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CHAPTER I

Introduction

1.1 Motivation

Intuition suggests that the parabola y = z? intersects the line y = 0 more closely
than does the line y = x. This intuition can be made more concrete by associating
with each isolated point of intersection of two plane curves a number called the
intersection multiplicity of the curves at that point. The intersection multiplicity at
a point P is, roughly speaking, equal to the number of points of intersection you
would expect to get near P if you perturbed the intersecting varieties slightly. For
example, if € is small (but nonzero), then y = z? and y = 0 + ¢ intersect in 2 points
nearby the origin, so the intersection multiplicity of these two curves is 2. On the
other hand, ¥y = x and y = € only intersect once, so the intersection multiplicity is 1
in this case.

There is also a more algebraic definition.

Definition 1. Let f,g € C[z,y| be polynomials defining plane curves in A2%(C).
Suppose the origin is an isolated point of the intersection of these curves. Define the

intersection multiplicity of f and g at the origin to be

x(f, g) = length (%) _

Here length(Clz, y](,y))/(f,9) is the vector space dimension of C[z, |, over C.



More generally, an arbitrary module M over a ring R is said to have finite length if
the length [ of a chain of distinct submodules 0 = My C --- C M; = M is bounded;
if M has finite length, the length of M is the maximum value of [ over all such chains

of submodules.

For example, if f =y — 22 and g =y, then

Cla,ylwy) o Cla,yl  Cla]
(f,9) (y—a2y)  (22)’

and the elements 1 and x form a basis for this ring as a C-vector space, so the

intersection multiplicity of ¥ = 2% and y = 0 is, once again, 2.

More generally, it should be possible to define an intersection multiplicity for a
pair of varieties in A"(C) meeting in an isolated point. Let R be the ring of local
functions at the point of intersection, let m be the unique maximal ideal of R, and let
I and J be the ideals of R corresponding to the two varieties. The requirement that
the point of intersection be an isolated point forces the ideal I + J to be m-primary,
which is equivalent to requiring that m be the only prime ideal containing I + J,
that some power of m be contained in I + J, or that R/(I 4+ J) have finite length.
Since R/(I + J) has finite length, it would seem natural to define the intersection
multiplicity to be this length; unfortunately, this turns out not to be a satisfactory
definition.

The definition that works is due to Serre ([25]), and requires that we define func-
tors Tory which give an R-module Tor; (M, N) for any two R-modules M and N.
In particular, the functor Toréz is just the tensor product, so that Toréz(M ,N) =
M ®gr N. The intersection multiplicity of the varieties defined by the ideals I and J
is defined to be the alternating sum

X (? ?) = (~1)*length (TorkR (? ?)) .

k>0



The fact that I 4+ J is m-primary assures that these lengths are finite, and the fact
that R is a localization of a polynomial ring implies that the Tor,’s are eventually
zero. Therefore this sum is well-defined. It turns out that all of the Tor,’s for positive
k are zero in the case where I and J both define plane curves, so in that case the
intersection multiplicity is equal to the first term of the alternating sum, which is

the length of

<=
=y

Tor¥ (?, ?) = ? ®r
This is just Definition 1.

As is the case with plane curves, this definition of the intersection multiplicity tells
how many points of intersection should be expected nearby the given point when the
two varieties are perturbed slightly. However, Serre’s definition also makes sense,
more generally, when the ring of local functions on A™(C) is replaced by an arbitrary
regular local ring, and when R/I and R/J are replaced by finitely generated R-
modules M and N. In such a situation, define the intersection multiplicity of M and

N to be

X(M,N) = "(=1)*length(Tor (M, N)).

k>0

Let d and e be the Krull dimensions of M and N and let n be the dimension of R.
Thinking of d and e as corresponding to the dimensions of two intersecting varieties,
and n as corresponding to the dimension of the ambient space, geometric intuition

would suggest the following conjectures, originally due to Serre.

i. If length(M ®pg N) is finite, then d + e < n; if the varieties corresponding to
M and N are too “large”, then we would expect their intersection to be larger

than an isolated point.

ii. If d + e < n, then x(M, N) = 0; the varieties corresponding to M and N are



too “small”, and we would expect them to cease intersecting completely if they

were perturbed slightly.

iii. If d + e = n, then x(M,N) > 0. In this case we'd expect the corresponding

varieties to continue to intersect after being moved slightly.

Serre proved the first statement, but proved the other two only for equicharacter-
istic regular local rings ([25]). The second has been established for arbitrary regular
local rings by P. Roberts ([20]) and, independently, by H. Gillet and C. Soulé ([8]).
The third statement is still open in this generality, although O. Gabber has shown
at least that x(M, N) > 0 (see [23] or [1]).

Serre’s definition of the intersection multiplicity can also be generalized to the
case where more than two varieties intersect; to do so requires defining the functors
Tor, for more than two modules. We present the definition in this generality below.
This definition of intersection multiplicity proves again to be equivalent, in the case
of complex varieties, to a definition that depends on counting the number of points
of intersection after the varieties are moved slightly.

In this thesis we investigate functions

fk = length(Tork(Ml/IflMl, s 7M'n/[nanMn))7

where R is an arbitrary local ring (not necessarily regular); M; is a finitely generated
R-module and I; an ideal of R, for 1 < i < n;and I1+---+1,+Ann M;+---+Ann M,
is primary to the maximal ideal of R.

Special cases of these functions have already been found to be interesting in their
own right; see, for example, the discussion below of Hilbert-Kunz functions. It is
also hoped that a better understanding of these functions may lead to insights into

the theory of intersection multiplicities; for example, it seems reasonable to attempt



to calculate the intersection multiplicity of varieties defined by ideals I; and I, using

only properties of the function
folai, az) = length(R/(I* + 15?)),

although this has not yet proved possible. We are, however, able to establish certain
properties of the functions f; in some generality. In particular, they are shown to

have rational generating functions in the following cases:
in=2 M =My=R, k>2;

ii. n =2, My = My, = R, k is arbitrary, R is regular, and

D U NI C Rt to]

a1,a2>0

is a finitely generated R-algebra;

iii. My,..., M, = R is a polynomial or power series ring, [,... , [, are principal
monomial ideals, and k£ = 0; more generally, a weaker result is proved in the

case when [, ..., I, are monomial but not necessarily principal.

1.2 Basic Definitions

All rings are commutative, and local rings are in addition assumed to be Noethe-

rian.

Definition 2. Given n modules M;,... , M, over a ring R, define the R-module

Torf(M,... ,M,) by
i. choosing a projective resolution
= Py = Pig—= Py — Pio— M; =0

for each M;,



ii. tensoring together all of these projective resolutions (with the modules M; re-

moved) and taking the total complex,

B @ P17i1®.'.®Pn;in—) @ P15i1®.'.®Pn;in_>P110®...®Pn50_>0’

(%15 yin) (215--- 4in)

> ii=2 > 4=l
and

iii. taking the kth homology of this complex.

This defines a functor, covariant in each of the n variables, which specializes
for n = 2 to the usual Tor. It shares most of the basic properties with the usual

2-variable Tor; for example,

i. A short exact sequence in any of the variables gives the usual long exact se-

quence.
ii. Any element of R that kills one of M; also kills Torg (M, ... , M,).

iii. Tord(M,...,M,) = M, ®g---Qr M,.

iv. If all but one of the M; is flat, then Torg (M, ..., M,) =0 for all £ > 0.
v. If the M; are all finitely generated over R, so is Tor;(Mj, ..., M,).

Definition 3. Let R be a Noetherian ring, n a positive integer, M, ... , M, finitely
generated R-modules, and I, ... I, ideals of R. Let J = I; +---+ I, + Anng(M;) +
---+Anng(M,), and assume that R/.J has finite length. For k a non-negative integer,
define

fr(ay, ..., a,) = length(Torg (M, /I My, ..., M, /I M,)).

Note that the modules Tory(M;/I{* My, ... ,M,/Ié"M,)) do have finite length,

since they are finitely generated modules that are killed by the ideal J' = I7* +-- -+



I% + Ann M; + - - - + Ann M, and hence are finitely generated modules over R/.J’,

which has finite length. (This is because J' has the same radical as the ideal J above,

and R/J is assumed to be finite length.)

In this thesis, the ring R will always be local, and the modules My, ..., M, will

almost always be equal to R.

1.3

i.

ii.

1il.

Examples

If n =1, then f; is the usual Hilbert function, and is eventually a polynomial

of degree d = dim R.

