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Abstract

Alzheimer’s disease (AD) is a devastating neurodegenerative condition with symptoms

of cognitive decline, behavioral disturbances, and ultimately mortality. As there is

currently no cure, improvements for management of AD symptoms are desperately

needed. The Citalopram for Agitation in Alzheimer’s Disease (CitAD) study exam-

ined off-label use of citalopram, a selective serotonin reuptake inhibitor, for man-

agement of agitation symptoms. The primary analysis showed a greater average

decrease in agitation symptoms and an increase in a potentially serious adverse event

with citalopram compared to placebo. Physicians want to know if the treatment

effect is heterogeneous, and if so, which patients have the greatest potential to ben-

efit; given the risks, it may be unethical to prescribe the drug to patients with little

chance of benefit. Subgroup analyses are employed to assess heterogeneity of effect

across subgroups defined by categorical baseline covariates. This is typically done

by calculating subgroup treatment effects in a stratified dataset and testing for the

interaction between treatment and the baseline covariate. This approach is not very

comprehensive, as it only examines one covariate at a time while patients hold mul-

tiple characteristics simultaneously. Another limitation of this approach is the use of

parametric models which carry the assumption of correct mean model specification.

For our subgroup analysis, we employed the two-stage estimation method developed

by Cai et al. [3]. In the first stage, parametric working models are used to calculate
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the approximate treatment effect, the difference in potential outcomes under citalo-

pram versus placebo, for each participant based on multiple baseline covariates. This

predicted treatment effect is called the index score; patients with the same combina-

tion of baseline covariates have the same index score and are considered a subgroup.

In the second stage, patients are grouped by index score allowing non-parametric

estimation of subgroup treatment effects using observed data. Using this approach,

we found evidence for treatment effect heterogeneity. CitAD participants with the

largest predicted treatment effects were more likely to be living outside long-term

care facilities, within the middle age range (ages 76-82), with minimal cognitive im-

pairment (MMSE 21-30), within the middle baseline agitation range (NBRS-A 6-8),

and not taking lorazepam.
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Chapter 1

Introduction

Alzheimer’s disease (AD) is a devastating neurodegenerative disease which currently

has no cure. The majority of people with AD are 65 or older; less than 5% of people

with the disease have “early onset”, characterized by diagnosis before age 65 [1].

AD is widely prevalent and will increase with the growing elderly population in the

developed and developing worlds. The estimated prevalence of AD was 5.3 million

in the United States in 2010 [1]. Worldwide, roughly 18 million are living with the

disease [13]. The worldwide prevalence is projected to reach 80 million by the year

2050 [7]. Without a cure, improvements in patient care and management of AD

symptoms are desperately needed to accommodate our aging population.

Alzheimer’s disease is a type of dementia. Dementia is a clinical syndrome char-

acterized by symptoms of severe cognitive and functional impairment [6]. Dementia

can be caused by an event like a stroke, or can be the manifestation of an under-

lying disease like Parkinson’s, Creutzfeldt-Jakob, or Alzheimer’s [1]. AD is by far

the largest attributable cause of dementia, accounting for an estimated 60-80% of all

cases [1]. The precise etiology of AD is unknown but is thought to have both genetic

and environmental components [5] [9]. Cognitive symptoms of AD include mem-

ory loss, confusion, difficulty recognizing people or places, impaired judgment, and
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problems with written and verbal communication [1]. In addition to cognitive impair-

ment, behavioral and psychological problems are also frequent among AD patients.

These symptoms can include verbal and physical aggression, agitation, anxiety, hal-

lucinations, paranoid delusions, depression, and other mood disorders [2]. It has been

estimated that more than 90% of AD patients will develop at least one behavioral or

psychological symptom within a 5 year period [2].

These behavioral and psychological symptoms of AD can be particularly difficult

for the patient and burdensome for the family and caregivers. Behavioral symptoms

are often the impetus for moving AD patients into long term care facilities [14]. Cur-

rent pharmacological treatments for AD symptoms of agitation and aggression include

antipsychotics, cholinesterase inhibitors, memantine, antidepressants, and anticonvul-

sants [2]. Antipsychotics have been widely used in the past, however recent findings

suggest limited efficacy and increased risk of serious adverse events including mor-

tality [2]. Alternatives such as antidepressants are encouraging, but are still lacking

data regarding safety and efficacy for this population. Citalopram is one such antide-

pressant, a selective serotonin reuptake inhibitor (SSRI), which has been suggested

as an alternative for the treatment of agitation in AD patients.

1.1 The CitAD clinical trial

The Citalopram for Agitation in Alzheimer’s Disease (CitAD) study design was pre-

viously described in detail by Drye et al. [4]. In summary, the CitAD study is a

randomized, multi-center, parallel, placebo controlled, double blinded clinical trial.

There were a total of eight clinical sites, located within the United States and Canada.

Consenting participants with probable Alzheimer’s disease and without depression

were randomized to either citalopram or placebo at a ratio of 1:1, stratified by center.

Each patient had a caregiver who also participated in the study by accompanying the

patient to all visits and providing information for patient evaluation. All caregivers
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received a structured psychosocial therapy which consisted of counseling sessions with

a trained study clinician. Patients were followed for a total of 9 weeks with assess-

ments made at enrollment and follow-up after 3, 6, and 9 weeks. Baseline covariates

including demographic information, severity of symptoms, and use of concomitant

medications were recorded for all participants at the enrollment visit. The primary

efficacy outcomes were agitation as measured by the modified Alzheimer Disease

Cooperative Study-Clinical Global Impression of Change (mADCS-CGIC) and the

Neurobehavioral Rating Scale agitation subscale (NBRS-A). Secondary efficacy out-

comes include cognition, functional impairment, mobility, and psychiatric symptoms.

There were 186 total participants with 92 randomized to placebo and 94 randomized

to citalopram. Loss to follow-up was relatively low; the week 9 primary efficacy out-

comes are available for 167 patients (81 randomized to placebo and 86 randomized

to citalopram).

1.2 Purpose

The purpose of this project is to examine treatment effect heterogeneity across par-

ticipants in the CitAD clinical trial and to identify potential predictors of citalopram

response. The primary safety and efficacy results of the CitAD trial were previously

presented by Porsteinsson et al. [12]. Patients receiving citalopram showed a signif-

icantly greater improvement in symptoms of agitation compared to those receiving

placebo, as measured by both primary outcomes; the difference in average change in

NBRS-A (week 9 - baseline) was -0.93 [-1.80, -0.06] favoring citalopram, and the odds

of improvement according to the mADCS-CGIC were 2.13 [1.23, 3.69] times larger in

the citalpram arm. The citalopram arm also showed a significant increase in a po-

tentially serious cardiovascular adverse event compared to placebo. Citalopram was

associated with a 18.1 [6.1, 30.1] millisecond greater increase in QTc interval than

placebo; 3 of 94 patients in the citalopram arm and 1 of 92 patients in the placebo

3



arm experienced clinical QTc prolongation.

