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ABSTRACT 

 

PERSISTENT EFFECTS OF SELF-ADMINISTERED COCAINE ON 

COGNITIVE FUNCTION AND BRAIN DOPAMINE RECEPTORS: 

THE EFFECTS OF DIFFERENTIAL DRUG ACCESS 

 

By 

 

Lisa Anne Briand 

 

Chair: Terry E. Robinson 

 

Drug addicts exhibit a number of cognitive deficits including deficits in 

frontocortical function and memory that persist long after the discontinuation of 

drug use. It is not clear, however, whether the cognitive deficits are a 

consequence of drug use, or are present prior to drug use, and thus are a 

potential predisposing factor for addiction. Characterizing the ability of drugs of 

abuse to lead to alterations in cognition and elucidating the molecular 

mechanisms that underlie these deficits may allow us to develop better treatment 

regimens for addicts. Animal models provide us with a means to examine the 
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effects of drugs of abuse on cognitive function and underlying dopamine systems 

however, the usefulness of these models is only as good as they accurately 

model the human condition. For decades, researchers have utilized relatively 

limited access self-administration procedures (1-3 hours of daily access for 1-3 

weeks) to study addiction. However, more recently, researchers have started 

utilizing more extended access drug self-administration procedures that provide 

animals with either months of shorter daily self-administration sessions or longer 

daily access for 3-4 weeks. These extended access models have allowed 

experimenters to model the transition to compulsive drug use in animals and 

provide us with an excellent model with which to study the ability of cocaine to 

lead to deficits in cognitive function and alterations in ascending dopamine 

systems.  

 

Specifically, the following questions were addressed: (1) How does differential 

access to cocaine self-administration alter sustained attention performance both 

during early and late withdrawal? (2) How does differential access to cocaine 

self-administration alter recognition memory performance following prolonged 

withdrawal? (3) Does cocaine self-administration lead to changes in prefrontal 

dopamine receptors? (4) Does cocaine self-administration lead to changes in 

striatal dopamine receptors? (5) Are there changes in the functional activation in 

mesolimbic and/or mesocortical dopamine systems following cocaine self-

administration? 
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We report that extended access self-administration leads to deficits in both 

cognitive flexibility and recognition memory performance and these deficits 

persist during prolonged abstinence.  In addition, we report that extended access 

cocaine self-administration leads to a persistent decrease in dopamine D2 mRNA 

and protein levels in the prefrontal cortex. In the striatum, we found that cocaine 

self-administration, both extended and limited access, leads to a persistent 

increase in the proportion of dopamine D2 high-affinity receptors, while having no 

effect on total D2 levels. Finally, we determined that extended access cocaine 

self-administration leads to a biphasic striatal rCBF response, with increases 

seen during early withdrawal and decreases seen following prolonged 

withdrawal. This work has important implications for the development of cocaine 

addiction treatment options, both for pharmacological and cognitive therapies.  
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Chapter I 
 

Introduction 
 
 

Drug addiction is one of our country’s largest public health concerns, costing our 

taxpayers billions of dollars annually. Cocaine addiction is particularly troubling 

as there are currently no effective pharmacological treatments available for the 

2.3 million cocaine users in the United States (Sofuoglu et al., 2006).   The lack 

of effective pharmacological intervention is not for lack of attempts however. 

Clinical trials of over 50 compounds have been performed in the last five years 

alone, with abstinence rates (percentage of patients achieving 3 weeks of without 

drug use) ranging from 4-30%, similar to that seen with placebo (Kampman et al., 

2003; Kampman et al., 2004; Dackis et al., 2005; Bisaga et al., 2006; Elkashef et 

al., 2006; Kampman et al., 2006). Although behavioral treatment regimens have 

reported slightly more successful abstinence rates of 30-60%, there is still a 

significant amount of the cocaine dependent population that is resistant to 

treatment (Rawson et al., 2002; Epstein et al., 2003; McKay et al., 2005; Rawson 

et al., 2006). Along with issues with efficacy of treatment, patient retention rates 

are also very low with drop out rates reaching as high as 60-80% (Carroll et al., 

1991b; Carroll et al., 1994b; Sayre et al., 2002; Malcolm et al., 2005).   As early 

drop out rates are associated with continued cocaine abuse, effective
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 treatments need to address both issues of efficacy and retention to ensure 

success (Simpson et al., 1999).  

 

While overall cocaine dependence treatment success rates are fairly low, 

differential attrition and treatment success has been a focus of the clinical 

literature for the past decade (Aharonovich et al., 2003; Sofuoglu et al., 2006; 

Easton et al., 2007).  In particular, deficits in cognitive function are predictive of 

poor treatment outcomes and low retention rates (Aharonovich et al., 2003; 

Aharonovich et al., 2006).   As cocaine addicts have been shown to demonstrate 

deficits in a number of cognitive domains including attention, memory, problem 

solving, and decision-making (Ardila et al., 1991; Berry et al., 1993; Bolla et al., 

1999; Bolla et al., 2000; Ainge et al., 2006), developing effective treatments for 

this population of cocaine addicts could play a large role in overall cocaine abuse 

relapse rates.  

 

Characterizing these cognitive deficits and elucidating the molecular mechanisms 

that underlie them may allow us to develop better treatment regimens for addicts. 

Studies in human addicts do not allow us to determine whether these behavioral 

and neurobiological deficits precede drug use, and thus contribute to the 

propensity for addiction, or are a consequence of drug use. Although it is difficult 

to address this issue in humans, studies with non-human animals allow one to 

determine whether exposure to drugs of abuse are at least capable of producing 

changes in brain and behavior comparable to those seen in addicts.  
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Although the use of animal models can provide us with a more tightly controlled 

environment without the added complication of varied genetic backgrounds, it is 

also important that these studies attempt to mimic the human drug use patterns 

as closely as possible.  The majority of studies on the effects of cocaine 

administration on behavioral and neurobiological outcomes have utilized 

experimenter administered cocaine or traditional self-administration procedures 

that result in stable, controlled drug intake.   Although these models have been 

instrumental in studying the underlying neural systems that mediate the 

reinforcing and incentive motivational effects of drugs of abuse, they have not 

provided us with great insight into why some individuals undergo the transition to 

compulsive drug use and others are able to maintain controlled use.  Recently, 

the use of more extended access drug self-administration procedures has 

allowed experimenters to model this transition to compulsive drug seeking 

(Ahmed and Koob, 1998; Paterson and Markou, 2003; Deroche-Gamonet et al., 

2004; Vanderschuren and Everitt, 2004; Ferrario et al., 2005).  Thus, the purpose 

of the studies presented in this dissertation is to explore the effects of extended 

access cocaine self-administration on cognitive function and the underlying 

dopamine systems that play a role in cognition in a rodent model.  

 

This introduction will begin with a characterization of cognitive function in the 

human addict. The debate of whether these deficits precede addiction or are a 

result of drug use will be discussed.  This will be followed with a discussion of the 
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deficits in cognitive function that have been demonstrated following chronic 

psychostimlant administration. Next the anatomy and function of the 

mesocorticolimbic dopamine system, focusing on the prefrontal cortex and 

striatum, will be described and neurobiological changes in the mesocorticolimbic 

dopamine system resulting from drug use in both human addicts and animal 

models will be presented. The introduction will conclude with a discussion of the 

experiments in the current dissertation and how they fit into the current literature.  

 

Cognitive Deficits in Human Cocaine Addicts 

 

Following the dramatic rise in cocaine use in the 1980s, researchers began to 

examine the effects of chronic cocaine on neurobehavioral functions, including 

alterations in cognition.  The early literature on the effects of cocaine abuse on 

cognitive function was inconclusive, with some studies showing severe 

impairments (Ardila et al., 1991; Strickland et al., 1993) and others showing little 

to no effect (Bernal et al., 1994; Selby and Azrin, 1998).  In fact, two studies 

actually found that cocaine use was associated with enhanced performance on 

some tasks (Manschreck et al., 1990; Hoff et al., 1996).  The inconsistencies in 

these studies may be due to differences in the amount and frequency of drug 

use, differences in duration of abstinence, small sample sizes, lack of control 

groups, and/or lack of control for comorbid psychiatric conditions.  
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Overall, the literature suggests that the deficits seen in human addicts are fairly 

specific in nature rather than a more general deficit in intelligence or ability.   The 

deficits described in the literature primarily fall into two general cognitive 

domains: so-called “executive functions”, including attention (Meek et al., 1989; 

Ardila et al., 1991; Beatty et al., 1995; Rosselli and Ardila, 1996), decision 

making (Bolla et al., 1998; Rogers et al., 1999; Grant et al., 2000; Bechara et al., 

2001; Rogers and Robbins, 2001; Fishbein et al., 2005), and cognitive flexibility 

(Grant et al., 2000; Kelley et al., 2005), and memory, including working memory 

(Beatty et al., 1995; Verdejo-Garcia and Perez-Garcia, 2007), verbal memory 

(O'Malley et al., 1992; Mittenberg and Motta, 1993; van Gorp et al., 1999), and 

visuospatial memory (Meek et al., 1989; Berry et al., 1993; Hoff et al., 1996).  

 

Executive Function Deficits 

The initial study suggesting that human addicts show executive function deficits 

was done by Meek and colleagues (1989) on patients entering an inpatient 

treatment program. At admission, deficits were seen in more than two thirds of 

the patients, specifically in the executive domains of attention, abstraction, and 

working memory.  While partial recovery was seen over the course of treatment, 

deficits were still apparent after the two-week abstinence period, particularly in 

the area of working memory.  While this study examined polydrug users, Ardila, 

and colleagues (1991) focused on crack cocaine users and found specific deficits 

(compared to predetermined norms) on attention subtests. These deficits were 

correlated with the amount of drug use, suggesting a direct relationship between 
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cognitive impairment and cocaine use.  This study was followed by a larger scale 

study comparing cocaine-dependent, polydrug-dependent, and control subjects 

and found that both cocaine- and polydrug-dependent groups exhibited 

attentional impairtments compared to the controls (Rosselli and Ardila, 1996).   

 

Although previous work had suggest a correlation between drug intake and 

extent of cognitive impairment, Bolla and colleagues (1999) performed an 

elegant study that not only examined the relationship between drug intake and 

cognition but also controlled for duration of abstinence. In this study, patients’ 

use was confirmed by positive drug screen immediately prior to admittance and 

cognitive testing occurred following 4 weeks of abstinence.  Cocaine users 

showed dose dependent decrements in performance on a battery of tests of 

executive function [including the Wisconsin Card Sort Task (WCST) and the 

Interference version of the Stroop Task] with heavy users showing persistent 

deficits following a month of withdrawal.   

 

Along with these more traditional neuropsychological tests, such as the WCST, 

recent work has begun to examine cocaine addicts’ performance on decision-

making or risk taking tasks, such as the Iowa Gambling Task (Grant et al., 2000; 

Bechara et al., 2001).   These studies have shown that cocaine addicts make a 

higher proportion of disadvantageous choices and make significantly more 

perseverative errors than controls in both early stages of abstinence (Grant et al., 

2000) and following  longer withdrawal periods (Bechara et al., 2001).  
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Although the studies discussed above represent only a fraction of the work done 

on cognitive deficits in cocaine addicts, they clearly demonstrate that addicts 

exhibit deficits in a variety of types of executive function, and characterizing 

these deficits may be critical for the development of effective treatment 

strategies.  

 

Memory Deficits 

The early studies showing deficits on executive function also demonstrated 

deficits in memory function in cocaine addicts (Meek et al., 1989; Ardila et al., 

1991).  In addition, Manschreck and colleagues (1990) found that crack cocaine 

addicts demonstrate specific deficits on tests of delayed recall compared to 

controls.   While this study did not control for duration of abstinence, work by 

Berry and colleagues (1993) examined cocaine users during both acute 

withdrawal (within 72 hours of drug use), and following a two week withdrawal 

period.  At both withdrawal time points cocaine addicts exhibited decreased 

verbal memory relative to controls.   The studies mentioned above in conjunction 

with many others (O'Malley et al., 1992; Mittenberg and Motta, 1993; Kelley et 

al., 2005), demonstrate a well-documented deficit in verbal memory in cocaine 

addicts.  

 

Although many studies have examined verbal memory function in cocaine 

addicts, only a  few studies have examined other memory domains. For example, 
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Hoff and colleagues (1996) have demonstrated deficits in spatial memory in 

crack cocaine users following varied periods of abstinence (mean=24 days).   

Researchers have also demonstrated deficits in visual memory (Gillen et al., 

1998) during early withdrawal from cocaine as well as specific deficits in 

nonverbal declarative memory following longer periods of abstinence (van Gorp 

et al., 1999).  Although a thorough study examining a variety of memory domains 

following different durations of abstinence is needed, it is clear that human 

addicts demonstrate a variety of memory deficits that seem to persist following 

prolonged withdrawal.   

 

Taken together, the evidence for deficits in both memory and executive function 

suggest that cocaine addicts present with a variety of specific cognitive deficits 

that are relevant to their ability to participate in treatment programs (Aharonovich 

et al., 2003).  A more comprehensive understanding of these deficits could help 

guide more appropriate treatment programs designed based upon a patients 

specific cognitive profile.   

 

Cause vs. Consequence 

 

Although it is clear from the human literature that cocaine addicts exhibit 

cognitive deficits, it is not clear whether these behavioral deficits precede drug 

use, and thus contribute to the propensity for addiction, or are a consequence of 

drug use.    Dissociating the risk factors for addiction and the consequences of 
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drug use is important for the development of targeted enrichment programs for 

those individuals that are particularly vulnerable to addiction as well as 

investigating the underlying neurobiology of addiction-related neuroadaptations. 

 

Recently, there have been a number of risk factors that have been characterized.  

Most frequently researchers and clinicians have focused on psychosocial and 

genetic risk factors, commonly examining children of substance abusers (Clark et 

al., 1998; Kirisci et al., 2005).  Numerous studies have shown that children who 

have a parent, particularly a father, with substance abuse disorder (SUD) are at a 

higher risk to develop drug problems (Tarter, 1988; Tarter et al., 1998; Blackson 

et al., 1999; Clark et al., 2005; Kirisci et al., 2005).  Despite the evidence that 

substance abuse runs in families (Merikangas et al., 1998), the genetic 

contribution of this risk factor is not well established. Early work done by Vaillant 

(1966) examining narcotic addicts treated in the early 1950s found that 24% of 

the addicts had a relative that was also suffering from substance addiction. In an 

analysis of monozygotic (MZ) twins reared apart, Grove and colleagues (1990) 

found that although there was significant heritability of substance abuse, there 

was only a 36% concordance rate in twins.  While Gynther et al. (1995) found no 

significant heritability of substance abuse when comparing MZ to dizygotic (DZ) 

twins, Tsuang et al. (1996) did find a significantly higher concordance in MZ twins 

demonstrating a concordance rate of 63%.  It is clear that although there may be 

a genetic component to addiction, the disorder can only be partially attributed to 

heritability.  
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Twin studies also allow researchers to examine the effects of shared 

environment on addiction outcome.  Van den Bree and colleagues (1998) found 

that shared environmental influences accounted for 33% of the variance in male 

cocaine addicts and up to 93% of the variance in female addicts.  However, in 

the twin study mentioned above, Tsuang et al. (1996) found that shared 

environment accounted for only 28% of the variance in their sample of male twin 

pairs.  

 

While twin studies demonstrate that although both genetics and environment play 

a role in the development of addiction, the identification of more specific risk 

factors, such as temperament and cognitive function, may also be useful.  

Aggression is very prevalent in children that are at high risk for substance abuse 

(Tarter, 1988; Giancola et al., 1996a; Giancola et al., 1996b), and longitudinal 

studies have demonstrated that aggressive behavior in childhood is a precursor 

to adolescent drug use and delinquency (Brook et al., 1992; Brook et al., 1995).   

Hyperactivity, impulsivity and “sensation-seeking” have also been shown to be 

predictors of substance abuse (Galizio et al., 1983; Aytaclar et al., 1999; Moeller 

et al., 2001; Wagner, 2001).   Along with these personality traits, studies have 

examined cognitive function in high-risk individuals and found that children in 

high-risk groups have lower scores on tests of executive function (Giancola et al., 

1996a; Giancola et al., 1996b).  
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While this provides evidence that some alterations in cognitive function may 

precede drug use, there is also research that suggests that drug abuse can lead 

to decreased cognitive function.  A longitudinal study by Brook and colleagues 

(2002) demonstrated that adolescent drug use led to a decrease in cognitive 

function when individuals were tested in their twenties.  Along with this 

longitudinal study, studies of adult addicts have demonstrated a correlation 

between the severity of cognitive deficits and the amount of cocaine use, 

indicating that more drug use leads to more severe deficits (Bolla et al., 1999; 

Bolla et al., 2000).  

 

Together these studies indicate that cognitive deficits may not only represent a 

risk factor predisposing individuals to become addicts but also a consequence of 

drug abuse.  Further work is needed to determine the extent of the deficits 

resulting from drug abuse as opposed to those that preexist use.  

 

Cognitive Function in Preclinical Models of Stimulant Abuse 

 

Although longitudinal studies can provide insight into how drugs of abuse alter 

cognitive function, they are often prohibitively expensive and time consuming. 

Preclinical models provide researchers with a more efficient means to examine 

the effects of drugs of abuse on cognitive function while controlling for preexisting 

differences.  
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Although very little work has been done examining cognitive function following 

cocaine administration in non-human primate models, Jentsch and colleagues 

(2002) have demonstrated deficits in reversal learning following both acute and 

repeated experimenter administered cocaine in Vervet monkeys. In conjunction 

with this study, more extensive experimental evidence in rodents suggests that 

cognitive deficits can be a consequence of stimulant administration rather than 

solely a risk factor. Both experimenter-administered (Crider et al., 1982; Kondrad 

and Burk, 2004; Schoenbaum et al., 2004; Belcher et al., 2005a, 2006; Burke et 

al., 2006) and self-administered (Dalley et al., 2005a; Dalley et al., 2005b; Kantak 

et al., 2005) psychostimulants can produce transient decreases in attention 

performance, recognition memory, and fear extinction. In a study of selective 

attention, Crider and colleagues (1982) found that an amphetamine binge 

administration procedure led to a decrease in rats’ ability to ignore irrelevant 

stimuli.  Similarly, Kondrad and Burk (2004) found that amphetamine challenge 

following an escalating dose regimen of amphetamine led to an increase in false 

alarms in a signal detection task.  In addition, Fletcher and colleagues (2005; 

2007) demonstrated that repeated amphetamine administration leads to deficits 

on both an attentional set-shifting task and 5-choice serial reaction time task (5-

CSRTT).  

 

Similar to deficits seen in human addicts, experimenter-administered cocaine has 

produced persistent deficits in reversal learning tasks mediated by the orbital 

frontal cortex in both rats (Schoenbaum et al., 2004) and monkeys (Jentsch et 
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al., 2002) as well as deficits in fear extinction learning (Burke et al., 2006). 

Chronic experimenter-administered methamphetamine has also been shown to 

lead to persistent deficits in recognition memory (Belcher et al., 2005b; Belcher et 

al., 2006). However, despite the overwhelming evidence that self-administration 

of psychostimulant drugs leads to cognitive deficits within the first few days after 

the discontinuation of drug treatment, these deficits do not persist unless animals 

are given a drug challenge (Dalley et al., 2005a; Dalley et al., 2005b; Kantak et 

al., 2005). Dalley and colleagues (2005b) examined the effects of amphetamine 

self-administration on a 5-CSRTT and found a decrease in performance 

accuracy within the first 3-5 days following amphetamine self-administration. 

Similar results were found in a later study examining both cocaine and heroin 

self-administration (Dalley et al., 2005a).  It is important to note that following 

both amphetamine and cocaine self-administration the animals in these studies 

exhibited significant performance deficits (in the form of increased omissions and 

an increase in response latency) and therefore the decrease in attentional 

accuracy may be primarily due to a generalized acute withdrawal syndrome 

rather than a specific attention deficit such as seen in human addicts.  

 

So, why is it that preclinical models seem to be unable to mimick the deficits 

seen in human addicts using self-administration paradigms? It is possible that the 

persistent cognitive deficits seen in cocaine addicts are not in fact a 

consequence of drug use. Alternatively, the cocaine self-administration 

procedures used in the existing studies may not accurately model human 
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addiction. Thus far, self-administration studies have largely used limited access 

procedures (Dalley et al., 2005a; Dalley et al., 2005b; Kantak et al., 2005) that 

may not produce some of the key changes in brain and behavior that 

characterize addiction.   

 

Extended Access Cocaine Self-Administration 

Since their inception in the 1960s (Weeks, 1962; Thompson and Schuster, 1964; 

Pickens and Harris, 1968; Pickens and Thompson, 1968), intravenous drug self-

administration procedures have been the gold standard for examining the 

reinforcing properties of drugs of abuse and their neurobiological consequences, 

as well as assessing factors influencing potential vulnerability to addiction.  

Animals have been shown to self-administer almost all drugs with human abuse 

potential (Weeks, 1962; Pickens and Harris, 1968; Pickens and Thompson, 

1968; Lang et al., 1977; Takahashi and Singer, 1979; Carroll et al., 1981), and 

while the majority of these studies have been done in rodents, a variety of 

species have been studied using this paradigm (Thompson and Schuster, 1964; 

Pickens and Harris, 1968; Deneau et al., 1969; Risner, 1975; Risner and Jones, 

1975; Balster et al., 1976; Criswell and Ridings, 1983).  As some of the earlier 

studies examining uncontrolled access to self-administration demonstrated that 

animals continue to take drugs until they overdose (Bozarth and Wise, 1985), the 

majority of the studies have utilized limited access self-administration procedures 

that result in fairly stable drug intake after acquisition.  

 



 

15 

As human addicts undergo a transition to uncontrolled drug use rather than 

maintaining stable intake, more recently, research has focused on developing 

animal models that also lead to a loss of controlled drug intake.  While there has 

been some effort to mimic human use patterns using experimenter administered 

drug procedures such as the work done by Mary Jeanne Kreek and colleagues 

utilizing chronic binge cocaine administration (Unterwald et al., 1994; Tsukada et 

al., 1996; Unterwald et al., 1996; Schlussman et al., 1998; Zhang et al., 2003), 

the use of extended access self-administration procedures have been most 

successful in modeling the transition to uncontrolled drug use.  Wolffgramm and 

Heyne (1995) examined animals given access to oral self-administration of  

varying concentrations of ethanol over the course of 30-50 weeks, followed by a 

forced abstinence period (4-9 months) and challenge exposure period.  This 

procedure resulted in groups of animals that were characterized as either 

ethanol-addicted or controlled drinkers. Comparable results have been found 

with oral amphetamine self-administration (Heyne and Wolffgramm, 1998).  

 

Along a similar vein, Deroche-Gamonet et al. (2004) examined rats given daily 

cocaine intravenous self-administration access (40 min on + 15 min off x 3 per 

day) over the course of 3 months and divided them into high (HRein) and low 

(LRein) reinstatement groups.   After examining these animals’ drug taking 

behaviors it was evident that the HRein animals exhibited an increase in drug 

seeking during the drug free periods, an increase in drug seeking after 

punishment, and an increase in progressive ratio breakpoint responding that was 
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not seen in the LRein animals.  These two studies elegantly demonstrate that 

when given long enough access certain animals that presumably exhibit a 

specific vulnerability profile develop addiction-like behaviors.  

 

 Although the above procedures provide us with a model to examine the addicted 

animals’ brain and behavior, they rely on individual differences between animals 

and therefore do not control for preexisting differences that may lead to addictive 

vulnerability.  Extended access procedures that compare animals given longer 

daily access to animals given shorter daily access do not rely on individual 

differences but rather experimenter manipulation to create “addicted” animals. 

Although this differential access procedure does not control for individual 

differences, it does not use them are the primary means to differentiate addicted 

animals from drug resistant ones. Utilizing a 6-hour access cocaine self-

administration procedure, Ahmed and Koob (1998) demonstrated that over the 

course of 12-22 daily test sessions rats escalated their intake both within the first 

hour and over the course of the total session as compared with animals given 1-

hour daily access. This escalation of intake is accompanied by an upward shift in 

the dose-response curve for cocaine and facilitated escalation following 

prolonged abstinence.   The pattern of intake in animals given extended access 

is different than those given limited access as the intake of the long access 

animals is significantly higher during the first hour as compared with the 5 

additional hours, indicating the animals are drug “loading” in the beginning of the 

session.  This increase in intake during the first hour will continue for up to 2 



 

17 

months in long access animals even if they are returned to a limited access 

schedule (Ahmed and Koob, 1999).   

 

In addition to producing uncontrolled drug intake, this extended access self-

administration procedure leads to an increase in intracranial self-stimulation 

(ICSS) reward thresholds (Ahmed et al., 2002), similar to the effect of opiate 

withdrawal (Schaefer and Michael, 1986; Kenny et al., 2006), indicating that 

perhaps the extended access animals may exhibit a unique withdrawal syndrome 

that is not seen following limited access self-administration. While this decrease 

in ICSS reward threshold might be seen as a decrease in the sensitivity to 

reward or an unwillingness to work for smaller rewards, this is inconsistent with 

the upward shift in the cocaine dose-response curve see in the initial Ahmed and 

Koob study (Ahmed and Koob, 1998) as well as their finding that extended 

access cocaine leads to an increase in the animals’ sensitivity to a dopamine 

antagonist (Ahmed and Koob, 2004). 

