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ABSTRACT 

Antigen presentation is the process by which cells of the immune system display 

peptides from pathogens on their surface after binding the peptides to major 

histocompatibility complex (MHC) molecules. T helper cells recognize peptides from 

pathogens in this context then secrete cytokines that activate other cells, initiating an 

immune response. Antigen presentation is therefore a requisite for immunity to several 

pathogens including Mycobacterium tuberculosis (Mtb). To approach questions related to 

antigen presentation and disease, I represented antigen presentation at different scales 

using a series of mathematical and statistical models. At the molecular scale, I asked 

whether heterogeneity in peptide length affects binding to MHC class II, the class of 

MHC responsible for binding peptides from bacteria such as Mtb. By developing 

statistical models of peptide-MHC binding, I found that length has a nonlinear effect on 

binding affinity and that this information, or a more accurate representation of register 

shifting, could improve the accuracy of binding prediction. At the cellular scale, I asked 

why Mtb possesses multiple mechanisms to inhibit antigen presentation on the cell 

surface. My mathematical model shows that these mechanisms may be acting on different 

timescales and therefore complementary rather than merely redundant. Finally, at the 

multi-cellular level, I asked how polymorphisms in multiple genes related to antigen 

presentation might affect T cell response and susceptibility to infectious diseases such as 

tuberculosis. Using a multi-scale model representing both an antigen-presenting cell and 

T cell, I found that polymorphisms in two different genes may exert the same influence 

on the output, potentially canceling out their effects. Future work with these models may 



xiii 

include evaluation of candidate peptide-based vaccines to ensure high-affinity binding, T 

cell response, and broad efficacy in diverse populations. 
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CHAPTER 1 

Introduction 

Antigen presentation is the process by which proteins from pathogens are partially 

degraded and then displayed (i.e., presented) on the surfaces of cells in complex with 

major histocompatibility complex (MHC) molecules. Once bound to MHC molecules, 

peptides can be recognized by cognate T cells which then respond by either killing the 

original antigen-presenting cell (APC) or activating the APC and other cells. Proteins that 

elicit an immune response are known as antigens. While antigen presentation may appear 

to be dictated by events at the molecular and sub-cellular scales of the APC, events at 

other scales also affect the outcome (Fig. 1.1). For instance, once peptides have been 

bound by MHC molecules and trafficked to the surface of the APC, additional events are 

required by the T cell to result in a functional response, starting with the engagement of 

peptide-MHC (pMHC) complexes by T cell receptors (TCR) on the T cell surface. 

Activated TCRs then initiate a signaling cascade within the T cell, resulting in the 

elicitation of either cytotoxic molecules or activating cytokines including interleukin-2 

(IL-2) and interferon-γ (IFN-γ). Therefore, at a minimum, a representation of the events 

of antigen presentation requires consideration of molecular and sub-cellular events 

occurring in APCs and T cells. In addition, the larger tissue- or organ system-scale 

context may also be important in determining the outcome of antigen presentation, as this 
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environment may enhance or interfere with the ability of APCs to interact with T cells 

(Fig. 1.1). 

How best to represent events at these different scales using the tools of 

mathematical and statistical modeling and how then to apply these tools to the study of 

infectious diseases remain open questions. A vast amount of experimental research has 

been done, and continues to be done, to elucidate the steps involved in antigen 

presentation. At the same time, computational models of one or more steps in antigen 

presentation have been developed. I review previous efforts in both experimental and 

computational areas in this chapter and then describe my efforts to improve on 

computational models and apply them to one infectious disease, tuberculosis, in 

subsequent chapters. 

1.1 Overview of Antigen Presentation 

Two main pathways for antigen presentation exist, depending on the source of the 

antigen. All nucleated human (and mammalian) cells perform antigen presentation to 

some extent by expressing one type of MHC molecule, MHC class I, which binds 

peptides derived primarily from proteins in the cytoplasm (Yewdell 2007). However, 

some cells are also capable of presenting peptides from proteins found in the extracellular 

medium by expressing another type of MHC molecule, MHC class II (Trombetta and 

Mellman 2005). These specialized cells include macrophages, dendritic cells, and B cells, 

constituting the professional APC. [A recently discovered pathway for presenting lipid 

antigens, the CD1 pathway, will not be considered here. See Mahanty et al. (2003) for a 

review of this topic.] 

For the most part the two pathways for antigen presentation remain distinct within 

the cell. Proteins found in the cytoplasm, including those produced by most viruses, are 

considered endogenous and degraded (i.e., processed) into shorter peptides by the main 
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protein turnover machinery of the cell, the proteasome. A subset of these peptides is 

transported into the endoplasmic reticulum (ER) by the transporter associated with 

antigen processing (TAP). Within the ER peptides of a limited range of lengths (8-10 

amino acids) bind MHC class I molecules, and the resulting complexes are trafficked to 

the cell surface. 

In contrast antigens from pathogens that do not reside in the cytoplasm, including 

most bacteria and parasites, are considered exogenous and taken up and processed in the 

endosomal pathway of the APC. Within the endosomal pathway cathepsin proteases 

become activated by the increasingly acidified environment and cleave proteins into 

shorter peptides. Peptides of various lengths (often greater than 9 amino acids) then bind 

MHC class II molecules later in the pathway in a specialized vacuole known as the MHC 

class II compartment (MIIC). Peptide-MHC class II complexes are then trafficked to the 

cell surface as in the case of MHC class I. In both cases the final stage is recognition of 

the pMHC complexes by TCRs found on the surfaces of CD8+ cytotoxic T cells and 

CD4+ helper T cells which are specific for MHC class I and MHC class II, respectively. 

Although the two pathways are for the most part distinct, exceptions have been 

found. For instance, during cross-presentation, exogenous antigens gain access to MHC 

class I molecules within APCs and yield peptide-MHC class I complexes on the APC 

surface that stimulate CD8+ T cells. Some aspects of cross-presentation remain 

controversial such as the degree to which it occurs and the instances in which it may be 

important to the immune response (see Rock and Shen 2005 for a recent review). 

1.2 Biology of the Molecular Scale: Peptide-MHC Binding 

One theme that arises from this cursory overview of the two antigen presentation 

pathways is the centrality of the peptide-MHC binding event. MHC class I and MHC 

class II molecules bind peptides in a similar manner, and this similarity can be traced to 
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similarities in the structures of the two molecules (Jones 1997). Both MHC class I and 

MHC class II molecules comprise heterodimers of polypeptides. In the case of MHC 

class I, a single transmembrane polypeptide (designated the α chain) is coupled to a 

smaller accessory protein (β2 microglobulin), and the peptide-binding groove is formed 

between two domains of the transmembrane polypeptide (α1 and α2). In the case of MHC 

class II, two transmembrane polypeptides of similar size are coupled (designed α and β 

chains), and the peptide-binding groove is formed by overlap of the membrane-distal 

domains of the two polypeptides (α1 and β1). 

In addition to overall structural similarities, the peptide-binding grooves of the 

two classes of MHC molecule are also similar (Jones 1997). In both cases, eight β-

pleated sheets and two α-helices form the bottom and walls of the peptide-binding 

groove, respectively. Pockets within both grooves bind amino acids at select positions 

within the peptides which are similarly extended in an α-helical conformation in both 

cases. However, in the case of MHC class I, the termini of the peptide attach at both ends 

of the peptide-binding groove, restricting peptide length to between 8 and 10 amino 

acids. In contrast, the ends of the MHC class II peptide-binding groove are open, 

allowing peptides to be of a greater range of lengths. 

1.2.1 Quantification of Peptide-MHC Affinity 

While peptide-MHC binding was formerly viewed as a dichotomous event, either 

occurring or not, a more quantitatively continuous view has accompanied advances in the 

ability to measure affinity.  In the most commonly used assay, the strength of binding is 

assessed by titrating reporter peptide-MHC complexes with increasing concentrations of 

the peptide of interest (Southwood et al. 1998). The concentration at which 50% of the 

reporter peptide is displaced then yields the 50% inhibitory concentration (IC50) which 

can be shown to approximate the equilibrium dissociation constant (KD) of the peptide of 
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interest with the MHC molecule. High-affinity binding, associated with smaller values of 

KD and IC50, is expected to yield more pMHC complexes on the APC surface and in turn 

facilitate T cell activation. 500 nM is commonly used as an upper limit for KD values that 

result in binding (Sette et al. 1994). According to one survey, the majority of functional 

pMHC complexes have KD values in the range of 10-100 nM (McFarland and Beeson 

2002). 

1.2.2 Genetic Polymorphism within the MHC 

Because affinity is specific to each combination of peptide and MHC, variations 

in either peptide or MHC sequence may affect binding. In humans the genes encoding the 

MHC molecules, known as the human leukocyte antigens (HLA), are particularly 

variable. For example, among the three sets of genes encoding MHC class II molecules in 

humans, HLA-DR, -DP, and -DQ, 875 alleles have currently been identified (Robinson et 

al. 2003). In most cases, variation occurs in positions associated with peptide-binding or 

TCR-binding and can therefore be assumed to be functional. Recently attempts have been 

made to categorize alleles on the basis of their peptide-binding characteristics, thereby 

defining MHC supertypes and effectively reducing the number of alleles (Ou et al. 1998, 

Lund et al. 2004, Doytchinova and Flower 2005). 

1.2.3 Peptide-MHC Affinity and Disease Susceptibility 

The greater significance of peptide-MHC binding can also be discerned from the 

epidemiological literature. Various MHC alleles have been correlated with increased 

susceptibility to autoimmune and infectious diseases such as HLA-DRB1*1501 (a variant 

of the MHC class II β polypeptide) with tuberculosis (Vukmanovic et al. 2003). Other 

diseases for which MHC alleles have been found to affect susceptibility include type I 

diabetes, rheumatoid arthritis, and malaria. The mechanism behind these associations has 
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not yet been elucidated, though several hypotheses exist (Vukmanovic et al. 2003, 

Rajagopalan and Long 2005, Thorsby and Lie 2005). One possibility is that MHC 

variants associated with disease are deficient in their ability to bind key peptides that 

enable recognition of the pathogen and activation of the immune response. Consistent 

with this hypothesis, a correlation between peptide-MHC affinity and magnitude of 

response at the cellular level has been demonstrated, though the relevance to disease 

remains speculative (Geluk et al. 1998, Hill et al. 2003). 

1.3 Biology of the Sub-Cellular Scale: Events within APCs 

Peptide-MHC binding is by no means the only step that is regulated in the antigen 

presentation pathway. Other steps are controlled dynamically – by the amount of antigen 

available, for instance, or the constantly changing cytokine environment surrounding the 

APC – and allow antigen presentation to be fine-tuned. We describe these steps and 

others relevant to the MHC class II-mediated pathway in more detail below but refer the 

reader to a review for a full treatment (Bryant and Ploegh 2004). 

1.3.1 Antigen Processing 

Antigens for the MHC class II-mediated pathway are generally internalized by 

one of three routes before converging on the endosomal pathway: phagocytosis, fluid-

phase pinocytosis, and receptor-mediated endocytosis. Internalized antigens then progress 

through the endosomal pathway where they encounter cathepsin proteases that degrade 

the antigens into peptides (Honey and Rudensky 2003). Peptides then either bind MHC 

class II molecules or are directed to lysosomes for degradation. Questions remain 

regarding antigen processing, such as how the many cathepsin proteases differ in function 

and whether it might be possible that proteins are first bound by MHC and then processed 

into peptides (Villadangos and Ploegh 2000). 
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1.3.2 MHC Expression 

MHC class II expression normally occurs at low levels in resident APCs but can 

be up-regulated by cytokines such as IFN-γ and TNF (reviewed by van den Elsen et al. 

2004). After IFN-γ binds to its receptor on the APC surface, a signal is propagated 

through the JAK-STAT pathway increasing the level of class II transactivator (CIITA) in 

the cell. CIITA acts as the master regulator of MHC class II transcription, and increased 

levels of CIITA lead to parallel increases in MHC class II expression several hours after 

exposure to IFN-γ. Nascent MHC class II molecules enter the ER and are coupled to 

another protein, invariant chain (Ii). The luminal domain of Ii binds the peptide-binding 

groove of MHC class II, protecting it from proteases, while the cytoplasmic domain of Ii 

directs the paired molecules to the endosomal pathway. After reaching the endosomal 

pathway MHC class II molecules retain a remnant of Ii, the class II invariant peptides 

(CLIP), until released by the enzymatic activity H2-/HLA-DM (Denzin and Cresswell 

1995). Antigenic peptides then compete for binding to MHC class II with self peptides 

that are present at high levels and may bind greater than 80% of the available MHC class 

II in the absence of exogenous peptides (Adorini et al. 1988, Chicz et al. 1993). In 

complex with either self or exogenous peptides, MHC class II molecules then traffic to 

the cell surface where they may remain stably for days until they are recognized by CD4+ 

T cells or internalized and degraded. 

1.3.3 Differences among APC Types 

Macrophages, dendritic cells (DCs), and B cells constitute the professional APCs, 

expressing not only MHC class II molecules but also co-stimulatory and adhesion 

molecules necessary to engage T cells. Both macrophages and DCs derive from a 

common precursor, the monocyte, which differentiates into one of the two cell types 

based on environmental cues (Chomarat et al. 2000, Chomarat et al. 2003), while B cells 



8 

are derived from hematopoietic cells in the bone marrow (Bryant and Ploegh 2004). 

Macrophages and DCs are found in overlapping distributions within the body in areas 

such as the lymph nodes. 

Differences between macrophages and DCs occur in the rates at which they 

perform processes related to antigen presentation. DCs express 10-100 times the number 

of MHC class II molecules expressed by macrophages and also perform antigen uptake at 

generally increased rates (Inaba and Steinman 1985, Inaba et al. 1997). Consistent with 

these findings, fewer DCs are required to activate T cells than macrophages (Inaba and 

Steinman 1985). Though both DCs and macrophages perform antigen presentation, their 

roles in the development of the immune response are thought to be distinct. DCs take up 

antigen at the site of infection and migrate to the nearest lymph node to present antigen to 

naïve T cells, while macrophages present antigen primarily at the infection site to re-

stimulate T cells (Reinhardt et al. 2001). 

1.4 Biology of the Cellular Scale: T Cells 

1.4.1 T Cell Receptor 

pMHC complexes on the APC surface provide signals to T cells when engaged by 

TCRs and the co-stimulatory molecules CD4 and CD8 found on the T cell surface. Each 

TCR comprises two trans-membrane subunits of approximately equal size (designated α 

and β) (reviewed by Rudolph et al. 2006). The membrane-distal domain of each subunit 

resembles the immunoglobulin variable (V) domain and engages portions of both peptide 

and MHC molecule in the pMHC complex. A membrane-proximal domain resembles the 

immunoglobulin constant (C) domain and connects the membrane-distal domain to the 

transmembrane region and a short cytoplasmic tail. The CD3 molecule is associated with 

the cytoplasmic tail and plays an integral role in the signal transduction that follows TCR 

activation. 
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pMHC and TCR bind in a specialized structure that forms between the APC and T 

cell known as the immunological synapse. The structure of the synapse has been the 

subject of intense investigation and revealed to comprise concentric zones: the central 

supramolecular activation cluster (cSMAC), the peripheral supramolecular activation 

cluster (pSMAC), and the distal supramolecular activation cluster (dSMAC) (Cemerski 

and Shaw 2006). Within each zone is found a distinct complement of molecules 

contributed by the APC and T cell. For instance, pMHC and TCR are found within the 

cSMAC of the mature synapse, along with co-stimulatory molecules B7 and CD28 on 

APC and T cell surfaces, respectively. In the pSMAC surrounding the cSMAC is a 

palisade of structural molecules – complexes of intercellular adhesion molecule 1 

(ICAM1) and leukocyte function associated antigen 1 (LFA1) contributed by APC and T 

cell, respectively – along with other co-stimulatory molecules such as B7 and CD28. 

Finally, in the recently defined dSMAC surrounding the pSMAC additional signaling 

between pMHC and TCR has recently been observed, though the contribution of 

signaling in the dSMAC to the overall T cell response is still unknown (Yokosuka et al. 

2005, Varma et al. 2006). 

1.4.2 Signal Transduction 

Several intracellular signaling events follow engagement of pMHC by TCR. 

Briefly, these events include recruitment of kinases, activation of intermediate signaling 

molecules, and activation of transcription factors responsible for expression of molecules 

with effector function such as IL-2 and IFN-γ (reviewed in Samelson 2002, Liu 2005, and 

Weil and Israel 2006). Of the molecules involved, the most notable include the Src family 

kinases such as Lck, which phosphorylates the CD3 molecule after TCR activation, and 

ZAP-70, which is recruited to phosphorylated CD3 and phosphorylates the adapter 

protein LAT. In turn, phosphorylated LAT recruits other adapter proteins including 
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PLCγ1 and Grb2. Activation of several distinct signaling pathways follows which has 

several effects including a sustained increase in intracellular calcium and the activation of 

the transcription factors NF-AT, NF-κB, and AP-1. These transcription factors are 

ultimately responsible for the expression of molecules associated with T cell activation 

such as IL-2 and IFN-γ. 

1.5 Tuberculosis and Antigen Presentation 

1.5.1 Pathogenesis of Mycobacterium tuberculosis 

Mycobacterium tuberculosis, the causative agent of tuberculosis, infects nearly a 

third of the human population and results in nearly two million deaths per year (WHO 

2007). M. tuberculosis bacilli are inhaled on droplets, enter the lungs, and are 

phagocytosed by resident macrophages or dendritic cells (reviewed in Fenton 1998, 

Russell 2001). Residing in specialized phagosomes that do not fuse with lysosomes, the 

bacilli become dormant or slowly replicate. Meanwhile, monocytes are recruited to the 

site of infection and differentiate into macrophages which, together with infected 

macrophages and multinucleate macrophages (known as giant cells), form the center of a 

specialized structure known as a granuloma wherein the infection is contained. 

Surrounding the center are T cells which define the edge of the granuloma. When 

contained in a granuloma, the M. tuberculosis bacilli cannot be transmitted and the host 

has no signs of infection; this state called latency may persist for the lifetime of the host. 

In approximately one-tenth of these cases, however, the granuloma fails to continue 

containing the M. tuberculosis bacilli, resulting in active disease. 

1.5.2 M. tuberculosis Inhibition of Antigen Presentation 

Many pathogens including M. tuberculosis interfere with antigen presentation to 

evade immune surveillance and effect their own survival. To avoid immune surveillance, 
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M. tuberculosis inhibits antigen presentation in chronically infected macrophages. This 

inhibition can be demonstrated in vitro. When cultured macrophages are infected with M. 

tuberculosis, their capacity to present model antigen to T cell hybridoma is greatly 

reduced compared to uninfected controls (Gercken et al. 1994). Though the mechanisms 

by which M. tuberculosis achieves this inhibition have not been completely elucidated, 

several hypotheses have been proposed (e.g., in Moreno et al. 1988, Hmama et al. 1998, 

Noss et al. 2000). I discuss these hypotheses in detail in Chapter 2. 

1.6 Models of Peptide-MHC Binding 

Peptide-MHC binding is a prerequisite for antigen presentation and the event 

most likely to be affected by polymorphisms that exist within the MHC of human 

populations. From a clinical perspective these polymorphisms may distinguish 

individuals who succumb to a particular infectious disease from those who remain 

healthy, and significant effort has been expended to assess whether binding occurs 

between relevant peptide-MHC combinations. However, the sheer numbers of possible 

peptides (209 or ~1011 peptides of length nine) and MHC molecules (more than 2200 

known HLA alleles) make this task all but impossible for anything more than a small 

sampling of the peptide-MHC combination space. 

To circumvent this difficulty computational algorithms have been developed to 

predict whether binding occurs between particular combinations of peptide and MHC. In 

general these algorithms have the same aim as other algorithms in bioinformatics: to 

identify patterns in sequences that are known to either possess or not possess a particular 

trait. In this case the trait is binding to a particular MHC molecule. Statistical methods of 

varying degrees of complexity have been applied to peptide-MHC binding prediction. 

The simplest algorithms were based on the identification of motifs within peptides 

binding particular MHC (Rammensee 1995). An example of such a motif is the 
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requirement for a hydrophobic amino acid at the N-terminus (position 1) of a 9mer to 

bind MHC of the DR1 serotype, a guideline still generally followed today (Southwood et 

al. 1998). The advent of competitive binding assays allowed a more nuanced view of 

binding. Motifs that required certain amino acids to be present in MHC-binding peptides 

were superseded by matrices scoring amino acids at each position within the peptide. 

Different statistical methods could be used to generate the elements of the matrix, 

including nonlinear and linear programming (Parker et al. 1994, Murugan and Dai 2005), 

stepwise discriminant analysis (Mallios 1999, Mallios 2001), and partial least squares 

(Doytchinova and Flower 2002, Doytchinova and Flower 2003). One simplifying 

assumption made in many of these algorithms is that binding of each amino acid within 

the peptide to the MHC molecule occurs independently of adjacent as well as more distal 

amino acids. Though this assumption was largely confirmed by available crystal 

structures, algorithms were also developed that did not rely on this assumption based on 

machine learning methods. Several machine learning methods have now been 

incorporated into prediction algorithms including artificial neural networks (Brusic et al. 

1998, Honeyman et al. 1998, Milik et al. 1998, Buus et al. 2003), hidden Markov models 

(Noguchi et al. 2002), and support vector machines (Zhao et al. 2003, Bhasin and 

Raghava 2004). A different approach has been to predict the structure of the peptide-

MHC complex and attempt to calculate the free energy change (Altuvia et al. 1997, 

Schueler-Furman et al. 2000, Altuvia and Margalit 2004, Bui et al. 2006, Fagerberg et al. 

2006). Structure-based prediction may someday supplant statistical- or machine learning-

based algorithms but is currently hampered by the limited availability of solved structures 

and high computational costs. For a more comprehensive review of algorithms, the reader 

is referred elsewhere (Yu et al. 2002, Brusic et al. 2004). 
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1.6.1 Scoring Peptide-MHC Binding Prediction 

An obvious question to ask about the preceding list of algorithms is how well 

each one performs compared to the others. To gauge prediction accuracy an algorithm is 

typically trained on one set of data comprising peptide sequences and their affinities for a 

particular MHC molecule and used to make predictions on a test set of peptides for which 

the affinities are also known. Algorithm output is then compared to the known affinities 

using one of several possible scoring measures. However, this task is complicated by 

differences in the nature of the available binding data and algorithm outputs. In some 

cases, affinity is measured directly as a continuous variable, other times only indirectly as 

a discrete variable (binding or non-binding). Some databases provide only lists of 

peptides that either bind or do not bind particular MHC variants (Rammensee 1999) 

while other databases provide a direct measure of affinity such as IC50 (Toseland et al. 

2005). The appropriate scoring measure therefore differs according to whether known 

and predicted affinities are both continuous (Pearson correlation coefficient), both 

discrete (Matthews correlation coefficient), or discrete and continuous, respectively (area 

under receiver operating characteristic curve, or AROC). Both correlation coefficients vary 

between -1 and 1 while AROC ranges from 0.5 to 1.0. In both cases higher scores indicate 

more accurate predictions. Continuous data can be converted into discrete data by 

assuming that a certain threshold affinity is required for binding such as an IC50 of 500 

nM (Sette et al. 1994) allowing some overlap between performance measures. Examples 

of scores obtained for several algorithms are provided in MHCBench (Singh and 

Raghava 2001). For example, using binding data for HLA-DRB1*0401 from which 

homologous sequences were removed, twelve algorithms were found to produce AROC 

scores between 0.57 and 0.76. 
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1.7 Models of the APC 

Peptide-MHC binding is only one step of many that constitute the antigen 

presentation pathway, and other steps confer additional specificity to or alter the 

dynamics of which peptides are ultimately presented. In both MHC class I- and MHC 

class II-mediated antigen presentation, antigens are acquired (from either intracellular or 

extracellular sources), degraded into peptides (i.e., processed), and trafficked to the cell 

surface after binding MHC. At the same time MHC molecules are synthesized, trafficked 

between cellular compartments, and degraded. Many of these steps are subject to 

regulation by the cytokine environment and feedback signals. The peptides found to bind 

a particular MHC variant may therefore only provide a rough, static approximation of 

peptides that are ultimately presented in a dynamic fashion. 

Models of antigen presentation must therefore account for more than peptide-

MHC binding. In the case of MHC class I-mediated antigen presentation, at least two 

additional events are known to confer selectivity: proteasomal cleavage and TAP 

transport. Algorithms have been developed to predict which peptides progress through 

these stages, and only recently have they been linked with algorithms of peptide-MHC 

binding to represent antigen presentation in toto (Petrovsky and Brusic 2004, Donnes and 

Kohlbacher 2005). The result is a more accurate but still static picture of the peptides 

encountered by CD8+ T cells. 

1.7.1 ODE Models 

In contrast, previous models of MHC class II-mediated antigen presentation have 

focused on its dynamic aspects (e.g., times required for certain steps to be completed and 

levels of pMHC presented on the APC surface) but not necessarily its specificity. These 

previous models were based on a mathematical representation known as ordinary 

differential equations (ODEs) in which each variable represents the level of a different 
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molecular species at a particular time, e.g., the number of pMHC complexes appearing on 

the APC surface a certain number of hours after the APC encounters antigen. Processes 

affecting the level of each species are then represented as terms in the equation for each 

variable. For instance, in the case of surface pMHC complexes, one term might represent 

the trafficking of pMHC complexes from the interior of the APC to its surface. The 

equation itself would then represent the rate of change in this variable as the sum total of 

these constituent processes. 

ODEs are commonly used to represent systems that are both continuous and 

deterministic. One assumption inherent in the use of ODEs is that the represented entities 

exist as well-mixed populations, allowing their interactions to be approximated by the 

law of mass action. For MHC class II-mediated antigen presentation the available data 

validate this assumption. Baseline estimates of the number of MHC class II molecules 

expressed by APCs are on the order of 105 and antigen is typically present at high 

concentrations, at least in vitro (>1012 peptides per cell in Hmama et al. 1998 and Noss et 

al. 2000). Furthermore, precedent for using ODEs has been provided by models of 

receptor-ligand systems of which peptide-MHC could be considered one instance 

(Lauffenburger and Linderman 1993). 