Although the average treatment effect estimate is informative, physicians ulti-

mately need to make treatment decisions on a patient-by-patient basis. Our post-hoc

subgroup analysis is motivated by the physician’s need to identify candidates who

have the most potential to benefit for prescribing purposes. Given the risks, it would

be unethical to prescribe citalopram to patients who have little chance of benefit.

However, the positive findings suggest that this drug may still be a good option for

a subset of Alzheimer’s patients. In this thesis, we propose methods for assessing

heterogeneity of affect and for characterizing the subset or subsets or patients who

would be most likely to benefit from treatment with citalopram.

1.3 Research questions

The CitAD study lends itself to the following three research questions:

1. What is the average treatment effect?

2. Are there subgroups of people for whom the treatment effect is larger than the

estimated average effect?

3. Is there evidence that there are groups that have different true average effects?

1.4 Subgroup analyses

Subgroup analyses are very common in randomized clinical trials. A self-study of the

New England Journal of Medicine found that 59 out of 97 total trials published from

July 2005 to July 2006 reported some form of subgroup analyses [8]. Similarly, another

study showed that 35 out of 50 trials sampled from four major medical journals in

1997 reported results from subgroup analyses [11]. Subgroup analyses appeal to the

current trends towards evidence based medicine. There may be true differences in

the risk or benefit of a treatment within different subgroups of people; knowing these
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differences would be very helpful to physicians in planning a course of treatment for

a particular patient. Typical subgroup analyses involve using parametric regression

models to look for interactions between treatment and each baseline covariate of

interest.

Subgroup analyses are often criticized for lack of power and high false positive rates

among reported subgroup effects. The sample size for a clinical trial is determined

by the number of participants needed to detect a minimum relevant effect size for

a given power. The power to detect the true treatment effect is greatly reduced

after dividing the total sample into smaller subgroups. Tests of interaction, such as

likelihood ratio tests, are recommended to evaluate heterogeneity among levels of a

baseline covariate [16] [11]. Multiplicity is also of great concern in subgroup analyses.

The null hypothesis of no treatment effect is tested multiple times, once for each

subgroup of interest, inflating the overall type I error rate. It is important to correct

for multiplicity in the analysis and also to limit the choice of subgroups to those which

have the most a priori biological or clinical support. If possible, possible subgroups

should be defined before the trial has begun to avoid the discovery and reporting of

spurious subgroup effects which have no biological basis.

Another limitation of the typical approach to subgroup analyses is the separate

evaluation of each baseline covariate. Subgroups are typically defined as the presence

of a single covariate level such as male or female gender. We would like to estimate

the treatment effect for a patient who carries several prognostic baseline traits si-

multaneously. One could consider each combination of baseline covariate levels as a

separate subgroup which is more realistic, however this becomes complicated as the

number of subgroups increases dramatically. An additional limitation of typical sub-

group analysis approaches is the use of parametric models which require numerous

distributional assumptions. Ideally, we would like to relax these assumptions and use

a non-parametric approach which relies more on the observed data.

Cai, Tian, Wong, and Wei introduced a novel two-stage subgroup analysis method
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which addresses both the need to evaluate combinations of several baseline covariates

simultaneously and the desire to obtain empirical estimates of the subgroup treatment

effects [3]. In the first stage, a parametric working model is chosen to describe the

approximate relationship between the outcome and several baseline covariates which

are thought to be prognostic. This parametric framework is used to generate an index

score for each patient which is the predicted treatment effect according to the working

models. Each index score can be considered its own subgroup corresponding to a

specific combination of baseline covariates. In the second stage, the index scores are

used to group participants in a way that allows the use of non-parametric methods

to ultimately estimate the subgroup treatment effects. We applied this two-stage

estimation procedure (with several modifications) to identify baseline predictors of

citalopram response and assess heterogeneity of treatment effect.

1.5 Summary

This thesis focuses on the application of the two-stage estimation procedure to the

CitAD study. The methods span several chapters. Chapter 2 includes a description of

the data and the traditional bivariate subgroup analysis methods. Chapter 3 provides

a step-by-step illustration of the two-stage estimation procedure introduced by Cai

et al [3]. Chapter 4 includes description of the hypothesis tests used to assess overall

heterogeneity of effect. Results specifically addressing each research question are

presented and discussed in Chapter 5. Concluding remarks are made in Chapter 6

including implications of these results for clinical practice and recommendations for

future research.
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Chapter 2

Data Description & Traditional

Subgroup Analyses

2.1 Data

2.1.1 Primary outcomes

The first of two primary outcomes of the CitAD trial was agitation as measured by

the modified Alzheimer’s Disease Cooperative Study-Clinical Global Impression of

Change (mADCS-CGIC). The mADCS-CGIC is a measure of how each participant’s

agitation symptoms at follow-up compare to his or her baseline symptoms, as evalu-

ated by the study clinician. The mADCS-CGIC score ranges from 1-7 as follows:

1. Marked improvement

2. Moderate improvement

3. Minimal improvement

4. No change

5. Minimal worsening

6. Moderate worsening

7. Marked worsening
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The study investigators are particularly interested in predicting which patients

will achieve either marked or moderate improvement for prescribing purposes. We

have thus created a mADCS-CGIC response variable which is an indicator for either

marked or moderate improvement (mADCS-CGIC 1 or 2) at week 9; this binary

variable is the outcome we used for the subgroup analyses. The sample size is 167

participants (86 randomized to citalopram and 81 randomized to placebo) for which

we have mADCS-CGIC response at week 9 and baseline covariate information. Of

these participants, 55 (34 randomized to citaloram and 21 randomized to placebo)

had a mADCS-CGIC response of either marked or moderate improvement at week 9.

The second primary outcome was agitation as measured by the Neurobehavioral

Rating Scale agitation subscale (NBRS-A). The NBRS-A subscale ranges from 0-18

where larger scores indicate more severe symptoms. In the CitAD study, baseline

NBRS-A scores ranged from 1-14, with mean and median scores of 7.6 and 8 respec-

tively. The NBRS-A scores at week 9 ranged from 0-16, with mean and median scores

of 4.7 and 4 respectively. A reduction of 50% from baseline NBRS-A is considered

a clinically relevant response by the study investigators. Of the available 167 partic-

ipants at week 9, 75 (48 randomized to citalopram and 27 randomized to placebo)

had at least 50% reduction in NBRS-A from baseline.

Our subgroup analyses focused on predicting mADCS-CGIC response rather than

NBRS-A improvement, as the study investigators feel that mADCS-CGIC response

is the more clinically relevant outcome. We have however, evaluated our predictive

model (based on mADCS-CGIC response) using both measures for comparison. We

would expect to observe any true subgroup effects consistently across closely related

outcomes [15].