 

Following Koob and colleagues demonstration of this escalation phenomena 

utilizing not only cocaine, but heroin and methamphetamine extended access 

self-administration as well (Ahmed et al., 2000; Kitamura et al., 2006), numerous 

other labs have utilized similar protocols to further characterize the effects of 

extended access self-administration on behavior. Consistent with extended 

access cocaine self-administration producing an sensitization of reward 

processing, Patterson and Markou (2003) demonstrated that extended access 
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animals display a higher breakpoint, particularly at the lower doses tested, 

compared to 1-hour limited access animals. In addition, Mantsch et al. (2004) 

and Knackstedt and Kalivas (2007) found that extended access animals exhibit 

an increase in drug-primed reinstatement as compared to limited access animals. 

Work in our lab has also demonstrated that animals given extended access to 

cocaine self-administration exhibit an increase in behavioral and structural 

plasticity associated with drug addiction (Ferrario et al., 2005). 

 

In further support of the use of the extended access model, Vanderschuren and 

Everitt (2004) examined the ability of a extended access cocaine self-

administration paradigm to lead to compulsive drug seeking in the face of 

adverse consequences.  Following limited cocaine self-administration exposure, 

the presentation of an aversive CS (a tone previously paired with shock) led to a 

conditioned suppression of drug seeking, while after extended access self-

administration experience animals do not exhibit conditioned suppression of 

responding. In addition, Pelloux and colleagues (2007) have shown that following 

extended access cocaine self-administration, animals will continue drug-seeking 

even when seeking responses intermittently lead to punishment (mild foot-

shock).  

 

Together these studies clearly demonstrate that extended access cocaine self-

administration leads to a number of key diagnostic criteria including (but not 

limited to), escalation of intake, increased motivation for drug, drug-seeking 
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behavior when the drug is known to be unavailable, and drug-seeking despite 

adverse consequences.   Therefore the use of similar procedures may yield 

cognitive deficits similar to those seen in human addicts, not yet found utilizing 

standard self-administration procedures.  

 

Ascending Dopamine Projection Systems 

 

The development of animal models to dissociate the effects of stimulant drugs on 

cognitive function from the effects of preexisting deficits that may lead to 

addiction also provide us with a means to examine the neurobiological systems 

involved in the dissociation. In the following section, I will describe the functional 

anatomy of the mesocorticolimbic dopamine system and how it is related to both 

addiction and cognitive function.  

 

The mesocorticolimbic dopamine system is often divided into the mesocortical 

system, consisting of ascending dopamine projections from the ventral tegmental 

area (VTA) to the prefrontal cortex (PFC), and the mesolimbic system, consisting 

of ascending dopamine projections from the VTA to the nucleus accumbens 

(NAc) (see Figure 1).  

 

Prefrontal Cortex 

The traditional definition of prefrontal cortex consists of cortical regions near the 

frontal poles that receive input from mediodorsal thalamus.  The PFC is made up 
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of interconnected subdivisions that send, receive and integrate input from nearly 

all sensory and motor cortical regions as well as subcortical regions. Individual 

subdivisions have been determined to be involved in distinct domains of working 

memory and attention with individualized processing and storage mechanisms 

(Goldman-Rakic, 1996). Visuospatial memory, as required for recalling your 

location in space, following maps, and performing delayed response tasks, is 

primarily localized to the dorsolateral prefrontal cortex (Fuster and Alexander, 

1971; Kubota and Niki, 1971; Friedman and Goldman-Rakic, 1988; Funahashi et 

al., 1989; Verin et al., 1993; Friedman and Goldman-Rakic, 1994), while facial 

and object recognition memory is dependent upon the inferior prefrontal cortex 

(Wilson et al., 1993; Courtney et al., 1996; Adcock et al., 2000).  In contrast, 

verbal working memory, including semanic encoding and retrieval, is localized to 

more inferior, anterior, and/or insular prefrontal regions (Raichle et al., 1994; 

Demb et al., 1995; Fiez et al., 1996). 

 

Not all of these working memory domains are dependent on dopamine however.  

Research on dopamine in the PFC has determined that its primary role is in tasks 

that are localized to the dorsolateral prefrontal cortex in humans and primates 

(Sawaguchi and Goldman-Rakic, 1994; Muller et al., 1998; Winterer and 

Weinberger, 2004). It is important to note that the rodent PFC does not contain 

projections from the mediodorsal thalamus to dorsolateral regions of the cortex, 

therefore, functional and anatomical studies have suggested that the medial and 
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orbital frontal cortices serve homologous functions in these animals (Kolb, 1990; 

Birrell and Brown, 2000; Dalley et al., 2004).   

 

The first evidence that dopamine might be the key neurotransmitter involved in 

visuospatial working memory tasks was presented by Brozoski and colleagues 

(1979). They demonstrated that prefrontal dopamine depletion in monkeys led to 

deficits on a delayed-response task equivalent to those seen after PFC lesions.  

Since this seminal work, much work has been done to elucidate the role of 

dopamine in PFC mediated cognitive functions.  Along with additional studies 

demonstrating the role of prefrontal dopamine on delayed alteration performance 

(Simon et al., 1980; Stam et al., 1989), other cognitive functions relying on 

prefrontal dopamine have been identified. Work from the laboratory of John 

Salamone has determined that dopamine depletion in the mPFC of rats leads to 

a decrease in both active avoidance and performance on a differential 

reinforcement of low rates (DRL) task aimed at examining inhibitory control 

(Sokolowski et al., 1994; Sokolowski and Salamone, 1994).  Another measure of 

inhibitory learning, prepulse inhibition (PPI), is also impaired following prefrontal 

dopamine depletion (Bubser and Koch, 1994).  

 

Along with dopamine depletion studies, microdialysis studies have also provided 

evidence for a role of prefrontal dopamine in cognition. During the performance 

of a delayed-alternation task, monkeys exhibit an increase in dopamine in the 

PFC that is not seen during the performance of a sensory control task (Watanabe 
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et al., 1997).  Similar results have been seen in rodents performing both 

discrimination learning (Yamamuro et al., 1994) and set shifting tasks (Stefani 

and Moghaddam, 2006).  

 

In examining dopamine function in general and, in particular, the effects of 

dopamine on the PFC, it is important to take into account the different dopamine 

receptor subtypes. Dopamine receptors are divided into two main subtypes, D1-

like and D2-like, and although both are localized within the PFC, their cellular 

distribution differs. D1 type receptors are localized at the postsynaptic terminals 

of pyramidal cells whereas D2 receptors are primarily located on GABAergic 

interneurons, with a much smaller proportion of these receptors localized on 

pyramidal neurons (Khan et al., 1998). These differences in localization, along 

with the contrasting effects on downstream signaling cascades (Stoof and 

Kebabian, 1984), contribute to the functional differences between these two 

receptor subtypes.  

 

Disruption of the D1 receptor system via antagonist administration both 

systemically and directly into the monkey dlPFC disrupts performance on 

delayed alternation tasks (Sawaguchi and Goldman-Rakic, 1991, 1994).  Similar 

results have been seen with prelimbic administration of D1 antgonists in the rat 

(Seamans et al., 1998).  On the 5-CSRTT a D1 receptor antagonist has a 

differential effect in high vs. low performing animals, decreasing performance in 

high accuracy animals and increasing performance in low accuracy animals 
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(Granon et al., 2000).  A similar biphasic response to a D1 antagonist was seen 

in rodents tested on a delayed version of the radial arm maze (Floresco and 

Phillips, 2001). This would suggest that there is an inverted U-shaped 

relationship between D1 activation and performance. Electrophysiological studies 

have determined that the primary role of D1 receptors seems to be to enhance 

and stabilize task-related activity in PFC neurons (Sawaguchi et al., 1988; 

Williams and Goldman-Rakic, 1995).   

 

In contrast to the effects of prefrontal D1 receptors, prefrontal D2 receptors do 

not seem to be directly involved in delayed alteration performance (Sawaguchi 

and Goldman-Rakic, 1991, 1994). However, there is evidence that these 

receptors play a central role in working memory.  Experiments in both humans 

and monkeys have shown that systemic D2 receptor antagonists lead to deficits 

in spatial working memory (Mehta et al., 1999; Von Huben et al., 2006). While 

these studies do not isolate the effect to D2 receptors in the PFC, work in mice 

has demonstrated that D2 antagonist injections directly into the PFC disrupt 

spatial working memory performance (Rinaldi et al., 2007).  

 

Along with their role in spatial working memory, prefrontal D2 receptors are also 

critically involved in other executive functions, such as behavioral flexibility.  

Behavioral fleixibility, or the ability to alter behavior in response to changing 

environmental conditions, is disrupted by lesions of the PFC in humans (Owen et 

al., 1991; Owen et al., 1993), monkeys (Dias et al., 1996), and rodents (Birrell 
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and Brown, 2000).  At the receptor level, local PFC antagonism of D2 receptors, 

but not D1 receptors, leads to an inability to change discrimination strategies 

(Floresco et al., 2006).  Similar results have also been found following 

haloperidol administration in healthy human subjects (Tost et al., 2006). 

 

Taken together, these results clearly demonstrate a specific role for prefrontal 

dopamine systems in cognitive function, dissociable into D1 and D2 components. 

Later on in the introduction, as I present data on how drugs of abuse alter the 

structure and function of this brain region, it will become even more clear how an 

accurate understanding of both normal prefrontal dopamine function and how 

drugs of abuse alter this system could be critical to understanding relapse and 

addiction.  

 

Nucleus Accumbens 

The nucleus accumbens (NAc) is part of a group of nuclei called the basal 

ganglia, which subserve a wide variety of behavioral functions. Driven, in part, by 

hypotheses by Wise and colleagues (Wise, 1984; Wise and Bozarth, 1985; Wise 

and Rompre, 1989) among others (Robinson and Becker, 1982; Dackis and 

Gold, 1985; Broderick, 1986; Koob, 1992), the primary focus of work on the 

nucleus accumbens in the last 30 years has been on the dopamine projections to 

this region from the VTA and their involvement in drug reward.  Under normal 

conditions, the mesolimbic dopamine system is believed to mediate the effects of 

natural rewards such as food, water, and sex (Hernandez and Hoebel, 1988; for 
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review, see Kelley, 1999).  In the case of addiction, drugs of abuse seem to 

“hijack” this system and push it into overdrive (Wise and Rompre, 1989; Kelley 

and Berridge, 2002).  

 

The exact role of dopamine in reward is not clear however. For decades, 

dopamine was thought to represent the hedonic value of rewards. For example, 

dopamine depletion in the NAc by 6-hydroxydopamine (6-OHDA) decreases 

cocaine self-administration (Roberts et al., 1977; Pettit et al., 1984; Caine et al., 

1993). Dopamine antagonists administered directly into the NAc have also been 

shown to increase cocaine self-administration behavior, presumably indicating a 

compensatory mechanism (Robledo et al., 1992; Caine et al., 1995). 

Furthermore, acute cocaine, amphetamine, nicotine, opiate, and ethanol 

administration (either experimenter-administered or self-administered) all lead to 

an increase in extracellular dopamine in the NAc (Di Chiara and Imperato, 1988; 

Hurd et al., 1990; Wise et al., 1995; Bradberry et al., 2000).  These studies 

supported the hedonia hypothesis, or the idea that dopamine represents the 

hedonic value of a stimulus (Wise and Bozarth, 1985), however there is ample 

evidence to refute this theory.  

 

Contrary to the hedonia hypothesis, hyperdopaminergic DAT knockdown mice do 

not exhibit increased “liking” reactions in response to food reward (Pecina et al., 

2003). In addition, in a recent paper by Hnasko and colleagues (2005), 

dopamine-deficient (DD) mice were found to exhibit normal morphine conditioned 
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place preference. These studies in conjunction with both additional animal 

studies (Berridge et al., 1989; Berridge and Robinson, 1998) and human studies 

(Leyton et al., 2002; Leyton et al., 2005; Evans et al., 2006) clearly demonstrate 

that dopamine does not represent the hedonic impact of rewards (for review see 

Berridge, 2007). 

 

Based on evidence from electrophysiological examination of ventral tegmental 

dopamine neurons, Wolframm Shultz and colleagues developed a learning 

hypothesis of dopamine action (Schultz, 1998; Schultz and Dickinson, 2000; 

Schultz, 2001; Waelti et al., 2001).  This theory is based on evidence that 

dopaminergic neurons seem to obey prediction error models, such that dopamine 

neurons only respond to rewarding stimuli when they are unexpected. According 

to learning theories of addiction, drugs lead to excessive dopamine, which in turn 

leads to “overlearning” of drug seeking behaviors (Everitt et al., 2001; Montague 

et al., 2004; Redish, 2004).  However, dopamine is not necessary for reward 

related learning. Siobhan Robinson and colleagues (2005) determined that 

dopamine was not necessary to learn goal-directed behavior in the form of an 

appetitive T-maze task however it is necessary for reward seeking. In support of 

this, hyperdopaminergic DAT knockdown mice do not exhibit enhanced 

Pavlovian or operant reward-related learning (Cagniard et al., 2006a).  

 

While dopamine seems to not consistently code for hedonic reactions or reward-

related learning, it is consistently related with drug “wanting’ or seeking.  
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Hyperdopaminergic mice, while not exhibiting an increase in “liking” or learning, 

do exhibit an increase in drug seeking or drug “wanting” (Pecina et al., 2003; 

Cagniard et al., 2006a; Cagniard et al., 2006b) supporting Robinson & Berridge’s 

theory that dopamine mediates incentive salience attribution, leading to an 

increase in motivational drive, or “wanting” (Robinson and Berridge, 1993; 

Berridge and Robinson, 1998; Robinson and Berridge, 2000; Robinson and 

Berridge, 2003; Berridge, 2007).  

 

While there is converging evidence that NAc dopamine is involved in incentive 

arousal, the specific roles of the two subdivisions of the NAc, the core and the 

shell, are unclear. Although this is partially do the difficultly in selectively 

manipulating these two areas, there are studies that have attempted to parse the 

two apart.  While there is some evidence to suggest that it is the NAc shell that is 

more critically involved in the incentive salience attribution rather than the core 

(Parkinson et al., 1999; Wyvell and Berridge, 2000; Corbit et al., 2001), there is 

also ample evidence that the opposite is true (Alderson et al., 2001; Hall et al., 

2001; Hutcheson et al., 2001). In an elegant review of the literature, Di Chiara 

(2002) hypothesizes that DA in the NAc shell serves to facilitate Pavlovian 

learning by promoting the acquisition of incentive stimuli that predict drug and as 

NAc shell DA release does not habituate after repeated stimulation this can lead 

to excessive incentive attribution in addiction.  Dopamine release in the NAc core 

however exhibits sensitization and although the exact role of this sensitized 
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response is not entirely clear it may more critically involved in instrumental 

responding (Di Chiara, 2002).  

 

Just as taking into account the role of the different subregions of the NAc is 

important in understanding the function of mesolimbic dopamine, it is also 

necessary to consider the two dopamine receptor subtypes.  In the NAc, as well 

as other parts of the striatum, there are distinct populations of medium spiny 

neurons (MSNs) that express D2 receptors (co-localized with enkephalin) 

projecting to the ventral pallidum and D1 receptors (co-localized with substance 

P) projecting to both the ventral pallidum and the VTA (Lu et al., 1998). Although 

both D1 and D2 receptors appear to be involved in the behavioral changes 

resulting from cocaine and other psychostimulant drugs (Koob et al., 1987; 

Woolverton and Virus, 1989; Fontana et al., 1993; Caine et al., 1999; Caine et 

al., 2000), activation of D1 receptors appears to attenuate drug seeking in 

reinstatement models whereas activation of D2 receptors has the opposite effect 

(Self et al., 1996; Khroyan et al., 2000). 

 

While the role of NAc dopamine in reward outlined above has been studied 

extensively, in the context of this dissertation it is also important to mention its 

role in cognitive function. Although some contend that lesions of the ventral 

striatum lead to performance deficits, i.e. increased response latencies, rather 

than cognitive deficits (Cole and Robbins, 1989), lesions of the nucleus 

accumbens have been shown to lead to a number of cognitive deficits that are 
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not primarily performance related.  These deficits include impaired learning of a 

spatial discrimination task and impaired reversal learning (Annett et al., 1989), an 

impairment in PPI performance, indicating a decrease in sensorimotor inhibition 

(Kodsi and Swerdlow, 1994), impaired contextual fear conditioning (Riedel et al., 

1997),  a decrease in Pavlovian approach behavior in an autoshaping task 

(Parkinson et al., 2000), and an increase in perserverative responding on the 5-

CSRTT (Christakou et al., 2004).  Many of these impairments, including a 

decrease in reversal learning and spatial discrimination are thought to be 

dependent on dopamine depletion in the NAc (Taghzouti et al., 1985).  

 

In examining the role of specific dopamine agonists in the NAc on cognitive 

function, Pezze and colleagues (2007) found that a D1 receptor antagonist 

infused into the NAc decreased accuracy and increased omissions on a 5-

CSRTT, while an agonist had the opposite effect.  In contrast, Pattij and 

colleagues (2007) found that D1 receptor antagonists infused into either the NAc 

core or shell led to a decrease in premature responding on the 5-CSRTT, while 

NAc core infusions lead to an increase in performance accuracy and NAc shell 

infusions led to an increase in omission rate. This would suggest that although 

D1 receptors in the NAc play a role in cognitive function, there are differential 

contributions of these receptors within the two subregions of the NAc.  

 

Along with examining the effects of intra-accumbal infusions of D1 receptors, 

these two studies also examined the effects of D2 antagonist administration. 
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While a D2 receptor antagonist led to a similar decrease in response accuracy in 

the 5-CSRTT as seen with D1 antagonists, they also led to an increase in food 

retrieval latency. However, administration of a D2 receptor agonist had no effect 

on accuracy but increased perserverative responding (Pezze et al., 2007).  While 

Pattij and colleagues (2007) found similar results in regards to the increase in 

latencies, they also found that D2 receptor antagonists infused into either the 

core or the shell led to an increase in omission rate. This would suggest that D2 

receptors in the NAc play a key role in performance related activity.  Just as the 

decrease in response accuracy in the 5-CSRTT cannot be attributed to 

performance deficits, Ploeger and colleagues (1994) demonstrated that intra-

accumbal infusions of haloperidol, a d2 antagonist, lead to decreased acquisition 

of spatial learning in a Morris water maze task.  

 

Together, these studies provide us with ample evidence that the dopamine 

system in the ventral striatum plays a key role in cognitive function that includes, 

but is not limited to, a role in the performance of cognitive tasks. As the NAc 

receives projections from the PFC and these neurons synapse on the same 

MSNs that receive dopaminergic input (Hara and Pickel, 2005), understanding 

this interaction could further our understanding of cognitive deficits resulting from 

addiction and dopamine-related disorders. 
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Caudate-Putamen 

Although the caudate-putamen is the target region of the nigrostriatal dopamine 

projection system, primarily studied for its role in movement disorders, rather 

than the mesolimbic dopamine projection system, it also plays a role in reward 

processing.  Recently, dopamine release in the caudate-putamen, also referred 

to as the dorsal striatum, has been implicated as a mechanism underlying cue-

induced drug craving (Volkow et al., 2006). This theory is based primarily on PET 

imaging studies in human addicts demonstrating that viewing drug related stimuli 

leads to increased radiotracer displacement, presumably reflecting an increase in 

dopamine release (Volkow et al., 2006; Wong et al., 2006).  Along with cue-

induced craving this area has also been implicated in stress-induced craving in 

human cocaine addicts (Sinha et al., 2005). 

 

Along with these clinical studies, animal work supports the involvement of dorsal 

striatum dopamine in cue-induced craving and reinstatement. For example, 

extracellular dopamine is increased dorsal striatum of rodents responding under 

a second-order schedule of reinforcement (Ito et al., 2002).  Vanderschuren and 

colleagues (2005) have demonstrated that dorsal striatum dopamine is 

necessary for second-order responding. In further support of the role of the 

dorsal striatum in relapse, a recent study by See and colleagues (2007) showed 

that inactivation of the caudate-putamen attenuates drug seeking after prolonged 

abstinence.  
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The role of the dorsal striatum in cue-induced craving and relapse may be due to 

its role in stimulus-response learning.  Lesions of the caudate have been know to 

lead to memory deficits in a number of different tasks involving the pairing of a 

stimulus with a reinforced response since the 1970s (Green et al., 1967; 

Schwartzbaum and Donovick, 1968; Allen and Davison, 1973; Hannon and 

Bader, 1974; Prado-Alcala et al., 1975; Levine et al., 1978; Sanberg et al., 1979). 

In particular, it seems to be the lateral caudate, or more specifically, the 

dorsolateral caudate, that is most involved in the acquisition of stimulus-response 

pairing (Reading et al., 1991; Adams et al., 2001; Kantak et al., 2001; 

Featherstone and McDonald, 2004b, a, 2005).  The role of the dorsolateral 

caudate in stimulus-response learning is mediated by dopamine in this region as 

dopamine depletion leads to similar deficits as lesions (Neill et al., 1974; Carli et 

al., 1989).  

 

In addition to the role of the dorsal striatal dopamine in reinstatement and 

stimulus-response learning, it has also been implicated in executive functions. 

Early work by in monkeys by Battig and colleagues (Battig et al., 1960) and work 

in cats by Ivan Divac  (Divac, 1968, 1972) determined that lesions of the caudate 

lead to impaired delayed response and delayed alternation performance. A 

number of studies have demonstrated similar results in rats (Oberg and Divac, 

1975; Divac et al., 1978; Mogensen et al., 1987; Dunnett et al., 1999). In addition 

to these delayed alternation deficits, lesions of the dorsal striatum lead to 
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decrease short-term memory performance on a delayed-match-to-sample task 

(Dobrossy et al., 1995, 1996) as well deficits on a serial visual discrimination task 

(Trueman et al., 2005). While these lesion studies do not allow us to isolate these 

impairments to a neurotransmitter system, Collins and colleagues (2000) have 

demonstrated that dopamine depletion in the caudate leads to similar deficits in 

delayed alternation as seen with caudate lesions.  Along with these deficits, this 

study also demonstrated that dopamine depletion leads to deficits on 

extradimensional shifting in an attentional set-shifting task (Collins et al., 2000). 

Despite the evidence that dopamine in the caudate is critical for many cognitive 

tasks, there is also evidence that dopamine depletion in the caudate leads to an 

enhanced ability to ignore distraction in attentional set shifting tasks (Crofts et al., 

2001). 

 

As all three ascending dopamine systems, mesolimbic, mesocortical and 

nigrostriatal, seem to play a role in addiction, gaining a better understanding of 

how these systems are altered by drugs of abuse may lead to better relapse 

prevention.  

 

Alterations in Dopamine Transmission and Dopamine Receptors 

within the Prefrontal Cortex and Striatum in Human Addicts 

 

Although the information we are able to obtain from clinical populations is limited, 

both imaging and postmortem studies have provided us with some insight into 
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differences between the brains of addicts and healthy adults.  With the exception 

of a few global changes, such as a decrease in cortical grey matter volume 

(Bartzokis et al., 2000), most of the work has focused on either the frontal cortex 

or the striatum.  

 

Frontal Cortex 

At the most global level, the brains of cocaine addicts exhibit structural 

differences from healthy controls, such as a decrease in gray matter volume in 

the prefrontal cortex (Liu et al., 1998; Fein et al., 2002; Matochik et al., 2003) and 

the orbitofrontal cortex (OFC) (Franklin et al., 2002; Matochik et al., 2003; Sim et 

al., 2007).  At a more functional level, numerous studies have examined 

functional activation in the frontal cortex of cocaine addicts, utilizing regional 

cerebral blood flow (rCBF), glucose utilization, and functional magnetic 

resonance imaging (fMRI) procedures.  Volkow and colleagues (Volkow et al., 

1988) reported a decrease in rCBF in the PFC of cocaine addicts that persisted 

after 10 days of abstinence.  This finding has been replicated by both by the 

Volkow lab (Volkow et al., 1993) and others (Strickland et al., 1993; Bell et al., 

1994; Ernst et al., 2000; Browndyke et al., 2004) and the decrease in frontal 

rCBF has been extended out to 3-4 months of abstinence (Volkow et al., 1993).  

Decreased rCBF has also been reported in the OFC of cocaine addicts (Bolla et 

al., 2003).  This persistent decrease in frontal cortical rCBF is accompanied by a 

persistent decrease in glucose metabolism in the frontal cortex of abstinent 

cocaine addicts (Volkow et al., 1991; Volkow et al., 1992).   
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Along with these general measurements of functional activation, researchers 

have examined markers of dopamine function in the frontal cortices of human 

addicts. Although no differences have been reported utilizing imaging techniques, 

postmortem studies indicate that cocaine addicts have a decrease in the number 

of dopamine transporter (DAT) binding sites in the PFC (Hitri et al., 1994).   

There is also postmortem evidence for a decrease in dopamine metabolites in 

the PFC of cocaine addicts, suggesting a decrease in dopamine levels in these 

subjects (Little et al., 1996).  

 

Taken together, these studies support the theory that cocaine addicts exhibit a 

“hypofrontality”, or decrease frontal cortex function (Goldstein and Volkow, 2002).  

