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Abstract 

WT1, Wilms tumor 1, protein is overexpressed in a wide variety of cancers, 

including hematopoietic malignancies and solid tumors. WT1 is an attractive tumor-

associated antigen to target for cancer immunotherapy as it is not normally expressed in 

adult human tissues, except in a few restricted locations, including CD34+ cells of the 

bone marrow, glomerular podocytes of the kidney, Sertoli cells of the testis, and 

granulosa cells of the ovary. However, because of its critical role in embryonic 

development and its expression in hematopoietic stem cells (HSCs), WT1 is a self-

antigen. High affinity T cells are deleted from the repertoire in the thymus, leaving only 

low avidity T cells. Activating and expanding T cells that can recognize and kill WT1-

expressing cancers has been difficult because the frequencies of WT1-specific T cells are 

very low. Moreover, these T cells may be anergic or suppressed by regulatory T cells. To 

obtain WT1-specific T cells from mice, which also express WT1 in the spleen stroma, we 

used a spectrum of immunization strategies,  including vaccination with cDNA, protein, 

adjuvants, Listeria vaccines, WT1-expressing BMDCs, and WT1 overexpressing tumor 

cell lines. One approach to eliciting functional T cells that detect self-antigens that has 

been successful is the use of xenogeneic DNA vaccines. This approach works because the 

antigen is similar enough that cross-reactive epitopes may be utilized, but different 

enough to circumvent tolerance barriers. We created a consensus sequence DNA vaccine, 

based on homologous WT1 genes from ten different species. This maintained WT1 exons 

conserved across species, but was different enough at various amino acid positions to 

circumvent tolerance. The consensus sequence is 91% identical to the wild type murine 
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WT1 sequence. Lymphocytes from mice vaccinated with the consensus WT1 DNA 

vaccine respond to a wild type murine WT1 peptide library. Our findings suggest that 

using a consensus sequence DNA vaccine is an effective method to produce an immune 

response to a self-antigen. 
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Chapter I: Introduction 

Cancer Immunotherapy 

The American Cancer Society estimates that there will be 1.6 million new cancer 

cases this year, and the overall lifetime probability of developing cancer is over 43% in 

men, and 38% in women1,2.  Given the estimated prevalence of cancer, it is vitally 

important to develop therapies to treat cancer. While surgery, radiation and chemotherapy 

have had success in treating a variety of cancers, they also have deleterious side effects, 

may miss micro-metastases and risk relapse. The potential of cancer immunotherapy is 

that it uses the body’s own defense system to identify and precisely attack cancer cells, 

and maintain surveillance to prevent future occurances3. In the late 1800’s, William 

Coley observed a patient’s tumor disappear following an infection. He then injected other 

cancer patients with a mixture of bacteria, Coley’s toxins, which was possibly the first 

widely used cancer immunotherapy4,5. Today immunotherapies may include adjuvants, 

cytokine, antibodies, adoptive cell transfer, and vaccination which attempt to activate the 

innate and adaptive immune systems.  

The adaptive immune system is exquisitely suited to targeting a diseased cell 

while sparing normal neighboring cells, but it is the innate system that typically 

recognizes pathogens or stressed cells and starts the immune response6. The innate 

immune system is not specific for any individual pathogen and it does not lead to lasting 

immunity, but it can immediately combat a wide range of pathogens. Initially, 

antimicrobial proteins target the cell walls and membranes of bacteria, complement can 

lyse pathogens or mark them for phagocytosis by innate immune cells, and natural killer 
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cells can kill infected cells and tumor cells and produce interferon-γ (IFNγ), which 

activates many different cells of the immune system. Phagocytic white blood cells of the 

innate immune system, such as neutrophils, macrophages, and dendritic cells (DCs), can 

ingest and kill microbes and dying cells. DCs (and under certain conditions macrophages 

as well) secrete proinflammatory cytokines and present antigens derived from those 

microbes and dying cells to the cells of adaptive immune system, thereby activating 

them.  

The adaptive immune system is composed of B lymphocytes and T lymphocytes. 

Each cell has antigen receptors specific for one antigen and take a few days after 

pathogen exposure to activate, proliferate and fully develop effector functions. Briefly, B 

cells become plasma cells that secrete antibody (humoral immunity); CD8+ T cells 

become cytotoxic T cells (CTL) that directly kill cells expressing the antigen to which 

their receptors bind; CD4+ T cells may become helper T cells (TH) that support B cells 

and CD8+ T cells to become fully functional, and develop memory cells; or CD4+ T cells 

may become regulatory T cells (Treg) that suppress the activity of other lytphocytes.6 The 

innate immune system identifies features that discriminate infected, stressed cells or 

abnormal cells and microenvironments7. Features that trigger the innate immune system 

can be pathogen-associated molecular patterns (PAMPs), danger (or damage)-associated 

molecular patterns (DAMPs), inflammation or the presence or absence of certain cell 

surface markers6. PAMPs such as bacterial cell walls, and DAMPs that are released by 

tissue damage or necrotic cell death, bind and activate DCs through Toll-like receptors 

(TLRs) and other pattern recognition receptors (PRR). This causes DCs to upregulate 

antigen presentation, costimulatory markers and the secretion of cytokines8. 
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Inflammation recruits cells to the site, and enables trafficking of cells to back local lymph 

nodes, where antigen is presented to lymphocytes6. Activation of antigen presenting cells 

(APCs) by PAMPs, may be why Coley’s toxins was effective in some of his cancer 

patients. Activated DCs present antigen to T cells (signal 1) with costimulation (signal 2) 

and in the presence of proinflammatory cytokines (signal 3)7,9. The innate and the 

adaptive immune systems, bridged by DCs, work together to defend the body10. 

Therapeutic cancer vaccines attempt to take advantage of the multiple ways that 

the immune system can be educated and prodded to act by targeting both innate and 

adaptive immune cells. Ideally, the immune system has a cancer immunosurveillance 

function, in that it can specifically identify tumor cells on the basis of their expression of 

tumor-specific antigens (TSAs) and eliminate them before they can establish 

malignancy11. Some cancer cells evade immunosurveillance because they exhibit low-

level expression foreign, viral or tumor-specific antigens. They may secrete tumor-

derived factors (transforming growth factor-β (TGF-β), interleukin-10 (IL-10) to dampen 

the response in their microenvironment. Other known mechanisms of suppression include 

tumor expression of PD-L1 which binds PD-1 on T cells, thereby downregulating 

proliferation and function of effector cells12.  In the absence of TSAs, tumor-associated 

antigens (TAAs) can be used to target tumor cells. However, TAAs are self-antigens. One 

example is melanoma antigen E (MAGE). While melanoma patients may have MAGE-

specific T cells13, these lymphocytes are often ignorant of their antigen, few in number, 

and/or be tolerized or supressed14. Cancer vaccines endeavor to instruct and activate the 

immune system, by presenting a tumor specific antigen (TSA) or a tumor-associated 

antigen (TAA) in the context of danger. While some cancers, such as B cell lymphomas 
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can be eradicated by treatment with antibodies15, cellular immunity, mediated by CTL 

and TH cells, which also produce IFNγ, can directly kill cancer cells, activate other cells 

and develop memory cells to prevent relapse3. 

Wilms Tumor 1, Tumor-Associated Antigen 

Wilms Tumor 1 (WT1) is ranked at the top of the list of cancer vaccine target 

antigens in a report by the National Cancer Institutes (NIH) that prioritized antigens by:  

“(a) therapeutic function, (b) immunogenicity, (c) role of the antigen in 
oncogenicity, (d) specificity, (e) expression level and percent of antigen-
positive cells, (f) stem cell expression, (g) number of patients with 
antigen-positive cancers, (h) number of antigenic epitopes, and (i) cellular 
location of antigen expression”16.  

WT1 protein is overexpressed in at least 36 different human cancers. WT1 expression is  

correlated to progressive disease and poor prognosis17–24. For example, high levels of 

WT1 expression post-treatment of acute myeloid leukemia (AML) correlate with poor 

prognosis20, though its significance at the time of diagnosis of AML and needs to be 

clarified25,26. WT1 was originally described as a tumor suppressor gene associated with 

Wilms’ tumors, as there are mutations in ~20% of  these pediatric neoplasms27–29. 

Subsequently, it was reclassified as an oncogene because the overexpression of wild type 

WT1 is found in numerous cancers30. WT1 is overexpressed in hematopoietic 

malignancies such as AML, chronic myelogenous leukemia (CML), and myelodysplastic 

syndromes (MDS). Solid tumors such as ovarian cancer, prostate cancer, colorectal 

adenocarcinoma, breast cancer, glioblastoma and lung cancer also overexpress 

WT118,28,31. WT1 expression is necessary for the survival of breast cancer cell line MCF-

732. In glioblastomas, WT1-shRNA knockdown of WT1 significantly reduces 
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proliferation and increases apoptosis as compared to glioblastoma cells transduced with 

control shRNA33. Suppression or loss of WT1 leads to decreased tumor burden in Kras-

driven lung cancer in mouse models, and is prognostic of survival in patients with Kras-

activated lung cancers34. Knockdown of WT1, by siRNA, in lung cancer cells induces 

cell cycle arrest at the G1 phase, reduces the expression of antiapoptotic genes, and 

enhances the expression of proapoptotic genes, thereby making the cells less resistent to 

chemotherapy 30,35. 

WT1 is a zinc finger transcription factor, is involved in proliferation, cell 

differentiation and apoptosis and is critical in embryonic development. In human adult 

tissues WT1 is not expressed except for bone marrow where it has various functions in 

hematopoiesis36–38 and in the glomerular podocytes of the kidney, Sertoli cells of the 

testis, and granulosa cells of the ovary17,39. In embryonic development, it is expressed in 

tissues that arise from the mesoderm; it has an essential role in the normal development 

of the urogenital system40, the spleen41 and the epicardial epithelial to mesenchymal 

transition (EMT)42. Deletion of WT1 in the embryo results in death at mid-gestation due 

to defective coronary vasculature, even before the lack of kidney, gonad and spleen affect 

survival43,44. As WT1 is a self-antigen, developing an immune response sufficient to 

combat WT1-expressing cancers is difficult due to immune tolerance. High avidity T 

cells specific for WT1 are deleted in the thymus. The frequency of WT1-specific T cells 

in the remainder of the repertoire is reduced. The low avidity WT1 T cells that escape 

from the thymus contend with tolerance in the periphery, where they may become 

anergized or suppressed45,46.  
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Vaccination against WT1 

Current immunotherapies such as peptide or DC-based vaccines show potential in 

clinical trials. 45.8% of patients with solid tumors and  63.5% of patients with 

hematological malignancies have a clinical response (a few complete or partial 

remissions, but mainly stable disease or a reduction in WT1 transcripts); 35.4% of 

patients with solid tumors and  67.5% of patient with hematological malignancies have an 

immunological response (WT1 tetramer+, or IFNγ+  T cells)18. Most reported 

immunotherapies to treat WT1-expressing cancers are peptide-based. This restricts 

therapy to a subset of patients with compatible major histocompatibility complexes 

(MHC), and targets a few epitopes. In 2012, Doubrovina et al. reported finding 41 new 

previously unreported human epitopes for WT1 (36 presented by class I, and 5 presented 

by class II); except for WT1126-134, none of the previously described 20 epitopes, used in 

various clinical trials, produced a significant response in their study47. (WT1126-134, 

RMFPNAPYL, is considered the dominant epitope in humans and mice.) Finding the 

right epitope or peptide-MHC combination is quite a task. Vaccines which use 

autologous DC, either electroporated with WT1 mRNA or peptide pulsed, also show 

promise; however, they are by definition patient-specific, costly and require lengthy 

preparation in the laboratory18. The ideal vaccine would be safe, inexpensive, and could 

encode as much of the antigen as possible to provide multiple epitopes, for both CD8 and 

CD4 T cells, without restriction by MHC.  

In this study, we investigated immunogenicity to WT1 in wild type mice. Unlike 

humans, mice also express WT1 in the splenic stroma48. To induce a robust WT1-specific 

T cells response in mice, bordering on autoimmunity, we used a series of immunization 
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strategies including vaccinating with cDNA, protein, adjuvants, Listeria vaccines, WT1-

expressing BMDCs, and WT1 overexpressing tumor cell lines. Focusing on cellular 

immunity, mediated by CTL and TH1 T cells, we evaluated immune responses by IFNγ 

expression in ELISA (enzyme-linked immunosorbent assay), and ELISpot (enzyme-

linked immunosorbent spot) assays, and by ICS (intracellular cytokine staining). We also 

used tetramer staining to quantify WT1-specific T cells. Each vaccine strategy was 

designed to test approaches to breaking tolerance. These included supplementing the 

antigen with mechanical stress (electroporation) or molecular danger signals (PAMPs 

such as LPS, and poly(I:C)); by using Listeria monocytogenes to target antigen to APCs; 

activating APCs with cytokine, PAMPS or agonist antibody; and using cell lines that 

express WT1 nearly 100-fold greater than spleen.  