In [3] and [4], W. Brown studies f; in the case n = 2 and M = R; he calls this
function the Hilbert function of I; and I,. In [3], he gives sufficient conditions
for fo to be eventually polynomial (in other words, for there to exist (by,bs)
such that fo(a1,as) agrees with a polynomial for all (ay,as) > (b1,b2)). In
[4], he considers the case where fy is eventually a polynomial in a, as, and

min(ay, az). Both papers also provide several examples of such functions.

ftM =---=My=M,I,...,I, are all principal ideals, and R has char-
acteristic p > 0, then the function HKy ;- a — fo(p%, ... ,p%) is called the
Hilbert-Kunz function on M of the ideal I = I + - - - 4+ I,. The more standard

definition is in terms of bracket powers,
171 = {@"|i e I}).

With this notation, HK s r(a) = length(M/IPIM). Because R has character-
istic p, 1Pl = I{’e + -+« + I?", which shows that HK},; is dependent only on [

and not on the choice of I, ..., I,.



1v.

Monsky has shown ([16]) that this function has the form
enx (M, I)p™ + O(p*“~")

where d = dim M and egx(M,I) is a positive real constant. The constant
enx (R, m) may be written exk (R), and HKg ,,, may be written HKg, and called

just the Hilbert-Kunz function of R.

It is not even known in general whether eyx(R) is rational. However, many
results have been proved in particular cases; see [16], [5], [17], [11], [19], [18],
[6], and [24].

The Hilbert-Kunz function also has an important connection with the theory
of tight closure. If I C J are m-primary ideals of R, then I* = J* if and only
if eg(R,I) = egx(R,J). This statement is true when R is a complete local
domain, and in somewhat more generality. (See [14], thm. 8-17, or see the more

thorough discussion in [13])

In [7], M. Contessa considers the generalization of the previous situation to the
case of arbitrary k. She is able to use results about the higher Tors to determine
the form of Hilbert-Kunz functions of modules over regular rings of dimension
at most two. In this thesis, we similarly find that results for £ > 0, in addition

to being interesting in their own right, have applications to the case £ = 0.



CHAPTER II

Quasipolynomial Functions and N"-graded modules

Given the functions f; : N* — N defined previously, there are corresponding gen-

erating functions

Fi(z1,... ,2p) = Z fr(a)z®.

a=(a,... ,an)EN"

Later we will prove that, under certain conditions, these generating functions are
rational. In fact, we will prove that the functions f; are quasipolynomial, a somewhat
stronger condition. The first section of this chapter discusses the basic properties of
quasipolynomial functions.

Given a N'-graded module M having finite length in each graded piece, there is

a natural notion of a Hilbert function N* — N given by
(a1,...,a,) = length(M,, . a.))-

For n = 1 this is the usual Hilbert function. The second part of this chapter is
devoted to showing that certain N”-graded algebraic objects (including, for example,
finitely generated modules over finitely generated algebras over fields) have Hilbert
functions which are quasipolynomial functions. This fact will be used in proofs of

the results of the following chapter.



2.1 Quasipolynomial Functions

Most of the results of this section are known, though not perhaps in the form we
need them; see, for example, [15].

Most of the functions considered here are defined on N*. However, it will be
convenient to identify such functions with functions defined on all of Z" that are

zero for elements of Z™ not in N*.

Definition 4. Given linearly independent vectors a;, ... ,a, € N*, say that a func-
tion f : N* =7 is periodic with respect to aq,... ,«a, if, for any i, the function

a— f(a+7)— f(a) is identically zero on N*, for v any element of Noy + - - - + Ney,.

Definition 5. Given 8 € N* and linearly independent vectors oy, ... ,a, € N*, the

cone with vertex 5 generated by s, ... , . is
Cﬂ7a1)‘“)ae = B+RZOQ1+“‘+R200{€ C R’rzlo.

Definition 6. Let a1,...,a. € N* be linearly independent vectors in R”, and let
be another element of N*. Let C = Cg,,,.. o. be the cone with vertex 3 generated
by aq,...,a.. Call f : N* =7 simple quasipolynomial of polynomial degree d on

Byaq, ..., if f(x) =0 for z ¢ C and

f(z) =) calz)a®

acN®
for x € C, where ¢, is periodic with respect to aq,... ,q., is identically zero for all
a = (ai,...,a,) such that Y a; > d, and is not identically zero for at least one «

satisfying ) a; = d.

Note that polynomials of degree d are examples of simple quasipolynomials of
diagonal degree d. We use the term “polynomial degree” and not just “degree” to

distinguish it from another notion of degree.



Definition 7. The cumulative degree of a simple quasipolynomial of polynomial

degree d on B, aq, ..., is d +e.

The cumulative degree will turn out to be the more useful number for our purposes.
It will also be convenient to allow simple quasipolynomial functions of cumulative

degree 0, defined as follows.

Definition 8. A function f : N* — Z is simple quasipolynomial of cumulative degree

0 if it is nonzero on at most a single element of N”.

Lemma 9. Let F(x1,...,x,) be the generating function of f : N* -7, fix € N*,

and ﬁil? a linearly independent set 0? vectors A1,y...,0¢ € N*. Suppose
( ) 1
1 y4n H; 1(1 .@aj)dj

with Z;Zl d; < d. Then f is the simple quasipolynomial function of cumulative
degree d given by

(4 —14+m; . )= s
flay,...,a,) = HJ( ™m; ) if (ar ) Z]mjaj

0 otherwise.

Proof. Given o € N", there is at most one way of writing o as an N-linear combi-
nation of aq,...,a,. This means that the coefficient of @ in F' is nonzero if and
only if o can be written as the N-linear combination of ay,...,a.. If a is such an
exponent, write & = > mjc,. Then the coefficient of 2 in F' is the product of the
coefficients of ™% in 1/(1 — %), and it is easy to verify that these coefficients are

just the binomial coefficients given in the description of f above. O

Definition 10. Given a polynomial P(z1,... ,z,), define the support of P, Supp P,

to be the set of all @ € N® such that the coefficient of z% in P is nonzero.



Definition 11. Given linearly independent vectors «,...,a. € N* and another

vector € N*, let

Hﬂyaly"'zae = {a € Nn

a:ﬁ+2miai,0§mi<l}.
i

Given any a € Cgg,,... .o, N N, there is a unique representative of o modulo
aq,...,0. in g, o in the following, we use @ to denote that unique represen-

tative.

Lemma 12. Let F(x1,... ,x,) be the generating function of f : N* - Z, fixr f € N*,

and fix a linearly independent set of vectors ay, ... ,a, € N*. Suppose
P
F(xy,...,z,) =
( 1 n) H§:1(1 _ xaj)dj

with Z;Zl di < d and SuppP C gy 1,.. .-

€

Write P = ) cqx®. Then f is the

simple quasipolynomial function of cumulative degree d given by

fla) = {H] ca(dj_;;’mj) ifa=a+ ) mja;.

Proof. The generating function F' can be written as the sum of the fractions

Cox®
T..0-a9)b
The result then follows immediately from the previous lemma. O
Lemma 13. Fiz f € N*, and fiz a linearly independent set of vectors au, ... ,q, €
N". Then functions of the form
P
F e =
(xla 7xn) H§:1(1 _ xaj)dj

with Supp P C Il = Tlg,,.. 0., and Z;Zl d; < d, form a basis for the generating
functions of the simple quasipolynomial functions of cumulative degree at most d on

By, ..., Q.



Proof. This is an immediate consequence of the previous lemma and of the fact that

the functions

Gb -1 +—a7
(al,... ,ae) — ];I ( a; >,
with ) (d; — 1) at most d, form a basis for the polynomials of degree at most d. [

Theorem 14. Let f; be simple quasipolynomial on 3, aq, ..., a, of degree d. Pick

B € N* and linearly independent o, ..., o, such that

e

Define a new function f' such that f'(a) = a for a € C" and f'(a) =0 for a & C".
Then there exist positive integers m; such that f' is simple quasipolynomial of degree

at most d on ', micf, ..., medl.

Proof. For each o}, choose m; such that m;co € Noy + ---Na,. Since f is simple

quasipolynomial, we know

flz)=") calz)2®

aceNn

for x € C, where ¢, is periodic with respect to a,... , ., is identically zero for all
a = (ai,...,a,) such that » a; > d. Since the ¢,’s are periodic with respect to
aq,. .. ,Q, they are also periodic with respect to miaf, ..., megae. Therefore f is

also simple quasipolynomial. O

Theorem 15. If fi and fo are both simple quasipolynomial functions on B, «, ...,
Q., of cumulative degree di and dy respectively, then fi + fo is also simple quasipoly-

nomial on B, o, ..., qe, of degree at most max(dy, ds).

Proof. The proof is immediate from the definition of a simple quasipolynomial func-

tion. O



Theorem 16. If f : N* — N s polynomial of degree d, then

fflay= > fla,... )

a1+-+an=a
15 polynomial of degree d +n — 1.
Proof. The set of generating functions of polynomials of degree at most d has a basis

consisting of functions of the form

1
[Limy (1 — @)

where d; > 1 and ) _,(d; — 1) < d. Given a function f with generating function F,

(.7,'1,... ,.Tn) —

the generating function of f* is F(z,...,z). Under this transformation the basis

element above becomes
1
(1—z)xd’

which is clearly the generating function of a polynomial of degree at most d +n — 1.

