity. We

used both maximum likelihood and Bayesian approaches to estimate parameters of

interest. We performed simulation studies to investigate the performance of our pro-

posed model in identifying MTS and found that our proposed model performed well

in the scenarios we investigated.



CHAPTER III

A Triangular Hazard Model for Optimal Treatment
Schedule Finding

3.1 Motivation

Recall the motivating example in Chapter II. In this setting, Braun et al. (2005)

proposed a new Phase I trial design with parameter estimation based upon Bayesian

methods. In this chapter, we will explore parameter estimation of the triangular

hazard model proposed in Braun et al. (2005) via a maximum likelihood method.

We will also derive the large sample properties of the MLEs when all subjects receive

a single adminstration. Then we will compare the performance of the optimal treat-

ment schedule finding by the maximum likelihood to that by the Bayesian approach

under the setting with treatment schedule reassignment.

3.2 Single Administration Setting without Censoring

3.2.1 Notation and Statistical Model

Let Ti, Ci, i = 1, 2, . . . , n, be the same notation as in section 2.2.1 for subject i.

We define the distribution for Ti through its hazard function as proposed by Braun

50
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et al. (2005)

h0(t | θ) =


θ2t
θ1

; 0 < t ≤ θ1, θ1 > 0, θ2 > 0

θ2(θ3−t)
θ3−θ1

; θ1 < t ≤ θ3, θ1 < θ3,

0 ; t > θ3, or, t ≤ 0.

(3.1)

where θ = (θ1, θ2, θ3). We can also write the hazard function as h0(t | θ) = θ2t
θ1
I(0,θ1]+

θ2(θ3−t)
θ3−θ1

I(θ1,θ3], in which I(a,b] is the indicator that t lies in the open interval (a, b]. We

use a closed bracket to indicate if either endpoint should be included in the interval.

Thus, θ1 denotes the time at which the hazard reaches its maximum, θ2, and θ3

denotes the time when the hazard vanishes to zero. We refer to θ1 as the change-

point of h0(t | θ) and θ3 as the duration of h0(t | θ). See Figure 2.1 in Chapter II for

a plot of the triangular hazard function. Note that the constraint imposed on the

parameters of the triangular hazard model is 0 < θ1 < θ3 < +∞.

Then the corresponding cumulative hazard function (CHF) for Ti is

H0(t | θ) =



0 ; t ≤ 0,

θ2t2

2θ1
; 0 < t ≤ θ1, θ1 > 0, θ2 > 0,

θ2θ3

2
− θ2(θ3−t)2

2(θ3−θ1)
; θ1 < t ≤ θ3, θ1 ≤ θ3,

θ2θ3

2
; t > θ3

(3.2)

and the corresponding survival function and PDF are

S0(t | θ) = exp[−H0(t | θ)]

f0(t | θ) = h0(t | θ) exp[−H0(t | θ)]

respectively.

Note that the CDF F0(t | θ) = 1−exp(−θ2θ3

2
) for t > θ3. F0(t | θ) is not a standard

CDF in the sense that F0(t | θ) 9 1 as t→ +∞. Because a standard CDF is needed

for proving that the score equations for estimating the θs are unbiased, we define
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K(θ2, θ3) be the normalization factor 1− exp(− θ2θ3

2
). Then a standard CDF can be

defined as F (t | θ) = F0(t | θ)/K(θ2, θ3) so that F (t | θ) = 1 for t > θ3. Thus, the

standardized PDF f(t | θ) = f0(t | θ)/K(θ2, θ3) is what we choose to work with.

3.2.2 Derivation of MLEs for a Sample without Censoring

We first consider a setting in which no censoring occurs, i.e. Ti = T ∗i ≤ θ3. Since

the derivation of the MLE of θ will be based upon the ordered observed times

T1 ≤ T2 ≤ ... ≤ Tn, we modify the notation so that i indexes the ordered observed

times where i = 1 indexes the earliest observed time and i = n indexes the latest

observed time. Thus, the likelihood function is given by

Ln(θ | T ) =
n∏

i=1

h0(Ti | θ) exp[−H0(Ti | θ)]/K(θ2, θ3) (3.3)

in which T = (T1, ..., Tn). And the corresponding log likelihood function is written

as

`n(θ | T ) = Q1(θ1, θ3)− θ2Q2(θ1, θ3) +Q3(θ2, θ3), (3.4)

where

Q1(θ1, θ3) =
n∑

i=1

log

[
Ti

θ1

I[0,θ1] +
θ3 − Ti

θ3 − θ1

I(θ1,θ3]

]
Q2(θ1, θ3) =

1

2

n∑
i=1

{
T 2

i

θ1

I[0,θ1] +

[
θ3 −

(θ3 − Ti)
2

θ3 − θ1

]
I(θ1,θ3]

}
Q3(θ2, θ3) = n log(θ2)− n log(K(θ2, θ3)).

Because θ1 is the change-point of the PDF f(t,θ), we can not use the score

equation to derive the MLE of θ1. So we consider an alternative approach to derive

the MLE of θ1. In the following theorem, we summarize the result about the MLE

of θ1.
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Theorem 1. For given θ2 and θ3 which satisfy θ2 < min( 1
θ1
, 1

θ3 − θ1
), the log like-

lihood function (3.4) attains its maximum at one of the order statistics (T1, ...., Tn).

See the Appendix for a proof. The specific order statistic assigned to MLE θ̂1 will

depend upon the values of the other two parameters. Specifically, let

r̂(θ2, θ3) = arg max
r∈{1,...,n}

{`n(Tr, θ2, θ3)}, (3.5)

then r̂(θ2, θ3) is a function of θ2 and θ3 that can only take the discrete values in [1,

n], thus the MLE of θ1 is

θ̂1 = Tr̂(θ2,θ3) (3.6)

See Figure 3.1 for a pictorial representation of r̂(θ2, θ3). The properties of r̂(θ2, θ3)

are summarized in the following theorems.

Theorem 2. For given θ2, r̂(θ2, θ3) has following properties:

1. r̂(θ2, θ3) is a non-increasing function of θ3

2. limθ3→∞ r̂(θ2, θ3) = 1

3. limθ3→Tn r̂(θ2, θ3) = n

4. r̂(θ2, θ3) is a step function having (n − 1) discontinuity points at θ3,(n−1) <

θ3,(n−2) < ... < θ3,1 in (Tn,+∞).

r̂(θ2, θ3) =



n ; θ3 ∈ (Tn, θ3,(n−1))

n− 1 ; θ3 ∈ [θ3,(n−1), θ3,(n−2))

...

r ; θ3 ∈ [θ3,r, θ3,(r−1))

...

1 ; θ3 ∈ [θ3,1,+∞).

(3.7)
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Figure 3.1. Function r̂(θ2, θ3) as a function of θ3 at given θ2
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See the appendix for a proof. Recall from the definition of the triangular hazard

model that θ3 must be finite and greater than θ1. From Theorem 2, we have the

following results: 1) if θ3 = +∞, then θ1 = T1 2) if θ3 = Tn, then θ1 = Tn. As

these two results violate our model assumptions, we put constraints around θ1 and

θ3 such that T1 < θ1 < Tn < θ3 < +∞. To be more precise, T2 ≤ θ1 ≤ Tn−1,

θ3,(n−2) ≤ θ3 ≤ θ3,2 where θ3,(n−2) and θ3,2 are defined in Theorem 2.

Similar properties can also be derived for r̂(θ2, θ3) as a function of θ2 for given θ3

with the exception that
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we are able to derive a closed form solution for θ2,r as:

θ2,r = log[(
Tr

Tr+1

)r(
θ3 − Tr

θ3 − Tr+1

)n−r](−
∑r

i=1 Ti
2

2Tr

+

∑r+1
i=1 Ti

2

2Tr+1

(3.8)

−θ3

2
+

∑n
i=r+1(θ3 − Ti)

2

2(θ3 − Tr)
−

∑n
i=r+2(θ3 − Ti)

2

2(θ3 − Tr+1)
)−1

where r = 1, ..., n−1. In summary, the function r̂(θ2, θ3) can be viewed as a bivariate

step function which has a countable number of discontinuity points. Except those

discontinuity points, the log likelihood function `n(Tr, θ2, θ3) is differentiable with

respect to θ2 and θ3.

We have discussed the estimation of θ1 for given θ2 and θ3. Now, we discuss the

estimation of θ2 and θ3 for given θ1. To simplify the notation, we replace θ1 by the

estimator Tr where r is a function of θ2 and θ3 and we drop the ’hat’ from r̂(θ2, θ3).

The log likelihood function of θ2 and θ3 for given θ1 is defined in equations (3.4),

(A.2) and (A.3).

Let

θ̂2(θ3) = arg max
θ2,n−2≤θ2≤θ2,2

{`n(Tr, θ2, θ3)}. (3.9)

and

θ̂3 = arg max
θ3,n−2≤θ3≤θ3,2

{`n(Tr, θ̂2(θ3), θ3)}. (3.10)

Under the constraints T2 ≤ θ1 ≤ Tn−1, θ2,(n−2) ≤ θ2 ≤ θ2,2 and θ3,(n−2) ≤ θ3 ≤ θ3,2,

using results from Theorem 1 and the score equations of θ2 and θ3, we evaluate the log

likelihood function (3.4) iteratively and yield MLEs as follows: θ̂3, θ̂2 = θ̂2(θ̂3), θ̂1 =

Tr(θ̂2, θ̂3), where θ̂2(.) and r̂(., .) are defined in equations (3.9) and (3.5) respectively.

3.2.3 Consistency and Limiting Distributions of Constrained MLEs for a Sample
without Censoring

We consider the density function f(t | θ) as defined in subsection 3.2.1 with param-

eter θ = (θ1, θ2, θ3) and constraints {T2 ≤ θ1 ≤ Tn−1, θ2,(n−2) ≤ θ2 ≤ θ2,2, θ3,(n−2) ≤
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θ3 ≤ θ3,2} where θ2,(n−2), θ2,2 as defined in (3.8) and θ3,(n−2), θ3,2 as defined in (3.7).

Before stating our main results in this section, we define more notation for later use.

First, let θ0 = (θ1(0), θ2(0), θ3(0)) denote the true value of θ and θ̂n = (θ̂1(n), θ̂2(n), θ̂3(n))

denote the MLEs of θ for sample size n. Second, let θ̂i:j be the MLE of θi given θj

at the true value of θj(0) when i 6= j. We also state one condition and two lemmas.

Condition 1: Assume θ3 is known. For any θ1 6= θ1(0) ∈ [0, θ3], there exists a

δ(θ1, θ1(0)) > 0 such that

Eθ1(0)
[sup{log f(t, θ1)− log f(t, θ1(0)) : |θ1 − θ1(0)| ≤ δ(θ1, θ1(0))}] (3.11)

is less than 0.

Lemma 1: θ̂1:3 is consistent under the given constraints and condition 1.

Lemma 2: Let X1, ..., Xn be i.i.d. with PDF g(x) satisfying g(x) = 0 for x < 0

or x > θ3 and g(θ1) = α > 0 where 0 < θ1 < θ3 and var(Xi) = 1. Let X(i) denote

the order statistics in relation to the change-point such that X(−r) ≤ X−(r−1) ≤ ... ≤

X(−1) ≤ X(0) = θ1 ≤ X(1) ≤ ... ≤ X(n−r). Then for any positive integer m ≤ n − r,

{n(X(1) − θ1) > 0, n(X(2) −X(1)), ..., n(X(m) −X(m−1))} converges in distribution to

Y1, ..., Ym where Y1, ..., Ym are i.i.d and Yis are exponential with E(Yi) = α. For any

positive integer m ≤ r, {n(X(−m)−X(−m+1)), ..., n(X(−2)−X(−1)), n(X(−1)−θ1) < 0}

converges in distribution to −Y−m, ...,−Y−1 where Y−m, ..., Y−1 are i.i.d. and Y−i are

exponential with E(Y−i) = α.

We define the following quantities that will be used to define the variances of

limiting distributions.

Definition 1: Part A) For θ2, let

m22(θ) = E{( ∂

∂θ2

) log f(T |θ)(
∂

∂θ2

) log f(T |θ)} (3.12)

where Eθ denotes expectation with respect to f(.|θ).
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Part B) For θ3, we can not define m33 in the same way as m22 because θ3 is the

upper boundary of the support for the given PDF. Thus, we adopt the definition of

m33 in Smith (1985) and define m33 as

m33(θ) =
1

2
limt→θ3

f(t|θ)

θ3 − t
=

θ2(1−K(θ2, θ3))

2(θ3 − θ1)K(θ2, θ3)
(3.13)

where

K(θ2, θ3) = 1− exp(−θ2θ3

2
)

Definition 2: Let {Yn} be a sequence of random variables and {rn} be a sequence

of positive constants. If

lima→+∞limn→+∞ sup pr(|Yn| > arn) = 0,

then we say Yn ≤p rn.

Definition 3 : Let {Xn} and {Yn} be sequences of i.i.d. random variables which are

exponential with hazard rate 1. Without loss of generality, we assume θ1 ≤ θ3 − θ1,

let ω1 = θ1 log( θ3−θ1

θ1
)/(θ3 − 2θ1) and ω2 = (θ3 − θ1) log( θ3−θ1

θ1
)/(θ3 − 2θ1). Then we

define

S1(ω1) =
∑J1

i=1(Xi − ω1), S2(ω2) =

J2∑
i=1

(Yi − ω2)

where J1 is that value of j (1 ≤ j ≤ n) that minimizes
∑j

i=1(Xi−ω1) and J2 is that

value of j that maximize
∑j

i=1(Yi − ω2). Furthermore, let

ψ =
θ2(θ3 − 2θ1)

θ1(θ3 − θ1)K(θ2, θ3) log( θ3−θ1

θ1
)
exp (−θ2θ1

2
),

we define

Z1(ω1, ω2, ψ) =

 ψ−1ω1
−1

∑J1
i=1Xi ; ω1

−1S1 ≤ −ω2
−1S2 − 1

−ψ−1ω2
−1

∑J2
i=1 Yi ; otherwise.

(3.14)
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We are in a position to state our main results about the asymptotic distributions

of the MLEs for θ.

Theorem 4. Assume all constraints specified at the beginning of subsection 3.2.3

are satisfied. The values {mii, i = 2, 3} are defined in Definition 1. Then

1. there exist MLEs θ̂n = (θ̂1(n), θ̂2(n), θ̂3(n)) subject to the above constraints such

that

θ̂1(n) − θ1(0) ≤p n−1, (3.15)

θ̂2(n) − θ2(0) ≤p n−
1
2 , (3.16)

θ̂3(n) − θ3(0) ≤p (n log n)−
1
2 . (3.17)

In other words, the MLEs are consistent. Moreover,

θ̂1(n) − θ̂1:3 = op(n
−1), (3.18)

θ̂2(n) − θ̂2:1 ≤p (n log n)−
1
2 , (3.19)

θ̂3(n) − θ̂3:1 ≤p n−
1
2 (log n)−1 (3.20)

2. {n(θ̂1(n)−θ1(0)), n
1
2 (θ̂2(n)−θ2(0)), (n log n)

1
2 (θ̂3(n)−θ3(0))} converges in distribution

to a random vector (Z1, Z2, Z3) where (Z1, Z2, Z3) are independent, Z1 is defined

in Definition 3, (Z2, Z3) are normal random variables with common mean 0 and

respective variances m−1
22 and m−1

33 where {mii} are defined in Definition 1.

