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ABSTRACT

Antigen presentation is the process by which adllige immune system display
peptides from pathogens on their surface after ibgndthe peptides to major
histocompatibility complex (MHC) molecules. T helpeells recognize peptides from
pathogens in this context then secrete cytokinas dltivate other cells, initiating an
immune response. Antigen presentation is theredorequisite for immunity to several
pathogens includiniylycobacterium tuberculosi®itb). To approach questions related to
antigen presentation and disease, | representegeanpresentation at different scales
using a series of mathematical and statistical sod& the molecular scale, | asked
whether heterogeneity in peptide length affectdibip to MHC class I, the class of
MHC responsible for binding peptides from bactesiach asMtb. By developing
statistical models of peptide-MHC binding, | foutidht length has a nonlinear effect on
binding affinity and that this information, or a moaccurate representation of register
shifting, could improve the accuracy of binding giotion. At the cellular scale, | asked
why Mtb possesses multiple mechanisms to inhibit antigezsemtation on the cell
surface. My mathematical model shows that thesénamesms may be acting on different
timescales and therefore complementary rather tharely redundant. Finally, at the
multi-cellular level, |1 asked how polymorphisms nmultiple genes related to antigen
presentation might affect T cell response and fidzkty to infectious diseases such as
tuberculosis. Using a multi-scale model represgniioth an antigen-presenting cell and
T cell, | found that polymorphisms in two differeg¢nes may exert the same influence

on the output, potentially canceling out their effe Future work with these models may

Xii



include evaluation of candidate peptide-based wascio ensure high-affinity binding, T

cell response, and broad efficacy in diverse pdmuria.
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CHAPTER 1

Introduction

Antigen presentation is the process by which pngtéiom pathogens are partially
degraded and then displayed (i.e., presented) erstihfaces of cells in complex with
major histocompatibility complex (MHC) moleculesné® bound to MHC molecules,
peptides can be recognized by cognate T cells wthieh respond by either killing the
original antigen-presenting cell (APC) or activgtime APC and other cells. Proteins that
elicit an immune response are known as antigensleVdhtigen presentation may appear
to be dictated by events at the molecular and sllblar scales of the APC, events at
other scales also affect the outcome (Fig. 1.1). iRstance, once peptides have been
bound by MHC molecules and trafficked to the swefatthe APC, additional events are
required by the T cell to result in a functionadpense, starting with the engagement of
peptide-MHC (pMHC) complexes by T cell receptor<CR) on the T cell surface.
Activated TCRs then initiate a signaling cascadéhiwithe T cell, resulting in the
elicitation of either cytotoxic molecules or activg cytokines including interleukin-2
(IL-2) and interferony (IFN-y). Therefore, at a minimum, a representation ofetents
of antigen presentation requires consideration @leoular and sub-cellular events
occurring in APCs and T cells. In addition, theghkar tissue- or organ system-scale

context may also be important in determining thic@me of antigen presentation, as this



environment may enhance or interfere with the gbdf APCs to interact with T cells
(Fig. 1.2).

How best to represent events at these differentescasing the tools of
mathematical and statistical modeling and how tleeapply these tools to the study of
infectious diseases remain open questions. A vasuat of experimental research has
been done, and continues to be done, to elucidagesteps involved in antigen
presentation. At the same time, computational nedélone or more steps in antigen
presentation have been developed. | review prevefiests in both experimental and
computational areas in this chapter and then descmy efforts to improve on
computational models and apply them to one infestiaisease, tuberculosis, in

subsequent chapters.

1.1  Overview of Antigen Presentation

Two main pathways for antigen presentation exispethding on the source of the
antigen. All nucleated human (and mammalian) cpéisform antigen presentation to
some extent by expressing one type of MHC molecMBC class |, which binds
peptides derived primarily from proteins in theaplasm (Yewdell 2007). However,
some cells are also capable of presenting peptidesproteins found in the extracellular
medium by expressing another type of MHC molecMeé{C class Il (Trombetta and
Mellman 2005). These specialized cells include mattages, dendritic cells, and B cells,
constituting the professional APC. [A recently digered pathway for presenting lipid
antigens, the CD1 pathway, will not be considerecehSee Mahantgt al. (2003)for a
review of this topic.]

For the most part the two pathways for antigengamtzdion remain distinct within
the cell. Proteins found in the cytoplasm, inclgdthose produced by most viruses, are

considered endogenous and degraded (i.e., progassedhorter peptides by the main



protein turnover machinery of the cell, the proteas. A subset of these peptides is
transported into the endoplasmic reticulum (ER) thg transporter associated with
antigen processing (TAP). Within the ER peptidesadfmited range of lengths (8-10
amino acids) bind MHC class | molecules, and tisellteng complexes are trafficked to
the cell surface.

In contrast antigens from pathogens that do nadeds the cytoplasm, including
most bacteria and parasites, are considered exaogeamul taken up and processed in the
endosomal pathway of the APC. Within the endosopathway cathepsin proteases
become activated by the increasingly acidified emment and cleave proteins into
shorter peptides. Peptides of various lengths ricdteater than 9 amino acids) then bind
MHC class Il molecules later in the pathway in asglized vacuole known as the MHC
class Il compartment (MIIC). Peptide-MHC class dhtplexes are then trafficked to the
cell surface as in the case of MHC class I. In lmatbes the final stage is recognition of
the pMHC complexes by TCRs found on the surface€D8" cytotoxic T cells and
CD4" helper T cells which are specific for MHC clasantl MHC class II, respectively.

Although the two pathways are for the most partirdis exceptions have been
found. For instance, during cross-presentationgerous antigens gain access to MHC
class | molecules within APCs and yield peptide-MEI@ss | complexes on the APC
surface that stimulate CD8T cells. Some aspects of cross-presentation remain
controversial such as the degree to which it ocandsthe instances in which it may be

important to the immune response (see Rock and 3b@# for a recent review).

1.2  Biology of the Molecular Scale: Peptide-MHC Binding

One theme that arises from this cursory overviewheftwo antigen presentation
pathways is the centrality of the peptide-MHC biglievent. MHC class | and MHC

class Il molecules bind peptides in a similar manaed this similarity can be traced to



similarities in the structures of the two molecu{@snes 1997). Both MHC class | and
MHC class Il molecules comprise heterodimers ofypeptides. In the case of MHC
class I, a single transmembrane polypeptide (daseghthea chain) is coupled to a
smaller accessory proteifiz(microglobulin), and the peptide-binding groovefasmed
between two domains of the transmembrane polype@idandas). In the case of MHC
class IlI, two transmembrane polypeptides of sinsiae are coupled (designedand3
chains), and the peptide-binding groove is formgdoberlap of the membrane-distal
domains of the two polypeptides;(andf3;).

In addition to overall structural similarities, tipeptide-binding grooves of the
two classes of MHC molecule are also similar (Job@87). In both cases, eigBt
pleated sheets and twm-helices form the bottom and walls of the peptideding
groove, respectively. Pockets within both groovewlkamino acids at select positions
within the peptides which are similarly extendedama-helical conformation in both
cases. However, in the case of MHC class |, thaiterof the peptide attach at both ends
of the peptide-binding groove, restricting peptidagth to between 8 and 10 amino
acids. In contrast, the ends of the MHC class Iptide-binding groove are open,

allowing peptides to be of a greater range of leagt

1.2.1 Quantification of Peptide-MHC Affinity

While peptide-MHC binding was formerly viewed adiehotomous event, either
occurring or not, a more quantitatively continueiesny has accompanied advances in the
ability to measure affinity. In the most commonlsed assay, the strength of binding is
assessed by titrating reporter peptide-MHC compdexih increasing concentrations of
the peptide of interest (Southwoetlal. 1998). The concentration at which 50% of the
reporter peptide is displaced then yields the 5@Bbitory concentrationlCsg) which

can be shown to approximate the equilibrium disgam constantKp) of the peptide of



interest with the MHC molecule. High-affinity bindj, associated with smaller values of
Kp andICsy, is expected to yield more pMHC complexes on tiRCAsurface and in turn
facilitate T cell activation. 500 nM is commonlyaasas an upper limit fd{p values that
result in binding (Settet al. 1994). According to one survey, the majority ofidtional
pMHC complexes hav&p values in the range of 10-100 nM (McFarland aneé<$Ba
2002).

1.2.2 Genetic Polymorphism within the MHC

Because affinity is specific to each combinatiorpeptide and MHC, variations
in either peptide or MHC sequence may affect bigdin humans the genes encoding the
MHC molecules, known as the human leukocyte ansigfdlLA), are particularly
variable. For example, among the three sets ofggeneoding MHC class Il molecules in
humans, HLA-DR, -DP, and -DQ, 875 alleles haveeantlty been identified (Robinsaat
al. 2003). In most cases, variation occurs in posstiassociated with peptide-binding or
TCR-binding and can therefore be assumed to bditurad. Recently attempts have been
made to categorize alleles on the basis of theitigee-binding characteristics, thereby
defining MHC supertypes and effectively reducing ttumber of alleles (Oet al. 1998,
Lundet al.2004, Doytchinova and Flower 2005).

1.2.3 Peptide-MHC Affinity and Disease Susceptibility

The greater significance of peptide-MHC binding edso be discerned from the
epidemiological literature. Various MHC alleles balbeen correlated with increased
susceptibility to autoimmune and infectious dissagsech as HLA-DRB1*1501 (a variant
of the MHC class 1B polypeptide) with tuberculosis (Vukmanowt al. 2003). Other
diseases for which MHC alleles have been foundffectisusceptibility include type |

diabetes, rheumatoid arthritis, and malaria. Theharism behind these associations has



not yet been elucidated, though several hypothesest (Vukmanovicet al. 2003,
Rajagopalan and Long 2005, Thorsby and Lie 2005%)e Qossibility is that MHC
variants associated with disease are deficienhair tability to bind key peptides that
enable recognition of the pathogen and activatibthe immune response. Consistent
with this hypothesis, a correlation between pephitldC affinity and magnitude of
response at the cellular level has been demondirdteugh the relevance to disease

remains speculative (Gel@h al. 1998, Hillet al. 2003).

1.3  Biology of the Sub-Cellular Scale: Eventswithin APCs

Peptide-MHC binding is by no means the only step hregulated in the antigen
presentation pathway. Other steps are controll@cmhcally — by the amount of antigen
available, for instance, or the constantly changiyigkine environment surrounding the
APC — and allow antigen presentation to be fineetunwe describe these steps and
others relevant to the MHC class II-mediated pathimamore detail below but refer the

reader to a review for a full treatment (Bryant &idegh 2004).

1.3.1 Antigen Processing

Antigens for the MHC class Il-mediated pathway gemerally internalized by
one of three routes before converging on the endabpathway: phagocytosis, fluid-
phase pinocytosis, and receptor-mediated endosytogernalized antigens then progress
through the endosomal pathway where they encowattepsin proteases that degrade
the antigens into peptides (Honey and Rudensky 2@83ptides then either bind MHC
class Il molecules or are directed to lysosomes degradation. Questions remain
regarding antigen processing, such as how the roaimepsin proteases differ in function
and whether it might be possible that proteinsfissebound by MHC and then processed

into peptides (Villadangos and Ploegh 2000).



1.3.2 MHC Expression

MHC class Il expression normally occurs at low levie resident APCs but can
be up-regulated by cytokines such as NrBRd TNF (reviewed by van den Elsenhal.
2004). After IFNy binds to its receptor on the APC surface, a sigagbropagated
through the JAK-STAT pathway increasing the levietlass Il transactivator (CIITA) in
the cell. CIITA acts as the master regulator of MEl&@ss |l transcription, and increased
levels of CIITA lead to parallel increases in MHIass Il expression several hours after
exposure to IFNt Nascent MHC class Il molecules enter the ER amdcaupled to
another protein, invariant chain (li). The lumirmkdmain of li binds the peptide-binding
groove of MHC class I, protecting it from proteaswhile the cytoplasmic domain of li
directs the paired molecules to the endosomal mathwfter reaching the endosomal
pathway MHC class Il molecules retain a remnanti,athe class Il invariant peptides
(CLIP), until released by the enzymatic activity-HLA-DM (Denzin and Cresswell
1995). Antigenic peptides then compete for bindmdgMHC class Il with self peptides
that are present at high levels and may bind grélaée 80% of the available MHC class
Il in the absence of exogenous peptides (Adoeinal. 1988, Chiczet al. 1993). In
complex with either self or exogenous peptides, Mti&ss Il molecules then traffic to
the cell surface where they may remain stably fysduntil they are recognized by CD4

T cells or internalized and degraded.

1.3.3 Differences among APC Types

Macrophages, dendritic cells (DCs), and B cellsstitute the professional APCs,
expressing not only MHC class Il molecules but atssstimulatory and adhesion
molecules necessary to engage T cells. Both maaggshand DCs derive from a
common precursor, the monocyte, which differensiatéo one of the two cell types

based on environmental cues (Chomatadl. 2000, Chomaragt al. 2003), while B cells



are derived from hematopoietic cells in the bonerava (Bryant and Ploegh 2004)
Macrophages and DCs are found in overlapping Higfions within the body in areas
such as the lymph nodes.

Differences between macrophages and DCs occuranrdtes at which they
perform processes related to antigen presentdii@s. express 10-100 times the number
of MHC class Il molecules expressed by macrophagédsalso perform antigen uptake at
generally increased rates (Inaba and Steinman 188baet al. 1997). Consistent with
these findings, fewer DCs are required to actiiatells than macrophages (Inaba and
Steinman 1985). Though both DCs and macrophagésrpeantigen presentation, their
roles in the development of the immune responséhangght to be distinct. DCs take up
antigen at the site of infection and migrate tortbarest lymph node to present antigen to
naive T cells, while macrophages present antigengplly at the infection site to re-

stimulate T cells (Reinharét al. 2001).

1.4  Biology of the Cellular Scale: T Cells

1.4.1 T Cell Receptor

pMHC complexes on the APC surface provide sigralB tells when engaged by
TCRs and the co-stimulatory molecules CD4 and Gidd on the T cell surface. Each
TCR comprises two trans-membrane subunits of apmitely equal size (designated
andp) (reviewed by Rudolplet al. 2006). The membrane-distal domain of each subunit
resembles the immunoglobulin variable (V) domaid angages portions of both peptide
and MHC molecule in the pMHC complex. A membranexpnal domain resembles the
immunoglobulin constant (C) domain and connectsnignbrane-distal domain to the
transmembrane region and a short cytoplasmicTthé. CD3 molecule is associated with
the cytoplasmic tail and plays an integral rol¢hie signal transduction that follows TCR

activation.



pMHC and TCR bind in a specialized structure tbatfs between the APC and T
cell known as the immunological synapse. The atnecof the synapse has been the
subject of intense investigation and revealed tmprtse concentric zones: the central
supramolecular activation cluster (cSMAC), the jpleeral supramolecular activation
cluster (pSMAC), and the distal supramolecularvatibn cluster (dSMAC) (Cemerski
and Shaw 2006). Within each zone is found a distc@mplement of molecules
contributed by the APC and T cell. For instance H}and TCR are found within the
cSMAC of the mature synapse, along with co-stinaulaimolecules B7 and CD28 on
APC and T cell surfaces, respectively. In the pSM&@rounding the cSMAC is a
palisade of structural molecules — complexes oérggllular adhesion molecule 1
(ICAM1) and leukocyte function associated antigeii.BA1) contributed by APC and T
cell, respectively — along with other co-stimulgtanolecules such as B7 and CD28.
Finally, in the recently defined dSMAC surrounditiie pSMAC additional signaling
between pMHC and TCR has recently been observemjgth the contribution of
signaling in the dSMAC to the overall T cell respens still unknown (Yokosukeat al.

2005, Varmeet al. 2006).

1.4.2 Signal Transduction

Several intracellular signaling events follow engagnt of pMHC by TCR.
Briefly, these events include recruitment of kirgsactivation of intermediate signaling
molecules, and activation of transcription fact@sponsible for expression of molecules
with effector function such as IL-2 and IFN¥eviewed in Samelson 2002, Liu 2005, and
Weil and Israel 2006). Of the molecules involvda most notable include the Src family
kinases such as Lck, which phosphorylates the CDIggule after TCR activation, and
ZAP-70, which is recruited to phosphorylated CD3d gghosphorylates the adapter

protein LAT. In turn, phosphorylated LAT recruitsher adapter proteins including



PLCyl and Grb2. Activation of several distinct signglipathways follows which has
several effects including a sustained increasatmgellular calcium and the activation of
the transcription factors NF-AT, NkB, and AP-1. These transcription factors are
ultimately responsible for the expression of moleswassociated with T cell activation

such as IL-2 and IFN-

15  Tuberculosisand Antigen Presentation

1.5.1 Pathogenesis dflycobacterium tuberculosis

Mycobacterium tuberculosishe causative agent of tuberculosis, infectsIpear
third of the human population and results in neastg million deaths per year (WHO
2007). M. tuberculosis bacilli are inhaled on droplets, enter the lungsd are
phagocytosed by resident macrophages or dendedis ¢reviewed in Fenton 1998,
Russell 2001). Residing in specialized phagosomasdo not fuse with lysosomes, the
bacilli become dormant or slowly replicate. Meanehmonocytes are recruited to the
site of infection and differentiate into macrophsgehich, together with infected
macrophages and multinucleate macrophages (knowraascells), form the center of a
specialized structure known as a granuloma whetblm infection is contained.
Surrounding the center are T cells which define dldge of the granuloma. When
contained in a granuloma, tiv tuberculosisbacilli cannot be transmitted and the host
has no signs of infection; this state called layemay persist for the lifetime of the host.
In approximately one-tenth of these cases, howeber,granuloma fails to continue

containing theM. tuberculosidacilli, resulting in active disease.

1.5.2 M. tuberculosidnhibition of Antigen Presentation

Many pathogens includiniyl. tuberculosisinterfere with antigen presentation to

evade immune surveillance and effect their ownisatvTo avoid immune surveillance,
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M. tuberculosisinhibits antigen presentation in chronically inegttmacrophages. This
inhibition can be demonstratéd vitro. When cultured macrophages are infected With
tuberculosis their capacity to present model antigen to T ¢slbridoma is greatly
reduced compared to uninfected controls (Gerekeal. 1994). Though the mechanisms
by which M. tuberculosisachieves this inhibition have not been completdlidated,
several hypotheses have been proposed (e.g., iandet al. 1988, Hmamaet al. 1998,

Nosset al. 2000). | discuss these hypotheses in detail irp@n.

1.6 Modésof Peptide-MHC Binding

Peptide-MHC binding is a prerequisite for antigeresentation and the event
most likely to be affected by polymorphisms thaisexwithin the MHC of human
populations. From a clinical perspective these maigphisms may distinguish
individuals who succumb to a particular infectiodisease from those who remain
healthy, and significant effort has been expendeddsess whether binding occurs
between relevant peptide-MHC combinations. Howetteg, sheer numbers of possible
peptides (20 or ~10* peptides of length nine) and MHC molecules (mdrant2200
known HLA alleles) make this task all but impossilibr anything more than a small
sampling of the peptide-MHC combination space.

To circumvent this difficulty computational algdnhs have been developed to
predict whether binding occurs between particutanisinations of peptide and MHC. In
general these algorithms have the same aim as atberithms in bioinformatics: to
identify patterns in sequences that are knowntteeepossess or not possess a particular
trait. In this case the trait is binding to a pautar MHC molecule. Statistical methods of
varying degrees of complexity have been appliegheéptide-MHC binding prediction.
The simplest algorithms were based on the ideatiba of motifs within peptides

binding particular MHC (Rammensee 1995). An exampfesuch a motif is the
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requirement for a hydrophobic amino acid at theeNwrinus (position 1) of a 9mer to
bind MHC of the DR1 serotype, a guideline still geally followed today (Southwooek
al. 1998). The advent of competitive binding assaysweld a more nuanced view of
binding. Motifs that required certain amino acidse present in MHC-binding peptides
were superseded by matrices scoring amino acigsa@t position within the peptide.
Different statistical methods could be used to gateethe elements of the matrix,
including nonlinear and linear programming (Parkeal. 1994, Murugan and Dai 2005),
stepwise discriminant analysis (Mallios 1999, Madli2001), and partial least squares
(Doytchinova and Flower 2002, Doytchinova and Flowa903). One simplifying
assumption made in many of these algorithms istimating of each amino acid within
the peptide to the MHC molecule occurs indepenglaithdjacent as well as more distal
amino acids. Though this assumption was largelyficoad by available crystal
structures, algorithms were also developed thandidrely on this assumption based on
machine learning methods. Several machine learmmgthods have now been
incorporated into prediction algorithms includingjifecial neural networks (Brusiet al.
1998, Honeymaset al. 1998, Milik et al. 1998, Buust al. 2003), hidden Markov models
(Noguchi et al. 2002), and support vector machines (Zheoal. 2003, Bhasin and
Raghava 2004). A different approach has been tdigir¢he structure of the peptide-
MHC complex and attempt to calculate the free eneigange (Altuviaet al. 1997,
Schueler-Furmaet al. 2000, Altuvia and Margalit 2004, Bet al. 2006, Fagerberet al.
2006). Structure-based prediction may someday anpptatistical- or machine learning-
based algorithms but is currently hampered byithgdd availability of solved structures
and high computational costs. For a more comprebensview of algorithms, the reader

is referred elsewhere (Yet al. 2002, Brusict al. 2004).
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1.6.1 Scoring Peptide-MHC Binding Prediction

An obvious question to ask about the precedingdisalgorithms is how well
each one performs compared to the others. To ganagkction accuracy an algorithm is
typically trained on one set of data comprisingtgkpsequences and their affinities for a
particular MHC molecule and used to make prediction a test set of peptides for which
the affinities are also known. Algorithm outputtieen compared to the known affinities
using one of several possible scoring measures.eMeny this task is complicated by
differences in the nature of the available binddaa and algorithm outputs. In some
cases, affinity is measured directly as a contisuariable, other times only indirectly as
a discrete variable (binding or non-binding). Sonabases provide only lists of
peptides that either bind or do not bind particlM#C variants (Rammensee 1999)
while other databases provide a direct measurdfioita such aslCso (Toselandet al.
2005). The appropriate scoring measure therefdfersliaccording to whether known
and predicted affinities are both continuous (Rmarsorrelation coefficient), both
discrete (Matthews correlation coefficient), oralete and continuous, respectively (area
under receiver operating characteristic curve, ggcdh Both correlation coefficients vary
between -1 and 1 whilegycranges from 0.5 to 1.0. In both cases higher sdorbeate
more accurate predictions. Continuous data can dmvected into discrete data by
assuming that a certain threshold affinity is reggiifor binding such as d&sy of 500
nM (Setteet al. 1994) allowing some overlap between performancasmes. Examples
of scores obtained for several algorithms are plewiin MHCBench (Singh and
Raghava 2001). For example, using binding dataHbA-DRB1*0401 from which
homologous sequences were removed, twelve algasithvere found to producerAc

scores between 0.57 and 0.76.
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1.7 M odels of the APC

Peptide-MHC binding is only one step of many thanstitute the antigen
presentation pathway, and other steps confer additi specificity to or alter the
dynamics of which peptides are ultimately presentedooth MHC class |- and MHC
class Il-mediated antigen presentation, antigeasaaquired (from either intracellular or
extracellular sources), degraded into peptides, p®cessed), and trafficked to the cell
surface after binding MHC. At the same time MHC ewmlles are synthesized, trafficked
between cellular compartments, and degraded. Mdnyhese steps are subject to
regulation by the cytokine environment and feedlsghkals. The peptides found to bind
a particular MHC variant may therefore only provideough, static approximation of
peptides that are ultimately presented in a dyndasicion.

Models of antigen presentation must therefore aticéor more than peptide-
MHC binding. In the case of MHC class I-mediatedigen presentation, at least two
additional events are known to confer selectivipypteasomal cleavage and TAP
transport. Algorithms have been developed to ptediich peptides progress through
these stages, and only recently have they beeedimkth algorithms of peptide-MHC
binding to represent antigen presentatiototo (Petrovsky and Brusic 2004, Donnes and
Kohlbacher 2005). The result is a more accurateshlitstatic picture of the peptides

encountered by CDST cells.

1.7.1 ODE Models

In contrast, previous models of MHC class lI-meeliaantigen presentation have
focused on its dynamic aspects (e.g., times redydicecertain steps to be completed and
levels of pMHC presented on the APC surface) batneaessarily its specificity. These
previous models were based on a mathematical mmpe®©n known as ordinary

differential equations (ODES) in which each var@abtpresents the level of a different
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molecular species at a particular time, e.g., thalver of pMHC complexes appearing on
the APC surface a certain number of hours aftetAfRE encounters antigen. Processes
affecting the level of each species are then repted as terms in the equation for each
variable. For instance, in the case of surface pMid@plexes, one term might represent
the trafficking of pMHC complexes from the interiof the APC to its surface. The
equation itself would then represent the rate ainge in this variable as the sum total of
these constituent processes.

ODEs are commonly used to represent systems tleabath continuous and
deterministic. One assumption inherent in the U¥BRES is that the represented entities
exist as well-mixed populations, allowing theirardctions to be approximated by the
law of mass action. For MHC class Il-mediated aenigresentation the available data
validate this assumption. Baseline estimates ofnilmaber of MHC class Il molecules
expressed by APCs are on the order of 46d antigen is typically present at high
concentrations, at leaist vitro (>10" peptides per cell in Hman® al. 1998 and Nosst
al. 2000). Furthermore, precedent for using ODEs heenlprovided by models of
receptor-ligand systems of which peptide-MHC colle considered one instance
(Lauffenburger and Linderman 1993).