Previous models have used ODEs to represent MHC class II-mediated antigen 

presentation with increasing levels of detail. The first published model included only 

those intracellular processes thought to be essential to antigen presentation (antigen 

uptake and processing, peptide-MHC binding, and MHC trafficking and recycling) but 

was sufficient to generate realistic time courses of peptide-MHC levels on the APC 

surface (Singer and Linderman 1990). Parameters that would have been difficult to 

manipulate experimentally, e.g., the rate of antigen uptake, were easily varied in the 

model, allowing the relationship between such parameters and the number of pMHC on 

the APC surface to be studied without concerns of inhibitor toxicity, etc. In later versions 

of this model, additional molecular species such as self peptides and TCR were included, 
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expanding the range of questions that could be approached (Singer and Linderman 1991, 

Agrawal and Linderman 1996). 

1.7.2 Sensitivity Analysis 

The creation of a mathematical model for antigen presentation or any other 

phenomenon entails the estimation of parameter values. In most cases these parameters 

represent rate constants of chemical processes, initial values for numbers of molecules, or 

probabilities of an event. Parameter values may be estimated in one of several ways, 

including direct experimental determination, fitting such that model output matches 

experimental observation, or constraints based on known relationships to other 

parameters. Each of these cases involves some degree of uncertainty which leads to 

uncertainty in the output of the model. 

The effect of uncertainty in model parameter values on model output can be 

determined for any given model using sensitivity analysis. Different methods for 

sensitivity analysis exist, but all involve the correlation of variance in parameter values to 

variance in model output. For example, in the Latin hypercube sampling (LHS) 

algorithm, each parameter is first assigned a distribution, typically uniform or normal and 

centered on a baseline or estimated value, allowing the effect of under- and over-

estimation to be examined. The entire range of each distribution is then sampled to 

generate a set of values for each parameter, and parameter values for each simulation are 

chosen to cover the entire parameter space efficiently. The extent to which each 

parameter affects the output can then be quantified using one of several metrics such as 

the partial rank correlation coefficient (PRCC). PRCC, like the more familiar Pearson 

correlation coefficient, varies between -1 and 1 indicating strongly negative and positive 

associations, respectively. A PRCC of 0 indicates no association. PRCC values can also 

be calculated at different time points of the simulation allowing the relative importance of 
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a particular parameter in determining model output to be examined over time. In addition 

a confidence interval can be determined for each PRCC, and differences between PRCCs 

can be tested for statistical significance (Meng et al. 1992). This allows parameters to be 

ranked in order of effect on output by PRCC magnitude. 

Sensitivity analysis identifies processes that are important to the behavior of the 

system. These processes may represent potential targets for therapeutic intervention; that 

is, one could target a pathway to which cell behavior is sensitive as identified by 

sensitivity analysis.  

1.8 Models of the T Cell 

Models of the APC provide a useful view of the first stages of the immune 

response but are limited if T cell response is not also considered. T cells provide 

functional responses to the appearance of pMHC on the APC surface, and several models 

have sought to capture different aspects of T cell activation. 

Some models have focused on the level of receptor-ligand engagement and how 

the kinetics of pMHC-TCR binding influence downstream events. For instance, in the 

model of Coombs et al. (2002), pMHC-TCR complexes are depicted in discrete, 

progressive states of activation, culminating in fully activated TCR that can either be 

internalized or return to a basal, inactivated state. Three zones of the surfaces of APCs 

and T cells are represented: a contact area, transition region, and remainder of the cell 

surfaces. pMHC-TCR binding occurs only within the contact area, though activated 

forms of the TCR are allowed to persist in the transition region. To represent pMHC and 

TCR, partial differential equations (PDEs) are used, allowing the level of each molecular 

species to be tracked with respect to a given distance away from the center of the contact 

area as well as a given time. TCR internalization serves as the output of this model, 
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occurring only after TCR are fully activated and free from pMHC in either the contact 

area or the transition region. 

Using this model, Coombs et al. (2002) found that an optimal half-life for the 

pMHC-TCR complex might exist resulting in maximal TCR internalization. This optimal 

half-life occurs as a result of competition between serial engagement (the ability of a 

single pMHC to activate multiple TCRs, favoring a short half-life) and kinetic 

proofreading (the requirement for a pMHC-TCR complex to remain bound long enough 

to result in activation, favoring a long half-life). Subsequent iterations of this model 

recapitulated other experimental phenomena including the dissipation of an optimal half-

life at high initial pMHC densities (Gonzalez et al. 2005, Utzny et al. 2006). 

Other models have focused on signaling occurring within the T cell after TCR 

activation. For example, in the ODE model of Chan et al. (2004), two signaling 

molecules, a kinase (such as Lck) and a phosphatase, are depicted generically in 

inactivated and activated forms. pMHC-TCR binding leads to activation of the kinase 

which in turn promotes activation of the phosphatase as well as further activation of 

itself. The activated phosphatase then returns the kinase to its inactivated form. Two 

feedback loops are therefore represented, one positive (the kinase on itself) and the other 

negative (the phosphatase on the kinase). Like the model of Coombs et al. (2002), this 

model, which uses amount of activated kinase as its readout, shows how T cell response 

is sensitive to the kinetics of pMHC-TCR binding. Altan-Bonnet and Germain (2005) 

later created a model with similar feedback structure but focused on the role of one 

signaling pathway in particular, the MAP kinase cascade. 

1.9 Motivation and Goals 

Antigen presentation traverses several spatial and temporal scales in its 

mechanisms and its effects (Fig. 1.1). At the molecular scale, peptide-MHC binding must 



19 

occur but is by no means automatic. Variability exists in peptide sequence as well as in 

MHC sequence. At the cellular scale, a number of processes contribute to the appearance 

of pMHC complexes on the APC surface but many of these may be disrupted by 

pathogens. Finally, at the multi-cellular scale, the pMHC signal must be delivered to the 

T cell to attain a response, but the kinetics of pMHC-TCR binding or other, intracellular 

processes may determine whether this occurs. 

Therefore, a model of antigen presentation must account for events occurring at 

each of these scales. In the following chapters I describe how I developed computational 

models at each scale and applied them to questions, initially scale-specific and then more 

multi-scale in nature. I also describe how I applied the models to the study of tuberculosis 

and its causative pathogen, M. tuberculosis. 
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Figures 

 

 

Figure 1.1. Multiple scales involved in antigen presentation. 
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CHAPTER 2 

Why M. tuberculosis Has Multiple Mechanisms to Inhibit Antigen Presentation 

2.1 Introduction 

Macrophages play dual roles during tuberculosis (TB) infection (Fenton 1998). 

On the one hand, they serve as the preferred host for Mycobacterium tuberculosis (Mtb), 

the intracellular pathogen that causes TB. On the other hand, they also help to alert the 

immune system to the presence of Mtb and, if activated, can eliminate it directly. 

Activation depends on the presentation of antigenic peptide-MHC class II (pMHC) 

complexes on the macrophage surface that can bind T cell receptors (TCRs) on cognate 

CD4+ T helper cells. pMHC-TCR binding induces CD4+ T helper cells to secrete IFN-γ 

which stimulates macrophages to produce molecules capable of killing Mtb such as nitric 

oxide (Chan et al. 2001). This process constitutes an important arm of cell-mediated 

immunity and may determine infection outcome (Kaufmann 1999). 

The fact that Mtb inhibits antigen presentation in macrophages is now well 

established (Pancholi et al. 1993). Initial studies showed that fewer macrophages infected 

with mycobacteria express detectable levels of antigen on their surface compared to 

uninfected macrophages (Kaye et al. 1986, Mshana et al. 1988).  Functional assays later 

confirmed that infected macrophages are deficient in their ability to signal CD4+ T helper 

cells by measuring T cell response. The magnitude of T cell response is in turn 

proportional to pMHC levels, assuming a lower threshold number of pMHC complexes 

has been exceeded (Bekkhoucha et al. 1984, Demotz et al. 1990). Using such an assay 
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Gercken et al. (1994) found that monocytes co-cultured with Mtb for six days exhibit a 

three- to ten-fold reduction in their ability to stimulate T cell proliferation compared to 

uninfected controls. Furthermore, higher numbers of Mtb bacilli, e.g., MOI (multiplicity 

of infection) of 50 versus MOI of 10, correlated with lower T cell response levels. 

Subsequent studies provided further evidence that an inverse relationship exists between 

Mtb infectious dose and T cell response (Noss et al. 2000, Mazzaccaro et al. 1996). 

After it was established that Mtb inhibits antigen presentation in macrophages, 

several intracellular mechanisms were proposed (reviewed in Harding et al. 2003). 

Moreno et al. (1988) observed that macrophages co-cultured with the Mtb cell wall 

component lipoarabinomannan (LAM) fail to present antigen from whole inactivated 

virus though presentation of synthesized epitope is unimpaired. This observation led to 

the hypothesis that Mtb inhibits antigen presentation at the stage of antigen processing, a 

hypothesis also made by Noss et al. (2000). Later, based on the observation that Mtb-

infected monocytes do not produce stable pMHC complexes and do not localize labeled 

MHC class II molecules and antigens to the same intracellular compartment, Hmama et 

al. (1998) proposed that Mtb affects MHC class II at a post-translational stage such as 

maturation (delivery to the MIIC endosome or Ii processing) or peptide loading. Finally, 

based on the observation that infected macrophages express lower levels of MHC class II 

mRNA than uninfected macrophages, Noss et al. (2000) proposed that Mtb inhibits MHC 

class II mRNA synthesis. 

The goal of the present study is to investigate why multiple mechanisms have 

been proposed to explain how Mtb inhibits antigen presentation. In particular, we address 

three issues using a mathematical model: (1) what purpose multiple mechanisms may 

serve, (2) if experimental protocols may have favored the detection of some mechanisms 

over others, and (3) if alternative mechanisms exist that may be used to guide future 

experiments. Our immediate motivation stems from conflicting data in the literature 

regarding these mechanisms. Specifically, we refer to the observation by Hmama et al. 
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(1998) that MHC class II mRNA levels were unchanged in infected cells and the 

observation by Noss et al. (2000) that MHC class II mRNA levels decreased in infected 

cells. Because the two studies differed with respect to experimental conditions (e.g., 

macrophage cell type, Mtb strain, and degree of IFN-γ-induced activation), it is unclear if 

the conclusions hold in general. We seek to help clarify these observations with our 

model. 

2.2 Methods 

2.2.1 Model Overview 

Our mathematical model comprises a set of ordinary differential equations 

representing the major intracellular processes that contribute to antigen presentation 

within the context of a single macrophage (Fig. 2.1). These processes relate to MHC class 

II expression (at both mRNA and protein levels), antigen processing, and peptide-MHC 

binding and trafficking and include the processes hypothesized to be targeted by Mtb. 

Our model also accounts for the effects of IFN-γ which is typically added to cultured 

macrophages during studies on antigen presentation (Hmama et al. 1998, Noss et al. 

2000). 

To represent these processes we use ordinary differential equations which allow 

large numbers of molecules to be tracked. For each molecular species we derive an 

equation for the rate of change using the law of mass action and estimate parameter 

values using published experimental data. In total our model uses 16 equations and 30 

parameters to simulate antigen presentation within the context of a single macrophage. 

Equations and parameter values, as well as details of how equations were derived and 

parameter values estimated, can be found in Supporting Information. 
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2.2.2 Simulations Using the Mathematical Model 

The baseline model comprises Equations 1-16, the parameters in Table 2.3, and 

the initial conditions in Table 2.4 (Supporting Information). Protocol-specific parameter 

values and initial conditions can also be found in Supporting Information. To generate 

simulations using the mathematical model, we use the NDSolve function of Mathematica 

v4.2 (Wolfram Research, Inc.) as well as our own differential equation solver coded in C 

and run on Sun UNIX machines for confirmation of numerical results. We analyze model 

output in terms of major features such as relative changes in numbers of molecules and 

times at which highest levels are reached. As a marker for antigen presentation, we 

generally use the number of surface-localized exogenous peptide-bound MHC class II 

molecules (Equation 16, Supporting Information). 

2.2.3 Representation of the Inhibitory Effects of Mtb on Intracellular Processes 

To represent the inhibitory effect that Mtb is hypothesized to have on an 

intracellular process, we decrease the corresponding parameter in the model by a factor 

proportional to experimental infectious dose. We assume that the number of Mtb bacilli 

does not change significantly on the timescales of the protocols being simulated based on 

the observation that the doubling time of Mtb is on the order of days (Dunn and North 

1995). We also assume that the inhibitory effect exerted by Mtb on any given 

intracellular process saturates at high levels of bacilli. Therefore, we represent the 

inhibitory effect as a multiplicative factor having a value between 0 and 1 (corresponding 

to complete inhibition and no inhibition, respectively) that approaches 0 as the number of 

bacilli increases. Further details are provided in Supporting Information. 
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2.2.4 Sensitivity Analysis 

The goal of sensitivity analysis is to correlate variances in parameter values to 

variances in model output and is useful when parameter values are not known with 

certainty. Sampling-based sensitivity analysis entails specifying a distribution for each 

parameter from which values are selected at random and used in model simulations 

(Helton and Davis 2001). In particular we use Latin hypercube sampling which allows 

several parameters to be analyzed simultaneously in a computationally efficient manner. 

To quantify the correlation of model output with each parameter, we calculate a partial 

rank correlation coefficient (PRCC) value. PRCC values vary between -1 and 1, 

corresponding to perfect negative and positive correlations, respectively, and can be 

further differentiated based on p values derived from Student’s t-tests. We use the 

algorithm of Blower and Dowlatabadi (1994) implemented in both Mathematica and our 

own differential equation solver. In general, we specify a uniform distribution for each 

parameter with a range of 10% and 190% of the baseline value, allowing us to examine 

the effects of both decreases and increases in each parameter. 

2.3 Results 

2.3.1 Baseline Characteristics 

In the absence of IFN-γ and antigen, conditions that we used as a negative control, 

seven molecular species in the model were present in non-zero quantities: free IFN-γ 

receptors, MHC class II mRNA, free intracellular and surface MHC class II molecules, 

self peptides, and intracellular and surface self peptide-MHC class II complexes. These 

results are consistent with the finding that cultured macrophages constitutively express 

several molecules relevant to antigen presentation at basal levels including IFN-γ 

receptors and MHC class II molecules (Hume 1985, Celada et al. 1985). 
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2.3.2 Dynamics of IFN-γ Response 

As one positive control we simulated the addition of IFN-γ to macrophages and 

compared dynamics of the response to experimental observations. In response to IFN-γ 

treatment, CIITA mRNA levels in the model increased immediately and reached a 

maximum approximately 14 hours later, while MHC class II mRNA levels increased 

more gradually and continued to increase for the first 24 hours (Fig. 2.2A). Pai et al. 

measured levels of CIITA and MHC class II mRNAs 6, 12, and 24 hours after adding 

IFN-γ and observed highest levels at the 12- and 24-hour time points, respectively, in 

agreement with our model (Fig. 2.2B, Pai et al. 2002). We also compared the coupled 

dynamics of MHC class II mRNA and protein expression from our model to 

experimental data. In our simulations highest MHC class II mRNA and protein levels 

were attained approximately 45 and 60 hours after IFN-γ treatment, respectively (Fig. 

2.2C). In comparison, highest MHC class II mRNA and protein levels were observed 

experimentally 48 and 72 hours after IFN-γ treatment, respectively (Fig. 2.2D, Cullell-

Young et al. 2001). Although MHC class II protein expression reaches its highest levels 

in the model in less time than observed experimentally, this apparent difference may be 

attributable to the sparseness of experimental time points. 

2.3.3 Dynamics of Antigen Presentation 

In the presence of exogenous antigen the number of surface pMHC complexes in 

our model rapidly increases, reaches a maximum approximately 3 hours later, and then 

decreases over the course of several hours (Fig. 2.2E). Antigen presentation by 

macrophages not pretreated with IFN-γ has been found to exhibit similar dynamics 

experimentally (Fig. 2.2F, Buus and Werdelin 1986, Ziegler and Unanue 1981). In such 

cases antigen presentation can be detected by T cell hybridoma assay minutes after the 

addition of antigen (Buus and Werdelin 1986, Ziegler and Unanue 1981). These 
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macrophages elicit maximal responses after one to four hours and remain capable of 

eliciting responses at the same or slightly decreased levels for several more hours (Buus 

and Werdelin 1986, Ziegler and Unanue 1981). Another feature of our model is dose-

dependence between exogenous antigen concentration and maximum number of resultant 

surface pMHC complexes (data not shown) which has also been observed experimentally 

with T cell responses (Demotz et al. 1990, Reske-Kunz et al. 1984). 

2.3.4 Increases in Antigen Presentation Due to IFN-γ Pretreatment 

Experimental studies on antigen presentation by macrophages typically use both 

IFN-γ and exogenous antigen. Timing of IFN-γ treatment may be important, as studies in 

which IFN-γ is added prior to antigen show that pretreated macrophages are capable of 

eliciting T cell responses at levels several fold higher than untreated macrophages 

(Delvig et al. 2002). We simulated the addition of IFN-γ 16 h prior to exogenous antigen 

and observed a two-fold increase in surface pMHC levels compared to untreated levels 

(Fig. 2.2G). This result is consistent with T cell proliferation data from Delvig et al. 

(2002) (Fig. 2.2H). In subsequent simulations we avoided the issue of pretreatment 

timing by using the simultaneous addition of IFN-γ and antigen unless stated otherwise. 

2.3.5 Simulations of Mtb and Its Hypothesized Mechanisms 

After testing the model under the preceding conditions, we used the model to 

simulate the inhibition of various intracellular processes targeted by Mtb. These processes 

included: antigen processing (Moreno et al. 1998), MHC class II protein maturation 

(Hmama et al. 1998), MHC class II peptide loading (Hmama et al. 1998), and MHC class 

II mRNA synthesis which we consider MHC class II transcription (Noss et al. 2002); we 

designate these hypotheses as H1, H2, H3, and H4, respectively. We then simulated the 

simultaneous addition of IFN-γ and antigen and recorded surface pMHC levels at time 
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points spanning four orders of magnitude (0.1, 1.0, 10, and 100 hours). These results 

were compared to results from the baseline model in which no processes were inhibited. 

In general, inhibiting any particular intracellular process had either immediate or 

delayed effects on antigen presentation (Table 2.1). When antigen processing (H1) or 

MHC class II peptide loading (H3) was inhibited, surface pMHC levels were immediately 

affected as indicated at the earliest time point, 0.1 h. The deviation from baseline levels 

was reduced at intermediate 1 h and 10 h time points and then increased by the final 100 

h time point. In contrast, inhibition of MHC class II maturation (H2) or MHC class II 

transcription (H4) resulted in negligible reductions in surface pMHC levels at the 0.1 h 

time point. However, these levels increasingly deviated from baseline levels at 1 h, 10 h, 

and 100 h time points. Both H2 and H4 targeted MHC class II expression and required a 

delay of at least 10 h to have substantial effects (greater than 25% change in surface 

pMHC levels). We also simulated the inhibition of pairs of intracellular processes to 

determine the effect multiple mechanisms may have on antigen presentation when acting 

together (cf. H1+H4 and H2+H3 in Table 2.1). Inhibitory mechanisms were synergistic and 

decreased antigen presentation levels to a greater extent in pairs than singly. In these 

simulations each intracellular process was inhibited to the same degree. In a separate set 

of simulations we used varying degrees of inhibition, further differentiating mechanisms 

targeting MHC class II expression from other mechanisms (Fig. 2.5, Supporting 

Information). 

2.3.6 Simulations of Previous Experimental Protocols 

To determine if previous experimental protocols may have favored the detection 

of some mechanisms over others and if any of the four previously hypothesized 

mechanisms could account for all of the observed changes in macrophages infected with 

Mtb, we simulated two different experimental protocols under each hypothesized 
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mechanism (Hmama et al. 1998, Noss et al. 2000). These protocols differed in several 

ways that could be accounted for in our model, including duration for which cells were 

exposed to IFN-γ and Mtb as well as concentration of IFN-γ and number of Mtb bacilli 

used (Fig. 2.3A, B). These protocols also differed with respect to the macrophage cell 

line and Mtb strain used, but these factors fell outside the scope of our model and were 

not considered. 

In our simulations of the experimental protocol of Hmama et al. (1998), we found 

that only an inhibition of MHC class II protein maturation (H2) was consistent with all of 

their observations. In the absence of Mtb the levels of several molecules rose over 

baseline levels during the course of this protocol including CIITA mRNA, MHC class II 

mRNA, and MHC class II protein (Fig. 2.3C, D, E). Only H2 and another hypothesized 

mechanism, inhibition of MHC class II transcription (H4), led to reductions in surface 

MHC class II expression of the same magnitude as those observed by Hmama et al. 

(1998): 42% and 86% using heat-killed and live Mtb bacilli, respectively (Fig. 2.3E). 

However, H4 also led to a significant reduction in MHC class II mRNA levels which was 

not observed by Hmama et al. (1998) and could therefore be ruled out as a possible 

mechanism (Fig. 2.3D). 

When we simulated the experimental protocol of Noss et al. (2000), we found that 

only an inhibition of MHC class II transcription (H4) was capable of producing 

substantial changes in the levels of all three molecules they monitored. In our simulations 

this mechanism reduced levels of MHC class II mRNA, total MHC class II protein, and 

surface pMHC by 54%, 31%, and 31%, respectively (Fig. 2.3F, G, H). Another 

mechanism, inhibition of MHC class II protein maturation (H2), reduced levels of these 

molecules by 0%, 55%, and 55%, respectively (Fig. 2.3F, G, H). In comparison, Noss et 

al. (2000) measured reductions of 80%, 30%, and between 40% and 80%, respectively, 

consistent with H2 but not H4. Interestingly, in our simulations of this protocol neither 
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inhibition of antigen processing (H1) nor inhibition of MHC class II peptide loading (H3) 

had any significant effect on surface pMHC levels (Fig. 2.3H). 

2.3.7 Sensitivity to Changes in Other Intracellular Processes 

While many intermediates of the antigen presentation pathway have been 

monitored in macrophages following Mtb infection in vitro (Hmama et al. 1998), assays 

for other processes represented in our model have either not been developed or not been 

applied to this context. To determine what effect changes in these processes might have 

on antigen presentation, we varied all of the corresponding rates, rate constants, and 

scaling factors as well as experimental conditions in the model over a defined range and 

tracked surface pMHC levels over time. We then calculated the correlation between these 

levels and specific parameter values at 1 h, 10 h, and 100 h time points. 

We found that surface pMHC levels correlated significantly with a number of 

different intracellular processes, including several not previously considered (Table 2.2). 

In particular, at times less than 10 hours following exposure to IFN-γ and antigen, surface 

pMHC levels correlated positively with rate constants for antigen uptake by pinocytosis 

and MHC class II trafficking to the cell surface as well as with the concentration of 

exogenous antigen. When the concentration of exogenous antigen was sufficiently low, 

other processes correlated strongly with surface pMHC levels on this timescale including 

delivery of antigen to lysosomes and self peptide production (data not shown). At times 

greater than 10 hours following exposure to IFN-γ and antigen, surface pMHC levels 

correlated with factors affecting MHC class II expression including CIITA transcription 

and translation and the concentration of IFN-γ in the medium as well as MHC class II 

transcription and protein maturation. 
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2.4 Discussion 

Multiple hypotheses have been offered to explain how Mtb inhibits antigen 

presentation in macrophages to escape immune surveillance. These hypotheses stem from 

different experimental protocols that appear in at least one instance to have led to 

conflicting results. In this study we address why several mechanisms have been 

hypothesized by formulating a mathematical model of antigen presentation that accounts 

for different experimental conditions and can be used to simulate each mechanism. 

2.4.1 Mtb Mechanisms Differ in Timing of Effect 

We found that hypothesized Mtb mechanisms generally fall into one of two 

categories: those having an immediate effect on the ability of the cell to present antigen 

and those requiring a delay of approximately 10 hours to have an effect. The first subset 

of mechanisms targets intracellular processes involved in the initial formation of pMHC 

complexes including antigen processing and MHC class II peptide loading. In our 

simulations the effectiveness of these mechanisms in inhibiting antigen presentation 

decreased after an intermediate length of time (at 1 h and 10 h) and later increased (at 100 

h). The intermediate decrease resulted from new rounds of pMHC binding resulting from 

prolonged exposure to IFN-γ and increasing numbers of free MHC class II. The second 

subset of mechanisms targets intracellular processes necessary for the continued supply 

of nascent MHC class II molecules including MHC class II transcription and protein 

maturation. In our simulations the effect of these mechanisms on antigen presentation 

steadily increased over time as a greater proportion of surface pMHC complexes involved 

nascent MHC class II. 

These results are consistent with the intuitive notion that disruptions at different 

points along the antigen presentation pathway, or any multi-enzymatic pathway, require 

different lengths of time to manifest in the end product. These results are also consistent 



41 

with the interpretation of the experimental data of Noss et al. (2000) given by Heldwein 

and Fenton (2002), that substantial inhibition of MHC class II expression requires 

prolonged (> 18 h) incubation with Mtb. The requirement of a delay of greater than 10 

hours for inhibition of MHC class II expression to affect antigen presentation was also 

evident in our sensitivity analysis. 

The fact that these four hypothesized mechanisms appear to impair the same 

cellular function, antigen presentation, raises the question: do these mechanisms serve the 

same purpose and act redundantly or do they serve subtly different purposes? Our results 

suggest that these mechanisms act on different timescales and therefore serve different 

purposes. As demonstrated in our simulations of pairs of mechanisms, having 

mechanisms that operate on both shorter and longer timescales may allow Mtb to exert 

continuous inhibition on antigen presentation despite external sources of IFN-γ. In 

contrast, having only a single mechanism or multiple mechanisms that act on the same 

timescale may result in an inhibitory effect that either abates with time (if MHC class II 

expression increases) or is delayed. 

Nascent and recycling MHC class II molecules may have distinct roles in antigen-

presenting cells (Pinet and Long 1998), and Mtb may have evolved mechanisms to 

undermine both sources of MHC class II. T cells require at least 2 to 4 hours of 

stimulation to become fully activated (Weiss et al. 1987), and mechanisms acting on 

timescales of both minutes and hours may be physiologically relevant. A recent study by 

Huppa et al. shows that signaling between an antigen-presenting cell and a T cell has a 

cumulative effect over 10 hours and is sensitive to disruptions that occur even several 

hours after initial contact (Huppa et al. 2003). 
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2.4.2 Previous Protocols Favor Detection of Mechanisms Targeting MHC Expression 

Our simulations of previous experimental protocols suggest that Mtb mechanisms 

targeting MHC class II expression may have been responsible for most of the changes 

observed in levels of various molecules. Specifically, in simulations of the protocols of 

Hmama et al. (1998) and Noss et al. (2000), only mechanisms targeting processes 

associated with MHC class II expression were found to produce changes of the same 

magnitude as those observed. While no single mechanism was found to account for all of 

the observations, these results do support the individual conclusions of Hmama et al. 