3.3 Single Administration Setting with Censoring

3.3.1 Derivation of MLEs for a Censored Sample

We extend our results from a sample without censoring to data with independent

right censoring. Since the administration censoring in our motivating example is

independent of survival time, the assumption of independent right censoring is valid



59

in Phase I clinical trials. Let T1 ≤ T2 ≤ ... ≤ Tr ≤ θ1 < Tr+1 ≤ ... ≤ Tn ≤ ... ≤

TN ≤ θ3 be the order statistics of the uncensored and the censored observed times

from N subjects with common hazard function h(t) as defined in equation (3.1). Let

Tn index the largest uncensored time among all the ordered time points, the change-

point θ1 lies in [Tr, Tr+1) and TN+1 is +∞. In addition, θ1 must be less than TN in

order for θ1 and θ3 to be identifiable. We use the same notation as those in section

3.2.2 to be consistent.

Then, the likelihood function for θ is given by

LN(θ|T ,C) =
N∏

i=1

[f(Ti)]
Ci [S(Ti)]

1−Ci

=
1

KN

n∏
i=1

[h0(Ti)]
Ci [S0(Ti)]

Ci [K − 1 + S0(Ti)]
1−Ci (3.21)

N∏
i=n+1

[K − 1 + S0(Ti)]
1−Ci ,

in which T = (T1, ..., TN), C = (C1, ..., CN), and K = K(θ2, θ3). From the

assumptions, we have Cn = 1, Ck = 0 for any k > n. And the log-likelihood

function of the proposed model can be written as

`k(θ | T , C) =
n∑

i=1

Ci(log(h0(Ti|θ))−
n∑

i=1

CiH0(Ti|θ) (3.22)

−k log(K(θ2, θ3))−
k∑

i=1

(1− Ci) log(exp(−H0(Ti|θ))

− exp(−θ2θ3

2
))

= Q1(θ1, θ3)− θ2Q2(θ1, θ3) +Q3(θ2, θ3) +Q4(θ1, θ2, θ3),
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in which

Q1(θ1, θ3) =
n∑

i=1

Ci log

[
Ti

θ1

I[0,θ1] +
θ3 − Ti

θ3 − θ1

I(θ1,θ3]

]
,

Q2(θ1, θ3) =
1

2

n∑
i=1

Ci

{
T 2

i

θ1

I[0,θ1] +

[
θ3 −

(θ3 − Ti)
2

θ3 − θ1

]
I(θ1,θ3]

}
,

Q3(θ2, θ3) = log(θ2)
n∑

i=1

Ci − k log(K(θ2, θ3)),

Q4(θ1, θ2, θ3) =
k∑

i=1

(1− Ci) log[exp(−θ2

2

{
T 2

i

θ1

I[0,θ1] +

[
θ3 −

(θ3 − Ti)
2

θ3 − θ1

]
I(θ1,θ3]

}
)

− exp(−θ2θ3

2
)].

Theorems 1 & 2 for a sample without censoring still hold for a sample of inde-

pendently right censored data with some modifications, such as replacing n by N in

Theorems 1 & 2 where the likelihood function is based on (3.21) instead of (3.3).

Similar properties still hold for r̂(θ2, θ3) as a function of θ2 for given θ3.

We assume that the location of θ3 in [0, TN+1] is unknown where TN+1 is +∞

and θ3 is greater than the largest observed time point TN . We have identified the

constraints in subsection 3.2.2. The constraints are T1 < θ1 < TN , 0 < θ2 < ∞

and TN < θ3 < ∞. More precisely, T2 ≤ θ1 ≤ TN−1, θ2,(N−2) ≤ θ2 ≤ θ2,2 and

θ3,(N−2) ≤ θ3 ≤ θ3,2, where θ3,(N−2) and θ3,2, θ2,(N−2) and θ2,2 are derived similarly

as in subsection 3.2.2. Barring the points of discontinuity of the function r̂(θ2, θ3),

the log likelihood function `N(θ) is differentiable with respect to θ2 and θ3. We

summarize the maximum likelihood estimation procedure as follows: Using results

from Theorem 1 and the score equations of θ2 and θ3, evaluate log likelihood function

(3.21) iteratively and yield MLEs as follows:

θ̂3, θ̂2 = θ̂2(θ̂3), θ̂1 = Tr(θ̂2, θ̂3),

where θ̂2(.) and r̂(., .) are defined in equations (3.9) and (3.5) respectively.
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3.3.2 Consistency and Limiting Distributions of Constrained MLEs for a Censored
Sample

We consider the density function f(t | θ) and survival function S(t | θ) as defined

in subsection 3.2.1 with parameter θ = (θ1, θ2, θ3) and constraints {T2 ≤ θ1 ≤ TN−1,

θ2,(N−2) ≤ θ2 ≤ θ2,2, θ3,(N−2) ≤ θ3 ≤ θ3,2} where θ3,(N−2) and θ3,2, θ2,(N−2) and θ2,2 are

derived similarly as in subsection 3.2.2.

Since the administration censoring in our motivating example is independent of

survival time, the independent right censoring assumption is valid. Similar definitions

and lemmas as those in subsection 3.2.3 hold under the assumption of independent

right censoring with some modifications, such as replacing (3.11) by

Eθ1(0)
[sup{log f c(t, θ1)− log f c(t, θ1(0)) + logS1−c(t, θ1)− logS1−c(t, θ1(0)) : (3.23)

|θ1 − θ1(0)| ≤ δ(θ1, θ1(0))}]

in Condition 1, replacing 3.12 by

m22(θ) = E{( ∂

∂θ2

) log f c(T |θ)S1−c(T |θ)(
∂

∂θ2

) log f c(T |θ)S1−c(T |θ)} (3.24)

in Definition 1 where c is the censor indicator associated with time T. Furthermore,

Similar results as Theorem 4 in subsection 3.2.3 holds for censored samples with

some modifications, such as replacing n by N in Theorem 4.

The rationale is as follows: First, from the estimation procedure, we have θ̂1 = Tr

where Tr is an order statistic from sequence {Ti}N
i=1. The arguments to derive two

independent random walks still apply. Second, extending the asymptotic results of

θ̂2 and θ̂3 from a sample without censoring to censored data follows similar argument

as extending the regular MLE asymptotic properties to censored samples.
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3.4 Numerical Studies

In this section, we investigate the finite sample behavior of the constrained MLEs

for the parameters of interest in the triangular hazard model via simulation studies.

All results were produced in SAS.

We generated 1000 random samples from each of the following two triangular

hazard models: (1) θ1 = 4, θ2 = 0.05 and θ3 = 18, (2) θ1 = 3, θ2 = 0.004 and θ3 = 18.

Uniform censoring times were generated in the interval (0, U) with U selected to give

expected censoring proportion of 0 (no censoring) and 20% (censoring), respectively.

For both censoring proportions, samples of n = 30, n = 50 , n = 100 and n = 200

(where n is the sample size) were generated. The convergence criteria were based

on relative changes of estimated parameter values and log likelihood values. All the

computations of θ̂ were subject to the specified constraints in subsection 3.2.3 and

subsection 3.3.2.

The means of the MLEs and the coverage probability of 95% confidence intervals

for the MLEs θ̂ = (θ̂1, θ̂2, θ̂3) in 1000 replications were computed. The 95% confi-

dence intervals for the MLEs θ̂ = (θ̂1, θ̂2, θ̂3) were calculated based on Theorem 4.

Note that no asymptotic variance estimator is available for the MLE of θ1. Therefore,

no confidence interval is derived for θ̂1.

The simulation results pertaining to the evaluation of θ̂ = (θ̂1, θ̂2, θ̂3) are pre-

sented in Table 3.1, and Table 3.2. We list the mean of MLEs, the mean of asymptotic

standard error (SE), the empirical (sample) SE and the coverage probability of 95%

confidence interval for different sample sizes and censoring proportions.

In Table 3.1, the data were simulated under θ1 = 4, θ2 = 0.05 and θ3 = 18. The

overall performance of the proposed MLEs for the given triangular hazard model is
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Table 3.1. Parameter estimates and their inference with 1000 replications in which
θ1 = 4, θ2 = 0.05 and θ3 = 18

Parameter Mean Mean Empirical Coverage Prob.
Sample Censoring of of (Sample) of
size (n) proportion MLE Asymptotic SE SE 95% CI (in percent)

30 0% 3.634 NA 0.734 NA
0.0458 0.0196 0.0192 87.2
17.695 1.696 1.217 88.7

20% 4.418 NA 0.843 NA
0.0561 0.0212 0.0216 85.1
17.432 1.599 1.412 86.8

50 0% 4.282 NA 0.623 NA
0.0472 0.0183 0.0186 89.1
18.349 1.275 1.114 90.6

20% 3.675 NA 0.747 NA
0.0551 0.0201 0.0203 88.8
17.572 1.214 1.108 89.6

100 0% 3.884 NA 0.575 NA
0.0523 0.0161 0.0151 91.3
18.326 0.996 1.012 92.1

20% 4.211 NA 0.667 NA
0.0533 0.0181 0.0171 90.9
18.426 1.204 1.214 91.4

200 0% 4.003 NA 0.463 NA
0.05083 0.0156 0.0145 92.1
18.231 0.861 0.866 93.6

20% 3.943 NA 0.576 NA
0.0516 0.0162 0.0152 91.5
17.682 0.989 1.003 92.4

reasonably well regardless of the sample size and censoring proportion. The bias of

the mean of MLEs decreases as the sample size increases. The coverage probability

of 95% confidence interval is increasing as the sample size increases. When sample

sizes are 100, 200, the biases are small, the estimated standard errors agree well

with the sample standard errors, and the coverage probabilities are accurate. For all

sample sizes, the biases and coverage probability of CIs are of same magnitudes. The

mean of asymptotic SEs based on Theorem 4 are reasonably close to those empirical

sample SEs based on 1000 Monte Carlo runs. The difference between these two SEs

does not change very much as the sample size changes.
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Table 3.2. Parameter estimates and their inference with 1000 replications in which
θ1 = 3, θ2 = 0.004 and θ3 = 18

Parameter Mean Mean Empirical Coverage Prob.
Sample Censoring Parameter of of (Sample) of
size (n) proportion Name MLE Asymptotic SE SE 95% CI (in percent)

30 0% θ1 2.791 NA 0.771 NA
θ2 0.0171 0.0176 0.0164 98.2
θ3 17.728 1.762 1.749 91.2

20% θ1 3.305 NA 0.878 NA
θ2 0.0179 0.0186 0.0178 98.1
θ3 17.438 1.886 1.857 90.8

50 0% θ1 2.812 NA 0.739 NA
θ2 0.0121 0.0163 0.0153 98.3
θ3 18.079 1.684 1.676 92.2

20% θ1 3.204 NA 0.778 NA
θ2 0.0124 0.0172 0.0159 98.2
θ3 17.887 1.754 1.746 91.8

100 0% θ1 3.149 NA 0.646 NA
θ2 0.0098 0.0151 0.0143 98.6
θ3 17.892 1.592 1.588 93.3

20% θ1 2.845 NA 0.686 NA
θ2 0.0102 0.0161 0.0149 98.5
θ3 18.068 1.666 1.654 93.1

200 0% θ1 2.938 NA 0.589 NA
θ2 0.0083 0.0128 0.0122 99.4
θ3 18.031 1.458 1.445 94.2

20% θ1 3.082 NA 0.0676 NA
θ2 0.0094 0.0145 0.0139 99.1
θ3 18.055 1.565 1.552 93.4

In Table 3.2, the data were simulated under θ1 = 3, θ2 = 0.004 and θ3 = 18. The

mean of MLEs performed reasonably well except for θ2. When true θ2 value was close

to 0 - the boundary of the parameter support, the relative bias of the mean MLE was

much larger than the one when the true value is further away from 0. However, the

coverage probability of 95% confidence interval of θ̂2 is very high compared to the

case when true θ2 is further away from 0 because the relative larger variance when

the true value is close to 0.
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3.5 Estimation and Schedule Finding by Maximum Likelihood Method

3.5.1 Likelihood Function and Estimation in Original Parametric Form

We first consider the estimation procedures for one schedule with multiple ad-

ministrations without censoring. We demonstrate whether the new MLE estimation

procedure for a single administration setting developed in early part of this chapter

can be extended to multiple administration setting.

The likelihood function of θ for given T = {ti, i = 1, ..., n} and schedule s =

{sl, l = 1, ...,m} is

Ln(θ | T , s) =
n∏

i=1

λ(ti|θ, s) exp[−Λ(ti|θ, s)] (3.25)

where θ = (θ1, θ2, θ3). Then, the log likelihood function is in the following form

`n(θ) = Q1(θ1, θ3)− θ2Q2(θ1, θ3) +Q3(θ2, θ3) (3.26)

where

Q1(θ1, θ3) =
n∑

i=1

log[
m∑

l=1

h(ti − sl|θ)]−
n∑

i=1

log(θ2),

Q2(θ1, θ3) =
n∑

i=1

m∑
l=1

H(ti − sl|θ)/θ2,

Q3(θ2, θ3) =
n∑

i=1

log(θ2),

h(ti − sl|θ) = θ2
(ti − sl)

θ1

I(0, θ1] + θ2
(θ3 − ti + sl)

θ3 − θ1

I(θ1, θ3] (3.27)

H(ti − sl|θ) = θ2
(ti − sl)

2

2θ1

I(0, θ1] + θ2[
θ3

2
− (θ3 − ti + sl)

2

2(θ3 − θ1)
]I(θ1, θ3]. (3.28)

where I(0, θ1] is an indicator function of ti − sl in the interval (0, θ1] and I(θ1, θ3] is

an indicator function of θ3 − ti − sl in the interval (θ1, θ3].