Previous models have used ODEs to represent MHS> dlamediated antigen
presentation with increasing levels of detail. Thst published model included only
those intracellular processes thought to be esdettti antigen presentation (antigen
uptake and processing, peptide-MHC binding, and Mkificking and recycling) but
was sufficient to generate realistic time courségpeptide-MHC levels on the APC
surface (Singer and Linderman 1990). Parameters wiioald have been difficult to
manipulate experimentally, e.g., the rate of amigptake, were easily varied in the
model, allowing the relationship between such patans and the number of pMHC on
the APC surface to be studied without concernslaibitor toxicity, etc. In later versions

of this model, additional molecular species suckefspeptides and TCR were included,
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expanding the range of questions that could becagped (Singer and Linderman 1991,
Agrawal and Linderman 1996).

1.7.2 Sensitivity Analysis

The creation of a mathematical model for antigeasentation or any other
phenomenon entails the estimation of parameteregalitn most cases these parameters
represent rate constants of chemical processés] values for numbers of molecules, or
probabilities of an event. Parameter values maygianated in one of several ways,
including direct experimental determination, figirsuch that model output matches
experimental observation, or constraints based oaowk relationships to other
parameters. Each of these cases involves someedefrancertainty which leads to
uncertainty in the output of the model.

The effect of uncertainty in model parameter valoesmodel output can be
determined for any given model using sensitivityalgsis. Different methods for
sensitivity analysis exist, but all involve the i@ation of variance in parameter values to
variance in model output. For example, in the Latiypercube sampling (LHS)
algorithm, each parameter is first assigned ailigion, typically uniform or normal and
centered on a baseline or estimated value, allovieg effect of under- and over-
estimation to be examined. The entire range of adistribution is then sampled to
generate a set of values for each parameter, aadhpter values for each simulation are
chosen to cover the entire parameter space effigiemhe extent to which each
parameter affects the output can then be quantifsdlg one of several metrics such as
the partial rank correlation coefficient (PRCC). @R like the more familiar Pearson
correlation coefficient, varies between -1 and didgating strongly negative and positive
associations, respectively. A PRCC of 0 indicatesassociation. PRCC values can also

be calculated at different time points of the siatioin allowing the relative importance of
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a particular parameter in determining model outpuie examined over time. In addition
a confidence interval can be determined for eacE®Rand differences between PRCCs
can be tested for statistical significance (Meb@l. 1992). This allows parameters to be
ranked in order of effect on output by PRCC maglatu

Sensitivity analysis identifies processes thatiamgortant to the behavior of the
system. These processes may represent potengatddor therapeutic intervention; that
is, one could target a pathway to which cell betwavs sensitive as identified by

sensitivity analysis.

1.8 Modedsof theT Cdl

Models of the APC provide a useful view of the tfistages of the immune
response but are limited if T cell response is alsb considered. T cells provide
functional responses to the appearance of pMHGeRPC surface, and several models
have sought to capture different aspects of Tawil/ation.

Some models have focused on the level of recegand engagement and how
the kinetics of pMHC-TCR binding influence downsine events. For instance, in the
model of Coombset al. (2002), pMHC-TCR complexes are depicted in disgret
progressive states of activation, culminating illyfactivated TCR that can either be
internalized or return to a basal, inactivatedestatree zones of the surfaces of APCs
and T cells are represented: a contact area, ti@nsegion, and remainder of the cell
surfaces. pMHC-TCR binding occurs only within thentact area, though activated
forms of the TCR are allowed to persist in the graon region. To represent pMHC and
TCR, partial differential equations (PDESs) are ysdlbwing the level of each molecular
species to be tracked with respect to a given mistaway from the center of the contact

area as well as a given time. TCR internalizatierves as the output of this model,
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occurring only after TCR are fully activated anddrfrom pMHC in either the contact
area or the transition region.

Using this model, Coombst al. (2002) found that an optimal half-life for the
pMHC-TCR complex might exist resulting in maximaCR internalization. This optimal
half-life occurs as a result of competition betwessmial engagement (the ability of a
single pMHC to activate multiple TCRs, favoring &od half-life) and kinetic
proofreading (the requirement for a pMHC-TCR comgie remain bound long enough
to result in activation, favoring a long half-lifepubsequent iterations of this model
recapitulated other experimental phenomena inctuthe dissipation of an optimal half-
life at high initial pMHC densities (Gonzalet al. 2005, Utznyet al. 2006).

Other models have focused on signaling occurrinigpivithe T cell after TCR
activation. For example, in the ODE model of Chatnal. (2004), two signaling
molecules, a kinase (such as Lck) and a phosphatasedepicted generically in
inactivated and activated forms. pMHC-TCR bindiegds to activation of the kinase
which in turn promotes activation of the phosphatas well as further activation of
itself. The activated phosphatase then returnskihase to its inactivated form. Two
feedback loops are therefore represented, oneymofihe kinase on itself) and the other
negative (the phosphatase on the kinase). Likerthéel of Coomb®t al. (2002), this
model, which uses amount of activated kinase a®#&dout, shows how T cell response
is sensitive to the kinetics of pMHC-TCR bindingltah-Bonnet and Germain (2005)
later created a model with similar feedback stmectout focused on the role of one

signaling pathway in particular, the MAP kinaseczate.

19 Motivation and Goals

Antigen presentation traverses several spatial #ssmporal scales in its

mechanisms and its effects (Fig. 1.1). At the mdkecscale, peptide-MHC binding must
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occur but is by no means automatic. Variabilityséxiin peptide sequence as well as in
MHC sequence. At the cellular scale, a number otgsses contribute to the appearance
of pMHC complexes on the APC surface but many as¢hmay be disrupted by
pathogens. Finally, at the multi-cellular scalee gMHC signal must be delivered to the
T cell to attain a response, but the kinetics oHBATCR binding or other, intracellular
processes may determine whether this occurs.

Therefore, a model of antigen presentation musbwatcfor events occurring at
each of these scales. In the following chaptemsscdbe how | developed computational
models at each scale and applied them to questiotially scale-specific and then more
multi-scale in nature. | also describe how | appbliee models to the study of tuberculosis

and its causative pathogem, tuberculosis
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Figure 1.1. Multiple scales involved in antigen presentation.
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CHAPTER 2

Why M. tuberculosis Has M ultiple Mechanisms to I nhibit Antigen Presentation

21 I ntroduction

Macrophages play dual roles during tuberculosis) (ifBection (Fenton 1998).
On the one hand, they serve as the preferred bobtyfcobacterium tuberculosigvitb),
the intracellular pathogen that causes TB. On therdhand, they also help to alert the
immune system to the presence Mftb and, if activated, can eliminate it directly.
Activation depends on the presentation of antiggreptide-MHC class 1l (pMHC)
complexes on the macrophage surface that can bicell Teceptors (TCRs) on cognate
CD4" T helper cells. pMHC-TCR binding induces CDR helper cells to secrete IFN-
which stimulates macrophages to produce molecalpahie of killingMtb such as nitric
oxide (Chanet al. 2001). This process constitutes an important afnseti-mediated
immunity and may determine infection outcome (Kaarfim 1999).

The fact thatMtb inhibits antigen presentation in macrophages s meell
established (Panchddt al. 1993). Initial studies showed that fewer macrogsagfected
with mycobacteria express detectable levels ofgantion their surface compared to
uninfected macrophages (Kageal. 1986, Mshanat al. 1988). Functional assays later
confirmed that infected macrophages are deficietiéir ability to signal CD4T helper
cells by measuring T cell response. The magnitutlel ccell response is in turn
proportional to pMHC levels, assuming a lower thodd number of pMHC complexes

has been exceeded (Bekkhouehal. 1984, Demotzt al. 1990). Using such an assay
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Gerckenet al. (1994) found that monocytes co-cultured widtb for six days exhibit a
three- to ten-fold reduction in their ability tarstilate T cell proliferation compared to
uninfected controls. Furthermore, higher numbersitf bacilli, e.g., MOI (multiplicity
of infection) of 50 versus MOI of 10, correlatedthwilower T cell response levels.
Subsequent studies provided further evidence that\aerse relationship exists between
Mtb infectious dose and T cell response (Netsal. 2000, Mazzaccaret al. 1996).

After it was established thafltb inhibits antigen presentation in macrophages,
several intracellular mechanisms were proposediefn@d in Hardinget al. 2003).
Moreno et al. (1988) observed that macrophages co-cultured thighMtb cell wall
component lipoarabinomannan (LAM) fail to presentigen from whole inactivated
virus though presentation of synthesized epitopenispaired. This observation led to
the hypothesis tha¥tb inhibits antigen presentation at the stage ofgantiprocessing, a
hypothesis also made by Nossal. (2000). Later, based on the observation iti-
infected monocytes do not produce stable pMHC cergd and do not localize labeled
MHC class Il molecules and antigens to the sanradstiular compartment, Hmaned
al. (1998) proposed thadiitb affects MHC class Il at a post-translational stageh as
maturation (delivery to the MIIC endosome or li gessing) or peptide loading. Finally,
based on the observation that infected macrophexgaess lower levels of MHC class Il
MRNA than uninfected macrophages, Nesal. (2000) proposed thaitb inhibits MHC
class Il mMRNA synthesis.

The goal of the present study is to investigate whytiple mechanisms have
been proposed to explain hdwtb inhibits antigen presentation. In particular, vadeli@ss
three issues using a mathematical model: (1) whgbgse multiple mechanisms may
serve, (2) if experimental protocols may have fadathe detection of some mechanisms
over others, and (3) if alternative mechanismstetkiat may be used to guide future
experiments. Our immediate motivation stems fromflading data in the literature

regarding these mechanisms. Specifically, we refeéhe observation by Hman&t al.
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(1998) that MHC class Il mRNA levels were unchangedinfected cells and the
observation by Nosst al. (2000) that MHC class Il mRNA levels decreasethfected

cells. Because the two studies differed with respecexperimental conditions (e.g.,
macrophage cell typdtb strain, and degree of IFidinduced activation), it is unclear if
the conclusions hold in general. We seek to hedpifgl these observations with our

model.

2.2 Methods

2.2.1 Model Overview

Our mathematical model comprises a set of ordindifferential equations
representing the major intracellular processes twmatribute to antigen presentation
within the context of a single macrophage (Fig).2ZThese processes relate to MHC class
Il expression (at both mRNA and protein levels)tigen processing, and peptide-MHC
binding and trafficking and include the processgpothesized to be targeted Mtb.
Our model also accounts for the effects of NFMhich is typically added to cultured
macrophages during studies on antigen present@tiommaet al. 1998, Nosset al.
2000).

To represent these processes we use ordinaryatiffal equations which allow
large numbers of molecules to be tracked. For emolecular species we derive an
equation for the rate of change using the law o&snaction and estimate parameter
values using published experimental data. In total model uses 16 equations and 30
parameters to simulate antigen presentation witténcontext of a single macrophage.
Equations and parameter values, as well as dethit®w equations were derived and

parameter values estimated, can be found in Supgdriformation.
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2.2.2 Simulations Using the Mathematical Model

The baseline model comprises Equations 1-16, themeters in Table 2.3, and
the initial conditions in Table 2.4 (Supporting dnihation). Protocol-specific parameter
values and initial conditions can also be foundupporting Information. To generate
simulations using the mathematical model, we useNlBSolve function of Mathematica
v4.2 (Wolfram Research, Inc.) as well as our owffetential equation solver coded in C
and run on Sun UNIX machines for confirmation ofirarical results. We analyze model
output in terms of major features such as relativ@nges in numbers of molecules and
times at which highest levels are reached. As akenaior antigen presentation, we
generally use the number of surface-localized emoge peptide-bound MHC class I

molecules (Equation 16, Supporting Information).

2.2.3 Representation of the Inhibitory Effectsifb on Intracellular Processes

To represent the inhibitory effect thétb is hypothesized to have on an
intracellular process, we decrease the correspgnomameter in the model by a factor
proportional to experimental infectious dose. Wguase that the number &ftb bacilli
does not change significantly on the timescalebh®frotocols being simulated based on
the observation that the doubling timeMtb is on the order of days (Dunn and North
1995). We also assume that the inhibitory effecerexd by Mtb on any given
intracellular process saturates at high levels a€illh. Therefore, we represent the
inhibitory effect as a multiplicative factor haviagvalue between 0 and 1 (corresponding
to complete inhibition and no inhibition, respeetiy) that approaches 0 as the number of

bacilli increases. Further details are provide8upporting Information.
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2.2.4 Sensitivity Analysis

The goal of sensitivity analysis is to correlateiaaces in parameter values to
variances in model output and is useful when paramealues are not known with
certainty. Sampling-based sensitivity analysis ientgpecifying a distribution for each
parameter from which values are selected at randocth used in model simulations
(Helton and Davis 2001). In particular we use Ldtypercube sampling which allows
several parameters to be analyzed simultaneousdycomputationally efficient manner.
To quantify the correlation of model output withcegparameter, we calculate a partial
rank correlation coefficient (PRCC) value. PRCCueal vary between -1 and 1,
corresponding to perfect negative and positive etations, respectively, and can be
further differentiated based on p values deriveamfrStudent’st-tests. We use the
algorithm of Blower and Dowlatabadi (1994) implertezhin both Mathematica and our
own differential equation solver. In general, weafy a uniform distribution for each
parameter with a range of 10% and 190% of the lmesghlue, allowing us to examine

the effects of both decreases and increases ingsaameter.

2.3 Results

2.3.1 Baseline Characteristics

In the absence of IFM-and antigen, conditions that we used as a negeatdineol,
seven molecular species in the model were presenbmn-zero quantities: free IFN-
receptors, MHC class Il mRNA, free intracelluladasurface MHC class Il molecules,
self peptides, and intracellular and surface sefitide-MHC class Il complexes. These
results are consistent with the finding that c@tumacrophages constitutively express
several molecules relevant to antigen presentasibrbasal levels including IFM-

receptors and MHC class Il molecules (Hume 198%adaet al. 1985).

34



2.3.2 Dynamics of IFNy Response

As one positive control we simulated the additidrifiN-y to macrophages and
compared dynamics of the response to experimebtdroations. In response to IFN-
treatment, CIITA mRNA levels in the model increasedmediately and reached a
maximum approximately 14 hours later, while MHCssldl mMRNA levels increased
more gradually and continued to increase for thet 24 hours (Fig. 2.2A). Pait al.
measured levels of CIITA and MHC class Il mMRNAs1@, and 24 hours after adding
IFN-y and observed highest levels at the 12- and 24-hm& points, respectively, in
agreement with our model (Fig. 2.2B, Rdial. 2002). We also compared the coupled
dynamics of MHC class Il mRNA and protein expressitom our model to
experimental data. In our simulations highest MH&s€ Il mMRNA and protein levels
were attained approximately 45 and 60 hours af&-\l treatment, respectively (Fig.
2.2C). In comparison, highest MHC class Il mMRNA andtein levels were observed
experimentally 48 and 72 hours after IyNreatment, respectively (Fig. 2.2D, Cullell-
Younget al. 2001). Although MHC class Il protein expressionaiges its highest levels
in the model in less time than observed experinlignthis apparent difference may be

attributable to the sparseness of experimental pionets.

2.3.3 Dynamics of Antigen Presentation

In the presence of exogenous antigen the numbgurédce pMHC complexes in
our model rapidly increases, reaches a maximumoappately 3 hours later, and then
decreases over the course of several hours (FRE).2.Antigen presentation by
macrophages not pretreated with If¥Nyas been found to exhibit similar dynamics
experimentally (Fig. 2.2F, Buus and Werdelin 198@gler and Unanue 1981). In such
cases antigen presentation can be detected byl hiydeidoma assay minutes after the

addition of antigen (Buus and Werdelin 1986, Ziegbsnd Unanue 1981). These
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macrophages elicit maximal responses after oneotio fiours and remain capable of
eliciting responses at the same or slightly dee@dsvels for several more hours (Buus
and Werdelin 1986, Ziegler and Unanue 1981). Arnofbature of our model is dose-

dependence between exogenous antigen concentaaiiomaximum number of resultant
surface pMHC complexes (data not shown) which ks l@een observed experimentally

with T cell responses (Demogt al. 1990, Reske-Kunet al. 1984).

2.3.4 Increases in Antigen Presentation Due to NFRketreatment

Experimental studies on antigen presentation byroph@ages typically use both
IFN-y and exogenous antigen. Timing of IfNreatment may be important, as studies in
which IFN-y is added prior to antigen show that pretreatedropd@ages are capable of
eliciting T cell responses at levels several foighkbr than untreated macrophages
(Delvig et al. 2002). We simulated the addition of IRNE6 h prior to exogenous antigen
and observed a two-fold increase in surface pMH@Itecompared to untreated levels
(Fig. 2.2G). This result is consistent with T cpitbliferation data from Delviget al.
(2002) (Fig. 2.2H). In subsequent simulations weided the issue of pretreatment

timing by using the simultaneous addition of Iiyldnd antigen unless stated otherwise.

2.3.5 Simulations oMtb and Its Hypothesized Mechanisms

After testing the model under the preceding coodgj we used the model to
simulate the inhibition of various intracellulaogesses targeted bjtb. These processes
included: antigen processing (Moreeo al. 1998), MHC class Il protein maturation
(Hmamaet al. 1998), MHC class Il peptide loading (Hmasetaal. 1998), and MHC class
Il MRNA synthesis which we consider MHC class #rtscription (Nosgt al. 2002); we
designate these hypotheses as M, Hs, and H, respectively. We then simulated the

simultaneous addition of IFM-and antigen and recorded surface pMHC levelsna ti
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points spanning four orders of magnitude (0.1, 1@, and 100 hours). These results
were compared to results from the baseline modehich no processes were inhibited.

In general, inhibiting any particular intracellularocess had either immediate or
delayed effects on antigen presentation (Table. 2M)en antigen processing j)Hor
MHC class Il peptide loading @dwas inhibited, surface pMHC levels were immediate
affected as indicated at the earliest time poirtt, 0 The deviation from baseline levels
was reduced at intermediate 1 h and 10 h time pa@ind then increased by the final 100
h time point. In contrast, inhibition of MHC clafismaturation (H) or MHC class Il
transcription (H) resulted in negligible reductions in surface pMiQels at the 0.1 h
time point. However, these levels increasingly dead from baseline levels at 1 h, 10 h,
and 100 h time points. Both,Hind H, targeted MHC class Il expression and required a
delay of at least 10 h to have substantial effégteater than 25% change in surface
pMHC levels). We also simulated the inhibition dding of intracellular processes to
determine the effect multiple mechanisms may havardigen presentation when acting
together (cf. HHH4 and B+Hs in Table 2.1). Inhibitory mechanisms were syndigiand
decreased antigen presentation levels to a greatent in pairs than singly. In these
simulations each intracellular process was inhibitethe same degree. In a separate set
of simulations we used varying degrees of inhibititurther differentiating mechanisms
targeting MHC class Il expression from other meddas (Fig. 2.5, Supporting

Information).

2.3.6 Simulations of Previous Experimental Protocols

To determine if previous experimental protocols rhaye favored the detection
of some mechanisms over others and if any of thea fareviously hypothesized
mechanisms could account for all of the observeahghs in macrophages infected with

Mtb, we simulated two different experimental protocaleder each hypothesized
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mechanism (Hmamat al. 1998, Nosst al. 2000). These protocols differed in several
ways that could be accounted for in our model,uditlg duration for which cells were
exposed to IFNrandMtb as well as concentration of IFNand number oMtb bacilli
used (Fig. 2.3A, B). These protocols also diffevdth respect to the macrophage cell
line andMtb strain used, but these factors fell outside tlogpsaf our model and were
not considered.

In our simulations of the experimental protocoHrhamaet al. (1998), we found
that only an inhibition of MHC class Il protein nigation (H) was consistent with all of
their observations. In the absence Mfb the levels of several molecules rose over
baseline levels during the course of this protacduding CIITA mRNA, MHC class I
MRNA, and MHC class Il protein (Fig. 2.3C, D, E)l® H, and another hypothesized
mechanism, inhibition of MHC class Il transcriptidid,), led to reductions in surface
MHC class Il expression of the same magnitude asettobserved by Hmanet al.
(1998): 42% and 86% using heat-killed and IMé& bacilli, respectively (Fig. 2.3E).
However, H also led to a significant reduction in MHC classmRNA levels which was
not observed by Hmamet al. (1998) and could therefore be ruled out as a plessi
mechanism (Fig. 2.3D).

When we simulated the experimental protocol of Naiss. (2000), we found that
only an inhibition of MHC class Il transcription {Hwas capable of producing
substantial changes in the levels of all three mgdés they monitored. In our simulations
this mechanism reduced levels of MHC class Il mRkAal MHC class Il protein, and
surface pMHC by 54%, 31%, and 31%, respectivelyg.(®.3F, G, H). Another
mechanism, inhibition of MHC class Il protein mattion (H), reduced levels of these
molecules by 0%, 55%, and 55%, respectively (FigF2G, H). In comparison, Nog$
al. (2000) measured reductions of 80%, 30%, and betw6éo and 80%, respectively,

consistent with K but not H. Interestingly, in our simulations of this protbceeither
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inhibition of antigen processing (Hnor inhibition of MHC class Il peptide loading {H

had any significant effect on surface pMHC levélgy(2.3H).

2.3.7 Sensitivity to Changes in Other Intracellular Pissss

While many intermediates of the antigen presematmathway have been
monitored in macrophages followirMtb infectionin vitro (Hmamaet al. 1998), assays
for other processes represented in our model hitver eot been developed or not been
applied to this context. To determine what effdwrges in these processes might have
on antigen presentation, we varied all of the gpoading rates, rate constants, and
scaling factors as well as experimental conditionthe model over a defined range and
tracked surface pMHC levels over time. We thenudated the correlation between these
levels and specific parameter values at 1 h, Hnd,100 h time points.

We found that surface pMHC levels correlated sigaiitly with a number of
different intracellular processes, including selvea previously considered (Table 2.2).
In particular, at times less than 10 hours follaywaxposure to IFN-and antigen, surface
pMHC levels correlated positively with rate conggafor antigen uptake by pinocytosis
and MHC class Il trafficking to the cell surface wasll as with the concentration of
exogenous antigen. When the concentration of exageantigen was sufficiently low,
other processes correlated strongly with surfacél@Nevels on this timescale including
delivery of antigen to lysosomes and self peptid®pction (data not shown). At times
greater than 10 hours following exposure to Krldnd antigen, surface pMHC levels
correlated with factors affecting MHC class Il eagsion including CIITA transcription
and translation and the concentration of NrIN+ the medium as well as MHC class I

transcription and protein maturation.
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24 Discussion

Multiple hypotheses have been offered to explainv Hdtb inhibits antigen
presentation in macrophages to escape immune Bamnoei. These hypotheses stem from
different experimental protocols that appear inlesst one instance to have led to
conflicting results. In this study we address whgvesal mechanisms have been
hypothesized by formulating a mathematical modamifgen presentation that accounts

for different experimental conditions and can bedu® simulate each mechanism.

2.4.1 Mtb Mechanisms Differ in Timing of Effect

We found that hypothesizeMitb mechanisms generally fall into one of two
categories: those having an immediate effect orathigy of the cell to present antigen
and those requiring a delay of approximately 10rbi@o have an effect. The first subset
of mechanisms targets intracellular processes wabin the initial formation of pMHC
complexes including antigen processing and MHC scldspeptide loading. In our
simulations the effectiveness of these mechanismshibiting antigen presentation
decreased after an intermediate length of timé& aand 10 h) and later increased (at 100
h). The intermediate decrease resulted from newd®wf pMHC binding resulting from
prolonged exposure to IFiNand increasing numbers of free MHC class Il. Téeoad
subset of mechanisms targets intracellular prosesseessary for the continued supply
of nascent MHC class Il molecules including MHCssldl transcription and protein
maturation. In our simulations the effect of thesechanisms on antigen presentation
steadily increased over time as a greater propodicurface pMHC complexes involved
nascent MHC class II.

These results are consistent with the intuitivaamothat disruptions at different
points along the antigen presentation pathwayngrmaulti-enzymatic pathway, require

different lengths of time to manifest in the endduct. These results are also consistent

40



with the interpretation of the experimental datdNofsset al. (2000) given by Heldwein
and Fenton (2002), that substantial inhibition oH® class Il expression requires
prolonged (> 18 h) incubation witkltb. The requirement of a delay of greater than 10
hours for inhibition of MHC class Il expression d@ffect antigen presentation was also
evident in our sensitivity analysis.

The fact that these four hypothesized mechanisnpgaapto impair the same
cellular function, antigen presentation, raisesghestion: do these mechanisms serve the
same purpose and act redundantly or do they seabitgy glifferent purposes? Our results
suggest that these mechanisms act on differenstiabes and therefore serve different
purposes. As demonstrated in our simulations ofrspaf mechanisms, having
mechanisms that operate on both shorter and Iangescales may allowitb to exert
continuous inhibition on antigen presentation desmxternal sources of IFX-In
contrast, having only a single mechanism or mutiplechanisms that act on the same
timescale may result in an inhibitory effect thaher abates with time (if MHC class Il
expression increases) or is delayed.

