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CHAPTER I

Introduction

This thesis addresses the analysis of nonlinear dynamical systems via statistical

inference from time series data about parameters in stochastic models. Dynamical

systems are studied in many diverse fields of engineering , social sciences and natural

sciences. Examples include economics (Fernandez-Villaverde and Rubio-Ramirez,

2005; Shephard and Pitt, 1997), molecular biochemistry (Kou et al., 2005), ecol-

ogy (Newman and Lindley, 2006; Thomas et al., 2005), cell biology (Ionides et al.,

2004), signal processing (Anderson and Moore, 1979), meteorology (Houtekamer and

Mitchell, 2001), neuroscience (Brown et al., 1998), and the study of infectious dis-

eases (Kermack and McKendrick, 1927; Bartlett, 1960; Anderson and May, 1991;

Finkenstädt and Grenfell, 2000; Ionides et al., 2006). The goal of the analysis is

usually to increase understanding of the dynamic system and to make predictions.

A better understanding of the system may assist in managing it and in decision

making. In the study of infectious diseases, for example, it may help minimize the

disease impact by informing decision makers about necessary numbers of vaccines or

where and how much of the available resources should be allocated. Understanding

the system may also help eradicate the disease whenever possible if considered when

designing immunization or education programs.

1
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In this thesis we consider model based analysis of dynamical systems. There

are two fundamental aspects of this type of analysis: the model proposed and the

statistical tools used. Regarding the model, there are a number of models that have

been proposed in the literature which may be classified according to different criteria.

A stochastic model is pre-requisite for time series analysis, since chance variability is

required to explain the difference between the data and deterministic models. Models

may treat time as discrete or continuous. Although observations will typically be

at discrete times, many systems evolve in continuous time and there are dangers in

using a discrete time model to analyze a system evolving in continuous time (see

Glass et al., 2003). Other criteria include whether the variables in the model are

real valued, as in stochastic differential equations (Karlin and Taylor, 1981; Basawa

and Prakasa Rao, 1980; Øksendal, 1998), or integer valued, as in continuous time

Markov chains (Brémaud, 1999) and point processes (Snyder and Miller, 1991). In

addition, models may include stochasticity via variability in the underlying dynamics,

or measurement error, or both.

State space models (Durbin and Koopman, 2001) are a very flexible class of

Markov models that allow for different sources of stochasticity, both continuous

time and discrete time modeling and both real and integer valued models. In ad-

dition, they are suited for partially observed processes. Although linear Gaussian

models give an adequate representation of some processes, nonlinear behavior and

non-Gaussianity are essential properties of many systems. Some previous likelihood-

based methods have been proposed and, despite considerable work (Anderson and

Moore, 1979; Doucet et al., 2001; Liu and West, 2001; Hürzeler and Künsch, 2001;

Cappé et al., 2005; Clark and Bjornstad, 2004; Liu, 2001), statistical methodology

which is readily applicable for a wide range of models, including nonlinear and/or



3

non-Gaussian models, has remained elusive. This motivates the development of the

tools presented in chapter II. While chapter II focuses on inference tools for the anal-

ysis, chapters III and IV consider the modeling aspect and introduce, from different

perspectives, a novel class of models for dynamical systems composed of interacting

populations of individuals. Applications of these inference tools and of the modeling

to the dynamics of cholera infections are included in chapters II and III.

Chapter II introduces the method of likelihood maximization using iterated fil-

tering for state space models, along with other tools for likelihood-based analysis.

This new methodology makes maximum likelihood estimation feasible for complex

nonlinear systems by exploiting the structure of state space models to avoid using

a standard maximization algorithm. It is hence suited for the wide range of ap-

plications that arise in the many disciplines where dynamical systems are studied.

The chapter presents both theoretical results and an application to historical cholera

mortality using data collected between 1891 and 1940 in Dhaka, Bangladesh. The

implementation suggested in the chapter relies on particle filtering (Doucet et al.,

2001). The application to cholera focuses on both the role of a cholera reservoir

in the environment and of the El Niño Southern Oscillation (ENSO) index in the

disease dynamics.

Chapter III includes an application of this new inference methodology to cholera

incidence data from a more recent period (1975-2005) collected in Matlab, Bangladesh.

The analysis could have been based on standard continuous time Markov population

models, common in ecology and epidemiology (Bartlett, 1960; Jacquez, 1996) and

other disciplines. However, previous analysis of cholera data (Koelle and Pascual,

2004; Ionides et al., 2006) suggest that having stochastically varying individual rates

is necessary to include sufficient variability to capture the dynamics of the disease.
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In ecology and epidemiology the additional variability due to varying rates is usually

referred to as environmental stochasticity, since it may be argued that the changes

in the rates are due to changes in the environment (Renshaw, 1991). The variability

produced by models with fixed individual rates is referred to as demographic stochas-

ticity. Continuous time Markov processes with stochastic rates have received some

attention in the literature (Snyder and Miller, 1991; Wolpert and Ickstadt, 1998), but

these models might not retain the Markov property after the rates become stochastic.

Continuous time Markov population models with stochastic rates seem to have been

disregarded and chapters III and IV present continuous time population models with

stochastic rates which do retain the Markov property.

Chapter III analyzes the more recent cholera data using a model based on the

limit of coupled multinomial processes with random rates. The main focus of this

application is in better understanding the strain structure of the disease and the

role of strain cross-immunity in particular. A key element in the implementation

of the method as presented in chapter II is simulation from the proposed model,

taking advantage of recent advances in simulation-based nonlinear filtering. Analyt-

ical properties or calculations using the model, such as transition densities and their

derivatives, are not required for the inference. This is a nice feature of the method-

ology since analytical results are not readily available in this case. Based on this,

chapter III proposes an inference framework where the emphasis of the modeling is

on simulation from the model, possibly using a numerical scheme. This allows anal-

ysis based on models where analytical properties are hard to derive, as is likely the

case when models are based on scientifically proposed mechanisms and not chosen

for statistical convenience.

While chapter III presents an instance of data analysis via over-dispersed contin-
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uous time Markov counting processes, chapter IV presents a more complete theory of

these Markov counting processes. In particular, the relationship between continuous

time Markov population processes with stochastic rates (such as the death processes

of chapter III) and over-dispersed continuous time Markov counting processes is stud-

ied. The emphasis in this chapter is on the analytic properties and it includes the

derivation of moments, infinitesimal moments and infinitesimal generators of some

basic processes. In this more general framework, processes with unbounded states

are dealt with and the limit of discrete time Markov processes is considered for

constructing over-dispersed continuous time Markov counting processes.



CHAPTER II

Maximum Likelihood Via Iterated Filtering

2.1 Introduction

Nonlinear stochastic dynamical systems are widely used to model systems across

the sciences and engineering. Such models are natural to formulate and can be

analyzed mathematically and numerically. However, difficulties associated with in-

ference from time-series data about unknown parameters in these models have been

a constraint on their application. This chapter presents a new method that makes

maximum likelihood estimation feasible for partially-observed nonlinear stochastic

dynamical systems (also known as state-space models) where this was not previously

the case. Sec. 2.2 describes the method, which is based on a sequence of filtering

operations that are shown to converge to a maximum likelihood parameter estimate.

We make use of recent advances in nonlinear filtering in the implementation of the

algorithm. We apply the method to the study of cholera in Bangladesh in Sec. 2.4.2.

We construct confidence intervals, perform residual analysis, and apply other diag-

nostics. The analysis, based upon a model capturing the intrinsic nonlinear dynamics

of the system, reveals some effects overlooked by previous studies.

State space models have applications in many areas, including signal processing

(Anderson and Moore, 1979), economics (Shephard and Pitt, 1997), cell biology (Ion-

6
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ides et al., 2004), meteorology (Houtekamer and Mitchell, 2001), ecology (Thomas

et al., 2005), neuroscience (Brown et al., 1998), and various others (Shumway and

Stoffer, 2000; Durbin and Koopman, 2001; Doucet et al., 2001). Formally, a state

space model is a partially observed Markov process. Real world phenomena are often

well modeled as Markov processes, constructed according to physical, chemical, or

economic principles, about which one can make only noisy or incomplete observa-

tions.

It has been noted repeatedly that estimating parameters for state space models

is simplest if the parameters are time-varying random variables that can be included

in the state space (Anderson and Moore, 1979; Kitagawa, 1998). Estimation of

parameters then becomes a matter of reconstructing unobserved random variables,

and inference may proceed using standard techniques for filtering and smoothing.

This approach is of limited value if the true parameters are thought not to vary with

time, or to vary as a function of measured covariates rather than as random variables.

A major motivation for this work has been the observation that the particle filter

(Gordon et al., 1993; Kitagawa, 1998; Doucet et al., 2001; Liu, 2001; Arulampalam

et al., 2002) is a conceptually simple, flexible, and effective filtering technique for

which the only major drawback was the lack of a readily-applicable technique for

likelihood maximization in the case of time-constant parameters. The contribution

of this chapter is to show how time-varying-parameter algorithms may be harnessed

for use in inference in the fixed-parameter case. The key result, Theorem II.1, shows

that an appropriate limit of time-varying-parameter models can be used to locate

a maximum of the fixed-parameter likelihood. This result is then used as the basis

for a procedure for finding maximum likelihood estimates for previously intractable

models.
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We use the method to further our understanding of the mechanisms of cholera

transmission. Cholera is a disease endemic to India and Bangladesh which has re-

cently become reestablished in Africa, south Asia and South America (Sack et al.,

2004). It is highly contagious, and the direct fecal-oral route of transmission is clearly

important during epidemics. A slower transmission pathway, via an environmental

reservoir of the pathogen, Vibrio cholerae, is also believed to be important, partic-

ularly in the initial phases of epidemics (Zo et al., 2002). The growth rate of V.

cholerae depends strongly on water temperature and salinity, which can fluctuate

markedly on both seasonal and interannual timescales (Huq et al., 1984; Pascual

et al., 2002). Important climatic fluctuations, such as the El Niño-Southern Oscilla-

tion (ENSO), affect temperature and salinity, and operate on a timescale comparable

to that associated with loss of immunity (Pascual et al., 2000; Rodó et al., 2002).

It is therefore critical to disentangle the intrinsic dynamics associated with cholera

transmission through the two main pathways and with loss of immunity, from the

extrinsic forcing associated with climatic fluctuations (Koelle and Pascual, 2004).

We consider a model for cholera dynamics that is a continuous-time version of a

discrete-time model considered by Koelle and Pascual (2004), who in turn followed

a discrete-time model for measles (Finkenstädt and Grenfell, 2000). Discrete-time

models have some features that are accidents of the discretization; working in contin-

uous time avoids this, and also allows inclusion of covariates measured at disparate

time intervals. Maximum likelihood inference has various convenient asymptotic

properties: it is efficient, standard errors are available based on the Hessian ma-

trix, and likelihood can be compared between different models. The transformation-

invariance of maximum likelihood estimates allows modeling at a natural scale. Non-

likelihood approaches typically require a variance-stabilizing transformation of the
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data, which may confuse scientific interpretation of results. Some previous likelihood-

based methods have been proposed (Liu and West, 2001; Hürzeler and Künsch,

2001; Cappé et al., 2005; Clark and Bjornstad, 2004). However, the fact that non-

likelihood-based statistical criteria such as least square prediction error (Turchin,

2003) or gradient matching (Ellner et al., 2002) are commonly applied to ecological

models of the sort considered here is evidence that likelihood-based methods con-

tinue to be difficult to apply. Recent advances in nonlinear analysis have brought to

the fore the need for improved statistical methods for dealing with continuous-time

models with measurement error and covariates (Bjornstad and Grenfell, 2001).

2.2 Maximum likelihood via iterated filtering

A state space model consists of an unobserved Markov process, xt, called the

state process, and an observation process, yt. Here, xt takes values in the state space

Rdx , and yt in the observation space Rdy . The processes depend on an (unknown)

vector of parameters, θ, in Rdθ . Observations take place at discrete times, t =

1, . . . , T ; we write the vector of concatenated observations as y1:T = (y1, . . . , yT ); y1:0

is defined to be the empty vector. A model is completely specified by the conditional

transition density f(xt|xt−1, θ), the conditional distribution of the observation process

f(yt|y1:t−1, x1:t, θ) = f(yt|xt, θ), and the initial density f(x0|θ). Throughout, we

adopt the convention that f(· | ·) is a generic density specified by its arguments, and

we assume that all densities exist. The likelihood is given by the identity f(y1:T |θ) =∏T
t=1 f(yt|y1:t−1, θ). The state process, xt, may be defined in continuous or discrete

time but only its distribution at the discrete times t = 1, . . . , T directly affects the

likelihood. The challenge is to find the maximum of the likelihood as a function of

θ.
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The basic idea of our method is to replace the original model with a closely related

model, in which the time-constant parameter θ is replaced by a time-varying process

θt. The densities f(xt|xt−1, θ), f(yt|xt, θ) and f(x0|θ) of the time-constant model are

replaced by f(xt|xt−1, θt−1), f(yt|xt, θt) and f(x0|θ0). The process θt is taken to be a

random walk in Rdθ . Our main algorithm (Procedure 1 below) and its justification

(Theorem II.1 in Sec. 2.6) depend only on the mean and variance of the random

walk, which are defined to be

(2.1)
E[θt | θt−1] = θt−1 Var(θt | θt−1) = σ2Σ

E[θ0] = θ Var(θ0) = σ2c2Σ

In practice, we use the normal distributions specified by Eq. 2.1. Here, σ and c are

scalar quantities and the new model in Eq. 2.1 is identical to the fixed-parameter

model when σ = 0. The objective is to obtain an estimate of θ by taking the limit

as σ → 0. Σ is typically a diagonal matrix giving the respective scales of each

component of θ; more generally, it can be taken to be an arbitrary positive-definite

symmetric matrix. Procedure 1 below is standard to implement, as the compu-

tationally challenging step 2(i) requires using only well-studied filtering techniques

(Anderson and Moore, 1979; Arulampalam et al., 2002) to calculate

(2.2)
θ̂t = θ̂t(θ, σ) = E[θt|y1:t]

Vt = Vt(θ, σ) = Var(θt|y1:t−1)

for t = 1, . . . , T . We call this procedure MIF for Maximum likelihood via Iterated

Filtering.

Procedure 1. (MIF)

1. Select starting values θ̂(1), a discount factor 0 < α < 1, an initial variance

multiplier c2, and the number of iterations N .
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2. For n in 1, . . . , N

(i) Set σn = αn−1. For t = 1, . . . , T , evaluate θ̂
(n)
t = θ̂t(θ̂

(n), σn) and Vt,n =

Vt(θ̂
(n), σn).

(ii) Set θ̂(n+1) = θ̂(n) + V1,n

∑T
t=1 V

−1
t,n (θ̂

(n)
t − θ̂

(n)
t−1), where θ̂

(n)
0 = θ̂(n).

3. Take θ̂(N+1) to be a maximum likelihood estimate of the parameter θ for the fixed

parameter model.

The quantities θ̂
(n)
t can be considered local estimates of θ, in the sense that they

depend most heavily on the observations around time t. The updated estimate is a

weighted average of the values θ̂
(n)
t , as explained in Sec. 2.6 and Sec. 2.7.9. A weighted

average of local estimates is a heuristically reasonable estimate for the fixed “global”

parameter θ. In addition, taking a weighted average and iterating to find a fixed point

obviates the need for a separate optimization algorithm. Theorem II.1 asserts that

(under suitable conditions) the weights in Procedure 1 result in a maximum likelihood

estimate in the limit as σ → 0. Taking a weighted average is not so desirable when

the information about a parameter is concentrated in a few observations: this occurs

for initial value parameters, and modifications to Procedure 1 are appropriate for

these parameters (Sec. 2.7.5).

Procedure 1, with step 2(i) implemented using a sequential Monte Carlo method

(see Arulampalam et al. (2002) and Sec. 2.7.1), permits flexible modeling in a wide

variety of situations. The methodology requires only that Monte Carlo samples can

be drawn from f(xt|xt−1), even if only at considerable computational expense, and

that f(yt|xt, θ) can be numerically evaluated. We demonstrate this below with an

analysis of cholera data, using a mechanistic continuous-time model. Sequential

Monte Carlo is also known as “particle filtering” since each Monte Carlo realization

can be viewed as a particle’s trajectory through the state space. Each particle filter-
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Figure 2.1: Diagrammatic representation of a model for cholera population dynamics. Each individ-
ual is in S (susceptible), I (infected) or one of the classes Rj (recovered). Compartments
B, C, and D allow for birth, cholera mortality, and natural death, respectively. The
arrows show rates, interpreted as described in the text.

ing step prunes particles in a way analogous to Darwinian selection. Particle filtering

for fixed parameters, like natural selection without mutation, is rather ineffective.

This explains heuristically why Procedure 1 is necessary to permit inference for fixed

parameters via particle filtering. However, Procedure 1 and the theory of Sec. 2.6

apply more generally, and could be implemented using any suitable filter.

2.3 Example: a compartment model for cholera

In a standard epidemiological approach (Kermack and McKendrick, 1927; Bartlett,

1956), the population is divided into disease status classes. Here, we consider classes

labeled susceptible (S), infected and infectious (I) and recovered (R1, . . . , Rk). The

k recovery classes allow flexibility in the distribution of immune periods, a critical

component of cholera modeling (Koelle and Pascual, 2004). Three additional classes

B, C and D allow for birth, cholera mortality, and death from other causes respec-

tively. St denotes the number of individuals in S at time t, with similar notation

for other classes. We write NSI
t for the integer-valued process (or its real-valued

approximation) counting transitions from S to I, with corresponding definitions of

NBS
t , NSD

t , etc. The model is shown diagrammatically in Fig. 2.1. To interpret the
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diagram in Fig. 2.1 as a set of coupled stochastic equations, we write

dSt = dNBS
t − dNSI

t − dNSD
t + dNRkS

t

dIt = dNSI
t − dN IR1

t − dN IC
t − dN ID

t

dR1
t = dN IR1

t − dNR1R2

t − dNR1D
t

...

dRk
t = dNRk−1Rk

t − dNRkS
t − dNRkD

t

The population size Pt is presumed known, interpolated from census data. Trans-

mission is stochastic, driven by Gaussian white noise:

dNSI
t = λtSt dt+ ε(It/Pt)St dWt(2.3)

λt = βtIt/Pt + ω

In Eq. 2.3, we ignore stochastic effects at a demographic scale (infinitesimal variance

proportional to St). We model the remaining transitions deterministically:

(2.4)

dN IR1

t = γIt dt; dNRj−1Rj

t = rkRj−1
t dt;

dNRkS
t = rkRk

t dt; dNSD
t = mSt dt;

dN ID
t = mIt dt; dNRjD

t = mRj
t dt;

dN IC
t = mcIt dt; dNBS

t = dPt +mPt dt.