Xenogeneic DNA Vaccines 

One approach that successfully elicited an immune response to wild type antigen 

utilized a xenogeneic DNA vaccine. In mouse models of breast cancer, in which human 

Her-2 (human ErbB-2) or rat neu (rat ErbB-2) transgenic mice are electrovaccinated with 

self-antigen, the immune response is weak. Electrovaccination with heterologous 

(xenogeneic) DNA or a combination of both heterologous and self DNA, induced a more 

robust immune response, as human and rat ErbB-2 proteins are 88.1% identical49. 

Another example of  overcoming T cell tolerance, has been reported in dogs vaccinated 

with either human or murine tyrosinase to treat canine melanoma50,51. In rat experimental 

autoimmune encephalomyelitis, which is induced by guinea pig myelin basic protein, the 

shared epitope differs by one amino acid and better facilitates recognition by low-affinity 
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T cells46,52. Similar to the tolerance promoted by the expression of self-antigen Her-2/neu 

in transgenic murine brain and mammary glands, the expression of WT1 in the spleen is 

greatly tolerogenic48,53. However, unlike ErbB-2, WT1 is more highly conserved; pair 

wise alignment scores indicate a 97% identity between human and murine protein 

sequences. Since the human and the murine sequences are so similar, vaccinating mice 

with a human DNA vaccine does not work as well as it does in the Her-2/neu model. It is 

not xenogeneic enough. 

To create a more xenogeneic vaccine, we generated a consensus sequence from 

ten WT1 homologs. Homologous proteins from D. rerio, G. gallus, M. musculus, R. 

norvegicus, C. lupus, B. taurus, H. sapiens, P. troglodytes, and A. mississippiensis were 

aligned to define critically conserved domains, and to identify positions of amino acid 

variability. Amino acids, from sequences other than M. musculus, substituted at those 

sites. Additionally, the zinc finger region and nuclear localization signal was removed as 

these are typically the least immunogenic portions of a protein and sequester the protein 

in the nucleus. Kozak and IgE leader sequences were added to facilitate protein 

expression. The new protein consensus sequence is 91% identical to wild type murine 

WT1, not including the IgE leader sequence or the deleted portions. Lymphocytes from 

mice electrovaccinated with the consensus readily respond to a peptide library based on 

the wild type murine WT1 sequence, whereas the immune response to vaccination with 

the wild type murine WT1 sequence is marginal. Therefore, an increase in xenogenecity 

of the WT1 DNA vaccine leads to robust a WT1-specific cellular immune response in the 

highly tolerogenic mouse model.  
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In this dissertation, I will discuss our vaccine strategies, the results of each 

strategy, and potential approaches to circumvent tolerance in future experiments. 
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Chapter 2: Vaccination with wild type murine WT1 does not induce a 

significant immune response in mice. 

Introduction 

A successful immune response to an antigen requires expression of the antigen in 

a fashion or environment that alerts the immune system, presentation of the antigen to 

immune cells, and in the case of cancer, an effector T cell response6. Even though 

humoral immune responses should not be discounted15, persistent memory T cells that 

remain for surveillance and prevention of relapse would be ideal. When dealing with 

foreign antigens, the cells of the immune system have a variety of pattern recognition 

receptors (PRRs) to identify characteristics of non-self in a broad assortment of 

pathogens. In addition, the adaptive immune system has an immensely diverse selection 

of lymphocyte antigen receptors, each uniquely targeted to one specific antigen. 

However, there may not be a “foreign” antigen that the immune system can distinguish, 

to indicate a rogue cancer cell. Tumor-associated antigens (TAAs), some of which can be 

viral oncogenes, or mutated or altered self-proteins, can also be overexpressed non-

mutated self-antigens, such as WT154–56. In spite of many TAAs being self-antigens, it is 

not uncommon to find T cells specific to such TAAs in patients with cancer, indicating 

that immune system can recognize these TAAs. It bolsters the hope that immunotherapy 

can be the means to treat cancer13,57.  

Immunotherapy targeting WT1, a TAA found in a wide range of cancers, requires 

designing a vaccine that can initiate a successful immune response and overcome an 

obstacle inherent in using a self-antigen as a target, namely tolerance to that antigen. 
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Central tolerance limits the number and quality of WT1-specific T cells that escape the 

thymus, as high avidity self-reactive T cells are deleted. In the periphery, these cells may 

be anergized or suppressed. In humans, WT1 expression is limited to HSC, a few cells of 

the kidney, testis and ovary. In mice, WT1 is also expressed in the stroma of the spleen, 

thereby creating an environment in which it is more difficult to make an immune 

response to WT1. Gaiger et al. and several others show that it can be done, mainly using 

peptides45,58–61. Most clinical trials, vaccinating against WT1, have used defined, and 

limited peptide vaccines, but with underwhelming results18.  

To study responses to the full length WT1 antigen, rather than a limited number 

of peptide epitopes, we vaccinated mice with full length wild type murine WT1 using a 

variety of methods, types of antigen, routes of immunization, and adjuvants in an effort to 

induce a robust immune response. Each of the methods was designed to take advantage 

of various aspects necessary for successful immune response. Route of vaccination, 

adjuvants, and vectors presented the antigen in several ways to trigger danger signals, and 

to exploit aspects of the innate and adaptive immune systems such as PRRs, transient 

inflammation, and antigen presenting cells (APCs), in order activate Wt1-specific T cells. 

We used tetramer staining and in vitro assays for IFNγ production to identify and 

quantitate cell responses in splenocytes isolated from vaccinated mice. Splenocytes or 

isolated T cells were stained with WT1 Db126 tetramer (RMFPNAPYL/H-2Db) and/or 

were restimulated in vitro by WT1 mRNA transfected B cells, using B6BL#1153 B 

lymphoma, an easily manipulated antigen presenting cell line, in IFNγ ELISA, ICS, and 

ELISpot assays.  
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Materials and Methods 

Mice 

Female or Male C57BL/6 mice between 6 to 12 weeks old were used in this 

experiment. Mice were obtained from the National Cancer Institute (Frederick, MD). 

Mouse care and experimental procedures were carried out in accordance with the 

Institutional Animal Care and Use Committee (IACUC) of Johns Hopkins University 

under an approved protocol. Female BALB/c mice between 6 to 8 weeks old were used in 

this experiment. Mice were obtained from the Jackson Laboratory. The mice were housed 

and maintained by the University Laboratory Animal Resources at the University of 

Pennsylvania in observance with the policies of the National Institutes of Health and the 

University of Pennsylvania IACUC. Naïve mice served as negative control. 

Cell lines 

B6BL#1153 is a C57BL/6 B lymphoma cell line (a kind gift of Dr. Rongfu Wang, 

Methodist Hospital Research Institute, Houston, TX). Cells were cultured in complete 

RPMI media: RPMI 1640 medium supplemented with 10% fetal bovine serum, 100 

U/mL penicillin, 100 µg/mL streptomycin, 2 mM L-glutamine, nonessential amino acids, 

10 mM HEPES buffer, and 100 µM 2-mercaptoethanol and grown at 37°C in 5% 

CO2. B1153-WT1 cell lines were generated by electroporation-mediated plasmid 

transfection of the construct pWT1, which encodes the wild type murine WT1, into 

B6BL#1153. Transfection was performed using the Nucleofector™ system (Kit V, 

Program L-013, (Lonza)) according to the manufacturer’s instructions. Transfectants 

were selected in 400 µg/ml of the neomycin analogue, G418. Drug-resistant clones were 
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selected after limiting dilution, and WT1 expression was confirmed by qRT-PCR and 

western blot. B1153-WT1 cells were maintained in complete RPMI media supplemented 

with 400 µg/ml of G418. B78H1-GM62, a C57BL/6, GM-CSF secreting cell line utilized 

in bystander immunotherapy regimens, was maintained in complete RPMI supplemented 

with high dose hygromycin (1,200 µg/mL) to assure high levels of GM-CSF expression, 

which averaged 1 µg GM-CSF/106 cells/24 h. The C57BL/6 prostate adenocarcinoma 

cell line, TRAMP-C2 (ATCC) was cultured in TRAMP media: Dulbecco's modified 

Eagle's medium with 4 mM L-glutamine adjusted to contain 1.5 g/L sodium bicarbonate 

and 4.5 g/L glucose supplemented with 5% fetal bovine serum, 5% Nu-Serum IV (BD), 

0.005 mg/ml insulin, 10 nM trans-dehydroandrosterone and 100 U/mL penicillin, 100 

µg/mL streptomycin. For TRAMP-C2/Gvax vaccination, 1x106 TRAMP-C2 cells were 

mixed with 5x104 B78H1-GM cells and irradiated (50 Gy). After three washes in PBS, 

cells were resuspended in a total of 200 µl of PBS and administered by subcutaneous 

injection (subq) of 100 µl into each hind limb. SF.TRAMP-GM (TRAMP-C2 modified to 

express GM-CSF via retroviral transduction with MFG muGM-CSF63, which averaged 

20 ng GM-CSF/106 cells/24 h) was conditioned to grow in serum free media (Dulbecco's 

modified Eagle's medium with 4 mM L-glutamine adjusted to contain 1.5 g/L sodium 

bicarbonate and 4.5 g/L glucose supplemented with 5% Ham's F12, and 0.1% MITO+ 

Serum Extender (BD), 0.005 mg/ml insulin, 10 nM trans-dehydroandrosterone, and 100 

U/mL penicillin, 100 µg/mL streptomycin). Cells used for vaccination were collected by 

trypsinization, and irradiated (50 Gy). After three washes in PBS, cells were resuspended 

in a total of 200 µl of PBS and administered by subcutaneous injection of 100 µl into 

each hind limb.   
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Relative WT1 Expression by qRT-PCR 

Quantitative PCR was performed on an Applied Biosystems 7500 real time PCR 

system. Pre-made Taqman primer/probe gene expression assays (Mouse Gapdh: 

Mm99999915_g1, Mouse Wt1: Mm01337053_m1 and Mm01337052_m1) were 

purchased from Applied Biosystems, and QuantiTect Probe RT-PCR Kit was purchased 

from Qiagen for the remainder of the reagents. Each triplicate reaction, in a total of 25 µl, 

contained 12.5 µl of the 2X master mix, 0.25 µL RT mix, 1.25 µl of the 20X Gapdh 

primer/probe, 1.25 µl of the 20X Wt1 primer/probe, DEPC treated water, and RNA 

isolated using an RNeasy kit (Qiagen). Data were analyzed using SDS 1.5 software 

(Applied Biosystems). Gapdh was used as the endogenous control and relative changes in 

gene expression were calculated using the ΔΔCt method.   

Constructs for DNA vaccination 

Wild type murine WT1 cDNA, pKS+mWT1++, was a kind gift from Dr. J. 

Kreidberg (Harvard Medical School, Boston, MA). For the generation of  pcDNA3.1 

WT1 (used for DNA vaccination and creation of a stably transfected WT1-expressing B 

cell lines), wild type murine WT1 was first amplified by PCR using pKS+mWT1++ as 

the template and a set of primers, 5’-TGTAGATCTACCATGGGTTCCGACGTGCGG-

3’and 5’-TTTGGATCCTGTCAAAGCGCCAGCTGGAGTTT-3’. The amplified product 

was then cloned into the BamHI sites of pcDNA3.1(-) vector (Invitrogen) and was named 

pWT1. An alternative WT1 construct, only used for DNA vaccination, was created by 

adding an IgE leader sequence, after which codon optimization and RNA optimization 

was performed by using GeneOptimizer® (GeneArt®, Life Technologies). The IgEL 

murine WT1 sequence was synthesized and sequence verified by GeneArt®, and cloned 
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into the expression vector pVAX (Invitrogen) and named WT1-pVAX, but will be 

referred to as pIgEL-WT1 in this manuscript. pcDNA3.1-Ova (pOva) contains ovalbumin 

fused to the transmembrane domain of transferrin. The TfR/OVA fragment was isolated 

by digestion with HindIII from the pBlueRIP-TfR/OVA plasmid, which was initially 

generated by Dr. F. Carbone (Walter & Eliza Hall Institute, Melbourne, Australia) and 

kindly provided to us by Dr. E. Sotomayer (H. Lee Moffitt Cancer Center & Research 

Institute, Tampa, FL).  

DNA vaccination by intramuscular injection only 

Each vaccinated C57BL/6 mouse received four doses of DNA plasmid on days 0, 

3, 6, and 14. Mice received 100 µg of DNA per vaccination. The DNA constructs, in 50 

µL of PBS were administered via intramuscular (IM) injection of the right or left 

quadriceps muscle. 