66

Recall our finding earlier in this chapter that the log likelihood function for θ1

with θ2 and θ3 fixed attains its maximum at one of the order statistics (T1, ...., Tn)

of the observed {ti, i = 1, ..., n} where T1 is the earliest observed time and Tn is the

latest observed time. Specifically,

θ̂1 = Tr̂(θ2,θ3)

where r̂(θ2, θ3) is a function of θ2 and θ3 that can only take the discrete values in [1,

n] and

r̂(θ2, θ3) = arg max
r∈{1,...,n}

{`n(Tr, θ2, θ3)}

In order to extend this result to multiple administration setting, we need to

demonstrate either the first order derivative of the log likelihood function (3.26)

about θ1 is greater than 0 (or less than 0) consistently within each interval [Tr, Tr+1]

(1 ≤ r < n) or the second order derivative of the log likelihood function (3.26)

about θ1 is greater than 0 consistently within each [Tr, Tr+1]. From the log likelihood

function (3.26), the first derivative about θ1 is

∂

∂θ1

`n(θ) =
∂

∂θ1

Q1(θ1, θ3)− θ2
∂

∂θ1

Q2(θ1, θ3). (3.29)

where

∂

∂θ1

Q1(θ1, θ3) =
n∑

i=1

1∑m
l=1 h(ti − sl)

∂

∂θ1

h(ti − sl) (3.30)

∂

∂θ1

Q2(θ1, θ3) =
n∑

i=1

m∑
l=1

∂

∂θ1

H(ti − sl). (3.31)

Similarly, the second derivative about θ1 is

∂2

∂θ2
1

`n(θ) =
∂2

∂θ2
1

Q1(θ1, θ3)− θ2
∂2

∂θ2
1

Q2(θ1, θ3). (3.32)
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where

∂2

∂θ2
1

Q1(θ1, θ3) =
n∑

i=1

−1∑m
l=1 h

2(ti − sl)
[
∂

∂θ1

h(ti − sl)]
2 + (3.33)

n∑
i=1

1∑m
l=1 h(ti − sl)

∂2

∂θ2
1

h(ti − sl)

∂2

∂θ2
1

Q2(θ1, θ3) =
n∑

i=1

m∑
l=1

∂2

∂θ2
1

H(ti − sl). (3.34)

We first show ∂
∂θ1
`n(θ) is not consistently greater > 0 (or < 0) in [Tr, Tr+1]. Let

Ai1 = {ti − sl | ti − sl ∈ (0, θ1], l = 1, ...,mi} , Ai2 = {ti − sl | ti − sl ∈ (θ1, θ3], l =

1, ...,mi} and Ai3 = {ti − sl | ti − sl ∈ (θ3,+∞), l = 1, ...,mi}. From definition

of the triangular hazard function h(t|θ), the observed time points in Ai3 do not

contribute to the likelihood function through hazard but do so through cumulative

hazard function. However, the cumulative hazard function of the time points in Ai3

is a function of θ2 and θ3. So they do not contribute to the derivatives of the log

likelihood function about θ1. Substituting the hazard function (3.27), cumulative

hazard function (3.28) and their derivatives into the first order derivative (3.29), we

have the following results

∂

∂θ1

Q1(θ1, θ3) =
n∑

i=1

∑
Ai1
− ti−sl

θ2
1

+
∑

Ai2

θ3−ti+sl

(θ3−θ1)2∑
Ai1

ti−sl

θ1
+

∑
Ai2

θ3−ti+sl

(θ3−θ1)

(3.35)

∂

∂θ1

Q2(θ1, θ3) = −
n∑

i=1

{
∑
Ai1

(ti − sl)
2

2θ2
1

+
∑
Ai2

(θ3 − ti + sl)
2

2(θ3 − θ1)2
}. (3.36)

Since the multiple administrations are taken consecutively, the hazard functions over-

lap. The term
∑

Ai1

ti−sl

θ1
+

∑
Ai2

θ3−ti+sl

(θ3−θ1)
in the first order derivative is in the denomi-

nator, which complicates the calculation. Even with the constraints as those defined

in Chapter III, the negative part in ∂
∂θ1
Q1(θ1, θ3) makes it possible for the first order

derivative to be less than 0 for some θ1 while greater than 0 for other θ1 in [Tr, Tr−1].
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Similarly, we can show that ∂2

∂θ2
1
`n(θ) is not consistently greater than 0 in [Tr, Tr+1].

In addition to the existing observed time points, we also have the shifted time points

{ti − sl, l = 1, ...,mi; i = 1, 2, ..., n}. For estimation purposes, all the observed time

points and shifted time points are incorporated into the likelihood function. How-

ever, we can not prove that the MLE of θ1 can be any one of the observed time

points or shifted time points under the identifiability constraints T1 < θ1 < Tn < θ3.

Therefore, the findings in early part of this chapter can not be directly extended to

the setting of multiple administrations. In next section, we will explore the option of

reparameterizing the original triangular hazard model and its application in multiple

schedule setting.

3.5.2 Likelihood Function and Estimation in Reparameterized Form

Since the proposed MLEs for a single administration setting in last section can

not be extended to a multiple schedule setting, we use the original triangular hazard

model proposed by Braun et al. (2005) for estimation procedures in a multiple sched-

ule setting in this section. For easier computing implementation, we reparameterize

the triangular hazard function as

h(t | β) =


β1t ; 0 ≤ t ≤ β2θ3

β1+β2
, β1 > 0

β2(θ3 − t) ; β2θ3

β1+β2
< t ≤ θ3, β2 > 0,

0 ; t > θ3, or t < 0.

(3.37)

in which β = (β1, β2, θ3). We can also write the hazard function as h0(t | β) =

β1tI(0,θ1] + β2(θ3 − t)I(θ1,θ3], in which I(a,b] is the indicator that t lies in the interval

(a, b]. By setting the intersection of the two lines in the new hazard function (3.37)

as the change point in the old hazard function (3.1), we can express θ1 and θ2 in
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terms of β1, β2 and θ3 as

θ1 =
β2

β1 + β2

θ3 (3.38)

θ2 =
β2

β1 + β2

β1θ3 (3.39)

The new hazard function not only has a simpler mathematical structure but also leads

to a nice interpretation for the change point. The change point can be considered

as a proportion of the total duration of hazard. This proportion is expressed as

the second slope over the sum of the two slopes (we have defined the slopes as

positive values only in the new hazard function). If the hazard goes up quickly and

decreases slowly, then the change point should be closer to 0 than θ3. Otherwise,

if the hazard goes up slowly and decreases quickly, then the change point should

be closer to θ3 than 0. When we discuss the prior information for the change-point

with medical investigators, we can consider the change-point as the proportion of

total duration. Through this proportion, we can derive the relationship between the

two slopes of the triangular hazards. Note that we do not use the reparameterized

hazard form in Bayesian estimation procedures. They are only used in maximum

likelihood estimation procedures. We do not use the normalized CDF and PDF in

reparameterized form either.

Then the new cumulative hazard function (CHF) for Ti is

H(t | β) =



0 ; t < 0,

1
2
β1t

2 ; 0 ≤ t ≤ β2θ3

β1+β2
, β1 > 0

β1β2θ2
3

2(β1+β2)
− 1

2
β2(θ3 − t)2 ; β2θ3

β1+β2
< t ≤ θ3,

β1β2θ2
3

2(β1+β2)
; t > θ3

For the multiple administration setting, the likelihood function (3.25) and log likeli-
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hood function (3.26) still hold with the modifications to h(ti − sl) and H(ti − sl) as

follows

h(ti − sl|β) (3.40)

= β1(ti − sl)I(0,
β2θ3

β1 + β2

] + β2(θ3 − ti + sl)I(
β2θ3

β1 + β2

, θ3]

H(ti − sl|β) (3.41)

= β1
(ti − sl)

2

2
I(0,

β2θ3

β1 + β2

] + [
β1β2θ

2
3

2(β1 + β2)
− 1

2
β2(θ3 − ti + sl)

2]I(
β2θ3

β1 + β2

, θ3].

Therefore, we can estimate (β1, β2, θ3) using maximum likelihood with (3.38) and

(3.39) as constraints. So the MLEs of (β1, β2, θ3) are constrained MLEs in the repa-

rameterized form.

Following the notation in subsection 3.5, we extend the likelihood function to

include censored observations. Let (tik, cik) denote the ith observations in schedule

s(k) and nk denote the number of observations in schedule s(k). Then the likelihood

function is

Ln(β | T ,C) =
K∏

k=1

nk∏
i=1

fk(tik)
cikSk(tik)

(1−cik) (3.42)

where β = (β1, β2, θ3), T = {tik, i = 1, ..., nk, k = 1, ..., K}, C = {cik, i = 1, ..., nk, k =

1, ..., K}. And the log likelihood function is

`n(β) (3.43)

=
K∑

k=1

nk∑
i=1

[cik log(

mk∑
l=1

h(tik − sl))−
mk∑
l=1

H(tik − sl)]

where h(tik − sl)) and H(tik − sl)) are defined in (3.40) and (3.41). The maximum

likelihood method can be used to estimate the unknown parameters β = (β1, β2, θ3)

with constraints (3.38) and (3.39).
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3.6 Estimation and Schedule Finding by Bayesian Approach

The basic structure is described in Braun et al. (2005), where the detailed method-

ology and algorithm can be found. We summarize the main ideas here before pro-

ceeding to simulation studies. Note that we use the original parameterization i.e. θ

proposed by Braun et al. (2005) in the Bayesian estimation procedure.

Let D denote the data available at evaluation time tcur, then the likelihood func-

tion is (3.42), denoting the prior by p(θ), the posterior of θ is

g(θ|D) =
Ln(θ | T ,C)p(θ)∫
Ln(θ | T ,C)p(θ)dθ

(3.44)

Because the integral in the posterior can not be obtained analytically under our

assumed model, the posterior quantities are computed via Markov chain Monte

Carlo (MCMC) methods. Specifically, a Metropolis-Hastings algorithm (Robert and

Casella, 1999; Gelman et al., 2004) is used. We experiment with different starting

values and are convinced that the chains converge and cover the entire posterior dis-

tribution using multiple sequences and plots. We eliminate a total of 1000 iterations

as burn-in and then generate additional 3000 samples for summarization.

The priors (θ) are chosen in the form of p3(θ3)p1(θ1|θ3)p2(θ2) because θ1 < θ3.

Both p3(θ3) and p1(θ1|θ3) follow generalized Beta distribution. p2(θ2) follows Gamma

distribution. Tuning parameters k1, k2 and k3 are specified to calibrate the prior

distribution so that the data dominate the posterior distribution. The same notations

are used as those in Braun et al. (2005). For prior elicitation, refer Braun et al. (2005)

for detailed description.

In the following section, we investigated the finite sample behavior of the con-

strained MLEs for the parameters of interest in the reparameterized triangular haz-

ard model and the performance of the proposed model in MTS finding via simulation
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studies. We also implement the simulation study designed in Braun et al. (2005) with

treatment schedule reassignment. The purpose of these simulation studies is to com-

pare the results by maximum likelihood method to those by Bayesian approach. All

results are produced in SAS.

3.7 Application to KGF trial

In order to compare the performance of the triangular hazard model using max-

imum likelihood method and Bayesian approach, we use the same true parameter

values for both methods. Note that β1 and β2 were only estimated directly by max-

imum likelihood method while θ1 and θ2 were only estimated directly by Bayesian

approach. θ3 was directly estimated by both MLE and Bayesian procedures.

We note that θ2 true values were very small (< 0.001) in the simulation study

of Braun et al. (2005). From the numerical studies in early part of this chapter,

the maximum likelihood method had trouble in estimating θ2 when the true values

are less than 0.004 because these small values are too close to the boundary of the

support 0. When the true parameter values are very close to the boundary of the

parameter space, the MLEs are not stable. It may induce larger bias (Hall and Wang,

1999). Therefore, we rescale the time such that 1 unit time in Braun et al. (2005) as

0.1 unit time in our simulation studies. For example, in Braun et al. (2005), θ3 = 18

and θ1 = 3. We set θ3 = 1.8 and θ1 = 0.3 so that we can have θ2 value reasonably far

away from 0 (the boundary of the support for θ2). Then we can derive reasonable

estimate of θ2 using maximum likelihood method and keep the threshold for the

probability of toxicity in our simulation study to be the same as that in Braun et al.

(2005). As a result, reasonable comparisons of the two estimation methods can be

carried out in the simulation result section. Based on equations (3.38) and (3.39),
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we derive the true βi, i = 1, 2 values for simulation. The true parameter values are

shown in Table 3.3, which also contains the actual day 100 (ω = 10 in simulations)

probability of toxicity for each schedule under all scenarios. For trial implementation,

refer to Section 2.4 for details and safety concerns.

Table 3.3. True parameter values of the triangular hazard model for simulation studies
where θ1 = 0.3 and θ3 = 1.8

True Toxicity Prob of Schedule Threshold Prob
Scenario θ2 β1 β2 1 2 3 4 5 6 of Toxicity

1 0.08 0.27 0.06 0.20 0.36 0.48 0.59 0.67 0.74 0.2

2 0.04 0.14 0.03 0.11 0.20 0.28 0.36 0.43 0.49 0.2

3 0.03 0.09 0.02 0.07 0.14 0.20 0.26 0.31 0.36 0.2

4 0.05 0.16 0.03 0.12 0.23 0.32 0.40 0.47 0.54 0.4

5 0.04 0.13 0.03 0.10 0.18 0.26 0.33 0.40 0.46 0.4

6 0.03 0.11 0.02 0.08 0.16 0.23 0.29 0.35 0.40 0.4

7 0.05 0.18 0.04 0.13 0.25 0.35 0.43 0.51 0.58 0.3

8 0.04 0.14 0.03 0.11 0.20 0.28 0.36 0.43 0.49 0.3

9 na na na 0.07 0.14 0.20 0.26 0.31 0.36 0.2

Recall the motivating example in Chapter II in which the investigators wished to

study K = 6 schedules corresponding to 2, 4, 6, 8, 10 and 12 weeks of therapy. We

considered 6 therapy schedules in our simulation studies, s(1), ..., s(6), in which s(k)

did not have natural units and s(k) = {slk, l = 1, ...,mk} for k = 1, ..., 6.

We studied the design with a maximum sample size of 30 patients, which is feasible

in Phase I trials but also sufficient to determine the MTS with reasonable accuracy

demonstrated in our simulations. In each simulation, the subject interarrival times

were assumed to be uniformly distributed from 12 to 16 days.

We examined the design’s performance in nine scenarios using the criterion spec-

ified in section 2.4. In the first six scenarios, schedule s(j) was true optimal schedule

under the jth scenario for j = 1, ..., 6. In scenario 7, the true MTS was located be-
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tween schedule 2 and 3, while in scenario 8, the target schedule (MTS) lay between

schedule 3 and 4 but closer to schedule 3.

Furthermore, we examined the design’s performance under the setting where the

model was misspecified in scenario 9, where schedule 3 was the true MTS, but the

data was not simulated from the triangular hazard model. Instead, we assumed the

toxicity occurred uniformly over the interval [10+14(j−1), 10+14j] under schedule

s(j). In all other scenarios, the actual times to toxicity were simulated assuming the

triangular hazard model with the true parameter values shown in Table 3.3.