Time is measured in months. Seasonality of transmission is modeled by log(βt) =∑5
k=0 bksk(t), where {sk(t)} is a periodic cubic B-spline basis (Powell, 1981) defined

so that sk(t) has a maximum at t = 2k and normalized so that
∑5

k=0 sk(t) = 1;

ε is an environmental stochasticity parameter (resulting in infinitesimal variance

proportional to S2
t ); ω corresponds to a non-human reservoir of disease; βtIt/Pt is

human-to-human transmission; 1/γ gives mean time to recovery; 1/r and 1/(kr2) are

respectively the mean and variance of the immune period; 1/m is the life expectancy
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Figure 2.2: (A) One realization of the model in Sec. 2.3 using the parameter values in Table 2.1.
(B) Historic monthly cholera mortality data for Dhaka, Bangladesh. (C) Southern
oscillation index (SOI), smoothed with local quadratic regression (Cleveland et al.,
1993) using a bandwidth parameter (span) of 0.12.

excluding cholera mortality, and mc is the mortality rate for infected individuals.

The equation for dNBS
t in Eq. 2.4 is based on cholera mortality being a negligible

proportion of total mortality. The stochastic system was solved numerically using the

Euler-Maruyama method (Kloeden and Platen, 1999) with time increments of 1/20

month. The data on observed mortality were modeled as yt ∼ N [Ct −Ct−1, τ
2(Ct −

Ct−1)
2], where Ct = N IC

t . In the terminology of Sec. 2.2, the state process xt is a

vector representing counts in each compartment.

2.4 Results

2.4.1 Testing the method using simulated data

This section provides evidence that the MIF methodology successfully maximizes

the likelihood. Likelihood maximization is a key tool not just for point estimation,
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θ∗ θ̂ SE(θ̂)
b0 −0.58 −0.50 0.13
b1 4.73 4.66 0.15
b2 −5.76 −5.58 0.42
b3 2.37 2.30 0.14
b4 1.69 1.77 0.08
b5 2.56 2.47 0.09

ω × 104 1.76 1.81 0.26
τ 0.25 0.26 0.01
ε 0.80 0.78 0.06

1/γ 0.75
mc 0.046
1/m 600
1/r 120
k 3
` −3690.4 −3687.5

Table 2.1: Parameters used for the simulation in Fig. 2.2A together with estimated parameters
and their SEs where applicable. Also shown are log likelihoods, `, evaluated with a
Monte Carlo standard deviation of 0.1.

via the maximum likelihood estimate (MLE), but also for profile likelihood calcula-

tion, parametric bootstrap confidence intervals, and likelihood ratio hypothesis tests

(Barndorff-Nielsen and Cox, 1994).

We present MIF on a simulated dataset (Fig. 2.2A), with parameter vector θ∗

given in Table 2.1, based on data analysis and/or scientifically plausible values. Vi-

sually, the simulations are comparable to the data in Fig. 2.2B. Table 2.1 also contains

the resulting estimated parameter vector θ̂ from averaging 4 MIFs, together with the

maximized likelihood. A preliminary indicator that MIF has successfully maximized

the likelihood is that `(θ̂) > `(θ∗). Further evidence that MIF is closely approxi-

mating the MLE comes from convergence plots and sliced likelihoods (described in

Sec. 2.7.3), shown in Fig. 2.3. The SEs in Table 2.1 were calculated via the sliced

likelihoods, as described in Sec. 2.7.3 and elaborated in Sec. 2.7.8. Since inference on

initial values is not of primary relevance here, we do not present standard errors for

their estimates. Were they required, we would recommend profile likelihood methods

for uncertainty estimates of initial values. There is no asymptotic justification of the
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quadratic approximation for initial value parameters, since the information in the

data about such parameters is typically concentrated in a few early time points.

2.4.2 Applying the method to cholera mortality data

We use the data in Fig. 2.2B and the model in Sec. 2.3 to address two questions:

the strength of the environmental reservoir effect, and the influence of ENSO on

cholera dynamics. The reader is referred to Rodó et al. (2002) and Koelle and

Pascual (2004) for more extended analyses of these data. A full investigation of
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the likelihood function is challenging, due to multiple local maxima and poorly-

identified combinations of parameters. Here, these problems are reduced by treating

two parameters (m and r) as known. A value k = 3 was chosen based on preliminary

analysis. The remaining 15 parameters (the first eleven parameters in Table 2.1 and

the initial values S0, I0, R
1
0, R

2
0, R

3
0, constrained to sum to P0) were estimated. There

is scope for future work by relaxing these assumptions.

For cholera, the difference between human-to-human transmission and transmis-

sion via the environment is not clear-cut. In the model, the environmental reservoir

contributes a component to the force of infection which is independent of the num-

ber of infected individuals. Previous data analysis for cholera using a mechanistic

model (Koelle and Pascual, 2004) was unable to include an environmental reservoir

since it would have disrupted the log-linearity required by the methodology. Fig. 2.4

shows the profile likelihood of ω and resulting confidence interval, calculated using

MIF. This translates to between 29 and 83 infections per million inhabitants per

month from the environmental reservoir, since the model implies a mean suscepti-

ble fraction of 38%. At least in the context of this model, there is clear evidence

of an environmental reservoir effect (likelihood ratio test, p < 0.001). Although

our assumption that environmental transmission has no seasonality is less than fully

reasonable, this mode of transmission is only expected to play a major role when

cholera incidence is low, typically during and after the summer monsoon season (see

Fig. 2.5). Human-to-human transmission, by contrast, predominates during cholera

epidemics.

Links between cholera incidence and ENSO have been identified (Pascual et al.,

2000; Rodó et al., 2002). Such large-scale climatic phenomena may be the best hope

for forecasting disease burden (Thomson et al., 2006). We looked for a relationship
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between ENSO and the prediction residuals (defined in Sec. 2.7.3). Prediction resid-

uals are robust to the exact form of the model—they depend only on the data and the

predicted values, and all reasonable models should usually make similar predictions.

The low-frequency component of the southern oscillation index (SOI), graphed in

Fig. 2.2C, is a measure of ENSO available during the period 1891–1940 (Rodó et al.,

2002); low values of SOI correspond to El Niño events. Rodó et al. (2002) showed

that low SOI correlates with increased cholera cases during the period 1980–2001 but

found only weak evidence of a link with cholera deaths during the 1893–1940 period.

Simple correlation analysis of standardized residuals or mortality with SOI reveals no

clear relationship. Breaking down by month, we find that SOI is strongly correlated

with the standardized residuals for August and September (in each case, r = −0.36,

p = 0.005), at which time cholera mortality historically began its seasonal increase

following the monsoon (see Fig. 2.5). This suggests a narrow window of opportunity

within which ENSO can act. This is consistent with the mechanism conjectured by

Rodó et al. (2002) whereby the warmer surface temperatures associated with an El

Niño event lead to increased human contact with the environmental reservoir and

greater pathogen growth rates in the reservoir. Mortality itself did not correlate with

SOI in August (r = −0.035, p = 0.41). Some weak evidence of negative correlation

between SOI and mortality appeared in September (r = −0.22, p = 0.063). Ear-

lier work (Koelle and Pascual, 2004), based on a discrete-time model and with no

allowance for an environmental reservoir, failed to resolve this connection between

ENSO and cholera mortality in the historical period: to find clear evidence of the

external climatic forcing of the system, it is essential to use a model capable of

capturing the intrinsic dynamics of disease transmission.
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2.5 Discussion

Procedure 1 is dependent on the viability of solving the filtering problem, i.e.,

calculating θ̂t and Vt in Eq. 2.2. This is a strength of the methodology, in that the

filtering problem has been extensively studied. Filtering does not require stationarity

of the stochastic dynamical system, enabling covariates (such as Pt in Sec. 2.3) to be

included in a mechanistically plausible way. Missing observations and data collected

at irregular time intervals also pose no obstacle for filtering methods. Filtering can

be challenging, particularly in nonlinear systems with a high-dimensional state space

(dx large). One example is data assimilation for atmospheric and oceanographic

science, where observations (satellites, weather stations, etc.) are used to inform

large spatio-temporal simulation models: approximate filtering methods developed

for such situations (Houtekamer and Mitchell, 2001) could be used to apply the

methods of this chapter.

The goal of maximum likelihood estimation for partially observed data is remi-

niscent of the Expectation-Maximization (EM) algorithm (Dempster et al., 1977),

and indeed Monte Carlo EM methods have been applied to nonlinear state space

models (Cappé et al., 2005). The Monte Carlo EM algorithm, and other standard

Monte Carlo Markov Chain methods, cannot be used for inference on the environ-

mental noise parameter ε for the model of Sec. 2.3, since these methods rely upon

different sample paths of the unobserved process xt having densities with respect to

a common measure (Roberts and Stramer, 2001). Diffusion processes, such as the

solution to the system of stochastic differential equations in Sec. 2.3, are mutually

singular for different values of the infinitesimal variance. Modeling using diffusion

processes (as in Sec. 2.3) is by no means necessary for the application of Procedure 1,
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but continuous-time models for large discrete populations are well approximated by

diffusion processes, so a method that can handle diffusion processes may be expected

to be more reliable for large discrete populations.

Procedure 1 is well suited for maximizing numerically estimated likelihoods for

complex models largely because it requires neither analytic derivatives, which may

not be available, nor numerical derivatives, which may be unstable. The iterated

filtering effectively produces estimates of the derivatives smoothed at each iteration

over the scale at which the likelihood is currently being investigated. Although

general stochastic optimization techniques do exist for maximizing functions mea-

sured with error (Spall, 2003), these methods are inefficient in terms of the number

of function evaluations required (Wu, 1985). General stochastic optimization tech-

niques have not to our knowledge been successfully applied to examples comparable

to that presented here.

Each iteration of MIF requires similar computational effort to one evaluation of

the likelihood function. The results in Fig. 2.3 demonstrate the ability of Proce-

dure 1 to optimize a function of 13 variables using 50 function evaluations, with

Monte Carlo measurement error and without knowledge of derivatives. This feat is

only possible because Procedure 1 takes advantage of the state-space structure of

the model; however, this structure is general enough to cover relevant dynamical

models across a broad range of disciplines. The EM algorithm is similarly “only”

an optimization trick, but in practice it has led to the consideration of models that

would be otherwise intractable. The computational efficiency of Procedure 1 is es-

sential for the model in Sec. 2.3, where Monte Carlo function evaluations each take

approximately 15 min on a desktop computer.

Implementation of Procedure 1 using particle filtering conveniently requires little
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more than being able to simulate paths from the unobserved dynamical system. The

new methodology is therefore readily adaptable to modifications of the model, allow-

ing relatively rapid cycles of model development, model fitting, diagnostic analysis

and model improvement.

2.6 Theoretical basis for MIF

Recall the notation of Sec. 2.2, and specifically the definitions in Eqs. 2.1 & 2.2.

Theorem II.1. Assuming conditions (R1–R3) below,

(2.5) lim
σ→0

T∑
t=1

V −1
t (θ̂t − θ̂t−1) = ∇ log f(y1:T |θ, σ=0)

where ∇g is defined by [∇g]i = ∂g/∂θi and θ̂0 = θ. Furthermore, for a sequence

σn → 0, define θ̂(n) recursively by

(2.6) θ̂(n+1) = θ̂(n) + V1,n

T∑
t=1

V −1
t,n (θ̂

(n)
t − θ̂

(n)
t−1)

where θ̂
(n)
t = θ̂t(θ̂

(n), σn) and Vt,n = Vt(θ̂
(n), σn). If there is a θ̂ with |θ̂(n)− θ̂|/σ2

n → 0

then ∇ log f(y1:T |θ = θ̂, σ=0) = 0.

Theorem II.1 asserts that (for sufficiently small σn) Procedure 1 iteratively up-

dates the parameter estimate in the direction of increasing likelihood, with a fixed

point at a local maximum of the likelihood. Step 2(ii) of Procedure 1 can be rewritten

as θ̂(n+1) = V1,n{
∑T−1

t=1 (V −1
t,n − V −1

t+1,n)θ̂
(n)
t + (V −1

T,n)θ̂
(n)
T }. This makes θ̂(n+1) a weighted

average, in the sense that V1{
∑T−1

t=1 (V −1
t − V −1

t+1) + V −1
T } = Idθ

where Idθ
is the

dθ × dθ identity matrix. The weights are necessarily positive for sufficiently small σn

(Sec. 2.7.9).

The exponentially decaying σn in step 2(i) of Procedure 1 is justified by empir-

ical demonstration, provided by the simulation study in Sec. 2.4.1. Slower decay,
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σ2
n = n−β with 0 < β < 1, can give sufficient conditions for a Monte Carlo imple-

mentation of Procedure 1 to converge successfully (Sec. 2.7.7). In our experience,

exponential decay yields equivalent results, considerably more rapidly. Analogously,

simulated annealing provides an example of a widely used stochastic search algorithm

where a geometric “cooling schedule” is often more effective than slower, theoretically

motivated schedules (Press et al., 2002).

In the proof of Theorem II.1, we define ft(ψ) = f(yt|y1:t−1, θt=ψ). The dependence

on σ may be made explicit by writing ft(ψ) = ft(ψ, σ). We assume that y1:T , c

and Σ are fixed: for example, the constant B in (R1) may depend on y1:t. We

use the Euclidean norm for vectors and the corresponding norm for matrices, i.e.,

|M | = sup|u|≤1 |u′Mu|, where u′ denotes the transpose of u. We assume the following

regularity conditions.

(R1) The Hessian matrix is bounded, i.e., there are constants B and σ0 such that,

for all σ < σ0 and all θt ∈ Rdθ , |∇2ft(θt, σ)| < B.

(R2) E[|θt − θ̂t−1|2 | y1:t−1] = O(σ2).

(R3) E[|θt − θ̂t−1|3 | y1:t−1] = o(σ2).

(R1) is a global bound over θt ∈ Rdθ , comparable to global bounds used to show

the consistency and asymptotic normality of the MLE (Cramér, 1946; Jensen and

Petersen, 1999). It can break down, for example, when the likelihood is unbounded.

This problem can be avoided by reparameterizing to keep the model away from such

singularities, as is common practice in mixture modeling (McLachlan and Peel, 2000).

(R2–R3) require that a new observation cannot often have a large amount of new

information about θ. For example, they are satisfied if θ0:t, x1:t and y1:t are jointly

Gaussian. We conjecture that they are satisfied whenever the state space model is

smoothly parametrized and the random walk θt does not have long tails.
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Proof of Theorem II.1. Suppose inductively that |Vt| = O(σ2) and |θ̂t−1−θ| = O(σ2).

This holds for t = 1 by construction. Bayes’ formula gives

f(θt|y1:t)

f(θt|y1:t−1)
=

ft(θt)∫
ft(θt)f(θt|y1:t−1) dθt

(2.7)

=
ft(θ̂t−1) + (θt − θ̂t−1)

′∇ft(θ̂t−1) +Rt

ft(θ̂t−1) +O(σ2)
(2.8)

= {1 + (θt − θ̂t−1)
′∇ log ft(θ̂t−1) +Rt/ft(θ̂t−1)}

× (1 +O(σ2))(2.9)

The numerator in Eq. 2.8 comes from a Taylor series expansion of ft(θ̂t), and (R1)

implies |Rt| ≤ B|θt − θ̂t−1|2/2. The denominator then follows from applying this

expansion to the integral in Eq. 2.7, invoking (R2), and observing that Eq. 2.1

implies E[θt|y1:t−1] = θ̂t−1. We now calculate

θ̂t − θ̂t−1 = E[θt − θ̂t−1|y1:t]

=

∫
(θt − θ̂t−1)f(θt|y1:t) dθt(2.10)

= Vt∇ log ft(θ̂t−1) + o(σ2)(2.11)

= Vt∇ log ft(θ, σ=0) + o(σ2).(2.12)

Eq. 2.11 follows from Eq. 2.10 using Eq. 2.9 and (R3). Eq. 2.12 follows from Eq. 2.11

using the induction assumptions on θ̂t−1 and Vt; Eq. 2.12 then justifies this assump-

tion for θ̂t. A similar argument gives

Vt+1 = Var(θt+1|y1:t) = Var(θt|y1:t) + σ2Σ

= E[(θt − θ̂t)(θt − θ̂t)
′|y1:t] + σ2Σ

= E[(θt − θ̂t−1)(θt − θ̂t−1)
′|y1:t]

− (θ̂t − θ̂t−1)(θ̂t − θ̂t−1)
′ + σ2Σ(2.13)

= Vt + σ2Σ + o(σ2),(2.14)
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where Eq. 2.14 follows from Eq. 2.13 via Eqs. 2.9 and 2.12 and the induction hy-

pothesis on Vt. Eq. 2.14 in turn justifies this hypothesis. Summing Eq. 2.12 over t

produces

T∑
t=1

V −1
t (θ̂t − θ̂t−1) =

T∑
t=1

∇ log ft(θ, σ=0) + o(1)

which leads to Eq. 2.5. To see the second part of the theorem, note that Eq. 2.6 and

the requirement that |θ̂(n) − θ̂|/σ2
n → 0 imply that

T∑
t=1

V −1
t (θ̂(n), σn)

(
θ̂t(θ̂

(n), σn)− θ̂t−1(θ̂
(n), σn)

)
= o(1).

Continuity then gives

lim
n

T∑
t=1

V −1
t (θ̂, σn)

(
θ̂t(θ̂, σn)− θ̂t−1(θ̂, σn)

)
= 0,

which, together with Eq. 2.5, yields the required result.

2.7 Implementing MIF

2.7.1 A basic SMC algorithm

Sequential Monte Carlo (SMC), also known as the “particle filter”, is a numerical

method for filtering and prediction. SMC has aroused considerable practical and

theoretical interest since its development in the 1990s (Gordon et al., 1993; Kitagawa,

1998; Doucet et al., 2001; Liu, 2001; Arulampalam et al., 2002). Here we present a

basic version, which is sufficient for the purposes of this chapter. A Monte Carlo filter

draws a sample from f(xt|y1:t, θ), and similarly one-step prediction involves drawing

from f(xt+1|y1:t, θ). SMC is based on the identities

f(xt|y1:t, θ) =
f(xt|y1:t−1, θ)f(yt|xt, θ)∫
f(xt|y1:t−1, θ)f(yt|xt, θ)dxt

f(xt+1|y1:t, θ) =

∫
f(xt+1|xt, θ)f(xt|y1:t, θ)dxt
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which give rise to the following algorithm:

1. Suppose recursively that XF
t,1, . . . , X

F
t,J have (approximately) a marginal density

of f(xt|y1:t, θ).