This decrease in frontal cortex function may be dopamine mediated but human 

studies have not allowed us to determine this conclusively.  

 

Striatum 

Contrary to what is seen in the frontal cortex, there appears to be an increase in 

the metabolic activity of the striatum following chronic cocaine use, however this 

increase does not appear to be as persistent (Volkow et al., 1991).  This is the 

only study to demonstrate general alterations in functional activation in human 

addicts, as most of the focus of this work has been on more specific changes in 

the dopamine system. 
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The most widely cited difference in the striata of cocaine addicts is a decrease in 

D2 receptor availability first noted by Volkow and colleagues (1990) and 

replicated by her own lab and others (Volkow et al., 1993; Martinez et al., 2004).  

This decrease in receptor availability is believed to represent a decrease in total 

striatal D2 receptor number. While the original studies by Volkow and colleagues 

(1990; 1993) did not differentiate between dorsal and ventral striatum, it is 

important to note that a more recent study by Martinez et al. (2004) determined 

that the decrease in D2 receptor availability is present in both the nucleus 

accumbens and the caudate-putamen.  

 

Along with these changes in D2 receptor availability, an increase in DAT binding 

is also seen in human addicts. Malison and colleagues (1998) demonstrated that 

during acute withdrawal (96 hours or less since last cocaine adminstration) there 

is a 20% increase in DAT binding.  This is consistent with postmortem studies of 

cocaine abusers demonstrating increased DAT mRNA (Little et al., 1998) and 

studies of both cocaine abusers and cocaine overdose victims that have found 

increased DAT binding compared with controls (Little et al., 1999; Qin et al., 

2005).  This increase in transporter number has been determined to reflect an 

increase in functional activation of the DAT as measured in postmortem 

synaptasomes (Mash et al., 2002).  In addition to this alteration in terminal 

transporter function, there also seems to be a change in vesicular transporter.  

Little et al. (2003) found a decrease in VMAT immunoreactivity in the striata of 

cocaine abusers. The decrease in VMAT may reflect damage to dopaminergic 
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nerve terminals but as there is little evidence to support cocaine induced 

neurotoxicity, more work will need to be done to determine if this is the case.  

 

Work by Hurd and Herkenham (1993) examining the gene expression profiles of 

striata from human cocaine addicts determined that addicts exhibited an increase 

in enkephalin mRNA in the caudate-putamen and a decrease in dynorphin 

mRNA in the putamen. As mentioned earlier, enkephalin is colocalized with D2 

receptors while dynorphin (and substance P) is colocalized with D1 receptors.  

Therefore, this would suggest that there may be an upregulation of D1 receptors 

and corresponding decrease in D2 receptors, however receptor mRNA studies 

have not yielded this pattern of results (Meador-Woodruff et al., 1993). 

 

Although the focus of the current dissertation is on dopamine related changes 

following drugs of abuse, it is important to note that postmortem studies of 

cocaine addicts have also found alterations in glutamate (Tang et al., 2003; 

Hemby et al., 2005), norepinephrine (Mash et al., 2005), and serotonin 

neurotransmitter systems (Little et al., 1996) in the striatum and prefrontal cortex. 

Brain changes have also been detected in human addicts in regions that I have 

not focused on, such as the amygdala (Makris et al., 2004).  

 

As mentioned previously, these results from human studies do not allow us to 

parse apart cause vs. consequence. It is important to examine the results from 

preclinical studies in nonhuman primates and rodents to help determine whether 
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these alterations in mesocortical and mesolimbic systems are a result of drug 

abuse or reflect pre-existing vulnerabilities.   

 

Alterations in Dopamine Transmission and Dopamine Receptors 

within the Prefrontal Cortex and Striatum Following Chronic 

Psychostimulant in Animals  

 

Due to the varied drug administration procedures, withdrawal times, and testing 

parameters, it is difficult to form a cohesive picture from the large number of 

animal studies that have examined the effects of drugs of abuse, or even 

specifically cocaine, on dopamine transmission and dopamine receptors in the 

terminal regions of the ascending projection pathways.   In the current section I 

will attempt to synthesize the literature on the effects of chronic cocaine on 

dopamine transmission and receptors in the prefrontal cortex and the striatum, 

providing  

 

Prefrontal Cortex 

Due to the expense of doing terminal procedures in monkeys, there are very few 

studies using molecular techniques to examine the underlying changes in 

dopamine transmission resulting from chronic cocaine administration. Therefore, 

researchers examine measures of “functional activation”, such as glucose 

utilization and rCBF, to infer how drugs may change cortical brain regions 

involved in cognitive function.  The one such study that has examined the 
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prefrontal cortex in monkeys following chronic cocaine self-administration found a 

decrease in prefrontal glucose metabolism as a result of drug administration 

(Beveridge et al., 2006). 

 

While neurochemical and electrophysiological studies are more prevalent, rodent 

studies have also examined glucose utilization following repeated cocaine 

administration. Knapp and colleagues (2002) demonstrated that after 8 days of 

withdrawal, animals that had received repeated cocaine injections showed a 

decrease in glucose metabolism in the ventromedial orbital frontal cortex. 

However, similar studies looking at both cocaine and amphetamine 

administration have not replicated this result (Pontieri et al., 1995; Tsai et al., 

1995).  

 

To gain further understanding of how chronic cocaine changes the prefrontal 

cortex, a number of studies have utilized electrophysiology to determine how the 

firing rates of pyramidal neurons are altered during withdrawal from 

psychostimulants. The results of these studies also seem to be somewhat 

inconsistent, however. Following short term (5 days) in vivo cocaine 

administration and 3 days of withdrawal, slice cultures of mPFC neurons reveal 

an increase in membrane excitability driven by a decrease in voltage-gated K+ 

currents (VGKC), which in turn is driven by an upregulation of D1 receptor 

signaling (Dong et al., 2005; Nasif et al., 2005). The idea of an increase in PFC 

excitability is also supported by work looking at synaptic plasticity in mPFC slices 
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following a similar 5-day treatment regimen and 3 day withdrawal period. In 

studies by Huang and colleages cocaine treated animals exhibited a facilitation of 

long-term potentiation induction (Huang et al., 2007a) and impaired long-term 

depression (Huang et al., 2007b).  

 

Though the above evidence would suggest that the PFC is actually hyperactive 

following cocaine abuse, there is evidence that supports the hypoactivity 

hypothesis that was developed around the clinical data. In vivo 

electrophysiological studies in rats undergoing chronic cocaine self-

administration found that after multiple weeks of cocaine exposure there was a 

decrease in basal activity in prefrontal neurons as measured prior to the self-

administration session (Sun and Rebec, 2006). This may indicate that the 

previous studies did not utilize a long enough cocaine administration regimen or 

a fundamental difference between the effects of contingent and noncontingent 

cocaine on prefrontal function.  

 

While these studies provide insight into alterations in prefrontal cortical function 

following cocaine administration, they do not tell us about specific changes in the 

dopamine system in this brain region. Electrophysiological studies have 

examined the effects of dopamine receptor antagonists on prefrontal firing 

following chronic cocaine administration, however.  Nogueira and colleagues 

(2006) looked at prefrontal neurons in anesthetized animals following 7 days of 

cocaine and 2-4 weeks of withdrawal and found that D2 receptor antagonists at 
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low doses failed to increase current-evoked excitability in cocaine treated 

animals (as seen in saline animals) and actually had the opposite effect at higher 

doses. This decrease in responsivity to dopamine agents is supported by work 

demonstrating a decrease in the dopamine responsiveness in mPFC neurons of 

animals that have undergone repeated amphetamine treatment (Peterson et al., 

2000).  

 

In addition to these electrophysiological studies, a number of neurochemical 

studies have also examined the effects of chronic psychostimulants on prefrontal 

dopamine transmission and dopamine receptors.  When examining basal 

changes in prefrontal dopamine transmission, Karoum and colleagues (1990) 

demonstrated that during long term withdrawal (1-12 weeks) from repeated 

cocaine there is a decrease in dopamine and its metabolites in the frontal cortex. 

Similar results have been found following chronic amphetamine administration 

(Hedou et al., 2001). In addition to this decrease in extracellular dopamine, 

chronic cocaine administration leads to an increase in dopamine turnover 

(Meiergerd et al., 1997). Together these studies suggest that there is a decrease 

in basal dopamine transmission in the mPFC following repeated psychstimulant 

treatment.  

 

Along with the changes in basal dopamine transmission, repeated 

psychostimulants have also been shown to decrease prefrontal dopamine 

responsivity. Repeated cocaine administration has been shown to abolish shock-
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induced prefrontal dopamine release (Sorg and Kalivas, 1993) as well as 

decrease cocaine-induced prefrontal dopamine release (Sorg et al., 1997).  It is 

not entirely clear whether this decrease in prefrontal dopamine responsivity lasts 

throughout prolonged withdrawal, however. In animals given a 4 day regimen of 

experimenter-administered cocaine, followed by either 1, 7, or 30 days of 

withdrawal, cocaine-induced dopamine overflow in the mPFC was decreased 

during early withdrawal (both 1 and 7 days) and after more prolonged withdrawal 

(30 days) was increased relative to controls (Williams and Steketee, 2005a).  

There is evidence that this initial decrease in dopamine overflow during acute 

withdrawal may be due to a decrease in dopamine release rather than clearance 

(Williams and Steketee, 2005b). 

 

Along with these examinations of dopamine release and clearance, many studies 

have examined the effects of cocaine on dopamine receptors and dopamine 

transporters. While binding studies have yielded changes in D2 receptor binding, 

they are much more transient than those seen in human and nonhuman primate 

studies, and the results are contradictory. Studies utilizing experimenter-

administered cocaine have demonstrated decreases in D2 receptor binding 

(Kleven et al., 1990) while self-administration studies have yielded the opposite 

effects, demonstrating an increase 20 minutes after cocaine administration that is 

gone after 2 weeks (Ben-Shahar et al., 2007).  The results in rodents on the 

effects of chronic cocaine on DAT binding are a bit unclear as well, with short 

access self-administration leading to an increase in DAT density following a 14-
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day withdrawal period while long access self-administration did not (Ben-Shahar 

et al., 2006). This would suggest that the increase in DAT binding seen in human 

addicts may not be critically involved in addiction, as it is seen even after modest 

drug administration. 

 

While there are some conflicting results, the studies of the effects of chronic 

psychostimulants on PFC function provide evidence for hypofrontality resulting 

from drug abuse. As most of the studies mentioned here utilized experimenter-

administered drug, it is possible that more consistent results would be found 

utilizing self-administration procedures that more closely parallel human drug use 

patterns. As any alterations in the underlying circuitry of the PFC could potentially 

lead to changes in cognitive functions that rely on processing in this area, a more 

full understanding of the effects of psychostimulant drugs on PFC neurons and, 

more specifically, dopamine in the PFC could help in our understanding of these 

cognitive deficits and potentially lead to more effective therapies. 

 

Striatum 

Though there is still relatively little work on the effects of chronic cocaine 

dopamine transmission in the striata of nonhuman primates, there is some 

evidence that the alterations in the dopamine system seen in human imaging 

studies may be a result of drug use. Following chronic cocaine self-

administration, Nader and colleagues (2002) found a decrease in D2 receptor 

binding  and  an increase in D1 receptor binding in the striata (all striatal regions 
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rostral to the anterior commissure) of rhesus monkeys. This decrease in D2 

receptor binding in self-administering monkeys was also seen in a previous study 

by the same group (Moore et al., 1998a). However, when D1 receptor binding is 

examined in the NAc alone, Moore and colleagues (1998b) report an increase 

following chronic cocaine self-administration.  

 

Along with these binding studies, in vivo PET studies in monkeys have also 

demonstrated a decrease in striatal D2 receptor availability that developed after 1 

week of cocaine self-administration and persisted following up to 1 year of 

abstinence (Nader et al., 2006). In examination of another aspect of the striatal 

dopamine system, Letchtworth and colleagues (2001) demonstrated that 

following long-term (up to 1.5 years) cocaine self-administration leads to an 

upregulation of DAT binding sites in both the nucleus accumbens and the 

caudate-putamen that follows an initial downregulation in DAT binding in these 

areas following short-term (5 days) self-administration.  

 

To further add to our knowledge of how chronic psychostimulants alter dopamine 

transmission, studies in rodents have allowed researchers to use more invasive 

techniques to measure dopamine release. Early studies examining the effects of 

repeated amphetamine in rat striatal slices found that drug animals exhibited an 

increase in amphetamine-evoked dopamine release compared to saline controls 

following more than a week of withdrawal (Robinson and Becker, 1982; Wilcox et 

al., 1986). This increase in stimulated dopamine release following repeated 
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amphetamine is not limited to just amphetamine-evoked release however, as 

similar results have been seen with both KCl and electrical field stimulation-

evoked dopamine release (Castaneda et al., 1988).  This increase in evoked 

release can be generalized across psychostimulants as repeated cocaine 

administration leads to an increase in amphetamine-evoked DA in the nucleus 

accumbens in vitro (Clay et al., 1998).  

 

Similar increases in evoked dopamine release have been seen in vivo, utilizing 

microdialysis in freely moving animals, with repeated amphetamine producing an 

increase in amphetamine-evoked dopamine release in the ventral striatum 

(Robinson et al., 1988).  Repeated cocaine administration has also been shown 

to lead to an increase in psychostimulant-evoked dopamine release in the dorsal 

striatum (Akimoto et al., 1989; Akimoto et al., 1990) as well as the ventral 

striatum (Kalivas and Duffy, 1990; Ng et al., 1991).  This alteration in evoked 

dopamine is not only seen with non-contingent cocaine administration, but also 

following chronic cocaine self-administration (Pettit et al., 1990).  

 

Chronic psychostimulant administration not only leads to changes in stimulated 

dopamine transmission but also basal transmission. Repeated amphetamine 

administration has been shown to cause a long-lasting (up to 12 days) increase 

in dopamine metabolism, indicated by an increase in the dopamine metabolite 

DOPAC (Robinson and Camp, 1987).  This increase in dopamine metabolism is 

seen in both the dorsal and ventral striatum and is still present after one month of 



 

46 

withdrawal (Paulson and Robinson, 1996).  This increase in metabolism could be 

responsible for reports that chronic cocaine leads to a decrease in basal levels of 

extracellular dopamine in the ventral striatum during prolonged withdrawal 

(Rossetti et al., 1992) and the dorsal striatum in early withdrawal (Clay et al., 

1998). However, as many other studies have not seen these basal differences it 

is not entirely clear how or if chronic psychostimulants alter basal dopamine 

concentrations (Robinson et al., 1988; Jones et al., 1996).  

 

In addition to these studies examining dopamine transmission, numerous studies 

in rats have examined the effects of chronic psychostimulants on dopamine 

receptors in the striatum.  Although the nonhuman primate binding studies seem 

to be consistent with what has been shown in the human literature, this is not the 

case in regards to the rodent literature.  Studies examining the effects of 

experimenter-administered cocaine on D2 receptor binding in rats are mixed, 

with reports of increases (Trulson and Ulissey, 1987; Peris et al., 1990), 

decreases (Goeders and Kuhar, 1987; Kleven et al., 1990; Tsukada et al., 1996; 

Maggos et al., 1998), and no change (Lim et al., 1990; Alburges et al., 1993).  

While these divergent results may be due to differences in drug treatment 

regimen (i.e. dose, length of treatment, length of withdrawal) or autoradiography 

ligands, there is also another possibility. 

 

Recent work has demonstrated that the dopamine D2 receptor exists in two 

interconvertible affinity states for dopamine. The high-affinity state (D2High) is the 
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more functionally relevant state as dopamine preferentially binds to it over the 

receptors in the low-affinity state (Seeman et al., 2005).  Repeated 

psychostimulant administration has been shown to cause a dramatic increase in 

the proportion of D2High receptors while having no effect on the total D2 receptor 

population (Seeman et al., 2002; Seeman et al., 2007).  This increase in D2High 

receptors may explain why repeated psychostimulant treatment yields rats that 

are hypersensitive to the psychomotor and motivational effects of direct D2 

agonists (De Vries et al., 2002; Edwards et al., 2007).  As the current ligands 

used in human and non-primate imaging studies do not discriminate between the 

low- and high-affinity states of the D2 receptor, more studies will need to be done 

before we can determine whether this apparent hypersensitivity is relevant to the 

human condition. 

 

Although it is possible that MSNs may be hypersensitive to dopamine, repeated 

cocaine administration seems to yield a decrease in the sensitivity of these 

neurons to glutamate release from PFC projections. White and colleagues have 

demonstrated that repeated cocaine or repeated amphetamine decreased the 

excitatory effect of glutamate on NAc MSNs after 3 days of withdrawal (White et 

al., 1995).  This finding that chronic cocaine leads a decrease in NAc excitability 

is supported by evidence that repeated cocaine decreases AMPA/NMDA 

excitatory postsynaptic potential ratios at PFC-NAc synapses (Thomas et al., 

2001).  This study also suggests that this decrease in excitability is long lasting, 

as the decrease in AMPA/NMDA ratios was present after 10-14 days of 
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withdrawal. As stimulation of D2 receptors leads to a decrease in excitability in 

the NAc (West and Grace, 2002; Tseng and O'Donnell, 2004; Perez et al., 2006), 

this may be a potential mechanism by which this decrease in glutamate 

responsivity occurs.  

 

Similarly to what has been found in the PFC, much of the work done on the 

effects of repeated cocaine in the striatum has utilized experimenter administered 

drug and as many differences have been seen between contingent and non-

contingent drug administration (Broadbear et al., 1999; Kippin et al., 2006; Lecca 

et al., 2007), the relevance of these studies to human condition is not absolute.  It 

will be important in future studies to examine striatal function utilizing not only 

self-administration procedures but extended access procedures that yield many 

symptoms of addiction that are characteristic of human addicts (Ahmed and 

Koob, 1998; Deroche-Gamonet et al., 2004; Vanderschuren and Everitt, 2004). 

As striatal function, and specifically dopamine in the striatum, is involved in a 

variety of cognitive functions, understanding how psychostimulant drugs alter this 

function could contribute to our understanding of deficits caused by drug abuse.  

 

The Purpose of the Present Dissertation 

 

The purpose of the following series of experiments is to examine the ability of 

cocaine to cause deficits in cognitive function and changes in the neurobiological 

circuits underlying cognition.  As the issue of causality cannot be addressed in 
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clinical studies and the animal literature has not yet been able to generate 

deficits similar to those seen in human addicts utilizing contingent cocaine 

administration, many believe that these deficits may pre-exist addiction and play 

a role in addictive vulnerability. While there may be cognitive deficits that do 

precede addiction, we believe that the lack of persistent effects seen in the 

preclinical literature is due to the drug administration procedures utilized rather 

than an inability of cocaine to cause cognitive deficits. Thus, to this end, the aim 

of this dissertation is to utilize an extended access cocaine self-administration 

procedure to study the effects of cocaine on cognitive function and associated 

dopamine systems. As extended access cocaine self-administration has been 

shown to yield a number of other symptoms characteristic of human addiction, it 

is hypothesized that persistent cognitive deficits will be seen in rats similar to 

those seen in human addicts. Furthermore, we believe that alterations in the 

dopamine systems underlying these cognitive functions will be seen following 

extended access cocaine self-administration and that these alterations may 

further educate us on the mechanisms underlying drug-induced cognitive deficits.  

 

Therefore the aim of Chapter II was to examine the effects of differential access 

cocaine self-administration on sustained attention performance. In addition, in 

situ hybridization and Western Blot analyses were conducted to examine 

cocaine-induced alterations in the underlying mesocortical dopamine circuitry.  

The goal of the experiments in Chapter III was to extend our findings on the 

effects of extended access cocaine on attentional function and examine the 
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ability of cocaine to cause deficits in recognition memory performance. As deficits 

in memory function are seen in human addicts, we hypothesized that the 

extended access cocaine self-administration animals would exhibit persistent 

memory deficits.  

 

As discussed earlier, the effects of cocaine on striatal dopamine systems is not 

entirely clear, as there is a discord between the human and animal literatures. 

The experiment in Chapter IV was aimed at proposing a potential resolution to 

this controversy.  Striatal tissue was taken from animals with differential access 

to cocaine self-administration and levels of both total D2 receptor binding and D2 

high-affinity receptor binding were conducted. It is hypothesized that cocaine 

self-administration will lead to an increase in D2High receptors while not changing 

the total receptor density and that this increase will be more pronounced in the 

extended access group.  

 

The fourth and final experiment, Chapter V, was aimed at examining changes in 

functional activation patterns following extended access cocaine self-

administration in an attempt to further elucidate changes in mesocortical and 

mesolimbic dopamine systems throughout the course of withdrawal. To explore 

this issue we utilized a unique autoradiographic technique to measure basal 

changes in rCBF in mesocortical and mesolimbic brain regions.   
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Figure 1.1. Diagram of ascending dopamine projection systems in the rat. The 

red arrows indicate dopamine projections from the ventral tegmental area to the 

nucleus accumbens (mesolimbic pathway) and the prefrontal cortex 

(mesocortical pathway) as well as dopamine projections from the substantia 

nigra to the caudate-putmen, or dorsal striatum (nigrostriatal pathway).  The 

green arrow indicates glutamatergic descending projections from the prefrontal 

cortex to the nucleus accumbens.  
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CHAPTER II 
 

 
PERSISTENT ALTERATIONS IN COGNITIVE FUNCTION AND 

PREFRONTAL DOPAMINE D2 RECEPTORS FOLLOWING 

EXTENDED, BUT NOT LIMITED, ACCESS TO SELF-

ADMINISTERED COCAINE 

 

Summary 

Drug addicts have deficits in frontocortical function and cognition even long after 

the discontinuation of drug use. It is not clear, however, whether the cognitive 

deficits are a consequence of drug use, or are present prior to drug use, and thus 

are a potential predisposing factor for addiction. To determine if self-

administration of cocaine is capable of producing long-lasting alterations in 

cognition, rats were allowed access to cocaine for either 1 hr/day (short access; 

ShA) or 6 hrs/day (long access; LgA) for 3 weeks. Between 1 and 30 days after 

the last self-administration session we examined performance on a cognitively 

demanding test of sustained attention that requires an intact prefrontal cortex.  

The expression of dopamine D2 receptor mRNA and D2 receptor protein levels 

in the prefrontal cortex were also examined. Early after the discontinuation of 

drug use LgA (but not ShA) animals were markedly impaired on the sustained 
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attention task. Although the LgA animals improved over time, they continued to 

show a persistent pattern of performance deficits indicative of a disruption of 

cognitive flexibility up to 30 days after the discontinuation of drug use. This was 

accompanied by a significant decrease in both DA D2 mRNA and D2 receptor 

protein in the prefrontal cortex of LgA (but not ShA) animals. These findings are 

consistent with the hypothesis that in addicts repeated cocaine use can 

potentially produce persistent deficits in cognition and brain function, and 

illustrate the usefulness of extended access self-administration procedures for 

studying the neurobiology of addiction. 

 

Introduction 

 

Cocaine addicts have deficits in cognitive function, including deficits on tests of 

short-term memory, attentional control, and decision-making, and these are 

evident even long after the discontinuation of drug use (Miller, 1985; Hoff et al., 

1996; Rosselli and Ardila, 1996; Bolla et al., 1999). Many of these cognitive 

functions are known to require the prefrontal cortex, and structural and functional 

imaging studies suggest that indeed, prefrontal cortical function is impaired in 

addicts (Volkow et al., 1988; Volkow et al., 1991; Goldman-Rakic, 1995; Robbins, 

1996; Bolla et al., 1998; Liu et al., 1998; Ernst et al., 2002; Bolla et al., 2003; 

Matochik et al., 2003; Bolla et al., 2004; Kosten et al., 2006). It is not clear, 

however, whether these behavioral and neurobiological deficits precede drug 

use, and thus potentially contribute to the propensity for addiction, or are a 
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consequence of drug use. It is difficult to address this issue in humans, but 

studies with non-human animals allow one to determine whether exposure to a 

drug of abuse is capable of producing changes in brain and behavior comparable 

to those seen in addicts. 

 

Studies using non-human animals have shown that when psychostimulant drugs 

are administered by an experimenter they can produce both acute and persistent 

deficits in cognitive function (Crider et al., 1982; Jentsch et al., 2002; Kondrad 

and Bruk, 2004; Schoenbaum et al., 2004; Burke et al., 2006). For example, 

Schoenbaum et al. (2004) reported that experimenter-administered cocaine 

produces persistent reversal deficits on an odor discrimination task mediated by 

the orbital frontal cortex in rats, and similar deficits have been seen in non-

human primates (Jentsch et al., 2002). However, experiments in which animals 

were allowed to self-administer cocaine have not revealed persistent cognitive 

deficits. The self-administration of psychostimulant drugs results in cognitive 

deficits during the period of acute withdrawal, for a few days after the 

discontinuation of drug treatment, but these do not persist unless animals are 

given an additional drug challenge (Crider et al., 1982; Kondrad and Burk, 2004; 

Dalley et al., 2005a; Dalley et al., 2005b; Kantak et al., 2005). It remains 

possible, therefore, that the persistent cognitive deficits seen in cocaine addicts 

are not in fact a consequence of drug use. Alternatively, the self-administration 

procedures used thus far may not accurately model the addictive state.  
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Preclinical studies involving self-administration have largely used limited access 

procedures (Dalley et al., 2005a; Dalley et al., 2005b; Kantak et al., 2005), but 

these may not produce some of the key changes in brain and behavior that 

characterize addiction. Recent reports suggest that extended access procedures 

are required to produce many symptoms characteristic of addiction, including 

escalation of drug-intake (Ahmed and Koob, 1998; Deroche-Gamonet et al., 

2004; Vanderschuren and Everitt, 2004; Ferrario et al., 2005). We hypothesized, 

therefore, that extended (but not limited) access to self-administered cocaine 

may produce persistent cognitive deficits, and associated changes in prefrontal 

cortical dopamine function. This hypothesis is tested here. 