(1998) and Noss et al. (2000) who implicated inhibition of MHC class II protein 

maturation and MHC class II mRNA synthesis, respectively. 

Why did Noss et al. (2000) observe a decrease in MHC class II mRNA levels but 

not Hmama et al. (1998)? Noss et al. (2000) attribute this discrepancy to differences in 

macrophage cell lines, macrophage activation, and infection lengths and methods. Our 

model accounts for some of these factors, including one aspect of macrophage activation 

(IFN-γ-stimulated MHC class II expression) and one consequence of infection length 

(inhibition of particular intracellular processes), as well as experimental differences in 

duration of IFN-γ stimulation and amount of IFN-γ used. In our model, none of these 

factors accounted for the observed discrepancy in MHC class II mRNA levels. 

Hmama et al. (1998) and Noss et al. (2000) also hypothesized that Mtb inhibits 

either MHC class II peptide loading or antigen processing. Our simulations show that 

neither of these mechanisms could have accounted for the observed changes in levels of 

molecules given the experimental protocols that were used. On the timescales of both 

protocols MHC class II expression is expected to be the limiting factor on antigen 

presentation as suggested by the half life of MHC class II and our sensitivity analysis. 

Indeed, in the protocol used by Noss et al. (2000), we predict that the high level of MHC 
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class II expression masks whatever reductions in antigen presentation may result from an 

inhibition of antigen processing or MHC class II peptide loading. 

Because these experimental protocols may have favored the detection of 

mechanisms targeting MHC class II expression, the actual contribution of mechanisms 

targeting other processes to the overall ability of Mtb to inhibit antigen presentation may 

not have been accurately assessed. Without experimental evidence to the contrary, the 

possibility even exists that mechanisms targeting antigen processing and MHC class II 

peptide loading are incidental to Mtb infection and do not significantly affect the ability 

of macrophages to present antigen in the presence of IFN-γ. While an experiment using 

an Mtb mutant specifically unable to inhibit either intracellular process would quickly 

answer this question, such a mutant is not yet available to our knowledge. 

Therefore, we propose an alternative experimental protocol to determine whether 

mechanisms targeting intracellular processes besides MHC class II expression actually 

contribute to the ability of Mtb to inhibit antigen presentation (Fig. 2.4A). In this protocol 

macrophages are infected with Mtb in vitro and treated with IFN-γ for varying durations 

prior to assaying for antigen presentation using model antigen and T cell hybridoma. If 

mechanisms targeting MHC class II expression are the only means by which Mtb inhibits 

antigen presentation, the difference in the levels of T cell response (e.g., IL-2 production) 

elicited by uninfected and infected macrophages should increase as the duration of IFN-γ 

stimulation increases (Fig. 2.4B). On the other hand, if mechanisms targeting other 

intracellular processes play a significant role in the inhibition of antigen presentation, the 

difference in T cell response should be apparent even with short durations of IFN-γ 

stimulation and remain relatively constant as the duration of IFN-γ stimulation increases. 
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2.4.3 Additional Mechanisms May Target Other Processes Affecting Presentation 

As part of our analysis we also identified all of the parameters in our model that 

strongly correlate with the number of pMHC complexes on the macrophage surface. 

These parameters represent intracellular processes likely to affect antigen presentation if 

perturbed and may serve as attractive targets to pathogens that evade immune 

surveillance such as Mtb. Other processes related to MHC class II expression, besides 

those already considered by previous hypotheses, strongly correlated with surface pMHC 

levels at long timescales. Recent evidence indicates that one of these processes, CIITA 

transcription, may be targeted by Mtb (Kincaid and Ernst 2003, Pai et al. 2003). It would 

be interesting to test experimentally whether Mtb also affects any other candidate process 

such as IFN-γ receptor-ligand binding. 

We found that several intracellular processes also negatively correlated with 

antigen presentation. In contrast to positively correlated processes such as those in Table 

2.1, these processes are expected to inhibit antigen presentation if up-regulated rather 

than down-regulated. In the presence of low levels of exogenous antigen, one such 

process is the delivery of antigens (both self and exogenous) and derived peptides to 

MHC class II-inaccessible lysosomes. Conceivably, an intracellular pathogen such as Mtb 

could decrease the availability of its own antigens by increasing the rate at which this 

process occurs, though benefit to the pathogen may be somewhat offset by a concurrent 

decrease in competing self antigens (Chicz et al. 1993, Rosloniec et al. 1990). 

Nevertheless, the possibility that some pathogens up-regulate delivery to lysosomes 

cannot be ruled out since the rate of this process and the concentration of self peptide 

have not been carefully measured. 

Most of the experimental data on which we base our model originates from 

studies using murine cell lines. Therefore, the dynamics of human macrophages infected 

with Mtb may differ somewhat from those observed in our simulations. However, based 
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on our sensitivity analysis, we believe that our results are robust and can be generalized 

to the human host. 

2.5 Supporting Information 

2.5.1 IFN-γ Receptor-Ligand Binding 

IFN-γ binds to receptors on the macrophage surface, initiating a cascade of events 

leading to an increase in MHC class II expression (Steimle et al. 1994). We assume that 

this increase is the primary mechanism by which IFN-γ facilitates antigen presentation. 

To represent IFN-γ receptor-ligand binding, we use the general reaction scheme ligand + 

receptor ↔ complex. Other processes are likely to affect the number of IFN-γ receptor-

ligand complexes on the time scales of IFN-γ treatment used experimentally, 20-36 hours 

(Hmama et al. 1998, Noss et al. 2000). Celada et al. (1984) observed that IFN-γ levels in 

solution decrease 13% and 83% after 4 h in the absence and presence of macrophages, 

respectively, indicating that appreciable levels of IFN-γ both degrade in solution and are 

taken up by macrophages. Therefore, in addition to representing IFN-γ receptor-ligand 

binding, we also represent degradation of IFN-γ in solution and within the macrophage 

following uptake (Eqns. 2.1-3). 

dG/dt = (−kon-IFN-γ G R + koff-IFN-γ C) [ncells / (NA vrxn)] − kdeg-IFN-γ G [2.1] 

dR/dt = −kon-IFN-γ G R + koff-IFN-γ C + krecyc C [2.2] 

dC/dt = kon-IFN-γ G R − koff-IFN-γ C − krecyc C [2.3] 

where G is the molar concentration of IFN-γ in the medium and R and C are the numbers 

of free IFN-γ receptors and IFN-γ receptor-ligand complexes on the surface of each 

macrophage, respectively. Values for the parameters ncells, the number of macrophages to 

which IFN-γ is added, and vrxn, the volume of the medium containing both IFN-γ and 

macrophages, depend on the protocol being simulated, and NA is Avogadro’s number. 

Values for kon-IFN-γ and koff-IFN-γ, the association and dissociation rate constants of the IFN-
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γ receptor-ligand complex, can be found in the literature (Sadir et al. 1998), while a value 

for kdeg-IFN-γ, the rate constant for the degradation of IFN-γ in solution, can be derived 

from the observed decrease in IFN-γ levels when macrophages are not present if first-

order decay is assumed (Celada et al. 1984). We estimate a value for krecyc, the rate 

constant for receptor internalization and recycling, to match the observed decrease in 

IFN-γ levels when macrophages are present (Celada et al. 1984), given the experimental 

conditions of that study. Celada et al. (1985) also found that the total number of IFN-γ 

receptors on the surface of the macrophage, Rtot, does not change over time in the 

presence of IFN-γ. Therefore, we assume that Rtot is constant, allowing either Eqn. 2.2 or 

Eqn. 2.3 to be eliminated when the formula Rtot = R + C is used to derive an expression 

for either R or C. In all of our simulations, we set the initial conditions for R and C to Rtot 

and 0, respectively. 

2.5.2 MHC Class II Transcription 

The formation of IFN-γ receptor-ligand complexes on the macrophage surface 

activates the Jak-Stat signaling pathway, increasing CIITA expression over its basal level 

(Darnell et al. 1994, Steimle et al. 1994). Because CIITA expression may be delayed by 

as much as two hours in response to IFN-γ (Morris et al. 2002) and this delay may 

contribute to the longer delay observed prior to an increase in MHC class II expression 

(Cullell-Young et al. 2001), we represent both CIITA and MHC class II at the mRNA 

and protein levels explicitly in the model (Eqns. 2.4-6 and 11). To represent transcription 

and translation, we use the same basic formulation as Maynard Smith (1968). Nascent 

MHC class II molecules undergo several posttranslational events, including coupling of 

constituent subunits to invariant chain (Ii), transport through the transGolgi network, and 

degradation of Ii into class II-associated invariant chain peptide (CLIP) (Hudson and 

Ploegh 2002). The presence of low levels of mature MHC class II molecules in 
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unstimulated macrophages suggests that these processes occur constitutively (Hume 

1985). We do not distinguish these processes in our model but refer to them collectively 

as MHC class II protein maturation. In practice, we consider MHC class II protein 

maturation to be part of MHC class II translation which we represent in our model 

explicitly. There is evidence that IFN-γ up-regulates MHC class II translation 

independent of its effect on MHC class II transcription (Cullell-Young et al. 2001). 

Therefore, we represent IFN-γ receptor-ligand complexes as having an effect on both 

processes (Eqns. 2.4 and 11). 

dT1/dt = ktxn1 (1 + α C / Rtot) − kdeg-mRNA1 T1 [2.4] 

dP/dt = ktsl1 T1 − kdeg-P P [2.5] 

dT2/dt = ktxn2 P − kdeg-mRNA2 T2  [2.6] 

where T1, P, and T2 are levels of CIITA mRNA, CIITA protein, and MHC class II mRNA 

per macrophage, respectively. ktxn1, ktsl1, and ktxn2 are rate constants for CIITA 

transcription, CIITA translation, and MHC class II transcription, whereas kdeg-mRNA1, kdeg-

P, and kdeg-mRNA2 are rate constants for degradation of CIITA mRNA, CIITA protein, and 

MHC class II mRNA, respectively. We assume that unstimulated macrophages possess 

steady-state levels of CIITA mRNA, CIITA protein, and MHC class II mRNA (i.e., T1’ = 

0 h-1, T1 = T1,0, P’ = 0 h-1, P = P0, T2’ = 0, and T2 = T2,0 when C = 0 mol L-1), allowing 

values for ktxn1, ktsl1, and ktxn2 to be estimated from known values of kdeg-mRNA1, kdeg-P, and 

kdeg-mRNA2. The quantity C/Rtot represents the fraction of surface IFN-γ receptors occupied 

at any given time, while α is a scaling factor for CIITA transcription. We assume that the 

rate of CIITA transcription increases linearly with the fraction of occupied IFN-γ 

receptors based on receptor occupation theory (Kenakin 1987) and observed correlation 

between IFN-γ receptor occupancy and tumoricidal activity in macrophages (Celada and 

Schreiber 1987). The scaling factor α allows MHC class II mRNA levels in the model to 

match increases observed experimentally in response to IFN-γ. To find a value for α, we 

simulate the experimental conditions used in two studies (Cullell-Young et al. 2001, Pai 



48 

et al. 2002) and approximate values for α that most closely yield the observed maximal 

increases in MHC class II mRNA. 

2.5.3 Exogenous Antigens 

Exogenous antigens generally enter macrophage endosomes by pinocytosis, 

phagocytosis, or receptor-mediated endocytosis. Because soluble model antigens such as 

hen egg lysozyme are typically used to assess the ability of macrophages to present 

antigen in vitro (compare Gercken et al. 1994, Hmama et al. 1998, Noss et al. 2000), we 

represent only pinocytosis in the model (Eqns. 2.7 and 8). We assume that endocytosed 

antigens either undergo partial degradation resulting in the production of MHC class II-

binding peptides, i.e., antigen processing, or are transported to lysosomes and degraded. 

Although a small number of exogenous antigens may also be shunted to the MHC class I 

pathway (Yewdell et al. 1999), we do not consider the loss of antigen due to this pathway 

in the current model. We assume that peptides resulting from antigen processing then 

either bind MHC class II molecules or are transported to lysosomes and degraded (Eqn. 

2.9). The portions of our model representing antigen processing as well as peptide-MHC 

class II binding are similar to those used in a simpler model by Singer and Linderman 

(Singer and Linderman 1990). 

dA*/dt = −(kpino ncells / vrxn) A* − kdeg-A* A*  [2.7] 

dA/dt = (kpino / vMIIC) A* − kdeg-A A − klys A  [2.8] 

dE/dt = kdeg-A A − kon-MHC M E + koff-MHC Me − klys E  [2.9] 

where A*, A, and E are molar concentrations of native antigen in the medium, native 

antigen in the endosomal compartments of each macrophage, and antigen-derived peptide 

in the endosomal compartments of each macrophage, respectively. Values for the average 

rate of pinocytic uptake, kpino, and the total volume of the MHC class II-accessible 

endosomal compartments, vMIIC, can be found in the literature (Dean 1979, Marsh et al. 
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1986). The parameters ncells and vrxn are the same as those found in Eqn. 2.1. We assume 

that the rate constant for the degradation of native antigen in the medium, kdeg-A*, has the 

same value as the rate constant for the degradation of IFN-γ in solution, kdeg-IFN-γ. The rate 

constant for antigen processing, kdeg-A, represents what is likely a group of reactions, 

including the unfolding of native antigen and proteolytic degradation by one or more 

cathepsin proteases. We derive a value for kdeg-A based on the length of time required for 

macrophages to degrade 50% of internalized mannosylated BSA (Diment and Stahl 

1985), assuming that processing of most antigens yields only one peptide capable of 

binding MHC class II. We also assume that all soluble materials in the endosomal lumen 

are delivered to MHC class II-inaccessible lysosomes with the same kinetics and that 

therefore a single rate constant for this process, klys, is sufficient. We derive a value for 

klys based on the length of time required for receptor degradation (Lauffenburger et al. 

1987). The rate constants kon-MHC and koff-MHC represent association and dissociation of 

pMHC complexes, respectively, and are described in more detail below. 

2.5.4 Self Peptides 

Macrophages constitutively produce a population of self-peptides capable of 

binding MHC class II molecules within endosomes (Chicz et al. 1993). In the absence of 

exogenous antigens, these peptides may bind 80% or more of available MHC class II 

molecules (Chicz et al. 1993). MHC class II-binding self-peptides are derived 

predominantly from transmembrane proteins including several MHC-related proteins 

(Chicz et al. 1992). In our model we consider both MHC-derived and non-MHC-derived 

self-peptides as a single population (Eqn. 2.10). We treat self-peptides similarly to 

peptides derived from exogenous antigen and assume that they either bind MHC class II 

molecules or are transported to lysosomes and degraded. Our treatment of self-peptides is 

similar to that used in a previous model by Singer and Linderman (1991). 
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dS/dt = ksource + [kdeg-MHC (Ms + Ms* ) – kon-MHC M S + koff-MHC Ms] [1 / 

(NA vMIIC)] – klys S  
[2.10] 

where S is the molar concentration of self-peptides within macrophage endosomes and M, 

Ms, and Ms*  are the numbers of free intracellular MHC class II molecules, intracellular 

self-peptide-MHC class II complexes, and surface self-peptide-MHC class II complexes 

per macrophage, respectively. We assume that the rate of self-peptide synthesis, ksource, 

for which we did not find a value in the literature, is equal to the rate of self-peptide 

degradation in resting macrophages, klys S0. An additional source term, kdeg-MHC Ms [1 / 

(NA vMIIC)], is used to represent the replenishment of MHC-derived self-peptides that are 

ultimately lost when pMHC complexes are degraded. For the initial value of the 

endosomal self-peptide concentration, S0, we use the steady-state value which we did not 

find in the literature but approximate to be 6 × 10-4 mol L-1 by solving Eqn. 2.10 when S’ 

= 0 mol L-1 h-1, Ms = Ms,0, and M = M0. During simulations of hypothesis H3 (i.e. when 

the value of kon-MHC was changed) the values of S0 and ksource were recalculated 

accordingly. However, during simulations to determine PRCC values, all rate constants 

were changed independently and the values of S0 and ksource were not recalculated. 

2.5.5 MHC Class II Translation and Peptide-MHC Class II Binding 

We assume that the reaction scheme peptide + MHC ↔ peptide-MHC complex is 

accurate on the timescales of most in vitro experimental protocols allowing us to forego 

more complicated representations (e.g., those in Beeson and McConnell 1995). We also 

assume that the enzyme HLA-DM is expressed at sufficiently high levels within 

endosomes so that dissociation of CLIP from MHC class II is not rate limiting and does 

not require explicit representation. In addition, because the signal sequence that localizes 

MHC class II to endosomes is found in the cytoplasmic domain of Ii and removed from 

mature forms of MHC class II, we assume that all forms of MHC class II in our model 
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are free to be transported to and from the plasma membrane. Consistent with this 

assumption, peptide-free MHC class II molecules have been detected on the surface of 

antigen-presenting cells (Germain and Hendrix 1991, Santambrogio et al. 1999). In our 

model, we represent MHC class II using six variables to distinguish between intracellular 

and surface localizations as well as free, self-peptide-bound, and exogenous peptide-

bound forms (Eqns. 2.11-16). 

dM/dt = ktsl2 (1 + β C / Rtot) T − kon-MHC M S + koff-MHC Ms − kon-MHC M 

E + koff-MHC Me − kout M + kin M*  − kdeg-MHC M  
[2.11] 

dM*/dt = kout M − kin M*  − kdeg-MHC M [2.12] 

dMs/dt = kon-MHC M S − koff-MHC Ms − kout Ms + kin Ms*  − kdeg-MHC Ms [2.13] 

dMs* /dt = kout Ms − kin Ms*  − kdeg-MHC Ms*  [2.14] 

dMe/dt = kon-MHC M P − koff-MHC Me − kout Me + kin Me* − kdeg-MHC Me [2.15] 

dMe* /dt = kout Me − kin Me*  − kdeg-MHC Me*   [2.16] 

where M, Ms, and Me are the numbers of free MHC class II proteins, self-peptide-MHC 

class II complexes, and exogenous peptide-MHC class II complexes within the 

endosomal compartments of each macrophage, respectively, and M* , Ms* , and Me*  are 

the numbers of the same MHC class II species on the surface of each macrophage. We 

did not find a measurement in the literature for the rate constant representing MHC class 

II translation, ktsl2, but derive a value by assuming that unstimulated macrophages 

maintain a constant total number of MHC class II proteins in the absence of exogenous 

antigen [i.e., (M + M*  + Ms + Ms* )’ = 0 mol L-1 h-1 when G0 = 0 mol L-1 and E0 = 0 mol 

L-1]. Therefore, given Eqns. 2.11-14, ktsl2 is equal to the combined rates of MHC class II 

protein degradation, kdeg-MHC (M0 + M* 0 + Ms,0 + Ms* 0). We also assume that all MHC 

class II proteins are degraded with the same rate constant, kdeg-MHC, whose value we 

derive from the half-life of MHC class II proteins on the surface of cultured macrophages 

(Poutsiaka et al. 1985). We estimate a value for the translation scaling factor, β, in a 

manner similar to that used for the transcription scaling factor, α. That is, we simulate the 
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experimental conditions used by Cullell-Young et al. (2001) who observed a maximum 

increase of 37-fold in the MHC class II protein levels of macrophages incubated with 

IFN-γ (ncells = 5 × 105, vrxn = 1 × 10-3 L, G0 = 3 × 102 units/mL ≈ 2 × 10-9 mol L-1) and 

approximate a value for β that matches this output. We derive a value for the rate 

constant of MHC class II protein transport from endosomes to the plasma membrane, kout, 

based on the length of time this process takes in cultured macrophages (between 5 and 15 

min, Harding and Geuze 1993), assuming that 50% of the proteins are transported during 

this time. Cultured macrophages retain approximately one-third of their MHC class II 

proteins intracellularly (Harding and Unanue 1989), a ratio we define as pin. Based on 

this ratio we derive a value for the rate constant of MHC class II protein internalization 

from the plasma membrane, kin, by assuming that (M* 0 + Ms* 0) / Mtot = pin where Mtot = 

(M0 + M* 0 + Ms,0 + Ms* 0) and that therefore (M*0 + Ms* 0) = [(1 − pin) / pin] (M0 + Ms,0). 

We solve Eqns. 2.12 and 14 for the steady-state values of M*  and Ms*  which we use as 

initial conditions, set their sum, kout (M0 + Ms,0) / (kin + kdeg-MHC), equal to the expression 

for (M* 0 + Ms* 0) above, and solve for kin. 

Values for the rate constants of peptide-MHC class II association and 

dissociation, kon-MHC and koff-MHC, vary widely in the literature depending on the particular 

peptide being used.  For example, complexes with peptides derived from OVA and 

myelin basic protein (MBP) dissociate in solution at rates of 3 × 10-6 s-1 and 4 × 10-4 s-1, 

respectively (Buus et al. 1986, Mason and McConnell 1994). By using the formula t95% = 

−ln(0.05) / [kd (1 + L0 / KD)] where t95% is the time required to reach 95% of equilibrium 

binding, kd the dissociation rate constant, L0 the initial ligand concentration, and KD the 

equilibrium dissociation constant (Lauffenburger and Linderman 1993), we estimate t95% 

values to be on the order of 100 h and 1 h for OVA and MBP peptides, respectively, 

when L0 = KD. Considering that the length of time between the administration of 

exogenous antigen and the assay for surface pMHC complexes is on the order of 1 h in 

the experimental protocols of interest (Hmama et al. 1998, Noss et al. 2000), these values 
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for t95% suggest that, at least in some cases, the number of complexes does not reach 

equilibrium. If this is true, the choice of kon-MHC and koff-MHC values would be important to 

the outcome of the simulations. However, the presence of the enzyme HLA-DM 

increases the dissociation rate constant of pMHC complexes by 104-fold (Weber et al. 

1996), resulting in t95% values of 1 × 10-2 and 1 × 10-4 h for OVA and MBP peptides, 

respectively, when L0 = KD. In both cases, the number of pMHC complexes is expected to 

reach equilibrium well before the conclusion of the assay. Therefore, we assume that the 

choice of peptide-specific kon-MHC and koff-MHC values from the literature does not 

significantly affect the outcome of the simulations due to the enzymatic activity of HLA-

DM. 

In all simulations, we set the initial conditions for the variables representing the 

different MHC class II species (i.e., M0, M* 0, Ms,0, Ms*0, Me,0, and Me* 0) based on two 

ratios, pin and pbound, the fractions of all MHC class II that are intracellular and bound to 

self-peptide, respectively, in unstimulated macrophages when exogenous antigen is not 

present. We assume that pin and pbound apply to both free and peptide-bound MHC class 

II, so that M0 / (M0 +M* 0) = Ms,0 / (Ms,0 + Ms* 0) = pin and Ms,0 / (M0 + Ms,0) = pbound. We 

express M* 0, Ms*0, and Ms,0 in terms of M0, the number of free endosomal MHC class II 

proteins, sum M0, M* 0, Ms* 0, and Ms,0 to the known total number of MHC class II 

molecules in unstimulated macrophages (Mtot, Harding and Unanue 1989), and solve for 

each value. 

2.5.6 Inclusion of Mtb and Its Inhibitory Effect on Intracellular Processes 

We simulate the inhibitory effect of Mtb on various intracellular processes by 

multiplying the corresponding rate constant in the baseline model by the quantity [1 − B / 

(KM + Β)] where B is the multiplicity of infection (moi, or bacteria-to-macrophage ratio) 

used in vitro and KM is the moi needed to inhibit a process by 50%. For simplicity we use 
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a single value for KM in all of our simulations and derive this value from the data of Noss 

et al. (2000) who found that MHC class II transcription decreases by 20% and 80% when 

the infectious dose of Mtb is 5 and 40, respectively. We fit these data to the function kinf = 

kuninf [1 − B / (KM + Β)] where kinf and kuninf are rate constants for a given process in 

infected and uninfected macrophages, respectively, resulting in KM ≈ 18. To measure the 

effect on antigen presentation, we calculate (Me* uninf – Me* inf) / Me* uninf where Me* uninf and 

Me* inf are surface exogenous peptide-MHC class II levels (Me* ) using kuninf and kinf, 

respectively. 

2.5.7 Parameters and Initial Conditions 

Model simulations generating the figures and tables in the main text used the 

following parameters and initial conditions in place of the baseline parameters and initial 

conditions in Tables 3 and 4. 

For Figure 2.2. A and B, ncells = 4 × 106, vrxn = 8 × 10-3 L, G0 = 2 × 10-6 mol L-1, 

A*0 = 0 mol L-1, Pai et al. 2002; α and kpino were set to 200 and 1 × 10-12 L h-1, 

respectively. C and D, ncells = 5 × 105, vrxn = 1 × 10-3 L, G0 ≈ 2 × 10-9 mol L-1, A*0 = 0 mol 

L-1, Cullell-Young et al. (2001); α and kpino were set to 30 and 1 × 10-12 L h-1, 

respectively. E and F, ncells = 5 × 106, vrxn = 1 × 10-3 L, G0 = 0 mol L-1, A*0 ≈ 1 × 10-8 mol 

L-1, Buus and Werdelin (1986); α = 30, kpino = 1 × 10-12 L h-1. G and H, ncells = 9 × 104, 

vrxn = 4 × 10-4 L, G0 = 0 mol L-1 or G0 ≈ 6 × 10-11 mol L-1, A*0 = 0 mol L-1, A*16 = 2 × 10-

6 mol L-1, Delvig et al. (2002); α = 30, kpino = 1 × 10-12 L h-1. 

For Table 2.1. ncells = 1 × 105, vrxn = 1 × 10-3 L, G0 = 1 × 10-9 mol L-1, A*0 = 1 × 

10-4 mol L-1; α = 30, kpino = 1 × 10-12 L h-1. B = 40. H1, H2, H3, and H4 correspond to 

model parameters kdeg-A, ktsl2, kon-MHC, and ktxn2, respectively. 