Nascent and recycling MHC class Il molecules maseldistinct roles in antigen-
presenting cells (Pinet and Long 1998), avitb may have evolved mechanisms to
undermine both sources of MHC class Il. T cellsurex at least 2 to 4 hours of
stimulation to become fully activated (Weiss al. 1987), and mechanisms acting on
timescales of both minutes and hours may be plogicdlly relevant. A recent study by
Huppaet al. shows that signaling between an antigen-presewtfigand a T cell has a
cumulative effect over 10 hours and is sensitivaligyuptions that occur even several

hours after initial contact (Hupps al. 2003).
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2.4.2 Previous Protocols Favor Detection of Mechanisnrg@ting MHC Expression

Our simulations of previous experimental protoglggest thavitb mechanisms
targeting MHC class Il expression may have beepamsible for most of the changes
observed in levels of various molecules. Speciffcah simulations of the protocols of
Hmamaet al. (1998) and Nos®t al. (2000), only mechanisms targeting processes
associated with MHC class Il expression were fotmghroduce changes of the same
magnitude as those observ&dhile no single mechanism was found to accounafioof
the observations, these results do support thevithdil conclusions of Hmamat al.
(1998) and Nos=t al. (2000) who implicated inhibition of MHC class lIrgiein
maturation and MHC class Il mRNA synthesis, respebt.

Why did Nosset al. (2000) observe a decrease in MHC class || mRNA&Iebut
not Hmamaet al. (1998)? Nos®t al. (2000) attribute this discrepancy to differenaes i
macrophage cell lines, macrophage activation, afetiion lengths and methods. Our
model accounts for some of these factors, includimg aspect of macrophage activation
(IFN-y-stimulated MHC class Il expression) and one cousege of infection length
(inhibition of particular intracellular processegas well as experimental differences in
duration of IFNy stimulation and amount of IFM-used. In our model, none of these
factors accounted for the observed discrepancyHCMIlass I| mMRNA levels.

Hmamaet al. (1998) and Nosst al. (2000) also hypothesized thitb inhibits
either MHC class Il peptide loading or antigen gssing. Our simulations show that
neither of these mechanisms could have accountethdoobserved changes in levels of
molecules given the experimental protocols thatewgsed. On the timescales of both
protocols MHC class Il expression is expected tothe limiting factor on antigen
presentation as suggested by the half life of MHES< Il and our sensitivity analysis.

Indeed, in the protocol used by Nadsal. (2000), we predict that the high level of MHC
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class Il expression masks whatever reductions tigem presentation may result from an
inhibition of antigen processing or MHC class Ippde loading.

Because these experimental protocols may have ddvdahe detection of
mechanisms targeting MHC class |l expression, ttaah contribution of mechanisms
targeting other processes to the overall abilityith to inhibit antigen presentation may
not have been accurately assessed. Without expgaievidence to the contrary, the
possibility even exists that mechanisms targetinigan processing and MHC class Il
peptide loading are incidental ktb infection and do not significantly affect the atyil
of macrophages to present antigen in the preseindeéNey. While an experiment using
an Mtb mutant specifically unable to inhibit either irdgedlular process would quickly
answer this question, such a mutant is not yelahaito our knowledge.

Therefore, we propose an alternative experimentabpol to determine whether
mechanisms targeting intracellular processes bedldC class Il expression actually
contribute to the ability oMtb to inhibit antigen presentation (Fig. 2.4A). Instprotocol
macrophages are infected witktb in vitro and treated with IFN-for varying durations
prior to assaying for antigen presentation usingleh@ntigen and T cell hybridoma. If
mechanisms targeting MHC class Il expression aethly means by whickitb inhibits
antigen presentation, the difference in the lewél§ cell response (e.g., IL-2 production)
elicited by uninfected and infected macrophagesishioncrease as the duration of IFN-
stimulation increases (Fig. 2.4B). On the otherdhaih mechanisms targeting other
intracellular processes play a significant rolehia inhibition of antigen presentation, the
difference in T cell response should be appareehewith short durations of IFM-

stimulation and remain relatively constant as theation of IFNy stimulation increases.
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2.4.3 Additional Mechanisms May Target Other Processdschhg Presentation

As part of our analysis we also identified all bé tparameters in our model that
strongly correlate with the number of pMHC complkex@n the macrophage surface.
These parameters represent intracellular procdigedgto affect antigen presentation if
perturbed and may serve as attractive targets thogans that evade immune
surveillance such allith. Other processes related to MHC class Il exprasdiesides
those already considered by previous hypothesesgty correlated with surface pMHC
levels at long timescales. Recent evidence indicetat one of these processes, CIITA
transcription, may be targeted Mitb (Kincaid and Ernst 2003, Peti al. 2003). It would
be interesting to test experimentally whethib also affects any other candidate process
such as IFN¢receptor-ligand binding.

We found that several intracellular processes asgatively correlated with
antigen presentation. In contrast to positivelyrelated processes such as those in Table
2.1, these processes are expected to inhibit anpgesentation if up-regulated rather
than down-regulated. In the presence of low lewdlsxogenous antigen, one such
process is the delivery of antigens (both self ardgenous) and derived peptides to
MHC class ll-inaccessible lysosomes. Conceivabiyingracellular pathogen such lsisb
could decrease the availability of its own antigégsincreasing the rate at which this
process occurs, though benefit to the pathogenbmagomewhat offset by a concurrent
decrease in competing self antigens (Chaiz al. 1993, Rosloniecet al. 1990).
Nevertheless, the possibility that some pathoggmsegulate delivery to lysosomes
cannot be ruled out since the rate of this proeessthe concentration of self peptide
have not been carefully measured.

Most of the experimental data on which we base model originates from
studies using murine cell lines. Therefore, theayits of human macrophages infected

with Mtb may differ somewhat from those observed in ourutations. However, based
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on our sensitivity analysis, we believe that owguits are robust and can be generalized

to the human host.

25  Supporting Information

2.5.1 IEN-y Receptor-Ligand Binding

IFN-y binds to receptors on the macrophage surfacetingg a cascade of events
leading to an increase in MHC class Il expressittei(nleet al. 1994). We assume that
this increase is the primary mechanism by which-{Fscilitates antigen presentation.
To represent IFNrreceptor-ligand binding, we use the general reacdcheme ligand +
receptor— complex. Other processes are likely to affectrthmber of IFNy receptor-
ligand complexes on the time scales of f¥Neatment used experimentally, 20-36 hours
(Hmamaet al. 1998, Nos®t al. 2000). Celad&t al. (1984) observed that IFievels in
solution decrease 13% and 83% after 4 h in thenglesand presence of macrophages,
respectively, indicating that appreciable leveldFafl-y both degrade in solution and are
taken up by macrophages. Therefore, in additiorepyesenting IFN¢ receptor-ligand
binding, we also represent degradation of N-M-solution and within the macrophage

following uptake (Eqns2.1-3).

dG/dt = (_kOn-IFN-yG R+ koff-IFN-yC) [ncells/ (NA ern)] - kdeg-IFNyG [2-1]
dR/dt = kon-ien-y G R+ Kofrien-y C + Krecyc C [2.2]
dC/dt = Kon-ien-y G R—= Kotien-y C = Krecye C [2.3]

whereG is the molar concentration of IF{in the medium an&® andC are the numbers

of free IFNyreceptors and IFN-receptor-ligand complexes on the surface of each
macrophage, respectively. Values for the parametgrs the number of macrophages to
which IFN+y is added, and/,, the volume of the medium containing both INind
macrophages, depend on the protocol being simylaiediN, is Avogadro’s number.

Values forkon-irn-, andkosr.ien-;4 the association and dissociation rate constdrtsedFN-
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y receptor-ligand complex, can be found in the ditere (Sadiet al. 1998), while a value
for kyeg-iFngs the rate constant for the degradation of MM solution, can be derived
from the observed decrease in IlfNevels when macrophages are not present if first-
order decay is assumed (Celaglaal. 1984). We estimate a value fkkcy the rate
constant for receptor internalization and recyglitag match the observed decrease in
IFN-y levels when macrophages are present (Ceta@h 1984), given the experimental
conditions of that study. Celads al. (1985) also found that the total number of If#N-
receptors on the surface of the macrophdgg, does not change over time in the
presence of IFNt Therefore, we assume tHat; is constant, allowing either Eq&.2 or
Eqgn. 2.3 to be eliminated when the formui,: = R + C is used to derive an expression
for eitherR or C. In all of our simulations, we set the initial cdnons forR andC to Rt

and 0, respectively.

2.5.2 MHC Class |l Transcription

The formation of IFNy receptor-ligand complexes on the macrophage irfac
activates the Jak-Stat signaling pathway, incregaSIMTA expression over its basal level
(Darnellet al. 1994, Steimlest al. 1994). Because CIITA expression may be delayed by
as much as two hours in response to {FMorris et al. 2002) and this delay may
contribute to the longer delay observed prior taramease in MHC class Il expression
(Cullell-Young et al. 2001), we represent both CIITA and MHC class Itreg mMRNA
and protein levels explicitly in the model (Egngi-B and 11). To represent transcription
and translation, we use the same basic formula®Maynard Smith (1968). Nascent
MHC class Il molecules undergo several posttraimsiat events, including coupling of
constituent subunits to invariant chain (li), traod through the transGolgi network, and
degradation of li into class ll-associated invarighain peptide (CLIP) (Hudson and

Ploegh 2002). The presence of low levels of matMidC class Il molecules in
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unstimulated macrophages suggests that these pescexcur constitutively (Hume
1985). We do not distinguish these processes immgel but refer to them collectively
as MHC class Il protein maturation. In practice, a@nsider MHC class Il protein
maturation to be part of MHC class Il translatiomieh we represent in our model
explicitly. There is evidence that IFN-up-regulates MHC class Il translation
independent of its effect on MHC class Il transioip (Cullell-Young et al. 2001).

Therefore, we represent IFNreceptor-ligand complexes as having an effect ot b

processes (Eqgns. 2.4 and 11).

dTo/dt = kin1 (1 + & C/ Rior) — Kdeg-mrnatlz [2.4]
dTo/dt = kixnz P — Kdeg-mrnazl2 [2.6]

whereTy, P, andT, are levels of CIITA mRNA, CIITA protein, and MHCQass 1| mRNA
per macrophage, respectivelfxn, kisn, and kxnz are rate constants for CITA
transcription, CIITA translation, and MHC classtnscription, whereagieg-mrnai Kaeg-

p, andkyeg-mrnazare rate constants for degradation of CIITA mRNIATA protein, and
MHC class Il mRNA, respectively. We assume thattiomdated macrophages possess
steady-state levels of CIITA mRNA, CIITA proteimd&aMHC class Il mRNA (i.e.T; =
OhY, Ty =Tio P =0hY P=Py, T, = 0, andT, = Too whenC = 0 mol %), allowing
values forkini, Kisit, andkxnz to be estimated from known valueskady-mrnai Kdeg-n @and
Kieg-mrna2 The quantityC/R: represents the fraction of surface IfKeceptors occupied
at any given time, whiler is a scaling factor for CIITA transcription. Wesage that the
rate of CIITA transcription increases linearly withe fraction of occupied IFN-
receptors based on receptor occupation theory eri®87) and observed correlation
between IFNy receptor occupancy and tumoricidal activity in nophages (Celada and
Schreiber 1987). The scaling facimallows MHC class 1| mRNA levels in the model to
match increases observed experimentally in respmnBeN-y. To find a value forr, we

simulate the experimental conditions used in twalists (Cullell-Younget al. 2001, Pai
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et al. 2002) and approximate values f@ithat most closely yield the observed maximal

increases in MHC class Il mRNA.

2.5.3 Exogenous Antigens

Exogenous antigens generally enter macrophage em#ss by pinocytosis,
phagocytosis, or receptor-mediated endocytosisasx soluble model antigens such as
hen egg lysozyme are typically used to assess hiiyaof macrophages to present
antigenin vitro (compare Gerckeat al. 1994, Hmamat al. 1998, Nos®t al. 2000), we
represent only pinocytosis in the model (Eqns.aghd 8). We assume that endocytosed
antigens either undergo partial degradation rexgyitn the production of MHC class II-
binding peptides, i.e., antigen processing, ortemesported to lysosomes and degraded.
Although a small number of exogenous antigens n&yfze shunted to the MHC class |
pathway (Yewdelkt al. 1999), we do not consider the loss of antigentduhis pathway
in the current model. We assume that peptides tneguirom antigen processing then
either bind MHC class Il molecules or are transpmitio lysosomes and degraded (Eqn.
2.9). The portions of our model representing amtigecessing as well as peptide-MHC
class Il binding are similar to those used in apd@nmodel by Singer and Linderman

(Singer and Linderman 1990).

dA*/dt = _(kpino ncells/ern) A* - kdeg—A* A* [2-7]
dA/dt = (kpino / VMIIC) A* - kdeg—AA - kIys A [2-8]
dE/dt = Kgeg-aA — Kon-mic M E + Koti-mic Me — Kiys E [2.9]

where A*, A, andE are molar concentrations of native antigen in riedium, native

antigen in the endosomal compartments of each mphage, and antigen-derived peptide
in the endosomal compartments of each macrophaggectively. Values for the average
rate of pinocytic uptakekyino, and the total volume of the MHC class Il-accdssib

endosomal compartmentgc, can be found in the literature (Dean 1979, Matshl.
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1986). The parameterges andvy, are the same as those found in Ejbh. We assume
that the rate constant for the degradation of paatigen in the mediunkgeg-a+ has the
same value as the rate constant for the degradaitibiN-y in solution Kgeg-Irny The rate
constant for antigen processingeg-a represents what is likely a group of reactions,
including the unfolding of native antigen and pady#ic degradation by one or more
cathepsin proteases. We derive a valuedgyabased on the length of time required for
macrophages to degrade 50% of internalized manatesiyIBSA (Diment and Stahl
1985), assuming that processing of most antigeaklsg/ionly one peptide capable of
binding MHC class Il. We also assume that all sldubaterials in the endosomal lumen
are delivered to MHC class llI-inaccessible lysoseméth the same kinetics and that
therefore a single rate constant for this prockgs,is sufficient. We derive a value for
kys based on the length of time required for receptgradation (Lauffenburgest al.
1987). The rate constanks,.vnc and Kqr.vnc represent association and dissociation of

pMHC complexes, respectively, and are describedare detail below.

2.5.4 Self Peptides

Macrophages constitutively produce a populationseff-peptides capable of
binding MHC class Il molecules within endosomesi¢Zlet al. 1993). In the absence of
exogenous antigens, these peptides may bind 80ftooe of available MHC class Il
molecules (Chiczet al. 1993). MHC class Il-binding self-peptides are ded
predominantly from transmembrane proteins includgayeral MHC-related proteins
(Chiczet al. 1992). In our model we consider both MHC-derived aon-MHC-derived
self-peptides as a single population (Eqn. 2.10g éat self-peptides similarly to
peptides derived from exogenous antigen and assuame¢hey either bind MHC class |l
molecules or are transported to lysosomes and dedr®ur treatment of self-peptides is

similar to that used in a previous model by Sireyedt Linderman (1991).
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dSdt = Ksource + [Kdeg-mtc (Ms + Ms*) —Kon-mic M S+ Kott.mie M) [1/ (2.10]
(Na vwiic)] — kiys S

whereSis the molar concentration of self-peptides wittmacrophage endosomes and
Ms, andMg* are the numbers of free intracellular MHC classntilecules, intracellular
self-peptide-MHC class Il complexes, and surfademptide-MHC class |l complexes
per macrophage, respectively. We assume that theofaself-peptide synthesiksource
for which we did not find a value in the literatuie equal to the rate of self-peptide
degradation in resting macrophagkg; S. An additional source ternkgeg-mqc Ms [1 /
(Na vmic)], is used to represent the replenishment of MH@wved self-peptides that are
ultimately lost when pMHC complexes are degradedr the initial value of the
endosomal self-peptide concentrati®,we use the steady-state value which we did not
find in the literature but approximate to be 6 ¥*1fol L' by solving Eqn. 2.10 whe#®
= 0 mol L* h*, Ms = Mg, andM = M,. During simulations of hypothesis;ii.e. when
the value ofk,n.wnc was changed) the values & and ksource Were recalculated
accordingly. However, during simulations to detetfenPRCC values, all rate constants

were changed independently and the valu&® ahdkseuceWere not recalculated.

2.5.5 MHC Class |l Translation and Peptide-MHC Classinding

We assume that the reaction scheme peptide + MH&ptide-MHC complex is
accurate on the timescales of miwstvitro experimental protocols allowing us to forego
more complicated representations (e.g., those es@&e and McConnell 1995). We also
assume that the enzyme HLA-DM is expressed at cserfly high levels within
endosomes so that dissociation of CLIP from MHG<IH is not rate limiting and does
not require explicit representation. In additioechuse the signal sequence that localizes
MHC class Il to endosomes is found in the cytoplastiomain of i and removed from

mature forms of MHC class I, we assume that aiin® of MHC class Il in our model
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are free to be transported to and from the plasnemlmane. Consistent with this
assumption, peptide-free MHC class Il moleculesehlagen detected on the surface of
antigen-presenting cells (Germain and Hendrix 1&Hntambrogicet al. 1999). In our
model, we represent MHC class Il using six varialtedistinguish between intracellular
and surface localizations as well as free, seltigegbound, and exogenous peptide-
bound forms (Eqgns. 2.11-16).

dM/dt = kisi2 (1 + BC/ Riot) T — kon-mc M S+ Koft-mic Ms — kon-mic M

[2.11]

E + Koft-mic Me = Kout M + Kin M* = Kyeg-mic M
dM*/dt = Koyt M = kin M* = Kgeg-mHc M [2.12]
dMd/dt = kon-mrc M S= Kot-mic Ms = Kout Ms + Kin Ms* = Kgeg-mrc Ms [2.13]
dMs*/dt = Kout Ms = Kin Ms* — Kgeg-mic Ms* [2.14]
dMd/dt = Kon-mic M P = Koft-mic Me — Kout Me + kin Me* — Kgeg-mHc Me [2.15]
dMg* /dt = Kout Me = kin Me* = Kgeg-mrc Me* [2.16]

whereM, Mg, andM, are the numbers of free MHC class Il proteinsf-geptide-MHC
class Il complexes, and exogenous peptide-MHC classomplexes within the
endosomal compartments of each macrophage, resggctandM*, Ms*, andMg* are
the numbers of the same MHC class Il species orsuhface of each macrophage. We
did not find a measurement in the literature fa tate constant representing MHC class
Il translation, ko, but derive a value by assuming that unstimulatemcrophages
maintain a constant total number of MHC class ttgins in the absence of exogenous
antigen [i.e., M + M* + Mg + M¢*)' = 0 mol L* h* whenGg = 0 mol L* andEy = 0 mol
LY. Therefore, given Eqns. 2.11-14, is equal to the combined rates of MHC class |I
protein degradatiorkgeg-wrc (Mo + M*g + Mso + Ms*g). We also assume that all MHC
class Il proteins are degraded with the same rafestant,kyeg-vic Whose value we
derive from the half-life of MHC class Il proteins the surface of cultured macrophages
(Poutsiakaet al. 1985). We estimate a value for the translatiodirsgdactor, £, in a

manner similar to that used for the transcriptiocaliag factor,a. That is, we simulate the
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experimental conditions used by Cullell-Youeagal. (2001) who observed a maximum
increase of 37-fold in the MHC class Il protein é&ss of macrophages incubated with
IFN-Y (Neetis = 5 % 10, Vixn = 1 % 10° L, Gp = 3 x 16 units/mL~ 2 x 10° mol L'™Y) and
approximate a value fof that matches this output. We derive a value far tate
constant of MHC class Il protein transport from esaimes to the plasma membrakg,
based on the length of time this process takeslinred macrophages (between 5 and 15
min, Harding and Geuze 1993), assuming that 50%eoproteins are transported during
this time. Cultured macrophages retain approximabele-third of their MHC class Il
proteins intracellularly (Harding and Unanue 1989)atio we define ap;,. Based on
this ratio we derive a value for the rate const#nYIHC class Il protein internalization
from the plasma membrane,, by assuming thatM*o + Ms*o) / Mot = pin WhereMiot =
(Mo + M*g + Mg o + Ms*g) and that thereforaV(*o + Ms*o) = [(1 — pin) / Pin] (Mo + Ms ).
We solve Egns. 2.12 and 14 for the steady-statgegsadfM* andMg* which we use as
initial conditions, set their sunkgy: (Mo + Ms ) / (kin + Kdeg-mn, €qual to the expression
for (M*o + Mg*p) above, and solve fdx;,.

Values for the rate constants of peptide-MHC cldksassociation and
dissociationkon-muc andkos.mnc, vVary widely in the literature depending on thetigalar
peptide being used. For example, complexes witbtigees derived from OVA and
myelin basic protein (MBP) dissociate in solutidrrates of 3 x 1§ s* and 4 x 1¢ s*,
respectively (Buugt al. 1986, Mason and McConnell 1994). By using the fdetys, =
-In(0.05) / kyq (1 + Lo/ Kp)] wheretgsy is the time required to reach 95% of equilibrium
binding, kg the dissociation rate constahg,the initial ligand concentration, arkh the
equilibrium dissociation constant (Lauffenburged d&inderman 1993), we estimatigo,
values to be on the order of 100 h and 1 h for CArl MBP peptides, respectively,
when Ly = Kp. Considering that the length of time between theniaistration of
exogenous antigen and the assay for surface pMHhiiplexes is on the order of 1 h in

the experimental protocols of interest (Hmashal. 1998, Nos®t al. 2000), these values
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for tese, SUggest that, at least in some cases, the nunibswngplexes does not reach
equilibrium. If this is true, the choice &fn.muc andks.mnc values would be important to
the outcome of the simulations. However, the preseof the enzyme HLA-DM
increases the dissociation rate constant of pMH@pdexes by 1Bfold (Weberet al.
1996), resulting irtese, values of 1 x 18 and 1 x 1¢ h for OVA and MBP peptides,
respectively, wheho = Kp. In both cases, the number of pMHC complexes peebted to
reach equilibrium well before the conclusion of #ssay. Therefore, we assume that the
choice of peptide-specifikon-mnc and ko.vnc values from the literature does not
significantly affect the outcome of the simulatiahge to the enzymatic activity of HLA-
DM.

In all simulations, we set the initial conditiors tthe variables representing the
different MHC class Il species (i.eMo, M*o, Mg o Ms*o, Me g, andMg*o) based on two
ratios, pin andppoung the fractions of all MHC class Il that are inte#lalar and bound to
self-peptide, respectively, in unstimulated maceg@s when exogenous antigen is not
present. We assume that andpuound 2pply to both free and peptide-bound MHC class
I, so thatMo / (Mg +M*0) = Mso/ (Mso + Ms*o) = pin andMso/ (Mo + Ms ) = Phouns We
expresdM*y, Ms*o, andMs o in terms ofMy, the number of free endosomal MHC class |l
proteins, sumMy, M*o, Mg*o, and Mso to the known total number of MHC class Il
molecules in unstimulated macrophagkl,{ Harding and Unanue 1989), and solve for

each value.

2.5.6 Inclusion ofMtb and Its Inhibitory Effect on Intracellular Process

We simulate the inhibitory effect dfitb on various intracellular processes by
multiplying the corresponding rate constant in seline model by the quantity [1B/
(Km + B)] whereB is the multiplicity of infection (moi, or bacterta-macrophage ratio)

usedin vitro andKy, is the moi needed to inhibit a process by 50%.ghoplicity we use
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a single value foKy in all of our simulations and derive this valuerfr the data of Noss
et al. (2000) who found that MHC class Il transcripticgcceases by 20% and 80% when
the infectious dose dfitb is 5 and 40, respectively. We fit these data &oftimctionkins =
kuninf [L — B/ (Kuy + B)] wherekirs and k,nins are rate constants for a given process in
infected and uninfected macrophages, respectivedylting inKy, = 18. To measure the
effect on antigen presentation, we calcul®e* (nint — Me*int) / Me* unint WhereMe* ynins and
Mg ine are surface exogenous peptide-MHC class Il le{els) using Kuning @and Kins,

respectively.

2.5.7 Parameters and Initial Conditions

Model simulations generating the figures and talseshe main text used the
following parameters and initial conditions in paaf the baseline parameters and initial
conditions in Tables 3 and 4.

For Figure 2.2. A andB, Neeiis = 4 % 16, Vixn = 8 x 10° L, Gp = 2 x 10° mol L7,
A*y = 0 mol L, Paiet al. 2002; a and kyn, were set to 200 and 1 x 10L h?,
respectivelyC andD, neeis= 5 % 16, Vixn = 1 x 10° L, Go = 2 x 10° mol L, A*y = 0 mol
L™, Cullell-Young et al. (2001); a and Kpino Were set to 30 and 1 x 1dL h™,
respectivelyE andF, Neeis = 5 x 16, Vixn = 1 x 10° L, Gp = 0 mol L', A*g=~ 1 x 10° mol
L™, Buus and Werdelin (1986 = 30, kyino = 1 x 10 L h™. G andH, neeis = 9 x 10,
Vixn = 4 x 10" L, Go = 0 mol L* or Go= 6 x 10" mol L™, A*g = 0 mol L, A*;s=2 x 10

® mol L, Delviget al. (2002);a = 30,kpino = 1 x 10 L h™.