2.1.2 Pre-specified subgroups

There were five baseline covariates which were pre-specified for subgroup analyses

in the CitAD protocol. The pre-specified baseline covariates are residency, presence
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of delusions and/or hallucinations, functional impairment, cognition, and agitation.

Residency was recorded at baseline as whether the patient resided in his own home,

a caregivers’ home, assisted living, or nursing facility. For the subgroup analysis, we

made a binary indicator for living in a long term care facility (including either as-

sisted living or nursing facilities). It should be noted that very few participants from

long term care facilities enrolled in the study (13 total, 12 of which were followed

through week 9). The Neuropsychiatric Inventory (NPI) is a survey completed by

the caregiver which assesses neuropsychiatric and behavioral symptoms. To assess

the presence of delusions and hallucinations, we used the NPI Delusions (NPI-D)

and NPI Hallucinations (NPI-H) subscales; each scale ranges from 0-12 where higher

scores indicate more severe symptoms. We created a binary indicator for presence of

hallucinations (NPI-H > 0) and/or delusions (NPI-D > 0) at baseline. Functional

impairment was measured by the Activities of Daily Living Inventory (ADL) survey

as completed by the caregiver. The ADL score ranges from 0-78 where higher scores

indicate less functional impairment. We created three subgroups defined by tertiles of

baseline ADL scores. Cognition was measured by the Mini Mental State Examination

(MMSE) which is a test administered by study personnel. MMSE scores range from

0-30 where higher scores indicate better functioning. We separated the participants

into three groups (mild to no impairment, moderate, and severe impairment) based on

MMSE cutoffs from the literature [10]. Baseline agitation was measured by the Neu-

robehavioral Rating Scale agitation subscale (NBRS-A). The NBRS-A ranges from

0-18 where higher scores indicate more severe symptoms. We created three subgroups

defined by tertiles of the baseline NBRS-A scores. The number and percentages of

participants in each pre-specified subgroup are provided in Table 2.1.

9



Total Citalopram Placebo

Total Randomized 186 94 92

Residence
Home or relative 173 (93%) 86 (91%) 87 (95%)
Long term care 13 (7%) 8 (9%) 5 (5%)

Neuropsychiatric Inventory (NPI)
No hallucinations nor delusions 97 (52%) 52 (55%) 45 (49%)
Hallucinations and/or delusions 89 (48%) 42 (45%) 47 (51%)

Activities of Daily Living (ADL)
Largest tertile, 54-74 65 (35%) 39 (41%) 26 (28%)
Middle tertile, 31-53 64 (34%) 28 (30%) 36 (39%)
Smallest tertile, 6-30 57 (31%) 27 (29%) 30 (33%)

Mini-Mental State Examination (MMSE)
Mild to no impairment, 21-30 54 (29%) 32 (34%) 22 (24%)
Moderate, 11-20 81 (44%) 45 (48%) 36 (39%)
Severe, 0-10 51 (27%) 17 (18%) 34 (37%)

Neurobehavioral Rating Scale Agitation
Subscore (NBRS-A)
Smallest tertile, 1-5 52 (28%) 29 (31%) 23 (25%)
Middle tertile, 6-8 60 (32%) 34 (36%) 26 (28%)
Largest tertile, 9-14 74 (40%) 31 (33%) 43 (47%)

Table 2.1: Summary of pre-specified baseline subgroups
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2.1.3 Post-hoc subgroups

An additional six baseline covariates were selected for the subgroup analysis. These

post-hoc covariates are age, gender, and use of memantine, lorazepam, trazodone,

and cholinesterase inhibitors. Participant ages ranged from 47 to 92. Three age

subgroups were defined by tertiles of baseline age. Gender consists of male and female

subgroups; participants were roughly evenly divided between males and females. The

remaining post-hoc subgroups are indicators for the use of concomitant Alzheimer’s

medications within three weeks of enrollment. Use of these medications at enrollment

may serve as a proxy for severity of disease. These medications are typically used in

severe cases, especially lorazepam and trazodone which were also used as the rescue

drugs throughout the trial. The memantine, lorazepam, trazodone, and cholinesterase

inhibitor covariates each include two subgroups, one for users of each medication and

another for non-users. Users of cholinesterase inhibitors include patients who have

used donepezil, rivastigimine, and/or galatamine within three weeks of enrollment.

The number and percentages of participants in each post-hoc subgroup are provided

in Table 2.2.
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Total Citalopram Placebo

Total Randomized 186 94 92

Age
Smallest tertile, 47-75 57 (31%) 30 (32%) 27 (29%)
Middle tertile, 76-82 60 (32%) 29 (31%) 31 (34%)
Largest tertile, 83-92 69 (37%) 35 (37%) 34 (37%)

Gender
Male 101 (54%) 50 (53%) 51 (55%)
Female 85 (46%) 44 (47%) 41 (45%)

Memantine
No memantine use 108 (58%) 53 (56%) 55 (60%)
Memantine use 78 (42%) 41 (44%) 37 (40%)

Lorazepam
No lorazepam use 171 (92%) 88 (94%) 83 (90%)
Lorazepam use 15 (8%) 6 (6%) 9 (10%)

Trazodone
No trazodone use 167 (90%) 83 (88%) 84 (91%)
Trazodone use 19 (10%) 11 (12%) 8 (9%)

Cholinesterase Inhibitors
No cholinesterase inhibitor use 58 (31%) 32 (34%) 26 (28%)
Use of cholinesterase inhibitor(s) 128 (69%) 62 (66%) 66 (72%)

Table 2.2: Summary of post-hoc baseline subgroups
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2.2 Traditional subgroup analyses

We performed a series of simple bivariate analyses as a first look at potential sub-

group effects, and to later inform our covariate selections for the two-stage estimation

procedure. We estimated the treatment effect, the odds ratio of mADCS-CGIC re-

sponse in the citalopram group versus placebo group, within each subgroup using

logistic regression. In each logistic regression model, the log odds of mADCS-CGIC

response is regressed on treatment as a single predictor, as shown in Equation 2.1,

where E [Y |Z = z] is the probability of response for participants randomized to treat-

ment Z taking values of 0 for placebo and 1 for citalopram. The coefficient β1 is the

log odds ratio of response on citalopram versus placebo.

logit (E [Y |Z = z]) = β0 + β1z (2.1)

The results are provided in Figures 2.1 and 2.2 in the form of forest plots. The

forest plots provide the estimate and confidence intervals for the treatment effect

(odds ratio of response on citalopram versus placebo) for each covariate stratum.