For Figure 2.3. C, D, and E, ncells = 1 × 105, vrxn = 1 × 10-3 L, B = 50, G0 = 0 mol 

L-1, A*0 = 0 mol L-1, and G24 ≈ 1.3 × 10-9 mol L-1 where subscript n refers to a condition 
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at the nth hour of the experiment; α and kpino were set to 30 and 1 × 10-12 L h-1, 

respectively. F, G, and H, ncells = 5 × 104, vrxn = 3.7 × 10-4 L, B = 40, G0 = 1.3 × 10-10 mol 

L-1, A*0 = 0 mol L-1, G22 = 0 mol L-1, G24 = 1.3 × 10-10 mol L-1, G46 = 0 mol L-1, and A*46 

= 2.0 × 10-1 mol L-1; α and kpino were set to 30 and 1 × 10-12 L h-1, respectively. 

For Table 2.2. ncells = 1 × 105, vrxn = 1 × 10-3 L, G0 = 1 × 10-9 mol L-1, A*0 = 1 × 

10-4 mol L-1; α = 30, kpino = 1 × 10-12 L h-1 were used as baseline values. MHC class II 

export, antigen concentration in medium, antigen uptake, MHC class II protein 

maturation, and IFN-γ stimulation of MHC class II translation correspond to model 

parameters kout, A*0, kpino, ktsl2, and β, respectively. IFN-γ receptor-ligand binding, IFN-γ 

concentration in medium, MHC class II transcription, CIITA translation, and CIITA 

transcription correspond to model parameters kon-IFN-γ, G0, ktxn2, ktsl1, and ktxn1, 

respectively. IFN-γ stimulation of CIITA transcription, IFN-γ degradation in solution, 

MHC class II degradation, CIITA protein degradation, CIITA mRNA degradation, and 

IFN-γ receptor-ligand dissociation correspond to model parameters α, kdeg-IFN-γ, kdeg-MHC, 

kdeg-P, kdeg-mRNA1, and koff-IFN-γ, respectively. 

For Figure 2.4. ncells = 1 × 105, vrxn = 1 × 10-3 L, B = 40, G0 = 0 mol L-1, A*0 = 0 

mol L-1, G24 ≈ 1.3 × 10-10 mol L-1, and A*t+24 = 1 × 10-9 mol L-1 where subscript n refers 

to conditions at the nth hour of the experiment and t is variable; α and kpino are set to 30 

and 1 × 10-12 L h-1, respectively. 
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Figures 

 

 

Figure 2.1. Model schematic. Molecular species represented in the model include: 
extracellular IFN-γ (G), IFN-γ receptors (free: R, bound: C), CIITA (mRNA: T1, protein: 
P), MHC class II mRNA (T2), exogenous antigen (extracellular: A*, intracellular: A, 
peptide: E), self peptide (S), free MHC class II molecules (intracellular: M, surface: M* ), 
self peptide-bound MHC class II molecules (intracellular: Ms, surface: Ms* ), and 
exogenous peptide-bound MHC class II molecules (intracellular: Me, surface: Me* ). Solid 
arrows indicate one-step reactions and dashed arrows indicate regulatory interactions. 
Degradation is represented in the model for the following molecules but not shown: G, 
T1, P, T2, A*, M, M* , Ms, Ms* , Me, Me* . Up-regulation of M by C directly and 
contribution of Ms and Ms*  to S are also included in the model but not shown. 
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Figure 2.2. Model testing using various controls. A and B, Simulation results and 
experimental data for levels of CIITA mRNA (solid lines) and MHC class II mRNA 
(dashed lines) in IFN-γ-treated macrophages from Pai et al. (2002). C and D, Simulation 
results and experimental data for levels of MHC class II mRNA (solid lines) and MHC 
class II protein (dashed lines) in IFN-γ-treated macrophages from Cullell-Young et al. 
(2001). E and F, Simulation results for surface pMHC levels (in arbitrary units) and 
experimental data for T cell response in non-IFN-γ-treated macrophages exposed to 
antigen from Buus and Werdelin (1986). G and H, Simulation results for surface pMHC 
levels (in arbitrary units) and experimental data for T cell response in non-IFN-γ-treated 
macrophages (solid lines) and IFN-γ-treated macrophages (dashed lines) exposed to 
antigen from Delvig et al. (2002). 16 h pretreatment with medium or IFN-γ is not shown; 
hence, the x-axis is enumerated from 16 h onward (i.e. when antigen is present). 
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Figure 2.3. Simulation results of two in vitro experimental protocols using four published 
hypotheses. In A and B, large circles represent macrophages, highlighted circles IFN-γ-
treated macrophages, and small circles T cell hybridomas. A, Protocol of Hmama et al. 

(1998). 105 monocytes were infected with Mtb at MOI 50 for 24 h, treated with 200 U/ml 
IFN-γ for 36 h, pulsed with 1 mg/ml BSA for 0.5 h, and chased for 0.5 h, 1 h, or 4 h. B, 
Protocol of Noss et al. (2000). 5 · 104 macrophages were treated with 2 ng/ml IFN-γ for 

20-24 h, infected with Mtb at MOI 40 for 2 h, treated with 2 ng/ml IFN-γ for an 
additional 18-26 h, and pulsed with 0-100 µg/ml hen egg lysozyme or 0-1000 µg/ml 
RNase for 1-3 h. C, D, and E, Simulation results using the protocol of Hmama et al. 
(1998) for levels of CIITA mRNA, MHC class II mRNA, and surface MHC class II 

protein, respectively. F, G, and H, Simulation results using the protocol of Noss et al. 
(2000) for levels of MHC class II mRNA, total MHC class II protein, and surface pMHC, 

respectively.
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Figure 2.4. Proposed experimental protocol to determine the contribution of different 
mechanisms to Mtb of antigen presentation. A. Protocol schematic using representations 
of Fig. 2.3A and B. B, Surface pMHC levels expected in uninfected macrophages, Mtb-
infected macrophages if mechanisms target primarily MHC class II expression (in this 
case, MHC class II transcription), Mtb-infected macrophages if mechanisms target 
primarily other processes (in this case, antigen processing). Percentage reductions in 
infected macrophages (relative to uninfected controls) are also shown. 
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Tables 

 
Table 2.1. Changes in surface pMHC levels following inhibition of various intracellular 
processes hypothesized to be affected by M. tuberculosis.a 

Hypothesis: Affected 
process 

0.1 h 1.0 h 10 h 100 h 

H1: Antigen processing ▼47% ▼8.4% ▼7.2% ▼43% 

H2: MHC class II 
maturation 

▼1.4% ▼8.2% ▼49% ▼69% 

H3: MHC class II peptide 
loading ▼44% ▼11% ▼12% ▼57% 

H4: MHC class II 
transcription 

▼0.0026% ▼0.16% ▼26% ▼66% 

H1 + H4 ▼47% ▼8.6% ▼31% ▼81% 

H2 + H3 ▼45% ▼18% ▼55% ▼86% 

a Identical experimental conditions were used in each simulation, and comparisons were 
made to the baseline model, i.e. when no processes were inhibited. 



 

 

 

Table 2.2. Additional intracellular processes significantly correlated with surface pMHC levels.a 

Time:                   1.0 h 10 h 100 h 
Description (Correlation coefficient) Description (Correlation coefficient) Description (Correlation coefficient) 

MHC class II export (0.79) 
Antigen concentration in medium (0.41) 
Antigen uptake (0.40) 
MHC class II protein maturation (0.38) 
IFN-γ stimulation of translationb (0.33) 
 

MHC class II protein maturation (0.72) 
IFN-γ stimulation of translationb (0.62) 
MHC class II export (0.55) 
IFN-γ receptor-ligand binding (0.52) 
IFN-γ concentration in medium (0.52) 
MHC class II transcription (0.49) 
CIITA translation (0.44) 
IFN-γ stimulation of transcriptionc (0.36) 
CIITA transcription (0.36) 

MHC class II transcription (0.57) 
MHC class II protein maturation (0.56) 
CIITA translation (0.56) 
CIITA transcription (0.53) 
IFN-γ concentration in medium (0.51) 
IFN-γ receptor-ligand binding (0.49) 
IFN-γ stimulation of transcriptionc (0.47) 
Antigen concentration in medium (0.36) 
Antigen uptake (0.33) 
MHC class II export (0.32) 

  IFN-γ degradation in solution (-0.87) 
MHC class II degradation (-0.56) 
CIITA protein degradation (-0.53) 
CIITA mRNA degradation (-0.49) 
IFN-γ receptor-ligand dissociation (-0.48) 

a 1000 simulation runs were performed using different sampled parameter values. PRCC values determined to be significant (p ≤ 10-30) 
are shown in parentheses. Intracellular processes considered in previous hypotheses (H1-H4) are italicized. 
b MHC class II translation 
c CIITA transcription 
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Table 2.3. Parameters used in the APC model. 

Parameter Value (ref.) Parameter Value (ref.) 

kon-IFN-γ 
2.6 × 1010 mol-1 liter  h-1 
(Sadir et al. 1998) 

kdeg-MHC 
3 × 10-1 h-1 (Poutsiaka et 
al. 1985) 

ncells Varies by experiment vMIIC 
4 × 10-16 L (Marsh et al. 
1986) 

vrxn Varies by experiment kon-MHC 
4 × 105 mol-1 L h-1 (Buus 
et al. 1986) 

koff-IFN-γ 
1.8 × 101 h-1 (Sadir et al. 
1998) 

koff-MHC 
6 × 103 h-1 (Buus et al. 
1986) 

kdeg-IFN-γ 
3.5 × 10-2 h-1 (Celada et al. 
1984) 

klys 
6 h-1 (Lauffenburger et al. 
1987) 

krecyc 1 h-1 (Gercken et al. 1994) kpino 
5 × 10-14 - 1 × 10-12 L h-1 
(Dean 1979, Selby et al. 
1995) 

ktxn1 kdeg-mRNA1 T1,0 = 0.12 h-1 kdeg-A* 
3.5 × 10-2 h-1 (Celada et 
al. 1984) 

α 30 - 200 (Cullell-Young et 
al. 2001, Pai et al. 2002) 

kdeg-A 
4 h-1 (Diment and Stahl 
1985) 

kdeg-mRNA1 0.12 h-1 (Pai et al. 2002) ktsl2 
kdeg-MHC (M0 + M* 0 + Ms,0 
+ Ms* 0) ≈ 2 × 10-2 h-1 

ktsl1 kdeg-mRNA1 P0 / T1,0 = 1.4 h-1 β 10 (Cullell-Young et al. 
2001) 

kdeg-P 
1.4 h-1 (Schnappauf et al. 
2003) 

kout 
4 h-1 (Harding and Geuze 
1998) 

ktxn2 kdeg-mRNA2 T2,0 ≈ 4 × 103 h-1 pin 
1/3 (Harding and Unanue 
1989) 

Rtot 1 × 104 (Celada et al. 1984) kin 
[pin/(1-pin)] kout – kdeg-MHC 
≈ 1.97 h-1 

kdeg-mRNA2 4 × 10-2 h-1 (Cullell-Young pbound 4/5 (Chicz et al. 1993) 
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et al. 2001) 

ksource 
klys S0 ≈ 3.6 × 10-3 mol L-1 h-

1 
Mtot 

2 × 105 (Harding and 
Unanue 1989) 

 
Table 2.4. Initial conditions used in the APC model. 

Parameter Value (ref.) Parameter Value (ref.) 

G Varies by experiment A 0 mol L-1 

R 1 × 104 (Celada et al. 1985) E 0 mol L-1 

C 0 M 
pin (1 − pbound) Mtot ≈ 1.3 × 
104 

T1 1 M* 
[(1 − pin) / pin] M0 ≈ 2.7 × 
104 

P 1 Ms 
[pbound / (1 − pbound)] M0 ≈ 
5.3 × 104 

T2 1 Ms* 
[(1 − pin) / pin] Ms,0 ≈ 1.1 × 
105 

S 6 × 10-4 mol L-1 Me 0 

A* Varies by experiment Me* 0 
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CHAPTER 3 

How Peptide Length Affects Binding to MHC Class II 

3.1 Introduction 

Major histocompatibility complex (MHC) molecules, also known as human 

leukocyte antigens (HLA), are a vital component to the development of the immune 

response to pathogens (Kaufmann 2005). These molecules act as receptors for peptides 

derived from foreign antigens as well as self peptides and enable the long-term display of 

antigens on the cell surface. T cells recognize antigenic peptides in the context of MHC, 

and depending on the class of MHC involved, recognition can lead to the death of the 

presenting cell or its activation. In either case peptide-MHC binding is an important 

prerequisite event and has far-reaching consequences to the ensuing response. 

Prediction of peptide-MHC binding therefore represents an important goal in 

bioinformatics, particularly as applied to immunology, and a number of computational 

approaches have been developed (reviewed in Buus 1999; see also Robinson et al. 2003 

for other MHC-specific bioinformatics tools). The simplest are based on motifs, i.e. 

requirements for particular amino acids at positions within the peptide as determined 

from pool sequencing of eluted peptides (Falk et al. 1991, Rammensee 1995 and 

references therein). Such approaches have largely been superseded by algorithms using 

matrices to score the relative contribution of amino acids at each position within the 

peptide (Parker et al. 1994, Davenport et al. 1995, Marshall et al. 1995). Machine 

learning methods including hidden Markov models and artificial neural networks have 
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also been applied, with peptide sequence serving as input and binding/non-binding as 

output (Brusic and Harrison 1994, Honeyman et al. 1998, Mamitsuka 1998). More 

recently, attempts have been made to predict the structure of the peptide-MHC complex 

and free energy changes associated with binding (Altuvia et al. 1997, Rognan et al. 1999, 

Schueler-Furman et al. 2000, Davies et al. 2003, Schafroth and Floudas 2004; for a 

review of current structural information and nomenclature see Kaas and Lefranc 2005). It 

is also possible to combine some of these approaches, as Sturniolo et al. (1999) did using 

matrices to represent each pocket lining the peptide-binding groove. 

Continued progress in the development of these algorithms faces a number of 

challenges including how to handle differences between the two classes of MHC. Most 

prediction algorithms were first developed in the context of peptide-MHC class I binding 

which involves peptides of a narrow range of lengths, usually 8-10 amino acids. These 

algorithms were then applied to peptide-MHC class II binding, typically with little or no 

modification. 

Despite the fact that both classes of MHC share superficial similarities and bind a 

core of nine amino acids within peptides (Jones 1997), important differences exist. In 

particular the open-ended nature of MHC class II peptide-binding groove allows for a 

wide range of peptide lengths (Brown et al. 1993). Peptides binding MHC class II usually 

vary between 13 and 17 amino acids in length, though shorter or longer lengths are not 

uncommon (Chicz et al. 1992, Sercarz and Maverakis 2003). As a result peptides are 

hypothesized to shift within the MHC class II peptide-binding groove, changing which 

9mer window (register) sits directly within the groove at any given time. In contrast the 

capped nature of the MHC class I peptide-binding groove does not allow variation in 

length or such register shifting. 

Variation in peptide length may have important consequences for the binding and 

function of antigenic peptides (Malcherek et al. 1994, Vogt et al. 1994). For instance, 

Srinivasan et al. (1993) found that a 23mer peptide derived from cytochrome c was 32 
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times more immunogenic than a 10mer peptide containing the same putative binding 

core. A direct relationship between peptide length and binding affinity has been observed 

for some MHC class II alleles, but whether this holds true for most alleles remains 

unknown, as does an explanation for why this relationship exists (Bartnes et al. 1999, 

Fleckenstein et al. 1999, Arnold et al. 2002, Sercarz and Maverakis 2003). In addition to 

having more binding registers, longer peptides also possess peptide-flanking residues 

(PFR) which lie outside of the peptide-binding groove and may interact with the MHC 

class II molecule at more distal locations (Sercarz and Maverakis 2003). Whether 

information regarding peptide length, or any other peptide property lost by considering 

only 9mers, may aid prediction also remains unknown. 

In this study we address several issues related to peptide length and binding to 

MHC class II. Using aggregate data that are now available from online databases, we first 

examine whether a relationship exists between length and affinity for several MHC class 

II alleles. We then attempt to incorporate length into two existing binding algorithms in a 

number of ways, including using regression to pre-process the data, treating length as an 

additional variable within the algorithms, and deriving a formula to more accurately 

represent register shifting (Fig. 3.1). We show that improvements to more than one 

current algorithm for predicting peptide-MHC class II binding are possible with relatively 

simple amendments. We also comment on which mechanisms are likely to be affecting 

binding as peptide length increases. 

3.2 Methods 

3.2.1 Data Sources 

Peptide data sets used in this study are available from the AntiJen database 

(http://www.jenner.ac.uk, Blythe et al. 2002) and can be downloaded using the perl 

LWP::Simple module. Other peptide-MHC databases listing affinities are also 
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available, including the Immune Epitope Database (currently in beta version at 

http://www.immuneepitope.org, Peters et al. 2005), but were not used in this study. Our 

data sets comprised the sequences and IC50 values of peptides binding the MHC class II 

alleles HLA-DRB1*0101, -DRB1*0401, and -DRB1*1501 from AntiJen. IC50 refers to 

the concentration of peptide required to inhibit 50% of reporter peptide-MHC binding. 

When more than one IC50 measurement was available for a given peptide-MHC complex, 

the first measurement listed was used, unless otherwise indicated. IC50 values were 

converted into pIC50 using the formula pIC50 = -log IC50 where IC50 has units of molar. 

Homologous sequences and their IC50 measurements were removed using UniqueProt 

(Mika and Rost 2003). Other algorithms for removing homologous sequences are also 

available, including Hobohm 1 and Hobohm 2 (Hobohm et al. 1992), but were not used 

in this study. The data sets were of the following sizes (before/after filtering by 

UniqueProt): DRB1*0101 (464/303), DRB1*0401 (606/414), DRB1*1501 (343/213). 

Two additional data sets were used to assess the effect of data set size, those for 

DRB1*0404 (81/54) and DRB1*0405 (116/102). To assess the role of data quality in 

determining algorithm performance, data sets for DRB1*0101, DRB1*0301, 

DRB1*0401, DRB1*1101, DRB1*1501, and A*0201 were obtained from AntiJen, and 

data points for which the concentration of reporter peptide was unavailable were 

excluded. Data sets are available as part of the online Supplementary Data at 

http://malthus.micro.med.umich.edu/Bioinformatics/. 

3.2.2 Regression of Binding Affinity Versus Peptide Length 

Both parametric and nonparametric fits were made to plots of affinity vs. length in 

the data. Parametric fits were made with one, two, and three fitted parameters (linear, 

quadratic, and cubic, respectively) using the open-source statistical program R 

(http://www.R-project.org, R Development Core Team 2005) and the function lm. 
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Nonparametric local regression fits were made using the R function loess with default 

settings (Cleveland and Devlin 1988). To evaluate fit quality, analysis of variance was 

performed using the R function anova. An F statistic was generated which we used to 

compare linear with nonlinear parametric fits (Motulsky and Christopoulos 2004). 

Nonparametric local regression fits were evaluated using a permutation test. In 

this test each pIC50 value was reassigned to a different peptide sequence at random, and a 

loess fit was re-derived for the shuffled values. This was repeated 1000 times, and the 

smallest 25 (2.5%) and largest 25 (2.5%) fitted values at each length were excluded. The 

local regression fit to the original, non-shuffled data set was then compared to the 

remaining 95% of permuted values at each length and was determined to be significant if 

it fell outside of this interval. 

3.2.3 Simulations of Register Shifting 

To simulate the effects of register shifting on peptide-MHC class II binding 

affinity over a range of peptide lengths, we derived a formula for the expected value of 

the affinity of a single hypothetical peptide with multiple registers: 

E[K(X)] = ∑ K(xi) p(xi) [3.1] 

where K(X) is the equilibrium association constant, or affinity, of a peptide X, K(xi) is the 

affinity of a complex with a single register xi, and p(xi) is the probability of register xi 

occurring. We assume that p(xi) can be approximated by the proportion of complexes 

having register xi: 

p(xi) = N(xi) / ∑ N(xi) [3.2] 

where N(xi) denotes the number of complexes having register xi and the sum is taken over 

all possible registers. Belmares and McConnell (2001) found that the kinetics of shifting 

between two registers could be accurately represented as x1 ↔ P + M ↔ x2 where P and 
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M are peptide and MHC, respectively. Based on this result, at equilibrium [x1] = 

K(x1)[P][M] and [x2] = K(x2)[P][M]. Because both x1 and x2 exist in the same solution, it 

follows that: 

N(x1) / [ N(x1) + N(x2) ] = K(x1) / [ K(x1) + K(x2) ]. [3.3] 

 

More generally, 

N(xi) / ∑ N(xi) = K(xi) / ∑ K(xi). [3.4] 

Combining Equations 3.1, 3.2, and 3.4, we obtain the following result for the expected 

affinity of a given complex when multiple registers are available: 

E[K(X)] = ∑ K(xi)
2 / ∑ K(xi) [3.5] 

This result can also be applied to log-transformed measures of affinity such as log 

K(X). Henceforth we refer to Equation 3.5 or its log-transformed counterpart as the 

equilibrium-based formula for reconciling multiple registers. 

We assume that every overlapping 9mer window within a peptide can result in 

binding to MHC and therefore set the lower and upper limits of summation at 1 and l − 8, 

respectively, where l represents peptide length and is varied between 9 and 25, the 

shortest and longest lengths typically observed in our data sets. K(xi) was generated from 

a lognormal distribution with mean 107.5 and standard deviation 100.5, based on the 

observation that most values for the equilibrium dissociation constant KD of peptide-

MHC binding fall in the range of 10-7-10-8 M (McFarland and Beeson 2002). Moreover, a 

lognormal distribution was chosen based on the equation for standard free energy change, 

∆G° = -RT ln (1/KD) where R and T are the gas constant and temperature, respectively 

(Eisenberg and Crothers 1979), and the assumption that free energy change for peptide-

MHC binding is normally distributed. For each value of l between 9 and 25, a set number 

of values were generated (in our case, either 10 or 100), resulting in a scatter plot of 
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simulated pIC50 values versus length. A curve was then fit to this plot using local 

regression (the loess function in R) with default settings. 

3.2.4 Peptide-MHC Binding Affinity Prediction 

Two algorithms were selected to generate baseline predictions against which the 

effects of modifications based on length could be compared. One of these algorithms was 

the iterative self-consistent (ISC) partial-least-squares (PLS) algorithm of Doytchinova 

and Flower (2003). We implemented this matrix-based algorithm for predicting peptide-

MHC binding affinity in perl and R. Briefly, this algorithm uses partial least squares 

regression to identify underlying factors (also known as latent variables) relating multiple 

predictor variables to an outcome variable. In the case of peptide-MHC binding, 180 

predictor variables were used to denote the presence or absence of the 20 possible amino 

acids within each 9mer window, and the outcome variable was binding affinity as pIC50. 

The initial steps of the algorithm were performed using perl scripts: splitting each 

data set into training and test sets; generating all possible 9mers for each training set 

peptide; selecting only those 9mers having position 1 anchor residues (F, I, L, M, V, W, 

and Y); and converting 9mers thus selected into bit strings. PLS regression was then 

performed in R using the bit-encoded 9mers and their corresponding pIC50 values. PLS is 

available for R as the pls.pcr library (available at http://cran.r-project.org) and was 

called from within a perl script using the IPC::Open2 module. Default settings were 

used for PLS; however, some options in the commercial software used by Doytchinova 

and Flower (2003) were not available in R, namely scaling method and column filtering. 

Subsequent steps in the algorithm were performed using additional perl scripts: selecting 

those 9mers in the training set yielding predicted pIC50 values closest to experimental 

pIC50 values during cross-validation and repeating the algorithm until the selected set of 

9mers matched the previously selected set, i.e. when self-consistency was achieved. For 
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computational expediency we limited the number of PLS iterations for any given peptide 

to 10. At that point the final PLS model was extracted and used to generate predictions on 

the test set. 

For test set peptides having more than one 9mer with an anchor residue in 

position 1, multiple predictions were generated and a rule was needed to make a final 

prediction. One option is to assume only one register predominates and to take the 

highest score from among the predictions. More complicated rules are also possible such 

as the combination rule of Doytchinova and Flower (2003) whereby the mean of the 

pIC50 predictions is chosen if they fall within a one log range; otherwise, the highest is 

chosen. 

To measure the performance of the algorithm we used five-fold cross-validation 

(5x-CV), setting aside one-fifth of each data set to use as a test set and using the other 

four-fifths as the training set. This process was repeated on the same data set four 

additional times until a prediction was made for each peptide in the data set and complete 

coverage was achieved. (This instance of cross-validation was independent of the leave-

one-out-cross validation used in the ISC-PLS algorithm.) The accuracy of each set of 

predictions was scored by calculating the area under receiver operating characteristic 

curve (AROC). This calculation can be done in R using the prediction and 

performance functions of the ROCR library. By repeating each 5x-CV multiple times, 

we were able to calculate the standard error of the AROC scores which could then be used 

to determine whether two mean AROC scores significantly differed by Student’s t test. 

Pearson correlation coefficients between predicted and experimentally determined pIC50 

values were also used to score performance and are provided in the online Supplementary 

Data (Lund et al. 2005). 

A second algorithm that was selected was the TEPITOPE algorithm of Sturniolo 

et al. (1999). In this algorithm amino acid-binding profiles are generated for each pocket 

within the peptide-binding groove, and these profiles are combined according to MHC 
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sequence. We did not regenerate these matrices but rather used the matrices available on 

the ProPred website (http://www.imtech.res.in/raghava/propred, Singh and Raghava 

2001). Using the appropriate matrix a sum was calculated for each peptide in a selected 

AntiJen data set. To this value we added an approximation of the binding affinity of an 

all-alanine 9mer (pIC50 = 6.169, Doytchinova and Flower 2003) generating a final 

prediction. Performance was scored by calculating the AROC. 

3.2.5 Incorporating Length into Existing Prediction Algorithm 

Peptide length was incorporated into the ISC-PLS algorithm using one of three 

modifications. In Modification 1 (Mod. 1) a local regression fit was first made to the 

peptide lengths and pIC50 measurements in each training set. (In the event that the pIC50 

value for either the shortest or the longest length peptide was excluded from the training 

set but included in the test set, a local regression fit at that length could not be generated; 

instead, we assigned the average fitted values at the remaining lengths.) The value of the 

fit was then subtracted from the original pIC50 value for each peptide, and the resulting 

difference, i.e. the residual, was then used in place of the original pIC50 value. The ISC-

PLS algorithm was performed as described earlier providing initial predictions on the test 

set. To these predictions the value of the regression fit was added yielding final 

predictions. Alternatively, in Alternative Modification 1 (Alt. 1), peptide length was 

appended as the 181st predictor variable to the bit-encoded training set and test set 9mers. 