Thus f* is a polynomial of degree at most d+n — 1; it only remains to prove that
f* has at least degree d + n — 1. To do this, it suffices to show that f; has degree
d +n — 1, where f; is the degree d part of f. We will prove this by bounding f}
below by a polynomial of degree d + n — 1.

If fa(as,... ,a,) <O for some (ay,...,a,) € N*, then the polynomial function
a— f(aay,...,aa,) = fa(aay,... ,aa,) + lower order terms

has negative leading term, and must eventually take on negative values. This is
contrary to our hypotheses, so such (ay, - .. ,a,) must not exist, and f; : N* — N must
take on only nonnegative values. Furthermore, we can choose (a1, ... ,a,) € R%, such
that " a; = 1 and fy(ay,...,a,) > 0; if f; were zero for every such (ay, ... ,a,) then

it would be identically zero. In fact, the subset of

T

A= {(al,... ,CLn) ER;O



on which f; is zero is a proper algebraic subset of A. Therefore there is a closed
(n — 1)-dimensional disk A C A of radius ¢ around the chosen point (ai,... ,a,)
such that f4(8) > c for ¢ a fixed, positive real number and 5 any element of A.

Let a be any positive integer, and let o be any element of A. Then f;(ax) =
a®fs(a) > ca. Therefore f; is bounded below by a? on the set aA = {ac|a € A}.
By the same reasoning as that used in Lemma 50, the number of points in N* N a¢
is greater than or equal to the volume of (a — b)A for a fixed constant b € R. This

volume is a polynomial V'(a) of degree n — 1 in a. Therefore

fila) = > falar,... an)

(]

fd(al, e ,an)

(a1,...,an)EN?N(a—b)A

> Z atle
(a1,--.,an)EN?N(a—b)A
> V(a)ae

Therefore f(a) is bounded below by the product V(a)ac, which is a polynomial of

degree d +n — 1. O

Theorem 17. Given f : N* =N simple quasipolynomial of cumulative degree d,

define a new function f*: N— N by

Then f* is simple quasipolynomial of cumulative degree d.

Proof. Write F' for the generating function associated with f, and F* for the gen-
erating function associated with f*. Then F* = F(z,...,z). By Theorem 13,

F(z,...,z) is clearly the generating function of a simple quasipolynomial function if



F(x,...,z)is. It is also clear that f has degree at most d. The fact that the degree

of f is not less than d follows from the same fact for polynomials. O

Definition 18. A function f : N* —Z is quasipolynomial of degree d if it can be
written as the sum of simple quasipolynomial functions of cumulative degree at most
d, and if it cannot be written as the sum of simple quasipolynomial functions of
cumulative degree less than d.

Sometimes we will say that a function f : N* — Z is quasipolynomial on aq, ...,
a, € N": by this we mean that f can be written as the sum of simple quasipolynomial

functions on subsets of aq, ..., ..

It might be more accurate to call such functions eventually quasipolynomial; this
would make our usage agree, for example, with the definition given in 4.4 of [26].
It should be obvious from the definition that simple quasipolynomial functions of

cumulative degree d are also quasipolynomial functions of degree d.

Theorem 19. If f; : N* = Z and fo : N* =7 are quasipolynomial, of degrees dy
and dy respectively, then fi + fo is quasipolynomial of degree at most max(dy,ds).

Also, if di # do, then the degree of f1 + fo is exactly max(dy, ds).
Proof. Immediate from the definition. O
The following theorems provide a few examples of quasipolynomial functions.

Lemma 20. If f(«) is zero for all but finitely many values of o, then f is quasipoly-

nomial of degree 0.

Proof. The proof follows immediately from the definition of a simple quasipolynomial

of degree 0. O



Theorem 21. A function f : N— Z is quasipolynomial on 1 (in other words, is the
sum of simple quasipolynomial functions on {B,1}, for various 8’s) of degree d iff it

1s eventually polynomial of degree d — 1.

Proof. A simple quasipolynomial function f(«) on f,1 is a function that is zero for
a < [, and that agrees for o > [ with a polynomial with coefficients that are periodic
with respect to 1 and therefore are constant. Such a function is clearly eventually
polynomial, as is the sum of such functions.

For the converse, let f’ be the polynomial function that f eventually agrees with.
A polynomial of degree d — 1 is simple quasipolynomial of degree d. The difference
between f and f’is then nonzero for only finitely many values of N, and is accounted

for by the previous lemma. O

Theorem 22. If a function f: N— Z is quasipolynomial on ey, ... ,e, of degree d,
where e; is the vector in N* that is one in the ith position but zero elsewhere, then
there exists o' € N such that f(a) agrees with a polynomial of degree d — n for all

a > o. (Here we take a polynomial of negative degree to be identically zero.)

Proof. A simple quasipolynomial function on a proper subset of eq,... ,e, is easily
seen to be eventually zero, whereas a simple quasipolynomial function on ey, ... e,
agrees eventually with a polynomial with constant coefficients, as in the previous
proof. The sum of such functions is, therefore, eventually a polynomial, and the

statement about the degree follows from the definition of cumulative degree. O

The converse to this theorem is false; if f is eventually polynomial but has non-
polynomial behavior on, for example, a finite set of lines extending parallel to one of

the coordinate axes, then f is not quasipolynomial.



Theorem 23. The product of two quasipolynomial functions in distinct sets of vari-
ables is quasipolynomial of degree equal to the sum of the degrees of the two quasipoly-

nomaial functions.

Proof. Let f(x1,...,%m) and g(y1, - .. ,yn) be the two functions. Let f = fi+--- f,,
with each f; simple quasipolynomial, and with f; having degree equal to the degree

of f. Choose g1,...,gs similarly. Then

fg= Z fig;,
2%
so it is clear that fg is quasipolynomial if the product of two simple quasipolynomial
functions is simple quasipolynomial. If, in addition, such products have degrees equal
to the sums of the degrees of their factors, then the statement about degrees will also
be proved, since f;g; would then have the correct degree, with all the other products
having equal or lesser degrees. Thus we may assume without loss of generality that
f and g are simple quasipolynomial. Write F(z1,... , %) and G(yi, - .. ,y,) for the
generating functions of f and g, respectively. The generating function of fg is just
F'G and, by theorem 13, F'G is the generating function of a simple quasipolynomial

function of the correct degree. O

Quasipolynomial functions have a very simple characterization in terms of gener-
ating functions. Some preliminary lemmas will be required before the proof of this

fact.

Lemma 24. Let F(xq,...,x,) be the generating function of f : N* = 7. Assume

P(zy,...,xp)
F(zy,...,z,) = T —a%)%
with aq, ... ,aq € N* vectors that are linearly independent in R* and P a polynomial.

Then f is quasipolynomial of cumulative degree at most Z;Zl d;.



Proof. The function F' is the sum of fractions of the form

7

[[joy (1 = 22)%

Each of these is the generating function of a simple quasipolynomial function of

degree d, by Theorem 13. O

Lemma 25. Let F(x) be a rational function of the form

P(z)
[[= (1 —z%)%

If the «;’s are linearly dependent, then F(z) can be rewritten in the form

F(z) =

Z H 1 _ 330‘”) i
such that each e; s strictly less than e.

Proof. Choose a linear dependence relation among the «;’s. By clearing denomina-

tors and renumbering the «;’s if necessary, this relation can be written
mqio + -+ MG = Mg 101 + -+ meQle

where each my, is a non-negative integer. Write  for the element of N* that both sides
of this equation are equal to. Let d = 1+Zf:1(di 1),andletd' = 1+>7 ,  (di—1).
Since

(1 _ .Tmai) — (1 _ :Em)(l +$al +$2a1 I x(m—l)al)’

F' can be rewritten in the form

P'(z)
[[i= (1 —zmies)d”

with P’ a new polynomial. Next write

P'(z)(1 — z7)d+
(1 _ :L-’y)d-f—d’ H§:1(1 _ xmjaj)dj ’

F(z) = (2.1)



and note that

(1—27)=(1- xZLl(mmi)) = (1- xmlal)x2?22(miai)

+ (1- xm2a2)x2?:3(miai)

+ (1 ameer),

which shows that (1 — z7) is contained in the ideal generated by (1 — ™), ...,
(1 —z™*). Similarly, (1 —z7) is also contained in the ideal generated by (1 — x™*+1),
..., (I —2™). This fact, together with our choice of d and d', allows us to rewrite
(1 — 27)%*4 as the sum of terms each of which is contains one of both (1 — z™)%
for 1 <i <k and (1 —2™)% for k <i < e as factors. Finally we are able to write

F' in the desired form by expanding the numerator of Equation 2.1, breaking up the

fraction into a sum of fractions, and canceling these factors. O

Theorem 26. Let F(xy,...,x,) be the generating function of f : N* —Z. Then f

s quastpolynomial iff F' can be written in the form

P(x)
[[i (1 — o)™

Proof. If F is in the given form, then we can use repeated applications of the previous

F(z) =

lemma to rewrite F' as the sum of terms each of which is in the form specified in
Lemma 24. Thus f is the sum of quasipolynomial functions and must itself be
quasipolynomial.