DNA vaccination by intramuscular injection followed by electroporation 

Each vaccinated BALB/c mouse received three doses of DNA plasmid at 14 day 

intervals. Mice received 30 µg of DNA per vaccination. Electroporation procedure was 

performed as described previously64. Briefly, DNA constructs were administered via 

intramuscular injection of the right quadriceps muscle, followed by square-wave pulses 

generated by the CELLECTRA® constant current electroporation device (Inovio 

Pharmaceuticals). The device was configured to deliver two 0.1 Amp pulses of 52 ms 

pulse width spaced apart by a 1 sec delay.  
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Constructs for in vitro transcription and transfection of B6BL#1153 B cells 

For in vitro transcription of mRNAs that are used to transfect B6BL#1153 B cells,  

all antigens are inserted into pGEM4Z/A6465. pGEM4Z/GFP/A6466 which contains GFP 

between the HindIII/EcoRI sites of pGEM4Z/A64 was kindly provided to us by Dr. I. 

Strobel (University of Erlangen, Germany). Wild type murine WT1 was amplified with a 

set of primers, 5’-TATAAAGCTTGCCACCATGGGTTCCGACGTGCGG-3’ and 5’-

TTCTGAATTCTCAAAGCGCCAGCTGGAGTT -3’, and cloned into the HindIII/EcoRI 

sites of pGEM4Z/A64, after excising GFP. Ovalbumin (Ova) was amplified with a set of 

primers, 5’-GGCCAAGCTTACCATGATGGATCAAGCTAGATCAGC-3’ and 5’-

GGGGGAATTCTTAAGGGGAAACACATCTGCCAA -3’, and cloned into the 

HindIII/EcoRI sites of pGEM4Z/A64, after excising GFP. Plasmids were linearized using 

restriction endonuclease SpeI and in vitro transcribed using the (T7) mMESSAGE 

mMACHINE high yield capped RNA transcription kit (Ambion) according to the 

manufacturer’s instructions. After digestion of the DNA template with DNase I, mRNA 

was purified with an RNeasy kit (Qiagen).  

Transfection was performed using the Nucleofector™ system (Kit V, Program L-

013, (Lonza)) according to the manufacturer’s instructions, with a few modifications. 

Briefly, each transfection consisted of 10 µg mRNA/1x107 cells in 100 µL of 

Nucleofector™ Solution V. B6BL#1153 B cells were harvested, and washed twice with 

room temperature PBS, counted, aliquoted, and pelleted. The supernatant was decanted 

and the remaining PBS aspirated. The pellet was broken with a tap of the tube, mRNA 

was added to the cells, and 100 µL of Nucleofector™ Solution V was added to resuspend 

cells and mRNA, which was then transferred to a cuvette. The cells were shocked using 
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program L-013 on a Nucleofector™ II device, rescued with pre-warmed media, and 

transferred to a 100 mm dish containing 10 ml of pre-warmed complete RPMI media. 

Cells were rested at least four hours in an incubator before use in assays. B6BL#1153 B 

cells that are simply shocked without nucleic acids were denoted as “B cells”; those that 

were transfected with wild type murine WT1 mRNA are denoted as “WT1 B cells”; those 

that were transfected with GFP or Ova mRNA are denoted as “GFP B cells” and “Ova B 

cells” respectively. 

WT1 protein expression in transfected cells  

To confirm WT1 protein expression from constructs transfected into B6-BL#1153 

B cells, 1x107 cells were lysed using 1ml of NP-40 cell lysis buffer and vortexed. Lysates 

were cleared by centrifugation. Proteins were resolved and blotted using the Bio-Rad 

Mini-Protean® TGX™ Precast Gel and Mini-Trans Blot® system. Cell lysates were 

mixed with 2X Laemmli sample buffer, supplemented with 2-mercaptoethanol and boiled 

for 5 min. Lysates were loaded onto a 10% Mini-Protean® TGX™ Gel and run at 200V 

for ~35 min. Protein was transferred onto nitrocellulose membranes in transfer buffer (IX 

Tris/Glycine/20% methanol) at 30V overnight at 4ºC. Membranes were blocked with 5% 

nonfat dry milk diluted in Tris-buffered saline + 0.1% Tween-20 (TBST), for 60 min, 

then rinsed and incubated overnight with a 1:5000 dilution of rabbit anti-WT1 

monoclonal antibody (Abcam, ab89901) TBST + 5% BSA at 4ºC. Membranes were 

washed once with TBST for 15 min, then three times with TBST for 5 min each, then 

probed with a 1:25,000 dilution of horseradish peroxidase-conjugated goat anti-rabbit 

IgG antibody (Santa Cruz Biotechnology, sc-2054) for 60 min at room temperature. 

Membranes were washed once with TBST for 15 min, then three times with TBST for 5 
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min each, then visualized using Amersham ECL Prime Western Blotting Detection 

Reagent (GE Healthcare). 

Recombinant WT1 protein and immunization with protein 

For expression of GST fusion proteins, fragments of wild type murine WT1 were 

cloned into pGEX-6P-1 (GE Healthcare). The n-terminus of WT1 (GST-N-mWT1, aa1-

193) was amplified with primers, 5’- TTTTGAATTCATGGGTTCCGACGTGCGG -3’ 

and 5’-TATTCTCGAGGTACTGCTGCTCGAACAG -3’, and cloned into the 

EcoRI/XhoI sites of pGEX-6P-1. The middle section of WT1 (GST-Mid-mWT1, aa133-

318) was amplified with a set primers, 5’-TTTTGAATTCTACCTGCCCAGCTGCCTG -

3’ and 5’-TATACTCGAGACTGGTTTCAGATGCTGACC -3’, and cloned into the 

EcoRI/XhoI sites of pGEX-6P-1. The c-terminus of WT1 (GST-C-mWT1, aa265-449) 

was amplified with a set primers, 5’-ATATGAATTCAGCAACCACGGCACAGG -3’ 

and 5’- TATTCTCGAGTCAAAGCGCCAGCTGGAG -3’, and cloned into the 

EcoRI/XhoI sites of pGEX-6P-1. To isolate GST-WT1 protein, cell lysate was prepared 

from transformed Rosetta 2(DE3)pLysS (Novagen) cell cultures.  Cells from a 1 L 

culture were harvested and centrifuged for 20 min at 4000g after a 3 h IPTG (1 mM) 

induction in Terrific broth at 30°C. Cultures producing GST-C-mWT1 were 

supplemented with 0.5 mM ZnCl2. Pellets were resuspended in a total of 25 ml of lysis 

buffer (50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 10 µM ZnCl2, 0.3% NP-40 alternative, 

0.1% Tween-20, 1 mM PMSF and Complete Mini (-EDTA) Protein Inhibitors (Roche)). 

Lysate was frozen in liquid nitrogen and thawed in a 37ºC water three times. Lysozyme 

(1 mg/ml, Sigma) was added, then the lysate was vortexed, and incubated on ice for 30 

min. The lysate was sonicated three times and then centrifuged at 12,000g at 4°C for 10 
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min. Glutathione Sepharose 4B resin (GE Healthcare), 1 ml of a 50% slurry, was washed 

with 5 ml of TBS- NMGZn wash buffer (50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 2.5 

mM MgCl2, 10 µM ZnCl2, 0.1% NP-40 alt., 10% Glycerol, and 1 mM PMSF). 

Supernatant was collected and incubated with pre-washed resin and rotated 60 min at 

4°C. The resin was centrifuged (500g) and washed three times with 5 ml of TBS-NMGZn 

wash buffer before being eluted three times with 2.5 ml of TBS-NMGZn elution buffer 

(100 mM Tris-HCl (pH 8.0), 150 mM NaCl, 2.5 mM MgCl2, 10 µM ZnCl2, 0.1% NP-40 

alt., 10% Glycerol, 20 mM Glutathione, reduced), rotated for 10 min at room 

temperature. Elutions were combined, concentrated and buffer exchanged into PBS 

before being used for immunizations. Proteins were confirmed by western blot with anti-

GST-HRP (GE Healthcare), and anti-WT1 (F-6, C-19, Santa Cruz Biotechnology) 

antibodies. Concentration was determined by Bio-Rad Protein Assay, and equal amounts 

of GST-N-mWT1, GST-Mid-mWT1, and GST-C-mWT1 were combined for GST-WT1 

protein immunizations.  C57BL/6 mice were injected intraperitoneally (IP) with 0.5 mg 

whole ovalbumin (Sigma-Aldrich) or 1 mg GST-WT1 (~0.5 mg WT1) with or without 

TLR agonists ((30 µg LPS or 50 µg poly(I:C), Sigma) and/or 50 µg of anti-CD40 mAb 

(FGK45 mAb was a kind gift of S. Schoenberger, LIAI, La Jolla, CA). Mice were 

immunized with a single injection IP and sacrificed 6 days later.  

Bone marrow-derived dendritic cells (BMDC) 

C57BL/6 mice were treated IP with 4 mg/mouse cyclophosphamide (Baxter 

Healthcare) and bone marrow was harvested 3 days after treatment. Femurs and tibiae of 

mice were removed and separated from the surrounding muscle tissue by rubbing with 

tissue. Thereafter intact bones were left in 70% ethanol for 1 min for disinfection and 
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washed with RPMI 1640. Then both ends were cut with scissors and the marrow flushed 

with RPMI 1640 using a syringe with a 25G needle. Clusters within the marrow 

suspension were disintegrated by vigorous pipetting.  The bone marrow cell suspension 

was depleted of red blood cells by lysis with ACK lysing buffer (Quality Biologicals). 

After resuspension the cells were filtered through a 40 µm nylon filter and counted. At 

day 0, bone marrow cells were plated at 0.75x106 per 100 mm dish (bacteriological) in 10 

ml serum-free BMDC media (RPMI 1640 medium supplemented with 0.1% MITO+ 

Serum Extender (BD), 100 U/mL penicillin, 100 µg/mL streptomycin, 2 mM L-

glutamine, non-essential amino acids, 10 mM HEPES buffer, and 100 µM 2-

mercaptoethanol, 1 mM sodium pyruvate, and 800 U/ml of mGM-CSF). At day 4, 

another 10 ml of media (containing mGM-CSF) were added to the plates. At day 6, half 

of the culture supernatant was collected, centrifuged; the cell pellet was resuspended in 

10 ml fresh media (containing mGM-CSF), and given back into the original plate. On day 

7, non-adherent and loosely adherent immature BMDCs were harvested, washed twice 

and the phenotype of the BMDCs (CD11c+CD11b+) were confirmed by flow cytometry 

and the cells were transfected.  

Transfection of immature BMDC was performed using the Nucleofector™ system 

(Mouse Dendritic Cell Kit, Program Y-001, (Lonza)) according to the manufacturer’s 

instructions, with a few modifications. Briefly, each transfection consisted of 10 µg 

mRNA/1x107 cells in 100 µL of Nucleofector™ Mouse DC solution. BMDCs were 

harvested, and washed twice with room temperature PBS, counted, aliquoted, and 

pelleted. The supernatant was decanted and the remaining PBS aspirated. The pellet was 

broken with a tap of the tube, mRNA was added to the cells, and 100 µL of 
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Nucleofector™ Mouse DC solution was added to resuspend cells and mRNA, which was 

then transferred to a cuvette. The cells were shocked using program Y-001 on a 

Nucleofector™ II device, rescued with pre-warmed media, and transferred to a 100 mm 

dish containing 10 ml of pre-warmed serum-free BMDC media. On day 8, the media was 

supplemented with 25 µg/ml poly(I:C) to further mature the BMDCs. On day 9, mature 

BMDCs were harvested, washed twice and the phenotype of the BMDCs (CD11c, 

CD11b, H2Kb, H2Db, IAb, CD40, CD80, CD86 (BD Biosciences)) were confirmed by 

flow cytometry. After three washes in PBS, 1x106 cells were resuspended in a total of 

200 µl of PBS and administered by subcutaneous injection of 100 µl into each hind limb.    

Listeria monocytogenes 

Stocks of vaccine-ready attenuated Listeria monocytogenes were graciously 

provided by Thomas Dubensky and Pete Lauer (Aduro BioTech). Three strains were 

provided: Lm(-), the negative control; Lm Ova, a strain that express ovalbumin protein; 

and Lm WT1-SL8, a strain that expresses full length murine WT1 protein to which 

SIINFEKL is fused at the end. C57BL/6 mice were vaccinated, intravenously with a dose 

is 5x106 CFU L. monocytogenes in 200 µL PBS.  

Splenocyte isolation 

Spleens and lymph nodes were isolated from mice, pressed through a 100 µm 

strainer to create a single-cell suspension, and red blood cells were lysed in ACK lysing 

buffer. Splenocytes were resuspended in complete media and filtered through a 40 µm 

strainer, before cell counting.  In some experiments, T cells were used enriched by using 

Pan T Cell Isolation Kits (Miltenyi Biotech) following the manufacturer's protocol. Cells 
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were cultured in complete RPMI or serum free CTL media (RPMI 1640 medium 

supplemented with 0.1% MITO+ Serum Extender (BD), 100 U/mL penicillin, 100 µg/mL 

streptomycin, 2 mM L-glutamine, non-essential amino acids, 10 mM HEPES buffer, and 

100 µM 2-mercaptoethanol, 1 mM sodium pyruvate). 