 

Materials and Methods 

 

Subjects. One hundred and thirty-eight male Wistar rats (Harlan, Indianapolis, IL) 

weighing 200-225g at the start of the experiment were individually housed in 

square plastic hanging cages (8 x 9 x 8 cm). The animals were housed in a 

temperature and humidity controlled room with a 14:10 light/dark cycle, with 

water available ad libitum.  Animals were food restricted throughout the 

experiment to maintain at least 90% of their free feeding body weight. All 

procedures were approved by the University of Michigan Committee on the Use 

and Care of Animals (UCUCA).  
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Apparatus. Behavioral training, testing, and drug administration took place in 16 

operant chambers measuring 22 x 18 x 13 cm (Med Associates, St. Albans, VT, 

USA) located inside larger sound-attenuating chambers.  For the sustained 

attention task, each operant chamber was equipped with a panel consisting of 

one light (2.8 W), two retractable levers, and a food pellet dispenser, all located 

on the front wall. A house light (2.8 W) was located close to the ceiling of the 

back wall.  The floor of the chamber consisted of 19 stainless steel rods (4 mm in 

diameter) spaced 1.5 cm apart (center-to-center).  For the drug self-

administration procedure, each operant chamber had two nose poke holes 

equipped with cue lights. A tone (2900 Hz) was also available inside of the 

chamber. The floor of the chamber consisted of a solid piece of black plastic 

placed over the stainless steel rods. Med-PC for Windows software (v. 1.1, Med 

Associates) controlled all signal presentation, lever operation, pellet delivery, 

drug delivery, tone presentation and data collection via a Pentium PC.  

 

Experiment I: Within-Subjects Study. 

 

Sustained Attention Task Training. For a detailed description of sustained 

attention procedures see McGaughy & Sarter (1995).  The task required four 

phases of training. Phase I.  All animals were shaped to lever press for food (45-

mg banana flavored pellet, Bioserv, Frenchtown, NJ) utilizing a fixed ratio 1 

(FR1) schedule such that one lever press resulted in the delivery of one food 

pellet. During this stage both of the levers were extended into the box at the 
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beginning of each session and remained extended for the duration of the 

session. Training continued until the animals had at least three days of 120 

reinforced lever presses. Phase II. After reaching this criterion, rats were then 

shaped to discriminate between signals (illumination of the central signal light for 

a period of 1 s) and non-signals (no illumination). For this training phase the start 

of each individual trial was indicated by the extension of both levers into the box.  

Response on one lever was reinforced if it followed a signal, while response on 

the other lever was reinforced if it followed a non-signal. The assignment of 

levers was counter-balanced across subjects to minimize side-bias. To increase 

the salience of the signal light and facilitate acquisition of the appropriate 

response, the house light was not illuminated during this training step. Signal and 

non-signal trials were presented pseudo-randomly with a mean intertrial interval 

(ITI) of 9±3 s. Four responses were possible during this second phase of training: 

hit, defined as the correct response to a signal; miss, the incorrect response to a 

signal; correct rejection, the correct response to a non-signal; and false alarm, 

the erroneous response to a non-signal (i.e., a claim for a signal following a non-

signal; see Figure 2.1 for schematic). If the animal responded incorrectly, the 

previous trial was repeated up to three times. If a rat continued to respond 

incorrectly, it received a forced-choice trial in which only the correct lever was 

extended into the box while the signal was presented. Forced-choice trials also 

served to impede the generation of a side bias. Trials in which the rats failed to 

emit a response within 4 s of lever insertions were counted as omissions. 

Animals reached criterion for this portion of training when they responded 
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Figure 2.1. Schematic illustration of the of the sustained attention task. Correct 

responses on signal trials (hits) and non-signal trials (correct rejections) were 

rewarded (arrows) and incorrect responses (misses and false alarms, 

respectively) were not. 
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correctly to 65% of the signal and non-signal trials for five consecutive days. 

Phase III.  For the third stage of training the 1.0 s signal was replaced with three 

different signal lengths of 500, 50, and 25 ms, equally distributed across the 

session.  Following correct responding to 65% of the 500 ms and non-signal 

trials, the final stage of training began. Phase IV. During the final stage of 

training, the house light was illuminated; this is a critical step in the acquisition of 

the sustained attention task as it forces animals to limit competitive behaviors 

and to closely monitor the intelligence panel in order to detect signal events. The 

final task consisted of three blocks of 54 trials, with nine trials of each signal 

length and 27 non-signal trials. The signal and non-signal trials were pseudo-

randomized. Animals reached criterion when their performance became 

asymptotic at a level of at least 70% hits on the longest (500 ms) signal length 

trials, 70% correct rejections on the non-signal trials, and less than 30% 

omissions. 

 

Surgical Procedures. Individual animals reached performance criterion on the 

sustained attention task at different rates, and therefore cocaine self-

administration and subsequent attention testing occurred at different times for 

each animal. After reaching criterion on the attention task, animals were 

anaesthetized with ketamine and xylazine anesthesia (77:1.5 mg/ml, 

intraperitoneal [IP], at 0.1 mL/100g of body weight) and a silicone catheter 

(Plastics One, Roanoke, VA) was inserted into the right jugular vein and passed 

subcutaneously to exit from the animals’ back (see Caine et al., 1993). Animals 
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were allowed to recover from surgery for a minimum of 3 days prior to drug 

administration. Catheters were flushed daily with 0.1 mL of gentamicin (50 

mg/kg, in 0.9% sterile bacteriostatic saline).   

 

Cocaine Self-Administration. Rats were transported from their home cage to an 

operant chamber 6 days a week for 4 weeks, where they were allowed to nose-

poke for cocaine (0.4 mg/kg/infusion in 50 µL of saline administered over 1.6 s) 

on a continuous reinforcement schedule (FR1) with a time-out of 20 s. A training 

session commenced with the illumination of the “active” nose-poke hole stimulus 

light. Responding in this hole resulted in drug delivery. Responding in the other 

nose-poke hole, designated inactive, had no consequences. Rats were initially 

trained during daily one hour sessions for a total of six days. Animals that did not 

acquire stable self-administration behavior (at least 5 infusions each day for 3 

consecutive days) were removed from the study. After the initial 6-day training 

period animals were divided into two groups: a long access group (LgA) and a 

short access group (ShA). These groups were balanced according to both the 

amount of drug they administered during the first week of training and their 

performance during attention training. Animals in the ShA group continued to 

receive one-hour test sessions, whereas animals in the LgA group received six-

hour test sessions for an additional 16-17 sessions. A third group of rats (no-drug 

control group) received sham surgery and were transported each day to a novel 

test room where they were placed into Plexiglas chambers, similar to the operant 

chambers.   
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Sustained Attention Testing. One day following four weeks of drug self-

administration (or transport in the no-drug control groups), animals were retested 

on the sustained attention task (n=12-16). Animals were tested again two weeks 

after the last self-administration session, followed by daily retraining for 1 week 

following the test on day 14.  

 

Experiment II: Between-Subjects Study. 

 

Experiment II utilized a between-subjects design to control for potentially 

confounding effects of repeated testing on the performance on the attention task 

in Experiment I. This study also examined performance on the sustained 

attention task one month after the last self-administration session to determine 

the persistence of any drug-induced cognitive deficits. Along with the behavioral 

analysis, Experiment II was also designed to examine changes in the expression 

of dopamine D1 and D2 receptor mRNA in the prefrontal cortex. 

 

The methods for sustained attention task training and drug self-administration 

were identical to those in Experiment I.  

 

Sustained Attention Testing. Following the completion of self-administration, 

animals in the No Drug, ShA, and LgA groups were divided into two more 

groups. One group (n=5-6) was tested on the attention task 1 day following the 
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last self-administration session and one group (n=6-8) was tested 30 days 

following the last self-administration session.   

 

Tissue Collection. Three days following their respective sustained attention 

testing session (at days 4 & 33) all animals were decapitated and their brains 

removed and frozen in isopentane (-40 to -50°C) on dry ice. The brains were 

then stored at -80°C.  Coronal brain sections (10 µm) were cut on a cryostat at 

200 µm intervals, thaw mounted on Superfrost/Plus slides (4 sections per slide, 

Fisher Scientific, Pittsburgh, PA) and stored at -80°C until further processing.  

 

In Situ Hybridization. For detailed methodology of the in situ hybridization 

techniques used see Kabbaj et al. (2000). Following fixation, sections were 

hybridized with 35S-labeled cRNA probes produced using standard in vitro 

transcription methodology. Prefrontal cortex sections were processed for in situ 

hybridization of dopamine D1 and D2 receptor mRNA (480-mer). The probes 

were diluted in hybridization buffer and slides were coverslipped and incubated 

overnight at 55°C.  Following rinses and dehydration, slides were exposed to x-

ray film (Kodak Biomax-MR, Eastman Kodak, Rochester, NY) for 2 weeks. The 

specificity of the hybridization signal was confirmed with sense probe controls 

(data not shown).  

 

Quantification. Autoradiographs were digitized using a Scanmaker 1000XL 

scanner (Microtek, Carson, CA) and the magnitude of the signal of the 
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radioactive probes was determined using Scion Image (Scion Corporation, 

Frederick, MD). A macro was used to automatically determine signal above 

background in each brain region (written by Dr. S. Campeau, University of 

Colorado, Boulder, CO). A background value was obtained from a white matter 

region such as the corpus callosum in each section and only values exceeding 

the background by 3.5 times the standard deviation were included in the 

analysis. Results are expressed as the mean integrated density of signal pixels 

divided by the total number of pixels in the selected region. The person 

quantifying was blind to group assignments. Anatomical regions were identified 

and subdivided for densitometric analysis according to the stereotaxic atlas of 

Paxinos and Watson (Paxinos and Watson, 1998). More specifically, the 

cingulate, prelimbic, and infralimbic subregions of the PFC at 2.7mm anterior 

from bregma were quantified. As the same pattern of results was found in all 

three subregions, we collapsed these regions into a single region referred to as 

the prefrontal cortex.  

 

Experiment III. D2 Receptor Protein 

 

Experiment III was designed to examine the effects of limited vs. extended 

access to self-administered cocaine on levels of DA D2 receptor protein in the 

prefrontal cortex. The methods for drug self-administration were identical to those 

in Experiment I.  
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Tissue Collection and Sample Preparation. Three or thirty days following their 

final self-administration session animals were decapitated and their brains 

removed. The entire prefrontal cortex was dissected, fast frozen on dry ice and 

kept at -80°C until further processing. Frozen brain tissue was homogenized 

(1:10, wt/vol) in cold 50 mM Tris-HCl buffer, pH 6.8, containing 2% SDS, 1 mM 

EDTA, and various protease inhibitors as previously reported (Garcia-Fuster et 

al., 2007). Aliquots of total homogenate were mixed with equal volumes of 

electrophoresis loading buffer, denatured and stored at –20°C until use. Protein 

concentrations were determined by the BCA Protein Assay Reagent (Pierce 

Biotechnology, Rockford, IL, USA). 

 

Western Blot Analysis.  For western blot analysis, 33 µg of each protein sample 

(determined to be within the linear range for immunobloting of D2DR) was 

separated by electrophoresis on 10% acrylamide/bisacrylamide minigels and 

transferred electrophoretically to nitrocellulose membranes. The membranes 

were subsequently blocked for 1 hour at room temperature in phosphate buffered 

saline (PBS, in mM: 137 NaCl, 2.68 KCl, 10.14 Na2HPO4, 1.76 KH2PO4) 

containing 0.2% Tween-20, 0.5% bovine serum albumin (BSA), and 5% non-fat 

dry milk.  Incubation with the primary antibodies (mouse anti-dopamine D2 

receptor, 1:400 dilution, Santa Cruz Biotechnology, Inc., Santa Cruz, CA; mouse 

anti-β-actin, 1:10,000 dilution, Sigma-Adrich, St. Louis, MO) was performed 

overnight at 4°C. After extensive washing in PBS the membranes were incubated 

with the secondary antibody, horseradish peroxidase-linked anti-mouse IgG, 
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(1:5,000 dilution) in blocking solution at room temperature for 1 h. 

Immunoreactivity of target proteins was detected with the ECL Western Blot 

Detection system (Amersham International, Buckinghamshire, UK) and 

visualized by exposure to Hyperfilm ECL film (Amersham) for 60 s to 60 min. The 

autoradiograms were then quantified by densitometric scanning (IOD) using 

Image J software. Each protein sample was run on 3-4 gels and an average 

value for each animal was calculated.  The amount of target protein in brain 

samples of treated rats was compared to an internal control sample in the same 

gel composed of prefrontal cortices from 3 control rats that had not received any 

treatment. This internal control was run 3 times on each gel and an average was 

calculated for comparison with other samples on that gel. Finally, percent 

changes in immunoreactivity with respect to internal controls (100%) were 

calculated for each sample in each of the various gels. In all the experiments the 

content of b-actin, a cytoskeletal protein not altered in brain by cocaine 

treatments (Imam et al., 2005), was quantified as a loading control.  

 

Statistical Analyses  

 

Cocaine Self-Administration. The number of infusions for the first hour of each 

session and for the entirety of the session was determined for each day of self-

administration. Two-way repeated measures ANOVAs were performed with 

escalation session (1-16) as the repeated variable, drug group (ShA, LgA) as the 

independent variable and first hour or total infusions as the dependent variable. 
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When significant main effects or interactions were revealed, Fisher’s post-hoc 

comparisons were conducted. For all analyses, alpha was set at 0.05. 

 

Sustained Attention. For each sustained attention session, the number of hits, 

misses, correct rejections, false alarms, and omissions was calculated. To 

examine each animal’s accuracy on the task, the relative number of hits [hits/(hits 

+ misses)] for each signal length, and the relative number of correct rejections 

[correct rejections/(correct rejections + false alarms)] were calculated.  In addition 

the vigilance index (VI), an overall measure of sustained attention performance, 

was calculated using the relative number of hits (h) and false alarms (fa) with the 

following formula: VI= (h-fa) / [2(h+fa)-(h+fa)2].  This index is similar to the 

sensitivity index (Frey and Colliver, 1973) except that omitted trials are excluded 

from the calculation. The VI provides a sensitive measure of overall performance, 

taking into account both trial types; VI varies between 1 and -1, with 1 indicating 

that all responses were hits and correct rejections, 0 that responses were 

randomly distributed over the four response types (hits, misses, false alarms, 

correct rejections), and -1 that all responses were misses and false alarms.  

Performance on each of the trial types (signal vs. non-signal) was also examined 

to reveal the specific responses contributing to the overall deficits. Two-way 

ANOVAs were performed with withdrawal day (1 or 30) and drug group (ND, 

ShA, LgA) as the independent variables and VI or the relative number of hits or 

correct rejections as the dependent variables. When significant main effects or 
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interactions were revealed, individual group comparisons were made using either 

additional ANOVAs, or Fisher’s post-hoc tests.  

 

Gene Expression. The levels of mRNA in the experimental groups were 

expressed as a percent of the mean value for the control group. Group 

differences in gene expression were assessed using two-way ANOVAs with 

withdrawal time (4 or 33 days) and drug group (ND, ShA, LgA) as the 

independent variables and percent of control mRNA levels as the dependent 

variable. Fisher’s post-hoc comparisons were conducted when main effects or 

interactions were present.  

 

Western Blot Analysis. The levels of D2 receptor protein were expressed as a 

percent of internal control values for each individual gel (see above). Group 

differences in protein expression were assessed using a two-way ANOVA with 

withdrawal time (3 or 30 days) and drug group (ND, ShA, LgA) as the 

independent variables and percent of control protein levels as the dependent 

variable.  
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Results 

 

Experiment I: Within-Subjects Study 

 

Cocaine Self-administration. Following the initial 6-day training period ShA 

animals continued with 1-hour self-administration sessions and LgA animals 

were given 6 hr daily sessions. Figure 2.2A shows the number of infusions taken 

during the first hour of each of these sessions, and Figure 2.2B the number of 

infusions over the entire session. The ShA group showed a small but statistically 

significant increase in cocaine intake over time. However, the LgA group showed 

a much greater increase in both their total intake and their intake during the first 

hour of each session, as indicated by significant group by time interactions 

(Figure 2.2).  

 

Sustained Attention Performance. Animals were trained on the sustained 

attention task for approximately 8 weeks prior to drug self-administration and 

animals assigned to the LgA, ShA and no-drug groups were matched based on 

training performance (Figure 2.3 a & d). Twenty-four hours following the final self-

administration session animals in the LgA group were markedly impaired on the 

sustained attention task, as illustrated by the decrease in VI relative to no-drug 

controls. In contrast, the ShA group did not differ from control (Figure 2.3b). The 

performance of animals in the LgA group was impaired with respect to their 

ability to detect signals as well as to respond correctly to non-signal events  
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Figure 2.2. A. Mean (+/- SEM) number of cocaine infusions during the first hour 

of each self-administration session in Experiment I. Both the ShA (One-way 

ANOVA, day, F(15,240)=1.86, p=.03) and the LgA groups (One-way ANOVA, 

day, F(15,224)=4.89, p<.0001) increased their intake over time, but this effect 

was much greater in the LgA group than the ShA group, as indicated by a 

significant group by time interaction [main effect of group, F(1,15)=16.49, 

p=0.0003, main effect of day, F(15,435)=12.87, p<0.0001, group by day 

interaction, F(15,435)=2.90, p=0.0002].  By the 7th session, animals allowed 

extended access to cocaine (long access, 6 hr session; LgA) took significantly 

more infusions than animals allowed only limited access (short access, 1 hr 

sessions; ShA) B. The mean (+/- SEM) number of cocaine infusions over the 

entire session for LgA (6 hr sessions) and ShA (1 hr sessions) groups. (Note that 

similar data were obtained in Experiments II and III, but in these two experiments 

there was no significant change in drug intake over time in the ShA groups. The 

self-administration data for Experiments II and III are not shown because the 

graphs look very similar to the data presented here. 
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Figure 2.3. The effect of extended vs. limited access to self-administered cocaine 
on performance on the sustained attention task as a function of time following the 
last self-administration session. The top three panels show the data expressed 
as a vigilance index (VI), which provides an overall index of performance 
incorporating both signal and non-signal trials (see Methods). The bottom three 
panels show the percent correct responses on both signal trials (as a function of 
signal duration; line graph) and non-signal trials (bar graph). The panels on the 
left (a, d) show performance on the last day of training, prior to any cocaine self-
administration experience, in the animals that will eventually be given limited 
(ShA) or extended (LgA) access to cocaine, or no treatment (No Drug). The 
groups were balanced to equate performance at the end of training, so there are 
no group differences on any measure at this point in time. The panels in the 
middle (b, e) show performance one day following the final self-administration 
session. Panel b shows that at this time there was a significant decrease in VI in 
the LgA group relative to both the No Drug and ShA groups, which did not differ 
from one another (Overall ANOVA, main effect of group, comparing all groups, 
F(2,80)= 11.49, p=0.0001, group X signal length interaction, F(4,80)= 5.68, 
p=.0004. Individual group comparisons: LgA vs. ND, group, F(1,50)= 17.13, 
p=0.0003, interaction, F(2,50)=11.59, p<.0001; LgA vs. ShA, group, 
F(1,58)=12.56, p=0.0014, interaction, F(2,58)=4.36, p=0.0172; ShA vs. No Drug, 
group, F(1,52)=.77, p=0.3867, interaction, F(2,52)=1.64, p=0.2). Panel e shows 
that the LgA group performed more poorly than either the ShA or No Drug groups 
on both signal and non-signal trials, and the ShA and No Drug groups did not 
differ from one another on either trial type [Signal Trials Overall ANOVA, 
interaction, F(4,90)= 6.92, p<.0001. Individual group comparisons: LgA vs. ND, 
interaction, F(2,50)=13.57, p<.0001; LgA vs. ShA, interaction, F(2,58)=5.37, 
p=0.007; ND vs. ShA, interaction F(2,52)=2.2, p=0.12. Non-signal Trials ANOVA, 
F(2,40)=4.28, p=0.02; *, differs from ShA and No Drug groups as determined by 
Fisher’s Tests. The panels on the right (c, f) show performance when the same 
animals were retested 14 days following the final self-administration session. 
Panel c shows that at this time there was still a significant decrease in VI in the 
LgA group, relative to both the No Drug and ShA groups [Overall ANOVA, group, 
F(2,80)= 4.78, p=.01, interaction, F(4,80)= 4.28, p=0.004. Individual group 
comparisons: LgA vs. ND, group, F(1,50)=5.48, p=.028, interaction, 
F(2,50)=6.09, p=0.004; LgA vs. ShA, group, F(1,58)=5.69, p=0.016, interaction, 
F(2,58)=3.31, p=.04; ND vs. ShA, group, F(1,52)=0.077, p=0.78, interaction, 
F(2,52)=2.24, p=0.12).  However, by this time the deficit was primarily a function 
of impaired performance on non-signal trials [see Panel f, group, F(2,40)=2.9, 
p=0.06; *, differs from ShA and No Drug groups as determined by Fisher’s 
Tests]. 
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(Figure 2.3e). Fourteen days following the last self-administration session the 

LgA animals were still impaired relative to the control group, as indicated by a 

significant decrease in VI (Figure 2.3c).  However, by 14 days of withdrawal the 

deficit was due primarily to an increase in the number of false alarms (“claims” for 

signals on non-signal trials), as there was no longer a significant effect of prior 

self-administration on signal trial performance (Figure 2.3f). Following the test on 

day 14, animals were tested daily for an additional 7 days. Throughout this 

retraining period (Figure 2.4), there were no group differences on signal trials, 

i.e., in the relative number of hits (Figure 2.4a). However, the LgA group 

continued to show a significant deficit on non-signal trials relative to the control 

and ShA groups throughout this period (Figure 2.4b). It is important to note that 

there were no group differences in either response latencies or the number of 

omissions at any point in time, indicating that all animals were equally motivated 

to perform the task (Figure 2.5).  

 

Experiment II. Between-subjects study 

 

Cocaine Self-administration. As in Experiment I, ShA and LgA groups were 

balanced to match drug intake during the initial 6-day self-administration training 

period. Animals then allowed extended access to cocaine showed a progressive 

increase in both their total intake and their intake during the first hour of each 

session [main effect of drug condition, F(1,768)=19.92, p<0.0001, main effect of 

day, F(16,768)=6.05, p<0.0001, interaction, F(16,768)=3.11, p<0.0001, pair-wise 
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Figure 2.4. The effect of one week of “retraining” on the sustained attention task 

beginning 14 days after the last self-administration session. Data are shown as 

percent correct responses (a) on signal trials in which the signal duration was 

500 msec, and (b) on non-signal trials. There were no group differences on 

signal trials over this period of time (Overall ANOVA, group, F(2,240)=1.41, 

p=0.25). However, on non-signal trials the LgA group showed significantly fewer 

correct responses than either of the other two groups [Overall ANOVA, group, 

F(2,240)= 3.80, p=0.03. Individual group comparisons: LgA vs. ND, group, 

F(1,150)=4.15, p=0.05, interaction, non-significant (NS); LgA vs. ShA, group, 

F(1,174)=4.1, p=0.05, interaction, NS; ND vs. ShA, group, F(1,156)=.18, p=0.68, 

interaction, NS].  
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Figure 2.5. The effect of extended vs. limited access to self-administered cocaine 

on response latency and omission rate (Mean ± SEM) as a function of time 

following the last self-administration session in Experiment I. No differences were 

found between the drug groups in either response latencies (Overall ANOVA, 

group, F(2,24)=3.01, p=.41, withdrawal time, F(1,24)=13.09, p=.001, interaction, 

F(2,24)=1.95, p=.17) or omission rates (Overall ANOVA, group, F(2,40)=2.12, 

p=.13, withdrawal time, F(1,40)=3.11, p=.09, interaction, F(2,40)=.84, p=.44). 
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comparisons, p<0.05 (LgA vs. ShA, days 8-17)]. In this experiment there was no 

significant change in drug intake in the ShA group over days of testing (One-way 

ANOVA, day, F(16,340)=.64, p=.85). These data are very similar to those 

described in Experiment 1 (Figure 2.2) and are therefore not shown.      

 

Sustained Attention Performance. All groups were balanced based on their 

attention training performance (Figure 2.6a & d). As in Experiment 1, when tested 

24 hours after the final self-administration session animals in the LgA group were 

markedly impaired on the sustained attention task, as indicated by a significant 

decrease in VI (Figure 2.6b).  This was due to a decrease in performance on 

both signal and non-signal trials, although only the effect on signal trials was 

statistically significant (Figure 2.6e). The absence of a significant effect on non-

signal trials, as seen in Experiment I, was probably due to a lack of power 

because a relatively small number of animals were tested at this time point.  A 

larger independent group of LgA animals was tested 30 days after the last self-

administration session, and these animals were significantly impaired on non-

signal, but not signal trials (Figure 2.6f). There were no differences between the 

ShA and control groups at either point in time. Also, as in Exp. I, the LgA group 

did not differ from controls in either response latencies or rate of omissions at 

either time point examined (data not shown).  

