
Zeros of Random Reinhardt Polynomials

by

Arash Karami

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

March, 2014

c© Arash Karami 2014

All rights reserved



Abstract

For a strictly pseudoconvex Reinhardt domain Ω with smooth boundary in Cm+1

and a positive smooth measure µ on the boundary of Ω , we consider the ensemble

PN of polynomials of degree N with the Gaussian probability measure γN which is

induced by L2(∂Ω, dµ). Our aim is to compute the scaling limit distribution function

and scaling limit pair correlation function for zeros near a point z ∈ ∂Ω. First, we

apply the stationary phase method to the Boutet de Monvel-Sjöstrand Theorem to

get the asymptotic for the scaling limit partial Szegö kernel around z ∈ ∂Ω. Then

by using the Kac-Rice formula, we compute the scaling limit distribution and pair

correlation functions.
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Chapter 1

Introduction

This paper is concerned with the scaling limit distribution and pair correlation

between zeros of random polynomials on Cm+1. A famous result from Hammersley

[6] which is the following work of Kac [8], [9] says that the zeros of random complex

Kac polynomials,

f(z) =
∑
j≤N

ajz
j, z ∈ C, (1.0.1)

tend to concentrate on the unit circle S1 = {z ∈ C : |z| = 1} as the degree of

the polynomials goes to infinity when the coefficients aj are independent complex

Gaussian random variables of mean zero and variance one. Later Bloom and Shiffman

in [2] proved a multi-variable result that the common zeros of m+ 1 random complex

polynomials in Cm+1,

fk(z) =
∑
|J |≤k

ckJz
j0
0 . . . zjmm , (1.0.2)
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CHAPTER 1. INTRODUCTION

tend to concentrate on the product of unit circles |zj| = 1. Shiffman in joint work

with Zelditch in [11] replaced S1 with any closed analytic curve ∂Ω in C that bounds a

simply connected domain Ω. In their work they used the Riemann mapping function

Φ which maps the interior of Ω to the interior of the unit disk, mapping z0 ∈ ∂Ω to

1 ∈ S1 and they let D̂N
µ,∂Ω := DN ◦ φ−1|(φ−1)′|2 be the expected zero density for the

inner product with respect to the coordinate w = φ(z). So the new inner product on

the space of holomorphic polynomials PN is

(f, g)∂Ω,µ =

∫
∂Ω

fḡdµ(z), (1.0.3)

where dµ(z) is a positive smooth volume measure on ∂Ω. Then with respect to this

inner product, they proved that there is a scaling limit density function D∞ such that

1

N2
D̂N
∂Ω,µ(1 +

u

N
)→ D∞(u), (1.0.4)

where N →∞. They also showed that there exist universal functions K̂∞ : C2 → R

independent of Ω, z0, µ such that

1

N4
K̂N
∂Ω,µ(1 +

u

N
, 1 +

v

N
)→ K∞(u, v), (1.0.5)

as N → ∞, where K̂N
∂Ω,µ = KN

∂Ω,µ ◦ Φ−1 is the pair correlation function written in

terms of the complex coordinate w = φ(z). The first purpose of this paper is to

compute the asymptotic expansion of the truncated Szegö kernel on the boundary of

the strictly pseudoconvex complete Reinhardt domain Ω in Cm+1. Our second purpose

is to generalize the scaling limit expected distribution result [11] to the boundary of

2



CHAPTER 1. INTRODUCTION

Ω, and also to compute the pair correlation between zeros. First, we need to introduce

our basic setting: We let Ω be a smooth strictly pseudoconvex complete Reinhardt

domain (see Definition (2.0.5)) in Cm+1 and let X = ∂Ω and µ be a smooth positive

volume measure on X that is invariant under the torus action,

(eiθ0 , . . . , eiθm) · (z0, . . . , zm) = (eiθ0z0, . . . , e
iθmzm), (1.0.6)

where z = (z0, . . . , zm) ∈ X, θi ∈ [0, 2π]. We give the space PN of holomorphic

polynomials of degree≤ N on Cm+1 the Gaussian probability measure γN induced by

the Hermitian inner product

(f, g) =

∫
X

fḡdµ(x). (1.0.7)

The Gaussian measure γN induced from (1.0.7) can be described as follows: we write

f =

d(N)∑
k=1

akpk, (1.0.8)

where {pk} is the orthonormal basis of PN with respect to inner product (1.0.7) and

d(N) = dimPN . Identifying f ∈ PN with a = (ak) ∈ Cd(N), we have

dγN(a) =
1

πd(N)
e−|a|

2

da. (1.0.9)

In other words, a random polynomial in the ensemble (PN , γN) is a polynomial

f =
∑d(N)

k=1 akpk such that the coefficients are independent complex Gaussian ran-

dom variables with mean 0 and variance 1. Our first result, Theorem (1.0.1), gives

an asymptotic for the scaling partial Szegö kernel with respect to the inner product

3



CHAPTER 1. INTRODUCTION

(1.0.7),

SN(z, w) =

d(N)∑
k=1

pk(z)p̄k(w), (1.0.10)

that gives the orthogonal projection onto the span of all homogeneous polynomials

of degree≤ N .

Theorem 1.0.1. If z = (z0, . . . , zm) ∈ X ∩ (C∗)m+1 and u = (u0, . . . , um), v =

(v0, . . . , vm) ∈ Cm+1 then

lim
N→∞

1

Nm+1
SN(z +

u

N
, z +

v

N
) = CΩ,z,µ,mFm(β(u) + β̄(v)), (1.0.11)

where CΩ,z,µ,m is the constant that depends on Ω, z, µ, m and

Fm(t) =

∫ 1

0

etyymdy , β(w) =
d′ρ(z) · w
d′ρ(z) · z

, d′ρ(z) = (
∂ρ

∂z1

, . . . ,
∂ρ

∂zm
). (1.0.12)

Our method to compute scaling asymptotic for the partial Szegö kernel is similar to

the method that Zelditch used in [12]. In our proof we apply the stationary phase

method to

ΠK(x, y) =

∫ ∞
0

∫ 2π

0

e−iKθeitψ(eiθx,y)s(eiθx, y, t)dθdt, (1.0.13)

where, s(x, y, t) ∼
∑∞

k=0 t
m−ksk(x, y) and the phase ψ ∈ C∞(Cm+1 × Cm+1) is deter-

mined by the following properties:

1) ψ(x, x) = ρ(x)
i

, where ρ is the defining function of X,

2) ∂̄xψ and ∂yψ vanish to infinite order along the diagonal,

3) ψ(x, y) = −ψ̄(y, x).

4



CHAPTER 1. INTRODUCTION

In [4], [5] we see that the expected zero density and correlation functions can be

represented by the formulas involving only the Szegö kernel and its first and second

derivatives. For each f ∈ PN we associate the current of the integration

[Zf ] ∈ D′1,1(Cm+1),

such that

([Zf ], ψ) =

∫
Zf

ψ , ψ ∈ Dm,m(Cm+1).

In section (4) we show that the scaling limit for the expected zero density, which is

defined by

DN
µ,X(z)

ωm+1

(m+ 1)!
= EN

µ,X([Zf ] ∧
ωmz
m!

), (1.0.14)

where EN
µ,X is the expected zero current for the ensemble (PN , γN) and ωz = i

2

∑m
j=0 dzj∧

dz̄j, can be given by the following Theorem.

Theorem 1.0.2. Let DN
µ,X be the expected zero density for the ensemble (PN , γN).

Then

lim
N→∞

1

N2
DN
µ,X(z +

u

N
) = D∞z,X(u),

where

D∞z,X(u) =
β(P )

π||P ||2
(logFm)

′′
(β(u) + β̄(u)),

and

P = (
∂ρ

∂z̄0

, . . . ,
∂ρ

∂z̄m
).

5



CHAPTER 1. INTRODUCTION

Our main result, Theorem (1.0.3), gives a formula for the scaling limit normalized

pair correlation functions

K̃N
µ,X(z, w) =

KN
µ,X(z, w)

DN
µ,X(z)DN

µ,X(w)
, (1.0.15)

where

KN
µ,X(z, w)

ωm+1
z

(m+ 1)!
∧ ωm+1

w

(m+ 1)!
= EN

µ,X([Zf (z)] ∧ [Zf (w)] ∧ ωmz
(m)!

∧ ωmw
(m)!

). (1.0.16)

If z, w are fixed and different then K̃N
µ,X(z, w) → 1 as N → ∞, but in the Theorem

(1.0.3) we show that we have nontrivial normalized pair correlations when the distance

between points is O( 1
N

). To simplify our computations we define matrices

Gm(x) =

Fm(x+ x̄) Fm(x)

Fm(x̄) Fm(0)

 , (1.0.17)

Qm(x) = Gm+2(x)−Gm+1(x)Gm(x)−1Gm+1(x). (1.0.18)

Theorem 1.0.3. Let K̃N
µ,X(z, w) be the normalized pair correlation function for the

probability space (PN , γN) and choose u ∈ Cm+1 such that u /∈ T hz X. Then,

lim
N→∞

1

N4
KN
µ,X(z +

u

N
, z) = K∞z,X(u),

lim
N→∞

K̃N
µ,X(z +

u

N
, z) = K̃∞z,X(u),

6



CHAPTER 1. INTRODUCTION

such that

K∞z,X(u) =
1

π2||P ||4
perm(Qm(β(u)))

det(Gm(β(u)))
(β(P ))4,

K̃∞z,X(u) =
1

(logFm)′′(β(u) + β̄(u))(logFm)′′(0)

perm(Qm(β(u)))

det(Gm(β(u)))
,

where KN
µ,X(z, w), K̃N

µ,X(z, w) are defined in (1.0.16), (1.0.15).