Tests of interaction were done using likelihood ratio tests. The full model including

the interaction between the baseline categorical variable and treatment was compared

to the reduced model without this interaction. Equations 2.2 and 2.3 provide examples

of the full and reduced models respectively for a two-level covariate, X taking values

of 0 for the baseline level and 1 for the second level. The degrees of freedom for each

interaction test is equal to the number of covariate levels (subgroups) minus one.

logit (E [Y |Z = z,X = x]) =β0 + β1z + β2x+ β3(z × x) (2.2)

logit (E [Y |Z = z,X = x]) =β0 + β1z + β2x (2.3)
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Figure 2.1: Bivariate subgroup analyses for pre-specified covariates
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Figure 2.2: Bivariate subgroup analyses for post-hoc covariates
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Chapter 3

Two-Stage Estimation Procedure

This two-stage estimation method was introduced by Cai, Tian, Wong, and Wei

in Biostatistics, 2011 [3]. In the first stage, a parametric working model (such as

a generalized linear model) is chosen as an approximation to the predictive true

regression of the dependent variable (outcome) on covariates which are thought to be

prognostic. The model is fitted separately for each treatment group using methods

that assume it is correct, for example, using weighted least squares. An index score

is then calculated for each patient as the difference in the fitted expected outcomes,

under assignment to treatment versus control group. In the second stage, a non-

parametric method is used to model the observed outcome as a function of the index

score for each treatment group separately. The difference in the two non-parametric

curves is a non-parametric estimate of the treatment effect for subgroups of patients

with the same index scores. In this chapter, we illustrate each of these steps using

the CitAD dataset. In addition to applying this procedure to our dataset, we have

made several modifications which aide in interpretation of results and also provide a

means for evaluating performance of this method.
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3.1 Stage 1: Generating the index scores

3.1.1 Covariate selection

To generate the index scores, we first had to decide which prognostic factors to include

in the working models. We selected the most promising baseline covariates based on

the results from the traditional bivariate subgroup analyses (Figures 2.1 & 2.2). We

decided to include baseline covariates for which the fold change in the treatment effect

(odds ratio, citalopram versus placebo) for any two levels is greater than three. The

five baseline covariates which meet this criteria are residency, MMSE, NBRS-A, age,

and lorazepam.

3.1.2 Defining the index score

For each prospective patient, we would like to predict his or her treatment effect

based on his or her baseline characteristics. In a causal inference framework, the

true treatment effect is the difference in the patient’s potential outcome if he or she

were given citalopram and the potential outcome if he or she were given placebo.

In mathematical terms, the treatment effect for a subgroup with the same baseline

covariates is

s(x) = Eapprox


Y(1)|X = x


− Eapprox


Y(0)|X = x


(3.1)

= g1(β1x)− g0(β0x) (3.2)

where Y(1) is the potential outcome if the patient were given citalopram, Y(0) is the

potential outcome if the patient were given placebo, and X = x is a vector of baseline

covariates (or functions of these values). As shown in Equation 3.2, the expected

value of each potential outcome can be approximated by a parametric model with
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design matrix, X=x, and covariate matrix, β. The functions g1 and g2 are smooth

link functions which relate the expected potential outcome to the linear predictor.

As defined in Cai et. al [3], the index score is an estimate for the true subgroup

treatment effect given by

ŝ(x) = g1(β̂1x)− g0(β̂0x) (3.3)

The vector of coefficients, β̂1, is estimated by fitting the working parametric model

with data from all participants randomized to citalopram. Similarly, β̂0 is estimated

by fitting the working model with data from all participants randomized to placebo.

Each model is fitted separately for each treatment group using weighted least squares.

The index score is the difference in the fitted values from the citalopram model and

the placebo model, and is the predicted treatment effect for each person according

to the working models. Each unique combination of baseline covariates corresponds

to a unique index score. Persons with the same index score can be thought of as

a subgroup. Persons with index scores which are close to one another have similar

predicted treatment effects.

3.1.3 Fitting the working models

The form of the working model for the binary mADCS-CGIC response outcome is

a logistic regression with five categorical predictors: residency, MMSE, NBRS-A,

age, and lorazepam. The estimated regression coefficients and their standard error

estimates are shown in Table 3.1 for citalopram and in Table 3.2 for placebo. These

coefficients would be used to calculate the index score for a new patient given his or

her baseline characteristics.
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Estimate Std. Error Z score p-value
(Intercept) -1.2657 0.7005 -1.81 0.0708
Residence: Long term care -0.7566 0.9423 -0.80 0.4221
MMSE: Moderate, 11-20 -1.3868 0.6067 -2.29 0.0223
MMSE: Severe, 0-10 -1.3019 0.7900 -1.65 0.0994
NBRS-A: Middle tertile, 6-8 1.5236 0.7315 2.08 0.0373
NBRS-A: Largest tertile, 9-14 2.3663 0.7579 3.12 0.0018
Age: Middle tertile, 76-82 0.7359 0.6389 1.15 0.2494
Age: Largest tertile, 83-92 0.1930 0.6485 0.30 0.7660
Lorazepam: User -0.0242 1.3041 -0.02 0.9852

Table 3.1: Citalopram working model coefficients

Estimate Std. Error Z score p-value
(Intercept) -1.6780 0.9513 -1.76 0.0777
Residence: Long term care 3.4785 1.5643 2.22 0.0262
MMSE: Moderate, 11-20 0.0268 0.8604 0.03 0.9752
MMSE: Severe, 0-10 -0.6216 0.9321 -0.67 0.5048
NBRS-A: Middle tertile, 6-8 -0.7819 1.0874 -0.72 0.4721
NBRS-A: Largest tertile, 9-14 1.9738 0.8238 2.40 0.0166
Age: Middle tertile, 76-82 -0.3326 0.7423 -0.45 0.6541
Age: Largest tertile, 83-92 -1.1348 0.8402 -1.35 0.1768
Lorazepam: User 2.2256 1.2938 1.72 0.0854

Table 3.2: Placebo working model coefficients

Calculating the index score for CitAD participants

The next step of the procedure is to calculate an index score for each of the 167 CitAD

participants. We have adjusted the calculation of the index score from that published

in Cai et al. [3] to avoid possible overfitting. Overfitting is a concern because we

use the participant’s observed response to fit the working model for the group that

the participant was assigned to in the trial. To avoid overfitting, we employ a leave-

one-out approach; we fit the working model for the assigned group with data from

all participants in that group except the participant for which the index score is

being calculated. The working model for the group which the participant was not

assigned is still fitted with the complete data from all participants in that group (same

coefficients as either Table 3.1 or Table 3.2). For participant i assigned to citalopram,
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the index score calculation is shown in Equation 3.4 where β̂1,−i is the vector of

estimated regression coefficients when the citalopram working model is fitted without

the ith participant. Similarly, the index score for participant i assigned to placebo is

given in Equation 3.5.