For Table 2.1 Ngeis = 1 % 16, Von = 1 X 10° L, Go = 1 x 10° mol L', A*g = 1 x
10" mol L'Y; @ = 30, kpino = 1 x 10 L h™. B = 40. H, Hy, Hs, and H correspond to
model parametellgieg-a Kisi2, Kon-mic, andkiyno, respectively.

For Figure2.3. C, D, andE, neeis= 1 % 10, vixn = 1 x 10° L, B = 50,Go = 0 mol

L™ A*o = 0 mol L}, andG,4 =~ 1.3 x 10° mol L* where subscript refers to a condition
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at then™ hour of the experimenty and kyn, Were set to 30 and 1 x 1L h?,
respectivelyF, G, andH, Neeis = 5 % 10, Vixn = 3.7 x 10 L, B = 40,Go = 1.3 x 10°mol
L%, A*o = 0 mol L'}, Go, = 0 mol LY, Gps = 1.3 x 10 mol L, Gy = Omol L, andA* 46
= 2.0 x 10'mol L'™"; a andkyino were set to 30 and 1 x DL h, respectively.

For Table2.2. Neeis = 1 X 16, Vixn = 1 X 10° L, Go = 1 x 10° mol L, A*g =1 x
10* mol LY, a = 30,koino = 1 x 10" L h™ were used as baseline values. MHC class |I
export, antigen concentration in medium, antigertakg, MHC class Il protein
maturation, and IFN stimulation of MHC class Il translation correspotal model
parametersou, A*o, Koino, Kisiz, and g, respectively. IFN¢ receptor-ligand binding, IFN-
concentration in medium, MHC class Il transcripfi@lITA translation, and CIITA
transcription correspond to model parametéss.engys Go, Konz Kisii, and kixna,
respectively. IFNy stimulation of CIITA transcription, IFN-degradation in solution,
MHC class Il degradation, CIITA protein degradati@ITA mRNA degradation, and
IFN-y receptor-ligand dissociation correspond to mo@ebmetersy, Kyeg-irnys Kdeg-MHG
Kieg-p Kdeg-mrnaz @andKostipn-;s respectively.

For Figure 2.4. neeis = 1 % 10, Vixn = 1 x 10° L, B = 40,Go = 0 mol LY, A% =0
mol L, Gos = 1.3 x 10'° mol LY, andA*24 = 1 x 10° mol L™ where subscript refers
to conditions at the@™ hour of the experiment arids variable;a andkyin, are set to 30

and 1 x 102 L h%, respectively.
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Figure 2.1. Model schematic. Molecular species representedhé model include:
extracellular IFNy (G), IFN-y receptors (freeR, bound:C), CIITA (mRNA: T,, protein:
P), MHC class Il mRNA T.), exogenous antigen (extracellul&?*, intracellular: A,
peptide:E), self peptide 9, free MHC class Il molecules (intracelluld, surfaceM*),
self peptide-bound MHC class 1l molecules (intrhdat: Ms, surface: Mg*), and
exogenous peptide-bound MHC class Il moleculesg@atlular:Me, surfaceMs*). Solid
arrows indicate one-step reactions and dashed sarnogicate regulatory interactions.
Degradation is represented in the model for thimfiohg molecules but not showg,
Ty, P, Ty, A*, M, M*, Mg, Mg*, M, M*. Up-regulation ofM by C directly and
contribution ofMs andM¢* to Sare also included in the model but not shown.
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Figure 2.2. Model testing using various controlé. and B, Simulation results and
experimental data for levels of CIITA mRNA (solithés) and MHC class 1| mRNA
(dashed lines) in IFN-treated macrophages from Raial. (2002).C andD, Simulation
results and experimental data for levels of MHG&lH mRNA (solid lines) and MHC
class Il protein (dashed lines) in IRNveated macrophages from Cullell-Yourg al.
(2001). E and F, Simulation results for surface pMHC levels (irbitmary units) and
experimental data for T cell response in non-N-ideated macrophages exposed to
antigen from Buus and Werdelin (1986&.andH, Simulation results for surface pMHC
levels (in arbitrary units) and experimental daiaT cell response in non-IFidtreated
macrophages (solid lines) and IfMreated macrophages (dashed lines) exposed to
antigen from Delviget al. (2002). 16 h pretreatment with medium or Il not shown;
hence, the x-axis is enumerated from 16 h onwagdWihen antigen is present).
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Figure 2.3. Simulation results of twn vitro experimental protocols using four published
hypotheses. IA andB, large circles represent macrophages, highligbitetes [FNy-
treated macrophages, and small circles T cell dgbnas A, Protocol of Hmamat al.

(1998). 18 monocytes were infected wittb at MOI 50 for 24 h, treated with 200 U/ml
IFN-y for 36 h, pulsed with 1 mg/ml BSA for 0.5 h, arithsed for 0.5 h, 1 h, or 4B,
Protocol of Nost al. (2000). 5 10* macrophages were treated with 2 ng/ml Nefér

20-24 h, infected wittMtb at MOI 40 for 2 h, treated with 2 ng/ml IFpNfor an
additional 18-26 h, and pulsed with 0-108/ml hen egg lysozyme or 0-100@/mi
RNase for 1-3 hC, D, andE, Simulation results using the protocol of Hmaghal.
(1998) for levels of CIITA mRNA, MHC class II| mRNAnd surface MHC class |l
protein, respectivelyr, G, andH, Simulation results using the protocol of Nessl.

(2000) for levels of MHC class Il mRNA, total MHdass Il protein, and surface pMHC,

respectively.
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Figure 2.4. Proposed experimental protocol to determine th&ridmtion of different
mechanisms tdltb of antigen presentatiod. Protocol schematic using representations
of Fig. 2.3A andB. B, Surface pMHC levels expected in uninfected mdtagesMtb-
infected macrophages if mechanisms target prim&MiyC class Il expression (in this
case, MHC class Il transcriptionMtb-infected macrophages if mechanisms target
primarily other processes (in this case, antigeocgssing). Percentage reductions in
infected macrophages (relative to uninfected cdsitiare also shown.
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Tables

Table 2.1. Changes in surface pMHC levels following inhibitiof various intracellular

processes hypothesized to be affectetVbiuberculosis.

Hypothesis: Affected

0.1h 10h 10 h 100 h

process
Hi: Antigen processing VY 47% V¥ 8.4% V7.2% V43%
Hz: MHC class | v1.4% v8.2% v 49% v69%
maturation
Hs: MHC class Il pepti

 MHC class Il peptide | 1o v11% v 12% v57%
loading
Ha: MHC class |l ¥0.0026%  V0.16% ¥ 26% ¥ 66%
transcrlptlon
Hy + Ha Y 47% v8.6% v31% v81%
H, + Ha ¥ 45% v 18% ¥55% v 86%

2 ldentical experimental conditions were used irhesimulation, and comparisons were
made to the baseline model, i.e. when no procegsesinhibited.
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Table 2.2. Additional intracellular processes significantyrielated with surface pMHC levéls.

Time: 1.0h 10 h 100 h

Description (Correlation coefficient) Descriptid@dfrelation coefficient) Description (Correlatioaetficient)
MHC class Il export (0.79) MHC class Il protein maturation (0.72)  MHC class Il transcription (0.57)
Antigen concentration in medium (0.41) IFN-y stimulation of translatich(0.62) MHC class Il protein maturation (0.56)
Antigen uptake (0.40) MHC class Il export (0.55) CIITA translation (0.56)

MHC class Il protein maturation (0.38) IFN-y receptor-ligand binding (0.52)
IFN-y stimulation of translatidh(0.33) IFN-y concentration in medium (0.52)
MHC class Il transcription (0.49)
CIITA translation (0.44)
IFN-y stimulation of transcriptidn(0.36)
CIITA transcription (0.36)

CIITA transcription (0.53)

IFN-y concentration in medium (0.51)
IFN-y receptor-ligand binding (0.49)
IFN-y stimulation of transcriptidn(0.47)
Antigen concentration in medium (0.36)
Antigen uptake (0.33)

MHC class Il export (0.32)

IFN-y degradation in solution (-0.87)
MHC class Il degradation (-0.56)

CIITA protein degradation (-0.53)

CIITA mRNA degradation (-0.49)

IFN-y receptor-ligand dissociation (-0.48)

21000 simulation runs were performed using diffeeampled parameter values. PRCC values deterrtorsel significant (g 10°°)
are shown in parentheses. Intracellular processesidered in previous hypotheses-{t,) are italicized.

® MHC class Il translation
¢ CIITA transcription



Table 2.3. Parameters used in the APC model.

1Y

Parameter Value (ref.) Parameter Value (ref.)
" 2.6 x 16° mol* liter H* Ky 3 x 10" h! (Poutsiakaet
n-IFN-y (Sadiret al. 1998) eg-MHC al. 1985)
n Varies by experiment Vi 4 x 10°°L (Marshet al.
cells y p MIIC 1986)
. . 4 x 1¢ mol* L h™* (Buus
Vixn Varies by experiment Kon-MHC et al. 1986)
" 1.8 x 10 h* (Sadiret al. ke 6 x 10 h™* (Buuset al.
ff-IFN-y 1998) ff-MHC 1986)
" 3.5 x 10° h' (Celadaet al. K 6 h* (Lauffenburgeset al.
coIFy 1984) e 1987)
5x10™-1x10%Lh?
Krecyc 1 h* (Gerckeret al. 1994) | Kino (Dean 1979, Selbgt al.
1995)
K K T o012 K Koo ae 3.5 x 10* h* (Celadaet
xnl eg-mRNA111,0 . eg-A al. 1984)
30 - 200 (Cullell-Younget 4 h* (Diment and Stahl
a : kdeg—A
al. 2001, Pagt al.2002) 1985)
. . . Mo+ M*o+M
Kieg-mrnar | 0.12 hi* (Paiet al.2002) | kKsi2 Edﬁgls“fgfi DX 1R
. 10 (Cullell-Y tal.
Kisi1 Kdeg-mrnaPo !/ Tio= 1.4 Kt | B 200(1)u el-roungeta
K 1.4 h* (Schnappauét al. ke 4 h* (Harding and Geuze
eg-P 2003) ut 1998)
) 1/3 (Hardi du >
Kixn2 Kieg-mrnazl20~ 4 x 10 bt | pig 198(9) A e A
Reot 1 x 10 (Celadaet al. 1984) | ki, ,[;pi{/gl%pgi)] Kout — keeg-rc
Kdeg-mRNA2 4 x 10° h* (Cullell-Young | Poound 4/5 (Chiczet al. 1993)
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et al.2001)

ksource

If.yss)z 3.6 x1C mol L' h

Mtot

2 x 10 (Harding and
Unanue 1989)

Table 2.4. Initial conditions used in the APC model.

Parameter Value (ref.) Parameter Value (ref.)

G Varies by experiment A 0 mol L*
R 1 x 10 (Celadaet al. 1985) |E 0 mol L*

Pin (1 —Poound Mot = 1.3 x
C 0 M 10"

[(1 = pin) / pin] Mo = 2.7 x

*

T1 1 M 10"

[Poound/ (1 —Poound] Mo =
P 1 Ms 5.3 x 1d

1-pin)/pin] Msp~ 1.1 x

T, 1 M* El(05 Pin) / Pin] Ms o
S 6 x 10*mol L* Me 0
A* Varies by experiment Me* 0
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CHAPTER 3

How Peptide Length Affects Bindingto MHC Class| |

3.1 I ntroduction

Major histocompatibility complex (MHC) molecules]sa known as human
leukocyte antigens (HLA), are a vital componenttite development of the immune
response to pathogens (Kaufmann 2005). These niedeaat as receptors for peptides
derived from foreign antigens as well as self mpigsiand enable the long-term display of
antigens on the cell surface. T cells recognizeganic peptides in the context of MHC,
and depending on the class of MHC involved, redimmican lead to the death of the
presenting cell or its activation. In either casptple-MHC binding is an important
prerequisite event and has far-reaching conseqadadhe ensuing response.

Prediction of peptide-MHC binding therefore reprdgsean important goal in
bioinformatics, particularly as applied to immungyp and a number of computational
approaches have been developed (reviewed in BU2&; $8e also Robinsaat al. 2003
for other MHC-specific bioinformatics tools). Thénplest are based on motifs, i.e.
requirements for particular amino acids at posgiovithin the peptide as determined
from pool sequencing of eluted peptides (Falkkal. 1991, Rammensee 1995 and
references therein). Such approaches have largely buperseded by algorithms using
matrices to score the relative contribution of amacids at each position within the
peptide (Parkert al. 1994, Davenporet al. 1995, Marshallet al. 1995). Machine

learning methods including hidden Markov models anificial neural networks have

71



also been applied, with peptide sequence serving@ag and binding/non-binding as
output (Brusic and Harrison 1994, Honeymahal. 1998, Mamitsuka 1998). More
recently, attempts have been made to predict thetste of the peptide-MHC complex
and free energy changes associated with bindingfaet al. 1997, Rognaset al. 1999,
Schueler-Furmaret al. 2000, Davieset al. 2003, Schafroth and Floudas 2004; for a
review of current structural information and nomanhae see Kaas and Lefranc 2005). It
is also possible to combine some of these apprsaelseSturniol@t al. (1999) did using
matrices to represent each pocket lining the pegiidding groove.

Continued progress in the development of theserithgas faces a number of
challenges including how to handle differences ketwthe two classes of MHC. Most
prediction algorithms were first developed in tloatext of peptide-MHC class | binding
which involves peptides of a narrow range of lesgtisually 8-10 amino acids. These
algorithms were then applied to peptide-MHC clddsinding, typically with little or no
modification.

Despite the fact that both classes of MHC sharerdigal similarities and bind a
core of nine amino acids within peptides (Jones7)198nportant differences exist. In
particular the open-ended nature of MHC class fitigde-binding groove allows for a
wide range of peptide lengths (Browhal. 1993). Peptides binding MHC class Il usually
vary between 13 and 17 amino acids in length, thalgprter or longer lengths are not
uncommon (Chiczt al. 1992, Sercarz and Maverakis 2003). As a resultigep are
hypothesized to shift within the MHC class |l pegtibinding groove, changing which
9mer window (register) sits directly within the gk@ at any given time. In contrast the
capped nature of the MHC class | peptide-bindingoge does not allow variation in
length or such register shifting.

Variation in peptide length may have important @psences for the binding and
function of antigenic peptides (Malcherek al. 1994, Vogtet al. 1994). For instance,

Srinivasanet al. (1993) found that a 23mer peptide derived fronocltome ¢ was 32
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times more immunogenic than a 10mer peptide cangithe same putative binding
core. A direct relationship between peptide leragitd binding affinity has been observed
for some MHC class Il alleles, but whether thisdsotrue for most alleles remains
unknown, as does an explanation for why this retfethip exists (Bartnest al. 1999,
Fleckensteiret al. 1999, Arnoldet al. 2002, Sercarz and Maverakis 2003). In addition to
having more binding registers, longer peptides gisssess peptide-flanking residues
(PFR) which lie outside of the peptide-binding gre@and may interact with the MHC
class Il molecule at more distal locations (Sercardl Maverakis 2003). Whether
information regarding peptide length, or any otpeptide property lost by considering
only 9mers, may aid prediction also remains unknown

In this study we address several issues relatquepdide length and binding to
MHC class II. Using aggregate data that are novilaa from online databases, we first
examine whether a relationship exists between leagtl affinity for several MHC class
Il alleles. We then attempt to incorporate lengtio itwo existing binding algorithms in a
number of ways, including using regression to peeess the data, treating length as an
additional variable within the algorithms, and de&rg a formula to more accurately
represent register shifting (Fig. 3.1). We showt tilprovements to more than one
current algorithm for predicting peptide-MHC cldkbinding are possible with relatively
simple amendments. We also comment on which mesimanare likely to be affecting

binding as peptide length increases.

3.2 Methods

3.2.1 Data Sources

Peptide data sets used in this study are availitbla the AntiJen database
(http://www.jenner.ac.uk, Blythet al. 2002) and can be downloaded using the perl

LWP: : Si npl e module. Other peptide-MHC databases listing aféei are also
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available, including the Immune Epitope Databasarrémtly in beta version at
http://www.immuneepitope.org, Petersal. 2005), but were not used in this study. Our
data sets comprised the sequencesl@gglvalues of peptides binding the MHC class Il
alleles HLA-DRB1*0101, -DRB1*0401, and -DRB1*150fom AntiJen.ICsq refers to
the concentration of peptide required to inhibi#®0f reporter peptide-MHC binding.
When more than on€so measurement was available for a given peptide-MbiGplex,
the first measurement listed was used, unless witberindicated.ICso values were
converted intqICsg using the formul@lCsy = -log ICso wherelCso has units of molar.
Homologous sequences and thkig, measurements were removed using UniqueProt
(Mika and Rost 2003). Other algorithms for removimgmologous sequences are also
available, including Hobohm 1 and Hobohm 2 (Hobaodtnal. 1992), but were not used
in this study. The data sets were of the followisiges (before/after filtering by
UniqueProt): DRB1*0101 (464/303), DRB1*0401 (606431DRB1*1501 (343/213).
Two additional data sets were used to assess feet eff data set size, those for
DRB1*0404 (81/54) and DRB1*0405 (116/102). To asst role of data quality in
determining algorithm performance, data sets for BD®101, DRB1*0301,
DRB1*0401, DRB1*1101, DRB1*1501, and A*0201 weretaibed from AntiJen, and
data points for which the concentration of reporpaptide was unavailable were
excluded. Data sets are available as part of thineonSupplementary Data at

http://malthus.micro.med.umich.edu/Bioinformatics/.

3.2.2 Regression of Binding Affinity Versus Peptide Lemgt

Both parametric and nonparametric fits were madwdts of affinity vs. length in
the data. Parametric fits were made with one, @aval three fitted parameters (linear,
guadratic, and cubic, respectively) using the opmurce statistical program R

(http://Iwww.R-project.org, R Development Core Te&®05) and the function m
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Nonparametric local regression fits were made u#iegR function oess with default
settings (Cleveland and Devlin 1988). To evalu#tgdality, analysis of variance was
performed using the R functianova. An F statistic was generated which we used to
compare linear with nonlinear parametric fits (Msky and Christopoulos 2004).
Nonparametric local regression fits were evaluatsithg a permutation test. In
this test eaclplCso value was reassigned to a different peptide semuanrandom, and a
loess fit was re-derived for the shuffled valuekisTwas repeated 1000 times, and the
smallest 25 (2.5%) and largest 25 (2.5%) fittedugalat each length were excluded. The
local regression fit to the original, non-shuffleita set was then compared to the
remaining 95% of permuted values at each lengthwaasldetermined to be significant if

it fell outside of this interval.

3.2.3 Simulations of Register Shifting

To simulate the effects of register shifting on twgyMHC class Il binding
affinity over a range of peptide lengths, we dediveformula for the expected value of

the affinity of a single hypothetical peptide wittultiple registers:

E[K(X)] = 2 K(x) p(x) [3.1]
whereK(X) is the equilibrium association constant, or af§inof a peptideX, K(x) is the
affinity of a complex with a single registgr;, and px;) is the probability of registex
occurring. We assume thatxp(can be approximated by the proportion of commexe

having registek;:

p) = N() /22 N(x) [3.2]
where N) denotes the number of complexes having registand the sum is taken over
all possible registers. Belmares and McConnell {206und that the kinetics of shifting

between two registers could be accurately repredesdx; <> P + M« x; where P and
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M are peptide and MHC, respectively. Based on teisult, at equilibrium ;] =
K(x)[P][M] and [x] = K(x2)[P][M]. Because botlx; andx, exist in the same solution, it

follows that:

N(x1) / [ N(x2) + N(x2) ] = K(xa) / [ K(xa) +K(xp) ]. [3.3]

More generally,

N(x) /2 NGa) = K(x) 13 K(x). [3.4]
Combining Equations 3.1, 3.2, and 3.4, we obtaenftillowing result for the expected

affinity of a given complex when multiple registen® available:

E[K()] = £ K(0)* /X K(x) [3.5]

This result can also be applied to log-transforrmeghsures of affinity such as log
K(X). Henceforth we refer to Equation 3.5 or its legnasformed counterpart as the
equilibrium-based formula for reconciling multipiegisters.

We assume that every overlapping 9mer window withipeptide can result in
binding to MHC and therefore set the lower and uipgts of summation at 1 ard- 8,
respectively, where represents peptide length and is varied betweem® 25, the
shortest and longest lengths typically observeduindata set¥K(x) was generated from
a lognormal distribution with mean 19 and standard deviation 4% based on the
observation that most values for the equilibriurssdtiation constarkp of peptide-
MHC binding fall in the range of 1610% M (McFarland and Beeson 2002). Moreover, a
lognormal distribution was chosen based on thetemuéor standard free energy change,
A4G° = -RT In (1Kp) whereR andT are the gas constant and temperature, respectively
(Eisenberg and Crothers 1979), and the assumgiainfriee energy change for peptide-
MHC binding is normally distributed. For each vahfd between 9 and 25, a set number

of values were generated (in our case, either 1000), resulting in a scatter plot of
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simulatedplCsp values versus length. A curve was then fit to tpist using local

regression (theoess function in R) with default settings.

3.2.4 Peptide-MHC Binding Affinity Prediction

Two algorithms were selected to generate baseliedigiions against which the
effects of modifications based on length could bmpared. One of these algorithms was
the iterative self-consistent (ISC) partial-leagtrares (PLS) algorithm of Doytchinova
and Flower (2003). We implemented this matrix-baakgarithm for predicting peptide-
MHC binding affinity in perl and R. Briefly, thislgorithm uses partial least squares
regression to identify underlying factors (also Wmaas latent variables) relating multiple
predictor variables to an outcome variable. In thse of peptide-MHC binding, 180
predictor variables were used to denote the presenabsence of the 20 possible amino
acids within each 9mer window, and the outcomealdei was binding affinity aslCs.

The initial steps of the algorithm were performesthg perl scripts: splitting each
data set into training and test sets; generatihgadsible 9mers for each training set
peptide; selecting only those 9mers having positianchor residues (F, I, L, M, V, W,
and Y); and converting 9mers thus selected intostrihgs. PLS regression was then
performed in R using the bit-encoded 9mers ana tieerespondinglCso values. PLS is
available for R as thel s. pcr library (available at http://cran.r-project.org)dawas
called from within a perl script using thd”C. : OQpen2 module. Default settings were
used for PLS; however, some options in the comrakstftware used by Doytchinova
and Flower (2003) were not available in R, namebliag method and column filtering.
Subsequent steps in the algorithm were performet) ulditional perl scripts: selecting
those 9mers in the training set yielding predigi@so values closest to experimental
plCso values during cross-validation and repeating tgerahm until the selected set of

9mers matched the previously selected set, i.enwk#-consistency was achieved. For
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computational expediency we limited the number ldf Rerations for any given peptide
to 10. At that point the final PLS model was extegicand used to generate predictions on
the test set.

For test set peptides having more than one 9mer it anchor residue in
position 1, multiple predictions were generated andile was needed to make a final
prediction. One option is to assume only one regigiredominates and to take the
highest score from among the predictions. More dmaigd rules are also possible such
as the combination rule of Doytchinova and Flow2003) whereby the mean of the
plCso predictions is chosen if they fall within a ong lcange; otherwise, the highest is
chosen.

To measure the performance of the algorithm we diseefold cross-validation
(5x-CV), setting aside one-fifth of each data setise as a test set and using the other
four-fifths as the training set. This process wapeated on the same data set four
additional times until a prediction was made fachepeptide in the data set and complete
coverage was achieved. (This instance of crosslatabin was independent of the leave-
one-out-cross validation used in the ISC-PLS athori) The accuracy of each set of
predictions was scored by calculating the area muneleeiver operating characteristic
curve (Aroc). This calculation can be done in R using tpeedi ction and
per f or mance functions of theROCR library. By repeating each 5x-CV multiple times,
we were able to calculate the standard error otk scores which could then be used
to determine whether two mearkds scores significantly differed by Student'dest.
Pearson correlation coefficients between predieted experimentally determingdCsg
values were also used to score performance angrev&led in the online Supplementary
Data (Lundet al.2005).

A second algorithm that was selected was the TEPH @lgorithm of Sturniolo
et al. (1999). In this algorithm amino acid-binding pte$i are generated for each pocket

within the peptide-binding groove, and these pesfiare combined according to MHC
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sequence. We did not regenerate these matricastbatr used the matrices available on
the ProPred website (http://www.imtech.res.in/ragijaropred, Singh and Raghava
2001). Using the appropriate matrix a sum was tatled for each peptide in a selected
AntiJen data set. To this value we added an appratkon of the binding affinity of an
all-alanine 9mer fICso = 6.169, Doytchinova and Flower 2003) generatindginal

prediction. Performance was scored by calculatieg®zoc.