 

In Experiment I and II the LgA group spent 6 hours per day actively engaged in 

an operant task during the 4 week self-administration period, whereas the ShA 
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Figure 2.6. The effect of extended vs. limited access to self-administered cocaine 

on performance on the sustained attention task as a function of time following the 

last self-administration session in Experiment 2. The data are presented as 

described for Figure 2.3. As in Experiment I, there was a significant decrease in 

VI in the LgA group relative to both the No Drug and ShA groups when animals 

were tested one day after the last self-administration session, and the latter two 

groups did not differ from one another [Panel b; Overall ANOVA, group, 

F(2,26)=6.06, p=0.01. Individual group comparisons: LgA vs. ND, group, 

F(1,16)=32.49, p=0.0005; LgA vs. ShA, group, F(1,18)=4.1, p=0.05; ND vs. ShA, 

group, F(1,18)=.85, p=0.38]. Panel e shows that the LgA group made 

significantly fewer correct responses on signal trials [Overall ANOVA, group, 

F(2,39)= 5.6, p=0.007. Individual group comparisons: LgA vs. ND, group, 

F(1,24)=7.7, p=0.01; LgA vs. ShA, group, F(1,27)=5.4, p=0.028; ND vs. ShA, 

group, F(1,27)=.65, p=0.45), but the effect on non-signal trials was not 

statistically significant [(F(2,16)=.52, p=0.35], presumably because a relatively 

small number of animals were tested on this day. The panels on the right (c, f) 

show the performance of an independent group of animals tested for the first 

time 30 days following the final self-administration session. At this time there 

were no significant group differences on VI [Overall ANOVA, group, 

F(2,38)=0.53, p=0.56, interaction, F(4,38)=1.88, p=0.1].  Panel f shows that 

again, as in Experiment 1, when tested long after the last self-administration 

session the LgA group was not impaired in their performance on signal trials 

[Overall ANOVA, main effect of group, F(2,58)=0.37, p=0.69] but was impaired 

on non-signal trials [Overall ANOVA, F(2,29)= 3.37, p =0.04, ; *, differs from ShA 

and No Drug groups as determined by Fisher’s Tests]. 
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group only spent 1 hour per day and the ND animals none. It is possible, 

therefore, that group differences in time spent performing this instrumental 

response could in some way have contributed to group differences in 

performance when the animals were retested on the sustained attention task 

task.  To address this issue we conducted a separate control experiment in which 

rats were given extended experience (3 weeks) making a similar instrumental 

response (nose-poking for a food reward), and then 24 hrs later retested on the 

sustained attention task. There was no effect of 3 weeks of training on a food-

rewarded instrumental task (relative to controls that did not work for food) when 

animals were re-exposed to the sustained attention task 24 hrs following the last 

session of instrumental training (data not shown). We conclude, therefore, that 

group differences in the time spent simply making an instrumental response 

during the self-administration phase of Experiments I and II were not responsible 

for the subsequent group differences in performance on the sustained attention 

task. 

 

Dopamine Receptor mRNA Expression in the Prefrontal Cortex. Brains were 

obtained for in situ hybridization histochemistry 3 days after the final test on the 

sustained attention task, which for one group was 4 days and for the other group 

33 days following the last self-administration session. There were no differences 

between the control and ShA groups in D2 mRNA expression in the prefrontal 

cortex at either time point (Figure 2.7a). In contrast, relative to the control group, 

the LgA animals showed a significant (approximately 70%) decrease in D2 
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Figure 2.7. Prefrontal dopamine D2 receptor (a) and D1 receptor (b) mRNA 

expression in rats allowed extended (LgA) or limited (SgA) access to self-

administered cocaine, and then examined either 4 or 33 days after the last self-

administration session. The data represent the mean (+ SEM) levels of mRNA in 

the LgA and SgA groups expressed as a percent of the average amount of 

mRNA in the No Drug control group (represented by the horizontal dashed lines). 

The LgA group showed a significant decrease in D2 receptor mRNA expression, 

relative to both the No Drug control group and the ShA group, which did not differ 

from one another [Overall ANOVA, group, F(2,24)=3.87, p=0.03, *, differs from 

ShA and No Drug groups as determined by Fisher’s Tests, time, NS, interaction, 

NS]. There were no group differences in D1 mRNA expression in the prefrontal 

cortex (Overall ANOVA, group, NS, time, NS). 
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mRNA expression in the prefrontal cortex, which was evident at both 4 and 33 

days after the last self-administration session (Figure 2.7a).  There were no 

group differences in levels of D1 receptor mRNA in prefrontal cortex (Figure 

2.7b) 

 

Experiment III. D2 Receptor Protein in Prefrontal Cortex 

 

Cocaine Self-administration. As in Experiment I & II, ShA and LgA groups were 

balanced to match drug intake during the initial 6-day self-administration training 

period. Animals allowed extended access to cocaine showed a progressive 

increase in both their total intake and their intake during the first hour of each 

session [main effect of drug condition, F(1,476)= 64.24, p<0.0001, main effect of 

day, F(17,476)=6.61, p<0.0001, interaction, F(17,476)= 6.97, p<0.0001, pair-wise 

comparisons, p<0.05 (LgA vs. ShA, escalation days 7-18)]. As in Exp. II, the ShA 

group did not significantly change drug intake over time (One-way ANOVA, day, 

F(17,270)=1.57, p=.07). These data are similar to those described in Experiment 

1 (Figure 2.2) and are therefore not shown.  

 

Western Blot Analysis. There were no significant differences between the control 

and ShA groups in D2 receptor protein levels in the prefrontal cortex at either 

withdrawal time point (Figure 2.8). In contrast, relative to the control group, the 

LgA animals showed a significant (about 10%) decrease in D2 receptor protein, 

as indicated by a significant main effect of group but no effect of time or a group 

by time interaction (Figure 2.8). 
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Figure 2.8. Prefrontal dopamine D2 receptor protein levels in rats allowed 

extended (LgA), limited (ShA) or no (ND) access to self-administered cocaine 

examined either 3 or 30 days after the last self-administration session. The data 

represent the mean (+SEM) of D2 receptor protein levels relative to an internal 

control. The LgA group showed a significant decrease in D2 receptor protein 

levels, relative to both the No Drug control group and the ShA group, which did 

not differ from one another (Overall ANOVA, group, F(2,42)=4.08, p=0.02, 

withdrawal time, F(1,42)=.04, p=.83, interaction, F(2,42)=.28, p=.76). As there is 

no effect of withdrawal time and no interaction, the data were collapsed across 

the two time points to demonstrate that the group effect is due to a decrease in 

LgA group (panel b; *, differs from ShA and No Drug groups as determined by 

Fisher’s Tests). No group differences were seen in a beta-actin control.  
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Discussion 

 

Effects of past experience with self-administered cocaine on cognitive 

function 

The day after the discontinuation of cocaine self-administration, during acute 

withdrawal, animals that had extended access to self-administered cocaine (LgA) 

had a profound deficit on the sustained attention task, as indicated by a large 

decrease in the vigilance index (VI), and by impairments on both signal and non-

signal trials. In contrast, animals that had limited access to cocaine (SgA) 

showed no deficits. With time (within 14 days) performance on signal trials 

recovered in the LgA group. However, the deficit on non-signal trials persisted for 

at least 30 days. Experimenter-administered cocaine has been reported to 

produce persistent cognitive deficits in both rats (Schoenbaum et al., 2004; Burke 

et al., 2006) and monkeys (Jentsch et al., 2002), but to our knowledge this is the 

first report of a persistent cognitive deficit in non-human animals following 

cocaine self-administration experience.  

 

It is not clear why persistent deficits in cognitive function have not been found in 

previous self-administration studies. However, most previous studies involved 

limited access procedures and it is possible that these do not produce some of 

the changes in brain and behavior characteristic of addiction. Indeed, 

accumulating evidence suggests that extended access to cocaine has a greater 

likelihood of producing a number of symptoms of addiction, relative to limited 
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access, one of which is the tendency to greatly escalate drug intake (Ahmed and 

Koob, 1998; Paterson and Markou, 2003; Deroche-Gamonet et al., 2004; 

Vanderschuren and Everitt, 2004; Ferrario et al., 2005). However, in one 

previous study, rats were allowed to self-administer a maximum of 150 injections 

of cocaine over 8 hours, and these animals achieved a level of intake 

comparable to the LgA group here, but did not show persistent deficits on a 5-

choice serial reaction time task (2005a). There are at least two possible reasons 

for this. One, the self-administration procedure used by Dalley et al. (2005a) may 

not have resulted in an escalation of drug intake or other changes in brain and 

behavior characteristic of addiction. However, a more likely reason is that in the 

5-choice serial reaction time task all trials are signal trials, in that animals are 

required to report the location of a brief visual stimulus. We also saw only a 

transient deficit on signal trials, and in this sense the results reported here are 

consistent with those reported by Dalley and his colleagues (2005a; 2005b).  

 

In the present study there was a persistent deficit only on non-signal trials, and 

therefore, it is important to consider how the cognitive demands of the task used 

here differ as a function of trial type, and what this might tell us about the nature 

of the deficit. First, it is important to emphasize that there were no group 

differences in omissions or response latencies, suggesting that the animals were 

equally motivated to perform and did not suffer from obvious sensorimotor 

deficits. In contrast, in studies using the 5-choice serial reaction time task drug 

treated animals did show a significant increase in omissions and response 
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latencies, complicating interpretation of the nature of their deficit (2005a; 2005b). 

In addition, after the initial withdrawal period LgA animals’ signal trial 

performance was normal suggesting that the deficits are not attributable to a 

failure to retrieve the rules governing the responses in the two types of trials. 

Nevertheless, on non-signal trials the LgA animals generated an abnormally high 

number of false alarms, reporting a signal had occurred when it had not. 

Although more work is required to determine the exact nature of this deficit, the 

behavioral and cognitive operations underlying the performance during non-

signal trials certainly differ from those governing signal trials, and/or tasks that 

involve exclusively signal trials. On signal trials the correct response is prompted 

by the presence of a visual stimulus and animals typically select the correct lever 

side and await lever insertion to respond. On non-signal trials, however, animals 

must first probe their memory as to whether or not a signal occurred before 

initiating an action. This may not only be more demanding in terms of taxing 

memory, but it also represents a more ambiguous situation, as the decision that 

a signal did not occur would be expected to be associated with high levels of 

uncertainty and therefore a reduced response criterion. Finally, performance on 

this task also taxes cognitive flexibility, which is required to shift constantly 

between the processing of the conflicting response rules governing the 

unpredictable occurrence of trials with or without signal events. Therefore, we 

hypothesize that prior cocaine use may have produced a persistent impairment in 

the cognitive flexibility required to respond correctly in trials involving high levels 
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of uncertainty about signal status (see also Yu & Dayan 2005), while leaving the 

ability to respond correctly to a signal intact. 

 

Effects of past experience with self-administered cocaine on brain function 

 

Perhaps the most striking finding in the present study was that extended (but not 

limited) access to self-administered cocaine decreased dopamine D2 (but not 

D1) receptor mRNA expression in prefrontal cortex by approximately 70%, and 

this effect persisted for at least 34 days after the last self-administration session. 

Furthermore, there was a significant decrease (about 10%) in levels of D2 

receptor protein in the prefrontal cortex of LgA but not ShA animals, which also 

persisted for at least 30 days after the last exposure to cocaine. There has been 

relatively little research on the long-term effects of cocaine on D2 receptors in the 

frontal cortex, but Nogueira et al. (2006) recently reported that experimenter-

administered cocaine produces a persistent (2-4 weeks) decrease in, “D2-

mediated regulation of cortical excitability” (p. 12308). The alterations in D2 

receptor mRNA and protein may be related to the well-documented 

“hypofrontality” seen in cocaine addicts (Bolla et al., 2003; Bolla et al., 2004), and 

in animals treated repeatedly with cocaine (Sun and Rebec, 2005; Beveridge et 

al., 2006; Sun and Rebec, 2006).  

 

These data suggest, therefore, that self-administered cocaine is capable of 

producing a marked and persistent dysregulation of dopamine function in the 
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prefrontal cortex, which may represent another manifestation of marked frontal 

cortical dysfunction associated with cocaine addiction. Given that this effect was 

only seen in animals that received extended access to cocaine it is possible that 

dysregulation of dopamine D2 receptor signaling contributes to the cognitive 

deficit, which was also only seen in the LgA group. The integrity of D2 receptor 

function is closely associated with the ability to manipulate acutely relevant 

information in prefrontal regions (Wang et al. 2004) and inhibition of D2 receptor 

activation in both humans and animals, either by antagonist administration or 

genetic manipulation, results in a decrease in the acquisition of working memory 

task rules (Glickstein et al., 2005), attentional set-shifting (Tost et al., 2006), and 

spatial working memory (Von Huben et al., 2006; Rinaldi et al., 2007). This is 

consistent with the idea that cocaine impaired cognitive flexibility primarily by 

disrupting prefrontal D2 receptor function. Finally, we found no effect of cocaine 

self-administration experience on D1 mRNA expression in the prefrontal cortex, 

consistent with the recent report that experimenter-administered cocaine has no 

effect on D1 receptor sensitivity in this region (Nogueira et al., 2006).  

 

Although the decrease in mRNA was large (~70%), the decrease in protein was 

much more modest (~10%).  Discrepancies between mRNA and protein levels 

are not uncommon (Mansour et al., 1990; Mansour et al., 1991) and may be due 

to a number of different factors.  As D2 receptor mRNA is localized primarily in 

the cell bodies of prefrontal neurons and D2 receptor protein is present in both 

presynaptic and postsynaptic terminals, the population of neurons sampled by 
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the two measures may be quite different. More research is needed to determine 

if the decreases seen in the current study are primarily due to changes in a 

specific cell type.  It is also possible that rather than reflecting a cell type 

specificity, the dissociation between mRNA and protein is due to alterations in 

the translation of mRNA into protein. Nevertheless, despite the difference in the 

magnitude of the effect of cocaine on mRNA versus protein, both were 

decreased, indicating a potential persistent dysregulation of D2 function in the 

prefrontal cortex of animals that had extended access to self-administered 

Chcocaine.  

 

Conclusions 

 

Extended, but not limited, access to self-administered cocaine produced a 

persistent deficit on a sustained attention task indicative of reduced cognitive 

flexibility, and this was associated with a persistent decrease in both dopamine 

D2 receptor mRNA expression and D2 protein levels in the prefrontal cortex. 

These findings are consistent with the hypothesis that similar deficits in brain and 

cognitive function seen in addicts may be a consequence of drug use, rather than 

just reflecting a premorbid condition. Furthermore, the fact that these changes in 

brain and behavior were only evident in animals allowed extended assess to self-

administered cocaine suggests that this procedure may be especially valuable in 

studying the neurobiology of addiction. 
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CHAPTER III 

 

IMPAIRED OBJECT RECOGNITION MEMORY FOLLOWING 

EXTENDED ACCESS COCAINE SELF-AMINISTRATION 

 

Summary 

 

Chronic cocaine abusers exhibit memory deficits that persist following prolonged 

abstinence and understanding these deficits may help develop more effective 

treatment strategies for addicts. To this date, very little work has been done in 

animal models to determine whether these deficits are a result of drug use rather 

than a pre-existing vulnerability. Work out of our lab has recently demonstrated 

that extended access cocaine self-administration provides us with an excellent 

animal model for examining persistent cognitive deficits.  This work in conjunction 

with work out of numerous other labs suggest that extended, but not limited, 

access to cocaine produces a number of symptoms characteristic of addiction. 

Thus, the present experiment utilized an extended access cocaine self-

administration protocol found to induce escalation of drug intake and symptoms 

associated with drug dependence, to examine recognition memory performance 

following chronic cocaine exposure. Animals were divided into drug-naïve, short 
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(ShA) and long (LgA) access groups and underwent four weeks of cocaine self-

administration. Following a two-week withdrawal period, all animals underwent 

object familiarization training and testing.  When recognition memory was 

assessed either 24 hours or 7 days after training, LgA animals exhibit poorer 

recognition memory performance than controls. There is some evidence that the 

ShA animals may exhibit slight memory impairments, however this was only seen 

in one of the two replications during the 7-day test. Given the potential 

involvement in cognitive deficits in relapse, characterizing the memory deficits 

resulting from cocaine abuse may be important for developing better treatments 

for drug addiction. 

 

Introduction 

 

Cocaine addicts exhibit impaired memory function, including recognition and 

visuospatial memory, and these deficits are evident even long after the 

discontinuation of drug use (Miller, 1985; Hoff et al., 1996; Rosselli and Ardila, 

1996; Bolla et al., 1999).  Cocaine addicts also show alterations in the functional 

activation of brain regions important for normal memory function, including the 

hippocampus (Kilts et al., 2001; Fishbein et al., 2005). It is not clear, however, 

whether these behavioral and neurobiological deficits precede drug use, and thus 

contribute to the propensity for addiction, or are a consequence of drug use. It is 

difficult to address this issue in humans, but studies with non-human animals 
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allow one to determine whether exposure to drugs of abuse are at least capable 

of producing changes in brain and behavior comparable to those seen in addicts.  

 

Studies with non-human animals examining the effects of psychostimulant 

administration on memory function have focused on the effects of 

methamphetamine.  Marshall and colleagues have demonstrated that 

experimenter administered methamphetamine (mAMPH), but not d-

amphetamine, produces deficits in short-term (90-min) recognition memory 

performance following one week of withdrawal (Schroder et al., 2003; Belcher et 

al., 2005b; Belcher et al., 2006). These deficits in recognition memory are seen 

following both neurotoxic (Schroder et al., 2003) and nontoxic (Belcher et al., 

2006) methamphetamine regimens.  

 

While these studies have demonstrated that experimenter-administered 

methamphetamine produces memory deficits, studies with cocaine have not 

been able to demonstrate persistent memory deficits (Santucci et al., 2004). 

However, previous work has utilized experimenter-administered drug rather that 

self-administration procedures that aim to model human use patterns. Work from 

our lab and numerous others suggests that extended access to cocaine self-

administration produces a number of symptoms characteristic of addiction that 

are not seen following more limited drug access (Ahmed and Koob, 1998; 

Paterson and Markou, 2003; Deroche-Gamonet et al., 2004; Vanderschuren and 

Everitt, 2004; Ferrario et al., 2005; Briand et al., 2006). Therefore, the purpose of 
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the current study was to determine the ability of an extended access cocaine 

self-administration procedure to produce persistent deficits in recognition 

memory performance.  

Methods 

 

Subjects. Eighty-seven male Wistar rats (Harlan, Indianapolis, IL) weighing 200-

225g at the start of the experiment were individually housed in square plastic 

hanging cages (8 x 9 x 8 cm). The animals were housed in a temperature and 

humidity controlled room with a 14:10 light/dark cycle, with water available ad 

libitum.  Animals were food restricted throughout the experiment to maintain at 

least 90% of their free feeding body weight. All procedures were approved by the 

University of Michigan Committee on the Use and Care of Animals (UCUCA).  

 

Apparatus. Drug administration took place in 16 operant chambers measuring 22 

x 18 x 13 cm (Med Associates, St. Albans, VT, USA) located inside larger sound-

attenuating chambers.  For the drug self-administration procedure, each operant 

chamber had two nose-poke holes equipped with cue lights. A tone (2900 Hz) 

was present inside of the chamber. The floor of the chamber consisted of 19 

stainless steel rods (4 mm in diameter) spaced 1.5 cm apart (center-to-center).  

Med-PC for Windows software (v. 1.1, Med Associates) controlled all drug 

delivery, tone presentation and data collection in each system via a Pentium PC.  

Object recognition familiarization and testing took place in a black triangular 

shaped open field (92cm along each side, 46cm high).  
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Surgical Procedures. Animals were anaesthetized with ketamine and xylazine 

anesthesia (77:1.5 mg/ml, intraperitoneal [IP], at 0.1 mL/100 gm of body weight) 

and a silicone catheter (Plastics One, Roanoke, VA) was inserted into the right 

jugular vein and passed subcutaneously to exit from the animals’ back (see 

(Caine et al., 1993).  Animals were allowed to recover from surgery for a 

minimum of 3 days prior to drug administration. Catheters were flushed daily with 

0.1mL of gentamicin (50 mg/kg, in 0.9% sterile bacteriostatic saline).  

 

Cocaine Self-Administration. Catheterized rats were transported from their home 

cage to an operant chamber 6 days a week for four weeks, where they were 

allowed to nose-poke for cocaine (0.4 mg/kg/infusion in 50 µL of saline 

administered over 1.6 s) on a continuous reinforcement schedule (FR1) with a 

time-out of 20 s.  A training session commenced with the illumination of the 

“active” nose-poke hole stimulus light. Responding in this hole resulted in drug 

delivery. Responding in the other nose-poke hole, designated inactive, had no 

consequences.  Rats were initially trained during daily one-hour sessions for a 

total of six days. Animals that did not acquire stable self-administration behavior 

(at least 5 infusions each day for 3 consecutive days) were removed from the 

study. After the initial 6-day training period animals were divided into two groups: 

a long access group (LgA)  (n=16) and a short access group (ShA) (n=13). 

These groups were balanced according to both the amount of drug they 

administered during the first week of training. Animals in the ShA group 
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continued to receive one-hour test sessions, whereas animals in the LgA group 

received 6-hour test sessions for an additional 16 sessions. A third group of rats 

(no-drug control group) received sham surgery and were transported each day to 

a novel test room where they were placed into Plexiglas chambers, similar to the 

operant chambers.   

 

Experiment I. 

 

Object Recognition. Fourteen days following four weeks of drug self-

administration (or transport in the no-drug control groups), animals were tested 

on a novelty preference task of object recognition. During the training phase, 

each animal was placed into the open field and given 5 min to explore two 

identical objects (positioned 10cm from the walls).  Animals were tested 3 hours, 

24 hours, and 1 week after training to determine short- and long-term memory 

retention. During each successive test animals were presented with the familiar 

object and a novel object and allowed to explore the open field for 5 min. The 

novel objects were changed for each test and randomized across animals. 

Object placement was counterbalanced so that half of the animals in each 

treatment group saw the novel object on the left side of the animals’ starting 

position and half on the right. Objects were made from colorful plastic children’s 

toys and were chosen after determining, in preliminary experiments with other 

animals, that they were equally preferred.  Between each trial both the open field 

and the objects were washed with a 70% ethanol solution.   
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Experiment II. 

As the previous experiment utilized the same familiar object for all three of the 

tests, we replicated the experiment with separate familiar objects for each test to 

eliminate the confound of further learning on test days.  

 

Object Recognition.  Training and testing were identical to Experiment I with the 

following exceptions.  During the training phase, each animal was placed into the 

open field and given two 5 min exploration sessions (in which they were able to 

explore two identical objects; positioned 10cm from the walls) for each of two 

objects.  Animals were then tested after 24 hours, and 1 week to determine 

memory retention. Separate familiar and novel objects were used for each test.  

 

Statistical Analyses  

 

Cocaine Self-Administration. The number of infusions for the first hour of each 

session and for the entirety of the session was determined for each day of self-

administration. A two-way ANOVA was performed with test session (1-16) and 

drug group (ShA, LgA) as the independent variables and first hour or total 

infusions as the dependent variable. When significant main effects or interactions 

were revealed, Fisher’s post-hoc comparisons were conducted. For all analyses, 

alpha was set at 0.05. 
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Object Recognition. Observers who were blind to the group assignments 

recorded the exploration time for each object. Exploration was defined as sniffing 

or touching the object with the nose; sitting on the object was not considered 

exploration. The proportion of the total exploration time that the animal spent 

investigating the novel object was the index of recognition memory [time spent 

exploring novel object/(time spent exploring novel object + time spent exploring 

familiar object)].  One-way ANOVAs were performed for each memory test (3hr, 

24hr, 7d) with drug group as the independent variable and percent time exploring 

the novel object as the dependent variable.  When significant main effects were 

revealed, Fisher’s post-hoc comparisons were conducted. For all analyses alpha 

was set at 0.05.  

 

Results 

 

Experiment I. 

Cocaine Self-administration. Following the initial 6-day training period ShA 

animals continued with 1-hour self-administration sessions and maintained stable 

drug intake over the next 16 test sessions. LgA animals were given 6 hours of 

daily access to cocaine and showed a progressive increase in both their total 

intake and their intake during the first hour of each session over the remaining 17 

sessions (see Figure 3.1 for statistics).  
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Figure 3.1. A. Mean (+/- SEM) number of cocaine infusions during the first hour 

of each self-administration session. By the 5th session, animals allowed 

extended access to cocaine (long access, 6 hr session; LgA) took significantly 

more infusions than animals allowed only limited access (short access, 1 hr 

sessions; ShA) [main effect of group, F(1,405)=18.30, p=0.0002, main effect of 

day, F(15,405)=9.36, p<0.0001, group by day interaction, F(15,435)=2.61, 

p=.0009]. B. The mean (+/- SEM) number of cocaine infusions over the entire 

session for LgA (6 hr sessions) and ShA (1 hr sessions) groups.  
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Object Recognition.  No group differences were seen in the total time exploring 

the two objects during the training sessions (ND=61±3.3s, ShA=63±4.9s, 

LgA=66±4.4s; data not shown). No differences were seen between the three 

groups at the 3-hour short-term memory test (see Figure 3.2a).  Twenty-four 

hours after training, animals in the LgA group showed a decrease in novel object 

exploration compared to both no drug and ShA animals, and these two groups 

did not differ from each other (Figure 3.2b). At the 1-week test, both LgA and 

ShA animals displayed a decrease in novel object exploration compared to the 

no drug controls (see Figure 3.2c). No differences were seen between the groups 

in total exploration time at any of the test time points (Figure 3.3).  