ŝ(x) = g1(β̂1,−ix)− g0(β̂0x) (3.4)

ŝ(x) = g1(β̂1x)− g0(β̂0,−ix) (3.5)

There were 68 unique index scores populated among the 167 participants ranging

from -0.920 to 0.693. Participants in the same treatment group with the same combi-

nation of baseline covariates received the same index score; as these participants are

essentially exchangeable, leaving one out resulted in the same regression coefficient

estimates and associated index score. The distribution of the index scores for the

CitAD participants is shown in Figure 3.1.

3.2 Stage 2: Non-parametric estimation of the treat-

ment effect

3.2.1 Visualizing the data

For each participant in the trial, we now have an index score, the observed mADCS-

CGIC (0 for non-response or 1 for response), and his or her treatment assignment.

To visualize this, we plotted each participant as a data point with the index score

on the x-axis and observed response on the y-axis as shown in Figure 3.2. Since the

values on the y-axis can only be 1 or 0, the points have been jittered to show all of the

data. Each point is colored according to the participant’s treatment assignment, with
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Figure 3.1: Density of index scores

citalopram in red and placebo in blue. A loess smoother for each treatment group

is also shown to help visualize the distribution of responses across index scores. As

expected, the response probability increases with increasing index score in the citalo-

pram group. We might have expected a flat line near zero for the placebo group,

as the placebo should not have increased or decreased the probability of response.

However, there is an apparent negative association between index score and response

probability in the placebo group. There was a low level of response in the placebo

group (21 out of 81 participants) which is likely attributable to increased level of pa-

tient care and counseling which was provided to all caregivers. As shown in Table 3.2,

placebo response is associated with several working model covariates including base-

line severity of agitation. The index score is designed to predict differences between

the predicted responses (citalopram minus placebo), and so we observe higher placebo

response rates at low index scores and higher citalopram response rates at high index

scores. At the point where the curves cross, there is roughly no observed difference
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in response rates between patients randomized to citalopram versus placebo.
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Figure 3.2: Plot of mADCS-CGIC response by index score

3.2.2 Non-parametric smoothing technique

We next use a smoothing technique to obtain a non-parametric estimate of the re-

sponse probability for each treatment group at each index score. Unlike the smoother

used in Cai et al. [3], we used a cumulative smoothing technique because it makes the

analysis easily interpretable. The non-parametric estimate of the response probability

for a particular index score is the proportion of persons with a response out of all

persons with an index score greater than or equal to the selected score. The left-most

estimate (corresponding to index score -0.920 or greater) is the average probability

of response for all participants. The right-most estimate is the proportion of persons

with a response at the largest index score, 0.693, alone.

A plot of the non-parametric estimates of the response probability by treatment

group is shown in Figure 3.3. The last step to obtaining the non-parametric estimates
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of the treatment effect is to subtract the estimates for the placebo group (shown in

blue) from the estimates for the citalopram group (shown in red) at each index score.

The resulting values are the non-parametric estimates of the treatment effect shown

in black in Figure 3.3. As an example of how to read and interpret the plots in

Figure 3.3, participants with index scores of 0.2 or greater comprise a subgroup for

which the estimated response probability under placebo is 0.167 and the estimated

response probability under citalopram is 0.525; the estimated treatment effect for this

subgroup is the difference in those probabilities, 0.358.

3.3 Confidence intervals

3.3.1 Point-wise confidence intervals

We created 1,000 bootstrap samples by sampling with replacement from the original

167 participants with available week 9 mADCS-CGIC data. Each bootstrap dataset

consists of 167 entries each with treatment assignment, the observed mADCS-CGIC

response, and index score (calculated from the original dataset). For each boot-

strapped dataset, we re-ran the cumulative smoother to obtain a new estimate of

the treatment effect at each index score. The empirical distributions of the 1,000

bootstrap estimates at each index score are the basis for point-wise 95% confidence

intervals as shown in Figure 3.5. The 0.025 quantile of each distribution is the lower

bound and the 0.975 quantile is the upper bound of the 95% confidence interval for

the treatment effect estimate at each index score.

3.3.2 Correcting for multiplicity

Because we are estimating these point-wise 95% confidence intervals for multiple index

scores (there are 68 unique index scores among the CitAD participants), we made a

correction for multiple comparisons to preserve the overall type I error rate. For each
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Figure 3.3: Plots of response probability and treatment effect by index score

point-wise confidence interval, there is a 5% probability that the corresponding true

treatment effect value lies outside the bounds simply by chance. For the set of all

68 true subgroup treatment effects, the chance that any one of them lies outside the
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bounds is then necessarily larger than 5%. We need to apply a correction such that

the confidence bands cover all 68 true subgroup treatment effects simultaneously with

95% probability. The corrected confidence bounds will be wider than the point-wise

confidence intervals.

In Cai et al. [3], multiplicity is addressed by the calculation of a simultaneous

confidence interval in addition to the point-wise interval. The simultaneous confidence

interval is given by Equation 3.6 where δ̂i is the bootstrap treatment effect estimate

at the ith index score, σ̂i is the corresponding bootstrap standard error estimate, and

γ is a correction factor.

δ̂i ± γσ̂i (3.6)

The correction factor, γ, is the 95th percentile of the distribution of maximum

standard deviations of the treatment effect estimates from their means in each

bootstrap sample. Each bootstrap iteration produces 68 subgroup treatment effect

estimates. Each of these estimates can be given a standardized Z-score to represent

its distance from the mean (across all bootstrap samples) as shown in Equation 3.7,

where δij is the treatment effect estimate for index score i and bootstrap sample j,

σ̂i is the bootstrap standard error estimate, and δ̄i. is the mean of the bootstrap

treatment effects at index score i. The maximum Z-score for each bootstrap sample

is given by Equation 3.8. The correction factor γ is then the 95th percentile of the

distribution of 1,000 Zmax values. The distribution of 1,000 maximum Z-scores and

correction factor are shown in Figure 3.4. The correction factor after considering

multiple (68) looks is larger than 1.96 which means the simultaneous confidence

band will be wider than the point-wise confidence intervals. The point-wise and

simultaneous confidence bands are shown in Figure 3.5.
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Zij =
|δij − δ̄i.|

σ̂i

(3.7)

Zmaxj = max {Z1j, Z2j, ..., Z68j} (3.8)
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Figure 3.4: Density of maximum Z-scores from 1,000 bootstrapped datasets

Instead of reporting both point-wise and simultaneous confidence intervals, we have

instead chosen to report a single 95% confidence interval which corrects for multiple

looks moving left to right. We think that the natural interpretation of the data is to

observe the average treatment effect (the estimate at the farthest left) and then

move right until a subgroup is found to have an estimated treatment effect which

significantly exceeds the average treatment effect. The index score for the first

estimated treatment effect moving left to right which meets this criteria defines the

largest subgroup for which we can say that the treatment effect exceeds the average.