Regarding the prior selection in the Bayesian estimation procedures, we used the

investigator belief as a priori to determine the hyperparameters. In our application,

the hazard of toxicity for a single administration vanished after an average of 1.8 unit

time and with a range of 0.4 to 10. The upper bound for θ1 was 0.4. By the methods

described in Braun et al. (2005), the hyperparameters for prior distributions p(θ3)

and p(θ1|θ3) were derived in the computer programs. The investigators also believed

that 12 weeks of KGF would not cause more toxicity, which led us to use the true

parameter value 0.03 of θ2 in scenario 6 of Table 3.1 as the mean of prior distribution

p(θ2).

3.7.1 Study Result and Conclusion

Tables 3.4, 3.5 and 3.6 display the simulation results for triangular hazard model.

Table 3.4 displays the estimated parameter values and corresponding standard errors

for all scenarios. Note that β1 and β2 were only estimated directly using maximum

likelihood method then θ1 and θ2 were derived from β1 and β2 on the MLE row in Ta-

ble 3.4. In contrast, θ1 and θ2 were only estimated directly using Bayesian approach

then β1 and β2 were derived from θ1 and θ2 on the Bayesian row in Table 3.4. θ3

was directly estimated using both maximum likelihood and Bayesian methods. The
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Table 3.4. Estimated parameter values of the triangular hazard model. Each entry is
the estimated parameter value (standard deviation).

Estimation Estimated Value of
Scenario Method θ1 θ2 θ3 β1 β2

1 MLE 0.44 (0.249) 0.074 (0.054) 1.76 (0.681) 0.265 (0.249) 0.090 (0.086)
Bayesian 0.35 (0.074) 0.089 (0.017) 1.81 (0.368) 0.258 (0.032) 0.061 (0.017)

2 MLE 0.48 (0.276) 0.039 (0.027) 1.84 (0.772) 0.142 (0.143) 0.056 (0.042)
Bayesian 0.26 (0.043) 0.045 (0.011) 1.74 (0.523) 0.179 (0.043) 0.031 (0.009)

3 MLE 0.44 (0.261) 0.029 (0.022) 1.75 (0.778) 0.147 (0.148) 0.047 (0.032)
Bayesian 0.27 (0.057) 0.032 (0.008) 1.78 (0.522) 0.117 (0.044) 0.021 (0.006)

4 MLE 0.35 (0.268) 0.054 (0.026) 1.68 (0.783) 0.261 (0.249) 0.059 (0.039)
Bayesian 0.27 (0.073) 0.055 (0.012) 1.77 (0.521) 0.194 (0.066) 0.033 (0.008)

5 MLE 0.36 (0.254) 0.047 (0.024) 1.63 (0.797) 0.234 (0.244) 0.058 (0.034)
Bayesian 0.27 (0.072) 0.042 (0.010) 1.77 (0.354) 0.159 (0.057) 0.031 (0.007)

6 MLE 0.33 (0.258) 0.037 (0.023) 1.58 (0.792) 0.222 (0.254) 0.042 (0.044)
Bayesian 0.27 (0.072) 0.031 (0.008) 1.77 (0.351) 0.117 (0.035) 0.021 (0.006)

7 MLE 0.36 (0.262) 0.061 (0.026) 1.71 (0.792) 0.284 (0.263) 0.059 (0.043)
Bayesian 0.27 (0.064) 0.059 (0.012) 1.78 (0.374) 0.221 (0.063) 0.042 (0.008)

8 MLE 0.51 (0.259) 0.039 (0.024) 1.85 (0.702) 0.153 (0.148) 0.076 (0.049)
Bayesian 0.26 (0.056) 0.046 (0.011) 1.76 (0.399) 0.205 (0.065) 0.032 (0.007)

9 MLE 0.27 (0.185) 0.048 (0.029) 1.39 (0.721) 0.348 (0.325) 0.085 (0.065)
Bayesian 0.27 (0.057) 0.032 (0.008) 1.78 (0.284) 0.117 (0.025) 0.021 (0.005)

estimates by Bayesian approach are posterior means. Tables 3.5 and 3.6 summarize

the frequency at which each schedule was selected as the MTS. The first row of each

scenario in Tables 3.5 and 3.6 contains the percentages of simulations in which each

schedule is identified as the MTS while the second row of each scenario contains the

mean percentages of subjects assigned to a given schedule among the simulations.

We can see from Table 3.4 that the estimates by the maximum likelihood method

have larger biases in most scenarios and also have larger corresponding standard error

estimates across all scenarios. We suspect this fact is due to the small sample size in

our Phase I trials and informative priors used in the Bayesian approach. However,

the parameter estimates in Table 3.4 are still close to the true parameters values,

which provide confidence for us to interpret the results in Tables 3.5 and 3.6.
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Table 3.5. Performance of the triangular model with 30 patients by Maximum Like-
lihood. Each entry on the 1st row is the percentage of simulations a schedule chosen
as MTS, with the average percentage of patients assigned to a given schedule on 2nd
line within each scenario.

Schedule (number of weeks)
Scenario 1 (2) 2 (4) 3 (6) 4 (8) 5 (10) 6 (12)

1 76.7 14.0 7.3 1.3 0.7 0
68.3 17.2 7.2 4.2 1.8 1.3

2 22.7 42.6 19.6 8.7 5.1 1.3
20.6 38.2 15.4 10.6 9.4 5.8

3 10.1 22.1 41.5 13.2 7.6 5.5
15.7 27.5 33.2 10.8 7.2 5.6

4 2.4 11.1 19.8 34.3 21.2 11.2
5.7 13.9 18.1 32.9 17.9 11.5

5 0.7 5.3 11.2 23.1 38.7 21.0
3.6 10.9 13.2 22.8 30.1 19.4

6 0. 4.7 6.3 10.0 25.3 53.7
4.6 8.1 9.9 11.4 13.4 42.6

7 10.7 35.0 32.2 11.7 7.7 2.7
14.0 33.3 29.7 10.3 8.3 4.4

8 0.0 13.3 36.0 24.7 16.5 8.5
4.8 14.4 29.1 20.4 18.8 12.7

9 14.7 25.5 35.3 15.6 6.9 2.0
13.6 21.1 30.5 17.5 9.0 8.3

By comparing the first row within each scenario in both Tables 3.5 and 3.6, there is

no marked difference between the final recommendations by two estimation methods.

In addition, there is little difference in the final recommendation whether the assumed

model is right or not. However, the Bayesian approach performs consistently better

than the maximum likelihood method in terms of the percentage of identifying the

correct MTS in the simulation trials. More specifically, in scenarios 1-2, the Bayesian

approach has a much higher percentage (over 15% more) of identifying the optimal

schedule 1 or 2 as the MTS than the maximum likelihood method. In scenarios

3-4, the Bayesian approach has a moderately higher percentage (between 3%− 10%
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Table 3.6. Performance of the triangular model with 30 patients by Bayesian Approach.
Each entry on the 1st row is the percentage of simulations a schedule chosen as MTS,
with the average percentage of patients assigned to a given schedule on 2nd line within
each scenario.

Schedule (number of weeks)
Scenario 1 (2) 2 (4) 3 (6) 4 (8) 5 (10) 6 (12)

1 94.5 4.5 1.0 0 0 0
83.5 11.2 4.2 1.1 0 0

2 10.8 79.2 9.3 0.7 0 0
15.7 67.1 11.0 5.1 1.1 0

3 0.8 29.2 54.1 13.1 2.8 0
8.7 26.3 43.7 12.9 5.3 3.1

4 0 5.5 34.4 38.2 18.5 3.4
3.3 6.2 31.3 35.7 16.1 8.4

5 0 0 14.6 27.7 43.1 14.6
3.3 3.3 12.5 29.8 36.1 18.2

6 0 0 1.5 14.6 24.6 59.3
3.3 3.3 4.4 14.3 25.4 49.3

7 11.2 38.7 36.6 9.3 4.2 0
15.3 32.7 28.2 13.6 6.8 3.4

8 2.1 18.1 46.7 25.7 6.2 1.2
4.0 25.1 36.6 27.2 5.2 1.9

9 5.1 26.7 43.3 21.8 3.1 0
9.2 29.3 36.5 19.1 5.1 0.8

more) of identifying the optimal schedule as the MTS than the maximum likelihood

method. In scenario 7, the pattern of the results is similar as those in scenarios 2-3.

The results in scenario 8 follows the same pattern as those in scenarios 3-4. But the

results from both schedules 2 and 3 in scenario 7 or schedules 3 and 4 in scenario 8

are very similar by both estimation methods.

To compare the average subject assignment within a trial by both estimation

methods, we look at second row within each scenario in both Tables 3.5 and 3.6.

We find that the highest average percentage of subjects is assigned to the true MTS

by both estimation methods across all scenarios. More specifically, in scenarios 1-2,
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the highest average percentage of subjects assigned to the true MTS is much larger

(over 15%) than the average percentages of subjects assigned to other schedules.

However, in other scenarios, there usually exists at least one schedule whose average

percentage of subjects assigned to the specified schedule is very close to the highest

average percentage of subjects assigned to the true MTS in a given scenario. This

fact is expected since the rates of toxicity between neighboring schedules are closer

as the true optimal schedule becomes longer and it is harder for any model based

algorithms to distinguish the schedules.

To assess the effect of the model misspecification on identifying the MTS, we

compare scenario 3 to scenario 9 within Table 3.5, then within Table 3.6 when the

data are not from the assumed model but from the same misspecified model in two

simulation studies. The performance of the algorithm in scenario 9 is similar to

that in scenario 3 even though scenario 3 has a higher percentage of identifying

the schedule 3 as MTS and has more subjects assigned to schedule 3 during a trial

on average by both estimation methods. This fact is expected since the subject

assignment during a trial is determined by the timing when a subject is having a

toxicity but the final schedule recommendation is determined by the overall rate of

toxicity in a trial.

Table 3.7. Average number of observed toxicities (out of 30 subjects) in the simulated
trials using the triangular hazard model.

Estimation Scenario
Method 1 2 3 4 5 6 7 8 9

MLE 8.98 7.32 6.23 11.69 10.87 9.44 9.77 8.32 6.24

Bayesian 7.29 6.35 5.97 11.58 10.43 9.96 9.71 8.25 5.39

Table 3.7 displays an interesting side note on the average number of observed

toxicities out of the total 30 patients. The numbers were very close for both methods.
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There was no clear pattern on which method had more observed toxicities across all

scenarios. However, the maximum likelihood method had slightly more toxicities

in all but scenario 6. Note that the scenario 8 had more subjects who experienced

toxicities than scenario 3 but less than scenario 4. This is due to the fact that

scenario 8 had a higher threshold toxicity rate pω = 0.3 than scenario 3 (pω = 0.2)

but lower threshold rate than scenario 4 (pω = 0.4).

Table 3.8. Average number of subjects (out of 30 subjects) had reassignment in the
simulated trials using the triangular hazard model.

Estimation Scenario
Method 1 2 3 4 5 6 7 8 9

MLE 0.78 1.87 4.65 5.23 7.22 8.45 2.86 5.98 5.46

Bayesian 0.69 1.56 4.04 5.13 6.84 8.32 2.28 5.23 4.91

Table 3.8 displays another interesting side note on the average number of subjects

received treatment schedule reassignments out of the total 30 patients. The numbers

were very close by both estimation methods with Bayesian approach having slightly

less numbers across all scenarios. We note that the number of subjects had schedule

reassignments increased as the treatment schedule became longer as is expected. We

also note that the number of subjects received schedule reassignments was larger in

scenario 9 than that in scenario 3. This fact may be due to the reason that more

subjects assigned to longer schedules than MTS in scenario 9 than those in scenario

3.

In this chapter, we used both the maximum likelihood and Bayesian approaches to

estimate the parameters of a triangular hazard model proposed for optimal schedule

finding in multiple treatment schedule setting. We first proposed a new procedure

to derive MLEs for the change-point and boundary parameters. The large sample

properties of the proposed MLEs were also derived. Then we showed these results
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could not be extended to a setting in which multiple administrations are given to

each subjects and the number of the administrations varies among the subjects. To

address this problem, we used the constrained MLEs of reparameterized triangular

hazard function for optimal treatment schedule finding. Via simulation, we demon-

strated both maximum likelihood and Bayesian methods performed well under a

variety of settings, including the setting where the model is misspecified. However,

even in the misspecified prior case, the Bayesian approach had a higher percentage

identifying the correct MTS than the maximum likelihood method.



CHAPTER IV

A Non-mixture Cure Model for Optimal Treatment
Schedule Finding

4.1 Introduction

Despite the advantage of our proposed mixture cure model over the existing trian-

gular hazard model in term of interpreting the cure fraction directly, the mixture cure

model still has its limitations. First, the marginal distribution of the mixture cure

model is a mixture distribution that complicates maximum likelihood estimation.

We introduced a latent variable cure status in the likelihood function and used the

EM algorithm to estimate the parameters of interest. From a computing resource

perspective, this estimation procedure is inefficient compared to the procedure of

maximizing the log-likelihood function directly. Furthermore, we modeled the event

rate as a function of treatment schedule in Chapter II, resulting in a population

hazard function that does not have a proportional hazards (PH) structure, which is

a frequently used feature for most survival models. Even if in the situation where

the PH assumption is not correct, the mixture cure model does not provide a natural

structure for testing the departure from PH assumption.

In this chapter, we propose a non-mixture cure model for optimal treatment sched-

ule finding in early-phase clinical trials using adaptive designs, which overcomes the

limitations just mentioned. We use both maximum likelihood and Bayesian methods

81
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to estimate the unknown parameters and identifying the optimal treatment sched-

ule. Subject accural, data monitoring and outcome-adaptive decision-making are

done sequentially through the simulation studies as in Chapters II and III.

4.2 Model Specification

We first consider the proposed model in a single administration setting. Using

the same notation as in Chapter II, at evaluation time tcur, the amount of time that

a subject has been observed is denoted by T and the indicator of whether or not

a subject is observed with a toxicity prior to time tcur is denoted by C. Let θ,φ

denote the parameters of interest. Then the survival function for T , also known as

the population survival function, is given by

Sp(t|θ,φ) = exp(−θF (t|φ)), θ > 0 (4.1)

where F (t|φ) is a cumulative distribution function (CDF). Since Sp(∞) = exp(−θ)

> 0, the population survival function Sp(t|θ,φ) is not a proper survival function. The

cure rate is Sp(∞) = exp(−θ), with a corresponding event rate, i.e. the probability

of toxicity is 1 − exp(−θ). Furthermore, the population density function is given

by

fp(t|θ,φ) = θf(t|φ) exp(−θF (t|φ))

where f(t|φ) is the probability density function (PDF) corresponding to F (t|φ).

Therefore, the corresponding population hazard function is given by

hp(t|θ,φ) = θf(t|φ),

and the non-mixture cure model yields a multiplicative hazard function in θ and

f(t|φ). This population hazard function has the PH structure if covariate effects

are modeled through θ. But the population hazard function derived from a mixture
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cure model will not have the PH structure even if the covariate effect is modeled

through cure fraction. Furthermore, the PH property in the non-mixture cure model

is computationally attractive as both maximum likelihood and Bayesian approaches

are relatively easy to implement. In addition, even if the PH assumption is not

correct, the non-mixture cure model provides a natural structure for testing the

departure from PH assumption.