Conversely, if f is quasipolynomial, then f can be written as the sum of simple
quasipolynomial functions. The form of the generating function of each of these sim-

ple quasipolynomial functions is given by Theorem 13, and the sum of such functions



can clearly be written in the form required. O

Theorem 27. Let f: N* = N be quasipolynomial of degree d. Then

f*(a) = Z flay, ... an)

15 also quasipolynomaial of degree d.

Proof. 1f f is quasipolynomial, and F(x1,... ,x,) is its generating function, then the
generating function of f* is F(z,...,x). The fact that f is quasipolynomial then
follows immediately from Theorem 26. It is also clear from this theorem that the
degree of f* is at most d. The only remaining difficulty is to show that the degree
cannot be less than d.

There must exist 3, oy, ..., a. such that f restricted to Cgg,... o 1is simple

quasipolynomial of cumulative degree d. If not, then we could cover N” by cones in
such a way that on each cone f was simple quasipolynomial (using Theorem 14) and
had degree less than d. This would express f as the sum of simple quasipolynomial
functions of cumulative degree less than d, contradicting the fact that f has degree
d.

Let f" be the restriction of f to Cgay,..a- Then f' < f, so f* < f* By

Theorem 17, f'* has degree d; it follows immediately from the definition of simple

quasipolynomial that f* must have degree at least d. O
Theorem 28. If f, g : N* =N are quasipolynomial and f < g, then deg f < degg.

Proof. The previous theorem allows us to reduce to the case n = 1. A quasipolyno-
mial function of degree 1 is eventually equal to a polynomial with periodic coefficients,

and the result is trivial for such functions. O



Theorem 29. Let f : N* -7, g : N* -7, and B € N* be such that f(a+ 3) —
fla) = g(a). If g is quasipolynomial, then so is f. In addition, if f : N* =N, so all
the values of f are nonnegative, then the cumulative degree of f is one greater than

that of g.

Proof. Let F' and G be the generating functions of f and g, respectively. The relation
fla+ B) — f(a) = g(a) is equivalent to the relation F = G/(1 — z?). 1t is clear,
then, that F' is the generating function of a quasipolynomial function if G is. It
remains to show that the degree increases by one when the values of f are known to
be nonnegative.

Let b be the sum of the coordinates of the vector 5. Then

G*

Fre= 2
1—zb’

where F* and G* are the generating functions associated with, respectively, f* and
g*. Thus by the previous theorem we can assume without loss of generality that
n=1.

It is not hard to see that in the case n = 1 a quasipolynomial function g is agrees

eventually with a polynomial with periodic coefficients. Such a function is eventually

bounded below by a function with generating function of the form

C
(1—aM)d’

where ¢ a positive real number and d is the degree of g. Therefore f is bounded

below by a function with generating function

(1= 2V)4(1 - at)’

and it follows that f has degree d + 1. O



2.2 N'-graded algebras.

We now apply the results of the previous section to the problem of determining

the Hilbert functions of certain N"-graded algebraic objects.

Theorem 30. Let S be an N'-graded algebra such that Sy is Artin and S is finitely
generated as an algebra over Sy. Let M be a finitely generated, N"-graded S-module
of dimension d. Then the Hilbert function f(«) = length(M,) is quasipolynomial of

degree d.

Proof. The proof will be by induction on d. If d = 0 then M has finite length, and
length(M,) is zero for all but finitely many «, so f is quasipolynomial of degree 0.

Now assume that d > 0 and that the theorem is proved for all smaller d. Because
the sum of quasipolynomial functions is quasipolynomial, we can take a primary
filtration of M and assume without loss of generality that M is P-primary for some
P € Spec(S).

We can map an N'-graded polynomial ring onto S and work over the poly-
nomial ring instead of over S. So we may as well assume S is polynomial; say
S = Sy[s1,---,Se|, with deg(s;) = o; € N*.

Since d = dim M > 0, there must be some s; not contained in P; otherwise M
would have finite length. That s; must be a non-zerodivisor on M. This means that

the sequence

Y M
0—-M-=>3M-—
S5

—0

is exact, so

M
length(M,) — length(M,—o,) = length ((SM) >

fl@) = fla=a) = fuysim(@).



Since s; is a non-zerodivisor on M, M/s;M has dimension d — 1.  Therefore,

by the induction assumption, M/s; M is quasipolynomial of degree d — 2, and f, is

quasipolynomial of degree d — 1. O

It should be clear from the proof that if o, ... , . are generators of S, then the

generating function of the Hilbert function can be written as a rational function with

denominator [[,(1 — z%).

A few examples might be helpful.

i.

ii.

iil.

1v.

If M is a finitely generated module over an N-graded algebra S that is generated
by elements of degree 1, then the Hilbert function f,, is quasipolynomial on {1},

and hence is eventually polynomial, as expected.

If M is a finitely generated module over an N?-graded algebra S, and if every
algebra-generator of S over Sy has degree (0,1) or (1,0), then S is quasipolyno-
mial of degree d = dim S on (0,1) and (1,0). By Theorem 22, there exists a
such that, for all & > 8, fs(«) is equal to a polynomial of degree at most d — 2.
Thus we obtain Theorem 2 of [2], that Hilbert functions of bigraded modules
are eventually polynomial of degree at most (dim M) — 2. More results about

these functions can be found in [27].

More generally, let M be a finitely generated module over a N*-graded algebra
S, and assume every algebra-generator of S over Sy has degree e;, where e; is
the vector in N™ that is one in the ¢th position but zero elsewhere. Again, there
is a B such that fy(«) agrees with a polynomial of degree at most d — n for all
a > . (See [12], where it is also shown that all the highest degree monomials

of this polynomial have nonnegative coefficients.)

If M =S = k[s1,...,s], and if the degree of s; is «;, then the generating



function of the Hilbert function fg is

1
L0 - o)

and fg is quasipolynomial of degree d. It is not hard to see that any quasipoly-

nomial function of the form
P(x)
[L;(1 —z)

such that P(x) has nonnegative coefficients can be written as the sum of trans-
lations of such functions. Direct sums of modules have Hilbert functions that
are the sums of the Hilbert functions of the individual modules. In this way, any
quasipolynomial function of this form can be realized as the Hilbert function of
some finitely generated module over such an S. In fact, this identifies exactly

the set of all functions that arise as the Hilbert functions of N"-graded modules.

Theorem 31. Let S be an N"-graded finite algebra over a local ring R, and let T be
an N"-graded, finitely generated, S-algebra. Assume that Sy =Ty, = R. Let N and
M be finitely-generated N -graded algebras over T and S, respectively, with N D M,
and suppose that for every element of N there is a power of mgr multiplying that
element into M. Then fy/n : o — length((N/M),) is quasipolynomial of degree at

most dim N = dim(7"/(Annr N)).

Proof. We can filter N/M by N/TM and TM/M. The quotient N/TM is a T-
module, not just an S-module. Also, N/TM is a finitely generated T-module, and
since every element of N is multiplied into M (and hence into TM) by a power of m,
it follows that there exists an n such that m™ kills every element of N/T M. Therefore
N/TM can be thought of as a module over T/m"T. This module now satisfies the

conditions of the previous theorems, so the Hilbert function of N/T'M is quasipoly-



nomial. Since Anny N/TM O AnnT, this function is in addition quasipolynomial
of degree at most dim V.

It remains only to show that 7'M /M has a quasipolynomial Hilbert function of
degree at most dim N. So assume N = T'M. Suppose that 7" is generated over
S by r generators, so T = S[t1,...,t;]. Suppose that r is at least 2, and that
the theorem has already been proved for smaller values of r. Apply the theorem
with S[t;] replacing S and S[t;|M replacing M, and with 7" and N as before. It
is clear that the hypotheses of the theorem are still satisfied, and 7" is generated
over S[t;]M by r — 1 elements, so by assumption the Hilbert function of N/S[t;]M
is quasipolynomial. Similarly, apply the theorem with S and M as before, but 7T
replaced by S|[t;] and N by S[t;]M, and the conclusion is that S[t;|M/M also has
a quasipolynomial Hilbert function. The Hilbert function of N/M is the sum of
the Hilbert functions of N/S[t;]M and S[t;]M /M, and sum of two quasipolynomial
functions is quasipolynomial, so the result follows by induction if only we can deal
with the case r = 1.