IFNγ ELISA 

Mice were sacrificed 1 week after the final vaccination, and splenocytes were 

isolated as mentioned previously. Splenocytes or T cells, from naïve and vaccinated mice 

were restimulated in vitro in 96-well flat bottom plates. Splenocytes were counted and 

added to wells at 4x105 cells per well. Peptides (2 µg/ml SIINFEKL or 5 µg/ml 

RMFPNAPYL) or 1x105 B cells (either untransfected, Ova or WT1 transfected 

B6BL#1153 B cells) were added to the wells. Wells reserved for positive and negative 

control received PMA/Ionomycin (eBioscience) or culture medium, respectively. Plates 

were subsequently placed in a 5% CO2 atmosphere incubator for 48 to 72 h, after which 

supernatant was collected, frozen, and later analyzed using mouse IFNγ ELISA (R&D 

Systems or eBioscience). Ovalbumin class I peptide SIINFEKL, and WT1 class I peptide 

RMFPNAPYL were purchased from GenScript.  

Flow cytometry and intracellular cytokine staining 

Murine CD11c, CD11b, H2Kb, H2Db, IAb, CD40, CD80, CD86, CD8, CD4, 

B220, and IFNγ antibodies were purchased from BD Biosciences and used for flow 

cytometry. PE-labeled SAINFEKL/H-2Kb tetramer (Ova), SIINFEKL/H-2Kb monomer 

(Ova) and RMFPNAPYL/H-2Db monomer (WT1) were provided by the NIH Tetramer 

Core Facility and used for identification of Ova or WT1-specific CD8+ T cells. Ova 
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monomers and WT1 monomers were tetramerized with streptavidin-PE or streptavidin-

APC (BD Biosciences) as described67. Cells were stained with tetramer for 30 min at 

room temperature, in the dark, before staining with surface antibodies. Tetramer and 

surface antibodies were diluted in lx HBSS containing 1% FBS, 10 mM HEPES buffer 

and 0.1% sodium azide. For intracellular cytokine staining, cells were fixed and 

permeabilized using the BD Cytofix/Cytoperm™ Plus Fixation/Permeabilization Kit 

(with BD GolgiPlug™ protein transport inhibitor containing brefeldin A), according to 

the manufacturer instructions. All flow data were collected using the FACSCaliber or 

LSR II (BD bioscience) and analyzed using FlowJo (TreeStar, Ashland, OR).  

Cells to be analyzed by intracellular cytokine staining for IFNγ were cultured as 

follows. Splenocytes or T cells, from naïve and vaccinated mice were restimulated in 

vitro in 48-well flat bottom plates. Splenocytes were counted and added in wells at 2x106 

cells per well. Peptides (2 µg/ml SIINFEKL or 5 µg/ml RMFPNAPYL) or 1x106 B cells 

(either untransfected, Ova or WT1 transfected B6BL#1153 B cells) were added to the 

wells. Wells reserved for positive and negative control received PMA/Ionomycin 

(eBioscience) or culture medium, respectively. Cell were stimulated in media containing 

GolgiPlug for 12 h, prior to intracellular cytokine staining.  

IFNγ ELISpot assays with individual peptides or B cells 

High-protein IP 96-well Multiscreen™ plates (Millipore, MAIPS4510) were 

coated with monoclonal mouse IFNγ Capture Antibody (R&D Systems, SEL485) and 

incubated overnight at 4°C. After three washes with 1x PBS, the plates were blocked 

with 1% BSA and 5% sucrose in 1x PBS for 2 h at ambient temperature. Mice were 

sacrificed 1 week after prime or boost vaccinations, and splenocytes were isolated as 
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mentioned previously. Splenocytes were counted and added in triplicate wells at 2.4x105 

cells per well. Peptides (2 µg/ml SIINFEKL or 5 µg/ml RMFPNAPYL) or 0.6x105 B 

cells (either untransfected, Ova or WT1 transfected B6BL#1153 B cells) were added to 

the wells. Wells reserved for positive and negative control received PMA/Ionomycin 

(eBioscience) and culture medium in lieu of peptides, respectively. Plates were 

subsequently placed in a 5% CO2 atmosphere incubator. After incubation for 18–24 h at 

37°C, the wells were washed with 1x PBS. Biotinylated anti-mouse IFNγ Detection 

Antibody (R&D Systems, SEL485) was added to each well and then incubated overnight 

at 4°C. The plates were subsequently washed and processed per a color development 

protocol provided by R&D Systems using Streptavidin-AP and BCIP/NBT Plus (R&D 

Systems, SEL002). The wells were air-dried overnight and spots inside wells were 

scanned and counted using a Zeiss KS ELISpot Imaging system. Reported spot forming 

cell counts were converted to represent spot-forming units per 1x106 splenocytes. 

IFNγ ELISpot assays with pooled peptides 

Mice in both treatment and control groups were sacrificed 1 week after the third 

immunization. Spleens were harvested from each mouse and transferred to R10 media 

(RPMI-1640 medium supplemented with 10% fetal bovine serum and 1% antibiotics). 

Using a stomacher (Seward Laboratory Systems), the spleens were pulverized and 

subsequently transferred through a 40 µm cell strainer. Erythrocytes were removed by 

adding ACK lysing buffer (Lonza). The splenocytes were isolated and resuspended in 

R10 media. High-protein IP 96-well Multiscreen™ plates (Millipore, S2EM004M99) 

were coated with monoclonal murine IFNγ Capture Antibody (R&D Systems, SEL485) 

and incubated overnight at 4°C. After three washes with 1x PBS, the plates were blocked 
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with 1% BSA and 5% sucrose in 1x PBS for 2 h at ambient temperature. Isolated 

splenocytes in R10 medium were counted and added in triplicate wells at 2x105 cells per 

well. Peptides were added to the wells. A set of peptides spanning the wild type murine 

WT1 sequence (excluding the zinc finger region) were synthesized by GenScript. The 

peptides contained 15 amino acid sequences, of which 11 residues overlapped with each 

sequential peptide. The peptides were each divided into three pools at concentrations of 2 

µg/mL/peptide.  Wells reserved for positive and negative control received Concanavalin 

A (Sigma-Aldrich, C0412) and R10 culture medium in lieu of peptides, respectively. 

Plates were subsequently placed in a 5% CO2 atmosphere incubator. After incubation for 

18–24 h at 37°C, the wells were washed with 1x PBS. Biotinylated anti-mouse IFNγ 

Detection Antibody (R&D Systems, SEL485) was added to each well and then incubated 

overnight at 4°C. The plates were subsequently washed and processed per a color 

development protocol provided by R&D Systems using Streptavidin-AP and BCIP/NBT 

Plus (R&D Systems, SEL002). The wells were air-dried overnight and spots inside wells 

were scanned and counted by an ELISpot plate reader system with ImmunoSpot®3 and 

ImmunoSpot®4 software (Cellular Technology Ltd.). Reported spot forming cell counts 

were converted to represent spot-forming units per 1x106 splenocytes.   
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Results  

Characterization of B6BL#1153 B lymphoma (B cell) line 

In order to study the efficacy of vaccines ex vivo, we measured IFNγ production in 

splenocytes from vaccinated mice upon restimulation, using ELISA, ICS and ELISpot. 

Splenocytes were restimulated by peptide for the dominant epitope for WT1 (Db126) or 

by peptide libraries for the in vitro assays.  Responses to naturally processed and 

presented peptides were assessed using B6BL#1153, a C57BL/6 B lymphoma cell line. 

qRT-PCR ascertained that B6BL#1153 did not express WT1, while the assay reiterated 

that WT1 expression in the murine spleen was greater than that of unfractionated bone 

marrow, confirming the report of Fraizer et al36 (Figure 1A). Flow cytometric analysis 

showed that B6BL#1153 was an ideal antigen presenting cell line as it had an activated 

phenotype: high levels of MHC class I and class II, as well as costimulatory markers such 

as CD40, CD80 and CD86, without any need for supplementary activation (Figure 1B). 

Since B6BL#1153 did not naturally express WT1, the ability to easily transfect the cells 

for each experiment was important. Electroporating the cells with mRNA transfected 

greater than 90% of the viable cells in each transfection and enabled quicker protein 

expression than transfecting with plasmid DNA would have achieved. Figure 1C showed 

typical results of transfecting with GFP mRNA, in that a majority of the cells were 

transfected and highly expressed GFP protein. Electroporation of B6BL#1153 with 

pWT1 plasmid, selection in antibiotic, and dilution cloning produced WT1 stably 

transfected B cell lines that expressed WT1 comparable to that of TRAMP-C2, a murine 

prostate adenocarcinoma cell line known to overexpress WT158 (Figure 1D,E). 
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Immunization utilizing wild type WT1 cDNA produces a muted immune response as 

compared to other antigens. 

To activate the few WT1-specific T cells in the naïve repertoire, a DNA vaccine, using as 

much of the antigen as possible to provide a variety of epitopes for both CD8 and CD4 T 

cells, would be advantageous. Such a vaccine would bolster the both the cytotoxic and 

helper T cell response, but more importantly be available to a wider range of patients. 

Naked DNA vaccines are safe, easy to design and produce in volume making them an 

attractive method of immunotherapy. Plasmid DNA, intramuscularly injected, transfects 

muscle cells and tissue patrolling APCs, perturbs the tissue transiently causing 

inflammation. The plasmid itself triggers TLR9, invoking danger signals and activating 

the innate immune system, recruiting and maturing APCs68–72. T cells from mice 

vaccinated with pOva, a plasmid containing ovalbumin (Ova) sequence, responded to 

restimulation by Ova mRNA transfected B6BL#1153 cell (Ova B cells). In contrast, T 

cells from mice vaccinated with wild type murine WT1 construct, pWT1, did not produce 

IFNγ upon restimulation with WT1 mRNA transfected B6Bl#1153 cells (WT1 B cells) 

indicating that the vaccine was ineffective at activating and expanding WT1-specific T 

cells (Figure 2A).  

One limitation of DNA vaccines, is that the DNA has to be efficiently taken up by the 

muscle cells after injection and antigen presenting cells have to be recruited to the 

injection site. Electroporation can enhance the quality and magnitude of response to DNA 

vaccination.  Intramuscular DNA injection followed by electroporation, or 

electrovaccination, increases the amount of DNA entering the cells. This enhanced 

uptake is followed by increased expression, processed naturally for peptide/MHC 
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complexes, and includes an element of “danger” to stimulate the immune response73–75. 

Electroporation immediately following intramuscular injection causes more inflammation 

than a simple intramuscular injection76–80. Two WT1 DNA vaccines were compared, 

using in vivo electroporation and pooled peptide ex vivo restimulation. One group of mice 

received pWT1, while the second group received a construct in which an IgE leader 

sequence was placed in front of the murine WT1 sequence, pIgEL-WT1, to enhance 

expression of the antigen75,81. The addition of electroporation did not enhance the original 

vaccine, as splenocytes from naïve mice and mice vaccinated with pWT1 had the same 

response to murine WT1 peptides. However, splenocytes from mice vaccinated with 

pIgEL-WT1 produced a muted but slightly improved response as compared to 

splenocytes from naïve or pWT1 vaccinated mice (Figure 2B).  

Immunization with GST-WT1, anti-CD40 and adjuvant modestly enhances the 

immune response. 

Adjuvants enhance vaccines by improving the formulation or by activating the innate 

and, by extension, the adaptive immune system. TLR agonists trigger release of 

proinflammatory cytokines in monocytes, NK cells and DCs, while CD40 antibody 

activates B cells and matures DCs. Ahonen et al. and others reported that a triple 

combination of antigen, CD40 antibody, and TLR agonist, synergizes to expand antigen-

specific CTLs and differentiate them into IFNγ producing effector cells82,83. In the case of 

Ova, brief restimulation by Ova peptide (SIINFEKL) showed that mice vaccinated with 

the combination of Ova protein, CD40 antibody, and LPS (a TLR4 agonist) had the most 

IFNγ producing T cells (Figure 3A, B). This was reiterated in the 72hr IFNγ ELISA, at 

which point responses in WT1 vaccinated mice were also demonstrated. In the ELISA, T 
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cells were restimulated with either peptide or B cells transfected with Ova or WT1 

mRNA. T cells from Ova protein/αCD40/LPS vaccinated mice produced three times 

more IFNγ when stimulated with Ova B cells than with Ova peptide. Likewise, T cells 

from WT1 vaccinated mice responded better to WT1 B cells, rather than the peptide for 

the dominant epitope. However, unlike the Ova protein vaccination, the best response, 

though nearly 20-fold less, was from T cells from mice vaccinated with WT1 protein and 

poly(I:C) (a TLR3 agonist) (Figure 3D, E). The experiment was repeated with similar 

results. 