In the multiple schedule setting, we assume that k treatment schedules, s(1), ..., s(k),

are investigated in a trial where s(j)=(s1, s2, ..., smj
) and that the jth schedule has

a total of mj administrations. Furthermore, s(j) is nested in s(j+1) for each j =

1, ..., k− 1. We assume that the form of f(.) does not change with successive admin-

istrations. We define the total hazard of toxicity at time t for a subject treated with

schedule s(k) to be

hk(t|φ, θ, s(k)) = θk

∑mk

l=1 f(t− sl|φ)

mk

,

where f(t|φ) was the same as that defined in the single administration setting. We

also put constraints that the total hazard increases as the number of administrations

increases i.e. θk+1/mk+1 ≥ θk/mk. Note that the total hazard is not a sum of hazards

from each administration as was done in the mixture cure model case. We will further

explain the rationale for this approach after we derive the survival function. Then

the cumulative hazard function (CHF) up to t for a subject treated with schedule

s(k) is

Hk(t|φ, θ, s(k)) = θk

∑mk

l=1 F (t− sl|φ)

mk

,

where F (.) is defined as in the single administration setting. Therefore the survival

function up to t for a subject treated with schedule s(k) is given by

Sk(t|φ, θ, s(k)) = exp[−θk

∑mk

l=1 F (t− sl|φ)

mk

].
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We now explain why the CHF Hk(.) is modeled as the average of the CHF from each

administration instead of a sum. In order for Sk(∞) = exp(−θk) to be the cure rate of

treatment schedule k when t approaches ∞, the CHF Hk(t) must approach θk. Since

F (t) is chosen as a CDF and approaches 1 as t approaches ∞,
∑mk

l=1 F (t − sl)/mk

approaches 1 as t approaches ∞ and the CHF Hk(t) approaches θk as t approaches

∞.

In our application, we specify a parametric form for F (.) where

F (t|α, γ) = 1− exp[−tα exp(γ)] (4.2)

follows a Weibull distribution with α ≥ 2 so that the population hazard function

hp(.) has the required non-monotonic pattern that increases to a peak then decreases.

Therefore, the hazard of toxicity attributed to a single administration is modeled by

a Weibull pdf. (See Figure 4.1)

As we discussed in the early part of this section, modeling covariate effects through

θk would allow the population hazard function to have a PH structure. In our ap-

plication, treatment schedule is the only covariate to consider. We chose to adopt

a linear regression model for log-transformed θk i.e. log(θk) = β0 + β1k for simplic-

ity. Since the multiple schedules we investigated are nested, mk = m1k. Then

θk/mk = (exp(β0)/m1)(exp(β1)
k/k) is a non-decreasing function of k when β1 > 0.

Therefore, the constraint θk+1/mk+1 ≥ θk/mk mentioned earlier is satisfied. Thus,

the probability of toxicity at time t is given by

Gk(t|φ, θ, s) = 1 − exp[− exp(β0 + β1k)

∑mk

l=1 F (t− sl|φ)

mk

]

and the probability of toxicity increases as the treatment schedules become longer.

Using the same notation as in Chapter II, we represent the observed data by

Dik = (tik, cik) for the observed time and censoring indicator of the ith sub-
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Figure 4.1. A Weibull pdf as the hazard function for a single administration of an agent
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ject assigned to schedule s(k), respectively, i = 1, ..., nk, where nk is the number

of subjects assigned to schedule s(k). Then the likelihood function of the parameters

β = (β0, β1), φ = (α, γ) can be written as

L(β,φ | D) =
K∏

k=1

nk∏
i=1

(hk(tik|θ))cikSk(tik|θ) (4.3)

=
K∏

k=1

nk∏
i=1

[exp(β0 + β1k)

∑mk

l=1 f(t− sl|φ)

mk

]cik

exp[− exp(β0 + β1k)

∑mk

l=1 F (t− sl|φ)

mk

]
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where D = {Dik, i = 1, ..., nk; k = 1, ..., K}. Then the log likelihood is given by

`(β,φ | D) =
K∑

k=1

nk∑
i=1

[cik log(

mk∑
l=1

f(t− sl|φ)] (4.4)

+
K∑

k=1

nk∑
i=1

[cik(β0 + β1k)]−
K∑

k=1

nk∑
i=1

[ciklog(mk)]−

K∑
k=1

nk∑
i=1

[exp(β0 + β1k)

∑mk

l=1 F (t− sl|φ)

mk

].

4.3 Estimation and Schedule Finding by Maximum Likelihood Method

Consider maximization of the log-likelihood function `(β,φ | D) in (4.4) with

respect to the distribution parameters φ and regression coefficients β. Since the

Weibull family of distributions F (t|φ) satisfy the regularity conditions for MLEs to

exist, the first derivatives about the parameters for gradient vector and the second

derivatives about the parameters for Hessian matrix can be derived from the log-

likelihood function directly. Thus Newton-Raphson method can be used to estimate

the parameters. For our implementation, we have used SAS built-in non-linear opti-

mization procedures called NLPTR which performs well for small- to medium-sized

problems and allows users to specify the linear constraints (include the boundary

constraints) on parameters of interest. The estimation of the probability of toxicity

and identification of the optimal treatment schedule at each evaluation are defined

in Section 2.4.

4.4 Estimation and Schedule Finding by Bayesian Approach

Our schedule-finding algorithm based on a Bayesian approach begins with inde-

pendent informative priors for β and φ. The informative priors may be obtained

either based on historical data from previous single administration studies or by

elicitation from investigators. Since the posterior distributions can not be solved
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analytically under the assumed model, we compute the posterior quantities using

Markov chain Monte Carlo (MCMC) methods. Specifically, a Metropolis-Hastings

algorithm (Robert and Casella, 1999; Gelman et al., 2004) is used. We experiment

with different starting values and are convinced that the chains converge and cover

the entire posterior distribution using multiple sequences and plots. We eliminate

a total of 1000 iterations as burn-in and then generate additional 3000 samples for

summarization.

4.4.1 Priors Based on Historical Data

If dose-toxicity data for a single administration are available from previous studies,

then these data may be used to obtain the priors on φ in the multiple schedule trials.

Denote the time of ith subject in the historical trial by thi and the toxicity indicator

of this subject by chi and all historical data by Dh = {(thi, chi), i = 1, 2, ...nh}, where

nh is the number of subjects in the historical trial. Then the likelihood function of

the available historical data is

Lh(φ, θ | Dh) =

nh∏
i=1

(fp(thi))
chi(Sp(thi))

1−chi

=
n∏

i=1

[θf(thi)]
chi exp[−θF (thi)],

where θ is the cure fraction parameter attributed to one administration and is not

the function of the β in multiple administration setting. Assume a vague prior on

all parameters of interest before the historical data are observed, then the posterior

of φ, θ given the historical data is then fpo(φ, θ | Dh) ∝ Lh(φ, θ | Dh) and the prior

used at the start of the schedule-finding trial is fpo(φ, θ | Dh). The informative priors

based on historical data in cure model setting have been studied extensively by Chen

et al. (1999). We refer readers to their work for more details.
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An alternative way of using the available historical data to define priors is to esti-

mate the parameters of interest by either Bayesian approach or maximum likelihood

method. Refer to subsection 2.5.1 for details. Let µ̂. and σ̂2
. denote the respective

mean and variance of the prior distribution for a parameter of interest derived from

the historical data where ′.′ represents each of parameters α, γ, β0, and β1.

We then select specific functional forms for the prior distributions. Because α > 2,

we assume α − 2 has a gamma distribution with parameters (c1, d1) such that α

has mean c1/d1 and variance c1/d
2
1. Given the prior mean and variance of α that

are derived from historical data, We set c1/d1 + 2 = µ̂α c1/d
2
1 = σ̂2

α, then find

c1 = (µ̂α − 2)2/σ̂2
α and d1 = (µ̂α − 2)/σ̂2

α. Since γ may be any real number, we

assume γ follows a normal distribution with hyperparameters (µγ, σγ) where we set

µγ equal to parameter estimate and σγ equal to the standard deviation of parameter

estimate from historical data.

Furthermore, if dose-toxicity data for a single course consisting of multiple ad-

ministrations are also available from previous studies, then these data can be used

to obtain the priors on β in addition to the α, γ in the multiple schedule trials. Fol-

lowing similar arguments as above, we assume β0 follows a normal distribution with

mean equal to µ̂β0 and variance equal to σ̂2
β0

that are the estimates based on the his-

torical data. Since β1 > 0, we assume β1 has a gamma distribution with parameters

(c2, d2) such that β1 has mean c2/d2 and variance c2/d
2
2. Given the prior mean and

variance of α that are derived from historical data, We set c2/d2 = µ̂β1 c2/d
2
2 = σ̂2

β1
,

then find c2 = (µ̂β1)
2/σ̂2

β1
and d2 = (µ̂β1)/σ̂

2
β1

.

When the individual subject data from trials of the single administration are

available but no data available for a single course, the source for the informative

priors on the parameters of interest can be a mixture of historical data and elicitation
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from the investigators. For example, in our assumed model, the priors for α, γ may

be from historical data while the priors on βi, i = 0, 1 are elicited from investigators.

4.4.2 Elicited Priors

When individual subject data from trials of the single administration or a single

course are not available, informative priors must be elicited from investigators. This

may be done in various ways, with the particular elicitation method tailored to

the clinical setting and investigators’ level of technical expertise. We employed the

following method in our simulation trials.

When no historical data are available, we consider the specific forms of the prior

distributions with slightly different hyperparameterization from the case when his-

torical data are available. We assume α − 2 has a Gamma distribution with mean

µα and variance µαδα, as we need α ≥ 2 to create our non-monotonic hazard. We

assume the remaining parameters each have a similar prior distribution as that in

subsection 4.4.1.

With regard to the cure fraction parameters β, we ask the investigators to specify

an a priori value, Pk, for the cumulative probability of toxicity for schedule k, k =

1, 2, . . . , K. Based upon the simple linear regression model E{log[− log(1− Pk)]} =

b0 + b1k, we use ordinary least squares to find estimates of b0 and b1; we let µβ0 equal

the estimate of b0 and µβ1 equal the larger of 0.01 and the estimate of b1.

With regard to the hazard shape parameters φ, we ask the investigators to spec-

ify an a priori value for the limiting cumulative probability of toxicity for a single

administration. We denote this value Q0 and note that Q0 must be less than the

value of P1 elicited earlier. We also ask investigators to select two time points t1 and

t2 and supply a priori values Q1 and Q2 for the cumulative probabilities of toxicity

at t1 and t2, respectively, for a single administration. Based upon Equation (4.1),
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we first derive the value θ∗ = − log(1 − Q0). Plugging θ∗ and Equation (4.2) into

Equation (4.1), some algebra gives us two equations in terms of two parameters a

and g:

log{− log[1 + log(1−Q1)/θ
∗]} = a log(t1) + g

log{− log[1 + log(1−Q2)/θ
∗]} = a log(t2) + g

If we let â and ĝ denote the respective solutions to a and g in the above equations,

we set µα = max{2.01, â} and µγ = ĝ.

4.4.3 Calibrating the Prior Distributions of Parameters of Interest

We emphasize that sufficient attention must be given to selection of the variance

hyperparameter values, as they cannot be made arbitrarily large, as is often done

with Bayesian analysis of large data sets. In our research setting, very few data are

available, especially at the beginning of a trial. If the prior distribution is spread over

too broad range, the algorithm will run poorly, severely hindering our algorithm’s

ability to identify optimal schedules during a trial. Therefore, sensitivity analysis of

priors on parameters of interest is essential in order for the data to dominate the prior

distribution in adaptive early-phase clinical trials. As a result, those initially esti-

mated hyperparameters still need fine tuning for priors to work in conjunction with

the data to allow the schedule-finding algorithm provide a safe and reliable design.

However, the calibration methods are different depending on how the informative

priors are derived.

When historical data are available, the following calibration methods are used.

Recall the prior on α follows a gamma distribution with parameters (c1, d1). We set

c1 = aĉ1 and d1 = ad̂1 where ĉ1 and d̂1 are the initial estimates of (c1, d1) derived from

the historical data. The tuning constant a scales the values of (c1, d1) and modulates
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the variability of f(α). In addition, the prior on γ follows a normal distribution

N(µγ, σγ). We set µγ = µ̂γ, σγ = bσ̂γ where µ̂γ and σ̂γ are the initial estimates of

(µγ, σγ) based on historical data. b is the tuning constant in the sensitivity analysis

of priors on γ. Similarly, the prior on β0 follows a normal distribution N(µβ0 , σβ0)

where we set µβ0 = β̂0, σβ0 = dσ̂(β0) and d is a tuning constant used to modulate

the variances of β0 in the sensitivity analysis of the prior on β0. Since the prior on β1

follows a gamma distribution with parameters (c2, d2). We set c2 = eĉ2 and d2 = ed̂2

where ĉ2 and d̂2 are the initial estimates of (c2, d2) derived from the historical data.

The tuning constant e scales the values of (c2, d2) and modulates the variability of

f(β1). By simulating the toxicity times of a small number of subjects, we can compare

the prior means for φ and β to their respective posterior values and evaluate the

effects of a small amount of data on priors.

When no historical data available, we adopt the following calibration methods.

Our approach is to set δα = 1.0 and σ∗ = 0.10µ∗, where the asterisk represents each

of parameters of interest, γ, β0, and β1. Through trial-and-error with several small

simulation studies, we modulate the variances until we find suitable values. For

example, by simulating the first five subjects to experience toxicity on the shortest

schedule, we can compare the posterior means for φ and β to their respective prior

means to determine values of the variances that allow the data to overcome the prior.

Another consideration of the influence of the priors is to examine the resulting

value of F (ω|φ, s(j)) for each schedule s(j) to determine whether the prior may pro-

duce pathological behavior by placing too much of the probability mass of F (ω|φ, s(j))

near 0 or 1 because the consequent distribution of F (ω|φ, s(j)) determine which sched-

ule to be identified as MTS.

We also used misspecified priors such that the prior means are different from the
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true parameters of interest. The simulation results changed slightly, but overall, the

final conclusions were relatively unchanged. Thus the proposed model is insensitive

to the misspecified priors and different starting values as long as the priors are

informative at the beginning of a trial but do not dominate the data at later points

in the trial.

4.5 Application to KGF trial

In this section, we investigate the performance of the proposed non-mixture

cure model in optimal treatment schedule finding via simulation studies using both

Bayesian and maximum likelihood approaches. All results are produced in SAS.

