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Abstract

This dissertation mainly studies identification of finite action games with incom-

plete information. The essential contribution of this dissertation is to allow for the presence

of multiple equilibria and/or unobserved market-level heterogeneity. Chapter 2 provides

a novel methodology to nonparametrically identify static games with multiple equilibria.

Exploiting the results in mis-classification error models, I show that the number of equi-

libria, the equilibrium selection mechanism and individual equilibrium strategies associated

with all positively employed equilibria can be nonparametrically identified from the dis-

tributions of the game outcomes. Provide the equilibrium conditional choice probabilities,

payoffs then can be identified nonparametrically with exclusion restrictions. A natural es-

timator is also proposed following the constructive identification procedure. The empirical

application investigates the strategic interaction among radio stations when they choose

commercial timings, which provides evidence that two equilibria exist.

Chapter 3 extends chapter 2 to incorporate unobserved market-level heterogeneity.

This chapter assumes that the market-level latent type is discrete and has a finite support.

With the discrete feature, the presence of unobserved heterogeneity generates similar finite

mixture feature as the presence of multiple equilibria. The combination of both payoff-
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relevant and payoff un-relevant latent factor complicates the identification because of lacking

information to disentangle the two. Consequently, instead of providing point identification, I

provide set identification for the payoff parameters in chapter 3. To understand the trade-off

between point identification and extra assumptions, I also provide conditions under which

the identified set shrinks to a point.

Chapter 4 considers identification in dynamic settings. If only Markov Perfect

Equilibria being considered, observables including actions and payoff relevant covariates

in period t follow a first-order Markov process in time series by a market. This Markov

property is a key condition under which dynamic games can be nonparametric identified

with four periods of data. In particular, the law of motion associated with every possible

combination of equilibria and the unobserved market-types can be nonparametrically iden-

tified. Additionally, payoffs can be identified nonparametrically with exclusion restrictions.

More importantly, multiple equilibria and unobserved heterogeneity can be distinguished

from the test with the null that payoffs associated with two levels of latent factor are the

same. Specifically, if two payoffs are the same, then they should belong to the same latent

market type but different equilibria. On the other hand, if two payoffs are different, they

should be driven by the heterogeneity.

Chapter 5 concludes and proposes possible avenues for future research based on

this dissertation.
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Chapter 1

Introduction

During the past decade, estimating empirical models of games has become an

important and active research area in industrial organization, applied econometrics and

marketing. See Seim (2006), Sweeting (2011), Bajari, Benkard, and Levin (2007) as well as

Aguirregabiria and Mira (2007). See also Nevo and Aguirregabiria (2010) for survey. Mul-

tiple equilibria and unobserved heterogeneity are two outstanding and important features

in game analysis. In viewing of these, this dissertation contributes to the literature mainly

by providing a novel identification methodology for finite action games while allowing for

both multiplicity of equilibria and/or market-level discrete unobserved heterogeneity. The

game studied here is assumed to have incomplete information that the incompleteness due

to the fact that the payoff shocks are only observable to the individual player herself but

not to her rivals.

Chapter 2 of this dissertation tackles the problem of multiple equilibria in static

game settings. It provides a nonparametric analysis of finite action games with incomplete

information while does not impose any ad hoc assumptions on the equilibrium selection
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or the uniqueness of the equilibrium. The identification uses results from measurement

error literature by treating the underlying equilibrium as a latent variable. Thus, I prove

that all aspects of the game such as the number of equilibria, the equilibrium selection

mechanism, the equilibrium strategies of individual players associated with each equilibrium

are nonparametrically identified. Moreover, the payoff functions are nonparametrically

identified with exclusion restrictions.

To apply the identification technique developed by Hu (2008), one essential con-

dition is to find measures or proxies for the latent equilibria, and those measures are in-

dependent conditional on the equilibrium employment. I consider identification in both

cross-sectional and panel data scenarios. If cross-section data is available, the traditional

assumption that private payoff shocks are independent across actions and players plays an

important role in identification. With this assumption holds, individual players’ actions can

serve as measures for the underlying equilibria. As a result, the observed joint distributions

of players can be expressed as a mixture over equilibrium choice probabilities of individual

players with the equilibrium selection probability as the mixture weight. Therefore, the

number of equilibria can be identified as the rank of the matrix constructed by joint dis-

tributions of actions of two players, provided with enough number of alternatives and full

rank condition satisfied. Moreover, the equilibrium choice probabilities can be identified

as eigenvalues of the matrix estimated from the data directly. Finally, the payoff can be

identified with exclusion restrictions following the existing literature.

When panel data is available, I provide identification allowing for the equilibrium

employment evolves according to a first-order Markov process instead of assuming that

the same equilibrium is employed over time, as the literature tends to assume. With the
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static framework, the only factor that generates correlation between actions over time is

the underlying equilibrium evolution. Otherwise actions over time are independent. Thus,

actions in previous period and next period can serve as the different two measures for the

underlying equilibrium employed in this period. If we can get access to three periods of

data, the equilibrium relevant aspects of the game therefore are nonparametrically identified.

Identification of payoff is exactly the same as the case with cross-sectional data.

Given that the identification is constructive, estimation follows naturally. As an

application, I take the estimation procedure to the field data where radio stations strategi-

cally determine when to air their commercials. I find that there are two equilibria exist in

smaller markets while unique equilibrium exist in large market. Among smaller markets,

the two equilibria are employed with a probability of around 0.7 versus 0.3 respectively.

This unequal selection probability is worth noting, and providing rational might trace back

to different culture or preference. Moreover, I find that markets employ the same equilib-

rium over time exploring the panel data feature. This provides empirical evidence, and we

might be more comfortable to assume that the same equilibrium is employed over time in

different settings.

Chapter 2 obtains identification for static games with incomplete information al-

lowing for multiple equilibria while assumes away market level unobserved heterogeneity.

However, existence of discrete unobserved market-level heterogeneity generates the same

finite mixture feature as with multiple equilibria. Furthermore, incorporate unobserved

heterogeneity is important in empirical studies not only in games but also in discrete choice

models. It is highly possible that econometrician cannot gather all relevant information.

Thus, controlling for unobserved factors is important for recovering the strategic interac-
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tion between players. Consequently, Chapter 3 extends chapter 2 to incorporate unobserved

market-level types into the identification.

Existence of multiple equilibria and unobserved market heterogeneity result in the

same mixture structure of the observed joint distributions. In alignment with this spirit,

I create a new latent variable that combines information of equilibria and heterogeneity.

Similar as Chapter 2, the cardinality of this new variable is identified as the rank of the

matrix constructed by the joint distribution of individual players. Also choice probabil-

ities associated with this latent variable are identified up to ordering. The difficulty of

the identification lies in the requirement to order the latent variable. From the matrix

eigenvalue-eigenvector decomposition, we show that the choice probabilities can be identi-

fied as eigenvalues without ordering. The key different between chapter 2 and chapter 3 is

that ordering of equilibria does not have economic meanings. Thus, it is trivial, and any or-

dering is fine. In contrast, ordering of market heterogeneity is important because it reflects

how payoff differs in different market types. Disentangling the two unobserved factors is

possible only when for some observables and all unobserved market types, a unique equilib-

rium is guaranteed. Instead of point identification, this paper focuses on set identification

which considers all possible ordering.

Existing literature have focused on static environments or on single-agent dy-

namic decision problems. Many economic policy debates, however, turn on quantities that

are inherently linked to dynamic competition, such as entry and exit costs, the returns to

advertising or research and development, the adjustment costs of investment, or the speed

of firm and consumer learning. Estimating these dynamic parameters has been seen as a

major challenge, both conceptually and computationally. For estimation purpose, two-step
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estimation approaches pioneered by Hotz and Miller (1993) are prevalent in applications.

To make estimation tractable, existing literature usually assume that the data is gener-

ated by the same equilibrium. Moreover, even though unobserved heterogeneity sometimes

are controlled for in estimation, for instance Aguirregabiria and Mira (2007), there is no

identification results on dynamic games with unobserved heterogeneity. To address both

issues, Chapter 4 provides identification and estimation for dynamic games with incomplete

information while allowing for both multiplicity of equilibria and finite unobserved market

heterogeneity.

Chapter 4 imposes no restrictions on the cardinality of the equilibrium set or

the equilibrium selection rules in identification. Identification proceeds in the following

steps. First I identify the cardinality of a new latent variable which combines information

of both the unobserved market-type and the multiple equilibria. Second I identify the

law of transition for the Markov process, thus the equilibrium specific conditional choice

probability and the transition function for both observed and unobserved state variables

are identified. Third, the payoff function are nonparametrically identified with exclusion

restrictions as in Pesendorfer and Schmidt-Dengler (2008) for each value of the new latent

factor. Consequently, one can distinguish between multiple equilibria and unobserved-

market types from comparing the payoff functions. Specifically, multiple equilibria map

with the same payoff functions while unobserved-market types are associated with different

level of payoffs. As a byproduct, the equilibrium selection and the marginal distribution of

the market-type can be identified.

In Chapter 5, I conclude and summarize the dissertation. Furthermore, I also

present several avenues for future research based on this dissertation.
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Chapter 2

Identification and Estimation of

Static Games with Multiple

Equilibria

2.1 Introduction

Unlike single-agent discrete choice models, games generally admit multiple equi-

libria. Although multiplicity in games does not necessarily preclude estimation, ignoring it

might result in mis-specification. Moreover, even if the game primitives can be consistently

estimated under some assumptions (e.g., a unique equilibrium assumption in the data as

in Bajari, Hong, Krainer, and Nekipelov (2010b) and Aradillas-Lopez (2010)), it is impos-

sible to infer policy effects without the information of the equilibrium selection. To avoid

mis-specification while enabling counterfactual analysis, this paper provides a methodol-

ogy to identify game primitives and equilibrium-specific components nonparametrically for
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finite games with incomplete information. The methodology of identification imposes no

restrictions on the cardinality of the equilibrium set or the equilibrium selection rules.

This paper studies games of incomplete information with finite actions1. In such

games, players receive random shocks of payoff before deciding their actions. Those payoff

shocks are assumed to be private information, while the distributions of those shocks are

common knowledge. The cardinality of the equilibrium set for such games is unknown

but discrete and finite, which allows indexing the equilibria. With the equilibrium index

as a latent variable, this paper provides a methodology to identify all equilibrium-specific

components using results from measurement error literature. To begin with, I identify the

number of equilibria. Next I identify the equilibrium selection mechanism and all players

strategies in each equilibrium. Then I identify payoff primitives following the standard

approach with exclusion restrictions. The identification procedure is constructive so that

an estimator follows naturally. Applying this methodology, I study the strategic interaction

among radio stations when choosing to air commercials during two time slots.

My methodology contributes to the literature on identification and estimation in

games with multiplicity. Firstly, the methodology connects the identification of games

with that of measurement error models, suggesting a new direction for identification of

other games with possibly multiple equilibria. Secondly, the methodology nonparametri-

cally identifies and estimates the number of equilibria, which is important because multiple

equilibria are useful to explain important aspects of economic data. Thirdly, the method-

ology nonparametrically identifies and estimates the equilibrium selection, which reduces

1Examples of such games include static entry games in Bresnahan and Reiss (1990) and dynamic music

format repositioning in Sweeting (2011)
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concern about model mis-specification and enables conduct counterfactual analysis. More-

over, given no guide from theory on how equilibria being selected, the estimated equilibrium

selection sheds light on our understanding in the field. Additionally, I can link equilibrium

characteristics with the selected rules, as in Bajari, Hong, and Ryan (2010). Lastly, the

methodology provides an easily implemented and computationally convenient method to

estimate game primitives. As is widely know, computing all equilibria using Homotopy

method is costly (Bajari, Hong, Krainer, and Nekipelov (2010a)), while the estimation in

this paper does not need to solve for even a single equilibrium.

The methodology of identification applies to static game with both cross-sectional

and panel data structures. When we only get access to cross-sectional data, identification

relies on the standard assumption that private shocks are independent across actions and

players. This assumption implies that actions of players are independent across different

games when the same equilibrium is selected in those games. Given that players’ actions

are independent conditional on the equilibrium index, I can use players’ actions as measure-

ments for the equilibrium index. Recovering the cardinality of the index requires sufficient

variation of each measurement. Moreover, identifying distributions of players’ actions for

each equilibrium requires at least three players in the game. In static games with panel

data, I relax the conventional assumption that the same equilibrium selected over time by

allowing the equilibrium index to follow a first-order Markov process. Correlation between

actions of all players across time is the identification power.

Applying the proposed methodology to the data on radio stations studied in Sweet-

ing (2009), I study the strategic interactions of stations when they choose to air commercials

during two different time slots. The interaction is captured by a game with incomplete infor-
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mation, which fits the setup of identification. Treating market each period as an independent

market, the estimation results show that smaller markets indeed admit two equilibria, which

supports the conjecture of the existence of multiple equilibria, and this result is consistent

with the findings in Sweeting (2009). By investigating the panel structure of the data, I

find that smaller markets exhibit the same equilibrium over time. This finding supports the

conventional assumption that players select the same equilibrium overtime.

The remainder of the paper is organized as follows. I begin with a literature

review in section 2. Then section 3 outlines the static game framework, and provides the

nonparametric identification of the game. Next section 4 describes the estimation procedure

for static games. After that section 5 provides a Monte Carlo illustration to provide evidence

for the methodology. Then section 6 provides an empirical application to radio station

commercial airing. Lastly, section 8 concludes. The Appendix contains the proofs, the

figures and the tables.

2.2 Literature Review

This paper is related to recent literature on the econometric analysis of games in

which multiple solutions are possible and identification with unobserved heterogeneity. In

this section I summarize some of the recent findings.

Literature utilize different techniques to deal with identification and estimation

of games in which multiplicity is possible. See De Paula (2012) for a survey of the recent

literature on the econometric analysis of games with multiplicity. The information structure

is an important guide for the econometric analysis, and different methods are developed for

complete and incomplete information games. In incomplete information games, researcher
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usually assume that a unique equilibrium is selected in the data, which guarantees consistent

estimation of the game primitives. See, e.g., Seim (2006) and Aradillas-Lopez (2010). One

can be agnostic about the equilibrium selection rule. This is because all equilibria satisfy

the same equilibrium conditions. Moreover, it is computationally challenging to compute

all the equilibria through Homotopy method. Even though the degenerated equilibrium

selection assumption guarantees consistent estimation of the game primitives, it is nearly

impossible to simulate the model and provide counterfactual inference. Moreover, the unique

equilibrium assumption is lack of both theoretical and empirical supports.

On the other hand, there are various approaches to inference in games of com-

plete information games because it is easier to compute all the equilibria for any given

model configurations. With all equilibria computed, one approach is to focus on certain

quantities are invariant across equilibria when more than one equilibrium is possible. See

Berry (1992), Bresnahan and Reiss (1990) and Bresnahan and Reiss (1991). The key in-

sight of this approach is that certain outcomes can only occur as a unique equilibrium,

which limits the scope of its application. However, in some settings, any outcomes bundle

together different equilibria. Tamer (2003) nevertheless identifies the game primitives us-

ing exclusion restrictions and large support conditions on the observable covariates. The

identification results rely on the extreme values of covariates by reducing the problem to

a single-agent decision problem. However, this identification-at-infinity strategy leads to

a slower asymptotic convergence rate (see Khan and Tamer (2010)). Instead of relying

on identification-at-infinity, another strand of literature use bound estimation instead of

point estimation, relying on inequalities created by multiple equilibria2. Bajari, Hong, and

2Bounds estimation has also been used by Ciliberto and Tamer (2009), Pakes, Porter, Ho, and Ishii
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Ryan (2010) incorporate a parameterized equilibrium selection function into the problem3,

and identification is demonstrated with large support of the exclusion restrictions. Unlike

Bajari, Chernozhukov, Hong, and Nekipelov (2009), this paper considers incomplete infor-

mation games, and the equilibrium selection is nonparametrically recovered. The paper is

also related to Aguirregabiria and Mira (2013), which focuses on distinguish of multiple

equilibria and payoff relevant heterogeneity.

Another strand of literature focuses on testing or taking advantage of the presence

of multiple equilibria. Sweeting (2009) points out that multiplicity helps for the identifi-

cation of payoff primitives by providing additional information. Instead of attempting to

identify the payoff primitives, De Paula and Tang (2012) use the fact that players’ equilib-

rium choice probabilities move in the same direction. As a result, the presence of multiplicity

helps for identification of the sign of the interaction term. Echenique and Komunjer (2009)

test complementarities between continuous explanatory and dependent variables in models

with multiple equilibria.

2.3 Static Game Setup

Consider a static simultaneous move game that involves N players. Players obtain

action specific payoff shocks before they make their decisions. These profit shocks are private

information and only observable to the player herself. In each game, player i, i ∈ {1, ..., N},

chooses an action ai out of a finite set A = {0, 1, ...,K}. Let a−i denote player i’s rivals’

(2006), and Andrews, Berry, and Jia (2004). Berry and Tamer (2006) and Berry and Reiss (2007) survey

the econometric analysis of discrete games.

3See also Ackerberg and Gowrisankaran (2006) and Bjorn and Vuong (1984).
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actions and x ∈X denote public observable state variable. The K+1 action specific profit

shocks are denoted as εi(ai), and their density distributions are denoted as f(εi)
4. The

payoff for player i from choosing action ai is assumed to be additive separable as below:

Ui(ai, a−i, x, εi) = πi(ai, a−i, x) + εi(ai)

Unlike a standard discrete choice model, player i’s payoff not only depends on her own action

but also on actions that her rivals choose. In particular, actions that rivals choose enter

player i’s payoff function directly. This dependence among players brings in the possibility

of multiple equilibria.

Instead of defining the equilibrium using players’ decision rules, I defined the

equilibrium using the probability that each player choosing each possible action, i.e. σi(ai|x)

denotes the probability that player i chooses action ai conditional on observing x. Since

player i does not observe her rivals’ payoff shocks, she has to form belief over the distribution

of actions that her rivals are going to choose. Meaning, player i needs to best response to

her rivals’ action distribution instead of a specific action. With the following independence

assumption, player i’s belief does not depend on her own private information.

Assumption 2.1. (Conditional Independence) The random payoff shocks are identical and

independent distributions (i.i.d) across actions and players, and the density distribution

f(εi) has full support and is common knowledge.

The assumption of conditional independence among private information is com-

monly imposed in the literature on estimation and inference in static games with incomplete

information and social interaction models (see, e.g., Seim (2006), Aradillas-Lopez (2010),

4Similar setups are studied in Seim (2006) and Aradillas-Lopez (2010).
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(Sweeting 2009), De Paula and Tang (2012), Bajari, Hong, Krainer, and Nekipelov (2010a)

as well as Ellickson and Misra (2008). This assumption can also be found in the literature

on the estimation of dynamic games with incomplete information. Consequently, player

i expects her rivals’ action distribution to be σ−i(a−i|x). Then I can represent player i’s

expected utility from choosing action ai as the following:

ui(ai, x, εi) =
∑
a−i

πi(ai, a−i, x)σ−i(a−i|x) + εi(ai) ≡ Πi(ai, x) + εi(ai)

The Bayesian Nash Equilibrium is stated in the following:

Definition 2.2. (BNE) For a fixed state x, the Bayesian Nash Equilibrium (BNE) is a

collection of probabilities σ∗i (ai = k|x) for i = 1, ..., N and k = 0, ...,K such that for all i

and k, the following equation satisfied:

σi(ai = k|x) = Pr (Πi(ai = k, x) + εi(ai = k) > Πi(ai = j, x) + εi(ai = j),∀j)

Following Hotz and Miller (1993), the equilibrium condition implies a one-to-one mapping

between the CCPs ({σ∗1(a1|x), ..., σ∗n(an|x)})and the difference of expected choice utilities

({Π1(a1, x)−Π1(a1 = 0, x), ...,Πn(an, x)−Πn(an = 0, x)})

Assumption 1 guarantees that the mapping has at least one fixed point by Brouwer’s

fixed point theorem. As a result, if CCPs are obtained, the differences of the expected

choice values are as well. If there is a unique equilibrium, CCPs computed from the col-

lected data can be used to approximate the CCPs predicted by theory. Then the expected

choice probabilities are identified. With an exclusion restriction, the payoff functions can

be nonparametrically identified.

The equilibrium, however, may not be unique because the equilibrium conditions

are systems of nonlinear equations. Moreover, the assumption of an unbounded error sup-
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port implies that any outcome is possible in any equilibrium. Equilibria differ only in the

probability assigned to individual outcomes. When multiple equilibria are presented, the

one-to-one mapping does not hold anymore. The choice probabilities computed from col-

lected data do not approximate choice probabilities of any equilibrium, instead they equal

the mixture of the choice probabilities of different equilibria. Pooling choices across markets

may not reflect an equilibrium anymore because the mixture of equilibria may not be an

equilibrium in itself.

The approach used in current literature relies on the assumption that the same

equilibrium is played across markets when the multiplicity is presented. Without any par-

ticular reason, it is not convincing that players favor one equilibrium over the other. On

the other hand, without identifying the choice probabilities of any equilibrium, one cannot

proceed to identify the expected choice utility, at least if one wants to follow the Hotz-Miller

two-step procedure. As Jovanovic (1989) pointed out, however, multiplicity does not nec-

essarily imply the model cannot be identified. The following section states in detail how

to identify the equilibrium choice probabilities using a technique from measurement error

literature.

2.4 Nonparametric Identification Results

Before I go into detail about the identification, let me first describe the data

structure. Suppose the econometrician observes actions of all players in cross-sectional

markets m where m = 1, ....,M with characteristics sm ∈ S. Assume that S is discrete

and has a finite support. Assume that the number of equilibria is finite, I can index the
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equilibrium by e∗ ∈ Ωπ,x ≡ {1, ...., Qx}, where Qx is the number of equilibria5. Note

that the cardinality of the equilibrium set varies with game characteristics. Identification

of equilibrium-specific components is established conditional on the market characteristics

xm, so I suppress the market characteristics for ease of notation. I will reintroduce market

characteristics when I move to the identification of payoff functions.

Pr(a1, ..., an) =
∑
e∗

Pr(a1, ..., an|e∗) Pr(e∗) =
∑
e∗

∏
i

Pr(ai|e∗) Pr(e∗) (2.1)

where Pr(e∗) is the probability that equilibrium e∗ is employed, i.e., the equilibrium selection

mechanism, and Pr(ai|e∗) is the CCPs of player i associated with equilibrium e∗. The first

equality is due to the law of total probability while the second equality hold because the

independent assumption of private information.