2. Make XP
t+1,j a draw from f(xt+1|xt=X

F
t,j, θ). Then XP

t+1,j has (approximately)

a marginal density of f(xt+1|y1:t, θ).

3. Now drawXF
t+1,j from {XP

t+1,k} with probabilities proportional to the resampling

weights wk = f(yt|xt=X
P
t,k, θ). XF

t+1,j has (approximately) a marginal density

of f(xt+1|y1:t+1, θ). Independent draws can be used, but we use a more efficient

systematic scheme (Algorithm 2 of Arulampalam et al., 2002).

4. The conditional log likelihood at time t, defined as `t(θ) = log f(yt|y1:t−1, θ), is

estimated by log
(
J−1

∑J
j=1wj

)
.

The log likelihood is calculated via the identity `(θ) = log f(y1:T |θ) =
∑T

t=1 `t(θ).

When applying Procedure 1, the time varying parameter θt is included in the

state space, so xt is replaced by (xt, θt). θ̂t and Vt are calculated as the sample mean

over the filter particles XF
t,j and the sample variance over the prediction particles XP

t,j

respectively.

We used J = 104 for MIF in Table 2.1 and J = 3× 104 for MIF in Fig. 2.4.

2.7.2 Numerical stability

If the number J of particles is not sufficiently large, the conditional distribution

f(xt|y1:t) may not be well sampled by {XF
t,j, j = 1, . . . , J}. Put another way, there

may be few (or zero) particles XP
t,j consistent with the observation yt. The few con-

sistent particles get relatively large resampling weights and dominate the evolution

of the state process — an effect known as particle depletion (Arulampalam et al.,
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2002). In the context of MIF, the particle filter estimates of θ̂t and Vt (say, θ̂e
t and

V e
t ) then become poor. Procedure 1 is more stable if [Vt]ij is approximated by 0 for

i 6= j and by [V e
t ]ii for i = j. This forces Vt away from singularity. Supposing Σ is

diagonal, Eq. 2.14 reassures us that Vt/σ
2 is asymptotically diagonal as σ → 0, so the

approximation is justified by theory for small σ and by practical stability concerns

for large σ. For successful maximum likelihood estimation, depletion should become

a negligible issue as θ approaches θ̂, and that matches what we found for the example

of Sec. 2.3. When tackling problems that stretch available computational capacity,

particle depletion can still be common in the early iterations of MIF, where θ may

still be far from the MLE.

Even more algorithmic stability can be achieved by using the updating rule

(2.15) θ̂(n+1) =
1

T

T∑
t=1

θ̂
(n)
t .

Although Eq. 2.15 is attractively simple and robust to particle depletion, it does not

have the theoretical property of producing a sequence of estimators converging to

the MLE. We found empirically that employing Eq. 2.15 on the first 5 iterations of

MIF added stability without adversely affecting the final estimator.

2.7.3 Heuristics

Heuristically, α can be thought of as a “cooling” parameter, analogous to that used

in simulated annealing (Spall, 2003, Chapter 8). If α is too small, the convergence

will be “quenched” and fail to locate a maximum. If α is too large, the algorithm

will fail to converge in a reasonable time interval. A value of α = 0.95 was used in

Sec. 2.4.

Supposing that θi has a plausible range [θlo
i , θ

hi
i ] based on prior knowledge, then

each particle is capable of exploring this range in early iterations of MIF (uncon-
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ditional on the data) provided
√

ΣiiT is on the same scale as θhi
i − θlo

i . We use

Σ
1/2
ii = (θhi

i − θlo
i )/2

√
T with Σij = 0 for i 6= j.

Although the asymptotic arguments do not depend on the particular value of

the dimensionless constant c, looking at convergence plots led us to take c2 = 20

in Sec. 2.4. Large values c2 ≈ 40 resulted in increased algorithmic instability, as

occasional large decreases in the prediction variance Vt resulted in large weights in

Procedure 1 step 2(ii). Small values c2 ≈ 10 were diagnosed to result in appreciably

slower convergence. We found it useful, in choosing c, to check that [Vt]ii plotted

against t was fairly stable. In principle, a different value of c could be used for each

dimension of θ; for our example, a single choice of c was found to be adequate.

If the dimension of θ is even moderately large (say, dθ ≈ 10) it can be challenging

to investigate the likelihood surface, to check that a good local maximum has been

found, and to get an idea of the standard deviations and covariance of the estima-

tors. A useful diagnostic, the “sliced likelihood” (Fig. 2.3B), plots `(θ̂+ hδi) against

θ̂i + h, where δi is a vector of zeros with a one in the ith position. If θ̂ is located

at a local maximum of each sliced likelihood then θ̂ is a local maximum of `(θ),

supposing `(θ) is continuously differentiable. Computing sliced likelihoods requires

moderate computational effort, linear in the dimension of θ. A local quadratic fit is

made to the sliced log likelihood (as suggested by Ionides, 2005), because `(θ̂ + hδi)

is calculated with a Monte Carlo error. Calculating the sliced likelihood involves

evaluating log f(yt|y1:t−1, θ̂ + hδi) which can then be regressed against h to estimate

(∂/∂θi) log f(yt|y1:t−1, θ̂). These partial derivatives may then be used to estimate

the Fisher information (Barndorff-Nielsen and Cox, 1994, and Sec. 2.7.8) and cor-

responding standard errors (SEs). Profile likelihoods (Barndorff-Nielsen and Cox,

1994) can be calculated using MIF, but at considerably more computational expense
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than sliced likelihoods. SEs and profile likelihood confidence intervals, based on

asymptotic properties of MLEs, are particularly useful when alternate ways to find

standard errors, such as bootstrap simulation from the fitted model, are prohibitively

expensive to compute. Our experience, consistent with previous advice (McCullagh

and Nelder, 1989), is that SEs based on estimating Fisher information provide a

computationally frugal method to get a reasonable idea of the scale of uncertainty,

but profile likelihoods and associated likelihood based confidence intervals are more

appropriate for drawing careful inferences.

2.7.4 Diagnostics

Our main MIF diagnostic is to plot parameter estimates as a function of MIF

iteration; we call this a convergence plot. Convergence is indicated when the esti-

mates reach a single stable limit from various starting points. Convergence plots were

also used for simulations with a known true parameter, to validate the methodology.

The investigation of quantitative convergence measures might lead to more refined

implementations of Procedure 1.

As in regression, residual analysis is a key diagnostic tool for state space models.

The standardized prediction residuals are {ut(θ̂)} where θ̂ is the MLE and ut(θ) =

[Var(yt|y1:t−1, θ)]
−1/2(yt − E[yt|y1:t−1, θ]). Other residuals may be defined for state

space models (Durbin and Koopman, 2001), such as E[
∫ t

t−1
dWs|y1:T , θ̂] for the model

of Sec. 2.3. Prediction residuals have the property that, if the model is correctly

specified with true parameter vector θ∗, {ut(θ
∗)} is an uncorrelated sequence. This

has two useful consequences: it gives a direct diagnostic check of the model, i.e.,

{ut(θ̂)} should be approximately uncorrelated; it means that prediction residuals are

an (approximately) pre-whitened version of the observation process, which makes

them particularly suitable for using correlation techniques to look for relationships
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with other variables (Shumway and Stoffer, 2000), as demonstrated in Sec. 2.4.2.

The prediction residuals, ut(θ̂) = [Var(yt|y1:t−1, θ̂)]
−1/2(yt−E[yt|y1:t−1, θ̂]), can be

calculated via

E[yt|y1:t−1] ≈ 1

J

J∑
j=1

E[yt|xt = XP
t,j]

Var(yt|y1:t−1) = E[Var(yt|xt)|y1:t−1] + Var(E[yt|xt] | y1:t−1)

≈ 1

J

J∑
j=1

Var[yt|xt = XP
t,j] +

1

J − 1

J∑
j=1

(ŷt,j − ŷt,•) (ŷt,j − ŷt,•)
′

where ŷt,j = E[yt|xt = XP
t,j] and ŷt,• = (1/J)

∑J
j=1 ŷt,j.

2.7.5 Initial values

The property that Procedure 1 updates as a weighted average of local parameter

estimates is less appropriate when the information about a parameter is not spread

out across time. A good example of such a parameter is an initial value parameter

(IVP). Other situations where information about a parameter is concentrated in time,

such as modeling a structural break, can be treated in a similar way. We describe

θ as an IVP if f(x0) = f(x0|θ), but f(xt|xt−1) and f(yt|xt) do not depend on θ for

t > 0. As a particular case, if x0 is supposed to be fixed and unknown then one can

take θ = x0. There may not be any IVP in a model; for example, if x0 is drawn

from the stationary distribution of a time homogeneous Markov transition density

f(xt|xt−1, θ).

For IVPs, we develop Procedure 2 based on Lemma II.2. To maximize the likeli-

hood, we introduce a prior distribution f(θ) with prior variance Var(θ) = σ2Σ.

Lemma II.2. Let θ̂0 be the prior mode, i.e., θ̂0 = argmaxf(θ). Let θ̂T be the posterior

mode, i.e., θ̂T = argmaxf(θ|y1:T ). Then

f(y1:T |θ̂T ) ≥ f(y1:T |θ̂0).
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Proof.

f(y1:T |θ=θ̂T )

f(y1:T |θ=θ̂0)
=
f(θ=θ̂T |y1:T )

f(θ=θ̂0|y1:T )
× f(θ=θ̂0)

f(θ=θ̂T )
≥ 1

The inequality holds by the definition of θ̂0 and θ̂T , since both terms in the product

are at least one.

Procedure 2. (MIF for initial values)

1. Select starting values θ̂(1) and σ1, a discount factor 0 < α < 1, a fixed lag T0

and the number of iterations N .

2. For n in 1, . . . , N

(i) Evaluate θ̂
(n)
T0

using θ̂0 = θ̂(n) and σ = σ1α
n−1.

(ii) Set θ̂(n+1) = θ̂
(n)
T0

.

3. Take θ̂(N+1) to be an estimate of θ.

Approximating f(θ|y1:T ) by f(θ|y1:T0) in step 2(i) of Procedure 2 is a standard

method to facilitate nonlinear filtering, termed fixed lag smoothing (Anderson and

Moore, 1979). It is certainly necessary for a particle filter implementation. The fixed

lag smoothing approximation to f(θ|y1:T ) is only reliable when the information in

the data about θ is concentrated at small t values. Applying Procedure 2 to non-

IVP parameters with T0 = T is a direct way to attempt inference for time-constant

parameters. The difficulty of doing this in practice was exactly the motivation for de-

veloping Procedure 1. Procedure 2 is essentially an exhaustive search over a sequence

of increasingly refined IVP values. An advantage of this procedure is that it fits in

computationally with Procedure 1, allowing IVPs to be estimated simultaneously

with other parameters.
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2.7.6 Some recommendations for stochastic likelihood maximization

This section describes our approach to carrying out inference based on Proce-

dure 1. When investigating a likelihood surface, there is a trade-off between effort

spent on global searching and local searching. An effective way to investigate large-

scale properties of the likelihood, and simultaneously to check that the maximization

procedure is successful, is to initialize the maximization at a range of parameter val-

ues. This approach is formalized in Procedure 3, below:

Procedure 3. (Investigating the likelihood surface)

1. Pick K starting values (for example, by sampling each component of θ uni-

formly within an assigned plausible range) and apply Procedure 1 to get K pairs

{(θ̂k, `k)} of estimates and associated log likelihoods.

2. If there is a clear global maximum – i.e., there are many pairs (θk, `k) with

(maxj `j − `k) small and |θ̂argmaxj`j
− θ̂k| small – then take the MLE to be the

average of these global maximum estimates.

3. If there is not a clear global maximum – many pairs (θk, `k) have (maxj `j − `k)

small but |θ̂argmaxj`j
− θ̂k| not small – then some combination of the parameters is

poorly identifiable. Investigate this by plotting the components of {θ̂k} and cal-

culating correlations. Perhaps make extra assumptions to improve identifiability

and return to step 1.

Procedure 3 requires manual oversight. This is appropriate for diagnostic check-

ing of the maximization procedure and investigation of the global structure of the

likelihood. Manual intervention is not necessary for each maximization of a profile

likelihood or parametric bootstrap computation, since these require only local opti-

mization in the neighborhood of the MLE (which is also the true parameter vector
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for bootstrap simulations). The only situation where local searches would be in-

appropriate for profile likelihood or bootstrap computations arise when the global

likelihood has two (or more) separated modes of almost equal likelihood. These

modes should be identified by Procedure 3 and require local maximization about

each mode. Procedure 1 can be adapted for local maximization by decreasing α, c

and Σ. This also demands a smaller value of N , the number of iterations, which is

helpful for implementing these computationally intensive finite sample procedures.

One subtlety in Procedure 3 is the use of the average in step 2. In our applications,

the Monte Carlo error in evaluating the likelihood is typically large compared to the

actual difference in the likelihood between MIF estimates that have converged to the

same mode. This occurs because MIF seeks the maximum by averaging Monte Carlo

error over many iterations. Thus, we chose to average MIF estimates rather than to

take the one with the highest evaluated likelihood.

To implement step 2 of Procedure 3 one must determine what is meant by “small”.

As this procedure is intended to be used on a broad variety of models, we think

automation is premature. A general observation is that “small” differences in the

likelihood are of the order of one unit of log likelihood.

Some simple methods are available to check that the likelihood is being maxi-

mized effectively on simulated data, with a known parameter vector θ∗. Setting θ̂ =

arg max `(θ), an asymptotic result for regular parametric models is that 2(`(θ̂)−`(θ∗))

has approximately the distribution of χ2(dθ), a chi-squared random variable on dθ de-

grees of freedom (Barndorff-Nielsen and Cox, 1994). Thus, beyond the basic property

that `(θ̂) ≥ `(θ∗), one can expect `(θ̂)− `(θ∗) ≈ dθ/2. If estimates of the maximized

log likelihood compared with the likelihood at θ∗ are not unusual for (1/2)χ2(dθ), we

view this as some evidence for successful maximization. The sliced likelihood plots
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described in Sec. 2.7.3 give the formal demonstration of successful maximization, but

require extra computation.

2.7.7 Sufficient conditions for convergence of iterated filtering

Theorem II.3 provides a complementary result to Theorem II.1, giving sufficient

conditions on the sequence σn → 0 for Procedure 1 to convergence successfully.

Although stated as a global result, Theorem II.3 implies corresponding local behavior

that is more relevant in practice.

Theorem II.3. Suppose that `(θ) is twice continuously differentiable, with a uniform

convexity property that there exist 0 > a > b such that

(2.16) a > u′∇2`(θ)u > b for all θ and all unit vectors, |u| = 1.

Define the sequence {θ̂(n)} by a stochastic difference equation,

(2.17) θ̂(n+1) = θ̂(n) + σ2
nM(∇`(θ̂(n)) + ηn).

Take M = (c2 + 1)Σ, so that M is a positive definite symmetric matrix and σ2
nM =

V1,n in the notation of Theorem II.1. Suppose that limn σ
2
nn

1−β > 0 for some β ∈

(0, 1). Suppose also that the sequence {ηn} has E[ηn] = o(1), Var(σ2
nηn) = o(1) and

Cov(ηm, ηn) = 0 for m 6= n. If there is a θ̂ with ∇`(θ̂) = 0 then θ̂(n) converges in

probability to θ̂.

To see how Theorem II.3 applies to MIF, implemented using a Monte Carlo filter,

we need some assumptions. We suppose that the Monte Carlo filter is unbiased:

this is not quite true for sequential Monte Carlo with a finite sample size, but it

become exactly true if we accept the goal of maximizing the expected Monte Carlo log

likelihood rather than the true log likelihood. Theorem II.1 then gives E[ηn] = o(1)

as long as σn → 0; we have to assume that this convergence is uniform over θ. A
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reasonable model for the variance of a derivative based on Monte Carlo likelihood

evaluations in a neighborhood of size σn is Var(ηn) = O(σ−2
n ), implying the condition

Var(σ2
nηn) = o(1). Formally, to apply Theorem II.3, one must assume that this rate is

also uniform over θ. If the Monte Carlo filter uses independent sequences of random

numbers for each iteration, Cov(ηm, ηn) = 0 for m 6= n.

Proof of Theorem II.3. The fundamental theorem of calculus gives

∇`(θ) =

∫ 1

0

∇2`(sθ + (1− s)θ̂)(θ − θ̂) ds.

This can also be written as ∇`(θ) = H(θ)(θ − θ̂) where H(θ) =
∫ 1

0
∇2`(sθ + (1 −

s)θ̂) ds. We re-write Eq. 2.17 as

(2.18) θ̂(n+1) = θ̂(n) + σ2
nM(Hn(θ̂(n) − θ̂) + ηn)

where Hn = H(θ̂(n)). Eq. 2.18 can be written as

θ̂(n+1) − θ̂ =
n∏

k=1

(I + σ2
kMHk)(θ̂

(1) − θ̂)

+
n−1∑
m=1

{ n∏
k=m+1

(I + σ2
kMHk)

}
σ2

mMηm + σ2
nMηn.

(2.19)

H(θ) satisfies the same inequality in Eq. 2.16 as ∇2`(θ), which guarantees a uniform

bound on the eigenvalues of σ2
kMHkn

1−β. Lemma II.4, with A taken to be σ2
kMHk,

then secures the existence of a constant c > 0 such that, for sufficiently large k,

log |I + σ2
kMHk| < −ckβ−1.

A comparison of
∑n

k=m k
β−1 with

∫ n

m
xβ−1dx then gives

(2.20) log
n∏

k=m

|I + σ2
kMHk| < cβ−1(mβ − nβ).

Lemma II.5 can be applied to Eq. 2.20 to demonstrate that

n−1∑
m=1

|σ2
m|

n∏
k=m+1

|I + σ2
kMHk| = O(1).
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Lemma II.6 can then be applied, with wm,n−1 = |σ2
m|
∏n

k=m+1 |I + σ2
kMHk| and

bn = E[ηn]. This gives

(2.21) E
[ n−1∑

m=1

{ n∏
k=m+1

(I + σ2
kMHk)

}
σ2

mηm

]
→ 0.

A very similar argument, replacing wm,n−1 by |σ2
m|
∏n

k=m+1 |I + σ2
kMHk|2 and bn by

Var(σ2
nηn), allows the use of Lemma II.6 to give

(2.22) Var
[ n−1∑

m=1

{ n∏
k=m+1

(I + σ2
kMHk)

}
σ2

mηm

]
→ 0.

In addition, Eq. 2.20 implies that

(2.23)
n∏

k=1

(I + σ2
kMHk)(θ̂

(1) − θ̂) → 0.