The remainder of the algorithm was then performed as described earlier. Finally, in 

Modification 2 (Mod. 2) the formula derived to represent register shifting (Equation 5) 

was used to reconcile predictions made on multiple candidate 9mers, i.e. registers, within 

a test set peptide. This modification occurred at the last stage of the ISC-PLS algorithm 

and was used in place of the combination rule described above. 
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Only Mod. 2 was used to incorporate length into the TEPITOPE/ProPred 

algorithm. When TEPITOPE/ProPred is applied to peptides with multiple registers, the 

highest score among the different registers is typically taken to be the score of the entire 

peptide (Brusic et al. 1998, Nielsen et al. 2004, Murugan and Dai 2005). We reconciled 

individual register scores using the equilibrium-based formula (Equation 5) but did not 

regenerate the pocket profiles and therefore did not apply Mod. 1 or Alt. 1 in this case. 

3.2.6 Data Filtering by Experimental Parameters 

To gauge the sensitivity of binding affinity measurements to variations in 

experimental parameters, we used the Cheng-Prusoff equation (1973) which relates the 

equilibrium dissociation constant of a peptide-MHC complex (KD) to its observed IC50 

value: 

KD = IC50 (1 + Lr/Kr) 
-1 [3.6] 

Here Lr and Kr represent the concentration of the reporter peptide and the 

equilibrium dissociation constant of the reporter peptide-MHC complex, respectively. 

These parameters frequently vary by protocol, Lr explicitly so and Kr by virtue of being 

specific to each combination of peptide and MHC (Sette 1989, Roche 1990, Southwood 

1998). Other experimental parameters are also likely to affect IC50 measurements, 

including temperature and pH, but were not considered explicitly. 

As a measure of peptide-MHC binding affinity, KD has the benefit of not being 

dependent on the identity or concentration of the reporter peptide used (Kenakin 1997). 

Additionally, KD is directly proportional to the change in standard free energy of a 

reaction ∆G° when log transformed as indicated by the equation ∆G° = -RT ln (1/KD) 

where R and T are the gas constant and temperature, respectively (Eisenberg 1979). 

Because the Cheng-Prusoff equation (Equation 3.6) shows that the ratio Lr/Kr 

distinguishes IC50 from KD, we used this ratio to estimate the degree to which IC50 
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measurements are affected by reporter peptide variation in experimental protocols. The 

value of Lr depended on what was reported in the database. A single value was used if 

provide; otherwise, the reported range became the lower and upper limits of a uniform 

distribution. To approximate values for Kr which is usually unreported, we used a 

lognormal distribution based on the equation for standard free energy change and the 

assumption that changes in free energy for peptide-MHC binding reactions are normally 

distributed. From the observation that most KD values for peptide-MHC binding fall in 

the range of 10-7-10-8 M (McFarland 2002), we assigned the lognormal distribution a 

mean of 10-7.5 and a standard deviation of 100.5. For each peptide we generated 1000 

values of Lr/Kr and calculated the mean and standard error of the mean. Filtered data 

subsets were created by excluding IC50 values associated with mean Lr/Kr exceeding 

either 1 or 9, representing deviations from KD of 2- or 10-fold, respectively. 

3.3 Results 

3.3.1 Peptide Length Affects Binding Affinity to MHC Class II 

To determine the nature of the relationship between peptide length and peptide-

MHC class II binding affinity, we derived a number of regression fits to binding data for 

several MHC class II alleles from the AntiJen database. In all cases homologous 

sequences were first removed from the data sets using a pre-filtering algorithm, 

UniqueProt (Mika and Rost 2003). Parametric fits were then made based on polynomials 

with one, two, or three fitted parameters (linear, quadratic, and cubic, respectively). 

Analysis of variance from these fits showed that for these MHC class II alleles the nature 

of the relationship was most likely nonlinear (Table 3.1). A quadratic or cubic fit resulted 

in a significant reduction in sum of squares in all three cases at the 0.05 level. 

To better characterize the apparent nonlinearities in the length-affinity data we 

then made nonparametric fits to the data and analyzed the fits. Local regression was used 
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to make nonparametric fits, and analysis was done using a permutation test. In this test 

binding affinities were reshuffled among peptide lengths to create 1000 new data sets, 

and a local regression fit was re-derived for each data set. If the fit to the original data fell 

outside of the middle 95% of permutation fits at any particular length, the nonlinearity at 

that length was determined to be significant. In each data set we found that the 

nonlinearity between length and affinity was significant at one or more lengths (Fig. 3.2). 

Lengths associated with strongest affinity could be identified, as could lengths associated 

with weakest affinity. For example, for DRB1*0401 affinity appeared strongest for 

peptides of 12 amino acids and weakest for peptides of 20 amino acids. When the data 

sets were combined and the local regression fits were regenerated, the same trends were 

seen (Fig. 3.2D): shorter peptide lengths, of approximately 12 amino acids, were 

associated with higher affinity, while longer peptide lengths, of approximately 20 amino 

acids, were associated with lower affinity. 

Nonlinearities may have been present in the length-affinity data for several 

reasons, including the ability of peptides to shift registers within the MHC class II 

peptide-binding groove. To simulate the effect of register shifting on the mean affinity 

observed for peptides of different lengths, we used a simple statistical model based on 

two assumptions: first, that longer peptides are likely to contain more registers than 

shorter peptides, and secondly, that the measured affinity of a given peptide-MHC 

complex approximates the weighted average of the affinities of all the registers in a 

peptide (Equation 5). For a simulated peptide of a given length l, the affinities of l − 8 

registers were generated and averaged. This process was repeated until the average 

affinities of either 10 or 100 peptides at each length (i.e. each value of l) were obtained, 

resulting in data sets of two sizes (one of the same magnitude as those typically obtained 

from databases, the other an order of magnitude larger). At this point a regression curve 

was derived (Fig. 3.3). For the larger sized data set the fitted curve was nonlinear and 

monotonically increasing (Fig. 3.3A). The same trend was seen in the smaller data set; in 
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this case, however, deviations were also possible, resulting in maxima at mid-length 

peptides (Fig. 3.3B). Together these results suggest that register shifting may be one 

mechanism behind the nonlinearities in the length-affinity relationship from experimental 

data sets. 

We also estimated the lengths of the amino- and carboxyl-terminal portions of 

each peptide extending outside of the MHC class II peptide-binding groove to determine 

if particular lengths at either end of the peptide were favorable or unfavorable for 

binding. 9mer cores were identified by position 1 anchor residues (F, I, L, M, V, W, Y), 

and the lengths remaining at each end were calculated. Local regression fitting and 

permutation testing were done as with overall peptide length. In most cases fits to amino- 

and carboxyl-terminal peptide extensions were determined to be significant at one or 

more lengths (Fig. 3.4 and additional data not shown). In comparing fits we found that 

extensions of 2-4 amino acids at the amino terminus and extensions of 1-2 at the carboxyl 

terminus generally appeared favorable for binding (Fig. 3.4 and additional data not 

shown). Likewise, longer extensions (8 and 10 amino acids at the amino and carboxyl 

termini, respectively) generally appeared unfavorable for binding (Fig. 3.4 and additional 

data not shown). We also found that in at least some cases fits to overall peptide length 

could be decomposed into amino- and carboxyl-terminal contributions. For example 

binding to DRB1*0401 was strongest when amino and carboxyl termini were 2 and 1 

amino acids, respectively (Fig. 3.4). Together with the 9mer core, these lengths sum to 

match the overall length associated with strongest binding, 12 amino acids (Fig. 3.2B). 

3.3.2 Incorporating Peptide Length Improves Algorithm Performance 

We incorporated peptide length into two peptide-MHC class II binding prediction 

algorithms in one of three ways. First, as a pre-processing event (Mod. 1 in Fig. 3.1) a 

local regression fit was made for affinity vs. length in the training/fitting data and the 
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value of the fit was subtracted from each affinity measurement. The resulting residuals 

were used in place of the original pIC50 values in the training set. After the algorithm was 

used to make initial predictions for the target set peptides, the value of the regression fit 

for each target set peptide length was added to yield final predictions. Alternatively (Alt. 

1 in Fig. 3.1) length was also incorporated directly into the existing algorithm as an 

additional variable (in the case of ISC-PLS, as the 181st variable). Training/fitting was 

then performed as published, and predictions were made on test set peptide sequences 

and peptide lengths. Lastly we used a formula derived from the equilibrium-based 

statistical model to reconcile predictions made by existing algorithms on multiple 

registers within the peptide (Mod. 2 in Fig. 3.1). We point out that Mod. 1 and Alt. 1 are 

similar modifications that both consider peptide length directly (by fitting length as a 

discrete variable); in contrast Mod. 2 considers binding registers (i.e. 9mers with a valid 

position 1 anchor) and the relationship among them. Therefore, Mod. 1 and Alt. 1 are not 

used together, although either can be used with Mod. 2. 

Incorporating peptide length by one or more modifications into the ISC-PLS 

algorithm improved the performance of the algorithm for all alleles examined (Table 3.2). 

Performance was measured by area under receiver operating characteristic curves (AROC) 

when a threshold of 500 nM was used to differentiate binding from non-binding affinities 

(Sette et al. 1994). The performance of ISC-PLS in conjunction with a combination rule 

(mean if less than one order range; highest otherwise) to reconcile register predictions 

was used as a baseline (Doytchinova and Flower 2003). Taking the highest scoring 

register to be representative of the entire peptide was also done as a reference. In general 

using any of three modifications resulted in increases in algorithm performance. However 

the modification resulting in the greater increase differed by MHC class II allele. In the 

case of DRB1*0101, deriving a regression fit (Mod. 1) resulted in significantly greater 

improvements than either using length as an additional variable or using the equilibrium-

based formula to reconcile register predictions. In the case of DRB1*0401, all three 
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modifications resulted in the same magnitude of increase in performance. Finally in the 

case of DRB1*1501 only an application of both the regression fit (Mod. 1) and the 

equilibrium-based formula (Mod. 2) resulted in the greatest increase in performance. 

Differences in which modifications resulted in the greatest increase in performance may 

be suggestive of allele- or data set-specific mechanisms behind the length-affinity 

relationships. 

We also incorporated peptide length into the TEPITOPE/ProPred algorithm 

(Sturniolo et al. 1999) and without re-deriving the pocket-specific matrices that define 

that algorithm found that increases in performance could be obtained by use of the 

equilibrium-based formula alone (Table 3.3). Typically in applications of 

TEPITOPE/ProPred to MHC class II, predictions on multiple registers are reconciled by 

taking the highest scoring register to be representative of the whole peptide (Brusic et al. 

1998, Nielsen et al. 2004, Murugan and Dai 2005). We therefore used this rule to 

generate baseline predictions against which we could compare the performance of the 

equilibrium-based formula. Applying the formula for register shifting increased algorithm 

performance for all three data sets examined. 

We also investigated whether our modifications might be applied to alleles for 

which fewer data exist. In analyzing the data for two other alleles, DRB1*0404 and 

DRB1*0405, we found no significant nonlinearities in regression fits of length versus 

affinity (Supplementary Data). Consistent with the results of these fittings, we observed 

no increase in performance after applying either Mod. 1 or Alt. 1 to the ISC-PLS 

algorithm when training sets were derived from these data sets (Supplementary Data). An 

increase in performance was observed, however, for the larger of the two data sets using 

Mod. 2 (Supplementary Data). These results suggest that our proposed modifications, like 

matrix-based prediction algorithms, are subject to limitations based on the size of the 

training set. 
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3.3.3 Experimental Variation in Data Sets Does Not Affect Algorithm Performance 

In addition to the nonrandom effect of peptide length, another source of variation 

in the peptide-MHC class II binding data may be the use of multiple experimental 

protocols. Two parameters that frequently vary among protocols designed to measure 

peptide-MHC IC50 are the concentration of reporter peptide Lr and the equilibrium 

dissociation constant of the reporter peptide-MHC complex Kr. We made estimates of the 

ratio Lr/Kr for IC50 measurements in several data sets and used this ratio as the basis of 

classifying the data (Fig. 3.5). 

Specifically, estimates of Lr/Kr were used to create two pIC50 data subsets that 

varied in their degree of deviation from pKD and subsequently ∆G°. Lr/Kr values of 1 and 

9 were used as cutoffs, filtering out pIC50 values that differed from pKD by more than 

approximately 2- and 10-fold, respectively. 29% of the total non-overlapping data had 

mean Lr/Kr values of greater than 1, while 5% had mean Lr/Kr values of greater than 9. 

To determine whether variability in these experimental parameters affects data 

quality, we compared the accuracy of binding predictions using filtered and unfiltered 

data sets (Table 3.4). Successive rounds of leave-one-out cross-validation were 

performed such that predictions were made for each peptide in a given data set. 

Prediction accuracy was scored by calculating the Pearson correlation coefficient 

between experimental and predicted pIC50 values, and differences between scores were 

evaluated for statistical significance. Because data set size is known to affect prediction 

accuracy, random data subsets of the same sizes as the filtered subsets were used as 

controls. 

In general, filtering data based on reporter peptide-specific parameters did not 

significantly improve the accuracy of prediction at either level of filtering (Table 3.4). 

While taking random subsets of the same data sets often resulted in only small changes to 

prediction accuracy, filtering sometimes resulted in significant degradation, particularly 
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for the smallest data sets (DRB1*0301, e.g.). An alternative approach, using the mean 

estimated Lr/Kr to convert pIC50 to pKD, also failed to improve prediction accuracy (data 

not shown). 

The effect of other experimental parameters on IC50 measurements could be 

observed indirectly. When the reporter peptide was identical to the peptide of interest, Kr 

was equal to KD, allowing KD to be calculated directly from the Cheng-Prusoff equation 

(Equation 3.6) as KD = IC50 - Lr. In the DRB1*0401 data set, this condition was fulfilled 

for multiple IC50 measurements of the peptide PKYVKQNTLKLAT (HA 307-319), two 

of which were also made at the same temperature and using the same method of reporter 

peptide labeling (Hansen 1998, Consogno 2003). For these measurements, KD was 

calculated to be 41 and 700, indicating that variation in parameters unrelated to 

temperature and reporter peptide concentration and affinity to MHC could also lead to 

variation in IC50 measurements. 

3.4 Discussion 

Information is typically lost during the prediction of peptide-MHC class II binding because most 

algorithms focus exclusively on 9mers within the peptide. An underlying assumption is that properties of the parent 

peptides that cannot be captured in their 9mers are irrelevant. This assumption may be true for MHC class I binding 

which involves peptides of nine amino acids almost exclusively but may not be true for MHC class II binding. Peptides 

that bind MHC class II are variable in length and may contain segments that extend past the ends of the peptide-binding 

groove, also known as peptide-flanking residues or PFR (Brown et al. 1993). PFR-MHC interactions may in turn affect 

peptide-MHC binding in a manner that is consistent and useful to prediction. Longer peptides also allow for register 

shifting, i.e. the ability of peptides to bind MHC using different core 9mers. PFR-MHC interactions and register 

shifting represent two possible mechanisms by which variability in peptide length affects affinity to MHC class II. 

In this study we found that nonlinear relationships exist between peptide length 

and peptide-MHC class II binding affinity in a number of aggregate data sets available 
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online. When these nonlinearities were examined in more detail, they were found to be 

significant at several lengths, suggesting some lengths were more favorable for binding 

than others. This is consistent with the data from a number of experimental studies 

(Malcherek et al. 1994, Vogt et al. 1994, Bartnes et al. 1999, Fleckenstein et al. 1999). In 

these studies affinity was generally found to increase with length up to the longest lengths 

examined, typically between 15 and 17 amino acids. In our simulations register shifting 

was found to be one mechanism that could account for the direct relationship between 

length and binding affinity. However, our analysis of aggregate data sets suggests that 

additional mechanisms also contribute to the effect of length on affinity. For example, 

register shifting alone cannot explain why certain lengths at the amino and carboxyl 

termini are advantageous or disadvantageous for binding DRB1*0401. In this case other 

mechanisms such as hypothesized PFR-MHC interactions that are either attractive or 

repulsive may also be playing a role (Sercarz and Maverakis 2003). 

Incorporating peptide length into existing binding prediction algorithms by one or 

more of our modifications consistently improved performance for multiple MHC class II 

alleles. Three modifications were used—one at the level of the training set data (Mod. 1), 

another within the algorithm itself (Alt. 1), and the last after 9mer predictions were 

generated (Mod. 2)—and all resulted in performance gains over reference algorithms 

ISC-PLS and TEPITOPE/ProPred. Baseline AROC scores for two different algorithms 

varied between 0.57 and 0.73. By comparison AROC scores for modified algorithms 

varied between 0.68 and 0.77, consistent with the range of scores listed in MHCBench 

(http://www.imtech.res.in/raghava/mhcbench/). The modification resulting in the largest 

performance increase differed by allele, and this may in part reflect differences in the 

mechanisms by which length affects affinity. For DRB1*0401, for example, using the 

formula for register shifting resulted in performance gains that were statistically 

indistinguishable from those obtained using other modifications. For DRB1*0101, 

however, modifications based on regression modeling resulted in significantly greater 
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performance increases. These data therefore support roles for both register shifting and 

other mechanisms. 

Previous studies have provided indirect evidence that accounting for variability in 

peptide length could improve prediction. Godkin et al. (1998), for example, found that 

matrices based on 15mers generally outperformed matrices based on shorter lengths, 

showing the usefulness of considering information outside of the core 9mer. Likewise, 

Bui et al. (2005) have proposed deriving a separate matrix for each length of peptide (Bui 

et al. 2005). Despite the suggestion that explicit consideration of peptide length could 

improve binding prediction (McFarland and Beeson 2002), to our knowledge no previous 

study has implemented this idea. Our results affirm the use of peptide length in binding 

prediction. In addition our modifications are sufficiently general that they could be 

incorporated into other current algorithms based on scoring 9mers. 

Thus far experimental evidence of either register shifting or PFR-MHC 

interactions has involved only a small sampling of MHC class II alleles and been of 

indeterminate generality. For example, register shifting has been demonstrated to occur 

with alleles I-Ad and I-Au in mice and DR2 in humans (McFarland et al. 1999, Li et al. 

2000, Seamons et al. 2003, Bankovich et al. 2004). Solved structures exist for a 

somewhat wider array of alleles, including I-Ad and I-Ak in mice and DR1, DR3, and 

DR4 in humans (see McFarland and Beeson 2002 for a review). Although these 

structures show the presence of PFRs in peptide-MHC class II complexes, they fail to 

capture the dynamics of either register shifting or PFR-MHC interactions. 

Our analysis of regression fits to different aggregate binding data sets suggests 

that longer PFRs (i.e. in peptides longer than approximately 16 amino acids) may 

generally be deleterious to binding. At the same time, however, PFRs of a certain 

minimum length increase the probability of a peptide having multiple binding registers 

which, our simulations show, increases overall binding affinity. An optimal peptide 

length for binding each MHC class II variant may therefore exist. Further computational 
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analysis of aggregate data sets may provide a complement to more direct, observation-

based studies in continuing to elucidate the role of peptide length in MHC class II 

binding. In addition these findings may be of use to the design of peptide vaccines which 

often comprise only short segments of disease-relevant protein antigens (Larche and 

Wraith 2005). Including PFRs of optimal lengths may help to ensure efficacious binding 

to MHC. 
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Figures 

 

 

Figure 3.1. Schematic of modifications made to existing algorithms to incorporate 
peptide length. Modification 1, Alternative Modification 1, and Modification 2 are 
abbreviated Mod. 1, Alt. 1, and Mod. 2. Also shown are examples of sources of data, 
algorithms used to remove homologous sequences from data, and algorithms to predict 
peptide-MHC class II binding. 
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Figure 3.2. Local regression fits of peptide-MHC class II binding affinity versus peptide 
length for three HLA data sets: A, DRB1*0101; B, DRB1*0401; C, DRB1*1501; and D, 
the three data sets combined. 95% boundaries of permutation distributions are shown 
(dotted) with fits to the original, non-shuffled data (solid). 

 

 

Figure 3.3. Statistical simulations of the effects of register shifting on MHC class II 
binding affinity over a range of peptide lengths: A, for a 1700-peptide data set; B, for a 
170-peptide data set. Curve fits by local regression are shown overlaid. 
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Figure 3.4. Local regression fits of peptide-MHC class II binding affinity versus lengths 
of portions of the peptide extending outside of the peptide-binding groove for the HLA-
DRB1*0401 data set: A, at the N terminus and B, at the C terminus. 95% boundaries of 
permutation distributions are shown (dotted) with fits to the original, non-shuffled data 
(solid). 

 

  

Figure 3.5. Variance among experimental parameters used in measuring peptide-MHC 
binding affinity. Mean estimates of the ratio Lr/Kr for the IC50 measurements in six data 
sets are shown with error bars. Dotted lines indicate Lr/Kr cutoffs of 1 and 9. Data for the 
DR4 supertype are not shown. 
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Tables 

 
Table 3.1. Evidence of non-linear relationships in length-affinity data for several MHC 
class II alleles. 

 DRB1*0101 DRB1*0401 DRB1*1501 

Quadratic, F 11.745 (<0.001) 8.575 (0.004) 3.670 (0.057) 

Cubic, F 5.849 (0.016) 0.708 (0.401) 4.871 (0.028) 

F statistics are shown for analysis of variance results with p values in parentheses. 
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Table 3.2. Evidence of non-linear relationships in length-affinity data for several MHC 
class II alleles. 

DRB1*0101 ISC-PLS 
Mod. 1: Regression 
fit 

Alt. 1: Length as 
variable 

Combination rule 0.615 ± 0.0091 0.754 ± 0.009 0.690 ± 0.013 

Highest scoring 
register 

0.652 ± 0.008 0.758 ± 0.006 0.705 ± 0.013 

Mod. 2: Equilibrium 
formula 

0.709 ± 0.005 0.770 ± 0.009 0.752 ± 0.003 

DRB1*0401 ISC-PLS 
Mod. 1: Regression 
fit 

Alt. 1: Length as 
variable 

Combination rule 0.730 ± 0.0071 0.741 ± 0.010 0.749 ± 0.009 

Highest scoring 
register 

0.732 ± 0.015 0.750 ± 0.006 0.751 ± 0.005 

Mod. 2: Equilibrium 
formula 

0.757 ± 0.008 0.757 ± 0.004 0.754 ± 0.008 

DRB1*1501 ISC-PLS 
Mod. 1: Regression 
fit 

Alt. 1: Length as 
variable 

Combination rule 0.574 ± 0.0091 0.596 ± 0.015 0.584 ± 0.020 

Highest scoring 
register 

0.575 ± 0.021 0.626 ± 0.014 0.603 ± 0.011 

Mod. 2: Equilibrium 
formula 

0.609 ± 0.019 0.677 ± 0.014 0.609 ± 0.018 

Five-fold cross-validation (5x-CV) was used and repeated five times. Mean AROC scores 
between predicted and experimentally determined pIC50 values are shown with standard 
errors of the mean. Highest scores are shown in bold with multiple scores in bold if pair-
wise differences were not statistically significant. A threshold of 500 nM (Sette et al. 
1994) was used to distinguish binding from non-binding peptides. 1The ISC-PLS 
algorithm with combination rule (Doytchinova and Flower 2003) was used as a baseline 
prediction. 
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Table 3.3. Binding prediction accuracy of ProPred algorithm for different MHC class II 
alleles when peptide length was incorporated. 

 
ProPred: 
DRB1*0101 

ProPred: 
DRB1*0401 

ProPred: 
DRB1*1501 

Combination rule 0.685 0.741 0.669 

Highest scoring 
register 

0.6671 0.7541 0.6351 

Mod. 2: Equilibrium 
formula 

0.702 0.764 0.680 

Matrices were obtained from the ProPred website and used to calculate a score for each 
register within a peptide. To each score the approximate affinity of an all-alanine 9mer to 
MHC was added (pIC50 = 6.169, Doytchinova and Flower 2003). AROC scores between 
predicted and experimentally determined pIC50 are shown, using a threshold of 500 nM 
(Sette et al. 1994) to distinguish binding from non-binding peptides. 1Highest ProPred-
predicted scores from all eligible registers were used as baseline predictions following 
recent precedents (Brusic et al. 1998, Nielsen et al. 2004, Murugan and Dai 2005). 
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Table 3.4. Accuracy of peptide-MHC binding affinity predictions when made using data 
filtered on the basis of reporter peptide-specific conditions and random data subsets. 

 
A*0201 

DRB1* 
0101 

DRB1* 
0301 

DRB1* 
0401 

DR4 
DRB1* 
1101 

DRB1* 
1501 

Complete 
data set 

0.5534 
(496) 

0.4161 
(245) 

0.4583 
(139) 

0.5028 
(353) 

0.4707 
(524) 

0.6235 
(163) 

0.5672 
(205) 

Exclude 
Lr/Kr ≥ 9 

0.5507 
(495) 

0.4844 
(227) 

0.3837 
(120) 

0.4839 
(346) 

0.5203 
(480) 

0.6731 
(153) 

0.5758 
(202) 

Random 
subset 

0.5546 
(495) 

0.4275 
(227) 

0.4863 
(120) 

0.4621 
(346) 

0.4690 
(480) 

0.6124 
(153) 

0.5957 
(202) 

Exclude 
Lr/Kr ≥ 1 

0.4861 
(383) 

0.3958 
(161) 

0.1516 
(86) 

0.3170 
(237) 

0.3704 
(367) 

0.4482 
(104) 

0.6793 
(161) 

Random 
subset 

0.5129 
(383) 

0.3616 
(161) 

0.3462 
(86) 

0.5411 
(237) 

0.4990 
(367) 

0.5815 
(104) 

0.6581 
(161) 

Pearson correlation coefficients between predicted and experimental pIC50 values are 
shown along with data set sizes in parentheses. 
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CHAPTER 4 

How Multiple Host Polymorphisms Affect Immune Response to Tuberculosis 

4.1 Introduction 

Tuberculosis (TB) continues to pose a global health problem. An estimated one-

third of the human population is infected with the pathogen Mycobacterium tuberculosis 

(Mtb), and approximately two million individuals succumb to the disease annually 

(WHO, www.who.int/mediacentre/factsheets/fs104). However, only a fraction of infected 

individuals ever progress to disease (Small and Fujiwara 2001). What distinguishes those 

who are able to control the infection from those who are not? In addition to 

environmental factors such as nutrition and HIV co-infection, host genetics are likely to 

play a role, and identifying polymorphisms in genes that predispose individuals to TB 

continues to be an area of active research (reviewed in Bellamy 2005, Fernando and 

Britton 2006, Hill 2006). 