If the data is generated by the same equilibrium, the joint distributions of players’

actions from the data forms an equilibrium joint distribution. Thus, one can infer whether

the data is generated by the same equilibrium by testing whether players’ actions are inde-

pendent. Failing to reject the null hypothesis that this condition holds, one can argue that

there is unique equilibrium in the data even though the number of equilibria predicted by

the model is unknown (see De Paula and Tang (2012) for a formal test). With the pres-

ence of multiple equilibria, the correlation among players’ actions display the underlying

equilibrium, which is the essential condition for the identification. Before I move to the

identification detail, let me first define what identification means.

First Step Identification The number of equilibria Q, equilibrium selection mechanism

p = {Pr(e∗)}Qe∗=1 and CCPs P = {Pr(ai|e∗)}ni=1 in different equilibria e∗ are identified

5If the number of equilibria is infinite, it is impossible to do the identification using limited information.

Also by (Harsanyi (1973)), we know that the game that has infinite number of equilibria has zero measure
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if there does not exist another set of {Q, p, P} that is consistent with the observed data

{am1 , ..., amn , xm}m.

Identification of the number of equilibria can be obtained using information of

correlation between two representative players. With two players, the joint distribution

becomes:

Pr(a1, a2) =
∑
e∗

Pr(a1|e∗) Pr(a2|e∗) Pr(e∗) (2.2)

Matrixes are used extensively in this paper to make use of all possible information together

at the same time. I rewrite this equation into matrix form:

Fa1,a2 = Aa1|e∗De∗A
T
a2|e∗ (2.3)

where

Fa1,a2 ≡ [Pr (a1 = k, a2 = j)]k,j ,

Aai|e∗ ≡ [Pr (ai = k|e∗ = q)]k,q

De∗ ≡ diag
[

Pr(e∗ = 1) ... Pr(e∗ = Q)
]
.

Those matrices stack the distributions with all possible values that a1, a2 and e∗ can take.

In particular, matrix Fa1,a2 consists of the whole joint distributions of a1 and a2, which can

be estimated from data. De∗ is a diagonal matrix with the probability of each equilibrium

being selected as the diagonal elements, while matrix Aai|e∗ collects all the CCPs associated

with equilibrium e∗.

The dimensions of the three matrices defined above Fa1,a2 , Aai|e∗ and De∗ are (K + 1)l ×

(K + 1)l, (K + 1)l × Q, and Q × Q respectively. Note that the number of equilibria Q is

unknown. As I will show, the number of equilibria Q is identifiable from data under further
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assumptions. This contrasts with the existing literature, which often assumes a unique

equilibrium. The identification of the number of equilibria is summarized in the following

lemma.

Lemma 2.3. The rank of the observed matrix Fa1,a2 serves as the lower bound for the

number of equilibria, i.e., Q ≥ Rank(Fa1,a2). Furthermore, the number of equilibria is

identified, particularly, Q = Rank(Fa1,a2) if the following conditions are satisfied:

(1) K+ 1 > Q; (2) both matrices Aa1|e∗ and Aa2|e∗ are full rank; (3) all Pr(e∗) are positive.

Proof See Appendix.

The first condition requires that the number of possible actions is greater than

the number of equilibria. Note that the action variable serves as a measurement for the

latent variable. Thus, sufficient variation is needed to infer the dimension of the underlying

equilibrium. However, here I only use data from two players. If there are more players,

grouping all players into two groups expands the action space that a representative player

can choose from. Consequently, it increases identification power.

The full rank condition implies that CCPs in any equilibria are not a linear com-

bination of CCPs in any other equilibria. This condition essentially requires that no equi-

librium is redundant. Identification power comes from the fact that players respond to

different equilibria via choosing alternative actions differently. When the number of equi-

libria equals two, the full rank condition holds naturally because CCPs are different in both

equilibria for at least two players.

The third condition indicates that only those equilibria that are active in the data
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can be identified. This also means that we might not be able to recover how many equilibria

are actually predicted by the model. However, it is not easy to compute all the equilibria

even using the Homotopy method, which by itself is computationally challenging and time

consuming. Furthermore, it is not necessary to recover all the equilibria during estimation

of game primitives. Most importantly, this condition does not affect estimation of game

primitives.

Identification of the number of equilibria is empirically important. The theoretical

model does not provide much guidance as to how many equilibria exactly exist in the static

game of incomplete information. Bajari, Hong, Krainer, and Nekipelov (2010a) use the

Homotopy method to compute all the equilibria in a special static game of incomplete

information. They find that the number of equilibria decreases with the number of players

and the number of possible individual alternatives that they are allowed to choose from.

Lemma 1 provides a plausible approach to determine the number of equilibria active in the

data. Note that here I only use information from two players to recover the number of

equilibria and the first condition seems is restrictive because it does not hold in the 2 × 2

game framework. However, if there are more than two players, we can use information from

more players by grouping them into two groups. This treatment will expand the dimension

of the corresponding matrix and increase identification power.

Provided that the number of equilibria is identified, I show below how to identify

CCPs associated with different equilibria for each individual player. In measurement error

literature, normally the latent variable share the same support with its measurements. Thus,

the full rank condition indicates that the relevant matrices are invertible. In order to follow

the technique used in measurement error literature which uses matrix eigenvalue-eigenvector
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decomposition, first I need to tailor matrices to be square. To do that, I partition the action

space so that it has the same dimension as the number of equilibria. With a little bit abuse

of notation, I still use ã1 and ã2 to represent the action variable after the domain partition.

One key criteria for the partition is that the corresponding trailed matrix Aãi|e∗ is full rank

for both i = 1, 2. The following lemma states that there exists at least one way to achieve

the partition.

Lemma 2.4. For a matrix F with dimension of K + 1×K + 1 and rank is Q, there exists

a way to partition it into a Q×Q matrix with rank of Q.

Proof See Appendix B

Identification requires extra information, for example, another player which I call

as player 3. Then the following equation links observed joint distribution with those un-

knowns still holds:

Pr(ã1, ã2, a3) =
∑
e∗

Pr(ã1|e∗) Pr(ã2|e∗) Pr(a3|e∗)Pr(e∗)

To use the matrix algebra for identification, I fix a3 = k and use all possible variation from

player 1 and 2’s actions. Matrices definition is the same as I defined above with the only

difference is that a3 is fixed. Using the above matrix representations, we have following two

equations:

Fã1,ã2 = Aã1|e∗De∗A
T
ã2|e∗ (2.4)

Fã1,ã2,a3=k = Aã1|e∗Da3=k|e∗De∗A
T
ã2|e∗ (2.5)

Given that Aã1|e∗ and Aã2|e∗ have full rank, post-multiplying F−1
ã1,ã2

on both sides of equation
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2.5 leads to the following main equation, which is essential for the identification.

Fã1,ã2,a3=kF
−1
ã1,ã2

= Aã1|e∗Da3=k|e∗A
−1
ã1|e∗ (2.6)

The right-hand side of the equation above represents an eigenvalue-eigenvector decomposi-

tion of the matrix on the left-hand side, with Da3=k|e∗ being the diagonal matrix consisted

of eigenvalues and Aã1|e∗ being the eigenvector matrix, see Hu (2008). The left-hand side of

the equation can be estimated from the observed data, therefore this equation can be used

to identify both Da3=k|e∗ and Aã1|e∗ simultaneously.

To fully identify the model, uniqueness of the decomposition is required. Namely,

eigenvalues are distinctive. I impose the following assumption on CCPs of different equilibria

to guarantee a unique decomposition:

Assumption 2.5. (Distinctive Eigenvalues) There exists an action k of player 3, such that

for any two equilibria i 6= j, the probability of this action taken under different equilibria is

different, i.e., Pr(a3 = k|e∗ = i) 6= Pr(a3 = k|e∗ = j).

This assumption rules out the possibility that choice probabilities of a typical

action for a player from different equilibria are the same. The distinctive assumption is

empirically testable because matrix Fã1,ã2,a3=kF
−1
ã1,ã2

can be estimated from the data. Note

that I do not require the eigenvalues of Fã1,ã2,a3=kF
−1
ã1,ã2

to be distinct for every a3 = k. As

long as there exists one a3 = k such that distinct eigenvalues are guaranteed, the analysis

is valid.

Upon using assumption 2.5, the eigenvalue-eigenvector decomposition in equation

2.6 identifies Aã1|e∗ and Da3=k|e∗ up to a normalization and ordering of the columns of

the eigenvector matrix Aã1|e∗ . Note that each column of the eigenvector matrix Aã1|e∗ is
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a whole conditional distribution for one equilibrium, hence the column sum of the matrix

equals one. This column sum property can be used for normalization of the eigenvector

matrix. Since the index of equilibria does not include meaning for identifying the original

model, all we need to know is how many equilibria are built in the model and the CCPs

under each equilibrium. Eigenvalues are not required to be any specific ordering. Thus, no

extra assumption is needed for ordering of eigenvalues. Any ordering is fine.

With the decomposition, I can identify CCPs of player 3 for a typical value of

a3. Identification of CCPs for other actions and other players are provided in Appendix

B. Consequently, CCPs of players in each equilibrium are identified, which is stated in the

following lemma.

Lemma 2.6. With assumptions 1 and 2, and conditions in lemma 1 satisfied, CCPs of

players in each equilibrium and the equilibrium selection are nonparametrically identified.

Proof See Appendix B

Based on lemmas 1, 2, and 3, conditional on market characteristic x, I have already

identified all the CCPs under every employed equilibrium Pr(ai|x, e∗ = 1).......Pr(ai|x, e∗ =

Qx),∀i, ai. Each equilibrium Pr(ai|x, e∗ = q) should satisfy the original equilibrium condi-

tion. From the discrete choice literature, it is not possible to identify both the mean utility

functions and the joint distribution of the error terms without making strong exclusion and

identification at infinity assumptions (see for example Matzkin (1992)). Here I assume the

distributions of private shocks are known. More specifically, I assume the error terms follow

extreme value distribution.

As with analysis in discrete choice models, it is impossible to separately identify

21



all the payoff functions, only their differences can be recovered. Normalization is necessary

and stated in the following assumption:

Assumption 2.7. (Normalization) For all i and all a−i and x, πi(ai = 0, a−i, x) = 0.

This assumption sets the mean utility from a particular choice equal to zero, which

is similar to the outside good assumption in the discrete choice model. If we aim at looking

into how firms strategically interact with each other, i.e., how one’s actions affect profits of

others, this normalization does not affect our analysis. With the normalization condition

and the extreme value distribution of shocks, the equilibrium condition becomes

logσi(ai = k|x, e∗)− logσi(ai = 1|x, e∗) =
∑
a−i

πi(ai = k, a−i, x)σ−i(a−i|x, e∗)

Identification of payoff functions πi(ai = k, a−i, x) requires exclusion restrictions (see Bajari,

Hong, Krainer, and Nekipelov (2010b) and (Bajari, Hahn, Hong, and Ridder 2011)). If there

are covariates that shift the utility of one player, but can be excluded from the utility of

other players, then all the payoffs can be identified nonparametrically. As a result, to

identify the payoff functions, I state the exclusion restriction assumption below:

Assumption 2.8. (Exclusion Restriction) For each player i, the state variable can be

partitioned into two parts denoted as xi, x−i, so that only xi enters player i′s payoff, i.e.

πi(ai = k, a−i, x) ≡ πi(ai = k, a−i, xi).

An example of exclusion restrictions is a covariate that shifts the profitability of

one firm but that can be excluded from the profits of all other firms. Firm specific cost

shifters are commonly used in empirical work. For example, Jia (2008) and Holmes (2011)

demonstrate that distance from firm headquarters or distribution centers is a cost shifter
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for big box retailers such as Walmart. With the exclusion restriction, the above equation

becomes

logσi(ai = k|xi, x−i, e∗ = q)−logσi(ai = 0|xi, x−i, e∗ = q) =
∑
a−i

πi(ai = k, a−i, xi)σ−i(a−i|xi, x−i, e∗ = q)

Variation of x−i expands the total number of equations without adding more unknowns,

which helps for identifying payoff functions πi(ai = k, a−i, xi) nonparametrically.

With the idea of exclusion restrictions, one can see that the existence of multiple

equilibria helps for the identification of payoff functions. Equilibrium shifts the choice

probabilities without shifting the payoff functions. Essentially, it plays a role as an exclusion

restriction. However, enough variation of the exclusion restriction is needed to identify the

payoff functions nonparametrically. There is not enough variation from multiple equilibria

because the number of equilibria is relatively small compared to the number of actions or

players for the first step identification.

Specifically, fixing x, there are K×Qx equations, which is magnified by the number

of equilibria Qx, while there are K × (K + 1)n−1 unknowns. To nonparametrically identify

the profit function requires that the number of equations is greater than the number of

unknowns (Qx ≥ (K + 1)n−1). Unfortunately, first step identification requires the number

of multiple equilibria (Qx) to be smaller relative to the number of actions (K + 1) or

the number of players (n). These two conditions conflict with each other. Consequently,

with multiple equilibria itself as an exclusion restriction, I cannot nonparametrically identify

payoff functions. Even though presence of multiple equilibria does not enable one to identify

the payoff functions, it lessens the burden of the variation for extra exclusion restrictions.

The importance of multiple equilibria is shown when variation from available exclusion
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restrictions is not enough, or there is no exclusion restriction at all (see Sweeting (2009)).

Theorem 2.9. (Identification of static game) With assumptions 2.1, 2.5, 2.7, and 4.11

and conditions in lemma 1, static games with incomplete information can be nonparamet-

rically identified. Specifically, the number of equilibria, the equilibrium selection, the CCPs

of player in each equilibrium and the payoff functions are all nonparametrically identified.

2.4.1 Nonparametric Identification with Panel Data

This subsection presents identification of static games with panel data structure.

When one can get access to panel data, estimation can be done along time series on indi-

vidual markets, which implicitly assumes that the same equilibrium is employed over time

in individual markets. Unfortunately, there is hardly any theoretical or empirical evidence

to support this assumption. Moreover, even if it is true that players employ the same

equilibrium over time, another consideration is that estimation requires the same market

is observed over a long period of time. Last, without knowing the equilibrium selection

mechanism, it is impossible to conduct counterfactual analysis. In a word, it is important

to still identify the underlying game structure without imposing the assumption that the

same equilibrium is employed over time.

Denote ait, i = 1, ..., n as the action chosen by player i in period t. In each period,

pool the actions of all players together and denote it as at, i.e., at =

(
a1t, ..., ant

)
∈ A n

where A n has a dimension of M = (K+1)n. Note that identification power comes from the

variation of measurements of the latent variable. Taking all players’ action as a whole allows

me to identify a larger number of equilibria than in the case of cross-sectional data. Let

e∗t denote the index of equilibria employed in time t, I assume that e∗t follows a first-order
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Markov process. This paper is not going to model how players manage to coordinate with

choosing different equilibria over time.

Assumption 2.10. (First-order Markov Equilibrium Evolution) The equilibrium

that a typical market employs follows a first-order Markov process, i.e., Pr(e∗t+1|x, e∗t , ..., e∗0) =

Pr(e∗t+1|x, e∗t ).

With this assumption, the correlation between actions in different periods comes

from the evolution of the underlying equilibria. Thus, actions in different periods are

independent conditional on the underlying equilibria, which is the key for identification.

This assumption nests the conventional assumption of the same equilibrium by an identity

transition matrix. Allowing higher order of Markov process is possible given a longer period

of data. According to the law of total probability, the observed joint distribution for actions

in two periods can be represented as:

Pr(at+1, at) =
∑
e∗t+1

Pr(at+1, e
∗
t+1, at) = Pr(at+1|e∗t+1)Pr(at|e∗t+1)Pr(e∗t+1) (2.7)

where Pr(al|e∗t+1) represents the probability of the players choosing action al in period l

when the equilibrium chosen in period t is e∗t+1; Pr(e∗t+1) is the fraction of markets that

employ equilibrium e∗t+1 at period t + 1, i.e., the marginal distribution of the equilibrium

index in period t + 1. Note that private information is allowed to be correlated across

different players because the identification relies on the variation across time.

Similar to the logic of the cross-sectional case, identification of the number of

equilibria is through the rank of a matrix constructed of the joint distribution of at and

at+1. The intuition is that at and at+1 are correlated through the underlying equilibrium

e∗t+1, otherwise they are independent, (see Appendix for detail). One advantage of using
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panel data is that the support of the measurements is bigger. Identification is feasible for

more equilibria if we have more periods of data because we can pool actions from different

periods together to expand our choice set to help identify the case in which the number of

equilibria is bigger.

With the number of equilibria identified, I next proceed to identify CCPs. This

requires an extra period of data. From the observed joint distribution,

Pr(at+2, at+1, at) =
∑
e∗t+1

Pr(at+2|e∗t+1) Pr(at+1|e∗t+1) Pr(at|e∗t+1) Pr(e∗t+1) (2.8)

Sum over at+1 leading to:

Pr(at+2, at) =
∑
e∗t+1

Pr(at+2|e∗t+1) Pr(at|e∗t+1) Pr(e∗t+1)

Based on the above two equations connecting the observed and unknowns with the identified

of number of equilibria, first I can partition the actions into Q alternatives. Then CCPs

under each equilibrium can be identified as eigenvalues of the observed matrices consisting of

joint distributions (see Appendix for detail). With tackling the multiple equilibria problem,

the payoff functions can be nonparametrically identified with exclusion restrictions, exactly

the same as the cross-sectional case. As a result, I summarize the identification results with

panel data in the following theorem:

Theorem 2.11. (Identification of Static Game with Panel Data) Under assumptions

3, 4, and 5, and an assumption of distinctive eigenvalues, the number of equilibria Q,

CCPs of players in each equilibrium, the equilibrium evolution and payoff functions are

nonparametrically identified using three periods of data.
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2.5 Semi-parametric Estimation

Estimation is implemented in two steps. First I present estimation of all equilibrium-

relevant aspects such as the number of equilibria and the equilibrium CCPs. Then I ex-

plained the estimation of payoff structural parameters through minimum distance estima-

tion.

To estimate the number of equilibria from the data directly, one needs to estimate

the joint distribution of actions by players. With the assumption of discrete states, the

joint distribution can be estimated via simple frequency, regardless of multiplicity. Simple

frequency estimators are not feasible when states are continuous. However, if a unique

equilibrium is guaranteed for all states, sieve series expansions can be used to estimate

the joint distribution6. This is because the joint distribution is continuous along the state

variables Also, other nonparametric regression methods such as kernel smoothing or local

polynomial regressions can be used to obtain the joint distribution.

However, those conventional estimation approaches are invalid when multiple equi-

libria are present. This is because the joint distribution is no longer continuous along the

state variables. We have to use estimation methods that can deal with this potential discon-

tinuity problem. Muller (1992) provides a methodology to detect the discontinuous point

and estimate corresponding discontinuous functions. One restriction of this approach is

that it can only detect a finite number of discontinuous points.

Additional assumptions are needed, such as continuity of the equilibrium selection

mechanism, if we want to apply the Muller (1992) approach here. First of all, the number

6See Newey (1990), Ai and Chen (2003) and Newey (1994) for how to use sieve series expansions to

estimate.
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of equilibria is not continuous by nature. It will jump along the state variable, resulting in

a finite number of discontinuous points. Moreover, for those state variables that share the

same number of equilibria, the equilibrium selection mechanism needs to be continuous with

finite discontinuous points so that the joint distribution of observed actions is continuous

due to the mixture feature. To sum up, when state variables are continuous and multiple

equilibria are present, to estimate the conditional joint distributions of observed actions,

the equilibrium selection mechanism has to be continuous almost everywhere with a finite

number of discontinuous points.

This paper assumes that state variables are discrete, so the joint distributions of

players can be estimated through the simple frequency:

P̂ r(a1, ..., an|x) =
1
M

∑
m I(am1 = a1, ..., a

m
n = an, x

m = x)
1
M

∑
m I(xm = x)

With estimation of the joint distributions, matrix Fa1,a2 is obtained since it essentially

collects all joint distributions of actions of player 1 and 2.

The rank of matrix Fa1,a2 can be used to as an estimator for the number of equi-

libria as I show in the identification. To estimate the rank of a matrix, this paper follows

the procedure developed in Kleibergen and Paap (2006) to test the null hypothesis that

the rank of the matrix is equal to a given integer. There are a lot of ongoing research on

estimating the rank of a matrix7.

To test whether the rank of a h× l matrix A equals to r, one can use the number

of non-zero singular values. For a generic matrix A, its singular value decomposition can

7See the characteristic roots of a quadratic form built from the matrix in Robin and Smith (2000). See

also Camba-Mendez and Kapetanios (2009) for a review
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be expressed as:

A = USV ′ =

 U11 U12

U21 U22


 S1 0

0 S2


 V ′11 V ′12

V ′21 V ′22


where U is an h × h orthogonal matrix, V is a l × l orthogonal matrix, and S is an h × l

matrix that contains the singular values of A in decreasing order on its main diagonal and

is equal to zero elsewhere. In the partition of U , S and V , U11, S1 and V11 are h× h, and

the dimensions of other submatrices are defined accordingly. With this decomposition and

partition, the null hypothesis H0 : rank(A) = r is equivalent to H0 : S2 = 0 because a

matrix’s rank is defined as the number of non-zeros singular values.

The statistic proposed in Kleibergen and Paap (2006) utilizes an orthogonal trans-

formation of S2 as follows. Λr = A′rAB
′
r, where A′r = (U22U

′
22)1/2(U ′22)−1[U ′12U ′22] and

Br = (U22U
′
22)1/2(U ′22)−1[U ′12U

′
22]. the null hypothesis H0 : rank(A) = r is equivalent to

H0 : Λr = 0. Let Â be an estimator of the matrix A with sample size N , to derive a nice

asymptotic distribution for the test, the estimator of the column vectorization of matrix A

is asymptotical normal, which is satisfied since in our case each element in the matrix is a

frequency estimator. From theorem 1 in Kleibergen and Paap (2006), λ̂r is asymptotically

normal distributed. To estimate the rank of the population rank of A, a sequential test

needed to implement such as test H0 : rank(A) = r against H1 : rank(A) > r starting from

r = 1, then r = 2, ...,min{s, t}. The first value for r that leads to a nonrejection of H0

generates the estimate for the true rank.

Note that in order to estimate the number of equilibria, one additional condition

needs to be satisfied. That is, the dimension of the matrix used to infer the number of

equilibria is greater than the number of equilibria. As a result, if one cannot reject the null
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in the very first step, then only the lower bound of the number of equilibria is obtained.

One cannot tell the exact number of equilibria from the data in hand. Consequently, both

point identification and estimation can not be obtained. However, one can always turn to

set identification, which might provide useful information for inference.