3.2.5 Incorporating Length into Existing Prediction Algbm

Peptide length was incorporated into the ISC-Plgbrithm using one of three
modifications. In Modification 1 (Mod. 1) a locaggression fit was first made to the
peptide lengths anpllCsp measurements in each training set. (In the evetttheplCso
value for either the shortest or the longest lemgptide was excluded from the training
set but included in the test set, a local regreshiat that length could not be generated;
instead, we assigned the average fitted valudseateimaining lengths.) The value of the
fit was then subtracted from the originalCs, value for each peptide, and the resulting
difference, i.e. the residual, was then used iglaf the originaplCs, value. The ISC-
PLS algorithm was performed as described earlieviging initial predictions on the test
set. To these predictions the value of the regmass$it was added yielding final
predictions. Alternatively, in Alternative Modifitan 1 (Alt. 1), peptide length was
appended as the 18predictor variable to the bit-encoded trainingasd test set 9mers.
The remainder of the algorithm was then performeddascribed earlier. Finally, in
Modification 2 (Mod. 2) the formula derived to repent register shifting (Equation 5)
was used to reconcile predictions made on multpledidate 9mers, i.e. registers, within
a test set peptide. This modification occurredhatlast stage of the ISC-PLS algorithm

and was used in place of the combination rule destrabove.
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Only Mod. 2 was used to incorporate length into fhEPITOPE/ProPred
algorithm. When TEPITOPE/ProPred is applied to igest with multiple registers, the
highest score among the different registers iscglpyi taken to be the score of the entire
peptide (Brusicet al. 1998, Nielseret al. 2004, Murugan and Dai 2005). We reconciled
individual register scores using the equilibriunséa formula (Equation 5) but did not

regenerate the pocket profiles and therefore dicapply Mod. 1 or Alt. 1 in this case.

3.2.6 Data Filtering by Experimental Parameters

To gauge the sensitivity of binding affinity meamments to variations in
experimental parameters, we used the Cheng-Pragatition (1973) which relates the
equilibrium dissociation constant of a peptide-Mid@mplex Kp) to its observedCsg

value:

Kp =1Cso (1 +L/K,) * [3.6]

Here L, and K; represent the concentration of the reporter pepadd the
equilibrium dissociation constant of the reportepide-MHC complex, respectively.
These parameters frequently vary by prototekxplicitly so andK; by virtue of being
specific to each combination of peptide and MHCt#S&989, Roche 1990, Southwood
1998). Other experimental parameters are alsoylitel affect ICso measurements,
including temperature and pH, but were not consdexplicitly.

As a measure of peptide-MHC binding affinitgy has the benefit of not being
dependent on the identity or concentration of #@orter peptide used (Kenakin 1997).
Additionally, Kp is directly proportional to the change in standéeke energy of a
reaction4G° when log transformed as indicated by the equatlGfi = -RT In (1Kp)
where R and T are the gas constant and temperatspectively (Eisenberg 1979).

Because the Cheng-Prusoff equation (Equation $i16ys that the ratid./K;

distinguisheslCso from Kp, we used this ratio to estimate the degree to hvhi,
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measurements are affected by reporter peptidetiarian experimental protocols. The
value ofL, depended on what was reported in the databasenghe sralue was used if
provide; otherwise, the reported range becameadWerl and upper limits of a uniform
distribution. To approximate values fét, which is usually unreported, we used a
lognormal distribution based on the equation f@andard free energy change and the
assumption that changes in free energy for pepfitk€&> binding reactions are normally
distributed. From the observation that mkst values for peptide-MHC binding fall in
the range of 16-10° M (McFarland 2002), we assigned the lognormalritistion a
mean of 10-° and a standard deviation of °P0 For each peptide we generated 1000
values ofL,/K; and calculated the mean and standard error ofi@n. Filtered data
subsets were created by excludili@y, values associated with meanK, exceeding

either 1 or 9, representing deviations fr&mof 2- or 10-fold, respectively.
3.3 Results

3.3.1 Peptide Length Affects Binding Affinity to MHC Clasl|

To determine the nature of the relationship betwaeptide length and peptide-
MHC class Il binding affinity, we derived a numh#rregression fits to binding data for
several MHC class Il alleles from the AntiJen datd In all cases homologous
sequences were first removed from the data setsguai pre-filtering algorithm,
UniqueProt (Mika and Rost 2003). Parametric fitsevdaen made based on polynomials
with one, two, or three fitted parameters (lineqwadratic, and cubic, respectively).
Analysis of variance from these fits showed thatth@ese MHC class Il alleles the nature
of the relationship was most likely nonlinear (T@aBl1). A quadratic or cubic fit resulted
in a significant reduction in sum of squares intlalee cases at the 0.05 level.

To better characterize the apparent nonlinearitiethe length-affinity data we

then made nonparametric fits to the data and aedl{lze fits. Local regression was used
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to make nonparametric fits, and analysis was d@negua permutation test. In this test
binding affinities were reshuffled among peptidagés to create 1000 new data sets,
and a local regression fit was re-derived for edeta set. If the fit to the original data fell
outside of the middle 95% of permutation fits ay garticular length, the nonlinearity at
that length was determined to be significant. Iithealata set we found that the
nonlinearity between length and affinity was sigraht at one or more lengths (Fig. 3.2).
Lengths associated with strongest affinity coulddstified, as could lengths associated
with weakest affinity. For example, for DRB1*040ffirity appeared strongest for
peptides of 12 amino acids and weakest for peptdi€X0 amino acids. When the data
sets were combined and the local regression fite wegenerated, the same trends were
seen (Fig. 3.2D): shorter peptide lengths, of appmately 12 amino acids, were
associated with higher affinity, while longer pelatiiengths, of approximately 20 amino
acids, were associated with lower affinity.

Nonlinearities may have been present in the leaffinity data for several
reasons, including the ability of peptides to shégisters within the MHC class I
peptide-binding groove. To simulate the effect efister shifting on the mean affinity
observed for peptides of different lengths, we uaesimple statistical model based on
two assumptions: first, that longer peptides akelyi to contain more registers than
shorter peptides, and secondly, that the measuifedtya of a given peptide-MHC
complex approximates the weighted average of tfiaiteds of all the registers in a
peptide (Equation 5). For a simulated peptide given lengthl, the affinities ofl — 8
registers were generated and averaged. This pragassrepeated until the average
affinities of either 10 or 100 peptides at eaclgtan(i.e. each value dj were obtained,
resulting in data sets of two sizes (one of theesamagnitude as those typically obtained
from databases, the other an order of magnitudgiarAt this point a regression curve
was derived (Fig. 3.3). For the larger sized datatlse fitted curve was nonlinear and

monotonically increasing (Fig. 3.3A). The same dr@ras seen in the smaller data set; in
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this case, however, deviations were also possielgylting in maxima at mid-length
peptides (Fig. 3.3B). Together these results sugdpes register shifting may be one
mechanism behind the nonlinearities in the lendfinity relationship from experimental
data sets.

We also estimated the lengths of the amino- anbosgt-terminal portions of
each peptide extending outside of the MHC clagefitide-binding groove to determine
if particular lengths at either end of the peptwere favorable or unfavorable for
binding. 9mer cores were identified by positionntleor residues (F, I, L, M, V, W, Y),
and the lengths remaining at each end were cagzuldtocal regression fitting and
permutation testing were done as with overall glepkength. In most cases fits to amino-
and carboxyl-terminal peptide extensions were daterd to be significant at one or
more lengths (Fig. 3.4 and additional data not st)own comparing fits we found that
extensions of 2-4 amino acids at the amino termamgsextensions of 1-2 at the carboxyl
terminus generally appeared favorable for bindifgg.( 3.4 and additional data not
shown). Likewise, longer extensions (8 and 10 anadoinls at the amino and carboxyl
termini, respectively) generally appeared unfaviedtr binding (Fig. 3.4 and additional
data not shown). We also found that in at leastesoases fits to overall peptide length
could be decomposed into amino- and carboxyl-tesmgontributions. For example
binding to DRB1*0401 was strongest when amino aabaxyl termini were 2 and 1
amino acids, respectively (Fig. 3.4). Together with 9mer core, these lengths sum to

match the overall length associated with strongesting, 12 amino acids (Fig. 3.2B).

3.3.2 Incorporating Peptide Length Improves AlgorithmfBenance

We incorporated peptide length into two peptide-Mel&ss 1l binding prediction
algorithms in one of three ways. First, as a paeessing event (Mod. 1 in Fig. 3.1) a

local regression fit was made for affinity vs. lémgn the training/fitting data and the
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value of the fit was subtracted from each affimtgasurement. The resulting residuals
were used in place of the origimalCso values in the training set. After the algorithmswa
used to make initial predictions for the targetseptides, the value of the regression fit
for each target set peptide length was added td fireal predictions. Alternatively (Alt.
1 in Fig. 3.1) length was also incorporated digeatito the existing algorithm as an
additional variable (in the case of ISC-PLS, as 1B&" variable). Training/fitting was
then performed as published, and predictions weadenon test set peptide sequences
and peptide lengths. Lastly we used a formula édritom the equilibrium-based
statistical model to reconcile predictions made dxisting algorithms on multiple
registers within the peptide (Mod. 2 in Fig. 3.\Je point out that Mod. 1 and Alt. 1 are
similar modifications that both consider peptidadé directly (by fitting length as a
discrete variable); in contrast Mod. 2 considergllnig registers (i.e. 9mers with a valid
position 1 anchor) and the relationship among thEmerefore, Mod. 1 and Alt. 1 are not
used together, although either can be used with. od

Incorporating peptide length by one or more modtians into the ISC-PLS
algorithm improved the performance of the algorittomall alleles examined (Table 3.2).
Performance was measured by area under receivatimgecharacteristic curves gAc)
when a threshold of 500 nM was used to differeatiahding from non-binding affinities
(Setteet al. 1994). The performance of ISC-PLS in conjunctiathva combination rule
(mean if less than one order range; highest otlsejwtio reconcile register predictions
was used as a baseline (Doytchinova and Flower )200iking the highest scoring
register to be representative of the entire peptide also done as a reference. In general
using any of three modifications resulted in inse=ain algorithm performance. However
the modification resulting in the greater incredgéered by MHC class Il allele. In the
case of DRB1*0101, deriving a regression fit (Mdgl.resulted in significantly greater
improvements than either using length as an aduitigariable or using the equilibrium-

based formula to reconcile register predictionstia case of DRB1*0401, all three
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modifications resulted in the same magnitude ofgase in performance. Finally in the
case of DRB1*1501 only an application of both tlegression fit (Mod. 1) and the
equilibrium-based formula (Mod. 2) resulted in theeatest increase in performance.
Differences in which modifications resulted in tipeatest increase in performance may
be suggestive of allele- or data set-specific meshas behind the length-affinity
relationships.

We also incorporated peptide length into the TEREDProPred algorithm
(Sturniolo et al. 1999) and without re-deriving the pocket-specifiatrices that define
that algorithm found that increases in performanoald be obtained by use of the
equilibrium-based formula alone (Table 3.3). Typicain applications of
TEPITOPE/ProPred to MHC class I, predictions ontipie registers are reconciled by
taking the highest scoring register to be repredmet of the whole peptide (Brusat al.
1998, Nielsenet al. 2004, Murugan and Dai 2005). We therefore used thie to
generate baseline predictions against which wedcoampare the performance of the
equilibrium-based formula. Applying the formula fegister shifting increased algorithm
performance for all three data sets examined.

We also investigated whether our modifications rigé applied to alleles for
which fewer data exist. In analyzing the data feo tother alleles, DRB1*0404 and
DRB1*0405, we found no significant nonlinearities riegression fits of length versus
affinity (Supplementary Data). Consistent with tlesults of these fittings, we observed
no increase in performance after applying eitherdMd or Alt. 1 to the ISC-PLS
algorithm when training sets were derived from ¢heata sets (Supplementary Data). An
increase in performance was observed, howeveth#larger of the two data sets using
Mod. 2 (Supplementary Data). These results sudhgasbur proposed modifications, like
matrix-based prediction algorithms, are subjectinotations based on the size of the

training set.
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3.3.3 Experimental Variation in Data Sets Does Not Affalgorithm Performance

In addition to the nonrandom effect of peptide kangnother source of variation
in the peptide-MHC class Il binding data may be tlee of multiple experimental
protocols. Two parameters that frequently vary agnprotocols designed to measure
peptide-MHC ICso are the concentration of reporter peptideand the equilibrium
dissociation constant of the reporter peptide-MHi@plexK,. We made estimates of the
ratio L/K, for ICso measurements in several data sets and used tioisasathe basis of
classifying the data (Fig. 3.5).

Specifically, estimates df,/K, were used to create twaCso data subsets that
varied in their degree of deviation frgokp and subsequentiG®. L,/K; values of 1 and
9 were used as cutoffs, filtering opitCsy values that differed frompKp by more than
approximately 2- and 10-fold, respectively. 29%tlué total non-overlapping data had
meanL,/K; values of greater than 1, while 5% had med; values of greater than 9.

To determine whether variability in these experitabparameters affects data
quality, we compared the accuracy of binding prgais using filtered and unfiltered
data sets (Table 3.4). Successive rounds of leagesat cross-validation were
performed such that predictions were made for egaeptide in a given data set.
Prediction accuracy was scored by calculating tleargéon correlation coefficient
between experimental and predici@s, values, and differences between scores were
evaluated for statistical significance. Becausa d&t size is known to affect prediction
accuracy, random data subsets of the same sizt#we ddtered subsets were used as
controls.

In general, filtering data based on reporter pepsipecific parameters did not
significantly improve the accuracy of predictionather level of filtering (Table 3.4).
While taking random subsets of the same data $ets esulted in only small changes to

prediction accuracy, filtering sometimes resultedsignificant degradation, particularly
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for the smallest data sets (DRB1*0301, e.g.). Aerahtive approach, using the mean
estimated_,/K; to convertplCs, to pKp, also failed to improve prediction accuracy (data
not shown).

The effect of other experimental parameters|Gg measurements could be
observed indirectly. When the reporter peptide idastical to the peptide of interest;
was equal tKp, allowingKp to be calculated directly from the Cheng-Prusgfiiaion
(Equation 3.6) a&p =1Csp - L,. In the DRB1*0401 data set, this condition wadilfed
for multiple ICso measurements of the peptide PKYVKQNTLKLAT (HA 38719), two
of which were also made at the same temperaturaising the same method of reporter
peptide labeling (Hansen 1998, Consogno 2003). these measurement&p was
calculated to be 41 and 700, indicating that vemmatin parameters unrelated to
temperature and reporter peptide concentrationadintity to MHC could also lead to

variation inlCsg measurements.

34 Discussion

Information is typically lost during the prediction of peptit-IC class Il binding because most
algorithms focus exclusively on 9mers within theptide. An underlying assumption is that propertéshe parent
peptides that cannot be captured in their 9mersralevant. This assumption may be true for MH@&ssl | binding
which involves peptides of nine amino acids alne&iusively but may not be true for MHC class hding. Peptides
that bind MHC class Il are variable in length analyngontain segments that extend past the ende gfgtide-binding
groove, also known as peptide-flanking residueBFR (Brownet al. 1993). PFR-MHC interactions may in turn affect
peptide-MHC binding in a manner that is consiseamd useful to prediction. Longer peptides alsovalfor register
shifting, i.e. the ability of peptides to bind MHGsing different core 9mers. PFR-MHC interactionsl aegister
shifting represent two possible mechanisms by whafability in peptide length affects affinity dHC class II.

In this study we found that nonlinear relationshgxsst between peptide length

and peptide-MHC class Il binding affinity in a nuemtof aggregate data sets available
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online. When these nonlinearities were examinethane detail, they were found to be
significant at several lengths, suggesting somgtlenwere more favorable for binding
than others. This is consistent with the data framfmumber of experimental studies
(Malchereket al. 1994, Vogtet al. 1994, Bartnest al. 1999, Fleckensteiet al. 1999). In
these studies affinity was generally found to iaseewith length up to the longest lengths
examined, typically between 15 and 17 amino adid®ur simulations register shifting
was found to be one mechanism that could accounth® direct relationship between
length and binding affinity. However, our analysisaggregate data sets suggests that
additional mechanisms also contribute to the eféédength on affinity. For example,
register shifting alone cannot explain why certlingths at the amino and carboxyl
termini are advantageous or disadvantageous falirgnDRB1*0401. In this case other
mechanisms such as hypothesized PFR-MHC interactioat are either attractive or
repulsive may also be playing a role (Sercarz aastdvbkis 2003).

Incorporating peptide length into existing bindipigdiction algorithms by one or
more of our modifications consistently improvedfpanance for multiple MHC class I
alleles. Three modifications were used—one atekellof the training set data (Mod. 1),
another within the algorithm itself (Alt. 1), anblet last after 9mer predictions were
generated (Mod. 2)—and all resulted in performagams over reference algorithms
ISC-PLS and TEPITOPE/ProPred. BaselingoAscores for two different algorithms
varied between 0.57 and 0.73. By comparisagdAscores for modified algorithms
varied between 0.68 and 0.77, consistent with #mge of scores listed in MHCBench
(http://www.imtech.res.in/raghava/mhcbench/). Thedification resulting in the largest
performance increase differed by allele, and thas/nm part reflect differences in the
mechanisms by which length affects affinity. For BIR0401, for example, using the
formula for register shifting resulted in perforncangains that were statistically
indistinguishable from those obtained using othesdifications. For DRB1*0101,

however, modifications based on regression modelgsylted in significantly greater
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performance increases. These data therefore suppest for both register shifting and
other mechanisms.

Previous studies have provided indirect evidenaé dhcounting for variability in
peptide length could improve prediction. Godkihal. (1998), for example, found that
matrices based on 15mers generally outperformediageatbased on shorter lengths,
showing the usefulness of considering informatiotsiole of the core 9mer. Likewise,
Bui et al. (2005) have proposed deriving a separate matrigdoh length of peptide (Bui
et al. 2005). Despite the suggestion that explicit comsition of peptide length could
improve binding prediction (McFarland and Beeso82)0to our knowledge no previous
study has implemented this idea. Our results aftmmuse of peptide length in binding
prediction. In addition our modifications are saiéintly general that they could be
incorporated into other current algorithms basedaming 9mers.

Thus far experimental evidence of either registéiftiag or PFR-MHC
interactions has involved only a small samplingMHIC class Il alleles and been of
indeterminate generality. For example, registeftisgi has been demonstrated to occur
with alleles I-A' and I-A" in mice and DR2 in humans (McFarlaatal. 1999, Liet al.
2000, Seamon®t al. 2003, Bankovichet al. 2004). Solved structures exist for a
somewhat wider array of alleles, including {-and I-A in mice and DR1, DR3, and
DR4 in humans (see McFarland and Beeson 2002 feoevaew). Although these
structures show the presence of PFRs in peptide-MId€s Il complexes, they fail to
capture the dynamics of either register shiftingBR-MHC interactions.

Our analysis of regression fits to different aggtegbinding data sets suggests
that longer PFRs (i.e. in peptides longer than @gprately 16 amino acids) may
generally be deleterious to binding. At the sanmefi however, PFRs of a certain
minimum length increase the probability of a peptithving multiple binding registers
which, our simulations show, increases overall imigdaffinity. An optimal peptide

length for binding each MHC class Il variant magréfore exist. Further computational
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analysis of aggregate data sets may provide a engpit to more direct, observation-
based studies in continuing to elucidate the rdleeptide length in MHC class Il
binding. In addition these findings may be of usé¢hie design of peptide vaccines which
often comprise only short segments of disease-aaleprotein antigens (Larche and
Wraith 2005). Including PFRs of optimal lengths niyp to ensure efficacious binding
to MHC.
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Figures

Obtain data sets of peptides and
affinities
Example databases:

Antilen
Immune Epitope Database

Remove homologous sequences

Example algorithms:
Hobohm 1, Hobohm 2
UniqueProt

Perform algorithm fitting /
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Example algorithms:
ISC-PLS
TEPITOPE / ProPred
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Mod. 1: Derive affinity vs.
length regression model

Alt. 1: Use length as variable
within algorithm
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PFR-MHC interactions
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based formula to reconcile
register predictions
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Register shifting
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Figure 3.1. Schematic of modifications made to existing aldons to incorporate
peptide length. Modification 1, Alternative Modifiton 1, and Modification 2 are
abbreviated Mod. 1, Alt. 1, and Mod. 2. Also shoane examples of sources of data,
algorithms used to remove homologous sequences diaiay and algorithms to predict

peptide-MHC class Il binding.
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Figure 3.2. Local regression fits of peptide-MHC class Il bimgl affinity versus peptide
length for three HLA data setd;, DRB1*0101;B, DRB1*0401;C, DRB1*1501; andD,
the three data sets combined. 95% boundaries ofiytation distributions are shown
(dotted) with fits to the original, non-shuffledtdgsolid).
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Tables

Table 3.1. Evidence of non-linear relationships in lengthrafy data for several MHC
class Il alleles.

DRB1*0101 DRB1*0401 DRB1*1501

Quadratic, F~ 11.745 (<0.001)  8.575(0.004)  3.6705D)

Cubic, F 5.849 (0.016) 0.708 (0.401)  4.871 (0.028)

F statistics are shown for analysis of varianceltesvith p values in parentheses.
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Table 3.2. Evidence of non-linear relationships in lengthrafy data for several MHC
class Il alleles.

Mod. 1: Regression Alt. 1: Length as

DRB1*0101 ISC-PLS . :
fit variable
Combination rule  0.615+0.099  0.754 + 0.009 0.690 + 0.013
Highest scoring 4 g5 4 008 0.758 + 0.006 0.705 + 0.013
register
Mod. 2: Equilibrium 704 1 005 0.770 + 0.009 0.752 + 0.003
formula
DRB1%0401 ISC-PLS M_od. 1: Regression Allt. 1 Length as
fit variable
Combination rule 0.730 + 0.067 0.741 £ 0.010 0.749 + 0.009
Highest scoring 4 735 1 9 015 0.750 + 0.006 0.751 + 0.005
reglster
Mod. 2: Equilibrium 70 1 5 gog 0.757 + 0.004 0.754 + 0.008
formula
DRB1*1501 ISC-PLS M.od. 1: Regression Alt. 1 Length as
fit variable
Combination rule 0574 +0.009  0.596 + 0.015 0.584 + 0.020
Highestscoring 525 4 g 021 0.626 + 0.014 0.603 +0.011
reglster
Mod. 2: Equilibrium o =19 1 9,019 0.677 + 0.014 0.609 + 0.018
formula

Five-fold cross-validation (5x-CV) was used andeated five times. Mean AROC scores
between predicted and experimentally determipik}, values are shown with standard
errors of the mean. Highest scores are shown ith Wwith multiple scores in bold if pair-
wise differences were not statistically significaAt threshold of 500 nM (Settet al.
1994) was used to distinguish binding from non-bigdpeptides.'The ISC-PLS
algorithm with combination rule (Doytchinova andWwer 2003) was used as a baseline
prediction.
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Table 3.3. Binding prediction accuracy of ProPred algorithon different MHC class I
alleles when peptide length was incorporated.

ProPred: ProPred: ProPred:
DRB1*0101 DRB1*0401 DRB1*1501

Combination rule 0.685 0.741 0.669
Highest scoring 0.667 0.754 0.638
register

Mod. 2: Equilibrium

0.702 0.764 0.680
formula

Matrices were obtained from the ProPred websiteumadl to calculate a score for each
register within a peptide. To each score the apprate affinity of an all-alanine 9mer to
MHC was addedplCso = 6.169, Doytchinova and Flower 2003)ra scores between
predicted and experimentally determin@s, are shown, using a threshold of 500 nM
(Setteet al. 1994) to distinguish binding from non-binding deps. 'Highest ProPred-
predicted scores from all eligible registers wesedias baseline predictions following
recent precedents (Brust al. 1998, Nielseret al. 2004, Murugan and Dai 2005).
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Table 3.4. Accuracy of peptide-MHC binding affinity predictis when made using data
filtered on the basis of reporter peptide-speataditions and random data subsets.

DRB1* DRB1* DRB1* DRB1* DRBL*

*
A0201 5191 0301 0401 PR* 1101 1501
Complete 0.5534 04161 04583 0.5028 0.4707 0.6235 0.5672

dataset (496)  (245)  (139)  (353) (524)  (163)  (205)

Exclude 0.5507 0.4844 0.3837 0.4839 0.5203 0.6731 0.5758
L/K,>9 (495)  (227)  (120)  (346)  (480)  (153)  (202)

Random 0.5546 0.4275 0.4863 0.4621 0.4690 0.6124 0.5957
subset  (495)  (227)  (120)  (346)  (480)  (153)  (202)

Exclude 0.4861 0.3958 0.1516 0.3170 0.3704 0.4482 0.6793
L/K,>1 (383) (161)  (86) (237)  (367)  (104)  (161)

Random 05129 0.3616 0.3462 0.5411 0.4990 0.5815 0.6581
subset  (383)  (161)  (86) (237)  (367)  (104)  (161)

Pearson correlation coefficients between prediged experimentaplCsy values are
shown along with data set sizes in parentheses.
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CHAPTER 4

How Multiple Host Polymor phisms Affect Immune Response to Tuberculosis

4.1 I ntroduction

Tuberculosis (TB) continues to pose a global heattdblem. An estimated one-
third of the human population is infected with feghogerMycobacterium tuberculosis
(Mtb), and approximately two million individuals succhnto the disease annually
(WHO, www.who.int/mediacentre/factsheets/fs104)widaer, only a fraction of infected
individuals ever progress to disease (Small anoMagp 2001). What distinguishes those
who are able to control the infection from thoseowhre not? In addition to
environmental factors such as nutrition and HIVirdection, host genetics are likely to
play a role, and identifying polymorphisms in genleat predispose individuals to TB
continues to be an area of active research (redeweBellamy 2005, Fernando and
Britton 2006, Hill 2006).