Therefore, we have calculated a separate correction factor, γi, for each index score
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Figure 3.5: Plot of treatment effect with point-wise and simultaneous 95% confidence
intervals

which takes into account all previous looks (to the left of that score). The

confidence interval to the far left is therefore the same as the point-wise interval and

the confidence interval to the far right is the same as the simultaneous interval. The

resulting plot is shown in Figure 3.6. The x-axis labels have been changed from the

index scores to the percent of CitAD participants with that index score or greater

for ease of interpretation. This also is the percentage of participants in each

subgroup. The orange line represents the average treatment effect, the probability

difference estimated from all participants.
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Chapter 4

Hypothesis Testing

4.1 Test for heterogeneity by index score deciles

We conducted a hypothesis test for overall treatment effect heterogeneity using the

two-stage estimation method without the cumulative smoother. Instead of using the

cumulative smoothing technique, we split the data into ten groups based on index

score deciles. We then calculated the non-parametric estimate of the treatment effect

within each decile; the non-parametric treatment effect estimate is the proportion of

observed responders in the citalopram group minus the proportion of responders in

the placebo group. We did the same procedure for 1,000 bootstrapped samples to get

a distribution of the treatment effect for each group which is shown in Figure 4.1.

The null hypothesis is that the treatment effect (difference in response probability)

is the same in all of the ten subgroups. The estimate of the common treatment effect is

the inverse variance weighted average of the ten individual treatment effect estimates

as shown in Equation 4.1 where θi is the mean treatment effect estimate for decile i,
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Figure 4.1: Boxplot of bootstrap estimates of treatment effect at index score deciles

and σ2
i is the variance of the treatment effect estimates for decile i.

θ̂0 =

10
i=1


θi
σ2
i


10
i=1


1

σ2
i

 = 0.173 (4.1)

We then used a likelihood ratio test to compare the null model with a common

treatment effect to the full model with a separate treatment effect estimated for each

decile. The likelihood ratio is shown in Equation 4.2. In this calculation, we assume

the decile estimates are independent; after examining the empirical correlation matrix,

this seems to be a reasonable assumption. The test statistic (TS) for the likelihood

ratio test is shown in Equation 4.3. This test statistic is compared to a χ2 distribution

with 9 degrees of freedom (the number of groups in the full model minus the number

in the reduced model). The resulting p-value (Equation 4.4) is very small suggesting

that at least two subgroups, as defined by the index score deciles, have different
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treatment effects.

LR(θ) =

10
i=1


2πσ̂2

i

1/2
exp


−(θi − θ̂0)

2

2σ̂2
i


10
i=1


2πσ̂2

i

1/2
exp


−(θi − θ̂i)

2

2σ̂2
i



=
10
i=1

exp


−(θi − θ̂0)

2

2σ̂2
i


(4.2)

TS = −2 log [LR(θ)] =
10
i=1

(θi − θ̂0)
2

σ̂2
i

= 26.0 (4.3)

P (TS ≥ χ2
9) = 0.00206 (4.4)

4.2 Comparison of the ten decile mean model with

a three mean model.

Looking at Figure 4.1, there appear to be three distinct groups: placebo responders

defined by decile 1, non-responders defined by deciles 2-8, and citalopram responders

defined by deciles 9-10. We hypothesize that this simpler, three group model is

adequate to describe differences in treatment effect across index scores instead of the

ten decile model. We used a likelihood ratio test to compare the reduced model with

three means to the full model with ten means. The test statistic is calculated as

previously shown, but the null common treatment effect estimate is replaced with the

inverse variance weighted average effect within each of the three groups. The test

statistic for this comparison is 1.46 which is compared to a χ2 distribution with 7

degrees of freedom (the number of groups in the full model minus the number in the

reduced model). The resulting p-value is 0.984, suggesting that the full ten decile
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model is not a significant improvement over the proposed three group model. The

boxplot for the three mean model is shown in Figure 4.2. The estimated treatment

effects for the three groups are -0.629 for decile 1, 0.166 for deciles 2-8, and 0.605 for

deciles 9-10.
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Figure 4.2: Boxplot of bootstrap estimates of treatment effect at three index score
subgroups

4.3 Test for consistent heterogeneity of NBRS-A

We would expect true differences across subgroups to be consistent among related

outcomes. The two primary outcomes of the CitAD study, mADCS-CGIC and NBRS-

A, both measure severity of agitation. To assess consistency of these subgroup effects

between the two measures, we did a hypothesis test for heterogeneity in the NBRS-A

outcome at the mADCS-CGIC index score deciles. We used the same method as

described in Section 4.1, except we calculated the non-parametric estimate of the

NBRS-A treatment effect within each decile. The non-parametric treatment effect
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estimate is the proportion of observed NBRS-A responders in the citalopram group

minus the proportion of responders in the placebo group where NBRS-A response was

defined as at least 50% reduction from baseline NBRS-A at week 9. This procedure

was repeated for 1,000 bootstrapped samples to obtain a distribution of the NBRS-A

treatment effect for each decile as shown in Figure 4.3. The likelihood ratio test for

the null hypothesis of a common treatment effect suggests no significant differences

in NBRS-A treatment effect across the mADCS-CGIC index score decile subgroups

(p = 0.864).
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Figure 4.3: Boxplot of bootstrap estimates of NBRS-A treatment effect at mADCS-
CGIC index score deciles
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Chapter 5

Results & Discussion

In this chapter, we answer the original three research questions and interpret our

results. We will also relate the index scores back to the original baseline covariates

to propose which factors may be predictive of citalopram response.

5.1 Aim 1: What is the average treatment effect?

There is evidence that citalopram increases mADCS-CGIC response (marked or mod-

erate improvement of agitation symptoms) when compared to placebo. The estimated

average effect is a 0.136 difference in response probability (citalopram - placebo) with

a 95% confidence interval of [0.0134, 0.297]. The average treatment affect can be seen

in Figure 3.6 as the treatment effect estimate at the 100% percentile mark on the x

axis. This average treatment effect is an estimate of the difference in the potential

outcome if all of the study participants had been assigned to citalopram and the

potential outcome if they had all been assigned to placebo.

This finding is consistent with previous estimates of the average mADCS-CGIC

treatment effect. In the primary outcomes analysis, the average mADCS-CGIC treat-

ment effect estimate was an odds ratio of 2.13 (odds ratio of being at or better than a

given mADCS-CGIC category for citalopram versus placebo) with a 95% confidence
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interval of [1.23, 3.69] as estimated using ordinal logistic regression. The estimated

treatment effect from this analysis is smaller in magnitude than that reported in the

primary analysis; the difference between the two estimates is likely attributable to our

treatment of the original seven category mADCS-CGIC score as a binary response

variable. In the simple bivariate logistic regression analyses (Figures 2.1 & 2.2), the

average treatment effect estimate was an odds ratio of 1.87 (odds ratio of marked

or moderate improvement for citalopram versus placebo) with a 95% confidence in-

terval of [0.967, 3.61]. All estimates suggest that citalopram significantly improves

mADCS-CGIC scores compared to placebo.