When the number of equilibria is known, the estimation of the CCPs under differ-

ent equilibria exactly follows the identification procedure. For instance, with information

from three players, CCPs of one player can be estimated as the eigenvector from the matrix

decomposition and through matrix manipulation.

2.5.1 Parametric Estimation of the Payoff Function

With CCPs under each equilibrium estimated, payoff functions can be estimated

nonparametrically with exclusion restrictions by following the identification procedure.

However, in practical, nonparametric estimation poses a very high demanding on the data.

I therefor parameterize the payoff function and estimate the structural parameters instead.

Denote the parameterized payoff functions as πi(ai, a−i, s) = πi(ai, a−i, x; θ).

Pioneered by Hotz and Miller (1993)89, two-step estimators are widely used for

estimation in discrete choice models, static and dynamic games. Comparing to the Nested

Fixed Point Theorem algorithm by Rust (1987), two-step estimators are computationally

light because they do not need to solve for the fixed point. It is well known that looking for a

8For other two-step estimators, see the pseudo-maximum likelihood estimator by Aguirregabiria and

Mira (2002), and estimators for dynamic games recently considered in Aguirregabiria and Mira (2007),

Pakes, Ostrovsky, and Berry (2007), and in Bajari, Benkard, and Levin (2007). See also Pesendorfer and

Schmidt-Dengler (2008) for a unified framework of two-step estimators.

9See also Su (2012) for a novel constrained optimization method
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fixed point is computationally challenging and time consuming. Two-step estimators begin

with consistently estimating the auxiliary choice probabilities in the first step, and then

recovering the structural parameters through constraints from equilibrium conditions. As a

result, in order to obtain well-behaved estimators for the structural parameters, the auxiliary

choice probabilities need to be estimated consistently at the beginning. Otherwise, the error

will be augmented and the second step estimator will behave poorly. This is why in previous

literature the existence of multiple equilibria makes two-step estimators invalid. The choice

probabilities estimated directly from the data directly do not come from any equilibrium

anymore. Instead, it is a mixture of the equilibria, which itself is not an equilibrium.

The methodology above allows me to use a two-step estimator even in the presence

of multiple equilibria. Denote the first step estimates as σ̃(a|x, e∗). The equilibrium condi-

tion is represented by a general mapping denoted as h(σ, θ) = σ(a|x, θ)−Γ(σ(a|x, θ); θ) = 0,

which holds for every x. The least squares estimator estimates the parameters of interest

by forcing the constraints:

h(σ̂, θ) = σ̂(a|x, e∗)− Γ(σ̂(a|x, e∗); θ) = 0

satisfied approximately for every x and every equilibrium. With the number of equations

greater than the number of parameters, a weight is assigned to individual equations for

minimization. Denote σ̃M as the vector of collecting all σ̂(a|x, e∗) and Γ(σ̂; θ) as another

vector collects all Γ(σ̂(a|x, e∗); θ). Let WM be a symmetric positive definite matrix with

dimension of ((K + 1)n ·
∑
Qx)× ((K + 1)n ·

∑
Qx) that may depend on the observations.

A least square estimator associated with weight matrix WM is a solution θ̂(WM ) to the
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problem

θ̂(WM ) = argminθ [σ̂ − Γ(σ̂; θ)]′WM [σ̂ − Γ(σ̂; θ)]

Thus, the asymptotic least squares estimator θ̂(WM ) brings the constraint closest to zero

in the metric associated with the scalar product defined by WM . A simple example of

the weight matrix WM is the identity matrix, which treats all constraints equally. An-

other example of the weighting matrix is to weight each market type differently, according

to the number of observations each type has. With regular assumptions on the payoff

function, such as continuity and the first step estimators are consistent and asymptoti-

cally distributed, the structural parameters estimated through least squares are consistent

and asymptotically distributed. Assumptions and proofs of asymptotical properties of the

estimators are included in the Appendix C.

2.6 Monte Carlo Simulation

This section presents some Monte Carlo evidence for the proposed identification

and estimation methodology in the static game framework. Using the simulated data, first

I estimate the number of equilibria, the CCPs of each equilibrium and the equilibrium

selection mechanism. Then I estimate the payoff primitives.

Suppose n players decide to enter or stay out of markets with characteristics x.

Assume the market attribute is discrete. Thus, market characteristics x can be regarded as

the market type. Assume players are homogeneous, and the payoff functions of entry (1) or
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not (0) are parameterized as follows:

π(ai = 1, a−i;x) = βx+ δ
](a−i = 1)

n− 1
+ εi1

π(ai = 0, a−i;x) = δ
](a−i = 0)

n− 1
+ εi0

where εi1 and εi0 are private shocks. Assuming the private information is independent

and identically follows extreme value distribution. Given this specific payoff function, the

number of players does not affect the equilibrium strategy, i.e., only the fraction of players

entering matters. For β = 0.04, δ = 2.5 and only considering symmetric equilibria, all the

equilibria for different market types x = 1, 2, 3, 4 are presented in figure A.3. Regarding

market types x = 1, 2, 3, there are three equilibria, among which the middle one is unstable,

while there is a unique equilibrium for market type x = 4.

The Monte Carlo experiment consists of repetition of 500 with sample size of 1000

for each market type. For each replication, I generate the equilibrium according to the

equilibrium selection mechanism, then generate the actions of each player according to the

corresponding equilibrium strategies.

Estimation of the number of equilibria The number of equilibria is estimated by a

sequential test using the determinant of the associated matrix as the statistic. Note that

the estimation of the rank is consistent as long as the significance level for the sequential

testing approaches zero with a certain rate. I illustrate this asymptotic property through

presenting the frequency of selecting the right number of equilibria with different numbers

of sample size 500, 800, 1000, 1500, 2000, 4000, 6000, 8000, 10000. The reported results are

based on 1000 simulated samples from mixtures with two equilibria. From figure A.2, the

frequency of selecting the right number of equilibria approximates one as the sample size
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goes to infinity. Consequently, the estimation of the rank of a general square matrix is

consistent.

Estimation of CCPs of each equilibrium Estimation of CCPs bases on information of

the number of equilibria. If the number of equilibria is unknown and needs to be estimated,

the estimation then serves as a model selection procedure. Even though the selection can

constructed so that it is consistent in large samples, the estimation of CCPs is conducted

in the same data within which the selection is implemented. To control for the post-section

inference is out of the scope of this paper. Also this Monte Carlo evidence is to show the

performance of the CCPs’ estimates through eigenvalue-eigenvector decomposition. Thus,

I assume that the number of equilibria is known. The estimation results in both cross-

sectional and panel data structures show that the methodology manages to provide good

estimates (see table A.1 and table A.3). CCPs are estimated with high accuracy. So is the

equilibrium selection probability.

Structural parameters: unique versus multiple To better understand the influence

of the unique equilibrium assumption, I estimate the game primitives considering multiple

equilibria and assuming a unique equilibrium. Estimation is through minimum distance

based on the CCPs estimated above, or CCPs computed directly from the data when I

assume uniqueness. Estimation results are presented in table A.2.

The unique equilibrium assumption is problematic when multiplicity is presented.

First of all, estimates are biased if one assumes only a unique equilibrium in the data.

Moreover, I obtain an estimate with opposite sign to the true parameter, which makes the

inference in the wrong direction. Things will become worse if one relies on the estimation

result for policy regulation. For example, in this simple framework, firms are better off
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entering markets with bigger x, which is very intuitive because the bigger the market, the

better. The unique equilibrium assumption, however, yields a confusing estimates with

negative market effect.

The unique equilibrium assumption is not bad if we look at the estimates of the

interaction effect. Still, the estimates are further from the true parameter compared to the

estimates considering multiplicity, but the sign is correct and the bias is within a reasonable

range. Again this is just one simple example, but it provides us some idea that avoiding

the multiple equilibria issue will introduce estimation error. How big the error is depends

on the whole environment, especially the equilibrium selection mechanism. For example, if

players utilize one typical equilibrium most of the time, then assuming a unique equilibrium

is not a bad approximation to the reality. However, without tackling this multiplicity issue,

there is not outside information to judge whether this is the case. Consequently, when doing

empirical studies, we should be aware of the presence of multiple equilibria and be cautious

of making the unique equilibrium assumption.

Testing: multiple equilibria versus payoff-relevant latent states As I discuss

above, both multiple equilibria and payoff-relevant latent states yield mixture features in

the actions data. For comparison, assume the support of the latent variable is finite and

fixed across different markets. Under the null hypothesis that only multiple equilibria are

presented, estimation of the game primitives θ using CCPs of any equilibrium set should

yield the same estimates.

Suppose the econometrician observes x and the actions players choose, only mul-

tiple equilibria are presented in the data. To do the test, I estimate two sets of structural

parameters through one set of CCPs ({Pr(ai = 1|x = 1, 2, 3, τ = 1),Pr(ai = 1|x = 1, τ =
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2),Pr(ai = 1|x = 4)}) and another set of CCPs ({Pr(ai = 1|x = 1, 2, 3, τ = 2),Pr(ai =

1|x = 2, τ = 1),Pr(ai = 1|x = 4)}) separately. Using CCPs from both equilibria of some

values of x is for identification purposes. When players are identical, the parameters are

not identified without multiplicity. The testing fails to reject the null hypothesis that only

multiple equilibria are presented in the data. No other payoff-relevant latent variable exists.

Assume that the market characteristics are unobserved by the econometrician. To

make the overall dimension of unobserved factor not too big, here I only consider markets

x = 1, 4, among which there are two equilibria selected in market x = 1. Consequently, the

dimension of the unobserved element is combined to be 3, which is assumed to be known.

With matrices decomposition, three sets of CCPs are estimated. Using any two combination

of the CCPs, one can estimate the structural parameters δ, and test whether this δ is the

same or not. The testing rejects the null hypothesis that the structural primitives estimated

are the same.

2.7 Empirical Application: Commercial Break Decisions by

Stations

This section applies the proposed estimation methodology to commercial timing

decisions by stations with contemporary music formats (Contemporary Hit Radio (CHR)/Top

40, Country, Rock etc.), and provides empirical evidence of multiple equilibria. Specifically,

there are two equilibria in which stations cluster to one time slot to air their commercials.
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2.7.1 Institution Background and Data

Listeners dislike listening to commercials so they seek to avoid listening by switch-

ing to other stations or outside options such as tapes or CDs while commercials are on the

air. Advertisers for sure prefer stations to play their commercials at the same time to reduce

commercial avoidance. Stations, on the other hand, may have different incentives because

values of commercials are not based on listenership of a particular commercial. In real-

ity, average commercial audiences are not measured. Instead, Arbitron, the radio ratings

company, estimates a station’s average audience by averaging over both commercial and

noncommercial programming. As a result, the average audience might increase if stations

play commercials at different times to keep listeners tuned in to the radios stations instead

of seeking outside options.

Stations tend to play commercials at the same time. Specifically, figure A.3

presents the average proportion of stations playing commercials in each minute during

two different hours of the day, and those commercial timing distributions are far from uni-

form. One possible explanation is that coordination increases station’s commercial values.

Another possible reason, however, is the existence of common factors which makes different

time slots of each hour particularly desirable for commercials. Knowledge of the station

industry indicates that common factors do affect timing decisions. For example, the way

that Arbitron computes listenership strongly affects station’s commercial break decisions.

Common factors, however, are not a perfect explanation for the clustering behav-

ior. Suppose common factors are indeed the underlying drive for the clustering. Note that

Arbitron uses the same methodology to compute the listenerships. Consequently, one can

expect that commercials are clustered in every market, and also at the same times across
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markets. This is not the case in reality. See figure A.4 for stations in two markets playing

commercials during one particular hour. The distributions of commercial breaks in both

markets have three peaks, which are at noticeably different times. A similar situation exists

in the aggregate distribution. The clustering of commercials at different times in different

markets is not driven by unobserved common factors.

Another possible explanation is the presence of multiple equilibria. In the static

game, stations strategically choose times to air their commercials. Stations coordinate to

air their commercials at the same time to avoid listener switching. Multiple equilibria are

presented and different equilibria are employed across markets. This rationalizes both the

coordination in one market and the different times of the clustering across markets. With

this static setup with the possibility of multiple equilibria, this paper uses the methodology

presented above to investigate how many equilibria are actually in the data.

The data used in this paper is the same dataset as that in Sweeting (2009), which

constructs the data on the timing of commercials by music radio stations in US metro

markets using hourly airplay logs collected by Medabase 24/7. The data is extracted from

airplay logs that record the music that stations play on a minute-by-minute basis. In

summary, there are 144 markets in total. The number of stations in each market varies

from 2 to 20 with a mean of 13. Stations not choosing either action are excluded from the

estimation. Each station has 236 observations, including 59 days, and each day we have 4

different hour timing choices with two being drive-time and two non drive-time. From the

summary statistics A.4, the proportion of stations choosing option 1 is slightly greater than

that choosing option 0. For a detailed description of the data, refer to Sweeting (2009).
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2.7.2 Model Setup

While actual commercial timing is continuous, a discrete feature exists in the

schedule of commercials on music stations, because timing decisions involve planning the

order of songs and commercial breaks. For example, the programmer considers the com-

mercial breaks in the gaps between the songs. As a result, stations are modeled to choose

playing their commercials in finite time blocks simultaneously. Stations can play several

sets of commercials at many different times during an hour. Estimation of games with this

features is beyond the current literature and the scope of this paper. Instead, the choice of

commercials breaks by stations is modeled as a simple binary choice game. Specifically, I

use information about whether commercials are being played at two particular times each

hour, :48-:52 and :53-:57, denoted as option 0 and option 1 respectively.

Assume that stations are identical, so individual stations do not have station char-

acteristics. Following Sweeting (2009), station i’s payoff for placing a commercial in time

block t ∈ {0, 1} is defined as follows:

πit = αt + δP−it + εit

where p−it is the proportion of stations in the same market choosing timing t. αt allows

different average profit for stations when they play their commercials in different timing

t, and δ captures the coordination incentives. Stations receive the idiosyncratic private

profit shocks before they make their timing decisions. The εs represent the fact that a

station tends to play commercials at different times every day are represented by εit. This

variation is because the length of other programming, such as songs or travel news, can

vary and be unpredictable. A station would not want to annoy its listeners by cutting short
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other programs to play commercials at precise times.

As usual, I assume εit to be i.i.d with extreme value distributions across actions,

players and markets. α0 is normalized to be zero for identification purposes. Denote α1

as α for ease of notation. With the payoff specification, the number of stations within

each individual market does not matter. Thus, information from different markets can be

pooled for estimation. Note that without multiple equilibria, the model is under-identified

because there is one equation with two unknowns from the equilibrium condition. Exclusion

restrictions do not apply here because stations are identical. If there are at least two

equilibria, the proportion of players other than player i choosing action 1 is different under

different equilibria. Thus, the coordination effect δ is identified, and α is identified.

2.7.3 Empirical Results

This section presents the estimation results. Estimation results show that two

equilibria exist and stations stick to the same equilibrium over time. These results are

consistent with that of Sweeting (2009).

Even though I have panel data, I do not make any assumptions about the equi-

librium employed over time by the same market. For instance, markets employ the same

equilibrium over time. Treating markets in different days as different markets, panel data

can be constructed to be a cross-sectional. Secondly, to investigate whether markets stick

to the same equilibrium or not over time, I assume that the equilibrium employed over time

follows a first-order Markov chain. Note that this assumption nests the case of the same

equilibrium employed over time by an identity transition matrix. The approach used here

is different from Sweeting (2009), who assumes that the same equilibrium is employed over
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time by the same market. Thus, this empirical attempt provides us with some idea about

whether making the same equilibrium assumption has empirical support or not.

Big Versus Small Markets The number of stations varies in different markets. The

bigger the market, the more stations it has. The more stations, the harder it becomes to

coordinate. To control the market effect but still pool data from different markets together,

I divide markets into two types, big versus small, according to the rank by population.

Not surprisingly, there is a unique equilibrium in big markets due to more difficult

coordination. In contrast, I find two equilibria in small markets. The two equilibria are

similar to each other in that the probability of clustering in each time interval is relatively

similar in each equilibrium. Interestingly, players are inclined to employ one equilibrium

more often than the other, with a probability of 0.73 versus 0.27.

The α coefficient measures whether time block :53-:57 is more attractive for com-

mercials independent of any incentive to coordinate. I fail to reject the null hypothesis

that α is significantly different from zero. This insignificance is consistent with the fact

that both time intervals are equally distant from the quarter-hours, which are known to be

unattractive times for commercials.

I get similar estimates when I utilize the panel data structure. Two equilibria

exist in small markets. Moreover, the estimated CCPs and the structural parameters are

similar for both cross-sectional and panel data. Again, one cannot reject the null hypothesis

that the αs equals zeros, indicating that neither of the options is more attractive than the

other. Moreover, markets stick to the same equilibrium over time because the probability

of employing the same equilibrium in the previous day does not significantly differ from 1.

This interesting finding suggests that time series data might be free of multiple equilibria.
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Drive-time Versus Non Drive-time Commercials are planned in every hour, and dif-

ferent hours are treated differently. Thus I treat data from different hours as separate

markets. There are big differences between drive-time and non drive-time. In-car listeners

are more likely to switch stations to avoid commercials than those at home or at work, and

there are more proportional in-car listeners during drive-time. How strong the incentive

is to coordinate depends on how much listeners dislike commercials and how easy it is for

them to switch stations. For example, listeners might respond to commercials differently

during driving time and non-driving time, because during driving time they stay in cars

and it is very easy to switch stations. For example, in-car listeners switch stations 29 times

per hour on average to avoid commercials (McDowell and Dick (2003)).

As expected, the strategic interaction is stronger during driving-time, and multiple

equilibria only exist during driving time. The presence of multiple equilibria during drive-

time but not outside drive-time is consistent with the model. Strong incentive to coordinate

is the reason to have multiple equilibria, and the incentive should be greater during drive-

time when there are more in-car listeners.

I index equilibrium 1 as the equilibrium that stations cluster at option 0 (:48-:52),

meaning the probability of choosing option 0 is greater than one half. In all estimation

with different sub-samples, one can see that the probability of employing equilibrium 1

is less than half, suggesting that stations slightly prefer equilibrium 2, which clusters on

option 1(:53-:57). Moreover, the equilibrium selections in both drive-time hours are similar,

with a probability of choosing equilibrium 1 to be 0.3307 versus 0.4192 for 4-5 pm and 5-6

pm respectively. This result at least provides us with supports that sometimes it is not

a bad assumption that the equilibrium selection mechanisms are the same across different
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markets.

2.8 Conclusion

I have developed a methodology to nonparametrically identify finite games with

incomplete information allowing the presence of multiple equilibria. In particular, I show

that the number of equilibria, strategies of players in each equilibria and the equilibrium

selection mechanism are identified in the static game setting. Payoff primitives can be

identified using exclusion restrictions. A Monte Carlo evidence shows that the estimators

perform well in median-size samples. As an application of the proposed methods, I study

the behavior of stations which strategically choose their time break to air commercials. I

find out that two equilibria are employed in smaller markets with stations clustering in one

time slot to air commercials in one equilibrium. Moreover, about half of the markets employ

one equilibrium. In addition, markets stick to the same equilibrium over time.

The existence of multiple equilibria and common unobserved heterogeneity are

observable equivalent in terms of the mixture feature. However, assuming common unob-

served heterogeneity cannot rule out the presence of multiple equilibria. Instead, it makes

the identification more difficult because now two types of latent variables mixed together.

Thus, it is important to provide identification while consider both unobserved heterogeneity

and multiple equilibria together. Another direction for future research is to provide identifi-

cation and estimation for dynamic games while consider multiple equilibria and/or market

unobserved heterogeneity. Dynamic games are increasingly used to investigate the strate-

gic interaction among firms over time while identification is not clear when multiplicity of

equilibria and/or unobserved market-level heterogeneity exist. Without the identification,
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one would not be confident of obtaining the right estimates for the underlying structural.
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Chapter 3

Identification of Incomplete

Information Games with Multiple

Equilibria and Unobserved

Heterogeneity

3.1 Introduction

Games are widely used to investigate strategic interactions between players in in-

dustrial organization. Unlike single-agent discrete choice models, games generally admit

multiple equilibria. Allowing for the presence of multiple equilibria complicates the identifi-

cation and estimation for games, while ignoring it may result in mis-specification. However,

if the data is generated by the same equilibrium, as assumed in the conventional assumption,
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the two-step estimators pioneered by Hotz and Miller (1993) enables consistent estimation

the structural parameters. The two-step estimators work without requiring researchers

knowing which equilibrium being employed. Moreover, there is no need to solve for all the

equilibria. However, there is hardly empirical evidence on this conventional assumption.

Meanwhile, another potential issue existing in estimation of games is that econo-

metrician might not get access to all the covariates that affect players’ payoffs, meaning

that there is some factors either in the market level or individual player level referred

as unobserved heterogeneity. Again an easy way to get around the difficulty created by

missing information is to ignore it by pretending that econometricians observe all relevant

information. This treatment is unrealistic for most applications in empirical IO and also

problematic to explain micro data. Not accounting for unobserved heterogeneity can gen-

erate significant biases in parameter estimates, 1, thus misleading when economists explain

the strategic interactions between firms. Consequently, addressing unobserved heterogene-

ity is also important in empirical estimation since it is widely incorporated in empirical

estimations. Meanwhile, accounting for unobserved heterogeneity, and therefore dynamic

selection, is also important in dynamic discrete choice models in labor economics.

Without imposing assumptions on the equilibrium selection and allowing for unob-

served market level heterogeneity, I provide identification for finite action static games with

1For instance, in the empirical application in Aguirregabiria and Mira (2007), the estimation without

unobserved market heterogeneity implies estimates of strategic interaction between firms (i.e., competition

effects) that are close to zero or even have the opposite sign to the one expected under competition. While

including unobserved heterogeneity in the models results in estimates that show significant and strong

competition effects
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incomplete information 2. From Chapter 2, with traditional assumption that the private

shocks are independent, the presence of multiple equilibria yields a finite mixture structure

over the observed joint distribution of actions and equilibrium choice probabilities. On

the other hand, the existence of unobserved market level factor also creates a similar finite

mixture structure if the factor is finite. Consequently, allowing for both latent factors cre-

ates the similar finite mixture feature as represented in Chapter 2. Then the cardinality of

the combination of multiple equilibria and unobserved market types can be identified as the

rank of a matrix constructed by joint distribution of actions. In addition, conditional choice

probabilities (CCPs) can be identified as eigenvectors of the matrix through decomposition.

The biggest problem for the identification is to distinguish between multiple equilibria and

the unobserved market types. Without ordering of the CCPs, the structural parameters

can only be set identified instead of point identified.