The KGF trial is described in the motivating example of Chapter II. In this

section, we implement this trial using our proposed non-mixture cure model under

different study set up scenarios. In order to compare the performance of the maxi-

mum likelihood and the Bayesian approaches, we use the same true parameter values

for both methods. To be consistent with the simulation set up for other proposed

models in previous chapters, we rescale the time such that 1 unit time in Braun

et al. (2005) as 0.1 unit time in our simulation studies. Then, we can compare the

performance of different proposed models by the same estimation method in scenario

9. The true parameter values are shown in Table 4.1, which also contains the actual

day 100 (ω = 10 in simulations) probability of toxicity for each schedule under all

scenarios.

To be consistent with application set up in the previous chapters, we use very

similar study settings in this section. We summarize the main ideas as follows. We

consider 6 therapy schedules in our simulation studies, s(1), ..., s(6), in which s(k) do

not have natural units and s(k) = {slk, l = 1, ...,mk} for k = 1, ..., 6. We study the
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Table 4.1. True parameter values of the non-mixture cure model for simulation studies

True Toxicity Prob of Schedule Threshold Prob
Scenario α γ β0 β1 1 2 3 4 5 6 of Toxicity

1 3 0 -1.97 0.47 0.20 0.30 0.43 0.60 0.77 0.90 0.2

2 3 0 -2.27 0.39 0.14 0.20 0.28 0.38 0.51 0.65 0.2

3 3 0 -2.40 0.30 0.11 0.15 0.20 0.26 0.33 0.42 0.2

4 3 0 -2.11 0.36 0.16 0.22 0.30 0.40 0.52 0.65 0.4

5 3 0 -2.47 0.36 0.11 0.16 0.22 0.30 0.40 0.52 0.4

6 3 0 -2.82 0.36 0.08 0.11 0.16 0.22 0.30 0.40 0.4

7 3 0 -2.27 0.49 0.15 0.24 0.36 0.52 0.69 0.85 0.3

8 3 0 -3.26 0.69 0.07 0.14 0.26 0.45 0.69 0.90 0.3

9 na na -2.40 0.30 0.11 0.15 0.20 0.26 0.33 0.42 0.2

design with a maximum sample size of 30 patients. In each simulation, the subject

interarrival times are assumed to be uniformly distributed from 12 to 16 days.

We examine the design’s performance in nine scenarios using the criterion specified

in Section 2.4. In the first six scenarios, schedule s(j) is optimal under the jth

scenario for j = 1, ..., 6. In scenario 7, the true MTS is located midway between

schedule 2 and 3, while in scenario 8, the target schedule (MTS) lay between schedule

3 and 4 but much closer to schedule 3. In scenario 9, we examine the design’s

performance under model misspecification, where schedule 3 is the true MTS, but

the data is not simulated from the assumed non-mixture cure model with Weibull

distribution. Instead, we model the toxicity to occur uniformly over the interval

[10 + 14(j − 1), 10 + 14j] under schedule s(j). Except in scenario 9, the actual times

to toxicity are simulated assuming the parameter values shown in Table 4.1 under

the non-mixture cure model with Weibull distribution of parameter values α = 3 and

γ = 0;

When using a Bayesian approach, All the priors are informative, which mean their



94

variations are relatively small compared to the conventional priors for the studies with

large sample size. With regard to the prior distributions for φ and β, we use the

elicited values from the investigators as in Table 4.1. For example, the investigators

supply the values P1 = 0.08, P2 = 0.11, P3 = 0.16, P4 = 0.22, P5 = 0.30, P6 = 0.40,

corresponding to the scenario 6 in Table 4.1. Thus, they believe the longest schedule,

s(6), is optimal, a belief that leads to a misspecified prior for the first five scenarios.

Similarly, we can use any other row of probabilities of toxicity to specify the priors

for the β as long as the row we choose is the investigators’ belief. The investigators

also believe that one administration has a limiting cumulative probability Q0 = P1/6

(one-sixth of the shortest schedule), with corresponding cumulative probabilities of

toxicity Q1 = Q0/4 and Q2 = Q0/2 at times t1 = 6 days and t2 = 9 days, respectively.

From these elicited values, we used the methods described in Section prior elicitation

to estimate the mean hyperparameter values µα = 2.9, µγ = −0.1, µβ0 = −2.9 and

µβ1 = 0.36.

4.5.1 Study Result & Conclusion

Tables 4.2, 4.3 and 4.4 display the simulation results for our current model. Table

4.2 displays the estimated parameter values and corresponding standard deviations

under all scenarios. Tables 4.3 and 4.4 summarize the respective frequency at which

each schedule is chosen as MTS by maximum likelihood and Bayesian approaches.

Within each scenario in Table 4.3 and 4.4, each entry on the first row is the percentage

of simulations in which a given schedule is identified as the MTS while the entry on

the second row is the average percentage of subjects assigned to a given schedule

during a trial.

We can see from Table 4.2 that the biases of parameter estimates by maximum

likelihood are larger than those by Bayesian approach in most scenarios. Further-
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Table 4.2. Estimated parameter values of the non-mixture cure model. Each entry is
the estimated parameter value (standard deviation).

Estimation Estimated Value of
Scenario Method α γ β0 β1

1 MLE 2.97 (1.55) -0.18 (0.25) -2.10 (1.59) 0.53 (0.43)
Bayesian 3.06 (1.13) -0.10 (0.13) -2.00 (1.12) 0.54 (0.27)

2 MLE 3.23 (1.71) -0.19 (0.38) -2.85 (1.86) 0.52 (0.51)
Bayesian 3.31 (1.18) 0.06 (0.21) -2.50 (1.16) 0.44 (0.22)

3 MLE 3.47 (1.73) 0.15 (0.35) -2.93 (2.15) 0.46 (0.46)
Bayesian 3.28 (1.22) -0.07 (0.19) -2.53 (1.18) 0.37 (0.29)

4 MLE 3.14(1.88) -0.19 (0.28) -2.67 (2.05) 0.51 (0.57)
Bayesian 3.22 (1.26) 0.07 (0.23) -2.22 (1.19) 0.41 (0.25)

5 MLE 3.26 (1.81) 0.17 (0.37) -3.00 (2.49) 0.51 (0.60)
Bayesian 3.11 (1.23) 0.09 (0.23) -2.57 (1.34) 0.43 (0.23)

6 MLE 3.41 (1.45) -0.17 (0.38) -3.22 (3.03) 0.48 (0.59)
Bayesian 3.27 (1.15) -0.11 (0.27) -2.98 (1.27) 0.44 (0.34)

7 MLE 2.81 (2.18) -0.15 (0.47) -2.80 (2.10) 0.61 (0.62)
Bayesian 3.13 (1.77) 0.13 (0.31) -2.35 (1.28) 0.56 (0.38)

8 MLE 2.92 (2.72) 0.17 (0.49) -3.65 (2.09) 0.81 (0.89)
Bayesian 3.15 (1.43) -0.07 (0.33) -3.39 (1.60) 0.72 (0.65)

more, the standard errors by maximum likelihood are consistently greater than those

by Bayesian approach among all scenarios. Those facts may be due to the small

sample size in our simulation studies and informative priors used in our Bayesian

procedures. Despite the above facts, the parameter estimates are very close to the

true values provide confidence for us to interpret the results in Tables 4.3 and 4.4.

After a direct comparison of the two estimation methods ( first line in Table 4.3 vs

first line in Table 4.4 within each scenario), we find that Bayesian approach perform

consistently better than maximum likelihood method when the priors chosen in the

Bayesian procedures are informative at the beginning of a trial but do not dominate

the data at later points in a study. However, both methods lead to similar conclusions

as far as the final recommendation for the optimal schedule. Specifically, in scenarios

1 & 2, the Bayesian approach has a much higher percentage (over 15% more) of
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Table 4.3. Performance of the non-mixture cure model with 30 patients by maximum
likelihood method. Each entry on the 1st row is the percentage of simulations a schedule
chosen as MTS, with the average percentage of patients assigned to a given schedule
on 2nd line within each scenario.

Schedule (number of weeks)
Scenario 1 (2) 2 (4) 3 (6) 4 (8) 5 (10) 6 (12)

1 72.2 25.6 1.8 0.4 0 0
63.3 23.3 7.2 4.1 2.1 0

2 21.8 46.3 19.7 8.7 5.3 1.2
28.4 36.2 17.2 9.2 6.4 2.6

3 9.7 23.9 42.9 13.4 6.2 4.8
11.9 23.4 35.8 15.4 8.8 4.6

4 5.2 8.8 22.7 41.1 16.4 5.9
6.8 14.1 19.1 37.2 14.3 8.4

5 2.6 7.4 10.4 19.9 40.2 19.5
3.6 8.1 12.2 21.8 33.2 21.2

6 2.9 4.1 6.7 11.4 21.7 53.2
3.3 5.6 7.4 18.6 25.6 39.5

7 13.7 42.1 39.1 4.7 0.4 0
17.1 34.4 32.1 9.5 4.3 2.6

8 3.7 15.5 44.3 26.1 9.4 1.0
3.5 23.6 36.1 25.1 8.7 3.0

9 16.1 22.2 37.4 17.3 5.0 2.0
16.2 17.9 32.9 16.7 10.2 6.1

identifying the true optimal schedule as the MTS than the maximum likelihood. For

example, Bayesian approach has about 91% and 69% of identifying schedule 1 and

2 as the MTS while the maximum likelihood has about 72% and 46% in scenario

1 and 2, respectively. We suspect this fact is due to the following reasons. First,

we start a trial at the lowest schedule and only allow incremental escalation during

a trial. Second, Bayesian estimation approach produces much smaller variations of

parameter estimates than maximum likelihood estimation method. Therefore, it is

easier for Bayesian method to distinguish schedule 1 or 2 as MTS than maximum

likelihood in scenarios 1 and 2 (when the schedule 1 or 2 is the true optimal schedule).
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Table 4.4. Performance of the non-mixture cure model with 30 patients by Bayesian
approach. Each entry on the 1st row is the percentage of simulations a schedule chosen
as MTS, with the average percentage of patients assigned to a given schedule on 2nd
line within each scenario.

Schedule (number of weeks)
Scenario 1 (2) 2 (4) 3 (6) 4 (8) 5 (10) 6 (12)

1 91.3 8.7 0 0 0 0
77.2 22.6 0.2 0.1 0 0

2 14.9 68.8 15.6 0.7 0. 0
15.9 51.4 18.2 11.9 3.6 0

3 4.4 17.4 53.1 18.3 6.3 0.5
10.8 22.3 38.7 15.9 9.2 3.1

4 1.2 6.4 29.4 44.1 15.8 3.1
5.1 9.6 23.2 40.3 14.8 7.0

5 0 2.8 5.2 29.8 45.1 17.1
3.4 6.8 11.8 22.1 37.7 18.2

6 0 2.8 4.8 6.9 23.6 61.9
3.3 5.2 9.3 14.3 21.9 46.0

7 9.6 45.7 38.1 6.6 0 0
16.6 37.5 29.2 9.6 5.1 2.1

8 2.4 12.6 45.8 28.6 8.4 2.1
4.6 11.0 39.0 29.6 9.2 6.5

9 4.8 29.2 41.7 20.8 3.5 0
9.8 21.3 35.7 21.9 8.2 3.1

Furthermore, in scenarios 3-6, the Bayesian approach has a moderately higher

percentage (about 5% to 10% more) of identifying the true optimal schedule as the

MTS than the maximum likelihood. In scenario 7, both methods produce very sim-

ilar results because the true MTS is midway between schedules 2 and 3. However,

in scenario 8, the Bayesian approach has a higher percentage of identifying schedule

3 or 4 as the MTS than the maximum likelihood, even though the percentage of

identifying both schedule 3 and 4 as the MTS are very similar for both methods

because the true optimal schedule is somewhere closer to schedule 3 than to schedule

4. These results are expected as our algorithm should work well in optimal sched-
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ule finding even when no true treatment schedule exists among the given multiple

schedules, but there only existis a schedule that is close to the true MTS or the true

MTS is between two existing schedules.

We then compare the second line in Table 4.3 to second line in Table 4.4 within

each scenario and find that the highest average percentage of subjects in each scenario

in a simulation trial is assigned to the true optimal schedule by both estimation

methods. More specifically, under scenario 1, on average, about 63% (the highest

percentage) of subjects is assigned to schedule 1 in a simulation trial using the

maximum likelihood while about 77% (the highest percentage) of subjects is assigned

to schedule 1 using the Bayesian method. Furthermore, under scenarios 5 and 6, the

Bayesian approach achieves the optimal schedule faster than the maximum likelihood

because the up-down-scheme used in the maximum likelihood at the beginning of

a simulation trial slows down the escalation process by grouping when the longer

schedule (schedule 5 or 6) is the true optimal schedule. We also note that more

subjects are assigned to the schedules shorter than true MTS than those schedules

longer than the true MTS. This result indicates that the safety constraints described

in Section 2.4 are implemented fairly well in our simulation studies.

To assess the impact of model misspecification on optimal treatment schedule

finding, we first compare scenario 3 to scenario 9 in Table 4.3, then in Table 4.4.

In general, we find that the ability of our algorithm to correctly identify the MTS

is relatively unaffected by model misspecification using both estimation methods,

although, fewer subjects are assigned to the true MTS when our assumed model

does not reflect actual toxicity times. This result is expected, as schedule assignment

during the study will be impacted by when each subject is having toxicity, while the

final decision of the study is only impacted by the overall rate of toxicity.
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Table 4.5. Average number of observed toxicities (out of 30 subjects) in the simulated
trials using the non-mixture cure model.

Estimation Scenario
Method 1 2 3 4 5 6 7 8 9

MLE 8.85 8.05 6.58 11.22 10.91 9.06 9.93 9.15 6.41

Bayesian 7.94 7.12 6.31 12.09 11.15 9.92 10.11 8.45 5.98

An interesting note is about the average number of observed toxicities out of the

total 30 patients, which is displayed in Table 4.5. Overall, the numbers of observed

toxicities are very similar for both methods with the differences between the two

methods are less than 1 across all scenarios. We also observe that on one hand, the

numbers of observed toxicity are slightly larger in scenarios 1-3 by the maximum

likelihood than those numbers by the Bayesian approach. On the other hand, the

numbers of observed toxicity are smaller in scenarios 4-6 by the maximum likelihood

compared to those numbers by the Bayesian approach. We suspect this fact may be

due to the reason that more subjects are assigned to shorter schedules in scenarios

1-3 while more subjects are assigned to longer schedules in scenarios 4-6 using the

Bayesian approach compared to using the maximum likelihood method.

Furthermore, we note the following pattern: the decreasing mean number of ob-

served toxicities from scenarios 1-3 and from scenarios 4-6 but the average number

of toxicity in scenarios 4-6 are larger than those in scenarios 1-3 using both meth-

ods. These facts are due to the simulation set up. We assume that the threshold of

probability of toxicity is 0.2 for scenarios 1-3 while the threshold is 0.4 for scenarios

4-6. In addition, we find that the numbers in scenario 3 are very similar to those in

scenario 9 by both estimation methods because the probability of toxicity set up in

two scenarios are exactly same even though the data are simulated under different

models.
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Table 4.6. Average number of subjects (out of 30 subjects) had reassignment in the
simulated trials using the non-mixture cure model.