For fixed z ∈ X ∩ (C∗)m+1, β is a C-linear function on Cm+1 that is independent

of the defining function ρ. We see that

β(u) =
d′ρ(z) · u
d′ρ(z) · z

=

∑m
i=0(∂ρ(z)

∂ri
ri)

ui
zi∑m

i=0
∂ρ(z)
∂ri

ri
. (1.0.19)

So the function β(u) can be interpreted as the weighted average of the ui
zi

s with

respect to the weights ∂ρ(z)
∂ri

ri. The argument of the ui
zi

measures the angle between

the i’s component of the vector u and the radial vector z. Therefore the imaginary

part of the β(u) is equal to the weighted average of the sin(arg(ui
zi

)). In the radial

direction, u = z, and the normal direction, u = d′′ρ(z), the angle arg(ui
zi

) is zero

for each component. Hence we expect no oscillation for the graph of the normalized

pair correlation functions in those two directions. However for the directions with

nonzero weighted average of the sin(arg(ui
zi

)), we expect oscillation in the graph,

higher weighted average results in the higher frequency. It is interesting to see the

behavior of the normalized pair correlation function in the normal direction. For

example if we look at the sphere S3 in the C2 and choose z = (1, 0) ∈ S3 ⊂ C2 then

the normal vector at (1, 0) to S3 would be u⊥ = (1, 0). If we move along this vector

7



CHAPTER 1. INTRODUCTION

5 10 15 20 25
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0.6

0.8

Figure 1.1: The normalized pair correlation function k⊥(λ) in the normal direction
u⊥ for the sphere in C2

from the origin to infinity then, in the normal direction, we obtain the scaling limit

k⊥(λ) := K̃∞(1,0),S3(λu⊥) = lim
N→∞

K̃N
µ,S3((1, 0) + λ

u⊥

N
, (1, 0)). (1.0.20)

The graph of k⊥(λ) in Figure 1 converges to 1 when λ goes to infinity. It is not

oscillatory and we have a zero repulsion when λ → 0. It is interesting to measure

the probability of finding a pair of zeros in the small disks around two points on X

in terms of scaled angular distance θ between them. In this example to consider the

scaling limit for the pair correlation function in the ∂
∂θ

direction, we move along the

curve γ(θ) = eiθ(1, 0). The vector uθ = (i, 0) is the tangent vector to this curve at

γ(0) = (1, 0). We observe that

K∞(1,0),S3(uθ) = lim
N→∞

1

N4
KN
µ,S3((1, 0) +

uθ

N
, (1, 0)), (1.0.21)

kθ(λ) := K̃∞(1,0),S3(λuθ) = lim
N→∞

K̃N
µ,S3((1, 0) + λ

uθ

N
, (1, 0)). (1.0.22)

This means that the scaling limit pair correlation function grows as fast as N4 along

8
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Figure 1.2: The normalized pair correlation function kθ(λ) in the ∂
∂θ

tangent direction
uθ for the sphere in C2

the curve γ(θ). We can see in the graph of kθ in Figure 2, the zeros repel when λ→ 0

and their correlations are oscillatory. Now if we move along h(t) = (cos(t), i sin(t)) ⊂

S3, then

lim
N→∞

1

N5
KN
µ,S3((1, 0) +

uh

N
, (1, 0))→ K∞(1,0),S3(uh), (1.0.23)

where uh = h
′
(0) = (0, i), uh = (0, i) ∈ T hz S

3. The behavior of the scaling pair

correlation function between zeros is totally different when we move in the uh direction

compare to u⊥, and uθ. In this example we observe that if we move along the uh

direction that belongs to T hz S
3 then KN

µ,S3((1, 0) + uh

N
, (1, 0)) is asymptotic to N5, but

in other directions, KN
µ,S3((1, 0) + u

N
, (1, 0)) is asymptotic to N4. Our result shows

that KN
µ,X(z + u

N
, z) is asymptotic to N4 when u /∈ T hz X.

9



Chapter 2

Background

Throughout this paper, we restrict ourselves to a smooth boundary complete

Reinhardt strictly pseudoconvex domain in Cm+1. This is by far one of the most

interesting cases to study, and it includes many interesting examples. We recall the

elementary definitions:

Definition 2.0.4. A domain Ω is strictly pseudoconvex if its Levi form is strictly

positive definite at every boundary point. The Levi form of

Ω = {z ∈ Cm+1 : ρ(z) < 0},

with ρ is a real valued C∞ function on Cm+1 , d′ρ 6= 0 on ∂Ω defined as the restriction

of the quadratic form

(v0, . . . , vm)→
∑
j,k

∂2ρ

∂zj∂z̄k
(z)vj v̄k,

10



CHAPTER 2. BACKGROUND

to the subspace {(v0, . . . , vm) ∈ Cm+1 :
∑ ∂ρ

∂zj
(z)zj = 0}. It is defined independently

of ρ up to constants [1].

Definition 2.0.5. A domain Ω ⊂ Cm+1 is complete Reinhardt if z = (z0, . . . , zm) ∈ Ω

implies (µ0z0, . . . , µmzm) ∈ Ω for all µj ∈ C with |µj| ≤ 1, j = 0, . . . ,m [10].

Throughout this article we assume that dµ is a smooth volume measure on ∂Ω that

is invariant under the torus action. In the next section I will review some background

materials from [10]

2.1 Szegö kernel and orthogonal polyno-

mials

Let A(Ω) be the space of holomorphic functions in Ω that extend continuously on

the boundary. We define H2(∂Ω) to be the closure of the restriction of the functions

in A(Ω) in L2(∂Ω, dµ) [10]. So H2(∂Ω) is a proper closed subspace of L2(∂Ω, dµ),

in other words H2(∂Ω) is a Hilbert subspace. The Poisson integral Pf , Pf(z) =∫
∂Ω
P (z, w)f(w)dµ(w), is a holomorphic extension of the function f ∈ H2(∂Ω) on Ω.

Theorem 2.1.1. The monomials {zα} span H2(∂Ω).

Proof. For any multi-indices α, zα is holomorphic on Ω and continuous on Ω. To

prove the completeness we need to show the span of the functions {zα} is dense in

11



CHAPTER 2. BACKGROUND

A(Ω) with respect to the uniform topology on ∂Ω. The subalgebra of C(∂Ω) gener-

ated by {zα} and {z̄a} separates points, contains 1. It is also self-adjoint, therefore

Stone-Weierstrass Theorem implies that the closed sub-algebra generated by {zα},

{z̄α} is dense in A(Ω). Since Ω is complete Reinhardt then for f ∈ A(Ω) the func-

tions {fr}0≤r<1, fr(z) = f(rz), are holomorphic and uniformly bounded on Ω and

continuity of f on Ω implies that limr→1 fr(z) = f(z) for z ∈ ∂Ω. Let
∑

β cβz
β be

the power series expansion of f around the origin, therefore
∑

β cβr
βzβ uniformly

converges to fr(z) on Ω when 0 ≤ r < 1. So for any nonzero multi-indices α we have,

(f, z̄α) =

∫
∂Ω

f(z)zαdµ(z) = lim
r→1

∫
∂Ω

fr(z)zαdµ(z)

= lim
r→1

∫
∂Ω

∑
β

cβ(rz)α+βdµ(z) = lim
r→1

∑
β

cβ

∫
∂Ω

(rz)α+βdµ(z) = 0.

(2.1.1)

So the monomials {z̄α} are orthogonal to A(Ω) when α 6= 0.

Proposition 2.1.2. For each fixed z ∈ Ω, the functional

φz : H2(∂Ω)→ C, φz(f) = Pf(z), (2.1.2)

is a linear continuous functional on H2(∂Ω) where Pf(z) is the Poisson integral of

the function f .

Proof. Let {fj}∞j=1 be a sequence of functions in H2(∂Ω) that converges to f in

12
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L2(∂Ω, dµ) thus

|Pf(z)− Pfj(z)| = |
∫
∂Ω

P (z, w)f(w)dµ(w)−
∫
∂Ω

P (z, w)fj(w)dµ(w)|

≤
∫
∂Ω

|P (z, w)f(w)− P (z, w)fj(w)|dµ(w)

≤ (

∫
∂Ω

|P (z, w)|2dµ(w))1/2(

∫
∂Ω

|f(w)− fj(w)|2dµ(w))1/2

≤ C||f − fj||L2(∂Ω,dµ),

(2.1.3)

where P (z, w) is the Poisson kernel on Ω.