Incorporating both multiple equilibria and unobserved heterogeneity is important

for estimation in empirical studies. Existing literature usually consider one possibility while

assume the other possibility away. For instance, De Paula and Tang (2012) infer the sign

of strategic interaction term via assuming only multiplicity of equilibria is present. In con-

trast, lots of literature take into account unobserved heterogeneity in estimation but make

assumption that the data is generated by the same equilibrium, e.g., Aguirregabiria and

Mira (2007). As far as I know, besides this paper, there is only one paper by Aguirregabiria

and Mira (2013) that considers both latent factors together. This paper provides conditions

that makes the argument in Aguirregabiria and Mira (2013) complete.

I organize the rest of the paper as the follows. I begin with outline of the static

2Examples of such games include radio stations commercial airing decision in Sweeting (2009)
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game framework in section 2. Set identification results are provided in section 3. Section

4 provides a Monte Carlo evidence. Then section 5 concludes. The Appendix contains the

proofs, the figures and the tables.

3.2 Game Setup

Consider a static simultaneous move game that involves N players. Players obtain

action specific payoff shocks before they make their decisions. These profit shocks are private

information and only observable to the player herself. In each game, player i, i ∈ {1, ..., N},

chooses an action ai out of a finite set A = {0, 1, ...,K}. Let a−i denote player i’s rivals’

actions and x ∈X denote public observable state variable. The K+1 action specific profit

shocks are denoted as εi(ai), and their density distributions are denoted as f(εi)
3. The

payoff for player i from choosing action ai is assumed to be additive separable as below:

Ui(ai, a−i, x, εi) = πi(ai, a−i, x) + εi(ai)

Unlike a standard discrete choice model, player i’s payoff not only depends on her own action

but also on actions that her rivals choose. In particular, actions that rivals choose enter

player i’s payoff function directly. This dependence among players brings in the possibility

of multiple equilibria.

Instead of defining the equilibrium using players’ decision rules, I defined the

equilibrium using the probability that each player choosing each possible action, i.e. σi(ai|x)

denotes the probability that player i chooses action ai conditional on observing x. Since

player i does not observe her rivals’ payoff shocks, she has to form belief over the distribution

3Similar setups are studied in Seim (2006) and Aradillas-Lopez (2010).
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of actions that her rivals are going to choose. Meaning, player i needs to best response to

her rivals’ action distribution instead of a specific action. With the following independence

assumption, player i’s belief does not depend on her own private information.

Assumption 3.1. (Conditional Independence) The random payoff shocks are identical and

independent distributions (i.i.d) across actions and players, and the density distribution

f(εi) has full support and is common knowledge.

The assumption of conditional independence among private information is com-

monly imposed in the literature on estimation and inference in static games with incomplete

information and social interaction models (see, e.g., Seim (2006), Aradillas-Lopez (2010),

Sweeting (2009), De Paula and Tang (2012), Bajari, Hong, Krainer, and Nekipelov (2010a)

as well as Ellickson and Misra (2008). This assumption can also be found in the literature

on the estimation of dynamic games with incomplete information. Consequently, player

i expects her rivals’ action distribution to be σ−i(a−i|s). Then I can represent player i’s

expected utility from choosing action ai as the following:

ui(ai, x, εi) =
∑
a−i

πi(ai, a−i, x)σ−i(a−i|x) + εi(ai) ≡ Πi(ai, x) + εi(ai)

The Bayesian Nash Equilibrium is stated in the following:

Definition 3.2. (BNE) For a fixed state s, the Bayesian Nash Equilibrium (BNE) is a

collection of probabilities σ∗i (ai = k|x) for i = 1, ..., N and k = 0, ...,K such that for all i

and k, the following equation satisfied:

σi(ai = k|x) = Pr (Πi(ai = k, x) + εi(ai = k) > Πi(ai = j, x) + εi(ai = j),∀j)

Following Hotz and Miller (1993), the equilibrium condition implies a one-to-one mapping
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between the CCPs ({σ∗1(a1|x), ..., σ∗n(an|x)})and the difference of expected choice utilities

({Π1(a1, x)−Π1(a1 = 0, x), ...,Πn(an, x)−Πn(an = 0, x)})

Assumption 1 guarantees that the mapping has at least one fixed point by Brouwer’s

fixed point theorem. As a result, if CCPs are obtained, the differences of the expected

choice values are as well. If there is a unique equilibrium, CCPs computed from the col-

lected data can be used to approximate the CCPs predicted by theory. Then the expected

choice probabilities are identified. With an exclusion restriction, the payoff functions can

be nonparametrically identified.

The equilibrium, however, may not be unique because the equilibrium conditions

are systems of nonlinear equations. Moreover, the assumption of an unbounded error sup-

port implies that any outcome is possible in any equilibria. Equilibria differ only in the

probability assigned to individual outcomes. When multiple equilibria are presented, the

one-to-one mapping does not hold anymore. The choice probabilities computed from col-

lected data do not approximate choice probabilities of any equilibrium, instead they equal

the mixture of the choice probabilities of different equilibria. Pooling choices across markets

may not reflect an equilibrium anymore because the mixture of equilibria may not be an

equilibrium in itself.

The approach used in current literature relies on the assumption that the same

equilibrium is played across markets when the multiplicity is presented. Without any par-

ticular reason, it is not convincing that players favor one equilibrium over the other. On

the other hand, without identifying the choice probabilities of any equilibrium, one cannot

proceed to identify the expected choice utility, at least if one wants to follow the Hotz-Miller

two-step procedure. As Jovanovic (1989) pointed out, however, multiplicity does not nec-
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essarily imply the model cannot be identified. The following section states in detail how

to identify the equilibrium choice probabilities using a technique from measurement error

literature.

3.3 Set Identification

This section investigates the identification of the static game with incomplete infor-

mation described above. The importance of the identification is to incorporate unobserved

market-level heterogeneity and allow for multiple equilibria. First I provides conditions

under which the cardinality of the overall latent variable, combining information from both

unobserved heterogeneity and multiple equilibria can be uniquely recovered conditional on

market observables. Next, the conditional choice probabilities associated with each level

of the overall latent variable can be identified up to ordering. Thus point identification

requires extra information to disentangle the two types of unobserved factors. Without

imposing very restrictive assumption, a set identification is proposed for the conditional

choice probabilities and hence the structural parameters.

Before going into details of the identification, I describe the data structure first.

Suppose the econometrician observes actions of all players in cross-sectional markets m

where m = 1, ....,M with characteristics xm ∈ X ≡ {x1, ..., xd}. The state variable space

X is assumed to be discrete and has a finite support d. The unobserved market-types are

denoted as η, which is also assumed to be finite and have a finite support. Assuming that the

number of equilibria is also finite, index the equilibrium as e∗ ∈ Ωx,η ≡ {1, ...., Qx,η}, where

Qx,η is the number of equilibria being employed in market with characteristics {x, η}4. Note

4If the number of equilibria is infinite, it is impossible to do the identification using limited information.
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that the cardinality of the equilibrium set varies with market observed characteristics x and

the unobserved market type η. Since the identification of equilibrium-specific components is

established conditional on the market characteristics xm, I suppress it for ease of notation. I

will reintroduce market characteristics when I move to the identification of payoff functions.

The joint distribution of individual players’ actions can be expressed as the fol-

lowing:

Pr(a1, ..., an) =
∑
η

Pr(a1, ..., an|η) Pr(η) (3.1)

=
∑
η

∑
e∗

Pr(a1, ..., an|e∗, η) Pr(e∗|η) Pr(η)

=
∑
η

∑
e∗

Pr(a1|e∗, η)×, ...,×Pr(an|e∗, η) Pr(e∗, η)

≡
∑
τ

Pr(a1|τ)×, ...,×Pr(an|τ) Pr(τ) (3.2)

The first and second equality are due to the law of total probability, where τ ≡ {e∗, η}

is the newly created latent variable that aggregates information from both the unobserved

market types and the equilibria associated with each market type. Denote the cardinality of

τ as Qx which can be computed as Qx =
∑

η Qx,η. CCP Pr(ai|τ) represents the probability

player i choosing action ai in market type η and equilibrium e∗. The cardinality of the new

latent variable τ can be identified following the same intuition in the first chapter of this

dissertation.

3.3.1 Point Identification of the Cardinality

Similar to the scenario without unobserved market types in Chapter 2, the cardi-

nality of the combined latent factor can be obtained using correlation between two players

Also by (Harsanyi (1973)), we know that the game that has infinite number of equilibria has zero measure
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through their joint distribution of actions. With two players, the joint distribution of actions

becomes:

Pr(a1, a2) =
∑
τ

Pr(a1|τ) Pr(a2|τ) Pr(τ) (3.3)

Matrixes are used extensively in this paper to make use of all possible information together

at the same time. I rewrite this equation into a matrix form:

Fa1,a2 = Aa1|τDτA
T
a2|τ (3.4)

where

Fa1,a2 ≡ [Pr (a1 = k, a2 = j)]k,j ,

Aai|τ ≡ [Pr (ai = k|τ = q)]k,q

Dτ ≡ diag
[

Pr(τ = 1) ... Pr(τ = Q)
]
.

Those matrices stack the distributions with all possible values that a1, a2 and τ can take.

In particular, matrix Fa1,a2 consists of the whole joint distributions of a1 and a2, which

can be estimated from data. Dτ is a diagonal matrix with the marginal distribution of the

new latent variable τ as the diagonal elements, while matrix Aai|τ collects all the CCPs

associated with equilibrium τ .

The dimensions of the three matrices defined above Fa1,a2 , Aai|τ and Dτ are (K + 1)l ×

(K + 1)l, (K + 1)l × Q, and Q × Q respectively. Note that the number of equilibria Q is

unknown. As I will show, the number of equilibria Q is identifiable from data under further

assumptions. This contrasts with the existing literature, which often assumes a unique

equilibrium. The identification of the number of equilibria is summarized in the following

lemma.
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Lemma 3.3. (Identification of the Cardinality) The rank of the observed matrix Fa1,a2

serves as the lower bound for the number of equilibria, i.e., Q ≥ Rank(Fa1,a2). Further-

more, the number of equilibria is identified, particularly, Q = Rank(Fa1,a2) if the following

conditions are satisfied:

(1) K + 1 > Q; (2) both matrices Aa1|τ and Aa2|τ are full rank; (3) all Pr(τ) are positive.

Proof The proof is the same as lemma 2.3

The first condition requires that the number of possible actions is greater than

the number of equilibria. Note that the action variable serves as a measurement for the

latent variable. Thus, sufficient variation is needed to infer the dimension of the underlying

equilibrium. However, here I only use data from two players. If there are more players,

grouping all players into two groups expands the action space that a representative player

can choose from. Consequently, it increases identification power.

The full rank condition implies that no equilibrium or market type is redundant.

The third condition indicates that only those equilibria that are active in the data can be

identified. This also means that we might not be able to recover how many equilibria are

actually predicted by the model. However, it does not affect identification and estimation

consistency.

The cardinality identified as described above indicates the feature of the under-

lying latent factor to some extent. Specifically, if the cardinality varies with the market

characteristics, then we are comfortable to conclude that multiple equilibria exist in the

data. A typical assumption imposed on the market-level unobserved heterogeneity is that

the support is fixed across different market observables due to the fact that it is exogeneous.
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In contrast, the number of equilibria employed varies with market characteristics because it

is endogeneous. However, a universal cardinality of the latent variable does not necessary

preclude the existence of multiple equilibria. For instance, it could be the fact that each

market employs the same number of equilibria in the data.

3.3.2 Identification of CCPs

Provided that the cardinality of the unobserved variable is identified, I show below

how to identify CCPs up to ordering for each individual player. To utilize the invertible of

matrices, I partition the action space so that it has the same dimension as the cardinality

of the overall latent variable τ . With a little bit abuse of notation, I still use a1 and a2

to represent the action variable after the partition. One key criteria for the partition is

that the corresponding tailored matrix Aai|e∗ is full rank for both i = 1, 2. The partition is

feasible because the original matrix is full column rank.

Identification for individual players’ equilibrium strategies requires extra informa-

tion. I denote this additional player as player 3. Then the following equation links observed

joint distribution of actions with those unknowns:

Pr(a1, a2, a3) =
∑
τ

Pr(a1|τ) Pr(a2|τ) Pr(a3|τ)Pr(τ)

To use the matrix algebra for identification, I fix a3 = k and use all possible variation from

player 1 and 2’s actions. Matrices definition is the same as I defined above with the only

difference is that a3 is fixed. Using the above matrix representations, we have the following
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two equations:

Fa1,a2 = Aa1|τDτA
T
a2|τ (3.5)

Fa1,a2,a3=k = Aa1|τDa3=k|τDτA
T
a2|τ (3.6)

Given that Aa1|τ and Aa2|τ have full rank, post-multiplying F−1
a1,a2 on both sides of equation

3.6 leads to the following main equation, which is essential for the identification.

Fa1,a2,a3=kF
−1
a1,a2 = Aa1|τDa3=k|τA

−1
a1|τ (3.7)

The right-hand side of the equation above represents an eigenvalue-eigenvector decompo-

sition of the matrix on the left-hand side, with matrix Da3=k|τ being the diagonal matrix

consisted of eigenvalues and matrix Aa1|τ being the eigenvector matrix. Given that the left-

hand side matrix in the equation can be estimated from the observed data, this equation

can be used to identify both Da3=k|τ and Aa1|τ simultaneously (see Hu (2008)). However,

the matrix decomposition only can identify the eigenvalue matrix up to ordering and the

eigenvector matrix up to normalization. Normalization can be obtained through the fact

that the sum of each column eigenvector is one because it is consisted of a whole probability

distribution (The identification is the same as provided in Chapter 2 in this dissertation).

Lemma 3.4. (Identification of the CCPs Up to Ordering) With conditions in lemma

3.3 satisfied, the CCPs are identified up to ordering.

Proof The proof is the same as lemma 2.6.

3.3.3 Set Identification of Payoffs

With the equilibrium CCPs can only be identified up to ordering, I proceed to

discuss how to utilize this information to recover the payoffs of individual players. If the
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equilibrium CCPs can be uniquely identified, so do the payoffs. Thus, to uniquely recover

the payoffs, ordering of the equilibrium CCPs are very important. In particular, two things

needed to be done for point identification of the payoffs since the CCPs are identified

conditional on market observables x. First one has to distinguish which values of τ belongs

to the same latent market-type. To be more specific, one has to divide the Qx sets of CCPs

into c groups, and each group contains all the equilibria employed. This generates c group

conditional on market characteristics x. Secondly, one has to order the unobserved market

types because they play an important role in payoffs.

The difficulty for point identification lies in how to disentangle the equilibrium

and unobserved market types so that ordering of the latent variable τ is obtained. In

discrete choice models with individual unobserved heterogeneity, usually a monotonicity

assumption is imposed to order the latent variable, e.g., Hu, McAdams, and Shum (2013).

The key difference between discrete choice model and games are the presence of multiple

equilibria. Unfortunately, a similar monotonicity assumption is not feasible in the game

setting even if we assume away multiplicity of equilibria by imposing assumption that the

data is generated by the same equilibrium. With this assumption, the first difficulty men-

tioned above vanishes. However, Assuming that multiple equilibria do not exist in the data

does not necessary rule out multiple equilibria exiting in the theoretic model. Moreover,

this assumption does not specify which equilibrium is employed in the data. Therefore,

monotonicity of CCPs is highly possible to be violated.

In figure B.1, I characterize the relationship between CCPs and both market ob-

served and unobserved characteristics. To illustrate the idea but keep things simple, I

assume there are two different latent market-types. In markets with observed character-
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istics x1 and x2, a unique equilibrium exists in market-type 1 while three equilibria in

market-type 2. In market-type 2, the same equilibrium is employed in market with char-

acteristics x1 and x2 respectively. However, note that when market characteristics differ, it

indicates the games are different from each other. Thus, it is possible that in the data, the

low equilibrium is employed in market with characteristics x1 while the middle equilibrium

is employed in market with characteristics x2. Therefore, we have:

Pr(ai = k|x = x1, η = 1) < Pr(ai = k|x = x1, η = 2)

Pr(ai = k|x = x2, η = 1) > Pr(ai = k|x = x2, η = 2)

A straightforward fix to the above non-monotonicity could be an extra assumption on the

equilibrium selection, in which both markets with characteristics x1 and x2 always select

the same type of equilibrium. For instance, in the above example, either both low, middle

or high equilibrium are employed at the same time. Unfortunately, this assumption is very

restrictive because the number of equilibria varies with the market characteristics (see figure

B.2.

Ordering using monotonicity conditions will be more difficult when multiple equi-

libria are allowed. This is because when we compare the conditional choice probabilities

associated with two different values of τ , it is difficult to tell whether they are associated

with different market types or just associated with two equilibria with the same market

type. Moreover, the index of equilibrium has no economic meanings. In particular, equi-

librium 1 in one market has nothing to do with equilibrium 1 in another market. Without

additional assumptions, the decomposition provides us a whole set of choice probabilities

without ordering, which will be a permutation of the underlying η for a given x.
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The unidentified ordering prevents us from uniquely recovering the payoffs. With-

out information of which CCPs belongs to the same market type but different equilibria,

it is impossible to recover how individual player’s payoff differs in different market-types.

The variation in probability of players choosing different actions in different market-types

reveals information of how payoff differs in those different market-types, thus providing the

identification power. In particular, we need to know that which two values of η are different

equilibria associated with the same market type, and which two values of η associated with

different market types so we can identify how payoff varies with different market types.

Without imposing assumptions regarding the equilibrium selection and some monotonicity

assumption, distinguish of multiple equilibria and unobserved types are infeasible. Thus

point identification is also infeasible.

Without making further assumption, this paper pursues set identification instead

of point identification, but I provide examples and conditions that point identification can

be obtained. Similar in discrete choice models, it is impossible to separately identify all

the payoff functions, only their differences can be recovered. Normalization and exclusion

restrictions are necessary, and I state them as below:

Assumption 3.5. (Normalization) For all i and all a−i and s, πi(ai = 0, a−i, x, η) = 0.

This assumption sets the mean utility from a particular choice equal to zero, which

is similar to the outside good assumption in the discrete choice model. If we aim at looking

into how firms strategically interact with each other, i.e., how one’s actions affect profits of

others, this normalization does not affect our analysis.

Assumption 3.6. (Exclusion Restriction) For each player i, the state variable can be
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partitioned into two parts denoted as xi, x−i, so that only xi enters player i′s payoff, i.e.

πi(ai = k, a−i, x) ≡ πi(ai = k, a−i, xi).

With the normalization and exclusion restriction assumptions, if private shocks

follow extreme value distribution, the equilibrium condition becomes

logσi(ai = k|x, η, e∗)− logσi(ai = 1|x, η, e∗) =
∑
a−i

πi(ai = k, a−i, xi, η)σ−i(a−i|x, η, e∗)

The extreme value distribution is not necessary for the identification, but for illustra-

tion purpose. From above equation, if CCPs are identified, payoff functions can be non-

parametrically identified. The exclusion restriction x−i shifts the choice probability while

keeping the payoff fixed, variation of the exclusion restriction identifies the payoff functions.

(see Bajari, Hong, Krainer, and Nekipelov (2010b) and Bajari, Hahn, Hong, and Ridder

(2011)).

However, as I stated above, the CCPs are identified up to ordering. Equivalently,

the two unobserved types cannot be distinguished from the first step identification. It is

hardly to find conditions to tell whether two sets of CCPs are associated with different

equilibria but the same latent market types. However, one of the ordering is the correct

one, which is equivalent to the fact that the set consisted of all possible orderings must

contain the true ordering. Consequently, the set consisted of payoffs rationalized by CCPs

of any possible ordering must also include the true payoffs. Express the first step CCPs as

{Pr(ai = k|x, τ), k = 0, ...K, i = 1, ..., n, τ = 1, ..., Qx, x ∈ {x1, ..., xd}}

Theorem 3.7. (Set Identification of the Payoffs) With the cardinality of latent factors

being identified and CCPs are identified up to ordering, the identified set for the payoff
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functions can be characterized as:

πi(ai, a−i, x, η) ∈ Ψ ≡ {πi(ai, a−i, x, η̃), that η̃ is a possible ordering of the original τ}

It is computationally light and easy to implement when conduct estimation fol-

lowing the identification set. It does not require to solve for the equilibria even once. Also,

the total number of possible ordering is a finite number, generating an identified set with a

finite support. The number of possible ordering can be computed in two steps. First, there

are C(Q, c) possible ways to divide Q number of values into c groups. Secondly, order those

groups across different market characteristics results in a total number of ordering to be

ΠxC(Q, c)

Illustration of the set identification. I provide a simple example to illustrate the

essential of the set identification for structural parameters θ. Assume that both observables

x and unobservables η have a support of 2, denoted as x1, x2 and η = 1, η = 2 respectively.

In the data generating process, one equilibrium is employed in market η = 1 and two

equilibria are employed in market η = 2. To summarize, for x1 : η = 1, (η = 2, e∗ = 1), (η =

2, e∗ = 2) and for x2 : η = 1, (η = 2, e∗ = 1), (η = 2, e∗ = 2). Therefore, when we identify

the cardinality to be 3, we know that there are a unique equilibrium associated with one

η and two equilibria associated with another η, but we do not know exactly that markets

with which η employs the unique equilibrium.

The possible ordering of the three sets of CCPs (P 1, P 2, P 3) are characterized as

follows:
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x1 x2

θ η = 1 η = 2 η = 1 η = 2

θ̂1 P 1 (P 2, P 3) P 1 (P 2, P 3)

θ̂2 P 1 (P 2, P 3) P 2 (P 1, P 3)

θ̂3 P 1 (P 2, P 3) P 3 (P 1, P 2)

θ̂4 P 2 (P 1, P 3) P 1 (P 2, P 3)

θ̂5 P 2 (P 1, P 3) P 2 (P 1, P 3)

θ̂6 P 2 (P 1, P 3) P 3 (P 1, P 2)

θ̂7 P 3 (P 1, P 2) P 1 (P 2, P 3)

θ̂8 P 3 (P 1, P 2) P 2 (P 1, P 3)

θ̂9 P 3 (P 1, P 2) P 3 (P 1, P 2)

So the identified set can be expressed as {θ1, ..., θ9}, and the a simple estimator can

be {θ̂1, ..., θ̂9}. In what follows, I try to provide some conditions that point identification is

obtained.

3.3.4 Point identification

As I discussed above, the undecided ordering of the unobserved market-type and

the associated multiple equilibria precludes point identification of payoff functions. If there

is no unobserved market level heterogeneity, ordering of equilibria does not matter because

there is no economic meaning for the index of equilibria, and different sets of choice prob-

abilities associated with different equilibria map to the same payoff. Point identification

therefore can be obtained.