Eq. 2.21, Eq. 2.22 and Eq. 2.23 imply convergence in probability for Eq. 2.19, which

completes the proof.

Lemma II.4. If A is a negative definite matrix with |A| < 1 and with largest eigen-

value π < 0 then log |I + A| < π.

Proof. Let u be an arbitrary vector with |u| = 1.

log |I + A| = log(sup
u
|u′(I + A)u|)

= log(sup
u
|1 + u′Au|)

By hypothesis u′Au > −1, and so supu |1 + u′Au| = 1 + supu u
′Au. Therefore,

log |I + A| = log(1 + sup
u
u′Au) = log(1 + π) < π,

where we use the inequality log(1 + π) < π for π ∈ (−1, 0).

Lemma II.5. If c > 0 and 0 < β < 1 then

(2.24)
n∑

m=1

exp{c(mβ − nβ)}mβ−1 = O(1).
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Proof. We write the sum in Eq. 2.24 as

(2.25) nβ 1

n

n∑
m=1

exp{−c(1− (m/n)β)nβ} ×
(m
n

)β−1

.

As n→∞, Eq. 2.25 can be compared to the integral

nβ

∫ 1

0

exp{−c(1− xβ)nβ}xβ−1 dx.

This can be analyzed in two parts. Firstly,

nβ

∫ 1/2

0

exp{−c(1− xβ)nβ}xβ−1 dx < nβ

∫ 1/2

0

exp{−(1− (1/2)β)cnβ}xβ−1 dx

= nβ exp{−(1− (1/2)β)cnβ}(1/2)β/β → 0.(2.26)

For the second part, change variable to y = (1− xβ) and proceed as follows:

nβ

∫ 1

1/2

exp{−c(1− xβ)nβ}xβ−1 dx = nβ

∫ 1−(1/2)β

0

exp{−cynβ}βx2(β−1) dy

< nβ22(1−β)

∫ ∞

0

exp{−cynβ} dy = 22(1−β)/c.(2.27)

Eq. 2.26 and Eq. 2.27 together yield the required result.

Lemma II.6. Suppose bn → 0 and
∑n

m=1 |wm,n| < C with wm,n → 0 as n→∞ for

each m. Then
∑n

m=1 bnwm,n → 0.

Proof. bn is bounded, say |bn| < K. For ε > 0, ∃n0 : |bn| < ε ∀n > n0. Also,

∃n1 : |wm,n| < ε/n0 whenever m ≤ n0 and n > n1. Then, for n > max(n0, n1),

|
∑n0

m=1 bnwm,n| < Kε and |
∑n

m=n0+1 bnwm,n| < Cε. Thus, |
∑n

m=1 bnwm,n| < (K +

C)ε.

2.7.8 Standard errors and confidence intervals

The Fisher information can be estimated by

(2.28) Îij =
T∑

t=1

∂

∂θi

log f(yt|y1:t−1, θ̂)
∂

∂θj

log f(yt|y1:t−1, θ̂)
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leading to corresponding standard errors SE(θ̂i) = [Î−1/2]ii. Procedure 4 details how

this was implemented in this chapter.

Procedure 4. (Standard errors)

1. Let θ̂ be the sample mean of the (vector) estimates {θ̂k, k = 1, . . . , K} from

K replications of Procedure 1. Calculate `t,ij = log f(yt|y1:t−1, θ̂ + hijδi) for

1 ≤ i ≤ m and 1 ≤ j ≤ q, where δi is a vector of zeros with a one in the

ith position. {hij} can be the offsets used for a sliced likelihood diagnostic plot.

Alternatively, one can use q = 2 with hi1 = 0 and hi2 = h
√

Φii, where Φ is the

sample covariance matrix of {θ̂k}. The constant h is chosen by trial and error,

and Φ gives the relative scale of the uncertainty in the components of θ.

2. Regress `t,ij on hij for each i, giving rise to regression coefficients ˙̀
t,i with vari-

ance estimates V̂ar( ˙̀
t,i).

3. Estimate the Fisher information by Îij =
∑

t
˙̀
t,i

˙̀
t,j and estimate the derivative

of the log likelihood at θ̂ by ˙̀
i =

∑T
t=1

˙̀
t,i.

Procedure 4 step 2 calculates numerical derivatives, averaging over a neighbor-

hood given by {hij}. If {hij} are too small, the Monte Carlo error in the like-

lihood evaluation will dominate the numerical derivative. Since E[ ˙̀t,i] ≈ ∂`/∂θi,∑T
t=1E[ ˙̀2t,i] ≈

∑T
t=1

{
(∂`/∂θi)

2 + Var( ˙̀
t,i)
}
. Thus the bias of Îii as an estimator of

Iii is approximately
∑T

t=1 V̂ar( ˙̀
t,i). We monitor this quantity and trust the estimate

Îii only if Îii �
∑T

t=1 V̂ar( ˙̀
t,i). Otherwise, either the neighborhood used to calculate

the numerical derivative or the Monte Carlo sample size must be increased. There

could be some advantage in calculating the numerical derivatives in the directions

of the eigenvectors of Φ, with the eigenvalues giving the appropriate scaling in each

direction. We prefer not to do this, since K is not necessarily large compared to m.
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In particular, if K ≤ m then Φ is singular.

Note that one can use θ̃ = θ̂ + Î−1 ˙̀ as a possibly improved parameter estimate,

based on a quadratic approximation to the local likelihood surface (Ionides, 2005).

However, θ̃ involves the potentially inaccurate Monte Carlo derivative estimates that

MIF carefully avoids, and in our experience θ̂ is more reliable for the situation arising

in this chapter.

Standard errors are usually interpreted in the context of a normal approximation

for the MLE: one is invited to think of θ̂i±2 SE(θ̂i) as an approximate 95% confidence

interval. A more accurate confidence interval comes from the profile log likelihood

(Barndorff-Nielsen and Cox, 1994). Profile likelihoods can be calculated using MIF,

but at considerably more computational expense than the SEs from Procedure 4. If

θ is partitioned into two components ζ and η, of dimensions dζ and dη respectively,

then the profile log likelihood of η is defined by `(p)(η) = supζ `(ζ, η). An approximate

95% confidence interval for η is given by {η : 2[`(p)(η̂) − `(p)(η)] < χ2
0.95(dη)} where

χ2
0.95(dη) is the 0.95 quantile of a χ2 random variable on dη degrees of freedom, and

η̂ = argmax `(p)(η).

2.7.9 Comments on Procedure 1

Remark II.7. For a stationary time series, if σ > 0 is fixed and T grows, one expects

(under suitable mixing conditions such as those of Jensen and Petersen, 1999) that

Vt(σ) → V∞(σ). If Vt ≈ V∞ for t = 1, 2, . . . then Procedure 1 gives θ̂(n) ≈ θ̂
(n−1)
T . On

the other hand, fixing T , letting σ → 0 and using Eq. 2.14, gives a rather different

result of Vt = (c2 + t)σ2Σ + o(σ2). In this case,

(2.29) θ̂(n) ≈
T−1∑
t=1

θ̂
(n−1)
t

c2 + 1

(c2 + t)(c2 + t+ 1)
+ θ̂

(n−1)
T

c2 + 1

c2 + T
.
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A consequence of Eq. 2.29 is that, for sufficiently small σ, all the weights in the

weighted average representation of Procedure 1 are positive. Eq. 2.29 also helps to

explain why small values of c may lead to slow convergence, since small values of c

lead to low weights for large t.

Remark II.8. If the assumption in Eq. 2.1 is relaxed to

(2.30) E[θt|θt−1] = θt−1 +O(σ2)

then Theorem 1 holds with θ̂t−1 in Eq. 2.5 replaced by E[θt|y1:t−1]. The weaker

assumption in Eq. 2.30 may be appropriate if θ lies in a bounded set, and θt is

constrained to stay in this set. In this case, the weighted average interpretation

of Procedure 1 is lost. Our solution to boundary issues for θt is to reparameterize

to remove the difficulty, or just to ignore the difficulty if it disappears by itself for

sufficiently small σ.



CHAPTER III

Time Series Analysis Via Mechanistic Models

3.1 Introduction

The purpose of time series analysis via mechanistic models is to reconcile the

known or hypothesized structure of a dynamical system with observations collected

over time. Motivated by examples in population biology, we develop in this chap-

ter a framework for constructing models and carrying out inference. We build on

recent advances in inference methodology for partially observed Markov models. As

a case-study, we present a mechanistic analysis of cholera incidence data, involving

interaction between two competing strains of the pathogen Vibrio cholerae. This

leads us to develop inference for a new class of Markov chain models with stochastic

transition rates.

A dynamical system is a process whose state varies with time. A mechanistic ap-

proach to understanding such a system is to write down equations, based on scientific

understanding of the system, which describe how it evolves with time. Further equa-

tions describe the relationship of the state of the system to available observations

on the system. Mechanistic time series analysis concerns drawing inferences from

the available data about the hypothesized equations. Questions of general interest

include the following. Are the data consistent with a particular model? If so, for

41
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what range of values of model parameters? Does one mechanistic model describe the

data better than another?

The defining principle of mechanistic modeling is that the model structure should

be chosen based on scientific considerations, rather than statistical convenience. Al-

though linear Gaussian models (Durbin and Koopman, 2001) give an adequate rep-

resentation of some processes, nonlinear behavior is an essential property of many

systems. This leads to a need for statistical modeling and inference techniques appli-

cable to rather general classes of processes. In the absence of alternative statistical

methodology, a common approach to mechanistic investigations is to compare data,

qualitatively or via some ad-hoc metric, with simulations from the model. A goal of

this chapter is to increase the range of time series models for which formal statistical

inferences, making efficient use of the data, can be made. Simulation of sample paths

is still proposed as a basic tool for statistical analysis, but this does not preclude

employing the framework of likelihood based inference. Inferential techniques that

require only simulation from the model (i.e. for which the model could be replaced

by a black box which inputs parameters and outputs sample paths) have been called

“equation free” (Kevrekidis et al., 2004; Xiu et al., 2005). We will use the expression

“plug and play,” which we feel is more descriptive.

Here, we concern ourselves with partially observed, continuous-time, nonlinear,

Markovian stochastic dynamical systems. The particular combination of properties

listed above is chosen because it arises naturally when constructing a mechanis-

tic model. Although observations will typically be at discrete times, mechanistic

equations describing underlying continuous time systems are naturally described in

continuous time. If all quantities important for the evolution of the system are ex-

plicitly modeled, then the future evolution of the system depends on the past only
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through the current state, i.e., the system is Markovian. A stochastic model is pre-

requisite for mechanistic time series analysis, since chance variability is required to

explain the difference between the data and the solution to noise-free determinis-

tic equations. Statistical analysis is simpler if stochasticity can be confined to the

observation process (the statistical problem becomes nonlinear regression) or if the

stochastic dynamical system is perfectly observed (Basawa and Prakasa Rao, 1980).

Here we address the general case with both forms of stochasticity. Despite consid-

erable work on such models (Anderson and Moore, 1979; Liu, 2001; Doucet et al.,

2001), statistical methodology which is readily applicable for a wide range of models

has remained elusive.

Several inference techniques have previously been proposed which are compatible

with plug-and-play inference from partially observed Markov processes. Nonlinear

forecasting (e.g., Kendall et al., 1999) is a method of simulated moments which ap-

proximates the likelihood. Iterated filtering (Ionides et al., 2006) provides a way to

calculate a maximum likelihood estimate via Sequential Monte Carlo, a plug-and-play

filtering technique. An approximate Bayesian Sequential Monte Carlo method (Liu

and West, 2001) has also been proposed. This chapter develops inference methodol-

ogy based on the iterated filtering technique, together with describing rather general

classes of models for which the methodology is applicable.

In Section 3.2, we discuss a conceptual and notational framework for mechanistic

modeling. Section 3.3 is concerned with inference methodology. Section 3.4 devel-

ops a concrete example. Section 3.5 discusses various extensions and alternatives to

the statistical analyses developed in this chapter. The motivating example in this

chapter has led to an emphasis on modeling infectious diseases. The issue of mecha-

nistic modeling of time series data is too widespread to give a comprehensive review.



44

We instead list some examples: molecular biochemistry (Kou et al., 2005); wildlife

ecology (Newman and Lindley, 2006); cell biology (Ionides et al., 2004); economics

(Fernandez-Villaverde and Rubio-Ramirez, 2005); engineering (Arulampalam et al.,

2002); data assimilation for numerical models (Houtekamer and Mitchell, 2001). The

study of infectious disease, however, has a long history of motivating new modeling

and data analysis methodology (Kermack and McKendrick, 1927; Bartlett, 1960;

Anderson and May, 1991; Finkenstädt and Grenfell, 2000; Ionides et al., 2006). The

freedom to carry out formal statistical analysis based on mechanistically motivated,

non-linear, non-stationary, continuous time stochastic models is a new development

which promises to be a useful tool for a variety of applications.

3.2 A class of implicitly defined models

We introduce a class of mechanistic models which is described implicitly, meaning

that the model is written in such a way as to facilitate numerical solution with-

out giving an explicit closed-form expression for transition probabilities or sample

paths. The ability to analyze such models is a powerful property of plug-and-play

methodology: one can carry out statistical inference on algorithms which compute

sample paths, reducing the separation between algorithmic methods and model-based

analyses (Breiman, 2001). The models introduced here are developed with the epi-

demiological application of Section 3.4 in mind, however the framework has broader

relevance.

Many mechanistic models can be viewed in terms of flows between compartments

(Jacquez, 1996; Matis and Kiffe, 2000). A general compartment model is a vector

valued process X(t) = (X1(t), . . . , Xc(t)) denoting the (integer or real-valued) counts

in each of c compartments. The basic characteristic of a compartment model is that
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X(t) can be written in terms of the flows Nij(t) from i to j, via a “conservation of

individuals” identity:

(3.1) Xi(t) = Xi(0) +
∑
j 6=i

Nji(t)−
∑
j 6=i

Nij(t).

Each flow Nij is associated with a rate function µij = µij(t,X(t)). There are many

ways to develop concrete interpretations of such a compartment model. Here, we

give a specification sufficient to cover the example of Section 3.4, while discussing

alternatives and generalizations in Section 3.5. For the time being, we take Xi(t) to

be non-negative integer valued, so X(t) models a population divided into c disjoint

categories and µij is the rate at which each individual in compartment i moves to j.

The conservation equation (3.1) makes the compartment model closed in the sense

that individuals cannot enter or leave the population. However, processes such as

immigration, birth or death can be modeled via the introduction of additional source

and sink compartments.

We wish to introduce white noise to model stochastic variation in the rates (dis-

cussion of this decision is postponed to Section 3.5). We refer to white noise as

the derivative of an integrated noise process with stationary independent increments

(Karlin and Taylor, 1981, Chapter 15). The integral of a white noise process over

an interval is thus well defined, even when the sample paths of the integrated noise

process are not formally differentiable. Specifically, we introduce a collection of

gamma processes {Γij(t), 1 ≤ i ≤ c, 1 ≤ j ≤ c} (Sato, 1999). The collection

of increments {Γij(t2) − Γij(t1), 1 ≤ i ≤ c, 1 ≤ j ≤ c} is presumed to be inde-

pendent of {Γij(t4) − Γij(t3), 1 ≤ i ≤ c, 1 ≤ j ≤ c} for all t1 < t2 < t3 < t4.

We have not assumed that different noise processes Γij and Γkl are independent;

their increments could be correlated, or even equal. Marginally, we suppose that

Γij(t + δ) − Γij(t) ∼ Gamma(δ/σ2
ij, σ

2
ij), the gamma distribution whose shape pa-
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rameter is δ/σ2
ij and scale parameter is σ2

ij, with corresponding mean δ and vari-

ance δσ2
ij. We call σ2

ij an infinitesimal variance parameter (Karlin and Taylor,

1981). These gamma processes define a collection of gamma noise processes given

by ξij(t) = d
dt

Γij(t). Since Γij(t) is increasing, ξij(t) is non-negative and µijξij(t)

can be interpreted as a rate with multiplicative white noise. The choice of gamma

noise is made for convenience and to give a concrete example. A wide range of Lévy

processes (Sato, 1999) could be equivalently employed.

We proceed to interpret a compartment model as a continuous time Markov chain

via the limit of coupled multinomial processes with random rates. Let ∆Nij =

Nij(t+ δ)−Nij(t) and ∆Γij = Γij(t+ δ)− Γij(t). We suppose that

P [∆Nij = nij, for all 1 ≤ i ≤ c, 1 ≤ j ≤ c, i 6= j | X(t) = (x1, . . . , xc)]

= E

[
c∏

i=1

{(
xi

ni1 . . . nii−1 nii+1 . . . nic ri

)
(1−

∑
k 6=ipik)

ri

∏
j 6=i

p
nij

ij

}]
+ o(δ)(3.2)

where ri = xi −
∑

k 6=i nik,
(

n
n1 ... nc

)
is a multinomial coefficient and

(3.3)

pij = pij({µij(t,X(t))}, {∆Γij(t)}) = (1− exp {−
∑

k

µik∆Γik})µij∆Γij

/∑
k

µik∆Γik

with µij = µij(t,X(t)). If the limit in (3.2) is well defined, then it specifies in-

finitesimal probabilities which define a continuous time Markov chain (Brémaud,

1999). When the limit can be calculated exactly, then exact simulation methods

are available (Gillespie, 1977), though in practice numerical schemes based on Euler

approximations may be preferable (Gillespie, 2001; Tian and Burrage, 2004). The

implicit representation in (3.2) suggests a numerical approximation where the o(δ)

term in (3.2) is ignored. Discretizing time into units of δ and ignoring the term

o(δ) in (3.2) corresponds to a multinomial death process Euler approximation to a

population process with noise added to the parameters (Figure 3.1). The strength of
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1. Divide the interval [0, T ] into N intervals of width δ = T/N

2. Set initial value X(0)

3. FOR n = 0 to N − 1

4. Generate noise increments {∆Γij = Γij(nδ + δ)− Γij(nδ)}
5. Generate process increments (∆Ni1, . . . ,∆Ni,i−1,∆Ni,i+1,∆Nic, Ri)

∼ Multinomial(Xi(nδ), pi1, . . . , pi,i−1, pi,i+1, . . . , pic, 1−
∑

k 6=i pik)

with pij = pij({µij(nδ,X(nδ))}, {∆Γij}) given in (3.3)

6. Set Xi(nδ + δ) = Ri +
∑

j 6=i ∆Nji

7. END FOR

Figure 3.1: Euler scheme corresponding to a numerical solution of the Markov chain specified by
(3.2).

the implicit representation, combined with plug-and-play methodology, is that it lets

one proceed with modeling and data analysis even when the model is not analytically

tractable.