Heterologous prime/boost vaccination utilizing GM-CSF expressing cells increases 

immune responses. 

Vaccines for infectious diseases initially utilized heterologous prime/boost vaccination 

methods to present the same antigen but in different vectors to circumvent the effect of 

neutralizing antibodies to the vector backbone; however the same principle of 

heterologous prime/boost can be used for cancer vaccines. Although most cancer 

vaccines use a DNA prime followed by a viral boost vaccine, several reports demonstrate 

that a DNA prime followed by an antigen overexpressing cell line vaccine may be just as 

effective84,85. Rittich et al. showed that vaccination with E7 DNA and boosting with a cell 

line expressing E7 and GM-CSF (or IL-12), enhanced in vitro immune responses after 

vaccination, and delayed or inhibited tumor growth85. In our experiments, it was clear 

that repeated vaccinations with wild type murine WT1 DNA in a homologous prime 

boost barely produced an immune response. After boosting with TRAMP-C2/Gvax 

vaccine, in which TRAMP-C2 cells are admixed with a GM-CSF producing cell line 

before vaccination, splenocytes from heterologous DNA primed and cell line boosted 
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mice produced 250-fold more IFNγ, upon restimulation with WT1 B cells, than 

splenocytes from homologous DNA prime and boosted mice (Figure 4A); however, these 

splenocytes from TRAMP-C2/Gvax vaccinated mice also produced IFNγ when 

restimulated with B cells that were not transfected to express WT1. Since these cell lines 

were grown in serum-containing media, one possible explanation for this result was that 

fetal bovine serum (FBS) “contaminated” the vaccine86; that is along with WT1, mice 

developed an immune response to FBS. Upon restimulation, in media containing FBS, 

some splenocytes from TRAMP-C2/Gvax vaccinated mice secreted IFNγ in the absence 

of WT1 (background). To test this possibility, TRAMP-C2-GM, a cell line retrovirally 

transduced to express GM-CSF, was conditioned to grow in serum-free TRAMP media. 

However, heterologous prime boost vaccinations with a serum-free cell line showed 

elevated levels of non-WT1-specific IFNγ production (Figure 4B), suggesting that 

antigens, other than FBS, common to both TRAMP-C2 and the B6BL#1153 cells, were 

also in the immunization. 

Bone marrow-derived dendritic cells (BMDCs) grown in serum-free media do 

immunize against Ova but not WT1. 

Matured and activated dendritic cells are the ultimate antigen presenting cell6, and 

previous experiments showed that cell based vaccines enhanced immune responses, albeit 

with associated high levels of background. To avoid priming T cells to FBS, bone 

marrow cells were grown in highly supplemented, but serum-free media86–89. The 

protocol was adapted from Lutz et al90, with minor modifications from Salem et al91, and 

grown in an excess of mGM-CSF. (Please see the Material and Methods for details.) 

Phenotypic analysis and comparison of cell surface markers, on immature BMDCs grown 
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with or without FBS, revealed the serum-free BMDCs had slightly higher percentages of 

CD11b+CDl1C+ and marginally higher expression of costimulatory markers (Figure 

5A,B). Fortunately that did not hinder transfection, as greater than 50% of cells from 

each culture condition expressed GFP after electroporation with mRNA, which in itself 

has maturing effects. Incubation with TLR agonist poly(I:C) fully matured and activated 

BMDCs after 24hrs (Figure 5C, D). Before vaccination, more than 80% of the transfected 

BMDCs had very high levels of MHC II and CD80, CD86, and CD40 expression.  

To assess the ability of serum-free BMDCs to activate and expand T cells in vivo, mice 

were vaccinated with either untransfected but mature BMDC (DC), Ova-transfected and 

matured BMDC (Ova DC), or WT1-transfected and matured BMDC (WT1 DC). 

Tetramer analysis of splenocytes from naïve and vaccinated mice once again illustrated 

how difficult it was to immunize against a self-antigen, as compared to a model antigen 

such as ovalbumin (Figure 5E). Further in vitro assays bore that out, as only splenocytes 

from mice vaccinated with Ova DC, and restimulated by Ova generated increased 

amounts of IFNγ; however as noted before when using cell based vaccines, background 

IFNγ was present when splenocytes were restimulated by untransfected B cells (Figure 

5F). 

Listeria monocytogenes (Lm) vaccines do not induce immune responses to WT1 

As mammalian cell based vaccines tend to activate more T cells than those specific to the 

antigen of interest, we explored other types of vaccines. Active immunotherapies such as 

Listeria monocytogenes, a bacterial vaccine vector, are especially attractive as it is 

designed to express the antigen of interest, it activates the innate immune system, its 
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target cells are APCs and its mode of action enables cross presentation of antigens92–95. 

Listeria vaccines have been reported to break tolerance in HPV16 and Her2/neu tumor 

models96,97. We hypothesized that a WT1-expressing Listeria vaccine would elicit robust 

WT1-specific immune responses. Tetramer staining showed that vaccination by Lm Ova 

activated and expanded Ova-specific T cells, in both primary and boost responses (Figure 

6A, B respectively). The boost response to Lm Ova generated nearly a 4-fold increase in 

CD8+ Ova-specific T cells; in one mouse approximately 30% of the CD8+ T cells were 

specific for Ova. Similarly, mice vaccinated with Listeria expressing WT1-SIINFEKL 

(Lm WT1-SL8, wherein the fusion protein is WT1 with an Ova class I peptide tag) also 

had Ova specific T cells that expanded with boost vaccination to over 10% of the CD8+ T 

cells. ELISpot assays that restimulated the splenocytes with peptide or Ova B cells 

reiterated the tetramer analysis (Figure 6C, D). In contrast, no WT1-specific response 

was observed in the primary or boost responses. Mice that were subsequently challenged 

with 1x106 or 3x106 TRAMP-C2 cells did develop WT1-specifc T cells; however, prior 

immunization with LmWT1-SL8 had no significant effect on this response. The 

frequency of WT1-specific T cells in both naïve mice as well as Listeria vaccinated mice 

was the same (Figure 7). To test the hypothesis that a heterologous prime-boost regimen 

would be capable of breaking WT1 tolerance, mice were vaccinated with WT1-

expressing BMDCs, then boosted with LmWT1-SL898. Tetramer analysis identified an 

Ova-specific T cell response but not a WT1-specific T cell response (Figure 8A). Upon 

challenge with 0.25x106 TRAMP-C2 cells, there was a slight increase in WT1-specific T 

cells in groups that were primed with WT1-expressing BMDCs (Figure 8B).  
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Discussion 

It is evident that attempting to produce an immune response to full length wild 

type WT1 is very difficult. Each of the vaccine strategies tested elicited responses to 

ovalbumin, which is a foreign antigen, while none utilizing murine WT1, a self-antigen, 

produced a robust response. Vaccine strategies included cDNA vaccination, protein plus 

adjuvant, BMDCs, Listeria and WT1 overexpressing whole cell vaccination.  

The first strategy, DNA vaccination, one the major immunotherapeutic tools, 

could not activate an immune response with wild type WT1 cDNA in spite of  

supplementing the vaccination with electroporation which should have increased cellular 

uptake of plasmid and produced localized transient inflammation. However, there are 

many improvements that can be made. Newer electroporation devices can electroporate 

not only muscle, but also subcutaneous and epidermal layers of the skin so that 

Langerhans DCs can be targeted. The plasmid DNA can be altered to include genetic 

adjuvants. In the next chapter, we test the hypothesis that altering the sequence of WT1 

cDNA will increase immunogenicity.   

A second vaccination strategy involved wild type murine WT1 protein, CD40 

antibody and adjuvant. WT1 protein and poly(I:C) created a minor immune response, 

which was reproducible, but surprising as it was expected that the best vaccine 

formulation would have included CD40 antibody as was seen when Ova was the antigen. 

What was not surprising was that poly(I:C), a TLR3 agonist that mimics dsRNA, typical 

of viruses and intracellular pathogens, was the better adjuvant for a WT1 vaccine as WT1 

is a self-antigen that normally shuttles between cytoplasm and nucleus and is not 
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secreted. As Ova is typically secreted, LPS, a TLR4 agonist found in bacteria and 

extracellular pathogens, delivered better results for the Ova vaccine.  

The third vaccination strategy used whole cell vaccines, such as TRAMP-

C2/Gvax. It provided the greatest immune response to WT1. The GM-CSF matured and 

activated monocytes and DCs. It also prepared them to produce proinflammatory 

cytokines, which would attract more immune cells to the site of vaccination. Given that 

WT1 expression in TRAMP-C2 is nearly two logs greater than WT1 expression in the 

spleen, it may be a simple matter of quantity of antigen presented; however, unless 

treated with IFNγ, which was not done here, TRAMP-C2 does not express great 

quantities of either MHC class I or class II. It may be pertinent to ascertain that, while 

likely, the WT1 overexpressed in this cell line is the wild type version.  

The fourth vaccination strategy, immunization with mature WT1-expressing 

BMDC failed to elicit a response to WT1. As mature, activated professional antigen 

presenting cells, expressing high levels of MHC I and II, as well as costimulatory 

markers, and efficiently transfected with antigen, serum-free BMDCs activated naïve 

Ova-specific T cells, but not WT1-specific T cells. Even though the BMDCs were 

cultured, transfected, and matured with poly(I:C), in the exact same fashion, the tolerance 

to WT1 hindered any responses. Dannull et al. demonstrated that selective (and transient) 

in vivo depletion of regulatory T cells (Treg), which suppress immune responses, help to 

break tolerance when used in conjunction with DC vaccines99. Reports also indicate that 

providing a third signal, proinflammatory cytokines such as IL-12, is necessary to break 

tolerance and prevent deletion or anergy9. It would be wise to check cytokine production 

of the serum-free BMDCs before utilizing them for any future vaccines. Such 
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modifications to the vaccination may help abrogate the profound tolerance to WT1. 

Additionally, whole cell vaccines, such as TRAMP-C2 or BMDCs, primed responses to 

antigens other than WT1. In clinical trials, that may be advantageous, if a patient’s tumor 

is part of a GVAX® vaccine, but non-tumor-specific immune responses can also arise100. 

Non-Ova or non-WT1-specific IFNγ production detracted from the significance of the 

response in ELISpot, ELISA or other IFNγ in vitro assays.  

The fifth strategy, Listeria monocytogenes vaccines did not elicit background 

IFNγ production, but splenocytes from LmWT1-SL8 vaccinated mice also had no 

detectable WT1 response, using either by tetramer staining or ELISpot assays. The same 

vaccine was able to prime and boost a response to the Ova tag at the end of the WT1 

fusion protein. Goldberg et al have reported that profound tolerance to self-antigen can be 

mitigated if the PD-1/PD-L1 interaction is blocked by antibodies during immunization 

with self-antigen expressing Listeria monocytogenes101.  

Overall, these data show that future experiments should address not only 

presentation of antigen but mechanisms of peripheral tolerance, such PD-1/PD-L1, 

anergy and Treg suppression, as well. 
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Figure 1. Characterization of B6BL#1153 B lymphoma (B cell) line. 

(A) Relative expression of WT1 in C57BL/6 mouse bone marrow, spleen and B6 BL#1153 B cell 

line using mRNA isolated from tissues and cell line in a qRT-PCR assay. Bone marrow is normalized 

to 1. Each column represents the average of triplicates. Error bars show standard deviation of the 

mean. (B) B6BL#1153 B cell expression of MHC I, II, and costimulatory markers. (C) GFP 

expression 24 h after transfection (electroporation) of B6BL#1153 B cells with GFP mRNA. Data are 

representative of at least five experiments.
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Figure 1.  (continued)  

(D) Relative expression of WT1 in murine bone marrow (BM) and spleen, B cells (untransfected 

B6BL#1153 B cells), GFP B cells (B6BL#1153 B cells transfected with GFP mRNA) and B1153-

WT1 #6, #11 (two WT1 stably transfected B6BL#1153 B cell lines), and TRAMP-C2, a WT1-

overexpressing prostate cancer cell line, using mRNA isolated from tissues and cell lines in a qRT-

PCR assay. Spleen was normalized to 1. Each column represents the average of triplicates (+/-SD). 

Data are representative of at least three assays. (E) Western blot of mock transfected  B6BL#1153 B 

cells (where cells are shocked without mRNA), B cells (untransfected B6BL#1153 B cells), WT1 B 

cells (B6BL#1153 B cells transfected WT1 mRNA) and B1153-WT1 (WT1 stably transfected  

B6BL#1153 B cell line),  which are all compared to TRAMP-C2. WT1 is approximately 50kD.  
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Figure 2.  Immunization utilizing wild type WT1 cDNA produces a muted immune response as 

compared to other antigens. 