When unobserved market heterogeneity is incorporated into the model, can one

obtain point identification if the data is free of multiplicity issue? For example, as the ex-

isting literature assumes that the data is generated by the same equilibria. From the graph

illustrated above, unfortunately, we need assumptions more than that. The essential differ-

ence between market-level unobserved heterogeneity and multiple equilibria is that payoff

varies with the values of the market-type while payoffs should be the same for different equi-
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libria. Thus, in order to identify the payoff with the assumption that the data is generated

by the same equilibria, we still need to order the market-level unobserved heterogeneity.

Single agent discrete choice literature usually makes monotonicity assumption to order un-

observed factor, i.e. the probability that an individual selects a certain actions increases

or decreases with the value of the unobserved factor conditional on both market observed

and unobserved covariates. However, in the game setup, it is questionable whether we can

make similar monotonicity assumption. The assumption only rules out that when there

are several equilibria, the same equilibrium is always employed. A stronger assumption is

needed, and I state it in the following:

Assumption 3.8. (i.) There exist some values of x such that a unique equilibrium is

guaranteed for all η. (ii) Pr(ai|x, η) is monotone with respect to η for all those xs.(iii.)

For those xs that the game admit multiple equilibria for at least one of η, the equilibrium

selection is not degenerated for at least one of the η.

With this assumption, first of all, we can identify the cardinality of the unobserved

market type L through L = minx{Qx}. Furthermore, using information from those x that

guarantees a unique equilibrium, the monotonicity assumption in ii can be used to order

η. Thus, we can use those identified choice probabilities to recover the payoff function for

those x. We can only identify payoffs for those x with a unique equilibrium nonparamet-

rically. However, if we are willing to impose some parametrical assumption on the payoff

structure, we probably can recover the structure parameters using only partial information.

With the structural parameters being identified, we can solve all the equilibria for those

x admitting multiple equilibria with different levels of market-types and then compare the

choice probabilities to recover the equilibrium selection mechanism.
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Corollary 3.9. (Point identification) With assumption 3.3, 3.8, 3.5 and 3.6, the car-

dinality of unobserved market types, CCPs associated with different observed market types

and the payoff functions can be point identified.

It is obvious that the conditions for point identification is very restrictive, and it

is very difficult to be satisfied in empirical studies. On the other hand, set identification

sometimes is not satisfying and also hard to do inference. Moreover, given that the set

identified above consists of finite number of vectors which itself is not convex. The existing

literature requires the identified set to be convex for statistical inference. However, there is

one way at least we can check whether there are only multiple equilibria or both multiplicity

of equilibria and unobserved heterogeneity exist in the data.

As stated in Chapter 2, when only multiple equilibria are present, the payoffs are

nonparametrically identified with exclusion restrictions. Moreover, existence of multiplicity

of equilibria indicates that different equilibrium CCPs should map to the same payoffs since

payoffs are equilibrium invariant. Consequently, a natural way to test is to set the null hy-

pothesis as that only multiplicity of equilibria occur in the data. Under this null, the payoffs

are nonparametrically identified and should be the same regardless which equilibrium CCPs

are used to do the estimation. Consequently, testing whether payoffs are the same when

different equilibrium CCPs are used is equivalent to the null that only multiple equilibria

are present. Under the null, estimates of the structural parameters from minimum distance

of the choice probabilities and its best response are asymptotically normal. Consequently,

a statistic can be formed and its asymptotically chi-square distributed.

64



3.3.5 Alternative Set Identification

Assuming that the cardinality of the market unobserved heterogeneity is known

denoted as J , this section studies set identification of static games with incomplete infor-

mation allowing for multiplicity of equilibria. Besides difficulty of disentangling equilibria

and unobserved heterogeneity, lack of variation also makes point identification infeasible.

When there is not enough action options, only the lower bound of the cardinality can be

identified. For instance, in a 2 × 2 entry game, using the methodology provided in this

paper, one can only conclude that the cardinality of overall latent variable is greater than 1.

Consequently, all components follows cannot be uniquely recovered. Moreover, using rank

inequality to infer the cardinality imposes a full rank condition on the unobserved matrix,

which is empirically not testable. With those concerns, a natural direction is to provides

partial identification without imposing any of those assumptions.

Suppose the payoff functions are known up to a vector parameter θ, i.e. π(ai, a−i, x, η) ≡

π(ai, a−i, x, η; θ). The equilibrium set can be denoted as ε(x, η, θ), which maps a set of co-

variates and the parameters to a finite set of equilibrium strategy profiles ε(x, η, θ). The

rank of the matrix constructed by the joint distribution of players’ actions provides a lower

bound to the overall cardinality which can be computed as
∑

η ε(x, η, θ). Every equilibrium

profile implies a multinomial distribution over outcomes. If there is no unobserved hetero-

geneity, and e∗ ∈ ε(x, η, θ) is the equilibrium being selected, the probability of observing

outcome a if e∗ is,

Ψ̃(a|x, η, θ, e∗) ≡
∏
i

∏
k

Pr(ai = k|x, η, θ, e∗)I(ai)==k
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If both x and η are observed, and equilibrium is unique, Ψ̃(a|x, η, θ, e∗) could be

compared directly to the observed data Pr(a|x, η). When there are multiple equilibria and

no information of η, the observed outcome distribution is a mixture of equilibrium strategies

according to a valid equilibrium selection mechanism λ(x, η, θ) and the marginal distribution

of η λη, the probability of outcome a can be expressed as:

Ψ̃(a|x, θ) ≡
∑
η

λη
∑
e∗

λ(x, η, θ)
∏
i

∏
k

Pr(ai = k|x, η, θ, e∗)I(ai)==k (3.8)

Without imposing strong restrictions on the selection mechanism while allows

missing information for point identification, I instead allows λ to be any valid mixture across

equilibria and marginal distributions respectively, and derive an identified set implied by

the model5.

Theorem 3.10. The identified set for the structural parameters θ for the static game can

be represented as:

ΘI =



θ ∈ Θ : ∀ a,x, s.t. Pr(a|x, θ) = Ψ̃(a|x, θ)∑
η λ

η = 1 and λη ≥ 0∑
e∗ λ(x, η, e∗) = 1 and λ(x, η, e∗) ≥ 0

| ε(x, θ) |≥ Q(x)


where Ψ̃(a|x, θ) is defined in equation 3.8. The last restriction uses information

from the rank testing which provides a lower bound for the cardinality. Note that the

identified set is sharp because I employ the lower bound of the number of equilibria as a

screen of the structural parameter θ. Those θ that yields a number of equilibria smaller than

the lower bound are excluded in the identified set. In the above 2×2 entry game example, if

5Similar identified set is provided in Grieco (2011) which allows flexible information structure.
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the number of equilibria is 1, then point identification is obtained; if the number of equilibria

is greater than 1, then those θ which provides a singleton equilibrium are deleted from the

identified set.

Likelihood Representation of the Identified Set

Denote the true data generating process with {θ0, λ0 = (λ0
η, λ

0(x, η, e∗))}. The

true model is complete in the sense that it includes a well defined model, a valid marginal

distribution and a valid equilibrium selection mechanism, with which the model maps onto

a unique point in the space of outcome distribution of a given x. The partial identifica-

tion issue arises because there maybe multiple parameters (θ′, λ′) that generates the same

conditional outcome distribution as (θ0, λ0).

The sample log-likelihood functions can be written as:

LM (θ, λ) =
1

M

∑
m

log(Ψ̃(a|x, θ, λ)

the limit of the log-likelihood function, L(θ, λ) = E[log(Ψ̃(a|x, θ, λ)], will be maximized at

(θ0, λ0). However, without point identification, the maximizer is highly likely to be multiple,

i.e. there may exist (θ′, λ′) such that L(θ0, λ0) = L(θ′, λ′). As usually we are more interested

in the payoff structural parameters θ0, here I treat the λ as a nuisance parameter and focus

on θ as the object of interest. The identified set can be represented as the set of maximizers

of L.

ΘI ≡ argsupθ∈Θ sup
λ
L(θ, λ)

Therefore, the identified set can be formed through a pair of (θ, λ) that attains the maximal

of the sample log-likelihood function.
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3.4 Monte Carlo Simulation

This section presents some Monte Carlo evidence to illustrate the proposed iden-

tification methodology in the static game framework. Suppose n players decide to enter or

stay out of markets with characteristics x. Assume the market attribute is discrete. Thus,

market characteristics x can be regarded as the market observed type. Assume players are

homogeneous, and the payoff functions of entry (1) or not (0) are parameterized as follows:

π(ai = 1, a−i;x, η) = βx+ δ
](a−i = 1)

n− 1
+ η + εi1

π(ai = 0, a−i;x, η) = δ
](a−i = 0)

n− 1
+ εi0

where εi1 and εi0 are private shocks, and η is the unobserved market heterogeneity. Assum-

ing the private information is independent and identically follows extreme value distribu-

tion. Given this specific payoff function, the number of players does not affect individual

player’s strategy, i.e., only the fraction of players entering matters. Assume that εs are

i.i.d across player and actions, and follows type 1 error distribution. Note that players are

homogeneous. I only consider symmetric equilibria in this simulation. let p(x, η) denote the

probability an individual player chooses action 1 in the equilibrium conditional on market

characteristics x, η.

log(p(x, η))− log(1− p(x, η)) = βx+ δ(2p(x, η)− 1) + η

For β = 0.04, δ = 2.5, all the equilibria for different observed and unobserved market types

are presented in figure B.3. The number of equilibria varies with both x and η continuously.

η captures the unobserved factor that affects payoff of choosing action 1. A positive η also

generates the same clustering effect from coordination by positive δ. Ignoring the existence
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of η might conclude the coordination effect is higher than it is true value, which is misleading

to understand the feature of the markets.

Consider only symmetric equilibria, I solve for all the equilibria for different com-

bination of x and η and presents how the equilibrium probability of choosing action 1 varies

with x and η (see figure B.3). The number of equilibria varies non-monotonically with

both x and η, it is therefore hard to infer the relation between the number of equilibria

and market characteristics without knowing the underlying payoff parameters. Moreover,

mixing with multiple equilibria, the equilibrium probability of choosing action 1 does not

have the monotonicity along with η.

The Monte Carlo experiment consists of repetition of 500 with sample sizes of

800,1000,1500,3000,5000 for markets with different values of x and η. For each replication,

I generate the equilibrium employment according to the equilibrium selection mechanism,

and then I generate the actions of each player according to the corresponding equilibrium

strategies. Since the estimation of the number of equilibria is exactly the same as in Chapter

2 through a sequential test of the rank of a matrix, here in Chapter 3 I do not provide

evidence of the estimation of the number of the equilibria. Regarding the estimation of

the CCPs for different market types and equilibria, we can see that the estimation through

matrix decomposition are consistent as sample sizes increase.

3.5 Conclusion

I have studied the identification in finite action games with incomplete information

allowing the presence of multiple equilibria and unobserved heterogeneity. In particular, I

show that it is possible to identify the cardinality of the combination of multiple equilibria
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and unobserved market types when there are enough options that players can choose from.

However, without strong assumptions, equilibrium strategies can only be identified up to

ordering. Consequently, it is impossible to uniquely recover payoffs. I also provide an

alternative set identification using the likelihood function.

Understanding what conditions allow us to uniquely recover individual payoffs in

static games with the presence of multiple equilibria and unobserved heterogeneity. Even

though this paper mainly provides partial identification, it does suggest a direction for

future research for pursuing point identification. On the other hand, set identification still

provides us information on the payoffs.
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Chapter 4

Identification of Dynamic Games

with Multiple Equilibria and

Unobserved Heterogeneity

4.1 Introduction

Estimation of dynamic discrete games has become one of the fastest growing areas

of empirical industrial organization1. Three challenges are common in estimation of dy-

namic games: (1) the computational burden of solving for the fixed points and the curse of

dimension in the state space; (2) the treatment of heterogeneity in firm and market char-

acteristics; (3) the present of multiplicity of equilibria. The first challenge dues to the fact

estimation requires solving for the equilibrium for each possible value of the parameter. To

1see Nevo and Aguirregabiria (2010) for a survey Recent Developments in Empirical IO: Dynamic Demand

and Dynamic Games
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address this computational problem, researchers proposed two-step estimation approaches

which are computational light and easy to implement. The two-step estimators pioneered

by Hotz and Miller (1993) significantly broaden the dynamic game application scope.

Addressing unobserved heterogeneity in estimation is important and difficult. Though

it is a convenient assumption to assume away the existence of unobserved heterogeneity, it

is unrealistic for most applications in empirical IO and also problematic to explain micro

data. Not accounting for this heterogeneity can generate significant biases in parameter

estimates,2, thus misleading in understanding of strategic interaction between firms. Ac-

counting for unobserved heterogeneity, and therefore dynamic selection, is also important

in dynamic discrete choice models in labor economics. Meanwhile, addressing unobserved

heterogeneity is also important in empirical estimation since it is widely incorporated in em-

pirical estimations. It is difficult to cope with unobserved state variables in games because

multiple equilibria might exist.

Meanwhile, multiple equilibria are a prevalent feature in dynamic games. Even

though the present of multiplicity of equilibria does not necessarily preclude the identifica-

tion of the dynamic framework (Jovanovic (1989)), it is still unclear under what conditions

the identification is obtained when multiple equilibria actually employed in the data. In the

dynamic setting, identification and estimation is able to get around the multiplicity concerns

2For instance, in the empirical application in Aguirregabiria and Mira (2007), the estimation without

unobserved market heterogeneity implies estimates of strategic interaction between firms (i.e., competition

effects) that are close to zero or even have the opposite sign to the one expected under competition. While

including unobserved heterogeneity in the models results in estimates that show significant and strong

competition effects
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when Markov Perfect equilibria are considered. This Markovian assumption guarantees that

a single time series is generated by only one equilibrium. However, when cross-sectional

data is pooled for estimation, one has to assume additionally that the same equilibrium is

played in every path observed. The ad hoc equilibrium assumption might result in mis-

specification, thus inconsistent estimation of the structural parameters. Moreover, even if

the game primitives can be consistently estimated under some assumptions, it is impossible

to infer policy effects without the information of the equilibrium selection.

To avoid mis-specification while enabling counterfactual analysis, this paper pro-

poses a methodology to nonparametrically identify dynamic games with incomplete infor-

mation while considering unobserved market-level heterogeneity (market-type) and multiple

equilibria. Assuming that the supports of unobserved market-type and equilibria are dis-

crete and finite, the observable distribution from pooling information from cross-sectional

markets results in a mixture structure. Thus, identification follows results developed in Hu

and Shum (2012), which utilizes the Markov property of observed and unobserved state

variables in dynamic models.

The methodology of identification imposes no restrictions on the cardinality of the

equilibrium set or the equilibrium selection rules. Identification proceeds in the following

steps. First I identify the cardinality of a new latent variable which combines information

of both the unobserved market-type and the multiple equilibria. Second I identify the

law of transition for the Markov process. Thus the equilibrium specific conditional choice

probability and the transition function for both observed and unobserved state variables

are identified. Third, the payoff function are nonparametrically identified with exclusion

restrictions as in Pesendorfer and Schmidt-Dengler (2008) for each value of the new latent
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factor. Consequently, one can distinguish between multiple equilibria and unobserved-

market types from comparing the payoff functions. Specifically, multiple equilibria map

with the same payoff functions while unobserved-market types are associated with different

level of payoffs. As a byproduct, the equilibrium selection and the marginal distribution of

the market-type can be identified.

As far as I know, this is the first paper provides identification for dynamic games

while incorporates both unobserved heterogeneity and multiple equilibria. The identification

result presented in this paper is of real practical importance. This paper provides conditions

under which the underlying data generating process can be recovered. One important

feature of the identification is that all aspects of the game can be uniquely recovered.

Crucially, as long as the conditions provided here are satisfied, consistent estimation is

possible regardless the estimation is parametric, semiparametric or nonparametric. This

opens up many different avenues for the construction of estimators. At the most parametric

level, it assures us that fully parametric models are identified and likelihood inference can

proceed in the usual fashion. The result also assumes us of consistent and efficient estimation

from semiparametric profile approaches.

This paper contributes to the literature on estimation of dynamic games. For

instance, Aguirregabiria and Mira (2007) provides sequential estimator for similar dynamic

games and allows for market level unobserved heterogeneity. The market-type is time-

invariant, and it does not enter the transition process of the observed state variables, so the

transition probability function can still be estimated from transition data without solving

the model. Arcidiacono and Miller (2011) consider a more general framework that includes

unobserved heterogeneity which can vary over time according to Markov chain process and
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that can enter both in the payoff function and in the transition of the state variables.

This paper also relates to the literature of identification and estimation of games

with multiple equilibria. Various approaches are proposed to tackle multiple equilibria issue.

Some researchers assume that the data is generated by the same equilibrium so that the

distributions estimated from the data satisfies the equilibrium conditions, e.g. Sweeting

(2011). Another strand of literature use bound estimation instead of point estimation,

relying on inequalities created by multiple equilibria, e.g., Ciliberto and Tamer (2009).

Bajari, Hong, and Ryan (2010) incorporate a parameterized equilibrium selection function

into the problem, and Aguirregabiria and Mira (2013) considers static games with both

multiple equilibria and payoff relevant heterogeneity together. See De Paula (2012) for

a survey of the recent literature on the econometric analysis of games with multiplicity.

Instead of attempting to identify the payoff primitives, De Paula and Tang (2012) use the

fact that players’ equilibrium choice probabilities move in the same direction. As a result,

the presence of multiplicity helps for identification of the sign of the interaction term.

This paper is related to current literature on identification with unobserved hetero-

geneity. In particular, Kasahara and Shimotsu (2009) consider the identification of dynamic

discrete choice models with agents of a finite number of types, and demonstrate that the

Markov law of motion is identified using six periods of data. In contrast, four periods of data

are sufficient for identification in this paper. The identification is close to the identification

of dynamic models in Hu and Shum (2012) with continuous unobserved state variables,

which are allowed to vary over time. The identification is obtained also using four periods

of data. However, I study dynamic finite games with considering Markov Perfect Equilibria,

in which the number of equilibria and actions are both discrete. Further, the number of
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equilibria is endogenous in games and needed to be identified first.

The remainder of the paper is organized as follows. I begin with describing the

game framework in section 2. Section 3 provides the nonparametric identification of the

game. Next section 4 proposes semiparametric estimation following the constructive iden-

tification procedure. Monte Carlo evidence for illustrating the finite sample property is

provided in section 5. Lastly, section 6 concludes. The Appendix contains the proofs, the

figures and the tables.

4.2 Dynamic Game

Consider a model of discrete time, infinite-horizon games with N players.3 At

the beginning of each period t(t ∈ {0, 1, ...,∞}), player i (i ∈ {1, .., N} receives her own

private profit shock εit before she decides which action to take, and the action is denoted as

ait, where ait ∈ Ai = {0, 1, ...,K}. at denotes the action vector for all players in period t.

Denote the market and individual firm characteristics in period t as xt. For the equilibrium

characterization, whether the state xt contains the previous action or not does not matter,

but it matters for identification. Let εt represent the private information for all players, i.e

εt ≡ (ε1t, ..., εNt). The payoff for player i from choosing action ait while her rivals choosing

actions a−it in period t is assumed to be additive separable as follows:

ui(at, st, εit) = πi(ait, a−it, st) + εi(ait)

3See a similar framework used in Ericson and Pakes (1995), Bajari, Chernozhukov, Hong, and Nekipelov

(2009), Aguirregabiria and Mira (2007), Pakes, Ostrovsky, and Berry (2007), Kasahara and Shimotsu (2012),

Bajari, Benkard, and Levin (2007), Egesdal, Lai, and Su (2013), Beresteanu, Ellickson, and Misra (2010),

Ryan (2012) and Pesendorfer and Schmidt-Dengler (2008).

76



Assume that the state st follows a stationary first-order Markov process with a transition

function denoted as g(st+1|st, at), which is common knowledge among all the players. Con-

sider only Markov Perfect Equilibrium, in which each player’s strategies can be conditioned

only on the current state of the game, and the state only contains payoff relevant informa-

tion. Since it is a stationary game, let’s suppress the t for ease of notation. Again I use

σi(s, εi) to denote the probability of choosing the action ai by player i as σi(ai|s, εi) given

state variable s. Each period, player i’s problem is to maximize her own lifetime expected

utility discounting by β. Let Wi(s, εi;σ) be player i’s value function given both public state

s and her own private information εi, thus

Wi(s, εi;σ) = max
ai∈Ai

{Πi(ai, s) + εi(ai) + β

∫ ∑
a−i

Wi(s
′, ε′i;σ)g(s′|s, ai, a−i)σ−i(a−i|s)f(ε′i)dε

′
ids
′}

where Πi(ai, s) =
∑

a−i
πi(ai, a−i, s)σ−i(a−i|s). The first term is the certain part of the

current period’s payoff, and the latter one captures future lifetime utility. To define the

Markov Perfect Equilibrium using choice probabilities {σi(ai|s}i}, first I define the choice

specific value function as:

Vi(ai, s) = Πi(ai, s) + βEWi(s
′, ε′i;σ)

Similar to the choice specific utility in static games, I define the choice specific value function

as the determinant part of the lifetime value from choosing that action, excluding the

additive profit shocks εi(ai). Given common knowledge s and player’s private information

εi, player i is going to choose the action that gives her the highest expected lifetime utility.

Notice that for any set of decision rules, the choice specific value, lifetime value and current

expected utilities depend on player and her rivals’ strategies only through the probability

distributions for each option. As in Milgrom and Weber (1985), I also define the Markov
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Perfect Equilibrium in terms of choice probabilities in the probability space instead of

decision rules as follows.

Definition 4.1. (MPE) A Markov Perfect Equilibrium (MPE) is a collection of CCPs

{σi(ai, s)}i such that for all player i and all public information s, the following conditions

are satisfied:

σi(ai = k, s) = Pr(Vi(ai = k, s) + εi(ai = k) ≥ Vi(ai = j, s) + εi(ai = j),∀j)

where
Vi(ai, s) = Πi(ai, s) + βEWi(s

′, ε′i;σ)

Wi(s, εi;σ) = max
ai∈Ai

{Vi(ai, s) + εi(ai)}

The utilization of MPE indicates that players’ actions are fully determined by the

current vector of state variables and own private information. Intuitively, whenever a player

observes the same public information, she makes the same decision. History information of

the game up to period t does not influence players’ decisions.