Proposition III.1 demonstrates by construction some conditions under which (3.2)

does indeed specify a Markov chain. Proposition III.2 shows that, with some extra

assumptions, we can find a tractable form for the resulting infinitesimal probabilities.

Proofs of these results are given in section 3.6.1.

Proposition III.1. The following gives a construction of the process in (3.2), sup-

posing that Γij is independent of Γik for j 6= k and that µij(t, x) is uniformly contin-

uous as a function of t. Give the individuals in the population labels 1, . . . ,
∑

iXi(0).

Let C(ζ,m) be the index of the compartment containing individual ζ after the indi-

vidual’s mth transition, for 1 ≤ ζ ≤
∑

iXi(0), with C(ζ, 0) giving the location at

time t = 0. Set τζ,0 = 0, and generate independent Exponential(1) random vari-

ables Mζ,0,j for each ζ and j 6= C(ζ, 0). Define τζ,m,j recursively for m ≥ 1 and

j 6= C(ζ,m− 1) by

τζ,m,j = inf
{
t :

∫ t

τζ,m−1

µC(ζ,m−1),j(s,X(s))dΓC(ζ,m−1),j(s) > Mζ,m−1,j

}
.
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Individual ζ makes its mth move at time τζ,m = minj τζ,m,j into state C(ζ,m) =

arg minj τζ,m,j, at which time new independent transition clocks {Mζ,m,j, j 6= C(ζ,m)}

are generated.

Proposition III.2. Suppose, in addition to the assumptions of Proposition III.1,

that the integrated noise processes {Γij} are all independent. The transition proba-

bilities given in (3.2) are

P [∆Nij = nij, for all i 6= j | X(t) = (x1, . . . , xc)] =
∏

i

∏
j 6=i

π(nij, xi, µij, σij) + o(δ)

where

(3.4) π(n, x, µ, σ) = 1{n=0} + δ

(
x

n

) n∑
k=0

(
n

k

)
(−1)n−k+1σ−2 ln

(
1 + σ2µ(x− k)

)
.

In the special case where σij = 0, we interpret ξij(t) = 1. If σij = 0 for all i

and j, then (3.2) becomes the Poisson system widely used to model demographic

stochasticity in population models (Brémaud, 1999; Bartlett, 1960). Constructions

similar to Proposition III.1 are standard for Poisson systems (Brémaud, 1999), but

here care is required to deal with the novel inclusion of white noise in the rate process.

Our formulation for adding noise to Poisson systems can be seen as a generalization

of subordinated Lévy processes (Sato, 1999), though we are not aware of previous

work on the more general Markov processes constructed here. It is only the recent

development of appropriate inference methodology that has led to the need for flexible

Markov chain models with random rates.

Following what might be called the “plug and play principle,” one could suppose

that simulation from an arbitrarily accurate numerical approximation is sufficient to

answer the questions that the model has been constructed to address. In particular,

any property of the model which is stable as the numerical approximation timestep,
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δ, approaches 0 may be presumed to be a property of the limiting continuous time

Markov process. This need not always be true, which is one reason why analytic

properties, such as Propositions III.1 and III.2, are valuable.

Another reason for being content with a numerical approximation for sufficiently

small δ is that there may be no scientific reason to prefer a true continuous time

model over a fine discretization. For example, when modeling population dynamics,

continuous time models of adequate simplicity for data analysis typically will not in-

clude diurnal effects. Thus, there is no particular reason to think the continuous time

model more credible than a discrete time model with a step of one day. One can think

of a set of equations defining a continuous time process, combined with a specified

discretization, as a way of writing down a discrete time model, rather than treating

the continuous time model as a gold standard against which all discretizations must

be judged.

The full independence of {Γij} assumed in Proposition III.2 gives a form for the

limiting probabilities where multiple individuals can move simultaneously between

some pair of compartments i and j, but no simultaneous transitions occur between

different compartments. In more generality, the limiting probabilities do not have

this simple structure. In the setup for Proposition III.1, where Γij is independent

of Γik for j 6= k, no simultaneous transitions occur out of some compartment i into

different compartments j 6= k, but simultaneous transitions from i to j and from i′

to j′ cannot be ruled out for i 6= i′. The assumption in Proposition III.1 that Γij

is independent of Γik for j 6= k is not necessary for the construction of a process

via (3.2), but simplifies the subsequent analysis. Without this assumption, a con-

struction similar to Proposition III.1 would have to specify a rule for what happens

when an individual who has two simultaneous event times, i.e., when minj τζ,m,j is
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not uniquely attained. Although independence assumptions are useful for analytical

results, a major purpose of the formulation in (3.2) is to allow the practical use of

models that surpass currently available mathematical analysis. In particular, it may

be natural for different transition processes to share the same noise process, if they

correspond to transitions between similar pairs of states.

3.3 Plug-and-play inference methodology

Inference can be carried out for the framework of Section 3.2 using the iterated

filtering methodology proposed by Ionides et al. (2006), implemented as described in

Figure 3.2. This technique maximizes the likelihood for a partially observed Markov

model, permitting calculation of maximum likelihood point estimates, confidence in-

tervals (via profile likelihood, bootstrap or Fisher information), and likelihood ratio

hypothesis tests. For non-linear non-Gaussian partially observed Markov models,

the likelihood function can typically be evaluated only inexactly and at considerable

computational expense. The iterated filtering procedure takes advantage of the par-

tially observed Markov structure to enable computationally efficient maximization.

A useful property of partially observed Markov models is that, if the parameter θ

is replaced by a random walk θn with θ0 = θ, the calculation of θ̂n = E[θn|y1:n]

and Vn = V ar(θn|y1:n−1) is a well-studied and computationally convenient filtering

problem. Ionides et al. (2006) showed that a procedure which iteratively updates an

estimate of θ by a weighted average of θ̂1:N , with weights depending on V1:N , while

progressively decreasing the variance of the random walk, converges to the maximum

of the likelihood function (under appropriate conditions). If the filtering technique

is plug-and-play then maximization by iterated filtering also has this property. Ba-

sic sequential Monte Carlo filtering techniques, although usually written in terms
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of transition densities (Arulampalam et al., 2002; Doucet et al., 2001), do have the

plug-and-play property. In Figure 3.2 we emphasize this by specifying a Markov

process at a sequence of times t0 < t1 < · · · < tN via a recursive transition rule,

X(tn) = f(X(tn−1), tn−1, tn, θ,W ),

where it is understood that W is some random variable which is drawn independently

each time f(.) is evaluated. In the context of the plug-and-play philosophy, f(.) is

the algorithm to generate a simulated sample path of X(t) at the discrete times

t1, . . . , tN given an initial value X(t0).

Other plug-and-play inference methodologies applicable to the models of Sec-

tion 3.2 have been developed. Nonlinear forecasting (Kendall et al., 1999) has neither

the statistical efficiency of a likelihood-based method nor the computational efficiency

of a filtering-based method. The Bayesian sequential Monte Carlo approximation of

Liu and West (2001) combines likelihood-based inference with a filtering algorithm,

but is not supported by theoretical guarantees comparable to those presented by

Ionides et al. (2006) for iterated filtering.

3.4 A mechanistic model for competing strains of cholera

We consider a compartment model for cholera dynamics subject to competing

strains of pathogen, the bacterium Vibrio cholerae. All infectious diseases have a

variety of strains, and a good understanding of the strain structure is key to un-

derstanding the epidemiology of the disease, developing effective vaccines and vacci-

nation strategies, and understanding evolution of resistance to medication (Grenfell

et al., 2004). If strain structure is excluded from a disease model, any features due to

strain variability will be attributed to other elements of the model, which is likely to

result in ineffective early warning systems and/or inefficient vaccination strategies.
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MODEL INPUT: f(·), g(·|·), y1, . . . , yN , t0, . . . , tN

ALGORITHMIC PARAMETERS: integers J , L, M ; scalars 0 < a < 1, b > 0; vectors X
(1)
I ,

θ(1); positive definite symmetric matrices ΣI , Σθ.

1. FOR m = 1 to M

2. XI(t0, j) ∼ N [X(m)
I , am−1ΣI ], j = 1, . . . , J

3. XF (t0, j) = XI(t0, j)

4. θ(t0, j) ∼ N [θ(m), bam−1Σθ]

5. θ̄(t0) = θ(m)

6. FOR n = 1 to N

7. XP (tn, j) = f(XF (tn−1, j), tn−1, tn, θ(tn−1, j),W )

8. w(n, j) = g(yn|XP (tn, j), tn, θ(tn−1, j))

9. draw k1, . . . , kJ such that Prob(kj = i) = w(n, i)/
∑

` w(n, `)

10. XF (tn, j) = XP (tn, kj)

11. XI(tn, j) = XI(tn−1, kj)

12. θ(tn, j) ∼ N [θ(tn−1, kj), am−1(tn − tn−1)Σθ]

13. Set θ̄i(tn) to be the sample mean of {θi(tn−1, kj), j = 1, . . . , J}
14. Set Vi(tn) to be the sample variance of {θi(tn, j), j = 1, . . . , J}
15. END FOR

16. θ
(m+1)
i = θ

(m)
i + Vi(t1)

∑N
n=1 V −1

i (tn)(θ̄i(tn)− θ̄i(tn−1))

17. Set X
(m+1)
I to be the sample mean of {XI(tL, j), j = 1, . . . , J}

18. END FOR

RETURN
maximum likelihood estimate for parameters, θ̂ = θ(M+1)

maximum likelihood estimate for initial values, X̂(t0) = X
(M+1)
I

maximized log likelihood estimate, λ(θ̂) =
∑

n log(
∑

j w(n, j)/J)

Figure 3.2: Implementation of likelihood maximization by iterated filtering. N [µ, Σ] corresponds
to a normal random variable with mean vector µ and covariance matrix Σ. X(tn)
takes values in Rdx , yn takes values in Rdy , θ takes values in Rdθ and has components
{θi, i = 1, . . . , dθ}.
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Figure 3.3: Biweekly cholera cases for Matlab, Bangladesh, obtained from hospital records of the
International Center for Diarrheal Disease Research, Bangladesh. Cases are separated
by serotype into Inaba (dashed) and Ogawa (solid grey)

Previous analyses relating mathematical consequences of strain structure to disease

data include studies of malaria (Gupta et al., 1994), dengue (Ferguson et al., 1999),

influenza (Ferguson et al., 2003; Koelle et al., 2006a) and cholera (Koelle et al.,

2006b). These previous analyses of strain-structured time series data have drawn

statistical inferences based on ad-hoc comparisons of simulations from the model

with observed data. The goal of this current example is to demonstrate that the

mechanistic modeling framework developed here permits likelihood based inference

for mechanistically motivated stochastic models of strain-structured disease systems.

We analyze a time series recording 30 years of biweekly cholera incidence in Matlab,

Bangladesh (Figure 3.3), previously studied by Koelle et al. (2006b). Each cholera

case was classified into one of two serotypes, Inaba and Ogawa. Exposure to one

serotype results in strong immunity to that serotype, and weaker cross-immunity to

the other.
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Figure 3.4 describes the compartments for our two-strain model, with arrows

showing possible transitions and their labels showing the corresponding rate of flow.

This model combines the multistrain modeling approach of Kamo and Sasaki (2002)

with previous compartmental models for single-strain cholera (Koelle and Pascual,

2004). Table 3.1 gives a formal interpretation of our model as a Markov chain with

stochastic rates, in the framework of Section 3.2. Here, λ1 is the force of infection

for the Inaba serotype, i.e. the mean rate at which susceptible individuals become

infected; ξ1 is the stochastic noise on this rate; λ2 and ξ2 are the corresponding

force of infection and noise for Ogawa; β(t) is the rate of transmission between

individuals, parameterized with a trend and a smooth seasonal component; ω gives

the rate of infection from an environmental reservoir, independent of the current

number of contagious individuals; the exponent α allows for inhomogeneous mixing

of the population; r is the recovery rate from infection; γ measures the strength of

cross-immunity between serotypes. In this model, following Koelle et al. (2006b),

acquired immunity to a given serotype is life-long subsequent to infection with that

serotype. The argument for giving both strains common variability is that they

are believed to be biologically similar except in regard to immune response. The

argument for giving the separate strains independent noise components is that noise

represents chance events, such as a contaminated feast or a single community water

source which is transiently in a favorable condition for contamination, and such

events spread whichever strain is in the required place at the required time.

In addition, a measurement model is required. Biweekly aggregated cases for

Inaba and Ogawa strains are denoted by Ci,t = NSIi
(t) − NSIi

(t − 1) + NSiI∗i
(t) −

NSiI∗i
(t − 1) for i = 1, 2 respectively. Reporting rates ρ1,t and ρ2,t are taken to be

independent Gamma(1/φ, ρφ) random variables. Conditional on ρ1,t and ρ2,t, the
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observations are modeled as independent Poisson counts,

Yi,t|ρi,t, Ci,t ∼ Poisson(ρi,tCi,t), i = 1, 2.

Thus, Yi,t given Ci,t has a negative binomial distribution with E[Yi,t|Ci,t] = ρCi,t

and V ar(Yi,t|Ci,t) = ρCi,t + φρ2C2
i,t. This model allows for the possibility of both

under-reporting and over-reporting (mis-diagnosis), as well as both demographic

stochasticity (i.e., Poisson variability) and environmental stochasticity (i.e., Gamma

variability on the rates).

Note that this model is of the SIR (susceptible-infectious-removed) type for each

strain, in contrast with the SIRS model proposed for the analysis of the cholera

mortality data in chapter II. SIRS models allow for loss of immunity, i.e. individuals

may cycle from susceptible to infectious to immune and back to susceptible several

times in the course of their lives. This agrees with the observed pattern that an

individual recently infected with cholera is unlikely to become infected again soon

but could very well become infected in the future. The multistrain SIR on the other

hand only allows each individual to become infectious with cholera twice, once with

each strain.

Although these might appear to be two fundamentally different models for cholera

immunity, the following observation reconciles the use of these two models. Given

the right parameters, the two serotype model predicts that serotypes will alternate

as the dominant serotype. An analysis that ignored the serotype structure, as is the

case in chapter II, would then conclude that cholera confers temporary immunity.

The duration of immunity would be confounded with the duration of dominance

of the serotype of the first infection. Individuals that became infectious with the

replacing serotype would seem to have lost the immunity conferred by the previous

infection.
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Figure 3.4: Flow diagram for cholera, including interactions between the two major serotypes. Each
individual falls in one compartment: S, susceptible to both Inaba and Ogawa serotypes;
I1, infected with Inaba; I2, infected with Ogawa; S1, susceptible to Inaba (but immune
to Ogawa); S2, susceptible to Ogawa (but immune to Inaba); I∗1 , infected with Inaba
(but immune to Ogawa); I∗2 , infected with Ogawa (but immune to Inaba); R, immune
to both serotypes. Births enter S, and all individuals have a mortality rate m.

A multistrain SIRS model would allow for loss of serotype specific immunity. In

this model more infections over the period of time for which the data is observed

would be possible for any given value of γ. However, the overall picture in terms of

number of infections could be similar if the possibility for additional infections were

compensated by a lower infection force, which would be the case for smaller values of

bi, ω, α or any combination of those. The values in the new profile likelihood would

most likely be higher and the curve flatter since the multistrain SIR model is the

limit of the SIRS letting the rate of loss of immunity go to infinity. Exploring this

more complex model is straightforward but it represents an additional considerable

computational expense.

Some results from fitting the model in Figure 3.4 via the method in Figure 3.2

are shown in Table 3.2. The two sets of parameter values θ̂A and θ̂B in Table 3.2 are

maximum likelihood estimates, with θ̂A having the additional constraints ρ = 0.06

and r = 38.4. The additional constraints results in a qualitatively different fitted

model, and we refer to the neighborhoods of these two parameter sets as regimes

A and B. These constraints were used by Koelle et al. (2006b) so, to the extent

that the model there and in this chapter are comparable, A corresponds to a regime

comparable to Koelle et al. (2006b). Regime B can be distinguished by a much higher
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λ1 = β(t)(I1(t) + I∗1 (t))α/P (t) + ω λ2 = β(t)(I2(t) + I∗2 (t))α/P (t) + ω

log β(t) = b0(t− 1990) +
∑12

i=1 bisi(t)
µSI1 = λ1 µSI2 = λ2

µS1I∗1
= (1− γ)λ1 µS2I∗2

= (1− γ)λ2

µI1S2 = µI2S1 = r µI∗2 R = µI∗1 R = r
µXjD = m for Xj ∈ {S, I1, I2, S1, S2, I

∗
1 , I∗2 , R}

ξSI2 = ξS2I∗2
= ξ2(t) ξSI1 = ξS1I∗1

= ξ1(t)

Table 3.1: Interpretation of Figure 3.4 via the multinomial process with random rates in (3.2), with
X(t) = (S(t), I1(t), I2(t), S1(t), S2(t), I∗1 (t), I∗2 (t), R(t), B(t), D(t)). Compartments
B and D are introduced for demographic considerations: births are formally treated
as transitions from B to S and deaths as transitions into D. All transitions not listed
above have zero rate. ξ2(t) and ξ1(t) are independent gamma noise processes, both
with infinitesimal variance parameter σ2. Transition rates are noise-free unless specified
otherwise. {si(t), i = 1, . . . , 6} is a basis of periodic cubic B-splines, with si(t) attaining
its maximum at t = (i− 1)/6. The population size P (t) is assumed known, interpolated
from census data. The birth process is treated as a covariate, i.e., the analysis is carried
out conditional on the process NBS(t) =

⌊
P (t)− P (0) +

∫ t

0
mP (s) ds

⌋
, where bxc is the

integer part of x. There is a small stochastic discrepancy between S(t) + I1(t) + I2(t) +
S1(t) + S2(t) + I∗1 (t) + I∗2 (t) + R(t) and P (t). In principle, one could condition on the
demographic data by including a census measurement model—we saw no compelling
reason to add this extra complexity for the current purposes. Numerical solutions of
sample paths were calculated using the algorithm in Figure 3.1, with δ = 2/365.

reporting rate (ρ = 0.65). Fig. 3.6 shows a profile likelihood for cross-immunity in

regime A, which can be considered a formal statistical analysis of the aspects of the

disease dynamics analyzed by Koelle et al. (2006b).