5.2 Aim 2: Is there a subgroup with a larger than

average treatment effect?

From Figure 3.6 it is observed that there are several subgroups of patients for which

the entire confidence interval is above the average treatment effect of 100% of patients.

Moving from the left (the average treatment effect) to the right, the largest subgroup

for which the confidence interval almost exceeds the average treatment effect is the

subgroup of patients with the largest 60% of the index scores. The largest subgroup

for which confidence interval definitely exceeds the average treatment effect is the

subgroup with the top 20% of index scores.

This can be interpreted clinically by viewing the distribution of covariates for

these patients and comparing to the distribution of all patients. These comparisons

are made in Table 5.1 and Table 5.2. The distribution of covariates among all par-

ticipants is shown in Table 5.1. We then show the distribution of covariates among

the top 90% to 10% of index scorers in increments of 10%. The subgroup of the

top 60% has a larger distribution of participants living out of long term care, having

mild to no cognitive impairment (MMSE), in the middle tertile of baseline agitation
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symptoms (NBRS-A), in the middle age range, and not using lorazepam at baseline.

These trends become more prominent as you observe the distribution of covariates in

subgroups with larger average index scores.
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All Participants Top 90% Top 80% Top 70% Top 60%

Residence
Home or relative 155 (93%) 150 (99%) 134 (100%) 120 (100%) 100 (100%)
Long term care 12 (7%) 1 (1%) 0 (0%) 0 (0%) 0 (0%)

MMSE
Mild to no impairment 21-30 49 (29%) 46 (30%) 44 (33%) 44 (37%) 38 (38%)
Moderate, 11-20 75 (45%) 69 (46%) 56 (42%) 42 (35%) 36 (36%)
Severe, 0-10 43 (26%) 36 (24%) 34 (25%) 34 (28%) 26 (26%)

NBRS-A
Smallest tertile, 1-5 48 (29%) 43 (28%) 33 (25%) 19 (16%) 10 (10%)
Middle tertile, 6-8 55 (33%) 54 (36%) 53 (40%) 53 (44%) 51 (51%)
Largest tertile, 9-14 64 (38%) 54 (36%) 48 (36%) 48 (40%) 39 (39%)

Age
Smallest tertile, 47-75 54 (32%) 49 (32%) 34 (25%) 34 (28%) 23 (23%)
Middle tertile, 76-82 53 (32%) 50 (33%) 50 (37%) 46 (38%) 40 (40%)
Largest tertile, 83-92 60 (36%) 52 (34%) 50 (37%) 40 (33%) 37 (37%)

Lorazepam
No lorazepam use 156 (93%) 147 (97%) 131 (98%) 117 (98%) 99 (99%)
Lorazepam use 11 (7%) 4 (3%) 3 (2%) 3 (2%) 1 (1%)

Table 5.1: Baseline characteristics of subgroups with top 100% to 60% of index scores
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Top 50% Top 40% Top 30% Top 20% Top 10%

Residence
Home or relative 84 (100%) 68 (100%) 51 (100%) 35 (100%) 17 (100%)
Long term care 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

MMSE
Mild to no impairment, 21-30 38 (45%) 30 (44%) 23 (45%) 23 (66%) 17 (100%)
Moderate, 11-20 20 (24%) 13 (19%) 6 (12%) 6 (17%) 0 (0%)
Severe, 0-10 26 (31%) 25 (37%) 22 (43%) 6 (17%) 0 (0%)

NBRS-A
Smallest tertile, 1-5 10 (12%) 7 (10%) 0 (0%) 0 (0%) 0 (0%)
Middle tertile, 6-8 49 (58%) 41 (60%) 31 (61%) 26 (74%) 17 (100%)
Largest tertile, 9-14 25 (30%) 20 (29%) 20 (39%) 9 (26%) 0 (0%)

Age
Smallest tertile, 47-75 21 (25%) 9 (13%) 6 (12%) 6 (17%) 6 (35%)
Middle tertile: 76-82 36 (43%) 36 (53%) 29 (57%) 21 (60%) 8 (47%)
Largest tertile: 83-92 27 (32%) 23 (34%) 16 (31%) 8 (23%) 3 (18%)

Lorazepam
No lorazepam use 83 (99%) 68 (100%) 51 (100%) 35 (100%) 17 (100%)
Lorazepam use 1 (1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Table 5.2: Baseline characteristics of subgroups with top 50% to 10% of index scores

38



5.3 Aim 3: Is the treatment effect truly heteroge-

neous?

There is evidence that there are groups with different true average effects. The p-value

of the hypothesis test for heterogeneity is 0.002 (Equations 4.2-4.4) which suggests

that the treatment effect is not homogeneous across all participants. This can also

be interpreted clinically by examining the distribution of covariates in each index

score subgroup. There are three distinct index score subgroups with different average

treatment effects as shown in Figure 4.2. These distribution of covariates in these

three subgroups are shown in Table 5.3.

The distribution of covariates in the subgroup with the largest index scores (deciles

9-10) are consistent with the patterns seen in Aim 2. We can also examine the

distribution of covariates in the subgroup with the lowest potential for benefit (decile

1); the covariate categories associated with reduced treatment effect are living in

long term care facilities, moderate to severe cognitive impairment, severe baseline

symptoms of agitation, being in the youngest age tertile (ages 47-75), and baseline

use of lorazepam.
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All Participants Decile 1 Deciles 2-8 Deciles 9-10

Residence
Home or relative 155 (93%) 10 (48%) 113 (99%) 32 (100%)
Long term care 12 (7%) 11 (52%) 1 (1%) 0 (0%)

MMSE
Mild to no impairment, 21-30 49 (29%) 3 (14%) 23 (20%) 23 (72%)
Moderate, 11-20 75 (45%) 11 (52%) 58 (51%) 6 (19%)
Severe, 0-10 43 (26%) 7 (33%) 33 (29%) 3 (9%)

NBRS-A
Smallest tertile, 1-5 48 (29%) 5 (24%) 43 (38%) 0 (0%)
Middle tertile, 6-8 55 (33%) 1 (5%) 28 (25%) 26 (81%)
Largest tertile, 9-14 64 (38%) 15 (71%) 43 (38%) 6 (19%)

Age
Smallest tertile, 47-75 54 (32%) 10 (48%) 38 (33%) 6 (19%)
Middle tertile, 76-82 53 (32%) 3 (14%) 29 (25%) 21 (66%)
Largest tertile, 83-92 60 (36%) 8 (38%) 47 (41%) 5 (16%)

Lorazepam
No lorazepam use 156 (93%) 14 (67%) 110 (96%) 32 (100%)
Lorazepam use 11 (7%) 7 (33%) 4 (4%) 0 (0%)

Table 5.3: Baseline charactestics of three index score subgroups with different average treatment effects
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5.4 Discussion

5.4.1 Plausibility

One strength of our analysis is the focus on baseline covariates which were pre-

specified in the protocol, although we also considered some plausible post-hoc co-

variates. All of the subgroup analyses that we have completed for the mADCS-CGIC

outcome have been presented in this report; we did not continue on a “fishing expe-

dition” to explore additional baseline covariates which may not have any biological

or clinical relevance. The cut-points to categorize/collapse the continuous and ordi-

nal baseline covariates were not pre-specified, but were chosen in a rather agnostic

manner. We based our decisions on clinically relevant values from the literature and

distribution tertiles, instead of searching for cutpoints which would yield the most

significant interactions. All of these aspects of our method enhance the credibility of

our results.