4.3 Nonparametric Identification Results

This section proposes an identification methodology for the dynamic game while

allowing the potential presence of multiple equilibria. Similar to static game, the presence

of multiple equilibria is a feature inherent in dynamic games4. As discussed in Pesendorfer

and Schmidt-Dengler (2008), the Markovian assumption implies that a single equilibrium

is played in a market-level time series. Consequently, identification and estimation can

4Pesendorfer and Takahashi (2012) propose several statistical tests to examine multiplicity of equilibria

in a similar setup.
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be obtained using a single path of play to get around the multiplicity concerns. Using

information from a single path, however, has other disadvantages. First of all, leaving out

information of cross-sectional markets reduces efficiency of estimation. Secondly, relying on

information from an individual market over time requires a long period of data, limiting

application of the estimation. Finally, without information of equilibrium selection, it is

difficult to conduct counterfactual analysis. As a result, this section presents identification

of dynamic games using cross-section markets information, allowing the existence of multiple

equilibria.

Suppose there are N players playing an infinite horizon dynamic game in markets

m = 1, 2, ...M . Let at denote the action vector that the N players choose in period t. The

observed market characteristics which I denoted as xt ∈ X includes both market and all

individual firms’ characteristics in period t. Here I assume X has a finite support. As

shown in Haller and Lagunoff (2000), stochastic dynamic games also have a finite number

of equilibria. I index the equilibrium as e∗ ∈ 1, 2, ..., Q, where Q is the total number of

equilibria. Note that the number of equilibria does not vary with observables. This is

because the equilibrium is a contingent plan for each player in every possible circumstance.

In addition to allow for multiple equilibria, I also incorporate a time-variant unobserved

market-level heterogeneity, denoted as ηt, ηt ∈ Ψ ≡ {η1, ..., ηL} also has a finite support.

This assumption is common when dealing with permanent unobserved heterogeneity in

dynamic structural models. The discrete support of the unobservable implies that the

contribution of a market to the likelihood (or pseudo likelihood) function is a finite mixture

of likelihoods under the different possible best responses that we would have for each possible

market type.
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Given the MPE restriction, players make their decisions according to current pe-

riod’s information, i.e. st and ηt. History information is irrelevant in the decision making

process. In empirical applications, actions chosen in the previous period play a role in play-

ers’ current decisions. For example, in Sweeting (2011), the format which music stations

choose to air in the current period depends on the format they aired last period because

of the switching cost. Furthermore, in dynamic oligopoly frameworks, firms are allowed

to enter or exit the market. Within this setup, players’ current decision depends on what

they chose in the last period. Similar to most literature, this paper assumes players current

decisions at depend on their previous actions at−1, i.e., st = {xt, at−1}.

Assumption 4.2. The market observable xt and unobservable ηt evolves according to the

following:

(i). Pr(ηt|xt−1, ηt−1, at−1,Ω<t−1) = Pr(ηt|ηt−1, xt−1, at−1)

(ii). Pr(xt|ηt, xt−1, ηt−1, at−1,Ω<t−1) = Pr(xt|ηt, xt−1, at−1)

where Ω<t−1 ≡ {xt−2, ηt−2, at−2, ..., x1, η1, a1}, the history up to (but not including) t− 1

This assumption assumes a Markovian property for players’ common knowledge.

Moreover, Assumption 1(ii) is a ”limited feedback” assumption, which rules out direct

feedback from the last period’s unobservable ηt−1, on the current value of observable xt.

However, it allows indirect effect of ηt−1 through xt−1 and at−1. Implicitly, this evolution

process imposes timing restriction on the game characteristics, which is the unobserved

characteristics ηt realized before the observed characteristics xt. As a result, xt depends on

ηt instead of ηt−1. This limited feedback assumption is less restrictive than the assumption

made in many applied settings so that the observable xt evolves independently from the

unobservable of any periods so that the state transition of observables can be estimated
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directly from the data. However, this assumption does rule out the scenario that the

alternative timing occurs. The limited feedback assumption is trivial when the unobserved

heterogeneity does not vary overtime.

Lemma 4.3. In a given market, observables and unobservables satisfy the following prop-

erty, and the joint distribution of observables satisfy the following representations:

(i). {wt, ηt} ≡ {at, xt, ηt} follows a stationary first-order Markov process.

(ii). Pr(wt+2, wt+1, wt) =
∑

ηt+1
Pr(wt+2|wt+1, ηt+1) Pr(wt+1, wt|ηt+1) Pr(ηt+1)

(iii). Pr(wt+3, wt+2, wt+1, wt) =
∑

ηt+2
Pr(wt+3|wt+2, ηt+2) Pr(wt+2|wt+1, ηt+2) Pr(wt+1, wt, ηt+2)

Proof See appendix

Note that one cannot rule out multiplicity of equilibria in dynamic game frame-

works. When data from cross-sectional markets is pooled, it represents a mixture of infor-

mation from different equilibria. Let e∗ as an index of the equilibrium, and τt+1 ≡ {ηt+1, e
∗}

captures all the information in both ηt+1 and the equilibrium. As a result, τt+1 has a finite

support. With three periods of data, the joint distribution estimated from pooling data of

all markets can be represented as the following:

Pr(wt+2, wt+1, wt) =
∑
e∗

Pr(wt+2, wt+1, wt|e∗) Pr(e∗)

=
∑
e∗

∑
ηt+1

Pr(wt+2|wt+1, ηt+1, e
∗) Pr(wt+1, wt|ηt+1, e

∗) Pr(ηt+1, e
∗)

=
∑
τt+1

Pr(wt+2|wt+1, τt+1) Pr(wt+1, wt|τt+1) Pr(τt+1)

To identify the cardinality of τt+1, I first introduce following matrix notation while
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fixing wt+1 as w̄t+1.

Fwt+2,w̄t+1,wt ≡ [Pr (wt+2 = k, w̄t+1, wt = j)]k,j ,

Awt+2|w̄t+1,τt+1
≡ [Pr (wt+2 = k|w̄t+1, τt+1 = q)]k,q

Bw̄t+1,wt|τt+1
≡ [Pr (w̄t+1, wt = k|τt+1 = q)]q,k

Dτt+1 ≡ diag
[

Pr(τt+1 = 1) ... Pr(τt+1 = Q× L)
]
.

Those matrices stack the distributions with all possible values that wt and τt+1 can take.

In particular, matrix Fwt+2,w̄t+1,wt consists of the whole joint distributions of wt+2 and wt,

which can be estimated from data. Dτt+1 is a diagonal matrix with the marginal distribution

of τt+1 as the diagonal elements, while matrix Awt+2|w̄t+1,τt+1
collects transition probabilities

that we need to recover the law of motion.

With above matrix notation, I can rewrite the equation linking observable joint

distribution with unknowns in the following matrix representation:

Fwt+2,w̄t+1,wt = Awt+2|w̄t+1,τt+1
Dτt+1Aw̄t+1,wt|τt+1

This equation in a matrix form enables me to identify the number of equilibria using rank

inequality, which I stated in the following lemma.

Lemma 4.4. The rank of the observed matrix Fwt+2,wt+1,wt serves as the lower bound for the

number of equilibria, i.e., Q ≥ Rank(Fwt+2,wt+1,wt), Furthermore, the number of equilibria

is identified, in particular, Q = Rank(Fwt+2,wt+1,st) if the following conditions are satisfied

(1) ‖X ×An‖ > Q×L (2) both matrices Awt+2|wt+1,τt+1
and Awt+1,wt|τt+1

have full rank (3)

all Pr(τt+1) are positive

Proof The proof is the same as lemma 2.3
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There are several advantages in dynamic games compared to static framework in

the identification of the cardinality of latent factors. First of all, in a dynamic framework,

the identification can use all variation including actions of all players and observed charac-

teristics because the equilibrium is defined over all states. Thus, condition (1) holds easily.

In contrast, static games can only rely on the variation from a part of the player’s actions

because the equilibrium is characterized conditional on game characteristics. Secondly, the

full rank condition means that enough variation in the conditional choice probability of

different equilibria is needed to disentangle CCPs of each equilibrium. That is, not a sin-

gle equilibrium is redundant. In dynamic games, the full rank condition is required for

fixing value of wt+1, which again is easily satisfied. Moreover, with more variation in the

measurement, the full rank condition is easily satisfied too.

With four periods of data, the joint distribution of the observables becomes:

Pr(wt+3, wt+2, wt+1, wt) (4.1)

=
∑
e∗

Pr(wt+3, wt+2, wt+1, wt|e∗) Pr(e∗)

=
∑
e∗

∑
ηt+2

Pr(wt+3|wt+2, ηt+2, e
∗) Pr(wt+2|wt+1, ηt+2, e

∗) Pr(wt+1, wt, ηt+2, e
∗)

=
∑
τt+2

Pr(wt+3|wt+2, τt+2) Pr(wt+2|wt+1, τt+2) Pr(wt+1, wt, τt+2) (4.2)

With the cardinality of the latent factor τt+2 identified, I partition the state space of both

wt and wt+3 into a dimension of Q × L with the criteria of the resulting matrices are full

rank. With a little abuse of notation, I denote the new partitioned variables as wt and

wt+3 respectively. Fixing wt+2 and wt+1, I rewrite equation A.3 into the following matrix

expression:

Fwt+3,wt+2,wt+1,wt = Awt+3|wt+2,τt+2
Dwt+2|wt+1,τt+2

Bwt+1,wt,τt+2 (4.3)
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Identification of Pr(wt+3|wt+2, τt+2) is obtained by evaluating the joint distribution of four

periods of data at four pairs of points (wt+2, wt+1), (w̄t+2, wt+1), (wt+2, w̄t+1), (w̄t+2, w̄t+1),

each pair of equations will share one matrix in common. After algebra manipulation, I

can form a eigenvalue-eigenvector decomposition representation between the observed and

unknowns that we are interested. To guarantee unique decomposition, I first state the

assumption.

Assumption 4.5. (Distinctive Eigenvalues) There exist {wt+2, w̄t+2, wt+1, w̄t+1}, such

that

(1). Pr(w̄t+2|wt+1, τt+2) Pr(wt+2|w̄t+1, τt+2) > 0 for all τt+2

(2). C(wt+2, w̄t+2, wt+1, w̄t+1|τt+2 = i) 6= C(wt+2, w̄t+2, wt+1, w̄t+1|τt+2 = j) for any τt+2

i 6= j, where

C(wt+2, w̄t+2, wt+1, w̄t+1|τt+2) =
Pr(wt+2|wt+1, τt+2)Pr(w̄t+2|w̄t+1, τt+2)

Pr(w̄t+2|wt+1, τt+2)Pr(wt+2|w̄t+1, τt+2)

The distinctive eigenvalues assumption is empirically testable because the matrix

for the eigen-decomposition can be computed from the data. Moreover, the eigenvectors

Awt+3|wt+2,τt+2
in the decomposition is unique up to multiplication by a scalar constant,

which can be pinned down because each column should be summed up to one.

Lemma 4.6. (Identification of Pr(wt+3|wt+2, τt+2)): With four periods of data, assump-

tion 1 and conditions in lemma 1 satisfied, for each possible value of wt+2, Pr(wt+3|wt+2, τt+2)

is uniquely identified up to ordering of τt+2.

Proof See Appendix

Note that with the eigenvalue-eigenvector decomposition representation for each

wt+2, the eigenvalues are identified up to ordering of τt+2. Since ηt+2 combines informa-
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tion from both market type and multiplicity of equilibria, the conventional monotonicity

property is not appropriate to use to order the eigenvalues. However, for each wt+2, using

marginal distribution of Pr(wt+3|wt+2), we can recover the marginal distribution of ηt+2. If

the probability of ηt+2 varies with different elements of ηt+2 can take, then we can match the

marginal distribution to preserve the ordering of the eigenvalues when the decomposition

is conducted for different values of wt+2. In the following I state this assumption.

Assumption 4.7. (Distinctive Marginal Distribution) The marginal distribution of

ηt+2 varies for different value that ηt+2 can be: Pr(ηt+2 = i) 6= Pr(ηt+2 = j), where i 6= j

This assumption is also empirically testable. Now I move to show that the law

of motion can be identified using four periods of data when Pr(wt+3|wt+2, τt+2) can be

uniquely recovered.

Lemma 4.8. (Markov Law of Motion) With four periods of data, and Pr(wt+3|wt+2, τt+2)

is known, the Markov law of motion Pr(wt+3, τt+3|wt+2, τt+2) can be uniquely identified.

Proof See Appendix

Initial condition Pr(wt, τt) plays an important role in simulating the game to do

estimation while this information is impossible to obtain from the data. However, following

lemma states that it can be uniquely recovered as a byproduct of the main identification.

Lemma 4.9. (Initial Condition): Under assumptions 1,2,3,4...., the initial density dis-

tribution Pr(wt, τt) can be uniquely recovered from four periods of data.

Proof See Appendix
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As a byproduct of the initial joint distribution of observables wt and unobservables

τt, the marginal distribution of uobservables can be identified. The equilibrium selection

therefore can be identified once we can distinguish between unobserved types and multiple

equilibria.

With the law of motion, the conditional choice probability and transition of ob-

served and unobserved factors can all be identified by taking marginal with respect to the

law of motion. Below I first provide that the payoff function can be identified with CCPs

and transition functions known and stated the result in the following lemma. Then I will

discuss how I can distinguish whether two τ are two equilibria associated with the same

market-type or two different market-type. To nonparametrically identify payoff functions,

the following two assumptions are necessary, and they are standard assumptions imposed

in the existing literature.

Assumption 4.10. (Normalization) For all i and all a−i and s, πi(ai = 0, a−i, s) = 0.

This assumption sets the mean utility from a particular choice equal to zero, which

is similar to the outside good assumption in the discrete choice model.

Assumption 4.11. (Exclusion Restriction) For each player i, the state variable can be

partitioned into two parts denoted as si, s−i, so that only si enters player i′s payoff, i.e.

πi(ai = k, a−i, s) ≡ πi(ai = k, a−i, si).

An example of exclusion restrictions is a covariate that shifts the profitability of

one firm but that can be excluded from the profits of all other firms. Firm specific cost

shifters are commonly used in empirical work. For example, Jia (2008) and Holmes (2011)

demonstrate that distance from firm headquarters or distribution centers is a cost shifter
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for big box retailers such as Walmart. With the exclusion restriction

Lemma 4.12. (Identification of payoff functions) Under assumptions 4.10 and 4.11

and all the conditional choice probability and state transition is known, payoff functions are

identified nonparametrically.

Proof See appendix

With everything is known, the identification of payoff functions is back to the tra-

ditional case with a unique equilibrium (see Bajari, Chernozhukov, Hong, and Nekipelov

(2009)). Identification proceeds first to identify the difference of choice specific current

utility. Then with the exclusion restriction, the payoff functions Πi(ai, s) can be nonpara-

metrically identified.

Theorem 4.13. (Identification of Dynamic Games with Incomplete Informa-

tion) With the conditions in lemma 4 satisfied, assumptions 1-5, the cardinality and initial

marginal distribution of the unobserved heterogeneity , the number of equilibria Q, the equi-

librium selection, the strategies of each player in each equilibrium and the payoff function

are nonparametrically identified in dynamic games with four periods of data.

Given that all the conditional choice probabilities, state transition and initial con-

ditions can be uniquely identified, I can identify payoffs for different values of τ with ex-

clusion restrictions. To distinguish market-level unobserved heterogeneity from multiple

equilibria, one just needs to compare payoffs from any different values of τ . If the payoffs

are the same for different values of τ , then the two τs are two different equilibria associated

with the same market-type. If the payoffs are different for the two different values of τ ,

then the payoffs are associated with different market-types. Equivalently, we can divide
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all the τ into different groups in which contains different equilibria belongs to the same

market-type. Additionally, the equilibrium selection mechanism can be identified through

the marginal distribution of τ , which just a conditional distribution within each group.

Moreover, the cardinality of the unobserved heterogeneity is also identified as the number

of distinct groups.

4.4 Estimation

This section provides semi-parametric estimation for the dynamic game. The

estimation follows exactly the identification procedure. Specifically, first the cardinality

of the newly created latent variable is estimated nonparametrically by estimation of the

rank of the matrix constructed by observable joint distribution. Then each equilibrium

strategies and equilibrium specific transition are estimated through eigenvalue-eigenvector

decomposition. Last, the structural parameters are estimated through minimizing distance

between the equilibrium strategies and its best response.

Estimation of the cardinality The cardinality of the latent factor τ can be estimated

via estimating the rank of the matrix constructed by observable joint distribution, i.e.

Q = rank(Fwt+2,w̄t+1,wt), where the ijth element of the matrix can be estimated using simple

frequency such as: Pr(wt+2 = wi, w̄t+1, wt = wj) = I(wt+2=wi,w̄t+1,wt=wj)
N . Provided the

stationary environment, one can tailor the panel data into a data in which each observation

consists three periods of information, which increases the estimation preciseness.

A sequence of tests is performed to estimate the rank of the matrix constructed

by joint distribution among three periods of observables. There is a lot of ongoing research

on testing rank of a matrix through the estimates of that matrix, e.g., characteristic roots
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of a quadratic form built from the matrix in Robin and Smith (2000). Those testing

methodologies are proposed for general matrices. Since the matrices used here need to be

square and invertible, and the determinant of an invertible matrix is non zero. Thus I am

going to use the determinant of the partitioned of the corresponding matrix as the statistic

for the testing.

The testing procedure is as follows. The matrix F̂w3,w̄2,w1 estimated through simple

frequency has a dimension of l ∗ l. Let F̂ Jw3,w̄2,w1
denote the matrix with dimension J × J

through randomly partitioning the original space of w1 and w3 into a new space with J

number of support. The sequential procedure is given as follows: the sequence of hypotheses

HJ
0 : det(F J) = 0 is tested against the alternatives HJ

1 : det(F J) 6= 0 in decreasing order. If

no rejection occurs until J = 1, then there is a unique equilibrium. Each hypothesis in this

sequence is tested by a t-test where the error variance is always estimated from the overall

model. More formally, we have,

r̂ = min{J : |TJ | ≥ cJN , 0 ≤ J ≤ (K + 1)m}

where N represents the sample size. If the critical value associated with the significant

level α is set to be a constant, then the rank estimated through this testing procedure is

not consistent. The reason is that the testing procedure rejects the true with probability

α even as the sample size goes to infinity. To obtain consistent estimates for the rank, the

critical value is chosen associated with a sample dependent significant level in a way that

αN goes to zero as the sample size N goes to infinity but not faster than a given rate.

As in Hosoya (1989), if αN goes to zero as the sample size N goes to infinity and also

limN→∞
lnαN
N = 0, then the rank estimator provided by the sequential testing procedure
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will converge in probability to the true rank.

Estimation of the CCPs With the cardinality of the latent variable is known, the estima-

tion of all CCPs exactly follows the identification procedure. First of all, Pr(wt+3|wt+2, τt+2)

can be estimated as an eigenvectors of the matrix decomposition following the identifica-

tion procedure as in lemma 3. Then the markov law of motion can be estimated from

matrix manipulation following lemma 4. Consequently, the conditional choice probability

Pr(ait|xt, at−1, ηt) and the transition function can be estimated nonparametrically.

Parametric Estimation of the Payoff Function With CCPs under each equilibrium

estimated, payoff functions can be estimated nonparametrically with exclusion restrictions

by following the identification procedure. Here I parameterize the payoff function and

estimate the structural parameters using a prevalent two-step estimation method. Denote

the parameterized payoff functions as πi(ai, a−i, x) = πi(ai, a−i, x; θ), and suppose market

characteristics are discrete with dimension of d, x ∈ {X1, ...., Xd}.

Pioneered by Hotz and Miller (1993)5, two-step estimators are widely used for

estimation in discrete choice models, static and dynamic games. Comparing to the Nested

Fixed Point Theorem algorithm by Rust (1987), two-step estimators are computationally

light because they do not need to solve for the fixed point. It is well known that looking for a

fixed point is computationally challenging and time consuming. Two-step estimators begin

with consistently estimating the auxiliary choice probabilities in the first step, and then

5For other two-step estimators, see the pseudo-maximum likelihood estimator by Aguirregabiria and

Mira (2002), and estimators for dynamic games recently considered in Aguirregabiria and Mira (2007),

Pakes, Ostrovsky, and Berry (2007), and in Bajari, Benkard, and Levin (2007). See also Pesendorfer and

Schmidt-Dengler (2008) for a unified framework of two-step estimators.
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recovering the structural parameters through constraints from equilibrium conditions. As a

result, in order to obtain well-behaved estimators for the structural parameters, the auxiliary

choice probabilities need to be estimated consistently at the beginning. Otherwise, the error

will be augmented and the second step estimator will behave poorly. This is why in previous

literature the existence of multiple equilibria makes two-step estimators invalid. The choice

probabilities estimated directly from the data directly do not come from any equilibrium

anymore. Instead, it is a mixture of the equilibria, which itself is not an equilibrium.

The methodology above allows me to use a two-step estimator even in the presence

of multiple equilibria. Denote the first step estimates as σ̃(at|xt, ηt, at−1). The equilibrium

condition is represented by a general mapping denoted as h(σ, θ) = σ(at|xt, ηt, at−1) −

Γ(at|xt, ηt, at−1); θ) = 0, which holds for every x. The least squares estimator estimates the

parameters of interest by forcing the constraints:

h(σ̂, θ) = σ̂(at|xt, ηt, at−1)− Γ(σ̂(at|xt, ηt, at−1); θ) = 0

satisfied approximately for every s and every equilibrium. With the number of equations

greater than the number of parameters, a weight is assigned to individual equations for

minimization. Denote σ̃M as the vector of collecting all σ̂(a|s, e∗) and Γ(σ̂; θ) as another

vector collects all Γ(σ̂(a|s, e∗); θ). Let WM be a symmetric positive definite matrix that

may depend on the observations. A least square estimator associated with weight matrix

WM is a solution θ̂(WM ) to the problem

θ̂(WM ) = argminθ [σ̂ − Γ(σ̂; θ)]′WM [σ̂ − Γ(σ̂; θ)]

Thus, the asymptotic least squares estimator θ̂(WM ) brings the constraint closest to zero

in the metric associated with the scalar product defined by WM . A simple example of the
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weight matrix WM is the identity matrix, which treats all constraints equally. Another

example of the weighting matrix is to weight each market type differently, according to the

number of observations each type has.