These two regimes demonstrate two distinct uses of a statistical model—firstly,

to investigate the consequences of a set of assumptions and, secondly, to challenge

those assumptions. If we decide to limit the investigation to regimes restricted by

estimates obtained from previous studies, then the resulting parameter estimates θ̂A

are broadly consistent with previous understanding of cholera dynamics, except that

cross-immunity appears to be lower than previously thought. However, the results

in Table 3.2 raise an alternative possibility, that the data are better explained by

scenario B, for which the epidemiologically relevant cases are only the severe cases

that are likely to result in hospitalization. Unlike in regime A, asymptomatic cholera

cases play almost no role in regime B and cross-immunity is high, corresponding
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to lower numbers of infections and rate of disease transmission than in A. This is

consistent with the calculations in Koelle et al. (2006b) that conclude that cross-

immunity should be high (but not with ρ = 0.06, which is assumed in some sections

of Koelle et al., 2006b).

The contrast between these regimes highlights a conceptual limitation of compart-

ment models: disease severity and level of infectiousness are continuous, not discrete

or binary as in basic compartment models. Differences in the level of morbidity re-

quired to be classified as “infected” result in re-interpretation of the parameters of

the model, and consequently of other fundamental model characteristics such as the

basic reproductive ratio of an infectious disease (Anderson and May, 1991). Despite

this limitation, it remains the case that compartment models are a fundamental tool

for understanding and describing disease dynamics, so identification and comparison

of different interpretations is a worthwhile exercise.

Demonstrating the existence of a regime such as B shows that there is room

for improvement in the model by departing from the assumptions in A, but care

is required to interpret the finding scientifically. Extending the model to include

differing levels of severity might permit a combination of the scientific interpretation

of A with the data-matching properties of B. This explanation would be sensible

if low reporting in the past was due to inaccurate reporting rather than infectious

individuals which did not have symptoms. Re-interpreting cholera epidemiology is

beyond the scope of this chapter, but we refer the reader to King et al. (2007)

for an example of how the discovery of an unexpected combination of parameters

which explain the data well can be used as the basis of a scientific argument. King

et al. (2007) investigated a model for cholera, without multiple strain structure,

and without an assumption of lifelong immunity following infection. Permitting loss
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of immunity over time, the best fitting model has immunity waning more quickly

than previously supposed. Corroborative evidence was then found to support the

epidemiological importance of short-term immunity acquired by exposure to low

doses of the pathogen.

Likelihood based modeling of ecological and epidemiological systems has been

criticized for leading to models for which simulated realizations do not look quali-

tatively like the data, and which have correspondingly poor medium and long term

forecasting capabilities (good short term forecasting is a necessary consequence of

the likelihood criterion for fitting models, resulting from the factorization f(y1:T |θ) =∏T
t=1 f(yt|y1:t−1, θ)). If simulations from the fitted model do not resemble the data,

that provides another diagnostic that the class of models is inadequate. Here, simula-

tions from B are generally qualitatively similar to the data, whereas those from A are

too explosive (Figure 3.5). Building the desirable features of B into strain-structured

models would help to realize the potential forecasting improvement arising from the

availability of strain information.

Previous analysis of multistrain models have emphasized the possibility of strain

cycling. Further analysis of strain cycling might reveal and allow for prediction of

serotype switching. Wavelet time series analysis of simulations from the stochastic

model using θ̂A and θ̂B would help understand the implications of regimes A and B in

terms of dominant frequencies and highlight strain cycling if present. Alternatively,

spectral analysis could be used. Spectral analysis is most useful when the model

considered is stationary. If the time variable in the multistrain SIRS model is replaced

by, say, the initial time point, spectral analysis can be used to study simulations from

this modified version of the model which is stationary. The same could be done at

other times. Since the model includes a time-varying population size, this would
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Figure 3.5: A simulated realization from regime A (top) and regime B (bottom), showing cases of
Inaba (dashed) and Ogawa (solid grey). Compared to the data in Fig. 3.3, realizations
from regime A typically have too many tall, narrow spikes in disease incidence.
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θ̂A σ̂A θ̂B σ̂B

r 38.42 − 36.91 3.88
ρ 0.067 − 0.653 0.069
γ 0.400 0.087 0.9996 0.41
σ 0.1057 0.0076 0.0592 0.0075
φ 0.014 0.030 0.0004 0.024
ω × 103 0.099 0.022 0.0762 0.0072
α 0.860 0.015 0.864 0.017
b0 −0.0275 0.0017 −0.0209 0.0015
b1 4.608 0.098 3.507 0.083
b2 5.342 0.074 3.733 0.091
b3 5.723 0.075 4.448 0.055
b4 5.022 0.076 3.534 0.065
b5 5.508 0.064 4.339 0.053
b6 5.804 0.059 4.339 0.039
` −3560.23 −3539.11

Table 3.2: Parameter estimates from both regimes. In both regimes, the mortality rate m is fixed
at 1/38.8 years−1. The units of r, b0, and ω are year−1; σ has units year1/2; and ρ, γ,
φ, α, and b1, . . . , b6 are dimensionless. ` is the average of two log-likelihood evaluations
using a particle filter with 120,000 particles. Optimization was carried out using the
iterated filtering in Figure 3.2, with M = 30, a = 0.95 and J = 15, 000. Optimization
parameters were selected via diagnostic convergence plots (Ionides et al., 2006). Standard
errors were derived via a Hessian approximation (Ionides et al., 2006). These standard
errors are quickly obtained and give a reasonable idea of the scale of uncertainty, but
profile likelihood based confidence intervals are more appropriate for careful inferences.
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Figure 3.6: Cross-immunity profile likelihood computed as described in chapter II yielding a 99%
confidence interval for γ of (0.20, 0.61). Local quadratic regression with a bandwidth
parameter (span) of 0.6 was used to estimate the profile likelihood (solid line).
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have to be fixed at the chosen time point. A more detailed study would involve

comparing the cycling properties of the deterministic skeleton for θ̂A and θ̂B with

the wavelet of spectral analysis of the stochastic counterpart.

In addition to strain specific prediction, overall case prediction ability is likely to

be increased by incorporating information from environmental drivers, which have

been shown to play a role in cholera dynamics in recent periods, like ENSO and

rainfall (Pascual et al., 2000; Koelle et al., 2005). A residual analysis similar to that

of chapter II may corroborate these relationships, as may a correlation analysis of

the covariates and the structural residuals. This information could be incorporated

in the force of infection as a linear component or some other form if suggested by

the results.

3.5 Discussion

This discussion limits itself to the framework of compartment models, however

these provide a rather broad perspective on the general topic of mechanistic models.

Given rates µij, one interpretation of a compartment model is to write the flows as

coupled ordinary differential equations (ODEs),

(3.5)
d

dt
Nij = µijXi(t).

Data analysis via ODE models has challenges in its own right (Ramsay et al., 2007).

Previous work (Swishchuk and Wu, 2003) has included stochasticity by adding a

slowly varying function to the derivative in (3.5).

Alternatively, one can add Gaussian white noise to give a set of coupled stochastic

differential equations (SDEs) (e.g. Øksendal, 1998). For example, if {Wijk(t)} is a col-

lection of independent standard Brownian motion processes, and σijk = σijk(t,X(t)),
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an SDE interpretation of a compartment model is given by

(3.6) dNij = µijXi(t) dt+
∑

k

σijkdWijk,

following the custom of writing the SDE as an infinitesimal equation rather than di-

viding through by dt. SDEs have some favorable properties for mechanistic modeling,

such as the ease with which stochastic models can be written down and interpreted

in terms of infinitesimal mean and variance (Ionides et al., 2006). However, there

are several reasons to prefer integer-valued stochastic processes over SDEs for mod-

eling population processes. Populations consist of discrete individuals, and, when a

population becomes small, that discreteness can become important. For infectious

diseases, there may be temporary extinctions, or “fade-outs,” of the disease in a pop-

ulation or sub-population. Even if the SDE is an acceptable approximation to the

disease dynamics, there are technical reasons to prefer a discrete model. Standard

methods allow exact simulation for continuous time Markov chains (Brémaud, 1999;

Gillespie, 1977), whereas for an SDE this is at best difficult (Beskos et al., 2006). In

addition, if an approximate Euler solution for a compartment model is required, non-

negativity constraints can more readily be accommodated for Markov chain models,

particularly when the model is specified by a limit of multinomial approximations,

as in (3.2). The most basic discrete population compartment model is the Poisson

system (Brémaud, 1999), given by

(3.7) P [∆Nij = nij|X(t) = (x1, . . . , xc)] =
∏

i

∏
j 6=i

(µijxiδ)
nij(1− µijxiδ) + o(δ).

The Poisson system is a Markov chain whose transitions consist of single individu-

als moving between compartments, i.e., the infinitesimal probability is negligible of

either simultaneous transitions between different pairs of compartments or multiple

transitions between a given pair of compartments. As a consequence of this the Pois-
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son system is “equidispersed,” meaning that the infinitesimal mean of the increments

equals the infinitesimal variance (section 3.6.2). Overdispersion is a ubiquitous fea-

ture of data (McCullagh and Nelder, 1989), and this leads us to consider models such

as (3.2) for which the infinitesimal variance can exceed the infinitesimal mean. As a

consequence, instantaneous transitions of more than one individual are possible. This

may be scientifically plausible: a cholera-infected meal or water-jug may lead to sev-

eral essentially simulaneous cases; many people could be simultaneously exposed to

an influenza patient on a crowded bus. Even dis-regarding scientifically plausibility

of multiple simultaneous transitions, if one wishes to write down an over-dispersed

Markov model the inclusion of such possibilities is unavoidable. Simultaneity in

the limiting continuous time model can alternatively be justified by arguing that

the model only claims to capture macroscopic behavior over sufficiently long time

intervals.

Note that the multinomial gamma limit used in (3.2) could be replaced by al-

ternatives, such as Poisson gamma or negative binomial gamma. The latter are

more natural for unbounded processes, such as birth processes. For equidispersed

processes, the Euler approximation through taking these three different processes

produces the same limiting process. For overdispersed processes, these limits differ.

In particular, the Poisson gamma and negative binomial gamma Euler limits have

unbounded jump distributions and so are less readily applicable to finite populations.

The approach in (3.2) of adding white noise to the transition rates differs from

previous approaches of making the rates a slowly varying random function of time,

i.e., adding low frequency “red noise” to the rates. There are several motivations

for introducing this new class of models. Most simply, adding white noise is a more

parsimonious parameterization, since the intensity but not the spectral shape of the
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noise needs to be considered. For smoothly varying rates, the infinitesimal mean

and variance are still equal (section 3.6.1). At least for the cholera example, high-

frequency variability in the rate of infection appears necessary to describe the data.

We do not wish to imply that white noise should always be used to model variability

in rates, but we do think that a demonstration of the possibility is of general interest.

Time series analysis is, by tradition, data oriented, and so the quantity and quality

of available data may limit the questions that the data can reasonably answer. This

forces a limit on the number of parameters that can be estimated for a model.

Thus, a time series model termed mechanistic might be a simplification of a more

complex model which more fully describes reductionist scientific understanding of

the dynamical system. As one example, one could certainly argue for including age

structure or other population inhomogeneities into Figure 3.4. Indeed, determining

which additional model components lead to important improvement in the statistical

description of the observed process is a key data analysis issue.

3.6 Appendix

3.6.1 Proofs of Propositions III.1 and III.2

We proceed to construct increasingly complex over-dispersed Markov chains. A

fundamental building block of processes such as (3.2) is the over-dispersed binomial

death process. Conditional on a Gamma process Γ(t), with infinitesimal variance

σ and corresponding noise process ξ(t) = d
dt

Γ(t), individuals from a population of

initial size X(0) each “die” from compartment X to Y at rate µξ(t). Here, N(t) =

NXY (t) = X(0)−X(t) counts the total number of deaths occurring by time t. Also,

we define ∆N = N(t+ δ)−N(t) and ∆Γ = Γ(t+ δ)−Γ(t) ∼ Gamma(δ/σ2, σ2). To

give a construction of a Markov chain, suppose independent Exponential(1) random

variables {Mζ , ζ = 1, . . . , X(0)} are generated at t = 0 and assigned to each member
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of the initial population. Individual ζ dies at time τζ = inf{t : µΓ(t) > Mζ}. X(t)

constructed in this way is a Markov chain, due to the memoryless property of {Mζ}

and the independent increments of Γ(t). In this case,

(3.8) P [∆N = n|X(t) = x] = E
[(x
n

)
(1− p)n−xpn

]
where p = 1 − exp{−µ∆Γ}. The limiting behavior of (3.8) as δ → 0 is analytically

tractable, and is given in Lemma III.3.

Lemma III.3. The limiting probabilities for (3.8) are given by P (∆N = n|X(t) =

x) = π(n, x, µ, σ) + o(δ) where π(n, x, µ, σ) is given in (3.4). The infinitesimal mo-

ments are

E[∆N |X(t) = x] = δxσ−2 ln(1 + µσ2) + o(δ)

V ar[∆N |X(t) = x] = δxσ−2

{
x ln

(
(1 + µσ2)2

1 + 2µσ2

)
+ ln

(
1 + 2µσ2

1 + µσ2

)}
+ o(δ)

Proof. For convenience, we define a = σ−2 and b = (µσ2)−1. Thus, µ∆Γ ∼ Gamma(aδ, b−1)
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and, using G to denote the gamma function,

P (∆N = n|X(t) = x) =

∞∫
0

(
x

n

)[
1− e−λ

]n[
e−λ
]x−nλδa−1e−λbbδa

G(δa)
dλ

=

(
x

n

) ∞∫
0

[
n∑

k=0

(
n

k

)
(−e−λ)n−k

]
e−λ(x−n)λ

δa−1e−λbbδa

G(δa)
dλ

=

(
x

n

) ∞∫
0

n∑
k=0

(
n

k

)
(−1)n−ke−λ(x−k)λ

δa−1e−λbbδa

G(δa)
dλ

=

(
x

n

) n∑
k=0

(
n

k

)
(−1)n−k bδa

(b+ x− k)δa

∞∫
0

λδa−1e−λ(b+x−k)(b+ x− k)δa

G(δa)
dλ

=

(
x

n

) n∑
k=0

(
n

k

)
(−1)n−k

(
1 +

x− k

b

)−δa

=

(
x

n

) n∑
k=0

(
n

k

)
(−1)n−k

(
1− δa ln

(
1 +

x− k

b

)
+ o(δ)

)

= 1{n=0} + δ

(
x

n

) n∑
k=0

(
n

k

)
(−1)n−k+1a ln

(
1 +

x− k

b

)
+ o(δ)

The expression for π(n, x, µ, σ) in (3.4) then follows by substituting in the appropri-

ate definitions. To calculate the infinitesimal moments, we note that the moment

generating function of a gamma random variable (e.g., Casella and Berger, 1990)

gives E[e−µ∆Γ] = (1 + µτ)−δ/τ , where τ = σ2. It follows that

V ar[e−µ∆Γ] = E[e−2µ∆Γ]−
(
E[e−µ∆Γ]

)2
= (1 + 2µτ)−δ/τ − (1 + µτ)−2δ/τ

A Taylor series expansion around δ = 0 gives

E[e−µ∆Γ] = 1− δτ−1 ln(1 + µτ) + o(δ)

V ar[e−µ∆Γ] = δτ−1
{
2 ln(1 + µτ)− ln(1 + 2µτ)

}
+ o(δ)

Conditional on X(t) and ∆Γ, ∆N ∼ Binomial(X(t), 1−e−µ∆Γ). Standard identities

for the conditional mean and variance (e.g., Casella and Berger, 1990, Chapter 4)

then complete the proof.
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The infinitesimal moments calculated in Lemma III.3 are not needed for Propo-

sitions III.1 and III.2, but provide a contrast with the equidispersed property of

Poisson systems discussed in section 3.6.2.

Now we return to the overdispersed Poisson system constructed in Proposition III.1.

Recall that individual ζ is initially in compartment C(ζ, 0) and independentExponential(1)

random variables Mζ,0,j are generated for each ζ and each j 6= C(ζ, 0). Define τζ,0 = 0

and, for m ≥ 1 and j 6= C(ζ,m− 1), recursively define “event times”

τζ,m,j = inf
{
t :

∫ t

τζ,m−1

µC(ζ,m−1),j(s,X(s))dΓC(ζ,m−1),j > Mζ,m−1,j

}
.

Individual ζ makes its mth move at the “transition time” τζ,m = minj τζ,m,j from

compartment C(ζ,m − 1) into C(ζ,m) = arg minj τζ,m,j, at which time a new in-

dependent transition clock Mζ,m,j is generated. X(t) constructed in this way is a

Markov chain, due to the memoryless property of {Mζ,j,m} and the independent

increments of {Γij(t)}.

To prove Propositions III.1 and III.2, we construct a sequence of related processes

each of which are shown to give rise to transition probabilities over the time interval

[0, δ] which differ by o(δ). Descriptively, {N ′
ij(t)} will fix the transition rates for

each individual to their values at t − 0; {N ′′
ij(t)} will replace the white noise in the

transition rates by its average over the interval [0, δ], and will consider only the first

jump for each individual; {N ′′′
ij (t)} will modify {N ′′

ij(t)} by counting all the event

times, rather than just the transition times.

Formally, {N ′
ij(t)} is constructed with event times given by

τ ′ζ,j,m = inf
{
t :

∫ t

τ ′ζ,m−1

µC(ζ,m−1),j(0, X(0))dΓC(ζ,m−1),j > Mζ,m−1,j

}
,

where C ′(ζ, 0) = C(ζ, 0), τ ′ζ,m = minj τ
′
ζ,j,m and C ′(ζ,m) = arg minj τ

′
ζ,j,m. Now
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define

S =
⋂
ζ,j

{τζ,2,j > δ}
⋂
k 6=j

{τζ,1,j < δ, τζ,1,k < δ}c

S ′ =
⋂
ζ

⋂
j

{τ ′ζ,2,j > δ}
⋂
k 6=j

{τ ′ζ,1,j < δ, τ ′ζ,1,k < δ}c,

the sets on which no individual has more than one event time τζ,m,j (or τ ′ζ,m,j) in

(0, δ]. Due to the assumption of independence between Γij(t) and Γik(t) for j 6= k,

P [{τζ,1,j < δ, τζ,1,k < δ}] = o(δ). Similarly, P [{τ ′ζ,1,j < δ, τ ′ζ,1,k < δ}] = o(δ). It follows

that

(3.9) P [S] = 1− o(δ), P [S ′] = 1− o(δ)

(though the chance of multiple individuals making transitions in [0, δ] may still be

O(δ).) The uniform continuity of µij(t,X(t)) as a function of t, together with the

observation that

P [X(t) makes > 1 transition in [0, δ]] = o(δ),

means that

(3.10) P [τζ,j,m < δ, τ ′ζ,j,m > δ] = o(δ), P [τζ,j,m > δ, τ ′ζ,j,m < δ] = o(δ).