 

Experiment II. 

Cocaine Self-administration. Following the initial 6-day training period ShA 

animals continued with 1-hour self-administration sessions and maintained stable 

drug intake over the next 16 test sessions (Mean ± SEM infusions, first test 

session (following 6 training sessions), 6.18 ± 1.11, last test session, 5.09 ± 1.53; 

data not shown). LgA animals were given 6 hours of daily access to cocaine and 

showed a progressive increase in both their total intake and their intake during 

the first hour of each session over the remaining 17 sessions (Mean ± SEM 

infusions, First hour, first escalation session, 7.6 ± .96, last escalation session, 

14.8 ± 4.3; Total session, first escalation session, 18.3 ± 2.3, last escalation 

session, 91.9 ± 23.0; data not shown).  
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Figure 3.2. The effect of extended vs. limited access to self-administered cocaine 

on performance on the novel object recognition memory task following a 14-day 

withdrawal period.  The left hand panel (a) shows the percent object exploration 

time (as a function of the total open field time) during the familiarization phase. 

There were no differences in object exploration time between the groups 

(ANOVA, main effect of group, F(2,33)=0.09, p=.92).  The three panels show the 

percent novel object exploration time (as a function of the total object exploration 

time) at the three retention intervals.  Panel a shows that there were no 

differences between the three drug conditions 3 hours after the familiarization 

training (ANOVA, group, F(2,42)=1.33, p=.28).  However, after 24 hours (panel 

b), there was a significant decrease in recognition memory performance in LgA 

animals relative to both the No Drug and ShA groups, which did not differ from 

one another (ANOVA, group, F(2,42)=10.89, p=.0002, *, differs from ShA and No 

Drug groups as determined by Fisher’s Tests).  One week following the 

familiarization training (panel c), both drug groups (LgA, ShA) exhibit impaired 

recognition performance relative to the No Drug control group (ANOVA, group, 

F(2,42)=5.98, p=.005, *, differs from the No Drug groups as determined by 

Fisher’s Tests). 
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Figure 3.3. Total object exploration times from Experiment I. No differences were 

seen between the drug groups in the total object exploration time at the 3 hour 

test [ANOVA, group, F(2,42)=0.007, p=.99], 24 hour test [ANOVA, group, 

F(2,42)=0.05, p=.95], or the 7 day test [ANOVA, group, F(2,42)=0.54, p=.59]. 
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Object Recognition.  No group differences were seen in object exploration time 

during the training sessions [ND=186 ± 24s, ShA=182 ± 18s, LgA=155 ± 20s; 

ANOVA, group, F(2,31)=0.55, p=0.58] Twenty-four hours after training, animals 

in the LgA group showed decreased novel object exploration compared to both 

no drug and ShA animals, and these two groups did not differ from each other 

(Figure 3.4a). At the 1-week test, both LgA and ShA animals displayed an 

impaired recognition memory compared to the no drug controls (see Figure 

3.4b). No differences were seen between the groups in total exploration time at 

any of the test time points (Figure 3.5). 

 

Discussion 

 

The results of the current experiments indicate that extended access cocaine 

self-administration produced a persistent decrease in novel object recognition 

performance. We propose that this indicates a persistent memory deficit in the 

extended access animals.  While there is a possibility that similar results could be 

seen if extended access cocaine lead to performance deficits, the lack of 

differences in either object exploration time during training or total object 

exploration during testing indicates otherwise. While we do not have locomotor 

activity counts, these measures suggest indicate that the extended access 

animals were actively engaged in exploring the objects but they did not recognize 

the previously trained object.  
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Figure 3.4. Replication. Extended access cocaine self-administration produced 

deficits in recognition memory performance. The two panels show the percent 

novel object exploration time (as a function of the total object exploration time) at 

the two retention intervals.  At both the 24-hour (a) and 7-day retention intervals, 

the LgA animals exhibit a significant decrease in recognition memory 

performance relative to both the No Drug and ShA groups, which did not differ 

from one another [(a), ANOVA, group, F(2,31)=3.38, p=.048; (b), ANOVA, group, 

F(2,31)=3.36, p=.049; *, differs from ShA and No Drug groups as determined by 

Fisher’s Tests).  
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Figure 3.5. Total object exploration times from Experiment II. No differences were 

seen between the drug groups in the total object exploration time at the 24 hour 

test [ANOVA, group, F(2,31)=0.25, p=.78] or the 7 day test [ANOVA, group, 

F(2,31)=0.65, p=.53]. 
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Although short access animals exhibited a deficit at the long retention interval in 

Experiment I, this was not replicated in Experiment II.  This indicates that while 

short access cocaine may lead to mild deficits, they are not evident in all 

situations and are clearly less severe than the deficits seen following extended 

access cocaine.  

 

Although we believe that the results of the current study indicate that extended 

access cocaine self-administration leads to a memory deficit, the recognition 

memory task does not allow us to parse apart the exact nature of the deficit. 

Further work will need to be done to determine whether cocaine leads to specific 

deficits in memory acquisition and/or memory retrieval.  As memory deficits in 

human addicts seem to be in the acquisition phase (Mittenberg and Motta, 1993), 

it is hypothesized that the deficits seen here may be similar to those seen in 

clinical populations.   

 

The results of the present study are consistent with those seen following both 

neurotoxic and nontoxic methamphetamine administration (Schroder et al., 2003; 

Belcher et al., 2005a, 2006).  However, not all studies examining memory 

performance following drug administration have demonstrated deficits. Clark and 

colleagues (2007) found that an escalating dose binge regimen of 

methamphetamine administration did not impair recognition memory.  Del Olmo 

and colleagues (2006) examined the effects of cocaine self-administration on 

spatial memory and did not find deficits. While there is one study that 
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demonstrated spatial memory deficits following cocaine administration in 

adolescent animals, these deficits did not persist in adulthood (Santucci et al., 

2004).  

 

 As the total intake in the above studies were more consistent intake seen in our 

ShA animals, it is possible that a more aggressive regimen would have lead to 

more consistent persistent memory deficits.  The extended access self-

administration protocol used in this study has been shown to produce a number 

of symptoms characteristic of addiction that are not seen following more limited 

drug access (Ahmed and Koob, 1998; Paterson and Markou, 2003; Deroche-

Gamonet et al., 2004; Vanderschuren and Everitt, 2004; Ferrario et al., 2005; 

Briand et al., 2006).  The current study suggests that extended access self-

administration procedures may also be more able to produce cognitive deficits 

seen in human addicts as well, further validating the model as a means to study 

the effects of drug addiction on brain function.  

 

The results of the current study provide support for the contention that deficits in 

cognitive function seen in human addicts may be at least in part a consequence 

of drug use, rather than just reflecting a “premorbid condition”, and that these 

changes may be more readily apparent when animals are allowed extended 

access to self-administered drugs. 
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CHAPTER IV 

 

COCAINE SELF-ADMINISTRATION PRODUCES A PERSISTENT 

INCREASE IN DOPAMINE D2HIGH RECEPTORS 

 

Summary 

 

Cocaine addicts are reported to have decreased numbers of striatal dopamine 

D2 receptors. However, in rodents repeated cocaine administration consistently 

produces hypersensitivity to the psychomotor activating effects of both indirect 

DA agonists, such as cocaine itself, and importantly, to direct-acting D2 receptor 

agonists. The current study reports a possible resolution to this long-standing 

paradox. The dopamine D2 receptor exists in both a low and a high affinity state, 

and dopamine exerts its effects via the more functionally relevant high-affinity D2 

receptor (D2High). We report here that cocaine self-administration experience 

produces a large (approximately 150%) increase in the proportion of D2High 

receptors in the striatum with no change in the total number of D2 receptors, and 

this effect is evident both 3 and 30 days after the discontinuation of cocaine self-

administration. Changes in D2High receptors would not be evident with the probes 

used in human (and non-human primate) imaging studies. We suggest, 
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therefore, that cocaine addicts and animals previously treated with cocaine may 

be hyper-responsive to dopaminergic drugs in part because an increase in D2High 

receptors results in dopamine supersensitivity. This may also help explain why 

stimuli that increase dopamine neurotransmission, including drugs themselves, 

are so effective in producing relapse in individuals with a history of exposure to 

cocaine.  

 

Introduction 

 

A consistent finding from imaging studies is that cocaine addicts show a very 

persistent decrease in striatal dopamine D2 receptors (Volkow et al., 1990; 

Martinez et al., 2004; Volkow et al., 2004), and studies in non-human primates 

report similar decreases following cocaine self-administration, suggesting that 

this may be a consequence of cocaine use (Nader and Czoty, 2005; Nader et al., 

2006). However, a long-standing puzzle in this area is that preclinical studies 

have consistently found that rats pretreated with amphetamine or cocaine, and 

then withdrawn, are hypersensitive (“sensitized”) to the psychomotor activating 

and incentive motivational effects of these indirect agonists (Robinson and 

Berridge, 1993), and even more importantly, to the psychomotor effects of direct 

D2 agonists (Ujike et al., 1990; De Vries et al., 2002; Edwards et al., 2007). 

Studies examining the effects of cocaine treatment on D2 receptor binding in 

rodents are mixed, with reports of increases, decreases or no change (Ujike et 

al., 1990). Obviously, the puzzle is: why are cocaine-treated rats functionally 
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hypersensitive to D2 agonists if cocaine treatment decreases D2 receptor 

binding? 

 

There are number of possible explanations for this discrepancy, but an especially 

interesting explanation is raised by the finding that the dopamine D2 receptor 

exists in two interconvertible affinity states for the agonist dopamine, a high-

affinity state and a low-affinity state. The transmitter dopamine binds primarily to 

the high-affinity state of the D2 receptor (D2High), making this the most 

functionally relevant state (Seeman et al., 2005). Furthermore, many different 

treatments that produce a functional supersensitivity to dopamine (including 

repeated amphetamine administration) produce a large increase in the number of 

D2High receptors, even if they produce no change or even a decrease in the total 

number of D2 receptors (Seeman et al., 2004; Seeman et al., 2005; Seeman et 

al., 2007). Unfortunately, the ligands used in the human imaging and non-human 

primate studies do not discriminate between the low- and high-affinity states of 

the D2 receptor and are, therefore, insensitive to changes in the number of D2High 

receptors.  

 

Although it has been reported that experimenter-administered amphetamine 

increases the number of D2High receptors, no studies have examined the effects 

of self-administered cocaine on D2High receptors, which is more directly relevant 

to human imaging studies. Therefore, in the present study we asked whether 

cocaine self-administration experience increases the proportion of D2High 
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receptors in the striatum, which could account for the well-documented 

behavioral hypersensitivity to D2 agonists seen in animals with a history of 

exposure to cocaine. In addition, we studied rats that had either limited or 

extended access to self-administered cocaine because the latter procedure is 

thought to be especially effective in producing a number of symptoms of 

addiction (Ahmed and Koob, 1998; Vanderschuren and Everitt, 2004; Ferrario et 

al., 2005). 

 

Methods 

 

Subjects. Forty-eight male Wistar rats (Harlan, Indianapolis, IL) weighing 200-

225g at the start of the experiment were individually housed in square plastic 

hanging cages (8 x 9 x 8 cm). The animals were housed in a temperature and 

humidity controlled room with a 14:10 light/dark cycle, with water available ad 

libitum.  Animals were food restricted throughout the experiment to maintain at 

least 90% of their free feeding body weight. All procedures were approved by the 

University of Michigan Committee on the Use and Care of Animals (UCUCA).  

 

Apparatus. Drug administration took place in 16 operant chambers measuring 22 

x 18 x 13 cm (Med Associates, St. Albans, VT, USA) located inside larger sound-

attenuating chambers.  For the drug self-administration procedure, each operant 

chamber had two nose-poke holes equipped with cue lights. A tone (2900 Hz) 

was also available inside of the chamber. The floor of the chamber consisted of 
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19 stainless steel rods (4 mm in diameter) spaced 1.5 cm apart (center-to-

center).  Med-PC for Windows software (v. 1.1, Med Associates) controlled all 

drug delivery, tone presentation and data collection in each system via a Pentium 

PC.  

 

Surgical Procedures. Animals were anaesthetized with ketamine and xylazine 

anesthesia (77:1.5 mg/ml, intraperitoneal [IP], at 0.1 mL/100 gm of body weight) 

and a silicone catheter (Plastics One, Roanoke, VA) was inserted into the right 

jugular vein and passed subcutaneously to exit from the animals’ back (see 

Caine et al., 1993).  Animals were allowed to recover from surgery for a minimum 

of 3 days prior to drug administration. Catheters were flushed daily with 0.1mL of 

gentamicin (50 mg/kg, in 0.9% sterile bacteriostatic saline). Catheter patency 

was verified by intravenous infusion of sodium pentothal (2 mg/infusion).  

 

Cocaine Self-Administration. Rats were transported from their home cage to an 

operant chamber 6 days a week for 4 weeks, where they were allowed to nose-

poke for cocaine (0.4 mg/kg/infusion in 50 µL of saline administered over 1.6 s) 

on a continuous reinforcement schedule (FR1) with a time-out of 20 s.  A training 

session commenced with the illumination of the “active” nose-poke hole stimulus 

light. Responding in this hole resulted in drug delivery. Responding in the other 

nose-poke hole, designated inactive, had no consequences.  Rats were initially 

trained during daily one-hour sessions for a total of 6 days. Animals that did not 

acquire stable self-administration behavior (at least 5 infusions each day for 3 
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consecutive days) were removed from the study. After the initial 6-day training 

period animals were divided into two groups: a long access group (LgA) and a 

short access group (ShA). These groups were balanced according to the amount 

of drug they administered during the first week of training. Animals in the ShA 

group continued to receive one-hour test sessions, whereas animals in the LgA 

group received 6-hour test sessions for an additional 18 sessions. A third group 

of rats (no-drug control group) received sham surgery and were transported each 

day to a novel test room where they were placed into Plexiglas chambers, similar 

to the operant chambers.   

 

Tissue Collection. Either 3 or 30 days following their final self-administration 

session all animals were decapitated and their brains removed.  The striata were 

dissected and stored at -70°C until used. The striata were homogenized in buffer 

(4 mg frozen tissue per ml buffer), using a Teflon-glass homogenizer with the 

piston rotating at 500 rpm and 10 up and down strokes of the glass container. 

The buffer contained 50 mM Tris-HC1 (pH 7.4 at 208C), 1 mM EDTA, 5 mM KCl, 

1.5 mM CaCl2, 4 mM MgCl2, and 120 mM NaCl. The homogenate was washed 

three times by centrifugation at 10,000 rpm at 4 ˚C and resuspending the pellet in 

15 ml of buffer, although it is known that some of the D2 receptors can be lost by 

this procedure (Seeman et al., 1984).  

 

 [3H]domperidone/DA competition. [3H]Domperidone was custom synthesized as 

[phenyl-3H(N)]domperidone (42-68 Ci/mmol) by PerkinElmer Life Sciences Inc., 
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Boston, MA, and used at a final concentration of 2 nM. Because the Kd of  

[3H]domperidone is 0.47 nM at D2 for rat striatum, the final concentration of 2 nM 

occupied 81% of the D2 receptors, using the equation f = C/(C + Kd), where f is 

the fraction of receptors occupied by  [3H]domperidone, and C is 2 nM (Seeman 

et al., 2003).  

 

The competition between dopamine and [3H]domperidone for binding at the 

receptors was done as follows. Each incubation tube (12 x 75 mm, glass) 

received, in the following order, 0.5 ml buffer (containing dopamine at various 

concentrations, and with or without a final concentration of 10 µM S-sulpiride to 

define nonspecific binding to the dopamine D2 receptors), 0.25 ml 

[3H]domperidone and 0.25 ml of tissue homogenate. The tubes, containing a total 

volume of 1 ml, were incubated for 2 h at room temperature (20°C), after which 

the incubates were filtered, using a 12-well cell harvester (Titertek, Skatron, Lier, 

Norway) and buffer-presoaked glass fiber filter mats (Whatman GF/C). After 

filtering the incubate, the filter mat was rinsed with buffer for 15 s (7.5 ml buffer). 

The filters were pushed out and placed in scintillation polystyrene minivials (7 ml, 

16 x 54 mm; Valley Container Inc., Bridgeport, Conn.). The minivials received 4 

ml each of scintillant (Research Products International Corp., Mount Prospect, 

IL), and were monitored 6 h later for tritium in a Beckman LS5000TA scintillation 

spectrometer at 55% efficiency. The specific binding of [3H]domperidone was 

defined as total binding minus that in the presence of 10 µM S-sulpiride. 
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The proportion of D2High receptors in the striata was measured by the competition 

of dopamine with [3H]domperidone, as previously described (Seeman et al., 

2003). Dopamine inhibited the binding of [3H]domperidone in two phases. At low 

concentrations, corresponding to the high-affinity state of the dopamine D2 

receptor (D2High) dopamine inhibited the binding of [3H]domperidone between 1 

nM and 100 nM dopamine. A second phase of inhibition occurred above 100 nM 

dopamine. The demarcation between the two phases were sharp and 

unambiguous, clearly and readily permitting the measurement of the D2High 

component as a percent of the total amount of specific [3H]domperidone binding, 

as defined by the presence of 10 µM S-sulpiride. No computer-assisted analysis 

was needed.  

 

Statistical Analyses  

 

Cocaine Self-Administration. The number of infusions for the first hour of each 

session and for the entirety of the session was determined for each day of self-

administration. Repeated measures two-way ANOVAs were performed with 

session (1-16) as the repeated variable, drug group (ShA, LgA) as the 

independent variable and the number of infusions (i.e. during the first hour or 

entire session) as the dependent variable. When significant main effects or 

interactions were revealed, Bonferroni corrected t-tests were conducted. For all 

analyses, alpha was set at 0.05. 
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D2 High Affinity Receptor Density. As a relative measure of D2 receptor density 

the total number of receptors occupied by [3H]domperidone was calculated 

(reflecting 81% of the total number of D2 receptors). A two-way ANOVA was 

performed with drug group (ND, ShA, LgA) and withdrawal time (3 or 30 days) as 

the independent variables and disintegrations per minute (DPM), a measure of 

[3H]domperidone binding, as the dependent variable. For the proportion of D2High 

receptors, a two-way ANOVA was performed with drug group and withdrawal 

time as the independent variables and the percentage of total binding 

representing the D2High receptors as the dependent variable. When significant 

main effects or interactions were revealed, Bonferroni corrected t-tests were 

conducted.  

 

Results 

 

Cocaine Self-administration. Figure 4.1 shows that limited access (1 hr/day) to 

self-administered cocaine produced a stable level of intake over time 

(approximately 2.8 mg/kg/session), but as expected, extended access to cocaine 

(6 hr/day) resulted in a pronounced escalation of intake between the first and last 

test session (by the last test session these animals were taking an average of 45 

mg/kg/day). 

 

D2 Receptors. There were no group differences in the total number of receptors 

occupied by [3H]domperidone at either withdrawal time (Figure 4.2a).  However, 
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Figure 4.1. A. Mean (+/- SEM) number of cocaine infusions during the first hour 

of each self-administration session. By the 7th escalation session, animals 

allowed extended access to cocaine (long access, 6 hr session; LgA) took 

significantly more infusions than animals allowed only limited access (short 

access, 1 hr sessions; ShA) [main effect of group, F(1,476)=64.24, p<.0001, 

main effect of day, F(17,476)=6.61, p<0.0001, group by day interaction, 

F(17,476)=6.97, p<.0001]. B. The mean (+/- SEM) number of cocaine infusions 

over the entire session for LgA (6 hr sessions) and ShA (1 hr sessions) groups. 
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there was a large (approximately 150%) increase in the proportion of striatal 

D2High receptors in both the ShA and LgA groups, relative to the no drug control 

group (Figure 4.2b), and this was evident both 3 and 30 days after the 

discontinuation of cocaine self-administration.  

 

Discussion 

 

Cocaine self-administration experience had a profound effect on the proportion of 

D2High receptors in the striatum. Relative to drug-naïve controls, rats that had 4 

weeks of either limited (1 hr/day) or extended (6 hr/day) access to cocaine had 

approximately a 150% increase in striatal D2High receptors, and this effect was 

evident both 3 and 30 days after the discontinuation of cocaine self-

administration.  It is interesting that there was no difference in the magnitude of 

the increase in D2High receptors in animals that had limited vs. extended access 

to cocaine, as these two procedures result in a number of different outcomes 

(Ahmed and Koob, 1998; Deroche-Gamonet et al., 2004; Vanderschuren and 

Everitt, 2004; Ferrario et al., 2005). It is not clear, therefore, which of the many 

behavioral or psychological consequences of cocaine self-administration are due 

to changes in D2High receptors. Seeman and his colleagues (2002; 2007) have 

reported that sensitization to amphetamine is associated with an increase in 

D2High receptors, and both experimenter-administered cocaine and cocaine self-

administration experience have been reported to produce behavioral 

supersensitivity to a challenge injection with a direct D2 receptor agonist         
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Figure 4.2. Dopamine D2 and D2High receptors in the striatum of no-drug control 

animals and animals given limited or extended access to self-administered 

cocaine, either 3 or 30 days after the last self-administration session. Panel a 

shows the total number of D2 receptors ([3H]domperidone binding) in the 

cocaine-treated groups expressed as a percent of the control group. There were 

no group differences in the total number of D2 receptors (Overall ANOVA, group, 

F(2,40)=.03, p=.97). Panel b shows the proportion of D2High receptors, again with 

the cocaine-treated groups expressed as a percent of the control group. Cocaine 

self-administration experience greatly increased the proportion of D2High 

receptors at both 3 and 30 days of withdrawal [main effect of group, 

F(2,42)=68.89, p<.0001, main effect of withdrawal time, F(1,42)=.65, p=.43, 

group by time interaction, F(2,32)=2.8, p=.07, *, differs from the no drug group as 

determined by Bonferroni’s corrected t-tests].  
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(De Vries et al., 2002; Edwards et al., 2007).  It has also been reported that both 

limited and extended access to self-administered cocaine produces psychomotor 

sensitization (Ferrario et al., 2005). In this latter study, however, animals given 

extended access showed more robust sensitization than those given only limited 

access. Therefore, the absence of any difference between the LgA and ShA 

groups in D2High receptors may reflect a ceiling effect. Although the LgA animals 

took significantly more cocaine than the ShA animals, even the ShA group took 

considerably more cocaine (nearly 3mg/kg/day i.v. for 24 days) than used in a 

typical sensitization study. Thus, to determine the nature of the relationship 

between the increase in D2High receptors and behavioral sensitization will require 

examination of a greater range of cocaine doses, treatment regimens and 

conditions.  

 

Nevertheless, it is important to contrast the increase in striatal D2High receptors 

produced by cocaine self-administration experience reported here with reports 

that there is a decrease in striatal D2 receptors in cocaine addicts (Volkow et al., 

1990; 1993; Martinez et al., 2004) and in non-human primates allowed to self-

administer cocaine (Volkow et al., 1990; Volkow et al., 1993; Martinez et al., 

2004; Nader and Czoty, 2005; Nader et al., 2006). Although it might be argued 

this could be a result of species differences, the amount of cocaine used, etc., it 

is important to consider another possibility. The ligands used in the human 

imaging and non-human primate studies do not discriminate between the low- 

and high-affinity states of the D2 receptor and would be, therefore, insensitive to 
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changes in the number of D2High receptors (Seeman et al., 2003; 2005). 

Furthermore, there are many examples where an increase in D2High receptors 

has been associated with dopamine supersensitivity, even when there was no 

change or even a decrease in total D2 receptors (Seeman et al., 2005). Thus, it 

will be important to conduct imaging studies in addicts using ligands that allow 

quantification of the D2High receptor (Graff-Guerrero et al., 2007) to determine if 

the reported decrease in D2 receptors in addicts is more apparent than real. 