Identification of genetic polymorphisms that affect susceptibility to TB proceeds 

primarily on the basis of epidemiological data from association studies (Casanova and 

Abel 2002). In association studies the frequency of a polymorphism-based allele is 

compared in patients and healthy controls. If the allele is found to be over-represented in 

patients, it can then be hypothesized to encode a protein variant that renders its bearer 

more susceptible to TB. 

Association studies do not always yield consistent results, however, and an allele 

that is correlated with TB in one study might not be correlated with TB in another study 
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(Fernando and Britton 2006). Several reasons might explain this inconsistency (Alcais et 

al. 2001). Small samples sizes (i.e., insufficient numbers of subjects) may lead to 

unreliable detection of low-frequency alleles. Alternatively, alleles may have been 

detected using indirect, serological tests that are unable to distinguish between closely 

related alleles, unlike more direct, sequence-based tests. 

Even more difficult to account for is the problem of genetic heterogeneity. 

Because the number of polymorphisms affecting immune function is vast, and many have 

yet to be discovered, epidemiological studies necessarily fail to assay all polymorphisms. 

In most studies only a single polymorphism is assayed. Other polymorphisms may 

compound or counteract the effect of a single polymorphism, and such interactions can be 

difficult to detect without additional testing. For instance, a polymorphism X1 in gene X 

may render the human host more susceptible to TB in the presence of polymorphism Y1 

in gene Y but not in the presence of an alternative polymorphism Y2. Such interactions 

underlie the difficulty in comparing studies done on different populations (Alcais et al. 

2001), even when the same allele is being studied and study design is identical. 

Antigen presentation requires the contribution of several genes, and many of these 

genes bear polymorphisms that have been associated with TB (c.f. Bellamy 2005, 

Fernando and Britton 2006, Hill 2006; Table 4.2 in Supplementary Information). During 

antigen presentation, cells bind peptides from pathogens to receptors known as MHC 

(major histocompatibility complex) molecules and display the resulting peptide-MHC 

(pMHC) complexes on their surface (Fig. 4.1A). Two classes of MHC molecule exist: 

class I, primarily for peptides found in the cytoplasm, and class II, primarily for peptides 

found in endosomal compartments. Cells known as antigen-presenting cells (APCs) 

express both classes of MHC, allowing them to display peptides from a variety of 

pathogens. 

A T cell response to antigen presentation begins when a T cell scans the surface 

of the APC (Fig. 4.1A, reviewed in Santana and Esquivel-Guadarrama 2006). If T cell 
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receptors (TCRs) expressed by a T cell bind pMHC complexes displayed on the APC 

surface with sufficient affinity, and co-stimulatory molecules such as B7 and CD28 are 

present, a signaling cascade is initiated that ultimately results in T cell activation. Within 

minutes of APC-T cell contact, intracellular calcium levels rise and TCRs from the 

surface are internalized. After several hours cytokines including IL-2 and IFN-γ are 

produced by T cells leading to T cell proliferation and activation of other cell types. 

Antigen presentation therefore involves events occurring on timescales of seconds to 

hours and at molecular, cellular, and multi-cellular length scales. 

Among the antigen presentation-specific polymorphisms associated with TB, 

perhaps the best studied are those in genes for HLA (human leukocyte antigen), the 

human form of MHC. Of the two classes of HLA, HLA class II is particularly relevant to 

TB because HLA class II molecules bind peptides from antigens in endosomal 

compartments where Mtb resides. Over 800 HLA class II alleles have been identified, 

among which are several that have been associated with increased or decreased 

susceptibility to TB (Robinson et al. 2003, Bellamy 2005). In particular, the DRB1*1501 

allele has been associated with susceptibility to TB in numerous studies (Mehra et al. 

1995, Ravikumar et al. 1999, Teran-Escandon et al. 1999, Sriram et al. 2001; Table 4.2 

in Supplementary Information). Generally polymorphisms in HLA map to the peptide-

binding regions of the molecule and can therefore be assumed to affect function 

(Rammensee 1995). A general mechanism explaining how HLA polymorphisms affect 

the immune response to TB, however, has not been established. Other polymorphisms 

affect HLA expression rather than the peptide-binding properties of HLA; to our 

knowledge, none of these polymorphisms has yet been tested for TB association (Louis et 

al. 1994, Cowell et al. 1998). 

MHC expression occurs constitutively in APCs but is subject to the up-regulatory 

effects of signals from the extracellular environment including the cytokine IFN-γ. 

Polymorphisms in the IFN-γ gene have also been associated with TB susceptibility. In 
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particular, the +874A allele was found to be significantly over-represented in TB patients, 

suggesting +874A increases susceptibility to TB (Lio et al. 2002, Lopez-Maderuelo et al. 

2003, Rossouw et al. 2003; Table 4.2 in Supplementary Information). PBMCs (peripheral 

blood mononuclear cells which include APCs and T cells) from +874A individuals 

produce significantly less IFN-γ in vitro than PBMCs from +874T individuals after 

antigenic stimulation (Pravica et al. 1999, Lopez-Maderuelo et al. 2003). In addition to 

its up-regulatory effects on MHC expression, IFN-γ has a number of other functions 

including activation of macrophages and NK cells and inhibition of the TH2 phenotype in 

T cells (Maher et al. 2007), but exactly which of these functions is undermined in +874A 

individuals has not been determined. 

Finally polymorphisms affecting antigen processing (the partial degradation of 

proteins into peptides) have been associated with susceptibility to TB, though thus far 

only for MHC class I-mediated antigen presentation. The transporter associated with 

antigen processing (TAP) is responsible for translocating peptides from the cytoplasm 

into the endoplasmic reticulum where they can be bound by MHC class I molecules. A 

polymorphism in TAP2, one of the subunits that constitute TAP, was found over-

represented in TB patients (Rajalingam et al. 1997, Gomez et al. 2006; Table 4.2 in 

Supplementary Information). Other enzymes perform analogous functions for the MHC 

class II-mediated pathway, namely the cathepsin proteases responsible for antigen 

processing. Polymorphisms are known to exist in genes for cathepsins (Taggart 1992), 

but to our knowledge, none has been tested for TB association. 

How polymorphisms in HLA, IFN-γ, and other genes interact to ultimately 

determine genetic susceptibility to TB remains an open question. Mathematical modeling 

can help to provide a unifying framework with which to consider these polymorphisms. 

Such a framework would ideally have immunologically relevant readouts such as 

cytokine production and allow the effect of each polymorphism to be simulated and 

observed, both individually and with other polymorphisms. Several questions could then 
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be approached theoretically. For example, could a polymorphism that up-regulates IFN-γ 

expression compensate for a polymorphism that results in HLA deficient in binding Mtb 

peptides? How might T cell response differ among individuals with different 

combinations of polymorphisms? 

To approach these questions we developed a multi-scale mathematical model of 

antigen presentation that represents both APCs and T cells and tracks events from the 

molecular scale to cellular and multi-cellular scales. Particular detail was given to 

pathways involving MHC and IFN-γ, allowing polymorphisms affecting both pathways 

to be simulated. The extent to which a polymorphism in one gene compounded or 

counteracted the effect of a polymorphism in another gene could be observed, allowing 

us to determine whether the presence of multiple polymorphisms could be a confounding 

factor in association studies. 

4.2 Methods 

The multi-scale model comprises three models that were developed separately 

(Fig. 4.1): an APC model representing the events leading up to the appearance of pMHC 

on the APC surface, a T cell model representing the events leading up to TCR 

internalization, and an intracellular T cell signaling model representing the events leading 

up to cytokine (IFN-γ) production. We provide an overview of the three models here. 

4.2.1 APC Model 

We describe the APC model elsewhere in detail (Singer and Linderman 1990, 

Singer and Linderman 1991, Agrawal and Linderman 1996, Chang et al. 2005). Briefly, 

we represented the major events leading up to antigen presentation within APCs, e.g., 

macrophages, using ordinary differential equations (ODEs). These events include de novo 

synthesis of MHC, the up-regulatory effect of IFN-γ, uptake and processing of 
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extracellular antigens, formation of peptide-MHC (pMHC) complexes, and trafficking of 

pMHC to and from the APC surface (Fig. 4.1B). Equations are provided in 

Supplementary Information, and parameters in Tables 4.3 and 4.4. 

4.2.2 T Cell Model 

To represent T cell response to antigen presentation, we developed a T cell model 

and linked it to the APC model. The T cell model was based on a model originally 

published in Coombs et al. (2002), further developed in Gonzalez et al. (2005), which 

represents two important features of T cell signaling, namely kinetic proofreading (i.e., 

the requirement for pMHC-TCR engagement to persist for a certain duration to result in 

TCR activation) and serial triggering (i.e., the ability of one pMHC to engage multiple 

TCR). In the Coombs model as well as in our model, the events following APC-T cell 

contact are represented, specifically engagement of pMHCs by TCRs, progression of 

pMHC-TCR complexes through various states of activation, and finally internalization of 

fully activated TCRs as a marker of T cell activation (Fig. 4.1C). Co-stimulatory 

molecules such as B7, CD28, ICAM-1, and LFA-1 were assumed to be present in non-

limiting quantities. In order to be internalized, TCRs in the model were required to be 

fully activated in either free or pMHC-bound forms; the contribution of constitutively 

recycling TCRs to the pool of internalized TCRs was excluded. Only the contact zone 

between the APC and T cell was considered. The degree of TCR internalization occurring 

in the contact zone was therefore assumed to be representative of the degree of TCR 

internalization occurring elsewhere on the T cell surface. The T cell model comprises a 

set of ODEs separate from the ODEs of the APC model (equations provided in 

Supplementary Information, parameters in Supplementary Tables 4.5 and 4.6). 
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4.2.3 Cytokine Secretion Model 

To provide an additional, longer-term readout of T cell activation, we extended 

the T cell model to include signaling events that follow TCR activation culminating in the 

production of cytokines, particularly IFN-γ. These events include the recruitment of 

kinases such as Lck and ZAP-70, the activation of intermediate signaling molecules such 

as phospholipase C and calcineurin, and ultimately the activation of transcription factors 

NF-AT, NF-κB, and AP-1 (reviewed in Liu 2005). We developed a simplified model of 

these events representing transcription factor activation, cytokine gene expression, and 

cytokine production (Fig. 4.1D). More detailed features of T cell signaling such as the 

synthesis and breakdown of transcription factor intermediates were assumed to have a 

negligible effect on long-term (> 12 h) responses and therefore not considered in our 

model; such features are considered in other models (Hoffmann et al. 2002, Fisher et al. 

2006). The cytokine production model comprises a third set of ODEs in addition to the 

sets of ODEs constituting the APC and T cell models (equations provided in 

Supplementary Information, parameters in Supplementary Tables 4.5 and 4.6). 

4.2.4 Solving the Multi-Scale Model 

Together these three models constitute the multi-scale model of antigen 

presentation. The models were run in three sequential phases: (1) exposure of APC to 

IFN-γ in the absence of exogenous antigen for 24 h (APC model only); (2) exposure of 

APC to exogenous antigen in the absence of IFN-γ for 4 h (APC model only); and (3) 

exposure of APC to T cell for 24 h (T cell model and cytokine production models only). 

Information was passed between APC and T cell models in the form of number of pMHC 

on the APC surface appearing 4 h after APC exposure to antigen, i.e., in a feed-forward 

manner. Feedback from T cell to APC, in the form of IFN-γ that could increase MHC 

expression, was assumed to be negligible on the timescales being simulated (≤ 24 h) and 



 

112 

therefore not represented; such feedback may be easily accommodated by the model if 

longer timescales are investigated. The three variables serving as outputs were the 

number of pMHC complexes on the APC surface 4 h after exposure to exogenous antigen 

(APC model), fraction of TCR internalized 5 h after APC-T cell contact (T cell model), 

and concentration of cytokine IFN-γ produced 24 h after APC-T cell contact (cytokine 

production model), which we consider indicative of short-, medium-, and long-term 

responses, respectively. These outputs have been considered intermediate indicators of 

cellular response in the experimental literature (Valitutti et al. 1995, Hemmer et al. 1998, 

Itoh et al. 1999). A minimum threshold of approximately 200-350 pMHC on the APC 

surface is needed to elicit a T cell response, though numbers may vary between tens and 

thousands (Demotz et al. 1990, Harding and Unanue 1990). Internalization of 

approximately 10-90% of TCRs from the T cell surface occurs within hours of APC 

contact depending on the amount of antigen initially present (Valitutti et al. 1995, Itoh et 

al. 1999). No threshold level of TCR internalization required for T cell activation has 

been determined, though a correlation with other responses such as T cell proliferation 

has been observed (Itoh et al. 1999). Cytokine IFN-γ production by T cells in response to 

antigenic stimulation varies over several logs, though pM amounts in vitro are typical 

(Hemmer et al. 1998, Laaksonen et al. 2003, Listvanova et al. 2003). The ODEs 

constituting the multi-scale model were solved using the NDSolve function of 

Mathematica 4.2 (Wolfram Research, Inc.) using default options, and the model was 

tested against experimental dose-response data available for each of the three outputs 

(Valitutti et al. 1995, Hemmer et al. 1998, Itoh et al. 1999). 

4.2.5 Sensitivity Analysis of the Multi-Scale Model 

We determined how variability in the processes represented in the model affects 

the three model outputs using sensitivity analysis. Briefly, we varied parameter values in 
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the model, generated an output for each different set of parameter values, and then 

determined the degree of correlation between each parameter and the output. A particular 

parameter was varied if a genetic polymorphism was known to exist for the process 

represented or to ensure that each of three constituent models had approximately the 

same number of parameters represented during the analysis. A total of 16 parameters 

were varied (Table 4.7 in Supplementary Information). Parameters were assigned log-

uniform distributions. That is, minimum and maximum values were assigned to each 

parameter, and sampling was done uniformly on a range defined by the log-transform of 

these values. When several biological values were available in the literature the 

approximate range of these values was used: for pMHC dissociation, 10-6-10-2 s-1 

(Rothbard and Gefter 1991, McFarland and Beeson 2002); for pMHC-TCR dissociation, 

10-3-100 s-1 (Davis et al. 1998); for IFN-γ dose, 10-12-10-6 M (c.f. Lin et al. 1996); and for 

antigen dose, 10-9-10-4 M. For all other cases, a range of one order of magnitude above 

and below the baseline value was specified (Supplementary Information). 500 values for 

each parameter were generated by a Latin hypercube sampling scheme (LHS, Helton and 

Davis 2000), resulting in 500 different sets of parameter values. An equivalent number of 

output values were then derived, and correlations between output values and parameter 

values were then quantified by using partial rank correlation coefficients (PRCC, Blower 

and Dowlatabadi 1994). Significance was assigned based on a Bonferroni-corrected α 

value of 0.05 (Bland and Altman 1995). 

4.2.6 Experimental Scenarios Simulated 

Using the multi-scale model of antigen presentation, we were able to simulate in 

vitro protocols intended to test responsiveness of host cells to particular antigens (as used 

in Katial et al. 1998, e.g.). In such a protocol peripheral blood mononuclear cells 

(PBMCs) are isolated from patient blood, exposed to antigens such as purified protein 
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derivative (PPD) from Mtb, and then assayed for response either indirectly (by measuring 

tritiated thymidine uptake as a marker of proliferation) or directly (by enzyme-linked 

immunsorbent assay, or ELISA, for cytokine). Because monocytes, a precursor of 

macrophages, serve as APCs in PBMC and there is likely little to no IFN-γ present in the 

blood, the model can simulate PBMC protocols when the amount of IFN-γ initially 

present is set to zero. The model can also simulate the in vivo scenario of antigen 

presentation at a site of infection where macrophages and activated T cells are present. In 

this case, the amount of IFN-γ initially present is set at a non-zero value in the model. 

Both of these scenarios were examined during sensitivity analysis. 

4.2.7 Trade-Off Plots 

In addition to performing sensitivity analysis by varying several parameters 

concurrently, we also examined the relationship between processes represented in the 

model in a pair-wise manner, by varying two parameters at a time. Pairs of parameter 

values that yielded approximately the same target output value were compiled and 

plotted. Because such plots show how a change in one parameter is able to compensate 

for a change in another parameter, we refer to such plots as trade-off plots. When values 

for both parameters are plotted as log-transforms, regions in which the plots are diagonal 

(slope approximately 1 or -1) identify conditions under which a compensatory 

relationship exists. That is, a one-log change in one parameter is able to compensate for a 

one-log change in another parameter to maintain a given output value. In contrast, 

regions in which the plots are horizontal or vertical identify conditions under which one 

parameter has dominant effect on the output over the other parameter. In such regions the 

output is relatively insensitive to changes in one of the two parameters. Parameters that 

were chosen to generate trade-off plots were either from the same-scale sub-model (the 

intra-model case) or from different-scale sub-models (the inter-model case). A 
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sufficiently wide range of values was assigned to each parameter in generating each 

trade-off plot to capture the full range of behaviors in each curve. Biologically realistic 

values were then overlaid on each plot, shown as boxes whose edges represent the range 

of values from in vitro measurements when available. When in vitro measurements were 

not available, a range of one order of magnitude above and below the baseline value was 

specified (Tables 4.3-4.6 in Supplementary Information). When pMHC dissociation rate 

constant or pMHC-TCR dissociation rate constant was varied, parameter values were 

plotted as their respective equilibrium dissociation constants KD, assuming invariant 

association rate constants (Kasson et al. 2000). We chose different values for the three 

outputs to serve as target output values, generally accepting pairs of parameter values that 

resulted in output values between 80% and 120% of the target output values. Target 

output values were 100, 500, or 1000 pMHC on the APC surface; 10%, 40%, or 80% 

internalization of total TCR; and 0.1 pM, 1 pM, or 5 pM IFN-γ production corresponding 

to ~2, ~20, and ~200 pg/ml IFN-γ. To assist visualization of plots, curve-fitting was done 

using the SplineFit function (Bezier option) of the NumericalMath library in 

Mathematica 4.2 (Wolfram Research, Inc.), except in cases where more than one y-value 

mapped to the same x-value (pMHC-TCR affinity vs. pMHC affinity plots and TCR 

internalization vs. pMHC affinity plots) when curves were fit by hand. 

4.3 Results 

To relate genetic polymorphisms to changes in APC and T cell responses, we 

developed a multi-scale model of antigen presentation that traverses several biological 

and temporal scales (from molecular to multi-cellular and seconds to hours). This model 

represents several different immunological processes that could potentially vary due to 

genetic polymorphisms and allows us to examine the effect of multiple polymorphisms 

occurring simultaneously. 



 

116 

 

Initially we tested the model by comparing three model outputs to expected 

behaviors from experimental data. As a negative control we checked baseline results of 

the model: In the absence of exogenous antigen, no exogenous peptide-MHC complexes 

were formed, no TCRs were internalized, and no IFN-γ was produced (data not shown). 

As a positive control, we examined outputs of the model when exogenous antigen was 

present. The dynamics of pMHC display, TCR internalization, and IFN-γ production 

approximated experimentally observed time courses (Fig. 4.2A-C). Specifically, the 

number of pMHC on the APC surface peaked within four hours of antigen exposure (Fig. 

4.2A, Harding and Unanue 1990); the majority of TCR internalization occurred within 

the first two hours of T cell exposure to APC (Fig. 4.2B, Valitutti et al. 1995); and IFN-γ 

production continued to rise through the first 24 h of T cell exposure to APC (Fig. 4.2C, 

Listvanova et al. 2003). The model also recapitulated dose-response data available for the 

various outputs (Fig. 4.2D-F). 

4.3.1 Sensitivity of T Cell Response to Genetically Variable Processes 

To determine how biological variability due to genetic polymorphism or other 

causes might affect APC and T cell responses, we simulated variability in the multi-scale 

model and correlated changes in output variables to changes in input parameters (Table 

4.1). These outputs were found in either the same sub-model as the parameter being 

varied (the intra-model case) or in a different sub-model (the inter-model case). Two 

scenarios were simulated, the absence and presence of IFN-γ initially, scenarios 

representing antigen presentation during PBMC protocols and at the site of infection, 

respectively. 

Multiple parameters were found to correlate significantly with model outputs, 

identifying biological processes that may positively or negatively govern antigen 
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presentation and T cell response. Variability in a number of these processes is known to 

exist and in some cases has been associated with susceptibility to TB. For example, both 

peptide-MHC binding affinity and IFN-γ expression (as IFN-γ dose) correlated 

significantly with all three outputs (Table 4.1). Other processes bear polymorphisms that 

may affect their level of expression or function but have not previously been associated 

with TB susceptibility. Antigen processing correlated significantly with all three outputs 

but more strongly at early time points than later time points (Table 4.1). Likewise, MHC 

expression correlated significantly with all three outputs, more strongly at early time 

points than at later time points, but only in the absence of IFN-γ, a scenario resembling 

PBMC protocols rather than infection in vivo, illustrating the overlapping effects of 

changes in IFN-γ expression and MHC expression (Table 4.1). 

Most parameters displayed a similar degree of influence on both T cell responses 

of TCR internalization and IFN-γ production (Table 4.1). One exception was the rate 

constant for the internalization of free, activated TCR which correlated positively with 

TCR internalization and negatively with IFN-γ production. In the model internalized 

TCRs are incapable of initiating signal transduction and therefore cease to contribute to 

cytokine production. 

4.3.2 Possible Confounding Effects Among Multiple Polymorphisms 

Sensitivity analysis demonstrated that multiple processes, including several that 

may vary due to genetic polymorphisms, govern the dynamics of antigen presentation 

and subsequent T cell responses. To examine interactions between polymorphisms in 

more detail, we varied parameters in a pair-wise manner and determined the extent to 

which one parameter could compensate for another in governing the dynamics of antigen 

presentation and T cell response. 
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IFN-γ expression and HLA binding polymorphisms can be compensatory. The 

polymorphisms in the antigen presentation pathway most commonly associated with TB 

susceptibility affect the level of IFN-γ expressed by T cells and peptide-binding by MHC 

(Bellamy 2005). The consequences of polymorphisms in two genes acting simultaneously 

on antigen presentation have not been examined either experimentally or theoretically to 

our knowledge. To simulate these polymorphisms, we varied parameters for IFN-γ levels 

and peptide-MHC binding affinity in the APC model and plotted those pairs of parameter 

values resulting in approximately the same output levels (Fig. 4.3A-C). 

In the trade-off plots, three distinct regions can be discerned (described here for 

Fig. 4.3B, the case of TCR internalization). First, at low IFN-γ concentrations (< 10-10 

M), TCR internalization is determined almost entirely by pMHC affinity and is invariant 

to small changes in IFN-γ concentration, apparent as nearly vertical lines on the plots. 

Under these conditions few of the IFN-γ receptors are bound, and small changes in IFN-γ 

concentrations do not alter MHC expression. Secondly, at intermediate IFN-γ 

concentrations (between 10-10 M and 10-6 M), IFN-γ has an effect on TCR internalization 

nearly equal to the effect of pMHC affinity, apparent as diagonal lines on the plots. In 

this region, for example, 80% TCR internalization can be achieved by pairing either 10-9 

M IFN-γ and 10-9 M pMHC binding affinity (as KD) or 10-8 M IFN-γ and 10-8 M pMHC 

binding affinity. Finally, at high IFN-γ concentrations (> 10-6 M), TCR internalization is 

again determined almost entirely by pMHC affinity, apparent as nearly vertical lines on 

the plots. Under these conditions most of the IFN-γ receptors are bound, and small 

changes in IFN-γ concentrations do not affect near-maximal increases in MHC 

expression. 

Superimposing experimental data on these plots allows realistic regions to be 

defined. IFN-γ expression in PBMC from individuals with +874A and +874T alleles have 

been measured and found to differ by as much as 3-fold, in the range of 10-10-10-11 M 

(Pravica et al. 1999, Lopez-Maderuelo et al. 2003, I. Aguilar-Delfin, personal 
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communication). A wider range of IFN-γ concentrations (between 10-9 and 10-12 M) is 

typically applied in vitro; this wider range is shown as boxes in Fig. 4.3A-C.  Likewise, 

the affinities of different peptide-MHC class II complexes have been measured and found 

to vary largely between 10-9 and 10-6 M (Rothbard and Gefter 1991, Peters et al. 2005). 

These measurements make it possible to define a region on the trade-off plots in which 

realistic combinations of parameters could be expected. The plots show that at realistic 

levels of IFN-γ expression, pMHC affinity has a stronger effect on all outputs, from 

number of pMHC displayed through amount of cytokine produced. 

HLA expression and HLA binding polymorphisms can be compensatory. Though 

polymorphisms in HLA promoters have been identified, none have yet been associated 

with susceptibility to TB (Louis et al. 1994, Cowell et al. 1998). One reason may be the 

difficulty involved in measuring the total level of expression of a particular HLA class II 

variant within and on the surface of an APC simultaneously. Another reason may be the 

difficulty involved in attributing an association with TB to the HLA promoter and not the 

HLA coding sequence with which it is likely in linkage disequilibrium. In the model 

HLA expression and binding affinity are separate parameters and were found to exert a 

nearly equivalent influence on output values (Fig. 4.3D-F). For instance, a pMHC affinity 

of 10-9 M when 105 MHC molecules were present resulted in nearly the same degree of 

TCR internalization (~80%) as a weaker pMHC affinity of 10-8 M when more (106) MHC 

molecules were present (Fig. 4.3E). At lower levels of MHC expression (< 105 MHC 

molecules per APC), however, pMHC affinity becomes much more determinative of T 

cell response. The possibility that higher levels of expression might compensate for lower 

affinity binding has been raised previously in non-human studies (Kaufman and 

Salomonsen 1997, Wegner et al. 2006). 

Antigen processing and HLA binding polymorphisms can be compensatory. Like 

polymorphisms affecting MHC expression, polymorphisms affecting antigen processing 

have also been identified, though none have yet been associated with susceptibility to TB 
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(Taggart 1992). Polymorphisms affecting antigen processing can be expected to either 

increase or decrease the availability of antigenic peptides available to bind MHC and 

therefore affect antigen presentation and subsequent T cell responses. In the model 

variability in antigen processing was found to compensate for variability in pMHC 

affinity (Fig. 4.3G-I). For example, to elicit 5 pM IFN-γ production, an increase in the 

rate constant for antigen processing (from 100 to 101 h-1) could be coupled with a 

decrease in pMHC binding affinity (from 10-9 to 10-8 M, Fig. 4.3I). The extent to which 

polymorphisms in antigen processing cathepsins affect enzymatic activity is not known 

(Taggart 1992), but within a one-log range of the level of activity observed in vitro, the 

trade-off plots show that variability in cathepsin activity may affect antigen processing 

and T cell response to the same extent as variability in pMHC affinity. 