Lemma 2.1.3. Let K ⊂ Ω be a compact set. There is a constant CK depending on

K, such that

sup
z∈K
|Pf(z)| ≤ CK ||f ||L2(∂Ω,dµ) for all f ∈ H2(∂Ω). (2.1.4)

Proof.

|Pf(z)| = |
∫
∂Ω

P (z, w)f(w)dµ(w)| ≤ ||P (z, .)||L2(∂Ω)||f ||L2(∂Ω)

≤ CK ||f ||L2(∂Ω).

(2.1.5)

The Riesz representation theorem implies that there is a function kz ∈ H2(∂Ω)

that represents the linear functional φz, φz(f) = (f, kz). We define the Szegö kernel

S(z, w) by S(z, w) = kz(w) for z ∈ Ω, w ∈ ∂Ω. To be more precise, S(z, w) is the

13
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reproducing kernel of the projection map,

Pf(z) = (f, kz) =

∫
∂Ω

f(w)kz(w)dµ(w) =

∫
∂Ω

f(w)S(z, w)dµ(w), (2.1.6)

for all z ∈ Ω.

Lemma 2.1.4. The Szegö kernel S(z, w) is conjugate symmetric, S(z, w) = S(w, z)

for z, w ∈ Ω.

Proof. For each fixed w ∈ Ω we have S(w, .) = kw(.) ∈ H2(∂Ω). Hence

S(w, z) = PS(w, .)(z) =

∫
∂Ω

S(z, y)S(w, y)dµ(y)

=

∫
∂Ω

S(w, y)S(z, y)dµ(y)

= S(z, w) = S(z, w).

(2.1.7)

The Szegö kernel is unique in the sense that is conjugate symmetric, reproduces

H2(∂Ω) and holomorphic in the first variable. Since H2(∂Ω) is a separable Hilbert

space spanned by monomials, so there is a complete orthonormal basis {pj}∞j=0 of

polynomials for H2(∂Ω) with respect to the measure dµ.

Lemma 2.1.5. The series
∑∞

j=0 pj(z)pj(w) converges uniformly on any compact set

K ×K ⊂ Ω× Ω.

Proof. Every element f ∈ H2(∂Ω) has a unique representation, f =
∑∞

j=0 ajpj, where∑∞
j=0 |aj|2 = ||f ||2L2(∂Ω,dµ). Therefore with respect to the new representation, the

14
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linear functional φz is

φz : l2 → C,

({aj})→
∞∑
j=0

ajpj(z) = ({aj}, {pj(z)}).
(2.1.8)

So by using Riesz-Fischer Theorem

∞∑
j=0

|pj(z)|2 = sup
||{aj}||l2=1

|({aj}, {pj(z)})|2

= sup
||{aj}||l2=1

|
∞∑
j=0

ajpj(z)|2

= sup
||f ||L2(∂Ω,dµ)=1

|f(z)|2 ≤ C2
K .

(2.1.9)

Last inequality follows from the Lemma (2.1.3). So the series
∑∞

j=0 |pj(z)|2 uniformly

converges on K. Hence if we choose N big enough such that

n∑
j=m+1

|pj(z)|2 < ε form,n > N,

then we have

(
n∑

j=m+1

|pj(z)||pj(w)|)2 ≤ (
n∑

j=m+1

|pj(z)|2)(
∞∑
j=0

|pj(w)|2)

≤ εCK < .

(2.1.10)

Therefore the series
∑∞

j=0 pj(z)pj(w) is uniformly Cauchy on K ×K.

Theorem 2.1.6. The series
∑∞

j=0 pj(z)pj(w) extends to (Ω × Ω) ∪ (Ω × Ω) almost

everywhere.

Proof. For w ∈ Ω we already showed that (
∑∞

j=0 |pj(w)|2) is finite. Therefore the
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function
∑∞

j=0 pj(w)pj belongs in H2(∂Ω), so
∑∞

j=0 pj(w)pj is holomorphic on Ω and

extends to Ω almost everywhere. Hence the series
∑∞

j=0 pj(z)pj(w) is bounded almost

everywhere on Ω× Ω and similarly on Ω× Ω.

Theorem 2.1.7. The Szegö kernel S(z, w) is equal to the
∑∞

j=0 pj(z)pj(w).

Proof. The sum
∑∞

j=0 pj(z)pj(w) is conjugate symmetric and holomorphic in the first

variable for z ∈ Ω, so to complete the proof we require to show the reproducing

property of the
∑∞

j=0 pj(z)pj(w). For any arbitrary f ∈ H2(∂Ω), ||f ||L2(∂Ω,dµ) =∑∞
j=0 |(f, pj)|2 <∞ and the partial sums

∑N
j=0(f, pj)pj(z) are holomorphic and con-

verge uniformly on any compact subset of Ω. So the sum
∑∞

j=0(f, pj)pj is holomorphic

on Ω, and for arbitrary z ∈ Ω we have

∞∑
j=0

(f, pj)pj(z) = lim
n→∞

n∑
j=0

(f, pj)pj(z)

= lim
n→∞

n∑
j=0

pj(z)

∫
∂Ω

f(w)pj(w)dµ(w)

= lim
n→∞

∫
∂Ω

n∑
j=0

pj(z)f(w)pj(w)dµ(w)

=

∫
∂Ω

∞∑
j=0

pj(z)pj(w)f(w)dµ(w),

(2.1.11)

where the last two equations follow from the Theorem (2.1.6) and Lebesgue dominated

convergence Theorem. So

∫
∂Ω

(
∞∑
j=0

pj(z)pj(w))f(w)dµ(w) =
∞∑
j=0

(f, pj)pj(z), (2.1.12)

that implies the integral
∫
∂Ω

(
∑∞

j=0 pj(z)pj(w))f(w)dµ(w) is a holomorphic extension

16
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of f to Ω. Therefore
∑∞

j=0 pj(z)pj(w) reproduces H2(∂Ω). Since the Szegö kernel is

unique, it implies that S(z, w) =
∑∞

j=0 pj(z)pj(w).

Proposition 2.1.8. If f ∈  L2(∂Ω, dµ) then
∫
∂Ω
f(w)S(z, w)dµ(w) belongs to H2(∂Ω).

Proof. Functions {pj}∞j=0 form an orthonormal basis for H2(∂Ω) ⊂  L2(∂Ω, dµ), so

∞∑
j=0

|(f, pj)|2 ≤ ||f ||L2(∂Ω,dµ) <∞ for f ∈  L2(∂Ω, dµ). (2.1.13)

This means
∑∞

j=0(f, pj)pj ∈ H2(∂Ω), so by using Theorem (2.1.7) we have

∫
∂Ω

f(w)S(z, w)dµ(w) =
∞∑
j=0

(f, pj)pj, (2.1.14)

that implies
∫
∂Ω
f(w)S(z, w)dµ(w) ∈ H2(∂Ω).

Proposition (2.1.8) introduces a new representation of the Szegö kernel. We can

think of S(z, w) as the kernel of the orthogonal projection map from L2(∂Ω, dµ) to

H2(∂Ω),

Π : L2(∂Ω, dµ)→ H2(∂Ω),

Π(f)(z) =

∫
∂Ω

f(w)S(z, w)dµ(w) =
∞∑
j=0

(f, pj)pj(z).
(2.1.15)

Let’s define HK(∂Ω) to be the closed subspace of H2(∂Ω) spanned by {zα} for |α| =

K. Since Ω is a Reinhardt domain then HK ∩HK′ = {0} for K 6= K ′ and monomials

17
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span H2(∂Ω) by using Theorem (2.1.1). So

H2(∂Ω) =
⊕ ∞∑

K=0

HK(∂Ω). (2.1.16)

We define the orthogonal projection map,

ΠK : L2(∂Ω, dµ)→ HK(∂Ω),

ΠK(f)(z) =
∑
Kj∈IK

(f, pKj)pKj(z),
(2.1.17)

where {pKj}IK is the subset of the orthonormal basis {pj}∞j=0 that spans HK(∂Ω).

Therefore

Π =
⊕ ∞∑

K=0

ΠK and consequently,

S(z, w) =
∞∑
K=0

ΠK(z, w).

(2.1.18)

Theorem 2.1.9. Let ΠK(z, w) be the conjugate symmetric reproducing kernel for the

projection map ΠK, then

ΠK(z, w) =
1

2π

∫ 2π

0

e−iKθS(eiθz, w)dθ. (2.1.19)

Proof. The Szegö kernel S(z, w) is conjugate symmetric and holomorphic in the first

variable, so if we let Π̃K(z, w) = 1
2π

∫ 2π

0
e−iKθS(eiθz, w)dθ then Π̃K(z, w) satisfies the

18
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same properties. For any monomial zα we have,∫
∂Ω

Π̃K(z, w)wαdµ(w) =
1

2π

∫
∂Ω

∫ 2π

0

e−iKθS(eiθz, w)dθwαdµ(w)

=
1

2π

∫ 2π

0

e−iKθ
∫
∂Ω

S(eiθz, w)wαdµ(w)dθ

=
1

2π

∫ 2π

0

e−iKθ(eiθz)αdθ

=
zα

2π

∫ 2π

0

e−iKθei|α|θdθ.