So assume N = S[t|M (where ¢t = t;). Construct the S-module

NETM +tM+ -+ tM+ M
LM A IM A+ M+ M

N' =

k3

This module has the same Hilbert series as N/M; to see this, note that the

quotient modules that we’re summing are just successive quotients of modules in the

filtration
gc tM+ M C t*M +tM+ M .
M M M ’
and note that
“HEM At M+ + M N
Z-:Uo M M

thanks to our assumption that N =TM = S[t|M.



Note also that t(t'M + ---+ M) C (t*''M + --- + M), so multiplication by ¢

induces a well-defined map

M+ + M . tHM A4 M
t—M+---4+ M tM+---+ M’

and this in turn induces a well-defined map N’ — N’. Thus multiplication by ¢
makes sense on N’ making N’ a T-module as well as an S-module.

In addition, N’ is generated over T by any set of generators for M, and in
particular is finitely generated because M is. Any element of N’ is killed by a power
of mp because N’ is a direct sum of subquotients of N/M, which has the property
that any element is killed by a power of mg. Since N’ is a T-module, it must also be
the case that any element of N’ is killed by a power of mgT. Because N’ is finitely
generated, it follows that N’ is killed by some fixed power of mzT, hence is a finitely
generated module over T'/(mzT)? for some j. The fact that N’, and hence N/M,
has a quasipolynomial Hilbert function, follows now from theorem 6. Note also that
Anngy N' D Anng N, so dim N’ < dim N, and N/M has a quasipolynomial Hilbert

function of degree at most dim V. O



CHAPTER III

Results about Tory(R/I{*, R/I3?)

This chapter applies the results of the previous chapter to prove theorems that

describe the functions
felar, - yan) = length(Tory(My /I8 My, ..., M, /1 M,))
in the case n > 2, My =---= M, = R.

3.1 Torg(R/I*, R/I3?) for k > 2

Let I be any ideal of a ring R. The short exact sequence 0 -1 — R— R/I —0
gives a long exact sequence
—  Torg(I,M) — 0 — Torg(R/I,M) —
— Torp_y(I,M) — 0 — Tors_y(R/I,M) — --- (3.1)
—  Torg(I,M) — M — M/IM — 0,
which yields an isomorphism Tory(R/I, M) = Tor_,(I, M) for i > 2 and an injection
Tory(R/I, M) — Tory(I, M).
If I; and I are two ideals of R, then Tory(R/I;, R/I5) = Tory_1(1y, I5) for i > 3,
by two applications of the above isomorphisms. Since direct sums commute with

Tor, there is also an isomorphism

€D Torf(R/I", R/I) = Torf(ED 1", D 15)

a1,a2>0 a1>0 a2>0

28



for £ > 3. Let t; and ¢» be indeterminates; then we can replace ®ai20 I by the
algebra R[I;t] = @, -, [;*t*. This allows us to impose the structure of an algebra

on @11,&220 TOI']?(R/I](_LI, R/ISQ)

Lemma 32. Let I} and I, be ideals of a ring R. Let S; = R[I;t;] = @ It

a;2>0 71

Then the R-modules

@ Torf(r/I", R/I3?)

a1,a2>0

can be given the structure of N?-graded, finitely generated S, ®p Ss-modules, for

k> 2.

Proof. For k > 2, we know that this direct sum is isomorphic to Torf (S, S). Let
Tj,l; - ,T‘j,mi generate IZ’, and let T1 = R[.’L‘l’l, - ,J?l,ml] and T2 = R[I‘Q,l, Ce ,./1/‘27m2]
be polynomial rings, and map 7; onto S; by mapping z; ; onto r; ;. This makes S; into

a T;-module. Choose a resolution of S; by finitely generated projective 7;-modules,
= P> Po— S5

Since T; is a free R-module, this resolution is also a resolution for S; over R. Therefore

Torf (S, S,) is the homology of the total complex
=P Qr Py ® Py ®r Py — Py ®r Pig—0.

The R-modules in this complex are easily seen to also be finitely generated 7T} @ g T5-
modules, and the maps 7T} ® To-maps. Therefore the homology modules Tor,?(Sl, Ss)
are also finitely generated modules over 7} ® T,. In addition, note that these modules
must be killed by the kernels of the maps T; — S;; thus, each Tory (S, S,) is also a
finitely generated S; ® Sy-module.

For k = 2, apply direct sums to the end of the long exact sequence of Equation



3.1 above to get

0= @ Torj(R/I{", R/I5*) = R[Lit1] ®g RlIxtz] = R[L1t1] @ Rlta].

a1,a2>0
The map R[Ith] ®R R[I2t2] —R— Iltl ®R R[tg] is Clearly a map of Sl ®R Sz—IIlOdllleS,

so the kernel is an S; ®g So-module. O

Theorem 33. Let I} and Iy be ideals of a local ring (R, m) such that I, + I5 is

m-primary. Then for k > 2 the function
fr(ai, az) = length(Tory(R/I{, R/I15?))

15 quastpolynomial of degree at most 2d.

Proof. Fix k > 2. Then ,, ,, Torx(R/I{", R/13?) is isomorphic to (or, in the case of
k = 2, is at least a submodule of) Tory_5(S1, S2). Since I + J is m-primary, I7* + I5?
is also m-primary, so some power of m is contained in I{"* + I3* and some power of m
kills Torg(R/I{"*, R/I5?). Therefore every graded piece of Tory_o(S1, S2) is killed by
a power of m. By the previous lemma, Tory_»(S1, S2) is a finitely generated S; ® So-
module. It follows that every element of Tor,_o(S, S2) is also killed by a power of
m(S; ® Sy) and, in fact, that a fixed power m™ (S; ® S,) kills every element of the
module. Therefore Tory_»(S1,Ss) is actually a module over (R/m”") ®g (51 ® Ss).
We now know that the module @, ,, Tory(R/I1", R/I;?) is isomorphic, by an
isomorphism that preserves the grading, to a finitely generated, bigraded module
over (R/m")®g(S1®S5). Therefore f is the Hilbert function of a finitely generated
bigraded module over the bigraded ring (R/m”") ®r (S; ® S3). Theorem 30, from
the previous chapter, says that this Hilbert function is quasipolynomial of degree
equal to the dimension of the ring. So it remains only to calculate the dimension of

(R/m")®R(S1®Sz). The ideal m(S;®S5) is nilpotent, so the ring (R/m)®g(S1®S2)



has the same dimension, and
(R/m) Qr (Sl ® Sz) = ((R/m) Qr Sl) QOR/m ((R/m) ®r SQ).

The dimension of (R/m) ®g S; = (R/m) @g R|[I;t] is the analytic spread of I;, which

is at most d. The claimed result follows. O

The modules whose Hilbert functions we calculate above have generators all of
whose multidegrees are either (0,1) or (0,1). By remarks in the previous chapter,
such functions are eventually polynomial of degree at most 2 less than the dimension

of the module. Therefore

Corollary 34. Let I and I, be ideals of a local ring (R, m) such that I + Iy is m-
primary. Then there exists a (by,by) € N? such that, for k > 2 and (a1, a3) > (b, bs),
the function

fr(ay, a) = length(Tor,(R/I{*, R/ 15?))

s polynomial of degree at most 2d — 2.

Note that it is possible that the Tor modules could have dimension less than the
sums of the analytic spreads of the two ideals; for example, if I and J are generated by
disjoint parts of a system of parameters, then the higher Tor’s are all zero. However, I

know of no examples showing that nonzero polynomials of smaller degree may occur.
3.2 Tor (R/I", R/15?)

The next goal is to establish some results about the functions f; and f,. As far
as we know, the following may be true.

Conjecture 35. Let I} and I, be ideals of a local ring (R, m) such that I, + I, is

m-primary. Then the function

fi(ai, ag) = length(Tor, (R/I{*, R/I15?))



15 quastpolynomial of degree at most dim R + 2.
However, all we know now is this:

Theorem 36. Let I} and Iy be ideals of a local ring (R, m) such that I, + I5 is

m-primary, and such that the R-algebra

T = P U N I2)ai 25 C Ry, )

a1,a2

s finitely generated over R. Then the function
f(ayi, az) = length(Tor (R/I{*, R/I15?))
s quastpolynomial of degree at most dim R + 2.

Proof. Let T be the doubly-graded R-algebra described above. By assumption it is

finitely generated. Let S be the doubly-graded R-algebra

S = R[lel,lzxz] = @ Ifllgzac‘flx;”.

ai,a2

Since S C T, T is also an S-algebra. Now observe that

It N I?
T S — 1 2 ai ,,,a2
/ If,l 120,2 1 2

ai,a2

and recall that Torf(R/I}*, R/15?) = (IT* N I32)/I7J°. Apply Theorem 31, with
N =T, M = S, and the conclusion follows; all that remains is to calculate the
upper bound on the dimension of R.