(A) C57BL/6 mice were immunized by IM injection with 100 µg pOva or pWT1 plasmid per mouse on 

Days 0, 3, 6, 14, and seven days (Day 21) after the last vaccination mice were sacrificed, and T cells 

were restimulated by B cells (untransfected B6BL#1153 B cells), or Ova mRNA or WT1 mRNA 

transfected B6BL#1153 B cells, (Ova B cells or WT1 B cells)  for 48 h, after which supernatant was 

collected and used in a mouse IFNγ ELISA. Data are representative of two independent experiments. 

Average (+/-SD) of three mice per group. (B) Two WT1 DNA vaccines are compared: 1) a construct in 

which an IgE leader is added to the murine WT1 sequence, pIgEL-WT1 and 2) an unaltered murine 

WT1 sequence, pWT1. One week after the fourth biweekly vaccination (30 µg of DNA by intramuscular 

injection followed by electroporation at injection site), mice were sacrificed, and splenocytes from 

BALB/c mice are restimulated with pools from a murine WT1 peptide library for 24 hours in 96 well 

ELISpot plates coated with antibody to IFNγ. Individual mice are shown for each group. Each column 

represents the average of triplicates (+/-SD). Data are from a pilot experiment and have not been 

repeated. 
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Figure 3.  Immunization with GST-WT1, anti-CD40 and adjuvant modestly enhances the immune 

response. 

C57BL/6 mice were immunized IP with 500 µg of whole ovalbumin or WT1 protein, with or without 50 

µg of the anti-CD40 antibody (FGK45), and/or 30 µg of LPS, and/or 50 µg of poly(I:C) in the 

combinations indicated above. Mice were sacrificed 6 days after immunization, spleens were harvested 

and T cells isolated. T cells were restimulated with either peptide, untransfected B cells, or Ova or WT1 

mRNA transfected B cells.  (A-C) Frequency of CD8+ IFNγ+ T cells from representative mice, after 

restimulation by peptide for 12 h, and intracellular staining for IFNγ.  



40 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  (continued) 

(D, E) After 72 h of restimulation with peptide or B cells, supernatant was collected and assayed 

using mouse IFNγ ELISA. Each column represents the average of triplicates (+/-SD). Data are 

representative of two independent experiments.  
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Figure 4.  Heterologous prime/boost vaccination utilizing GM-CSF expressing cells increases 

immune responses. 

C57BL/6 were immunized by IM injection with 100 µg pWT1 plasmid per mouse on Days 0, 3, 6, 14,  

and on Day 21 mice were immunized, subq, with either (A) TRAMP-C2/Gvax or (B) serum-free 

TRAMP-C2-GM. Seven days after the last vaccination mice were sacrificed, and T cells were 

restimulated by untransfected B6BL#1153 B cell (B cell) or transfected with WT1 mRNA (WT1 B 

cells) for 48 h, after which supernatant was collected and used in a mouse IFNγ ELISA. Data are 

representative of two independent experiments. Average (+/-SD) of three mice per group.  
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Figure 5.  Bone marrow-derived dendritic cells (BMDCs) grown in serum-free media do immunize 

against Ova but not WT1. 

Cell surface markers of immature BMDCs grown in (A) serum-free media or in (B) FBS-containing 

media before transfection with mRNA. Comparison of transfection efficiency and maturation using GFP 

mRNA to transfect immature BMDCs and poly(I:C) to mature BMDCs cultured without (C) or with FBS 

(D). Mice were immunized, subq, with serum-free, matured BMDCs, that were either untransfected (DC), 

or Ova or WT1 mRNA transfected (Ova DC and WT1 DC respectively). Mice were boosted 7 days later 

with the same type of BMDC, then sacrificed 7 days after the boost vaccination and spleen cells were 

isolated. (E) Tetramer analysis 7 days after boost vaccination.  Splenocytes were stained with PE-labeled 

SAINFEKL/H-2Kb tetramer (OVA Tetramer) and APC-labeled RMFPNAPYL /H-2Db tetramer (WT1 

Tetramer) and were gated on B220- CD8+ cells. (F) Frequency of CD8+ IFNγ+ T cells, after restimulation 

by peptide or B cells. Splenocytes were restimulated with either peptide, untransfected B6BL#1153 B 

cells (B cell), or Ova or WT1 mRNA transfected B6BL#1153 B cells (Ova B cell and WT1 B cell 

respectively), for 12 h in serum-free media and followed by intracellular staining for IFNγ. (G) 

Splenocytes were restimulated by indicated B cells for 24 hours in serum-free media in 96 well ELISpot 

plates coated with antibody to IFNγ. Data are representative of four independent experiments. Average 

(+/-SD) of 3-5 mice per group.  
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Figure 5.  (continued) 
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Figure 5.  (continued) 
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Figure 6.  Comparison of immune response to foreign and self-antigens using L. monocytogenes 

vaccines. 

Mice were primed with control Listeria (Lm (-)), ova-expressing Listeria (Lm Ova), WT1-SIINFEKL-

expressing Listeria (Lm WT1-SL8) or unvaccinated (Naïve). Day 7 after priming, 3 mice from each 

group were sacrificed and splenocytes were assayed by tetramer and IFNγ ELISpot. The remainder of the 

mice were boosted 21 days after priming with the same Listeria vaccine with which they were primed. 6 

days after boosting another 3 mice from each group were sacrificed and splenocytes were assayed. (A) 

Tetramer analysis of the primary response (day 7). Splenocytes were stained with PE-labeled 

SIINFEKL/H-2Kb tetramer (OVA Tetramer) and APC-labeled RMFPNAPYL/H-2Db tetramer (WT1 

Tetramer) and were gated on B220- CD8+ cells. (B) Tetramer analysis of the boost response 6 days after 

boosting. (C) IFNγ ELISpot assay of the primary response (day 7). Splenocytes were restimulated with 

media, peptide (either Ova peptide (SIINKEKL) or WT1 peptide (RMFPNAPYL)), or with B6BL#1153 

B cells (either untransfected (B cell), or transfected with either Ova mRNA (Ova B cell) or WT1 mRNA 

(WT1 B cell)). (D) IFNγ ELISpot assay of the boost response, 6 days after boosting. Data are from a pilot 

experiment and have not been repeated. Average (+/-SD) of three mice per group.  
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Figure 7.  TRAMP-C2 tumor challenge, after L. monocytogenes vaccination, induced WT1-specific 

T cells.  

Naïve mice or mice primed and boosted with LmWT1-SL8 vaccine were inoculated 7 days after the 

boost vaccination with either 1x106 or 3x106 TRAMP-C2 tumor cells, subq. Tetramer analysis of 

splenocytes from mice sacrificed after completion of the tumor challenge, 36 days after tumor 

inoculation. Splenocytes were stained with PE-labeled SIINFEKL/H-2Kb tetramer (OVA Tetramer) and 

APC-labeled RMFPNAPYL/H-2Db tetramer (WT1 Tetramer) and were gated on B220- CD8+ cells. Data 

are from a pilot experiment and have not been repeated. Average (+/-SD) of 5-6 mice per group. 
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Figure 8.  Heterologous Prime/Boost did not induce WT1-specific T cells while TRAMP-C2 

tumor challenge activated WT1 primed T cells.  

Mice were primed with 2.5x105 matured and activated BMDC that were either untransfected (DC (-)) 

or transfected with WT1 mRNA (DC WT1) or remained unvaccinated (Naïve). Mice were boosted 6 

days after priming with Lm(-), LmWT1-SL8 or remained unvaccinated. 5 days after boosting, 3 mice 

from each group were sacrificed and splenocytes were assayed with by tetramer.  24 days after the 

boost vaccination, the remainder of the mice (n=5 per group) were challenged with 0.25x106  

TRAMP-C2 tumor cells, subq. Tetramer analysis of the (A) boost response and (B) tumor challenge 

response. Splenocytes were stained with PE-labeled SIINFEKL/H-2Kb tetramer (OVA Tetramer) and 

APC-labeled RMFPNAPYL/H-2Db tetramer (WT1 Tetramer) and were gated on B220- CD8+ cells. 

Data are representative of two independent experiments. Average (+/-SD) of 3-5 mice per group. 
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Chapter 3: Vaccination with consensus WT1 cDNA intramuscular 

injection followed by electroporation induces an immune response to 

wild type WT1. 

Introduction 

As seen from the experiments detailed in chapter 2, mice are profoundly tolerant 

to wild type murine WT1. Matured and activated BMDC expressing wild type WT1 

failed to induce WT1-specific T cells. Since even a fully functional professional antigen 

presenting cell was unable to elicit an immune response to the wild type antigen, we next 

hypothesized that altering the antigen would elicit an immune response that could  

recognize wild type WT1.  Adding an IgE leader sequence to WT1 in a DNA vaccine 

construct, to facilitate expression, minutely improved the response (Figure 2B); more 

radical changes were necessary. Xenogeneic DNA vaccines are one approach to eliciting 

functional CTL that recognize self-antigens. Xenogeneic DNA are immunogenic because 

the antigen is similar enough that cross-reactive epitopes are utilized but different enough 

to circumvent barriers, such central and peripheral tolerance. Ideally, heteroclitic epitopes 

may be better able to bind peptide-MHC or the T cell receptor (TCR) and activate low 

avidity T cells. Subtle amino acids changes may affect the way the antigen is processed, 

possibly causing increased protein degradation, and presentation. Because the murine and 

human WT1 proteins are 97% identical, using human WT1 to vaccinate mice would be 

ineffective. To solve this problem, in collaboration with David Weiner and Jewell 

Walters (University of Pennsylvania, Philadelphia, PA) a consensus sequence DNA 

vaccine was created. The consensus is based on the alignment of homologous WT1 genes 
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from ten different species. The consensus WT1 sequence maintained conserved WT1 

domains but was different enough at various amino acid positions to circumvent 

tolerance, as the consensus sequence is 91% identical to the wild type murine WT1 

sequence. Lymphocytes from mice vaccinated with the consensus WT1 DNA vaccine 

responded to a peptide library based on the wild type murine WT1 sequence. Our 

findings suggest that using a consensus sequence DNA vaccine may be an effective 

method to produce an immune response to a self-antigen. 
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Materials and Methods 

Construction of WT1 consensus sequence.  

D. rerio, G. gallus, M. musculus, R. norvegicus, C. lupus, B. taurus, H. sapiens, 

P. troglodytes, and A. mississippiensis gene sequences were collected from GeneBank, 

and the consensus WT1 nucleotide sequence was obtained after performing multiple 

alignment. After obtaining the WT1 consensus sequence, an IgE leader sequence was 

added, and codon optimization and RNA optimization was performed by using 

GeneOptimizer® (GeneArt®, Life Technologies).  

WT1 DNA immunogen.  

The WT1 consensus sequence was synthesized and sequence verified by 

GENEART, and cloned into the expression vector pVAX (Invitrogen) and was named as 

WT1-pVAX-S but will be referred to as pConWT1 in this manuscript. Alternate 

constructs of the WT1 DNA vaccine have been previously mentioned. Briefly, wild type 

murine WT1 was cloned into pcDNA3.1, named pWT1, and a codon optimized murine 

WT1 (with an IgE leader sequence) was cloned into pVAX and named WT1-pVAX , but 

will be referred to as pIgEL-WT1 in this manuscript. 

Mice 

Female C57BL/6 mice between 6 to 8 weeks old were used in these experiments. 

Mice were obtained from the Jackson Laboratory. The mice were housed and maintained 

by the University Laboratory Animal Resources at the University of Pennsylvania in 

observance with the policies of the National Institutes of Health and the University of 

Pennsylvania Institutional Animal Care and Use Committee (IACUC). The mice used in 
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these experiments were separated into groups of five for immunization. Mice were 

immunized with pConWT1, pIgEL-WT1 or pWT1. Naïve mice served as negative 

control. 

DNA vaccination and electroporation 

Each mouse received four doses of DNA plasmid at 14-d intervals. Mice received 

25μg to 75μg of DNA per vaccination. The DNA constructs were administered via 

intramuscular injection of the right quadriceps muscle, followed by square-wave pulses 

generated by the CELLECTRA® constant current electroporation device (Inovio 

Pharmaceuticals). The device was configured to deliver two 0.1 Amp pulses of 52 ms 

pulse width spaced apart by a 1 sec delay. Electroporation procedure was performed as 

described previously64. 

IFNγ ELISpot assays  

Mice in both treatment and control groups were sacrificed 1 week after the third 

immunization. Spleens were harvested from each mouse and transferred to R10 media 

(RPMI-1640 medium supplemented with 10% fetal bovine serum and 1% antibiotics). 