 

The results reported here are also of some clinical importance because they 

suggest that rather than being in a hypo-dopaminergic state, addicts may actually 

be supersensitive to dopamine and dopaminergic drugs after the discontinuation 

of drug use, and may remain so for very long periods of time. This may help 

explain why stimuli that activate dopaminergic systems, which include addictive 

drugs themselves, direct D2 agonists, stress, and cues associated with drugs, 

are so effective in reinstating self-administration behavior (producing relapse) 

after extinction of the behavior (Shaham et al., 2003). In thinking about the 

development of therapies for cocaine addiction it will obviously be critical to 

determine whether a hypo- or hyper-dopaminergic state best represents the 

situation in addiction, and under what conditions. 
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CHAPTER V 

 

PERSISTENT ALTERATIONS IN REGIONAL CEREBRAL BLOOD 

FLOW FOLLOWING EXTENDED (BUT NOT LIMITED) ACCESS TO 

SELF-ADMINISTERED COCAINE IN RATS 

 

Summary 

 

Functional imaging studies in human cocaine addicts have identified brain 

regions that exhibit alterations in functional activity following both acute and 

prolonged abstinence. Although these studies provide insight into alterations in 

brain function in human addicts, it has not been determined whether these 

changes reflect consequences of drug use or a pre-existing condition that may 

increase vulnerability to addiction. To determine if self-administration of cocaine 

in rats is capable of producing long-lasting changes in brain activation similar to 

those seen in human addicts, an extended access self-administration procedure 

capable of producing symptoms of human addiction was used. Rats were 

allowed access to cocaine for either 1 hr/day (short access; ShA) or 6 hrs/day 

(long access; LgA) for 3 weeks. Regional cerebral blood flow (rCBF) was 

examined under basal conditions at both 3 and 30 days after the last self-
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administration session.  Contrary to the findings in human addicts, we did not 

observe any differences in the frontal cortex following drug administration. In the 

striatum, however, animals in the LgA group exhibited significantly higher 

activation in the caudate-putamen at the early withdrawal time point (3 days). In 

contrast, at the late withdrawal time point (30 days), the LgA animals exhibited a 

decrease in both dorsal and ventral striatal rCBF compared to the ShA and drug-

naïve controls. This shift in activation patterns during withdrawal suggests that 

between the acute withdrawal time point (3 days post-drug) and the prolonged 

withdrawal time point (30 days post-drug) suggests that alterations in the striatum 

occur throughout withdrawal. Further work is needed to determine the 

neurotransmitter systems responsible for this functional alteration and how this 

change may contribute to relapse.  

 

Introduction 

 

Repeated exposure to psychostimulant drugs, such as cocaine, has been shown 

to alter functional activation patterns, as defined by changes in regional cerebral 

blood flow (rCBF), glucose utilization and functional magnetic resonance imaging 

(fMRI) bold signaling, in numerous brain regions (Lyons et al., 1996; Bolla et al., 

2003; Macey et al., 2004; Febo et al., 2005; Beveridge et al., 2006).  For 

example, long-term cocaine abusers exhibit lower rCBF, glucose utilization, and 

fMRI bold signaling in regions of the frontal cortex relative to controls (Volkow et 

al., 1988; Volkow et al., 1991; Volkow et al., 1992) and these alterations persist 
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following long periods of abstinence (Volkow et al., 1992).  Although the focus of 

most functional activation studies has been on alterations in regions of the frontal 

cortex, other subcortical regions have been examined as well.  Volkow and 

colleagues (1991) demonstrated that cocaine addicts exhibit an increase in 

glucose utilization in the basal ganglia during acute withdrawal that decreases 

with increasing periods of abstinence. It is not clear however, whether these 

differences in functional activation in the brains of human addicts are a 

consequence of drug use or precede drug use.  

 

Studies with non-human animals allow one to determine whether exposure to a 

drug of abuse is capable of producing changes in functional activation 

comparable to those seen in addicts. Work by Febo and colleagues (2004; 2005) 

examined the effects of acute cocaine or a cocaine challenge following repeated 

treatment on functional activation patterns; however none have examined 

changes in basal activity following drug exposure, as in addicts. In addition, these 

previous animal imaging studies have utilized experimenter-administered 

cocaine, while extended access contingent drug administration procedures have 

been more readily able to lead to symptoms characteristic of addiction (Ahmed 

and Koob, 1998; Paterson and Markou, 2003; Deroche-Gamonet et al., 2004; 

Vanderschuren and Everitt, 2004; Kippin et al., 2006). Therefore, in the current 

study we utilized an extended access cocaine self-administration procedure to 

examine basal changes in rCBF following chronic cocaine. We hypothesized that 

extended, but not limited, access to self-administered cocaine may produce 
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persistent changes in rCBF similar to those seen in human addicts. Thus, in the 

current experiment, we examined basal regional cerebral blood flow in animals 

given extended, limited, and no access to cocaine self-administration following 

both a 3-day acute withdrawal and a 30-day prolonged withdrawal. 

 

Methods 

 

Subjects. Sixty male Wistar rats (Harlan, Indianapolis, IL) weighing 200-225g at 

the start of the experiment were individually housed a temperature and humidity 

controlled room with a 14:10 light/dark cycle, with water available ad libitum. The 

animals were housed in square plastic hanging cages (8 x 9 x 8 cm). Animals 

were food restricted throughout the experiment to maintain at least 90% of their 

free feeding body weight. All procedures were approved by the University of 

Michigan Committee on the Use and Care of Animals (UCUCA).  

 

Cocaine Self-administration Procedures 

 

Apparatus. Drug administration took place in 16 operant chambers measuring 22 

x 18 x 13 cm (Med Associates, St. Albans, VT, USA) located inside larger sound-

attenuating chambers.  For the drug self-administration procedure, each operant 

chamber had a tone (2900 Hz) and two nose poke holes equipped with cue 

lights. The floor of the chamber consisted of 19 stainless steel rods (4 mm in 

diameter) spaced 1.5 cm apart (center-to-center).  Med-PC for Windows software 
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(v. 1.1, Med Associates) controlled all drug delivery, tone presentation and data 

collection via a Pentium PC.  

 

Jugular catheterization. Following anaesthesia with ketamine and xylazine 

(77:1.5 mg/ml, intraperitoneal [IP], at 0.1 mL/100 gm of body weight), animals 

were catheterized by insertion of a silicone catheter (Plastics One, Roanoke, VA) 

into the right jugular vein that passed subcutaneously to exit from the animals’ 

back (see Caine et al., 1993). Catheters were flushed daily with 0.1mL of 

gentamicin (50 mg/kg, in 0.9% sterile bacteriostatic saline) and catheter patency 

was verified by intravenous infusion of the short-activing barbiturate sodium 

pentothal (2 mg/infusion). Animals were allowed to recover from surgery for a 

minimum of 3 days prior to the start of drug administration. 

 

Self-Administration Paradigm. Catheterized rats were transported from their 

home cage to an operant chamber 6 days a week for 4 weeks, where they were 

allowed to nose-poke for cocaine (0.4 mg/kg/infusion in 50 µL of saline 

administered over 1.6 s) on a continuous reinforcement schedule (FR1) with a 

time-out of 20 s.  An acquisition session commenced with the illumination of the 

“active” nose-poke hole stimulus light and drug delivery followed responses in 

this hole. Responding in the other nose-poke hole, designated inactive, was 

recorded, but had no consequence.  Rats were initially trained during daily one-

hour sessions for a total of 6 days. Animals that did not acquire at least 5 

infusions each day for 3 consecutive days were removed from the study. Animals 
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were divided into two groups after the initial 6-day training period: a long access 

group (LgA) (n=21) and a short access group (ShA) (n=22), balanced according 

to the amount of drug they administered during the first week of training. Animals 

in the ShA group continued to receive one-hour test sessions, whereas animals 

in the LgA group received six-hour test sessions for an additional 16 sessions. A 

third group of rats (no-drug control group) received sham surgery and were 

transported each day to a novel test room where they were placed into Plexiglas 

chambers, similar to the operant chambers.  

 

Regional cerebral blood flow measurements. 

 

Tail catheterization.  Animals were transported to the testing facility for 2 days 

prior to the testing day to allow for acclimation.  Either 3 or 30 days following the 

final self-administration session animals underwent the rCBF procedure. The day 

of rCBF measurement, each rat was placed in a towel restraint and a flexible 24 

gauge intravenous catheter was inserted in the tail vein. A rubber capped 

injection port was attached to the catheter and the catheter was immediately 

flushed with 0.25 ml of saline. Each animal was then removed from the towel 

restraint and placed in a Plexiglas box (similar to the animals’ home cage) for 30-

40 min to recover from the stress induced by the catheter implantation and to 

habituate to the novel environment.  
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Radiotracer injection and tissue collection. Eight to 10mCi of technetium ([99m]Tc) 

exametazime in a 0.5-0.6 ml total volume was injected through the tail vein 

catheter over 10-15 sec and followed with 0.5 ml of saline (0.9% NaCl). Five 

minutes following the tracer injection, the rat was overdosed with chloral hydrate 

(300mg/kg, i.v.) and decapitated.  

 

Brain sectioning and image exposure. The brain was removed and prepared for 

sectioning by rapid freezing with isopentane.  Standard 10µm coronal sections 

were cut (4 consecutive sections cut at fixed intervals, see Table 1 for more 

detail) on a cryostat at -18°C and thaw mounted on Superfrost/Plus Gold slides 

(Fisher Scientific, Pittsburgh, PA). The slides were rapidly desiccated on a 

hotplate at 40°C and arranged in an imaging cassette to be exposed to a Fuji film 

imaging plate (Fujifilm Life Sciences, Stamford, CA).  Exposure time (ranging 

from 20-45 minutes) was calculated based upon the radioactive content of the 

brain prior to slicing and the time since injection. Following the appropriate 

exposure time, the imaging plates were placed in the Fuji Bio-imaging analyzer 

system (Bas) 5000 to be read and converted into digital autoradiograms. For 

more details on the imaging procedure, see Morrow et al.(1998).   

 

Quantification of images. Densitometric analysis of autoradiograms was 

performed utilizing MCID Elite imaging analysis and quantification software 

(Interfocus, Ltd., Linton, England).  Anatomic location of selected regions of 

interest (ROIs) was determined using a method designed to ensure accuracy and 
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consistency of structural identification. For each coronal brain section, a 

transparent stereotaxic template of the same level (i.e. distance from bregma) 

(Paxinos and Watson, 1998) was overlaid on the digitized brain images displayed 

on the computer monitor and the two images were aligned using prominent 

landmarks. An index of activation from individual ROIs was calculated as a 

percent of the average total activity of all brain sections. Quantified optical 

densities were converted to radioactivity concentration of the tissue (nCi/mg) by 

MCID using the optical densities of [14C] standards also imaged on each plate. 

The total brain activity for a given animal was estimated by sampling all pixels in 

each brain section and averaging the activity across all sections (approximately 

160 sections per animal spanning the anterior posterior gradient, see Table 1). 

Activation index (AI) values for each sampled ROI were calculated as a percent 

difference from the average total activity of the entire brain using the following 

formula:  

 

AI = (Sampled ROI activity – Total Brain Activity) / (Total Brain Activity) × 100% 

 

Table 5.1 lists all the ROIs and levels sampled in the current study.  We sampled 

structures known to participate in reward signaling and areas that have been 

previously shown to be altered by chronic cocaine (Kleven et al., 1990; Volkow et 

al., 1990; Macedo et al., 2004; Nasif et al., 2005; Beveridge et al., 2006).  
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Level  
(AP relative to Bregma) 

Regions Sampled Abbreviation 

Level 4.2 Medial Orbital Cortex 

Ventral Orbital Cortex 
Lateral Orbital Cortex 

MO 

VO 
LO 

Level 3.7 Ventral Orbital Cortex 
Lateral Orbital Cortex 

Cingulate Cortex 

Prelimbic Cortex 

VO 
LO 

Cg1 

PrL 
Level 2.7 
 

Cingulate Cortex 

Prelimbic Cortex 
Infralimbic Cortex 

Cg1 

PrL 
IL 

Level 2.2 Nucleus Accumbens 
Nucleus Accumbens Core 

Nucleus Accumbens Shell 

NAc 
NAc core 

NAc shell 
Level 1.7 Nucleus Accumbens 

Nucleus Accumbens Core 
Nucleus Accumbens Shell  

Caudate Putamen 
Dorsomedial Caudate 

Ventromedial Caudate 

Dorsolateral Caudate 
Ventrolateral Caudate 

NAc 

NAc core 
NAc shell 

Cpu 
dmCPu 

vmCPu 

dlCPu 
vlCPu 

Level 1.6 Caudate Putamen 
Dorsomedial Caudate 

Ventromedial Caudate 
Dorsolateral Caudate 

Ventrolateral Caudate 

Cpu 
dmCPu 

vmCPu 
dlCPu 

vlCPu 
Level 1.2 Same as Level 1.7  

Level 0.7 Same as Level 1.6  
 

Table 5.1. Brain Regions Quantified via rCBF technique.  
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Statistical Analyses  

 

Cocaine Self-Administration. The number of infusions for the first hour of each 

session and for the entirety of the session was determined for each day of self-

administration. Repeated measures two-way ANOVAs were performed with 

escalation session (1-16) as the repeated variable, drug group (ShA, LgA) as the 

independent variable and the number of infusions (first hour or total infusions) as 

the dependent variable. When significant main effects or interactions were 

revealed, Student-Newman-Keuls post-hoc comparisons were conducted. For all 

analyses, alpha was set at 0.05. 

 

Regional Cerebral Blood Flow. Each brain structure was sampled bilaterally and 

an AI (see methods above) was calculated for each hemisphere. Hemispheric 

differences in rCBF in each brain region were assessed using a t-test.  If no 

overall differences were found between the two hemispheres, the data was 

combined for analysis of group differences. If hemispheric differences were found 

separate group difference analyses were conducted for each hemisphere. Group 

differences in rCBF for both withdrawal time points were assessed using 

repeated measures two-away ANOVAs with drug group (ND, ShA, LgA) as a 

factor, distance from bregma as the repeated variable and the index of activation 

as the dependent variable. Separate repeated measures ANOVAs were 

calculated for each brain region. When significant main effects or interactions 
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were revealed, Student-Newman-Keuls post-hoc comparisons were conducted. 

For all analyses, alpha was set at 0.05.  

 

Results 

 

Cocaine Self-Administration. Following the initial 6-day training period animals 

were divided into ShA and LgA groups balanced for drug intake during 

acquisition. ShA animals maintained stable drug intake over the next 16 test 

sessions. LgA animals showed a progressive increase in both their total intake 

and their intake during the first hour of each session (Figure 5.1).  

 

Regional Cerebral Blood Flow.   

 

Total Brain. There were no group differences in total brain rCBF at either the 3 or 

30 day withdrawal time point (Figure 5.2), indicating that the regional differences 

described below were not due to general alterations in cerebral perfusion. 

 

Frontal Regions.  No significant differences were seen between the groups in any 

of the cortical regions at either withdrawal time point (see Table 5.2).  

 

Nucleus Accumbens. At the early withdrawal time point there were no differences 

in nucleus accumbens activity between the LgA and drug naïve groups, however 

a decrease in rCBF was seen in the ShA animals compared to both groups [NAc 
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Figure 5.1. A. Mean (+/- SEM) number of cocaine infusions during the first hour 

of each self-administration session. By the 11th session, animals allowed 

extended access to cocaine (long access, 6-hr session; LgA) took significantly 

more infusions than animals allowed only limited access (short access, 1-hr 

sessions; ShA) [main effect of group, F(1,690)=28.57, p<.0001, main effect of 

day, F(15,690)=6.30, p<0.0001, group by day interaction, F(15,690)=3.13, 

p<.0001]. B. The mean (+/- SEM) number of cocaine infusions over the entire 

session for LgA (6-hr sessions) and ShA (1-hr sessions) groups.  
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Figure 5.2.  Mean (+/- SEM) total brain rCBF. The lack of differences between 

the drug groups at either time point indicates that there were no general 

alterations in cerebral perfusion [Early withdrawal: ANOVA, group, F(2,34)=.09, 

p=.91; Late withdrawal: ANOVA, group, F(2,29)=.92, p=41] 
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Table 5.2.  Mean regional cerebral blood flow in the prefrontal cortex and 

striatum at the early (3) and late (30) withdrawal time points. The data represent 

the mean activation index [AI= (Sampled ROI activity – Total Brain Activity) / 

(Total Brain Activity) × 100%]. * Significantly lower activation than ShA and ND 

controls (p<.05). ** Significantly higher activation than ShA and ND controls 

(p<.05). # Significantly lower than LgA and ND animals (p<.05). 
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Brain 
Region 

AP Level 
Relative to 

Bregma 

Mean rCBF (% Change from Total Brain) 
      ND                      ShA                    LgA 
   3           30         3          30           3              30 

Medial Orbital 
Cortex 4.2 34.3 34.9 50.8 40.5 41.0 33.3 

Ventral Orbital 
Cortex 4.2 48.6 43.1 46.4 49.8 46.8 35.1 

 3.7 50.7 46.3 50.0 42.0 50.1 41.0 
Lateral Orbital 
Cortex (LO) 4.2 33.2 38.6 33.1 29.6 29.3 29.3 

          Right LO 3.7 49.8 23.6 51.2 27.4 48.4 30.0 

          Left LO  30.9 -0.1 33.4 -0.7 27.8 7.8 

Cingulate Cortex 3.7 31.0 28.3 30.9 28.8 30.0 23.4 

 2.7 30.5 30.6 30.2 24.7 29.0 33.7 

Prelimbic Cortex 3.7 28.1 27.5 23.8 25.1 28.6 21.7 

 2.7 29.3 26.6 24.9 26.3 28.7 26.5 

Infralimbic Cortex 2.7 17.0 13.7 15.6 10.2 17.9 12.9 

Nucleus Accumbens        
 2.2 10.5 9.5 5.6 4.2 8.9 9.8 

 1.7 9.2 10.9 1.5# 7.4 9.6 1.0* 

 1.2 -2.0 2.0 -1.5 -0.2 0.6 0.8 
    Core 2.2 13.2 17.3 11.7 10.5 16.2 14.1 
 1.7 13.5 18.3 10.3 11.0 15.8 2.6* 
 1.2 6.4 4.3 4.8 5.5 2.9 2.6 

    Shell 2.2 11.2 12.7 3.4# 9.7 9.9 12.0 
 1.7 11.7 14.3 5.4 11.2 13.5 4.5* 
 1.2 5.7 0.1 -3.6 1.7 -1.8 3.2 

Caudate Putamen 1.7 6.3 11.6 1.5 6.5 12.1** 1.9 

 1.2 6.1 9.7 5.8 5.9 9.6** 7.7 

 1.6 5.3 7.4 5.8 7.1 7.5** 8.8 

 0.7 5.3 9.3 2.0 1.7 8.4** 9.9 
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Whole, Overall ANOVA, group, F(2,114)=3.80, p=.028, level, F(2,114)=26.29, 

p<.0001, interaction, ns; individual group comparisons: ShA vs. LgA, group, 

F(1,76)=4.2, p=.05; ShA vs. ND group, F(1,76)=6.34, p=.02; LgA vs. ND, group, 

ns].  This effect seems to be primarily driven by a decrease in rCBF in the shell 

subregion of the ShA animals rather than the core [NAc Shell: Overall ANOVA, 

group, F(2,114)=3.87, p=.027, level, F(2,114)=21.33, p<.0001, interaction, ns; 

individual group comparisons: ShA vs. ND, group, F(1,76)=6.7, p=.01; ShA vs. 

LgA, group, ns; LgA vs. ND, group, ns; NAc Core: Overall ANOVA, group, ns, 

level, F(2,114)=12.77, p<.0001, interaction, ns]. In contrast, at the late withdrawal 

time point, LgA animals exhibited a decrease in rCBF, specifically at level 1.7 

relative to bregma, relative to both the ShA and drug naïve controls [Overall 

ANOVA, group, ns, level, F(2,106)=23.04, p<.0001, interaction, F(4,106)=5.77, 

p=.0003; see Figure 5.3]. This effect was similar in both the core and the shell of 

the NAc (see Figure 5.3). No differences were seen between the ShA and ND 

animals at the late withdrawal time point (see Table 5.2).  

 

Caudate Putamen. Regional CBF levels in the ShA and ND groups did not differ 

in the caudate putamen at either withdrawal time. At the early withdrawal time 

point, however, animals in the LgA group exhibited a significant bilateral increase 

in rCBF in the caudate relative to both the ND and ShA groups and this effect 

was greatest in the rostral caudate [Overall ANOVA, group, F(2,165)=5.90, 

p=.005, level, ns, interaction, F(4,165)=3.35, p=.004;See Figure 5.4]. At the late 

withdrawal time point, animals in the LgA group exhibited a significant bilateral 
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Figure 5.3. Decreased regional cerebral blood flow in the nucleus accumbens of 

LgA animals at anterior posterior level 1.7 (Paxinos and Watson, 1998) following 

prolonged withdrawal. The data represent the mean (± SEM) activation index 

[AI= (Sampled ROI activity – Total Brain Activity) / (Total Brain Activity) × 100%]. 

Following prolonged withdrawal, the LgA animals exhibited a specific decrease in 

activation at 1.7mm from bregma in the NAc [Overall ANOVA, group, 

F(2,59)=5.26, p=.008, *, differs from ShA and ND groups as determined by 

Student Newman Keuls Tests], the NAc core [Overall ANOVA, group, 

F(2,59)=7.26, p=.002, *, differs from ShA and ND groups as determined by 

Student Newman Keuls Tests], and the NAc shell [Overall ANOVA, group, 

F(2,59)=4.71, p=.01, *, differs from ShA and ND groups as determined by 

Student Newman Keuls Tests].  No differences were seen between the ShA and 

ND animals at this time point.  
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Figure 5.4. Increased regional cerebral blood flow in the caudate putamen (CPu) 

of the LgA animals at the early withdrawal time point. The data represent the 

mean (± SEM) activation index [AI= (Sampled ROI activity – Total Brain Activity) / 

(Total Brain Activity) × 100%]. During early withdrawal, the LgA animals exhibited 

an increase in activation in the entire CPu [Overall ANOVA, group, F(2,68)=5.23, 

p=.007, *, differs from ShA and ND groups as determined by Student Newman 

Keuls Tests]. No differences were seen between the ShA and ND animals. 
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decrease in rCBF in the rostral caudate relative to both the ND and ShA group 

[Overall ANOVA, group, ns, level, ns, interaction, F(4,171)=5.89, p<.0001; see 

Figure 5.5; Table 5.2]. At both withdrawal time points, the pattern of changes was 

consistent throughout all dorsolateral and ventromedial subregions of the Cpu 

(data not shown).  

 

Discussion 

 

Effects of past experience with self-administered cocaine on rCBF in the 

frontal cortex  

 

Contrary to our hypothesis, we observed no effect of extended access cocaine 

self-administration on rCBF in the frontal cortex. These results differ from studies 

in the clinical literature demonstrating that human cocaine addicts exhibit a basal 

decrease in frontal rCBF (Volkow et al., 1988) and glucose utilization (Volkow et 

al., 1992; Hammer et al., 1993). While the inability of cocaine to alter frontal rCBF 

under baseline conditions may support the contention that the hypofrontality seen 

in human addicts is not a result of drug use, there are a number of factors that 

may have influenced our ability to detect basal changes in rCBF.  

 

Numerous studies in both human addicts and non-human primates have 

examined responses to cocaine cue presentation and acute cocaine challenge. 
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Figure 5.5. Decreased regional cerebral blood flow in the caudate putamen of 

LgA animals at anterior posterior Level 1.7 (Paxinos and Watson, 1998) following 

prolonged withdrawal. The data represent the mean (± SEM) activation index 

[AI= (Sampled ROI activity – Total Brain Activity) / (Total Brain Activity) × 100%]. 

Following prolonged withdrawal, the LgA animals exhibited a specific decrease in 

activation at 1.7mm from bregma in the CPu [Overall ANOVA, group, 

F(2,59)=5.98, p=.004, *, differs from ShA and ND groups as determined by 

Student Newman Keuls Tests]. No differences were seen between the ShA and 

ND animals. 
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Both cue presentation and acute cocaine administration result in an increase in 

glucose utilization and rCBF in frontal brain regions in chronic cocaine users 

(London et al., 1990; Pearlson et al., 1993; Wang et al., 1999; Bonson et al., 

2002) and monkeys (Lyons et al., 1996; Beveridge et al., 2006). In the present 

experiment, despite the fact that we did not explicitly present the animal with 

cocaine cues, the presence of the experimenters may have served as a cue. 

Since rats were only removed from their home cages for self-administration 

sessions, the experimenter or the change of environment may have been enough 

to elicit cue-induced increases in rCBF that could mask basal decreases. 

 

Stress has also been shown to elevate rCBF at the whole brain level (Wik et al., 

1997) and specifically in the frontal cortex (Ohata et al., 1982). Although we 

attempted to minimize the effect of stress by allowing the rats to habituate prior to 

injection, we cannot dismiss the possibility that an increased responsivity to 

stress in the LgA animals masked basal differences in rCBF.  This possibility is 

supported by evidence that chronic cocaine administration leads to an increased 

response to stress (Erb et al., 2003; Erb et al., 2004; Erb et al., 2006).  Without 

further assessment of corticosterone levels during the habituation period or 

during the radiotracer infusion, we are unable to eliminate the possibility that a 

stress-induced increase in rCBF is masking any basal decreases resulting from 

chronic cocaine administration.  
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While these methodological issues are important to consider, it is also a 

possibility that the lack of alterations in rCBF following chronic cocaine self-

administration indicate that the changes seen in human addicts may preexist 

drug addiction rather than being a consequence of drug taking.  Future studies 

will have to directly address the aforementioned methodological issues in order 

to determine whether alterations in rCBF can been seen following chronic 

cocaine under different experimental conditions. 