Let M C T be the ideal generated by mR and by (I%NJ%)s%?®, for all a, b satisfying
a+b>1. Clearly M is maximal, with T/M = R/mpg. Also, dimT = height M.
Let P be minimal a minimal prime such that dim7/P = dim T, and let p = PN R.

Apply the dimension formula to get

dim T + 0 = height M + tr. degp,,,gT/MT < height(mg(R/p)) + tr. degg,, T

< dimR+2



O

Definition 37. Given a pair ([, I3) of ideals of the local ring (R, m), call the algebra
D., o, (1 N I3*)z7 x5? the intersection algebra of I and Io. If this algebra is finite,

we will say that I; and I, have finite intersection algebra.
The previous theorem can now be restated as follows.

Corollary 38. If I; and I, ideals of the local ring (R, m), have finite intersection

algebra, then the function
f(a1, az) = length(Tor, (R/I7*, R/15%))

s quastpolynomial of degree at most dim R + 2.

3.3 Torg(R/I™, R/IS?)

Throughout this section, (R, m) is a regular local ring of dimension d.
Let I; and I, be ideals of R such that I; + I, is m-primary, and let f, (a1, a2) be
the Euler characteristic

Filaraz) = X(R/I, R/I5?) = Y (=1)* length(Tory (R/ I, R/15?)).

This sum is well-defined because the Tor’s are all zero for £ > dim R, and because
the condition that I; + I be m-primary forces all of the Tor,’s to have finite length.
The function x is biadditive (so, for example, x(M @& N, P) = x(M, P) + x(N, P))
because each of the Tory’s are. Also, x(M, N) is zero whenever M and N are such
that dim(M) + dim(N) < d (see [8] or [20]). And if length(M ® N) < oo, as is the

case when M = R/I** and N = R/I*, then dim(M) + dim(NV) < d (see [25]).

Theorem 39. For large ay and ay, fy (a1, as) is either identically zero, or is a even-

tually a polynomial of degree d.



Proof. Fix a; and ap and let P,,,..., P, be the primes associated to I;*. For
v = 1 and u = 2, choose filtrations of R/I* by prime cyclic modules, and let p,,;
be the number of times that R/P,; occurs in the corresponding filtration. Then by

biaddativity,

X(R/I{ R/I?) = Y prpaix(R/Pii, R/ Pay).

1<s1,j<s2
Assume that the P,;’s are ordered so that P,;,..., P, have the least height of

any of the P,;’s, and let e, be this minimal height. Since each P, ; contains I;*,
we know that P, ; + P, ; is m-primary for any ¢ and j. Therefore e; + e, > d. This
means that if ¢ > s| or j > s then height(P; ;) + height(P2;) > e; + e2 > d, so

X(R/Py;, R/ P, ;) = 0. Therefore

R R R R
X(IlTl’ Ia2 - Z plpo,]X P PZJ)'

1<sh,5<s5

Note that p, ; is independent of the choice of filtration; in fact, p,; is just the length
of Rp,,/I3*Rp, ;. Also, the ideals P,;,..., P, are also the associated primes of

minimal height for any power of I;. So, for any a; and a,,

R R
fx(a1,a2) = X(IlTl’ﬁ)

Rp, Rp,. R R
= length length 2 = A
Z eng (Ia1 RP1 ) €n g (IS2RP2,¢ )X Pl,i’ Q?,j

i<s],5<sy

).

Since I, is primary to the maximal ideal of Rp, ;, the functions

RPu,i )
I’lcl,lu RPu,i

a, +— length(
are just Hilbert functions, and are eventually polynomial of degree e,. Therefore, the
function fy (a1, as) is polynomial of degree d for sufficiently large a and b, if e+ f = d,
and is identically zero if e + f > d, since in that case all of the x(R/P;, R/P,;)’s

are zZero. O]



Actually from the proof and the results of the previous chapter this function is
quasipolynomial of degree at most d + 2, and is the sum of periodic-polynomials on

subsets of {(1,0), (0,1)}. Here is the result in more detail.
Theorem 40. f, (a1, ay) is either identically zero, or quasipolynomial of degree d+2.

Proof. By the proof of the previous theorem, f, is the sum of terms of the form
cf(x)g(y), where f(z) and g(y) are eventually polynomial and c¢ is a non-negative
integer. By Theorem 19, the sum of quasipolynomial functions is quasipolynomial of
degree equal to the maximum of the degrees of the summands. So it suffices to show
that each such summand is either identically zero or is quasipolynomial of degree
d + 2. By Theorem 21, f(x) and g(y) are each quasipolynomial of degree e + 1 and
f+1 (where e and f are as in the proof of the previous theorem). So, Theorem 23,

cf(x)g(y) is quasipolynomial of degree e+ f +2 = d + 2, as long as c¢ is nonzero. [J

Theorem 41. If I} and Iy have finite intersection algebra, then the function

R
f()(a,l, (12) = length (m)

15 quasipolynomial of degree dim R + 2.

Proof. By the previous theorems, we already know that f; is quasipolynomial for
1 > 0, and we know that the alternating sum xy = fo— f1+ fo+- - - is quasipolynomial.
Since fo = x + fi — fo + -+, and since the f;’s are eventually zero, this expresses fy
as a finite sum of quasipolynomial functions. Thus f; is quasipolynomial. It remains
to calculate the degree.

Both I; and I, are contained in m, so I?" + I3> C m™1,82)  Therefore f, is



bounded below by, for example, the function given by

length(R/m(@1+a2)/3) if 1/2 < a;/ay < 2
f(ala CLQ) =

0 otherwise

Since length(R/m® ) is eventually polynomial of degree d, this function is quasipoly-
nomial of degree d + 2. So f; is bounded below by a quasipolynomial function of
degree d + 2.

Since I; + I, is m-primary, there exists N such that m®" C I + I,. It follows that

mN(a1+a271) C If'l +I2az, 50
folay, az) < length(R/mMN(a1Fa2)y,

Therefore fy(ay,a2) can also be bounded above by a polynomial of degree d, and
hence by a quasipolynomial function of degree d + 2.

The result now follows from Theorem 28. O



CHAPTER IV

Monomial Ideals

This chapter focuses on the cases where £k = 0, M; = -+ = M, = R =
k|xi,...,zq], and the ideals I, ... , I, are monomial ideals. When n = 2 the results
of the previous chapter apply, because the pair I; and I, have finite intersection
algebra whenever I; and 5 are both monomial ideals. The first section of this chap-
ter presents a proof of this fact. The rest of the chapter is devoted to a different

approach which gives more useful information even for arbitrary n.

4.1 The case n =2

Let A = k[zy,...,x4), with z1,... , 24 indeterminates. Let B be a sub-k-alebra
of A generated as an algebra by monomials in z;,... ,z4. Then B is also a sub-k-
module of A, and is generated over k£ as a module by monomials. The set of exponents
a € N¢ of monomials 2z generating B as a module over £ form a submonoid M of
the additive monoid N". It is easy to see that M is a finitely generated monoid iff
B is a finitely generated R-algebra.

Now consider the situation at hand. Let I1,I, C R = k[zi,...,z4] be ideals

generated by monomials. Let 7' be the intersection algebra of I; and I,. Consider
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the two algebras

T1 :R[Iltl,tg] CR[tl,tQ]

T = R[tl, ]QtQ] C R[tl, tg]

If 2P, ... 2P generate I, then T} is generated over R by ty,2%1ty,... ,2’t,. The
situation for 75 is the same, so both 77 and 75 are finitely generated R-algebras. The
intersection of T} and T5 is T.. Let M be the submonoid of N¢ consisting of those
vectors (ai, - - . ,ag, b1, by) which occur as the exponents of monomials z{* - - -xzdt({l %
contained in 7. Define monomials M; and M, that correspond in the same way to
Ty and T5. Then M; and M, are finitely generated, and M = M; N M,. Therefore

we need only show that

Theorem 42. If My, and My are finitely generated submonoids of N™, then so is

M:MlﬂMQ.

Proof. This is a direct result of a theorem from integer programming (see, e.g., section
1.3 of ), which states that if M C N is the set of solutions to a finite set of Z-linear

equations, then M is a finitely generated monoid.

Let a1, .., 4, € N™ generate M;. Define a new monoid M’ C N™te1te2 a5 the
set of all (a1,... ,Gm, 011, ,01e,021,...,b2e,) satisfying the 2m equations
(@1,...,0m) = €110q1+  + €101
(a1,.-.,am) = e€910071+ -+ €26,0,

Then M’ is finitely generated, and it is easy to see that M = M; N M, is the image of
M’ under the map which projects N™t¢1+€2 onto the first m coordinates. Therefore

M is also finitely generated. O

Therefore we have



Theorem 43. If I),I, C k[x1,...,x4] are monomial ideals, then the length func-

tions fi are quasipolynomial for all k > 0.