Identification of genetic polymorphisms that affscisceptibility to TB proceeds
primarily on the basis of epidemiological data frassociation studies (Casanova and
Abel 2002). In association studies the frequencyaopolymorphism-based allele is
compared in patients and healthy controls. If thedeais found to be over-represented in
patients, it can then be hypothesized to encodmi@ip variant that renders its bearer
more susceptible to TB.

Association studies do not always yield consistentilts, however, and an allele

that is correlated with TB in one study might netdorrelated with TB in another study
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(Fernando and Britton 2006). Several reasons nagplain this inconsistency (Alcaet

al. 2001). Small samples sizes (i.e., insufficient bams of subjects) may lead to
unreliable detection of low-frequency alleles. Aftatively, alleles may have been
detected using indirect, serological tests thatuarable to distinguish between closely
related alleles, unlike more direct, sequence-btestd.

Even more difficult to account for is the problerh genetic heterogeneity.
Because the number of polymorphisms affecting imenfuinction is vast, and many have
yet to be discovered, epidemiological studies reardy fail to assay all polymorphisms.
In most studies only a single polymorphism is asdayOther polymorphisms may
compound or counteract the effect of a single polyhism, and such interactions can be
difficult to detect without additional testing. Forstance, a polymorphisid; in geneX
may render the human host more susceptible to TBBarpresence of polymorphisyi
in geneY but not in the presence of an alternative polyrism Y,. Such interactions
underlie the difficulty in comparing studies done different populations (Alcaist al.
2001), even when the same allele is being studiddstudy design is identical.

Antigen presentation requires the contributionexfesal genes, and many of these
genes bear polymorphisms that have been assocrtedTB (c.f. Bellamy 2005,
Fernando and Britton 2006, Hill 2006; Table 4.Supplementary Information). During
antigen presentation, cells bind peptides from quths to receptors known as MHC
(major histocompatibility complex) molecules andplay the resulting peptide-MHC
(PMHC) complexes on their surface (Fig. 4.1A). Talasses of MHC molecule exist:
class I, primarily for peptides found in the cytagin, and class II, primarily for peptides
found in endosomal compartments. Cells known asggempresenting cells (APCs)
express both classes of MHC, allowing them to digpbeptides from a variety of
pathogens.

A T cell response to antigen presentation beginemwdn T cell scans the surface

of the APC (Fig. 4.1A, reviewed in Santana and BsdtGuadarrama 2006). If T cell
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receptors (TCRs) expressed by a T cell bind pMH@mexes displayed on the APC
surface with sufficient affinity, and co-stimulayomolecules such as B7 and CD28 are
present, a signaling cascade is initiated thataltely results in T cell activation. Within
minutes of APC-T cell contact, intracellular caloidevels rise and TCRs from the
surface are internalized. After several hours ayek including IL-2 and IFN- are
produced by T cells leading to T cell proliferatiand activation of other cell types.
Antigen presentation therefore involves events oaog on timescales of seconds to
hours and at molecular, cellular, and multi-celluéangth scales.

Among the antigen presentation-specific polymonpisisassociated with TB,
perhaps the best studied are those in genes for fhiunan leukocyte antigen), the
human form of MHC. Of the two classes of HLA, HLAass Il is particularly relevant to
TB because HLA class Il molecules bind peptidesmfrantigens in endosomal
compartments wher®ltb resides. Over 800 HLA class Il alleles have befniified,
among which are several that have been associatdd imcreased or decreased
susceptibility to TB (Robinsoat al. 2003, Bellamy 2005). In particular, the DRB1*1501
allele has been associated with susceptibility Boif numerous studies (Mehet al.
1995, Ravikumaet al. 1999, Teran-Escandaet al. 1999, Sriranmet al. 2001; Table 4.2
in Supplementary Information). Generally polymogrhs in HLA map to the peptide-
binding regions of the molecule and can therefoee dssumed to affect function
(Rammensee 1995). A general mechanism explainimg HbA polymorphisms affect
the immune response to TB, however, has not be@bleshied. Other polymorphisms
affect HLA expression rather than the peptide-bigdproperties of HLA; to our
knowledge, none of these polymorphisms has yet testad for TB association (Lowe$
al. 1994, Cowelkt al. 1998).

MHC expression occurs constitutively in APCs busudbject to the up-regulatory
effects of signals from the extracellular envirominéncluding the cytokine IFN-

Polymorphisms in the IFN-gene have also been associated with TB suscéptibr
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particular, the +874A allele was found to be siigiaifitly over-represented in TB patients,
suggesting +874A increases susceptibility to T @fi al. 2002, Lopez-Maderuelet al.
2003, Rossouwt al.2003; Table 4.2 in Supplementary Information). RE${peripheral
blood mononuclear cells which include APCs and Tisgpdrom +874A individuals
produce significantly less IFM-in vitro than PBMCs from +874T individuals after
antigenic stimulation (Pravicet al. 1999, Lopez-Maderuelet al. 2003). In addition to
its up-regulatory effects on MHC expression, liFNas a number of other functions
including activation of macrophages and NK celld arhibition of the TH2 phenotype in
T cells (Mahert al. 2007), but exactly which of these functions is emdined in +874A
individuals has not been determined.

Finally polymorphisms affecting antigen processitige partial degradation of
proteins into peptides) have been associated wisiceptibility to TB, though thus far
only for MHC class I-mediated antigen presentatibhe transporter associated with
antigen processing (TAP) is responsible for traretiog peptides from the cytoplasm
into the endoplasmic reticulum where they can bendadoy MHC class | molecules. A
polymorphism in TAP2, one of the subunits that titute TAP, was found over-
represented in TB patients (Rajalingahal. 1997, Gomezt al. 2006; Table 4.2 in
Supplementary Information). Other enzymes perfomal@ous functions for the MHC
class ll-mediated pathway, namely the cathepsirteps®s responsible for antigen
processing. Polymorphisms are known to exist inegefior cathepsins (Taggart 1992),
but to our knowledge, none has been tested forsEBa@ation.

How polymorphisms in HLA, IFNt and other genes interact to ultimately
determine genetic susceptibility to TB remains paroquestion. Mathematical modeling
can help to provide a unifying framework with whitdhconsider these polymorphisms.
Such a framework would ideally have immunologicafiglevant readouts such as
cytokine production and allow the effect of eacHypwrphism to be simulated and

observed, both individually and with other polymluigins. Several questions could then
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be approached theoretically. For example, couldlgnporphism that up-regulates IFN-
expression compensate for a polymorphism thattseesulHLA deficient in bindingVitb
peptides? How might T cell response differ amongliviluals with different
combinations of polymorphisms?

To approach these questions we developed a malig-soathematical model of
antigen presentation that represents both APCsTacells and tracks events from the
molecular scale to cellular and multi-cellular &sal Particular detail was given to
pathways involving MHC and IFN; allowing polymorphisms affecting both pathways
to be simulated. The extent to which a polymorphismone gene compounded or
counteracted the effect of a polymorphism in anotfene could be observed, allowing
us to determine whether the presence of multiplgnparphisms could be a confounding

factor in association studies.

4.2 Methods

The multi-scale model comprises three models thatewleveloped separately
(Fig. 4.1): an APC model representing the everaditg up to the appearance of pMHC
on the APC surface, a T cell model representing d¢kents leading up to TCR
internalization, and an intracellular T cell signglmodel representing the events leading

up to cytokine (IFNy) production. We provide an overview of the thresdels here.

4.2.1 APC Model

We describe the APC model elsewhere in detail @irajnd Linderman 1990,
Singer and Linderman 1991, Agrawal and Linderma®@6l1@€hanget al. 2005). Briefly,
we represented the major events leading up to emfayesentation within APCs, e.g.,
macrophages, using ordinary differential equati@ISEs). These events include novo

synthesis of MHC, the up-regulatory effect of IfN-uptake and processing of
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extracellular antigens, formation of peptide-MHQ®MPC) complexes, and trafficking of
pMHC to and from the APC surface (Fig. 4.1B). Equaz are provided in

Supplementary Information, and parameters in Tablg@and 4.4.

4.2.2 T Cell Model

To represent T cell response to antigen presentatie developed a T cell model
and linked it to the APC model. The T cell modelswaased on a model originally
published in Coombst al. (2002), further developed in Gonzaletzal. (2005), which
represents two important features of T cell sigitalinamely kinetic proofreading (i.e.,
the requirement for pMHC-TCR engagement to pefeisa certain duration to result in
TCR activation) and serial triggering (i.e., thdligpof one pMHC to engage multiple
TCR). In the Coombs model as well as in our mothed, events following APC-T cell
contact are represented, specifically engagememMifiCs by TCRs, progression of
pMHC-TCR complexes through various states of atitwa and finally internalization of
fully activated TCRs as a marker of T cell actigati(Fig. 4.1C). Co-stimulatory
molecules such as B7, CD28, ICAM-1, and LFA-1 wassumed to be present in non-
limiting quantities. In order to be internalizedCRs in the model were required to be
fully activated in either free or pMHC-bound formtbe contribution of constitutively
recycling TCRs to the pool of internalized TCRs veasluded. Only the contact zone
between the APC and T cell was considered. Theegegfr TCR internalization occurring
in the contact zone was therefore assumed to hesemative of the degree of TCR
internalization occurring elsewhere on the T calfface. The T cell model comprises a
set of ODEs separate from the ODEs of the APC mddglations provided in

Supplementary Information, parameters in Suppleargriiables 4.5 and 4.6).
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4.2.3 Cytokine Secretion Model

To provide an additional, longer-term readout oféell activation, we extended
the T cell model to include signaling events tlodioiv TCR activation culminating in the
production of cytokines, particularly IF)-These events include the recruitment of
kinases such as Lck and ZAP-70, the activatiomt#rmediate signaling molecules such
as phospholipase C and calcineurin, and ultimatedyactivation of transcription factors
NF-AT, NF«B, and AP-1 (reviewed in Liu 2005). We developesiraplified model of
these events representing transcription factovaiidin, cytokine gene expression, and
cytokine production (Fig. 4.1D). More detailed igas of T cell signaling such as the
synthesis and breakdown of transcription factoermiediates were assumed to have a
negligible effect on long-term (> 12 h) responsad #éherefore not considered in our
model; such features are considered in other mdtielEmannet al. 2002, Fisheet al.
2006). The cytokine production model comprisesialthet of ODEs in addition to the
sets of ODEs constituting the APC and T cell mod@suations provided in

Supplementary Information, parameters in Suppleargriiables 4.5 and 4.6).

4.2.4 Solving the Multi-Scale Model

Together these three models constitute the mudlesanodel of antigen
presentation. The models were run in three secplgoliases: (1) exposure of APC to
IFN-y in the absence of exogenous antigen for 24 h (Af@el only); (2) exposure of
APC to exogenous antigen in the absence of yAEbi- 4 h (APC model only); and (3)
exposure of APC to T cell for 24 h (T cell modetlazrytokine production models only).
Information was passed between APC and T cell nsadehe form of number of pMHC
on the APC surface appearing 4 h after APC expasuestigen, i.e., in a feed-forward
manner. Feedback from T cell to APC, in the formlFfl-y that could increase MHC

expression, was assumed to be negligible on thestiales being simulated 24 h) and
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therefore not represented; such feedback may by e@sommodated by the model if
longer timescales are investigated. The three bi@saserving as outputs were the
number of pMHC complexes on the APC surface 4 ér &kposure to exogenous antigen
(APC model), fraction of TCR internalized 5 h affdPC-T cell contact (T cell model),
and concentration of cytokine IFNproduced 24 h after APC-T cell contact (cytokine
production model), which we consider indicative sifort-, medium-, and long-term
responses, respectively. These outputs have beeideoed intermediate indicators of
cellular response in the experimental literaturalifutti et al. 1995, Hemmeet al. 1998,
Itoh et al. 1999). A minimum threshold of approximately 203%MHC on the APC
surface is needed to elicit a T cell response,ghcwmbers may vary between tens and
thousands (Demotzt al. 1990, Harding and Unanue 1990). Internalization of
approximately 10-90% of TCRs from the T cell suefamccurs within hours of APC
contact depending on the amount of antigen inytiptesent (Valituttiet al. 1995, Itohet

al. 1999). No threshold level of TCR internalizatiequired for T cell activation has
been determined, though a correlation with othepawases such as T cell proliferation
has been observed (Iteh al. 1999). Cytokine IFN¢ production by T cells in response to
antigenic stimulation varies over several logs,utifio pM amountsn vitro are typical
(Hemmer et al. 1998, Laaksoneret al. 2003, Listvanovaet al. 2003). The ODEs
constituting the multi-scale model were solved gsithe NDSolve function of
Mathematica 4.2 (Wolfram Research, Inc.) using défaptions, and the model was
tested against experimental dose-response datial@deafor each of the three outputs

(Valitutti et al. 1995, Hemmeet al. 1998, Itohet al. 1999).

4.2.5 Sensitivity Analysis of the Multi-Scale Model

We determined how variability in the processeseasented in the model affects

the three model outputs using sensitivity analyBrgefly, we varied parameter values in
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the model, generated an output for each differemto$ parameter values, and then
determined the degree of correlation between eacnpeter and the output. A particular
parameter was varied if a genetic polymorphism Waswn to exist for the process
represented or to ensure that each of three comstitmodels had approximately the
same number of parameters represented during thlgsa A total of 16 parameters
were varied (Table 4.7 in Supplementary InformgtidParameters were assigned log-
uniform distributions. That is, minimum and maximuwralues were assigned to each
parameter, and sampling was done uniformly on geatefined by the log-transform of
these values. When several biological values weraladble in the literature the
approximate range of these values was used: for @Miissociation, 18107 s*
(Rothbard and Gefter 1991, McFarland and Beeso)2@6& pMHC-TCR dissociation,
103%-10° s* (Daviset al. 1998); for IFNy dose, 13%10° M (c.f. Lin et al. 1996); and for
antigen dose, 1810* M. For all other cases, a range of one order ajnitade above
and below the baseline value was specified (Supghany Information). 500 values for
each parameter were generated by a Latin hypesareling scheme (LHS, Helton and
Davis 2000), resulting in 500 different sets ofgmeter values. An equivalent number of
output values were then derived, and correlaticetsvéen output values and parameter
values were then quantified by using partial raokelation coefficients (PRCC, Blower
and Dowlatabadi 1994). Significance was assignesdan a Bonferroni-correctexd

value of 0.05 (Bland and Altman 1995).

4.2.6 Experimental Scenarios Simulated

Using the multi-scale model of antigen presentatwa were able to simulate
vitro protocols intended to test responsiveness of¢ellst to particular antigens (as used
in Katial et al. 1998, e.g.). In such a protocol peripheral bloodnanuclear cells

(PBMCs) are isolated from patient blood, exposearibgens such as purified protein
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derivative (PPD) fronMtb, and then assayed for response either indirelcylyr(easuring
tritiated thymidine uptake as a marker of prolifema) or directly (by enzyme-linked
immunsorbent assay, or ELISA, for cytokine). Beeausonocytes, a precursor of
macrophages, serve as APCs in PBMC and thereely liiktle to no IFNy present in the
blood, the model can simulate PBMC protocols whiee amount of IFN¢ initially
present is set to zero. The model can also simulsen vivo scenario of antigen
presentation at a site of infection where macropbamd activated T cells are present. In
this case, the amount of IFNitially present is set at a non-zero value ia thodel.

Both of these scenarios were examined during seibginalysis.

4.2.7 Trade-Off Plots

In addition to performing sensitivity analysis byrying several parameters
concurrently, we also examined the relationshipvbenh processes represented in the
model in a pair-wise manner, by varying two parargeft a time. Pairs of parameter
values that yielded approximately the same targegput value were compiled and
plotted. Because such plots show how a change enpanameter is able to compensate
for a change in another parameter, we refer to platis as trade-off plots. When values
for both parameters are plotted as log-transforagipns in which the plots are diagonal
(slope approximately 1 or -1) identify conditionsxder which a compensatory
relationship exists. That is, a one-log changeni@ parameter is able to compensate for a
one-log change in another parameter to maintairivangoutput value. In contrast,
regions in which the plots are horizontal or vetticentify conditions under which one
parameter has dominant effect on the output oveother parameter. In such regions the
output is relatively insensitive to changes in afi¢he two parameters. Parameters that
were chosen to generate trade-off plots were eftioen the same-scale sub-model (the

intra-model case) or from different-scale sub-medéthe inter-model case). A
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sufficiently wide range of values was assigned d@cheparameter in generating each
trade-off plot to capture the full range of behasion each curve. Biologically realistic
values were then overlaid on each plot, shown asdwhose edges represent the range
of values fromin vitro measurements when available. Wiewitro measurements were
not available, a range of one order of magnitudevatand below the baseline value was
specified (Tables 4.3-4.6 in Supplementary Inforargt When pMHC dissociation rate
constant or pMHC-TCR dissociation rate constant wesed, parameter values were
plotted as their respective equilibrium dissociaticonstantsKp, assuming invariant
association rate constants (Kasstral. 2000). We chose different values for the three
outputs to serve as target output values, genaaatigpting pairs of parameter values that
resulted in output values between 80% and 120%heftarget output values. Target
output values were 100, 500, or 1000 pMHC on th& ARrface; 10%, 40%, or 80%
internalization of total TCR; and 0.1 pM, 1 pM,®pM IFN-y production corresponding
to ~2, ~20, and ~200 pg/ml IF-To assist visualization of plots, curve-fittingsvdone
using the SplineFit function (Bezier option) of thumericalMath library in
Mathematica 4.2 (Wolfram Research, Inc.), excepases where more than onealue
mapped to the samevalue (pMHC-TCR affinity vs. pMHC affinity plotsral TCR

internalization vs. pMHC affinity plots) when cussevere fit by hand.

4.3 Results

To relate genetic polymorphisms to changes in ARG & cell responses, we
developed a multi-scale model of antigen preseortatihat traverses several biological
and temporal scales (from molecular to multi-calftdnd seconds to hours). This model
represents several different immunological proceskat could potentially vary due to
genetic polymorphisms and allows us to examineefifiect of multiple polymorphisms

occurring simultaneously.
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Initially we tested the model by comparing threedelooutputs to expected
behaviors from experimental data. As a negativarobmwe checked baseline results of
the model: In the absence of exogenous antigeexngenous peptide-MHC complexes
were formed, no TCRs were internalized, and no yAMas produced (data not shown).
As a positive control, we examined outputs of thedel when exogenous antigen was
present. The dynamics of pMHC display, TCR intamaion, and IFNy production
approximated experimentally observed time courség. (4.2A-C). Specifically, the
number of pMHC on the APC surface peaked withir foaurs of antigen exposure (Fig.
4.2A, Harding and Unanue 1990); the majority of T@Rernalization occurred within
the first two hours of T cell exposure to APC (M2B, Valituttiet al. 1995); and IFNy
production continued to rise through the first 2d4fiT cell exposure to APC (Fig. 4.2C,
Listvanovaet al. 2003). The model also recapitulated dose-respoaiseavailable for the

various outputs (Fig. 4.2D-F).

4.3.1 Sensitivity of T Cell Response to Genetically Vht@aProcesses

To determine how biological variability due to ggagyolymorphism or other
causes might affect APC and T cell responses, malated variability in the multi-scale
model and correlated changes in output variableshémges in input parameters (Table
4.1). These outputs were found in either the sauiensodel as the parameter being
varied (the intra-model case) or in a different-sutdel (the inter-model case). Two
scenarios were simulated, the absence and presendEN-y initially, scenarios
representing antigen presentation during PBMC paltoand at the site of infection,
respectively.

Multiple parameters were found to correlate sigaifitty with model outputs,

identifying biological processes that may posityedr negatively govern antigen
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presentation and T cell response. Variability inuanber of these processes is known to
exist and in some cases has been associated witb®ibility to TB. For example, both
peptide-MHC binding affinity and IFN- expression (as IFN- dose) correlated
significantly with all three outputs (Table 4.1)th@r processes bear polymorphisms that
may affect their level of expression or functiort bave not previously been associated
with TB susceptibility. Antigen processing correlatsignificantly with all three outputs
but more strongly at early time points than laberet points (Table 4.1). Likewise, MHC
expression correlated significantly with all threetputs, more strongly at early time
points than at later time points, but only in thxsence of IFN¢ a scenario resembling
PBMC protocols rather than infectian vivo, illustrating the overlapping effects of
changes in IFNrexpression and MHC expression (Table 4.1).

Most parameters displayed a similar degree of @mfte on both T cell responses
of TCR internalization and IFN-production (Table 4.1). One exception was the rate
constant for the internalization of free, activalBdR which correlated positively with
TCR internalization and negatively with IFNproduction. In the model internalized
TCRs are incapable of initiating signal transductamd therefore cease to contribute to

cytokine production.

4.3.2 Possible Confounding Effects Among Multiple Polymloisms

Sensitivity analysis demonstrated that multiplecesses, including several that
may vary due to genetic polymorphisms, govern tiieachics of antigen presentation
and subsequent T cell responses. To examine ititaracbetween polymorphisms in
more detail, we varied parameters in a pair-wisemaa and determined the extent to
which one parameter could compensate for anothgowerning the dynamics of antigen

presentation and T cell response.
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IEN-v expression and HLA binding polymorphisms can bmmensatory.The

polymorphisms in the antigen presentation pathwagtraommonly associated with TB
susceptibility affect the level of IFM-expressed by T cells and peptide-binding by MHC
(Bellamy 2005). The consequences of polymorphism®o genes acting simultaneously
on antigen presentation have not been examinedrasttperimentally or theoretically to
our knowledge. To simulate these polymorphismsyaréed parameters for IFNievels
and peptide-MHC binding affinity in the APC modeldaplotted those pairs of parameter
values resulting in approximately the same outpwels (Fig. 4.3A-C).

In the trade-off plots, three distinct regions d¢endiscerned (described here for
Fig. 4.3B, the case of TCR internalization). Fimt,low IFNy concentrations (< 18
M), TCR internalization is determined almost enyirey pMHC affinity and is invariant
to small changes in IFM-concentration, apparent as nearly vertical lineshe plots.
Under these conditions few of the IFNeceptors are bound, and small changes inyFN-
concentrations do not alter MHC expression. Segondlt intermediate IFN-
concentrations (between OM and 1¢° M), IFN-y has an effect on TCR internalization
nearly equal to the effect of pMHC affinity, appair@s diagonal lines on the plots. In
this region, for example, 80% TCR internalizati@m de achieved by pairing either®L0
M IFN-y and 10 M pMHC binding affinity (asp) or 10 M IFN-y and 1¢¢ M pMHC
binding affinity. Finally, at high IFN¢ concentrations (> 10M), TCR internalization is
again determined almost entirely by pMHC affiniggparent as nearly vertical lines on
the plots. Under these conditions most of the {FMeceptors are bound, and small
changes in IFNt concentrations do not affect near-maximal increase MHC
expression.

Superimposing experimental data on these plotsvallcealistic regions to be
defined. IFNy expression in PBMC from individuals with +874A an874T alleles have
been measured and found to differ by as much add34h the range of 18-10"* M

(Pravica et al. 1999, Lopez-Maderuelcet al. 2003, I. Aguilar-Delfin, personal
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communication). A wider range of IFfjl€oncentrations (between 1@nd 10 M) is
typically appliedin vitro; this wider range is shown as boxes in Fig. 4.3Alkewise,

the affinities of different peptide-MHC class Illroplexes have been measured and found
to vary largely between and 10 M (Rothbard and Gefter 1991, Petetsal. 2005).
These measurements make it possible to defineianren the trade-off plots in which
realistic combinations of parameters could be etgqukcThe plots show that at realistic
levels of IFNy expression, pMHC affinity has a stronger effectahoutputs, from
number of pMHC displayed through amount of cytokaneduced.

HLA expression and HLA binding polymorphisms cancdeenpensatoryThough

polymorphisms in HLA promoters have been identifiedne have yet been associated
with susceptibility to TB (Loui®t al. 1994, Cowellet al. 1998). One reason may be the
difficulty involved in measuring the total level ekpression of a particular HLA class II
variant within and on the surface of an APC sirmmédtausly. Another reason may be the
difficulty involved in attributing an associationtiv TB to the HLA promoter and not the
HLA coding sequence with which it is likely in linge disequilibrium. In the model
HLA expression and binding affinity are separateap®eters and were found to exert a
nearly equivalent influence on output values (BigD-F). For instance, a pMHC affinity
of 10° M when 16 MHC molecules were present resulted in nearlyséme degree of
TCR internalization (~80%) as a weaker pMHC affirify10® M when more (19 MHC
molecules were present (Fig. 4.3E). At lower levalsMHC expression (< POMHC
molecules per APC), however, pMHC affinity becom@sch more determinative of T
cell response. The possibility that higher levédlsxpression might compensate for lower
affinity binding has been raised previously in ramnan studies (Kaufman and
Salomonsen 1997, Wegnetral. 2006).