(2.1.20)

Therefore, if |α| = K then

∫
∂Ω

Π̃K(z, w)wαdµ(w) = zα, (2.1.21)

and for |α| 6= K ∫
∂Ω

Π̃K(z, w)wαdµ(w) = 0, (2.1.22)

So by using the uniqueness property of the Szegö kernel, Π̃K(z, w) = ΠK(z, w).

2.2 Kac Rice Formula

In this section I assume that dσ is the Lebesgue measure on C and B is the set of

all Borel subsets of C. On a probability space (Ω,Σ, P ), we let a random variable X

to be a map

X : (Ω,Σ, P )→ (C,B, dσ).

Definition 2.2.1. Probability distribution function of a random variable X is a real
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valued function DX(t) on R that is identified by

DX(t) = P [X−1((−∞, t])] = X∗P (−∞, t].

Definition 2.2.2. A standard normal complex Gaussian random variable is a random

variable

X : (Ω,Σ, P )→ (C,B, dσ),

that has a probability distribution function of the form

DX(B) = P [X−1(B)] =
1

π

∫
B

e−|z|
2

dσ(z).

Note that in this case E(X) = 0 and E(XX) = 1.

Definition 2.2.3. The probability density function for the random variable X is a

real valued function fX such that

P [X−1(B)] =

∫
X−1(B)

dP =

∫
B

fXdσ for all B ∈ B.

Definition 2.2.4. The set of random variables X1, . . . , Xn are called independent if

and only if

P (X−1
1 (B) ∩ · · · ∩X−1

n (B)) = P (X−1
1 (B)) . . . P (X−1

1 (B)) for anyB ∈ B

And similarly we define the joint probability distribution function D ~X for a vector

random variable ~X = (X1, . . . , Xn) : Ω→ Cn to be

D ~X(A ⊂ Cn) = dP (ω ∈ Ω : ~X(ω) ∈ A) for all Borel subset of Cn.
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Definition 2.2.5. The n× n Hermitian matrix

∆ = [E[XiXj]]1≤i,j≤n,

is called the covariance matrix of the vector random variable ~X.

Definition 2.2.6. A vector random variable ~X = (X1, . . . , Xn) : Ω→ Cn is complex

Gaussian if any complex linear combination of Xj is complex Gaussian.

Theorem 2.2.7. If X1, . . . , Xn are complex Gaussian random variables on (Ω,Σ, P )

then

D ~X(A) =
1

πn

∫
A

1

det(∆)
e−<∆−1,∆a>dσn(a),

where dσn is the Lebesgue measure on the Borel subsets, A ⊂ Cn and ∆ is the

covariance matrix of the Xis.

In the next step I want to introduce the ensemble of random complex polynomials.

All the holomorphic polynomials of degree≤ N on Cm, PN , make a finite dimensional

vector space of degree d(N) < ∞. Any choice of inner product on PN gives us an

orthonormal basis {pj}d(N)
j=1 . Hence any holomorphic polynomial fN in PN can be

uniquely identified by a d(N)-tuple,(a1, . . . , ad(N)) such that

fN(z) =

d(N)∑
j=1

ajpj(z) , (a1, . . . , ad(N)) ∈ Cd(N).

If one lets coefficients ajs to be i.i.d complex random variables then it induces a

probability distribution dγN on Cd(N), and so on PN .
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Now let’s define the punctured space

(Cm)k = {(z1, . . . , zk) ∈ (Cm)k | zi 6= zj for i 6= j}.

And for any holomorphic polynomial of degree ≤ N , fN : Cm → C, let

fN(z) = (fN(z1), . . . , fN(zk)) ∈ Ck, ∇fN(z) = (∇fN(z1), . . . ,∇fN(zk)),

where z = (z1, . . . , zk) and

∇fN(zi) = (
∂fN(zi)

∂z1

, . . . ,
∂fN(zi)

∂zm
) for zi ∈ Cm.

Let’s define the map

J : (Cm)k × PN → Ckm × Ck × Ckm,

where

J(z, fN) = (z, fN(z),∇fN(z)).

Let

v = (v1, . . . , vk) = (fN(z1), . . . , fN(zk)) ∈ Ck,

ξ = (ξ1, . . . , ξk) where ξi = (
∂fN(zi)

∂z1

, . . . ,
∂fN(zi)

∂zm
) for zi ∈ Cm.

Also let

dz = dz1 . . . dzk , dv = dv1 . . . dvk , dξ = dξ1 . . . dξk,

be the intrinsic volume measures on Ckm ,Ck and Ckm respectively.

Definition 2.2.8. Suppose that J is surjective. We define the k-point density func-
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tion Dk(z, v, ξ)dzdvdξ of dγN by

J∗(dzdγN) = Dk(z, v, ξ)dzdvdξ.

Definition 2.2.9. For fN ∈ PN , we let [ZfN ] be the current of integration along the

regular points of ZfN .

Definition 2.2.10. For fN ∈ PN , we let [ZfN ]k be the current of integration along

the regular points of Zk
fN
⊂ (Cm)k,

[ZfN ]k = [ZfN ]× · · · × [ZfN ],

its expectation E([ZfN ]k, .) is called the k-point zero correlation measure.

Theorem 2.2.11. If J is surjective then there is a continues function KN
k (z1, . . . , zk)

on (Cm)k such that

E[ZfN ]k = KN
k (z)dz , KN

k (z) =

∫
dξD(0, v, ξ)Πk

i=1det(ξ
iξi∗).

The function KN
k is called k-point zero correlation function.
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Boutet de Monvel-Sjöstrand

Theorem and Partial Szegö kernels

Our mission in this chapter is to give an asymptotic expansion for the partial

Szegö kernel, by using the Boutet de Monvel-Sjöstrand Theorem for X.

3.1 Partial Szegö Kernels

Theorem 3.1.1. Let S(x, y) be the Szegö kernel of the boundary X of a bounded

strictly pseudo-convex domain Ω in a complex manifold. Then there exists a symbol

s ∈ Sn(X ×X ×<+) of the type s(x, y, t) ∼
∑∞

k=0 t
m−ksk(x, y) so that,

S(x, y) =

∫ ∞
0

eitψ(x,y)s(x, y, t)dt,
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where the phase ψ ∈ C∞(X ×X) is determined by the following properties:

1) ψ(x, x) = ρ(x)
i

where ρ is the defining function of X.

2) ∂̄xψ and ∂yψ vanish to infinite order along diagonal.

3) ψ(x, y) = −ψ̄(y, x).

The integral is defined as a complex oscillatory integral and is regularized by

taking the principal value. So our goal is to find asymptotic expansion for ΠK(z, z)

by using above Theorem. Theorem (2.1.9) implies

ΠK(z, z) =
1

2π

∫ 2π

0

e−iKθS(eiθz, z)dθ

=
1

2π

∫ ∞
0

∫ 2π

0

e−iKθeitψ(eiθz,z)s(eiθz, z, t)dθdt.

(3.1.1)

For simplicity we let s(eiθz, z, t) := 1
2π
s(eiθz, z, t). By using the change of variable

t→ Kt , φ(t, θ; z, z) = θ − tψ(rθz, z),

we have

ΠK(z, z) = K

∫ ∞
0

∫ 2π

0

e−iKφ(θ,t;z,z)s(rθz, z,Kt)dθdt. (3.1.2)

Also we have

Imψ(z, w) ≥ c(d(z,X) + d(w,X) + |z − w|2) +O(|z − w|3), (3.1.3)

where c is a positive constant. This results in Imψ(z, w) ≥ 0. We want to give an

asymptotic expansion for (3.1.2) by using stationary phase method. For this purpose

we need to consider phase function, hence first step is to find the critical point of the
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phase function.

Lemma 3.1.2. The phase function φ(θ, t; z, z) = θ − tψ(rθz, z) has only one critical

point, (0, 1
d′ρ(z)·z ).

Proof. If ∂φ
∂t

= 0 then ψ(rθz, z) = 0. Now by using (3.1.3),

ψ(rθz, z) = 0↔ rθz = z ↔ θ = 0. (3.1.4)

Next by taking derivative respect to θ we have

∂φ

∂θ
= 1− teiθ

i=m∑
i=0

∂xψ(rθz, z)

∂xi
zi, (3.1.5)

next we plug in θ = 0

∂φ

∂θ
= 1− td′ρ(z) · z for θ = 0. (3.1.6)

We know Ω is a strictly pseudoconvex domain, so the holomorphic tangent plane at

the point z ∈ X doesn’t go through the domain. Consequently

0 /∈ T hz X = {w ∈ Cm+1 : d′ρ(z) · (z − w) = 0} → d′ρ(z) · z 6= 0, (3.1.7)

that implies

1− td′ρ(z) · z = 0→ t0 =
1

d′ρ(z) · z
. (3.1.8)

It is also a nondegenerate critical point because,

|φ′′(0, t0)| = |

 0 1
t0

1
t0

∂2φ
∂θ2

 | = − 1

t20
< 0. (3.1.9)
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Theorem 3.1.3. For z = (z0, . . . , zm) ∈ X ∩ (C∗)m+1 we have

ΠK(z, z) = s0(z, z)t0(Kt0)m +RK,0, (3.1.10)

such that |RK,0| ≤ C0K
m−1, and C0 depends on X,ψ, z and s0 is the first term of the

symbol s(z, z, t) and t0 is equal to 1
d′ρ(z)·z .