Proof. Now that we know I; and I, have finite intersection algebra, this is a conse-

quence of the theorems of the previous chapter. O

4.2 The case n > 2

Throughout this section, Iy, ... , I, will be ideals of R = k[zy,... ,z4] which are
generated by monomials.

I take for granted the basic definitions and theorems from the theory of convex
polytopes as in, for example, the first three chapters of [10].

The monomials of R correspond to elements of (Zzo)d C R%, under a map “log”
which takes a monomial x* to the integer vector o determined by its exponents. Thus
log z® = . Similarly, monomial ideals correspond to subsets of R%; write log I for
the discrete subset of R? corresponding to the exponents of the monomials contained
in 1.

If S is a subset of R?, S will denote the subset {as|s € S}. Note that alogI is
not equal to log I°.

Let K; be the convex hull of log I;. Write P = R, = {(r1,... ,ra) € R*|r; > 0},
let A; be the closure of P\K;. I will show that fo(ai,...,a,) is closely approxi-
mated, when aq, as, ..., a, are all sufficiently large, by the d-dimensional volume
of the region (), a;A4;. Along the way, I will show that the volume of [, a;A4; is
piecewise a degree d homogeneous polynomial in the a;’s. The conclusion will be
that f(ai,...,a,) is approximated by a forms of degree d in ay,... ,a,, for large
A1y, Q.

First I'll prove the theorem about the volume of (), a;A;. But before doing this it



would be useful to know what kind of object (), a;A4; is.

Lemma 44. If I is an ideal generated by finitely many monomials, then K =

conv(logI) is the intersection of finitely many closed half-spaces.

Proof. Let %1, ... x* generate an ideal I. Then log [ is the union of the sets
a; + N¢, for 1 <4 < k. The convex hull in R? of one of these sets is a; + P, so the
convex hull K of I in R? is the convex hull of the sets o; + P. Now, embed R? in
P?(R) by the map

(riy...,rg) = (ry:---1rg: 1),
and let K and P be the closures of K and P in this projective space. Let A be
another copy of R? in P4(R) containing K. Then o; + P is the convex hull in A of

the point «; and the points at infinity
(1:0:---:0),(0:1:0:---:0),...,(0:---:0:1:0).

It follows that K is the convex hull in A of the points {c;} corresponding to the
generators of I along with the above points at infinity. Since K is the convex hull
of a finite number of points, K can be written as the intersection of finitely many
half-spaces of A. Half-spaces in A correspond to half-spaces in R¢, so the original

set K can also be written as the intersection of finitely many half-spaces. O

Thus each of our sets K; can be written as the intersection of finitely many half-
spaces.
Let H;y,...,H;; be the closed half-spaces whose intersection is Kj;, and let

H+

iy ,H;,L x; be the complementary closed half-spaces.

Note that A; = |J; H,;. We can also write



where

‘4@52: r] EQZ-O r}.ﬁﬁ;.

JjES J€S

The advantage of this decomposition is that we have written A; as the union of
sets with disjoint interiors: if S’ and S” are distinct non-empty subsets of {1..k;},
then there must be some j contained in one but not the other; thus A; ¢ N A; g» is
contained in the hyperplane H;\; N H; .

Let T be the set of all pairs (7,7) € Z* with1 <i<nand 1 <j<k;. fSCT,
write Sy for the set of all (z,j) € S with ¢ = ¢'. Then

scT i,j)€S i,§)2S
S;#£0 for any i (0:3) i:5)¢

Proving that this union of intersections is actually equal to (), a;A; is routine.
Once again, the sets that we are taking the union of have disjoint interiors. Also, each
of these sets is contained in (), a;4;, hence is bounded, and each is the intersection
of finitely many half-spaces, hence is a polytope.

So we have established that (), a;A4; is the union of polytopes with disjoint inte-
riors. To prove that the volume of (), a;A; is a piecewise polynomial in the a;, it
therefore suffices to prove the following theorem. Note that the H;;’s in the state-

ment below do not correspond exactly with the similarly-named half-spaces above.

Theorem 45. Let H'\,... H{, ,... H' ... H be half-spaces, and let

Qal,... an — m az'Hz',j
i,j

be a family of polytopes indexed by ay, ... ,a,. Then the volume of Qq,.,....q4, 1S a con-
tinuous function of aq, ... ,a,. In addition, there exist a finite number of hyperplanes
in RSy such that, for ay, ..., an, not contained in any of the hyperplanes, the volume

of the polytope Q... q, 5 given by a degree d form in ay, ..., a,.



Proof. 1 believe this fact is actually well known, but have been unable to find a
complete reference in the literature. Therefore I will present a sketch of the proof.
If (ay,...,a,) are fixed, then volume of the polytope Q.. 4, can be calculated

n

by triangulating g, ..., and then calculating the volume of each simplex in the

triangulation. It is also helpful to choose the triangulation so that each vertex of a
simplex in the triangulation is also a vertex of the polytope. The existence of such
a triangulation can be proved by induction on the dimension of the polytope: first
triangulate the boundary of ) (which has lower dimension), then pick a fixed vertex
of (), and construct simplices each of which is a “pyramid” whose vertex is the chosen
vertex and whose base is one of the simplices in the triangulation of the boundary.
If (ay,...,a,) are now allowed to vary, such a triangulation can be made to vary
along with the polytope as long as the combinatorial type of the polytope does not
change. The vertices of (0, ... o, are the intersections of hyperplanes a;H; ;, and it can
be shown that locally the location of one of these vertices is determined by solving a
system of linear equations that depends linearly on the a; and that the coordinates
of the vertices are therefore locally linear functions of (ai, ... ,a,). The volume of
a simplex can be written as a degree d form in the coordinates of its vertices. This
means the volume of the simplices in the triangulation of the polytope, and hence
the volume of the polytope itself, can be written as a degree d form in (ai, ... ,ay)-
This only works for (ai, ... ,a,) constrained to a region where the combinatorial
type of the polytope does not change. But it can be shown that the values of

(ai,...,ap) for which the combinatorial type of Q.. ., changes are solutions to

n

one of finitely many systems of linear equations, and hence are contained in the

union of a finite set of hyperplanes. O

From the description given in the theorem, it is clear that this volume is actually



a quasipolynomial function of (ai,...,a,). The next goal is to show that f, is well
approximated by this volume for large enough (ay,... ,a,). However, without even
doing this we’ve already gained some information in the case where the ideals I; are

all principal.

Corollary 46. If I,...,1I, are each generated by a single monomzual, then fo has

the form given in the above theorem, hence is quasipolynomial of degree d + 2.

Proof. Let I; = (z*). In this case A; is just P\(a; + P), and the volume of N;A;
is easily seen to be exactly equal to the number of lattice points contained in N;A;,
and to the length of R/(I{* + --- 4 I%*). The result follows immediately from the

previous theorem. 0

Of course, this result is exactly what we would expect given the results of the

previous chapter. The following corollary is a slight generalization of a result from
[6].

Corollary 47. Let I and J be monomial ideals in R = k[x1,... ,xq], where k has
characteristic p, and let S = R/I. Assume I + J is mg-primary. Then the Hilbert-

Kunz function (see chapter 1), HKg ;j(e), is eventually a polynomial of degree dim S

(4

n p°.

Proof. Suppose I = (z*,...  z®), and J = (z®+1,... z%). Let I; = (oy). Apply

the previous corollary to I4,... , I,,, and note that

HKg(e) = fo(1,...,1,p%...,p%).
—_——— ——

b n—=b
Since fo is piecewise polynomial, the point (1,...,1,e,... ,e) must eventually end

up in one of the “pieces.”



The statement about the degree follows from Monsky’s result about the form of

Hilbert-Kunz functions [16]. O

As noted in [6], the assumption about the characteristic of p is actually unneces-
sary if we generalize the definition of the Hilbert-Kunz function in a natural way.

The next lemmas will be used to bound f(a,... ,a,) using the volume of Na;A;.
Lemma 48. If H is a half-space containing log I, then aH contains log I*.

Proof. We can write H = {z € R*|¢(z) > ¢} for some linear function ¢ and real
number ¢, and aH can then be described as the set of all z € R? such that ¢(z) > ac.

Let a € logI™. Then o = oy + -+ -+ o, + 3, with o; € log ] and 8 € log R. Then

pla) = ¢lar+---+a,+p)
= (o) + -+ d(aa) + 9(6)

v

c+---F+c+9(B)

> ac.