From (3.9) and (3.10), transition probabilities for {N ′
ij(δ)} can differ from those for

{Nij(δ)} by at most o(δ). Now construct {N ′′
ij(t)} via event times given by

τ ′′ζ,j,1 = inf
{
t : (t/δ)

∫ δ

0

µC(ζ,m−1),j(0, X(0))dΓC′′(ζ,0),j > Mζ,0,j

}
,

with C ′′(ζ, 0) = C(ζ, 0), τ ′′ζ,1 = minj τ
′′
ζ,j,1 and C ′′(ζ, 1) = arg minj τ

′′
ζ,j,1, and

N ′′
ij(t) =

∑
ζ

I{C ′′(ζ, 0) = i, C ′′(ζ, 1) = j, τ ′′ζ,1 ≤ t},

where I is an indicator function. Conditional on {Γij} and X(0), {N ′′
ij(t)} is con-

structed as a family of independent multinomial death processes on the time interval
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[0, δ] for each i = 1, . . . , c, and so the conditional distribution of {N ′′
ij(δ)} is a product

of multinomial distributions. Therefore,

P [N ′′
ij(δ) = nij, for all 1 ≤ i ≤ c, 1 ≤ j ≤ c, i 6= j | X(0) = (x1, . . . , xc), {Γij(δ)}]

=
c∏

i=1


 xi

ni1 . . . nii−1 nii+1 . . . nic ri

 (1−
∑

k 6=ipik)
ri

∏
j 6=i

p
nij

ij


(3.11)

with ri = xi −
∑

k 6=i nik and pij = pij({µij(0, X(0))}, {Γij(δ)}) given in (3.3). Notice

that, for outcomes restricted to S ′ in (3.9), N ′
ij(t) = N ′′

ij(t). Therefore, transition

probabilities for the process N ′
ij(δ) can differ from those for N ′′

ij(δ) by at most o(δ).

Taking expectations of both sides of (3.11), conditional on X(t), matches (3.2) up

to a term o(δ). It follows that the limiting probabilities specified by (3.2) agree

with the construction in Proposition III.1 up to a term o(δ). Infinitesimal transition

probabilities for which terms o(δ) are uniform in t characterize a finite state Markov

chain. Therefore, the specification in (3.2) is well defined and results in the same

Markov chain as the construction of Proposition III.1.

Now we define N ′′′
ij (t) =

∑
ζ

∑
j 6=C(ζ,0) I{C ′′(ζ, 0) = i, τ ′′ζ,j,1 < t}. Under the hy-

pothesis of Proposition III.2 the event times {τ ′′ζ,j,1} in this sum are independent, and

so an application of Lemma III.3 gives

P [N ′′′
ij (δ) = nij, for all 1 ≤ i ≤ c, 1 ≤ j ≤ c, i 6= j | X(0) = (x1, . . . , xc)]

=
∏

i

∏
j 6=i

E
[( xi

nij

)
(1− p̃ij)

nij−xi p̃
nij

ij

]
(3.12)

=
∏

i

∏
j 6=i

π(xi, nij, µij, σij) + o(δ)(3.13)

where p̃ij = 1 − exp(−µij(0, X(0))Γij(δ)). On the event S in (3.9), N ′′′
ij = N ′′

ij, and

so the transition probabilities for N ′′′
ij and N ′′

ij differ by o(δ). The calculation (3.13)

thus proves Proposition III.2.
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3.6.2 Equidispersion of Poisson Systems

For the Poisson system in (3.7),

P [∆Nij = 0|X(t) = (x1, . . . , xc)] = 1− µijxiδ + o(δ)(3.14)

P [∆Nij = 1|X(t) = (x1, . . . , xc)] = µijxiδ + o(δ)(3.15)

where µij = µij(t, x). Since the state space of X(t) is finite, it is not a major

restriction to suppose that there is some uniform bound µij(t, x)xi ≤ ν, and that the

terms o(δ) in (3.14,3.15) are uniform in x and t. Then, P [∆Nij > k|X(t)] ≤ F̄ (k, δν)

where F̄ (k, λ) =
∑∞

j=k+1 λ
je−λ/j!. It follows that

∑∞
k=1 P [∆Nij > k|X(t)] = o(δ),

and so

(3.16) E[∆Nij|X(t) = x] =
∞∑

k=0

P [∆Nij > k|X(t) = x] = µijxiδ + o(δ)

Similarly,

(3.17) E[(∆Nij)
2|X(t) = x] =

∞∑
k=0

(2k + 1)P [∆Nij > k|X(t) = x] = µijxiδ + o(δ)

and so V ar(∆Nij|X(t)) = µijXi(t)δ + o(δ). If the rate functions µij(X(t), t) are

themselves stochastic, with X(t) being a conditional Markov chain given {µij, 1 ≤

i ≤ c, 1 ≤ j ≤ c}, a similar calculation applies so long as a uniform bound ν still

exists. In this case,

E[∆Nij|X(t)] = δE[µijXi(t)|X(t)] + o(δ)(3.18)

V ar(∆Nij|X(t)) = δE[µijXi(t)|X(t)] + o(δ)(3.19)

The necessity of the uniform bound ν is demonstrated by the inconsistency between

(3.18, 3.19) and the result in Proposition III.2 for the addition of white noise to the

rates.



CHAPTER IV

Over-dispersed Continuous Time Markov Counting
Processes

4.1 Introduction

This chapter presents a more complete theory of over-dispersed continuous time

Markov counting processes. While in chapter III the stress was on a specific class of

processes required for the data analysis, in this chapter we consider other types of

population processes and focus on their analytic properties.

In model-based time series data analysis, time dependence is usually modeled

via difference or differential relationships. Some data analysis techniques are based

on entirely deterministic models, in which case a system of ordinary differential

equations (ODE)

ẋ(t) = µx (t,x (t))(4.1)

is commonly used. In (4.1), x(t) is a vector valued function of time and ẋ(t) is

the vector of first derivatives with respect to time. However, here we will consider

analysis based on stochastic models. Stochastic differential equations (SDE) of the

form

dX(t) = µX (t,X (t)) dt+ σX (t,X (t)) dW (t)(4.2)

72
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have been extensively studied (Øksendal, 1998). SDEs are intimately connected

to deterministic ODEs. One may think of the solution to (4.2) as a process with

the mean behavior driven by the solution to the ODE system specified by µX (the

infinitesimal mean function), with σX (the infinitesimal standard deviation function)

determining the variability around it. Then, for “small enough” σX , the solution

to (4.2) may behave very much like the solution to (4.1), though even quite small

amounts of process noise can have qualitative consequences (Coulson et al., 2004).

Continuous time Markov chains (CTMC) form another family of commonly used

models that has also been well studied (Brémaud, 1999). Examples of CTMCs used

in different disciplines are: the Poisson process, linear pure birth process and linear

pure death process. The linear pure birth and death processes in particular are

CTMCs that may be seen as doubly stochastic Poisson processes (the intensity or

rate of the stochastic process is random) with the rate depending on the process

itself. Hence, we refer to N(t) as a self-exciting Poisson process (Snyder and Miller,

1991) if it has transition probabilities given by

P (∆N(t) = 0|N(t) = n) = 1− µN(t, n)δ + o(δ)

P (∆N(t) = 1|N(t) = n) = µN(t, n)δ + o(δ)(4.3)

P (∆N(t) > 1|N(t) = n) = o(δ),

for n ∈ {0, 1, . . . }, and where the operator ∆ is defined by ∆N(t) = N(t+ δ)−N(t).

The dependence of ∆N(t) on δ will be suppressed. These univariate models, al-

though quite simple, have been used in their own right and as building blocks for

more complex models, giving rise to multivariate self-exciting Poisson processes, like

queues and compartmental models (Brémaud, 1999; Jacquez, 1996). Although these

multivariate extensions of self-exciting Poisson processes are more interesting from
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the point of view of actual applications and data analysis, we start by deriving an-

alytical results for the simpler univariate case before addressing the more complex

models. These models, like SDEs, are also tied to deterministic ODEs in the sense

that the infinitesimal mean µN determines the mean behavior of the process. For

large enough values of the integer valued process, the stochasticity becomes neg-

ligible and N(t), as defined by (4.3), behaves very much like the solution of the

corresponding ODE, ẋ(t) = µN(t, x(t)).

An important difference between SDEs and self-exciting Poisson processes is the

absence in the latter of some sort of counterpart of σX in (4.2), which would allow

for a more flexible modeling of the variability. This is because, unlike in SDEs, there

is a relationship between the mean and variance of N(t) specified by (4.3). For this

class of models, it is usual to choose a form for µN with a specific model in mind for

the mean, which in turn implies a model for the variability. The exact mean-variance

constraint is different for different processes. These constraints are derived explicitly

for the homogeneous Poisson, linear pure birth and linear pure death processes in

section 4.3. In particular, these processes are shown to have the same infinitesimal

mean and variance, i.e. they are equi-dispersed, as discussed in section 4.2. This

affects the properties of more complex models that use them as building blocks.

The techniques presented in chapter II provide general methods for fitting such

models to time series data, as discussed in chapter III. From a data analysis point

of view, this constraint on the moments is undesirable since it may result in a re-

duction in the goodness of the fit. Prior work has studied over-dispersion in count

modeling (Gillespie, 1984; Takahata, 1987; Brown et al., 1998) but the tendency

has been towards renewal processes (Snyder and Miller, 1991; Cutler, 2000; Wilson

and Costello, 2005), moving away from the Markovian framework. The main con-
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tribution of this chapter is to present continuous time Markov counting processes

for which it is possible to specify the first two infinitesimal moments independently,

in the spirit of the SDE framework, making them capable of over-dispersion. These

processes are constructed by modeling the individual event intensities or rates of the

standard population models as independent gamma processes (although other Lévy

processes could be used), making the rates state variables in a continuous time state

space model. The resulting doubly stochastic self-exciting Poisson processes are in

fact over-dispersed continuous time Markov counting processes. Adding noise to the

event rates may be justified as a model for a stochastically changing environment or

random media where the self-exciting Poisson process evolves.

Section 4.2 introduces the concept of dispersion of continuous time Markov count-

ing processes which leads to the examples of equi-dispersed self-exciting Poisson

processes of section 4.3. Then section 4.4 presents over-dispersed versions of homo-

geneous Poisson and linear pure death processes.

4.2 Dispersion of Continuous Time Markov Counting Processes

Previously considered measures of dispersion of continuous time Markov processes

include V ar[N(t)]/E[N(t)] (Gillespie, 1984) and V ar(N(t))−E(N(t)) (Brown et al.,

1998). Given the conditional independence property of Markov processes and the

treatment of time as continuous, we consider the ratio of infinitesimal moments a

more appropriate measure of the dispersion of univariate Markov counting processes.

We will refer to

DN(t, n) =
limδ↓0 δ

−1V [N(t+ δ)−N(t)|N(t) = n]

limδ↓0 δ−1E[N(t+ δ)−N(t)|N(t) = n]
(4.4)

as the dispersion index of the Markov counting process N(t). This index could be

referred to as the infinitesimal dispersion index but, for ease of notation, we will
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usually omit “infinitesimal”. The “non-infinitesimal” counterpart

ADN(t, n0) =
V [N(t)−N(0)|N(0) = n0]

E[N(t)−N(0)|N(0) = n0]

is still of interest and we refer to it as the aggregated dispersion index of N(t).

A Markov counting process is then said to be equi-dispersed (on aggregate) if the

(aggregate) dispersion index is 1, over-dispersed (on aggregate) if it is greater than

1 and under-dispersed (on aggregate) if it is smaller than 1.

Since the increments of a Markov counting processes are integer valued, the con-

tribution of terms corresponding to increments of size zero and one is the same for

all moments, i.e., for all r ∈ N,

0rP (∆N(t)=0|N(t)=n) = 0

1rP (∆N(t)=1|N(t)=n) = P (∆N(t)=1|N(t)=n),

so that the difference between any two moments comes from terms corresponding

to increments of size more than one. Usually, these terms are assumed to vanish

as the time interval considered shrinks, i.e. P (∆N(t)=k|N(t)=n) = o(δ) for k ≥

2. Heuristically, this assumption implies that all infinitesimal moments should be

equal, since these terms make the moments different and they vanish. This idea is

formalized in lemma IV.2 at the end of this section. In addition, infinitesimally there

is no difference between the second moment and the variance of the increments of a

univariate Markov counting process under quite general conditions. It would follow

from this that self-exciting Poisson processes are equi-dispersed since, as defined

in (4.3), terms corresponding to increments of size more than one are o(δ). This

additional insight is formalized in proposition IV.1 below, which provides sufficient

conditions for equi-dispersion.
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Note that the conditions in lemma IV.2 and proposition IV.1 are trivially satisfied

if ∆N(t) is bounded (like in the cases of death processes), since it becomes a finite sum

of o(δ) terms. Even though for unbounded process it is not so trivial to check whether

these conditions hold, the insight provided by lemma IV.2 and proposition IV.1 is

still useful. The homogeneous Poisson and simple linear birth processes are examples

of processes where these probabilities disappear fast enough to cause equi-dispersion,

which is checked by direct computation of the moments in section 4.3.

Proposition IV.1. Provided that

∞∑
k=2

k2P (∆N(t) = k|N(t) = n) = o(δ),

the self-exciting Poisson process N(t) is equi-dispersed, i.e.

µN = lim
δ↓0

E[∆N(t)|N(t) = n]

δ
= σ2

N = lim
δ↓0

V [∆N(t)|N(t) = n]

δ
.

Proof. Since
∑∞

k=2 k
2P (∆N(t) = k|N(t) = n) = o(δ), it follows using lemma IV.2

that

E[∆N(t)|N(t) = n]− E[(∆N(t))2|N(t) = n] = o(δ).

(4.5)

Since

(E[∆N(t)|N(t) = n])2 = o(δ)

V [∆N(t)|N(t) = n] = E[(∆N(t))2|N(t) = n]− (E[∆N(t)|N(t) = n])2,

the result follows.

Lemma IV.2. Provided that

∞∑
k=2

krP (∆N(t) = k|N(t) = n) = o(δ),
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for r ∈ N, any two infinitesimal moments of order smaller or equal to r are equal,

i.e. for s ≤ r

lim
δ↓0

E[∆N s(t)|N(t) = n]

δ
= lim

δ↓0

E[∆N r(t)|N(t) = n]

δ
.

Proof.

E[∆N(t)s|N(t) = n] =
∞∑

k=0

ksP (∆N(t) = k|N(t) = n)

= P (∆N(t) = 1|N(t) = n) +
∞∑

k=2

ksP (∆N(t) = k|N(t) = n),

so that

E[∆N(t)r|N(t) = n]− E[∆N(t)s|N(t) = n] =
∞∑

k=2

(kr − ks)P (∆N(t) = k|N(t) = n)

= o(δ),

since the condition that
∑∞

k=2 k
rP (∆N(t) = k|N(t) = n) = o(δ), implies that

0 ≤
∞∑

k=2

(kr − ks)P (∆N(t) = k|N(t) = n) ≤
∞∑

k=2

krP (∆N(t) = k|N(t) = n) = o(δ)

and the result follows.

4.3 Equi-dispersed Continuous Time Markov Counting Processes

In this section we show that the counting processes associated with homogeneous

Poisson, simple linear pure birth and simple linear death processes are all equi-

dispersed and that, in spite of this, they are equi, over and under-dispersed on

aggregate respectively. We do this by using the known exact distribution of these

processes, which has been well known for a long time (Bailey, 1964; Bharucha-Reid,

1960), to explicitly compute the first two infinitesimal moments about the mean.

These results are summarized in Table 4.1. This section provides the background for

the over-dispersed processes introduced in section 4.4.
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4.3.1 Poisson Process

According to (4.3), for µN(t, n) = λ, N(t) is a homogeneous Poisson process with

rate λ. Under appropriate regularity conditions, the infinitesimal generator

qi,i = − lim
δ↓0

1− P (∆N(t) = 0|N(t) = i)

δ

qi,j = lim
δ↓0

P (∆N(t) = j − i|N(t) = i)

δ
for i < j,

qi,j = 0 for j < i,

for i, j ∈ {0, 1, . . . } defines a continuous time Markov counting process (Brémaud,

1999). In the case of the homogeneous Poisson process, the infinitesimal generator

is

qi,i = −λ

qi,i+1 = λ

qi,j = 0, for j /∈ i, i+ 1.

The increment process of a homogenous Poisson process follows a Poisson distribution

with mean λδ, i.e.

P (∆N(t) = k|N(t) = n) =
e−λδ(λδ)k

k!
,

for k ∈ {0, 1, . . . }. The mean and variance of the increment process are

E[∆N(t)|N(t) = n] = λδ

V [∆N(t)|N(t) = n] = λδ,

from which it follows that the process is both equi-dispersed and equi-dispersed on

aggregate, i.e.

DN(t, n) =
limδ↓0 δ

−1λδ

limδ↓0 δ−1λδ
= 1,
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and

ADN(t, n0) =
λt− n0

λt− n0

= 1.

4.3.2 Simple Linear Pure Death Process

Setting N(t) to satisfy (4.3) with µN(t, n) = µn1{n<n∗0}, where n∗0 is a positive

integer representing the individuals in a population that are alive at time 0, N(t) is

the counting process associated with a simple linear death process with individual

death rate µ. N(t) then has infinitesimal generator

qi,i = −µi1{i<n∗0}

qi,i+1 = µi1{i<n∗0}

qi,j = 0, for j /∈ i, i+ 1.

We distinguish the standard death process, which we call N∗(t), from its associated

counting process defined by the infinitesimal generator above, N(t), by having a star

on the former. Starting with a population of size n∗0 at time 0, N(t) counts the

individuals that have died by time t ≥ 0 and N∗(t) is the number of individuals

still alive by time t. It follows that N(t) = n∗0 −N∗(t). The standard death process

N∗(t) is decreasing so it is not a counting process. To do a comparison with the

other counting processes in this chapter, it is more relevant to consider N(t). By

definition, if N(t) = n, N∗(t) = n∗0−n and the distribution of the increment process

of N(t) conditional on N(t) = n is binomial with parameters size n∗0 − n and event

probability π(t) = 1− e−µδ, i.e.

P (∆N(t) = k|N(t) = n) =

(
n∗0 − n

k

)
π∗(t)k(1− π∗(t))(n∗0−n)−k,
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for k ∈ {0, 1, . . . , n∗0 − n}. This implies, via the Taylor series expansion 0 ≤ e−µδ =

1− µδ + o(δ) ≤ 1,

E[∆N(t)|N(t) = n] = (n∗0 − n)(1− e−µδ)

= (n∗0 − n)µδ + o(δ)

V [∆N(t)|N(t) = n] = (n∗0 − n)(1− e−µδ)e−µδ

= (n∗0 − n)(e−µδ − e−2µδ)

= (n∗0 − n)µδ + o(δ)

DN(t, n) =
limδ↓0 δ

−1((n∗0 − n)µδ + o(δ))

limδ↓0 δ−1((n∗0 − n)µδ + o(δ))
= 1.