Proof. By using inequality (3.1.3) we see that the imaginary part of −φ(t, θ) that is

equal to the imaginary part of tψ(rθz, z) is positive everywhere on [0, 2π] × [0,+∞)

except at the critical point. If we choose Kε be a compact set in [0, 2π] × [0,+∞)

that includes critical point (0, t0) and we let Kc
ε = [0, 2π]× [0,+∞)−Kε then

K

∫
Kc
ε

e−iKφ(θ,t;z,z)s(rθz, z,Kt)dθdt = O(K−∞). (3.1.11)

Next by using (3.1.2) we will have

ΠK(z, z) =K

∫
Kε

e−iKφ(θ,t;z,z)s(rθz, z,Kt)dθdt+

K

∫
Kc
ε

e−iKφ(θ,t;z,z)s(rθz, z,Kt)dθdt.

(3.1.12)

To compute the first term in the last equation we use stationary phase method. As

we already proved our critical point is nondegenerate and here we are taking integral
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over the compact set Kε which includes (0, t0). By using Theorem (7.7.5) from [7],

K

∫
Kε

e−iKφ(θ,t;z,z)s(rθz, z,Kt)dθdt

∼ K√
Kφ′′(0,t0)

2πi

∞∑
j,k=0

Km−j−kLj(t
m−ksk(rθz, z)),

which

Lj(a) =
∑
ν−µ=j

∑
2ν≥3µ

i−j2−ν

µ!ν!

〈
φ′′(0, t0)−1D,D

〉
(gµ(0,t0)(t, θ)a).

(3.1.13)

In this equation g(0,t0) is equal to the third order reminder of φ(θ, t) at (0, t0) and in

the left hand side you can see that if j = 0, k = 0 then we will get the highest power

of K. By looking at the definition of Lj we have L0(tms0(rθz, z)) = tm0 s0(z, z), and

by using the stationary phase Theorem from [7]:

|ΠK(z, z)− t0KmL0(tms0(rθz, z))| = |ΠK(z, z)−Kmtm0 s0(z, z)t0|

≤ Km−1CM,

(3.1.14)

where M =
∑
|α|≤2 ||Dαs||∞.

For the next step we need to find asymptotic expansion for the derivatives of

ΠK(z, z) by using (3.1.2). For that purpose we introduce some notations that help us

to understand the derivatives of ΠK(z, z). We know that s(x, y, t) is a smooth function

on X ×R, but we don’t know about the behavior of s(x, y, t) on the neighborhood of

X in Cm+1. So we can only use (3.1.2) for computing derivatives of Πk(z, z) in real

tangential directions. Now let’s talk more about the real tangent plane on X at point

28



CHAPTER 3. PARTIAL SZEGÖ KERNELS

z = (z0, . . . , zm) ∈ X. Reinhardt property of the Ω implies that

(eiθ0z0, . . . , zm) ∈ X for θ0 ∈ [0, 2π], (3.1.15)

so we have

∂

∂θ0

= (iz0, . . . , zm), (3.1.16)

and similarly we can define ∂
∂θj

.

Lemma 3.1.4. If f : Cm+1 → C is an anti holomorphic function then

Dθjf(z) = −iz̄j
∂f

∂z̄j
(3.1.17)

Now we introduce some notations to simplify computations. Let

α = (α0, . . . , αm), β = (β0, . . . , βm),

γi = (γi,0, . . . , γi,m), {ki},

which

αi, βi, γi,j, ki ∈ {0, 1, 2, . . . },

Iα = {l = (β, {γi}, {ki}) :
∑

kiγi + β = α}.

(3.1.18)

For any multi indices α = (α0, . . . , αm) we define:

Dα = Dαm
θm

. . . Dα0
θ0
. (3.1.19)

29



CHAPTER 3. PARTIAL SZEGÖ KERNELS

If l ∈ Iα then we define

Zl(f, g) = Π(Dγif)ki(Dβg). (3.1.20)

If we let l0 = (β, {γi}, {ki}) such that β = (0, . . . , 0), γ0 = (1, 0, . . . , 0),

. . . , γm = (0, . . . , 1), k0 = α0, . . . , km = αm then

Zl0(iψ(rθz, z), s0(rθz, z))|θ=0 = Π(iDγi
y ψ(rθz, z))αis0(rθz, z)|θ=0

= Π(i
∂yψ(rθz, z)

∂z̄i
(−iz̄i))αis0(rθz, z)|θ=0

= (
∂ρ

∂z̄0

. . .
∂ρ

∂z̄m
)α(−iz̄)αs0(z, z).

(3.1.21)

Lemma 3.1.5. There are constants cl only depend on l, α such that

Dα(efg) = ef
∑
cl∈Iα

clZl(f, g).

Now by using lemma (3.1.5) we have this result:

Dα
y (e−iKφs(rθz, z,Kt)) =

∑
cl∈Iα

cle
−iKφZl(−iKφ, s(rθz, z,Kt))

=
∞∑
k=0

∑
l∈Iα

cle
−iKφ(Kt)

∑
kiZl(iψ, sk)(Kt)

m−k

=
∞∑
k=0

∑
l∈Iα

cle
−iKφ(Kt)m+

∑
ki−kZl(iψ, sk).

(3.1.22)

Theorem 3.1.6. If z = (z0, . . . , zm) ∈ X ∩ (C∗)m+1 then there is a constant Cα that

only depends on z, α, ψ,X such that:

Dα
yΠK(z, z) = s0(z, z)t0(Kt0)m+|α|(

∂ρ

∂z̄0

. . .
∂ρ

∂z̄m
)α(−iz̄)α +RK,α, (3.1.23)
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|RK,α| ≤ CαK
m+|α|−1.

Proof. If we use equation (3.1.2) and lemma (3.1.5) then

Dα
yΠK(z, z) = Dα

yK

∫ ∞
0

∫ 2π

0

e−iKφ(θ,t;z,z)s(rθz, z,Kt)dθdt

= K

∫ ∞
0

∫ 2π

0

Dα
y (e−iKφ(θ,t;z,z)s(rθz, z,Kt))dθdt

= K
∑
l∈Iα

cl

∫ ∞
0

∫ 2π

0

e−iKφZl(−iKφ, s(rθz, z,Kt))dθdt

= K
∑
l∈Iα

cl

∫ ∞
0

∫ 2π

0

e−iKφZl(iKtψ, s(rθz, z,Kt))dθdt

= K
∑
l∈Iα

cl

∫ ∞
0

∫ 2π

0

e−iKφ(Kt)
∑
kiZl(iψ, s(rθz, z,Kt))dθdt

∼
∑
l∈Iα

cl
K√

|Kφ′′(0, t0)/2πi|

∞∑
k,j=0

K−jLj((Kt)
m+

∑
ki−kZl(iψ, sk)).

(3.1.24)

If we look at in the series then the highest degree of K happens whenever l = l0, k =

j = 0. In this case ki = αi, cl0 = 1 and by using equation (3.1.20) and using

Theorem(7.7.5) from [7] we will get this result,

|Dα
yΠK(z, z)− (Kt0)m+|α|(

∂ρ

∂z̄0

. . .
∂ρ

∂z̄m
)α(−iz̄)αs0(z, z)t0|

≤ Km+|α|−1C
∑
l∈Iα

∑
|β|≤2

||DβZl(iψ, s)||∞.
(3.1.25)

If we let M = C
∑

l∈Iα
∑
|β|≤2 ||DβZl(−iψ, s)||∞ then

|Dα
yΠK(z, z)− (Kt0)m+|α|(

∂ρ

∂z̄0

. . .
∂ρ

∂z̄m
)α(−iz̄)αs0(z, z)t0| ≤MKm+|α|−1, (3.1.26)

where M is a constant that only depends on ψ, ρ and their partial derivatives. So I
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can tell,

Dα
yΠK(z, z) = (Kt0)m+|α|(

∂ρ

∂z̄0

. . .
∂ρ

∂z̄m
)α(−iz̄)αs0(z, z)t0 +RK,α, (3.1.27)

where |RK,α| ≤MKm+|α|−1.

An upper bound for Dα
yΠK(z, z) is,

Dα
yΠK(z, z) = (Kt0)m+|α|(

∂ρ

∂z̄0

. . .
∂ρ

∂z̄m
)α(−iz̄)αs0(z, z)t0 +RK,α

≤ (Kt0)m+|α|(
∂ρ

∂z̄0

. . .
∂ρ

∂z̄m
)α(−iz̄)αs0(z, z)t0 +MKm+|α|−1

≤ Km+|α|((
∂ρ

∂z̄0

. . .
∂ρ

∂z̄m
)α(−iz̄)αs0(z, z)t0 +M)

≤ Km+|α|M ′
α,

(3.1.28)

where M ′
α depends on M,ρ, z, α.