Using a stomacher (Seward Laboratory Systems), the spleens were pulverized and 

subsequently transferred through a 40 µm cell strainer. Erythrocytes were removed by 

adding ACK lysing buffer (Lonza). The splenocytes were isolated and resuspended in 

R10 media. High-protein IP 96-well Multiscreen™ plates (Millipore, S2EM004M99) 

were coated with monoclonal murine IFNγ Capture Antibody (R&D Systems, SEL485) 

and incubated overnight at 4°C. After three washes with 1x PBS, the plates were blocked 

with 1% BSA and 5% sucrose in 1x PBS for 2 h at ambient temperature. Isolated 
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splenocytes in R10 medium were counted and added in triplicate wells at 2x105 cells per 

well. Peptides or 0.5x105 B cells (either untransfected, or WT1 mRNA transfected 

B6BL#1153 B cells, or B1153-WT1 stably transfected cell line) were added to the wells. 

Two sets of peptides spanning the consensus WT1 sequence and the wild type murine 

WT1 sequence (excluding the zinc finger region) were synthesized by GenScript. The 

peptides contained 15 amino acid sequences, of which 11 residues overlapped with each 

sequential peptide. The peptides for each WT1 set were each divided into three pools at 

concentrations of 2 µg/mL/peptide. Wells reserved for positive and negative control 

received Concanavalin A (Sigma-Aldrich, C0412) and R10 culture medium in lieu of 

peptides, respectively. Plates were subsequently placed in a 5% CO2 atmosphere 

incubator. After incubation for 18–24 h at 37°C, the wells were washed with 1x PBS. 

Biotinylated anti-mouse IFNγ Detection Antibody (R&D Systems, SEL485) was added 

to each well and then incubated overnight at 4°C. The plates were subsequently washed 

and processed per a color development protocol provided by R&D Systems using 

Streptavidin-AP and BCIP/NBT Plus (R&D Systems, SEL002). The wells were air-dried 

overnight and spots inside wells were scanned and counted by an ELISpot plate reader 

system with ImmunoSpot®3 and ImmunoSpot®4 software (Cellular Technology Ltd.). 

Reported spot forming cell counts were converted to represent spot-forming units per 

1x106 splenocytes. 

Epitope mapping 

Epitope mapping studies were performed to determine the dominant epitopes 

within both consensus and mouse-matched WT1 peptide libraries. Combinatorial peptide 

libraries specific for wild type WT1 were established by setting up 18 peptide pools, each 
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pool consisting of eight to nine peptides combined in such a way that each individual 

library peptide was shared once by two particular pools. Combinatorial peptide libraries 

specific for consensus WT1 were established by setting up 17 peptide pools, each pool 

consisting of eight to nine peptides combined in such a way that each individual library 

peptide was shared once by two particular pools. The ELISpot assays were performed as 

previously described. 
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Results 

Consensus Sequence Construct.  

Initial experiments using wild type murine WT1 cDNA (either in its original 

pcDNA3.1 vector, or in a pVAX vector fused after an IgE leader sequence) to vaccinate 

mice elicited minimal immune responses, even when electroporation was included in the 

vaccination protocol. Therefore, a WT1 consensus sequence DNA vaccine was created 

by aligning homologues of WT1 from various species including human, mouse, rat, dog, 

and chimpanzee. The sequences were aligned to define the critically conserved domains, 

and identify positions of amino acid variability. For example, in M. musculus WT1 

protein there is a 17 aa domain (exon 5) that is not conserved across the species and the 

exon is a commonly seen splice variant; therefore, this 17 aa domain was not included in 

the consensus sequence. Doubrovina et al. also reported finding epitopes across the 

breadth of human WT1 excepted for this 17 aa domain, even though their peptides were 

based on the full length sequence47. Another example, at amino acid position 136 where 

there is a serine in the M. musculus sequence that has been changed to the asparagine 

seen in the D. rerio sequence.  The sequence was further modified by tRNA codon and 

RNA optimization, and a Kozak sequence and a highly efficient leader sequence was 

fused in frame upstream of the start codon to facilitate expression. Not included in the 

construct was a proline rich region, the variably spliced exon 5, and the zinc finger 

domain, which contains the nuclear localization signals102 (Figure 9A). Removal of the 

zinc finger region that would normally sequester the protein in the nucleus, allows for 

more secretion of the protein from the muscle cells that have been transfected. This 

protein can be taken up by DCs resident in the tissue. Alignment of the final consensus 
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WT1 sequence shows a 91% similarity to the original wild type murine WT1 sequence 

and illustrates the amino acid differences between the two (Figure 9B). The dominant 

epitope reported in the literature WT1126-134 (RMFPNAPYL) is unchanged. The final 

construct was cloned into pVAX vector, and is here referred to as pConWT1. Highly 

purified and concentrated DNA was used to vaccinate mice by intramuscular injection, 

immediately followed by electroporation. 

Consensus WT1 DNA vaccine induces a stronger immune response than wild type 

murine WT1 DNA vaccine.  

 To compare the immunogenicity of the consensus WT1 construct to previous 

wild type WT1 constructs, mice received 25 µg of either pConWT1, pIgEL-WT1 or 

pWT1 vaccines (Figure 10). Upon restimulation, in vitro with pooled peptide from the 

consensus library sequence in an IFNγ ELISpot, splenocytes, from mice vaccinated with 

pConWT1 demonstrated clear unequivocal immune responses. Splenocytes from pIgEL-

WT1 vaccinated or pWT1-vaccinated mice did not respond to consensus peptides. 

Although it is possible that these WT1-specific splenocytes could not recognize 

consensus peptide, but it is far more likely that those splenocytes lack WT1-specific T 

cells as seen previously in chapter two. To elicit a significant immune response to a self-

antigen, actually changing portions of the antigen was necessary, whether it be truncation 

or individual amino acid substitutions.   
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Increasing the amount of consensus WT1 DNA increases the immune response to 

wild type WT1 peptides. 

To further validate the use of pConWT1, splenocytes, from mice immunized with 

increasing doses of pConWT1, proved that they had increasing numbers of WT1-specific 

cells. Pools of wild type mouse-matched WT1 peptides restimulated these splenocytes, 

indicating that consensus WT1 vaccination activated and expanded WT1-specific T cells 

that recognized murine WT1.  The dose-response curve shows increasing the amount of 

the consensus WT1 DNA electroporated into the muscle of the mouse does increase the 

number of IFNγ positive cells upon restimulation in vitro with a wild type murine WT1 

peptide library (Figure 11). The immunogen is essentially xenogeneic but the response 

contains activated or memory T cells that can identify and respond to the murine WT1 

antigen. 

Splenocytes from pConWT1-vaccinated mice do not respond to endogenously 

expressed WT1. 

Since splenocytes from pConWT1-vaccinated mice responded to wild type 

murine WT1 peptides, we restimulated these splenocytes with B cells expressing wild 

type murine WT1, either a stably transfected cell line or one that was transfected with 

mRNA the evening before mice were sacrificed. In either case, very few splenocytes 

from pConWT1-vaccinated mice produced any IFNγ, at least not above the level of 

background (Figure 12). This is not an unprecedented result as Ramirez et al. also 

observed a similar phenomenon, where peptide loaded BMDC vaccination induced WT1-

specific CTLs, that could be restimulated in vitro by peptide, but could not recognize 

antigen on WT1-expressing cells103.  
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Epitope mapping using the wild type mouse-matched WT1 peptide library identifies 

epitopes other than WT1 Db126 

In order to define the epitopes within WT1 to which these T cells are responding, 

epitope mapping was done with combinatorial pools of peptide from either the consensus 

WT1 library (Figure 13) or the wild type murine WT1 library (Figure 14). The libraries 

were composed of 15mer peptides, overlapping by 11 amino acids.  A matrix system was 

used in which peptides were pooled by row or columns, allowing each peptide to be 

represented twice, and tested in duplicate. Screening with the consensus WT1 library 

isolated peptide #28 ARMFPNAPYLPNCLE, which contains the well-characterized 

epitope RMFPNAPYL (aa 126-134). This is the dominant epitope for C57BL/6 and 

BALB/c mice and HLA-A0201 humans. Alignment of consensus peptide #28 that was 

identified in the consensus WT1 library, to consensus and wild type sequences revealed 

that the only difference between this 15mer peptide and the wild type murine WT1 

sequence is the second asparagine is a serine in the wild type sequence (aa 136), outside 

of the known epitope (Figure 15A).  Screening with the wild type murine library showed 

immune responses, above background, in three pools, #1, 9 and 12 which identified 

peptides #19 (EEQCLSAFTLHFSGQ) and 27 (PSQASSGQARMFPNA), which were 

then aligned to both sequences and compared (Figure 15B). Each of the wild type 

peptides differ from the consensus sequence at one amino acid. Wild type peptide #19 

may contain a novel murine WT1 epitope as it has not been mentioned in the literature 

while peptide #27 contains QASSGQARM which was studied by Naylor et al104 and Dai 

et al105 with conflicting results. These epitope mapping assays need to be repeated to 
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confirm the results, but with splenocytes from mice vaccinated with 50 µg of pConWT1 

so that CTL responses are significantly higher than the background. 
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Discussion 

Given the overexpression of WT1 in a multitude of cancers, an effective 

immunotherapy targeting this tumor-associated antigen would be beneficial; 

however, because WT1 is a self-antigen, generating a substantial WT1-specific 

immune response is difficult due to tolerance barriers such as deletion of high avidity 

T cells in the thymus, and possibly anergy and suppression in the periphery as well. 

In a highly tolerogenic mouse model, in which WT1 is expressed not only in a few 

restricted cells of certain tissues, but in the stroma of the adult murine spleen as well, 

our consensus WT1 DNA vaccine may circumvent tolerance and generate a 

significant T cell immune response. 

In the thymus, central tolerance is established whereby self-reactive T cells 

that have TCRs with a high affinity for self-peptide-MHC are deleted, anergized or 

differentiated into regulatory T cells to prevent autoimmunity106. The T cells that do 

escape the thymus have TCRs that recognize foreign antigens or have a low affinity 

for self-peptide-MHC. While this is normal, it poses a problem for cancer 

immunotherapies which target tumor-associated antigens, some of which are 

aberrantly expressed or overexpressed self-antigens. In a report by Aleksic et al., ten 

viral antigen (VA)-specific TCRs and 14 tumor-associated peptide antigen (TAPA)-

specific TCRs (including 3 WT1-specific TCRs) were compared based on their 

affinity to their corresponding peptide-human leukocyte antigen complex (in this 

case pHLA-A0201). It was clear that VA-specific TCR-pHLA interactions tended to 

have lower dissociation constants (KD) and on average longer half-lives (t1/2) than 

their TAPA-specific counterparts107. For example, a HIV-specific TCR had a KD of 
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0.18 µM and a t1/2 of 27 seconds, while one of the WT1-specific TCRs had a KD of 

45µM and a t1/2 of <0.5 seconds107. The HIV-specific TCR has a higher affinity for 

its pHLA as it binds it more tightly, requires less to reach equilibrium, and remains 

bound longer, than theWT1-specific TCR.  The lower affinity WT1-specific TCR 

requires 250x more pHLA to reach equilibrium and even then the interaction may 

last less than half a second. Pinilla-Ibarz et al. reported that they were able to design 

analog heteroclitic WT1 peptides with a longer half-life and were able to elicit CTL 

responses; however, these peptides were designed to bind better specifically to HLA-

A0201108.  A higher affinity, and a longer TCR-pMHC interaction produced a 

stronger immune response, but it was relevant only to those who have the matching 

HLA. 

In an effort to create an ideal WT1-specific TCR, Schmitt et al. designed two 

enhanced-affinity complementarity determining region (CDR) 3α mutants. Both  

mutants had higher affinity for WT1-Db (RMFPNAPYL) than the wild type TCR, but 

one had higher functional avidity, in vitro, as well109. TCR transduced T cells were 

injected into mice that were subsequently immunized with WT1 peptide-pulsed 

splenocytes, then boosted with Listeria monocytogenes expressing the WT1 

RMFPNAPYL epitope. They showed that the T cells expressing the enhanced-affinity 

TCRs expanded in vivo 1.5 to 1.6x greater than the T cells expressing the wild type WT1 

TCR, without causing autoimmunity109. While this method of enhancing the WT1-

specific immune response is encouraging as it doesn’t depend on the immunocompetence 

of the subject and “replaces” the high avidity WT1-specific T cells that are deleted due to 

central tolerance, it focuses on one epitope, requires mutation of the TCR and 
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transfection of syngeneic T cells. If it were translated to the clinic, it would need to be 

tailored for each patient, or else may limit the type of patient for which it would be 

effective, due to histocompatibility issues.  

If one cannot “replace” high avidity WT1-specific T cells, another approach to the 

problem would take into account that the low avidity T cells require more antigen to 

engage their TCRs sufficiently, and immunize subjects with more antigen. For example, 

C57/BL6 mice can be immunized with TRAMP-C2, a prostate adenocarcinoma that 

overexpresses WT1 several logs higher than what is seen in the murine spleen, and 

produce a significant immune response; however, the response is not only to WT1, but 

also to a plethora of other antigens expressed by the cell line and found in the culture 

media. While immunizing with a WT1 overexpressing cell line addresses the issue of 

quantity of antigen, it doesn’t address the typically shorter half-life of the TCR-pMHC 

interaction of low avidity T cells. 