Optimal pMHC-TCR affinity affects TCR internalization, not IFN-γ secretion. 

The binding affinity of the pMHC-TCR tri-molecular complex has been shown to be an 

important quantity in determining T cell response (Matsui et al. 1994). We examined 

trade-offs between peptide-MHC and pMHC-TCR affinities in eliciting different 

responses (Fig. 4.4A-C). Because the parameter for pMHC-TCR affinity does not occur 

in the APC model, variability in pMHC-TCR affinity does not affect pMHC numbers. 

This lack of effect is apparent as vertical lines on the trade-off plot for this output (Fig. 

4.4A). Coombs et al. (2002) and Gonzalez et al. (2005) showed that under certain 

conditions an optimal half-life for pMHC-TCR interaction exists resulting in maximal 

TCR internalization. Because our model of the T cell was based on the model of Coombs 

et al. (2002), it was not surprising to see an optimal binding affinity for pMHC-TCR 

appear on the trade-off plot for TCR internalization (Fig. 4.4B). However, the peak 

showing this optimal affinity was greatly lessened at lower pMHC affinities, particularly 

when IFN-γ production was considered the output (Fig. 4.4C). Indeed, at biological 

values (10-9-10-6 pMHC KD), pMHC affinity was more determinative of T cell response 
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than pMHC-TCR affinity, apparent as vertical lines on the plots (Fig. 4.4B and 4.4C, 

boxed regions). 

Internalization of activated TCR is oppositely correlated with different T cell 

responses. We also examined trade-offs between peptide-MHC affinity and the rate 

constant for TCR internalization (Fig. 4.4D-F). While most parameters in the model were 

correlated consistently (i.e., either positively or negatively) with the three different 

responses, the parameter for internalization of free, activated TCR differed in that it was 

positively correlated with one response, TCR internalization, and negatively correlated 

with another, IFN-γ production (Fig. 4.4E-F, c.f. Table 4.1). This effect persisted up to a 

certain threshold value for the internalization rate constant (~1 h-1), above which other 

processes such as pMHC binding became limiting. These results were obtained under the 

assumption that internalized TCR do not continue to signal. This assumption has 

previously been challenged for TCRs as well as for other receptors (Luton et al. 1997, 

Burke et al. 2001). If internalized TCRs are assumed to continue signaling in the model, 

then vertical trade-off plots with pMHC affinity are observed and TCR internalization has 

little effect on IFN-γ production (data not shown). 

4.4 Discussion 

A large body of epidemiological literature links polymorphisms in various host 

genes to increased susceptibility to TB (c.f. Bellamy 2005, Fernando and Britton 2006, 

Hill 2006). Mechanistic explanations are still lacking, however, for how the 

polymorphisms identified in the epidemiological literature increase susceptibility to TB. 

We posed a fundamental question: how do polymorphisms in multiple genes acting 

simultaneously affect immune functions such as antigen presentation? For example, 

considering that IFN-γ up-regulates MHC expression, could an allele of IFN-γ increase 
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the number of MHC molecules per APC enough to offset deficiencies in binding 

exhibited by a particular HLA allele to elicit the same T cell response? 

To approach these questions, we developed a multi-scale model of antigen 

presentation that links molecular and intracellular events to cellular and multi-cellular 

outcomes. By varying parameters for IFN-γ expression, peptide-MHC binding, and other 

processes, we were able to simulate changes in different processes that might occur due 

to genetic variation or other causes and then analyze the sensitivity of antigen 

presentation and T cell responses to these changes. Sensitivity analysis showed that many 

of the processes in the model exerted strong and comparable influences on the outputs. 

For instance, both IFN-γ expression (as represented by the amount of IFN-γ to which 

APC were initially exposed) and peptide-MHC binding were found to significantly affect 

all outputs in the model, both at the same scale (within the APC, intra-scale) and at 

different scales (within the T cell, inter-scale). These outputs included the number of 

pMHC appearing on the APC surface, the degree of TCR internalization, and the amount 

of cytokine produced by T cells (Table 4.1). 

We then analyzed interactions between genetically variable processes in more 

detail using trade-off plots and found that changes in these processes may compensate for 

one another. Furthermore, we determined conditions under which such compensatory 

relationships may exist. For instance, within a certain range of concentrations (10-10-10-6 

M), alterations in the amount of IFN-γ to which APCs were exposed affected T cell 

response as strongly as alterations in pMHC affinity (Fig. 4.3B and 4.3C). Outside of this 

range, however, pMHC affinity had a more dominant effect on T cell response, 

minimizing the contribution of IFN-γ. In primary cultures of PBMC re-stimulated with 

antigen, IFN-γ has been detected at concentrations of 10-11 to 10-10 M. At these 

concentrations polymorphisms in HLA may mask the effects of polymorphisms in IFN-γ. 

This interaction may account for inconsistencies in the epidemiological association data. 

The +874A IFN-γ polymorphism results in decreased IFN-γ expression and has been 
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associated with susceptibility to TB in some but not all studies (e.g., Moran et al. 2007). 

Could variability in peptide-binding exhibited by different HLA alleles be masking the 

effect of IFN-γ polymorphisms in such studies? Jepson et al. (1997) found that variability 

in the immune response to TB antigens was the result of variability in both non-HLA 

genes (such as IFN-γ) and HLA genes. Given the significant presence of HLA 

polymorphisms in human populations, our study suggests that the accuracy and 

consistency of association studies could be increased by comparing the frequencies of 

concurrent pairs of polymorphisms (such as IFN-γ +874A / HLA-DRB1*1501) in TB 

patients rather single polymorphisms alone. 

We also found that polymorphisms need not affect the same cell or the same 

timescale (intra-scale) to be compensatory. Parameters affecting different scales (inter-

scale) may be compensatory as well. For instance, peptide-MHC affinity and pMHC-

TCR affinity have a compensatory relationship, though the first affects APCs while the 

second affects the interface between APC and T cell. Because TCRs are generated by 

somatic recombination, TCRs do not exist in the human population as alleles, though an 

individual can be expected to express a diverse set of TCRs, each differing in its affinity 

for a given pMHC ligand (Davis et al. 1998). The importance of pMHC-TCR affinity in 

determining T cell response has been demonstrated experimentally (Matsui et al. 1994, 

McMahan et al. 2006). Previous models have suggested that trade-offs can exist between 

pMHC affinity and pMHC-TCR affinity, but the conditions under which changes in one 

of these processes can compensate for changes in the other process has not been 

previously defined (Eberl et al. 1995, Agrawal and Linderman 1996). Verification of our 

results awaits measurements made on pMHC-TCR tri-molecular complexes. 

In the future we hope to consider additional questions regarding the dynamic 

interplay between host and pathogen. A threshold minimum number of pMHC exists to 

elicit a T cell response (Demotz et al. 1990, Harding and Unanue 1990), and presumably 

many combinations of parameter values (e.g., for antigen dose, IFN-γ expression, and 
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pMHC affinity) yield this threshold. Plotting these combinations of values would produce 

a surface (shown in gray in Fig. 4.5), above which all parameter values would yield a 

successful T cell response (Fig. 4.5, point 1). Within the span of an infection, either host 

or pathogen may alter one or more processes underlying these parameters. The pathogen, 

for example, might produce less antigen thereby providing a temporary advantage (Fig. 

4.5, point 2). The host might then respond, increasing the rate of another process, leading 

to a point placed on the other side of the surface (Fig. 4.5, point 3). This dynamic 

interplay would resemble the “cycle of antigen frustration” hypothesized to occur during 

TB (Murray 1999). A path traced by these points on both sides of the surface would 

represent this cycle, and the final point of this path, the resolution of the cycle, resulting 

in either a successful immune response to TB or disease. 
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Figures 

 

 

Figure 4.1. Schematic of multi-scale model of antigen presentation and T cell response. 
(A) Overview of antigen presentation by APC and T cell response. (B) APC model 
(input: IFN-γ, exogenous antigen; output: surface pMHC). (C) T cell model (input: 
surface pMHC from APC model; outputs: activated TCR, internalized TCR). (D) 
Cytokine production model (input: activated TCR; output: cytokine, specifically IFN-γ). 
Abbreviations are as follows: Ag for antigen, pep for exogenous peptide, self for self 
peptide, B with subscripts 0 through N for pMHC-TCR complexes in different stages of 
activation, and TF for transcription factor. Direct (mechanistic) reactions in the model are 
indicated by solid arrows, while indirect (regulatory) interactions in the model are 
indicated by dotted arrows. The names of cellular compartments are italicized. 
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Figure 4.2. The multi-scale model conforms to expected behaviors during testing. (A) 
Time course of pMHC on APC surface in the model. (B) Time course of TCR 
internalization in T cells in the model. (C) Time course of IFN-γ production in the model. 
(D) Dose-response curve for pMHC as antigen concentration is varied in the model and 
experimental data. (E) Dose-response curve for TCR internalization as the number of 
peptide-MHC on the APC surface is varied in the model and experimental data. (F) Dose-
response curve for IFN-γ production as antigen concentration is varied in the model and 
experimental data. Parameter values for each simulation are given in Supplementary 
Information. When more than one curve was available from the experimental data, the 
highest and lowest non-zero experimental curves were selected and are shown (E and F). 
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Figure 4.3. Trade-off plots show multiple polymorphisms can compensate for 
polymorphisms in pMHC binding to achieve the same response. Pairs of parameter 
values resulting in the same target output value are plotted. (A-C) IFN-γ expression (as 
amount initially present) vs. peptide-MHC binding. (D-F) MHC expression vs. peptide-
MHC binding. (G-I) Antigen processing vs. peptide-MHC binding. Target output values 
were 100, 500, or 1000 pMHC on the APC surface; 10%, 40%, or 80% internalization of 
total TCR; and 0.1 pM, 1 pM, or 5 pM IFN-γ production corresponding to ~2, ~20, and 
~200 pg/ml IFN-γ. Boxes delineate realistic biological ranges. Values of other parameters 
used during simulations are provided in Supplementary Information. 
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Figure 4.4. Trade-off plots show compensatory relationships between APC and T cell 
(inter-model) parameters. (A-C) pMHC-TCR affinity vs. peptide-MHC binding. (D-F) 
Internalization of free, activated TCR vs. peptide-MHC binding. Target output values 
were 100, 500, or 1000 pMHC on the APC surface; 10%, 40%, or 80% internalization of 
total TCR; and 0.1 pM, 1 pM, or 5 pM IFN-γ production corresponding to ~2, ~20, and 
~200 pg/ml IFN-γ. Boxes delineate reasonable biological ranges. Values of other 
parameters used during simulations are provided in Supplementary Information. 
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Figure 4.5. Conceptualized multi-dimensional trade-off plot showing how host and 
pathogen respond to efforts by the other to circumvent and bolster antigen presentation, 
respectively, during the course of an infection. The surface shown in gray represents all 
parameters that lead to a threshold number of pMHC on the APC surface or its 
corresponding T cell response. Points represent combinations of parameter values 
measured at time points throughout an infection, with points above and below the surface 
representing a successful immune response and disease, respectively. 
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Tables 

Table 4.1. Sensitivity analysis of the multi-scale model. 

 No IFN-γ initially present IFN-γ initially present 

 pMHC1 TCR2 IFN-γ3 pMHC1 TCR2 IFN-γ3 

IFN-γγγγ dose4 N/A N/A N/A 0.64 0.14 0.15 

MHC 
expression5 

0.41 0.19 0.15 0.29 (0.07) (0.05) 

pMHC 
affinity6 

-0.80 -0.44 -0.40 -0.65 -0.29 -0.28 

Ag dose 0.97 0.70 0.68 0.97 0.71 0.72 

Ag 
processing7 

0.66 0.17 0.16 0.62 0.21 0.24 

TCR 
expression 

N/A 0.55 0.42 N/A 0.55 0.34 

pMHC-TCR 
affinity8 

N/A -0.58 -0.60 N/A -0.56 -0.60 

pMHC-TCR 
activation9 

N/A 0.51 0.49 N/A 0.46 0.46 

Activ’d free 
TCR 
internaliz.10 

N/A (0.08) -0.24 N/A (0.07) -0.23 

IFN-γγγγ 
signaling11 

N/A N/A 0.56 N/A N/A 0.66 

PRCC values measuring sensitivity of model outputs to parameter variability when IFN-γ 
is either not present initially or present initially, akin to PBMC (monocyte-T cell) and 
infection (macrophage-T helper cell) scenarios, respectively (ncells=1·106, vmedium=1·10-3 
L, koff-MHC=2·10-3 s-1, kon-TCR=1·10-5 molecule-1s-1). Shown are PRCC values when 16 
parameters in the model were varied (see Methods for detail). Parameters corresponding 
to processes in which genetic polymorphisms have been observed are indicated in bold. 
Non-significant PRCC values (α = 0.05, Bonferroni-adjusted) are in parentheses. 
1Number of pMHC on the APC surface 4 h after Ag exposure. 2Number of TCR 
internalized by the T cell 5 h after APC-T cell contact. 3Amount of IFN-γ produced by 
the T cell 24 h after APC-T cell contact. 4Amount of IFN- γ to which APCs are exposed 
24 h prior to Ag exposure. 5Number of MHC molecules initially expressed on the cell. 
6As pMHC KA when pMHC dissociation rate constant was varied. 7Rate constant for 
antigen processing. 8As pMHC-TCR KA when pMHC-TCR dissociation rate constant 
was varied. 9Rate constant for progressive activation of pMHC-TCR complexes. 10Rate 
constant for TCR-induced IFN-γ transcription. 
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4.5 Supplementary Information 

4.5.1 APC Model Equations 

Equations 4.1-4.16 constitute the APC model and are identical to the equations 

presented in Chang et al. (2005). 

  

dG/dt = [−kon-IFN-γ G RG + koff-IFN-γ CG] [ncells / (NA vmedium)] − kdeg-IFN-γ G [4.1] 

dRG/dt = −kon-IFN-γ G RG + koff-IFN-γ CG + krecyc CG [4.2] 

dCG/dt = kon-IFN-γ G RG − koff-IFN-γ CG − krecyc CG [4.3] 

dC2m/dt = ktxn-C2 (1 + αC2 CG) − kdeg-C2m C2m [4.4] 

dC2/dt = ktsl-C2 C2m − kdeg-C2 C2  [4.5] 

dMm/dt = ktxn-M C2 − kdeg-Mm Mm  [4.6] 

dA*/dt = −(kpino ncells / vmedium) A* − kdeg-A* A* [4.7] 

dA/dt = (kpino / vMIIC) A* − kdeg-A A − klys A [4.8] 

dE/dt = kdeg-A A + (−kon-MHC M E + koff-MHC ME) [1 / (NA vMIIC)] − klys E [4.9] 

dS/dt = ksource + [kdeg-MHC (MS + MS* ) – kon-MHC M S + koff-MHC MS] [1 / 

(NA vMIIC)] – klys S 
[4.10] 

dM/dt = ktsl-M (1 + αM CG) Mm − kon-MHC M S + koff-MHC MS − kon-MHC M 

E + koff-MHC ME − kout M + kin M* − kdeg-MHC M  
[4.11] 

dM*/dt = kout M − kin M*  − kdeg-MHC M*  [4.12] 

dMS/dt = kon-MHC M S − koff-MHC MS − kout MS + kin MS*  − kdeg-MHC MS [4.13] 

dMS* /dt = kout MS − kin MS*  − kdeg-MHC MS* [4.14] 

dME/dt = kon-MHC M E − koff-MHC ME − kout ME + kin ME*  − kdeg-MHC ME [4.15] 

dME* /dt = kout ME − kin ME*  − kdeg-MHC ME*  [4.16] 

Descriptions of the terms in each equation are provided in Chang et al. (2005). 

Variables and parameters are defined, and values provided, in Table  4.3 and 4.4. 
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4.5.2 TCR Internalization Model Equations 

Equations 4.17-4.27 constitute the T cell model and are approximated from the 

PDEs of Coombs et al. (2002) that pertain to the contact zone. 

 

dME
C/dt = −kon-B (T

C + Tactiv
C) ME

C + koff-B (B0 + B1 + B2 + B3 + B4+ B5 + 

BN) − λB BN − kdeg-MHC,C ME
C 

[4.17] 

dTC/dt = − kon-B T
C ME

C + koff-B (B0 + B1 + B2 + B3+ B4+ B5 + BN) [4.18] 

dB0/dt = kon-B T
C ME

C − (koff-B + kp) B0 [4.19] 

dB1/dt = kp B0 − (koff-B + kp) B1  [4.20] 

dB2/dt = kp B1 − (koff-B + kp) B2 [4.21] 

dB3/dt = kp B2 − (koff-B + kp) B3 [4.22] 

dB4/dt = kp B3 − (koff-B + kp) B4 [4.23] 

dB5/dt = kp B4 − (koff-B + kp) B5  [4.24] 

dBN/dt = kon-B Tactiv
C ME

C + kp B5 − koff-B BN  [4.25] 

dTactiv
C/dt = −kon-B Tactiv

C ME
C + koff-B BN − λT Tactiv

C  [4.26] 

dTint/dt = λT (Tactiv + Tactiv
T) + λB BN [4.27] 

Briefly, Equations 4.17-4.19 describe the processes by which free pMHC 

complexes on the APC surface and free TCRs on the T cell surface bind and form 

pMHC-TCR tri-molecular complexes. (Superscript C represents molecular species 

occurring in the contact zone between the APC and T cell.) Equations 4.20-4.25 describe 

the progressive activation of pMHC-TCR tri-molecular complexes that occurs during 

kinetic proofreading. Finally, Equations 4.26 and 4.27 describe the association and 

dissociation of fully activated TCRs to and from pMHC-TCR tri-molecular complexes 

and the internalization of activated TCR in free or bound forms. In this model, only the 

contact zone of Coombs et al. (2002) was represented, and therefore terms representing 

diffusion between the contact zone and other zones in the Coombs model were excluded. 
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Variables and parameters are defined, and parameter values provided, in Tables 4.5 and 

4.6. The model recapitulated major features of the model of Coombs et al. (2002) and 

Gonzalez et al. (2005) such as the existence of an optimal pMHC-TCR half-life for TCR 

internalization (data not shown). 

4.5.3 Cytokine Production Model Equations 

Equations 4.28-4.31 describe the cytokine production portion of the T cell model. 

 

dFactiv/dt = kresp (Tactiv + BN) F − kdecay Factiv    [4.28] 

F = 1 − Factiv [4.29] 

dGm/dt = ktxn-IFN-γ Factiv − kdeg-Gm Gm  [4.30] 

dG2/dt = ktsl-IFN-γ Gm [ncells / (NA vmedium)] − kdeg-IFN-γ G2 [4.31] 

Briefly, Equation 4.28 represents the first-order activation and deactivation of a 

transcription factor for cytokines produced by the T cell, e.g., NF-κB, in units of fraction 

total transcription factor. Equation 4.29 represents the pool of un-activated transcription 

factor. Equation 4.30 represents the first-order synthesis (i.e., transcription) and 

degradation of cytokine mRNA and in particular the absolute dependence of the synthesis 

of cytokine mRNA on the presence of activated transcription factor. Finally Equation 

4.31 represents the first-order synthesis (i.e., translation) and degradation of cytokine 

protein. Like cytokine mRNA, cytokine protein in the model is completely dependent on 

the presence of its activator, cytokine mRNA. Variables and parameters are defined, and 

parameter values provided, in Tables 4.5 and 4.6. 

4.5.4 Parameters for Figures and Tables 

Parameter values and initial conditions used in solving Equations 4.1-4.31 of the 

model were as provided in Tables 4.3-4.6 with the following exceptions: 
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For Fig. 4.2: (a)-(c) ncells=1 · 106, vmedium=1 · 10-3 L, G0=0, A0=1 · 10-5 M, koff-

MHC=2 · 10-3 s-1, kon-TCR=1 · 10-6 molecule-1s-1. (d) ncells=8 · 106, vmedium =1 · 10-3 L. (e) kon-

TCR=1 · 10-6 molecule-1s-1. (f) ncells=2 · 104, rvol=2 · 10-4 L. 

For Table 4.1: ncells=1 · 106, vmedium=1 · 10-3 L, koff-MHC=2 · 10-3 s-1, kon-TCR=1 · 10-5 

molecule-1s-1. During LHS parameters that were defined in terms of other parameters 

(Tables 4.4 and 4.6) were re-derived, with the exception of ktxn, the MHC transcription 

rate constant. Instead, ktxn was varied during LHS, and kdeg-Mm, the MHC mRNA 

degradation rate constant, was re-derived.  

For Fig. 4.3: ncells=1 · 106, vmedium=1 · 10-3 L, G0=0, A0=1 · 10-5 M, koff-MHC=2 · 10-3 

s-1, kon-TCR=1 · 10-6 molecule-1s-1. 

For Fig. 4.4: ncells=1 · 106, vmedium=1 · 10-3 L, G0=0, A0=1 · 10-5 M, koff-MHC=2 · 10-3 

s-1, kon-TCR=1 · 10-6 molecule-1s-1. 

For Table 4.7: ncells=1 · 106, vmedium=1 · 10-3 L, koff-MHC=2 · 10-3 s-1, kon-TCR=1 · 10-5 

molecule-1s-1. 
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Table 4.2. Polymorphisms in antigen presentation affecting susceptibility to TB. 

Gene Allele Odds ratio References 

HLA class II DR2 (serotype) 1.8-2.7 
Bothamley et al. 1989, 
Brahmajothi et al. 1991, 
Rajalingam et al. 1996 

 
DRB1*1501 (DR2 
subtype) 

2.7–7.9  
Mehra et al. 1995, Ravikumar et 
al. 1999, Teran-Escandon et al. 
1999, Sriram et al. 2001 

 DQB1*0503 N/A1 Goldfeld et al. 1998 

IFN-γ +874A 1.6-3.8 
Lio et al. 2002, Lopez-Maderuelo 
et al. 2003, Rossouw et al. 2003 

TAP TAP2*0201 2.4-4.3 
Rajalingam et al. 1997, Gomez et 
al. 2006 

1This polymorphism was not detected in the control population. 
A more complete list of polymorphisms associated with TB susceptibility can be found 
elsewhere (Bellamy 2005, Fernando and Britton 2006, Hill 2006). Odds ratio presents a 
measure of the relative risk associated with each allele. 
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Table 4.3. Initial values in the APC model. 

Variable Description Initial value(1) 

G IFN-γ concentration in medium Varies by experiment 

RG Free IFN-γ receptors per cell 1 × 103 

CG IFN-γ complexes per cell 0 

C2m CIITA mRNA as fraction of basal level 1 

C2 CIITA protein as fraction of basal level 1 

Mm MHC(2) mRNA per cell 1 × 105 

A* Antigen concentration in medium Varies by experiment 

A Antigen concentration within MIIC 0 

E Peptide concentration within MIIC 0 

S Self peptide concentration within MIIC 4 × 10-4 M(3) 

M Free intracellular MHC per cell 
pin (1 − pbound) Mtot ≈ 6.7 
× 103 

M* Free surface MHC per cell 
[(1 − pin) / pin] M0 ≈ 1.3 × 
104 

MS Intracellular self-MHC complexes per cell 
[pbound / (1 − pbound)] M0 ≈ 
2.7 × 104 

MS* Surface self-MHC complexes per cell 
[(1 − pin) / pin] MS,0 ≈ 5.3 
× 104 

ME 
Intracellular peptide-MHC complexes per 
cell 

0 

ME* Surface peptide-MHC complexes per cell 0 
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(1)When used in the definition of another parameter or variable, the subscript 0 refers to 
the initial value of a particular variable such that, e.g., M0 refers to the initial value of M. 
Units are numbers of molecules per cell (APC or T cell) unless otherwise indicated. 
(2)MHC in this and following entries refers to MHC class II. 
(3)This value was estimated from [kdeg-Mm (MS,0 + MS,0*) + koff-MHC MS,0] / kon-MHC M0 
(Chang et al. 2005). 
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Table 4.4. Parameters in the APC model. 

Parameter Description Value(1) 

kon-IFN-γ IFN-γ / IFN-γR association rate constant 3 × 109 M-1  h-1 

koff-IFN-γ IFN-γ / IFN-γR dissociation rate constant 7 × 10-1 h-1 

ncells Number of APC in medium Varies by experiment 

vmedium Volume of culture medium Varies by experiment 

kdeg-IFN-γ IFN-γ degradation rate constant 1 × 10-2 h-1 

krecyc IFN-γ receptor recycling rate constant 1 × 101 h-1 

ktxn-C2 CIITA transcription rate constant kdeg-C2m C2m,0 = 2 × 10-1 
h-1 

αC2 IFN-γ-dependent CIITA scaling factor 1 × 10-1 

kdeg-C2m CIITA mRNA degradation rate constant 2 × 10-1 h-1 

ktsl-C2 CIITA mRNA translation rate constant kdeg-C2m C2 / C2m,0 = 1.4 
× 100 h-1 

kdeg-C2 CIITA degradation rate constant 1.4 × 100 h-1 

ktxn-M MHC transcription rate constant kdeg-Mm Mm,0 ≈ 4 × 103 
h-1 

kdeg-Mm MHC mRNA degradation rate constant 4 × 10-2 h-1 

kpino Pinocytosis rate 1 × 10-13 L h-1 

kdeg-A* 
Antigen degradation rate constant in 
medium 1 × 10-2 h-1 

vMIIC Volume of MIIC compartment 4 × 10-16 L 

kdeg-A Antigen processing rate constant 4 × 100 h-1 

klys Lysosomal degradation rate constant 6 × 100 h-1 

ksource Self peptide synthesis rate constant klys S0 ≈ 2.4 × 10-3 M-1 
h-1 
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kdeg-MHC MHC degradation rate constant 2 × 10-2 h-1 

kon-MHC Peptide-MHC association rate constant 7.2 × 108 M-1 h-1 

koff-MHC Peptide-MHC dissociation rate constant 7.2 × 104 h-1 

ktsl-M MHC mRNA translation rate constant 
kdeg-MHC (M0 + M* 0 + 
MS,0 + MS* 0) ≈ 2 × 10-2 
h-1 

αΜ IFN-γ-dependent MHC scaling factor 1 × 10-1 

kout MIIC-to-surface trafficking rate constant 4 × 100 h-1 

kin Surface-to-MIIC trafficking rate constant [pin/(1–pin)] kout – kdeg-

MHC ≈ 2 × 100 h-1 

pin Proportion of MHC intracellular at time 0 1/3 

pbound Proportion of MHC bound to self at time 0 4/5 

Mtot Total number of MHC per cell 1 × 105 

(1)When used in the definition of another parameter or variable, the subscript 0 refers to 
the initial value of a particular variable such that, e.g., M0 refers to the initial value of M. 
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Table 4.5. Initial values in the T cell models. 