Lemma 3.1.7. If f is an anti holomorphic function on Cm+1 then

∂αf

∂z̄α
=

1

(−iz̄)α
Dαf +

∑
|β|<|α|

eβD
βf, (3.1.29)

where eβ only depends on α, β, z.

Theorem 3.1.8. If z = (z0, . . . , zm) ∈ X ∩ (C∗)m+1 then there is a constant C ′α such

that,

∂α

∂z̄α
ΠK(z, z) = s0(z, z)t0(Kt0)m+|α|(

∂ρ

∂z̄0

. . .
∂ρ

∂z̄m
)α +R′K,α, (3.1.30)

and |R′K,α| ≤ C ′αK
m+|α|−1.
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Proof. By using lemma (3.1.7) and Theorem (3.1.6) we have,

∂α

∂z̄α
ΠK(z, z) =

1

(z̄)α
DαΠK(z, z) +

∑
|β|<|α|

eβD
βΠK(z, z)

=
1

(z̄)α
(s0(z, z)t0(Kt0)m+|α|(

∂ρ

∂z̄0

. . .
∂ρ

∂z̄m
)α(−iz̄)α +RK,α) +

∑
|β|<|α|

eβD
βΠK(z, z)

= s0(z, z)t0(Kt0)m+|α|(
∂ρ

∂z̄0

. . .
∂ρ

∂z̄m
)α +

1

(−iz̄)α
RK,α +

∑
|β|<|α|

eβD
β
TΠK(z, z)

= s0(z, z)t0(Kt0)m+|α|(
∂ρ

∂z̄0

. . .
∂ρ

∂z̄m
)α +R′K,α,

(3.1.31)

where

R′K,α =
1

(z̄)α
RK,α +

∑
|β|<|α|

eβD
βΠK(z, z). (3.1.32)

Now by using inequality (3.1.28)

R′K,α =
1

(−iz̄)α
RK,α +

∑
|β|<|α|

eβD
βΠK(z, z)

≤ 1

(−iz̄)α
CαK

M+|α|−1 +
∑
|β|<|α|

eβM
′
βK

M+|β|

≤ KM+|α|−1(
1

(−iz̄)α
Cα +

∑
|β|<|α|

eβM
′
β)

= KM+|α|−1C ′α,

(3.1.33)

where

C ′α =
1

(−iz̄)α
Cα +

∑
|β|<|α|

eβM
′
β.
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Theorem 3.1.9. For any z = (z0, . . . , zm) ∈ X ∩ (C∗)m+1 we have

lim
N→∞

1

Nm+|α|+1

∂α

∂z̄α
SN(z, z) = s0(z, z)(t0)m+1

∫ 1

0

ym(yt0
∂ρ

∂z̄0

. . .
∂ρ

∂z̄m
)αdy. (3.1.34)

Proof.

lim
N→∞

1

Nm+|α|+1

∂α

∂z̄α
SN(z, z) = lim

N→∞

1

Nm+|α|+1

N∑
K=0

∂α

∂z̄α
ΠK(z, z)

= lim
N→∞

1

Nm+|α|+1
(
N∑
K=0

(Kt0)m+|α|(
∂ρ

∂z̄0

...
∂ρ

∂z̄m
)αs0(z, z)t0 +

N∑
K=0

R
′

K,α)

= (
∂ρ

∂z̄0

. . .
∂ρ

∂z̄m
)αs0(z, z)t0 lim

N→∞
(
N∑
K=0

(
Kt0
N

)m+|α| 1

N
+

N∑
K=0

R
′
K,α

Nm+|α|
1

N
)

= (
∂ρ

∂z̄0

. . .
∂ρ

∂z̄m
)αs0(z, z)(t0)m+|α|+1

∫ 1

0

ym+|α|dy + 0

= s0(z, z)(t0)m+1(t0
∂ρ

∂z̄0

...
∂ρ

∂z̄m
)α
∫ 1

0

ym+|α|dy

= s0(z, z)(t0)m+1

∫ 1

0

ym(yt0
∂ρ

∂z̄0

. . .
∂ρ

∂z̄m
)αdy.

(3.1.35)

For the next step we consider the behavior of the scaling Szegö kernel when N goes

to infinity. For this purpose we pick a point on the X and we call it z = (z0, . . . , zm)

then we move in the direction of u = (u0, . . . , um) ∈ Cm+1. For the simplicity we

define,

GN(u) = {
SN(z + u

N
, z)

Nm+1
}. (3.1.36)

We want to use Arzela Ascoli Theorem to show that GN(u) uniformly converges on

any compact set in Cm+1. I should mention that we fix the point z ∈ X.
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Lemma 3.1.10. GN(u) is uniformly bounded on B̄(0, 1) ⊂ Cm+1.

Proof.

|GN(u)| = | 1

Nm+1
SN(z +

u

N
, z)| = | 1

Nm+1

∑
|J |≤N

cJ(1 +
u

Nz
)JzJ z̄J |

= | 1

Nm+1

∑
|J |≤N

((1 +
u0

Nz0

)J0 . . . (1 +
um
Nzm

)Jm)cJz
J z̄J |

≤ 1

Nm+1

∑
|J |≤N

(|1 +
u0

Nz0

|J0 . . . |1 +
um
Nzm

|Jm)cJz
J z̄J

≤ e
∑m
i=0 |

ui
zi
| 1

Nm+1

∑
|J |≤N

cJz
J z̄J

= e
∑m
i=0 |

ui
zi
| 1

Nm+1
SN(z, z).

(3.1.37)

At the end we have,

|GN(u)| ≤ e
∑m
i=0 |

ui
zi
| 1

Nm+1
SN(z, z). (3.1.38)

By using theorem (3.1.9), we see that 1
Nm+1SN(z, z) converges. So there is a positive

constant M such that | 1
Nm+1SN(z, z)| ≤M . So

|GN(u)| ≤Me
∑m
i=0 |

ui
zi
|
. (3.1.39)

Lemma 3.1.11. ∂
∂ui
GN(u) is uniformly bounded on B̄(0, 1) ⊂ Cm+1 for i = 0, . . . ,m.
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Proof. We prove this lemma for i = 0. Same proof works for i = 1, . . .m.

| ∂
∂u0

GN(u)| = | 1

Nm+1

∂

∂u0

SN(z +
u

N
, z)| = | 1

Nm+2

∂

∂z0

SN(z +
u

N
, z)|

= | 1

Nm+2

∑
|J |≤N

cJj0(z0 +
u0

N
)j0−1 . . . (zm +

um
N

)jm z̄J |

= | 1

Nm+2

∑
|J |≤N

((1 +
u0

Nz0

)j0−1 . . . (1 +
um
Nzm

)jm)cJz
j0−1
0 ...zjmm z̄J |

≤ 1

Nm+2

∑
|J |≤N

(|1 +
u0

Nz0

|j0−1 . . . |1 +
um
Nzm

|jm)cJz
j0−1
0 . . . zjmm z̄J |

≤ e
∑m
i=0 |

ui
zi
| 1

Nm+2

∑
|J |≤N

cJj0z
j0−1
0 . . . zjmm z̄J

= e
∑m
i=0 |

ui
zi
| 1

Nm+2

∂

∂z0

SN(z, z).

(3.1.40)

By using (3.1.18) we see that 1
Nm+2

∂
∂z0
SN(z, z) converges. So there is a positive

constant M0 such that | 1
Nm+2

∂
∂z0
SN(z, z)| ≤M0. In other words

| ∂
∂u0

GN(u)| ≤M0e
∑m
i=0 |

ui
zi
|
. (3.1.41)

Now by using lemma (3.1.11) we see that {GN} is an equicontinuous sequence of

holomorphic functions on B̄(0, 1) ⊂ Cm+1 that is also uniformly bounded on B̄(0, 1).

So by using Arzel Ascoli Theorem, there is a subsequence like {GNj} which converges

uniformly on B̄(0, 1). In the next Theorem we compute the limit of this subsequence

and after that we prove that the whole sequence converges to the same limit.

36



CHAPTER 3. PARTIAL SZEGÖ KERNELS

Theorem 3.1.12. If z = (z0, . . . , zm) ∈ X ∩ (C∗)m+1 and u = (u0, . . . , um) then

lim
N→∞

1

Nm+1
SN(z +

u

N
, z) = CΩ,z,µ,mFm(β(u))

where CΩ,z,µ,m is a constant that depends on Ω, z, µ, m and

Fm(t) =

∫ 1

0

etyymdy , β(w) =
d′ρ(z) · w
d′ρ(z) · z

for w ∈ Cm+1. (3.1.42)

Proof. We already proved that there is a convergent subsequence of GN , GNj , that

converges uniformly o B̄(0, 1) ⊂ Cm+1. Now by writing Taylor series for any {GNj}

around the origin we will have,

GNj(u) =
∑
α

∂α

∂uα
GNj(0)

uα

α!
. (3.1.43)

On the other hand if we let,

G(u) = limj→∞GNj(u), (3.1.44)

then

∂α

∂uα
G(0) = lim

j→∞

∂α

∂uα
GNj(0). (3.1.45)

Because each GNj is holomorphic on Cm+1 and they converge uniformly on B̄(0, 1)
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to G(u), so

G(u) =
∑
α

∂α

∂uα
G(0)

uα

α!
=
∑
α

lim
j→∞

∂α

∂uα
GNj(0)

uα

α!