It follows that the process is equi-dispersed. To see that the process is under-

dispersed on aggregate, note that N(0) = n∗0 −N∗(0) = 0 by definition, and

ADN(t, 0) =
n∗0(1− e−µt)e−µt

n∗0(1− e−µt)
= e−µt < 1,

for µ > 0.

4.3.3 Simple Linear Pure Birth Process

According to (4.3), for µN(t, n) = βn, N(t) is a simple linear birth process with

individual birth rate β and has infinitesimal generator

qi,i = −βi

qi,i+1 = βi

qi,j = 0, for j /∈ i, i+ 1.

Conditional on N(t) = n, the simple linear birth process N(s) counts the number of

individuals in the population at time s ≥ t, which consists of the initial n individuals

plus their descendants. The distribution of N(s) given N(t) = n is a negative
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binomial distribution with parameters number of successes n and success probability

π(t) = e−βδ, i.e.

P (∆N(t) = k|N(t) = n) =

(
n+ k − 1

k

)
(e−βδ)n

(
1− e−βδ

)k
.

for k ∈ {0, 1, . . . }. This implies that, since 1 ≤ eβδ = 1 + βδ + o(δ),

E[∆N(t)|N(t) = n] = n(eβδ − 1)

= nβδ + o(δ)

V [∆N(t)|N(t) = n] = neβδ(eβδ − 1)

= n(e2βδ − eβδ)

= nβδ + o(δ)

DN(t, n) =
limδ↓0 δ

−1(nβδ + o(δ))

limδ↓0 δ−1(nβδ + o(δ))
= 1,

from which equi-dispersion follows. However, the process is over-dispersed on aggre-

gate,

ADN(t, n0) =
n0e

βt(eβt − 1)

n0(eβt − 1)
= eβt > 1,

for β > 0. Note that the expected value of ∆N(t) given N(t) is the initial number

of individuals in the population times

eβδ − 1 =
1− e−βδ

e−βδ
=
P (Any individual gives birth to a new individual in δ)

P (Any individual does not give birth in δ)
,

which is the odds of a birth (as opposed to the simple linear death process, where the

expected value is the number of individuals alive times the probability of a death).

4.4 Over-dispersed Continuous Time Markov Counting Processes

This section presents over-dispersed counterparts of the homogeneous Poisson

and linear pure death processes of section 4.3. For these processes we provide three
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Poisson Birth Death

E[∆N(t)|N(t)] λδ N(t)(eβδ − 1) [n0 −N(t)] (1− e−µδ)

V [∆N(t)|N(t)] λδ N(t)eβδ(eβδ − 1) [n0 −N(t)] (1− e−µδ)e−µδ

AD(t, n0) 1 eβt e−µt

D(t, n) 1 1 1

Table 4.1: Mean and variance of the increment of Poisson, simple linear death and simple linear
birth counting processes used in population modeling. The dispersion and aggregate
dispersion indices show that all three processes, in spite of not being equi-dispersed
on aggregate, are indeed infinitesimally equi-dispersed. This motivates the results in
section 4.4 regarding over-dispersed continuous time Markov counting processes.

results: their first two infinitesimal moments about the mean, which shows that they

are indeed over-dispersed; the distribution of the counting processes, which allows

for exact simulation of the counting processes; and a closed form for the infinitesimal

generator, which may be used for exact simulation of the event times (point process).

To obtain these processes we add white noise to the rates of the equi-dispersed

processes. The added noise should have positive increments to preserve the positive-

ness of the rates. Also, to retain the Markov property of the equi-dispersed processes,

the increments should be independent. The class of Lévy processes provides a rich

class of processes to choose from. The construction of these processes is similar to

subordination of Lévy processes. In fact, the Poisson gamma process of section 4.4.1

is a subordinated Lévy process that has been analyzed before (Sato, 1999; Wolpert

and Ickstadt, 1998), but not in the framework of over-dispersed Markov processes.

The other processes we consider are not subordinated Lévy processes. Following the

customary naming of subordinated Lévy processes, the name of the original process

is placed first and followed by the name of the process proposed for the rate.
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4.4.1 The Poisson Gamma Process

Consider the doubly stochastic homogeneous Poisson process N(t) which, con-

ditional on the gamma process Λ(t), is the homogeneous Poisson process of sec-

tion 4.3.1 with integrated rate Λ(t) (see chapter III for a more detailed discussion),

where ∆Λ(t) ∼ λΓ (µ = δ, σ2 = τδ), i.e.

P (∆N(t) = k|N(t),∆Λ) =
e−∆Λ(t)(∆Λ(t))k

k!
.

It is a standard result that the distribution of the increment process of N(t) is

negative binomial with probability mass function

P (∆N(t) = k|N(t) = n) =
Γ (τ−1δ + k)

k!Γ(τ−1δ)
pτ−1δ (1− p)k ,

where p = (1 + ω)−1, ω = τλ, k ∈ N ∪ {0}. It follows that the first two moments

of N(t) are E[∆N(t)|N(t) = n] = λδ and V [∆N(t)|N(t) = n] = (1 + ω)λδ, giving a

dispersion index of D(t, n) = (1 + ω).

To obtain the limiting probabilities note that,

P (∆N(t) = 0|N(t) = n) = pτ−1δ = 1 + τ−1δpτ−1δ log p+ o(δ),

and, for k ≥ 1,

P (∆N(t) = k|N(t) = n) =
τ−1δ (k − 1)!Γ(τ−1δ) + o(δ)

k!Γ(τ−1δ)
pτ−1δ (1− p)k

= τ−1p
τ−1δ (1− p)k

k
δ + o(δ),

since, letting α = τ−1δ,

Γ(α+ k) = (α+ (k − 1))× . . .× (α+ 1)× (α)× Γ(α),

(α+ (k − 1))× (α+ (k − 2))× . . .× (α+ 3)× (α+ 2)× α = o(δ) + (k − 1)!α,
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and

Γ(α+ k) = (o(δ) + (k − 1)!α)× (α+ 1)× Γ(α)

= (k − 1)!αΓ(α) + o(δ).

The infinitesimal generator is then

qi,i = − lim
δ↓0

1− pτ−1δ

δ
= τ−1 log p

qi,i+k = τ−1p
τ−1δ (1− p)k

k
, for k ≥ 1.

4.4.2 The binomial gamma process

Consider the doubly stochastic process N(t) which, conditional on the gamma

process Λ(t), is the counting process associated with a simple linear death process

(as in section 4.3.2), with individual integrated death rate Λ(t)(again, see chapter III

for further discussion), where ∆Λ(t) ∼ λΓ (µ = δ, σ2 = τδ). Recall from section 4.3.2

that N(t) (here conditional on Λ(t)) is the increasing process counting the dead

individuals rather than the individuals still alive by time t. We distinguish the

counting process N(t) from the standard death process N∗(t) by having a star on the

latter. The derivation of the infinitesimal moments and the infinitesimal generator

are essentially the same as in chapter III and are included here as well in order to

make each chapter self-contained. Using the moments derived in section 4.3, the

moments of the conditional increments of N(t) can be derived as follows:

E[∆N(t)|N(t) = n] = (n∗0 − n)(1− E[e−∆Λ(t)|N(t) = n])

V [∆N(t)|N(t) = n] = V [(n∗0 − n)(1− e−∆Λ(t))|N(t) = n] +

+ E[(n∗0 − n)(t)(e−∆Λ(t) − e−2∆Λ(t))|N(t) = n]

= (n∗0 − n)2V [e−∆Λ(t)|N(t) = n] +

+ (n∗0 − n)
(
E[e−∆Λ(t)|N(t) = n]− E[e−2∆Λ(t)|N(t) = n]

)



86

where n∗0 is the positive integer representing the individuals alive at time 0. Since

∆Λ(t) ∼ Γ(α = τ−1δ, β = (λτ)−1), with moment generating function E[ez∆Λ] =

( 1
1−zλτ

)τ−1δ for zλτ < 1 and δ, λ, τ > 0. Then,

E[e−∆Λ] =
( 1

1 + λτ

)τ−1δ

V [e−∆Λ] = E[e−2∆Λ]− E[e−∆Λ]2

E[e−2∆Λ] =
( 1

1 + 2λτ

)τ−1δ

E[e−∆Λ]2 =
( 1

1 + λτ

)2τ−1δ

.

Let f(δ) = E[e−∆Λ], then f ′(δ) = −τ−1(1+λτ)−τ−1δ ln(1+λτ) for 1+λτ > 0. Using

Taylor series expansion for δ0 = 0, f(δ) = f(0) + f ′(0)δ + o(δ) and

E[e−∆Λ] = 1− τ−1 ln(1 + λτ)δ + o(δ)

E[e−2∆Λ] = 1− τ−1 ln(1 + 2λτ)δ + o(δ)

E[e−∆Λ]2 = 1− 2τ−1 ln(1 + λτ)δ + o(δ)

V [e−∆Λ] = τ−1δ(ln((1 + λτ)2)− ln(1 + 2λτ)) + o(δ),

It follows that the moments of the increment process are

E[∆N(t)|N(t) = n] = (n∗0 − n)τ−1δ ln(1 + λτ) + o(δ)

V [∆N(t)|N(t) = n] = V [(n∗0 − n)(1− e−∆Λ(t))|N(t) = n] +

+ E[(n∗0 − n)(e−∆Λ(t) − e−2∆Λ(t))|N(t) = n]

= (n∗0 − n)2τ−1δ ln

(
(1 + λτ)2

1 + 2λτ

)
+

+ (n∗0 − n)τ−1δ ln

(
1 + 2λτ

1 + λτ

)
+ o(δ)

= (n∗0 − n)τ−1δ ln (1 + λτ) +

+ (n∗0 − n)τ−1δ
(
(n∗0 − n)− 1

)
ln

(
(1 + λτ)2

1 + 2λτ

)
+ o(δ)
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Since (1+λτ)2

1+2λτ
≥ 1, it follows that the process is over-dispersed for (n∗0 − n) > 1 and

equi-dispersed for (n∗0−n) = 1. Even though the distribution of the increment process

is not needed for computing the infinitesimal moments, it gives the infinitesimal

generator, so we derive it below. For k ∈ {0, . . . , n∗0 − n}

P (∆N = k|N(t) = n) =

∞∫
0

(
n∗0 − n

k

)[
1− e−λ

]k[
e−λ
](n∗0−n)−kλδα−1e−λββδα

Γ(δα)
dλ

=

(
n∗0 − n

k

) ∞∫
0

[
k∑

j=0

(
k

j

)
(−e−λ)k−j

]
e−λ((n∗0−n)−k)λ

δα−1e−λββδα

Γ(δα)
dλ

=

(
n∗0 − n

k

) ∞∫
0

k∑
j=0

(
k

j

)
(−1)k−je−λ((n∗0−n)−j)λ

δα−1e−λββδα

Γ(δα)
dλ

=

(
n∗0 − n

k

) k∑
j=0

(
k

j

)
(−1)k−j βδα

(β + (n∗0 − n)− j)δα

×
∞∫

0

λδα−1e−λ(β+(n∗0−n)−j)(β + (n∗0 − n)− j)δα

Γ(δα)
dλ

=

(
n∗0 − n

k

) k∑
j=0

(
k

j

)
(−1)k−j

(
1 +

(n∗0 − n)− j

β

)−δα

=

(
n∗0 − n

k

) k∑
j=0

(
k

j

)
(−1)k−j

(
1− δα ln

(
1 +

(n∗0 − n)− j

β

)
+ o(δ)

)

= 1{k=0} + δ

(
n∗0 − n

k

) k∑
j=0

(
k

j

)
(−1)k−j+1α ln

(
1 +

(n∗0 − n)− j

β

)
+ o(δ)

4.4.3 The binomial beta process

Here we consider a slightly different approach for finding an over-dispersed simple

linear death process. Instead of using a continuous time doubly stochastic process,

we consider the limit of discrete time models.

Building on the counting process associated with the simple linear death process

of section 4.3.2, N(t), we now make the probability of death in the interval [t, t+ δ],

for an individual alive at time t, a random variable Π(t). Since ∆N(t)|Π(t), N(t)
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follows a binomial distribution given by

P (∆N(t)=k|N(t)=n,Π(t)=π(t)) =

(
n∗0 − n

k

)
(π(t))k(1− π(t))(n∗0−n)−k,

for k ∈ {0, . . . , n∗0 − n}, and letting

Π(t)|N(t) = n ∼ Beta(α = c(1− e−µδ), β = c(e−µδ))(4.6)

c =


(n∗0−n)−1

ω
− 1 if (n∗0 − n) > 1

1 if (n∗0 − n) = 1

with 0 < ω < (n∗0 − n) − 1, it follows that ∆N(t) conditional on N(t) = n has a

beta binomial distribution with the corresponding parameters. This constraint in ω

is necessary because both α and β of the beta distribution need to be positive. The

value of c for (n∗0 − n) = 1 could be any other strictly positive real number since it

does not affect the infinitesimal moments.

Note that N(t) does not define a continuous time process anymore, since Π(t)

is not infinitely divisible. Nevertheless, it is still a useful process to consider since

it is possible to derive the moments of ∆N(t) given N(t) = n and an infinitesimal

generator corresponding to (4.7) below, which does define a continuous time Markov

counting process.

We now derive a continuous time Markov counting process defined by the limit

of the transition probabilities of ∆N(t) conditional on N(t) = n. The beta binomial

probability mass function of ∆N(t) given N(t) = n is

P (∆N(t) = k|N(t) = n) =

=

(
n∗0 − n

k

)
Γ(α+ β)Γ(k + α)Γ((n∗0 − n)− k + β)

Γ(α)Γ(β)Γ(α+ β + (n∗0 − n))
(4.7)

=

(
n∗0 − n

k

)
Γ(α+ β)Γ(α)Γ(β)Γ(k)α{Γ(c+(n∗0−n)−k)

Γ(c)
+O(δ)}

Γ(α+ β)Γ(α)Γ(β)
Γ(c+(n∗0−n))

Γ(c)

(4.8)

=

(
n∗0 − n

k

)
Γ(k)Γ(c+ (n∗0 − n)− k)

Γ(c+ (n∗0 − n))
cµδ + o(δ),(4.9)
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for k ∈ {0, . . . , n∗0 − n}. Equation (4.8) follows from (4.7) via an application of

lemma IV.3 at the end of this section. Specifically, using lemma IV.3 with i =

(n∗0 − n)− k, it follows that

Γ((n∗0 − n)− k + β) = {Γ(c+ (n∗0 − n)− k)

Γ(c)
+O(δ)}Γ(β),(4.10)

and, since α+ β = c,

Γ(α+ β + (n∗0 − n)) = Γ(c+ (n∗0 − n))(4.11)

=
Γ(c+ (n∗0 − n))

Γ(c)
Γ(c)

=
Γ(c+ (n∗0 − n))

Γ(c)
Γ(α+ β).

Plugging (4.10) and (4.11) into (4.7) gives (4.8). Then, using α = cµδ + o(δ) and

canceling terms gives (4.9), which corresponds to the infinitesimal generator

qi,i+k =

(
n∗0 − i

k

)
Γ(k)Γ(c+ (n∗0 − i)− k)

Γ(c+ (n∗0 − i))
cµ

qi,j = 0 for j > n∗0 − i,

for k ∈ {1, . . . , n∗0 − i}. We call the process defined by this infinitesimal generator,

say Ñ(t), the binomial beta process. Its infinitesimal moments can be derived based

on the moments of the discrete time process N(t), defined at the beginning of this

section. The moments of a beta binomial distribution are a standard result which

gives

E[∆N(t)|N(t) = n] = (n∗0 − n)
α

α+ β

= (n∗0 − n)µδ + o(δ)

V [∆N(t)|N(t) = n] = (n∗0 − n)
αβ((n∗0 − n) + α+ β)

(α+ β)2(1 + α+ β)

= (n∗0 − n)(1 + ω)µδ + o(δ).
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Since the binomial beta process has a finite number of states, it follows that the

increment moments of the binomial beta process Ñ(t) are

E[∆Ñ(t)|Ñ(t) = ñ] =

n∗0−ñ∑
k=0

kP (∆Ñ(t)|Ñ(t) = ñ)

=

n∗0−ñ∑
k=0

kP (∆N(t)|N(t) = ñ) + ko(δ)

= (n∗0 − ñ)µδ + o(δ)

V [∆Ñ(t)|Ñ(t) = ñ] =

n∗0−ñ∑
k=0

k2P (∆Ñ(t)|Ñ(t) = ñ)− ((n∗0 − ñ)µδ + o(δ))2

=

n∗0−ñ∑
k=0

k2P (∆N(t)|N(t) = ñ) + k2o(δ) + o(δ)

= (n∗0 − ñ)(1 + ω)µδ + o(δ),

and it follows that the binomial beta process Ñ(t) is over-dispersed for ω > 0 and

(n∗0 − ñ) > 1. If (n∗0 − ñ) = 1, then using

V [∆N(t)|N(t) = n] = (n∗0 − n)
αβ

(α+ β)2

= (n∗0 − n)µδ + o(δ)

as above, it follows that the process Ñ(t) is equi-dispersed, just like in the binomial

gamma process. ω can be used to obtain a specific infinitesimal variance while with

the binomial gamma it would be necessary to solve a nonlinear system of equations.

In practice, these equations are not easy to solve, so one does not parameterize a

binomial gamma process by the infinitesimal moments. Also note that the constraint

0 < ω < (n∗0 − n)− 1 gives a clear bound on the over-dispersion that is possible for

a given population of size (n∗0 − n). In the binomial gamma process it is not even

obvious that such a constrain exists nor the exact bound of the over-dispersion.

These are some advantages of the binomial beta process over the binomial gamma

process.
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Lemma IV.3. For α = c(1 − e−µδ), β = ce−µδ, as defined in (4.6), c > 0 and

i ∈ {1, 2, . . . },

Γ(β + i) =
{Γ(c+ i)

Γ(c)
+O(δ)

}
Γ(β).

Proof. Since β = c− α, and by the definition of the gamma function, for i ≥ 1,

Γ(β + i) = (c− α+ (i− 1))× (c− α+ (i− 2))× · · · × (c− α)× Γ(β)

= {(c+ (i− 1))× (c+ (i− 2))× · · · × (c) +O(δ)}Γ(β)

=
{ i−1∏

j=0

(c+ j) +O(δ)
}

Γ(β)

=
{Γ(c+ i)

Γ(c)
+O(δ)

}
Γ(β).
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