The structural parameters are consistent and asymptotically normal with regular-

ity conditions and consistency and asymptotical normality of the CCPs and transition func-

tion estimated in the first-step. If the cardinality of the latent variable is known, CCPs and

transition function are estimated through matrix algebra following eigenvalue-eigenvector

decomposition. Given that eigenvalues and eigenvectors can be represented as an analytic

expression from the elements of the associated matrix (Andrew, Chu, and Lancaster (1993)),

CCPs and transition function are consistently estimated and are asymptotical normal in

the first step. Therefore, the least square estimators for the structural parameters are

consistently estimated and asymptotical normal with the regularity conditions provided in

Pesendorfer and Schmidt-Dengler (2008)

Hypothesis testing The fact that we can identify the parameter for each possible value of

the latent variable τ = {η, e∗} provides a testable implications for us to distinguish whether

two values of τ are just two equilibria associated with the same market type, or two different

market types. For notation simplicity purpose, I denote the two θ as θ1 and θ2 and the

estimators as θ̂1 and θ̂2. Specifically, if we conduct the following hypothesis:

H0 : θ1
0 = θ2

0

against the alternative

H1 : θ1
0 6= θ2

0

then the two τs belong to the same market-type if we fail to reject the null hypothesis

92



H0, otherwise we conclude that the two τs represent two different market types. The

asymptotical properties of the two estimators are as follows:

1

M
(θ̂iM − θi0)→d N(0,Σi) i = 1, 2

Thus, under the null, I construct the following statistic:

T = M(θ̂1
M − θ̂2

M )T ̂var(θ̂1
M − θ̂2

M )
−1

(θ̂1
M − θ̂2

M )→d χ
2(k)

where ̂var(θ̂1
M − θ̂2

M ) is a estimate of the covariance of θ̂1
M − θ̂2

M , which in practical can be

computed through bootstrap.

4.5 Monte Carlo Evidence

This section investigates the finite sample property of the proposed simple estima-

tors in a Monte Carlo study. To make thing simple, I consider a simple dynamic oligopoly

game with multiple equilibria. The methodology proposed in this paper nests this sim-

ple example. The game was illustrated and analyzed in more detail in Pesendorfer and

Schmidt-Dengler (2008). The same game is also analyzed in Pesendorfer and Takahashi

(2012).

Consider a setting with two players, binary actions {0, 1} and binary states {0, 1}.

Consider an infinite horizon game with two players and choose entry/exit. The specification

is as following: the distribution of the profitability shocks F is standard normal. The

discount rate is fixed at 0.9. The state transition law is given by st+1
i = ati. Period pay-offs
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are symmetric and are parameterized as follows:

πai,aj ,si =



0, if ai = 0;si = 0;

x, if ai = 0;si = 1;

π1 + c, if ai = 1;aj = 0;si = 0;

π2 + c, if ai = 1;aj = 1;si = 0;

π1, if ai = 1;aj = 0;si = 1;

π2, if ai = 1;aj = 1;si = 1.

where x = 0.1, c = −0.2, π1 = 1.2 and π2 = −1.2. The period payoff can be viewed as

switching costs as entry/exit in a dynamic game. A player that selects action 1 receives

monopoly profits if she is the only active player, and she receives duopoly profits otherwise.

In addition, a player that switches states from 0 to 1 incurs the reactivated c; while a player

that switches from 1 to 0 receives the exit value x.

Multiplicity. The game illustrates that multiple equilibria are present. There are five equi-

libria theoretically but this Monte Carlo illustration focuses on two asymmetric equilibria of

the three equilibria described in Pesendorfer and Schmidt-Dengler (2008). In equilibrium (i),

player two is more likely to choose action 0 than player one in all states. The ex ante proba-

bility vectors for both players are given by: σ(a1 = 0|s1, s2) = (0.27; 0.39; 0.20; 0.25)′, σ(a2 =

0|s1, s2) = (0.72; 0.78; 0.58; 0.71)′ where the order of the elements in the probability vectors

corresponds to the state vector (s1, s2) = ((00); (01); (10); (11)). In equilibrium (ii), player

two is more likely to choose action 0 than player one in all states with the exception of state

(1 0). The probability vectors are given by σ(a1 = 1|s1, s2) = (0.38; 0.69; 0.17; 0.39)′, σ(a2 =

0|s1, s2) = (0.47; 0.70; 0.16; 0.42)′.

The Monte Carlo study considers estimation of the game primitives. The simu-
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lated data are generated by randomly drawing a time series of actions from the calculated

equilibrium choice probabilities described above for each of the equilibria (i)-(ii) respec-

tively. The initial state is taken as the four different states with a equal probability of 0.25.

Given that the asymptotic property of the estimators relies on the number of markets goes

to infinity and identification requires four periods of data, I varies the number of markets

while keep the length of the time series as four during all the simulation. The parameter λ

denotes the fraction of markets that adopt equilibrium (i) while 1− λ denotes the fraction

of markets that adopt equilibrium (ii).

The cardinality is estimated through a sequential tests on the rank of the matrix

constructed by joint distributions of four periods of data. From figure C.1, the estimator is

consistent since the frequency of accept the null that the cardinality equals to two approaches

1 when the sample size increases. Estimation of law of motion is converging to the true but

slowly.

4.6 Conclusion

I have developed a methodology to nonparametrically identify finite action games

with incomplete information allowing for the presence of multiple equilibria and unobserved

heterogeneity. The main contribution of this paper is to present conditions under which all

aspects of the game can be uniquely recovered. Specifically, the cardinality of the overall

latent factors can be identified nonparametrically. The law of motion and CCPs which

are latent factor variant can also be uniquely recovered. With CCPs and transition func-

tions identified, the payoffs can be nonparametrically identified with exclusion restrictions.

Disentangling equilibria and unobserved heterogeneity can be obtained from testing payoffs.
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The estimation follows identification step-by-step. For parameterized payoff func-

tions, the structural parameters are proposed to be estimated from minimizing the distance

of CCPs and its best response. However, there are other alternatives developed to increase

estimation efficiency of the one proposed here in this paper such as sequential estimation by

Aguirregabiria and Mira (2007) and Egesdal, Lai, and Su (2013). With the identification

conditions satisfied, a future research direction will be to incorporate existing estimation

method into the settings to allow for both multiple equilibria and unobserved heterogeneity.
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Chapter 5

Conclusion

This dissertation mainly is composed by three papers, studying point identification

of static games with multiple equilibria only, set identification of static games with both

multiple equilibria and unobserved heterogeneity and point identification of dynamic games

with both multiple equilibria and market level unobserved heterogeneity. The identification

uses results from measurement error literature by treating either equilibria and/or market

latent types as a latent variable.

Chapter 2 of this dissertation tackles the problem of multiple equilibria in static

game settings in both cross-sectional and panel data structure. If cross-section data is

available, the traditional assumption that private payoff shocks are independent across

actions and players plays an important role in identification. When panel data is available,

the key condition is that the equilibrium employment evolves according to a first-order

Markov process. Identification of payoff is exactly the same as the case with cross-sectional

data. Empirical application provides evidence that multiple equilibria do exist in the game

where radio stations strategically determine when to air their commercials.
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Chapter 3, as an natural extension of Chapter 2, incorporates unobserved market-

level heterogeneity into the identification. However, without being able to disentangle equi-

libria and the payoff relevant-unobserved market types, it is impossible to uniquely recover

the payoffs. As a result, Chapter 3 provides partial identification of the parameterized

payoff functions.

Chapter 4 is to study the identification in dynamic games where multiple equilib-

ria are prevalent and unobserved heterogeneity is empirically important. With imposing

assumption such as the same equilibrium is employed in the data, I show that the cardi-

nality of overall latent factors can be uniquely recovered, so does the law of motion. With

CCPs associated with the overall latent factors, payoffs can be nonparametrically identified

with exclusion restrictions for each value of the overall latent factor. Consequently, one can

distinguish between multiple equilibria and unobserved-market types from comparing the

payoff functions. Specifically, multiple equilibria map with the same payoff functions while

unobserved-market types are associated with different level of payoffs. As a byproduct, the

equilibrium selection and the marginal distribution of the market-type can be identified.

This dissertation mainly focus on identification, and estimation simply follows the

constructive identification procedure. However, the nonparametric estimation of equilibrium

related components requires a very rich data, which sometimes is not available. Moreover,

the payoff estimators are from the minimal distance of CCPs and its best response, which

are also not necessarily efficient. Thus, a potential future research avenue will be developing

or incorporate existing estimation technique to do estimation and provide inferences.

Multiple equilibria are generic feature in games. Addressing multiplicity of equi-

libria is important to obtain consistent estimation of the underlying game structures given
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the widely usage of games to analyze strategic interactions between players. For instance,

games where the actions of players are continuous. When the actions of players are con-

tinuous, it provides more identification power given that the first step identification comes

from the variation of actions. Moreover, when actions are continuous, the full rank condi-

tions might be not that restrictive since now we can reposition the action space with lots

of ways. The infinite ways of partition increase the possibility with which we might get one

particular partition that full rank condition satisfied.
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Appendix A

Appendix to Chapter 2

A Proofs

Proof of Lemma 2.3 Based on conditional independent assumptions, the joint distribu-

tion of actions from two players can be expressed as:

Pr(a1, a2) =
∑
e∗

Pr(a1|e∗) Pr(a2|e∗) Pr(e∗)

Rewrite it into a matrix form:

Fa1,a2 = Aa1|e∗DA
T
a2|e∗

With assumptions that (K + 1)l > Q and full rank of both matrices Aa1|e∗ and Aa2|e∗ , then

according to the following inequality regarding the rank of matrix Fa1,a2 :

Rank(Aa1|e∗) +Rank(Aa2|e∗)−Q ≤ Rank(Fa1,a2) ≤ min{Rank(Aa1|e∗), Rank(Aa2|e∗)}(A.1)

I conclude that Rank(Fa1,a2) = Q.

Proof of Lemma 2.4 Matrix A is with dimension of K+1×K+1, and rank of matrix A

equals Q. without loss of generality, assume that K = Q and denoted A as [a1..., aQ, aQ+1]
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where ai are row vectors. Since rank(A) = Q, among the Q + 1 column vectors, there

at least exists Q of them that are linearly independent. Again, w.l.o.g, assume a1, ...., aQ

are linearly independent. By the definition of linear independence, there exists a series of

λ1, ....λQ such that

aQ+1 = λ1a1 + λ2a2 + ....+ λQaQ

where there must exist a λi 6= 0. Moreover, λi > 0 because a1, ...., aK are all positive by

the nature of probability. Next I prove that partitioning row vector i and Q + 1 to be

a new group results in a linear independent Q vectors. That is, the new Q row vectors

a1, a2, ..., ai +aQ+1, ai+1, ..., aQ are linearly independent. To prove the linear independence,

we need to prove that for any η1, ..., ηQ satisfying

η1a1 + η2a2 + ...+ ηi(ai + aQ+1) + ...+ ηQaQ = 0

we have η1 = η2 = ... = ηQ = 0. Plug aQ+1 = λ1a1 + λ2a2 + .... + λQaQ back into above

equation, leading to:

(η1 + ηiλ1)a1 + (η2 + ηiλ2)a2 + ...+ ηi(1 + λi)ai + ...+ (ηQ + ηiλQ)aQ = 0

Given that a1, ...., aQ are linearly independent, all the linear coefficients of the above linear

combination should equal zero. Thus, ηk + ηiλk = 0,∀k = 1, ..., Q and ηi(1 +λi) = 0. Given

that λi > 0 by assumption, ηi(1 + λi) = 0 implies that ηi = 0. Then ηk = 0 for k = 1, ...Q.

Thus, a1, a2, ..., ai + aQ+1, ai+1, ..., aQ are linear independent.

Proof of Lemma 2.6 With eigenvalue-eigenvector decomposition, matrix Da3=k|e∗ and

Aã1|e∗ are identified. Varying actions a3 for player 3, the main equation holds with the same

matrix Aã1|e∗ . Thus, I do not have to go through eigenvalue-eigenvector decomposition to
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obtain other Da3|e∗ when a3 6= k. For actions other than k that player 3 might select, Da3|e∗

can be identified through

Da3|e∗ = A−1
ã1|e∗Fã1,ã2,a3=kF

−1
ã1,ã2

Aã1|e∗

Now I continue to identify the equilibrium selection mechanism, which essentially is the

diagonal elements in diagonal matrix D. Similarly, I have Pr(ã1) =
∑

Pr(ã1|e∗) Pr(e∗) with

matrix representation Fã1 = Aã1|e∗De∗ . Thus, the equilibrium selection mechanism can be

identified through De∗ = A−1
ã1|e∗Fã1 .

For player 1, Aã1|e∗ is identified as eigenvectors of the decomposition, but we are

interested in Aa1|e∗ . From the joint distribution of a1 and g2, we have:

Fa1,ã2 = Aa1|e∗De∗A
T
ã2|e∗

Since De∗ and ATã2|e∗ are identified and invertible, then Aa1|e∗ is identified. Aa2|e∗ can be

identified in the same procedure.

Proof of Theorem 2.11 With the first-order Markov process assumption on the equi-

librium evolution and total probability, the joint distribution of three periods of data can

be represented as:

Pr(at+2, at+1, at) =
∑

e∗t ,e
∗
t+1,e

∗
t+2

Pr(at+2, e
∗
t+2, at+1, e

∗
t+1, at, e

∗
t )

=
∑

e∗t ,e
∗
t+1,e

∗
t+2

Pr(at+2|e∗t+2) Pr(e∗t+2|e∗t+1) Pr(at+1|e∗t+1) Pr(e∗t+1, e
∗
t ) Pr(at|e∗t )

=
∑

e∗t ,e
∗
t+1

Pr(at+2|e∗t+1) Pr(at+1|e∗t+1) Pr(at|e∗t ) Pr(e∗t+1, e
∗
t )

=
∑
e∗t+1

Pr(at+2|e∗t+1) Pr(at+1|e∗t+1) Pr(at|e∗t+1) Pr(e∗t+1)

where Pr(al|e∗t+1) represents the probability of the players choosing action al in period l

when the equilibrium chosen in period t is e∗t+1; Pr(e∗t+1) is the fraction of markets that
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employ equilibrium e∗t+1 at period t+1, i.e., the equilibrium selection mechanism. The above

equation holds because the only dynamic across time is through the transition of equilibria,

so here we do not require the private information to be independent across different players.

Summing over at+1 yields

Pr(at+2, at) =
∑
e∗t+1

Pr(at+2|e∗t+1) Pr(at|e∗t+1) Pr(e∗t+1)

Given that the number of equilibria is identified, partition the (K + 1)n alternatives into

a Q alternative according to lemma 3, and denote as ξτ = {bτ1, ...., bτQ} for τ = t, t + 2

so that the matrix Fξt+2,ξt defined accordingly is invertible. Matrix representation for the

joint probability distribution equations with the following matrices definitions, we have

Fξt+2,ξt = Aξt+2|e∗t+1
DATξt|e∗t+1

(A.2)

Fξt+2,ξt,at+1=k = Aξt+2|e∗t+1
Dat+1=k|e∗t+1

DATξt|e∗t+1
(A.3)

Since matrix Fξt+2,ξt is invertible, I can post-multiply A−1
ξt+2,ξt

into both sides of equation

A.3, leading to the following main equation.

Fξt+2,ξt,at+1=kF
−1
ξt+2,ξt

= Aξt+2|e∗t+1
Dat+1=k|e∗t+1

A−1
ξt+2|e∗t+1

(A.4)

With the distinctive eigenvalues assumption stated below, the Pr(at+1 = k|e∗) is identified

as eigenvalues of matrix Fξt+2,ξt,at+1=kF
−1
ξt+2,ξt

.

Assumption A.1. (Distinctive Eigenvalues) there exists one choice k in period t+ 1, i.e.,

at+1 = k that for any two equilibria, i 6= j, Pr(at+1 = i|e∗t+1 = q) 6= Pr(at+1 = i|e∗ = k) the

probability of this action taken under different equilibria is different.

Like the proof in proposition 1, all the CCPs in different equilibria can be identified.
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Since Pr(at+1|e∗t+1) is a joint distribution for the n players, CCPs for individual players

Pr(ait+1|e∗t+1
) can be identified by summing over a−it+1 on Pr(at+1|e∗t+1).

In addition, the equilibrium evolution probability satisfies the following equation:

Pr(ξt+2|e∗t+1) =
∑
e∗t+2

Pr(ξt+2, e
∗
t+2|e∗t+1) =

∑
e∗t+2

Pr(at+2|e∗t+2) Pr(e∗t+2|e∗t+1)

where Pr(e∗t+2|e∗t+1) represents the probability of equilibrium e∗t+2 chosen in period t + 2

when the equilibrium in period t+1 is e∗t+1, i.e., the equilibria evolution. Also Pr(ξt+2|e∗t+2)

is identified as eigenvectors of the decomposition with normalization by column sum equals

to 1, and Pr(at+2|e∗t+2) is the same as Pr(at+1|e∗t+1). Rewrite them into matrix form so that

the equilibrium evolution process is identified.

B Asymptotic Properties of the Estimators

This section discusses the consistency and asymptotic normality of estimators.

Since relevant proofs are standard in the literature, I just point to the relevant literature

for reference. First I present that the rank of a generic matrix estimated from a sequential

testing is consistent. Then I provide conditions that equilibrium CCPs and the structural

parameters are consistently estimated. And briefly discuss the post-selection inference.

If the number of equilibria is known, then the CCP can be estimated through

eigenvalue eigenvector decomposition of the matrix constructed by joint distribution of

players. The rest of CCPs can be estimated through matrix algebra. As in Andrew,

Chu, and Lancaster (1993), eigenvalues and eigenvectors can be represented as an analytic

function of the elements consisting of the matrix for the decomposition. Thus, the CCPs

are consistently estimated and asymptotically normal, which I state in the following: there
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exists a sequence of estimator p̂m of p such that

p̂M → p(θ0), a.s

√
M(p̂M − p(θ0))→d N(0, σ(θ0))

To prove the asymptotical normality of the structural parameter estimators in the

second step, CCPs estimators in the first step needs to be consistent and asymptotical nor-

mal distributed(Pesendorfer and Schmidt-Dengler (2008)). With the CCPs of consistency

and asymptotical normality, assumptions needed for asymptotical properties of structural

estimators are stated in the following:

A1: Θ is a compact set.

A2: the true value θ is in the interior of Θ

A3: as M →∞, WM →W0 a.s. where W0 is a non-stochastic positive definite matrix.

A4: θ satisfies [σ(θ0)− Γ(σ(θ0))]′W0[σ(θ0)− Γ(σ(θ0))] = 0 implies that θ = θ0

A5: the functions π are twice continuously differentiable in θ.

A6: the matrix [∇θΓ(σ(θ0))]′W0[∇θΓ(σ(θ0))] is non-singular

Assumptions A1-A3, A5, and A6 are standard technical conditions to ensure the problem

is well behaved. Assumption A4 ensures that the parameter vector is identified.

When the number of equilibria is unkonwn, it can be estimated through a sequen-

tial testing. The null hypothesis of the test is that the rank of the corresponding matrix

equals to be predetermined number. Note that if the critical value associated with the

significant level α is set to be a constant, then the rank estimated through this testing

procedure is not consistent. The reason is that the testing procedure rejects the true with

probability α even as the sample size goes to infinity. To obtain consistent estimates for the
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rank, the critical value is chosen associated with a sample dependent significant level in a

way that αN goes to zero as the sample size N goes to infinity but not faster than a given

rate. Hosoya (1989) shows that if αN goes to zero as the sample size N goes to infinity and

also limN→∞
lnαN
N = 0, then the rank estimate provided by the sequential testing procedure

will converge in probability to the true rank.

One thing worth noting is that that the estimation of the number of equilibria

serves as a model selection procedure. When we obtain the number of equilibria differing

from the true one, it is hard to explain the CCPs estimated in the next step. With the

model selection, the structural parameters have properties that are different from what is

conventionally assumed. To better understand the asymptotical property of the parameters,

one must take the model selection step into account. Moreover, because there is only one

correct model, the sampling distribution of the estimated parameters can include estimates

from incorrect models as well as the correct one. The sampling distribution of the structural

parameters is a mixture of two distributions, and such mixtures can depart dramatically

from the distributions that conventional statistical inference assumes.

Post-model selection sampling distributions can be highly non-normal, very com-

plex, and with unknown finite sample properties even when the model responsible for the

data happens to be selected. There can be substantial bias in the regression estimates,

and conventional tests and confidence intervals are undertaken at some peril. The most

effective solution is to have two random samples from the population of interest: a training

sample and a test sample. The training sample is used to arrive at a preferred model. The

test sample is used to estimate the parameters of the chosen model and to apply statistical

inference. For the test sample, the model is known in advance. When there is one sample,
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an option is to randomly partition that sample into two subsets-split-sample approach (see

Berk, Brown, and Zhao (2010))

Note that the number of equilibria is determined through a sequence test, thus

here I derive the asymptotical distribution of the post-selection estimators. Denote the true

number of equilibria and the true structural parameters as Q0 and θ0 respectively. Let

Q̂m denote the first step estimator of Q0, and the post-selection estimator of θ̂m, then the

asymptotical distribution of θ̂m can be represented as:

Pr{m
1
2 (θ̂m − θ0)|Q0} =

∑
Q

Pr{m
1
2 (θ̂m − θ0), Q̂m = Q|Q0}

= Pr{m
1
2 (θ̂m − θ0), Q̂m = Q0|Q0}+ Pr{m

1
2 (θ̂m − θ0), Q̂m 6= Q0|Q0}

= Pr{m
1
2 (θ̂m − θ0)|Q̂m = Q0, Q0}Pr{Q̂m = Q0|Q0}

+Pr{m
1
2 (θ̂m − θ0)|Q̂m 6= Q0, Q0}Pr{Q̂m 6= Q0|Q0}

Since I use sequential test to obtain the estimator of Q̂m, the number of equilibria is consis-

tently estimated, i.e. Pr{Q̂m = Q0|Q0} = 1− αm where αm → 0 as m→∞. Equivalently,

the probability of choosing the wrong number of equilibria goes to zero as the sample size

goes to infinity, i.e., limm→∞Pr{Q̂m 6= Q0|Q0} = 0. Consequently, the asymptotic distribu-

tion of the post-selection estimator θ̂m can be obtained by the asymptotic distribution of the

conditional distribution of selecting the correct model. Note that if we use the same sample

to do the test and the estimation, then the selection process and the post-selection estimator

are not independent, i.e. Pr{m
1
2 (θ̂m − θ0)|Q̂m = Q0, Q0} 6= Pr{m

1
2 (θ̂m − θ0)|Q0}. Asymp-

totically independent between selection and estimation requires extra conditions, which is

out of scope in this paper. In finite samples, selection and estimation are dependent be-

cause the estimation is based on the selection and sometimes the wrong number of equilibria
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might be chosen. As a result, the post-selection sample is different from the sample that we

already know the true number of equilibria. However, if we have two independent samples

where we can use one to do the test and the other one to do the estimation, then we have

Pr{m
1
2 (θ̂m − θ0)|Q̂m = Q0, Q0} = Pr{m

1
2 (θ̂m − θ0)|Q0}. Consequently, the asymptotic

distribution of the post-selection estimator θ̂m can be represented as:

limm→∞Pr{m
1
2 (θ̂m − θ0)|Q0} = Pr{m

1
2 (θ̂m − θ0)|Q0}

where Pr{m
1
2 (θ̂m−θ0)|Q0} is asymptotically normal with regular conditions. Consequently,

asymptotic normality is obtained using split-sample approach.