=
∑
α

lim
Nj→∞

1

N
m+|α|+1
j

∂α

∂z̄α
SNj(z, z)

(u)α

α!

= s0(z, z)tm+1
0

∑
α

∫ 1

0

ym
(t0y

∂ρ
∂z0
u0..

∂ρ
∂zm

um)α

α!
dy

= s0(z, z)tm+1
0

∫ 1

0

eyt0(d′ρ(z)·u)ymdy

= s0(z, z)tm+1
0 Fm(

d′ρ(z) · u
d′ρ(z) · z

)

= CΩ,z,µ,mFm(β(u)).

(3.1.46)

Hence any convergent subsequence of

{ 1

Nm+1
SN(z +

u

N
, z)}, (3.1.47)

converges to CΩ,z,µ,mFm(β(u)), and also we showed it is bounded. So it means

lim
N→∞

1

Nm+1
SN(z +

u

N
, z) = CΩ,z,µ,mFm(β(u)). (3.1.48)

Theorem 3.1.13. If z = (z0, . . . , zm) ∈ X ∩ (C∗)m+1 and u = (u0, . . . , um), v =

(v0, . . . , vm) ∈ Cm+1 then

lim
N→∞

1

Nm+1
SN(z +

u

N
, z +

v

N
) = CΩ,z,µ,mFm(β(u) + β̄(v)), (3.1.49)
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3.2 Derivatives of partial Szegö kernel

Our main tool for computing scaling limit correlation function is the Kac-Rice

formula which for that we need to know derivatives of partial szegö kernel. In this

section we put our aim to compute scaling limit of derivative of partial szegö kernel.

Theorem 3.2.1. If z = (z0, . . . , zm) ∈ X ∩ (C∗)m+1 and u = (u0, . . . , um), v =

(v0, . . . , vm) ∈ Cm+1 then

lim
N→∞

1

Nm+2

∂

∂zi
SN(z +

u

N
, z +

v

N
) = s0(z, z)tm+2

0

∂ρ

∂zi
Fm+1(β(u) + β̄(v)), (3.2.1)

lim
N→∞

1

Nm+2

∂

∂z̄i
SN(z +

u

N
, z +

v

N
) = s0(z, z)tm+2

0

∂ρ

∂z̄i
Fm+1(β(u) + β̄(v)). (3.2.2)

Proof. Let

GN(u, v) =
1

Nm+1
SN(z +

u

N
, z +

v

N
), (3.2.3)

then

∂

∂ui
GN(u, v) =

1

Nm+1

∂

∂zi
SN(z +

u

N
, z +

v

N
)

1

N

=
1

Nm+2

∂

∂zi
SN(z +

u

N
, z +

v

N
).

(3.2.4)
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On the other hand

lim
N→∞

1

Nm+2

∂

∂zi
SN(z +

u

N
, z +

v

N
) = lim

N→∞

∂

∂ui
GN(u, v)

=
∂

∂ui
lim
N→∞

GN(u, v)

=
∂

∂ui
(s0(z, z)tm+1

0 Fm(β(u) + β̄(v)))

= s0(z, z)tm+1
0

∂

∂ui
Fm((β(u) + β̄(v))

= s0(z, z)tm+1
0

∂β(u)

∂ui
F ′m(β(u) + β̄(v))

= s0(z, z)tm+2
0

∂ρ

∂zi
F ′m(β(u) + β̄(v))

= s0(z, z)tm+2
0

∂ρ

∂zi
Fm+1(β(u) + β̄(v)),

(3.2.5)

and similarly by following the same proof we can show that

lim
N→∞

1

Nm+2

∂

∂z̄i
SN(z +

u

N
, z +

v

N
) = s0(z, z)tm+2

0

∂ρ

∂z̄i
Fm+1(β(u) + β̄(v)). (3.2.6)

Theorem 3.2.2. If z = (z0, . . . , zm) ∈ X ∩ (C∗)m+1 and u = (u0, . . . , um), v =

(v0, . . . , vm) ∈ Cm+1 then

lim
N→∞

1

Nm+3

∂2

∂z̄i∂zj
SN(z +

u

N
, z +

v

N
) = s0(z, z)tm+3

0

∂ρ

∂z̄i

∂ρ

∂zj
Fm+2(β(u) + β̄(v)).

(3.2.7)
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Proof.

lim
N→∞

1

Nm+3

∂2

∂z̄i∂zj
SN(z +

u

N
, z +

v

N
) = lim

N→∞

1

Nm+1

∂2

∂vi∂uj
GN(u, v)

=
∂2

∂vi∂uj
lim
N→∞

1

Nm+1
GN(u, v)

=
∂2

∂vi∂uj
(s0(z, z)tm+1

0 Fm(β(u) + β̄(v)))

= s0(z, z)tm+1
0

∂2

∂vi∂uj
Fm(β(u) + β̄(v))

= s0(z, z)tm+3
0

∂ρ

∂z̄i

∂ρ

∂zj
F ′′m(β(u) + β̄(v))

= s0(z, z)tm+3
0

∂ρ

∂z̄i

∂ρ

∂zj
Fm+2(β(u) + β̄(v)).

(3.2.8)
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Scaling Limit Zero Correlations

We now have all the ingredients that we need to compute the Scaling limit distribu-

tion functions. We expect the scaling limits to exist and depend only on the m, z,X.

Bleher, Shiffman, and Zelditch in [4] gave a formula for the l- point zero correlation

function in terms of the projection kernel and its first and second derivatives.

4.1 Scaling Limit Distribution Functions

For the 1-point correlation function we define the matrices

4N =

AN BN

B∗N CN

 , where : (4.1.1)

AN = SN(z +
u

N
, z +

u

N
), (4.1.2)

BN = (
∂

∂z̄i
SN(z +

u

N
, z +

u

N
))0≤i≤m, (4.1.3)
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CN = (
∂2SN
∂zi∂z̄j

(z +
u

N
, z +

u

N
))0≤i,j≤m, (4.1.4)

ΛN = CN − (BN)∗A−1
N BN . (4.1.5)

Writing

EN
µ,X([Zf ] ∧

ωm

m!
) = DN

µ,X(z)
ωm+1

(m+ 1)!
, (4.1.6)

by using the general formula given in [4] for the l-point density functions we get

DN
µ,X =

1

π

∑m
i=0(ΛN)i,i
det(AN)

. (4.1.7)

Our goal is to compute,

lim
N→∞

DN
µ,X(z + u

N
)

N2
= lim

N→∞

1

π

∑m
i=0

(Λ)i,i
Nm+3

det(AN )
Nm+1

. (4.1.8)

We define

P = (
∂ρ

∂z̄0

, . . . ,
∂ρ

∂z̄m
). (4.1.9)

So by using the definition of P we can simplify each formula that we computed for

the scaling limit of szegö kernel and its derivatives. Now if we use theorems (3.1.13),

(3.2.1), (3.2.2) then we will have:

lim
N→∞

AN
Nm+1

= s0(z, z)tm+1
0 Fm(β(u) + β̄(u)), (4.1.10)

lim
N→∞

BN

Nm+2
= s0(z, z)tm+2

0 (
∂ρ(z)

∂z̄0

, . . . ,
∂ρ(z)

∂z̄m
)Fm+1(β(u) + β̄(u))

= s0(z, z)tm+2
0 Fm+1(β(u) + β̄(v))P,

(4.1.11)
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lim
N→∞

CN
Nm+3

= s0(z, z)tm+3
0 (

∂ρ(z)

∂zi

∂ρ(z)

∂z̄j
Fm+2(β(u) + β̄(u)))0≤i,j≤m

= s0(z, z)tm+3
0 Fm+2(β(u) + β̄(u))P ∗P.

(4.1.12)

Now if we plug results that we have from equations (4.1.10), (4.1.11), (4.1.12) in,

lim
N→∞

ΛN

Nm+3
= lim

N→∞
(
CN
Nm+3

− (
BN

Nm+2
)∗(

AN
Nm+1

)−1(
BN

Nm+2
)), (4.1.13)

then we will have,

lim
N→∞

ΛN

Nm+3
= s0(z, z)tm+3

0 (Fm+2(β(u) + β̄(u))−
F 2
m+1(β(u) + β̄(u))

Fm(β(u) + β̄(u))
)P ∗P. (4.1.14)

Consequently

lim
N→∞

(ΛN)i,i
Nm+3

= s0(z, z)tm+3
0 (Fm+2(β(u) + β̄(u))−

F 2
m+1(β(u) + β̄(u))

Fm(β(u) + β̄(v))
)(P ∗P )i,i.