To address both concerns, quantity of antigen and possibly quality of TCR-pMHC 

interaction, we created a consensus based WT1 DNA vaccine that is injected 

intramuscularly, immediately followed by electroporation. The beauty of DNA vaccines 

are they are easily designed, economical, and safe. The plasmid DNA can be engineered 

to express multiple antigens, linked epitopes, cytokines and adjuvants. In this report, the 

plasmid contains a Kozak sequence, an IgE leader sequence, and the codon-optimized 

WT1 consensus sequence. It excludes the zinc finger region, which can sequester the 

protein in the nucleus. These modifications along with in vivo electroporation, which 

increases the number of number of transfected cells and the number of plasmids per cell, 

greatly enhance protein expression of the antigen75,76. Additionally, the WT1 consensus 
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sequence is based on the alignment of WT1 homologs, which is used to create a more 

xenogeneic antigen that is 91% identical to the syngeneic antigen. Xenogeneic antigens 

are able to circumvent tolerance, because they are sufficiently different from the self-

antigen, but similar enough to produce compatible peptides46.  

These peptides may be heteroclitic in nature and/or affect proteasomal cleavage. 

Heteroclitic peptides have amino acid differences which can enhance TCR affinity to its 

pMHC and can increase the half-life of TCR-pMHC interaction. These changes may 

increase the binding of the peptide to MHC, thereby increasing the density of that 

peptide’s presentation on the surface of APCs, facilitating increased TCR engagement, T 

cell activation, and bolstering the immune response46,110. However, Speiser et al. would 

argue that functional avidity, gained by using the natural, unmodified peptide, is superior 

to the increased T cell frequencies gained by using the altered or heteroclitic peptide, 

when the vaccine formulation includes IFA and CpG111. If the peptides, identified in this 

study are not heteroclitic, the amino acids substitutions may still affect proteasomal 

cleavage. 

In the cytoplasm, the constitutive proteasome regularly degrades ubiquitinated 

proteins, preferring to cleave proteins after certain amino acids. After cells are induced by 

IFNγ exposure, the proteasome is reconfigured into the immunoproteasome, which has 

slightly different specificities for cleavage sites112,113. In either case, these peptides are 

translocated by the transporter associated with antigen processing (TAP), into the lumen 

of the endoplasmic reticulum (ER), where they are loaded onto MHC I for eventual 

presentation to CD8+ T cells114,115. Consensus peptide #28  which contains 

RMFPNAPYLPNCL, wherein the underlined “N” was a “S” in the murine WT1 
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sequence, has a better immunoproteasomal processing score with the substitution, 

according to T cell epitope prediction tools provided by the Immune Epitope Database 

and Analysis Resource (www.iedb.org)116. However, this does not take into account TAP 

transport and MHC binding, which then reveals that RMFPNAPYL is still the best 

epitope. In another example, murine peptide #19 contains LSAFTLHF, but the consensus 

sequence is LSAFTVHF, which again has a better immunoproteasomal processing score. 

Is it possible that better processing of the xenogeneic protein, more LSAFTVHF peptides 

produced and presented, activated LSAFTLHF-specific T cells? While T cell epitope 

prediction tools are useful, the epitope mapping assay needs to be repeated, and any 

proposed epitopes experimentally validated. Our current experiment identified two 15mer 

peptides with single amino acid substitutions that, upon further study, may reveal 

heteroclitic epitopes, or instead show how amino acids changes influence the peptides 

created by the constitutive and immunoproteasomes.  
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Figure 9.  Schematic of the consensus WT1 construct, and comparison of the consensus and the 

wild-type murine WT1 sequences.  

(A)  Schematic of WT1 protein to show major differences between the murine WT1 and consensus WT1 

sequences. The WT1 consensus sequence is based on the alignment of homologs of WT1 and further 

modified to include an IgE leader sequence and the removal of a proline rich region, the variably spliced 

exon 5, and zinc finger domains. (B) Amino acid alignment of the consensus sequence to the wild-type 

murine WT1 sequence. Dark grey regions along the conservation band indicate areas of conflict. 
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Figure 9. (continued) 
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Figure 10.  Consensus WT1 DNA vaccine induces a stronger immune response than wild type 

murine WT1 DNA vaccine.  

Three WT1 DNA vaccines are compared: 1) the consensus WT1 construct pConWT1, 2) a construct in 

which an IgE leader is added to the murine WT1 sequence, pIgEL-WT1, and 3) the original wild type 

murine WT1 construct, pWT1. One week after the fourth vaccination (25 µg of DNA by IM injection 

followed by electroporation at injection site) splenocytes from C57BL/6 mice were stimulated in vitro 

with pooled consensus WT1 peptide for 24 hours in 96 well ELISpot plates coated with antibody to IFNγ. 

Individual mice are shown for each group. Each column represents the average of triplicates (+/-SD). 

Data are from a pilot experiment and have not been repeated. 
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Figure 11.  Increasing the amount of consensus WT1 DNA increases the immune response to wild 

type WT1 peptides. 

Increasing amounts of consensus WT1 DNA, pConWT1, were used to vaccinate mice (25 µg, 50 µg, and 

75 µg). One week after the fourth electrovaccination, splenocytes from C57BL/6 mice are stimulated in 

vitro with pooled wild type murine WT1 peptide for 24 hours in 96 well ELISpot plates coated with 

antibody to IFNγ, in triplicate. Data are representative of two independent experiments. Average (+/-SD) 

of five mice per group.  
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Figure 12.  Splenocytes from pConWT1-vaccinated mice do not respond to endogenously expressed 

WT1.  

Mice were vaccinated with 25 µg, or 75 µg of pConWT1. One week after the fourth vaccination, 

splenocytes from C57BL/6 mice were stimulated in vitro by B cells (untransfected B6BL#1153 B cells), a 

murine WT1 stably transfected B cell line (B1153-WT1) or WT1 mRNA transfected B6BL#1153 B cells 

(WT1 B cells) for 24 hours in 96 well ELISpot plates coated with antibody to IFNγ, in triplicate. Data are 

representative of two independent experiments. Average (+/-SD) of five mice per group. 
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Figure 13.  Identification of a 15-mer peptide containing a dominant T cell epitope from the 

consensus WT1 library.  

(A) Spleen cells from mice vaccinated with 25 µg pConWT1, and from naive mice were screened by an 

IFN-γ ELISpot epitope mapping assay for responses to consensus WT1 library peptides. Data are from a 

pilot experiment and have not been repeated. Average (+/-SD) of five mice per group. (B) Composition 

of the consensus WT1 library peptide pools 1 to 17 used for combinatorial screening of specific T cell 

responses. Individual library peptides identified by screening were darkly shaded. In italics was the 

number of the peptide containing epitope Db126.  
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Figure 14.  Identification of two 15-mer peptides containing T cell epitopes from the wild type 

murine WT1 library.  

(A) Spleen cells from mice vaccinated with 25 µg pConWT1, and from naive mice were screened by an 

IFN-γ ELISpot epitope mapping assay for responses to wild type murine WT1 library peptides. Data are 

from a pilot experiment and have not been repeated. Average (+/-SD) of five mice per group.  (B) 

Composition of the wild type WT1 library peptide pools 1 to 18 used for combinatorial screening of 

specific T cell responses. Individual library peptides determined by screening were darkly shaded. In 

italics was the number of the peptide containing epitope Db126.   
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Figure 15.  Alignments of the peptides identified from each of the peptide libraries.  

Outlined in black and aligned to both the wild type murine WT1 and the consensus WT1 sequences was 

the identified 15-mers from the (A) consensus WT1 peptide library, and the (B) wild type murine WT1 

peptide library. Grey and black sections along the conservation bar indicated regions of mismatch 

between the sequences; underlined in black was epitope Db126.  
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Chapter 4: Conclusions and Future directions 

WT1, a transcription factor, essential for embryonic development, is highly 

homologous across species, and is unmutated and overexpressed in wide variety of 

cancers30. To create a vaccine that can potentially initiate tumor rejection to this self-

antigen, a “mutated” or xenogeneic version of the antigen was designed. A reduction of 

9% similarity to murine WT1 was able to induce a substantial CTL immune response in 

mice. In comparison to human WT1, the consensus WT1 sequence is 6% different, which 

could induce immune responses, but may be insufficient to circumvent tolerance. 

However, since this a DNA vaccine, further modifications, such as addition of a DC-

LAMP sequence to enable presentation by class I and class II MHCs, can easily be 

engineered to make it more immunogenic, and potentially a potent tumor immunotherapy 

accessible to wide range of patients117.  

Future studies utilizing pConWT1 will feature tumor therapy and tumor challenge 

experiments, to determine whether pConWT1 can activate immune cells that recognize 

and kill tumor cells that endogenously express WT1. Previous reports, as well as our 

results showed that splenocytes from WT1-vaccinated mice responded to WT1 peptide 

but not to WT1-expressing cells. This may indicate that naturally processed WT1 

peptide/MHC density, on the surface of the stimulator cell, is insufficient and is below 

the threshold necessary for cells predisposed towards tolerance103,118. Ramirez et al. 

experienced suboptimal results in that their peptide-loaded DCs were able to produce 

WT1-specific CTLs, but such CTLs were unable to recognize endogenously expressed 

WT1 from cell lines such as TRAMP-C2 or WT1 transfected RMA-S cells103. This may 

signify that for a potent and functional vaccine and rejection of tumor, pConWT1 may 
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have to be combined with genetic adjuvants such as IL-12, a proinflammatory cytokine, 

or be administered concurrently with PD-1 (or PD-L1) blockade to break peripheral 

tolerance.  

Another interpretation of the negative result with WT1-expressing B cells is that 

the peptides antigens which primed the splenocytes from the pConWT1-vaccinated mice 

were likely from an immunoproteasome, while the peptides displayed on these WT1-

expressing B cells may be from a constitutive proteasome119,120. Further characterization 

of the B6BL#1153 B cell line would be useful. Determining which proteasomal subunits 

are expressed may help explain our results. If it were true that splenocytes from 

pConWT1-vaccinated mice preferentially respond to peptides from the 

immunoproteasome, it would affect tumor challenge and therapy experiments, as 

manipulation of the WT1-expressing tumor microenvironment would need to occur. IFNγ 

is known to increase tumor immunogenicity121,122. Mejias et al have reported that, by 

using IFNγ adsorbed magnetic particles, and an external magnetic field, they were able to 

target and deliver the cytokine directly to the tumor and minimize systemic toxicity123. 

Among the multiple responses mediated by IFNγ, treatment with IFNγ enhanced tumor 

immunogenicity possibly by converting the constitutive proteasome to an 

immunoproteasome to create a different set of peptides.  

A more direct method of identifying what peptides are displayed on the surface of 

the cell, as demonstrated by Riemer et al., uses a “predict/detect” technique124. This 

requires a set of peptides, defined by predictive programs, such as those available at 

Immune Epitope Database and Analysis Resource, and peptides eluted from cell lines of 

interest. By using an “MS3 Poisson detection mass spectrometry approach…[one can] 
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directly assess the physical presence of predicted CTL target epitopes on tumors” and 

quantify the number of copies of the epitope displayed on the cell124. Success with this 

method may hinge on the accuracy of the predicted peptides; however, to know precisely 

what peptide is being presented by an MHC in a particular cell is a powerful tool for 

vaccine development. Even though our consensus WT1 vaccine utilizes as much of the 

antigen as possible, not just predicted epitopes, such a tool could help elucidate the 

presentation of the consensus antigen on APCs, in comparison to the presentation of wild 

type antigen on tumor cells. 

In this report, the consensus WT1 DNA vaccine substantially increased CTL 

immune responses as compared to the wild type murine WT1 DNA vaccine. Murine 

peptides, EEQCLSAFTLHFSGQ and PSQASSGQARMFPNA, have been identified that 

stimulate cells ex vivo from consensus WT1-vaccinated mice. Ideally, once low avidity T 

cells are activated by xenogeneic antigen, and differentiated into memory T cells, they 

may be restimulated by the same wild type antigen that could not activate their naïve 

counterparts, and therefore be better able to identify and to kill tumor expressing wild 

type WT1. While the RMFPNAPYL epitope was unchanged within the consensus 

sequence, a neighboring amino acid was changed from serine to asparagine, which has 

the potential to affect proteasomal processing of the protein. A potential experiment 

would involve making that one amino acid substitution in the WT1 mRNA used to 

transfect the B6BL#1153 B cell line, to determine whether that change could truly affect 

presentation of WT1 to splenocytes from consensus WT1-vaccinated mice. Further study 

will need to be done to confirm and define the minimal epitopes contained within these 

15-mers, and to define CTL and TH1 epitopes.   
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