Estimation Scenario
Method 1 2 3 4 5 6 7 8 9

MLE 0.36 1.76 4.36 5.47 6.95 7.24 3.08 4.69 4.57

Bayesian 0.12 1.63 3.37 5.61 7.09 7.58 2.46 4.31 3.54

Another interesting side note is in regard to the average number of subjects out of

30 subjects who received a reassignment to their originally assigned schedule, which

is displayed in Table 4.6. The numbers are very similar using both methods with

the Bayesian method having slightly larger numbers for scenarios 1-3 and having

slightly smaller numbers for scenarios 4-6. Overall, the number of subjects with

treatment reassignment increases as the true optimal treatment schedule becomes

longer, which is expected. Furthermore, we note the numbers in scenario 3 are very

close to those in scenario 9 by both approaches because the probability of toxicity

set up in two scenarios are exactly same and both scenarios have schedule 3 as the

true MTS although the data are simulated from different models. It is nonetheless

interesting to note that the working model affects very weakly on the results.

We have developed a non-mixture cure model with additive hazard to identify

an optimal schedule among a fixed number of nested treatment schedules using both

maximum likelihood and Bayesian approaches. Subject accrual, data monitoring and

outcome adaptive decision-making are done sequentially and continuously through-

out Phase I trials. Via simulation, we have demonstrated the excellent operating

characteristics of our algorithm when the assumed model is correct or misspecified,

as well as when the prior is correctly or incorrectly specified.



CHAPTER V

Summary and Future Research

5.1 Summary

This dissertation extends the optimal treatment schedule finding method proposed

in Braun et al. (2005) by using both maximum likelihood and Bayesian methods, by

proposing more smooth parametric models. More specifically, we have developed

three classes of additive hazard models to identify an optimal schedule among a

fixed number of possible nested treatment schedules. The first class of the proposed

parametric models is the pseudo non-mixture cure model. The triangular hazard

model discussed in Chapter III is an example of this class of models. The second

class of the proposed parametric cure models is the mixture cure model where the

treatment schedule effect is modeled through the cure fraction. The sectional Weibull

hazard model discussed in Chapter II is an application of this class of models. The

third class of the proposed parametric models is the non-mixture cure model. The

Weibull density function (as a hazard) model we discussed in Chapter IV is an illus-

tration of this class of model. We demonstrated the applications of these parametric

models through simulation studies and compared their performance by two different

estimation methods.

There are similarities among the three classes of proposed models. We first com-
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pare the first class of models to the third class. Returning to Equation (4.1), the

survivor function of a single administration, we note that the triangular model of

Braun et al. (2005) can be viewed as a pseudo non-mixture cure model. Both θ1

and θ3 in the triangular model share the roles of our parameters α and γ and relate

most to when toxicity occurs, while θ2 in the triangular model relates most to the

cumulative probability of toxicity like our parameter θ in the non-mixture cure model

which we then generalize to accommodate multiple administrations.

We then compare the second class of models to the third class. There is a distinct

mathematical connection between a mixture cure model and a non-mixture model.

We use the single administration setting to illustrate the mathematical connection.

Suppose that p is the event rate and S(.) is the survival function for subjects experi-

encing toxicity. Then from the population survival function (4.1) in the non-mixture

cure model, we obtain the survival function for those with toxicity as

S(t) = P (T > t|T <∞) =
exp(−θF (t))− exp(−θ)

1− exp(−θ)

where p = 1− exp(−θ). Then, we can write Sp(t) = 1− p+ pS(t). Thus Sp(t) is a

mixture cure model with event rate p and survival function S(t) for those subjects

experiencing toxicity. This shows that every non-mixture cure model defined as (4.1)

can be written as a mixture cure model. This result also implies that every mixture

cure model corresponds to some model of the form (4.1) for some θ and F (.). If the

covariate effects are modeled through θ, then the entire population is modeled as a

proportional hazards (PH) model in a non-mixture cure model whereas only those

with toxicity can be modeled with a PH structure in a mixture cure model.

Even though there is a mathematical relationship between the non-mixture cure

model and the mixture cure model, the non-mixture cure model has some distinct

advantages over the mixture cure model from application perspective. As we discuss
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in the previous paragraph, the non-mixture cure model facilitates the PH structure

naturally which is a frequently used property in most clinical trials. For example,

the non-mixture cure model can directly incorporate subject-specific covariates into

regression model for the cure fraction, while still allowing the pattern of toxicity to

remain constant among subjects, i.e. proportional hazards. Even in applications

that the PH assumption may be violated, the non-mixture cure model still provide

a natural structure for testing the departure from the PH assumption. Furthermore,

the non-mixture cure model allows for a broader family of parametric models, such

as the toxicity time patterns beyond the up-and-down (non-monotonic) pattern we

required because parametric models are more attractive in adaptive early-phase clin-

ical trials. Most importantly, the non-mixture cure model offers certain technical

advantages when developing maximum likelihood or Bayesian estimation procedures

because of the usual properties of standard lifetime distributions, i.e. continuity,

infinite support on positive real line, etc. Therefore, we prefer a non-mixture cure

model with Weibull family of distributions in optimal treatment schedule finding.

Via simulation, we demonstrate both maximum likelihood and Bayesian approaches

performed well under broad range of scenarios we investigated, including the case

when the model was misspecified. But with the maximum likelihood method, the es-

timated parameters had a larger variability compared to the results by the Bayesian

approach due to small sample size of early-phase clinical trials. With the Bayesian

approach, we had to use informative priors in our application due to the same rea-

son. As a result, we had to carefully choose a tuning parameter to allow the prior

provide enough information at the beginning of an adaptive early-phase trial but not

dominate the posterior at later point in the given trial.

However, even in the case when the priors were misspecified, the Bayesian ap-
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proach still had a higher percentage of identifying the correct MTS than the max-

imum likelihood method. Therefore, we would prefer a Bayesian approach over a

maximum likelihood method in adaptive early-phase clinical trials because a max-

imum likelihood method requires a two-stage design. Before any toxicity occurs, a

traditional up-down scheme or a Bayesian approach is used to initiate the trial. Once

a toxicity occurs and more than 15 subjects are enrolled in our simulated trials (the

number of the subjects enrolled in a trial at switching point may be different for

different application problems, the 15 is applicable to our application in the KGF

trial), then the trial switches to a maximum likelihood method. With a Bayesian

approach, no such two-stage design is necessary.

Furthermore, comparing the three classes of proposed models via simulation,

Bayesian approaches slightly overestimated the probabilities of toxicity so that more

subjects were assigned to the schedules shorter than the true MTS compare to the

schedules longer than the true MTS in our simulation studies. Overall, a Bayesian

approach performed fairly well for any assumed models in our simulation studies

where the toxicity rates of the treatment schedules were moderate. We also conclude

that what matters are the toxic probabilities of each schedule and not so much the

models generating these probabilities.

5.2 Future Research

Via simulation, we have demonstrated the excellent operating characteristics of

our algorithms no matter whether the assumed models are correct or misspecified.

However, we have not been able to determine which proposed model is optimal

from the perspective of statistical criteria for model selection. Therefore, we plan

to further investigate statistical methods for model selection in multiple treatment



105

schedule setting. Since our simulations have demonstrated the Bayesian approaches

constantly performed better than maximum likelihood methods in adaptive early

phase clinical trials, we plan to use Bayesian model selection methods. Berger and

Pericchi (1997) listed many advantages of Bayesian approaches to model selection;

the advantage most relevant to our discussion is that Bayesian model selection does

not require nested models (our three proposed models are not nested) nor standard

distributions and regular asymptotic results (two of our proposed models have a

change point in the hazard function).

Seltman et al. (2001) used Bayes factors and posterior model probabilities for

selecting optimal models in the case of survival models with a cure fraction. Schwarz

(1978) derived the Bayesian Information Criterion (BIC) as a large sample approx-

imation to twice the logarithm of the Bayes factor. Another model selection proce-

dure is based on a cross-validation predictive check (Stone, 1974; Geisser, 1993) and

is called the conditional predictive ordinate (CPO) (Gelfand et al., 1992; Geisser,

1993 and Gelfand, 1995). One attractive feature of the CPO is that it does not

require proper priors. As a result, it has been used extensively in the literature for

model selection. Chen et al. (2002) used for non-mixture cure model selection. Dey

et al. (1995) used for determining the number of components in a mixture distri-

bution. Gelfand (1995) demonstrated good performance of various Bayesian model

determination techniques in investigating nonlinear mixed-effects models on a small

data set. However, little research exists on the small-sample performance of Bayesian

model selection techniques in the area of cure models. Furthermore, Yu (2004) con-

ducted a simulation study to compare the performance of the three Bayesian criteria:

BIC, posterior model probabilities, and the CPO statistic, in model selection of cure

models. Their research demonstrated that the CPO performed reasonably well in
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most settings and much better than both Bayes factors and BIC.

Therefore, we choose CPO as our criterion for model selection. Specifically, we

will calculate the CPO for each observation under the three proposed models and

derive the B* statistic proposed by Gelfand et al. (1992) related to the CPO of each

model. The B* statistic is more useful than the CPO when comparing more than two

models simultaneously; the model with the larger B* statistic is judged the better

fitting model.

Under our model, one could observe only patients who receive the shortest se-

quence, s(1) to make predictions about any s(j), j ≥ 1. We are exploring the possi-

bility of loosening strong homogeneity assumption on the hazard of toxicity at each

administration. For example, we consider develop models that account for inhomo-

geneity across schedules. Back to the motivating example, suppose one course of

treatment is composed of administrations at day 1, day 2 and day 3 then 4 days off,

then another 3 days of administrations. If we assume the hazard of toxicity at day 1

follows a Weibull PDF, then we could model the hazard of toxicity at later adminis-

trations follow the similar Weibull PDF pattern with a different normalization factor

depending on the dose response relationship, which might possibly be determined

from the historical data. If no related historical data were available, we could also

solicit the hazard of toxicity pattern from the investigators in order to determine our

hazard function structure for later administrations.

Braun et al. (2005) have recently updated their algorithm to allow the dose to vary

among administrations by modeling each of their triangular parameters to vary as a

parametric function of dose (Braun et al. (2007)). We plan to make similar updates

to our algorithm by including dose as a covariate in our model for the cure fraction.

Such an approach would assume proportional hazards among doses, although we
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could also allow the parameters α and γ to vary by dose if proportional hazards was

not a reasonable assumption. We can also easily generalize our model to allow for

hazards that change with each administration by modeling the hazard parameters

as a function of administration number.

We could also extend our models to allow for optimal treatment schedule find-

ing with combinations of two agents where both agents have a multiple treatment

schedule. In this scenario, our outcome remains the time to toxicity; however, the

non-mixture cure model would incorporate main effects of both agents into the cure

fraction, as well as a term for any possible interaction between the agents. The more

challenging aspect of this design is how to incorporate both agents into the time to

toxicity hazard, as the two agents will likely differ in both the number of administra-

tions, as well as the times of administration. Nonetheless, once we have a reasonable

model, the Bayesian estimation procedures developed in this dissertation could be

used in this design.

Most importantly, our model can be adopted for any clinical trial in which investi-

gators wish to measure the impact of multiple administrations on a binary outcome.

Thus, our algorithm could be used in a Phase II study seeking to determine how

many administrations are necessary for a desired rate of efficacy, or in a Phase III

study comparing two different schedules or doses of the same agent or two different

agents in a large sample of (randomized) subjects. Furthermore, if our methods were

applied to a large cohort of subjects like that in a Phase III trial, we could model

the single-administration hazard non-parametrically with standard techniques rather

than forcing a parametric model on the event times.

Even though our proposed models have been focused on Phase I trials evaluating

the safety of multiple treatment schedules, we could also extend our methodology
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to evaluate simultaneously the safety and efficacy of multiple administrations like

that proposed by Thall and Cook (2004) for single administration setting. In this

case, our responses would be bivariate outcomes with a safety outcome as time to

events and an efficacy outcome as categorical or continuous. If the efficacy outcome

is also time to events and a non-mixture cure model is a reasonable assumption in

the application, then our non-mixture cure model could be extended to a bivariate

non-mixture cure model with a shared frailty to account for the correlation between

the failure times. New Bayesian estimation procedures need to be developed for the

bivariate case.
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APPENDIX A

Proofs for Theorems in This Dissertation

A.1 Proofs for Theorems in Chapter III

Proof of Theorem 1: From the log likelihood function (3.4), we derive the first

derivative about θ1 as

∂

∂θ1

`n(θ) =
∂

∂θ1

Q1(θ1, θ3)− θ2
∂

∂θ1

Q2(θ1, θ3). (A.1)

First, if θ1 ∈ (0, T1], we can simplify Q1(θ1, θ3) and Q2(θ1, θ3) as

Q1(θ1, θ3) =
n∑

i=1

log

[
θ3 − Ti

θ3 − θ1

]
Q2(θ1, θ3) =

1

2

n∑
i=1

[
θ3 −

(θ3 − Ti)
2

θ3 − θ1

]
.

The first order derivatives of Q1(θ1, θ3) and Q2(θ1, θ3) about θ1 are

∂

∂θ1

Q1(θ1, θ3) =
n

θ3 − θ1

∂

∂θ1

Q2(θ1, θ3) = −
∑n

i=1(θ3 − Ti)
2

2(θ3 − θ1)2

We can see for θ1 ∈ (0, T1],
∂

∂θ1
`n(θ) > 0, therefore `n(θ1) is strictly increasing over

(0, T1]. The maximum value of `n(θ1) is attained at T1.
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Second, if θ1 ∈ [Tn, θ3), Q1(θ1, θ3) and Q2(θ1, θ3) can be simplified as

Q1(θ1, θ3) =
n∑

i=1

log

[
Ti

θ1

]
Q2(θ1, θ3) =

1

2

n∑
i=1

[
T 2

i

θ1

]
.

The first order derivatives of Q1(θ1, θ3) and Q2(θ1, θ3) about θ1 are

∂

∂θ1

Q1(θ1, θ3) = − n

θ1

∂

∂θ1

Q2(θ1, θ3) = −
∑n

i=1 T
2
i

2θ1
2

In order to have ∂
∂θ1
`n(θ) ≤ 0 in the interval [Tn, θ3), We need to have θ1 ≥ θ2

∑n
i=1 T 2

i

2n
.

Since Ti ≤ Tn,
θ2

∑n
i=1 T 2

i

2n
≤ θ2T 2

n

2
. When θ1 ∈ [Tn, θ3), θ1 > Tn. Then θ2T 2

n

2
≤ θ2θ1

2

2
.