Antigen processing and HLA binding polymorphisma & compensatory.ike

polymorphisms affecting MHC expression, polymorpissaffecting antigen processing

have also been identified, though none have yat bBesociated with susceptibility to TB

119



(Taggart 1992). Polymorphisms affecting antigencpssing can be expected to either
increase or decrease the availability of antiggreptides available to bind MHC and
therefore affect antigen presentation and subseqUecell responses. In the model
variability in antigen processing was found to cemgate for variability in pMHC
affinity (Fig. 4.3G-I). For example, to elicit 5 pMFN-y production, an increase in the
rate constant for antigen processing (fronf 1® 10" h*) could be coupled with a
decrease in pMHC binding affinity (from 2ao 10® M, Fig. 4.31). The extent to which
polymorphisms in antigen processing cathepsinstfazymatic activity is not known
(Taggart 1992), but within a one-log range of tieel of activity observeth vitro, the
trade-off plots show that variability in cathepsiativity may affect antigen processing
and T cell response to the same extent as vatialnlpMHC affinity.

Optimal pMHC-TCR affinity affects TCR internalizati, not IFNy secretion.

The binding affinity of the pMHC-TCR tri-molecul@omplex has been shown to be an
important quantity in determining T cell respons&atsui et al. 1994). We examined
trade-offs between peptide-MHC and pMHC-TCR affest in eliciting different
responses (Fig. 4.4A-C). Because the parametggMdtC-TCR affinity does not occur
in the APC model, variability in pMHC-TCR affinitg§oes not affect pMHC numbers.
This lack of effect is apparent as vertical lin@stbe trade-off plot for this output (Fig.
4.4A). Coombset al. (2002) and Gonzaleet al. (2005) showed that under certain
conditions an optimal half-life for pMHC-TCR intetgon exists resulting in maximal
TCR internalization. Because our model of the Twels based on the model of Coombs
et al. (2002), it was not surprising to see an optimaldbig affinity for pMHC-TCR
appear on the trade-off plot for TCR internalizati(Fig. 4.4B). However, the peak
showing this optimal affinity was greatly lessersgdower pMHC affinities, particularly
when IFNy production was considered the output (Fig. 4.48¢leed, at biological

values (10-10° pMHC Kp), pMHC affinity was more determinative of T cefisponse
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than pMHC-TCR affinity, apparent as vertical lines the plots (Fig. 4.4B and 4.4C,
boxed regions).

Internalization of activated TCR is oppositely ebated with different T cell

responsesWe also examined trade-offs between peptide-MHfthigf and the rate
constant for TCR internalization (Fig. 4.4D-F). Whimost parameters in the model were
correlated consistently (i.e., either positively megatively) with the three different
responses, the parameter for internalization o, faetivated TCR differed in that it was
positively correlated with one response, TCR iraémation, and negatively correlated
with another, IFNy production (Fig. 4.4E-F, c.f. Table 4.1). Thiseeff persisted up to a
certain threshold value for the internalizatiorerabnstant (~1 1, above which other
processes such as pMHC binding became limitingsd@hmesults were obtained under the
assumption that internalized TCR do not continuesignal. This assumption has
previously been challenged for TCRs as well asotber receptors (Lutort al. 1997,
Burke et al. 2001). If internalized TCRs are assumed to coetisignaling in the model,
then vertical trade-off plots with pMHC affinity@observed and TCR internalization has

little effect on IFNy production (data not shown).

4.4 Discussion

A large body of epidemiological literature linkslpmorphisms in various host
genes to increased susceptibility to TB (c.f. Ba}ya2005, Fernando and Britton 2006,
Hill 2006). Mechanistic explanations are still lagk however, for how the
polymorphisms identified in the epidemiologicakliture increase susceptibility to TB.
We posed a fundamental question: how do polymonphign multiple genes acting
simultaneously affect immune functions such asganti presentation? For example,

considering that IFNrup-regulates MHC expression, could an allele d-{Fincrease
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the number of MHC molecules per APC enough to offi$eficiencies in binding
exhibited by a particular HLA allele to elicit tsame T cell response?

To approach these questions, we developed a neoali-smodel of antigen
presentation that links molecular and intracellidaents to cellular and multi-cellular
outcomes. By varying parameters for IlgMxpression, peptide-MHC binding, and other
processes, we were able to simulate changes ereliff processes that might occur due
to genetic variation or other causes and then amalhe sensitivity of antigen
presentation and T cell responses to these chaBgasitivity analysis showed that many
of the processes in the model exerted strong antparmble influences on the outputs.
For instance, both IFN-expression (as represented by the amount ofyiEdN-which
APC were initially exposed) and peptide-MHC bindingre found to significantly affect
all outputs in the model, both at the same scal¢hifwthe APC, intra-scale) and at
different scales (within the T cell, inter-scal@hese outputs included the number of
pMHC appearing on the APC surface, the degree & ir@ernalization, and the amount
of cytokine produced by T cells (Table 4.1).

We then analyzed interactions between geneticalyallle processes in more
detail using trade-off plots and found that chanigabese processes may compensate for
one another. Furthermore, we determined conditiom$er which such compensatory
relationships may exist. For instance, within aaiarrange of concentrations (110°
M), alterations in the amount of IFiNto which APCs were exposed affected T cell
response as strongly as alterations in pMHC ayfi(itig. 4.3B and 4.3C). Outside of this
range, however, pMHC affinity had a more dominaffeat on T cell response,
minimizing the contribution of IFNt In primary cultures of PBMC re-stimulated with
antigen, IFNy has been detected at concentrations of'1® 10° M. At these
concentrations polymorphisms in HLA may mask tifea$ of polymorphisms in IFN-
This interaction may account for inconsistenciethim epidemiological association data.

The +874A IFNy polymorphism results in decreased IfMxpression and has been
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associated with susceptibility to TB in some but alb studies (e.g., Moraet al. 2007).
Could variability in peptide-binding exhibited byffdrent HLA alleles be masking the
effect of IFNy polymorphisms in such studies? Jepsbal. (1997) found that variability
in the immune response to TB antigens was the tre$ulariability in both non-HLA
genes (such as IF)Y- and HLA genes. Given the significant presence HifA
polymorphisms in human populations, our study sstgydhat the accuracy and
consistency of association studies could be inexkdy comparing the frequencies of
concurrent pairs of polymorphisms (such as FN874A / HLA-DRB1*1501) in TB
patients rather single polymorphisms alone.

We also found that polymorphisms need not affeet game cell or the same
timescale (intra-scale) to be compensatory. Paemnetffecting different scales (inter-
scale) may be compensatory as well. For instanegtige-MHC affinity and pMHC-
TCR affinity have a compensatory relationship, titoghe first affects APCs while the
second affects the interface between APC and T Beltause TCRs are generated by
somatic recombination, TCRs do not exist in the &darmpopulation as alleles, though an
individual can be expected to express a diversefSECRs, each differing in its affinity
for a given pMHC ligand (Davist al. 1998). The importance of pMHC-TCR affinity in
determining T cell response has been demonstraeerimentally (Matsuet al. 1994,
McMahanet al. 2006). Previous models have suggested that trislean exist between
pMHC affinity and pMHC-TCR affinity, but the conébhs under which changes in one
of these processes can compensate for changeseimthier process has not been
previously defined (Ebe#dt al. 1995, Agrawal and Linderman 1996). Verificationoofr
results awaits measurements made on pMHC-TCR tieentar complexes.

In the future we hope to consider additional guestiregarding the dynamic
interplay between host and pathogen. A thresholdmum number of pMHC exists to
elicit a T cell response (Demotz al. 1990, Harding and Unanue 1990), and presumably

many combinations of parameter values (e.g., faigan dose, IFN¢ expression, and
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pMHC affinity) yield this threshold. Plotting thesembinations of values would produce
a surface (shown in gray in Fig. 4.5), above whatlhparameter values would yield a
successful T cell response (Fig. 4.5, point 1).hithe span of an infection, either host
or pathogen may alter one or more processes uimigtlyese parameters. The pathogen,
for example, might produce less antigen therebyigdiog a temporary advantage (Fig.
4.5, point 2). The host might then respond, indrepthe rate of another process, leading
to a point placed on the other side of the surf@dg. 4.5, point 3). This dynamic
interplay would resemble the “cycle of antigen fraBon” hypothesized to occur during
TB (Murray 1999). A path traced by these pointsbath sides of the surface would
represent this cycle, and the final point of theghp the resolution of the cycle, resulting

in either a successful immune response to TB @adis.
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Figure 4.1. Schematic of multi-scale model of antigen prederiaand T cell response.
(A) Overview of antigen presentation by APC and dll cesponse. (B) APC model
(input: IFN+y, exogenous antigen; output: surface pMHC). (C)€ll model (input:
surface pMHC from APC model; outputs: activated TARternalized TCR). (D)
Cytokine production model (input: activated TCR{pmu: cytokine, specifically IFNJ.
Abbreviations are as follows: Ag for antigen, pep &€xogenous peptide, self for self
peptide, B with subscripts 0 through N for pMHC-TC8mplexes in different stages of
activation, and TF for transcription factor. Diréstechanistic) reactions in the model are
indicated by solid arrows, while indirect (reguiafointeractions in the model are
indicated by dotted arrows. The names of cellutemgartments are italicized.
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Figure 4.2. The multi-scale model conforms to expected behlauvituring testing. (A)
Time course of pMHC on APC surface in the model) Bme course of TCR
internalization in T cells in the model. (C) Timeurse of IFNy production in the model.
(D) Dose-response curve for pMHC as antigen comagon is varied in the model and
experimental data. (E) Dose-response curve for Ti@&nalization as the number of
peptide-MHC on the APC surface is varied in the et@hd experimental data. (F) Dose-
response curve for IFMproduction as antigen concentration is variechan model and
experimental data. Parameter values for each siiomlare given in Supplementary
Information. When more than one curve was availdétden the experimental data, the
highest and lowest non-zero experimental curveg welected and are shown (E and F).
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Figure 4.3. Trade-off plots show multiple polymorphisms canmpnsate for
polymorphisms in pMHC binding to achieve the sarasponse. Pairs of parameter
values resulting in the same target output valeepéwtted. (A-C) IFNy expression (as
amount initially present) vs. peptide-MHC bindif®-F) MHC expression vs. peptide-
MHC binding. (G-1) Antigen processing vs. peptidédl binding. Target output values
were 100, 500, or 1000 pMHC on the APC surface; 149086, or 80% internalization of
total TCR; and 0.1 pM, 1 pM, or 5 pM IFNproduction corresponding to ~2, ~20, and
~200 pg/ml IFNy. Boxes delineate realistic biological ranges. #alof other parameters
used during simulations are provided in Supplemgritdormation.
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Figure 4.4. Trade-off plots show compensatory relationshipsvben APC and T cell
(inter-model) parameters. (A-C) pMHC-TCR affinitg.vpeptide-MHC binding. (D-F)
Internalization of free, activated TCR vs. peptMBIC binding. Target output values
were 100, 500, or 1000 pMHC on the APC surface; ,1490%6, or 80% internalization of
total TCR; and 0.1 pM, 1 pM, or 5 pM IFNproduction corresponding to ~2, ~20, and
~200 pg/ml IFNy. Boxes delineate reasonable biological rangesudglof other
parameters used during simulations are provid&upplementary Information.
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O 1. Ag presentation results in
T cell response, limiting
pathogen growth

Parameter 3

O

3.Host restores Ag presentation,
T cell response

~
. 2.Pathogen overcomes Ag presentation,
decreasing T cell response

Parameter o

Figure 4.5. Conceptualized multi-dimensional trade-off plotosing how host and
pathogen respond to efforts by the other to circembvand bolster antigen presentation,
respectively, during the course of an infectione Burface shown in gray represents all
parameters that lead to a threshold number of pM¥iCthe APC surface or its
corresponding T cell response. Points representbow@tions of parameter values
measured at time points throughout an infectiotth woints above and below the surface
representing a successful immune response andsdisespectively.
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Tables

Table4.1. Sensitivity analysis of the multi-scale model.

No IFN-y initially present IFNy initially present

pMHC! TCR IFN-y* pMHC!  TCR IFN-y?

| FN-y dose’ N/A N/A N/A 0.64 0.14 0.15

gﬂxgronf’ 0.41 0.19 0.15 029  (0.07)  (0.05)
gmr'jigle -0.80 -0.44 -0.40 -0.65 -0.29 -0.28
Ag dose 0.97 0.70 0.68 0.97 0.71 0.72
Ag

S ocessing 0.66 0.17 0.16 0.62 0.21 0.24
TCR N/A 0.55 0.42 N/A 0.55 0.34
expression

gmmgéTCR N/A -0.58 -0.60 N/A -0.56 -0.60
ggsg&ggR N/A 0.51 0.49 N/A 0.46 0.46
Activid free

TCR N/A (0.08) -0.24 N/A 0.07)  -0.23
internaliz®

'Si';':']gingn N/A N/A 0.56 N/A N/A 0.66

PRCC values measuring sensitivity of model outpafsarameter variability when IFi-

is either not present initially or present inityallakin to PBMC (monocyte-T cell) and
infection (macrophage-T helper cell) scenariospeetvely ficeis=1-10°, Vimegiun=1:10°

L, Koftmrc=2-10" s, kon-tcr=1-10° moleculé's™). Shown are PRCC values when 16
parameters in the model were varied (see Methadddtail). Parameters corresponding
to processes in which genetic polymorphisms haen lmbserved are indicated in bold.
Non-significant PRCC valuesa(= 0.05, Bonferroni-adjusted) are in parentheses.
!Number of pMHC on the APC surface 4 h after Ag eyse. ’Number of TCR
internalized by the T cell 5 h after APC-T cell tact. *Amount of IFNy produced by
the T cell 24 h after APC-T cell contaémount of IFN-y to which APCs are exposed
24 h prior to Ag exposuréNumber of MHC molecules initially expressed on the.
®As pMHC K, when pMHC dissociation rate constant was vari@hte constant for
antigen processindAs pMHC-TCR Ka when pMHC-TCR dissociation rate constant
was varied Rate constant for progressive activation of pMHCRTE@mplexes!’Rate
constant for TCR-induced IFNtranscription.
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45  Supplementary Information

451 APC Model Equations

Equations 4.1-4.16 constitute the APC model andidgestical to the equations

presented in Chargf al. (2005).

dG/dt = [kon-irny G Rs + Kottirn-y Ca] [Neeis/ (NA Vimedium)] — Kdeg-irny G [4.1]

dRs/dt = Kon-ieny G Re + Koftoien-y Co + Krecye Co [4.2]
dCe/dt = Kon-ieny G R — Koft-irn-y Ca = Krecye Co [4.3]
dCon/dt = kixn-c2 (1 + Ac2 Cg) — Keg-comCam [4.4]
dCy/dt = kisi-co Com — Kdeg-c2C2 [4.5]
dMw/dt = Kixn-m C2 = Kdeg-mm Mm [4.6]
dA*/dt = —=(Kpino Ncells / Vmedium) A* = Kgeg-ax A* [4.7]
dA/dt = (Kpino / Vmic) A* — Kgeg-a A — kiys A [4.8]

dE/dt = Kgeg-a A + (Kon-mic M E + Kofimic ME) [1/ (Na V)] — kys E [4.9]
dSdt = Ksource+ [Kdeg-mHc (Ms + Ms*) — Kon-mie M S+ Koftmne Msg] [1/

[4.10]
(Na Vmiie)] —kys S
dM/dt = kism (1 + v Cg) Mm = kon-mc M S+ Kott-mrc Ms = Kon-mic M 4.11]
E + Kofi-mic Me = Kout M + Kin M* = Kgeg-mrc M
dM*/dt = Koyt M — kin M* = Kgeg-mHc M* [4.12]
dMs/dt = kon-mrc M S— Koft-mic Ms = Kout Ms + kin Ms* = Kgeg-mHc Ms [4.13]
dMg*/dt = Kout Ms — kin Ms* — Kgeg-mrc Ms* [4.14]
dMe/dt = kon-mie M E = Kott-mne Me = Kout Me + kin ME* — Kgeg-mncMe  [4.15]
dMg*/dt = kout Mg — kin ME* — Kgeg-mHc Mg* [4.16]

Descriptions of the terms in each equation areigeavin Changet al. (2005).

Variables and parameters are defined, and valwssded, in Table 4.3 and 4.4.
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45.2 TCR Internalization Model Eguations

Equations 4.17-4.27 constitute the T cell model arel approximated from the

PDEs of Coombst al. (2002) that pertain to the contact zone.

dMES/dt = —Kon-g (T + Tactiv") Me” + kotr.g (Bo + By + Bo+ B3+ B+ Bs +

[4.17]
Bn) — Ag By — Kdeg-mrc,c Me©

dT/dt = — kons T° Me© + kot.g (Bo + B1+ By + B+ Byt Bs + By) [4.18]
dBy/dt = kon.s T Me® — (Koit.s + ko) Bo [4.19]
dBy/dt = k, Bo — (Kofr.s + kp) By [4.20]
dBy/dt =k, By — (Kfts + kp) Bz [4.21]
dBs/dt = k, By — (Koft.s + kp) Bs [4.22]
dBy/dt = k, Bs — (Kofr.s + Kp) Ba [4.23]
dBs/dt = ky B4 = (Kotr-6 + kp) Bs [4.24]
dBn/dt = Kon-g Tactiv™ MeS + Ky Bs — kott.8 By [4.25]
A Tactiv 70t = ~Kon-g Tactn” Me® + Koits B = At Tact” [4.26]
dTind/dt = At (Tactv + Tactv') + Mg By [4.27]

Briefly, Equations 4.17-4.19 describe the procesbgswhich free pMHC
complexes on the APC surface and free TCRs on tleellTsurface bind and form
PMHC-TCR tri-molecular complexes. (Superscript oresents molecular species
occurring in the contact zone between the APC andlll) Equations 4.20-4.25 describe
the progressive activation of pMHC-TCR tri-molecutaomplexes that occurs during
kinetic proofreading. Finally, Equations 4.26 an@®74 describe the association and
dissociation of fully activated TCRs to and from H&-TCR tri-molecular complexes
and the internalization of activated TCR in freebound forms. In this model, only the
contact zone of Coombs et al. (2002) was repredeated therefore terms representing

diffusion between the contact zone and other zan#dse Coombs model were excluded.
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Variables and parameters are defined, and paramaiiges provided, in Tables 4.5 and
4.6. The model recapitulated major features ofrttoelel of Coomb<st al. (2002) and
Gonzalezet al. (2005) such as the existence of an optimal pMH®R Talf-life for TCR

internalization (data not shown).

4.5.3 Cytokine Production Model Equations

Equations 4.28-4.31 describe the cytokine prodagbiartion of the T cell model.

dFaciv/dt = Kresp (Tactiv + Bn) F — KdecayFactiv [4.28]
F=1-Faciv [4.29]
dGy/dt = Kixn-ien-y Factiv = Kdeg-cmGm [4.30]
dG/dt = Kist-ien-y Gm [Ncelts / (Na Vimedium)] — Kdeg-irny G2 [4.31]

Briefly, Equation 4.28 represents the first-ordetivation and deactivation of a
transcription factor for cytokines produced by theell, e.g., NF«B, in units of fraction
total transcription factor. Equation 4.29 represdhe pool of un-activated transcription
factor. Equation 4.30 represents the first-ordentlsssis (i.e., transcription) and
degradation of cytokine mRNA and in particular #iesolute dependence of the synthesis
of cytokine mRNA on the presence of activated ttapson factor. Finally Equation
4.31 represents the first-order synthesis (i.@ndiation) and degradation of cytokine
protein. Like cytokine mRNA, cytokine protein inettmodel is completely dependent on
the presence of its activator, cytokine mRNA. Vhlés and parameters are defined, and

parameter values provided, in Tables 4.5 and 4.6.

45.4 Parameters for Figures and Tables

Parameter values and initial conditions used inisglEquations 4.1-4.31 of the

model were as provided in Tables 4.3-4.6 with tiilWwing exceptions:
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For Fig. 4.2: (a)-(Cncens=l * 1%, Vinediun=1 © 10° L, Go=0, Ai=1 - 10° M, Kes.
muc=2 + 10° s, kon-ter=1 - 10° moleculé's™. (d) neens=8 - 10°, Vimegium=1" 10° L. (€) kon-
rer=1- 10° moleculé's™. (f) neeis=2 - 10, ryo=2 - 10* L.

For Table 4.1nceis=1 + 10, Vinediun=d - 10° L, Koftmnc=2 - 10° s, kon.tcr=d - 10°
moleculé’s®. During LHS parameters that were defined in teoh®ther parameters
(Tables 4.4 and 4.6) were re-derived, with the ptioa of ky,, the MHC transcription
rate constant. Insteady, was varied during LHS, anégegvm the MHC mRNA
degradation rate constant, was re-derived.

For Fig. 4.3Ncens=1 - 1, Vinediun=1 - 10° L, Go=0, Aj=1 - 10° M, Koftmnc=2 - 10°
s*, kon-ter=1 - 10° moleculé's™.

For Fig. 4.4ncens=1 - 1, Vinediun=1 - 10° L, Go=0, Aj=1 - 10° M, Koftmnc=2 - 10°
s*, kon-er=1 - 10° moleculé's™.

For Table 4.7nceis=1 + 10, Vinediun=d - 10° L, Koftmpc=2 - 10° s, kon.tcr=d - 10°

moleculé's?.
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Table 4.2. Polymorphisms in antigen presentation affectirgreptibility to TB.

Odds ratio References

Gene Allele

HLA class Il DR2 (serotype)
DRB1*1501 (DR2
subtype)
DQB1*0503

IFN-y +874A

TAP TAP2*0201

1.8-2.7

2.7-7.9

1.6-3.8

2.4-4.3

Bothamleyet al. 1989,
Brahmajothiet al. 1991,
Rajalingamet al. 1996
Mehraet al. 1995, Ravikumaet
al. 1999, Teran-Escandan al.
1999, Sriramret al. 2001

Goldfeldet al. 1998
Lio et al.2002, Lopez-Maderuelo
et al.2003, Rossouwt al. 2003

Rajalingamet al. 1997, Gomeet
al. 2006

This polymorphism was not detected in the contogliation.

A more complete list of polymorphisms associatethWiB susceptibility can be found
elsewhere (Bellamy 2005, Fernando and Britton 2606,2006). Odds ratio presents a
measure of the relative risk associated with edletea
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Table4.3. Initial values in the APC model.

Variable Description Initial vald®@
G IFN-y concentration in medium Varies by experiment
Rs Free IFNy receptors per cell 1x 10
Co IFN-y complexes per cell 0
Com CIITA mRNA as fraction of basal level 1
C CIITA protein as fraction of basal level 1
Mm MHC® mRNA per cell 1x 10
A* Antigen concentration in medium Varies by experitnen
A Antigen concentration within MIIC 0
E Peptide concentration within MIIC 0
S Self peptide concentration within MIIC | 4 x1m®
M Free intracellular MHC per cell 5‘”18% ~ Poound Mior = 6.7
M* Free surface MHC per cell [1%4_ Pin) / Pin] Mo = 1.3 x
Ms Intracellular self-MHC complexes per ce Igp*%‘)i?dll (1 =Poound] Mo~
Mg* Surface self-MHC complexes per cell 51164 Pin) / Pin] M0~ 5.3
M Intracellular peptide-MHC complexes Pey

E cell
Mg* Surface peptide-MHC complexes percell 0
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MDwhen used in the definition of another parametevasiable, the subscript O refers to
the initial value of a particular variable suchttbeg.,Mg refers to the initial value dl.
Units are numbers of molecules per cell (APC orell)aunless otherwise indicated.
@MHC in this and following entries refers to MHC sall.

(3)ThiS value was estimated frorkd{g.Mm (MS,O + MS,O*) + Koff-MHC MS,O] | Kon-mnc Mo
(Changet al.2005).
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Table4.4. Parameters in the APC model.

Parameter Description Valte
Kon-1FNy IFN-y/ IFN-yR association rate constant 3Xw* ht
Koft-1IFN-y IFN-y/ IFN-yR dissociation rate constant 7 xMigt
Neells Number of APC in medium Varies by experiment

Vmedium Volume of culture medium Varies by experiment
Kdeg-IFNy IFN-y degradation rate constant 1 x“19*

Krecyc IFN-y receptor recycling rate constant 1 % hd

Kixn-c2 CIITA transcription rate constant lr(]‘?fg'czmczm'o =2x10

aca IFN-y-dependent CIITA scaling factor 1x10

Kdeg-c2m CIITA mRNA degradation rate constant 2 119t

Kesi-c2 CIITA mRNA translation rate constant l;d?cﬁzﬁnjpz /'Como= 1.4
Kdeg-c2 CIITA degradation rate constant 1.4 216

Kixn-m MHC transcription rate constant #‘fg‘“"m Mo = 4 x 10

Kdeg-Mm MHC mRNA degradation rate constant 4 X1t

Koino Pinocytosis rate 1x16Lh?

Kaegne ﬁrétagljﬁrr% degradation rate constant iT x 102 hil

VMiic Volume of MIIC compartment 4x16L

Kdeg-A Antigen processing rate constant 4 R1b

Kiys Lysosomal degradation rate constant 6 XHb

Ksource Self peptide synthesis rate constant ﬁ‘is $=24 x 10 M*
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Kdeg-MHC MHC degradation rate constant 2 X0

Kon-MHC Peptide-MHC association rate constant 7.2%M0 ht
Koff-MHC Peptide-MHC dissociation rate constant 7.2 %D

Kesi-m MHC mRNA translation rate constant I:I\]/Id;goM+H RASYCIS :+ 2N>I<*010j;
am IFN-y-dependent MHC scaling factor 1 x40

Kout MIIC-to-surface trafficking rate constant 4 x*19t

Kin Surface-to-MIIC trafficking rate constant ,E,,T:;/g_zpig)]lé’koﬁ'tl_ Kaeg-
Pin Proportion of MHC intracellular at time O 1/3

Pbound Proportion of MHC bound to self attime @  4/5

Mot Total number of MHC per cell 1x10

Dwhen used in the definition of another parametevasiable, the subscript O refers to
the initial value of a particular variable suchttheag.,M, refers to the initial value d¥l.
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Table4.5. Initial values in the T cell models.