(4.1.15)

We know that ||P ||2 =
∑m

i=0(P ∗P )i,i, so we have

lim
N→∞

m∑
i=0

(ΛN)i,i
Nm+3

= s0(z, z)tm+3
0 (Fm+2(β(u) + β̄(u))−

F 2
m+1(β(u) + β̄(u))

Fm(β(u) + β̄(u))
)||P ||2.

(4.1.16)

Theorem 4.1.1. Let DN
µ,X be the expected zero density for the ensemble (PN , γN)

then

lim
N→∞

1

N2
DN
µ,X(z +

u

N
) = D∞z,X(u),
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where

D∞z,X(u) =
(β(P ))2

||P ||2π
(logFm)

′′
(β(u) + β̄(u)),

where P is defined at (4.1.9).

Proof.

D∞z,X(u) =
1

π
lim
N→∞

DN
µ,X(z + u

N
)

N2
= lim

N→∞

1

π

∑m
i=0

(Λ)i,i
Nm+3

det(AN )
Nm+1

=
s0(z, z)tm+3

0 (Fm+2(β(u) + β̄(u))− F 2
m+1(β(u)+β̄(u))

Fm(β(u)+β̄(u))
)

s0(z, z)tm+1
0 Fm(β(u) + β̄(u))

||P ||2

=
1

π
t20
Fm+2(β(u) + β̄(u))Fm(β(u) + β̄(u))− F 2

m+1(β(u) + β̄(u))

Fm(β(u) + β̄(u))2
||P ||2

=
1

π
(t0||P ||)2(logFm)

′′
(β(u) + β̄(u))

=
(β(P ))2

||P ||2π
(logFm)

′′
(β(u) + β̄(u)).

(4.1.17)

4.2 The Scaling Limit Pair Correlation Func-

tion of Zeros

Let z ∈ X ∩ (C∗)m+1 and u ∈ Cm+1. So the scaling covariant matrix 4N(u) is

4N (u) =

AN(u) BN(u)

B∗N(u) CN(u)

 , (4.2.1)
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where

AN(u) =

SN(z + u
N
, z + u

N
) SN(z + u

N
, z)

SN(z, z + u
N

) SN(z, z)

 , (4.2.2)

BN(u) =

B1
N(u) B2

N(u)

B3
N(u) B4

N(u)

 , (4.2.3)

such that

B1
N(u) = (

∂

∂z̄i
SN(z +

u

N
, z +

u

N
))0≤i≤m,

B2
N(u) = (

∂

∂z̄i
SN(z +

u

N
, z))0≤i≤m,

B3
N(u) = (

∂

∂z̄i
SN(z, z +

u

N
))0≤i≤m,

B4
N(u) = (

∂

∂z̄i
SN(z, z))0≤i≤m,

(4.2.4)

CN(u) =

C1,1
N (u) C1,2

N (u)

C2,1
N (u) C2,2

N (u)

 , (4.2.5)

where

C1,1
N (u) = (

∂2SN
∂zi∂z̄j

(z +
u

N
, z +

u

N
))0≤i,j≤m,

C1,2
N (u) = (

∂2SN
∂zi∂z̄j

(z +
u

N
, z))0≤i,j≤m,

C2,1
N (u) = (

∂2SN
∂zi∂z̄j

(z, z +
u

N
))0≤i,j≤m,

C2,2
N (u) = (

∂2SN
∂zi∂z̄j

(z, z))0≤i,j≤m.

(4.2.6)
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So the scaling limits of the matrices, AN , BN , CN are

A∞(u) = lim
N→∞

1

Nm+1
AN

= s0(z, z)tm+1
0

Fm(β(u) + β̄(u)) Fm(β(u))

Fm(β̄(u)) Fm(0)

 ,

(4.2.7)

B∞(u) = lim
N→∞

1

Nm+2
BN(u)

= s0(z, z)tm+2
0

Fm+1(β(u) + β̄(u))P̄ Fm+1(β(u))P̄

Fm+1(β̄(u))P̄ Fm+1(0)P̄

 ,

(4.2.8)

C∞(u) = lim
N→∞

1

Nm+3
CN(u)

= s0(z, z)tm+3
0

Fm+2(β(u) + β̄(u))P ∗P Fm+2(β(u))P ∗P

Fm+2(β̄(u))P ∗P Fm+2(0)P ∗P

 .

(4.2.9)

To simplify the computations, we define the two by two matrix,

Gm(x) =

Fm(x+ x̄) Fm(x)

Fm(x̄) Fm(0)

 , (4.2.10)

where all the entries of the matrix Gm are identified by Fm. If x ∈ C∗ then

Fm(x)Fm(x̄) < Fm(0)Fm(x+ x̄) =
1

m
Fm(x+ x̄). (4.2.11)

So for nonzero x ∈ C the matrix Gm(x) is invertible, therefore

Qm(x) = Gm+2(x)−Gm+1(x)Gm(x)−1Gm+1(x), (4.2.12)
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is a well defined two by two matrix on C∗. This means that Gm(β(u))−1 is a well-

defined matrix. Hence we have

Λ∞ = C∞ −B∗∞A−1
∞ B∞

= s0(z, z)tm+3
0

Q1,1P
∗P Q1,2P

∗P

Q2,1P
∗P Q2,2P

∗P

 .

(4.2.13)

Our goal is to compute scaling limit normalized pair correlation function,

K̃∞z,X(u) = lim
N→∞

KN
µ,X(z + u

N
, z)

DN
µ,X(z + u

N
)DN

µ,X(z)
, (4.2.14)

where

EN
µ,X([Zf (z)] ∧ [Zf (w)] ∧ ωmz

(m)!
∧ ωmw

(m)!
) = KN

µ,X(z, w)
ωm+1
z

(m+ 1)!
∧ ωm+1

w

(m+ 1)!
, (4.2.15)

Theorem 4.2.1. Let K̃N
µ,X(z, w) be the normalized pair correlation function for the

probability space (PN , γN) and choose u ∈ Cm+1 such that u /∈ T hz X. Then,

lim
N→∞

1

N4
KN
µ,X(z +

u

N
, z) = K∞z,X(u),

lim
N→∞

K̃N
µ,X(z +

u

N
, z) = K̃∞z,X(u),

where

K∞z,X(u) =
1

π2||P ||4
perm(Qm(β(u)))

det(Gm(β(u)))
(β(P ))4,

K̃∞z,X(u) =
1

(logFm)′′(β(u) + β̄(u))(logFm)′′(0)

perm(Qm(β(u)))

det(Gm(β(u)))
,

where KN
µ,X(z, w), K̃N

µ,X(z, w) are defined in (1.0.16), (1.0.15).
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Proof. At first by using Kac-Rice formula we compute 1
N4K

N
µ,X(z+ u

N
, z) and then by

using Theorem (4.1.1) we compute the scaling limit for the normalized pair correlation

function.

1

N4
KN
µ,X(z +

u

N
, z) =

(
∑m

i=0

ΛNi,i
Nm+3 )(

∑2m
i=m+1

ΛNi,i
Nm+3 )

π2 det(A
N )

N2m+2

+

∑2m
i=m+1

ΛN1,i
Nm+3

ΛNi,1
Nm+3 + · · ·+

∑2m
i=m+1

ΛNm,i
Nm+3

ΛNi,m
Nm+3

π2 det(A
N )

N2m+2

→ (Q1,1Q2,2 +Q1,2Q2,1)||P ||4t40
π2det(Gm(β(u)))

=
1

π2||P ||4
perm(Qm(β(u)))

det(Gm(β(u)))
(β(P ))4.

(4.2.16)

Now we are ready to give a general formula for K̃∞z,X(u). If we use equation (4.2.16)

then,

K̃∞z,X(u) = lim
N→∞

KN
µ,X(z + u

N
, z)

DN
µ,X(z + u

N
)DN

µ,X(z)

= lim
N→∞

KN
µ,X(z+ u

N
,z)

N4

DNµ,X(z+ u
N

)

N2

DNµ,X(z)

N2

=

perm(Qm(β(u)))(||P ||t0)4

π2det(Gm(β(u)))

(
||P ||2t20

π
Fm(β(u) + β̄(u)))(

||P ||2t20
π

Fm(0))

=
1

(logFm)′′(β(u) + β̄(u))(logFm)′′(0)

perm(Qm(β(u)))

det(Gm(β(u)))
.

(4.2.17)
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[12] S. Zelditch, Szegö kernels and a theorem of Tian, Int. Math. Res. Notices 6

(1998), 317331.

51



Vita

Arash Karami was born on Jun 16, 1983 in Roudehen. He received his Bachelor

of science in Mathematics from the Sharif University of Technology. He was accepted

into the doctoral program at Johns Hopkins University in the fall of 2008. His dis-

sertation was completed under the guidance of Professor Bernard Shiffman and this

dissertation was defended on March 13, 2014.

52


	Abstract
	Acknowledgments
	List of Figures
	Introduction
	Background
	Szegö kernel and orthogonal polynomials
	Kac Rice Formula

	Partial Szegö Kernels
	Partial Szegö Kernels
	Derivatives of partial Szegö kernel

	Scaling Limit Zero Correlations
	Scaling Limit Distribution
	Scaling Limit Pair Correlation

	Bibliography
	Vita