From the assumption θ2 <
1
θ1

, θ2θ1
2

2
≤ θ1

2
< θ1. Therefore, `n(θ1) is decreasing. This

will guarantee that the maximum value of `n(θ1) is attained at Tn when θ1 ∈ [Tn, θ3).

Finally, if θ1 in [Tr, Tr+1] where 1 ≤ r ≤ (n − 1), we can simplify Q1(θ1, θ3) and

Q2(θ1, θ3) as

Q1(θ1, θ3) =
r∑

i=1

log

[
Ti

θ1

]
+

n∑
i=r+1

log

[
θ3 − Ti

θ3 − θ1

]
(A.2)

Q2(θ1, θ3) =
1

2

r∑
i=1

[
T 2

i

θ1

]
+

1

2

n∑
i=r+1

[
θ3 −

(θ3 − Ti)
2

θ3 − θ1

]
. (A.3)

The first order derivatives of Q1(θ1, θ3) and Q2(θ1, θ3) about θ1 are

∂

∂θ1

Q1(θ1, θ3) = − r

θ1

+
n− r

θ3 − θ1

=
−rθ3 + nθ1

θ1(θ3 − θ1)
(A.4)

∂

∂θ1

Q2(θ1, θ3) = −
∑r

i=1 T
2
i

2θ1
2 −

∑n
i=r+1(θ3 − Ti)

2

2(θ3 − θ1)2
(A.5)

For θ1 ∈ [Tr, Tr+1], if −rθ3+nθ1 ≥ 0, then ∂
∂θ1
`n(θ) > 0, so `n(θ1) is strictly increasing

over [Tr, Tr+1]. The maximum value of `n(θ1) is attained at Tr+1. If −rθ3 + nθ1 < 0,
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then ∂
∂θ1
`n(θ) may <= 0 then > 0. Furthermore, the second order derivatives of

Q1(θ1, θ3) and Q2(θ1, θ3) about θ1 are

∂2

∂θ2
1

Q1(θ1, θ3) =
r

θ2
1

+
n− r

(θ3 − θ1)2
(A.6)

∂2

∂θ2
1

Q2(θ1, θ3) =

∑r
i=1 T

2
i

θ1
3 −

∑n
i=r+1(θ3 − Ti)

2

(θ3 − θ1)3
(A.7)

Under the assumption θ2 < min( 1
θ1
, 1

θ3−θ1
), ∂2

∂θ2
1
`n(θ) ≥ 0 for all θ1 ∈ [Tr, Tr+1]. So

`n(θ1) is decreasing until reaching minimum, then increasing over [Tr, Tr+1]. There-

fore, the maximum value of `n(θ1) is attained at Tr or Tr+1 when θ1 ∈ [Tr, Tr+1]. The

proof of Theorem 1 is complete.

Proof of Theorem 2: To prove item 1, we first substitute θ̂1 = Tr̂(θ2,θ3) in the

likelihood function, then simplify the equation (3.5) and write it in term of M(θ) as

following

r̂(θ2, θ3) = arg max
r∈{1,...,n}

{M(Tr, θ2, θ3)} (A.8)

Where

M(Tr, θ2, θ3) =
r∏

i=1

Ti

Tr

exp(−θ2T
2
i

2Tr

)
n∏

i=r+1

θ3 − Ti

θ3 − Tr

exp(−θ2(θ3 − Ti)
2

2(θ3 − Tr)
) (A.9)

Under assumptions θ2 < min( 1
θ3−Tr

, 1
Tr

), then

r∏
i=1

Ti

Tr

n∏
i=r+1

θ3 − Ti

θ3 − Tr

> M(Tr, θ2, θ3) >
r∏

i=1

Ti

Tr

n∏
i=r+1

θ3 − Ti

θ3 − Tr

exp(−1)

As θ3 approaches +∞, θ3−Ti

θ3−Tr
approaches 1. So, for θ3 large enough,

∏r
i=1

Ti

Tr
is

dominant on both sides of inequality. We know Ti < Tr for i < r. Then, the smaller

the r is, the larger the M(Tr, θ2, θ3) is. Thus, r decreases when θ3 increases.

To prove item 2, let θ3 → +∞, assume θ1 not approach T1, then exists some

r 6= 1 such that θ1 approach Tr, but
∏r

i=1
Ti

Tr+1
< 1 while

∏n
i=2

(θ3−Ti)
(θ3−T1)

approach 1 as
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θ3 → +∞. Therefore, for large enough θ3, Ln(Tr, θ3) < Ln(T1, θ3), which contradicts

that Tr(r 6= 1) is the MLE. Thus, r̂(θ2, θ3) = 1.

To prove item 3, if θ3 = Tn, assume θ1 6= Tn, then exists a term θ3−Tn = Tn−Tn =

0 in the likelihood function Ln(θ1, θ3) such that Ln(θ1, θ3) = 0. So θ1 has to be Tn.

Thus, r̂(θ2, θ3) = n.

To prove item 4, we apply the result from Theorem 1 that r̂(θ2, θ3) is a function

of θ2 and θ3 that can only take the discrete values in [1, n]. From item 1 of this

Theorem, r̂(θ2, θ3) is a decreasing function of θ3. Therefore, r̂(θ2, θ3) has (n − 1)

discontinuity points {θ3,r, r = n− 1, n− 2, ..., 1} when r values step down from n to

n− 1, n− 1 to n− 2, ..., from 2 to 1.

To derive θ3,r as defined in (3.7), let r̂(θ2, θ3) = r, then θ̂1 = Tr. So M(Tr, θ2, θ3) ≥

M(Tr−1, θ2, θ3), M(Tr, θ2, θ3) ≥M(Tr+1, θ2, θ3) Thus, θ3,r is the solution of equation

M(Tr, θ2, θ3) = M(Tr+1, θ2, θ3). The other endpoints in equation (3.7) can be derived

in a similar fashion. The proof of Theorem 2 is complete.

Proof of Lemma 1: Let Sθ1 = (θ1−δ, θ1 +δ) where δ stands for δ(θ1, θ1(0)) as in

condition 1. Let Lk(θ1) =
∑k

i=1 log f(ti, θ1). Choose any η, define Ω = [0, θ3]
⋂

[θ1 :

|θ1 − θ1(0)| ≥ η]. Since Ω is compact and
⋃
{Sθ1 : θ1 ∈ Ω} ⊃ Ω, there exists a finite

large number M and a finite set {θ1,1, ..., θ1,M} ⊂ Ω such that
⋃M

i=1 Si ⊃ Ω.

Under condition 1, by law of large numbers, for any ε > 0 there exist integers

N(θ1,i, ε) such that for i ∈ {1, ...,M} and n ≥ max
i
N(θ1,i, ε),

Pθ1(0)
[
⋃
k≥n

{
k∑

j=1

{log f(tj, θ1)− log f(tj, θ1(0))} (A.10)

< 0}] > 1− ε/M.



114

Then

Pθ1(0)
[
⋃
k≥n

{|θ1,k − θ1(0)| ≥ η}]

≤ Pθ1(0)
[
⋃
k≥n

{sup
θ1∈Ω

Lk(θ1) > Lk(θ1(0))}]

≤
M∑
i=1

Pθ1(0)
[
⋃
k≥n

{ sup
θ1∈Si

Lk(θ1) > Lk(θ1(0))}]

≤ M ∗ ε/M = ε.

This proves Lemma 1.

Proof of Lemma 2: Let Ui = Xi − θ1, i = 1, ..., n. Then Uis are i.i.d with p.d.f

fu(u) and fu(0) = α > 0. We then apply the result of Lemma 7 in Yao (1986) and

derive the result of Lemma 2.

Proof of Theorem 4: To prove the consistency of the MLEs, we will show

CDF F (t|θ) and pdf f(t|θ) satisfy required conditions. First, it can be proved that

i) f(t|θ) is a uniformly continuous density which vanishes on (−∞, 0) and (θ3,+∞)

and is positive on [0, θ3], ii)
∫∞
−∞ | log f(t,θ)|f(t)dt < +∞ . Second, following

the results of Wald (1949), we have E log f(T,θ) < E log f(T,θ0) for any θ 6= θ0

where θ0 is the true parameter values. Therefore, the condition 1 holds. Third,

let Ωc denote the constrained parameter space, then Ωc is a closed subset of the

3-dimensional parameter space. Fourth, through detailed calculation, we can show

E{( ∂
∂θi

) log f(T |θ)} = 0 for i = 1, 2, 3.

From the results of Lemma 1 and Wald (1949), the MLEs θ̂n = (θ̂1n, θ̂2n, θ̂3n) exist

and are consistent.

To derive the limiting distributions of the MLEs, we need to apply the results
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from the special cases. When θ3 = θ3(0) is known, utilizing the transformation

V =


T ; T ≤ 0 or T > θ3

T 2/θ1 ; 0 < T ≤ θ1

θ3 − (θ3 − T )2/(θ3 − θ1) ; θ1 < T ≤ θ3,

(A.11)

we create a random variable V resembling an exponential distribution as defined

in equation (2) of Yao (1986). Then, applying the results from Proposition 6 of

Yao (1986) and Lemma 2, we have the following result, {n(θ̂1:3 − θ1(0)), n
1
2 (θ̂2:3 −

θ2(0))} converges in distribution to a random vector (Z1, Z2) where Z1 and Z2 are

independent, Z1 is defined in Definition 3, Z2 is a normal random variable with mean

0 and variance m−1
22 . We already know θ̂1 is a consistent estimator of θ1, applying

Lemma 5 of Chernoff and Rubin (1956), we derive the following result

θ̂1(n) − θ̂1:3 = o(n−1),

θ̂2 follows the classical MLE result:

θ̂2(n) − θ̂2:3 = o(n−
1
2 ).

We can rewrite

n(θ̂1(n) − θ1(0)) = n(θ̂1(n) − θ̂1:3) + n(θ̂1:3 − θ1(0)),

n
1
2 (θ̂2(n) − θ2(0)) = n

1
2 (θ̂2(n) − θ̂2:3) + n

1
2 (θ̂2:3 − θ2(0)).

Then, we prove the following result,

θ̂1(n) − θ1(0) ≤p n−1, (A.12)

θ̂2(n) − θ2(0) ≤p n−
1
2 . (A.13)

We also show the limiting distribution of {n(θ̂1(n) − θ1(0)), n
1
2 (θ̂2(n) − θ2(0))} is the

same as {n(θ̂1:3−θ1(0)), n
1
2 (θ̂2:3−θ2(0))}. Therefore, {n(θ̂1(n)−θ1(0)), n

1
2 (θ̂2(n)−θ2(0))}
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converges in distribution to a random vector (Z1, Z2) where Z1 and Z2 are indepen-

dent, Z1 is defined in Definition 3, Z2 is normal random variables with mean 0 and

variance m−1
22 .

When θ1 = θ1(0) is known, we show that the PDF f(t|θ) resembles a truncated

reverse Weibull distribution because f(t|θ) 6= 0 only when 0 < t ≤ θ3. We say

a random variable T has a reverse Weibull distribution if T = −X + 2µ where

X is a random variable following a three-parameter Weibull distribution with CDF

Fx(x) = 1−exp[−(x−µ
α

)γ]. In our model, the PDF f(t,θ) resembles a reverse Weibull

distribution as t approaches the upper boundary θ3.

Applying the results from Theorem 1 and Theorem 3 of Smith (1985), we have

the following results : {n 1
2 (θ̂2:1− θ2(0)), (n log n)

1
2 (θ̂3:1− θ3(0))} converges in distribu-

tion to a random vector (Z2, Z3) where Z2 and Z3 are independent, Z2 and Z3 are

normal random variables with common mean 0 and respective variances m−1
22 and

m−1
33 . Furthermore,

θ̂2(n) − θ̂2:1 ≤p (n log n)−
1
2 ,

θ̂3(n) − θ̂3:1 ≤p n−
1
2 (log n)−1

We can rewrite

n
1
2 (θ̂2(n) − θ2(0)) = n

1
2 (θ̂2(n) − θ̂2:1) + n

1
2 (θ̂2:1 − θ2(0)),

(n log n)
1
2 (θ̂3(n) − θ3(0)) = (n log n)

1
2 (θ̂3(n) − θ̂3:1) + (n log n)

1
2 (θ̂3:1 − θ3(0)).

Then, we prove the following result,

θ̂2(n) − θ2(0) ≤p n
− 1

2 ,

θ̂3(n) − θ3(0) ≤p (n log n)−
1
2 .
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We also show the limiting distribution of {n 1
2 (θ̂2(n) − θ2(0)), (n log n)

1
2 (θ̂3(n) −

θ3(0))} is the same as {n 1
2 (θ̂2:1 − θ2(0)), (n log n)

1
2 (θ̂3:1 − θ3(0))}. Therefore,{n 1

2 (θ̂2(n) −

θ2(0)), (n log n)
1
2 (θ̂3(n) − θ3(0))} converges in distribution to a random vector (Z2, Z3)

where Z2 and Z3 are independent, Z2 and Z3 are normal random variables with

common mean 0 and respective variances m−1
22 and m−1

33 .

It remains to show that n(θ̂1(n)− θ1(0)) and (n log n)
1
2 (θ̂3(n)− θ3(0)) are asymptoti-

cally independent. Since results in (3.18) and (3.20), it suffices to show n(θ̂1:3−θ1(0))

and (n log n)
1
2 (θ̂3:1 − θ3(0)) are asymptotically independent. Since Z1 follows a dis-

tribution of two independent random walks with each random walk as a sum of iid

exponential random variables, Z1 has a distribution without a Gaussian component.

Z3 is normal, following the result from Remark 1 of Smith (1985), Z1 and Z3 are

independent. The proof of Theorem 4 is complete.

Proof of Corollary 2: It is similar to the proof of Theorem 2 with the following

modifications.

To prove item 2, let θ3 → +∞, assume θ1 not approaching T1, then there ex-

ists some r > 1 such that θ1 approach Tr. We can deduce contradiction from

following two cases. Either
∏r

i=1
ti

ci

tr+1
ci
< 1 while

∏k
i=2

(θ3−ti)
ci

(θ3−t1)ci
approach 1. Or

(
∏r

i=1 exp(− θ2T 2
i

2Tr
))1−Ci < exp(− θ2

2
)1−Ci . In either case, for large enough θ3, Lk(Tr, θ3) <

Lk(T1, θ3), which contradicts that Tr(r > 1) is the MLE of θ1. Thus, r̂(θ2, θ3) = 1.

To prove item 3, if θ3 = Tk, assume θ1 6= Tk, then there exists a term θ3 − Tk =

Tk − Tk = 0 in either (K − 1 + S0)
1−Ci part of the likelihood function Lk(θ1, θ3) or

(θ3−Tk)
Ci part of likelihood function such that Lk(θ) = 0, therefore, θ1 = Tk. Thus,

r̂(θ2, θ3) = k. This completes the proof of Corollary 2.
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