Variable Descriptiof? Initial value
MC zPoer?éide-MHC complexes within contach
T¢ Free TCR within contact zone, inactive (1%9/%”08”) Tt = 4.2 %
Bo Peptide-MHC-TCR complex, inactive 0
B: Peptide-MHC-TCR complex, state 1 0
B> Peptide-MHC-TCR complex, state 2 0
Bs Peptide-MHC-TCR complex, state 3 0
By Peptide-MHC-TCR complex, state 4 0
Bs Peptide-MHC-TCR complex, state 5 0
Bn Peptide-MHC-TCR complex, activated 0
Tactiv- Free TCR within contact zone, activated 0
Tint Internalized TCR 0
F Inactive NFkB, fraction of total NF«B 1
Factiv Activated NFkB, fraction of total NFkB | O
Gnm IFN-y mRNA 0
G IFN-y secreted 0

Bynits are numbers of molecules per cell (APC oell) einless otherwise indicated.
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Table4.6. Parameters in the T cell models.

Parameter Description Valtie
Oc Surface area of APC-T cell contact zong x ¥0' m?
Oiot-APC Total surface area of APC 510 m?
Kon-B PMHC-TCR association rate constant 8.60° h* moleculé*
Ko-B PMHC-TCR dissociation rate constant 380" ht
ot Teell Total surface area of T cell %5100 m?
7] TCR deactivation rate constant Bh
Ko TCR activation rate constant QL0 ht
At Free TCR internalization rate constant OB st
As Bound TCR internalization rate constant 1080 s*
Kresp NF-kB activation rate constant ¥510° b moleculé'
Kdecay NF-kB deactivation rate constant x110?* ht
Kixn-IFN-y IFN-y transcription rate constant Kdeg-omGmo~ 1 x 107 h*
Kdeg-Gm IFN-y mRNA degradation rate constant| x10%h™*
Kesl-1EN-y IFN-y translation rate constant x610"
Tiot Total number of TCR per cell 810

Dwhen used in the definition of another parametevasiable, the subscript O refers to
the initial value of a particular variable suchttheag.,M, refers to the initial value d¥l.

The values of most parameters are identical tgolvameters in Coombs et al. (2002),
including surface areas of the APC and T cellsfaser area of the contact zone, TCR
activation and de-activation rate constants, anR TiGternalization rate constants.
Association and dissociation rate constants forpi&IC-TCR complex were estimated
from values measurad vitro (reviewed in Davi®t al. 1998). The NF«B activation rate
constant was estimated by summing constituentaatstants d4, d5, d6, r4, r5, and r6
from Hoffmannet al. (2002). The NFB de-activation rate constant was estimated by
fitting the time course of activated NdB in the model to an experimentally observed
peak in NFkB levels occurring approximately 1 h after actigati(Hoffmannet al.
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2002). The IFNy transcription rate constant and mRNA degradataia constant were
estimated by fitting the time course of cytokiné&ltf mRNA to match an experimentally
observed peak in expression approximately 20 hafies exposure to APC (Listvanova
et al. 2003). The IFNy translation rate constant was estimated by fitthrggtime course

of cytokine IFNy to match an experimentally observed peak in pnd&siels detected by
ELISA approximately 96 hours after exposure to ARiStvanovaet al.2003).
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Table4.7. PRCC values for all 16 parameters that were vatigthg sensitivity analysis.

Biological No IFN-y initially present IFNy initially present
processffactor et | TcR | IEN4? | pMHCT | TCR | IEN-Y
| FN-y dose® N/A N/A N/A 0.64 0.14 0.15
MHC 0.41 0.19 0.15 0.29 0.07)  (0.05
expression
PMHC_ -0.80 -0.44 -0.40 065 -029] -0.28
affinity
Ag dose 0.97 0.70 0.68 0.97 0.71 0.72
Ag

- 0.66 0.17 0.16 0.62 0.21 0.24
processing
pPMHC export
D o 0.53 0.06) | (0.08) 0.16 (0.05)  (0.06
pMHC deg.
within N/A .0.26 .0.20 N/A 025 | -0.20
contact
TCR N/A 0.55 0.42 N/A 0.55 0.34
expression
PMHC-TCR | /A -0.58 -0.60 N/A 056 | -0.60
affinity
PMHC-TCR | /A 0.51 0.49 N/A 0.46 0.46
activatior?
Act'd,
freeTCR N/A (-0.10) | -0.15 N/A 0.07) | (0.01)
internal®
Act'd, bound
TCR N/A (0.08) -0.24 N/A 0.07) | -0.23
internal*!
IFN-y N/A N/A 0.56 N/A N/A 0.66
signaling
'(;'rans_. factor \/a NA | (0.04) | NIA NA | (-0.07)
eactivation
IFN-y mRNA | /A N/A 0.56 N/A N/A 0.66
synthesis
IFN-y mRNA
degradation | VA N/A (0.03) N/A N/A | (0.03)

Parameters corresponding to processes in whichtigepelymorphisms have been
observed are indicated in bold. Non-significant RR@alues ¢=0.05, Bonferroni-
adjusted) are shown in parentheses. N/A is indicdte parameters representing
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processes that occur later in the antigen presentpathway than the indicated output
and therefore do not affect output value.

Number of pMHC on the APC surface 4 h after Ag exge

“Number of TCR internalized by the T cell 5 h a#®¥C-T cell contact
3Amount of IFNy produced by the T cell 24 h after APC-T cell conta
“Amount of IFNy to which APCs are exposed 24 h prior to Ag exp@sur
*Number of MHC molecules initially expressed on &RC

®As pMHC Kp when peptide-MHC dissociation rate constant waieda
"Rate constant for antigen processing

8As pMHC-TCRKp when pMHC-TCR dissociation rate constant was darie
°Rate constant for progressive activation of pMHCORT@mplexes

%Rate constant for internalization of bound, ac#dt CR

YRate constant for internalization of free, actigafé€CR

1’Rate constant for TCR-induced IRNranscription
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CHAPTER S

Conclusions

51 Summary

Antigen presentation, one of the key events initiiteation and maintenance of
the immune response, offers many possible averuesearch for both experimentalists
and theoreticians. In the preceding chapters Irdest my efforts to pursue three such
avenues — how best to represent events at thelareioale (tracking the number of
pMHC on the APC surface), then at the moleculates@aredicting binding between
peptides and MHC class Il molecules), and finaliyhee multi-cellular scale (between
APC and T cell leading up to T cell activation).téf describing how each model was
developed, | showed how | applied each model tavanguestions related to the immune

response to infection, particularly wikh. tuberculosis

5.1.1 APC Model

In the case of the cellular-scale model, | askeg¢ Wh tuberculosishad been
found to use multiple mechanisms to inhibit antigeresentation, each targeting a
different intracellular process (Fig. 5.1). The AP@odel suggested that these
mechanisms differed in their effects. Some mechasisvere effective at stymieing
antigen presentation almost immediately but coddteercome by the provision of an
activating cytokine, IFN by other cells. Targeting the ability of macrogés to process

antigens into smaller peptides could be consideveé such mechanism. Other
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mechanisms required a delay of several hours te haveffect on antigen presentation
but were more effective at longer timescales. Meigmas targeting MHC class |l
expression, for example, required at least tenhtuhave an effect, consistent with the
length of time required for protein synthesM. tuberculosismay therefore employ
multiple mechanisms to a complementary rather tmaerely redundant effect.
Furthermore, the application of external IFNR experimental protocols may interfere
with the ability to detecM. tuberculosismechanisms that do not target MHC class I

expression.

5.1.2 Peptide-MHC Binding Model

At the molecular scale, | asked whether differenicepeptide length affected
binding affinity to MHC class II, and if so, whethimcorporating these differences into
existing binding prediction algorithms could impeoalgorithm performance (Fig. 5.1).
After analyzing binding data from currently availlatabases, | found that a significant
and nonlinear relationship existed between lengtth affinity. This relationship was
allele-specific and often revealed an optimal lanfgr maximizing binding affinity, a
finding that may have implications for the studyamitigens from pathogens suchMs
tuberculosis or for vaccine design (described in more detaillob® Furthermore,
incorporating information about peptide length inbinding prediction algorithms
consistently improved performance, whether throtlyh use of these relationships or
alternatively through the use of a statistical rodtlior reconciling predicted affinities
made on multiple binding registers (i.e., 9mer wwvd that engage the MHC class Il

molecule directly) within longer peptides.
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5.1.3 T Cell Model

Finally, at the multi-cellular scale, | asked whathmultiple polymorphisms
affecting different steps in the antigen preseomatpathway might interact, either
canceling or intensifying their effects on the aube. To answer this question, |
extended the APC model to include the T cell respsrof TCR down-regulation and
cytokine secretion and then determined whether amder what conditions a
polymorphism in one gene might compensate for grpotphism in another gene (Fig.
55.1). For example, polymorphisms have been obsarvédth IFNy non-coding and
MHC class Il coding sequences, affecting IlifNexpression and pMHC affinity,
respectively. In the model, increased If¢Mxpression could compensate for decreased
pMHC affinity to maintain the same level of cytog&irsecretion but only when IFN-
levels exceeded a lower threshold. Below this tiolel changes in pMHC affinity had a
much stronger effect on the level of cytokine stkone The finding that polymorphisms
can have similar effects on antigen presentationldc@xplain discrepancies in the
epidemiological literature where some polymorphisfesy., the MHC class Il allele

DRB1*1501) are inconsistently associated with dieesusceptibility.

5.2 FutureWork: Additionsto the Models

5.2.1 More Detailed Representation Mf tuberculosis

While antigen presentation is largely the produchast processes, the pathogen
ultimately plays a role by supplying antigenic pées. In each of the sub-models
constituting the multi-scale modeM. tuberculosishas been represented as a static
guantity. For instance, in the APC model, the degreinhibition of a particular process
is assumed to be proportional to the initial numbérbacilli to which the APC is

exposed.
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Adding M. tuberculosisas a dynamic variable would allow presentatiorbéo
more realistically represented by the model (FidC). Because the number bf.
tuberculosisbacilli infecting any given APC is discrete ankkly to be low but the ODE
representation of the APC model assumes continuausbles, the most effective way to
incorporateM. tuberculosisinto the model would be to use some continuousiyable
guantity as a proxy for intracellular bacterial aean One such quantity might be the
amount of a particular antigen secreted by thellnaci

Adding M. tuberculosisas a dynamic variable into the model would aldoval
feedback to be more realistically represented byntlodel. Since T cell secretion of IFN-
y was represented in the model and N-Bpecific parameter values were used, it is
possible to use the output of the T cell modelrasdditional input for the APC model.
In doing so, the model would depict the increasmghcity of macrophages at the site of
infection to present antigen after being exposee@ftector T cells that have been re-
stimulated by other macrophages.

However, in addition to its effects on MHC expressilFNy also increases the
killing capacity of macrophages. The effect thalirhg M. tuberculosisbacilli has on the
availability of antigen is currently unknown. Whitdling may result in the liberation of
proteins formerly contained within the bacilli aimtrease the antigen pool, killing may
also reduce the quantity of proteins that were @&tynbeing secreted and decrease the
antigen pool. In either case, the sum effect ofitadtl exposure to IFN-may be a
higher capacity to present antigen but a changagdesmpool.

By representing the growth stateMf tuberculosisand availability of antigen as
dynamic quantities, it may be possible to simulatdgigen presentation on longer
timescales. Currently the multi-scale model represevents to approximately one day.
However, since the doubling time of tiv tuberculosisbacillus and the lifespan of
macrophages are both on the scale of days, anpigggentation may extend to longer

timescales than currently represented. Murray (1989pothesized that during
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tuberculosis a “cycle of antigen frustration” ocgun which periods of greater antigen
availability alternate with periods of lesser aahgavailability. Each period of greater
antigen availability induces a T cell response antimicrobial activity leading to a
period of lesser antigen availability during whidhe bacilli recover undetected by
immune surveillance. A model representMgtuberculosisas a dynamic variable would
allow virtual experiments of the hypothesis of Mayr(1999) to be performed, such as
the addition of inhibitors of mycobacterial grovittat would presumably slow the period
of oscillations in the cycle. The results couldrthee used to design new protocolsifor

vitro experiments.

5.2.2 More Detailed Representation of Particular Procgsse

In the APC and T cell models, most processes wageesented with mass-action
or first-order kinetics, depending on whether thecpss involved two molecular species
in the model or only one, respectively. While mdegailed mechanistic representations
are possible for nearly all of the processes isg¢hmodels, it was assumed that on the
timescales of interest (typically hours after expesto antigen) the differences between
such representations and the ones actually us#teimodels would be negligible. For
instance, Witt and McConnell (1992) proposed thaptigle-MHC binding is more
accurately described using a two-step binding masha However, this mechanism
would be expected to produce the same output asirtier, one-step mechanism hours
after the binding reaction, when pMHC on the AP@axe was read as output. Likewise,
peptide-MHC binding to TCR has also been hypotleesip involve a two-step binding
mechanism (Wt al. 2002), but the additional complexity in this modehot expected
to yield any difference in output on the timescale hours. In addition, the data

supporting more complicated binding mechanismssoasetimes been controversial, as
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in the case of the two-step peptide-MHC binding ha@ism which has been disputed
(Berezhkovskiy 1998).

Nevertheless, in some cases it may be possiblaitoagiditional insights from the
model using more complicated representations, @&dpewhen different mechanisms of
regulation are possible (Fig. 5.1C). For instanoethe APC model endocytosis was
represented in a general way, involving only oneagellular compartment, the MHC
class Il compartment (MIIC). However, different goantments may play distinct roles
during antigen presentation, particularly durinfgeation with M. tuberculosis While M.
tuberculosisresides in specialized phagosomes where accédslt class Il molecules
is impaired, a subset of antigens is transferreendosomes accessible to MHC class I
molecules (Beatty and Russell 2000, Gehrietg al. 2003). Therefore, additional
selectivity is likely conferred by the path thatigans ofM. tuberculosigraverse within
the macrophage, and some antigens may be presembeel quickly than others.
Additional steps may be introduced into the APC eldd account for these disease-

specific differences in endocytosis.

5.3  FutureWork: Integration with Other Models

5.3.1 Models of Antigen Presentation by MHC Class |

Exceptions to the rule that MHC class | binds angyfrom the cytoplasm (i.e.,
endogenous antigens) while MHC class Il binds amsgfrom the extracellular space
(i.e., exogenous antigens) have been identified, anlack of complete knowledge
regarding the mechanisms involved presents an tappty for models to provide
insights.

During cross-presentation, exogenous antigens gagess to MHC class |
molecules and are presented as peptide-MHC classnplexes on the APC surface

(Rock and Shen 2005). While a detailed mechaniseyed to be elucidated, cross-
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presentation appears to follow the internalizabbexogenous antigens via phagosomes
that later fuse with the endoplasmic reticulum (EBuermonprezt al. 2003, Houdeet

al. 2003). Once in the ER exogenous antigens are maddy treated like endogenous
antigens and then exported into the cytoplasm,gased by the proteasome, reintroduced
into the ER by the transporter associated withgantipresentation (TAP), and bound to
MHC class | molecules. Cross-presentation has lskewn to occur for antigens from
several bacterial pathogens includMgtuberculosis

Antigens fromM. tuberculosisare therefore likely to be presented on the sarfac
of APCs with both MHC class | and MHC class Il nmlies. To what extent are antigens
presented via one type of pMHC complex versus ther@ To answer this question, the
APC model may be extended to account for the Idsantigens due to the cross-
presentation pathway (Fig. 5.1C). This may be agisimed most directly with
additional first-order loss terms in the ODE modeaslsuming that a constant proportion of
antigen is shunted away from MHC class ll-accesstbimpartments.

However, it may be interesting to first determinbether the antigens lost to
cross-presentation and the MHC class | pathwaycapable of being bound by MHC
class Il. The two pathways may be non-competingnifigens destined for the cross-
presentation pathway are enriched in MHC classndlibg sequences but deficient in
MHC class lI-binding sequences. Because the argigéM. tuberculosisare normally
not considered candidates for binding MHC classdfudy has not been done to identify
possible MHC class I-binding sequences within Mhetuberculosisproteome, though a
similar study has been done to identify MHC clddsinding sequences (McMurmst al.
2005). Models that represent selectivity at thestaf TAP binding and pMHC binding
are available and could be appliedMo tuberculosisproteome (Petrovsky and Brusic

2004).
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5.3.2 Larger-Scale Models of the Immune System

Of the three main types of professional APC tha esmmonly distinguished
(dendritic cells, macrophages, and B cells), mdtagps are most closely represented by
the APC model. The majority of the parameters s APC model were derived from
vitro murine macrophage data, and initial testing wasop®ed against othen vitro
macrophage data. Because the steps involved in MHSs I[I-mediated antigen
presentation are common to all APC cell types, hanethe structure and mathematical
representation in the model are likely to be cdrfecother cell types as well. Indeed, the
APC and T cell models were shown to reproduce liotle course and dose-response
data from a variety of experiments. Dendritic cdiisve been found to differ from
macrophages with respect to two antigen presentagi@vant parameters, the level of
MHC expression and rate of antigen uptake (Inabéd @treinman 1985, Inabet al.
1997). Using different values for these parametesy be sufficient to distinguish these
two cell types in the APC model as well as in thdtirscale model.

Accounting for differences between dendritic cellsd macrophages may help
extend the model to two different instances of genti presentation during the course of
an immune response: antigen presentation to naée#l§ in the lymph node by dendritic
cells and antigen presentation to effector T calla site of infection by macrophages.
Both instances are likely to play important rolaginlg the immune response .
tuberculosis especially given the additional role of macrogs@gs the preferred host
cells to theM. tuberculosigacillus. In conjunction with a more realistic repentation of
M. tuberculosisgrowth and antigen availability (discussed abawe Section 5.2.1),
distinct models of the dendritic cell and the matrage would allow additional, stage-
specific questions to be approached. For exampke ttee mechanisms by whidi.
tuberculosisinhibits antigen presentation more likely to bieetive on the timescales of

the initial instance of antigen presentation (wklendritic cells commingle with naive T
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cells shortly after infection) or the timescaleslater instances of antigen presentation
(when macrophages encounter and receive stimul&tiom effector T cells)? Likewise,
are differences in peptide-MHC affinity resultingrin differences between MHC alleles
more likely to play a role in initial or later imstces of antigen presentation?
Comparisons of the results from dendritic cell andcrophage versions of the APC
model and larger multi-scale model could providesvears to these questions and
experimentally testable predictions.

In addition, representation of additional cell typeould help the current model to
be integrated with other larger-scale models ofgant presentation (Fig. 5.1C). Models
of both the site of infection during tuberculosiiahe lymph node have been developed
by Kirschner and colleagues (Segovia-Juatal. 2004, unpublished data). In both of
these models, APCs and T cells are representeid@sté objects and their interaction is
probabilistic. An APC that displays more pMHC coey#s on its surface would
presumably either have a higher probability of ecessful interaction with a T cell or be
able to elicit a stronger T cell response followanguccessful interaction (Bekkhouadta
al. 1984). The probability of a successful APC-T deteraction is a static quantity in
these larger-scale models, but using the outptiteomulti-scale model of the APC and T
cell presented herein (Fig. 5.1B), this probabitibuld be set as a dynamic quantity that

more accurately reflects the infection scenario.

54  Applicationsto Disease

5.4.1 Mechanisms of HLA-Disease Association

Several alleles of MHC class Il have been founbtdaither over-represented or
under-represented in patients with certain diseas&give to healthy controls and
thereby associated with either susceptibility @igi&nce to these diseases, respectively.

For instance, in the case of tuberculosis, MHCsclhalleles of the HLA-DR2 and HLA-
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DR3 serotypes have been associated with suscéptibiid resistance, respectively.
Although the mechanisms underlying these assoomtiare not known, several
hypotheses exist (Vukmanovet al. 2003). In the case of associations with infectious
diseases, the most direct hypotheses concern they alb the MHC variants to bind
peptides from the antigens of the pathogen and ahdmmune response.

Here | show preliminary data for how two possiblgpdtheses for MHC-TB
associations may be tested using statistical aeslgad models (Fig. 5.1C). According to
one hypothesis, an MHC variant associated witheqigality may bind a broad range of
peptides with lower affinity than MHC variants assed with resistance or other MHC
variants in the population. If this were the cakent the average affinity for the
susceptibility allele, as calculated from a databatspMHC affinities, would be expected
to be lower than the average affinity for the reegise allele. In the case of HLA-DR2
and HLA-DR3, the opposite was found to be trudaut, peptides binding HLA-DR2 do
so with a significantly higher average affinity thaeptides that bind HLA-DR3, even
when affinities for repeated and highly sequencatar peptides have been removed
(Fig. 5.2).

Another hypothesis is that the allele associateith wusceptibility, HLA-DR2,
binds only disease-relevant peptides with loweingi¢s than the allele associated with
resistance, HLA-DR3. To investigate this possipjlitpredicted affinities for all possible
9mers from oneéM. tuberculosisantigen found to be secreted by the bacillus gh hi
levels, Ag85B, with the two MHC alleles, HLA-DR2 &aHLA-DR3. The predictions
were generated using a previously published bindiggrithm, ISC-PLS (Doytchinova
and Flower 2003). The average affinity of eachlalfer the same set of peptides could
then be compared statistically as well as visudlize a plot. The second hypothesis, that
an MHC allele associated with susceptibility bittisease-relevant peptides with lower

affinity than a non-associated MHC allele, alsoéar out to be false in this case: HLA-
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DR2 was not predicted to bind 9mers frdvin tuberculosisAg85B with lower affinity
than HLA-DR3 (Fig. 5.3).

Nevertheless, these preliminary data show howssitzdl models of peptide-MHC
binding may be used to test hypotheses regarding-tsease associations. As part of
future work, the model used here and other modeddigting pMHC affinity may be

applied to a wider range M. tuberculosisantigens and HLA alleles.

5.4.2 Vaccine Design: rBCG30

Several new vaccines to tuberculosis are curréntigevelopment (reviewed in
Martin 2005). Among these one strategy has beemgineer the only vaccine in current
use, the BCG strain &fl. bovis to over-express particular antigens frdntuberculosis
to elicit a more lasting and more directed immuesponse. In one of these candidate
vaccines, rBCG30M. bovis BCG has been engineered to express Ag85B fikdm
tuberculosis(Horwitz 2005). Currently in phase | clinical t8athis candidate vaccine
and others like it offer an opportunity for modefsantigen presentation and the immune
response to answer key questions.

One question that might arise, particularly if rB&BIGprogress to phase Il clinical
trials and a larger test population, is how welktbandidate vaccine performs in a
heterogeneous population displaying polymorphismsmiany genes. Some of these
polymorphisms (such as IFN-+874T leading to increased IRNexpression) may
predispose individuals to a stronger immune respowsile other polymorphisms may
have the opposite effect. Different MHC variantegant in the population are likely to
vary in their ability to bind peptides from the igein being over-expressed, and these
differences in binding affinity may also affect theagnitude of the immune response.
With the refinements discussed above, such as aangign representation oM.

tuberculosis the multi-scale model could incorporate inforraatisuch as the observed
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allele frequencies for antigen presentation-releggmes in a population and the dose at
which a vaccine is administered and predict thegeanf T cell responses and the
frequency of each response that might be expettethis way the multi-scale model
may offer not only a tool to understaimdvitro results in the laboratory but also a tool to

help develop new treatments to diseases such asctubsis.
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Figure 5.1. Multi-scale model of antigen presentatidn.Overview of the three models.
B, Schematized output of the three mod€lsOverview of applications and future work
to be done with the multi-scale model.
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Figure 5.2. Analysis of affinities for TB-associated HLA aksl. A, Affinities of peptides
for HLA-DR2, associated with TB susceptibilit$, Affinities of peptides for HLA-DR3,
associated with TB resistance. In both cases,iadégnfor homologous peptides were first
removed using UniqueProt (Mika and Rost 2003)Cso = -log ICso approximates
association equilibrium constald.
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Figure 5.3. Predicted affinities of TB-associated HLA alleles Ag85B 9mers. 9mers
with human homology are indicated in crosshaire T3C-PLS algorithm (Doytchinova
and Flower 2003) was used to make predictions aferg trained on DR2- and DR3-
binding peptides from AntiJen from which homologgeptides had been removed using
UniqueProt (Mika and Rost 2003). The protein seqaesf Ag85B was obtained from
the NCBI Entrez Protein database (www.ncbi.nimgoki/sites/entrez, accession
#AA062005), and predictions were made on all péass@iers within Ag85B. Ag95B
9mers with human homology were identified usingstgavith default parameter settings
on the NCBI website (www.ncbi.nlm.nih.gov/blast) non-redundant protein sequences
from human.
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