For the last step we used the fact that ¢(8) > 0 for any 8 € log R; establishing
this fact will complete the proof. So let 8 be an arbitrary element of log R, and
let o be an arbitrary element of logI. Then o« + mf € logI for any m € Z*, so

d(a+ mp) = ¢(a) + me(B) > ¢ for any m. From this it follows that ¢(8) > 0. O

It follows from the previous lemma that a;A4; contains log(Z;*). There is also an

inclusion the other way.

Lemma 49. If I is generated by h monomials, and if K is the convex hull of log(I),

then log(1%) D Z%N (a + h)K.

Proof. Let z*, ... z® generate I, and let § be any element of (a + h)K. Then

can be written as a + h times an element of K. Since K is convex, this element can



be written in the form ), b;c;, where the b;’s are non-negative real numbers such
that > . b; > 1. So 8 =) ,(a + h)bja;. Write c; for the greatest integer less than or
equal to (a + h)b;. Each ¢; is non-negative, and

Y>> (a+hbi—1)=(@+h)O b)—h>(a+h)-1-h=a

=1

Therefore

i CGi% — H(xai)ci

1

is an element of 1%, and since each coordinate of the vector ) (a + h)bic; is at least

as large as the corresponding coordinate of ), c;,

B — xzi(a+h)bi a;

must also be contained in 7°. O

Write vol(A) for the d-dimensional volume of A C R?, and write #(A) for the

number of points in A N Z<.

Lemma 50. Let A be a subset of R such that both A and its boundary OA have

finite volume. Then
vol(A) — vol(0A)V2 < #(A) < vol(A) + vol(0A)V2

Proof. Given a € Z¢, we can form a half-open unit cube a.+ [0, 1)¢. This has volume
1 and contains exactly the one integer point o. Form the set Ay made up exactly
of those cubes a + [0,1)% which are completely contained within A. Note that A is
contained in A, and that the volume of A is exactly equal to the number of integer
points contained in Ay. Similarly, form a set A° that is the union of those cubes

a + [0,1)% which have nonzero intersection with A. Then A° contains A, and again



has the nice property that the number of integer points in A° is equal to the volume
of A°.

Note also that every point of A\A, lies within v/2 units of the boundary of S,
and, similarly, that every point of A%\ A is within v/2 units of the boundary of A.

The stated formula follows immediately. O

Theorem 51. Fiz (by,...,b,) € N*, a > 0. Then

length( — H )
lim ]1 1_|_...+[ranbn _

m= 00 vol(ﬂ mb; A;)

Proof. Note that log(}_, I;"*) = [, log(/%). Therefore length(R/(>_, I;"*)) is just the
number of points contained in N¢ but not in any log(Z{"). Let I be generated by h

monomials. Then by Lemmas 48 and 49,

K3 K3

(Ymbidi) N 24 € N\ log(Y 1™ C () (mb; + h)A;) N Z°.

Therefore

#(ﬂ mb; A;) < length ( ) < #(m(mbi +h)A;).

b.
ZZ Il,rn ' 1

Let b be the d —1-volume of the boundary of [, b;A;, making mb the d — 1-volume

of the boundary of (), mb;A;. Combine the inequalities above with the inequalities



given by lemma 50:
VOl(ﬂ mb;A;) — mbv/2
< #([(YmbiAs)

i

< length (ﬁ)

< #(()(mbi + h)A)

2

< vol((()mbiA;) + (m + h)bV/2.

Divide through by vol([), mb;A;) to get

length [ £+
vol (N mbiAs) — mbv/2 _ z.0t) _ vol(((mb; + h)Ay) + mby/2
VOl(ﬂi meAZ) o VOl(ﬂi mb,Az) o VOl(ﬂz- meAZ) )

Recalling that vol([), mb;A;) is a degree d form in m and n, it is easy to see that the
left- and right- hand sides of this inequality approach 1 as m and n approach infinity

along the line n = ma. The desired result follows. O

This theorem, together with Theorem 45 and the discussion proving it, shows,
roughly speaking, that f, agrees asymptotically with a piecewise degree d polynomial

when I, ..., I, are monomial ideals.

4.3 Examples

In general, the functions f; seem to be quite difficult to compute, but in the
monomial case, at least. there are lots of very tractable examples. It is worth
examing a few, if only to verify that the piecewise behavior really does occur and

that fy is not always eventually a polynomial.



ii.

i. Let R =QJz1,...,2q4), 1 =---=1,=(21,-..,24). Then

folar, ... an) = (

n+ min(a,...,a,) — 1
. :

If we divide R’%O into the n subsets
Ai ={(a,...,a,) € N*|g; < a; for all j # i},

each of which is the cone over a (d — 1)-dimensional simplex, then f; is polyno-

mial of degree d on each A;.

Fix a positive integer ¢ and take R = Q[z1,22], 1 = (21,22)° N (x1), and

I, = (x5). Then it is not hard to calculate that

—1)2 _
%a% + cajas + %al for a1 < —*-as

fo(a1,a2) =

2
Caray — Sa5 + Say for aq > —“a,.
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i.

ii.

APPENDIX A

Open Questions

Is it possible to calculate the intersection multiplicity x(I;, o) knowing only
the behavior of the function fo? Or do there exist pairs of ideals (I1, ;) and
(J1, J2) that have different intersection multiplicities (x([1, I2) # x(J1, J2)) but

such that the functions f;, are identical?

Are the f; always quasipolynomial when n = 27 The results of this thesis are

compatible with the following conjecture:

Conjecture 52. For (R, m) of dimension d and I, I, C R such that Iy + I, is
M-primary,

fr(a1,az) = length(Tor,(R/I{", R/15?))

15 quasipolynomial of degree d+n, if k = 0, is quasipolynomial of degree at most

d+ 2, if k =1, and is quasipolynomial of degree 2d, if k > 2.

In fact, from this dissertation it might appear that a more general conjecture
would be true for arbitrary n; however, there are counterexamples among the

Hilbert-Kunz functions. If

(Z/5Z) [[xla Z2,T3, .’L'4]l
(21 + 25 + 23 + o)

)
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then

168 ., 107,
HKg(a) = 6—1(5 )’ — ﬁ(3 ),

which is not quasipolynomial in 5. (See [11] for details.)

For counterexamples to the more restricted conjecture above, ideals I, Is not
having finite intersection algebra would be particularly interesting to examine.
Such examples can be constructed from examples existing in the literature of
non-finitely generated symbolic power algebras. (See [22], [21], or [9]; the latter
paper gives a family of examples based on monomial curves which may be easier

to do calculations with.)

In particular, given an ideal P C R such that the algebra
ReaPYVgepP@g...

is not finitely generated, it is possible to find a f € R such that the ideals (f)

and P do not have finite intersection algebra. To do this, choose f so that

(P*: f*) = P@ for all a.

Lemma 53. If R regular and P C R prime, then there exists f € R such that

(P*: f*) = P for all a.

Proof. Since R is a regular local ring, so is Rp. The associated graded ring of
a regular local ring is a polynomial ring, so, in particular, grpg,(Rp) = (R —
P) 'grp(R) is a domain. Let I be the kernel of the natural map grp(R) —(R —
P)~'grp(R). Then (R — P)~'I = 0, and, since [ is finitely generated, there
exists f € R — P such that fI = 0. (We are implicitly identifying elements in
R with their images in grp(R) via the natural map R— R/P C grp(R)). This

means that fg € P"™! for any element g of P* which can be multiplied into



iil.

P! by an element of R — P. More generally, any element g € P" which can
be multiplied into P"™™ by an element of R — P satisfies f™g € P"*™. The

result follows. O

Lemma 54. If f and P are chosen as suggested above, then the intersection

algebra @B, 4,50(P* N (f*2))z{' 25 is not finitely generated.

Proof. We will prove the contrapositive. Assume that the intersection algebra
is finitely generated. Note that (P : f%)f% = P% N (f%), so the algebra
can be rewritten as @(P* : %)z} (z2f)*. Map this to the symbolic power
algebra @, P@gz® by mapping tf to 1. This is an ungraded ring homomor-
phism. So the symbolic power is finitely generated, since it can be written
as a homomorphic image of the intersection algebra, which we assumed to be

finitely generated. O

For the cases where we proved results fp was quasipolynomial for £ > 1, we
only found an upper bound on the degree of f;. Is this upper bound actually
an equality when f; is not identically zero? If not, is it the best possible upper

bound, or is there a smaller one?
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ABSTRACT

Length functions determined by killing powers of several ideals in a local ring

by

J. Bruce Fields

Chair: Melvin Hochster

Given a local ring R and n ideals whose sum is primary to the maximal ideal
of R, one may define a function which takes an n-tuple of exponents to the length
of the quotient of R by sum of the ideals raised to the respective exponents. This
quotient can also be obtained by taking the tensor product of the quotients of R by
the various powers of the ideals. This thesis studies these functions as well as the
functions obtained by replacing the tensor product by a higher Tor. These functions

are shown to have rational generating functions under certain conditions.