C Graphs and Tables

This section includes all the graphs and tables mentioned in the paper.

Figure A.1: The Best Response Function for Different Values of s
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Figure A.2: Frequency of Selecting the True Number of Equilibria
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Table A.1: Monte Carlo Evidence: Cross-sectional Data

x=1 x=2 x=3 x=4
DGP Est DGP Est DGP Est DGP Est

Qs 2 - 2 - 2 - 1 -
σ(a = 0|s, e∗ = 1) 0.1593 0.1594 0.1780 0.1784 0.2053 0.2053 n/a

(0.012) (0.014) (0.012)
σ(a = 0|s, e∗ = 2) 0.8671 0.8673 0.8772 0.8773 0.8859 0.8857 0.8936 0.8934

(0.013) (0.0112) (0.0213) (0.004)
Pr(e∗) 0.5 0.5004 0.5 0.4994 0.5 0.4995 0 0

(0.017) (0.018) (0.018) (0)
1 The number in brackets is the standard deviation computed through bootstrap with 500 repetition
2 Sample size of each market type is 1200

Table A.2: Monte Carlo Evidence: Model Primitives

DGP Cross-section Panel data
Unique Eq Multiple Eq Unique Eq Multiple Eq

Strategic Interaction δ 2.5 2.8245 2.5054 2.2762 2.5088
(0.0405) (0.0190) (0.0433) (0.0444)

Market Effect β 0.04 -0.0236 0.0398 0.0093 0.0395
(0.0056) (0.0048) (0.0071) (0.0094)

1 The number in brackets is the standard deviation computed through bootstrap with 500
repetition

2 Sample size of each market type is 1200
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Table A.3: Monte Carlo Evidence: Panel Data

x=1 x=2 x=3 x=4
DGP Est DGP Est DGP Est DGP Est

Qs 2 - 2 - 2 - 1 -
σ(a = 0|s, e∗ = 1) 0.1593 0.1605 0.1780 0.1799 0.2053 0.2083 n/a

(0.017) (0.018) (0.014)
σ(a = 0|s, e∗ = 2) 0.8671 0.8581 0.8772 0.8733 0.8859 0.8765 0.8936 0.8936

(0.0322) (0.017) (0.028) (0.004)

Pr(e∗ = 2|e∗ = 1) 0.1 0.094 0.25 0.231 0.3 0.287
(0.027) (0.045) (0.042)

Pr(e∗ = 2|e∗ = 2) 0.8 0.826 0.85 0.865 0.9 0.931
(0.050) (0.031) (0.046)

1 The number in brackets is the standard deviation computed through bootstrap with 500 repetition
2 Sample size of each market type is 1200

Figure A.3: Timing Patterns for Commercials across Markets�������������	
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Table A.4: Summary Statistics

Variable Obs Mean std. Dev Min Max
No. Players 108554 12.93453 3.174468 2 20

Timing 108554 .4985537 .5000002 0 1
Day 108554 31.42016 17.56653 1 59
Hour 108554 16.46269 3.153961 12 21

Market(big=1) 108554 .5168672 .4997177 0 1
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Figure A.4: Timing Patterns for Commercials in Different Markets�������������	��
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Table A.5: Estimates of Commercial Airing Strategies with Cross-sectional Data

Market Size Time
All market Big Small Drivetime Non-drivetime

4-5 PM 5-6 PM 12-1 PM 9-10PM
Qs 2 1 2 2 2 1 1

Pr(e∗ = 1) 0.2846 1 0.2732 0.3307 0.4192 1 1
(0.1293) - (0.1230) (0.1191) ( 0.1275) - -

Pr(a = 0|e∗ = 1) 0.6565 0.5061 0.6582 0.6841 0.6687 0.5203 0.4921
(0.1875) (0.0099) (0.1171) (0.2206) (0.2139) (0.0043) (0.0043)

Pr(a = 0|e∗ = 2) 0.4288 - 0.4287 0.3974 0.3700 - -
(0.0630) - (0.0498) (0.0884) (0.1107) - -

α -0.0055 -0.0242 -0.0056 -0.0092 -0.0051 -0.0811 0.0316
(0.3258) (0.0389) (0.1007) (0.3019) (0.2197) (0.0172) (0.0172)

δ 2.0520 0 2.0532 2.0736 2.0665 0 0
(0.3147) - (0.1089) (0.2844) (0.1999) - -

1 The number in brackets is the standard deviation computed through bootstrap with 500 repetition
2 For markets with unique equilibrium, δ is assumed to be zero
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Table A.6: Estimates of Commercial Airing Strategies with Panel Data

Market Size Time
All Market Big Small Drivetime Non-drivetime

4-5 PM 5-6 PM 12-1 PM 9-10PM
Qs 2 1 2 2 2 1 1

Pr(e∗t+1 = 1|e∗t = 1) 1.0000 1 1.0000 1.0000 1.0000 1 1
(0.0192) - ( 0.4311) ( 0.0814) (0.0485) - -

Pr(e∗t+1 = 2|e∗t = 2) 0.8714 - 0.9777 0.8749 0.9239 - -
(0.0192) - (0.4076) (0.0959) (0.0908) - -

Pr(a = 0|e∗ = 1) 0.5612 0.5116 0.6576 0.5769 0.6434 0.5096 0.4975
(0.0234) (0.0085) (0.1523) (0.0384) (0.0414) (0.0084) (0.0084)

Pr(a = 0|e∗ = 2) 0.3617 - 0.4382 0.3037 0.3785 - -
(0.0371) - (0.0608) (0.0719) (0.0304) - -

α 0.0037 -0.0465 -0.0053 0.0108 -0.0022 -0.0383 0.0102
(0.0152) (0.0340) (0.0622) (0.0195) (0.0301) (0.0336) (0.0338)

δ 2.0402 0 2.0055 2.0860 2.0500 0 0
(0.0336) - ( 0.0719) (0.2401) (0.0335) - -

1 The number in brackets is the standard deviation computed through bootstrap with replacement, with 500 repetition
2 For markets with unique equilibrium, β is assumed to be zero
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Appendix B

Appendix to Chapter 3

A Graphs and Tables

Figure B.1: The CCPs associated with different unobserved heterogeneity
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Figure B.2: The CCPs associated with different unobserved heterogeneity

1 *
Pr( k | , , )

i
a x x eη= =

η

A

1η = 2η =

B

2 *
Pr( k | , , )

i
a x x eη= =

η

A

B

1η = 2η =

113



Figure B.3: The CCPs associated with different unobserved heterogeneity

Table B.1: Estimates of CCPs for different x

x = 1 x = 2 x = 3 x = 4
η = 0 η = 1 η = 0 η = 0.5 η = 0 η = 0.5 η = 0 η = 0.5

true .159 .460 .939 .178 0.417 .942 .205 .945 .89 .948
m = 800 .167 .571 .962 .192 0.559 .956 .199 .945 .730 .940

(.114) (.168) (.044) (.101) (.186) (.034) (.063) (.010) (.287) (.161)
m = 1000 .162 .560 .963 .187 .560 .962 .206 .945 .760 .941

(.101) .156 (.032) (.097) (.194) (.029) (.059) (.009) (.285) (.181)
m = 1500 .162 .547 .955 0.175 .525 .958 .202 .945 .768 .943

(.089) (.108) (.029) (.093) (.179) (.031) (.042) (.007) (.264) (.157)
m = 3000 .147 .491 .949 .177 .502 .953 .207 .946 .806 .955

(.062) (.086) (.022) (.075) (.153) (.024) (.035) (.005) (.191) (.097)
m = 5000 .160 .487 .945 .172 .460 .946 .207 .946 .812 .961

(.061) (.070) (.017) (.064) (.104) (.017) (.030) (.004) (.187) (.035)
1 The number in brackets is the standard deviation computed through bootstrap with 500 repetition
2 For markets with unique equilibrium, δ is assumed to be zero
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Appendix C

Appendix to Chapter 4

A Proofs
Proof of Lemma 4.3 {wt, ηt} follows a first-order Markov Chain.

Pr(wt, ηt|wt−1, ηt−1,Ω<t−1)

= Pr(at, xt, ηt|at−1, xt−1, ηt−1,Ω<t−1)

= Pr(at|xt, ηt, at−1,Ω<t−1) Pr(xt|ηt, xt−1, ηt−1, at−1,Ω<t−1) Pr(ηt|xt−1, ηt−1, at−1,Ω<t−1)

= Pr(at|xt, ηt, at−1) Pr(xt|ηt, xt−1, at−1) Pr(ηt|xt−1, ηt−1, at−1)

= Pr(at, xt, ηt|xt−1, ηt−1, at−1)

= Pr(wt, ηt|wt−1, ηt−1)

The third equality holds because of assumption 1 and the Markov perfect equilibrium as-
sumption. In a given market, I can express the joint distribution of three periods of data
as follows:

Pr(wt+2, wt+1, wt) =
∑
ηt+1

Pr(wt+2|wt+1, ηt+1) Pr(wt+1, wt|ηt+1) Pr(ηt+1) (A.1)
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In a given market, the joint distribution of four periods of observables can be represented
as follows:

Pr(wt+3, wt+2, wt+1, wt) (A.2)

=
∑

ηt+2,ηt+1

Pr(wt+3, wt+2, ηt+2, wt+1, ηt+1, wt)

=
∑

ηt+2,ηt+1

Pr(wt+3|wt+2, ηt+2) Pr(wt+2, ηt+2|wt+1, ηt+1) Pr(wt+1, ηt+1, wt)

=
∑

ηt+2,ηt+1

Pr(wt+3|wt+2, ηt+2) Pr(wt+2|ηt+2, wt+1, ηt+1) Pr(ηt+2|wt+1, ηt+1) Pr(wt+1, ηt+1, wt)

=
∑

ηt+2,ηt+1

Pr(wt+3|wt+2, ηt+2) Pr(wt+2|ηt+2, wt+1) Pr(ηt+2|wt+1, ηt+1) Pr(wt+1, ηt+1, wt)

=
∑

ηt+2,ηt+1

Pr(wt+3|wt+2, ηt+2) Pr(wt+2|ηt+2, wt+1) Pr(ηt+2, wt+1, ηt+1, wt)

=
∑
ηt+2

Pr(wt+3|wt+2, ηt+2) Pr(wt+2|ηt+2, wt+1)
∑
ηt+1

Pr(ηt+2, wt+1, ηt+1, wt)

=
∑
ηt+2

Pr(wt+3|wt+2, ηt+2) Pr(wt+2|ηt+2, wt+1) Pr(wt+1, wt, ηt+2) (A.3)

Proof of Lemma 4.6 With the cardinality of unobserved factor Q×L identified, I parti-
tion the space of wt+3 and wt into Q×L. Fixing wt+2 and wt+1, matrix Fwt+3,wt+2,wt+1,wt de-
fined as below constructed is invertible. As a result, matricesAwt+3|wt+2,τt+2

andBwt+1,wt,τt+2

are also invertible. Evaluating the joint distribution of four periods of data at four pairs
of points (wt+2, wt+1), (w̄t+2, wt+1), (wt+2, w̄t+1), (w̄t+2, w̄t+1), each pair of equations will
share one matrix in common. Specifically,

(wt+2, wt+1) : Fwt+3,wt+2,wt+1,wt = Awt+3|wt+2,τt+2
Dwt+2|wt+1,τt+2

Bwt+1,wt,τt+2 (A.4)

(w̄t+2, wt+1) : Fwt+3,w̄t+2,wt+1,wt = Awt+3|w̄t+2,τt+2
Dw̄t+2|wt+1,τt+2

Bwt+1,wt,τt+2 (A.5)

(wt+2, w̄t+1) : Fwt+3,wt+2,w̄t+1,wt = Awt+3|wt+2,τt+2
Dwt+2|w̄t+1,τt+2

Bw̄t+1,wt,τt+2 (A.6)

(w̄t+2, w̄t+1) : Fwt+3,w̄t+2,w̄t+1,wt = Awt+3|w̄t+2,τt+2
Dw̄t+2|w̄t+1,τt+2

Bw̄t+1,wt,τt+2 (A.7)

Matrices Awt+3|wt+2,τt+2
and Bwt+1,wt,τt+2 are invertible by construction. Assume that

Pr(wt+2|wt+1, τt+2) is positive for every combination of wt+2 and wt+1, so matrixDwt+2|wt+1,τt+2

is also invertible. Consequently, we can post-multiply inverse of equation A.5 to equation
A.4, to obtain:

Y ≡ Fwt+3,wt+2,wt+1,wtF
−1
wt+3,w̄t+2,wt+1,wt = Awt+3|wt+2,τt+2

Dwt+2|wt+1,τt+2
D−1
w̄t+2|wt+1,τt+2

A−1
wt+3|w̄t+2,τt+2

(A.8)

Similarly,

Z ≡ Fwt+3,w̄t+2,w̄t+1,wtF
−1
wt+3,wt+2,w̄t+1,wt = Awt+3|w̄t+2,τt+2

Dw̄t+2|w̄t+1,τt+2
D−1
wt+2|w̄t+1,τt+2

A−1
wt+3|wt+2,τt+2

(A.9)
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Consequently, I postmultiply Eq. A.8 by Eq. A.9, leading to

Y Z = Awt+3|wt+2,τt+2

(
Dwt+2|wt+1,τt+2

D−1
w̄t+2|wt+1,τt+2

Dw̄t+2|w̄t+1,τt+2
D−1
wt+2|w̄t+1,τt+2

)
A−1
wt+3|wt+2,τt+2

≡ Awt+3|wt+2,τt+2
Dwt+2,w̄t+2,wt+1,w̄t+1|τt+2

A−1
wt+3|wt+2,τt+2

where (A.10)

Dwt+2,w̄t+2,wt+1,w̄t+1|τt+2
= Dwt+2|wt+1,τt+2

D−1
w̄t+2|wt+1,τt+2

Dw̄t+2|w̄t+1,τt+2
D−1
wt+2|w̄t+1,τt+2

=
Pr(wt+2|wt+1, τt+2)Pr(w̄t+2|w̄t+1, τt+2)

Pr(w̄t+2|wt+1, τt+2)Pr(wt+2|w̄t+1, τt+2)

≡ C(wt+2, w̄t+2, wt+1, w̄t+1|τt+2)

Equation A.10 results in a eigenvalue-eigenvector decomposition for observed matrix Y Z,
with eigenvectors corresponding to the matrix Awt+3|wt+2,τt+2

and the eigenvalues corre-
sponding to matrix Dwt+2,w̄t+2,wt+1,w̄t+1|τt+2

.
Evaluating wt+2 to another value w̄t+2, I can obtain another matrix expression

that share the common term Bwt+1,wt,τt+2 with equation 4.3. By the same logic, changing
the value of w̄t+1, evaluating wt+2 in two different values results in two matrix equations
sharing the common term Bw̄t+1,wt,τt+2 . Using this feature, manipulation over these four
matrix expression leads to a matrix eigen-decomposition expression.

Proof of Lemma 4.8: Identification of Law of Motion Again, with four periods of
data, the joint distribution of observables can be expressed to be factorized as the compo-
nents that we want to identify in the followings:

Pr(wt+3, wt+2, wt+1, wt) =
∑
τt+2

Pr(wt+3|wt+2, τt+2) Pr(wt+2, τt+2, wt+1, wt) (A.11)

Pr(wt+2, τt+2, wt+1, wt) =
∑
τt+1

Pr(wt+2, τt+2, wt+1, τt+1, wt)

=
∑
τt+1

Pr(wt+2, τt+2|wt+1, τt+1) Pr(wt+1, τt+1, wt) (A.12)

Fixed wt+2 = w̄t+2 and wt+1 = w̄t+1 and rewrite above equations into similar matrix format
defined at the beginning:

Fwt+3,wt+2,wt+1,wt = Awt+3|w̄t+2,τt+2
Bw̄t+2,τt+2,w̄t+1,wt (A.13)

Bw̄t+2,τt+2,w̄t+1,wt = Aw̄t+2,τt+2|w̄t+1,τt+1
Aw̄t+1,τt+1,wt (A.14)

Consequently, we have:

Fwt+3,wt+2,wt+1,wt = Awt+3|w̄t+2,τt+2
Aw̄t+2,τt+2|w̄t+1,τt+1

Aw̄t+1,τt+1,wt (A.15)

I show in lemma 4.6 that Awt+3|w̄t+2,τt+2
is identified. Additionally, the left-land side matrix

can be computed from the data. If Aw̄t+1,τt+1,wt is identified, the law of motion is identified
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given both Aw̄t+1,τt+1,wt and Awt+3|w̄t+2,τt+2
are invertible by the way I construct the two

matrices. I next show that Aw̄t+1,τt+1,wt can be identified through following equation.

Pr(wt+2, wt+1, wt) =
∑
τt+1

Pr(wt+2|wt+1, τt+1) Pr(wt+1, τt+1, wt) (A.16)

Similar logic, fixing wt+1 = w̄t+1, above equation’s matrix counterpart is as follows:

Fwt+2,w̄t+1,wt = Awt+2|w̄t+1,τt+1
Aw̄t+1,τt+1,wt (A.17)

Since Awt+2|w̄t+1,τt+1
is identified and invertible, Aw̄t+1,τt+1,wt is identified. Consequently,

the law of motion is identified.

Proof of lemma 4.9: Identification of Initial Condition Given that we already iden-
tified the transition matrix Pr(wt+1|wt, τt), following equation provides identification of the
initial distribution:

Pr(wt+1, wt) =
∑
τt

Pr(wt+1|wt, τt) Pr(wt, τt) (A.18)

fixing wt = w̄t and rewrite above equation in the matrix format:

Vwt+1,w̄t = Awt+1|w̄t,τtVw̄t,τt (A.19)

Since Awt+1|w̄t,τt is invertible, Pr(wt, τt) is identified for all wt.

Proof of lemma 4.12: Identification of payoff functions Note that the equilibrium
condition with extreme value distribution assumption on the private shocks becomes:

log(σi(ai = k, s))− log(σi(ai = 0, s)) = Vi(ai = k, s)− Vi(ai = 0, s) (A.20)

Define the ex ante value function for player i before obtaining private shocks, as

Vi(s) = EεimaxaiVi(ai, s) + εi(ai) = log(
K∑
k=0

exp(Vi(k, s)))

= log

K∑
k=0

exp(Vi(k, s)− Vi(0, s)) + Vi(0, s) (A.21)

The second equation holds because of i.i.d. and the extreme value distribution assumption
of εi. By definition of the choice specific value function Vi(ai, s), we can relate the ex ante
value function and choice specific value function through the following equation:

Vi(ai, s) = Πi(ai, s) + βE(Vi(s
′)|s, ai)

= Πi(ai, s) + βE(log
K∑
k=0

exp(Vi(k, s)− Vi(0, s)) + Vi(0, s
′)|s, ai)

= Πi(ai, s) + βE(log

K∑
k=0

exp(Vi(k, s)− Vi(0, s))) + βE(Vi(0, s
′)|s, ai)(A.22)
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With the normalization assumption, for the action that I imposed the zero period utility, I
have:

Vi(0, s) = Πi(ai = 0, s) + βE(log

K∑
k=0

exp(Vi(k, s)− Vi(0, s))) + βE(Vi(0, s
′)|s, ai = 0)

= βE(log
K∑
k=0

exp(Vi(k, s)− Vi(0, s))) + βE(Vi(0, s
′)|s, ai = 0) (A.23)

By the equilibrium condition, the term (log
∑K

k=0 exp(Vi(k, s)− Vi(0, s))) can be computed
through log(σi(ai = k, s))−log(σi(ai = 0, s)), so we can treat it as a constant. Consequently,
equation A.23 provides a contract mapping on unknowns Vi(0, s). By Blackwell’s condition,
a unique fixed point is guaranteed, so Vi(0, S) is identified. With identification of Vi(0, s, ),
together with equation A.21, the ex ante value function Vi(s) is identified. From equation
A.23, Vi(ai = k, s) is identified. Then we can identify the expected period payoff Πi(ai, s)
through equation A.22 as:

Πi(ai, s) = Vi(ai, s)− βE(log
K∑
k=0

exp(Vi(k, s)− Vi(0, s)))− βE(Vi(0, s
′)|s, ai)(A.24)

With identification of the expected period payoff defined as Πi(ai, s) =
∑

a−i
πi(ai, a−i, s)σ−i(a−i|s),

identification of payoff functions πi(ai, a−i, s) is exactly the same as in the static case with
exclusion restrictions.

B Graphs and Tables

Figure C.1: The Estimation of the Number of Equilibria
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Table C.1: Estimates of Law of Motion

True Values Ests (ns=1000) Ests (ns=2000)
Pr(w∗t+1|wt = 1, e∗) 0.72 0.47 0.6728 0.3865 0.6906 0.4186

(0.2147) (0.2064) (0.2145) (0.2196)
0.28 0.53 0.3272 0.6135 0.3094 0.5814

(0.2147) (0.2064) (0.2145) (0.2196)
Pr(w∗t+1|wt = 2, e∗) 0.78 0.70 0.7723 0.5032 0.7756 0.6263

(0.1763) (0.3307) (0.1303) (0.2701)
0.22 0.30 0.2277 0.4968 0.2244 0.3737

(0.1763) (0.3307) (0.1303) (0.2701)
Pr(w∗t+1|wt = 3, e∗) 0.58 0.16 0.5936 0.2876 0.5711 0.2503

(0.2431) (0.2135) (0.2460) (0.2050)
0.42 0.84 0.4064 0.7124 0.4289 0.7498

(0.2431) (0.2135) (0.2460) (0.2050)
Pr(w∗t+1|wt = 4, e∗) 0.71 0.42 0.5939 0.3019 0.6713 0.3538

(0.2736) (0.2302) (0.2523) (0.2285)
0.29 0.58 0.4061 0.6981 0.3287 0.6462

(0.2736) (0.2302) (0.2523) (0.2285)
1 The number in brackets is the standard deviation computed through bootstrap with replacement, with 100 repe-
tition
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