 

Effects of past experience with self-administered cocaine on rCBF in the 

striatum 

This is the first study to demonstrate long-term changes in basal mesolimbic 

activation following extended access cocaine self-administration in rats.  The 

results indicate a biphasic rCBF response in LgA animals relative to both ShA 

and drug naïve controls: increased striatal rCBF was seen during early 

withdrawal and decreased striatal rCBF was present following prolonged 

withdrawal.   

 

Although most human rCBF studies have focused on cortical brain regions, 

Volkow and colleages (1991) examined another measure of functional activity, 

glucose metabolism, and found that cocaine addicts that were abstinent for less 

than one week exhibited a 10% increase in glucose metabolism in the basal 

ganglia as compared to drug naïve control subjects. Similar to the increase seen 
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in the present study, this increase in functional activation was transient and was 

no longer present in subjects tested after 2-4 weeks of abstinence.  

 

As alterations in regional cerebral blood flow are believed to reflect changes in 

synaptic activity (Sharkey et al., 1991; Mathiesen et al., 1998; Mathiesen et al., 

2000), the increase in rCBF seen in the current study indicates that extended 

access cocaine self-administration leads to an increase in synaptic activity in the 

dorsal striatum. However, as the dorsal striatum contains at the very least 

dopaminergic, glutamatergic, and gabaergic synapses, it is not clear which 

neurotransmitter system or systems might be responsible for the changes in 

functional activation. Although there is ample evidence that repeated cocaine 

increases evoked dopamine release in the dorsal striatum (Akimoto et al., 1989; 

Pettit et al., 1990), there is no evidence that there is an increase in basal 

dopamine transmission. However, repeated cocaine administration has been 

shown to decrease both dorsal striatal GABA release as well as GABAA receptor 

density, indicating a decrease in inhibitory neurotransmission in the dorsal 

striatum following cocaine (Pecins-Thompson and Peris, 1993; Peris, 1996; Jung 

et al., 1999).  This decrease in inhibitory neurotransmission is believed to lead to 

an increase in dorsal striatal output. Therefore, it is possible that alterations in 

GABAergic function are responsible for the changes in functional activation that 

we see during early withdrawal.  
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Although the neurotransmitter system underlying the upregulation in dorsal 

striatal activation during early withdrawal is not entirely clear, the downregulation 

in striatal activation seen in the current study is consistent with numerous reports 

suggesting that repeated psychostimulant administration leads to a 

downregulation in striatal dopamine transmission.   Basal decreases in both 

dorsal and ventral extracellular dopamine have been reported during prolonged 

withdrawal from chronic cocaine (Rossetti et al., 1992; Clay et al., 1998). Along 

with this basal decrease in dopamine release, there is evidence for postsynaptic 

dopamine alterations as well. Przewlocka and Larson (1995) found that binge 

cocaine administration lead to downregulation in proenkephalin during prolonged 

withdrawal. As proenkephlin is colocalized with D2 receptors, this study would 

suggest that during prolonged withdrawal from chronic cocaine there is a 

downrgulation in dopamine D2 receptors.  This is supported by numerous studies 

indicating a decrease in D2 receptor density in human addicts following long 

periods of abstinence (Volkow et al., 1993; Martinez et al., 2004).  As rCBF is a 

marker of synaptic activity (Sokoloff, 1978; Sharkey et al., 1991; Mathiesen et al., 

1998), this decrease seen in the current study is consistent with the idea that 

chronic cocaine leads to a downregulation in striatal dopamine transmission 

(Zhang et al., 2003; Volkow et al., 2004).  
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Conclusions 

 

Extended, but not limited, access to self-administered cocaine resulted 

differential alterations in rCBF during early vs. late withdrawal.  Regional cerebral 

blood flow in the dorsal striatum of the LgA animals underwent a shift from 

increased rCBF (compared to controls) during early withdrawal to a decrease 

following prolonged withdrawal. As changes in rCBF are thought to reflect 

changes in synaptic activity, our results may indicate differential alterations 

during early withdrawal vs. late withdrawal in striatal neurotransmitter systems. 

Further work need to be done to determine the underlying neurobiology of these 

functional changes.   
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CHAPTER VI 
 
 

GENERAL DISCUSSION 

 

The focus of the present dissertation was to determine whether chronic cocaine 

self-administration could lead to persistent deficits in cognitive function and 

changes in dopamine systems underlying cognition.  The preceding chapters 

addressed the following questions:  (1) How does differential access to cocaine 

self-administration alter sustained attention performance both during early and 

late withdrawal? (2) How does differential access to cocaine self-administration 

alter recognition memory performance following prolonged withdrawal? (3) Does 

cocaine self-administration lead to changes in prefrontal dopamine receptors? (4) 

Does cocaine self-administration lead to changes in striatal dopamine receptors? 

(5) Are there changes in the functional activation in mesolimbic and/or 

mesocortical dopamine systems following cocaine self-administration? In the 

following discussion I will summarize the results of these experiments and 

present a cumulative discussion of the findings. 

 

The ability of extended access, but not limited access, cocaine self-

administration to lead to persistent changes in cognitive function is addressed in 

both Chapters II and III. Chapter II demonstrates that following extended access 
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cocaine self-administration, rats exhibit a decrement in sustained attention 

performance both during acute and prolonged withdrawal.  Three days after their 

final self-administration session, extended access animals exhibited a 

generalized deficit on the task, encompassing both signal and non-signal trials, 

when compared to both limited access animals and drug naïve animals.  

Furthermore, after up to 30 days of withdrawal, a specific non-signal trial deficit 

was seen in the extended access animals while no deficits were seen in either of 

the other two groups. Chapter III demonstrates that following extended access 

cocaine self-administration, rats exhibit a decrement in novel object recognition  

performance following 14 days of withdrawal compared with both limited access 

and drug naïve animals. Slight recognition memory deficits were also present in 

the limited access animals in the first experiment however these were not 

replicated in the second experiment.  

 

The second and third experiments described in Chapter II show that extended 

access cocaine self-administration leads to a decrease in both prefrontal 

dopamine D2 receptor mRNA and protein levels both during acute and prolonged 

withdrawal.  No decrease in either mRNA or protein was seen following limited 

access cocaine self-administration at either withdrawal time point.  No changes 

were seen in D1 receptor mRNA following cocaine self-administration. Chapter 

IV demonstrates a 150% increase in the proportion of striatal high-affinity 

dopamine D2 receptors following both extended and limited access self-
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administration.  However, this increase in high-affinity receptors was not 

accompanied by a change in total D2 receptor density.  

 

As demonstrated in Chapter V, extended access cocaine self-administration led 

to an increase in the functional activity, as measured by rCBF, of the caudate-

putamen during acute withdrawal, compared to both limited access and drug 

naïve controls.  However, after prolonged withdrawal there was a decrease in 

rCBF in both the caudate-putamen and the nucleus accumbens in the extended 

access animals. No changes were seen in the functional activity of the frontal 

cortex following chronic cocaine.  

 

Cause vs. Consequence 

 

One of the main goals of this dissertation was to determine whether the cognitive 

deficits, as well as alterations in functional activation, seen in human addicts 

could be a consequence of drug use rather than solely a cause. The results of 

Chapter II clearly demonstrate that chronic cocaine, when self-administered on 

an extended access schedule, produces deficits in cognitive flexibility that are 

similar to the executive functioning deficits seen in human addicts (1991; Rosselli 

and Ardila, 1996; Beason-Held et al., 1999; Bolla et al., 1999; Grant et al., 2000; 

Ornstein et al., 2000).   
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As these cognitive deficits were seen well past the period of acute withdrawal 

and up to 30 days after the final drug self-administration session, they are the 

first evidence that chronic cocaine administration can lead to persistent deficits in 

cognitive function in animals. As previous preclinical studies have not 

demonstrated persistent cognitive deficits (Dalley et al., 2005a; Dalley et al., 

2005b), our results may be due in part to the extended access cocaine self-

administration procedure as well as the specific testing parameters. Our results 

are particularly striking due to the lack of performance deficits, i.e. lack of 

increased omissions and lack of a decrease in total exploration time, which show 

that the animals truly demonstrated deficits in specific arenas of cognitive 

function rather than exhibiting a generalized deficit. This is consistent with the 

human literature as well, as addicts show deficits in some cognitive functions 

while remaining proficient in others (Ardila et al., 1991; Berry et al., 1993; Hoff et 

al., 1996; Rosselli and Ardila, 1996; Bolla et al., 1999). 

 

The persistent deficits seen in this study were specific to the non-signal trials, 

and performance on these trials involves holding more information in mind than 

signal trials due to the lack of stimulus signaling the correct response.  Therefore, 

we believe that extended access cocaine self-administration leads to a deficit in 

cognitive flexibility, or the ability to switch between two different response modes. 

Human addicts display increased preservative errors on the WCST and other 

tasks that are also aimed at measuring the ability to switch between response 

strategies (Beatty et al., 1995; Kubler et al., 2005; Verdejo-Garcia et al., 2006). 
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Performance on this task has also shown to be negatively correlated with 

duration of cocaine use and total dose consumed (Bolla et al., 1999). Therefore 

our results support the contention that cocaine abuse leads to deficits in these 

cognitive tasks.  

 

Studies have shown that activation of the prefrontal cortex occurs when healthy 

volunteers perform the WCST as well as other cognitive tasks that involve task-

switching (Konishi et al., 1999; Wagner, 2001; Loose et al., 2006). Animal studies 

have also shown that prefrontal cortex lesions lead to deficits on a modified 

version of the WCST (Birrell and Brown, 2000). As performance on task-

switching paradigms requires an intact prefrontal cortex and both addicts and the 

animals in the current study exhibit deficits on these tasks it is hypothesized that 

human addicts exhibit a “hypofrontality”.  This is supported by evidence that 

cocaine addicts exhibit decreased prefrontal activation in fMRI studies and 

decreased prefrontal glucose metabolism when performing working memory 

tasks (Goldstein et al., 2004; Hester and Garavan, 2004; Tomasi et al., 2007).  In 

further support of the idea that cocaine abuse leads to a decrease in prefrontal 

function, the results of Chapter II indicate that extended access cocaine led to a 

decrease in D2 receptor mRNA and protein suggesting a downregulation in 

dopamine D2 receptor transmission following chronic cocaine.   

 

While the current dissertation does not determine whether these prefrontal D2 

receptor changes are responsible for the cognitive deficits presented by the 
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extended access animals, other work suggest that this downregulation may play 

a role. Systemic administration of D2 receptor antagonists in both animals and 

humans suggest that D2 receptors play a critical role in cognitive flexibility 

(Lanser et al., 2001; Mehta et al., 2004; Tost et al., 2006). More specifically, 

Floresco and collegues (2006) have shown that antagonizing prefrontal D2 

receptors disrupts rats ability to change response strategies. In addtion, 

prefrontal D2 receptors have also been shown to impair performance on other 

prefrontal dependent tasks, such as spatial working memory performance 

(Rinaldi et al., 2007). Together, these studies, along with the results of Chapter II, 

support the idea that a disruption in prefrontal D2 receptor function caused by 

cocaine abuse could lead to deficits in behavioral flexibility.  

 

It should be noted that the results of Chapter V may seem to support the idea 

that the hypofrontality seen in imaging studies of human addicts does pre-exist 

drug abuse rather than result from it. However, taken together with the results of 

both the cognitive experiments as well as the ability of chronic cocaine to 

decrease dopamine receptor levels in the prefrontal cortex, a potential 

mechanism for this “hypofrontality”, we believe that our inability to see basal 

decreases in this study were a result of technical limitations.  

 

Along with these deficits in prefrontal cognitive function, in Chapter III we found 

that chronic cocaine can also produce deficits in recognition memory in animals 

that are similar to those seen in human addicts (O'Malley et al., 1992; Mittenberg 
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and Motta, 1993).   Although there is some controversy in the field (Baxter and 

Murray, 2001b, a), work in monkeys has clearly demonstrated that hippocampal 

lesions lead to a decrement in recognition memory performance (Zola-Morgan et 

al., 1992; Alvarez et al., 1995; Zola et al., 2000; Zola and Squire, 2001).  In 

further support of the role of the hippocampus in recognition memory, human 

patients with lesions primarily limited to bilateral hippocampal damage exhibit 

deficits on three separate recognition memory tasks (Manns et al., 2003).  

Furthermore, damage to the hippocampus seems to affect both the recall and 

familiarity components of recognition memory performance (Manns et al., 2003; 

Wais et al., 2006).  Similarly, object recognition memory performance in rats is 

impaired following dorsal hippocampal lesions, however the extent of the lesion 

must be relatively large (75-100% of hippocampal volume) (Broadbent et al., 

2004).  The dorsal hippocampus may be particularly involved in the consolidation 

of object recognition memory as temporary inactivation of this region only impairs 

performance during the first 3 hours after training (de Lima et al., 2006).  

 

This would suggest that the results of Chapter III may indicate that extended 

access cocaine leads to alterations in hippocampal function. While the studies in 

the current dissertation did not examine alterations in the hippocampus, others 

have examined the effects of chronic cocaine on this brain region. Repeated 

cocaine administration leads to a decrease in adult hippocampal neurogenesis 

(Yamaguchi et al., 2004), specifically leading to a decrease in progenitor cell 

proliferation rather than altering cell survival or maturation (Dominguez-Escriba et 
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al., 2006).  Although there is no conclusive evidence that decreased 

neurogenesis leads to impaired hippocampal-dependent memory, there is a large 

body of correlative evidence that this may be the case (Gould et al., 1999b; 

Gould and Tanapat, 1999; Gould et al., 1999a; van Praag et al., 1999; Shors et 

al., 2001; Drapeau et al., 2003; Lu et al., 2005; Ueda et al., 2005; van Praag et 

al., 2005; Leuner et al., 2006).  Therefore, the decrease in neurogenesis that is 

caused by repeated cocaine administration may provide us with a mechanism for 

the reduction in recognition memory seen in Chapter III.  

 

Along with providing us with insight into alterations in underlying brain structures, 

the ability of drugs of abuse to lead to deficits in cognitive function is of particular 

import when considering treatment options. Numerous studies have documented 

that addicts exhibiting cognitive deficits are less likely to remain in treatment and 

less likely to succeed in remaining abstinent (Moeller et al., 2001; Aharonovich et 

al., 2003; Aharonovich et al., 2006). As many of the more effective treatment 

programs involve cognitively based therapies (Carroll et al., 1991b; Carroll et al., 

1991a; Carroll et al., 1994a; Rawson et al., 2002; Epstein et al., 2003; Rawson et 

al., 2006), gaining a full understanding of how drugs of abuse can alter cognitive 

function could help us to determine how we can potentially use pharmacological 

treatments in conjunction with more behavioral approaches to maximize 

treatment success.  
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Alterations in the Ascending Dopamine Systems Following 

Chronic Cocaine  

 

As hypothesized, we were able to produce alterations in the both the 

mesocortical and mesolimbic dopamine systems as a result of chronic cocaine 

self-administration.  In Chapter II we found a decrease in dopamine D2 receptor 

levels in the prefrontal cortex, suggesting a decrease in dopaminergic 

transmission following extended access cocaine. As these decreases were not 

seen following limited access self-administration schedules, it would suggest that 

the hyposensitivity in the prefrontal cortex would only occur following chronic 

cocaine abuse or addiction rather than after more casual cocaine use. As human 

functional imaging studies are aimed at measuring indicators of synaptic function 

(for evidence on the coupling of rCBF and/or metabolic activity to synaptic 

activity, see Sharkey et al., 1991; Buxton and Frank, 1997; Mathiesen et al., 

1998), a decrease in dopaminergic transmission is consistent with decreases in 

rCBF (Volkow et al., 1988; Bell et al., 1994; Ernst et al., 2000) and glucose 

metabolism (Volkow et al., 1991) and provides us with a potential mechanistic 

explanation for these imaging results.    

 

The effect of dopamine at D2 receptors in the PFC is somewhat complex. Slice 

electrophysiology studies have shown that stimulation of D2 receptors with high 

concentrations of dopamine leads to a decrease in inhibitory post-synaptic 

potentials (IPSPs) (Trantham-Davidson et al., 2004).  When any step of the D2 
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receptor cascade is inhibited dopamine acts upon D1 receptors to increase 

IPSPs. This would suggest that a decrease in D2 receptor activity would lead to 

an increase in IPSPs and therefore a decrease in the overall activation of the 

PFC.  

 

However, Tseng & O’Donnell (Tseng and O'Donnell, 2007) have shown that D2 

receptor agonists lead to a decrease in pyramidal cell excitatory post-synaptic 

potentials (EPSPs) in slice preparations.  This decrease in EPSPs is at least 

partially mediated by GABA as application of a GABAA antagonist blocks the 

lasting component of this effect. This is consistent with work demonstrating that 

activation of D2 receptors in the PFC in both rats (Del Arco and Mora, 2002, 

2005) and monkeys (Wang and Goldman-Rakic, 2004) leads to a facilitation of 

glutamate-evoked GABA release in the PFC. The net result of this seems to a 

decrease in the activity of glutamatergic descending projections to the NAc 

(Brady and O'Donnell, 2004) and a corresponding decrease in NAc dopamine 

release (Del Arco and Mora, 2005). Therefore, a reciprocal relationship exists 

between dopamine transmission in the PFC and the NAc, with high levels in one 

region corresponding with low levels in the other.   

 

As the results of Chapter II suggest that extended access cocaine leads to a 

decrease in prefrontal D2 receptor activity, I would hypothesize that this is 

accompanied by a decrease in prefrontal glutamate-evoked GABA release and 

therefore an increase in cortico-accumbal glutamate release. While this is 
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contrary to hypotheses based on the work of Trantham-Davidson and colleagues 

(2004), there is overwhelming evidence suggesting a reciprocal relationship 

between prefrontal and striatal dopamine transmission. For example, lesions of 

the PFC lead to an increase in striatal D2 receptor expression (Baca et al., 

1998). In addition, stimulation of the prefrontal cortex at physiologically relevant 

frequencies leads to a decrease in NAc dopamine release (Jackson et al., 2001) 

which is consistent with the idea that glutamate in the PFC (specifically activation 

of AMPA receptors) exerts a tonic inhibitory control on dopamine release 

(Takahata and Moghaddam, 1998). While this may seem contrary to work 

demonstrating that inhibition of prefrontal GABAA leads to an increase in striatal 

dopamine release, when you consider the entire circuit it becomes more clear 

(see Figure 6.1). The prefrontal cortex contains not only descending glutamateric 

projections that excite striatal dopamine release but also glutamatergic neurons 

that synapse on GABAergic interneurons that in turn inhibit the descending 

projections.  

 

As prefrontal glutamatergic efferents also project to the dorsal striatum, the 

decrease in D2 receptor function in the PFC should also lead to a corresponding 

increase in glutamatergic transmission here as well as in the NAc.  As glutamate 

in the dorsal striatum leads to an increase in dopamine transmission, this 

increase in glutamatergic transmission should lead to a dopaminergic increase. 

Although we did not measure the effects of cocaine self-administration on dorsal 

striatal dopamine release, the results of the experiment in Chapter IV indicate 
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Figure 6.1.  Interactions between ascending dopaminergic projections, 

intracortical interneurons, and decending glutmatatergic projections. 

Dopaminergic projections from the ventral tegmental area (VTA; in red) synapse 

both in the striatum (NAc) and the prefrontal cortex. The projections to the cortex 

synapse both onto GABAergic interneurons (in blue) and glutamatergic pyramidal 

cells (in green).  In turn, the pyramidal cells synapse both onto the GABAergic 

interneurons, thus potentiating GABA release, and onto both ventral and dorsal 

striatal medium spiny neurons (in blue), thus potentiating dopamine striatal 

dopamine transmission.  In addition, glutamatergic projections exist from the PFC 

to the VTA. Note that the chandelier cell is only one type of GABAergic 

interneuron that may be playing a role in this circuit and it was included for 

illustrative purposes.  
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that there is an increase in dopamine D2 receptor transmission due to an 

increase in proportion of the high-affinity state of the receptor.  The results of 

Chapter V also indicate that chronic cocaine, at least during acute withdrawal, 

can lead to an increase in functional activity in the dorsal striatum. Although there 

was a decrease seen after prolonged withdrawal, this was only seen in one 

portion of the striatum and it is unclear exactly how this specific alteration in 

functional activity may effect dopamine transmission.  

 

Despite the fact that studies of human addicts have reported decreases in dorsal 

striatal functional activation during working memory task performance (Tomasi et 

al., 2007) as well as decreased basal dopamine receptor availability in both the 

dorsal and ventral striatum (Volkow et al., 1990; Volkow et al., 1993; Martinez et 

al., 2004), an increase in dopamine transmission in the ventral and dorsal 

striatum is consistent with a large body of literature indicating that chronic 

cocaine leads to hypersensitivity or sensitization of the reward system (Robinson 

and Berridge, 1993; Robinson and Berridge, 2000; Berridge, 2007). For example, 

both repeated amphetamine and cocaine lead to an increase in evoked 

dopamine release in the ventral and dorsal striatum (Robinson and Becker, 1982; 

Wilcox et al., 1986; Castaneda et al., 1988; Robinson et al., 1988; Akimoto et al., 

1989; Akimoto et al., 1990; Kalivas and Duffy, 1990; Pettit et al., 1990; Ng et al., 

1991; Clay et al., 1998).  Chronic cocaine also has been shown to increase 

cocaine-induced dopamine overflow (Heidbreder et al., 1996), drug-paired cue-

induced dopamine release (Kiyatkin and Stein, 1995), and the behavioral effects 
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of direct dopaminergic agonists (Kiyatkin, 1994; De Vries et al., 2002; Edwards et 

al., 2007). While clearly the story is not as simple as an overall increase in 

dopamine transmission throughout the striatum, as the heterogeneity of these 

structures alone suggests otherwise (Cadoni et al., 2000), the results of the 

current dissertation in conjunction with a multitude of other studies suggest that  

the mesolimbic and nigrostriatal dopamine systems are rendered hypersensitive 

following chronic cocaine.  

 

Although the above hypothesis would suggest that it is hypoactivity in the PFC 

that leads to hyperactivity in the striatum, it is also possible that alterations in 

dopamine transmission in the striatum lead to changes in PFC functioning.  

Kellendonk and colleagues (2006) demonstrated that overexpression of D2 

receptors in the striatum leads to both deficits in performance on prefrontally-

mediated cognitive tasks but also an increase in dopamine turnover, and a 

decrease in prefrontal D1 receptor activity. However, as the results of this study 

suggest that the effects of D2 overexpression are primarily due to changes 

during development, it is more likely that changes in the PFC lead to striatal 

changes than vice versa. On the other hand, as alterations in striatal D2 

receptors were seen in following limited access self-administration and no 

changes were seen in the PFC following this drug administration protocol, there 

may also be independent changes in the striatum that do not depend on 

hypoactivity in the PFC.  
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The Role of Cocaine-Induced Alterations in Mesocortical and 

Mesolimbic Dopamine Transmission in Relapse 

 

These discussed alterations in both prefrontal and striatal dopamine functioning 

could be involved in reinstatement of drug-seeking and relapse. For example, 

cocaine primed reinstatement leads to an increase in NAc glutamate and 

blocking prefrontal descending glutamatergic projections prevents reinstatement 

(Cornish and Kalivas, 2000; McFarland et al., 2003). Furthermore, the injection of 

GABA agonists into the PFC prevents cocaine reinstatement (McFarland and 

Kalivas, 2001). In addition, the activation of D1 or D2 receptors in the nucleus 

accumbens leads to reinstatement of drug-seeking (Bachtell et al., 2005; Schmidt 

et al., 2006; Schmidt and Pierce, 2006). These studies support the hypothesis 

that chronic cocaine leads to decrease prefrontal GABA transmission thereby 

increasing glutamatergic input to the NAc, which in turn increases dopamine 

transmission thereby mediating reinstatement. As the ability of D2 agonist 

infusion into the PFC to reinstate drug-seeking behavior has not yet been 

examined, future work will have to confirm or reject the idea that it is a hypoactive 

D2 receptor system that leads to these GABAergic changes.  

 

While the NAc seems to be primarily involved in cocaine-primed reinstatment, the 

dorsal striatum has been demonstrated to be central to the processing of drug-

paired cues and for cue-controlled drug seeking. Vanderschuren and colleagues 

(2005) have shown that either administration of glutamtate or dopamine 
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antagonists into the dorsal striatum decreased cue-controlled drug seeking.  In 

addition, inactivation of the prefrontal cortex also prevents cue-induced 

reinstatement, in further support of the role of corticostriatal glutamate projections 

in reinstatment (Di Pietro et al., 2006).  Together, these studies provide evidence 

that an upregulation in cortical glutamate projections (perhaps due to 

dopaminergic alterations) leads to an increased sensitivity to both cocaine 

primed and cue-induced reinstatement.  

  

Concluding Remarks 

 

The experiments presented in the current dissertation provide evidence that both 

cognitive function and neurobiological systems underlying cognition can be 

altered as a consequence of cocaine administration.  This work has important 

implications for the development of both pharmacological and behavioral 

addiction treatment strategies. The current findings provide us with a model to 

examine these drug-induced changes and hopefully gain a better understanding 

of how these changes underlie alterations in behavior. As a next step toward 

examining potential therapies, it will be necessary to assess the effect of 

dopamine D2 receptor agents, both systemically and locally administered into the 

PFC and the striatum, on cocaine-induced decrements in cognitive function as 

well as their ability to alter reinstatement responding.  
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