Variable Description(1) Initial value 

ME
C Peptide-MHC complexes within contact 

zone 0 

TC Free TCR within contact zone, inactive (σC/σtot-Tcell) Ttot ≈ 4.2 × 
103 

B0 Peptide-MHC-TCR complex, inactive 0 

B1 Peptide-MHC-TCR complex, state 1 0 

B2 Peptide-MHC-TCR complex, state 2 0 

B3 Peptide-MHC-TCR complex, state 3 0 

B4 Peptide-MHC-TCR complex, state 4 0 

B5 Peptide-MHC-TCR complex, state 5 0 

BN Peptide-MHC-TCR complex, activated 0 

Tactiv
C Free TCR within contact zone, activated 0 

Tint Internalized TCR 0 

F Inactive NF-κB, fraction of total NF-κB 1 

Factiv Activated NF-κB, fraction of total NF-κB 0 

Gm IFN-γ mRNA 0 

G2 IFN-γ secreted 0 

(1)Units are numbers of molecules per cell (APC or T cell) unless otherwise indicated. 
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Table 4.6. Parameters in the T cell models. 

Parameter Description Value(1) 

σC Surface area of APC-T cell contact zone 7 × 10-11 m2 

σtot-APC Total surface area of APC 5 × 10-10 m2 

kon-B pMHC-TCR association rate constant 3.6 × 10-2 h-1 molecule-1 

koff-B pMHC-TCR dissociation rate constant 3.6 × 101 h-1 

σtot-Tcell Total surface area of T cell 5 × 10-10 m2 

µ TCR deactivation rate constant 0 h-1 

kp TCR activation rate constant 9 × 102 h-1 

λT Free TCR internalization rate constant 1.08 × 101 s-1 

λB Bound TCR internalization rate constant 1.08 × 100 s-1 

kresp NF-κB activation rate constant 5 × 10-3 h-1 molecule-1 

kdecay NF-κB deactivation rate constant 1 × 10-1 h-1 

ktxn-IFN-γ IFN-γ transcription rate constant kdeg-Gm Gm,0 ≈ 1 × 102 h-1 

kdeg-Gm IFN-γ mRNA degradation rate constant 1 × 10-2 h-1 

ktsl-IFN-γ IFN-γ translation rate constant 6 × 101 

Ttot Total number of TCR per cell 3 × 104 

(1)When used in the definition of another parameter or variable, the subscript 0 refers to 
the initial value of a particular variable such that, e.g., M0 refers to the initial value of M. 
The values of most parameters are identical to the parameters in Coombs et al. (2002), 
including surface areas of the APC and T cells, surface area of the contact zone, TCR 
activation and de-activation rate constants, and TCR internalization rate constants. 
Association and dissociation rate constants for the pMHC-TCR complex were estimated 
from values measured in vitro (reviewed in Davis et al. 1998). The NF-κB activation rate 
constant was estimated by summing constituent rate constants d4, d5, d6, r4, r5, and r6 
from Hoffmann et al. (2002). The NF-κB de-activation rate constant was estimated by 
fitting the time course of activated NF-κB in the model to an experimentally observed 
peak in NF-κB levels occurring approximately 1 h after activation (Hoffmann et al. 
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2002). The IFN-γ transcription rate constant and mRNA degradation rate constant were 
estimated by fitting the time course of cytokine IFN-γ mRNA to match an experimentally 
observed peak in expression approximately 20 hours after exposure to APC (Listvanova 
et al. 2003). The IFN-γ translation rate constant was estimated by fitting the time course 
of cytokine IFN-γ to match an experimentally observed peak in protein levels detected by 
ELISA approximately 96 hours after exposure to APC (Listvanova et al. 2003). 
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Table 4.7. PRCC values for all 16 parameters that were varied during sensitivity analysis. 

No IFN-γ initially present IFN-γ initially present 
Biological 
process/factor 

pMHC1 TCR2 IFN-γ3 pMHC1 TCR2 IFN-γ3 

IFN-γγγγ dose4 N/A N/A N/A 0.64 0.14 0.15 

MHC 
expression5 

0.41 0.19 0.15 0.29 (0.07) (0.05) 

pMHC 
affinity6 

-0.80 -0.44 -0.40 -0.65 -0.29 -0.28 

Ag dose 0.97 0.70 0.68 0.97 0.71 0.72 

Ag 
processing7 

0.66 0.17 0.16 0.62 0.21 0.24 

pMHC export 
to surface 

0.53 (0.06) (0.08) 0.16 (0.05) (0.06) 

pMHC deg. 
within 
contact 

N/A -0.26 -0.20 N/A -0.25 -0.20 

TCR 
expression 

N/A 0.55 0.42 N/A 0.55 0.34 

pMHC-TCR 
affinity8 

N/A -0.58 -0.60 N/A -0.56 -0.60 

pMHC-TCR 
activation9 

N/A 0.51 0.49 N/A 0.46 0.46 

Act’d, 
freeTCR 
internal.10 

N/A (-0.10) -0.15 N/A (0.07) (0.01) 

Act’d, bound 
TCR 
internal.11 

N/A (0.08) -0.24 N/A (0.07) -0.23 

IFN-γγγγ 
signaling12 

N/A N/A 0.56 N/A N/A 0.66 

Trans. factor 
deactivation 

N/A N/A (-0.04) N/A N/A (-0.07) 

IFN-γ mRNA 
synthesis 

N/A N/A 0.56 N/A N/A 0.66 

IFN-γ mRNA 
degradation 

N/A N/A (0.03) N/A N/A (0.03) 

Parameters corresponding to processes in which genetic polymorphisms have been 
observed are indicated in bold. Non-significant PRCC values (α=0.05, Bonferroni-
adjusted) are shown in parentheses. N/A is indicated for parameters representing 
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processes that occur later in the antigen presentation pathway than the indicated output 
and therefore do not affect output value. 
 
1Number of pMHC on the APC surface 4 h after Ag exposure 
2Number of TCR internalized by the T cell 5 h after APC-T cell contact 
3Amount of IFN-γ produced by the T cell 24 h after APC-T cell contact 
4Amount of IFN-γ to which APCs are exposed 24 h prior to Ag exposure 
5Number of MHC molecules initially expressed on the APC 
6As pMHC KD when peptide-MHC dissociation rate constant was varied 
7Rate constant for antigen processing 
8As pMHC-TCR KD when pMHC-TCR dissociation rate constant was varied 
9Rate constant for progressive activation of pMHC-TCR complexes 
10Rate constant for internalization of bound, activated TCR 
11Rate constant for internalization of free, activated TCR 
12Rate constant for TCR-induced IFN-γ transcription 
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CHAPTER 5 

Conclusions 

5.1 Summary 

Antigen presentation, one of the key events in the initiation and maintenance of 

the immune response, offers many possible avenues of research for both experimentalists 

and theoreticians. In the preceding chapters I described my efforts to pursue three such 

avenues – how best to represent events at the cellular scale (tracking the number of 

pMHC on the APC surface), then at the molecular scale (predicting binding between 

peptides and MHC class II molecules), and finally at the multi-cellular scale (between 

APC and T cell leading up to T cell activation). After describing how each model was 

developed, I showed how I applied each model to answer questions related to the immune 

response to infection, particularly with M. tuberculosis.  

5.1.1 APC Model 

In the case of the cellular-scale model, I asked why M. tuberculosis had been 

found to use multiple mechanisms to inhibit antigen presentation, each targeting a 

different intracellular process (Fig. 5.1). The APC model suggested that these 

mechanisms differed in their effects. Some mechanisms were effective at stymieing 

antigen presentation almost immediately but could be overcome by the provision of an 

activating cytokine, IFN-γ, by other cells. Targeting the ability of macrophages to process 

antigens into smaller peptides could be considered one such mechanism. Other 
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mechanisms required a delay of several hours to have an effect on antigen presentation 

but were more effective at longer timescales. Mechanisms targeting MHC class II 

expression, for example, required at least ten hours to have an effect, consistent with the 

length of time required for protein synthesis. M. tuberculosis may therefore employ 

multiple mechanisms to a complementary rather than merely redundant effect. 

Furthermore, the application of external IFN-γ in experimental protocols may interfere 

with the ability to detect M. tuberculosis mechanisms that do not target MHC class II 

expression. 

5.1.2 Peptide-MHC Binding Model 

At the molecular scale, I asked whether differences in peptide length affected 

binding affinity to MHC class II, and if so, whether incorporating these differences into 

existing binding prediction algorithms could improve algorithm performance (Fig. 5.1). 

After analyzing binding data from currently available databases, I found that a significant 

and nonlinear relationship existed between length and affinity. This relationship was 

allele-specific and often revealed an optimal length for maximizing binding affinity, a 

finding that may have implications for the study of antigens from pathogens such as M. 

tuberculosis or for vaccine design (described in more detail below). Furthermore, 

incorporating information about peptide length into binding prediction algorithms 

consistently improved performance, whether through the use of these relationships or 

alternatively through the use of a statistical method for reconciling predicted affinities 

made on multiple binding registers (i.e., 9mer windows that engage the MHC class II 

molecule directly) within longer peptides. 
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5.1.3 T Cell Model 

Finally, at the multi-cellular scale, I asked whether multiple polymorphisms 

affecting different steps in the antigen presentation pathway might interact, either 

canceling or intensifying their effects on the outcome. To answer this question, I 

extended the APC model to include the T cell responses of TCR down-regulation and 

cytokine secretion and then determined whether and under what conditions a 

polymorphism in one gene might compensate for a polymorphism in another gene (Fig. 

5.5.1). For example, polymorphisms have been observed in both IFN-γ non-coding and 

MHC class II coding sequences, affecting IFN-γ expression and pMHC affinity, 

respectively. In the model, increased IFN-γ expression could compensate for decreased 

pMHC affinity to maintain the same level of cytokine secretion but only when IFN-γ 

levels exceeded a lower threshold. Below this threshold, changes in pMHC affinity had a 

much stronger effect on the level of cytokine secretion. The finding that polymorphisms 

can have similar effects on antigen presentation could explain discrepancies in the 

epidemiological literature where some polymorphisms (e.g., the MHC class II allele 

DRB1*1501) are inconsistently associated with disease susceptibility. 

5.2 Future Work: Additions to the Models 

5.2.1 More Detailed Representation of M. tuberculosis 

While antigen presentation is largely the product of host processes, the pathogen 

ultimately plays a role by supplying antigenic peptides. In each of the sub-models 

constituting the multi-scale model, M. tuberculosis has been represented as a static 

quantity. For instance, in the APC model, the degree of inhibition of a particular process 

is assumed to be proportional to the initial number of bacilli to which the APC is 

exposed. 
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Adding M. tuberculosis as a dynamic variable would allow presentation to be 

more realistically represented by the model (Fig. 5.1C). Because the number of M. 

tuberculosis bacilli infecting any given APC is discrete and likely to be low but the ODE 

representation of the APC model assumes continuous variables, the most effective way to 

incorporate M. tuberculosis into the model would be to use some continuously variable 

quantity as a proxy for intracellular bacterial number. One such quantity might be the 

amount of a particular antigen secreted by the bacillus. 

Adding M. tuberculosis as a dynamic variable into the model would also allow 

feedback to be more realistically represented by the model. Since T cell secretion of IFN-

γ was represented in the model and IFN-γ-specific parameter values were used, it is 

possible to use the output of the T cell model as an additional input for the APC model. 

In doing so, the model would depict the increased capacity of macrophages at the site of 

infection to present antigen after being exposed to effector T cells that have been re-

stimulated by other macrophages. 

However, in addition to its effects on MHC expression, IFN-γ also increases the 

killing capacity of macrophages. The effect that killing M. tuberculosis bacilli has on the 

availability of antigen is currently unknown. While killing may result in the liberation of 

proteins formerly contained within the bacilli and increase the antigen pool, killing may 

also reduce the quantity of proteins that were formerly being secreted and decrease the 

antigen pool. In either case, the sum effect of additional exposure to IFN-γ may be a 

higher capacity to present antigen but a changed antigen pool. 

By representing the growth state of M. tuberculosis and availability of antigen as 

dynamic quantities, it may be possible to simulate antigen presentation on longer 

timescales. Currently the multi-scale model represents events to approximately one day. 

However, since the doubling time of the M. tuberculosis bacillus and the lifespan of 

macrophages are both on the scale of days, antigen presentation may extend to longer 

timescales than currently represented. Murray (1999) hypothesized that during 
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tuberculosis a “cycle of antigen frustration” occurs in which periods of greater antigen 

availability alternate with periods of lesser antigen availability. Each period of greater 

antigen availability induces a T cell response and antimicrobial activity leading to a 

period of lesser antigen availability during which the bacilli recover undetected by 

immune surveillance. A model representing M. tuberculosis as a dynamic variable would 

allow virtual experiments of the hypothesis of Murray (1999) to be performed, such as 

the addition of inhibitors of mycobacterial growth that would presumably slow the period 

of oscillations in the cycle. The results could then be used to design new protocols for in 

vitro experiments. 

5.2.2 More Detailed Representation of Particular Processes 

In the APC and T cell models, most processes were represented with mass-action 

or first-order kinetics, depending on whether the process involved two molecular species 

in the model or only one, respectively. While more detailed mechanistic representations 

are possible for nearly all of the processes in these models, it was assumed that on the 

timescales of interest (typically hours after exposure to antigen) the differences between 

such representations and the ones actually used in the models would be negligible. For 

instance, Witt and McConnell (1992) proposed that peptide-MHC binding is more 

accurately described using a two-step binding mechanism. However, this mechanism 

would be expected to produce the same output as the simpler, one-step mechanism hours 

after the binding reaction, when pMHC on the APC surface was read as output. Likewise, 

peptide-MHC binding to TCR has also been hypothesized to involve a two-step binding 

mechanism (Wu et al. 2002), but the additional complexity in this model is not expected 

to yield any difference in output on the timescale of hours. In addition, the data 

supporting more complicated binding mechanisms has sometimes been controversial, as 
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in the case of the two-step peptide-MHC binding mechanism which has been disputed 

(Berezhkovskiy 1998). 

Nevertheless, in some cases it may be possible to gain additional insights from the 

model using more complicated representations, especially when different mechanisms of 

regulation are possible (Fig. 5.1C). For instance, in the APC model endocytosis was 

represented in a general way, involving only one intracellular compartment, the MHC 

class II compartment (MIIC). However, different compartments may play distinct roles 

during antigen presentation, particularly during infection with M. tuberculosis. While M. 

tuberculosis resides in specialized phagosomes where access to MHC class II molecules 

is impaired, a subset of antigens is transferred to endosomes accessible to MHC class II 

molecules (Beatty and Russell 2000, Gehring et al. 2003). Therefore, additional 

selectivity is likely conferred by the path that antigens of M. tuberculosis traverse within 

the macrophage, and some antigens may be presented more quickly than others. 

Additional steps may be introduced into the APC model to account for these disease-

specific differences in endocytosis. 

5.3 Future Work: Integration with Other Models 

5.3.1 Models of Antigen Presentation by MHC Class I 

Exceptions to the rule that MHC class I binds antigens from the cytoplasm (i.e., 

endogenous antigens) while MHC class II binds antigens from the extracellular space 

(i.e., exogenous antigens) have been identified, and a lack of complete knowledge 

regarding the mechanisms involved presents an opportunity for models to provide 

insights. 

During cross-presentation, exogenous antigens gain access to MHC class I 

molecules and are presented as peptide-MHC class I complexes on the APC surface 

(Rock and Shen 2005). While a detailed mechanism has yet to be elucidated, cross-
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presentation appears to follow the internalization of exogenous antigens via phagosomes 

that later fuse with the endoplasmic reticulum (ER) (Guermonprez et al. 2003, Houde et 

al. 2003). Once in the ER exogenous antigens are presumably treated like endogenous 

antigens and then exported into the cytoplasm, processed by the proteasome, reintroduced 

into the ER by the transporter associated with antigen presentation (TAP), and bound to 

MHC class I molecules. Cross-presentation has been shown to occur for antigens from 

several bacterial pathogens including M. tuberculosis. 

Antigens from M. tuberculosis are therefore likely to be presented on the surface 

of APCs with both MHC class I and MHC class II molecules. To what extent are antigens 

presented via one type of pMHC complex versus the other? To answer this question, the 

APC model may be extended to account for the loss of antigens due to the cross-

presentation pathway (Fig. 5.1C). This may be accomplished most directly with 

additional first-order loss terms in the ODE model, assuming that a constant proportion of 

antigen is shunted away from MHC class II-accessible compartments. 

However, it may be interesting to first determine whether the antigens lost to 

cross-presentation and the MHC class I pathway are capable of being bound by MHC 

class II. The two pathways may be non-competing if antigens destined for the cross-

presentation pathway are enriched in MHC class I-binding sequences but deficient in 

MHC class II-binding sequences. Because the antigens of M. tuberculosis are normally 

not considered candidates for binding MHC class I, a study has not been done to identify 

possible MHC class I-binding sequences within the M. tuberculosis proteome, though a 

similar study has been done to identify MHC class II-binding sequences (McMurry et al. 

2005). Models that represent selectivity at the steps of TAP binding and pMHC binding 

are available and could be applied to M. tuberculosis proteome (Petrovsky and Brusic 

2004). 
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5.3.2 Larger-Scale Models of the Immune System 

Of the three main types of professional APC that are commonly distinguished 

(dendritic cells, macrophages, and B cells), macrophages are most closely represented by 

the APC model. The majority of the parameters in the APC model were derived from in 

vitro murine macrophage data, and initial testing was performed against other in vitro 

macrophage data. Because the steps involved in MHC class II-mediated antigen 

presentation are common to all APC cell types, however, the structure and mathematical 

representation in the model are likely to be correct for other cell types as well. Indeed, the 

APC and T cell models were shown to reproduce both time course and dose-response 

data from a variety of experiments. Dendritic cells have been found to differ from 

macrophages with respect to two antigen presentation-relevant parameters, the level of 

MHC expression and rate of antigen uptake (Inaba and Steinman 1985, Inaba et al. 

1997). Using different values for these parameters may be sufficient to distinguish these 

two cell types in the APC model as well as in the multi-scale model. 

Accounting for differences between dendritic cells and macrophages may help 

extend the model to two different instances of antigen presentation during the course of 

an immune response: antigen presentation to naïve T cells in the lymph node by dendritic 

cells and antigen presentation to effector T cells at a site of infection by macrophages. 

Both instances are likely to play important roles during the immune response to M. 

tuberculosis, especially given the additional role of macrophages as the preferred host 

cells to the M. tuberculosis bacillus. In conjunction with a more realistic representation of 

M. tuberculosis growth and antigen availability (discussed above, in Section 5.2.1), 

distinct models of the dendritic cell and the macrophage would allow additional, stage-

specific questions to be approached. For example, are the mechanisms by which M. 

tuberculosis inhibits antigen presentation more likely to be effective on the timescales of 

the initial instance of antigen presentation (when dendritic cells commingle with naïve T 
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cells shortly after infection) or the timescales of later instances of antigen presentation 

(when macrophages encounter and receive stimulation from effector T cells)? Likewise, 

are differences in peptide-MHC affinity resulting from differences between MHC alleles 

more likely to play a role in initial or later instances of antigen presentation? 

Comparisons of the results from dendritic cell and macrophage versions of the APC 

model and larger multi-scale model could provide answers to these questions and 

experimentally testable predictions. 

In addition, representation of additional cell types would help the current model to 

be integrated with other larger-scale models of antigen presentation (Fig. 5.1C). Models 

of both the site of infection during tuberculosis and the lymph node have been developed 

by Kirschner and colleagues (Segovia-Juarez et al. 2004, unpublished data). In both of 

these models, APCs and T cells are represented as discrete objects and their interaction is 

probabilistic. An APC that displays more pMHC complexes on its surface would 

presumably either have a higher probability of a successful interaction with a T cell or be 

able to elicit a stronger T cell response following a successful interaction (Bekkhoucha et 

al. 1984). The probability of a successful APC-T cell interaction is a static quantity in 

these larger-scale models, but using the output of the multi-scale model of the APC and T 

cell presented herein (Fig. 5.1B), this probability could be set as a dynamic quantity that 

more accurately reflects the infection scenario. 

5.4 Applications to Disease 

5.4.1 Mechanisms of HLA-Disease Association 

Several alleles of MHC class II have been found to be either over-represented or 

under-represented in patients with certain diseases relative to healthy controls and 

thereby associated with either susceptibility or resistance to these diseases, respectively. 

For instance, in the case of tuberculosis, MHC class II alleles of the HLA-DR2 and HLA-
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DR3 serotypes have been associated with susceptibility and resistance, respectively. 

Although the mechanisms underlying these associations are not known, several 

hypotheses exist (Vukmanovic et al. 2003). In the case of associations with infectious 

diseases, the most direct hypotheses concern the ability of the MHC variants to bind 

peptides from the antigens of the pathogen and elicit an immune response.  

Here I show preliminary data for how two possible hypotheses for MHC-TB 

associations may be tested using statistical analyses and models (Fig. 5.1C). According to 

one hypothesis, an MHC variant associated with susceptibility may bind a broad range of 

peptides with lower affinity than MHC variants associated with resistance or other MHC 

variants in the population. If this were the case then the average affinity for the 

susceptibility allele, as calculated from a database of pMHC affinities, would be expected 

to be lower than the average affinity for the resistance allele. In the case of HLA-DR2 

and HLA-DR3, the opposite was found to be true: in fact, peptides binding HLA-DR2 do 

so with a significantly higher average affinity than peptides that bind HLA-DR3, even 

when affinities for repeated and highly sequence-similar peptides have been removed 

(Fig. 5.2). 

Another hypothesis is that the allele associated with susceptibility, HLA-DR2, 

binds only disease-relevant peptides with lower affinities than the allele associated with 

resistance, HLA-DR3. To investigate this possibility, I predicted affinities for all possible 

9mers from one M. tuberculosis antigen found to be secreted by the bacillus at high 

levels, Ag85B, with the two MHC alleles, HLA-DR2 and HLA-DR3. The predictions 

were generated using a previously published binding algorithm, ISC-PLS (Doytchinova 

and Flower 2003). The average affinity of each allele for the same set of peptides could 

then be compared statistically as well as visualized on a plot. The second hypothesis, that 

an MHC allele associated with susceptibility binds disease-relevant peptides with lower 

affinity than a non-associated MHC allele, also turned out to be false in this case: HLA-
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DR2 was not predicted to bind 9mers from M. tuberculosis Ag85B with lower affinity 

than HLA-DR3 (Fig. 5.3). 

Nevertheless, these preliminary data show how statistical models of peptide-MHC 

binding may be used to test hypotheses regarding HLA-disease associations. As part of 

future work, the model used here and other models predicting pMHC affinity may be 

applied to a wider range of M. tuberculosis antigens and HLA alleles. 

5.4.2 Vaccine Design: rBCG30 

Several new vaccines to tuberculosis are currently in development (reviewed in 

Martin 2005). Among these one strategy has been to engineer the only vaccine in current 

use, the BCG strain of M. bovis, to over-express particular antigens from M. tuberculosis 

to elicit a more lasting and more directed immune response. In one of these candidate 

vaccines, rBCG30, M. bovis BCG has been engineered to express Ag85B from M. 

tuberculosis (Horwitz 2005). Currently in phase I clinical trials, this candidate vaccine 

and others like it offer an opportunity for models of antigen presentation and the immune 

response to answer key questions. 

One question that might arise, particularly if rBCG30 progress to phase II clinical 

trials and a larger test population, is how well this candidate vaccine performs in a 

heterogeneous population displaying polymorphisms in many genes. Some of these 

polymorphisms (such as IFN-γ +874T leading to increased IFN-γ expression) may 

predispose individuals to a stronger immune response, while other polymorphisms may 

have the opposite effect. Different MHC variants present in the population are likely to 

vary in their ability to bind peptides from the antigen being over-expressed, and these 

differences in binding affinity may also affect the magnitude of the immune response. 

With the refinements discussed above, such as a dynamic representation of M. 

tuberculosis, the multi-scale model could incorporate information such as the observed 
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allele frequencies for antigen presentation-relevant genes in a population and the dose at 

which a vaccine is administered and predict the range of T cell responses and the 

frequency of each response that might be expected. In this way the multi-scale model 

may offer not only a tool to understand in vitro results in the laboratory but also a tool to 

help develop new treatments to diseases such as tuberculosis. 



 

165 

Figures 

 

 

Figure 5.1. Multi-scale model of antigen presentation. A, Overview of the three models. 
B, Schematized output of the three models. C, Overview of applications and future work 
to be done with the multi-scale model. 
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Figure 5.2. Analysis of affinities for TB-associated HLA alleles. A, Affinities of peptides 
for HLA-DR2, associated with TB susceptibility. B, Affinities of peptides for HLA-DR3, 
associated with TB resistance. In both cases, affinities for homologous peptides were first 
removed using UniqueProt (Mika and Rost 2003). pIC50 = -log IC50 approximates 
association equilibrium constant KA. 
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Figure 5.3. Predicted affinities of TB-associated HLA alleles for Ag85B 9mers. 9mers 
with human homology are indicated in crosshairs. The ISC-PLS algorithm (Doytchinova 
and Flower 2003) was used to make predictions after being trained on DR2- and DR3-
binding peptides from AntiJen from which homologous peptides had been removed using 
UniqueProt (Mika and Rost 2003). The protein sequence of Ag85B was obtained from 
the NCBI Entrez Protein database (www.ncbi.nlm.nih.gov/sites/entrez, accession 
#AAO62005), and predictions were made on all possible 9mers within Ag85B. Ag95B 
9mers with human homology were identified using blastp with default parameter settings 
on the NCBI website (www.ncbi.nlm.nih.gov/blast/) to non-redundant protein sequences 
from human. 
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