Although the subgroup covariates were selected before looking at any of the data,

the direction of the associations were not explicitly pre-specified. Our collaborators

from the study agree that the observed interactions seem plausible and have offered

various biological explanations. However, it is difficult to ascertain, after the fact,

whether the direction of the observed interactions were consistent with their original

expectations based on clinical practice or whether they had been influenced by seeing

the results. As these results have not yet been disseminated to all of the investigators,

a study has been proposed to conduct a survey to see how the naive clinician would

rank the significance and direction of the association between the treatment and each

of the covariates.

Of major concern for plausibility is the observed lack of consistency between the

mADCS-CGIC and NBRS-A treatment effects across the same subgroups. As both

primary outcomes measure severity of agitation, we would expect to see the same
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interactions using both measures if these subgroup effects are real. The observed lack

of treatment effect heterogeneity in the NBRS-A response across subgroups (Figure

4.3) reduces the credibility of our results somewhat. We are unsure whether the lack

of consistency is an indication that the proposed interactions are spurious effects or

if the lack of consistency is the product of disagreement between the two outcome

measures. As shown in Table 5.4, the cross-tabulation of week 9 mADCS-CGIC

response (marked or moderate improvement) versus week 9 NBRS-A response (>=

50% reduction from baseline), the two measures of agitation do not completely agree

with one another. This lack of agreement could be a result of how the original ordinal

scales were dichotomized. It is possible that we would see better agreement across

subgroups if the NBRS-A variable were treated as continuous or categorized in a

different way. Given the sample size, we may also not have the power to detect true

heterogeneity in the NBRS-A outcome.

mADCS-CGIC NBRS-A Response
Response 0 1

0 78 34
1 14 41

Table 5.4: Agreement between mADCS-CGIC and NBRS-A responses

5.4.2 Contribution to existing methodology

Our contribution to the two-stage estimation procedure is the use of the cumulative

smoothing technique to determine the largest group of patients for which the subgroup

treatment effect is significantly larger than the average. Additionally, we describe

this subgroup as the percent of participants with the highest index scores, providing

a means for evaluation of the index scoring system. The calculated index scores

depend on the selection of the working models. Currently there is no way to compare

the performance of different specifications of the working models, such as inclusion
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of different baseline covariates. An ideal index scoring system will efficiently group

or rank patients such that there is the largest differentiation between high treatment

effect and low treatment effect subgroups. One way of evaluating the performance of

the method would be to maximize the percent of participants in the largest subgroup

with an above average treatment effect.

5.4.3 Assumptions & limitations

The two-stage estimation procedure is subject to the assumption that the working

models are specified such that they are useful in ranking participants by their true

treatment effects. The working models are used to generate the index score which is

the predicted treatment effect for a subgroup of patients with the same combination

of baseline covariates. The non-parametric estimation methods depend on the fact

that these subgroups can be efficiently ranked according to their true treatment ef-

fects using the index scores. So the working models are not used for inference, but as

a tool to facilitate non-parametric estimation. The assumption is that the working

models are close enough to the true relationship to efficiently rank the subgroups.

This is less limiting than the typical assumption of correct specification required for

most parametric methods. We are not certain how sensitive this two-stage method

is to gross mis-specification of the working models. Other limitations include com-

plete case analysis which is subject to the assumption that the outcome was missing

completely at random, meaning that the missingness did not depend on previous re-

sponses or the missing value. This is likely not a valid assumption, however our results

should be fairly robust to this assumption as missingness rates were low (10% missing

primary outcomes at week 9 and full baseline information on all participants). To

relax this assumption, we could impute missing outcomes using observed data from

the participant’s index score decile.

There are several additional aspects of this analysis which may limit its usefulness

43



in guiding actual clinical practice. Our collaborators have noted that it would be

useful to have subgroups based on concrete measures which are less subject to fluctu-

ation. While age and residency are very concrete measures, the MMSE and NBRS-A

scores may be subject to measurement error and random day-to-day fluctuations.

This was somewhat out of our control, as we tried to focus on subgroups which were

pre-specified in the protocol. Another limitation is that this analysis also does not

account for possible risks associated with citalopram. Clinicians must consider both

the potential benefits and risks in making prescribing decisions for each patient. This

would require the additional modeling of a risk profile for each patient, as the prob-

ability of adverse events is likely heterogeneous as well. Our current analysis should

be regarded as one piece of a multitude of factors clinicians must take into account.
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Chapter 6

Conclusions

In this thesis, we have illustrated how the novel two-stage estimation approach intro-

duced by Cai et al. [3] can be applied to a real clinical trial using the CitAD dataset.

Using this approach, we have identified several likely predictors of citalopram re-

sponse. CitAD participants with the largest predicted treatment effects were more

likely to be living outside long-term care facilities, within the middle age range of

CitAD participants (ages 76-82), with minimal cognitive impairment (MMSE 21-30),

within the middle baseline agitation range (NBRS-A 6-8), and not taking lorazepam.

These trends were also seen using traditional bivariate subgroup analysis methods,

however we did not have the power to detect any significant individual interactions

as the sample size was quite limited. The two-stage estimation procedure has allowed

us to consider combinations of multiple baseline factors simultaneously and calculate

non-parametric estimates of subgroup treatment effects. This approach has provided

more persuasive evidence for true treatment effect heterogeneity among CitAD par-

ticipants.

Concerns such as the lack of consistency between related outcomes and question-

able biological plausibility cast doubt on our findings. With this in mind, we advise

the reader to intperpret these results as exploratory or hypothesis generating rather
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than confirmatory. Additional experimental or observational data will be required

to confirm the proposed interactions. Future research plans include a survey study

designed to more objectively assess clinical opinion on the biological plausibility of

the observed interactions. Future development of the method may include changing

the framework for calculation of the index score to improve prediction.
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